
MySQL 5.7 Reference Manual

Including MySQL NDB Cluster 7.5 and NDB Cluster 7.6

Abstract

This is the MySQL Reference Manual. It documents MySQL 5.7 through 5.7.52, as well as NDB Cluster releases
based on version 7.5 of NDB through 5.7.44-ndb-7.5.36, respectively. It may include documentation of features of
MySQL versions that have not yet been released. For information about which versions have been released, see the
MySQL 5.7 Release Notes.

MySQL 5.7 features. This manual describes features that are not included in every edition of MySQL 5.7; such
features may not be included in the edition of MySQL 5.7 licensed to you. If you have any questions about the
features included in your edition of MySQL 5.7, refer to your MySQL 5.7 license agreement or contact your Oracle
sales representative.

For notes detailing the changes in each release, see the MySQL 5.7 Release Notes.

For legal information, including licensing information, see the Preface and Legal Notices.

For help with using MySQL, please visit the MySQL Forums, where you can discuss your issues with other MySQL
users.

Document generated on: 2026-02-09 (revision: 84384)

https://dev.mysql.com/doc/relnotes/mysql/5.7/en/
https://dev.mysql.com/doc/relnotes/mysql/5.7/en/
http://forums.mysql.com

Table of Contents
Preface and Legal Notices ... xxvii
1 General Information ... 1

1.1 About This Manual ... 2
1.2 Overview of the MySQL Database Management System .. 4

1.2.1 What is MySQL? ... 4
1.2.2 The Main Features of MySQL .. 6
1.2.3 History of MySQL .. 8

1.3 What Is New in MySQL 5.7 .. 9
1.4 Server and Status Variables and Options Added, Deprecated, or Removed in MySQL 5.7 25
1.5 How to Report Bugs or Problems .. 41
1.6 MySQL Standards Compliance .. 46

1.6.1 MySQL Extensions to Standard SQL .. 47
1.6.2 MySQL Differences from Standard SQL .. 50
1.6.3 How MySQL Deals with Constraints ... 53

2 Installing and Upgrading MySQL .. 59
2.1 General Installation Guidance ... 62

2.1.1 Supported Platforms .. 62
2.1.2 Which MySQL Version and Distribution to Install ... 62
2.1.3 How to Get MySQL ... 63
2.1.4 Verifying Package Integrity Using MD5 Checksums or GnuPG 63
2.1.5 Installation Layouts .. 80
2.1.6 Compiler-Specific Build Characteristics ... 81

2.2 Installing MySQL on Unix/Linux Using Generic Binaries .. 81
2.3 Installing MySQL on Microsoft Windows .. 84

2.3.1 MySQL Installation Layout on Microsoft Windows .. 87
2.3.2 Choosing an Installation Package ... 88
2.3.3 MySQL Installer for Windows ... 89
2.3.4 Installing MySQL on Microsoft Windows Using a noinstall ZIP Archive 120
2.3.5 Troubleshooting a Microsoft Windows MySQL Server Installation 128
2.3.6 Windows Postinstallation Procedures .. 130
2.3.7 Windows Platform Restrictions .. 132

2.4 Installing MySQL on macOS ... 133
2.4.1 General Notes on Installing MySQL on macOS ... 134
2.4.2 Installing MySQL on macOS Using Native Packages ... 135
2.4.3 Installing a MySQL Launch Daemon ... 141
2.4.4 Installing and Using the MySQL Preference Pane .. 144

2.5 Installing MySQL on Linux .. 149
2.5.1 Installing MySQL on Linux Using the MySQL Yum Repository 150
2.5.2 Replacing a Third-Party Distribution of MySQL Using the MySQL Yum Repository 154
2.5.3 Installing MySQL on Linux Using the MySQL APT Repository 157
2.5.4 Installing MySQL on Linux Using the MySQL SLES Repository 157
2.5.5 Installing MySQL on Linux Using RPM Packages from Oracle 157
2.5.6 Installing MySQL on Linux Using Debian Packages from Oracle 162
2.5.7 Deploying MySQL on Linux with Docker .. 163
2.5.8 Installing MySQL on Linux from the Native Software Repositories 174
2.5.9 Installing MySQL on Linux with Juju ... 177
2.5.10 Managing MySQL Server with systemd ... 177

2.6 Installing MySQL Using Unbreakable Linux Network (ULN) ... 182
2.7 Installing MySQL on Solaris .. 183

2.7.1 Installing MySQL on Solaris Using a Solaris PKG .. 184
2.8 Installing MySQL from Source ... 185

iii

MySQL 5.7 Reference Manual

2.8.1 Source Installation Methods .. 185
2.8.2 Source Installation Prerequisites ... 186
2.8.3 MySQL Layout for Source Installation ... 187
2.8.4 Installing MySQL Using a Standard Source Distribution .. 187
2.8.5 Installing MySQL Using a Development Source Tree ... 192
2.8.6 Configuring SSL Library Support ... 193
2.8.7 MySQL Source-Configuration Options ... 194
2.8.8 Dealing with Problems Compiling MySQL .. 220
2.8.9 MySQL Configuration and Third-Party Tools .. 221

2.9 Postinstallation Setup and Testing ... 222
2.9.1 Initializing the Data Directory .. 222
2.9.2 Starting the Server ... 228
2.9.3 Testing the Server ... 231
2.9.4 Securing the Initial MySQL Account .. 233
2.9.5 Starting and Stopping MySQL Automatically .. 235

2.10 Upgrading MySQL .. 236
2.10.1 Before You Begin ... 236
2.10.2 Upgrade Paths ... 237
2.10.3 Changes in MySQL 5.7 .. 237
2.10.4 Upgrading MySQL Binary or Package-based Installations on Unix/Linux 247
2.10.5 Upgrading MySQL with the MySQL Yum Repository .. 250
2.10.6 Upgrading MySQL with the MySQL APT Repository .. 252
2.10.7 Upgrading MySQL with the MySQL SLES Repository .. 252
2.10.8 Upgrading MySQL on Windows .. 252
2.10.9 Upgrading a Docker Installation of MySQL .. 254
2.10.10 Upgrading MySQL with Directly-Downloaded RPM Packages 254
2.10.11 Upgrade Troubleshooting .. 255
2.10.12 Rebuilding or Repairing Tables or Indexes .. 256
2.10.13 Copying MySQL Databases to Another Machine .. 257

2.11 Downgrading MySQL .. 258
2.11.1 Before You Begin ... 259
2.11.2 Downgrade Paths ... 259
2.11.3 Downgrade Notes .. 259
2.11.4 Downgrading Binary and Package-based Installations on Unix/Linux 262
2.11.5 Downgrade Troubleshooting ... 265

2.12 Perl Installation Notes ... 265
2.12.1 Installing Perl on Unix .. 265
2.12.2 Installing ActiveState Perl on Windows .. 266
2.12.3 Problems Using the Perl DBI/DBD Interface .. 267

3 Tutorial .. 269
3.1 Connecting to and Disconnecting from the Server .. 269
3.2 Entering Queries ... 270
3.3 Creating and Using a Database .. 273

3.3.1 Creating and Selecting a Database ... 274
3.3.2 Creating a Table .. 275
3.3.3 Loading Data into a Table .. 277
3.3.4 Retrieving Information from a Table .. 278

3.4 Getting Information About Databases and Tables ... 291
3.5 Using mysql in Batch Mode .. 292
3.6 Examples of Common Queries .. 294

3.6.1 The Maximum Value for a Column ... 294
3.6.2 The Row Holding the Maximum of a Certain Column ... 294
3.6.3 Maximum of Column per Group .. 295
3.6.4 The Rows Holding the Group-wise Maximum of a Certain Column 295

iv

MySQL 5.7 Reference Manual

3.6.5 Using User-Defined Variables ... 296
3.6.6 Using Foreign Keys .. 296
3.6.7 Searching on Two Keys ... 299
3.6.8 Calculating Visits Per Day .. 299
3.6.9 Using AUTO_INCREMENT ... 299

3.7 Using MySQL with Apache ... 302
4 MySQL Programs .. 303

4.1 Overview of MySQL Programs .. 304
4.2 Using MySQL Programs ... 308

4.2.1 Invoking MySQL Programs ... 308
4.2.2 Specifying Program Options ... 309
4.2.3 Command Options for Connecting to the Server .. 323
4.2.4 Connecting to the MySQL Server Using Command Options 335
4.2.5 Connection Transport Protocols .. 338
4.2.6 Connection Compression Control .. 339
4.2.7 Setting Environment Variables .. 340

4.3 Server and Server-Startup Programs ... 341
4.3.1 mysqld — The MySQL Server .. 341
4.3.2 mysqld_safe — MySQL Server Startup Script .. 341
4.3.3 mysql.server — MySQL Server Startup Script ... 351
4.3.4 mysqld_multi — Manage Multiple MySQL Servers ... 353

4.4 Installation-Related Programs .. 359
4.4.1 comp_err — Compile MySQL Error Message File .. 359
4.4.2 mysql_install_db — Initialize MySQL Data Directory .. 361
4.4.3 mysql_plugin — Configure MySQL Server Plugins ... 370
4.4.4 mysql_secure_installation — Improve MySQL Installation Security 373
4.4.5 mysql_ssl_rsa_setup — Create SSL/RSA Files ... 378
4.4.6 mysql_tzinfo_to_sql — Load the Time Zone Tables ... 381
4.4.7 mysql_upgrade — Check and Upgrade MySQL Tables .. 382

4.5 Client Programs .. 393
4.5.1 mysql — The MySQL Command-Line Client .. 393
4.5.2 mysqladmin — A MySQL Server Administration Program ... 435
4.5.3 mysqlcheck — A Table Maintenance Program ... 450
4.5.4 mysqldump — A Database Backup Program ... 465
4.5.5 mysqlimport — A Data Import Program ... 501
4.5.6 mysqlpump — A Database Backup Program ... 515
4.5.7 mysqlshow — Display Database, Table, and Column Information 540
4.5.8 mysqlslap — A Load Emulation Client .. 550

4.6 Administrative and Utility Programs ... 568
4.6.1 innochecksum — Offline InnoDB File Checksum Utility .. 568
4.6.2 myisam_ftdump — Display Full-Text Index information ... 575
4.6.3 myisamchk — MyISAM Table-Maintenance Utility .. 576
4.6.4 myisamlog — Display MyISAM Log File Contents .. 596
4.6.5 myisampack — Generate Compressed, Read-Only MyISAM Tables 598
4.6.6 mysql_config_editor — MySQL Configuration Utility ... 605
4.6.7 mysqlbinlog — Utility for Processing Binary Log Files .. 611
4.6.8 mysqldumpslow — Summarize Slow Query Log Files .. 641

4.7 Program Development Utilities .. 644
4.7.1 mysql_config — Display Options for Compiling Clients ... 644
4.7.2 my_print_defaults — Display Options from Option Files ... 646
4.7.3 resolve_stack_dump — Resolve Numeric Stack Trace Dump to Symbols 647

4.8 Miscellaneous Programs ... 648
4.8.1 lz4_decompress — Decompress mysqlpump LZ4-Compressed Output 648
4.8.2 perror — Display MySQL Error Message Information ... 648

v

MySQL 5.7 Reference Manual

4.8.3 replace — A String-Replacement Utility ... 649
4.8.4 resolveip — Resolve Host name to IP Address or Vice Versa 650
4.8.5 zlib_decompress — Decompress mysqlpump ZLIB-Compressed Output 650

4.9 Environment Variables .. 650
4.10 Unix Signal Handling in MySQL ... 653

5 MySQL Server Administration .. 657
5.1 The MySQL Server ... 658

5.1.1 Configuring the Server ... 658
5.1.2 Server Configuration Defaults ... 660
5.1.3 Server Option, System Variable, and Status Variable Reference 661
5.1.4 Server System Variable Reference ... 702
5.1.5 Server Status Variable Reference ... 723
5.1.6 Server Command Options .. 738
5.1.7 Server System Variables .. 766
5.1.8 Using System Variables ... 891
5.1.9 Server Status Variables .. 909
5.1.10 Server SQL Modes .. 931
5.1.11 Connection Management .. 947
5.1.12 IPv6 Support .. 952
5.1.13 MySQL Server Time Zone Support ... 956
5.1.14 Server-Side Help Support ... 961
5.1.15 Server Tracking of Client Session State .. 962
5.1.16 The Server Shutdown Process ... 965

5.2 The MySQL Data Directory ... 967
5.3 The mysql System Database ... 967
5.4 MySQL Server Logs ... 970

5.4.1 Selecting General Query Log and Slow Query Log Output Destinations 971
5.4.2 The Error Log .. 974
5.4.3 The General Query Log ... 976
5.4.4 The Binary Log .. 978
5.4.5 The Slow Query Log .. 991
5.4.6 The DDL Log ... 993
5.4.7 Server Log Maintenance .. 993

5.5 MySQL Server Plugins .. 995
5.5.1 Installing and Uninstalling Plugins ... 996
5.5.2 Obtaining Server Plugin Information .. 1000
5.5.3 MySQL Enterprise Thread Pool .. 1001
5.5.4 The Rewriter Query Rewrite Plugin ... 1007
5.5.5 Version Tokens .. 1016
5.5.6 MySQL Plugin Services .. 1027

5.6 MySQL Server Loadable Functions .. 1035
5.6.1 Installing and Uninstalling Loadable Functions ... 1036
5.6.2 Obtaining Information About Loadable Functions ... 1037

5.7 Running Multiple MySQL Instances on One Machine .. 1038
5.7.1 Setting Up Multiple Data Directories .. 1039
5.7.2 Running Multiple MySQL Instances on Windows .. 1040
5.7.3 Running Multiple MySQL Instances on Unix .. 1043
5.7.4 Using Client Programs in a Multiple-Server Environment .. 1044

5.8 Debugging MySQL .. 1045
5.8.1 Debugging a MySQL Server ... 1045
5.8.2 Debugging a MySQL Client .. 1052
5.8.3 The DBUG Package ... 1052
5.8.4 Tracing mysqld Using DTrace ... 1055

6 Security ... 1075

vi

MySQL 5.7 Reference Manual

6.1 General Security Issues .. 1076
6.1.1 Security Guidelines .. 1076
6.1.2 Keeping Passwords Secure .. 1078
6.1.3 Making MySQL Secure Against Attackers .. 1087
6.1.4 Security-Related mysqld Options and Variables ... 1088
6.1.5 How to Run MySQL as a Normal User .. 1089
6.1.6 Security Considerations for LOAD DATA LOCAL ... 1090
6.1.7 Client Programming Security Guidelines .. 1092

6.2 Access Control and Account Management ... 1094
6.2.1 Account User Names and Passwords ... 1095
6.2.2 Privileges Provided by MySQL .. 1097
6.2.3 Grant Tables .. 1104
6.2.4 Specifying Account Names ... 1111
6.2.5 Access Control, Stage 1: Connection Verification ... 1113
6.2.6 Access Control, Stage 2: Request Verification ... 1116
6.2.7 Adding Accounts, Assigning Privileges, and Dropping Accounts 1118
6.2.8 Reserved Accounts .. 1121
6.2.9 When Privilege Changes Take Effect .. 1121
6.2.10 Assigning Account Passwords .. 1122
6.2.11 Password Management .. 1123
6.2.12 Server Handling of Expired Passwords .. 1126
6.2.13 Pluggable Authentication .. 1128
6.2.14 Proxy Users ... 1132
6.2.15 Account Locking ... 1139
6.2.16 Setting Account Resource Limits ... 1140
6.2.17 Troubleshooting Problems Connecting to MySQL ... 1142
6.2.18 SQL-Based Account Activity Auditing .. 1147

6.3 Using Encrypted Connections .. 1148
6.3.1 Configuring MySQL to Use Encrypted Connections .. 1150
6.3.2 Encrypted Connection TLS Protocols and Ciphers ... 1155
6.3.3 Creating SSL and RSA Certificates and Keys .. 1162
6.3.4 SSL Library-Dependent Capabilities .. 1171
6.3.5 Connecting to MySQL Remotely from Windows with SSH 1173

6.4 Security Plugins .. 1173
6.4.1 Authentication Plugins .. 1174
6.4.2 Connection Control Plugins .. 1243
6.4.3 The Password Validation Plugin .. 1249
6.4.4 The MySQL Keyring ... 1257
6.4.5 MySQL Enterprise Audit ... 1294
6.4.6 MySQL Enterprise Firewall ... 1365

6.5 MySQL Enterprise Data Masking and De-Identification ... 1381
6.5.1 MySQL Enterprise Data Masking and De-Identification Elements 1383
6.5.2 Installing or Uninstalling MySQL Enterprise Data Masking and De-Identification 1383
6.5.3 Using MySQL Enterprise Data Masking and De-Identification 1384
6.5.4 MySQL Enterprise Data Masking and De-Identification Function Reference 1390
6.5.5 MySQL Enterprise Data Masking and De-Identification Function Descriptions 1390

6.6 MySQL Enterprise Encryption .. 1399
6.6.1 MySQL Enterprise Encryption Installation .. 1400
6.6.2 MySQL Enterprise Encryption Usage and Examples .. 1401
6.6.3 MySQL Enterprise Encryption Function Reference ... 1403
6.6.4 MySQL Enterprise Encryption Function Descriptions .. 1403

6.7 SELinux .. 1407
6.7.1 Check if SELinux is Enabled .. 1408
6.7.2 Changing the SELinux Mode .. 1409

vii

MySQL 5.7 Reference Manual

6.7.3 MySQL Server SELinux Policies ... 1409
6.7.4 SELinux File Context .. 1409
6.7.5 SELinux TCP Port Context ... 1411
6.7.6 Troubleshooting SELinux .. 1412

7 Backup and Recovery .. 1415
7.1 Backup and Recovery Types ... 1416
7.2 Database Backup Methods .. 1419
7.3 Example Backup and Recovery Strategy ... 1421

7.3.1 Establishing a Backup Policy .. 1422
7.3.2 Using Backups for Recovery ... 1424
7.3.3 Backup Strategy Summary ... 1424

7.4 Using mysqldump for Backups .. 1424
7.4.1 Dumping Data in SQL Format with mysqldump .. 1425
7.4.2 Reloading SQL-Format Backups ... 1426
7.4.3 Dumping Data in Delimited-Text Format with mysqldump 1427
7.4.4 Reloading Delimited-Text Format Backups .. 1428
7.4.5 mysqldump Tips ... 1428

7.5 Point-in-Time (Incremental) Recovery .. 1430
7.5.1 Point-in-Time Recovery Using Binary Log .. 1431
7.5.2 Point-in-Time Recovery Using Event Positions ... 1432

7.6 MyISAM Table Maintenance and Crash Recovery .. 1433
7.6.1 Using myisamchk for Crash Recovery ... 1434
7.6.2 How to Check MyISAM Tables for Errors .. 1435
7.6.3 How to Repair MyISAM Tables ... 1435
7.6.4 MyISAM Table Optimization .. 1438
7.6.5 Setting Up a MyISAM Table Maintenance Schedule ... 1438

8 Optimization .. 1441
8.1 Optimization Overview ... 1443
8.2 Optimizing SQL Statements .. 1444

8.2.1 Optimizing SELECT Statements .. 1444
8.2.2 Optimizing Subqueries, Derived Tables, and View References 1489
8.2.3 Optimizing INFORMATION_SCHEMA Queries .. 1500
8.2.4 Optimizing Data Change Statements ... 1505
8.2.5 Optimizing Database Privileges ... 1506
8.2.6 Other Optimization Tips .. 1507

8.3 Optimization and Indexes .. 1507
8.3.1 How MySQL Uses Indexes ... 1507
8.3.2 Primary Key Optimization ... 1509
8.3.3 Foreign Key Optimization ... 1509
8.3.4 Column Indexes ... 1509
8.3.5 Multiple-Column Indexes .. 1511
8.3.6 Verifying Index Usage .. 1512
8.3.7 InnoDB and MyISAM Index Statistics Collection ... 1512
8.3.8 Comparison of B-Tree and Hash Indexes .. 1514
8.3.9 Use of Index Extensions ... 1515
8.3.10 Optimizer Use of Generated Column Indexes .. 1517
8.3.11 Indexed Lookups from TIMESTAMP Columns .. 1519

8.4 Optimizing Database Structure .. 1521
8.4.1 Optimizing Data Size .. 1521
8.4.2 Optimizing MySQL Data Types ... 1523
8.4.3 Optimizing for Many Tables .. 1525
8.4.4 Internal Temporary Table Use in MySQL ... 1526
8.4.5 Limits on Number of Databases and Tables .. 1528
8.4.6 Limits on Table Size .. 1528

viii

MySQL 5.7 Reference Manual

8.4.7 Limits on Table Column Count and Row Size .. 1530
8.5 Optimizing for InnoDB Tables .. 1532

8.5.1 Optimizing Storage Layout for InnoDB Tables .. 1532
8.5.2 Optimizing InnoDB Transaction Management .. 1533
8.5.3 Optimizing InnoDB Read-Only Transactions .. 1534
8.5.4 Optimizing InnoDB Redo Logging ... 1535
8.5.5 Bulk Data Loading for InnoDB Tables ... 1536
8.5.6 Optimizing InnoDB Queries .. 1537
8.5.7 Optimizing InnoDB DDL Operations .. 1537
8.5.8 Optimizing InnoDB Disk I/O .. 1538
8.5.9 Optimizing InnoDB Configuration Variables .. 1541
8.5.10 Optimizing InnoDB for Systems with Many Tables .. 1543

8.6 Optimizing for MyISAM Tables .. 1543
8.6.1 Optimizing MyISAM Queries ... 1543
8.6.2 Bulk Data Loading for MyISAM Tables .. 1544
8.6.3 Optimizing REPAIR TABLE Statements .. 1545

8.7 Optimizing for MEMORY Tables .. 1547
8.8 Understanding the Query Execution Plan ... 1547

8.8.1 Optimizing Queries with EXPLAIN ... 1547
8.8.2 EXPLAIN Output Format .. 1548
8.8.3 Extended EXPLAIN Output Format ... 1562
8.8.4 Obtaining Execution Plan Information for a Named Connection 1564
8.8.5 Estimating Query Performance ... 1565

8.9 Controlling the Query Optimizer ... 1566
8.9.1 Controlling Query Plan Evaluation ... 1566
8.9.2 Switchable Optimizations .. 1566
8.9.3 Optimizer Hints .. 1571
8.9.4 Index Hints .. 1577
8.9.5 The Optimizer Cost Model .. 1580

8.10 Buffering and Caching ... 1583
8.10.1 InnoDB Buffer Pool Optimization ... 1583
8.10.2 The MyISAM Key Cache .. 1584
8.10.3 The MySQL Query Cache .. 1588
8.10.4 Caching of Prepared Statements and Stored Programs .. 1595

8.11 Optimizing Locking Operations .. 1597
8.11.1 Internal Locking Methods .. 1597
8.11.2 Table Locking Issues .. 1599
8.11.3 Concurrent Inserts .. 1601
8.11.4 Metadata Locking ... 1601
8.11.5 External Locking ... 1604

8.12 Optimizing the MySQL Server ... 1606
8.12.1 System Factors .. 1606
8.12.2 Optimizing Disk I/O .. 1606
8.12.3 Using Symbolic Links ... 1608
8.12.4 Optimizing Memory Use ... 1611

8.13 Measuring Performance (Benchmarking) .. 1617
8.13.1 Measuring the Speed of Expressions and Functions .. 1618
8.13.2 Using Your Own Benchmarks ... 1618
8.13.3 Measuring Performance with performance_schema .. 1619

8.14 Examining Server Thread (Process) Information ... 1619
8.14.1 Accessing the Process List ... 1619
8.14.2 Thread Command Values ... 1621
8.14.3 General Thread States ... 1623
8.14.4 Query Cache Thread States ... 1629

ix

MySQL 5.7 Reference Manual

8.14.5 Replication Source Thread States ... 1630
8.14.6 Replication Replica I/O Thread States ... 1630
8.14.7 Replication Replica SQL Thread States ... 1632
8.14.8 Replication Replica Connection Thread States ... 1632
8.14.9 NDB Cluster Thread States .. 1633
8.14.10 Event Scheduler Thread States ... 1634

8.15 Tracing the Optimizer .. 1634
8.15.1 Typical Usage .. 1634
8.15.2 System Variables Controlling Tracing .. 1634
8.15.3 Traceable Statements ... 1635
8.15.4 Tuning Trace Purging ... 1636
8.15.5 Tracing Memory Usage .. 1637
8.15.6 Privilege Checking .. 1637
8.15.7 Interaction with the --debug Option .. 1637
8.15.8 The optimizer_trace System Variable .. 1637
8.15.9 The end_markers_in_json System Variable ... 1637
8.15.10 Selecting Optimizer Features to Trace ... 1637
8.15.11 Trace General Structure ... 1638
8.15.12 Example ... 1638
8.15.13 Displaying Traces in Other Applications ... 1649
8.15.14 Preventing the Use of Optimizer Trace .. 1649
8.15.15 Testing Optimizer Trace .. 1649
8.15.16 Optimizer Trace Implementation .. 1650

9 Language Structure ... 1651
9.1 Literal Values .. 1651

9.1.1 String Literals ... 1651
9.1.2 Numeric Literals ... 1654
9.1.3 Date and Time Literals ... 1654
9.1.4 Hexadecimal Literals .. 1657
9.1.5 Bit-Value Literals .. 1659
9.1.6 Boolean Literals ... 1660
9.1.7 NULL Values ... 1660

9.2 Schema Object Names ... 1660
9.2.1 Identifier Length Limits ... 1662
9.2.2 Identifier Qualifiers ... 1663
9.2.3 Identifier Case Sensitivity ... 1665
9.2.4 Mapping of Identifiers to File Names ... 1667
9.2.5 Function Name Parsing and Resolution ... 1669

9.3 Keywords and Reserved Words ... 1673
9.4 User-Defined Variables ... 1697
9.5 Expressions .. 1701
9.6 Comments .. 1705

10 Character Sets, Collations, Unicode .. 1709
10.1 Character Sets and Collations in General ... 1710
10.2 Character Sets and Collations in MySQL ... 1711

10.2.1 Character Set Repertoire .. 1713
10.2.2 UTF-8 for Metadata .. 1714

10.3 Specifying Character Sets and Collations ... 1716
10.3.1 Collation Naming Conventions .. 1716
10.3.2 Server Character Set and Collation ... 1717
10.3.3 Database Character Set and Collation ... 1718
10.3.4 Table Character Set and Collation .. 1719
10.3.5 Column Character Set and Collation ... 1719
10.3.6 Character String Literal Character Set and Collation ... 1721

x

MySQL 5.7 Reference Manual

10.3.7 The National Character Set .. 1723
10.3.8 Character Set Introducers ... 1723
10.3.9 Examples of Character Set and Collation Assignment .. 1725
10.3.10 Compatibility with Other DBMSs .. 1726

10.4 Connection Character Sets and Collations ... 1726
10.5 Configuring Application Character Set and Collation ... 1732
10.6 Error Message Character Set .. 1734
10.7 Column Character Set Conversion ... 1735
10.8 Collation Issues .. 1736

10.8.1 Using COLLATE in SQL Statements ... 1736
10.8.2 COLLATE Clause Precedence .. 1737
10.8.3 Character Set and Collation Compatibility .. 1737
10.8.4 Collation Coercibility in Expressions .. 1737
10.8.5 The binary Collation Compared to _bin Collations .. 1739
10.8.6 Examples of the Effect of Collation ... 1741
10.8.7 Using Collation in INFORMATION_SCHEMA Searches .. 1742

10.9 Unicode Support ... 1744
10.9.1 The utf8mb4 Character Set (4-Byte UTF-8 Unicode Encoding) 1746
10.9.2 The utf8mb3 Character Set (3-Byte UTF-8 Unicode Encoding) 1747
10.9.3 The utf8 Character Set (Alias for utf8mb3) ... 1747
10.9.4 The ucs2 Character Set (UCS-2 Unicode Encoding) .. 1747
10.9.5 The utf16 Character Set (UTF-16 Unicode Encoding) ... 1748
10.9.6 The utf16le Character Set (UTF-16LE Unicode Encoding) 1748
10.9.7 The utf32 Character Set (UTF-32 Unicode Encoding) ... 1748
10.9.8 Converting Between 3-Byte and 4-Byte Unicode Character Sets 1749

10.10 Supported Character Sets and Collations ... 1751
10.10.1 Unicode Character Sets .. 1752
10.10.2 West European Character Sets ... 1758
10.10.3 Central European Character Sets .. 1759
10.10.4 South European and Middle East Character Sets ... 1760
10.10.5 Baltic Character Sets .. 1761
10.10.6 Cyrillic Character Sets .. 1761
10.10.7 Asian Character Sets .. 1762
10.10.8 The Binary Character Set ... 1766

10.11 Restrictions on Character Sets ... 1767
10.12 Setting the Error Message Language ... 1768
10.13 Adding a Character Set ... 1768

10.13.1 Character Definition Arrays ... 1770
10.13.2 String Collating Support for Complex Character Sets .. 1771
10.13.3 Multi-Byte Character Support for Complex Character Sets 1771

10.14 Adding a Collation to a Character Set .. 1772
10.14.1 Collation Implementation Types ... 1773
10.14.2 Choosing a Collation ID .. 1776
10.14.3 Adding a Simple Collation to an 8-Bit Character Set ... 1777
10.14.4 Adding a UCA Collation to a Unicode Character Set ... 1778

10.15 Character Set Configuration ... 1785
10.16 MySQL Server Locale Support ... 1786

11 Data Types .. 1791
11.1 Numeric Data Types ... 1792

11.1.1 Numeric Data Type Syntax ... 1792
11.1.2 Integer Types (Exact Value) - INTEGER, INT, SMALLINT, TINYINT, MEDIUMINT,
BIGINT ... 1796
11.1.3 Fixed-Point Types (Exact Value) - DECIMAL, NUMERIC 1796
11.1.4 Floating-Point Types (Approximate Value) - FLOAT, DOUBLE 1797

xi

MySQL 5.7 Reference Manual

11.1.5 Bit-Value Type - BIT ... 1797
11.1.6 Numeric Type Attributes ... 1797
11.1.7 Out-of-Range and Overflow Handling .. 1798

11.2 Date and Time Data Types ... 1800
11.2.1 Date and Time Data Type Syntax ... 1801
11.2.2 The DATE, DATETIME, and TIMESTAMP Types ... 1803
11.2.3 The TIME Type .. 1805
11.2.4 The YEAR Type ... 1806
11.2.5 2-Digit YEAR(2) Limitations and Migrating to 4-Digit YEAR 1806
11.2.6 Automatic Initialization and Updating for TIMESTAMP and DATETIME 1809
11.2.7 Fractional Seconds in Time Values ... 1813
11.2.8 What Calendar Is Used By MySQL? ... 1813
11.2.9 Conversion Between Date and Time Types ... 1814
11.2.10 2-Digit Years in Dates .. 1815

11.3 String Data Types ... 1815
11.3.1 String Data Type Syntax ... 1815
11.3.2 The CHAR and VARCHAR Types ... 1819
11.3.3 The BINARY and VARBINARY Types ... 1821
11.3.4 The BLOB and TEXT Types ... 1822
11.3.5 The ENUM Type .. 1824
11.3.6 The SET Type ... 1827

11.4 Spatial Data Types ... 1829
11.4.1 Spatial Data Types ... 1831
11.4.2 The OpenGIS Geometry Model ... 1832
11.4.3 Supported Spatial Data Formats ... 1838
11.4.4 Geometry Well-Formedness and Validity ... 1841
11.4.5 Creating Spatial Columns ... 1841
11.4.6 Populating Spatial Columns .. 1842
11.4.7 Fetching Spatial Data ... 1843
11.4.8 Optimizing Spatial Analysis ... 1843
11.4.9 Creating Spatial Indexes ... 1843
11.4.10 Using Spatial Indexes ... 1844

11.5 The JSON Data Type ... 1846
11.6 Data Type Default Values ... 1860
11.7 Data Type Storage Requirements .. 1862
11.8 Choosing the Right Type for a Column .. 1866
11.9 Using Data Types from Other Database Engines .. 1867

12 Functions and Operators .. 1869
12.1 Built-In Function and Operator Reference ... 1871
12.2 Loadable Function Reference .. 1891
12.3 Type Conversion in Expression Evaluation ... 1893
12.4 Operators ... 1896

12.4.1 Operator Precedence ... 1898
12.4.2 Comparison Functions and Operators ... 1899
12.4.3 Logical Operators ... 1905
12.4.4 Assignment Operators .. 1907

12.5 Flow Control Functions .. 1908
12.6 Numeric Functions and Operators .. 1910

12.6.1 Arithmetic Operators ... 1911
12.6.2 Mathematical Functions .. 1913

12.7 Date and Time Functions .. 1922
12.8 String Functions and Operators ... 1944

12.8.1 String Comparison Functions and Operators .. 1962
12.8.2 Regular Expressions ... 1965

xii

MySQL 5.7 Reference Manual

12.8.3 Character Set and Collation of Function Results .. 1971
12.9 Full-Text Search Functions .. 1972

12.9.1 Natural Language Full-Text Searches .. 1973
12.9.2 Boolean Full-Text Searches .. 1977
12.9.3 Full-Text Searches with Query Expansion .. 1983
12.9.4 Full-Text Stopwords .. 1984
12.9.5 Full-Text Restrictions .. 1988
12.9.6 Fine-Tuning MySQL Full-Text Search .. 1989
12.9.7 Adding a User-Defined Collation for Full-Text Indexing ... 1992
12.9.8 ngram Full-Text Parser ... 1993
12.9.9 MeCab Full-Text Parser Plugin ... 1996

12.10 Cast Functions and Operators ... 2000
12.11 XML Functions .. 2007
12.12 Bit Functions and Operators .. 2018
12.13 Encryption and Compression Functions .. 2021
12.14 Locking Functions ... 2033
12.15 Information Functions .. 2035
12.16 Spatial Analysis Functions ... 2045

12.16.1 Spatial Function Reference ... 2045
12.16.2 Argument Handling by Spatial Functions .. 2051
12.16.3 Functions That Create Geometry Values from WKT Values 2052
12.16.4 Functions That Create Geometry Values from WKB Values 2055
12.16.5 MySQL-Specific Functions That Create Geometry Values 2058
12.16.6 Geometry Format Conversion Functions .. 2059
12.16.7 Geometry Property Functions .. 2060
12.16.8 Spatial Operator Functions .. 2069
12.16.9 Functions That Test Spatial Relations Between Geometry Objects 2072
12.16.10 Spatial Geohash Functions ... 2078
12.16.11 Spatial GeoJSON Functions .. 2080
12.16.12 Spatial Convenience Functions ... 2082

12.17 JSON Functions .. 2085
12.17.1 JSON Function Reference .. 2085
12.17.2 Functions That Create JSON Values ... 2087
12.17.3 Functions That Search JSON Values .. 2088
12.17.4 Functions That Modify JSON Values ... 2097
12.17.5 Functions That Return JSON Value Attributes .. 2107
12.17.6 JSON Utility Functions .. 2110

12.18 Functions Used with Global Transaction Identifiers (GTIDs) ... 2113
12.19 Aggregate Functions ... 2115

12.19.1 Aggregate Function Descriptions ... 2115
12.19.2 GROUP BY Modifiers ... 2122
12.19.3 MySQL Handling of GROUP BY ... 2126
12.19.4 Detection of Functional Dependence ... 2130

12.20 Miscellaneous Functions .. 2133
12.21 Precision Math .. 2141

12.21.1 Types of Numeric Values .. 2142
12.21.2 DECIMAL Data Type Characteristics ... 2142
12.21.3 Expression Handling ... 2143
12.21.4 Rounding Behavior ... 2145
12.21.5 Precision Math Examples .. 2146

13 SQL Statements .. 2151
13.1 Data Definition Statements .. 2152

13.1.1 ALTER DATABASE Statement .. 2152
13.1.2 ALTER EVENT Statement .. 2154

xiii

MySQL 5.7 Reference Manual

13.1.3 ALTER FUNCTION Statement .. 2155
13.1.4 ALTER INSTANCE Statement .. 2155
13.1.5 ALTER LOGFILE GROUP Statement .. 2156
13.1.6 ALTER PROCEDURE Statement .. 2157
13.1.7 ALTER SERVER Statement .. 2157
13.1.8 ALTER TABLE Statement ... 2158
13.1.9 ALTER TABLESPACE Statement ... 2181
13.1.10 ALTER VIEW Statement ... 2183
13.1.11 CREATE DATABASE Statement ... 2183
13.1.12 CREATE EVENT Statement .. 2184
13.1.13 CREATE FUNCTION Statement .. 2188
13.1.14 CREATE INDEX Statement .. 2188
13.1.15 CREATE LOGFILE GROUP Statement ... 2194
13.1.16 CREATE PROCEDURE and CREATE FUNCTION Statements 2196
13.1.17 CREATE SERVER Statement ... 2201
13.1.18 CREATE TABLE Statement .. 2202
13.1.19 CREATE TABLESPACE Statement ... 2252
13.1.20 CREATE TRIGGER Statement .. 2258
13.1.21 CREATE VIEW Statement .. 2260
13.1.22 DROP DATABASE Statement ... 2265
13.1.23 DROP EVENT Statement ... 2266
13.1.24 DROP FUNCTION Statement ... 2266
13.1.25 DROP INDEX Statement .. 2266
13.1.26 DROP LOGFILE GROUP Statement ... 2267
13.1.27 DROP PROCEDURE and DROP FUNCTION Statements 2267
13.1.28 DROP SERVER Statement ... 2268
13.1.29 DROP TABLE Statement .. 2268
13.1.30 DROP TABLESPACE Statement ... 2269
13.1.31 DROP TRIGGER Statement ... 2270
13.1.32 DROP VIEW Statement .. 2270
13.1.33 RENAME TABLE Statement ... 2271
13.1.34 TRUNCATE TABLE Statement .. 2272

13.2 Data Manipulation Statements ... 2273
13.2.1 CALL Statement ... 2273
13.2.2 DELETE Statement .. 2274
13.2.3 DO Statement .. 2278
13.2.4 HANDLER Statement ... 2279
13.2.5 INSERT Statement ... 2280
13.2.6 LOAD DATA Statement .. 2289
13.2.7 LOAD XML Statement .. 2300
13.2.8 REPLACE Statement .. 2308
13.2.9 SELECT Statement .. 2310
13.2.10 Subqueries ... 2327
13.2.11 UPDATE Statement .. 2340

13.3 Transactional and Locking Statements ... 2344
13.3.1 START TRANSACTION, COMMIT, and ROLLBACK Statements 2344
13.3.2 Statements That Cannot Be Rolled Back ... 2347
13.3.3 Statements That Cause an Implicit Commit ... 2347
13.3.4 SAVEPOINT, ROLLBACK TO SAVEPOINT, and RELEASE SAVEPOINT
Statements ... 2348
13.3.5 LOCK TABLES and UNLOCK TABLES Statements ... 2349
13.3.6 SET TRANSACTION Statement .. 2355
13.3.7 XA Transactions ... 2358

13.4 Replication Statements .. 2363

xiv

MySQL 5.7 Reference Manual

13.4.1 SQL Statements for Controlling Replication Source Servers 2363
13.4.2 SQL Statements for Controlling Replica Servers .. 2366
13.4.3 SQL Statements for Controlling Group Replication ... 2381

13.5 Prepared Statements ... 2382
13.5.1 PREPARE Statement ... 2386
13.5.2 EXECUTE Statement ... 2386
13.5.3 DEALLOCATE PREPARE Statement .. 2386

13.6 Compound Statements .. 2387
13.6.1 BEGIN ... END Compound Statement .. 2387
13.6.2 Statement Labels ... 2387
13.6.3 DECLARE Statement ... 2388
13.6.4 Variables in Stored Programs ... 2388
13.6.5 Flow Control Statements ... 2390
13.6.6 Cursors .. 2395
13.6.7 Condition Handling ... 2397

13.7 Database Administration Statements .. 2425
13.7.1 Account Management Statements ... 2425
13.7.2 Table Maintenance Statements ... 2454
13.7.3 Plugin and Loadable Function Statements ... 2465
13.7.4 SET Statements ... 2468
13.7.5 SHOW Statements ... 2473
13.7.6 Other Administrative Statements ... 2526

13.8 Utility Statements .. 2537
13.8.1 DESCRIBE Statement .. 2537
13.8.2 EXPLAIN Statement ... 2537
13.8.3 HELP Statement .. 2540
13.8.4 USE Statement .. 2542

14 The InnoDB Storage Engine ... 2543
14.1 Introduction to InnoDB ... 2545

14.1.1 Benefits of Using InnoDB Tables .. 2546
14.1.2 Best Practices for InnoDB Tables .. 2547
14.1.3 Verifying that InnoDB is the Default Storage Engine ... 2548
14.1.4 Testing and Benchmarking with InnoDB .. 2548
14.1.5 Turning Off InnoDB .. 2549

14.2 InnoDB and the ACID Model ... 2549
14.3 InnoDB Multi-Versioning .. 2550
14.4 InnoDB Architecture .. 2552
14.5 InnoDB In-Memory Structures .. 2552

14.5.1 Buffer Pool ... 2552
14.5.2 Change Buffer .. 2557
14.5.3 Adaptive Hash Index .. 2561
14.5.4 Log Buffer .. 2562

14.6 InnoDB On-Disk Structures .. 2562
14.6.1 Tables ... 2562
14.6.2 Indexes .. 2586
14.6.3 Tablespaces ... 2594
14.6.4 InnoDB Data Dictionary .. 2609
14.6.5 Doublewrite Buffer .. 2609
14.6.6 Redo Log ... 2609
14.6.7 Undo Logs ... 2610

14.7 InnoDB Locking and Transaction Model ... 2612
14.7.1 InnoDB Locking .. 2612
14.7.2 InnoDB Transaction Model .. 2616
14.7.3 Locks Set by Different SQL Statements in InnoDB ... 2624

xv

MySQL 5.7 Reference Manual

14.7.4 Phantom Rows ... 2628
14.7.5 Deadlocks in InnoDB .. 2629

14.8 InnoDB Configuration .. 2632
14.8.1 InnoDB Startup Configuration .. 2632
14.8.2 Configuring InnoDB for Read-Only Operation ... 2638
14.8.3 InnoDB Buffer Pool Configuration .. 2639
14.8.4 Configuring the Memory Allocator for InnoDB .. 2652
14.8.5 Configuring Thread Concurrency for InnoDB .. 2652
14.8.6 Configuring the Number of Background InnoDB I/O Threads 2653
14.8.7 Using Asynchronous I/O on Linux ... 2654
14.8.8 Configuring InnoDB I/O Capacity ... 2655
14.8.9 Configuring Spin Lock Polling ... 2656
14.8.10 Purge Configuration .. 2657
14.8.11 Configuring Optimizer Statistics for InnoDB .. 2658
14.8.12 Configuring the Merge Threshold for Index Pages .. 2670

14.9 InnoDB Table and Page Compression ... 2672
14.9.1 InnoDB Table Compression .. 2672
14.9.2 InnoDB Page Compression ... 2687

14.10 InnoDB File-Format Management ... 2691
14.10.1 Enabling File Formats ... 2692
14.10.2 Verifying File Format Compatibility .. 2692
14.10.3 Identifying the File Format in Use .. 2695
14.10.4 Modifying the File Format ... 2696

14.11 InnoDB Row Formats .. 2697
14.12 InnoDB Disk I/O and File Space Management .. 2703

14.12.1 InnoDB Disk I/O ... 2704
14.12.2 File Space Management ... 2705
14.12.3 InnoDB Checkpoints ... 2706
14.12.4 Defragmenting a Table ... 2706
14.12.5 Reclaiming Disk Space with TRUNCATE TABLE ... 2707

14.13 InnoDB and Online DDL .. 2707
14.13.1 Online DDL Operations ... 2708
14.13.2 Online DDL Performance and Concurrency .. 2720
14.13.3 Online DDL Space Requirements .. 2724
14.13.4 Simplifying DDL Statements with Online DDL .. 2724
14.13.5 Online DDL Failure Conditions .. 2725
14.13.6 Online DDL Limitations ... 2725

14.14 InnoDB Data-at-Rest Encryption .. 2726
14.15 InnoDB Startup Options and System Variables ... 2731
14.16 InnoDB INFORMATION_SCHEMA Tables .. 2815

14.16.1 InnoDB INFORMATION_SCHEMA Tables about Compression 2815
14.16.2 InnoDB INFORMATION_SCHEMA Transaction and Locking Information 2817
14.16.3 InnoDB INFORMATION_SCHEMA System Tables ... 2824
14.16.4 InnoDB INFORMATION_SCHEMA FULLTEXT Index Tables 2830
14.16.5 InnoDB INFORMATION_SCHEMA Buffer Pool Tables .. 2833
14.16.6 InnoDB INFORMATION_SCHEMA Metrics Table ... 2837
14.16.7 InnoDB INFORMATION_SCHEMA Temporary Table Info Table 2846
14.16.8 Retrieving InnoDB Tablespace Metadata from INFORMATION_SCHEMA.FILES .. 2847

14.17 InnoDB Integration with MySQL Performance Schema .. 2849
14.17.1 Monitoring ALTER TABLE Progress for InnoDB Tables Using Performance
Schema .. 2851
14.17.2 Monitoring InnoDB Mutex Waits Using Performance Schema 2853

14.18 InnoDB Monitors ... 2856
14.18.1 InnoDB Monitor Types .. 2857

xvi

MySQL 5.7 Reference Manual

14.18.2 Enabling InnoDB Monitors .. 2857
14.18.3 InnoDB Standard Monitor and Lock Monitor Output .. 2859

14.19 InnoDB Backup and Recovery ... 2864
14.19.1 InnoDB Backup .. 2864
14.19.2 InnoDB Recovery ... 2865

14.20 InnoDB and MySQL Replication ... 2868
14.21 InnoDB memcached Plugin .. 2870

14.21.1 Benefits of the InnoDB memcached Plugin .. 2870
14.21.2 InnoDB memcached Architecture .. 2871
14.21.3 Setting Up the InnoDB memcached Plugin .. 2873
14.21.4 Security Considerations for the InnoDB memcached Plugin 2879
14.21.5 Writing Applications for the InnoDB memcached Plugin 2880
14.21.6 The InnoDB memcached Plugin and Replication .. 2893
14.21.7 InnoDB memcached Plugin Internals ... 2897
14.21.8 Troubleshooting the InnoDB memcached Plugin .. 2901

14.22 InnoDB Troubleshooting .. 2903
14.22.1 Troubleshooting InnoDB I/O Problems ... 2904
14.22.2 Forcing InnoDB Recovery ... 2905
14.22.3 Troubleshooting InnoDB Data Dictionary Operations .. 2906
14.22.4 InnoDB Error Handling .. 2911

14.23 InnoDB Limits ... 2911
14.24 InnoDB Restrictions and Limitations ... 2913

15 Alternative Storage Engines ... 2915
15.1 Setting the Storage Engine .. 2918
15.2 The MyISAM Storage Engine .. 2919

15.2.1 MyISAM Startup Options .. 2922
15.2.2 Space Needed for Keys ... 2923
15.2.3 MyISAM Table Storage Formats ... 2924
15.2.4 MyISAM Table Problems .. 2926

15.3 The MEMORY Storage Engine .. 2928
15.4 The CSV Storage Engine .. 2933

15.4.1 Repairing and Checking CSV Tables .. 2933
15.4.2 CSV Limitations ... 2934

15.5 The ARCHIVE Storage Engine .. 2934
15.6 The BLACKHOLE Storage Engine ... 2936
15.7 The MERGE Storage Engine ... 2938

15.7.1 MERGE Table Advantages and Disadvantages .. 2941
15.7.2 MERGE Table Problems ... 2942

15.8 The FEDERATED Storage Engine ... 2943
15.8.1 FEDERATED Storage Engine Overview .. 2944
15.8.2 How to Create FEDERATED Tables ... 2945
15.8.3 FEDERATED Storage Engine Notes and Tips ... 2948
15.8.4 FEDERATED Storage Engine Resources .. 2949

15.9 The EXAMPLE Storage Engine ... 2949
15.10 Other Storage Engines .. 2950
15.11 Overview of MySQL Storage Engine Architecture ... 2950

15.11.1 Pluggable Storage Engine Architecture .. 2950
15.11.2 The Common Database Server Layer .. 2951

16 Replication ... 2953
16.1 Configuring Replication .. 2955

16.1.1 Binary Log File Position Based Replication Configuration Overview 2955
16.1.2 Setting Up Binary Log File Position Based Replication ... 2956
16.1.3 Replication with Global Transaction Identifiers ... 2965
16.1.4 Changing Replication Modes on Online Servers ... 2987

xvii

MySQL 5.7 Reference Manual

16.1.5 MySQL Multi-Source Replication ... 2993
16.1.6 Replication and Binary Logging Options and Variables ... 2998
16.1.7 Common Replication Administration Tasks .. 3078

16.2 Replication Implementation .. 3084
16.2.1 Replication Formats .. 3084
16.2.2 Replication Channels .. 3091
16.2.3 Replication Threads .. 3095
16.2.4 Relay Log and Replication Metadata Repositories .. 3098
16.2.5 How Servers Evaluate Replication Filtering Rules .. 3104

16.3 Replication Solutions ... 3110
16.3.1 Using Replication for Backups .. 3111
16.3.2 Handling an Unexpected Halt of a Replica ... 3114
16.3.3 Using Replication with Different Source and Replica Storage Engines 3116
16.3.4 Using Replication for Scale-Out .. 3118
16.3.5 Replicating Different Databases to Different Replicas ... 3119
16.3.6 Improving Replication Performance ... 3120
16.3.7 Switching Sources During Failover .. 3121
16.3.8 Setting Up Replication to Use Encrypted Connections .. 3124
16.3.9 Semisynchronous Replication ... 3125
16.3.10 Delayed Replication .. 3131

16.4 Replication Notes and Tips .. 3132
16.4.1 Replication Features and Issues ... 3132
16.4.2 Replication Compatibility Between MySQL Versions ... 3158
16.4.3 Upgrading a Replication Topology ... 3159
16.4.4 Troubleshooting Replication .. 3161
16.4.5 How to Report Replication Bugs or Problems .. 3163

17 Group Replication .. 3165
17.1 Group Replication Background .. 3166

17.1.1 Replication Technologies .. 3167
17.1.2 Group Replication Use Cases ... 3169
17.1.3 Group Replication Details ... 3170

17.2 Getting Started .. 3172
17.2.1 Deploying Group Replication in Single-Primary Mode ... 3172
17.2.2 Deploying Group Replication Locally ... 3183

17.3 Requirements and Limitations .. 3184
17.3.1 Group Replication Requirements ... 3184
17.3.2 Group Replication Limitations .. 3186

17.4 Monitoring Group Replication ... 3188
17.4.1 Group Replication Server States ... 3189
17.4.2 The replication_group_members Table .. 3190
17.4.3 The replication_group_member_stats Table ... 3190

17.5 Group Replication Operations .. 3191
17.5.1 Deploying in Multi-Primary or Single-Primary Mode .. 3191
17.5.2 Tuning Recovery .. 3193
17.5.3 Network Partitioning ... 3194
17.5.4 Restarting a Group ... 3199
17.5.5 Using MySQL Enterprise Backup with Group Replication 3201

17.6 Group Replication Security .. 3206
17.6.1 Group Replication IP Address Allowlisting .. 3206
17.6.2 Group Replication Secure Socket Layer (SSL) Support .. 3208
17.6.3 Group Replication and Virtual Private Networks (VPNs) .. 3210

17.7 Group Replication Variables .. 3210
17.7.1 Group Replication System Variables ... 3211
17.7.2 Group Replication Status Variables ... 3232

xviii

MySQL 5.7 Reference Manual

17.8 Frequently Asked Questions .. 3232
17.9 Group Replication Technical Details ... 3236

17.9.1 Group Replication Plugin Architecture ... 3236
17.9.2 The Group ... 3237
17.9.3 Data Manipulation Statements .. 3237
17.9.4 Data Definition Statements ... 3238
17.9.5 Distributed Recovery .. 3238
17.9.6 Observability .. 3245
17.9.7 Group Replication Performance .. 3245

18 MySQL Shell ... 3251
19 Using MySQL as a Document Store ... 3253

19.1 Key Concepts ... 3254
19.2 Setting Up MySQL as a Document Store ... 3255

19.2.1 Installing MySQL Shell ... 3257
19.2.2 Starting MySQL Shell ... 3261

19.3 Quick-Start Guide: MySQL for Visual Studio ... 3261
19.4 X Plugin ... 3263

19.4.1 Using Encrypted Connections with X Plugin ... 3263
19.4.2 X Plugin Options and Variables .. 3264
19.4.3 Monitoring X Plugin .. 3277

20 InnoDB Cluster .. 3279
21 MySQL NDB Cluster 7.5 and NDB Cluster 7.6 .. 3281

21.1 General Information ... 3283
21.2 NDB Cluster Overview .. 3285

21.2.1 NDB Cluster Core Concepts ... 3287
21.2.2 NDB Cluster Nodes, Node Groups, Fragment Replicas, and Partitions 3290
21.2.3 NDB Cluster Hardware, Software, and Networking Requirements 3293
21.2.4 What is New in MySQL NDB Cluster ... 3294
21.2.5 NDB: Added, Deprecated, and Removed Options, Variables, and Parameters 3311
21.2.6 MySQL Server Using InnoDB Compared with NDB Cluster 3315
21.2.7 Known Limitations of NDB Cluster .. 3318

21.3 NDB Cluster Installation .. 3331
21.3.1 Installation of NDB Cluster on Linux .. 3333
21.3.2 Installing NDB Cluster on Windows ... 3341
21.3.3 Initial Configuration of NDB Cluster ... 3350
21.3.4 Initial Startup of NDB Cluster .. 3352
21.3.5 NDB Cluster Example with Tables and Data .. 3353
21.3.6 Safe Shutdown and Restart of NDB Cluster ... 3356
21.3.7 Upgrading and Downgrading NDB Cluster ... 3357
21.3.8 The NDB Cluster Auto-Installer (NDB 7.5) (NO LONGER SUPPORTED) 3361
21.3.9 The NDB Cluster Auto-Installer (NO LONGER SUPPORTED) 3361

21.4 Configuration of NDB Cluster ... 3361
21.4.1 Quick Test Setup of NDB Cluster .. 3362
21.4.2 Overview of NDB Cluster Configuration Parameters, Options, and Variables 3364
21.4.3 NDB Cluster Configuration Files .. 3383
21.4.4 Using High-Speed Interconnects with NDB Cluster ... 3570

21.5 NDB Cluster Programs .. 3570
21.5.1 ndbd — The NDB Cluster Data Node Daemon .. 3570
21.5.2 ndbinfo_select_all — Select From ndbinfo Tables .. 3581
21.5.3 ndbmtd — The NDB Cluster Data Node Daemon (Multi-Threaded) 3587
21.5.4 ndb_mgmd — The NDB Cluster Management Server Daemon 3588
21.5.5 ndb_mgm — The NDB Cluster Management Client .. 3600
21.5.6 ndb_blob_tool — Check and Repair BLOB and TEXT columns of NDB Cluster
Tables .. 3606

xix

MySQL 5.7 Reference Manual

21.5.7 ndb_config — Extract NDB Cluster Configuration Information 3612
21.5.8 ndb_cpcd — Automate Testing for NDB Development .. 3624
21.5.9 ndb_delete_all — Delete All Rows from an NDB Table ... 3624
21.5.10 ndb_desc — Describe NDB Tables ... 3629
21.5.11 ndb_drop_index — Drop Index from an NDB Table .. 3639
21.5.12 ndb_drop_table — Drop an NDB Table ... 3644
21.5.13 ndb_error_reporter — NDB Error-Reporting Utility .. 3648
21.5.14 ndb_import — Import CSV Data Into NDB ... 3650
21.5.15 ndb_index_stat — NDB Index Statistics Utility .. 3669
21.5.16 ndb_move_data — NDB Data Copy Utility ... 3677
21.5.17 ndb_perror — Obtain NDB Error Message Information 3683
21.5.18 ndb_print_backup_file — Print NDB Backup File Contents 3685
21.5.19 ndb_print_file — Print NDB Disk Data File Contents ... 3685
21.5.20 ndb_print_frag_file — Print NDB Fragment List File Contents 3686
21.5.21 ndb_print_schema_file — Print NDB Schema File Contents 3687
21.5.22 ndb_print_sys_file — Print NDB System File Contents .. 3687
21.5.23 ndb_redo_log_reader — Check and Print Content of Cluster Redo Log 3687
21.5.24 ndb_restore — Restore an NDB Cluster Backup .. 3690
21.5.25 ndb_select_all — Print Rows from an NDB Table ... 3721
21.5.26 ndb_select_count — Print Row Counts for NDB Tables 3728
21.5.27 ndb_show_tables — Display List of NDB Tables .. 3732
21.5.28 ndb_size.pl — NDBCLUSTER Size Requirement Estimator 3737
21.5.29 ndb_top — View CPU usage information for NDB threads 3740
21.5.30 ndb_waiter — Wait for NDB Cluster to Reach a Given Status 3747

21.6 Management of NDB Cluster ... 3754
21.6.1 Commands in the NDB Cluster Management Client ... 3755
21.6.2 NDB Cluster Log Messages .. 3761
21.6.3 Event Reports Generated in NDB Cluster .. 3780
21.6.4 Summary of NDB Cluster Start Phases ... 3792
21.6.5 Performing a Rolling Restart of an NDB Cluster ... 3794
21.6.6 NDB Cluster Single User Mode ... 3796
21.6.7 Adding NDB Cluster Data Nodes Online .. 3797
21.6.8 Online Backup of NDB Cluster .. 3808
21.6.9 Importing Data Into MySQL Cluster ... 3813
21.6.10 MySQL Server Usage for NDB Cluster .. 3814
21.6.11 NDB Cluster Disk Data Tables .. 3816
21.6.12 Online Operations with ALTER TABLE in NDB Cluster 3822
21.6.13 Distributed Privileges Using Shared Grant Tables .. 3826
21.6.14 NDB API Statistics Counters and Variables .. 3829
21.6.15 ndbinfo: The NDB Cluster Information Database .. 3840
21.6.16 INFORMATION_SCHEMA Tables for NDB Cluster ... 3914
21.6.17 Quick Reference: NDB Cluster SQL Statements .. 3914
21.6.18 NDB Cluster Security Issues ... 3923

21.7 NDB Cluster Replication .. 3930
21.7.1 NDB Cluster Replication: Abbreviations and Symbols ... 3932
21.7.2 General Requirements for NDB Cluster Replication .. 3932
21.7.3 Known Issues in NDB Cluster Replication .. 3933
21.7.4 NDB Cluster Replication Schema and Tables .. 3940
21.7.5 Preparing the NDB Cluster for Replication ... 3947
21.7.6 Starting NDB Cluster Replication (Single Replication Channel) 3949
21.7.7 Using Two Replication Channels for NDB Cluster Replication 3951
21.7.8 Implementing Failover with NDB Cluster Replication .. 3952
21.7.9 NDB Cluster Backups With NDB Cluster Replication .. 3954
21.7.10 NDB Cluster Replication: Bidirectional and Circular Replication 3960

xx

MySQL 5.7 Reference Manual

21.7.11 NDB Cluster Replication Conflict Resolution .. 3965
21.8 NDB Cluster Release Notes .. 3978

22 Partitioning .. 3979
22.1 Overview of Partitioning in MySQL ... 3981
22.2 Partitioning Types ... 3984

22.2.1 RANGE Partitioning .. 3986
22.2.2 LIST Partitioning ... 3990
22.2.3 COLUMNS Partitioning ... 3992
22.2.4 HASH Partitioning .. 4000
22.2.5 KEY Partitioning ... 4003
22.2.6 Subpartitioning ... 4005
22.2.7 How MySQL Partitioning Handles NULL .. 4009

22.3 Partition Management ... 4013
22.3.1 Management of RANGE and LIST Partitions .. 4014
22.3.2 Management of HASH and KEY Partitions .. 4020
22.3.3 Exchanging Partitions and Subpartitions with Tables .. 4021
22.3.4 Maintenance of Partitions ... 4029
22.3.5 Obtaining Information About Partitions ... 4030

22.4 Partition Pruning ... 4032
22.5 Partition Selection ... 4035
22.6 Restrictions and Limitations on Partitioning ... 4041

22.6.1 Partitioning Keys, Primary Keys, and Unique Keys ... 4049
22.6.2 Partitioning Limitations Relating to Storage Engines ... 4052
22.6.3 Partitioning Limitations Relating to Functions ... 4053
22.6.4 Partitioning and Locking ... 4055

23 Stored Objects ... 4057
23.1 Defining Stored Programs ... 4058
23.2 Using Stored Routines .. 4059

23.2.1 Stored Routine Syntax .. 4060
23.2.2 Stored Routines and MySQL Privileges ... 4061
23.2.3 Stored Routine Metadata .. 4061
23.2.4 Stored Procedures, Functions, Triggers, and LAST_INSERT_ID() 4061

23.3 Using Triggers .. 4062
23.3.1 Trigger Syntax and Examples ... 4062
23.3.2 Trigger Metadata .. 4066

23.4 Using the Event Scheduler .. 4067
23.4.1 Event Scheduler Overview .. 4067
23.4.2 Event Scheduler Configuration .. 4068
23.4.3 Event Syntax .. 4070
23.4.4 Event Metadata .. 4070
23.4.5 Event Scheduler Status .. 4071
23.4.6 The Event Scheduler and MySQL Privileges .. 4072

23.5 Using Views .. 4075
23.5.1 View Syntax ... 4075
23.5.2 View Processing Algorithms .. 4075
23.5.3 Updatable and Insertable Views .. 4077
23.5.4 The View WITH CHECK OPTION Clause .. 4079
23.5.5 View Metadata ... 4080

23.6 Stored Object Access Control .. 4081
23.7 Stored Program Binary Logging ... 4084
23.8 Restrictions on Stored Programs ... 4090
23.9 Restrictions on Views .. 4094

24 INFORMATION_SCHEMA Tables .. 4097
24.1 Introduction ... 4098

xxi

MySQL 5.7 Reference Manual

24.2 INFORMATION_SCHEMA Table Reference ... 4101
24.3 INFORMATION_SCHEMA General Tables ... 4105

24.3.1 INFORMATION_SCHEMA General Table Reference ... 4105
24.3.2 The INFORMATION_SCHEMA CHARACTER_SETS Table 4106
24.3.3 The INFORMATION_SCHEMA COLLATIONS Table .. 4106
24.3.4 The INFORMATION_SCHEMA COLLATION_CHARACTER_SET_APPLICABILITY
Table .. 4107
24.3.5 The INFORMATION_SCHEMA COLUMNS Table .. 4107
24.3.6 The INFORMATION_SCHEMA COLUMN_PRIVILEGES Table 4110
24.3.7 The INFORMATION_SCHEMA ENGINES Table .. 4111
24.3.8 The INFORMATION_SCHEMA EVENTS Table .. 4112
24.3.9 The INFORMATION_SCHEMA FILES Table .. 4116
24.3.10 The INFORMATION_SCHEMA GLOBAL_STATUS and SESSION_STATUS
Tables .. 4123
24.3.11 The INFORMATION_SCHEMA GLOBAL_VARIABLES and
SESSION_VARIABLES Tables .. 4123
24.3.12 The INFORMATION_SCHEMA KEY_COLUMN_USAGE Table 4124
24.3.13 The INFORMATION_SCHEMA ndb_transid_mysql_connection_map Table 4125
24.3.14 The INFORMATION_SCHEMA OPTIMIZER_TRACE Table 4126
24.3.15 The INFORMATION_SCHEMA PARAMETERS Table .. 4127
24.3.16 The INFORMATION_SCHEMA PARTITIONS Table ... 4128
24.3.17 The INFORMATION_SCHEMA PLUGINS Table .. 4132
24.3.18 The INFORMATION_SCHEMA PROCESSLIST Table .. 4133
24.3.19 The INFORMATION_SCHEMA PROFILING Table ... 4134
24.3.20 The INFORMATION_SCHEMA REFERENTIAL_CONSTRAINTS Table 4135
24.3.21 The INFORMATION_SCHEMA ROUTINES Table .. 4136
24.3.22 The INFORMATION_SCHEMA SCHEMATA Table ... 4139
24.3.23 The INFORMATION_SCHEMA SCHEMA_PRIVILEGES Table 4140
24.3.24 The INFORMATION_SCHEMA STATISTICS Table .. 4141
24.3.25 The INFORMATION_SCHEMA TABLES Table .. 4142
24.3.26 The INFORMATION_SCHEMA TABLESPACES Table 4146
24.3.27 The INFORMATION_SCHEMA TABLE_CONSTRAINTS Table 4146
24.3.28 The INFORMATION_SCHEMA TABLE_PRIVILEGES Table 4147
24.3.29 The INFORMATION_SCHEMA TRIGGERS Table .. 4148
24.3.30 The INFORMATION_SCHEMA USER_PRIVILEGES Table 4150
24.3.31 The INFORMATION_SCHEMA VIEWS Table .. 4150

24.4 INFORMATION_SCHEMA InnoDB Tables .. 4152
24.4.1 INFORMATION_SCHEMA InnoDB Table Reference .. 4152
24.4.2 The INFORMATION_SCHEMA INNODB_BUFFER_PAGE Table 4154
24.4.3 The INFORMATION_SCHEMA INNODB_BUFFER_PAGE_LRU Table 4157
24.4.4 The INFORMATION_SCHEMA INNODB_BUFFER_POOL_STATS Table 4160
24.4.5 The INFORMATION_SCHEMA INNODB_CMP and INNODB_CMP_RESET Tables 4163
24.4.6 The INFORMATION_SCHEMA INNODB_CMPMEM and
INNODB_CMPMEM_RESET Tables .. 4164
24.4.7 The INFORMATION_SCHEMA INNODB_CMP_PER_INDEX and
INNODB_CMP_PER_INDEX_RESET Tables ... 4166
24.4.8 The INFORMATION_SCHEMA INNODB_FT_BEING_DELETED Table 4167
24.4.9 The INFORMATION_SCHEMA INNODB_FT_CONFIG Table 4168
24.4.10 The INFORMATION_SCHEMA INNODB_FT_DEFAULT_STOPWORD Table 4169
24.4.11 The INFORMATION_SCHEMA INNODB_FT_DELETED Table 4170
24.4.12 The INFORMATION_SCHEMA INNODB_FT_INDEX_CACHE Table 4171
24.4.13 The INFORMATION_SCHEMA INNODB_FT_INDEX_TABLE Table 4173
24.4.14 The INFORMATION_SCHEMA INNODB_LOCKS Table 4174
24.4.15 The INFORMATION_SCHEMA INNODB_LOCK_WAITS Table 4176

xxii

MySQL 5.7 Reference Manual

24.4.16 The INFORMATION_SCHEMA INNODB_METRICS Table 4177
24.4.17 The INFORMATION_SCHEMA INNODB_SYS_COLUMNS Table 4179
24.4.18 The INFORMATION_SCHEMA INNODB_SYS_DATAFILES Table 4180
24.4.19 The INFORMATION_SCHEMA INNODB_SYS_FIELDS Table 4181
24.4.20 The INFORMATION_SCHEMA INNODB_SYS_FOREIGN Table 4182
24.4.21 The INFORMATION_SCHEMA INNODB_SYS_FOREIGN_COLS Table 4183
24.4.22 The INFORMATION_SCHEMA INNODB_SYS_INDEXES Table 4183
24.4.23 The INFORMATION_SCHEMA INNODB_SYS_TABLES Table 4185
24.4.24 The INFORMATION_SCHEMA INNODB_SYS_TABLESPACES Table 4186
24.4.25 The INFORMATION_SCHEMA INNODB_SYS_TABLESTATS View 4188
24.4.26 The INFORMATION_SCHEMA INNODB_SYS_VIRTUAL Table 4189
24.4.27 The INFORMATION_SCHEMA INNODB_TEMP_TABLE_INFO Table 4190
24.4.28 The INFORMATION_SCHEMA INNODB_TRX Table .. 4192

24.5 INFORMATION_SCHEMA Thread Pool Tables .. 4194
24.5.1 INFORMATION_SCHEMA Thread Pool Table Reference 4195
24.5.2 The INFORMATION_SCHEMA TP_THREAD_GROUP_STATE Table 4195
24.5.3 The INFORMATION_SCHEMA TP_THREAD_GROUP_STATS Table 4197
24.5.4 The INFORMATION_SCHEMA TP_THREAD_STATE Table 4199

24.6 INFORMATION_SCHEMA Connection Control Tables .. 4199
24.6.1 INFORMATION_SCHEMA Connection Control Table Reference 4199
24.6.2 The INFORMATION_SCHEMA
CONNECTION_CONTROL_FAILED_LOGIN_ATTEMPTS Table 4200

24.7 INFORMATION_SCHEMA MySQL Enterprise Firewall Tables ... 4200
24.7.1 INFORMATION_SCHEMA Firewall Table Reference .. 4200
24.7.2 The INFORMATION_SCHEMA MYSQL_FIREWALL_USERS Table 4201
24.7.3 The INFORMATION_SCHEMA MYSQL_FIREWALL_WHITELIST Table 4201

24.8 Extensions to SHOW Statements .. 4201
25 MySQL Performance Schema .. 4205

25.1 Performance Schema Quick Start .. 4207
25.2 Performance Schema Build Configuration .. 4213
25.3 Performance Schema Startup Configuration ... 4214
25.4 Performance Schema Runtime Configuration ... 4216

25.4.1 Performance Schema Event Timing .. 4217
25.4.2 Performance Schema Event Filtering ... 4220
25.4.3 Event Pre-Filtering .. 4222
25.4.4 Pre-Filtering by Instrument .. 4223
25.4.5 Pre-Filtering by Object .. 4224
25.4.6 Pre-Filtering by Thread ... 4226
25.4.7 Pre-Filtering by Consumer .. 4228
25.4.8 Example Consumer Configurations ... 4231
25.4.9 Naming Instruments or Consumers for Filtering Operations 4236
25.4.10 Determining What Is Instrumented ... 4237

25.5 Performance Schema Queries ... 4237
25.6 Performance Schema Instrument Naming Conventions ... 4238
25.7 Performance Schema Status Monitoring ... 4241
25.8 Performance Schema Atom and Molecule Events ... 4244
25.9 Performance Schema Tables for Current and Historical Events 4245
25.10 Performance Schema Statement Digests .. 4246
25.11 Performance Schema General Table Characteristics ... 4250
25.12 Performance Schema Table Descriptions ... 4251

25.12.1 Performance Schema Table Reference ... 4251
25.12.2 Performance Schema Setup Tables .. 4255
25.12.3 Performance Schema Instance Tables .. 4260
25.12.4 Performance Schema Wait Event Tables ... 4265

xxiii

MySQL 5.7 Reference Manual

25.12.5 Performance Schema Stage Event Tables ... 4271
25.12.6 Performance Schema Statement Event Tables .. 4277
25.12.7 Performance Schema Transaction Tables .. 4288
25.12.8 Performance Schema Connection Tables .. 4296
25.12.9 Performance Schema Connection Attribute Tables ... 4299
25.12.10 Performance Schema User-Defined Variable Tables ... 4302
25.12.11 Performance Schema Replication Tables ... 4303
25.12.12 Performance Schema Lock Tables .. 4314
25.12.13 Performance Schema System Variable Tables ... 4318
25.12.14 Performance Schema Status Variable Tables ... 4319
25.12.15 Performance Schema Summary Tables ... 4321
25.12.16 Performance Schema Miscellaneous Tables .. 4341

25.13 Performance Schema Option and Variable Reference ... 4353
25.14 Performance Schema Command Options ... 4357
25.15 Performance Schema System Variables ... 4358
25.16 Performance Schema Status Variables .. 4376
25.17 The Performance Schema Memory-Allocation Model ... 4379
25.18 Performance Schema and Plugins ... 4380
25.19 Using the Performance Schema to Diagnose Problems ... 4380

25.19.1 Query Profiling Using Performance Schema .. 4381
25.20 Migrating to Performance Schema System and Status Variable Tables 4383
25.21 Restrictions on Performance Schema ... 4385

26 MySQL sys Schema .. 4387
26.1 Prerequisites for Using the sys Schema ... 4387
26.2 Using the sys Schema .. 4388
26.3 sys Schema Progress Reporting .. 4389
26.4 sys Schema Object Reference ... 4390

26.4.1 sys Schema Object Index ... 4390
26.4.2 sys Schema Tables and Triggers .. 4395
26.4.3 sys Schema Views ... 4398
26.4.4 sys Schema Stored Procedures .. 4439
26.4.5 sys Schema Stored Functions ... 4459

27 Connectors and APIs ... 4473
27.1 MySQL Connector/C++ ... 4476
27.2 MySQL Connector/J .. 4476
27.3 MySQL Connector/NET ... 4476
27.4 MySQL Connector/ODBC .. 4476
27.5 MySQL Connector/Python ... 4476
27.6 libmysqld, the Embedded MySQL Server Library .. 4476

27.6.1 Compiling Programs with libmysqld ... 4477
27.6.2 Restrictions When Using the Embedded MySQL Server 4478
27.6.3 Options with the Embedded Server ... 4478
27.6.4 Embedded Server Examples ... 4479

27.7 MySQL C API ... 4482
27.8 MySQL PHP API .. 4482
27.9 MySQL Perl API ... 4482
27.10 MySQL Python API ... 4483
27.11 MySQL Ruby APIs .. 4483

27.11.1 The MySQL/Ruby API .. 4484
27.11.2 The Ruby/MySQL API .. 4484

27.12 MySQL Tcl API ... 4484
27.13 MySQL Eiffel Wrapper ... 4484

28 MySQL Enterprise Edition .. 4485
28.1 MySQL Enterprise Backup Overview .. 4485

xxiv

MySQL 5.7 Reference Manual

28.2 MySQL Enterprise Security Overview ... 4486
28.3 MySQL Enterprise Encryption Overview ... 4486
28.4 MySQL Enterprise Audit Overview ... 4487
28.5 MySQL Enterprise Firewall Overview ... 4487
28.6 MySQL Enterprise Thread Pool Overview .. 4487
28.7 MySQL Enterprise Data Masking and De-Identification Overview 4487
28.8 MySQL Telemetry ... 4488

29 MySQL Workbench .. 4489
A MySQL 5.7 Frequently Asked Questions .. 4491

A.1 MySQL 5.7 FAQ: General ... 4491
A.2 MySQL 5.7 FAQ: Storage Engines .. 4493
A.3 MySQL 5.7 FAQ: Server SQL Mode .. 4494
A.4 MySQL 5.7 FAQ: Stored Procedures and Functions ... 4495
A.5 MySQL 5.7 FAQ: Triggers .. 4499
A.6 MySQL 5.7 FAQ: Views .. 4501
A.7 MySQL 5.7 FAQ: INFORMATION_SCHEMA .. 4502
A.8 MySQL 5.7 FAQ: Migration ... 4502
A.9 MySQL 5.7 FAQ: Security ... 4503
A.10 MySQL 5.7 FAQ: NDB Cluster .. 4505
A.11 MySQL 5.7 FAQ: MySQL Chinese, Japanese, and Korean Character Sets 4518
A.12 MySQL 5.7 FAQ: Connectors & APIs .. 4531
A.13 MySQL 5.7 FAQ: C API, libmysql .. 4531
A.14 MySQL 5.7 FAQ: Replication .. 4532
A.15 MySQL 5.7 FAQ: MySQL Enterprise Thread Pool .. 4536
A.16 MySQL 5.7 FAQ: InnoDB Change Buffer ... 4538
A.17 MySQL 5.7 FAQ: InnoDB Data-at-Rest Encryption ... 4539
A.18 MySQL 5.7 FAQ: Virtualization Support ... 4542

B Error Messages and Common Problems .. 4543
B.1 Error Message Sources and Elements ... 4543
B.2 Error Information Interfaces ... 4545
B.3 Problems and Common Errors .. 4547

B.3.1 How to Determine What Is Causing a Problem .. 4547
B.3.2 Common Errors When Using MySQL Programs .. 4548
B.3.3 Administration-Related Issues ... 4559
B.3.4 Query-Related Issues ... 4568
B.3.5 Optimizer-Related Issues ... 4575
B.3.6 Table Definition-Related Issues .. 4575
B.3.7 Known Issues in MySQL .. 4577

C Indexes ... 4581
MySQL Glossary ... 5301

xxv

xxvi

Preface and Legal Notices
This is the Reference Manual for the MySQL Database System, version 5.7, through release 5.7.44.
Differences between minor versions of MySQL 5.7 are noted in the present text with reference to release
numbers (5.7.x). For license information, see the Legal Notices.

This manual is not intended for use with older versions of the MySQL software due to the many functional
and other differences between MySQL 5.7 and previous versions. If you are using an earlier release of
the MySQL software, please refer to the appropriate manual. For example, MySQL 5.6 Reference Manual
covers the 5.6 series of MySQL software releases.

If you are using MySQL 8.0, please refer to the MySQL 8.0 Reference Manual.

Licensing information—MySQL 5.7. This product may include third-party software, used under
license. If you are using a Commercial release of MySQL 5.7, see the MySQL 5.7 Commercial Release
License Information User Manual for licensing information, including licensing information relating to third-
party software that may be included in this Commercial release. If you are using a Community release
of MySQL 5.7, see the MySQL 5.7 Community Release License Information User Manual for licensing
information, including licensing information relating to third-party software that may be included in this
Community release.

Licensing information—MySQL NDB Cluster 7.5. This product may include third-party software, used
under license. If you are using a Commercial release of NDB Cluster 7.5, see the MySQL NDB Cluster
7.5 Commercial Release License Information User Manual for licensing information relating to third-party
software that may be included in this Commercial release. If you are using a Community release of NDB
Cluster 7.5, see the MySQL NDB Cluster 7.5 Community Release License Information User Manual for
licensing information relating to third-party software that may be included in this Community release.

Licensing information—MySQL NDB Cluster 7.6. If you are using a Commercial release of MySQL
NDB Cluster 7.6, see the MySQL NDB Cluster 7.6 Commercial Release License Information User Manual
for licensing information, including licensing information relating to third-party software that may be
included in this Commercial release. If you are using a Community release of MySQL NDB Cluster 7.6,
see the MySQL NDB Cluster 7.6 Community Release License Information User Manual for licensing
information, including licensing information relating to third-party software that may be included in this
Community release.

Legal Notices

Copyright © 1997, 2026, Oracle and/or its affiliates.

License Restrictions

This software and related documentation are provided under a license agreement containing restrictions
on use and disclosure and are protected by intellectual property laws. Except as expressly permitted
in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast,
modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any
means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

Warranty Disclaimer

The information contained herein is subject to change without notice and is not warranted to be error-free.
If you find any errors, please report them to us in writing.

Restricted Rights Notice

xxvii

https://dev.mysql.com/doc/refman/5.6/en/
https://dev.mysql.com/doc/refman/8.0/en/
https://downloads.mysql.com/docs/licenses/mysqld-5.7-com-en.pdf
https://downloads.mysql.com/docs/licenses/mysqld-5.7-com-en.pdf
https://downloads.mysql.com/docs/licenses/mysqld-5.7-gpl-en.pdf
https://downloads.mysql.com/docs/licenses/cluster-7.5-com-en.pdf
https://downloads.mysql.com/docs/licenses/cluster-7.5-com-en.pdf
https://downloads.mysql.com/docs/licenses/cluster-7.5-gpl-en.pdf
https://downloads.mysql.com/docs/licenses/cluster-7.6-com-en.pdf
https://downloads.mysql.com/docs/licenses/cluster-7.6-gpl-en.pdf

Legal Notices

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or
related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated
software, any programs embedded, installed, or activated on delivered hardware, and modifications
of such programs) and Oracle computer documentation or other Oracle data delivered to or accessed
by U.S. Government end users are "commercial computer software," "commercial computer software
documentation," or "limited rights data" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, the use, reproduction, duplication, release, display,
disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle programs (including
any operating system, integrated software, any programs embedded, installed, or activated on delivered
hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract.
The terms governing the U.S. Government's use of Oracle cloud services are defined by the applicable
contract for such services. No other rights are granted to the U.S. Government.

Hazardous Applications Notice

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Trademark Notice

Oracle, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names
may be trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Epyc, and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a
registered trademark of The Open Group.

Third-Party Content, Products, and Services Disclaimer

This software or hardware and documentation may provide access to or information about content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and
expressly disclaim all warranties of any kind with respect to third-party content, products, and services
unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its
affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services, except as set forth in an applicable agreement between you and
Oracle.

Use of This Documentation

This documentation is NOT distributed under a GPL license. Use of this documentation is subject to the
following terms:

You may create a printed copy of this documentation solely for your own personal use. Conversion to other
formats is allowed as long as the actual content is not altered or edited in any way. You shall not publish
or distribute this documentation in any form or on any media, except if you distribute the documentation in
a manner similar to how Oracle disseminates it (that is, electronically for download on a Web site with the
software) or on a CD-ROM or similar medium, provided however that the documentation is disseminated

xxviii

Documentation Accessibility

together with the software on the same medium. Any other use, such as any dissemination of printed
copies or use of this documentation, in whole or in part, in another publication, requires the prior written
consent from an authorized representative of Oracle. Oracle and/or its affiliates reserve any and all rights
to this documentation not expressly granted above.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website
at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support for Accessibility

Oracle customers that have purchased support have access to electronic support through My Oracle
Support. For information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=trs if you are hearing impaired.

xxix

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

xxx

Chapter 1 General Information

Table of Contents
1.1 About This Manual ... 2
1.2 Overview of the MySQL Database Management System .. 4

1.2.1 What is MySQL? ... 4
1.2.2 The Main Features of MySQL .. 6
1.2.3 History of MySQL .. 8

1.3 What Is New in MySQL 5.7 .. 9
1.4 Server and Status Variables and Options Added, Deprecated, or Removed in MySQL 5.7 25
1.5 How to Report Bugs or Problems .. 41
1.6 MySQL Standards Compliance .. 46

1.6.1 MySQL Extensions to Standard SQL .. 47
1.6.2 MySQL Differences from Standard SQL .. 50
1.6.3 How MySQL Deals with Constraints ... 53

The MySQL software delivers a very fast, multithreaded, multi-user, and robust SQL (Structured Query
Language) database server. MySQL Server is intended for mission-critical, heavy-load production systems
as well as for embedding into mass-deployed software. Oracle is a registered trademark of Oracle
Corporation and/or its affiliates. MySQL is a trademark of Oracle Corporation and/or its affiliates, and shall
not be used by Customer without Oracle's express written authorization. Other names may be trademarks
of their respective owners.

The MySQL software is Dual Licensed. Users can choose to use the MySQL software as an Open Source
product under the terms of the GNU General Public License (http://www.fsf.org/licenses/) or can purchase
a standard commercial license from Oracle. See http://www.mysql.com/company/legal/licensing/ for more
information on our licensing policies.

The following list describes some sections of particular interest in this manual:

• For a discussion of MySQL Database Server capabilities, see Section 1.2.2, “The Main Features of
MySQL”.

• For an overview of new MySQL features, see Section 1.3, “What Is New in MySQL 5.7”. For information
about the changes in each version, see the Release Notes.

• For installation instructions, see Chapter 2, Installing and Upgrading MySQL. For information about
upgrading MySQL, see Section 2.10, “Upgrading MySQL”.

• For a tutorial introduction to the MySQL Database Server, see Chapter 3, Tutorial.

• For information about configuring and administering MySQL Server, see Chapter 5, MySQL Server
Administration.

• For information about security in MySQL, see Chapter 6, Security.

• For information about setting up replication servers, see Chapter 16, Replication.

• For information about MySQL Enterprise, the commercial MySQL release with advanced features and
management tools, see Chapter 28, MySQL Enterprise Edition.

• For answers to a number of questions that are often asked concerning the MySQL Database Server and
its capabilities, see Appendix A, MySQL 5.7 Frequently Asked Questions.

1

http://www.fsf.org/licenses/
http://www.mysql.com/company/legal/licensing/
https://dev.mysql.com/doc/relnotes/mysql/5.7/en/

About This Manual

• For a history of new features and bug fixes, see the Release Notes.

Important

To report problems or bugs, please use the instructions at Section 1.5,
“How to Report Bugs or Problems”. If you find a security bug in MySQL
Server, please let us know immediately by sending an email message to
<secalert_us@oracle.com>. Exception: Support customers should report all
problems, including security bugs, to Oracle Support.

1.1 About This Manual

This is the Reference Manual for the MySQL Database System, version 5.7, through release 5.7.44.
Differences between minor versions of MySQL 5.7 are noted in the present text with reference to release
numbers (5.7.x). For license information, see the Legal Notices.

This manual is not intended for use with older versions of the MySQL software due to the many functional
and other differences between MySQL 5.7 and previous versions. If you are using an earlier release of
the MySQL software, please refer to the appropriate manual. For example, MySQL 5.6 Reference Manual
covers the 5.6 series of MySQL software releases.

If you are using MySQL 8.0, please refer to the MySQL 8.0 Reference Manual.

Because this manual serves as a reference, it does not provide general instruction on SQL or relational
database concepts. It also does not teach you how to use your operating system or command-line
interpreter.

The MySQL Database Software is under constant development, and the Reference Manual is updated
frequently as well. The most recent version of the manual is available online in searchable form at https://
dev.mysql.com/doc/. Other formats also are available there, including downloadable HTML and PDF
versions.

If you have questions about using MySQL, join the MySQL Community Slack. If you have suggestions
concerning additions or corrections to the manual itself, please send them to the http://www.mysql.com/
company/contact/.

Typographical and Syntax Conventions

This manual uses certain typographical conventions:

• Text in this style is used for SQL statements; database, table, and column names; program
listings and source code; and environment variables. Example: “To reload the grant tables, use the
FLUSH PRIVILEGES statement.”

• Text in this style indicates input that you type in examples.

• Text in this style indicates the names of executable programs and scripts, examples being
mysql (the MySQL command-line client program) and mysqld (the MySQL server executable).

• Text in this style is used for variable input for which you should substitute a value of your own
choosing.

• Text in this style is used for emphasis.

• Text in this style is used in table headings and to convey especially strong emphasis.

2

https://dev.mysql.com/doc/relnotes/mysql/5.7/en/
https://dev.mysql.com/doc/refman/5.6/en/
https://dev.mysql.com/doc/refman/8.0/en/
https://dev.mysql.com/doc/
https://dev.mysql.com/doc/
https://mysqlcommunity.slack.com/
http://www.mysql.com/company/contact/
http://www.mysql.com/company/contact/

Typographical and Syntax Conventions

• Text in this style is used to indicate a program option that affects how the program is executed,
or that supplies information that is needed for the program to function in a certain way. Example: “The --
host option (short form -h) tells the mysql client program the hostname or IP address of the MySQL
server that it should connect to”.

• File names and directory names are written like this: “The global my.cnf file is located in the /etc
directory.”

• Character sequences are written like this: “To specify a wildcard, use the ‘%’ character.”

When commands or statements are prefixed by a prompt, we use these:

$> type a command here
#> type a command as root here
C:\> type a command here (Windows only)
mysql> type a mysql statement here

Commands are issued in your command interpreter. On Unix, this is typically a program such as sh, csh,
or bash. On Windows, the equivalent program is command.com or cmd.exe, typically run in a console
window. Statements prefixed by mysql are issued in the mysql command-line client.

Note

When you enter a command or statement shown in an example, do not type the
prompt shown in the example.

In some areas different systems may be distinguished from each other to show that commands should be
executed in two different environments. For example, while working with replication the commands might
be prefixed with source and replica:

source> type a mysql statement on the replication source here
replica> type a mysql statement on the replica here

Database, table, and column names must often be substituted into statements. To indicate that such
substitution is necessary, this manual uses db_name, tbl_name, and col_name. For example, you might
see a statement like this:

mysql> SELECT col_name FROM db_name.tbl_name;

This means that if you were to enter a similar statement, you would supply your own database, table, and
column names, perhaps like this:

mysql> SELECT author_name FROM biblio_db.author_list;

SQL keywords are not case-sensitive and may be written in any lettercase. This manual uses uppercase.

In syntax descriptions, square brackets (“[” and “]”) indicate optional words or clauses. For example, in the
following statement, IF EXISTS is optional:

DROP TABLE [IF EXISTS] tbl_name

When a syntax element consists of a number of alternatives, the alternatives are separated by vertical bars
(“|”). When one member from a set of choices may be chosen, the alternatives are listed within square
brackets (“[” and “]”):

TRIM([[BOTH | LEADING | TRAILING] [remstr] FROM] str)

When one member from a set of choices must be chosen, the alternatives are listed within braces (“{” and
“}”):

{DESCRIBE | DESC} tbl_name [col_name | wild]

3

Manual Authorship

An ellipsis (...) indicates the omission of a section of a statement, typically to provide a shorter version of
more complex syntax. For example, SELECT ... INTO OUTFILE is shorthand for the form of SELECT
statement that has an INTO OUTFILE clause following other parts of the statement.

An ellipsis can also indicate that the preceding syntax element of a statement may be repeated. In
the following example, multiple reset_option values may be given, with each of those after the first
preceded by commas:

RESET reset_option [,reset_option] ...

Commands for setting shell variables are shown using Bourne shell syntax. For example, the sequence to
set the CC environment variable and run the configure command looks like this in Bourne shell syntax:

$> CC=gcc ./configure

If you are using csh or tcsh, you must issue commands somewhat differently:

$> setenv CC gcc
$> ./configure

Manual Authorship

The Reference Manual source files are written in DocBook XML format. The HTML version and other
formats are produced automatically, primarily using the DocBook XSL stylesheets. For information about
DocBook, see http://docbook.org/

This manual was originally written by David Axmark and Michael “Monty” Widenius. It is maintained by the
MySQL Documentation Team, consisting of Edward Gilmore, Sudharsana Gomadam, Kim seong Loh,
Garima Sharma, Carlos Ortiz, Daniel So, and Jon Stephens.

1.2 Overview of the MySQL Database Management System

1.2.1 What is MySQL?

MySQL, the most popular Open Source SQL database management system, is developed, distributed, and
supported by Oracle Corporation.

The MySQL website (http://www.mysql.com/) provides the latest information about MySQL software.

• MySQL is a database management system.

A database is a structured collection of data. It may be anything from a simple shopping list to a picture
gallery or the vast amounts of information in a corporate network. To add, access, and process data
stored in a computer database, you need a database management system such as MySQL Server.
Since computers are very good at handling large amounts of data, database management systems play
a central role in computing, as standalone utilities, or as parts of other applications.

• MySQL databases are relational.

 A relational database stores data in separate tables rather than putting all the data in one big storeroom.
The database structures are organized into physical files optimized for speed. The logical model,
with objects such as databases, tables, views, rows, and columns, offers a flexible programming
environment. You set up rules governing the relationships between different data fields, such as one-to-
one, one-to-many, unique, required or optional, and “pointers” between different tables. The database
enforces these rules, so that with a well-designed database, your application never sees inconsistent,
duplicate, orphan, out-of-date, or missing data.

4

http://docbook.org/
http://www.mysql.com/

What is MySQL?

The SQL part of “MySQL” stands for “Structured Query Language”. SQL is the most common
standardized language used to access databases. Depending on your programming environment, you
might enter SQL directly (for example, to generate reports), embed SQL statements into code written in
another language, or use a language-specific API that hides the SQL syntax.

SQL is defined by the ANSI/ISO SQL Standard. The SQL standard has been evolving since 1986 and
several versions exist. In this manual, “SQL-92” refers to the standard released in 1992, “SQL:1999”
refers to the standard released in 1999, and “SQL:2003” refers to the current version of the standard. We
use the phrase “the SQL standard” to mean the current version of the SQL Standard at any time.

• MySQL software is Open Source.

 Open Source means that it is possible for anyone to use and modify the software. Anybody can
download the MySQL software from the Internet and use it without paying anything. If you wish, you
may study the source code and change it to suit your needs. The MySQL software uses the GPL (GNU
General Public License), http://www.fsf.org/licenses/, to define what you may and may not do with the
software in different situations. If you feel uncomfortable with the GPL or need to embed MySQL code
into a commercial application, you can buy a commercially licensed version from us. See the MySQL
Licensing Overview for more information (http://www.mysql.com/company/legal/licensing/).

• The MySQL Database Server is very fast, reliable, scalable, and easy to use.

If that is what you are looking for, you should give it a try. MySQL Server can run comfortably on a
desktop or laptop, alongside your other applications, web servers, and so on, requiring little or no
attention. If you dedicate an entire machine to MySQL, you can adjust the settings to take advantage
of all the memory, CPU power, and I/O capacity available. MySQL can also scale up to clusters of
machines, networked together.

MySQL Server was originally developed to handle large databases much faster than existing solutions
and has been successfully used in highly demanding production environments for several years.
Although under constant development, MySQL Server today offers a rich and useful set of functions.
Its connectivity, speed, and security make MySQL Server highly suited for accessing databases on the
Internet.

• MySQL Server works in client/server or embedded systems.

The MySQL Database Software is a client/server system that consists of a multithreaded SQL server
that supports different back ends, several different client programs and libraries, administrative tools, and
a wide range of application programming interfaces (APIs).

We also provide MySQL Server as an embedded multithreaded library that you can link into your
application to get a smaller, faster, easier-to-manage standalone product.

• A large amount of contributed MySQL software is available.

MySQL Server has a practical set of features developed in close cooperation with our users. It is very
likely that your favorite application or language supports the MySQL Database Server.

• MySQL HeatWave.

MySQL HeatWave is a fully managed database service, powered by the MySQL HeatWave in-memory
query accelerator. It is the only cloud service that combines transactions, real-time analytics across data
warehouses and data lakes, and machine learning in one MySQL Database; without the complexity,
latency, risks, and cost of ETL duplication. It is available on OCI, AWS, and Azure. Learn more at:
https://www.oracle.com/mysql/.

5

http://www.fsf.org/licenses/
http://www.mysql.com/company/legal/licensing/
https://www.oracle.com/mysql/

The Main Features of MySQL

The official way to pronounce “MySQL” is “My Ess Que Ell” (not “my sequel”), but we do not mind if you
pronounce it as “my sequel” or in some other localized way.

1.2.2 The Main Features of MySQL

This section describes some of the important characteristics of the MySQL Database Software. In most
respects, the roadmap applies to all versions of MySQL. For information about features as they are
introduced into MySQL on a series-specific basis, see the “In a Nutshell” section of the appropriate Manual:

• MySQL 8.4: What Is New in MySQL 8.4 since MySQL 8.0

• MySQL 8.0: What Is New in MySQL 8.0

• MySQL 5.7: Section 1.3, “What Is New in MySQL 5.7”

Internals and Portability

• Written in C and C++.

• Tested with a broad range of different compilers.

• Works on many different platforms. See https://www.mysql.com/support/supportedplatforms/
database.html.

• For portability, configured using CMake.

• Tested with Purify (a commercial memory leakage detector) as well as with Valgrind, a GPL tool (https://
valgrind.org/).

• Uses multi-layered server design with independent modules.

• Designed to be fully multithreaded using kernel threads, to easily use multiple CPUs if they are available.

• Provides transactional and nontransactional storage engines.

• Uses very fast B-tree disk tables (MyISAM) with index compression.

• Designed to make it relatively easy to add other storage engines. This is useful if you want to provide an
SQL interface for an in-house database.

• Uses a very fast thread-based memory allocation system.

• Executes very fast joins using an optimized nested-loop join.

• Implements in-memory hash tables, which are used as temporary tables.

• Implements SQL functions using a highly optimized class library that should be as fast as possible.
Usually there is no memory allocation at all after query initialization.

• Provides the server as a separate program for use in a client/server networked environment.

Data Types

• Many data types: signed/unsigned integers 1, 2, 3, 4, and 8 bytes long, FLOAT, DOUBLE, CHAR,
VARCHAR, BINARY, VARBINARY, TEXT, BLOB, DATE, TIME, DATETIME, TIMESTAMP, YEAR, SET, ENUM,
and OpenGIS spatial types. See Chapter 11, Data Types.

• Fixed-length and variable-length string types.

6

https://dev.mysql.com/doc/refman/8.4/en/mysql-nutshell.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-nutshell.html
https://www.mysql.com/support/supportedplatforms/database.html
https://www.mysql.com/support/supportedplatforms/database.html
https://valgrind.org/
https://valgrind.org/

The Main Features of MySQL

Statements and Functions

• Full operator and function support in the SELECT list and WHERE clause of queries. For example:

mysql> SELECT CONCAT(first_name, ' ', last_name)
 -> FROM citizen
 -> WHERE income/dependents > 10000 AND age > 30;

• Full support for SQL GROUP BY and ORDER BY clauses. Support for group functions (COUNT(), AVG(),
STD(), SUM(), MAX(), MIN(), and GROUP_CONCAT()).

• Support for LEFT OUTER JOIN and RIGHT OUTER JOIN with both standard SQL and ODBC syntax.

• Support for aliases on tables and columns as required by standard SQL.

• Support for DELETE, INSERT, REPLACE, and UPDATE to return the number of rows that were changed
(affected), or to return the number of rows matched instead by setting a flag when connecting to the
server.

• Support for MySQL-specific SHOW statements that retrieve information about databases, storage
engines, tables, and indexes. Support for the INFORMATION_SCHEMA database, implemented according
to standard SQL.

• An EXPLAIN statement to show how the optimizer resolves a query.

• Independence of function names from table or column names. For example, ABS is a valid column name.
The only restriction is that for a function call, no spaces are permitted between the function name and
the “(” that follows it. See Section 9.3, “Keywords and Reserved Words”.

• You can refer to tables from different databases in the same statement.

Security

• A privilege and password system that is very flexible and secure, and that enables host-based
verification.

• Password security by encryption of all password traffic when you connect to a server.

Scalability and Limits

• Support for large databases. We use MySQL Server with databases that contain 50 million records. We
also know of users who use MySQL Server with 200,000 tables and about 5,000,000,000 rows.

• Support for up to 64 indexes per table. Each index may consist of 1 to 16 columns or parts of columns.
The maximum index width for InnoDB tables is either 767 bytes or 3072 bytes. See Section 14.23,
“InnoDB Limits”. The maximum index width for MyISAM tables is 1000 bytes. See Section 15.2, “The
MyISAM Storage Engine”. An index may use a prefix of a column for CHAR, VARCHAR, BLOB, or TEXT
column types.

Connectivity

• Clients can connect to MySQL Server using several protocols:

• Clients can connect using TCP/IP sockets on any platform.

• On Windows systems, clients can connect using named pipes if the server is started with the
named_pipe system variable enabled. Windows servers also support shared-memory connections
if started with the shared_memory system variable enabled. Clients can connect through shared
memory by using the --protocol=memory option.

7

History of MySQL

• On Unix systems, clients can connect using Unix domain socket files.

• MySQL client programs can be written in many languages. A client library written in C is available for
clients written in C or C++, or for any language that provides C bindings.

• APIs for C, C++, Eiffel, Java, Perl, PHP, Python, Ruby, and Tcl are available, enabling MySQL clients to
be written in many languages. See Chapter 27, Connectors and APIs.

• The Connector/ODBC (MyODBC) interface provides MySQL support for client programs that use ODBC
(Open Database Connectivity) connections. For example, you can use MS Access to connect to your
MySQL server. Clients can be run on Windows or Unix. Connector/ODBC source is available. All ODBC
2.5 functions are supported, as are many others. See MySQL Connector/ODBC Developer Guide.

• The Connector/J interface provides MySQL support for Java client programs that use JDBC connections.
Clients can be run on Windows or Unix. Connector/J source is available. See MySQL Connector/J
Developer Guide.

• MySQL Connector/NET enables developers to easily create .NET applications that require secure,
high-performance data connectivity with MySQL. It implements the required ADO.NET interfaces and
integrates into ADO.NET aware tools. Developers can build applications using their choice of .NET
languages. MySQL Connector/NET is a fully managed ADO.NET driver written in 100% pure C#. See
MySQL Connector/NET Developer Guide.

Localization

• The server can provide error messages to clients in many languages. See Section 10.12, “Setting the
Error Message Language”.

• Full support for several different character sets, including latin1 (cp1252), german, big5, ujis,
several Unicode character sets, and more. For example, the Scandinavian characters “å”, “ä” and “ö” are
permitted in table and column names.

• All data is saved in the chosen character set.

• Sorting and comparisons are done according to the default character set and collation. It is possible
to change this when the MySQL server is started (see Section 10.3.2, “Server Character Set and
Collation”). To see an example of very advanced sorting, look at the Czech sorting code. MySQL Server
supports many different character sets that can be specified at compile time and runtime.

• The server time zone can be changed dynamically, and individual clients can specify their own time
zone. See Section 5.1.13, “MySQL Server Time Zone Support”.

Clients and Tools

• MySQL includes several client and utility programs. These include both command-line programs such as
mysqldump and mysqladmin, and graphical programs such as MySQL Workbench.

• MySQL Server has built-in support for SQL statements to check, optimize, and repair tables. These
statements are available from the command line through the mysqlcheck client. MySQL also includes
myisamchk, a very fast command-line utility for performing these operations on MyISAM tables. See
Chapter 4, MySQL Programs.

• MySQL programs can be invoked with the --help or -? option to obtain online assistance.

1.2.3 History of MySQL

We started out with the intention of using the mSQL database system to connect to our tables using our
own fast low-level (ISAM) routines. However, after some testing, we came to the conclusion that mSQL was

8

https://dev.mysql.com/doc/connector-odbc/en/
https://dev.mysql.com/doc/connector-j/en/
https://dev.mysql.com/doc/connector-j/en/
https://dev.mysql.com/doc/connector-net/en/

What Is New in MySQL 5.7

not fast enough or flexible enough for our needs. This resulted in a new SQL interface to our database but
with almost the same API interface as mSQL. This API was designed to enable third-party code that was
written for use with mSQL to be ported easily for use with MySQL.

MySQL is named after co-founder Monty Widenius's daughter, My.

The name of the MySQL Dolphin (our logo) is “Sakila,” which was chosen from a huge list of names
suggested by users in our “Name the Dolphin” contest. The winning name was submitted by Ambrose
Twebaze, an Open Source software developer from Eswatini (formerly Swaziland), Africa. According to
Ambrose, the feminine name Sakila has its roots in SiSwati, the local language of Eswatini. Sakila is also
the name of a town in Arusha, Tanzania, near Ambrose's country of origin, Uganda.

1.3 What Is New in MySQL 5.7
This section summarizes what has been added to, deprecated in, and removed from MySQL 5.7. A
companion section lists MySQL server options and variables that have been added, deprecated, or
removed in MySQL 5.7; see Section 1.4, “Server and Status Variables and Options Added, Deprecated, or
Removed in MySQL 5.7”.

• Features Added in MySQL 5.7

• Features Deprecated in MySQL 5.7

• Features Removed in MySQL 5.7

Features Added in MySQL 5.7

The following features have been added to MySQL 5.7:

• Security improvements. These security enhancements were added:

• In MySQL 8.0, caching_sha2_password is the default authentication plugin. To enable MySQL 5.7
clients to connect to 8.0 servers using accounts that authenticate using caching_sha2_password,
the MySQL 5.7 client library and client programs support the caching_sha2_password client-side
authentication plugin as of MySQL 5.7.23. This improves compatibility of MySQL 5.7 with MySQL 8.0
and higher servers. See Section 6.4.1.4, “Caching SHA-2 Pluggable Authentication”.

• The server now requires account rows in the mysql.user system table to have a nonempty plugin
column value and disables accounts with an empty value. For server upgrade instructions, see
Section 2.10.3, “Changes in MySQL 5.7”. DBAs are advised to also convert accounts that use the
mysql_old_password authentication plugin to use mysql_native_password instead, because
support for mysql_old_password has been removed. For account upgrade instructions, see
Section 6.4.1.3, “Migrating Away from Pre-4.1 Password Hashing and the mysql_old_password
Plugin”.

• MySQL now enables database administrators to establish a policy for automatic password
expiration: Any user who connects to the server using an account for which the password is past its
permitted lifetime must change the password. For more information, see Section 6.2.11, “Password
Management”.

• Administrators can lock and unlock accounts for better control over who can log in. For more
information, see Section 6.2.15, “Account Locking”.

• To make it easier to support secure connections, MySQL servers compiled using OpenSSL can
automatically generate missing SSL and RSA certificate and key files at startup. See Section 6.3.3.1,
“Creating SSL and RSA Certificates and Keys using MySQL”.

9

Features Added in MySQL 5.7

All servers, if not configured for SSL explicitly, attempt to enable SSL automatically at startup if they
find the requisite SSL files in the data directory. See Section 6.3.1, “Configuring MySQL to Use
Encrypted Connections”.

In addition, MySQL distributions include a mysql_ssl_rsa_setup utility that can be invoked
manually to create SSL and RSA key and certificate files. For more information, see Section 4.4.5,
“mysql_ssl_rsa_setup — Create SSL/RSA Files”.

• MySQL deployments installed using mysqld --initialize are secure by default. The following
changes have been implemented as the default deployment characteristics:

• The installation process creates only a single root account, 'root'@'localhost', automatically
generates a random password for this account, and marks the password expired. The MySQL
administrator must connect as root using the random password and assign a new password. (The
server writes the random password to the error log.)

• Installation creates no anonymous-user accounts.

• Installation creates no test database.

For more information, see Section 2.9.1, “Initializing the Data Directory”.

• MySQL Enterprise Edition now provides data masking and de-identification capabilities. Data
masking hides sensitive information by replacing real values with substitutes. MySQL Enterprise Data
Masking and De-Identification functions enable masking existing data using several methods such
as obfuscation (removing identifying characteristics), generation of formatted random data, and data
replacement or substitution. For more information, see Section 6.5, “MySQL Enterprise Data Masking
and De-Identification”.

• MySQL now sets the access control granted to clients on the named pipe to the minimum necessary
for successful communication on Windows. Newer MySQL client software can open named pipe
connections without any additional configuration. If older client software cannot be upgraded
immediately, the new named_pipe_full_access_group system variable can be used to give a
Windows group the necessary permissions to open a named pipe connection. Membership in the full-
access group should be restricted and temporary.

• SQL mode changes. Strict SQL mode for transactional storage engines (STRICT_TRANS_TABLES)
is now enabled by default.

Implementation for the ONLY_FULL_GROUP_BY SQL mode has been made more sophisticated, to no
longer reject deterministic queries that previously were rejected. In consequence, this mode is now
enabled by default, to prohibit only nondeterministic queries containing expressions not guaranteed to be
uniquely determined within a group.

The ERROR_FOR_DIVISION_BY_ZERO, NO_ZERO_DATE, and NO_ZERO_IN_DATE SQL modes are now
deprecated but enabled by default. The long term plan is to have them included in strict SQL mode and
to remove them as explicit modes in a future MySQL release. See SQL Mode Changes in MySQL 5.7.

The changes to the default SQL mode result in a default sql_mode system variable value with
these modes enabled: ONLY_FULL_GROUP_BY, STRICT_TRANS_TABLES, NO_ZERO_IN_DATE,
NO_ZERO_DATE, ERROR_FOR_DIVISION_BY_ZERO, NO_AUTO_CREATE_USER, and
NO_ENGINE_SUBSTITUTION.

10

Features Added in MySQL 5.7

• Online ALTER TABLE. ALTER TABLE now supports a RENAME INDEX clause that renames an
index. The change is made in place without a table-copy operation. It works for all storage engines. See
Section 13.1.8, “ALTER TABLE Statement”.

• ngram and MeCab full-text parser plugins. MySQL provides a built-in full-text ngram parser plugin
that supports Chinese, Japanese, and Korean (CJK), and an installable MeCab full-text parser plugin for
Japanese.

For more information, see Section 12.9.8, “ngram Full-Text Parser”, and Section 12.9.9, “MeCab Full-
Text Parser Plugin”.

• InnoDB enhancements. These InnoDB enhancements were added:

• VARCHAR column size can be increased using an in-place ALTER TABLE, as in this example:

ALTER TABLE t1 ALGORITHM=INPLACE, CHANGE COLUMN c1 c1 VARCHAR(255);

This is true as long as the number of length bytes required by a VARCHAR column remains the same.
For VARCHAR columns of 0 to 255 bytes in size, one length byte is required to encode the value.
For VARCHAR columns of 256 bytes in size or more, two length bytes are required. As a result,
in-place ALTER TABLE only supports increasing VARCHAR column size from 0 to 255 bytes, or
from 256 bytes to a greater size. In-place ALTER TABLE does not support increasing the size of a
VARCHAR column from less than 256 bytes to a size equal to or greater than 256 bytes. In this case,
the number of required length bytes changes from 1 to 2, which is only supported by a table copy
(ALGORITHM=COPY).

Decreasing VARCHAR size using in-place ALTER TABLE is not supported. Decreasing VARCHAR size
requires a table copy (ALGORITHM=COPY).

For more information, see Section 14.13.1, “Online DDL Operations”.

• DDL performance for InnoDB temporary tables is improved through optimization of CREATE TABLE,
DROP TABLE, TRUNCATE TABLE, and ALTER TABLE statements.

• InnoDB temporary table metadata is no longer stored to InnoDB system tables. Instead, a new table,
INNODB_TEMP_TABLE_INFO, provides users with a snapshot of active temporary tables. The table
contains metadata and reports on all user and system-created temporary tables that are active within
a given InnoDB instance. The table is created when the first SELECT statement is run against it.

• InnoDB now supports MySQL-supported spatial data types. Prior to this release, InnoDB would store
spatial data as binary BLOB data. BLOB remains the underlying data type but spatial data types are
now mapped to a new InnoDB internal data type, DATA_GEOMETRY.

• There is now a separate tablespace for all non-compressed InnoDB temporary tables. The new
tablespace is always recreated on server startup and is located in DATADIR by default. A newly added
configuration file option, innodb_temp_data_file_path, allows for a user-defined temporary data
file path.

• innochecksum functionality is enhanced with several new options and extended capabilities. See
Section 4.6.1, “innochecksum — Offline InnoDB File Checksum Utility”.

• A new type of non-redo undo log for both normal and compressed temporary tables and related
objects now resides in the temporary tablespace. For more information, see Section 14.6.7, “Undo
Logs”.

• InnoDB buffer pool dump and load operations are enhanced. A new system variable,
innodb_buffer_pool_dump_pct, allows you to specify the percentage of most recently used

11

Features Added in MySQL 5.7

pages in each buffer pool to read out and dump. When there is other I/O activity being performed by
InnoDB background tasks, InnoDB attempts to limit the number of buffer pool load operations per
second using the innodb_io_capacity setting.

• Support is added to InnoDB for full-text parser plugins. For information about full-text parser plugins,
see Full-Text Parser Plugins and Writing Full-Text Parser Plugins.

• InnoDB supports multiple page cleaner threads for flushing dirty pages from buffer pool instances.
A new system variable, innodb_page_cleaners, is used to specify the number of page cleaner
threads. The default value of 1 maintains the previous configuration in which there is a single page
cleaner thread. This enhancement builds on work completed in MySQL 5.6, which introduced a single
page cleaner thread to offload buffer pool flushing work from the InnoDB master thread.

• Online DDL support is extended to the following operations for regular and partitioned InnoDB tables:

• OPTIMIZE TABLE

• ALTER TABLE ... FORCE

• ALTER TABLE ... ENGINE=INNODB (when run on an InnoDB table)

Online DDL support reduces table rebuild time and permits concurrent DML. See Section 14.13,
“InnoDB and Online DDL”.

• The Fusion-io Non-Volatile Memory (NVM) file system on Linux provides atomic write capability, which
makes the InnoDB doublewrite buffer redundant. The InnoDB doublewrite buffer is automatically
disabled for system tablespace files (ibdata files) located on Fusion-io devices that support atomic
writes.

• InnoDB supports the Transportable Tablespace feature for partitioned InnoDB tables and individual
InnoDB table partitions. This enhancement eases backup procedures for partitioned tables and
enables copying of partitioned tables and individual table partitions between MySQL instances. For
more information, see Section 14.6.1.3, “Importing InnoDB Tables”.

• The innodb_buffer_pool_size parameter is dynamic, allowing you to resize the buffer
pool without restarting the server. The resizing operation, which involves moving pages to a
new location in memory, is performed in chunks. Chunk size is configurable using the new
innodb_buffer_pool_chunk_size configuration option. You can monitor resizing progress
using the new Innodb_buffer_pool_resize_status status variable. For more information, see
Configuring InnoDB Buffer Pool Size Online.

• Multithreaded page cleaner support (innodb_page_cleaners) is extended to shutdown and
recovery phases.

• InnoDB supports indexing of spatial data types using SPATIAL indexes, including use of ALTER
TABLE ... ALGORITHM=INPLACE for online operations (ADD SPATIAL INDEX).

• InnoDB performs a bulk load when creating or rebuilding indexes. This method of index creation is
known as a “sorted index build”. This enhancement, which improves the efficiency of index creation,
also applies to full-text indexes. A new global configuration option, innodb_fill_factor, defines
the percentage of space on each page that is filled with data during a sorted index build, with the
remaining space reserved for future index growth. For more information, see Section 14.6.2.3, “Sorted
Index Builds”.

• A new log record type (MLOG_FILE_NAME) is used to identify tablespaces that have been modified
since the last checkpoint. This enhancement simplifies tablespace discovery during crash recovery

12

https://dev.mysql.com/doc/extending-mysql/5.7/en/plugin-types.html#full-text-plugin-type
https://dev.mysql.com/doc/extending-mysql/5.7/en/writing-full-text-plugins.html

Features Added in MySQL 5.7

and eliminates scans on the file system prior to redo log application. For more information about the
benefits of this enhancement, see Tablespace Discovery During Crash Recovery.

This enhancement changes the redo log format, requiring that MySQL be shut down cleanly before
upgrading to or downgrading from MySQL 5.7.5.

• You can truncate undo logs that reside in undo tablespaces. This feature is enabled using the
innodb_undo_log_truncate configuration option. For more information, see Truncating Undo
Tablespaces.

• InnoDB supports native partitioning. Previously, InnoDB relied on the ha_partition handler, which
creates a handler object for each partition. With native partitioning, a partitioned InnoDB table uses a
single partition-aware handler object. This enhancement reduces the amount of memory required for
partitioned InnoDB tables.

As of MySQL 5.7.9, mysql_upgrade looks for and attempts to upgrade partitioned InnoDB tables
that were created using the ha_partition handler. Also in MySQL 5.7.9 and later, you can upgrade
such tables by name in the mysql client using ALTER TABLE ... UPGRADE PARTITIONING.

• InnoDB supports the creation of general tablespaces using CREATE TABLESPACE syntax.

CREATE TABLESPACE `tablespace_name`
 ADD DATAFILE 'file_name.ibd'
 [FILE_BLOCK_SIZE = n]

General tablespaces can be created outside of the MySQL data directory, are capable of holding
multiple tables, and support tables of all row formats.

Tables are added to a general tablespace using CREATE TABLE tbl_name ... TABLESPACE
[=] tablespace_name or ALTER TABLE tbl_name TABLESPACE [=] tablespace_name
syntax.

For more information, see Section 14.6.3.3, “General Tablespaces”.

• DYNAMIC replaces COMPACT as the implicit default row format for InnoDB tables. A new configuration
option, innodb_default_row_format, specifies the default InnoDB row format. For more
information, see Defining the Row Format of a Table.

• As of MySQL 5.7.11, InnoDB supports data-at-rest encryption for file-per-table tablespaces.
Encryption is enabled by specifying the ENCRYPTION option when creating or altering an InnoDB
table. This feature relies on a keyring plugin for encryption key management. For more information,
see Section 6.4.4, “The MySQL Keyring”, and Section 14.14, “InnoDB Data-at-Rest Encryption”.

• As of MySQL 5.7.24, the zlib library version bundled with MySQL was raised from version 1.2.3 to
version 1.2.11. MySQL implements compression with the help of the zlib library.

If you use InnoDB compressed tables, see Section 2.10.3, “Changes in MySQL 5.7” for related
upgrade implications.

• JSON support. Beginning with MySQL 5.7.8, MySQL supports a native JSON type. JSON values are
not stored as strings, instead using an internal binary format that permits quick read access to document
elements. JSON documents stored in JSON columns are automatically validated whenever they are
inserted or updated, with an invalid document producing an error. JSON documents are normalized
on creation, and can be compared using most comparison operators such as =, <, <=, >, >=, <>, !=,

13

http://www.zlib.net/

Features Added in MySQL 5.7

and <=>; for information about supported operators as well as precedence and other rules that MySQL
follows when comparing JSON values, see Comparison and Ordering of JSON Values.

MySQL 5.7.8 also introduces a number of functions for working with JSON values. These functions
include those listed here:

• Functions that create JSON values: JSON_ARRAY(), JSON_MERGE(), and JSON_OBJECT(). See
Section 12.17.2, “Functions That Create JSON Values”.

• Functions that search JSON values: JSON_CONTAINS(), JSON_CONTAINS_PATH(),
JSON_EXTRACT(), JSON_KEYS(), and JSON_SEARCH(). See Section 12.17.3, “Functions That
Search JSON Values”.

• Functions that modify JSON values: JSON_APPEND(), JSON_ARRAY_APPEND(),
JSON_ARRAY_INSERT(), JSON_INSERT(), JSON_QUOTE(), JSON_REMOVE(), JSON_REPLACE(),
JSON_SET(), and JSON_UNQUOTE(). See Section 12.17.4, “Functions That Modify JSON Values”.

• Functions that provide information about JSON values: JSON_DEPTH(), JSON_LENGTH(),
JSON_TYPE(), and JSON_VALID(). See Section 12.17.5, “Functions That Return JSON Value
Attributes”.

In MySQL 5.7.9 and later, you can use column->path as shorthand for JSON_EXTRACT(column,
path). This works as an alias for a column wherever a column identifier can occur in an SQL statement,
including WHERE, ORDER BY, and GROUP BY clauses. This includes SELECT, UPDATE, DELETE, CREATE
TABLE, and other SQL statements. The left hand side must be a JSON column identifier (and not an
alias). The right hand side is a quoted JSON path expression which is evaluated against the JSON
document returned as the column value.

MySQL 5.7.22 adds the following JSON functions:

• Two JSON aggregation functions JSON_ARRAYAGG() and JSON_OBJECTAGG(). JSON_ARRAYAGG()
takes a column or expression as its argument, and aggregates the result as a single JSON array.
The expression can evaluate to any MySQL data type; this does not have to be a JSON value.
JSON_OBJECTAGG() takes two columns or expressions which it interprets as a key and a value; it
returns the result as a single JSON object. For more information and examples, see Section 12.19,
“Aggregate Functions”.

• The JSON utility function JSON_PRETTY(), which outputs an existing JSON value in an easy-to-read
format; each JSON object member or array value is printed on a separate line, and a child object or
array is intended 2 spaces with respect to its parent.

This function also works with a string that can be parsed as a JSON value.

See also Section 12.17.6, “JSON Utility Functions”.

• The JSON utility function JSON_STORAGE_SIZE(), which returns the storage space in bytes used for
the binary representation of a JSON document prior to any partial update (see previous item).

This function also accepts a valid string representation of a JSON document. For such a value,
JSON_STORAGE_SIZE() returns the space used by its binary representation following its conversion
to a JSON document. For a variable containing the string representation of a JSON document,
JSON_STORAGE_FREE() returns zero. Either function produces an error if its (non-null) argument
cannot be parsed as a valid JSON document, and NULL if the argument is NULL.

For more information and examples, see Section 12.17.6, “JSON Utility Functions”.

14

Features Added in MySQL 5.7

• A JSON merge function intended to conform to RFC 7396. JSON_MERGE_PATCH(), when used on 2
JSON objects, merges them into a single JSON object that has as members a union of the following
sets:

• Each member of the first object for which there is no member with the same key in the second
object.

• Each member of the second object for which there is no member having the same key in the first
object, and whose value is not the JSON null literal.

• Each member having a key that exists in both objects, and whose value in the second object is not
the JSON null literal.

As part of this work, the JSON_MERGE() function has been renamed JSON_MERGE_PRESERVE().
JSON_MERGE() continues to be recognized as an alias for JSON_MERGE_PRESERVE() in MySQL
5.7, but is now deprecated and is subject to removal in a future version of MySQL.

For more information and examples, see Section 12.17.4, “Functions That Modify JSON Values”.

See Section 12.17.3, “Functions That Search JSON Values”, for more information about -> and
JSON_EXTRACT(). For information about JSON path support in MySQL 5.7, see Searching and
Modifying JSON Values. See also Indexing a Generated Column to Provide a JSON Column Index.

• System and status variables. System and status variable information is now available in
Performance Schema tables, in preference to use of INFORMATION_SCHEMA tables to obtain these
variable. This also affects the operation of the SHOW VARIABLES and SHOW STATUS statements. The
value of the show_compatibility_56 system variable affects the output produced from and privileges
required for system and status variable statements and tables. For details, see the description of that
variable in Section 5.1.7, “Server System Variables”.

Note

The default for show_compatibility_56 is OFF. Applications that require 5.6
behavior should set this variable to ON until such time as they have been migrated
to the new behavior for system variables and status variables. See Section 25.20,
“Migrating to Performance Schema System and Status Variable Tables”

• sys schema. MySQL distributions now include the sys schema, which is a set of objects that help
DBAs and developers interpret data collected by the Performance Schema. sys schema objects can
be used for typical tuning and diagnosis use cases. For more information, see Chapter 26, MySQL sys
Schema.

• Condition handling. MySQL now supports stacked diagnostics areas. When the diagnostics area
stack is pushed, the first (current) diagnostics area becomes the second (stacked) diagnostics area
and a new current diagnostics area is created as a copy of it. Within a condition handler, executed
statements modify the new current diagnostics area, but GET STACKED DIAGNOSTICS can be used to
inspect the stacked diagnostics area to obtain information about the condition that caused the handler
to activate, independent of current conditions within the handler itself. (Previously, there was a single
diagnostics area. To inspect handler-activating conditions within a handler, it was necessary to check
this diagnostics area before executing any statements that could change it.) See Section 13.6.7.3, “GET
DIAGNOSTICS Statement”, and Section 13.6.7.7, “The MySQL Diagnostics Area”.

• Optimizer. These optimizer enhancements were added:

• EXPLAIN can be used to obtain the execution plan for an explainable statement executing in a named
connection:

15

https://tools.ietf.org/html/rfc7396

Features Added in MySQL 5.7

EXPLAIN [options] FOR CONNECTION connection_id;

For more information, see Section 8.8.4, “Obtaining Execution Plan Information for a Named
Connection”.

• It is possible to provide hints to the optimizer within individual SQL statements, which enables finer
control over statement execution plans than can be achieved using the optimizer_switch system
variable. Hints are also permitted in statements used with EXPLAIN, enabling you to see how hints
affect execution plans. For more information, see Section 8.9.3, “Optimizer Hints”.

• prefer_ordering_index flag. By default, MySQL attempts to use an ordered index for any ORDER
BY or GROUP BY query that has a LIMIT clause, whenever the optimizer determines that this would
result in faster execution. Because it is possible in some cases that choosing a different optimization
for such queries actually performs better, it is possible as of MySQL 5.7.33 to disable this optimization
by setting the prefer_ordering_index flag to off.

The default value for this flag is on.

For more information and examples, see Section 8.9.2, “Switchable Optimizations”, and
Section 8.2.1.17, “LIMIT Query Optimization”.

• Triggers. Previously, a table could have at most one trigger for each combination of trigger event
(INSERT, UPDATE, DELETE) and action time (BEFORE, AFTER). This limitation has been lifted and
multiple triggers are permitted. For more information, see Section 23.3, “Using Triggers”.

• Logging. These logging enhancements were added:

• Previously, on Unix and Unix-like systems, MySQL support for sending the server error log to syslog
was implemented by having mysqld_safe capture server error output and pass it to syslog. The
server now includes native syslog support, which has been extended to include Windows. For more
information about sending server error output to syslog, see Section 5.4.2, “The Error Log”.

• The mysql client now has a --syslog option that causes interactive statements to be sent to the
system syslog facility. Logging is suppressed for statements that match the default “ignore” pattern
list ("*IDENTIFIED*:*PASSWORD*"), as well as statements that match any patterns specified using
the --histignore option. See Section 4.5.1.3, “mysql Client Logging”.

• Generated Columns. MySQL now supports the specification of generated columns in CREATE
TABLE and ALTER TABLE statements. Values of a generated column are computed from an expression
specified at column creation time. Generated columns can be virtual (computed “on the fly” when
rows are read) or stored (computed when rows are inserted or updated). For more information, see
Section 13.1.18.7, “CREATE TABLE and Generated Columns”.

• mysql client. Previously, Control+C in mysql interrupted the current statement if there was one, or
exited mysql if not. Now Control+C interrupts the current statement if there was one, or cancels any
partial input line otherwise, but does not exit.

• Database name rewriting with mysqlbinlog. Renaming of databases by mysqlbinlog when
reading from binary logs written using the row-based format is now supported using the --rewrite-db
option added in MySQL 5.7.1.

This option uses the format --rewrite-db='dboldname->dbnewname'. You can implement multiple
rewrite rules, by specifying the option multiple times.

16

Features Added in MySQL 5.7

• HANDLER with partitioned tables. The HANDLER statement may now be used with user-partitioned
tables. Such tables may use any of the available partitioning types (see Section 22.2, “Partitioning
Types”).

• Index condition pushdown support for partitioned tables. Queries on partitioned tables using
the InnoDB or MyISAM storage engine may employ the index condition pushdown optimization that
was introduced in MySQL 5.6. See Section 8.2.1.5, “Index Condition Pushdown Optimization”, for more
information.

• WITHOUT VALIDATION support for ALTER TABLE ... EXCHANGE PARTITION. As of MySQL
5.7.5, ALTER TABLE ... EXCHANGE PARTITION syntax includes an optional {WITH|WITHOUT}
VALIDATION clause. When WITHOUT VALIDATION is specified, ALTER TABLE ... EXCHANGE
PARTITION does not perform row-by-row validation when exchanging a populated table with the
partition, permitting database administrators to assume responsibility for ensuring that rows are within
the boundaries of the partition definition. WITH VALIDATION is the default behavior and need not be
specified explicitly. For more information, see Section 22.3.3, “Exchanging Partitions and Subpartitions
with Tables”.

• Source dump thread improvements. The source dump thread was refactored to reduce lock
contention and improve source throughput. Previous to MySQL 5.7.2, the dump thread took a lock on the
binary log whenever reading an event; in MySQL 5.7.2 and later, this lock is held only while reading the
position at the end of the last successfully written event. This means both that multiple dump threads are
now able to read concurrently from the binary log file, and that dump threads are now able to read while
clients are writing to the binary log.

• Character set support. MySQL 5.7.4 includes a gb18030 character set that supports the China
National Standard GB18030 character set. For more information about MySQL character set support,
see Chapter 10, Character Sets, Collations, Unicode.

• Changing the replication source without STOP SLAVE. In MySQL 5.7.4 and later, the strict
requirement to execute STOP SLAVE prior to issuing any CHANGE MASTER TO statement is removed.
Instead of depending on whether the replica is stopped, the behavior of CHANGE MASTER TO now
depends on the states of the replica SQL thread and replica I/O threads; which of these threads is
stopped or running now determines the options that can or cannot be used with a CHANGE MASTER TO
statement at a given point in time. The rules for making this determination are listed here:

• If the SQL thread is stopped, you can execute CHANGE MASTER TO using any combination of
RELAY_LOG_FILE, RELAY_LOG_POS, and MASTER_DELAY options, even if the replica I/O thread is
running. No other options may be used with this statement when the I/O thread is running.

• If the I/O thread is stopped, you can execute CHANGE MASTER TO using any of the options for
this statement (in any allowed combination) except RELAY_LOG_FILE, RELAY_LOG_POS, or
MASTER_DELAY, even when the SQL thread is running. These three options may not be used when
the I/O thread is running.

• Both the SQL thread and the I/O thread must be stopped before issuing CHANGE MASTER TO ...
MASTER_AUTO_POSITION = 1.

You can check the current state of the replica SQL and I/O threads using SHOW SLAVE STATUS.

If you are using statement-based replication and temporary tables, it is possible for a CHANGE MASTER
TO statement following a STOP SLAVE statement to leave behind temporary tables on the replica. As
part of this set of improvements, a warning is now issued whenever CHANGE MASTER TO is issued

17

Features Deprecated in MySQL 5.7

following STOP SLAVE when statement-based replication is in use and Slave_open_temp_tables
remains greater than 0.

For more information, see Section 13.4.2.1, “CHANGE MASTER TO Statement”, and Section 16.3.7,
“Switching Sources During Failover”.

• Test suite. The MySQL test suite now uses InnoDB as the default storage engine.

• Multi-source replication is now possible. MySQL Multi-Source Replication adds the ability to
replicate from multiple sources to a replica. MySQL Multi-Source Replication topologies can be used to
back up multiple servers to a single server, to merge table shards, and consolidate data from multiple
servers to a single server. See Section 16.1.5, “MySQL Multi-Source Replication”.

As part of MySQL Multi-Source Replication, replication channels have been added. Replication channels
enable a replica to open multiple connections to replicate from, with each channel being a connection to
a source. See Section 16.2.2, “Replication Channels”.

• Group Replication Performance Schema tables. MySQL 5.7 adds a number of new tables to the
Performance Schema to provide information about replication groups and channels. These include the
following tables:

• replication_applier_configuration

• replication_applier_status

• replication_applier_status_by_coordinator

• replication_applier_status_by_worker

• replication_connection_configuration

• replication_connection_status

• replication_group_members

• replication_group_member_stats

All of these tables were added in MySQL 5.7.2, except for replication_group_members and
replication_group_member_stats, which were added in MySQL 5.7.6. For more information, see
Section 25.12.11, “Performance Schema Replication Tables”.

• Group Replication SQL. The following statements were added in MySQL 5.7.6 for controlling Group
Replication:

• START GROUP_REPLICATION

• STOP GROUP_REPLICATION

For more information, see Section 13.4.3, “SQL Statements for Controlling Group Replication”.

Features Deprecated in MySQL 5.7

The following features are deprecated in MySQL 5.7 and may be removed in a future series. Where
alternatives are shown, applications should be updated to use them.

For applications that use features deprecated in MySQL 5.7 that have been removed in a higher MySQL
series, statements may fail when replicated from a MySQL 5.7 source to a higher-series replica, or may

18

Features Deprecated in MySQL 5.7

have different effects on source and replica. To avoid such problems, applications that use features
deprecated in 5.7 should be revised to avoid them and use alternatives when possible.

• The ERROR_FOR_DIVISION_BY_ZERO, NO_ZERO_DATE, and NO_ZERO_IN_DATE SQL modes are now
deprecated but enabled by default. The long term plan is to have them included in strict SQL mode and
to remove them as explicit modes in a future MySQL release.

The deprecated ERROR_FOR_DIVISION_BY_ZERO, NO_ZERO_DATE, and NO_ZERO_IN_DATE SQL
modes are still recognized so that statements that name them do not produce an error, but are expected
to be removed in a future version of MySQL. To make advance preparation for versions of MySQL in
which these mode names do not exist, applications should be modified not to refer to them. See SQL
Mode Changes in MySQL 5.7.

• These SQL modes are now deprecated; expect them to be removed in a future version of MySQL:
DB2, MAXDB, MSSQL, MYSQL323, MYSQL40, ORACLE, POSTGRESQL, NO_FIELD_OPTIONS,
NO_KEY_OPTIONS, NO_TABLE_OPTIONS. These deprecations have two implications:

• Assigning a deprecated mode to the sql_mode system variable produces a warning.

• With the MAXDB SQL mode enabled, using CREATE TABLE or ALTER TABLE to add a TIMESTAMP
column to a table produces a warning.

• Changes to account-management statements make the following features obsolete. They are now
deprecated:

• Using GRANT to create users. Instead, use CREATE USER. Following this practice makes the
NO_AUTO_CREATE_USER SQL mode immaterial for GRANT statements, so it too is deprecated.

• Using GRANT to modify account properties other than privilege assignments. This includes
authentication, SSL, and resource-limit properties. Instead, establish such properties at account-
creation time with CREATE USER or modify them afterward with ALTER USER.

• IDENTIFIED BY PASSWORD 'auth_string' syntax for CREATE USER and GRANT. Instead, use
IDENTIFIED WITH auth_plugin AS 'auth_string' for CREATE USER and ALTER USER,
where the 'auth_string' value is in a format compatible with the named plugin.

• The PASSWORD() function is deprecated and should be avoided in any context. Thus, SET
PASSWORD ... = PASSWORD('auth_string') syntax is also deprecated. SET PASSWORD ...
= 'auth_string' syntax is not deprecated; nevertheless, ALTER USER is now the preferred
statement for assigning passwords.

• The old_passwords system variable. Account authentication plugins can no longer be left
unspecified in the mysql.user system table, so any statement that assigns a password from a
cleartext string can unambiguously determine the hashing method to use on the string before storing it
in the mysql.user table. This renders old_passwords superflous.

19

Features Deprecated in MySQL 5.7

• The query cache is deprecated. Deprecation includes these items:

• The FLUSH QUERY CACHE and RESET QUERY CACHE statements.

• The SQL_CACHE and SQL_NO_CACHE SELECT modifiers.

• These system variables: have_query_cache, ndb_cache_check_time, query_cache_limit,
query_cache_min_res_unit, query_cache_size, query_cache_type,
query_cache_wlock_invalidate.

• These status variables: Qcache_free_blocks, Qcache_free_memory,
Qcache_hits, Qcache_inserts, Qcache_lowmem_prunes, Qcache_not_cached,
Qcache_queries_in_cache, Qcache_total_blocks.

• Previously, the --transaction-isolation and --transaction-read-only server startup
options corresponded to the tx_isolation and tx_read_only system variables. For better name
correspondence between startup option and system variable names, transaction_isolation and
transaction_read_only have been created as aliases for tx_isolation and tx_read_only.
The tx_isolation and tx_read_only variables are now deprecated;expect them to be
removed in MySQL 8.0. Applications should be adjusted to use transaction_isolation and
transaction_read_only instead.

• The --skip-innodb option and its synonyms (--innodb=OFF, --disable-innodb, and so forth)
are deprecated. These options have no effect as of MySQL 5.7. because InnoDB cannot be disabled.

• The client-side --ssl and --ssl-verify-server-cert options are deprecated. Use --ssl-
mode=REQUIRED instead of --ssl=1 or --enable-ssl. Use --ssl-mode=DISABLED instead of --
ssl=0, --skip-ssl, or --disable-ssl. Use --ssl-mode=VERIFY_IDENTITY instead of --ssl-
verify-server-cert options. (The server-side --ssl option is not deprecated.)

For the C API, MYSQL_OPT_SSL_ENFORCE and MYSQL_OPT_SSL_VERIFY_SERVER_CERT options for
mysql_options() correspond to the client-side --ssl and --ssl-verify-server-cert options
and are deprecated. Use MYSQL_OPT_SSL_MODE with an option value of SSL_MODE_REQUIRED or
SSL_MODE_VERIFY_IDENTITY instead.

• The log_warnings system variable and --log-warnings server option are deprecated. Use the
log_error_verbosity system variable instead.

• The --temp-pool server option is deprecated.

• The binlog_max_flush_queue_time system variable does nothing in MySQL 5.7, and is deprecated
as of MySQL 5.7.9.

• The innodb_support_xa system variable, which enables InnoDB support for two-phase commit
in XA transactions, is deprecated as of MySQL 5.7.10. InnoDB support for two-phase commit in XA
transactions is always enabled as of MySQL 5.7.10.

• The metadata_locks_cache_size and metadata_locks_hash_instances system variables are
deprecated. These do nothing as of MySQL 5.7.4.

• The sync_frm system variable is deprecated.

• The global character_set_database and collation_database system variables are deprecated;
expect them to be removed in a future version of MySQL.

Assigning a value to the session character_set_database and collation_database system
variables is deprecated and assignments produce a warning. The session variables are expected to

20

https://dev.mysql.com/doc/c-api/5.7/en/mysql-options.html

Features Deprecated in MySQL 5.7

become read only in a future version of MySQL, and assignments to them to produce an error, while
remaining possible to read the session variables to determine the database character set and collation
for the default database.

• The global scope for the sql_log_bin system variable has been deprecated, and this variable can now
be set with session scope only. The statement SET GLOBAL SQL_LOG_BIN now produces an error.
It remains possible to read the global value of sql_log_bin, but doing so produces a warning. You
should act now to remove from your applications any dependencies on reading this value; the global
scope sql_log_bin is removed in MySQL 8.0.

• With the introduction of the data dictionary in MySQL 8.0, the --ignore-db-dir option and
ignore_db_dirs system variable became superfluous and were removed in that version.
Consequently, they are deprecated in MySQL 5.7.

• GROUP BY implicitly sorts by default (that is, in the absence of ASC or DESC designators), but relying
on implicit GROUP BY sorting in MySQL 5.7 is deprecated. To achieve a specific sort order of grouped
results, it is preferable to use To produce a given sort order, use explicit ASC or DESC designators for
GROUP BY columns or provide an ORDER BY clause. GROUP BY sorting is a MySQL extension that
may change in a future release; for example, to make it possible for the optimizer to order groupings in
whatever manner it deems most efficient and to avoid the sorting overhead.

• The EXTENDED and PARTITIONS keywords for the EXPLAIN statement are deprecated. These
keywords are still recognized but are now unnecessary because their effect is always enabled.

• The ENCRYPT(), ENCODE(), DECODE(), DES_ENCRYPT(), and DES_DECRYPT() encryption functions
are deprecated. For ENCRYPT(), consider using SHA2() instead for one-way hashing. For the others,
consider using AES_ENCRYPT() and AES_DECRYPT() instead. The --des-key-file option,
the have_crypt system variable, the DES_KEY_FILE option for the FLUSH statement, and the
HAVE_CRYPT CMake option also are deprecated.

• The MBREqual() spatial function is deprecated. Use MBREquals() instead.

• The functions described in Section 12.16.4, “Functions That Create Geometry Values from WKB
Values” previously accepted either WKB strings or geometry arguments. Use of geometry arguments is
deprecated. See that section for guidelines for migrating queries away from using geometry arguments.

• The INFORMATION_SCHEMA PROFILING table is deprecated. Use the Performance Schema instead;
see Chapter 25, MySQL Performance Schema.

• The INFORMATION_SCHEMA INNODB_LOCKS and INNODB_LOCK_WAITS tables are deprecated, to be
removed in MySQL 8.0, which provides replacement Performance Schema tables.

• The Performance Schema setup_timers table is deprecated and is removed in MySQL 8.0, as is the
TICK row in the performance_timers table.

• The sys schema sys.version view is deprecated; expect it be removed in a future version of MySQL.
Affected applications should be adjusted to use an alternative instead. For example, use the VERSION()
function to retrieve the MySQL server version.

• Treatment of \N as a synonym for NULL in SQL statements is deprecated and is removed in MySQL 8.0;
use NULL instead.

This change does not affect text file import or export operations performed with LOAD DATA or
SELECT ... INTO OUTFILE, for which NULL continues to be represented by \N. See Section 13.2.6,
“LOAD DATA Statement”.

• PROCEDURE ANALYSE() syntax is deprecated.

21

Features Deprecated in MySQL 5.7

• Comment stripping by the mysql client and the options to control it (--skip-comments, --comments)
are deprecated.

• mysqld_safe support for syslog output is deprecated. Use the native server syslog support used
instead. See Section 5.4.2, “The Error Log”.

• Conversion of pre-MySQL 5.1 database names containing special characters to 5.1 format with the
addition of a #mysql50# prefix is deprecated. Because of this, the --fix-db-names and --fix-
table-names options for mysqlcheck and the UPGRADE DATA DIRECTORY NAME clause for the
ALTER DATABASE statement are also deprecated.

Upgrades are supported only from one release series to another (for example, 5.0 to 5.1, or 5.1 to 5.5),
so there should be little remaining need for conversion of older 5.0 database names to current versions
of MySQL. As a workaround, upgrade a MySQL 5.0 installation to MySQL 5.1 before upgrading to a
more recent release.

• mysql_install_db functionality has been integrated into the MySQL server, mysqld. To use this
capability to initialize a MySQL installation, if you previously invoked mysql_install_db manually,
invoke mysqld with the --initialize or --initialize-insecure option, depending on whether
you want the server to generate a random password for the initial 'root'@'localhost' account.

mysql_install_db is now deprecated, as is the special --bootstrap option that
mysql_install_db passes to mysqld.

• The mysql_plugin utility is deprecated. Alternatives include loading plugins at server startup using
the --plugin-load or --plugin-load-add option, or at runtime using the INSTALL PLUGIN
statement.

• The resolveip utility is deprecated. nslookup, host, or dig can be used instead.

• The resolve_stack_dump utility is deprecated. Stack traces from official MySQL builds are always
symbolized, so there is no need to use resolve_stack_dump.

• The mysql_kill(), mysql_list_fields(), mysql_list_processes(), and
mysql_refresh() C API functions are deprecated. The same is true of the corresponding
COM_PROCESS_KILL, COM_FIELD_LIST, COM_PROCESS_INFO, and COM_REFRESH client/server
protocol commands. Instead, use mysql_query() to execute a KILL, SHOW COLUMNS, SHOW
PROCESSLIST, or FLUSH statement, respectively.

• The mysql_shutdown() C API function is deprecated. Instead, use mysql_query() to execute a
SHUTDOWN statement.

• The libmysqld embedded server library is deprecated as of MySQL 5.7.19. These are also
deprecated:

• The mysql_config --libmysqld-libs, --embedded-libs, and --embedded options

• The CMake WITH_EMBEDDED_SERVER, WITH_EMBEDDED_SHARED_LIBRARY, and
INSTALL_SECURE_FILE_PRIV_EMBEDDEDDIR options

• The (undocumented) mysql --server-arg option

• The mysqltest --embedded-server, --server-arg, and --server-file options

• The mysqltest_embedded and mysql_client_test_embedded test programs

Because libmysqld uses an API comparable to that of libmysqlclient, the migration path away
from libmysqld is straightforward:

22

https://dev.mysql.com/doc/c-api/5.7/en/mysql-kill.html
https://dev.mysql.com/doc/c-api/5.7/en/mysql-list-fields.html
https://dev.mysql.com/doc/c-api/5.7/en/mysql-list-processes.html
https://dev.mysql.com/doc/c-api/5.7/en/mysql-refresh.html
https://dev.mysql.com/doc/c-api/5.7/en/mysql-query.html
https://dev.mysql.com/doc/c-api/5.7/en/mysql-query.html

Features Removed in MySQL 5.7

1. Bring up a standalone MySQL server (mysqld).

2. Modify application code to remove API calls that are specific to libmysqld.

3. Modify application code to connect to the standalone MySQL server.

4. Modify build scripts to use libmysqlclient rather than libmysqld. For example, if you use
mysql_config, invoke it with the --libs option rather than --libmysqld-libs.

• The replace utility is deprecated.

• Support for DTrace is deprecated.

• The JSON_MERGE() function is deprecated as of MySQL 5.7.22. Use JSON_MERGE_PRESERVE()
instead.

• Support for placing table partitions in shared InnoDB tablespaces is deprecated as of MySQL 5.7.24.
Shared tablespaces include the InnoDB system tablespace and general tablespaces. For information
about identifying partitions in shared tablespaces and moving them to file-per-table tablespaces, see
Preparing Your Installation for Upgrade.

• Support for TABLESPACE = innodb_file_per_table and TABLESPACE = innodb_temporary
clauses with CREATE TEMPORARY TABLE is deprecated as of MySQL 5.7.24.

• The --ndb perror option is deprecated. Use the ndb_perror utility instead.

• The myisam_repair_threads system variable myisam_repair_threads are deprecated as of
MySQL 5.7.38; expect support for both to be removed in a future release of MySQL.

From MySQL 5.7.38, values other than 1 (the default) for myisam_repair_threads produce a
warning.

Features Removed in MySQL 5.7

The following items are obsolete and have been removed in MySQL 5.7. Where alternatives are shown,
applications should be updated to use them.

For MySQL 5.6 applications that use features removed in MySQL 5.7, statements may fail when replicated
from a MySQL 5.6 source to a MySQL 5.7 replica, or may have different effects on source and replica. To
avoid such problems, applications that use features removed in MySQL 5.7 should be revised to avoid
them and use alternatives when possible.

• Support for passwords that use the older pre-4.1 password hashing format is removed, which involves
the following changes. Applications that use any feature no longer supported must be modified.

• The mysql_old_password authentication plugin is removed. Accounts that use this plugin
are disabled at startup and the server writes an “unknown plugin” message to the error log. For
instructions on upgrading accounts that use this plugin, see Section 6.4.1.3, “Migrating Away from
Pre-4.1 Password Hashing and the mysql_old_password Plugin”.

• The --secure-auth option to the server and client programs is the default, but is now a no-op. It is
deprecated; expect it to be removed in a future MySQL release.

• The --skip-secure-auth option to the server and client programs is no longer supported and
using it produces an error.

• The secure_auth system variable permits only a value of 1; a value of 0 is no longer permitted.

23

https://dev.mysql.com/doc/refman/8.0/en/upgrade-prerequisites.html

Features Removed in MySQL 5.7

• For the old_passwords system variable, a value of 1 (produce pre-4.1 hashes) is no longer
permitted.

• The OLD_PASSWORD() function is removed.

• In MySQL 5.6.6, the 2-digit YEAR(2) data type was deprecated. Support for YEAR(2) is now
removed. Once you upgrade to MySQL 5.7.5 or higher, any remaining 2-digit YEAR(2) columns
must be converted to 4-digit YEAR columns to become usable again. For conversion strategies,
see Section 11.2.5, “2-Digit YEAR(2) Limitations and Migrating to 4-Digit YEAR”. For example, run
mysql_upgrade after upgrading.

• The innodb_mirrored_log_groups system variable. The only supported value was 1, so it had no
purpose.

• The storage_engine system variable. Use default_storage_engine instead.

• The thread_concurrency system variable.

• The timed_mutexes system variable, which had no effect.

• The IGNORE clause for ALTER TABLE.

• INSERT DELAYED is no longer supported. The server recognizes but ignores the DELAYED keyword,
handles the insert as a nondelayed insert, and generates an ER_WARN_LEGACY_SYNTAX_CONVERTED
warning. (“INSERT DELAYED is no longer supported. The statement was converted to INSERT.”)
Similarly, REPLACE DELAYED is handled as a nondelayed replace. You should expect the DELAYED
keyword to be removed in a future release.

In addition, several DELAYED-related options or features were removed:

• The --delayed-insert option for mysqldump.

• The COUNT_WRITE_DELAYED, SUM_TIMER_WRITE_DELAYED, MIN_TIMER_WRITE_DELAYED,
AVG_TIMER_WRITE_DELAYED, and MAX_TIMER_WRITE_DELAYED columns of the Performance
Schema table_lock_waits_summary_by_table table.

• mysqlbinlog no longer writes comments mentioning INSERT DELAYED.

• Database symlinking on Windows using .sym files has been removed because it is redundant with
native symlink support available using mklink. Any .sym file symbolic links are now ignored and should
be replaced with symlinks created using mklink. See Section 8.12.3.3, “Using Symbolic Links for
Databases on Windows”.

• The unused --basedir, --datadir, and --tmpdir options for mysql_upgrade were removed.

• Previously, program options could be specified in full or as any unambiguous prefix. For example, the
--compress option could be given to mysqldump as --compr, but not as --comp because the latter
is ambiguous. Option prefixes are no longer supported; only full options are accepted. This is because
prefixes can cause problems when new options are implemented for programs and a prefix that is
currently unambiguous might become ambiguous in the future. Some implications of this change:

• The --key-buffer option must now be specified as --key-buffer-size.

• The --skip-grant option must now be specified as --skip-grant-tables.

• SHOW ENGINE INNODB MUTEX output is removed. Comparable information can be generated by
creating views on Performance Schema tables.

24

Server and Status Variables and Options Added, Deprecated, or Removed in MySQL 5.7

• The InnoDB Tablespace Monitor and InnoDB Table Monitor are removed. For the Table Monitor,
equivalent information can be obtained from InnoDB INFORMATION_SCHEMA tables.

• The specially named tables used to enable and disable the standard InnoDB Monitor and InnoDB Lock
Monitor (innodb_monitor and innodb_lock_monitor) are removed and replaced by two dynamic
system variables: innodb_status_output and innodb_status_output_locks. For additional
information, see Section 14.18, “InnoDB Monitors”.

• The innodb_use_sys_malloc and innodb_additional_mem_pool_size system variables,
deprecated in MySQL 5.6.3, were removed.

• The msql2mysql, mysql_convert_table_format, mysql_find_rows,
mysql_fix_extensions, mysql_setpermission, mysql_waitpid, mysql_zap, mysqlaccess,
and mysqlbug utilities.

• The mysqlhotcopy utility. Alternatives include mysqldump and MySQL Enterprise Backup.

• The binary-configure.sh script.

• The INNODB_PAGE_ATOMIC_REF_COUNT CMake option is removed.

• The innodb_create_intrinsic option is removed.

• The innodb_optimize_point_storage option and related internal data types (DATA_POINT and
DATA_VAR_POINT) are removed.

• The innodb_log_checksum_algorithm option is removed.

• The myisam_repair_threads system variable as of MySQL 5.7.39.

1.4 Server and Status Variables and Options Added, Deprecated, or
Removed in MySQL 5.7

• Options and Variables Introduced in MySQL 5.7

• Options and Variables Deprecated in MySQL 5.7

• Options and Variables Removed in MySQL 5.7

This section lists server variables, status variables, and options that were added for the first time, have
been deprecated, or have been removed in MySQL 5.7.

Options and Variables Introduced in MySQL 5.7

The following system variables, status variables, and server options have been added in MySQL 5.7.

• Audit_log_current_size: Audit log file current size. Added in MySQL 5.7.9.

• Audit_log_event_max_drop_size: Size of largest dropped audited event. Added in MySQL 5.7.9.

• Audit_log_events: Number of handled audited events. Added in MySQL 5.7.9.

• Audit_log_events_filtered: Number of filtered audited events. Added in MySQL 5.7.9.

• Audit_log_events_lost: Number of dropped audited events. Added in MySQL 5.7.9.

• Audit_log_events_written: Number of written audited events. Added in MySQL 5.7.9.

• Audit_log_total_size: Combined size of written audited events. Added in MySQL 5.7.9.

25

Options and Variables Introduced in MySQL 5.7

• Audit_log_write_waits: Number of write-delayed audited events. Added in MySQL 5.7.9.

• Com_change_repl_filter: Count of CHANGE REPLICATION FILTER statements. Added in MySQL
5.7.3.

• Com_explain_other: Count of EXPLAIN FOR CONNECTION statements. Added in MySQL 5.7.2.

• Com_group_replication_start: Count of START GROUP_REPLICATION statements. Added in
MySQL 5.7.6.

• Com_group_replication_stop: Count of STOP GROUP_REPLICATION statements. Added in
MySQL 5.7.6.

• Com_show_create_user: Count of SHOW CREATE USER statements. Added in MySQL 5.7.6.

• Com_show_slave_status_nonblocking: Count of SHOW REPLICA | SLAVE STATUS
NONBLOCKING statements. Added in MySQL 5.7.0.

• Com_shutdown: Count of SHUTDOWN statements. Added in MySQL 5.7.9.

• Connection_control_delay_generated: How many times server delayed connection request.
Added in MySQL 5.7.17.

• Firewall_access_denied: Number of statements rejected by MySQL Enterprise Firewall plugin.
Added in MySQL 5.7.9.

• Firewall_access_granted: Number of statements accepted by MySQL Enterprise Firewall plugin.
Added in MySQL 5.7.9.

• Firewall_cached_entries: Number of statements recorded by MySQL Enterprise Firewall plugin.
Added in MySQL 5.7.9.

• Innodb_buffer_pool_resize_status: Status of dynamic buffer pool resizing operation. Added in
MySQL 5.7.5.

• Locked_connects: Number of attempts to connect to locked accounts. Added in MySQL 5.7.6.

• Max_execution_time_exceeded: Number of statements that exceeded execution timeout value.
Added in MySQL 5.7.8.

• Max_execution_time_set: Number of statements for which execution timeout was set. Added in
MySQL 5.7.8.

• Max_execution_time_set_failed: Number of statements for which execution timeout setting failed.
Added in MySQL 5.7.8.

• Max_statement_time_exceeded: Number of statements that exceeded execution timeout value.
Added in MySQL 5.7.4.

• Max_statement_time_set: Number of statements for which execution timeout was set. Added in
MySQL 5.7.4.

• Max_statement_time_set_failed: Number of statements for which execution timeout setting failed.
Added in MySQL 5.7.4.

• Max_used_connections_time: Time at which Max_used_connections reached its current value.
Added in MySQL 5.7.5.

• Performance_schema_index_stat_lost: Number of indexes for which statistics were lost. Added
in MySQL 5.7.6.

26

Options and Variables Introduced in MySQL 5.7

• Performance_schema_memory_classes_lost: How many memory instruments could not be
loaded. Added in MySQL 5.7.2.

• Performance_schema_metadata_lock_lost: Number of metadata locks that could not be
recorded. Added in MySQL 5.7.3.

• Performance_schema_nested_statement_lost: Number of stored program statements for which
statistics were lost. Added in MySQL 5.7.2.

• Performance_schema_prepared_statements_lost: Number of prepared statements that could
not be instrumented. Added in MySQL 5.7.4.

• Performance_schema_program_lost: Number of stored programs for which statistics were lost.
Added in MySQL 5.7.2.

• Performance_schema_table_lock_stat_lost: Number of tables for which lock statistics were
lost. Added in MySQL 5.7.6.

• Rewriter_number_loaded_rules: Number of rewrite rules successfully loaded into memory. Added
in MySQL 5.7.6.

• Rewriter_number_reloads: Number of reloads of rules table into memory. Added in MySQL 5.7.6.

• Rewriter_number_rewritten_queries: Number of queries rewritten since plugin was loaded.
Added in MySQL 5.7.6.

• Rewriter_reload_error: Whether error occurred when last loading rewriting rules into memory.
Added in MySQL 5.7.6.

• audit-log: Whether to activate audit log plugin. Added in MySQL 5.7.9.

• audit_log_buffer_size: Size of audit log buffer. Added in MySQL 5.7.9.

• audit_log_compression: Audit log file compression method. Added in MySQL 5.7.21.

• audit_log_connection_policy: Audit logging policy for connection-related events. Added in
MySQL 5.7.9.

• audit_log_current_session: Whether to audit current session. Added in MySQL 5.7.9.

• audit_log_disable: Whether to disable the audit log. Added in MySQL 5.7.37.

• audit_log_encryption: Audit log file encryption method. Added in MySQL 5.7.21.

• audit_log_exclude_accounts: Accounts not to audit. Added in MySQL 5.7.9.

• audit_log_file: Name of audit log file. Added in MySQL 5.7.9.

• audit_log_filter_id: ID of current audit log filter. Added in MySQL 5.7.13.

• audit_log_flush: Close and reopen audit log file. Added in MySQL 5.7.9.

• audit_log_format: Audit log file format. Added in MySQL 5.7.9.

• audit_log_format_unix_timestamp: Whether to include Unix timestamp in JSON-format audit log.
Added in MySQL 5.7.35.

• audit_log_include_accounts: Accounts to audit. Added in MySQL 5.7.9.

• audit_log_policy: Audit logging policy. Added in MySQL 5.7.9.

• audit_log_read_buffer_size: Audit log file read buffer size. Added in MySQL 5.7.21.

27

Options and Variables Introduced in MySQL 5.7

• audit_log_rotate_on_size: Close and reopen audit log file at this size. Added in MySQL 5.7.9.

• audit_log_statement_policy: Audit logging policy for statement-related events. Added in MySQL
5.7.9.

• audit_log_strategy: Audit logging strategy. Added in MySQL 5.7.9.

• authentication_ldap_sasl_auth_method_name: Authentication method name. Added in MySQL
5.7.19.

• authentication_ldap_sasl_bind_base_dn: LDAP server base distinguished name. Added in
MySQL 5.7.19.

• authentication_ldap_sasl_bind_root_dn: LDAP server root distinguished name. Added in
MySQL 5.7.19.

• authentication_ldap_sasl_bind_root_pwd: LDAP server root bind password. Added in MySQL
5.7.19.

• authentication_ldap_sasl_ca_path: LDAP server certificate authority file name. Added in
MySQL 5.7.19.

• authentication_ldap_sasl_group_search_attr: LDAP server group search attribute. Added in
MySQL 5.7.19.

• authentication_ldap_sasl_group_search_filter: LDAP custom group search filter. Added in
MySQL 5.7.21.

• authentication_ldap_sasl_init_pool_size: LDAP server initial connection pool size. Added in
MySQL 5.7.19.

• authentication_ldap_sasl_log_status: LDAP server log level. Added in MySQL 5.7.19.

• authentication_ldap_sasl_max_pool_size: LDAP server maximum connection pool size.
Added in MySQL 5.7.19.

• authentication_ldap_sasl_server_host: LDAP server host name or IP address. Added in
MySQL 5.7.19.

• authentication_ldap_sasl_server_port: LDAP server port number. Added in MySQL 5.7.19.

• authentication_ldap_sasl_tls: Whether to use encrypted connections to LDAP server. Added in
MySQL 5.7.19.

• authentication_ldap_sasl_user_search_attr: LDAP server user search attribute. Added in
MySQL 5.7.19.

• authentication_ldap_simple_auth_method_name: Authentication method name. Added in
MySQL 5.7.19.

• authentication_ldap_simple_bind_base_dn: LDAP server base distinguished name. Added in
MySQL 5.7.19.

• authentication_ldap_simple_bind_root_dn: LDAP server root distinguished name. Added in
MySQL 5.7.19.

• authentication_ldap_simple_bind_root_pwd: LDAP server root bind password. Added in
MySQL 5.7.19.

• authentication_ldap_simple_ca_path: LDAP server certificate authority file name. Added in
MySQL 5.7.19.

28

Options and Variables Introduced in MySQL 5.7

• authentication_ldap_simple_group_search_attr: LDAP server group search attribute. Added
in MySQL 5.7.19.

• authentication_ldap_simple_group_search_filter: LDAP custom group search filter. Added
in MySQL 5.7.21.

• authentication_ldap_simple_init_pool_size: LDAP server initial connection pool size. Added
in MySQL 5.7.19.

• authentication_ldap_simple_log_status: LDAP server log level. Added in MySQL 5.7.19.

• authentication_ldap_simple_max_pool_size: LDAP server maximum connection pool size.
Added in MySQL 5.7.19.

• authentication_ldap_simple_server_host: LDAP server host name or IP address. Added in
MySQL 5.7.19.

• authentication_ldap_simple_server_port: LDAP server port number. Added in MySQL 5.7.19.

• authentication_ldap_simple_tls: Whether to use encrypted connections to LDAP server. Added
in MySQL 5.7.19.

• authentication_ldap_simple_user_search_attr: LDAP server user search attribute. Added in
MySQL 5.7.19.

• authentication_windows_log_level: Windows authentication plugin logging level. Added in
MySQL 5.7.9.

• authentication_windows_use_principal_name: Whether to use Windows authentication plugin
principal name. Added in MySQL 5.7.9.

• auto_generate_certs: Whether to autogenerate SSL key and certificate files. Added in MySQL
5.7.5.

• avoid_temporal_upgrade: Whether ALTER TABLE should upgrade pre-5.6.4 temporal columns.
Added in MySQL 5.7.6.

• binlog_error_action: Controls what happens when server cannot write to binary log. Added in
MySQL 5.7.6.

• binlog_group_commit_sync_delay: Sets number of microseconds to wait before synchronizing
transactions to disk. Added in MySQL 5.7.5.

• binlog_group_commit_sync_no_delay_count: Sets maximum number of transactions to wait for
before aborting current delay specified by binlog_group_commit_sync_delay. Added in MySQL 5.7.5.

• binlog_gtid_simple_recovery: Controls how binary logs are iterated during GTID recovery. Added
in MySQL 5.7.6.

• binlog_transaction_dependency_history_size: Number of row hashes kept for looking up
transaction that last updated some row. Added in MySQL 5.7.22.

• binlog_transaction_dependency_tracking: Source of dependency information (commit
timestamps or transaction write sets) from which to assess which transactions can be executed in
parallel by replica's multithreaded applier. Added in MySQL 5.7.22.

• binlogging_impossible_mode: Deprecated and later removed. Use binlog_error_action instead.
Added in MySQL 5.7.5.

• block_encryption_mode: Mode for block-based encryption algorithms. Added in MySQL 5.7.4.

29

Options and Variables Introduced in MySQL 5.7

• check_proxy_users: Whether built-in authentication plugins do proxying. Added in MySQL 5.7.7.

• connection_control_failed_connections_threshold: Consecutive failed connection attempts
before delays occur. Added in MySQL 5.7.17.

• connection_control_max_connection_delay: Maximum delay (milliseconds) for server response
to failed connection attempts. Added in MySQL 5.7.17.

• connection_control_min_connection_delay: Minimum delay (milliseconds) for server response
to failed connection attempts. Added in MySQL 5.7.17.

• daemonize: Run as System V daemon. Added in MySQL 5.7.6.

• default_authentication_plugin: Default authentication plugin. Added in MySQL 5.7.2.

• default_password_lifetime: Age in days when passwords effectively expire. Added in MySQL
5.7.4.

• disable-partition-engine-check: Whether to disable startup check for tables without native
partitioning. Added in MySQL 5.7.17.

• disabled_storage_engines: Storage engines that cannot be used to create tables. Added in
MySQL 5.7.8.

• disconnect_on_expired_password: Whether server disconnects clients with expired passwords if
clients cannot handle such accounts. Added in MySQL 5.7.1.

• early-plugin-load: Specify plugins to load before loading mandatory built-in plugins and before
storage engine initialization. Added in MySQL 5.7.11.

• executed_gtids_compression_period: Renamed to gtid_executed_compression_period. Added in
MySQL 5.7.5.

• group_replication_allow_local_disjoint_gtids_join: Allow current server to join group
even if it has transactions not present in group. Added in MySQL 5.7.17.

• group_replication_allow_local_lower_version_join: Allow current server to join group
even if it has lower plugin version than group. Added in MySQL 5.7.17.

• group_replication_auto_increment_increment: Determines interval between successive
column values for transactions executing on this server. Added in MySQL 5.7.17.

• group_replication_bootstrap_group: Configure this server to bootstrap group. Added in MySQL
5.7.17.

• group_replication_components_stop_timeout: Timeout, in seconds, that plugin waits for each
component when shutting down. Added in MySQL 5.7.17.

• group_replication_compression_threshold: Value in bytes above which (LZ4) compression is
enforced; when set to zero, deactivates compression. Added in MySQL 5.7.17.

• group_replication_enforce_update_everywhere_checks: Enable or disable strict consistency
checks for multi-source update everywhere. Added in MySQL 5.7.17.

• group_replication_exit_state_action: How instance behaves when it leaves group
involuntarily. Added in MySQL 5.7.24.

• group_replication_flow_control_applier_threshold: Number of waiting transactions in
applier queue which trigger flow control. Added in MySQL 5.7.17.

30

Options and Variables Introduced in MySQL 5.7

• group_replication_flow_control_certifier_threshold: Number of waiting transactions in
certifier queue that trigger flow control. Added in MySQL 5.7.17.

• group_replication_flow_control_mode: Mode used for flow control. Added in MySQL 5.7.17.

• group_replication_force_members: Comma separated list of peer addresses, such as
host1:port1,host2:port2. Added in MySQL 5.7.17.

• group_replication_group_name: Name of group. Added in MySQL 5.7.17.

• group_replication_group_seeds: List of peer addresses, comma separated list such as
host1:port1,host2:port2. Added in MySQL 5.7.17.

• group_replication_gtid_assignment_block_size: Number of consecutive GTIDs that are
reserved for each member; each member consumes its blocks and reserves more when needed. Added
in MySQL 5.7.17.

• group_replication_ip_whitelist: List of hosts permitted to connect to group. Added in MySQL
5.7.17.

• group_replication_local_address: Local address in host:port format. Added in MySQL 5.7.17.

• group_replication_member_weight: Chance of this member being elected as primary. Added in
MySQL 5.7.20.

• group_replication_poll_spin_loops: Number of times group communication thread waits.
Added in MySQL 5.7.17.

• group_replication_recovery_complete_at: Recovery policies when handling cached
transactions after state transfer. Added in MySQL 5.7.17.

• group_replication_recovery_reconnect_interval: Sleep time, in seconds, between
reconnection attempts when no donor was found in group. Added in MySQL 5.7.17.

• group_replication_recovery_retry_count: Number of times that joining member tries to
connect to available donors before giving up. Added in MySQL 5.7.17.

• group_replication_recovery_ssl_ca: File that contains list of trusted SSL Certificate Authorities.
Added in MySQL 5.7.17.

• group_replication_recovery_ssl_capath: Directory that contains trusted SSL Certificate
Authority certificate files. Added in MySQL 5.7.17.

• group_replication_recovery_ssl_cert: Name of SSL certificate file to use for establishing
encrypted connection. Added in MySQL 5.7.17.

• group_replication_recovery_ssl_cipher: Permissible ciphers for SSL encryption. Added in
MySQL 5.7.17.

• group_replication_recovery_ssl_crl: File that contains certificate revocation lists. Added in
MySQL 5.7.17.

• group_replication_recovery_ssl_crlpath: Directory that contains certificate revocation-list
files. Added in MySQL 5.7.17.

• group_replication_recovery_ssl_key: Name of SSL key file to use for establishing encrypted
connection. Added in MySQL 5.7.17.

• group_replication_recovery_ssl_verify_server_cert: Make recovery process check server
Common Name value in certificate sent by donor. Added in MySQL 5.7.17.

31

Options and Variables Introduced in MySQL 5.7

• group_replication_recovery_use_ssl: Whether Group Replication recovery connection should
use SSL. Added in MySQL 5.7.17.

• group_replication_single_primary_mode: Instructs group to use single server for read/write
workload. Added in MySQL 5.7.17.

• group_replication_ssl_mode: Desired security state of connection between Group Replication
members. Added in MySQL 5.7.17.

• group_replication_start_on_boot: Whether server should start Group Replication during server
startup. Added in MySQL 5.7.17.

• group_replication_transaction_size_limit: Sets maximum size of transaction in bytes which
group accepts. Added in MySQL 5.7.19.

• group_replication_unreachable_majority_timeout: How long to wait for network partitions
that result in minority to leave group. Added in MySQL 5.7.19.

• gtid_executed_compression_period: Compress gtid_executed table each time this many
transactions have occurred. 0 means never compress this table. Applies only when binary logging is
disabled. Added in MySQL 5.7.6.

• have_statement_timeout: Whether statement execution timeout is available. Added in MySQL
5.7.4.

• initialize: Whether to run in initialization mode (secure). Added in MySQL 5.7.6.

• initialize-insecure: Whether to run in initialization mode (insecure). Added in MySQL 5.7.6.

• innodb_adaptive_hash_index_parts: Partitions adaptive hash index search system into n
partitions, with each partition protected by separate latch. Each index is bound to specific partition based
on space ID and index ID attributes. Added in MySQL 5.7.8.

• innodb_background_drop_list_empty: Delays table creation until background drop list is empty
(debug). Added in MySQL 5.7.10.

• innodb_buffer_pool_chunk_size: Chunk size used when resizing buffer pool. Added in MySQL
5.7.5.

• innodb_buffer_pool_dump_pct: Percentage of most recently used pages for each buffer pool to
read out and dump. Added in MySQL 5.7.2.

• innodb_compress_debug: Compresses all tables using specified compression algorithm. Added in
MySQL 5.7.8.

• innodb_deadlock_detect: Enables or disables deadlock detection. Added in MySQL 5.7.15.

• innodb_default_row_format: Default row format for InnoDB tables. Added in MySQL 5.7.9.

• innodb_disable_resize_buffer_pool_debug: Disables resizing of InnoDB buffer pool. Added in
MySQL 5.7.6.

• innodb_fill_factor: Percentage for B-tree leaf and non-leaf page space to be filled with data.
Remaining space is reserved for future growth. Added in MySQL 5.7.5.

• innodb_flush_sync: Enable innodb_flush_sync to ignore the innodb_io_capacity and
innodb_io_capacity_max settings for bursts of I/O activity that occur at checkpoints. Disable
innodb_flush_sync to adhere to limits on I/O activity as defined by innodb_io_capacity and
innodb_io_capacity_max. Added in MySQL 5.7.8.

32

Options and Variables Introduced in MySQL 5.7

• innodb_ft_result_cache_limit: InnoDB FULLTEXT search query result cache limit. Added in
MySQL 5.7.2.

• innodb_ft_total_cache_size: Total memory allocated for InnoDB FULLTEXT search index cache.
Added in MySQL 5.7.2.

• innodb_log_checkpoint_now: Debug option that forces InnoDB to write checkpoint. Added in
MySQL 5.7.2.

• innodb_log_checksum_algorithm: Specifies how to generate and verify checksum stored in each
redo log disk block. Added in MySQL 5.7.8.

• innodb_log_checksums: Enables or disables checksums for redo log pages. Added in MySQL 5.7.9.

• innodb_log_write_ahead_size: Redo log write-ahead block size. Added in MySQL 5.7.4.

• innodb_max_undo_log_size: Sets threshold for truncating InnoDB undo log. Added in MySQL 5.7.5.

• innodb_merge_threshold_set_all_debug: Overrides current MERGE_THRESHOLD setting with
specified value for all indexes that are currently in dictionary cache. Added in MySQL 5.7.6.

• innodb_numa_interleave: Enables NUMA MPOL_INTERLEAVE memory policy for allocation of
InnoDB buffer pool. Added in MySQL 5.7.9.

• innodb_optimize_point_storage: Enable this option to store POINT data as fixed-length data
rather than variable-length data. Added in MySQL 5.7.5.

• innodb_page_cleaners: Number of page cleaner threads. Added in MySQL 5.7.4.

• innodb_purge_rseg_truncate_frequency: Rate at which undo log purge should be invoked as
part of purge action. Value = n invokes undo log purge on every nth iteration of purge invocation. Added
in MySQL 5.7.5.

• innodb_stats_include_delete_marked: Include delete-marked records when calculating
persistent InnoDB statistics. Added in MySQL 5.7.17.

• innodb_status_output: Used to enable or disable periodic output for standard InnoDB Monitor. Also
used in combination with innodb_status_output_locks to enable and disable periodic output for InnoDB
Lock Monitor. Added in MySQL 5.7.4.

• innodb_status_output_locks: Used to enable or disable periodic output for standard InnoDB
Lock Monitor. innodb_status_output must also be enabled to produce periodic output for InnoDB Lock
Monitor. Added in MySQL 5.7.4.

• innodb_sync_debug: Enables InnoDB sync debug checking. Added in MySQL 5.7.8.

• innodb_temp_data_file_path: Path to temporary tablespace data files and their sizes. Added in
MySQL 5.7.1.

• innodb_tmpdir: Directory location for temporary table files created during online ALTER TABLE
operations. Added in MySQL 5.7.11.

• innodb_undo_log_truncate: Enable this option to mark InnoDB undo tablespace for truncation.
Added in MySQL 5.7.5.

• internal_tmp_disk_storage_engine: Storage engine for internal temporary tables. Added in
MySQL 5.7.5.

• keyring-migration-destination: Key migration destination keyring plugin. Added in MySQL
5.7.21.

33

Options and Variables Introduced in MySQL 5.7

• keyring-migration-host: Host name for connecting to running server for key migration. Added in
MySQL 5.7.21.

• keyring-migration-password: Password for connecting to running server for key migration. Added
in MySQL 5.7.21.

• keyring-migration-port: TCP/IP port number for connecting to running server for key migration.
Added in MySQL 5.7.21.

• keyring-migration-socket: Unix socket file or Windows named pipe for connecting to running
server for key migration. Added in MySQL 5.7.21.

• keyring-migration-source: Key migration source keyring plugin. Added in MySQL 5.7.21.

• keyring-migration-user: User name for connecting to running server for key migration. Added in
MySQL 5.7.21.

• keyring_aws_cmk_id: AWS keyring plugin customer master key ID value. Added in MySQL 5.7.19.

• keyring_aws_conf_file: AWS keyring plugin configuration file location. Added in MySQL 5.7.19.

• keyring_aws_data_file: AWS keyring plugin storage file location. Added in MySQL 5.7.19.

• keyring_aws_region: AWS keyring plugin region. Added in MySQL 5.7.19.

• keyring_encrypted_file_data: keyring_encrypted_file plugin data file. Added in MySQL 5.7.21.

• keyring_encrypted_file_password: keyring_encrypted_file plugin password. Added in MySQL
5.7.21.

• keyring_file_data: keyring_file plugin data file. Added in MySQL 5.7.11.

• keyring_okv_conf_dir: Oracle Key Vault keyring plugin configuration directory. Added in MySQL
5.7.12.

• keyring_operations: Whether keyring operations are enabled. Added in MySQL 5.7.21.

• log_backward_compatible_user_definitions: Whether to log CREATE/ALTER USER, GRANT
in backward-compatible fashion. Added in MySQL 5.7.6.

• log_builtin_as_identified_by_password: Whether to log CREATE/ALTER USER, GRANT in
backward-compatible fashion. Added in MySQL 5.7.9.

• log_error_verbosity: Error logging verbosity level. Added in MySQL 5.7.2.

• log_slow_admin_statements: Log slow OPTIMIZE, ANALYZE, ALTER and other administrative
statements to slow query log if it is open. Added in MySQL 5.7.1.

• log_slow_slave_statements: Cause slow statements as executed by replica to be written to slow
query log. Added in MySQL 5.7.1.

• log_statements_unsafe_for_binlog: Disables error 1592 warnings being written to error log.
Added in MySQL 5.7.11.

• log_syslog: Whether to write error log to syslog. Added in MySQL 5.7.5.

• log_syslog_facility: Facility for syslog messages. Added in MySQL 5.7.5.

• log_syslog_include_pid: Whether to include server PID in syslog messages. Added in MySQL
5.7.5.

34

Options and Variables Introduced in MySQL 5.7

• log_syslog_tag: Tag for server identifier in syslog messages. Added in MySQL 5.7.5.

• log_timestamps: Log timestamp format. Added in MySQL 5.7.2.

• max_digest_length: Maximum digest size in bytes. Added in MySQL 5.7.6.

• max_execution_time: Statement execution timeout value. Added in MySQL 5.7.8.

• max_points_in_geometry: Maximum number of points in geometry values for ST_Buffer_Strategy().
Added in MySQL 5.7.8.

• max_statement_time: Statement execution timeout value. Added in MySQL 5.7.4.

• mecab_charset: Character set currently used by MeCab full-text parser plugin. Added in MySQL 5.7.6.

• mecab_rc_file: Path to mecabrc configuration file for MeCab parser for full-text search. Added in
MySQL 5.7.6.

• mysql_firewall_mode: Whether MySQL Enterprise Firewall plugin is operational. Added in MySQL
5.7.9.

• mysql_firewall_trace: Whether to enable MySQL Enterprise Firewall plugin trace. Added in
MySQL 5.7.9.

• mysql_native_password_proxy_users: Whether mysql_native_password authentication plugin
does proxying. Added in MySQL 5.7.7.

• mysqlx: Whether X Plugin is initialized. Added in MySQL 5.7.12.

• mysqlx_bind_address: Network address X Plugin uses for connections. Added in MySQL 5.7.17.

• mysqlx_connect_timeout: Maximum permitted waiting time in seconds for a connection to set up a
session. Added in MySQL 5.7.12.

• mysqlx_idle_worker_thread_timeout: Time in seconds after which idle worker threads are
terminated. Added in MySQL 5.7.12.

• mysqlx_max_allowed_packet: Maximum size of network packets that can be received by X Plugin.
Added in MySQL 5.7.12.

• mysqlx_max_connections: Maximum number of concurrent client connections X Plugin can accept.
Added in MySQL 5.7.12.

• mysqlx_min_worker_threads: Minimum number of worker threads used for handling client requests.
Added in MySQL 5.7.12.

• mysqlx_port: Port number on which X Plugin accepts TCP/IP connections. Added in MySQL 5.7.12.

• mysqlx_port_open_timeout: Time which X Plugin waits when accepting connections. Added in
MySQL 5.7.17.

• mysqlx_socket: Path to socket where X Plugin listens for connections. Added in MySQL 5.7.15.

• mysqlx_ssl_ca: File that contains list of trusted SSL Certificate Authorities. Added in MySQL 5.7.12.

• mysqlx_ssl_capath: Directory that contains trusted SSL Certificate Authority certificate files. Added in
MySQL 5.7.12.

• mysqlx_ssl_cert: File that contains X.509 certificate. Added in MySQL 5.7.12.

• mysqlx_ssl_cipher: Permissible ciphers for connection encryption. Added in MySQL 5.7.12.

35

Options and Variables Introduced in MySQL 5.7

• mysqlx_ssl_crl: File that contains certificate revocation lists. Added in MySQL 5.7.12.

• mysqlx_ssl_crlpath: Directory that contains certificate revocation list files. Added in MySQL 5.7.12.

• mysqlx_ssl_key: File that contains X.509 key. Added in MySQL 5.7.12.

• named_pipe_full_access_group: Name of Windows group granted full access to named pipe.
Added in MySQL 5.7.25.

• ngram_token_size: Defines n-gram token size for full-text search ngram parser. Added in MySQL
5.7.6.

• offline_mode: Whether server is offline. Added in MySQL 5.7.5.

• parser_max_mem_size: Maximum amount of memory available to parser. Added in MySQL 5.7.12.

• performance-schema-consumer-events-transactions-current: Configure events-
transactions-current consumer. Added in MySQL 5.7.3.

• performance-schema-consumer-events-transactions-history: Configure events-
transactions-history consumer. Added in MySQL 5.7.3.

• performance-schema-consumer-events-transactions-history-long: Configure events-
transactions-history-long consumer. Added in MySQL 5.7.3.

• performance_schema_events_transactions_history_long_size: Number of rows in
events_transactions_history_long table. Added in MySQL 5.7.3.

• performance_schema_events_transactions_history_size: Number of rows per thread in
events_transactions_history table. Added in MySQL 5.7.3.

• performance_schema_max_digest_length: Maximum Performance Schema digest size in bytes.
Added in MySQL 5.7.8.

• performance_schema_max_index_stat: Maximum number of indexes to keep statistics for. Added
in MySQL 5.7.6.

• performance_schema_max_memory_classes: Maximum number of memory instruments. Added in
MySQL 5.7.2.

• performance_schema_max_metadata_locks: Maximum number of metadata locks to track. Added
in MySQL 5.7.3.

• performance_schema_max_prepared_statements_instances: Number of rows in
prepared_statements_instances table. Added in MySQL 5.7.4.

• performance_schema_max_program_instances: Maximum number of stored programs for
statistics. Added in MySQL 5.7.2.

• performance_schema_max_sql_text_length: Maximum number of bytes stored from SQL
statements. Added in MySQL 5.7.6.

• performance_schema_max_statement_stack: Maximum stored program nesting for statistics.
Added in MySQL 5.7.2.

• performance_schema_max_table_lock_stat: Maximum number of tables to keep lock statistics
for. Added in MySQL 5.7.6.

• performance_schema_show_processlist: Select SHOW PROCESSLIST implementation. Added
in MySQL 5.7.39.

36

Options and Variables Introduced in MySQL 5.7

• range_optimizer_max_mem_size: Limit on range optimizer memory consumption. Added in MySQL
5.7.9.

• rbr_exec_mode: Allows for switching server between IDEMPOTENT mode (key and some other errors
suppressed) and STRICT mode; STRICT mode is default. Added in MySQL 5.7.1.

• replication_optimize_for_static_plugin_config: Shared locks for semisynchronous
replication. Added in MySQL 5.7.33.

• replication_sender_observe_commit_only: Limited callbacks for semisynchronous replication.
Added in MySQL 5.7.33.

• require_secure_transport: Whether client connections must use secure transport. Added in
MySQL 5.7.8.

• rewriter_enabled: Whether query rewrite plugin is enabled. Added in MySQL 5.7.6.

• rewriter_verbose: For internal use. Added in MySQL 5.7.6.

• rpl_semi_sync_master_wait_for_slave_count: Number of replica acknowledgments source
must receive per transaction before proceeding. Added in MySQL 5.7.3.

• rpl_semi_sync_master_wait_point: Wait point for replica transaction receipt acknowledgment.
Added in MySQL 5.7.2.

• rpl_stop_slave_timeout: Number of seconds that STOP REPLICA or STOP SLAVE waits before
timing out. Added in MySQL 5.7.2.

• session_track_gtids: Enables tracker which can be set to track different GTIDs. Added in MySQL
5.7.6.

• session_track_schema: Whether to track schema changes. Added in MySQL 5.7.4.

• session_track_state_change: Whether to track session state changes. Added in MySQL 5.7.4.

• session_track_system_variables: Session variables to track changes for. Added in MySQL 5.7.4.

• session_track_transaction_info: How to perform transaction tracking. Added in MySQL 5.7.8.

• sha256_password_auto_generate_rsa_keys: Whether to generate RSA key-pair files
automatically. Added in MySQL 5.7.5.

• sha256_password_proxy_users: Whether sha256_password authentication plugin does proxying.
Added in MySQL 5.7.7.

• show_compatibility_56: Compatibility for SHOW STATUS/VARIABLES. Added in MySQL 5.7.6.

• show_create_table_verbosity: Whether to display ROW_FORMAT in SHOW CREATE TABLE
even if it has default value. Added in MySQL 5.7.22.

• show_old_temporals: Whether SHOW CREATE TABLE should indicate pre-5.6.4 temporal columns.
Added in MySQL 5.7.6.

• simplified_binlog_gtid_recovery: Renamed to binlog_gtid_simple_recovery. Added in MySQL
5.7.5.

• slave_parallel_type: Tells replica to use timestamp information (LOGICAL_CLOCK) or database
partioning (DATABASE) to parallelize transactions. Added in MySQL 5.7.2.

• slave_preserve_commit_order: Ensures that all commits by replica workers happen in same order
as on source to maintain consistency when using parallel applier threads. Added in MySQL 5.7.5.

37

Options and Variables Deprecated in MySQL 5.7

• super_read_only: Whether to ignore SUPER exceptions to read-only mode. Added in MySQL 5.7.8.

• thread_pool_algorithm: Thread pool algorithm. Added in MySQL 5.7.9.

• thread_pool_high_priority_connection: Whether current session is high priority. Added in
MySQL 5.7.9.

• thread_pool_max_unused_threads: Maximum permissible number of unused threads. Added in
MySQL 5.7.9.

• thread_pool_prio_kickup_timer: How long before statement is moved to high-priority execution.
Added in MySQL 5.7.9.

• thread_pool_size: Number of thread groups in thread pool. Added in MySQL 5.7.9.

• thread_pool_stall_limit: How long before statement is defined as stalled. Added in MySQL 5.7.9.

• tls_version: Permissible TLS protocols for encrypted connections. Added in MySQL 5.7.10.

• transaction_write_set_extraction: Defines algorithm used to hash writes extracted during
transaction. Added in MySQL 5.7.6.

• validate_password_check_user_name: Whether to check passwords against user name. Added in
MySQL 5.7.15.

• validate_password_dictionary_file_last_parsed: When dictionary file was last parsed.
Added in MySQL 5.7.8.

• validate_password_dictionary_file_words_count: Number of words in dictionary file. Added
in MySQL 5.7.8.

• version_tokens_session: Client token list for Version Tokens. Added in MySQL 5.7.8.

• version_tokens_session_number: For internal use. Added in MySQL 5.7.8.

Options and Variables Deprecated in MySQL 5.7

The following system variables, status variables, and options have been deprecated in MySQL 5.7.

• Innodb_available_undo_logs: Total number of InnoDB rollback segments; different from
innodb_rollback_segments, which displays number of active rollback segments. Deprecated in MySQL
5.7.19.

• Qcache_free_blocks: Number of free memory blocks in query cache. Deprecated in MySQL 5.7.20.

• Qcache_free_memory: Amount of free memory for query cache. Deprecated in MySQL 5.7.20.

• Qcache_hits: Number of query cache hits. Deprecated in MySQL 5.7.20.

• Qcache_inserts: Number of query cache inserts. Deprecated in MySQL 5.7.20.

• Qcache_lowmem_prunes: Number of queries which were deleted from query cache due to lack of free
memory in cache. Deprecated in MySQL 5.7.20.

• Qcache_not_cached: Number of noncached queries (not cacheable, or not cached due to
query_cache_type setting). Deprecated in MySQL 5.7.20.

• Qcache_queries_in_cache: Number of queries registered in query cache. Deprecated in MySQL
5.7.20.

• Qcache_total_blocks: Total number of blocks in query cache. Deprecated in MySQL 5.7.20.

38

Options and Variables Deprecated in MySQL 5.7

• Slave_heartbeat_period: Replica's replication heartbeat interval, in seconds. Deprecated in MySQL
5.7.6.

• Slave_last_heartbeat: Shows when latest heartbeat signal was received, in TIMESTAMP format.
Deprecated in MySQL 5.7.6.

• Slave_received_heartbeats: Number of heartbeats received by replica since previous reset.
Deprecated in MySQL 5.7.6.

• Slave_retried_transactions: Total number of times since startup that replication SQL thread has
retried transactions. Deprecated in MySQL 5.7.6.

• Slave_running: State of this server as replica (replication I/O thread status). Deprecated in MySQL
5.7.6.

• avoid_temporal_upgrade: Whether ALTER TABLE should upgrade pre-5.6.4 temporal columns.
Deprecated in MySQL 5.7.6.

• binlog_max_flush_queue_time: How long to read transactions before flushing to binary log.
Deprecated in MySQL 5.7.9.

• bootstrap: Used by mysql installation scripts. Deprecated in MySQL 5.7.6.

• des-key-file: Load keys for des_encrypt() and des_encrypt from given file. Deprecated in MySQL
5.7.6.

• disable-partition-engine-check: Whether to disable startup check for tables without native
partitioning. Deprecated in MySQL 5.7.17.

• group_replication_allow_local_disjoint_gtids_join: Allow current server to join group
even if it has transactions not present in group. Deprecated in MySQL 5.7.21.

• have_crypt: Availability of crypt() system call. Deprecated in MySQL 5.7.6.

• have_query_cache: Whether mysqld supports query cache. Deprecated in MySQL 5.7.20.

• ignore-db-dir: Treat directory as nondatabase directory. Deprecated in MySQL 5.7.16.

• ignore_db_dirs: Directories treated as nondatabase directories. Deprecated in MySQL 5.7.16.

• innodb: Enable InnoDB (if this version of MySQL supports it). Deprecated in MySQL 5.7.5.

• innodb_file_format: Format for new InnoDB tables. Deprecated in MySQL 5.7.7.

• innodb_file_format_check: Whether InnoDB performs file format compatibility checking.
Deprecated in MySQL 5.7.7.

• innodb_file_format_max: File format tag in shared tablespace. Deprecated in MySQL 5.7.7.

• innodb_large_prefix: Enables longer keys for column prefix indexes. Deprecated in MySQL 5.7.7.

• innodb_support_xa: Enable InnoDB support for XA two-phase commit. Deprecated in MySQL 5.7.10.

• innodb_undo_logs: Number of undo logs (rollback segments) used by InnoDB; alias for
innodb_rollback_segments. Deprecated in MySQL 5.7.19.

• innodb_undo_tablespaces: Number of tablespace files that rollback segments are divided between.
Deprecated in MySQL 5.7.21.

• log-warnings: Write some noncritical warnings to log file. Deprecated in MySQL 5.7.2.

• metadata_locks_cache_size: Size of metadata locks cache. Deprecated in MySQL 5.7.4.

39

Options and Variables Removed in MySQL 5.7

• metadata_locks_hash_instances: Number of metadata lock hashes. Deprecated in MySQL 5.7.4.

• myisam_repair_threads: Number of threads to use when repairing MyISAM tables. 1 disables
parallel repair. Deprecated in MySQL 5.7.38.

• old_passwords: Selects password hashing method for PASSWORD(). Deprecated in MySQL 5.7.6.

• partition: Enable (or disable) partitioning support. Deprecated in MySQL 5.7.16.

• query_cache_limit: Do not cache results that are bigger than this. Deprecated in MySQL 5.7.20.

• query_cache_min_res_unit: Minimal size of unit in which space for results is allocated (last unit is
trimmed after writing all result data). Deprecated in MySQL 5.7.20.

• query_cache_size: Memory allocated to store results from old queries. Deprecated in MySQL 5.7.20.

• query_cache_type: Query cache type. Deprecated in MySQL 5.7.20.

• query_cache_wlock_invalidate: Invalidate queries in query cache on LOCK for write. Deprecated
in MySQL 5.7.20.

• secure_auth: Disallow authentication for accounts that have old (pre-4.1) passwords. Deprecated in
MySQL 5.7.5.

• show_compatibility_56: Compatibility for SHOW STATUS/VARIABLES. Deprecated in MySQL
5.7.6.

• show_old_temporals: Whether SHOW CREATE TABLE should indicate pre-5.6.4 temporal columns.
Deprecated in MySQL 5.7.6.

• skip-partition: Do not enable user-defined partitioning. Deprecated in MySQL 5.7.16.

• sync_frm: Sync .frm to disk on create. Enabled by default. Deprecated in MySQL 5.7.6.

• temp-pool: Using this option causes most temporary files created to use small set of names, rather
than unique name for each new file. Deprecated in MySQL 5.7.18.

• tx_isolation: Default transaction isolation level. Deprecated in MySQL 5.7.20.

• tx_read_only: Default transaction access mode. Deprecated in MySQL 5.7.20.

Options and Variables Removed in MySQL 5.7

The following system variables, status variables, and options have been removed in MySQL 5.7.

• Com_show_slave_status_nonblocking: Count of SHOW REPLICA | SLAVE STATUS
NONBLOCKING statements. Removed in MySQL 5.7.6.

• Max_statement_time_exceeded: Number of statements that exceeded execution timeout value.
Removed in MySQL 5.7.8.

• Max_statement_time_set: Number of statements for which execution timeout was set. Removed in
MySQL 5.7.8.

• Max_statement_time_set_failed: Number of statements for which execution timeout setting failed.
Removed in MySQL 5.7.8.

• binlogging_impossible_mode: Deprecated and later removed. Use binlog_error_action instead.
Removed in MySQL 5.7.6.

• default-authentication-plugin: Default authentication plugin. Removed in MySQL 5.7.2.

40

How to Report Bugs or Problems

• executed_gtids_compression_period: Renamed to gtid_executed_compression_period.
Removed in MySQL 5.7.6.

• innodb_additional_mem_pool_size: Size of memory pool InnoDB uses to store data dictionary
information and other internal data structures. Removed in MySQL 5.7.4.

• innodb_log_checksum_algorithm: Specifies how to generate and verify checksum stored in each
redo log disk block. Removed in MySQL 5.7.9.

• innodb_optimize_point_storage: Enable this option to store POINT data as fixed-length data
rather than variable-length data. Removed in MySQL 5.7.6.

• innodb_use_sys_malloc: Whether InnoDB uses OS or own memory allocator. Removed in MySQL
5.7.4.

• log-slow-admin-statements: Log slow OPTIMIZE, ANALYZE, ALTER and other administrative
statements to slow query log if it is open. Removed in MySQL 5.7.1.

• log-slow-slave-statements: Cause slow statements as executed by replica to be written to slow
query log. Removed in MySQL 5.7.1.

• log_backward_compatible_user_definitions: Whether to log CREATE/ALTER USER, GRANT
in backward-compatible fashion. Removed in MySQL 5.7.9.

• max_statement_time: Statement execution timeout value. Removed in MySQL 5.7.8.

• myisam_repair_threads: Number of threads to use when repairing MyISAM tables. 1 disables
parallel repair. Removed in MySQL 5.7.39.

• simplified_binlog_gtid_recovery: Renamed to binlog_gtid_simple_recovery. Removed in
MySQL 5.7.6.

• storage_engine: Default storage engine. Removed in MySQL 5.7.5.

• thread_concurrency: Permits application to provide hint to threads system for desired number of
threads which should be run at one time. Removed in MySQL 5.7.2.

• timed_mutexes: Specify whether to time mutexes (only InnoDB mutexes are currently supported).
Removed in MySQL 5.7.5.

1.5 How to Report Bugs or Problems
Before posting a bug report about a problem, please try to verify that it is a bug and that it has not been
reported already:

• Start by searching the MySQL online manual at https://dev.mysql.com/doc/. We try to keep the manual
up to date by updating it frequently with solutions to newly found problems. In addition, the release
notes accompanying the manual can be particularly useful since it is quite possible that a newer version
contains a solution to your problem. The release notes are available at the location just given for the
manual.

• If you get a parse error for an SQL statement, please check your syntax closely. If you cannot find
something wrong with it, it is extremely likely that your current version of MySQL Server doesn't support
the syntax you are using. If you are using the current version and the manual doesn't cover the syntax
that you are using, MySQL Server doesn't support your statement.

If the manual covers the syntax you are using, but you have an older version of MySQL Server, you
should check the MySQL change history to see when the syntax was implemented. In this case, you
have the option of upgrading to a newer version of MySQL Server.

41

https://dev.mysql.com/doc/

How to Report Bugs or Problems

• For solutions to some common problems, see Section B.3, “Problems and Common Errors”.

• Search the bugs database at http://bugs.mysql.com/ to see whether the bug has been reported and
fixed.

• You can also use http://www.mysql.com/search/ to search all the Web pages (including the manual) that
are located at the MySQL website.

If you cannot find an answer in the manual, the bugs database, or the mailing list archives, check with your
local MySQL expert. If you still cannot find an answer to your question, please use the following guidelines
for reporting the bug.

The normal way to report bugs is to visit http://bugs.mysql.com/, which is the address for our bugs
database. This database is public and can be browsed and searched by anyone. If you log in to the
system, you can enter new reports.

Bugs posted in the bugs database at http://bugs.mysql.com/ that are corrected for a given release are
noted in the release notes.

If you find a security bug in MySQL Server, please let us know immediately by sending an email message
to <secalert_us@oracle.com>. Exception: Support customers should report all problems, including
security bugs, to Oracle Support at http://support.oracle.com/.

To discuss problems with other users, you can use the MySQL Community Slack.

Writing a good bug report takes patience, but doing it right the first time saves time both for us and for
yourself. A good bug report, containing a full test case for the bug, makes it very likely that we will fix the
bug in the next release. This section helps you write your report correctly so that you do not waste your
time doing things that may not help us much or at all. Please read this section carefully and make sure that
all the information described here is included in your report.

Preferably, you should test the problem using the latest production or development version of MySQL
Server before posting. Anyone should be able to repeat the bug by just using mysql test <
script_file on your test case or by running the shell or Perl script that you include in the bug report.
Any bug that we are able to repeat has a high chance of being fixed in the next MySQL release.

It is most helpful when a good description of the problem is included in the bug report. That is, give a good
example of everything you did that led to the problem and describe, in exact detail, the problem itself.
The best reports are those that include a full example showing how to reproduce the bug or problem. See
Section 5.8, “Debugging MySQL”.

Remember that it is possible for us to respond to a report containing too much information, but not to one
containing too little. People often omit facts because they think they know the cause of a problem and
assume that some details do not matter. A good principle to follow is that if you are in doubt about stating
something, state it. It is faster and less troublesome to write a couple more lines in your report than to wait
longer for the answer if we must ask you to provide information that was missing from the initial report.

The most common errors made in bug reports are (a) not including the version number of the MySQL
distribution that you use, and (b) not fully describing the platform on which the MySQL server is installed
(including the platform type and version number). These are highly relevant pieces of information, and in
99 cases out of 100, the bug report is useless without them. Very often we get questions like, “Why doesn't
this work for me?” Then we find that the feature requested wasn't implemented in that MySQL version,
or that a bug described in a report has been fixed in newer MySQL versions. Errors often are platform-
dependent. In such cases, it is next to impossible for us to fix anything without knowing the operating
system and the version number of the platform.

If you compiled MySQL from source, remember also to provide information about your compiler if it is
related to the problem. Often people find bugs in compilers and think the problem is MySQL-related.

42

http://bugs.mysql.com/
http://www.mysql.com/search/
http://bugs.mysql.com/
http://bugs.mysql.com/
http://support.oracle.com/
https://mysqlcommunity.slack.com/

How to Report Bugs or Problems

Most compilers are under development all the time and become better version by version. To determine
whether your problem depends on your compiler, we need to know what compiler you used. Note that
every compiling problem should be regarded as a bug and reported accordingly.

If a program produces an error message, it is very important to include the message in your report. If we try
to search for something from the archives, it is better that the error message reported exactly matches the
one that the program produces. (Even the lettercase should be observed.) It is best to copy and paste the
entire error message into your report. You should never try to reproduce the message from memory.

If you have a problem with Connector/ODBC (MyODBC), please try to generate a trace file and send it with
your report. See How to Report Connector/ODBC Problems or Bugs.

If your report includes long query output lines from test cases that you run with the mysql command-
line tool, you can make the output more readable by using the --vertical option or the \G statement
terminator. The EXPLAIN SELECT example later in this section demonstrates the use of \G.

Please include the following information in your report:

• The version number of the MySQL distribution you are using (for example, MySQL 5.7.10). You can find
out which version you are running by executing mysqladmin version. The mysqladmin program can
be found in the bin directory under your MySQL installation directory.

• The manufacturer and model of the machine on which you experience the problem.

• The operating system name and version. If you work with Windows, you can usually get the name and
version number by double-clicking your My Computer icon and pulling down the “Help/About Windows”
menu. For most Unix-like operating systems, you can get this information by executing the command
uname -a.

• Sometimes the amount of memory (real and virtual) is relevant. If in doubt, include these values.

• The contents of the docs/INFO_BIN file from your MySQL installation. This file contains information
about how MySQL was configured and compiled.

• If you are using a source distribution of the MySQL software, include the name and version number of
the compiler that you used. If you have a binary distribution, include the distribution name.

• If the problem occurs during compilation, include the exact error messages and also a few lines of
context around the offending code in the file where the error occurs.

• If mysqld died, you should also report the statement that caused mysqld to unexpectedly exit. You can
usually get this information by running mysqld with query logging enabled, and then looking in the log
after mysqld exits. See Section 5.8, “Debugging MySQL”.

• If a database table is related to the problem, include the output from the SHOW CREATE TABLE
db_name.tbl_name statement in the bug report. This is a very easy way to get the definition of
any table in a database. The information helps us create a situation matching the one that you have
experienced.

• The SQL mode in effect when the problem occurred can be significant, so please report the value of
the sql_mode system variable. For stored procedure, stored function, and trigger objects, the relevant
sql_mode value is the one in effect when the object was created. For a stored procedure or function,
the SHOW CREATE PROCEDURE or SHOW CREATE FUNCTION statement shows the relevant SQL mode,
or you can query INFORMATION_SCHEMA for the information:

SELECT ROUTINE_SCHEMA, ROUTINE_NAME, SQL_MODE
FROM INFORMATION_SCHEMA.ROUTINES;

43

https://dev.mysql.com/doc/connector-odbc/en/connector-odbc-support-bug-report.html

How to Report Bugs or Problems

For triggers, you can use this statement:

SELECT EVENT_OBJECT_SCHEMA, EVENT_OBJECT_TABLE, TRIGGER_NAME, SQL_MODE
FROM INFORMATION_SCHEMA.TRIGGERS;

• For performance-related bugs or problems with SELECT statements, you should always include the
output of EXPLAIN SELECT ..., and at least the number of rows that the SELECT statement produces.
You should also include the output from SHOW CREATE TABLE tbl_name for each table that is
involved. The more information you provide about your situation, the more likely it is that someone can
help you.

The following is an example of a very good bug report. The statements are run using the mysql
command-line tool. Note the use of the \G statement terminator for statements that would otherwise
provide very long output lines that are difficult to read.

mysql> SHOW VARIABLES;
mysql> SHOW COLUMNS FROM ...\G
 <output from SHOW COLUMNS>
mysql> EXPLAIN SELECT ...\G
 <output from EXPLAIN>
mysql> FLUSH STATUS;
mysql> SELECT ...;
 <A short version of the output from SELECT,
 including the time taken to run the query>
mysql> SHOW STATUS;
 <output from SHOW STATUS>

• If a bug or problem occurs while running mysqld, try to provide an input script that reproduces the
anomaly. This script should include any necessary source files. The more closely the script can
reproduce your situation, the better. If you can make a reproducible test case, you should upload it to be
attached to the bug report.

If you cannot provide a script, you should at least include the output from mysqladmin variables
extended-status processlist in your report to provide some information on how your system is
performing.

• If you cannot produce a test case with only a few rows, or if the test table is too big to be included in the
bug report (more than 10 rows), you should dump your tables using mysqldump and create a README
file that describes your problem. Create a compressed archive of your files using tar and gzip or zip.
After you initiate a bug report for our bugs database at http://bugs.mysql.com/, click the Files tab in the
bug report for instructions on uploading the archive to the bugs database.

• If you believe that the MySQL server produces a strange result from a statement, include not only the
result, but also your opinion of what the result should be, and an explanation describing the basis for
your opinion.

• When you provide an example of the problem, it is better to use the table names, variable names, and
so forth that exist in your actual situation than to come up with new names. The problem could be related
to the name of a table or variable. These cases are rare, perhaps, but it is better to be safe than sorry.
After all, it should be easier for you to provide an example that uses your actual situation, and it is by all
means better for us. If you have data that you do not want to be visible to others in the bug report, you
can upload it using the Files tab as previously described. If the information is really top secret and you do
not want to show it even to us, go ahead and provide an example using other names, but please regard
this as the last choice.

• Include all the options given to the relevant programs, if possible. For example, indicate the options that
you use when you start the mysqld server, as well as the options that you use to run any MySQL client
programs. The options to programs such as mysqld and mysql, and to the configure script, are often

44

http://bugs.mysql.com/

How to Report Bugs or Problems

key to resolving problems and are very relevant. It is never a bad idea to include them. If your problem
involves a program written in a language such as Perl or PHP, please include the language processor's
version number, as well as the version for any modules that the program uses. For example, if you have
a Perl script that uses the DBI and DBD::mysql modules, include the version numbers for Perl, DBI,
and DBD::mysql.

• If your question is related to the privilege system, please include the output of mysqladmin reload,
and all the error messages you get when trying to connect. When you test your privileges, you should
execute mysqladmin reload version and try to connect with the program that gives you trouble.

• If you have a patch for a bug, do include it. But do not assume that the patch is all we need, or that we
can use it, if you do not provide some necessary information such as test cases showing the bug that
your patch fixes. We might find problems with your patch or we might not understand it at all. If so, we
cannot use it.

If we cannot verify the exact purpose of the patch, we will not use it. Test cases help us here. Show that
the patch handles all the situations that may occur. If we find a borderline case (even a rare one) where
the patch will not work, it may be useless.

• Guesses about what the bug is, why it occurs, or what it depends on are usually wrong. Even the
MySQL team cannot guess such things without first using a debugger to determine the real cause of a
bug.

• Indicate in your bug report that you have checked the reference manual and mail archive so that others
know you have tried to solve the problem yourself.

• If your data appears corrupt or you get errors when you access a particular table, first check your tables
with CHECK TABLE. If that statement reports any errors:

• The InnoDB crash recovery mechanism handles cleanup when the server is restarted after being
killed, so in typical operation there is no need to “repair” tables. If you encounter an error with
InnoDB tables, restart the server and see whether the problem persists, or whether the error
affected only cached data in memory. If data is corrupted on disk, consider restarting with the
innodb_force_recovery option enabled so that you can dump the affected tables.

• For non-transactional tables, try to repair them with REPAIR TABLE or with myisamchk. See
Chapter 5, MySQL Server Administration.

If you are running Windows, please verify the value of lower_case_table_names using the SHOW
VARIABLES LIKE 'lower_case_table_names' statement. This variable affects how the server
handles lettercase of database and table names. Its effect for a given value should be as described in
Section 9.2.3, “Identifier Case Sensitivity”.

• If you often get corrupted tables, you should try to find out when and why this happens. In this case,
the error log in the MySQL data directory may contain some information about what happened. (This
is the file with the .err suffix in the name.) See Section 5.4.2, “The Error Log”. Please include any
relevant information from this file in your bug report. Normally mysqld should never corrupt a table if
nothing killed it in the middle of an update. If you can find the cause of mysqld dying, it is much easier
for us to provide you with a fix for the problem. See Section B.3.1, “How to Determine What Is Causing a
Problem”.

• If possible, download and install the most recent version of MySQL Server and check whether it solves
your problem. All versions of the MySQL software are thoroughly tested and should work without
problems. We believe in making everything as backward-compatible as possible, and you should be able
to switch MySQL versions without difficulty. See Section 2.1.2, “Which MySQL Version and Distribution
to Install”.

45

MySQL Standards Compliance

1.6 MySQL Standards Compliance

This section describes how MySQL relates to the ANSI/ISO SQL standards. MySQL Server has many
extensions to the SQL standard, and here you can find out what they are and how to use them. You can
also find information about functionality missing from MySQL Server, and how to work around some of the
differences.

The SQL standard has been evolving since 1986 and several versions exist. In this manual, “SQL-92”
refers to the standard released in 1992. “SQL:1999”, “SQL:2003”, “SQL:2008”, and “SQL:2011” refer to the
versions of the standard released in the corresponding years, with the last being the most recent version.
We use the phrase “the SQL standard” or “standard SQL” to mean the current version of the SQL Standard
at any time.

One of our main goals with the product is to continue to work toward compliance with the SQL standard,
but without sacrificing speed or reliability. We are not afraid to add extensions to SQL or support for non-
SQL features if this greatly increases the usability of MySQL Server for a large segment of our user base.
The HANDLER interface is an example of this strategy. See Section 13.2.4, “HANDLER Statement”.

We continue to support transactional and nontransactional databases to satisfy both mission-critical 24/7
usage and heavy Web or logging usage.

MySQL Server was originally designed to work with medium-sized databases (10-100 million rows,
or about 100MB per table) on small computer systems. Today MySQL Server handles terabyte-sized
databases, but the code can also be compiled in a reduced version suitable for hand-held and embedded
devices. The compact design of the MySQL server makes development in both directions possible without
any conflicts in the source tree.

We are not targeting real-time support, although MySQL replication capabilities offer significant
functionality.

MySQL supports ODBC levels 0 to 3.51.

MySQL supports high-availability database clustering using the NDBCLUSTER storage engine. See
Chapter 21, MySQL NDB Cluster 7.5 and NDB Cluster 7.6.

We implement XML functionality which supports most of the W3C XPath standard. See Section 12.11,
“XML Functions”.

MySQL (5.7.8 and later) supports a native JSON data type as defined by RFC 7159, and based on the
ECMAScript standard (ECMA-262). See Section 11.5, “The JSON Data Type”. MySQL also implements
a subset of the SQL/JSON functions specified by a pre-publication draft of the SQL:2016 standard; see
Section 12.17, “JSON Functions”, for more information.

Selecting SQL Modes

The MySQL server can operate in different SQL modes, and can apply these modes differently for different
clients, depending on the value of the sql_mode system variable. DBAs can set the global SQL mode to
match site server operating requirements, and each application can set its session SQL mode to its own
requirements.

Modes affect the SQL syntax MySQL supports and the data validation checks it performs. This makes it
easier to use MySQL in different environments and to use MySQL together with other database servers.

For more information on setting the SQL mode, see Section 5.1.10, “Server SQL Modes”.

46

Running MySQL in ANSI Mode

Running MySQL in ANSI Mode

To run MySQL Server in ANSI mode, start mysqld with the --ansi option. Running the server in ANSI
mode is the same as starting it with the following options:

--transaction-isolation=SERIALIZABLE --sql-mode=ANSI

To achieve the same effect at runtime, execute these two statements:

SET GLOBAL TRANSACTION ISOLATION LEVEL SERIALIZABLE;
SET GLOBAL sql_mode = 'ANSI';

You can see that setting the sql_mode system variable to 'ANSI' enables all SQL mode options that are
relevant for ANSI mode as follows:

mysql> SET GLOBAL sql_mode='ANSI';
mysql> SELECT @@GLOBAL.sql_mode;
 -> 'REAL_AS_FLOAT,PIPES_AS_CONCAT,ANSI_QUOTES,IGNORE_SPACE,ANSI'

Running the server in ANSI mode with --ansi is not quite the same as setting the SQL mode to 'ANSI'
because the --ansi option also sets the transaction isolation level.

See Section 5.1.6, “Server Command Options”.

1.6.1 MySQL Extensions to Standard SQL

MySQL Server supports some extensions that are likely not to be found in other SQL DBMSs. Be warned
that if you use them, your code is not portable to other SQL servers. In some cases, you can write code
that includes MySQL extensions, but is still portable, by using comments of the following form:

/*! MySQL-specific code */

In this case, MySQL Server parses and executes the code within the comment as it would any other SQL
statement, but other SQL servers ignore the extensions. For example, MySQL Server recognizes the
STRAIGHT_JOIN keyword in the following statement, but other servers do not:

SELECT /*! STRAIGHT_JOIN */ col1 FROM table1,table2 WHERE ...

If you add a version number after the ! character, the syntax within the comment is executed only if the
MySQL version is greater than or equal to the specified version number. The KEY_BLOCK_SIZE clause in
the following comment is executed only by servers from MySQL 5.1.10 or higher:

CREATE TABLE t1(a INT, KEY (a)) /*!50110 KEY_BLOCK_SIZE=1024 */;

The following descriptions list MySQL extensions, organized by category.

• Organization of data on disk

MySQL Server maps each database to a directory under the MySQL data directory, and maps tables
within a database to file names in the database directory. This has a few implications:

• Database and table names are case-sensitive in MySQL Server on operating systems that
have case-sensitive file names (such as most Unix systems). See Section 9.2.3, “Identifier Case
Sensitivity”.

• You can use standard system commands to back up, rename, move, delete, and copy tables that
are managed by the MyISAM storage engine. For example, it is possible to rename a MyISAM table
by renaming the .MYD, .MYI, and .frm files to which the table corresponds. (Nevertheless, it is

47

MySQL Extensions to Standard SQL

preferable to use RENAME TABLE or ALTER TABLE ... RENAME and let the server rename the
files.)

• General language syntax

• By default, strings can be enclosed by " as well as '. If the ANSI_QUOTES SQL mode is enabled,
strings can be enclosed only by ' and the server interprets strings enclosed by " as identifiers.

• \ is the escape character in strings.

• In SQL statements, you can access tables from different databases with the db_name.tbl_name
syntax. Some SQL servers provide the same functionality but call this User space. MySQL
Server does not support tablespaces such as used in statements like this: CREATE TABLE
ralph.my_table ... IN my_tablespace.

• SQL statement syntax

• The ANALYZE TABLE, CHECK TABLE, OPTIMIZE TABLE, and REPAIR TABLE statements.

• The CREATE DATABASE, DROP DATABASE, and ALTER DATABASE statements. See Section 13.1.11,
“CREATE DATABASE Statement”, Section 13.1.22, “DROP DATABASE Statement”, and
Section 13.1.1, “ALTER DATABASE Statement”.

• The DO statement.

• EXPLAIN SELECT to obtain a description of how tables are processed by the query optimizer.

• The FLUSH and RESET statements.

• The SET statement. See Section 13.7.4.1, “SET Syntax for Variable Assignment”.

• The SHOW statement. See Section 13.7.5, “SHOW Statements”. The information produced by many of
the MySQL-specific SHOW statements can be obtained in more standard fashion by using SELECT to
query INFORMATION_SCHEMA. See Chapter 24, INFORMATION_SCHEMA Tables.

• Use of LOAD DATA. In many cases, this syntax is compatible with Oracle LOAD DATA. See
Section 13.2.6, “LOAD DATA Statement”.

• Use of RENAME TABLE. See Section 13.1.33, “RENAME TABLE Statement”.

• Use of REPLACE instead of DELETE plus INSERT. See Section 13.2.8, “REPLACE Statement”.

• Use of CHANGE col_name, DROP col_name, or DROP INDEX, IGNORE or RENAME in ALTER TABLE
statements. Use of multiple ADD, ALTER, DROP, or CHANGE clauses in an ALTER TABLE statement.
See Section 13.1.8, “ALTER TABLE Statement”.

• Use of index names, indexes on a prefix of a column, and use of INDEX or KEY in CREATE TABLE
statements. See Section 13.1.18, “CREATE TABLE Statement”.

• Use of TEMPORARY or IF NOT EXISTS with CREATE TABLE.

• Use of IF EXISTS with DROP TABLE and DROP DATABASE.

• The capability of dropping multiple tables with a single DROP TABLE statement.

• The ORDER BY and LIMIT clauses of the UPDATE and DELETE statements.

• INSERT INTO tbl_name SET col_name = ... syntax.

48

MySQL Extensions to Standard SQL

• The DELAYED clause of the INSERT and REPLACE statements.

• The LOW_PRIORITY clause of the INSERT, REPLACE, DELETE, and UPDATE statements.

• Use of INTO OUTFILE or INTO DUMPFILE in SELECT statements. See Section 13.2.9, “SELECT
Statement”.

• Options such as STRAIGHT_JOIN or SQL_SMALL_RESULT in SELECT statements.

• You don't need to name all selected columns in the GROUP BY clause. This gives better performance
for some very specific, but quite normal queries. See Section 12.19, “Aggregate Functions”.

• You can specify ASC and DESC with GROUP BY, not just with ORDER BY.

• The ability to set variables in a statement with the := assignment operator. See Section 9.4, “User-
Defined Variables”.

• Data types

• The MEDIUMINT, SET, and ENUM data types, and the various BLOB and TEXT data types.

• The AUTO_INCREMENT, BINARY, NULL, UNSIGNED, and ZEROFILL data type attributes.

• Functions and operators

• To make it easier for users who migrate from other SQL environments, MySQL Server supports
aliases for many functions. For example, all string functions support both standard SQL syntax and
ODBC syntax.

• MySQL Server understands the || and && operators to mean logical OR and AND, as in the C
programming language. In MySQL Server, || and OR are synonyms, as are && and AND. Because
of this nice syntax, MySQL Server does not support the standard SQL || operator for string
concatenation; use CONCAT() instead. Because CONCAT() takes any number of arguments, it is easy
to convert use of the || operator to MySQL Server.

• Use of COUNT(DISTINCT value_list) where value_list has more than one element.

• String comparisons are case-insensitive by default, with sort ordering determined by the collation of
the current character set, which is latin1 (cp1252 West European) by default. To perform case-
sensitive comparisons instead, you should declare your columns with the BINARY attribute or use the
BINARY cast, which causes comparisons to be done using the underlying character code values rather
than a lexical ordering.

• The % operator is a synonym for MOD(). That is, N % M is equivalent to MOD(N,M). % is supported
for C programmers and for compatibility with PostgreSQL.

• The =, <>, <=, <, >=, >, <<, >>, <=>, AND, OR, or LIKE operators may be used in expressions in the
output column list (to the left of the FROM) in SELECT statements. For example:

mysql> SELECT col1=1 AND col2=2 FROM my_table;

• The LAST_INSERT_ID() function returns the most recent AUTO_INCREMENT value. See
Section 12.15, “Information Functions”.

• LIKE is permitted on numeric values.

• The REGEXP and NOT REGEXP extended regular expression operators.

49

MySQL Differences from Standard SQL

• CONCAT() or CHAR() with one argument or more than two arguments. (In MySQL Server, these
functions can take a variable number of arguments.)

• The BIT_COUNT(), CASE, ELT(), FROM_DAYS(), FORMAT(), IF(), PASSWORD(), ENCRYPT(),
MD5(), ENCODE(), DECODE(), PERIOD_ADD(), PERIOD_DIFF(), TO_DAYS(), and WEEKDAY()
functions.

• Use of TRIM() to trim substrings. Standard SQL supports removal of single characters only.

• The GROUP BY functions STD(), BIT_OR(), BIT_AND(), BIT_XOR(), and GROUP_CONCAT(). See
Section 12.19, “Aggregate Functions”.

1.6.2 MySQL Differences from Standard SQL

We try to make MySQL Server follow the ANSI SQL standard and the ODBC SQL standard, but MySQL
Server performs operations differently in some cases:

• There are several differences between the MySQL and standard SQL privilege systems. For example, in
MySQL, privileges for a table are not automatically revoked when you delete a table. You must explicitly
issue a REVOKE statement to revoke privileges for a table. For more information, see Section 13.7.1.6,
“REVOKE Statement”.

• The CAST() function does not support cast to REAL or BIGINT. See Section 12.10, “Cast Functions and
Operators”.

1.6.2.1 SELECT INTO TABLE Differences

MySQL Server does not support the SELECT ... INTO TABLE Sybase SQL extension. Instead, MySQL
Server supports the INSERT INTO ... SELECT standard SQL syntax, which is basically the same thing.
See Section 13.2.5.1, “INSERT ... SELECT Statement”. For example:

INSERT INTO tbl_temp2 (fld_id)
 SELECT tbl_temp1.fld_order_id
 FROM tbl_temp1 WHERE tbl_temp1.fld_order_id > 100;

Alternatively, you can use SELECT ... INTO OUTFILE or CREATE TABLE ... SELECT.

You can use SELECT ... INTO with user-defined variables. The same syntax can also be used inside
stored routines using cursors and local variables. See Section 13.2.9.1, “SELECT ... INTO Statement”.

1.6.2.2 UPDATE Differences

If you access a column from the table to be updated in an expression, UPDATE uses the current value of
the column. The second assignment in the following statement sets col2 to the current (updated) col1
value, not the original col1 value. The result is that col1 and col2 have the same value. This behavior
differs from standard SQL.

UPDATE t1 SET col1 = col1 + 1, col2 = col1;

1.6.2.3 FOREIGN KEY Constraint Differences

The MySQL implementation of foreign key constraints differs from the SQL standard in the following key
respects:

• If there are several rows in the parent table with the same referenced key value, InnoDB performs a
foreign key check as if the other parent rows with the same key value do not exist. For example, if you

50

MySQL Differences from Standard SQL

define a RESTRICT type constraint, and there is a child row with several parent rows, InnoDB does not
permit the deletion of any of the parent rows.

• If ON UPDATE CASCADE or ON UPDATE SET NULL recurses to update the same table it has previously
updated during the same cascade, it acts like RESTRICT. This means that you cannot use self-
referential ON UPDATE CASCADE or ON UPDATE SET NULL operations. This is to prevent infinite
loops resulting from cascaded updates. A self-referential ON DELETE SET NULL, on the other hand, is
possible, as is a self-referential ON DELETE CASCADE. Cascading operations may not be nested more
than 15 levels deep.

• In an SQL statement that inserts, deletes, or updates many rows, foreign key constraints (like unique
constraints) are checked row-by-row. When performing foreign key checks, InnoDB sets shared row-
level locks on child or parent records that it must examine. MySQL checks foreign key constraints
immediately; the check is not deferred to transaction commit. According to the SQL standard, the
default behavior should be deferred checking. That is, constraints are only checked after the entire SQL
statement has been processed. This means that it is not possible to delete a row that refers to itself
using a foreign key.

• No storage engine, including InnoDB, recognizes or enforces the MATCH clause used in referential-
integrity constraint definitions. Use of an explicit MATCH clause does not have the specified effect, and it
causes ON DELETE and ON UPDATE clauses to be ignored. Specifying the MATCH should be avoided.

The MATCH clause in the SQL standard controls how NULL values in a composite (multiple-column)
foreign key are handled when comparing to a primary key in the referenced table. MySQL essentially
implements the semantics defined by MATCH SIMPLE, which permits a foreign key to be all or partially
NULL. In that case, a (child table) row containing such a foreign key can be inserted even though it does
not match any row in the referenced (parent) table. (It is possible to implement other semantics using
triggers.)

• MySQL requires that the referenced columns be indexed for performance reasons. However, MySQL
does not enforce a requirement that the referenced columns be UNIQUE or be declared NOT NULL.

A FOREIGN KEY constraint that references a non-UNIQUE key is not standard SQL but rather an
InnoDB extension. The NDB storage engine, on the other hand, requires an explicit unique key (or
primary key) on any column referenced as a foreign key.

The handling of foreign key references to nonunique keys or keys that contain NULL values is not well
defined for operations such as UPDATE or DELETE CASCADE. You are advised to use foreign keys that
reference only UNIQUE (including PRIMARY) and NOT NULL keys.

• For storage engines that do not support foreign keys (such as MyISAM), MySQL Server parses and
ignores foreign key specifications.

• MySQL parses but ignores “inline REFERENCES specifications” (as defined in the SQL standard) where
the references are defined as part of the column specification. MySQL accepts REFERENCES clauses
only when specified as part of a separate FOREIGN KEY specification.

Defining a column to use a REFERENCES tbl_name(col_name) clause has no actual effect and
serves only as a memo or comment to you that the column which you are currently defining is intended
to refer to a column in another table. It is important to realize when using this syntax that:

• MySQL does not perform any sort of check to make sure that col_name actually exists in tbl_name
(or even that tbl_name itself exists).

• MySQL does not perform any sort of action on tbl_name such as deleting rows in response to
actions taken on rows in the table which you are defining; in other words, this syntax induces no ON

51

MySQL Differences from Standard SQL

DELETE or ON UPDATE behavior whatsoever. (Although you can write an ON DELETE or ON UPDATE
clause as part of the REFERENCES clause, it is also ignored.)

• This syntax creates a column; it does not create any sort of index or key.

You can use a column so created as a join column, as shown here:

CREATE TABLE person (
 id SMALLINT UNSIGNED NOT NULL AUTO_INCREMENT,
 name CHAR(60) NOT NULL,
 PRIMARY KEY (id)
);

CREATE TABLE shirt (
 id SMALLINT UNSIGNED NOT NULL AUTO_INCREMENT,
 style ENUM('t-shirt', 'polo', 'dress') NOT NULL,
 color ENUM('red', 'blue', 'orange', 'white', 'black') NOT NULL,
 owner SMALLINT UNSIGNED NOT NULL REFERENCES person(id),
 PRIMARY KEY (id)
);

INSERT INTO person VALUES (NULL, 'Antonio Paz');

SELECT @last := LAST_INSERT_ID();

INSERT INTO shirt VALUES
(NULL, 'polo', 'blue', @last),
(NULL, 'dress', 'white', @last),
(NULL, 't-shirt', 'blue', @last);

INSERT INTO person VALUES (NULL, 'Lilliana Angelovska');

SELECT @last := LAST_INSERT_ID();

INSERT INTO shirt VALUES
(NULL, 'dress', 'orange', @last),
(NULL, 'polo', 'red', @last),
(NULL, 'dress', 'blue', @last),
(NULL, 't-shirt', 'white', @last);

SELECT * FROM person;
+----+---------------------+
| id | name |
+----+---------------------+
| 1 | Antonio Paz |
| 2 | Lilliana Angelovska |
+----+---------------------+

SELECT * FROM shirt;
+----+---------+--------+-------+
| id | style | color | owner |
+----+---------+--------+-------+
1	polo	blue	1
2	dress	white	1
3	t-shirt	blue	1
4	dress	orange	2
5	polo	red	2
6	dress	blue	2
7	t-shirt	white	2
+----+---------+--------+-------+

SELECT s.* FROM person p INNER JOIN shirt s
 ON s.owner = p.id
 WHERE p.name LIKE 'Lilliana%'
 AND s.color <> 'white';

52

How MySQL Deals with Constraints

+----+-------+--------+-------+
| id | style | color | owner |
+----+-------+--------+-------+
4	dress	orange	2
5	polo	red	2
6	dress	blue	2
+----+-------+--------+-------+

When used in this fashion, the REFERENCES clause is not displayed in the output of SHOW CREATE
TABLE or DESCRIBE:

SHOW CREATE TABLE shirt\G
*************************** 1. row ***************************
Table: shirt
Create Table: CREATE TABLE `shirt` (
`id` smallint(5) unsigned NOT NULL auto_increment,
`style` enum('t-shirt','polo','dress') NOT NULL,
`color` enum('red','blue','orange','white','black') NOT NULL,
`owner` smallint(5) unsigned NOT NULL,
PRIMARY KEY (`id`)
) ENGINE=MyISAM DEFAULT CHARSET=latin1

For information about foreign key constraints, see Section 13.1.18.5, “FOREIGN KEY Constraints”.

1.6.2.4 '--' as the Start of a Comment

Standard SQL uses the C syntax /* this is a comment */ for comments, and MySQL Server
supports this syntax as well. MySQL also support extensions to this syntax that enable MySQL-specific
SQL to be embedded in the comment; see Section 9.6, “Comments”.

MySQL Server also uses # as the start comment character. This is nonstandard.

Standard SQL also uses “--” as a start-comment sequence. MySQL Server supports a variant of the --
comment style; the -- start-comment sequence is accepted as such, but must be followed by a whitespace
character such as a space or newline. The space is intended to prevent problems with generated SQL
queries that use constructs such as the following, which updates the balance to reflect a charge:

UPDATE account SET balance=balance-charge
WHERE account_id=user_id

Consider what happens when charge has a negative value such as -1, which might be the case when an
amount is credited to the account. In this case, the generated statement looks like this:

UPDATE account SET balance=balance--1
WHERE account_id=5752;

balance--1 is valid standard SQL, but -- is interpreted as the start of a comment, and part of the
expression is discarded. The result is a statement that has a completely different meaning than intended:

UPDATE account SET balance=balance
WHERE account_id=5752;

This statement produces no change in value at all. To keep this from happening, MySQL requires a
whitespace character following the -- for it to be recognized as a start-comment sequence in MySQL
Server, so that an expression such as balance--1 is always safe to use.

1.6.3 How MySQL Deals with Constraints

MySQL enables you to work both with transactional tables that permit rollback and with nontransactional
tables that do not. Because of this, constraint handling is a bit different in MySQL than in other DBMSs. We

53

How MySQL Deals with Constraints

must handle the case when you have inserted or updated a lot of rows in a nontransactional table for which
changes cannot be rolled back when an error occurs.

The basic philosophy is that MySQL Server tries to produce an error for anything that it can detect while
parsing a statement to be executed, and tries to recover from any errors that occur while executing the
statement. We do this in most cases, but not yet for all.

The options MySQL has when an error occurs are to stop the statement in the middle or to recover as well
as possible from the problem and continue. By default, the server follows the latter course. This means, for
example, that the server may coerce invalid values to the closest valid values.

Several SQL mode options are available to provide greater control over handling of bad data values
and whether to continue statement execution or abort when errors occur. Using these options, you can
configure MySQL Server to act in a more traditional fashion that is like other DBMSs that reject improper
input. The SQL mode can be set globally at server startup to affect all clients. Individual clients can
set the SQL mode at runtime, which enables each client to select the behavior most appropriate for its
requirements. See Section 5.1.10, “Server SQL Modes”.

The following sections describe how MySQL Server handles different types of constraints.

1.6.3.1 PRIMARY KEY and UNIQUE Index Constraints

Normally, errors occur for data-change statements (such as INSERT or UPDATE) that would violate
primary-key, unique-key, or foreign-key constraints. If you are using a transactional storage engine such
as InnoDB, MySQL automatically rolls back the statement. If you are using a nontransactional storage
engine, MySQL stops processing the statement at the row for which the error occurred and leaves any
remaining rows unprocessed.

MySQL supports an IGNORE keyword for INSERT, UPDATE, and so forth. If you use it, MySQL ignores
primary-key or unique-key violations and continues processing with the next row. See the section for the
statement that you are using (Section 13.2.5, “INSERT Statement”, Section 13.2.11, “UPDATE Statement”,
and so forth).

You can get information about the number of rows actually inserted or updated with the mysql_info() C
API function. You can also use the SHOW WARNINGS statement. See mysql_info(), and Section 13.7.5.40,
“SHOW WARNINGS Statement”.

InnoDB and NDB tables support foreign keys. See Section 1.6.3.2, “FOREIGN KEY Constraints”.

1.6.3.2 FOREIGN KEY Constraints

Foreign keys let you cross-reference related data across tables, and foreign key constraints help keep this
spread-out data consistent.

MySQL supports ON UPDATE and ON DELETE foreign key references in CREATE TABLE and ALTER
TABLE statements. The available referential actions are RESTRICT (the default), CASCADE, SET NULL,
and NO ACTION.

SET DEFAULT is also supported by the MySQL Server but is currently rejected as invalid by InnoDB.
Since MySQL does not support deferred constraint checking, NO ACTION is treated as RESTRICT. For the
exact syntax supported by MySQL for foreign keys, see Section 13.1.18.5, “FOREIGN KEY Constraints”.

MATCH FULL, MATCH PARTIAL, and MATCH SIMPLE are allowed, but their use should be avoided,
as they cause the MySQL Server to ignore any ON DELETE or ON UPDATE clause used in the same
statement. MATCH options do not have any other effect in MySQL, which in effect enforces MATCH SIMPLE
semantics full-time.

54

https://dev.mysql.com/doc/c-api/5.7/en/mysql-info.html
https://dev.mysql.com/doc/c-api/5.7/en/mysql-info.html

How MySQL Deals with Constraints

MySQL requires that foreign key columns be indexed; if you create a table with a foreign key constraint but
no index on a given column, an index is created.

You can obtain information about foreign keys from the Information Schema KEY_COLUMN_USAGE table.
An example of a query against this table is shown here:

mysql> SELECT TABLE_SCHEMA, TABLE_NAME, COLUMN_NAME, CONSTRAINT_NAME
 > FROM INFORMATION_SCHEMA.KEY_COLUMN_USAGE
 > WHERE REFERENCED_TABLE_SCHEMA IS NOT NULL;
+--------------+---------------+-------------+-----------------+
| TABLE_SCHEMA | TABLE_NAME | COLUMN_NAME | CONSTRAINT_NAME |
+--------------+---------------+-------------+-----------------+
fk1	myuser	myuser_id	f
fk1	product_order	customer_id	f2
fk1	product_order	product_id	f1
+--------------+---------------+-------------+-----------------+
3 rows in set (0.01 sec)

Information about foreign keys on InnoDB tables can also be found in the INNODB_SYS_FOREIGN and
INNODB_SYS_FOREIGN_COLS tables, in the INFORMATION_SCHEMA database.

InnoDB and NDB tables support foreign keys.

1.6.3.3 Constraints on Invalid Data

MySQL 5.7.5 and later uses strict SQL mode by default, which treats invalid values such that the server
rejects them and aborts the statement in which they occur (see Section 5.1.10, “Server SQL Modes”).
Previously, MySQL was much more forgiving of incorrect values used in data entry; this now requires
disabling of strict mode, which is not recommended. The remainder of this section discusses the old
behavior followed by MySQL when strict mode has been disabled.

If you are not using strict mode, then whenever you insert an “incorrect” value into a column, such as
a NULL into a NOT NULL column or a too-large numeric value into a numeric column, MySQL sets the
column to the “best possible value” instead of producing an error: The following rules describe in more
detail how this works:

• If you try to store an out of range value into a numeric column, MySQL Server instead stores zero, the
smallest possible value, or the largest possible value, whichever is closest to the invalid value.

• For strings, MySQL stores either the empty string or as much of the string as can be stored in the
column.

• If you try to store a string that does not start with a number into a numeric column, MySQL Server stores
0.

• Invalid values for ENUM and SET columns are handled as described in Section 1.6.3.4, “ENUM and SET
Constraints”.

• MySQL permits you to store certain incorrect date values into DATE and DATETIME columns (such
as '2000-02-31' or '2000-02-00'). In this case, when an application has not enabled strict SQL
mode, it up to the application to validate the dates before storing them. If MySQL can store a date value
and retrieve exactly the same value, MySQL stores it as given. If the date is totally wrong (outside the
server's ability to store it), the special “zero” date value '0000-00-00' is stored in the column instead.

• If you try to store NULL into a column that does not take NULL values, an error occurs for single-
row INSERT statements. For multiple-row INSERT statements or for INSERT INTO ... SELECT
statements, MySQL Server stores the implicit default value for the column data type. In general, this is
0 for numeric types, the empty string ('') for string types, and the “zero” value for date and time types.
Implicit default values are discussed in Section 11.6, “Data Type Default Values”.

55

How MySQL Deals with Constraints

• If an INSERT statement specifies no value for a column, MySQL inserts its default value if the column
definition includes an explicit DEFAULT clause. If the definition has no such DEFAULT clause, MySQL
inserts the implicit default value for the column data type.

The reason for using the preceding rules when strict mode is not in effect is that we cannot check these
conditions until the statement has begun executing. We cannot just roll back if we encounter a problem
after updating a few rows, because the storage engine may not support rollback. The option of terminating
the statement is not that good; in this case, the update would be “half done,” which is probably the
worst possible scenario. In this case, it is better to “do the best you can” and then continue as if nothing
happened.

You can select stricter treatment of input values by using the STRICT_TRANS_TABLES or
STRICT_ALL_TABLES SQL modes:

SET sql_mode = 'STRICT_TRANS_TABLES';
SET sql_mode = 'STRICT_ALL_TABLES';

STRICT_TRANS_TABLES enables strict mode for transactional storage engines, and also to some extent
for nontransactional engines. It works like this:

• For transactional storage engines, bad data values occurring anywhere in a statement cause the
statement to abort and roll back.

• For nontransactional storage engines, a statement aborts if the error occurs in the first row to be inserted
or updated. (When the error occurs in the first row, the statement can be aborted to leave the table
unchanged, just as for a transactional table.) Errors in rows after the first do not abort the statement,
because the table has already been changed by the first row. Instead, bad data values are adjusted
and result in warnings rather than errors. In other words, with STRICT_TRANS_TABLES, a wrong value
causes MySQL to roll back all updates done so far, if that can be done without changing the table. But
once the table has been changed, further errors result in adjustments and warnings.

For even stricter checking, enable STRICT_ALL_TABLES. This is the same as STRICT_TRANS_TABLES
except that for nontransactional storage engines, errors abort the statement even for bad data in rows
following the first row. This means that if an error occurs partway through a multiple-row insert or update
for a nontransactional table, a partial update results. Earlier rows are inserted or updated, but those from
the point of the error on are not. To avoid this for nontransactional tables, either use single-row statements
or else use STRICT_TRANS_TABLES if conversion warnings rather than errors are acceptable. To avoid
problems in the first place, do not use MySQL to check column content. It is safest (and often faster) to let
the application ensure that it passes only valid values to the database.

With either of the strict mode options, you can cause errors to be treated as warnings by using INSERT
IGNORE or UPDATE IGNORE rather than INSERT or UPDATE without IGNORE.

1.6.3.4 ENUM and SET Constraints

ENUM and SET columns provide an efficient way to define columns that can contain only a given set of
values. See Section 11.3.5, “The ENUM Type”, and Section 11.3.6, “The SET Type”.

Unless strict mode is disabled (not recommended, but see Section 5.1.10, “Server SQL Modes”), the
definition of a ENUM or SET column acts as a constraint on values entered into the column. An error occurs
for values that do not satisfy these conditions:

• An ENUM value must be one of those listed in the column definition, or the internal numeric equivalent
thereof. The value cannot be the error value (that is, 0 or the empty string). For a column defined as
ENUM('a','b','c'), values such as '', 'd', or 'ax' are invalid and are rejected.

56

How MySQL Deals with Constraints

• A SET value must be the empty string or a value consisting only of the values listed in the column
definition separated by commas. For a column defined as SET('a','b','c'), values such as 'd' or
'a,b,c,d' are invalid and are rejected.

Errors for invalid values can be suppressed in strict mode if you use INSERT IGNORE or UPDATE
IGNORE. In this case, a warning is generated rather than an error. For ENUM, the value is inserted as the
error member (0). For SET, the value is inserted as given except that any invalid substrings are deleted.
For example, 'a,x,b,y' results in a value of 'a,b'.

57

58

Chapter 2 Installing and Upgrading MySQL

Table of Contents
2.1 General Installation Guidance ... 62

2.1.1 Supported Platforms .. 62
2.1.2 Which MySQL Version and Distribution to Install ... 62
2.1.3 How to Get MySQL ... 63
2.1.4 Verifying Package Integrity Using MD5 Checksums or GnuPG ... 63
2.1.5 Installation Layouts .. 80
2.1.6 Compiler-Specific Build Characteristics ... 81

2.2 Installing MySQL on Unix/Linux Using Generic Binaries .. 81
2.3 Installing MySQL on Microsoft Windows .. 84

2.3.1 MySQL Installation Layout on Microsoft Windows .. 87
2.3.2 Choosing an Installation Package ... 88
2.3.3 MySQL Installer for Windows ... 89
2.3.4 Installing MySQL on Microsoft Windows Using a noinstall ZIP Archive 120
2.3.5 Troubleshooting a Microsoft Windows MySQL Server Installation 128
2.3.6 Windows Postinstallation Procedures .. 130
2.3.7 Windows Platform Restrictions .. 132

2.4 Installing MySQL on macOS ... 133
2.4.1 General Notes on Installing MySQL on macOS ... 134
2.4.2 Installing MySQL on macOS Using Native Packages ... 135
2.4.3 Installing a MySQL Launch Daemon ... 141
2.4.4 Installing and Using the MySQL Preference Pane .. 144

2.5 Installing MySQL on Linux .. 149
2.5.1 Installing MySQL on Linux Using the MySQL Yum Repository .. 150
2.5.2 Replacing a Third-Party Distribution of MySQL Using the MySQL Yum Repository 154
2.5.3 Installing MySQL on Linux Using the MySQL APT Repository .. 157
2.5.4 Installing MySQL on Linux Using the MySQL SLES Repository .. 157
2.5.5 Installing MySQL on Linux Using RPM Packages from Oracle .. 157
2.5.6 Installing MySQL on Linux Using Debian Packages from Oracle 162
2.5.7 Deploying MySQL on Linux with Docker ... 163
2.5.8 Installing MySQL on Linux from the Native Software Repositories 174
2.5.9 Installing MySQL on Linux with Juju ... 177
2.5.10 Managing MySQL Server with systemd ... 177

2.6 Installing MySQL Using Unbreakable Linux Network (ULN) ... 182
2.7 Installing MySQL on Solaris .. 183

2.7.1 Installing MySQL on Solaris Using a Solaris PKG .. 184
2.8 Installing MySQL from Source ... 185

2.8.1 Source Installation Methods .. 185
2.8.2 Source Installation Prerequisites ... 186
2.8.3 MySQL Layout for Source Installation ... 187
2.8.4 Installing MySQL Using a Standard Source Distribution ... 187
2.8.5 Installing MySQL Using a Development Source Tree ... 192
2.8.6 Configuring SSL Library Support ... 193
2.8.7 MySQL Source-Configuration Options ... 194
2.8.8 Dealing with Problems Compiling MySQL ... 220
2.8.9 MySQL Configuration and Third-Party Tools .. 221

2.9 Postinstallation Setup and Testing ... 222
2.9.1 Initializing the Data Directory .. 222
2.9.2 Starting the Server ... 228

59

2.9.3 Testing the Server ... 231
2.9.4 Securing the Initial MySQL Account .. 233
2.9.5 Starting and Stopping MySQL Automatically .. 235

2.10 Upgrading MySQL .. 236
2.10.1 Before You Begin ... 236
2.10.2 Upgrade Paths ... 237
2.10.3 Changes in MySQL 5.7 .. 237
2.10.4 Upgrading MySQL Binary or Package-based Installations on Unix/Linux 247
2.10.5 Upgrading MySQL with the MySQL Yum Repository .. 250
2.10.6 Upgrading MySQL with the MySQL APT Repository .. 252
2.10.7 Upgrading MySQL with the MySQL SLES Repository .. 252
2.10.8 Upgrading MySQL on Windows .. 252
2.10.9 Upgrading a Docker Installation of MySQL .. 254
2.10.10 Upgrading MySQL with Directly-Downloaded RPM Packages 254
2.10.11 Upgrade Troubleshooting .. 255
2.10.12 Rebuilding or Repairing Tables or Indexes .. 256
2.10.13 Copying MySQL Databases to Another Machine .. 257

2.11 Downgrading MySQL .. 258
2.11.1 Before You Begin ... 259
2.11.2 Downgrade Paths ... 259
2.11.3 Downgrade Notes .. 259
2.11.4 Downgrading Binary and Package-based Installations on Unix/Linux 262
2.11.5 Downgrade Troubleshooting ... 265

2.12 Perl Installation Notes ... 265
2.12.1 Installing Perl on Unix .. 265
2.12.2 Installing ActiveState Perl on Windows .. 266
2.12.3 Problems Using the Perl DBI/DBD Interface .. 267

This chapter describes how to obtain and install MySQL. A summary of the procedure follows and later
sections provide the details. If you plan to upgrade an existing version of MySQL to a newer version rather
than install MySQL for the first time, see Section 2.10, “Upgrading MySQL”, for information about upgrade
procedures and about issues that you should consider before upgrading.

If you are interested in migrating to MySQL from another database system, see Section A.8, “MySQL 5.7
FAQ: Migration”, which contains answers to some common questions concerning migration issues.

Installation of MySQL generally follows the steps outlined here:

1. Determine whether MySQL runs and is supported on your platform.

Please note that not all platforms are equally suitable for running MySQL, and that not all platforms
on which MySQL is known to run are officially supported by Oracle Corporation. For information about
those platforms that are officially supported, see https://www.mysql.com/support/supportedplatforms/
database.html on the MySQL website.

2. Choose which distribution to install.

Several versions of MySQL are available, and most are available in several distribution formats. You
can choose from pre-packaged distributions containing binary (precompiled) programs or source code.
When in doubt, use a binary distribution. Oracle also provides access to the MySQL source code for
those who want to see recent developments and test new code. To determine which version and type
of distribution you should use, see Section 2.1.2, “Which MySQL Version and Distribution to Install”.

3. Download the distribution that you want to install.

60

https://www.mysql.com/support/supportedplatforms/database.html
https://www.mysql.com/support/supportedplatforms/database.html

For instructions, see Section 2.1.3, “How to Get MySQL”. To verify the integrity of the distribution, use
the instructions in Section 2.1.4, “Verifying Package Integrity Using MD5 Checksums or GnuPG”.

4. Install the distribution.

To install MySQL from a binary distribution, use the instructions in Section 2.2, “Installing MySQL on
Unix/Linux Using Generic Binaries”. Alternatively, use the Secure Deployment Guide, which provides
procedures for deploying a generic binary distribution of MySQL Enterprise Edition Server with features
for managing the security of your MySQL installation.

To install MySQL from a source distribution or from the current development source tree, use the
instructions in Section 2.8, “Installing MySQL from Source”.

5. Perform any necessary postinstallation setup.

After installing MySQL, see Section 2.9, “Postinstallation Setup and Testing” for information about
making sure the MySQL server is working properly. Also refer to the information provided in
Section 2.9.4, “Securing the Initial MySQL Account”. This section describes how to secure the initial
MySQL root user account, which has no password until you assign one. The section applies whether
you install MySQL using a binary or source distribution.

6. If you want to run the MySQL benchmark scripts, Perl support for MySQL must be available. See
Section 2.12, “Perl Installation Notes”.

Instructions for installing MySQL on different platforms and environments is available on a platform by
platform basis:

• Unix, Linux

For instructions on installing MySQL on most Linux and Unix platforms using a generic binary (for
example, a .tar.gz package), see Section 2.2, “Installing MySQL on Unix/Linux Using Generic
Binaries”.

For information on building MySQL entirely from the source code distributions or the source code
repositories, see Section 2.8, “Installing MySQL from Source”

For specific platform help on installation, configuration, and building from source see the corresponding
platform section:

• Linux, including notes on distribution specific methods, see Section 2.5, “Installing MySQL on Linux”.

• Solaris, including PKG and IPS formats, see Section 2.7, “Installing MySQL on Solaris”.

• IBM AIX, see Section 2.7, “Installing MySQL on Solaris”.

• Microsoft Windows

For instructions on installing MySQL on Microsoft Windows, using either the MySQL Installer or Zipped
binary, see Section 2.3, “Installing MySQL on Microsoft Windows”.

For details and instructions on building MySQL from source code using Microsoft Visual Studio, see
Section 2.8, “Installing MySQL from Source”.

• macOS

For installation on macOS, including using both the binary package and native PKG formats, see
Section 2.4, “Installing MySQL on macOS”.

61

https://dev.mysql.com/doc/mysql-secure-deployment-guide/5.7/en/

General Installation Guidance

For information on making use of an macOS Launch Daemon to automatically start and stop MySQL,
see Section 2.4.3, “Installing a MySQL Launch Daemon”.

For information on the MySQL Preference Pane, see Section 2.4.4, “Installing and Using the MySQL
Preference Pane”.

2.1 General Installation Guidance
The immediately following sections contain the information necessary to choose, download, and verify your
distribution. The instructions in later sections of the chapter describe how to install the distribution that you
choose. For binary distributions, see the instructions at Section 2.2, “Installing MySQL on Unix/Linux Using
Generic Binaries” or the corresponding section for your platform if available. To build MySQL from source,
use the instructions in Section 2.8, “Installing MySQL from Source”.

2.1.1 Supported Platforms

MySQL platform support evolves over time; please refer to https://www.mysql.com/support/
supportedplatforms/database.html for the latest updates.

2.1.2 Which MySQL Version and Distribution to Install

When preparing to install MySQL, decide which version and distribution format (binary or source) to use.

First, decide whether to install a development release or a General Availability (GA) release. Development
releases have the newest features, but are not recommended for production use. GA releases, also called
production or stable releases, are meant for production use. We recommend using the most recent GA
release.

The naming scheme in MySQL 5.7 uses release names that consist of three numbers and an optional
suffix; for example, mysql-5.7.1-m1. The numbers within the release name are interpreted as follows:

• The first number (5) is the major version number.

• The second number (7) is the minor version number. Taken together, the major and minor numbers
constitute the release series number. The series number describes the stable feature set.

• The third number (1) is the version number within the release series. This is incremented for each new
bugfix release. In most cases, the most recent version within a series is the best choice.

Release names can also include a suffix to indicate the stability level of the release. Releases within a
series progress through a set of suffixes to indicate how the stability level improves. The possible suffixes
are:

• mN (for example, m1, m2, m3, ...) indicates a milestone number. MySQL development uses a milestone
model, in which each milestone introduces a small subset of thoroughly tested features. From one
milestone to the next, feature interfaces may change or features may even be removed, based on
feedback provided by community members who try these early releases. Features within milestone
releases may be considered to be of pre-production quality.

• rc indicates a Release Candidate (RC). Release candidates are believed to be stable, having passed all
of MySQL's internal testing. New features may still be introduced in RC releases, but the focus shifts to
fixing bugs to stabilize features introduced earlier within the series.

• Absence of a suffix indicates a General Availability (GA) or Production release. GA releases are stable,
having successfully passed through the earlier release stages, and are believed to be reliable, free of
serious bugs, and suitable for use in production systems.

62

https://www.mysql.com/support/supportedplatforms/database.html
https://www.mysql.com/support/supportedplatforms/database.html

How to Get MySQL

Development within a series begins with milestone releases, followed by RC releases, and finally reaches
GA status releases.

After choosing which MySQL version to install, decide which distribution format to install for your operating
system. For most use cases, a binary distribution is the right choice. Binary distributions are available
in native format for many platforms, such as RPM packages for Linux or DMG packages for macOS.
Distributions are also available in more generic formats such as Zip archives or compressed tar files. On
Windows, you can use the MySQL Installer to install a binary distribution.

Under some circumstances, it may be preferable to install MySQL from a source distribution:

• You want to install MySQL at some explicit location. The standard binary distributions are ready to run at
any installation location, but you might require even more flexibility to place MySQL components where
you want.

• You want to configure mysqld with features that might not be included in the standard binary
distributions. Here is a list of the most common extra options used to ensure feature availability:

• -DWITH_LIBWRAP=1 for TCP wrappers support.

• -DWITH_ZLIB={system|bundled} for features that depend on compression

• -DWITH_DEBUG=1 for debugging support

For additional information, see Section 2.8.7, “MySQL Source-Configuration Options”.

• You want to configure mysqld without some features that are included in the standard binary
distributions. For example, distributions normally are compiled with support for all character sets. If you
want a smaller MySQL server, you can recompile it with support for only the character sets you need.

• You want to read or modify the C and C++ code that makes up MySQL. For this purpose, obtain a
source distribution.

• Source distributions contain more tests and examples than binary distributions.

2.1.3 How to Get MySQL

Check our downloads page at https://dev.mysql.com/downloads/ for information about the current version
of MySQL and for downloading instructions.

For RPM-based Linux platforms that use Yum as their package management system, MySQL can be
installed using the MySQL Yum Repository. See Section 2.5.1, “Installing MySQL on Linux Using the
MySQL Yum Repository” for details.

For Debian-based Linux platforms, MySQL can be installed using the MySQL APT Repository. See
Section 2.5.3, “Installing MySQL on Linux Using the MySQL APT Repository” for details.

For SUSE Linux Enterprise Server (SLES) platforms, MySQL can be installed using the MySQL SLES
Repository. See Section 2.5.4, “Installing MySQL on Linux Using the MySQL SLES Repository” for details.

To obtain the latest development source, see Section 2.8.5, “Installing MySQL Using a Development
Source Tree”.

2.1.4 Verifying Package Integrity Using MD5 Checksums or GnuPG

After downloading the MySQL package that suits your needs and before attempting to install it, make sure
that it is intact and has not been tampered with. There are three means of integrity checking:

63

https://dev.mysql.com/downloads/
https://dev.mysql.com/downloads/repo/yum/
https://dev.mysql.com/downloads/repo/apt/
https://dev.mysql.com/downloads/repo/suse/
https://dev.mysql.com/downloads/repo/suse/

Verifying Package Integrity Using MD5 Checksums or GnuPG

• MD5 checksums

• Cryptographic signatures using GnuPG, the GNU Privacy Guard

• For RPM packages, the built-in RPM integrity verification mechanism

The following sections describe how to use these methods.

If you notice that the MD5 checksum or GPG signatures do not match, first try to download the respective
package one more time, perhaps from another mirror site.

2.1.4.1 Verifying the MD5 Checksum

After you have downloaded a MySQL package, you should make sure that its MD5 checksum matches
the one provided on the MySQL download pages. Each package has an individual checksum that you can
verify against the package that you downloaded. The correct MD5 checksum is listed on the downloads
page for each MySQL product; compare it against the MD5 checksum of the file (product) that you
download.

Each operating system and setup offers its own version of tools for checking the MD5 checksum. Typically
the command is named md5sum, or it may be named md5, and some operating systems do not ship it at
all. On Linux, it is part of the GNU Text Utilities package, which is available for a wide range of platforms.
You can also download the source code from http://www.gnu.org/software/textutils/. If you have OpenSSL
installed, you can use the command openssl md5 package_name instead. A Windows implementation
of the md5 command line utility is available from http://www.fourmilab.ch/md5/. winMd5Sum is a graphical
MD5 checking tool that can be obtained from http://www.nullriver.com/index/products/winmd5sum. Our
Microsoft Windows examples assume the name md5.exe.

Linux and Microsoft Windows examples:

$> md5sum mysql-standard-5.7.44-linux-i686.tar.gz
aaab65abbec64d5e907dcd41b8699945 mysql-standard-5.7.44-linux-i686.tar.gz

$> md5.exe mysql-installer-community-5.7.44.msi
aaab65abbec64d5e907dcd41b8699945 mysql-installer-community-5.7.44.msi

You should verify that the resulting checksum (the string of hexadecimal digits) matches the one displayed
on the download page immediately below the respective package.

Note

Make sure to verify the checksum of the archive file (for example, the .zip,
.tar.gz, or .msi file) and not of the files that are contained inside of the archive.
In other words, verify the file before extracting its contents.

2.1.4.2 Signature Checking Using GnuPG

Another method of verifying the integrity and authenticity of a package is to use cryptographic signatures.
This is more reliable than using MD5 checksums, but requires more work.

We sign MySQL downloadable packages with GnuPG (GNU Privacy Guard). GnuPG is an Open Source
alternative to the well-known Pretty Good Privacy (PGP) by Phil Zimmermann. Most Linux distributions ship
with GnuPG installed by default. Otherwise, see http://www.gnupg.org/ for more information about GnuPG
and how to obtain and install it.

To verify the signature for a specific package, you first need to obtain a copy of our public GPG build
key, which you can download from http://pgp.mit.edu/. The key that you want to obtain is named mysql-

64

http://www.gnu.org/software/textutils/
http://www.fourmilab.ch/md5/
http://www.nullriver.com/index/products/winmd5sum
http://www.gnupg.org/
http://pgp.mit.edu/

Verifying Package Integrity Using MD5 Checksums or GnuPG

build@oss.oracle.com. The keyID for MySQL 5.7.37 packages and higher is 3A79BD29. After
obtaining this key, you should compare it with the key shown following, before using it verify MySQL
packages. Alternatively, you can copy and paste the key directly from the text below.

Note

The following public GPG build key is for MySQL 5.7.37 packages and higher. For
the public GPG build key for earlier MySQL release packages (keyID 5072E1F5),
see Section 2.1.4.5, “GPG Public Build Key for Archived Packages”.

-----BEGIN PGP PUBLIC KEY BLOCK-----
Version: SKS 1.1.6
Comment: Hostname: pgp.mit.edu

mQINBGG4urcBEACrbsRa7tSSyxSfFkB+KXSbNM9rxYqoB78u107skReefq4/+Y72TpDvlDZL
mdv/lK0IpLa3bnvsM9IE1trNLrfi+JES62kaQ6hePPgn2RqxyIirt2seSi3Z3n3jlEg+mSdh
AvW+b+hFnqxo+TY0U+RBwDi4oO0YzHefkYPSmNPdlxRPQBMv4GPTNfxERx6XvVSPcL1+jQ4R
2cQFBryNhidBFIkoCOszjWhm+WnbURsLheBp757lqEyrpCufz77zlq2gEi+wtPHItfqsx3rz
xSRqatztMGYZpNUHNBJkr13npZtGW+kdN/xu980QLZxN+bZ88pNoOuzD6dKcpMJ0LkdUmTx5
z9ewiFiFbUDzZ7PECOm2g3veJrwr79CXDLE1+39Hr8rDM2kDhSr9tAlPTnHVDcaYIGgSNIBc
YfLmt91133klHQHBIdWCNVtWJjq5YcLQJ9TxG9GQzgABPrm6NDd1t9j7w1L7uwBvMB1wgpir
RTPVfnUSCd+025PEF+wTcBhfnzLtFj5xD7mNsmDmeHkF/sDfNOfAzTE1v2wq0ndYU60xbL6/
yl/Nipyr7WiQjCG0m3WfkjjVDTfs7/DXUqHFDOu4WMF9v+oqwpJXmAeGhQTWZC/QhWtrjrNJ
AgwKpp263gDSdW70ekhRzsok1HJwX1SfxHJYCMFs2aH6ppzNsQARAQABtDZNeVNRTCBSZWxl
YXNlIEVuZ2luZWVyaW5nIDxteXNxbC1idWlsZEBvc3Mub3JhY2xlLmNvbT6JAlQEEwEIAD4W
IQSFm+jXxYb1OEMLGcJGe5QtOnm9KQUCYbi6twIbAwUJA8JnAAULCQgHAgYVCgkICwIEFgID
AQIeAQIXgAAKCRBGe5QtOnm9KUewD/992sS31WLGoUQ6NoL7qOB4CErkqXtMzpJAKKg2jtBG
G3rKE1/0VAg1D8AwEK4LcCO407wohnH0hNiUbeDck5x20pgS5SplQpuXX1K9vPzHeL/WNTb9
8S3H2Mzj4o9obED6Ey52tTupttMF8pC9TJ93LxbJlCHIKKwCA1cXud3GycRN72eqSqZfJGds
aeWLmFmHf6oee27d8XLoNjbyAxna/4jdWoTqmp8oT3bgv/TBco23NzqUSVPi+7ljS1hHvcJu
oJYqaztGrAEf/lWIGdfl/kLEh8IYx8OBNUojh9mzCDlwbs83CBqoUdlzLNDdwmzu34Aw7xK1
4RAVinGFCpo/7EWoX6weyB/zqevUIIE89UABTeFoGih/hx2jdQV/NQNthWTW0jH0hmPnajBV
AJPYwAuO82rx2pnZCxDATMn0elOkTue3PCmzHBF/GT6c65aQC4aojj0+Veh787QllQ9FrWbw
nTz+4fNzU/MBZtyLZ4JnsiWUs9eJ2V1g/A+RiIKu357Qgy1ytLqlgYiWfzHFlYjdtbPYKjDa
ScnvtY8VO2Rktm7XiV4zKFKiaWp+vuVYpR0/7Adgnlj5Jt9lQQGOr+Z2VYx8SvBcC+by3XAt
YkRHtX5u4MLlVS3gcoWfDiWwCpvqdK21EsXjQJxRr3dbSn0HaVj4FJZX0QQ7WZm6WLkCDQRh
uLq3ARAA6RYjqfC0YcLGKvHhoBnsX29vy9Wn1y2JYpEnPUIB8X0VOyz5/ALv4Hqtl4THkH+m
mMuhtndoq2BkCCk508jWBvKS1S+Bd2esB45BDDmIhuX3ozu9Xza4i1FsPnLkQ0uMZJv30ls2
pXFmskhYyzmo6aOmH2536LdtPSlXtywfNV1HEr69V/AHbrEzfoQkJ/qvPzELBOjfjwtDPDeP
iVgW9LhktzVzn/BjO7XlJxw4PGcxJG6VApsXmM3t2fPN9eIHDUq8ocbHdJ4en8/bJDXZd9eb
QoILUuCg46hE3p6nTXfnPwSRnIRnsgCzeAz4rxDR4/Gv1Xpzv5wqpL21XQi3nvZKlcv7J1IR
VdphK66De9GpVQVTqC102gqJUErdjGmxmyCA1OOORqEPfKTrXz5YUGsWwpH+4xCuNQP0qmre
Rw3ghrH8potIr0iOVXFic5vJfBTgtcuEB6E6ulAN+3jqBGTaBML0jxgj3Z5VC5HKVbpg2DbB
/wMrLwFHNAbzV5hj2Os5Zmva0ySP1YHB26pAW8dwB38GBaQvfZq3ezM4cRAo/iJ/GsVE98dZ
EBO+Ml+0KYj+ZG+vyxzo20sweun7ZKT+9qZM90f6cQ3zqX6IfXZHHmQJBNv73mcZWNhDQOHs
4wBoq+FGQWNqLU9xaZxdXw80r1viDAwOy13EUtcVbTkAEQEAAYkCPAQYAQgAJhYhBIWb6NfF
hvU4QwsZwkZ7lC06eb0pBQJhuLq3AhsMBQkDwmcAAAoJEEZ7lC06eb0pSi8P/iy+dNnxrtiE
Nn9vkkA7AmZ8RsvPXYVeDCDSsL7UfhbS77r2L1qTa2aB3gAZUDIOXln51lSxMeeLtOequLME
V2Xi5km70rdtnja5SmWfc9fyExunXnsOhg6UG872At5CGEZU0c2Nt/hlGtOR3xbt3O/Uwl+d
ErQPA4BUbW5K1T7OC6oPvtlKfF4bGZFloHgt2yE9YSNWZsTPe6XJSapemHZLPOxJLnhs3VBi
rWE31QS0bRl5AzlO/fg7ia65vQGMOCOTLpgChTbcZHtozeFqva4IeEgE4xN+6r8WtgSYeGGD
RmeMEVjPM9dzQObf+SvGd58u2z9f2agPK1H32c69RLoA0mHRe7Wkv4izeJUc5tumUY0e8Ojd
enZZjT3hjLh6tM+mrp2oWnQIoed4LxUw1dhMOj0rYXv6laLGJ1FsW5eSke7ohBLcfBBTKnMC
BohROHy2E63Wggfsdn3UYzfqZ8cfbXetkXuLS/OM3MXbiNjg+ElYzjgWrkayu7yLakZx+mx6
sHPIJYm2hzkniMG29d5mGl7ZT9emP9b+CfqGUxoXJkjs0gnDl44bwGJ0dmIBu3ajVAaHODXy
Y/zdDMGjskfEYbNXCAY2FRZSE58tgTvPKD++Kd2KGplMU2EIFT7JYfKhHAB5DGMkx92HUMid
sTSKHe+QnnnoFmu4gnmDU31i
=Xqbo
-----END PGP PUBLIC KEY BLOCK-----

To import the build key into your personal public GPG keyring, use gpg --import. For example, if you
have saved the key in a file named mysql_pubkey.asc, the import command looks like this:

$> gpg --import mysql_pubkey.asc

65

Verifying Package Integrity Using MD5 Checksums or GnuPG

gpg: key 3A79BD29: public key "MySQL Release Engineering
<mysql-build@oss.oracle.com>" imported
gpg: Total number processed: 1
gpg: imported: 1
gpg: no ultimately trusted keys found

You can also download the key from the public keyserver using the public key id, 3A79BD29:

$> gpg --recv-keys 3A79BD29
gpg: requesting key 3A79BD29 from hkp server keys.gnupg.net
gpg: key 3A79BD29: "MySQL Release Engineering <mysql-build@oss.oracle.com>"
1 new user ID
gpg: key 3A79BD29: "MySQL Release Engineering <mysql-build@oss.oracle.com>"
53 new signatures
gpg: no ultimately trusted keys found
gpg: Total number processed: 1
gpg: new user IDs: 1
gpg: new signatures: 53

If you want to import the key into your RPM configuration to validate RPM install packages, you should be
able to import the key directly:

$> rpm --import mysql_pubkey.asc

If you experience problems or require RPM specific information, see Section 2.1.4.4, “Signature Checking
Using RPM”.

After you have downloaded and imported the public build key, download your desired MySQL package
and the corresponding signature, which also is available from the download page. The signature file has
the same name as the distribution file with an .asc extension, as shown by the examples in the following
table.

Table 2.1 MySQL Package and Signature Files for Source files

File Type File Name

Distribution file mysql-standard-5.7.44-linux-
i686.tar.gz

Signature file mysql-standard-5.7.44-linux-
i686.tar.gz.asc

Make sure that both files are stored in the same directory and then run the following command to verify the
signature for the distribution file:

$> gpg --verify package_name.asc

If the downloaded package is valid, you should see a Good signature message similar to this one:

$> gpg --verify mysql-standard-5.7.44-linux-i686.tar.gz.asc
gpg: Signature made Tue 01 Feb 2011 02:38:30 AM CST using DSA key ID 3A79BD29
gpg: Good signature from "MySQL Release Engineering <mysql-build@oss.oracle.com>"

The Good signature message indicates that the file signature is valid, when compared to the signature
listed on our site. But you might also see warnings, like so:

$> gpg --verify mysql-standard-5.7.44-linux-i686.tar.gz.asc
gpg: Signature made Wed 23 Jan 2013 02:25:45 AM PST using DSA key ID 3A79BD29
gpg: checking the trustdb
gpg: no ultimately trusted keys found

66

Verifying Package Integrity Using MD5 Checksums or GnuPG

gpg: Good signature from "MySQL Release Engineering <mysql-build@oss.oracle.com>"
gpg: WARNING: This key is not certified with a trusted signature!
gpg: There is no indication that the signature belongs to the owner.
Primary key fingerprint: A4A9 4068 76FC BD3C 4567 70C8 8C71 8D3B 5072 E1F5

That is normal, as they depend on your setup and configuration. Here are explanations for these warnings:

• gpg: no ultimately trusted keys found: This means that the specific key is not "ultimately trusted" by you
or your web of trust, which is okay for the purposes of verifying file signatures.

• WARNING: This key is not certified with a trusted signature! There is no indication that the signature
belongs to the owner.: This refers to your level of trust in your belief that you possess our real public key.
This is a personal decision. Ideally, a MySQL developer would hand you the key in person, but more
commonly, you downloaded it. Was the download tampered with? Probably not, but this decision is up to
you. Setting up a web of trust is one method for trusting them.

See the GPG documentation for more information on how to work with public keys.

2.1.4.3 Signature Checking Using Gpg4win for Windows

The Section 2.1.4.2, “Signature Checking Using GnuPG” section describes how to verify MySQL
downloads using GPG. That guide also applies to Microsoft Windows, but another option is to use a GUI
tool like Gpg4win. You may use a different tool but our examples are based on Gpg4win, and utilize its
bundled Kleopatra GUI.

Download and install Gpg4win, and then load Kleopatra. The dialog should look similar to:

Figure 2.1 Kleopatra: Initial Screen

Next, add the MySQL Release Engineering certificate. Do this by clicking File, Lookup Certificates on
Server. Type "Mysql Release Engineering" into the search box and press Search.

67

http://www.gpg4win.org/

Verifying Package Integrity Using MD5 Checksums or GnuPG

Figure 2.2 Kleopatra: Lookup Certificates on Server Wizard: Finding a Certificate

Select the "MySQL Release Engineering" certificate. The Fingerprint and Key-ID must be "3A79BD29" for
MySQL 5.7.37 and higher or "5072E1F5" for MySQL 5.7.36 and earlier, or choose Details... to confirm the
certificate is valid. Now, import it by clicking Import. An import dialog is displayed; choose Okay, and this
certificate should now be listed under the Imported Certificates tab.

Next, configure the trust level for our certificate. Select our certificate, then from the main menu select
Certificates, Change Owner Trust.... We suggest choosing I believe checks are very accurate for our
certificate, as otherwise you might not be able to verify our signature. Select I believe checks are very
accurate to enable "full trust" and then press OK.

Figure 2.3 Kleopatra: Change Trust level for MySQL Release Engineering

68

Verifying Package Integrity Using MD5 Checksums or GnuPG

Next, verify the downloaded MySQL package file. This requires files for both the packaged file, and the
signature. The signature file must have the same name as the packaged file but with an appended .asc
extension, as shown by the example in the following table. The signature is linked to on the downloads
page for each MySQL product. You must create the .asc file with this signature.

Table 2.2 MySQL Package and Signature Files for MySQL Installer for Microsoft Windows

File Type File Name

Distribution file mysql-installer-community-5.7.44.msi

Signature file mysql-installer-
community-5.7.44.msi.asc

Make sure that both files are stored in the same directory and then run the following command to verify the
signature for the distribution file. Either drag and drop the signature (.asc) file into Kleopatra, or load the
dialog from File, Decrypt/Verify Files..., and then choose either the .msi or .asc file.

Figure 2.4 Kleopatra: The Decrypt and Verify Files Dialog

Click Decrypt/Verify to check the file. The two most common results look like the following, and although
the yellow warning looks problematic, the following means that the file check passed with success. You
may now run this installer.

69

Verifying Package Integrity Using MD5 Checksums or GnuPG

Figure 2.5 Kleopatra: the Decrypt and Verify Results Dialog: All operations completed

Seeing a red "The signature is bad" error means the file is invalid. Do not execute the MSI file if you see
this error.

Figure 2.6 Kleopatra: the Decrypt and Verify Results Dialog: Bad

70

Verifying Package Integrity Using MD5 Checksums or GnuPG

The Section 2.1.4.2, “Signature Checking Using GnuPG” section explains why you probably don't see a
green Good signature result.

2.1.4.4 Signature Checking Using RPM

For RPM packages, there is no separate signature. RPM packages have a built-in GPG signature and
MD5 checksum. You can verify a package by running the following command:

$> rpm --checksig package_name.rpm

Example:

$> rpm --checksig mysql-community-server-5.7.44-1.el8.x86_64.rpm
MySQL-server-5.7.44-1.el8.x86_64.rpm: digests signatures OK

Note

If you are using RPM 4.1 and it complains about (GPG) NOT OK (MISSING
KEYS: GPG#3a79bd29), even though you have imported the MySQL public build
key into your own GPG keyring, you need to import the key into the RPM keyring
first. RPM 4.1 no longer uses your personal GPG keyring (or GPG itself). Rather,
RPM maintains a separate keyring because it is a system-wide application and a
user's GPG public keyring is a user-specific file. To import the MySQL public key
into the RPM keyring, first obtain the key, then use rpm --import to import the
key. For example:

$> gpg --export -a 3a79bd29 > 3a79bd29.asc
$> rpm --import 3a79bd29.asc

Alternatively, rpm also supports loading the key directly from a URL:

$> rpm --import https://repo.mysql.com/RPM-GPG-KEY-mysql-2022

You can also obtain the MySQL public key from this manual page: Section 2.1.4.2, “Signature Checking
Using GnuPG”.

2.1.4.5 GPG Public Build Key for Archived Packages

The following GPG public build key (keyID 5072E1F5) can be used to verify the authenticity and integrity
of MySQL 5.7.36 packages and earlier. For signature checking instructions, see Section 2.1.4.2, “Signature
Checking Using GnuPG”.

GPG Public Build Key for MySQL 5.7.36 Packages and Earlier

-----BEGIN PGP PUBLIC KEY BLOCK-----
Version: SKS 1.1.6
Comment: Hostname: pgp.mit.edu

mQGiBD4+owwRBAC14GIfUfCyEDSIePvEW3SAFUdJBtoQHH/nJKZyQT7h9bPlUWC3RODjQRey
CITRrdwyrKUGku2FmeVGwn2u2WmDMNABLnpprWPkBdCk96+OmSLN9brZfw2vOUgCmYv2hW0h
yDHuvYlQA/BThQoADgj8AW6/0Lo7V1W9/8VuHP0gQwCgvzV3BqOxRznNCRCRxAuAuVztHRcE
AJooQK1+iSiunZMYD1WufeXfshc57S/+yeJkegNWhxwR9pRWVArNYJdDRT+rf2RUe3vpquKN
QU/hnEIUHJRQqYHo8gTxvxXNQc7fJYLVK2HtkrPbP72vwsEKMYhhr0eKCbtLGfls9krjJ6sB
gACyP/Vb7hiPwxh6rDZ7ITnEkYpXBACmWpP8NJTkamEnPCia2ZoOHODANwpUkP43I7jsDmgt
obZX9qnrAXw+uNDIQJEXM6FSbi0LLtZciNlYsafwAPEOMDKpMqAK6IyisNtPvaLd8lH0bPAn
Wqcyefeprv0sxxqUEMcM3o7wwgfN83POkDasDbs3pjwPhxvhz6//62zQJ7Q2TXlTUUwgUmVs
ZWFzZSBFbmdpbmVlcmluZyA8bXlzcWwtYnVpbGRAb3NzLm9yYWNsZS5jb20+iEYEEBECAAYF
AlldBJ4ACgkQvcMmpx2w8a2MYQCgga9wXfwOe/52xg0RTkhsbDQhvdAAn30njwoLBhKdDBxk
hVmwZQvzdYYNiGYEExECACYCGyMGCwkIBwMCBBUCCAMEFgIDAQIeAQIXgAUCTnc+KgUJE/sC
FQAKCRCMcY07UHLh9SbMAJ4l1+qBz2BZNSGCZwwA6YbhGPC7FwCgp8z5TzIw4YQuL5NGJ/sy
0oSazqmIZgQTEQIAJgUCTnc9dgIbIwUJEPPzpwYLCQgHAwIEFQIIAwQWAgMBAh4BAheAAAoJ
EIxxjTtQcuH1Ut4AoIKjhdf70899d+7JFq3LD7zeeyI0AJ9Z+YyE1HZSnzYi73brScilbIV6
sYhpBBMRAgApAhsjBgsJCAcDAgQVAggDBBYCAwECHgECF4ACGQEFAlGUkToFCRU3IaoACgkQ

71

Verifying Package Integrity Using MD5 Checksums or GnuPG

jHGNO1By4fWLQACfV6wP8ppZqMz2Z/gPZbPP7sDHE7EAn2kDDatXTZIR9pMgcnN0cff1tsX6
iGkEExECACkCGyMGCwkIBwMCBBUCCAMEFgIDAQIeAQIXgAIZAQUCUwHUZgUJGmbLywAKCRCM
cY07UHLh9V+DAKCjS1gGwgVI/eut+5L+l2v3ybl+ZgCcD7ZoA341HtoroV3U6xRD09fUgeqI
bAQTEQIALAIbIwIeAQIXgAIZAQYLCQgHAwIGFQoJCAIDBRYCAwEABQJYpXsIBQkeKT7NAAoJ
EIxxjTtQcuH1wrMAnRGuZVbriMR077KTGAVhJF2uKJiPAJ9rCpXYFve2IdxST2i7w8nygefV
a4hsBBMRAgAsAhsjAh4BAheAAhkBBgsJCAcDAgYVCgkIAgMFFgIDAQAFAlinBSAFCR4qyRQA
CgkQjHGNO1By4fVXBQCeOqVMlXfAWdq+QqaTAtbZskN3HkYAn1T8LlbIktFREeVlKrQEA7fg
6HrQiGwEExECACwCGyMCHgECF4ACGQEGCwkIBwMCBhUKCQgCAwUWAgMBAAUCXEBY+wUJI87e
5AAKCRCMcY07UHLh9RZPAJ9uvm0zlzfCN+DHxHVaoFLFjdVYTQCfborsC9tmEZYawhhogjeB
kZkorbyJARwEEAECAAYFAlAS6+UACgkQ8aIC+GoXHivrWwf/dtLk/x+NC2VMDlg+vOeM0qgG
1IlhXZfiNsEisvvGaz4m8fSFRGe+1bvvfDoKRhxiGXU48RusjixzvBb6KTMuY6JpOVfz9Dj3
H9spYriHa+i6rYySXZIpOhfLiMnTy7NH2OvYCyNzSS/ciIUACIfH/2NH8zNT5CNF1uPNRs7H
sHzzz7pOlTjtTWiF4cq/Ij6Z6CNrmdj+SiMvjYN9u6sdEKGtoNtpycgD5HGKR+I7Nd/7v56y
haUe4FpuvsNXig86K9tI6MUFS8CUyy7Hj3kVBZOUWVBM053knGdALSygQr50DA3jMGKVl4Zn
Hje2RVWRmFTr5YWoRTMxUSQPMLpBNIkBHAQQAQIABgUCU1B+vQAKCRAohbcD0zcc8dWwCACW
XXWDXIcAWRUw+j3ph8dr9u3SItljn3wBc7clpclKWPuLvTz7lGgzlVB0s8hH4xgkSA+zLzl6
u56mpUzskFl7f1I3Ac9GGpM40M5vmmR9hwlD1HdZtGfbD+wkjlqgitNLoRcGdRf/+U7x09Gh
SS7Bf339sunIX6sMgXSC4L32D3zDjF5icGdb0kj+3lCrRmp853dGyA3ff9yUiBkxcKNawpi7
Vz3D2ddUpOF3BP+8NKPg4P2+srKgkFbd4HidcISQCt3rY4vaTkEkLKg0nNA6U4r0YgOa7wIT
SsxFlntMMzaRg53QtK0+YkH0KuZR3GY8B7pi+tlgycyVR7mIFo7riQEcBBABAgAGBQJcSESc
AAoJENwpi/UwTWr2X/YH/0JLr/qBW7cDIx9admk5+vjPoUl6U6SGzCkIlfK24j90kU0oJxDn
FVwc9tcxGtxK8n6AEc5G0FQzjuXeYQ1SAHXquZ9CeGjidmsrRLVKXwOIcFZPBmfS9JBzdHa9
W1b99NWHOehWWnyIITVZ1KeBLbI7uoyXkvZgVp0REd37XWGgYEhT0JwAXnk4obH6djY3T/Hf
D70piuvFU7w84IRAqevUcaDppU/1QluDiOnViq6MAki85Z+uoM6ojUZtwmqXDSYIPzRHctfx
Vdv3HS423RUvcfpMUGG94r7tTOSXhHS9rcs6lzLnKl84J0xzI5bWS/Fw+5h40Gpd4HTR/kiE
Xu2JARwEEAEIAAYFAlaBV3QACgkQRm7hv+CThQqT0wf9Ge3sRxw+NIkLkKsHYBTktjYOyv49
48ja5s9awR0bzapKOMaluEgfwtKD8/NCgYeIVYyaZlYmS1FP51yAtuzdvZXAI0DAITyM4d1S
RCESjCCiZ028eIEcoeM/j+UXrwo4+I7/abFhiSakzsFZ/eQHnsMnkJOLf8kug3vMXjSoiz+n
T14++fBK2mCVtu1Sftc877X8R7xUfOKYAGibnY+RAi7E2JVTMtWfdtJaqt3l5y6ouTrLOM9d
3ZeEMdYL1PCmXrwZ4+u7oTNC26yLSbpL+weAReqH8jGsVlUmWWMXvkm+ixmrnN66WvSLqQ6K
P5jWnowV9+KEhNnWBOaT4Iu8rYkBIgQQAQIADAUCTndBLgUDABJ1AAAKCRCXELibyletfAnx
B/9t79Q72ap+hzawzKHAyk3j990FbB8uQDXYVdAM5Ay/Af0eyYSOd9SBgpexyFlGL4O4dd7U
/uXwbZpAu5uEGxB/16Mq9EVPO5YxCR0ir7oqi6XG/qh+QJy/d3XG07ZbudvnLFylUE+tF8YU
Z5sm9lrnwPKYI2DIa0BToA7Pi95q82Yjb4YgNCxjrr61gO9n4LHDN1i74cNX0easl9zp14zS
acGftJGOrPEk+ChNCGKFNq/qr9Hn/ank29D8fzg6BLoaOix8ZzZ25QPMI/+SF4xEp/O7IoI4
dA+0m4iPz76B+ke0RTsgNRfVKjdz2fQ92l4G9yWwNulGcI3FBZTiYGi3iQEiBBABAgAMBQJO
iLYZBQMAEnUAAAoJEJcQuJvKV618tkAH/2hGrH40L3xRAP/CXEJHK3O+L8y4+duBBQ8scRqn
XS28SLfdL8f/ENH+1wah9jhyMC+jmyRldd5ar3cC/s8AJRvOSDRfR5KvagvrDLrrF+i/vYDB
K5f6JQrryq0poupEuK0zTbLxo1FX+CAq+3tQy8aY6+znItpiWhvK8ZoULYKV+Q063YyVWdBk
KadgELA6S08aQTGK7bJkyJ9xgbFBykcpUUbn0p4XZwzZ3jFgzwcmqRIYZbfTosVVLJ5HAb7B
u22AukPlsz9PZvd8X8nfmtoJIwtl5qtFOrxrKA+X5czswzZ5H3jprDqOY6yA0EStu+8h1CPo
u50BmP7yKZxdXYqJASIEEAECAAwFAk6Z2dEFAwASdQAACgkQlxC4m8pXrXwC8ggAgQXVkn5H
LtY50oXmh5D/KdphSKDM33Z9b/3MHzK5CWeCQUkaJ1gxtyLW1HWyLOIhUkW6xHdmieoA8Yr9
JS1r1jopYuGZztzlScQeSWr8190xnZZVIjKReVy2rDSxtv7PV5wR3gby72PmKWUw7UHfqtBr
JgA+h5ctfx1jhXIUtUZpDTStZAFgVmunDXoBNZtYYk/ffY1J8KTjNmrqRcRbTurSy3dgGAAA
Z01DIR5kJrh3ikFFJfrXz0qODoYOchxqI4Xoc7o8uv19GUuvk5sKBT4b2ASF+JXAMRX0T7v8
Gralhn3CGGQGpZDN2ldM1Mzbi5oSETTUQ87nN4I7bXirqYkBIgQQAQIADAUCTqumAQUDABJ1
AAAKCRCXELibyletfMCHB/9/0733PXrdjkVlUjF7HKpdD8xy324oe5cRWdEVhsDj11AsPhLv
c37M3uCf2MV5BwGjjDypVRX3hT+1r9VsuR201ETKmU8zhdjxgTlZ931t/KDerU9sSJWOT33m
wEX7b5Oj31hgqy2Bc+qOUfSNR8TIOZ7E6P6GynxFzreS+QjHfpUFrg41FgV58YCEoMyKAvZg
CFzVSQa2QZO4uaUIbAhXqW+INkPdEl/nfvlUWdoe/t5d/BDELAT4HEbcJRGuN/GNrExOYw/I
AbauEOnmhNQS+oNg1uSjlTFg6atKO8XgXNfCp6sSVclSRTNKHSmntHEcH/WULEOzsPUXWGWA
VC40iQEiBBABAgAMBQJOvNkcBQMAEnUAAAoJEJcQuJvKV618xSkH/izTt1ERQsgGcDUPqqvd
8exAk1mpsC7IOW+AYYtbOjIQOz7UkwUWVpr4R4sijXfzoZTYNqaYMLbencgHv25CEl4PZnVN
xWDhwDrhJ8X8Idxrlyh5FKt0CK53NT9yAsa1cg/85oVqZeB0zECGWgsVtIc8JmTJvTSmFVrz
7F4hUOsrUcHJmw0hfL9JIrxTbpLY9VnajXh9a8psnUCBrw3oO5Zj8Pw/aaLdEBuK5mB/OSYo
vmJ0f/BIp+cUp1OAnOyx0JzWNkQZWTmsVhxY6skBEd4/+2ydv9TEoESw207t7c3Z7+stWcTK
RUg7TrqHPvFkr9U0FKnHeTeqPhc8rjUgfLaJASIEEAECAAwFAk7Oo7wFAwASdQAACgkQlxC4
m8pXrXza3Af/QjONcvE3jme8h8SMLvlr6L1lIuWpHyWwcvgakRJwUojRrSVPghUAhjZEob4w
CzZ4ebRR8q7AazmOW5Fn1GoqtzrWxjRdBX3/vOdj0NvXqCFfTgmOSc4qz98+Lzuu8qQH9DEl
ZLyptv96tGZb5w82NtHFMU9LkkjAVYcDXqJ4USm90CApXqd+8lVOrWuM8NycgD0Ik3ZKZQXH
1DHdJFzohNtqbWGMWdjqwKHoBSHEsjZ/WarXEf0+oTLjZSbrymtGpPInsijHWD9QMOR55RwC
DtPW+JPPu5elLdaurjPOjjI6lol8sNHekjmDZmRI0ZMyjprJITg4AG3yLU9zU+boCYkBIgQQ
AQIADAUCTvI8VgUDABJ1AAAKCRCXELibyletfNeIB/0Wtd7SWBw8z61g5YwuG/mBcmLZVQFo
vGnJFeb+QlybEicqrUYJ3fIPj8Usc27dlwLP+6SU8BtldYjQ7p7CrQtaxG2SWYmNaJ50f6Eb
JpO/3lWSWiNEgF3ycFonoz3yuWMwEdMXBa+NAVV/gUtElBmoeW+NwKSrYN30FYmkZe+v+Ckq
SYwlg0r9+19lFwKFvfk0jX1ZGk6GP27zTw49yopW9kFw/AUZXlwQHOYAL3gnslwPz5LwiTyJ

72

Verifying Package Integrity Using MD5 Checksums or GnuPG

QkxAYYvdByZk4GjOi+HzqGPspNIQEeUteXzfbPz0fWEt64tudegYu/fN5QVLGS/WHfkuFkuo
gwNBFcu5TPEYcwGkuE/IZZEniQEiBBABAgAMBQJPBAkXBQMAEnUAAAoJEJcQuJvKV618AG8H
/0LLr1yM6osbLAhOzcKmD//jSOZ2FIBXGKUmK8/onlu5sUcMmVVPHnjUO/mHiFMbYFC655Di
rVUKlIZb6sdx2E/K+ZkZHPWvF1BAaHUO/QGh3Zzc8lVJg9KtFLAJkmQkc61VEF2MriaRlvlo
VPNr5Oiv2THOPgVxdV3goBL6EdAdgdwCvy23Z44vOp0QVNQt4aJKg2f49XO/N1+Gd2mEr7wX
aN9DZQq5zTU7uTRif3FlXHQ4bp8TWBK3Mu/sLlqZYtF3z7GH4w3QbwyA2CWkGgTGwQwyU8Fh
JQdrqXGl0w0y6JusjJWdwT1fxA6Eia3wrSw2f8R1u6V0k0ZhsMu3s7iJASIEEAECAAwFAk8V
1NwFAwASdQAACgkQlxC4m8pXrXzijAf7Bn+4ul7NedLGKB4fWyKDvZARcys13kNUcIl2KDdu
j4rliaY3vXT+bnP7rdcpQRal3r+SdqM5uByROHNZ+014rVJIVAY+ahhk/0RmdJTsv791JSkT
FuPzjYbkthqCsLIwa2XFHLBYSZuLvZMpL8k4rSMuI529XL48etlK7QNNVDtwmHUGY+xvPvPP
GOZwjmX7sHsrtEdkerjmcMughpvANpyPsFe8ErQCOrPhDIkZBSNcLur7zwj6m0+85eUTmcj8
1uIIk4wjp39tY3UrBisLzR9m4VrOd9AVw/JRoPDJFq6f4reQSOLbBd5yr7IyYtQSnTVMqxR4
4vnQcPqEcfTtb4kBIgQQAQIADAUCTzltCwUDABJ1AAAKCRCXELibyletfAo9CACWRtSxOvue
Sr6Fo6TSMqlodYRtEwQYysEjcXsT5EM7pX/zLgm2fTgRgNzwaBkwFqH6Y6B4g2rfLyNExhXm
NW1le/YxZgVRyMyRUEp6qGL+kYSOZR2Z23cOU+/dn58xMxGYChwj3zWJj+Cjw9U+D/6etHpw
UrbHGc5HxNpyKQkEV5J+SQ5GDW0POONi/UHlkgSSmmV6mXlqEkEGrtyliFN1jpiTRLPQnzAR
198tJo3GtG5YutGFbNlTun1sXN9v/s4dzbV0mcHvAq/lW+2AT6OJDD204pp/mFxKBFi4XqF6
74HbmBzlS7zyWjjT2ZnujFDqEMKfske/OHSuGZI34qJ3iQEiBBABAgAMBQJPSpCtBQMAEnUA
AAoJEJcQuJvKV618L1QH/ijaCAlgzQIvESk/QZTxQo6Hf7/ObUM3tB7iRjaIK0XWmUodBpOC
3kWWBEIVqJdxW/tbMbP8WebGidHWV4uX6R9GXDI8+egj8BY8LL807gKXkqeOxKax0NSk5vBn
gpix2KVlHtWIm7azB0AiCdcFTCuVElHsIrhMAqtN6idGBVKtXHxW3//z9xiPvcIuryhj8orS
IeJCtLCjji7KF2IUgCyyPJefr/YT7DTOC897E1I01E4dDymNur41NjobAogaxp6PdRNHBDum
y8pfPzLvF3OY4Cv+SEa/EHmCOTHTamKaN6Jry/rpofqtueiMkwCi81RLgQd0ee6W/iui8Lwp
/2KJASIEEAECAAwFAk9V2xoFAwASdQAACgkQlxC4m8pXrXy9UQgAsVc8HNwA7VKdBqsEvPJg
xVlm6Y+9JcqdQcA77qSMClc8n6oVF1RpI2yFnFUpj1mvJuW7iiX98tRO3QKWJIMjEPovgZcS
bhVhgKXiU87dtWwmcYhMsXBAYczbsSaNWhOIPwKHuQ+rYRevd0xGDOOl3P7pocZJR850tM9e
58O9bzdsRYZpFW5MkrD7Aity5GpD65xYmAkbBwTjN4eNlp0nHVdSbVf4Fsjve6JC6yzKOGFB
VU1TtAR2uPK6xxpn8ffzCNTA1vKXEM8Hgjyq4LWSdDTBIevuAqkz4T2eGJLXimhGpTXy7vz+
wnYxQ9edADrnfcgLbfz8s/wmCoH4GJAFNIkBIgQQAQIADAUCT2eDdwUDABJ1AAAKCRCXELib
yletfFBEB/9RmWSSkUmPWib2EhHPuBL6Xti9NopLOmj5MFzHcLtqoommKvpOUwr1xv0cZMej
ZenU3cW1AvvY287oJwmkFRFu9LJviLSGub9hxtQLhjd5qNaGRFLeJV8Y0Vtz+se2FWLPSvpj
mWFdfXppWQO/kIgVZoXcGJQrQWcetmLLgU9pxRcLASO/e5/wynFXmgSajxWzWHhMvehvJTOq
siYWsQxgT/XaWQTyJHkpYJoXx4XKXnocvc8+X3QkxAFfOHCwWhYI+7CN8znDqxYuX//PKfDG
2Un0JHP1za8rponwNG7c58Eo3WKIRw0TKeSwOc1cSufnFcrPenmlh2p70EvNRAINiQEiBBAB
AgAMBQJPeKdGBQMAEnUAAAoJEJcQuJvKV618YwoIAMn3uqSB4Ge1D61m0pIXJfOcC6BhCZvM
mV3xTp4ZJCdCQzjRV3rZRkt0DwyOVYpLzLgDgvbRwjXjOzm0ob1DvYHFA7DnGTGUsBLDX/xZ
5gRvDtkD6w8b/+r2/eQiSu7ey/riYwB6dm3GzKR7FEbIK6bEuPOUBwvV2tYkZRgTYqXq7NBL
uNv7c80GWhC/PqdvdhFn4KAvL0PjVIgr5+mdXyviKqG7uvguYBDtDUMX1qgZpi+fb7EsbJYf
EkBR63jGQw04unqT1EXWds17gj+yp4IHbkJmEJMS8d2NIZMPbIlHmN+haTA73DwNkbVD1ata
qSLiFIGXRyZy87fikLVIljOJASIEEAECAAwFAk+KdAUFAwASdQAACgkQlxC4m8pXrXwIUQgA
mnkFtxXv4kExFK+ShRwBYOglI/a6D3MbDkUHwn3Q8N58pYIqzlONrJ/ZO8zme2rkMT1IZpdu
WgjBrvgWhmWCqWExngC1j0Gv6jI8nlLzjjCkCZYwVzo2cQ8VodCRD5t0lilFU132XNqAk/br
U/dL5L1PZR4dV04kGBYir0xuziWdnNaydl9DguzPRo+p7jy2RTyHD6d+VvL33iojA06WT+74
j+Uls3PnMNj3WixxdNGXaNXWoGApjDAJfHIHeP1/JWlGX7tCeptNZwIgJUUv665ik/QeN2go
2qHMSC4BRBAs4H2aw9Nd9raEb7fZliDmnMjlXsYIerQo7q7kK2PdMYkBIgQQAQIADAUCT5xA
QQUDABJ1AAAKCRCXELibyletfOLsCADHzAnM10PtSWB0qasAr/9ioftqtKyxvfdd/jmxUcOl
RUDjngNd4GtmmL7MS6jTejkGEC5/fxzB9uRXqM3WYLY3QVl+nLi/tHEcotivu2vqv4NGfUvW
CJfnJvEKBjR8sDGTCxxZQoYoAFbGTP1v9t4Rdo7asy37sMFR2kA4/kU1FDxYtFYFwwZCJpNL
hhw0MCI2StI/wIwtA/7TiFCNqHHAKAGeSzKVyKrPdjn8yt7Js2dM6t2NUOwXQ563S4s6JZdR
lXUV9oYh1v+gFAuD57UHvinn6rdoXxgj3uoBmk9rWqJDNYgNfwtf1BcQXJnea+rMavGQWihx
eV40+BZPx9G6iQEiBBABAgAMBQJPrg39BQMAEnUAAAoJEJcQuJvKV618M4YIAIp9yNCVLGta
URSthhmmgE/sMT5h2Uga6a3mXq8GbGa3/k4SGqv51bC6iLILm2b0K8lu5m6nxqdZ8XNNMmY9
E+yYTjPsST7cI0xUzbAjKews63WlEUrj/lE2NEtvAjoS2gJB+ktxkn/9IHnqwrgOgUofbw6T
hymURI+egyoDdBp91IQD8Uuq9lX+I+C1PPu+NCQyCtcAhQzh+8p7eJeQATEZe2aB1cdUWgqY
evEnYNNK8zv/X3OMYl67YyEgofKoSYKTqEuPHIITmkAfn0qVsBA4/VtLbzGVGyQECmbbA34s
5lbMLrYeERF5DnSKcIa665srQ+pRCfJhz6VQXGsWlyWJASIEEAECAAwFAk+/2VUFAwASdQAA
CgkQlxC4m8pXrXwDOAf+JEUUKLiqO+iqOLV+LvI09lU4ww7YfXcqz4B9yNG0e5VprfS7nQ0P
tMf5dB7rJ6tNqkuHdoCb+w0/31pPEi7BFKXIoSgOz3f5dVKBGo8GBsX+/G/TKSiTenov0PEU
7/DlwvwmsGExmgmsSQgEWTA3y1aVxc9EVC9x0Fi/czcNNlSpj5Qec7Ee9LOyX4snRL1dx30L
lu9h9puZgm8bl5FLemPUv/LdrrLDqG9j4m2dACS3TlN14cwiBAf/NvxX3DEPOYTS6fwvKgLY
nHlOmKRCwlJ6PArpvdyjFUGWeCS7r4KoMCKY5tkvDof3FhggrQWgmzuPltBkTBQ7s4sGCNww
6okBIgQQAQIADAUCT9GlzwUDABJ1AAAKCRCXELibyletfDj1B/9N01u6faG1D5xFZquzM7Hw
EsSJb/Ho9XJRClmdX/Sq+ErOUlSMz2FA9wDQCw6OGq0I3oLLwpdsr9O8+b0P82TodbAPU+ib
OslUWTbLAYUi5NH6WW4pKnubObnKbTAmzlw+rvfUibfVFRBTyd2Muur1g5/kVUvw2qZw4BTg
Tx3rwFuZUJALkwyvT3TUUrArOdKF+nLtVg3bn8EBKPx2GfKcFhASupOg4kHoKd0mF1OVt9Hh
KKuoBhlmDdd6oaEHLK0QcTXHsUxZYViF022ycBWFgFtaoDMGzyUX0l0yFp/RVBT/jPXSBWtG
1ctH+LGsKL4/hwz985CSp3qnCpaRpe3qiQEiBBABAgAMBQJP43EgBQMAEnUAAAoJEJcQuJvK

73

Verifying Package Integrity Using MD5 Checksums or GnuPG

V618UEEIALr7RNQkNw1qo7E4bUpWJjopiD00IvynA0r5Eo0r83VX5YYlAfuoMzBGg6ffKiCs
drHjEh45aIguu8crQ7p2tLUOOzKYiFFKbZdsT/yliYRu4n28eHdv8VMKGZIA7t0ONIp1YPd2
9pjyVKy4MOo91NfwXM5+tcIzbYL9g+DuhQbYDmy8TVv7KKyY/gqZU1YB6kS49lycQw8WCine
FoeD1fb6aP9u0MFivqn2QCAhjXueKC01M2O0jR0wu7jdojN50Jgeo6U0eIHTj2OQmznh8wYG
MX2o+1ybSTjjHIp3X8ldYx01Sa3AqwKEBclLdg5yIyAjHq2phROd2s/gjqrWt+uJASIEEAEC
AAwFAk/1PVUFAwASdQAACgkQlxC4m8pXrXwn3AgAjWUh31IxsQcXo8pdF7XniUSlqnmKYxT+
UZOP71lxeaV/yjY+gwyZvf8TWT4RlRp5IGg6aNLwLaDB3lcXBGuXAANGUr+kblewviHnCY3Z
+PWiuiusle+ofjbs8tFAr3LN3Abj70dME7GOhLyplP2mXIoAlnMDJ0AyrKx5EeA2jS8zCWCu
ziiOj4ZwUZAesXchpSO9V9Q86YiPtp+ikV0hmYgZpIXRNcHOpxnVyEW/95MFwi4gpG+VoN57
kWBXv6csfaco4BEIu9X/7y4OLbNuvzcinnHa0Pde5RnRlbEPQBBZyst2YZviWTFsbG8K2xok
dotdZDabvrRGMhRzBUwQEokBIgQQAQIADAUCUAZhawUDABJ1AAAKCRCXELibyletfDJUCAC+
68SXrK4aSeJY6W+4cS6xS//7YYIGDqpX4gSlW1tMIKCIWNhHkZqxKnWClnmvgGhw6VsZ2N0k
YdOnIrzEPWL7qplZRiE1GDY85dRXNw0SXaGGi7A8s6J9yZPAApTvpMS/cvlJO+IveFaBRHbI
RRndS3QgZVXq48RH2OlHep3o7c964WTB/41oZPJ7iOKgsDLdpjC1kJRfO9iY0s/3QrjL7nJq
5m14uY16rbqaIoL81C7iyc0UKU9sZGMcPV7H0oOIAy206A3hYSruytOtiC1PnfVZjh14ek2C
g+Uc+4B8LQf5Lpha4xuB9xvp1X5Gt3wiPrMzcH89yOaxhR8490+0iQEiBBABAgAMBQJQGC19
BQMAEnUAAAoJEJcQuJvKV618CbcIAJCXDbUt96B3xGYghOx+cUb+x8zcy9lyNV8QC2xjd9Mr
02LJTQHfJfQ9Td6LfuoRb7nQHOqJK1/lWE28t9tlH7I+i7ujYwA/fWardRzqCulNXrgFEiQK
ZFaDjRYyM0jWG/sA3/Rq2CMBNhBeCcTDuZ8VvRdm0xMPpyavP8D2dM9WBkPHOik4yAIILVkr
hWmr0Up0JhRoelfeyqcN/6ClUgeRMIyBYthA55fk2X5+CerommlpDfJJlFQOv64VSzS68NG8
j9yf66uuL3bB0OdzOMW6Yq/P9wskCDlMbYm/UnHfB5wAuxWpDeAvt/u+vU4xqqEjkUQGp03b
0v1xl79maSuJASIEEgEKAAwFAlWg3HIFgweGH4AACgkQSjPs1SbI/EsPUQf/Z6Htrj7wDWU8
vLYv3Fw23ZuJ8t8U/akSNwbq6UGgwqke+5MKC1fpk90ekzu5Q6N78XUII3Qg8HnfdTU0ihYg
qd3A1QmO6CG2hEz5xoxR1jJziRCbb1J7qEw8N/KzBcTkHB4+ag6bjFY9U4f9xU3TjPIu7F2V
Bk1AX+cmDo8yzPjDnP4ro0Yabbg0Q9xzvaK/7pFRz+vL/u/lxW7iE7n6vXTiaY1XnIt5xAXX
dwfLYmWeAgdc9KXFNlt4lfuqrETtNCHme+JI+B2Tz2gHmMVLHiDV59eLC0uU/uVsOXEd26ib
JC4f3KqY9kxuQm325kNzxnMxiwMPCVzsEh7lsYp+OokBMwQQAQgAHRYhBADTXowDFGilEoOK
6kPAyq+7WPawBQJasiYMAAoJEEPAyq+7WPawox0H/i96nkg1ID61ux+i20cOhVZylNJ770Vv
0zfXddWRN/67SuMVjLLiD/WfnDpw6ow6NM7vfEwbmvo1qeFF7rWWTPLm57uZfTk73un3fbaL
JiDZyrUStQKK/yhGAZmwulOQq7XBm+u8G9UcFi4XQxuoc5I/v/lUgbxXBADlxlfzpkIDwOaB
s23RDiMcWZGcosUkYHXlm8scU0tRANVLQ/PHgttlUl3x2PLzrdQm3YUDKUJ9+ynO2jN2sYwt
laSohj4UbLnq6pI4CXWZR7XWQs+NX7P3R359FDtw7OhyKoVuIkRFZljY0i3wQgwl/Sm2DAg9
3lsZDVc/avEUaOO+VuJuvJ+JATMEEAEIAB0WIQQGFx4znGT7HFjpuwT3iPLIbOWZfAUCXJ7Q
KwAKCRD3iPLIbOWZfGoXB/wN0P3m27fY/6UXTl0Ua3H+24ueUdLipsvR8ZTwEfnwkhLrbggE
0Em7ZuhZkzv7j856gv/tOekYYqWGg1CLalD3y371LAGq1tjY3k/g2RWLxLXNdzgXEyFvaNQA
oQa9aC2Q7FOyEMwVkkXrGa4MML7IBkrtMds9QPKtfipachPf6tQOFc12zHRjXMZi0eRWyQue
0sLLiJZPn7N8bBAJyZ9IJEpkhNrKS+9J5D1Refj++DwBKDh04kQXZFEZZhxcungQW5oMBQgr
uW2hULTLeiEV+C516OnwWJOz6XKJpOJp8PY0bO8pGgToGIYHkoX2x64yoROuZasFDv7sFGX6
7QxyiQEzBBABCAAdFiEEEN0MfMPATUAxIpzAoiiOmODCOrwFAlv/EJIACgkQoiiOmODCOrwg
uAf+IVXpOb2S3UQzWJLSQyWG0wQ51go4IBVpHv6hKUhDFj47YdUbYWO+cgGNBjC7FVz54PUM
PIdxImGHE1NHH+DNR8hvvAi+YpnqqdT3g+OgZ6XoYevret5B2b5fRgN1/HWUjaJ/n5g6SMsC
+3DrmdMu1FEDnKv/1HwQvOQXKt/U2rXE1ILOmVdMavRJEwkrk2SVwbdeass2EInZVsmWL+ot
9dU5hrkmLAl6iHUoK6zF6WaI1oi7UU2kgUF2DNyZG/5AumsNhxE608EAs1zEdN8wibXL48vq
Z4Ue9GvImokdlq/r/4BMUdF1qLEZHBkbaklK1zXxl7uMiW3ZIcqpg5HgwYkBMwQQAQgAHRYh
BBTHGHD/tHbAjAF4NhhrZPEl5/iCBQJZ+o/oAAoJEBhrZPEl5/iCyfMH/3YP3ND8jFqIWkmG
JaITHP9GhAQda73g7BFIrBHeL033tcLtUbEHXvnIZzulo7jiu9oQBjQvgGgIl5AqH1m7lHaD
iAL3VmuUFZ4wys7SODHvSZUW1aPLEdOoLKeiG9J6elu0d/xWZmj86IaHMHrUEm1itMoo0m+U
MwVNLFNZrAjCn82DiS6sS0A52tOlpq/jR4v9AYfMZSnd1MLm/CZaZpzWq6aqm7ef7CDfsUvU
w7VsL3p1s+Jgo6+8RwQ1W2Lgt5ORthvpjPKE1z0qgDpoXTkPOi8M20taD5UZbpByzMZPJXXr
+LBrRbs48IcPVHx8sxHMh1HsQCiXHDGiTNSaJ1qJATMEEAEIAB0WIQQazDqcUxAL9VrKN9zD
LyvJ+reoRgUCW4YZiAAKCRDDLyvJ+reoRptWCACoIgFrvhbr3c1WVq16LJ8UmQLk/6uFFZPN
CiR6ZbvzOd+a3gk1G8AhDEW2zoNhFg9+I7yqUBGqn+B1nDZ6psyu8d5EoRUFTm3PghqEccy5
KixqoPxBTquzkKGbN8PDLUY5KvpTOLLlYZxlHzSHw4roPsU4rxZtxyu98sSW0cm47VPr069p
91p9rCoHY8Fng7r3w28tVfvLuZ1SK4jtykIvw+M/pVBk9rQVCAJ0JjkAHkTOpkHqsVBYhtu7
mzsXfkQZkeuxdNx6X1fMrbJofzH0GYTT8Knn75Ljhr3hozrsL4Kz4J9gsLHCjkD5XKzLwCFK
R6UhhZZr7uhufbqZIyTLiQEzBBABCAAdFiEELLeCvUfxyJI8qMqHHSPVZ6Jn8NcFAltZjFMA
CgkQHSPVZ6Jn8NfKSggApk065wFrxq2uqkZKfJGw2mdsGeDVjGq9tMKUWeYVxTNxjiYly8Dc
/jrOS3AU6q7X7tAAcmvaXoBfW3xEIXMSH73GeinVG7wnlab6GKPDRKJzXfJ88rF07pX8R1pc
ZH+eikiFsN9bcnEycH82bonS7dzyoo6yg2zBqNtsmWYLDg2hcoTw4UHAPwdX6+n99m3VzOqO
8ThQI9hqpUYGvP5qyYahFf+39HSViof+Kq5KKhvSoiS9NzFzYZ0ZszYt+2jozUpAM6XqtEGu
TMzXHkE+/V4yI3hIsvHNkXKgDrqjwA+UmT1R4/gBoiRhZ8r4mn1gYI08darQmkppf9MEbcDz
U4kBMwQQAQgAHRYhBC1hIxvZohEBMIEUf5vAD7YffmHCBQJcns2XAAoJEJvAD7YffmHCC0UH
/R8c5xY96ntPI2u6hwn5i0BGD/2IdO+VdnBUnyE4k9t2fXKDRtq6LAR2PAD0OehSe4qiR6hw
ldaC8yiyg+zgpZusbCLGxbsBdYEqMwTIeFsa8DyPMANpJ0XLkGGf8oC7+6RuAJvlm6DRlurr
U93/QIG6M2SNsmnPgSZWYV4Y5/G7Xxyj0Fc3gNjjjGGP61CBR01W6rgNPn35sZ9GYCZcGlQA
GGrT8mSVoUhPgPCXKz2dZDzsmDHn7rULB6bXcsHiC/nW/wFBpoVOIFIxND0rb1SYyJzPdPtO
K6S+o+ancZct8ed/4fUJPBGqrBsuFS1SKzvJfPXjHGtZBitqOE7h57SJATMEEAEIAB0WIQQt

74

Verifying Package Integrity Using MD5 Checksums or GnuPG

9h/1MHY0zPQ0K+NHN096zf0O3AUCXK2H5QAKCRBHN096zf0O3OJtB/wKbQN4IjVNkmWxSaBc
JABRu/WSbNjoTo/auJV6IRUBpwR130izMw239w5suuWx1phjPq3PdglBaKKeQNdeRoiudUjd
hydON1cq2wh9O073wU2GHeZLi48MopUNksrhHfd/XWV//0LcSpERsqIBVIUi+8DHwFvpCzCz
zIRg9lOcQmEtJAFFUtkF9FEeZgO2NPO3fEwkjKDeJYUiB+mD9BliyxhU8apUx/c2zaFGQOCr
MllN/gHztAWDcIadK/tujqRWR4wnJ0+ny/HP+bWd18+YjhcWzUQ8FytG+DA3oylQ1d0w0emt
qfn0zqiFkJQdG0M4qtItJYEYHlYpG2yoQHcCiQEzBBABCAAdFiEERVx3frY8YaOOhcAGjZrN
vi2vIgUFAlnScGAACgkQjZrNvi2vIgW5IQf8DKjeoHF9ChDcb4T01uJJiAUu6lxewSRD7iwD
6MjCsaxgMifTD7Bzvdem4finoOul2YAPtlLfIfVtVRtGG97R/Wvs3yjI9NSzxkDGuuE7/IIi
4dKlcKkvijg7G6A8+MGXaQTw8iOePI/44IyG5yogKjno7L4h0f3WguGzmCRUJcgYm23IsaTh
Pvdq39ARyHAlrk0hXZ+OqsYBrlW7KLyPrbPA3N+/2RkMz6m+T8ZksOrEdF/90nC9Rky4Wbg4
SJqWQNNSMfgT0rQL2Qvne598FKmltrTJuwBtIrSeuL/dbKt+hkLgnRjnmtA5yPaf0gXvMtfU
P9goQMWD+A2BU/bXJokBMwQQAQgAHRYhBFBgHh7ZZZpG0pg7f1ToXvZveJ/LBQJblegpAAoJ
EFToXvZveJ/LS0YH/jpcVprmEGnqlC0mYG2MlRqeK4T8Y6UnHE2zBPc125P4QcQfhgUJ98m4
0B5UkzljreFr9Zebk3pE8r4NBsamlJvi8sGbZONTsX4D3oW9ks0eicKOcTZJgtX5RmSNFh63
+EHbqTneK/NTQIuqRSCOufqCOH6QY1PVsICBlFZUPMfuxRlO7EwHKNIHPVBZNlM7AXxdjCMU
kXvda8V14kActb1w7NWxWxo5q4hkQ2K3FsmbWXvz+YBhJ8FnRjdzWNUoWveggOD6u4H7GuOg
kCyXn1fVnbCyJWsXQT9polJRnIAJMAtykcYVLNS/IS65U+K1cMshcF+Gil9BuGyckbRuNaSJ
ATMEEAEIAB0WIQRh2+o6RdTFb7cSlWG3d+zE2Q5m7gUCWdJutAAKCRC3d+zE2Q5m7rgJB/9k
c+prmrnjsq/Lt6d90LqYoavvIeFkAoDhhWgQeEOAD1wgyHIpS6qoMKgvBlvda2r0bmk1kUL2
xQaiDj36wB5yJHauOnFX+3ZJ6QCYUaeoWtqO2ROHvTiuyUdVKC5NtKaHpM1/lP/jl/1ZRWay
idggH7EnwDMt+9O0xD02n5J29Vp9uPO1GtMVsVSiJCGcOxwNBgNiXX1BpZbN4bRm5F8DAGiN
v4ZI69QZFWbpj8wFVJ/rV4ouvCFPlutVEAuIlKpAj35joXDFJhMvPpnPj84iocGqYPZHKR6j
a90+o8dZw3hXObFowjcxsJuQUTVkPuhzqr6kEu1ampaQ8OGpXCZHiQEzBBABCAAdFiEEZ/mR
TQQxCZjglXUwgzhtKKq2evsFAltbmWkACgkQgzhtKKq2evsdrAgAubfuG1vWX3TTG/VYYrfM
1aS1Roc034ePoJHK5rLT0O/TnnnObw38kJM1juyu4Ebfou+ZAlspiWgHad62R1B29Kys/6uC
qG2Jvbf716da4oLXeLYd9eb+IKVEiSb2yfbsLtLLB0c/kBdcHUp6A1zz0HV8l1HWj1Wx8cFU
MV7aAQoOfnNBbnNWLzNXXLYGHh47/QmjifE5V8r6UJZGsyv/1hP4JHsQ2nqcM8Vfj+K+HEuu
nnxzgWAcQXP/0IhIllVwoWhsJlHW+4kwW02DDopdBfLTzCtzcdOkfBcCg8hsmC4Jpxww5eHm
saY6sIB32keCpikVOGwdGDbRH7+da8knzokBMwQQAQgAHRYhBG4VA/IlW5kLV/VchhLcHkBr
mersBQJaX4N4AAoJEBLcHkBrmersksUH/3M0cypXBnyGIl/yE576MDa0G1xJvciup0ELeyhj
48Y7IAr7XiqDtiPt8tlIiPFF8iaw56vJw5H6UKraOcjZHOH1SwDr5gAWJgMqnqlFX/DxVKif
USt81KX0tHN6t6oMESgm2jRKvcWjh6PvEZlIArxZG4IjrErqWIJjUJR86xzkLyhRVTkUL/Yk
uNl1i013AlaD/0CGuAnjrluUUXypadtNr7/qsBx8dG6B/VMLWToEDEon76b8BzL/Cqr0eRyg
Qz6KWi3hmsK+mE4+2VoDGwuHquM90R0uS9Z+7LUws24mX5QE7fz+AT9F5pthJQzN9BTVgvGc
kpI2sz3PNvzBL5WJATMEEAEIAB0WIQR00X0/mB27LBoNhwQL60sMns+mzQUCWoyYfgAKCRAL
60sMns+mzYgnB/9y+G1B/9tGDC+9pitnVtCL2yCHGpGAg+TKhQsabXzzQfyykTgzCHhvqRQc
XHz5NSgR0Io+kbGMUUqCaen6OlcORVxYIuivZekJOAG+9kiqWRbyTv4aR6zvh8O5wCyEhhyi
ifi65PM7y9lD6i22qTt/JoDnFkP5Ri6Af/fZ9iaIaluQKJCU5xY1Lt/BorGlrGvX5KiZD8xc
AjhJRATZ0CJ21gbxISSxELAfH42KzGAvJw/0hARrMkl/eK0HVDpD47mcmC5h/O/HlwPYi0hn
xB+6/nuwwtRgMDBufNV0StU43njxCYmGI9/I1z5Vs+zhz8ypw/xCr1U7aAPZQdSSsfEViQEz
BBABCAAdFiEEelR8OpStCJs7bhrK1TniJxBsvzsFAlv+8d0ACgkQ1TniJxBsvzsiFwf/a3lt
OuSrFs4M03YVp6LoCM6CwZfvcFl+6B0TAurOiCja9lsNmbusSx0ad7bZy6/kHDXH/eqomXeu
O4hkxxBvGK3gZt7iQsr9vsUSbbJnc1zMyOZKlhdxAOLOskttqtPs6hiJ9kUHFGZe47V3c77G
GMgi/akIU5PkxhK7+/bbAsW0iK60aXCZ5nAbWlzTQLgJnYrlk4b920rzGe8nDTGzGmSjIGnb
YvuD9ZI40DZRWVf1tXqCY643AXFYoOhRxj54uHnMLYhc0I65u2ZGwRiTI0g/en5E8i7WoejA
/sR0+cYs7l1IJwlNRwfqmnJWRGREEHcJ3N52k3X7ayq3qmr3K4kBMwQQAQgAHRYhBJSRYHFB
cqf4Tl2vzE+YN4Ly8sn+BQJae/KHAAoJEE+YN4Ly8sn+5ckH/juc2h7bC4OGmRHcZBLAG2vW
WEMTc8dAr9ZyJYXzR25W1/Cz/JXgJgMjSrE6m9ptycpvWc6IRlrQM/IqG+ywYFPwNp3PYsc0
1N33yC15W7DPRDTtJE+9yUbSY9FeYraV4ghxiBxD1cDwtd7DFNGNRvBDH7yQHmXBW0K8x6yX
Mwl1gj2/MvdFUKmz8Lku94OmrbDOi83cnAjUNbN15Wle7hWAIRALt3P1VusjV/XyzxvcSffb
mt3CgBCyK9CNyEr27CVkhZ8pcabITx9afMd1UTEii90+qzgcJwcR46bJPZBdavMt56kVCeC0
kG44O3OOk+OahKXzw4YspZMO046gYRKJATMEEAEIAB0WIQSm5fcyEkLUw6FcN0ZJlMJhNZ28
bgUCXTJMCQAKCRBJlMJhNZ28bsgCB/96PlBUdsKgnh/RpmPB+piFQf6Og+97L4fxHuQbzKOe
UNCSWNF7saVa5VaPxbV/9jDCTPZI5vBtnJebXtkmLoWFSZaXCYb49SijfvRsRAeX5QSqIRd4
3KMuO7nAvbPVYtMChCO/g1T3riF2icC6pgvmNZWm5Nu4pkLzRmQv8U33BAkL7EYIjZZaC/9h
o4Sh4l/gLNItOxMdsD34sJwBLvEi1pQOa1xNJ4kfQSRD/8ufakE5wfSie/s04w/2Cp7RD9H0
VlD+7FwPO1HQ3XJjONvOzj6uVdwCC5fcmbXbb2bbJ/xe4YVL3xmwWz5m2w+kBSpaZ6VHNocB
8S2OmIIPpr7OiQEzBBABCAAdFiEEp6WxZJrn5Z0o967I/htVRVZtQSYFAlqnkGEACgkQ/htV
RVZtQSYV2Af9E7FLIUi8lqOyYyZuX6skkNf5rNSew+7i5NsiNpQzZMdscJh9eJzyLrePLp7q
9HUOhMF/Fc0SgbDtKSWbfSidXkeaQ2twPj4rP1xxYBc0OY0OX4fNVA5O/pTI9nxIVQCDTljl
/WIY+fnj88lCkaKWoRJITaotjFmYt+gbJMBn3MMYf0VODeIRozV7//NdkzFXKmJ3fsCDGXXF
CVWM1Fn3M91o1fh3FSgKd+0sexUDn5afwWCqjGgiXDsE7fEdwsbnz1rDzWvuqCoZyIh1RXQf
QVbiakpzfvtDytC3Vo6F2KzpZ9d69Adhfn2ydAYxL/Xuvk9pWdEBNF4T+HfS9Z30BokBMwQQ
AQgAHRYhBPJCF6TG7RrucA13q1lkfneVsjZHBQJawgLrAAoJEFlkfneVsjZHgNsIAIaSJ3gF
tBtf0WLxYIo5zhNclXOnfgUUNjGrXHm5NxoI4Eulpx9dQYCJ++whMFbxpZQTgFAUq8q342EZ
raLCWwALZEZmkZjv+FX6bk8sgqZESpUOLJAIqpobKpaawOQ7LS+XWO0SchH1oLFAgDyBeIDZ
N/LiTlIdkJe1xpDQDtgUHawksqMCbIaBe60B5xvm1NkhnrmnM1p+e3LUd4j+XxACdcY5LSqV

75

Verifying Package Integrity Using MD5 Checksums or GnuPG

zVT4OyD1WkKzk8EAASUI8xysNBEeX9/8/EXaAciECQb3MkYxTQZ4WqCLU0GCGl6Sx2fY5zI6
4Y1j/Sfn3JHikJots8eR1D/UxrXOuG5n9VUY/4tTa0UGPuCJAU4EEAEIADgWIQRLXddYAQl0
69GnwU+qS4a3H5yDGgUCX6xjgBoUgAAAAAANAARyZW1AZ251cGcub3JnYW5uaQAKCRCqS4a3
H5yDGkRfB/9z/5MuAWLwoRLJtnJQzEOW7jsfzYpepL3ocT9tdGcs8jJTH3vh2x4Kp2d0Zaxx
Zs7R8ehZO5XJQ/DWdhH+7cifoeXmAEqDnlKSXZQZY/bG054tM6zes3tFTH3dCrn7LF59fQOG
OaZHgbFRQJO6F++90Mj9WAgeqGxyEhAlFIxFw4Cuul8OZAUIfq7YISnpkg2Tm/Q0SRRDJE4i
/7WJE/HVMB0Rf9KJXuk2BJlRIpQz8Cf+GVZ5aGIlXdM58QknprnollxoTKhrE74rAGHW7nRD
xIxOoP8odiXbLzn//g2m123usqncCKWZONDdVupax3RQ7xsIuFc9Kx4OtjwPQftziQFOBBAB
CAA4FiEE6hBKAqPbygqOC7fUwpbDMFwG9MsFAl8u+m8aFIAAAAAADQAEcmVtQGdudXBnLm9y
Z2FubmkACgkQwpbDMFwG9MsIvggAhRfd2Z5WLR6hGxOHu+A+ysjX6xKjcqshCYr8jRuOflFN
vxugQQoFM5pQr15TyhokaU78aDUoIbLnKcxxmH1l4hXxcRtg/9Y22TidOVN4jjNbc69KvCC4
uANYuAJaI3o5fb1jv8Lx82OiRDMhtRqyTdSGdU5//8X5FXCt+HhhzpSNoNtpxyhsKP0PAWao
zuETqvxy7t0uy0f1OTbZLI5nb52DxjBdZlThnJ2L9RwR2nSGhxjhTFg8LrZWgWNtY5HG+vk9
qbCwaC6ovNJ0G98i0DMrlbyGCbxa4Rv332n1xPfl/EPYWmNPlMu0V3bSCqxVa5u3etA5fw3r
qIm333vgFIkBswQQAQoAHRYhBJTatFFgHAZYHkTw9GcRGDP/RljgBQJa7LubAAoJEGcRGDP/
RljgNu8L/jN8j4HSggpnzJ0+3dFjVg7FUHJF6BZ84tv9huhmyrByaIrEfFf9ARn8OizKgdpC
/wJT1+KXarvsxdnEDlYSat3HS/sEw3BmZjAeTwPi0ShloiSjYgYRbg3irDskqUHML4hhvMx0
x9nZIag2XoSSH7kPEd5jOb8cd7jJeoGg6Z9Z9lMHuyqTGi0T/EbnhjQfVTxWkSkcDvdxbSuW
D96mvZrbRnrMebXKkISb0uVUn3/o11iUo9jXs+Q/03Tb9i0H3eOliP1kcB/kggu9xblIPM+J
VaK5Z+zAVLPKTQJi+sP/ayEux0xZzfbZ96WERnzT4E7Wwv8MvaLbybtID28Oy9YoBBYv7CrC
tyfrHh1t4v2AedRSZcTPKAaQ5NtLAvIdex0kOvvofaGi+7nmgV00vCZFBSXetvBMZkCapW09
vF7wcahaXpF+0Spl9vE2JiesST7uQobCUm1EjxJP0vMDcO1vIfJHlbIhB/f3PE3rXZIzYTdL
s3Kb4OONaUfNy9jYtYkCHAQQAQIABgUCVJqcUgAKCRB3MepTnaVyot2+D/9wAQ+p03lVMpYS
gMWMNLgjq3z7QrN0NYNpxUXAonxECjUzZKSUPGci+fPKxl3ZUenk+ruLgtgJmjmUOR6u1Dov
BpDFzhfqbIpjgtMDrnY5sWqxJ+CH2Rb5okEEDJ5qE9DwIMP5iXbf4xjnBOyPiq3sp983PLvy
8ttidWe9FDf8JuhWLHRJHODQjc6LufcHSWKG9fLmCjL2KSPNl696MwR+N95EKCivLL2PlG8c
f08Xd8lW1S0cJLh/6TEuZtAnVeo0NUOGUXOPPyhTPP/xhfLeKbkxjtm6rg/jBaIjuuQgUyNN
hKnP96/GRWWRHvio6eBPalhUcvImSrCHnqLRpdyMxmK67ZzKZS3YsH0ixozJYE0mNevZ2hEY
wB+O5HllqK22YwvJnCLH2ZZWTu2TCUjGZP8hbo2nSoyENlxZio9Gl/v4ypjdlgwrjnnZvxoM
yOFeuc47AuzP5QjhtlrWv12C4hYi3YLZvkLVFD0CxAE/CDuHk/4eFG4UC4Mor6+BXwVG7NEl
4qQWrAHjLQ2/sHMpsUqY/5X7+StG/78PLP0HP+PIBCDDTa7W0+6kf0EaGVHKW43IIkVNI2Ps
b44tTT+Xhc2mHk44LuzL4Axlywv+CxP9NcKLNFwK4Ck1M8Np6cAKlu+Dw6gjOY1aGHgtdsBQ
cIqZj/+ETD0+9NkDXEoeDIkCHAQSAQIABgUCUliwpAAKCRCiKuTrQynFRXZdD/9vb+69OGSR
t456C6wMLgBl+Ocv9XeaCTiJjLgAL2G6bRH2g2VcNHnU/VMTD2YLVu0eP7ubsirVrmR7nAgL
sQ1mKKWvTI+p5aAvn4sL3x3P8vzmGoDAigZ458yGuVpVsBkSPjJBMAkMDfm9kdWxCanzuKXS
b59lfTg4EtcHPDzoSgABntASgfioVxP2TVPfre282cibeYS+RDlaMTVH25yElrWDuF2U1CVW
SMWY9mskr1+XjPnoO2jz0+jhKB7jyMMfSmJqzgcBNgezFbzX2fPmNnMZzEucVFFHmIhNVmL2
rOwc/s1tSHerG5YIdL3HOJek5xJljzjzFfDrdjmMMl+nO6nO78oePoLNdglQQSqn0yW6gZv8
EIIQ/N1nSi/LEW60z8FFxzoO8TqxMMX9QRLbVE6p+7C0nqolhZf6UEiDIIm+PihF1vPFSV54
+7OoLObCshe2g4pbRGWPhIJ4X3ILBQwFMZbn+cIuY3h3B/UpbZE/YSDgRFu5TLtCfBE/lQKX
7QhJknJhQhJ+Dx+Y8h1Cx61Qr0KP5DmOkHYZfAQtdacgrqEr/qNen4QYRdKp0gTne8AV7svB
8eI/8PkzvUPaHrax0g6ZSbeWbvEw6czm0qUGJX7iMlJSauIJPrbOjvXT7qIsaqZRRiUSWXo+
m+jzK5qdeRhEIUmlJI/tU/RsGokCMwQQAQgAHRYhBEW+vuyVCr0Fzw71w1CgTQw7ZRfyBQJd
hy3eAAoJEFCgTQw7ZRfyRf4P/3Igs5dYm0fhposI5iwBGtN5SsxYTZGte2cZ+dXVcnLwLIZc
Ry1nDu/SFXPUS0lQBj7/Bc2kl8934+pUtte+B5KZI2s/28Gn98C2IjxxU+YZ1X1LbUkx0cPA
jFWjUh/JSfu6Hif2J0NAG3meySnlmpxl6oZeTojeWo1t39PF4N/ay7S2TqIjGSBfxvD1peIU
bnziKsyM5ULbkMdgHssQvyZvrVzQxacRzPK424jXtKR6B2oA0wqMcP4c69UmVKEKIzJNYrn4
Kjs+An8vZvJYAVbiWEyEseTTo3XJePdBNs1xxK2vWLA5PeLkE8bmzHr8iQ3hA0NaY7jSJp3e
GrhWIdXV+nfclrFUPghYr5z+ljCSK5sow+aRiED39qd1Y+0iUAy94cqY3MQ4ayGgnB/+YuSx
B5jNjCBYJetFWWSJXnkbiYRLjU88dflXCrTbhkSuCu3agOjsBJYUyg/c1Z4eCQgpTWB2cjYQ
0ucKOsWt8U6qsl12qwYLr0RfcP2aCwTTnWIxqIN9F6iMafOsG+za8JY+B8PDJxxwWWz8vCvX
ChTYrfiFei8oUqoHYTbw07cxaxkDd2CgXsQMmOcZSoXZZPAe8AhsUibDl+BZs/vLZT7HrXtt
/ggz8LzVCcyQqwmCHurvgjauwjk6IcyZ5CzHFUTYWUjvFqYfAoN15xUZbvPYiQIzBBABCAAd
FiEERsRGITzmkUU5TZu635zONxKwpCkFAlxFLcAACgkQ35zONxKwpClKVw/+PfrtIVHFsOdl
2crWBSo5Hifvx9Vn2nPiNKErygB+tPWDS4UwzVUnpZfXCM7bKJFFPeKbitYxN3BlDmVhZMkc
1DZMAtIPSstO2oX7Tv/C0WOZPlAWkp5m0DPV3iGbGZjwmy5wz8fNtaWyxtcUeaEXY8j151gm
Wfl1LMvgwnFsQ74xobnCpssLgmogXfoLFQNF/VUfRveJ2Ci8raWyAdXFBdAIrejawAx5MMhO
/lEfQ3W3f9bqtJZ5DzLbxQ3Xtqs+RY1ihv1y12lr9vLpgKKGmZ92KDvjv2UXHd7XZ90aPMj7
Rx0MQ1d+5d/tNQ8rLJGuj1I7NqHmLHMz67TvRtPl4aNP7Mss8OHiEKLYq23kGqXN+6cjG3UM
i290uJZaAnTno65Cgsyn7JFKyXDdTOmp3TSoyVsPFq92qgd/jFBf3dJj8c+mZEVXkUFeeUEK
31EMGFCH+oE8un7nu+XWqFyFSw5wn+PGYDXkSd6z/NyIN5DXa326KV+qpUmIWOlcymm7cmZ4
KJQt7zgWCxh2DuWQzRlTjeQd8Iw62V8tIOBokWP9Thes18Qk2GOUeCnvczLdevT4lqr8IzvV
nSwX/LQyxmmz2/dmPhzJ6kA6KQKGOSF6WnV/WuD4kESFKwtABFi6mYQi1F6CynpVw/nu535C
4fFG4d+A5G6sKJx//hjOCgmJAjMEEAEIAB0WIQRGxEYhPOaRRTlNm7rfnM43ErCkKQUCXa6e
YgAKCRDfnM43ErCkKfNXD/0cTEjvQlgyy3UI3xfhYtRng8fsRXcACjMajnrvYCoRceWwF6D+
Ekvh5hNQqrZsxrD6nozY+iJhkkaQitIj4qw7i4KY03fo613FjeLFXWqf4sfLTANSsRNxawEo
/JxP1JeOToOgYTkikWOkgZWSs/mqvHAxJZrVq/Zhz06OugfOYVGmGZonU7zP12toiwParIZ9

76

Verifying Package Integrity Using MD5 Checksums or GnuPG

hcZ/byxfNoXEtsQyUHO1Tu8Fdypmk0zYUgZK2kGwXslfOGj5m0M5nfUuVWq5C5mWtOI6ZngT
LPJ32tRW526KIXXZMTc0PzrQqQvTFHEWRLdc3MAOI1gumHzSE9fgIBjvzBUvs665ChAVE7p2
BU6nx1tC4DojuwXWECVMlqLOHKjC5xvmil12QhseV7Da341I0k5TcLRcomkbkv8IhcCI5gO8
1gUq1YwZAMflienJt4zRPVSPyYKa4sfPuIzlPYxXB01lGEpuE5UKJ94ld+BJu04alQJ6jKz2
DUdH/Vg/1L7YJNALV2cHKsis2z9JBaRg/AsFGN139XqoOatJ8yDs+FtSy1t12u1waT33TqJ0
nHZ8nuAfyUmpdG74RC0twbv94EvCebmqVg2lJIxcxaRdU0ZiSDZJNbXjcgVA4gvIRCYbadl9
OTHPTKUYrOZ2hN1LUKVoLmWkpsO4J2D1T5wXgcSH5DfdToMd88RGhkhH7YkCMwQQAQgAHRYh
BH+P4y2Z05oUXOVHZQXCWLGt3v4UBQJhrDYPAAoJEAXCWLGt3v4Uh2oQAMS3sK0MEnTPE+gu
7lLi9rMbD/3O5nlAxBJLX4MzLi2xP1648YV5nq9WMMt6qyp+OVwDXefneYNMgfU2/uu/Wi/o
XTHBJuU36lmFzhRWPj2h/vtfgDIYG2wio0DNJyaUQwLEi6gqPm0AHhKS4td69R+7qyQsbUIa
BFgoytxFzxDb5o2hicEOXa573m4myfAdCx5ucYfq+jlXJW9Wgw7ERnF1v9xQDXiuryXWFRdv
UOOWzVPu9T0gPkcG8NABwqxs28Oc7n9Al9HM2FtDAkD0LIcm/I4ZEhFVqvG6Hj966+FeuICw
OaefFhthOoi3ycO+pkj1IePz/TmnsplTvvZOXH+6XEMPpPRQpvf5IZKJyrvuzoU8vkXYY2h/
gJHi9HiSIIQ/BVEpvp6UjXvIbNP1K31II88qx9EfT/tv434wlZpC6V1FzE2LtxyNcj/+OUvj
9hKOJ7lKOVpsnBbGiWg809s4sCIZ/ifLfWAKOJgxAEk/GcRkkkCqGNx7HA+coteNHqXLa/Lb
2/r8gGn6kH9YhQootJsGhhSsY+6CW5TM5E+FhSRJU7MFHRpA94N7Hn6OFUK2OXtHyRhxE867
R+ChJaZXbtoQJVNv2Rv9yoZrBki3RoQ6/6/fcnR1x2moTMYg7K8AMMv7ZCfaP6AjPOjTVnMV
CpNy1Ao7smOzLAfKbbeXiQIzBBABCAAdFiEEjy2YV7IZJ8NHv36cSrDCiwqTaaEFAmF9XbsA
CgkQSrDCiwqTaaFUGw//WSUO22Csa60I6VN8yJQmf0wCo9sieWDXCdHZ+CB0+gu0I3EMYR2a
gL8lqCd6M79fpP8DiLKOJvn9mhXCsjYjTJQUsuNi5kQ/O9gwarRsr7EjJ7R8u8lpSh9YPlMS
yN6XXfOa4Qy5HOw9idJdb3owKAXSjuRdi/hUExjA8TWliyWrfwiVDQi/aCoLZ4b9p6SfGR3Y
gE8UIZLZtdWgsPJHkvdvntTPi4fwMsadBfa2f+m4Wq2CAU5KSfYsVpKAwSQ1OsdUZUK7g+Ui
jy//ad7eZ+BAc75blHs7ua2iiF8Sc7MC55ZM5ldkv+0lqJ7td5vOCT1LKJg5PKKUC7YTTh9U
PHlERJ/SWcHNES1YhwLvUO2VROlPN9H1QkPnEMBOObpmYkNQyLBfFwioJ3ilptYY0IUX5qBM
5UkwgyqMsdyrL+2ozIYc+/A8KUnZXozOAG9LP8gBE5jBJSIkbqsi9Fumf7Q63++g4ojcYpOZ
F92X6kQMGqBvkvs8UajR5f/n6QH0je4XFPj4l4lVM/PPfZSShNGdOOi4l+KwozICnQ1+fhwh
N0VG4eALSJ6XQEEfJ18PrBRS3sdC7OVEMLevEC8ojSQeZE1lCLe1qAUoEcmgmXjsODaJn2tt
qNYYUxcFOycFnzgWL679C9FVp+DAg9jzDMKsqWo/Lt3IDNF19ZUc93WJAjMEEAEKAB0WIQSC
piWCWP+fBOH/9bx9bbut3FAu7gUCW8ygHQAKCRB9bbut3FAu7mOaD/9QJ1MiyKvw9rYqTvkU
OSDSLu88g6NP5R9ozgGZegInZ/NzT8u5emYccflnLlfvRQZPnT7YIH4+h25CCGQ5HzXUGENx
ndeuG4dm3B10A8hxv+abEM9VYDGqSIvF6z1xObvENOpMgmlmFdDi9O9d6jFFy4Hd6/BWejbU
4M3kfuD39RxaT1OEWfqvTVf4GKiLqM71glNB8WrTqxt2t/Mo2h6UPCF7/wPF/idMAbKEn0ye
b1WDCaZVXxAQETfNo129hPb2qxPGoCWGw24ySpGrM5We4Nd3bbdGItSZ0mATNM1+m9FY9j30
vpePFzzYGZ+23EcpxWU+7jWbjZ42ssCW6kx2/ERLVma7FuneEAqUc3gZr/3ZdZOVMvseg8c0
n66D/NRLgMcpOQK62qJfSrxQj6sJCGRY4dxAfdTZWrcxu8UvvcINezGIToQ0y+Mc5LM1vMOd
srXcaVnuJTfWorOeqnFecnClcOwKNAKBXjE8bSANUBKlrw0RIpye/IilrKGEMaYkP2nnnNZE
GPmumGkejDstWGmnHi5IogN8ibzyywsbNsO+qDdlUFA2bmVhh2uK7M95kyuMH3GnWbz4IiMx
RyUVEyK8yKnEmgOmLG4WiJjksP1jIPf3ztTEVVDJxy1gT3R36lsxd+OabnPOgiz1oFewKaur
aWX1e0E6eBWJ95ufookCMwQQAQoAHRYhBM8z5mfkMwAXdpGlbLdWs0L0i1qEBQJcBMl7AAoJ
ELdWs0L0i1qEmxwP/jDweTwTh1s+7Pp39L6aLB7nuQzdMleTksPGgmtguRBZipbOYOryEozK
9hI3Hq/ymV/loINv6GZhieDoZvxrv9eEKgO2eUE0IletSy7znlhV6MB7PBOc29dbCMf5L4qo
xUG/f+XfHkRZEkjZRWMlitlERlDU5gHAQ3skLuT9bu3aZkGdBgw0U5qjVvGzYxp2LFpNHXlf
TrlN3RZoDbRI+E9BPILqZFIZczp/fxRRNkXyogkrGD+0PANFsjySQKd/rr8/Z4isl3AM8CZ7
s4tMWM4EVJ2OygnrcMuIEJdXVsR0Ln1gJLuQ9HpWehve0d7/cIZkN7a0fqgE7bMvSPyxWL3m
yTA4FwdbrebBr2y7ixlXZ6WtX/rqTvo2HTDFLle0ZwMbbfAtoFX0M0lPtXTLmJAl5w1G8Nj8
bthWdN4KVFyOpqPt7OXc/G1YNLzcyYQXX5e8Uskmg40OH5cQV5OFEG8qpxTg53wANDdxXGzs
NUQe84Qkoyk75nwzVfsi00/OhTZmfIC48esXcs0kTrkSPrFcHktSMoYPmHfV3dTF17ifjz5a
C2SL22R+RokWuzGxxpvEaQAWIyCt6izf1a+CjnXPD2Jw3yDC/Oeg68XYiSrbeFdCRzQbS9YP
ipUFIlHuCiNZeGg3rFL2N2JodXg2LGORJz1RKazT7uAfRr5z7W1FtDtNeVNRTCBQYWNrYWdl
IHNpZ25pbmcga2V5ICh3d3cubXlzcWwuY29tKSA8YnVpbGRAbXlzcWwuY29tPohGBBARAgAG
BQI/rOOvAAoJEK/FI0h4g3QP9pYAoNtSISDDAAU2HafyAYlLD/yUC4hKAJ0czMsBLbo0M/xP
aJ6Ox9Q5Hmw2uIhGBBARAgAGBQI/tEN3AAoJEIWWr6swc05mxsMAnRag9X61Ygu1kbfBiqDk
u4czTd9pAJ4q5W8KZ0+2ujTrEPN55NdWtnXj4YhGBBARAgAGBQJDW7PqAAoJEIvYLm8wuUtc
f3QAnRCyqF0CpMCTdIGc7bDO5I7CIMhTAJ0UTGx0O1d/VwvdDiKWj45N2tNbYIhGBBARAgAG
BQJEgG8nAAoJEAssGHlMQ+b1g3AAn0LFZP1xoiExchVUNyEf91re86gTAKDYbKP3F/FVH7Ng
c8T77xkt8vuUPYhGBBARAgAGBQJFMJ7XAAoJEDiOJeizQZWJMhYAmwXMOYCIotEUwybHTYri
Q3LvzT6hAJ4kqvYk2i44BR2W2os1FPGq7FQgeYhGBBARAgAGBQJFoaNrAAoJELvbtoQbsCq+
m48An2u2Sujvl5k9PEsrIOAxKGZyuC/VAKC1oB7mIN+cG2WMfmVE4ffHYhlP5ohGBBMRAgAG
BQJE8TMmAAoJEPZJxPRgk1MMCnEAoIm2pP0sIcVh9Yo0YYGAqORrTOL3AJwIbcy+e8HMNSoN
V5u51RnrVKie34hMBBARAgAMBQJBgcsBBYMGItmLAAoJEBhZ0B9ne6HsQo0AnA/LCTQ3P5kv
JvDhg1DsfVTFnJxpAJ49WFjg/kIcaN5iP1JfaBAITZI3H4hMBBARAgAMBQJBgcs0BYMGItlY
AAoJEIHC9+viE7aSIiMAnRVTVVAfMXvJhV6D5uHfWeeD046TAJ4kjwP2bHyd6DjCymq+BdED
z63axohMBBARAgAMBQJBgctiBYMGItkqAAoJEGtw7Nldw/RzCaoAmwWM6+Rj1zl4D/PIys5n
W48Hql3hAJ0bLOBthv96g+7oUy9Uj09Uh41lF4hMBBARAgAMBQJB0JMkBYMF1BFoAAoJEH0l
ygrBKafCYlUAoIb1r5D6qMLMPMO1krHk3MNbX5b5AJ4vryx5fw6iJctC5GWJ+Y8ytXab34hM
BBARAgAMBQJCK1u6BYMFeUjSAAoJEOYbpIkV67mr8xMAoJMy+UJC0sqXMPSxh3BUsdcmtFS+
AJ9+Z15LpoOnAidTT/K9iODXGViK6ohMBBIRAgAMBQJAKlk6BYMHektSAAoJEDyhHzSU+vhh

77

Verifying Package Integrity Using MD5 Checksums or GnuPG

JlwAnA/gOdwOThjO8O+dFtdbpKuImfXJAJ0TL53QKp92EzscZSz49lD2YkoEqohMBBIRAgAM
BQJAPfq6BYMHZqnSAAoJEPLXXGPjnGWcst8AoLQ3MJWqttMNHDblxSyzXhFGhRU8AJ4ukRzf
NJqElQHQ00ZM2WnCVNzOUIhMBBIRAgAMBQJBDgqEBYMGlpoIAAoJEDnKK/Q9aopf/N0AniE2
fcCKO1wDIwusuGVlC+JvnnWbAKDDoUSEYuNn5qzRbrzWW5zBno/Nb4hMBBIRAgAMBQJCgKU0
BYMFI/9YAAoJEAQNwIV8g5+o4yQAnA9QOFLV5POCddyUMqB/fnctuO9eAJ4sJbLKP/Z3SAiT
pKrNo+XZRxauqIhMBBMRAgAMBQI+PqPRBYMJZgC7AAoJEElQ4SqycpHyJOEAn1mxHijft00b
KXvucSo/pECUmppiAJ41M9MRVj5VcdH/KN/KjRtW6tHFPYhMBBMRAgAMBQI+QoIDBYMJYiKJ
AAoJELb1zU3GuiQ/lpEAoIhpp6BozKI8p6eaabzF5MlJH58pAKCu/ROofK8JEg2aLos+5zEY
rB/LsohMBBMRAgAMBQI+TU2EBYMJV1cIAAoJEC27dr+t1MkzBQwAoJU+RuTVSn+TI+uWxUpT
82/ds5NkAJ9bnNodffyMMK7GyMiv/TzifiTD+4hMBBMRAgAMBQJB14B2BYMFzSQWAAoJEGbv
28jNgv0+P7wAn13uu8YkhwfNMJJhWdpK2/qM/4AQAJ40drnKW2qJ5EEIJwtxpwapgrzWiYhM
BBMRAgAMBQJCGIEOBYMFjCN+AAoJEHbBAxyiMW6hoO4An0Ith3Kx5/sixbjZR9aEjoePGTNK
AJ94SldLiESaYaJx2lGIlD9bbVoHQYhdBBMRAgAdBQI+PqMMBQkJZgGABQsHCgMEAxUDAgMW
AgECF4AACgkQjHGNO1By4fVxjgCeKVTBNefwxq1A6IbRr9s/Gu8r+AIAniiKdI1lFhOduUKH
AVprO3s8XerMiF0EExECAB0FAkeslLQFCQ0wWKgFCwcKAwQDFQMCAxYCAQIXgAAKCRCMcY07
UHLh9a6SAJ9/PgZQSPNeQ6LvVVzCALEBJOBt7QCffgs+vWP18JutdZc7XiawgAN9vmmIXQQT
EQIAHQUCR6yUzwUJDTBYqAULBwoDBAMVAwIDFgIBAheAAAoJEIxxjTtQcuH1dCoAoLC6RtsD
9K3N7NOxcp3PYOzH2oqzAKCFHn0jSqxk7E8by3sh+Ay8yVv0BYhdBBMRAgAdBQsHCgMEAxUD
AgMWAgECF4AFAkequSEFCQ0ufRUACgkQjHGNO1By4fUdtwCfRNcueXikBMy7tE2BbfwEyTLB
TFAAnifQGbkmcARVS7nqauGhe1ED/vdgiF0EExECAB0FCwcKAwQDFQMCAxYCAQIXgAUCS3Au
ZQUJEPPyWQAKCRCMcY07UHLh9aA+AKCHDkOBKBrGb8tOg9BIub3LFhMvHQCeIOOot1hHHUls
TIXAUrD8+ubIeZaIZQQTEQIAHQUCPj6jDAUJCWYBgAULBwoDBAMVAwIDFgIBAheAABIJEIxx
jTtQcuH1B2VHUEcAAQFxjgCeKVTBNefwxq1A6IbRr9s/Gu8r+AIAniiKdI1lFhOduUKHAVpr
O3s8XerMiGUEExECAB0FAkeslLQFCQ0wWKgFCwcKAwQDFQMCAxYCAQIXgAASCRCMcY07UHLh
9QdlR1BHAAEBrpIAn38+BlBI815Dou9VXMIAsQEk4G3tAJ9+Cz69Y/Xwm611lzteJrCAA32+
aYhlBBMRAgAdBQsHCgMEAxUDAgMWAgECF4AFAktwL8oFCRDz86cAEgdlR1BHAAEBCRCMcY07
UHLh9bDbAJ4mKWARqsvx4TJ8N1hPJF2oTjkeSgCeMVJljxmD+Jd4SscjSvTgFG6Q1WCIbwQw
EQIALwUCTnc9rSgdIGJ1aWxkQG15c3FsLmNvbSB3aWxsIHN0b3Agd29ya2luZyBzb29uAAoJ
EIxxjTtQcuH1tT0An3EMrSjEkUv29OX05JkLiVfQr0DPAJwKtL1ycnLPv15pGMvSzav8JyWN
3Ih7BDARAgA7BQJCdzX1NB0AT29wcy4uLiBzaG91bGQgaGF2ZSBiZWVuIGxvY2FsISBJJ20g
KnNvKiBzdHVwaWQuLi4ACgkQOcor9D1qil/vRwCdFo08f66oKLiuEAqzlf9iDlPozEEAn2Eg
vCYLCCHjfGosrkrU3WK5NFVgiI8EMBECAE8FAkVvAL9IHQBTaG91bGQgaGF2ZSBiZWVuIGEg
bG9jYWwgc2lnbmF0dXJlLCBvciBzb21ldGhpbmcgLSBXVEYgd2FzIEkgdGhpbmtpbmc/AAoJ
EDnKK/Q9aopfoPsAn3BVqKOalJeF0xPSvLR90PsRlnmGAJ44oisY7Tl3NJbPgZal8W32fbqg
bIkBHAQSAQIABgUCS8IiAwAKCRDc9Osew28OLx5CB/91LHRH0qWjPPyIrv3DTQ06x2gljQ1r
Q1MWZNuoeDfRcmgbrZxdiBzf5Mmd36liFiLmDIGLEX8vyT+Q9U/Nf1bRh/AKFkOx9PDSINWY
bE6zCI2PNKjSWFarzr+cQvfQqGX0CEILVcU1HDxZlir1nWpRcccnasMBFp52+koc6PNFjQ13
HpHbM3IcPHaaV8JD3ANyFYS4l0C/S4etDQdX37GruVb9Dcv9XkC5TS2KjDIBsEs89isHrH2+
3ZlxdLsE7LxJ9DWLxbZAND9OiiuThjAGK/pYJb+hyLLuloCg85ZX81/ZLqEOKyl55xuTvCql
tSPmSUObCuWAH+OagBdYSduxiQEiBBABAgAMBQJJKmigBQMAEnUAAAoJEJcQuJvKV618U4wI
AKk/45VnuUf9w1j7fvdzgWdIjT9Lk9dLQAGB13gEVZEVYqtYF5cEZzyxl8c7NUTCTNX3qLId
ul114A4CQQDg5U9bUwwUKaUfGLaz380mtKtM9V9A4fl9H2Gfsdumr8RPDQihfUUqju+d0ycd
mcUScj48Nctx0xhCCWNjOFPERHi9hjRQq7x6RKyFTLjM5ftdInHCo9S+mzyqz9O+iMgX68Mm
+AVgdWSC9L6yGnw6H97GD28oRMGWBTzsmCyqf9I3YutH8mGXRot3QbSJD7/AeZVh1BQwVoJn
CT8Eo1pc/OYZkRRndE1thrX0yjuFwTeOzvqeHlgzEW/FtOCBW7iR0WSJASIEEAECAAwFAkoz
TogFAwASdQAACgkQlxC4m8pXrXwXiAf+Ked6Mgd98YyTyNiLHhllPulboCnKgj430jLzkfgv
7ytVCu1xMfKrRWRw3fA9LC19mzNQX/So/o/ywsk0nUG2sfEs5FiMk+aC957Ic/MDagmXqKap
ZROJbzbZ/KNj9rPCG9kXPGa9sUn6vk39nnv4hri30tNKpM0fMxRhpcoNoCrNl4rs/QTpdRpp
7KBuNaMEtDU7R7OjMDL4qT+BcCmYMIYW4dIV7tmaC0VxtcszZcVCkxSigRMPZHwxSx37GdCx
9/+TqlA4vGL6NQSxZKv+Kqa+WTqBngOl6YGO6FxdiXEliNRpf1mafmz6h8XgYXFGpehjuX1n
60Iz0BffuWbpL4kBIgQQAQIADAUCSkRyCgUDABJ1AAAKCRCXELibyletfPaaB/9FCSmYwz7m
vzOfHZOlEAYeLnCS290XGW89o4FYTbw0PBOulygyqj2TMCK68RCNU2KFs/bXBHeS+dDzitMA
fSaULYi7LJuCCmrDM5SX5aLSj6+TxkDQDR1K1ZE3y6qd4Kx3VeeoN7Wu+oLj/3Jjbbe0uYCQ
+/PniRra9f0Z0neTExZ7CGtVBIsKS1CnKBTR26MZMOom2eTRZwGFUX1PzuW/dbZ4Z0+J6XMd
Tm2td7OYYWPbV3noblkUrxyjtGtO3ip3Oe3zSCWHUFMaaEuXOMw8tN51wy6ybcPVAH0hOiBw
b3iCFJ/20QqaZEno6edYzkqf0pwvrcTmiPb+Vj0fnjBJiQEiBBABAgAMBQJKVj5HBQMAEnUA
AAoJEJcQuJvKV61845AH/R3IkGIGOB/7x3fI0gOkOS0uFljDxysiM8FV06BfXbFpRgFMZxAh
NFUdKCDN98MDkFBd5S5aGkvhAHS7PVwQ8/BIyJaJeUG3AXmrpFV/c9kYn1+YW5OQ9E7tKu5l
5UOj1Y/weNtC04u6Rh/nrp6CvMBhH2nvhSBZ+2kO2auqtFOhuK6+wUHGixt5EK8RAKs3Sf6n
kP2EJUHzy1Q8ec5YDiaV24AVkPFBZMCkpD3Z+seIGrL4zUkV7PPY4zd9g34Oqj8JvtnA4AD/
Z1vBLujLixcQdt9aieOySA9DAVgHbe2wVS4zi5nBURsmD5u96CUOwNK1sOV+ACtdIv/T5qSU
VweJASIEEAECAAwFAkpoCoQFAwASdQAACgkQlxC4m8pXrXysfQf+IJyIPhTphk0kGPQY3v9e
3znW30VahyZxoL6q25eeQWGmVeTFlU4JThUEyzgYGip8i9qBsFPJ9XgOL5bxTGv7/WOK7eX8
e+gXHB3A2QYbrM0GFZKN3BCkbA++HmvJXU58tf+aBCB0ObG+rPn6QUNSPibu4tp65TaPVPSV
HjNTTICxu3sneHB+okJcc5z1ubme8nAytKb6x0JM/keNSXAev2ZN7zG5m+Pqw7/DQ/gCogzG
ML1bulP2rSh8bYpJPC3vAVuHTmxsbhRBg4l7j5KiHf4qMBrVzRy+YiHhwpf2p8JbCGF141+H
UD1VMeGeXnNO/9SO+dC2OGUf8WrV4FIpxIkBIgQQAQIADAUCSnkuCgUDABJ1AAAKCRCXELib

78

Verifying Package Integrity Using MD5 Checksums or GnuPG

yletfBjrCACDd/zvoveoNlNiUUBazelcGXwaxSvUMSROUQNkxkoMzfA+aFpYFHWEwDfLqndp
oJTIkgkESd5fODJT26oLFekLvx3mpzfGz8l39KzDM1i6+7Mtg7DnA3kvfVIuZBNDwqoTS6hH
KcGa0MJDgzZQqJ9Ke/7T7eY+HzktUBLjzUY2kv5VV8Ji0p6xY27jT73xiDov00ZbBFN+xBtx
2iRmjjgnPtjt/zU5sLiv9fUOA+Pb53gBT+mXMNx2tsg07Kmuz7vfjR5ydoY7guyB3X1vUK9y
AmCW1Gq67eRG934SujZFikO/oZUrwRrQu2jj5v8B7xwtcCFCdpZAIRabD4BTglvPiQEiBBAB
AgAMBQJKjl+9BQMAEnUAAAoJEJcQuJvKV618DTwH/3DzIl1zwr6TTtTfTBH9FSDdhvaUEPKC
bLT3WZWzIHREaLEENcQ85cGoYoBeJXVBIwBczZUpGy4pqFjYcWQ9vKFm2Nt1Nrs+v9tKc+9G
ECH0Y1a+9GDYqnepcN2O/3HLASCEpXFwQhVe01G+lupGgqYfMgTG9RByTkMzVXB9ER5gijGC
zjTflYAOFUx2eBBLYa3w/ZZpT+nwRmEUaDpfwq06UPrzMZuhol7SGPZUNz4lz4p2NF8Td9bk
hOiJ3+gORRohbq0HdaRdvSDoP/aGsQltfeF5p0KEcpIHx5B05H1twIkOGFTxyx3nTWqauEJy
2a+Wl5ZBl0hB2TqwAE9Z54KJASIEEAECAAwFAkqgEkcFAwASdQAACgkQlxC4m8pXrXwyXwf/
UPzz+D+n19JWivha7laUxuDzMQCKTcEjFCu4QVZ1rqcBFPoz0Tt74/X75QdmxZizqX1E6lbF
EsbVjL2Mt5zZjedS1vbSbrmn4hV4pHZr08dbflZkNX105g8ZlpsqQ7VyUt5YtWCn0tGNn4B5
Eb6WMeqxQteujV3B7AtMH+CD0ja+A2/p0rHIpqScz8aupksBMCrYqhoT+7/qXNEVkjNmcu2N
mHxfv6dL5Xy/0iJjie2umStu8WTfRTpYmnv2gEhbCdb/zhFvG61GgTBJqv9MvBVGRxnJFd4l
NqlucsadD+UM7WjV3v5VuN2r9KD9wocd/s22ELCRA2wKccvR/nWBkIkBIgQQAQIADAUCSqgQ
AAUDABJ1AAAKCRCXELibyletfAT8B/9cPhH8DlHoiv+cK8rAJMomZqVqOyy4BwsRrakycVlg
7/yvMs74anynSoUf0LgsXADQ29Hmrpf+zC5E5/jPGWNK81x2VBVoB8nZkMSAnkZfOw+mWu9I
Aj2NLcsvt9JYNmAq5R7RrirHsDQ2DIYxRgaE/5CVEVry9YQEj18A13/SYyoB4FWpDI4fRfUW
JbUJrYmfg0p+4zL0YS9F11UhsHUu+g1W1c83N54ozI1v0l3HUwVayzII4E/YNrIkpOaO+o8R
z9g6M6jCg3mwn+OfiZVJO++VOiguJF5KzoZIICMxXE3t5hL87Kroi7UkNwm+YHw3ZaLEBm0B
WAXw4DsJZcpViQEiBBABAgAMBQJKuceJBQMAEnUAAAoJEJcQuJvKV6188KEH/24QK2LV1l42
4Wx3T9G4bJFRWWuuEkTpYJw6ss72lqus9t7BsoGaNLMHQzKAlca9wLTqY826q4nv9anEqwWZ
+Di8kE+UAMUq2BFTL0EvOMJ6i1ZyE8cUFVb1+09tpBWJJS7t3z00uMMMznGuHzSm4MgCnGhA
sOgiuHdPWSlnHnqNJa/SB6UVQxtcDOaqQlLIvhd2HVqrOBRtER3td/YgLO6HSxXpXtz8DBa2
NYQYSwAdlqJAPLBnBsLXwbCswuIDMZZv8BJwUNBEJkokOMv5CXxhPrP5kxWvyBvsIhTk8ph2
GIh/ZRVNDAsChbuU1EJBACpwaMrcgwjPtI7/KTgeZVSJASIEEAECAAwFAkreCMYFAwASdQAA
CgkQlxC4m8pXrXyOQQf7BvRm/3PvFCCksyjBW4EVBW7z/Ps/kBK6bIE9Q7f7QlXFIcGGUIpA
rufXWbV+G4a3Z8LFeFJTovNePfquwpFjneUZn1CG+oVS1AfddvYhAsgkLhQqMbaNJIJ1y4D/
H3xvCna/s7Teufud0JLXoLBedFXeB5Cg2KlEoxINqMo+lm/VGJmbykwqoRvxZLDfnbFag5zG
59+OWw4TC8nzlIQYIBn22YiWRk5zsCJA40O+KL1vwBiFDrREhALQc/YBJKYrRX3ZV4U/EeYD
KB0NCBk1W1tXGCee3uhM0S5VFc1j7Pg58ECuntH5xOy+KMNFljiQwvWfbaFTJvCjFQS+OplX
b4kBIgQQAQIADAUCSu86VAUDABJ1AAAKCRCXELibyletfGs8CACteI2BmKs24GF80JeWTOQI
cvHnCdV7hKZOltbNPBbDv6qTt3iX2GVa10iYhI5Eg3Ojt/hKFJTMlfYZyI1peFodGjv7Lk5l
u7zaNBvT1pBCP+eJspi6rGpSuhtMSb4O5jPclRBmbY+w9wctLyZf1zG+slSdw8adcRXQNFqr
vVIZYOmu2S8FunqLfxpjewiFiDPzAzmbWzMoO2PLCYFhwV6Eh2jO33OGbvBmyHNFZBfX5F/+
kiyeT47MEhrfhytJ6ZOdpxtX8HvbvzPZcDLOI80W6rPTG76KW06ZiZrJ81YCa6a7D01y7BYy
W2HoxzYcuumjRkGF4nqK4Mw+wefCp0H/iQEiBBABAgAMBQJLAF3aBQMAEnUAAAoJEJcQuJvK
V618/q0H/ibXDQG2WQmC1LoT4H+ezXjPgDg8aiuz6f4xibTmrO+L4ScMX+zK0KZVwp6Kau28
Nx+gO0oAUW8mNxhd+cl0ZaY+7RIkxEvkooKKsArBmZT+xrE6CgHlAs3D4Mc+14nfD0aZaUbE
iobWvXlYLl27MELLcWyeMlgbeNoucc473JddvmHSRRM5F9Qp28CvWDEXYqhq1laoaho8+cei
pvzyuO3OTwjuAOqhefOHzAvFrRli99ML8xzF1ZOvBct+36SuYxDXyIhkSd7aG9Us0lW6W5Si
JYt4cDyI0JDhbhZN0tzWYKcKMZMxf8w3jW4sfQL0prhHrARqqPiU8OTUH/VNX5CJASIEEAEC
AAwFAksRgasFAwASdQAACgkQlxC4m8pXrXydogf/a31ofmYFMoE3p9SqGt/v28iyO0j9A1Lm
qKwEhJkxff/X/Qa7pafGQ9J90JQkxYKMxydWPspTbDFMccZWkBK132vZp9Q3FHKpnDPDLK2S
25miTReeAAQNgMMFLeyy7ZHi5YsKwLbKxcSo7/m0jlitNYlmt94imFNpg/mHGsy6O+rLeQTA
opuIzP3VwN6ItL5gIFxqWPmf/V0xh/vxTwLqJ66vECD8vyHrHblUzgiXHgyYbZPxAa2SRRd3
4V38phaZ/QsTkss+Sd/QeHChWyU9d6KengWwcr/nDO+K/hhmnO5Oqz02Upwyxrgi6484HQUN
/Smf44VBsSD1DBjaAKjMr4kBIgQQAQIADAUCSyNN1AUDABJ1AAAKCRCXELibyletfCWiB/9c
EZtdFVcsxpE3hJzM6PBPf+1QKuJORve/7MqNEb3TMWFgBxyOfvD7uMpCJyOrqq5AbUQfZfj9
K7qmzWUMuoYceGIlbdmHFBJwtmaF0BiyHaobgY/9RbdCNcbtzrW34feiW9aDZyvCoLHEVkCC
QACSv3FwdYVkkRB5eihvpwJk5tpScdIA12YLqzmVTFdhrZuYvtDdQHjgoLMO8B9s9kok7D2T
SpveVzXXPH68Z3JkVubhHT7cs+n+9PRvcaVJtsX2VTUY5eFVqmGuAUVrvp2aN8cKQ+mVcCQr
VVIhT9o8YB5925MUx2VJml0y0nkBQuMZyzMEOVGkuU/G+pVrRmmAiQEiBBABAgAMBQJLJyaS
BQMAEnUAAAoJEJcQuJvKV618eU0IAKnVh6ymId9C3ZqVyxwTnOB8RMQceJzwCLqk2RT0dPhN
5ZwUcQN7lCp9hymMutC8FdKRK/ESK21vJF2/576Pln4fIeOIbycBAEvqrL14epATj53uBizo
NOTuwb1kximFERuW3MP4XiFUJB0tPws2vR5UU3t6GoQJJwNoIbz9DK2L6X/Qz3Tb9if6bPSK
U6JR1Yn3Hos9ogg21vWCxgMTKUuPAYhmYjSvkqH3BihXi+c17MVvE7W5GJbQHuJo+MgSxu04
4qnvDHZpf4Mzc30XcG1ohjxefNyeiY2bzdI2yCaCtmWOlCW1Sc2oiE0zwO6lD4hY5XmC2Xql
MLsKB5VNXJGJASIEEAECAAwFAks4Ze4FAwASdQAACgkQlxC4m8pXrXyWXggAon2abiNvRzx9
7364Mjx4IlFvM1tVebzNbOkDwZS1ABqTDGgq/ffZA/VZrU+h2eL97cQyGxJEQ5kkm/v1iobE
ZEFMT0pv9WMzfidqzhdKdcpbbxdaErIjD5fBACKdjazAUeH7zce2v+bBN0l9LZoRiXbNugG9
38lkJ2E4ZTYYfvftL/e4RzOgqR9VD/A5MzxfXFbCVharHbeT8OwZy4Oz2UDaDszHsNKoG1WN
pOSf2HTMBPNcsOSY/hIBRWNxnzdYOkWt7laeLNmN1eUEwzk4J7GnlambPIctOdoEUriMSaey
TkLZGejKnwi/PqARyDW1FsReKNHD753ZMViUnAsq2IkBIgQQAQIADAUCS0oyJwUDABJ1AAAK
CRCXELibyletfGodCAC5hjmxwquHSb8ZL0RifIL3j3iU6U7qLK1TQKkTqgELfUzeF9f8NuNR
txLmzNk1T7YI9iji6NAtnuy43v61OMbqlkV8x69qNP36Owv408wXxEt0s5ViZuVOZJAY075c

79

Installation Layouts

YRhopgfmhkh4hbkAoKCLajOR0WUEEsDHsqqj8XLJuGRREURy8TJWaB/cotXsgiJf99gt+gIw
In8tyb3+WVIUHWfw2+Drpd3nfcMqgeO54PePJo0BWWjaar+wgC/76Se286IHcYMrml/Adnvx
ZaIKmxZmkTmDMCfMnVjRYSKBGjQ9Uu7dws7SMsbbd34f8Jt9nyuRqMcl4INAXthWY/S3Sdil
iQEiBBABAgAMBQJLW/5mBQMAEnUAAAoJEJcQuJvKV6181L8IAKq3ZOQHzqaOoz5wnvj51YG8
nZoW5RG7HOb3mL1D9b+FTTzaIxsLf7STagPwKtM57rU/7ehHIuO/9QQNQ3Mudw17ZiwD0l5X
7iG8/AflWnc6bXfTz18IplRuqyVc0qQeJZhT7MBpklcS4ZGZHPQdtAh4Aw5YXihrbbq6jV7j
CzUmFz4XcT8CkJHIUGoFR0vTmFqlAt2K1imwGMh2IEamPOJ0wsTbBfZbhmkB03RToEjIipGZ
M+NtKS/NL2RJYWZ+FCCcEMoRgmlVmATWw3natgLWwN4Z6K4rGXONWi/0wyFgxZpmjdHmjcXa
Igz8EroVsLbnaV/8yG7cgK5e6M0Fk1iJASIEEAECAAwFAkttIfgFAwASdQAACgkQlxC4m8pX
rXyR3QgAksvAMfqC+ACUEWSVAlepDFR1xI45UwBa2UeBY7KjOOCiZlkGREvx20IOv1gExyPl
zNxDeqmYsl2mleEoH6QlXaJRd8MxIVfAnjAt8izwU2dfDwflTTWgGQYf8q7qeAv1XC34yNge
0JaTD1C55QpmcO51f2ojMsAi36bBJO4Dr59jhVYiDjQADS/d7FpAznlhH9SGUq6ekYb2jxCS
rvt0wRtMyk6YGgts4xEHcN0wC9VTobaXo9xvsqhtUK44Gdvptq1cBFX8byzD6fN8nXp+v8qh
tlPYDqb4muqTh2UXXiWMtvPXo7kkZQ8CvI3YbZ10F1IDLt20VJWFZaJYL2fzyokCIgQQAQIA
DAUCQYHLhQWDBiLZBwAKCRCq4+bOZqFEaKgvEACCErnaHGyUYa0wETjj6DLEXsqeOiXad4i9
aBQxnD35GUgcFofC/nCY4XcnCMMEnmdQ9ofUuU3OBJ6BNJIbEusAabgLooebP/3KEaiCIiyh
HYU5jarpZAh+Zopgs3Oc11mQ1tIaS69iJxrGTLodkAsAJAeEUwTPq9fHFFzC1eGBysoyFWg4
bIjz/zClI+qyTbFA5g6tRoiXTo8ko7QhY2AA5UGEg+83Hdb6akC04Z2QRErxKAqrphHzj8Xp
jVOsQAdAi/qVKQeNKROlJ+iq6+YesmcWGfzeb87dGNweVFDJIGA0qY27pTb2lExYjsRFN4Cb
13NfodAbMTOxcAWZ7jAPCxAPlHUG++mHMrhQXEToZnBFE4nbnC7vOBNgWdjUgXcpkUCkop4b
17BFpR+k8ZtYLSS8p2LLz4uAeCcSm2/msJxT7rC/FvoH8428oHincqs2ICo9zO/Ud4HmmO0O
+SsZdVKIIjinGyOVWb4OOzkAlnnhEZ3o6hAHcREIsBgPwEYVTj/9ZdC0AO44Nj9cU7awaqgt
rnwwfr/o4V2gl8bLSkltZU27/29HeuOeFGjlFe0YrDd/aRNsxbyb2O28H4sG1CVZmC5uK1iQ
BDiSyA7Q0bbdofCWoQzm5twlpKWnY8Oe0ub9XP5p/sVfck4FceWFHwv+/PC9RzSl33lQ6vM2
wIkCIgQTAQIADAUCQp8KHAWDBQWacAAKCRDYwgoJWiRXzyE+D/9uc7z6fIsalfOYoLN60ajA
bQbI/uRKBFugyZ5RoaItusn9Z2rAtn61WrFhu4uCSJtFN1ny2RERg40f56pTghKrD+YEt+Nz
e6+FKQ5AbGIdFsR/2bUk+ZZRSt83e14Lcb6ii/fJfzkoIox9ltkifQxqY7Tvk4noKu4oLSc8
O1Wsfc/y0B9sYUUCmUfcnq58DEmGie9ovUslmyt5NPnveXxp5UeaRc5Rqt9tK2B4A+7/cqEN
rdZJbAMSunt2+2fkYiRunAFPKPBdJBsY1sxeL/A9aKe0viKEXQdAWqdNZKNCi8rd/oOP99/9
lMbFudAbX6nL2DSb1OG2Z7NWEqgIAzjmpwYYPCKeVz5Q8R+if9/fe5+STY/55OaI33fJ2H3v
+U435VjYqbrerWe36xJItcJeqUzW71fQtXi1CTEl3w2ch7VF5oj/QyjabLnAlHgSlkSi6p7B
y5C2MnbCHlCfPnIinPhFoRcRGPjJe9nFwGs+QblvS/Chzc2WX3s/2SWm4gEUKRX4zsAJ5ocy
fa/vkxCkSxK/erWlCPf/J1T70+i5waXDN/E3enSet/WL7h94pQKpjz8OdGL4JSBHuAVGA+a+
dknqnPF0KMKLhjrgV+L7O84FhbmAP7PXm3xmiMPriXf+el5fZZequQoIagf8rdRHHhRJxQgI
0HNknkaOqs8dtrkCDQQ+PqMdEAgA7+GJfxbMdY4wslPnjH9rF4N2qfWsEN/lxaZoJYc3a6M0
2WCnHl6ahT2/tBK2w1QI4YFteR47gCvtgb6O1JHffOo2HfLmRDRiRjd1DTCHqeyX7CHhcghj
/dNRlW2Z0l5QFEcmV9U0Vhp3aFfWC4Ujfs3LU+hkAWzE7zaD5cH9J7yv/6xuZVw411x0h4Uq
sTcWMu0iM1BzELqX1DY7LwoPEb/O9Rkbf4fmLe11EzIaCa4PqARXQZc4dhSinMt6K3X4BrRs
KTfozBu74F47D8Ilbf5vSYHbuE5p/1oIDznkg/p8kW+3FxuWrycciqFTcNz215yyX39LXFnl
LzKUb/F5GwADBQf+Lwqqa8CGrRfsOAJxim63CHfty5mUc5rUSnTslGYEIOCR1BeQauyPZbPD
sDD9MZ1ZaSafanFvwFG6Llx9xkU7tzq+vKLoWkm4u5xf3vn55VjnSd1aQ9eQnUcXiL4cnBGo
TbOWI39EcyzgslzBdC++MPjcQTcA7p6JUVsP6oAB3FQWg54tuUo0Ec8bsM8b3Ev42LmuQT5N
dKHGwHsXTPtl0klk4bQk4OajHsiy1BMahpT27jWjJlMiJc+IWJ0mghkKHt926s/ymfdf5Hkd
Q1cyvsz5tryVI3Fx78XeSYfQvuuwqp2H139pXGEkg0n6KdUOetdZWhe70YGNPw1yjWJT1IhM
BBgRAgAMBQI+PqMdBQkJZgGAAAoJEIxxjTtQcuH17p4An3r1QpVC9yhnW2cSAjq+kr72GX0e
AJ4295kl6NxYEuFApmr1+0uUq/SlsYhMBBgRAgAMBQJHrJT8BQkNMFjfAAoJEIxxjTtQcuH1
pc4An0I965H3JY2GTrizp+dCezxbhexaAJ48FhocFYvfhZtgeUWb6aPvgQZHT4hUBBgRAgAM
BQI+PqMdBQkJZgGAABIJEIxxjTtQcuH1B2VHUEcAAQHungCfevVClUL3KGdbZxICOr6SvvYZ
fR4Anjb3mSXo3FgS4UCmavX7S5Sr9KWxiFQEGBECAAwFAk53Pe0FCRP7AbgAEgdlR1BHAAEB
CRCMcY07UHLh9RSbAJsFivb5sESf8vYE5yfD1n9AVa6FEwCgpWAIWbl9p1DcB+L5RCUBw6mG
uck=
=yia9
-----END PGP PUBLIC KEY BLOCK-----

2.1.5 Installation Layouts

The installation layout differs for different installation types (for example, native packages, binary tarballs,
and source tarballs), which can lead to confusion when managing different systems or using different
installation sources. The individual layouts are given in the corresponding installation type or platform
chapter, as described following. Note that the layout of installations from vendors other than Oracle may
differ from these layouts.

• Section 2.3.1, “MySQL Installation Layout on Microsoft Windows”

80

Compiler-Specific Build Characteristics

• Section 2.8.3, “MySQL Layout for Source Installation”

• Table 2.3, “MySQL Installation Layout for Generic Unix/Linux Binary Package”

• Table 2.12, “MySQL Installation Layout for Linux RPM Packages from the MySQL Developer Zone”

• Table 2.7, “MySQL Installation Layout on macOS”

2.1.6 Compiler-Specific Build Characteristics

In some cases, the compiler used to build MySQL affects the features available for use. The notes in this
section apply for binary distributions provided by Oracle Corporation or that you compile yourself from
source.

icc (Intel C++ Compiler) Builds

A server built with icc has these characteristics:

• SSL support is not included.

2.2 Installing MySQL on Unix/Linux Using Generic Binaries

Oracle provides a set of binary distributions of MySQL. These include generic binary distributions in the
form of compressed tar files (files with a .tar.gz extension) for a number of platforms, and binaries in
platform-specific package formats for selected platforms.

This section covers the installation of MySQL from a compressed tar file binary distribution on Unix/
Linux platforms. For Linux-generic binary distribution installation instructions with a focus on MySQL
security features, refer to the Secure Deployment Guide. For other platform-specific binary package
formats, see the other platform-specific sections in this manual. For example, for Windows distributions,
see Section 2.3, “Installing MySQL on Microsoft Windows”. See Section 2.1.3, “How to Get MySQL” on
how to obtain MySQL in different distribution formats.

MySQL compressed tar file binary distributions have names of the form mysql-VERSION-OS.tar.gz,
where VERSION is a number (for example, 5.7.44), and OS indicates the type of operating system for
which the distribution is intended (for example, pc-linux-i686 or winx64).

Warnings

• If you have previously installed MySQL using your operating system native
package management system, such as Yum or APT, you may experience
problems installing using a native binary. Make sure your previous MySQL
installation has been removed entirely (using your package management
system), and that any additional files, such as old versions of your data files, have
also been removed. You should also check for configuration files such as /etc/
my.cnf or the /etc/mysql directory and delete them.

For information about replacing third-party packages with official MySQL
packages, see the related APT guide or Yum guide.

• MySQL has a dependency on the libaio library. Data directory initialization
and subsequent server startup steps fail if this library is not installed locally. If
necessary, install it using the appropriate package manager. For example, on
Yum-based systems:

$> yum search libaio # search for info

81

https://dev.mysql.com/doc/mysql-secure-deployment-guide/5.7/en/
http://dev.mysql.com/doc/mysql-apt-repo-quick-guide/en/

Installing MySQL on Unix/Linux Using Generic Binaries

$> yum install libaio # install library

Or, on APT-based systems:

$> apt-cache search libaio # search for info
$> apt-get install libaio1 # install library

• For MySQL 5.7.19 and later: Support for Non-Uniform Memory Access (NUMA)
has been added to the generic Linux build, which has a dependency now on the
libnuma library; if the library has not been installed on your system, use you
system's package manager to search for and install it (see the preceding item for
some sample commands).

• SLES 11: As of MySQL 5.7.19, the Linux Generic tarball package format is
EL6 instead of EL5. As a side effect, the MySQL client bin/mysql needs
libtinfo.so.5.

A workaround is to create a symlink, such as ln -s libncurses.so.5.6 /
lib64/libtinfo.so.5 on 64-bit systems or ln -s libncurses.so.5.6 /
lib/libtinfo.so.5 on 32-bit systems.

• If no RPM or .deb file specific to your distribution is provided by Oracle (or
by your Linux vendor), you can try the generic binaries. In some cases, due
to library incompatibilities or other issues, these may not work with your Linux
installation. In such cases, you can try to compile and install MySQL from source.
See Section 2.8, “Installing MySQL from Source”, for more information and
instructions.

To install a compressed tar file binary distribution, unpack it at the installation location you choose
(typically /usr/local/mysql). This creates the directories shown in the following table.

Table 2.3 MySQL Installation Layout for Generic Unix/Linux Binary Package

Directory Contents of Directory

bin mysqld server, client and utility programs

docs MySQL manual in Info format

man Unix manual pages

include Include (header) files

lib Libraries

share Error messages, dictionary, and SQL for database
installation

support-files Miscellaneous support files

Debug versions of the mysqld binary are available as mysqld-debug. To compile your own debug
version of MySQL from a source distribution, use the appropriate configuration options to enable
debugging support. See Section 2.8, “Installing MySQL from Source”.

To install and use a MySQL binary distribution, the command sequence looks like this:

$> groupadd mysql
$> useradd -r -g mysql -s /bin/false mysql
$> cd /usr/local
$> tar zxvf /path/to/mysql-VERSION-OS.tar.gz
$> ln -s full-path-to-mysql-VERSION-OS mysql
$> cd mysql

82

Create a mysql User and Group

$> mkdir mysql-files
$> chown mysql:mysql mysql-files
$> chmod 750 mysql-files
$> bin/mysqld --initialize --user=mysql
$> bin/mysql_ssl_rsa_setup
$> bin/mysqld_safe --user=mysql &
Next command is optional
$> cp support-files/mysql.server /etc/init.d/mysql.server

Note

This procedure assumes that you have root (administrator) access to your system.
Alternatively, you can prefix each command using the sudo (Linux) or pfexec
(Solaris) command.

The mysql-files directory provides a convenient location to use as the value for the
secure_file_priv system variable, which limits import and export operations to a specific directory.
See Section 5.1.7, “Server System Variables”.

A more detailed version of the preceding description for installing a binary distribution follows.

Create a mysql User and Group

If your system does not already have a user and group to use for running mysqld, you may need to create
them. The following commands add the mysql group and the mysql user. You might want to call the
user and group something else instead of mysql. If so, substitute the appropriate name in the following
instructions. The syntax for useradd and groupadd may differ slightly on different versions of Unix/Linux,
or they may have different names such as adduser and addgroup.

$> groupadd mysql
$> useradd -r -g mysql -s /bin/false mysql

Note

Because the user is required only for ownership purposes, not login purposes, the
useradd command uses the -r and -s /bin/false options to create a user
that does not have login permissions to your server host. Omit these options if your
useradd does not support them.

Obtain and Unpack the Distribution

Pick the directory under which you want to unpack the distribution and change location into it. The example
here unpacks the distribution under /usr/local. The instructions, therefore, assume that you have
permission to create files and directories in /usr/local. If that directory is protected, you must perform
the installation as root.

$> cd /usr/local

Obtain a distribution file using the instructions in Section 2.1.3, “How to Get MySQL”. For a given release,
binary distributions for all platforms are built from the same MySQL source distribution.

Unpack the distribution, which creates the installation directory. tar can uncompress and unpack the
distribution if it has z option support:

$> tar zxvf /path/to/mysql-VERSION-OS.tar.gz

The tar command creates a directory named mysql-VERSION-OS.

83

Perform Postinstallation Setup

To install MySQL from a compressed tar file binary distribution, your system must have GNU gunzip to
uncompress the distribution and a reasonable tar to unpack it. If your tar program supports the z option,
it can both uncompress and unpack the file.

GNU tar is known to work. The standard tar provided with some operating systems is not able to unpack
the long file names in the MySQL distribution. You should download and install GNU tar, or if available,
use a preinstalled version of GNU tar. Usually this is available as gnutar, gtar, or as tar within a GNU
or Free Software directory, such as /usr/sfw/bin or /usr/local/bin. GNU tar is available from
http://www.gnu.org/software/tar/.

If your tar does not have z option support, use gunzip to unpack the distribution and tar to unpack it.
Replace the preceding tar command with the following alternative command to uncompress and extract
the distribution:

$> gunzip < /path/to/mysql-VERSION-OS.tar.gz | tar xvf -

Next, create a symbolic link to the installation directory created by tar:

$> ln -s full-path-to-mysql-VERSION-OS mysql

The ln command makes a symbolic link to the installation directory. This enables you to refer more easily
to it as /usr/local/mysql. To avoid having to type the path name of client programs always when you
are working with MySQL, you can add the /usr/local/mysql/bin directory to your PATH variable:

$> export PATH=$PATH:/usr/local/mysql/bin

Perform Postinstallation Setup

The remainder of the installation process involves setting distribution ownership and access permissions,
initializing the data directory, starting the MySQL server, and setting up the configuration file. For
instructions, see Section 2.9, “Postinstallation Setup and Testing”.

2.3 Installing MySQL on Microsoft Windows

Important

MySQL Community 5.7 Server requires the Microsoft Visual C++ 2019
Redistributable Package to run on Windows platforms. Users should make sure the
package has been installed on the system before installing the server. The package
is available at the Microsoft Download Center.

This requirement changed over time: MySQL 5.7.37 and below requires the
Microsoft Visual C++ 2013 Redistributable Package, MySQL 5.7.38 and 5.7.39
require both, and only the Microsoft Visual C++ 2019 Redistributable Package is
required as of MySQL 5.7.40.

MySQL is available for Microsoft Windows, for both 32-bit and 64-bit versions. For supported Windows
platform information, see https://www.mysql.com/support/supportedplatforms/database.html.

Important

If your operating system is Windows 2008 R2 or Windows 7 and you do not have
Service Pack 1 (SP1) installed, MySQL 5.7 regularly restarts with the following
message in the MySQL server error log file:

mysqld got exception 0xc000001d

84

http://www.gnu.org/software/tar/
http://www.microsoft.com/en-us/download/default.aspx
https://www.mysql.com/support/supportedplatforms/database.html

MySQL Installer Method

This error message occurs because you are also using a CPU that does not
support the VPSRLQ instruction, indicating that the CPU instruction that was
attempted is not supported.

To fix this error, you must install SP1. This adds the required operating system
support for CPU capability detection and disables that support when the CPU does
not have the required instructions.

Alternatively, install an older version of MySQL, such as 5.6.

There are different methods to install MySQL on Microsoft Windows.

MySQL Installer Method

The simplest and recommended method is to download MySQL Installer (for Windows) and let it install and
configure all of the MySQL products on your system. Here is how:

1. Download MySQL Installer from https://dev.mysql.com/downloads/installer/ and execute it.

Note

Unlike the standard MySQL Installer, the smaller "web-community" version does
not bundle any MySQL applications but rather downloads the MySQL products
you choose to install.

2. Choose the appropriate Setup Type for your system. Typically you should choose Developer Default
to install MySQL server and other MySQL tools related to MySQL development, helpful tools like
MySQL Workbench. Choose the Custom setup type instead to manually select your desired MySQL
products.

Note

Multiple versions of MySQL server can exist on a single system. You can
choose one or multiple versions.

3. Complete the installation process by following the instructions. This installa several MySQL products
and starts the MySQL server.

MySQL is now installed. If you configured MySQL as a service, then Windows automatically starts MySQL
server every time you restart your system.

Note

You probably also installed other helpful MySQL products like MySQL Workbench
on your system. Consider loading Chapter 29, MySQL Workbench to check your
new MySQL server connection By default, this program automatically starts after
installing MySQL.

This process also installs the MySQL Installer application on your system, and later you can use MySQL
Installer to upgrade or reconfigure your MySQL products.

Additional Installation Information

It is possible to run MySQL as a standard application or as a Windows service. By using a service, you can
monitor and control the operation of the server through the standard Windows service management tools.
For more information, see Section 2.3.4.8, “Starting MySQL as a Windows Service”.

85

https://dev.mysql.com/downloads/installer/

Additional Installation Information

Generally, you should install MySQL on Windows using an account that has administrator rights.
Otherwise, you may encounter problems with certain operations such as editing the PATH environment
variable or accessing the Service Control Manager. When installed, MySQL does not need to be
executed using a user with Administrator privileges.

For a list of limitations on the use of MySQL on the Windows platform, see Section 2.3.7, “Windows
Platform Restrictions”.

In addition to the MySQL Server package, you may need or want additional components to use MySQL
with your application or development environment. These include, but are not limited to:

• To connect to the MySQL server using ODBC, you must have a Connector/ODBC driver. For more
information, including installation and configuration instructions, see MySQL Connector/ODBC
Developer Guide.

Note

MySQL Installer installs and configures Connector/ODBC for you.

• To use MySQL server with .NET applications, you must have the Connector/NET driver. For more
information, including installation and configuration instructions, see MySQL Connector/NET Developer
Guide.

Note

MySQL Installer installs and configures MySQL Connector/NET for you.

MySQL distributions for Windows can be downloaded from https://dev.mysql.com/downloads/. See
Section 2.1.3, “How to Get MySQL”.

MySQL for Windows is available in several distribution formats, detailed here. Generally speaking, you
should use MySQL Installer. It contains more features and MySQL products than the older MSI, is simpler
to use than the compressed file, and you need no additional tools to get MySQL up and running. MySQL
Installer automatically installs MySQL Server and additional MySQL products, creates an options file, starts
the server, and enables you to create default user accounts. For more information on choosing a package,
see Section 2.3.2, “Choosing an Installation Package”.

• A MySQL Installer distribution includes MySQL Server and additional MySQL products, including MySQL
Workbench. MySQL Installer can also be used to upgrade these products in the future.

For instructions on installing MySQL using MySQL Installer, see Section 2.3.3, “MySQL Installer for
Windows”.

• The standard binary distribution (packaged as a compressed file) contains all of the necessary files that
you unpack into your chosen location. This package contains all of the files in the full Windows MSI
Installer package, but does not include an installation program.

For instructions on installing MySQL using the compressed file, see Section 2.3.4, “Installing MySQL on
Microsoft Windows Using a noinstall ZIP Archive”.

• The source distribution format contains all the code and support files for building the executables using
the Visual Studio compiler system.

For instructions on building MySQL from source on Windows, see Section 2.8, “Installing MySQL from
Source”.

86

https://dev.mysql.com/doc/connector-odbc/en/
https://dev.mysql.com/doc/connector-odbc/en/
https://dev.mysql.com/doc/connector-net/en/
https://dev.mysql.com/doc/connector-net/en/
https://dev.mysql.com/downloads/

MySQL on Windows Considerations

MySQL on Windows Considerations

• Large Table Support

If you need tables with a size larger than 4 GB, install MySQL on an NTFS or newer file system. Do not
forget to use MAX_ROWS and AVG_ROW_LENGTH when you create tables. See Section 13.1.18, “CREATE
TABLE Statement”.

Note

InnoDB tablespace files cannot exceed 4 GB on Windows 32-bit systems.

• MySQL and Virus Checking Software

Virus-scanning software such as Norton/Symantec Anti-Virus on directories containing MySQL data and
temporary tables can cause issues, both in terms of the performance of MySQL and the virus-scanning
software misidentifying the contents of the files as containing spam. This is due to the fingerprinting
mechanism used by the virus-scanning software, and the way in which MySQL rapidly updates different
files, which may be identified as a potential security risk.

After installing MySQL Server, it is recommended that you disable virus scanning on the main directory
(datadir) used to store your MySQL table data. There is usually a system built into the virus-scanning
software to enable specific directories to be ignored.

In addition, by default, MySQL creates temporary files in the standard Windows temporary directory.
To prevent the temporary files also being scanned, configure a separate temporary directory for
MySQL temporary files and add this directory to the virus scanning exclusion list. To do this, add a
configuration option for the tmpdir parameter to your my.ini configuration file. For more information,
see Section 2.3.4.2, “Creating an Option File”.

• Running MySQL on a 4K Sector Hard Drive

Running the MySQL server on a 4K sector hard drive on Windows is not supported with
innodb_flush_method=async_unbuffered, which is the default setting. The workaround is to use
innodb_flush_method=normal.

2.3.1 MySQL Installation Layout on Microsoft Windows

For MySQL 5.7 on Windows, the default installation directory is C:\Program Files\MySQL\MySQL
Server 5.7 for installations performed with MySQL Installer. If you use the ZIP archive method to install
MySQL, you may prefer to install in C:\mysql. However, the layout of the subdirectories remains the
same.

All of the files are located within this parent directory, using the structure shown in the following table.

Table 2.4 Default MySQL Installation Layout for Microsoft Windows

Directory Contents of Directory Notes

bin mysqld server, client and utility
programs

%PROGRAMDATA%\MySQL\MySQL
Server 5.7\

Log files, databases The Windows system variable
%PROGRAMDATA% defaults to C:
\ProgramData.

87

Choosing an Installation Package

Directory Contents of Directory Notes

docs Release documentation With MySQL Installer, use the
Modify operation to select this
optional folder.

include Include (header) files

lib Libraries

share Miscellaneous support files,
including error messages,
character set files, sample
configuration files, SQL for
database installation

2.3.2 Choosing an Installation Package

For MySQL 5.7, there are multiple installation package formats to choose from when installing MySQL on
Windows. The package formats described in this section are:

• MySQL Installer

• MySQL noinstall ZIP Archives

• MySQL Docker Images

Program Database (PDB) files (with file name extension pdb) provide information for debugging your
MySQL installation in the event of a problem. These files are included in ZIP Archive distributions (but not
MSI distributions) of MySQL.

MySQL Installer

This package has a file name similar to mysql-installer-community-5.7.44.0.msi or mysql-
installer-commercial-5.7.44.0.msi, and uses MSIs to automatically install MySQL server and
other products. MySQL Installer downloads and apply updates to itself, and for each of the installed
products. It also configures the installed MySQL server (including a sandbox InnoDB cluster test setup)
and MySQL Router. MySQL Installer is recommended for most users.

MySQL Installer can install and manage (add, modify, upgrade, and remove) many other MySQL products,
including:

• Applications – MySQL Workbench, MySQL for Visual Studio, MySQL Utilities, MySQL Shell, MySQL
Router

• Connectors – MySQL Connector/C++, MySQL Connector/NET, Connector/ODBC, MySQL Connector/
Python, MySQL Connector/J, MySQL Connector/Node.js

• Documentation – MySQL Manual (PDF format), samples and examples

MySQL Installer operates on all MySQL supported versions of Windows (see https://www.mysql.com/
support/supportedplatforms/database.html).

Note

Because MySQL Installer is not a native component of Microsoft Windows and
depends on .NET, it does not work on installations with minimal options like the
Server Core version of Windows Server.

88

https://www.mysql.com/support/supportedplatforms/database.html
https://www.mysql.com/support/supportedplatforms/database.html

MySQL Installer for Windows

For instructions on how to install MySQL using MySQL Installer, see Section 2.3.3, “MySQL Installer for
Windows”.

MySQL noinstall ZIP Archives

These packages contain the files found in the complete MySQL Server installation package, with the
exception of the GUI. This format does not include an automated installer, and must be manually installed
and configured.

The noinstall ZIP archives are split into two separate compressed files. The main package is named
mysql-VERSION-winx64.zip for 64-bit and mysql-VERSION-win32.zip for 32-bit. This contains the
components needed to use MySQL on your system. The optional MySQL test suite, MySQL benchmark
suite, and debugging binaries/information components (including PDB files) are in a separate compressed
file named mysql-VERSION-winx64-debug-test.zip for 64-bit and mysql-VERSION-win32-
debug-test.zip for 32-bit.

If you choose to install a noinstall ZIP archive, see Section 2.3.4, “Installing MySQL on Microsoft
Windows Using a noinstall ZIP Archive”.

MySQL Docker Images

For information on using the MySQL Docker images provided by Oracle on Windows platform, see
Section 2.5.7.3, “Deploying MySQL on Windows and Other Non-Linux Platforms with Docker”.

Warning

The MySQL Docker images provided by Oracle are built specifically for Linux
platforms. Other platforms are not supported, and users running the MySQL Docker
images from Oracle on them are doing so at their own risk.

2.3.3 MySQL Installer for Windows

MySQL Installer is a standalone application designed to ease the complexity of installing and configuring
MySQL products that run on Microsoft Windows. It is downloaded with and supports the following MySQL
products:

• MySQL Servers

MySQL Installer can install and manage multiple, separate MySQL server instances on the same host
at the same time. For example, MySQL Installer can install, configure, and upgrade separate instances
of MySQL 5.7 and MySQL 8.0 on the same host. MySQL Installer does not permit server upgrades
between major and minor version numbers, but does permit upgrades within a release series (such as
8.0.36 to 8.0.37).

Note

MySQL Installer cannot install both Community and Commercial releases of
MySQL server on the same host. If you require both releases on the same host,
consider using the ZIP archive distribution to install one of the releases.

• MySQL Applications

MySQL Workbench, MySQL Shell, and MySQL Router.

• MySQL Connectors

89

MySQL Installer for Windows

These are not supported, instead install from https://dev.mysql.com/downloads/. These connectors
include MySQL Connector/NET, MySQL Connector/Python, MySQL Connector/ODBC, MySQL
Connector/J, MySQL Connector/Node.js, and MySQL Connector/C++.

Note

The connectors were bundled before MySQL Installer 1.6.7 (MySQL Server
8.0.34), and MySQL Installer could install each connector up to version 8.0.33
until MySQL Installer 1.6.11 (MySQL Server 8.0.37). MySQL Installer now only
detects these old connector versions to uninstall them.

Installation Requirements

MySQL Installer requires Microsoft .NET Framework 4.5.2 or later. If this version is not installed on the host
computer, you can download it by visiting the Microsoft website.

To invoke MySQL Installer after a successful installation:

1. Right-click Windows Start, select Run, and then click Browse. Navigate to Program Files (x86) >
MySQL > MySQL Installer for Windows to open the program folder.

2. Select one of the following files:

• MySQLInstaller.exe to open the graphical application.

• MySQLInstallerConsole.exe to open the command-line application.

3. Click Open and then click OK in the Run window. If you are prompted to allow the application to make
changes to the device, select Yes.

Each time you invoke MySQL Installer, the initialization process looks for the presence of an internet
connection and prompts you to enable offline mode if it finds no internet access (and offline mode is
disabled). Select Yes to run MySQL Installer without internet-connection capabilities. MySQL product
availability is limited to only those products currently in the product cache when you enable offline mode.
To download MySQL products, click the offline mode Disable quick action shown on the dashboard.

An internet connection is required to download a manifest containing metadata for the latest MySQL
products that are not part of a full bundle. MySQL Installer attempts to download the manifest when you
start the application for the first time and then periodically in configurable intervals (see MySQL Installer
options). Alternatively, you can retrieve an updated manifest manually by clicking Catalog in the MySQL
Installer dashboard.

Note

If the first-time or subsequent manifest download is unsuccessful, an error is
logged and you may have limited access to MySQL products during your session.
MySQL Installer attempts to download the manifest with each startup until the initial
manifest structure is updated. For help finding a product, see Locating Products to
Install.

MySQL Installer Community Release

Download software from https://dev.mysql.com/downloads/installer/ to install the Community release of all
MySQL products for Windows. Select one of the following MySQL Installer package options:

• Web: Contains MySQL Installer and configuration files only. The web package option downloads only
the MySQL products you select to install, but it requires an internet connection for each download.

90

https://dev.mysql.com/downloads/
https://www.microsoft.com/en-us/download/details.aspx?id=42643
https://dev.mysql.com/downloads/installer/

MySQL Installer for Windows

The size of this file is approximately 2 MB. The file name has the form mysql-installer-
community-web-VERSION.N.msi in which VERSION is the MySQL server version number such as
8.0 and N is the package number, which begins at 0.

• Full or Current Bundle: Bundles all of the MySQL products for Windows (including the MySQL
server). The file size is over 300 MB, and the name has the form mysql-installer-
community-VERSION.N.msi in which VERSION is the MySQL Server version number such as 8.0 and
N is the package number, which begins at 0.

MySQL Installer Commercial Release

Download software from https://edelivery.oracle.com/ to install the Commercial release (Standard or
Enterprise Edition) of MySQL products for Windows. If you are logged in to your My Oracle Support (MOS)
account, the Commercial release includes all of the current and previous GA versions available in the
Community release, but it excludes development-milestone versions. When you are not logged in, you see
only the list of bundled products that you downloaded already.

The Commercial release also includes the following products:

• Workbench SE/EE

• MySQL Enterprise Backup

• MySQL Enterprise Firewall

The Commercial release integrates with your MOS account. For knowledge-base content and patches, see
My Oracle Support.

2.3.3.1 MySQL Installer Initial Setup

• Choosing a Setup Type

• Path Conflicts

• Check Requirements

• MySQL Installer Configuration Files

When you download MySQL Installer for the first time, a setup wizard guides you through the initial
installation of MySQL products. As the following figure shows, the initial setup is a one-time activity in the
overall process. MySQL Installer detects existing MySQL products installed on the host during its initial
setup and adds them to the list of products to be managed.

Figure 2.7 MySQL Installer Process Overview

MySQL Installer extracts configuration files (described later) to the hard drive of the host during the initial
setup. Although MySQL Installer is a 32-bit application, it can install both 32-bit and 64-bit binaries.

91

https://edelivery.oracle.com/
https://support.oracle.com/

MySQL Installer for Windows

The initial setup adds a link to the Start menu under the MySQL folder group. Click Start, MySQL, and
MySQL Installer - [Community | Commercial] to open the community or commercial release of the
graphical tool.

Choosing a Setup Type

During the initial setup, you are prompted to select the MySQL products to be installed on the host. One
alternative is to use a predetermined setup type that matches your setup requirements. By default, both GA
and pre-release products are included in the download and installation with the Client only and Full setup
types. Select the Only install GA products option to restrict the product set to include GA products only
when using these setup types.

Note

Commercial-only MySQL products, such as MySQL Enterprise Backup, are
available to select and install if you are using the Commercial version of MySQL
Installer (see MySQL Installer Commercial Release).

Choosing one of the following setup types determines the initial installation only and does not limit your
ability to install or update MySQL products for Windows later:

• Server only: Only install the MySQL server. This setup type installs the general availability (GA) or
development release server that you selected when you downloaded MySQL Installer. It uses the default
installation and data paths.

• Client only: Only install the most recent MySQL applications (such as MySQL Shell, MySQL Router,
and MySQL Workbench). This setup type excludes MySQL server or the client programs typically
bundled with the server, such as mysql or mysqladmin.

• Full: Install all available MySQL products, excluding MySQL connectors.

• Custom: The custom setup type enables you to filter and select individual MySQL products from the
MySQL Installer catalog.

Use the Custom setup type to install:

• A product or product version that is not available from the usual download locations. The catalog
contains all product releases, including the other releases between pre-release (or development) and
GA.

• An instance of MySQL server using an alternative installation path, data path, or both. For instructions
on how to adjust the paths, see Section 2.3.3.2, “Setting Alternative Server Paths with MySQL
Installer”.

• Two or more MySQL server versions on the same host at the same time (for example, 5.7 and 8.0).

• A specific combination of products and features not offered as a predetermine setup type. For
example, you can install a single product, such as MySQL Workbench, instead of installing all client
applications for Windows.

Path Conflicts

When the default installation or data folder (required by MySQL server) for a product to be installed already
exists on the host, the wizard displays the Path Conflict step to identify each conflict and enable you to
take action to avoid having files in the existing folder overwritten by the new installation. You see this step
in the initial setup only when MySQL Installer detects a conflict.

92

MySQL Installer for Windows

To resolve the path conflict, do one of the following:

• Select a product from the list to display the conflict options. A warning symbol indicates which path is in
conflict. Use the browse button to choose a new path and then click Next.

• Click Back to choose a different setup type or product version, if applicable. The Custom setup type
enables you to select individual product versions.

• Click Next to ignore the conflict and overwrite files in the existing folder.

• Delete the existing product. Click Cancel to stop the initial setup and close MySQL Installer. Open
MySQL Installer again from the Start menu and delete the installed product from the host using the
Delete operation from the MySQL Installer dashboard.

Check Requirements

MySQL Installer uses entries in the package-rules.xml file to determine whether the prerequisite
software for each product is installed on the host. When the requirements check fails, MySQL Installer
displays the Check Requirements step to help you update the host. Requirements are evaluated each
time you download a new product (or version) for installation. The following figure identifies and describes
the key areas of this step.

Figure 2.8 Check Requirements

Description of Check Requirements Elements

1. Shows the current step in the initial setup. Steps in this list may change slightly depending on the
products already installed on the host, the availability of prerequisite software, and the products to be
installed on the host.

2. Lists all pending installation requirements by product and indicates the status as follows:

• A blank space in the Status column means that MySQL Installer can attempt to download and install
the required software for you.

• The word Manual in the Status column means that you must satisfy the requirement manually.
Select each product in the list to see its requirement details.

93

MySQL Installer for Windows

3. Describes the requirement in detail to assist you with each manual resolution. When possible, a
download URL is provided. After you download and install the required software, click Check to verify
that the requirement has been met.

4. Provides the following set operations to proceed:

• Back – Return to the previous step. This action enables you to select a different the setup type.

• Execute – Have MySQL Installer attempt to download and install the required software for all items
without a manual status. Manual requirements are resolved by you and verified by clicking Check.

• Next – Do not execute the request to apply the requirements automatically and proceed to the
installation without including the products that fail the check requirements step.

• Cancel – Stop the installation of MySQL products. Because MySQL Installer is already installed, the
initial setup begins again when you open MySQL Installer from the Start menu and click Add from
the dashboard. For a description of the available management operations, see Product Catalog.

MySQL Installer Configuration Files

All MySQL Installer files are located within the C:\Program Files (x86) and C:\ProgramData
folders. The following table describes the files and folders that define MySQL Installer as a standalone
application.

Note

Installed MySQL products are neither altered nor removed when you update or
uninstall MySQL Installer.

Table 2.5 MySQL Installer Configuration Files

File or Folder Description Folder Hierarchy

MySQL Installer for
Windows

This folder contains all
of the files needed to
run MySQL Installer and
MySQLInstallerConsole.exe,
a command-line program with
similar functionality.

C:\Program Files (x86)

Templates The Templates folder has one
file for each version of MySQL
server. Template files contain
keys and formulas to calculate
some values dynamically.

C:\ProgramData\MySQL
\MySQL Installer for
Windows\Manifest

package-rules.xml This file contains the prerequisites
for every product to be installed.

C:\ProgramData\MySQL
\MySQL Installer for
Windows\Manifest

products.xml The products file (or product
catalog) contains a list of all
products available for download.

C:\ProgramData\MySQL
\MySQL Installer for
Windows\Manifest

Product Cache The Product Cache folder
contains all standalone .msi files
bundled with the full package or
downloaded afterward.

C:\ProgramData\MySQL
\MySQL Installer for
Windows

94

MySQL Installer for Windows

2.3.3.2 Setting Alternative Server Paths with MySQL Installer

You can change the default installation path, the data path, or both when you install MySQL server. After
you have installed the server, the paths cannot be altered without removing and reinstalling the server
instance.

Note

Starting with MySQL Installer 1.4.39, if you move the data directory of an installed
server manually, MySQL Installer identifies the change and can process a
reconfiguration operation without errors.

To change paths for MySQL server

1. Identify the MySQL server to change and enable the Advanced Options link as follows:

a. Navigate to the Select Products page by doing one of the following:

i. If this is an initial setup of MySQL Installer, select the Custom setup type and click Next.

ii. If MySQL Installer is installed on your computer, click Add from the dashboard.

b. Click Edit to apply a filter on the product list shown in Available Products (see Locating Products
to Install).

c. With the server instance selected, use the arrow to move the selected server to the Products To
Be Installed list.

d. Click the server to select it. When you select the server, the Advanced Options link is enabled
below the list of products to be installed (see the following figure).

2. Click Advanced Options to open a dialog box where you can enter alternative path names. After the
path names are validated, click Next to continue with the configuration steps.

Figure 2.9 Change MySQL Server Path

95

MySQL Installer for Windows

2.3.3.3 Installation Workflows with MySQL Installer

MySQL Installer provides a wizard-like tool to install and configure new MySQL products for Windows.
Unlike the initial setup, which runs only once, MySQL Installer invokes the wizard each time you download
or install a new product. For first-time installations, the steps of the initial setup proceed directly into the
steps of the installation. For assistance with product selection, see Locating Products to Install.

Note

Full permissions are granted to the user executing MySQL Installer to all generated
files, such as my.ini. This does not apply to files and directories for specific
products, such as the MySQL server data directory in %ProgramData% that is
owned by SYSTEM.

Products installed and configured on a host follow a general pattern that might require your input during the
various steps. If you attempt to install a product that is incompatible with the existing MySQL server version
(or a version selected for upgrade), you are alerted about the possible mismatch.

MySQL Installer provides the following sequence of actions that apply to different workflows:

• Select Products. If you selected the Custom setup type during the initial setup or clicked Add from
the MySQL Installer dashboard, MySQL Installer includes this action in the sidebar. From this page, you
can apply a filter to modify the Available Products list and then select one or more products to move
(using arrow keys) to the Products To Be Installed list.

Select the check box on this page to activate the Select Features action where you can customize the
products features after the product is downloaded.

• Download. If you installed the full (not web) MySQL Installer package, all .msi files were loaded
to the Product Cache folder during the initial setup and are not downloaded again. Otherwise, click
Execute to begin the download. The status of each product changes from Ready to Download, to
Downloading, and then to Downloaded.

To retry a single unsuccessful download, click the Try Again link.

To retry all unsuccessful downloads, click Try All.

• Select Features To Install (disabled by default). After MySQL Installer downloads a product's .msi
file, you can customize the features if you enabled the optional check box previously during the Select
Products action.

To customize product features after the installation, click Modify in the MySQL Installer dashboard.

• Installation. The status of each product in the list changes from Ready to Install, to
Installing, and lastly to Complete. During the process, click Show Details to view the installation
actions.

If you cancel the installation at this point, the products are installed, but the server (if installed) is not
yet configured. To restart the server configuration, open MySQL Installer from the Start menu and click
Reconfigure next to the appropriate server in the dashboard.

• Product configuration. This step applies to MySQL Server, MySQL Router, and samples only.
The status for each item in the list should indicate Ready to Configure. Click Next to start the
configuration wizard for all items in the list. The configuration options presented during this step are
specific to the version of database or router that you selected to install.

96

MySQL Installer for Windows

Click Execute to begin applying the configuration options or click Back (repeatedly) to return to each
configuration page.

• Installation complete. This step finalizes the installation for products that do not require
configuration. It enables you to copy the log to a clipboard and to start certain applications, such as
MySQL Workbench and MySQL Shell. Click Finish to open the MySQL Installer dashboard.

MySQL Server Configuration with MySQL Installer

MySQL Installer performs the initial configuration of the MySQL server. For example:

• It creates the configuration file (my.ini) that is used to configure the MySQL server. The values written
to this file are influenced by choices you make during the installation process. Some definitions are host
dependent.

• By default, a Windows service for the MySQL server is added.

• Provides default installation and data paths for MySQL server. For instructions on how to change the
default paths, see Section 2.3.3.2, “Setting Alternative Server Paths with MySQL Installer”.

• It can optionally create MySQL server user accounts with configurable permissions based on general
roles, such as DB Administrator, DB Designer, and Backup Admin. It optionally creates a Windows user
named MysqlSys with limited privileges, which would then run the MySQL Server.

User accounts may also be added and configured in MySQL Workbench.

• Checking Show Advanced Options enables additional Logging Options to be set. This includes
defining custom file paths for the error log, general log, slow query log (including the configuration of
seconds it requires to execute a query), and the binary log.

During the configuration process, click Next to proceed to the next step or Back to return to the previous
step. Click Execute at the final step to apply the server configuration.

The sections that follow describe the server configuration options that apply to MySQL server on Windows.
The server version you installed will determine which steps and options you can configure. Configuring
MySQL server may include some or all of the steps.

Type and Networking

• Server Configuration Type

Choose the MySQL server configuration type that describes your setup. This setting defines the amount
of system resources (memory) to assign to your MySQL server instance.

• Development: A computer that hosts many other applications, and typically this is your personal
workstation. This setting configures MySQL to use the least amount of memory.

• Server: Several other applications are expected to run on this computer, such as a web server. The
Server setting configures MySQL to use a medium amount of memory.

• Dedicated: A computer that is dedicated to running the MySQL server. Because no other major
applications run on this server, this setting configures MySQL to use the majority of available memory.

• Manual

Prevents MySQL Installer from attempting to optimize the server installation, and instead, sets the
default values to the server variables included in the my.ini configuration file. With the Manual

97

MySQL Installer for Windows

type selected, MySQL Installer uses the default value of 16M for the tmp_table_size variable
assignment.

• Connectivity

Connectivity options control how the connection to MySQL is made. Options include:

• TCP/IP: This option is selected by default. You may disable TCP/IP Networking to permit local host
connections only. With the TCP/IP connection option selected, you can modify the following items:

• Port for classic MySQL protocol connections. The default value is 3306.

• X Protocol Port shown when configuring MySQL 8.0 server only. The default value is 33060

• Open Windows Firewall port for network access, which is selected by default for TCP/IP
connections.

If a port number is in use already, you will see the information icon () next to the default value and
Next is disabled until you provide a new port number.

• Named Pipe: Enable and define the pipe name, similar to setting the named_pipe system variable.
The default name is MySQL.

When you select Named Pipe connectivity, and then proceed to the next step, you are prompted to
set the level of access control granted to client software on named-pipe connections. Some clients
require only minimum access control for communication, while other clients require full access to the
named pipe.

You can set the level of access control based on the Windows user (or users) running the client as
follows:

• Minimum access to all users (RECOMMENDED). This level is enabled by default because it is
the most secure.

• Full access to members of a local group. If the minimum-access option is too restrictive for the
client software, use this option to reduce the number of users who have full access on the named
pipe. The group must be established on Windows before you can select it from the list. Membership
in this group should be limited and managed. Windows requires a newly added member to first log
out and then log in again to join a local group.

• Full access to all users (NOT RECOMMENDED). This option is less secure and should be set
only when other safeguards are implemented.

• Shared Memory: Enable and define the memory name, similar to setting the shared_memory
system variable. The default name is MySQL.

• Advanced Configuration

Check Show Advanced and Logging Options to set custom logging and advanced options in later
steps. The Logging Options step enables you to define custom file paths for the error log, general log,
slow query log (including the configuration of seconds it requires to execute a query), and the binary log.
The Advanced Options step enables you to set the unique server ID required when binary logging is
enabled in a replication topology.

98

MySQL Installer for Windows

• MySQL Enterprise Firewall (Enterprise Edition only)

The Enable MySQL Enterprise Firewall check box is deselected by default. Select this option to
enable a security list that offers protection against certain types of attacks. Additional post-installation
configuration is required (see Section 6.4.6, “MySQL Enterprise Firewall”).

Authentication Method

The Authentication Method step is visible only during the installation or upgrade of MySQL 8.0.4 or
higher. It introduces a choice between two server-side authentication options. The MySQL user accounts
that you create in the next step will use the authentication method that you select in this step.

MySQL 8.0 connectors and community drivers that use libmysqlclient 8.0 now support the
caching_sha2_password default authentication plugin. However, if you are unable to update your
clients and applications to support this new authentication method, you can configure the MySQL server to
use mysql_native_password for legacy authentication. For more information about the implications of
this change, see caching_sha2_password as the Preferred Authentication Plugin.

If you are installing or upgrading to MySQL 8.0.4 or higher, select one of the following authentication
methods:

• Use Strong Password Encryption for Authentication (RECOMMENDED)

MySQL 8.0 supports a new authentication based on improved, stronger SHA256-based password
methods. It is recommended that all new MySQL server installations use this method going forward.

Important

The caching_sha2_password authentication plugin on the server requires new
versions of connectors and clients, which add support for the new MySQL 8.0
default authentication.

• Use Legacy Authentication Method (Retain MySQL 5.x Compatibility)

Using the old MySQL 5.x legacy authentication method should be considered only in the following cases:

• Applications cannot be updated to use MySQL 8.0 connectors and drivers.

• Recompilation of an existing application is not feasible.

• An updated, language-specific connector or driver is not available yet.

Accounts and Roles

• Root Account Password

Assigning a root password is required and you will be asked for it when performing other MySQL
Installer operations. Password strength is evaluated when you repeat the password in the box provided.
For descriptive information regarding password requirements or status, move your mouse pointer over

the information icon () when it appears.

• MySQL User Accounts (Optional)

Click Add User or Edit User to create or modify MySQL user accounts with predefined roles. Next, enter
the required account credentials:

• User Name: MySQL user names can be up to 32 characters long.

99

https://dev.mysql.com/doc/refman/8.0/en/upgrading-from-previous-series.html#upgrade-caching-sha2-password

MySQL Installer for Windows

• Host: Select localhost for local connections only or <All Hosts (%)> when remote connections
to the server are required.

• Role: Each predefined role, such as DB Admin, is configured with its own set of privileges. For
example, the DB Admin role has more privileges than the DB Designer role. The Role drop-down
list contains a description of each role.

• Password: Password strength assessment is performed while you type the password. Passwords
must be confirmed. MySQL permits a blank or empty password (considered to be insecure).

MySQL Installer Commercial Release Only: MySQL Enterprise Edition for Windows, a commercial
product, also supports an authentication method that performs external authentication on Windows.
Accounts authenticated by the Windows operating system can access the MySQL server without
providing an additional password.

To create a new MySQL account that uses Windows authentication, enter the user name and then select
a value for Host and Role. Click Windows authentication to enable the authentication_windows
plugin. In the Windows Security Tokens area, enter a token for each Windows user (or group) who can
authenticate with the MySQL user name. MySQL accounts can include security tokens for both local
Windows users and Windows users that belong to a domain. Multiple security tokens are separated by
the semicolon character (;) and use the following format for local and domain accounts:

• Local account

Enter the simple Windows user name as the security token for each local user or group; for example,
finley;jeffrey;admin.

• Domain account

Use standard Windows syntax (domain\domainuser) or MySQL syntax (domain\\domainuser) to
enter Windows domain users and groups.

For domain accounts, you may need to use the credentials of an administrator within the domain if
the account running MySQL Installer lacks the permissions to query the Active Directory. If this is the
case, select Validate Active Directory users with to activate the domain administrator credentials.

Windows authentication permits you to test all of the security tokens each time you add or modify a
token. Click Test Security Tokens to validate (or revalidate) each token. Invalid tokens generate a
descriptive error message along with a red X icon and red token text. When all tokens resolve as valid
(green text without an X icon), you can click OK to save the changes.

Windows Service

On the Windows platform, MySQL server can run as a named service managed by the operating system
and be configured to start up automatically when Windows starts. Alternatively, you can configure MySQL
server to run as an executable program that requires manual configuration.

• Configure MySQL server as a Windows service (Selected by default.)

When the default configuration option is selected, you can also select the following:

• Start the MySQL Server at System Startup

When selected (default), the service startup type is set to Automatic; otherwise, the startup type is set
to Manual.

100

MySQL Installer for Windows

• Run Windows Service as

When Standard System Account is selected (default), the service logs on as Network Service.

The Custom User option must have privileges to log on to Microsoft Windows as a service. The Next
button will be disabled until this user is configured with the required privileges.

A custom user account is configured in Windows by searching for "local security policy" in the Start
menu. In the Local Security Policy window, select Local Policies, User Rights Assignment, and
then Log On As A Service to open the property dialog. Click Add User or Group to add the custom
user and then click OK in each dialog to save the changes.

• Deselect the Windows Service option.

Server File Permissions

Optionally, permissions set on the folders and files located at C:\ProgramData\MySQL\MySQL Server
8.0\Data can be managed during the server configuration operation. You have the following options:

• MySQL Installer can configure the folders and files with full control granted exclusively to the user
running the Windows service, if applicable, and to the Administrators group.

All other groups and users are denied access. This is the default option.

• Have MySQL Installer use a configuration option similar to the one just described, but also have MySQL
Installer show which users could have full control.

You are then able to decide if a group or user should be given full control. If not, you can move the
qualified members from this list to a second list that restricts all access.

• Have MySQL Installer skip making file-permission changes during the configuration operation.

If you select this option, you are responsible for securing the Data folder and its related files manually
after the server configuration finishes.

Logging Options

This step is available if the Show Advanced Configuration check box was selected during the Type and
Networking step. To enable this step now, click Back to return to the Type and Networking step and
select the check box.

Advanced configuration options are related to the following MySQL log files:

• Error Log

• General Log

• Slow Query Log

• Bin Log

Note

The binary log is enabled by default.

101

MySQL Installer for Windows

Advanced Options

This step is available if the Show Advanced Configuration check box was selected during the Type and
Networking step. To enable this step now, click Back to return to the Type and Networking step and
select the check box.

The advanced-configuration options include:

• Server ID

Set the unique identifier used in a replication topology. If binary logging is enabled, you must specify a
server ID. The default ID value depends on the server version. For more information, see the description
of the server_id system variable.

• Table Names Case

You can set the following options during the initial and subsequent configuration the server. For the
MySQL 8.0 release series, these options apply only to the initial configuration of the server.

• Lower Case

Sets the lower_case_table_names option value to 1 (default), in which table names are stored in
lowercase on disk and comparisons are not case-sensitive.

• Preserve Given Case

Sets the lower_case_table_names option value to 2, in which table names are stored as given but
compared in lowercase.

Apply Server Configuration

All configuration settings are applied to the MySQL server when you click Execute. Use the Configuration
Steps tab to follow the progress of each action; the icon for each toggles from white to green (with a check
mark) on success. Otherwise, the process stops and displays an error message if an individual action
times out. Click the Log tab to view the log.

When the installation completes successfully and you click Finish, MySQL Installer and the installed
MySQL products are added to the Microsoft Windows Start menu under the MySQL group. Opening
MySQL Installer loads the dashboard where installed MySQL products are listed and other MySQL Installer
operations are available.

MySQL Router Configuration with MySQL Installer

During the initial setup, choose any predetermined setup type, except Server only, to install the latest
GA version of the tools. Use the Custom setup type to install an individual tool or specific version. If
MySQL Installer is installed on the host already, use the Add operation to select and install tools from the
MySQL Installer dashboard.

MySQL Router Configuration

MySQL Installer provides a configuration wizard that can bootstrap an installed instance of MySQL Router
8.0 to direct traffic between MySQL applications and an InnoDB Cluster. When configured, MySQL Router
runs as a local Windows service.

Note

You are prompted to configure MySQL Router after the initial installation and when
you reconfigure an installed router explicitly. In contrast, the upgrade operation
does not require or prompt you to configure the upgraded product.

102

MySQL Installer for Windows

To configure MySQL Router, do the following:

1. Set up InnoDB Cluster.

2. Using MySQL Installer, download and install the MySQL Router application. After the installation
finishes, the configuration wizard prompts you for information. Select the Configure MySQL Router for
InnoDB Cluster check box to begin the configuration and provide the following configuration values:

• Hostname: Host name of the primary (seed) server in the InnoDB Cluster (localhost by default).

• Port: The port number of the primary (seed) server in the InnoDB Cluster (3306 by default).

• Management User: An administrative user with root-level privileges.

• Password: The password for the management user.

• Classic MySQL protocol connections to InnoDB Cluster

Read/Write: Set the first base port number to one that is unused (between 80 and 65532) and the
wizard will select the remaining ports for you.

The figure that follows shows an example of the MySQL Router configuration page, with the first
base port number specified as 6446 and the remaining ports set by the wizard to 6447, 6448, and
6449.

Figure 2.10 MySQL Router Configuration

3. Click Next and then Execute to apply the configuration. Click Finish to close MySQL Installer or return
to the MySQL Installer dashboard.

After configuring MySQL Router, the root account exists in the user table as root@localhost (local)
only, instead of root@% (remote). Regardless of where the router and client are located, even if both are
located on the same host as the seed server, any connection that passes through the router is viewed by
server as being remote, not local. As a result, a connection made to the server using the local host (see the
example that follows), does not authenticate.

$> \c root@localhost:6446

103

MySQL Installer for Windows

2.3.3.4 MySQL Installer Product Catalog and Dashboard

This section describes the MySQL Installer product catalog, the dashboard, and other actions related to
product selection and upgrades.

• Product Catalog

• MySQL Installer Dashboard

• Locating Products to Install

• Upgrading MySQL Server

• Removing MySQL Server

• Upgrading MySQL Installer

Product Catalog

The product catalog stores the complete list of released MySQL products for Microsoft Windows that are
available to download from MySQL Downloads. By default, and when an Internet connection is present,
MySQL Installer attempts to update the catalog at startup every seven days. You can also update the
catalog manually from the dashboard (described later).

An up-to-date catalog performs the following actions:

• Populates the Available Products pane of the Select Products page. This step appears when you
select:

• The Custom setup type during the initial setup.

• The Add operation from the dashboard.

• Identifies when product updates are available for the installed products listed in the dashboard.

The catalog includes all development releases (Pre-Release), general releases (Current GA), and minor
releases (Other Releases). Products in the catalog will vary somewhat, depending on the MySQL Installer
release that you download.

MySQL Installer Dashboard

The MySQL Installer dashboard is the default view that you see when you start MySQL Installer after the
initial setup finishes. If you closed MySQL Installer before the setup was finished, MySQL Installer resumes
the initial setup before it displays the dashboard.

Note

Products covered under Oracle Lifetime Sustaining Support, if installed, may
appear in the dashboard. These products, such as MySQL for Excel and MySQL
Notifier, can be modified or removed only.

104

https://dev.mysql.com/downloads/

MySQL Installer for Windows

Figure 2.11 MySQL Installer Dashboard Elements

Description of MySQL Installer Dashboard Elements

1. MySQL Installer dashboard operations provide a variety of actions that apply to installed products or
products listed in the catalog. To initiate the following operations, first click the operation link and then
select the product or products to manage:

• Add: This operation opens the Select Products page. From there you can adjust the filter, select one
or more products to download (as needed), and begin the installation. For hints about using the filter,
see Locating Products to Install.

Use the directional arrows to move each product from the Available Products column to the
Products To Be Installed column. To enable the Product Features page where you can customize
features, click the related check box (disabled by default).

• Modify: Use this operation to add or remove the features associated with installed products.
Features that you can modify vary in complexity by product. When the Program Shortcut check box
is selected, the product appears in the Start menu under the MySQL group.

• Upgrade: This operation loads the Select Products to Upgrade page and populates it with all the
upgrade candidates. An installed product can have more than one upgrade version and the operation
requires a current product catalog. MySQL Installer upgrades all of the selected products in one
action. Click Show Details to view the actions performed by MySQL Installer.

• Remove: This operation opens the Remove Products page and populates it with the MySQL
products installed on the host. Select the MySQL products you want to remove (uninstall) and then
click Execute to begin the removal process. During the operation, an indicator shows the number of
steps that are executed as a percentage of all steps.

To select products to remove, do one of the following:

• Select the check box for one or more products.

• Select the Product check box to select all products.

105

MySQL Installer for Windows

2. The Reconfigure link in the Quick Action column next to each installed server loads the current
configuration values for the server and then cycles through all configuration steps enabling you to
change the options and values. You must provide credentials with root privileges to reconfigure these
items. Click the Log tab to show the output of each configuration step performed by MySQL Installer.

On completion, MySQL Installer stops the server, applies the configuration changes, and restarts the
server for you. For a description of each configuration option, see MySQL Server Configuration with
MySQL Installer. Installed Samples and Examples associated with a specific MySQL server version
can be also be reconfigured to apply new feature settings, if any.

3. The Catalog link enables you to download the latest catalog of MySQL products manually and then to
integrate those product changes with MySQL Installer. The catalog-download action does not perform
an upgrade of the products already installed on the host. Instead, it returns to the dashboard and
adds an arrow icon to the Version column for each installed product that has a newer version. Use the
Upgrade operation to install the newer product version.

You can also use the Catalog link to display the current change history of each product without
downloading the new catalog. Select the Do not update at this time check box to view the change
history only.

4.
The MySQL Installer About icon () shows the current version of MySQL Installer and general
information about MySQL. The version number is located above the Back button.

Tip

Always include this version number when reporting a problem with MySQL
Installer.

In addition to the About MySQL information (), you can also select the following icons from the side
panel:

•
License icon () for MySQL Installer.

This product may include third-party software, used under license. If you are using a Commercial
release of MySQL Installer, the icon opens the MySQL Installer Commercial License Information
User Manual for licensing information, including licensing information relating to third-party software
that may be included in this Commercial release. If you are using a Community release of MySQL
Installer, the icon opens the MySQL Installer Community License Information User Manual for
licensing information, including licensing information relating to third-party software that may be
included in this Community release.

•
Resource links icon () to the latest MySQL product documentation, blogs, webinars, and more.

5.
The MySQL Installer Options icon () includes the following tabs:

• General: Enables or disables the Offline mode option. If selected, this option configures MySQL
Installer to run without depending on internet-connection capabilities. When running MySQL Installer
in offline mode, you see a warning together with a Disable quick action on the dashboard. The
warning serves to remind you that running MySQL Installer in offline mode prevents you from

106

MySQL Installer for Windows

downloading the latest MySQL products and product catalog updates. Offline mode persists until you
disable the option.

At startup, MySQL Installer determines whether an internet connection is present, and, if not,
prompts you to enable offline mode to resume working without a connection.

• Product Catalog: Manages the automatic catalog updates. By default, MySQL Installer checks for
catalog updates at startup every seven days. When new products or product versions are available,

MySQL Installer adds them to the catalog and then inserts an arrow icon () next to the version
number of installed products listed in the dashboard.

Use the product catalog option to enable or disable automatic updates and to reset the number of
days between automatic catalog downloads. At startup, MySQL Installer uses the number of days
you set to determine whether a download should be attempted. This action is repeated during next
startup if MySQL Installer encounters an error downloading the catalog.

• Connectivity Settings: Several operations performed by MySQL Installer require internet access.
This option enables you to use a default value to validate the connection or to use a different URL,
one selected from a list or added by you manually. With the Manual option selected, new URLs can
be added and all URLs in the list can be moved or deleted. When the Automatic option is selected,
MySQL Installer attempts to connect to each default URL in the list (in order) until a connection is
made. If no connection can be made, it raises an error.

• Proxy: MySQL Installer provides multiple proxy modes that enable you to download MySQL
products, updates, or even the product catalog in most network environments. The mode are:

• No proxy

Select this mode to prevent MySQL Installer from looking for system settings. This mode disables
any proxy settings.

• Automatic

Select this mode to have MySQL Installer look for system settings and to use those settings if
found, or to use no proxy if nothing is found. This mode is the default.

• Manual

Select this mode to have MySQL Installer use your authentication details to configuration proxy
access to the internet. Specifically:

• A proxy-server address (http://address-to-server) and port number

• A user name and password for authentication

Locating Products to Install

MySQL products in the catalog are listed by category: MySQL Servers, Applications, MySQL Connectors,
and Documentation. Only the latest GA versions appear in the Available Products pane by default. If you
are looking for a pre-release or older version of a product, it may not be visible in the default list.

Note

Keep the product catalog up-to-date. Click Catalog on the MySQL Installer
dashboard to download the latest manifest.

107

MySQL Installer for Windows

To change the default product list, click Add in the dashboard to open the Select Products page, and then
click Edit to open the dialog box shown in the figure that follows. Modify the settings and then click Filter.

Figure 2.12 Filter Available Products

Reset one or more of the following fields to modify the list of available products:

• Text: Filter by text.

• Category: All Software (default), MySQL Servers, Applications, MySQL Connectors, or Documentation
(for samples and documentation).

• Maturity: Current Bundle (appears initially with the full package only), Pre-Release, Current GA, or Other
Releases. If you see a warning, confirm that you have the most recent product manifest by clicking
Catalog on the MySQL Installer dashboard. If MySQL Installer is unable to download the manifest,
the range of products you see is limited to bundled products, standalone product MSIs located in the
Product Cache folder already, or both.

Note

The Commercial release of MySQL Installer does not display any MySQL
products when you select the Pre-Release maturity filter. Products in
development are available from the Community release of MySQL Installer only.

• Already Downloaded (the check box is deselected by default). Permits you to view and manage
downloaded products only.

• Architecture: Any (default), 32-bit, or 64-bit.

Upgrading MySQL Server

Important server upgrade conditions:

• MySQL Installer does not permit server upgrades between major release versions or minor release
versions, but does permit upgrades within a release series, such as an upgrade from 8.0.36 to 8.0.37.

• Upgrades between milestone releases (or from a milestone release to a GA release) are not supported.
Significant development changes take place in milestone releases and you may encounter compatibility
issues or problems starting the server.

• For upgrades, a check box enables you to skip the upgrade check and process for system tables, while
checking and processing data dictionary tables normally. MySQL Installer does not prompt you with
the check box when the previous server upgrade was skipped or when the server was configured as a
sandbox InnoDB Cluster. This behavior represents a change in how MySQL Server performs an upgrade
(see What the MySQL Upgrade Process Upgrades) and it alters the sequence of steps that MySQL
Installer applies to the configuration process.

108

https://dev.mysql.com/doc/refman/8.0/en/upgrading-what-is-upgraded.html

MySQL Installer for Windows

If you select Skip system tables upgrade check and process. (Not recommended), MySQL Installer
starts the upgraded server with the --upgrade=MINIMAL server option, which upgrades the data
dictionary only. If you stop and then restart the server without the --upgrade=MINIMAL option, the
server upgrades the system tables automatically, if needed.

The following information appears in the Log tab and log file after the upgrade configuration (with system
tables skipped) is complete:

WARNING: The system tables upgrade was skipped after upgrading MySQL Server. The
server will be started now with the --upgrade=MINIMAL option, but then each
time the server is started it will attempt to upgrade the system tables, unless
you modify the Windows service (command line) to add --upgrade=MINIMAL to bypass
the upgrade.

FOR THE BEST RESULTS: Run mysqld.exe --upgrade=FORCE on the command line to upgrade
the system tables manually.

To choose a new server version:

1. Click Upgrade. Confirm that the check box next to product name in the Upgradeable Products pane
has a check mark. Deselect the products that you do not intend to upgrade at this time.

Note

For server milestone releases in the same release series, MySQL Installer
deselects the server upgrade and displays a warning to indicate that the
upgrade is not supported, identifies the risks of continuing, and provides a
summary of the steps to perform a logical upgrade manually. You can reselect
server upgrade at your own risk. For instructions on how to perform a logical
upgrade with a milestone release, see Logical Upgrade.

2. Click a product in the list to highlight it. This action populates the Upgradeable Versions pane with
the details of each available version for the selected product: version number, published date, and a
Changes link to open the release notes for that version.

Removing MySQL Server

To remove a local MySQL server:

1. Determine whether the local data directory should be removed. If you retain the data directory, another
server installation can reuse the data. This option is enabled by default (removes the data directory).

2. Click Execute to begin uninstalling the local server. Note that all products that you selected to remove
are also uninstalled at this time.

3. (Optional) Click the Log tab to display the current actions performed by MySQL Installer.

Upgrading MySQL Installer

MySQL Installer remains installed on your computer, and like other software, MySQL Installer can be
upgraded from the previous version. In some cases, other MySQL software may require that you upgrade
MySQL Installer for compatibility. This section describes how to identify the current version of MySQL
Installer and how to upgrade MySQL Installer manually.

To locate the installed version of MySQL Installer:

1. Start MySQL Installer from the search menu. The MySQL Installer dashboard opens.

109

https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_upgrade
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_upgrade

MySQL Installer for Windows

2.
Click the MySQL Installer About icon (). The version number is located above the Back button.

To initiate an on-demand upgrade of MySQL Installer:

1. Connect the computer with MySQL Installer installed to the internet.

2. Start MySQL Installer from the search menu. The MySQL Installer dashboard opens.

3. Click Catalog on the bottom of the dashboard to open the Update Catalog window.

4. Click Execute to begin the process. If the installed version of MySQL Installer can be upgraded, you
will be prompted to start the upgrade.

5. Click Next to review all changes to the catalog and then click Finish to return to the dashboard.

6. Verify the (new) installed version of MySQL Installer (see the previous procedure).

2.3.3.5 MySQL Installer Console Reference

MySQLInstallerConsole.exe provides command-line functionality that is similar to MySQL Installer.
This reference includes:

• MySQL Product Names

• Command Syntax

• Command Actions

The console is installed when MySQL Installer is initially executed and then available within the MySQL
Installer for Windows directory. By default, the directory location is C:\Program Files
(x86)\MySQL\MySQL Installer for Windows. You must run the console as administrator.

To use the console:

1. Open a command prompt with administrative privileges by selecting Windows System from Start, then
right-click Command Prompt, select More, and select Run as administrator.

2. From the command line, optionally change the directory to where the MySQLInstallerConsole.exe
command is located. For example, to use the default installation location:

cd Program Files (x86)\MySQL\MySQL Installer for Windows

3. Type MySQLInstallerConsole.exe (or mysqlinstallerconsole) followed by a command
action to perform a task. For example, to show the console's help:

MySQLInstallerConsole.exe --help

=================== Start Initialization ===================
MySQL Installer is running in Community mode

Attempting to update manifest.
Initializing product requirements.
Loading product catalog.
Checking for product packages in the bundle.
Categorizing product catalog.
Finding all installed packages.
Your product catalog was last updated at 23/08/2022 12:41:05 p. m.
Your product catalog has version number 671.
=================== End Initialization ===================

The following actions are available:

110

MySQL Installer for Windows

Configure - Configures one or more of your installed programs.
Help - Provides list of available command actions.
Install - Installs and configures one or more available MySQL programs.
List - Lists all available MySQL products.
Modify - Modifies the features of installed products.
Remove - Removes one or more products from your system.
Set - Configures the general options of MySQL Installer.
Status - Shows the status of all installed products.
Update - Updates the current product catalog.
Upgrade - Upgrades one or more of your installed programs.

The basic syntax for using MySQL Installer command actions. Brackets denote optional entities.
Curly braces denote a list of possible entities.

...

MySQL Product Names

Many of the MySQLInstallerConsole command actions accept one or more abbreviated phrases that
can match a MySQL product (or products) in the catalog. The current set of valid short phrases for use with
commands is shown in the following table.

Note

Starting with MySQL Installer 1.6.7 (8.0.34), the install, list, and upgrade
command options no longer apply to MySQL for Visual Studio (now EOL), MySQL
Connector/NET, MySQL Connector/ODBC, MySQL Connector/C++, MySQL
Connector/Python, and MySQL Connector/J. To install newer MySQL connectors,
visit https://dev.mysql.com/downloads/.

Table 2.6 MySQL Product Phrases for use with the MySQLInstallerConsole.exe command

Phrase MySQL Product

server MySQL Server

workbench MySQL Workbench

shell MySQL Shell

visual MySQL for Visual Studio

router MySQL Router

backup MySQL Enterprise Backup (requires the commercial
release)

net MySQL Connector/NET

odbc MySQL Connector/ODBC

c++ MySQL Connector/C++

python MySQL Connector/Python

j MySQL Connector/J

documentation MySQL Server Documentation

samples MySQL Samples (sakila and world databases)

Command Syntax

The MySQLInstallerConsole.exe command can be issued with or without the file extension (.exe)
and the command is not case-sensitive.

mysqlinstallerconsole[.exe] [[[--]action] [action_blocks_list] [options_list]]

111

MySQL Installer for Windows

Description:

action One of the permitted operational actions. If omitted, the default action is
equivalent to the --status action. Using the -- prefix is optional for all
actions.

Possible actions are: [--]configure, [--]help, [--]install, [--]list,
[--]modify, [--]remove, [--]set, [--]status, [--]update, and
[--]upgrade.

action_blocks_list A list of blocks in which each represents a different item depending on
the selected action. Blocks are separated by commas.

The --remove and --upgrade actions permit specifying an asterisk
character (*) to indicate all products. If the * character is detected at the
start of this block, it is assumed all products are to be processed and
the remainder of the block is ignored.

Syntax: *|action_block[,action_block][,action_block]...

action_block: Contains a product selector followed by an indefinite
number of argument blocks that behave differently depending on the
selected action (see Command Actions).

options_list Zero or more options with possible values separated by spaces.
See Command Actions to identify the options permitted for the
corresponding action.

Syntax: option_value_pair[option_value_pair][
option_value_pair]...

option_value_pair: A single option (for example, --silent) or
a tuple of a key and a corresponding value with an options prefix. The
key-value pair is in the form of --key[=value].

Command Actions

MySQLInstallerConsole.exe supports the following command actions:

Note

Configuration block (or arguments_block) values that contain a colon character (:)
must be wrapped in quotation marks. For example, install_dir="C:\MySQL
\MySQL Server 8.0".

• [--]configure [product1]:[configuration_argument]=[value], [product2]:
[configuration_argument]=[value], [...]

Configures one or more MySQL products on your system. Multiple configuration_argument=value
pairs can be configured for each product.

Options:

--continue Continues processing the next product when an error is caught while
processing the action blocks containing arguments for each product.
If not specified the whole operation is aborted in case of an error.

112

MySQL Installer for Windows

--help Shows the options and available arguments for the corresponding
action. If present the action is not executed, only the help is shown,
so other action-related options are ignored as well.

--show-settings Displays the available options for the selected product by passing in
the product name after --show-settings.

--silent Disables confirmation prompts.

Examples:

MySQLInstallerConsole --configure --show-settings server

mysqlinstallerconsole.exe --configure server:port=3307

• [--]help

Displays a help message with usage examples and then exits. Pass in an additional command action to
receive help specific to that action.

Options:

--action=[action] Shows the help for a specific action. Same as using the --help
option with an action.

Permitted values are: all, configure, help (default), install,
list, modify, remove, status, update, upgrade, and set.

--help Shows the options and available arguments for the corresponding
action. If present the action is not executed, only the help is shown,
so other action-related options are ignored as well.

Examples:

MySQLInstallerConsole help

MySQLInstallerConsole help --action=install

• [--]install [product1]:[features]:[config block]:[config block], [product2]:
[config block], [...]

Installs one or more MySQL products on your system. If pre-release products are available, both GA
and pre-release products are installed when the value of the --type option value is Client or Full.
Use the --only_ga_products option to restrict the product set to GA products only when using these
setup types.

Description:

[product] Each product can be specified by a product phrase with or without a
semicolon-separated version qualifier. Passing in a product keyword
alone selects the latest version of the product. If multiple architectures
are available for that version of the product, the command returns the
first one in the manifest list for interactive confirmation. Alternatively,

113

MySQL Installer for Windows

you can pass in the exact version and architecture (x86 or x64) after
the product keyword using the --silent option.

[features] All features associated with a MySQL product are installed by default.
The feature block is a semicolon-separated list of features or an
asterisk character (*) that selects all features. To remove a feature,
use the modify command.

[config block] One or more configuration blocks can be specified. Each
configuration block is a semicolon-separated list of key-value pairs. A
block can include either a config or user type key; config is the
default type if one is not defined.

Configuration block values that contain a colon character (:) must be
wrapped in quotation marks. For example, installdir="C:\MySQL
\MySQL Server 8.0". Only one configuration type block can be
defined for each product. A user block should be defined for each
user to be created during the product installation.

Note

The user type key is not supported when a
product is being reconfigured.

Options:

--auto-handle-prereqs If present, MySQL Installer attempts to download and install some
software prerequisites, not currently present. that can be resolved
with minimal intervention. If the --silent option is not present, you
are presented with installation pages for each prerequisite. If the --
auto-handle-prereqs options is omitted, packages with missing
prerequisites are not installed.

--continue Continues processing the next product when an error is caught while
processing the action blocks containing arguments for each product.
If not specified the whole operation is aborted in case of an error.

--help Shows the options and available arguments for the corresponding
action. If present the action is not executed, only the help is shown,
so other action-related options are ignored as well.

--mos-password=password Sets the My Oracle Support (MOS) user's password for commercial
versions of the MySQL Installer.

--mos-user=user_name Specifies the My Oracle Support (MOS) user name for access to
the commercial version of MySQL Installer. If not present, only the
products in the bundle, if any, are available to be installed.

114

MySQL Installer for Windows

--only-ga-products Restricts the product set to include GA products only.

--setup-type=setup_type Installs a predefined set of software. The setup type can be one of the
following:

• Server: Installs a single MySQL server

• Client: Installs client programs and libraries (excludes MySQL
connectors)

• Full: Installs everything (excludes MySQL connectors)

• Custom: Installs user-selected products. This is the default option.

Note

Non-custom setup types are valid only when
no other MySQL products are installed.

--show-settings Displays the available options for the selected product, by passing in
the product name after -showsettings.

--silent Disable confirmation prompts.

Examples:

mysqlinstallerconsole.exe --install j;8.0.29, net;8.0.28 --silent

MySQLInstallerConsole install server;8.0.30:*:port=3307;server_id=2:type=user;user=foo

An example that passes in additional configuration blocks, separated by ^ to fit:

MySQLInstallerConsole --install server;8.0.30;x64:*:type=config;open_win_firewall=true; ^
 general_log=true;bin_log=true;server_id=3306;tcp_ip=true;port=3306;root_passwd=pass; ^
 install_dir="C:\MySQL\MySQL Server 8.0":type=user;user_name=foo;password=bar;role=DBManager

115

MySQL Installer for Windows

• [--]list

When this action is used without options, it activates an interactive list from which all of the available
MySQL products can be searched. Enter MySQLInstallerConsole --list and specify a substring
to search.

Options:

--all Lists all available products. If this option is used, all other options are
ignored.

--arch=architecture Lists that contain the specified architecture. Permitted values are:
x86, x64, and any (default). This option can be combined with the --
name and --version options.

--help Shows the options and available arguments for the corresponding
action. If present the action is not executed, only the help is shown,
so other action-related options are ignored as well.

--name=package_name Lists products that contain the specified name (see product phrase),
This option can be combined with the --version and --arch
options.

--version=version Lists products that contain the specified version, such as 8.0 or 5.7.
This option can be combined with the --name and --arch options.

Examples:

MySQLInstallerConsole --list --name=net --version=8.0

• [--]modify [product1:-removelist|+addlist], [product2:-removelist|+addlist]
[...]

Modifies or displays features of a previously installed MySQL product. To display the features of a
product, append the product keyword to the command, for example:

MySQLInstallerConsole --modify server

Options:

--help Shows the options and available arguments for the corresponding
action. If present the action is not executed, only the help is shown,
so other action-related options are ignored as well.

--silent Disable confirmation prompts.

Examples:

MySQLInstallerConsole --modify server:+documentation

MySQLInstallerConsole modify server:-debug

116

MySQL Installer for Windows

• [--]remove [product1], [product2] [...]

Removes one ore more products from your system. An asterisk character (*) can be passed in to
remove all MySQL products with one command.

Options:

--continue Continue the operation even if an error occurs.

--help Shows the options and available arguments for the corresponding
action. If present the action is not executed, only the help is shown,
so other action-related options are ignored as well.

--keep-datadir Skips the removal of the data directory when removing MySQL Server
products.

--silent Disable confirmation prompts.

Examples:

mysqlinstallerconsole.exe remove *

MySQLInstallerConsole --remove server --continue

• [--]set

Sets one or more configurable options that affect how the MySQL Installer program connects to the
internet and whether the automatic products-catalog updates feature is activated.

Options:

--catalog-
update=bool_value

Enables (true, default) or disables (false) the automatic products
catalog update. This option requires an active connection to the
internet.

--catalog-update-
days=int_value

Accepts an integer between 1 (default) and 365 to indicate the
number of days between checks for a new catalog update when
MySQL Installer is started. If --catalog-update is false, this
option is ignored.

--connection-
validation=validation_type

Sets how MySQL Installer performs the check for an internet
connection. Permitted values are automatic (default) and manual.

--connection-validation-
urls=url_list

A double-quote enclosed and comma-separated string that defines
the list of URLs to use for checking the internet connection when --
connection-validation is set to manual. Checks are made in

117

MySQL Installer for Windows

the same order provided. If the first URL fails, the next URL in the list
is used and so on.

--offline-
mode=bool_value

Enables MySQL Installer to run with or without internet capabilities.
Valid modes are:

• True to enable offline mode (run without an internet connection).

• False (default) to disable offline mode (run with an internet
connection). Set this mode before downloading the product catalog
or any products to install.

--proxy-mode Specifies the proxy mode. Valid modes are:

• Automatic to automatically identify the proxy based on the system
settings.

• None to ensure that no proxy is configured.

• Manual to set the proxy details manually (--proxy-server, --
proxy-port, --proxy-username, --proxy-password).

--proxy-password The password used to authenticate to the proxy server.

--proxy-port The port used for the proxy server.

--proxy-server The URL that point to the proxy server.

--proxy-username The user name used to authenticate to the proxy server.

--reset-defaults Resets the MySQL Installer options associated with the --set action
to the default values.

Examples:

MySQLIntallerConsole.exe set --reset-defaults

mysqlintallerconsole.exe --set --catalog-update=false

MySQLIntallerConsole --set --catalog-update-days=3

mysqlintallerconsole --set --connection-validation=manual
--connection-validation-urls="https://www.bing.com,http://www.google.com"

• [--]status

Provides a quick overview of the MySQL products that are installed on the system. Information includes
product name and version, architecture, date installed, and install location.

Options:

--help Shows the options and available arguments for the corresponding
action. If present the action is not executed, only the help is shown,
so other action-related options are ignored as well.

Examples:

MySQLInstallerConsole status

118

MySQL Installer for Windows

• [--]update

Downloads the latest MySQL product catalog to your system. On success, the catalog is applied the next
time either MySQLInstaller or MySQLInstallerConsole.exe is executed.

MySQL Installer automatically checks for product catalog updates when it is started if n days have
passed since the last check. Starting with MySQL Installer 1.6.4, the default value is 1 day. Previously,
the default value was 7 days.

Options:

--help Shows the options and available arguments for the corresponding
action. If present the action is not executed, only the help is shown,
so other action-related options are ignored as well.

Examples:

MySQLInstallerConsole update

• [--]upgrade [product1:version], [product2:version] [...]

Upgrades one or more products on your system. The following characters are permitted for this action:

* Pass in * to upgrade all products to the latest version, or pass in
specific products.

! Pass in ! as a version number to upgrade the MySQL product to its
latest version.

Options:

--continue Continue the operation even if an error occurs.

--help Shows the options and available arguments for the corresponding
action. If present the action is not executed, only the help is shown,
so other action-related options are ignored as well.

--mos-password=password Sets the My Oracle Support (MOS) user's password for commercial
versions of the MySQL Installer.

--mos-user=user_name Specifies the My Oracle Support (MOS) user name for access to
the commercial version of MySQL Installer. If not present, only the
products in the bundle, if any, are available to be installed.

--silent Disable confirmation prompts.

Examples:

MySQLInstallerConsole upgrade *

MySQLInstallerConsole upgrade workbench:8.0.31

MySQLInstallerConsole upgrade workbench:!

MySQLInstallerConsole --upgrade server;8.0.30:!, j;8.0.29:!

119

Installing MySQL on Microsoft Windows Using a noinstall ZIP Archive

2.3.4 Installing MySQL on Microsoft Windows Using a noinstall ZIP Archive

Users who are installing from the noinstall package can use the instructions in this section to manually
install MySQL. The process for installing MySQL from a ZIP Archive package is as follows:

1. Extract the main archive to the desired install directory

Optional: also extract the debug-test archive if you plan to execute the MySQL benchmark and test
suite

2. Create an option file

3. Choose a MySQL server type

4. Initialize MySQL

5. Start the MySQL server

6. Secure the default user accounts

This process is described in the sections that follow.

2.3.4.1 Extracting the Install Archive

To install MySQL manually, do the following:

1. If you are upgrading from a previous version please refer to Section 2.10.8, “Upgrading MySQL on
Windows”, before beginning the upgrade process.

2. Make sure that you are logged in as a user with administrator privileges.

3. Choose an installation location. Traditionally, the MySQL server is installed in C:\mysql. If you do not
install MySQL at C:\mysql, you must specify the path to the install directory during startup or in an
option file. See Section 2.3.4.2, “Creating an Option File”.

Note

The MySQL Installer installs MySQL under C:\Program Files\MySQL.

4. Extract the install archive to the chosen installation location using your preferred file-compression tool.
Some tools may extract the archive to a folder within your chosen installation location. If this occurs,
you can move the contents of the subfolder into the chosen installation location.

2.3.4.2 Creating an Option File

If you need to specify startup options when you run the server, you can indicate them on the command
line or place them in an option file. For options that are used every time the server starts, you may find it
most convenient to use an option file to specify your MySQL configuration. This is particularly true under
the following circumstances:

• The installation or data directory locations are different from the default locations (C:\Program Files
\MySQL\MySQL Server 5.7 and C:\Program Files\MySQL\MySQL Server 5.7\data).

• You need to tune the server settings, such as memory, cache, or InnoDB configuration information.

When the MySQL server starts on Windows, it looks for option files in several locations, such as
the Windows directory, C:\, and the MySQL installation directory (for the full list of locations, see

120

Installing MySQL on Microsoft Windows Using a noinstall ZIP Archive

Section 4.2.2.2, “Using Option Files”). The Windows directory typically is named something like C:
\WINDOWS. You can determine its exact location from the value of the WINDIR environment variable using
the following command:

C:\> echo %WINDIR%

MySQL looks for options in each location first in the my.ini file, and then in the my.cnf file. However, to
avoid confusion, it is best if you use only one file. If your PC uses a boot loader where C: is not the boot
drive, your only option is to use the my.ini file. Whichever option file you use, it must be a plain text file.

Note

When using the MySQL Installer to install MySQL Server, it creates the my.ini
in the default location, and the user executing MySQL Installer is granted full
permissions to this new my.ini file.

In other words, be sure that the MySQL Server user has permission to read the
my.ini file.

You can also make use of the example option files included with your MySQL distribution; see
Section 5.1.2, “Server Configuration Defaults”.

An option file can be created and modified with any text editor, such as Notepad. For example, if MySQL
is installed in E:\mysql and the data directory is in E:\mydata\data, you can create an option file
containing a [mysqld] section to specify values for the basedir and datadir options:

[mysqld]
set basedir to your installation path
basedir=E:/mysql
set datadir to the location of your data directory
datadir=E:/mydata/data

Microsoft Windows path names are specified in option files using (forward) slashes rather than
backslashes. If you do use backslashes, double them:

[mysqld]
set basedir to your installation path
basedir=E:\\mysql
set datadir to the location of your data directory
datadir=E:\\mydata\\data

The rules for use of backslash in option file values are given in Section 4.2.2.2, “Using Option Files”.

As of MySQL 5.7.6, the ZIP archive no longer includes a data directory. To initialize a MySQL installation
by creating the data directory and populating the tables in the mysql system database, initialize MySQL
using either --initialize or --initialize-insecure. For additional information, see Section 2.9.1,
“Initializing the Data Directory”.

If you would like to use a data directory in a different location, you should copy the entire contents of the
data directory to the new location. For example, if you want to use E:\mydata as the data directory
instead, you must do two things:

1. Move the entire data directory and all of its contents from the default location (for example C:
\Program Files\MySQL\MySQL Server 5.7\data) to E:\mydata.

2. Use a --datadir option to specify the new data directory location each time you start the server.

2.3.4.3 Selecting a MySQL Server Type

The following table shows the available servers for Windows in MySQL 5.7.

121

Installing MySQL on Microsoft Windows Using a noinstall ZIP Archive

Binary Description

mysqld Optimized binary with named-pipe support

mysqld-debug Like mysqld, but compiled with full debugging and
automatic memory allocation checking

All of the preceding binaries are optimized for modern Intel processors, but should work on any Intel i386-
class or higher processor.

Each of the servers in a distribution support the same set of storage engines. The SHOW ENGINES
statement displays which engines a given server supports.

All Windows MySQL 5.7 servers have support for symbolic linking of database directories.

MySQL supports TCP/IP on all Windows platforms. MySQL servers on Windows also support named
pipes, if you start the server with the named_pipe system variable enabled. It is necessary to enable this
variable explicitly because some users have experienced problems with shutting down the MySQL server
when named pipes were used. The default is to use TCP/IP regardless of platform because named pipes
are slower than TCP/IP in many Windows configurations.

2.3.4.4 Initializing the Data Directory

If you installed MySQL using the noinstall package, you may need to initialize the data directory:

• Windows distributions prior to MySQL 5.7.7 include a data directory with a set of preinitialized accounts
in the mysql database.

• As of 5.7.7, Windows installation operations performed using the noinstall package do not include a
data directory. To initialize the data directory, use the instructions at Section 2.9.1, “Initializing the Data
Directory”.

2.3.4.5 Starting the Server for the First Time

This section gives a general overview of starting the MySQL server. The following sections provide more
specific information for starting the MySQL server from the command line or as a Windows service.

The information here applies primarily if you installed MySQL using the noinstall version, or if you wish
to configure and test MySQL manually rather than with the GUI tools.

The examples in these sections assume that MySQL is installed under the default location of C:\Program
Files\MySQL\MySQL Server 5.7. Adjust the path names shown in the examples if you have MySQL
installed in a different location.

Clients have two options. They can use TCP/IP, or they can use a named pipe if the server supports
named-pipe connections.

MySQL for Windows also supports shared-memory connections if the server is started with the
shared_memory system variable enabled. Clients can connect through shared memory by using the --
protocol=MEMORY option.

For information about which server binary to run, see Section 2.3.4.3, “Selecting a MySQL Server Type”.

Testing is best done from a command prompt in a console window (or “DOS window”). In this way you can
have the server display status messages in the window where they are easy to see. If something is wrong
with your configuration, these messages make it easier for you to identify and fix any problems.

122

Installing MySQL on Microsoft Windows Using a noinstall ZIP Archive

Note

The database must be initialized before MySQL can be started. For additional
information about the initialization process, see Section 2.9.1, “Initializing the Data
Directory”.

To start the server, enter this command:

C:\> "C:\Program Files\MySQL\MySQL Server 5.7\bin\mysqld" --console

For a server that includes InnoDB support, you should see the messages similar to those following as it
starts (the path names and sizes may differ):

InnoDB: The first specified datafile c:\ibdata\ibdata1 did not exist:
InnoDB: a new database to be created!
InnoDB: Setting file c:\ibdata\ibdata1 size to 209715200
InnoDB: Database physically writes the file full: wait...
InnoDB: Log file c:\iblogs\ib_logfile0 did not exist: new to be created
InnoDB: Setting log file c:\iblogs\ib_logfile0 size to 31457280
InnoDB: Log file c:\iblogs\ib_logfile1 did not exist: new to be created
InnoDB: Setting log file c:\iblogs\ib_logfile1 size to 31457280
InnoDB: Log file c:\iblogs\ib_logfile2 did not exist: new to be created
InnoDB: Setting log file c:\iblogs\ib_logfile2 size to 31457280
InnoDB: Doublewrite buffer not found: creating new
InnoDB: Doublewrite buffer created
InnoDB: creating foreign key constraint system tables
InnoDB: foreign key constraint system tables created
011024 10:58:25 InnoDB: Started

When the server finishes its startup sequence, you should see something like this, which indicates that the
server is ready to service client connections:

mysqld: ready for connections
Version: '5.7.44' socket: '' port: 3306

The server continues to write to the console any further diagnostic output it produces. You can open a new
console window in which to run client programs.

If you omit the --console option, the server writes diagnostic output to the error log in the data directory
(C:\Program Files\MySQL\MySQL Server 5.7\data by default). The error log is the file with the
.err extension, and may be set using the --log-error option.

Note

The initial root account in the MySQL grant tables has no password. After
starting the server, you should set up a password for it using the instructions in
Section 2.9.4, “Securing the Initial MySQL Account”.

2.3.4.6 Starting MySQL from the Windows Command Line

The MySQL server can be started manually from the command line. This can be done on any version of
Windows.

To start the mysqld server from the command line, you should start a console window (or “DOS window”)
and enter this command:

C:\> "C:\Program Files\MySQL\MySQL Server 5.7\bin\mysqld"

The path to mysqld may vary depending on the install location of MySQL on your system.

You can stop the MySQL server by executing this command:

C:\> "C:\Program Files\MySQL\MySQL Server 5.7\bin\mysqladmin" -u root shutdown

123

Installing MySQL on Microsoft Windows Using a noinstall ZIP Archive

Note

If the MySQL root user account has a password, you need to invoke mysqladmin
with the -p option and supply the password when prompted.

This command invokes the MySQL administrative utility mysqladmin to connect to the server and tell it to
shut down. The command connects as the MySQL root user, which is the default administrative account
in the MySQL grant system.

Note

Users in the MySQL grant system are wholly independent from any operating
system users under Microsoft Windows.

If mysqld does not start, check the error log to see whether the server wrote any messages there to
indicate the cause of the problem. By default, the error log is located in the C:\Program Files\MySQL
\MySQL Server 5.7\data directory. It is the file with a suffix of .err, or may be specified by passing in
the --log-error option. Alternatively, you can try to start the server with the --console option; in this
case, the server may display some useful information on the screen to help solve the problem.

The last option is to start mysqld with the --standalone and --debug options. In this case, mysqld
writes a log file C:\mysqld.trace that should contain the reason why mysqld doesn't start. See
Section 5.8.3, “The DBUG Package”.

Use mysqld --verbose --help to display all the options that mysqld supports.

2.3.4.7 Customizing the PATH for MySQL Tools

Warning

You must exercise great care when editing your system PATH by hand; accidental
deletion or modification of any portion of the existing PATH value can leave you with
a malfunctioning or even unusable system.

To make it easier to invoke MySQL programs, you can add the path name of the MySQL bin directory to
your Windows system PATH environment variable:

• On the Windows desktop, right-click the My Computer icon, and select Properties.

• Next select the Advanced tab from the System Properties menu that appears, and click the
Environment Variables button.

• Under System Variables, select Path, and then click the Edit button. The Edit System Variable
dialogue should appear.

• Place your cursor at the end of the text appearing in the space marked Variable Value. (Use the End
key to ensure that your cursor is positioned at the very end of the text in this space.) Then enter the
complete path name of your MySQL bin directory (for example, C:\Program Files\MySQL\MySQL
Server 5.7\bin)

Note

There must be a semicolon separating this path from any values present in this
field.

Dismiss this dialogue, and each dialogue in turn, by clicking OK until all of the dialogues that were
opened have been dismissed. The new PATH value should now be available to any new command

124

Installing MySQL on Microsoft Windows Using a noinstall ZIP Archive

shell you open, allowing you to invoke any MySQL executable program by typing its name at the DOS
prompt from any directory on the system, without having to supply the path. This includes the servers,
the mysql client, and all MySQL command-line utilities such as mysqladmin and mysqldump.

You should not add the MySQL bin directory to your Windows PATH if you are running multiple MySQL
servers on the same machine.

2.3.4.8 Starting MySQL as a Windows Service

On Windows, the recommended way to run MySQL is to install it as a Windows service, so that MySQL
starts and stops automatically when Windows starts and stops. A MySQL server installed as a service can
also be controlled from the command line using NET commands, or with the graphical Services utility.
Generally, to install MySQL as a Windows service you should be logged in using an account that has
administrator rights.

The Services utility (the Windows Service Control Manager) can be found in the Windows Control
Panel. To avoid conflicts, it is advisable to close the Services utility while performing server installation or
removal operations from the command line.

Installing the service

Before installing MySQL as a Windows service, you should first stop the current server if it is running by
using the following command:

C:\> "C:\Program Files\MySQL\MySQL Server 5.7\bin\mysqladmin"
 -u root shutdown

Note

If the MySQL root user account has a password, you need to invoke mysqladmin
with the -p option and supply the password when prompted.

This command invokes the MySQL administrative utility mysqladmin to connect to the server and tell it to
shut down. The command connects as the MySQL root user, which is the default administrative account
in the MySQL grant system.

Note

Users in the MySQL grant system are wholly independent from any operating
system users under Windows.

Install the server as a service using this command:

C:\> "C:\Program Files\MySQL\MySQL Server 5.7\bin\mysqld" --install

The service-installation command does not start the server. Instructions for that are given later in this
section.

To make it easier to invoke MySQL programs, you can add the path name of the MySQL bin directory to
your Windows system PATH environment variable:

• On the Windows desktop, right-click the My Computer icon, and select Properties.

• Next select the Advanced tab from the System Properties menu that appears, and click the
Environment Variables button.

• Under System Variables, select Path, and then click the Edit button. The Edit System Variable
dialogue should appear.

125

Installing MySQL on Microsoft Windows Using a noinstall ZIP Archive

• Place your cursor at the end of the text appearing in the space marked Variable Value. (Use the End
key to ensure that your cursor is positioned at the very end of the text in this space.) Then enter the
complete path name of your MySQL bin directory (for example, C:\Program Files\MySQL\MySQL
Server 5.7\bin), and there should be a semicolon separating this path from any values present
in this field. Dismiss this dialogue, and each dialogue in turn, by clicking OK until all of the dialogues
that were opened have been dismissed. You should now be able to invoke any MySQL executable
program by typing its name at the DOS prompt from any directory on the system, without having to
supply the path. This includes the servers, the mysql client, and all MySQL command-line utilities such
as mysqladmin and mysqldump.

You should not add the MySQL bin directory to your Windows PATH if you are running multiple MySQL
servers on the same machine.

Warning

You must exercise great care when editing your system PATH by hand; accidental
deletion or modification of any portion of the existing PATH value can leave you with
a malfunctioning or even unusable system.

The following additional arguments can be used when installing the service:

• You can specify a service name immediately following the --install option. The default service name
is MySQL.

• If a service name is given, it can be followed by a single option. By convention, this should be --
defaults-file=file_name to specify the name of an option file from which the server should read
options when it starts.

The use of a single option other than --defaults-file is possible but discouraged. --defaults-
file is more flexible because it enables you to specify multiple startup options for the server by placing
them in the named option file.

• You can also specify a --local-service option following the service name. This causes the server
to run using the LocalService Windows account that has limited system privileges. If both --
defaults-file and --local-service are given following the service name, they can be in any
order.

For a MySQL server that is installed as a Windows service, the following rules determine the service name
and option files that the server uses:

• If the service-installation command specifies no service name or the default service name (MySQL)
following the --install option, the server uses the service name of MySQL and reads options from the
[mysqld] group in the standard option files.

• If the service-installation command specifies a service name other than MySQL following the --install
option, the server uses that service name. It reads options from the [mysqld] group and the group that
has the same name as the service in the standard option files. This enables you to use the [mysqld]
group for options that should be used by all MySQL services, and an option group with the service name
for use by the server installed with that service name.

• If the service-installation command specifies a --defaults-file option after the service name, the
server reads options the same way as described in the previous item, except that it reads options only
from the named file and ignores the standard option files.

As a more complex example, consider the following command:

C:\> "C:\Program Files\MySQL\MySQL Server 5.7\bin\mysqld"
 --install MySQL --defaults-file=C:\my-opts.cnf

126

Installing MySQL on Microsoft Windows Using a noinstall ZIP Archive

Here, the default service name (MySQL) is given after the --install option. If no --defaults-file
option had been given, this command would have the effect of causing the server to read the [mysqld]
group from the standard option files. However, because the --defaults-file option is present, the
server reads options from the [mysqld] option group, and only from the named file.

Note

On Windows, if the server is started with the --defaults-file and --install
options, --install must be first. Otherwise, mysqld.exe attempts to start the
MySQL server.

You can also specify options as Start parameters in the Windows Services utility before you start the
MySQL service.

Finally, before trying to start the MySQL service, make sure the user variables %TEMP% and %TMP%
(and also %TMPDIR%, if it has ever been set) for the operating system user who is to run the service are
pointing to a folder to which the user has write access. The default user for running the MySQL service
is LocalSystem, and the default value for its %TEMP% and %TMP% is C:\Windows\Temp, a directory
LocalSystem has write access to by default. However, if there are any changes to that default setup (for
example, changes to the user who runs the service or to the mentioned user variables, or the --tmpdir
option has been used to put the temporary directory somewhere else), the MySQL service might fail to run
because write access to the temporary directory has not been granted to the proper user.

Starting the service

After a MySQL server instance has been installed as a service, Windows starts the service automatically
whenever Windows starts. The service also can be started immediately from the Services utility, or by
using an sc start mysqld_service_name or NET START mysqld_service_name command. SC
and NET commands are not case-sensitive.

When run as a service, mysqld has no access to a console window, so no messages can be seen there. If
mysqld does not start, check the error log to see whether the server wrote any messages there to indicate
the cause of the problem. The error log is located in the MySQL data directory (for example, C:\Program
Files\MySQL\MySQL Server 5.7\data). It is the file with a suffix of .err.

When a MySQL server has been installed as a service, and the service is running, Windows stops
the service automatically when Windows shuts down. The server also can be stopped manually
using the Services utility, the sc stop mysqld_service_name command, the NET STOP
mysqld_service_name command, or the mysqladmin shutdown command.

You also have the choice of installing the server as a manual service if you do not wish for the service to
be started automatically during the boot process. To do this, use the --install-manual option rather
than the --install option:

C:\> "C:\Program Files\MySQL\MySQL Server 5.7\bin\mysqld" --install-manual

Removing the service

To remove a server that is installed as a service, first stop it if it is running by executing SC STOP
mysqld_service_name or NET STOP mysqld_service_name. Then use SC DELETE
mysqld_service_name to remove it:

C:\> SC DELETE mysql

Alternatively, use the mysqld --remove option to remove the service.

C:\> "C:\Program Files\MySQL\MySQL Server 5.7\bin\mysqld" --remove

127

Troubleshooting a Microsoft Windows MySQL Server Installation

If mysqld is not running as a service, you can start it from the command line. For instructions, see
Section 2.3.4.6, “Starting MySQL from the Windows Command Line”.

If you encounter difficulties during installation, see Section 2.3.5, “Troubleshooting a Microsoft Windows
MySQL Server Installation”.

For more information about stopping or removing a Windows service, see Section 5.7.2.2, “Starting
Multiple MySQL Instances as Windows Services”.

2.3.4.9 Testing The MySQL Installation

You can test whether the MySQL server is working by executing any of the following commands:

C:\> "C:\Program Files\MySQL\MySQL Server 5.7\bin\mysqlshow"
C:\> "C:\Program Files\MySQL\MySQL Server 5.7\bin\mysqlshow" -u root mysql
C:\> "C:\Program Files\MySQL\MySQL Server 5.7\bin\mysqladmin" version status proc
C:\> "C:\Program Files\MySQL\MySQL Server 5.7\bin\mysql" test

If mysqld is slow to respond to TCP/IP connections from client programs, there is probably a problem
with your DNS. In this case, start mysqld with the skip_name_resolve system variable enabled and
use only localhost and IP addresses in the Host column of the MySQL grant tables. (Be sure that an
account exists that specifies an IP address or you may not be able to connect.)

You can force a MySQL client to use a named-pipe connection rather than TCP/IP by specifying the --
pipe or --protocol=PIPE option, or by specifying . (period) as the host name. Use the --socket
option to specify the name of the pipe if you do not want to use the default pipe name.

If you have set a password for the root account, deleted the anonymous account, or created a new user
account, then to connect to the MySQL server you must use the appropriate -u and -p options with the
commands shown previously. See Section 4.2.4, “Connecting to the MySQL Server Using Command
Options”.

For more information about mysqlshow, see Section 4.5.7, “mysqlshow — Display Database, Table, and
Column Information”.

2.3.5 Troubleshooting a Microsoft Windows MySQL Server Installation

When installing and running MySQL for the first time, you may encounter certain errors that prevent the
MySQL server from starting. This section helps you diagnose and correct some of these errors.

Your first resource when troubleshooting server issues is the error log. The MySQL server uses the error
log to record information relevant to the error that prevents the server from starting. The error log is located
in the data directory specified in your my.ini file. The default data directory location is C:\Program
Files\MySQL\MySQL Server 5.7\data, or C:\ProgramData\Mysql on Windows 7 and Windows
Server 2008. The C:\ProgramData directory is hidden by default. You need to change your folder
options to see the directory and contents. For more information on the error log and understanding the
content, see Section 5.4.2, “The Error Log”.

For information regarding possible errors, also consult the console messages displayed when
the MySQL service is starting. Use the SC START mysqld_service_name or NET START
mysqld_service_name command from the command line after installing mysqld as a service to see
any error messages regarding the starting of the MySQL server as a service. See Section 2.3.4.8, “Starting
MySQL as a Windows Service”.

The following examples show other common error messages you might encounter when installing MySQL
and starting the server for the first time:

• If the MySQL server cannot find the mysql privileges database or other critical files, it displays these
messages:

128

Troubleshooting a Microsoft Windows MySQL Server Installation

System error 1067 has occurred.
Fatal error: Can't open and lock privilege tables:
Table 'mysql.user' doesn't exist

These messages often occur when the MySQL base or data directories are installed in different locations
than the default locations (C:\Program Files\MySQL\MySQL Server 5.7 and C:\Program
Files\MySQL\MySQL Server 5.7\data, respectively).

This situation can occur when MySQL is upgraded and installed to a new location, but the configuration
file is not updated to reflect the new location. In addition, old and new configuration files might conflict.
Be sure to delete or rename any old configuration files when upgrading MySQL.

If you have installed MySQL to a directory other than C:\Program Files\MySQL\MySQL Server
5.7, ensure that the MySQL server is aware of this through the use of a configuration (my.ini) file. Put
the my.ini file in your Windows directory, typically C:\WINDOWS. To determine its exact location from
the value of the WINDIR environment variable, issue the following command from the command prompt:

C:\> echo %WINDIR%

You can create or modify an option file with any text editor, such as Notepad. For example, if MySQL is
installed in E:\mysql and the data directory is D:\MySQLdata, you can create the option file and set
up a [mysqld] section to specify values for the basedir and datadir options:

[mysqld]
set basedir to your installation path
basedir=E:/mysql
set datadir to the location of your data directory
datadir=D:/MySQLdata

Microsoft Windows path names are specified in option files using (forward) slashes rather than
backslashes. If you do use backslashes, double them:

[mysqld]
set basedir to your installation path
basedir=C:\\Program Files\\MySQL\\MySQL Server 5.7
set datadir to the location of your data directory
datadir=D:\\MySQLdata

The rules for use of backslash in option file values are given in Section 4.2.2.2, “Using Option Files”.

If you change the datadir value in your MySQL configuration file, you must move the contents of the
existing MySQL data directory before restarting the MySQL server.

See Section 2.3.4.2, “Creating an Option File”.

• If you reinstall or upgrade MySQL without first stopping and removing the existing MySQL service and
install MySQL using the MySQL Installer, you might see this error:

Error: Cannot create Windows service for MySql. Error: 0

This occurs when the Configuration Wizard tries to install the service and finds an existing service with
the same name.

One solution to this problem is to choose a service name other than mysql when using the configuration
wizard. This enables the new service to be installed correctly, but leaves the outdated service in place.
Although this is harmless, it is best to remove old services that are no longer in use.

To permanently remove the old mysql service, execute the following command as a user with
administrative privileges, on the command line:

129

Windows Postinstallation Procedures

C:\> SC DELETE mysql
[SC] DeleteService SUCCESS

If the SC utility is not available for your version of Windows, download the delsrv utility from http://
www.microsoft.com/windows2000/techinfo/reskit/tools/existing/delsrv-o.asp and use the delsrv mysql
syntax.

2.3.6 Windows Postinstallation Procedures

GUI tools exist that perform most of the tasks described in this section, including:

• MySQL Installer: Used to install and upgrade MySQL products.

• MySQL Workbench: Manages the MySQL server and edits SQL statements.

If necessary, initialize the data directory and create the MySQL grant tables. Windows distributions prior
to MySQL 5.7.7 include a data directory with a set of preinitialized accounts in the mysql database.
As of 5.7.7, Windows installation operations performed by MySQL Installer initialize the data directory
automatically. For installation from a ZIP Archive package, initialize the data directory as described at
Section 2.9.1, “Initializing the Data Directory”.

Regarding passwords, if you installed MySQL using the MySQL Installer, you may have already assigned a
password to the initial root account. (See Section 2.3.3, “MySQL Installer for Windows”.) Otherwise, use
the password-assignment procedure given in Section 2.9.4, “Securing the Initial MySQL Account”.

Before assigning a password, you might want to try running some client programs to make sure that
you can connect to the server and that it is operating properly. Make sure that the server is running (see
Section 2.3.4.5, “Starting the Server for the First Time”). You can also set up a MySQL service that runs
automatically when Windows starts (see Section 2.3.4.8, “Starting MySQL as a Windows Service”).

These instructions assume that your current location is the MySQL installation directory and that it has a
bin subdirectory containing the MySQL programs used here. If that is not true, adjust the command path
names accordingly.

If you installed MySQL using MySQL Installer (see Section 2.3.3, “MySQL Installer for Windows”), the
default installation directory is C:\Program Files\MySQL\MySQL Server 5.7:

C:\> cd "C:\Program Files\MySQL\MySQL Server 5.7"

A common installation location for installation from a ZIP archive is C:\mysql:

C:\> cd C:\mysql

Alternatively, add the bin directory to your PATH environment variable setting. That enables your
command interpreter to find MySQL programs properly, so that you can run a program by typing only its
name, not its path name. See Section 2.3.4.7, “Customizing the PATH for MySQL Tools”.

With the server running, issue the following commands to verify that you can retrieve information from the
server. The output should be similar to that shown here.

Use mysqlshow to see what databases exist:

C:\> bin\mysqlshow
+--------------------+
| Databases |
+--------------------+
| information_schema |
| mysql |
| performance_schema |

130

http://www.microsoft.com/windows2000/techinfo/reskit/tools/existing/delsrv-o.asp
http://www.microsoft.com/windows2000/techinfo/reskit/tools/existing/delsrv-o.asp

Windows Postinstallation Procedures

| sys |
+--------------------+

The list of installed databases may vary, but always includes at least mysql and information_schema.
Before MySQL 5.7.7, a test database may also be created automatically.

The preceding command (and commands for other MySQL programs such as mysql) may not work if
the correct MySQL account does not exist. For example, the program may fail with an error, or you may
not be able to view all databases. If you install MySQL using MySQL Installer, the root user is created
automatically with the password you supplied. In this case, you should use the -u root and -p options.
(You must use those options if you have already secured the initial MySQL accounts.) With -p, the client
program prompts for the root password. For example:

C:\> bin\mysqlshow -u root -p
Enter password: (enter root password here)
+--------------------+
| Databases |
+--------------------+
| information_schema |
| mysql |
| performance_schema |
| sys |
+--------------------+

If you specify a database name, mysqlshow displays a list of the tables within the database:

C:\> bin\mysqlshow mysql
Database: mysql
+---------------------------+
| Tables |
+---------------------------+
| columns_priv |
| db |
| engine_cost |
| event |
| func |
| general_log |
| gtid_executed |
| help_category |
| help_keyword |
| help_relation |
| help_topic |
| innodb_index_stats |
| innodb_table_stats |
| ndb_binlog_index |
| plugin |
| proc |
| procs_priv |
| proxies_priv |
| server_cost |
| servers |
| slave_master_info |
| slave_relay_log_info |
| slave_worker_info |
| slow_log |
| tables_priv |
| time_zone |
| time_zone_leap_second |
| time_zone_name |
| time_zone_transition |
| time_zone_transition_type |
| user |
+---------------------------+

Use the mysql program to select information from a table in the mysql database:

131

Windows Platform Restrictions

C:\> bin\mysql -e "SELECT User, Host, plugin FROM mysql.user" mysql
+------+-----------+-----------------------+
| User | Host | plugin |
+------+-----------+-----------------------+
| root | localhost | mysql_native_password |
+------+-----------+-----------------------+

For more information about mysql and mysqlshow, see Section 4.5.1, “mysql — The MySQL Command-
Line Client”, and Section 4.5.7, “mysqlshow — Display Database, Table, and Column Information”.

2.3.7 Windows Platform Restrictions

The following restrictions apply to use of MySQL on the Windows platform:

• Process memory

On Windows 32-bit platforms, it is not possible by default to use more than 2GB of RAM within a single
process, including MySQL. This is because the physical address limit on Windows 32-bit is 4GB and
the default setting within Windows is to split the virtual address space between kernel (2GB) and user/
applications (2GB).

Some versions of Windows have a boot time setting to enable larger applications by reducing the kernel
application. Alternatively, to use more than 2GB, use a 64-bit version of Windows.

• File system aliases

When using MyISAM tables, you cannot use aliases within Windows link to the data files on another
volume and then link back to the main MySQL datadir location.

This facility is often used to move the data and index files to a RAID or other fast solution, while retaining
the main .frm files in the default data directory configured with the datadir option.

• Limited number of ports

Windows systems have about 4,000 ports available for client connections, and after a connection on
a port closes, it takes two to four minutes before the port can be reused. In situations where clients
connect to and disconnect from the server at a high rate, it is possible for all available ports to be used
up before closed ports become available again. If this happens, the MySQL server appears to be
unresponsive even though it is running. Ports may be used by other applications running on the machine
as well, in which case the number of ports available to MySQL is lower.

For more information about this problem, see https://support.microsoft.com/kb/196271.

• DATA DIRECTORY and INDEX DIRECTORY

The DATA DIRECTORY clause of the CREATE TABLE statement is supported on Windows for InnoDB
tables only, as described in Section 14.6.1.2, “Creating Tables Externally”. For MyISAM and other
storage engines, the DATA DIRECTORY and INDEX DIRECTORY clauses for CREATE TABLE are
ignored on Windows and any other platforms with a nonfunctional realpath() call.

• DROP DATABASE

You cannot drop a database that is in use by another session.

• Case-insensitive names

File names are not case-sensitive on Windows, so MySQL database and table names are also not case-
sensitive on Windows. The only restriction is that database and table names must be specified using the
same case throughout a given statement. See Section 9.2.3, “Identifier Case Sensitivity”.

132

https://support.microsoft.com/kb/196271

Installing MySQL on macOS

• Directory and file names

On Windows, MySQL Server supports only directory and file names that are compatible with the current
ANSI code pages. For example, the following Japanese directory name does not work in the Western
locale (code page 1252):

datadir="C:/私たちのプロジェクトのデータ"

The same limitation applies to directory and file names referred to in SQL statements, such as the data
file path name in LOAD DATA.

• The \ path name separator character

Path name components in Windows are separated by the \ character, which is also the escape
character in MySQL. If you are using LOAD DATA or SELECT ... INTO OUTFILE, use Unix-style file
names with / characters:

mysql> LOAD DATA INFILE 'C:/tmp/skr.txt' INTO TABLE skr;
mysql> SELECT * INTO OUTFILE 'C:/tmp/skr.txt' FROM skr;

Alternatively, you must double the \ character:

mysql> LOAD DATA INFILE 'C:\\tmp\\skr.txt' INTO TABLE skr;
mysql> SELECT * INTO OUTFILE 'C:\\tmp\\skr.txt' FROM skr;

• Problems with pipes

Pipes do not work reliably from the Windows command-line prompt. If the pipe includes the character ^Z
/ CHAR(24), Windows thinks that it has encountered end-of-file and aborts the program.

This is mainly a problem when you try to apply a binary log as follows:

C:\> mysqlbinlog binary_log_file | mysql --user=root

If you have a problem applying the log and suspect that it is because of a ^Z / CHAR(24) character, you
can use the following workaround:

C:\> mysqlbinlog binary_log_file --result-file=/tmp/bin.sql
C:\> mysql --user=root --execute "source /tmp/bin.sql"

The latter command also can be used to reliably read any SQL file that may contain binary data.

2.4 Installing MySQL on macOS
For a list of macOS versions that the MySQL server supports, see https://www.mysql.com/support/
supportedplatforms/database.html.

MySQL for macOS is available in a number of different forms:

• Native Package Installer, which uses the native macOS installer (DMG) to walk you through the
installation of MySQL. For more information, see Section 2.4.2, “Installing MySQL on macOS Using
Native Packages”. You can use the package installer with macOS. The user you use to perform the
installation must have administrator privileges.

• Compressed TAR archive, which uses a file packaged using the Unix tar and gzip commands. To
use this method, you 'to open a Terminal window. You do not need administrator privileges using this
method, as you can install the MySQL server anywhere using this method. For more information on
using this method, you can use the generic instructions for using a tarball, Section 2.2, “Installing MySQL
on Unix/Linux Using Generic Binaries”.

133

https://www.mysql.com/support/supportedplatforms/database.html
https://www.mysql.com/support/supportedplatforms/database.html

General Notes on Installing MySQL on macOS

In addition to the core installation, the Package Installer also includes Section 2.4.3, “Installing a MySQL
Launch Daemon” and Section 2.4.4, “Installing and Using the MySQL Preference Pane”, both of which
simplify the management of your installation.

For additional information on using MySQL on macOS, see Section 2.4.1, “General Notes on Installing
MySQL on macOS”.

2.4.1 General Notes on Installing MySQL on macOS

You should keep the following issues and notes in mind:

• As of macOS 10.14 (Majave), the macOS MySQL 5.7 Installer application requires permission to control
System Events so it can display a generated (temporary) MySQL root password. Choosing "Don't Allow"
means this password won't be visible for use.

If previously disallowed, the fix is enabling System Events.app for Installer.app under the Security &
Privacy | Automation | Privacy tab.

• A launchd daemon is installed, and it includes MySQL configuration options. Consider editing it if
needed, see the documentation below for additional information. Also, macOS 10.10 removed startup
item support in favor of launchd daemons. The optional MySQL preference pane under macOS System
Preferences uses the launchd daemon.

• You may need (or want) to create a specific mysql user to own the MySQL directory and data. You can
do this through the Directory Utility, and the mysql user should already exist. For use in single
user mode, an entry for _mysql (note the underscore prefix) should already exist within the system /
etc/passwd file.

• Because the MySQL package installer installs the MySQL contents into a version and platform specific
directory, you can use this to upgrade and migrate your database between versions. You need either to
copy the data directory from the old version to the new version, or to specify an alternative datadir
value to set location of the data directory. By default, the MySQL directories are installed under /usr/
local/.

• You might want to add aliases to your shell's resource file to make it easier to access commonly used
programs such as mysql and mysqladmin from the command line. The syntax for bash is:

alias mysql=/usr/local/mysql/bin/mysql
alias mysqladmin=/usr/local/mysql/bin/mysqladmin

For tcsh, use:

alias mysql /usr/local/mysql/bin/mysql
alias mysqladmin /usr/local/mysql/bin/mysqladmin

Even better, add /usr/local/mysql/bin to your PATH environment variable. You can do this by
modifying the appropriate startup file for your shell. For more information, see Section 4.2.1, “Invoking
MySQL Programs”.

• After you have copied over the MySQL database files from the previous installation and have
successfully started the new server, you should consider removing the old installation files to save disk
space. Additionally, you should also remove older versions of the Package Receipt directories located in
/Library/Receipts/mysql-VERSION.pkg.

134

Installing MySQL on macOS Using Native Packages

2.4.2 Installing MySQL on macOS Using Native Packages

The package is located inside a disk image (.dmg) file that you first need to mount by double-clicking its
icon in the Finder. It should then mount the image and display its contents.

Note

Before proceeding with the installation, be sure to stop all running MySQL server
instances by using either the MySQL Manager Application (on macOS Server), the
preference pane, or mysqladmin shutdown on the command line.

To install MySQL using the package installer:

1. Download the disk image (.dmg) file (the community version is available here) that contains the MySQL
package installer. Double-click the file to mount the disk image and see its contents.

Figure 2.13 MySQL Package Installer: DMG Contents

2. Double-click the MySQL installer package from the disk. It is named according to the version of MySQL
you have downloaded. For example, for MySQL server 5.7.44 it might be named mysql-5.7.44-
macos-10.13-x86_64.pkg.

3. The initial wizard introduction screen references the MySQL server version to install. Click Continue to
begin the installation.

135

https://dev.mysql.com/downloads/mysql/

Installing MySQL on macOS Using Native Packages

Figure 2.14 MySQL Package Installer Wizard: Introduction

4. The MySQL community edition shows a copy of the relevant GNU General Public License. Click
Continue and then Agree to continue.

136

Installing MySQL on macOS Using Native Packages

5. From the Installation Type page you can either click Install to execute the installation wizard using
all defaults, click Customize to alter which components to install (MySQL server, Preference Pane,
Launchd Support -- all enabled by default).

Note

Although the Change Install Location option is visible, the installation location
cannot be changed.

Figure 2.15 MySQL Package Installer Wizard: Installation Type

137

Installing MySQL on macOS Using Native Packages

Figure 2.16 MySQL Package Installer Wizard: Customize

6. Click Install to begin the installation process.

138

Installing MySQL on macOS Using Native Packages

7. After a successful installation, the installer displays a window with your temporary root password. This
cannot be recovered so you must save this password for the initial login to MySQL. For example:

Figure 2.17 MySQL Package Installer Wizard: Temporary Root Password

Note

MySQL expires this temporary root password after the initial login and requires
you to create a new password.

139

Installing MySQL on macOS Using Native Packages

8. Summary is the final step and references a successful and complete MySQL Server installation. Close
the wizard.

Figure 2.18 MySQL Package Installer Wizard: Summary

MySQL server is now installed, but it is not loaded (or started) by default. Use either launchctl from the
command line, or start MySQL by clicking "Start" using the MySQL preference pane. For additional
information, see Section 2.4.3, “Installing a MySQL Launch Daemon”, and Section 2.4.4, “Installing and
Using the MySQL Preference Pane”. Use the MySQL Preference Pane or launchd to configure MySQL to
automatically start at bootup.

When installing using the package installer, the files are installed into a directory within /usr/
local matching the name of the installation version and platform. For example, the installer file
mysql-5.7.44-macos10.13-x86_64.dmg installs MySQL into /usr/local/mysql-5.7.44-
macos10.13-x86_64/ . The following table shows the layout of the installation directory.

Table 2.7 MySQL Installation Layout on macOS

Directory Contents of Directory

bin mysqld server, client and utility programs

data Log files, databases

docs Helper documents, like the Release Notes and build
information

include Include (header) files

lib Libraries

man Unix manual pages

140

Installing a MySQL Launch Daemon

Directory Contents of Directory

mysql-test MySQL test suite

share Miscellaneous support files, including error
messages, sample configuration files, SQL for
database installation

support-files Scripts and sample configuration files

/tmp/mysql.sock Location of the MySQL Unix socket

During the package installer process, a symbolic link from /usr/local/mysql to the version/platform
specific directory created during installation is created automatically.

2.4.3 Installing a MySQL Launch Daemon

macOS uses launch daemons to automatically start, stop, and manage processes and applications such
as MySQL.

By default, the installation package (DMG) on macOS installs a launchd file named /Library/
LaunchDaemons/com.oracle.oss.mysql.mysqld.plist that contains a plist definition similar to:

<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE plist PUBLIC "-//Apple Computer//DTD PLIST 1.0//EN" "http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
 <key>Label</key> <string>com.oracle.oss.mysql.mysqld</string>
 <key>ProcessType</key> <string>Interactive</string>
 <key>Disabled</key> <false/>
 <key>RunAtLoad</key> <true/>
 <key>KeepAlive</key> <true/>
 <key>SessionCreate</key> <true/>
 <key>LaunchOnlyOnce</key> <false/>
 <key>UserName</key> <string>_mysql</string>
 <key>GroupName</key> <string>_mysql</string>
 <key>ExitTimeOut</key> <integer>600</integer>
 <key>Program</key> <string>/usr/local/mysql/bin/mysqld</string>
 <key>ProgramArguments</key>
 <array>
 <string>/usr/local/mysql/bin/mysqld</string>
 <string>--user=_mysql</string>
 <string>--basedir=/usr/local/mysql</string>
 <string>--datadir=/usr/local/mysql/data</string>
 <string>--plugin-dir=/usr/local/mysql/lib/plugin</string>
 <string>--log-error=/usr/local/mysql/data/mysqld.local.err</string>
 <string>--pid-file=/usr/local/mysql/data/mysqld.local.pid</string>
 </array>
 <key>WorkingDirectory</key> <string>/usr/local/mysql</string>
</dict>
</plist>

Note

Some users report that adding a plist DOCTYPE declaration causes the launchd
operation to fail, despite it passing the lint check. We suspect it's a copy-
n-paste error. The md5 checksum of a file containing the above snippet is
24710a27dc7a28fb7ee6d825129cd3cf.

To enable the launchd service, you can either:

141

Installing a MySQL Launch Daemon

• Click Start MySQL Server from the MySQL preference pane.

Figure 2.19 MySQL Preference Pane: Location

142

Installing a MySQL Launch Daemon

Figure 2.20 MySQL Preference Pane: Usage

• Or, manually load the launchd file.

$> cd /Library/LaunchDaemons
$> sudo launchctl load -F com.oracle.oss.mysql.mysqld.plist

• To configure MySQL to automatically start at bootup, you can:

$> sudo launchctl load -w com.oracle.oss.mysql.mysqld.plist

Note

When upgrading MySQL server, the launchd installation process removes the old
startup items that were installed with MySQL server 5.7.7 and earlier.

Upgrading also replaces your existing launchd file of the same name.

Additional launchd related information:

• The plist entries override my.cnf entries, because they are passed in as command line arguments.
For additional information about passing in program options, see Section 4.2.2, “Specifying Program
Options”.

• The ProgramArguments section defines the command line options that are passed into the program,
which is the mysqld binary in this case.

• The default plist definition is written with less sophisticated use cases in mind. For more complicated
setups, you may want to remove some of the arguments and instead rely on a MySQL configuration file,
such as my.cnf.

• If you edit the plist file, then uncheck the installer option when reinstalling or upgrading MySQL.
Otherwise, your edited plist file is overwritten, with the loss of any changes you have made.

143

Installing and Using the MySQL Preference Pane

Because the default plist definition defines several ProgramArguments, you might remove most
of these arguments and instead rely upon your my.cnf MySQL configuration file to define them. For
example:

<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE plist PUBLIC "-//Apple Computer//DTD PLIST 1.0//EN" "http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
 <key>Label</key> <string>com.oracle.oss.mysql.mysqld</string>
 <key>ProcessType</key> <string>Interactive</string>
 <key>Disabled</key> <false/>
 <key>RunAtLoad</key> <true/>
 <key>KeepAlive</key> <true/>
 <key>SessionCreate</key> <true/>
 <key>LaunchOnlyOnce</key> <false/>
 <key>UserName</key> <string>_mysql</string>
 <key>GroupName</key> <string>_mysql</string>
 <key>ExitTimeOut</key> <integer>600</integer>
 <key>Program</key> <string>/usr/local/mysql/bin/mysqld</string>
 <key>WorkingDirectory</key> <string>/usr/local/mysql</string>
 <key>ProgramArguments</key>
 <array>
 <string>/usr/local/mysql/bin/mysqld</string>
 <string>--user=_mysql</string>
 </array>
</dict>
</plist>

In this case, the basedir, datadir, plugin_dir, log_error, and pid_file options were removed
from the plist definition, and then you might define them in my.cnf.

2.4.4 Installing and Using the MySQL Preference Pane

The MySQL Installation Package includes a MySQL preference pane that enables you to start, stop, and
control automated startup during boot of your MySQL installation.

This preference pane is installed by default, and is listed under your system's System Preferences window.

144

Installing and Using the MySQL Preference Pane

Figure 2.21 MySQL Preference Pane: Location

To install the MySQL Preference Pane:

1. Download the disk image (.dmg) file (the community version is available here) that contains the MySQL
package installer. Double-click the file to mount the disk image and see its contents.

145

https://dev.mysql.com/downloads/mysql/

Installing and Using the MySQL Preference Pane

Figure 2.22 MySQL Package Installer: DMG Contents

2. Go through the process of installing the MySQL server, as described in the documentation at
Section 2.4.2, “Installing MySQL on macOS Using Native Packages”.

146

Installing and Using the MySQL Preference Pane

3. Click Customize at the Installation Type step. The "Preference Pane" option is listed there and
enabled by default; make sure it is not deselected.

Figure 2.23 MySQL Installer on macOS: Customize

4. Complete the MySQL server installation process.

Note

The MySQL preference pane only starts and stops MySQL installation installed
from the MySQL package installation that have been installed in the default
location.

Once the MySQL preference pane has been installed, you can control your MySQL server instance using
the preference pane. To use the preference pane, open the System Preferences... from the Apple menu.
Select the MySQL preference pane by clicking the MySQL icon within the preference panes list.

147

Installing and Using the MySQL Preference Pane

Figure 2.24 MySQL Preference Pane: Location

148

Installing MySQL on Linux

Figure 2.25 MySQL Preference Pane: Usage

The MySQL Preference Pane shows the current status of the MySQL server, showing stopped (in red)
if the server is not running and running (in green) if the server has already been started. The preference
pane also shows the current setting for whether the MySQL server has been set to start automatically.

• To start the MySQL server using the preference pane:

Click Start MySQL Server. You may be prompted for the username and password of a user with
administrator privileges to start the MySQL server.

• To stop the MySQL server using the preference pane:

Click Stop MySQL Server. You may be prompted for the username and password of a user with
administrator privileges to stop the MySQL server.

• To automatically start the MySQL server when the system boots:

Check the check box next to Automatically Start MySQL Server on Startup.

• To disable automatic MySQL server startup when the system boots:

Uncheck the check box next to Automatically Start MySQL Server on Startup.

You can close the System Preferences... window once you have completed your settings.

2.5 Installing MySQL on Linux
Linux supports a number of different solutions for installing MySQL. We recommend that you use one of
the distributions from Oracle, for which several methods for installation are available:

Table 2.8 Linux Installation Methods and Information

Type Setup Method Additional Information

Apt Enable the MySQL Apt repository Documentation

149

https://dev.mysql.com/downloads/repo/apt/

Installing MySQL on Linux Using the MySQL Yum Repository

Type Setup Method Additional Information

Yum Enable the MySQL Yum
repository

Documentation

Zypper Enable the MySQL SLES
repository

Documentation

RPM Download a specific package Documentation

DEB Download a specific package Documentation

Generic Download a generic package Documentation

Source Compile from source Documentation

Docker Use the Oracle Container
Registry. You can also use My
Oracle Support for the MySQL
Enterprise Edition.

Documentation

Oracle Unbreakable Linux
Network

Use ULN channels Documentation

As an alternative, you can use the package manager on your system to automatically download and
install MySQL with packages from the native software repositories of your Linux distribution. These native
packages are often several versions behind the currently available release. You also normally cannot
install development milestone releases (DMRs), as these are not usually made available in the native
repositories. For more information on using the native package installers, see Section 2.5.8, “Installing
MySQL on Linux from the Native Software Repositories”.

Note

For many Linux installations, you may want to set up MySQL to be started
automatically when your machine starts. Many of the native package installations
perform this operation for you, but for source, binary and RPM solutions you may
need to set this up separately. The required script, mysql.server, can be found
in the support-files directory under the MySQL installation directory or in a
MySQL source tree. You can install it as /etc/init.d/mysql for automatic
MySQL startup and shutdown. See Section 4.3.3, “mysql.server — MySQL Server
Startup Script”.

2.5.1 Installing MySQL on Linux Using the MySQL Yum Repository

The MySQL Yum repository for Oracle Linux, Red Hat Enterprise Linux and CentOS provides RPM
packages for installing the MySQL server, client, MySQL Workbench, MySQL Utilities, MySQL Router,
MySQL Shell, Connector/ODBC, Connector/Python and so on (not all packages are available for all the
distributions; see Installing Additional MySQL Products and Components with Yum for details).

Before You Start

As a popular, open-source software, MySQL, in its original or re-packaged form, is widely installed on
many systems from various sources, including different software download sites, software repositories,
and so on. The following instructions assume that MySQL is not already installed on your system
using a third-party-distributed RPM package; if that is not the case, follow the instructions given in
Section 2.10.5, “Upgrading MySQL with the MySQL Yum Repository” or Section 2.5.2, “Replacing a Third-
Party Distribution of MySQL Using the MySQL Yum Repository”.

150

https://dev.mysql.com/downloads/repo/yum/
https://dev.mysql.com/downloads/repo/yum/
https://dev.mysql.com/downloads/repo/suse/
https://dev.mysql.com/downloads/repo/suse/
https://dev.mysql.com/downloads/mysql/
https://dev.mysql.com/downloads/mysql/
https://dev.mysql.com/downloads/mysql/
https://dev.mysql.com/downloads/mysql/
https://container-registry.oracle.com/
https://container-registry.oracle.com/
https://support.oracle.com/
https://support.oracle.com/
https://dev.mysql.com/downloads/repo/yum/

Installing MySQL on Linux Using the MySQL Yum Repository

Steps for a Fresh Installation of MySQL

Follow the steps below to install the latest GA version of MySQL with the MySQL Yum repository:

1.Adding the MySQL Yum Repository

First, add the MySQL Yum repository to your system's repository list. This is a one-time operation,
which can be performed by installing an RPM provided by MySQL. Follow these steps:

a. Go to the Download MySQL Yum Repository page (https://dev.mysql.com/downloads/repo/yum/) in
the MySQL Developer Zone.

b. Select and download the release package for your platform.

c. Install the downloaded release package with the following command, replacing platform-and-
version-specific-package-name with the name of the downloaded RPM package:

$> sudo yum localinstall platform-and-version-specific-package-name.rpm

For an EL6-based system, the command is in the form of:

$> sudo yum localinstall mysql57-community-release-el6-{version-number}.noarch.rpm

For an EL7-based system:

$> sudo yum localinstall mysql57-community-release-el7-{version-number}.noarch.rpm

For an EL8-based system:

$> sudo yum localinstall mysql57-community-release-el8-{version-number}.noarch.rpm

For Fedora:

MySQL 5.7 does not support Fedora; support was removed in MySQL 5.7.30. For details, see the
MySQL Product Support EOL Announcements.

The installation command adds the MySQL Yum repository to your system's repository list and
downloads the GnuPG key to check the integrity of the software packages. See Section 2.1.4.2,
“Signature Checking Using GnuPG” for details on GnuPG key checking.

You can check that the MySQL Yum repository has been successfully added by the following
command:

$> yum repolist enabled | grep "mysql.*-community.*"

Note

Once the MySQL Yum repository is enabled on your system, any system-wide
update by the yum update command upgrades MySQL packages on your
system and replaces any native third-party packages, if Yum finds replacements
for them in the MySQL Yum repository; see Section 2.10.5, “Upgrading MySQL
with the MySQL Yum Repository” and, for a discussion on some possible effects
of that on your system, see Upgrading the Shared Client Libraries.

2.Selecting a Release Series

When using the MySQL Yum repository, the latest GA series (currently MySQL 5.7) is selected for
installation by default. If this is what you want, you can skip to the next step, Installing MySQL.

151

https://dev.mysql.com/downloads/repo/yum/
https://www.mysql.com/support/eol-notice.html

Installing MySQL on Linux Using the MySQL Yum Repository

Within the MySQL Yum repository, different release series of the MySQL Community Server are hosted
in different subrepositories. The subrepository for the latest GA series (currently MySQL 5.7) is enabled
by default, and the subrepositories for all other series (for example, the MySQL 5.6 series) are disabled
by default. Use this command to see all the subrepositories in the MySQL Yum repository, and see
which of them are enabled or disabled:

$> yum repolist all | grep mysql

To install the latest release from the latest GA series, no configuration is needed. To install the latest
release from a specific series other than the latest GA series, disable the subrepository for the latest
GA series and enable the subrepository for the specific series before running the installation command.
If your platform supports yum-config-manager, you can do that by issuing these commands, which
disable the subrepository for the 5.7 series and enable the one for the 5.6 series:

$> sudo yum-config-manager --disable mysql57-community
$> sudo yum-config-manager --enable mysql56-community

For Fedora platforms:

$> sudo dnf config-manager --disable mysql57-community
$> sudo dnf config-manager --enable mysql56-community

Besides using yum-config-manager or the dnf config-manager command, you can also select a
release series by editing manually the /etc/yum.repos.d/mysql-community.repo file. This is a
typical entry for a release series' subrepository in the file:

[mysql57-community]
name=MySQL 5.7 Community Server
baseurl=http://repo.mysql.com/yum/mysql-5.7-community/el/6/$basearch/
enabled=1
gpgcheck=1
gpgkey=file:///etc/pki/rpm-gpg/RPM-GPG-KEY-mysql

Find the entry for the subrepository you want to configure, and edit the enabled option. Specify
enabled=0 to disable a subrepository, or enabled=1 to enable a subrepository. For example, to
install MySQL 5.6, make sure you have enabled=0 for the above subrepository entry for MySQL 5.7,
and have enabled=1 for the entry for the 5.6 series:

Enable to use MySQL 5.6
[mysql56-community]
name=MySQL 5.6 Community Server
baseurl=http://repo.mysql.com/yum/mysql-5.6-community/el/6/$basearch/
enabled=1
gpgcheck=1
gpgkey=file:///etc/pki/rpm-gpg/RPM-GPG-KEY-mysql

You should only enable subrepository for one release series at any time. When subrepositories for
more than one release series are enabled, the latest series is used by Yum.

Verify that the correct subrepositories have been enabled and disabled by running the following
command and checking its output:

$> yum repolist enabled | grep mysql

3.Disabling the Default MySQL Module

(EL8 systems only) EL8-based systems such as RHEL8 and Oracle Linux 8 include a MySQL module
that is enabled by default. Unless this module is disabled, it masks packages provided by MySQL

152

Installing MySQL on Linux Using the MySQL Yum Repository

repositories. To disable the included module and make the MySQL repository packages visible, use the
following command (for dnf-enabled systems, replace yum in the command with dnf):

$> sudo yum module disable mysql

4.Installing MySQL

Install MySQL by the following command:

$> sudo yum install mysql-community-server

This installs the package for MySQL server (mysql-community-server) and also packages for
the components required to run the server, including packages for the client (mysql-community-
client), the common error messages and character sets for client and server (mysql-community-
common), and the shared client libraries (mysql-community-libs).

5.Starting the MySQL Server

Start the MySQL server with the following command:

$> sudo service mysqld start
Starting mysqld:[OK]

You can check the status of the MySQL server with the following command:

$> sudo service mysqld status
mysqld (pid 3066) is running.

At the initial start up of the server, the following happens, given that the data directory of the server is
empty:

• The server is initialized.

• SSL certificate and key files are generated in the data directory.

• validate_password is installed and enabled.

• A superuser account 'root'@'localhost is created. A password for the superuser is set and stored
in the error log file. To reveal it, use the following command:

$> sudo grep 'temporary password' /var/log/mysqld.log

Change the root password as soon as possible by logging in with the generated, temporary password
and set a custom password for the superuser account:

$> mysql -uroot -p

mysql> ALTER USER 'root'@'localhost' IDENTIFIED BY 'MyNewPass4!';

Note

validate_password is installed by default. The default password policy
implemented by validate_password requires that passwords contain at least
one uppercase letter, one lowercase letter, one digit, and one special character,
and that the total password length is at least 8 characters.

For more information on the postinstallation procedures, see Section 2.9, “Postinstallation Setup and
Testing”.

153

Replacing a Third-Party Distribution of MySQL Using the MySQL Yum Repository

Note

Compatibility Information for EL7-based platforms: The following RPM packages
from the native software repositories of the platforms are incompatible with the
package from the MySQL Yum repository that installs the MySQL server. Once you
have installed MySQL using the MySQL Yum repository, you cannot install these
packages (and vice versa).

• akonadi-mysql

Installing Additional MySQL Products and Components with Yum

You can use Yum to install and manage individual components of MySQL. Some of these components
are hosted in sub-repositories of the MySQL Yum repository: for example, the MySQL Connectors are to
be found in the MySQL Connectors Community sub-repository, and the MySQL Workbench in MySQL
Tools Community. You can use the following command to list the packages for all the MySQL components
available for your platform from the MySQL Yum repository:

$> sudo yum --disablerepo=* --enablerepo='mysql*-community*' list available

Install any packages of your choice with the following command, replacing package-name with name of
the package:

$> sudo yum install package-name

For example, to install MySQL Workbench on Fedora:

$> sudo dnf install mysql-workbench-community

To install the shared client libraries:

$> sudo yum install mysql-community-libs

Updating MySQL with Yum

Besides installation, you can also perform updates for MySQL products and components using the MySQL
Yum repository. See Section 2.10.5, “Upgrading MySQL with the MySQL Yum Repository” for details.

2.5.2 Replacing a Third-Party Distribution of MySQL Using the MySQL Yum
Repository

For supported Yum-based platforms (see Section 2.5.1, “Installing MySQL on Linux Using the MySQL
Yum Repository”, for a list), you can replace a third-party distribution of MySQL with the latest GA release
(from the MySQL 5.7 series currently) from the MySQL Yum repository. According to how your third-party
distribution of MySQL was installed, there are different steps to follow:

Replacing a Native Third-Party Distribution of MySQL

If you have installed a third-party distribution of MySQL from a native software repository (that is, a
software repository provided by your own Linux distribution), follow these steps:

1.Backing Up Your Database

To avoid loss of data, always back up your database before trying to replace your MySQL installation
using the MySQL Yum repository. See Chapter 7, Backup and Recovery, on how to back up your
database.

154

Replacing a Third-Party Distribution of MySQL Using the MySQL Yum Repository

2.Adding the MySQL Yum Repository

Add the MySQL Yum repository to your system's repository list by following the instructions given in
Adding the MySQL Yum Repository.

3.Replacing the Native Third-Party Distribution by a Yum Update or a DNF Upgrade

By design, the MySQL Yum repository replaces your native third-party MySQL with the latest GA
release (from the MySQL 5.7 series currently) from the MySQL Yum repository when you perform a
yum update command on the system, or a yum update mysql-server.

After updating MySQL using the Yum repository, applications compiled with older versions of the shared
client libraries should continue to work. However, if you want to recompile applications and dynamically
link them with the updated libraries, see Upgrading the Shared Client Libraries, for some special
considerations.

Replacing a Nonnative Third-Party Distribution of MySQL

If you have installed a third-party distribution of MySQL from a nonnative software repository (that is, a
software repository not provided by your own Linux distribution), follow these steps:

1.Backing Up Your Database

To avoid loss of data, always back up your database before trying to replace your MySQL installation
using the MySQL Yum repository. See Chapter 7, Backup and Recovery, on how to back up your
database.

2.Stopping Yum from Receiving MySQL Packages from Third-Party, Nonnative Repositories

Before you can use the MySQL Yum repository for installing MySQL, you must stop your system from
receiving MySQL packages from any third-party, nonnative Yum repositories.

For example, if you have installed MariaDB using their own software repository, get a list of the installed
MariaDB packages using the following command:

$> yum list installed mariadb*
MariaDB-common.i686 10.0.4-1 @mariadb
MariaDB-compat.i686 10.0.4-1 @mariadb
MariaDB-server.i686 10.0.4-1 @mariadb

From the command output, we can identify the installed packages (MariaDB-common, MariaDB-
compat, and MariaDB-server) and the source of them (a nonnative software repository named
mariadb).

As another example, if you have installed Percona using their own software repository, get a list of the
installed Percona packages using the following command:

$> yum list installed Percona*
Percona-Server-client-55.i686 5.5.39-rel36.0.el6 @percona-release-i386
Percona-Server-server-55.i686 5.5.39-rel36.0.el6 @percona-release-i386
Percona-Server-shared-55.i686 5.5.39-rel36.0.el6 @percona-release-i386
percona-release.noarch 0.1-3 @/percona-release-0.1-3.noarch

From the command output, we can identify the installed packages (Percona-Server-client,
Percona-Server-server, Percona-Server-shared, and percona-release.noarch) and the
source of them (a nonnative software repository named percona-release).

155

Replacing a Third-Party Distribution of MySQL Using the MySQL Yum Repository

If you are not sure which third-party MySQL fork you have installed, this command should reveal it and
list the RPM packages installed for it, as well as the third-party repository that supplies the packages:

$> yum --disablerepo=* provides mysql*

The next step is to stop Yum from receiving packages from the nonnative repository. If the yum-
config-manager utility is supported on your platform, you can, for example, use this command for
stopping delivery from MariaDB:

$> sudo yum-config-manager --disable mariadb

Use this command for stopping delivery from Percona:

$> sudo yum-config-manager --disable percona-release

You can perform the same task by removing the entry for the software repository existing in one of
the repository files under the /etc/yum.repos.d/ directory. This is how the entry typically looks for
MariaDB:

[mariadb] name = MariaDB
 baseurl = [base URL for repository]
 gpgkey = [URL for GPG key]
 gpgcheck =1

The entry is usually found in the file /etc/yum.repos.d/MariaDB.repo for MariaDB—delete the
file, or remove entry from it (or from the file in which you find the entry).

Note

This step is not necessary for an installation that was configured with a Yum
repository release package (like Percona) if you are going to remove the release
package (percona-release.noarch for Percona), as shown in the uninstall
command for Percona in Step 3 below.

3.Uninstalling the Nonnative Third-Party MySQL Distribution of MySQL

The nonnative third-party MySQL distribution must first be uninstalled before you can use the MySQL
Yum repository to install MySQL. For the MariaDB packages found in Step 2 above, uninstall them with
the following command:

$> sudo yum remove MariaDB-common MariaDB-compat MariaDB-server

For the Percona packages we found in Step 2 above:

$> sudo yum remove Percona-Server-client-55 Percona-Server-server-55 \
 Percona-Server-shared-55.i686 percona-release

4.Installing MySQL with the MySQL Yum Repository

Then, install MySQL with the MySQL Yum repository by following the instructions given in
Section 2.5.1, “Installing MySQL on Linux Using the MySQL Yum Repository”: .

Important

If you have chosen to replace your third-party MySQL distribution with
a newer version of MySQL from the MySQL Yum repository, remember
to run mysql_upgrade after the server starts, to check and possibly
resolve any incompatibilities between the old data and the upgraded

156

Installing MySQL on Linux Using the MySQL APT Repository

software. mysql_upgrade also performs other functions; see Section 4.4.7,
“mysql_upgrade — Check and Upgrade MySQL Tables” for details.

For EL7-based platforms: See Compatibility Information for EL7-based
platforms [154].

2.5.3 Installing MySQL on Linux Using the MySQL APT Repository

The MySQL APT repository provides deb packages for installing and managing the MySQL server, client,
and other components on the current Debian and Ubuntu releases.

Instructions for using the MySQL APT Repository are available in A Quick Guide to Using the MySQL APT
Repository.

2.5.4 Installing MySQL on Linux Using the MySQL SLES Repository

The MySQL SLES repository provides RPM packages for installing and managing the MySQL server,
client, and other components on SUSE Enterprise Linux Server.

Instructions for using the MySQL SLES repository are available in A Quick Guide to Using the MySQL
SLES Repository.

2.5.5 Installing MySQL on Linux Using RPM Packages from Oracle

The recommended way to install MySQL on RPM-based Linux distributions is by using the RPM packages
provided by Oracle. There are two sources for obtaining them, for the Community Edition of MySQL:

• From the MySQL software repositories:

• The MySQL Yum repository (see Section 2.5.1, “Installing MySQL on Linux Using the MySQL Yum
Repository” for details).

• The MySQL SLES repository (see Section 2.5.4, “Installing MySQL on Linux Using the MySQL SLES
Repository” for details).

• From the Download MySQL Community Server page in the MySQL Developer Zone.

Note

RPM distributions of MySQL are also provided by other vendors. Be aware that
they may differ from those built by Oracle in features, capabilities, and conventions
(including communication setup), and that the installation instructions in this manual
do not necessarily apply to them. The vendor's instructions should be consulted
instead.

If you have such a third-party distribution of MySQL running on your system and
now want to migrate to Oracle's distribution using the RPM packages downloaded
from the MySQL Developer Zone, see Compatibility with RPM Packages from Other
Vendors below. The preferred method of migration, however, is to use the MySQL
Yum repository or MySQL SLES repository.

RPM packages for MySQL are listed in the following tables:

Table 2.9 RPM Packages for MySQL Community Edition

Package Name Summary

mysql-community-server Database server and related tools

157

https://dev.mysql.com/doc/mysql-apt-repo-quick-guide/en/
https://dev.mysql.com/doc/mysql-apt-repo-quick-guide/en/
https://dev.mysql.com/doc/mysql-sles-repo-quick-guide/en/
https://dev.mysql.com/doc/mysql-sles-repo-quick-guide/en/
https://dev.mysql.com/downloads/mysql/
https://dev.mysql.com/

Installing MySQL on Linux Using RPM Packages from Oracle

Package Name Summary

mysql-community-client MySQL client applications and tools

mysql-community-common Common files for server and client libraries

mysql-community-devel Development header files and libraries for MySQL
database client applications

mysql-community-libs Shared libraries for MySQL database client
applications

mysql-community-libs-compat Shared compatibility libraries for previous MySQL
installations

mysql-community-embedded MySQL embedded library

mysql-community-embedded-devel Development header files and libraries for MySQL
as an embeddable library

mysql-community-test Test suite for the MySQL server

Table 2.10 RPM Packages for the MySQL Enterprise Edition

Package Name Summary

mysql-commercial-server Database server and related tools

mysql-commercial-client MySQL client applications and tools

mysql-commercial-common Common files for server and client libraries

mysql-commercial-devel Development header files and libraries for MySQL
database client applications

mysql-commercial-libs Shared libraries for MySQL database client
applications

mysql-commercial-libs-compat Shared compatibility libraries for previous MySQL
installations

mysql-commercial-embedded MySQL embedded library

mysql-commercial-embedded-devel Development header files and libraries for MySQL
as an embeddable library

mysql-commercial-test Test suite for the MySQL server

The full names for the RPMs have the following syntax:

packagename-version-distribution-arch.rpm

The distribution and arch values indicate the Linux distribution and the processor type for which the
package was built. See the table below for lists of the distribution identifiers:

Table 2.11 MySQL Linux RPM Package Distribution Identifiers

distribution Value Intended Use

el{version} where {version} is the major
Enterprise Linux version, such as el8

EL6 (8.0), EL7, EL8, EL9, and EL10-based
platforms (for example, the corresponding versions
of Oracle Linux, Red Hat Enterprise Linux, and
CentOS)

sles12 SUSE Linux Enterprise Server 12

To see all files in an RPM package (for example, mysql-community-server), use the following
command:

158

Installing MySQL on Linux Using RPM Packages from Oracle

$> rpm -qpl mysql-community-server-version-distribution-arch.rpm

The discussion in the rest of this section applies only to an installation process using the RPM packages
directly downloaded from Oracle, instead of through a MySQL repository.

Dependency relationships exist among some of the packages. If you plan to install many of the packages,
you may wish to download the RPM bundle tar file instead, which contains all the RPM packages listed
above, so that you need not download them separately.

In most cases, you need to install the mysql-community-server, mysql-community-client,
mysql-community-libs, mysql-community-common, and mysql-community-libs-compat
packages to get a functional, standard MySQL installation. To perform such a standard, basic installation,
go to the folder that contains all those packages (and, preferably, no other RPM packages with similar
names), and issue the following command for platforms other than Red Hat Enterprise Linux/Oracle Linux/
CentOS:

$> sudo yum install mysql-community-{server,client,common,libs}-*

Replace yum with zypper for SLES.

For Red Hat Enterprise Linux/Oracle Linux/CentOS systems:

$> sudo yum install mysql-community-{server,client,common,libs}-* mysql-5.*

While it is much preferable to use a high-level package management tool like yum to install the packages,
users who prefer direct rpm commands can replace the yum install command with the rpm -Uvh
command; however, using rpm -Uvh instead makes the installation process more prone to failure, due to
potential dependency issues the installation process might run into.

To install only the client programs, you can skip mysql-community-server in your list of packages
to install; issue the following command for platforms other than Red Hat Enterprise Linux/Oracle Linux/
CentOS:

$> sudo yum install mysql-community-{client,common,libs}-*

Replace yum with zypper for SLES.

For Red Hat Enterprise Linux/Oracle Linux/CentOS systems:

$> sudo yum install mysql-community-{client,common,libs}-* mysql-5.*

A standard installation of MySQL using the RPM packages result in files and resources created under the
system directories, shown in the following table.

Table 2.12 MySQL Installation Layout for Linux RPM Packages from the MySQL Developer Zone

Files or Resources Location

Client programs and scripts /usr/bin

mysqld server /usr/sbin

Configuration file /etc/my.cnf

Data directory /var/lib/mysql

Error log file For RHEL, Oracle Linux, CentOS or Fedora
platforms: /var/log/mysqld.log

For SLES: /var/log/mysql/mysqld.log

Value of secure_file_priv /var/lib/mysql-files

159

Installing MySQL on Linux Using RPM Packages from Oracle

Files or Resources Location

System V init script For RHEL, Oracle Linux, CentOS or Fedora
platforms: /etc/init.d/mysqld

For SLES: /etc/init.d/mysql

Systemd service For RHEL, Oracle Linux, CentOS or Fedora
platforms: mysqld

For SLES: mysql

Pid file /var/run/mysql/mysqld.pid

Socket /var/lib/mysql/mysql.sock

Keyring directory /var/lib/mysql-keyring

Unix manual pages /usr/share/man

Include (header) files /usr/include/mysql

Libraries /usr/lib/mysql

Miscellaneous support files (for example, error
messages, and character set files)

/usr/share/mysql

The installation also creates a user named mysql and a group named mysql on the system.

Notes

• The mysql user is created using the -r and -s /bin/false options of the
useradd command, so that it does not have login permissions to your server
host (see Creating the mysql User and Group for details). To switch to the mysql
user on your OS, use the --shell=/bin/bash option for the su command:

su - mysql --shell=/bin/bash

• Installation of previous versions of MySQL using older packages might have
created a configuration file named /usr/my.cnf. It is highly recommended that
you examine the contents of the file and migrate the desired settings inside to the
file /etc/my.cnf file, then remove /usr/my.cnf.

MySQL is not automatically started at the end of the installation process. For Red Hat Enterprise Linux,
Oracle Linux, CentOS, and Fedora systems, use the following command to start MySQL:

$> sudo service mysqld start

For SLES systems, the command is the same, but the service name is different:

$> sudo service mysql start

If the operating system is systemd enabled, standard service commands such as stop, start, status
and restart should be used to manage the MySQL server service. The mysqld service is enabled
by default, and it starts at system reboot. Notice that certain things might work differently on systemd
platforms: for example, changing the location of the data directory might cause issues. See Section 2.5.10,
“Managing MySQL Server with systemd” for additional information.

During an upgrade installation using RPM and DEB packages, if the MySQL server is running when
the upgrade occurs then the MySQL server is stopped, the upgrade occurs, and the MySQL server
is restarted. One exception: if the edition also changes during an upgrade (such as community to
commercial, or vice-versa), then MySQL server is not restarted.

160

https://dev.mysql.com/doc/mysql-secure-deployment-guide/5.7/en/secure-deployment-install.html#secure-deployment-mysql-user

Installing MySQL on Linux Using RPM Packages from Oracle

At the initial start up of the server, the following happens, given that the data directory of the server is
empty:

• The server is initialized.

• An SSL certificate and key files are generated in the data directory.

• validate_password is installed and enabled.

• A superuser account 'root'@'localhost' is created. A password for the superuser is set and stored
in the error log file. To reveal it, use the following command for RHEL, Oracle Linux, CentOS, and
Fedora systems:

$> sudo grep 'temporary password' /var/log/mysqld.log

Use the following command for SLES systems:

$> sudo grep 'temporary password' /var/log/mysql/mysqld.log

The next step is to log in with the generated, temporary password and set a custom password for the
superuser account:

$> mysql -uroot -p

mysql> ALTER USER 'root'@'localhost' IDENTIFIED BY 'MyNewPass4!';

Note

validate_password is installed by default. The default password policy
implemented by validate_password requires that passwords contain at least
one uppercase letter, one lowercase letter, one digit, and one special character,
and that the total password length is at least 8 characters.

If something goes wrong during installation, you might find debug information in the error log file /var/
log/mysqld.log.

For some Linux distributions, it might be necessary to increase the limit on number of file descriptors
available to mysqld. See Section B.3.2.16, “File Not Found and Similar Errors”

Compatibility with RPM Packages from Other Vendors. If you have installed packages for MySQL
from your Linux distribution's local software repository, it is much preferable to install the new, directly-
downloaded packages from Oracle using the package management system of your platform (yum, dnf, or
zypper), as described above. The command replaces old packages with new ones to ensure compatibility
of old applications with the new installation; for example, the old mysql-libs package is replaced with
the mysql-community-libs-compat package, which provides a replacement-compatible client library
for applications that were using your older MySQL installation. If there was an older version of mysql-
community-libs-compat on the system, it also gets replaced.

If you have installed third-party packages for MySQL that are NOT from your Linux distribution's local
software repository (for example, packages directly downloaded from a vendor other than Oracle), you
should uninstall all those packages before installing the new, directly-downloaded packages from Oracle.
This is because conflicts may arise between those vendor's RPM packages and Oracle's: for example, a
vendor's convention about which files belong with the server and which belong with the client library may
differ from that used for Oracle packages. Attempts to install an Oracle RPM may then result in messages
saying that files in the RPM to be installed conflict with files from an installed package.

Installing Client Libraries from Multiple MySQL Versions. It is possible to install multiple client library
versions, such as for the case that you want to maintain compatibility with older applications linked against

161

Installing MySQL on Linux Using Debian Packages from Oracle

previous libraries. To install an older client library, use the --oldpackage option with rpm. For example,
to install mysql-community-libs-5.5 on an EL6 system that has libmysqlclient.20 from MySQL
5.7, use a command like this:

$> rpm --oldpackage -ivh mysql-community-libs-5.5.50-2.el6.x86_64.rpm

Debug Package. A special variant of MySQL Server compiled with the debug package has been
included in the server RPM packages. It performs debugging and memory allocation checks and produces
a trace file when the server is running. To use that debug version, start MySQL with /usr/sbin/mysqld-
debug, instead of starting it as a service or with /usr/sbin/mysqld. See Section 5.8.3, “The DBUG
Package” for the debug options you can use.

Note

The default plugin directory for debug builds changed from /usr/lib64/mysql/
plugin to /usr/lib64/mysql/plugin/debug in 5.7.21. Previously, it was
necessary to change plugin_dir to /usr/lib64/mysql/plugin/debug for
debug builds.

Rebuilding RPMs from source SRPMs. Source code SRPM packages for MySQL are available for
download. They can be used as-is to rebuild the MySQL RPMs with the standard rpmbuild tool chain.

root passwords for pre-GA releases. For MySQL 5.7.4 and 5.7.5, the initial random root password
is written to the .mysql_secret file in the directory named by the HOME environment variable. When
trying to access the file, bear in mind that depending on operating system, using a command such as sudo
may cause the value of HOME to refer to the home directory of the root system user . .mysql_secret
is created with mode 600 to be accessible only to the system user for whom it is created. Before MySQL
5.7.4, the accounts (including root) created in the MySQL grant tables for an RPM installation initially
have no passwords; after starting the server, you should assign passwords to them using the instructions
in Section 2.9, “Postinstallation Setup and Testing”."

2.5.6 Installing MySQL on Linux Using Debian Packages from Oracle

Oracle provides Debian packages for installing MySQL on Debian or Debian-like Linux systems. The
packages are available through two different channels:

• The MySQL APT Repository. This is the preferred method for installing MySQL on Debian-like systems,
as it provides a simple and convenient way to install and update MySQL products. For details, see
Section 2.5.3, “Installing MySQL on Linux Using the MySQL APT Repository”.

• The MySQL Developer Zone's Download Area. For details, see Section 2.1.3, “How to Get MySQL”. The
following are some information on the Debian packages available there and the instructions for installing
them:

• Various Debian packages are provided in the MySQL Developer Zone for installing different
components of MySQL on different Debian or Ubuntu platforms. The preferred method is to use the
tarball bundle, which contains the packages needed for a basic setup of MySQL. The tarball bundles
have names in the format of mysql-server_MVER-DVER_CPU.deb-bundle.tar. MVER is the
MySQL version and DVER is the Linux distribution version. The CPU value indicates the processor type
or family for which the package is built, as shown in the following table:

Table 2.13 MySQL Debian and Ubuntu Installation Packages CPU Identifiers

CPU Value Intended Processor Type or Family

i386 Pentium processor or better, 32 bit

162

https://dev.mysql.com/downloads/repo/apt/
https://dev.mysql.com/downloads/

Deploying MySQL on Linux with Docker

CPU Value Intended Processor Type or Family

amd64 64-bit x86 processor

• After downloading the tarball, unpack it with the following command:

$> tar -xvf mysql-server_MVER-DVER_CPU.deb-bundle.tar

• You may need to install the libaio library if it is not already present on your system:

$> sudo apt-get install libaio1

• Preconfigure the MySQL server package with the following command:

$> sudo dpkg-preconfigure mysql-community-server_*.deb

You are asked to provide a password for the root user for your MySQL installation. You might also be
asked other questions regarding the installation.

Important

Make sure you remember the root password you set. Users who want to set
a password later can leave the password field blank in the dialogue box
and just press OK; in that case, root access to the server is authenticated
using the MySQL Socket Peer-Credential Authentication Plugin for
connections using a Unix socket file. You can set the root password later using
mysql_secure_installation.

• For a basic installation of the MySQL server, install the database common files package, the client
package, the client metapackage, the server package, and the server metapackage (in that order); you
can do that with a single command:

$> sudo dpkg -i mysql-{common,community-client,client,community-server,server}_*.deb

If you are being warned of unmet dependencies by dpkg, you can fix them using apt-get:

sudo apt-get -f install

Here are where the files are installed on the system:

• All configuration files (like my.cnf) are under /etc/mysql

• All binaries, libraries, headers, etc., are under /usr/bin and /usr/sbin

• The data directory is /var/lib/mysql

Note

Debian distributions of MySQL are also provided by other vendors. Be aware that
they may differ from those built by Oracle in features, capabilities, and conventions
(including communication setup), and that the instructions in this manual do not
necessarily apply to installing them. The vendor's instructions should be consulted
instead.

2.5.7 Deploying MySQL on Linux with Docker

The Docker deployment framework supports easy installation and configuration of MySQL Server. This
section explains how to use a MySQL Server Docker image.

163

Deploying MySQL on Linux with Docker

You need to have Docker installed on your system before you can use a MySQL Server Docker image.
See Install Docker for instructions.

Warning

Beware of the security concerns with running Docker containers. See Docker
security for details.

The instructions for using the MySQL Docker container are divided into two sections.

2.5.7.1 Basic Steps for MySQL Server Deployment with Docker

Warning

The MySQL Docker images maintained by the MySQL team are built specifically for
Linux platforms. Other platforms are not supported, and users using these MySQL
Docker images on them are doing so at their own risk. See the discussion here
for some known limitations for running these containers on non-Linux operating
systems.

• Downloading a MySQL Server Docker Image

• Starting a MySQL Server Instance

• Connecting to MySQL Server from within the Container

• Container Shell Access

• Stopping and Deleting a MySQL Container

• Upgrading a MySQL Server Container

• More Topics on Deploying MySQL Server with Docker

Downloading a MySQL Server Docker Image

Important

For users of MySQL Enterprise Edition: A subscription is required to use the Docker
images for MySQL Enterprise Edition. Subscriptions work by a Bring Your Own
License model; see How to Buy MySQL Products and Services for details.

Downloading the server image in a separate step is not strictly necessary; however, performing this step
before you create your Docker container ensures your local image is up to date. To download the MySQL
Community Edition image, run this command:

docker pull mysql/mysql-server:tag

The tag is the label for the image version you want to pull (for example, 5.6, 5.7, 8.0, or latest). If
:tag is omitted, the latest label is used, and the image for the latest GA version of MySQL Community
Server is downloaded. Refer to the list of tags for available versions on the mysql/mysql-server page in the
Docker Hub.

To download the MySQL Community Edition image from the Oracle Container Registry (OCR), run this
command:

docker pull container-registry.oracle.com/mysql/mysql-server:tag

164

https://docs.docker.com/engine/installation/
https://docs.docker.com/engine/security/
https://docs.docker.com/engine/security/
https://www.mysql.com/buy-mysql/
https://hub.docker.com/r/mysql/mysql-server/tags/
https://hub.docker.com/r/mysql/mysql-server/tags/

Deploying MySQL on Linux with Docker

To download the MySQL Enterprise Edition image from the OCR, you need to first accept the license
agreement on the OCR and log in to the container repository with your Docker client:

• Visit the OCR at https://container-registry.oracle.com/ and choose MySQL.

• Under the list of MySQL repositories, choose enterprise-server.

• If you have not signed in to the OCR yet, click the Sign in button on the right of the page, and then enter
your Oracle account credentials when prompted to.

• Follow the instructions on the right of the page to accept the license agreement.

• Log in to the OCR with your Docker client (the docker command) using the docker login command:

docker login container-registry.oracle.com
Username: Oracle-Account-ID
Password: password
Login successful.

Download the Docker image for MySQL Enterprise Edition from the OCR with this command:

docker pull container-registry.oracle.com/mysql/enterprise-server:tag

There are different choices for tag, corresponding to different versions of MySQL Docker images provided
by the OCR:

• 8.0, 8.0.x (x is the latest version number in the 8.0 series), latest: MySQL 8.0, the latest GA

• 5.7, 5.7.y (y is the latest version number in the 5.7 series): MySQL 5.7

To download the MySQL Enterprise Edition image, visit the My Oracle Support website, sign in to your
Oracle account, and perform these steps once you are on the landing page:

• Select the Patches and Updates tab.

• Go to the Patch Search region and, on the Search tab, switch to the Product or Family (Advanced)
subtab.

• Enter “MySQL Server” for the Product field, and the desired version number in the Release field.

• Use the dropdowns for additional filters to select Description—contains, and enter “Docker” in the text
field.

The following figure shows the search settings for a MySQL Enterprise Edition image:

• Click the Search button and, from the result list, select the version you want, and click the Download
button.

165

https://container-registry.oracle.com/
https://support.oracle.com/

Deploying MySQL on Linux with Docker

• In the File Download dialogue box that appears, click and download the .zip file for the Docker image.

Unzip the downloaded .zip archive to obtain the tarball inside (mysql-enterprise-
server-version.tar), and then load the image by running this command:

docker load -i mysql-enterprise-server-version.tar

You can list downloaded Docker images with this command:

$> docker images
REPOSITORY TAG IMAGE ID CREATED SIZE
mysql/mysql-server latest 3157d7f55f8d 4 weeks ago 241MB

Starting a MySQL Server Instance

To start a new Docker container for a MySQL Server, use the following command:

docker run --name=container_name -d image_name:tag

The image name can be obtained using the docker images command, as explained in Downloading a
MySQL Server Docker Image. The --name option, for supplying a custom name for your server container,
is optional; if no container name is supplied, a random one is generated.

For example, to start a new Docker container for the MySQL Community Server, use this command:

docker run --name=mysql1 -d mysql/mysql-server:5.7

To start a new Docker container for the MySQL Enterprise Server with a Docker image downloaded from
the OCR, use this command:

docker run --name=mysql1 -d container-registry.oracle.com/mysql/enterprise-server:5.7

To start a new Docker container for the MySQL Enterprise Server with a Docker image downloaded from
My Oracle Support, use this command:

docker run --name=mysql1 -d mysql/enterprise-server:5.7

If the Docker image of the specified name and tag has not been downloaded by an earlier docker pull
or docker run command, the image is now downloaded. Initialization for the container begins, and the
container appears in the list of running containers when you run the docker ps command. For example:

$> docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
a24888f0d6f4 mysql/mysql-server "/entrypoint.sh my..." 14 seconds ago Up 13 seconds (health: starting) 3306/tcp, 33060/tcp mysql1

The container initialization might take some time. When the server is ready for use, the STATUS of
the container in the output of the docker ps command changes from (health: starting) to
(healthy).

The -d option used in the docker run command above makes the container run in the background. Use
this command to monitor the output from the container:

docker logs mysql1

Once initialization is finished, the command's output is going to contain the random password generated for
the root user; check the password with, for example, this command:

$> docker logs mysql1 2>&1 | grep GENERATED

166

Deploying MySQL on Linux with Docker

GENERATED ROOT PASSWORD: Axegh3kAJyDLaRuBemecis&EShOs

Connecting to MySQL Server from within the Container

Once the server is ready, you can run the mysql client within the MySQL Server container you just started,
and connect it to the MySQL Server. Use the docker exec -it command to start a mysql client inside
the Docker container you have started, like the following:

docker exec -it mysql1 mysql -uroot -p

When asked, enter the generated root password (see the last step in Starting a MySQL Server Instance
above on how to find the password). Because the MYSQL_ONETIME_PASSWORD option is true by default,
after you have connected a mysql client to the server, you must reset the server root password by issuing
this statement:

mysql> ALTER USER 'root'@'localhost' IDENTIFIED BY 'password';

Substitute password with the password of your choice. Once the password is reset, the server is ready for
use.

Container Shell Access

To have shell access to your MySQL Server container, use the docker exec -it command to start a
bash shell inside the container:

$> docker exec -it mysql1 bash
bash-4.2#

You can then run Linux commands inside the container. For example, to view contents in the server's data
directory inside the container, use this command:

bash-4.2# ls /var/lib/mysql
auto.cnf ca.pem client-key.pem ib_logfile0 ibdata1 mysql mysql.sock.lock private_key.pem server-cert.pem sys
ca-key.pem client-cert.pem ib_buffer_pool ib_logfile1 ibtmp1 mysql.sock performance_schema public_key.pem server-key.pem

Stopping and Deleting a MySQL Container

To stop the MySQL Server container we have created, use this command:

docker stop mysql1

docker stop sends a SIGTERM signal to the mysqld process, so that the server is shut down
gracefully.

Also notice that when the main process of a container (mysqld in the case of a MySQL Server container)
is stopped, the Docker container stops automatically.

To start the MySQL Server container again:

docker start mysql1

To stop and start again the MySQL Server container with a single command:

docker restart mysql1

To delete the MySQL container, stop it first, and then use the docker rm command:

docker stop mysql1

167

Deploying MySQL on Linux with Docker

docker rm mysql1

If you want the Docker volume for the server's data directory to be deleted at the same time, add the -v
option to the docker rm command.

Upgrading a MySQL Server Container

Important

• Before performing any upgrade to MySQL, follow carefully the instructions in
Section 2.10, “Upgrading MySQL”. Among other instructions discussed there, it is
especially important to back up your database before the upgrade.

• The instructions in this section require that the server's data and configuration
have been persisted on the host. See Persisting Data and Configuration Changes
for details.

Follow these steps to upgrade a Docker installation of MySQL 5.6 to 5.7:

• Stop the MySQL 5.6 server (container name is mysql56 in this example):

docker stop mysql56

• Download the MySQL 5.7 Server Docker image. See instructions in Downloading a MySQL Server
Docker Image; make sure you use the right tag for MySQL 5.7.

• Start a new MySQL 5.7 Docker container (named mysql57 in this example) with the old server data and
configuration (with proper modifications if needed—see Section 2.10, “Upgrading MySQL”) that have
been persisted on the host (by bind-mounting in this example). For the MySQL Community Server, run
this command:

docker run --name=mysql57 \
 --mount type=bind,src=/path-on-host-machine/my.cnf,dst=/etc/my.cnf \
 --mount type=bind,src=/path-on-host-machine/datadir,dst=/var/lib/mysql \
 -d mysql/mysql-server:5.7

If needed, adjust mysql/mysql-server to the correct image name—for example, replace it with
container-registry.oracle.com/mysql/enterprise-server for MySQL Enterprise Edition
images downloaded from the OCR, or mysql/enterprise-server for MySQL Enterprise Edition
images downloaded from My Oracle Support.

• Wait for the server to finish startup. You can check the status of the server using the docker ps
command (see Starting a MySQL Server Instance for how to do that).

• Run the mysql_upgrade utility in the MySQL 5.7 Server container:

docker exec -it mysql57 mysql_upgrade -uroot -p

When prompted, enter the root password for your old MySQL 5.6 Server.

• Finish the upgrade by restarting the MySQL 5.7 Server container:

docker restart mysql57

More Topics on Deploying MySQL Server with Docker

For more topics on deploying MySQL Server with Docker like server configuration, persisting data and
configuration, server error log, and container environment variables, see Section 2.5.7.2, “More Topics on
Deploying MySQL Server with Docker”.

168

https://docs.docker.com/engine/reference/commandline/service_create/#add-bind-mounts-or-volumes
https://support.oracle.com/

Deploying MySQL on Linux with Docker

2.5.7.2 More Topics on Deploying MySQL Server with Docker

Note

Most of the sample commands below have mysql/mysql-server as the Docker
image repository when that has to be specified (like with the docker pull and
docker run commands); change that if your image is from another repository
—for example, replace it with container-registry.oracle.com/mysql/
enterprise-server for MySQL Enterprise Edition images downloaded from the
Oracle Container Registry (OCR), or mysql/enterprise-server for MySQL
Enterprise Edition images downloaded from My Oracle Support.

• The Optimized MySQL Installation for Docker

• Configuring the MySQL Server

• Persisting Data and Configuration Changes

• Running Additional Initialization Scripts

• Connect to MySQL from an Application in Another Docker Container

• Server Error Log

• Known Issues

• Docker Environment Variables

The Optimized MySQL Installation for Docker

Docker images for MySQL are optimized for code size, which means they only include crucial components
that are expected to be relevant for the majority of users who run MySQL instances in Docker containers. A
MySQL Docker installation is different from a common, non-Docker installation in the following aspects:

• Included binaries are limited to:

• /usr/bin/my_print_defaults

• /usr/bin/mysql

• /usr/bin/mysql_config

• /usr/bin/mysql_install_db

• /usr/bin/mysql_tzinfo_to_sql

• /usr/bin/mysql_upgrade

• /usr/bin/mysqladmin

• /usr/bin/mysqlcheck

• /usr/bin/mysqldump

• /usr/bin/mysqlpump

• /usr/sbin/mysqld

• All binaries are stripped; they contain no debug information.

169

https://support.oracle.com/

Deploying MySQL on Linux with Docker

Configuring the MySQL Server

When you start the MySQL Docker container, you can pass configuration options to the server through the
docker run command. For example:

docker run --name mysql1 -d mysql/mysql-server:tag --character-set-server=utf8mb4 --collation-server=utf8mb4_col

The command starts your MySQL Server with utf8mb4 as the default character set and utf8mb4_col as
the default collation for your databases.

Another way to configure the MySQL Server is to prepare a configuration file and mount it at the location
of the server configuration file inside the container. See Persisting Data and Configuration Changes for
details.

Persisting Data and Configuration Changes

Docker containers are in principle ephemeral, and any data or configuration are expected to be lost if the
container is deleted or corrupted (see discussions here). Docker volumes, however, provides a mechanism
to persist data created inside a Docker container. At its initialization, the MySQL Server container creates
a Docker volume for the server data directory. The JSON output for running the docker inspect
command on the container has a Mount key, whose value provides information on the data directory
volume:

$> docker inspect mysql1
...
 "Mounts": [
 {
 "Type": "volume",
 "Name": "4f2d463cfc4bdd4baebcb098c97d7da3337195ed2c6572bc0b89f7e845d27652",
 "Source": "/var/lib/docker/volumes/4f2d463cfc4bdd4baebcb098c97d7da3337195ed2c6572bc0b89f7e845d27652/_data",
 "Destination": "/var/lib/mysql",
 "Driver": "local",
 "Mode": "",
 "RW": true,
 "Propagation": ""
 }
],
...

The output shows that the source folder /var/lib/docker/
volumes/4f2d463cfc4bdd4baebcb098c97d7da3337195ed2c6572bc0b89f7e845d27652/_data,
in which data is persisted on the host, has been mounted at /var/lib/mysql, the server data directory
inside the container.

Another way to preserve data is to bind-mount a host directory using the --mount option when creating
the container. The same technique can be used to persist the configuration of the server. The following
command creates a MySQL Server container and bind-mounts both the data directory and the server
configuration file:

docker run --name=mysql1 \
--mount type=bind,src=/path-on-host-machine/my.cnf,dst=/etc/my.cnf \
--mount type=bind,src=/path-on-host-machine/datadir,dst=/var/lib/mysql \
-d mysql/mysql-server:tag

The command mounts path-on-host-machine/my.cnf at /etc/my.cnf (the server configuration file
inside the container), and path-on-host-machine/datadir at /var/lib/mysql (the data directory
inside the container). The following conditions must be met for the bind-mounting to work:

• The configuration file path-on-host-machine/my.cnf must already exist, and it must contain the
specification for starting the server using the user mysql:

[mysqld]

170

https://docs.docker.com/engine/userguide/eng-image/dockerfile_best-practices/
https://docs.docker.com/engine/admin/volumes/volumes/
https://docs.docker.com/engine/reference/commandline/service_create/#add-bind-mounts-or-volumes

Deploying MySQL on Linux with Docker

user=mysql

You can also include other server configuration options in the file.

• The data directory path-on-host-machine/datadir must already exist. For server initialization
to happen, the directory must be empty. You can also mount a directory prepopulated with data and
start the server with it; however, you must make sure you start the Docker container with the same
configuration as the server that created the data, and any host files or directories required are mounted
when starting the container.

Running Additional Initialization Scripts

If there are any .sh or .sql scripts you want to run on the database immediately after it has been
created, you can put them into a host directory and then mount the directory at /docker-entrypoint-
initdb.d/ inside the container. For example:

docker run --name=mysql1 \
--mount type=bind,src=/path-on-host-machine/scripts/,dst=/docker-entrypoint-initdb.d/ \
-d mysql/mysql-server:tag

Connect to MySQL from an Application in Another Docker Container

By setting up a Docker network, you can allow multiple Docker containers to communicate with each
other, so that a client application in another Docker container can access the MySQL Server in the server
container. First, create a Docker network:

docker network create my-custom-net

Then, when you are creating and starting the server and the client containers, use the --network option
to put them on network you created. For example:

docker run --name=mysql1 --network=my-custom-net -d mysql/mysql-server

docker run --name=myapp1 --network=my-custom-net -d myapp

The myapp1 container can then connect to the mysql1 container with the mysql1 hostname and vice
versa, as Docker automatically sets up a DNS for the given container names. In the following example, we
run the mysql client from inside the myapp1 container to connect to host mysql1 in its own container:

docker exec -it myapp1 mysql --host=mysql1 --user=myuser --password

For other networking techniques for containers, see the Docker container networking section in the Docker
Documentation.

Server Error Log

When the MySQL Server is first started with your server container, a server error log is NOT generated if
either of the following conditions is true:

• A server configuration file from the host has been mounted, but the file does not contain the system
variable log_error (see Persisting Data and Configuration Changes on bind-mounting a server
configuration file).

• A server configuration file from the host has not been mounted, but the Docker environment variable
MYSQL_LOG_CONSOLE is true (the variable's default state for MySQL 5.7 server containers is false).
The MySQL Server's error log is then redirected to stderr, so that the error log goes into the Docker
container's log and is viewable using the docker logs mysqld-container command.

To make MySQL Server generate an error log when either of the two conditions is true, use the --log-
error option to configure the server to generate the error log at a specific location inside the container.
To persist the error log, mount a host file at the location of the error log inside the container as explained in

171

https://docs.docker.com/engine/userguide/networking/

Deploying MySQL on Linux with Docker

Persisting Data and Configuration Changes. However, you must make sure your MySQL Server inside its
container has write access to the mounted host file.

Known Issues

• When using the server system variable audit_log_file to configure the audit log file name, use the
loose option modifier with it, or Docker will be unable to start the server.

Docker Environment Variables

When you create a MySQL Server container, you can configure the MySQL instance by using the --env
option (-e in short) and specifying one or more of the following environment variables.

Notes

• None of the variables below has any effect if the data directory you mount is not
empty, as no server initialization is going to be attempted then (see Persisting
Data and Configuration Changes for more details). Any pre-existing contents in
the folder, including any old server settings, are not modified during the container
startup.

• The boolean variables including MYSQL_RANDOM_ROOT_PASSWORD,
MYSQL_ONETIME_PASSWORD, MYSQL_ALLOW_EMPTY_PASSWORD, and
MYSQL_LOG_CONSOLE are made true by setting them with any strings of nonzero
lengths. Therefore, setting them to, for example, “0”, “false”, or “no” does not
make them false, but actually makes them true. This is a known issue of the
MySQL Server containers.

• MYSQL_RANDOM_ROOT_PASSWORD: When this variable is true (which is its default state, unless
MYSQL_ROOT_PASSWORD is set or MYSQL_ALLOW_EMPTY_PASSWORD is set to true), a random
password for the server's root user is generated when the Docker container is started. The password
is printed to stdout of the container and can be found by looking at the container’s log (see Starting a
MySQL Server Instance).

• MYSQL_ONETIME_PASSWORD: When the variable is true (which is its default state, unless
MYSQL_ROOT_PASSWORD is set or MYSQL_ALLOW_EMPTY_PASSWORD is set to true), the root user's
password is set as expired and must be changed before MySQL can be used normally.

• MYSQL_DATABASE: This variable allows you to specify the name of a database to be created on image
startup. If a user name and a password are supplied with MYSQL_USER and MYSQL_PASSWORD, the user
is created and granted superuser access to this database (corresponding to GRANT ALL). The specified
database is created by a CREATE DATABASE IF NOT EXIST statement, so that the variable has no
effect if the database already exists.

• MYSQL_USER, MYSQL_PASSWORD: These variables are used in conjunction to create a user and set
that user's password, and the user is granted superuser permissions for the database specified by
the MYSQL_DATABASE variable. Both MYSQL_USER and MYSQL_PASSWORD are required for a user
to be created—if any of the two variables is not set, the other is ignored. If both variables are set but
MYSQL_DATABASE is not, the user is created without any privileges.

Note

There is no need to use this mechanism to create the root superuser,
which is created by default with the password set by either one of the
mechanisms discussed in the descriptions for MYSQL_ROOT_PASSWORD and
MYSQL_RANDOM_ROOT_PASSWORD, unless MYSQL_ALLOW_EMPTY_PASSWORD is
true.

172

Deploying MySQL on Linux with Docker

• MYSQL_ROOT_HOST: By default, MySQL creates the 'root'@'localhost' account. This account
can only be connected to from inside the container as described in Connecting to MySQL Server from
within the Container. To allow root connections from other hosts, set this environment variable. For
example, the value 172.17.0.1, which is the default Docker gateway IP, allows connections from the
host machine that runs the container. The option accepts only one entry, but wildcards are allowed (for
example, MYSQL_ROOT_HOST=172.*.*.* or MYSQL_ROOT_HOST=%).

• MYSQL_LOG_CONSOLE: When the variable is true (the variable's default state for MySQL 5.7 server
containers is false), the MySQL Server's error log is redirected to stderr, so that the error log
goes into the Docker container's log and is viewable using the docker logs mysqld-container
command.

Note

The variable has no effect if a server configuration file from the host has been
mounted (see Persisting Data and Configuration Changes on bind-mounting a
configuration file).

• MYSQL_ROOT_PASSWORD: This variable specifies a password that is set for the MySQL root account.

Warning

Setting the MySQL root user password on the command line is insecure. As an
alternative to specifying the password explicitly, you can set the variable with a
container file path for a password file, and then mount a file from your host that
contains the password at the container file path. This is still not very secure, as
the location of the password file is still exposed. It is preferable to use the default
settings of MYSQL_RANDOM_ROOT_PASSWORD and MYSQL_ONETIME_PASSWORD
both being true.

• MYSQL_ALLOW_EMPTY_PASSWORD. Set it to true to allow the container to be started with a blank
password for the root user.

Warning

Setting this variable to true is insecure, because it is going to leave
your MySQL instance completely unprotected, allowing anyone to gain
complete superuser access. It is preferable to use the default settings of
MYSQL_RANDOM_ROOT_PASSWORD and MYSQL_ONETIME_PASSWORD both being
true.

2.5.7.3 Deploying MySQL on Windows and Other Non-Linux Platforms with Docker

Warning

The MySQL Docker images provided by Oracle are built specifically for Linux
platforms. Other platforms are not supported, and users running the MySQL Docker
images from Oracle on them are doing so at their own risk. This section discusses
some known issues for the images when used on non-Linux platforms.

Known Issues for using the MySQL Server Docker images from Oracle on Windows include:

• If you are bind-mounting on the container's MySQL data directory (see Persisting Data and Configuration
Changes for details), you have to set the location of the server socket file with the --socket option to
somewhere outside of the MySQL data directory; otherwise, the server fails to start. This is because the
way Docker for Windows handles file mounting does not allow a host file from being bind-mounted on
the socket file.

173

Installing MySQL on Linux from the Native Software Repositories

2.5.8 Installing MySQL on Linux from the Native Software Repositories

Many Linux distributions include a version of the MySQL server, client tools, and development components
in their native software repositories and can be installed with the platforms' standard package management
systems. This section provides basic instructions for installing MySQL using those package management
systems.

Important

Native packages are often several versions behind the currently available release.
You also normally cannot install development milestone releases (DMRs), as
these are not usually made available in the native repositories. Before proceeding,
we recommend that you check out the other installation options described in
Section 2.5, “Installing MySQL on Linux”.

Distribution specific instructions are shown below:

• Red Hat Linux, Fedora, CentOS

Note

For a number of Linux distributions, you can install MySQL using the MySQL
Yum repository instead of the platform's native software repository. See
Section 2.5.1, “Installing MySQL on Linux Using the MySQL Yum Repository” for
details.

For Red Hat and similar distributions, the MySQL distribution is divided into a number of separate
packages, mysql for the client tools, mysql-server for the server and associated tools, and mysql-
libs for the libraries. The libraries are required if you want to provide connectivity from different
languages and environments such as Perl, Python and others.

To install, use the yum command to specify the packages that you want to install. For example:

#> yum install mysql mysql-server mysql-libs mysql-server
Loaded plugins: presto, refresh-packagekit
Setting up Install Process
Resolving Dependencies
--> Running transaction check
---> Package mysql.x86_64 0:5.1.48-2.fc13 set to be updated
---> Package mysql-libs.x86_64 0:5.1.48-2.fc13 set to be updated
---> Package mysql-server.x86_64 0:5.1.48-2.fc13 set to be updated
--> Processing Dependency: perl-DBD-MySQL for package: mysql-server-5.1.48-2.fc13.x86_64
--> Running transaction check
---> Package perl-DBD-MySQL.x86_64 0:4.017-1.fc13 set to be updated
--> Finished Dependency Resolution

Dependencies Resolved

==
 Package Arch Version Repository Size
==
Installing:
 mysql x86_64 5.1.48-2.fc13 updates 889 k
 mysql-libs x86_64 5.1.48-2.fc13 updates 1.2 M
 mysql-server x86_64 5.1.48-2.fc13 updates 8.1 M
Installing for dependencies:
 perl-DBD-MySQL x86_64 4.017-1.fc13 updates 136 k

Transaction Summary
==
Install 4 Package(s)

174

Installing MySQL on Linux from the Native Software Repositories

Upgrade 0 Package(s)

Total download size: 10 M
Installed size: 30 M
Is this ok [y/N]: y
Downloading Packages:
Setting up and reading Presto delta metadata
Processing delta metadata
Package(s) data still to download: 10 M
(1/4): mysql-5.1.48-2.fc13.x86_64.rpm | 889 kB 00:04
(2/4): mysql-libs-5.1.48-2.fc13.x86_64.rpm | 1.2 MB 00:06
(3/4): mysql-server-5.1.48-2.fc13.x86_64.rpm | 8.1 MB 00:40
(4/4): perl-DBD-MySQL-4.017-1.fc13.x86_64.rpm | 136 kB 00:00
--
Total 201 kB/s | 10 MB 00:52
Running rpm_check_debug
Running Transaction Test
Transaction Test Succeeded
Running Transaction
 Installing : mysql-libs-5.1.48-2.fc13.x86_64 1/4
 Installing : mysql-5.1.48-2.fc13.x86_64 2/4
 Installing : perl-DBD-MySQL-4.017-1.fc13.x86_64 3/4
 Installing : mysql-server-5.1.48-2.fc13.x86_64 4/4

Installed:
 mysql.x86_64 0:5.1.48-2.fc13 mysql-libs.x86_64 0:5.1.48-2.fc13
 mysql-server.x86_64 0:5.1.48-2.fc13

Dependency Installed:
 perl-DBD-MySQL.x86_64 0:4.017-1.fc13

Complete!

MySQL and the MySQL server should now be installed. A sample configuration file is installed into /
etc/my.cnf. An init script, to start and stop the server, is installed into /etc/init.d/mysqld. To
start the MySQL server use service:

#> service mysqld start

To enable the server to be started and stopped automatically during boot, use chkconfig:

#> chkconfig --levels 235 mysqld on

Which enables the MySQL server to be started (and stopped) automatically at the specified the run
levels.

The database tables are automatically created for you, if they do not already exist. You should, however,
run mysql_secure_installation to set the root passwords on your server.

• Debian, Ubuntu, Kubuntu

Note

On Debian, Ubuntu, and Kubuntu, MySQL can be installed using the MySQL APT
Repository instead of the platform's native software repository. See Section 2.5.3,
“Installing MySQL on Linux Using the MySQL APT Repository” for details.

On Debian and related distributions, there are two packages for MySQL in their software repositories,
mysql-client and mysql-server, for the client and server components respectively. You should

175

https://dev.mysql.com/downloads/repo/apt/
https://dev.mysql.com/downloads/repo/apt/

Installing MySQL on Linux from the Native Software Repositories

specify an explicit version, for example mysql-client-5.1, to ensure that you install the version of
MySQL that you want.

To download and install, including any dependencies, use the apt-get command, specifying the
packages that you want to install.

Note

Before installing, make sure that you update your apt-get index files to ensure
you are downloading the latest available version.

A sample installation of the MySQL packages might look like this (some sections trimmed for clarity):

#> apt-get install mysql-client-5.1 mysql-server-5.1
Reading package lists... Done
Building dependency tree
Reading state information... Done
The following packages were automatically installed and are no longer required:
 linux-headers-2.6.28-11 linux-headers-2.6.28-11-generic
Use 'apt-get autoremove' to remove them.
The following extra packages will be installed:
 bsd-mailx libdbd-mysql-perl libdbi-perl libhtml-template-perl
 libmysqlclient15off libmysqlclient16 libnet-daemon-perl libplrpc-perl mailx
 mysql-common postfix
Suggested packages:
 dbishell libipc-sharedcache-perl tinyca procmail postfix-mysql postfix-pgsql
 postfix-ldap postfix-pcre sasl2-bin resolvconf postfix-cdb
The following NEW packages will be installed
 bsd-mailx libdbd-mysql-perl libdbi-perl libhtml-template-perl
 libmysqlclient15off libmysqlclient16 libnet-daemon-perl libplrpc-perl mailx
 mysql-client-5.1 mysql-common mysql-server-5.1 postfix
0 upgraded, 13 newly installed, 0 to remove and 182 not upgraded.
Need to get 1907kB/25.3MB of archives.
After this operation, 59.5MB of additional disk space will be used.
Do you want to continue [Y/n]? Y
Get: 1 http://gb.archive.ubuntu.com jaunty-updates/main mysql-common 5.1.30really5.0.75-0ubuntu10.5 [63.6kB]
Get: 2 http://gb.archive.ubuntu.com jaunty-updates/main libmysqlclient15off 5.1.30really5.0.75-0ubuntu10.5 [1843kB]
Fetched 1907kB in 9s (205kB/s)
Preconfiguring packages ...
Selecting previously deselected package mysql-common.
(Reading database ... 121260 files and directories currently installed.)
...
Processing 1 added doc-base file(s)...
Registering documents with scrollkeeper...
Setting up libnet-daemon-perl (0.43-1) ...
Setting up libplrpc-perl (0.2020-1) ...
Setting up libdbi-perl (1.607-1) ...
Setting up libmysqlclient15off (5.1.30really5.0.75-0ubuntu10.5) ...

Setting up libdbd-mysql-perl (4.008-1) ...
Setting up libmysqlclient16 (5.1.31-1ubuntu2) ...

Setting up mysql-client-5.1 (5.1.31-1ubuntu2) ...

Setting up mysql-server-5.1 (5.1.31-1ubuntu2) ...
 * Stopping MySQL database server mysqld
 ...done.
2013-09-24T13:03:09.048353Z 0 [Note] InnoDB: 5.7.44 started; log sequence number 1566036
2013-09-24T13:03:10.057269Z 0 [Note] InnoDB: Starting shutdown...
2013-09-24T13:03:10.857032Z 0 [Note] InnoDB: Shutdown completed; log sequence number 1566036
 * Starting MySQL database server mysqld
 ...done.
 * Checking for corrupt, not cleanly closed and upgrade needing tables.
...
Processing triggers for libc6 ...

176

Installing MySQL on Linux with Juju

ldconfig deferred processing now taking place

Note

The apt-get command installs a number of packages, including the MySQL
server, in order to provide the typical tools and application environment. This can
mean that you install a large number of packages in addition to the main MySQL
package.

During installation, the initial database is created, and you are prompted for the MySQL root password
(and confirmation). A configuration file is created in /etc/mysql/my.cnf. An init script is created in /
etc/init.d/mysql.

The server is already started. You can manually start and stop the server using:

#> service mysql [start|stop]

The service is automatically added to run levels 2, 3, and 4, with stop scripts in the single, shutdown, and
restart levels.

2.5.9 Installing MySQL on Linux with Juju

The Juju deployment framework supports easy installation and configuration of MySQL servers. For
instructions, see https://jujucharms.com/mysql/.

2.5.10 Managing MySQL Server with systemd

If you install MySQL using an RPM or Debian package on the following Linux platforms, server startup and
shutdown is managed by systemd:

• RPM package platforms:

• Enterprise Linux variants version 7 and higher

• SUSE Linux Enterprise Server 12 and higher

• Debian family platforms:

• Debian platforms

• Ubuntu platforms

If you install MySQL from a generic binary distribution on a platform that uses systemd, you can manually
configure systemd support for MySQL following the instructions provided in the post-installation setup
section of the MySQL 5.7 Secure Deployment Guide.

If you install MySQL from a source distribution on a platform that uses systemd, obtain systemd support for
MySQL by configuring the distribution using the -DWITH_SYSTEMD=1 CMake option. See Section 2.8.7,
“MySQL Source-Configuration Options”.

The following discussion covers these topics:

• Overview of systemd

• Configuring systemd for MySQL

• Configuring Multiple MySQL Instances Using systemd

• Migrating from mysqld_safe to systemd

177

https://jujucharms.com/mysql/
https://dev.mysql.com/doc/mysql-secure-deployment-guide/en/

Managing MySQL Server with systemd

Note

On platforms for which systemd support for MySQL is installed, scripts such as
mysqld_safe and the System V initialization script are unnecessary and are not
installed. For example, mysqld_safe can handle server restarts, but systemd
provides the same capability, and does so in a manner consistent with management
of other services rather than by using an application-specific program.

One implication of the non-use of mysqld_safe on platforms that use systemd for
server management is that use of [mysqld_safe] or [safe_mysqld] sections in
option files is not supported and might lead to unexpected behavior.

Because systemd has the capability of managing multiple MySQL instances on
platforms for which systemd support for MySQL is installed, mysqld_multi and
mysqld_multi.server are unnecessary and are not installed.

Overview of systemd

systemd provides automatic MySQL server startup and shutdown. It also enables manual server
management using the systemctl command. For example:

systemctl {start|stop|restart|status} mysqld

Alternatively, use the service command (with the arguments reversed), which is compatible with System
V systems:

service mysqld {start|stop|restart|status}

Note

For the systemctl or service commands, if the MySQL service name is not
mysqld, use the appropriate name. For example, use mysql rather than mysqld
on Debian-based and SLES systems.

Support for systemd includes these files:

• mysqld.service (RPM platforms), mysql.service (Debian platforms): systemd service unit
configuration file, with details about the MySQL service.

• mysqld@.service (RPM platforms), mysql@.service (Debian platforms): Like mysqld.service or
mysql.service, but used for managing multiple MySQL instances.

• mysqld.tmpfiles.d: File containing information to support the tmpfiles feature. This file is installed
under the name mysql.conf.

• mysqld_pre_systemd (RPM platforms), mysql-system-start (Debian platforms): Support script
for the unit file. This script assists in creating the error log file only if the log location matches a pattern (/
var/log/mysql*.log for RPM platforms, /var/log/mysql/*.log for Debian platforms). In other
cases, the error log directory must be writable or the error log must be present and writable for the user
running the mysqld process.

Configuring systemd for MySQL

To add or change systemd options for MySQL, these methods are available:

• Use a localized systemd configuration file.

• Arrange for systemd to set environment variables for the MySQL server process.

178

Managing MySQL Server with systemd

• Set the MYSQLD_OPTS systemd variable.

To use a localized systemd configuration file, create the /etc/systemd/system/mysqld.service.d
directory if it does not exist. In that directory, create a file that contains a [Service] section listing the
desired settings. For example:

[Service]
LimitNOFILE=max_open_files
PIDFile=/path/to/pid/file
Nice=nice_level
LimitCore=core_file_limit
Environment="LD_PRELOAD=/path/to/malloc/library"
Environment="TZ=time_zone_setting"

The discussion here uses override.conf as the name of this file. Newer versions of systemd support
the following command, which opens an editor and permits you to edit the file:

systemctl edit mysqld # RPM platforms
systemctl edit mysql # Debian platforms

Whenever you create or change override.conf, reload the systemd configuration, then tell systemd to
restart the MySQL service:

systemctl daemon-reload
systemctl restart mysqld # RPM platforms
systemctl restart mysql # Debian platforms

With systemd, the override.conf configuration method must be used for certain parameters, rather than
settings in a [mysqld], [mysqld_safe], or [safe_mysqld] group in a MySQL option file:

• For some parameters, override.conf must be used because systemd itself must know their values
and it cannot read MySQL option files to get them.

• Parameters that specify values otherwise settable only using options known to mysqld_safe must be
specified using systemd because there is no corresponding mysqld parameter.

For additional information about using systemd rather than mysqld_safe, see Migrating from
mysqld_safe to systemd.

You can set the following parameters in override.conf:

• To specify the process ID file:

• As of MySQL 5.7.10: Use override.conf and change both PIDFile and ExecStart to name
the PID file path name. Any setting of the process ID file in MySQL option files is ignored. To modify
ExecStart, it must first be cleared. For example:

[Service]
PIDFile=/var/run/mysqld/mysqld-custom.pid
ExecStart=
ExecStart=/usr/sbin/mysqld --pid-file=/var/run/mysqld/mysqld-custom.pid $MYSQLD_OPTS

• Before MySQL 5.7.10: Use PIDFile in override.conf rather than the --pid-file option for
mysqld or mysqld_safe. systemd must know the PID file location so that it can restart or stop the
server. If the PID file value is specified in a MySQL option file, the value must match the PIDFile
value or MySQL startup may fail.

• To set the number of file descriptors available to the MySQL server, use LimitNOFILE in
override.conf rather than the open_files_limit system variable for mysqld or --open-files-
limit option for mysqld_safe.

179

Managing MySQL Server with systemd

• To set the maximum core file size, use LimitCore in override.conf rather than the --core-file-
size option for mysqld_safe.

• To set the scheduling priority for the MySQL server, use Nice in override.conf rather than the --
nice option for mysqld_safe.

Some MySQL parameters are configured using environment variables:

• LD_PRELOAD: Set this variable if the MySQL server should use a specific memory-allocation library.

• TZ: Set this variable to specify the default time zone for the server.

There are multiple ways to specify environment variable values for use by the MySQL server process
managed by systemd:

• Use Environment lines in the override.conf file. For the syntax, see the example in the preceding
discussion that describes how to use this file.

• Specify the values in the /etc/sysconfig/mysql file (create the file if it does not exist). Assign values
using the following syntax:

LD_PRELOAD=/path/to/malloc/library
TZ=time_zone_setting

After modifying /etc/sysconfig/mysql, restart the server to make the changes effective:

systemctl restart mysqld # RPM platforms
systemctl restart mysql # Debian platforms

To specify options for mysqld without modifying systemd configuration files directly, set or unset the
MYSQLD_OPTS systemd variable. For example:

systemctl set-environment MYSQLD_OPTS="--general_log=1"
systemctl unset-environment MYSQLD_OPTS

MYSQLD_OPTS can also be set in the /etc/sysconfig/mysql file.

After modifying the systemd environment, restart the server to make the changes effective:

systemctl restart mysqld # RPM platforms
systemctl restart mysql # Debian platforms

For platforms that use systemd, the data directory is initialized if empty at server startup. This might be
a problem if the data directory is a remote mount that has temporarily disappeared: The mount point
would appear to be an empty data directory, which then would be initialized as a new data directory. As
of MySQL 5.7.20, to suppress this automatic initialization behavior, specify the following line in the /etc/
sysconfig/mysql file (create the file if it does not exist):

NO_INIT=true

Configuring Multiple MySQL Instances Using systemd

This section describes how to configure systemd for multiple instances of MySQL.

Note

Because systemd has the capability of managing multiple MySQL instances
on platforms for which systemd support is installed, mysqld_multi and
mysqld_multi.server are unnecessary and are not installed. This is true as of
MySQL 5.7.13 for RPM platforms, 5.7.19 for Debian platforms.

180

Managing MySQL Server with systemd

To use multiple-instance capability, modify the my.cnf option file to include configuration of key options for
each instance. These file locations are typical:

• /etc/my.cnf or /etc/mysql/my.cnf (RPM platforms)

• /etc/mysql/mysql.conf.d/mysqld.cnf (Debian platforms)

For example, to manage two instances named replica01 and replica02, add something like this to the
option file:

RPM platforms:

[mysqld@replica01]
datadir=/var/lib/mysql-replica01
socket=/var/lib/mysql-replica01/mysql.sock
port=3307
log-error=/var/log/mysqld-replica01.log

[mysqld@replica02]
datadir=/var/lib/mysql-replica02
socket=/var/lib/mysql-replica02/mysql.sock
port=3308
log-error=/var/log/mysqld-replica02.log

Debian platforms:

[mysqld@replica01]
datadir=/var/lib/mysql-replica01
socket=/var/lib/mysql-replica01/mysql.sock
port=3307
log-error=/var/log/mysql/replica01.log

[mysqld@replica02]
datadir=/var/lib/mysql-replica02
socket=/var/lib/mysql-replica02/mysql.sock
port=3308
log-error=/var/log/mysql/replica02.log

The replica names shown here use @ as the delimiter because that is the only delimiter supported by
systemd.

Instances then are managed by normal systemd commands, such as:

systemctl start mysqld@replica01
systemctl start mysqld@replica02

To enable instances to run at boot time, do this:

systemctl enable mysqld@replica01
systemctl enable mysqld@replica02

Use of wildcards is also supported. For example, this command displays the status of all replica instances:

systemctl status 'mysqld@replica*'

For management of multiple MySQL instances on the same machine, systemd automatically uses a
different unit file:

• mysqld@.service rather than mysqld.service (RPM platforms)

• mysql@.service rather than mysql.service (Debian platforms)

In the unit file, %I and %i reference the parameter passed in after the @ marker and are used to manage
the specific instance. For a command such as this:

181

Installing MySQL Using Unbreakable Linux Network (ULN)

systemctl start mysqld@replica01

systemd starts the server using a command such as this:

mysqld --defaults-group-suffix=@%I ...

The result is that the [server], [mysqld], and [mysqld@replica01] option groups are read and
used for that instance of the service.

Note

On Debian platforms, AppArmor prevents the server from reading or writing /
var/lib/mysql-replica*, or anything other than the default locations. To
address this, you must customize or disable the profile in /etc/apparmor.d/
usr.sbin.mysqld.

Note

On Debian platforms, the packaging scripts for MySQL uninstallation cannot
currently handle mysqld@ instances. Before removing or upgrading the package,
you must stop any extra instances manually first.

Migrating from mysqld_safe to systemd

Because mysqld_safe is not installed on platforms that use systemd to manage MySQL, options
previously specified for that program (for example, in an [mysqld_safe] or [safe_mysqld] option
group) must be specified another way:

• Some mysqld_safe options are also understood by mysqld and can be moved from the
[mysqld_safe] or [safe_mysqld] option group to the [mysqld] group. This does not include --
pid-file, --open-files-limit, or --nice. To specify those options, use the override.conf
systemd file, described previously.

Note

On systemd platforms, use of [mysqld_safe] and [safe_mysqld] option
groups is not supported and may lead to unexpected behavior.

• For some mysqld_safe options, there are similar mysqld options. For example, the mysqld_safe
option for enabling syslog logging is --syslog, which is deprecated. For mysqld, enable the
log_syslog system variable instead. For details, see Section 5.4.2, “The Error Log”.

• mysqld_safe options not understood by mysqld can be specified in override.conf or environment
variables. For example, with mysqld_safe, if the server should use a specific memory allocation library,
this is specified using the --malloc-lib option. For installations that manage the server with systemd,
arrange to set the LD_PRELOAD environment variable instead, as described previously.

2.6 Installing MySQL Using Unbreakable Linux Network (ULN)
Linux supports a number of different solutions for installing MySQL, covered in Section 2.5, “Installing
MySQL on Linux”. One of the methods, covered in this section, is installing from Oracle's Unbreakable
Linux Network (ULN). You can find information about Oracle Linux and ULN under http://linux.oracle.com/.

To use ULN, you need to obtain a ULN login and register the machine used for installation with ULN. This
is described in detail in the ULN FAQ. The page also describes how to install and update packages. The
MySQL packages are in the “MySQL for Oracle Linux 6” and “MySQL for Oracle Linux 7” channels for your
system architecture on ULN.

182

http://linux.oracle.com/
https://linux.oracle.com/uln_faq.html

Installing MySQL on Solaris

Note

ULN provides MySQL 5.7 for Oracle Linux 6 and Oracle Linux 7. Alternatively,
Oracle Linux 8 supports MySQL 8.0. In addition, Enterprise packages are available
as of MySQL 8.0.21.

Once MySQL has been installed using ULN, you can find information on starting and stopping the
server, and more, in this section, particularly under Section 2.5.5, “Installing MySQL on Linux Using RPM
Packages from Oracle”.

If you are changing your package source to use ULN and not changing which build of MySQL you are
using, then back up your data, remove your existing binaries, and replace them with those from ULN.
If a change of build is involved, we recommend the backup be a dump (mysqldump or mysqlpump or
from MySQL Shell's backup utility) just in case you need to rebuild your data after the new binaries are in
place. If this shift to ULN crosses a version boundary, consult this section before proceeding: Section 2.10,
“Upgrading MySQL”.

2.7 Installing MySQL on Solaris

Note

MySQL 5.7 supports Solaris 11 (Update 3 and later).

MySQL on Solaris is available in a number of different formats.

• For information on installing using the native Solaris PKG format, see Section 2.7.1, “Installing MySQL
on Solaris Using a Solaris PKG”.

• To use a standard tar binary installation, use the notes provided in Section 2.2, “Installing MySQL
on Unix/Linux Using Generic Binaries”. Check the notes and hints at the end of this section for Solaris
specific notes that you may need before or after installation.

Important

The installation packages have a dependency on the Oracle Developer Studio 12.5
Runtime Libraries, which must be installed before you run the MySQL installation
package. See the download options for Oracle Developer Studio here. The
installation package enables you to install the runtime libraries only instead of
the full Oracle Developer Studio; see instructions in Installing Only the Runtime
Libraries on Oracle Solaris 11.

To obtain a binary MySQL distribution for Solaris in tarball or PKG format, https://dev.mysql.com/
downloads/mysql/5.7.html.

Additional notes to be aware of when installing and using MySQL on Solaris:

• If you want to use MySQL with the mysql user and group, use the groupadd and useradd commands:

groupadd mysql
useradd -g mysql -s /bin/false mysql

• If you install MySQL using a binary tarball distribution on Solaris, because the Solaris tar cannot handle
long file names, use GNU tar (gtar) to unpack the distribution. If you do not have GNU tar on your
system, install it with the following command:

pkg install archiver/gnu-tar

183

https://dev.mysql.com/doc/mysql-shell/8.0/en/mysql-shell-utilities-dump-instance-schema.html
http://www.oracle.com/technetwork/server-storage/developerstudio/downloads/index.html
https://docs.oracle.com/cd/E60778_01/html/E60743/gozsu.html
https://docs.oracle.com/cd/E60778_01/html/E60743/gozsu.html
https://dev.mysql.com/downloads/mysql/5.7.html
https://dev.mysql.com/downloads/mysql/5.7.html

Installing MySQL on Solaris Using a Solaris PKG

• You should mount any file systems on which you intend to store InnoDB files with the forcedirectio
option. (By default mounting is done without this option.) Failing to do so causes a significant drop in
performance when using the InnoDB storage engine on this platform.

• If you would like MySQL to start automatically, you can copy support-files/mysql.server to /
etc/init.d and create a symbolic link to it named /etc/rc3.d/S99mysql.server.

• If too many processes try to connect very rapidly to mysqld, you should see this error in the MySQL log:

Error in accept: Protocol error

You might try starting the server with the --back_log=50 option as a workaround for this.

• To configure the generation of core files on Solaris you should use the coreadm command. Because
of the security implications of generating a core on a setuid() application, by default, Solaris does
not support core files on setuid() programs. However, you can modify this behavior using coreadm.
If you enable setuid() core files for the current user, they are generated using mode 600, and are
owned by the superuser.

2.7.1 Installing MySQL on Solaris Using a Solaris PKG

You can install MySQL on Solaris using a binary package of the native Solaris PKG format instead of the
binary tarball distribution.

Important

The installation package has a dependency on the Oracle Developer Studio 12.5
Runtime Libraries, which must be installed before you run the MySQL installation
package. See the download options for Oracle Developer Studio here. The
installation package enables you to install the runtime libraries only instead of
the full Oracle Developer Studio; see instructions in Installing Only the Runtime
Libraries on Oracle Solaris 11.

To use this package, download the corresponding mysql-VERSION-solaris11-PLATFORM.pkg.gz
file, then uncompress it. For example:

$> gunzip mysql-5.7.44-solaris11-x86_64.pkg.gz

To install a new package, use pkgadd and follow the onscreen prompts. You must have root privileges to
perform this operation:

$> pkgadd -d mysql-5.7.44-solaris11-x86_64.pkg

The following packages are available:
 1 mysql MySQL Community Server (GPL)
 (i86pc) 5.7.44

Select package(s) you wish to process (or 'all' to process
all packages). (default: all) [?,??,q]:

The PKG installer installs all of the files and tools needed, and then initializes your database if one does
not exist. To complete the installation, you should set the root password for MySQL as provided in the
instructions at the end of the installation. Alternatively, you can run the mysql_secure_installation
script that comes with the installation.

By default, the PKG package installs MySQL under the root path /opt/mysql. You can change only the
installation root path when using pkgadd, which can be used to install MySQL in a different Solaris zone. If
you need to install in a specific directory, use a binary tar file distribution.

184

http://www.oracle.com/technetwork/server-storage/developerstudio/downloads/index.html
https://docs.oracle.com/cd/E60778_01/html/E60743/gozsu.html
https://docs.oracle.com/cd/E60778_01/html/E60743/gozsu.html

Installing MySQL from Source

The pkg installer copies a suitable startup script for MySQL into /etc/init.d/mysql. To enable
MySQL to startup and shutdown automatically, you should create a link between this file and the init script
directories. For example, to ensure safe startup and shutdown of MySQL you could use the following
commands to add the right links:

$> ln /etc/init.d/mysql /etc/rc3.d/S91mysql
$> ln /etc/init.d/mysql /etc/rc0.d/K02mysql

To remove MySQL, the installed package name is mysql. You can use this in combination with the pkgrm
command to remove the installation.

To upgrade when using the Solaris package file format, you must remove the existing installation before
installing the updated package. Removal of the package does not delete the existing database information,
only the server, binaries and support files. The typical upgrade sequence is therefore:

$> mysqladmin shutdown
$> pkgrm mysql
$> pkgadd -d mysql-5.7.44-solaris11-x86_64.pkg
$> mysqld_safe &
$> mysql_upgrade

You should check the notes in Section 2.10, “Upgrading MySQL” before performing any upgrade.

2.8 Installing MySQL from Source

Building MySQL from the source code enables you to customize build parameters, compiler
optimizations, and installation location. For a list of systems on which MySQL is known to run, see https://
www.mysql.com/support/supportedplatforms/database.html.

Before you proceed with an installation from source, check whether Oracle produces a precompiled binary
distribution for your platform and whether it works for you. We put a great deal of effort into ensuring that
our binaries are built with the best possible options for optimal performance. Instructions for installing
binary distributions are available in Section 2.2, “Installing MySQL on Unix/Linux Using Generic Binaries”.

If you are interested in building MySQL from a source distribution using build options the same as or similar
to those use by Oracle to produce binary distributions on your platform, obtain a binary distribution, unpack
it, and look in the docs/INFO_BIN file, which contains information about how that MySQL distribution was
configured and compiled.

Warning

Building MySQL with nonstandard options may lead to reduced functionality,
performance, or security.

2.8.1 Source Installation Methods

There are two methods for installing MySQL from source:

• Use a standard MySQL source distribution. To obtain a standard distribution, see Section 2.1.3, “How
to Get MySQL”. For instructions on building from a standard distribution, see Section 2.8.4, “Installing
MySQL Using a Standard Source Distribution”.

Standard distributions are available as compressed tar files, Zip archives, or RPM packages.
Distribution files have names of the form mysql-VERSION.tar.gz, mysql-VERSION.zip, or
mysql-VERSION.rpm, where VERSION is a number like 5.7.44. File names for source distributions
can be distinguished from those for precompiled binary distributions in that source distribution names
are generic and include no platform name, whereas binary distribution names include a platform name

185

https://www.mysql.com/support/supportedplatforms/database.html
https://www.mysql.com/support/supportedplatforms/database.html

Source Installation Prerequisites

indicating the type of system for which the distribution is intended (for example, pc-linux-i686 or
winx64).

• Use a MySQL development tree. For information on building from one of the development trees, see
Section 2.8.5, “Installing MySQL Using a Development Source Tree”.

2.8.2 Source Installation Prerequisites

Installation of MySQL from source requires several development tools. Some of these tools are needed
no matter whether you use a standard source distribution or a development source tree. Other tool
requirements depend on which installation method you use.

To install MySQL from source, the following system requirements must be satisfied, regardless of
installation method:

• CMake, which is used as the build framework on all platforms. CMake can be downloaded from http://
www.cmake.org.

• A good make program. Although some platforms come with their own make implementations, it is highly
recommended that you use GNU make 3.75 or later. It may already be available on your system as
gmake. GNU make is available from http://www.gnu.org/software/make/.

On Unix-like systems, including Linux, you can check your system's version of make like this:

$> make --version
GNU Make 4.2.1

• A working ANSI C++ compiler. See the description of the FORCE_UNSUPPORTED_COMPILER option for
some guidelines.

• An SSL library is required for support of encrypted connections, entropy for random number generation,
and other encryption-related operations. By default, the build uses the OpenSSL library installed on the
host system. To specify the library explicitly, use the WITH_SSL option when you invoke CMake. For
additional information, see Section 2.8.6, “Configuring SSL Library Support”.

• The Boost C++ libraries are required to build MySQL (but not to use it). Boost 1.59.0 must be installed.
To obtain Boost and its installation instructions, visit the official Boost web site. After Boost is installed,
tell the build system where the Boost files are placed according to the value set for the WITH_BOOST
option when you invoke CMake. For example:

cmake . -DWITH_BOOST=/usr/local/boost_version_number

Adjust the path as necessary to match your installation.

• The ncurses library.

• Sufficient free memory. If you encounter build errors such as internal compiler error when
compiling large source files, it may be that you have too little memory. If compiling on a virtual machine,
try increasing the memory allocation.

• Perl is needed if you intend to run test scripts. Most Unix-like systems include Perl. For Windows, you
can use ActiveState Perl. or Strawberry Perl.

To install MySQL from a standard source distribution, one of the following tools is required to unpack the
distribution file:

• For a .tar.gz compressed tar file: GNU gunzip to uncompress the distribution and a reasonable
tar to unpack it. If your tar program supports the z option, it can both uncompress and unpack the file.

186

http://www.cmake.org
http://www.cmake.org
http://www.gnu.org/software/make/
https://www.boost.org
https://www.gnu.org/software/ncurses/ncurses.html
https://www.activestate.com/products/perl/
https://strawberryperl.com/

MySQL Layout for Source Installation

GNU tar is known to work. The standard tar provided with some operating systems is not able to
unpack the long file names in the MySQL distribution. You should download and install GNU tar, or if
available, use a preinstalled version of GNU tar. Usually this is available as gnutar, gtar, or as tar
within a GNU or Free Software directory, such as /usr/sfw/bin or /usr/local/bin. GNU tar is
available from https://www.gnu.org/software/tar/.

• For a .zip Zip archive: WinZip or another tool that can read .zip files.

• For an .rpm RPM package: The rpmbuild program used to build the distribution unpacks it.

To install MySQL from a development source tree, the following additional tools are required:

• The Git revision control system is required to obtain the development source code. GitHub Help provides
instructions for downloading and installing Git on different platforms.

• bison 2.1 or later, available from http://www.gnu.org/software/bison/. (Version 1 is no longer supported.)
Use the latest version of bison where possible; if you experience problems, upgrade to a later version,
rather than revert to an earlier one.

bison is available from http://www.gnu.org/software/bison/. bison for Windows can be downloaded
from http://gnuwin32.sourceforge.net/packages/bison.htm. Download the package labeled “Complete
package, excluding sources”. On Windows, the default location for bison is the C:\Program Files
\GnuWin32 directory. Some utilities may fail to find bison because of the space in the directory name.
Also, Visual Studio may simply hang if there are spaces in the path. You can resolve these problems by
installing into a directory that does not contain a space (for example C:\GnuWin32).

• On Solaris Express, m4 must be installed in addition to bison. m4 is available from http://www.gnu.org/
software/m4/.

Note

If you have to install any programs, modify your PATH environment variable to
include any directories in which the programs are located. See Section 4.2.7,
“Setting Environment Variables”.

If you run into problems and need to file a bug report, please use the instructions in Section 1.5, “How to
Report Bugs or Problems”.

2.8.3 MySQL Layout for Source Installation

By default, when you install MySQL after compiling it from source, the installation step installs files under /
usr/local/mysql. The component locations under the installation directory are the same as for binary
distributions. See Table 2.3, “MySQL Installation Layout for Generic Unix/Linux Binary Package”, and
Section 2.3.1, “MySQL Installation Layout on Microsoft Windows”. To configure installation locations
different from the defaults, use the options described at Section 2.8.7, “MySQL Source-Configuration
Options”.

2.8.4 Installing MySQL Using a Standard Source Distribution

To install MySQL from a standard source distribution:

1. Verify that your system satisfies the tool requirements listed at Section 2.8.2, “Source Installation
Prerequisites”.

2. Obtain a distribution file using the instructions in Section 2.1.3, “How to Get MySQL”.

3. Configure, build, and install the distribution using the instructions in this section.

187

https://www.gnu.org/software/tar/
https://help.github.com/
http://www.gnu.org/software/bison/
http://www.gnu.org/software/bison/
http://gnuwin32.sourceforge.net/packages/bison.htm
http://www.gnu.org/software/m4/
http://www.gnu.org/software/m4/

Installing MySQL Using a Standard Source Distribution

4. Perform postinstallation procedures using the instructions in Section 2.9, “Postinstallation Setup and
Testing”.

MySQL uses CMake as the build framework on all platforms. The instructions given here should enable you
to produce a working installation. For additional information on using CMake to build MySQL, see How to
Build MySQL Server with CMake.

If you start from a source RPM, use the following command to make a binary RPM that you can install. If
you do not have rpmbuild, use rpm instead.

$> rpmbuild --rebuild --clean MySQL-VERSION.src.rpm

The result is one or more binary RPM packages that you install as indicated in Section 2.5.5, “Installing
MySQL on Linux Using RPM Packages from Oracle”.

The sequence for installation from a compressed tar file or Zip archive source distribution is similar to the
process for installing from a generic binary distribution (see Section 2.2, “Installing MySQL on Unix/Linux
Using Generic Binaries”), except that it is used on all platforms and includes steps to configure and compile
the distribution. For example, with a compressed tar file source distribution on Unix, the basic installation
command sequence looks like this:

Preconfiguration setup
$> groupadd mysql
$> useradd -r -g mysql -s /bin/false mysql
Beginning of source-build specific instructions
$> tar zxvf mysql-VERSION.tar.gz
$> cd mysql-VERSION
$> mkdir bld
$> cd bld
$> cmake ..
$> make
$> make install
End of source-build specific instructions
Postinstallation setup
$> cd /usr/local/mysql
$> mkdir mysql-files
$> chown mysql:mysql mysql-files
$> chmod 750 mysql-files
$> bin/mysqld --initialize --user=mysql
$> bin/mysql_ssl_rsa_setup
$> bin/mysqld_safe --user=mysql &
Next command is optional
$> cp support-files/mysql.server /etc/init.d/mysql.server

A more detailed version of the source-build specific instructions is shown following.

Note

The procedure shown here does not set up any passwords for MySQL accounts.
After following the procedure, proceed to Section 2.9, “Postinstallation Setup and
Testing”, for postinstallation setup and testing.

• Perform Preconfiguration Setup

• Obtain and Unpack the Distribution

• Configure the Distribution

• Build the Distribution

• Install the Distribution

• Perform Postinstallation Setup

188

https://dev.mysql.com/doc/internals/en/cmake.html
https://dev.mysql.com/doc/internals/en/cmake.html

Installing MySQL Using a Standard Source Distribution

Perform Preconfiguration Setup

On Unix, set up the mysql user that owns the database directory and that should be used to run and
execute the MySQL server, and the group to which this user belongs. For details, see Create a mysql User
and Group. Then perform the following steps as the mysql user, except as noted.

Obtain and Unpack the Distribution

Pick the directory under which you want to unpack the distribution and change location into it.

Obtain a distribution file using the instructions in Section 2.1.3, “How to Get MySQL”.

Unpack the distribution into the current directory:

• To unpack a compressed tar file, tar can decompress and unpack the distribution if it has z option
support:

$> tar zxvf mysql-VERSION.tar.gz

If your tar does not have z option support, use gunzip to decompress the distribution and tar to
unpack it:

$> gunzip < mysql-VERSION.tar.gz | tar xvf -

Alternatively, CMake can decompress and unpack the distribution:

$> cmake -E tar zxvf mysql-VERSION.tar.gz

• To unpack a Zip archive, use WinZip or another tool that can read .zip files.

Unpacking the distribution file creates a directory named mysql-VERSION.

Configure the Distribution

Change location into the top-level directory of the unpacked distribution:

$> cd mysql-VERSION

Build outside of the source tree to keep the tree clean. If the top-level source directory is named mysql-
src under your current working directory, you can build in a directory named build at the same level.
Create the directory and go there:

$> mkdir bld
$> cd bld

Configure the build directory. The minimum configuration command includes no options to override
configuration defaults:

$> cmake ../mysql-src

The build directory need not be outside the source tree. For example, you can build in a directory named
build under the top-level source tree. To do this, starting with mysql-src as your current working
directory, create the directory build and then go there:

$> mkdir build
$> cd build

Configure the build directory. The minimum configuration command includes no options to override
configuration defaults:

$> cmake ..

189

Installing MySQL Using a Standard Source Distribution

If you have multiple source trees at the same level (for example, to build multiple versions of MySQL),
the second strategy can be advantageous. The first strategy places all build directories at the same
level, which requires that you choose a unique name for each. With the second strategy, you can use the
same name for the build directory within each source tree. The following instructions assume this second
strategy.

On Windows, specify the development environment. For example, the following commands configure
MySQL for 32-bit or 64-bit builds, respectively:

$> cmake .. -G "Visual Studio 12 2013"

$> cmake .. -G "Visual Studio 12 2013 Win64"

On macOS, to use the Xcode IDE:

$> cmake .. -G Xcode

When you run Cmake, you might want to add options to the command line. Here are some examples:

• -DBUILD_CONFIG=mysql_release: Configure the source with the same build options used by Oracle
to produce binary distributions for official MySQL releases.

• -DCMAKE_INSTALL_PREFIX=dir_name: Configure the distribution for installation under a particular
location.

• -DCPACK_MONOLITHIC_INSTALL=1: Cause make package to generate a single installation file rather
than multiple files.

• -DWITH_DEBUG=1: Build the distribution with debugging support.

For a more extensive list of options, see Section 2.8.7, “MySQL Source-Configuration Options”.

To list the configuration options, use one of the following commands:

$> cmake .. -L # overview

$> cmake .. -LH # overview with help text

$> cmake .. -LAH # all params with help text

$> ccmake .. # interactive display

If CMake fails, you might need to reconfigure by running it again with different options. If you do
reconfigure, take note of the following:

• If CMake is run after it has previously been run, it may use information that was gathered during its
previous invocation. This information is stored in CMakeCache.txt. When CMake starts, it looks for
that file and reads its contents if it exists, on the assumption that the information is still correct. That
assumption is invalid when you reconfigure.

• Each time you run CMake, you must run make again to recompile. However, you may want to remove old
object files from previous builds first because they were compiled using different configuration options.

To prevent old object files or configuration information from being used, run these commands in the build
directory on Unix before re-running CMake:

$> make clean
$> rm CMakeCache.txt

Or, on Windows:

$> devenv MySQL.sln /clean
$> del CMakeCache.txt

190

Installing MySQL Using a Standard Source Distribution

Before asking on the MySQL Community Slack, check the files in the CMakeFiles directory for useful
information about the failure. To file a bug report, please use the instructions in Section 1.5, “How to Report
Bugs or Problems”.

Build the Distribution

On Unix:

$> make
$> make VERBOSE=1

The second command sets VERBOSE to show the commands for each compiled source.

Use gmake instead on systems where you are using GNU make and it has been installed as gmake.

On Windows:

$> devenv MySQL.sln /build RelWithDebInfo

If you have gotten to the compilation stage, but the distribution does not build, see Section 2.8.8, “Dealing
with Problems Compiling MySQL”, for help. If that does not solve the problem, please enter it into our
bugs database using the instructions given in Section 1.5, “How to Report Bugs or Problems”. If you
have installed the latest versions of the required tools, and they crash trying to process our configuration
files, please report that also. However, if you get a command not found error or a similar problem for
required tools, do not report it. Instead, make sure that all the required tools are installed and that your
PATH variable is set correctly so that your shell can find them.

Install the Distribution

On Unix:

$> make install

This installs the files under the configured installation directory (by default, /usr/local/mysql). You
might need to run the command as root.

To install in a specific directory, add a DESTDIR parameter to the command line:

$> make install DESTDIR="/opt/mysql"

Alternatively, generate installation package files that you can install where you like:

$> make package

This operation produces one or more .tar.gz files that can be installed like generic binary distribution
packages. See Section 2.2, “Installing MySQL on Unix/Linux Using Generic Binaries”. If you run CMake
with -DCPACK_MONOLITHIC_INSTALL=1, the operation produces a single file. Otherwise, it produces
multiple files.

On Windows, generate the data directory, then create a .zip archive installation package:

$> devenv MySQL.sln /build RelWithDebInfo /project initial_database
$> devenv MySQL.sln /build RelWithDebInfo /project package

You can install the resulting .zip archive where you like. See Section 2.3.4, “Installing MySQL on
Microsoft Windows Using a noinstall ZIP Archive”.

Perform Postinstallation Setup

The remainder of the installation process involves setting up the configuration file, creating the core
databases, and starting the MySQL server. For instructions, see Section 2.9, “Postinstallation Setup and
Testing”.

191

https://mysqlcommunity.slack.com/

Installing MySQL Using a Development Source Tree

Note

The accounts that are listed in the MySQL grant tables initially have no passwords.
After starting the server, you should set up passwords for them using the
instructions in Section 2.9, “Postinstallation Setup and Testing”.

2.8.5 Installing MySQL Using a Development Source Tree

This section describes how to install MySQL from the latest development source code, which is hosted on
GitHub. To obtain the MySQL Server source code from this repository hosting service, you can set up a
local MySQL Git repository.

On GitHub, MySQL Server and other MySQL projects are found on the MySQL page. The MySQL Server
project is a single repository that contains branches for several MySQL series.

• Prerequisites for Installing from Development Source

• Setting Up a MySQL Git Repository

Prerequisites for Installing from Development Source

To install MySQL from a development source tree, your system must satisfy the tool requirements listed at
Section 2.8.2, “Source Installation Prerequisites”.

Setting Up a MySQL Git Repository

To set up a MySQL Git repository on your machine:

1. Clone the MySQL Git repository to your machine. The following command clones the MySQL Git
repository to a directory named mysql-server. The initial download may take some time to complete,
depending on the speed of your connection.

$> git clone https://github.com/mysql/mysql-server.git
Cloning into 'mysql-server'...
remote: Counting objects: 1198513, done.
remote: Total 1198513 (delta 0), reused 0 (delta 0), pack-reused 1198513
Receiving objects: 100% (1198513/1198513), 1.01 GiB | 7.44 MiB/s, done.
Resolving deltas: 100% (993200/993200), done.
Checking connectivity... done.
Checking out files: 100% (25510/25510), done.

2. When the clone operation completes, the contents of your local MySQL Git repository appear similar to
the following:

~> cd mysql-server
~/mysql-server> ls
client extra mysys storage
cmake include packaging strings
CMakeLists.txt INSTALL plugin support-files
components libbinlogevents README testclients
config.h.cmake libchangestreams router unittest
configure.cmake libmysql run_doxygen.cmake utilities
Docs libservices scripts VERSION
Doxyfile-ignored LICENSE share vio
Doxyfile.in man sql win
doxygen_resources mysql-test sql-common

3. Use the git branch -r command to view the remote tracking branches for the MySQL repository.

~/mysql-server> git branch -r
 origin/5.7
 origin/8.0

192

https://github.com/
https://github.com/
https://github.com/mysql

Configuring SSL Library Support

 origin/HEAD -> origin/trunk
 origin/cluster-7.4
 origin/cluster-7.5
 origin/cluster-7.6
 origin/trunk

4. To view the branch that is checked out in your local repository, issue the git branch command.
When you clone the MySQL Git repository, the latest MySQL branch is checked out automatically. The
asterisk identifies the active branch.

~/mysql-server$ git branch
* trunk

5. To check out an earlier MySQL branch, run the git checkout command, specifying the branch
name. For example, to check out the MySQL 5.7 branch:

~/mysql-server$ git checkout 5.7
Checking out files: 100% (9600/9600), done.
Branch 5.7 set up to track remote branch 5.7 from origin.
Switched to a new branch '5.7'

6. To obtain changes made after your initial setup of the MySQL Git repository, switch to the branch you
want to update and issue the git pull command:

~/mysql-server$ git checkout 8.0
~/mysql-server$ git pull

To examine the commit history, use the git log command:

~/mysql-server$ git log

You can also browse commit history and source code on the GitHub MySQL site.

If you see changes or code that you have a question about, ask on MySQL Community Slack.

7. After you have cloned the MySQL Git repository and have checked out the branch you want to
build, you can build MySQL Server from the source code. Instructions are provided in Section 2.8.4,
“Installing MySQL Using a Standard Source Distribution”, except that you skip the part about obtaining
and unpacking the distribution.

Be careful about installing a build from a distribution source tree on a production machine. The
installation command may overwrite your live release installation. If you already have MySQL
installed and do not want to overwrite it, run CMake with values for the CMAKE_INSTALL_PREFIX,
MYSQL_TCP_PORT, and MYSQL_UNIX_ADDR options different from those used by your production
server. For additional information about preventing multiple servers from interfering with each other,
see Section 5.7, “Running Multiple MySQL Instances on One Machine”.

Play hard with your new installation. For example, try to make new features crash. Start by running
make test. See The MySQL Test Suite.

2.8.6 Configuring SSL Library Support

An SSL library is required for support of encrypted connections, entropy for random number generation,
and other encryption-related operations. Your system must support either OpenSSL or yaSSL:

• All MySQL Enterprise Edition binary distributions are compiled using OpenSSL. It is not possible to use
yaSSL with MySQL Enterprise Edition.

• Prior to MySQL 5.7.28, MySQL Community Edition binary distributions are compiled using yaSSL. As of
MySQL 5.7.28, support for yaSSL is removed and all MySQL builds use OpenSSL.

193

https://github.com/mysql
https://mysqlcommunity.slack.com/
https://dev.mysql.com/doc/extending-mysql/5.7/en/mysql-test-suite.html

MySQL Source-Configuration Options

• Prior to MySQL 5.7.28, MySQL Community Edition source distributions can be compiled using either
OpenSSL or yaSSL. As of MySQL 5.7.28, support for yaSSL is removed.

If you compile MySQL from a source distribution, CMake configures the distribution to use the installed
OpenSSL library by default.

To compile using OpenSSL, use this procedure:

1. Ensure that OpenSSL 1.0.1 or newer is installed on your system. If the installed OpenSSL version is
older than 1.0.1, CMake produces an error at MySQL configuration time. If it is necessary to obtain
OpenSSL, visit http://www.openssl.org.

2. The WITH_SSL CMake option determines which SSL library to use for compiling MySQL (see
Section 2.8.7, “MySQL Source-Configuration Options”). The default is -DWITH_SSL=system, which
uses OpenSSL. To make this explicit, specify that option. For example:

cmake . -DWITH_SSL=system

That command configures the distribution to use the installed OpenSSL library. Alternatively, to
explicitly specify the path name to the OpenSSL installation, use the following syntax. This can be
useful if you have multiple versions of OpenSSL installed, to prevent CMake from choosing the wrong
one:

cmake . -DWITH_SSL=path_name

3. Compile and install the distribution.

To check whether a mysqld server supports encrypted connections, examine the value of the have_ssl
system variable:

mysql> SHOW VARIABLES LIKE 'have_ssl';
+---------------+-------+
| Variable_name | Value |
+---------------+-------+
| have_ssl | YES |
+---------------+-------+

If the value is YES, the server supports encrypted connections. If the value is DISABLED, the server is
capable of supporting encrypted connections but was not started with the appropriate --ssl-xxx options
to enable encrypted connections to be used; see Section 6.3.1, “Configuring MySQL to Use Encrypted
Connections”.

To determine whether a server was compiled using OpenSSL or yaSSL, check the existence of any of the
system or status variables that are present only for OpenSSL. See Section 6.3.4, “SSL Library-Dependent
Capabilities”.

2.8.7 MySQL Source-Configuration Options

The CMake program provides a great deal of control over how you configure a MySQL source distribution.
Typically, you do this using options on the CMake command line. For information about options supported
by CMake, run either of these commands in the top-level source directory:

$> cmake . -LH

$> ccmake .

You can also affect CMake using certain environment variables. See Section 4.9, “Environment Variables”.

For boolean options, the value may be specified as 1 or ON to enable the option, or as 0 or OFF to disable
the option.

194

http://www.openssl.org

MySQL Source-Configuration Options

Many options configure compile-time defaults that can be overridden at server startup. For example, the
CMAKE_INSTALL_PREFIX, MYSQL_TCP_PORT, and MYSQL_UNIX_ADDR options that configure the default
installation base directory location, TCP/IP port number, and Unix socket file can be changed at server
startup with the --basedir, --port, and --socket options for mysqld. Where applicable, configuration
option descriptions indicate the corresponding mysqld startup option.

The following sections provide more information about CMake options.

• CMake Option Reference

• General Options

• Installation Layout Options

• Storage Engine Options

• Feature Options

• Compiler Flags

• CMake Options for Compiling NDB Cluster

CMake Option Reference

The following table shows the available CMake options. In the Default column, PREFIX stands for the
value of the CMAKE_INSTALL_PREFIX option, which specifies the installation base directory. This value is
used as the parent location for several of the installation subdirectories.

Table 2.14 MySQL Source-Configuration Option Reference (CMake)

Formats Description Default Introduced Removed

BUILD_CONFIG Use same build
options as official
releases

CMAKE_BUILD_TYPEType of build to
produce

RelWithDebInfo

CMAKE_CXX_FLAGS Flags for C++
Compiler

CMAKE_C_FLAGS Flags for C
Compiler

CMAKE_INSTALL_PREFIXInstallation base
directory

/usr/local/
mysql

COMPILATION_COMMENTComment about
compilation
environment

CPACK_MONOLITHIC_INSTALLWhether package
build produces
single file

OFF

DEFAULT_CHARSET The default server
character set

latin1

DEFAULT_COLLATIONThe default server
collation

latin1_swedish_ci

DISABLE_PSI_CONDExclude
Performance

OFF

195

MySQL Source-Configuration Options

Formats Description Default Introduced Removed
Schema condition
instrumentation

DISABLE_PSI_FILEExclude
Performance
Schema file
instrumentation

OFF

DISABLE_PSI_IDLEExclude
Performance
Schema idle
instrumentation

OFF

DISABLE_PSI_MEMORYExclude
Performance
Schema memory
instrumentation

OFF

DISABLE_PSI_METADATAExclude
Performance
Schema metadata
instrumentation

OFF

DISABLE_PSI_MUTEXExclude
Performance
Schema mutex
instrumentation

OFF

DISABLE_PSI_PS Exclude the
performance
schema prepared
statements

OFF

DISABLE_PSI_RWLOCKExclude
Performance
Schema rwlock
instrumentation

OFF

DISABLE_PSI_SOCKETExclude
Performance
Schema socket
instrumentation

OFF

DISABLE_PSI_SP Exclude
Performance
Schema stored
program
instrumentation

OFF

DISABLE_PSI_STAGEExclude
Performance
Schema stage
instrumentation

OFF

DISABLE_PSI_STATEMENTExclude
Performance
Schema statement
instrumentation

OFF

196

MySQL Source-Configuration Options

Formats Description Default Introduced Removed

DISABLE_PSI_STATEMENT_DIGESTExclude
Performance
Schema
statements_digest
instrumentation

OFF

DISABLE_PSI_TABLEExclude
Performance
Schema table
instrumentation

OFF

DISABLE_PSI_THREADExclude the
performance
schema thread
instrumentation

OFF

DISABLE_PSI_TRANSACTIONExclude the
performance
schema transaction
instrumentation

OFF

DOWNLOAD_BOOST Whether to
download the Boost
library

OFF

DOWNLOAD_BOOST_TIMEOUTTimeout in seconds
for downloading the
Boost library

600

ENABLED_LOCAL_INFILEWhether to enable
LOCAL for LOAD
DATA

OFF

ENABLED_PROFILINGWhether to enable
query profiling code

ON

ENABLE_DOWNLOADSWhether to
download optional
files

OFF

ENABLE_DTRACE Whether to include
DTrace support

ENABLE_GCOV Whether to include
gcov support

ENABLE_GPROF Enable gprof
(optimized Linux
builds only)

OFF

FORCE_UNSUPPORTED_COMPILERWhether to permit
unsupported
compilers

OFF

IGNORE_AIO_CHECKWith -
DBUILD_CONFIG=mysql_release,
ignore libaio check

OFF

INSTALL_BINDIR User executables
directory

PREFIX/bin

197

MySQL Source-Configuration Options

Formats Description Default Introduced Removed

INSTALL_DOCDIR Documentation
directory

PREFIX/docs

INSTALL_DOCREADMEDIRREADME file
directory

PREFIX

INSTALL_INCLUDEDIRHeader file directory PREFIX/include

INSTALL_INFODIR Info file directory PREFIX/docs

INSTALL_LAYOUT Select predefined
installation layout

STANDALONE

INSTALL_LIBDIR Library file directory PREFIX/lib

INSTALL_MANDIR Manual page
directory

PREFIX/man

INSTALL_MYSQLKEYRINGDIRDirectory for
keyring_file plugin
data file

platform
specific

5.7.11

INSTALL_MYSQLSHAREDIRShared data
directory

PREFIX/share

INSTALL_MYSQLTESTDIRmysql-test directory PREFIX/mysql-
test

INSTALL_PKGCONFIGDIRDirectory for
mysqlclient.pc pkg-
config file

INSTALL_LIBDIR/
pkgconfig

INSTALL_PLUGINDIRPlugin directory PREFIX/lib/
plugin

INSTALL_SBINDIR Server executable
directory

PREFIX/bin

INSTALL_SCRIPTDIRScripts directory PREFIX/scripts

INSTALL_SECURE_FILE_PRIVDIRsecure_file_priv
default value

platform
specific

INSTALL_SECURE_FILE_PRIV_EMBEDDEDDIRsecure_file_priv
default value for
libmysqld

INSTALL_SHAREDIRaclocal/mysql.m4
installation directory

PREFIX/share

INSTALL_SUPPORTFILESDIRExtra support files
directory

PREFIX/support-
files

MAX_INDEXES Maximum indexes
per table

64

MEMCACHED_HOME Path to
memcached;
obsolete

[none] 5.7.33

MUTEX_TYPE InnoDB mutex type event

MYSQLX_TCP_PORT TCP/IP port number
used by X Plugin

33060 5.7.17

198

MySQL Source-Configuration Options

Formats Description Default Introduced Removed

MYSQLX_UNIX_ADDRUnix socket file
used by X Plugin

/tmp/
mysqlx.sock

5.7.15

MYSQL_DATADIR Data directory

MYSQL_MAINTAINER_MODEWhether to
enable MySQL
maintainer-specific
development
environment

OFF

MYSQL_PROJECT_NAMEWindows/macOS
project name

MySQL

MYSQL_TCP_PORT TCP/IP port number 3306

MYSQL_UNIX_ADDR Unix socket file /tmp/mysql.sock

ODBC_INCLUDES ODBC includes
directory

ODBC_LIB_DIR ODBC library
directory

OPTIMIZER_TRACE Whether to support
optimizer tracing

REPRODUCIBLE_BUILDTake extra care to
create a build result
independent of build
location and time

5.7.19

SUNPRO_CXX_LIBRARYClient link library on
Solaris 10+

SYSCONFDIR Option file directory

SYSTEMD_PID_DIR Directory for PID file
under systemd

/var/run/mysqld

SYSTEMD_SERVICE_NAMEName of MySQL
service under
systemd

mysqld

TMPDIR tmpdir default value

WIN_DEBUG_NO_INLINEWhether to disable
function inlining

OFF

WITHOUT_SERVER Do not build the
server; internal use
only

OFF

WITHOUT_xxx_STORAGE_ENGINEExclude storage
engine xxx from
build

WITH_ASAN Enable
AddressSanitizer

OFF

WITH_ASAN_SCOPE Enable
AddressSanitizer -
fsanitize-address-

OFF 5.7.21

199

MySQL Source-Configuration Options

Formats Description Default Introduced Removed
use-after-scope
Clang flag

WITH_AUTHENTICATION_LDAPWhether to report
error if LDAP
authentication
plugins cannot be
built

OFF 5.7.19

WITH_AUTHENTICATION_PAMBuild PAM
authentication
plugin

OFF

WITH_AWS_SDK Location of
Amazon Web
Services software
development kit

5.7.19

WITH_BOOST The location of
the Boost library
sources

WITH_BUNDLED_LIBEVENTUse bundled
libevent
when building
ndbmemcache;
obsolete

ON 5.7.33

WITH_BUNDLED_MEMCACHEDUse bundled
memcached
when building
ndbmemcache;
obsolete

ON 5.7.33

WITH_CLASSPATH Classpath to use
when building
MySQL Cluster
Connector for Java.
Default is an empty
string.

WITH_CLIENT_PROTOCOL_TRACINGBuild client-side
protocol tracing
framework

ON

WITH_CURL Location of curl
library

5.7.19

WITH_DEBUG Whether to include
debugging support

OFF

WITH_DEFAULT_COMPILER_OPTIONSWhether to use
default compiler
options

ON

WITH_DEFAULT_FEATURE_SETWhether to use
default feature set

ON

200

MySQL Source-Configuration Options

Formats Description Default Introduced Removed

WITH_EDITLINE Which libedit/
editline library to
use

bundled

WITH_EMBEDDED_SERVERWhether to build
embedded server

OFF

WITH_EMBEDDED_SHARED_LIBRARYWhether to build a
shared embedded
server library

OFF

WITH_ERROR_INSERTEnable error
injection in the NDB
storage engine.
Should not be
used for building
binaries intended
for production.

OFF

WITH_EXTRA_CHARSETSWhich extra
character sets to
include

all

WITH_GMOCK Path to googlemock
distribution

WITH_INNODB_EXTRA_DEBUGWhether to include
extra debugging
support for InnoDB.

OFF

WITH_INNODB_MEMCACHEDWhether to
generate
memcached shared
libraries.

OFF

WITH_KEYRING_TESTBuild the keyring
test program

OFF 5.7.11

WITH_LDAP Internal use only 5.7.29

WITH_LIBEVENT Which libevent
library to use

bundled

WITH_LIBWRAP Whether to include
libwrap (TCP
wrappers) support

OFF

WITH_LZ4 Type of LZ4 library
support

bundled 5.7.14

WITH_MECAB Compiles MeCab

WITH_MSAN Enable
MemorySanitizer

OFF

WITH_MSCRT_DEBUGEnable Visual
Studio CRT
memory leak tracing

OFF

WITH_NDBAPI_EXAMPLESBuild API example
programs.

OFF

201

MySQL Source-Configuration Options

Formats Description Default Introduced Removed

WITH_NDBCLUSTER NDB 8.0.30 and
earlier: Build NDB
storage engine.
NDB 8.0.31 and
later: Deprecated;
use WITH_NDB
instead

ON

WITH_NDBCLUSTER_STORAGE_ENGINEPrior to NDB
8.0.31, this was
for internal use
only. NDB 8.0.31
and later: toggles
(only) inclusion of
NDBCLUSTER
storage engine

ON

WITH_NDBMTD Build multithreaded
data node binary

ON

WITH_NDB_BINLOG Enable binary
logging by default
by mysqld.

ON

WITH_NDB_DEBUG Produce a debug
build for testing or
troubleshooting.

OFF

WITH_NDB_JAVA Enable building of
Java and ClusterJ
support. Enabled by
default. Supported
in MySQL Cluster
only.

ON

WITH_NDB_PORT Default port used
by a management
server built with
this option. If this
option was not
used to build it,
the management
server's default port
is 1186.

[none]

WITH_NDB_TEST Include NDB API
test programs.

OFF

WITH_NUMA Set NUMA memory
allocation policy

5.7.17

WITH_PROTOBUF Which Protocol
Buffers package to
use

bundled 5.7.12

WITH_RAPID Whether to build
rapid development
cycle plugins

ON 5.7.12

202

MySQL Source-Configuration Options

Formats Description Default Introduced Removed

WITH_SASL Internal use only 5.7.29

WITH_SSL Type of SSL
support

system

WITH_SYSTEMD Enable installation
of systemd support
files

OFF

WITH_TEST_TRACE_PLUGINBuild test protocol
trace plugin

OFF

WITH_UBSAN Enable Undefined
Behavior Sanitizer

OFF

WITH_UNIT_TESTS Compile MySQL
with unit tests

ON

WITH_UNIXODBC Enable unixODBC
support

OFF

WITH_VALGRIND Whether to compile
in Valgrind header
files

OFF

WITH_ZLIB Type of zlib support bundled

WITH_xxx_STORAGE_ENGINECompile storage
engine xxx statically
into server

General Options

• -DBUILD_CONFIG=mysql_release

This option configures a source distribution with the same build options used by Oracle to produce binary
distributions for official MySQL releases.

• -DCMAKE_BUILD_TYPE=type

The type of build to produce:

• RelWithDebInfo: Enable optimizations and generate debugging information. This is the default
MySQL build type.

• Debug: Disable optimizations and generate debugging information. This build type is also used
if the WITH_DEBUG option is enabled. That is, -DWITH_DEBUG=1 has the same effect as -
DCMAKE_BUILD_TYPE=Debug.

• -DCPACK_MONOLITHIC_INSTALL=bool

This option affects whether the make package operation produces multiple installation package files or
a single file. If disabled, the operation produces multiple installation package files, which may be useful
if you want to install only a subset of a full MySQL installation. If enabled, it produces a single file for
installing everything.

203

MySQL Source-Configuration Options

Installation Layout Options

The CMAKE_INSTALL_PREFIX option indicates the base installation directory. Other options with names
of the form INSTALL_xxx that indicate component locations are interpreted relative to the prefix and their
values are relative pathnames. Their values should not include the prefix.

• -DCMAKE_INSTALL_PREFIX=dir_name

The installation base directory.

This value can be set at server startup using the --basedir option.

• -DINSTALL_BINDIR=dir_name

Where to install user programs.

• -DINSTALL_DOCDIR=dir_name

Where to install documentation.

• -DINSTALL_DOCREADMEDIR=dir_name

Where to install README files.

• -DINSTALL_INCLUDEDIR=dir_name

Where to install header files.

• -DINSTALL_INFODIR=dir_name

Where to install Info files.

• -DINSTALL_LAYOUT=name

Select a predefined installation layout:

• STANDALONE: Same layout as used for .tar.gz and .zip packages. This is the default.

• RPM: Layout similar to RPM packages.

• SVR4: Solaris package layout.

• DEB: DEB package layout (experimental).

You can select a predefined layout but modify individual component installation locations by specifying
other options. For example:

cmake . -DINSTALL_LAYOUT=SVR4 -DMYSQL_DATADIR=/var/mysql/data

The INSTALL_LAYOUT value determines the default value of the secure_file_priv,
keyring_encrypted_file_data, and keyring_file_data system variables. See the descriptions
of those variables in Section 5.1.7, “Server System Variables”, and Section 6.4.4.12, “Keyring System
Variables”.

• -DINSTALL_LIBDIR=dir_name

Where to install library files.

• -DINSTALL_MANDIR=dir_name

204

MySQL Source-Configuration Options

Where to install manual pages.

• -DINSTALL_MYSQLKEYRINGDIR=dir_path

The default directory to use as the location of the keyring_file plugin data file. The default value is
platform specific and depends on the value of the INSTALL_LAYOUT CMake option; see the description
of the keyring_file_data system variable in Section 5.1.7, “Server System Variables”.

This option was added in MySQL 5.7.11.

• -DINSTALL_MYSQLSHAREDIR=dir_name

Where to install shared data files.

• -DINSTALL_MYSQLTESTDIR=dir_name

Where to install the mysql-test directory. To suppress installation of this directory, explicitly set the
option to the empty value (-DINSTALL_MYSQLTESTDIR=).

• -DINSTALL_PKGCONFIGDIR=dir_name

The directory in which to install the mysqlclient.pc file for use by pkg-config. The default value
is INSTALL_LIBDIR/pkgconfig, unless INSTALL_LIBDIR ends with /mysql, in which case that is
removed first.

• -DINSTALL_PLUGINDIR=dir_name

The location of the plugin directory.

This value can be set at server startup with the --plugin_dir option.

• -DINSTALL_SBINDIR=dir_name

Where to install the mysqld server.

• -DINSTALL_SCRIPTDIR=dir_name

Where to install mysql_install_db.

• -DINSTALL_SECURE_FILE_PRIVDIR=dir_name

The default value for the secure_file_priv system variable. The default value is platform
specific and depends on the value of the INSTALL_LAYOUT CMake option; see the description of the
secure_file_priv system variable in Section 5.1.7, “Server System Variables”.

To set the value for the libmysqld embedded server, use
INSTALL_SECURE_FILE_PRIV_EMBEDDEDDIR.

• -DINSTALL_SECURE_FILE_PRIV_EMBEDDEDDIR=dir_name

The default value for the secure_file_priv system variable, for the libmysqld embedded server.

Note

The libmysqld embedded server library is deprecated as of MySQL 5.7.19;
expect it to be removed in MySQL 8.0.

• -DINSTALL_SHAREDIR=dir_name

205

MySQL Source-Configuration Options

Where to install aclocal/mysql.m4.

• -DINSTALL_SUPPORTFILESDIR=dir_name

Where to install extra support files.

• -DMYSQL_DATADIR=dir_name

The location of the MySQL data directory.

This value can be set at server startup with the --datadir option.

• -DODBC_INCLUDES=dir_name

The location of the ODBC includes directory, which may be used while configuring Connector/ODBC.

• -DODBC_LIB_DIR=dir_name

The location of the ODBC library directory, which may be used while configuring Connector/ODBC.

• -DSYSCONFDIR=dir_name

The default my.cnf option file directory.

This location cannot be set at server startup, but you can start the server with a given option file using
the --defaults-file=file_name option, where file_name is the full path name to the file.

• -DSYSTEMD_PID_DIR=dir_name

The name of the directory in which to create the PID file when MySQL is managed by systemd. The
default is /var/run/mysqld; this might be changed implicitly according to the INSTALL_LAYOUT
value.

This option is ignored unless WITH_SYSTEMD is enabled.

• -DSYSTEMD_SERVICE_NAME=name

The name of the MySQL service to use when MySQL is managed by systemd. The default is mysqld;
this might be changed implicitly according to the INSTALL_LAYOUT value.

This option is ignored unless WITH_SYSTEMD is enabled.

• -DTMPDIR=dir_name

The default location to use for the tmpdir system variable. If unspecified, the value defaults to
P_tmpdir in <stdio.h>.

Storage Engine Options

Storage engines are built as plugins. You can build a plugin as a static module (compiled into the server)
or a dynamic module (built as a dynamic library that must be installed into the server using the INSTALL
PLUGIN statement or the --plugin-load option before it can be used). Some plugins might not support
static or dynamic building.

The InnoDB, MyISAM, MERGE, MEMORY, and CSV engines are mandatory (always compiled into the server)
and need not be installed explicitly.

206

MySQL Source-Configuration Options

To compile a storage engine statically into the server, use -DWITH_engine_STORAGE_ENGINE=1.
Some permissible engine values are ARCHIVE, BLACKHOLE, EXAMPLE, FEDERATED, and PARTITION
(partitioning support). Examples:

-DWITH_ARCHIVE_STORAGE_ENGINE=1
-DWITH_BLACKHOLE_STORAGE_ENGINE=1

To build MySQL with support for NDB Cluster, use the WITH_NDBCLUSTER option.

Note

WITH_NDBCLUSTER is supported only when building NDB Cluster using the NDB
Cluster sources. It cannot be used to enable clustering support in other MySQL
source trees or distributions. In NDB Cluster source distributions, it is enabled by
default. See Section 21.3.1.4, “Building NDB Cluster from Source on Linux”, and
Section 21.3.2.2, “Compiling and Installing NDB Cluster from Source on Windows”,
for more information.

Note

It is not possible to compile without Performance Schema support. If it is desired
to compile without particular types of instrumentation, that can be done with the
following CMake options:

DISABLE_PSI_COND
DISABLE_PSI_FILE
DISABLE_PSI_IDLE
DISABLE_PSI_MEMORY
DISABLE_PSI_METADATA
DISABLE_PSI_MUTEX
DISABLE_PSI_PS
DISABLE_PSI_RWLOCK
DISABLE_PSI_SOCKET
DISABLE_PSI_SP
DISABLE_PSI_STAGE
DISABLE_PSI_STATEMENT
DISABLE_PSI_STATEMENT_DIGEST
DISABLE_PSI_TABLE
DISABLE_PSI_THREAD
DISABLE_PSI_TRANSACTION

For example, to compile without mutex instrumentation, configure MySQL using -
DDISABLE_PSI_MUTEX=1.

To exclude a storage engine from the build, use -DWITH_engine_STORAGE_ENGINE=0. Examples:

-DWITH_EXAMPLE_STORAGE_ENGINE=0
-DWITH_FEDERATED_STORAGE_ENGINE=0
-DWITH_PARTITION_STORAGE_ENGINE=0

It is also possible to exclude a storage engine from the build using -
DWITHOUT_engine_STORAGE_ENGINE=1 (but -DWITH_engine_STORAGE_ENGINE=0 is preferred).
Examples:

-DWITHOUT_EXAMPLE_STORAGE_ENGINE=1
-DWITHOUT_FEDERATED_STORAGE_ENGINE=1
-DWITHOUT_PARTITION_STORAGE_ENGINE=1

If neither -DWITH_engine_STORAGE_ENGINE nor -DWITHOUT_engine_STORAGE_ENGINE are
specified for a given storage engine, the engine is built as a shared module, or excluded if it cannot be built
as a shared module.

207

MySQL Source-Configuration Options

Feature Options

• -DCOMPILATION_COMMENT=string

A descriptive comment about the compilation environment.

• -DDEFAULT_CHARSET=charset_name

The server character set. By default, MySQL uses the latin1 (cp1252 West European) character set.

charset_name may be one of binary, armscii8, ascii, big5, cp1250, cp1251, cp1256,
cp1257, cp850, cp852, cp866, cp932, dec8, eucjpms, euckr, gb2312, gbk, geostd8,
greek, hebrew, hp8, keybcs2, koi8r, koi8u, latin1, latin2, latin5, latin7, macce,
macroman, sjis, swe7, tis620, ucs2, ujis, utf8, utf8mb4, utf16, utf16le, utf32. The
permissible character sets are listed in the cmake/character_sets.cmake file as the value of
CHARSETS_AVAILABLE.

This value can be set at server startup with the --character-set-server option.

• -DDEFAULT_COLLATION=collation_name

The server collation. By default, MySQL uses latin1_swedish_ci. Use the SHOW COLLATION
statement to determine which collations are available for each character set.

This value can be set at server startup with the --collation_server option.

• -DDISABLE_PSI_COND=bool

Whether to exclude the Performance Schema condition instrumentation. The default is OFF (include).

• -DDISABLE_PSI_FILE=bool

Whether to exclude the Performance Schema file instrumentation. The default is OFF (include).

• -DDISABLE_PSI_IDLE=bool

Whether to exclude the Performance Schema idle instrumentation. The default is OFF (include).

• -DDISABLE_PSI_MEMORY=bool

Whether to exclude the Performance Schema memory instrumentation. The default is OFF (include).

• -DDISABLE_PSI_METADATA=bool

Whether to exclude the Performance Schema metadata instrumentation. The default is OFF (include).

• -DDISABLE_PSI_MUTEX=bool

Whether to exclude the Performance Schema mutex instrumentation. The default is OFF (include).

• -DDISABLE_PSI_RWLOCK=bool

Whether to exclude the Performance Schema rwlock instrumentation. The default is OFF (include).

• -DDISABLE_PSI_SOCKET=bool

Whether to exclude the Performance Schema socket instrumentation. The default is OFF (include).

• -DDISABLE_PSI_SP=bool

208

MySQL Source-Configuration Options

Whether to exclude the Performance Schema stored program instrumentation. The default is OFF
(include).

• -DDISABLE_PSI_STAGE=bool

Whether to exclude the Performance Schema stage instrumentation. The default is OFF (include).

• -DDISABLE_PSI_STATEMENT=bool

Whether to exclude the Performance Schema statement instrumentation. The default is OFF (include).

• -DDISABLE_PSI_STATEMENT_DIGEST=bool

Whether to exclude the Performance Schema statement digest instrumentation. The default is OFF
(include).

• -DDISABLE_PSI_TABLE=bool

Whether to exclude the Performance Schema table instrumentation. The default is OFF (include).

• -DDISABLE_PSI_PS=bool

Exclude the Performance Schema prepared statements instances instrumentation. The default is OFF
(include).

• -DDISABLE_PSI_THREAD=bool

Exclude the Performance Schema thread instrumentation. The default is OFF (include).

Only disable threads when building without any instrumentation, because other instrumentations have a
dependency on threads.

• -DDISABLE_PSI_TRANSACTION=bool

Exclude the Performance Schema transaction instrumentation. The default is OFF (include).

• -DDOWNLOAD_BOOST=bool

Whether to download the Boost library. The default is OFF.

See the WITH_BOOST option for additional discussion about using Boost.

• -DDOWNLOAD_BOOST_TIMEOUT=seconds

The timeout in seconds for downloading the Boost library. The default is 600 seconds.

See the WITH_BOOST option for additional discussion about using Boost.

• -DENABLE_DOWNLOADS=bool

Whether to download optional files. For example, with this option enabled, CMake downloads the Google
Test distribution that is used by the test suite to run unit tests.

209

MySQL Source-Configuration Options

• -DENABLE_DTRACE=bool

Whether to include support for DTrace probes. For information about DTrace, wee Section 5.8.4,
“Tracing mysqld Using DTrace”

This option is deprecated because support for DTrace is deprecated in MySQL 5.7 and is removed in
MySQL 8.0.

• -DENABLE_GCOV=bool

Whether to include gcov support (Linux only).

• -DENABLE_GPROF=bool

Whether to enable gprof (optimized Linux builds only).

• -DENABLED_LOCAL_INFILE=bool

This option controls the compiled-in default LOCAL capability for the MySQL client library. Clients that
make no explicit arrangements therefore have LOCAL capability disabled or enabled according to the
ENABLED_LOCAL_INFILE setting specified at MySQL build time.

By default, the client library in MySQL binary distributions is compiled with ENABLED_LOCAL_INFILE
disabled. (Prior to MySQL 5.7.6, it was enabled by default.) If you compile MySQL from source,
configure it with ENABLED_LOCAL_INFILE disabled or enabled based on whether clients that make no
explicit arrangements should have LOCAL capability disabled or enabled, respectively.

ENABLED_LOCAL_INFILE controls the default for client-side LOCAL capability. For the server, the
local_infile system variable controls server-side LOCAL capability. To explicitly cause the server
to refuse or permit LOAD DATA LOCAL statements (regardless of how client programs and libraries
are configured at build time or runtime), start mysqld with --local-infile disabled or enabled,
respectively. local_infile can also be set at runtime. See Section 6.1.6, “Security Considerations for
LOAD DATA LOCAL”.

• -DENABLED_PROFILING=bool

Whether to enable query profiling code (for the SHOW PROFILE and SHOW PROFILES statements).

• -DFORCE_UNSUPPORTED_COMPILER=bool

By default, CMake checks for minimum versions of supported compilers: Visual Studio 2013 (Windows);
GCC 4.4 or Clang 3.3 (Linux); Developer Studio 12.5 (Solaris server); Developer Studio 12.2 or GCC
4.4 (Solaris client library); Clang 3.3 (macOS), Clang 3.3 (FreeBSD). To disable this check, use -
DFORCE_UNSUPPORTED_COMPILER=ON.

• -DIGNORE_AIO_CHECK=bool

If the -DBUILD_CONFIG=mysql_release option is given on Linux, the libaio library must be linked
in by default. If you do not have libaio or do not want to install it, you can suppress the check for it by
specifying -DIGNORE_AIO_CHECK=1.

• -DMAX_INDEXES=num

The maximum number of indexes per table. The default is 64. The maximum is 255. Values smaller than
64 are ignored and the default of 64 is used.

210

MySQL Source-Configuration Options

• -DMYSQL_MAINTAINER_MODE=bool

Whether to enable a MySQL maintainer-specific development environment. If enabled, this option
causes compiler warnings to become errors.

• -DMUTEX_TYPE=type

The mutex type used by InnoDB. Options include:

• event: Use event mutexes. This is the default value and the original InnoDB mutex implementation.

• sys: Use POSIX mutexes on UNIX systems. Use CRITICAL_SECTION objects on Windows, if
available.

• futex: Use Linux futexes instead of condition variables to schedule waiting threads.

• -DMYSQLX_TCP_PORT=port_num

The port number on which X Plugin listens for TCP/IP connections. The default is 33060.

This value can be set at server startup with the mysqlx_port system variable.

• -DMYSQLX_UNIX_ADDR=file_name

The Unix socket file path on which the server listens for X Plugin socket connections. This must be an
absolute path name. The default is /tmp/mysqlx.sock.

This value can be set at server startup with the mysqlx_port system variable.

• -DMYSQL_PROJECT_NAME=name

For Windows or macOS, the project name to incorporate into the project file name.

• -DMYSQL_TCP_PORT=port_num

The port number on which the server listens for TCP/IP connections. The default is 3306.

This value can be set at server startup with the --port option.

• -DMYSQL_UNIX_ADDR=file_name

The Unix socket file path on which the server listens for socket connections. This must be an absolute
path name. The default is /tmp/mysql.sock.

This value can be set at server startup with the --socket option.

• -DOPTIMIZER_TRACE=bool

Whether to support optimizer tracing. See Section 8.15, “Tracing the Optimizer”.

• -DREPRODUCIBLE_BUILD=bool

For builds on Linux systems, this option controls whether to take extra care to create a build result
independent of build location and time.

This option was added in MySQL 5.7.19.

• -DWIN_DEBUG_NO_INLINE=bool

Whether to disable function inlining on Windows. The default is OFF (inlining enabled).

211

MySQL Source-Configuration Options

• -DWITH_ASAN=bool

Whether to enable the AddressSanitizer, for compilers that support it. The default is OFF.

• -DWITH_ASAN_SCOPE=bool

Whether to enable the AddressSanitizer -fsanitize-address-use-after-scope Clang flag for
use-after-scope detection. The default is off. To use this option, -DWITH_ASAN must also be enabled.

• -DWITH_AUTHENTICATION_LDAP=bool

Whether to report an error if the LDAP authentication plugins cannot be built:

• If this option is disabled (the default), the LDAP plugins are built if the required header files and
libraries are found. If they are not, CMake displays a note about it.

• If this option is enabled, a failure to find the required header file and libraries causes CMake to
produce an error, preventing the server from being built.

For information about LDAP authentication, see Section 6.4.1.9, “LDAP Pluggable Authentication”. This
option was added in MySQL 5.7.19.

• -DWITH_AUTHENTICATION_PAM=bool

Whether to build the PAM authentication plugin, for source trees that include this plugin. (See
Section 6.4.1.7, “PAM Pluggable Authentication”.) If this option is specified and the plugin cannot be
compiled, the build fails.

• -DWITH_AWS_SDK=path_name

The location of the Amazon Web Services software development kit.

This option was added in MySQL 5.7.19.

• -DWITH_BOOST=path_name

The Boost library is required to build MySQL. These CMake options enable control over the library
source location, and whether to download it automatically:

• -DWITH_BOOST=path_name specifies the Boost library directory location. It is also possible to specify
the Boost location by setting the BOOST_ROOT or WITH_BOOST environment variable.

As of MySQL 5.7.11, -DWITH_BOOST=system is also permitted and indicates that the correct version
of Boost is installed on the compilation host in the standard location. In this case, the installed version
of Boost is used rather than any version included with a MySQL source distribution.

• -DDOWNLOAD_BOOST=bool specifies whether to download the Boost source if it is not present in the
specified location. The default is OFF.

• -DDOWNLOAD_BOOST_TIMEOUT=seconds the timeout in seconds for downloading the Boost library.
The default is 600 seconds.

For example, if you normally build MySQL placing the object output in the bld subdirectory of your
MySQL source tree, you can build with Boost like this:

mkdir bld
cd bld

212

MySQL Source-Configuration Options

cmake .. -DDOWNLOAD_BOOST=ON -DWITH_BOOST=$HOME/my_boost

This causes Boost to be downloaded into the my_boost directory under your home directory. If the
required Boost version is already there, no download is done. If the required Boost version changes, the
newer version is downloaded.

If Boost is already installed locally and your compiler finds the Boost header files on its own, it may not
be necessary to specify the preceding CMake options. However, if the version of Boost required by
MySQL changes and the locally installed version has not been upgraded, you may have build problems.
Using the CMake options should give you a successful build.

With the above settings that allow Boost download into a specified location, when the required Boost
version changes, you need to remove the bld folder, recreate it, and perform the cmake step again.
Otherwise, the new Boost version might not get downloaded, and compilation might fail.

• -DWITH_CLIENT_PROTOCOL_TRACING=bool

Whether to build the client-side protocol tracing framework into the client library. By default, this option is
enabled.

For information about writing protocol trace client plugins, see Writing Protocol Trace Plugins.

See also the WITH_TEST_TRACE_PLUGIN option.

• -DWITH_CURL=curl_type

The location of the curl library. curl_type can be system (use the system curl library) or a path
name to the curl library.

This option was added in MySQL 5.7.19.

• -DWITH_DEBUG=bool

Whether to include debugging support.

Configuring MySQL with debugging support enables you to use the --debug="d,parser_debug"
option when you start the server. This causes the Bison parser that is used to process SQL statements
to dump a parser trace to the server's standard error output. Typically, this output is written to the error
log.

Sync debug checking for the InnoDB storage engine is defined under UNIV_DEBUG and is available
when debugging support is compiled in using the WITH_DEBUG option. When debugging support is
compiled in, the innodb_sync_debug configuration option can be used to enable or disable InnoDB
sync debug checking.

As of MySQL 5.7.18, enabling WITH_DEBUG also enables Debug Sync. For a description of the Debug
Sync facility and how to use synchronization points, see MySQL Internals: Test Synchronization.

• -DWITH_DEFAULT_FEATURE_SET=bool

Whether to use the flags from cmake/build_configurations/feature_set.cmake.

• -DWITH_EDITLINE=value

Which libedit/editline library to use. The permitted values are bundled (the default) and system.

WITH_EDITLINE replaces WITH_LIBEDIT, which has been removed.
213

https://dev.mysql.com/doc/extending-mysql/5.7/en/writing-protocol-trace-plugins.html
https://dev.mysql.com/doc/internals/en/test-synchronization.html

MySQL Source-Configuration Options

• -DWITH_EMBEDDED_SERVER=bool

Whether to build the libmysqld embedded server library.

Note

The libmysqld embedded server library is deprecated as of MySQL 5.7.17 and
has been removed in MySQL 8.0.

• -DWITH_EMBEDDED_SHARED_LIBRARY=bool

Whether to build a shared libmysqld embedded server library.

Note

The libmysqld embedded server library is deprecated as of MySQL 5.7.17 and
has been removed in MySQL 8.0.

• -DWITH_EXTRA_CHARSETS=name

Which extra character sets to include:

• all: All character sets. This is the default.

• complex: Complex character sets.

• none: No extra character sets.

• -DWITH_GMOCK=path_name

The path to the googlemock distribution, for use with Google Test-based unit tests. The option value
is the path to the distribution Zip file. Alternatively, set the WITH_GMOCK environment variable to the
path name. It is also possible to use -DENABLE_DOWNLOADS=1, in which case CMake downloads the
distribution from GitHub.

If you build MySQL without the Google Test unit tests (by configuring wihout WITH_GMOCK), CMake
displays a message indicating how to download it.

• -DWITH_INNODB_EXTRA_DEBUG=bool

Whether to include extra InnoDB debugging support.

Enabling WITH_INNODB_EXTRA_DEBUG turns on extra InnoDB debug checks. This option can only be
enabled when WITH_DEBUG is enabled.

• -DWITH_INNODB_MEMCACHED=bool

Whether to generate memcached shared libraries (libmemcached.so and innodb_engine.so).

• -DWITH_KEYRING_TEST=bool

Whether to build the test program that accompanies the keyring_file plugin. The default is OFF. Test
file source code is located in the plugin/keyring/keyring-test directory.

This option was added in MySQL 5.7.11.

• -DWITH_LDAP=value

Internal use only. This option was added in MySQL 5.7.29.

214

MySQL Source-Configuration Options

• -DWITH_LIBEVENT=string

Which libevent library to use. Permitted values are bundled (default) and system. Prior to MySQL
5.7.31, if you specify system, the system libevent library is used if present, and an error occurs
otherwise. In MySQL 5.7.31 and later, if system is specified and no system libevent library can be
found, an error occurs regardless, and the bundled libevent is not used.

The libevent library is required by InnoDB memcached and X Plugin.

• -DWITH_LIBWRAP=bool

Whether to include libwrap (TCP wrappers) support.

• -DWITH_LZ4=lz4_type

The WITH_LZ4 option indicates the source of zlib support:

• bundled: Use the lz4 library bundled with the distribution. This is the default.

• system: Use the system lz4 library. If WITH_LZ4 is set to this value, the lz4_decompress utility is
not built. In this case, the system lz4 command can be used instead.

• -DWITH_MECAB={disabled|system|path_name}

Use this option to compile the MeCab parser. If you have installed MeCab to its default installation
directory, set -DWITH_MECAB=system. The system option applies to MeCab installations performed
from source or from binaries using a native package management utility. If you installed MeCab to a
custom installation directory, specify the path to the MeCab installation, for example, -DWITH_MECAB=/
opt/mecab. If the system option does not work, specifying the MeCab installation path should work in
all cases.

For related information, see Section 12.9.9, “MeCab Full-Text Parser Plugin”.

• -DWITH_MSAN=bool

Whether to enable MemorySanitizer, for compilers that support it. The default is off.

For this option to have an effect if enabled, all libraries linked to MySQL must also have been compiled
with the option enabled.

• -DWITH_MSCRT_DEBUG=bool

Whether to enable Visual Studio CRT memory leak tracing. The default is OFF.

• -DWITH_NUMA=bool

Explicitly set the NUMA memory allocation policy. CMake sets the default WITH_NUMA value based on
whether the current platform has NUMA support. For platforms without NUMA support, CMake behaves as
follows:

• With no NUMA option (the normal case), CMake continues normally, producing only this warning:
NUMA library missing or required version not available.

• With -DWITH_NUMA=ON, CMake aborts with this error: NUMA library missing or required
version not available.

This option was added in MySQL 5.7.17.

215

MySQL Source-Configuration Options

• -DWITH_PROTOBUF=protobuf_type

Which Protocol Buffers package to use. protobuf_type can be one of the following values:

• bundled: Use the package bundled with the distribution. This is the default.

• system: Use the package installed on the system.

Other values are ignored, with a fallback to bundled.

This option was added in MySQL 5.7.12.

• -DWITH_RAPID=bool

Whether to build the rapid development cycle plugins. When enabled, a rapid directory is created in
the build tree containing these plugins. When disabled, no rapid directory is created in the build tree.
The default is ON, unless the rapid directory is removed from the source tree, in which case the default
becomes OFF. This option was added in MySQL 5.7.12.

• -DWITH_SASL=value

Internal use only. This option was added in MySQL 5.7.29. Not supported on Windows.

• -DWITH_SSL={ssl_type|path_name}

For support of encrypted connections, entropy for random number generation, and other encryption-
related operations, MySQL must be built using an SSL library. This option specifies which SSL library to
use.

• ssl_type can be one of the following values:

• yes: Use the system OpenSSL library if present, else the library bundled with the distribution.

• bundled: Use the SSL library bundled with the distribution. This is the default prior to MySQL
5.7.28. As of 5.7.28, this is no longer a permitted value and the default is system.

• system: Use the system OpenSSL library. This is the default as of MySQL 5.7.28.

• path_name is the path name to the OpenSSL installation to use. This can be preferable to using
the ssl_type value of system because it can prevent CMake from detecting and using an older or
incorrect OpenSSL version installed on the system. (Another permitted way to do the same thing is to
set WITH_SSL to system and set the CMAKE_PREFIX_PATH option to path_name.)

For additional information about configuring the SSL library, see Section 2.8.6, “Configuring SSL Library
Support”.

• -DWITH_SYSTEMD=bool

Whether to enable installation of systemd support files. By default, this option is disabled. When
enabled, systemd support files are installed, and scripts such as mysqld_safe and the System
V initialization script are not installed. On platforms where systemd is not available, enabling
WITH_SYSTEMD results in an error from CMake.

For more information about using systemd, see Section 2.5.10, “Managing MySQL Server with
systemd”. That section also includes information about specifying options otherwise specified in
[mysqld_safe] option groups. Because mysqld_safe is not installed when systemd is used, such
options must be specified another way.

216

MySQL Source-Configuration Options

• -DWITH_TEST_TRACE_PLUGIN=bool

Whether to build the test protocol trace client plugin (see Using the Test Protocol Trace
Plugin). By default, this option is disabled. Enabling this option has no effect unless the
WITH_CLIENT_PROTOCOL_TRACING option is enabled. If MySQL is configured with both options
enabled, the libmysqlclient client library is built with the test protocol trace plugin built in, and all the
standard MySQL clients load the plugin. However, even when the test plugin is enabled, it has no effect
by default. Control over the plugin is afforded using environment variables; see Using the Test Protocol
Trace Plugin.

Note

Do not enable the WITH_TEST_TRACE_PLUGIN option if you want to use your
own protocol trace plugins because only one such plugin can be loaded at a time
and an error occurs for attempts to load a second one. If you have already built
MySQL with the test protocol trace plugin enabled to see how it works, you must
rebuild MySQL without it before you can use your own plugins.

For information about writing trace plugins, see Writing Protocol Trace Plugins.

• -DWITH_UBSAN=bool

Whether to enable the Undefined Behavior Sanitizer, for compilers that support it. The default is off.

• -DWITH_UNIT_TESTS={ON|OFF}

If enabled, compile MySQL with unit tests. The default is ON unless the server is not being compiled.

• -DWITH_UNIXODBC=1

Enables unixODBC support, for Connector/ODBC.

• -DWITH_VALGRIND=bool

Whether to compile in the Valgrind header files, which exposes the Valgrind API to MySQL code. The
default is OFF.

To generate a Valgrind-aware debug build, -DWITH_VALGRIND=1 normally is combined with -
DWITH_DEBUG=1. See Building Debug Configurations.

• -DWITH_ZLIB=zlib_type

Some features require that the server be built with compression library support, such as the
COMPRESS() and UNCOMPRESS() functions, and compression of the client/server protocol. The
WITH_ZLIB option indicates the source of zlib support:

• bundled: Use the zlib library bundled with the distribution. This is the default.

• system: Use the system zlib library.

• -DWITHOUT_SERVER=bool

Whether to build without MySQL Server. The default is OFF, which does build the server.

This is considered an experimental option; it is preferred to build with the server.

217

https://dev.mysql.com/doc/extending-mysql/5.7/en/test-protocol-trace-plugin.html
https://dev.mysql.com/doc/extending-mysql/5.7/en/test-protocol-trace-plugin.html
https://dev.mysql.com/doc/extending-mysql/5.7/en/test-protocol-trace-plugin.html
https://dev.mysql.com/doc/extending-mysql/5.7/en/test-protocol-trace-plugin.html
https://dev.mysql.com/doc/extending-mysql/5.7/en/writing-protocol-trace-plugins.html
https://dev.mysql.com/doc/internals/en/debug-configurations.html

MySQL Source-Configuration Options

Compiler Flags

• -DCMAKE_C_FLAGS="flags"

Flags for the C compiler.

• -DCMAKE_CXX_FLAGS="flags"

Flags for the C++ compiler.

• -DWITH_DEFAULT_COMPILER_OPTIONS=bool

Whether to use the flags from cmake/build_configurations/compiler_options.cmake.

Note

All optimization flags are carefully chosen and tested by the MySQL build team.
Overriding them can lead to unexpected results and is done at your own risk.

• -DSUNPRO_CXX_LIBRARY="lib_name"

Enable linking against libCstd instead of stlport4 on Solaris 10 or later. This works only for client
code because the server depends on C++98.

To specify your own C and C++ compiler flags, for flags that do not affect optimization, use the
CMAKE_C_FLAGS and CMAKE_CXX_FLAGS CMake options.

When providing your own compiler flags, you might want to specify CMAKE_BUILD_TYPE as well.

For example, to create a 32-bit release build on a 64-bit Linux machine, do this:

$> mkdir build
$> cd build
$> cmake .. -DCMAKE_C_FLAGS=-m32 \
 -DCMAKE_CXX_FLAGS=-m32 \
 -DCMAKE_BUILD_TYPE=RelWithDebInfo

If you set flags that affect optimization (-Onumber), you must set the CMAKE_C_FLAGS_build_type
and/or CMAKE_CXX_FLAGS_build_type options, where build_type corresponds
to the CMAKE_BUILD_TYPE value. To specify a different optimization for the default
build type (RelWithDebInfo) set the CMAKE_C_FLAGS_RELWITHDEBINFO and
CMAKE_CXX_FLAGS_RELWITHDEBINFO options. For example, to compile on Linux with -O3 and with
debug symbols, do this:

$> cmake .. -DCMAKE_C_FLAGS_RELWITHDEBINFO="-O3 -g" \
 -DCMAKE_CXX_FLAGS_RELWITHDEBINFO="-O3 -g"

CMake Options for Compiling NDB Cluster

The following options are for use when building NDB Cluster with the NDB Cluster sources; they are not
currently supported when using sources from the MySQL 5.7 Server tree.

• -DMEMCACHED_HOME=dir_name

NDB support for memcached was removed in NDB 7.5.21 and NDB 7.6.17; thus, this option is no longer
supported for building NDB in these or later versions.

• -DWITH_BUNDLED_LIBEVENT={ON|OFF}

218

MySQL Source-Configuration Options

NDB support for memcached was removed in NDB 7.5.21 and NDB 7.6.17, and thus this option is no
longer supported for building NDB in these or later versions.

• -DWITH_BUNDLED_MEMCACHED={ON|OFF}

NDB support for memcached was removed in NDB 7.5.21 and NDB 7.6.17, and thus this option is no
longer supported for building NDB in these or later versions.

• -DWITH_CLASSPATH=path

Sets the classpath for building MySQL NDB Cluster Connector for Java. The default is empty. This
option is ignored if -DWITH_NDB_JAVA=OFF is used.

• -DWITH_ERROR_INSERT={ON|OFF}

Enables error injection in the NDB kernel. For testing only; not intended for use in building production
binaries. The default is OFF.

• -DWITH_NDBAPI_EXAMPLES={ON|OFF}

Build NDB API example programs in storage/ndb/ndbapi-examples/. See NDB API Examples, for
information about these.

• -DWITH_NDBCLUSTER_STORAGE_ENGINE={ON|OFF}

For internal use only; may not always work as expected. To build with NDB support, use
WITH_NDBCLUSTER instead.

• -DWITH_NDBCLUSTER={ON|OFF}

Build and link in support for the NDB storage engine in mysqld. The default is ON.

• -DWITH_NDBMTD={ON|OFF}

Build the multithreaded data node executable ndbmtd. The default is ON.

• -DWITH_NDB_BINLOG={ON|OFF}

Enable binary logging by default in the mysqld built using this option. ON by default.

• -DWITH_NDB_DEBUG={ON|OFF}

Enable building the debug versions of the NDB Cluster binaries. This is OFF by default.

• -DWITH_NDB_JAVA={ON|OFF}

Enable building NDB Cluster with Java support, including support for ClusterJ (see MySQL NDB Cluster
Connector for Java).

This option is ON by default. If you do not wish to compile NDB Cluster with Java support, you must
disable it explicitly by specifying -DWITH_NDB_JAVA=OFF when running CMake. Otherwise, if Java
cannot be found, configuration of the build fails.

• -DWITH_NDB_PORT=port

Causes the NDB Cluster management server (ndb_mgmd) that is built to use this port by default. If this
option is unset, the resulting management server tries to use port 1186 by default.

219

https://dev.mysql.com/doc/ndbapi/en/ndb-examples.html
https://dev.mysql.com/doc/ndbapi/en/mccj.html
https://dev.mysql.com/doc/ndbapi/en/mccj.html

Dealing with Problems Compiling MySQL

• -DWITH_NDB_TEST={ON|OFF}

If enabled, include a set of NDB API test programs. The default is OFF.

2.8.8 Dealing with Problems Compiling MySQL

The solution to many problems involves reconfiguring. If you do reconfigure, take note of the following:

• If CMake is run after it has previously been run, it may use information that was gathered during its
previous invocation. This information is stored in CMakeCache.txt. When CMake starts, it looks for
that file and reads its contents if it exists, on the assumption that the information is still correct. That
assumption is invalid when you reconfigure.

• Each time you run CMake, you must run make again to recompile. However, you may want to remove old
object files from previous builds first because they were compiled using different configuration options.

To prevent old object files or configuration information from being used, run the following commands before
re-running CMake:

On Unix:

$> make clean
$> rm CMakeCache.txt

On Windows:

$> devenv MySQL.sln /clean
$> del CMakeCache.txt

If you build outside of the source tree, remove and recreate your build directory before re-running CMake.
For instructions on building outside of the source tree, see How to Build MySQL Server with CMake.

On some systems, warnings may occur due to differences in system include files. The following list
describes other problems that have been found to occur most often when compiling MySQL:

• To define which C and C++ compilers to use, you can define the CC and CXX environment variables.
For example:

$> CC=gcc
$> CXX=g++
$> export CC CXX

While this can be done on the command line, as just shown, you may prefer to define these values in a
build script, in which case the export command is not needed.

To specify your own C and C++ compiler flags, use the CMAKE_C_FLAGS and CMAKE_CXX_FLAGS
CMake options. See Compiler Flags.

To see what flags you might need to specify, invoke mysql_config with the --cflags and --
cxxflags options.

• To see what commands are executed during the compile stage, after using CMake to configure MySQL,
run make VERBOSE=1 rather than just make.

• If compilation fails, check whether the MYSQL_MAINTAINER_MODE option is enabled. This mode causes
compiler warnings to become errors, so disabling it may enable compilation to proceed.

• If your compile fails with errors such as any of the following, you must upgrade your version of make to
GNU make:

220

https://dev.mysql.com/doc/internals/en/cmake.html

MySQL Configuration and Third-Party Tools

make: Fatal error in reader: Makefile, line 18:
Badly formed macro assignment

Or:

make: file `Makefile' line 18: Must be a separator (:

Or:

pthread.h: No such file or directory

Solaris and FreeBSD are known to have troublesome make programs.

GNU make 3.75 is known to work.

• The sql_yacc.cc file is generated from sql_yacc.yy. Normally, the build process does not need to
create sql_yacc.cc because MySQL comes with a pregenerated copy. However, if you do need to re-
create it, you might encounter this error:

"sql_yacc.yy", line xxx fatal: default action causes potential...

This is a sign that your version of yacc is deficient. You probably need to install a recent version of
bison (the GNU version of yacc) and use that instead.

Versions of bison older than 1.75 may report this error:

sql_yacc.yy:#####: fatal error: maximum table size (32767) exceeded

The maximum table size is not actually exceeded; the error is caused by bugs in older versions of
bison.

For information about acquiring or updating tools, see the system requirements in Section 2.8, “Installing
MySQL from Source”.

2.8.9 MySQL Configuration and Third-Party Tools

Third-party tools that need to determine the MySQL version from the MySQL source can read the
VERSION file in the top-level source directory. The file lists the pieces of the version separately. For
example, if the version is MySQL 5.7.4-m14, the file looks like this:

MYSQL_VERSION_MAJOR=5
MYSQL_VERSION_MINOR=7
MYSQL_VERSION_PATCH=4
MYSQL_VERSION_EXTRA=-m14

If the source is not for a MySQL Server General Availablility (GA) release, the MYSQL_VERSION_EXTRA
value is nonempty. In the preceding example, the value corresponds to Milestone 14.

MYSQL_VERSION_EXTRA is also nonempty for NDB Cluster releases (including GA releases of NDB
Cluster), as shown here:

MYSQL_VERSION_MAJOR=5
MYSQL_VERSION_MINOR=7
MYSQL_VERSION_PATCH=32
MYSQL_VERSION_EXTRA=-ndb-7.5.21

To construct a five-digit number from the version components, use this formula:

MYSQL_VERSION_MAJOR*10000 + MYSQL_VERSION_MINOR*100 + MYSQL_VERSION_PATCH

221

Postinstallation Setup and Testing

2.9 Postinstallation Setup and Testing

This section discusses tasks that you should perform after installing MySQL:

• If necessary, initialize the data directory and create the MySQL grant tables. For some MySQL
installation methods, data directory initialization may be done for you automatically:

• Windows installation operations performed by MySQL Installer.

• Installation on Linux using a server RPM or Debian distribution from Oracle.

• Installation using the native packaging system on many platforms, including Debian Linux, Ubuntu
Linux, Gentoo Linux, and others.

• Installation on macOS using a DMG distribution.

For other platforms and installation types, you must initialize the data directory manually. These include
installation from generic binary and source distributions on Unix and Unix-like system, and installation
from a ZIP Archive package on Windows. For instructions, see Section 2.9.1, “Initializing the Data
Directory”.

• Start the server and make sure that it can be accessed. For instructions, see Section 2.9.2, “Starting the
Server”, and Section 2.9.3, “Testing the Server”.

• Assign passwords to the initial root account in the grant tables, if that was not already done during data
directory initialization. Passwords prevent unauthorized access to the MySQL server. For instructions,
see Section 2.9.4, “Securing the Initial MySQL Account”.

• Optionally, arrange for the server to start and stop automatically when your system starts and stops. For
instructions, see Section 2.9.5, “Starting and Stopping MySQL Automatically”.

• Optionally, populate time zone tables to enable recognition of named time zones. For instructions, see
Section 5.1.13, “MySQL Server Time Zone Support”.

When you are ready to create additional user accounts, you can find information on the MySQL access
control system and account management in Section 6.2, “Access Control and Account Management”.

2.9.1 Initializing the Data Directory

After MySQL is installed, the data directory must be initialized, including the tables in the mysql system
database:

• For some MySQL installation methods, data directory initialization is automatic, as described in
Section 2.9, “Postinstallation Setup and Testing”.

• For other installation methods, you must initialize the data directory manually. These include installation
from generic binary and source distributions on Unix and Unix-like systems, and installation from a ZIP
Archive package on Windows.

This section describes how to initialize the data directory manually for MySQL installation methods for
which data directory initialization is not automatic. For some suggested commands that enable testing
whether the server is accessible and working properly, see Section 2.9.3, “Testing the Server”.

• Data Directory Initialization Overview

• Data Directory Initialization Procedure

222

Initializing the Data Directory

• Server Actions During Data Directory Initialization

• Post-Initialization root Password Assignment

Data Directory Initialization Overview

In the examples shown here, the server is intended to run under the user ID of the mysql login account.
Either create the account if it does not exist (see Create a mysql User and Group), or substitute the name
of a different existing login account that you plan to use for running the server.

1. Change location to the top-level directory of your MySQL installation, which is typically /usr/local/
mysql (adjust the path name for your system as necessary):

cd /usr/local/mysql

Within this directory are several files and subdirectories, including the bin subdirectory that contains
the server as well as client and utility programs.

2. The secure_file_priv system variable limits import and export operations to a specific directory.
Create a directory whose location can be specified as the value of that variable:

mkdir mysql-files

Grant directory user and group ownership to the mysql user and mysql group, and set the directory
permissions appropriately:

chown mysql:mysql mysql-files
chmod 750 mysql-files

3. Use the server to initialize the data directory, including the mysql database containing the initial
MySQL grant tables that determine how users are permitted to connect to the server. For example:

bin/mysqld --initialize --user=mysql

For important information about the command, especially regarding command options you might use,
see Data Directory Initialization Procedure. For details about how the server performs initialization, see
Server Actions During Data Directory Initialization.

Typically, data directory initialization need be done only after you first install MySQL. (For upgrades
to an existing installation, perform the upgrade procedure instead; see Section 2.10, “Upgrading
MySQL”.) However, the command that initializes the data directory does not overwrite any existing
mysql database tables, so it is safe to run in any circumstances.

Note

Initialization of the data directory might fail if required system libraries are
missing. For example, you might see an error like this:

bin/mysqld: error while loading shared libraries:
libnuma.so.1: cannot open shared object file:
No such file or directory

If this happens, you must install the missing libraries manually or with your
system's package manager. Then retry the data directory initialization
command.

4. If you want to deploy the server with automatic support for secure connections, use the
mysql_ssl_rsa_setup utility to create default SSL and RSA files:

bin/mysql_ssl_rsa_setup

223

Initializing the Data Directory

For more information, see Section 4.4.5, “mysql_ssl_rsa_setup — Create SSL/RSA Files”.

5. In the absence of any option files, the server starts with its default settings. (See Section 5.1.2, “Server
Configuration Defaults”.) To explicitly specify options that the MySQL server should use at startup, put
them in an option file such as /etc/my.cnf or /etc/mysql/my.cnf. (See Section 4.2.2.2, “Using
Option Files”.) For example, you can use an option file to set the secure_file_priv system variable.

6. To arrange for MySQL to start without manual intervention at system boot time, see Section 2.9.5,
“Starting and Stopping MySQL Automatically”.

7. Data directory initialization creates time zone tables in the mysql database but does not populate
them. To do so, use the instructions in Section 5.1.13, “MySQL Server Time Zone Support”.

Data Directory Initialization Procedure

Change location to the top-level directory of your MySQL installation, which is typically /usr/local/
mysql (adjust the path name for your system as necessary):

cd /usr/local/mysql

To initialize the data directory, invoke mysqld with the --initialize or --initialize-insecure
option, depending on whether you want the server to generate a random initial password for the
'root'@'localhost' account, or to create that account with no password:

• Use --initialize for “secure by default” installation (that is, including generation of a random initial
root password). In this case, the password is marked as expired and you must choose a new one.

• With --initialize-insecure, no root password is generated. This is insecure; it is assumed that
you assign a password to the account in timely fashion before putting the server into production use.

For instructions on assigning a new 'root'@'localhost' password, see Post-Initialization root
Password Assignment.

Note

The server writes any messages (including any initial password) to its standard
error output. This may be redirected to the error log, so look there if you do not see
the messages on your screen. For information about the error log, including where it
is located, see Section 5.4.2, “The Error Log”.

On Windows, use the --console option to direct messages to the console.

On Unix and Unix-like systems, it is important for the database directories and files to be owned by the
mysql login account so that the server has read and write access to them when you run it later. To ensure
this, start mysqld from the system root account and include the --user option as shown here:

bin/mysqld --initialize --user=mysql
bin/mysqld --initialize-insecure --user=mysql

Alternatively, execute mysqld while logged in as mysql, in which case you can omit the --user option
from the command.

On Windows, use one of these commands:

bin\mysqld --initialize --console
bin\mysqld --initialize-insecure --console

224

Initializing the Data Directory

Note

Data directory initialization might fail if required system libraries are missing. For
example, you might see an error like this:

bin/mysqld: error while loading shared libraries:
libnuma.so.1: cannot open shared object file:
No such file or directory

If this happens, you must install the missing libraries manually or with your system's
package manager. Then retry the data directory initialization command.

It might be necessary to specify other options such as --basedir or --datadir if mysqld cannot
identify the correct locations for the installation directory or data directory. For example (enter the
command on a single line):

bin/mysqld --initialize --user=mysql
 --basedir=/opt/mysql/mysql
 --datadir=/opt/mysql/mysql/data

Alternatively, put the relevant option settings in an option file and pass the name of that file to mysqld. For
Unix and Unix-like systems, suppose that the option file name is /opt/mysql/mysql/etc/my.cnf. Put
these lines in the file:

[mysqld]
basedir=/opt/mysql/mysql
datadir=/opt/mysql/mysql/data

Then invoke mysqld as follows (enter the command on a single line, with the --defaults-file option
first):

bin/mysqld --defaults-file=/opt/mysql/mysql/etc/my.cnf
 --initialize --user=mysql

On Windows, suppose that C:\my.ini contains these lines:

[mysqld]
basedir=C:\\Program Files\\MySQL\\MySQL Server 5.7
datadir=D:\\MySQLdata

Then invoke mysqld as follows (again, you should enter the command on a single line, with the --
defaults-file option first):

bin\mysqld --defaults-file=C:\my.ini
 --initialize --console

Important

When initializing the data directory, you should not specify any options other than
those used for setting directory locations such as --basedir or --datadir, and
the --user option if needed. Options to be employed by the MySQL server during
normal use can be set when restarting it following initialization. See the description
of the --initialize option for further information.

Server Actions During Data Directory Initialization

Note

The data directory initialization sequence performed by the server does not
substitute for the actions performed by mysql_secure_installation and

225

Initializing the Data Directory

mysql_ssl_rsa_setup. See Section 4.4.4, “mysql_secure_installation —
Improve MySQL Installation Security”, and Section 4.4.5, “mysql_ssl_rsa_setup —
Create SSL/RSA Files”.

When invoked with the --initialize or --initialize-insecure option, mysqld performs the
following actions during the data directory initialization sequence:

1. The server checks for the existence of the data directory as follows:

• If no data directory exists, the server creates it.

• If the data directory exists but is not empty (that is, it contains files or subdirectories), the server exits
after producing an error message:

[ERROR] --initialize specified but the data directory exists. Aborting.

In this case, remove or rename the data directory and try again.

As of MySQL 5.7.11, an existing data directory is permitted to be nonempty if every entry either has a
name that begins with a period (.) or is named using an --ignore-db-dir option.

Note

Avoid the use of the --ignore-db-dir option, which has been deprecated
since MySQL 5.7.16.

2. Within the data directory, the server creates the mysql system database and its tables, including
the grant tables, time zone tables, and server-side help tables. See Section 5.3, “The mysql System
Database”.

3. The server initializes the system tablespace and related data structures needed to manage InnoDB
tables.

Note

After mysqld sets up the InnoDB system tablespace, certain changes
to tablespace characteristics require setting up a whole new instance.
Qualifying changes include the file name of the first file in the system
tablespace and the number of undo logs. If you do not want to use the default
values, make sure that the settings for the innodb_data_file_path and
innodb_log_file_size configuration parameters are in place in the
MySQL configuration file before running mysqld. Also make sure to specify
as necessary other parameters that affect the creation and location of InnoDB
files, such as innodb_data_home_dir and innodb_log_group_home_dir.

If those options are in your configuration file but that file is not in a location
that MySQL reads by default, specify the file location using the --defaults-
extra-file option when you run mysqld.

4. The server creates a 'root'@'localhost' superuser account and other reserved accounts (see
Section 6.2.8, “Reserved Accounts”). Some reserved accounts are locked and cannot be used by
clients, but 'root'@'localhost' is intended for administrative use and you should assign it a
password.

Server actions with respect to a password for the 'root'@'localhost' account depend on how you
invoke it:

226

Initializing the Data Directory

• With --initialize but not --initialize-insecure, the server generates a random password,
marks it as expired, and writes a message displaying the password:

[Warning] A temporary password is generated for root@localhost:
iTag*AfrH5ej

• With --initialize-insecure, (either with or without --initialize because --initialize-
insecure implies --initialize), the server does not generate a password or mark it expired,
and writes a warning message:

[Warning] root@localhost is created with an empty password ! Please
consider switching off the --initialize-insecure option.

For instructions on assigning a new 'root'@'localhost' password, see Post-Initialization root
Password Assignment.

5. The server populates the server-side help tables used for the HELP statement (see Section 13.8.3,
“HELP Statement”). The server does not populate the time zone tables. To do so manually, see
Section 5.1.13, “MySQL Server Time Zone Support”.

6. If the init_file system variable was given to name a file of SQL statements, the server executes the
statements in the file. This option enables you to perform custom bootstrapping sequences.

When the server operates in bootstrap mode, some functionality is unavailable that limits the
statements permitted in the file. These include statements that relate to account management (such as
CREATE USER or GRANT), replication, and global transaction identifiers.

7. The server exits.

Post-Initialization root Password Assignment

After you initialize the data directory by starting the server with --initialize or --initialize-
insecure, start the server normally (that is, without either of those options) and assign the
'root'@'localhost' account a new password:

1. Start the server. For instructions, see Section 2.9.2, “Starting the Server”.

2. Connect to the server:

• If you used --initialize but not --initialize-insecure to initialize the data directory,
connect to the server as root:

mysql -u root -p

Then, at the password prompt, enter the random password that the server generated during the
initialization sequence:

Enter password: (enter the random root password here)

Look in the server error log if you do not know this password.

• If you used --initialize-insecure to initialize the data directory, connect to the server as root
without a password:

mysql -u root --skip-password

3. After connecting, use an ALTER USER statement to assign a new root password:

ALTER USER 'root'@'localhost' IDENTIFIED BY 'root-password';

227

Starting the Server

See also Section 2.9.4, “Securing the Initial MySQL Account”.

Note

Attempts to connect to the host 127.0.0.1 normally resolve to the localhost
account. However, this fails if the server is run with skip_name_resolve
enabled. If you plan to do that, make sure that an account exists that can
accept a connection. For example, to be able to connect as root using --
host=127.0.0.1 or --host=::1, create these accounts:

CREATE USER 'root'@'127.0.0.1' IDENTIFIED BY 'root-password';
CREATE USER 'root'@'::1' IDENTIFIED BY 'root-password';

It is possible to put those statements in a file to be executed using the init_file
system variable, as discussed in Server Actions During Data Directory Initialization.

2.9.2 Starting the Server

This section describes how start the server on Unix and Unix-like systems. (For Windows, see
Section 2.3.4.5, “Starting the Server for the First Time”.) For some suggested commands that you can use
to test whether the server is accessible and working properly, see Section 2.9.3, “Testing the Server”.

Start the MySQL server like this if your installation includes mysqld_safe:

$> bin/mysqld_safe --user=mysql &

Note

For Linux systems on which MySQL is installed using RPM packages, server
startup and shutdown is managed using systemd rather than mysqld_safe, and
mysqld_safe is not installed. See Section 2.5.10, “Managing MySQL Server with
systemd”.

Start the server like this if your installation includes systemd support:

$> systemctl start mysqld

Substitute the appropriate service name if it differs from mysqld (for example, mysql on SLES systems).

It is important that the MySQL server be run using an unprivileged (non-root) login account. To ensure
this, run mysqld_safe as root and include the --user option as shown. Otherwise, you should execute
the program while logged in as mysql, in which case you can omit the --user option from the command.

For further instructions for running MySQL as an unprivileged user, see Section 6.1.5, “How to Run MySQL
as a Normal User”.

If the command fails immediately and prints mysqld ended, look for information in the error log (which by
default is the host_name.err file in the data directory).

If the server is unable to access the data directory it starts or read the grant tables in the mysql database,
it writes a message to its error log. Such problems can occur if you neglected to create the grant tables by
initializing the data directory before proceeding to this step, or if you ran the command that initializes the
data directory without the --user option. Remove the data directory and run the command with the --
user option.

If you have other problems starting the server, see Section 2.9.2.1, “Troubleshooting Problems Starting the
MySQL Server”. For more information about mysqld_safe, see Section 4.3.2, “mysqld_safe — MySQL
Server Startup Script”. For more information about systemd support, see Section 2.5.10, “Managing
MySQL Server with systemd”.

228

Starting the Server

2.9.2.1 Troubleshooting Problems Starting the MySQL Server

This section provides troubleshooting suggestions for problems starting the server. For additional
suggestions for Windows systems, see Section 2.3.5, “Troubleshooting a Microsoft Windows MySQL
Server Installation”.

If you have problems starting the server, here are some things to try:

• Check the error log to see why the server does not start. Log files are located in the data directory
(typically C:\Program Files\MySQL\MySQL Server 5.7\data on Windows, /usr/local/
mysql/data for a Unix/Linux binary distribution, and /usr/local/var for a Unix/Linux source
distribution). Look in the data directory for files with names of the form host_name.err and
host_name.log, where host_name is the name of your server host. Then examine the last few lines
of these files. Use tail to display them:

$> tail host_name.err
$> tail host_name.log

• Specify any special options needed by the storage engines you are using. You can create a my.cnf
file and specify startup options for the engines that you plan to use. If you are going to use storage
engines that support transactional tables (InnoDB, NDB), be sure that you have them configured the
way you want before starting the server. If you are using InnoDB tables, see Section 14.8, “InnoDB
Configuration” for guidelines and Section 14.15, “InnoDB Startup Options and System Variables” for
option syntax.

Although storage engines use default values for options that you omit, Oracle recommends that
you review the available options and specify explicit values for any options whose defaults are not
appropriate for your installation.

• Make sure that the server knows where to find the data directory. The mysqld server uses this directory
as its current directory. This is where it expects to find databases and where it expects to write log files.
The server also writes the pid (process ID) file in the data directory.

The default data directory location is hardcoded when the server is compiled. To determine what
the default path settings are, invoke mysqld with the --verbose and --help options. If the data
directory is located somewhere else on your system, specify that location with the --datadir option to
mysqld or mysqld_safe, on the command line or in an option file. Otherwise, the server does not work
properly. As an alternative to the --datadir option, you can specify mysqld the location of the base
directory under which MySQL is installed with the --basedir, and mysqld looks for the data directory
there.

To check the effect of specifying path options, invoke mysqld with those options followed by the --
verbose and --help options. For example, if you change location to the directory where mysqld
is installed and then run the following command, it shows the effect of starting the server with a base
directory of /usr/local:

$> ./mysqld --basedir=/usr/local --verbose --help

You can specify other options such as --datadir as well, but --verbose and --help must be the
last options.

Once you determine the path settings you want, start the server without --verbose and --help.

If mysqld is currently running, you can find out what path settings it is using by executing this command:

$> mysqladmin variables

229

Starting the Server

Or:

$> mysqladmin -h host_name variables

host_name is the name of the MySQL server host.

• Make sure that the server can access the data directory. The ownership and permissions of the data
directory and its contents must allow the server to read and modify them.

If you get Errcode 13 (which means Permission denied) when starting mysqld, this means that
the privileges of the data directory or its contents do not permit server access. In this case, you change
the permissions for the involved files and directories so that the server has the right to use them. You
can also start the server as root, but this raises security issues and should be avoided.

Change location to the data directory and check the ownership of the data directory and its contents to
make sure the server has access. For example, if the data directory is /usr/local/mysql/var, use
this command:

$> ls -la /usr/local/mysql/var

If the data directory or its files or subdirectories are not owned by the login account that you use for
running the server, change their ownership to that account. If the account is named mysql, use these
commands:

$> chown -R mysql /usr/local/mysql/var
$> chgrp -R mysql /usr/local/mysql/var

Even with correct ownership, MySQL might fail to start up if there is other security software running on
your system that manages application access to various parts of the file system. In this case, reconfigure
that software to enable mysqld to access the directories it uses during normal operation.

• Verify that the network interfaces the server wants to use are available.

If either of the following errors occur, it means that some other program (perhaps another mysqld
server) is using the TCP/IP port or Unix socket file that mysqld is trying to use:

Can't start server: Bind on TCP/IP port: Address already in use
Can't start server: Bind on unix socket...

Use ps to determine whether you have another mysqld server running. If so, shut down the server
before starting mysqld again. (If another server is running, and you really want to run multiple servers,
you can find information about how to do so in Section 5.7, “Running Multiple MySQL Instances on One
Machine”.)

If no other server is running, execute the command telnet your_host_name
tcp_ip_port_number. (The default MySQL port number is 3306.) Then press Enter a couple of
times. If you do not get an error message like telnet: Unable to connect to remote host:
Connection refused, some other program is using the TCP/IP port that mysqld is trying to use.
Track down what program this is and disable it, or tell mysqld to listen to a different port with the --

230

Testing the Server

port option. In this case, specify the same non-default port number for client programs when connecting
to the server using TCP/IP.

Another reason the port might be inaccessible is that you have a firewall running that blocks connections
to it. If so, modify the firewall settings to permit access to the port.

If the server starts but you cannot connect to it, make sure that you have an entry in /etc/hosts that
looks like this:

127.0.0.1 localhost

• If you cannot get mysqld to start, try to make a trace file to find the problem by using the --debug
option. See Section 5.8.3, “The DBUG Package”.

2.9.3 Testing the Server

After the data directory is initialized and you have started the server, perform some simple tests to make
sure that it works satisfactorily. This section assumes that your current location is the MySQL installation
directory and that it has a bin subdirectory containing the MySQL programs used here. If that is not true,
adjust the command path names accordingly.

Alternatively, add the bin directory to your PATH environment variable setting. That enables your shell
(command interpreter) to find MySQL programs properly, so that you can run a program by typing only its
name, not its path name. See Section 4.2.7, “Setting Environment Variables”.

Use mysqladmin to verify that the server is running. The following commands provide simple tests to
check whether the server is up and responding to connections:

$> bin/mysqladmin version
$> bin/mysqladmin variables

If you cannot connect to the server, specify a -u root option to connect as root. If you have assigned a
password for the root account already, you'll also need to specify -p on the command line and enter the
password when prompted. For example:

$> bin/mysqladmin -u root -p version
Enter password: (enter root password here)

The output from mysqladmin version varies slightly depending on your platform and version of MySQL,
but should be similar to that shown here:

$> bin/mysqladmin version
mysqladmin Ver 14.12 Distrib 5.7.44, for pc-linux-gnu on i686
...

Server version 5.7.44
Protocol version 10
Connection Localhost via UNIX socket
UNIX socket /var/lib/mysql/mysql.sock
Uptime: 14 days 5 hours 5 min 21 sec

Threads: 1 Questions: 366 Slow queries: 0
Opens: 0 Flush tables: 1 Open tables: 19
Queries per second avg: 0.000

To see what else you can do with mysqladmin, invoke it with the --help option.

Verify that you can shut down the server (include a -p option if the root account has a password already):

$> bin/mysqladmin -u root shutdown

231

Testing the Server

Verify that you can start the server again. Do this by using mysqld_safe or by invoking mysqld directly.
For example:

$> bin/mysqld_safe --user=mysql &

If mysqld_safe fails, see Section 2.9.2.1, “Troubleshooting Problems Starting the MySQL Server”.

Run some simple tests to verify that you can retrieve information from the server. The output should be
similar to that shown here.

Use mysqlshow to see what databases exist:

$> bin/mysqlshow
+--------------------+
| Databases |
+--------------------+
| information_schema |
| mysql |
| performance_schema |
| sys |
+--------------------+

The list of installed databases may vary, but always includes at least mysql and information_schema.

If you specify a database name, mysqlshow displays a list of the tables within the database:

$> bin/mysqlshow mysql
Database: mysql
+---------------------------+
| Tables |
+---------------------------+
| columns_priv |
| db |
| engine_cost |
| event |
| func |
| general_log |
| gtid_executed |
| help_category |
| help_keyword |
| help_relation |
| help_topic |
| innodb_index_stats |
| innodb_table_stats |
| ndb_binlog_index |
| plugin |
| proc |
| procs_priv |
| proxies_priv |
| server_cost |
| servers |
| slave_master_info |
| slave_relay_log_info |
| slave_worker_info |
| slow_log |
| tables_priv |
| time_zone |
| time_zone_leap_second |
| time_zone_name |
| time_zone_transition |
| time_zone_transition_type |
| user |
+---------------------------+

Use the mysql program to select information from a table in the mysql database:

232

Securing the Initial MySQL Account

$> bin/mysql -e "SELECT User, Host, plugin FROM mysql.user" mysql
+------+-----------+-----------------------+
| User | Host | plugin |
+------+-----------+-----------------------+
| root | localhost | mysql_native_password |
+------+-----------+-----------------------+

At this point, your server is running and you can access it. To tighten security if you have not yet assigned
a password to the initial account, follow the instructions in Section 2.9.4, “Securing the Initial MySQL
Account”.

For more information about mysql, mysqladmin, and mysqlshow, see Section 4.5.1, “mysql — The
MySQL Command-Line Client”, Section 4.5.2, “mysqladmin — A MySQL Server Administration Program”,
and Section 4.5.7, “mysqlshow — Display Database, Table, and Column Information”.

2.9.4 Securing the Initial MySQL Account

The MySQL installation process involves initializing the data directory, including the grant tables in the
mysql system database that define MySQL accounts. For details, see Section 2.9.1, “Initializing the Data
Directory”.

This section describes how to assign a password to the initial root account created during the MySQL
installation procedure, if you have not already done so.

Note

Alternative means for performing the process described in this section:

• On Windows, you can perform the process during installation with MySQL
Installer (see Section 2.3.3, “MySQL Installer for Windows”).

• On all platforms, the MySQL distribution includes
mysql_secure_installation, a command-line utility that automates much of
the process of securing a MySQL installation.

• On all platforms, MySQL Workbench is available and offers the ability to manage
user accounts (see Chapter 29, MySQL Workbench).

A password may already be assigned to the initial account under these circumstances:

• On Windows, installations performed using MySQL Installer give you the option of assigning a password.

• Installation using the macOS installer generates an initial random password, which the installer displays
to the user in a dialog box.

• Installation using RPM packages generates an initial random password, which is written to the server
error log.

• Installations using Debian packages give you the option of assigning a password.

• For data directory initialization performed manually using mysqld --initialize, mysqld generates
an initial random password, marks it expired, and writes it to the server error log. See Section 2.9.1,
“Initializing the Data Directory”.

The mysql.user grant table defines the initial MySQL user account and its access privileges. Installation
of MySQL creates only a 'root'@'localhost' superuser account that has all privileges and can do
anything. If the root account has an empty password, your MySQL installation is unprotected: Anyone can
connect to the MySQL server as root without a password and be granted all privileges.

233

Securing the Initial MySQL Account

The 'root'@'localhost' account also has a row in the mysql.proxies_priv table that enables
granting the PROXY privilege for ''@'', that is, for all users and all hosts. This enables root to set
up proxy users, as well as to delegate to other accounts the authority to set up proxy users. See
Section 6.2.14, “Proxy Users”.

To assign a password for the initial MySQL root account, use the following procedure. Replace root-
password in the examples with the password that you want to use.

Start the server if it is not running. For instructions, see Section 2.9.2, “Starting the Server”.

The initial root account may or may not have a password. Choose whichever of the following procedures
applies:

• If the root account exists with an initial random password that has been expired, connect to the server
as root using that password, then choose a new password. This is the case if the data directory was
initialized using mysqld --initialize, either manually or using an installer that does not give you
the option of specifying a password during the install operation. Because the password exists, you must
use it to connect to the server. But because the password is expired, you cannot use the account for any
purpose other than to choose a new password, until you do choose one.

1. If you do not know the initial random password, look in the server error log.

2. Connect to the server as root using the password:

$> mysql -u root -p
Enter password: (enter the random root password here)

3. Choose a new password to replace the random password:

mysql> ALTER USER 'root'@'localhost' IDENTIFIED BY 'root-password';

• If the root account exists but has no password, connect to the server as root using no password, then
assign a password. This is the case if you initialized the data directory using mysqld --initialize-
insecure.

1. Connect to the server as root using no password:

$> mysql -u root --skip-password

2. Assign a password:

mysql> ALTER USER 'root'@'localhost' IDENTIFIED BY 'root-password';

After assigning the root account a password, you must supply that password whenever you connect
to the server using the account. For example, to connect to the server using the mysql client, use this
command:

$> mysql -u root -p
Enter password: (enter root password here)

To shut down the server with mysqladmin, use this command:

$> mysqladmin -u root -p shutdown
Enter password: (enter root password here)

Note

For additional information about setting passwords, see Section 6.2.10, “Assigning
Account Passwords”. If you forget your root password after setting it, see
Section B.3.3.2, “How to Reset the Root Password”.

234

Starting and Stopping MySQL Automatically

To set up additional accounts, see Section 6.2.7, “Adding Accounts, Assigning
Privileges, and Dropping Accounts”.

2.9.5 Starting and Stopping MySQL Automatically

This section discusses methods for starting and stopping the MySQL server.

Generally, you start the mysqld server in one of these ways:

• Invoke mysqld directly. This works on any platform.

• On Windows, you can set up a MySQL service that runs automatically when Windows starts. See
Section 2.3.4.8, “Starting MySQL as a Windows Service”.

• On Unix and Unix-like systems, you can invoke mysqld_safe, which tries to determine the proper
options for mysqld and then runs it with those options. See Section 4.3.2, “mysqld_safe — MySQL
Server Startup Script”.

• On Linux systems that support systemd, you can use it to control the server. See Section 2.5.10,
“Managing MySQL Server with systemd”.

• On systems that use System V-style run directories (that is, /etc/init.d and run-level specific
directories), invoke mysql.server. This script is used primarily at system startup and shutdown. It
usually is installed under the name mysql. The mysql.server script starts the server by invoking
mysqld_safe. See Section 4.3.3, “mysql.server — MySQL Server Startup Script”.

• On macOS, install a launchd daemon to enable automatic MySQL startup at system startup. The
daemon starts the server by invoking mysqld_safe. For details, see Section 2.4.3, “Installing a MySQL
Launch Daemon”. A MySQL Preference Pane also provides control for starting and stopping MySQL
through the System Preferences. See Section 2.4.4, “Installing and Using the MySQL Preference Pane”.

• On Solaris, use the service management framework (SMF) system to initiate and control MySQL startup.

systemd, the mysqld_safe and mysql.server scripts, Solaris SMF, and the macOS Startup Item (or
MySQL Preference Pane) can be used to start the server manually, or automatically at system startup
time. systemd, mysql.server, and the Startup Item also can be used to stop the server.

The following table shows which option groups the server and startup scripts read from option files.

Table 2.15 MySQL Startup Scripts and Supported Server Option Groups

Script Option Groups

mysqld [mysqld], [server],
[mysqld-major_version]

mysqld_safe [mysqld], [server], [mysqld_safe]

mysql.server [mysqld], [mysql.server], [server]

[mysqld-major_version] means that groups with names like [mysqld-5.6] and [mysqld-5.7]
are read by servers having versions 5.6.x, 5.7.x, and so forth. This feature can be used to specify options
that can be read only by servers within a given release series.

For backward compatibility, mysql.server also reads the [mysql_server] group and mysqld_safe
also reads the [safe_mysqld] group. To be current, you should update your option files to use the
[mysql.server] and [mysqld_safe] groups instead.

235

Upgrading MySQL

For more information on MySQL configuration files and their structure and contents, see Section 4.2.2.2,
“Using Option Files”.

2.10 Upgrading MySQL

This section describes the steps to upgrade a MySQL installation.

Upgrading is a common procedure, as you pick up bug fixes within the same MySQL release series or
significant features between major MySQL releases. You perform this procedure first on some test systems
to make sure everything works smoothly, and then on the production systems.

Note

In the following discussion, MySQL commands that must be run using a MySQL
account with administrative privileges include -u root on the command line to
specify the MySQL root user. Commands that require a password for root also
include a -p option. Because -p is followed by no option value, such commands
prompt for the password. Type the password when prompted and press Enter.

SQL statements can be executed using the mysql command-line client (connect as
root to ensure that you have the necessary privileges).

2.10.1 Before You Begin

Review the information in this section before upgrading. Perform any recommended actions.

• Protect your data by creating a backup. The backup should include the mysql system database, which
contains the MySQL system tables. See Section 7.2, “Database Backup Methods”.

• Review Section 2.10.2, “Upgrade Paths” to ensure that your intended upgrade path is supported.

• Review Section 2.10.3, “Changes in MySQL 5.7” for changes that you should be aware of before
upgrading. Some changes may require action.

• Review Section 1.3, “What Is New in MySQL 5.7” for deprecated and removed features. An upgrade
may require changes with respect to those features if you use any of them.

• Review Section 1.4, “Server and Status Variables and Options Added, Deprecated, or Removed
in MySQL 5.7”. If you use deprecated or removed variables, an upgrade may require configuration
changes.

• Review the Release Notes for information about fixes, changes, and new features.

• If you use replication, review Section 16.4.3, “Upgrading a Replication Topology”.

• Upgrade procedures vary by platform and how the initial installation was performed. Use the procedure
that applies to your current MySQL installation:

• For binary and package-based installations on non-Windows platforms, refer to Section 2.10.4,
“Upgrading MySQL Binary or Package-based Installations on Unix/Linux”.

Note

For supported Linux distributions, the preferred method for upgrading package-
based installations is to use the MySQL software repositories (MySQL Yum
Repository, MySQL APT Repository, and MySQL SLES Repository).

236

https://dev.mysql.com/doc/relnotes/mysql/5.7/en/

Upgrade Paths

• For installations on an Enterprise Linux platform or Fedora using the MySQL Yum Repository, refer to
Section 2.10.5, “Upgrading MySQL with the MySQL Yum Repository”.

• For installations on Ubuntu using the MySQL APT repository, refer to Section 2.10.6, “Upgrading
MySQL with the MySQL APT Repository”.

• For installations on SLES using the MySQL SLES repository, refer to Section 2.10.7, “Upgrading
MySQL with the MySQL SLES Repository”.

• For installations performed using Docker, refer to Section 2.10.9, “Upgrading a Docker Installation of
MySQL”.

• For installations on Windows, refer to Section 2.10.8, “Upgrading MySQL on Windows”.

• If your MySQL installation contains a large amount of data that might take a long time to convert after
an in-place upgrade, it may be useful to create a test instance for assessing the conversions that are
required and the work involved to perform them. To create a test instance, make a copy of your MySQL
instance that contains the mysql database and other databases without the data. Run the upgrade
procedure on the test instance to assess the work involved to perform the actual data conversion.

• Rebuilding and reinstalling MySQL language interfaces is recommended when you install or upgrade to
a new release of MySQL. This applies to MySQL interfaces such as PHP mysql extensions and the Perl
DBD::mysql module.

2.10.2 Upgrade Paths

• Upgrade is only supported between General Availability (GA) releases.

• Upgrade from MySQL 5.6 to 5.7 is supported. Upgrading to the latest release is recommended before
upgrading to the next version. For example, upgrade to the latest MySQL 5.6 release before upgrading
to MySQL 5.7.

• Upgrade that skips versions is not supported. For example, upgrading directly from MySQL 5.5 to 5.7 is
not supported.

• Upgrade within a release series is supported. For example, upgrading from MySQL 5.7.x to 5.7.y is
supported. Skipping a release is also supported. For example, upgrading from MySQL 5.7.x to 5.7.z is
supported.

2.10.3 Changes in MySQL 5.7

Before upgrading to MySQL 5.7, review the changes described in this section to identify those that apply to
your current MySQL installation and applications. Perform any recommended actions.

Changes marked as Incompatible change are incompatibilities with earlier versions of MySQL, and
may require your attention before upgrading. Our aim is to avoid these changes, but occasionally they
are necessary to correct problems that would be worse than an incompatibility between releases. If an
upgrade issue applicable to your installation involves an incompatibility, follow the instructions given in the
description. Sometimes this involves dumping and reloading tables, or use of a statement such as CHECK
TABLE or REPAIR TABLE.

For dump and reload instructions, see Section 2.10.12, “Rebuilding or Repairing Tables or Indexes”. Any
procedure that involves REPAIR TABLE with the USE_FRM option must be done before upgrading. Use of
this statement with a version of MySQL different from the one used to create the table (that is, using it after
upgrading) may damage the table. See Section 13.7.2.5, “REPAIR TABLE Statement”.

237

Changes in MySQL 5.7

• Configuration Changes

• System Table Changes

• Server Changes

• InnoDB Changes

• SQL Changes

Configuration Changes

• Incompatible change: In MySQL 5.7.11, the default --early-plugin-load value is the name of
the keyring_file plugin library file, causing that plugin to be loaded by default. In MySQL 5.7.12 and
higher, the default --early-plugin-load value is empty; to load the keyring_file plugin, you
must explicitly specify the option with a value naming the keyring_file plugin library file.

InnoDB tablespace encryption requires that the keyring plugin to be used be loaded prior to InnoDB
initialization, so this change of default --early-plugin-load value introduces an incompatibility for
upgrades from 5.7.11 to 5.7.12 or higher. Administrators who have encrypted InnoDB tablespaces must
take explicit action to ensure continued loading of the keyring plugin: Start the server with an --early-
plugin-load option that names the plugin library file. For additional information, see Section 6.4.4.1,
“Keyring Plugin Installation”.

• Incompatible change: The INFORMATION_SCHEMA has tables that contain system and status
variable information (see Section 24.3.11, “The INFORMATION_SCHEMA GLOBAL_VARIABLES
and SESSION_VARIABLES Tables”, and Section 24.3.10, “The INFORMATION_SCHEMA
GLOBAL_STATUS and SESSION_STATUS Tables”). As of MySQL 5.7.6, the Performance Schema
also contains system and status variable tables (see Section 25.12.13, “Performance Schema
System Variable Tables”, and Section 25.12.14, “Performance Schema Status Variable Tables”). The
Performance Schema tables are intended to replace the INFORMATION_SCHEMA tables, which are
deprecated as of MySQL 5.7.6 and are removed in MySQL 8.0.

For advice on migrating away from the INFORMATION_SCHEMA tables to the Performance Schema
tables, see Section 25.20, “Migrating to Performance Schema System and Status Variable Tables”.
To assist in the migration, you can use the show_compatibility_56 system variable, which
affects how system and status variable information is provided by the INFORMATION_SCHEMA and
Performance Schema tables, and also by the SHOW VARIABLES and SHOW STATUS statements.
show_compatibility_56 is enabled by default in 5.7.6 and 5.7.7, and disabled by default in MySQL
5.7.8.

For details about the effects of show_compatibility_56, see Section 5.1.7, “Server System
Variables” For better understanding, it is strongly recommended that you read also these sections:

• Section 25.12.13, “Performance Schema System Variable Tables”

• Section 25.12.14, “Performance Schema Status Variable Tables”

• Section 25.12.15.10, “Status Variable Summary Tables”

• Incompatible change: As of MySQL 5.7.6, data directory initialization creates only a single root
account, 'root'@'localhost'. (See Section 2.9.1, “Initializing the Data Directory”.) An attempt
to connect to the host 127.0.0.1 normally resolves to the localhost account. However, this fails
if the server is run with skip_name_resolve enabled. If you plan to do that, make sure that an
account exists that can accept a connection. For example, to be able to connect as root using --
host=127.0.0.1 or --host=::1, create these accounts:

238

Changes in MySQL 5.7

CREATE USER 'root'@'127.0.0.1' IDENTIFIED BY 'root-password';
CREATE USER 'root'@'::1' IDENTIFIED BY 'root-password';

• Incompatible change: As of MySQL 5.7.6, for some Linux platforms, when MySQL is installed using
RPM and Debian packages, server startup and shutdown now is managed using systemd rather than
mysqld_safe, and mysqld_safe is not installed. This may require some adjustment to the manner
in which you specify server options. For details, see Section 2.5.10, “Managing MySQL Server with
systemd”.

• Incompatible change: In MySQL 5.7.5, the executable binary version of mysql_install_db
is located in the bin installation directory, whereas the Perl version was located in the scripts
installation directory. For upgrades from an older version of MySQL, you may find a version in both
directories. To avoid confusion, remove the version in the scripts directory. For fresh installations
of MySQL 5.7.5 or later, mysql_install_db is only found in the bin directory, and the scripts
directory is no longer present. Applications that expect to find mysql_install_db in the scripts
directory should be updated to look in the bin directory instead.

The location of mysql_install_db becomes less material as of MySQL 5.7.6 because as of that
version it is deprecated in favor of mysqld --initialize (or mysqld --initialize-insecure).
See Section 2.9.1, “Initializing the Data Directory”

• Incompatible change: In MySQL 5.7.5, these SQL mode changes were made:

• Strict SQL mode for transactional storage engines (STRICT_TRANS_TABLES) is now enabled by
default.

• Implementation of the ONLY_FULL_GROUP_BY SQL mode has been made more sophisticated,
to no longer reject deterministic queries that previously were rejected. In consequence,
ONLY_FULL_GROUP_BY is now enabled by default, to prohibit nondeterministic queries containing
expressions not guaranteed to be uniquely determined within a group.

• The changes to the default SQL mode result in a default sql_mode system variable value with these
modes enabled: ONLY_FULL_GROUP_BY, STRICT_TRANS_TABLES, NO_ENGINE_SUBSTITUTION.

• The ONLY_FULL_GROUP_BY mode is also now included in the modes comprised by the ANSI SQL
mode.

If you find that having ONLY_FULL_GROUP_BY enabled causes queries for existing applications to be
rejected, either of these actions should restore operation:

• If it is possible to modify an offending query, do so, either so that nondeterministic nonaggregated
columns are functionally dependent on GROUP BY columns, or by referring to nonaggregated columns
using ANY_VALUE().

• If it is not possible to modify an offending query (for example, if it is generated by a third-
party application), set the sql_mode system variable at server startup to not enable
ONLY_FULL_GROUP_BY.

For more information about SQL modes and GROUP BY queries, see Section 5.1.10, “Server SQL
Modes”, and Section 12.19.3, “MySQL Handling of GROUP BY”.

System Table Changes

• Incompatible change: The Password column of the mysql.user system table was removed in
MySQL 5.7.6. All credentials are stored in the authentication_string column, including those
formerly stored in the Password column. If performing an in-place upgrade to MySQL 5.7.6 or later,

239

Changes in MySQL 5.7

run mysql_upgrade as directed by the in-place upgrade procedure to migrate the Password column
contents to the authentication_string column.

If performing a logical upgrade using a mysqldump dump file from a pre-5.7.6 MySQL installation, you
must observe these conditions for the mysqldump command used to generate the dump file:

• You must include the --add-drop-table option

• You must not include the --flush-privileges option

As outlined in the logical upgrade procedure, load the pre-5.7.6 dump file into the 5.7.6 (or later) server
before running mysql_upgrade.

Server Changes

• Incompatible change: As of MySQL 5.7.5, support for passwords that use the older pre-4.1 password
hashing format is removed, which involves the following changes. Applications that use any feature no
longer supported must be modified.

• The mysql_old_password authentication plugin that used pre-4.1 password hash values is
removed. Accounts that use this plugin are disabled at startup and the server writes an “unknown
plugin” message to the error log. For instructions on upgrading accounts that use this plugin, see
Section 6.4.1.3, “Migrating Away from Pre-4.1 Password Hashing and the mysql_old_password
Plugin”.

• For the old_passwords system variable, a value of 1 (produce pre-4.1 hash values) is no longer
permitted.

• The --secure-auth option to the server and client programs is the default, but is now a no-op. It is
deprecated;expect it to be removed in a future MySQL release.

• The --skip-secure-auth option to the server and client programs is no longer supported and
using it produces an error.

• The secure_auth system variable permits only a value of 1; a value of 0 is no longer permitted.

• The OLD_PASSWORD() function is removed.

• Incompatible change: In MySQL 5.6.6, the 2-digit YEAR(2) data type was deprecated. In MySQL 5.7.5,
support for YEAR(2) is removed. Once you upgrade to MySQL 5.7.5 or higher, any remaining 2-digit
YEAR(2) columns must be converted to 4-digit YEAR columns to become usable again. For conversion
strategies, see Section 11.2.5, “2-Digit YEAR(2) Limitations and Migrating to 4-Digit YEAR”. Running
mysql_upgrade after upgrading is one of the possible conversion strategies.

• As of MySQL 5.7.7, CHECK TABLE ... FOR UPGRADE reports a table as needing a rebuild if it
contains old temporal columns in pre-5.6.4 format (TIME, DATETIME, and TIMESTAMP columns without
support for fractional seconds precision) and the avoid_temporal_upgrade system variable is
disabled. This helps mysql_upgrade to detect and upgrade tables containing old temporal columns. If
avoid_temporal_upgrade is enabled, FOR UPGRADE ignores the old temporal columns present in
the table; consequently, mysql_upgrade does not upgrade them.

As of MySQL 5.7.7, REPAIR TABLE upgrades a table if it contains old temporal columns
in pre-5.6.4 format and the avoid_temporal_upgrade system variable is disabled. If
avoid_temporal_upgrade is enabled, REPAIR TABLE ignores the old temporal columns present in
the table and does not upgrade them.

240

Changes in MySQL 5.7

To check for tables that contain such temporal columns and need a rebuild, disable
avoid_temporal_upgrade before executing CHECK TABLE ... FOR UPGRADE.

To upgrade tables that contain such temporal columns, disable avoid_temporal_upgrade before
executing REPAIR TABLE or mysql_upgrade.

• Incompatible change: As of MySQL 5.7.2, the server requires account rows in the mysql.user
system table to have a nonempty plugin column value and disables accounts with an empty value.

241

Changes in MySQL 5.7

This requires that you upgrade your mysql.user table to fill in all plugin values. As of MySQL 5.7.6,
use this procedure:

If you plan to upgrade using the data directory from your existing MySQL installation:

1. Stop the old (MySQL 5.6) server

2. Upgrade the MySQL binaries in place by replacing the old binaries with the new ones

3. Start the MySQL 5.7 server normally (no special options)

4. Run mysql_upgrade to upgrade the system tables

5. Restart the MySQL 5.7 server

If you plan to upgrade by reloading a dump file generated from your existing MySQL installation:

1. To generate the dump file, run mysqldump with the --add-drop-table option and without the --
flush-privileges option

2. Stop the old (MySQL 5.6) server

3. Upgrade the MySQL binaries in place (replace the old binaries with the new ones)

4. Start the MySQL 5.7 server normally (no special options)

5. Reload the dump file (mysql < dump_file)

6. Run mysql_upgrade to upgrade the system tables

7. Restart the MySQL 5.7 server

Before MySQL 5.7.6, the procedure is more involved:

If you plan to upgrade using the data directory from your existing MySQL installation:

1. Stop the old (MySQL 5.6) server

2. Upgrade the MySQL binaries in place (replace the old binaries with the new ones)

3. Restart the server with the --skip-grant-tables option to disable privilege checking

4. Run mysql_upgrade to upgrade the system tables

5. Restart the server normally (without --skip-grant-tables)

If you plan to upgrade by reloading a dump file generated from your existing MySQL installation:

1. To generate the dump file, run mysqldump without the --flush-privileges option

2. Stop the old (MySQL 5.6) server

3. Upgrade the MySQL binaries in place (replace the old binaries with the new ones)

4. Restart the server with the --skip-grant-tables option to disable privilege checking

5. Reload the dump file (mysql < dump_file)

242

Changes in MySQL 5.7

6. Run mysql_upgrade to upgrade the system tables

7. Restart the server normally (without --skip-grant-tables)

mysql_upgrade runs by default as the MySQL root user. For the preceding procedures, if the
root password is expired when you run mysql_upgrade, it displays a message informing you that
your password is expired and that mysql_upgrade failed as a result. To correct this, reset the root
password and run mysql_upgrade again:

$> mysql -u root -p
Enter password: **** <- enter root password here
mysql> ALTER USER USER() IDENTIFIED BY 'root-password'; # MySQL 5.7.6 and up
mysql> SET PASSWORD = PASSWORD('root-password'); # Before MySQL 5.7.6
mysql> quit

$> mysql_upgrade -p
Enter password: **** <- enter root password here

The password-resetting statement normally does not work if the server is started with --skip-grant-
tables, but the first invocation of mysql_upgrade flushes the privileges, so when you run mysql, the
statement is accepted.

If mysql_upgrade itself expires the root password, you must reset the password again in the same
manner.

After following the preceding instructions, DBAs are advised also to convert accounts that use the
mysql_old_password authentication plugin to use mysql_native_password instead, because
support for mysql_old_password has been removed. For account upgrade instructions, see
Section 6.4.1.3, “Migrating Away from Pre-4.1 Password Hashing and the mysql_old_password Plugin”.

• Incompatible change: It is possible for a column DEFAULT value to be valid for the sql_mode value at
table-creation time but invalid for the sql_mode value when rows are inserted or updated. Example:

SET sql_mode = '';
CREATE TABLE t (d DATE DEFAULT 0);
SET sql_mode = 'NO_ZERO_DATE,STRICT_ALL_TABLES';
INSERT INTO t (d) VALUES(DEFAULT);

In this case, 0 should be accepted for the CREATE TABLE but rejected for the INSERT. However,
previously the server did not evaluate DEFAULT values used for inserts or updates against the current
sql_mode. In the example, the INSERT succeeds and inserts '0000-00-00' into the DATE column.

As of MySQL 5.7.2, the server applies the proper sql_mode checks to generate a warning or error at
insert or update time.

A resulting incompatibility for replication if you use statement-based logging
(binlog_format=STATEMENT) is that if a replica is upgraded, a source which has not been upgraded
executes the preceding example without error, whereas the INSERT fails on the replica and replication
stops.

To deal with this, stop all new statements on the source and wait until the replicas catch up. Then
upgrade the replicas followed by the source. Alternatively, if you cannot stop new statements,
temporarily change to row-based logging on the source (binlog_format=ROW) and wait until all
replicas have processed all binary logs produced up to the point of this change. Then upgrade the
replicas followed by the source and change the source back to statement-based logging.

• Incompatible change: Several changes were made to the audit log plugin for better compatibility with
Oracle Audit Vault. For upgrading purpose, the main issue is that the default format of the audit log file

243

Changes in MySQL 5.7

has changed: Information within <AUDIT_RECORD> elements previously written using attributes now is
written using subelements.

Example of old <AUDIT_RECORD> format:

<AUDIT_RECORD
 TIMESTAMP="2013-04-15T15:27:27"
 NAME="Query"
 CONNECTION_ID="3"
 STATUS="0"
 SQLTEXT="SELECT 1"
/>

Example of new format:

<AUDIT_RECORD>
 <TIMESTAMP>2013-04-15T15:27:27 UTC</TIMESTAMP>
 <RECORD_ID>3998_2013-04-15T15:27:27</RECORD_ID>
 <NAME>Query</NAME>
 <CONNECTION_ID>3</CONNECTION_ID>
 <STATUS>0</STATUS>
 <STATUS_CODE>0</STATUS_CODE>
 <USER>root[root] @ localhost [127.0.0.1]</USER>
 <OS_LOGIN></OS_LOGIN>
 <HOST>localhost</HOST>
 <IP>127.0.0.1</IP>
 <COMMAND_CLASS>select</COMMAND_CLASS>
 <SQLTEXT>SELECT 1</SQLTEXT>
</AUDIT_RECORD>

If you previously used an older version of the audit log plugin, use this procedure to avoid writing new-
format log entries to an existing log file that contains old-format entries:

1. Stop the server.

2. Rename the current audit log file manually. This file contains log entries using only the old format.

3. Update the server and restart it. The audit log plugin creates a new log file, which contains log entries
using only the new format.

For information about the audit log plugin, see Section 6.4.5, “MySQL Enterprise Audit”.

• As of MySQL 5.7.7, the default connection timeout for a replica was changed from 3600 seconds
(one hour) to 60 seconds (one minute). The new default is applied when a replica without a setting
for the slave_net_timeout system variable is upgraded to MySQL 5.7. The default setting for the
heartbeat interval, which regulates the heartbeat signal to stop the connection timeout occurring in the
absence of data if the connection is still good, is calculated as half the value of slave_net_timeout.
The heartbeat interval is recorded in the replica's source info log (the mysql.slave_master_info
table or master.info file), and it is not changed automatically when the value or default setting of
slave_net_timeout is changed. A MySQL 5.6 replica that used the default connection timeout and
heartbeat interval, and was then upgraded to MySQL 5.7, therefore has a heartbeat interval that is much
longer than the connection timeout.

If the level of activity on the source is such that updates to the binary log are sent to the replica at
least once every 60 seconds, this situation is not an issue. However, if no data is received from the
source, because the heartbeat is not being sent, the connection timeout expires. The replica therefore
thinks the connection to the source has been lost and makes multiple reconnection attempts (as
controlled by the MASTER_CONNECT_RETRY and MASTER_RETRY_COUNT settings, which can also
be seen in the source info log). The reconnection attempts spawn numerous zombie dump threads
that the source must kill, causing the error log on the source to contain multiple errors of the form

244

Changes in MySQL 5.7

While initializing dump thread for slave with UUID uuid, found a zombie
dump thread with the same UUID. Master is killing the zombie dump thread
threadid. To avoid this issue, immediately before upgrading a replica to MySQL 5.7, check whether
the slave_net_timeout system variable is using the default setting. If so, issue CHANGE MASTER TO
with the MASTER_HEARTBEAT_PERIOD option, and set the heartbeat interval to 30 seconds, so that it
works with the new connection timeout of 60 seconds that applies after the upgrade.

• Incompatible change: MySQL 5.6.22 and later recognized the REFERENCES privilege but did not
entirely enforce it; a user with at least one of SELECT, INSERT, UPDATE, DELETE, or REFERENCES
could create a foreign key constraint on a table. MySQL 5.7 (and later) requires the user to have the
REFERENCES privilege to do this. This means that if you migrate users from a MySQL 5.6 server (any
version) to one running MySQL 5.7, you must make sure to grant this privilege explicitly to any users
which need to be able to create foreign keys. This includes the user account employed to import dumps
containing tables with foreign keys.

InnoDB Changes

• As of MySQL 5.7.24, the zlib library version bundled with MySQL was raised from version 1.2.3 to
version 1.2.11.

The zlib compressBound() function in zlib 1.2.11 returns a slightly higher estimate of the buffer size
required to compress a given length of bytes than it did in zlib version 1.2.3. The compressBound()
function is called by InnoDB functions that determine the maximum row size permitted when creating
compressed InnoDB tables or inserting rows into compressed InnoDB tables. As a result, CREATE
TABLE ... ROW_FORMAT=COMPRESSED or INSERT operations with row sizes very close to the
maximum row size that were successful in earlier releases could now fail.

If you have compressed InnoDB tables with large rows, it is recommended that you test compressed
table CREATE TABLE statements on a MySQL 5.7 test instance prior to upgrading.

• Incompatible change: To simplify InnoDB tablespace discovery during crash recovery, new redo log
record types were introduced in MySQL 5.7.5. This enhancement changes the redo log format. Before
performing an in-place upgrade, perform a clean shutdown using an innodb_fast_shutdown setting
of 0 or 1. A slow shutdown using innodb_fast_shutdown=0 is a recommended step in In-Place
Upgrade.

• Incompatible change: MySQL 5.7.8 and 5.7.9 undo logs may contain insufficient information
about spatial columns, which could result in a upgrade failure (Bug #21508582). Before
performing an in-place upgrade from MySQL 5.7.8 or 5.7.9 to 5.7.10 or higher, perform a slow
shutdown using innodb_fast_shutdown=0 to clear the undo logs. A slow shutdown using
innodb_fast_shutdown=0 is a recommended step in In-Place Upgrade.

• Incompatible change: MySQL 5.7.8 undo logs may contain insufficient information about virtual
columns and virtual column indexes, which could result in a upgrade failure (Bug #21869656).
Before performing an in-place upgrade from MySQL 5.7.8 to MySQL 5.7.9 or higher, perform a
slow shutdown using innodb_fast_shutdown=0 to clear the undo logs. A slow shutdown using
innodb_fast_shutdown=0 is a recommended step in In-Place Upgrade.

• Incompatible change: As of MySQL 5.7.9, the redo log header of the first redo log file (ib_logfile0)
includes a format version identifier and a text string that identifies the MySQL version that created the
redo log files. This enhancement changes the redo log format, requiring that MySQL be shutdown
cleanly using an innodb_fast_shutdown setting of 0 or 1 before performing an in-place upgrade to
MySQL 5.7.9 or higher. A slow shutdown using innodb_fast_shutdown=0 is a recommended step in
In-Place Upgrade.

245

http://www.zlib.net/

Changes in MySQL 5.7

• In MySQL 5.7.9, DYNAMIC replaces COMPACT as the implicit default row format for InnoDB tables. A
new configuration option, innodb_default_row_format, specifies the default InnoDB row format.
Permitted values include DYNAMIC (the default), COMPACT, and REDUNDANT.

After upgrading to 5.7.9, any new tables that you create use the row format defined by
innodb_default_row_format unless you explicitly define a row format (ROW_FORMAT).

For existing tables that do not explicitly define a ROW_FORMAT option or that use
ROW_FORMAT=DEFAULT, any operation that rebuilds a table also silently changes the row format of the
table to the format defined by innodb_default_row_format. Otherwise, existing tables retain their
current row format setting. For more information, see Defining the Row Format of a Table.

• Beginning with MySQL 5.7.6, the InnoDB storage engine uses its own built-in (“native”) partitioning
handler for any new partitioned tables created using InnoDB. Partitioned InnoDB tables created in
previous versions of MySQL are not automatically upgraded. You can easily upgrade such tables to use
InnoDB native partitioning in MySQL 5.7.9 or later using either of the following methods:

• To upgrade an individual table from the generic partitioning handler to InnoDB native partitioning,
execute the statement ALTER TABLE table_name UPGRADE PARTITIONING.

• To upgrade all InnoDB tables that use the generic partitioning handler to use the native partitioning
handler instead, run mysql_upgrade.

SQL Changes

• Incompatible change: The GET_LOCK() function was reimplemented in MySQL 5.7.5 using the
metadata locking (MDL) subsystem and its capabilities have been extended:

• Previously, GET_LOCK() permitted acquisition of only one named lock at a time, and a second
GET_LOCK() call released any existing lock. Now GET_LOCK() permits acquisition of more than one
simultaneous named lock and does not release existing locks.

Applications that rely on the behavior of GET_LOCK() releasing any previous lock must be modified
for the new behavior.

• The capability of acquiring multiple locks introduces the possibility of deadlock among clients. The
MDL subsystem detects deadlock and returns an ER_USER_LOCK_DEADLOCK error when this occurs.

• The MDL subsystem imposes a limit of 64 characters on lock names, so this limit now also applies to
named locks. Previously, no length limit was enforced.

• Locks acquired with GET_LOCK() now appear in the Performance Schema metadata_locks table.
The OBJECT_TYPE column says USER LEVEL LOCK and the OBJECT_NAME column indicates the
lock name.

• A new function, RELEASE_ALL_LOCKS() permits release of all acquired named locks at once.

For more information, see Section 12.14, “Locking Functions”.

• The optimizer now handles derived tables and views in the FROM clause in consistent fashion to better
avoid unnecessary materialization and to enable use of pushed-down conditions that produce more
efficient execution plans.

However in MySQL 5.7 before MySQL 5.7.11, and for statements such as DELETE or UPDATE that
modify tables, using the merge strategy for a derived table that previously was materialized can result in
an ER_UPDATE_TABLE_USED error:

246

https://dev.mysql.com/doc/mysql-errors/5.7/en/server-error-reference.html#error_er_user_lock_deadlock
https://dev.mysql.com/doc/mysql-errors/5.7/en/server-error-reference.html#error_er_update_table_used

Upgrading MySQL Binary or Package-based Installations on Unix/Linux

mysql> DELETE FROM t1
 -> WHERE id IN (SELECT id
 -> FROM (SELECT t1.id
 -> FROM t1 INNER JOIN t2 USING (id)
 -> WHERE t2.status = 0) AS t);
ERROR 1093 (HY000): You can't specify target table 't1'
for update in FROM clause

The error occurs when merging a derived table into the outer query block results in a statement that
both selects from and modifies a table. (Materialization does not cause the problem because, in effect,
it converts the derived table to a separate table.) The workaround to avoid this error was to disable the
derived_merge flag of the optimizer_switch system variable before executing the statement:

SET optimizer_switch = 'derived_merge=off';

The derived_merge flag controls whether the optimizer attempts to merge subqueries and views in
the FROM clause into the outer query block, assuming that no other rule prevents merging. By default,
the flag is on to enable merging. Setting the flag to off prevents merging and avoids the error just
described. For more information, see Section 8.2.2.4, “Optimizing Derived Tables and View References
with Merging or Materialization”.

• Some keywords may be reserved in MySQL 5.7 that were not reserved in MySQL 5.6. See Section 9.3,
“Keywords and Reserved Words”. This can cause words previously used as identifiers to become illegal.
To fix affected statements, use identifier quoting. See Section 9.2, “Schema Object Names”.

• After upgrading, it is recommended that you test optimizer hints specified in application code to ensure
that the hints are still required to achieve the desired optimization strategy. Optimizer enhancements can
sometimes render certain optimizer hints unnecessary. In some cases, an unnecessary optimizer hint
may even be counterproductive.

• In UNION statements, to apply ORDER BY or LIMIT to an individual SELECT, place the clause inside the
parentheses that enclose the SELECT:

(SELECT a FROM t1 WHERE a=10 AND B=1 ORDER BY a LIMIT 10)
UNION
(SELECT a FROM t2 WHERE a=11 AND B=2 ORDER BY a LIMIT 10);

Previous versions of MySQL may permit such statements without parentheses. In MySQL 5.7, the
requirement for parentheses is enforced.

2.10.4 Upgrading MySQL Binary or Package-based Installations on Unix/Linux

This section describes how to upgrade MySQL binary and package-based installations on Unix/Linux. In-
place and logical upgrade methods are described.

• In-Place Upgrade

• Logical Upgrade

In-Place Upgrade

An in-place upgrade involves shutting down the old MySQL server, replacing the old MySQL binaries
or packages with the new ones, restarting MySQL on the existing data directory, and upgrading any
remaining parts of the existing installation that require upgrading.

247

Upgrading MySQL Binary or Package-based Installations on Unix/Linux

Note

Only upgrade a MySQL server instance that was properly shut down. If the
instance unexpectedly shutdown, then restart the instance and shut it down with
innodb_fast_shutdown=0 before upgrade.

Note

If you upgrade an installation originally produced by installing multiple RPM
packages, upgrade all the packages, not just some. For example, if you previously
installed the server and client RPMs, do not upgrade just the server RPM.

For some Linux platforms, MySQL installation from RPM or Debian packages
includes systemd support for managing MySQL server startup and shutdown.
On these platforms, mysqld_safe is not installed. In such cases, use systemd
for server startup and shutdown instead of the methods used in the following
instructions. See Section 2.5.10, “Managing MySQL Server with systemd”.

To perform an in-place upgrade:

1. If you use XA transactions with InnoDB, run XA RECOVER before upgrading to check for uncommitted
XA transactions. If results are returned, either commit or rollback the XA transactions by issuing an XA
COMMIT or XA ROLLBACK statement.

2. Configure MySQL to perform a slow shutdown by setting innodb_fast_shutdown to 0. For example:

mysql -u root -p --execute="SET GLOBAL innodb_fast_shutdown=0"

With a slow shutdown, InnoDB performs a full purge and change buffer merge before shutting down,
which ensures that data files are fully prepared in case of file format differences between releases.

3. Shut down the old MySQL server. For example:

mysqladmin -u root -p shutdown

4. Upgrade the MySQL binary installation or packages. If upgrading a binary installation, unpack the
new MySQL binary distribution package. See Obtain and Unpack the Distribution. For package-based
installations, install the new packages.

5. Start the MySQL 5.7 server, using the existing data directory. For example:

mysqld_safe --user=mysql --datadir=/path/to/existing-datadir &

6. Run mysql_upgrade. For example:

mysql_upgrade -u root -p

mysql_upgrade examines all tables in all databases for incompatibilities with the current version of
MySQL. mysql_upgrade also upgrades the mysql system database so that you can take advantage
of new privileges or capabilities.

Note

mysql_upgrade does not upgrade the contents of the time zone tables or help
tables. For upgrade instructions, see Section 5.1.13, “MySQL Server Time Zone
Support”, and Section 5.1.14, “Server-Side Help Support”.

7. Shut down and restart the MySQL server to ensure that any changes made to the system tables take
effect. For example:

248

Upgrading MySQL Binary or Package-based Installations on Unix/Linux

mysqladmin -u root -p shutdown
mysqld_safe --user=mysql --datadir=/path/to/existing-datadir &

Logical Upgrade

A logical upgrade involves exporting SQL from the old MySQL instance using a backup or export utility
such as mysqldump or mysqlpump, installing the new MySQL server, and applying the SQL to your new
MySQL instance.

Note

For some Linux platforms, MySQL installation from RPM or Debian packages
includes systemd support for managing MySQL server startup and shutdown.
On these platforms, mysqld_safe is not installed. In such cases, use systemd
for server startup and shutdown instead of the methods used in the following
instructions. See Section 2.5.10, “Managing MySQL Server with systemd”.

To perform a logical upgrade:

1. Review the information in Section 2.10.1, “Before You Begin”.

2. Export your existing data from the previous MySQL installation:

mysqldump -u root -p
 --add-drop-table --routines --events
 --all-databases --force > data-for-upgrade.sql

Note

Use the --routines and --events options with mysqldump (as shown
above) if your databases include stored programs. The --all-databases
option includes all databases in the dump, including the mysql database that
holds the system tables.

Important

If you have tables that contain generated columns, use the mysqldump utility
provided with MySQL 5.7.9 or higher to create your dump files. The mysqldump
utility provided in earlier releases uses incorrect syntax for generated column
definitions (Bug #20769542). You can use the Information Schema COLUMNS
table to identify tables with generated columns.

3. Shut down the old MySQL server. For example:

mysqladmin -u root -p shutdown

4. Install MySQL 5.7. For installation instructions, see Chapter 2, Installing and Upgrading MySQL.

5. Initialize a new data directory, as described at Section 2.9.1, “Initializing the Data Directory”. For
example:

mysqld --initialize --datadir=/path/to/5.7-datadir

Copy the temporary 'root'@'localhost' password displayed to your screen or written to your error
log for later use.

6. Start the MySQL 5.7 server, using the new data directory. For example:

mysqld_safe --user=mysql --datadir=/path/to/5.7-datadir &

249

Upgrading MySQL with the MySQL Yum Repository

7. Reset the root password:

$> mysql -u root -p
Enter password: **** <- enter temporary root password

mysql> ALTER USER USER() IDENTIFIED BY 'your new password';

8. Load the previously created dump file into the new MySQL server. For example:

mysql -u root -p --force < data-for-upgrade.sql

Note

It is not recommended to load a dump file when GTIDs are enabled on the
server (gtid_mode=ON), if your dump file includes system tables. mysqldump
issues DML instructions for the system tables which use the non-transactional
MyISAM storage engine, and this combination is not permitted when GTIDs
are enabled. Also be aware that loading a dump file from a server with GTIDs
enabled, into another server with GTIDs enabled, causes different transaction
identifiers to be generated.

9. Run mysql_upgrade. For example:

mysql_upgrade -u root -p

mysql_upgrade examines all tables in all databases for incompatibilities with the current version of
MySQL. mysql_upgrade also upgrades the mysql system database so that you can take advantage
of new privileges or capabilities.

Note

mysql_upgrade does not upgrade the contents of the time zone tables or help
tables. For upgrade instructions, see Section 5.1.13, “MySQL Server Time Zone
Support”, and Section 5.1.14, “Server-Side Help Support”.

10. Shut down and restart the MySQL server to ensure that any changes made to the system tables take
effect. For example:

mysqladmin -u root -p shutdown
mysqld_safe --user=mysql --datadir=/path/to/5.7-datadir &

2.10.5 Upgrading MySQL with the MySQL Yum Repository

For supported Yum-based platforms (see Section 2.5.1, “Installing MySQL on Linux Using the MySQL Yum
Repository”, for a list), you can perform an in-place upgrade for MySQL (that is, replacing the old version
and then running the new version using the old data files) with the MySQL Yum repository.

Notes

• Before performing any update to MySQL, follow carefully the instructions in
Section 2.10, “Upgrading MySQL”. Among other instructions discussed there, it is
especially important to back up your database before the update.

• The following instructions assume you have installed MySQL with the MySQL
Yum repository or with an RPM package directly downloaded from MySQL
Developer Zone's MySQL Download page; if that is not the case, following the
instructions in Section 2.5.2, “Replacing a Third-Party Distribution of MySQL
Using the MySQL Yum Repository”.

250

https://dev.mysql.com/downloads/
https://dev.mysql.com/downloads/

Upgrading MySQL with the MySQL Yum Repository

1.Selecting a Target Series

By default, the MySQL Yum repository updates MySQL to the latest version in the release series you
have chosen during installation (see Selecting a Release Series for details), which means, for example,
a 5.6.x installation is not updated to a 5.7.x release automatically. To update to another release series,
you need first to disable the subrepository for the series that has been selected (by default, or by
yourself) and enable the subrepository for your target series. To do that, see the general instructions
given in Selecting a Release Series. For upgrading from MySQL 5.6 to 5.7, perform the reverse of the
steps illustrated in Selecting a Release Series, disabling the subrepository for the MySQL 5.6 series
and enabling that for the MySQL 5.7 series.

As a general rule, to upgrade from one release series to another, go to the next series rather than
skipping a series. For example, if you are currently running MySQL 5.5 and wish to upgrade to 5.7,
upgrade to MySQL 5.6 first before upgrading to 5.7.

Important

For important information about upgrading from MySQL 5.6 to 5.7, see
Upgrading from MySQL 5.6 to 5.7.

2.Upgrading MySQL

Upgrade MySQL and its components by the following command, for platforms that are not dnf-enabled:

sudo yum update mysql-server

For platforms that are dnf-enabled:

sudo dnf upgrade mysql-server

Alternatively, you can update MySQL by telling Yum to update everything on your system, which might
take considerably more time. For platforms that are not dnf-enabled:

sudo yum update

For platforms that are dnf-enabled:

sudo dnf upgrade

3.Restarting MySQL

The MySQL server always restarts after an update by Yum. Once the server restarts, run
mysql_upgrade to check and possibly resolve any incompatibilities between the old data and
the upgraded software. mysql_upgrade also performs other functions; see Section 4.4.7,
“mysql_upgrade — Check and Upgrade MySQL Tables” for details.

You can also update only a specific component. Use the following command to list all the installed
packages for the MySQL components (for dnf-enabled systems, replace yum in the command with dnf):

sudo yum list installed | grep "^mysql"

After identifying the package name of the component of your choice, update the package with the following
command, replacing package-name with the name of the package. For platforms that are not dnf-
enabled:

sudo yum update package-name

For dnf-enabled platforms:

251

Upgrading MySQL with the MySQL APT Repository

sudo dnf upgrade package-name

Upgrading the Shared Client Libraries

After updating MySQL using the Yum repository, applications compiled with older versions of the shared
client libraries should continue to work.

If you recompile applications and dynamically link them with the updated libraries: As typical with new
versions of shared libraries where there are differences or additions in symbol versioning between the
newer and older libraries (for example, between the newer, standard 5.7 shared client libraries and some
older—prior or variant—versions of the shared libraries shipped natively by the Linux distributions' software
repositories, or from some other sources), any applications compiled using the updated, newer shared
libraries require those updated libraries on systems where the applications are deployed. If those libraries
are not in place, the applications requiring the shared libraries fail. For this reason, be sure to deploy
the packages for the shared libraries from MySQL on those systems. To do this, add the MySQL Yum
repository to the systems (see Adding the MySQL Yum Repository) and install the latest shared libraries
using the instructions given in Installing Additional MySQL Products and Components with Yum.

2.10.6 Upgrading MySQL with the MySQL APT Repository

On Debian and Ubuntu platforms, to perform an in-place upgrade of MySQL and its components, use
the MySQL APT repository. See Upgrading MySQL with the MySQL APT Repository in A Quick Guide to
Using the MySQL APT Repository.

2.10.7 Upgrading MySQL with the MySQL SLES Repository

On the SUSE Linux Enterprise Server (SLES) platform, to perform an in-place upgrade of MySQL and its
components, use the MySQL SLES repository. See Upgrading MySQL with the MySQL SLES Repository
in A Quick Guide to Using the MySQL SLES Repository.

2.10.8 Upgrading MySQL on Windows

There are two approaches for upgrading MySQL on Windows:

• Using MySQL Installer

• Using the Windows ZIP archive distribution

The approach you select depends on how the existing installation was performed. Before proceeding,
review Section 2.10, “Upgrading MySQL” for additional information on upgrading MySQL that is not specific
to Windows.

Note

Whichever approach you choose, always back up your current MySQL installation
before performing an upgrade. See Section 7.2, “Database Backup Methods”.

Upgrades between milestone releases (or from a milestone release to a GA release) are not supported.
Significant development changes take place in milestone releases and you may encounter compatibility
issues or problems starting the server. For instructions on how to perform a logical upgrade with a
milestone release, see Logical Upgrade.

Note

MySQL Installer does not support upgrades between Community releases and
Commercial releases. If you require this type of upgrade, perform it using the ZIP
archive approach.

252

https://dev.mysql.com/doc/mysql-apt-repo-quick-guide/en/index.html#repo-qg-apt-upgrading
https://dev.mysql.com/doc/mysql-apt-repo-quick-guide/en/
https://dev.mysql.com/doc/mysql-apt-repo-quick-guide/en/
https://dev.mysql.com/doc/mysql-sles-repo-quick-guide/en/index.html#repo-qg-sles-upgrading
https://dev.mysql.com/doc/mysql-sles-repo-quick-guide/en/

Upgrading MySQL on Windows

Upgrading MySQL with MySQL Installer

Performing an upgrade with MySQL Installer is the best approach when the current server installation was
performed with it and the upgrade is within the current release series. MySQL Installer does not support
upgrades between release series, such as from 5.6 to 5.7, and it does not provide an upgrade indicator
to prompt you to upgrade. For instructions on upgrading between release series, see Upgrading MySQL
Using the Windows ZIP Distribution.

To perform an upgrade using MySQL Installer:

1. Start MySQL Installer.

2. From the dashboard, click Catalog to download the latest changes to the catalog. The installed server
can be upgraded only if the dashboard displays an arrow next to the version number of the server.

3. Click Upgrade. All products that have a newer version now appear in a list.

Note

MySQL Installer deselects the server upgrade option for milestone releases
(Pre-Release) in the same release series. In addition, it displays a warning to
indicate that the upgrade is not supported, identifies the risks of continuing, and
provides a summary of the steps to perform a logical upgrade manually. You
can reselect server upgrade and proceed at your own risk.

4. Deselect all but the MySQL server product, unless you intend to upgrade other products at this time,
and click Next.

5. Click Execute to start the download. When the download finishes, click Next to begin the upgrade
operation.

6. Configure the server.

Upgrading MySQL Using the Windows ZIP Distribution

To perform an upgrade using the Windows ZIP archive distribution:

1. Download the latest Windows ZIP Archive distribution of MySQL from https://dev.mysql.com/
downloads/.

2. If the server is running, stop it. If the server is installed as a service, stop the service with the following
command from the command prompt:

C:\> SC STOP mysqld_service_name

Alternatively, use NET STOP mysqld_service_name.

If you are not running the MySQL server as a service, use mysqladmin to stop it. For example, before
upgrading from MySQL 5.6 to 5.7, use mysqladmin from MySQL 5.6 as follows:

C:\> "C:\Program Files\MySQL\MySQL Server 5.6\bin\mysqladmin" -u root shutdown

Note

If the MySQL root user account has a password, invoke mysqladmin with the
-p option and enter the password when prompted.

253

https://dev.mysql.com/downloads/
https://dev.mysql.com/downloads/

Upgrading a Docker Installation of MySQL

3. Extract the ZIP archive. You may either overwrite your existing MySQL installation (usually located
at C:\mysql), or install it into a different directory, such as C:\mysql5. Overwriting the existing
installation is recommended.

4. Restart the server. For example, use the SC START mysqld_service_name or NET START
mysqld_service_name command if you run MySQL as a service, or invoke mysqld directly
otherwise.

5. As Administrator, run mysql_upgrade to check your tables, attempt to repair them if necessary, and
update your grant tables if they have changed so that you can take advantage of any new capabilities.
See Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”.

6. If you encounter errors, see Section 2.3.5, “Troubleshooting a Microsoft Windows MySQL Server
Installation”.

2.10.9 Upgrading a Docker Installation of MySQL

To upgrade a Docker installation of MySQL, refer to Upgrading a MySQL Server Container.

2.10.10 Upgrading MySQL with Directly-Downloaded RPM Packages

It is preferable to use the MySQL Yum repository or MySQL SLES Repository to upgrade MySQL on RPM-
based platforms. However, if you have to upgrade MySQL using the RPM packages downloaded directly
from the MySQL Developer Zone (see Section 2.5.5, “Installing MySQL on Linux Using RPM Packages
from Oracle” for information on the packages), go to the folder that contains all the downloaded packages
(and, preferably, no other RPM packages with similar names), and issue the following command:

yum install mysql-community-{server,client,common,libs}-*

Replace yum with zypper for SLES systems, and with dnf for dnf-enabled systems.

While it is much preferable to use a high-level package management tool like yum to install the packages,
users who preferred direct rpm commands can replace the yum install command with the rpm -Uvh
command; however, using rpm -Uvh instead makes the installation process more prone to failure, due to
potential dependency issues the installation process might run into.

For an upgrade installation using RPM packages, the MySQL server is automatically restarted at the end
of the installation if it was running when the upgrade installation began. If the server was not running when
the upgrade installation began, you have to restart the server yourself after the upgrade installation is
completed; do that with, for example, the follow command:

service mysqld start

Once the server restarts, run mysql_upgrade to check and possibly resolve any incompatibilities
between the old data and the upgraded software. mysql_upgrade also performs other functions; see
Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables” for details.

Note

Because of the dependency relationships among the RPM packages, all of the
installed packages must be of the same version. Therefore, always update all your
installed packages for MySQL. For example, do not just update the server without
also upgrading the client, the common files for server and client libraries, and so on.

Migration and Upgrade from installations by older RPM packages. Some older versions of MySQL
Server RPM packages have names in the form of MySQL-* (for example, MySQL-server-* and MySQL-

254

https://dev.mysql.com/downloads/repo/suse/
https://dev.mysql.com/

Upgrade Troubleshooting

client-*). The latest versions of RPMs, when installed using the standard package management tool (yum,
dnf, or zypper), seamlessly upgrade those older installations, making it unnecessary to uninstall those
old packages before installing the new ones. Here are some differences in behavior between the older and
the current RPM packages:

Table 2.16 Differences Between the Previous and the Current RPM Packages for Installing MySQL

Feature Behavior of Previous Packages Behavior of Current Packages

Service starts after installation is
finished

Yes No, unless it is an upgrade
installation, and the server was
running when the upgrade began.

Service name mysql For RHEL, Oracle Linux, CentOS,
and Fedora: mysqld

For SLES: mysql

Error log file At /var/lib/
mysql/hostname.err

For RHEL, Oracle Linux, CentOS,
and Fedora: at /var/log/
mysqld.log

For SLES: at /var/log/mysql/
mysqld.log

Shipped with the /etc/my.cnf
file

No Yes

Multilib support No Yes

Note

Installation of previous versions of MySQL using older packages might have
created a configuration file named /usr/my.cnf. It is highly recommended that
you examine the contents of the file and migrate the desired settings inside to the
file /etc/my.cnf file, then remove /usr/my.cnf.

Upgrading to MySQL Enterprise Server. Upgrading from a community version to a commercial
version of MySQL requires that you first uninstall the community version and then install the commercial
version. In this case, you must restart the server manually after the upgrade.

Interoperability with operating system native MySQL packages. Many Linux distributions ship
MySQL as an integrated part of the operating system. The latest versions of RPMs from Oracle, when
installed using the standard package management tool (yum, dnf, or zypper), seamlessly upgrades
and replaces the version of MySQL that comes with the operating system, and the package manager
automatically replaces system compatibility packages such as mysql-community-libs-compat with
the relevant new versions.

Upgrading from non-native MySQL packages. If you have installed MySQL with third-party packages
NOT from your Linux distribution's native software repository (for example, packages directly downloaded
from the vendor), you must uninstall all those packages before you can upgrade using the packages from
Oracle.

2.10.11 Upgrade Troubleshooting

• If problems occur, such as that the new mysqld server does not start, verify that you do not have an old
my.cnf file from your previous installation. You can check this with the --print-defaults option (for

255

Rebuilding or Repairing Tables or Indexes

example, mysqld --print-defaults). If this command displays anything other than the program
name, you have an active my.cnf file that affects server or client operation.

• If, after an upgrade, you experience problems with compiled client programs, such as Commands
out of sync or unexpected core dumps, you probably have used old header or library files when
compiling your programs. In this case, check the date for your mysql.h file and libmysqlclient.a
library to verify that they are from the new MySQL distribution. If not, recompile your programs
with the new headers and libraries. Recompilation might also be necessary for programs compiled
against the shared client library if the library major version number has changed (for example, from
libmysqlclient.so.15 to libmysqlclient.so.16).

• If you have created a loadable function with a given name and upgrade MySQL to a version that
implements a new built-in function with the same name, the loadable function becomes inaccessible.
To correct this, use DROP FUNCTION to drop the loadable function, and then use CREATE FUNCTION
to re-create the loadable function with a different nonconflicting name. The same is true if the new
version of MySQL implements a built-in function with the same name as an existing stored function.
See Section 9.2.5, “Function Name Parsing and Resolution”, for the rules describing how the server
interprets references to different kinds of functions.

2.10.12 Rebuilding or Repairing Tables or Indexes

This section describes how to rebuild or repair tables or indexes, which may be necessitated by:

• Changes to how MySQL handles data types or character sets. For example, an error in a collation might
have been corrected, necessitating a table rebuild to update the indexes for character columns that use
the collation.

• Required table repairs or upgrades reported by CHECK TABLE, mysqlcheck, or mysql_upgrade.

Methods for rebuilding a table include:

• Dump and Reload Method

• ALTER TABLE Method

• REPAIR TABLE Method

Dump and Reload Method

If you are rebuilding tables because a different version of MySQL cannot handle them after a binary
(in-place) upgrade or downgrade, you must use the dump-and-reload method. Dump the tables before
upgrading or downgrading using your original version of MySQL. Then reload the tables after upgrading or
downgrading.

If you use the dump-and-reload method of rebuilding tables only for the purpose of rebuilding indexes,
you can perform the dump either before or after upgrading or downgrading. Reloading still must be done
afterward.

If you need to rebuild an InnoDB table because a CHECK TABLE operation indicates that a table upgrade
is required, use mysqldump to create a dump file and mysql to reload the file. If the CHECK TABLE
operation indicates that there is a corruption or causes InnoDB to fail, refer to Section 14.22.2, “Forcing
InnoDB Recovery” for information about using the innodb_force_recovery option to restart InnoDB.
To understand the type of problem that CHECK TABLE may be encountering, refer to the InnoDB notes in
Section 13.7.2.2, “CHECK TABLE Statement”.

To rebuild a table by dumping and reloading it, use mysqldump to create a dump file and mysql to reload
the file:

256

Copying MySQL Databases to Another Machine

mysqldump db_name t1 > dump.sql
mysql db_name < dump.sql

To rebuild all the tables in a single database, specify the database name without any following table name:

mysqldump db_name > dump.sql
mysql db_name < dump.sql

To rebuild all tables in all databases, use the --all-databases option:

mysqldump --all-databases > dump.sql
mysql < dump.sql

ALTER TABLE Method

To rebuild a table with ALTER TABLE, use a “null” alteration; that is, an ALTER TABLE statement that
“changes” the table to use the storage engine that it already has. For example, if t1 is an InnoDB table,
use this statement:

ALTER TABLE t1 ENGINE = InnoDB;

If you are not sure which storage engine to specify in the ALTER TABLE statement, use SHOW CREATE
TABLE to display the table definition.

REPAIR TABLE Method

The REPAIR TABLE method is only applicable to MyISAM, ARCHIVE, and CSV tables.

You can use REPAIR TABLE if the table checking operation indicates that there is a corruption or that an
upgrade is required. For example, to repair a MyISAM table, use this statement:

REPAIR TABLE t1;

mysqlcheck --repair provides command-line access to the REPAIR TABLE statement. This can
be a more convenient means of repairing tables because you can use the --databases or --all-
databases option to repair all tables in specific databases or all databases, respectively:

mysqlcheck --repair --databases db_name ...
mysqlcheck --repair --all-databases

2.10.13 Copying MySQL Databases to Another Machine

In cases where you need to transfer databases between different architectures, you can use mysqldump
to create a file containing SQL statements. You can then transfer the file to the other machine and feed it
as input to the mysql client.

Use mysqldump --help to see what options are available.

The easiest (although not the fastest) way to move a database between two machines is to run the
following commands on the machine on which the database is located:

mysqladmin -h 'other_hostname' create db_name
mysqldump db_name | mysql -h 'other_hostname' db_name

If you want to copy a database from a remote machine over a slow network, you can use these commands:

mysqladmin create db_name

257

Downgrading MySQL

mysqldump -h 'other_hostname' --compress db_name | mysql db_name

You can also store the dump in a file, transfer the file to the target machine, and then load the file into the
database there. For example, you can dump a database to a compressed file on the source machine like
this:

mysqldump --quick db_name | gzip > db_name.gz

Transfer the file containing the database contents to the target machine and run these commands there:

mysqladmin create db_name
gunzip < db_name.gz | mysql db_name

You can also use mysqldump and mysqlimport to transfer the database. For large tables, this is much
faster than simply using mysqldump. In the following commands, DUMPDIR represents the full path name
of the directory you use to store the output from mysqldump.

First, create the directory for the output files and dump the database:

mkdir DUMPDIR
mysqldump --tab=DUMPDIR db_name

Then transfer the files in the DUMPDIR directory to some corresponding directory on the target machine
and load the files into MySQL there:

mysqladmin create db_name # create database
cat DUMPDIR/*.sql | mysql db_name # create tables in database
mysqlimport db_name DUMPDIR/*.txt # load data into tables

Do not forget to copy the mysql database because that is where the grant tables are stored. You might
have to run commands as the MySQL root user on the new machine until you have the mysql database
in place.

After you import the mysql database on the new machine, execute mysqladmin flush-privileges
so that the server reloads the grant table information.

Note

You can copy the .frm, .MYI, and .MYD files for MyISAM tables between different
architectures that support the same floating-point format. (MySQL takes care of any
byte-swapping issues.) See Section 15.2, “The MyISAM Storage Engine”.

2.11 Downgrading MySQL

This section describes the steps to downgrade a MySQL installation.

Downgrading is a less common operation than upgrade. Downgrading is typically performed because of
a compatibility or performance issue that occurs on a production system, and was not uncovered during
initial upgrade verification on the test systems. As with the upgrade procedure Section 2.10, “Upgrading
MySQL”), perform and verify the downgrade procedure on some test systems first, before using it on a
production system.

Note

In the following discussion, MySQL commands that must be run using a MySQL
account with administrative privileges include -u root on the command line to

258

Before You Begin

specify the MySQL root user. Commands that require a password for root also
include a -p option. Because -p is followed by no option value, such commands
prompt for the password. Type the password when prompted and press Enter.

SQL statements can be executed using the mysql command-line client (connect as
root to ensure that you have the necessary privileges).

2.11.1 Before You Begin

Review the information in this section before downgrading. Perform any recommended actions.

• Protect your data by taking a backup. The backup should include the mysql database, which contains
the MySQL system tables. See Section 7.2, “Database Backup Methods”.

• Review Section 2.11.2, “Downgrade Paths” to ensure that your intended downgrade path is supported.

• Review Section 2.11.3, “Downgrade Notes” for items that may require action before downgrading.

Note

The downgrade procedures described in the following sections assume you are
downgrading with data files created or modified by the newer MySQL version.
However, if you did not modify your data after upgrading, downgrading using
backups taken before upgrading to the new MySQL version is recommended.
Many of the changes described in Section 2.11.3, “Downgrade Notes” that
require action are not applicable when downgrading using backups taken before
upgrading to the new MySQL version.

• Use of new features, new configuration options, or new configuration option values that are not
supported by a previous release may cause downgrade errors or failures. Before downgrading, reverse
changes resulting from the use of new features and remove configuration settings that are not supported
by the release you are downgrading to.

2.11.2 Downgrade Paths

• Downgrade is only supported between General Availability (GA) releases.

• Downgrade from MySQL 5.7 to 5.6 is supported using the logical downgrade method.

• Downgrade that skips versions is not supported. For example, downgrading directly from MySQL 5.7 to
5.5 is not supported.

• Downgrade within a release series is supported. For example, downgrading from MySQL 5.7.z to 5.7.y
is supported. Skipping a release is also supported. For example, downgrading from MySQL 5.7.z to
5.7.x is supported.

2.11.3 Downgrade Notes

Before downgrading from MySQL 5.7, review the information in this section. Some items may require
action before downgrading.

• System Table Changes

• InnoDB Changes

• Logging Changes

259

Downgrade Notes

• SQL Changes

System Table Changes

• In MySQL 5.7.13, system table columns that store user@host string values were increased in length.
Before downgrading to a previous release, ensure that there are no user@host values that exceed the
previous 77 character length limit, and perform the following mysql system table alterations:

ALTER TABLE mysql.proc MODIFY definer char(77) CHARACTER SET utf8 COLLATE utf8_bin NOT NULL DEFAULT '';
ALTER TABLE mysql.event MODIFY definer char(77) CHARACTER SET utf8 COLLATE utf8_bin NOT NULL DEFAULT '';
ALTER TABLE mysql.tables_priv MODIFY Grantor char(77) COLLATE utf8_bin NOT NULL DEFAULT '';
ALTER TABLE mysql.procs_priv MODIFY Grantor char(77) COLLATE utf8_bin NOT NULL DEFAULT '';

• The maximum length of MySQL user names was increased from 16 characters to 32 characters in
MySQL 5.7.8. Before downgrading to a previous release, ensure that there are no user names greater
than 16 characters in length, and perform the following mysql system table alterations:

ALTER TABLE mysql.tables_priv MODIFY User char(16) NOT NULL default '';
ALTER TABLE mysql.columns_priv MODIFY User char(16) NOT NULL default '';
ALTER TABLE mysql.user MODIFY User char(16) NOT NULL default '';
ALTER TABLE mysql.db MODIFY User char(16) NOT NULL default '';
ALTER TABLE mysql.procs_priv MODIFY User char(16) binary DEFAULT '' NOT NULL;

• The Password column of the mysql.user system table was removed in MySQL 5.7.6. All credentials
are stored in the authentication_string column, including those formerly stored in the Password
column. To make the mysql.user table compatible with previous releases, perform the following
alterations before downgrading:

ALTER TABLE mysql.user ADD Password char(41) character set latin1
 collate latin1_bin NOT NULL default '' AFTER user;
UPDATE mysql.user SET password = authentication_string WHERE
 LENGTH(authentication_string) = 41 AND plugin = 'mysql_native_password';
UPDATE mysql.user SET authentication_string = '' WHERE
 LENGTH(authentication_string) = 41 AND plugin = 'mysql_native_password';

• The help_* and time_zone* system tables changed from MyISAM to InnoDB in MySQL 5.7.5. Before
downgrading to a previous release, change each affected table back to MyISAM by running the following
statements:

ALTER TABLE mysql.help_category ENGINE='MyISAM' STATS_PERSISTENT=DEFAULT;
ALTER TABLE mysql.help_keyword ENGINE='MyISAM' STATS_PERSISTENT=DEFAULT;
ALTER TABLE mysql.help_relation ENGINE='MyISAM' STATS_PERSISTENT=DEFAULT;
ALTER TABLE mysql.help_topic ENGINE='MyISAM' STATS_PERSISTENT=DEFAULT;
ALTER TABLE mysql.time_zone ENGINE='MyISAM' STATS_PERSISTENT=DEFAULT;
ALTER TABLE mysql.time_zone_leap_second ENGINE='MyISAM' STATS_PERSISTENT=DEFAULT;
ALTER TABLE mysql.time_zone_name ENGINE='MyISAM' STATS_PERSISTENT=DEFAULT;
ALTER TABLE mysql.time_zone_transition ENGINE='MyISAM' STATS_PERSISTENT=DEFAULT;
ALTER TABLE mysql.time_zone_transition_type ENGINE='MyISAM' STATS_PERSISTENT=DEFAULT;

• The mysql.plugin and mysql.servers system tables changed from MyISAM to InnoDB in MySQL
5.7.6. Before downgrading to a previous release, change each affected table back to MyISAM by running
the following statements:

ALTER TABLE mysql.plugin ENGINE='MyISAM' STATS_PERSISTENT=DEFAULT;
ALTER TABLE mysql.servers ENGINE='MyISAM' STATS_PERSISTENT=DEFAULT;

• The definition of the plugin column in the mysql.user system table differs in MySQL 5.7. Before
downgrading to a MySQL 5.6 server for versions 5.6.23 and higher, alter the plugin column definition
using this statement:

ALTER TABLE mysql.user MODIFY plugin CHAR(64) COLLATE utf8_bin
 DEFAULT 'mysql_native_password';

260

Downgrade Notes

Before downgrading to a MySQL 5.6.22 server or older, alter the plugin column definition using this
statement:

ALTER TABLE mysql.user MODIFY plugin CHAR(64) COLLATE utf8_bin DEFAULT '';

• As of MySQL 5.7.7, the sys schema is installed by default during data directory installation. Before
downgrading to a previous version, it is recommended that you drop the sys schema:

DROP DATABASE sys;

If you are downgrading to a release that includes the sys schema, mysql_upgrade recreates the sys
schema in a compatible form. The sys schema is not included in MySQL 5.6.

InnoDB Changes

• As of MySQL 5.7.5, the FIL_PAGE_FLUSH_LSN field, written to the first page of each InnoDB system
tablespace file and to InnoDB undo tablespace files, is only written to the first file of the InnoDB system
tablespace (page number 0:0). As a result, if you have a multiple-file system tablespace and decide
to downgrade from MySQL 5.7 to MySQL 5.6, you may encounter an invalid message on MySQL 5.6
startup stating that the log sequence numbers x and y in ibdata files do not match
the log sequence number y in the ib_logfiles. If you encounter this message, restart
MySQL 5.6. The invalid message should no longer appear.

• To simplify InnoDB tablespace discovery during crash recovery, new redo log record types
were introduced in MySQL 5.7.5. This enhancement changes the redo log format. Before
performing an in-place downgrade from MySQL 5.7.5 or later, perform a clean shutdown using an
innodb_fast_shutdown setting of 0 or 1. A slow shutdown using innodb_fast_shutdown=0 is a
recommended step in In-Place Downgrade.

• MySQL 5.7.8 and 5.7.9 undo logs could contain insufficient information about spatial columns (Bug
#21508582). Before performing an in-place downgrade from MySQL 5.7.10 or higher to MySQL 5.7.9
or earlier, perform a slow shutdown using innodb_fast_shutdown=0 to clear the undo logs. A slow
shutdown using innodb_fast_shutdown=0 is a recommended step in In-Place Downgrade.

• MySQL 5.7.8 undo logs could contain insufficient information about virtual columns and virtual column
indexes (Bug #21869656). Before performing an in-place downgrade from MySQL 5.7.9 or later to
MySQL 5.7.8 or earlier, perform a slow shutdown using innodb_fast_shutdown=0 to clear the
undo logs. A slow shutdown using innodb_fast_shutdown=0 is a recommended step in In-Place
Downgrade.

• As of MySQL 5.7.9, the redo log header of the first redo log file (ib_logfile0) includes a format
version identifier and a text string that identifies the MySQL version that created the redo log files. This
enhancement changes the redo log format. To prevent older versions of MySQL from starting on redo
log files created in MySQL 5.7.9 or later, the checksum for redo log checkpoint pages was changed. As
a result, you must perform a slow shutdown of MySQL (using innodb_fast_shutdown=0) and remove
the redo log files (the ib_logfile* files) before performing an in-place downgrade. A slow shutdown
using innodb_fast_shutdown=0 and removing the redo log files are recommended steps in In-Place
Downgrade.

• A new compression version used by the InnoDB page compression feature was added in MySQL
5.7.32. The new compression version is not compatible with earlier MySQL releases. Creating a
page compressed table in MySQL 5.7.32 or higher and accessing the table after downgrading to a
release earlier than MySQL 5.7.32 causes a failure. As a workaround, uncompress such tables before
downgrading. To uncompress a table, run ALTER TABLE tbl_name COMPRESSION='None' and
OPTIMIZE TABLE. For information about the InnoDB page compression feature, see Section 14.9.2,
“InnoDB Page Compression”.

261

Downgrading Binary and Package-based Installations on Unix/Linux

Logging Changes

• Support for sending the server error log to syslog in MySQL 5.7.5 and up differs from older versions. If
you use syslog and downgrade to a version older than 5.7.5, you must stop using the relevant mysqld
system variables and use the corresponding mysqld_safe command options instead. Suppose that
you use syslog by setting these system variables in the [mysqld] group of an option file:

[mysqld]
log_syslog=ON
log_syslog_tag=mytag

To downgrade, remove those settings and add option settings in the [mysqld_safe] option file group:

[mysqld_safe]
syslog
syslog-tag=mytag

syslog-related system variables that have no corresponding mysqld_safe option cannot be used after
a downgrade.

SQL Changes

• A trigger can have triggers for different combinations of trigger event (INSERT, UPDATE, DELETE) and
action time (BEFORE, AFTER), but before MySQL 5.7.2 cannot have multiple triggers that have the same
trigger event and action time. MySQL 5.7.2 lifts this limitation and multiple triggers are permitted. This
change has implications for downgrades.

If you downgrade a server that supports multiple triggers to an older version that does not, the
downgrade has these effects:

• For each table that has triggers, all trigger definitions remain in the .TRG file for the table. However, if
there are multiple triggers with the same trigger event and action time, the server executes only one of
them when the trigger event occurs. For information about .TRG files, see Table Trigger Storage.

• If triggers for the table are added or dropped subsequent to the downgrade, the server rewrites the
table's .TRG file. The rewritten file retains only one trigger per combination of trigger event and action
time; the others are lost.

To avoid these problems, modify your triggers before downgrading. For each table that has multiple
triggers per combination of trigger event and action time, convert each such set of triggers to a single
trigger as follows:

1. For each trigger, create a stored routine that contains all the code in the trigger. Values accessed
using NEW and OLD can be passed to the routine using parameters. If the trigger needs a single result
value from the code, you can put the code in a stored function and have the function return the value.
If the trigger needs multiple result values from the code, you can put the code in a stored procedure
and return the values using OUT parameters.

2. Drop all triggers for the table.

3. Create one new trigger for the table that invokes the stored routines just created. The effect for this
trigger is thus the same as the multiple triggers it replaces.

2.11.4 Downgrading Binary and Package-based Installations on Unix/Linux

This section describes how to downgrade MySQL binary and package-based installations on Unix/Linux.
In-place and logical downgrade methods are described.

262

https://dev.mysql.com/doc/internals/en/sp-storage.html#sp-storage-trigger

Downgrading Binary and Package-based Installations on Unix/Linux

• In-Place Downgrade

• Logical Downgrade

In-Place Downgrade

In-place downgrade involves shutting down the new MySQL version, replacing the new MySQL binaries or
packages with the old ones, and restarting the old MySQL version on the existing data directory.

In-place downgrade is supported for downgrades between GA releases within the same release series.

In-place downgrade is not supported for MySQL APT, SLES, and Yum repository installations.

Note

For some Linux platforms, MySQL installation from RPM or Debian packages
includes systemd support for managing MySQL server startup and shutdown.
On these platforms, mysqld_safe is not installed. In such cases, use systemd
for server startup and shutdown instead of the methods used in the following
instructions. See Section 2.5.10, “Managing MySQL Server with systemd”.

To perform an in-place downgrade:

1. Review the information in Section 2.11.1, “Before You Begin”.

2. If you use XA transactions with InnoDB, run XA RECOVER before downgrading to check for
uncommitted XA transactions. If results are returned, either commit or rollback the XA transactions by
issuing an XA COMMIT or XA ROLLBACK statement.

3. Configure MySQL to perform a slow shutdown by setting innodb_fast_shutdown to 0. For example:

mysql -u root -p --execute="SET GLOBAL innodb_fast_shutdown=0"

With a slow shutdown, InnoDB performs a full purge and change buffer merge before shutting down,
which ensures that data files are fully prepared in case of file format differences between releases.

4. Shut down the newer MySQL server. For example:

mysqladmin -u root -p shutdown

5. After the slow shutdown, remove the InnoDB redo log files (the ib_logfile* files) from the data
directory to avoid downgrade issues related to redo log file format changes that may have occurred
between releases.

rm ib_logfile*

6. Downgrade the MySQL binaries or packages in-place by replacing the newer binaries or packages with
the older ones.

7. Start the older (downgraded) MySQL server, using the existing data directory. For example:

mysqld_safe --user=mysql --datadir=/path/to/existing-datadir

8. Run mysql_upgrade. For example:

mysql_upgrade -u root -p

mysql_upgrade examines all tables in all databases for incompatibilities with the current version of
MySQL, and attempts to repair the tables if problems are found.

263

Downgrading Binary and Package-based Installations on Unix/Linux

9. Shut down and restart the MySQL server to ensure that any changes made to the system tables take
effect. For example:

mysqladmin -u root -p shutdown
mysqld_safe --user=mysql --datadir=/path/to/existing-datadir

Logical Downgrade

Logical downgrade involves using mysqldump to dump all tables from the new MySQL version, and then
loading the dump file into the old MySQL version.

Logical downgrades are supported for downgrades between releases within the same release series and
for downgrades to the previous release level. Only downgrades between General Availability (GA) releases
are supported. Before proceeding, review Section 2.11.1, “Before You Begin”.

Note

For some Linux platforms, MySQL installation from RPM or Debian packages
includes systemd support for managing MySQL server startup and shutdown.
On these platforms, mysqld_safe is not installed. In such cases, use systemd
for server startup and shutdown instead of the methods used in the following
instructions. See Section 2.5.10, “Managing MySQL Server with systemd”.

For MySQL APT, SLES, and Yum repository installations, only downgrades to the
previous release level are supported. Where the instructions call for initializing
an older instance, use the package management utility to remove MySQL 5.7
packages and install MySQL 5.6 packages.

To perform a logical downgrade:

1. Review the information in Section 2.11.1, “Before You Begin”.

2. Dump all databases. For example:

mysqldump -u root -p
 --add-drop-table --routines --events
 --all-databases --force > data-for-downgrade.sql

3. Shut down the newer MySQL server. For example:

mysqladmin -u root -p shutdown

4. To initialize a MySQL 5.7 instance, use mysqld with the --initialize or --initialize-
insecure option.

mysqld --initialize --user=mysql

5. Start the older MySQL server, using the new data directory. For example:

mysqld_safe --user=mysql --datadir=/path/to/new-datadir

6. Load the dump file into the older MySQL server. For example:

mysql -u root -p --force < data-for-upgrade.sql

7. Run mysql_upgrade. For example:

mysql_upgrade -u root -p

mysql_upgrade examines all tables in all databases for incompatibilities with the current version of
MySQL, and attempts to repair the tables if problems are found.

264

Downgrade Troubleshooting

8. Shut down and restart the MySQL server to ensure that any changes made to the system tables take
effect. For example:

mysqladmin -u root -p shutdown
mysqld_safe --user=mysql --datadir=/path/to/new-datadir

2.11.5 Downgrade Troubleshooting

If you downgrade from one release series to another, there may be incompatibilities in table storage
formats. In this case, use mysqldump to dump your tables before downgrading. After downgrading, reload
the dump file using mysql or mysqlimport to re-create your tables. For examples, see Section 2.10.13,
“Copying MySQL Databases to Another Machine”.

A typical symptom of a downward-incompatible table format change when you downgrade is that you
cannot open tables. In that case, use the following procedure:

1. Stop the older MySQL server that you are downgrading to.

2. Restart the newer MySQL server you are downgrading from.

3. Dump any tables that were inaccessible to the older server by using mysqldump to create a dump file.

4. Stop the newer MySQL server and restart the older one.

5. Reload the dump file into the older server. Your tables should be accessible.

2.12 Perl Installation Notes

The Perl DBI module provides a generic interface for database access. You can write a DBI script that
works with many different database engines without change. To use DBI, you must install the DBI module,
as well as a DataBase Driver (DBD) module for each type of database server you want to access. For
MySQL, this driver is the DBD::mysql module.

Note

Perl support is not included with MySQL distributions. You can obtain the necessary
modules from http://search.cpan.org for Unix, or by using the ActiveState ppm
program on Windows. The following sections describe how to do this.

The DBI/DBD interface requires Perl 5.6.0, and 5.6.1 or later is preferred. DBI does not work if you have
an older version of Perl. You should use DBD::mysql 4.009 or higher. Although earlier versions are
available, they do not support the full functionality of MySQL 5.7.

2.12.1 Installing Perl on Unix

MySQL Perl support requires that you have installed MySQL client programming support (libraries and
header files). Most installation methods install the necessary files. If you install MySQL from RPM files on
Linux, be sure to install the developer RPM as well. The client programs are in the client RPM, but client
programming support is in the developer RPM.

The files you need for Perl support can be obtained from the CPAN (Comprehensive Perl Archive Network)
at http://search.cpan.org.

The easiest way to install Perl modules on Unix is to use the CPAN module. For example:

$> perl -MCPAN -e shell
cpan> install DBI

265

http://search.cpan.org
http://search.cpan.org

Installing ActiveState Perl on Windows

cpan> install DBD::mysql

The DBD::mysql installation runs a number of tests. These tests attempt to connect to the local MySQL
server using the default user name and password. (The default user name is your login name on Unix,
and ODBC on Windows. The default password is “no password.”) If you cannot connect to the server with
those values (for example, if your account has a password), the tests fail. You can use force install
DBD::mysql to ignore the failed tests.

DBI requires the Data::Dumper module. It may be installed; if not, you should install it before installing
DBI.

It is also possible to download the module distributions in the form of compressed tar archives and build
the modules manually. For example, to unpack and build a DBI distribution, use a procedure such as this:

1. Unpack the distribution into the current directory:

$> gunzip < DBI-VERSION.tar.gz | tar xvf -

This command creates a directory named DBI-VERSION.

2. Change location into the top-level directory of the unpacked distribution:

$> cd DBI-VERSION

3. Build the distribution and compile everything:

$> perl Makefile.PL
$> make
$> make test
$> make install

The make test command is important because it verifies that the module is working. Note that when you
run that command during the DBD::mysql installation to exercise the interface code, the MySQL server
must be running or the test fails.

It is a good idea to rebuild and reinstall the DBD::mysql distribution whenever you install a new release of
MySQL. This ensures that the latest versions of the MySQL client libraries are installed correctly.

If you do not have access rights to install Perl modules in the system directory or if you want to install local
Perl modules, the following reference may be useful: http://learn.perl.org/faq/perlfaq8.html#How-do-I-keep-
my-own-module-library-directory-

2.12.2 Installing ActiveState Perl on Windows

On Windows, you should do the following to install the MySQL DBD module with ActiveState Perl:

1. Get ActiveState Perl from http://www.activestate.com/Products/ActivePerl/ and install it.

2. Open a console window.

3. If necessary, set the HTTP_proxy variable. For example, you might try a setting like this:

C:\> set HTTP_proxy=my.proxy.com:3128

4. Start the PPM program:

C:\> C:\perl\bin\ppm.pl

5. If you have not previously done so, install DBI:

266

http://learn.perl.org/faq/perlfaq8.html#How-do-I-keep-my-own-module-library-directory-
http://learn.perl.org/faq/perlfaq8.html#How-do-I-keep-my-own-module-library-directory-
http://www.activestate.com/Products/ActivePerl/

Problems Using the Perl DBI/DBD Interface

ppm> install DBI

6. If this succeeds, run the following command:

ppm> install DBD-mysql

This procedure should work with ActiveState Perl 5.6 or higher.

If you cannot get the procedure to work, you should install the ODBC driver instead and connect to the
MySQL server through ODBC:

use DBI;
$dbh= DBI->connect("DBI:ODBC:$dsn",$user,$password) ||
 die "Got error $DBI::errstr when connecting to $dsn\n";

2.12.3 Problems Using the Perl DBI/DBD Interface

If Perl reports that it cannot find the ../mysql/mysql.so module, the problem is probably that Perl
cannot locate the libmysqlclient.so shared library. You should be able to fix this problem by one of
the following methods:

• Copy libmysqlclient.so to the directory where your other shared libraries are located (probably /
usr/lib or /lib).

• Modify the -L options used to compile DBD::mysql to reflect the actual location of
libmysqlclient.so.

• On Linux, you can add the path name of the directory where libmysqlclient.so is located to the /
etc/ld.so.conf file.

• Add the path name of the directory where libmysqlclient.so is located to the LD_RUN_PATH
environment variable. Some systems use LD_LIBRARY_PATH instead.

Note that you may also need to modify the -L options if there are other libraries that the linker fails to find.
For example, if the linker cannot find libc because it is in /lib and the link command specifies -L/usr/
lib, change the -L option to -L/lib or add -L/lib to the existing link command.

If you get the following errors from DBD::mysql, you are probably using gcc (or using an old binary
compiled with gcc):

/usr/bin/perl: can't resolve symbol '__moddi3'
/usr/bin/perl: can't resolve symbol '__divdi3'

Add -L/usr/lib/gcc-lib/... -lgcc to the link command when the mysql.so library gets built
(check the output from make for mysql.so when you compile the Perl client). The -L option should
specify the path name of the directory where libgcc.a is located on your system.

Another cause of this problem may be that Perl and MySQL are not both compiled with gcc. In this case,
you can solve the mismatch by compiling both with gcc.

267

268

Chapter 3 Tutorial

Table of Contents
3.1 Connecting to and Disconnecting from the Server .. 269
3.2 Entering Queries ... 270
3.3 Creating and Using a Database .. 273

3.3.1 Creating and Selecting a Database ... 274
3.3.2 Creating a Table .. 275
3.3.3 Loading Data into a Table .. 277
3.3.4 Retrieving Information from a Table .. 278

3.4 Getting Information About Databases and Tables ... 291
3.5 Using mysql in Batch Mode .. 292
3.6 Examples of Common Queries .. 294

3.6.1 The Maximum Value for a Column ... 294
3.6.2 The Row Holding the Maximum of a Certain Column ... 294
3.6.3 Maximum of Column per Group .. 295
3.6.4 The Rows Holding the Group-wise Maximum of a Certain Column 295
3.6.5 Using User-Defined Variables ... 296
3.6.6 Using Foreign Keys ... 296
3.6.7 Searching on Two Keys ... 299
3.6.8 Calculating Visits Per Day .. 299
3.6.9 Using AUTO_INCREMENT ... 299

3.7 Using MySQL with Apache ... 302

This chapter provides a tutorial introduction to MySQL by showing how to use the mysql client program
to create and use a simple database. mysql (sometimes referred to as the “terminal monitor” or just
“monitor”) is an interactive program that enables you to connect to a MySQL server, run queries, and view
the results. mysql may also be used in batch mode: you place your queries in a file beforehand, then tell
mysql to execute the contents of the file. Both ways of using mysql are covered here.

To see a list of options provided by mysql, invoke it with the --help option:

$> mysql --help

This chapter assumes that mysql is installed on your machine and that a MySQL server is available
to which you can connect. If this is not true, contact your MySQL administrator. (If you are the
administrator, you need to consult the relevant portions of this manual, such as Chapter 5, MySQL Server
Administration.)

This chapter describes the entire process of setting up and using a database. If you are interested only
in accessing an existing database, you may want to skip the sections that describe how to create the
database and the tables it contains.

Because this chapter is tutorial in nature, many details are necessarily omitted. Consult the relevant
sections of the manual for more information on the topics covered here.

3.1 Connecting to and Disconnecting from the Server

To connect to the server, you usually need to provide a MySQL user name when you invoke mysql and,
most likely, a password. If the server runs on a machine other than the one where you log in, you also

269

Entering Queries

need to specify a host name. Contact your administrator to find out what connection parameters you
should use to connect (that is, what host, user name, and password to use). Once you know the proper
parameters, you should be able to connect like this:

$> mysql -h host -u user -p
Enter password: ********

host and user represent the host name where your MySQL server is running and the user name of your
MySQL account. Substitute appropriate values for your setup. The ******** represents your password;
enter it when mysql displays the Enter password: prompt.

If that works, you should see some introductory information followed by a mysql> prompt:

$> mysql -h host -u user -p
Enter password: ********
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 25338 to server version: 5.7.44-standard

Type 'help;' or '\h' for help. Type '\c' to clear the buffer.

mysql>

The mysql> prompt tells you that mysql is ready for you to enter SQL statements.

If you are logging in on the same machine that MySQL is running on, you can omit the host, and simply
use the following:

$> mysql -u user -p

If, when you attempt to log in, you get an error message such as ERROR 2002 (HY000): Can't
connect to local MySQL server through socket '/tmp/mysql.sock' (2), it means that
the MySQL server daemon (Unix) or service (Windows) is not running. Consult the administrator or see the
section of Chapter 2, Installing and Upgrading MySQL that is appropriate to your operating system.

For help with other problems often encountered when trying to log in, see Section B.3.2, “Common Errors
When Using MySQL Programs”.

Some MySQL installations permit users to connect as the anonymous (unnamed) user to the server
running on the local host. If this is the case on your machine, you should be able to connect to that server
by invoking mysql without any options:

$> mysql

After you have connected successfully, you can disconnect any time by typing QUIT (or \q) at the mysql>
prompt:

mysql> QUIT
Bye

On Unix, you can also disconnect by pressing Control+D.

Most examples in the following sections assume that you are connected to the server. They indicate this by
the mysql> prompt.

3.2 Entering Queries

Make sure that you are connected to the server, as discussed in the previous section. Doing so does not in
itself select any database to work with, but that is okay. At this point, it is more important to find out a little
about how to issue queries than to jump right in creating tables, loading data into them, and retrieving data

270

Entering Queries

from them. This section describes the basic principles of entering queries, using several queries you can
try out to familiarize yourself with how mysql works.

Here is a simple query that asks the server to tell you its version number and the current date. Type it in as
shown here following the mysql> prompt and press Enter:

mysql> SELECT VERSION(), CURRENT_DATE;
+--------------+--------------+
| VERSION() | CURRENT_DATE |
+--------------+--------------+
| 5.7.1-m4-log | 2012-12-25 |
+--------------+--------------+
1 row in set (0.01 sec)
mysql>

This query illustrates several things about mysql:

• A query normally consists of an SQL statement followed by a semicolon. (There are some exceptions
where a semicolon may be omitted. QUIT, mentioned earlier, is one of them. We'll get to others later.)

• When you issue a query, mysql sends it to the server for execution and displays the results, then prints
another mysql> prompt to indicate that it is ready for another query.

• mysql displays query output in tabular form (rows and columns). The first row contains labels for
the columns. The rows following are the query results. Normally, column labels are the names of the
columns you fetch from database tables. If you're retrieving the value of an expression rather than a
table column (as in the example just shown), mysql labels the column using the expression itself.

• mysql shows how many rows were returned and how long the query took to execute, which gives you
a rough idea of server performance. These values are imprecise because they represent wall clock time
(not CPU or machine time), and because they are affected by factors such as server load and network
latency. (For brevity, the “rows in set” line is sometimes not shown in the remaining examples in this
chapter.)

Keywords may be entered in any lettercase. The following queries are equivalent:

mysql> SELECT VERSION(), CURRENT_DATE;
mysql> select version(), current_date;
mysql> SeLeCt vErSiOn(), current_DATE;

Here is another query. It demonstrates that you can use mysql as a simple calculator:

mysql> SELECT SIN(PI()/4), (4+1)*5;
+------------------+---------+
| SIN(PI()/4) | (4+1)*5 |
+------------------+---------+
| 0.70710678118655 | 25 |
+------------------+---------+
1 row in set (0.02 sec)

The queries shown thus far have been relatively short, single-line statements. You can even enter multiple
statements on a single line. Just end each one with a semicolon:

mysql> SELECT VERSION(); SELECT NOW();
+------------------+
| VERSION() |
+------------------+
| 5.7.10-ndb-7.5.1 |
+------------------+
1 row in set (0.00 sec)

+---------------------+

271

Entering Queries

| NOW() |
+---------------------+
| 2016-01-29 18:02:55 |
+---------------------+
1 row in set (0.00 sec)

A query need not be given all on a single line, so lengthy queries that require several lines are not a
problem. mysql determines where your statement ends by looking for the terminating semicolon, not by
looking for the end of the input line. (In other words, mysql accepts free-format input: it collects input lines
but does not execute them until it sees the semicolon.)

Here is a simple multiple-line statement:

mysql> SELECT
 -> USER()
 -> ,
 -> CURRENT_DATE;
+---------------+--------------+
| USER() | CURRENT_DATE |
+---------------+--------------+
| jon@localhost | 2010-08-06 |
+---------------+--------------+

In this example, notice how the prompt changes from mysql> to -> after you enter the first line of a
multiple-line query. This is how mysql indicates that it has not yet seen a complete statement and is
waiting for the rest. The prompt is your friend, because it provides valuable feedback. If you use that
feedback, you can always be aware of what mysql is waiting for.

If you decide you do not want to execute a query that you are in the process of entering, cancel it by typing
\c:

mysql> SELECT
 -> USER()
 -> \c
mysql>

Here, too, notice the prompt. It switches back to mysql> after you type \c, providing feedback to indicate
that mysql is ready for a new query.

The following table shows each of the prompts you may see and summarizes what they mean about the
state that mysql is in.

Prompt Meaning

mysql> Ready for new query

-> Waiting for next line of multiple-line query

'> Waiting for next line, waiting for completion of a
string that began with a single quote (')

"> Waiting for next line, waiting for completion of a
string that began with a double quote (")

`> Waiting for next line, waiting for completion of an
identifier that began with a backtick (`)

/*> Waiting for next line, waiting for completion of a
comment that began with /*

Multiple-line statements commonly occur by accident when you intend to issue a query on a single line, but
forget the terminating semicolon. In this case, mysql waits for more input:

272

Creating and Using a Database

mysql> SELECT USER()
 ->

If this happens to you (you think you've entered a statement but the only response is a -> prompt), most
likely mysql is waiting for the semicolon. If you don't notice what the prompt is telling you, you might sit
there for a while before realizing what you need to do. Enter a semicolon to complete the statement, and
mysql executes it:

mysql> SELECT USER()
 -> ;
+---------------+
| USER() |
+---------------+
| jon@localhost |
+---------------+

The '> and "> prompts occur during string collection (another way of saying that MySQL is waiting
for completion of a string). In MySQL, you can write strings surrounded by either ' or " characters (for
example, 'hello' or "goodbye"), and mysql lets you enter strings that span multiple lines. When
you see a '> or "> prompt, it means that you have entered a line containing a string that begins with a '
or " quote character, but have not yet entered the matching quote that terminates the string. This often
indicates that you have inadvertently left out a quote character. For example:

mysql> SELECT * FROM my_table WHERE name = 'Smith AND age < 30;
 '>

If you enter this SELECT statement, then press Enter and wait for the result, nothing happens. Instead
of wondering why this query takes so long, notice the clue provided by the '> prompt. It tells you that
mysql expects to see the rest of an unterminated string. (Do you see the error in the statement? The string
'Smith is missing the second single quotation mark.)

At this point, what do you do? The simplest thing is to cancel the query. However, you cannot just type \c
in this case, because mysql interprets it as part of the string that it is collecting. Instead, enter the closing
quote character (so mysql knows you've finished the string), then type \c:

mysql> SELECT * FROM my_table WHERE name = 'Smith AND age < 30;
 '> '\c
mysql>

The prompt changes back to mysql>, indicating that mysql is ready for a new query.

The `> prompt is similar to the '> and "> prompts, but indicates that you have begun but not completed a
backtick-quoted identifier.

It is important to know what the '>, ">, and `> prompts signify, because if you mistakenly enter an
unterminated string, any further lines you type appear to be ignored by mysql—including a line containing
QUIT. This can be quite confusing, especially if you do not know that you need to supply the terminating
quote before you can cancel the current query.

Note

Multiline statements from this point on are written without the secondary (->
or other) prompts, to make it easier to copy and paste the statements to try for
yourself.

3.3 Creating and Using a Database

Once you know how to enter SQL statements, you are ready to access a database.

273

Creating and Selecting a Database

Suppose that you have several pets in your home (your menagerie) and you would like to keep track of
various types of information about them. You can do so by creating tables to hold your data and loading
them with the desired information. Then you can answer different sorts of questions about your animals by
retrieving data from the tables. This section shows you how to perform the following operations:

• Create a database

• Create a table

• Load data into the table

• Retrieve data from the table in various ways

• Use multiple tables

The menagerie database is simple (deliberately), but it is not difficult to think of real-world situations
in which a similar type of database might be used. For example, a database like this could be used by
a farmer to keep track of livestock, or by a veterinarian to keep track of patient records. A menagerie
distribution containing some of the queries and sample data used in the following sections can be
obtained from the MySQL website. It is available in both compressed tar file and Zip formats at https://
dev.mysql.com/doc/.

Use the SHOW statement to find out what databases currently exist on the server:

mysql> SHOW DATABASES;
+----------+
| Database |
+----------+
| mysql |
| test |
| tmp |
+----------+

The mysql database describes user access privileges. The test database often is available as a
workspace for users to try things out.

The list of databases displayed by the statement may be different on your machine; SHOW DATABASES
does not show databases that you have no privileges for if you do not have the SHOW DATABASES
privilege. See Section 13.7.5.14, “SHOW DATABASES Statement”.

If the test database exists, try to access it:

mysql> USE test
Database changed

USE, like QUIT, does not require a semicolon. (You can terminate such statements with a semicolon if you
like; it does no harm.) The USE statement is special in another way, too: it must be given on a single line.

You can use the test database (if you have access to it) for the examples that follow, but anything you
create in that database can be removed by anyone else with access to it. For this reason, you should
probably ask your MySQL administrator for permission to use a database of your own. Suppose that you
want to call yours menagerie. The administrator needs to execute a statement like this:

mysql> GRANT ALL ON menagerie.* TO 'your_mysql_name'@'your_client_host';

where your_mysql_name is the MySQL user name assigned to you and your_client_host is the host
from which you connect to the server.

3.3.1 Creating and Selecting a Database

274

https://dev.mysql.com/doc/
https://dev.mysql.com/doc/

Creating a Table

If the administrator creates your database for you when setting up your permissions, you can begin using
it. Otherwise, you need to create it yourself:

mysql> CREATE DATABASE menagerie;

Under Unix, database names are case-sensitive (unlike SQL keywords), so you must always refer to
your database as menagerie, not as Menagerie, MENAGERIE, or some other variant. This is also true
for table names. (Under Windows, this restriction does not apply, although you must refer to databases
and tables using the same lettercase throughout a given query. However, for a variety of reasons, the
recommended best practice is always to use the same lettercase that was used when the database was
created.)

Note

If you get an error such as ERROR 1044 (42000): Access denied for user
'micah'@'localhost' to database 'menagerie' when attempting to
create a database, this means that your user account does not have the necessary
privileges to do so. Discuss this with the administrator or see Section 6.2, “Access
Control and Account Management”.

Creating a database does not select it for use; you must do that explicitly. To make menagerie the current
database, use this statement:

mysql> USE menagerie
Database changed

Your database needs to be created only once, but you must select it for use each time you begin a mysql
session. You can do this by issuing a USE statement as shown in the example. Alternatively, you can select
the database on the command line when you invoke mysql. Just specify its name after any connection
parameters that you might need to provide. For example:

$> mysql -h host -u user -p menagerie
Enter password: ********

Important

menagerie in the command just shown is not your password. If you want to supply
your password on the command line after the -p option, you must do so with no
intervening space (for example, as -ppassword, not as -p password). However,
putting your password on the command line is not recommended, because doing so
exposes it to snooping by other users logged in on your machine.

Note

You can see at any time which database is currently selected using SELECT
DATABASE().

3.3.2 Creating a Table

Creating the database is the easy part, but at this point it is empty, as SHOW TABLES tells you:

mysql> SHOW TABLES;
Empty set (0.00 sec)

The harder part is deciding what the structure of your database should be: what tables you need and what
columns should be in each of them.

275

Creating a Table

You want a table that contains a record for each of your pets. This can be called the pet table, and
it should contain, as a bare minimum, each animal's name. Because the name by itself is not very
interesting, the table should contain other information. For example, if more than one person in your
family keeps pets, you might want to list each animal's owner. You might also want to record some basic
descriptive information such as species and sex.

How about age? That might be of interest, but it is not a good thing to store in a database. Age changes
as time passes, which means you'd have to update your records often. Instead, it is better to store a fixed
value such as date of birth. Then, whenever you need age, you can calculate it as the difference between
the current date and the birth date. MySQL provides functions for doing date arithmetic, so this is not
difficult. Storing birth date rather than age has other advantages, too:

• You can use the database for tasks such as generating reminders for upcoming pet birthdays. (If you
think this type of query is somewhat silly, note that it is the same question you might ask in the context
of a business database to identify clients to whom you need to send out birthday greetings in the current
week or month, for that computer-assisted personal touch.)

• You can calculate age in relation to dates other than the current date. For example, if you store death
date in the database, you can easily calculate how old a pet was when it died.

You can probably think of other types of information that would be useful in the pet table, but the ones
identified so far are sufficient: name, owner, species, sex, birth, and death.

Use a CREATE TABLE statement to specify the layout of your table:

mysql> CREATE TABLE pet (name VARCHAR(20), owner VARCHAR(20),
 species VARCHAR(20), sex CHAR(1), birth DATE, death DATE);

VARCHAR is a good choice for the name, owner, and species columns because the column values vary
in length. The lengths in those column definitions need not all be the same, and need not be 20. You can
normally pick any length from 1 to 65535, whatever seems most reasonable to you. If you make a poor
choice and it turns out later that you need a longer field, MySQL provides an ALTER TABLE statement.

Several types of values can be chosen to represent sex in animal records, such as 'm' and 'f', or
perhaps 'male' and 'female'. It is simplest to use the single characters 'm' and 'f'.

The use of the DATE data type for the birth and death columns is a fairly obvious choice.

Once you have created a table, SHOW TABLES should produce some output:

mysql> SHOW TABLES;
+---------------------+
| Tables in menagerie |
+---------------------+
| pet |
+---------------------+

To verify that your table was created the way you expected, use a DESCRIBE statement:

mysql> DESCRIBE pet;
+---------+-------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+---------+-------------+------+-----+---------+-------+
name	varchar(20)	YES		NULL	
owner	varchar(20)	YES		NULL	
species	varchar(20)	YES		NULL	
sex	char(1)	YES		NULL	
birth	date	YES		NULL	
death	date	YES		NULL	
+---------+-------------+------+-----+---------+-------+

276

Loading Data into a Table

You can use DESCRIBE any time, for example, if you forget the names of the columns in your table or what
types they have.

For more information about MySQL data types, see Chapter 11, Data Types.

3.3.3 Loading Data into a Table

After creating your table, you need to populate it. The LOAD DATA and INSERT statements are useful for
this.

Suppose that your pet records can be described as shown here. (Observe that MySQL expects dates in
'YYYY-MM-DD' format; this may differ from what you are used to.)

name owner species sex birth death

Fluffy Harold cat f 1993-02-04

Claws Gwen cat m 1994-03-17

Buffy Harold dog f 1989-05-13

Fang Benny dog m 1990-08-27

Bowser Diane dog m 1979-08-31 1995-07-29

Chirpy Gwen bird f 1998-09-11

Whistler Gwen bird 1997-12-09

Slim Benny snake m 1996-04-29

Because you are beginning with an empty table, an easy way to populate it is to create a text file
containing a row for each of your animals, then load the contents of the file into the table with a single
statement.

You could create a text file pet.txt containing one record per line, with values separated by tabs, and
given in the order in which the columns were listed in the CREATE TABLE statement. For missing values
(such as unknown sexes or death dates for animals that are still living), you can use NULL values. To
represent these in your text file, use \N (backslash, capital-N). For example, the record for Whistler the bird
would look like this (where the whitespace between values is a single tab character):

Whistler Gwen bird \N 1997-12-09 \N

To load the text file pet.txt into the pet table, use this statement:

mysql> LOAD DATA LOCAL INFILE '/path/pet.txt' INTO TABLE pet;

If you created the file on Windows with an editor that uses \r\n as a line terminator, you should use this
statement instead:

mysql> LOAD DATA LOCAL INFILE '/path/pet.txt' INTO TABLE pet
 LINES TERMINATED BY '\r\n';

(On an Apple machine running macOS, you would likely want to use LINES TERMINATED BY '\r'.)

You can specify the column value separator and end of line marker explicitly in the LOAD DATA statement
if you wish, but the defaults are tab and linefeed. These are sufficient for the statement to read the file
pet.txt properly.

If the statement fails, it is likely that your MySQL installation does not have local file capability enabled by
default. See Section 6.1.6, “Security Considerations for LOAD DATA LOCAL”, for information on how to
change this.

277

Retrieving Information from a Table

When you want to add new records one at a time, the INSERT statement is useful. In its simplest form,
you supply values for each column, in the order in which the columns were listed in the CREATE TABLE
statement. Suppose that Diane gets a new hamster named “Puffball.” You could add a new record using
an INSERT statement like this:

mysql> INSERT INTO pet
 VALUES ('Puffball','Diane','hamster','f','1999-03-30',NULL);

String and date values are specified as quoted strings here. Also, with INSERT, you can insert NULL
directly to represent a missing value. You do not use \N like you do with LOAD DATA.

From this example, you should be able to see that there would be a lot more typing involved to load your
records initially using several INSERT statements rather than a single LOAD DATA statement.

3.3.4 Retrieving Information from a Table

The SELECT statement is used to pull information from a table. The general form of the statement is:

SELECT what_to_select
FROM which_table
WHERE conditions_to_satisfy;

what_to_select indicates what you want to see. This can be a list of columns, or * to indicate “all
columns.” which_table indicates the table from which you want to retrieve data. The WHERE clause
is optional. If it is present, conditions_to_satisfy specifies one or more conditions that rows must
satisfy to qualify for retrieval.

3.3.4.1 Selecting All Data

The simplest form of SELECT retrieves everything from a table:

mysql> SELECT * FROM pet;
+----------+--------+---------+------+------------+------------+
| name | owner | species | sex | birth | death |
+----------+--------+---------+------+------------+------------+
Fluffy	Harold	cat	f	1993-02-04	NULL
Claws	Gwen	cat	m	1994-03-17	NULL
Buffy	Harold	dog	f	1989-05-13	NULL
Fang	Benny	dog	m	1990-08-27	NULL
Bowser	Diane	dog	m	1979-08-31	1995-07-29
Chirpy	Gwen	bird	f	1998-09-11	NULL
Whistler	Gwen	bird	NULL	1997-12-09	NULL
Slim	Benny	snake	m	1996-04-29	NULL
Puffball	Diane	hamster	f	1999-03-30	NULL
+----------+--------+---------+------+------------+------------+

This form of SELECT uses *, which is shorthand for “select all columns.” This is useful if you want to review
your entire table, for example, after you've just loaded it with your initial data set. For example, you may
happen to think that the birth date for Bowser does not seem quite right. Consulting your original pedigree
papers, you find that the correct birth year should be 1989, not 1979.

There are at least two ways to fix this:

• Edit the file pet.txt to correct the error, then empty the table and reload it using DELETE and LOAD
DATA:

mysql> DELETE FROM pet;
mysql> LOAD DATA LOCAL INFILE '/path/pet.txt' INTO TABLE pet;

However, if you do this, you must also re-enter the record for Puffball.

278

Retrieving Information from a Table

• Fix only the erroneous record with an UPDATE statement:

mysql> UPDATE pet SET birth = '1989-08-31' WHERE name = 'Bowser';

The UPDATE changes only the record in question and does not require you to reload the table.

3.3.4.2 Selecting Particular Rows

As shown in the preceding section, it is easy to retrieve an entire table. Just omit the WHERE clause from
the SELECT statement. But typically you don't want to see the entire table, particularly when it becomes
large. Instead, you're usually more interested in answering a particular question, in which case you specify
some constraints on the information you want. Let's look at some selection queries in terms of questions
about your pets that they answer.

You can select only particular rows from your table. For example, if you want to verify the change that you
made to Bowser's birth date, select Bowser's record like this:

mysql> SELECT * FROM pet WHERE name = 'Bowser';
+--------+-------+---------+------+------------+------------+
| name | owner | species | sex | birth | death |
+--------+-------+---------+------+------------+------------+
| Bowser | Diane | dog | m | 1989-08-31 | 1995-07-29 |
+--------+-------+---------+------+------------+------------+

The output confirms that the year is correctly recorded as 1989, not 1979.

String comparisons normally are case-insensitive, so you can specify the name as 'bowser', 'BOWSER',
and so forth. The query result is the same.

You can specify conditions on any column, not just name. For example, if you want to know which animals
were born during or after 1998, test the birth column:

mysql> SELECT * FROM pet WHERE birth >= '1998-1-1';
+----------+-------+---------+------+------------+-------+
| name | owner | species | sex | birth | death |
+----------+-------+---------+------+------------+-------+
| Chirpy | Gwen | bird | f | 1998-09-11 | NULL |
| Puffball | Diane | hamster | f | 1999-03-30 | NULL |
+----------+-------+---------+------+------------+-------+

You can combine conditions, for example, to locate female dogs:

mysql> SELECT * FROM pet WHERE species = 'dog' AND sex = 'f';
+-------+--------+---------+------+------------+-------+
| name | owner | species | sex | birth | death |
+-------+--------+---------+------+------------+-------+
| Buffy | Harold | dog | f | 1989-05-13 | NULL |
+-------+--------+---------+------+------------+-------+

The preceding query uses the AND logical operator. There is also an OR operator:

mysql> SELECT * FROM pet WHERE species = 'snake' OR species = 'bird';
+----------+-------+---------+------+------------+-------+
| name | owner | species | sex | birth | death |
+----------+-------+---------+------+------------+-------+
Chirpy	Gwen	bird	f	1998-09-11	NULL
Whistler	Gwen	bird	NULL	1997-12-09	NULL
Slim	Benny	snake	m	1996-04-29	NULL
+----------+-------+---------+------+------------+-------+

AND and OR may be intermixed, although AND has higher precedence than OR. If you use both operators, it
is a good idea to use parentheses to indicate explicitly how conditions should be grouped:

279

Retrieving Information from a Table

mysql> SELECT * FROM pet WHERE (species = 'cat' AND sex = 'm')
 OR (species = 'dog' AND sex = 'f');
+-------+--------+---------+------+------------+-------+
| name | owner | species | sex | birth | death |
+-------+--------+---------+------+------------+-------+
| Claws | Gwen | cat | m | 1994-03-17 | NULL |
| Buffy | Harold | dog | f | 1989-05-13 | NULL |
+-------+--------+---------+------+------------+-------+

3.3.4.3 Selecting Particular Columns

If you do not want to see entire rows from your table, just name the columns in which you are interested,
separated by commas. For example, if you want to know when your animals were born, select the name
and birth columns:

mysql> SELECT name, birth FROM pet;
+----------+------------+
| name | birth |
+----------+------------+
Fluffy	1993-02-04
Claws	1994-03-17
Buffy	1989-05-13
Fang	1990-08-27
Bowser	1989-08-31
Chirpy	1998-09-11
Whistler	1997-12-09
Slim	1996-04-29
Puffball	1999-03-30
+----------+------------+

To find out who owns pets, use this query:

mysql> SELECT owner FROM pet;
+--------+
| owner |
+--------+
| Harold |
| Gwen |
| Harold |
| Benny |
| Diane |
| Gwen |
| Gwen |
| Benny |
| Diane |
+--------+

Notice that the query simply retrieves the owner column from each record, and some of them appear more
than once. To minimize the output, retrieve each unique output record just once by adding the keyword
DISTINCT:

mysql> SELECT DISTINCT owner FROM pet;
+--------+
| owner |
+--------+
| Benny |
| Diane |
| Gwen |
| Harold |
+--------+

You can use a WHERE clause to combine row selection with column selection. For example, to get birth
dates for dogs and cats only, use this query:

280

Retrieving Information from a Table

mysql> SELECT name, species, birth FROM pet
 WHERE species = 'dog' OR species = 'cat';
+--------+---------+------------+
| name | species | birth |
+--------+---------+------------+
Fluffy	cat	1993-02-04
Claws	cat	1994-03-17
Buffy	dog	1989-05-13
Fang	dog	1990-08-27
Bowser	dog	1989-08-31
+--------+---------+------------+

3.3.4.4 Sorting Rows

You may have noticed in the preceding examples that the result rows are displayed in no particular order. It
is often easier to examine query output when the rows are sorted in some meaningful way. To sort a result,
use an ORDER BY clause.

Here are animal birthdays, sorted by date:

mysql> SELECT name, birth FROM pet ORDER BY birth;
+----------+------------+
| name | birth |
+----------+------------+
Buffy	1989-05-13
Bowser	1989-08-31
Fang	1990-08-27
Fluffy	1993-02-04
Claws	1994-03-17
Slim	1996-04-29
Whistler	1997-12-09
Chirpy	1998-09-11
Puffball	1999-03-30
+----------+------------+

On character type columns, sorting—like all other comparison operations—is normally performed in a
case-insensitive fashion. This means that the order is undefined for columns that are identical except for
their case. You can force a case-sensitive sort for a column by using BINARY like so: ORDER BY BINARY
col_name.

The default sort order is ascending, with smallest values first. To sort in reverse (descending) order, add
the DESC keyword to the name of the column you are sorting by:

mysql> SELECT name, birth FROM pet ORDER BY birth DESC;
+----------+------------+
| name | birth |
+----------+------------+
Puffball	1999-03-30
Chirpy	1998-09-11
Whistler	1997-12-09
Slim	1996-04-29
Claws	1994-03-17
Fluffy	1993-02-04
Fang	1990-08-27
Bowser	1989-08-31
Buffy	1989-05-13
+----------+------------+

You can sort on multiple columns, and you can sort different columns in different directions. For example,
to sort by type of animal in ascending order, then by birth date within animal type in descending order
(youngest animals first), use the following query:

mysql> SELECT name, species, birth FROM pet

281

Retrieving Information from a Table

 ORDER BY species, birth DESC;
+----------+---------+------------+
| name | species | birth |
+----------+---------+------------+
Chirpy	bird	1998-09-11
Whistler	bird	1997-12-09
Claws	cat	1994-03-17
Fluffy	cat	1993-02-04
Fang	dog	1990-08-27
Bowser	dog	1989-08-31
Buffy	dog	1989-05-13
Puffball	hamster	1999-03-30
Slim	snake	1996-04-29
+----------+---------+------------+

The DESC keyword applies only to the column name immediately preceding it (birth); it does not affect
the species column sort order.

3.3.4.5 Date Calculations

MySQL provides several functions that you can use to perform calculations on dates, for example, to
calculate ages or extract parts of dates.

To determine how many years old each of your pets is, use the TIMESTAMPDIFF() function. Its
arguments are the unit in which you want the result expressed, and the two dates for which to take the
difference. The following query shows, for each pet, the birth date, the current date, and the age in years.
An alias (age) is used to make the final output column label more meaningful.

mysql> SELECT name, birth, CURDATE(),
 TIMESTAMPDIFF(YEAR,birth,CURDATE()) AS age
 FROM pet;
+----------+------------+------------+------+
| name | birth | CURDATE() | age |
+----------+------------+------------+------+
Fluffy	1993-02-04	2003-08-19	10
Claws	1994-03-17	2003-08-19	9
Buffy	1989-05-13	2003-08-19	14
Fang	1990-08-27	2003-08-19	12
Bowser	1989-08-31	2003-08-19	13
Chirpy	1998-09-11	2003-08-19	4
Whistler	1997-12-09	2003-08-19	5
Slim	1996-04-29	2003-08-19	7
Puffball	1999-03-30	2003-08-19	4
+----------+------------+------------+------+

The query works, but the result could be scanned more easily if the rows were presented in some order.
This can be done by adding an ORDER BY name clause to sort the output by name:

mysql> SELECT name, birth, CURDATE(),
 TIMESTAMPDIFF(YEAR,birth,CURDATE()) AS age
 FROM pet ORDER BY name;
+----------+------------+------------+------+
| name | birth | CURDATE() | age |
+----------+------------+------------+------+
Bowser	1989-08-31	2003-08-19	13
Buffy	1989-05-13	2003-08-19	14
Chirpy	1998-09-11	2003-08-19	4
Claws	1994-03-17	2003-08-19	9
Fang	1990-08-27	2003-08-19	12
Fluffy	1993-02-04	2003-08-19	10
Puffball	1999-03-30	2003-08-19	4
Slim	1996-04-29	2003-08-19	7
Whistler	1997-12-09	2003-08-19	5
+----------+------------+------------+------+

282

Retrieving Information from a Table

To sort the output by age rather than name, just use a different ORDER BY clause:

mysql> SELECT name, birth, CURDATE(),
 TIMESTAMPDIFF(YEAR,birth,CURDATE()) AS age
 FROM pet ORDER BY age;
+----------+------------+------------+------+
| name | birth | CURDATE() | age |
+----------+------------+------------+------+
Chirpy	1998-09-11	2003-08-19	4
Puffball	1999-03-30	2003-08-19	4
Whistler	1997-12-09	2003-08-19	5
Slim	1996-04-29	2003-08-19	7
Claws	1994-03-17	2003-08-19	9
Fluffy	1993-02-04	2003-08-19	10
Fang	1990-08-27	2003-08-19	12
Bowser	1989-08-31	2003-08-19	13
Buffy	1989-05-13	2003-08-19	14
+----------+------------+------------+------+

A similar query can be used to determine age at death for animals that have died. You determine which
animals these are by checking whether the death value is NULL. Then, for those with non-NULL values,
compute the difference between the death and birth values:

mysql> SELECT name, birth, death,
 TIMESTAMPDIFF(YEAR,birth,death) AS age
 FROM pet WHERE death IS NOT NULL ORDER BY age;
+--------+------------+------------+------+
| name | birth | death | age |
+--------+------------+------------+------+
| Bowser | 1989-08-31 | 1995-07-29 | 5 |
+--------+------------+------------+------+

The query uses death IS NOT NULL rather than death <> NULL because NULL is a special value that
cannot be compared using the usual comparison operators. This is discussed later. See Section 3.3.4.6,
“Working with NULL Values”.

What if you want to know which animals have birthdays next month? For this type of calculation, year
and day are irrelevant; you simply want to extract the month part of the birth column. MySQL provides
several functions for extracting parts of dates, such as YEAR(), MONTH(), and DAYOFMONTH(). MONTH()
is the appropriate function here. To see how it works, run a simple query that displays the value of both
birth and MONTH(birth):

mysql> SELECT name, birth, MONTH(birth) FROM pet;
+----------+------------+--------------+
| name | birth | MONTH(birth) |
+----------+------------+--------------+
Fluffy	1993-02-04	2
Claws	1994-03-17	3
Buffy	1989-05-13	5
Fang	1990-08-27	8
Bowser	1989-08-31	8
Chirpy	1998-09-11	9
Whistler	1997-12-09	12
Slim	1996-04-29	4
Puffball	1999-03-30	3
+----------+------------+--------------+

Finding animals with birthdays in the upcoming month is also simple. Suppose that the current month is
April. Then the month value is 4 and you can look for animals born in May (month 5) like this:

mysql> SELECT name, birth FROM pet WHERE MONTH(birth) = 5;
+-------+------------+
| name | birth |
+-------+------------+

283

Retrieving Information from a Table

| Buffy | 1989-05-13 |
+-------+------------+

There is a small complication if the current month is December. You cannot merely add one to the month
number (12) and look for animals born in month 13, because there is no such month. Instead, you look for
animals born in January (month 1).

You can write the query so that it works no matter what the current month is, so that you do not have to
use the number for a particular month. DATE_ADD() enables you to add a time interval to a given date.
If you add a month to the value of CURDATE(), then extract the month part with MONTH(), the result
produces the month in which to look for birthdays:

mysql> SELECT name, birth FROM pet
 WHERE MONTH(birth) = MONTH(DATE_ADD(CURDATE(),INTERVAL 1 MONTH));

A different way to accomplish the same task is to add 1 to get the next month after the current one after
using the modulo function (MOD) to wrap the month value to 0 if it is currently 12:

mysql> SELECT name, birth FROM pet
 WHERE MONTH(birth) = MOD(MONTH(CURDATE()), 12) + 1;

MONTH() returns a number between 1 and 12. And MOD(something,12) returns a number between 0
and 11. So the addition has to be after the MOD(), otherwise we would go from November (11) to January
(1).

If a calculation uses invalid dates, the calculation fails and produces warnings:

mysql> SELECT '2018-10-31' + INTERVAL 1 DAY;
+-------------------------------+
| '2018-10-31' + INTERVAL 1 DAY |
+-------------------------------+
| 2018-11-01 |
+-------------------------------+
mysql> SELECT '2018-10-32' + INTERVAL 1 DAY;
+-------------------------------+
| '2018-10-32' + INTERVAL 1 DAY |
+-------------------------------+
| NULL |
+-------------------------------+
mysql> SHOW WARNINGS;
+---------+------+--+
| Level | Code | Message |
+---------+------+--+
| Warning | 1292 | Incorrect datetime value: '2018-10-32' |
+---------+------+--+

3.3.4.6 Working with NULL Values

The NULL value can be surprising until you get used to it. Conceptually, NULL means “a missing unknown
value” and it is treated somewhat differently from other values.

To test for NULL, use the IS NULL and IS NOT NULL operators, as shown here:

mysql> SELECT 1 IS NULL, 1 IS NOT NULL;
+-----------+---------------+
| 1 IS NULL | 1 IS NOT NULL |
+-----------+---------------+
| 0 | 1 |
+-----------+---------------+

You cannot use arithmetic comparison operators such as =, <, or <> to test for NULL. To demonstrate this
for yourself, try the following query:

284

Retrieving Information from a Table

mysql> SELECT 1 = NULL, 1 <> NULL, 1 < NULL, 1 > NULL;
+----------+-----------+----------+----------+
| 1 = NULL | 1 <> NULL | 1 < NULL | 1 > NULL |
+----------+-----------+----------+----------+
| NULL | NULL | NULL | NULL |
+----------+-----------+----------+----------+

Because the result of any arithmetic comparison with NULL is also NULL, you cannot obtain any meaningful
results from such comparisons.

In MySQL, 0 or NULL means false and anything else means true. The default truth value from a boolean
operation is 1.

This special treatment of NULL is why, in the previous section, it was necessary to determine which
animals are no longer alive using death IS NOT NULL instead of death <> NULL.

Two NULL values are regarded as equal in a GROUP BY.

When doing an ORDER BY, NULL values are presented first if you do ORDER BY ... ASC and last if you
do ORDER BY ... DESC.

A common error when working with NULL is to assume that it is not possible to insert a zero or an empty
string into a column defined as NOT NULL, but this is not the case. These are in fact values, whereas NULL
means “not having a value.” You can test this easily enough by using IS [NOT] NULL as shown:

mysql> SELECT 0 IS NULL, 0 IS NOT NULL, '' IS NULL, '' IS NOT NULL;
+-----------+---------------+------------+----------------+
| 0 IS NULL | 0 IS NOT NULL | '' IS NULL | '' IS NOT NULL |
+-----------+---------------+------------+----------------+
| 0 | 1 | 0 | 1 |
+-----------+---------------+------------+----------------+

Thus it is entirely possible to insert a zero or empty string into a NOT NULL column, as these are in fact
NOT NULL. See Section B.3.4.3, “Problems with NULL Values”.

3.3.4.7 Pattern Matching

MySQL provides standard SQL pattern matching as well as a form of pattern matching based on extended
regular expressions similar to those used by Unix utilities such as vi, grep, and sed.

SQL pattern matching enables you to use _ to match any single character and % to match an arbitrary
number of characters (including zero characters). In MySQL, SQL patterns are case-insensitive by default.
Some examples are shown here. Do not use = or <> when you use SQL patterns. Use the LIKE or NOT
LIKE comparison operators instead.

To find names beginning with b:

mysql> SELECT * FROM pet WHERE name LIKE 'b%';
+--------+--------+---------+------+------------+------------+
| name | owner | species | sex | birth | death |
+--------+--------+---------+------+------------+------------+
| Buffy | Harold | dog | f | 1989-05-13 | NULL |
| Bowser | Diane | dog | m | 1989-08-31 | 1995-07-29 |
+--------+--------+---------+------+------------+------------+

To find names ending with fy:

mysql> SELECT * FROM pet WHERE name LIKE '%fy';
+--------+--------+---------+------+------------+-------+
| name | owner | species | sex | birth | death |
+--------+--------+---------+------+------------+-------+
| Fluffy | Harold | cat | f | 1993-02-04 | NULL |

285

Retrieving Information from a Table

| Buffy | Harold | dog | f | 1989-05-13 | NULL |
+--------+--------+---------+------+------------+-------+

To find names containing a w:

mysql> SELECT * FROM pet WHERE name LIKE '%w%';
+----------+-------+---------+------+------------+------------+
| name | owner | species | sex | birth | death |
+----------+-------+---------+------+------------+------------+
Claws	Gwen	cat	m	1994-03-17	NULL
Bowser	Diane	dog	m	1989-08-31	1995-07-29
Whistler	Gwen	bird	NULL	1997-12-09	NULL
+----------+-------+---------+------+------------+------------+

To find names containing exactly five characters, use five instances of the _ pattern character:

mysql> SELECT * FROM pet WHERE name LIKE '_____';
+-------+--------+---------+------+------------+-------+
| name | owner | species | sex | birth | death |
+-------+--------+---------+------+------------+-------+
| Claws | Gwen | cat | m | 1994-03-17 | NULL |
| Buffy | Harold | dog | f | 1989-05-13 | NULL |
+-------+--------+---------+------+------------+-------+

The other type of pattern matching provided by MySQL uses extended regular expressions. When you
test for a match for this type of pattern, use the REGEXP and NOT REGEXP operators (or RLIKE and NOT
RLIKE, which are synonyms).

The following list describes some characteristics of extended regular expressions:

• . matches any single character.

• A character class [...] matches any character within the brackets. For example, [abc] matches a, b,
or c. To name a range of characters, use a dash. [a-z] matches any letter, whereas [0-9] matches
any digit.

• * matches zero or more instances of the thing preceding it. For example, x* matches any number of x
characters, [0-9]* matches any number of digits, and .* matches any number of anything.

• A regular expression pattern match succeeds if the pattern matches anywhere in the value being tested.
(This differs from a LIKE pattern match, which succeeds only if the pattern matches the entire value.)

• To anchor a pattern so that it must match the beginning or end of the value being tested, use ^ at the
beginning or $ at the end of the pattern.

To demonstrate how extended regular expressions work, the LIKE queries shown previously are rewritten
here to use REGEXP.

To find names beginning with b, use ^ to match the beginning of the name:

mysql> SELECT * FROM pet WHERE name REGEXP '^b';
+--------+--------+---------+------+------------+------------+
| name | owner | species | sex | birth | death |
+--------+--------+---------+------+------------+------------+
| Buffy | Harold | dog | f | 1989-05-13 | NULL |
| Bowser | Diane | dog | m | 1989-08-31 | 1995-07-29 |
+--------+--------+---------+------+------------+------------+

To force a REGEXP comparison to be case-sensitive, use the BINARY keyword to make one of the strings a
binary string. This query matches only lowercase b at the beginning of a name:

SELECT * FROM pet WHERE name REGEXP BINARY '^b';

286

Retrieving Information from a Table

To find names ending with fy, use $ to match the end of the name:

mysql> SELECT * FROM pet WHERE name REGEXP 'fy$';
+--------+--------+---------+------+------------+-------+
| name | owner | species | sex | birth | death |
+--------+--------+---------+------+------------+-------+
| Fluffy | Harold | cat | f | 1993-02-04 | NULL |
| Buffy | Harold | dog | f | 1989-05-13 | NULL |
+--------+--------+---------+------+------------+-------+

To find names containing a w, use this query:

mysql> SELECT * FROM pet WHERE name REGEXP 'w';
+----------+-------+---------+------+------------+------------+
| name | owner | species | sex | birth | death |
+----------+-------+---------+------+------------+------------+
Claws	Gwen	cat	m	1994-03-17	NULL
Bowser	Diane	dog	m	1989-08-31	1995-07-29
Whistler	Gwen	bird	NULL	1997-12-09	NULL
+----------+-------+---------+------+------------+------------+

Because a regular expression pattern matches if it occurs anywhere in the value, it is not necessary in the
previous query to put a wildcard on either side of the pattern to get it to match the entire value as would be
true with an SQL pattern.

To find names containing exactly five characters, use ^ and $ to match the beginning and end of the name,
and five instances of . in between:

mysql> SELECT * FROM pet WHERE name REGEXP '^.....$';
+-------+--------+---------+------+------------+-------+
| name | owner | species | sex | birth | death |
+-------+--------+---------+------+------------+-------+
| Claws | Gwen | cat | m | 1994-03-17 | NULL |
| Buffy | Harold | dog | f | 1989-05-13 | NULL |
+-------+--------+---------+------+------------+-------+

You could also write the previous query using the {n} (“repeat-n-times”) operator:

mysql> SELECT * FROM pet WHERE name REGEXP '^.{5}$';
+-------+--------+---------+------+------------+-------+
| name | owner | species | sex | birth | death |
+-------+--------+---------+------+------------+-------+
| Claws | Gwen | cat | m | 1994-03-17 | NULL |
| Buffy | Harold | dog | f | 1989-05-13 | NULL |
+-------+--------+---------+------+------------+-------+

For more information about the syntax for regular expressions, see Section 12.8.2, “Regular Expressions”.

3.3.4.8 Counting Rows

Databases are often used to answer the question, “How often does a certain type of data occur in a table?”
For example, you might want to know how many pets you have, or how many pets each owner has, or you
might want to perform various kinds of census operations on your animals.

Counting the total number of animals you have is the same question as “How many rows are in the pet
table?” because there is one record per pet. COUNT(*) counts the number of rows, so the query to count
your animals looks like this:

mysql> SELECT COUNT(*) FROM pet;
+----------+
| COUNT(*) |
+----------+
| 9 |

287

Retrieving Information from a Table

+----------+

Earlier, you retrieved the names of the people who owned pets. You can use COUNT() if you want to find
out how many pets each owner has:

mysql> SELECT owner, COUNT(*) FROM pet GROUP BY owner;
+--------+----------+
| owner | COUNT(*) |
+--------+----------+
Benny	2
Diane	2
Gwen	3
Harold	2
+--------+----------+

The preceding query uses GROUP BY to group all records for each owner. The use of COUNT() in
conjunction with GROUP BY is useful for characterizing your data under various groupings. The following
examples show different ways to perform animal census operations.

Number of animals per species:

mysql> SELECT species, COUNT(*) FROM pet GROUP BY species;
+---------+----------+
| species | COUNT(*) |
+---------+----------+
bird	2
cat	2
dog	3
hamster	1
snake	1
+---------+----------+

Number of animals per sex:

mysql> SELECT sex, COUNT(*) FROM pet GROUP BY sex;
+------+----------+
| sex | COUNT(*) |
+------+----------+
NULL	1
f	4
m	4
+------+----------+

(In this output, NULL indicates that the sex is unknown.)

Number of animals per combination of species and sex:

mysql> SELECT species, sex, COUNT(*) FROM pet GROUP BY species, sex;
+---------+------+----------+
| species | sex | COUNT(*) |
+---------+------+----------+
bird	NULL	1
bird	f	1
cat	f	1
cat	m	1
dog	f	1
dog	m	2
hamster	f	1
snake	m	1
+---------+------+----------+

You need not retrieve an entire table when you use COUNT(). For example, the previous query, when
performed just on dogs and cats, looks like this:

mysql> SELECT species, sex, COUNT(*) FROM pet

288

Retrieving Information from a Table

 WHERE species = 'dog' OR species = 'cat'
 GROUP BY species, sex;
+---------+------+----------+
| species | sex | COUNT(*) |
+---------+------+----------+
cat	f	1
cat	m	1
dog	f	1
dog	m	2
+---------+------+----------+

Or, if you wanted the number of animals per sex only for animals whose sex is known:

mysql> SELECT species, sex, COUNT(*) FROM pet
 WHERE sex IS NOT NULL
 GROUP BY species, sex;
+---------+------+----------+
| species | sex | COUNT(*) |
+---------+------+----------+
bird	f	1
cat	f	1
cat	m	1
dog	f	1
dog	m	2
hamster	f	1
snake	m	1
+---------+------+----------+

If you name columns to select in addition to the COUNT() value, a GROUP BY clause should be present
that names those same columns. Otherwise, the following occurs:

• If the ONLY_FULL_GROUP_BY SQL mode is enabled, an error occurs:

mysql> SET sql_mode = 'ONLY_FULL_GROUP_BY';
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT owner, COUNT(*) FROM pet;
ERROR 1140 (42000): In aggregated query without GROUP BY, expression
#1 of SELECT list contains nonaggregated column 'menagerie.pet.owner';
this is incompatible with sql_mode=only_full_group_by

• If ONLY_FULL_GROUP_BY is not enabled, the query is processed by treating all rows as a single group,
but the value selected for each named column is nondeterministic. The server is free to select the value
from any row:

mysql> SET sql_mode = '';
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT owner, COUNT(*) FROM pet;
+--------+----------+
| owner | COUNT(*) |
+--------+----------+
| Harold | 8 |
+--------+----------+
1 row in set (0.00 sec)

See also Section 12.19.3, “MySQL Handling of GROUP BY”. See Section 12.19.1, “Aggregate Function
Descriptions” for information about COUNT(expr) behavior and related optimizations.

3.3.4.9 Using More Than one Table

The pet table keeps track of which pets you have. If you want to record other information about them,
such as events in their lives like visits to the vet or when litters are born, you need another table. What
should this table look like? It needs to contain the following information:

289

Retrieving Information from a Table

• The pet name so that you know which animal each event pertains to.

• A date so that you know when the event occurred.

• A field to describe the event.

• An event type field, if you want to be able to categorize events.

Given these considerations, the CREATE TABLE statement for the event table might look like this:

mysql> CREATE TABLE event (name VARCHAR(20), date DATE,
 type VARCHAR(15), remark VARCHAR(255));

As with the pet table, it is easiest to load the initial records by creating a tab-delimited text file containing
the following information.

name date type remark

Fluffy 1995-05-15 litter 4 kittens, 3 female, 1
male

Buffy 1993-06-23 litter 5 puppies, 2 female, 3
male

Buffy 1994-06-19 litter 3 puppies, 3 female

Chirpy 1999-03-21 vet needed beak
straightened

Slim 1997-08-03 vet broken rib

Bowser 1991-10-12 kennel

Fang 1991-10-12 kennel

Fang 1998-08-28 birthday Gave him a new chew
toy

Claws 1998-03-17 birthday Gave him a new flea
collar

Whistler 1998-12-09 birthday First birthday

Load the records like this:

mysql> LOAD DATA LOCAL INFILE 'event.txt' INTO TABLE event;

Based on what you have learned from the queries that you have run on the pet table, you should be able
to perform retrievals on the records in the event table; the principles are the same. But when is the event
table by itself insufficient to answer questions you might ask?

Suppose that you want to find out the ages at which each pet had its litters. We saw earlier how to
calculate ages from two dates. The litter date of the mother is in the event table, but to calculate her age
on that date you need her birth date, which is stored in the pet table. This means the query requires both
tables:

mysql> SELECT pet.name,
 TIMESTAMPDIFF(YEAR,birth,date) AS age,
 remark
 FROM pet INNER JOIN event
 ON pet.name = event.name
 WHERE event.type = 'litter';
+--------+------+-----------------------------+
| name | age | remark |

290

Getting Information About Databases and Tables

+--------+------+-----------------------------+
Fluffy	2	4 kittens, 3 female, 1 male
Buffy	4	5 puppies, 2 female, 3 male
Buffy	5	3 puppies, 3 female
+--------+------+-----------------------------+

There are several things to note about this query:

• The FROM clause joins two tables because the query needs to pull information from both of them.

• When combining (joining) information from multiple tables, you need to specify how records in one table
can be matched to records in the other. This is easy because they both have a name column. The query
uses an ON clause to match up records in the two tables based on the name values.

The query uses an INNER JOIN to combine the tables. An INNER JOIN permits rows from either table
to appear in the result if and only if both tables meet the conditions specified in the ON clause. In this
example, the ON clause specifies that the name column in the pet table must match the name column in
the event table. If a name appears in one table but not the other, the row does not appear in the result
because the condition in the ON clause fails.

• Because the name column occurs in both tables, you must be specific about which table you mean when
referring to the column. This is done by prepending the table name to the column name.

You need not have two different tables to perform a join. Sometimes it is useful to join a table to itself, if
you want to compare records in a table to other records in that same table. For example, to find breeding
pairs among your pets, you can join the pet table with itself to produce candidate pairs of live males and
females of like species:

mysql> SELECT p1.name, p1.sex, p2.name, p2.sex, p1.species
 FROM pet AS p1 INNER JOIN pet AS p2
 ON p1.species = p2.species
 AND p1.sex = 'f' AND p1.death IS NULL
 AND p2.sex = 'm' AND p2.death IS NULL;
+--------+------+-------+------+---------+
| name | sex | name | sex | species |
+--------+------+-------+------+---------+
| Fluffy | f | Claws | m | cat |
| Buffy | f | Fang | m | dog |
+--------+------+-------+------+---------+

In this query, we specify aliases for the table name to refer to the columns and keep straight which
instance of the table each column reference is associated with.

3.4 Getting Information About Databases and Tables

What if you forget the name of a database or table, or what the structure of a given table is (for example,
what its columns are called)? MySQL addresses this problem through several statements that provide
information about the databases and tables it supports.

You have previously seen SHOW DATABASES, which lists the databases managed by the server. To find
out which database is currently selected, use the DATABASE() function:

mysql> SELECT DATABASE();
+------------+
| DATABASE() |
+------------+
| menagerie |
+------------+

If you have not yet selected any database, the result is NULL.

291

Using mysql in Batch Mode

To find out what tables the default database contains (for example, when you are not sure about the name
of a table), use this statement:

mysql> SHOW TABLES;
+---------------------+
| Tables_in_menagerie |
+---------------------+
| event |
| pet |
+---------------------+

The name of the column in the output produced by this statement is always Tables_in_db_name, where
db_name is the name of the database. See Section 13.7.5.37, “SHOW TABLES Statement”, for more
information.

If you want to find out about the structure of a table, the DESCRIBE statement is useful; it displays
information about each of a table's columns:

mysql> DESCRIBE pet;
+---------+-------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+---------+-------------+------+-----+---------+-------+
name	varchar(20)	YES		NULL	
owner	varchar(20)	YES		NULL	
species	varchar(20)	YES		NULL	
sex	char(1)	YES		NULL	
birth	date	YES		NULL	
death	date	YES		NULL	
+---------+-------------+------+-----+---------+-------+

Field indicates the column name, Type is the data type for the column, NULL indicates whether the
column can contain NULL values, Key indicates whether the column is indexed, and Default specifies the
column's default value. Extra displays special information about columns: If a column was created with
the AUTO_INCREMENT option, the value is auto_increment rather than empty.

DESC is a short form of DESCRIBE. See Section 13.8.1, “DESCRIBE Statement”, for more information.

You can obtain the CREATE TABLE statement necessary to create an existing table using the SHOW
CREATE TABLE statement. See Section 13.7.5.10, “SHOW CREATE TABLE Statement”.

If you have indexes on a table, SHOW INDEX FROM tbl_name produces information about them. See
Section 13.7.5.22, “SHOW INDEX Statement”, for more about this statement.

3.5 Using mysql in Batch Mode

In the previous sections, you used mysql interactively to enter statements and view the results. You can
also run mysql in batch mode. To do this, put the statements you want to run in a file, then tell mysql to
read its input from the file:

$> mysql < batch-file

If you are running mysql under Windows and have some special characters in the file that cause
problems, you can do this:

C:\> mysql -e "source batch-file"

If you need to specify connection parameters on the command line, the command might look like this:

$> mysql -h host -u user -p < batch-file
Enter password: ********

292

Using mysql in Batch Mode

When you use mysql this way, you are creating a script file, then executing the script.

If you want the script to continue even if some of the statements in it produce errors, you should use the --
force command-line option.

Why use a script? Here are a few reasons:

• If you run a query repeatedly (say, every day or every week), making it a script enables you to avoid
retyping it each time you execute it.

• You can generate new queries from existing ones that are similar by copying and editing script files.

• Batch mode can also be useful while you are developing a query, particularly for multiple-line statements
or multiple-statement sequences. If you make a mistake, you do not have to retype everything. Just edit
your script to correct the error, then tell mysql to execute it again.

• If you have a query that produces a lot of output, you can run the output through a pager rather than
watching it scroll off the top of your screen:

$> mysql < batch-file | more

• You can catch the output in a file for further processing:

$> mysql < batch-file > mysql.out

• You can distribute your script to other people so that they can also run the statements.

• Some situations do not allow for interactive use, for example, when you run a query from a cron job. In
this case, you must use batch mode.

The default output format is different (more concise) when you run mysql in batch mode than when you
use it interactively. For example, the output of SELECT DISTINCT species FROM pet looks like this
when mysql is run interactively:

+---------+
| species |
+---------+
| bird |
| cat |
| dog |
| hamster |
| snake |
+---------+

In batch mode, the output looks like this instead:

species
bird
cat
dog
hamster
snake

If you want to get the interactive output format in batch mode, use mysql -t. To echo to the output the
statements that are executed, use mysql -v.

You can also use scripts from the mysql prompt by using the source command or \. command:

mysql> source filename;
mysql> \. filename

See Section 4.5.1.5, “Executing SQL Statements from a Text File”, for more information.

293

Examples of Common Queries

3.6 Examples of Common Queries
Here are examples of how to solve some common problems with MySQL.

Some of the examples use the table shop to hold the price of each article (item number) for certain traders
(dealers). Supposing that each trader has a single fixed price per article, then (article, dealer) is a
primary key for the records.

Start the command-line tool mysql and select a database:

$> mysql your-database-name

To create and populate the example table, use these statements:

CREATE TABLE shop (
 article INT UNSIGNED DEFAULT '0000' NOT NULL,
 dealer CHAR(20) DEFAULT '' NOT NULL,
 price DECIMAL(16,2) DEFAULT '0.00' NOT NULL,
 PRIMARY KEY(article, dealer));
INSERT INTO shop VALUES
 (1,'A',3.45),(1,'B',3.99),(2,'A',10.99),(3,'B',1.45),
 (3,'C',1.69),(3,'D',1.25),(4,'D',19.95);

After issuing the statements, the table should have the following contents:

SELECT * FROM shop ORDER BY article;

+---------+--------+-------+
| article | dealer | price |
+---------+--------+-------+
1	A	3.45
1	B	3.99
2	A	10.99
3	B	1.45
3	C	1.69
3	D	1.25
4	D	19.95
+---------+--------+-------+

3.6.1 The Maximum Value for a Column

“What is the highest item number?”

SELECT MAX(article) AS article FROM shop;

+---------+
| article |
+---------+
| 4 |
+---------+

3.6.2 The Row Holding the Maximum of a Certain Column

Task: Find the number, dealer, and price of the most expensive article.

This is easily done with a subquery:

SELECT article, dealer, price
FROM shop
WHERE price=(SELECT MAX(price) FROM shop);

+---------+--------+-------+
| article | dealer | price |

294

Maximum of Column per Group

+---------+--------+-------+
| 0004 | D | 19.95 |
+---------+--------+-------+

Another solution is to use a LEFT JOIN, as shown here:

SELECT s1.article, s1.dealer, s1.price
FROM shop s1
LEFT JOIN shop s2 ON s1.price < s2.price
WHERE s2.article IS NULL;

You can also do this by sorting all rows descending by price and get only the first row using the MySQL-
specific LIMIT clause, like this:

SELECT article, dealer, price
FROM shop
ORDER BY price DESC
LIMIT 1;

Note

If there were several most expensive articles, each with a price of 19.95, the LIMIT
solution would show only one of them.

3.6.3 Maximum of Column per Group

Task: Find the highest price per article.

SELECT article, MAX(price) AS price
FROM shop
GROUP BY article
ORDER BY article;

+---------+-------+
| article | price |
+---------+-------+
0001	3.99
0002	10.99
0003	1.69
0004	19.95
+---------+-------+

3.6.4 The Rows Holding the Group-wise Maximum of a Certain Column

Task: For each article, find the dealer or dealers with the most expensive price.

This problem can be solved with a subquery like this one:

SELECT article, dealer, price
FROM shop s1
WHERE price=(SELECT MAX(s2.price)
 FROM shop s2
 WHERE s1.article = s2.article)
ORDER BY article;

+---------+--------+-------+
| article | dealer | price |
+---------+--------+-------+
0001	B	3.99
0002	A	10.99
0003	C	1.69
0004	D	19.95
+---------+--------+-------+

295

Using User-Defined Variables

The preceding example uses a correlated subquery, which can be inefficient (see Section 13.2.10.7,
“Correlated Subqueries”). Other possibilities for solving the problem are to use an uncorrelated subquery in
the FROM clause or a LEFT JOIN.

Uncorrelated subquery:

SELECT s1.article, dealer, s1.price
FROM shop s1
JOIN (
 SELECT article, MAX(price) AS price
 FROM shop
 GROUP BY article) AS s2
 ON s1.article = s2.article AND s1.price = s2.price
ORDER BY article;

LEFT JOIN:

SELECT s1.article, s1.dealer, s1.price
FROM shop s1
LEFT JOIN shop s2 ON s1.article = s2.article AND s1.price < s2.price
WHERE s2.article IS NULL
ORDER BY s1.article;

The LEFT JOIN works on the basis that when s1.price is at its maximum value, there is no s2.price
with a greater value and thus the corresponding s2.article value is NULL. See Section 13.2.9.2, “JOIN
Clause”.

3.6.5 Using User-Defined Variables

You can employ MySQL user variables to remember results without having to store them in temporary
variables in the client. (See Section 9.4, “User-Defined Variables”.)

For example, to find the articles with the highest and lowest price you can do this:

mysql> SELECT @min_price:=MIN(price),@max_price:=MAX(price) FROM shop;
mysql> SELECT * FROM shop WHERE price=@min_price OR price=@max_price;
+---------+--------+-------+
| article | dealer | price |
+---------+--------+-------+
| 0003 | D | 1.25 |
| 0004 | D | 19.95 |
+---------+--------+-------+

Note

It is also possible to store the name of a database object such as a table or a
column in a user variable and then to use this variable in an SQL statement;
however, this requires the use of a prepared statement. See Section 13.5,
“Prepared Statements”, for more information.

3.6.6 Using Foreign Keys

MySQL supports foreign keys, which permit cross-referencing related data across tables, and foreign key
constraints, which help keep the related data consistent.

A foreign key relationship involves a parent table that holds the initial column values, and a child table with
column values that reference the parent column values. A foreign key constraint is defined on the child
table.

This following example relates parent and child tables through a single-column foreign key and shows
how a foreign key constraint enforces referential integrity.

296

Using Foreign Keys

Create the parent and child tables using the following SQL statements:

CREATE TABLE parent (
 id INT NOT NULL,
 PRIMARY KEY (id)
) ENGINE=INNODB;

CREATE TABLE child (
 id INT,
 parent_id INT,
 INDEX par_ind (parent_id),
 FOREIGN KEY (parent_id)
 REFERENCES parent(id)
) ENGINE=INNODB;

Insert a row into the parent table, like this:

mysql> INSERT INTO parent (id) VALUES (1);

Verify that the data was inserted. You can do this simply by selecting all rows from parent, as shown
here:

mysql> SELECT * FROM parent;
+----+
| id |
+----+
| 1 |
+----+

Insert a row into the child table using the following SQL statement:

mysql> INSERT INTO child (id,parent_id) VALUES (1,1);

The insert operation is successful because parent_id 1 is present in the parent table.

Insertion of a row into the child table with a parent_id value that is not present in the parent table is
rejected with an error, as you can see here:

mysql> INSERT INTO child (id,parent_id) VALUES(2,2);
ERROR 1452 (23000): Cannot add or update a child row: a foreign key constraint fails
(`test`.`child`, CONSTRAINT `child_ibfk_1` FOREIGN KEY (`parent_id`)
REFERENCES `parent` (`id`))

The operation fails because the specified parent_id value does not exist in the parent table.

Trying to delete the previously inserted row from the parent table also fails, as shown here:

mysql> DELETE FROM parent WHERE id = 1;
ERROR 1451 (23000): Cannot delete or update a parent row: a foreign key constraint fails
(`test`.`child`, CONSTRAINT `child_ibfk_1` FOREIGN KEY (`parent_id`)
REFERENCES `parent` (`id`))

This operation fails because the record in the child table contains the referenced id (parent_id) value.

When an operation affects a key value in the parent table that has matching rows in the child table,
the result depends on the referential action specified by ON UPDATE and ON DELETE subclauses of
the FOREIGN KEY clause. Omitting ON DELETE and ON UPDATE clauses (as in the current child table
definition) is the same as specifying the RESTRICT option, which rejects operations that affect a key value
in the parent table that has matching rows in the parent table.

To demonstrate ON DELETE and ON UPDATE referential actions, drop the child table and recreate it
to include ON UPDATE and ON DELETE subclauses with the CASCADE option. The CASCADE option

297

Using Foreign Keys

automatically deletes or updates matching rows in the child table when deleting or updating rows in the
parent table.

DROP TABLE child;

CREATE TABLE child (
 id INT,
 parent_id INT,
 INDEX par_ind (parent_id),
 FOREIGN KEY (parent_id)
 REFERENCES parent(id)
 ON UPDATE CASCADE
 ON DELETE CASCADE
) ENGINE=INNODB;

Insert some rows into the child table using the statement shown here:

mysql> INSERT INTO child (id,parent_id) VALUES(1,1),(2,1),(3,1);

Verify that the data was inserted, like this:

mysql> SELECT * FROM child;
+------+-----------+
| id | parent_id |
+------+-----------+
1	1
2	1
3	1
+------+-----------+

Update the ID in the parent table, changing it from 1 to 2, using the SQL statement shown here:

mysql> UPDATE parent SET id = 2 WHERE id = 1;

Verify that the update was successful by selecting all rows from the parent table, as shown here:

mysql> SELECT * FROM parent;
+----+
| id |
+----+
| 2 |
+----+

Verify that the ON UPDATE CASCADE referential action updated the child table, like this:

mysql> SELECT * FROM child;
+------+-----------+
| id | parent_id |
+------+-----------+
1	2
2	2
3	2
+------+-----------+

To demonstrate the ON DELETE CASCADE referential action, delete records from the parent table where
parent_id = 2; this deletes all records in the parent table.

mysql> DELETE FROM parent WHERE id = 2;

Because all records in the child table are associated with parent_id = 2, the ON DELETE CASCADE
referential action removes all records from the child table, as shown here:

mysql> SELECT * FROM child;
Empty set (0.00 sec)

298

Searching on Two Keys

For more information about foreign key constraints, see Section 13.1.18.5, “FOREIGN KEY Constraints”.

3.6.7 Searching on Two Keys

An OR using a single key is well optimized, as is the handling of AND.

The one tricky case is that of searching on two different keys combined with OR:

SELECT field1_index, field2_index FROM test_table
WHERE field1_index = '1' OR field2_index = '1'

This case is optimized. See Section 8.2.1.3, “Index Merge Optimization”.

You can also solve the problem efficiently by using a UNION that combines the output of two separate
SELECT statements. See Section 13.2.9.3, “UNION Clause”.

Each SELECT searches only one key and can be optimized:

SELECT field1_index, field2_index
 FROM test_table WHERE field1_index = '1'
UNION
SELECT field1_index, field2_index
 FROM test_table WHERE field2_index = '1';

3.6.8 Calculating Visits Per Day

The following example shows how you can use the bit group functions to calculate the number of days per
month a user has visited a Web page.

CREATE TABLE t1 (year YEAR, month INT UNSIGNED,
 day INT UNSIGNED);
INSERT INTO t1 VALUES(2000,1,1),(2000,1,20),(2000,1,30),(2000,2,2),
 (2000,2,23),(2000,2,23);

The example table contains year-month-day values representing visits by users to the page. To determine
how many different days in each month these visits occur, use this query:

SELECT year,month,BIT_COUNT(BIT_OR(1<<day)) AS days FROM t1
 GROUP BY year,month;

Which returns:

+------+-------+------+
| year | month | days |
+------+-------+------+
| 2000 | 1 | 3 |
| 2000 | 2 | 2 |
+------+-------+------+

The query calculates how many different days appear in the table for each year/month combination, with
automatic removal of duplicate entries.

3.6.9 Using AUTO_INCREMENT

The AUTO_INCREMENT attribute can be used to generate a unique identity for new rows:

CREATE TABLE animals (
 id MEDIUMINT NOT NULL AUTO_INCREMENT,
 name CHAR(30) NOT NULL,
 PRIMARY KEY (id)
);

299

Using AUTO_INCREMENT

INSERT INTO animals (name) VALUES
 ('dog'),('cat'),('penguin'),
 ('lax'),('whale'),('ostrich');

SELECT * FROM animals;

Which returns:

+----+---------+
| id | name |
+----+---------+
1	dog
2	cat
3	penguin
4	lax
5	whale
6	ostrich
+----+---------+

No value was specified for the AUTO_INCREMENT column, so MySQL assigned sequence numbers
automatically. You can also explicitly assign 0 to the column to generate sequence numbers, unless the
NO_AUTO_VALUE_ON_ZERO SQL mode is enabled. For example:

INSERT INTO animals (id,name) VALUES(0,'groundhog');

If the column is declared NOT NULL, it is also possible to assign NULL to the column to generate sequence
numbers. For example:

INSERT INTO animals (id,name) VALUES(NULL,'squirrel');

When you insert any other value into an AUTO_INCREMENT column, the column is set to that value and
the sequence is reset so that the next automatically generated value follows sequentially from the largest
column value. For example:

INSERT INTO animals (id,name) VALUES(100,'rabbit');
INSERT INTO animals (id,name) VALUES(NULL,'mouse');
SELECT * FROM animals;
+-----+-----------+
| id | name |
+-----+-----------+
1	dog
2	cat
3	penguin
4	lax
5	whale
6	ostrich
7	groundhog
8	squirrel
100	rabbit
101	mouse
+-----+-----------+

Updating an existing AUTO_INCREMENT column value in an InnoDB table does not reset the
AUTO_INCREMENT sequence as it does for MyISAM and NDB tables.

You can retrieve the most recent automatically generated AUTO_INCREMENT value with the
LAST_INSERT_ID() SQL function or the mysql_insert_id() C API function. These functions are
connection-specific, so their return values are not affected by another connection which is also performing
inserts.

Use the smallest integer data type for the AUTO_INCREMENT column that is large enough to hold the
maximum sequence value you need. When the column reaches the upper limit of the data type, the
next attempt to generate a sequence number fails. Use the UNSIGNED attribute if possible to allow a

300

https://dev.mysql.com/doc/c-api/5.7/en/mysql-insert-id.html

Using AUTO_INCREMENT

greater range. For example, if you use TINYINT, the maximum permissible sequence number is 127. For
TINYINT UNSIGNED, the maximum is 255. See Section 11.1.2, “Integer Types (Exact Value) - INTEGER,
INT, SMALLINT, TINYINT, MEDIUMINT, BIGINT” for the ranges of all the integer types.

Note

For a multiple-row insert, LAST_INSERT_ID() and mysql_insert_id() actually
return the AUTO_INCREMENT key from the first of the inserted rows. This enables
multiple-row inserts to be reproduced correctly on other servers in a replication
setup.

To start with an AUTO_INCREMENT value other than 1, set that value with CREATE TABLE or ALTER
TABLE, like this:

mysql> ALTER TABLE tbl AUTO_INCREMENT = 100;

InnoDB Notes

For information about AUTO_INCREMENT usage specific to InnoDB, see Section 14.6.1.6,
“AUTO_INCREMENT Handling in InnoDB”.

MyISAM Notes

• For MyISAM tables, you can specify AUTO_INCREMENT on a secondary column in a multiple-
column index. In this case, the generated value for the AUTO_INCREMENT column is calculated as
MAX(auto_increment_column) + 1 WHERE prefix=given-prefix. This is useful when you
want to put data into ordered groups.

CREATE TABLE animals (
 grp ENUM('fish','mammal','bird') NOT NULL,
 id MEDIUMINT NOT NULL AUTO_INCREMENT,
 name CHAR(30) NOT NULL,
 PRIMARY KEY (grp,id)
) ENGINE=MyISAM;

INSERT INTO animals (grp,name) VALUES
 ('mammal','dog'),('mammal','cat'),
 ('bird','penguin'),('fish','lax'),('mammal','whale'),
 ('bird','ostrich');

SELECT * FROM animals ORDER BY grp,id;

Which returns:

+--------+----+---------+
| grp | id | name |
+--------+----+---------+
fish	1	lax
mammal	1	dog
mammal	2	cat
mammal	3	whale
bird	1	penguin
bird	2	ostrich
+--------+----+---------+

In this case (when the AUTO_INCREMENT column is part of a multiple-column index), AUTO_INCREMENT
values are reused if you delete the row with the biggest AUTO_INCREMENT value in any group. This
happens even for MyISAM tables, for which AUTO_INCREMENT values normally are not reused.

• If the AUTO_INCREMENT column is part of multiple indexes, MySQL generates sequence values using
the index that begins with the AUTO_INCREMENT column, if there is one. For example, if the animals

301

https://dev.mysql.com/doc/c-api/5.7/en/mysql-insert-id.html

Using MySQL with Apache

table contained indexes PRIMARY KEY (grp, id) and INDEX (id), MySQL would ignore the
PRIMARY KEY for generating sequence values. As a result, the table would contain a single sequence,
not a sequence per grp value.

Further Reading

More information about AUTO_INCREMENT is available here:

• How to assign the AUTO_INCREMENT attribute to a column: Section 13.1.18, “CREATE TABLE
Statement”, and Section 13.1.8, “ALTER TABLE Statement”.

• How AUTO_INCREMENT behaves depending on the NO_AUTO_VALUE_ON_ZERO SQL mode:
Section 5.1.10, “Server SQL Modes”.

• How to use the LAST_INSERT_ID() function to find the row that contains the most recent
AUTO_INCREMENT value: Section 12.15, “Information Functions”.

• Setting the AUTO_INCREMENT value to be used: Section 5.1.7, “Server System Variables”.

• Section 14.6.1.6, “AUTO_INCREMENT Handling in InnoDB”

• AUTO_INCREMENT and replication: Section 16.4.1.1, “Replication and AUTO_INCREMENT”.

• Server-system variables related to AUTO_INCREMENT (auto_increment_increment and
auto_increment_offset) that can be used for replication: Section 5.1.7, “Server System Variables”.

3.7 Using MySQL with Apache

There are programs that let you authenticate your users from a MySQL database and also let you write
your log files into a MySQL table.

You can change the Apache logging format to be easily readable by MySQL by putting the following into
the Apache configuration file:

LogFormat \
 "\"%h\",%{%Y%m%d%H%M%S}t,%>s,\"%b\",\"%{Content-Type}o\", \
 \"%U\",\"%{Referer}i\",\"%{User-Agent}i\""

To load a log file in that format into MySQL, you can use a statement something like this:

LOAD DATA INFILE '/local/access_log' INTO TABLE tbl_name
FIELDS TERMINATED BY ',' OPTIONALLY ENCLOSED BY '"' ESCAPED BY '\\'

The named table should be created to have columns that correspond to those that the LogFormat line
writes to the log file.

302

Chapter 4 MySQL Programs

Table of Contents
4.1 Overview of MySQL Programs .. 304
4.2 Using MySQL Programs ... 308

4.2.1 Invoking MySQL Programs ... 308
4.2.2 Specifying Program Options ... 309
4.2.3 Command Options for Connecting to the Server .. 323
4.2.4 Connecting to the MySQL Server Using Command Options ... 335
4.2.5 Connection Transport Protocols .. 338
4.2.6 Connection Compression Control .. 339
4.2.7 Setting Environment Variables .. 340

4.3 Server and Server-Startup Programs ... 341
4.3.1 mysqld — The MySQL Server .. 341
4.3.2 mysqld_safe — MySQL Server Startup Script ... 341
4.3.3 mysql.server — MySQL Server Startup Script ... 351
4.3.4 mysqld_multi — Manage Multiple MySQL Servers ... 353

4.4 Installation-Related Programs .. 359
4.4.1 comp_err — Compile MySQL Error Message File .. 359
4.4.2 mysql_install_db — Initialize MySQL Data Directory .. 361
4.4.3 mysql_plugin — Configure MySQL Server Plugins ... 370
4.4.4 mysql_secure_installation — Improve MySQL Installation Security 373
4.4.5 mysql_ssl_rsa_setup — Create SSL/RSA Files ... 378
4.4.6 mysql_tzinfo_to_sql — Load the Time Zone Tables ... 381
4.4.7 mysql_upgrade — Check and Upgrade MySQL Tables .. 382

4.5 Client Programs .. 393
4.5.1 mysql — The MySQL Command-Line Client ... 393
4.5.2 mysqladmin — A MySQL Server Administration Program ... 435
4.5.3 mysqlcheck — A Table Maintenance Program ... 450
4.5.4 mysqldump — A Database Backup Program ... 465
4.5.5 mysqlimport — A Data Import Program ... 501
4.5.6 mysqlpump — A Database Backup Program ... 515
4.5.7 mysqlshow — Display Database, Table, and Column Information 540
4.5.8 mysqlslap — A Load Emulation Client .. 550

4.6 Administrative and Utility Programs ... 568
4.6.1 innochecksum — Offline InnoDB File Checksum Utility .. 568
4.6.2 myisam_ftdump — Display Full-Text Index information ... 575
4.6.3 myisamchk — MyISAM Table-Maintenance Utility .. 576
4.6.4 myisamlog — Display MyISAM Log File Contents .. 596
4.6.5 myisampack — Generate Compressed, Read-Only MyISAM Tables 598
4.6.6 mysql_config_editor — MySQL Configuration Utility ... 605
4.6.7 mysqlbinlog — Utility for Processing Binary Log Files .. 611
4.6.8 mysqldumpslow — Summarize Slow Query Log Files .. 641

4.7 Program Development Utilities .. 644
4.7.1 mysql_config — Display Options for Compiling Clients ... 644
4.7.2 my_print_defaults — Display Options from Option Files ... 646
4.7.3 resolve_stack_dump — Resolve Numeric Stack Trace Dump to Symbols 647

4.8 Miscellaneous Programs ... 648
4.8.1 lz4_decompress — Decompress mysqlpump LZ4-Compressed Output 648
4.8.2 perror — Display MySQL Error Message Information ... 648
4.8.3 replace — A String-Replacement Utility ... 649

303

Overview of MySQL Programs

4.8.4 resolveip — Resolve Host name to IP Address or Vice Versa ... 650
4.8.5 zlib_decompress — Decompress mysqlpump ZLIB-Compressed Output 650

4.9 Environment Variables .. 650
4.10 Unix Signal Handling in MySQL ... 653

This chapter provides a brief overview of the MySQL command-line programs provided by Oracle
Corporation. It also discusses the general syntax for specifying options when you run these programs.
Most programs have options that are specific to their own operation, but the option syntax is similar for all
of them. Finally, the chapter provides more detailed descriptions of individual programs, including which
options they recognize.

4.1 Overview of MySQL Programs
There are many different programs in a MySQL installation. This section provides a brief overview of
them. Later sections provide a more detailed description of each one, with the exception of NDB Cluster
programs. Each program's description indicates its invocation syntax and the options that it supports.
Section 21.5, “NDB Cluster Programs”, describes programs specific to NDB Cluster.

Most MySQL distributions include all of these programs, except for those programs that are platform-
specific. (For example, the server startup scripts are not used on Windows.) The exception is that RPM
distributions are more specialized. There is one RPM for the server, another for client programs, and so
forth. If you appear to be missing one or more programs, see Chapter 2, Installing and Upgrading MySQL,
for information on types of distributions and what they contain. It may be that you have a distribution that
does not include all programs and you need to install an additional package.

Each MySQL program takes many different options. Most programs provide a --help option that you can
use to get a description of the program's different options. For example, try mysql --help.

You can override default option values for MySQL programs by specifying options on the command line or
in an option file. See Section 4.2, “Using MySQL Programs”, for general information on invoking programs
and specifying program options.

The MySQL server, mysqld, is the main program that does most of the work in a MySQL installation. The
server is accompanied by several related scripts that assist you in starting and stopping the server:

• mysqld

The SQL daemon (that is, the MySQL server). To use client programs, mysqld must be running,
because clients gain access to databases by connecting to the server. See Section 4.3.1, “mysqld —
The MySQL Server”.

• mysqld_safe

A server startup script. mysqld_safe attempts to start mysqld. See Section 4.3.2, “mysqld_safe —
MySQL Server Startup Script”.

• mysql.server

A server startup script. This script is used on systems that use System V-style run directories containing
scripts that start system services for particular run levels. It invokes mysqld_safe to start the MySQL
server. See Section 4.3.3, “mysql.server — MySQL Server Startup Script”.

• mysqld_multi

A server startup script that can start or stop multiple servers installed on the system. See Section 4.3.4,
“mysqld_multi — Manage Multiple MySQL Servers”.

Several programs perform setup operations during MySQL installation or upgrading:

304

Overview of MySQL Programs

• comp_err

This program is used during the MySQL build/installation process. It compiles error message files from
the error source files. See Section 4.4.1, “comp_err — Compile MySQL Error Message File”.

• mysql_install_db

This program initializes the MySQL data directory, creates the mysql database and initializes its grant
tables with default privileges, and sets up the InnoDB system tablespace. It is usually executed only
once, when first installing MySQL on a system. See Section 4.4.2, “mysql_install_db — Initialize MySQL
Data Directory”, and Section 2.9, “Postinstallation Setup and Testing”.

• mysql_plugin

This program configures MySQL server plugins. See Section 4.4.3, “mysql_plugin — Configure MySQL
Server Plugins”.

• mysql_secure_installation

This program enables you to improve the security of your MySQL installation. See Section 4.4.4,
“mysql_secure_installation — Improve MySQL Installation Security”.

• mysql_ssl_rsa_setup

This program creates the SSL certificate and key files and RSA key-pair files required to support secure
connections, if those files are missing. Files created by mysql_ssl_rsa_setup can be used for secure
connections using SSL or RSA. See Section 4.4.5, “mysql_ssl_rsa_setup — Create SSL/RSA Files”.

• mysql_tzinfo_to_sql

This program loads the time zone tables in the mysql database using the contents of the host system
zoneinfo database (the set of files describing time zones). See Section 4.4.6, “mysql_tzinfo_to_sql —
Load the Time Zone Tables”.

• mysql_upgrade

This program is used after a MySQL upgrade operation. It updates the grant tables with any changes
that have been made in newer versions of MySQL, and checks tables for incompatibilities and repairs
them if necessary. See Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”.

MySQL client programs that connect to the MySQL server:

• mysql

The command-line tool for interactively entering SQL statements or executing them from a file in batch
mode. See Section 4.5.1, “mysql — The MySQL Command-Line Client”.

• mysqladmin

A client that performs administrative operations, such as creating or dropping databases, reloading the
grant tables, flushing tables to disk, and reopening log files. mysqladmin can also be used to retrieve
version, process, and status information from the server. See Section 4.5.2, “mysqladmin — A MySQL
Server Administration Program”.

• mysqlcheck

A table-maintenance client that checks, repairs, analyzes, and optimizes tables. See Section 4.5.3,
“mysqlcheck — A Table Maintenance Program”.

305

Overview of MySQL Programs

• mysqldump

A client that dumps a MySQL database into a file as SQL, text, or XML. See Section 4.5.4, “mysqldump
— A Database Backup Program”.

• mysqlimport

A client that imports text files into their respective tables using LOAD DATA. See Section 4.5.5,
“mysqlimport — A Data Import Program”.

• mysqlpump

A client that dumps a MySQL database into a file as SQL. See Section 4.5.6, “mysqlpump — A
Database Backup Program”.

• mysqlsh

MySQL Shell is an advanced client and code editor for MySQL Server. See MySQL Shell 8.0. In addition
to the provided SQL functionality, similar to mysql, MySQL Shell provides scripting capabilities for
JavaScript and Python and includes APIs for working with MySQL. X DevAPI enables you to work with
both relational and document data, see Chapter 19, Using MySQL as a Document Store. AdminAPI
enables you to work with InnoDB Cluster, see MySQL AdminAPI.

• mysqlshow

A client that displays information about databases, tables, columns, and indexes. See Section 4.5.7,
“mysqlshow — Display Database, Table, and Column Information”.

• mysqlslap

A client that is designed to emulate client load for a MySQL server and report the timing of each stage. It
works as if multiple clients are accessing the server. See Section 4.5.8, “mysqlslap — A Load Emulation
Client”.

MySQL administrative and utility programs:

• innochecksum

An offline InnoDB offline file checksum utility. See Section 4.6.1, “innochecksum — Offline InnoDB File
Checksum Utility”.

• myisam_ftdump

A utility that displays information about full-text indexes in MyISAM tables. See Section 4.6.2,
“myisam_ftdump — Display Full-Text Index information”.

• myisamchk

A utility to describe, check, optimize, and repair MyISAM tables. See Section 4.6.3, “myisamchk —
MyISAM Table-Maintenance Utility”.

• myisamlog

A utility that processes the contents of a MyISAM log file. See Section 4.6.4, “myisamlog — Display
MyISAM Log File Contents”.

• myisampack

306

https://dev.mysql.com/doc/mysql-shell/8.0/en/
https://dev.mysql.com/doc/mysql-shell/8.0/en/admin-api-userguide.html

Overview of MySQL Programs

A utility that compresses MyISAM tables to produce smaller read-only tables. See Section 4.6.5,
“myisampack — Generate Compressed, Read-Only MyISAM Tables”.

• mysql_config_editor

A utility that enables you to store authentication credentials in a secure, encrypted login path file named
.mylogin.cnf. See Section 4.6.6, “mysql_config_editor — MySQL Configuration Utility”.

• mysqlbinlog

A utility for reading statements from a binary log. The log of executed statements contained in the
binary log files can be used to help recover from a crash. See Section 4.6.7, “mysqlbinlog — Utility for
Processing Binary Log Files”.

• mysqldumpslow

A utility to read and summarize the contents of a slow query log. See Section 4.6.8, “mysqldumpslow —
Summarize Slow Query Log Files”.

MySQL program-development utilities:

• mysql_config

A shell script that produces the option values needed when compiling MySQL programs. See
Section 4.7.1, “mysql_config — Display Options for Compiling Clients”.

• my_print_defaults

A utility that shows which options are present in option groups of option files. See Section 4.7.2,
“my_print_defaults — Display Options from Option Files”.

• resolve_stack_dump

A utility program that resolves a numeric stack trace dump to symbols. See Section 4.7.3,
“resolve_stack_dump — Resolve Numeric Stack Trace Dump to Symbols”.

Miscellaneous utilities:

• lz4_decompress

A utility that decompresses mysqlpump output that was created using LZ4 compression. See
Section 4.8.1, “lz4_decompress — Decompress mysqlpump LZ4-Compressed Output”.

• perror

A utility that displays the meaning of system or MySQL error codes. See Section 4.8.2, “perror — Display
MySQL Error Message Information”.

• replace

A utility program that performs string replacement in the input text. See Section 4.8.3, “replace — A
String-Replacement Utility”.

• resolveip

A utility program that resolves a host name to an IP address or vice versa. See Section 4.8.4, “resolveip
— Resolve Host name to IP Address or Vice Versa”.

307

Using MySQL Programs

• zlib_decompress

A utility that decompresses mysqlpump output that was created using ZLIB compression. See
Section 4.8.5, “zlib_decompress — Decompress mysqlpump ZLIB-Compressed Output”.

Oracle Corporation also provides the MySQL Workbench GUI tool, which is used to administer MySQL
servers and databases, to create, execute, and evaluate queries, and to migrate schemas and data from
other relational database management systems for use with MySQL.

MySQL client programs that communicate with the server using the MySQL client/server library use the
following environment variables.

Environment Variable Meaning

MYSQL_UNIX_PORT The default Unix socket file; used for connections to
localhost

MYSQL_TCP_PORT The default port number; used for TCP/IP
connections

MYSQL_PWD The default password

MYSQL_DEBUG Debug trace options when debugging

TMPDIR The directory where temporary tables and files are
created

For a full list of environment variables used by MySQL programs, see Section 4.9, “Environment
Variables”.

Use of MYSQL_PWD is insecure. See Section 6.1.2.1, “End-User Guidelines for Password Security”.

4.2 Using MySQL Programs

4.2.1 Invoking MySQL Programs

To invoke a MySQL program from the command line (that is, from your shell or command prompt), enter
the program name followed by any options or other arguments needed to instruct the program what you
want it to do. The following commands show some sample program invocations. $> represents the prompt
for your command interpreter; it is not part of what you type. The particular prompt you see depends on
your command interpreter. Typical prompts are $ for sh, ksh, or bash, % for csh or tcsh, and C:\> for
the Windows command.com or cmd.exe command interpreters.

$> mysql --user=root test
$> mysqladmin extended-status variables
$> mysqlshow --help
$> mysqldump -u root personnel

Arguments that begin with a single or double dash (-, --) specify program options. Options typically
indicate the type of connection a program should make to the server or affect its operational mode. Option
syntax is described in Section 4.2.2, “Specifying Program Options”.

Nonoption arguments (arguments with no leading dash) provide additional information to the program.
For example, the mysql program interprets the first nonoption argument as a database name, so the
command mysql --user=root test indicates that you want to use the test database.

Later sections that describe individual programs indicate which options a program supports and describe
the meaning of any additional nonoption arguments.

308

Specifying Program Options

Some options are common to a number of programs. The most frequently used of these are the --host
(or -h), --user (or -u), and --password (or -p) options that specify connection parameters. They
indicate the host where the MySQL server is running, and the user name and password of your MySQL
account. All MySQL client programs understand these options; they enable you to specify which server to
connect to and the account to use on that server. Other connection options are --port (or -P) to specify
a TCP/IP port number and --socket (or -S) to specify a Unix socket file on Unix (or named-pipe name on
Windows). For more information on options that specify connection options, see Section 4.2.4, “Connecting
to the MySQL Server Using Command Options”.

You may find it necessary to invoke MySQL programs using the path name to the bin directory in which
they are installed. This is likely to be the case if you get a “program not found” error whenever you attempt
to run a MySQL program from any directory other than the bin directory. To make it more convenient to
use MySQL, you can add the path name of the bin directory to your PATH environment variable setting.
That enables you to run a program by typing only its name, not its entire path name. For example, if mysql
is installed in /usr/local/mysql/bin, you can run the program by invoking it as mysql, and it is not
necessary to invoke it as /usr/local/mysql/bin/mysql.

Consult the documentation for your command interpreter for instructions on setting your PATH variable.
The syntax for setting environment variables is interpreter-specific. (Some information is given in
Section 4.2.7, “Setting Environment Variables”.) After modifying your PATH setting, open a new console
window on Windows or log in again on Unix so that the setting goes into effect.

4.2.2 Specifying Program Options

There are several ways to specify options for MySQL programs:

• List the options on the command line following the program name. This is common for options that apply
to a specific invocation of the program.

• List the options in an option file that the program reads when it starts. This is common for options that
you want the program to use each time it runs.

• List the options in environment variables (see Section 4.2.7, “Setting Environment Variables”). This
method is useful for options that you want to apply each time the program runs. In practice, option files
are used more commonly for this purpose, but Section 5.7.3, “Running Multiple MySQL Instances on
Unix”, discusses one situation in which environment variables can be very helpful. It describes a handy
technique that uses such variables to specify the TCP/IP port number and Unix socket file for the server
and for client programs.

Options are processed in order, so if an option is specified multiple times, the last occurrence takes
precedence. The following command causes mysql to connect to the server running on localhost:

mysql -h example.com -h localhost

There is one exception: For mysqld, the first instance of the --user option is used as a security
precaution, to prevent a user specified in an option file from being overridden on the command line.

If conflicting or related options are given, later options take precedence over earlier options. The following
command runs mysql in “no column names” mode:

mysql --column-names --skip-column-names

MySQL programs determine which options are given first by examining environment variables, then by
processing option files, and then by checking the command line. Because later options take precedence
over earlier ones, the processing order means that environment variables have the lowest precedence and
command-line options the highest.

309

Specifying Program Options

You can take advantage of the way that MySQL programs process options by specifying default option
values for a program in an option file. That enables you to avoid typing them each time you run the
program while enabling you to override the defaults if necessary by using command-line options.

4.2.2.1 Using Options on the Command Line

Program options specified on the command line follow these rules:

• Options are given after the command name.

• An option argument begins with one dash or two dashes, depending on whether it is a short form or long
form of the option name. Many options have both short and long forms. For example, -? and --help
are the short and long forms of the option that instructs a MySQL program to display its help message.

• Option names are case-sensitive. -v and -V are both legal and have different meanings. (They are the
corresponding short forms of the --verbose and --version options.)

• Some options take a value following the option name. For example, -h localhost or --
host=localhost indicate the MySQL server host to a client program. The option value tells the
program the name of the host where the MySQL server is running.

• For a long option that takes a value, separate the option name and the value by an = sign. For a
short option that takes a value, the option value can immediately follow the option letter, or there
can be a space between: -hlocalhost and -h localhost are equivalent. An exception to this
rule is the option for specifying your MySQL password. This option can be given in long form as --
password=pass_val or as --password. In the latter case (with no password value given), the
program interactively prompts you for the password. The password option also may be given in short
form as -ppass_val or as -p. However, for the short form, if the password value is given, it must follow
the option letter with no intervening space: If a space follows the option letter, the program has no way to
tell whether a following argument is supposed to be the password value or some other kind of argument.
Consequently, the following two commands have two completely different meanings:

mysql -ptest
mysql -p test

The first command instructs mysql to use a password value of test, but specifies no default database.
The second instructs mysql to prompt for the password value and to use test as the default database.

• Within option names, dash (-) and underscore (_) may be used interchangeably in most cases, although
the leading dashes cannot be given as underscores. For example, --skip-grant-tables and --
skip_grant_tables are equivalent.

In this Manual, we use dashes in option names, except where underscores are significant. This is the
case with, for example, --log-bin and --log_bin, which are different options. We encourage you to
do so as well.

• The MySQL server has certain command options that may be specified only at startup, and a set of
system variables, some of which may be set at startup, at runtime, or both. System variable names use
underscores rather than dashes, and when referenced at runtime (for example, using SET or SELECT
statements), must be written using underscores:

SET GLOBAL general_log = ON;
SELECT @@GLOBAL.general_log;

At server startup, the syntax for system variables is the same as for command options, so within variable
names, dashes and underscores may be used interchangeably. For example, --general_log=ON and
--general-log=ON are equivalent. (This is also true for system variables set within option files.)

310

Specifying Program Options

• For options that take a numeric value, the value can be given with a suffix of K, M, or G (either uppercase
or lowercase) to indicate a multiplier of 1024, 10242 or 10243. For example, the following command tells
mysqladmin to ping the server 1024 times, sleeping 10 seconds between each ping:

mysqladmin --count=1K --sleep=10 ping

• When specifying file names as option values, avoid the use of the ~ shell metacharacter. It might not be
interpreted as you expect.

Option values that contain spaces must be quoted when given on the command line. For example, the
--execute (or -e) option can be used with mysql to pass one or more semicolon-separated SQL
statements to the server. When this option is used, mysql executes the statements in the option value and
exits. The statements must be enclosed by quotation marks. For example:

$> mysql -u root -p -e "SELECT VERSION();SELECT NOW()"
Enter password: ******
+------------+
| VERSION() |
+------------+
| 5.7.29 |
+------------+
+---------------------+
| NOW() |
+---------------------+
| 2019-09-03 10:36:28 |
+---------------------+
$>

Note

The long form (--execute) is followed by an equal sign (=).

To use quoted values within a statement, you must either escape the inner quotation marks, or use a
different type of quotation marks within the statement from those used to quote the statement itself. The
capabilities of your command processor dictate your choices for whether you can use single or double
quotation marks and the syntax for escaping quote characters. For example, if your command processor
supports quoting with single or double quotation marks, you can use double quotation marks around the
statement, and single quotation marks for any quoted values within the statement.

4.2.2.2 Using Option Files

Most MySQL programs can read startup options from option files (sometimes called configuration files).
Option files provide a convenient way to specify commonly used options so that they need not be entered
on the command line each time you run a program.

To determine whether a program reads option files, invoke it with the --help option. (For mysqld, use --
verbose and --help.) If the program reads option files, the help message indicates which files it looks for
and which option groups it recognizes.

Note

A MySQL program started with the --no-defaults option reads no option files
other than .mylogin.cnf.

Many option files are plain text files, created using any text editor. The exception is the .mylogin.cnf file
that contains login path options. This is an encrypted file created by the mysql_config_editor utility.
See Section 4.6.6, “mysql_config_editor — MySQL Configuration Utility”. A “login path” is an option group

311

Specifying Program Options

that permits only certain options: host, user, password, port and socket. Client programs specify
which login path to read from .mylogin.cnf using the --login-path option.

To specify an alternative login path file name, set the MYSQL_TEST_LOGIN_FILE environment
variable. This variable is used by the mysql-test-run.pl testing utility, but also is recognized by
mysql_config_editor and by MySQL clients such as mysql, mysqladmin, and so forth.

MySQL looks for option files in the order described in the following discussion and reads any that exist. If
an option file you want to use does not exist, create it using the appropriate method, as just discussed.

Note

For information about option files used with NDB Cluster programs, see
Section 21.4, “Configuration of NDB Cluster”.

• Option File Processing Order

• Option File Syntax

• Option File Inclusions

Option File Processing Order

On Windows, MySQL programs read startup options from the files shown in the following table, in the
specified order (files listed first are read first, files read later take precedence).

Table 4.1 Option Files Read on Windows Systems

File Name Purpose

%WINDIR%\my.ini, %WINDIR%\my.cnf Global options

C:\my.ini, C:\my.cnf Global options

BASEDIR\my.ini, BASEDIR\my.cnf Global options

defaults-extra-file The file specified with --defaults-extra-file,
if any

%APPDATA%\MySQL\.mylogin.cnf Login path options (clients only)

In the preceding table, %WINDIR% represents the location of your Windows directory. This is commonly
C:\WINDOWS. Use the following command to determine its exact location from the value of the WINDIR
environment variable:

C:\> echo %WINDIR%

%APPDATA% represents the value of the Windows application data directory. Use the following command to
determine its exact location from the value of the APPDATA environment variable:

C:\> echo %APPDATA%

BASEDIR represents the MySQL base installation directory. When MySQL 5.7 has been installed using
MySQL Installer, this is typically C:\PROGRAMDIR\MySQL\MySQL Server 5.7 in which PROGRAMDIR
represents the programs directory (usually Program Files for English-language versions of Windows).
See Section 2.3.3, “MySQL Installer for Windows”.

Important

Although MySQL Installer places most files under PROGRAMDIR, it installs my.ini
under the C:\ProgramData\MySQL\MySQL Server 5.7\ directory by default.

312

Specifying Program Options

On Unix and Unix-like systems, MySQL programs read startup options from the files shown in the following
table, in the specified order (files listed first are read first, files read later take precedence).

Note

On Unix platforms, MySQL ignores configuration files that are world-writable. This is
intentional as a security measure.

Table 4.2 Option Files Read on Unix and Unix-Like Systems

File Name Purpose

/etc/my.cnf Global options

/etc/mysql/my.cnf Global options

SYSCONFDIR/my.cnf Global options

$MYSQL_HOME/my.cnf Server-specific options (server only)

defaults-extra-file The file specified with --defaults-extra-file,
if any

~/.my.cnf User-specific options

~/.mylogin.cnf User-specific login path options (clients only)

In the preceding table, ~ represents the current user's home directory (the value of $HOME).

SYSCONFDIR represents the directory specified with the SYSCONFDIR option to CMake when MySQL was
built. By default, this is the etc directory located under the compiled-in installation directory.

MYSQL_HOME is an environment variable containing the path to the directory in which the server-specific
my.cnf file resides. If MYSQL_HOME is not set and you start the server using the mysqld_safe program,
mysqld_safe sets it to BASEDIR, the MySQL base installation directory.

DATADIR is commonly /usr/local/mysql/data, although this can vary per platform or installation
method. The value is the data directory location built in when MySQL was compiled, not the location
specified with the --datadir option when mysqld starts. Use of --datadir at runtime has no effect on
where the server looks for option files that it reads before processing any options.

If multiple instances of a given option are found, the last instance takes precedence, with one exception:
For mysqld, the first instance of the --user option is used as a security precaution, to prevent a user
specified in an option file from being overridden on the command line.

Option File Syntax

The following description of option file syntax applies to files that you edit manually. This excludes
.mylogin.cnf, which is created using mysql_config_editor and is encrypted.

Any long option that may be given on the command line when running a MySQL program can be given in
an option file as well. To get the list of available options for a program, run it with the --help option. (For
mysqld, use --verbose and --help.)

The syntax for specifying options in an option file is similar to command-line syntax (see Section 4.2.2.1,
“Using Options on the Command Line”). However, in an option file, you omit the leading two dashes
from the option name and you specify only one option per line. For example, --quick and --
host=localhost on the command line should be specified as quick and host=localhost on
separate lines in an option file. To specify an option of the form --loose-opt_name in an option file, write
it as loose-opt_name.

313

Specifying Program Options

Empty lines in option files are ignored. Nonempty lines can take any of the following forms:

• #comment, ;comment

Comment lines start with # or ;. A # comment can start in the middle of a line as well.

• [group]

group is the name of the program or group for which you want to set options. After a group line, any
option-setting lines apply to the named group until the end of the option file or another group line is
given. Option group names are not case-sensitive.

• opt_name

This is equivalent to --opt_name on the command line.

• opt_name=value

This is equivalent to --opt_name=value on the command line. In an option file, you can have spaces
around the = character, something that is not true on the command line. The value optionally can be
enclosed within single quotation marks or double quotation marks, which is useful if the value contains a
comment character.

Leading and trailing spaces are automatically deleted from option names and values.

You can use the escape sequences \b, \t, \n, \r, \\, and \s in option values to represent the
backspace, tab, newline, carriage return, backslash, and space characters. In option files, these escaping
rules apply:

• A backslash followed by a valid escape sequence character is converted to the character represented by
the sequence. For example, \s is converted to a space.

• A backslash not followed by a valid escape sequence character remains unchanged. For example, \S is
retained as is.

The preceding rules mean that a literal backslash can be given as \\, or as \ if it is not followed by a valid
escape sequence character.

The rules for escape sequences in option files differ slightly from the rules for escape sequences in
string literals in SQL statements. In the latter context, if “x” is not a valid escape sequence character, \x
becomes “x” rather than \x. See Section 9.1.1, “String Literals”.

The escaping rules for option file values are especially pertinent for Windows path names, which use \
as a path name separator. A separator in a Windows path name must be written as \\ if it is followed
by an escape sequence character. It can be written as \\ or \ if it is not. Alternatively, / may be used
in Windows path names and is treated as \. Suppose that you want to specify a base directory of C:
\Program Files\MySQL\MySQL Server 5.7 in an option file. This can be done several ways. Some
examples:

basedir="C:\Program Files\MySQL\MySQL Server 5.7"
basedir="C:\\Program Files\\MySQL\\MySQL Server 5.7"
basedir="C:/Program Files/MySQL/MySQL Server 5.7"
basedir=C:\\Program\sFiles\\MySQL\\MySQL\sServer\s5.7

If an option group name is the same as a program name, options in the group apply specifically to that
program. For example, the [mysqld] and [mysql] groups apply to the mysqld server and the mysql
client program, respectively.

314

Specifying Program Options

The [client] option group is read by all client programs provided in MySQL distributions (but not by
mysqld). To understand how third-party client programs that use the C API can use option files, see the C
API documentation at mysql_options().

The [client] group enables you to specify options that apply to all clients. For example, [client] is
the appropriate group to use to specify the password for connecting to the server. (But make sure that the
option file is accessible only by yourself, so that other people cannot discover your password.) Be sure
not to put an option in the [client] group unless it is recognized by all client programs that you use.
Programs that do not understand the option quit after displaying an error message if you try to run them.

List more general option groups first and more specific groups later. For example, a [client] group is
more general because it is read by all client programs, whereas a [mysqldump] group is read only by
mysqldump. Options specified later override options specified earlier, so putting the option groups in the
order [client], [mysqldump] enables mysqldump-specific options to override [client] options.

Here is a typical global option file:

[client]
port=3306
socket=/tmp/mysql.sock

[mysqld]
port=3306
socket=/tmp/mysql.sock
key_buffer_size=16M
max_allowed_packet=8M

[mysqldump]
quick

Here is a typical user option file:

[client]
The following password is sent to all standard MySQL clients
password="my password"

[mysql]
no-auto-rehash
connect_timeout=2

To create option groups to be read only by mysqld servers from specific MySQL release series, use
groups with names of [mysqld-5.6], [mysqld-5.7], and so forth. The following group indicates that
the sql_mode setting should be used only by MySQL servers with 5.7.x version numbers:

[mysqld-5.7]
sql_mode=TRADITIONAL

Option File Inclusions

It is possible to use !include directives in option files to include other option files and !includedir to
search specific directories for option files. For example, to include the /home/mydir/myopt.cnf file, use
the following directive:

!include /home/mydir/myopt.cnf

To search the /home/mydir directory and read option files found there, use this directive:

!includedir /home/mydir

MySQL makes no guarantee about the order in which option files in the directory are read.

315

https://dev.mysql.com/doc/c-api/5.7/en/mysql-options.html

Specifying Program Options

Note

Any files to be found and included using the !includedir directive on Unix
operating systems must have file names ending in .cnf. On Windows, this
directive checks for files with the .ini or .cnf extension.

Write the contents of an included option file like any other option file. That is, it should contain groups of
options, each preceded by a [group] line that indicates the program to which the options apply.

While an included file is being processed, only those options in groups that the current program is looking
for are used. Other groups are ignored. Suppose that a my.cnf file contains this line:

!include /home/mydir/myopt.cnf

And suppose that /home/mydir/myopt.cnf looks like this:

[mysqladmin]
force

[mysqld]
key_buffer_size=16M

If my.cnf is processed by mysqld, only the [mysqld] group in /home/mydir/myopt.cnf is used. If
the file is processed by mysqladmin, only the [mysqladmin] group is used. If the file is processed by
any other program, no options in /home/mydir/myopt.cnf are used.

The !includedir directive is processed similarly except that all option files in the named directory are
read.

If an option file contains !include or !includedir directives, files named by those directives are
processed whenever the option file is processed, no matter where they appear in the file.

For inclusion directives to work, the file path should not be specified within quotes and should have
no escape sequences. For example, the following statements provided in my.ini read the option file
myopts.ini:

!include C:/ProgramData/MySQL/MySQL Server/myopts.ini
!include C:\ProgramData\MySQL\MySQL Server\myopts.ini
!include C:\\ProgramData\\MySQL\\MySQL Server\\myopts.ini

On Windows, if !include /path/to/extra.ini is the last line in the file, make sure that a newline is
appended at the end or the line is ignored.

4.2.2.3 Command-Line Options that Affect Option-File Handling

Most MySQL programs that support option files handle the following options. Because these options affect
option-file handling, they must be given on the command line and not in an option file. To work properly,
each of these options must be given before other options, with these exceptions:

• --print-defaults may be used immediately after --defaults-file, --defaults-extra-file,
or --login-path.

• On Windows, if the server is started with the --defaults-file and --install options, --install
must be first. See Section 2.3.4.8, “Starting MySQL as a Windows Service”.

When specifying file names as option values, avoid the use of the ~ shell metacharacter because it might
not be interpreted as you expect.

316

Specifying Program Options

Table 4.3 Option File Option Summary

Option Name Description

--defaults-extra-file Read named option file in addition to usual option
files

--defaults-file Read only named option file

--defaults-group-suffix Option group suffix value

--login-path Read login path options from .mylogin.cnf

--no-defaults Read no option files

• --defaults-extra-file=file_name

Command-Line Format --defaults-extra-file=filename

Type File name

Default Value [none]

Read this option file after the global option file but (on Unix) before the user option file and (on all
platforms) before the login path file. (For information about the order in which option files are used, see
Section 4.2.2.2, “Using Option Files”.) If the file does not exist or is otherwise inaccessible, an error
occurs. If file_name is not an absolute path name, it is interpreted relative to the current directory.

See the introduction to this section regarding constraints on the position in which this option may be
specified.

• --defaults-file=file_name

Command-Line Format --defaults-file=filename

Type File name

Default Value [none]

Read only the given option file. If the file does not exist or is otherwise inaccessible, an error occurs.
file_name is interpreted relative to the current directory if given as a relative path name rather than a
full path name.

Exception: Even with --defaults-file, client programs read .mylogin.cnf.

See the introduction to this section regarding constraints on the position in which this option may be
specified.

• --defaults-group-suffix=str

Command-Line Format --defaults-group-suffix=string

Type String

Default Value [none]

Read not only the usual option groups, but also groups with the usual names and a suffix of str.
For example, the mysql client normally reads the [client] and [mysql] groups. If this option is
given as --defaults-group-suffix=_other, mysql also reads the [client_other] and
[mysql_other] groups.

317

Specifying Program Options

• --login-path=name

Command-Line Format --login-path=name

Type String

Default Value [none]

Read options from the named login path in the .mylogin.cnf login path file. A “login path” is an
option group containing options that specify which MySQL server to connect to and which account to
authenticate as. To create or modify a login path file, use the mysql_config_editor utility. See
Section 4.6.6, “mysql_config_editor — MySQL Configuration Utility”.

A client program reads the option group corresponding to the named login path, in addition to option
groups that the program reads by default. Consider this command:

mysql --login-path=mypath

By default, the mysql client reads the [client] and [mysql] option groups. So for the command
shown, mysql reads [client] and [mysql] from other option files, and [client], [mysql], and
[mypath] from the login path file.

Client programs read the login path file even when the --no-defaults option is used.

To specify an alternate login path file name, set the MYSQL_TEST_LOGIN_FILE environment variable.

See the introduction to this section regarding constraints on the position in which this option may be
specified.

• --no-defaults

Command-Line Format --no-defaults

Type Boolean

Default Value false

Do not read any option files. If program startup fails due to reading unknown options from an option file,
--no-defaults can be used to prevent them from being read.

The exception is that client programs read the .mylogin.cnf login path file, if it exists, even when --
no-defaults is used. This permits passwords to be specified in a safer way than on the command line
even if --no-defaults is present. To create .mylogin.cnf, use the mysql_config_editor utility.
See Section 4.6.6, “mysql_config_editor — MySQL Configuration Utility”.

• --print-defaults

Command-Line Format --print-defaults

Type Boolean

Default Value false

Print the program name and all options that it gets from option files. Password values are masked.

See the introduction to this section regarding constraints on the position in which this option may be
specified.

318

Specifying Program Options

4.2.2.4 Program Option Modifiers

Some options are “boolean” and control behavior that can be turned on or off. For example, the mysql
client supports a --column-names option that determines whether or not to display a row of column
names at the beginning of query results. By default, this option is enabled. However, you may want to
disable it in some instances, such as when sending the output of mysql into another program that expects
to see only data and not an initial header line.

To disable column names, you can specify the option using any of these forms:

--disable-column-names
--skip-column-names
--column-names=0

The --disable and --skip prefixes and the =0 suffix all have the same effect: They turn the option off.

The “enabled” form of the option may be specified in any of these ways:

--column-names
--enable-column-names
--column-names=1

The values ON, TRUE, OFF, and FALSE are also recognized for boolean options (not case-sensitive).

If an option is prefixed by --loose, a program does not exit with an error if it does not recognize the
option, but instead issues only a warning:

$> mysql --loose-no-such-option
mysql: WARNING: unknown option '--loose-no-such-option'

The --loose prefix can be useful when you run programs from multiple installations of MySQL on the
same machine and list options in an option file. An option that may not be recognized by all versions of a
program can be given using the --loose prefix (or loose in an option file). Versions of the program that
recognize the option process it normally, and versions that do not recognize it issue a warning and ignore
it.

The --maximum prefix is available for mysqld only and permits a limit to be placed on how large client
programs can set session system variables. To do this, use a --maximum prefix with the variable name.
For example, --maximum-max_heap_table_size=32M prevents any client from making the heap table
size limit larger than 32M.

The --maximum prefix is intended for use with system variables that have a session value. If applied
to a system variable that has only a global value, an error occurs. For example, with --maximum-
back_log=200, the server produces this error:

Maximum value of 'back_log' cannot be set

4.2.2.5 Using Options to Set Program Variables

Many MySQL programs have internal variables that can be set at runtime using the SET statement. See
Section 13.7.4.1, “SET Syntax for Variable Assignment”, and Section 5.1.8, “Using System Variables”.

Most of these program variables also can be set at server startup by using the same syntax that applies
to specifying program options. For example, mysql has a max_allowed_packet variable that controls
the maximum size of its communication buffer. To set the max_allowed_packet variable for mysql to a
value of 16MB, use either of the following commands:

mysql --max_allowed_packet=16777216
mysql --max_allowed_packet=16M

319

Specifying Program Options

The first command specifies the value in bytes. The second specifies the value in megabytes. For variables
that take a numeric value, the value can be given with a suffix of K, M, or G (either uppercase or lowercase)
to indicate a multiplier of 1024, 10242 or 10243. (For example, when used to set max_allowed_packet,
the suffixes indicate units of kilobytes, megabytes, or gigabytes.)

In an option file, variable settings are given without the leading dashes:

[mysql]
max_allowed_packet=16777216

Or:

[mysql]
max_allowed_packet=16M

If you like, underscores in an option name can be specified as dashes. The following option groups are
equivalent. Both set the size of the server's key buffer to 512MB:

[mysqld]
key_buffer_size=512M

[mysqld]
key-buffer-size=512M

In older versions of MySQL, program options could be specified in full or as any unambiguous prefix. For
example, the --compress option could be given to mysqldump as --compr, but not as --comp because
the latter is ambiguous. In MySQL 5.7, option prefixes are no longer supported; only full options are
accepted. This is because prefixes can cause problems when new options are implemented for programs
and a prefix that is currently unambiguous might become ambiguous in the future. Some implications of
this change:

• The --key-buffer option must now be specified as --key-buffer-size.

• The --skip-grant option must now be specified as --skip-grant-tables.

Suffixes for specifying a value multiplier can be used when setting a variable at program invocation time,
but not to set the value with SET at runtime. On the other hand, with SET, you can assign a variable's value
using an expression, which is not true when you set a variable at server startup. For example, the first of
the following lines is legal at program invocation time, but the second is not:

$> mysql --max_allowed_packet=16M
$> mysql --max_allowed_packet=16*1024*1024

Conversely, the second of the following lines is legal at runtime, but the first is not:

mysql> SET GLOBAL max_allowed_packet=16M;
mysql> SET GLOBAL max_allowed_packet=16*1024*1024;

4.2.2.6 Option Defaults, Options Expecting Values, and the = Sign

By convention, long forms of options that assign a value are written with an equals (=) sign, like this:

mysql --host=tonfisk --user=jon

For options that require a value (that is, not having a default value), the equal sign is not required, and so
the following is also valid:

mysql --host tonfisk --user jon

In both cases, the mysql client attempts to connect to a MySQL server running on the host named
“tonfisk” using an account with the user name “jon”.

320

Specifying Program Options

Due to this behavior, problems can occasionally arise when no value is provided for an option that expects
one. Consider the following example, where a user connects to a MySQL server running on host tonfisk
as user jon:

$> mysql --host 85.224.35.45 --user jon
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 3
Server version: 5.7.44 Source distribution

Type 'help;' or '\h' for help. Type '\c' to clear the buffer.

mysql> SELECT CURRENT_USER();
+----------------+
| CURRENT_USER() |
+----------------+
| jon@% |
+----------------+
1 row in set (0.00 sec)

Omitting the required value for one of these option yields an error, such as the one shown here:

$> mysql --host 85.224.35.45 --user
mysql: option '--user' requires an argument

In this case, mysql was unable to find a value following the --user option because nothing came after it
on the command line. However, if you omit the value for an option that is not the last option to be used, you
obtain a different error that you may not be expecting:

$> mysql --host --user jon
ERROR 2005 (HY000): Unknown MySQL server host '--user' (1)

Because mysql assumes that any string following --host on the command line is a host name, --host
--user is interpreted as --host=--user, and the client attempts to connect to a MySQL server running
on a host named “--user”.

Options having default values always require an equal sign when assigning a value; failing to do
so causes an error. For example, the MySQL server --log-error option has the default value
host_name.err, where host_name is the name of the host on which MySQL is running. Assume that
you are running MySQL on a computer whose host name is “tonfisk”, and consider the following invocation
of mysqld_safe:

$> mysqld_safe &
[1] 11699
$> 080112 12:53:40 mysqld_safe Logging to '/usr/local/mysql/var/tonfisk.err'.
080112 12:53:40 mysqld_safe Starting mysqld daemon with databases from /usr/local/mysql/var
$>

After shutting down the server, restart it as follows:

$> mysqld_safe --log-error &
[1] 11699
$> 080112 12:53:40 mysqld_safe Logging to '/usr/local/mysql/var/tonfisk.err'.
080112 12:53:40 mysqld_safe Starting mysqld daemon with databases from /usr/local/mysql/var
$>

The result is the same, since --log-error is not followed by anything else on the command line,
and it supplies its own default value. (The & character tells the operating system to run MySQL in the
background; it is ignored by MySQL itself.) Now suppose that you wish to log errors to a file named my-
errors.err. You might try starting the server with --log-error my-errors, but this does not have
the intended effect, as shown here:

$> mysqld_safe --log-error my-errors &
[1] 31357
$> 080111 22:53:31 mysqld_safe Logging to '/usr/local/mysql/var/tonfisk.err'.

321

Specifying Program Options

080111 22:53:32 mysqld_safe Starting mysqld daemon with databases from /usr/local/mysql/var
080111 22:53:34 mysqld_safe mysqld from pid file /usr/local/mysql/var/tonfisk.pid ended

[1]+ Done ./mysqld_safe --log-error my-errors

The server attempted to start using /usr/local/mysql/var/tonfisk.err as the error log, but then
shut down. Examining the last few lines of this file shows the reason:

$> tail /usr/local/mysql/var/tonfisk.err
2013-09-24T15:36:22.278034Z 0 [ERROR] Too many arguments (first extra is 'my-errors').
2013-09-24T15:36:22.278059Z 0 [Note] Use --verbose --help to get a list of available options!
2013-09-24T15:36:22.278076Z 0 [ERROR] Aborting
2013-09-24T15:36:22.279704Z 0 [Note] InnoDB: Starting shutdown...
2013-09-24T15:36:23.777471Z 0 [Note] InnoDB: Shutdown completed; log sequence number 2319086
2013-09-24T15:36:23.780134Z 0 [Note] mysqld: Shutdown complete

Because the --log-error option supplies a default value, you must use an equal sign to assign a
different value to it, as shown here:

$> mysqld_safe --log-error=my-errors &
[1] 31437
$> 080111 22:54:15 mysqld_safe Logging to '/usr/local/mysql/var/my-errors.err'.
080111 22:54:15 mysqld_safe Starting mysqld daemon with databases from /usr/local/mysql/var

$>

Now the server has been started successfully, and is logging errors to the file /usr/local/mysql/var/
my-errors.err.

Similar issues can arise when specifying option values in option files. For example, consider a my.cnf file
that contains the following:

[mysql]

host
user

When the mysql client reads this file, these entries are parsed as --host --user or --host=--user,
with the result shown here:

$> mysql
ERROR 2005 (HY000): Unknown MySQL server host '--user' (1)

However, in option files, an equal sign is not assumed. Suppose the my.cnf file is as shown here:

[mysql]

user jon

Trying to start mysql in this case causes a different error:

$> mysql
mysql: unknown option '--user jon'

A similar error would occur if you were to write host tonfisk in the option file rather than
host=tonfisk. Instead, you must use the equal sign:

[mysql]

user=jon

Now the login attempt succeeds:

$> mysql
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 5

322

Command Options for Connecting to the Server

Server version: 5.7.44 Source distribution

Type 'help;' or '\h' for help. Type '\c' to clear the buffer.

mysql> SELECT USER();
+---------------+
| USER() |
+---------------+
| jon@localhost |
+---------------+
1 row in set (0.00 sec)

This is not the same behavior as with the command line, where the equal sign is not required:

$> mysql --user jon --host tonfisk
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 6
Server version: 5.7.44 Source distribution

Type 'help;' or '\h' for help. Type '\c' to clear the buffer.

mysql> SELECT USER();
+---------------+
| USER() |
+---------------+
| jon@tonfisk |
+---------------+
1 row in set (0.00 sec)

Specifying an option requiring a value without a value in an option file causes the server to abort with an
error.

4.2.3 Command Options for Connecting to the Server

This section describes options supported by most MySQL client programs that control how client programs
establish connections to the server and whether connections are encrypted. These options can be given on
the command line or in an option file.

• Command Options for Connection Establishment

• Command Options for Encrypted Connections

Command Options for Connection Establishment

This section describes options that control how client programs establish connections to the server. For
additional information and examples showing how to use them, see Section 4.2.4, “Connecting to the
MySQL Server Using Command Options”.

Table 4.4 Connection-Establishment Option Summary

Option Name Description Deprecated

--default-auth Authentication plugin to use

--host Host on which MySQL server is
located

--password Password to use when connecting
to server

--pipe Connect to server using named
pipe (Windows only)

--plugin-dir Directory where plugins are
installed

323

Command Options for Connecting to the Server

Option Name Description Deprecated

--port TCP/IP port number for
connection

--protocol Transport protocol to use

--secure-auth Do not send passwords to server
in old (pre-4.1) format

Yes

--shared-memory-base-name Shared-memory name for shared-
memory connections (Windows
only)

--socket Unix socket file or Windows
named pipe to use

--user MySQL user name to use when
connecting to server

• --default-auth=plugin

Command-Line Format --default-auth=plugin

Type String

A hint about which client-side authentication plugin to use. See Section 6.2.13, “Pluggable
Authentication”.

• --host=host_name, -h host_name

Command-Line Format --host=host_name

Type String

Default Value localhost

The host on which the MySQL server is running. The value can be a host name, IPv4 address, or IPv6
address. The default value is localhost.

• --password[=pass_val], -p[pass_val]

Command-Line Format --password[=password]

Type String

Default Value [none]

The password of the MySQL account used for connecting to the server. The password value is
optional. If not given, the client program prompts for one. If given, there must be no space between --
password= or -p and the password following it. If no password option is specified, the default is to send
no password.

Specifying a password on the command line should be considered insecure. To avoid giving the
password on the command line, use an option file. See Section 6.1.2.1, “End-User Guidelines for
Password Security”.

To explicitly specify that there is no password and that the client program should not prompt for one, use
the --skip-password option.

324

Command Options for Connecting to the Server

• --pipe, -W

Command-Line Format --pipe

Type String

On Windows, connect to the server using a named pipe. This option applies only if the server was
started with the named_pipe system variable enabled to support named-pipe connections. In
addition, the user making the connection must be a member of the Windows group specified by the
named_pipe_full_access_group system variable.

• --plugin-dir=dir_name

Command-Line Format --plugin-dir=dir_name

Type Directory name

The directory in which to look for plugins. Specify this option if the --default-auth option is used to
specify an authentication plugin but the client program does not find it. See Section 6.2.13, “Pluggable
Authentication”.

• --port=port_num, -P port_num

Command-Line Format --port=port_num

Type Numeric

Default Value 3306

For TCP/IP connections, the port number to use. The default port number is 3306.

• --protocol={TCP|SOCKET|PIPE|MEMORY}

Command-Line Format --protocol=type

Type String

Default Value [see text]

Valid Values TCP

SOCKET

PIPE

325

Command Options for Connecting to the Server

MEMORY

This option explicitly specifies which transport protocol to use for connecting to the server. It is useful
when other connection parameters normally result in use of a protocol other than the one you want. For
example, connections on Unix to localhost are made using a Unix socket file by default:

mysql --host=localhost

To force TCP/IP transport to be used instead, specify a --protocol option:

mysql --host=localhost --protocol=TCP

The following table shows the permissible --protocol option values and indicates the applicable
platforms for each value. The values are not case-sensitive.

--protocol Value Transport Protocol Used Applicable Platforms

TCP TCP/IP transport to local or
remote server

All

SOCKET Unix socket-file transport to local
server

Unix and Unix-like systems

PIPE Named-pipe transport to local
server

Windows

MEMORY Shared-memory transport to local
server

Windows

See also Section 4.2.5, “Connection Transport Protocols”

• --secure-auth

Command-Line Format --secure-auth

Deprecated Yes

Do not send passwords to the server in old (pre-4.1) format. This prevents connections except for
servers that use the newer password format.

As of MySQL 5.7.5, this option is deprecated; expect it to be removed in a future MySQL release. It is
always enabled and attempting to disable it (--skip-secure-auth, --secure-auth=0) produces an
error. Before MySQL 5.7.5, this option is enabled by default but can be disabled.

Note

Passwords that use the pre-4.1 hashing method are less secure than passwords
that use the native password hashing method and should be avoided. Pre-4.1
passwords are deprecated and support for them was removed in MySQL 5.7.5.
For account upgrade instructions, see Section 6.4.1.3, “Migrating Away from
Pre-4.1 Password Hashing and the mysql_old_password Plugin”.

• --shared-memory-base-name=name

Command-Line Format --shared-memory-base-name=name

Platform Specific Windows

326

Command Options for Connecting to the Server

On Windows, the shared-memory name to use for connections made using shared memory to a local
server. The default value is MYSQL. The shared-memory name is case-sensitive.

This option applies only if the server was started with the shared_memory system variable enabled to
support shared-memory connections.

• --socket=path, -S path

Command-Line Format --socket={file_name|pipe_name}

Type String

On Unix, the name of the Unix socket file to use for connections made using a named pipe to a local
server. The default Unix socket file name is /tmp/mysql.sock.

On Windows, the name of the named pipe to use for connections to a local server. The default Windows
pipe name is MySQL. The pipe name is not case-sensitive.

On Windows, this option applies only if the server was started with the named_pipe system variable
enabled to support named-pipe connections. In addition, the user making the connection must be a
member of the Windows group specified by the named_pipe_full_access_group system variable.

• --user=user_name, -u user_name

Command-Line Format --user=user_name

Type String

The user name of the MySQL account to use for connecting to the server. The default user name is
ODBC on Windows or your Unix login name on Unix.

Command Options for Encrypted Connections

This section describes options for client programs that specify whether to use encrypted connections to
the server, the names of certificate and key files, and other parameters related to encrypted-connection
support. For examples of suggested use and how to check whether a connection is encrypted, see
Section 6.3.1, “Configuring MySQL to Use Encrypted Connections”.

Note

These options have an effect only for connections that use a transport protocol
subject to encryption; that is, TCP/IP and Unix socket-file connections. See
Section 4.2.5, “Connection Transport Protocols”

For information about using encrypted connections from the MySQL C API, see Support for Encrypted
Connections.

Table 4.5 Connection-Encryption Option Summary

Option Name Description Introduced

--get-server-public-key Request RSA public key from
server

5.7.23

--server-public-key-path Path name to file containing RSA
public key

327

https://dev.mysql.com/doc/c-api/5.7/en/c-api-encrypted-connections.html
https://dev.mysql.com/doc/c-api/5.7/en/c-api-encrypted-connections.html

Command Options for Connecting to the Server

Option Name Description Introduced

--skip-ssl Disable connection encryption

--ssl Enable connection encryption

--ssl-ca File that contains list of trusted
SSL Certificate Authorities

--ssl-capath Directory that contains trusted
SSL Certificate Authority
certificate files

--ssl-cert File that contains X.509 certificate

--ssl-cipher Permissible ciphers for connection
encryption

--ssl-crl File that contains certificate
revocation lists

--ssl-crlpath Directory that contains certificate
revocation-list files

--ssl-key File that contains X.509 key

--ssl-mode Desired security state of
connection to server

5.7.11

--ssl-verify-server-cert Verify host name against server
certificate Common Name identity

--tls-version Permissible TLS protocols for
encrypted connections

5.7.10

• --get-server-public-key

Command-Line Format --get-server-public-key

Introduced 5.7.23

Type Boolean

Request from the server the public key required for RSA key pair-based password exchange. This option
applies to clients that authenticate with the caching_sha2_password authentication plugin. For that
plugin, the server does not send the public key unless requested. This option is ignored for accounts that
do not authenticate with that plugin. It is also ignored if RSA-based password exchange is not used, as is
the case when the client connects to the server using a secure connection.

If --server-public-key-path=file_name is given and specifies a valid public key file, it takes
precedence over --get-server-public-key.

For information about the caching_sha2_password plugin, see Section 6.4.1.4, “Caching SHA-2
Pluggable Authentication”.

The --get-server-public-key option was added in MySQL 5.7.23.

• --server-public-key-path=file_name

Command-Line Format --server-public-key-path=file_name

Type File name

328

Command Options for Connecting to the Server

The path name to a file in PEM format containing a client-side copy of the public key required by the
server for RSA key pair-based password exchange. This option applies to clients that authenticate with
the sha256_password or caching_sha2_password authentication plugin. This option is ignored for
accounts that do not authenticate with one of those plugins. It is also ignored if RSA-based password
exchange is not used, as is the case when the client connects to the server using a secure connection.

This option is available only if MySQL was built using OpenSSL.

For information about the sha256_password and caching_sha2_password plugins, see
Section 6.4.1.5, “SHA-256 Pluggable Authentication”, and Section 6.4.1.4, “Caching SHA-2 Pluggable
Authentication”.

• --ssl, --skip-ssl

Command-Line Format --ssl

Disabled by skip-ssl

Type Boolean

Default Value FALSE

Command-Line Format --skip-ssl

Note

The client-side --ssl option is deprecated as of MySQL 5.7.11 and is removed
in MySQL 8.0. For client programs, use --ssl-mode instead:

• Use --ssl-mode=REQUIRED instead of --ssl=1 or --enable-ssl.

• Use --ssl-mode=DISABLED instead of --ssl=0, --skip-ssl, or --
disable-ssl.

• No explicit --ssl-mode option is equivalent to no explicit --ssl option.

The server-side --ssl option is not deprecated.

By default, MySQL client programs attempt to establish an encrypted connection if the server supports
encrypted connections, with further control available through the --ssl option: The client-side --ssl
option works as follows:

• In the absence of an --ssl option, clients attempt to connect using encryption, falling back to an
unencrypted connection if an encrypted connection cannot be established.

• The presence of an explicit --ssl option or a synonym (--ssl=1, --enable-ssl) is prescriptive:
Clients require an encrypted connection and fail if one cannot be established.

• With an --ssl=0 option or a synonym (--skip-ssl, --disable-ssl), clients use an unencrypted
connection.

To require use of encrypted connections by a MySQL account, use CREATE USER to create the account
with a REQUIRE SSL clause, or use ALTER USER for an existing account to add a REQUIRE SSL

329

Command Options for Connecting to the Server

clause. This causes connection attempts by clients that use the account to be rejected unless MySQL
supports encrypted connections and an encrypted connection can be established.

The REQUIRE clause permits other encryption-related options, which can be used to enforce security
requirements stricter than REQUIRE SSL. For additional details about which command options may or
must be specified by clients that connect using accounts configured using the various REQUIRE options,
see CREATE USER SSL/TLS Options.

To specify additional parameters for encrypted connections, consider setting at least the ssl_cert
and ssl_key system variables on the server side and the --ssl-ca option on the client side. See
Section 6.3.1, “Configuring MySQL to Use Encrypted Connections”, which also describes server
capabilities for certificate and key file autogeneration and autodiscovery.

• --ssl-ca=file_name

Command-Line Format --ssl-ca=file_name

Type File name

The path name of the Certificate Authority (CA) certificate file in PEM format. The file contains a list of
trusted SSL Certificate Authorities.

To tell the client not to authenticate the server certificate when establishing an encrypted connection to
the server, specify neither --ssl-ca nor --ssl-capath. The server still verifies the client according
to any applicable requirements established for the client account, and it still uses any ssl_ca or
ssl_capath system variable values specified on the server side.

To specify the CA file for the server, set the ssl_ca system variable.

• --ssl-capath=dir_name

Command-Line Format --ssl-capath=dir_name

Type Directory name

The path name of the directory that contains trusted SSL certificate authority (CA) certificate files
in PEM format. Support for this capability depends on the SSL library used to compile MySQL; see
Section 6.3.4, “SSL Library-Dependent Capabilities”.

To tell the client not to authenticate the server certificate when establishing an encrypted connection to
the server, specify neither --ssl-ca nor --ssl-capath. The server still verifies the client according
to any applicable requirements established for the client account, and it still uses any ssl_ca or
ssl_capath system variable values specified on the server side.

To specify the CA directory for the server, set the ssl_capath system variable.

• --ssl-cert=file_name

Command-Line Format --ssl-cert=file_name

Type File name

The path name of the client SSL public key certificate file in PEM format.

To specify the server SSL public key certificate file, set the ssl_cert system variable.

330

Command Options for Connecting to the Server

• --ssl-cipher=cipher_list

Command-Line Format --ssl-cipher=name

Type String

The list of permissible ciphers for connection encryption. If no cipher in the list is supported, encrypted
connections do not work.

For greatest portability, cipher_list should be a list of one or more cipher names, separated by
colons. This format is understood both by OpenSSL and yaSSL. Examples:

--ssl-cipher=AES128-SHA
--ssl-cipher=DHE-RSA-AES128-GCM-SHA256:AES128-SHA

OpenSSL supports a more flexible syntax for specifying ciphers, as described in the OpenSSL
documentation at https://www.openssl.org/docs/manmaster/man1/ciphers.html. yaSSL does not, so
attempts to use that extended syntax fail for a MySQL distribution compiled using yaSSL.

For information about which encryption ciphers MySQL supports, see Section 6.3.2, “Encrypted
Connection TLS Protocols and Ciphers”.

To specify the encryption ciphers for the server, set the ssl_cipher system variable.

• --ssl-crl=file_name

Command-Line Format --ssl-crl=file_name

Type File name

The path name of the file containing certificate revocation lists in PEM format. Support for revocation-
list capability depends on the SSL library used to compile MySQL. See Section 6.3.4, “SSL Library-
Dependent Capabilities”.

If neither --ssl-crl nor --ssl-crlpath is given, no CRL checks are performed, even if the CA path
contains certificate revocation lists.

To specify the revocation-list file for the server, set the ssl_crl system variable.

• --ssl-crlpath=dir_name

Command-Line Format --ssl-crlpath=dir_name

Type Directory name

The path name of the directory that contains certificate revocation-list files in PEM format. Support for
revocation-list capability depends on the SSL library used to compile MySQL. See Section 6.3.4, “SSL
Library-Dependent Capabilities”.

If neither --ssl-crl nor --ssl-crlpath is given, no CRL checks are performed, even if the CA path
contains certificate revocation lists.

To specify the revocation-list directory for the server, set the ssl_crlpath system variable.

331

https://www.openssl.org/docs/manmaster/man1/ciphers.html

Command Options for Connecting to the Server

• --ssl-key=file_name

Command-Line Format --ssl-key=file_name

Type File name

The path name of the client SSL private key file in PEM format. For better security, use a certificate with
an RSA key size of at least 2048 bits.

If the key file is protected by a passphrase, the client program prompts the user for the passphrase.
The password must be given interactively; it cannot be stored in a file. If the passphrase is incorrect, the
program continues as if it could not read the key.

To specify the server SSL private key file, set the ssl_key system variable.

• --ssl-mode=mode

Command-Line Format --ssl-mode=mode

Introduced 5.7.11

Type Enumeration

Default Value PREFERRED

Valid Values DISABLED

PREFERRED

REQUIRED

VERIFY_CA

VERIFY_IDENTITY

This option specifies the desired security state of the connection to the server. These mode values are
permissible, in order of increasing strictness:

• DISABLED: Establish an unencrypted connection. This is like the legacy --ssl=0 option or its
synonyms (--skip-ssl, --disable-ssl).

• PREFERRED: Establish an encrypted connection if the server supports encrypted connections, falling
back to an unencrypted connection if an encrypted connection cannot be established. This is the
default if --ssl-mode is not specified.

Connections over Unix socket files are not encrypted with a mode of PREFERRED. To enforce
encryption for Unix socket-file connections, use a mode of REQUIRED or stricter. (However, socket-
file transport is secure by default, so encrypting a socket-file connection makes it no more secure and
increases CPU load.)

• REQUIRED: Establish an encrypted connection if the server supports encrypted connections. The
connection attempt fails if an encrypted connection cannot be established.

• VERIFY_CA: Like REQUIRED, but additionally verify the server Certificate Authority (CA) certificate
against the configured CA certificates. The connection attempt fails if no valid matching CA certificates
are found.332

Command Options for Connecting to the Server

• VERIFY_IDENTITY: Like VERIFY_CA, but additionally perform host name identity verification
by checking the host name the client uses for connecting to the server against the identity in the
certificate that the server sends to the client:

• As of MySQL 5.7.23, if the client uses OpenSSL 1.0.2 or higher, the client checks whether the host
name that it uses for connecting matches either the Subject Alternative Name value or the Common
Name value in the server certificate. Host name identity verification also works with certificates that
specify the Common Name using wildcards.

• Otherwise, the client checks whether the host name that it uses for connecting matches the
Common Name value in the server certificate.

The connection fails if there is a mismatch. For encrypted connections, this option helps prevent man-
in-the-middle attacks. This is like the legacy --ssl-verify-server-cert option.

Note

Host name identity verification with VERIFY_IDENTITY does not work with
self-signed certificates that are created automatically by the server or manually
using mysql_ssl_rsa_setup (see Section 6.3.3.1, “Creating SSL and RSA
Certificates and Keys using MySQL”). Such self-signed certificates do not
contain the server name as the Common Name value.

Important

The default setting, --ssl-mode=PREFERRED, produces an encrypted
connection if the other default settings are unchanged. However, to help prevent
sophisticated man-in-the-middle attacks, it is important for the client to verify
the server’s identity. The settings --ssl-mode=VERIFY_CA and --ssl-
mode=VERIFY_IDENTITY are a better choice than the default setting to help
prevent this type of attack. To implement one of these settings, you must first
ensure that the CA certificate for the server is reliably available to all the clients
that use it in your environment, otherwise availability issues will result. For this
reason, they are not the default setting.

The --ssl-mode option interacts with CA certificate options as follows:

• If --ssl-mode is not explicitly set otherwise, use of --ssl-ca or --ssl-capath implies --ssl-
mode=VERIFY_CA.

• For --ssl-mode values of VERIFY_CA or VERIFY_IDENTITY, --ssl-ca or --ssl-capath is also
required, to supply a CA certificate that matches the one used by the server.

• An explicit --ssl-mode option with a value other than VERIFY_CA or VERIFY_IDENTITY, together
with an explicit --ssl-ca or --ssl-capath option, produces a warning that no verification of the
server certificate is performed, despite a CA certificate option being specified.

The --ssl-mode option was added in MySQL 5.7.11.

To require use of encrypted connections by a MySQL account, use CREATE USER to create the account
with a REQUIRE SSL clause, or use ALTER USER for an existing account to add a REQUIRE SSL

333

Command Options for Connecting to the Server

clause. This causes connection attempts by clients that use the account to be rejected unless MySQL
supports encrypted connections and an encrypted connection can be established.

The REQUIRE clause permits other encryption-related options, which can be used to enforce security
requirements stricter than REQUIRE SSL. For additional details about which command options may or
must be specified by clients that connect using accounts configured using the various REQUIRE options,
see CREATE USER SSL/TLS Options.

• --ssl-verify-server-cert

Command-Line Format --ssl-verify-server-cert

Type Boolean

Default Value FALSE

Note

The --ssl-verify-server-cert option is deprecated as of MySQL 5.7.11
and is removed in MySQL 8.0. Use --ssl-mode=VERIFY_IDENTITY instead.

This option causes the client to perform host name identity verification by checking the host name the
client uses for connecting to the server against the identity in the certificate that the server sends to the
client:

• As of MySQL 5.7.23, if the client uses OpenSSL 1.0.2 or higher, the client checks whether the host
name that it uses for connecting matches either the Subject Alternative Name value or the Common
Name value in the server certificate.

• Otherwise, the client checks whether the host name that it uses for connecting matches the Common
Name value in the server certificate.

The connection fails if there is a mismatch. For encrypted connections, this option helps prevent man-in-
the-middle attacks. Host name identity verification is disabled by default.

Note

Host name identity verification does not work with self-signed certificates created
automatically by the server, or manually using mysql_ssl_rsa_setup (see
Section 6.3.3.1, “Creating SSL and RSA Certificates and Keys using MySQL”).
Such self-signed certificates do not contain the server name as the Common
Name value.

Host name identity verification also does not work with certificates that specify the
Common Name using wildcards because that name is compared verbatim to the
server name.

• --tls-version=protocol_list

Command-Line Format --tls-version=protocol_list

Introduced 5.7.10

Type String

Default Value (≥ 5.7.28) TLSv1,TLSv1.1,TLSv1.2

Default Value (≤ 5.7.27) TLSv1,TLSv1.1,TLSv1.2 (OpenSSL)334

Connecting to the MySQL Server Using Command Options

TLSv1,TLSv1.1 (yaSSL)

This option specifies the TLS protocols the client permits for encrypted connections. The value is a list of
one or more comma-separated protocol versions. For example:

mysql --tls-version="TLSv1.1,TLSv1.2"

The protocols that can be named for this option depend on the SSL library used to compile MySQL.
Permitted protocols should be chosen such as not to leave “holes” in the list. For example, these values
do not have holes:

--tls-version="TLSv1,TLSv1.1,TLSv1.2"
--tls-version="TLSv1.1,TLSv1.2"
--tls-version="TLSv1.2"

This value does have a hole and should not be used:

--tls-version="TLSv1,TLSv1.2"

For details, see Section 6.3.2, “Encrypted Connection TLS Protocols and Ciphers”.

This option was added in MySQL 5.7.10.

To specify which TLS protocols the server permits, set the tls_version system variable.

4.2.4 Connecting to the MySQL Server Using Command Options

This section describes use of command-line options to specify how to establish connections to the MySQL
server, for clients such as mysql or mysqldump. For additional information if you are unable to connect,
see Section 6.2.17, “Troubleshooting Problems Connecting to MySQL”.

For a client program to connect to the MySQL server, it must use the proper connection parameters, such
as the name of the host where the server is running and the user name and password of your MySQL
account. Each connection parameter has a default value, but you can override default values as necessary
using program options specified either on the command line or in an option file.

The examples here use the mysql client program, but the principles apply to other clients such as
mysqldump, mysqladmin, or mysqlshow.

This command invokes mysql without specifying any explicit connection parameters:

mysql

Because there are no parameter options, the default values apply:

• The default host name is localhost. On Unix, this has a special meaning, as described later.

• The default user name is ODBC on Windows or your Unix login name on Unix.

• No password is sent because neither --password nor -p is given.

• For mysql, the first nonoption argument is taken as the name of the default database. Because there is
no such argument, mysql selects no default database.

To specify the host name and user name explicitly, as well as a password, supply appropriate options on
the command line. To select a default database, add a database-name argument. Examples:

mysql --host=localhost --user=myname --password=password mydb

335

Connecting to the MySQL Server Using Command Options

mysql -h localhost -u myname -ppassword mydb

For password options, the password value is optional:

• If you use a --password or -p option and specify a password value, there must be no space between
--password= or -p and the password following it.

• If you use --password or -p but do not specify a password value, the client program prompts you to
enter the password. The password is not displayed as you enter it. This is more secure than giving the
password on the command line, which might enable other users on your system to see the password line
by executing a command such as ps. See Section 6.1.2.1, “End-User Guidelines for Password Security”.

• To explicitly specify that there is no password and that the client program should not prompt for one, use
the --skip-password option.

As just mentioned, including the password value on the command line is a security risk. To avoid this risk,
specify the --password or -p option without any following password value:

mysql --host=localhost --user=myname --password mydb
mysql -h localhost -u myname -p mydb

When the --password or -p option is given with no password value, the client program prints a prompt
and waits for you to enter the password. (In these examples, mydb is not interpreted as a password
because it is separated from the preceding password option by a space.)

On some systems, the library routine that MySQL uses to prompt for a password automatically limits the
password to eight characters. That limitation is a property of the system library, not MySQL. Internally,
MySQL does not have any limit for the length of the password. To work around the limitation on systems
affected by it, specify your password in an option file (see Section 4.2.2.2, “Using Option Files”). Another
workaround is to change your MySQL password to a value that has eight or fewer characters, but that has
the disadvantage that shorter passwords tend to be less secure.

Client programs determine what type of connection to make as follows:

• If the host is not specified or is localhost, a connection to the local host occurs:

• On Windows, the client connects using shared memory, if the server was started with the
shared_memory system variable enabled to support shared-memory connections.

• On Unix, MySQL programs treat the host name localhost specially, in a way that is likely different
from what you expect compared to other network-based programs: the client connects using a Unix
socket file. The --socket option or the MYSQL_UNIX_PORT environment variable may be used to
specify the socket name.

• On Windows, if host is . (period), or TCP/IP is not enabled and --socket is not specified or the
host is empty, the client connects using a named pipe, if the server was started with the named_pipe
system variable enabled to support named-pipe connections. If named-pipe connections are not
supported or if the user making the connection is not a member of the Windows group specified by the
named_pipe_full_access_group system variable, an error occurs.

• Otherwise, the connection uses TCP/IP.

The --protocol option enables you to use a particular transport protocol even when other options
normally result in use of a different protocol. That is, --protocol specifies the transport protocol explicitly
and overrides the preceding rules, even for localhost.

Only connection options that are relevant to the selected transport protocol are used or checked. Other
connection options are ignored. For example, with --host=localhost on Unix, the client attempts to

336

Connecting to the MySQL Server Using Command Options

connect to the local server using a Unix socket file, even if a --port or -P option is given to specify a
TCP/IP port number.

To ensure that the client makes a TCP/IP connection to the local server, use --host or -h to specify
a host name value of 127.0.0.1 (instead of localhost), or the IP address or name of the local
server. You can also specify the transport protocol explicitly, even for localhost, by using the --
protocol=TCP option. Examples:

mysql --host=127.0.0.1
mysql --protocol=TCP

If the server is configured to accept IPv6 connections, clients can connect to the local server over IPv6
using --host=::1. See Section 5.1.12, “IPv6 Support”.

On Windows, to force a MySQL client to use a named-pipe connection, specify the --pipe or --
protocol=PIPE option, or specify . (period) as the host name. If the server was not started with the
named_pipe system variable enabled to support named-pipe connections or if the user making the
connection is not a member of the Windows group specified by the named_pipe_full_access_group
system variable, an error occurs. Use the --socket option to specify the name of the pipe if you do not
want to use the default pipe name.

Connections to remote servers use TCP/IP. This command connects to the server running on
remote.example.com using the default port number (3306):

mysql --host=remote.example.com

To specify a port number explicitly, use the --port or -P option:

mysql --host=remote.example.com --port=13306

You can specify a port number for connections to a local server, too. However, as indicated previously,
connections to localhost on Unix use a socket file by default, so unless you force a TCP/IP connection
as previously described, any option that specifies a port number is ignored.

For this command, the program uses a socket file on Unix and the --port option is ignored:

mysql --port=13306 --host=localhost

To cause the port number to be used, force a TCP/IP connection. For example, invoke the program in
either of these ways:

mysql --port=13306 --host=127.0.0.1
mysql --port=13306 --protocol=TCP

For additional information about options that control how client programs establish connections to the
server, see Section 4.2.3, “Command Options for Connecting to the Server”.

It is possible to specify connection parameters without entering them on the command line each time you
invoke a client program:

• Specify the connection parameters in the [client] section of an option file. The relevant section of the
file might look like this:

[client]
host=host_name
user=user_name
password=password

337

Connection Transport Protocols

For more information, see Section 4.2.2.2, “Using Option Files”.

• Some connection parameters can be specified using environment variables. Examples:

• To specify the host for mysql, use MYSQL_HOST.

• On Windows, to specify the MySQL user name, use USER.

• To specify the password, use MYSQL_PWD. However, this is insecure; see Section 6.1.2.1, “End-User
Guidelines for Password Security”.

For a list of supported environment variables, see Section 4.9, “Environment Variables”.

4.2.5 Connection Transport Protocols

For programs that use the MySQL client library (for example, mysql and mysqldump), MySQL supports
connections to the server based on several transport protocols: TCP/IP, Unix socket file, named pipe,
and shared memory. This section describes how to select these protocols, and how they are similar and
different.

• Transport Protocol Selection

• Transport Support for Local and Remote Connections

• Interpretation of localhost

• Encryption and Security Characteristics

• Connection Compression

Transport Protocol Selection

For a given connection, if the transport protocol is not specified explicitly, it is determined implicitly. For
example, connections to localhost result in a socket file connection on Unix and Unix-like systems, and
a TCP/IP connection to 127.0.0.1 otherwise. For additional information, see Section 4.2.4, “Connecting
to the MySQL Server Using Command Options”.

To specify the protocol explicitly, use the --protocol command option. The following table shows the
permissible values for --protocol and indicates the applicable platforms for each value. The values are
not case-sensitive.

--protocol Value Transport Protocol Used Applicable Platforms

TCP TCP/IP All

SOCKET Unix socket file Unix and Unix-like systems

PIPE Named pipe Windows

MEMORY Shared memory Windows

Transport Support for Local and Remote Connections

TCP/IP transport supports connections to local or remote MySQL servers.

Socket-file, named-pipe, and shared-memory transports support connections only to local MySQL servers.
(Named-pipe transport does allow for remote connections, but this capability is not implemented in
MySQL.)

338

Connection Compression Control

Interpretation of localhost

If the transport protocol is not specified explicitly, localhost is interpreted as follows:

• On Unix and Unix-like systems, a connection to localhost results in a socket-file connection.

• Otherwise, a connection to localhost results in a TCP/IP connection to 127.0.0.1.

If the transport protocol is specified explicitly, localhost is interpreted with respect to that protocol.
For example, with --protocol=TCP, a connection to localhost results in a TCP/IP connection to
127.0.0.1 on all platforms.

Encryption and Security Characteristics

TCP/IP and socket-file transports are subject to TLS/SSL encryption, using the options described in
Command Options for Encrypted Connections. Named-pipe and shared-memory transports are not subject
to TLS/SSL encryption.

A connection is secure by default if made over a transport protocol that is secure by default. Otherwise, for
protocols that are subject to TLS/SSL encryption, a connection may be made secure using encryption:

• TCP/IP connections are not secure by default, but can be encrypted to make them secure.

• Socket-file connections are secure by default. They can also be encrypted, but encrypting a socket-file
connection makes it no more secure and increases CPU load.

• Named-pipe connections are not secure by default, and are not subject to encryption to make them
secure. However, the named_pipe_full_access_group system variable is available to control which
MySQL users are permitted to use named-pipe connections.

• Shared-memory connections are secure by default.

If the require_secure_transport system variable is enabled, the server permits only connections that
use some form of secure transport. Per the preceding remarks, connections that use TCP/IP encrypted
using TLS/SSL, a socket file, or shared memory are secure connections. TCP/IP connections not
encrypted using TLS/SSL and named-pipe connections are not secure.

See also Configuring Encrypted Connections as Mandatory.

Connection Compression

All transport protocols are subject to use of compression on the traffic between the client and server. If both
compression and encryption are used for a given connection, compression occurs before encryption. For
more information, see Section 4.2.6, “Connection Compression Control”.

4.2.6 Connection Compression Control

Connections to the server can use compression on the traffic between client and server to reduce the
number of bytes sent over the connection. By default, connections are uncompressed, but can be
compressed if the server and the client both support compression.

Compressed connections originate on the client side but affect CPU load on both the client and server
sides because both sides perform compression and decompression operations. Because enabling
compression decreases performance, its benefits occur primarily when there is low network bandwidth,
network transfer time dominates the cost of compression and decompression operations, and result sets
are large.

339

Setting Environment Variables

Compression control applies to connections to the server by client programs and by servers participating
in source/replica replication. Compression control does not apply to Group Replication connections, X
Protocol connections, or connections for FEDERATED tables.

These configuration parameters are available for controlling connection compression:

• Client programs support a --compress command-line option to specify use of compression for the
connection to the server.

• For programs that use the MySQL C API, enabling the MYSQL_OPT_COMPRESS option for the
mysql_options() function specifies use of compression for the connection to the server.

• For source/replica replication, enabling the slave_compressed_protocol system variable specifies
use of compression for replica connections to the source.

In each case, when use of compression is specified, the connection uses the zlib compression algorithm
if both sides support it, with fallback to an uncompressed connection otherwise.

4.2.7 Setting Environment Variables

Environment variables can be set at the command prompt to affect the current invocation of your command
processor, or set permanently to affect future invocations. To set a variable permanently, you can set it in
a startup file or by using the interface provided by your system for this purpose. Consult the documentation
for your command interpreter for specific details. Section 4.9, “Environment Variables”, lists all environment
variables that affect MySQL program operation.

To specify a value for an environment variable, use the syntax appropriate for your command processor.
For example, on Windows, you can set the USER variable to specify your MySQL account name. To do so,
use this syntax:

SET USER=your_name

The syntax on Unix depends on your shell. Suppose that you want to specify the TCP/IP port number using
the MYSQL_TCP_PORT variable. Typical syntax (such as for sh, ksh, bash, zsh, and so on) is as follows:

MYSQL_TCP_PORT=3306
export MYSQL_TCP_PORT

The first command sets the variable, and the export command exports the variable to the shell
environment so that its value becomes accessible to MySQL and other processes.

For csh and tcsh, use setenv to make the shell variable available to the environment:

setenv MYSQL_TCP_PORT 3306

The commands to set environment variables can be executed at your command prompt to take effect
immediately, but the settings persist only until you log out. To have the settings take effect each time you
log in, use the interface provided by your system or place the appropriate command or commands in a
startup file that your command interpreter reads each time it starts.

On Windows, you can set environment variables using the System Control Panel (under Advanced).

On Unix, typical shell startup files are .bashrc or .bash_profile for bash, or .tcshrc for tcsh.

Suppose that your MySQL programs are installed in /usr/local/mysql/bin and that you want to make
it easy to invoke these programs. To do this, set the value of the PATH environment variable to include that
directory. For example, if your shell is bash, add the following line to your .bashrc file:

340

https://dev.mysql.com/doc/c-api/5.7/en/mysql-options.html

Server and Server-Startup Programs

PATH=${PATH}:/usr/local/mysql/bin

bash uses different startup files for login and nonlogin shells, so you might want to add the setting to
.bashrc for login shells and to .bash_profile for nonlogin shells to make sure that PATH is set
regardless.

If your shell is tcsh, add the following line to your .tcshrc file:

setenv PATH ${PATH}:/usr/local/mysql/bin

If the appropriate startup file does not exist in your home directory, create it with a text editor.

After modifying your PATH setting, open a new console window on Windows or log in again on Unix so that
the setting goes into effect.

4.3 Server and Server-Startup Programs

This section describes mysqld, the MySQL server, and several programs that are used to start the server.

4.3.1 mysqld — The MySQL Server

mysqld, also known as MySQL Server, is a single multithreaded program that does most of the work
in a MySQL installation. It does not spawn additional processes. MySQL Server manages access to the
MySQL data directory that contains databases and tables. The data directory is also the default location for
other information such as log files and status files.

Note

Some installation packages contain a debugging version of the server named
mysqld-debug. Invoke this version instead of mysqld for debugging support,
memory allocation checking, and trace file support (see Section 5.8.1.2, “Creating
Trace Files”).

When MySQL server starts, it listens for network connections from client programs and manages access to
databases on behalf of those clients.

The mysqld program has many options that can be specified at startup. For a complete list of options, run
this command:

mysqld --verbose --help

MySQL Server also has a set of system variables that affect its operation as it runs. System variables
can be set at server startup, and many of them can be changed at runtime to effect dynamic server
reconfiguration. MySQL Server also has a set of status variables that provide information about its
operation. You can monitor these status variables to access runtime performance characteristics.

For a full description of MySQL Server command options, system variables, and status variables, see
Section 5.1, “The MySQL Server”. For information about installing MySQL and setting up the initial
configuration, see Chapter 2, Installing and Upgrading MySQL.

4.3.2 mysqld_safe — MySQL Server Startup Script

mysqld_safe is the recommended way to start a mysqld server on Unix. mysqld_safe adds some
safety features such as restarting the server when an error occurs and logging runtime information to an
error log. A description of error logging is given later in this section.

341

mysqld_safe — MySQL Server Startup Script

Note

For some Linux platforms, MySQL installation from RPM or Debian packages
includes systemd support for managing MySQL server startup and shutdown. On
these platforms, mysqld_safe is not installed because it is unnecessary. For more
information, see Section 2.5.10, “Managing MySQL Server with systemd”.

One implication of the non-use of mysqld_safe on platforms that use systemd for
server management is that use of [mysqld_safe] or [safe_mysqld] sections in
option files is not supported and might lead to unexpected behavior.

mysqld_safe tries to start an executable named mysqld. To override the default behavior and specify
explicitly the name of the server you want to run, specify a --mysqld or --mysqld-version option to
mysqld_safe. You can also use --ledir to indicate the directory where mysqld_safe should look for
the server.

Many of the options to mysqld_safe are the same as the options to mysqld. See Section 5.1.6, “Server
Command Options”.

Options unknown to mysqld_safe are passed to mysqld if they are specified on the command line, but
ignored if they are specified in the [mysqld_safe] group of an option file. See Section 4.2.2.2, “Using
Option Files”.

mysqld_safe reads all options from the [mysqld], [server], and [mysqld_safe] sections in option
files. For example, if you specify a [mysqld] section like this, mysqld_safe finds and uses the --log-
error option:

[mysqld]
log-error=error.log

For backward compatibility, mysqld_safe also reads [safe_mysqld] sections, but to be current you
should rename such sections to [mysqld_safe].

mysqld_safe accepts options on the command line and in option files, as described in the following table.
For information about option files used by MySQL programs, see Section 4.2.2.2, “Using Option Files”.

Table 4.6 mysqld_safe Options

Option Name Description Introduced Deprecated

--basedir Path to MySQL
installation directory

--core-file-size Size of core file that
mysqld should be able to
create

--datadir Path to data directory

--defaults-extra-file Read named option file in
addition to usual option
files

--defaults-file Read only named option
file

--help Display help message
and exit

--ledir Path to directory where
server is located

342

mysqld_safe — MySQL Server Startup Script

Option Name Description Introduced Deprecated

--log-error Write error log to named
file

--malloc-lib Alternative malloc library
to use for mysqld

--mysqld Name of server program
to start (in ledir directory)

--mysqld-safe-log-
timestamps

Timestamp format for
logging

5.7.11

--mysqld-version Suffix for server program
name

--nice Use nice program to set
server scheduling priority

--no-defaults Read no option files

--open-files-limit Number of files that
mysqld should be able to
open

--pid-file Path name of server
process ID file

--plugin-dir Directory where plugins
are installed

--port Port number on which
to listen for TCP/IP
connections

--skip-kill-mysqld Do not try to kill stray
mysqld processes

--skip-syslog Do not write error
messages to syslog; use
error log file

Yes

--socket Socket file on which to
listen for Unix socket
connections

--syslog Write error messages to
syslog

Yes

--syslog-tag Tag suffix for messages
written to syslog

Yes

--timezone Set TZ time zone
environment variable to
named value

--user Run mysqld as user
having name user_name
or numeric user ID
user_id

• --help

Command-Line Format --help

343

mysqld_safe — MySQL Server Startup Script

Command-Line Format --help

Display a help message and exit.

• --basedir=dir_name

Command-Line Format --basedir=dir_name

Type Directory name

Command-Line Format --basedir=dir_name

Type Directory name

The path to the MySQL installation directory.

• --core-file-size=size

Command-Line Format --core-file-size=size

Type String

Command-Line Format --core-file-size=size

Type String

The size of the core file that mysqld should be able to create. The option value is passed to ulimit -
c.

• --datadir=dir_name

Command-Line Format --datadir=dir_name

Type Directory name

Command-Line Format --datadir=dir_name

Type Directory name

The path to the data directory.

• --defaults-extra-file=file_name

Command-Line Format --defaults-extra-file=file_name

Type File name

Command-Line Format --defaults-extra-file=file_name

Type File name

Read this option file in addition to the usual option files. If the file does not exist or is otherwise
inaccessible, the server exits with an error. If file_name is not an absolute path name, it is interpreted
relative to the current directory. This must be the first option on the command line if it is used.

344

mysqld_safe — MySQL Server Startup Script

For additional information about this and other option-file options, see Section 4.2.2.3, “Command-Line
Options that Affect Option-File Handling”.

• --defaults-file=file_name

Command-Line Format --defaults-file=file_name

Type File name

Use only the given option file. If the file does not exist or is otherwise inaccessible, the server exits with
an error. If file_name is not an absolute path name, it is interpreted relative to the current directory.
This must be the first option on the command line if it is used.

For additional information about this and other option-file options, see Section 4.2.2.3, “Command-Line
Options that Affect Option-File Handling”.

• --ledir=dir_name

Command-Line Format --ledir=dir_name

Type Directory name

If mysqld_safe cannot find the server, use this option to indicate the path name to the directory where
the server is located.

As of MySQL 5.7.17, this option is accepted only on the command line, not in option files. On platforms
that use systemd, the value can be specified in the value of MYSQLD_OPTS. See Section 2.5.10,
“Managing MySQL Server with systemd”.

• --log-error=file_name

Command-Line Format --log-error=file_name

Type File name

Write the error log to the given file. See Section 5.4.2, “The Error Log”.

• --mysqld-safe-log-timestamps

Command-Line Format --mysqld-safe-log-timestamps=type

Introduced 5.7.11

Type Enumeration

Default Value utc

Valid Values system

hyphen

legacy

This option controls the format for timestamps in log output produced by mysqld_safe. The following
list describes the permitted values. For any other value, mysqld_safe logs a warning and uses UTC
format.

345

mysqld_safe — MySQL Server Startup Script

• UTC, utc

ISO 8601 UTC format (same as --log_timestamps=UTC for the server). This is the default.

• SYSTEM, system

ISO 8601 local time format (same as --log_timestamps=SYSTEM for the server).

• HYPHEN, hyphen

YY-MM-DD h:mm:ss format, as in mysqld_safe for MySQL 5.6.

• LEGACY, legacy

YYMMDD hh:mm:ss format, as in mysqld_safe prior to MySQL 5.6.

This option was added in MySQL 5.7.11.

• --malloc-lib=[lib_name]

Command-Line Format --malloc-lib=[lib-name]

Type String

The name of the library to use for memory allocation instead of the system malloc() library. As of
MySQL 5.7.15, the option value must be one of the directories /usr/lib, /usr/lib64, /usr/lib/
i386-linux-gnu, or /usr/lib/x86_64-linux-gnu. Prior to MySQL 5.7.15, any library can be
used by specifying its path name, but there is a shortcut form to enable use of the tcmalloc library that
is shipped with binary MySQL distributions for Linux in MySQL 5.7. It is possible for the shortcut form not
to work under certain configurations, in which case you should specify a path name instead.

Note

As of MySQL 5.7.13, MySQL distributions no longer include a tcmalloc library.

The --malloc-lib option works by modifying the LD_PRELOAD environment value to affect dynamic
linking to enable the loader to find the memory-allocation library when mysqld runs:

• If the option is not given, or is given without a value (--malloc-lib=), LD_PRELOAD is not modified
and no attempt is made to use tcmalloc.

• Prior to MySQL 5.7.31, if the option is given as --malloc-lib=tcmalloc, mysqld_safe looks for
a tcmalloc library in /usr/lib and then in the MySQL pkglibdir location (for example, /usr/
local/mysql/lib or whatever is appropriate). If tmalloc is found, its path name is added to the

346

mysqld_safe — MySQL Server Startup Script

beginning of the LD_PRELOAD value for mysqld. If tcmalloc is not found, mysqld_safe aborts with
an error.

As of MySQL 5.7.31, tcmalloc is not a permitted value for the --malloc-lib option.

• If the option is given as --malloc-lib=/path/to/some/library, that full path is added to
the beginning of the LD_PRELOAD value. If the full path points to a nonexistent or unreadable file,
mysqld_safe aborts with an error.

• For cases where mysqld_safe adds a path name to LD_PRELOAD, it adds the path to the beginning
of any existing value the variable already has.

Note

On systems that manage the server using systemd, mysqld_safe is not
available. Instead, specify the allocation library by setting LD_PRELOAD in /etc/
sysconfig/mysql.

Linux users can use the libtcmalloc_minimal.so included in binary packages by adding these lines
to the my.cnf file:

[mysqld_safe]
malloc-lib=tcmalloc

Those lines also suffice for users on any platform who have installed a tcmalloc package in /usr/
lib. To use a specific tcmalloc library, specify its full path name. Example:

[mysqld_safe]
malloc-lib=/opt/lib/libtcmalloc_minimal.so

• --mysqld=prog_name

Command-Line Format --mysqld=file_name

Type File name

The name of the server program (in the ledir directory) that you want to start. This option is needed
if you use the MySQL binary distribution but have the data directory outside of the binary distribution. If
mysqld_safe cannot find the server, use the --ledir option to indicate the path name to the directory
where the server is located.

As of MySQL 5.7.15, this option is accepted only on the command line, not in option files. On platforms
that use systemd, the value can be specified in the value of MYSQLD_OPTS. See Section 2.5.10,
“Managing MySQL Server with systemd”.

• --mysqld-version=suffix

Command-Line Format --mysqld-version=suffix

Type String

This option is similar to the --mysqld option, but you specify only the suffix for the server
program name. The base name is assumed to be mysqld. For example, if you use --mysqld-

347

mysqld_safe — MySQL Server Startup Script

version=debug, mysqld_safe starts the mysqld-debug program in the ledir directory. If the
argument to --mysqld-version is empty, mysqld_safe uses mysqld in the ledir directory.

As of MySQL 5.7.15, this option is accepted only on the command line, not in option files. On platforms
that use systemd, the value can be specified in the value of MYSQLD_OPTS. See Section 2.5.10,
“Managing MySQL Server with systemd”.

• --nice=priority

Command-Line Format --nice=priority

Type Numeric

Use the nice program to set the server's scheduling priority to the given value.

• --no-defaults

Command-Line Format --no-defaults

Type String

Do not read any option files. If program startup fails due to reading unknown options from an option file,
--no-defaults can be used to prevent them from being read. This must be the first option on the
command line if it is used.

For additional information about this and other option-file options, see Section 4.2.2.3, “Command-Line
Options that Affect Option-File Handling”.

• --open-files-limit=count

Command-Line Format --open-files-limit=count

Type String

The number of files that mysqld should be able to open. The option value is passed to ulimit -n.

Note

You must start mysqld_safe as root for this to function properly.

• --pid-file=file_name

Command-Line Format --pid-file=file_name

Type File name

The path name that mysqld should use for its process ID file.

From MySQL 5.7.2 to 5.7.17, mysqld_safe has its own process ID file, which is always named
mysqld_safe.pid and located in the MySQL data directory.

• --plugin-dir=dir_name

Command-Line Format --plugin-dir=dir_name

348

mysqld_safe — MySQL Server Startup Script

Type Directory name

The path name of the plugin directory.

• --port=port_num

Command-Line Format --port=number

Type Numeric

The port number that the server should use when listening for TCP/IP connections. The port number
must be 1024 or higher unless the server is started by the root operating system user.

• --skip-kill-mysqld

Command-Line Format --skip-kill-mysqld

Do not try to kill stray mysqld processes at startup. This option works only on Linux.

• --socket=path

Command-Line Format --socket=file_name

Type File name

The Unix socket file that the server should use when listening for local connections.

• --syslog, --skip-syslog

Command-Line Format --syslog

Deprecated Yes

Command-Line Format --skip-syslog

Deprecated Yes

--syslog causes error messages to be sent to syslog on systems that support the logger program.
--skip-syslog suppresses the use of syslog; messages are written to an error log file.

When syslog is used for error logging, the daemon.err facility/severity is used for all log messages.

Using these options to control mysqld logging is deprecated as of MySQL 5.7.5. Use the server
log_syslog system variable instead. To control the facility, use the server log_syslog_facility
system variable. See Section 5.4.2.3, “Error Logging to the System Log”.

• --syslog-tag=tag

Command-Line Format --syslog-tag=tag

349

mysqld_safe — MySQL Server Startup Script

Deprecated Yes

For logging to syslog, messages from mysqld_safe and mysqld are written with identifiers of
mysqld_safe and mysqld, respectively. To specify a suffix for the identifiers, use --syslog-
tag=tag, which modifies the identifiers to be mysqld_safe-tag and mysqld-tag.

Using this option to control mysqld logging is deprecated as of MySQL 5.7.5. Use the server
log_syslog_tag system variable instead. See Section 5.4.2.3, “Error Logging to the System Log”.

• --timezone=timezone

Command-Line Format --timezone=timezone

Type String

Set the TZ time zone environment variable to the given option value. Consult your operating system
documentation for legal time zone specification formats.

• --user={user_name|user_id}

Command-Line Format --user={user_name|user_id}

Type String

Type Numeric

Run the mysqld server as the user having the name user_name or the numeric user ID user_id.
(“User” in this context refers to a system login account, not a MySQL user listed in the grant tables.)

If you execute mysqld_safe with the --defaults-file or --defaults-extra-file option to name
an option file, the option must be the first one given on the command line or the option file is not used. For
example, this command does not use the named option file:

mysql> mysqld_safe --port=port_num --defaults-file=file_name

Instead, use the following command:

mysql> mysqld_safe --defaults-file=file_name --port=port_num

The mysqld_safe script is written so that it normally can start a server that was installed from either
a source or a binary distribution of MySQL, even though these types of distributions typically install the
server in slightly different locations. (See Section 2.1.5, “Installation Layouts”.) mysqld_safe expects one
of the following conditions to be true:

• The server and databases can be found relative to the working directory (the directory from which
mysqld_safe is invoked). For binary distributions, mysqld_safe looks under its working directory
for bin and data directories. For source distributions, it looks for libexec and var directories. This
condition should be met if you execute mysqld_safe from your MySQL installation directory (for
example, /usr/local/mysql for a binary distribution).

• If the server and databases cannot be found relative to the working directory, mysqld_safe attempts to
locate them by absolute path names. Typical locations are /usr/local/libexec and /usr/local/
var. The actual locations are determined from the values configured into the distribution at the time it
was built. They should be correct if MySQL is installed in the location specified at configuration time.

350

mysql.server — MySQL Server Startup Script

Because mysqld_safe tries to find the server and databases relative to its own working directory, you
can install a binary distribution of MySQL anywhere, as long as you run mysqld_safe from the MySQL
installation directory:

cd mysql_installation_directory
bin/mysqld_safe &

If mysqld_safe fails, even when invoked from the MySQL installation directory, specify the --ledir
and --datadir options to indicate the directories in which the server and databases are located on your
system.

mysqld_safe tries to use the sleep and date system utilities to determine how many times per second
it has attempted to start. If these utilities are present and the attempted starts per second is greater than 5,
mysqld_safe waits 1 full second before starting again. This is intended to prevent excessive CPU usage
in the event of repeated failures. (Bug #11761530, Bug #54035)

When you use mysqld_safe to start mysqld, mysqld_safe arranges for error (and notice) messages
from itself and from mysqld to go to the same destination.

There are several mysqld_safe options for controlling the destination of these messages:

• --log-error=file_name: Write error messages to the named error file.

• --syslog: Write error messages to syslog on systems that support the logger program.

• --skip-syslog: Do not write error messages to syslog. Messages are written to the default error log
file (host_name.err in the data directory), or to a named file if the --log-error option is given.

If none of these options is given, the default is --skip-syslog.

When mysqld_safe writes a message, notices go to the logging destination (syslog or the error log file)
and stdout. Errors go to the logging destination and stderr.

Note

Controlling mysqld logging from mysqld_safe is deprecated as of MySQL
5.7.5. Use the server's native syslog support instead. For more information, see
Section 5.4.2.3, “Error Logging to the System Log”.

4.3.3 mysql.server — MySQL Server Startup Script

MySQL distributions on Unix and Unix-like system include a script named mysql.server, which starts
the MySQL server using mysqld_safe. It can be used on systems such as Linux and Solaris that use
System V-style run directories to start and stop system services. It is also used by the macOS Startup Item
for MySQL.

mysql.server is the script name as used within the MySQL source tree. The installed name might be
different (for example, mysqld or mysql). In the following discussion, adjust the name mysql.server as
appropriate for your system.

Note

For some Linux platforms, MySQL installation from RPM or Debian packages
includes systemd support for managing MySQL server startup and shutdown. On
these platforms, mysql.server and mysqld_safe are not installed because they

351

mysql.server — MySQL Server Startup Script

are unnecessary. For more information, see Section 2.5.10, “Managing MySQL
Server with systemd”.

To start or stop the server manually using the mysql.server script, invoke it from the command line with
start or stop arguments:

mysql.server start
mysql.server stop

mysql.server changes location to the MySQL installation directory, then invokes mysqld_safe. To run
the server as some specific user, add an appropriate user option to the [mysqld] group of the global /
etc/my.cnf option file, as shown later in this section. (It is possible that you must edit mysql.server if
you've installed a binary distribution of MySQL in a nonstandard location. Modify it to change location into
the proper directory before it runs mysqld_safe. If you do this, your modified version of mysql.server
may be overwritten if you upgrade MySQL in the future; make a copy of your edited version that you can
reinstall.)

mysql.server stop stops the server by sending a signal to it. You can also stop the server manually by
executing mysqladmin shutdown.

To start and stop MySQL automatically on your server, you must add start and stop commands to the
appropriate places in your /etc/rc* files:

• If you use the Linux server RPM package (MySQL-server-VERSION.rpm), or a native Linux package
installation, the mysql.server script may be installed in the /etc/init.d directory with the name
mysqld or mysql. See Section 2.5.5, “Installing MySQL on Linux Using RPM Packages from Oracle”,
for more information on the Linux RPM packages.

• If you install MySQL from a source distribution or using a binary distribution format that does not install
mysql.server automatically, you can install the script manually. It can be found in the support-
files directory under the MySQL installation directory or in a MySQL source tree. Copy the script to the
/etc/init.d directory with the name mysql and make it executable:

cp mysql.server /etc/init.d/mysql
chmod +x /etc/init.d/mysql

After installing the script, the commands needed to activate it to run at system startup depend on your
operating system. On Linux, you can use chkconfig:

chkconfig --add mysql

On some Linux systems, the following command also seems to be necessary to fully enable the mysql
script:

chkconfig --level 345 mysql on

• On FreeBSD, startup scripts generally should go in /usr/local/etc/rc.d/. Install the
mysql.server script as /usr/local/etc/rc.d/mysql.server.sh to enable automatic startup.
The rc(8) manual page states that scripts in this directory are executed only if their base name
matches the *.sh shell file name pattern. Any other files or directories present within the directory are
silently ignored.

• As an alternative to the preceding setup, some operating systems also use /etc/rc.local or /etc/
init.d/boot.local to start additional services on startup. To start up MySQL using this method,
append a command like the one following to the appropriate startup file:

/bin/sh -c 'cd /usr/local/mysql; ./bin/mysqld_safe --user=mysql &'

• For other systems, consult your operating system documentation to see how to install startup scripts.

352

mysqld_multi — Manage Multiple MySQL Servers

mysql.server reads options from the [mysql.server] and [mysqld] sections of option files. For
backward compatibility, it also reads [mysql_server] sections, but to be current you should rename
such sections to [mysql.server].

You can add options for mysql.server in a global /etc/my.cnf file. A typical my.cnf file might look
like this:

[mysqld]
datadir=/usr/local/mysql/var
socket=/var/tmp/mysql.sock
port=3306
user=mysql

[mysql.server]
basedir=/usr/local/mysql

The mysql.server script supports the options shown in the following table. If specified, they must be
placed in an option file, not on the command line. mysql.server supports only start and stop as
command-line arguments.

Table 4.7 mysql.server Option-File Options

Option Name Description Type

basedir Path to MySQL installation
directory

Directory name

datadir Path to MySQL data directory Directory name

pid-file File in which server should write
its process ID

File name

service-startup-timeout How long to wait for server startup Integer

• basedir=dir_name

The path to the MySQL installation directory.

• datadir=dir_name

The path to the MySQL data directory.

• pid-file=file_name

The path name of the file in which the server should write its process ID. The server creates the file in
the data directory unless an absolute path name is given to specify a different directory.

If this option is not given, mysql.server uses a default value of host_name.pid. The PID file value
passed to mysqld_safe overrides any value specified in the [mysqld_safe] option file group.
Because mysql.server reads the [mysqld] option file group but not the [mysqld_safe] group,
you can ensure that mysqld_safe gets the same value when invoked from mysql.server as when
invoked manually by putting the same pid-file setting in both the [mysqld_safe] and [mysqld]
groups.

• service-startup-timeout=seconds

How long in seconds to wait for confirmation of server startup. If the server does not start within this time,
mysql.server exits with an error. The default value is 900. A value of 0 means not to wait at all for
startup. Negative values mean to wait forever (no timeout).

4.3.4 mysqld_multi — Manage Multiple MySQL Servers

353

mysqld_multi — Manage Multiple MySQL Servers

mysqld_multi is designed to manage several mysqld processes that listen for connections on different
Unix socket files and TCP/IP ports. It can start or stop servers, or report their current status.

Note

For some Linux platforms, MySQL installation from RPM or Debian packages
includes systemd support for managing MySQL server startup and shutdown.
On these platforms, mysqld_multi is not installed because it is unnecessary.
For information about using systemd to handle multiple MySQL instances, see
Section 2.5.10, “Managing MySQL Server with systemd”.

mysqld_multi searches for groups named [mysqldN] in my.cnf (or in the file named by the --
defaults-file option). N can be any positive integer. This number is referred to in the following
discussion as the option group number, or GNR. Group numbers distinguish option groups from one
another and are used as arguments to mysqld_multi to specify which servers you want to start,
stop, or obtain a status report for. Options listed in these groups are the same that you would use in the
[mysqld] group used for starting mysqld. (See, for example, Section 2.9.5, “Starting and Stopping
MySQL Automatically”.) However, when using multiple servers, it is necessary that each one use its own
value for options such as the Unix socket file and TCP/IP port number. For more information on which
options must be unique per server in a multiple-server environment, see Section 5.7, “Running Multiple
MySQL Instances on One Machine”.

To invoke mysqld_multi, use the following syntax:

mysqld_multi [options] {start|stop|reload|report} [GNR[,GNR] ...]

start, stop, reload (stop and restart), and report indicate which operation to perform. You can
perform the designated operation for a single server or multiple servers, depending on the GNR list that
follows the option name. If there is no list, mysqld_multi performs the operation for all servers in the
option file.

Each GNR value represents an option group number or range of group numbers. The value should be
the number at the end of the group name in the option file. For example, the GNR for a group named
[mysqld17] is 17. To specify a range of numbers, separate the first and last numbers by a dash. The
GNR value 10-13 represents groups [mysqld10] through [mysqld13]. Multiple groups or group ranges
can be specified on the command line, separated by commas. There must be no whitespace characters
(spaces or tabs) in the GNR list; anything after a whitespace character is ignored.

This command starts a single server using option group [mysqld17]:

mysqld_multi start 17

This command stops several servers, using option groups [mysqld8] and [mysqld10] through
[mysqld13]:

mysqld_multi stop 8,10-13

For an example of how you might set up an option file, use this command:

mysqld_multi --example

mysqld_multi searches for option files as follows:

• With --no-defaults, no option files are read.

Command-Line Format --no-defaults

Type Boolean

Default Value false

354

mysqld_multi — Manage Multiple MySQL Servers

• With --defaults-file=file_name, only the named file is read.

Command-Line Format --defaults-file=filename

Type File name

Default Value [none]

• Otherwise, option files in the standard list of locations are read, including any file named by the --
defaults-extra-file=file_name option, if one is given. (If the option is given multiple times, the
last value is used.)

Command-Line Format --defaults-extra-file=filename

Type File name

Default Value [none]

For additional information about these and other option-file options, see Section 4.2.2.3, “Command-Line
Options that Affect Option-File Handling”.

Option files read are searched for [mysqld_multi] and [mysqldN] option groups. The
[mysqld_multi] group can be used for options to mysqld_multi itself. [mysqldN] groups can be
used for options passed to specific mysqld instances.

The [mysqld] or [mysqld_safe] groups can be used for common options read by all instances of
mysqld or mysqld_safe. You can specify a --defaults-file=file_name option to use a different
configuration file for that instance, in which case the [mysqld] or [mysqld_safe] groups from that file
are used for that instance.

mysqld_multi supports the following options.

• --help

Command-Line Format --help

Type Boolean

Default Value false

Display a help message and exit.

• --example

Command-Line Format --example

Type Boolean

Default Value false

Display a sample option file.

• --log=file_name

Command-Line Format --log=path

355

mysqld_multi — Manage Multiple MySQL Servers

Type File name

Default Value /var/log/mysqld_multi.log

Specify the name of the log file. If the file exists, log output is appended to it.

• --mysqladmin=prog_name

Command-Line Format --mysqladmin=file

Type File name

Default Value [none]

The mysqladmin binary to be used to stop servers.

• --mysqld=prog_name

Command-Line Format --mysqld=file

Type File name

Default Value [none]

The mysqld binary to be used. Note that you can specify mysqld_safe as the value for this option
also. If you use mysqld_safe to start the server, you can include the mysqld or ledir options
in the corresponding [mysqldN] option group. These options indicate the name of the server that
mysqld_safe should start and the path name of the directory where the server is located. (See
the descriptions for these options in Section 4.3.2, “mysqld_safe — MySQL Server Startup Script”.)
Example:

[mysqld38]
mysqld = mysqld-debug
ledir = /opt/local/mysql/libexec

• --no-log

Command-Line Format --no-log

Type Boolean

Default Value false

Print log information to stdout rather than to the log file. By default, output goes to the log file.

• --password=password

Command-Line Format --password=string

Type String

Default Value [none]

The password of the MySQL account to use when invoking mysqladmin. Note that the password value
is not optional for this option, unlike for other MySQL programs.

• --silent

356

mysqld_multi — Manage Multiple MySQL Servers

Command-Line Format --silent

Type Boolean

Default Value false

Silent mode; disable warnings.

• --tcp-ip

Command-Line Format --tcp-ip

Type Boolean

Default Value false

Connect to each MySQL server through the TCP/IP port instead of the Unix socket file. (If a socket file
is missing, the server might still be running, but accessible only through the TCP/IP port.) By default,
connections are made using the Unix socket file. This option affects stop and report operations.

• --user=user_name

Command-Line Format --user=name

Type String

Default Value root

The user name of the MySQL account to use when invoking mysqladmin.

• --verbose

Command-Line Format --verbose

Type Boolean

Default Value false

Be more verbose.

• --version

Command-Line Format --version

Type Boolean

Default Value false

Display version information and exit.

Some notes about mysqld_multi:

• Most important: Before using mysqld_multi be sure that you understand the meanings of the options
that are passed to the mysqld servers and why you would want to have separate mysqld processes.
Beware of the dangers of using multiple mysqld servers with the same data directory. Use separate
data directories, unless you know what you are doing. Starting multiple servers with the same data

357

mysqld_multi — Manage Multiple MySQL Servers

directory does not give you extra performance in a threaded system. See Section 5.7, “Running Multiple
MySQL Instances on One Machine”.

Important

Make sure that the data directory for each server is fully accessible to the Unix
account that the specific mysqld process is started as. Do not use the Unix root
account for this, unless you know what you are doing. See Section 6.1.5, “How to
Run MySQL as a Normal User”.

• Make sure that the MySQL account used for stopping the mysqld servers (with the mysqladmin
program) has the same user name and password for each server. Also, make sure that the account
has the SHUTDOWN privilege. If the servers that you want to manage have different user names or
passwords for the administrative accounts, you might want to create an account on each server that has
the same user name and password. For example, you might set up a common multi_admin account
by executing the following commands for each server:

$> mysql -u root -S /tmp/mysql.sock -p
Enter password:
mysql> CREATE USER 'multi_admin'@'localhost' IDENTIFIED BY 'multipass';
mysql> GRANT SHUTDOWN ON *.* TO 'multi_admin'@'localhost';

See Section 6.2, “Access Control and Account Management”. You have to do this for each mysqld
server. Change the connection parameters appropriately when connecting to each one. Note that the
host name part of the account name must permit you to connect as multi_admin from the host where
you want to run mysqld_multi.

• The Unix socket file and the TCP/IP port number must be different for every mysqld. (Alternatively, if the
host has multiple network addresses, you can set the bind_address system variable to cause different
servers to listen to different interfaces.)

• The --pid-file option is very important if you are using mysqld_safe to start mysqld (for example,
--mysqld=mysqld_safe) Every mysqld should have its own process ID file. The advantage of using
mysqld_safe instead of mysqld is that mysqld_safe monitors its mysqld process and restarts it if
the process terminates due to a signal sent using kill -9 or for other reasons, such as a segmentation
fault.

• You might want to use the --user option for mysqld, but to do this you need to run the
mysqld_multi script as the Unix superuser (root). Having the option in the option file does not matter;
you just get a warning if you are not the superuser and the mysqld processes are started under your
own Unix account.

The following example shows how you might set up an option file for use with mysqld_multi. The order
in which the mysqld programs are started or stopped depends on the order in which they appear in the
option file. Group numbers need not form an unbroken sequence. The first and fifth [mysqldN] groups
were intentionally omitted from the example to illustrate that you can have “gaps” in the option file. This
gives you more flexibility.

This is an example of a my.cnf file for mysqld_multi.
Usually this file is located in home dir ~/.my.cnf or /etc/my.cnf

[mysqld_multi]
mysqld = /usr/local/mysql/bin/mysqld_safe
mysqladmin = /usr/local/mysql/bin/mysqladmin
user = multi_admin
password = my_password

[mysqld2]
socket = /tmp/mysql.sock2

358

Installation-Related Programs

port = 3307
pid-file = /usr/local/mysql/data2/hostname.pid2
datadir = /usr/local/mysql/data2
language = /usr/local/mysql/share/mysql/english
user = unix_user1

[mysqld3]
mysqld = /path/to/mysqld_safe
ledir = /path/to/mysqld-binary/
mysqladmin = /path/to/mysqladmin
socket = /tmp/mysql.sock3
port = 3308
pid-file = /usr/local/mysql/data3/hostname.pid3
datadir = /usr/local/mysql/data3
language = /usr/local/mysql/share/mysql/swedish
user = unix_user2

[mysqld4]
socket = /tmp/mysql.sock4
port = 3309
pid-file = /usr/local/mysql/data4/hostname.pid4
datadir = /usr/local/mysql/data4
language = /usr/local/mysql/share/mysql/estonia
user = unix_user3

[mysqld6]
socket = /tmp/mysql.sock6
port = 3311
pid-file = /usr/local/mysql/data6/hostname.pid6
datadir = /usr/local/mysql/data6
language = /usr/local/mysql/share/mysql/japanese
user = unix_user4

See Section 4.2.2.2, “Using Option Files”.

4.4 Installation-Related Programs
The programs in this section are used when installing or upgrading MySQL.

4.4.1 comp_err — Compile MySQL Error Message File

comp_err creates the errmsg.sys file that is used by mysqld to determine the error messages to
display for different error codes. comp_err normally is run automatically when MySQL is built. It compiles
the errmsg.sys file from the text-format error information file located at sql/share/errmsg-utf8.txt
in MySQL source distributions.

comp_err also generates the mysqld_error.h, mysqld_ername.h, and sql_state.h header files.

For more information about how error messages are defined, see the MySQL Internals Manual.

Invoke comp_err like this:

comp_err [options]

comp_err supports the following options.

• --help, -?

Command-Line Format --help

Type Boolean

Default Value false

359

https://dev.mysql.com/doc/internals/en

comp_err — Compile MySQL Error Message File

Display a help message and exit.

• --charset=dir_name, -C dir_name

Command-Line Format --charset

Type String

Default Value ../share/charsets

The character set directory. The default is ../sql/share/charsets.

• --debug=debug_options, -# debug_options

Command-Line Format --debug=options

Type String

Default Value d:t:O,/tmp/comp_err.trace

In debug builds, write a debugging log. A typical debug_options string is d:t:O,file_name. The
default is d:t:O,/tmp/comp_err.trace.

For non-debug builds, this option is non-functional and causes the program to exit with an explanatory
message.

Note

The short form of this option is -#, using a literal # character.

• --debug-info, -T

Command-Line Format --debug-info

Type Boolean

Default Value false

Print some debugging information when the program exits.

• --header-file=file_name, -H file_name

Command-Line Format --header-file=name

Type File name

Default Value mysqld_error.h

The name of the error header file. The default is mysqld_error.h.

• --in-file=file_name, -F file_name

Command-Line Format --in-file=path

Type File name

Default Value [none]

360

mysql_install_db — Initialize MySQL Data Directory

The name of the input file that defines error messages. The default is ../sql/share/errmsg-
utf8.txt.

• --name-file=file_name, -N file_name

Command-Line Format --name-file=name

Type File name

Default Value mysqld_ername.h

The name of the error name file. The default is mysqld_ername.h.

• --out-dir=dir_name, -D dir_name

Command-Line Format --out-dir=path

Type String

Default Value ../share/

The name of the output base directory. The default is ../sql/share/.

• --out-file=file_name, -O file_name

Command-Line Format --out-file=name

Type File name

Default Value errmsg.sys

The name of the output file. The default is errmsg.sys.

• --state-file=file_name, -S file_name

Command-Line Format --state-file=name

Type File name

Default Value sql_state.h

The name for the SQLSTATE header file. The default is sql_state.h.

• --version, -V

Command-Line Format --version

Type Boolean

Default Value false

Display version information and exit.

4.4.2 mysql_install_db — Initialize MySQL Data Directory

361

mysql_install_db — Initialize MySQL Data Directory

Note

mysql_install_db is deprecated as of MySQL 5.7.6 because its functionality
has been integrated into mysqld, the MySQL server. To initialize a MySQL
installation, invoke mysqld with the --initialize or --initialize-
insecure option. For more information, see Section 2.9.1, “Initializing the Data
Directory”. You should expect mysql_install_db to be removed in a future
MySQL release.

mysql_install_db handles initialization tasks that must be performed before the MySQL server,
mysqld, is ready to use:

• It initializes the MySQL data directory and creates the system tables that it contains.

• It initializes the system tablespace and related data structures needed to manage InnoDB tables.

• It loads the server-side help tables.

• It installs the sys schema.

• It creates an administrative account. Older versions of mysql_install_db may create anonymous-
user accounts.

Secure-by-Default Deployment

Current versions of mysql_install_db produce a MySQL deployment that is secure by default, with
these characteristics:

• A single administrative account named 'root'@'localhost' is created with a randomly generated
password, which is marked expired.

• No anonymous-user accounts are created.

• No test database accessible by all users is created.

• --admin-xxx options are available to control characteristics of the administrative account.

• The --random-password-file option is available to control where the random password is written.

• The --insecure option is available to suppress random password generation.

 If mysql_install_db generates a random administative password, it writes the password to a file
and displays the file name. The password entry includes a timestamp to indicate when it was written.
By default, the file is .mysql_secret in the home directory of the effective user running the script.
.mysql_secret is created with mode 600 to be accessible only to the operating system user for whom it
is created.

Important

When mysql_install_db generates a random password for the administrative
account, it is necessary after mysql_install_db has been run to start the
server, connect using the administrative account with the password written to the
.mysql_secret file, and specify a new administrative password. Until this is
done, the administrative account cannot be used for anything else. To change the
password, you can use the SET PASSWORD statement (for example, with the mysql
or mysqladmin client). After resetting the password, remove the .mysql_secret
file; otherwise, if you run mysql_secure_installation, that command may see
the file and expire the root password again as part of ensuring secure deployment.

362

mysql_install_db — Initialize MySQL Data Directory

Invocation Syntax

Change location to the MySQL installation directory and use this invocation syntax:

bin/mysql_install_db --datadir=path/to/datadir [other_options]

The --datadir option is mandatory. mysql_install_db creates the data directory, which must not
already exist:

• If the data directory does already exist, you are performing an upgrade operation (not an install
operation) and should run mysql_upgrade, not mysql_install_db. See Section 4.4.7,
“mysql_upgrade — Check and Upgrade MySQL Tables”.

• If the data directory does not exist but mysql_install_db fails, you must remove any partially created
data directory before running mysql_install_db again.

Because the MySQL server, mysqld, must access the data directory when it runs later, you should either
run mysql_install_db from the same system account used for running mysqld, or run it as root and
specify the --user option to indicate the user name that mysqld runs under. It might be necessary to
specify other options such as --basedir if mysql_install_db does not use the correct location for the
installation directory. For example:

bin/mysql_install_db --user=mysql \
 --basedir=/opt/mysql/mysql \
 --datadir=/opt/mysql/mysql/data

Note

After mysql_install_db sets up the InnoDB system tablespace, changes to
some tablespace characteristics require setting up a whole new instance. This
includes the file name of the first file in the system tablespace and the number
of undo logs. If you do not want to use the default values, make sure that the
settings for the innodb_data_file_path and innodb_log_file_size
configuration parameters are in place in the MySQL configuration file before
running mysql_install_db. Also make sure to specify as necessary other
parameters that affect the creation and location of InnoDB files, such as
innodb_data_home_dir and innodb_log_group_home_dir.

If those options are in your configuration file but that file is not in a location that
MySQL reads by default, specify the file location using the --defaults-extra-
file option when you run mysql_install_db.

Note

If you have set a custom TMPDIR environment variable when performing the
installation, and the specified directory is not accessible, mysql_install_db may
fail. If so, unset TMPDIR or set TMPDIR to point to the system temporary directory
(usually /tmp).

Administrative Account Creation

mysql_install_db creates an administrative account named 'root'@'localhost' by default.

mysql_install_db provides options that enable you to control several aspects of the administrative
account:

• To change the user or host parts of the account name, use --login-path, or --admin-user and --
admin-host.

363

mysql_install_db — Initialize MySQL Data Directory

• --insecure suppresses generation of a random password.

• --admin-auth-plugin specifies the authentication plugin.

• --admin-require-ssl specifies whether the account must use SSL connections.

For more information, see the descriptions of those options.

mysql_install_db assigns mysql.user system table rows a nonempty plugin column value to set
the authentication plugin. The default value is mysql_native_password. The value can be changed
using the --admin-auth-plugin option.

Default my.cnf File

mysql_install_db creates no default my.cnf file.

Note

As of MySQL 5.7.18, my-default.cnf is no longer included in or installed by
distribution packages.

With one exception, the settings in the default option file are commented and have
no effect. The exception is that the file sets the sql_mode system variable to
NO_ENGINE_SUBSTITUTION,STRICT_TRANS_TABLES. This setting produces a server configuration
that results in errors rather than warnings for bad data in operations that modify transactional tables. See
Section 5.1.10, “Server SQL Modes”.

Command Options

mysql_install_db supports the following options, which can be specified on the command line or in
the [mysql_install_db] group of an option file. For information about option files used by MySQL
programs, see Section 4.2.2.2, “Using Option Files”.

Table 4.8 mysql_install_db Options

Option Name Description

--admin-auth-plugin Administrative account authentication plugin

--admin-host Administrative account name host part

--admin-require-ssl Require SSL for administrative account

--admin-user Administrative account name user part

--basedir Path to base directory

--builddir Path to build directory (for out-of-source builds)

--datadir Path to data directory

--defaults Read default option files

--defaults-extra-file Read named option file in addition to usual option
files

--defaults-file Read only named option file

--extra-sql-file Optional SQL file to execute during bootstrap

--help Display help message and exit

--insecure Do not generate administrative account random
password

--lc-messages Locale for error messages

364

mysql_install_db — Initialize MySQL Data Directory

Option Name Description

--lc-messages-dir Directory where error messages are installed

--login-file File to read for login path information

--login-path Read login path options from .mylogin.cnf

--mysqld-file Path to mysqld binary

--no-defaults Read no option files

--random-password-file File in which to write administrative account random
password

--skip-sys-schema Do not install or upgrade the sys schema

--srcdir For internal use

--user Operating system user under which to execute
mysqld

--verbose Verbose mode

--version Display version information and exit

• --help, -?

Command-Line Format --help

Display a help message and exit.

• --admin-auth-plugin=plugin_name

Command-Line Format --admin-auth-plugin=plugin_name

Type String

The authentication plugin to use for the administrative account. The default is
mysql_native_password.

• --admin-host=host_name

Command-Line Format --admin-host=host_name

Type String

The host part to use for the adminstrative account name. The default is localhost. This option is
ignored if --login-path is also specified.

• --admin-require-ssl

Command-Line Format --admin-require-ssl

Type Boolean

Default Value FALSE

Whether to require SSL for the administrative account. The default is not to require it. With this option
enabled, the statement that mysql_install_db uses to create the account includes a REQUIRE SSL

365

mysql_install_db — Initialize MySQL Data Directory

clause. As a result, the administrative account must use secure connections when connecting to the
server.

• --admin-user=user_name

Command-Line Format --admin-user=user_name

Type String

The user part to use for the adminstrative account name. The default is root. This option is ignored if --
login-path is also specified.

• --basedir=dir_name

Command-Line Format --basedir=dir_name

Type Directory name

The path to the MySQL installation directory.

• --builddir=dir_name

Command-Line Format --builddir=dir_name

Type Directory name

For use with --srcdir and out-of-source builds. Set this to the location of the directory where the built
files reside.

• --datadir=dir_name

Command-Line Format --datadir=dir_name

Type Directory name

The path to the MySQL data directory. Only the last component of the path name is created if it does not
exist; the parent directory must already exist or an error occurs.

Note

The --datadir option is mandatory and the data directory must not already
exist.

• --defaults

Command-Line Format --defaults

Type Boolean

Default Value FALSE

This option causes mysql_install_db to invoke mysqld in such a way that it reads option files from
the default locations. If given as --no-defaults, and --defaults-file or --defaults-extra-
file is not also specified, mysql_install_db passes --no-defaults to mysqld, to prevent option

366

mysql_install_db — Initialize MySQL Data Directory

files from being read. This may help if program startup fails due to reading unknown options from an
option file.

• --defaults-extra-file=file_name

Command-Line Format --defaults-extra-file=file_name

Type File name

Read this option file after the global option file but (on Unix) before the user option file. If the file does
not exist or is otherwise inaccessible, an error occurs. If file_name is not an absolute path name, it is
interpreted relative to the current directory.

This option is passed by mysql_install_db to mysqld.

For additional information about this and other option-file options, see Section 4.2.2.3, “Command-Line
Options that Affect Option-File Handling”.

• --defaults-file=file_name

Command-Line Format --defaults-file=file_name

Type File name

Use only the given option file. If the file does not exist or is otherwise inaccessible, an error occurs. If
file_name is not an absolute path name, it is interpreted relative to the current directory.

This option is passed by mysql_install_db to mysqld.

For additional information about this and other option-file options, see Section 4.2.2.3, “Command-Line
Options that Affect Option-File Handling”.

• --extra-sql-file=file_name, -f file_name

Command-Line Format --extra-sql-file=file_name

Type File name

This option names a file containing additional SQL statements to be executed after the standard
bootstrapping statements. Accepted statement syntax in the file is like that of the mysql command-line
client, including support for multiple-line C-style comments and delimiter handling to enable definition of
stored programs.

• --insecure

Command-Line Format --insecure

Type Boolean

Default Value FALSE

Do not generate a random password for the adminstrative account.

If --insecure is not given, it is necessary after mysql_install_db has been run to start the server,
connect using the administrative account with the password written to the .mysql_secret file, and

367

mysql_install_db — Initialize MySQL Data Directory

specify a new administrative password. Until this is done, the administrative account cannot be used
for anything else. To change the password, you can use the SET PASSWORD statement (for example,
with the mysql or mysqladmin client). After resetting the password, remove the .mysql_secret file;
otherwise, if you run mysql_secure_installation, that command may see the file and expire the
root password again as part of ensuring secure deployment.

• --lc-messages=name

Command-Line Format --lc-messages=name

Type String

Default Value en_US

The locale to use for error messages. The default is en_US. The argument is converted to a language
name and combined with the value of --lc-messages-dir to produce the location for the error
message file. See Section 10.12, “Setting the Error Message Language”.

• --lc-messages-dir=dir_name

Command-Line Format --lc-messages-dir=dir_name

Type Directory name

The directory where error messages are located. The value is used together with the value of --lc-
messages to produce the location for the error message file. See Section 10.12, “Setting the Error
Message Language”.

• --login-file=file_name

Command-Line Format --login-file=file_name

Type File name

The file from which to read the login path if the --login-path=file_name option is specified. The
default file is .mylogin.cnf.

• --login-path=name

Command-Line Format --login-path=name

Type String

Read options from the named login path in the .mylogin.cnf login path file. The default login
path is client. (To read a different file, use the --login-file=name option.) A “login path” is an
option group containing options that specify which MySQL server to connect to and which account to
authenticate as. To create or modify a login path file, use the mysql_config_editor utility. See
Section 4.6.6, “mysql_config_editor — MySQL Configuration Utility”.

If the --login-path option is specified, the user, host, and password values are taken from the login
path and used to create the administrative account. The password must be defined in the login path or

368

mysql_install_db — Initialize MySQL Data Directory

an error occurs, unless the --insecure option is also specified. In addition, with --login-path, any
--admin-host and --admin-user options are ignored.

For additional information about this and other option-file options, see Section 4.2.2.3, “Command-Line
Options that Affect Option-File Handling”.

• --mysqld-file=file_name

Command-Line Format --mysqld-file=file_name

Type File name

The path name of the mysqld binary to execute. The option value must be an absolute path name or an
error occurs.

If this option is not given, mysql_install_db searches for mysqld in these locations:

• In the bin directory under the --basedir option value, if that option was given.

• In the bin directory under the --srcdir option value, if that option was given.

• In the bin directory under the --builddir option value, if that option was given.

• In the local directory and in the bin and sbin directories under the local directory.

• In /usr/bin, /usr/sbin, /usr/local/bin, /usr/local/sbin, /opt/local/bin, /opt/
local/sbin.

• --no-defaults

Command-Line Format --no-defaults

For behavior of this option, see the description of --defaults.

For additional information about this and other option-file options, see Section 4.2.2.3, “Command-Line
Options that Affect Option-File Handling”.

• --random-password-file=file_name

Command-Line Format --random-password-file=file_name

Type File name

The path name of the file in which to write the randomly generated password for the administrative
account. The option value must be an absolute path name or an error occurs. The default is
$HOME/.mysql_secret.

• --skip-sys-schema

Command-Line Format --skip-sys-schema

Type Boolean
369

mysql_plugin — Configure MySQL Server Plugins

Default Value FALSE

mysql_install_db installs the sys schema. The --skip-sys-schema option suppresses this
behavior.

• --srcdir=dir_name

Command-Line Format --srcdir=dir_name

Type Directory name

For internal use. This option specifies the directory under which mysql_install_db looks for support
files such as the error message file and the file for populating the help tables.

• --user=user_name, -u user_name

Command-Line Format --user=user_name

The system (login) user name to use for running mysqld. Files and directories created by mysqld are
owned by this user. You must be the system root user to use this option. By default, mysqld runs
using your current login name; files and directories that it creates are owned by you.

• --verbose, -v

Command-Line Format --verbose

Verbose mode. Print more information about what the program does. You can use this option to see the
mysqld command that mysql_install_db invokes to start the server in bootstrap mode.

• --version, -V

Command-Line Format --version

Display version information and exit.

4.4.3 mysql_plugin — Configure MySQL Server Plugins

Note

mysql_plugin is deprecated as of MySQL 5.7.11 and removed in MySQL 8.0.
Alternatives include loading plugins at server startup using the --plugin-load
or --plugin-load-add option, or at runtime using the INSTALL PLUGIN
statement.

The mysql_plugin utility enables MySQL administrators to manage which plugins a MySQL server
loads. It provides an alternative to manually specifying the --plugin-load option at server startup or
using the INSTALL PLUGIN and UNINSTALL PLUGIN statements at runtime.

Depending on whether mysql_plugin is invoked to enable or disable plugins, it inserts or deletes rows
in the mysql.plugin table that serves as a plugin registry. (To perform this operation, mysql_plugin
invokes the MySQL server in bootstrap mode. This means that the server must not already be running.)

370

mysql_plugin — Configure MySQL Server Plugins

For normal server startups, the server loads and enables plugins listed in mysql.plugin automatically.
For additional control over plugin activation, use --plugin_name options named for specific plugins, as
described in Section 5.5.1, “Installing and Uninstalling Plugins”.

Each invocation of mysql_plugin reads a configuration file to determine how to configure the plugins
contained in a single plugin library file. To invoke mysql_plugin, use this syntax:

mysql_plugin [options] plugin {ENABLE|DISABLE}

plugin is the name of the plugin to configure. ENABLE or DISABLE (not case-sensitive) specify whether to
enable or disable components of the plugin library named in the configuration file. The order of the plugin
and ENABLE or DISABLE arguments does not matter.

For example, to configure components of a plugin library file named myplugins.so on Linux or
myplugins.dll on Windows, specify a plugin value of myplugins. Suppose that this plugin library
contains three plugins, plugin1, plugin2, and plugin3, all of which should be configured under
mysql_plugin control. By convention, configuration files have a suffix of .ini and the same base name
as the plugin library, so the default configuration file name for this plugin library is myplugins.ini. The
configuration file contents look like this:

myplugins
plugin1
plugin2
plugin3

The first line in the myplugins.ini file is the name of the library file, without any extension such as .so
or .dll. The remaining lines are the names of the components to be enabled or disabled. Each value in
the file should be on a separate line. Lines on which the first character is '#' are taken as comments and
ignored.

To enable the plugins listed in the configuration file, invoke mysql_plugin this way:

mysql_plugin myplugins ENABLE

To disable the plugins, use DISABLE rather than ENABLE.

An error occurs if mysql_plugin cannot find the configuration file or plugin library file, or if
mysql_plugin cannot start the MySQL server.

mysql_plugin supports the following options, which can be specified on the command line or in
the [mysqld] group of any option file. For options specified in a [mysqld] group, mysql_plugin
recognizes the --basedir, --datadir, and --plugin-dir options and ignores others. For information
about option files used by MySQL programs, see Section 4.2.2.2, “Using Option Files”.

Table 4.9 mysql_plugin Options

Option Name Description

--basedir The server base directory

--datadir The server data directory

--help Display help message and exit

--my-print-defaults Path to my_print_defaults

--mysqld Path to server

--no-defaults Do not read configuration file

371

mysql_plugin — Configure MySQL Server Plugins

Option Name Description

--plugin-dir Directory where plugins are installed

--plugin-ini The plugin configuration file

--print-defaults Show configuration file defaults

--verbose Verbose mode

--version Display version information and exit

• --help, -?

Command-Line Format --help

Display a help message and exit.

• --basedir=dir_name, -b dir_name

Command-Line Format --basedir=dir_name

Type Directory name

The server base directory.

• --datadir=dir_name, -d dir_name

Command-Line Format --datadir=dir_name

Type Directory name

The server data directory.

• --my-print-defaults=file_name, -b file_name

Command-Line Format --my-print-defaults=file_name

Type File name

The path to the my_print_defaults program.

• --mysqld=file_name, -b file_name

Command-Line Format --mysqld=file_name

Type File name

The path to the mysqld server.

• --no-defaults, -p

Command-Line Format --no-defaults

Do not read values from the configuration file. This option enables an administrator to skip reading
defaults from the configuration file.

372

mysql_secure_installation — Improve MySQL Installation Security

With mysql_plugin, this option need not be given first on the command line, unlike most other MySQL
programs that support --no-defaults.

• --plugin-dir=dir_name, -p dir_name

Command-Line Format --plugin-dir=dir_name

Type Directory name

The server plugin directory.

• --plugin-ini=file_name, -i file_name

Command-Line Format --plugin-ini=file_name

Type File name

The mysql_plugin configuration file. Relative path names are interpreted relative to the current
directory. If this option is not given, the default is plugin.ini in the plugin directory, where plugin is
the plugin argument on the command line.

• --print-defaults, -P

Command-Line Format --print-defaults

Display the default values from the configuration file. This option causes mysql_plugin to print the
defaults for --basedir, --datadir, and --plugin-dir if they are found in the configuration file. If
no value for a variable is found, nothing is shown.

With mysql_plugin, this option need not be given first on the command line, unlike most other MySQL
programs that support --print-defaults.

• --verbose, -v

Command-Line Format --verbose

Verbose mode. Print more information about what the program does. This option can be used multiple
times to increase the amount of information.

• --version, -V

Command-Line Format --version

Display version information and exit.

4.4.4 mysql_secure_installation — Improve MySQL Installation Security

This program enables you to improve the security of your MySQL installation in the following ways:

• You can set a password for root accounts.

• You can remove root accounts that are accessible from outside the local host.

373

mysql_secure_installation — Improve MySQL Installation Security

• You can remove anonymous-user accounts.

• You can remove the test database (which by default can be accessed by all users, even anonymous
users), and privileges that permit anyone to access databases with names that start with test_.

mysql_secure_installation helps you implement security recommendations similar to those
described at Section 2.9.4, “Securing the Initial MySQL Account”.

Normal usage is to connect to the local MySQL server; invoke mysql_secure_installation without
arguments:

mysql_secure_installation

When executed, mysql_secure_installation prompts you to determine which actions to perform.

The validate_password plugin can be used for password strength checking. If the plugin is not
installed, mysql_secure_installation prompts the user whether to install it. Any passwords entered
later are checked using the plugin if it is enabled.

Most of the usual MySQL client options such as --host and --port can be used on the command
line and in option files. For example, to connect to the local server over IPv6 using port 3307, use this
command:

mysql_secure_installation --host=::1 --port=3307

mysql_secure_installation supports the following options, which can be specified on the command
line or in the [mysql_secure_installation] and [client] groups of an option file. For information
about option files used by MySQL programs, see Section 4.2.2.2, “Using Option Files”.

Table 4.10 mysql_secure_installation Options

Option Name Description Introduced

--defaults-extra-file Read named option file in addition
to usual option files

--defaults-file Read only named option file

--defaults-group-suffix Option group suffix value

--help Display help message and exit

--host Host on which MySQL server is
located

--no-defaults Read no option files

--password Accepted but always
ignored. Whenever
mysql_secure_installation is
invoked, the user is prompted for
a password, regardless

--port TCP/IP port number for
connection

--print-defaults Print default options

--protocol Transport protocol to use

--socket Unix socket file or Windows
named pipe to use

374

mysql_secure_installation — Improve MySQL Installation Security

Option Name Description Introduced

--ssl Enable connection encryption

--ssl-ca File that contains list of trusted
SSL Certificate Authorities

--ssl-capath Directory that contains trusted
SSL Certificate Authority
certificate files

--ssl-cert File that contains X.509 certificate

--ssl-cipher Permissible ciphers for connection
encryption

--ssl-crl File that contains certificate
revocation lists

--ssl-crlpath Directory that contains certificate
revocation-list files

--ssl-key File that contains X.509 key

--ssl-mode Desired security state of
connection to server

5.7.11

--ssl-verify-server-cert Verify host name against server
certificate Common Name identity

--tls-version Permissible TLS protocols for
encrypted connections

5.7.10

--use-default Execute with no user interactivity

--user MySQL user name to use when
connecting to server

• --help, -?

Command-Line Format --help

Display a help message and exit.

• --defaults-extra-file=file_name

Command-Line Format --defaults-extra-file=file_name

Type File name

Read this option file after the global option file but (on Unix) before the user option file. If the file does
not exist or is otherwise inaccessible, an error occurs. If file_name is not an absolute path name, it is
interpreted relative to the current directory.

For additional information about this and other option-file options, see Section 4.2.2.3, “Command-Line
Options that Affect Option-File Handling”.

• --defaults-file=file_name

Command-Line Format --defaults-file=file_name

Type File name

375

mysql_secure_installation — Improve MySQL Installation Security

Use only the given option file. If the file does not exist or is otherwise inaccessible, an error occurs. If
file_name is not an absolute path name, it is interpreted relative to the current directory.

For additional information about this and other option-file options, see Section 4.2.2.3, “Command-Line
Options that Affect Option-File Handling”.

• --defaults-group-suffix=str

Command-Line Format --defaults-group-suffix=str

Type String

Read not only the usual option groups, but also groups with the usual names and a suffix
of str. For example, mysql_secure_installation normally reads the [client] and
[mysql_secure_installation] groups. If this option is given as --defaults-group-
suffix=_other, mysql_secure_installation also reads the [client_other] and
[mysql_secure_installation_other] groups.

For additional information about this and other option-file options, see Section 4.2.2.3, “Command-Line
Options that Affect Option-File Handling”.

• --host=host_name, -h host_name

Command-Line Format --host

Connect to the MySQL server on the given host.

• --no-defaults

Command-Line Format --no-defaults

Do not read any option files. If program startup fails due to reading unknown options from an option file,
--no-defaults can be used to prevent them from being read.

The exception is that the .mylogin.cnf file is read in all cases, if it exists. This permits passwords to
be specified in a safer way than on the command line even when --no-defaults is used. To create
.mylogin.cnf, use the mysql_config_editor utility. See Section 4.6.6, “mysql_config_editor —
MySQL Configuration Utility”.

For additional information about this and other option-file options, see Section 4.2.2.3, “Command-Line
Options that Affect Option-File Handling”.

• --password=password, -p password

Command-Line Format --password=password

Type String

Default Value [none]

This option is accepted but ignored. Whether or not this option is used,
mysql_secure_installation always prompts the user for a password.

376

mysql_secure_installation — Improve MySQL Installation Security

• --port=port_num, -P port_num

Command-Line Format --port=port_num

Type Numeric

Default Value 3306

For TCP/IP connections, the port number to use.

• --print-defaults

Command-Line Format --print-defaults

Print the program name and all options that it gets from option files.

For additional information about this and other option-file options, see Section 4.2.2.3, “Command-Line
Options that Affect Option-File Handling”.

• --protocol={TCP|SOCKET|PIPE|MEMORY}

Command-Line Format --protocol=type

Type String

Default Value [see text]

Valid Values TCP

SOCKET

PIPE

MEMORY

The transport protocol to use for connecting to the server. It is useful when the other connection
parameters normally result in use of a protocol other than the one you want. For details on the
permissible values, see Section 4.2.5, “Connection Transport Protocols”.

• --socket=path, -S path

Command-Line Format --socket={file_name|pipe_name}

Type String

For connections to localhost, the Unix socket file to use, or, on Windows, the name of the named pipe
to use.

On Windows, this option applies only if the server was started with the named_pipe system variable
enabled to support named-pipe connections. In addition, the user making the connection must be a
member of the Windows group specified by the named_pipe_full_access_group system variable.

• --ssl*

Options that begin with --ssl specify whether to connect to the server using encryption and indicate
where to find SSL keys and certificates. See Command Options for Encrypted Connections.

377

mysql_ssl_rsa_setup — Create SSL/RSA Files

• --tls-version=protocol_list

Command-Line Format --tls-version=protocol_list

Introduced 5.7.10

Type String

Default Value (≥ 5.7.28) TLSv1,TLSv1.1,TLSv1.2

Default Value (≤ 5.7.27) TLSv1,TLSv1.1,TLSv1.2 (OpenSSL)

TLSv1,TLSv1.1 (yaSSL)

The permissible TLS protocols for encrypted connections. The value is a list of one or more comma-
separated protocol names. The protocols that can be named for this option depend on the SSL library
used to compile MySQL. For details, see Section 6.3.2, “Encrypted Connection TLS Protocols and
Ciphers”.

This option was added in MySQL 5.7.10.

• --use-default

Command-Line Format --use-default

Type Boolean

Execute noninteractively. This option can be used for unattended installation operations.

• --user=user_name, -u user_name

Command-Line Format --user=user_name

Type String

The user name of the MySQL account to use for connecting to the server.

4.4.5 mysql_ssl_rsa_setup — Create SSL/RSA Files

This program creates the SSL certificate and key files and RSA key-pair files required to support secure
connections using SSL and secure password exchange using RSA over unencrypted connections, if those
files are missing. mysql_ssl_rsa_setup can also be used to create new SSL files if the existing ones
have expired.

Note

mysql_ssl_rsa_setup uses the openssl command, so its use is contingent on
having OpenSSL installed on your machine.

Another way to generate SSL and RSA files, for MySQL distributions compiled
using OpenSSL, is to have the server generate them automatically. See
Section 6.3.3.1, “Creating SSL and RSA Certificates and Keys using MySQL”.

Important

mysql_ssl_rsa_setup helps lower the barrier to using SSL by making
it easier to generate the required files. However, certificates generated by

378

mysql_ssl_rsa_setup — Create SSL/RSA Files

mysql_ssl_rsa_setup are self-signed, which is not very secure. After you gain
experience using the files created by mysql_ssl_rsa_setup, consider obtaining
a CA certificate from a registered certificate authority.

Invoke mysql_ssl_rsa_setup like this:

mysql_ssl_rsa_setup [options]

Typical options are --datadir to specify where to create the files, and --verbose to see the openssl
commands that mysql_ssl_rsa_setup executes.

mysql_ssl_rsa_setup attempts to create SSL and RSA files using a default set of file names. It works
as follows:

1. mysql_ssl_rsa_setup checks for the openssl binary at the locations specified by the PATH
environment variable. If openssl is not found, mysql_ssl_rsa_setup does nothing. If openssl
is present, mysql_ssl_rsa_setup looks for default SSL and RSA files in the MySQL data directory
specified by the --datadir option, or the compiled-in data directory if the --datadir option is not
given.

2. mysql_ssl_rsa_setup checks the data directory for SSL files with the following names:

ca.pem
server-cert.pem
server-key.pem

3. If any of those files are present, mysql_ssl_rsa_setup creates no SSL files. Otherwise, it invokes
openssl to create them, plus some additional files:

ca.pem Self-signed CA certificate
ca-key.pem CA private key
server-cert.pem Server certificate
server-key.pem Server private key
client-cert.pem Client certificate
client-key.pem Client private key

These files enable secure client connections using SSL; see Section 6.3.1, “Configuring MySQL to Use
Encrypted Connections”.

4. mysql_ssl_rsa_setup checks the data directory for RSA files with the following names:

private_key.pem Private member of private/public key pair
public_key.pem Public member of private/public key pair

5. If any of these files are present, mysql_ssl_rsa_setup creates no RSA files. Otherwise, it invokes
openssl to create them. These files enable secure password exchange using RSA over unencrypted
connections for accounts authenticated by the sha256_password plugin; see Section 6.4.1.5,
“SHA-256 Pluggable Authentication”.

For information about the characteristics of files created by mysql_ssl_rsa_setup, see Section 6.3.3.1,
“Creating SSL and RSA Certificates and Keys using MySQL”.

At startup, the MySQL server automatically uses the SSL files created by mysql_ssl_rsa_setup to
enable SSL if no explicit SSL options are given other than --ssl (possibly along with ssl_cipher).
If you prefer to designate the files explicitly, invoke clients with the --ssl-ca, --ssl-cert, and --
ssl-key options at startup to name the ca.pem, server-cert.pem, and server-key.pem files,
respectively.

The server also automatically uses the RSA files created by mysql_ssl_rsa_setup to enable RSA if no
explicit RSA options are given.

379

mysql_ssl_rsa_setup — Create SSL/RSA Files

If the server is SSL-enabled, clients use SSL by default for the connection. To specify certificate and key
files explicitly, use the --ssl-ca, --ssl-cert, and --ssl-key options to name the ca.pem, client-
cert.pem, and client-key.pem files, respectively. However, some additional client setup may be
required first because mysql_ssl_rsa_setup by default creates those files in the data directory. The
permissions for the data directory normally enable access only to the system account that runs the MySQL
server, so client programs cannot use files located there. To make the files available, copy them to a
directory that is readable (but not writable) by clients:

• For local clients, the MySQL installation directory can be used. For example, if the data directory is a
subdirectory of the installation directory and your current location is the data directory, you can copy the
files like this:

cp ca.pem client-cert.pem client-key.pem ..

• For remote clients, distribute the files using a secure channel to ensure they are not tampered with
during transit.

If the SSL files used for a MySQL installation have expired, you can use mysql_ssl_rsa_setup to
create new ones:

1. Stop the server.

2. Rename or remove the existing SSL files. You may wish to make a backup of them first. (The RSA files
do not expire, so you need not remove them. mysql_ssl_rsa_setup sees that they exist and not
overwrite them.)

3. Run mysql_ssl_rsa_setup with the --datadir option to specify where to create the new files.

4. Restart the server.

mysql_ssl_rsa_setup supports the following command-line options, which can be specified on the
command line or in the [mysql_ssl_rsa_setup], [mysql_install_db], and [mysqld] groups of
an option file. For information about option files used by MySQL programs, see Section 4.2.2.2, “Using
Option Files”.

Table 4.11 mysql_ssl_rsa_setup Options

Option Name Description

--datadir Path to data directory

--help Display help message and exit

--suffix Suffix for X.509 certificate Common Name attribute

--uid Name of effective user to use for file permissions

--verbose Verbose mode

--version Display version information and exit

• --help, ?

Command-Line Format --help

Display a help message and exit.

• --datadir=dir_name

380

mysql_tzinfo_to_sql — Load the Time Zone Tables

Command-Line Format --datadir=dir_name

Type Directory name

The path to the directory that mysql_ssl_rsa_setup should check for default SSL and RSA files and
in which it should create files if they are missing. The default is the compiled-in data directory.

• --suffix=str

Command-Line Format --suffix=str

Type String

The suffix for the Common Name attribute in X.509 certificates. The suffix value is limited to 17
characters. The default is based on the MySQL version number.

• --uid=name, -v

Command-Line Format --uid=name

The name of the user who should be the owner of any created files. The value is a user name, not a
numeric user ID. In the absence of this option, files created by mysql_ssl_rsa_setup are owned by
the user who executes it. This option is valid only if you execute the program as root on a system that
supports the chown() system call.

• --verbose, -v

Command-Line Format --verbose

Verbose mode. Produce more output about what the program does. For example, the program shows
the openssl commands it runs, and produces output to indicate whether it skips SSL or RSA file
creation because some default file already exists.

• --version, -V

Command-Line Format --version

Display version information and exit.

4.4.6 mysql_tzinfo_to_sql — Load the Time Zone Tables

The mysql_tzinfo_to_sql program loads the time zone tables in the mysql database. It is used
on systems that have a zoneinfo database (the set of files describing time zones). Examples of such
systems are Linux, FreeBSD, Solaris, and macOS. One likely location for these files is the /usr/share/
zoneinfo directory (/usr/share/lib/zoneinfo on Solaris). If your system does not have a zoneinfo
database, you can use the downloadable package described in Section 5.1.13, “MySQL Server Time Zone
Support”.

mysql_tzinfo_to_sql can be invoked several ways:

mysql_tzinfo_to_sql tz_dir

381

mysql_upgrade — Check and Upgrade MySQL Tables

mysql_tzinfo_to_sql tz_file tz_name
mysql_tzinfo_to_sql --leap tz_file

For the first invocation syntax, pass the zoneinfo directory path name to mysql_tzinfo_to_sql and
send the output into the mysql program. For example:

mysql_tzinfo_to_sql /usr/share/zoneinfo | mysql -u root mysql

mysql_tzinfo_to_sql reads your system's time zone files and generates SQL statements from them.
mysql processes those statements to load the time zone tables.

The second syntax causes mysql_tzinfo_to_sql to load a single time zone file tz_file that
corresponds to a time zone name tz_name:

mysql_tzinfo_to_sql tz_file tz_name | mysql -u root mysql

If your time zone needs to account for leap seconds, invoke mysql_tzinfo_to_sql using the third
syntax, which initializes the leap second information. tz_file is the name of your time zone file:

mysql_tzinfo_to_sql --leap tz_file | mysql -u root mysql

After running mysql_tzinfo_to_sql, it is best to restart the server so that it does not continue to use
any previously cached time zone data.

4.4.7 mysql_upgrade — Check and Upgrade MySQL Tables

Each time you upgrade MySQL, you should execute mysql_upgrade, which looks for incompatibilities
with the upgraded MySQL server:

• It upgrades the system tables in the mysql schema so that you can take advantage of new privileges or
capabilities that might have been added.

• It upgrades the Performance Schema and sys schema.

• It examines user schemas.

If mysql_upgrade finds that a table has a possible incompatibility, it performs a table check and,
if problems are found, attempts a table repair. If the table cannot be repaired, see Section 2.10.12,
“Rebuilding or Repairing Tables or Indexes” for manual table repair strategies.

mysql_upgrade communicates directly with the MySQL server, sending it the SQL statements required to
perform an upgrade.

Important

In MySQL 5.7.11, the default --early-plugin-load value is the name of the
keyring_file plugin library file, causing that plugin to be loaded by default. In
MySQL 5.7.12 and higher, the default --early-plugin-load value is empty; to
load the keyring_file plugin, you must explicitly specify the option with a value
naming the keyring_file plugin library file.

InnoDB tablespace encryption requires that the keyring plugin to be used be loaded
prior to InnoDB initialization, so this change of default --early-plugin-load
value introduces an incompatibility for upgrades from 5.7.11 to 5.7.12 or higher.
Administrators who have encrypted InnoDB tablespaces must take explicit action to
ensure continued loading of the keyring plugin: Start the server with an --early-

382

mysql_upgrade — Check and Upgrade MySQL Tables

plugin-load option that names the plugin library file. For additional information,
see Section 6.4.4.1, “Keyring Plugin Installation”.

Important

If you upgrade to MySQL 5.7.2 or later from a version older than 5.7.2, a change to
the mysql.user table requires a special sequence of steps to perform an upgrade
using mysql_upgrade. For details, see Section 2.10.3, “Changes in MySQL 5.7”.

Note

On Windows, you must run mysql_upgrade with administrator privileges. You can
do this by running a Command Prompt as Administrator and running the command.
Failure to do so may result in the upgrade failing to execute correctly.

Caution

You should always back up your current MySQL installation before performing an
upgrade. See Section 7.2, “Database Backup Methods”.

Some upgrade incompatibilities may require special handling before upgrading your
MySQL installation and running mysql_upgrade. See Section 2.10, “Upgrading
MySQL”, for instructions on determining whether any such incompatibilities apply to
your installation and how to handle them.

Use mysql_upgrade like this:

1. Ensure that the server is running.

2. Invoke mysql_upgrade to upgrade the system tables in the mysql schema and check and repair
tables in other schemas:

mysql_upgrade [options]

3. Stop the server and restart it so that any system table changes take effect.

If you have multiple MySQL server instances to upgrade, invoke mysql_upgrade with connection
parameters appropriate for connecting to each of the desired servers. For example, with servers running
on the local host on parts 3306 through 3308, upgrade each of them by connecting to the appropriate port:

mysql_upgrade --protocol=tcp -P 3306 [other_options]
mysql_upgrade --protocol=tcp -P 3307 [other_options]
mysql_upgrade --protocol=tcp -P 3308 [other_options]

For local host connections on Unix, the --protocol=tcp option forces a connection using TCP/IP rather
than the Unix socket file.

By default, mysql_upgrade runs as the MySQL root user. If the root password is expired when
you run mysql_upgrade, it displays a message telling you that your password is expired and that
mysql_upgrade failed as a result. To correct this, reset the root password to unexpire it and run
mysql_upgrade again. First, connect to the server as root:

$> mysql -u root -p
Enter password: **** <- enter root password here

Reset the password using ALTER USER:

mysql> ALTER USER USER() IDENTIFIED BY 'root-password';

383

mysql_upgrade — Check and Upgrade MySQL Tables

Then exit mysql and run mysql_upgrade again:

$> mysql_upgrade [options]

Note

If you run the server with the disabled_storage_engines system variable set
to disable certain storage engines (for example, MyISAM), mysql_upgrade might
fail with an error like this:

mysql_upgrade: [ERROR] 3161: Storage engine MyISAM is disabled
(Table creation is disallowed).

To handle this, restart the server with disabled_storage_engines disabled.
Then you should be able to run mysql_upgrade successfully. After that, restart
the server with disabled_storage_engines set to its original value.

Unless invoked with the --upgrade-system-tables option, mysql_upgrade processes all tables in
all user schemas as necessary. Table checking might take a long time to complete. Each table is locked
and therefore unavailable to other sessions while it is being processed. Check and repair operations can
be time-consuming, particularly for large tables. Table checking uses the FOR UPGRADE option of the
CHECK TABLE statement. For details about what this option entails, see Section 13.7.2.2, “CHECK TABLE
Statement”.

mysql_upgrade marks all checked and repaired tables with the current MySQL version number. This
ensures that the next time you run mysql_upgrade with the same version of the server, it can be
determined whether there is any need to check or repair a given table again.

mysql_upgrade saves the MySQL version number in a file named mysql_upgrade_info in the data
directory. This is used to quickly check whether all tables have been checked for this release so that table-
checking can be skipped. To ignore this file and perform the check regardless, use the --force option.

mysql_upgrade checks mysql.user system table rows and, for any row with an empty plugin column,
sets that column to 'mysql_native_password' or 'mysql_old_password' depending on the hash
format of the Password column value.

Support for pre-4.1 password hashing and mysql_old_password has been removed, so
mysql_upgrade sets empty plugin values to 'mysql_native_password' if the credentials use a
hash format compatible with that plugin. Rows with a pre-4.1 password hash must be upgraded manually.
For account upgrade instructions, see Section 6.4.1.3, “Migrating Away from Pre-4.1 Password Hashing
and the mysql_old_password Plugin”.

mysql_upgrade does not upgrade the contents of the time zone tables or help tables. For upgrade
instructions, see Section 5.1.13, “MySQL Server Time Zone Support”, and Section 5.1.14, “Server-Side
Help Support”.

Unless invoked with the --skip-sys-schema option, mysql_upgrade installs the sys schema if it is
not installed, and upgrades it to the current version otherwise. An error occurs if a sys schema exists but
has no version view, on the assumption that its absence indicates a user-created schema:

A sys schema exists with no sys.version view. If
you have a user created sys schema, this must be renamed for the
upgrade to succeed.

To upgrade in this case, remove or rename the existing sys schema first.

mysql_upgrade checks for partitioned InnoDB tables that were created using the generic partitioning
handler and attempts to upgrade them to InnoDB native partitioning. (Bug #76734, Bug #20727344)

384

mysql_upgrade — Check and Upgrade MySQL Tables

You can upgrade such tables individually in the mysql client using the ALTER TABLE ... UPGRADE
PARTITIONING SQL statement.

mysql_upgrade supports the following options, which can be specified on the command line or in the
[mysql_upgrade] and [client] groups of an option file. For information about option files used by
MySQL programs, see Section 4.2.2.2, “Using Option Files”.

Table 4.12 mysql_upgrade Options

Option Name Description Introduced

--bind-address Use specified network interface to
connect to MySQL Server

--character-sets-dir Directory where character sets are
installed

--compress Compress all information sent
between client and server

--debug Write debugging log

--debug-check Print debugging information when
program exits

--debug-info Print debugging information,
memory, and CPU statistics when
program exits

--default-auth Authentication plugin to use

--default-character-set Specify default character set

--defaults-extra-file Read named option file in addition
to usual option files

--defaults-file Read only named option file

--defaults-group-suffix Option group suffix value

--force Force execution even if
mysql_upgrade has already been
executed for current MySQL
version

--help Display help message and exit

--host Host on which MySQL server is
located

--login-path Read login path options
from .mylogin.cnf

--max-allowed-packet Maximum packet length to send to
or receive from server

--net-buffer-length Buffer size for TCP/IP and socket
communication

--no-defaults Read no option files

--password Password to use when connecting
to server

--pipe Connect to server using named
pipe (Windows only)

385

mysql_upgrade — Check and Upgrade MySQL Tables

Option Name Description Introduced

--plugin-dir Directory where plugins are
installed

--port TCP/IP port number for
connection

--print-defaults Print default options

--protocol Transport protocol to use

--shared-memory-base-name Shared-memory name for shared-
memory connections (Windows
only)

--skip-sys-schema Do not install or upgrade sys
schema

--socket Unix socket file or Windows
named pipe to use

--ssl Enable connection encryption

--ssl-ca File that contains list of trusted
SSL Certificate Authorities

--ssl-capath Directory that contains trusted
SSL Certificate Authority
certificate files

--ssl-cert File that contains X.509 certificate

--ssl-cipher Permissible ciphers for connection
encryption

--ssl-crl File that contains certificate
revocation lists

--ssl-crlpath Directory that contains certificate
revocation-list files

--ssl-key File that contains X.509 key

--ssl-mode Desired security state of
connection to server

5.7.11

--ssl-verify-server-cert Verify host name against server
certificate Common Name identity

--tls-version Permissible TLS protocols for
encrypted connections

5.7.10

--upgrade-system-tables Update only system tables, not
user schemas

--user MySQL user name to use when
connecting to server

--verbose Verbose mode

--version-check Check for proper server version

--write-binlog Write all statements to binary log

• --help

Command-Line Format --help

386

mysql_upgrade — Check and Upgrade MySQL Tables

Display a short help message and exit.

• --bind-address=ip_address

Command-Line Format --bind-address=ip_address

On a computer having multiple network interfaces, use this option to select which interface to use for
connecting to the MySQL server.

• --character-sets-dir=dir_name

Command-Line Format --character-sets-dir=dir_name

Type Directory name

The directory where character sets are installed. See Section 10.15, “Character Set Configuration”.

• --compress, -C

Command-Line Format --compress[={OFF|ON}]

Type Boolean

Default Value OFF

Compress all information sent between the client and the server if possible. See Section 4.2.6,
“Connection Compression Control”.

• --debug[=debug_options], -# [debug_options]

Command-Line Format --debug[=#]

Type String

Default Value d:t:O,/tmp/mysql_upgrade.trace

Write a debugging log. A typical debug_options string is d:t:o,file_name. The default is d:t:O,/
tmp/mysql_upgrade.trace.

• --debug-check

Command-Line Format --debug-check

Type Boolean

Print some debugging information when the program exits.

• --debug-info, -T

Command-Line Format --debug-info

Type Boolean

Default Value FALSE

387

mysql_upgrade — Check and Upgrade MySQL Tables

Print debugging information and memory and CPU usage statistics when the program exits.

• --default-auth=plugin

Command-Line Format --default-auth=plugin

Type String

A hint about which client-side authentication plugin to use. See Section 6.2.13, “Pluggable
Authentication”.

• --default-character-set=charset_name

Command-Line Format --default-character-set=name

Type String

Use charset_name as the default character set. See Section 10.15, “Character Set Configuration”.

• --defaults-extra-file=file_name

Command-Line Format --defaults-extra-file=file_name

Type File name

Read this option file after the global option file but (on Unix) before the user option file. If the file does
not exist or is otherwise inaccessible, an error occurs. If file_name is not an absolute path name, it is
interpreted relative to the current directory.

For additional information about this and other option-file options, see Section 4.2.2.3, “Command-Line
Options that Affect Option-File Handling”.

• --defaults-file=file_name

Command-Line Format --defaults-file=file_name

Type File name

Use only the given option file. If the file does not exist or is otherwise inaccessible, an error occurs. If
file_name is not an absolute path name, it is interpreted relative to the current directory.

For additional information about this and other option-file options, see Section 4.2.2.3, “Command-Line
Options that Affect Option-File Handling”.

• --defaults-group-suffix=str

Command-Line Format --defaults-group-suffix=str

Type String

Read not only the usual option groups, but also groups with the usual names and a suffix of str.
For example, mysql_upgrade normally reads the [client] and [mysql_upgrade] groups. If

388

mysql_upgrade — Check and Upgrade MySQL Tables

this option is given as --defaults-group-suffix=_other, mysql_upgrade also reads the
[client_other] and [mysql_upgrade_other] groups.

For additional information about this and other option-file options, see Section 4.2.2.3, “Command-Line
Options that Affect Option-File Handling”.

• --force

Command-Line Format --force

Type Boolean

Ignore the mysql_upgrade_info file and force execution even if mysql_upgrade has already been
executed for the current version of MySQL.

• --host=host_name, -h host_name

Command-Line Format --host=name

Type String

Connect to the MySQL server on the given host.

• --login-path=name

Command-Line Format --login-path=name

Type String

Read options from the named login path in the .mylogin.cnf login path file. A “login path” is an
option group containing options that specify which MySQL server to connect to and which account to
authenticate as. To create or modify a login path file, use the mysql_config_editor utility. See
Section 4.6.6, “mysql_config_editor — MySQL Configuration Utility”.

For additional information about this and other option-file options, see Section 4.2.2.3, “Command-Line
Options that Affect Option-File Handling”.

• --max-allowed-packet=value

Command-Line Format --max-allowed-packet=value

Type Integer

Default Value 25165824

Minimum Value 4096

Maximum Value 2147483648

The maximum size of the buffer for client/server communication. The default value is 24MB. The
minimum and maximum values are 4KB and 2GB.

• --net-buffer-length=value

Command-Line Format --net-buffer-length=value

Type Integer

389

mysql_upgrade — Check and Upgrade MySQL Tables

Default Value 1047552

Minimum Value 4096

Maximum Value 16777216

The initial size of the buffer for client/server communication. The default value is 1MB − 1KB. The
minimum and maximum values are 4KB and 16MB.

• --no-defaults

Command-Line Format --no-defaults

Do not read any option files. If program startup fails due to reading unknown options from an option file,
--no-defaults can be used to prevent them from being read.

The exception is that the .mylogin.cnf file is read in all cases, if it exists. This permits passwords to
be specified in a safer way than on the command line even when --no-defaults is used. To create
.mylogin.cnf, use the mysql_config_editor utility. See Section 4.6.6, “mysql_config_editor —
MySQL Configuration Utility”.

For additional information about this and other option-file options, see Section 4.2.2.3, “Command-Line
Options that Affect Option-File Handling”.

• --password[=password], -p[password]

Command-Line Format --password[=name]

Type String

The password of the MySQL account used for connecting to the server. The password value is optional.
If not given, mysql_upgrade prompts for one. If given, there must be no space between --password=
or -p and the password following it. If no password option is specified, the default is to send no
password.

Specifying a password on the command line should be considered insecure. To avoid giving the
password on the command line, use an option file. See Section 6.1.2.1, “End-User Guidelines for
Password Security”.

To explicitly specify that there is no password and that mysql_upgrade should not prompt for one, use
the --skip-password option.

• --pipe, -W

Command-Line Format --pipe

Type String

On Windows, connect to the server using a named pipe. This option applies only if the server was
started with the named_pipe system variable enabled to support named-pipe connections. In
addition, the user making the connection must be a member of the Windows group specified by the
named_pipe_full_access_group system variable.

390

mysql_upgrade — Check and Upgrade MySQL Tables

• --plugin-dir=dir_name

Command-Line Format --plugin-dir=dir_name

Type Directory name

The directory in which to look for plugins. Specify this option if the --default-auth option is used to
specify an authentication plugin but mysql_upgrade does not find it. See Section 6.2.13, “Pluggable
Authentication”.

• --port=port_num, -P port_num

Command-Line Format --port=#

Type Numeric

For TCP/IP connections, the port number to use.

• --print-defaults

Command-Line Format --print-defaults

Print the program name and all options that it gets from option files.

• --protocol={TCP|SOCKET|PIPE|MEMORY}

Command-Line Format --protocol=name

Type String

The transport protocol to use for connecting to the server. It is useful when the other connection
parameters normally result in use of a protocol other than the one you want. For details on the
permissible values, see Section 4.2.5, “Connection Transport Protocols”.

• --shared-memory-base-name=name

Command-Line Format --shared-memory-base-name=name

Platform Specific Windows

On Windows, the shared-memory name to use for connections made using shared memory to a local
server. The default value is MYSQL. The shared-memory name is case-sensitive.

This option applies only if the server was started with the shared_memory system variable enabled to
support shared-memory connections.

• --skip-sys-schema

Command-Line Format --skip-sys-schema

Type Boolean

391

mysql_upgrade — Check and Upgrade MySQL Tables

Default Value FALSE

By default, mysql_upgrade installs the sys schema if it is not installed, and upgrades it to the current
version otherwise. The --skip-sys-schema option suppresses this behavior.

• --socket=path, -S path

Command-Line Format --socket={file_name|pipe_name}

Type String

For connections to localhost, the Unix socket file to use, or, on Windows, the name of the named pipe
to use.

On Windows, this option applies only if the server was started with the named_pipe system variable
enabled to support named-pipe connections. In addition, the user making the connection must be a
member of the Windows group specified by the named_pipe_full_access_group system variable.

• --ssl*

Options that begin with --ssl specify whether to connect to the server using encryption and indicate
where to find SSL keys and certificates. See Command Options for Encrypted Connections.

• --tls-version=protocol_list

Command-Line Format --tls-version=protocol_list

Introduced 5.7.10

Type String

Default Value (≥ 5.7.28) TLSv1,TLSv1.1,TLSv1.2

Default Value (≤ 5.7.27) TLSv1,TLSv1.1,TLSv1.2 (OpenSSL)

TLSv1,TLSv1.1 (yaSSL)

The permissible TLS protocols for encrypted connections. The value is a list of one or more comma-
separated protocol names. The protocols that can be named for this option depend on the SSL library
used to compile MySQL. For details, see Section 6.3.2, “Encrypted Connection TLS Protocols and
Ciphers”.

This option was added in MySQL 5.7.10.

• --upgrade-system-tables, -s

Command-Line Format --upgrade-system-tables

Type Boolean

Upgrade only the system tables in the mysql schema, do not upgrade user schemas.

• --user=user_name, -u user_name

Command-Line Format --user=name

392

Client Programs

Type String

The user name of the MySQL account to use for connecting to the server. The default user name is
root.

• --verbose

Command-Line Format --verbose

Type Boolean

Verbose mode. Print more information about what the program does.

• --version-check, -k

Command-Line Format --version-check

Type Boolean

Check the version of the server to which mysql_upgrade is connecting to verify that it is the same as
the version for which mysql_upgrade was built. If not, mysql_upgrade exits. This option is enabled
by default; to disable the check, use --skip-version-check.

• --write-binlog

Command-Line Format --write-binlog

Type Boolean

Default Value OFF

By default, binary logging by mysql_upgrade is disabled. Invoke the program with --write-binlog if
you want its actions to be written to the binary log.

When the server is running with global transaction identifiers (GTIDs) enabled (gtid_mode=ON), do not
enable binary logging by mysql_upgrade.

4.5 Client Programs

This section describes client programs that connect to the MySQL server.

4.5.1 mysql — The MySQL Command-Line Client

mysql is a simple SQL shell with input line editing capabilities. It supports interactive and noninteractive
use. When used interactively, query results are presented in an ASCII-table format. When used
noninteractively (for example, as a filter), the result is presented in tab-separated format. The output format
can be changed using command options.

If you have problems due to insufficient memory for large result sets, use the --quick option. This
forces mysql to retrieve results from the server a row at a time rather than retrieving the entire result
set and buffering it in memory before displaying it. This is done by returning the result set using the
mysql_use_result() C API function in the client/server library rather than mysql_store_result().

393

https://dev.mysql.com/doc/c-api/5.7/en/mysql-use-result.html
https://dev.mysql.com/doc/c-api/5.7/en/mysql-store-result.html

mysql — The MySQL Command-Line Client

Note

Alternatively, MySQL Shell offers access to the X DevAPI. For details, see MySQL
Shell 8.0.

Using mysql is very easy. Invoke it from the prompt of your command interpreter as follows:

mysql db_name

Or:

mysql --user=user_name --password db_name

In this case, you'll need to enter your password in response to the prompt that mysql displays:

Enter password: your_password

Then type an SQL statement, end it with ;, \g, or \G and press Enter.

Typing Control+C interrupts the current statement if there is one, or cancels any partial input line
otherwise.

You can execute SQL statements in a script file (batch file) like this:

mysql db_name < script.sql > output.tab

On Unix, the mysql client logs statements executed interactively to a history file. See Section 4.5.1.3,
“mysql Client Logging”.

4.5.1.1 mysql Client Options

mysql supports the following options, which can be specified on the command line or in the [mysql]
and [client] groups of an option file. For information about option files used by MySQL programs, see
Section 4.2.2.2, “Using Option Files”.

Table 4.13 mysql Client Options

Option Name Description Introduced Deprecated

--auto-rehash Enable automatic
rehashing

--auto-vertical-output Enable automatic vertical
result set display

--batch Do not use history file

--binary-as-hex Display binary values in
hexadecimal notation

5.7.19

--binary-mode Disable \r\n - to - \n
translation and treatment
of \0 as end-of-query

--bind-address Use specified network
interface to connect to
MySQL Server

--character-sets-dir Directory where
character sets are
installed

--column-names Write column names in
results

394

https://dev.mysql.com/doc/mysql-shell/8.0/en/
https://dev.mysql.com/doc/mysql-shell/8.0/en/

mysql — The MySQL Command-Line Client

Option Name Description Introduced Deprecated

--column-type-info Display result set
metadata

--commands Enable or disable
processing of local mysql
client commands

5.7.44-ndb-7.6.35

--comments Whether to retain or strip
comments in statements
sent to the server

--compress Compress all information
sent between client and
server

--connect-expired-
password

Indicate to server that
client can handle expired-
password sandbox mode

--connect-timeout Number of seconds
before connection
timeout

--database The database to use

--debug Write debugging log;
supported only if MySQL
was built with debugging
support

--debug-check Print debugging
information when
program exits

--debug-info Print debugging
information, memory,
and CPU statistics when
program exits

--default-auth Authentication plugin to
use

--default-character-set Specify default character
set

--defaults-extra-file Read named option file in
addition to usual option
files

--defaults-file Read only named option
file

--defaults-group-suffix Option group suffix value

--delimiter Set the statement
delimiter

--enable-cleartext-plugin Enable cleartext
authentication plugin

--execute Execute the statement
and quit

395

mysql — The MySQL Command-Line Client

Option Name Description Introduced Deprecated

--force Continue even if an SQL
error occurs

--get-server-public-key Request RSA public key
from server

5.7.23

--help Display help message
and exit

--histignore Patterns specifying which
statements to ignore for
logging

--host Host on which MySQL
server is located

--html Produce HTML output

--ignore-spaces Ignore spaces after
function names

--init-command SQL statement to
execute after connecting

--line-numbers Write line numbers for
errors

--local-infile Enable or disable for
LOCAL capability for
LOAD DATA

--login-path Read login path options
from .mylogin.cnf

--max-allowed-packet Maximum packet length
to send to or receive from
server

--max-join-size The automatic limit for
rows in a join when using
--safe-updates

--named-commands Enable named mysql
commands

--net-buffer-length Buffer size for
TCP/IP and socket
communication

--no-auto-rehash Disable automatic
rehashing

--no-beep Do not beep when errors
occur

--no-defaults Read no option files

--one-database Ignore statements except
those for the default
database named on the
command line

--pager Use the given command
for paging query output

396

mysql — The MySQL Command-Line Client

Option Name Description Introduced Deprecated

--password Password to use when
connecting to server

--pipe Connect to server using
named pipe (Windows
only)

--plugin-dir Directory where plugins
are installed

--port TCP/IP port number for
connection

--print-defaults Print default options

--prompt Set the prompt to the
specified format

--protocol Transport protocol to use

--quick Do not cache each query
result

--raw Write column values
without escape
conversion

--reconnect If the connection to
the server is lost,
automatically try to
reconnect

--safe-updates, --i-am-a-
dummy

Allow only UPDATE and
DELETE statements that
specify key values

--secure-auth Do not send passwords
to server in old (pre-4.1)
format

Yes

--select-limit The automatic limit for
SELECT statements
when using --safe-
updates

--server-public-key-path Path name to file
containing RSA public
key

--shared-memory-base-
name

Shared-memory name
for shared-memory
connections (Windows
only)

--show-warnings Show warnings after
each statement if there
are any

--sigint-ignore Ignore SIGINT signals
(typically the result of
typing Control+C)

397

mysql — The MySQL Command-Line Client

Option Name Description Introduced Deprecated

--silent Silent mode

--skip-auto-rehash Disable automatic
rehashing

--skip-column-names Do not write column
names in results

--skip-line-numbers Skip line numbers for
errors

--skip-named-commands Disable named mysql
commands

--skip-pager Disable paging

--skip-reconnect Disable reconnecting

--socket Unix socket file or
Windows named pipe to
use

--ssl Enable connection
encryption

--ssl-ca File that contains list of
trusted SSL Certificate
Authorities

--ssl-capath Directory that contains
trusted SSL Certificate
Authority certificate files

--ssl-cert File that contains X.509
certificate

--ssl-cipher Permissible ciphers for
connection encryption

--ssl-crl File that contains
certificate revocation lists

--ssl-crlpath Directory that contains
certificate revocation-list
files

--ssl-key File that contains X.509
key

--ssl-mode Desired security state of
connection to server

5.7.11

--ssl-verify-server-cert Verify host name
against server certificate
Common Name identity

--syslog Log interactive
statements to syslog

--table Display output in tabular
format

--tee Append a copy of output
to named file

398

mysql — The MySQL Command-Line Client

Option Name Description Introduced Deprecated

--tls-version Permissible TLS
protocols for encrypted
connections

5.7.10

--unbuffered Flush the buffer after
each query

--user MySQL user name to
use when connecting to
server

--verbose Verbose mode

--version Display version
information and exit

--vertical Print query output rows
vertically (one line per
column value)

--wait If the connection cannot
be established, wait and
retry instead of aborting

--xml Produce XML output

• --help, -?

Command-Line Format --help

Display a help message and exit.

• --auto-rehash

Command-Line Format --auto-rehash

Disabled by skip-auto-rehash

Enable automatic rehashing. This option is on by default, which enables database, table, and column
name completion. Use --disable-auto-rehash to disable rehashing. That causes mysql to start
faster, but you must issue the rehash command or its \# shortcut if you want to use name completion.

To complete a name, enter the first part and press Tab. If the name is unambiguous, mysql completes
it. Otherwise, you can press Tab again to see the possible names that begin with what you have typed
so far. Completion does not occur if there is no default database.

Note

This feature requires a MySQL client that is compiled with the readline library.
Typically, the readline library is not available on Windows.

399

mysql — The MySQL Command-Line Client

• --auto-vertical-output

Command-Line Format --auto-vertical-output

Cause result sets to be displayed vertically if they are too wide for the current window, and using normal
tabular format otherwise. (This applies to statements terminated by ; or \G.)

• --batch, -B

Command-Line Format --batch

Print results using tab as the column separator, with each row on a new line. With this option, mysql
does not use the history file.

Batch mode results in nontabular output format and escaping of special characters. Escaping may be
disabled by using raw mode; see the description for the --raw option.

• --binary-as-hex

Command-Line Format --binary-as-hex

Introduced 5.7.19

Type Boolean

Default Value FALSE

When this option is given, mysql displays binary data using hexadecimal notation (0xvalue). This
occurs whether the overall output display format is tabular, vertical, HTML, or XML.

--binary-as-hex when enabled affects display of all binary strings, including those returned by
functions such as CHAR() and UNHEX(). The following example demonstrates this using the ASCII code
for A (65 decimal, 41 hexadecimal):

• --binary-as-hex disabled:

mysql> SELECT CHAR(0x41), UNHEX('41');
+------------+-------------+
| CHAR(0x41) | UNHEX('41') |
+------------+-------------+
| A | A |
+------------+-------------+

• --binary-as-hex enabled:

mysql> SELECT CHAR(0x41), UNHEX('41');
+------------------------+--------------------------+
| CHAR(0x41) | UNHEX('41') |
+------------------------+--------------------------+
| 0x41 | 0x41 |
+------------------------+--------------------------+

To write a binary string expression so that it displays as a character string regardless of whether --
binary-as-hex is enabled, use these techniques:

• The CHAR() function has a USING charset clause:

mysql> SELECT CHAR(0x41 USING utf8mb4);

400

mysql — The MySQL Command-Line Client

+--------------------------+
| CHAR(0x41 USING utf8mb4) |
+--------------------------+
| A |
+--------------------------+

• More generally, use CONVERT() to convert an expression to a given character set:

mysql> SELECT CONVERT(UNHEX('41') USING utf8mb4);
+------------------------------------+
| CONVERT(UNHEX('41') USING utf8mb4) |
+------------------------------------+
| A |
+------------------------------------+

This option was added in MySQL 5.7.19.

• --binary-mode

Command-Line Format --binary-mode

This option helps when processing mysqlbinlog output that may contain BLOB values. By default,
mysql translates \r\n in statement strings to \n and interprets \0 as the statement terminator. --
binary-mode disables both features. It also disables all mysql commands except charset and
delimiter in noninteractive mode (for input piped to mysql or loaded using the source command).

(NDB Cluster 7.6.35 and later:) --binary-mode, when enabled, causes the server to disregard any
setting for --commands .

• --bind-address=ip_address

Command-Line Format --bind-address=ip_address

On a computer having multiple network interfaces, use this option to select which interface to use for
connecting to the MySQL server.

• --character-sets-dir=dir_name

Command-Line Format --character-sets-dir=dir_name

Type Directory name

The directory where character sets are installed. See Section 10.15, “Character Set Configuration”.

• --column-names

Command-Line Format --column-names

Write column names in results.
401

mysql — The MySQL Command-Line Client

• --column-type-info

Command-Line Format --column-type-info

Display result set metadata. This information corresponds to the contents of C API MYSQL_FIELD data
structures. See C API Basic Data Structures.

• --commands

Command-Line Format --commands

402

https://dev.mysql.com/doc/c-api/5.7/en/c-api-data-structures.html

mysql — The MySQL Command-Line Client

Introduced 5.7.44-ndb-7.6.35

Whether to enable or disable processing of local mysql client commands. Setting this option to FALSE
disables such processing, and has the effects listed here:

• The following mysql client commands are disabled:

• charset (/C remains enabled)

• clear

• connect

• edit

• ego

• exit

• go

• help

• nopager

• notee

• nowarning

• pager

• print

• prompt

• query_attributes

• quit

• rehash

• resetconnection

• ssl_session_data_print

• source

• status

• system

• tee

• \u (use is passed to the server)

• warnings

403

mysql — The MySQL Command-Line Client

• The \C and delimiter commands remain enabled.

• The --system-command option is ignored, and has no effect.

This option has no effect when --binary-mode is enabled.

When --commands is enabled, it is possible to disable (only) the system command using the --
system-command option.

This option was added in NDB Cluster 7.6.35.

• --comments, -c

Command-Line Format --comments

Type Boolean

Default Value FALSE

Whether to strip or preserve comments in statements sent to the server. The default is --skip-
comments (strip comments), enable with --comments (preserve comments).

Note

In MySQL 5.7, the mysql client always passes optimizer hints to the server,
regardless of whether this option is given. To ensure that optimizer hints are not
stripped if you are using an older version of the mysql client with a version of
the server that understands optimizer hints, invoke mysql with the --comments
option.

Comment stripping is deprecated as of MySQL 5.7.20. You should expect this
feature and the options to control it to be removed in a future MySQL release.

• --compress, -C

Command-Line Format --compress[={OFF|ON}]

Type Boolean

Default Value OFF

Compress all information sent between the client and the server if possible. See Section 4.2.6,
“Connection Compression Control”.

• --connect-expired-password

Command-Line Format --connect-expired-password

Indicate to the server that the client can handle sandbox mode if the account used to connect has an
expired password. This can be useful for noninteractive invocations of mysql because normally the
server disconnects noninteractive clients that attempt to connect using an account with an expired
password. (See Section 6.2.12, “Server Handling of Expired Passwords”.)404

https://dev.mysql.com/doc/refman/8.0/en/mysql-command-options.html#option_mysql_system-command
https://dev.mysql.com/doc/refman/8.0/en/mysql-command-options.html#option_mysql_system-command
https://dev.mysql.com/doc/refman/8.0/en/mysql-command-options.html#option_mysql_system-command

mysql — The MySQL Command-Line Client

• --connect-timeout=value

Command-Line Format --connect-timeout=value

Type Numeric

Default Value 0

The number of seconds before connection timeout. (Default value is 0.)

• --database=db_name, -D db_name

Command-Line Format --database=dbname

Type String

The database to use. This is useful primarily in an option file.

• --debug[=debug_options], -# [debug_options]

Command-Line Format --debug[=debug_options]

Type String

Default Value d:t:o,/tmp/mysql.trace

Write a debugging log. A typical debug_options string is d:t:o,file_name. The default is d:t:o,/
tmp/mysql.trace.

This option is available only if MySQL was built using WITH_DEBUG. MySQL release binaries provided
by Oracle are not built using this option.

• --debug-check

Command-Line Format --debug-check

Type Boolean

Default Value FALSE

Print some debugging information when the program exits.

This option is available only if MySQL was built using WITH_DEBUG. MySQL release binaries provided
by Oracle are not built using this option.

• --debug-info, -T

Command-Line Format --debug-info

Type Boolean

Default Value FALSE

Print debugging information and memory and CPU usage statistics when the program exits.

This option is available only if MySQL was built using WITH_DEBUG. MySQL release binaries provided
by Oracle are not built using this option.

405

mysql — The MySQL Command-Line Client

• --default-auth=plugin

Command-Line Format --default-auth=plugin

Type String

A hint about which client-side authentication plugin to use. See Section 6.2.13, “Pluggable
Authentication”.

• --default-character-set=charset_name

Command-Line Format --default-character-set=charset_name

Type String

Use charset_name as the default character set for the client and connection.

This option can be useful if the operating system uses one character set and the mysql client by default
uses another. In this case, output may be formatted incorrectly. You can usually fix such issues by using
this option to force the client to use the system character set instead.

For more information, see Section 10.4, “Connection Character Sets and Collations”, and Section 10.15,
“Character Set Configuration”.

• --defaults-extra-file=file_name

Command-Line Format --defaults-extra-file=file_name

Type File name

Read this option file after the global option file but (on Unix) before the user option file. If the file does
not exist or is otherwise inaccessible, an error occurs. If file_name is not an absolute path name, it is
interpreted relative to the current directory.

For additional information about this and other option-file options, see Section 4.2.2.3, “Command-Line
Options that Affect Option-File Handling”.

• --defaults-file=file_name

Command-Line Format --defaults-file=file_name

Type File name

Use only the given option file. If the file does not exist or is otherwise inaccessible, an error occurs. If
file_name is not an absolute path name, it is interpreted relative to the current directory.

Exception: Even with --defaults-file, client programs read .mylogin.cnf.

For additional information about this and other option-file options, see Section 4.2.2.3, “Command-Line
Options that Affect Option-File Handling”.

• --defaults-group-suffix=str

Command-Line Format --defaults-group-suffix=str

406

mysql — The MySQL Command-Line Client

Type String

Read not only the usual option groups, but also groups with the usual names and a suffix of str. For
example, mysql normally reads the [client] and [mysql] groups. If this option is given as --
defaults-group-suffix=_other, mysql also reads the [client_other] and [mysql_other]
groups.

For additional information about this and other option-file options, see Section 4.2.2.3, “Command-Line
Options that Affect Option-File Handling”.

• --delimiter=str

Command-Line Format --delimiter=str

Type String

Default Value ;

Set the statement delimiter. The default is the semicolon character (;).

• --disable-named-commands

Disable named commands. Use the * form only, or use named commands only at the beginning of
a line ending with a semicolon (;). mysql starts with this option enabled by default. However, even
with this option, long-format commands still work from the first line. See Section 4.5.1.2, “mysql Client
Commands”.

• --enable-cleartext-plugin

Command-Line Format --enable-cleartext-plugin

Type Boolean

Default Value FALSE

Enable the mysql_clear_password cleartext authentication plugin. (See Section 6.4.1.6, “Client-Side
Cleartext Pluggable Authentication”.)

• --execute=statement, -e statement

Command-Line Format --execute=statement

Type String

Execute the statement and quit. The default output format is like that produced with --batch. See
Section 4.2.2.1, “Using Options on the Command Line”, for some examples. With this option, mysql
does not use the history file.

• --force, -f

Command-Line Format --force

Continue even if an SQL error occurs.

407

mysql — The MySQL Command-Line Client

• --get-server-public-key

Command-Line Format --get-server-public-key

Introduced 5.7.23

Type Boolean

Request from the server the public key required for RSA key pair-based password exchange. This option
applies to clients that authenticate with the caching_sha2_password authentication plugin. For that
plugin, the server does not send the public key unless requested. This option is ignored for accounts that
do not authenticate with that plugin. It is also ignored if RSA-based password exchange is not used, as is
the case when the client connects to the server using a secure connection.

If --server-public-key-path=file_name is given and specifies a valid public key file, it takes
precedence over --get-server-public-key.

For information about the caching_sha2_password plugin, see Section 6.4.1.4, “Caching SHA-2
Pluggable Authentication”.

The --get-server-public-key option was added in MySQL 5.7.23.

• --histignore

Command-Line Format --histignore=pattern_list

Type String

A list of one or more colon-separated patterns specifying statements to ignore for logging purposes.
These patterns are added to the default pattern list ("*IDENTIFIED*:*PASSWORD*"). The value
specified for this option affects logging of statements written to the history file, and to syslog if the --
syslog option is given. For more information, see Section 4.5.1.3, “mysql Client Logging”.

• --host=host_name, -h host_name

Command-Line Format --host=host_name

Type String

Default Value localhost

Connect to the MySQL server on the given host.

• --html, -H

Command-Line Format --html

Produce HTML output.

408

mysql — The MySQL Command-Line Client

• --ignore-spaces, -i

Command-Line Format --ignore-spaces

Ignore spaces after function names. The effect of this is described in the discussion for the
IGNORE_SPACE SQL mode (see Section 5.1.10, “Server SQL Modes”).

• --init-command=str

Command-Line Format --init-command=str

SQL statement to execute after connecting to the server. If auto-reconnect is enabled, the statement is
executed again after reconnection occurs.

• --line-numbers

Command-Line Format --line-numbers

Disabled by skip-line-numbers

Write line numbers for errors. Disable this with --skip-line-numbers.

• --local-infile[={0|1}]

Command-Line Format --local-infile[={0|1}]

Type Boolean

Default Value FALSE

By default, LOCAL capability for LOAD DATA is determined by the default compiled into the MySQL client
library. To enable or disable LOCAL data loading explicitly, use the --local-infile option. When
given with no value, the option enables LOCAL data loading. When given as --local-infile=0 or --
local-infile=1, the option disables or enables LOCAL data loading.

Successful use of LOCAL load operations within mysql also requires that the server permits local
loading; see Section 6.1.6, “Security Considerations for LOAD DATA LOCAL”

• --login-path=name

Command-Line Format --login-path=name

Type String

Read options from the named login path in the .mylogin.cnf login path file. A “login path” is an
option group containing options that specify which MySQL server to connect to and which account to
authenticate as. To create or modify a login path file, use the mysql_config_editor utility. See
Section 4.6.6, “mysql_config_editor — MySQL Configuration Utility”.

For additional information about this and other option-file options, see Section 4.2.2.3, “Command-Line
Options that Affect Option-File Handling”.

409

mysql — The MySQL Command-Line Client

• --max-allowed-packet=value

Command-Line Format --max-allowed-packet=value

Type Numeric

Default Value 16777216

The maximum size of the buffer for client/server communication. The default is 16MB, the maximum is
1GB.

• --max-join-size=value

Command-Line Format --max-join-size=value

Type Numeric

Default Value 1000000

The automatic limit for rows in a join when using --safe-updates. (Default value is 1,000,000.)

• --named-commands, -G

Command-Line Format --named-commands

Disabled by skip-named-commands

Enable named mysql commands. Long-format commands are permitted, not just short-format
commands. For example, quit and \q both are recognized. Use --skip-named-commands to disable
named commands. See Section 4.5.1.2, “mysql Client Commands”.

• --net-buffer-length=value

Command-Line Format --net-buffer-length=value

Type Numeric

Default Value 16384

The buffer size for TCP/IP and socket communication. (Default value is 16KB.)

• --no-auto-rehash, -A

Command-Line Format --no-auto-rehash

Deprecated Yes

This has the same effect as --skip-auto-rehash. See the description for --auto-rehash.

• --no-beep, -b

Command-Line Format --no-beep

Do not beep when errors occur.

410

mysql — The MySQL Command-Line Client

• --no-defaults

Command-Line Format --no-defaults

Do not read any option files. If program startup fails due to reading unknown options from an option file,
--no-defaults can be used to prevent them from being read.

The exception is that the .mylogin.cnf file is read in all cases, if it exists. This permits passwords to
be specified in a safer way than on the command line even when --no-defaults is used. To create
.mylogin.cnf, use the mysql_config_editor utility. See Section 4.6.6, “mysql_config_editor —
MySQL Configuration Utility”.

For additional information about this and other option-file options, see Section 4.2.2.3, “Command-Line
Options that Affect Option-File Handling”.

• --one-database, -o

Command-Line Format --one-database

Ignore statements except those that occur while the default database is the one named on the command
line. This option is rudimentary and should be used with care. Statement filtering is based only on USE
statements.

Initially, mysql executes statements in the input because specifying a database db_name on the
command line is equivalent to inserting USE db_name at the beginning of the input. Then, for each
USE statement encountered, mysql accepts or rejects following statements depending on whether the
database named is the one on the command line. The content of the statements is immaterial.

Suppose that mysql is invoked to process this set of statements:

DELETE FROM db2.t2;
USE db2;
DROP TABLE db1.t1;
CREATE TABLE db1.t1 (i INT);
USE db1;
INSERT INTO t1 (i) VALUES(1);
CREATE TABLE db2.t1 (j INT);

If the command line is mysql --force --one-database db1, mysql handles the input as follows:

• The DELETE statement is executed because the default database is db1, even though the statement
names a table in a different database.

• The DROP TABLE and CREATE TABLE statements are not executed because the default database is
not db1, even though the statements name a table in db1.

• The INSERT and CREATE TABLE statements are executed because the default database is db1,
even though the CREATE TABLE statement names a table in a different database.

• --pager[=command]

Command-Line Format --pager[=command]

Disabled by skip-pager

Type String

411

mysql — The MySQL Command-Line Client

Use the given command for paging query output. If the command is omitted, the default pager is the
value of your PAGER environment variable. Valid pagers are less, more, cat [> filename], and
so forth. This option works only on Unix and only in interactive mode. To disable paging, use --skip-
pager. Section 4.5.1.2, “mysql Client Commands”, discusses output paging further.

• --password[=password], -p[password]

Command-Line Format --password[=password]

Type String

The password of the MySQL account used for connecting to the server. The password value is optional.
If not given, mysql prompts for one. If given, there must be no space between --password= or -p and
the password following it. If no password option is specified, the default is to send no password.

Specifying a password on the command line should be considered insecure. To avoid giving the
password on the command line, use an option file. See Section 6.1.2.1, “End-User Guidelines for
Password Security”.

To explicitly specify that there is no password and that mysql should not prompt for one, use the --
skip-password option.

• --pipe, -W

Command-Line Format --pipe

Type String

On Windows, connect to the server using a named pipe. This option applies only if the server was
started with the named_pipe system variable enabled to support named-pipe connections. In
addition, the user making the connection must be a member of the Windows group specified by the
named_pipe_full_access_group system variable.

• --plugin-dir=dir_name

Command-Line Format --plugin-dir=dir_name

Type Directory name

The directory in which to look for plugins. Specify this option if the --default-auth option is
used to specify an authentication plugin but mysql does not find it. See Section 6.2.13, “Pluggable
Authentication”.

• --port=port_num, -P port_num

Command-Line Format --port=port_num

Type Numeric

Default Value 3306

For TCP/IP connections, the port number to use.

• --print-defaults

412

mysql — The MySQL Command-Line Client

Command-Line Format --print-defaults

Print the program name and all options that it gets from option files.

For additional information about this and other option-file options, see Section 4.2.2.3, “Command-Line
Options that Affect Option-File Handling”.

• --prompt=format_str

Command-Line Format --prompt=format_str

Type String

Default Value mysql>

Set the prompt to the specified format. The default is mysql>. The special sequences that the prompt
can contain are described in Section 4.5.1.2, “mysql Client Commands”.

• --protocol={TCP|SOCKET|PIPE|MEMORY}

Command-Line Format --protocol=type

Type String

Default Value [see text]

Valid Values TCP

SOCKET

PIPE

MEMORY

The transport protocol to use for connecting to the server. It is useful when the other connection
parameters normally result in use of a protocol other than the one you want. For details on the
permissible values, see Section 4.2.5, “Connection Transport Protocols”.

• --quick, -q

Command-Line Format --quick

Do not cache each query result, print each row as it is received. This may slow down the server if the
output is suspended. With this option, mysql does not use the history file.

By default, mysql fetches all result rows before producing any output; while storing these, it calculates
a running maximum column length from the actual value of each column in succession. When printing
the output, it uses this maximum to format it. When --quick is specified, mysql does not have the
rows for which to calculate the length before starting, and so uses the maximum length. In the following
example, table t1 has a single column of type BIGINT and containing 4 rows. The default output is 9
characters wide; this width is equal the maximum number of characters in any of the column values in
the rows returned (5), plus 2 characters each for the spaces used as padding and the | characters used
as column delimiters). The output when using the --quick option is 25 characters wide; this is equal to
the number of characters needed to represent -9223372036854775808, which is the longest possible

413

mysql — The MySQL Command-Line Client

value that can be stored in a (signed) BIGINT column, or 19 characters, plus the 4 characters used for
padding and column delimiters. The difference can be seen here:

$> mysql -t test -e "SELECT * FROM t1"
+-------+
| c1 |
+-------+
| 100 |
| 1000 |
| 10000 |
| 10 |
+-------+

$> mysql --quick -t test -e "SELECT * FROM t1"
+----------------------+
| c1 |
+----------------------+
| 100 |
| 1000 |
| 10000 |
| 10 |
+----------------------+

• --raw, -r

Command-Line Format --raw

For tabular output, the “boxing” around columns enables one column value to be distinguished from
another. For nontabular output (such as is produced in batch mode or when the --batch or --silent
option is given), special characters are escaped in the output so they can be identified easily. Newline,
tab, NUL, and backslash are written as \n, \t, \0, and \\. The --raw option disables this character
escaping.

The following example demonstrates tabular versus nontabular output and the use of raw mode to
disable escaping:

% mysql
mysql> SELECT CHAR(92);
+----------+
| CHAR(92) |
+----------+
| \ |
+----------+

% mysql -s
mysql> SELECT CHAR(92);
CHAR(92)
\\

% mysql -s -r
mysql> SELECT CHAR(92);
CHAR(92)
\

• --reconnect

Command-Line Format --reconnect

414

mysql — The MySQL Command-Line Client

Disabled by skip-reconnect

If the connection to the server is lost, automatically try to reconnect. A single reconnect attempt is made
each time the connection is lost. To suppress reconnection behavior, use --skip-reconnect.

• --safe-updates, --i-am-a-dummy, -U

Command-Line Format --safe-updates

--i-am-a-dummy

Type Boolean

Default Value FALSE

If this option is enabled, UPDATE and DELETE statements that do not use a key in the WHERE clause or a
LIMIT clause produce an error. In addition, restrictions are placed on SELECT statements that produce
(or are estimated to produce) very large result sets. If you have set this option in an option file, you can
use --skip-safe-updates on the command line to override it. For more information about this option,
see Using Safe-Updates Mode (--safe-updates).

• --secure-auth

Command-Line Format --secure-auth

Deprecated Yes

Do not send passwords to the server in old (pre-4.1) format. This prevents connections except for
servers that use the newer password format.

As of MySQL 5.7.5, this option is deprecated; expect it to be removed in a future MySQL release. It is
always enabled and attempting to disable it (--skip-secure-auth, --secure-auth=0) produces an
error. Before MySQL 5.7.5, this option is enabled by default but can be disabled.

Note

Passwords that use the pre-4.1 hashing method are less secure than passwords
that use the native password hashing method and should be avoided. Pre-4.1
passwords are deprecated and support for them was removed in MySQL 5.7.5.
For account upgrade instructions, see Section 6.4.1.3, “Migrating Away from
Pre-4.1 Password Hashing and the mysql_old_password Plugin”.

• --select-limit=value

Command-Line Format --select-limit=value

Type Numeric

Default Value 1000

The automatic limit for SELECT statements when using --safe-updates. (Default value is 1,000.)

• --server-public-key-path=file_name

Command-Line Format --server-public-key-path=file_name

415

mysql — The MySQL Command-Line Client

Type File name

The path name to a file in PEM format containing a client-side copy of the public key required by the
server for RSA key pair-based password exchange. This option applies to clients that authenticate with
the sha256_password or caching_sha2_password authentication plugin. This option is ignored for
accounts that do not authenticate with one of those plugins. It is also ignored if RSA-based password
exchange is not used, as is the case when the client connects to the server using a secure connection.

If --server-public-key-path=file_name is given and specifies a valid public key file, it takes
precedence over --get-server-public-key.

For sha256_password, this option applies only if MySQL was built using OpenSSL.

For information about the sha256_password and caching_sha2_password plugins, see
Section 6.4.1.5, “SHA-256 Pluggable Authentication”, and Section 6.4.1.4, “Caching SHA-2 Pluggable
Authentication”.

• --shared-memory-base-name=name

Command-Line Format --shared-memory-base-name=name

Platform Specific Windows

On Windows, the shared-memory name to use for connections made using shared memory to a local
server. The default value is MYSQL. The shared-memory name is case-sensitive.

This option applies only if the server was started with the shared_memory system variable enabled to
support shared-memory connections.

• --show-warnings

Command-Line Format --show-warnings

Cause warnings to be shown after each statement if there are any. This option applies to interactive and
batch mode.

• --sigint-ignore

Command-Line Format --sigint-ignore

Ignore SIGINT signals (typically the result of typing Control+C).

Without this option, typing Control+C interrupts the current statement if there is one, or cancels any
partial input line otherwise.

416

mysql — The MySQL Command-Line Client

• --silent, -s

Command-Line Format --silent

Silent mode. Produce less output. This option can be given multiple times to produce less and less
output.

This option results in nontabular output format and escaping of special characters. Escaping may be
disabled by using raw mode; see the description for the --raw option.

• --skip-column-names, -N

Command-Line Format --skip-column-names

Do not write column names in results. Use of this option causes the output to be right-aligned, as shown
here:

$> echo "SELECT * FROM t1" | mysql -t test
+-------+
| c1 |
+-------+
| a,c,d |
| c |
+-------+
$> echo "SELECT * FROM t1" | ./mysql -uroot -Nt test
+-------+
| a,c,d |
| c |
+-------+

• --skip-line-numbers, -L

Command-Line Format --skip-line-numbers

Do not write line numbers for errors. Useful when you want to compare result files that include error
messages.

• --socket=path, -S path

Command-Line Format --socket={file_name|pipe_name}

Type String

For connections to localhost, the Unix socket file to use, or, on Windows, the name of the named pipe
to use.

On Windows, this option applies only if the server was started with the named_pipe system variable
enabled to support named-pipe connections. In addition, the user making the connection must be a
member of the Windows group specified by the named_pipe_full_access_group system variable.

• --ssl*

Options that begin with --ssl specify whether to connect to the server using encryption and indicate
where to find SSL keys and certificates. See Command Options for Encrypted Connections.

417

mysql — The MySQL Command-Line Client

• --syslog, -j

Command-Line Format --syslog

This option causes mysql to send interactive statements to the system logging facility. On Unix, this is
syslog; on Windows, it is the Windows Event Log. The destination where logged messages appear is
system dependent. On Linux, the destination is often the /var/log/messages file.

Here is a sample of output generated on Linux by using --syslog. This output is formatted for
readability; each logged message actually takes a single line.

Mar 7 12:39:25 myhost MysqlClient[20824]:
 SYSTEM_USER:'oscar', MYSQL_USER:'my_oscar', CONNECTION_ID:23,
 DB_SERVER:'127.0.0.1', DB:'--', QUERY:'USE test;'
Mar 7 12:39:28 myhost MysqlClient[20824]:
 SYSTEM_USER:'oscar', MYSQL_USER:'my_oscar', CONNECTION_ID:23,
 DB_SERVER:'127.0.0.1', DB:'test', QUERY:'SHOW TABLES;'

For more information, see Section 4.5.1.3, “mysql Client Logging”.

• --table, -t

Command-Line Format --table

Display output in table format. This is the default for interactive use, but can be used to produce table
output in batch mode.

• --tee=file_name

Command-Line Format --tee=file_name

Type File name

Append a copy of output to the given file. This option works only in interactive mode. Section 4.5.1.2,
“mysql Client Commands”, discusses tee files further.

• --tls-version=protocol_list

Command-Line Format --tls-version=protocol_list

Introduced 5.7.10

Type String

Default Value (≥ 5.7.28) TLSv1,TLSv1.1,TLSv1.2

Default Value (≤ 5.7.27) TLSv1,TLSv1.1,TLSv1.2 (OpenSSL)

TLSv1,TLSv1.1 (yaSSL)

The permissible TLS protocols for encrypted connections. The value is a list of one or more comma-
separated protocol names. The protocols that can be named for this option depend on the SSL library
used to compile MySQL. For details, see Section 6.3.2, “Encrypted Connection TLS Protocols and
Ciphers”.

This option was added in MySQL 5.7.10.

418

mysql — The MySQL Command-Line Client

• --unbuffered, -n

Command-Line Format --unbuffered

Flush the buffer after each query.

• --user=user_name, -u user_name

Command-Line Format --user=user_name

Type String

The user name of the MySQL account to use for connecting to the server.

• --verbose, -v

Command-Line Format --verbose

Verbose mode. Produce more output about what the program does. This option can be given multiple
times to produce more and more output. (For example, -v -v -v produces table output format even in
batch mode.)

• --version, -V

Command-Line Format --version

Display version information and exit.

• --vertical, -E

Command-Line Format --vertical

Print query output rows vertically (one line per column value). Without this option, you can specify
vertical output for individual statements by terminating them with \G.

• --wait, -w

Command-Line Format --wait

If the connection cannot be established, wait and retry instead of aborting.

• --xml, -X

Command-Line Format --xml

Produce XML output.

<field name="column_name">NULL</field>

The output when --xml is used with mysql matches that of mysqldump --xml. See Section 4.5.4,
“mysqldump — A Database Backup Program”, for details.

419

mysql — The MySQL Command-Line Client

The XML output also uses an XML namespace, as shown here:

$> mysql --xml -uroot -e "SHOW VARIABLES LIKE 'version%'"
<?xml version="1.0"?>

<resultset statement="SHOW VARIABLES LIKE 'version%'" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<row>
<field name="Variable_name">version</field>
<field name="Value">5.0.40-debug</field>
</row>

<row>
<field name="Variable_name">version_comment</field>
<field name="Value">Source distribution</field>
</row>

<row>
<field name="Variable_name">version_compile_machine</field>
<field name="Value">i686</field>
</row>

<row>
<field name="Variable_name">version_compile_os</field>
<field name="Value">suse-linux-gnu</field>
</row>
</resultset>

4.5.1.2 mysql Client Commands

mysql sends each SQL statement that you issue to the server to be executed. There is also a set of
commands that mysql itself interprets. For a list of these commands, type help or \h at the mysql>
prompt:

mysql> help

List of all MySQL commands:
Note that all text commands must be first on line and end with ';'
? (\?) Synonym for `help'.
clear (\c) Clear the current input statement.
connect (\r) Reconnect to the server. Optional arguments are db and host.
delimiter (\d) Set statement delimiter.
edit (\e) Edit command with $EDITOR.
ego (\G) Send command to mysql server, display result vertically.
exit (\q) Exit mysql. Same as quit.
go (\g) Send command to mysql server.
help (\h) Display this help.
nopager (\n) Disable pager, print to stdout.
notee (\t) Don't write into outfile.
pager (\P) Set PAGER [to_pager]. Print the query results via PAGER.
print (\p) Print current command.
prompt (\R) Change your mysql prompt.
quit (\q) Quit mysql.
rehash (\#) Rebuild completion hash.
source (\.) Execute an SQL script file. Takes a file name as an argument.
status (\s) Get status information from the server.
system (\!) Execute a system shell command.
tee (\T) Set outfile [to_outfile]. Append everything into given
 outfile.
use (\u) Use another database. Takes database name as argument.
charset (\C) Switch to another charset. Might be needed for processing
 binlog with multi-byte charsets.
warnings (\W) Show warnings after every statement.
nowarning (\w) Don't show warnings after every statement.
resetconnection(\x) Clean session context.

420

mysql — The MySQL Command-Line Client

For server side help, type 'help contents'

If mysql is invoked with the --binary-mode option, all mysql commands are disabled except charset
and delimiter in noninteractive mode (for input piped to mysql or loaded using the source command).

Each command has both a long and short form. The long form is not case-sensitive; the short form is. The
long form can be followed by an optional semicolon terminator, but the short form should not.

The use of short-form commands within multiple-line /* ... */ comments is not supported. Short-form
commands do work within single-line /*! ... */ version comments, as do /*+ ... */ optimizer-hint
comments, which are stored in object definitions. If there is a concern that optimizer-hint comments may be
stored in object definitions so that dump files when reloaded with mysql would result in execution of such
commands, either invoke mysql with the --binary-mode option or use a reload client other than mysql.

• help [arg], \h [arg], \? [arg], ? [arg]

Display a help message listing the available mysql commands.

If you provide an argument to the help command, mysql uses it as a search string to access server-
side help from the contents of the MySQL Reference Manual. For more information, see Section 4.5.1.4,
“mysql Client Server-Side Help”.

• charset charset_name, \C charset_name

Change the default character set and issue a SET NAMES statement. This enables the character set to
remain synchronized on the client and server if mysql is run with auto-reconnect enabled (which is not
recommended), because the specified character set is used for reconnects.

• clear, \c

Clear the current input. Use this if you change your mind about executing the statement that you are
entering.

• connect [db_name [host_name]], \r [db_name [host_name]]

Reconnect to the server. The optional database name and host name arguments may be given to
specify the default database or the host where the server is running. If omitted, the current values are
used.

• delimiter str, \d str

Change the string that mysql interprets as the separator between SQL statements. The default is the
semicolon character (;).

The delimiter string can be specified as an unquoted or quoted argument on the delimiter command
line. Quoting can be done with either single quote ('), double quote ("), or backtick (`) characters.
To include a quote within a quoted string, either quote the string with a different quote character or
escape the quote with a backslash (\) character. Backslash should be avoided outside of quoted strings
because it is the escape character for MySQL. For an unquoted argument, the delimiter is read up to the
first space or end of line. For a quoted argument, the delimiter is read up to the matching quote on the
line.

mysql interprets instances of the delimiter string as a statement delimiter anywhere it occurs, except
within quoted strings. Be careful about defining a delimiter that might occur within other words. For
example, if you define the delimiter as X, it is not possible to use the word INDEX in statements. mysql
interprets this as INDE followed by the delimiter X.

421

mysql — The MySQL Command-Line Client

When the delimiter recognized by mysql is set to something other than the default of ;, instances of
that character are sent to the server without interpretation. However, the server itself still interprets ; as
a statement delimiter and processes statements accordingly. This behavior on the server side comes
into play for multiple-statement execution (see Multiple Statement Execution Support), and for parsing
the body of stored procedures and functions, triggers, and events (see Section 23.1, “Defining Stored
Programs”).

• edit, \e

Edit the current input statement. mysql checks the values of the EDITOR and VISUAL environment
variables to determine which editor to use. The default editor is vi if neither variable is set.

The edit command works only in Unix.

• ego, \G

Send the current statement to the server to be executed and display the result using vertical format.

• exit, \q

Exit mysql.

• go, \g

Send the current statement to the server to be executed.

• nopager, \n

Disable output paging. See the description for pager.

The nopager command works only in Unix.

• notee, \t

Disable output copying to the tee file. See the description for tee.

• nowarning, \w

Disable display of warnings after each statement.

• pager [command], \P [command]

Enable output paging. By using the --pager option when you invoke mysql, it is possible to browse or
search query results in interactive mode with Unix programs such as less, more, or any other similar
program. If you specify no value for the option, mysql checks the value of the PAGER environment
variable and sets the pager to that. Pager functionality works only in interactive mode.

Output paging can be enabled interactively with the pager command and disabled with nopager. The
command takes an optional argument; if given, the paging program is set to that. With no argument, the
pager is set to the pager that was set on the command line, or stdout if no pager was specified.

Output paging works only in Unix because it uses the popen() function, which does not exist on
Windows. For Windows, the tee option can be used instead to save query output, although it is not as
convenient as pager for browsing output in some situations.

• print, \p

Print the current input statement without executing it.

422

https://dev.mysql.com/doc/c-api/5.7/en/c-api-multiple-queries.html

mysql — The MySQL Command-Line Client

• prompt [str], \R [str]

Reconfigure the mysql prompt to the given string. The special character sequences that can be used in
the prompt are described later in this section.

If you specify the prompt command with no argument, mysql resets the prompt to the default of
mysql>.

• quit, \q

Exit mysql.

• rehash, \#

Rebuild the completion hash that enables database, table, and column name completion while you are
entering statements. (See the description for the --auto-rehash option.)

• resetconnection, \x

Reset the connection to clear the session state.

Resetting a connection has effects similar to mysql_change_user() or an auto-reconnect
except that the connection is not closed and reopened, and re-authentication is not done. See
mysql_change_user(), and Automatic Reconnection Control.

This example shows how resetconnection clears a value maintained in the session state:

mysql> SELECT LAST_INSERT_ID(3);
+-------------------+
| LAST_INSERT_ID(3) |
+-------------------+
| 3 |
+-------------------+

mysql> SELECT LAST_INSERT_ID();
+------------------+
| LAST_INSERT_ID() |
+------------------+
| 3 |
+------------------+

mysql> resetconnection;

mysql> SELECT LAST_INSERT_ID();
+------------------+
| LAST_INSERT_ID() |
+------------------+
| 0 |
+------------------+

• source file_name, \. file_name

Read the named file and executes the statements contained therein. On Windows, specify path name
separators as / or \\.

Quote characters are taken as part of the file name itself. For best results, the name should not include
space characters.

423

https://dev.mysql.com/doc/c-api/5.7/en/mysql-change-user.html
https://dev.mysql.com/doc/c-api/5.7/en/mysql-change-user.html
https://dev.mysql.com/doc/c-api/5.7/en/c-api-auto-reconnect.html

mysql — The MySQL Command-Line Client

• status, \s

Provide status information about the connection and the server you are using. If you are running with --
safe-updates enabled, status also prints the values for the mysql variables that affect your queries.

• system command, \! command

Execute the given command using your default command interpreter.

The system command works only in Unix.

• tee [file_name], \T [file_name]

By using the --tee option when you invoke mysql, you can log statements and their output. All the
data displayed on the screen is appended into a given file. This can be very useful for debugging
purposes also. mysql flushes results to the file after each statement, just before it prints its next prompt.
Tee functionality works only in interactive mode.

You can enable this feature interactively with the tee command. Without a parameter, the previous file is
used. The tee file can be disabled with the notee command. Executing tee again re-enables logging.

• use db_name, \u db_name

Use db_name as the default database.

• warnings, \W

Enable display of warnings after each statement (if there are any).

Here are a few tips about the pager command:

• You can use it to write to a file and the results go only to the file:

mysql> pager cat > /tmp/log.txt

You can also pass any options for the program that you want to use as your pager:

mysql> pager less -n -i -S

• In the preceding example, note the -S option. You may find it very useful for browsing wide query
results. Sometimes a very wide result set is difficult to read on the screen. The -S option to less can
make the result set much more readable because you can scroll it horizontally using the left-arrow and
right-arrow keys. You can also use -S interactively within less to switch the horizontal-browse mode on
and off. For more information, read the less manual page:

man less

• The -F and -X options may be used with less to cause it to exit if output fits on one screen, which is
convenient when no scrolling is necessary:

mysql> pager less -n -i -S -F -X

• You can specify very complex pager commands for handling query output:

mysql> pager cat | tee /dr1/tmp/res.txt \
 | tee /dr2/tmp/res2.txt | less -n -i -S

In this example, the command would send query results to two files in two different directories on two
different file systems mounted on /dr1 and /dr2, yet still display the results onscreen using less.

424

mysql — The MySQL Command-Line Client

You can also combine the tee and pager functions. Have a tee file enabled and pager set to less, and
you are able to browse the results using the less program and still have everything appended into a file
the same time. The difference between the Unix tee used with the pager command and the mysql built-
in tee command is that the built-in tee works even if you do not have the Unix tee available. The built-
in tee also logs everything that is printed on the screen, whereas the Unix tee used with pager does not
log quite that much. Additionally, tee file logging can be turned on and off interactively from within mysql.
This is useful when you want to log some queries to a file, but not others.

The prompt command reconfigures the default mysql> prompt. The string for defining the prompt can
contain the following special sequences.

Option Description

\C The current connection identifier

\c A counter that increments for each statement you
issue

\D The full current date

\d The default database

\h The server host

\l The current delimiter

\m Minutes of the current time

\n A newline character

\O The current month in three-letter format (Jan, Feb,
…)

\o The current month in numeric format

\P am/pm

\p The current TCP/IP port or socket file

\R The current time, in 24-hour military time (0–23)

\r The current time, standard 12-hour time (1–12)

\S Semicolon

\s Seconds of the current time

\t A tab character

\U Your full user_name@host_name account name

\u Your user name

\v The server version

\w The current day of the week in three-letter format
(Mon, Tue, …)

\Y The current year, four digits

\y The current year, two digits

_ A space

\ A space (a space follows the backslash)

\' Single quote

\" Double quote

\\ A literal \ backslash character

425

mysql — The MySQL Command-Line Client

Option Description

\x x, for any “x” not listed above

You can set the prompt in several ways:

• Use an environment variable. You can set the MYSQL_PS1 environment variable to a prompt string. For
example:

export MYSQL_PS1="(\u@\h) [\d]> "

• Use a command-line option. You can set the --prompt option on the command line to mysql. For
example:

$> mysql --prompt="(\u@\h) [\d]> "
(user@host) [database]>

• Use an option file. You can set the prompt option in the [mysql] group of any MySQL option file, such
as /etc/my.cnf or the .my.cnf file in your home directory. For example:

[mysql]
prompt=(\\u@\\h) [\\d]>_

In this example, note that the backslashes are doubled. If you set the prompt using the prompt option in
an option file, it is advisable to double the backslashes when using the special prompt options. There is
some overlap in the set of permissible prompt options and the set of special escape sequences that are
recognized in option files. (The rules for escape sequences in option files are listed in Section 4.2.2.2,
“Using Option Files”.) The overlap may cause you problems if you use single backslashes. For example,
\s is interpreted as a space rather than as the current seconds value. The following example shows how
to define a prompt within an option file to include the current time in hh:mm:ss> format:

[mysql]
prompt="\\r:\\m:\\s> "

• Set the prompt interactively. You can change your prompt interactively by using the prompt (or \R)
command. For example:

mysql> prompt (\u@\h) [\d]>_
PROMPT set to '(\u@\h) [\d]>_'
(user@host) [database]>
(user@host) [database]> prompt
Returning to default PROMPT of mysql>
mysql>

4.5.1.3 mysql Client Logging

The mysql client can do these types of logging for statements executed interactively:

• On Unix, mysql writes the statements to a history file. By default, this file is named .mysql_history
in your home directory. To specify a different file, set the value of the MYSQL_HISTFILE environment
variable.

• On all platforms, if the --syslog option is given, mysql writes the statements to the system logging
facility. On Unix, this is syslog; on Windows, it is the Windows Event Log. The destination where
logged messages appear is system dependent. On Linux, the destination is often the /var/log/
messages file.

The following discussion describes characteristics that apply to all logging types and provides information
specific to each logging type.

426

mysql — The MySQL Command-Line Client

• How Logging Occurs

• Controlling the History File

• syslog Logging Characteristics

How Logging Occurs

For each enabled logging destination, statement logging occurs as follows:

• Statements are logged only when executed interactively. Statements are noninteractive, for example,
when read from a file or a pipe. It is also possible to suppress statement logging by using the --batch
or --execute option.

• Statements are ignored and not logged if they match any pattern in the “ignore” list. This list is described
later.

• mysql logs each nonignored, nonempty statement line individually.

• If a nonignored statement spans multiple lines (not including the terminating delimiter), mysql
concatenates the lines to form the complete statement, maps newlines to spaces, and logs the result,
plus a delimiter.

Consequently, an input statement that spans multiple lines can be logged twice. Consider this input:

mysql> SELECT
 -> 'Today is'
 -> ,
 -> CURDATE()
 -> ;

In this case, mysql logs the “SELECT”, “'Today is'”, “,”, “CURDATE()”, and “;” lines as it reads them. It
also logs the complete statement, after mapping SELECT\n'Today is'\n,\nCURDATE() to SELECT
'Today is' , CURDATE(), plus a delimiter. Thus, these lines appear in logged output:

SELECT
'Today is'
,
CURDATE()
;
SELECT 'Today is' , CURDATE();

mysql ignores for logging purposes statements that match any pattern in the “ignore” list. By default, the
pattern list is "*IDENTIFIED*:*PASSWORD*", to ignore statements that refer to passwords. Pattern
matching is not case-sensitive. Within patterns, two characters are special:

• ? matches any single character.

• * matches any sequence of zero or more characters.

To specify additional patterns, use the --histignore option or set the MYSQL_HISTIGNORE
environment variable. (If both are specified, the option value takes precedence.) The value should be a list
of one or more colon-separated patterns, which are appended to the default pattern list.

Patterns specified on the command line might need to be quoted or escaped to prevent your command
interpreter from treating them specially. For example, to suppress logging for UPDATE and DELETE
statements in addition to statements that refer to passwords, invoke mysql like this:

mysql --histignore="*UPDATE*:*DELETE*"

427

mysql — The MySQL Command-Line Client

Controlling the History File

The .mysql_history file should be protected with a restrictive access mode because sensitive
information might be written to it, such as the text of SQL statements that contain passwords. See
Section 6.1.2.1, “End-User Guidelines for Password Security”. Statements in the file are accessible from
the mysql client when the up-arrow key is used to recall the history. See Disabling Interactive History.

If you do not want to maintain a history file, first remove .mysql_history if it exists. Then use either of
the following techniques to prevent it from being created again:

• Set the MYSQL_HISTFILE environment variable to /dev/null. To cause this setting to take effect each
time you log in, put it in one of your shell's startup files.

• Create .mysql_history as a symbolic link to /dev/null; this need be done only once:

ln -s /dev/null $HOME/.mysql_history

syslog Logging Characteristics

If the --syslog option is given, mysql writes interactive statements to the system logging facility.
Message logging has the following characteristics.

Logging occurs at the “information” level. This corresponds to the LOG_INFO priority for syslog on Unix/
Linux syslog capability and to EVENTLOG_INFORMATION_TYPE for the Windows Event Log. Consult
your system documentation for configuration of your logging capability.

Message size is limited to 1024 bytes.

Messages consist of the identifier MysqlClient followed by these values:

• SYSTEM_USER

The operating system user name (login name) or -- if the user is unknown.

• MYSQL_USER

The MySQL user name (specified with the --user option) or -- if the user is unknown.

• CONNECTION_ID:

The client connection identifier. This is the same as the CONNECTION_ID() function value within the
session.

• DB_SERVER

The server host or -- if the host is unknown.

• DB

The default database or -- if no database has been selected.

• QUERY

The text of the logged statement.

Here is a sample of output generated on Linux by using --syslog. This output is formatted for readability;
each logged message actually takes a single line.

Mar 7 12:39:25 myhost MysqlClient[20824]:
 SYSTEM_USER:'oscar', MYSQL_USER:'my_oscar', CONNECTION_ID:23,

428

mysql — The MySQL Command-Line Client

 DB_SERVER:'127.0.0.1', DB:'--', QUERY:'USE test;'
Mar 7 12:39:28 myhost MysqlClient[20824]:
 SYSTEM_USER:'oscar', MYSQL_USER:'my_oscar', CONNECTION_ID:23,
 DB_SERVER:'127.0.0.1', DB:'test', QUERY:'SHOW TABLES;'

4.5.1.4 mysql Client Server-Side Help

mysql> help search_string

If you provide an argument to the help command, mysql uses it as a search string to access server-side
help from the contents of the MySQL Reference Manual. The proper operation of this command requires
that the help tables in the mysql database be initialized with help topic information (see Section 5.1.14,
“Server-Side Help Support”).

If there is no match for the search string, the search fails:

mysql> help me

Nothing found
Please try to run 'help contents' for a list of all accessible topics

Use help contents to see a list of the help categories:

mysql> help contents
You asked for help about help category: "Contents"
For more information, type 'help <item>', where <item> is one of the
following categories:
 Account Management
 Administration
 Data Definition
 Data Manipulation
 Data Types
 Functions
 Functions and Modifiers for Use with GROUP BY
 Geographic Features
 Language Structure
 Plugins
 Storage Engines
 Stored Routines
 Table Maintenance
 Transactions
 Triggers

If the search string matches multiple items, mysql shows a list of matching topics:

mysql> help logs
Many help items for your request exist.
To make a more specific request, please type 'help <item>',
where <item> is one of the following topics:
 SHOW
 SHOW BINARY LOGS
 SHOW ENGINE
 SHOW LOGS

Use a topic as the search string to see the help entry for that topic:

mysql> help show binary logs
Name: 'SHOW BINARY LOGS'
Description:
Syntax:
SHOW BINARY LOGS
SHOW MASTER LOGS

Lists the binary log files on the server. This statement is used as
part of the procedure described in [purge-binary-logs], that shows how
to determine which logs can be purged.

429

mysql — The MySQL Command-Line Client

mysql> SHOW BINARY LOGS;
+---------------+-----------+
| Log_name | File_size |
+---------------+-----------+
| binlog.000015 | 724935 |
| binlog.000016 | 733481 |
+---------------+-----------+

The search string can contain the wildcard characters % and _. These have the same meaning as for
pattern-matching operations performed with the LIKE operator. For example, HELP rep% returns a list of
topics that begin with rep:

mysql> HELP rep%
Many help items for your request exist.
To make a more specific request, please type 'help <item>',
where <item> is one of the following
topics:
 REPAIR TABLE
 REPEAT FUNCTION
 REPEAT LOOP
 REPLACE
 REPLACE FUNCTION

4.5.1.5 Executing SQL Statements from a Text File

The mysql client typically is used interactively, like this:

mysql db_name

However, it is also possible to put your SQL statements in a file and then tell mysql to read its input from
that file. To do so, create a text file text_file that contains the statements you wish to execute. Then
invoke mysql as shown here:

mysql db_name < text_file

If you place a USE db_name statement as the first statement in the file, it is unnecessary to specify the
database name on the command line:

mysql < text_file

If you are already running mysql, you can execute an SQL script file using the source command or \.
command:

mysql> source file_name
mysql> \. file_name

Sometimes you may want your script to display progress information to the user. For this you can insert
statements like this:

SELECT '<info_to_display>' AS ' ';

The statement shown outputs <info_to_display>.

You can also invoke mysql with the --verbose option, which causes each statement to be displayed
before the result that it produces.

mysql ignores Unicode byte order mark (BOM) characters at the beginning of input files. Previously, it
read them and sent them to the server, resulting in a syntax error. Presence of a BOM does not cause
mysql to change its default character set. To do that, invoke mysql with an option such as --default-
character-set=utf8.

For more information about batch mode, see Section 3.5, “Using mysql in Batch Mode”.

430

mysql — The MySQL Command-Line Client

4.5.1.6 mysql Client Tips

This section provides information about techniques for more effective use of mysql and about mysql
operational behavior.

• Input-Line Editing

• Disabling Interactive History

• Unicode Support on Windows

• Displaying Query Results Vertically

• Using Safe-Updates Mode (--safe-updates)

• Disabling mysql Auto-Reconnect

• mysql Client Parser Versus Server Parser

Input-Line Editing

mysql supports input-line editing, which enables you to modify the current input line in place or recall
previous input lines. For example, the left-arrow and right-arrow keys move horizontally within the current
input line, and the up-arrow and down-arrow keys move up and down through the set of previously
entered lines. Backspace deletes the character before the cursor and typing new characters enters them
at the cursor position. To enter the line, press Enter.

On Windows, the editing key sequences are the same as supported for command editing in console
windows. On Unix, the key sequences depend on the input library used to build mysql (for example, the
libedit or readline library).

Documentation for the libedit and readline libraries is available online. To change the set of key
sequences permitted by a given input library, define key bindings in the library startup file. This is a file in
your home directory: .editrc for libedit and .inputrc for readline.

For example, in libedit, Control+W deletes everything before the current cursor position and Control
+U deletes the entire line. In readline, Control+W deletes the word before the cursor and Control
+U deletes everything before the current cursor position. If mysql was built using libedit, a user who
prefers the readline behavior for these two keys can put the following lines in the .editrc file (creating
the file if necessary):

bind "^W" ed-delete-prev-word
bind "^U" vi-kill-line-prev

To see the current set of key bindings, temporarily put a line that says only bind at the end of .editrc.
Then mysql shows the bindings when it starts.

Disabling Interactive History

The up-arrow key enables you to recall input lines from current and previous sessions. In cases where
a console is shared, this behavior may be unsuitable. mysql supports disabling the interactive history
partially or fully, depending on the host platform.

On Windows, the history is stored in memory. Alt+F7 deletes all input lines stored in memory for the
current history buffer. It also deletes the list of sequential numbers in front of the input lines displayed with
F7 and recalled (by number) with F9. New input lines entered after you press Alt+F7 repopulate the current
history buffer. Clearing the buffer does not prevent logging to the Windows Event Viewer, if the --syslog
option was used to start mysql. Closing the console window also clears the current history buffer.

431

mysql — The MySQL Command-Line Client

To disable interactive history on Unix, first delete the .mysql_history file, if it exists (previous entries
are recalled otherwise). Then start mysql with the --histignore="*" option to ignore all new input
lines. To re-enable the recall (and logging) behavior, restart mysql without the option.

If you prevent the .mysql_history file from being created (see Controlling the History File) and use
--histignore="*" to start the mysql client, the interactive history recall facility is disabled fully.
Alternatively, if you omit the --histignore option, you can recall the input lines entered during the
current session.

Unicode Support on Windows

Windows provides APIs based on UTF-16LE for reading from and writing to the console; the mysql client
for Windows is able to use these APIs. The Windows installer creates an item in the MySQL menu named
MySQL command line client - Unicode. This item invokes the mysql client with properties set to
communicate through the console to the MySQL server using Unicode.

To take advantage of this support manually, run mysql within a console that uses a compatible Unicode
font and set the default character set to a Unicode character set that is supported for communication with
the server:

1. Open a console window.

2. Go to the console window properties, select the font tab, and choose Lucida Console or some other
compatible Unicode font. This is necessary because console windows start by default using a DOS
raster font that is inadequate for Unicode.

3. Execute mysql.exe with the --default-character-set=utf8 (or utf8mb4) option. This option
is necessary because utf16le is one of the character sets that cannot be used as the client character
set. See Impermissible Client Character Sets.

With those changes, mysql can use the Windows APIs to communicate with the console using UTF-16LE,
and communicate with the server using UTF-8. (The menu item mentioned previously sets the font and
character set as just described.)

To avoid those steps each time you run mysql, you can create a shortcut that invokes mysql.exe. The
shortcut should set the console font to Lucida Console or some other compatible Unicode font, and pass
the --default-character-set=utf8 (or utf8mb4) option to mysql.exe.

Alternatively, create a shortcut that only sets the console font, and set the character set in the [mysql]
group of your my.ini file:

[mysql]
default-character-set=utf8

Displaying Query Results Vertically

Some query results are much more readable when displayed vertically, instead of in the usual horizontal
table format. Queries can be displayed vertically by terminating the query with \G instead of a semicolon.
For example, longer text values that include newlines often are much easier to read with vertical output:

mysql> SELECT * FROM mails WHERE LENGTH(txt) < 300 LIMIT 300,1\G
*************************** 1. row ***************************
 msg_nro: 3068
 date: 2000-03-01 23:29:50
time_zone: +0200
mail_from: Jones
 reply: jones@example.com
 mail_to: "John Smith" <smith@example.com>
 sbj: UTF-8

432

mysql — The MySQL Command-Line Client

 txt: >>>>> "John" == John Smith writes:

John> Hi. I think this is a good idea. Is anyone familiar
John> with UTF-8 or Unicode? Otherwise, I'll put this on my
John> TODO list and see what happens.

Yes, please do that.

Regards,
Jones
 file: inbox-jani-1
 hash: 190402944
1 row in set (0.09 sec)

Using Safe-Updates Mode (--safe-updates)

For beginners, a useful startup option is --safe-updates (or --i-am-a-dummy, which has the same
effect). Safe-updates mode is helpful for cases when you might have issued an UPDATE or DELETE
statement but forgotten the WHERE clause indicating which rows to modify. Normally, such statements
update or delete all rows in the table. With --safe-updates, you can modify rows only by specifying
the key values that identify them, or a LIMIT clause, or both. This helps prevent accidents. Safe-updates
mode also restricts SELECT statements that produce (or are estimated to produce) very large result sets.

The --safe-updates option causes mysql to execute the following statement when it connects to
the MySQL server, to set the session values of the sql_safe_updates, sql_select_limit, and
max_join_size system variables:

SET sql_safe_updates=1, sql_select_limit=1000, max_join_size=1000000;

The SET statement affects statement processing as follows:

• Enabling sql_safe_updates causes UPDATE and DELETE statements to produce an error if they do
not specify a key constraint in the WHERE clause, or provide a LIMIT clause, or both. For example:

UPDATE tbl_name SET not_key_column=val WHERE key_column=val;

UPDATE tbl_name SET not_key_column=val LIMIT 1;

• Setting sql_select_limit to 1,000 causes the server to limit all SELECT result sets to 1,000 rows
unless the statement includes a LIMIT clause.

• Setting max_join_size to 1,000,000 causes multiple-table SELECT statements to produce an error if
the server estimates it must examine more than 1,000,000 row combinations.

To specify result set limits different from 1,000 and 1,000,000, you can override the defaults by using the
--select-limit and --max-join-size options when you invoke mysql:

mysql --safe-updates --select-limit=500 --max-join-size=10000

It is possible for UPDATE and DELETE statements to produce an error in safe-updates mode even with a
key specified in the WHERE clause, if the optimizer decides not to use the index on the key column:

• Range access on the index cannot be used if memory usage exceeds that permitted by the
range_optimizer_max_mem_size system variable. The optimizer then falls back to a table scan.
See Limiting Memory Use for Range Optimization.

• If key comparisons require type conversion, the index may not be used (see Section 8.3.1, “How MySQL
Uses Indexes”). Suppose that an indexed string column c1 is compared to a numeric value using WHERE
c1 = 2222. For such comparisons, the string value is converted to a number and the operands are
compared numerically (see Section 12.3, “Type Conversion in Expression Evaluation”), preventing use
of the index. If safe-updates mode is enabled, an error occurs.

433

mysql — The MySQL Command-Line Client

As of MySQL 5.7.25, safe-updates mode also includes these behaviors:

• EXPLAIN with UPDATE and DELETE statements does not produce safe-updates errors. This enables use
of EXPLAIN plus SHOW WARNINGS to see why an index is not used, which can be helpful in cases such
as when a range_optimizer_max_mem_size violation or type conversion occurs and the optimizer
does not use an index even though a key column was specified in the WHERE clause.

• When a safe-updates error occurs, the error message includes the first diagnostic that was produced,
to provide information about the reason for failure. For example, the message may indicate that the
range_optimizer_max_mem_size value was exceeded or type conversion occurred, either of which
can preclude use of an index.

• For multiple-table deletes and updates, an error is produced with safe updates enabled only if any target
table uses a table scan.

Disabling mysql Auto-Reconnect

If the mysql client loses its connection to the server while sending a statement, it immediately and
automatically tries to reconnect once to the server and send the statement again. However, even if mysql
succeeds in reconnecting, your first connection has ended and all your previous session objects and
settings are lost: temporary tables, the autocommit mode, and user-defined and session variables. Also,
any current transaction rolls back. This behavior may be dangerous for you, as in the following example
where the server was shut down and restarted between the first and second statements without you
knowing it:

mysql> SET @a=1;
Query OK, 0 rows affected (0.05 sec)

mysql> INSERT INTO t VALUES(@a);
ERROR 2006: MySQL server has gone away
No connection. Trying to reconnect...
Connection id: 1
Current database: test

Query OK, 1 row affected (1.30 sec)

mysql> SELECT * FROM t;
+------+
| a |
+------+
| NULL |
+------+
1 row in set (0.05 sec)

The @a user variable has been lost with the connection, and after the reconnection it is undefined. If it is
important to have mysql terminate with an error if the connection has been lost, you can start the mysql
client with the --skip-reconnect option.

For more information about auto-reconnect and its effect on state information when a reconnection occurs,
see Automatic Reconnection Control.

mysql Client Parser Versus Server Parser

The mysql client uses a parser on the client side that is not a duplicate of the complete parser used by
the mysqld server on the server side. This can lead to differences in treatment of certain constructs.
Examples:

• The server parser treats strings delimited by " characters as identifiers rather than as plain strings if the
ANSI_QUOTES SQL mode is enabled.

434

https://dev.mysql.com/doc/c-api/5.7/en/c-api-auto-reconnect.html

mysqladmin — A MySQL Server Administration Program

The mysql client parser does not take the ANSI_QUOTES SQL mode into account. It treats strings
delimited by ", ', and ` characters the same, regardless of whether ANSI_QUOTES is enabled.

• Within /*! ... */ comments, the mysql client parser interprets short-form mysql commands. The
server parser does not interpret them because these commands have no meaning on the server side.

If it is desirable for mysql not to interpret short-form commands within comments, a partial workaround
is to use the --binary-mode option, which causes all mysql commands to be disabled except \C and
\d in noninteractive mode (for input piped to mysql or loaded using the source command).

4.5.2 mysqladmin — A MySQL Server Administration Program

mysqladmin is a client for performing administrative operations. You can use it to check the server's
configuration and current status, to create and drop databases, and more.

Invoke mysqladmin like this:

mysqladmin [options] command [command-arg] [command [command-arg]] ...

mysqladmin supports the following commands. Some of the commands take an argument following the
command name.

• create db_name

Create a new database named db_name.

• debug

Tell the server to write debug information to the error log. The connected user must have the SUPER
privilege. Format and content of this information is subject to change.

This includes information about the Event Scheduler. See Section 23.4.5, “Event Scheduler Status”.

• drop db_name

Delete the database named db_name and all its tables.

• extended-status

Display the server status variables and their values.

• flush-hosts

Flush all information in the host cache. See Section 5.1.11.2, “DNS Lookups and the Host Cache”.

• flush-logs [log_type ...]

Flush all logs.

The mysqladmin flush-logs command permits optional log types to be given, to specify which logs
to flush. Following the flush-logs command, you can provide a space-separated list of one or more of
the following log types: binary, engine, error, general, relay, slow. These correspond to the log
types that can be specified for the FLUSH LOGS SQL statement.

• flush-privileges

Reload the grant tables (same as reload).

• flush-status

435

mysqladmin — A MySQL Server Administration Program

Clear status variables.

• flush-tables

Flush all tables.

• flush-threads

Flush the thread cache.

• kill id,id,...

Kill server threads. If multiple thread ID values are given, there must be no spaces in the list.

To kill threads belonging to other users, the connected user must have the SUPER privilege.

• old-password new_password

This is like the password command but stores the password using the old (pre-4.1) password-hashing
format. (See Section 6.1.2.4, “Password Hashing in MySQL”.)

This command was removed in MySQL 5.7.5.

• password new_password

Set a new password. This changes the password to new_password for the account that you use with
mysqladmin for connecting to the server. Thus, the next time you invoke mysqladmin (or any other
client program) using the same account, you must specify the new password.

Warning

Setting a password using mysqladmin should be considered insecure. On some
systems, your password becomes visible to system status programs such as ps
that may be invoked by other users to display command lines. MySQL clients
typically overwrite the command-line password argument with zeros during their
initialization sequence. However, there is still a brief interval during which the
value is visible. Also, on some systems this overwriting strategy is ineffective and
the password remains visible to ps. (SystemV Unix systems and perhaps others
are subject to this problem.)

If the new_password value contains spaces or other characters that are special to your command
interpreter, you need to enclose it within quotation marks. On Windows, be sure to use double quotation
marks rather than single quotation marks; single quotation marks are not stripped from the password, but
rather are interpreted as part of the password. For example:

mysqladmin password "my new password"

The new password can be omitted following the password command. In this case, mysqladmin
prompts for the password value, which enables you to avoid specifying the password on the command
line. Omitting the password value should be done only if password is the final command on the
mysqladmin command line. Otherwise, the next argument is taken as the password.

Caution

Do not use this command used if the server was started with the --skip-
grant-tables option. No password change is applied. This is true even if
you precede the password command with flush-privileges on the same

436

mysqladmin — A MySQL Server Administration Program

command line to re-enable the grant tables because the flush operation occurs
after you connect. However, you can use mysqladmin flush-privileges
to re-enable the grant table and then use a separate mysqladmin password
command to change the password.

• ping

Check whether the server is available. The return status from mysqladmin is 0 if the server is running,
1 if it is not. This is 0 even in case of an error such as Access denied, because this means that the
server is running but refused the connection, which is different from the server not running.

• processlist

Show a list of active server threads. This is like the output of the SHOW PROCESSLIST statement.
If the --verbose option is given, the output is like that of SHOW FULL PROCESSLIST. (See
Section 13.7.5.29, “SHOW PROCESSLIST Statement”.)

• reload

Reload the grant tables.

• refresh

Flush all tables and close and open log files.

• shutdown

Stop the server.

• start-slave

Start replication on a replica server.

• status

Display a short server status message.

• stop-slave

Stop replication on a replica server.

• variables

Display the server system variables and their values.

• version

Display version information from the server.

All commands can be shortened to any unique prefix. For example:

$> mysqladmin proc stat
+----+-------+-----------+----+---------+------+-------+------------------+
| Id | User | Host | db | Command | Time | State | Info |
+----+-------+-----------+----+---------+------+-------+------------------+
| 51 | jones | localhost | | Query | 0 | | show processlist |
+----+-------+-----------+----+---------+------+-------+------------------+
Uptime: 1473624 Threads: 1 Questions: 39487
Slow queries: 0 Opens: 541 Flush tables: 1
Open tables: 19 Queries per second avg: 0.0268

437

mysqladmin — A MySQL Server Administration Program

The mysqladmin status command result displays the following values:

• Uptime

The number of seconds the MySQL server has been running.

• Threads

The number of active threads (clients).

• Questions

The number of questions (queries) from clients since the server was started.

• Slow queries

The number of queries that have taken more than long_query_time seconds. See Section 5.4.5, “The
Slow Query Log”.

• Opens

The number of tables the server has opened.

• Flush tables

The number of flush-*, refresh, and reload commands the server has executed.

• Open tables

The number of tables that currently are open.

If you execute mysqladmin shutdown when connecting to a local server using a Unix socket file,
mysqladmin waits until the server's process ID file has been removed, to ensure that the server has
stopped properly.

mysqladmin supports the following options, which can be specified on the command line or in the
[mysqladmin] and [client] groups of an option file. For information about option files used by MySQL
programs, see Section 4.2.2.2, “Using Option Files”.

Table 4.14 mysqladmin Options

Option Name Description Introduced Deprecated

--bind-address Use specified network
interface to connect to
MySQL Server

--character-sets-dir Directory where
character sets can be
found

--compress Compress all information
sent between client and
server

--connect-timeout Number of seconds
before connection
timeout

--count Number of iterations
to make for repeated
command execution

438

mysqladmin — A MySQL Server Administration Program

Option Name Description Introduced Deprecated

--debug Write debugging log

--debug-check Print debugging
information when
program exits

--debug-info Print debugging
information, memory,
and CPU statistics when
program exits

--default-auth Authentication plugin to
use

--default-character-set Specify default character
set

--defaults-extra-file Read named option file in
addition to usual option
files

--defaults-file Read only named option
file

--defaults-group-suffix Option group suffix value

--enable-cleartext-plugin Enable cleartext
authentication plugin

--force Continue even if an SQL
error occurs

--get-server-public-key Request RSA public key
from server

5.7.23

--help Display help message
and exit

--host Host on which MySQL
server is located

--login-path Read login path options
from .mylogin.cnf

--no-beep Do not beep when errors
occur

--no-defaults Read no option files

--password Password to use when
connecting to server

--pipe Connect to server using
named pipe (Windows
only)

--plugin-dir Directory where plugins
are installed

--port TCP/IP port number for
connection

--print-defaults Print default options

--protocol Transport protocol to use

439

mysqladmin — A MySQL Server Administration Program

Option Name Description Introduced Deprecated

--relative Show the difference
between the current and
previous values when
used with the --sleep
option

--secure-auth Do not send passwords
to server in old (pre-4.1)
format

Yes

--server-public-key-path Path name to file
containing RSA public
key

5.7.23

--shared-memory-base-
name

Shared-memory name
for shared-memory
connections (Windows
only)

--show-warnings Show warnings after
statement execution

--shutdown-timeout The maximum number of
seconds to wait for server
shutdown

--silent Silent mode

--sleep Execute commands
repeatedly, sleeping
for delay seconds in
between

--socket Unix socket file or
Windows named pipe to
use

--ssl Enable connection
encryption

--ssl-ca File that contains list of
trusted SSL Certificate
Authorities

--ssl-capath Directory that contains
trusted SSL Certificate
Authority certificate files

--ssl-cert File that contains X.509
certificate

--ssl-cipher Permissible ciphers for
connection encryption

--ssl-crl File that contains
certificate revocation lists

--ssl-crlpath Directory that contains
certificate revocation-list
files

440

mysqladmin — A MySQL Server Administration Program

Option Name Description Introduced Deprecated

--ssl-key File that contains X.509
key

--ssl-mode Desired security state of
connection to server

5.7.11

--ssl-verify-server-cert Verify host name
against server certificate
Common Name identity

--tls-version Permissible TLS
protocols for encrypted
connections

5.7.10

--user MySQL user name to
use when connecting to
server

--verbose Verbose mode

--version Display version
information and exit

--vertical Print query output rows
vertically (one line per
column value)

--wait If the connection cannot
be established, wait and
retry instead of aborting

• --help, -?

Command-Line Format --help

Display a help message and exit.

• --bind-address=ip_address

Command-Line Format --bind-address=ip_address

On a computer having multiple network interfaces, use this option to select which interface to use for
connecting to the MySQL server.

• --character-sets-dir=dir_name

Command-Line Format --character-sets-dir=path

Type String

Default Value [none]

The directory where character sets are installed. See Section 10.15, “Character Set Configuration”.

• --compress, -C

Command-Line Format --compress[={OFF|ON}]

441

mysqladmin — A MySQL Server Administration Program

Type Boolean

Default Value OFF

Compress all information sent between the client and the server if possible. See Section 4.2.6,
“Connection Compression Control”.

• --connect-timeout=value

Command-Line Format --connect-timeout=value

Type Numeric

Default Value 43200

The maximum number of seconds before connection timeout. The default value is 43200 (12 hours).

• --count=N, -c N

Command-Line Format --count=#

The number of iterations to make for repeated command execution if the --sleep option is given.

• --debug[=debug_options], -# [debug_options]

Command-Line Format --debug[=debug_options]

Type String

Default Value d:t:o,/tmp/mysqladmin.trace

Write a debugging log. A typical debug_options string is d:t:o,file_name. The default is d:t:o,/
tmp/mysqladmin.trace.

This option is available only if MySQL was built using WITH_DEBUG. MySQL release binaries provided
by Oracle are not built using this option.

• --debug-check

Command-Line Format --debug-check

Type Boolean

Default Value FALSE

Print some debugging information when the program exits.

This option is available only if MySQL was built using WITH_DEBUG. MySQL release binaries provided
by Oracle are not built using this option.

• --debug-info

Command-Line Format --debug-info

Type Boolean

442

mysqladmin — A MySQL Server Administration Program

Default Value FALSE

Print debugging information and memory and CPU usage statistics when the program exits.

This option is available only if MySQL was built using WITH_DEBUG. MySQL release binaries provided
by Oracle are not built using this option.

• --default-auth=plugin

Command-Line Format --default-auth=plugin

Type String

A hint about which client-side authentication plugin to use. See Section 6.2.13, “Pluggable
Authentication”.

• --default-character-set=charset_name

Command-Line Format --default-character-set=charset_name

Type String

Use charset_name as the default character set. See Section 10.15, “Character Set Configuration”.

• --defaults-extra-file=file_name

Command-Line Format --defaults-extra-file=file_name

Type File name

Read this option file after the global option file but (on Unix) before the user option file. If the file does
not exist or is otherwise inaccessible, an error occurs. If file_name is not an absolute path name, it is
interpreted relative to the current directory.

For additional information about this and other option-file options, see Section 4.2.2.3, “Command-Line
Options that Affect Option-File Handling”.

• --defaults-file=file_name

Command-Line Format --defaults-file=file_name

Type File name

Use only the given option file. If the file does not exist or is otherwise inaccessible, an error occurs. If
file_name is not an absolute path name, it is interpreted relative to the current directory.

Exception: Even with --defaults-file, client programs read .mylogin.cnf.

For additional information about this and other option-file options, see Section 4.2.2.3, “Command-Line
Options that Affect Option-File Handling”.

• --defaults-group-suffix=str

Command-Line Format --defaults-group-suffix=str

443

mysqladmin — A MySQL Server Administration Program

Type String

Read not only the usual option groups, but also groups with the usual names and a suffix of str. For
example, mysqladmin normally reads the [client] and [mysqladmin] groups. If this option is
given as --defaults-group-suffix=_other, mysqladmin also reads the [client_other] and
[mysqladmin_other] groups.

For additional information about this and other option-file options, see Section 4.2.2.3, “Command-Line
Options that Affect Option-File Handling”.

• --enable-cleartext-plugin

Command-Line Format --enable-cleartext-plugin

Type Boolean

Default Value FALSE

Enable the mysql_clear_password cleartext authentication plugin. (See Section 6.4.1.6, “Client-Side
Cleartext Pluggable Authentication”.)

• --force, -f

Command-Line Format --force

Do not ask for confirmation for the drop db_name command. With multiple commands, continue even if
an error occurs.

• --get-server-public-key

Command-Line Format --get-server-public-key

Introduced 5.7.23

Type Boolean

Request from the server the public key required for RSA key pair-based password exchange. This option
applies to clients that authenticate with the caching_sha2_password authentication plugin. For that
plugin, the server does not send the public key unless requested. This option is ignored for accounts that
do not authenticate with that plugin. It is also ignored if RSA-based password exchange is not used, as is
the case when the client connects to the server using a secure connection.

If --server-public-key-path=file_name is given and specifies a valid public key file, it takes
precedence over --get-server-public-key.

For information about the caching_sha2_password plugin, see Section 6.4.1.4, “Caching SHA-2
Pluggable Authentication”.

The --get-server-public-key option was added in MySQL 5.7.23.

• --host=host_name, -h host_name

Command-Line Format --host=host_name

Type String

444

mysqladmin — A MySQL Server Administration Program

Default Value localhost

Connect to the MySQL server on the given host.

• --login-path=name

Command-Line Format --login-path=name

Type String

Read options from the named login path in the .mylogin.cnf login path file. A “login path” is an
option group containing options that specify which MySQL server to connect to and which account to
authenticate as. To create or modify a login path file, use the mysql_config_editor utility. See
Section 4.6.6, “mysql_config_editor — MySQL Configuration Utility”.

For additional information about this and other option-file options, see Section 4.2.2.3, “Command-Line
Options that Affect Option-File Handling”.

• --no-beep, -b

Command-Line Format --no-beep

Suppress the warning beep that is emitted by default for errors such as a failure to connect to the server.

• --no-defaults

Command-Line Format --no-defaults

Do not read any option files. If program startup fails due to reading unknown options from an option file,
--no-defaults can be used to prevent them from being read.

The exception is that the .mylogin.cnf file is read in all cases, if it exists. This permits passwords to
be specified in a safer way than on the command line even when --no-defaults is used. To create
.mylogin.cnf, use the mysql_config_editor utility. See Section 4.6.6, “mysql_config_editor —
MySQL Configuration Utility”.

For additional information about this and other option-file options, see Section 4.2.2.3, “Command-Line
Options that Affect Option-File Handling”.

• --password[=password], -p[password]

Command-Line Format --password[=password]

445

mysqladmin — A MySQL Server Administration Program

Type String

The password of the MySQL account used for connecting to the server. The password value is optional.
If not given, mysqladmin prompts for one. If given, there must be no space between --password= or
-p and the password following it. If no password option is specified, the default is to send no password.

Specifying a password on the command line should be considered insecure. To avoid giving the
password on the command line, use an option file. See Section 6.1.2.1, “End-User Guidelines for
Password Security”.

To explicitly specify that there is no password and that mysqladmin should not prompt for one, use the
--skip-password option.

• --pipe, -W

Command-Line Format --pipe

Type String

On Windows, connect to the server using a named pipe. This option applies only if the server was
started with the named_pipe system variable enabled to support named-pipe connections. In
addition, the user making the connection must be a member of the Windows group specified by the
named_pipe_full_access_group system variable.

• --plugin-dir=dir_name

Command-Line Format --plugin-dir=dir_name

Type Directory name

The directory in which to look for plugins. Specify this option if the --default-auth option is used
to specify an authentication plugin but mysqladmin does not find it. See Section 6.2.13, “Pluggable
Authentication”.

• --port=port_num, -P port_num

Command-Line Format --port=port_num

Type Numeric

Default Value 3306

For TCP/IP connections, the port number to use.

• --print-defaults

Command-Line Format --print-defaults

Print the program name and all options that it gets from option files.

For additional information about this and other option-file options, see Section 4.2.2.3, “Command-Line
Options that Affect Option-File Handling”.

• --protocol={TCP|SOCKET|PIPE|MEMORY}

446

mysqladmin — A MySQL Server Administration Program

Command-Line Format --protocol=type

Type String

Default Value [see text]

Valid Values TCP

SOCKET

PIPE

MEMORY

The transport protocol to use for connecting to the server. It is useful when the other connection
parameters normally result in use of a protocol other than the one you want. For details on the
permissible values, see Section 4.2.5, “Connection Transport Protocols”.

• --relative, -r

Command-Line Format --relative

Show the difference between the current and previous values when used with the --sleep option. This
option works only with the extended-status command.

• --show-warnings

Command-Line Format --show-warnings

Show warnings resulting from execution of statements sent to the server.

• --secure-auth

Command-Line Format --secure-auth

Deprecated Yes

Do not send passwords to the server in old (pre-4.1) format. This prevents connections except for
servers that use the newer password format.

As of MySQL 5.7.5, this option is deprecated; expect it to be removed in a future MySQL release. It is
always enabled and attempting to disable it (--skip-secure-auth, --secure-auth=0) produces an
error. Before MySQL 5.7.5, this option is enabled by default but can be disabled.

Note

Passwords that use the pre-4.1 hashing method are less secure than passwords
that use the native password hashing method and should be avoided. Pre-4.1
passwords are deprecated and support for them was removed in MySQL 5.7.5.
For account upgrade instructions, see Section 6.4.1.3, “Migrating Away from
Pre-4.1 Password Hashing and the mysql_old_password Plugin”.

447

mysqladmin — A MySQL Server Administration Program

• --server-public-key-path=file_name

Command-Line Format --server-public-key-path=file_name

Introduced 5.7.23

Type File name

The path name to a file in PEM format containing a client-side copy of the public key required by the
server for RSA key pair-based password exchange. This option applies to clients that authenticate with
the sha256_password or caching_sha2_password authentication plugin. This option is ignored for
accounts that do not authenticate with one of those plugins. It is also ignored if RSA-based password
exchange is not used, as is the case when the client connects to the server using a secure connection.

If --server-public-key-path=file_name is given and specifies a valid public key file, it takes
precedence over --get-server-public-key.

For sha256_password, this option applies only if MySQL was built using OpenSSL.

For information about the sha256_password and caching_sha2_password plugins, see
Section 6.4.1.5, “SHA-256 Pluggable Authentication”, and Section 6.4.1.4, “Caching SHA-2 Pluggable
Authentication”.

The --server-public-key-path option was added in MySQL 5.7.23.

• --shared-memory-base-name=name

Command-Line Format --shared-memory-base-name=name

Platform Specific Windows

On Windows, the shared-memory name to use for connections made using shared memory to a local
server. The default value is MYSQL. The shared-memory name is case-sensitive.

This option applies only if the server was started with the shared_memory system variable enabled to
support shared-memory connections.

• --shutdown-timeout=value

Command-Line Format --shutdown-timeout=seconds

Type Numeric

Default Value 3600

The maximum number of seconds to wait for server shutdown. The default value is 3600 (1 hour).

• --silent, -s

Command-Line Format --silent

Exit silently if a connection to the server cannot be established.

448

mysqladmin — A MySQL Server Administration Program

• --sleep=delay, -i delay

Command-Line Format --sleep=delay

Execute commands repeatedly, sleeping for delay seconds in between. The --count option
determines the number of iterations. If --count is not given, mysqladmin executes commands
indefinitely until interrupted.

• --socket=path, -S path

Command-Line Format --socket={file_name|pipe_name}

Type String

For connections to localhost, the Unix socket file to use, or, on Windows, the name of the named pipe
to use.

On Windows, this option applies only if the server was started with the named_pipe system variable
enabled to support named-pipe connections. In addition, the user making the connection must be a
member of the Windows group specified by the named_pipe_full_access_group system variable.

• --ssl*

Options that begin with --ssl specify whether to connect to the server using encryption and indicate
where to find SSL keys and certificates. See Command Options for Encrypted Connections.

• --tls-version=protocol_list

Command-Line Format --tls-version=protocol_list

Introduced 5.7.10

Type String

Default Value (≥ 5.7.28) TLSv1,TLSv1.1,TLSv1.2

Default Value (≤ 5.7.27) TLSv1,TLSv1.1,TLSv1.2 (OpenSSL)

TLSv1,TLSv1.1 (yaSSL)

The permissible TLS protocols for encrypted connections. The value is a list of one or more comma-
separated protocol names. The protocols that can be named for this option depend on the SSL library
used to compile MySQL. For details, see Section 6.3.2, “Encrypted Connection TLS Protocols and
Ciphers”.

This option was added in MySQL 5.7.10.

• --user=user_name, -u user_name

Command-Line Format --user=user_name,

Type String

The user name of the MySQL account to use for connecting to the server.

• --verbose, -v

449

mysqlcheck — A Table Maintenance Program

Command-Line Format --verbose

Verbose mode. Print more information about what the program does.

• --version, -V

Command-Line Format --version

Display version information and exit.

• --vertical, -E

Command-Line Format --vertical

Print output vertically. This is similar to --relative, but prints output vertically.

• --wait[=count], -w[count]

Command-Line Format --wait

If the connection cannot be established, wait and retry instead of aborting. If a count value is given, it
indicates the number of times to retry. The default is one time.

4.5.3 mysqlcheck — A Table Maintenance Program

The mysqlcheck client performs table maintenance: It checks, repairs, optimizes, or analyzes tables.

Each table is locked and therefore unavailable to other sessions while it is being processed, although
for check operations, the table is locked with a READ lock only (see Section 13.3.5, “LOCK TABLES and
UNLOCK TABLES Statements”, for more information about READ and WRITE locks). Table maintenance
operations can be time-consuming, particularly for large tables. If you use the --databases or --all-
databases option to process all tables in one or more databases, an invocation of mysqlcheck might
take a long time. (This is also true for the MySQL upgrade procedure if it determines that table checking is
needed because it processes tables the same way.)

mysqlcheck must be used when the mysqld server is running, which means that you do not have to stop
the server to perform table maintenance.

mysqlcheck uses the SQL statements CHECK TABLE, REPAIR TABLE, ANALYZE TABLE, and
OPTIMIZE TABLE in a convenient way for the user. It determines which statements to use for the
operation you want to perform, and then sends the statements to the server to be executed. For details
about which storage engines each statement works with, see the descriptions for those statements in
Section 13.7.2, “Table Maintenance Statements”.

All storage engines do not necessarily support all four maintenance operations. In such cases, an error
message is displayed. For example, if test.t is an MEMORY table, an attempt to check it produces this
result:

$> mysqlcheck test t
test.t
note : The storage engine for the table doesn't support check

450

mysqlcheck — A Table Maintenance Program

If mysqlcheck is unable to repair a table, see Section 2.10.12, “Rebuilding or Repairing Tables or
Indexes” for manual table repair strategies. This is the case, for example, for InnoDB tables, which can be
checked with CHECK TABLE, but not repaired with REPAIR TABLE.

Caution

It is best to make a backup of a table before performing a table repair operation;
under some circumstances the operation might cause data loss. Possible causes
include but are not limited to file system errors.

There are three general ways to invoke mysqlcheck:

mysqlcheck [options] db_name [tbl_name ...]
mysqlcheck [options] --databases db_name ...
mysqlcheck [options] --all-databases

If you do not name any tables following db_name or if you use the --databases or --all-databases
option, entire databases are checked.

mysqlcheck has a special feature compared to other client programs. The default behavior of checking
tables (--check) can be changed by renaming the binary. If you want to have a tool that repairs tables by
default, you should just make a copy of mysqlcheck named mysqlrepair, or make a symbolic link to
mysqlcheck named mysqlrepair. If you invoke mysqlrepair, it repairs tables.

The names shown in the following table can be used to change mysqlcheck default behavior.

Command Meaning

mysqlrepair The default option is --repair

mysqlanalyze The default option is --analyze

mysqloptimize The default option is --optimize

mysqlcheck supports the following options, which can be specified on the command line or in the
[mysqlcheck] and [client] groups of an option file. For information about option files used by MySQL
programs, see Section 4.2.2.2, “Using Option Files”.

Table 4.15 mysqlcheck Options

Option Name Description Introduced Deprecated

--all-databases Check all tables in all
databases

--all-in-1 Execute a single
statement for each
database that names
all the tables from that
database

--analyze Analyze the tables

--auto-repair If a checked table is
corrupted, automatically
fix it

--bind-address Use specified network
interface to connect to
MySQL Server

451

mysqlcheck — A Table Maintenance Program

Option Name Description Introduced Deprecated

--character-sets-dir Directory where
character sets are
installed

--check Check the tables for
errors

--check-only-changed Check only tables that
have changed since the
last check

--check-upgrade Invoke CHECK TABLE
with the FOR UPGRADE
option

--compress Compress all information
sent between client and
server

--databases Interpret all arguments as
database names

--debug Write debugging log

--debug-check Print debugging
information when
program exits

--debug-info Print debugging
information, memory,
and CPU statistics when
program exits

--default-auth Authentication plugin to
use

--default-character-set Specify default character
set

--defaults-extra-file Read named option file in
addition to usual option
files

--defaults-file Read only named option
file

--defaults-group-suffix Option group suffix value

--enable-cleartext-plugin Enable cleartext
authentication plugin

5.7.10

--extended Check and repair tables

--fast Check only tables that
have not been closed
properly

--fix-db-names Convert database names
to 5.1 format

Yes

--fix-table-names Convert table names to
5.1 format

Yes

452

mysqlcheck — A Table Maintenance Program

Option Name Description Introduced Deprecated

--force Continue even if an SQL
error occurs

--get-server-public-key Request RSA public key
from server

5.7.23

--help Display help message
and exit

--host Host on which MySQL
server is located

--login-path Read login path options
from .mylogin.cnf

--medium-check Do a check that is faster
than an --extended
operation

--no-defaults Read no option files

--optimize Optimize the tables

--password Password to use when
connecting to server

--pipe Connect to server using
named pipe (Windows
only)

--plugin-dir Directory where plugins
are installed

--port TCP/IP port number for
connection

--print-defaults Print default options

--protocol Transport protocol to use

--quick The fastest method of
checking

--repair Perform a repair that
can fix almost anything
except unique keys that
are not unique

--secure-auth Do not send passwords
to server in old (pre-4.1)
format

Yes

--server-public-key-path Path name to file
containing RSA public
key

5.7.23

--shared-memory-base-
name

Shared-memory name
for shared-memory
connections (Windows
only)

--silent Silent mode

453

mysqlcheck — A Table Maintenance Program

Option Name Description Introduced Deprecated

--skip-database Omit this database from
performed operations

--socket Unix socket file or
Windows named pipe to
use

--ssl Enable connection
encryption

--ssl-ca File that contains list of
trusted SSL Certificate
Authorities

--ssl-capath Directory that contains
trusted SSL Certificate
Authority certificate files

--ssl-cert File that contains X.509
certificate

--ssl-cipher Permissible ciphers for
connection encryption

--ssl-crl File that contains
certificate revocation lists

--ssl-crlpath Directory that contains
certificate revocation-list
files

--ssl-key File that contains X.509
key

--ssl-mode Desired security state of
connection to server

5.7.11

--ssl-verify-server-cert Verify host name
against server certificate
Common Name identity

--tables Overrides the --
databases or -B option

--tls-version Permissible TLS
protocols for encrypted
connections

5.7.10

--use-frm For repair operations on
MyISAM tables

--user MySQL user name to
use when connecting to
server

--verbose Verbose mode

--version Display version
information and exit

--write-binlog Log ANALYZE,
OPTIMIZE, REPAIR
statements to binary log.

454

mysqlcheck — A Table Maintenance Program

Option Name Description Introduced Deprecated
--skip-write-binlog adds
NO_WRITE_TO_BINLOG
to these statements

• --help, -?

Command-Line Format --help

Display a help message and exit.

• --all-databases, -A

Command-Line Format --all-databases

Check all tables in all databases. This is the same as using the --databases option and naming all the
databases on the command line, except that the INFORMATION_SCHEMA and performance_schema
databases are not checked. They can be checked by explicitly naming them with the --databases
option.

• --all-in-1, -1

Command-Line Format --all-in-1

Instead of issuing a statement for each table, execute a single statement for each database that names
all the tables from that database to be processed.

• --analyze, -a

Command-Line Format --analyze

Analyze the tables.

• --auto-repair

Command-Line Format --auto-repair

If a checked table is corrupted, automatically fix it. Any necessary repairs are done after all tables have
been checked.

• --bind-address=ip_address

Command-Line Format --bind-address=ip_address

On a computer having multiple network interfaces, use this option to select which interface to use for
connecting to the MySQL server.

• --character-sets-dir=dir_name

Command-Line Format --character-sets-dir=dir_name

455

mysqlcheck — A Table Maintenance Program

Type Directory name

The directory where character sets are installed. See Section 10.15, “Character Set Configuration”.

• --check, -c

Command-Line Format --check

Check the tables for errors. This is the default operation.

• --check-only-changed, -C

Command-Line Format --check-only-changed

Check only tables that have changed since the last check or that have not been closed properly.

• --check-upgrade, -g

Command-Line Format --check-upgrade

Invoke CHECK TABLE with the FOR UPGRADE option to check tables for incompatibilities with the current
version of the server. This option automatically enables the --fix-db-names and --fix-table-
names options.

• --compress

Command-Line Format --compress[={OFF|ON}]

Type Boolean

Default Value OFF

Compress all information sent between the client and the server if possible. See Section 4.2.6,
“Connection Compression Control”.

• --databases, -B

Command-Line Format --databases

Process all tables in the named databases. Normally, mysqlcheck treats the first name argument on
the command line as a database name and any following names as table names. With this option, it
treats all name arguments as database names.

• --debug[=debug_options], -# [debug_options]

Command-Line Format --debug[=debug_options]

Type String

Default Value d:t:o

Write a debugging log. A typical debug_options string is d:t:o,file_name. The default is d:t:o.

456

mysqlcheck — A Table Maintenance Program

This option is available only if MySQL was built using WITH_DEBUG. MySQL release binaries provided
by Oracle are not built using this option.

• --debug-check

Command-Line Format --debug-check

Type Boolean

Default Value FALSE

Print some debugging information when the program exits.

This option is available only if MySQL was built using WITH_DEBUG. MySQL release binaries provided
by Oracle are not built using this option.

• --debug-info

Command-Line Format --debug-info

Type Boolean

Default Value FALSE

Print debugging information and memory and CPU usage statistics when the program exits.

This option is available only if MySQL was built using WITH_DEBUG. MySQL release binaries provided
by Oracle are not built using this option.

• --default-character-set=charset_name

Command-Line Format --default-character-set=charset_name

Type String

Use charset_name as the default character set. See Section 10.15, “Character Set Configuration”.

• --defaults-extra-file=file_name

Command-Line Format --defaults-extra-file=file_name

Type File name

Read this option file after the global option file but (on Unix) before the user option file. If the file does
not exist or is otherwise inaccessible, an error occurs. If file_name is not an absolute path name, it is
interpreted relative to the current directory.

For additional information about this and other option-file options, see Section 4.2.2.3, “Command-Line
Options that Affect Option-File Handling”.

• --defaults-file=file_name

Command-Line Format --defaults-file=file_name

Type File name

457

mysqlcheck — A Table Maintenance Program

Use only the given option file. If the file does not exist or is otherwise inaccessible, an error occurs. If
file_name is not an absolute path name, it is interpreted relative to the current directory.

Exception: Even with --defaults-file, client programs read .mylogin.cnf.

For additional information about this and other option-file options, see Section 4.2.2.3, “Command-Line
Options that Affect Option-File Handling”.

• --defaults-group-suffix=str

Command-Line Format --defaults-group-suffix=str

Type String

Read not only the usual option groups, but also groups with the usual names and a suffix of str. For
example, mysqlcheck normally reads the [client] and [mysqlcheck] groups. If this option is
given as --defaults-group-suffix=_other, mysqlcheck also reads the [client_other] and
[mysqlcheck_other] groups.

For additional information about this and other option-file options, see Section 4.2.2.3, “Command-Line
Options that Affect Option-File Handling”.

• --extended, -e

Command-Line Format --extended

If you are using this option to check tables, it ensures that they are 100% consistent but takes a long
time.

If you are using this option to repair tables, it runs an extended repair that may not only take a long time
to execute, but may produce a lot of garbage rows also!

• --default-auth=plugin

Command-Line Format --default-auth=plugin

Type String

A hint about which client-side authentication plugin to use. See Section 6.2.13, “Pluggable
Authentication”.

• --enable-cleartext-plugin

Command-Line Format --enable-cleartext-plugin

Introduced 5.7.10

Type Boolean

458

mysqlcheck — A Table Maintenance Program

Default Value FALSE

Enable the mysql_clear_password cleartext authentication plugin. (See Section 6.4.1.6, “Client-Side
Cleartext Pluggable Authentication”.)

This option was added in MySQL 5.7.10.

• --fast, -F

Command-Line Format --fast

Check only tables that have not been closed properly.

• --fix-db-names

Command-Line Format --fix-db-names

Deprecated Yes

Convert database names to 5.1 format. Only database names that contain special characters are
affected.

This option is deprecated in MySQL 5.7.6; expect it to be removed in a future version of MySQL. If it is
necessary to convert MySQL 5.0 database or table names, a workaround is to upgrade a MySQL 5.0
installation to MySQL 5.1 before upgrading to a more recent release.

• --fix-table-names

Command-Line Format --fix-table-names

Deprecated Yes

Convert table names to 5.1 format. Only table names that contain special characters are affected. This
option also applies to views.

This option is deprecated in MySQL 5.7.6; expect it to be removed in a future version of MySQL. If it is
necessary to convert MySQL 5.0 database or table names, a workaround is to upgrade a MySQL 5.0
installation to MySQL 5.1 before upgrading to a more recent release.

• --force, -f

Command-Line Format --force

Continue even if an SQL error occurs.

• --get-server-public-key

Command-Line Format --get-server-public-key

Introduced 5.7.23

459

mysqlcheck — A Table Maintenance Program

Type Boolean

Request from the server the public key required for RSA key pair-based password exchange. This option
applies to clients that authenticate with the caching_sha2_password authentication plugin. For that
plugin, the server does not send the public key unless requested. This option is ignored for accounts that
do not authenticate with that plugin. It is also ignored if RSA-based password exchange is not used, as is
the case when the client connects to the server using a secure connection.

If --server-public-key-path=file_name is given and specifies a valid public key file, it takes
precedence over --get-server-public-key.

For information about the caching_sha2_password plugin, see Section 6.4.1.4, “Caching SHA-2
Pluggable Authentication”.

The --get-server-public-key option was added in MySQL 5.7.23.

• --host=host_name, -h host_name

Command-Line Format --host=host_name

Type String

Default Value localhost

Connect to the MySQL server on the given host.

• --login-path=name

Command-Line Format --login-path=name

Type String

Read options from the named login path in the .mylogin.cnf login path file. A “login path” is an
option group containing options that specify which MySQL server to connect to and which account to
authenticate as. To create or modify a login path file, use the mysql_config_editor utility. See
Section 4.6.6, “mysql_config_editor — MySQL Configuration Utility”.

For additional information about this and other option-file options, see Section 4.2.2.3, “Command-Line
Options that Affect Option-File Handling”.

• --medium-check, -m

Command-Line Format --medium-check

Do a check that is faster than an --extended operation. This finds only 99.99% of all errors, which
should be good enough in most cases.

• --no-defaults

Command-Line Format --no-defaults

Do not read any option files. If program startup fails due to reading unknown options from an option file,
--no-defaults can be used to prevent them from being read.

460

mysqlcheck — A Table Maintenance Program

The exception is that the .mylogin.cnf file is read in all cases, if it exists. This permits passwords to
be specified in a safer way than on the command line even when --no-defaults is used. To create
.mylogin.cnf, use the mysql_config_editor utility. See Section 4.6.6, “mysql_config_editor —
MySQL Configuration Utility”.

For additional information about this and other option-file options, see Section 4.2.2.3, “Command-Line
Options that Affect Option-File Handling”.

• --optimize, -o

Command-Line Format --optimize

Optimize the tables.

• --password[=password], -p[password]

Command-Line Format --password[=password]

Type String

The password of the MySQL account used for connecting to the server. The password value is optional.
If not given, mysqlcheck prompts for one. If given, there must be no space between --password= or
-p and the password following it. If no password option is specified, the default is to send no password.

Specifying a password on the command line should be considered insecure. To avoid giving the
password on the command line, use an option file. See Section 6.1.2.1, “End-User Guidelines for
Password Security”.

To explicitly specify that there is no password and that mysqlcheck should not prompt for one, use the
--skip-password option.

• --pipe, -W

Command-Line Format --pipe

Type String

On Windows, connect to the server using a named pipe. This option applies only if the server was
started with the named_pipe system variable enabled to support named-pipe connections. In
addition, the user making the connection must be a member of the Windows group specified by the
named_pipe_full_access_group system variable.

• --plugin-dir=dir_name

Command-Line Format --plugin-dir=dir_name

Type Directory name

The directory in which to look for plugins. Specify this option if the --default-auth option is used
to specify an authentication plugin but mysqlcheck does not find it. See Section 6.2.13, “Pluggable
Authentication”.

• --port=port_num, -P port_num

461

mysqlcheck — A Table Maintenance Program

Command-Line Format --port=port_num

Type Numeric

Default Value 3306

For TCP/IP connections, the port number to use.

• --print-defaults

Command-Line Format --print-defaults

Print the program name and all options that it gets from option files.

For additional information about this and other option-file options, see Section 4.2.2.3, “Command-Line
Options that Affect Option-File Handling”.

• --protocol={TCP|SOCKET|PIPE|MEMORY}

Command-Line Format --protocol=type

Type String

Default Value [see text]

Valid Values TCP

SOCKET

PIPE

MEMORY

The transport protocol to use for connecting to the server. It is useful when the other connection
parameters normally result in use of a protocol other than the one you want. For details on the
permissible values, see Section 4.2.5, “Connection Transport Protocols”.

• --quick, -q

Command-Line Format --quick

If you are using this option to check tables, it prevents the check from scanning the rows to check for
incorrect links. This is the fastest check method.

If you are using this option to repair tables, it tries to repair only the index tree. This is the fastest repair
method.

• --repair, -r

Command-Line Format --repair

Perform a repair that can fix almost anything except unique keys that are not unique.

• --secure-auth

462

mysqlcheck — A Table Maintenance Program

Command-Line Format --secure-auth

Deprecated Yes

Do not send passwords to the server in old (pre-4.1) format. This prevents connections except for
servers that use the newer password format.

As of MySQL 5.7.5, this option is deprecated; expect it to be removed in a future MySQL release. It is
always enabled and attempting to disable it (--skip-secure-auth, --secure-auth=0) produces an
error. Before MySQL 5.7.5, this option is enabled by default but can be disabled.

Note

Passwords that use the pre-4.1 hashing method are less secure than passwords
that use the native password hashing method and should be avoided. Pre-4.1
passwords are deprecated and support for them was removed in MySQL 5.7.5.
For account upgrade instructions, see Section 6.4.1.3, “Migrating Away from
Pre-4.1 Password Hashing and the mysql_old_password Plugin”.

• --server-public-key-path=file_name

Command-Line Format --server-public-key-path=file_name

Introduced 5.7.23

Type File name

The path name to a file in PEM format containing a client-side copy of the public key required by the
server for RSA key pair-based password exchange. This option applies to clients that authenticate with
the sha256_password or caching_sha2_password authentication plugin. This option is ignored for
accounts that do not authenticate with one of those plugins. It is also ignored if RSA-based password
exchange is not used, as is the case when the client connects to the server using a secure connection.

If --server-public-key-path=file_name is given and specifies a valid public key file, it takes
precedence over --get-server-public-key.

For sha256_password, this option applies only if MySQL was built using OpenSSL.

For information about the sha256_password and caching_sha2_password plugins, see
Section 6.4.1.5, “SHA-256 Pluggable Authentication”, and Section 6.4.1.4, “Caching SHA-2 Pluggable
Authentication”.

The --server-public-key-path option was added in MySQL 5.7.23.

• --shared-memory-base-name=name

Command-Line Format --shared-memory-base-name=name

463

mysqlcheck — A Table Maintenance Program

Platform Specific Windows

On Windows, the shared-memory name to use for connections made using shared memory to a local
server. The default value is MYSQL. The shared-memory name is case-sensitive.

This option applies only if the server was started with the shared_memory system variable enabled to
support shared-memory connections.

• --silent, -s

Command-Line Format --silent

Silent mode. Print only error messages.

• --skip-database=db_name

Command-Line Format --skip-database=db_name

Do not include the named database (case-sensitive) in the operations performed by mysqlcheck.

• --socket=path, -S path

Command-Line Format --socket={file_name|pipe_name}

Type String

For connections to localhost, the Unix socket file to use, or, on Windows, the name of the named pipe
to use.

On Windows, this option applies only if the server was started with the named_pipe system variable
enabled to support named-pipe connections. In addition, the user making the connection must be a
member of the Windows group specified by the named_pipe_full_access_group system variable.

• --ssl*

Options that begin with --ssl specify whether to connect to the server using encryption and indicate
where to find SSL keys and certificates. See Command Options for Encrypted Connections.

• --tables

Command-Line Format --tables

Override the --databases or -B option. All name arguments following the option are regarded as table
names.

• --tls-version=protocol_list

Command-Line Format --tls-version=protocol_list

Introduced 5.7.10

Type String

Default Value (≥ 5.7.28) TLSv1,TLSv1.1,TLSv1.2

464

mysqldump — A Database Backup Program

Default Value (≤ 5.7.27) TLSv1,TLSv1.1,TLSv1.2 (OpenSSL)

TLSv1,TLSv1.1 (yaSSL)

The permissible TLS protocols for encrypted connections. The value is a list of one or more comma-
separated protocol names. The protocols that can be named for this option depend on the SSL library
used to compile MySQL. For details, see Section 6.3.2, “Encrypted Connection TLS Protocols and
Ciphers”.

This option was added in MySQL 5.7.10.

• --use-frm

Command-Line Format --use-frm

For repair operations on MyISAM tables, get the table structure from the .frm file so that the table can
be repaired even if the .MYI header is corrupted.

• --user=user_name, -u user_name

Command-Line Format --user=user_name,

Type String

The user name of the MySQL account to use for connecting to the server.

• --verbose, -v

Command-Line Format --verbose

Verbose mode. Print information about the various stages of program operation.

• --version, -V

Command-Line Format --version

Display version information and exit.

• --write-binlog

Command-Line Format --write-binlog

This option is enabled by default, so that ANALYZE TABLE, OPTIMIZE TABLE, and REPAIR TABLE
statements generated by mysqlcheck are written to the binary log. Use --skip-write-binlog to
cause NO_WRITE_TO_BINLOG to be added to the statements so that they are not logged. Use the --
skip-write-binlog when these statements should not be sent to replicas or run when using the
binary logs for recovery from backup.

4.5.4 mysqldump — A Database Backup Program

465

mysqldump — A Database Backup Program

The mysqldump client utility performs logical backups, producing a set of SQL statements that can be
executed to reproduce the original database object definitions and table data. It dumps one or more
MySQL databases for backup or transfer to another SQL server. The mysqldump command can also
generate output in CSV, other delimited text, or XML format.

• Performance and Scalability Considerations

• Invocation Syntax

• Option Syntax - Alphabetical Summary

• Connection Options

• Option-File Options

• DDL Options

• Debug Options

• Help Options

• Internationalization Options

• Replication Options

• Format Options

• Filtering Options

• Performance Options

• Transactional Options

• Option Groups

• Examples

• Restrictions

mysqldump requires at least the SELECT privilege for dumped tables, SHOW VIEW for dumped views,
TRIGGER for dumped triggers, LOCK TABLES if the --single-transaction option is not used, and (as
of MySQL 5.7.31) PROCESS if the --no-tablespaces option is not used. Certain options might require
other privileges as noted in the option descriptions.

To reload a dump file, you must have the privileges required to execute the statements that it contains,
such as the appropriate CREATE privileges for objects created by those statements.

mysqldump output can include ALTER DATABASE statements that change the database collation. These
may be used when dumping stored programs to preserve their character encodings. To reload a dump file
containing such statements, the ALTER privilege for the affected database is required.

Note

A dump made using PowerShell on Windows with output redirection creates a file
that has UTF-16 encoding:

mysqldump [options] > dump.sql

However, UTF-16 is not permitted as a connection character set (see Impermissible
Client Character Sets), so the dump file cannot be loaded correctly. To work around

466

mysqldump — A Database Backup Program

this issue, use the --result-file option, which creates the output in ASCII
format:

mysqldump [options] --result-file=dump.sql

It is not recommended to load a dump file when GTIDs are enabled on the server (gtid_mode=ON), if your
dump file includes system tables. mysqldump issues DML instructions for the system tables which use the
non-transactional MyISAM storage engine, and this combination is not permitted when GTIDs are enabled.

Performance and Scalability Considerations

mysqldump advantages include the convenience and flexibility of viewing or even editing the output before
restoring. You can clone databases for development and DBA work, or produce slight variations of an
existing database for testing. It is not intended as a fast or scalable solution for backing up substantial
amounts of data. With large data sizes, even if the backup step takes a reasonable time, restoring the data
can be very slow because replaying the SQL statements involves disk I/O for insertion, index creation, and
so on.

For large-scale backup and restore, a physical backup is more appropriate, to copy the data files in their
original format that can be restored quickly:

• If your tables are primarily InnoDB tables, or if you have a mix of InnoDB and MyISAM tables, consider
using the mysqlbackup command of the MySQL Enterprise Backup product. (Available as part of the
Enterprise subscription.) It provides the best performance for InnoDB backups with minimal disruption; it
can also back up tables from MyISAM and other storage engines; and it provides a number of convenient
options to accommodate different backup scenarios. See Section 28.1, “MySQL Enterprise Backup
Overview”.

mysqldump can retrieve and dump table contents row by row, or it can retrieve the entire content from a
table and buffer it in memory before dumping it. Buffering in memory can be a problem if you are dumping
large tables. To dump tables row by row, use the --quick option (or --opt, which enables --quick).
The --opt option (and hence --quick) is enabled by default, so to enable memory buffering, use --
skip-quick.

If you are using a recent version of mysqldump to generate a dump to be reloaded into a very old MySQL
server, use the --skip-opt option instead of the --opt or --extended-insert option.

For additional information about mysqldump, see Section 7.4, “Using mysqldump for Backups”.

Invocation Syntax

There are in general three ways to use mysqldump—in order to dump a set of one or more tables, a set of
one or more complete databases, or an entire MySQL server—as shown here:

mysqldump [options] db_name [tbl_name ...]
mysqldump [options] --databases db_name ...
mysqldump [options] --all-databases

To dump entire databases, do not name any tables following db_name, or use the --databases or --
all-databases option.

To see a list of the options your version of mysqldump supports, issue the command mysqldump --
help.

Option Syntax - Alphabetical Summary

mysqldump supports the following options, which can be specified on the command line or in the
[mysqldump] and [client] groups of an option file. For information about option files used by MySQL
programs, see Section 4.2.2.2, “Using Option Files”.

467

mysqldump — A Database Backup Program

Table 4.16 mysqldump Options

Option Name Description Introduced Deprecated

--add-drop-database Add DROP DATABASE
statement before each
CREATE DATABASE
statement

--add-drop-table Add DROP TABLE
statement before
each CREATE TABLE
statement

--add-drop-trigger Add DROP TRIGGER
statement before each
CREATE TRIGGER
statement

--add-locks Surround each table
dump with LOCK
TABLES and UNLOCK
TABLES statements

--all-databases Dump all tables in all
databases

--allow-keywords Allow creation of column
names that are keywords

--apply-slave-statements Include STOP SLAVE
prior to CHANGE
MASTER statement and
START SLAVE at end of
output

--bind-address Use specified network
interface to connect to
MySQL Server

--character-sets-dir Directory where
character sets are
installed

--comments Add comments to dump
file

--compact Produce more compact
output

--compatible Produce output that is
more compatible with
other database systems
or with older MySQL
servers

--complete-insert Use complete INSERT
statements that include
column names

--compress Compress all information
sent between client and
server

468

mysqldump — A Database Backup Program

Option Name Description Introduced Deprecated

--create-options Include all MySQL-
specific table options
in CREATE TABLE
statements

--databases Interpret all name
arguments as database
names

--debug Write debugging log

--debug-check Print debugging
information when
program exits

--debug-info Print debugging
information, memory,
and CPU statistics when
program exits

--default-auth Authentication plugin to
use

--default-character-set Specify default character
set

--defaults-extra-file Read named option file in
addition to usual option
files

--defaults-file Read only named option
file

--defaults-group-suffix Option group suffix value

--delete-master-logs On a replication source
server, delete the binary
logs after performing the
dump operation

--disable-keys For each table, surround
INSERT statements with
statements to disable and
enable keys

--dump-date Include dump date as
"Dump completed on"
comment if --comments
is given

--dump-slave Include CHANGE
MASTER statement
that lists binary log
coordinates of replica's
source

--enable-cleartext-plugin Enable cleartext
authentication plugin

5.7.10

--events Dump events from
dumped databases

469

mysqldump — A Database Backup Program

Option Name Description Introduced Deprecated

--extended-insert Use multiple-row INSERT
syntax

--fields-enclosed-by This option is used with
the --tab option and has
the same meaning as the
corresponding clause for
LOAD DATA

--fields-escaped-by This option is used with
the --tab option and has
the same meaning as the
corresponding clause for
LOAD DATA

--fields-optionally-
enclosed-by

This option is used with
the --tab option and has
the same meaning as the
corresponding clause for
LOAD DATA

--fields-terminated-by This option is used with
the --tab option and has
the same meaning as the
corresponding clause for
LOAD DATA

--flush-logs Flush MySQL server log
files before starting dump

--flush-privileges Emit a FLUSH
PRIVILEGES statement
after dumping mysql
database

--force Continue even if an SQL
error occurs during a
table dump

--get-server-public-key Request RSA public key
from server

5.7.23

--help Display help message
and exit

--hex-blob Dump binary columns
using hexadecimal
notation

--host Host on which MySQL
server is located

--ignore-error Ignore specified errors

--ignore-table Do not dump given table

--include-master-host-
port

Include MASTER_HOST/
MASTER_PORT options
in CHANGE MASTER
statement produced with
--dump-slave

470

mysqldump — A Database Backup Program

Option Name Description Introduced Deprecated

--insert-ignore Write INSERT IGNORE
rather than INSERT
statements

--lines-terminated-by This option is used with
the --tab option and has
the same meaning as the
corresponding clause for
LOAD DATA

--lock-all-tables Lock all tables across all
databases

--lock-tables Lock all tables before
dumping them

--log-error Append warnings and
errors to named file

--login-path Read login path options
from .mylogin.cnf

--master-data Write the binary log file
name and position to the
output

--max-allowed-packet Maximum packet length
to send to or receive from
server

--net-buffer-length Buffer size for
TCP/IP and socket
communication

--no-autocommit Enclose the INSERT
statements for each
dumped table within
SET autocommit = 0 and
COMMIT statements

--no-create-db Do not write CREATE
DATABASE statements

--no-create-info Do not write CREATE
TABLE statements that
re-create each dumped
table

--no-data Do not dump table
contents

--no-defaults Read no option files

--no-set-names Same as --skip-set-
charset

--no-tablespaces Do not write any
CREATE LOGFILE
GROUP or CREATE
TABLESPACE
statements in output

471

mysqldump — A Database Backup Program

Option Name Description Introduced Deprecated

--opt Shorthand for --add-
drop-table --add-locks --
create-options --disable-
keys --extended-insert --
lock-tables --quick --set-
charset

--order-by-primary Dump each table's rows
sorted by its primary key,
or by its first unique index

--password Password to use when
connecting to server

--pipe Connect to server using
named pipe (Windows
only)

--plugin-dir Directory where plugins
are installed

--port TCP/IP port number for
connection

--print-defaults Print default options

--protocol Transport protocol to use

--quick Retrieve rows for a table
from the server a row at a
time

--quote-names Quote identifiers within
backtick characters

--replace Write REPLACE
statements rather than
INSERT statements

--result-file Direct output to a given
file

--routines Dump stored routines
(procedures and
functions) from dumped
databases

--secure-auth Do not send passwords
to server in old (pre-4.1)
format

Yes

--server-public-key-path Path name to file
containing RSA public
key

5.7.23

--set-charset Add SET NAMES
default_character_set to
output

--set-gtid-purged Whether to add SET
@@GLOBAL.GTID_PURGED
to output

472

mysqldump — A Database Backup Program

Option Name Description Introduced Deprecated

--shared-memory-base-
name

Shared-memory name
for shared-memory
connections (Windows
only)

--single-transaction Issue a BEGIN SQL
statement before
dumping data from server

--skip-add-drop-table Do not add a DROP
TABLE statement before
each CREATE TABLE
statement

--skip-add-locks Do not add locks

--skip-comments Do not add comments to
dump file

--skip-compact Do not produce more
compact output

--skip-disable-keys Do not disable keys

--skip-extended-insert Turn off extended-insert

--skip-mysql-schema Do not drop the mysql
schema

5.7.36

--skip-opt Turn off options set by --
opt

--skip-quick Do not retrieve rows for
a table from the server a
row at a time

--skip-quote-names Do not quote identifiers

--skip-set-charset Do not write SET NAMES
statement

--skip-triggers Do not dump triggers

--skip-tz-utc Turn off tz-utc

--socket Unix socket file or
Windows named pipe to
use

--ssl Enable connection
encryption

--ssl-ca File that contains list of
trusted SSL Certificate
Authorities

--ssl-capath Directory that contains
trusted SSL Certificate
Authority certificate files

--ssl-cert File that contains X.509
certificate

473

mysqldump — A Database Backup Program

Option Name Description Introduced Deprecated

--ssl-cipher Permissible ciphers for
connection encryption

--ssl-crl File that contains
certificate revocation lists

--ssl-crlpath Directory that contains
certificate revocation-list
files

--ssl-key File that contains X.509
key

--ssl-mode Desired security state of
connection to server

5.7.11

--ssl-verify-server-cert Verify host name
against server certificate
Common Name identity

--tab Produce tab-separated
data files

--tables Override --databases or -
B option

--tls-version Permissible TLS
protocols for encrypted
connections

5.7.10

--triggers Dump triggers for each
dumped table

--tz-utc Add SET
TIME_ZONE='+00:00' to
dump file

--user MySQL user name to
use when connecting to
server

--verbose Verbose mode

--version Display version
information and exit

--where Dump only rows selected
by given WHERE
condition

--xml Produce XML output

Connection Options

The mysqldump command logs into a MySQL server to extract information. The following options specify
how to connect to the MySQL server, either on the same machine or a remote system.

• --bind-address=ip_address

Command-Line Format --bind-address=ip_address

474

mysqldump — A Database Backup Program

On a computer having multiple network interfaces, use this option to select which interface to use for
connecting to the MySQL server.

• --compress, -C

Command-Line Format --compress[={OFF|ON}]

Type Boolean

Default Value OFF

Compress all information sent between the client and the server if possible. See Section 4.2.6,
“Connection Compression Control”.

• --default-auth=plugin

Command-Line Format --default-auth=plugin

Type String

A hint about which client-side authentication plugin to use. See Section 6.2.13, “Pluggable
Authentication”.

• --enable-cleartext-plugin

Command-Line Format --enable-cleartext-plugin

Introduced 5.7.10

Type Boolean

Default Value FALSE

Enable the mysql_clear_password cleartext authentication plugin. (See Section 6.4.1.6, “Client-Side
Cleartext Pluggable Authentication”.)

This option was added in MySQL 5.7.10.

• --get-server-public-key

Command-Line Format --get-server-public-key

Introduced 5.7.23

Type Boolean

Request from the server the public key required for RSA key pair-based password exchange. This option
applies to clients that authenticate with the caching_sha2_password authentication plugin. For that
plugin, the server does not send the public key unless requested. This option is ignored for accounts that

475

mysqldump — A Database Backup Program

do not authenticate with that plugin. It is also ignored if RSA-based password exchange is not used, as is
the case when the client connects to the server using a secure connection.

If --server-public-key-path=file_name is given and specifies a valid public key file, it takes
precedence over --get-server-public-key.

For information about the caching_sha2_password plugin, see Section 6.4.1.4, “Caching SHA-2
Pluggable Authentication”.

The --get-server-public-key option was added in MySQL 5.7.23.

• --host=host_name, -h host_name

Command-Line Format --host

Dump data from the MySQL server on the given host. The default host is localhost.

• --login-path=name

Command-Line Format --login-path=name

Type String

Read options from the named login path in the .mylogin.cnf login path file. A “login path” is an
option group containing options that specify which MySQL server to connect to and which account to
authenticate as. To create or modify a login path file, use the mysql_config_editor utility. See
Section 4.6.6, “mysql_config_editor — MySQL Configuration Utility”.

For additional information about this and other option-file options, see Section 4.2.2.3, “Command-Line
Options that Affect Option-File Handling”.

• --password[=password], -p[password]

Command-Line Format --password[=password]

Type String

The password of the MySQL account used for connecting to the server. The password value is optional.
If not given, mysqldump prompts for one. If given, there must be no space between --password= or -
p and the password following it. If no password option is specified, the default is to send no password.

Specifying a password on the command line should be considered insecure. To avoid giving the
password on the command line, use an option file. See Section 6.1.2.1, “End-User Guidelines for
Password Security”.

To explicitly specify that there is no password and that mysqldump should not prompt for one, use the
--skip-password option.

• --pipe, -W

Command-Line Format --pipe
476

mysqldump — A Database Backup Program

Type String

On Windows, connect to the server using a named pipe. This option applies only if the server was
started with the named_pipe system variable enabled to support named-pipe connections. In
addition, the user making the connection must be a member of the Windows group specified by the
named_pipe_full_access_group system variable.

• --plugin-dir=dir_name

Command-Line Format --plugin-dir=dir_name

Type Directory name

The directory in which to look for plugins. Specify this option if the --default-auth option is used
to specify an authentication plugin but mysqldump does not find it. See Section 6.2.13, “Pluggable
Authentication”.

• --port=port_num, -P port_num

Command-Line Format --port=port_num

Type Numeric

Default Value 3306

For TCP/IP connections, the port number to use.

• --protocol={TCP|SOCKET|PIPE|MEMORY}

Command-Line Format --protocol=type

Type String

Default Value [see text]

Valid Values TCP

SOCKET

PIPE

MEMORY

The transport protocol to use for connecting to the server. It is useful when the other connection
parameters normally result in use of a protocol other than the one you want. For details on the
permissible values, see Section 4.2.5, “Connection Transport Protocols”.

• --secure-auth

Command-Line Format --secure-auth

Deprecated Yes

Do not send passwords to the server in old (pre-4.1) format. This prevents connections except for
servers that use the newer password format.

477

mysqldump — A Database Backup Program

As of MySQL 5.7.5, this option is deprecated; expect it to be removed in a future MySQL release. It is
always enabled and attempting to disable it (--skip-secure-auth, --secure-auth=0) produces an
error. Before MySQL 5.7.5, this option is enabled by default but can be disabled.

Note

Passwords that use the pre-4.1 hashing method are less secure than passwords
that use the native password hashing method and should be avoided. Pre-4.1
passwords are deprecated and support for them was removed in MySQL 5.7.5.
For account upgrade instructions, see Section 6.4.1.3, “Migrating Away from
Pre-4.1 Password Hashing and the mysql_old_password Plugin”.

• --server-public-key-path=file_name

Command-Line Format --server-public-key-path=file_name

Introduced 5.7.23

Type File name

The path name to a file in PEM format containing a client-side copy of the public key required by the
server for RSA key pair-based password exchange. This option applies to clients that authenticate with
the sha256_password or caching_sha2_password authentication plugin. This option is ignored for
accounts that do not authenticate with one of those plugins. It is also ignored if RSA-based password
exchange is not used, as is the case when the client connects to the server using a secure connection.

If --server-public-key-path=file_name is given and specifies a valid public key file, it takes
precedence over --get-server-public-key.

For sha256_password, this option applies only if MySQL was built using OpenSSL.

For information about the sha256_password and caching_sha2_password plugins, see
Section 6.4.1.5, “SHA-256 Pluggable Authentication”, and Section 6.4.1.4, “Caching SHA-2 Pluggable
Authentication”.

The --server-public-key-path option was added in MySQL 5.7.23.

• --skip-mysql-schema

Command-Line Format --skip-mysql-schema

Introduced 5.7.36

Type Boolean

Do not drop the mysql schema when the dump file is restored. By default, the schema is dropped.

This option was added in MySQL 5.7.36.

• --socket=path, -S path

Command-Line Format --socket={file_name|pipe_name}

478

mysqldump — A Database Backup Program

Type String

For connections to localhost, the Unix socket file to use, or, on Windows, the name of the named pipe
to use.

On Windows, this option applies only if the server was started with the named_pipe system variable
enabled to support named-pipe connections. In addition, the user making the connection must be a
member of the Windows group specified by the named_pipe_full_access_group system variable.

• --ssl*

Options that begin with --ssl specify whether to connect to the server using encryption and indicate
where to find SSL keys and certificates. See Command Options for Encrypted Connections.

• --tls-version=protocol_list

Command-Line Format --tls-version=protocol_list

Introduced 5.7.10

Type String

Default Value (≥ 5.7.28) TLSv1,TLSv1.1,TLSv1.2

Default Value (≤ 5.7.27) TLSv1,TLSv1.1,TLSv1.2 (OpenSSL)

TLSv1,TLSv1.1 (yaSSL)

The permissible TLS protocols for encrypted connections. The value is a list of one or more comma-
separated protocol names. The protocols that can be named for this option depend on the SSL library
used to compile MySQL. For details, see Section 6.3.2, “Encrypted Connection TLS Protocols and
Ciphers”.

This option was added in MySQL 5.7.10.

• --user=user_name, -u user_name

Command-Line Format --user=user_name

Type String

The user name of the MySQL account to use for connecting to the server.

Option-File Options

These options are used to control which option files to read.

• --defaults-extra-file=file_name

Command-Line Format --defaults-extra-file=file_name

Type File name

Read this option file after the global option file but (on Unix) before the user option file. If the file does
not exist or is otherwise inaccessible, an error occurs. If file_name is not an absolute path name, it is
interpreted relative to the current directory.

479

mysqldump — A Database Backup Program

For additional information about this and other option-file options, see Section 4.2.2.3, “Command-Line
Options that Affect Option-File Handling”.

• --defaults-file=file_name

Command-Line Format --defaults-file=file_name

Type File name

Use only the given option file. If the file does not exist or is otherwise inaccessible, an error occurs. If
file_name is not an absolute path name, it is interpreted relative to the current directory.

Exception: Even with --defaults-file, client programs read .mylogin.cnf.

For additional information about this and other option-file options, see Section 4.2.2.3, “Command-Line
Options that Affect Option-File Handling”.

• --defaults-group-suffix=str

Command-Line Format --defaults-group-suffix=str

Type String

Read not only the usual option groups, but also groups with the usual names and a suffix of str.
For example, mysqldump normally reads the [client] and [mysqldump] groups. If this option is
given as --defaults-group-suffix=_other, mysqldump also reads the [client_other] and
[mysqldump_other] groups.

For additional information about this and other option-file options, see Section 4.2.2.3, “Command-Line
Options that Affect Option-File Handling”.

• --no-defaults

Command-Line Format --no-defaults

Do not read any option files. If program startup fails due to reading unknown options from an option file,
--no-defaults can be used to prevent them from being read.

The exception is that the .mylogin.cnf file is read in all cases, if it exists. This permits passwords to
be specified in a safer way than on the command line even when --no-defaults is used. To create
.mylogin.cnf, use the mysql_config_editor utility. See Section 4.6.6, “mysql_config_editor —
MySQL Configuration Utility”.

For additional information about this and other option-file options, see Section 4.2.2.3, “Command-Line
Options that Affect Option-File Handling”.

480

mysqldump — A Database Backup Program

• --print-defaults

Command-Line Format --print-defaults

Print the program name and all options that it gets from option files.

For additional information about this and other option-file options, see Section 4.2.2.3, “Command-Line
Options that Affect Option-File Handling”.

DDL Options

Usage scenarios for mysqldump include setting up an entire new MySQL instance (including database
tables), and replacing data inside an existing instance with existing databases and tables. The following
options let you specify which things to tear down and set up when restoring a dump, by encoding various
DDL statements within the dump file.

• --add-drop-database

Command-Line Format --add-drop-database

Write a DROP DATABASE statement before each CREATE DATABASE statement. This option is typically
used in conjunction with the --all-databases or --databases option because no CREATE
DATABASE statements are written unless one of those options is specified.

• --add-drop-table

Command-Line Format --add-drop-table

Write a DROP TABLE statement before each CREATE TABLE statement.

• --add-drop-trigger

Command-Line Format --add-drop-trigger

Write a DROP TRIGGER statement before each CREATE TRIGGER statement.

• --all-tablespaces, -Y

Command-Line Format --all-tablespaces

Adds to a table dump all SQL statements needed to create any tablespaces used by an NDB table. This
information is not otherwise included in the output from mysqldump. This option is currently relevant
only to NDB Cluster tables, which are not supported in MySQL 5.7.

• --no-create-db, -n

Command-Line Format --no-create-db

Suppress the CREATE DATABASE statements that are otherwise included in the output if the --
databases or --all-databases option is given.

481

mysqldump — A Database Backup Program

• --no-create-info, -t

Command-Line Format --no-create-info

Do not write CREATE TABLE statements that create each dumped table.

Note

This option does not exclude statements creating log file groups or tablespaces
from mysqldump output; however, you can use the --no-tablespaces option
for this purpose.

• --no-tablespaces, -y

Command-Line Format --no-tablespaces

This option suppresses all CREATE LOGFILE GROUP and CREATE TABLESPACE statements in the
output of mysqldump.

• --replace

Command-Line Format --replace

Write REPLACE statements rather than INSERT statements.

Debug Options

The following options print debugging information, encode debugging information in the dump file, or let the
dump operation proceed regardless of potential problems.

• --allow-keywords

Command-Line Format --allow-keywords

Permit creation of column names that are keywords. This works by prefixing each column name with the
table name.

• --comments, -i

Command-Line Format --comments

Write additional information in the dump file such as program version, server version, and host. This
option is enabled by default. To suppress this additional information, use --skip-comments.

• --debug[=debug_options], -# [debug_options]

Command-Line Format --debug[=debug_options]

Type String

Default Value d:t:o,/tmp/mysqldump.trace482

mysqldump — A Database Backup Program

Write a debugging log. A typical debug_options string is d:t:o,file_name. The default value is
d:t:o,/tmp/mysqldump.trace.

This option is available only if MySQL was built using WITH_DEBUG. MySQL release binaries provided
by Oracle are not built using this option.

• --debug-check

Command-Line Format --debug-check

Type Boolean

Default Value FALSE

Print some debugging information when the program exits.

This option is available only if MySQL was built using WITH_DEBUG. MySQL release binaries provided
by Oracle are not built using this option.

• --debug-info

Command-Line Format --debug-info

Type Boolean

Default Value FALSE

Print debugging information and memory and CPU usage statistics when the program exits.

This option is available only if MySQL was built using WITH_DEBUG. MySQL release binaries provided
by Oracle are not built using this option.

• --dump-date

Command-Line Format --dump-date

Type Boolean

Default Value TRUE

If the --comments option is given, mysqldump produces a comment at the end of the dump of the
following form:

-- Dump completed on DATE

However, the date causes dump files taken at different times to appear to be different, even if the data
are otherwise identical. --dump-date and --skip-dump-date control whether the date is added to
the comment. The default is --dump-date (include the date in the comment). --skip-dump-date
suppresses date printing.

483

mysqldump — A Database Backup Program

• --force, -f

Command-Line Format --force

Ignore all errors; continue even if an SQL error occurs during a table dump.

One use for this option is to cause mysqldump to continue executing even when it encounters a view
that has become invalid because the definition refers to a table that has been dropped. Without --
force, mysqldump exits with an error message. With --force, mysqldump prints the error message,
but it also writes an SQL comment containing the view definition to the dump output and continues
executing.

If the --ignore-error option is also given to ignore specific errors, --force takes precedence.

• --log-error=file_name

Command-Line Format --log-error=file_name

Type File name

Log warnings and errors by appending them to the named file. The default is to do no logging.

• --skip-comments

Command-Line Format --skip-comments

See the description for the --comments option.

• --verbose, -v

Command-Line Format --verbose

Verbose mode. Print more information about what the program does.

Help Options

The following options display information about the mysqldump command itself.

• --help, -?

Command-Line Format --help

Display a help message and exit.

• --version, -V

Command-Line Format --version

Display version information and exit.

484

mysqldump — A Database Backup Program

Internationalization Options

The following options change how the mysqldump command represents character data with national
language settings.

• --character-sets-dir=dir_name

Command-Line Format --character-sets-dir=dir_name

Type Directory name

The directory where character sets are installed. See Section 10.15, “Character Set Configuration”.

• --default-character-set=charset_name

Command-Line Format --default-character-set=charset_name

Type String

Default Value utf8

Use charset_name as the default character set. See Section 10.15, “Character Set Configuration”. If
no character set is specified, mysqldump uses utf8.

• --no-set-names, -N

Command-Line Format --no-set-names

Deprecated Yes

Turns off the --set-charset setting, the same as specifying --skip-set-charset.

• --set-charset

Command-Line Format --set-charset

Disabled by skip-set-charset

Write SET NAMES default_character_set to the output. This option is enabled by default. To
suppress the SET NAMES statement, use --skip-set-charset.

Replication Options

The mysqldump command is frequently used to create an empty instance, or an instance including data,
on a replica server in a replication configuration. The following options apply to dumping and restoring data
on replication source and replica servers.

• --apply-slave-statements

Command-Line Format --apply-slave-statements

Type Boolean

Default Value FALSE

485

mysqldump — A Database Backup Program

For a replica dump produced with the --dump-slave option, add a STOP SLAVE statement before the
CHANGE MASTER TO statement and a START SLAVE statement at the end of the output.

• --delete-master-logs

Command-Line Format --delete-master-logs

On a source replication server, delete the binary logs by sending a PURGE BINARY LOGS statement
to the server after performing the dump operation. This option requires the RELOAD privilege as well as
privileges sufficient to execute that statement. This option automatically enables --master-data.

• --dump-slave[=value]

Command-Line Format --dump-slave[=value]

Type Numeric

Default Value 1

Valid Values 1

2

This option is similar to --master-data except that it is used to dump a replication replica server to
produce a dump file that can be used to set up another server as a replica that has the same source
as the dumped server. It causes the dump output to include a CHANGE MASTER TO statement that
indicates the binary log coordinates (file name and position) of the dumped replica's source. The CHANGE
MASTER TO statement reads the values of Relay_Master_Log_File and Exec_Master_Log_Pos
from the SHOW SLAVE STATUS output and uses them for MASTER_LOG_FILE and MASTER_LOG_POS
respectively. These are the source server coordinates from which the replica should start replicating.

Note

Inconsistencies in the sequence of transactions from the relay log which have
been executed can cause the wrong position to be used. See Section 16.4.1.32,
“Replication and Transaction Inconsistencies” for more information.

--dump-slave causes the coordinates from the source to be used rather than those of the dumped
server, as is done by the --master-data option. In addition, specifiying this option causes the --
master-data option to be overridden, if used, and effectively ignored.

Warning

This option should not be used if the server where the dump is going to be
applied uses gtid_mode=ON and MASTER_AUTOPOSITION=1.

The option value is handled the same way as for --master-data (setting no value or 1 causes a
CHANGE MASTER TO statement to be written to the dump, setting 2 causes the statement to be written

486

mysqldump — A Database Backup Program

but encased in SQL comments) and has the same effect as --master-data in terms of enabling or
disabling other options and in how locking is handled.

This option causes mysqldump to stop the replica SQL thread before the dump and restart it again after.

--dump-slave sends a SHOW SLAVE STATUS statement to the server to obtain information, so it
requires privileges sufficient to execute that statement.

In conjunction with --dump-slave, the --apply-slave-statements and --include-master-
host-port options can also be used.

• --include-master-host-port

Command-Line Format --include-master-host-port

Type Boolean

Default Value FALSE

For the CHANGE MASTER TO statement in a replica dump produced with the --dump-slave option,
add MASTER_HOST and MASTER_PORT options for the host name and TCP/IP port number of the
replica's source.

• --master-data[=value]

Command-Line Format --master-data[=value]

Type Numeric

Default Value 1

Valid Values 1

2

Use this option to dump a source replication server to produce a dump file that can be used to set up
another server as a replica of the source. It causes the dump output to include a CHANGE MASTER TO
statement that indicates the binary log coordinates (file name and position) of the dumped server. These
are the source server coordinates from which the replica should start replicating after you load the dump
file into the replica.

If the option value is 2, the CHANGE MASTER TO statement is written as an SQL comment, and thus is
informative only; it has no effect when the dump file is reloaded. If the option value is 1, the statement is
not written as a comment and takes effect when the dump file is reloaded. If no option value is specified,
the default value is 1.

--master-data sends a SHOW MASTER STATUS statement to the server to obtain information, so it
requires privileges sufficient to execute that statement. This option also requires the RELOAD privilege
and the binary log must be enabled.

The --master-data option automatically turns off --lock-tables. It also turns on --lock-
all-tables, unless --single-transaction also is specified, in which case, a global read lock
is acquired only for a short time at the beginning of the dump (see the description for --single-
transaction). In all cases, any action on logs happens at the exact moment of the dump.

It is also possible to set up a replica by dumping an existing replica of the source, using the --dump-
slave option, which overrides --master-data and causes it to be ignored if both options are used.

487

mysqldump — A Database Backup Program

• --set-gtid-purged=value

Command-Line Format --set-gtid-purged=value

Type Enumeration

Default Value AUTO

Valid Values OFF

ON

AUTO

This option enables control over global transaction ID (GTID) information written to the dump file, by
indicating whether to add a SET @@GLOBAL.gtid_purged statement to the output. This option may
also cause a statement to be written to the output that disables binary logging while the dump file is
being reloaded.

The following table shows the permitted option values. The default value is AUTO.

Value Meaning

OFF Add no SET statement to the output.

ON Add a SET statement to the output. An error occurs
if GTIDs are not enabled on the server.

AUTO Add a SET statement to the output if GTIDs are
enabled on the server.

A partial dump from a server that is using GTID-based replication requires the --set-gtid-
purged={ON|OFF} option to be specified. Use ON if the intention is to deploy a new replication replica
using only some of the data from the dumped server. Use OFF if the intention is to repair a table by
copying it within a topology. Use OFF if the intention is to copy a table between replication topologies that
are disjoint and for them to remain so.

The --set-gtid-purged option has the following effect on binary logging when the dump file is
reloaded:

• --set-gtid-purged=OFF: SET @@SESSION.SQL_LOG_BIN=0; is not added to the output.

• --set-gtid-purged=ON: SET @@SESSION.SQL_LOG_BIN=0; is added to the output.

• --set-gtid-purged=AUTO: SET @@SESSION.SQL_LOG_BIN=0; is added to the output if GTIDs
are enabled on the server you are backing up (that is, if AUTO evaluates to ON).

Using this option with the --single-transaction option can lead to inconsistencies in the output. If
--set-gtid-purged=ON is required, it can be used with --lock-all-tables, but this can prevent
parallel queries while mysqldump is being run.

It is not recommended to load a dump file when GTIDs are enabled on the server (gtid_mode=ON), if
your dump file includes system tables. mysqldump issues DML instructions for the system tables which
use the non-transactional MyISAM storage engine, and this combination is not permitted when GTIDs
are enabled. Also be aware that loading a dump file from a server with GTIDs enabled, into another
server with GTIDs enabled, causes different transaction identifiers to be generated.

488

mysqldump — A Database Backup Program

Format Options

The following options specify how to represent the entire dump file or certain kinds of data in the dump file.
They also control whether certain optional information is written to the dump file.

• --compact

Command-Line Format --compact

Produce more compact output. This option enables the --skip-add-drop-table, --skip-add-
locks, --skip-comments, --skip-disable-keys, and --skip-set-charset options.

• --compatible=name

Command-Line Format --compatible=name[,name,...]

Type String

Default Value ''

Valid Values ansi

Produce output that is more compatible with other database systems or with older MySQL servers.
The value of name can be ansi, mysql323, mysql40, postgresql, oracle, mssql, db2, maxdb,
no_key_options, no_table_options, or no_field_options. To use several values, separate
them by commas. These values have the same meaning as the corresponding options for setting the
server SQL mode. See Section 5.1.10, “Server SQL Modes”.

This option does not guarantee compatibility with other servers. It only enables those SQL mode
values that are currently available for making dump output more compatible. For example, --
compatible=oracle does not map data types to Oracle types or use Oracle comment syntax.

• --complete-insert, -c

Command-Line Format --complete-insert

Use complete INSERT statements that include column names.

• --create-options

Command-Line Format --create-options

Include all MySQL-specific table options in the CREATE TABLE statements.

• --fields-terminated-by=..., --fields-enclosed-by=..., --fields-optionally-
enclosed-by=..., --fields-escaped-by=...

Command-Line Format --fields-terminated-by=string

Type String

Command-Line Format --fields-enclosed-by=string

Type String

489

mysqldump — A Database Backup Program

Command-Line Format --fields-optionally-enclosed-
by=string

Type String

Command-Line Format --fields-escaped-by

Type String

These options are used with the --tab option and have the same meaning as the corresponding
FIELDS clauses for LOAD DATA. See Section 13.2.6, “LOAD DATA Statement”.

• --hex-blob

Command-Line Format --hex-blob

Dump binary columns using hexadecimal notation (for example, 'abc' becomes 0x616263). The
affected data types are BINARY, VARBINARY, BLOB types, BIT, all spatial data types, and other non-
binary data types when used with the binary character set.

The --hex-blob option is ignored when the --tab is used.

• --lines-terminated-by=...

Command-Line Format --lines-terminated-by=string

Type String

This option is used with the --tab option and has the same meaning as the corresponding LINES
clause for LOAD DATA. See Section 13.2.6, “LOAD DATA Statement”.

• --quote-names, -Q

Command-Line Format --quote-names

Disabled by skip-quote-names

Quote identifiers (such as database, table, and column names) within ` characters. If the ANSI_QUOTES
SQL mode is enabled, identifiers are quoted within " characters. This option is enabled by default. It can
be disabled with --skip-quote-names, but this option should be given after any option such as --
compatible that may enable --quote-names.

• --result-file=file_name, -r file_name

Command-Line Format --result-file=file_name490

mysqldump — A Database Backup Program

Type File name

Direct output to the named file. The result file is created and its previous contents overwritten, even if an
error occurs while generating the dump.

This option should be used on Windows to prevent newline \n characters from being converted to \r\n
carriage return/newline sequences.

• --tab=dir_name, -T dir_name

Command-Line Format --tab=dir_name

Type Directory name

Produce tab-separated text-format data files. For each dumped table, mysqldump creates a
tbl_name.sql file that contains the CREATE TABLE statement that creates the table, and the server
writes a tbl_name.txt file that contains its data. The option value is the directory in which to write the
files.

Note

This option should be used only when mysqldump is run on the same machine
as the mysqld server. Because the server creates *.txt files in the directory
that you specify, the directory must be writable by the server and the MySQL
account that you use must have the FILE privilege. Because mysqldump creates
*.sql in the same directory, it must be writable by your system login account.

By default, the .txt data files are formatted using tab characters between column values and a newline
at the end of each line. The format can be specified explicitly using the --fields-xxx and --lines-
terminated-by options.

Column values are converted to the character set specified by the --default-character-set
option.

• --tz-utc

Command-Line Format --tz-utc

Disabled by skip-tz-utc

This option enables TIMESTAMP columns to be dumped and reloaded between servers in different time
zones. mysqldump sets its connection time zone to UTC and adds SET TIME_ZONE='+00:00' to the
dump file. Without this option, TIMESTAMP columns are dumped and reloaded in the time zones local to
the source and destination servers, which can cause the values to change if the servers are in different
time zones. --tz-utc also protects against changes due to daylight saving time. --tz-utc is enabled
by default. To disable it, use --skip-tz-utc.

491

mysqldump — A Database Backup Program

• --xml, -X

Command-Line Format --xml

Write dump output as well-formed XML.

NULL, 'NULL', and Empty Values: For a column named column_name, the NULL value, an empty
string, and the string value 'NULL' are distinguished from one another in the output generated by this
option as follows.

Value: XML Representation:

NULL (unknown value) <field name="column_name"
xsi:nil="true" />

'' (empty string) <field name="column_name"></field>

'NULL' (string value) <field name="column_name">NULL</
field>

The output from the mysql client when run using the --xml option also follows the preceding rules.
(See Section 4.5.1.1, “mysql Client Options”.)

XML output from mysqldump includes the XML namespace, as shown here:

$> mysqldump --xml -u root world City
<?xml version="1.0"?>
<mysqldump xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<database name="world">
<table_structure name="City">
<field Field="ID" Type="int(11)" Null="NO" Key="PRI" Extra="auto_increment" />
<field Field="Name" Type="char(35)" Null="NO" Key="" Default="" Extra="" />
<field Field="CountryCode" Type="char(3)" Null="NO" Key="" Default="" Extra="" />
<field Field="District" Type="char(20)" Null="NO" Key="" Default="" Extra="" />
<field Field="Population" Type="int(11)" Null="NO" Key="" Default="0" Extra="" />
<key Table="City" Non_unique="0" Key_name="PRIMARY" Seq_in_index="1" Column_name="ID"
Collation="A" Cardinality="4079" Null="" Index_type="BTREE" Comment="" />
<options Name="City" Engine="MyISAM" Version="10" Row_format="Fixed" Rows="4079"
Avg_row_length="67" Data_length="273293" Max_data_length="18858823439613951"
Index_length="43008" Data_free="0" Auto_increment="4080"
Create_time="2007-03-31 01:47:01" Update_time="2007-03-31 01:47:02"
Collation="latin1_swedish_ci" Create_options="" Comment="" />
</table_structure>
<table_data name="City">
<row>
<field name="ID">1</field>
<field name="Name">Kabul</field>
<field name="CountryCode">AFG</field>
<field name="District">Kabol</field>
<field name="Population">1780000</field>
</row>

...

<row>
<field name="ID">4079</field>
<field name="Name">Rafah</field>
<field name="CountryCode">PSE</field>
<field name="District">Rafah</field>
<field name="Population">92020</field>
</row>
</table_data>
</database>492

mysqldump — A Database Backup Program

</mysqldump>

Filtering Options

The following options control which kinds of schema objects are written to the dump file: by category,
such as triggers or events; by name, for example, choosing which databases and tables to dump; or even
filtering rows from the table data using a WHERE clause.

• --all-databases, -A

Command-Line Format --all-databases

Dump all tables in all databases. This is the same as using the --databases option and naming all the
databases on the command line.

• --databases, -B

Command-Line Format --databases

Dump several databases. Normally, mysqldump treats the first name argument on the command line as
a database name and following names as table names. With this option, it treats all name arguments as
database names. CREATE DATABASE and USE statements are included in the output before each new
database.

This option may be used to dump the INFORMATION_SCHEMA and performance_schema databases,
which normally are not dumped even with the --all-databases option. (Also use the --skip-lock-
tables option.)

• --events, -E

Command-Line Format --events

Include Event Scheduler events for the dumped databases in the output. This option requires the EVENT
privileges for those databases.

The output generated by using --events contains CREATE EVENT statements to create the events.
However, these statements do not include attributes such as the event creation and modification
timestamps, so when the events are reloaded, they are created with timestamps equal to the reload
time.

If you require events to be created with their original timestamp attributes, do not use --events.
Instead, dump and reload the contents of the mysql.event table directly, using a MySQL account that
has appropriate privileges for the mysql database.

• --ignore-error=error[,error]...

Command-Line Format --ignore-error=error[,error]...

Type String

Ignore the specified errors. The option value is a list of comma-separated error numbers specifying the
errors to ignore during mysqldump execution. If the --force option is also given to ignore all errors, --
force takes precedence.

493

mysqldump — A Database Backup Program

• --ignore-table=db_name.tbl_name

Command-Line Format --ignore-table=db_name.tbl_name

Type String

Do not dump the given table, which must be specified using both the database and table names. To
ignore multiple tables, use this option multiple times. This option also can be used to ignore views.

• --no-data, -d

Command-Line Format --no-data

Do not write any table row information (that is, do not dump table contents). This is useful if you want to
dump only the CREATE TABLE statement for the table (for example, to create an empty copy of the table
by loading the dump file).

• --routines, -R

Command-Line Format --routines

Include stored routines (procedures and functions) for the dumped databases in the output. This option
requires the SELECT privilege for the mysql.proc table.

The output generated by using --routines contains CREATE PROCEDURE and CREATE FUNCTION
statements to create the routines. However, these statements do not include attributes such as the
routine creation and modification timestamps, so when the routines are reloaded, they are created with
timestamps equal to the reload time.

If you require routines to be created with their original timestamp attributes, do not use --routines.
Instead, dump and reload the contents of the mysql.proc table directly, using a MySQL account that
has appropriate privileges for the mysql database.

• --tables

Command-Line Format --tables

Override the --databases or -B option. mysqldump regards all name arguments following the option
as table names.

• --triggers

Command-Line Format --triggers

494

mysqldump — A Database Backup Program

Disabled by skip-triggers

Include triggers for each dumped table in the output. This option is enabled by default; disable it with --
skip-triggers.

To be able to dump a table's triggers, you must have the TRIGGER privilege for the table.

Multiple triggers are permitted. mysqldump dumps triggers in activation order so that when the dump
file is reloaded, triggers are created in the same activation order. However, if a mysqldump dump file
contains multiple triggers for a table that have the same trigger event and action time, an error occurs
for attempts to load the dump file into an older server that does not support multiple triggers. (For a
workaround, see Section 2.11.3, “Downgrade Notes”; you can convert triggers to be compatible with
older servers.)

• --where='where_condition', -w 'where_condition'

Command-Line Format --where='where_condition'

Dump only rows selected by the given WHERE condition. Quotes around the condition are mandatory if it
contains spaces or other characters that are special to your command interpreter.

Examples:

--where="user='jimf'"
-w"userid>1"
-w"userid<1"

Performance Options

The following options are the most relevant for the performance particularly of the restore operations. For
large data sets, restore operation (processing the INSERT statements in the dump file) is the most time-
consuming part. When it is urgent to restore data quickly, plan and test the performance of this stage in
advance. For restore times measured in hours, you might prefer an alternative backup and restore solution,
such as MySQL Enterprise Backup for InnoDB-only and mixed-use databases.

Performance is also affected by the transactional options, primarily for the dump operation.

• --disable-keys, -K

Command-Line Format --disable-keys

For each table, surround the INSERT statements with /*!40000 ALTER TABLE tbl_name DISABLE
KEYS */; and /*!40000 ALTER TABLE tbl_name ENABLE KEYS */; statements. This makes
loading the dump file faster because the indexes are created after all rows are inserted. This option is
effective only for nonunique indexes of MyISAM tables.

• --extended-insert, -e

Command-Line Format --extended-insert

Disabled by skip-extended-insert

Write INSERT statements using multiple-row syntax that includes several VALUES lists. This results in a
smaller dump file and speeds up inserts when the file is reloaded.

495

mysqldump — A Database Backup Program

• --insert-ignore

Command-Line Format --insert-ignore

Write INSERT IGNORE statements rather than INSERT statements.

• --max-allowed-packet=value

Command-Line Format --max-allowed-packet=value

Type Numeric

Default Value 25165824

The maximum size of the buffer for client/server communication. The default is 24MB, the maximum is
1GB.

Note

The value of this option is specific to mysqldump and should not be confused
with the MySQL server's max_allowed_packet system variable; the server
value cannot be exceeded by a single packet from mysqldump, regardless of any
setting for the mysqldump option, even if the latter is larger.

• --net-buffer-length=value

Command-Line Format --net-buffer-length=value

Type Numeric

Default Value 16384

The initial size of the buffer for client/server communication. When creating multiple-row INSERT
statements (as with the --extended-insert or --opt option), mysqldump creates rows up to
--net-buffer-length bytes long. If you increase this variable, ensure that the MySQL server
net_buffer_length system variable has a value at least this large.

• --opt

Command-Line Format --opt

Disabled by skip-opt

This option, enabled by default, is shorthand for the combination of --add-drop-table --add-locks
--create-options --disable-keys --extended-insert --lock-tables --quick --set-
charset. It gives a fast dump operation and produces a dump file that can be reloaded into a MySQL
server quickly.

Because the --opt option is enabled by default, you only specify its converse, the --skip-opt to
turn off several default settings. See the discussion of mysqldump option groups for information about
selectively enabling or disabling a subset of the options affected by --opt.

• --quick, -q

Command-Line Format --quick

496

mysqldump — A Database Backup Program

Disabled by skip-quick

This option is useful for dumping large tables. It forces mysqldump to retrieve rows for a table from the
server a row at a time rather than retrieving the entire row set and buffering it in memory before writing it
out.

• --skip-opt

Command-Line Format --skip-opt

See the description for the --opt option.

Transactional Options

The following options trade off the performance of the dump operation, against the reliability and
consistency of the exported data.

• --add-locks

Command-Line Format --add-locks

Surround each table dump with LOCK TABLES and UNLOCK TABLES statements. This results in faster
inserts when the dump file is reloaded. See Section 8.2.4.1, “Optimizing INSERT Statements”.

• --flush-logs, -F

Command-Line Format --flush-logs

Flush the MySQL server log files before starting the dump. This option requires the RELOAD privilege.
If you use this option in combination with the --all-databases option, the logs are flushed for each
database dumped. The exception is when using --lock-all-tables, --master-data, or --
single-transaction: In this case, the logs are flushed only once, corresponding to the moment that
all tables are locked by FLUSH TABLES WITH READ LOCK. If you want your dump and the log flush
to happen at exactly the same moment, you should use --flush-logs together with --lock-all-
tables, --master-data, or --single-transaction.

• --flush-privileges

Command-Line Format --flush-privileges

Add a FLUSH PRIVILEGES statement to the dump output after dumping the mysql database. This
option should be used any time the dump contains the mysql database and any other database that
depends on the data in the mysql database for proper restoration.

Because the dump file contains a FLUSH PRIVILEGES statement, reloading the file requires privileges
sufficient to execute that statement.

497

mysqldump — A Database Backup Program

Note

For upgrades to MySQL 5.7 or higher from older versions, do not use --
flush-privileges. For upgrade instructions in this case, see Section 2.10.3,
“Changes in MySQL 5.7”.

• --lock-all-tables, -x

Command-Line Format --lock-all-tables

Lock all tables across all databases. This is achieved by acquiring a global read lock for the duration of
the whole dump. This option automatically turns off --single-transaction and --lock-tables.

• --lock-tables, -l

Command-Line Format --lock-tables

For each dumped database, lock all tables to be dumped before dumping them. The tables are locked
with READ LOCAL to permit concurrent inserts in the case of MyISAM tables. For transactional tables
such as InnoDB, --single-transaction is a much better option than --lock-tables because it
does not need to lock the tables at all.

Because --lock-tables locks tables for each database separately, this option does not guarantee
that the tables in the dump file are logically consistent between databases. Tables in different databases
may be dumped in completely different states.

Some options, such as --opt, automatically enable --lock-tables. If you want to override this, use
--skip-lock-tables at the end of the option list.

• --no-autocommit

Command-Line Format --no-autocommit

Enclose the INSERT statements for each dumped table within SET autocommit = 0 and COMMIT
statements.

• --order-by-primary

Command-Line Format --order-by-primary

Dump each table's rows sorted by its primary key, or by its first unique index, if such an index exists.
This is useful when dumping a MyISAM table to be loaded into an InnoDB table, but makes the dump
operation take considerably longer.

• --shared-memory-base-name=name

Command-Line Format --shared-memory-base-name=name
498

mysqldump — A Database Backup Program

Platform Specific Windows

On Windows, the shared-memory name to use for connections made using shared memory to a local
server. The default value is MYSQL. The shared-memory name is case-sensitive.

This option applies only if the server was started with the shared_memory system variable enabled to
support shared-memory connections.

• --single-transaction

Command-Line Format --single-transaction

This option sets the transaction isolation mode to REPEATABLE READ and sends a START
TRANSACTION SQL statement to the server before dumping data. It is useful only with transactional
tables such as InnoDB, because then it dumps the consistent state of the database at the time when
START TRANSACTION was issued without blocking any applications.

The RELOAD or FLUSH_TABLES privilege is required with --single-transaction if both
gtid_mode=ON and --set-gtid=purged=ON|AUTO. This requirement was added in MySQL 8.0.32.

When using this option, you should keep in mind that only InnoDB tables are dumped in a consistent
state. For example, any MyISAM or MEMORY tables dumped while using this option may still change
state.

While a --single-transaction dump is in process, to ensure a valid dump file (correct table
contents and binary log coordinates), no other connection should use the following statements: ALTER
TABLE, CREATE TABLE, DROP TABLE, RENAME TABLE, TRUNCATE TABLE. A consistent read is not
isolated from those statements, so use of them on a table to be dumped can cause the SELECT that is
performed by mysqldump to retrieve the table contents to obtain incorrect contents or fail.

The --single-transaction option and the --lock-tables option are mutually exclusive because
LOCK TABLES causes any pending transactions to be committed implicitly.

Using --single-transaction together with the --set-gtid-purged option is not recommended;
doing so can lead to inconsistencies in the output of mysqldump.

To dump large tables, combine the --single-transaction option with the --quick option.

Option Groups

• The --opt option turns on several settings that work together to perform a fast dump operation. All of
these settings are on by default, because --opt is on by default. Thus you rarely if ever specify --opt.
Instead, you can turn these settings off as a group by specifying --skip-opt, then optionally re-enable
certain settings by specifying the associated options later on the command line.

• The --compact option turns off several settings that control whether optional statements and comments
appear in the output. Again, you can follow this option with other options that re-enable certain settings,
or turn all the settings on by using the --skip-compact form.

When you selectively enable or disable the effect of a group option, order is important because options are
processed first to last. For example, --disable-keys --lock-tables --skip-opt would not have
the intended effect; it is the same as --skip-opt by itself.

499

mysqldump — A Database Backup Program

Examples

To make a backup of an entire database:

mysqldump db_name > backup-file.sql

To load the dump file back into the server:

mysql db_name < backup-file.sql

Another way to reload the dump file:

mysql -e "source /path-to-backup/backup-file.sql" db_name

mysqldump is also very useful for populating databases by copying data from one MySQL server to
another:

mysqldump --opt db_name | mysql --host=remote_host -C db_name

You can dump several databases with one command:

mysqldump --databases db_name1 [db_name2 ...] > my_databases.sql

To dump all databases, use the --all-databases option:

mysqldump --all-databases > all_databases.sql

For InnoDB tables, mysqldump provides a way of making an online backup:

mysqldump --all-databases --master-data --single-transaction > all_databases.sql

This backup acquires a global read lock on all tables (using FLUSH TABLES WITH READ LOCK) at the
beginning of the dump. As soon as this lock has been acquired, the binary log coordinates are read and
the lock is released. If long updating statements are running when the FLUSH statement is issued, the
MySQL server may get stalled until those statements finish. After that, the dump becomes lock free and
does not disturb reads and writes on the tables. If the update statements that the MySQL server receives
are short (in terms of execution time), the initial lock period should not be noticeable, even with many
updates.

For point-in-time recovery (also known as “roll-forward,” when you need to restore an old backup
and replay the changes that happened since that backup), it is often useful to rotate the binary log
(see Section 5.4.4, “The Binary Log”) or at least know the binary log coordinates to which the dump
corresponds:

mysqldump --all-databases --master-data=2 > all_databases.sql

Or:

mysqldump --all-databases --flush-logs --master-data=2 > all_databases.sql

The --master-data and --single-transaction options can be used simultaneously, which provides
a convenient way to make an online backup suitable for use prior to point-in-time recovery if tables are
stored using the InnoDB storage engine.

For more information on making backups, see Section 7.2, “Database Backup Methods”, and Section 7.3,
“Example Backup and Recovery Strategy”.

• To select the effect of --opt except for some features, use the --skip option for each feature. To
disable extended inserts and memory buffering, use --opt --skip-extended-insert --skip-
quick. (Actually, --skip-extended-insert --skip-quick is sufficient because --opt is on by
default.)

500

mysqlimport — A Data Import Program

• To reverse --opt for all features except index disabling and table locking, use --skip-opt --
disable-keys --lock-tables.

Restrictions

mysqldump does not dump the INFORMATION_SCHEMA, performance_schema, or sys schema by
default. To dump any of these, name them explicitly on the command line. You can also name them with
the --databases option. For INFORMATION_SCHEMA and performance_schema, also use the --
skip-lock-tables option.

mysqldump does not dump the NDB Cluster ndbinfo information database.

mysqldump does not dump InnoDB CREATE TABLESPACE statements.

mysqldump always strips the NO_AUTO_CREATE_USER SQL mode as NO_AUTO_CREATE_USER is
not compatible with MySQL 8.0. It remains stripped even when importing back into MySQL 5.7, which
means that stored routines could behave differently after restoring a dump if they rely upon this particular
sql_mode. It is stripped as of mysqldump 5.7.24.

It is not recommended to restore from a dump made using mysqldump to a MySQL 5.6.9 or earlier server
that has GTIDs enabled. See Section 16.1.3.6, “Restrictions on Replication with GTIDs”.

mysqldump includes statements to recreate the general_log and slow_query_log tables for dumps
of the mysql database. Log table contents are not dumped.

If you encounter problems backing up views due to insufficient privileges, see Section 23.9, “Restrictions
on Views” for a workaround.

4.5.5 mysqlimport — A Data Import Program

The mysqlimport client provides a command-line interface to the LOAD DATA SQL statement. Most
options to mysqlimport correspond directly to clauses of LOAD DATA syntax. See Section 13.2.6, “LOAD
DATA Statement”.

Invoke mysqlimport like this:

mysqlimport [options] db_name textfile1 [textfile2 ...]

For each text file named on the command line, mysqlimport strips any extension from the file name and
uses the result to determine the name of the table into which to import the file's contents. For example, files
named patient.txt, patient.text, and patient all would be imported into a table named patient.

mysqlimport supports the following options, which can be specified on the command line or in the
[mysqlimport] and [client] groups of an option file. For information about option files used by
MySQL programs, see Section 4.2.2.2, “Using Option Files”.

Table 4.17 mysqlimport Options

Option Name Description Introduced Deprecated

--bind-address Use specified network
interface to connect to
MySQL Server

--character-sets-dir Directory where
character sets can be
found

--columns This option takes a
comma-separated list

501

mysqlimport — A Data Import Program

Option Name Description Introduced Deprecated
of column names as its
value

--compress Compress all information
sent between client and
server

--debug Write debugging log

--debug-check Print debugging
information when
program exits

--debug-info Print debugging
information, memory,
and CPU statistics when
program exits

--default-auth Authentication plugin to
use

--default-character-set Specify default character
set

--defaults-extra-file Read named option file in
addition to usual option
files

--defaults-file Read only named option
file

--defaults-group-suffix Option group suffix value

--delete Empty the table before
importing the text file

--enable-cleartext-plugin Enable cleartext
authentication plugin

5.7.10

--fields-enclosed-by This option has the
same meaning as the
corresponding clause for
LOAD DATA

--fields-escaped-by This option has the
same meaning as the
corresponding clause for
LOAD DATA

--fields-optionally-
enclosed-by

This option has the
same meaning as the
corresponding clause for
LOAD DATA

--fields-terminated-by This option has the
same meaning as the
corresponding clause for
LOAD DATA

--force Continue even if an SQL
error occurs

502

mysqlimport — A Data Import Program

Option Name Description Introduced Deprecated

--get-server-public-key Request RSA public key
from server

5.7.23

--help Display help message
and exit

--host Host on which MySQL
server is located

--ignore See the description for
the --replace option

--ignore-lines Ignore the first N lines of
the data file

--lines-terminated-by This option has the
same meaning as the
corresponding clause for
LOAD DATA

--local Read input files locally
from the client host

--lock-tables Lock all tables for writing
before processing any
text files

--login-path Read login path options
from .mylogin.cnf

--low-priority Use LOW_PRIORITY
when loading the table

--no-defaults Read no option files

--password Password to use when
connecting to server

--pipe Connect to server using
named pipe (Windows
only)

--plugin-dir Directory where plugins
are installed

--port TCP/IP port number for
connection

--print-defaults Print default options

--protocol Transport protocol to use

--replace The --replace and --
ignore options control
handling of input rows
that duplicate existing
rows on unique key
values

--secure-auth Do not send passwords
to server in old (pre-4.1)
format

Yes

503

mysqlimport — A Data Import Program

Option Name Description Introduced Deprecated

--server-public-key-path Path name to file
containing RSA public
key

5.7.23

--shared-memory-base-
name

Shared-memory name
for shared-memory
connections (Windows
only)

--silent Produce output only
when errors occur

--socket Unix socket file or
Windows named pipe to
use

--ssl Enable connection
encryption

--ssl-ca File that contains list of
trusted SSL Certificate
Authorities

--ssl-capath Directory that contains
trusted SSL Certificate
Authority certificate files

--ssl-cert File that contains X.509
certificate

--ssl-cipher Permissible ciphers for
connection encryption

--ssl-crl File that contains
certificate revocation lists

--ssl-crlpath Directory that contains
certificate revocation-list
files

--ssl-key File that contains X.509
key

--ssl-mode Desired security state of
connection to server

5.7.11

--ssl-verify-server-cert Verify host name
against server certificate
Common Name identity

--tls-version Permissible TLS
protocols for encrypted
connections

5.7.10

--use-threads Number of threads for
parallel file-loading

--user MySQL user name to
use when connecting to
server

--verbose Verbose mode

504

mysqlimport — A Data Import Program

Option Name Description Introduced Deprecated

--version Display version
information and exit

• --help, -?

Command-Line Format --help

Display a help message and exit.

• --bind-address=ip_address

Command-Line Format --bind-address=ip_address

On a computer having multiple network interfaces, use this option to select which interface to use for
connecting to the MySQL server.

• --character-sets-dir=dir_name

Command-Line Format --character-sets-dir=path

Type String

Default Value [none]

The directory where character sets are installed. See Section 10.15, “Character Set Configuration”.

• --columns=column_list, -c column_list

Command-Line Format --columns=column_list

This option takes a list of comma-separated column names as its value. The order of the column names
indicates how to match data file columns with table columns.

• --compress, -C

Command-Line Format --compress[={OFF|ON}]

Type Boolean

Default Value OFF

Compress all information sent between the client and the server if possible. See Section 4.2.6,
“Connection Compression Control”.

• --debug[=debug_options], -# [debug_options]

Command-Line Format --debug[=debug_options]

Type String

505

mysqlimport — A Data Import Program

Default Value d:t:o

Write a debugging log. A typical debug_options string is d:t:o,file_name. The default is d:t:o.

This option is available only if MySQL was built using WITH_DEBUG. MySQL release binaries provided
by Oracle are not built using this option.

• --debug-check

Command-Line Format --debug-check

Type Boolean

Default Value FALSE

Print some debugging information when the program exits.

This option is available only if MySQL was built using WITH_DEBUG. MySQL release binaries provided
by Oracle are not built using this option.

• --debug-info

Command-Line Format --debug-info

Type Boolean

Default Value FALSE

Print debugging information and memory and CPU usage statistics when the program exits.

This option is available only if MySQL was built using WITH_DEBUG. MySQL release binaries provided
by Oracle are not built using this option.

• --default-character-set=charset_name

Command-Line Format --default-character-set=charset_name

Type String

Use charset_name as the default character set. See Section 10.15, “Character Set Configuration”.

• --default-auth=plugin

Command-Line Format --default-auth=plugin

Type String

A hint about which client-side authentication plugin to use. See Section 6.2.13, “Pluggable
Authentication”.

• --defaults-extra-file=file_name

Command-Line Format --defaults-extra-file=file_name

Type File name

506

mysqlimport — A Data Import Program

Read this option file after the global option file but (on Unix) before the user option file. If the file does
not exist or is otherwise inaccessible, an error occurs. If file_name is not an absolute path name, it is
interpreted relative to the current directory.

For additional information about this and other option-file options, see Section 4.2.2.3, “Command-Line
Options that Affect Option-File Handling”.

• --defaults-file=file_name

Command-Line Format --defaults-file=file_name

Type File name

Use only the given option file. If the file does not exist or is otherwise inaccessible, an error occurs. If
file_name is not an absolute path name, it is interpreted relative to the current directory.

Exception: Even with --defaults-file, client programs read .mylogin.cnf.

For additional information about this and other option-file options, see Section 4.2.2.3, “Command-Line
Options that Affect Option-File Handling”.

• --defaults-group-suffix=str

Command-Line Format --defaults-group-suffix=str

Type String

Read not only the usual option groups, but also groups with the usual names and a suffix of str. For
example, mysqlimport normally reads the [client] and [mysqlimport] groups. If this option is
given as --defaults-group-suffix=_other, mysqlimport also reads the [client_other] and
[mysqlimport_other] groups.

For additional information about this and other option-file options, see Section 4.2.2.3, “Command-Line
Options that Affect Option-File Handling”.

• --delete, -D

Command-Line Format --delete

Empty the table before importing the text file.

• --enable-cleartext-plugin

Command-Line Format --enable-cleartext-plugin

Introduced 5.7.10

Type Boolean

507

mysqlimport — A Data Import Program

Default Value FALSE

Enable the mysql_clear_password cleartext authentication plugin. (See Section 6.4.1.6, “Client-Side
Cleartext Pluggable Authentication”.)

This option was added in MySQL 5.7.10.

• --fields-terminated-by=..., --fields-enclosed-by=..., --fields-optionally-
enclosed-by=..., --fields-escaped-by=...

Command-Line Format --fields-terminated-by=string

Type String

Command-Line Format --fields-enclosed-by=string

Type String

Command-Line Format --fields-optionally-enclosed-
by=string

Type String

Command-Line Format --fields-escaped-by

Type String

These options have the same meaning as the corresponding clauses for LOAD DATA. See
Section 13.2.6, “LOAD DATA Statement”.

• --force, -f

Command-Line Format --force

Ignore errors. For example, if a table for a text file does not exist, continue processing any remaining
files. Without --force, mysqlimport exits if a table does not exist.

• --get-server-public-key

Command-Line Format --get-server-public-key

Introduced 5.7.23

Type Boolean

Request from the server the public key required for RSA key pair-based password exchange. This option
applies to clients that authenticate with the caching_sha2_password authentication plugin. For that
plugin, the server does not send the public key unless requested. This option is ignored for accounts that

508

mysqlimport — A Data Import Program

do not authenticate with that plugin. It is also ignored if RSA-based password exchange is not used, as is
the case when the client connects to the server using a secure connection.

If --server-public-key-path=file_name is given and specifies a valid public key file, it takes
precedence over --get-server-public-key.

For information about the caching_sha2_password plugin, see Section 6.4.1.4, “Caching SHA-2
Pluggable Authentication”.

The --get-server-public-key option was added in MySQL 5.7.23.

• --host=host_name, -h host_name

Command-Line Format --host=host_name

Type String

Default Value localhost

Import data to the MySQL server on the given host. The default host is localhost.

• --ignore, -i

Command-Line Format --ignore

See the description for the --replace option.

• --ignore-lines=N

Command-Line Format --ignore-lines=#

Type Numeric

Ignore the first N lines of the data file.

• --lines-terminated-by=...

Command-Line Format --lines-terminated-by=string

Type String

This option has the same meaning as the corresponding clause for LOAD DATA. For example, to
import Windows files that have lines terminated with carriage return/linefeed pairs, use --lines-
terminated-by="\r\n". (You might have to double the backslashes, depending on the escaping
conventions of your command interpreter.) See Section 13.2.6, “LOAD DATA Statement”.

• --local, -L

Command-Line Format --local

Type Boolean

509

mysqlimport — A Data Import Program

Default Value FALSE

By default, files are read by the server on the server host. With this option, mysqlimport reads input
files locally on the client host.

Successful use of LOCAL load operations within mysqlimport also requires that the server permits
local loading; see Section 6.1.6, “Security Considerations for LOAD DATA LOCAL”

• --lock-tables, -l

Command-Line Format --lock-tables

Lock all tables for writing before processing any text files. This ensures that all tables are synchronized
on the server.

• --login-path=name

Command-Line Format --login-path=name

Type String

Read options from the named login path in the .mylogin.cnf login path file. A “login path” is an
option group containing options that specify which MySQL server to connect to and which account to
authenticate as. To create or modify a login path file, use the mysql_config_editor utility. See
Section 4.6.6, “mysql_config_editor — MySQL Configuration Utility”.

For additional information about this and other option-file options, see Section 4.2.2.3, “Command-Line
Options that Affect Option-File Handling”.

• --low-priority

Command-Line Format --low-priority

Use LOW_PRIORITY when loading the table. This affects only storage engines that use only table-level
locking (such as MyISAM, MEMORY, and MERGE).

• --no-defaults

Command-Line Format --no-defaults

Do not read any option files. If program startup fails due to reading unknown options from an option file,
--no-defaults can be used to prevent them from being read.

The exception is that the .mylogin.cnf file is read in all cases, if it exists. This permits passwords to
be specified in a safer way than on the command line even when --no-defaults is used. To create
.mylogin.cnf, use the mysql_config_editor utility. See Section 4.6.6, “mysql_config_editor —
MySQL Configuration Utility”.

For additional information about this and other option-file options, see Section 4.2.2.3, “Command-Line
Options that Affect Option-File Handling”.

• --password[=password], -p[password]

510

mysqlimport — A Data Import Program

Command-Line Format --password[=password]

Type String

The password of the MySQL account used for connecting to the server. The password value is optional.
If not given, mysqlimport prompts for one. If given, there must be no space between --password= or
-p and the password following it. If no password option is specified, the default is to send no password.

Specifying a password on the command line should be considered insecure. To avoid giving the
password on the command line, use an option file. See Section 6.1.2.1, “End-User Guidelines for
Password Security”.

To explicitly specify that there is no password and that mysqlimport should not prompt for one, use the
--skip-password option.

• --pipe, -W

Command-Line Format --pipe

Type String

On Windows, connect to the server using a named pipe. This option applies only if the server was
started with the named_pipe system variable enabled to support named-pipe connections. In
addition, the user making the connection must be a member of the Windows group specified by the
named_pipe_full_access_group system variable.

• --plugin-dir=dir_name

Command-Line Format --plugin-dir=dir_name

Type Directory name

The directory in which to look for plugins. Specify this option if the --default-auth option is used
to specify an authentication plugin but mysqlimport does not find it. See Section 6.2.13, “Pluggable
Authentication”.

• --port=port_num, -P port_num

Command-Line Format --port=port_num

Type Numeric

Default Value 3306

For TCP/IP connections, the port number to use.

511

mysqlimport — A Data Import Program

• --print-defaults

Command-Line Format --print-defaults

Print the program name and all options that it gets from option files.

For additional information about this and other option-file options, see Section 4.2.2.3, “Command-Line
Options that Affect Option-File Handling”.

• --protocol={TCP|SOCKET|PIPE|MEMORY}

Command-Line Format --protocol=type

Type String

Default Value [see text]

Valid Values TCP

SOCKET

PIPE

MEMORY

The transport protocol to use for connecting to the server. It is useful when the other connection
parameters normally result in use of a protocol other than the one you want. For details on the
permissible values, see Section 4.2.5, “Connection Transport Protocols”.

• --replace, -r

Command-Line Format --replace

The --replace and --ignore options control handling of input rows that duplicate existing rows
on unique key values. If you specify --replace, new rows replace existing rows that have the same
unique key value. If you specify --ignore, input rows that duplicate an existing row on a unique key
value are skipped. If you do not specify either option, an error occurs when a duplicate key value is
found, and the rest of the text file is ignored.

• --secure-auth

Command-Line Format --secure-auth

512

mysqlimport — A Data Import Program

Deprecated Yes

Do not send passwords to the server in old (pre-4.1) format. This prevents connections except for
servers that use the newer password format.

As of MySQL 5.7.5, this option is deprecated;expect it to be removed in a future MySQL release. It is
always enabled and attempting to disable it (--skip-secure-auth, --secure-auth=0) produces an
error. Before MySQL 5.7.5, this option is enabled by default but can be disabled.

Note

Passwords that use the pre-4.1 hashing method are less secure than passwords
that use the native password hashing method and should be avoided. Pre-4.1
passwords are deprecated and support for them was removed in MySQL 5.7.5.
For account upgrade instructions, see Section 6.4.1.3, “Migrating Away from
Pre-4.1 Password Hashing and the mysql_old_password Plugin”.

• --server-public-key-path=file_name

Command-Line Format --server-public-key-path=file_name

Introduced 5.7.23

Type File name

The path name to a file in PEM format containing a client-side copy of the public key required by the
server for RSA key pair-based password exchange. This option applies to clients that authenticate with
the sha256_password or caching_sha2_password authentication plugin. This option is ignored for
accounts that do not authenticate with one of those plugins. It is also ignored if RSA-based password
exchange is not used, as is the case when the client connects to the server using a secure connection.

If --server-public-key-path=file_name is given and specifies a valid public key file, it takes
precedence over --get-server-public-key.

For sha256_password, this option applies only if MySQL was built using OpenSSL.

For information about the sha256_password and caching_sha2_password plugins, see
Section 6.4.1.5, “SHA-256 Pluggable Authentication”, and Section 6.4.1.4, “Caching SHA-2 Pluggable
Authentication”.

The --server-public-key-path option was added in MySQL 5.7.23.

• --shared-memory-base-name=name

Command-Line Format --shared-memory-base-name=name

Platform Specific Windows

On Windows, the shared-memory name to use for connections made using shared memory to a local
server. The default value is MYSQL. The shared-memory name is case-sensitive.

This option applies only if the server was started with the shared_memory system variable enabled to
support shared-memory connections.

• --silent, -s

513

mysqlimport — A Data Import Program

Command-Line Format --silent

Silent mode. Produce output only when errors occur.

• --socket=path, -S path

Command-Line Format --socket={file_name|pipe_name}

Type String

For connections to localhost, the Unix socket file to use, or, on Windows, the name of the named pipe
to use.

On Windows, this option applies only if the server was started with the named_pipe system variable
enabled to support named-pipe connections. In addition, the user making the connection must be a
member of the Windows group specified by the named_pipe_full_access_group system variable.

• --ssl*

Options that begin with --ssl specify whether to connect to the server using encryption and indicate
where to find SSL keys and certificates. See Command Options for Encrypted Connections.

• --tls-version=protocol_list

Command-Line Format --tls-version=protocol_list

Introduced 5.7.10

Type String

Default Value (≥ 5.7.28) TLSv1,TLSv1.1,TLSv1.2

Default Value (≤ 5.7.27) TLSv1,TLSv1.1,TLSv1.2 (OpenSSL)

TLSv1,TLSv1.1 (yaSSL)

The permissible TLS protocols for encrypted connections. The value is a list of one or more comma-
separated protocol names. The protocols that can be named for this option depend on the SSL library
used to compile MySQL. For details, see Section 6.3.2, “Encrypted Connection TLS Protocols and
Ciphers”.

This option was added in MySQL 5.7.10.

• --user=user_name, -u user_name

Command-Line Format --user=user_name,

Type String

The user name of the MySQL account to use for connecting to the server.

• --use-threads=N

Command-Line Format --use-threads=#

514

mysqlpump — A Database Backup Program

Type Numeric

Load files in parallel using N threads.

• --verbose, -v

Command-Line Format --verbose

Verbose mode. Print more information about what the program does.

• --version, -V

Command-Line Format --version

Display version information and exit.

Here is a sample session that demonstrates use of mysqlimport:

$> mysql -e 'CREATE TABLE imptest(id INT, n VARCHAR(30))' test
$> ed
a
100 Max Sydow
101 Count Dracula
.
w imptest.txt
32
q
$> od -c imptest.txt
0000000 1 0 0 \t M a x S y d o w \n 1 0
0000020 1 \t C o u n t D r a c u l a \n
0000040
$> mysqlimport --local test imptest.txt
test.imptest: Records: 2 Deleted: 0 Skipped: 0 Warnings: 0
$> mysql -e 'SELECT * FROM imptest' test
+------+---------------+
| id | n |
+------+---------------+
| 100 | Max Sydow |
| 101 | Count Dracula |
+------+---------------+

4.5.6 mysqlpump — A Database Backup Program

• mysqlpump Invocation Syntax

• mysqlpump Option Summary

• mysqlpump Option Descriptions

• mysqlpump Object Selection

• mysqlpump Parallel Processing

• mysqlpump Restrictions

The mysqlpump client utility performs logical backups, producing a set of SQL statements that can be
executed to reproduce the original database object definitions and table data. It dumps one or more
MySQL databases for backup or transfer to another SQL server.

515

mysqlpump — A Database Backup Program

mysqlpump features include:

• Parallel processing of databases, and of objects within databases, to speed up the dump process

• Better control over which databases and database objects (tables, stored programs, user accounts) to
dump

• Dumping of user accounts as account-management statements (CREATE USER, GRANT) rather than as
inserts into the mysql system database

• Capability of creating compressed output

• Progress indicator (the values are estimates)

• For dump file reloading, faster secondary index creation for InnoDB tables by adding indexes after rows
are inserted

mysqlpump requires at least the SELECT privilege for dumped tables, SHOW VIEW for dumped views,
TRIGGER for dumped triggers, and LOCK TABLES if the --single-transaction option is not used.
The SELECT privilege on the mysql system database is required to dump user definitions. Certain options
might require other privileges as noted in the option descriptions.

To reload a dump file, you must have the privileges required to execute the statements that it contains,
such as the appropriate CREATE privileges for objects created by those statements.

Note

A dump made using PowerShell on Windows with output redirection creates a file
that has UTF-16 encoding:

mysqlpump [options] > dump.sql

However, UTF-16 is not permitted as a connection character set (see Section 10.4,
“Connection Character Sets and Collations”), so the dump file does not load
correctly. To work around this issue, use the --result-file option, which
creates the output in ASCII format:

mysqlpump [options] --result-file=dump.sql

mysqlpump Invocation Syntax

By default, mysqlpump dumps all databases (with certain exceptions noted in mysqlpump Restrictions). To
specify this behavior explicitly, use the --all-databases option:

mysqlpump --all-databases

To dump a single database, or certain tables within that database, name the database on the command
line, optionally followed by table names:

mysqlpump db_name
mysqlpump db_name tbl_name1 tbl_name2 ...

To treat all name arguments as database names, use the --databases option:

mysqlpump --databases db_name1 db_name2 ...

By default, mysqlpump does not dump user account definitions, even if you dump the mysql system
database that contains the grant tables. To dump grant table contents as logical definitions in the form of
CREATE USER and GRANT statements, use the --users option and suppress all database dumping:

mysqlpump --exclude-databases=% --users

516

mysqlpump — A Database Backup Program

In the preceding command, % is a wildcard that matches all database names for the --exclude-
databases option.

mysqlpump supports several options for including or excluding databases, tables, stored programs, and
user definitions. See mysqlpump Object Selection.

To reload a dump file, execute the statements that it contains. For example, use the mysql client:

mysqlpump [options] > dump.sql
mysql < dump.sql

The following discussion provides additional mysqlpump usage examples.

To see a list of the options mysqlpump supports, issue the command mysqlpump --help.

mysqlpump Option Summary

mysqlpump supports the following options, which can be specified on the command line or in the
[mysqlpump] and [client] groups of an option file. (Prior to MySQL 5.7.30, mysqlpump read the
[mysql_dump] group rather than [mysqlpump]. As of 5.7.30, [mysql_dump] is still accepted but is
deprecated.) For information about option files used by MySQL programs, see Section 4.2.2.2, “Using
Option Files”.

Table 4.18 mysqlpump Options

Option Name Description Introduced

--add-drop-database Add DROP DATABASE statement
before each CREATE DATABASE
statement

--add-drop-table Add DROP TABLE statement
before each CREATE TABLE
statement

--add-drop-user Add DROP USER statement
before each CREATE USER
statement

--add-locks Surround each table dump with
LOCK TABLES and UNLOCK
TABLES statements

--all-databases Dump all databases

--bind-address Use specified network interface to
connect to MySQL Server

--character-sets-dir Directory where character sets are
installed

--complete-insert Use complete INSERT statements
that include column names

--compress Compress all information sent
between client and server

--compress-output Output compression algorithm

--databases Interpret all name arguments as
database names

--debug Write debugging log

517

mysqlpump — A Database Backup Program

Option Name Description Introduced

--debug-check Print debugging information when
program exits

--debug-info Print debugging information,
memory, and CPU statistics when
program exits

--default-auth Authentication plugin to use

--default-character-set Specify default character set

--default-parallelism Default number of threads for
parallel processing

--defaults-extra-file Read named option file in addition
to usual option files

--defaults-file Read only named option file

--defaults-group-suffix Option group suffix value

--defer-table-indexes For reloading, defer index creation
until after loading table rows

--events Dump events from dumped
databases

--exclude-databases Databases to exclude from dump

--exclude-events Events to exclude from dump

--exclude-routines Routines to exclude from dump

--exclude-tables Tables to exclude from dump

--exclude-triggers Triggers to exclude from dump

--exclude-users Users to exclude from dump

--extended-insert Use multiple-row INSERT syntax

--get-server-public-key Request RSA public key from
server

5.7.23

--help Display help message and exit

--hex-blob Dump binary columns using
hexadecimal notation

--host Host on which MySQL server is
located

--include-databases Databases to include in dump

--include-events Events to include in dump

--include-routines Routines to include in dump

--include-tables Tables to include in dump

--include-triggers Triggers to include in dump

--include-users Users to include in dump

--insert-ignore Write INSERT IGNORE rather
than INSERT statements

--log-error-file Append warnings and errors to
named file

518

mysqlpump — A Database Backup Program

Option Name Description Introduced

--login-path Read login path options
from .mylogin.cnf

--max-allowed-packet Maximum packet length to send to
or receive from server

--net-buffer-length Buffer size for TCP/IP and socket
communication

--no-create-db Do not write CREATE DATABASE
statements

--no-create-info Do not write CREATE TABLE
statements that re-create each
dumped table

--no-defaults Read no option files

--parallel-schemas Specify schema-processing
parallelism

--password Password to use when connecting
to server

--plugin-dir Directory where plugins are
installed

--port TCP/IP port number for
connection

--print-defaults Print default options

--protocol Transport protocol to use

--replace Write REPLACE statements rather
than INSERT statements

--result-file Direct output to a given file

--routines Dump stored routines (procedures
and functions) from dumped
databases

--secure-auth Do not send passwords to server
in old (pre-4.1) format

--server-public-key-path Path name to file containing RSA
public key

5.7.23

--set-charset Add SET NAMES
default_character_set to output

--set-gtid-purged Whether to add SET
@@GLOBAL.GTID_PURGED to
output

5.7.18

--single-transaction Dump tables within single
transaction

--skip-definer Omit DEFINER and SQL
SECURITY clauses from view
and stored program CREATE
statements

--skip-dump-rows Do not dump table rows

519

mysqlpump — A Database Backup Program

Option Name Description Introduced

--socket Unix socket file or Windows
named pipe to use

--ssl Enable connection encryption

--ssl-ca File that contains list of trusted
SSL Certificate Authorities

--ssl-capath Directory that contains trusted
SSL Certificate Authority
certificate files

--ssl-cert File that contains X.509 certificate

--ssl-cipher Permissible ciphers for connection
encryption

--ssl-crl File that contains certificate
revocation lists

--ssl-crlpath Directory that contains certificate
revocation-list files

--ssl-key File that contains X.509 key

--ssl-mode Desired security state of
connection to server

5.7.11

--ssl-verify-server-cert Verify host name against server
certificate Common Name identity

--tls-version Permissible TLS protocols for
encrypted connections

5.7.10

--triggers Dump triggers for each dumped
table

--tz-utc Add SET TIME_ZONE='+00:00' to
dump file

--user MySQL user name to use when
connecting to server

--users Dump user accounts

--version Display version information and
exit

--watch-progress Display progress indicator

mysqlpump Option Descriptions

• --help, -?

Command-Line Format --help

Display a help message and exit.

• --add-drop-database

Command-Line Format --add-drop-database

520

mysqlpump — A Database Backup Program

Write a DROP DATABASE statement before each CREATE DATABASE statement.

• --add-drop-table

Command-Line Format --add-drop-table

Write a DROP TABLE statement before each CREATE TABLE statement.

• --add-drop-user

Command-Line Format --add-drop-user

Write a DROP USER statement before each CREATE USER statement.

• --add-locks

Command-Line Format --add-locks

Surround each table dump with LOCK TABLES and UNLOCK TABLES statements. This results in faster
inserts when the dump file is reloaded. See Section 8.2.4.1, “Optimizing INSERT Statements”.

This option does not work with parallelism because INSERT statements from different tables can be
interleaved and UNLOCK TABLES following the end of the inserts for one table could release locks on
tables for which inserts remain.

--add-locks and --single-transaction are mutually exclusive.

• --all-databases, -A

Command-Line Format --all-databases

Dump all databases (with certain exceptions noted in mysqlpump Restrictions). This is the default
behavior if no other is specified explicitly.

--all-databases and --databases are mutually exclusive.

• --bind-address=ip_address

Command-Line Format --bind-address=ip_address

On a computer having multiple network interfaces, use this option to select which interface to use for
connecting to the MySQL server.

• --character-sets-dir=path

Command-Line Format --character-sets-dir=dir_name

Type Directory name

The directory where character sets are installed. See Section 10.15, “Character Set Configuration”.

521

mysqlpump — A Database Backup Program

• --complete-insert

Command-Line Format --complete-insert

Write complete INSERT statements that include column names.

• --compress, -C

Command-Line Format --compress[={OFF|ON}]

Type Boolean

Default Value OFF

Compress all information sent between the client and the server if possible. See Section 4.2.6,
“Connection Compression Control”.

• --compress-output=algorithm

Command-Line Format --compress-output=algorithm

Type Enumeration

Valid Values LZ4

ZLIB

By default, mysqlpump does not compress output. This option specifies output compression using the
specified algorithm. Permitted algorithms are LZ4 and ZLIB.

To uncompress compressed output, you must have an appropriate utility. If the system commands
lz4 and openssl zlib are not available, as of MySQL 5.7.10, MySQL distributions include
lz4_decompress and zlib_decompress utilities that can be used to decompress mysqlpump output
that was compressed using the --compress-output=LZ4 and --compress-output=ZLIB options.
For more information, see Section 4.8.1, “lz4_decompress — Decompress mysqlpump LZ4-Compressed
Output”, and Section 4.8.5, “zlib_decompress — Decompress mysqlpump ZLIB-Compressed Output”.

Alternatives include the lz4 and openssl commands, if they are installed on your system. For example,
lz4 can uncompress LZ4 output:

lz4 -d input_file output_file

ZLIB output can be uncompresed like this:

openssl zlib -d < input_file > output_file

• --databases, -B

Command-Line Format --databases

Normally, mysqlpump treats the first name argument on the command line as a database name and
any following names as table names. With this option, it treats all name arguments as database names.
CREATE DATABASE statements are included in the output before each new database.

--all-databases and --databases are mutually exclusive.

522

mysqlpump — A Database Backup Program

• --debug[=debug_options], -# [debug_options]

Command-Line Format --debug[=debug_options]

Type String

Default Value d:t:O,/tmp/mysqlpump.trace

Write a debugging log. A typical debug_options string is d:t:o,file_name. The default is d:t:O,/
tmp/mysqlpump.trace.

This option is available only if MySQL was built using WITH_DEBUG. MySQL release binaries provided
by Oracle are not built using this option.

• --debug-check

Command-Line Format --debug-check

Type Boolean

Default Value FALSE

Print some debugging information when the program exits.

This option is available only if MySQL was built using WITH_DEBUG. MySQL release binaries provided
by Oracle are not built using this option.

• --debug-info, -T

Command-Line Format --debug-info

Type Boolean

Default Value FALSE

Print debugging information and memory and CPU usage statistics when the program exits.

This option is available only if MySQL was built using WITH_DEBUG. MySQL release binaries provided
by Oracle are not built using this option.

• --default-auth=plugin

Command-Line Format --default-auth=plugin

Type String

A hint about which client-side authentication plugin to use. See Section 6.2.13, “Pluggable
Authentication”.

• --default-character-set=charset_name

Command-Line Format --default-character-set=charset_name

Type String

523

mysqlpump — A Database Backup Program

Default Value utf8

Use charset_name as the default character set. See Section 10.15, “Character Set Configuration”. If
no character set is specified, mysqlpump uses utf8.

• --default-parallelism=N

Command-Line Format --default-parallelism=N

Type Integer

Default Value 2

The default number of threads for each parallel processing queue. The default is 2.

The --parallel-schemas option also affects parallelism and can be used to override the default
number of threads. For more information, see mysqlpump Parallel Processing.

With --default-parallelism=0 and no --parallel-schemas options, mysqlpump runs as a
single-threaded process and creates no queues.

With parallelism enabled, it is possible for output from different databases to be interleaved.

Note

Before MySQL 5.7.11, use of the --single-transaction option is mutually
exclusive with parallelism. To use --single-transaction, disable parallelism
by setting --default-parallelism to 0 and not using any instances of --
parallel-schemas:

mysqlpump --single-transaction --default-parallelism=0

• --defaults-extra-file=file_name

Command-Line Format --defaults-extra-file=file_name

Type File name

Read this option file after the global option file but (on Unix) before the user option file. If the file does
not exist or is otherwise inaccessible, an error occurs. If file_name is not an absolute path name, it is
interpreted relative to the current directory.

For additional information about this and other option-file options, see Section 4.2.2.3, “Command-Line
Options that Affect Option-File Handling”.

• --defaults-file=file_name

Command-Line Format --defaults-file=file_name

Type File name

Use only the given option file. If the file does not exist or is otherwise inaccessible, an error occurs. If
file_name is not an absolute path name, it is interpreted relative to the current directory.

Exception: Even with --defaults-file, client programs read .mylogin.cnf.

524

mysqlpump — A Database Backup Program

For additional information about this and other option-file options, see Section 4.2.2.3, “Command-Line
Options that Affect Option-File Handling”.

• --defaults-group-suffix=str

Command-Line Format --defaults-group-suffix=str

Type String

Read not only the usual option groups, but also groups with the usual names and a suffix of str.
For example, mysqlpump normally reads the [client] and [mysqlpump] groups. If this option is
given as --defaults-group-suffix=_other, mysqlpump also reads the [client_other] and
[mysqlpump_other] groups.

For additional information about this and other option-file options, see Section 4.2.2.3, “Command-Line
Options that Affect Option-File Handling”.

• --defer-table-indexes

Command-Line Format --defer-table-indexes

Type Boolean

Default Value TRUE

In the dump output, defer index creation for each table until after its rows have been loaded. This works
for all storage engines, but for InnoDB applies only for secondary indexes.

This option is enabled by default; use --skip-defer-table-indexes to disable it.

• --events

Command-Line Format --events

Type Boolean

Default Value TRUE

Include Event Scheduler events for the dumped databases in the output. Event dumping requires the
EVENT privileges for those databases.

The output generated by using --events contains CREATE EVENT statements to create the events.
However, these statements do not include attributes such as the event creation and modification
timestamps, so when the events are reloaded, they are created with timestamps equal to the reload
time.

If you require events to be created with their original timestamp attributes, do not use --events.
Instead, dump and reload the contents of the mysql.event table directly, using a MySQL account that
has appropriate privileges for the mysql database.

This option is enabled by default; use --skip-events to disable it.

• --exclude-databases=db_list

Command-Line Format --exclude-databases=db_list

525

mysqlpump — A Database Backup Program

Type String

Do not dump the databases in db_list, which is a list of one or more comma-separated database
names. Multiple instances of this option are additive. For more information, see mysqlpump Object
Selection.

• --exclude-events=event_list

Command-Line Format --exclude-events=event_list

Type String

Do not dump the databases in event_list, which is a list of one or more comma-separated event
names. Multiple instances of this option are additive. For more information, see mysqlpump Object
Selection.

• --exclude-routines=routine_list

Command-Line Format --exclude-routines=routine_list

Type String

Do not dump the events in routine_list, which is a list of one or more comma-separated routine
(stored procedure or function) names. Multiple instances of this option are additive. For more
information, see mysqlpump Object Selection.

• --exclude-tables=table_list

Command-Line Format --exclude-tables=table_list

Type String

Do not dump the tables in table_list, which is a list of one or more comma-separated table names.
Multiple instances of this option are additive. For more information, see mysqlpump Object Selection.

• --exclude-triggers=trigger_list

Command-Line Format --exclude-triggers=trigger_list

Type String

Do not dump the triggers in trigger_list, which is a list of one or more comma-separated trigger
names. Multiple instances of this option are additive. For more information, see mysqlpump Object
Selection.

• --exclude-users=user_list

Command-Line Format --exclude-users=user_list

526

mysqlpump — A Database Backup Program

Type String

Do not dump the user accounts in user_list, which is a list of one or more comma-separated account
names. Multiple instances of this option are additive. For more information, see mysqlpump Object
Selection.

• --extended-insert=N

Command-Line Format --extended-insert=N

Write INSERT statements using multiple-row syntax that includes several VALUES lists. This results in a
smaller dump file and speeds up inserts when the file is reloaded.

The option value indicates the number of rows to include in each INSERT statement. The default is 250.
A value of 1 produces one INSERT statement per table row.

• --get-server-public-key

Command-Line Format --get-server-public-key

Introduced 5.7.23

Type Boolean

Request from the server the public key required for RSA key pair-based password exchange. This option
applies to clients that authenticate with the caching_sha2_password authentication plugin. For that
plugin, the server does not send the public key unless requested. This option is ignored for accounts that
do not authenticate with that plugin. It is also ignored if RSA-based password exchange is not used, as is
the case when the client connects to the server using a secure connection.

If --server-public-key-path=file_name is given and specifies a valid public key file, it takes
precedence over --get-server-public-key.

For information about the caching_sha2_password plugin, see Section 6.4.1.4, “Caching SHA-2
Pluggable Authentication”.

The --get-server-public-key option was added in MySQL 5.7.23.

• --hex-blob

Command-Line Format --hex-blob

Dump binary columns using hexadecimal notation (for example, 'abc' becomes 0x616263). The
affected data types are BINARY, VARBINARY, BLOB types, BIT, all spatial data types, and other non-
binary data types when used with the binary character set.

• --host=host_name, -h host_name

Command-Line Format --host

Dump data from the MySQL server on the given host.

• --include-databases=db_list

527

mysqlpump — A Database Backup Program

Command-Line Format --include-databases=db_list

Type String

Dump the databases in db_list, which is a list of one or more comma-separated database names.
The dump includes all objects in the named databases. Multiple instances of this option are additive. For
more information, see mysqlpump Object Selection.

• --include-events=event_list

Command-Line Format --include-events=event_list

Type String

Dump the events in event_list, which is a list of one or more comma-separated event names.
Multiple instances of this option are additive. For more information, see mysqlpump Object Selection.

• --include-routines=routine_list

Command-Line Format --include-routines=routine_list

Type String

Dump the routines in routine_list, which is a list of one or more comma-separated routine (stored
procedure or function) names. Multiple instances of this option are additive. For more information, see
mysqlpump Object Selection.

• --include-tables=table_list

Command-Line Format --include-tables=table_list

Type String

Dump the tables in table_list, which is a list of one or more comma-separated table names. Multiple
instances of this option are additive. For more information, see mysqlpump Object Selection.

• --include-triggers=trigger_list

Command-Line Format --include-triggers=trigger_list

Type String

Dump the triggers in trigger_list, which is a list of one or more comma-separated trigger names.
Multiple instances of this option are additive. For more information, see mysqlpump Object Selection.

• --include-users=user_list

Command-Line Format --include-users=user_list

Type String

Dump the user accounts in user_list, which is a list of one or more comma-separated user names.
Multiple instances of this option are additive. For more information, see mysqlpump Object Selection.

528

mysqlpump — A Database Backup Program

• --insert-ignore

Command-Line Format --insert-ignore

Write INSERT IGNORE statements rather than INSERT statements.

• --log-error-file=file_name

Command-Line Format --log-error-file=file_name

Type File name

Log warnings and errors by appending them to the named file. If this option is not given, mysqlpump
writes warnings and errors to the standard error output.

• --login-path=name

Command-Line Format --login-path=name

Type String

Read options from the named login path in the .mylogin.cnf login path file. A “login path” is an
option group containing options that specify which MySQL server to connect to and which account to
authenticate as. To create or modify a login path file, use the mysql_config_editor utility. See
Section 4.6.6, “mysql_config_editor — MySQL Configuration Utility”.

For additional information about this and other option-file options, see Section 4.2.2.3, “Command-Line
Options that Affect Option-File Handling”.

• --max-allowed-packet=N

Command-Line Format --max-allowed-packet=N

Type Numeric

Default Value 25165824

The maximum size of the buffer for client/server communication. The default is 24MB, the maximum is
1GB.

• --net-buffer-length=N

Command-Line Format --net-buffer-length=N

Type Numeric

Default Value 1047552

The initial size of the buffer for client/server communication. When creating multiple-row INSERT
statements (as with the --extended-insert option), mysqlpump creates rows up to N bytes long. If
you use this option to increase the value, ensure that the MySQL server net_buffer_length system
variable has a value at least this large.

529

mysqlpump — A Database Backup Program

• --no-create-db

Command-Line Format --no-create-db

Suppress any CREATE DATABASE statements that might otherwise be included in the output.

• --no-create-info, -t

Command-Line Format --no-create-info

Do not write CREATE TABLE statements that create each dumped table.

• --no-defaults

Command-Line Format --no-defaults

Do not read any option files. If program startup fails due to reading unknown options from an option file,
--no-defaults can be used to prevent them from being read.

The exception is that the .mylogin.cnf file is read in all cases, if it exists. This permits passwords to
be specified in a safer way than on the command line even when --no-defaults is used. To create
.mylogin.cnf, use the mysql_config_editor utility. See Section 4.6.6, “mysql_config_editor —
MySQL Configuration Utility”.

For additional information about this and other option-file options, see Section 4.2.2.3, “Command-Line
Options that Affect Option-File Handling”.

• --parallel-schemas=[N:]db_list

Command-Line Format --parallel-schemas=[N:]schema_list

Type String

Create a queue for processing the databases in db_list, which is a list of one or more comma-
separated database names. If N is given, the queue uses N threads. If N is not given, the --default-
parallelism option determines the number of queue threads.

Multiple instances of this option create multiple queues. mysqlpump also creates a default queue to
use for databases not named in any --parallel-schemas option, and for dumping user definitions if
command options select them. For more information, see mysqlpump Parallel Processing.

• --password[=password], -p[password]

Command-Line Format --password[=password]

530

mysqlpump — A Database Backup Program

Type String

The password of the MySQL account used for connecting to the server. The password value is optional.
If not given, mysqlpump prompts for one. If given, there must be no space between --password= or -
p and the password following it. If no password option is specified, the default is to send no password.

Specifying a password on the command line should be considered insecure. To avoid giving the
password on the command line, use an option file. See Section 6.1.2.1, “End-User Guidelines for
Password Security”.

To explicitly specify that there is no password and that mysqlpump should not prompt for one, use the
--skip-password option.

• --plugin-dir=dir_name

Command-Line Format --plugin-dir=dir_name

Type Directory name

The directory in which to look for plugins. Specify this option if the --default-auth option is used
to specify an authentication plugin but mysqlpump does not find it. See Section 6.2.13, “Pluggable
Authentication”.

• --port=port_num, -P port_num

Command-Line Format --port=port_num

Type Numeric

Default Value 3306

For TCP/IP connections, the port number to use.

• --print-defaults

Command-Line Format --print-defaults

Print the program name and all options that it gets from option files.

For additional information about this and other option-file options, see Section 4.2.2.3, “Command-Line
Options that Affect Option-File Handling”.

• --protocol={TCP|SOCKET|PIPE|MEMORY}

Command-Line Format --protocol=type

Type String

Default Value [see text]

Valid Values TCP

SOCKET

PIPE

531

mysqlpump — A Database Backup Program

MEMORY

The transport protocol to use for connecting to the server. It is useful when the other connection
parameters normally result in use of a protocol other than the one you want. For details on the
permissible values, see Section 4.2.5, “Connection Transport Protocols”.

• --replace

Command-Line Format --replace

Write REPLACE statements rather than INSERT statements.

• --result-file=file_name

Command-Line Format --result-file=file_name

Type File name

Direct output to the named file. The result file is created and its previous contents overwritten, even if an
error occurs while generating the dump.

This option should be used on Windows to prevent newline \n characters from being converted to \r\n
carriage return/newline sequences.

• --routines

Command-Line Format --routines

Type Boolean

Default Value TRUE

Include stored routines (procedures and functions) for the dumped databases in the output. This option
requires the SELECT privilege for the mysql.proc table.

The output generated by using --routines contains CREATE PROCEDURE and CREATE FUNCTION
statements to create the routines. However, these statements do not include attributes such as the
routine creation and modification timestamps, so when the routines are reloaded, they are created with
timestamps equal to the reload time.

If you require routines to be created with their original timestamp attributes, do not use --routines.
Instead, dump and reload the contents of the mysql.proc table directly, using a MySQL account that
has appropriate privileges for the mysql database.

This option is enabled by default; use --skip-routines to disable it.

532

mysqlpump — A Database Backup Program

• --secure-auth

Command-Line Format --secure-auth

Do not send passwords to the server in old (pre-4.1) format. This prevents connections except for
servers that use the newer password format.

This option is deprecated; expect it to be removed in a future MySQL release. It is always enabled and
attempting to disable it (--skip-secure-auth, --secure-auth=0) produces an error.

• --server-public-key-path=file_name

Command-Line Format --server-public-key-path=file_name

Introduced 5.7.23

Type File name

The path name to a file in PEM format containing a client-side copy of the public key required by the
server for RSA key pair-based password exchange. This option applies to clients that authenticate with
the sha256_password or caching_sha2_password authentication plugin. This option is ignored for
accounts that do not authenticate with one of those plugins. It is also ignored if RSA-based password
exchange is not used, as is the case when the client connects to the server using a secure connection.

If --server-public-key-path=file_name is given and specifies a valid public key file, it takes
precedence over --get-server-public-key.

For sha256_password, this option applies only if MySQL was built using OpenSSL.

For information about the sha256_password and caching_sha2_password plugins, see
Section 6.4.1.5, “SHA-256 Pluggable Authentication”, and Section 6.4.1.4, “Caching SHA-2 Pluggable
Authentication”.

The --server-public-key-path option was added in MySQL 5.7.23.

• --set-charset

Command-Line Format --set-charset

Write SET NAMES default_character_set to the output.

This option is enabled by default. To disable it and suppress the SET NAMES statement, use --skip-
set-charset.

• --set-gtid-purged=value

Command-Line Format --set-gtid-purged=value

Introduced 5.7.18

Type Enumeration

Default Value AUTO

Valid Values OFF

ON

533

mysqlpump — A Database Backup Program

AUTO

This option enables control over global transaction ID (GTID) information written to the dump file, by
indicating whether to add a SET @@GLOBAL.gtid_purged statement to the output. This option may
also cause a statement to be written to the output that disables binary logging while the dump file is
being reloaded.

The following table shows the permitted option values. The default value is AUTO.

Value Meaning

OFF Add no SET statement to the output.

ON Add a SET statement to the output. An error occurs
if GTIDs are not enabled on the server.

AUTO Add a SET statement to the output if GTIDs are
enabled on the server.

The --set-gtid-purged option has the following effect on binary logging when the dump file is
reloaded:

• --set-gtid-purged=OFF: SET @@SESSION.SQL_LOG_BIN=0; is not added to the output.

• --set-gtid-purged=ON: SET @@SESSION.SQL_LOG_BIN=0; is added to the output.

• --set-gtid-purged=AUTO: SET @@SESSION.SQL_LOG_BIN=0; is added to the output if GTIDs
are enabled on the server you are backing up (that is, if AUTO evaluates to ON).

This option was added in MySQL 5.7.18.

• --single-transaction

Command-Line Format --single-transaction

This option sets the transaction isolation mode to REPEATABLE READ and sends a START
TRANSACTION SQL statement to the server before dumping data. It is useful only with transactional
tables such as InnoDB, because then it dumps the consistent state of the database at the time when
START TRANSACTION was issued without blocking any applications.

When using this option, you should keep in mind that only InnoDB tables are dumped in a consistent
state. For example, any MyISAM or MEMORY tables dumped while using this option may still change
state.

While a --single-transaction dump is in process, to ensure a valid dump file (correct table
contents and binary log coordinates), no other connection should use the following statements: ALTER
TABLE, CREATE TABLE, DROP TABLE, RENAME TABLE, TRUNCATE TABLE. A consistent read is not

534

mysqlpump — A Database Backup Program

isolated from those statements, so use of them on a table to be dumped can cause the SELECT that is
performed by mysqlpump to retrieve the table contents to obtain incorrect contents or fail.

--add-locks and --single-transaction are mutually exclusive.

Note

Before MySQL 5.7.11, use of the --single-transaction option is mutually
exclusive with parallelism. To use --single-transaction, disable parallelism
by setting --default-parallelism to 0 and not using any instances of --
parallel-schemas:

mysqlpump --single-transaction --default-parallelism=0

• --skip-definer

Command-Line Format --skip-definer

Type Boolean

Default Value FALSE

Omit DEFINER and SQL SECURITY clauses from the CREATE statements for views and stored
programs. The dump file, when reloaded, creates objects that use the default DEFINER and SQL
SECURITY values. See Section 23.6, “Stored Object Access Control”.

• --skip-dump-rows, -d

Command-Line Format --skip-dump-rows

Type Boolean

Default Value FALSE

Do not dump table rows.

• --socket=path, -S path

Command-Line Format --socket={file_name|pipe_name}

Type String

For connections to localhost, the Unix socket file to use, or, on Windows, the name of the named pipe
to use.

On Windows, this option applies only if the server was started with the named_pipe system variable
enabled to support named-pipe connections. In addition, the user making the connection must be a
member of the Windows group specified by the named_pipe_full_access_group system variable.

• --ssl*

Options that begin with --ssl specify whether to connect to the server using encryption and indicate
where to find SSL keys and certificates. See Command Options for Encrypted Connections.

• --tls-version=protocol_list

Command-Line Format --tls-version=protocol_list

535

mysqlpump — A Database Backup Program

Introduced 5.7.10

Type String

Default Value (≥ 5.7.28) TLSv1,TLSv1.1,TLSv1.2

Default Value (≤ 5.7.27) TLSv1,TLSv1.1,TLSv1.2 (OpenSSL)

TLSv1,TLSv1.1 (yaSSL)

The permissible TLS protocols for encrypted connections. The value is a list of one or more comma-
separated protocol names. The protocols that can be named for this option depend on the SSL library
used to compile MySQL. For details, see Section 6.3.2, “Encrypted Connection TLS Protocols and
Ciphers”.

This option was added in MySQL 5.7.10.

• --triggers

Command-Line Format --triggers

Type Boolean

Default Value TRUE

Include triggers for each dumped table in the output.

This option is enabled by default; use --skip-triggers to disable it.

• --tz-utc

Command-Line Format --tz-utc

This option enables TIMESTAMP columns to be dumped and reloaded between servers in different time
zones. mysqlpump sets its connection time zone to UTC and adds SET TIME_ZONE='+00:00' to the
dump file. Without this option, TIMESTAMP columns are dumped and reloaded in the time zones local to
the source and destination servers, which can cause the values to change if the servers are in different
time zones. --tz-utc also protects against changes due to daylight saving time.

This option is enabled by default; use --skip-tz-utc to disable it.

• --user=user_name, -u user_name

Command-Line Format --user=user_name

Type String

The user name of the MySQL account to use for connecting to the server.

• --users

Command-Line Format --users

Type Boolean

Default Value FALSE

536

mysqlpump — A Database Backup Program

Dump user accounts as logical definitions in the form of CREATE USER and GRANT statements.

User definitions are stored in the grant tables in the mysql system database. By default, mysqlpump
does not include the grant tables in mysql database dumps. To dump the contents of the grant tables as
logical definitions, use the --users option and suppress all database dumping:

mysqlpump --exclude-databases=% --users

• --version, -V

Command-Line Format --version

Display version information and exit.

• --watch-progress

Command-Line Format --watch-progress

Type Boolean

Default Value TRUE

Periodically display a progress indicator that provides information about the completed and total number
of tables, rows, and other objects.

This option is enabled by default; use --skip-watch-progress to disable it.

mysqlpump Object Selection

mysqlpump has a set of inclusion and exclusion options that enable filtering of several object types and
provide flexible control over which objects to dump:

• --include-databases and --exclude-databases apply to databases and all objects within them.

• --include-tables and --exclude-tables apply to tables. These options also affect triggers
associated with tables unless the trigger-specific options are given.

• --include-triggers and --exclude-triggers apply to triggers.

• --include-routines and --exclude-routines apply to stored procedures and functions. If a
routine option matches a stored procedure name, it also matches a stored function of the same name.

• --include-events and --exclude-events apply to Event Scheduler events.

• --include-users and --exclude-users apply to user accounts.

Any inclusion or exclusion option may be given multiple times. The effect is additive. Order of these options
does not matter.

The value of each inclusion and exclusion option is a list of comma-separated names of the appropriate
object type. For example:

--exclude-databases=test,world
--include-tables=customer,invoice

Wildcard characters are permitted in the object names:

• % matches any sequence of zero or more characters.

537

mysqlpump — A Database Backup Program

• _ matches any single character.

For example, --include-tables=t%,__tmp matches all table names that begin with t and all five-
character table names that end with tmp.

For users, a name specified without a host part is interpreted with an implied host of %. For example, u1
and u1@% are equivalent. This is the same equivalence that applies in MySQL generally (see Section 6.2.4,
“Specifying Account Names”).

Inclusion and exclusion options interact as follows:

• By default, with no inclusion or exclusion options, mysqlpump dumps all databases (with certain
exceptions noted in mysqlpump Restrictions).

• If inclusion options are given in the absence of exclusion options, only the objects named as included are
dumped.

• If exclusion options are given in the absence of inclusion options, all objects are dumped except those
named as excluded.

• If inclusion and exclusion options are given, all objects named as excluded and not named as included
are not dumped. All other objects are dumped.

If multiple databases are being dumped, it is possible to name tables, triggers, and routines in a specific
database by qualifying the object names with the database name. The following command dumps
databases db1 and db2, but excludes tables db1.t1 and db2.t2:

mysqlpump --include-databases=db1,db2 --exclude-tables=db1.t1,db2.t2

The following options provide alternative ways to specify which databases to dump:

• The --all-databases option dumps all databases (with certain exceptions noted in mysqlpump
Restrictions). It is equivalent to specifying no object options at all (the default mysqlpump action is to
dump everything).

--include-databases=% is similar to --all-databases, but selects all databases for dumping,
even those that are exceptions for --all-databases.

• The --databases option causes mysqlpump to treat all name arguments as names of databases to
dump. It is equivalent to an --include-databases option that names the same databases.

mysqlpump Parallel Processing

mysqlpump can use parallelism to achieve concurrent processing. You can select concurrency between
databases (to dump multiple databases simultaneously) and within databases (to dump multiple objects
from a given database simultaneously).

By default, mysqlpump sets up one queue with two threads. You can create additional queues and control
the number of threads assigned to each one, including the default queue:

• --default-parallelism=N specifies the default number of threads used for each queue. In the
absence of this option, N is 2.

The default queue always uses the default number of threads. Additional queues use the default number
of threads unless you specify otherwise.

• --parallel-schemas=[N:]db_list sets up a processing queue for dumping the databases named
in db_list and optionally specifies how many threads the queue uses. db_list is a list of comma-

538

mysqlpump — A Database Backup Program

separated database names. If the option argument begins with N:, the queue uses N threads. Otherwise,
the --default-parallelism option determines the number of queue threads.

Multiple instances of the --parallel-schemas option create multiple queues.

Names in the database list are permitted to contain the same % and _ wildcard characters supported for
filtering options (see mysqlpump Object Selection).

mysqlpump uses the default queue for processing any databases not named explicitly with a --
parallel-schemas option, and for dumping user definitions if command options select them.

In general, with multiple queues, mysqlpump uses parallelism between the sets of databases processed
by the queues, to dump multiple databases simultaneously. For a queue that uses multiple threads,
mysqlpump uses parallelism within databases, to dump multiple objects from a given database
simultaneously. Exceptions can occur; for example, mysqlpump may block queues while it obtains from
the server lists of objects in databases.

With parallelism enabled, it is possible for output from different databases to be interleaved. For example,
INSERT statements from multiple tables dumped in parallel can be interleaved; the statements are not
written in any particular order. This does not affect reloading because output statements qualify object
names with database names or are preceded by USE statements as required.

The granularity for parallelism is a single database object. For example, a single table cannot be dumped
in parallel using multiple threads.

Examples:

mysqlpump --parallel-schemas=db1,db2 --parallel-schemas=db3

mysqlpump sets up a queue to process db1 and db2, another queue to process db3, and a default queue
to process all other databases. All queues use two threads.

mysqlpump --parallel-schemas=db1,db2 --parallel-schemas=db3
 --default-parallelism=4

This is the same as the previous example except that all queues use four threads.

mysqlpump --parallel-schemas=5:db1,db2 --parallel-schemas=3:db3

The queue for db1 and db2 uses five threads, the queue for db3 uses three threads, and the default
queue uses the default of two threads.

As a special case, with --default-parallelism=0 and no --parallel-schemas options,
mysqlpump runs as a single-threaded process and creates no queues.

Note

Before MySQL 5.7.11, use of the --single-transaction option is mutually
exclusive with parallelism. To use --single-transaction, disable parallelism
by setting --default-parallelism to 0 and not using any instances of --
parallel-schemas:

mysqlpump --single-transaction --default-parallelism=0

mysqlpump Restrictions

mysqlpump does not dump the INFORMATION_SCHEMA, performance_schema, ndbinfo, or sys
schema by default. To dump any of these, name them explicitly on the command line. You can also name
them with the --databases or --include-databases option.

539

mysqlshow — Display Database, Table, and Column Information

mysqlpump does not dump InnoDB CREATE TABLESPACE statements.

mysqlpump dumps user accounts in logical form using CREATE USER and GRANT statements (for
example, when you use the --include-users or --users option). For this reason, dumps of the
mysql system database do not by default include the grant tables that contain user definitions: user,
db, tables_priv, columns_priv, procs_priv, or proxies_priv. To dump any of the grant tables,
name the mysql database followed by the table names:

mysqlpump mysql user db ...

4.5.7 mysqlshow — Display Database, Table, and Column Information

The mysqlshow client can be used to quickly see which databases exist, their tables, or a table's columns
or indexes.

mysqlshow provides a command-line interface to several SQL SHOW statements. See Section 13.7.5,
“SHOW Statements”. The same information can be obtained by using those statements directly. For
example, you can issue them from the mysql client program.

Invoke mysqlshow like this:

mysqlshow [options] [db_name [tbl_name [col_name]]]

• If no database is given, a list of database names is shown.

• If no table is given, all matching tables in the database are shown.

• If no column is given, all matching columns and column types in the table are shown.

The output displays only the names of those databases, tables, or columns for which you have some
privileges.

If the last argument contains shell or SQL wildcard characters (*, ?, %, or _), only those names that are
matched by the wildcard are shown. If a database name contains any underscores, those should be
escaped with a backslash (some Unix shells require two) to get a list of the proper tables or columns. *
and ? characters are converted into SQL % and _ wildcard characters. This might cause some confusion
when you try to display the columns for a table with a _ in the name, because in this case, mysqlshow
shows you only the table names that match the pattern. This is easily fixed by adding an extra % last on the
command line as a separate argument.

mysqlshow supports the following options, which can be specified on the command line or in the
[mysqlshow] and [client] groups of an option file. For information about option files used by MySQL
programs, see Section 4.2.2.2, “Using Option Files”.

Table 4.19 mysqlshow Options

Option Name Description Introduced Deprecated

--bind-address Use specified network
interface to connect to
MySQL Server

--character-sets-dir Directory where
character sets can be
found

--compress Compress all information
sent between client and
server

540

mysqlshow — Display Database, Table, and Column Information

Option Name Description Introduced Deprecated

--count Show the number of rows
per table

--debug Write debugging log

--debug-check Print debugging
information when
program exits

--debug-info Print debugging
information, memory,
and CPU statistics when
program exits

--default-auth Authentication plugin to
use

--default-character-set Specify default character
set

--defaults-extra-file Read named option file in
addition to usual option
files

--defaults-file Read only named option
file

--defaults-group-suffix Option group suffix value

--enable-cleartext-plugin Enable cleartext
authentication plugin

5.7.10

--get-server-public-key Request RSA public key
from server

5.7.23

--help Display help message
and exit

--host Host on which MySQL
server is located

--keys Show table indexes

--login-path Read login path options
from .mylogin.cnf

--no-defaults Read no option files

--password Password to use when
connecting to server

--pipe Connect to server using
named pipe (Windows
only)

--plugin-dir Directory where plugins
are installed

--port TCP/IP port number for
connection

--print-defaults Print default options

--protocol Transport protocol to use

541

mysqlshow — Display Database, Table, and Column Information

Option Name Description Introduced Deprecated

--secure-auth Do not send passwords
to server in old (pre-4.1)
format

Yes

--server-public-key-path Path name to file
containing RSA public
key

5.7.23

--shared-memory-base-
name

Shared-memory name
for shared-memory
connections (Windows
only)

--show-table-type Show a column indicating
the table type

--socket Unix socket file or
Windows named pipe to
use

--ssl Enable connection
encryption

--ssl-ca File that contains list of
trusted SSL Certificate
Authorities

--ssl-capath Directory that contains
trusted SSL Certificate
Authority certificate files

--ssl-cert File that contains X.509
certificate

--ssl-cipher Permissible ciphers for
connection encryption

--ssl-crl File that contains
certificate revocation lists

--ssl-crlpath Directory that contains
certificate revocation-list
files

--ssl-key File that contains X.509
key

--ssl-mode Desired security state of
connection to server

5.7.11

--ssl-verify-server-cert Verify host name
against server certificate
Common Name identity

--status Display extra information
about each table

--tls-version Permissible TLS
protocols for encrypted
connections

5.7.10

542

mysqlshow — Display Database, Table, and Column Information

Option Name Description Introduced Deprecated

--user MySQL user name to
use when connecting to
server

--verbose Verbose mode

--version Display version
information and exit

• --help, -?

Command-Line Format --help

Display a help message and exit.

• --bind-address=ip_address

Command-Line Format --bind-address=ip_address

On a computer having multiple network interfaces, use this option to select which interface to use for
connecting to the MySQL server.

• --character-sets-dir=dir_name

Command-Line Format --character-sets-dir=path

Type String

Default Value [none]

The directory where character sets are installed. See Section 10.15, “Character Set Configuration”.

• --compress, -C

Command-Line Format --compress[={OFF|ON}]

Type Boolean

Default Value OFF

Compress all information sent between the client and the server if possible. See Section 4.2.6,
“Connection Compression Control”.

• --count

Command-Line Format --count

Show the number of rows per table. This can be slow for non-MyISAM tables.

• --debug[=debug_options], -# [debug_options]

Command-Line Format --debug[=debug_options]

Type String

543

mysqlshow — Display Database, Table, and Column Information

Default Value d:t:o

Write a debugging log. A typical debug_options string is d:t:o,file_name. The default is d:t:o.

This option is available only if MySQL was built using WITH_DEBUG. MySQL release binaries provided
by Oracle are not built using this option.

• --debug-check

Command-Line Format --debug-check

Type Boolean

Default Value FALSE

Print some debugging information when the program exits.

This option is available only if MySQL was built using WITH_DEBUG. MySQL release binaries provided
by Oracle are not built using this option.

• --debug-info

Command-Line Format --debug-info

Type Boolean

Default Value FALSE

Print debugging information and memory and CPU usage statistics when the program exits.

This option is available only if MySQL was built using WITH_DEBUG. MySQL release binaries provided
by Oracle are not built using this option.

• --default-character-set=charset_name

Command-Line Format --default-character-set=charset_name

Type String

Use charset_name as the default character set. See Section 10.15, “Character Set Configuration”.

• --default-auth=plugin

Command-Line Format --default-auth=plugin

Type String

A hint about which client-side authentication plugin to use. See Section 6.2.13, “Pluggable
Authentication”.

• --defaults-extra-file=file_name

Command-Line Format --defaults-extra-file=file_name

Type File name

544

mysqlshow — Display Database, Table, and Column Information

Read this option file after the global option file but (on Unix) before the user option file. If the file does
not exist or is otherwise inaccessible, an error occurs. If file_name is not an absolute path name, it is
interpreted relative to the current directory.

For additional information about this and other option-file options, see Section 4.2.2.3, “Command-Line
Options that Affect Option-File Handling”.

• --defaults-file=file_name

Command-Line Format --defaults-file=file_name

Type File name

Use only the given option file. If the file does not exist or is otherwise inaccessible, an error occurs. If
file_name is not an absolute path name, it is interpreted relative to the current directory.

Exception: Even with --defaults-file, client programs read .mylogin.cnf.

For additional information about this and other option-file options, see Section 4.2.2.3, “Command-Line
Options that Affect Option-File Handling”.

• --defaults-group-suffix=str

Command-Line Format --defaults-group-suffix=str

Type String

Read not only the usual option groups, but also groups with the usual names and a suffix of str.
For example, mysqlshow normally reads the [client] and [mysqlshow] groups. If this option is
given as --defaults-group-suffix=_other, mysqlshow also reads the [client_other] and
[mysqlshow_other] groups.

For additional information about this and other option-file options, see Section 4.2.2.3, “Command-Line
Options that Affect Option-File Handling”.

• --enable-cleartext-plugin

Command-Line Format --enable-cleartext-plugin

Introduced 5.7.10

Type Boolean

Default Value FALSE

Enable the mysql_clear_password cleartext authentication plugin. (See Section 6.4.1.6, “Client-Side
Cleartext Pluggable Authentication”.)

This option was added in MySQL 5.7.10.

• --get-server-public-key

Command-Line Format --get-server-public-key

Introduced 5.7.23

545

mysqlshow — Display Database, Table, and Column Information

Type Boolean

Request from the server the RSA public key that it uses for key pair-based password exchange.
This option applies to clients that connect to the server using an account that authenticates with the
caching_sha2_password authentication plugin. For connections by such accounts, the server does
not send the public key to the client unless requested. The option is ignored for accounts that do not
authenticate with that plugin. It is also ignored if RSA-based password exchange is not needed, as is the
case when the client connects to the server using a secure connection.

If --server-public-key-path=file_name is given and specifies a valid public key file, it takes
precedence over --get-server-public-key.

For information about the caching_sha2_password plugin, see Section 6.4.1.4, “Caching SHA-2
Pluggable Authentication”.

The --get-server-public-key option was added in MySQL 5.7.23.

• --host=host_name, -h host_name

Command-Line Format --host=host_name

Type String

Default Value localhost

Connect to the MySQL server on the given host.

• --keys, -k

Command-Line Format --keys

Show table indexes.

• --login-path=name

Command-Line Format --login-path=name

Type String

Read options from the named login path in the .mylogin.cnf login path file. A “login path” is an
option group containing options that specify which MySQL server to connect to and which account to
authenticate as. To create or modify a login path file, use the mysql_config_editor utility. See
Section 4.6.6, “mysql_config_editor — MySQL Configuration Utility”.

For additional information about this and other option-file options, see Section 4.2.2.3, “Command-Line
Options that Affect Option-File Handling”.

• --no-defaults

Command-Line Format --no-defaults

Do not read any option files. If program startup fails due to reading unknown options from an option file,
--no-defaults can be used to prevent them from being read.

546

mysqlshow — Display Database, Table, and Column Information

The exception is that the .mylogin.cnf file is read in all cases, if it exists. This permits passwords to
be specified in a safer way than on the command line even when --no-defaults is used. To create
.mylogin.cnf, use the mysql_config_editor utility. See Section 4.6.6, “mysql_config_editor —
MySQL Configuration Utility”.

For additional information about this and other option-file options, see Section 4.2.2.3, “Command-Line
Options that Affect Option-File Handling”.

• --password[=password], -p[password]

Command-Line Format --password[=password]

Type String

The password of the MySQL account used for connecting to the server. The password value is optional.
If not given, mysqlshow prompts for one. If given, there must be no space between --password= or -
p and the password following it. If no password option is specified, the default is to send no password.

Specifying a password on the command line should be considered insecure. To avoid giving the
password on the command line, use an option file. See Section 6.1.2.1, “End-User Guidelines for
Password Security”.

To explicitly specify that there is no password and that mysqlshow should not prompt for one, use the
--skip-password option.

• --pipe, -W

Command-Line Format --pipe

Type String

On Windows, connect to the server using a named pipe. This option applies only if the server was
started with the named_pipe system variable enabled to support named-pipe connections. In
addition, the user making the connection must be a member of the Windows group specified by the
named_pipe_full_access_group system variable.

• --plugin-dir=dir_name

Command-Line Format --plugin-dir=dir_name

Type Directory name

The directory in which to look for plugins. Specify this option if the --default-auth option is used
to specify an authentication plugin but mysqlshow does not find it. See Section 6.2.13, “Pluggable
Authentication”.

• --port=port_num, -P port_num

Command-Line Format --port=port_num

Type Numeric 547

mysqlshow — Display Database, Table, and Column Information

Default Value 3306

For TCP/IP connections, the port number to use.

• --print-defaults

Command-Line Format --print-defaults

Print the program name and all options that it gets from option files.

For additional information about this and other option-file options, see Section 4.2.2.3, “Command-Line
Options that Affect Option-File Handling”.

• --protocol={TCP|SOCKET|PIPE|MEMORY}

Command-Line Format --protocol=type

Type String

Default Value [see text]

Valid Values TCP

SOCKET

PIPE

MEMORY

The transport protocol to use for connecting to the server. It is useful when the other connection
parameters normally result in use of a protocol other than the one you want. For details on the
permissible values, see Section 4.2.5, “Connection Transport Protocols”.

• --secure-auth

Command-Line Format --secure-auth

Deprecated Yes

Do not send passwords to the server in old (pre-4.1) format. This prevents connections except for
servers that use the newer password format.

As of MySQL 5.7.5, this option is deprecated; expect it to be removed in a future MySQL release. It is
always enabled and attempting to disable it (--skip-secure-auth, --secure-auth=0) produces an
error. Before MySQL 5.7.5, this option is enabled by default but can be disabled.

Note

Passwords that use the pre-4.1 hashing method are less secure than passwords
that use the native password hashing method and should be avoided. Pre-4.1
passwords are deprecated and support for them was removed in MySQL 5.7.5.
For account upgrade instructions, see Section 6.4.1.3, “Migrating Away from
Pre-4.1 Password Hashing and the mysql_old_password Plugin”.

• --server-public-key-path=file_name

548

mysqlshow — Display Database, Table, and Column Information

Command-Line Format --server-public-key-path=file_name

Introduced 5.7.23

Type File name

The path name to a file in PEM format containing a client-side copy of the public key required by the
server for RSA key pair-based password exchange. This option applies to clients that authenticate with
the sha256_password or caching_sha2_password authentication plugin. This option is ignored for
accounts that do not authenticate with one of those plugins. It is also ignored if RSA-based password
exchange is not used, as is the case when the client connects to the server using a secure connection.

If --server-public-key-path=file_name is given and specifies a valid public key file, it takes
precedence over --get-server-public-key.

For sha256_password, this option applies only if MySQL was built using OpenSSL.

For information about the sha256_password and caching_sha2_password plugins, see
Section 6.4.1.5, “SHA-256 Pluggable Authentication”, and Section 6.4.1.4, “Caching SHA-2 Pluggable
Authentication”.

The --server-public-key-path option was added in MySQL 5.7.23.

• --shared-memory-base-name=name

Command-Line Format --shared-memory-base-name=name

Platform Specific Windows

On Windows, the shared-memory name to use for connections made using shared memory to a local
server. The default value is MYSQL. The shared-memory name is case-sensitive.

This option applies only if the server was started with the shared_memory system variable enabled to
support shared-memory connections.

• --show-table-type, -t

Command-Line Format --show-table-type

Show a column indicating the table type, as in SHOW FULL TABLES. The type is BASE TABLE or VIEW.

• --socket=path, -S path

Command-Line Format --socket={file_name|pipe_name}

Type String

For connections to localhost, the Unix socket file to use, or, on Windows, the name of the named pipe
to use.

On Windows, this option applies only if the server was started with the named_pipe system variable
enabled to support named-pipe connections. In addition, the user making the connection must be a
member of the Windows group specified by the named_pipe_full_access_group system variable.

549

mysqlslap — A Load Emulation Client

• --ssl*

Options that begin with --ssl specify whether to connect to the server using encryption and indicate
where to find SSL keys and certificates. See Command Options for Encrypted Connections.

• --status, -i

Command-Line Format --status

Display extra information about each table.

• --tls-version=protocol_list

Command-Line Format --tls-version=protocol_list

Introduced 5.7.10

Type String

Default Value (≥ 5.7.28) TLSv1,TLSv1.1,TLSv1.2

Default Value (≤ 5.7.27) TLSv1,TLSv1.1,TLSv1.2 (OpenSSL)

TLSv1,TLSv1.1 (yaSSL)

The permissible TLS protocols for encrypted connections. The value is a list of one or more comma-
separated protocol names. The protocols that can be named for this option depend on the SSL library
used to compile MySQL. For details, see Section 6.3.2, “Encrypted Connection TLS Protocols and
Ciphers”.

This option was added in MySQL 5.7.10.

• --user=user_name, -u user_name

Command-Line Format --user=user_name,

Type String

The user name of the MySQL account to use for connecting to the server.

• --verbose, -v

Command-Line Format --verbose

Verbose mode. Print more information about what the program does. This option can be used multiple
times to increase the amount of information.

• --version, -V

Command-Line Format --version

Display version information and exit.

4.5.8 mysqlslap — A Load Emulation Client

550

mysqlslap — A Load Emulation Client

mysqlslap is a diagnostic program designed to emulate client load for a MySQL server and to report the
timing of each stage. It works as if multiple clients are accessing the server.

Invoke mysqlslap like this:

mysqlslap [options]

Some options such as --create or --query enable you to specify a string containing an SQL statement
or a file containing statements. If you specify a file, by default it must contain one statement per line. (That
is, the implicit statement delimiter is the newline character.) Use the --delimiter option to specify
a different delimiter, which enables you to specify statements that span multiple lines or place multiple
statements on a single line. You cannot include comments in a file; mysqlslap does not understand them.

mysqlslap runs in three stages:

1. Create schema, table, and optionally any stored programs or data to use for the test. This stage uses a
single client connection.

2. Run the load test. This stage can use many client connections.

3. Clean up (disconnect, drop table if specified). This stage uses a single client connection.

Examples:

Supply your own create and query SQL statements, with 50 clients querying and 200 selects for each
(enter the command on a single line):

mysqlslap --delimiter=";"
 --create="CREATE TABLE a (b int);INSERT INTO a VALUES (23)"
 --query="SELECT * FROM a" --concurrency=50 --iterations=200

Let mysqlslap build the query SQL statement with a table of two INT columns and three VARCHAR
columns. Use five clients querying 20 times each. Do not create the table or insert the data (that is, use the
previous test's schema and data):

mysqlslap --concurrency=5 --iterations=20
 --number-int-cols=2 --number-char-cols=3
 --auto-generate-sql

Tell the program to load the create, insert, and query SQL statements from the specified files, where the
create.sql file has multiple table creation statements delimited by ';' and multiple insert statements
delimited by ';'. The --query file has multiple queries delimited by ';'. Run all the load statements,
then run all the queries in the query file with five clients (five times each):

mysqlslap --concurrency=5
 --iterations=5 --query=query.sql --create=create.sql
 --delimiter=";"

mysqlslap supports the following options, which can be specified on the command line or in the
[mysqlslap] and [client] groups of an option file. For information about option files used by MySQL
programs, see Section 4.2.2.2, “Using Option Files”.

Table 4.20 mysqlslap Options

Option Name Description Introduced Deprecated

--auto-generate-sql Generate SQL
statements automatically
when they are not
supplied in files or using
command options

551

mysqlslap — A Load Emulation Client

Option Name Description Introduced Deprecated

--auto-generate-sql-add-
autoincrement

Add AUTO_INCREMENT
column to automatically
generated tables

--auto-generate-sql-
execute-number

Specify how many
queries to generate
automatically

--auto-generate-sql-guid-
primary

Add a GUID-based
primary key to
automatically generated
tables

--auto-generate-sql-load-
type

Specify the test load type

--auto-generate-sql-
secondary-indexes

Specify how many
secondary indexes to
add to automatically
generated tables

--auto-generate-sql-
unique-query-number

How many different
queries to generate for
automatic tests

--auto-generate-sql-
unique-write-number

How many different
queries to generate for --
auto-generate-sql-write-
number

--auto-generate-sql-write-
number

How many row inserts to
perform on each thread

--commit How many statements
to execute before
committing

--compress Compress all information
sent between client and
server

--concurrency Number of clients to
simulate when issuing
the SELECT statement

--create File or string containing
the statement to use for
creating the table

--create-schema Schema in which to run
the tests

--csv Generate output in
comma-separated values
format

--debug Write debugging log

--debug-check Print debugging
information when
program exits

552

mysqlslap — A Load Emulation Client

Option Name Description Introduced Deprecated

--debug-info Print debugging
information, memory,
and CPU statistics when
program exits

--default-auth Authentication plugin to
use

--defaults-extra-file Read named option file in
addition to usual option
files

--defaults-file Read only named option
file

--defaults-group-suffix Option group suffix value

--delimiter Delimiter to use in SQL
statements

--detach Detach (close and
reopen) each connection
after each N statements

--enable-cleartext-plugin Enable cleartext
authentication plugin

--engine Storage engine to use for
creating the table

--get-server-public-key Request RSA public key
from server

5.7.23

--help Display help message
and exit

--host Host on which MySQL
server is located

--iterations Number of times to run
the tests

--login-path Read login path options
from .mylogin.cnf

--no-defaults Read no option files

--no-drop Do not drop any schema
created during the test
run

--number-char-cols Number of VARCHAR
columns to use if --auto-
generate-sql is specified

--number-int-cols Number of INT columns
to use if --auto-generate-
sql is specified

--number-of-queries Limit each client to
approximately this
number of queries

553

mysqlslap — A Load Emulation Client

Option Name Description Introduced Deprecated

--only-print Do not connect to
databases. mysqlslap
only prints what it would
have done

--password Password to use when
connecting to server

--pipe Connect to server using
named pipe (Windows
only)

--plugin-dir Directory where plugins
are installed

--port TCP/IP port number for
connection

--post-query File or string containing
the statement to execute
after the tests have
completed

--post-system String to execute using
system() after the tests
have completed

--pre-query File or string containing
the statement to execute
before running the tests

--pre-system String to execute using
system() before running
the tests

--print-defaults Print default options

--protocol Transport protocol to use

--query File or string containing
the SELECT statement to
use for retrieving data

--secure-auth Do not send passwords
to server in old (pre-4.1)
format

Yes

--server-public-key-path Path name to file
containing RSA public
key

5.7.23

--shared-memory-base-
name

Shared-memory name
for shared-memory
connections (Windows
only)

--silent Silent mode

--socket Unix socket file or
Windows named pipe to
use

554

mysqlslap — A Load Emulation Client

Option Name Description Introduced Deprecated

--sql-mode Set SQL mode for client
session

--ssl Enable connection
encryption

--ssl-ca File that contains list of
trusted SSL Certificate
Authorities

--ssl-capath Directory that contains
trusted SSL Certificate
Authority certificate files

--ssl-cert File that contains X.509
certificate

--ssl-cipher Permissible ciphers for
connection encryption

--ssl-crl File that contains
certificate revocation lists

--ssl-crlpath Directory that contains
certificate revocation-list
files

--ssl-key File that contains X.509
key

--ssl-mode Desired security state of
connection to server

5.7.11

--ssl-verify-server-cert Verify host name
against server certificate
Common Name identity

--tls-version Permissible TLS
protocols for encrypted
connections

5.7.10

--user MySQL user name to
use when connecting to
server

--verbose Verbose mode

--version Display version
information and exit

• --help, -?

Command-Line Format --help

Display a help message and exit.

• --auto-generate-sql, -a

Command-Line Format --auto-generate-sql

Type Boolean

555

mysqlslap — A Load Emulation Client

Default Value FALSE

Generate SQL statements automatically when they are not supplied in files or using command options.

• --auto-generate-sql-add-autoincrement

Command-Line Format --auto-generate-sql-add-autoincrement

Type Boolean

Default Value FALSE

Add an AUTO_INCREMENT column to automatically generated tables.

• --auto-generate-sql-execute-number=N

Command-Line Format --auto-generate-sql-execute-number=#

Type Numeric

Specify how many queries to generate automatically.

• --auto-generate-sql-guid-primary

Command-Line Format --auto-generate-sql-guid-primary

Type Boolean

Default Value FALSE

Add a GUID-based primary key to automatically generated tables.

• --auto-generate-sql-load-type=type

Command-Line Format --auto-generate-sql-load-type=type

Type Enumeration

Default Value mixed

Valid Values read

write

key

update

mixed

Specify the test load type. The permissible values are read (scan tables), write (insert into tables),
key (read primary keys), update (update primary keys), or mixed (half inserts, half scanning selects).
The default is mixed.

556

mysqlslap — A Load Emulation Client

• --auto-generate-sql-secondary-indexes=N

Command-Line Format --auto-generate-sql-secondary-
indexes=#

Type Numeric

Default Value 0

Specify how many secondary indexes to add to automatically generated tables. By default, none are
added.

• --auto-generate-sql-unique-query-number=N

Command-Line Format --auto-generate-sql-unique-query-
number=#

Type Numeric

Default Value 10

How many different queries to generate for automatic tests. For example, if you run a key test that
performs 1000 selects, you can use this option with a value of 1000 to run 1000 unique queries, or with a
value of 50 to perform 50 different selects. The default is 10.

• --auto-generate-sql-unique-write-number=N

Command-Line Format --auto-generate-sql-unique-write-
number=#

Type Numeric

Default Value 10

How many different queries to generate for --auto-generate-sql-write-number. The default is
10.

• --auto-generate-sql-write-number=N

Command-Line Format --auto-generate-sql-write-number=#

Type Numeric

Default Value 100

How many row inserts to perform. The default is 100.

• --commit=N

Command-Line Format --commit=#

Type Numeric

Default Value 0

How many statements to execute before committing. The default is 0 (no commits are done).

557

mysqlslap — A Load Emulation Client

• --compress, -C

Command-Line Format --compress[={OFF|ON}]

Type Boolean

Default Value OFF

Compress all information sent between the client and the server if possible. See Section 4.2.6,
“Connection Compression Control”.

• --concurrency=N, -c N

Command-Line Format --concurrency=#

Type Numeric

The number of parallel clients to simulate.

• --create=value

Command-Line Format --create=value

Type String

The file or string containing the statement to use for creating the table.

• --create-schema=value

Command-Line Format --create-schema=value

Type String

The schema in which to run the tests.

Note

If the --auto-generate-sql option is also given, mysqlslap drops the
schema at the end of the test run. To avoid this, use the --no-drop option as
well.

• --csv[=file_name]

Command-Line Format --csv=[file]

Type File name

Generate output in comma-separated values format. The output goes to the named file, or to the
standard output if no file is given.

• --debug[=debug_options], -# [debug_options]

Command-Line Format --debug[=debug_options]

Type String

558

mysqlslap — A Load Emulation Client

Default Value d:t:o,/tmp/mysqlslap.trace

Write a debugging log. A typical debug_options string is d:t:o,file_name. The default is d:t:o,/
tmp/mysqlslap.trace.

This option is available only if MySQL was built using WITH_DEBUG. MySQL release binaries provided
by Oracle are not built using this option.

• --debug-check

Command-Line Format --debug-check

Type Boolean

Default Value FALSE

Print some debugging information when the program exits.

This option is available only if MySQL was built using WITH_DEBUG. MySQL release binaries provided
by Oracle are not built using this option.

• --debug-info, -T

Command-Line Format --debug-info

Type Boolean

Default Value FALSE

Print debugging information and memory and CPU usage statistics when the program exits.

This option is available only if MySQL was built using WITH_DEBUG. MySQL release binaries provided
by Oracle are not built using this option.

• --default-auth=plugin

Command-Line Format --default-auth=plugin

Type String

A hint about which client-side authentication plugin to use. See Section 6.2.13, “Pluggable
Authentication”.

• --defaults-extra-file=file_name

Command-Line Format --defaults-extra-file=file_name

Type File name

Read this option file after the global option file but (on Unix) before the user option file. If the file does
not exist or is otherwise inaccessible, an error occurs. If file_name is not an absolute path name, it is
interpreted relative to the current directory.

For additional information about this and other option-file options, see Section 4.2.2.3, “Command-Line
Options that Affect Option-File Handling”.

559

mysqlslap — A Load Emulation Client

• --defaults-file=file_name

Command-Line Format --defaults-file=file_name

Type File name

Use only the given option file. If the file does not exist or is otherwise inaccessible, an error occurs. If
file_name is not an absolute path name, it is interpreted relative to the current directory.

Exception: Even with --defaults-file, client programs read .mylogin.cnf.

For additional information about this and other option-file options, see Section 4.2.2.3, “Command-Line
Options that Affect Option-File Handling”.

• --defaults-group-suffix=str

Command-Line Format --defaults-group-suffix=str

Type String

Read not only the usual option groups, but also groups with the usual names and a suffix of str.
For example, mysqlslap normally reads the [client] and [mysqlslap] groups. If this option is
given as --defaults-group-suffix=_other, mysqlslap also reads the [client_other] and
[mysqlslap_other] groups.

For additional information about this and other option-file options, see Section 4.2.2.3, “Command-Line
Options that Affect Option-File Handling”.

• --delimiter=str, -F str

Command-Line Format --delimiter=str

Type String

The delimiter to use in SQL statements supplied in files or using command options.

• --detach=N

Command-Line Format --detach=#

Type Numeric

Default Value 0

Detach (close and reopen) each connection after each N statements. The default is 0 (connections are
not detached).

• --enable-cleartext-plugin

Command-Line Format --enable-cleartext-plugin

Type Boolean

560

mysqlslap — A Load Emulation Client

Default Value FALSE

Enable the mysql_clear_password cleartext authentication plugin. (See Section 6.4.1.6, “Client-Side
Cleartext Pluggable Authentication”.)

• --engine=engine_name, -e engine_name

Command-Line Format --engine=engine_name

Type String

The storage engine to use for creating tables.

• --get-server-public-key

Command-Line Format --get-server-public-key

Introduced 5.7.23

Type Boolean

Request from the server the RSA public key that it uses for key pair-based password exchange.
This option applies to clients that connect to the server using an account that authenticates with the
caching_sha2_password authentication plugin. For connections by such accounts, the server does
not send the public key to the client unless requested. The option is ignored for accounts that do not
authenticate with that plugin. It is also ignored if RSA-based password exchange is not needed, as is the
case when the client connects to the server using a secure connection.

If --server-public-key-path=file_name is given and specifies a valid public key file, it takes
precedence over --get-server-public-key.

For information about the caching_sha2_password plugin, see Section 6.4.1.4, “Caching SHA-2
Pluggable Authentication”.

The --get-server-public-key option was added in MySQL 5.7.23.

• --host=host_name, -h host_name

Command-Line Format --host=host_name

Type String

Default Value localhost

Connect to the MySQL server on the given host.

• --iterations=N, -i N

Command-Line Format --iterations=#

Type Numeric

The number of times to run the tests.

• --login-path=name

561

mysqlslap — A Load Emulation Client

Command-Line Format --login-path=name

Type String

Read options from the named login path in the .mylogin.cnf login path file. A “login path” is an
option group containing options that specify which MySQL server to connect to and which account to
authenticate as. To create or modify a login path file, use the mysql_config_editor utility. See
Section 4.6.6, “mysql_config_editor — MySQL Configuration Utility”.

For additional information about this and other option-file options, see Section 4.2.2.3, “Command-Line
Options that Affect Option-File Handling”.

• --no-drop

Command-Line Format --no-drop

Type Boolean

Default Value FALSE

Prevent mysqlslap from dropping any schema it creates during the test run.

• --no-defaults

Command-Line Format --no-defaults

Do not read any option files. If program startup fails due to reading unknown options from an option file,
--no-defaults can be used to prevent them from being read.

The exception is that the .mylogin.cnf file is read in all cases, if it exists. This permits passwords to
be specified in a safer way than on the command line even when --no-defaults is used. To create
.mylogin.cnf, use the mysql_config_editor utility. See Section 4.6.6, “mysql_config_editor —
MySQL Configuration Utility”.

For additional information about this and other option-file options, see Section 4.2.2.3, “Command-Line
Options that Affect Option-File Handling”.

• --number-char-cols=N, -x N

Command-Line Format --number-char-cols=#

Type Numeric

The number of VARCHAR columns to use if --auto-generate-sql is specified.

• --number-int-cols=N, -y N

Command-Line Format --number-int-cols=#

Type Numeric

The number of INT columns to use if --auto-generate-sql is specified.

562

mysqlslap — A Load Emulation Client

• --number-of-queries=N

Command-Line Format --number-of-queries=#

Type Numeric

Limit each client to approximately this many queries. Query counting takes into account the statement
delimiter. For example, if you invoke mysqlslap as follows, the ; delimiter is recognized so that each
instance of the query string counts as two queries. As a result, 5 rows (not 10) are inserted.

mysqlslap --delimiter=";" --number-of-queries=10
 --query="use test;insert into t values(null)"

• --only-print

Command-Line Format --only-print

Type Boolean

Default Value FALSE

Do not connect to databases. mysqlslap only prints what it would have done.

• --password[=password], -p[password]

Command-Line Format --password[=password]

Type String

The password of the MySQL account used for connecting to the server. The password value is optional.
If not given, mysqlslap prompts for one. If given, there must be no space between --password= or -
p and the password following it. If no password option is specified, the default is to send no password.

Specifying a password on the command line should be considered insecure. To avoid giving the
password on the command line, use an option file. See Section 6.1.2.1, “End-User Guidelines for
Password Security”.

To explicitly specify that there is no password and that mysqlslap should not prompt for one, use the
--skip-password option.

• --pipe, -W

Command-Line Format --pipe

Type String

On Windows, connect to the server using a named pipe. This option applies only if the server was
started with the named_pipe system variable enabled to support named-pipe connections. In
addition, the user making the connection must be a member of the Windows group specified by the
named_pipe_full_access_group system variable.

• --plugin-dir=dir_name

Command-Line Format --plugin-dir=dir_name

Type Directory name

563

mysqlslap — A Load Emulation Client

The directory in which to look for plugins. Specify this option if the --default-auth option is used
to specify an authentication plugin but mysqlslap does not find it. See Section 6.2.13, “Pluggable
Authentication”.

• --port=port_num, -P port_num

Command-Line Format --port=port_num

Type Numeric

Default Value 3306

For TCP/IP connections, the port number to use.

• --post-query=value

Command-Line Format --post-query=value

Type String

The file or string containing the statement to execute after the tests have completed. This execution is
not counted for timing purposes.

• --post-system=str

Command-Line Format --post-system=str

Type String

The string to execute using system() after the tests have completed. This execution is not counted for
timing purposes.

• --pre-query=value

Command-Line Format --pre-query=value

Type String

The file or string containing the statement to execute before running the tests. This execution is not
counted for timing purposes.

• --pre-system=str

Command-Line Format --pre-system=str

Type String

The string to execute using system() before running the tests. This execution is not counted for timing
purposes.

• --print-defaults

Command-Line Format --print-defaults

564

mysqlslap — A Load Emulation Client

Print the program name and all options that it gets from option files.

For additional information about this and other option-file options, see Section 4.2.2.3, “Command-Line
Options that Affect Option-File Handling”.

• --protocol={TCP|SOCKET|PIPE|MEMORY}

Command-Line Format --protocol=type

Type String

Default Value [see text]

Valid Values TCP

SOCKET

PIPE

MEMORY

The transport protocol to use for connecting to the server. It is useful when the other connection
parameters normally result in use of a protocol other than the one you want. For details on the
permissible values, see Section 4.2.5, “Connection Transport Protocols”.

• --query=value, -q value

Command-Line Format --query=value

Type String

The file or string containing the SELECT statement to use for retrieving data.

• --secure-auth

Command-Line Format --secure-auth

Deprecated Yes

Do not send passwords to the server in old (pre-4.1) format. This prevents connections except for
servers that use the newer password format.

As of MySQL 5.7.5, this option is deprecated; expect it to be removed in a future MySQL release. It is
always enabled and attempting to disable it (--skip-secure-auth, --secure-auth=0) produces an
error. Before MySQL 5.7.5, this option is enabled by default but can be disabled.

Note

Passwords that use the pre-4.1 hashing method are less secure than passwords
that use the native password hashing method and should be avoided. Pre-4.1
passwords are deprecated and support for them was removed in MySQL 5.7.5.
For account upgrade instructions, see Section 6.4.1.3, “Migrating Away from
Pre-4.1 Password Hashing and the mysql_old_password Plugin”.

• --server-public-key-path=file_name

565

mysqlslap — A Load Emulation Client

Command-Line Format --server-public-key-path=file_name

Introduced 5.7.23

Type File name

The path name to a file in PEM format containing a client-side copy of the public key required by the
server for RSA key pair-based password exchange. This option applies to clients that authenticate with
the sha256_password or caching_sha2_password authentication plugin. This option is ignored for
accounts that do not authenticate with one of those plugins. It is also ignored if RSA-based password
exchange is not used, as is the case when the client connects to the server using a secure connection.

If --server-public-key-path=file_name is given and specifies a valid public key file, it takes
precedence over --get-server-public-key.

For sha256_password, this option applies only if MySQL was built using OpenSSL.

For information about the sha256_password and caching_sha2_password plugins, see
Section 6.4.1.5, “SHA-256 Pluggable Authentication”, and Section 6.4.1.4, “Caching SHA-2 Pluggable
Authentication”.

The --server-public-key-path option was added in MySQL 5.7.23.

• --shared-memory-base-name=name

Command-Line Format --shared-memory-base-name=name

Platform Specific Windows

On Windows, the shared-memory name to use for connections made using shared memory to a local
server. The default value is MYSQL. The shared-memory name is case-sensitive.

This option applies only if the server was started with the shared_memory system variable enabled to
support shared-memory connections.

• --silent, -s

Command-Line Format --silent

Silent mode. No output.

• --socket=path, -S path

Command-Line Format --socket={file_name|pipe_name}

Type String

For connections to localhost, the Unix socket file to use, or, on Windows, the name of the named pipe
to use.

On Windows, this option applies only if the server was started with the named_pipe system variable
enabled to support named-pipe connections. In addition, the user making the connection must be a
member of the Windows group specified by the named_pipe_full_access_group system variable.

566

mysqlslap — A Load Emulation Client

• --sql-mode=mode

Command-Line Format --sql-mode=mode

Type String

Set the SQL mode for the client session.

• --ssl*

Options that begin with --ssl specify whether to connect to the server using encryption and indicate
where to find SSL keys and certificates. See Command Options for Encrypted Connections.

• --tls-version=protocol_list

Command-Line Format --tls-version=protocol_list

Introduced 5.7.10

Type String

Default Value (≥ 5.7.28) TLSv1,TLSv1.1,TLSv1.2

Default Value (≤ 5.7.27) TLSv1,TLSv1.1,TLSv1.2 (OpenSSL)

TLSv1,TLSv1.1 (yaSSL)

The permissible TLS protocols for encrypted connections. The value is a list of one or more comma-
separated protocol names. The protocols that can be named for this option depend on the SSL library
used to compile MySQL. For details, see Section 6.3.2, “Encrypted Connection TLS Protocols and
Ciphers”.

This option was added in MySQL 5.7.10.

• --user=user_name, -u user_name

Command-Line Format --user=user_name,

Type String

The user name of the MySQL account to use for connecting to the server.

• --verbose, -v

Command-Line Format --verbose

Verbose mode. Print more information about what the program does. This option can be used multiple
times to increase the amount of information.

• --version, -V

Command-Line Format --version

Display version information and exit.

567

Administrative and Utility Programs

4.6 Administrative and Utility Programs
This section describes administrative programs and programs that perform miscellaneous utility operations.

4.6.1 innochecksum — Offline InnoDB File Checksum Utility

innochecksum prints checksums for InnoDB files. This tool reads an InnoDB tablespace file, calculates
the checksum for each page, compares the calculated checksum to the stored checksum, and reports
mismatches, which indicate damaged pages. It was originally developed to speed up verifying the
integrity of tablespace files after power outages but can also be used after file copies. Because checksum
mismatches cause InnoDB to deliberately shut down a running server, it may be preferable to use this tool
rather than waiting for an in-production server to encounter the damaged pages.

innochecksum cannot be used on tablespace files that the server already has open. For such files, you
should use CHECK TABLE to check tables within the tablespace. Attempting to run innochecksum on a
tablespace that the server already has open results in an Unable to lock file error.

If checksum mismatches are found, restore the tablespace from backup or start the server and attempt to
use mysqldump to make a backup of the tables within the tablespace.

Invoke innochecksum like this:

innochecksum [options] file_name

innochecksum Options

innochecksum supports the following options. For options that refer to page numbers, the numbers are
zero-based.

• --help, -?

Command-Line Format --help

Type Boolean

Default Value false

Displays command line help. Example usage:

innochecksum --help

• --info, -I

Command-Line Format --info

Type Boolean

Default Value false

Synonym for --help. Displays command line help. Example usage:

innochecksum --info

• --version, -V

Command-Line Format --version

Type Boolean

568

innochecksum — Offline InnoDB File Checksum Utility

Default Value false

Displays version information. Example usage:

innochecksum --version

• --verbose, -v

Command-Line Format --verbose

Type Boolean

Default Value false

Verbose mode; prints a progress indicator to the log file every five seconds. In order for the progress
indicator to be printed, the log file must be specified using the --log option. To turn on verbose
mode, run:

innochecksum --verbose

To turn off verbose mode, run:

innochecksum --verbose=FALSE

The --verbose option and --log option can be specified at the same time. For example:

innochecksum --verbose --log=/var/lib/mysql/test/logtest.txt

To locate the progress indicator information in the log file, you can perform the following search:

cat ./logtest.txt | grep -i "okay"

The progress indicator information in the log file appears similar to the following:

page 1663 okay: 2.863% done
page 8447 okay: 14.537% done
page 13695 okay: 23.568% done
page 18815 okay: 32.379% done
page 23039 okay: 39.648% done
page 28351 okay: 48.789% done
page 33023 okay: 56.828% done
page 37951 okay: 65.308% done
page 44095 okay: 75.881% done
page 49407 okay: 85.022% done
page 54463 okay: 93.722% done
...

• --count, -c

Command-Line Format --count

Type Base name

Default Value true

Print a count of the number of pages in the file and exit. Example usage:

innochecksum --count ../data/test/tab1.ibd

• --start-page=num, -s num

569

innochecksum — Offline InnoDB File Checksum Utility

Command-Line Format --start-page=#

Type Numeric

Default Value 0

Start at this page number. Example usage:

innochecksum --start-page=600 ../data/test/tab1.ibd

or:

innochecksum -s 600 ../data/test/tab1.ibd

• --end-page=num, -e num

Command-Line Format --end-page=#

Type Numeric

Default Value 0

Minimum Value 0

Maximum Value 18446744073709551615

End at this page number. Example usage:

innochecksum --end-page=700 ../data/test/tab1.ibd

or:

innochecksum --p 700 ../data/test/tab1.ibd

• --page=num, -p num

Command-Line Format --page=#

Type Integer

Default Value 0

Check only this page number. Example usage:

innochecksum --page=701 ../data/test/tab1.ibd

• --strict-check, -C

Command-Line Format --strict-check=algorithm

Type Enumeration

Default Value crc32

Valid Values innodb

crc32570

innochecksum — Offline InnoDB File Checksum Utility

none

Specify a strict checksum algorithm. Options include innodb, crc32, and none.

In this example, the innodb checksum algorithm is specified:

innochecksum --strict-check=innodb ../data/test/tab1.ibd

In this example, the crc32 checksum algorithm is specified:

innochecksum -C crc32 ../data/test/tab1.ibd

The following conditions apply:

• If you do not specify the --strict-check option, innochecksum validates against innodb, crc32
and none.

• If you specify the none option, only checksums generated by none are allowed.

• If you specify the innodb option, only checksums generated by innodb are allowed.

• If you specify the crc32 option, only checksums generated by crc32 are allowed.

• --no-check, -n

Command-Line Format --no-check

Type Boolean

Default Value false

Ignore the checksum verification when rewriting a checksum. This option may only be used with the
innochecksum --write option. If the --write option is not specified, innochecksum terminates.

In this example, an innodb checksum is rewritten to replace an invalid checksum:

innochecksum --no-check --write innodb ../data/test/tab1.ibd

• --allow-mismatches, -a

Command-Line Format --allow-mismatches=#

Type Integer

Default Value 0

Minimum Value 0

Maximum Value 18446744073709551615

The maximum number of checksum mismatches allowed before innochecksum terminates. The
default setting is 0. If --allow-mismatches=N, where N>=0, N mismatches are permitted and

571

innochecksum — Offline InnoDB File Checksum Utility

innochecksum terminates at N+1. When --allow-mismatches is set to 0, innochecksum
terminates on the first checksum mismatch.

In this example, an existing innodb checksum is rewritten to set --allow-mismatches to 1.

innochecksum --allow-mismatches=1 --write innodb ../data/test/tab1.ibd

With --allow-mismatches set to 1, if there is a mismatch at page 600 and another at page 700 on
a file with 1000 pages, the checksum is updated for pages 0-599 and 601-699. Because --allow-
mismatches is set to 1, the checksum tolerates the first mismatch and terminates on the second
mismatch, leaving page 600 and pages 700-999 unchanged.

• --write=name, -w num

Command-Line Format --write=algorithm

Type Enumeration

Default Value crc32

Valid Values innodb

crc32

none

Rewrite a checksum. When rewriting an invalid checksum, the --no-check option must be used
together with the --write option. The --no-check option tells innochecksum to ignore verification
of the invalid checksum. You do not have to specify the --no-check option if the current checksum is
valid.

An algorithm must be specified when using the --write option. Possible values for the --write option
are:

• innodb: A checksum calculated in software, using the original algorithm from InnoDB.

• crc32: A checksum calculated using the crc32 algorithm, possibly done with a hardware assist.

• none: A constant number.

The --write option rewrites entire pages to disk. If the new checksum is identical to the existing
checksum, the new checksum is not written to disk in order to minimize I/O.

innochecksum obtains an exclusive lock when the --write option is used.

In this example, a crc32 checksum is written for tab1.ibd:

innochecksum -w crc32 ../data/test/tab1.ibd

In this example, a crc32 checksum is rewritten to replace an invalid crc32 checksum:

innochecksum --no-check --write crc32 ../data/test/tab1.ibd

• --page-type-summary, -S

Command-Line Format --page-type-summary

Type Boolean572

innochecksum — Offline InnoDB File Checksum Utility

Default Value false

Display a count of each page type in a tablespace. Example usage:

innochecksum --page-type-summary ../data/test/tab1.ibd

Sample output for --page-type-summary:

File::../data/test/tab1.ibd
================PAGE TYPE SUMMARY==============
#PAGE_COUNT PAGE_TYPE
===
 2 Index page
 0 Undo log page
 1 Inode page
 0 Insert buffer free list page
 2 Freshly allocated page
 1 Insert buffer bitmap
 0 System page
 0 Transaction system page
 1 File Space Header
 0 Extent descriptor page
 0 BLOB page
 0 Compressed BLOB page
 0 Other type of page
===
Additional information:
Undo page type: 0 insert, 0 update, 0 other
Undo page state: 0 active, 0 cached, 0 to_free, 0 to_purge, 0 prepared, 0 other

• --page-type-dump, -D

Command-Line Format --page-type-dump=name

Type String

Default Value [none]

Dump the page type information for each page in a tablespace to stderr or stdout. Example usage:

innochecksum --page-type-dump=/tmp/a.txt ../data/test/tab1.ibd

• --log, -l

Command-Line Format --log=path

Type File name

Default Value [none]

Log output for the innochecksum tool. A log file name must be provided. Log output contains checksum
values for each tablespace page. For uncompressed tables, LSN values are also provided. The --log
replaces the --debug option, which was available in earlier releases. Example usage:

innochecksum --log=/tmp/log.txt ../data/test/tab1.ibd

or:

innochecksum -l /tmp/log.txt ../data/test/tab1.ibd

573

innochecksum — Offline InnoDB File Checksum Utility

• - option.

Specify the - option to read from standard input. If the - option is missing when “read from standard in”
is expected, innochecksum prints innochecksum usage information indicating that the “-” option was
omitted. Example usages:

cat t1.ibd | innochecksum -

In this example, innochecksum writes the crc32 checksum algorithm to a.ibd without changing the
original t1.ibd file.

cat t1.ibd | innochecksum --write=crc32 - > a.ibd

Running innochecksum on Multiple User-defined Tablespace Files

The following examples demonstrate how to run innochecksum on multiple user-defined tablespace files
(.ibd files).

Run innochecksum for all tablespace (.ibd) files in the “test” database:

innochecksum ./data/test/*.ibd

Run innochecksum for all tablespace files (.ibd files) that have a file name starting with “t”:

innochecksum ./data/test/t*.ibd

Run innochecksum for all tablespace files (.ibd files) in the data directory:

innochecksum ./data/*/*.ibd

Note

Running innochecksum on multiple user-defined tablespace files is not supported
on Windows operating systems, as Windows shells such as cmd.exe do not
support glob pattern expansion. On Windows systems, innochecksum must be
run separately for each user-defined tablespace file. For example:

innochecksum.exe t1.ibd
innochecksum.exe t2.ibd
innochecksum.exe t3.ibd

Running innochecksum on Multiple System Tablespace Files

By default, there is only one InnoDB system tablespace file (ibdata1) but multiple files for the system
tablespace can be defined using the innodb_data_file_path option. In the following example, three
files for the system tablespace are defined using the innodb_data_file_path option: ibdata1,
ibdata2, and ibdata3.

./bin/mysqld --no-defaults --innodb-data-file-path="ibdata1:10M;ibdata2:10M;ibdata3:10M:autoextend"

The three files (ibdata1, ibdata2, and ibdata3) form one logical system tablespace. To run
innochecksum on multiple files that form one logical system tablespace, innochecksum requires the -
option to read tablespace files in from standard input, which is equivalent to concatenating multiple files to
create one single file. For the example provided above, the following innochecksum command would be
used:

cat ibdata* | innochecksum -

574

myisam_ftdump — Display Full-Text Index information

Refer to the innochecksum options information for more information about the “-” option.

Note

Running innochecksum on multiple files in the same tablespace is not supported
on Windows operating systems, as Windows shells such as cmd.exe do not
support glob pattern expansion. On Windows systems, innochecksum must be
run separately for each system tablespace file. For example:

innochecksum.exe ibdata1
innochecksum.exe ibdata2
innochecksum.exe ibdata3

4.6.2 myisam_ftdump — Display Full-Text Index information

myisam_ftdump displays information about FULLTEXT indexes in MyISAM tables. It reads the
MyISAM index file directly, so it must be run on the server host where the table is located. Before using
myisam_ftdump, be sure to issue a FLUSH TABLES statement first if the server is running.

myisam_ftdump scans and dumps the entire index, which is not particularly fast. On the other hand, the
distribution of words changes infrequently, so it need not be run often.

Invoke myisam_ftdump like this:

myisam_ftdump [options] tbl_name index_num

The tbl_name argument should be the name of a MyISAM table. You can also specify a table by naming
its index file (the file with the .MYI suffix). If you do not invoke myisam_ftdump in the directory where
the table files are located, the table or index file name must be preceded by the path name to the table's
database directory. Index numbers begin with 0.

Example: Suppose that the test database contains a table named mytexttable that has the following
definition:

CREATE TABLE mytexttable
(
 id INT NOT NULL,
 txt TEXT NOT NULL,
 PRIMARY KEY (id),
 FULLTEXT (txt)
) ENGINE=MyISAM;

The index on id is index 0 and the FULLTEXT index on txt is index 1. If your working directory is the
test database directory, invoke myisam_ftdump as follows:

myisam_ftdump mytexttable 1

If the path name to the test database directory is /usr/local/mysql/data/test, you can
also specify the table name argument using that path name. This is useful if you do not invoke
myisam_ftdump in the database directory:

myisam_ftdump /usr/local/mysql/data/test/mytexttable 1

You can use myisam_ftdump to generate a list of index entries in order of frequency of occurrence like
this on Unix-like systems:

myisam_ftdump -c mytexttable 1 | sort -r

575

myisamchk — MyISAM Table-Maintenance Utility

On Windows, use:

myisam_ftdump -c mytexttable 1 | sort /R

myisam_ftdump supports the following options:

• --help, -h -?

Command-Line Format --help

Display a help message and exit.

• --count, -c

Command-Line Format --count

Calculate per-word statistics (counts and global weights).

• --dump, -d

Command-Line Format --dump

Dump the index, including data offsets and word weights.

• --length, -l

Command-Line Format --length

Report the length distribution.

• --stats, -s

Command-Line Format --stats

Report global index statistics. This is the default operation if no other operation is specified.

• --verbose, -v

Command-Line Format --verbose

Verbose mode. Print more output about what the program does.

4.6.3 myisamchk — MyISAM Table-Maintenance Utility

The myisamchk utility gets information about your database tables or checks, repairs, or optimizes
them. myisamchk works with MyISAM tables (tables that have .MYD and .MYI files for storing data and
indexes).

You can also use the CHECK TABLE and REPAIR TABLE statements to check and repair MyISAM tables.
See Section 13.7.2.2, “CHECK TABLE Statement”, and Section 13.7.2.5, “REPAIR TABLE Statement”.

576

myisamchk — MyISAM Table-Maintenance Utility

The use of myisamchk with partitioned tables is not supported.

Caution

It is best to make a backup of a table before performing a table repair operation;
under some circumstances the operation might cause data loss. Possible causes
include but are not limited to file system errors.

Invoke myisamchk like this:

myisamchk [options] tbl_name ...

The options specify what you want myisamchk to do. They are described in the following sections. You
can also get a list of options by invoking myisamchk --help.

With no options, myisamchk simply checks your table as the default operation. To get more information or
to tell myisamchk to take corrective action, specify options as described in the following discussion.

tbl_name is the database table you want to check or repair. If you run myisamchk somewhere other than
in the database directory, you must specify the path to the database directory, because myisamchk has
no idea where the database is located. In fact, myisamchk does not actually care whether the files you are
working on are located in a database directory. You can copy the files that correspond to a database table
into some other location and perform recovery operations on them there.

You can name several tables on the myisamchk command line if you wish. You can also specify a table
by naming its index file (the file with the .MYI suffix). This enables you to specify all tables in a directory
by using the pattern *.MYI. For example, if you are in a database directory, you can check all the MyISAM
tables in that directory like this:

myisamchk *.MYI

If you are not in the database directory, you can check all the tables there by specifying the path to the
directory:

myisamchk /path/to/database_dir/*.MYI

You can even check all tables in all databases by specifying a wildcard with the path to the MySQL data
directory:

myisamchk /path/to/datadir/*/*.MYI

The recommended way to quickly check all MyISAM tables is:

myisamchk --silent --fast /path/to/datadir/*/*.MYI

If you want to check all MyISAM tables and repair any that are corrupted, you can use the following
command:

myisamchk --silent --force --fast --update-state \
 --key_buffer_size=64M --myisam_sort_buffer_size=64M \
 --read_buffer_size=1M --write_buffer_size=1M \
 /path/to/datadir/*/*.MYI

This command assumes that you have more than 64MB free. For more information about memory
allocation with myisamchk, see Section 4.6.3.6, “myisamchk Memory Usage”.

For additional information about using myisamchk, see Section 7.6, “MyISAM Table Maintenance and
Crash Recovery”.

577

myisamchk — MyISAM Table-Maintenance Utility

Important

You must ensure that no other program is using the tables while you are running
myisamchk. The most effective means of doing so is to shut down the MySQL
server while running myisamchk, or to lock all tables that myisamchk is being
used on.

Otherwise, when you run myisamchk, it may display the following error message:

warning: clients are using or haven't closed the table properly

This means that you are trying to check a table that has been updated by another
program (such as the mysqld server) that hasn't yet closed the file or that has died
without closing the file properly, which can sometimes lead to the corruption of one
or more MyISAM tables.

If mysqld is running, you must force it to flush any table modifications that are still
buffered in memory by using FLUSH TABLES. You should then ensure that no one
is using the tables while you are running myisamchk

However, the easiest way to avoid this problem is to use CHECK TABLE instead of
myisamchk to check tables. See Section 13.7.2.2, “CHECK TABLE Statement”.

myisamchk supports the following options, which can be specified on the command line or in the
[myisamchk] group of an option file. For information about option files used by MySQL programs, see
Section 4.2.2.2, “Using Option Files”.

Table 4.21 myisamchk Options

Option Name Description

--analyze Analyze the distribution of key values

--backup Make a backup of the .MYD file as file_name-
time.BAK

--block-search Find the record that a block at the given offset
belongs to

--character-sets-dir Directory where character sets can be found

--check Check the table for errors

--check-only-changed Check only tables that have changed since the last
check

--correct-checksum Correct the checksum information for the table

--data-file-length Maximum length of the data file (when re-creating
data file when it is full)

--debug Write debugging log

--decode_bits Decode_bits

--defaults-extra-file Read named option file in addition to usual option
files

--defaults-file Read only named option file

--defaults-group-suffix Option group suffix value

--description Print some descriptive information about the table

578

myisamchk — MyISAM Table-Maintenance Utility

Option Name Description

--extend-check Do very thorough table check or repair that tries to
recover every possible row from the data file

--fast Check only tables that haven't been closed properly

--force Do a repair operation automatically if myisamchk
finds any errors in the table

--force Overwrite old temporary files. For use with the -r or -
o option

--ft_max_word_len Maximum word length for FULLTEXT indexes

--ft_min_word_len Minimum word length for FULLTEXT indexes

--ft_stopword_file Use stopwords from this file instead of built-in list

--HELP Display help message and exit

--help Display help message and exit

--information Print informational statistics about the table that is
checked

--key_buffer_size Size of buffer used for index blocks for MyISAM
tables

--keys-used A bit-value that indicates which indexes to update

--max-record-length Skip rows larger than the given length if myisamchk
cannot allocate memory to hold them

--medium-check Do a check that is faster than an --extend-check
operation

--myisam_block_size Block size to be used for MyISAM index pages

--myisam_sort_buffer_size The buffer that is allocated when sorting the index
when doing a REPAIR or when creating indexes
with CREATE INDEX or ALTER TABLE

--no-defaults Read no option files

--parallel-recover Uses the same technique as -r and -n, but creates
all the keys in parallel, using different threads (beta)

--print-defaults Print default options

--quick Achieve a faster repair by not modifying the data file

--read_buffer_size Each thread that does a sequential scan allocates a
buffer of this size for each table it scans

--read-only Do not mark the table as checked

--recover Do a repair that can fix almost any problem except
unique keys that aren't unique

--safe-recover Do a repair using an old recovery method that reads
through all rows in order and updates all index trees
based on the rows found

--set-auto-increment Force AUTO_INCREMENT numbering for new
records to start at the given value

--set-collation Specify the collation to use for sorting table indexes

--silent Silent mode

579

myisamchk — MyISAM Table-Maintenance Utility

Option Name Description

--sort_buffer_size The buffer that is allocated when sorting the index
when doing a REPAIR or when creating indexes
with CREATE INDEX or ALTER TABLE

--sort-index Sort the index tree blocks in high-low order

--sort_key_blocks sort_key_blocks

--sort-records Sort records according to a particular index

--sort-recover Force myisamchk to use sorting to resolve the keys
even if the temporary files would be very large

--stats_method Specifies how MyISAM index statistics collection
code should treat NULLs

--tmpdir Directory to be used for storing temporary files

--unpack Unpack a table that was packed with myisampack

--update-state Store information in the .MYI file to indicate when
the table was checked and whether the table
crashed

--verbose Verbose mode

--version Display version information and exit

--wait Wait for locked table to be unlocked, instead of
terminating

--write_buffer_size Write buffer size

4.6.3.1 myisamchk General Options

The options described in this section can be used for any type of table maintenance operation performed
by myisamchk. The sections following this one describe options that pertain only to specific operations,
such as table checking or repairing.

• --help, -?

Command-Line Format --help

Display a help message and exit. Options are grouped by type of operation.

• --HELP, -H

Command-Line Format --HELP

Display a help message and exit. Options are presented in a single list.

• --debug=debug_options, -# debug_options

Command-Line Format --debug[=debug_options]

Type String

Default Value d:t:o,/tmp/myisamchk.trace580

myisamchk — MyISAM Table-Maintenance Utility

Write a debugging log. A typical debug_options string is d:t:o,file_name. The default is d:t:o,/
tmp/myisamchk.trace.

This option is available only if MySQL was built using WITH_DEBUG. MySQL release binaries provided
by Oracle are not built using this option.

• --defaults-extra-file=file_name

Command-Line Format --defaults-extra-file=file_name

Type File name

Read this option file after the global option file but (on Unix) before the user option file. If the file does
not exist or is otherwise inaccessible, an error occurs. If file_name is not an absolute path name, it is
interpreted relative to the current directory.

For additional information about this and other option-file options, see Section 4.2.2.3, “Command-Line
Options that Affect Option-File Handling”.

• --defaults-file=file_name

Command-Line Format --defaults-file=file_name

Type File name

Use only the given option file. If the file does not exist or is otherwise inaccessible, an error occurs. If
file_name is not an absolute path name, it is interpreted relative to the current directory.

For additional information about this and other option-file options, see Section 4.2.2.3, “Command-Line
Options that Affect Option-File Handling”.

• --defaults-group-suffix=str

Command-Line Format --defaults-group-suffix=str

Type String

Read not only the usual option groups, but also groups with the usual names and a suffix of str. For
example, myisamchk normally reads the [myisamchk] group. If this option is given as --defaults-
group-suffix=_other, myisamchk also reads the [myisamchk_other] group.

For additional information about this and other option-file options, see Section 4.2.2.3, “Command-Line
Options that Affect Option-File Handling”.

• --no-defaults

Command-Line Format --no-defaults

Do not read any option files. If program startup fails due to reading unknown options from an option file,
--no-defaults can be used to prevent them from being read.

The exception is that the .mylogin.cnf file is read in all cases, if it exists. This permits passwords to
be specified in a safer way than on the command line even when --no-defaults is used. To create

581

myisamchk — MyISAM Table-Maintenance Utility

.mylogin.cnf, use the mysql_config_editor utility. See Section 4.6.6, “mysql_config_editor —
MySQL Configuration Utility”.

For additional information about this and other option-file options, see Section 4.2.2.3, “Command-Line
Options that Affect Option-File Handling”.

• --print-defaults

Command-Line Format --print-defaults

Print the program name and all options that it gets from option files.

For additional information about this and other option-file options, see Section 4.2.2.3, “Command-Line
Options that Affect Option-File Handling”.

• --silent, -s

Command-Line Format --silent

Silent mode. Write output only when errors occur. You can use -s twice (-ss) to make myisamchk very
silent.

• --verbose, -v

Command-Line Format --verbose

Verbose mode. Print more information about what the program does. This can be used with -d and -e.
Use -v multiple times (-vv, -vvv) for even more output.

• --version, -V

Command-Line Format --version

Display version information and exit.

• --wait, -w

Command-Line Format --wait

Type Boolean

Default Value false

Instead of terminating with an error if the table is locked, wait until the table is unlocked before
continuing. If you are running mysqld with external locking disabled, the table can be locked only by
another myisamchk command.

You can also set the following variables by using --var_name=value syntax:

Variable Default Value

decode_bits 9

ft_max_word_len version-dependent

582

myisamchk — MyISAM Table-Maintenance Utility

Variable Default Value

ft_min_word_len 4

ft_stopword_file built-in list

key_buffer_size 523264

myisam_block_size 1024

myisam_sort_key_blocks 16

read_buffer_size 262136

sort_buffer_size 2097144

sort_key_blocks 16

stats_method nulls_unequal

write_buffer_size 262136

The possible myisamchk variables and their default values can be examined with myisamchk --help:

myisam_sort_buffer_size is used when the keys are repaired by sorting keys, which is
the normal case when you use --recover. sort_buffer_size is a deprecated synonym for
myisam_sort_buffer_size.

key_buffer_size is used when you are checking the table with --extend-check or when the keys are
repaired by inserting keys row by row into the table (like when doing normal inserts). Repairing through the
key buffer is used in the following cases:

• You use --safe-recover.

• The temporary files needed to sort the keys would be more than twice as big as when creating the
key file directly. This is often the case when you have large key values for CHAR, VARCHAR, or TEXT
columns, because the sort operation needs to store the complete key values as it proceeds. If you have
lots of temporary space and you can force myisamchk to repair by sorting, you can use the --sort-
recover option.

Repairing through the key buffer takes much less disk space than using sorting, but is also much slower.

If you want a faster repair, set the key_buffer_size and myisam_sort_buffer_size variables to
about 25% of your available memory. You can set both variables to large values, because only one of them
is used at a time.

myisam_block_size is the size used for index blocks.

stats_method influences how NULL values are treated for index statistics collection when the --
analyze option is given. It acts like the myisam_stats_method system variable. For more information,
see the description of myisam_stats_method in Section 5.1.7, “Server System Variables”, and
Section 8.3.7, “InnoDB and MyISAM Index Statistics Collection”.

ft_min_word_len and ft_max_word_len indicate the minimum and maximum word length for
FULLTEXT indexes on MyISAM tables. ft_stopword_file names the stopword file. These need to be
set under the following circumstances.

If you use myisamchk to perform an operation that modifies table indexes (such as repair or analyze), the
FULLTEXT indexes are rebuilt using the default full-text parameter values for minimum and maximum word
length and the stopword file unless you specify otherwise. This can result in queries failing.

The problem occurs because these parameters are known only by the server. They are not stored in
MyISAM index files. To avoid the problem if you have modified the minimum or maximum word length

583

myisamchk — MyISAM Table-Maintenance Utility

or the stopword file in the server, specify the same ft_min_word_len, ft_max_word_len, and
ft_stopword_file values to myisamchk that you use for mysqld. For example, if you have set the
minimum word length to 3, you can repair a table with myisamchk like this:

myisamchk --recover --ft_min_word_len=3 tbl_name.MYI

To ensure that myisamchk and the server use the same values for full-text parameters, you can place
each one in both the [mysqld] and [myisamchk] sections of an option file:

[mysqld]
ft_min_word_len=3

[myisamchk]
ft_min_word_len=3

An alternative to using myisamchk is to use the REPAIR TABLE, ANALYZE TABLE, OPTIMIZE TABLE,
or ALTER TABLE. These statements are performed by the server, which knows the proper full-text
parameter values to use.

4.6.3.2 myisamchk Check Options

myisamchk supports the following options for table checking operations:

• --check, -c

Command-Line Format --check

Check the table for errors. This is the default operation if you specify no option that selects an operation
type explicitly.

• --check-only-changed, -C

Command-Line Format --check-only-changed

Check only tables that have changed since the last check.

• --extend-check, -e

Command-Line Format --extend-check

Check the table very thoroughly. This is quite slow if the table has many indexes. This option should only
be used in extreme cases. Normally, myisamchk or myisamchk --medium-check should be able to
determine whether there are any errors in the table.

If you are using --extend-check and have plenty of memory, setting the key_buffer_size variable
to a large value helps the repair operation run faster.

See also the description of this option under table repair options.

For a description of the output format, see Section 4.6.3.5, “Obtaining Table Information with
myisamchk”.

• --fast, -F

Command-Line Format --fast

584

myisamchk — MyISAM Table-Maintenance Utility

Check only tables that haven't been closed properly.

• --force, -f

Command-Line Format --force

Do a repair operation automatically if myisamchk finds any errors in the table. The repair type is the
same as that specified with the --recover or -r option.

• --information, -i

Command-Line Format --information

Print informational statistics about the table that is checked.

• --medium-check, -m

Command-Line Format --medium-check

Do a check that is faster than an --extend-check operation. This finds only 99.99% of all errors,
which should be good enough in most cases.

• --read-only, -T

Command-Line Format --read-only

Do not mark the table as checked. This is useful if you use myisamchk to check a table that is in use
by some other application that does not use locking, such as mysqld when run with external locking
disabled.

• --update-state, -U

Command-Line Format --update-state

Store information in the .MYI file to indicate when the table was checked and whether the table crashed.
This should be used to get full benefit of the --check-only-changed option, but you shouldn't use
this option if the mysqld server is using the table and you are running it with external locking disabled.

4.6.3.3 myisamchk Repair Options

myisamchk supports the following options for table repair operations (operations performed when an
option such as --recover or --safe-recover is given):

• --backup, -B

Command-Line Format --backup

Make a backup of the .MYD file as file_name-time.BAK

• --character-sets-dir=dir_name

585

myisamchk — MyISAM Table-Maintenance Utility

Command-Line Format --character-sets-dir=path

Type String

Default Value [none]

The directory where character sets are installed. See Section 10.15, “Character Set Configuration”.

• --correct-checksum

Command-Line Format --correct-checksum

Correct the checksum information for the table.

• --data-file-length=len, -D len

Command-Line Format --data-file-length=len

Type Numeric

The maximum length of the data file (when re-creating data file when it is “full”).

• --extend-check, -e

Command-Line Format --extend-check

Do a repair that tries to recover every possible row from the data file. Normally, this also finds a lot of
garbage rows. Do not use this option unless you are desperate.

See also the description of this option under table checking options.

For a description of the output format, see Section 4.6.3.5, “Obtaining Table Information with
myisamchk”.

• --force, -f

Command-Line Format --force

Overwrite old intermediate files (files with names like tbl_name.TMD) instead of aborting.

• --keys-used=val, -k val

Command-Line Format --keys-used=val

Type Numeric

For myisamchk, the option value is a bit value that indicates which indexes to update. Each binary bit of
the option value corresponds to a table index, where the first index is bit 0. An option value of 0 disables
updates to all indexes, which can be used to get faster inserts. Deactivated indexes can be reactivated
by using myisamchk -r.

• --max-record-length=len

586

myisamchk — MyISAM Table-Maintenance Utility

Command-Line Format --max-record-length=len

Type Numeric

Skip rows larger than the given length if myisamchk cannot allocate memory to hold them.

• --parallel-recover, -p

Command-Line Format --parallel-recover

Note

This option is deprecated in MySQL 5.7.38 and removed in MySQL 5.7.39.

Use the same technique as -r and -n, but create all the keys in parallel, using different threads. This is
beta-quality code. Use at your own risk!

• --quick, -q

Command-Line Format --quick

Achieve a faster repair by modifying only the index file, not the data file. You can specify this option twice
to force myisamchk to modify the original data file in case of duplicate keys.

• --recover, -r

Command-Line Format --recover

Do a repair that can fix almost any problem except unique keys that are not unique (which is an
extremely unlikely error with MyISAM tables). If you want to recover a table, this is the option to try first.
You should try --safe-recover only if myisamchk reports that the table cannot be recovered using
--recover. (In the unlikely case that --recover fails, the data file remains intact.)

If you have lots of memory, you should increase the value of myisam_sort_buffer_size.

• --safe-recover, -o

Command-Line Format --safe-recover

Do a repair using an old recovery method that reads through all rows in order and updates all index
trees based on the rows found. This is an order of magnitude slower than --recover, but can handle
a couple of very unlikely cases that --recover cannot. This recovery method also uses much less disk
space than --recover. Normally, you should repair first using --recover, and then with --safe-
recover only if --recover fails.

If you have lots of memory, you should increase the value of key_buffer_size.

• --set-collation=name

Command-Line Format --set-collation=name

587

myisamchk — MyISAM Table-Maintenance Utility

Type String

Specify the collation to use for sorting table indexes. The character set name is implied by the first part of
the collation name.

• --sort-recover, -n

Command-Line Format --sort-recover

Force myisamchk to use sorting to resolve the keys even if the temporary files would be very large.

• --tmpdir=dir_name, -t dir_name

Command-Line Format --tmpdir=dir_name

Type Directory name

The path of the directory to be used for storing temporary files. If this is not set, myisamchk uses the
value of the TMPDIR environment variable. --tmpdir can be set to a list of directory paths that are
used successively in round-robin fashion for creating temporary files. The separator character between
directory names is the colon (:) on Unix and the semicolon (;) on Windows.

• --unpack, -u

Command-Line Format --unpack

Unpack a table that was packed with myisampack.

4.6.3.4 Other myisamchk Options

myisamchk supports the following options for actions other than table checks and repairs:

• --analyze, -a

Command-Line Format --analyze

Analyze the distribution of key values. This improves join performance by enabling the join optimizer to
better choose the order in which to join the tables and which indexes it should use. To obtain information
about the key distribution, use a myisamchk --description --verbose tbl_name command or
the SHOW INDEX FROM tbl_name statement.

• --block-search=offset, -b offset

Command-Line Format --block-search=offset

Type Numeric

Find the record that a block at the given offset belongs to.

• --description, -d

Command-Line Format --description

588

myisamchk — MyISAM Table-Maintenance Utility

Print some descriptive information about the table. Specifying the --verbose option once or twice
produces additional information. See Section 4.6.3.5, “Obtaining Table Information with myisamchk”.

• --set-auto-increment[=value], -A[value]

Force AUTO_INCREMENT numbering for new records to start at the given value (or higher, if there are
existing records with AUTO_INCREMENT values this large). If value is not specified, AUTO_INCREMENT
numbers for new records begin with the largest value currently in the table, plus one.

• --sort-index, -S

Command-Line Format --sort-index

Sort the index tree blocks in high-low order. This optimizes seeks and makes table scans that use
indexes faster.

• --sort-records=N, -R N

Command-Line Format --sort-records=#

Type Numeric

Sort records according to a particular index. This makes your data much more localized and may speed
up range-based SELECT and ORDER BY operations that use this index. (The first time you use this
option to sort a table, it may be very slow.) To determine a table's index numbers, use SHOW INDEX,
which displays a table's indexes in the same order that myisamchk sees them. Indexes are numbered
beginning with 1.

If keys are not packed (PACK_KEYS=0), they have the same length, so when myisamchk sorts and
moves records, it just overwrites record offsets in the index. If keys are packed (PACK_KEYS=1),
myisamchk must unpack key blocks first, then re-create indexes and pack the key blocks again. (In this
case, re-creating indexes is faster than updating offsets for each index.)

4.6.3.5 Obtaining Table Information with myisamchk

To obtain a description of a MyISAM table or statistics about it, use the commands shown here. The output
from these commands is explained later in this section.

• myisamchk -d tbl_name

Runs myisamchk in “describe mode” to produce a description of your table. If you start the MySQL
server with external locking disabled, myisamchk may report an error for a table that is updated while
it runs. However, because myisamchk does not change the table in describe mode, there is no risk of
destroying data.

• myisamchk -dv tbl_name

Adding -v runs myisamchk in verbose mode so that it produces more information about the table.
Adding -v a second time produces even more information.

• myisamchk -eis tbl_name

Shows only the most important information from a table. This operation is slow because it must read the
entire table.

589

myisamchk — MyISAM Table-Maintenance Utility

• myisamchk -eiv tbl_name

This is like -eis, but tells you what is being done.

The tbl_name argument can be either the name of a MyISAM table or the name of its index file, as
described in Section 4.6.3, “myisamchk — MyISAM Table-Maintenance Utility”. Multiple tbl_name
arguments can be given.

Suppose that a table named person has the following structure. (The MAX_ROWS table option is included
so that in the example output from myisamchk shown later, some values are smaller and fit the output
format more easily.)

CREATE TABLE person
(
 id INT NOT NULL AUTO_INCREMENT,
 last_name VARCHAR(20) NOT NULL,
 first_name VARCHAR(20) NOT NULL,
 birth DATE,
 death DATE,
 PRIMARY KEY (id),
 INDEX (last_name, first_name),
 INDEX (birth)
) MAX_ROWS = 1000000 ENGINE=MYISAM;

Suppose also that the table has these data and index file sizes:

-rw-rw---- 1 mysql mysql 9347072 Aug 19 11:47 person.MYD
-rw-rw---- 1 mysql mysql 6066176 Aug 19 11:47 person.MYI

Example of myisamchk -dvv output:

MyISAM file: person
Record format: Packed
Character set: latin1_swedish_ci (8)
File-version: 1
Creation time: 2009-08-19 16:47:41
Recover time: 2009-08-19 16:47:56
Status: checked,analyzed,optimized keys
Auto increment key: 1 Last value: 306688
Data records: 306688 Deleted blocks: 0
Datafile parts: 306688 Deleted data: 0
Datafile pointer (bytes): 4 Keyfile pointer (bytes): 3
Datafile length: 9347072 Keyfile length: 6066176
Max datafile length: 4294967294 Max keyfile length: 17179868159
Recordlength: 54

table description:
Key Start Len Index Type Rec/key Root Blocksize
1 2 4 unique long 1 99328 1024
2 6 20 multip. varchar prefix 512 3563520 1024
 27 20 varchar 512
3 48 3 multip. uint24 NULL 306688 6065152 1024

Field Start Length Nullpos Nullbit Type
1 1 1
2 2 4 no zeros
3 6 21 varchar
4 27 21 varchar
5 48 3 1 1 no zeros
6 51 3 1 2 no zeros

Explanations for the types of information myisamchk produces are given here. “Keyfile” refers to the index
file. “Record” and “row” are synonymous, as are “field” and “column.”

The initial part of the table description contains these values:

590

myisamchk — MyISAM Table-Maintenance Utility

• MyISAM file

Name of the MyISAM (index) file.

• Record format

The format used to store table rows. The preceding examples use Fixed length. Other possible
values are Compressed and Packed. (Packed corresponds to what SHOW TABLE STATUS reports as
Dynamic.)

• Chararacter set

The table default character set.

• File-version

Version of MyISAM format. Always 1.

• Creation time

When the data file was created.

• Recover time

When the index/data file was last reconstructed.

• Status

Table status flags. Possible values are crashed, open, changed, analyzed, optimized keys, and
sorted index pages.

• Auto increment key, Last value

The key number associated the table's AUTO_INCREMENT column, and the most recently generated
value for this column. These fields do not appear if there is no such column.

• Data records

The number of rows in the table.

• Deleted blocks

How many deleted blocks still have reserved space. You can optimize your table to minimize this space.
See Section 7.6.4, “MyISAM Table Optimization”.

• Datafile parts

For dynamic-row format, this indicates how many data blocks there are. For an optimized table without
fragmented rows, this is the same as Data records.

• Deleted data

How many bytes of unreclaimed deleted data there are. You can optimize your table to minimize this
space. See Section 7.6.4, “MyISAM Table Optimization”.

• Datafile pointer

The size of the data file pointer, in bytes. It is usually 2, 3, 4, or 5 bytes. Most tables manage with 2
bytes, but this cannot be controlled from MySQL yet. For fixed tables, this is a row address. For dynamic
tables, this is a byte address.

591

myisamchk — MyISAM Table-Maintenance Utility

• Keyfile pointer

The size of the index file pointer, in bytes. It is usually 1, 2, or 3 bytes. Most tables manage with 2 bytes,
but this is calculated automatically by MySQL. It is always a block address.

• Max datafile length

How long the table data file can become, in bytes.

• Max keyfile length

How long the table index file can become, in bytes.

• Recordlength

How much space each row takes, in bytes.

The table description part of the output includes a list of all keys in the table. For each key,
myisamchk displays some low-level information:

• Key

This key's number. This value is shown only for the first column of the key. If this value is missing, the
line corresponds to the second or later column of a multiple-column key. For the table shown in the
example, there are two table description lines for the second index. This indicates that it is a
multiple-part index with two parts.

• Start

Where in the row this portion of the index starts.

• Len

How long this portion of the index is. For packed numbers, this should always be the full length of the
column. For strings, it may be shorter than the full length of the indexed column, because you can index
a prefix of a string column. The total length of a multiple-part key is the sum of the Len values for all key
parts.

• Index

Whether a key value can exist multiple times in the index. Possible values are unique or multip.
(multiple).

• Type

What data type this portion of the index has. This is a MyISAM data type with the possible values
packed, stripped, or empty.

• Root

Address of the root index block.

• Blocksize

The size of each index block. By default this is 1024, but the value may be changed at compile time
when MySQL is built from source.

• Rec/key

592

myisamchk — MyISAM Table-Maintenance Utility

This is a statistical value used by the optimizer. It tells how many rows there are per value for this index.
A unique index always has a value of 1. This may be updated after a table is loaded (or greatly changed)
with myisamchk -a. If this is not updated at all, a default value of 30 is given.

The last part of the output provides information about each column:

• Field

The column number.

• Start

The byte position of the column within table rows.

• Length

The length of the column in bytes.

• Nullpos, Nullbit

For columns that can be NULL, MyISAM stores NULL values as a flag in a byte. Depending on how
many nullable columns there are, there can be one or more bytes used for this purpose. The Nullpos
and Nullbit values, if nonempty, indicate which byte and bit contains that flag indicating whether the
column is NULL.

The position and number of bytes used to store NULL flags is shown in the line for field 1. This is why
there are six Field lines for the person table even though it has only five columns.

• Type

The data type. The value may contain any of the following descriptors:

• constant

All rows have the same value.

• no endspace

Do not store endspace.

• no endspace, not_always

Do not store endspace and do not do endspace compression for all values.

• no endspace, no empty

Do not store endspace. Do not store empty values.

• table-lookup

The column was converted to an ENUM.

• zerofill(N)

The most significant N bytes in the value are always 0 and are not stored.

• no zeros

593

myisamchk — MyISAM Table-Maintenance Utility

Do not store zeros.

• always zero

Zero values are stored using one bit.

• Huff tree

The number of the Huffman tree associated with the column.

• Bits

The number of bits used in the Huffman tree.

The Huff tree and Bits fields are displayed if the table has been compressed with myisampack. See
Section 4.6.5, “myisampack — Generate Compressed, Read-Only MyISAM Tables”, for an example of this
information.

Example of myisamchk -eiv output:

Checking MyISAM file: person
Data records: 306688 Deleted blocks: 0
- check file-size
- check record delete-chain
No recordlinks
- check key delete-chain
block_size 1024:
- check index reference
- check data record references index: 1
Key: 1: Keyblocks used: 98% Packed: 0% Max levels: 3
- check data record references index: 2
Key: 2: Keyblocks used: 99% Packed: 97% Max levels: 3
- check data record references index: 3
Key: 3: Keyblocks used: 98% Packed: -14% Max levels: 3
Total: Keyblocks used: 98% Packed: 89%

- check records and index references
*** LOTS OF ROW NUMBERS DELETED ***

Records: 306688 M.recordlength: 25 Packed: 83%
Recordspace used: 97% Empty space: 2% Blocks/Record: 1.00
Record blocks: 306688 Delete blocks: 0
Record data: 7934464 Deleted data: 0
Lost space: 256512 Linkdata: 1156096

User time 43.08, System time 1.68
Maximum resident set size 0, Integral resident set size 0
Non-physical pagefaults 0, Physical pagefaults 0, Swaps 0
Blocks in 0 out 7, Messages in 0 out 0, Signals 0
Voluntary context switches 0, Involuntary context switches 0
Maximum memory usage: 1046926 bytes (1023k)

myisamchk -eiv output includes the following information:

• Data records

The number of rows in the table.

• Deleted blocks

How many deleted blocks still have reserved space. You can optimize your table to minimize this space.
See Section 7.6.4, “MyISAM Table Optimization”.

594

myisamchk — MyISAM Table-Maintenance Utility

• Key

The key number.

• Keyblocks used

What percentage of the keyblocks are used. When a table has just been reorganized with myisamchk,
the values are very high (very near theoretical maximum).

• Packed

MySQL tries to pack key values that have a common suffix. This can only be used for indexes on CHAR
and VARCHAR columns. For long indexed strings that have similar leftmost parts, this can significantly
reduce the space used. In the preceding example, the second key is 40 bytes long and a 97% reduction
in space is achieved.

• Max levels

How deep the B-tree for this key is. Large tables with long key values get high values.

• Records

How many rows are in the table.

• M.recordlength

The average row length. This is the exact row length for tables with fixed-length rows, because all rows
have the same length.

• Packed

MySQL strips spaces from the end of strings. The Packed value indicates the percentage of savings
achieved by doing this.

• Recordspace used

What percentage of the data file is used.

• Empty space

What percentage of the data file is unused.

• Blocks/Record

Average number of blocks per row (that is, how many links a fragmented row is composed of). This is
always 1.0 for fixed-format tables. This value should stay as close to 1.0 as possible. If it gets too large,
you can reorganize the table. See Section 7.6.4, “MyISAM Table Optimization”.

• Recordblocks

How many blocks (links) are used. For fixed-format tables, this is the same as the number of rows.

• Deleteblocks

How many blocks (links) are deleted.

• Recorddata

How many bytes in the data file are used.

595

myisamlog — Display MyISAM Log File Contents

• Deleted data

How many bytes in the data file are deleted (unused).

• Lost space

If a row is updated to a shorter length, some space is lost. This is the sum of all such losses, in bytes.

• Linkdata

When the dynamic table format is used, row fragments are linked with pointers (4 to 7 bytes each).
Linkdata is the sum of the amount of storage used by all such pointers.

4.6.3.6 myisamchk Memory Usage

Memory allocation is important when you run myisamchk. myisamchk uses no more memory than its
memory-related variables are set to. If you are going to use myisamchk on very large tables, you should
first decide how much memory you want it to use. The default is to use only about 3MB to perform repairs.
By using larger values, you can get myisamchk to operate faster. For example, if you have more than
512MB RAM available, you could use options such as these (in addition to any other options you might
specify):

myisamchk --myisam_sort_buffer_size=256M \
 --key_buffer_size=512M \
 --read_buffer_size=64M \
 --write_buffer_size=64M ...

Using --myisam_sort_buffer_size=16M is probably enough for most cases.

Be aware that myisamchk uses temporary files in TMPDIR. If TMPDIR points to a memory file system, out
of memory errors can easily occur. If this happens, run myisamchk with the --tmpdir=dir_name option
to specify a directory located on a file system that has more space.

When performing repair operations, myisamchk also needs a lot of disk space:

• Twice the size of the data file (the original file and a copy). This space is not needed if you do a repair
with --quick; in this case, only the index file is re-created. This space must be available on the same
file system as the original data file, as the copy is created in the same directory as the original.

• Space for the new index file that replaces the old one. The old index file is truncated at the start of the
repair operation, so you usually ignore this space. This space must be available on the same file system
as the original data file.

• When using --recover or --sort-recover (but not when using --safe-recover), you need
space on disk for sorting. This space is allocated in the temporary directory (specified by TMPDIR or --
tmpdir=dir_name). The following formula yields the amount of space required:

(largest_key + row_pointer_length) * number_of_rows * 2

You can check the length of the keys and the row_pointer_length with myisamchk -
dv tbl_name (see Section 4.6.3.5, “Obtaining Table Information with myisamchk”). The
row_pointer_length and number_of_rows values are the Datafile pointer and Data
records values in the table description. To determine the largest_key value, check the Key lines in
the table description. The Len column indicates the number of bytes for each key part. For a multiple-
column index, the key size is the sum of the Len values for all key parts.

If you have a problem with disk space during repair, you can try --safe-recover instead of --recover.

4.6.4 myisamlog — Display MyISAM Log File Contents

596

myisamlog — Display MyISAM Log File Contents

myisamlog processes the contents of a MyISAM log file. To create such a file, start the server with a --
log-isam=log_file option.

Invoke myisamlog like this:

myisamlog [options] [file_name [tbl_name] ...]

The default operation is update (-u). If a recovery is done (-r), all writes and possibly updates and deletes
are done and errors are only counted. The default log file name is myisam.log if no log_file argument
is given. If tables are named on the command line, only those tables are updated.

myisamlog supports the following options:

• -?, -I

Display a help message and exit.

• -c N

Execute only N commands.

• -f N

Specify the maximum number of open files.

• -F filepath/

Specify the file path with a trailing slash.

• -i

Display extra information before exiting.

• -o offset

Specify the starting offset.

• -p N

Remove N components from path.

• -r

Perform a recovery operation.

• -R record_pos_file record_pos

Specify record position file and record position.

• -u

Perform an update operation.

• -v

Verbose mode. Print more output about what the program does. This option can be given multiple times
to produce more and more output.

• -w write_file

Specify the write file.

597

myisampack — Generate Compressed, Read-Only MyISAM Tables

• -V

Display version information.

4.6.5 myisampack — Generate Compressed, Read-Only MyISAM Tables

The myisampack utility compresses MyISAM tables. myisampack works by compressing each column in
the table separately. Usually, myisampack packs the data file 40% to 70%.

When the table is used later, the server reads into memory the information needed to decompress
columns. This results in much better performance when accessing individual rows, because you only have
to uncompress exactly one row.

MySQL uses mmap() when possible to perform memory mapping on compressed tables. If mmap() does
not work, MySQL falls back to normal read/write file operations.

Please note the following:

• If the mysqld server was invoked with external locking disabled, it is not a good idea to invoke
myisampack if the table might be updated by the server during the packing process. It is safest to
compress tables with the server stopped.

• After packing a table, it becomes read only. This is generally intended (such as when accessing packed
tables on a CD).

• myisampack does not support partitioned tables.

Invoke myisampack like this:

myisampack [options] file_name ...

Each file name argument should be the name of an index (.MYI) file. If you are not in the database
directory, you should specify the path name to the file. It is permissible to omit the .MYI extension.

After you compress a table with myisampack, use myisamchk -rq to rebuild its indexes. Section 4.6.3,
“myisamchk — MyISAM Table-Maintenance Utility”.

myisampack supports the following options. It also reads option files and supports the options for
processing them described at Section 4.2.2.3, “Command-Line Options that Affect Option-File Handling”.

• --help, -?

Command-Line Format --help

Display a help message and exit.

• --backup, -b

Command-Line Format --backup

Make a backup of each table's data file using the name tbl_name.OLD.

• --character-sets-dir=dir_name

Command-Line Format --character-sets-dir=dir_name

Type Directory name

598

myisampack — Generate Compressed, Read-Only MyISAM Tables

The directory where character sets are installed. See Section 10.15, “Character Set Configuration”.

• --debug[=debug_options], -# [debug_options]

Command-Line Format --debug[=debug_options]

Type String

Default Value d:t:o

Write a debugging log. A typical debug_options string is d:t:o,file_name. The default is d:t:o.

This option is available only if MySQL was built using WITH_DEBUG. MySQL release binaries provided
by Oracle are not built using this option.

• --force, -f

Command-Line Format --force

Produce a packed table even if it becomes larger than the original or if the intermediate file from
an earlier invocation of myisampack exists. (myisampack creates an intermediate file named
tbl_name.TMD in the database directory while it compresses the table. If you kill myisampack, the
.TMD file might not be deleted.) Normally, myisampack exits with an error if it finds that tbl_name.TMD
exists. With --force, myisampack packs the table anyway.

• --join=big_tbl_name, -j big_tbl_name

Command-Line Format --join=big_tbl_name

Type String

Join all tables named on the command line into a single packed table big_tbl_name. All tables that are
to be combined must have identical structure (same column names and types, same indexes, and so
forth).

big_tbl_name must not exist prior to the join operation. All source tables named on the command line
to be merged into big_tbl_name must exist. The source tables are read for the join operation but not
modified.

• --silent, -s

Command-Line Format --silent

Silent mode. Write output only when errors occur.

• --test, -t

Command-Line Format --test

Do not actually pack the table, just test packing it.

• --tmpdir=dir_name, -T dir_name

599

myisampack — Generate Compressed, Read-Only MyISAM Tables

Command-Line Format --tmpdir=dir_name

Type Directory name

Use the named directory as the location where myisampack creates temporary files.

• --verbose, -v

Command-Line Format --verbose

Verbose mode. Write information about the progress of the packing operation and its result.

• --version, -V

Command-Line Format --version

Display version information and exit.

• --wait, -w

Command-Line Format --wait

Wait and retry if the table is in use. If the mysqld server was invoked with external locking disabled, it
is not a good idea to invoke myisampack if the table might be updated by the server during the packing
process.

The following sequence of commands illustrates a typical table compression session:

$> ls -l station.*
-rw-rw-r-- 1 jones my 994128 Apr 17 19:00 station.MYD
-rw-rw-r-- 1 jones my 53248 Apr 17 19:00 station.MYI
-rw-rw-r-- 1 jones my 5767 Apr 17 19:00 station.frm

$> myisamchk -dvv station

MyISAM file: station
Isam-version: 2
Creation time: 1996-03-13 10:08:58
Recover time: 1997-02-02 3:06:43
Data records: 1192 Deleted blocks: 0
Datafile parts: 1192 Deleted data: 0
Datafile pointer (bytes): 2 Keyfile pointer (bytes): 2
Max datafile length: 54657023 Max keyfile length: 33554431
Recordlength: 834
Record format: Fixed length

table description:
Key Start Len Index Type Root Blocksize Rec/key
1 2 4 unique unsigned long 1024 1024 1
2 32 30 multip. text 10240 1024 1

Field Start Length Type
1 1 1
2 2 4
3 6 4
4 10 1

600

myisampack — Generate Compressed, Read-Only MyISAM Tables

5 11 20
6 31 1
7 32 30
8 62 35
9 97 35
10 132 35
11 167 4
12 171 16
13 187 35
14 222 4
15 226 16
16 242 20
17 262 20
18 282 20
19 302 30
20 332 4
21 336 4
22 340 1
23 341 8
24 349 8
25 357 8
26 365 2
27 367 2
28 369 4
29 373 4
30 377 1
31 378 2
32 380 8
33 388 4
34 392 4
35 396 4
36 400 4
37 404 1
38 405 4
39 409 4
40 413 4
41 417 4
42 421 4
43 425 4
44 429 20
45 449 30
46 479 1
47 480 1
48 481 79
49 560 79
50 639 79
51 718 79
52 797 8
53 805 1
54 806 1
55 807 20
56 827 4
57 831 4

$> myisampack station.MYI
Compressing station.MYI: (1192 records)
- Calculating statistics

normal: 20 empty-space: 16 empty-zero: 12 empty-fill: 11
pre-space: 0 end-space: 12 table-lookups: 5 zero: 7
Original trees: 57 After join: 17
- Compressing file
87.14%
Remember to run myisamchk -rq on compressed tables

$> myisamchk -rq station
- check record delete-chain

601

myisampack — Generate Compressed, Read-Only MyISAM Tables

- recovering (with sort) MyISAM-table 'station'
Data records: 1192
- Fixing index 1
- Fixing index 2

$> mysqladmin -uroot flush-tables

$> ls -l station.*
-rw-rw-r-- 1 jones my 127874 Apr 17 19:00 station.MYD
-rw-rw-r-- 1 jones my 55296 Apr 17 19:04 station.MYI
-rw-rw-r-- 1 jones my 5767 Apr 17 19:00 station.frm

$> myisamchk -dvv station

MyISAM file: station
Isam-version: 2
Creation time: 1996-03-13 10:08:58
Recover time: 1997-04-17 19:04:26
Data records: 1192 Deleted blocks: 0
Datafile parts: 1192 Deleted data: 0
Datafile pointer (bytes): 3 Keyfile pointer (bytes): 1
Max datafile length: 16777215 Max keyfile length: 131071
Recordlength: 834
Record format: Compressed

table description:
Key Start Len Index Type Root Blocksize Rec/key
1 2 4 unique unsigned long 10240 1024 1
2 32 30 multip. text 54272 1024 1

Field Start Length Type Huff tree Bits
1 1 1 constant 1 0
2 2 4 zerofill(1) 2 9
3 6 4 no zeros, zerofill(1) 2 9
4 10 1 3 9
5 11 20 table-lookup 4 0
6 31 1 3 9
7 32 30 no endspace, not_always 5 9
8 62 35 no endspace, not_always, no empty 6 9
9 97 35 no empty 7 9
10 132 35 no endspace, not_always, no empty 6 9
11 167 4 zerofill(1) 2 9
12 171 16 no endspace, not_always, no empty 5 9
13 187 35 no endspace, not_always, no empty 6 9
14 222 4 zerofill(1) 2 9
15 226 16 no endspace, not_always, no empty 5 9
16 242 20 no endspace, not_always 8 9
17 262 20 no endspace, no empty 8 9
18 282 20 no endspace, no empty 5 9
19 302 30 no endspace, no empty 6 9
20 332 4 always zero 2 9
21 336 4 always zero 2 9
22 340 1 3 9
23 341 8 table-lookup 9 0
24 349 8 table-lookup 10 0
25 357 8 always zero 2 9
26 365 2 2 9
27 367 2 no zeros, zerofill(1) 2 9
28 369 4 no zeros, zerofill(1) 2 9
29 373 4 table-lookup 11 0
30 377 1 3 9
31 378 2 no zeros, zerofill(1) 2 9
32 380 8 no zeros 2 9
33 388 4 always zero 2 9
34 392 4 table-lookup 12 0
35 396 4 no zeros, zerofill(1) 13 9
36 400 4 no zeros, zerofill(1) 2 9

602

myisampack — Generate Compressed, Read-Only MyISAM Tables

37 404 1 2 9
38 405 4 no zeros 2 9
39 409 4 always zero 2 9
40 413 4 no zeros 2 9
41 417 4 always zero 2 9
42 421 4 no zeros 2 9
43 425 4 always zero 2 9
44 429 20 no empty 3 9
45 449 30 no empty 3 9
46 479 1 14 4
47 480 1 14 4
48 481 79 no endspace, no empty 15 9
49 560 79 no empty 2 9
50 639 79 no empty 2 9
51 718 79 no endspace 16 9
52 797 8 no empty 2 9
53 805 1 17 1
54 806 1 3 9
55 807 20 no empty 3 9
56 827 4 no zeros, zerofill(2) 2 9
57 831 4 no zeros, zerofill(1) 2 9

myisampack displays the following kinds of information:

• normal

The number of columns for which no extra packing is used.

• empty-space

The number of columns containing values that are only spaces. These occupy one bit.

• empty-zero

The number of columns containing values that are only binary zeros. These occupy one bit.

• empty-fill

The number of integer columns that do not occupy the full byte range of their type. These are changed to
a smaller type. For example, a BIGINT column (eight bytes) can be stored as a TINYINT column (one
byte) if all its values are in the range from -128 to 127.

• pre-space

The number of decimal columns that are stored with leading spaces. In this case, each value contains a
count for the number of leading spaces.

• end-space

The number of columns that have a lot of trailing spaces. In this case, each value contains a count for
the number of trailing spaces.

• table-lookup

The column had only a small number of different values, which were converted to an ENUM before
Huffman compression.

• zero

The number of columns for which all values are zero.

• Original trees

603

myisampack — Generate Compressed, Read-Only MyISAM Tables

The initial number of Huffman trees.

• After join

The number of distinct Huffman trees left after joining trees to save some header space.

After a table has been compressed, the Field lines displayed by myisamchk -dvv include additional
information about each column:

• Type

The data type. The value may contain any of the following descriptors:

• constant

All rows have the same value.

• no endspace

Do not store endspace.

• no endspace, not_always

Do not store endspace and do not do endspace compression for all values.

• no endspace, no empty

Do not store endspace. Do not store empty values.

• table-lookup

The column was converted to an ENUM.

• zerofill(N)

The most significant N bytes in the value are always 0 and are not stored.

• no zeros

Do not store zeros.

• always zero

Zero values are stored using one bit.

• Huff tree

The number of the Huffman tree associated with the column.

• Bits

The number of bits used in the Huffman tree.

After you run myisampack, use myisamchk to re-create any indexes. At this time, you can also sort the
index blocks and create statistics needed for the MySQL optimizer to work more efficiently:

myisamchk -rq --sort-index --analyze tbl_name.MYI

604

mysql_config_editor — MySQL Configuration Utility

After you have installed the packed table into the MySQL database directory, you should execute
mysqladmin flush-tables to force mysqld to start using the new table.

To unpack a packed table, use the --unpack option to myisamchk.

4.6.6 mysql_config_editor — MySQL Configuration Utility

The mysql_config_editor utility enables you to store authentication credentials in an obfuscated login
path file named .mylogin.cnf. The file location is the %APPDATA%\MySQL directory on Windows and
the current user's home directory on non-Windows systems. The file can be read later by MySQL client
programs to obtain authentication credentials for connecting to MySQL Server.

The unobfuscated format of the .mylogin.cnf login path file consists of option groups, similar to other
option files. Each option group in .mylogin.cnf is called a “login path,” which is a group that permits only
certain options: host, user, password, port and socket. Think of a login path option group as a set of
options that specify which MySQL server to connect to and which account to authenticate as. Here is an
unobfuscated example:

[client]
user = mydefaultname
password = mydefaultpass
host = 127.0.0.1
[mypath]
user = myothername
password = myotherpass
host = localhost

When you invoke a client program to connect to the server, the client uses .mylogin.cnf in conjunction
with other option files. Its precedence is higher than other option files, but less than options specified
explicitly on the client command line. For information about the order in which option files are used, see
Section 4.2.2.2, “Using Option Files”.

To specify an alternate login path file name, set the MYSQL_TEST_LOGIN_FILE environment
variable. This variable is recognized by mysql_config_editor, by standard MySQL clients (mysql,
mysqladmin, and so forth), and by the mysql-test-run.pl testing utility.

Programs use groups in the login path file as follows:

• mysql_config_editor operates on the client login path by default if you specify no --login-
path=name option to indicate explicitly which login path to use.

• Without a --login-path option, client programs read the same option groups from the login path file
that they read from other option files. Consider this command:

mysql

By default, the mysql client reads the [client] and [mysql] groups from other option files, so it
reads them from the login path file as well.

• With a --login-path option, client programs additionally read the named login path from the login
path file. The option groups read from other option files remain the same. Consider this command:

mysql --login-path=mypath

The mysql client reads [client] and [mysql] from other option files, and [client], [mysql], and
[mypath] from the login path file.

• Client programs read the login path file even when the --no-defaults option is used, unless --no-
login-paths is set. This permits passwords to be specified in a safer way than on the command line
even if --no-defaults is present.

605

https://dev.mysql.com/doc/refman/8.4/en/option-file-options.html#option_general_no-login-paths
https://dev.mysql.com/doc/refman/8.4/en/option-file-options.html#option_general_no-login-paths

mysql_config_editor — MySQL Configuration Utility

mysql_config_editor obfuscates the .mylogin.cnf file so it cannot be read as cleartext, and its
contents when unobfuscated by client programs are used only in memory. In this way, passwords can be
stored in a file in non-cleartext format and used later without ever needing to be exposed on the command
line or in an environment variable. mysql_config_editor provides a print command for displaying the
login path file contents, but even in this case, password values are masked so as never to appear in a way
that other users can see them.

The obfuscation used by mysql_config_editor prevents passwords from appearing in .mylogin.cnf
as cleartext and provides a measure of security by preventing inadvertent password exposure. For
example, if you display a regular unobfuscated my.cnf option file on the screen, any passwords it contains
are visible for anyone to see. With .mylogin.cnf, that is not true, but the obfuscation used is not likely
to deter a determined attacker and you should not consider it unbreakable. A user who can gain system
administration privileges on your machine to access your files could unobfuscate the .mylogin.cnf file
with some effort.

The login path file must be readable and writable to the current user, and inaccessible to other users.
Otherwise, mysql_config_editor ignores it, and client programs do not use it, either.

Invoke mysql_config_editor like this:

mysql_config_editor [program_options] command [command_options]

If the login path file does not exist, mysql_config_editor creates it.

Command arguments are given as follows:

• program_options consists of general mysql_config_editor options.

• command indicates what action to perform on the .mylogin.cnf login path file. For example, set
writes a login path to the file, remove removes a login path, and print displays login path contents.

• command_options indicates any additional options specific to the command, such as the login path
name and the values to use in the login path.

The position of the command name within the set of program arguments is significant. For example, these
command lines have the same arguments, but produce different results:

mysql_config_editor --help set
mysql_config_editor set --help

The first command line displays a general mysql_config_editor help message, and ignores the set
command. The second command line displays a help message specific to the set command.

Suppose that you want to establish a client login path that defines your default connection
parameters, and an additional login path named remote for connecting to the MySQL server the host
remote.example.com. You want to log in as follows:

• By default, to the local server with a user name and password of localuser and localpass

• To the remote server with a user name and password of remoteuser and remotepass

To set up the login paths in the .mylogin.cnf file, use the following set commands. Enter each
command on a single line, and enter the appropriate passwords when prompted:

$> mysql_config_editor set --login-path=client
 --host=localhost --user=localuser --password
Enter password: enter password "localpass" here
$> mysql_config_editor set --login-path=remote
 --host=remote.example.com --user=remoteuser --password
Enter password: enter password "remotepass" here

606

mysql_config_editor — MySQL Configuration Utility

mysql_config_editor uses the client login path by default, so the --login-path=client option
can be omitted from the first command without changing its effect.

To see what mysql_config_editor writes to the .mylogin.cnf file, use the print command:

$> mysql_config_editor print --all
[client]
user = localuser
password = *****
host = localhost
[remote]
user = remoteuser
password = *****
host = remote.example.com

The print command displays each login path as a set of lines beginning with a group header indicating
the login path name in square brackets, followed by the option values for the login path. Password values
are masked and do not appear as cleartext.

If you do not specify --all to display all login paths or --login-path=name to display a named login
path, the print command displays the client login path by default, if there is one.

As shown by the preceding example, the login path file can contain multiple login paths. In this way,
mysql_config_editor makes it easy to set up multiple “personalities” for connecting to different MySQL
servers, or for connecting to a given server using different accounts. Any of these can be selected by name
later using the --login-path option when you invoke a client program. For example, to connect to the
remote server, use this command:

mysql --login-path=remote

Here, mysql reads the [client] and [mysql] option groups from other option files, and the [client],
[mysql], and [remote] groups from the login path file.

To connect to the local server, use this command:

mysql --login-path=client

Because mysql reads the client and mysql login paths by default, the --login-path option does not
add anything in this case. That command is equivalent to this one:

mysql

Options read from the login path file take precedence over options read from other option files. Options
read from login path groups appearing later in the login path file take precedence over options read from
groups appearing earlier in the file.

mysql_config_editor adds login paths to the login path file in the order you create them, so you
should create more general login paths first and more specific paths later. If you need to move a login path
within the file, you can remove it, then recreate it to add it to the end. For example, a client login path
is more general because it is read by all client programs, whereas a mysqldump login path is read only
by mysqldump. Options specified later override options specified earlier, so putting the login paths in the
order client, mysqldump enables mysqldump-specific options to override client options.

When you use the set command with mysql_config_editor to create a login path, you need not
specify all possible option values (host name, user name, password, port, socket). Only those values given
are written to the path. Any missing values required later can be specified when you invoke a client path
to connect to the MySQL server, either in other option files or on the command line. Any options specified
on the command line override those specified in the login path file or other option files. For example, if
the credentials in the remote login path also apply for the host remote2.example.com, connect to the
server on that host like this:

607

mysql_config_editor — MySQL Configuration Utility

mysql --login-path=remote --host=remote2.example.com

mysql_config_editor General Options

mysql_config_editor supports the following general options, which may be used preceding
any command named on the command line. For descriptions of command-specific options, see
mysql_config_editor Commands and Command-Specific Options.

Table 4.22 mysql_config_editor General Options

Option Name Description

--debug Write debugging log

--help Display help message and exit

--verbose Verbose mode

--version Display version information and exit

• --help, -?

Command-Line Format --help

Display a general help message and exit.

To see a command-specific help message, invoke mysql_config_editor as follows, where command
is a command other than help:

mysql_config_editor command --help

• --debug[=debug_options], -# debug_options

Command-Line Format --debug[=debug_options]

Type String

Default Value d:t:o

Write a debugging log. A typical debug_options string is d:t:o,file_name. The default is d:t:o,/
tmp/mysql_config_editor.trace.

This option is available only if MySQL was built using WITH_DEBUG. MySQL release binaries provided
by Oracle are not built using this option.

• --verbose, -v

Command-Line Format --verbose

Verbose mode. Print more information about what the program does. This option may be helpful in
diagnosing problems if an operation does not have the effect you expect.

• --version, -V

Command-Line Format --version

Display version information and exit.

608

mysql_config_editor — MySQL Configuration Utility

mysql_config_editor Commands and Command-Specific Options

This section describes the permitted mysql_config_editor commands, and, for each one, the
command-specific options permitted following the command name on the command line.

In addition, mysql_config_editor supports general options that can be used preceding any command.
For descriptions of these options, see mysql_config_editor General Options.

mysql_config_editor supports these commands:

• help

Display a general help message and exit. This command takes no following options.

To see a command-specific help message, invoke mysql_config_editor as follows, where command
is a command other than help:

mysql_config_editor command --help

• print [options]

Print the contents of the login path file in unobfuscated form, with the exception that passwords are
displayed as *****.

The default login path name is client if no login path is named. If both --all and --login-path are
given, --all takes precedence.

The print command permits these options following the command name:

• --help, -?

Display a help message for the print command and exit.

To see a general help message, use mysql_config_editor --help.

• --all

Print the contents of all login paths in the login path file.

• --login-path=name, -G name

Print the contents of the named login path.

• remove [options]

Remove a login path from the login path file, or modify a login path by removing options from it.

This command removes from the login path only such options as are specified with the --host, --
password, --port, --socket, and --user options. If none of those options are given, remove
removes the entire login path. For example, this command removes only the user option from the
mypath login path rather than the entire mypath login path:

mysql_config_editor remove --login-path=mypath --user

This command removes the entire mypath login path:

mysql_config_editor remove --login-path=mypath

The remove command permits these options following the command name:

609

mysql_config_editor — MySQL Configuration Utility

• --help, -?

Display a help message for the remove command and exit.

To see a general help message, use mysql_config_editor --help.

• --host, -h

Remove the host name from the login path.

• --login-path=name, -G name

The login path to remove or modify. The default login path name is client if this option is not given.

• --password, -p

Remove the password from the login path.

• --port, -P

Remove the TCP/IP port number from the login path.

• --socket, -S

Remove the Unix socket file name from the login path.

• --user, -u

Remove the user name from the login path.

• --warn, -w

Warn and prompt the user for confirmation if the command attempts to remove the default login path
(client) and --login-path=client was not specified. This option is enabled by default; use --
skip-warn to disable it.

• reset [options]

Empty the contents of the login path file.

The reset command permits these options following the command name:

• --help, -?

Display a help message for the reset command and exit.

To see a general help message, use mysql_config_editor --help.

610

mysqlbinlog — Utility for Processing Binary Log Files

• set [options]

Write a login path to the login path file.

This command writes to the login path only such options as are specified with the --host,
--password, --port, --socket, and --user options. If none of those options are given,
mysql_config_editor writes the login path as an empty group.

The set command permits these options following the command name:

• --help, -?

Display a help message for the set command and exit.

To see a general help message, use mysql_config_editor --help.

• --host=host_name, -h host_name

The host name to write to the login path.

• --login-path=name, -G name

The login path to create. The default login path name is client if this option is not given.

• --password, -p

Prompt for a password to write to the login path. After mysql_config_editor displays the
prompt, type the password and press Enter. To prevent other users from seeing the password,
mysql_config_editor does not echo it.

To specify an empty password, press Enter at the password prompt. The resulting login path written to
the login path file includes a line like this:

password =

• --port=port_num, -P port_num

The TCP/IP port number to write to the login path.

• --socket=file_name, -S file_name

The Unix socket file name to write to the login path.

• --user=user_name, -u user_name

The user name to write to the login path.

• --warn, -w

Warn and prompt the user for confirmation if the command attempts to overwrite an existing login
path. This option is enabled by default; use --skip-warn to disable it.

4.6.7 mysqlbinlog — Utility for Processing Binary Log Files

The server's binary log consists of files containing “events” that describe modifications to database
contents. The server writes these files in binary format. To display their contents in text format, use the
mysqlbinlog utility. You can also use mysqlbinlog to display the contents of relay log files written by a
replica server in a replication setup because relay logs have the same format as binary logs. The binary log

611

mysqlbinlog — Utility for Processing Binary Log Files

and relay log are discussed further in Section 5.4.4, “The Binary Log”, and Section 16.2.4, “Relay Log and
Replication Metadata Repositories”.

Invoke mysqlbinlog like this:

mysqlbinlog [options] log_file ...

For example, to display the contents of the binary log file named binlog.000003, use this command:

mysqlbinlog binlog.000003

The output includes events contained in binlog.000003. For statement-based logging, event information
includes the SQL statement, the ID of the server on which it was executed, the timestamp when the
statement was executed, how much time it took, and so forth. For row-based logging, the event indicates
a row change rather than an SQL statement. See Section 16.2.1, “Replication Formats”, for information
about logging modes.

Events are preceded by header comments that provide additional information. For example:

at 141
#100309 9:28:36 server id 123 end_log_pos 245
 Query thread_id=3350 exec_time=11 error_code=0

In the first line, the number following at indicates the file offset, or starting position, of the event in the
binary log file.

The second line starts with a date and time indicating when the statement started on the server where
the event originated. For replication, this timestamp is propagated to replica servers. server id is the
server_id value of the server where the event originated. end_log_pos indicates where the next event
starts (that is, it is the end position of the current event + 1). thread_id indicates which thread executed
the event. exec_time is the time spent executing the event, on a replication source server. On a replica, it
is the difference of the end execution time on the replica minus the beginning execution time on the source.
The difference serves as an indicator of how much replication lags behind the source. error_code
indicates the result from executing the event. Zero means that no error occurred.

Note

When using event groups, the file offsets of events may be grouped together and
the comments of events may be grouped together. Do not mistake these grouped
events for blank file offsets.

The output from mysqlbinlog can be re-executed (for example, by using it as input to mysql) to redo
the statements in the log. This is useful for recovery operations after an unexpected server exit. For other
usage examples, see the discussion later in this section and in Section 7.5, “Point-in-Time (Incremental)
Recovery”.

You can use mysqlbinlog to read binary log files directly and apply them to the local MySQL server. You
can also read binary logs from a remote server by using the --read-from-remote-server option. To
read remote binary logs, the connection parameter options can be given to indicate how to connect to the
server. These options are --host, --password, --port, --protocol, --socket, and --user.

When running mysqlbinlog against a large binary log, be careful that the filesystem has enough space
for the resulting files. To configure the directory that mysqlbinlog uses for temporary files, use the
TMPDIR environment variable.

mysqlbinlog sets the value of pseudo_slave_mode to true before executing any SQL statements. This
system variable affects the handling of XA transactions.

612

mysqlbinlog — Utility for Processing Binary Log Files

mysqlbinlog supports the following options, which can be specified on the command line or in the
[mysqlbinlog] and [client] groups of an option file. For information about option files used by
MySQL programs, see Section 4.2.2.2, “Using Option Files”.

Table 4.23 mysqlbinlog Options

Option Name Description Introduced Deprecated

--base64-output Print binary log entries
using base-64 encoding

--bind-address Use specified network
interface to connect to
MySQL Server

--binlog-row-event-max-
size

Binary log max event size

--character-sets-dir Directory where
character sets are
installed

--connection-server-id Used for testing and
debugging. See text for
applicable default values
and other particulars

--database List entries for just this
database

--debug Write debugging log

--debug-check Print debugging
information when
program exits

--debug-info Print debugging
information, memory,
and CPU statistics when
program exits

--default-auth Authentication plugin to
use

--defaults-extra-file Read named option file in
addition to usual option
files

--defaults-file Read only named option
file

--defaults-group-suffix Option group suffix value

--disable-log-bin Disable binary logging

--exclude-gtids Do not show any of the
groups in the GTID set
provided

--force-if-open Read binary log files
even if open or not
closed properly

--force-read If mysqlbinlog reads a
binary log event that it

613

mysqlbinlog — Utility for Processing Binary Log Files

Option Name Description Introduced Deprecated
does not recognize, it
prints a warning

--get-server-public-key Request RSA public key
from server

5.7.23

--help Display help message
and exit

--hexdump Display a hex dump of
the log in comments

--host Host on which MySQL
server is located

--idempotent Cause the server to use
idempotent mode while
processing binary log
updates from this session
only

--include-gtids Show only the groups in
the GTID set provided

--local-load Prepare local temporary
files for LOAD DATA in
the specified directory

--login-path Read login path options
from .mylogin.cnf

--no-defaults Read no option files

--offset Skip the first N entries in
the log

--open-files-limit Specify the number of
open file descriptors to
reserve

--password Password to use when
connecting to server

--plugin-dir Directory where plugins
are installed

--port TCP/IP port number for
connection

--print-defaults Print default options

--protocol Transport protocol to use

--raw Write events in raw
(binary) format to output
files

--read-from-remote-
master

Read the binary log from
a MySQL replication
source server rather than
reading a local log file

614

mysqlbinlog — Utility for Processing Binary Log Files

Option Name Description Introduced Deprecated

--read-from-remote-
server

Read binary log from
MySQL server rather
than local log file

--result-file Direct output to named
file

--rewrite-db Create rewrite rules for
databases when playing
back from logs written in
row-based format. Can
be used multiple times

--secure-auth Do not send passwords
to server in old (pre-4.1)
format

Yes

--server-id Extract only those events
created by the server
having the given server
ID

--server-id-bits Tell mysqlbinlog how
to interpret server IDs
in binary log when log
was written by a mysqld
having its server-id-
bits set to less than the
maximum; supported
only by MySQL Cluster
version of mysqlbinlog

--server-public-key-path Path name to file
containing RSA public
key

5.7.23

--set-charset Add a SET NAMES
charset_name statement
to the output

--shared-memory-base-
name

Shared-memory name
for shared-memory
connections (Windows
only)

--short-form Display only the
statements contained in
the log

--skip-gtids Do not include the GTIDs
from the binary log files in
the output dump file

--socket Unix socket file or
Windows named pipe to
use

--ssl Enable connection
encryption

615

mysqlbinlog — Utility for Processing Binary Log Files

Option Name Description Introduced Deprecated

--ssl-ca File that contains list of
trusted SSL Certificate
Authorities

--ssl-capath Directory that contains
trusted SSL Certificate
Authority certificate files

--ssl-cert File that contains X.509
certificate

--ssl-cipher Permissible ciphers for
connection encryption

--ssl-crl File that contains
certificate revocation lists

--ssl-crlpath Directory that contains
certificate revocation-list
files

--ssl-key File that contains X.509
key

--ssl-mode Desired security state of
connection to server

5.7.11

--ssl-verify-server-cert Verify host name
against server certificate
Common Name identity

--start-datetime Read binary log from first
event with timestamp
equal to or later than
datetime argument

--start-position Decode binary log from
first event with position
equal to or greater than
argument

--stop-datetime Stop reading binary log at
first event with timestamp
equal to or greater than
datetime argument

--stop-never Stay connected to server
after reading last binary
log file

--stop-never-slave-
server-id

Slave server ID to report
when connecting to
server

--stop-position Stop decoding binary log
at first event with position
equal to or greater than
argument

616

mysqlbinlog — Utility for Processing Binary Log Files

Option Name Description Introduced Deprecated

--tls-version Permissible TLS
protocols for encrypted
connections

5.7.10

--to-last-log Do not stop at the end of
requested binary log from
a MySQL server, but
rather continue printing to
end of last binary log

--user MySQL user name to
use when connecting to
server

--verbose Reconstruct row events
as SQL statements

--verify-binlog-checksum Verify checksums in
binary log

--version Display version
information and exit

• --help, -?

Command-Line Format --help

Display a help message and exit.

• --base64-output=value

Command-Line Format --base64-output=value

Type String

Default Value AUTO

Valid Values AUTO

NEVER

DECODE-ROWS

This option determines when events should be displayed encoded as base-64 strings using BINLOG
statements. The option has these permissible values (not case-sensitive):

• AUTO ("automatic") or UNSPEC ("unspecified") displays BINLOG statements automatically when
necessary (that is, for format description events and row events). If no --base64-output option is
given, the effect is the same as --base64-output=AUTO.

Note

Automatic BINLOG display is the only safe behavior if you intend to use the
output of mysqlbinlog to re-execute binary log file contents. The other option
values are intended only for debugging or testing purposes because they may
produce output that does not include all events in executable form. 617

mysqlbinlog — Utility for Processing Binary Log Files

• NEVER causes BINLOG statements not to be displayed. mysqlbinlog exits with an error if a row
event is found that must be displayed using BINLOG.

• DECODE-ROWS specifies to mysqlbinlog that you intend for row events to be decoded and displayed
as commented SQL statements by also specifying the --verbose option. Like NEVER, DECODE-ROWS
suppresses display of BINLOG statements, but unlike NEVER, it does not exit with an error if a row
event is found.

For examples that show the effect of --base64-output and --verbose on row event output, see
Section 4.6.7.2, “mysqlbinlog Row Event Display”.

• --bind-address=ip_address

Command-Line Format --bind-address=ip_address

On a computer having multiple network interfaces, use this option to select which interface to use for
connecting to the MySQL server.

• --binlog-row-event-max-size=N

Command-Line Format --binlog-row-event-max-size=#

Type Numeric

Default Value 4294967040

Minimum Value 256

Maximum Value 18446744073709547520

Specify the maximum size of a row-based binary log event, in bytes. Rows are grouped into events
smaller than this size if possible. The value should be a multiple of 256. The default is 4GB.

• --character-sets-dir=dir_name

Command-Line Format --character-sets-dir=dir_name

Type Directory name

The directory where character sets are installed. See Section 10.15, “Character Set Configuration”.

• --connection-server-id=server_id

Command-Line Format --connection-server-id=#]

Type Integer

Default Value 0 (1)

Minimum Value 0 (1)

618

mysqlbinlog — Utility for Processing Binary Log Files

Maximum Value 4294967295

This option is used to test a MySQL server for support of the BINLOG_DUMP_NON_BLOCK connection
flag. It is not required for normal operations.

The effective default and minimum values for this option depend on whether mysqlbinlog is run in
blocking mode or non-blocking mode. When mysqlbinlog is run in blocking mode, the default (and
minimum) value is 1; when run in non-blocking mode, the default (and minimum) value is 0.

• --database=db_name, -d db_name

Command-Line Format --database=db_name

Type String

This option causes mysqlbinlog to output entries from the binary log (local log only) that occur while
db_name is been selected as the default database by USE.

The --database option for mysqlbinlog is similar to the --binlog-do-db option for mysqld, but
can be used to specify only one database. If --database is given multiple times, only the last instance
is used.

The effects of this option depend on whether the statement-based or row-based logging format is in
use, in the same way that the effects of --binlog-do-db depend on whether statement-based or row-
based logging is in use.

Statement-based logging. The --database option works as follows:

• While db_name is the default database, statements are output whether they modify tables in db_name
or a different database.

• Unless db_name is selected as the default database, statements are not output, even if they modify
tables in db_name.

• There is an exception for CREATE DATABASE, ALTER DATABASE, and DROP DATABASE. The
database being created, altered, or dropped is considered to be the default database when
determining whether to output the statement.

Suppose that the binary log was created by executing these statements using statement-based-logging:

INSERT INTO test.t1 (i) VALUES(100);
INSERT INTO db2.t2 (j) VALUES(200);
USE test;
INSERT INTO test.t1 (i) VALUES(101);
INSERT INTO t1 (i) VALUES(102);
INSERT INTO db2.t2 (j) VALUES(201);
USE db2;
INSERT INTO test.t1 (i) VALUES(103);
INSERT INTO db2.t2 (j) VALUES(202);

619

mysqlbinlog — Utility for Processing Binary Log Files

INSERT INTO t2 (j) VALUES(203);

mysqlbinlog --database=test does not output the first two INSERT statements because there
is no default database. It outputs the three INSERT statements following USE test, but not the three
INSERT statements following USE db2.

mysqlbinlog --database=db2 does not output the first two INSERT statements because there is no
default database. It does not output the three INSERT statements following USE test, but does output
the three INSERT statements following USE db2.

Row-based logging. mysqlbinlog outputs only entries that change tables belonging to db_name.
The default database has no effect on this. Suppose that the binary log just described was created using
row-based logging rather than statement-based logging. mysqlbinlog --database=test outputs
only those entries that modify t1 in the test database, regardless of whether USE was issued or what the
default database is.

If a server is running with binlog_format set to MIXED and you want it to be possible to use
mysqlbinlog with the --database option, you must ensure that tables that are modified are in the
database selected by USE. (In particular, no cross-database updates should be used.)

When used together with the --rewrite-db option, the --rewrite-db option is applied first; then the
--database option is applied, using the rewritten database name. The order in which the options are
provided makes no difference in this regard.

• --debug[=debug_options], -# [debug_options]

Command-Line Format --debug[=debug_options]

Type String

Default Value d:t:o,/tmp/mysqlbinlog.trace

Write a debugging log. A typical debug_options string is d:t:o,file_name. The default is d:t:o,/
tmp/mysqlbinlog.trace.

This option is available only if MySQL was built using WITH_DEBUG. MySQL release binaries provided
by Oracle are not built using this option.

• --debug-check

Command-Line Format --debug-check

Type Boolean

Default Value FALSE

Print some debugging information when the program exits.

This option is available only if MySQL was built using WITH_DEBUG. MySQL release binaries provided
by Oracle are not built using this option.

• --debug-info

Command-Line Format --debug-info

Type Boolean

Default Value FALSE

620

mysqlbinlog — Utility for Processing Binary Log Files

Print debugging information and memory and CPU usage statistics when the program exits.

This option is available only if MySQL was built using WITH_DEBUG. MySQL release binaries provided
by Oracle are not built using this option.

• --default-auth=plugin

Command-Line Format --default-auth=plugin

Type String

A hint about which client-side authentication plugin to use. See Section 6.2.13, “Pluggable
Authentication”.

• --defaults-extra-file=file_name

Command-Line Format --defaults-extra-file=file_name

Type File name

Read this option file after the global option file but (on Unix) before the user option file. If the file does
not exist or is otherwise inaccessible, an error occurs. If file_name is not an absolute path name, it is
interpreted relative to the current directory.

For additional information about this and other option-file options, see Section 4.2.2.3, “Command-Line
Options that Affect Option-File Handling”.

• --defaults-file=file_name

Command-Line Format --defaults-file=file_name

Type File name

Use only the given option file. If the file does not exist or is otherwise inaccessible, an error occurs. If
file_name is not an absolute path name, it is interpreted relative to the current directory.

Exception: Even with --defaults-file, client programs read .mylogin.cnf.

For additional information about this and other option-file options, see Section 4.2.2.3, “Command-Line
Options that Affect Option-File Handling”.

• --defaults-group-suffix=str

Command-Line Format --defaults-group-suffix=str

Type String

Read not only the usual option groups, but also groups with the usual names and a suffix of str. For
example, mysqlbinlog normally reads the [client] and [mysqlbinlog] groups. If this option is

621

mysqlbinlog — Utility for Processing Binary Log Files

given as --defaults-group-suffix=_other, mysqlbinlog also reads the [client_other] and
[mysqlbinlog_other] groups.

For additional information about this and other option-file options, see Section 4.2.2.3, “Command-Line
Options that Affect Option-File Handling”.

• --disable-log-bin, -D

Command-Line Format --disable-log-bin

Disable binary logging. This is useful for avoiding an endless loop if you use the --to-last-log option
and are sending the output to the same MySQL server. This option also is useful when restoring after an
unexpected exit to avoid duplication of the statements you have logged.

This option causes mysqlbinlog to include a SET sql_log_bin = 0 statement in its output to
disable binary logging of the remaining output. Manipulating the session value of the sql_log_bin
system variable is a restricted operation, so this option requires that you have privileges sufficient to set
restricted session variables. See Section 5.1.8.1, “System Variable Privileges”.

• --exclude-gtids=gtid_set

Command-Line Format --exclude-gtids=gtid_set

Type String

Default Value

Do not display any of the groups listed in the gtid_set.

• --force-if-open, -F

Command-Line Format --force-if-open

Read binary log files even if they are open or were not closed properly.

• --force-read, -f

Command-Line Format --force-read

With this option, if mysqlbinlog reads a binary log event that it does not recognize, it prints a warning,
ignores the event, and continues. Without this option, mysqlbinlog stops if it reads such an event.

• --get-server-public-key

Command-Line Format --get-server-public-key

Introduced 5.7.23

Type Boolean

Request from the server the public key required for RSA key pair-based password exchange. This option
applies to clients that authenticate with the caching_sha2_password authentication plugin. For that
plugin, the server does not send the public key unless requested. This option is ignored for accounts that

622

mysqlbinlog — Utility for Processing Binary Log Files

do not authenticate with that plugin. It is also ignored if RSA-based password exchange is not used, as is
the case when the client connects to the server using a secure connection.

If --server-public-key-path=file_name is given and specifies a valid public key file, it takes
precedence over --get-server-public-key.

For information about the caching_sha2_password plugin, see Section 6.4.1.4, “Caching SHA-2
Pluggable Authentication”.

The --get-server-public-key option was added in MySQL 5.7.23.

• --hexdump, -H

Command-Line Format --hexdump

Display a hex dump of the log in comments, as described in Section 4.6.7.1, “mysqlbinlog Hex Dump
Format”. The hex output can be helpful for replication debugging.

• --host=host_name, -h host_name

Command-Line Format --host=host_name

Type String

Default Value localhost

Get the binary log from the MySQL server on the given host.

• --idempotent

Command-Line Format --idempotent

Type Boolean

Default Value true

Tell the MySQL Server to use idempotent mode while processing updates; this causes suppression
of any duplicate-key or key-not-found errors that the server encounters in the current session while
processing updates. This option may prove useful whenever it is desirable or necessary to replay one or
more binary logs to a MySQL Server which may not contain all of the data to which the logs refer.

The scope of effect for this option includes the current mysqlbinlog client and session only.

• --include-gtids=gtid_set

Command-Line Format --include-gtids=gtid_set

Type String

Default Value

Display only the groups listed in the gtid_set.

• --local-load=dir_name, -l dir_name

Command-Line Format --local-load=dir_name

623

mysqlbinlog — Utility for Processing Binary Log Files

Type Directory name

For data loading operations corresponding to LOAD DATA statements, mysqlbinlog extracts the files
from the binary log events, writes them as temporary files to the local file system, and writes LOAD DATA
LOCAL statements to cause the files to be loaded. By default, mysqlbinlog writes these temporary files
to an operating system-specific directory. The --local-load option can be used to explicitly specify
the directory where mysqlbinlog should prepare local temporary files.

Important

These temporary files are not automatically removed by mysqlbinlog or any
other MySQL program.

• --login-path=name

Command-Line Format --login-path=name

Type String

Read options from the named login path in the .mylogin.cnf login path file. A “login path” is an
option group containing options that specify which MySQL server to connect to and which account to
authenticate as. To create or modify a login path file, use the mysql_config_editor utility. See
Section 4.6.6, “mysql_config_editor — MySQL Configuration Utility”.

For additional information about this and other option-file options, see Section 4.2.2.3, “Command-Line
Options that Affect Option-File Handling”.

• --no-defaults

Command-Line Format --no-defaults

Do not read any option files. If program startup fails due to reading unknown options from an option file,
--no-defaults can be used to prevent them from being read.

The exception is that the .mylogin.cnf file is read in all cases, if it exists. This permits passwords to
be specified in a safer way than on the command line even when --no-defaults is used. To create
.mylogin.cnf, use the mysql_config_editor utility. See Section 4.6.6, “mysql_config_editor —
MySQL Configuration Utility”.

For additional information about this and other option-file options, see Section 4.2.2.3, “Command-Line
Options that Affect Option-File Handling”.

• --offset=N, -o N

Command-Line Format --offset=#

Type Numeric

Skip the first N entries in the log.

• --open-files-limit=N

Command-Line Format --open-files-limit=#

624

mysqlbinlog — Utility for Processing Binary Log Files

Type Numeric

Default Value 8

Minimum Value 1

Maximum Value [platform dependent]

Specify the number of open file descriptors to reserve.

• --password[=password], -p[password]

Command-Line Format --password[=password]

Type String

The password of the MySQL account used for connecting to the server. The password value is optional.
If not given, mysqlbinlog prompts for one. If given, there must be no space between --password= or
-p and the password following it. If no password option is specified, the default is to send no password.

Specifying a password on the command line should be considered insecure. To avoid giving the
password on the command line, use an option file. See Section 6.1.2.1, “End-User Guidelines for
Password Security”.

To explicitly specify that there is no password and that mysqlbinlog should not prompt for one, use the
--skip-password option.

• --plugin-dir=dir_name

Command-Line Format --plugin-dir=dir_name

Type Directory name

The directory in which to look for plugins. Specify this option if the --default-auth option is used
to specify an authentication plugin but mysqlbinlog does not find it. See Section 6.2.13, “Pluggable
Authentication”.

• --port=port_num, -P port_num

Command-Line Format --port=port_num

Type Numeric

Default Value 3306

The TCP/IP port number to use for connecting to a remote server.

• --print-defaults

Command-Line Format --print-defaults

Print the program name and all options that it gets from option files.

For additional information about this and other option-file options, see Section 4.2.2.3, “Command-Line
Options that Affect Option-File Handling”.

625

mysqlbinlog — Utility for Processing Binary Log Files

• --protocol={TCP|SOCKET|PIPE|MEMORY}

Command-Line Format --protocol=type

Type String

Default Value [see text]

Valid Values TCP

SOCKET

PIPE

MEMORY

The transport protocol to use for connecting to the server. It is useful when the other connection
parameters normally result in use of a protocol other than the one you want. For details on the
permissible values, see Section 4.2.5, “Connection Transport Protocols”.

• --raw

Command-Line Format --raw

Type Boolean

Default Value FALSE

By default, mysqlbinlog reads binary log files and writes events in text format. The --raw option
tells mysqlbinlog to write them in their original binary format. Its use requires that --read-from-
remote-server also be used because the files are requested from a server. mysqlbinlog writes
one output file for each file read from the server. The --raw option can be used to make a backup of a
server's binary log. With the --stop-never option, the backup is “live” because mysqlbinlog stays
connected to the server. By default, output files are written in the current directory with the same names
as the original log files. Output file names can be modified using the --result-file option. For more
information, see Section 4.6.7.3, “Using mysqlbinlog to Back Up Binary Log Files”.

• --read-from-remote-master=type

Command-Line Format --read-from-remote-master=type

Read binary logs from a MySQL server with the COM_BINLOG_DUMP or COM_BINLOG_DUMP_GTID
commands by setting the option value to either BINLOG-DUMP-NON-GTIDS or BINLOG-DUMP-
GTIDS, respectively. If --read-from-remote-master=BINLOG-DUMP-GTIDS is combined with --
exclude-gtids, transactions can be filtered out on the source, avoiding unnecessary network traffic.

The connection parameter options are used with this option or the --read-from-remote-server
option. These options are --host, --password, --port, --protocol, --socket, and --user. If
neither of the remote options is specified, the connection parameter options are ignored.

The REPLICATION SLAVE privilege is required to use this option.

• --read-from-remote-server=file_name, -R

Command-Line Format --read-from-remote-server=file_name

626

mysqlbinlog — Utility for Processing Binary Log Files

Read the binary log from a MySQL server rather than reading a local log file. This option requires that
the remote server be running. It works only for binary log files on the remote server, not relay log files,
and takes only the binary log file name (including the numeric suffix) as its argument, while ignoring any
path.

The connection parameter options are used with this option or the --read-from-remote-master
option. These options are --host, --password, --port, --protocol, --socket, and --user. If
neither of the remote options is specified, the connection parameter options are ignored.

The REPLICATION SLAVE privilege is required to use this option.

This option is like --read-from-remote-master=BINLOG-DUMP-NON-GTIDS.

• --result-file=name, -r name

Command-Line Format --result-file=name

Without the --raw option, this option indicates the file to which mysqlbinlog writes text output. With
--raw, mysqlbinlog writes one binary output file for each log file transferred from the server, writing
them by default in the current directory using the same names as the original log file. In this case, the --
result-file option value is treated as a prefix that modifies output file names.

• --rewrite-db='from_name->to_name'

Command-Line Format --rewrite-db='oldname->newname'

Type String

Default Value [none]

When reading from a row-based or statement-based log, rewrite all occurrences of from_name
to to_name. Rewriting is done on the rows, for row-based logs, as well as on the USE clauses, for
statement-based logs. In MySQL versions prior to 5.7.8, this option was only for use when restoring
tables logged using the row-based format.

Warning

Statements in which table names are qualified with database names are not
rewritten to use the new name when using this option.

The rewrite rule employed as a value for this option is a string having the form 'from_name-
>to_name', as shown previously, and for this reason must be enclosed by quotation marks.

To employ multiple rewrite rules, specify the option multiple times, as shown here:

mysqlbinlog --rewrite-db='dbcurrent->dbold' --rewrite-db='dbtest->dbcurrent' \
 binlog.00001 > /tmp/statements.sql

When used together with the --database option, the --rewrite-db option is applied first; then --
database option is applied, using the rewritten database name. The order in which the options are
provided makes no difference in this regard.

This means that, for example, if mysqlbinlog is started with --rewrite-db='mydb->yourdb' --
database=yourdb, then all updates to any tables in databases mydb and yourdb are included in the
output. On the other hand, if it is started with --rewrite-db='mydb->yourdb' --database=mydb,

627

mysqlbinlog — Utility for Processing Binary Log Files

then mysqlbinlog outputs no statements at all: since all updates to mydb are first rewritten as
updates to yourdb before applying the --database option, there remain no updates that match --
database=mydb.

• --secure-auth

Command-Line Format --secure-auth

Deprecated Yes

Do not send passwords to the server in old (pre-4.1) format. This prevents connections except for
servers that use the newer password format.

As of MySQL 5.7.5, this option is deprecated; expect it to be removed in a future MySQL release. It is
always enabled and attempting to disable it (--skip-secure-auth, --secure-auth=0) produces an
error. Before MySQL 5.7.5, this option is enabled by default but can be disabled.

Note

Passwords that use the pre-4.1 hashing method are less secure than passwords
that use the native password hashing method and should be avoided. Pre-4.1
passwords are deprecated and support for them was removed in MySQL 5.7.5.
For account upgrade instructions, see Section 6.4.1.3, “Migrating Away from
Pre-4.1 Password Hashing and the mysql_old_password Plugin”.

• --server-id=id

Command-Line Format --server-id=id

Type Numeric

Display only those events created by the server having the given server ID.

• --server-id-bits=N

Command-Line Format --server-id-bits=#

Type Numeric

Default Value 32

Minimum Value 7

Maximum Value 32

Use only the first N bits of the server_id to identify the server. If the binary log was written by a
mysqld with server-id-bits set to less than 32 and user data stored in the most significant bit, running
mysqlbinlog with --server-id-bits set to 32 enables this data to be seen.

This option is supported only by the version of mysqlbinlog supplied with the NDB Cluster distribution,
or built with NDB Cluster support.

• --server-public-key-path=file_name

Command-Line Format --server-public-key-path=file_name

Introduced 5.7.23

628

mysqlbinlog — Utility for Processing Binary Log Files

Type File name

The path name to a file in PEM format containing a client-side copy of the public key required by the
server for RSA key pair-based password exchange. This option applies to clients that authenticate with
the sha256_password or caching_sha2_password authentication plugin. This option is ignored for
accounts that do not authenticate with one of those plugins. It is also ignored if RSA-based password
exchange is not used, as is the case when the client connects to the server using a secure connection.

If --server-public-key-path=file_name is given and specifies a valid public key file, it takes
precedence over --get-server-public-key.

For sha256_password, this option applies only if MySQL was built using OpenSSL.

For information about the sha256_password and caching_sha2_password plugins, see
Section 6.4.1.5, “SHA-256 Pluggable Authentication”, and Section 6.4.1.4, “Caching SHA-2 Pluggable
Authentication”.

The --server-public-key-path option was added in MySQL 5.7.23.

• --set-charset=charset_name

Command-Line Format --set-charset=charset_name

Type String

Add a SET NAMES charset_name statement to the output to specify the character set to be used for
processing log files.

• --shared-memory-base-name=name

Command-Line Format --shared-memory-base-name=name

Platform Specific Windows

On Windows, the shared-memory name to use for connections made using shared memory to a local
server. The default value is MYSQL. The shared-memory name is case-sensitive.

This option applies only if the server was started with the shared_memory system variable enabled to
support shared-memory connections.

• --short-form, -s

Command-Line Format --short-form

Display only the statements contained in the log, without any extra information or row-based events. This
is for testing only, and should not be used in production systems.

• --skip-gtids[=(true|false)]

Command-Line Format --skip-gtids[=true|false]

Type Boolean

629

mysqlbinlog — Utility for Processing Binary Log Files

Default Value false

Do not include the GTIDs from the binary log files in the output dump file. For example:

mysqlbinlog --skip-gtids binlog.000001 > /tmp/dump.sql
mysql -u root -p -e "source /tmp/dump.sql"

You should not normally use this option in production or in recovery, except in the specific, and rare,
scenarios where the GTIDs are actively unwanted. For example, an administrator might want to
duplicate selected transactions (such as table definitions) from a deployment to another, unrelated,
deployment that will not replicate to or from the original. In that scenario, --skip-gtids can be used to
enable the administrator to apply the transactions as if they were new, and ensure that the deployments
remain unrelated. However, you should only use this option if the inclusion of the GTIDs causes a known
issue for your use case.

• --socket=path, -S path

Command-Line Format --socket={file_name|pipe_name}

Type String

For connections to localhost, the Unix socket file to use, or, on Windows, the name of the named pipe
to use.

On Windows, this option applies only if the server was started with the named_pipe system variable
enabled to support named-pipe connections. In addition, the user making the connection must be a
member of the Windows group specified by the named_pipe_full_access_group system variable.

• --ssl*

Options that begin with --ssl specify whether to connect to the server using encryption and indicate
where to find SSL keys and certificates. See Command Options for Encrypted Connections.

• --start-datetime=datetime

Command-Line Format --start-datetime=datetime

Type Datetime

Start reading the binary log at the first event having a timestamp equal to or later than the datetime
argument. The datetime value is relative to the local time zone on the machine where you run
mysqlbinlog. The value should be in a format accepted for the DATETIME or TIMESTAMP data types.
For example:

mysqlbinlog --start-datetime="2005-12-25 11:25:56" binlog.000003

This option is useful for point-in-time recovery. See Section 7.5, “Point-in-Time (Incremental) Recovery”.

• --start-position=N, -j N

Command-Line Format --start-position=#630

mysqlbinlog — Utility for Processing Binary Log Files

Type Numeric

Start reading the binary log at the first event having a position equal to or greater than N. This option
applies to the first log file named on the command line.

This option is useful for point-in-time recovery. See Section 7.5, “Point-in-Time (Incremental) Recovery”.

• --stop-datetime=datetime

Command-Line Format --stop-datetime=datetime

Stop reading the binary log at the first event having a timestamp equal to or later than the datetime
argument. See the description of the --start-datetime option for information about the datetime
value.

This option is useful for point-in-time recovery. See Section 7.5, “Point-in-Time (Incremental) Recovery”.

• --stop-never

Command-Line Format --stop-never

Type Boolean

Default Value FALSE

This option is used with --read-from-remote-server. It tells mysqlbinlog to remain connected
to the server. Otherwise mysqlbinlog exits when the last log file has been transferred from the server.
--stop-never implies --to-last-log, so only the first log file to transfer need be named on the
command line.

--stop-never is commonly used with --raw to make a live binary log backup, but also can be used
without --raw to maintain a continuous text display of log events as the server generates them.

• --stop-never-slave-server-id=id

Command-Line Format --stop-never-slave-server-id=#

Type Numeric

Default Value 65535

Minimum Value 1

With --stop-never, mysqlbinlog reports a server ID of 65535 when it connects to the server.
--stop-never-slave-server-id explicitly specifies the server ID to report. It can be used to
avoid a conflict with the ID of a replica server or another mysqlbinlog process. See Section 4.6.7.4,
“Specifying the mysqlbinlog Server ID”.

• --stop-position=N

Command-Line Format --stop-position=#

631

mysqlbinlog — Utility for Processing Binary Log Files

Type Numeric

Stop reading the binary log at the first event having a position equal to or greater than N. This option
applies to the last log file named on the command line.

This option is useful for point-in-time recovery. See Section 7.5, “Point-in-Time (Incremental) Recovery”.

• --tls-version=protocol_list

Command-Line Format --tls-version=protocol_list

Introduced 5.7.10

Type String

Default Value (≥ 5.7.28) TLSv1,TLSv1.1,TLSv1.2

Default Value (≤ 5.7.27) TLSv1,TLSv1.1,TLSv1.2 (OpenSSL)

TLSv1,TLSv1.1 (yaSSL)

The permissible TLS protocols for encrypted connections. The value is a list of one or more comma-
separated protocol names. The protocols that can be named for this option depend on the SSL library
used to compile MySQL. For details, see Section 6.3.2, “Encrypted Connection TLS Protocols and
Ciphers”.

This option was added in MySQL 5.7.10.

• --to-last-log, -t

Command-Line Format --to-last-log

Do not stop at the end of the requested binary log from a MySQL server, but rather continue printing
until the end of the last binary log. If you send the output to the same MySQL server, this may lead to an
endless loop. This option requires --read-from-remote-server.

• --user=user_name, -u user_name

Command-Line Format --user=user_name,

Type String

The user name of the MySQL account to use when connecting to a remote server.

• --verbose, -v

Command-Line Format --verbose

Reconstruct row events and display them as commented SQL statements. If this option is given twice
(by passing in either "-vv" or "--verbose --verbose"), the output includes comments to indicate column
data types and some metadata, and row query log events if so configured.

For examples that show the effect of --base64-output and --verbose on row event output, see
Section 4.6.7.2, “mysqlbinlog Row Event Display”.

632

mysqlbinlog — Utility for Processing Binary Log Files

• --verify-binlog-checksum, -c

Command-Line Format --verify-binlog-checksum

Verify checksums in binary log files.

• --version, -V

Command-Line Format --version

Display version information and exit.

In MySQL 5.7, the version number shown by mysqlbinlog when using this option is 3.4.

You can pipe the output of mysqlbinlog into the mysql client to execute the events contained in the
binary log. This technique is used to recover from an unexpected exit when you have an old backup (see
Section 7.5, “Point-in-Time (Incremental) Recovery”). For example:

mysqlbinlog binlog.000001 | mysql -u root -p

Or:

mysqlbinlog binlog.[0-9]* | mysql -u root -p

If the statements produced by mysqlbinlog may contain BLOB values, these may cause problems when
mysql processes them. In this case, invoke mysql with the --binary-mode option.

You can also redirect the output of mysqlbinlog to a text file instead, if you need to modify the statement
log first (for example, to remove statements that you do not want to execute for some reason). After editing
the file, execute the statements that it contains by using it as input to the mysql program:

mysqlbinlog binlog.000001 > tmpfile
... edit tmpfile ...
mysql -u root -p < tmpfile

When mysqlbinlog is invoked with the --start-position option, it displays only those events with
an offset in the binary log greater than or equal to a given position (the given position must match the start
of one event). It also has options to stop and start when it sees an event with a given date and time. This
enables you to perform point-in-time recovery using the --stop-datetime option (to be able to say, for
example, “roll forward my databases to how they were today at 10:30 a.m.”).

Processing multiple files. If you have more than one binary log to execute on the MySQL server,
the safe method is to process them all using a single connection to the server. Here is an example that
demonstrates what may be unsafe:

mysqlbinlog binlog.000001 | mysql -u root -p # DANGER!!
mysqlbinlog binlog.000002 | mysql -u root -p # DANGER!!

Processing binary logs this way using multiple connections to the server causes problems if the first log file
contains a CREATE TEMPORARY TABLE statement and the second log contains a statement that uses the
temporary table. When the first mysql process terminates, the server drops the temporary table. When the
second mysql process attempts to use the table, the server reports “unknown table.”

To avoid problems like this, use a single mysql process to execute the contents of all binary logs that you
want to process. Here is one way to do so:

mysqlbinlog binlog.000001 binlog.000002 | mysql -u root -p

633

mysqlbinlog — Utility for Processing Binary Log Files

Another approach is to write all the logs to a single file and then process the file:

mysqlbinlog binlog.000001 > /tmp/statements.sql
mysqlbinlog binlog.000002 >> /tmp/statements.sql
mysql -u root -p -e "source /tmp/statements.sql"

mysqlbinlog can produce output that reproduces a LOAD DATA operation without the original data file.
mysqlbinlog copies the data to a temporary file and writes a LOAD DATA LOCAL statement that refers
to the file. The default location of the directory where these files are written is system-specific. To specify a
directory explicitly, use the --local-load option.

Because mysqlbinlog converts LOAD DATA statements to LOAD DATA LOCAL statements (that is, it
adds LOCAL), both the client and the server that you use to process the statements must be configured
with the LOCAL capability enabled. See Section 6.1.6, “Security Considerations for LOAD DATA LOCAL”.

Warning

The temporary files created for LOAD DATA LOCAL statements are not
automatically deleted because they are needed until you actually execute those
statements. You should delete the temporary files yourself after you no longer need
the statement log. The files can be found in the temporary file directory and have
names like original_file_name-#-#.

4.6.7.1 mysqlbinlog Hex Dump Format

The --hexdump option causes mysqlbinlog to produce a hex dump of the binary log contents:

mysqlbinlog --hexdump master-bin.000001

The hex output consists of comment lines beginning with #, so the output might look like this for the
preceding command:

/*!40019 SET @@SESSION.max_insert_delayed_threads=0*/;
/*!50003 SET @OLD_COMPLETION_TYPE=@@COMPLETION_TYPE,COMPLETION_TYPE=0*/;
at 4
#051024 17:24:13 server id 1 end_log_pos 98
Position Timestamp Type Master ID Size Master Pos Flags
00000004 9d fc 5c 43 0f 01 00 00 00 5e 00 00 00 62 00 00 00 00 00
00000017 04 00 35 2e 30 2e 31 35 2d 64 65 62 75 67 2d 6c |..5.0.15.debug.l|
00000027 6f 67 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |og..............|
00000037 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
00000047 00 00 00 00 9d fc 5c 43 13 38 0d 00 08 00 12 00 |.......C.8......|
00000057 04 04 04 04 12 00 00 4b 00 04 1a |.......K...|
Start: binlog v 4, server v 5.0.15-debug-log created 051024 17:24:13
at startup
ROLLBACK;

Hex dump output currently contains the elements in the following list. This format is subject to change. For
more information about binary log format, see MySQL Internals: The Binary Log.

• Position: The byte position within the log file.

• Timestamp: The event timestamp. In the example shown, '9d fc 5c 43' is the representation of
'051024 17:24:13' in hexadecimal.

• Type: The event type code.

• Master ID: The server ID of the replication source server that created the event.

• Size: The size in bytes of the event.

634

https://dev.mysql.com/doc/internals/en/binary-log.html

mysqlbinlog — Utility for Processing Binary Log Files

• Master Pos: The position of the next event in the original source log file.

• Flags: Event flag values.

4.6.7.2 mysqlbinlog Row Event Display

The following examples illustrate how mysqlbinlog displays row events that specify data
modifications. These correspond to events with the WRITE_ROWS_EVENT, UPDATE_ROWS_EVENT, and
DELETE_ROWS_EVENT type codes. The --base64-output=DECODE-ROWS and --verbose options may
be used to affect row event output.

Suppose that the server is using row-based binary logging and that you execute the following sequence of
statements:

CREATE TABLE t
(
 id INT NOT NULL,
 name VARCHAR(20) NOT NULL,
 date DATE NULL
) ENGINE = InnoDB;

START TRANSACTION;
INSERT INTO t VALUES(1, 'apple', NULL);
UPDATE t SET name = 'pear', date = '2009-01-01' WHERE id = 1;
DELETE FROM t WHERE id = 1;
COMMIT;

By default, mysqlbinlog displays row events encoded as base-64 strings using BINLOG statements.
Omitting extraneous lines, the output for the row events produced by the preceding statement sequence
looks like this:

$> mysqlbinlog log_file
...
at 218
#080828 15:03:08 server id 1 end_log_pos 258 Write_rows: table id 17 flags: STMT_END_F

BINLOG '
fAS3SBMBAAAALAAAANoAAAAAABEAAAAAAAAABHRlc3QAAXQAAwMPCgIUAAQ=
fAS3SBcBAAAAKAAAAAIBAAAQABEAAAAAAAEAA//8AQAAAAVhcHBsZQ==
'/*!*/;
...
at 302
#080828 15:03:08 server id 1 end_log_pos 356 Update_rows: table id 17 flags: STMT_END_F

BINLOG '
fAS3SBMBAAAALAAAAC4BAAAAABEAAAAAAAAABHRlc3QAAXQAAwMPCgIUAAQ=
fAS3SBgBAAAANgAAAGQBAAAQABEAAAAAAAEAA////AEAAAAFYXBwbGX4AQAAAARwZWFyIbIP
'/*!*/;
...
at 400
#080828 15:03:08 server id 1 end_log_pos 442 Delete_rows: table id 17 flags: STMT_END_F

BINLOG '
fAS3SBMBAAAALAAAAJABAAAAABEAAAAAAAAABHRlc3QAAXQAAwMPCgIUAAQ=
fAS3SBkBAAAAKgAAALoBAAAQABEAAAAAAAEAA//4AQAAAARwZWFyIbIP
'/*!*/;

To see the row events as comments in the form of “pseudo-SQL” statements, run mysqlbinlog with the
--verbose or -v option. The output contains lines beginning with ###:

$> mysqlbinlog -v log_file
...
at 218
#080828 15:03:08 server id 1 end_log_pos 258 Write_rows: table id 17 flags: STMT_END_F

635

mysqlbinlog — Utility for Processing Binary Log Files

BINLOG '
fAS3SBMBAAAALAAAANoAAAAAABEAAAAAAAAABHRlc3QAAXQAAwMPCgIUAAQ=
fAS3SBcBAAAAKAAAAAIBAAAQABEAAAAAAAEAA//8AQAAAAVhcHBsZQ==
'/*!*/;
INSERT INTO test.t
SET
@1=1
@2='apple'
@3=NULL
...
at 302
#080828 15:03:08 server id 1 end_log_pos 356 Update_rows: table id 17 flags: STMT_END_F

BINLOG '
fAS3SBMBAAAALAAAAC4BAAAAABEAAAAAAAAABHRlc3QAAXQAAwMPCgIUAAQ=
fAS3SBgBAAAANgAAAGQBAAAQABEAAAAAAAEAA////AEAAAAFYXBwbGX4AQAAAARwZWFyIbIP
'/*!*/;
UPDATE test.t
WHERE
@1=1
@2='apple'
@3=NULL
SET
@1=1
@2='pear'
@3='2009:01:01'
...
at 400
#080828 15:03:08 server id 1 end_log_pos 442 Delete_rows: table id 17 flags: STMT_END_F

BINLOG '
fAS3SBMBAAAALAAAAJABAAAAABEAAAAAAAAABHRlc3QAAXQAAwMPCgIUAAQ=
fAS3SBkBAAAAKgAAALoBAAAQABEAAAAAAAEAA//4AQAAAARwZWFyIbIP
'/*!*/;
DELETE FROM test.t
WHERE
@1=1
@2='pear'
@3='2009:01:01'

Specify --verbose or -v twice to also display data types and some metadata for each column. The
output contains an additional comment following each column change:

$> mysqlbinlog -vv log_file
...
at 218
#080828 15:03:08 server id 1 end_log_pos 258 Write_rows: table id 17 flags: STMT_END_F

BINLOG '
fAS3SBMBAAAALAAAANoAAAAAABEAAAAAAAAABHRlc3QAAXQAAwMPCgIUAAQ=
fAS3SBcBAAAAKAAAAAIBAAAQABEAAAAAAAEAA//8AQAAAAVhcHBsZQ==
'/*!*/;
INSERT INTO test.t
SET
@1=1 /* INT meta=0 nullable=0 is_null=0 */
@2='apple' /* VARSTRING(20) meta=20 nullable=0 is_null=0 */
@3=NULL /* VARSTRING(20) meta=0 nullable=1 is_null=1 */
...
at 302
#080828 15:03:08 server id 1 end_log_pos 356 Update_rows: table id 17 flags: STMT_END_F

BINLOG '
fAS3SBMBAAAALAAAAC4BAAAAABEAAAAAAAAABHRlc3QAAXQAAwMPCgIUAAQ=
fAS3SBgBAAAANgAAAGQBAAAQABEAAAAAAAEAA////AEAAAAFYXBwbGX4AQAAAARwZWFyIbIP
'/*!*/;
UPDATE test.t

636

mysqlbinlog — Utility for Processing Binary Log Files

WHERE
@1=1 /* INT meta=0 nullable=0 is_null=0 */
@2='apple' /* VARSTRING(20) meta=20 nullable=0 is_null=0 */
@3=NULL /* VARSTRING(20) meta=0 nullable=1 is_null=1 */
SET
@1=1 /* INT meta=0 nullable=0 is_null=0 */
@2='pear' /* VARSTRING(20) meta=20 nullable=0 is_null=0 */
@3='2009:01:01' /* DATE meta=0 nullable=1 is_null=0 */
...
at 400
#080828 15:03:08 server id 1 end_log_pos 442 Delete_rows: table id 17 flags: STMT_END_F

BINLOG '
fAS3SBMBAAAALAAAAJABAAAAABEAAAAAAAAABHRlc3QAAXQAAwMPCgIUAAQ=
fAS3SBkBAAAAKgAAALoBAAAQABEAAAAAAAEAA//4AQAAAARwZWFyIbIP
'/*!*/;
DELETE FROM test.t
WHERE
@1=1 /* INT meta=0 nullable=0 is_null=0 */
@2='pear' /* VARSTRING(20) meta=20 nullable=0 is_null=0 */
@3='2009:01:01' /* DATE meta=0 nullable=1 is_null=0 */

You can tell mysqlbinlog to suppress the BINLOG statements for row events by using the --base64-
output=DECODE-ROWS option. This is similar to --base64-output=NEVER but does not exit with an
error if a row event is found. The combination of --base64-output=DECODE-ROWS and --verbose
provides a convenient way to see row events only as SQL statements:

$> mysqlbinlog -v --base64-output=DECODE-ROWS log_file
...
at 218
#080828 15:03:08 server id 1 end_log_pos 258 Write_rows: table id 17 flags: STMT_END_F
INSERT INTO test.t
SET
@1=1
@2='apple'
@3=NULL
...
at 302
#080828 15:03:08 server id 1 end_log_pos 356 Update_rows: table id 17 flags: STMT_END_F
UPDATE test.t
WHERE
@1=1
@2='apple'
@3=NULL
SET
@1=1
@2='pear'
@3='2009:01:01'
...
at 400
#080828 15:03:08 server id 1 end_log_pos 442 Delete_rows: table id 17 flags: STMT_END_F
DELETE FROM test.t
WHERE
@1=1
@2='pear'
@3='2009:01:01'

Note

You should not suppress BINLOG statements if you intend to re-execute
mysqlbinlog output.

The SQL statements produced by --verbose for row events are much more readable than the
corresponding BINLOG statements. However, they do not correspond exactly to the original SQL
statements that generated the events. The following limitations apply:

637

mysqlbinlog — Utility for Processing Binary Log Files

• The original column names are lost and replaced by @N, where N is a column number.

• Character set information is not available in the binary log, which affects string column display:

• There is no distinction made between corresponding binary and nonbinary string types (BINARY and
CHAR, VARBINARY and VARCHAR, BLOB and TEXT). The output uses a data type of STRING for fixed-
length strings and VARSTRING for variable-length strings.

• For multibyte character sets, the maximum number of bytes per character is not present in the
binary log, so the length for string types is displayed in bytes rather than in characters. For example,
STRING(4) is used as the data type for values from either of these column types:

CHAR(4) CHARACTER SET latin1
CHAR(2) CHARACTER SET ucs2

• Due to the storage format for events of type UPDATE_ROWS_EVENT, UPDATE statements are displayed
with the WHERE clause preceding the SET clause.

Proper interpretation of row events requires the information from the format description event at the
beginning of the binary log. Because mysqlbinlog does not know in advance whether the rest of the log
contains row events, by default it displays the format description event using a BINLOG statement in the
initial part of the output.

If the binary log is known not to contain any events requiring a BINLOG statement (that is, no row events),
the --base64-output=NEVER option can be used to prevent this header from being written.

4.6.7.3 Using mysqlbinlog to Back Up Binary Log Files

By default, mysqlbinlog reads binary log files and displays their contents in text format. This enables you
to examine events within the files more easily and to re-execute them (for example, by using the output as
input to mysql). mysqlbinlog can read log files directly from the local file system, or, with the --read-
from-remote-server option, it can connect to a server and request binary log contents from that server.
mysqlbinlog writes text output to its standard output, or to the file named as the value of the --result-
file=file_name option if that option is given.

• mysqlbinlog Backup Capabilities

• mysqlbinlog Backup Options

• Static and Live Backups

• Output File Naming

• Example: mysqldump + mysqlbinlog for Backup and Restore

• mysqlbinlog Backup Restrictions

mysqlbinlog Backup Capabilities

mysqlbinlog can read binary log files and write new files containing the same content—that is, in binary
format rather than text format. This capability enables you to easily back up a binary log in its original
format. mysqlbinlog can make a static backup, backing up a set of log files and stopping when the end
of the last file is reached. It can also make a continuous (“live”) backup, staying connected to the server
when it reaches the end of the last log file and continuing to copy new events as they are generated. In
continuous-backup operation, mysqlbinlog runs until the connection ends (for example, when the server
exits) or mysqlbinlog is forcibly terminated. When the connection ends, mysqlbinlog does not wait
and retry the connection, unlike a replica server. To continue a live backup after the server has been
restarted, you must also restart mysqlbinlog.

638

mysqlbinlog — Utility for Processing Binary Log Files

mysqlbinlog Backup Options

Binary log backup requires that you invoke mysqlbinlog with two options at minimum:

• The --read-from-remote-server (or -R) option tells mysqlbinlog to connect to a server and
request its binary log. (This is similar to a replica server connecting to its replication source server.)

• The --raw option tells mysqlbinlog to write raw (binary) output, not text output.

Along with --read-from-remote-server, it is common to specify other options: --host indicates
where the server is running, and you may also need to specify connection options such as --user and --
password.

Several other options are useful in conjunction with --raw:

• --stop-never: Stay connected to the server after reaching the end of the last log file and continue to
read new events.

• --stop-never-slave-server-id=id: The server ID that mysqlbinlog reports to the server
when --stop-never is used. The default is 65535. This can be used to avoid a conflict with the ID of
a replica server or another mysqlbinlog process. See Section 4.6.7.4, “Specifying the mysqlbinlog
Server ID”.

• --result-file: A prefix for output file names, as described later.

Static and Live Backups

To back up a server's binary log files with mysqlbinlog, you must specify file names that actually exist
on the server. If you do not know the names, connect to the server and use the SHOW BINARY LOGS
statement to see the current names. Suppose that the statement produces this output:

mysql> SHOW BINARY LOGS;
+---------------+-----------+
| Log_name | File_size |
+---------------+-----------+
binlog.000130	27459
binlog.000131	13719
binlog.000132	43268
+---------------+-----------+

With that information, you can use mysqlbinlog to back up the binary log to the current directory as
follows (enter each command on a single line):

• To make a static backup of binlog.000130 through binlog.000132, use either of these commands:

mysqlbinlog --read-from-remote-server --host=host_name --raw
 binlog.000130 binlog.000131 binlog.000132

mysqlbinlog --read-from-remote-server --host=host_name --raw
 --to-last-log binlog.000130

The first command specifies every file name explicitly. The second names only the first file and uses
--to-last-log to read through the last. A difference between these commands is that if the server
happens to open binlog.000133 before mysqlbinlog reaches the end of binlog.000132, the first
command does not read it, but the second command does.

• To make a live backup in which mysqlbinlog starts with binlog.000130 to copy existing log files,
then stays connected to copy new events as the server generates them:

mysqlbinlog --read-from-remote-server --host=host_name --raw
 --stop-never binlog.000130

639

mysqlbinlog — Utility for Processing Binary Log Files

With --stop-never, it is not necessary to specify --to-last-log to read to the last log file because
that option is implied.

Output File Naming

Without --raw, mysqlbinlog produces text output and the --result-file option, if given, specifies
the name of the single file to which all output is written. With --raw, mysqlbinlog writes one binary
output file for each log file transferred from the server. By default, mysqlbinlog writes the files in the
current directory with the same names as the original log files. To modify the output file names, use the --
result-file option. In conjunction with --raw, the --result-file option value is treated as a prefix
that modifies the output file names.

Suppose that a server currently has binary log files named binlog.000999 and up. If you use
mysqlbinlog --raw to back up the files, the --result-file option produces output file names as
shown in the following table. You can write the files to a specific directory by beginning the --result-
file value with the directory path. If the --result-file value consists only of a directory name, the
value must end with the pathname separator character. Output files are overwritten if they exist.

--result-file Option Output File Names

--result-file=x xbinlog.000999 and up

--result-file=/tmp/ /tmp/binlog.000999 and up

--result-file=/tmp/x /tmp/xbinlog.000999 and up

Example: mysqldump + mysqlbinlog for Backup and Restore

The following example describes a simple scenario that shows how to use mysqldump and mysqlbinlog
together to back up a server's data and binary log, and how to use the backup to restore the server if data
loss occurs. The example assumes that the server is running on host host_name and its first binary log
file is named binlog.000999. Enter each command on a single line.

Use mysqlbinlog to make a continuous backup of the binary log:

mysqlbinlog --read-from-remote-server --host=host_name --raw
 --stop-never binlog.000999

Use mysqldump to create a dump file as a snapshot of the server's data. Use --all-databases, --
events, and --routines to back up all data, and --master-data=2 to include the current binary log
coordinates in the dump file.

mysqldump --host=host_name --all-databases --events --routines --master-data=2> dump_file

Execute the mysqldump command periodically to create newer snapshots as desired.

If data loss occurs (for example, if the server unexpectedly exits), use the most recent dump file to restore
the data:

mysql --host=host_name -u root -p < dump_file

Then use the binary log backup to re-execute events that were written after the coordinates listed in the
dump file. Suppose that the coordinates in the file look like this:

-- CHANGE MASTER TO MASTER_LOG_FILE='binlog.001002', MASTER_LOG_POS=27284;

If the most recent backed-up log file is named binlog.001004, re-execute the log events like this:

mysqlbinlog --start-position=27284 binlog.001002 binlog.001003 binlog.001004
 | mysql --host=host_name -u root -p

640

mysqldumpslow — Summarize Slow Query Log Files

You might find it easier to copy the backup files (dump file and binary log files) to the server host to make it
easier to perform the restore operation, or if MySQL does not allow remote root access.

mysqlbinlog Backup Restrictions

Binary log backups with mysqlbinlog are subject to these restrictions:

• mysqlbinlog does not automatically reconnect to the MySQL server if the connection is lost (for
example, if a server restart occurs or there is a network outage).

• Prior to MySQL 5.7.19, mysqlbinlog does not get all events as they are committed, even if the server
is configured with sync_binlog=1. This means that some of the most recent events may be missing.
To ensure that mysqlbinlog sees the most recent events, flush the binary log on the server that you
are backing up.

• The delay for a backup is similar to the delay for a replica server.

4.6.7.4 Specifying the mysqlbinlog Server ID

When invoked with the --read-from-remote-server option, mysqlbinlog connects to a MySQL
server, specifies a server ID to identify itself, and requests binary log files from the server. You can use
mysqlbinlog to request log files from a server in several ways:

• Specify an explicitly named set of files: For each file, mysqlbinlog connects and issues a Binlog
dump command. The server sends the file and disconnects. There is one connection per file.

• Specify the beginning file and --to-last-log: mysqlbinlog connects and issues a Binlog dump
command for all files. The server sends all files and disconnects.

• Specify the beginning file and --stop-never (which implies --to-last-log): mysqlbinlog
connects and issues a Binlog dump command for all files. The server sends all files, but does not
disconnect after sending the last one.

With --read-from-remote-server only, mysqlbinlog connects using a server ID of 0, which tells
the server to disconnect after sending the last requested log file.

With --read-from-remote-server and --stop-never, mysqlbinlog connects using a nonzero
server ID, so the server does not disconnect after sending the last log file. The server ID is 65535 by
default, but this can be changed with --stop-never-slave-server-id.

Thus, for the first two ways of requesting files, the server disconnects because mysqlbinlog specifies
a server ID of 0. It does not disconnect if --stop-never is given because mysqlbinlog specifies a
nonzero server ID.

4.6.8 mysqldumpslow — Summarize Slow Query Log Files

The MySQL slow query log contains information about queries that take a long time to execute (see
Section 5.4.5, “The Slow Query Log”). mysqldumpslow parses MySQL slow query log files and
summarizes their contents.

Normally, mysqldumpslow groups queries that are similar except for the particular values of number and
string data values. It “abstracts” these values to N and 'S' when displaying summary output. To modify
value abstracting behavior, use the -a and -n options.

Invoke mysqldumpslow like this:

mysqldumpslow [options] [log_file ...]

641

mysqldumpslow — Summarize Slow Query Log Files

Example output with no options given:

Reading mysql slow query log from /usr/local/mysql/data/mysqld57-slow.log
Count: 1 Time=4.32s (4s) Lock=0.00s (0s) Rows=0.0 (0), root[root]@localhost
 insert into t2 select * from t1

Count: 3 Time=2.53s (7s) Lock=0.00s (0s) Rows=0.0 (0), root[root]@localhost
 insert into t2 select * from t1 limit N

Count: 3 Time=2.13s (6s) Lock=0.00s (0s) Rows=0.0 (0), root[root]@localhost
 insert into t1 select * from t1

mysqldumpslow supports the following options.

Table 4.24 mysqldumpslow Options

Option Name Description

-a Do not abstract all numbers to N and strings to 'S'

-n Abstract numbers with at least the specified digits

--debug Write debugging information

-g Only consider statements that match the pattern

--help Display help message and exit

-h Host name of the server in the log file name

-i Name of the server instance

-l Do not subtract lock time from total time

-r Reverse the sort order

-s How to sort output

-t Display only first num queries

--verbose Verbose mode

• --help

Command-Line Format --help

Display a help message and exit.

• -a

Do not abstract all numbers to N and strings to 'S'.

• --debug, -d

Command-Line Format --debug

Run in debug mode.

This option is available only if MySQL was built using WITH_DEBUG. MySQL release binaries provided
by Oracle are not built using this option.

• -g pattern

Type String

642

mysqldumpslow — Summarize Slow Query Log Files

Consider only queries that match the (grep-style) pattern.

• -h host_name

Type String

Default Value *

Host name of MySQL server for *-slow.log file name. The value can contain a wildcard. The default is
* (match all).

• -i name

Type String

Name of server instance (if using mysql.server startup script).

• -l

Do not subtract lock time from total time.

• -n N

Type Numeric

Abstract numbers with at least N digits within names.

• -r

Reverse the sort order.

• -s sort_type

Type String

Default Value at

How to sort the output. The value of sort_type should be chosen from the following list:

• t, at: Sort by query time or average query time

• l, al: Sort by lock time or average lock time

• r, ar: Sort by rows sent or average rows sent

• c: Sort by count

By default, mysqldumpslow sorts by average query time (equivalent to -s at).

• -t N

Type Numeric

643

Program Development Utilities

Display only the first N queries in the output.

• --verbose, -v

Command-Line Format --verbose

Verbose mode. Print more information about what the program does.

4.7 Program Development Utilities
This section describes some utilities that you may find useful when developing MySQL programs.

In shell scripts, you can use the my_print_defaults program to parse option files and see what options
would be used by a given program. The following example shows the output that my_print_defaults
might produce when asked to show the options found in the [client] and [mysql] groups:

$> my_print_defaults client mysql
--port=3306
--socket=/tmp/mysql.sock
--no-auto-rehash

Note for developers: Option file handling is implemented in the C client library simply by processing all
options in the appropriate group or groups before any command-line arguments. This works well for
programs that use the last instance of an option that is specified multiple times. If you have a C or C++
program that handles multiply specified options this way but that does not read option files, you need add
only two lines to give it that capability. Check the source code of any of the standard MySQL clients to see
how to do this.

Several other language interfaces to MySQL are based on the C client library, and some of them provide a
way to access option file contents. These include Perl and Python. For details, see the documentation for
your preferred interface.

4.7.1 mysql_config — Display Options for Compiling Clients

mysql_config provides you with useful information for compiling your MySQL client and connecting it to
MySQL. It is a shell script, so it is available only on Unix and Unix-like systems.

Note

As of MySQL 5.7.9, pkg-config can be used as an alternative to mysql_config
for obtaining information such as compiler flags or link libraries required to compile
MySQL applications. For more information, see Building C API Client Programs
Using pkg-config.

Note

As of MySQL 5.7.4, for binary distributions for Solaris, mysql_config does not
provide arguments for linking with the embedded library. To get linking arguments
for the embedded library, use the mysql_server_config script instead.

mysql_config supports the following options.

• --cflags

C Compiler flags to find include files and critical compiler flags and defines used when compiling the
libmysqlclient library. The options returned are tied to the specific compiler that was used when the

644

https://dev.mysql.com/doc/c-api/5.7/en/c-api-building-clients-pkg-config.html
https://dev.mysql.com/doc/c-api/5.7/en/c-api-building-clients-pkg-config.html

mysql_config — Display Options for Compiling Clients

library was created and might clash with the settings for your own compiler. Use --include for more
portable options that contain only include paths.

• --cxxflags

Like --cflags, but for C++ compiler flags.

• --include

Compiler options to find MySQL include files.

• --libmysqld-libs, --embedded-libs, --embedded

Libraries and options required to link with libmysqld, the MySQL embedded server.

Note

The libmysqld embedded server library is deprecated as of MySQL 5.7.19 and
has been removed in MySQL 8.0.

• --libs

Libraries and options required to link with the MySQL client library.

• --libs_r

Libraries and options required to link with the thread-safe MySQL client library. In MySQL 5.7, all client
libraries are thread-safe, so this option need not be used. The --libs option can be used in all cases.

• --plugindir

The default plugin directory path name, defined when configuring MySQL.

• --port

The default TCP/IP port number, defined when configuring MySQL.

• --socket

The default Unix socket file, defined when configuring MySQL.

• --variable=var_name

Display the value of the named configuration variable. Permitted var_name values are pkgincludedir
(the header file directory), pkglibdir (the library directory), and plugindir (the plugin directory).

• --version

Version number for the MySQL distribution.

If you invoke mysql_config with no options, it displays a list of all options that it supports, and their
values:

$> mysql_config
Usage: /usr/local/mysql/bin/mysql_config [options]
Options:
 --cflags [-I/usr/local/mysql/include/mysql -mcpu=pentiumpro]
 --cxxflags [-I/usr/local/mysql/include/mysql -mcpu=pentiumpro]
 --include [-I/usr/local/mysql/include/mysql]
 --libs [-L/usr/local/mysql/lib/mysql -lmysqlclient
 -lpthread -lm -lrt -lssl -lcrypto -ldl]

645

my_print_defaults — Display Options from Option Files

 --libs_r [-L/usr/local/mysql/lib/mysql -lmysqlclient_r
 -lpthread -lm -lrt -lssl -lcrypto -ldl]
 --plugindir [/usr/local/mysql/lib/plugin]
 --socket [/tmp/mysql.sock]
 --port [3306]
 --version [5.7.9]
 --libmysqld-libs [-L/usr/local/mysql/lib/mysql -lmysqld
 -lpthread -lm -lrt -lssl -lcrypto -ldl -lcrypt]
 --variable=VAR VAR is one of:
 pkgincludedir [/usr/local/mysql/include]
 pkglibdir [/usr/local/mysql/lib]
 plugindir [/usr/local/mysql/lib/plugin]

You can use mysql_config within a command line using backticks to include the output that it produces
for particular options. For example, to compile and link a MySQL client program, use mysql_config as
follows:

gcc -c `mysql_config --cflags` progname.c
gcc -o progname progname.o `mysql_config --libs`

4.7.2 my_print_defaults — Display Options from Option Files

my_print_defaults displays the options that are present in option groups of option files. The output
indicates what options are used by programs that read the specified option groups. For example, the
mysqlcheck program reads the [mysqlcheck] and [client] option groups. To see what options are
present in those groups in the standard option files, invoke my_print_defaults like this:

$> my_print_defaults mysqlcheck client
--user=myusername
--password=password
--host=localhost

The output consists of options, one per line, in the form that they would be specified on the command line.

my_print_defaults supports the following options.

• --help, -?

Display a help message and exit.

• --config-file=file_name, --defaults-file=file_name, -c file_name

Read only the given option file.

• --debug=debug_options, -# debug_options

Write a debugging log. A typical debug_options string is d:t:o,file_name. The default is d:t:o,/
tmp/my_print_defaults.trace.

• --defaults-extra-file=file_name, --extra-file=file_name, -e file_name

Read this option file after the global option file but (on Unix) before the user option file.

For additional information about this and other option-file options, see Section 4.2.2.3, “Command-Line
Options that Affect Option-File Handling”.

• --defaults-group-suffix=suffix, -g suffix

In addition to the groups named on the command line, read groups that have the given suffix.

For additional information about this and other option-file options, see Section 4.2.2.3, “Command-Line
Options that Affect Option-File Handling”.

646

resolve_stack_dump — Resolve Numeric Stack Trace Dump to Symbols

• --login-path=name, -l name

Read options from the named login path in the .mylogin.cnf login path file. A “login path” is an
option group containing options that specify which MySQL server to connect to and which account to
authenticate as. To create or modify a login path file, use the mysql_config_editor utility. See
Section 4.6.6, “mysql_config_editor — MySQL Configuration Utility”.

For additional information about this and other option-file options, see Section 4.2.2.3, “Command-Line
Options that Affect Option-File Handling”.

• --no-defaults, -n

Return an empty string.

For additional information about this and other option-file options, see Section 4.2.2.3, “Command-Line
Options that Affect Option-File Handling”.

• --show, -s

As of MySQL 5.7.8, my_print_defaults masks passwords by default. Use this option to display
passwords in cleartext.

• --verbose, -v

Verbose mode. Print more information about what the program does.

• --version, -V

Display version information and exit.

4.7.3 resolve_stack_dump — Resolve Numeric Stack Trace Dump to Symbols

resolve_stack_dump resolves a numeric stack dump to symbols.

Note

resolve_stack_dump is deprecated and is removed in MySQL 8.0. Stack traces
from official MySQL builds are always symbolized, so there is no need to use
resolve_stack_dump.

Invoke resolve_stack_dump like this:

resolve_stack_dump [options] symbols_file [numeric_dump_file]

The symbols file should include the output from the nm --numeric-sort mysqld command. The
numeric dump file should contain a numeric stack track from mysqld. If no numeric dump file is named on
the command line, the stack trace is read from the standard input.

resolve_stack_dump supports the following options.

• --help, -h

Display a help message and exit.

• --numeric-dump-file=file_name, -n file_name

Read the stack trace from the given file.

• --symbols-file=file_name, -s file_name

647

Miscellaneous Programs

Use the given symbols file.

• --version, -V

Display version information and exit.

For more information, see Section 5.8.1.5, “Using a Stack Trace”.

4.8 Miscellaneous Programs

4.8.1 lz4_decompress — Decompress mysqlpump LZ4-Compressed Output

The lz4_decompress utility decompresses mysqlpump output that was created using LZ4 compression.
lz4_decompress was added in MySQL 5.7.10.

Invoke lz4_decompress like this:

lz4_decompress input_file output_file

Example:

mysqlpump --compress-output=LZ4 > dump.lz4
lz4_decompress dump.lz4 dump.txt

To see a help message, invoke lz4_decompress with no arguments.

To decompress mysqlpump ZLIB-compressed output, use zlib_decompress. See Section 4.8.5,
“zlib_decompress — Decompress mysqlpump ZLIB-Compressed Output”.

4.8.2 perror — Display MySQL Error Message Information

For most system errors, MySQL displays, in addition to an internal text message, the system error code in
one of the following styles:

message ... (errno: #)
message ... (Errcode: #)

You can find out what the error code means by examining the documentation for your system or by using
the perror utility.

perror prints a description for a system error code or for a storage engine (table handler) error code.

Invoke perror like this:

perror [options] errorcode ...

Examples:

$> perror 1231
MySQL error code 1231 (ER_WRONG_VALUE_FOR_VAR): Variable '%-.64s' can't
be set to the value of '%-.200s'

$> perror 13 64
OS error code 13: Permission denied
OS error code 64: Machine is not on the network

To obtain the error message for a MySQL Cluster error code, use the ndb_perror utility.

The meaning of system error messages may be dependent on your operating system. A given error code
may mean different things on different operating systems.

perror supports the following options.

648

replace — A String-Replacement Utility

• --help, --info, -I, -?

Display a help message and exit.

• --ndb

Print the error message for an NDB Cluster error code.

This option is deprecated in NDB 7.6.4 and later, where perror prints a warning if it is used, and is
removed in NDB Cluster 8.0. Use the ndb_perror utility instead.

• --silent, -s

Silent mode. Print only the error message.

• --verbose, -v

Verbose mode. Print error code and message. This is the default behavior.

• --version, -V

Display version information and exit.

4.8.3 replace — A String-Replacement Utility

The replace utility program changes strings in place in files or on the standard input.

Note

The replace utility is deprecated as of MySQL 5.7.18 and is removed in MySQL
8.0.

Invoke replace in one of the following ways:

replace from to [from to] ... -- file_name [file_name] ...
replace from to [from to] ... < file_name

from represents a string to look for and to represents its replacement. There can be one or more pairs of
strings.

Use the -- option to indicate where the string-replacement list ends and the file names begin. In this case,
any file named on the command line is modified in place, so you may want to make a copy of the original
before converting it. replace prints a message indicating which of the input files it actually modifies.

If the -- option is not given, replace reads the standard input and writes to the standard output.

replace uses a finite state machine to match longer strings first. It can be used to swap strings. For
example, the following command swaps a and b in the given files, file1 and file2:

replace a b b a -- file1 file2 ...

replace supports the following options.

• -?, -I

Display a help message and exit.

• -#debug_options

Enable debugging.

649

resolveip — Resolve Host name to IP Address or Vice Versa

• -s

Silent mode. Print less information what the program does.

• -v

Verbose mode. Print more information about what the program does.

• -V

Display version information and exit.

4.8.4 resolveip — Resolve Host name to IP Address or Vice Versa

The resolveip utility resolves host names to IP addresses and vice versa.

Note

resolveip is deprecated and is removed in MySQL 8.0. nslookup, host, or dig
can be used instead.

Invoke resolveip like this:

resolveip [options] {host_name|ip-addr} ...

resolveip supports the following options.

• --help, --info, -?, -I

Display a help message and exit.

• --silent, -s

Silent mode. Produce less output.

• --version, -V

Display version information and exit.

4.8.5 zlib_decompress — Decompress mysqlpump ZLIB-Compressed Output

The zlib_decompress utility decompresses mysqlpump output that was created using ZLIB
compression. zlib_decompress was added in MySQL 5.7.10.

Invoke zlib_decompress like this:

zlib_decompress input_file output_file

Example:

mysqlpump --compress-output=ZLIB > dump.zlib
zlib_decompress dump.zlib dump.txt

To see a help message, invoke zlib_decompress with no arguments.

To decompress mysqlpump LZ4-compressed output, use lz4_decompress. See Section 4.8.1,
“lz4_decompress — Decompress mysqlpump LZ4-Compressed Output”.

4.9 Environment Variables

650

Environment Variables

This section lists environment variables that are used directly or indirectly by MySQL. Most of these can
also be found in other places in this manual.

Options on the command line take precedence over values specified in option files and environment
variables, and values in option files take precedence over values in environment variables. In many cases,
it is preferable to use an option file instead of environment variables to modify the behavior of MySQL. See
Section 4.2.2.2, “Using Option Files”.

Variable Description

AUTHENTICATION_LDAP_CLIENT_LOG Client-side LDAP authentication logging level.

AUTHENTICATION_PAM_LOG PAM authentication plugin debug logging settings.

CC The name of your C compiler (for running CMake).

CXX The name of your C++ compiler (for running
CMake).

CC The name of your C compiler (for running CMake).

DBI_USER The default user name for Perl DBI.

DBI_TRACE Trace options for Perl DBI.

HOME The default path for the mysql history file is
$HOME/.mysql_history.

LD_RUN_PATH Used to specify the location of
libmysqlclient.so.

LIBMYSQL_ENABLE_CLEARTEXT_PLUGIN Enable mysql_clear_password authentication
plugin; see Section 6.4.1.6, “Client-Side Cleartext
Pluggable Authentication”.

LIBMYSQL_PLUGIN_DIR Directory in which to look for client plugins.

LIBMYSQL_PLUGINS Client plugins to preload.

MYSQL_DEBUG Debug trace options when debugging.

MYSQL_GROUP_SUFFIX Option group suffix value (like specifying --
defaults-group-suffix).

MYSQL_HISTFILE The path to the mysql history file. If this
variable is set, its value overrides the default for
$HOME/.mysql_history.

MYSQL_HISTIGNORE Patterns specifying statements that mysql should
not log to $HOME/.mysql_history, or syslog if
--syslog is given.

MYSQL_HOME The path to the directory in which the server-specific
my.cnf file resides.

MYSQL_HOST The default host name used by the mysql
command-line client.

MYSQL_OPENSSL_UDF_DH_BITS_THRESHOLD Maximum key length for
create_dh_parameters(). See Section 6.6.2,
“MySQL Enterprise Encryption Usage and
Examples”.

MYSQL_OPENSSL_UDF_DSA_BITS_THRESHOLD Maximum DSA key length for
create_asymmetric_priv_key(). See
Section 6.6.2, “MySQL Enterprise Encryption Usage
and Examples”.

651

Environment Variables

Variable Description

MYSQL_OPENSSL_UDF_RSA_BITS_THRESHOLD Maximum RSA key length for
create_asymmetric_priv_key(). See
Section 6.6.2, “MySQL Enterprise Encryption Usage
and Examples”.

MYSQL_PS1 The command prompt to use in the mysql
command-line client.

MYSQL_PWD The default password when connecting to mysqld.
Using this is insecure. See Section 6.1.2.1, “End-
User Guidelines for Password Security”.

MYSQL_TCP_PORT The default TCP/IP port number.

MYSQL_TEST_LOGIN_FILE The name of the .mylogin.cnf login path file.

MYSQL_TEST_TRACE_CRASH Whether the test protocol trace plugin crashes
clients. See note following table.

MYSQL_TEST_TRACE_DEBUG Whether the test protocol trace plugin produces
output. See note following table.

MYSQL_UNIX_PORT The default Unix socket file name; used for
connections to localhost.

MYSQLX_TCP_PORT The X Plugin default TCP/IP port number.

MYSQLX_UNIX_PORT The X Plugin default Unix socket file name; used for
connections to localhost.

PATH Used by the shell to find MySQL programs.

PKG_CONFIG_PATH Location of mysqlclient.pc pkg-config file.
See note following table.

TMPDIR The directory in which temporary files are created.

TZ This should be set to your local time zone. See
Section B.3.3.7, “Time Zone Problems”.

UMASK The user-file creation mode when creating files. See
note following table.

UMASK_DIR The user-directory creation mode when creating
directories. See note following table.

USER The default user name on Windows when
connecting to mysqld.

For information about the mysql history file, see Section 4.5.1.3, “mysql Client Logging”.

MYSQL_TEST_LOGIN_FILE is the path name of the login path file (the file created by
mysql_config_editor). If not set, the default value is %APPDATA%\MySQL\.mylogin.cnf
directory on Windows and $HOME/.mylogin.cnf on non-Windows systems. See Section 4.6.6,
“mysql_config_editor — MySQL Configuration Utility”.

The MYSQL_TEST_TRACE_DEBUG and MYSQL_TEST_TRACE_CRASH variables control the test protocol
trace client plugin, if MySQL is built with that plugin enabled. For more information, see Using the Test
Protocol Trace Plugin.

The default UMASK and UMASK_DIR values are 0640 and 0750, respectively. MySQL assumes that the
value for UMASK or UMASK_DIR is in octal if it starts with a zero. For example, setting UMASK=0600 is
equivalent to UMASK=384 because 0600 octal is 384 decimal.

652

https://dev.mysql.com/doc/extending-mysql/5.7/en/test-protocol-trace-plugin.html
https://dev.mysql.com/doc/extending-mysql/5.7/en/test-protocol-trace-plugin.html

Unix Signal Handling in MySQL

The UMASK and UMASK_DIR variables, despite their names, are used as modes, not masks:

• If UMASK is set, mysqld uses ($UMASK | 0600) as the mode for file creation, so that newly created
files have a mode in the range from 0600 to 0666 (all values octal).

• If UMASK_DIR is set, mysqld uses ($UMASK_DIR | 0700) as the base mode for directory creation,
which then is AND-ed with ~(~$UMASK & 0666), so that newly created directories have a mode in the
range from 0700 to 0777 (all values octal). The AND operation may remove read and write permissions
from the directory mode, but not execute permissions.

See also Section B.3.3.1, “Problems with File Permissions”.

It may be necessary to set PKG_CONFIG_PATH if you use pkg-config for building MySQL programs.
See Building C API Client Programs Using pkg-config.

4.10 Unix Signal Handling in MySQL
On Unix and Unix-like systems, a process can be the recipient of signals sent to it by the root system
account or the system account that owns the process. Signals can be sent using the kill command.
Some command interpreters associate certain key sequences with signals, such as Control+C to send a
SIGINT signal. This section describes how the MySQL server and client programs respond to signals.

• Server Response to Signals

• Client Response to Signals

Server Response to Signals

mysqld responds to signals as follows:

• SIGTERM causes the server to shut down. This is like executing a SHUTDOWN statement without having
to connect to the server (which for shutdown requires an account that has the SHUTDOWN privilege).

• SIGHUP causes the server to reload the grant tables and to flush tables, logs, the thread cache, and the
host cache. These actions are like various forms of the FLUSH statement. Sending the signal enables
the flush operations to be performed without having to connect to the server, which requires a MySQL
account that has privileges sufficient for those operations. The server also writes a status report to the
error log that has this format:

Status information:

Current dir: /var/mysql/data/
Running threads: 4 Stack size: 262144
Current locks:
lock: 0x7f742c02c0e0:

lock: 0x2cee2a20:
:
lock: 0x207a080:

Key caches:
default
Buffer_size: 8388608
Block_size: 1024
Division_limit: 100
Age_limit: 300
blocks used: 4
not flushed: 0
w_requests: 0
writes: 0
r_requests: 8

653

https://dev.mysql.com/doc/c-api/5.7/en/c-api-building-clients-pkg-config.html

Server Response to Signals

reads: 4

handler status:
read_key: 13
read_next: 4
read_rnd 0
read_first: 13
write: 1
delete 0
update: 0

Table status:
Opened tables: 121
Open tables: 114
Open files: 18
Open streams: 0

Memory status:
<malloc version="1">
<heap nr="0">
<sizes>
 <size from="17" to="32" total="32" count="1"/>
 <size from="33" to="48" total="96" count="2"/>
 <size from="33" to="33" total="33" count="1"/>
 <size from="97" to="97" total="6014" count="62"/>
 <size from="113" to="113" total="904" count="8"/>
 <size from="193" to="193" total="193" count="1"/>
 <size from="241" to="241" total="241" count="1"/>
 <size from="609" to="609" total="609" count="1"/>
 <size from="16369" to="16369" total="49107" count="3"/>
 <size from="24529" to="24529" total="98116" count="4"/>
 <size from="32689" to="32689" total="32689" count="1"/>
 <unsorted from="241" to="7505" total="7746" count="2"/>
</sizes>
<total type="fast" count="3" size="128"/>
<total type="rest" count="84" size="195652"/>
<system type="current" size="690774016"/>
<system type="max" size="690774016"/>
<aspace type="total" size="690774016"/>
<aspace type="mprotect" size="690774016"/>
</heap>
:
<total type="fast" count="85" size="5520"/>
<total type="rest" count="116" size="316820"/>
<total type="mmap" count="82" size="939954176"/>
<system type="current" size="695717888"/>
<system type="max" size="695717888"/>
<aspace type="total" size="695717888"/>
<aspace type="mprotect" size="695717888"/>
</malloc>

Events status:
LLA = Last Locked At LUA = Last Unlocked At
WOC = Waiting On Condition DL = Data Locked

Event scheduler status:
State : INITIALIZED
Thread id : 0
LLA : n/a:0
LUA : n/a:0
WOC : NO
Workers : 0
Executed : 0
Data locked: NO

Event queue status:
Element count : 0

654

Client Response to Signals

Data locked : NO
Attempting lock : NO
LLA : init_queue:95
LUA : init_queue:103
WOC : NO
Next activation : never

• SIGINT normally is ignored by the server. Starting the server with the --gdb option installs an interrupt
handler for SIGINT for debugging purposes. See Section 5.8.1.4, “Debugging mysqld under gdb”.

Client Response to Signals

MySQL client programs respond to signals as follows:

• The mysql client interprets SIGINT (typically the result of typing Control+C) as instruction to interrupt
the current statement if there is one, or to cancel any partial input line otherwise. This behavior can be
disabled using the --sigint-ignore option to ignore SIGINT signals.

• Client programs that use the MySQL client library block SIGPIPE signals by default. These variations
are possible:

• Client can install their own SIGPIPE handler to override the default behavior. See Writing C API
Threaded Client Programs.

• Clients can prevent installation of SIGPIPE handlers by specifying the CLIENT_IGNORE_SIGPIPE
option to mysql_real_connect() at connect time. See mysql_real_connect().

655

https://dev.mysql.com/doc/c-api/5.7/en/c-api-threaded-clients.html
https://dev.mysql.com/doc/c-api/5.7/en/c-api-threaded-clients.html
https://dev.mysql.com/doc/c-api/5.7/en/mysql-real-connect.html
https://dev.mysql.com/doc/c-api/5.7/en/mysql-real-connect.html

656

Chapter 5 MySQL Server Administration

Table of Contents
5.1 The MySQL Server ... 658

5.1.1 Configuring the Server ... 658
5.1.2 Server Configuration Defaults ... 660
5.1.3 Server Option, System Variable, and Status Variable Reference 661
5.1.4 Server System Variable Reference ... 702
5.1.5 Server Status Variable Reference ... 723
5.1.6 Server Command Options .. 738
5.1.7 Server System Variables .. 766
5.1.8 Using System Variables ... 891
5.1.9 Server Status Variables .. 909
5.1.10 Server SQL Modes .. 931
5.1.11 Connection Management .. 947
5.1.12 IPv6 Support .. 952
5.1.13 MySQL Server Time Zone Support ... 956
5.1.14 Server-Side Help Support ... 961
5.1.15 Server Tracking of Client Session State .. 962
5.1.16 The Server Shutdown Process ... 965

5.2 The MySQL Data Directory ... 967
5.3 The mysql System Database ... 967
5.4 MySQL Server Logs ... 970

5.4.1 Selecting General Query Log and Slow Query Log Output Destinations 971
5.4.2 The Error Log .. 974
5.4.3 The General Query Log ... 976
5.4.4 The Binary Log .. 978
5.4.5 The Slow Query Log .. 991
5.4.6 The DDL Log ... 993
5.4.7 Server Log Maintenance .. 993

5.5 MySQL Server Plugins .. 995
5.5.1 Installing and Uninstalling Plugins ... 996
5.5.2 Obtaining Server Plugin Information .. 1000
5.5.3 MySQL Enterprise Thread Pool .. 1001
5.5.4 The Rewriter Query Rewrite Plugin ... 1007
5.5.5 Version Tokens .. 1016
5.5.6 MySQL Plugin Services .. 1027

5.6 MySQL Server Loadable Functions .. 1035
5.6.1 Installing and Uninstalling Loadable Functions ... 1036
5.6.2 Obtaining Information About Loadable Functions ... 1037

5.7 Running Multiple MySQL Instances on One Machine .. 1038
5.7.1 Setting Up Multiple Data Directories .. 1039
5.7.2 Running Multiple MySQL Instances on Windows ... 1040
5.7.3 Running Multiple MySQL Instances on Unix .. 1043
5.7.4 Using Client Programs in a Multiple-Server Environment .. 1044

5.8 Debugging MySQL .. 1045
5.8.1 Debugging a MySQL Server ... 1045
5.8.2 Debugging a MySQL Client .. 1052
5.8.3 The DBUG Package ... 1052
5.8.4 Tracing mysqld Using DTrace ... 1055

657

The MySQL Server

MySQL Server (mysqld) is the main program that does most of the work in a MySQL installation. This
chapter provides an overview of MySQL Server and covers general server administration:

• Server configuration

• The data directory, particularly the mysql system database

• The server log files

• Management of multiple servers on a single machine

For additional information on administrative topics, see also:

• Chapter 6, Security

• Chapter 7, Backup and Recovery

• Chapter 16, Replication

5.1 The MySQL Server

mysqld is the MySQL server. The following discussion covers these MySQL server configuration topics:

• Startup options that the server supports. You can specify these options on the command line, through
configuration files, or both.

• Server system variables. These variables reflect the current state and values of the startup options,
some of which can be modified while the server is running.

• Server status variables. These variables contain counters and statistics about runtime operation.

• How to set the server SQL mode. This setting modifies certain aspects of SQL syntax and semantics,
for example for compatibility with code from other database systems, or to control the error handling for
particular situations.

• How the server manages client connections.

• Configuring and using IPv6 support.

• Configuring and using time zone support.

• Server-side help capabilities.

• The server shutdown process. There are performance and reliability considerations depending on the
type of table (transactional or nontransactional) and whether you use replication.

For listings of MySQL server variables and options that have been added, deprecated, or removed in
MySQL 5.7, see Section 1.4, “Server and Status Variables and Options Added, Deprecated, or Removed
in MySQL 5.7”.

Note

Not all storage engines are supported by all MySQL server binaries and
configurations. To find out how to determine which storage engines your MySQL
server installation supports, see Section 13.7.5.16, “SHOW ENGINES Statement”.

5.1.1 Configuring the Server

658

Configuring the Server

The MySQL server, mysqld, has many command options and system variables that can be set at startup
to configure its operation. To determine the default command option and system variable values used by
the server, execute this command:

$> mysqld --verbose --help

The command produces a list of all mysqld options and configurable system variables. Its output includes
the default option and variable values and looks something like this:

abort-slave-event-count 0
allow-suspicious-udfs FALSE
archive ON
auto-increment-increment 1
auto-increment-offset 1
autocommit TRUE
automatic-sp-privileges TRUE
avoid-temporal-upgrade FALSE
back-log 80
basedir /home/jon/bin/mysql-5.7/
...
tmpdir /tmp
transaction-alloc-block-size 8192
transaction-isolation REPEATABLE-READ
transaction-prealloc-size 4096
transaction-read-only FALSE
transaction-write-set-extraction OFF
updatable-views-with-limit YES
validate-user-plugins TRUE
verbose TRUE
wait-timeout 28800

To see the current system variable values actually used by the server as it runs, connect to it and execute
this statement:

mysql> SHOW VARIABLES;

To see some statistical and status indicators for a running server, execute this statement:

mysql> SHOW STATUS;

System variable and status information also is available using the mysqladmin command:

$> mysqladmin variables
$> mysqladmin extended-status

For a full description of all command options, system variables, and status variables, see these sections:

• Section 5.1.6, “Server Command Options”

• Section 5.1.7, “Server System Variables”

• Section 5.1.9, “Server Status Variables”

More detailed monitoring information is available from the Performance Schema; see Chapter 25, MySQL
Performance Schema. In addition, the MySQL sys schema is a set of objects that provides convenient
access to data collected by the Performance Schema; see Chapter 26, MySQL sys Schema.

MySQL uses algorithms that are very scalable, so you can usually run with very little memory. However,
normally better performance results from giving MySQL more memory.

When tuning a MySQL server, the two most important variables to configure are key_buffer_size and
table_open_cache. You should first feel confident that you have these set appropriately before trying to
change any other variables.

659

Server Configuration Defaults

The following examples indicate some typical variable values for different runtime configurations.

• If you have at least 1-2GB of memory and many tables and want maximum performance with a
moderate number of clients, use something like this:

$> mysqld_safe --key_buffer_size=384M --table_open_cache=4000 \
 --sort_buffer_size=4M --read_buffer_size=1M &

• If you have only 256MB of memory and only a few tables, but you still do a lot of sorting, you can use
something like this:

$> mysqld_safe --key_buffer_size=64M --sort_buffer_size=1M

If there are very many simultaneous connections, swapping problems may occur unless mysqld has
been configured to use very little memory for each connection. mysqld performs better if you have
enough memory for all connections.

• With little memory and lots of connections, use something like this:

$> mysqld_safe --key_buffer_size=512K --sort_buffer_size=100K \
 --read_buffer_size=100K &

Or even this:

$> mysqld_safe --key_buffer_size=512K --sort_buffer_size=16K \
 --table_open_cache=32 --read_buffer_size=8K \
 --net_buffer_length=1K &

If you are performing GROUP BY or ORDER BY operations on tables that are much larger than your
available memory, increase the value of read_rnd_buffer_size to speed up the reading of rows
following sorting operations.

If you specify an option on the command line for mysqld or mysqld_safe, it remains in effect only for
that invocation of the server. To use the option every time the server runs, put it in an option file. See
Section 4.2.2.2, “Using Option Files”.

5.1.2 Server Configuration Defaults

The MySQL server has many operating parameters, which you can change at server startup using
command-line options or configuration files (option files). It is also possible to change many parameters at
runtime. For general instructions on setting parameters at startup or runtime, see Section 5.1.6, “Server
Command Options”, and Section 5.1.7, “Server System Variables”.

On Windows, MySQL Installer interacts with the user and creates a file named my.ini in the base
installation directory as the default option file. If you install on Windows from a Zip archive, you can copy
the my-default.ini template file in the base installation directory to my.ini and use the latter as the
default option file.

Note

As of MySQL 5.7.18, my-default.ini is no longer included in or installed by
distribution packages.

Note

On Windows, the .ini or .cnf option file extension might not be displayed.

After completing the installation process, you can edit the default option file at any time to modify the
parameters used by the server. For example, to use a parameter setting in the file that is commented with

660

Server Option, System Variable, and Status Variable Reference

a # character at the beginning of the line, remove the #, and modify the parameter value if necessary. To
disable a setting, either add a # to the beginning of the line or remove it.

For non-Windows platforms, no default option file is created during either the server installation or
the data directory initialization process. Create your option file by following the instructions given in
Section 4.2.2.2, “Using Option Files”. Without an option file, the server just starts with its default settings—
see Section 5.1.2, “Server Configuration Defaults” on how to check those settings.

For additional information about option file format and syntax, see Section 4.2.2.2, “Using Option Files”.

5.1.3 Server Option, System Variable, and Status Variable Reference

The following table lists all command-line options, system variables, and status variables applicable within
mysqld.

The table lists command-line options (Cmd-line), options valid in configuration files (Option file), server
system variables (System Var), and status variables (Status var) in one unified list, with an indication of
where each option or variable is valid. If a server option set on the command line or in an option file differs
from the name of the corresponding system variable, the variable name is noted immediately below the
corresponding option. For system and status variables, the scope of the variable (Var Scope) is Global,
Session, or both. Please see the corresponding item descriptions for details on setting and using the
options and variables. Where appropriate, direct links to further information about the items are provided.

For a version of this table that is specific to NDB Cluster, see Section 21.4.2.5, “NDB Cluster mysqld
Option and Variable Reference”.

Table 5.1 Command-Line Option, System Variable, and Status Variable Summary

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

abort-slave-
event-count

Yes Yes

Aborted_clients Yes Global No

Aborted_connects Yes Global No

allow-
suspicious-
udfs

Yes Yes

ansi Yes Yes

audit-log Yes Yes

audit_log_buffer_sizeYes Yes Yes Global No

audit_log_compressionYes Yes Yes Global No

audit_log_connection_policyYes Yes Yes Global Yes

audit_log_current_session Yes Both No

Audit_log_current_size Yes Global No

audit_log_disableYes Yes Yes Global Yes

audit_log_encryptionYes Yes Yes Global No

Audit_log_event_max_drop_size Yes Global No

Audit_log_events Yes Global No

Audit_log_events_filtered Yes Global No

Audit_log_events_lost Yes Global No

661

Server Option, System Variable, and Status Variable Reference

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

Audit_log_events_written Yes Global No

audit_log_exclude_accountsYes Yes Yes Global Yes

audit_log_file Yes Yes Yes Global No

audit_log_filter_id Yes Both No

audit_log_flush Yes Global Yes

audit_log_formatYes Yes Yes Global No

audit_log_format_unix_timestampYes Yes Yes Global Yes

audit_log_include_accountsYes Yes Yes Global Yes

audit_log_policyYes Yes Yes Global No

audit_log_read_buffer_sizeYes Yes Yes Varies Varies

audit_log_rotate_on_sizeYes Yes Yes Global Yes

audit_log_statement_policyYes Yes Yes Global Yes

audit_log_strategyYes Yes Yes Global No

Audit_log_total_size Yes Global No

Audit_log_write_waits Yes Global No

authentication_ldap_sasl_auth_method_nameYes Yes Yes Global Yes

authentication_ldap_sasl_bind_base_dnYes Yes Yes Global Yes

authentication_ldap_sasl_bind_root_dnYes Yes Yes Global Yes

authentication_ldap_sasl_bind_root_pwdYes Yes Yes Global Yes

authentication_ldap_sasl_ca_pathYes Yes Yes Global Yes

authentication_ldap_sasl_group_search_attrYes Yes Yes Global Yes

authentication_ldap_sasl_group_search_filterYes Yes Yes Global Yes

authentication_ldap_sasl_init_pool_sizeYes Yes Yes Global Yes

authentication_ldap_sasl_log_statusYes Yes Yes Global Yes

authentication_ldap_sasl_max_pool_sizeYes Yes Yes Global Yes

authentication_ldap_sasl_server_hostYes Yes Yes Global Yes

authentication_ldap_sasl_server_portYes Yes Yes Global Yes

authentication_ldap_sasl_tlsYes Yes Yes Global Yes

authentication_ldap_sasl_user_search_attrYes Yes Yes Global Yes

authentication_ldap_simple_auth_method_nameYes Yes Yes Global Yes

authentication_ldap_simple_bind_base_dnYes Yes Yes Global Yes

authentication_ldap_simple_bind_root_dnYes Yes Yes Global Yes

authentication_ldap_simple_bind_root_pwdYes Yes Yes Global Yes

authentication_ldap_simple_ca_pathYes Yes Yes Global Yes

authentication_ldap_simple_group_search_attrYes Yes Yes Global Yes

authentication_ldap_simple_group_search_filterYes Yes Yes Global Yes

authentication_ldap_simple_init_pool_sizeYes Yes Yes Global Yes

authentication_ldap_simple_log_statusYes Yes Yes Global Yes

662

Server Option, System Variable, and Status Variable Reference

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

authentication_ldap_simple_max_pool_sizeYes Yes Yes Global Yes

authentication_ldap_simple_server_hostYes Yes Yes Global Yes

authentication_ldap_simple_server_portYes Yes Yes Global Yes

authentication_ldap_simple_tlsYes Yes Yes Global Yes

authentication_ldap_simple_user_search_attrYes Yes Yes Global Yes

authentication_windows_log_levelYes Yes Yes Global No

authentication_windows_use_principal_nameYes Yes Yes Global No

auto_generate_certsYes Yes Yes Global No

auto_increment_incrementYes Yes Yes Both Yes

auto_increment_offsetYes Yes Yes Both Yes

autocommit Yes Yes Yes Both Yes

automatic_sp_privilegesYes Yes Yes Global Yes

avoid_temporal_upgradeYes Yes Yes Global Yes

back_log Yes Yes Yes Global No

basedir Yes Yes Yes Global No

big_tables Yes Yes Yes Both Yes

bind_address Yes Yes Yes Global No

Binlog_cache_disk_use Yes Global No

binlog_cache_sizeYes Yes Yes Global Yes

Binlog_cache_use Yes Global No

binlog-
checksum

Yes Yes

binlog_checksumYes Yes Yes Global Yes

binlog_direct_non_transactional_updatesYes Yes Yes Both Yes

binlog-do-db Yes Yes

binlog_error_actionYes Yes Yes Global Yes

binlog_format Yes Yes Yes Both Yes

binlog_group_commit_sync_delayYes Yes Yes Global Yes

binlog_group_commit_sync_no_delay_countYes Yes Yes Global Yes

binlog_gtid_simple_recoveryYes Yes Yes Global No

binlog-ignore-
db

Yes Yes

binlog_max_flush_queue_timeYes Yes Yes Global Yes

binlog_order_commitsYes Yes Yes Global Yes

binlog-row-
event-max-
size

Yes Yes

binlog_row_imageYes Yes Yes Both Yes

binlog_rows_query_log_eventsYes Yes Yes Both Yes

663

Server Option, System Variable, and Status Variable Reference

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

Binlog_stmt_cache_disk_use Yes Global No

binlog_stmt_cache_sizeYes Yes Yes Global Yes

Binlog_stmt_cache_use Yes Global No

binlog_transaction_dependency_history_sizeYes Yes Yes Global Yes

binlog_transaction_dependency_trackingYes Yes Yes Global Yes

block_encryption_modeYes Yes Yes Both Yes

bootstrap Yes Yes

bulk_insert_buffer_sizeYes Yes Yes Both Yes

Bytes_received Yes Both No

Bytes_sent Yes Both No

character_set_client Yes Both Yes

character-
set-client-
handshake

Yes Yes

character_set_connection Yes Both Yes

character_set_database
(note 1)

Yes Both Yes

character_set_filesystemYes Yes Yes Both Yes

character_set_results Yes Both Yes

character_set_serverYes Yes Yes Both Yes

character_set_system Yes Global No

character_sets_dirYes Yes Yes Global No

check_proxy_usersYes Yes Yes Global Yes

chroot Yes Yes

collation_connection Yes Both Yes

collation_database
(note 1)

Yes Both Yes

collation_serverYes Yes Yes Both Yes

Com_admin_commands Yes Both No

Com_alter_db Yes Both No

Com_alter_db_upgrade Yes Both No

Com_alter_event Yes Both No

Com_alter_function Yes Both No

Com_alter_procedure Yes Both No

Com_alter_server Yes Both No

Com_alter_table Yes Both No

Com_alter_tablespace Yes Both No

Com_alter_user Yes Both No

Com_analyze Yes Both No

664

Server Option, System Variable, and Status Variable Reference

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

Com_assign_to_keycache Yes Both No

Com_begin Yes Both No

Com_binlog Yes Both No

Com_call_procedure Yes Both No

Com_change_db Yes Both No

Com_change_master Yes Both No

Com_change_repl_filter Yes Both No

Com_check Yes Both No

Com_checksum Yes Both No

Com_commit Yes Both No

Com_create_db Yes Both No

Com_create_event Yes Both No

Com_create_function Yes Both No

Com_create_index Yes Both No

Com_create_procedure Yes Both No

Com_create_server Yes Both No

Com_create_table Yes Both No

Com_create_trigger Yes Both No

Com_create_udf Yes Both No

Com_create_user Yes Both No

Com_create_view Yes Both No

Com_dealloc_sql Yes Both No

Com_delete Yes Both No

Com_delete_multi Yes Both No

Com_do Yes Both No

Com_drop_db Yes Both No

Com_drop_event Yes Both No

Com_drop_function Yes Both No

Com_drop_index Yes Both No

Com_drop_procedure Yes Both No

Com_drop_server Yes Both No

Com_drop_table Yes Both No

Com_drop_trigger Yes Both No

Com_drop_user Yes Both No

Com_drop_view Yes Both No

Com_empty_query Yes Both No

Com_execute_sql Yes Both No

Com_explain_other Yes Both No

665

Server Option, System Variable, and Status Variable Reference

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

Com_flush Yes Both No

Com_get_diagnostics Yes Both No

Com_grant Yes Both No

Com_group_replication_start Yes Global No

Com_group_replication_stop Yes Global No

Com_ha_close Yes Both No

Com_ha_open Yes Both No

Com_ha_read Yes Both No

Com_help Yes Both No

Com_insert Yes Both No

Com_insert_select Yes Both No

Com_install_plugin Yes Both No

Com_kill Yes Both No

Com_load Yes Both No

Com_lock_tables Yes Both No

Com_optimize Yes Both No

Com_preload_keys Yes Both No

Com_prepare_sql Yes Both No

Com_purge Yes Both No

Com_purge_before_date Yes Both No

Com_release_savepoint Yes Both No

Com_rename_table Yes Both No

Com_rename_user Yes Both No

Com_repair Yes Both No

Com_replace Yes Both No

Com_replace_select Yes Both No

Com_reset Yes Both No

Com_resignal Yes Both No

Com_revoke Yes Both No

Com_revoke_all Yes Both No

Com_rollback Yes Both No

Com_rollback_to_savepoint Yes Both No

Com_savepoint Yes Both No

Com_select Yes Both No

Com_set_option Yes Both No

Com_show_authors Yes Both No

Com_show_binlog_events Yes Both No

Com_show_binlogs Yes Both No

666

Server Option, System Variable, and Status Variable Reference

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

Com_show_charsets Yes Both No

Com_show_collations Yes Both No

Com_show_contributors Yes Both No

Com_show_create_db Yes Both No

Com_show_create_event Yes Both No

Com_show_create_func Yes Both No

Com_show_create_proc Yes Both No

Com_show_create_table Yes Both No

Com_show_create_trigger Yes Both No

Com_show_create_user Yes Both No

Com_show_databases Yes Both No

Com_show_engine_logs Yes Both No

Com_show_engine_mutex Yes Both No

Com_show_engine_status Yes Both No

Com_show_errors Yes Both No

Com_show_events Yes Both No

Com_show_fields Yes Both No

Com_show_function_code Yes Both No

Com_show_function_status Yes Both No

Com_show_grants Yes Both No

Com_show_keys Yes Both No

Com_show_master_status Yes Both No

Com_show_ndb_status Yes Both No

Com_show_open_tables Yes Both No

Com_show_plugins Yes Both No

Com_show_privileges Yes Both No

Com_show_procedure_code Yes Both No

Com_show_procedure_status Yes Both No

Com_show_processlist Yes Both No

Com_show_profile Yes Both No

Com_show_profiles Yes Both No

Com_show_relaylog_events Yes Both No

Com_show_slave_hosts Yes Both No

Com_show_slave_status Yes Both No

Com_show_status Yes Both No

Com_show_storage_engines Yes Both No

Com_show_table_status Yes Both No

Com_show_tables Yes Both No

667

Server Option, System Variable, and Status Variable Reference

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

Com_show_triggers Yes Both No

Com_show_variables Yes Both No

Com_show_warnings Yes Both No

Com_shutdown Yes Both No

Com_signal Yes Both No

Com_slave_start Yes Both No

Com_slave_stop Yes Both No

Com_stmt_close Yes Both No

Com_stmt_execute Yes Both No

Com_stmt_fetch Yes Both No

Com_stmt_prepare Yes Both No

Com_stmt_reprepare Yes Both No

Com_stmt_reset Yes Both No

Com_stmt_send_long_data Yes Both No

Com_truncate Yes Both No

Com_uninstall_plugin Yes Both No

Com_unlock_tables Yes Both No

Com_update Yes Both No

Com_update_multi Yes Both No

Com_xa_commit Yes Both No

Com_xa_end Yes Both No

Com_xa_prepare Yes Both No

Com_xa_recover Yes Both No

Com_xa_rollback Yes Both No

Com_xa_start Yes Both No

completion_typeYes Yes Yes Both Yes

Compression Yes Session No

concurrent_insertYes Yes Yes Global Yes

connect_timeoutYes Yes Yes Global Yes

Connection_control_delay_generated Yes Global No

connection_control_failed_connections_thresholdYes Yes Yes Global Yes

connection_control_max_connection_delayYes Yes Yes Global Yes

connection_control_min_connection_delayYes Yes Yes Global Yes

Connection_errors_accept Yes Global No

Connection_errors_internal Yes Global No

Connection_errors_max_connections Yes Global No

Connection_errors_peer_address Yes Global No

Connection_errors_select Yes Global No

668

Server Option, System Variable, and Status Variable Reference

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

Connection_errors_tcpwrap Yes Global No

Connections Yes Global No

console Yes Yes

core-file Yes Yes

core_file Yes Global No

Created_tmp_disk_tables Yes Both No

Created_tmp_files Yes Global No

Created_tmp_tables Yes Both No

daemon_memcached_enable_binlogYes Yes Yes Global No

daemon_memcached_engine_lib_nameYes Yes Yes Global No

daemon_memcached_engine_lib_pathYes Yes Yes Global No

daemon_memcached_optionYes Yes Yes Global No

daemon_memcached_r_batch_sizeYes Yes Yes Global No

daemon_memcached_w_batch_sizeYes Yes Yes Global No

daemonize Yes Yes

datadir Yes Yes Yes Global No

date_format Yes Global No

datetime_format Yes Global No

debug Yes Yes Yes Both Yes

debug_sync Yes Session Yes

debug-sync-
timeout

Yes Yes

default_authentication_pluginYes Yes Yes Global No

default_password_lifetimeYes Yes Yes Global Yes

default_storage_engineYes Yes Yes Both Yes

default-time-
zone

Yes Yes

default_tmp_storage_engineYes Yes Yes Both Yes

default_week_formatYes Yes Yes Both Yes

defaults-
extra-file

Yes

defaults-file Yes

defaults-
group-suffix

Yes

delay_key_writeYes Yes Yes Global Yes

Delayed_errors Yes Global No

delayed_insert_limitYes Yes Yes Global Yes

Delayed_insert_threads Yes Global No

delayed_insert_timeoutYes Yes Yes Global Yes

669

Server Option, System Variable, and Status Variable Reference

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

delayed_queue_sizeYes Yes Yes Global Yes

Delayed_writes Yes Global No

des-key-file Yes Yes

disable-
partition-
engine-check

Yes Yes

disabled_storage_enginesYes Yes Yes Global No

disconnect_on_expired_passwordYes Yes Yes Global No

disconnect-
slave-event-
count

Yes Yes

div_precision_incrementYes Yes Yes Both Yes

early-plugin-
load

Yes Yes

end_markers_in_jsonYes Yes Yes Both Yes

enforce_gtid_consistencyYes Yes Yes Global Varies

eq_range_index_dive_limitYes Yes Yes Both Yes

error_count Yes Session No

event_schedulerYes Yes Yes Global Yes

exit-info Yes Yes

expire_logs_daysYes Yes Yes Global Yes

explicit_defaults_for_timestampYes Yes Yes Both Yes

external-
locking

Yes Yes

- Variable:
skip_external_locking

external_user Yes Session No

federated Yes Yes

Firewall_access_denied Yes Global No

Firewall_access_granted Yes Global No

Firewall_access_suspicious Yes Global No

Firewall_cached_entries Yes Global No

flush Yes Yes Yes Global Yes

Flush_commands Yes Global No

flush_time Yes Yes Yes Global Yes

foreign_key_checks Yes Both Yes

ft_boolean_syntaxYes Yes Yes Global Yes

ft_max_word_lenYes Yes Yes Global No

ft_min_word_lenYes Yes Yes Global No

ft_query_expansion_limitYes Yes Yes Global No

670

Server Option, System Variable, and Status Variable Reference

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

ft_stopword_fileYes Yes Yes Global No

gdb Yes Yes

general_log Yes Yes Yes Global Yes

general_log_fileYes Yes Yes Global Yes

group_concat_max_lenYes Yes Yes Both Yes

group_replication_allow_local_disjoint_gtids_joinYes Yes Yes Global Yes

group_replication_allow_local_lower_version_joinYes Yes Yes Global Yes

group_replication_auto_increment_incrementYes Yes Yes Global Yes

group_replication_bootstrap_groupYes Yes Yes Global Yes

group_replication_components_stop_timeoutYes Yes Yes Global Yes

group_replication_compression_thresholdYes Yes Yes Global Yes

group_replication_enforce_update_everywhere_checksYes Yes Yes Global Yes

group_replication_exit_state_actionYes Yes Yes Global Yes

group_replication_flow_control_applier_thresholdYes Yes Yes Global Yes

group_replication_flow_control_certifier_thresholdYes Yes Yes Global Yes

group_replication_flow_control_modeYes Yes Yes Global Yes

group_replication_force_membersYes Yes Yes Global Yes

group_replication_group_nameYes Yes Yes Global Yes

group_replication_group_seedsYes Yes Yes Global Yes

group_replication_gtid_assignment_block_sizeYes Yes Yes Global Yes

group_replication_ip_whitelistYes Yes Yes Global Yes

group_replication_local_addressYes Yes Yes Global Yes

group_replication_member_weightYes Yes Yes Global Yes

group_replication_poll_spin_loopsYes Yes Yes Global Yes

group_replication_primary_member Yes Global No

group_replication_recovery_complete_atYes Yes Yes Global Yes

group_replication_recovery_reconnect_intervalYes Yes Yes Global Yes

group_replication_recovery_retry_countYes Yes Yes Global Yes

group_replication_recovery_ssl_caYes Yes Yes Global Yes

group_replication_recovery_ssl_capathYes Yes Yes Global Yes

group_replication_recovery_ssl_certYes Yes Yes Global Yes

group_replication_recovery_ssl_cipherYes Yes Yes Global Yes

group_replication_recovery_ssl_crlYes Yes Yes Global Yes

group_replication_recovery_ssl_crlpathYes Yes Yes Global Yes

group_replication_recovery_ssl_keyYes Yes Yes Global Yes

group_replication_recovery_ssl_verify_server_certYes Yes Yes Global Yes

group_replication_recovery_use_sslYes Yes Yes Global Yes

group_replication_single_primary_modeYes Yes Yes Global Yes

671

Server Option, System Variable, and Status Variable Reference

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

group_replication_ssl_modeYes Yes Yes Global Yes

group_replication_start_on_bootYes Yes Yes Global Yes

group_replication_transaction_size_limitYes Yes Yes Global Yes

group_replication_unreachable_majority_timeoutYes Yes Yes Global Yes

gtid_executed Yes Varies No

gtid_executed_compression_periodYes Yes Yes Global Yes

gtid_mode Yes Yes Yes Global Varies

gtid_next Yes Session Yes

gtid_owned Yes Both No

gtid_purged Yes Global Yes

Handler_commit Yes Both No

Handler_delete Yes Both No

Handler_discover Yes Both No

Handler_external_lock Yes Both No

Handler_mrr_init Yes Both No

Handler_prepare Yes Both No

Handler_read_first Yes Both No

Handler_read_key Yes Both No

Handler_read_last Yes Both No

Handler_read_next Yes Both No

Handler_read_prev Yes Both No

Handler_read_rnd Yes Both No

Handler_read_rnd_next Yes Both No

Handler_rollback Yes Both No

Handler_savepoint Yes Both No

Handler_savepoint_rollback Yes Both No

Handler_update Yes Both No

Handler_write Yes Both No

have_compress Yes Global No

have_crypt Yes Global No

have_dynamic_loading Yes Global No

have_geometry Yes Global No

have_openssl Yes Global No

have_profiling Yes Global No

have_query_cache Yes Global No

have_rtree_keys Yes Global No

have_ssl Yes Global No

have_statement_timeout Yes Global No

672

Server Option, System Variable, and Status Variable Reference

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

have_symlink Yes Global No

help Yes Yes

host_cache_sizeYes Yes Yes Global Yes

hostname Yes Global No

identity Yes Session Yes

ignore_builtin_innodbYes Yes Yes Global No

ignore-db-dir Yes Yes

ignore_db_dirs Yes Global No

init_connect Yes Yes Yes Global Yes

init_file Yes Yes Yes Global No

init_slave Yes Yes Yes Global Yes

initialize Yes Yes

initialize-
insecure

Yes Yes

innodb Yes Yes

innodb_adaptive_flushingYes Yes Yes Global Yes

innodb_adaptive_flushing_lwmYes Yes Yes Global Yes

innodb_adaptive_hash_indexYes Yes Yes Global Yes

innodb_adaptive_hash_index_partsYes Yes Yes Global No

innodb_adaptive_max_sleep_delayYes Yes Yes Global Yes

innodb_api_bk_commit_intervalYes Yes Yes Global Yes

innodb_api_disable_rowlockYes Yes Yes Global No

innodb_api_enable_binlogYes Yes Yes Global No

innodb_api_enable_mdlYes Yes Yes Global No

innodb_api_trx_levelYes Yes Yes Global Yes

innodb_autoextend_incrementYes Yes Yes Global Yes

innodb_autoinc_lock_modeYes Yes Yes Global No

Innodb_available_undo_logs Yes Global No

innodb_background_drop_list_emptyYes Yes Yes Global Yes

Innodb_buffer_pool_bytes_data Yes Global No

Innodb_buffer_pool_bytes_dirty Yes Global No

innodb_buffer_pool_chunk_sizeYes Yes Yes Global No

innodb_buffer_pool_dump_at_shutdownYes Yes Yes Global Yes

innodb_buffer_pool_dump_nowYes Yes Yes Global Yes

innodb_buffer_pool_dump_pctYes Yes Yes Global Yes

Innodb_buffer_pool_dump_status Yes Global No

innodb_buffer_pool_filenameYes Yes Yes Global Yes

innodb_buffer_pool_instancesYes Yes Yes Global No

673

Server Option, System Variable, and Status Variable Reference

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

innodb_buffer_pool_load_abortYes Yes Yes Global Yes

innodb_buffer_pool_load_at_startupYes Yes Yes Global No

innodb_buffer_pool_load_nowYes Yes Yes Global Yes

Innodb_buffer_pool_load_status Yes Global No

Innodb_buffer_pool_pages_data Yes Global No

Innodb_buffer_pool_pages_dirty Yes Global No

Innodb_buffer_pool_pages_flushed Yes Global No

Innodb_buffer_pool_pages_free Yes Global No

Innodb_buffer_pool_pages_latched Yes Global No

Innodb_buffer_pool_pages_misc Yes Global No

Innodb_buffer_pool_pages_total Yes Global No

Innodb_buffer_pool_read_ahead Yes Global No

Innodb_buffer_pool_read_ahead_evicted Yes Global No

Innodb_buffer_pool_read_ahead_rnd Yes Global No

Innodb_buffer_pool_read_requests Yes Global No

Innodb_buffer_pool_reads Yes Global No

Innodb_buffer_pool_resize_status Yes Global No

innodb_buffer_pool_sizeYes Yes Yes Global Varies

Innodb_buffer_pool_wait_free Yes Global No

Innodb_buffer_pool_write_requests Yes Global No

innodb_change_buffer_max_sizeYes Yes Yes Global Yes

innodb_change_bufferingYes Yes Yes Global Yes

innodb_change_buffering_debugYes Yes Yes Global Yes

innodb_checksum_algorithmYes Yes Yes Global Yes

innodb_checksumsYes Yes Yes Global No

innodb_cmp_per_index_enabledYes Yes Yes Global Yes

innodb_commit_concurrencyYes Yes Yes Global Yes

innodb_compress_debugYes Yes Yes Global Yes

innodb_compression_failure_threshold_pctYes Yes Yes Global Yes

innodb_compression_levelYes Yes Yes Global Yes

innodb_compression_pad_pct_maxYes Yes Yes Global Yes

innodb_concurrency_ticketsYes Yes Yes Global Yes

innodb_data_file_pathYes Yes Yes Global No

Innodb_data_fsyncs Yes Global No

innodb_data_home_dirYes Yes Yes Global No

Innodb_data_pending_fsyncs Yes Global No

Innodb_data_pending_reads Yes Global No

Innodb_data_pending_writes Yes Global No

674

Server Option, System Variable, and Status Variable Reference

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

Innodb_data_read Yes Global No

Innodb_data_reads Yes Global No

Innodb_data_writes Yes Global No

Innodb_data_written Yes Global No

Innodb_dblwr_pages_written Yes Global No

Innodb_dblwr_writes Yes Global No

innodb_deadlock_detectYes Yes Yes Global Yes

innodb_default_row_formatYes Yes Yes Global Yes

innodb_disable_resize_buffer_pool_debugYes Yes Yes Global Yes

innodb_disable_sort_file_cacheYes Yes Yes Global Yes

innodb_doublewriteYes Yes Yes Global No

innodb_fast_shutdownYes Yes Yes Global Yes

innodb_fil_make_page_dirty_debugYes Yes Yes Global Yes

innodb_file_formatYes Yes Yes Global Yes

innodb_file_format_checkYes Yes Yes Global No

innodb_file_format_maxYes Yes Yes Global Yes

innodb_file_per_tableYes Yes Yes Global Yes

innodb_fill_factorYes Yes Yes Global Yes

innodb_flush_log_at_timeoutYes Yes Yes Global Yes

innodb_flush_log_at_trx_commitYes Yes Yes Global Yes

innodb_flush_methodYes Yes Yes Global No

innodb_flush_neighborsYes Yes Yes Global Yes

innodb_flush_syncYes Yes Yes Global Yes

innodb_flushing_avg_loopsYes Yes Yes Global Yes

innodb_force_load_corruptedYes Yes Yes Global No

innodb_force_recoveryYes Yes Yes Global No

innodb_ft_aux_table Yes Global Yes

innodb_ft_cache_sizeYes Yes Yes Global No

innodb_ft_enable_diag_printYes Yes Yes Global Yes

innodb_ft_enable_stopwordYes Yes Yes Both Yes

innodb_ft_max_token_sizeYes Yes Yes Global No

innodb_ft_min_token_sizeYes Yes Yes Global No

innodb_ft_num_word_optimizeYes Yes Yes Global Yes

innodb_ft_result_cache_limitYes Yes Yes Global Yes

innodb_ft_server_stopword_tableYes Yes Yes Global Yes

innodb_ft_sort_pll_degreeYes Yes Yes Global No

innodb_ft_total_cache_sizeYes Yes Yes Global No

innodb_ft_user_stopword_tableYes Yes Yes Both Yes

675

Server Option, System Variable, and Status Variable Reference

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

Innodb_have_atomic_builtins Yes Global No

innodb_io_capacityYes Yes Yes Global Yes

innodb_io_capacity_maxYes Yes Yes Global Yes

innodb_large_prefixYes Yes Yes Global Yes

innodb_limit_optimistic_insert_debugYes Yes Yes Global Yes

innodb_lock_wait_timeoutYes Yes Yes Both Yes

innodb_locks_unsafe_for_binlogYes Yes Yes Global No

innodb_log_buffer_sizeYes Yes Yes Global No

innodb_log_checkpoint_nowYes Yes Yes Global Yes

innodb_log_checksumsYes Yes Yes Global Yes

innodb_log_compressed_pagesYes Yes Yes Global Yes

innodb_log_file_sizeYes Yes Yes Global No

innodb_log_files_in_groupYes Yes Yes Global No

innodb_log_group_home_dirYes Yes Yes Global No

Innodb_log_waits Yes Global No

innodb_log_write_ahead_sizeYes Yes Yes Global Yes

Innodb_log_write_requests Yes Global No

Innodb_log_writes Yes Global No

innodb_lru_scan_depthYes Yes Yes Global Yes

innodb_max_dirty_pages_pctYes Yes Yes Global Yes

innodb_max_dirty_pages_pct_lwmYes Yes Yes Global Yes

innodb_max_purge_lagYes Yes Yes Global Yes

innodb_max_purge_lag_delayYes Yes Yes Global Yes

innodb_max_undo_log_sizeYes Yes Yes Global Yes

innodb_merge_threshold_set_all_debugYes Yes Yes Global Yes

innodb_monitor_disableYes Yes Yes Global Yes

innodb_monitor_enableYes Yes Yes Global Yes

innodb_monitor_resetYes Yes Yes Global Yes

innodb_monitor_reset_allYes Yes Yes Global Yes

Innodb_num_open_files Yes Global No

innodb_numa_interleaveYes Yes Yes Global No

innodb_old_blocks_pctYes Yes Yes Global Yes

innodb_old_blocks_timeYes Yes Yes Global Yes

innodb_online_alter_log_max_sizeYes Yes Yes Global Yes

innodb_open_filesYes Yes Yes Global No

innodb_optimize_fulltext_onlyYes Yes Yes Global Yes

Innodb_os_log_fsyncs Yes Global No

Innodb_os_log_pending_fsyncs Yes Global No

676

Server Option, System Variable, and Status Variable Reference

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

Innodb_os_log_pending_writes Yes Global No

Innodb_os_log_written Yes Global No

innodb_page_cleanersYes Yes Yes Global No

Innodb_page_size Yes Global No

innodb_page_sizeYes Yes Yes Global No

Innodb_pages_created Yes Global No

Innodb_pages_read Yes Global No

Innodb_pages_written Yes Global No

innodb_print_all_deadlocksYes Yes Yes Global Yes

innodb_purge_batch_sizeYes Yes Yes Global Yes

innodb_purge_rseg_truncate_frequencyYes Yes Yes Global Yes

innodb_purge_threadsYes Yes Yes Global No

innodb_random_read_aheadYes Yes Yes Global Yes

innodb_read_ahead_thresholdYes Yes Yes Global Yes

innodb_read_io_threadsYes Yes Yes Global No

innodb_read_onlyYes Yes Yes Global No

innodb_replication_delayYes Yes Yes Global Yes

innodb_rollback_on_timeoutYes Yes Yes Global No

innodb_rollback_segmentsYes Yes Yes Global Yes

Innodb_row_lock_current_waits Yes Global No

Innodb_row_lock_time Yes Global No

Innodb_row_lock_time_avg Yes Global No

Innodb_row_lock_time_max Yes Global No

Innodb_row_lock_waits Yes Global No

Innodb_rows_deleted Yes Global No

Innodb_rows_inserted Yes Global No

Innodb_rows_read Yes Global No

Innodb_rows_updated Yes Global No

innodb_saved_page_number_debugYes Yes Yes Global Yes

innodb_sort_buffer_sizeYes Yes Yes Global No

innodb_spin_wait_delayYes Yes Yes Global Yes

innodb_stats_auto_recalcYes Yes Yes Global Yes

innodb_stats_include_delete_markedYes Yes Yes Global Yes

innodb_stats_methodYes Yes Yes Global Yes

innodb_stats_on_metadataYes Yes Yes Global Yes

innodb_stats_persistentYes Yes Yes Global Yes

innodb_stats_persistent_sample_pagesYes Yes Yes Global Yes

innodb_stats_sample_pagesYes Yes Yes Global Yes

677

Server Option, System Variable, and Status Variable Reference

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

innodb_stats_transient_sample_pagesYes Yes Yes Global Yes

innodb-
status-file

Yes Yes

innodb_status_outputYes Yes Yes Global Yes

innodb_status_output_locksYes Yes Yes Global Yes

innodb_strict_modeYes Yes Yes Both Yes

innodb_support_xaYes Yes Yes Both Yes

innodb_sync_array_sizeYes Yes Yes Global No

innodb_sync_debugYes Yes Yes Global No

innodb_sync_spin_loopsYes Yes Yes Global Yes

innodb_table_locksYes Yes Yes Both Yes

innodb_temp_data_file_pathYes Yes Yes Global No

innodb_thread_concurrencyYes Yes Yes Global Yes

innodb_thread_sleep_delayYes Yes Yes Global Yes

innodb_tmpdir Yes Yes Yes Both Yes

Innodb_truncated_status_writes Yes Global No

innodb_trx_purge_view_update_only_debugYes Yes Yes Global Yes

innodb_trx_rseg_n_slots_debugYes Yes Yes Global Yes

innodb_undo_directoryYes Yes Yes Global No

innodb_undo_log_truncateYes Yes Yes Global Yes

innodb_undo_logsYes Yes Yes Global Yes

innodb_undo_tablespacesYes Yes Yes Global No

innodb_use_native_aioYes Yes Yes Global No

innodb_version Yes Global No

innodb_write_io_threadsYes Yes Yes Global No

insert_id Yes Session Yes

install Yes

install-manual Yes

interactive_timeoutYes Yes Yes Both Yes

internal_tmp_disk_storage_engineYes Yes Yes Global Yes

join_buffer_sizeYes Yes Yes Both Yes

keep_files_on_createYes Yes Yes Both Yes

Key_blocks_not_flushed Yes Global No

Key_blocks_unused Yes Global No

Key_blocks_used Yes Global No

key_buffer_sizeYes Yes Yes Global Yes

key_cache_age_thresholdYes Yes Yes Global Yes

key_cache_block_sizeYes Yes Yes Global Yes

678

Server Option, System Variable, and Status Variable Reference

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

key_cache_division_limitYes Yes Yes Global Yes

Key_read_requests Yes Global No

Key_reads Yes Global No

Key_write_requests Yes Global No

Key_writes Yes Global No

keyring_aws_cmk_idYes Yes Yes Global Yes

keyring_aws_conf_fileYes Yes Yes Global No

keyring_aws_data_fileYes Yes Yes Global No

keyring_aws_regionYes Yes Yes Global Yes

keyring_encrypted_file_dataYes Yes Yes Global Yes

keyring_encrypted_file_passwordYes Yes Yes Global Yes

keyring_file_dataYes Yes Yes Global Yes

keyring-
migration-
destination

Yes Yes

keyring-
migration-
host

Yes Yes

keyring-
migration-
password

Yes Yes

keyring-
migration-port

Yes Yes

keyring-
migration-
socket

Yes Yes

keyring-
migration-
source

Yes Yes

keyring-
migration-
user

Yes Yes

keyring_okv_conf_dirYes Yes Yes Global Yes

keyring_operations Yes Global Yes

language Yes Yes Yes Global No

large_files_support Yes Global No

large_page_size Yes Global No

large_pages Yes Yes Yes Global No

last_insert_id Yes Session Yes

Last_query_cost Yes Session No

Last_query_partial_plans Yes Session No

679

Server Option, System Variable, and Status Variable Reference

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

lc_messages Yes Yes Yes Both Yes

lc_messages_dirYes Yes Yes Global No

lc_time_namesYes Yes Yes Both Yes

license Yes Global No

local_infile Yes Yes Yes Global Yes

local-service Yes

lock_wait_timeoutYes Yes Yes Both Yes

Locked_connects Yes Global No

locked_in_memory Yes Global No

log-bin Yes Yes

log_bin Yes Global No

log_bin_basename Yes Global No

log_bin_index Yes Yes Yes Global No

log_bin_trust_function_creatorsYes Yes Yes Global Yes

log_bin_use_v1_row_eventsYes Yes Yes Global Yes

log_builtin_as_identified_by_passwordYes Yes Yes Global Yes

log_error Yes Yes Yes Global No

log_error_verbosityYes Yes Yes Global Yes

log-isam Yes Yes

log_output Yes Yes Yes Global Yes

log_queries_not_using_indexesYes Yes Yes Global Yes

log-raw Yes Yes

log-short-
format

Yes Yes

log_slave_updatesYes Yes Yes Global No

log_slow_admin_statementsYes Yes Yes Global Yes

log_slow_slave_statementsYes Yes Yes Global Yes

log_statements_unsafe_for_binlogYes Yes Yes Global Yes

log_syslog Yes Yes Yes Global Yes

log_syslog_facilityYes Yes Yes Global Yes

log_syslog_include_pidYes Yes Yes Global Yes

log_syslog_tagYes Yes Yes Global Yes

log-tc Yes Yes

log-tc-size Yes Yes

log_throttle_queries_not_using_indexesYes Yes Yes Global Yes

log_timestampsYes Yes Yes Global Yes

log_warnings Yes Yes Yes Global Yes

long_query_timeYes Yes Yes Both Yes

680

Server Option, System Variable, and Status Variable Reference

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

low_priority_updatesYes Yes Yes Both Yes

lower_case_file_system Yes Global No

lower_case_table_namesYes Yes Yes Global No

master-info-
file

Yes Yes

master_info_repositoryYes Yes Yes Global Yes

master-retry-
count

Yes Yes

master_verify_checksumYes Yes Yes Global Yes

max_allowed_packetYes Yes Yes Both Yes

max_binlog_cache_sizeYes Yes Yes Global Yes

max-binlog-
dump-events

Yes Yes

max_binlog_sizeYes Yes Yes Global Yes

max_binlog_stmt_cache_sizeYes Yes Yes Global Yes

max_connect_errorsYes Yes Yes Global Yes

max_connectionsYes Yes Yes Global Yes

max_delayed_threadsYes Yes Yes Both Yes

max_digest_lengthYes Yes Yes Global No

max_error_countYes Yes Yes Both Yes

max_execution_timeYes Yes Yes Both Yes

Max_execution_time_exceeded Yes Both No

Max_execution_time_set Yes Both No

Max_execution_time_set_failed Yes Both No

max_heap_table_sizeYes Yes Yes Both Yes

max_insert_delayed_threads Yes Both Yes

max_join_size Yes Yes Yes Both Yes

max_length_for_sort_dataYes Yes Yes Both Yes

max_points_in_geometryYes Yes Yes Both Yes

max_prepared_stmt_countYes Yes Yes Global Yes

max_relay_log_sizeYes Yes Yes Global Yes

max_seeks_for_keyYes Yes Yes Both Yes

max_sort_lengthYes Yes Yes Both Yes

max_sp_recursion_depthYes Yes Yes Both Yes

max_tmp_tables Yes Both Yes

Max_used_connections Yes Global No

Max_used_connections_time Yes Global No

max_user_connectionsYes Yes Yes Both Yes

max_write_lock_countYes Yes Yes Global Yes

681

Server Option, System Variable, and Status Variable Reference

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

mecab_charset Yes Global No

mecab_rc_file Yes Yes Yes Global No

memlock Yes Yes

- Variable:
locked_in_memory

metadata_locks_cache_sizeYes Yes Yes Global No

metadata_locks_hash_instancesYes Yes Yes Global No

min_examined_row_limitYes Yes Yes Both Yes

multi_range_countYes Yes Yes Both Yes

myisam-
block-size

Yes Yes

myisam_data_pointer_sizeYes Yes Yes Global Yes

myisam_max_sort_file_sizeYes Yes Yes Global Yes

myisam_mmap_sizeYes Yes Yes Global No

myisam_recover_optionsYes Yes Yes Global No

myisam_repair_threadsYes Yes Yes Both Yes

myisam_sort_buffer_sizeYes Yes Yes Both Yes

myisam_stats_methodYes Yes Yes Both Yes

myisam_use_mmapYes Yes Yes Global Yes

mysql_firewall_modeYes Yes Yes Global Yes

mysql_firewall_traceYes Yes Yes Global Yes

mysql_native_password_proxy_usersYes Yes Yes Global Yes

mysqlx Yes Yes

Mysqlx_address Yes Global No

mysqlx_bind_addressYes Yes Yes Global No

Mysqlx_bytes_received Yes Both No

Mysqlx_bytes_sent Yes Both No

mysqlx_connect_timeoutYes Yes Yes Global Yes

Mysqlx_connection_accept_errors Yes Both No

Mysqlx_connection_errors Yes Both No

Mysqlx_connections_accepted Yes Global No

Mysqlx_connections_closed Yes Global No

Mysqlx_connections_rejected Yes Global No

Mysqlx_crud_create_view Yes Both No

Mysqlx_crud_delete Yes Both No

Mysqlx_crud_drop_view Yes Both No

Mysqlx_crud_find Yes Both No

Mysqlx_crud_insert Yes Both No

682

Server Option, System Variable, and Status Variable Reference

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

Mysqlx_crud_modify_view Yes Both No

Mysqlx_crud_update Yes Both No

Mysqlx_errors_sent Yes Both No

Mysqlx_errors_unknown_message_type Yes Both No

Mysqlx_expect_close Yes Both No

Mysqlx_expect_open Yes Both No

mysqlx_idle_worker_thread_timeoutYes Yes Yes Global Yes

Mysqlx_init_error Yes Both No

mysqlx_max_allowed_packetYes Yes Yes Global Yes

mysqlx_max_connectionsYes Yes Yes Global Yes

mysqlx_min_worker_threadsYes Yes Yes Global Yes

Mysqlx_notice_other_sent Yes Both No

Mysqlx_notice_warning_sent Yes Both No

Mysqlx_port Yes Global No

mysqlx_port Yes Yes Yes Global No

mysqlx_port_open_timeoutYes Yes Yes Global No

Mysqlx_rows_sent Yes Both No

Mysqlx_sessions Yes Global No

Mysqlx_sessions_accepted Yes Global No

Mysqlx_sessions_closed Yes Global No

Mysqlx_sessions_fatal_error Yes Global No

Mysqlx_sessions_killed Yes Global No

Mysqlx_sessions_rejected Yes Global No

Mysqlx_socket Yes Global No

mysqlx_socket Yes Yes Yes Global No

Mysqlx_ssl_accept_renegotiates Yes Global No

Mysqlx_ssl_accepts Yes Global No

Mysqlx_ssl_active Yes Both No

mysqlx_ssl_ca Yes Yes Yes Global No

mysqlx_ssl_capathYes Yes Yes Global No

mysqlx_ssl_certYes Yes Yes Global No

Mysqlx_ssl_cipher Yes Both No

mysqlx_ssl_cipherYes Yes Yes Global No

Mysqlx_ssl_cipher_list Yes Both No

mysqlx_ssl_crl Yes Yes Yes Global No

mysqlx_ssl_crlpathYes Yes Yes Global No

Mysqlx_ssl_ctx_verify_depth Yes Both No

Mysqlx_ssl_ctx_verify_mode Yes Both No

683

Server Option, System Variable, and Status Variable Reference

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

Mysqlx_ssl_finished_accepts Yes Global No

mysqlx_ssl_keyYes Yes Yes Global No

Mysqlx_ssl_server_not_after Yes Global No

Mysqlx_ssl_server_not_before Yes Global No

Mysqlx_ssl_verify_depth Yes Global No

Mysqlx_ssl_verify_mode Yes Global No

Mysqlx_ssl_version Yes Both No

Mysqlx_stmt_create_collection Yes Both No

Mysqlx_stmt_create_collection_index Yes Both No

Mysqlx_stmt_disable_notices Yes Both No

Mysqlx_stmt_drop_collection Yes Both No

Mysqlx_stmt_drop_collection_index Yes Both No

Mysqlx_stmt_enable_notices Yes Both No

Mysqlx_stmt_ensure_collection Yes Both No

Mysqlx_stmt_execute_mysqlx Yes Both No

Mysqlx_stmt_execute_sql Yes Both No

Mysqlx_stmt_execute_xplugin Yes Both No

Mysqlx_stmt_kill_client Yes Both No

Mysqlx_stmt_list_clients Yes Both No

Mysqlx_stmt_list_notices Yes Both No

Mysqlx_stmt_list_objects Yes Both No

Mysqlx_stmt_ping Yes Both No

Mysqlx_worker_threads Yes Global No

Mysqlx_worker_threads_active Yes Global No

named_pipe Yes Yes Yes Global No

named_pipe_full_access_groupYes Yes Yes Global No

ndb_allow_copying_alter_tableYes Yes Yes Both Yes

Ndb_api_adaptive_send_deferred_count Yes Global No

Ndb_api_adaptive_send_deferred_count_session Yes Global No

Ndb_api_adaptive_send_deferred_count_slave Yes Global No

Ndb_api_adaptive_send_forced_count Yes Global No

Ndb_api_adaptive_send_forced_count_session Yes Global No

Ndb_api_adaptive_send_forced_count_slave Yes Global No

Ndb_api_adaptive_send_unforced_count Yes Global No

Ndb_api_adaptive_send_unforced_count_session Yes Global No

Ndb_api_adaptive_send_unforced_count_slave Yes Global No

Ndb_api_bytes_received_count Yes Global No

Ndb_api_bytes_received_count_session Yes Session No

684

Server Option, System Variable, and Status Variable Reference

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

Ndb_api_bytes_received_count_slave Yes Global No

Ndb_api_bytes_sent_count Yes Global No

Ndb_api_bytes_sent_count_session Yes Session No

Ndb_api_bytes_sent_count_slave Yes Global No

Ndb_api_event_bytes_count Yes Global No

Ndb_api_event_bytes_count_injector Yes Global No

Ndb_api_event_data_count Yes Global No

Ndb_api_event_data_count_injector Yes Global No

Ndb_api_event_nondata_count Yes Global No

Ndb_api_event_nondata_count_injector Yes Global No

Ndb_api_pk_op_count Yes Global No

Ndb_api_pk_op_count_session Yes Session No

Ndb_api_pk_op_count_slave Yes Global No

Ndb_api_pruned_scan_count Yes Global No

Ndb_api_pruned_scan_count_session Yes Session No

Ndb_api_pruned_scan_count_slave Yes Global No

Ndb_api_range_scan_count Yes Global No

Ndb_api_range_scan_count_session Yes Session No

Ndb_api_range_scan_count_slave Yes Global No

Ndb_api_read_row_count Yes Global No

Ndb_api_read_row_count_session Yes Session No

Ndb_api_read_row_count_slave Yes Global No

Ndb_api_scan_batch_count Yes Global No

Ndb_api_scan_batch_count_session Yes Session No

Ndb_api_scan_batch_count_slave Yes Global No

Ndb_api_table_scan_count Yes Global No

Ndb_api_table_scan_count_session Yes Session No

Ndb_api_table_scan_count_slave Yes Global No

Ndb_api_trans_abort_count Yes Global No

Ndb_api_trans_abort_count_session Yes Session No

Ndb_api_trans_abort_count_slave Yes Global No

Ndb_api_trans_close_count Yes Global No

Ndb_api_trans_close_count_session Yes Session No

Ndb_api_trans_close_count_slave Yes Global No

Ndb_api_trans_commit_count Yes Global No

Ndb_api_trans_commit_count_session Yes Session No

Ndb_api_trans_commit_count_slave Yes Global No

Ndb_api_trans_local_read_row_count Yes Global No

685

Server Option, System Variable, and Status Variable Reference

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

Ndb_api_trans_local_read_row_count_session Yes Session No

Ndb_api_trans_local_read_row_count_slave Yes Global No

Ndb_api_trans_start_count Yes Global No

Ndb_api_trans_start_count_session Yes Session No

Ndb_api_trans_start_count_slave Yes Global No

Ndb_api_uk_op_count Yes Global No

Ndb_api_uk_op_count_session Yes Session No

Ndb_api_uk_op_count_slave Yes Global No

Ndb_api_wait_exec_complete_count Yes Global No

Ndb_api_wait_exec_complete_count_session Yes Session No

Ndb_api_wait_exec_complete_count_slave Yes Global No

Ndb_api_wait_meta_request_count Yes Global No

Ndb_api_wait_meta_request_count_session Yes Session No

Ndb_api_wait_meta_request_count_slave Yes Global No

Ndb_api_wait_nanos_count Yes Global No

Ndb_api_wait_nanos_count_session Yes Session No

Ndb_api_wait_nanos_count_slave Yes Global No

Ndb_api_wait_scan_result_count Yes Global No

Ndb_api_wait_scan_result_count_session Yes Session No

Ndb_api_wait_scan_result_count_slave Yes Global No

ndb_autoincrement_prefetch_szYes Yes Yes Both Yes

ndb_batch_sizeYes Yes Yes Both Yes

ndb_blob_read_batch_bytesYes Yes Yes Both Yes

ndb_blob_write_batch_bytesYes Yes Yes Both Yes

ndb_cache_check_timeYes Yes Yes Global Yes

ndb_clear_apply_statusYes Yes Global Yes

ndb_cluster_connection_poolYes Yes Yes Global No

ndb_cluster_connection_pool_nodeidsYes Yes Yes Global No

Ndb_cluster_node_id Yes Global No

Ndb_config_from_host Yes Both No

Ndb_config_from_port Yes Both No

Ndb_conflict_fn_epoch Yes Global No

Ndb_conflict_fn_epoch_trans Yes Global No

Ndb_conflict_fn_epoch2 Yes Global No

Ndb_conflict_fn_epoch2_trans Yes Global No

Ndb_conflict_fn_max Yes Global No

Ndb_conflict_fn_max_del_win Yes Global No

Ndb_conflict_fn_old Yes Global No

686

Server Option, System Variable, and Status Variable Reference

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

Ndb_conflict_last_conflict_epoch Yes Global No

Ndb_conflict_last_stable_epoch Yes Global No

Ndb_conflict_reflected_op_discard_count Yes Global No

Ndb_conflict_reflected_op_prepare_count Yes Global No

Ndb_conflict_refresh_op_count Yes Global No

Ndb_conflict_trans_conflict_commit_count Yes Global No

Ndb_conflict_trans_detect_iter_count Yes Global No

Ndb_conflict_trans_reject_count Yes Global No

Ndb_conflict_trans_row_conflict_count Yes Global No

Ndb_conflict_trans_row_reject_count Yes Global No

ndb-
connectstring

Yes Yes

ndb_data_node_neighbourYes Yes Yes Global Yes

ndb_default_column_formatYes Yes Yes Global Yes

ndb_default_column_formatYes Yes Yes Global Yes

ndb_deferred_constraintsYes Yes Yes Both Yes

ndb_deferred_constraintsYes Yes Yes Both Yes

ndb_distributionYes Yes Yes Global Yes

ndb_distributionYes Yes Yes Global Yes

Ndb_epoch_delete_delete_count Yes Global No

ndb_eventbuffer_free_percentYes Yes Yes Global Yes

ndb_eventbuffer_max_allocYes Yes Yes Global Yes

Ndb_execute_count Yes Global No

ndb_extra_loggingYes Yes Yes Global Yes

ndb_force_sendYes Yes Yes Both Yes

ndb_fully_replicatedYes Yes Yes Both Yes

ndb_index_stat_enableYes Yes Yes Both Yes

ndb_index_stat_optionYes Yes Yes Both Yes

ndb_join_pushdown Yes Both Yes

Ndb_last_commit_epoch_server Yes Global No

Ndb_last_commit_epoch_session Yes Session No

ndb_log_apply_statusYes Yes Yes Global No

ndb_log_apply_statusYes Yes Yes Global No

ndb_log_bin Yes Yes Both No

ndb_log_binlog_indexYes Yes Global Yes

ndb_log_empty_epochsYes Yes Yes Global Yes

ndb_log_empty_epochsYes Yes Yes Global Yes

ndb_log_empty_updateYes Yes Yes Global Yes

687

Server Option, System Variable, and Status Variable Reference

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

ndb_log_empty_updateYes Yes Yes Global Yes

ndb_log_exclusive_readsYes Yes Yes Both Yes

ndb_log_exclusive_readsYes Yes Yes Both Yes

ndb_log_fail_terminateYes Yes Yes Global No

ndb_log_orig Yes Yes Yes Global No

ndb_log_orig Yes Yes Yes Global No

ndb_log_transaction_idYes Yes Yes Global No

ndb_log_transaction_id Yes Global No

ndb_log_update_as_writeYes Yes Yes Global Yes

ndb_log_update_minimalYes Yes Yes Global Yes

ndb_log_updated_onlyYes Yes Yes Global Yes

ndb-mgmd-
host

Yes Yes

ndb_nodeid Yes Yes Yes Global No

Ndb_number_of_data_nodes Yes Global No

ndb_optimization_delayYes Yes Yes Global Yes

ndb_optimized_node_selectionYes Yes Yes Global Yes

ndb_optimized_node_selectionYes Yes Yes Global No

Ndb_pruned_scan_count Yes Global No

Ndb_pushed_queries_defined Yes Global No

Ndb_pushed_queries_dropped Yes Global No

Ndb_pushed_queries_executed Yes Global No

Ndb_pushed_reads Yes Global No

ndb_read_backupYes Yes Yes Global Yes

ndb_recv_thread_activation_thresholdYes Yes Yes Global Yes

ndb_recv_thread_cpu_maskYes Yes Yes Global Yes

ndb_report_thresh_binlog_epoch_slipYes Yes Yes Global Yes

ndb_report_thresh_binlog_mem_usageYes Yes Yes Global Yes

ndb_row_checksum Yes Both Yes

Ndb_scan_count Yes Global No

ndb_show_foreign_key_mock_tablesYes Yes Yes Global Yes

ndb_slave_conflict_roleYes Yes Yes Global Yes

Ndb_slave_max_replicated_epoch Yes Global No

Ndb_system_name Yes Global No

ndb_table_no_logging Yes Session Yes

ndb_table_temporary Yes Session Yes

ndb-transid-
mysql-

Yes

688

Server Option, System Variable, and Status Variable Reference

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic
connection-
map

ndb_use_copying_alter_table Yes Both No

ndb_use_exact_count Yes Both Yes

ndb_use_transactionsYes Yes Yes Both Yes

ndb_version Yes Global No

ndb_version_string Yes Global No

ndb_wait_connectedYes Yes Yes Global No

ndb_wait_setupYes Yes Yes Global No

ndbcluster Yes Yes

ndbinfo_database Yes Global No

ndbinfo_max_bytesYes Yes Both Yes

ndbinfo_max_rowsYes Yes Both Yes

ndbinfo_offline Yes Global Yes

ndbinfo_show_hiddenYes Yes Both Yes

ndbinfo_table_prefix Yes Global No

ndbinfo_version Yes Global No

net_buffer_lengthYes Yes Yes Both Yes

net_read_timeoutYes Yes Yes Both Yes

net_retry_countYes Yes Yes Both Yes

net_write_timeoutYes Yes Yes Both Yes

new Yes Yes Yes Both Yes

ngram_token_sizeYes Yes Yes Global No

no-defaults Yes

Not_flushed_delayed_rows Yes Global No

offline_mode Yes Yes Yes Global Yes

old Yes Yes Yes Global No

old_alter_table Yes Yes Yes Both Yes

old_passwordsYes Yes Yes Both Yes

old-style-
user-limits

Yes Yes

Ongoing_anonymous_gtid_violating_transaction_count Yes Global No

Ongoing_anonymous_transaction_count Yes Global No

Ongoing_automatic_gtid_violating_transaction_count Yes Global No

Open_files Yes Global No

open_files_limitYes Yes Yes Global No

Open_streams Yes Global No

Open_table_definitions Yes Global No

689

Server Option, System Variable, and Status Variable Reference

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

Open_tables Yes Both No

Opened_files Yes Global No

Opened_table_definitions Yes Both No

Opened_tables Yes Both No

optimizer_prune_levelYes Yes Yes Both Yes

optimizer_search_depthYes Yes Yes Both Yes

optimizer_switchYes Yes Yes Both Yes

optimizer_traceYes Yes Yes Both Yes

optimizer_trace_featuresYes Yes Yes Both Yes

optimizer_trace_limitYes Yes Yes Both Yes

optimizer_trace_max_mem_sizeYes Yes Yes Both Yes

optimizer_trace_offsetYes Yes Yes Both Yes

parser_max_mem_sizeYes Yes Yes Both Yes

partition Yes Yes

performance_schemaYes Yes Yes Global No

Performance_schema_accounts_lost Yes Global No

performance_schema_accounts_sizeYes Yes Yes Global No

Performance_schema_cond_classes_lost Yes Global No

Performance_schema_cond_instances_lost Yes Global No

performance-
schema-
consumer-
events-
stages-
current

Yes Yes

performance-
schema-
consumer-
events-
stages-history

Yes Yes

performance-
schema-
consumer-
events-
stages-
history-long

Yes Yes

performance-
schema-
consumer-
events-
statements-
current

Yes Yes

690

Server Option, System Variable, and Status Variable Reference

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

performance-
schema-
consumer-
events-
statements-
history

Yes Yes

performance-
schema-
consumer-
events-
statements-
history-long

Yes Yes

performance-
schema-
consumer-
events-
transactions-
current

Yes Yes

performance-
schema-
consumer-
events-
transactions-
history

Yes Yes

performance-
schema-
consumer-
events-
transactions-
history-long

Yes Yes

performance-
schema-
consumer-
events-waits-
current

Yes Yes

performance-
schema-
consumer-
events-waits-
history

Yes Yes

performance-
schema-
consumer-
events-waits-
history-long

Yes Yes

performance-
schema-
consumer-

Yes Yes

691

Server Option, System Variable, and Status Variable Reference

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic
global-
instrumentation

performance-
schema-
consumer-
statements-
digest

Yes Yes

performance-
schema-
consumer-
thread-
instrumentation

Yes Yes

Performance_schema_digest_lost Yes Global No

performance_schema_digests_sizeYes Yes Yes Global No

performance_schema_events_stages_history_long_sizeYes Yes Yes Global No

performance_schema_events_stages_history_sizeYes Yes Yes Global No

performance_schema_events_statements_history_long_sizeYes Yes Yes Global No

performance_schema_events_statements_history_sizeYes Yes Yes Global No

performance_schema_events_transactions_history_long_sizeYes Yes Yes Global No

performance_schema_events_transactions_history_sizeYes Yes Yes Global No

performance_schema_events_waits_history_long_sizeYes Yes Yes Global No

performance_schema_events_waits_history_sizeYes Yes Yes Global No

Performance_schema_file_classes_lost Yes Global No

Performance_schema_file_handles_lost Yes Global No

Performance_schema_file_instances_lost Yes Global No

Performance_schema_hosts_lost Yes Global No

performance_schema_hosts_sizeYes Yes Yes Global No

Performance_schema_index_stat_lost Yes Global No

performance-
schema-
instrument

Yes Yes

Performance_schema_locker_lost Yes Global No

performance_schema_max_cond_classesYes Yes Yes Global No

performance_schema_max_cond_instancesYes Yes Yes Global No

performance_schema_max_digest_lengthYes Yes Yes Global No

performance_schema_max_file_classesYes Yes Yes Global No

performance_schema_max_file_handlesYes Yes Yes Global No

performance_schema_max_file_instancesYes Yes Yes Global No

performance_schema_max_index_statYes Yes Yes Global No

performance_schema_max_memory_classesYes Yes Yes Global No

performance_schema_max_metadata_locksYes Yes Yes Global No

692

Server Option, System Variable, and Status Variable Reference

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

performance_schema_max_mutex_classesYes Yes Yes Global No

performance_schema_max_mutex_instancesYes Yes Yes Global No

performance_schema_max_prepared_statements_instancesYes Yes Yes Global No

performance_schema_max_program_instancesYes Yes Yes Global No

performance_schema_max_rwlock_classesYes Yes Yes Global No

performance_schema_max_rwlock_instancesYes Yes Yes Global No

performance_schema_max_socket_classesYes Yes Yes Global No

performance_schema_max_socket_instancesYes Yes Yes Global No

performance_schema_max_sql_text_lengthYes Yes Yes Global No

performance_schema_max_stage_classesYes Yes Yes Global No

performance_schema_max_statement_classesYes Yes Yes Global No

performance_schema_max_statement_stackYes Yes Yes Global No

performance_schema_max_table_handlesYes Yes Yes Global No

performance_schema_max_table_instancesYes Yes Yes Global No

performance_schema_max_table_lock_statYes Yes Yes Global No

performance_schema_max_thread_classesYes Yes Yes Global No

performance_schema_max_thread_instancesYes Yes Yes Global No

Performance_schema_memory_classes_lost Yes Global No

Performance_schema_metadata_lock_lost Yes Global No

Performance_schema_mutex_classes_lost Yes Global No

Performance_schema_mutex_instances_lost Yes Global No

Performance_schema_nested_statement_lost Yes Global No

Performance_schema_prepared_statements_lost Yes Global No

Performance_schema_program_lost Yes Global No

Performance_schema_rwlock_classes_lost Yes Global No

Performance_schema_rwlock_instances_lost Yes Global No

Performance_schema_session_connect_attrs_lost Yes Global No

performance_schema_session_connect_attrs_sizeYes Yes Yes Global No

performance_schema_setup_actors_sizeYes Yes Yes Global No

performance_schema_setup_objects_sizeYes Yes Yes Global No

performance_schema_show_processlistYes Yes Yes Global Yes

Performance_schema_socket_classes_lost Yes Global No

Performance_schema_socket_instances_lost Yes Global No

Performance_schema_stage_classes_lost Yes Global No

Performance_schema_statement_classes_lost Yes Global No

Performance_schema_table_handles_lost Yes Global No

Performance_schema_table_instances_lost Yes Global No

Performance_schema_table_lock_stat_lost Yes Global No

693

Server Option, System Variable, and Status Variable Reference

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

Performance_schema_thread_classes_lost Yes Global No

Performance_schema_thread_instances_lost Yes Global No

Performance_schema_users_lost Yes Global No

performance_schema_users_sizeYes Yes Yes Global No

pid_file Yes Yes Yes Global No

plugin_dir Yes Yes Yes Global No

plugin-load Yes Yes

plugin-load-
add

Yes Yes

plugin-xxx Yes Yes

port Yes Yes Yes Global No

port-open-
timeout

Yes Yes

preload_buffer_sizeYes Yes Yes Both Yes

Prepared_stmt_count Yes Global No

print-defaults Yes

profiling Yes Both Yes

profiling_history_sizeYes Yes Yes Both Yes

protocol_version Yes Global No

proxy_user Yes Session No

pseudo_slave_mode Yes Session Yes

pseudo_thread_id Yes Session Yes

Qcache_free_blocks Yes Global No

Qcache_free_memory Yes Global No

Qcache_hits Yes Global No

Qcache_inserts Yes Global No

Qcache_lowmem_prunes Yes Global No

Qcache_not_cached Yes Global No

Qcache_queries_in_cache Yes Global No

Qcache_total_blocks Yes Global No

Queries Yes Both No

query_alloc_block_sizeYes Yes Yes Both Yes

query_cache_limitYes Yes Yes Global Yes

query_cache_min_res_unitYes Yes Yes Global Yes

query_cache_sizeYes Yes Yes Global Yes

query_cache_typeYes Yes Yes Both Yes

query_cache_wlock_invalidateYes Yes Yes Both Yes

query_prealloc_sizeYes Yes Yes Both Yes

694

Server Option, System Variable, and Status Variable Reference

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

Questions Yes Both No

rand_seed1 Yes Session Yes

rand_seed2 Yes Session Yes

range_alloc_block_sizeYes Yes Yes Both Yes

range_optimizer_max_mem_sizeYes Yes Yes Both Yes

rbr_exec_mode Yes Session Yes

read_buffer_sizeYes Yes Yes Both Yes

read_only Yes Yes Yes Global Yes

read_rnd_buffer_sizeYes Yes Yes Both Yes

relay_log Yes Yes Yes Global No

relay_log_basename Yes Global No

relay_log_indexYes Yes Yes Global No

relay_log_info_fileYes Yes Yes Global No

relay_log_info_repositoryYes Yes Yes Global Yes

relay_log_purgeYes Yes Yes Global Yes

relay_log_recoveryYes Yes Yes Global No

relay_log_space_limitYes Yes Yes Global No

remove Yes

replicate-do-
db

Yes Yes

replicate-do-
table

Yes Yes

replicate-
ignore-db

Yes Yes

replicate-
ignore-table

Yes Yes

replicate-
rewrite-db

Yes Yes

replicate-
same-server-
id

Yes Yes

replicate-wild-
do-table

Yes Yes

replicate-wild-
ignore-table

Yes Yes

replication_optimize_for_static_plugin_configYes Yes Yes Global Yes

replication_sender_observe_commit_onlyYes Yes Yes Global Yes

report_host Yes Yes Yes Global No

report_passwordYes Yes Yes Global No

report_port Yes Yes Yes Global No

695

Server Option, System Variable, and Status Variable Reference

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

report_user Yes Yes Yes Global No

require_secure_transportYes Yes Yes Global Yes

rewriter_enabled Yes Global Yes

Rewriter_number_loaded_rules Yes Global No

Rewriter_number_reloads Yes Global No

Rewriter_number_rewritten_queries Yes Global No

Rewriter_reload_error Yes Global No

rewriter_verbose Yes Global Yes

Rpl_semi_sync_master_clients Yes Global No

rpl_semi_sync_master_enabledYes Yes Yes Global Yes

Rpl_semi_sync_master_net_avg_wait_time Yes Global No

Rpl_semi_sync_master_net_wait_time Yes Global No

Rpl_semi_sync_master_net_waits Yes Global No

Rpl_semi_sync_master_no_times Yes Global No

Rpl_semi_sync_master_no_tx Yes Global No

Rpl_semi_sync_master_status Yes Global No

Rpl_semi_sync_master_timefunc_failures Yes Global No

rpl_semi_sync_master_timeoutYes Yes Yes Global Yes

rpl_semi_sync_master_trace_levelYes Yes Yes Global Yes

Rpl_semi_sync_master_tx_avg_wait_time Yes Global No

Rpl_semi_sync_master_tx_wait_time Yes Global No

Rpl_semi_sync_master_tx_waits Yes Global No

rpl_semi_sync_master_wait_for_slave_countYes Yes Yes Global Yes

rpl_semi_sync_master_wait_no_slaveYes Yes Yes Global Yes

rpl_semi_sync_master_wait_pointYes Yes Yes Global Yes

Rpl_semi_sync_master_wait_pos_backtraverse Yes Global No

Rpl_semi_sync_master_wait_sessions Yes Global No

Rpl_semi_sync_master_yes_tx Yes Global No

rpl_semi_sync_slave_enabledYes Yes Yes Global Yes

Rpl_semi_sync_slave_status Yes Global No

rpl_semi_sync_slave_trace_levelYes Yes Yes Global Yes

rpl_stop_slave_timeoutYes Yes Yes Global Yes

Rsa_public_key Yes Global No

safe-user-
create

Yes Yes

secure_auth Yes Yes Yes Global Yes

secure_file_privYes Yes Yes Global No

Select_full_join Yes Both No

696

Server Option, System Variable, and Status Variable Reference

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

Select_full_range_join Yes Both No

Select_range Yes Both No

Select_range_check Yes Both No

Select_scan Yes Both No

server_id Yes Yes Yes Global Yes

server_id_bits Yes Yes Yes Global No

server_uuid Yes Global No

session_track_gtidsYes Yes Yes Both Yes

session_track_schemaYes Yes Yes Both Yes

session_track_state_changeYes Yes Yes Both Yes

session_track_system_variablesYes Yes Yes Both Yes

session_track_transaction_infoYes Yes Yes Both Yes

sha256_password_auto_generate_rsa_keysYes Yes Yes Global No

sha256_password_private_key_pathYes Yes Yes Global No

sha256_password_proxy_usersYes Yes Yes Global Yes

sha256_password_public_key_pathYes Yes Yes Global No

shared_memoryYes Yes Yes Global No

shared_memory_base_nameYes Yes Yes Global No

show_compatibility_56Yes Yes Yes Global Yes

show_create_table_verbosityYes Yes Yes Both Yes

show_old_temporalsYes Yes Yes Both Yes

show-slave-
auth-info

Yes Yes

skip-
character-
set-client-
handshake

Yes Yes

skip_external_lockingYes Yes Yes Global No

skip-grant-
tables

Yes Yes

skip-host-
cache

Yes Yes

skip_name_resolveYes Yes Yes Global No

skip-
ndbcluster

Yes Yes

skip_networkingYes Yes Yes Global No

skip-new Yes Yes

skip-partition Yes Yes

skip_show_databaseYes Yes Yes Global No

skip_slave_startYes Yes Yes Global No

697

Server Option, System Variable, and Status Variable Reference

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

skip-ssl Yes Yes

skip-stack-
trace

Yes Yes

slave_allow_batchingYes Yes Yes Global Yes

slave_checkpoint_groupYes Yes Yes Global Yes

slave_checkpoint_periodYes Yes Yes Global Yes

slave_compressed_protocolYes Yes Yes Global Yes

slave_exec_modeYes Yes Yes Global Yes

Slave_heartbeat_period Yes Global No

Slave_last_heartbeat Yes Global No

slave_load_tmpdirYes Yes Yes Global No

slave_max_allowed_packetYes Yes Yes Global Yes

slave_net_timeoutYes Yes Yes Global Yes

Slave_open_temp_tables Yes Global No

slave_parallel_typeYes Yes Yes Global Yes

slave_parallel_workersYes Yes Yes Global Yes

slave_pending_jobs_size_maxYes Yes Yes Global Yes

slave_preserve_commit_orderYes Yes Yes Global Yes

Slave_received_heartbeats Yes Global No

Slave_retried_transactions Yes Global No

Slave_rows_last_search_algorithm_used Yes Global No

slave_rows_search_algorithmsYes Yes Yes Global Yes

Slave_running Yes Global No

slave_skip_errorsYes Yes Yes Global No

slave-sql-
verify-
checksum

Yes Yes

slave_sql_verify_checksumYes Yes Yes Global Yes

slave_transaction_retriesYes Yes Yes Global Yes

slave_type_conversionsYes Yes Yes Global Yes

Slow_launch_threads Yes Both No

slow_launch_timeYes Yes Yes Global Yes

Slow_queries Yes Both No

slow_query_logYes Yes Yes Global Yes

slow_query_log_fileYes Yes Yes Global Yes

slow-start-
timeout

Yes Yes

socket Yes Yes Yes Global No

sort_buffer_sizeYes Yes Yes Both Yes

698

Server Option, System Variable, and Status Variable Reference

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

Sort_merge_passes Yes Both No

Sort_range Yes Both No

Sort_rows Yes Both No

Sort_scan Yes Both No

sporadic-
binlog-dump-
fail

Yes Yes

sql_auto_is_null Yes Both Yes

sql_big_selects Yes Both Yes

sql_buffer_result Yes Both Yes

sql_log_bin Yes Session Yes

sql_log_off Yes Both Yes

sql_mode Yes Yes Yes Both Yes

sql_notes Yes Both Yes

sql_quote_show_create Yes Both Yes

sql_safe_updates Yes Both Yes

sql_select_limit Yes Both Yes

sql_slave_skip_counter Yes Global Yes

sql_warnings Yes Both Yes

ssl Yes Yes

Ssl_accept_renegotiates Yes Global No

Ssl_accepts Yes Global No

ssl_ca Yes Yes Yes Global No

Ssl_callback_cache_hits Yes Global No

ssl_capath Yes Yes Yes Global No

ssl_cert Yes Yes Yes Global No

Ssl_cipher Yes Both No

ssl_cipher Yes Yes Yes Global No

Ssl_cipher_list Yes Both No

Ssl_client_connects Yes Global No

Ssl_connect_renegotiates Yes Global No

ssl_crl Yes Yes Yes Global No

ssl_crlpath Yes Yes Yes Global No

Ssl_ctx_verify_depth Yes Global No

Ssl_ctx_verify_mode Yes Global No

Ssl_default_timeout Yes Both No

Ssl_finished_accepts Yes Global No

Ssl_finished_connects Yes Global No

699

Server Option, System Variable, and Status Variable Reference

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

ssl_key Yes Yes Yes Global No

Ssl_server_not_after Yes Both No

Ssl_server_not_before Yes Both No

Ssl_session_cache_hits Yes Global No

Ssl_session_cache_misses Yes Global No

Ssl_session_cache_mode Yes Global No

Ssl_session_cache_overflows Yes Global No

Ssl_session_cache_size Yes Global No

Ssl_session_cache_timeouts Yes Global No

Ssl_sessions_reused Yes Session No

Ssl_used_session_cache_entries Yes Global No

Ssl_verify_depth Yes Both No

Ssl_verify_mode Yes Both No

Ssl_version Yes Both No

standalone Yes Yes

stored_program_cacheYes Yes Yes Global Yes

super-large-
pages

Yes Yes

super_read_onlyYes Yes Yes Global Yes

symbolic-links Yes Yes

sync_binlog Yes Yes Yes Global Yes

sync_frm Yes Yes Yes Global Yes

sync_master_infoYes Yes Yes Global Yes

sync_relay_logYes Yes Yes Global Yes

sync_relay_log_infoYes Yes Yes Global Yes

sysdate-is-
now

Yes Yes

system_time_zone Yes Global No

table_definition_cacheYes Yes Yes Global Yes

Table_locks_immediate Yes Global No

Table_locks_waited Yes Global No

table_open_cacheYes Yes Yes Global Yes

Table_open_cache_hits Yes Both No

table_open_cache_instancesYes Yes Yes Global No

Table_open_cache_misses Yes Both No

Table_open_cache_overflows Yes Both No

tc-heuristic-
recover

Yes Yes

Tc_log_max_pages_used Yes Global No

700

Server Option, System Variable, and Status Variable Reference

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

Tc_log_page_size Yes Global No

Tc_log_page_waits Yes Global No

temp-pool Yes Yes

thread_cache_sizeYes Yes Yes Global Yes

thread_handlingYes Yes Yes Global No

thread_pool_algorithmYes Yes Yes Global No

thread_pool_high_priority_connectionYes Yes Yes Both Yes

thread_pool_max_unused_threadsYes Yes Yes Global Yes

thread_pool_prio_kickup_timerYes Yes Yes Global Yes

thread_pool_sizeYes Yes Yes Global No

thread_pool_stall_limitYes Yes Yes Global Yes

thread_stack Yes Yes Yes Global No

Threads_cached Yes Global No

Threads_connected Yes Global No

Threads_created Yes Global No

Threads_running Yes Global No

time_format Yes Global No

time_zone Yes Both Yes

timestamp Yes Session Yes

tls_version Yes Yes Yes Global No

tmp_table_sizeYes Yes Yes Both Yes

tmpdir Yes Yes Yes Global No

transaction_alloc_block_sizeYes Yes Yes Both Yes

transaction_allow_batching Yes Session Yes

transaction_isolationYes Yes Both Yes

- Variable:
tx_isolation

Yes Both Yes

transaction_prealloc_sizeYes Yes Yes Both Yes

transaction_read_onlyYes Yes Both Yes

- Variable:
tx_read_only

Yes Both Yes

transaction_write_set_extractionYes Yes Yes Both Yes

tx_isolation Yes Both Yes

tx_read_only Yes Both Yes

unique_checks Yes Both Yes

updatable_views_with_limitYes Yes Yes Both Yes

Uptime Yes Global No

Uptime_since_flush_status Yes Global No

701

Server System Variable Reference

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

user Yes Yes

validate-
password

Yes Yes

validate_password_check_user_nameYes Yes Yes Global Yes

validate_password_dictionary_fileYes Yes Yes Global Varies

validate_password_dictionary_file_last_parsed Yes Global No

validate_password_dictionary_file_words_count Yes Global No

validate_password_lengthYes Yes Yes Global Yes

validate_password_mixed_case_countYes Yes Yes Global Yes

validate_password_number_countYes Yes Yes Global Yes

validate_password_policyYes Yes Yes Global Yes

validate_password_special_char_countYes Yes Yes Global Yes

validate-user-
plugins

Yes Yes

verbose Yes Yes

version Yes Global No

version_comment Yes Global No

version_compile_machine Yes Global No

version_compile_os Yes Global No

version_tokens_sessionYes Yes Yes Both Yes

version_tokens_session_numberYes Yes Yes Both No

wait_timeout Yes Yes Yes Both Yes

warning_count Yes Session No

Notes:

1. This option is dynamic, but should be set only by server. You should not set this variable manually.

5.1.4 Server System Variable Reference

The following table lists all system variables applicable within mysqld.

The table lists command-line options (Cmd-line), options valid in configuration files (Option file), server
system variables (System Var), and status variables (Status var) in one unified list, with an indication of
where each option or variable is valid. If a server option set on the command line or in an option file differs
from the name of the corresponding system variable, the variable name is noted immediately below the
corresponding option. The scope of the variable (Var Scope) is Global, Session, or both. Please see the
corresponding item descriptions for details on setting and using the variables. Where appropriate, direct
links to further information about the items are provided.

Table 5.2 System Variable Summary

Name Cmd-Line Option File System Var Var Scope Dynamic

audit_log_buffer_sizeYes Yes Yes Global No

audit_log_compressionYes Yes Yes Global No

702

Server System Variable Reference

Name Cmd-Line Option File System Var Var Scope Dynamic

audit_log_connection_policyYes Yes Yes Global Yes

audit_log_current_session Yes Both No

audit_log_disableYes Yes Yes Global Yes

audit_log_encryptionYes Yes Yes Global No

audit_log_exclude_accountsYes Yes Yes Global Yes

audit_log_file Yes Yes Yes Global No

audit_log_filter_id Yes Both No

audit_log_flush Yes Global Yes

audit_log_format Yes Yes Yes Global No

audit_log_format_unix_timestampYes Yes Yes Global Yes

audit_log_include_accountsYes Yes Yes Global Yes

audit_log_policy Yes Yes Yes Global No

audit_log_read_buffer_sizeYes Yes Yes Varies Varies

audit_log_rotate_on_sizeYes Yes Yes Global Yes

audit_log_statement_policyYes Yes Yes Global Yes

audit_log_strategyYes Yes Yes Global No

authentication_ldap_sasl_auth_method_nameYes Yes Yes Global Yes

authentication_ldap_sasl_bind_base_dnYes Yes Yes Global Yes

authentication_ldap_sasl_bind_root_dnYes Yes Yes Global Yes

authentication_ldap_sasl_bind_root_pwdYes Yes Yes Global Yes

authentication_ldap_sasl_ca_pathYes Yes Yes Global Yes

authentication_ldap_sasl_group_search_attrYes Yes Yes Global Yes

authentication_ldap_sasl_group_search_filterYes Yes Yes Global Yes

authentication_ldap_sasl_init_pool_sizeYes Yes Yes Global Yes

authentication_ldap_sasl_log_statusYes Yes Yes Global Yes

authentication_ldap_sasl_max_pool_sizeYes Yes Yes Global Yes

authentication_ldap_sasl_server_hostYes Yes Yes Global Yes

authentication_ldap_sasl_server_portYes Yes Yes Global Yes

authentication_ldap_sasl_tlsYes Yes Yes Global Yes

authentication_ldap_sasl_user_search_attrYes Yes Yes Global Yes

authentication_ldap_simple_auth_method_nameYes Yes Yes Global Yes

authentication_ldap_simple_bind_base_dnYes Yes Yes Global Yes

authentication_ldap_simple_bind_root_dnYes Yes Yes Global Yes

authentication_ldap_simple_bind_root_pwdYes Yes Yes Global Yes

authentication_ldap_simple_ca_pathYes Yes Yes Global Yes

authentication_ldap_simple_group_search_attrYes Yes Yes Global Yes

authentication_ldap_simple_group_search_filterYes Yes Yes Global Yes

authentication_ldap_simple_init_pool_sizeYes Yes Yes Global Yes

703

Server System Variable Reference

Name Cmd-Line Option File System Var Var Scope Dynamic

authentication_ldap_simple_log_statusYes Yes Yes Global Yes

authentication_ldap_simple_max_pool_sizeYes Yes Yes Global Yes

authentication_ldap_simple_server_hostYes Yes Yes Global Yes

authentication_ldap_simple_server_portYes Yes Yes Global Yes

authentication_ldap_simple_tlsYes Yes Yes Global Yes

authentication_ldap_simple_user_search_attrYes Yes Yes Global Yes

authentication_windows_log_levelYes Yes Yes Global No

authentication_windows_use_principal_nameYes Yes Yes Global No

auto_generate_certsYes Yes Yes Global No

auto_increment_incrementYes Yes Yes Both Yes

auto_increment_offsetYes Yes Yes Both Yes

autocommit Yes Yes Yes Both Yes

automatic_sp_privilegesYes Yes Yes Global Yes

avoid_temporal_upgradeYes Yes Yes Global Yes

back_log Yes Yes Yes Global No

basedir Yes Yes Yes Global No

big_tables Yes Yes Yes Both Yes

bind_address Yes Yes Yes Global No

binlog_cache_sizeYes Yes Yes Global Yes

binlog_checksum Yes Yes Yes Global Yes

binlog_direct_non_transactional_updatesYes Yes Yes Both Yes

binlog_error_actionYes Yes Yes Global Yes

binlog_format Yes Yes Yes Both Yes

binlog_group_commit_sync_delayYes Yes Yes Global Yes

binlog_group_commit_sync_no_delay_countYes Yes Yes Global Yes

binlog_gtid_simple_recoveryYes Yes Yes Global No

binlog_max_flush_queue_timeYes Yes Yes Global Yes

binlog_order_commitsYes Yes Yes Global Yes

binlog_row_imageYes Yes Yes Both Yes

binlog_rows_query_log_eventsYes Yes Yes Both Yes

binlog_stmt_cache_sizeYes Yes Yes Global Yes

binlog_transaction_dependency_history_sizeYes Yes Yes Global Yes

binlog_transaction_dependency_trackingYes Yes Yes Global Yes

block_encryption_modeYes Yes Yes Both Yes

bulk_insert_buffer_sizeYes Yes Yes Both Yes

character_set_client Yes Both Yes

character_set_connection Yes Both Yes

704

Server System Variable Reference

Name Cmd-Line Option File System Var Var Scope Dynamic

character_set_database
(note 1)

Yes Both Yes

character_set_filesystemYes Yes Yes Both Yes

character_set_results Yes Both Yes

character_set_serverYes Yes Yes Both Yes

character_set_system Yes Global No

character_sets_dirYes Yes Yes Global No

check_proxy_usersYes Yes Yes Global Yes

collation_connection Yes Both Yes

collation_database
(note 1)

Yes Both Yes

collation_server Yes Yes Yes Both Yes

completion_type Yes Yes Yes Both Yes

concurrent_insert Yes Yes Yes Global Yes

connect_timeout Yes Yes Yes Global Yes

connection_control_failed_connections_thresholdYes Yes Yes Global Yes

connection_control_max_connection_delayYes Yes Yes Global Yes

connection_control_min_connection_delayYes Yes Yes Global Yes

core_file Yes Global No

daemon_memcached_enable_binlogYes Yes Yes Global No

daemon_memcached_engine_lib_nameYes Yes Yes Global No

daemon_memcached_engine_lib_pathYes Yes Yes Global No

daemon_memcached_optionYes Yes Yes Global No

daemon_memcached_r_batch_sizeYes Yes Yes Global No

daemon_memcached_w_batch_sizeYes Yes Yes Global No

datadir Yes Yes Yes Global No

date_format Yes Global No

datetime_format Yes Global No

debug Yes Yes Yes Both Yes

debug_sync Yes Session Yes

default_authentication_pluginYes Yes Yes Global No

default_password_lifetimeYes Yes Yes Global Yes

default_storage_engineYes Yes Yes Both Yes

default_tmp_storage_engineYes Yes Yes Both Yes

default_week_formatYes Yes Yes Both Yes

delay_key_write Yes Yes Yes Global Yes

delayed_insert_limitYes Yes Yes Global Yes

delayed_insert_timeoutYes Yes Yes Global Yes

705

Server System Variable Reference

Name Cmd-Line Option File System Var Var Scope Dynamic

delayed_queue_sizeYes Yes Yes Global Yes

disabled_storage_enginesYes Yes Yes Global No

disconnect_on_expired_passwordYes Yes Yes Global No

div_precision_incrementYes Yes Yes Both Yes

end_markers_in_jsonYes Yes Yes Both Yes

enforce_gtid_consistencyYes Yes Yes Global Varies

eq_range_index_dive_limitYes Yes Yes Both Yes

error_count Yes Session No

event_scheduler Yes Yes Yes Global Yes

expire_logs_daysYes Yes Yes Global Yes

explicit_defaults_for_timestampYes Yes Yes Both Yes

external_user Yes Session No

flush Yes Yes Yes Global Yes

flush_time Yes Yes Yes Global Yes

foreign_key_checks Yes Both Yes

ft_boolean_syntaxYes Yes Yes Global Yes

ft_max_word_len Yes Yes Yes Global No

ft_min_word_len Yes Yes Yes Global No

ft_query_expansion_limitYes Yes Yes Global No

ft_stopword_file Yes Yes Yes Global No

general_log Yes Yes Yes Global Yes

general_log_file Yes Yes Yes Global Yes

group_concat_max_lenYes Yes Yes Both Yes

group_replication_allow_local_disjoint_gtids_joinYes Yes Yes Global Yes

group_replication_allow_local_lower_version_joinYes Yes Yes Global Yes

group_replication_auto_increment_incrementYes Yes Yes Global Yes

group_replication_bootstrap_groupYes Yes Yes Global Yes

group_replication_components_stop_timeoutYes Yes Yes Global Yes

group_replication_compression_thresholdYes Yes Yes Global Yes

group_replication_enforce_update_everywhere_checksYes Yes Yes Global Yes

group_replication_exit_state_actionYes Yes Yes Global Yes

group_replication_flow_control_applier_thresholdYes Yes Yes Global Yes

group_replication_flow_control_certifier_thresholdYes Yes Yes Global Yes

group_replication_flow_control_modeYes Yes Yes Global Yes

group_replication_force_membersYes Yes Yes Global Yes

group_replication_group_nameYes Yes Yes Global Yes

group_replication_group_seedsYes Yes Yes Global Yes

group_replication_gtid_assignment_block_sizeYes Yes Yes Global Yes

706

Server System Variable Reference

Name Cmd-Line Option File System Var Var Scope Dynamic

group_replication_ip_whitelistYes Yes Yes Global Yes

group_replication_local_addressYes Yes Yes Global Yes

group_replication_member_weightYes Yes Yes Global Yes

group_replication_poll_spin_loopsYes Yes Yes Global Yes

group_replication_recovery_complete_atYes Yes Yes Global Yes

group_replication_recovery_reconnect_intervalYes Yes Yes Global Yes

group_replication_recovery_retry_countYes Yes Yes Global Yes

group_replication_recovery_ssl_caYes Yes Yes Global Yes

group_replication_recovery_ssl_capathYes Yes Yes Global Yes

group_replication_recovery_ssl_certYes Yes Yes Global Yes

group_replication_recovery_ssl_cipherYes Yes Yes Global Yes

group_replication_recovery_ssl_crlYes Yes Yes Global Yes

group_replication_recovery_ssl_crlpathYes Yes Yes Global Yes

group_replication_recovery_ssl_keyYes Yes Yes Global Yes

group_replication_recovery_ssl_verify_server_certYes Yes Yes Global Yes

group_replication_recovery_use_sslYes Yes Yes Global Yes

group_replication_single_primary_modeYes Yes Yes Global Yes

group_replication_ssl_modeYes Yes Yes Global Yes

group_replication_start_on_bootYes Yes Yes Global Yes

group_replication_transaction_size_limitYes Yes Yes Global Yes

group_replication_unreachable_majority_timeoutYes Yes Yes Global Yes

gtid_executed Yes Varies No

gtid_executed_compression_periodYes Yes Yes Global Yes

gtid_mode Yes Yes Yes Global Varies

gtid_next Yes Session Yes

gtid_owned Yes Both No

gtid_purged Yes Global Yes

have_compress Yes Global No

have_crypt Yes Global No

have_dynamic_loading Yes Global No

have_geometry Yes Global No

have_openssl Yes Global No

have_profiling Yes Global No

have_query_cache Yes Global No

have_rtree_keys Yes Global No

have_ssl Yes Global No

have_statement_timeout Yes Global No

have_symlink Yes Global No

707

Server System Variable Reference

Name Cmd-Line Option File System Var Var Scope Dynamic

host_cache_size Yes Yes Yes Global Yes

hostname Yes Global No

identity Yes Session Yes

ignore_builtin_innodbYes Yes Yes Global No

ignore_db_dirs Yes Global No

init_connect Yes Yes Yes Global Yes

init_file Yes Yes Yes Global No

init_slave Yes Yes Yes Global Yes

innodb_adaptive_flushingYes Yes Yes Global Yes

innodb_adaptive_flushing_lwmYes Yes Yes Global Yes

innodb_adaptive_hash_indexYes Yes Yes Global Yes

innodb_adaptive_hash_index_partsYes Yes Yes Global No

innodb_adaptive_max_sleep_delayYes Yes Yes Global Yes

innodb_api_bk_commit_intervalYes Yes Yes Global Yes

innodb_api_disable_rowlockYes Yes Yes Global No

innodb_api_enable_binlogYes Yes Yes Global No

innodb_api_enable_mdlYes Yes Yes Global No

innodb_api_trx_levelYes Yes Yes Global Yes

innodb_autoextend_incrementYes Yes Yes Global Yes

innodb_autoinc_lock_modeYes Yes Yes Global No

innodb_background_drop_list_emptyYes Yes Yes Global Yes

innodb_buffer_pool_chunk_sizeYes Yes Yes Global No

innodb_buffer_pool_dump_at_shutdownYes Yes Yes Global Yes

innodb_buffer_pool_dump_nowYes Yes Yes Global Yes

innodb_buffer_pool_dump_pctYes Yes Yes Global Yes

innodb_buffer_pool_filenameYes Yes Yes Global Yes

innodb_buffer_pool_instancesYes Yes Yes Global No

innodb_buffer_pool_load_abortYes Yes Yes Global Yes

innodb_buffer_pool_load_at_startupYes Yes Yes Global No

innodb_buffer_pool_load_nowYes Yes Yes Global Yes

innodb_buffer_pool_sizeYes Yes Yes Global Varies

innodb_change_buffer_max_sizeYes Yes Yes Global Yes

innodb_change_bufferingYes Yes Yes Global Yes

innodb_change_buffering_debugYes Yes Yes Global Yes

innodb_checksum_algorithmYes Yes Yes Global Yes

innodb_checksumsYes Yes Yes Global No

innodb_cmp_per_index_enabledYes Yes Yes Global Yes

innodb_commit_concurrencyYes Yes Yes Global Yes

708

Server System Variable Reference

Name Cmd-Line Option File System Var Var Scope Dynamic

innodb_compress_debugYes Yes Yes Global Yes

innodb_compression_failure_threshold_pctYes Yes Yes Global Yes

innodb_compression_levelYes Yes Yes Global Yes

innodb_compression_pad_pct_maxYes Yes Yes Global Yes

innodb_concurrency_ticketsYes Yes Yes Global Yes

innodb_data_file_pathYes Yes Yes Global No

innodb_data_home_dirYes Yes Yes Global No

innodb_deadlock_detectYes Yes Yes Global Yes

innodb_default_row_formatYes Yes Yes Global Yes

innodb_disable_resize_buffer_pool_debugYes Yes Yes Global Yes

innodb_disable_sort_file_cacheYes Yes Yes Global Yes

innodb_doublewriteYes Yes Yes Global No

innodb_fast_shutdownYes Yes Yes Global Yes

innodb_fil_make_page_dirty_debugYes Yes Yes Global Yes

innodb_file_formatYes Yes Yes Global Yes

innodb_file_format_checkYes Yes Yes Global No

innodb_file_format_maxYes Yes Yes Global Yes

innodb_file_per_tableYes Yes Yes Global Yes

innodb_fill_factor Yes Yes Yes Global Yes

innodb_flush_log_at_timeoutYes Yes Yes Global Yes

innodb_flush_log_at_trx_commitYes Yes Yes Global Yes

innodb_flush_methodYes Yes Yes Global No

innodb_flush_neighborsYes Yes Yes Global Yes

innodb_flush_syncYes Yes Yes Global Yes

innodb_flushing_avg_loopsYes Yes Yes Global Yes

innodb_force_load_corruptedYes Yes Yes Global No

innodb_force_recoveryYes Yes Yes Global No

innodb_ft_aux_table Yes Global Yes

innodb_ft_cache_sizeYes Yes Yes Global No

innodb_ft_enable_diag_printYes Yes Yes Global Yes

innodb_ft_enable_stopwordYes Yes Yes Both Yes

innodb_ft_max_token_sizeYes Yes Yes Global No

innodb_ft_min_token_sizeYes Yes Yes Global No

innodb_ft_num_word_optimizeYes Yes Yes Global Yes

innodb_ft_result_cache_limitYes Yes Yes Global Yes

innodb_ft_server_stopword_tableYes Yes Yes Global Yes

innodb_ft_sort_pll_degreeYes Yes Yes Global No

innodb_ft_total_cache_sizeYes Yes Yes Global No

709

Server System Variable Reference

Name Cmd-Line Option File System Var Var Scope Dynamic

innodb_ft_user_stopword_tableYes Yes Yes Both Yes

innodb_io_capacityYes Yes Yes Global Yes

innodb_io_capacity_maxYes Yes Yes Global Yes

innodb_large_prefixYes Yes Yes Global Yes

innodb_limit_optimistic_insert_debugYes Yes Yes Global Yes

innodb_lock_wait_timeoutYes Yes Yes Both Yes

innodb_locks_unsafe_for_binlogYes Yes Yes Global No

innodb_log_buffer_sizeYes Yes Yes Global No

innodb_log_checkpoint_nowYes Yes Yes Global Yes

innodb_log_checksumsYes Yes Yes Global Yes

innodb_log_compressed_pagesYes Yes Yes Global Yes

innodb_log_file_sizeYes Yes Yes Global No

innodb_log_files_in_groupYes Yes Yes Global No

innodb_log_group_home_dirYes Yes Yes Global No

innodb_log_write_ahead_sizeYes Yes Yes Global Yes

innodb_lru_scan_depthYes Yes Yes Global Yes

innodb_max_dirty_pages_pctYes Yes Yes Global Yes

innodb_max_dirty_pages_pct_lwmYes Yes Yes Global Yes

innodb_max_purge_lagYes Yes Yes Global Yes

innodb_max_purge_lag_delayYes Yes Yes Global Yes

innodb_max_undo_log_sizeYes Yes Yes Global Yes

innodb_merge_threshold_set_all_debugYes Yes Yes Global Yes

innodb_monitor_disableYes Yes Yes Global Yes

innodb_monitor_enableYes Yes Yes Global Yes

innodb_monitor_resetYes Yes Yes Global Yes

innodb_monitor_reset_allYes Yes Yes Global Yes

innodb_numa_interleaveYes Yes Yes Global No

innodb_old_blocks_pctYes Yes Yes Global Yes

innodb_old_blocks_timeYes Yes Yes Global Yes

innodb_online_alter_log_max_sizeYes Yes Yes Global Yes

innodb_open_filesYes Yes Yes Global No

innodb_optimize_fulltext_onlyYes Yes Yes Global Yes

innodb_page_cleanersYes Yes Yes Global No

innodb_page_sizeYes Yes Yes Global No

innodb_print_all_deadlocksYes Yes Yes Global Yes

innodb_purge_batch_sizeYes Yes Yes Global Yes

innodb_purge_rseg_truncate_frequencyYes Yes Yes Global Yes

innodb_purge_threadsYes Yes Yes Global No

710

Server System Variable Reference

Name Cmd-Line Option File System Var Var Scope Dynamic

innodb_random_read_aheadYes Yes Yes Global Yes

innodb_read_ahead_thresholdYes Yes Yes Global Yes

innodb_read_io_threadsYes Yes Yes Global No

innodb_read_onlyYes Yes Yes Global No

innodb_replication_delayYes Yes Yes Global Yes

innodb_rollback_on_timeoutYes Yes Yes Global No

innodb_rollback_segmentsYes Yes Yes Global Yes

innodb_saved_page_number_debugYes Yes Yes Global Yes

innodb_sort_buffer_sizeYes Yes Yes Global No

innodb_spin_wait_delayYes Yes Yes Global Yes

innodb_stats_auto_recalcYes Yes Yes Global Yes

innodb_stats_include_delete_markedYes Yes Yes Global Yes

innodb_stats_methodYes Yes Yes Global Yes

innodb_stats_on_metadataYes Yes Yes Global Yes

innodb_stats_persistentYes Yes Yes Global Yes

innodb_stats_persistent_sample_pagesYes Yes Yes Global Yes

innodb_stats_sample_pagesYes Yes Yes Global Yes

innodb_stats_transient_sample_pagesYes Yes Yes Global Yes

innodb_status_outputYes Yes Yes Global Yes

innodb_status_output_locksYes Yes Yes Global Yes

innodb_strict_modeYes Yes Yes Both Yes

innodb_support_xaYes Yes Yes Both Yes

innodb_sync_array_sizeYes Yes Yes Global No

innodb_sync_debugYes Yes Yes Global No

innodb_sync_spin_loopsYes Yes Yes Global Yes

innodb_table_locksYes Yes Yes Both Yes

innodb_temp_data_file_pathYes Yes Yes Global No

innodb_thread_concurrencyYes Yes Yes Global Yes

innodb_thread_sleep_delayYes Yes Yes Global Yes

innodb_tmpdir Yes Yes Yes Both Yes

innodb_trx_purge_view_update_only_debugYes Yes Yes Global Yes

innodb_trx_rseg_n_slots_debugYes Yes Yes Global Yes

innodb_undo_directoryYes Yes Yes Global No

innodb_undo_log_truncateYes Yes Yes Global Yes

innodb_undo_logsYes Yes Yes Global Yes

innodb_undo_tablespacesYes Yes Yes Global No

innodb_use_native_aioYes Yes Yes Global No

innodb_version Yes Global No

711

Server System Variable Reference

Name Cmd-Line Option File System Var Var Scope Dynamic

innodb_write_io_threadsYes Yes Yes Global No

insert_id Yes Session Yes

interactive_timeoutYes Yes Yes Both Yes

internal_tmp_disk_storage_engineYes Yes Yes Global Yes

join_buffer_size Yes Yes Yes Both Yes

keep_files_on_createYes Yes Yes Both Yes

key_buffer_size Yes Yes Yes Global Yes

key_cache_age_thresholdYes Yes Yes Global Yes

key_cache_block_sizeYes Yes Yes Global Yes

key_cache_division_limitYes Yes Yes Global Yes

keyring_aws_cmk_idYes Yes Yes Global Yes

keyring_aws_conf_fileYes Yes Yes Global No

keyring_aws_data_fileYes Yes Yes Global No

keyring_aws_regionYes Yes Yes Global Yes

keyring_encrypted_file_dataYes Yes Yes Global Yes

keyring_encrypted_file_passwordYes Yes Yes Global Yes

keyring_file_data Yes Yes Yes Global Yes

keyring_okv_conf_dirYes Yes Yes Global Yes

keyring_operations Yes Global Yes

language Yes Yes Yes Global No

large_files_support Yes Global No

large_page_size Yes Global No

large_pages Yes Yes Yes Global No

last_insert_id Yes Session Yes

lc_messages Yes Yes Yes Both Yes

lc_messages_dir Yes Yes Yes Global No

lc_time_names Yes Yes Yes Both Yes

license Yes Global No

local_infile Yes Yes Yes Global Yes

lock_wait_timeoutYes Yes Yes Both Yes

locked_in_memory Yes Global No

log_bin Yes Global No

log_bin_basename Yes Global No

log_bin_index Yes Yes Yes Global No

log_bin_trust_function_creatorsYes Yes Yes Global Yes

log_bin_use_v1_row_eventsYes Yes Yes Global Yes

log_builtin_as_identified_by_passwordYes Yes Yes Global Yes

log_error Yes Yes Yes Global No

712

Server System Variable Reference

Name Cmd-Line Option File System Var Var Scope Dynamic

log_error_verbosityYes Yes Yes Global Yes

log_output Yes Yes Yes Global Yes

log_queries_not_using_indexesYes Yes Yes Global Yes

log_slave_updatesYes Yes Yes Global No

log_slow_admin_statementsYes Yes Yes Global Yes

log_slow_slave_statementsYes Yes Yes Global Yes

log_statements_unsafe_for_binlogYes Yes Yes Global Yes

log_syslog Yes Yes Yes Global Yes

log_syslog_facilityYes Yes Yes Global Yes

log_syslog_include_pidYes Yes Yes Global Yes

log_syslog_tag Yes Yes Yes Global Yes

log_throttle_queries_not_using_indexesYes Yes Yes Global Yes

log_timestamps Yes Yes Yes Global Yes

log_warnings Yes Yes Yes Global Yes

long_query_time Yes Yes Yes Both Yes

low_priority_updatesYes Yes Yes Both Yes

lower_case_file_system Yes Global No

lower_case_table_namesYes Yes Yes Global No

master_info_repositoryYes Yes Yes Global Yes

master_verify_checksumYes Yes Yes Global Yes

max_allowed_packetYes Yes Yes Both Yes

max_binlog_cache_sizeYes Yes Yes Global Yes

max_binlog_size Yes Yes Yes Global Yes

max_binlog_stmt_cache_sizeYes Yes Yes Global Yes

max_connect_errorsYes Yes Yes Global Yes

max_connectionsYes Yes Yes Global Yes

max_delayed_threadsYes Yes Yes Both Yes

max_digest_lengthYes Yes Yes Global No

max_error_count Yes Yes Yes Both Yes

max_execution_timeYes Yes Yes Both Yes

max_heap_table_sizeYes Yes Yes Both Yes

max_insert_delayed_threads Yes Both Yes

max_join_size Yes Yes Yes Both Yes

max_length_for_sort_dataYes Yes Yes Both Yes

max_points_in_geometryYes Yes Yes Both Yes

max_prepared_stmt_countYes Yes Yes Global Yes

max_relay_log_sizeYes Yes Yes Global Yes

max_seeks_for_keyYes Yes Yes Both Yes

713

Server System Variable Reference

Name Cmd-Line Option File System Var Var Scope Dynamic

max_sort_length Yes Yes Yes Both Yes

max_sp_recursion_depthYes Yes Yes Both Yes

max_tmp_tables Yes Both Yes

max_user_connectionsYes Yes Yes Both Yes

max_write_lock_countYes Yes Yes Global Yes

mecab_rc_file Yes Yes Yes Global No

metadata_locks_cache_sizeYes Yes Yes Global No

metadata_locks_hash_instancesYes Yes Yes Global No

min_examined_row_limitYes Yes Yes Both Yes

multi_range_countYes Yes Yes Both Yes

myisam_data_pointer_sizeYes Yes Yes Global Yes

myisam_max_sort_file_sizeYes Yes Yes Global Yes

myisam_mmap_sizeYes Yes Yes Global No

myisam_recover_optionsYes Yes Yes Global No

myisam_repair_threadsYes Yes Yes Both Yes

myisam_sort_buffer_sizeYes Yes Yes Both Yes

myisam_stats_methodYes Yes Yes Both Yes

myisam_use_mmapYes Yes Yes Global Yes

mysql_firewall_modeYes Yes Yes Global Yes

mysql_firewall_traceYes Yes Yes Global Yes

mysql_native_password_proxy_usersYes Yes Yes Global Yes

mysqlx_bind_addressYes Yes Yes Global No

mysqlx_connect_timeoutYes Yes Yes Global Yes

mysqlx_idle_worker_thread_timeoutYes Yes Yes Global Yes

mysqlx_max_allowed_packetYes Yes Yes Global Yes

mysqlx_max_connectionsYes Yes Yes Global Yes

mysqlx_min_worker_threadsYes Yes Yes Global Yes

mysqlx_port Yes Yes Yes Global No

mysqlx_port_open_timeoutYes Yes Yes Global No

mysqlx_socket Yes Yes Yes Global No

mysqlx_ssl_ca Yes Yes Yes Global No

mysqlx_ssl_capathYes Yes Yes Global No

mysqlx_ssl_cert Yes Yes Yes Global No

mysqlx_ssl_cipherYes Yes Yes Global No

mysqlx_ssl_crl Yes Yes Yes Global No

mysqlx_ssl_crlpathYes Yes Yes Global No

mysqlx_ssl_key Yes Yes Yes Global No

named_pipe Yes Yes Yes Global No

714

Server System Variable Reference

Name Cmd-Line Option File System Var Var Scope Dynamic

named_pipe_full_access_groupYes Yes Yes Global No

ndb_allow_copying_alter_tableYes Yes Yes Both Yes

ndb_autoincrement_prefetch_szYes Yes Yes Both Yes

ndb_batch_size Yes Yes Yes Both Yes

ndb_blob_read_batch_bytesYes Yes Yes Both Yes

ndb_blob_write_batch_bytesYes Yes Yes Both Yes

ndb_cache_check_timeYes Yes Yes Global Yes

ndb_clear_apply_statusYes Yes Global Yes

ndb_cluster_connection_poolYes Yes Yes Global No

ndb_cluster_connection_pool_nodeidsYes Yes Yes Global No

ndb_data_node_neighbourYes Yes Yes Global Yes

ndb_default_column_formatYes Yes Yes Global Yes

ndb_default_column_formatYes Yes Yes Global Yes

ndb_deferred_constraintsYes Yes Yes Both Yes

ndb_deferred_constraintsYes Yes Yes Both Yes

ndb_distribution Yes Yes Yes Global Yes

ndb_distribution Yes Yes Yes Global Yes

ndb_eventbuffer_free_percentYes Yes Yes Global Yes

ndb_eventbuffer_max_allocYes Yes Yes Global Yes

ndb_extra_loggingYes Yes Yes Global Yes

ndb_force_send Yes Yes Yes Both Yes

ndb_fully_replicatedYes Yes Yes Both Yes

ndb_index_stat_enableYes Yes Yes Both Yes

ndb_index_stat_optionYes Yes Yes Both Yes

ndb_join_pushdown Yes Both Yes

ndb_log_apply_statusYes Yes Yes Global No

ndb_log_apply_statusYes Yes Yes Global No

ndb_log_bin Yes Yes Both No

ndb_log_binlog_indexYes Yes Global Yes

ndb_log_empty_epochsYes Yes Yes Global Yes

ndb_log_empty_epochsYes Yes Yes Global Yes

ndb_log_empty_updateYes Yes Yes Global Yes

ndb_log_empty_updateYes Yes Yes Global Yes

ndb_log_exclusive_readsYes Yes Yes Both Yes

ndb_log_exclusive_readsYes Yes Yes Both Yes

ndb_log_fail_terminateYes Yes Yes Global No

ndb_log_orig Yes Yes Yes Global No

ndb_log_orig Yes Yes Yes Global No

715

Server System Variable Reference

Name Cmd-Line Option File System Var Var Scope Dynamic

ndb_log_transaction_idYes Yes Yes Global No

ndb_log_transaction_id Yes Global No

ndb_log_update_as_writeYes Yes Yes Global Yes

ndb_log_update_minimalYes Yes Yes Global Yes

ndb_log_updated_onlyYes Yes Yes Global Yes

ndb_optimization_delayYes Yes Yes Global Yes

ndb_optimized_node_selectionYes Yes Yes Global Yes

ndb_optimized_node_selectionYes Yes Yes Global No

ndb_read_backupYes Yes Yes Global Yes

ndb_recv_thread_activation_thresholdYes Yes Yes Global Yes

ndb_recv_thread_cpu_maskYes Yes Yes Global Yes

ndb_report_thresh_binlog_epoch_slipYes Yes Yes Global Yes

ndb_report_thresh_binlog_mem_usageYes Yes Yes Global Yes

ndb_row_checksum Yes Both Yes

ndb_show_foreign_key_mock_tablesYes Yes Yes Global Yes

ndb_slave_conflict_roleYes Yes Yes Global Yes

Ndb_system_name Yes Global No

ndb_table_no_logging Yes Session Yes

ndb_table_temporary Yes Session Yes

ndb_use_copying_alter_table Yes Both No

ndb_use_exact_count Yes Both Yes

ndb_use_transactionsYes Yes Yes Both Yes

ndb_version Yes Global No

ndb_version_string Yes Global No

ndb_wait_connectedYes Yes Yes Global No

ndb_wait_setup Yes Yes Yes Global No

ndbinfo_database Yes Global No

ndbinfo_max_bytesYes Yes Both Yes

ndbinfo_max_rowsYes Yes Both Yes

ndbinfo_offline Yes Global Yes

ndbinfo_show_hiddenYes Yes Both Yes

ndbinfo_table_prefix Yes Global No

ndbinfo_version Yes Global No

net_buffer_lengthYes Yes Yes Both Yes

net_read_timeoutYes Yes Yes Both Yes

net_retry_count Yes Yes Yes Both Yes

net_write_timeoutYes Yes Yes Both Yes

new Yes Yes Yes Both Yes

716

Server System Variable Reference

Name Cmd-Line Option File System Var Var Scope Dynamic

ngram_token_sizeYes Yes Yes Global No

offline_mode Yes Yes Yes Global Yes

old Yes Yes Yes Global No

old_alter_table Yes Yes Yes Both Yes

old_passwords Yes Yes Yes Both Yes

open_files_limit Yes Yes Yes Global No

optimizer_prune_levelYes Yes Yes Both Yes

optimizer_search_depthYes Yes Yes Both Yes

optimizer_switch Yes Yes Yes Both Yes

optimizer_trace Yes Yes Yes Both Yes

optimizer_trace_featuresYes Yes Yes Both Yes

optimizer_trace_limitYes Yes Yes Both Yes

optimizer_trace_max_mem_sizeYes Yes Yes Both Yes

optimizer_trace_offsetYes Yes Yes Both Yes

parser_max_mem_sizeYes Yes Yes Both Yes

performance_schemaYes Yes Yes Global No

performance_schema_accounts_sizeYes Yes Yes Global No

performance_schema_digests_sizeYes Yes Yes Global No

performance_schema_events_stages_history_long_sizeYes Yes Yes Global No

performance_schema_events_stages_history_sizeYes Yes Yes Global No

performance_schema_events_statements_history_long_sizeYes Yes Yes Global No

performance_schema_events_statements_history_sizeYes Yes Yes Global No

performance_schema_events_transactions_history_long_sizeYes Yes Yes Global No

performance_schema_events_transactions_history_sizeYes Yes Yes Global No

performance_schema_events_waits_history_long_sizeYes Yes Yes Global No

performance_schema_events_waits_history_sizeYes Yes Yes Global No

performance_schema_hosts_sizeYes Yes Yes Global No

performance_schema_max_cond_classesYes Yes Yes Global No

performance_schema_max_cond_instancesYes Yes Yes Global No

performance_schema_max_digest_lengthYes Yes Yes Global No

performance_schema_max_file_classesYes Yes Yes Global No

performance_schema_max_file_handlesYes Yes Yes Global No

performance_schema_max_file_instancesYes Yes Yes Global No

performance_schema_max_index_statYes Yes Yes Global No

performance_schema_max_memory_classesYes Yes Yes Global No

performance_schema_max_metadata_locksYes Yes Yes Global No

performance_schema_max_mutex_classesYes Yes Yes Global No

performance_schema_max_mutex_instancesYes Yes Yes Global No

717

Server System Variable Reference

Name Cmd-Line Option File System Var Var Scope Dynamic

performance_schema_max_prepared_statements_instancesYes Yes Yes Global No

performance_schema_max_program_instancesYes Yes Yes Global No

performance_schema_max_rwlock_classesYes Yes Yes Global No

performance_schema_max_rwlock_instancesYes Yes Yes Global No

performance_schema_max_socket_classesYes Yes Yes Global No

performance_schema_max_socket_instancesYes Yes Yes Global No

performance_schema_max_sql_text_lengthYes Yes Yes Global No

performance_schema_max_stage_classesYes Yes Yes Global No

performance_schema_max_statement_classesYes Yes Yes Global No

performance_schema_max_statement_stackYes Yes Yes Global No

performance_schema_max_table_handlesYes Yes Yes Global No

performance_schema_max_table_instancesYes Yes Yes Global No

performance_schema_max_table_lock_statYes Yes Yes Global No

performance_schema_max_thread_classesYes Yes Yes Global No

performance_schema_max_thread_instancesYes Yes Yes Global No

performance_schema_session_connect_attrs_sizeYes Yes Yes Global No

performance_schema_setup_actors_sizeYes Yes Yes Global No

performance_schema_setup_objects_sizeYes Yes Yes Global No

performance_schema_show_processlistYes Yes Yes Global Yes

performance_schema_users_sizeYes Yes Yes Global No

pid_file Yes Yes Yes Global No

plugin_dir Yes Yes Yes Global No

port Yes Yes Yes Global No

preload_buffer_sizeYes Yes Yes Both Yes

profiling Yes Both Yes

profiling_history_sizeYes Yes Yes Both Yes

protocol_version Yes Global No

proxy_user Yes Session No

pseudo_slave_mode Yes Session Yes

pseudo_thread_id Yes Session Yes

query_alloc_block_sizeYes Yes Yes Both Yes

query_cache_limitYes Yes Yes Global Yes

query_cache_min_res_unitYes Yes Yes Global Yes

query_cache_sizeYes Yes Yes Global Yes

query_cache_typeYes Yes Yes Both Yes

query_cache_wlock_invalidateYes Yes Yes Both Yes

query_prealloc_sizeYes Yes Yes Both Yes

rand_seed1 Yes Session Yes

718

Server System Variable Reference

Name Cmd-Line Option File System Var Var Scope Dynamic

rand_seed2 Yes Session Yes

range_alloc_block_sizeYes Yes Yes Both Yes

range_optimizer_max_mem_sizeYes Yes Yes Both Yes

rbr_exec_mode Yes Session Yes

read_buffer_size Yes Yes Yes Both Yes

read_only Yes Yes Yes Global Yes

read_rnd_buffer_sizeYes Yes Yes Both Yes

relay_log Yes Yes Yes Global No

relay_log_basename Yes Global No

relay_log_index Yes Yes Yes Global No

relay_log_info_fileYes Yes Yes Global No

relay_log_info_repositoryYes Yes Yes Global Yes

relay_log_purge Yes Yes Yes Global Yes

relay_log_recoveryYes Yes Yes Global No

relay_log_space_limitYes Yes Yes Global No

replication_optimize_for_static_plugin_configYes Yes Yes Global Yes

replication_sender_observe_commit_onlyYes Yes Yes Global Yes

report_host Yes Yes Yes Global No

report_password Yes Yes Yes Global No

report_port Yes Yes Yes Global No

report_user Yes Yes Yes Global No

require_secure_transportYes Yes Yes Global Yes

rewriter_enabled Yes Global Yes

rewriter_verbose Yes Global Yes

rpl_semi_sync_master_enabledYes Yes Yes Global Yes

rpl_semi_sync_master_timeoutYes Yes Yes Global Yes

rpl_semi_sync_master_trace_levelYes Yes Yes Global Yes

rpl_semi_sync_master_wait_for_slave_countYes Yes Yes Global Yes

rpl_semi_sync_master_wait_no_slaveYes Yes Yes Global Yes

rpl_semi_sync_master_wait_pointYes Yes Yes Global Yes

rpl_semi_sync_slave_enabledYes Yes Yes Global Yes

rpl_semi_sync_slave_trace_levelYes Yes Yes Global Yes

rpl_stop_slave_timeoutYes Yes Yes Global Yes

secure_auth Yes Yes Yes Global Yes

secure_file_priv Yes Yes Yes Global No

server_id Yes Yes Yes Global Yes

server_id_bits Yes Yes Yes Global No

server_uuid Yes Global No

719

Server System Variable Reference

Name Cmd-Line Option File System Var Var Scope Dynamic

session_track_gtidsYes Yes Yes Both Yes

session_track_schemaYes Yes Yes Both Yes

session_track_state_changeYes Yes Yes Both Yes

session_track_system_variablesYes Yes Yes Both Yes

session_track_transaction_infoYes Yes Yes Both Yes

sha256_password_auto_generate_rsa_keysYes Yes Yes Global No

sha256_password_private_key_pathYes Yes Yes Global No

sha256_password_proxy_usersYes Yes Yes Global Yes

sha256_password_public_key_pathYes Yes Yes Global No

shared_memory Yes Yes Yes Global No

shared_memory_base_nameYes Yes Yes Global No

show_compatibility_56Yes Yes Yes Global Yes

show_create_table_verbosityYes Yes Yes Both Yes

show_old_temporalsYes Yes Yes Both Yes

skip_external_lockingYes Yes Yes Global No

skip_name_resolveYes Yes Yes Global No

skip_networking Yes Yes Yes Global No

skip_show_databaseYes Yes Yes Global No

skip_slave_start Yes Yes Yes Global No

slave_allow_batchingYes Yes Yes Global Yes

slave_checkpoint_groupYes Yes Yes Global Yes

slave_checkpoint_periodYes Yes Yes Global Yes

slave_compressed_protocolYes Yes Yes Global Yes

slave_exec_modeYes Yes Yes Global Yes

slave_load_tmpdirYes Yes Yes Global No

slave_max_allowed_packetYes Yes Yes Global Yes

slave_net_timeoutYes Yes Yes Global Yes

slave_parallel_typeYes Yes Yes Global Yes

slave_parallel_workersYes Yes Yes Global Yes

slave_pending_jobs_size_maxYes Yes Yes Global Yes

slave_preserve_commit_orderYes Yes Yes Global Yes

slave_rows_search_algorithmsYes Yes Yes Global Yes

slave_skip_errorsYes Yes Yes Global No

slave_sql_verify_checksumYes Yes Yes Global Yes

slave_transaction_retriesYes Yes Yes Global Yes

slave_type_conversionsYes Yes Yes Global Yes

slow_launch_timeYes Yes Yes Global Yes

slow_query_log Yes Yes Yes Global Yes

720

Server System Variable Reference

Name Cmd-Line Option File System Var Var Scope Dynamic

slow_query_log_fileYes Yes Yes Global Yes

socket Yes Yes Yes Global No

sort_buffer_size Yes Yes Yes Both Yes

sql_auto_is_null Yes Both Yes

sql_big_selects Yes Both Yes

sql_buffer_result Yes Both Yes

sql_log_bin Yes Session Yes

sql_log_off Yes Both Yes

sql_mode Yes Yes Yes Both Yes

sql_notes Yes Both Yes

sql_quote_show_create Yes Both Yes

sql_safe_updates Yes Both Yes

sql_select_limit Yes Both Yes

sql_slave_skip_counter Yes Global Yes

sql_warnings Yes Both Yes

ssl_ca Yes Yes Yes Global No

ssl_capath Yes Yes Yes Global No

ssl_cert Yes Yes Yes Global No

ssl_cipher Yes Yes Yes Global No

ssl_crl Yes Yes Yes Global No

ssl_crlpath Yes Yes Yes Global No

ssl_key Yes Yes Yes Global No

stored_program_cacheYes Yes Yes Global Yes

super_read_only Yes Yes Yes Global Yes

sync_binlog Yes Yes Yes Global Yes

sync_frm Yes Yes Yes Global Yes

sync_master_infoYes Yes Yes Global Yes

sync_relay_log Yes Yes Yes Global Yes

sync_relay_log_infoYes Yes Yes Global Yes

system_time_zone Yes Global No

table_definition_cacheYes Yes Yes Global Yes

table_open_cacheYes Yes Yes Global Yes

table_open_cache_instancesYes Yes Yes Global No

thread_cache_sizeYes Yes Yes Global Yes

thread_handling Yes Yes Yes Global No

thread_pool_algorithmYes Yes Yes Global No

thread_pool_high_priority_connectionYes Yes Yes Both Yes

thread_pool_max_unused_threadsYes Yes Yes Global Yes

721

Server System Variable Reference

Name Cmd-Line Option File System Var Var Scope Dynamic

thread_pool_prio_kickup_timerYes Yes Yes Global Yes

thread_pool_size Yes Yes Yes Global No

thread_pool_stall_limitYes Yes Yes Global Yes

thread_stack Yes Yes Yes Global No

time_format Yes Global No

time_zone Yes Both Yes

timestamp Yes Session Yes

tls_version Yes Yes Yes Global No

tmp_table_size Yes Yes Yes Both Yes

tmpdir Yes Yes Yes Global No

transaction_alloc_block_sizeYes Yes Yes Both Yes

transaction_allow_batching Yes Session Yes

transaction_isolationYes Yes Yes

- Variable:
tx_isolation

Yes Both Yes

transaction_prealloc_sizeYes Yes Yes Both Yes

transaction_read_onlyYes Yes Yes

- Variable:
tx_read_only

Yes Both Yes

transaction_write_set_extractionYes Yes Yes Both Yes

tx_isolation Yes Both Yes

tx_read_only Yes Both Yes

unique_checks Yes Both Yes

updatable_views_with_limitYes Yes Yes Both Yes

validate_password_check_user_nameYes Yes Yes Global Yes

validate_password_dictionary_fileYes Yes Yes Global Varies

validate_password_lengthYes Yes Yes Global Yes

validate_password_mixed_case_countYes Yes Yes Global Yes

validate_password_number_countYes Yes Yes Global Yes

validate_password_policyYes Yes Yes Global Yes

validate_password_special_char_countYes Yes Yes Global Yes

version Yes Global No

version_comment Yes Global No

version_compile_machine Yes Global No

version_compile_os Yes Global No

version_tokens_sessionYes Yes Yes Both Yes

version_tokens_session_numberYes Yes Yes Both No

wait_timeout Yes Yes Yes Both Yes

722

Server Status Variable Reference

Name Cmd-Line Option File System Var Var Scope Dynamic

warning_count Yes Session No

Notes:

1. This option is dynamic, but should be set only by server. You should not set this variable manually.

5.1.5 Server Status Variable Reference

The following table lists all status variables applicable within mysqld.

The table lists each variable's data type and scope. The last column indicates whether the scope for each
variable is Global, Session, or both. Please see the corresponding item descriptions for details on setting
and using the variables. Where appropriate, direct links to further information about the items are provided.

Table 5.3 Status Variable Summary

Variable Name Variable Type Variable Scope

Aborted_clients Integer Global

Aborted_connects Integer Global

Audit_log_current_size Integer Global

Audit_log_event_max_drop_size Integer Global

Audit_log_events Integer Global

Audit_log_events_filtered Integer Global

Audit_log_events_lost Integer Global

Audit_log_events_written Integer Global

Audit_log_total_size Integer Global

Audit_log_write_waits Integer Global

Binlog_cache_disk_use Integer Global

Binlog_cache_use Integer Global

Binlog_stmt_cache_disk_use Integer Global

Binlog_stmt_cache_use Integer Global

Bytes_received Integer Both

Bytes_sent Integer Both

Com_admin_commands Integer Both

Com_alter_db Integer Both

Com_alter_db_upgrade Integer Both

Com_alter_event Integer Both

Com_alter_function Integer Both

Com_alter_procedure Integer Both

Com_alter_server Integer Both

Com_alter_table Integer Both

Com_alter_tablespace Integer Both

Com_alter_user Integer Both

Com_analyze Integer Both

723

Server Status Variable Reference

Variable Name Variable Type Variable Scope

Com_assign_to_keycache Integer Both

Com_begin Integer Both

Com_binlog Integer Both

Com_call_procedure Integer Both

Com_change_db Integer Both

Com_change_master Integer Both

Com_change_repl_filter Integer Both

Com_check Integer Both

Com_checksum Integer Both

Com_commit Integer Both

Com_create_db Integer Both

Com_create_event Integer Both

Com_create_function Integer Both

Com_create_index Integer Both

Com_create_procedure Integer Both

Com_create_server Integer Both

Com_create_table Integer Both

Com_create_trigger Integer Both

Com_create_udf Integer Both

Com_create_user Integer Both

Com_create_view Integer Both

Com_dealloc_sql Integer Both

Com_delete Integer Both

Com_delete_multi Integer Both

Com_do Integer Both

Com_drop_db Integer Both

Com_drop_event Integer Both

Com_drop_function Integer Both

Com_drop_index Integer Both

Com_drop_procedure Integer Both

Com_drop_server Integer Both

Com_drop_table Integer Both

Com_drop_trigger Integer Both

Com_drop_user Integer Both

Com_drop_view Integer Both

Com_empty_query Integer Both

Com_execute_sql Integer Both

Com_explain_other Integer Both

724

Server Status Variable Reference

Variable Name Variable Type Variable Scope

Com_flush Integer Both

Com_get_diagnostics Integer Both

Com_grant Integer Both

Com_group_replication_start Integer Global

Com_group_replication_stop Integer Global

Com_ha_close Integer Both

Com_ha_open Integer Both

Com_ha_read Integer Both

Com_help Integer Both

Com_insert Integer Both

Com_insert_select Integer Both

Com_install_plugin Integer Both

Com_kill Integer Both

Com_load Integer Both

Com_lock_tables Integer Both

Com_optimize Integer Both

Com_preload_keys Integer Both

Com_prepare_sql Integer Both

Com_purge Integer Both

Com_purge_before_date Integer Both

Com_release_savepoint Integer Both

Com_rename_table Integer Both

Com_rename_user Integer Both

Com_repair Integer Both

Com_replace Integer Both

Com_replace_select Integer Both

Com_reset Integer Both

Com_resignal Integer Both

Com_revoke Integer Both

Com_revoke_all Integer Both

Com_rollback Integer Both

Com_rollback_to_savepoint Integer Both

Com_savepoint Integer Both

Com_select Integer Both

Com_set_option Integer Both

Com_show_authors Integer Both

Com_show_binlog_events Integer Both

Com_show_binlogs Integer Both

725

Server Status Variable Reference

Variable Name Variable Type Variable Scope

Com_show_charsets Integer Both

Com_show_collations Integer Both

Com_show_contributors Integer Both

Com_show_create_db Integer Both

Com_show_create_event Integer Both

Com_show_create_func Integer Both

Com_show_create_proc Integer Both

Com_show_create_table Integer Both

Com_show_create_trigger Integer Both

Com_show_create_user Integer Both

Com_show_databases Integer Both

Com_show_engine_logs Integer Both

Com_show_engine_mutex Integer Both

Com_show_engine_status Integer Both

Com_show_errors Integer Both

Com_show_events Integer Both

Com_show_fields Integer Both

Com_show_function_code Integer Both

Com_show_function_status Integer Both

Com_show_grants Integer Both

Com_show_keys Integer Both

Com_show_master_status Integer Both

Com_show_ndb_status Integer Both

Com_show_open_tables Integer Both

Com_show_plugins Integer Both

Com_show_privileges Integer Both

Com_show_procedure_code Integer Both

Com_show_procedure_status Integer Both

Com_show_processlist Integer Both

Com_show_profile Integer Both

Com_show_profiles Integer Both

Com_show_relaylog_events Integer Both

Com_show_slave_hosts Integer Both

Com_show_slave_status Integer Both

Com_show_status Integer Both

Com_show_storage_engines Integer Both

Com_show_table_status Integer Both

Com_show_tables Integer Both

726

Server Status Variable Reference

Variable Name Variable Type Variable Scope

Com_show_triggers Integer Both

Com_show_variables Integer Both

Com_show_warnings Integer Both

Com_shutdown Integer Both

Com_signal Integer Both

Com_slave_start Integer Both

Com_slave_stop Integer Both

Com_stmt_close Integer Both

Com_stmt_execute Integer Both

Com_stmt_fetch Integer Both

Com_stmt_prepare Integer Both

Com_stmt_reprepare Integer Both

Com_stmt_reset Integer Both

Com_stmt_send_long_data Integer Both

Com_truncate Integer Both

Com_uninstall_plugin Integer Both

Com_unlock_tables Integer Both

Com_update Integer Both

Com_update_multi Integer Both

Com_xa_commit Integer Both

Com_xa_end Integer Both

Com_xa_prepare Integer Both

Com_xa_recover Integer Both

Com_xa_rollback Integer Both

Com_xa_start Integer Both

Compression Integer Session

Connection_control_delay_generatedInteger Global

Connection_errors_accept Integer Global

Connection_errors_internal Integer Global

Connection_errors_max_connectionsInteger Global

Connection_errors_peer_address Integer Global

Connection_errors_select Integer Global

Connection_errors_tcpwrap Integer Global

Connections Integer Global

Created_tmp_disk_tables Integer Both

Created_tmp_files Integer Global

Created_tmp_tables Integer Both

Delayed_errors Integer Global

727

Server Status Variable Reference

Variable Name Variable Type Variable Scope

Delayed_insert_threads Integer Global

Delayed_writes Integer Global

Firewall_access_denied Integer Global

Firewall_access_granted Integer Global

Firewall_access_suspicious Integer Global

Firewall_cached_entries Integer Global

Flush_commands Integer Global

group_replication_primary_memberString Global

Handler_commit Integer Both

Handler_delete Integer Both

Handler_discover Integer Both

Handler_external_lock Integer Both

Handler_mrr_init Integer Both

Handler_prepare Integer Both

Handler_read_first Integer Both

Handler_read_key Integer Both

Handler_read_last Integer Both

Handler_read_next Integer Both

Handler_read_prev Integer Both

Handler_read_rnd Integer Both

Handler_read_rnd_next Integer Both

Handler_rollback Integer Both

Handler_savepoint Integer Both

Handler_savepoint_rollback Integer Both

Handler_update Integer Both

Handler_write Integer Both

Innodb_available_undo_logs Integer Global

Innodb_buffer_pool_bytes_data Integer Global

Innodb_buffer_pool_bytes_dirty Integer Global

Innodb_buffer_pool_dump_status String Global

Innodb_buffer_pool_load_status String Global

Innodb_buffer_pool_pages_data Integer Global

Innodb_buffer_pool_pages_dirty Integer Global

Innodb_buffer_pool_pages_flushedInteger Global

Innodb_buffer_pool_pages_free Integer Global

Innodb_buffer_pool_pages_latched Integer Global

Innodb_buffer_pool_pages_misc Integer Global

Innodb_buffer_pool_pages_total Integer Global

728

Server Status Variable Reference

Variable Name Variable Type Variable Scope

Innodb_buffer_pool_read_ahead Integer Global

Innodb_buffer_pool_read_ahead_evictedInteger Global

Innodb_buffer_pool_read_ahead_rndInteger Global

Innodb_buffer_pool_read_requests Integer Global

Innodb_buffer_pool_reads Integer Global

Innodb_buffer_pool_resize_status String Global

Innodb_buffer_pool_wait_free Integer Global

Innodb_buffer_pool_write_requests Integer Global

Innodb_data_fsyncs Integer Global

Innodb_data_pending_fsyncs Integer Global

Innodb_data_pending_reads Integer Global

Innodb_data_pending_writes Integer Global

Innodb_data_read Integer Global

Innodb_data_reads Integer Global

Innodb_data_writes Integer Global

Innodb_data_written Integer Global

Innodb_dblwr_pages_written Integer Global

Innodb_dblwr_writes Integer Global

Innodb_have_atomic_builtins Integer Global

Innodb_log_waits Integer Global

Innodb_log_write_requests Integer Global

Innodb_log_writes Integer Global

Innodb_num_open_files Integer Global

Innodb_os_log_fsyncs Integer Global

Innodb_os_log_pending_fsyncs Integer Global

Innodb_os_log_pending_writes Integer Global

Innodb_os_log_written Integer Global

Innodb_page_size Integer Global

Innodb_pages_created Integer Global

Innodb_pages_read Integer Global

Innodb_pages_written Integer Global

Innodb_row_lock_current_waits Integer Global

Innodb_row_lock_time Integer Global

Innodb_row_lock_time_avg Integer Global

Innodb_row_lock_time_max Integer Global

Innodb_row_lock_waits Integer Global

Innodb_rows_deleted Integer Global

Innodb_rows_inserted Integer Global

729

Server Status Variable Reference

Variable Name Variable Type Variable Scope

Innodb_rows_read Integer Global

Innodb_rows_updated Integer Global

Innodb_truncated_status_writes Integer Global

Key_blocks_not_flushed Integer Global

Key_blocks_unused Integer Global

Key_blocks_used Integer Global

Key_read_requests Integer Global

Key_reads Integer Global

Key_write_requests Integer Global

Key_writes Integer Global

Last_query_cost Numeric Session

Last_query_partial_plans Integer Session

Locked_connects Integer Global

Max_execution_time_exceeded Integer Both

Max_execution_time_set Integer Both

Max_execution_time_set_failed Integer Both

Max_used_connections Integer Global

Max_used_connections_time Datetime Global

mecab_charset String Global

Mysqlx_address String Global

Mysqlx_bytes_received Integer Both

Mysqlx_bytes_sent Integer Both

Mysqlx_connection_accept_errors Integer Both

Mysqlx_connection_errors Integer Both

Mysqlx_connections_accepted Integer Global

Mysqlx_connections_closed Integer Global

Mysqlx_connections_rejected Integer Global

Mysqlx_crud_create_view Integer Both

Mysqlx_crud_delete Integer Both

Mysqlx_crud_drop_view Integer Both

Mysqlx_crud_find Integer Both

Mysqlx_crud_insert Integer Both

Mysqlx_crud_modify_view Integer Both

Mysqlx_crud_update Integer Both

Mysqlx_errors_sent Integer Both

Mysqlx_errors_unknown_message_typeInteger Both

Mysqlx_expect_close Integer Both

Mysqlx_expect_open Integer Both

730

Server Status Variable Reference

Variable Name Variable Type Variable Scope

Mysqlx_init_error Integer Both

Mysqlx_notice_other_sent Integer Both

Mysqlx_notice_warning_sent Integer Both

Mysqlx_port String Global

Mysqlx_rows_sent Integer Both

Mysqlx_sessions Integer Global

Mysqlx_sessions_accepted Integer Global

Mysqlx_sessions_closed Integer Global

Mysqlx_sessions_fatal_error Integer Global

Mysqlx_sessions_killed Integer Global

Mysqlx_sessions_rejected Integer Global

Mysqlx_socket String Global

Mysqlx_ssl_accept_renegotiates Integer Global

Mysqlx_ssl_accepts Integer Global

Mysqlx_ssl_active Integer Both

Mysqlx_ssl_cipher Integer Both

Mysqlx_ssl_cipher_list Integer Both

Mysqlx_ssl_ctx_verify_depth Integer Both

Mysqlx_ssl_ctx_verify_mode Integer Both

Mysqlx_ssl_finished_accepts Integer Global

Mysqlx_ssl_server_not_after Integer Global

Mysqlx_ssl_server_not_before Integer Global

Mysqlx_ssl_verify_depth Integer Global

Mysqlx_ssl_verify_mode Integer Global

Mysqlx_ssl_version Integer Both

Mysqlx_stmt_create_collection Integer Both

Mysqlx_stmt_create_collection_indexInteger Both

Mysqlx_stmt_disable_notices Integer Both

Mysqlx_stmt_drop_collection Integer Both

Mysqlx_stmt_drop_collection_indexInteger Both

Mysqlx_stmt_enable_notices Integer Both

Mysqlx_stmt_ensure_collection String Both

Mysqlx_stmt_execute_mysqlx Integer Both

Mysqlx_stmt_execute_sql Integer Both

Mysqlx_stmt_execute_xplugin Integer Both

Mysqlx_stmt_kill_client Integer Both

Mysqlx_stmt_list_clients Integer Both

Mysqlx_stmt_list_notices Integer Both

731

Server Status Variable Reference

Variable Name Variable Type Variable Scope

Mysqlx_stmt_list_objects Integer Both

Mysqlx_stmt_ping Integer Both

Mysqlx_worker_threads Integer Global

Mysqlx_worker_threads_active Integer Global

Ndb_api_adaptive_send_deferred_countInteger Global

Ndb_api_adaptive_send_deferred_count_sessionInteger Global

Ndb_api_adaptive_send_deferred_count_slaveInteger Global

Ndb_api_adaptive_send_forced_countInteger Global

Ndb_api_adaptive_send_forced_count_sessionInteger Global

Ndb_api_adaptive_send_forced_count_slaveInteger Global

Ndb_api_adaptive_send_unforced_countInteger Global

Ndb_api_adaptive_send_unforced_count_sessionInteger Global

Ndb_api_adaptive_send_unforced_count_slaveInteger Global

Ndb_api_bytes_received_count Integer Global

Ndb_api_bytes_received_count_sessionInteger Session

Ndb_api_bytes_received_count_slaveInteger Global

Ndb_api_bytes_sent_count Integer Global

Ndb_api_bytes_sent_count_sessionInteger Session

Ndb_api_bytes_sent_count_slave Integer Global

Ndb_api_event_bytes_count Integer Global

Ndb_api_event_bytes_count_injectorInteger Global

Ndb_api_event_data_count Integer Global

Ndb_api_event_data_count_injectorInteger Global

Ndb_api_event_nondata_count Integer Global

Ndb_api_event_nondata_count_injectorInteger Global

Ndb_api_pk_op_count Integer Global

Ndb_api_pk_op_count_session Integer Session

Ndb_api_pk_op_count_slave Integer Global

Ndb_api_pruned_scan_count Integer Global

Ndb_api_pruned_scan_count_sessionInteger Session

Ndb_api_pruned_scan_count_slaveInteger Global

Ndb_api_range_scan_count Integer Global

Ndb_api_range_scan_count_sessionInteger Session

Ndb_api_range_scan_count_slave Integer Global

Ndb_api_read_row_count Integer Global

Ndb_api_read_row_count_session Integer Session

Ndb_api_read_row_count_slave Integer Global

Ndb_api_scan_batch_count Integer Global

732

Server Status Variable Reference

Variable Name Variable Type Variable Scope

Ndb_api_scan_batch_count_sessionInteger Session

Ndb_api_scan_batch_count_slave Integer Global

Ndb_api_table_scan_count Integer Global

Ndb_api_table_scan_count_sessionInteger Session

Ndb_api_table_scan_count_slave Integer Global

Ndb_api_trans_abort_count Integer Global

Ndb_api_trans_abort_count_sessionInteger Session

Ndb_api_trans_abort_count_slave Integer Global

Ndb_api_trans_close_count Integer Global

Ndb_api_trans_close_count_sessionInteger Session

Ndb_api_trans_close_count_slave Integer Global

Ndb_api_trans_commit_count Integer Global

Ndb_api_trans_commit_count_sessionInteger Session

Ndb_api_trans_commit_count_slaveInteger Global

Ndb_api_trans_local_read_row_countInteger Global

Ndb_api_trans_local_read_row_count_sessionInteger Session

Ndb_api_trans_local_read_row_count_slaveInteger Global

Ndb_api_trans_start_count Integer Global

Ndb_api_trans_start_count_sessionInteger Session

Ndb_api_trans_start_count_slave Integer Global

Ndb_api_uk_op_count Integer Global

Ndb_api_uk_op_count_session Integer Session

Ndb_api_uk_op_count_slave Integer Global

Ndb_api_wait_exec_complete_countInteger Global

Ndb_api_wait_exec_complete_count_sessionInteger Session

Ndb_api_wait_exec_complete_count_slaveInteger Global

Ndb_api_wait_meta_request_countInteger Global

Ndb_api_wait_meta_request_count_sessionInteger Session

Ndb_api_wait_meta_request_count_slaveInteger Global

Ndb_api_wait_nanos_count Integer Global

Ndb_api_wait_nanos_count_sessionInteger Session

Ndb_api_wait_nanos_count_slave Integer Global

Ndb_api_wait_scan_result_count Integer Global

Ndb_api_wait_scan_result_count_sessionInteger Session

Ndb_api_wait_scan_result_count_slaveInteger Global

Ndb_cluster_node_id Integer Global

Ndb_config_from_host Integer Both

Ndb_config_from_port Integer Both

733

Server Status Variable Reference

Variable Name Variable Type Variable Scope

Ndb_conflict_fn_epoch Integer Global

Ndb_conflict_fn_epoch_trans Integer Global

Ndb_conflict_fn_epoch2 Integer Global

Ndb_conflict_fn_epoch2_trans Integer Global

Ndb_conflict_fn_max Integer Global

Ndb_conflict_fn_max_del_win Integer Global

Ndb_conflict_fn_old Integer Global

Ndb_conflict_last_conflict_epoch Integer Global

Ndb_conflict_last_stable_epoch Integer Global

Ndb_conflict_reflected_op_discard_countInteger Global

Ndb_conflict_reflected_op_prepare_countInteger Global

Ndb_conflict_refresh_op_count Integer Global

Ndb_conflict_trans_conflict_commit_countInteger Global

Ndb_conflict_trans_detect_iter_countInteger Global

Ndb_conflict_trans_reject_count Integer Global

Ndb_conflict_trans_row_conflict_countInteger Global

Ndb_conflict_trans_row_reject_countInteger Global

Ndb_epoch_delete_delete_count Integer Global

Ndb_execute_count Integer Global

Ndb_last_commit_epoch_server Integer Global

Ndb_last_commit_epoch_session Integer Session

Ndb_cluster_node_id Integer Global

Ndb_number_of_data_nodes Integer Global

Ndb_pruned_scan_count Integer Global

Ndb_pushed_queries_defined Integer Global

Ndb_pushed_queries_dropped Integer Global

Ndb_pushed_queries_executed Integer Global

Ndb_pushed_reads Integer Global

Ndb_scan_count Integer Global

Ndb_slave_max_replicated_epoch Integer Global

Not_flushed_delayed_rows Integer Global

Ongoing_anonymous_gtid_violating_transaction_countInteger Global

Ongoing_anonymous_transaction_countInteger Global

Ongoing_automatic_gtid_violating_transaction_countInteger Global

Open_files Integer Global

Open_streams Integer Global

Open_table_definitions Integer Global

Open_tables Integer Both

734

Server Status Variable Reference

Variable Name Variable Type Variable Scope

Opened_files Integer Global

Opened_table_definitions Integer Both

Opened_tables Integer Both

Performance_schema_accounts_lostInteger Global

Performance_schema_cond_classes_lostInteger Global

Performance_schema_cond_instances_lostInteger Global

Performance_schema_digest_lost Integer Global

Performance_schema_file_classes_lostInteger Global

Performance_schema_file_handles_lostInteger Global

Performance_schema_file_instances_lostInteger Global

Performance_schema_hosts_lost Integer Global

Performance_schema_index_stat_lostInteger Global

Performance_schema_locker_lost Integer Global

Performance_schema_memory_classes_lostInteger Global

Performance_schema_metadata_lock_lostInteger Global

Performance_schema_mutex_classes_lostInteger Global

Performance_schema_mutex_instances_lostInteger Global

Performance_schema_nested_statement_lostInteger Global

Performance_schema_prepared_statements_lostInteger Global

Performance_schema_program_lostInteger Global

Performance_schema_rwlock_classes_lostInteger Global

Performance_schema_rwlock_instances_lostInteger Global

Performance_schema_session_connect_attrs_lostInteger Global

Performance_schema_socket_classes_lostInteger Global

Performance_schema_socket_instances_lostInteger Global

Performance_schema_stage_classes_lostInteger Global

Performance_schema_statement_classes_lostInteger Global

Performance_schema_table_handles_lostInteger Global

Performance_schema_table_instances_lostInteger Global

Performance_schema_table_lock_stat_lostInteger Global

Performance_schema_thread_classes_lostInteger Global

Performance_schema_thread_instances_lostInteger Global

Performance_schema_users_lost Integer Global

Prepared_stmt_count Integer Global

Qcache_free_blocks Integer Global

Qcache_free_memory Integer Global

Qcache_hits Integer Global

Qcache_inserts Integer Global

735

Server Status Variable Reference

Variable Name Variable Type Variable Scope

Qcache_lowmem_prunes Integer Global

Qcache_not_cached Integer Global

Qcache_queries_in_cache Integer Global

Qcache_total_blocks Integer Global

Queries Integer Both

Questions Integer Both

Rewriter_number_loaded_rules Integer Global

Rewriter_number_reloads Integer Global

Rewriter_number_rewritten_queriesInteger Global

Rewriter_reload_error Boolean Global

Rpl_semi_sync_master_clients Integer Global

Rpl_semi_sync_master_net_avg_wait_timeInteger Global

Rpl_semi_sync_master_net_wait_timeInteger Global

Rpl_semi_sync_master_net_waits Integer Global

Rpl_semi_sync_master_no_times Integer Global

Rpl_semi_sync_master_no_tx Integer Global

Rpl_semi_sync_master_status Boolean Global

Rpl_semi_sync_master_timefunc_failuresInteger Global

Rpl_semi_sync_master_tx_avg_wait_timeInteger Global

Rpl_semi_sync_master_tx_wait_timeInteger Global

Rpl_semi_sync_master_tx_waits Integer Global

Rpl_semi_sync_master_wait_pos_backtraverseInteger Global

Rpl_semi_sync_master_wait_sessionsInteger Global

Rpl_semi_sync_master_yes_tx Integer Global

Rpl_semi_sync_slave_status Boolean Global

Rsa_public_key String Global

Select_full_join Integer Both

Select_full_range_join Integer Both

Select_range Integer Both

Select_range_check Integer Both

Select_scan Integer Both

Slave_heartbeat_period Numeric Global

Slave_last_heartbeat Datetime Global

Slave_open_temp_tables Integer Global

Slave_received_heartbeats Integer Global

Slave_retried_transactions Integer Global

Slave_rows_last_search_algorithm_usedString Global

Slave_running String Global

736

Server Status Variable Reference

Variable Name Variable Type Variable Scope

Slow_launch_threads Integer Both

Slow_queries Integer Both

Sort_merge_passes Integer Both

Sort_range Integer Both

Sort_rows Integer Both

Sort_scan Integer Both

Ssl_accept_renegotiates Integer Global

Ssl_accepts Integer Global

Ssl_callback_cache_hits Integer Global

Ssl_cipher String Both

Ssl_cipher_list String Both

Ssl_client_connects Integer Global

Ssl_connect_renegotiates Integer Global

Ssl_ctx_verify_depth Integer Global

Ssl_ctx_verify_mode Integer Global

Ssl_default_timeout Integer Both

Ssl_finished_accepts Integer Global

Ssl_finished_connects Integer Global

Ssl_server_not_after Integer Both

Ssl_server_not_before Integer Both

Ssl_session_cache_hits Integer Global

Ssl_session_cache_misses Integer Global

Ssl_session_cache_mode String Global

Ssl_session_cache_overflows Integer Global

Ssl_session_cache_size Integer Global

Ssl_session_cache_timeouts Integer Global

Ssl_sessions_reused Integer Session

Ssl_used_session_cache_entries Integer Global

Ssl_verify_depth Integer Both

Ssl_verify_mode Integer Both

Ssl_version String Both

Table_locks_immediate Integer Global

Table_locks_waited Integer Global

Table_open_cache_hits Integer Both

Table_open_cache_misses Integer Both

Table_open_cache_overflows Integer Both

Tc_log_max_pages_used Integer Global

Tc_log_page_size Integer Global

737

Server Command Options

Variable Name Variable Type Variable Scope

Tc_log_page_waits Integer Global

Threads_cached Integer Global

Threads_connected Integer Global

Threads_created Integer Global

Threads_running Integer Global

Uptime Integer Global

Uptime_since_flush_status Integer Global

validate_password_dictionary_file_last_parsedDatetime Global

validate_password_dictionary_file_words_countInteger Global

5.1.6 Server Command Options

When you start the mysqld server, you can specify program options using any of the methods described
in Section 4.2.2, “Specifying Program Options”. The most common methods are to provide options in an
option file or on the command line. However, in most cases it is desirable to make sure that the server
uses the same options each time it runs. The best way to ensure this is to list them in an option file. See
Section 4.2.2.2, “Using Option Files”. That section also describes option file format and syntax.

mysqld reads options from the [mysqld] and [server] groups. mysqld_safe reads options from the
[mysqld], [server], [mysqld_safe], and [safe_mysqld] groups. mysql.server reads options
from the [mysqld] and [mysql.server] groups.

An embedded MySQL server usually reads options from the [server], [embedded], and
[xxxxx_SERVER] groups, where xxxxx is the name of the application into which the server is embedded.

mysqld accepts many command options. For a brief summary, execute this command:

mysqld --help

To see the full list, use this command:

mysqld --verbose --help

Some of the items in the list are actually system variables that can be set at server startup. These can
be displayed at runtime using the SHOW VARIABLES statement. Some items displayed by the preceding
mysqld command do not appear in SHOW VARIABLES output; this is because they are options only and
not system variables.

The following list shows some of the most common server options. Additional options are described in
other sections:

• Options that affect security: See Section 6.1.4, “Security-Related mysqld Options and Variables”.

• SSL-related options: See Command Options for Encrypted Connections.

• Binary log control options: See Section 5.4.4, “The Binary Log”.

• Replication-related options: See Section 16.1.6, “Replication and Binary Logging Options and Variables”.

• Options for loading plugins such as pluggable storage engines: See Section 5.5.1, “Installing and
Uninstalling Plugins”.

• Options specific to particular storage engines: See Section 14.15, “InnoDB Startup Options and System
Variables” and Section 15.2.1, “MyISAM Startup Options”.

738

Server Command Options

Some options control the size of buffers or caches. For a given buffer, the server might need to allocate
internal data structures. These structures typically are allocated from the total memory allocated to the
buffer, and the amount of space required might be platform dependent. This means that when you assign
a value to an option that controls a buffer size, the amount of space actually available might differ from
the value assigned. In some cases, the amount might be less than the value assigned. It is also possible
that the server adjusts a value upward. For example, if you assign a value of 0 to an option for which the
minimal value is 1024, the server sets the value to 1024.

Values for buffer sizes, lengths, and stack sizes are given in bytes unless otherwise specified.

Some options take file name values. Unless otherwise specified, the default file location is the data
directory if the value is a relative path name. To specify the location explicitly, use an absolute path name.
Suppose that the data directory is /var/mysql/data. If a file-valued option is given as a relative path
name, it is located under /var/mysql/data. If the value is an absolute path name, its location is as given
by the path name.

You can also set the values of server system variables at server startup by using variable names as
options. To assign a value to a server system variable, use an option of the form --var_name=value. For
example, --sort_buffer_size=384M sets the sort_buffer_size variable to a value of 384MB.

When you assign a value to a variable, MySQL might automatically correct the value to stay within a given
range, or adjust the value to the closest permissible value if only certain values are permitted.

To restrict the maximum value to which a system variable can be set at runtime with the SET statement,
specify this maximum by using an option of the form --maximum-var_name=value at server startup.

You can change the values of most system variables at runtime with the SET statement. See
Section 13.7.4.1, “SET Syntax for Variable Assignment”.

Section 5.1.7, “Server System Variables”, provides a full description for all variables, and additional
information for setting them at server startup and runtime. For information on changing system variables,
see Section 5.1.1, “Configuring the Server”.

• --help, -?

Command-Line Format --help

Display a short help message and exit. Use both the --verbose and --help options to see the full
message.

• --allow-suspicious-udfs

Command-Line Format --allow-suspicious-udfs[={OFF|ON}]

Type Boolean

Default Value OFF

This option controls whether loadable functions that have only an xxx symbol for the main function can
be loaded. By default, the option is off and only loadable functions that have at least one auxiliary symbol
can be loaded; this prevents attempts at loading functions from shared object files other than those
containing legitimate functions. See Loadable Function Security Precautions.

• --ansi

Command-Line Format --ansi

739

https://dev.mysql.com/doc/extending-mysql/5.7/en/adding-loadable-function.html#loadable-function-security

Server Command Options

Use standard (ANSI) SQL syntax instead of MySQL syntax. For more precise control over the server
SQL mode, use the --sql-mode option instead. See Section 1.6, “MySQL Standards Compliance”, and
Section 5.1.10, “Server SQL Modes”.

• --basedir=dir_name, -b dir_name

Command-Line Format --basedir=dir_name

System Variable basedir

Scope Global

Dynamic No

Type Directory name

Default Value configuration-dependent default

The path to the MySQL installation directory. This option sets the basedir system variable.

• --bootstrap

Command-Line Format --bootstrap

Deprecated Yes

This option is used by the mysql_install_db program to create the MySQL privilege tables without
having to start a full MySQL server.

Note

mysql_install_db is deprecated because its functionality has been integrated
into mysqld, the MySQL server. Consequently, the --bootstrap server option
that mysql_install_db passes to mysqld is also deprecated. To initialize a
MySQL installation, invoke mysqld with the --initialize or --initialize-
insecure option. For more information, see Section 2.9.1, “Initializing the Data
Directory”. Expect mysql_install_db and the --bootstrap server option to
be removed in a future release of MySQL.

--bootstrap is mutually exclusive with --daemonize, --initialize, and --initialize-
insecure.

Global transaction identifiers (GTIDs) are not disabled when --bootstrap is used. --bootstrap was
used (Bug #20980271). See Section 16.1.3, “Replication with Global Transaction Identifiers”.

When the server operates in bootstap mode, some functionality is unavailable that limits the statements
permitted in any file named by the init_file system variable. For more information, see the
description of that variable. In addition, the disabled_storage_engines system variable has no
effect.

• --character-set-client-handshake

Command-Line Format --character-set-client-
handshake[={OFF|ON}]

Type Boolean

740

Server Command Options

Default Value ON

Do not ignore character set information sent by the client. To ignore client information and use the
default server character set, use --skip-character-set-client-handshake; this makes MySQL
behave like MySQL 4.0.

• --chroot=dir_name, -r dir_name

Command-Line Format --chroot=dir_name

Type Directory name

Put the mysqld server in a closed environment during startup by using the chroot() system call. This
is a recommended security measure. Use of this option somewhat limits LOAD DATA and SELECT ...
INTO OUTFILE.

• --console

Command-Line Format --console

Platform Specific Windows

(Windows only.) Write the error log to stderr and stdout (the console). mysqld does not close the
console window if this option is used.

--console takes precedence over --log-error if both are given. (In MySQL 5.5 and 5.6, this is
reversed: --log-error takes precedence over --console if both are given.)

• --core-file

Command-Line Format --core-file

When this option is used, write a core file if mysqld dies; no arguments are needed (or accepted). The
name and location of the core file is system dependent. On Linux, a core file named core.pid is written
to the current working directory of the process, which for mysqld is the data directory. pid represents
the process ID of the server process. On macOS, a core file named core.pid is written to the /cores
directory. On Solaris, use the coreadm command to specify where to write the core file and how to
name it.

For some systems, to get a core file you must also specify the --core-file-size option to
mysqld_safe. See Section 4.3.2, “mysqld_safe — MySQL Server Startup Script”. On some systems,
such as Solaris, you do not get a core file if you are also using the --user option. There might be
additional restrictions or limitations. For example, it might be necessary to execute ulimit -c
unlimited before starting the server. Consult your system documentation.

• --daemonize

Command-Line Format --daemonize[={OFF|ON}]

Type Boolean

741

Server Command Options

Default Value OFF

This option causes the server to run as a traditional, forking daemon, permitting it to work with operating
systems that use systemd for process control. For more information, see Section 2.5.10, “Managing
MySQL Server with systemd”.

--daemonize is mutually exclusive with --bootstrap, --initialize, and --initialize-
insecure.

• --datadir=dir_name, -h dir_name

Command-Line Format --datadir=dir_name

System Variable datadir

Scope Global

Dynamic No

Type Directory name

The path to the MySQL server data directory. This option sets the datadir system variable. See the
description of that variable.

• --debug[=debug_options], -# [debug_options]

Command-Line Format --debug[=debug_options]

System Variable debug

Scope Global, Session

Dynamic Yes

Type String

Default Value (Unix) d:t:i:o,/tmp/mysqld.trace

Default Value (Windows) d:t:i:O,\mysqld.trace

If MySQL is configured with the -DWITH_DEBUG=1 CMake option, you can use this option to get a trace
file of what mysqld is doing. A typical debug_options string is d:t:o,file_name. The default is
d:t:i:o,/tmp/mysqld.trace on Unix and d:t:i:O,\mysqld.trace on Windows.

Using -DWITH_DEBUG=1 to configure MySQL with debugging support enables you to use the --
debug="d,parser_debug" option when you start the server. This causes the Bison parser that is
used to process SQL statements to dump a parser trace to the server's standard error output. Typically,
this output is written to the error log.

This option may be given multiple times. Values that begin with + or - are added to or subtracted from
the previous value. For example, --debug=T --debug=+P sets the value to P:T.

For more information, see Section 5.8.3, “The DBUG Package”.

• --debug-sync-timeout[=N]

Command-Line Format --debug-sync-timeout[=#]

Type Integer

Controls whether the Debug Sync facility for testing and debugging is enabled. Use of Debug Sync
requires that MySQL be configured with the -DWITH_DEBUG=ON CMake option (see Section 2.8.7,

742

Server Command Options

“MySQL Source-Configuration Options”). If Debug Sync is not compiled in, this option is not available.
The option value is a timeout in seconds. The default value is 0, which disables Debug Sync. To
enable it, specify a value greater than 0; this value also becomes the default timeout for individual
synchronization points. If the option is given without a value, the timeout is set to 300 seconds.

For a description of the Debug Sync facility and how to use synchronization points, see MySQL
Internals: Test Synchronization.

• --default-time-zone=timezone

Command-Line Format --default-time-zone=name

Type String

Set the default server time zone. This option sets the global time_zone system variable. If this option
is not given, the default time zone is the same as the system time zone (given by the value of the
system_time_zone system variable.

The system_time_zone variable differs from time_zone. Although they might have the same value,
the latter variable is used to initialize the time zone for each client that connects. See Section 5.1.13,
“MySQL Server Time Zone Support”.

• --defaults-extra-file=file_name

Read this option file after the global option file but (on Unix) before the user option file. If the file does
not exist or is otherwise inaccessible, an error occurs. If file_name is not an absolute path name, it is
interpreted relative to the current directory. This must be the first option on the command line if it is used.

For additional information about this and other option-file options, see Section 4.2.2.3, “Command-Line
Options that Affect Option-File Handling”.

• --defaults-file=file_name

Read only the given option file. If the file does not exist or is otherwise inaccessible, an error occurs. If
file_name is not an absolute path name, it is interpreted relative to the current directory.

Note

This must be the first option on the command line if it is used, except that if the
server is started with the --defaults-file and --install (or --install-
manual) options, --install (or --install-manual) must be first.

For additional information about this and other option-file options, see Section 4.2.2.3, “Command-Line
Options that Affect Option-File Handling”.

• --defaults-group-suffix=str

Read not only the usual option groups, but also groups with the usual names and a suffix of str. For
example, mysqld normally reads the [mysqld] group. If this option is given as --defaults-group-
suffix=_other, mysqld also reads the [mysqld_other] group.

For additional information about this and other option-file options, see Section 4.2.2.3, “Command-Line
Options that Affect Option-File Handling”.

• --des-key-file=file_name

Command-Line Format --des-key-file=file_name

743

https://dev.mysql.com/doc/internals/en/test-synchronization.html
https://dev.mysql.com/doc/internals/en/test-synchronization.html

Server Command Options

Deprecated Yes

Read the default DES keys from this file. These keys are used by the DES_ENCRYPT() and
DES_DECRYPT() functions.

Note

The DES_ENCRYPT() and DES_DECRYPT() functions are deprecated in MySQL
5.7, are removed in MySQL 8.0, and should no longer be used. Consequently, --
des-key-file also is deprecated and is removed in MySQL 8.0.

• --disable-partition-engine-check

Command-Line Format --disable-partition-engine-
check[={OFF|ON}]

Introduced 5.7.17

Deprecated 5.7.17

Type Boolean

Default Value (≥ 5.7.21) ON

Default Value (≥ 5.7.17, ≤ 5.7.20) OFF

Whether to disable the startup check for tables with nonnative partitioning.

As of MySQL 5.7.17, the generic partitioning handler in the MySQL server is deprecated, and is removed
in MySQL 8.0, when the storage engine used for a given table is expected to provide its own (“native”)
partitioning handler. Currently, only the InnoDB and NDB storage engines do this.

Use of tables with nonnative partitioning results in an ER_WARN_DEPRECATED_SYNTAX warning. In
MySQL 5.7.17 through 5.7.20, the server automatically performs a check at startup to identify tables that
use nonnative partitioning; for any that are found, the server writes a message to its error log. To disable
this check, use the --disable-partition-engine-check option. In MySQL 5.7.21 and later, this
check is not performed; in these versions, you must start the server with --disable-partition-
engine-check=false, if you wish for the server to check for tables using the generic partitioning
handler (Bug #85830, Bug #25846957).

Use of tables with nonnative partitioning results in an ER_WARN_DEPRECATED_SYNTAX warning. Also,
the server performs a check at startup to identify tables that use nonnative partitioning; for any found,
the server writes a message to its error log. To disable this check, use the --disable-partition-
engine-check option.

To prepare for migration to MySQL 8.0, any table with nonnative partitioning should be changed to use
an engine that provides native partitioning, or be made nonpartitioned. For example, to change a table to
InnoDB, execute this statement:

ALTER TABLE table_name ENGINE = INNODB;

• --early-plugin-load=plugin_list

Command-Line Format --early-plugin-load=plugin_list

Introduced 5.7.11

Type String

Default Value (≥ 5.7.12) empty string744

https://dev.mysql.com/doc/mysql-errors/5.7/en/server-error-reference.html#error_er_warn_deprecated_syntax
https://dev.mysql.com/doc/mysql-errors/5.7/en/server-error-reference.html#error_er_warn_deprecated_syntax

Server Command Options

Default Value (5.7.11) keyring_file plugin library file name

This option tells the server which plugins to load before loading mandatory built-in plugins and
before storage engine initialization. Early loading is supported only for plugins compiled with
PLUGIN_OPT_ALLOW_EARLY. If multiple --early-plugin-load options are given, only the last one
applies.

The option value is a semicolon-separated list of plugin_library and name=plugin_library
values. Each plugin_library is the name of a library file that contains plugin code, and each name
is the name of a plugin to load. If a plugin library is named without any preceding plugin name, the
server loads all plugins in the library. With a preceding plugin name, the server loads only the named
plugin from the libary. The server looks for plugin library files in the directory named by the plugin_dir
system variable.

For example, if plugins named myplug1 and myplug2 are contained in the plugin library files
myplug1.so and myplug2.so, use this option to perform an early plugin load:

mysqld --early-plugin-load="myplug1=myplug1.so;myplug2=myplug2.so"

Quotes surround the argument value because otherwise some command interpreters interpret semicolon
(;) as a special character. (For example, Unix shells treat it as a command terminator.)

Each named plugin is loaded early for a single invocation of mysqld only. After a restart, the plugin is
not loaded early unless --early-plugin-load is used again.

If the server is started using --initialize or --initialize-insecure, plugins specified by --
early-plugin-load are not loaded.

If the server is run with --help, plugins specified by --early-plugin-load are loaded but not
initialized. This behavior ensures that plugin options are displayed in the help message.

InnoDB tablespace encryption relies on the MySQL Keyring for encryption key management, and
the keyring plugin to be used must be loaded prior to storage engine initialization to facilitate InnoDB
recovery for encrypted tables. For example, administrators who want the keyring_file plugin
loaded at startup should use --early-plugin-load with the appropriate option value (such as
keyring_file.so on Unix and Unix-like systems or keyring_file.dll on Windows).

Important

In MySQL 5.7.11, the default --early-plugin-load value is the name of the
keyring_file plugin library file, causing that plugin to be loaded by default. In
MySQL 5.7.12 and higher, the default --early-plugin-load value is empty;
to load the keyring_file plugin, you must explicitly specify the option with a
value naming the keyring_file plugin library file.

This change of default --early-plugin-load value introduces an
incompatibility for InnoDB tablespace encryption for upgrades from 5.7.11 to
5.7.12 or higher. Administrators who have encrypted InnoDB tablespaces must
take explicit action to ensure continued loading of the keyring plugin: Start the
server with an --early-plugin-load option that names the plugin library file.
For additional information, see Section 6.4.4.1, “Keyring Plugin Installation”.

For information about InnoDB tablespace encryption, see Section 14.14, “InnoDB Data-at-Rest
Encryption”. For general information about plugin loading, see Section 5.5.1, “Installing and Uninstalling
Plugins”.

745

Server Command Options

• --exit-info[=flags], -T [flags]

Command-Line Format --exit-info[=flags]

Type Integer

This is a bitmask of different flags that you can use for debugging the mysqld server. Do not use this
option unless you know exactly what it does!

• --external-locking

Command-Line Format --external-locking[={OFF|ON}]

Type Boolean

Default Value OFF

Enable external locking (system locking), which is disabled by default. If you use this option on a system
on which lockd does not fully work (such as Linux), it is easy for mysqld to deadlock.

To disable external locking explicitly, use --skip-external-locking.

External locking affects only MyISAM table access. For more information, including conditions under
which it can and cannot be used, see Section 8.11.5, “External Locking”.

• --flush

Command-Line Format --flush[={OFF|ON}]

System Variable flush

Scope Global

Dynamic Yes

Type Boolean

Default Value OFF

Flush (synchronize) all changes to disk after each SQL statement. Normally, MySQL does a write of all
changes to disk only after each SQL statement and lets the operating system handle the synchronizing
to disk. See Section B.3.3.3, “What to Do If MySQL Keeps Crashing”.

Note

If --flush is specified, the value of flush_time does not matter and changes
to flush_time have no effect on flush behavior.

• --gdb

Command-Line Format --gdb[={OFF|ON}]

Type Boolean

Default Value OFF

Install an interrupt handler for SIGINT (needed to stop mysqld with ^C to set breakpoints) and disable
stack tracing and core file handling. See Section 5.8.1.4, “Debugging mysqld under gdb”.

746

Server Command Options

• --ignore-db-dir=dir_name

Command-Line Format --ignore-db-dir=dir_name

Deprecated 5.7.16

Type Directory name

This option tells the server to ignore the given directory name for purposes of the SHOW DATABASES
statement or INFORMATION_SCHEMA tables. For example, if a MySQL configuration locates the data
directory at the root of a file system on Unix, the system might create a lost+found directory there that
the server should ignore. Starting the server with --ignore-db-dir=lost+found causes that name
not to be listed as a database.

To specify more than one name, use this option multiple times, once for each name. Specifying the
option with an empty value (that is, as --ignore-db-dir=) resets the directory list to the empty list.

Instances of this option given at server startup are used to set the ignore_db_dirs system variable.

This option is deprecated in MySQL 5.7. With the introduction of the data dictionary in MySQL 8.0, it
became superfluous and was removed in that version.

• --initialize

Command-Line Format --initialize[={OFF|ON}]

Type Boolean

Default Value OFF

This option is used to initialize a MySQL installation by creating the data directory and populating the
tables in the mysql system database. For more information, see Section 2.9.1, “Initializing the Data
Directory”.

This option limits the effects of, or is not compatible with, a number of other startup options for the
MySQL server. Some of the most common issues of this sort are noted here:

• We strongly recommend, when initializing the data directory with --initialize, that you specify no
additional options other than --datadir, other options used for setting directory locations such as --
basedir, and possibly --user, if required. Options for the running MySQL server can be specified
when starting it once initialization has been completed and mysqld has shut down. This also applies
when using --initialize-insecure instead of --initialize.

• When the server is started with --initialize, some functionality is unavailable that limits the
statements permitted in any file named by the init_file system variable. For more information, see
the description of that variable. In addition, the disabled_storage_engines system variable has
no effect.

• The --ndbcluster option is ignored when used together with --initialize.

• --initialize is mutually exclusive with --bootstrap and --daemonize.

The items in the preceding list also apply when initializing the server using the --initialize-
insecure option.

• --initialize-insecure

Command-Line Format --initialize-insecure[={OFF|ON}] 747

Server Command Options

Type Boolean

Default Value OFF

This option is used to initialize a MySQL installation by creating the data directory and populating the
tables in the mysql system database. This option implies --initialize, and the same restrictions
and limitations apply; for more information, see the description of that option, and Section 2.9.1,
“Initializing the Data Directory”.

Warning

This option creates a MySQL root user with an empty password, which is
insecure. For this reason, do not use it in production without setting this password
manually. See Post-Initialization root Password Assignment, for information about
how to do this.

• --innodb-xxx

Set an option for the InnoDB storage engine. The InnoDB options are listed in Section 14.15, “InnoDB
Startup Options and System Variables”.

• --install [service_name]

Command-Line Format --install [service_name]

Platform Specific Windows

(Windows only) Install the server as a Windows service that starts automatically during Windows startup.
The default service name is MySQL if no service_name value is given. For more information, see
Section 2.3.4.8, “Starting MySQL as a Windows Service”.

Note

If the server is started with the --defaults-file and --install options, --
install must be first.

• --install-manual [service_name]

Command-Line Format --install-manual [service_name]

Platform Specific Windows

(Windows only) Install the server as a Windows service that must be started manually. It does not start
automatically during Windows startup. The default service name is MySQL if no service_name value is
given. For more information, see Section 2.3.4.8, “Starting MySQL as a Windows Service”.

Note

If the server is started with the --defaults-file and --install-manual
options, --install-manual must be first.

• --language=lang_name, -L lang_name

Command-Line Format --language=name

Deprecated Yes; use lc-messages-dir instead

System Variable language
748

Server Command Options

Scope Global

Dynamic No

Type Directory name

Default Value /usr/local/mysql/share/mysql/english/

The language to use for error messages. lang_name can be given as the language name or as the full
path name to the directory where the language files are installed. See Section 10.12, “Setting the Error
Message Language”.

--lc-messages-dir and --lc-messages should be used rather than --language, which
is deprecated (and handled as a synonym for --lc-messages-dir). You should expect the --
language option to be removed in a future release of MySQL.

• --large-pages

Command-Line Format --large-pages[={OFF|ON}]

System Variable large_pages

Scope Global

Dynamic No

Platform Specific Linux

Type Boolean

Default Value OFF

Some hardware/operating system architectures support memory pages greater than the default (usually
4KB). The actual implementation of this support depends on the underlying hardware and operating
system. Applications that perform a lot of memory accesses may obtain performance improvements by
using large pages due to reduced Translation Lookaside Buffer (TLB) misses.

MySQL supports the Linux implementation of large page support (which is called HugeTLB in Linux).
See Section 8.12.4.3, “Enabling Large Page Support”. For Solaris support of large pages, see the
description of the --super-large-pages option.

--large-pages is disabled by default.

• --lc-messages=locale_name

Command-Line Format --lc-messages=name

System Variable lc_messages

Scope Global, Session

Dynamic Yes

Type String

Default Value en_US

The locale to use for error messages. The default is en_US. The server converts the argument to a
language name and combines it with the value of --lc-messages-dir to produce the location for the
error message file. See Section 10.12, “Setting the Error Message Language”.

749

Server Command Options

• --lc-messages-dir=dir_name

Command-Line Format --lc-messages-dir=dir_name

System Variable lc_messages_dir

Scope Global

Dynamic No

Type Directory name

The directory where error messages are located. The server uses the value together with the value of --
lc-messages to produce the location for the error message file. See Section 10.12, “Setting the Error
Message Language”.

• --local-service

Command-Line Format --local-service

(Windows only) A --local-service option following the service name causes the server to run
using the LocalService Windows account that has limited system privileges. If both --defaults-
file and --local-service are given following the service name, they can be in any order. See
Section 2.3.4.8, “Starting MySQL as a Windows Service”.

• --log-error[=file_name]

Command-Line Format --log-error[=file_name]

System Variable log_error

Scope Global

Dynamic No

Type File name

Write the error log and startup messages to this file. See Section 5.4.2, “The Error Log”.

If the option names no file, the error log file name on Unix and Unix-like systems is host_name.err in
the data directory. The file name on Windows is the same, unless the --pid-file option is specified.
In that case, the file name is the PID file base name with a suffix of .err in the data directory.

If the option names a file, the error log file has that name (with an .err suffix added if the name has
no suffix), located under the data directory unless an absolute path name is given to specify a different
location.

On Windows, --console takes precedence over --log-error if both are given. In this case, the
server writes the error log to the console rather than to a file. (In MySQL 5.5 and 5.6, this is reversed: --
log-error takes precedence over --console if both are given.)

• --log-isam[=file_name]

Command-Line Format --log-isam[=file_name]

Type File name

Log all MyISAM changes to this file (used only when debugging MyISAM).
750

Server Command Options

• --log-raw

Command-Line Format --log-raw[={OFF|ON}]

Type Boolean

Default Value OFF

Passwords in certain statements written to the general query log, slow query log, and binary log are
rewritten by the server not to occur literally in plain text. Password rewriting can be suppressed for
the general query log by starting the server with the --log-raw option. This option may be useful
for diagnostic purposes, to see the exact text of statements as received by the server, but for security
reasons is not recommended for production use.

If a query rewrite plugin is installed, the --log-raw option affects statement logging as follows:

• Without --log-raw, the server logs the statement returned by the query rewrite plugin. This may
differ from the statement as received.

• With --log-raw, the server logs the original statement as received.

For more information, see Section 6.1.2.3, “Passwords and Logging”.

• --log-short-format

Command-Line Format --log-short-format[={OFF|ON}]

Type Boolean

Default Value OFF

Log less information to the slow query log, if it has been activated.

• --log-tc=file_name

Command-Line Format --log-tc=file_name

Type File name

Default Value tc.log

The name of the memory-mapped transaction coordinator log file (for XA transactions that affect multiple
storage engines when the binary log is disabled). The default name is tc.log. The file is created under
the data directory if not given as a full path name. This option is unused.

• --log-tc-size=size

Command-Line Format --log-tc-size=#

Type Integer

Default Value (64-bit platforms, ≥ 5.7.21) 6 * page size

Default Value (64-bit platforms, ≤ 5.7.20) 24576

Default Value (32-bit platforms, ≥ 5.7.21) 6 * page size

Default Value (32-bit platforms, ≤ 5.7.20) 24576

Minimum Value 6 * page size

Maximum Value (64-bit platforms) 18446744073709551615

Maximum Value (32-bit platforms) 4294967295

751

Server Command Options

The size in bytes of the memory-mapped transaction coordinator log. The default and minimum values
are 6 times the page size, and the value must be a multiple of the page size. (Before MySQL 5.7.21, the
default size is 24KB.)

• --log-warnings[=level], -W [level]

Command-Line Format --log-warnings[=#]

Deprecated Yes

System Variable log_warnings

Scope Global

Dynamic Yes

Type Integer

Default Value 2

Minimum Value 0

Maximum Value (64-bit platforms) 18446744073709551615

Maximum Value (32-bit platforms) 4294967295

Note

The log_error_verbosity system variable is preferred over, and should
be used instead of, the --log-warnings option or log_warnings system
variable. For more information, see the descriptions of log_error_verbosity
and log_warnings. The --log-warnings command-line option and
log_warnings system variable are deprecated; expect them to be removed in a
future release of MySQL.

Whether to produce additional warning messages to the error log. This option is enabled by default.
To disable it, use --log-warnings=0. Specifying the option without a level value increments the
current value by 1. The server logs messages about statements that are unsafe for statement-based
logging if the value is greater than 0. Aborted connections and access-denied errors for new connection
attempts are logged if the value is greater than 1. See Section B.3.2.9, “Communication Errors and
Aborted Connections”.

• --memlock

Command-Line Format --memlock[={OFF|ON}]

Type Boolean

Default Value OFF

Lock the mysqld process in memory. This option might help if you have a problem where the operating
system is causing mysqld to swap to disk.

--memlock works on systems that support the mlockall() system call; this includes Solaris, most
Linux distributions that use a 2.4 or higher kernel, and perhaps other Unix systems. On Linux systems,

752

Server Command Options

you can tell whether or not mlockall() (and thus this option) is supported by checking to see whether
or not it is defined in the system mman.h file, like this:

$> grep mlockall /usr/include/sys/mman.h

If mlockall() is supported, you should see in the output of the previous command something like the
following:

extern int mlockall (int __flags) __THROW;

Important

Use of this option may require you to run the server as root, which, for reasons
of security, is normally not a good idea. See Section 6.1.5, “How to Run MySQL
as a Normal User”.

On Linux and perhaps other systems, you can avoid the need to run the server as
root by changing the limits.conf file. See the notes regarding the memlock
limit in Section 8.12.4.3, “Enabling Large Page Support”.

You must not use this option on a system that does not support the mlockall()
system call; if you do so, mysqld is very likely to exit as soon as you try to start it.

• --myisam-block-size=N

Command-Line Format --myisam-block-size=#

Type Integer

Default Value 1024

Minimum Value 1024

Maximum Value 16384

The block size to be used for MyISAM index pages.

• --no-defaults

Do not read any option files. If program startup fails due to reading unknown options from an option file,
--no-defaults can be used to prevent them from being read. This must be the first option on the
command line if it is used.

For additional information about this and other option-file options, see Section 4.2.2.3, “Command-Line
Options that Affect Option-File Handling”.

• --old-style-user-limits

Command-Line Format --old-style-user-limits[={OFF|ON}]

Type Boolean

Default Value OFF

Enable old-style user limits. (Before MySQL 5.0.3, account resource limits were counted separately
for each host from which a user connected rather than per account row in the user table.) See
Section 6.2.16, “Setting Account Resource Limits”.

753

Server Command Options

• --partition[=value]

Command-Line Format --partition[={OFF|ON}]

Deprecated 5.7.16

Disabled by skip-partition

Type Boolean

Default Value ON

Enables or disables user-defined partitioning support in the MySQL Server.

This option is deprecated in MySQL 5.7.16, and is removed from MySQL 8.0 because in MySQL 8.0, the
partitioning engine is replaced by native partitioning, which cannot be disabled.

• --performance-schema-xxx

Configure a Performance Schema option. For details, see Section 25.14, “Performance Schema
Command Options”.

• --plugin-load=plugin_list

Command-Line Format --plugin-load=plugin_list

Type String

This option tells the server to load the named plugins at startup. If multiple --plugin-load options are
given, only the last one applies. Additional plugins to load may be specified using --plugin-load-add
options.

The option value is a semicolon-separated list of plugin_library and name=plugin_library
values. Each plugin_library is the name of a library file that contains plugin code, and each name
is the name of a plugin to load. If a plugin library is named without any preceding plugin name, the
server loads all plugins in the library. With a preceding plugin name, the server loads only the named
plugin from the libary. The server looks for plugin library files in the directory named by the plugin_dir
system variable.

For example, if plugins named myplug1 and myplug2 are contained in the plugin library files
myplug1.so and myplug2.so, use this option to perform an early plugin load:

mysqld --plugin-load="myplug1=myplug1.so;myplug2=myplug2.so"

Quotes surround the argument value because otherwise some command interpreters interpret semicolon
(;) as a special character. (For example, Unix shells treat it as a command terminator.)

Each named plugin is loaded for a single invocation of mysqld only. After a restart, the plugin is not
loaded unless --plugin-load is used again. This is in contrast to INSTALL PLUGIN, which adds an
entry to the mysql.plugins table to cause the plugin to be loaded for every normal server startup.

During the normal startup sequence, the server determines which plugins to load by reading the
mysql.plugins system table. If the server is started with the --skip-grant-tables option, plugins
registered in the mysql.plugins table are not loaded and are unavailable. --plugin-load enables

754

Server Command Options

plugins to be loaded even when --skip-grant-tables is given. --plugin-load also enables
plugins to be loaded at startup that cannot be loaded at runtime.

This option does not set a corresponding system variable. The output of SHOW PLUGINS provides
information about loaded plugins. More detailed information can be found in the Information Schema
PLUGINS table. See Section 5.5.2, “Obtaining Server Plugin Information”.

For additional information about plugin loading, see Section 5.5.1, “Installing and Uninstalling Plugins”.

• --plugin-load-add=plugin_list

Command-Line Format --plugin-load-add=plugin_list

Type String

This option complements the --plugin-load option. --plugin-load-add adds a plugin or plugins
to the set of plugins to be loaded at startup. The argument format is the same as for --plugin-load.
--plugin-load-add can be used to avoid specifying a large set of plugins as a single long unwieldy
--plugin-load argument.

--plugin-load-add can be given in the absence of --plugin-load, but any instance of --
plugin-load-add that appears before --plugin-load has no effect because --plugin-load
resets the set of plugins to load. In other words, these options:

--plugin-load=x --plugin-load-add=y

are equivalent to this option:

--plugin-load="x;y"

But these options:

--plugin-load-add=y --plugin-load=x

are equivalent to this option:

--plugin-load=x

This option does not set a corresponding system variable. The output of SHOW PLUGINS provides
information about loaded plugins. More detailed information can be found in the Information Schema
PLUGINS table. See Section 5.5.2, “Obtaining Server Plugin Information”.

For additional information about plugin loading, see Section 5.5.1, “Installing and Uninstalling Plugins”.

• --plugin-xxx

Specifies an option that pertains to a server plugin. For example, many storage engines can be built as
plugins, and for such engines, options for them can be specified with a --plugin prefix. Thus, the --
innodb-file-per-table option for InnoDB can be specified as --plugin-innodb-file-per-
table.

For boolean options that can be enabled or disabled, the --skip prefix and other alternative formats are
supported as well (see Section 4.2.2.4, “Program Option Modifiers”). For example, --skip-plugin-
innodb-file-per-table disables innodb-file-per-table.

The rationale for the --plugin prefix is that it enables plugin options to be specified unambiguously if
there is a name conflict with a built-in server option. For example, were a plugin writer to name a plugin
“sql” and implement a “mode” option, the option name might be --sql-mode, which would conflict with755

Server Command Options

the built-in option of the same name. In such cases, references to the conflicting name are resolved in
favor of the built-in option. To avoid the ambiguity, users can specify the plugin option as --plugin-
sql-mode. Use of the --plugin prefix for plugin options is recommended to avoid any question of
ambiguity.

• --port=port_num, -P port_num

Command-Line Format --port=port_num

System Variable port

Scope Global

Dynamic No

Type Integer

Default Value 3306

Minimum Value 0

Maximum Value 65535

The port number to use when listening for TCP/IP connections. On Unix and Unix-like systems, the port
number must be 1024 or higher unless the server is started by the root operating system user. Setting
this option to 0 causes the default value to be used.

• --port-open-timeout=num

Command-Line Format --port-open-timeout=#

Type Integer

Default Value 0

On some systems, when the server is stopped, the TCP/IP port might not become available immediately.
If the server is restarted quickly afterward, its attempt to reopen the port can fail. This option indicates
how many seconds the server should wait for the TCP/IP port to become free if it cannot be opened. The
default is not to wait.

• --print-defaults

Print the program name and all options that it gets from option files. Password values are masked. This
must be the first option on the command line if it is used, except that it may be used immediately after --
defaults-file or --defaults-extra-file.

For additional information about this and other option-file options, see Section 4.2.2.3, “Command-Line
Options that Affect Option-File Handling”.

• --remove [service_name]

Command-Line Format --remove [service_name]

Platform Specific Windows

(Windows only) Remove a MySQL Windows service. The default service name is MySQL if no
service_name value is given. For more information, see Section 2.3.4.8, “Starting MySQL as a
Windows Service”.

756

Server Command Options

• --safe-user-create

Command-Line Format --safe-user-create[={OFF|ON}]

Type Boolean

Default Value OFF

If this option is enabled, a user cannot create new MySQL users by using the GRANT statement unless
the user has the INSERT privilege for the mysql.user system table or any column in the table. If you
want a user to have the ability to create new users that have those privileges that the user has the right
to grant, you should grant the user the following privilege:

GRANT INSERT(user) ON mysql.user TO 'user_name'@'host_name';

This ensures that the user cannot change any privilege columns directly, but has to use the GRANT
statement to give privileges to other users.

• --skip-grant-tables

Command-Line Format --skip-grant-tables[={OFF|ON}]

Type Boolean

757

Server Command Options

Default Value OFF

This option affects the server startup sequence:

• --skip-grant-tables causes the server not to read the grant tables in the mysql system
database, and thus to start without using the privilege system at all. This gives anyone with access to
the server unrestricted access to all databases.

To cause a server started with --skip-grant-tables to load the grant tables at runtime, perform a
privilege-flushing operation, which can be done in these ways:

• Issue a MySQL FLUSH PRIVILEGES statement after connecting to the server.

• Execute a mysqladmin flush-privileges or mysqladmin reload command from the
command line.

Privilege flushing might also occur implicitly as a result of other actions performed after startup,
thus causing the server to start using the grant tables. For example, mysql_upgrade flushes the
privileges during the upgrade procedure.

• --skip-grant-tables causes the server not to load certain other objects registered in the mysql
system database:

• Plugins installed using INSTALL PLUGIN and registered in the mysql.plugin system table.

To cause plugins to be loaded even when using --skip-grant-tables, use the --plugin-
load or --plugin-load-add option.

• Scheduled events installed using CREATE EVENT and registered in the mysql.event system
table.

• Loadable functions installed using CREATE FUNCTION and registered in the mysql.func system
table.

• --skip-grant-tables causes the disabled_storage_engines system variable to have no
effect.

• --skip-host-cache

Command-Line Format --skip-host-cache

Disable use of the internal host cache for faster name-to-IP resolution. With the cache disabled, the
server performs a DNS lookup every time a client connects.

Use of --skip-host-cache is similar to setting the host_cache_size system variable to 0, but
host_cache_size is more flexible because it can also be used to resize, enable, or disable the host
cache at runtime, not just at server startup.

Starting the server with --skip-host-cache does not prevent runtime changes to the value
of host_cache_size, but such changes have no effect and the cache is not re-enabled even if
host_cache_size is set larger than 0.

For more information about how the host cache works, see Section 5.1.11.2, “DNS Lookups and the
Host Cache”.

758

Server Command Options

• --skip-innodb

Disable the InnoDB storage engine. In this case, because the default storage engine is InnoDB,
the server cannot start unless you also use --default-storage-engine and --default-tmp-
storage-engine to set the default to some other engine for both permanent and TEMPORARY tables.

The InnoDB storage engine cannot be disabled, and the --skip-innodb option is deprecated and has
no effect. Its use results in a warning. Expect this option to be removed in a future release of MySQL.

• --skip-new

Command-Line Format --skip-new

This option disables (what used to be considered) new, possibly unsafe behaviors. It
results in these settings: delay_key_write=OFF, concurrent_insert=NEVER,
automatic_sp_privileges=OFF. It also causes OPTIMIZE TABLE to be mapped to ALTER TABLE
for storage engines for which OPTIMIZE TABLE is not supported.

• --skip-partition

Command-Line Format --skip-partition

--disable-partition

Deprecated 5.7.16

Disables user-defined partitioning. Partitioned tables can be seen using SHOW TABLES or by querying
the Information Schema TABLES table, but cannot be created or modified, nor can data in such tables be
accessed. All partition-specific columns in the Information Schema PARTITIONS table display NULL.

Since DROP TABLE removes table definition (.frm) files, this statement works on partitioned tables
even when partitioning is disabled using the option. The statement, however, does not remove partition
definitions associated with partitioned tables in such cases. For this reason, you should avoid dropping
partitioned tables with partitioning disabled, or take action to remove orphaned .par files manually (if
present).

Note

In MySQL 5.7, partition definition (.par) files are no longer created for partitioned
InnoDB tables. Instead, partition definitions are stored in the InnoDB internal
data dictionary. Partition definition (.par) files continue to be used for partitioned
MyISAM tables.

This option is deprecated in MySQL 5.7.16, and is removed from MySQL 8.0 because in MySQL 8.0, the
partitioning engine is replaced by native partitioning, which cannot be disabled.

• --skip-show-database

Command-Line Format --skip-show-database

System Variable skip_show_database

Scope Global

Dynamic No

Type Boolean
759

Server Command Options

Default Value OFF

This option sets the skip_show_database system variable that controls who is permitted to use the
SHOW DATABASES statement. See Section 5.1.7, “Server System Variables”.

• --skip-stack-trace

Command-Line Format --skip-stack-trace

Do not write stack traces. This option is useful when you are running mysqld under a debugger. On
some systems, you also must use this option to get a core file. See Section 5.8, “Debugging MySQL”.

• --slow-start-timeout=timeout

Command-Line Format --slow-start-timeout=#

Type Integer

Default Value 15000

This option controls the Windows service control manager's service start timeout. The value is the
maximum number of milliseconds that the service control manager waits before trying to kill the windows
service during startup. The default value is 15000 (15 seconds). If the MySQL service takes too long to
start, you may need to increase this value. A value of 0 means there is no timeout.

• --socket=path

Command-Line Format --socket={file_name|pipe_name}

System Variable socket

Scope Global

Dynamic No

Type String

Default Value (Windows) MySQL

Default Value (Other) /tmp/mysql.sock

On Unix, this option specifies the Unix socket file to use when listening for local connections. The default
value is /tmp/mysql.sock. If this option is given, the server creates the file in the data directory unless
an absolute path name is given to specify a different directory. On Windows, the option specifies the pipe
name to use when listening for local connections that use a named pipe. The default value is MySQL (not
case-sensitive).

• --sql-mode=value[,value[,value...]]

Command-Line Format --sql-mode=name

System Variable sql_mode

Scope Global, Session

Dynamic Yes

Type Set

Default Value ONLY_FULL_GROUP_BY
STRICT_TRANS_TABLES
NO_ZERO_IN_DATE NO_ZERO_DATE
ERROR_FOR_DIVISION_BY_ZERO

760

Server Command Options

NO_AUTO_CREATE_USER
NO_ENGINE_SUBSTITUTION

Valid Values ALLOW_INVALID_DATES

ANSI_QUOTES

ERROR_FOR_DIVISION_BY_ZERO

HIGH_NOT_PRECEDENCE

IGNORE_SPACE

NO_AUTO_CREATE_USER

NO_AUTO_VALUE_ON_ZERO

NO_BACKSLASH_ESCAPES

NO_DIR_IN_CREATE

NO_ENGINE_SUBSTITUTION

NO_FIELD_OPTIONS

NO_KEY_OPTIONS

NO_TABLE_OPTIONS

NO_UNSIGNED_SUBTRACTION

NO_ZERO_DATE

NO_ZERO_IN_DATE

ONLY_FULL_GROUP_BY

PAD_CHAR_TO_FULL_LENGTH

PIPES_AS_CONCAT

REAL_AS_FLOAT

STRICT_ALL_TABLES

STRICT_TRANS_TABLES

Set the SQL mode. See Section 5.1.10, “Server SQL Modes”.

Note

MySQL installation programs may configure the SQL mode during the installation
process. If the SQL mode differs from the default or from what you expect, check
for a setting in an option file that the server reads at startup.

• --ssl, --skip-ssl

Command-Line Format --ssl[={OFF|ON}]

761

Server Command Options

Disabled by skip-ssl

Type Boolean

Default Value ON

The --ssl option specifies that the server permits but does not require encrypted connections. This
option is enabled by default.

--ssl can be specified in negated form as --skip-ssl or a synonym (--ssl=OFF, --disable-
ssl). In this case, the option specifies that the server does not permit encrypted connections, regardless
of the settings of the tls_xxx and ssl_xxx system variables.

For more information about configuring whether the server permits clients to connect using SSL
and indicating where to find SSL keys and certificates, see Section 6.3.1, “Configuring MySQL to
Use Encrypted Connections”, which also describes server capabilities for certificate and key file
autogeneration and autodiscovery. Consider setting at least the ssl_cert and ssl_key system
variables on the server side and the --ssl-ca (or --ssl-capath) option on the client side.

• --standalone

Command-Line Format --standalone

Platform Specific Windows

Available on Windows only; instructs the MySQL server not to run as a service.

• --super-large-pages

Command-Line Format --super-large-pages[={OFF|ON}]

Platform Specific Solaris

Type Boolean

Default Value OFF

Standard use of large pages in MySQL attempts to use the largest size supported, up to 4MB. Under
Solaris, a “super large pages” feature enables uses of pages up to 256MB. This feature is available for
recent SPARC platforms. It can be enabled or disabled by using the --super-large-pages or --
skip-super-large-pages option.

• --symbolic-links, --skip-symbolic-links

Command-Line Format --symbolic-links[={OFF|ON}]

Type Boolean

Default Value ON

Enable or disable symbolic link support. On Unix, enabling symbolic links means that you can link a
MyISAM index file or data file to another directory with the INDEX DIRECTORY or DATA DIRECTORY
option of the CREATE TABLE statement. If you delete or rename the table, the files that its symbolic links
point to also are deleted or renamed. See Section 8.12.3.2, “Using Symbolic Links for MyISAM Tables
on Unix”.

This option has no meaning on Windows.

762

Server Command Options

• --sysdate-is-now

Command-Line Format --sysdate-is-now[={OFF|ON}]

Type Boolean

Default Value OFF

SYSDATE() by default returns the time at which it executes, not the time at which the statement in which
it occurs begins executing. This differs from the behavior of NOW(). This option causes SYSDATE() to
be a synonym for NOW(). For information about the implications for binary logging and replication, see
the description for SYSDATE() in Section 12.7, “Date and Time Functions” and for SET TIMESTAMP in
Section 5.1.7, “Server System Variables”.

• --tc-heuristic-recover={COMMIT|ROLLBACK}

Command-Line Format --tc-heuristic-recover=name

Type Enumeration

Default Value OFF

Valid Values OFF

COMMIT

ROLLBACK

The decision to use in a manual heuristic recovery.

If a --tc-heuristic-recover option is specified, the server exits regardless of whether manual
heuristic recovery is successful.

On systems with more than one storage engine capable of two-phase commit, the ROLLBACK option is
not safe and causes recovery to halt with the following error:

[ERROR] --tc-heuristic-recover rollback
strategy is not safe on systems with more than one 2-phase-commit-capable
storage engine. Aborting crash recovery.

• --temp-pool

Command-Line Format --temp-pool[={OFF|ON}]

Deprecated 5.7.18

Type Boolean

Default Value (Linux) ON

Default Value (Other) OFF

This option is ignored except on Linux. On Linux, it causes most temporary files created by the server to
use a small set of names, rather than a unique name for each new file. This works around a problem in
the Linux kernel dealing with creating many new files with different names. With the old behavior, Linux
seems to “leak” memory, because it is being allocated to the directory entry cache rather than to the disk
cache.

As of MySQL 5.7.18, this option is deprecated and is removed in MySQL 8.0.

763

Server Command Options

• --transaction-isolation=level

Command-Line Format --transaction-isolation=name

System Variable (≥ 5.7.20) transaction_isolation

Scope (≥ 5.7.20) Global, Session

Dynamic (≥ 5.7.20) Yes

Type Enumeration

Default Value REPEATABLE-READ

Valid Values READ-UNCOMMITTED

READ-COMMITTED

REPEATABLE-READ

SERIALIZABLE

Sets the default transaction isolation level. The level value can be READ-UNCOMMITTED, READ-
COMMITTED, REPEATABLE-READ, or SERIALIZABLE. See Section 13.3.6, “SET TRANSACTION
Statement”.

The default transaction isolation level can also be set at runtime using the SET TRANSACTION
statement or by setting the tx_isolation (or, as of MySQL 5.7.20, transaction_isolation)
system variable.

• --transaction-read-only

Command-Line Format --transaction-read-only[={OFF|ON}]

System Variable (≥ 5.7.20) transaction_read_only

Scope (≥ 5.7.20) Global, Session

Dynamic (≥ 5.7.20) Yes

Type Boolean

Default Value OFF

Sets the default transaction access mode. By default, read-only mode is disabled, so the mode is read/
write.

To set the default transaction access mode at runtime, use the SET TRANSACTION statement or set
the tx_read_only (or, as of MySQL 5.7.20, transaction_read_only) system variable. See
Section 13.3.6, “SET TRANSACTION Statement”.

• --tmpdir=dir_name, -t dir_name

Command-Line Format --tmpdir=dir_name

System Variable tmpdir

Scope Global

Dynamic No

764

Server Command Options

Type Directory name

The path of the directory to use for creating temporary files. It might be useful if your default /tmp
directory resides on a partition that is too small to hold temporary tables. This option accepts several
paths that are used in round-robin fashion. Paths should be separated by colon characters (:) on Unix
and semicolon characters (;) on Windows.

--tmpdir can be a non-permanent location, such as a directory on a memory-based file system or a
directory that is cleared when the server host restarts. If the MySQL server is acting as a replica, and
you are using a non-permanent location for --tmpdir, consider setting a different temporary directory
for the replica using the slave_load_tmpdir system variable. For a replication replica, the temporary
files used to replicate LOAD DATA statements are stored in this directory, so with a permanent location
they can survive machine restarts, although replication can now continue after a restart if the temporary
files have been removed.

For more information about the storage location of temporary files, see Section B.3.3.5, “Where MySQL
Stores Temporary Files”.

• --user={user_name|user_id}, -u {user_name|user_id}

Command-Line Format --user=name

Type String

Run the mysqld server as the user having the name user_name or the numeric user ID user_id.
(“User” in this context refers to a system login account, not a MySQL user listed in the grant tables.)

This option is mandatory when starting mysqld as root. The server changes its user ID during its
startup sequence, causing it to run as that particular user rather than as root. See Section 6.1.1,
“Security Guidelines”.

To avoid a possible security hole where a user adds a --user=root option to a my.cnf file (thus
causing the server to run as root), mysqld uses only the first --user option specified and produces a
warning if there are multiple --user options. Options in /etc/my.cnf and $MYSQL_HOME/my.cnf are
processed before command-line options, so it is recommended that you put a --user option in /etc/
my.cnf and specify a value other than root. The option in /etc/my.cnf is found before any other --
user options, which ensures that the server runs as a user other than root, and that a warning results if
any other --user option is found.

• --validate-user-plugins[={OFF|ON}]

Command-Line Format --validate-user-plugins[={OFF|ON}]

Type Boolean

765

Server System Variables

Default Value ON

If this option is enabled (the default), the server checks each user account and produces a warning if
conditions are found that would make the account unusable:

• The account requires an authentication plugin that is not loaded.

• The account requires the sha256_password authentication plugin but the server was started with
neither SSL nor RSA enabled as required by this plugin.

Enabling --validate-user-plugins slows down server initialization and FLUSH PRIVILEGES.
If you do not require the additional checking, you can disable this option at startup to avoid the
performance decrement.

• --verbose, -v

Use this option with the --help option for detailed help.

• --version, -V

Display version information and exit.

5.1.7 Server System Variables

The MySQL server maintains many system variables that affect its operation. Most system variables
can be set at server startup using options on the command line or in an option file. Most of them can be
changed dynamically at runtime using the SET statement, which enables you to modify operation of the
server without having to stop and restart it. Some variables are read-only, and their values are determined
by the system environment, by how MySQL is installed on the system, or possibly by the options used to
compile MySQL. Most system variables have a default value, but there are exceptions, including read-only
variables. You can also use system variable values in expressions.

At runtime, setting a global system variable value requires the SUPER privilege. Setting a session system
variable value normally requires no special privileges and can be done by any user, although there are
exceptions. For more information, see Section 5.1.8.1, “System Variable Privileges”

There are several ways to see the names and values of system variables:

• To see the values that a server uses based on its compiled-in defaults and any option files that it reads,
use this command:

mysqld --verbose --help

• To see the values that a server uses based on only its compiled-in defaults, ignoring the settings in any
option files, use this command:

mysqld --no-defaults --verbose --help

• To see the current values used by a running server, use the SHOW VARIABLES statement or the
Performance Schema system variable tables. See Section 25.12.13, “Performance Schema System
Variable Tables”.

This section provides a description of each system variable. For a system variable summary table, see
Section 5.1.4, “Server System Variable Reference”. For more information about manipulation of system
variables, see Section 5.1.8, “Using System Variables”.

For additional system variable information, see these sections:

766

Server System Variables

• Section 5.1.8, “Using System Variables”, discusses the syntax for setting and displaying system variable
values.

• Section 5.1.8.2, “Dynamic System Variables”, lists the variables that can be set at runtime.

• Information on tuning system variables can be found in Section 5.1.1, “Configuring the Server”.

• Section 14.15, “InnoDB Startup Options and System Variables”, lists InnoDB system variables.

• NDB Cluster System Variables, lists system variables which are specific to NDB Cluster.

• For information on server system variables specific to replication, see Section 16.1.6, “Replication and
Binary Logging Options and Variables”.

Note

Some of the following variable descriptions refer to “enabling” or “disabling” a
variable. These variables can be enabled with the SET statement by setting them
to ON or 1, or disabled by setting them to OFF or 0. Boolean variables can be set at
startup to the values ON, TRUE, OFF, and FALSE (not case-sensitive), as well as 1
and 0. See Section 4.2.2.4, “Program Option Modifiers”.

Some system variables control the size of buffers or caches. For a given buffer, the server might need to
allocate internal data structures. These structures typically are allocated from the total memory allocated
to the buffer, and the amount of space required might be platform dependent. This means that when you
assign a value to a system variable that controls a buffer size, the amount of space actually available might
differ from the value assigned. In some cases, the amount might be less than the value assigned. It is also
possible for the server to adjust a value upward. For example, if you assign a value of 0 to a variable for
which the minimal value is 1024, the server sets the value to 1024.

Values for buffer sizes, lengths, and stack sizes are given in bytes unless otherwise specified.

Note

Some system variable descriptions include a block size, in which case a value
that is not an integer multiple of the stated block size is rounded down to the
next lower multiple of the block size before being stored by the server, that is to
FLOOR(value) * block_size.

Example: Suppose that the block size for a given variable is given as 4096, and you
set the value of the variable to 100000 (we assume that the variable's maximum
value is greater than this number). Since 100000 / 4096 = 24.4140625, the server
automatically lowers the value to 98304 (24 * 4096) before storing it.

In some cases, the stated maximum for a variable is the maximum allowed by the
MySQL parser, but is not an exact multiple of the block size. In such cases, the
effective maximum is the next lower multiple of the block size.

Example: A system variable's maxmum value is shown as 4294967295 (232-1), and
its block size is 1024. 4294967295 / 1024 = 4194303.9990234375, so if you set
this variable to its stated maximum, the value actually stored is 4194303 * 1024 =
4294966272.

Some system variables take file name values. Unless otherwise specified, the default file location is the
data directory if the value is a relative path name. To specify the location explicitly, use an absolute path
name. Suppose that the data directory is /var/mysql/data. If a file-valued variable is given as a relative
path name, it is located under /var/mysql/data. If the value is an absolute path name, its location is as
given by the path name.

767

Server System Variables

• authentication_windows_log_level

Command-Line Format --authentication-windows-log-level=#

System Variable authentication_windows_log_level

Scope Global

Dynamic No

Type Integer

Default Value 2

Minimum Value 0

Maximum Value 4

This variable is available only if the authentication_windows Windows authentication plugin is
enabled and debugging code is enabled. See Section 6.4.1.8, “Windows Pluggable Authentication”.

This variable sets the logging level for the Windows authentication plugin. The following table shows the
permitted values.

Value Description

0 No logging

1 Log only error messages

2 Log level 1 messages and warning messages

3 Log level 2 messages and information notes

4 Log level 3 messages and debug messages

• authentication_windows_use_principal_name

Command-Line Format --authentication-windows-use-
principal-name[={OFF|ON}]

System Variable authentication_windows_use_principal_name

Scope Global

Dynamic No

Type Boolean

Default Value ON

This variable is available only if the authentication_windows Windows authentication plugin is
enabled. See Section 6.4.1.8, “Windows Pluggable Authentication”.

A client that authenticates using the InitSecurityContext() function should provide a string
identifying the service to which it connects (targetName). MySQL uses the principal name (UPN) of the
account under which the server is running. The UPN has the form user_id@computer_name and need
not be registered anywhere to be used. This UPN is sent by the server at the beginning of authentication
handshake.

This variable controls whether the server sends the UPN in the initial challenge. By default, the variable
is enabled. For security reasons, it can be disabled to avoid sending the server's account name to a

768

Server System Variables

client as cleartext. If the variable is disabled, the server always sends a 0x00 byte in the first challenge,
the client does not specify targetName, and as a result, NTLM authentication is used.

If the server fails to obtain its UPN (which happens primarily in environments that do not support
Kerberos authentication), the UPN is not sent by the server and NTLM authentication is used.

• autocommit

Command-Line Format --autocommit[={OFF|ON}]

System Variable autocommit

Scope Global, Session

Dynamic Yes

Type Boolean

Default Value ON

The autocommit mode. If set to 1, all changes to a table take effect immediately. If set to 0, you must
use COMMIT to accept a transaction or ROLLBACK to cancel it. If autocommit is 0 and you change it to
1, MySQL performs an automatic COMMIT of any open transaction. Another way to begin a transaction
is to use a START TRANSACTION or BEGIN statement. See Section 13.3.1, “START TRANSACTION,
COMMIT, and ROLLBACK Statements”.

By default, client connections begin with autocommit set to 1. To cause clients to begin with a default
of 0, set the global autocommit value by starting the server with the --autocommit=0 option. To set
the variable using an option file, include these lines:

[mysqld]
autocommit=0

• automatic_sp_privileges

Command-Line Format --automatic-sp-privileges[={OFF|ON}]

System Variable automatic_sp_privileges

Scope Global

Dynamic Yes

Type Boolean

Default Value ON

When this variable has a value of 1 (the default), the server automatically grants the EXECUTE and
ALTER ROUTINE privileges to the creator of a stored routine, if the user cannot already execute
and alter or drop the routine. (The ALTER ROUTINE privilege is required to drop the routine.) The
server also automatically drops those privileges from the creator when the routine is dropped. If
automatic_sp_privileges is 0, the server does not automatically add or drop these privileges.

The creator of a routine is the account used to execute the CREATE statement for it. This might not be
the same as the account named as the DEFINER in the routine definition.

If you start mysqld with --skip-new, automatic_sp_privileges is set to OFF.

See also Section 23.2.2, “Stored Routines and MySQL Privileges”.

769

Server System Variables

• auto_generate_certs

Command-Line Format --auto-generate-certs[={OFF|ON}]

System Variable auto_generate_certs

Scope Global

Dynamic No

Type Boolean

Default Value ON

This variable is available if the server was compiled using OpenSSL (see Section 6.3.4, “SSL Library-
Dependent Capabilities”). It controls whether the server autogenerates SSL key and certificate files in
the data directory, if they do not already exist.

At startup, the server automatically generates server-side and client-side SSL certificate and key files
in the data directory if the auto_generate_certs system variable is enabled, no SSL options other
than --ssl are specified, and the server-side SSL files are missing from the data directory. These files
enable secure client connections using SSL; see Section 6.3.1, “Configuring MySQL to Use Encrypted
Connections”.

For more information about SSL file autogeneration, including file names and characteristics, see
Section 6.3.3.1, “Creating SSL and RSA Certificates and Keys using MySQL”

The sha256_password_auto_generate_rsa_keys system variable is related but controls
autogeneration of RSA key-pair files needed for secure password exchange using RSA over unencypted
connections.

• avoid_temporal_upgrade

Command-Line Format --avoid-temporal-upgrade[={OFF|ON}]

Deprecated Yes

System Variable avoid_temporal_upgrade

Scope Global

Dynamic Yes

Type Boolean

Default Value OFF

This variable controls whether ALTER TABLE implicitly upgrades temporal columns found to be in
pre-5.6.4 format (TIME, DATETIME, and TIMESTAMP columns without support for fractional seconds
precision). Upgrading such columns requires a table rebuild, which prevents any use of fast alterations
that might otherwise apply to the operation to be performed.

This variable is disabled by default. Enabling it causes ALTER TABLE not to rebuild temporal columns
and thereby be able to take advantage of possible fast alterations.

This variable is deprecated; expect it to be removed in a future release of MySQL.

• back_log

Command-Line Format --back-log=#

System Variable back_log770

Server System Variables

Scope Global

Dynamic No

Type Integer

Default Value -1 (signifies autosizing; do not assign this literal
value)

Minimum Value 1

Maximum Value 65535

The number of outstanding connection requests MySQL can have. This comes into play when the
main MySQL thread gets very many connection requests in a very short time. It then takes some
time (although very little) for the main thread to check the connection and start a new thread. The
back_log value indicates how many requests can be stacked during this short time before MySQL
momentarily stops answering new requests. You need to increase this only if you expect a large number
of connections in a short period of time.

In other words, this value is the size of the listen queue for incoming TCP/IP connections. Your operating
system has its own limit on the size of this queue. The manual page for the Unix listen() system
call should have more details. Check your OS documentation for the maximum value for this variable.
back_log cannot be set higher than your operating system limit.

The default value is based on the following formula, capped to a limit of 900:

50 + (max_connections / 5)

• basedir

Command-Line Format --basedir=dir_name

System Variable basedir

Scope Global

Dynamic No

Type Directory name

Default Value configuration-dependent default

The path to the MySQL installation base directory.

• big_tables

Command-Line Format --big-tables[={OFF|ON}]

System Variable big_tables

Scope Global, Session

Dynamic Yes

Type Boolean

771

Server System Variables

Default Value OFF

If enabled, the server stores all temporary tables on disk rather than in memory. This prevents most The
table tbl_name is full errors for SELECT operations that require a large temporary table, but also
slows down queries for which in-memory tables would suffice.

The default value for new connections is OFF (use in-memory temporary tables). Normally, it should
never be necessary to enable this variable because the server is able to handle large result sets
automatically by using memory for small temporary tables and switching to disk-based tables as
required.

• bind_address

Command-Line Format --bind-address=addr

System Variable bind_address

Scope Global

Dynamic No

Type String

Default Value *

The MySQL server listens on a single network socket for TCP/IP connections. This socket is bound to a
single address, but it is possible for an address to map onto multiple network interfaces. To specify an
address, set bind_address=addr at server startup, where addr is an IPv4 or IPv6 address or a host
name. If addr is a host name, the server resolves the name to an IP address and binds to that address.
If a host name resolves to multiple IP addresses, the server uses the first IPv4 address if there are any,
or the first IPv6 address otherwise.

The server treats different types of addresses as follows:

• If the address is *, the server accepts TCP/IP connections on all server host IPv4 interfaces, and, if
the server host supports IPv6, on all IPv6 interfaces. Use this address to permit both IPv4 and IPv6
connections on all server interfaces. This value is the default.

• If the address is 0.0.0.0, the server accepts TCP/IP connections on all server host IPv4 interfaces.

• If the address is ::, the server accepts TCP/IP connections on all server host IPv4 and IPv6
interfaces.

• If the address is an IPv4-mapped address, the server accepts TCP/IP connections for that address,
in either IPv4 or IPv6 format. For example, if the server is bound to ::ffff:127.0.0.1, clients can
connect using --host=127.0.0.1 or --host=::ffff:127.0.0.1.

• If the address is a “regular” IPv4 or IPv6 address (such as 127.0.0.1 or ::1), the server accepts
TCP/IP connections only for that IPv4 or IPv6 address.

If binding to the address fails, the server produces an error and does not start.

If you intend to bind the server to a specific address, be sure that the mysql.user system table
contains an account with administrative privileges that you can use to connect to that address.
Otherwise, you cannot shut down the server. For example, if you bind the server to *, you can connect
to it using all existing accounts. But if you bind the server to ::1, it accepts connections only on that

772

Server System Variables

address. In that case, first make sure that the 'root'@'::1' account is present in the mysql.user
table so you can still connect to the server to shut it down.

This variable has no effect for the embedded server (libmysqld) and is not visible within the embedded
server.

• block_encryption_mode

Command-Line Format --block-encryption-mode=#

System Variable block_encryption_mode

Scope Global, Session

Dynamic Yes

Type String

Default Value aes-128-ecb

This variable controls the block encryption mode for block-based algorithms such as AES. It affects
encryption for AES_ENCRYPT() and AES_DECRYPT().

block_encryption_mode takes a value in aes-keylen-mode format, where keylen is the key
length in bits and mode is the encryption mode. The value is not case-sensitive. Permitted keylen
values are 128, 192, and 256. Permitted encryption modes depend on whether MySQL was compiled
using OpenSSL or yaSSL:

• For OpenSSL, permitted mode values are: ECB, CBC, CFB1, CFB8, CFB128, OFB

• For yaSSL, permitted mode values are: ECB, CBC

For example, this statement causes the AES encryption functions to use a key length of 256 bits and the
CBC mode:

SET block_encryption_mode = 'aes-256-cbc';

An error occurs for attempts to set block_encryption_mode to a value containing an unsupported
key length or a mode that the SSL library does not support.

• bulk_insert_buffer_size

Command-Line Format --bulk-insert-buffer-size=#

System Variable bulk_insert_buffer_size

Scope Global, Session

Dynamic Yes

Type Integer

Default Value 8388608

Minimum Value 0

Maximum Value (64-bit platforms) 18446744073709551615

Maximum Value (32-bit platforms) 4294967295

Unit bytes/thread

MyISAM uses a special tree-like cache to make bulk inserts faster for INSERT ... SELECT,
INSERT ... VALUES (...), (...), ..., and LOAD DATA when adding data to nonempty tables.

773

Server System Variables

This variable limits the size of the cache tree in bytes per thread. Setting it to 0 disables this optimization.
The default value is 8MB.

• character_set_client

System Variable character_set_client

Scope Global, Session

Dynamic Yes

Type String

Default Value utf8

The character set for statements that arrive from the client. The session value of this variable is set using
the character set requested by the client when the client connects to the server. (Many clients support
a --default-character-set option to enable this character set to be specified explicitly. See also
Section 10.4, “Connection Character Sets and Collations”.) The global value of the variable is used to set
the session value in cases when the client-requested value is unknown or not available, or the server is
configured to ignore client requests:

• The client requests a character set not known to the server. For example, a Japanese-enabled client
requests sjis when connecting to a server not configured with sjis support.

• The client is from a version of MySQL older than MySQL 4.1, and thus does not request a character
set.

• mysqld was started with the --skip-character-set-client-handshake option, which causes
it to ignore client character set configuration. This reproduces MySQL 4.0 behavior and is useful
should you wish to upgrade the server without upgrading all the clients.

Some character sets cannot be used as the client character set. Attempting to use them as the
character_set_client value produces an error. See Impermissible Client Character Sets.

• character_set_connection

System Variable character_set_connection

Scope Global, Session

Dynamic Yes

Type String

Default Value utf8

The character set used for literals specified without a character set introducer and for number-to-string
conversion. For information about introducers, see Section 10.3.8, “Character Set Introducers”.

• character_set_database

System Variable character_set_database

Scope Global, Session

Dynamic Yes

Type String

Default Value latin1

774

Server System Variables

Footnote This option is dynamic, but should be set only by
server. You should not set this variable manually.

The character set used by the default database. The server sets this variable whenever the
default database changes. If there is no default database, the variable has the same value as
character_set_server.

The global character_set_database and collation_database system variables are deprecated
in MySQL 5.7; expect them to be removed in a future version of MySQL.

Assigning a value to the session character_set_database and collation_database system
variables is deprecated in MySQL 5.7 and assignments produce a warning. You should expect the
session variables to become read only in a future version of MySQL and assignments to produce an
error, while remaining possible to access the session variables to determine the database character set
and collation for the default database.

• character_set_filesystem

Command-Line Format --character-set-filesystem=name

System Variable character_set_filesystem

Scope Global, Session

Dynamic Yes

Type String

Default Value binary

The file system character set. This variable is used to interpret string literals that refer to file names, such
as in the LOAD DATA and SELECT ... INTO OUTFILE statements and the LOAD_FILE() function.
Such file names are converted from character_set_client to character_set_filesystem
before the file opening attempt occurs. The default value is binary, which means that no
conversion occurs. For systems on which multibyte file names are permitted, a different value
may be more appropriate. For example, if the system represents file names using UTF-8, set
character_set_filesystem to 'utf8mb4'.

• character_set_results

System Variable character_set_results

Scope Global, Session

Dynamic Yes

Type String

Default Value utf8

The character set used for returning query results to the client. This includes result data such as column
values, result metadata such as column names, and error messages.

• character_set_server

Command-Line Format --character-set-server=name

System Variable character_set_server

Scope Global, Session

Dynamic Yes

775

Server System Variables

Type String

Default Value latin1

The servers default character set. See Section 10.15, “Character Set Configuration”. If you set this
variable, you should also set collation_server to specify the collation for the character set.

• character_set_system

System Variable character_set_system

Scope Global

Dynamic No

Type String

Default Value utf8

The character set used by the server for storing identifiers. The value is always utf8.

• character_sets_dir

Command-Line Format --character-sets-dir=dir_name

System Variable character_sets_dir

Scope Global

Dynamic No

Type Directory name

The directory where character sets are installed. See Section 10.15, “Character Set Configuration”.

• check_proxy_users

Command-Line Format --check-proxy-users[={OFF|ON}]

System Variable check_proxy_users

Scope Global

Dynamic Yes

Type Boolean

Default Value OFF

Some authentication plugins implement proxy user mapping for themselves (for example, the PAM and
Windows authentication plugins). Other authentication plugins do not support proxy users by default.
Of these, some can request that the MySQL server itself map proxy users according to granted proxy
privileges: mysql_native_password, sha256_password.

If the check_proxy_users system variable is enabled, the server performs proxy user mapping for any
authentication plugins that make such a request. However, it may also be necessary to enable plugin-
specific system variables to take advantage of server proxy user mapping support:

• For the mysql_native_password plugin, enable mysql_native_password_proxy_users.

• For the sha256_password plugin, enable sha256_password_proxy_users.

For information about user proxying, see Section 6.2.14, “Proxy Users”.776

Server System Variables

• collation_connection

System Variable collation_connection

Scope Global, Session

Dynamic Yes

Type String

The collation of the connection character set. collation_connection is important for comparisons
of literal strings. For comparisons of strings with column values, collation_connection does
not matter because columns have their own collation, which has a higher collation precedence (see
Section 10.8.4, “Collation Coercibility in Expressions”).

• collation_database

System Variable collation_database

Scope Global, Session

Dynamic Yes

Type String

Default Value latin1_swedish_ci

Footnote This option is dynamic, but should be set only by
server. You should not set this variable manually.

The collation used by the default database. The server sets this variable whenever the default database
changes. If there is no default database, the variable has the same value as collation_server.

The global character_set_database and collation_database system variables are deprecated
in MySQL 5.7; expect them to be removed in a future version of MySQL.

Assigning a value to the session character_set_database and collation_database system
variables is deprecated in MySQL 5.7 and assignments produce a warning. Expect the session variables
to become read only in a future version of MySQL and assignments to produce an error, while remaining
possible to access the session variables to determine the database character set and collation for the
default database.

• collation_server

Command-Line Format --collation-server=name

System Variable collation_server

Scope Global, Session

Dynamic Yes

Type String

Default Value latin1_swedish_ci

The server's default collation. See Section 10.15, “Character Set Configuration”.

• completion_type

Command-Line Format --completion-type=#

System Variable completion_type
777

Server System Variables

Scope Global, Session

Dynamic Yes

Type Enumeration

Default Value NO_CHAIN

Valid Values NO_CHAIN

CHAIN

RELEASE

0

1

2

The transaction completion type. This variable can take the values shown in the following table. The
variable can be assigned using either the name values or corresponding integer values.

Value Description

NO_CHAIN (or 0) COMMIT and ROLLBACK are unaffected. This is the
default value.

CHAIN (or 1) COMMIT and ROLLBACK are equivalent to COMMIT
AND CHAIN and ROLLBACK AND CHAIN,
respectively. (A new transaction starts immediately
with the same isolation level as the just-terminated
transaction.)

RELEASE (or 2) COMMIT and ROLLBACK are equivalent to COMMIT
RELEASE and ROLLBACK RELEASE, respectively.
(The server disconnects after terminating the
transaction.)

completion_type affects transactions that begin with START TRANSACTION or BEGIN and end with
COMMIT or ROLLBACK. It does not apply to implicit commits resulting from execution of the statements
listed in Section 13.3.3, “Statements That Cause an Implicit Commit”. It also does not apply for XA
COMMIT, XA ROLLBACK, or when autocommit=1.

• concurrent_insert

Command-Line Format --concurrent-insert[=value]

System Variable concurrent_insert

Scope Global

Dynamic Yes

Type Enumeration

Default Value AUTO

Valid Values NEVER

AUTO

ALWAYS

778

Server System Variables

0

1

2

If AUTO (the default), MySQL permits INSERT and SELECT statements to run concurrently for MyISAM
tables that have no free blocks in the middle of the data file.

This variable can take the values shown in the following table. The variable can be assigned using either
the name values or corresponding integer values.

Value Description

NEVER (or 0) Disables concurrent inserts

AUTO (or 1) (Default) Enables concurrent insert for MyISAM
tables that do not have holes

ALWAYS (or 2) Enables concurrent inserts for all MyISAM tables,
even those that have holes. For a table with a hole,
new rows are inserted at the end of the table if it
is in use by another thread. Otherwise, MySQL
acquires a normal write lock and inserts the row
into the hole.

If you start mysqld with --skip-new, concurrent_insert is set to NEVER.

See also Section 8.11.3, “Concurrent Inserts”.

• connect_timeout

Command-Line Format --connect-timeout=#

System Variable connect_timeout

Scope Global

Dynamic Yes

Type Integer

Default Value 10

Minimum Value 2

Maximum Value 31536000

Unit seconds

The number of seconds that the mysqld server waits for a connect packet before responding with Bad
handshake. The default value is 10 seconds.

Increasing the connect_timeout value might help if clients frequently encounter errors of the form
Lost connection to MySQL server at 'XXX', system error: errno.

• core_file

System Variable core_file

Scope Global
779

Server System Variables

Dynamic No

Type Boolean

Default Value OFF

Whether to write a core file if the server unexpectedly exits. This variable is set by the --core-file
option.

• datadir

Command-Line Format --datadir=dir_name

System Variable datadir

Scope Global

Dynamic No

Type Directory name

The path to the MySQL server data directory. Relative paths are resolved with respect to the current
directory. If you expect the server to be started automatically (that is, in contexts for which you cannot
assume what the current directory is), it is best to specify the datadir value as an absolute path.

• date_format

This variable is unused. It is deprecated and is removed in MySQL 8.0.

• datetime_format

This variable is unused. It is deprecated and is removed in MySQL 8.0.

• debug

Command-Line Format --debug[=debug_options]

System Variable debug

Scope Global, Session

Dynamic Yes

Type String

Default Value (Unix) d:t:i:o,/tmp/mysqld.trace

Default Value (Windows) d:t:i:O,\mysqld.trace

This variable indicates the current debugging settings. It is available only for servers built with debugging
support. The initial value comes from the value of instances of the --debug option given at server
startup. The global and session values may be set at runtime.

Setting the session value of this system variable is a restricted operation. The session user must have
privileges sufficient to set restricted session variables. See Section 5.1.8.1, “System Variable Privileges”.

Assigning a value that begins with + or - cause the value to added to or subtracted from the current
value:

mysql> SET debug = 'T';
mysql> SELECT @@debug;
+---------+
| @@debug |
+---------+

780

Server System Variables

| T |
+---------+

mysql> SET debug = '+P';
mysql> SELECT @@debug;
+---------+
| @@debug |
+---------+
| P:T |
+---------+

mysql> SET debug = '-P';
mysql> SELECT @@debug;
+---------+
| @@debug |
+---------+
| T |
+---------+

For more information, see Section 5.8.3, “The DBUG Package”.

• debug_sync

System Variable debug_sync

Scope Session

Dynamic Yes

Type String

This variable is the user interface to the Debug Sync facility. Use of Debug Sync requires that MySQL be
configured with the -DWITH_DEBUG=ON CMake option (see Section 2.8.7, “MySQL Source-Configuration
Options”); otherwise, this system variable is not available.

The global variable value is read only and indicates whether the facility is enabled. By default, Debug
Sync is disabled and the value of debug_sync is OFF. If the server is started with --debug-sync-
timeout=N, where N is a timeout value greater than 0, Debug Sync is enabled and the value of
debug_sync is ON - current signal followed by the signal name. Also, N becomes the default
timeout for individual synchronization points.

The session value can be read by any user and has the same value as the global variable. The session
value can be set to control synchronization points.

Setting the session value of this system variable is a restricted operation. The session user must have
privileges sufficient to set restricted session variables. See Section 5.1.8.1, “System Variable Privileges”.

For a description of the Debug Sync facility and how to use synchronization points, see MySQL Server
Doxygen Documentation.

• default_authentication_plugin

Command-Line Format --default-authentication-
plugin=plugin_name

System Variable default_authentication_plugin

Scope Global

Dynamic No

Type Enumeration

781

https://dev.mysql.com/doc/index-other.html
https://dev.mysql.com/doc/index-other.html

Server System Variables

Default Value mysql_native_password

Valid Values mysql_native_password

sha256_password

The default authentication plugin. These values are permitted:

• mysql_native_password: Use MySQL native passwords; see Section 6.4.1.1, “Native Pluggable
Authentication”.

• sha256_password: Use SHA-256 passwords; see Section 6.4.1.5, “SHA-256 Pluggable
Authentication”.

Note

If this variable has a value other than mysql_native_password, clients
older than MySQL 5.5.7 cannot connect because, of the permitted default
authentication plugins, they understand only the mysql_native_password
authentication protocol.

The default_authentication_plugin value affects these aspects of server operation:

• It determines which authentication plugin the server assigns to new accounts created by CREATE
USER and GRANT statements that do not explicitly specify an authentication plugin.

• The old_passwords system variable affects password hashing for accounts that use the
mysql_native_password or sha256_password authentication plugin. If the default authentication
plugin is one of those plugins, the server sets old_passwords at startup to the value required by the
plugin password hashing method.

• For an account created with either of the following statements, the server associates the account with
the default authentication plugin and assigns the account the given password, hashed as required by
that plugin:

CREATE USER ... IDENTIFIED BY 'cleartext password';
GRANT ... IDENTIFIED BY 'cleartext password';

• For an account created with either of the following statements, the server associates the account with
the default authentication plugin and assigns the account the given password hash, if the password
hash has the format required by the plugin:

CREATE USER ... IDENTIFIED BY PASSWORD 'encrypted password';
GRANT ... IDENTIFIED BY PASSWORD 'encrypted password';

If the password hash is not in the format required by the default authentication plugin, the statement
fails.

• default_password_lifetime

Command-Line Format --default-password-lifetime=#

System Variable default_password_lifetime

Scope Global

Dynamic Yes

Type Integer

782

Server System Variables

Default Value (≥ 5.7.11) 0

Default Value (≤ 5.7.10) 360

Minimum Value 0

Maximum Value 65535

Unit days

This variable defines the global automatic password expiration policy. The default
default_password_lifetime value is 0, which disables automatic password expiration. If the value
of default_password_lifetime is a positive integer N, it indicates the permitted password lifetime;
passwords must be changed every N days.

The global password expiration policy can be overridden as desired for individual accounts using
the password expiration options of the ALTER USER statement. See Section 6.2.11, “Password
Management”.

Note

Prior to MySQL 5.7.11, the default default_password_lifetime value is 360
(passwords must be changed approximately once per year). For those versions,
be aware that, if you make no changes to the default_password_lifetime
variable or to individual user accounts, all user passwords expire after 360
days, and all user accounts start running in restricted mode when this happens.
Clients (which are effectively users) connecting to the server then get an error
indicating that the password must be changed: ERROR 1820 (HY000): You
must reset your password using ALTER USER statement before
executing this statement.

However, this is easy to miss for clients that automatically connect to the server,
such as connections made from scripts. To avoid having such clients suddenly
stop working due to a password expiring, make sure to change the password
expiration settings for those clients, like this:

ALTER USER 'script'@'localhost' PASSWORD EXPIRE NEVER;

Alternatively, set the default_password_lifetime variable to 0, thus
disabling automatic password expiration for all users.

• default_storage_engine

Command-Line Format --default-storage-engine=name

System Variable default_storage_engine

Scope Global, Session

Dynamic Yes

Type Enumeration

Default Value InnoDB

The default storage engine for tables. See Chapter 15, Alternative Storage Engines. This variable sets
the storage engine for permanent tables only. To set the storage engine for TEMPORARY tables, set the
default_tmp_storage_engine system variable.

To see which storage engines are available and enabled, use the SHOW ENGINES statement or query
the INFORMATION_SCHEMA ENGINES table.

783

Server System Variables

If you disable the default storage engine at server startup, you must set the default engine for both
permanent and TEMPORARY tables to a different engine or the server cannot start.

• default_tmp_storage_engine

Command-Line Format --default-tmp-storage-engine=name

System Variable default_tmp_storage_engine

Scope Global, Session

Dynamic Yes

Type Enumeration

Default Value InnoDB

The default storage engine for TEMPORARY tables (created with CREATE TEMPORARY TABLE). To set
the storage engine for permanent tables, set the default_storage_engine system variable. Also see
the discussion of that variable regarding possible values.

If you disable the default storage engine at server startup, you must set the default engine for both
permanent and TEMPORARY tables to a different engine or the server cannot start.

• default_week_format

Command-Line Format --default-week-format=#

System Variable default_week_format

Scope Global, Session

Dynamic Yes

Type Integer

Default Value 0

Minimum Value 0

Maximum Value 7

The default mode value to use for the WEEK() function. See Section 12.7, “Date and Time Functions”.

• delay_key_write

Command-Line Format --delay-key-write[={OFF|ON|ALL}]

System Variable delay_key_write

Scope Global

Dynamic Yes

Type Enumeration

Default Value ON

Valid Values OFF

ON

784

Server System Variables

ALL

This variable specifies how to use delayed key writes. It applies only to MyISAM tables. Delayed key
writing causes key buffers not to be flushed between writes. See also Section 15.2.1, “MyISAM Startup
Options”.

This variable can have one of the following values to affect handling of the DELAY_KEY_WRITE table
option that can be used in CREATE TABLE statements.

Option Description

OFF DELAY_KEY_WRITE is ignored.

ON MySQL honors any DELAY_KEY_WRITE option
specified in CREATE TABLE statements. This is
the default value.

ALL All new opened tables are treated as if they were
created with the DELAY_KEY_WRITE option
enabled.

Note

If you set this variable to ALL, you should not use MyISAM tables from within
another program (such as another MySQL server or myisamchk) when the
tables are in use. Doing so leads to index corruption.

If DELAY_KEY_WRITE is enabled for a table, the key buffer is not flushed for the table on
every index update, but only when the table is closed. This speeds up writes on keys a
lot, but if you use this feature, you should add automatic checking of all MyISAM tables by
starting the server with the myisam_recover_options system variable set (for example,
myisam_recover_options='BACKUP,FORCE'). See Section 5.1.7, “Server System Variables”, and
Section 15.2.1, “MyISAM Startup Options”.

If you start mysqld with --skip-new, delay_key_write is set to OFF.

Warning

If you enable external locking with --external-locking, there is no protection
against index corruption for tables that use delayed key writes.

• delayed_insert_limit

Command-Line Format --delayed-insert-limit=#

Deprecated Yes

System Variable delayed_insert_limit

Scope Global

Dynamic Yes

Type Integer

Default Value 100

Minimum Value 1

Maximum Value (64-bit platforms) 18446744073709551615

785

Server System Variables

Maximum Value (32-bit platforms) 4294967295

This system variable is deprecated (because DELAYED inserts are not supported); expect it to be
removed in a future release.

• delayed_insert_timeout

Command-Line Format --delayed-insert-timeout=#

Deprecated Yes

System Variable delayed_insert_timeout

Scope Global

Dynamic Yes

Type Integer

Default Value 300

Minimum Value 1

Maximum Value 31536000

Unit seconds

This system variable is deprecated (because DELAYED inserts are not supported); expect it to be
removed in a future release.

• delayed_queue_size

Command-Line Format --delayed-queue-size=#

Deprecated Yes

System Variable delayed_queue_size

Scope Global

Dynamic Yes

Type Integer

Default Value 1000

Minimum Value 1

Maximum Value (64-bit platforms) 18446744073709551615

Maximum Value (32-bit platforms) 4294967295

This system variable is deprecated (because DELAYED inserts are not supported); expect it to be
removed in a future release.

• disabled_storage_engines

Command-Line Format --disabled-storage-
engines=engine[,engine]...

System Variable disabled_storage_engines

Scope Global

Dynamic No

Type String
786

Server System Variables

Default Value empty string

This variable indicates which storage engines cannot be used to create tables or tablespaces. For
example, to prevent new MyISAM or FEDERATED tables from being created, start the server with these
lines in the server option file:

[mysqld]
disabled_storage_engines="MyISAM,FEDERATED"

By default, disabled_storage_engines is empty (no engines disabled), but it can be set to a
comma-separated list of one or more engines (not case-sensitive). Any engine named in the value
cannot be used to create tables or tablespaces with CREATE TABLE or CREATE TABLESPACE,
and cannot be used with ALTER TABLE ... ENGINE or ALTER TABLESPACE ... ENGINE
to change the storage engine of existing tables or tablespaces. Attempts to do so result in an
ER_DISABLED_STORAGE_ENGINE error.

disabled_storage_engines does not restrict other DDL statements for existing tables, such as
CREATE INDEX, TRUNCATE TABLE, ANALYZE TABLE, DROP TABLE, or DROP TABLESPACE. This
permits a smooth transition so that existing tables or tablespaces that use a disabled engine can be
migrated to a permitted engine by means such as ALTER TABLE ... ENGINE permitted_engine.

It is permitted to set the default_storage_engine or default_tmp_storage_engine system
variable to a storage engine that is disabled. This could cause applications to behave erratically or fail,
although that might be a useful technique in a development environment for identifying applications that
use disabled engines, so that they can be modified.

disabled_storage_engines is disabled and has no effect if the server is started with any of these
options: --bootstrap, --initialize, --initialize-insecure, --skip-grant-tables.

Note

Setting disabled_storage_engines might cause an issue with
mysql_upgrade. For details, see Section 4.4.7, “mysql_upgrade — Check and
Upgrade MySQL Tables”.

• disconnect_on_expired_password

Command-Line Format --disconnect-on-expired-
password[={OFF|ON}]

System Variable disconnect_on_expired_password

Scope Global

Dynamic No

Type Boolean

Default Value ON

This variable controls how the server handles clients with expired passwords:

• If the client indicates that it can handle expired passwords, the value of
disconnect_on_expired_password is irrelevant. The server permits the client to connect but puts
it in sandbox mode.

787

https://dev.mysql.com/doc/mysql-errors/5.7/en/server-error-reference.html#error_er_disabled_storage_engine

Server System Variables

• If the client does not indicate that it can handle expired passwords, the server handles the client
according to the value of disconnect_on_expired_password:

• If disconnect_on_expired_password: is enabled, the server disconnects the client.

• If disconnect_on_expired_password: is disabled, the server permits the client to connect but
puts it in sandbox mode.

For more information about the interaction of client and server settings relating to expired-password
handling, see Section 6.2.12, “Server Handling of Expired Passwords”.

• div_precision_increment

Command-Line Format --div-precision-increment=#

System Variable div_precision_increment

Scope Global, Session

Dynamic Yes

Type Integer

Default Value 4

Minimum Value 0

Maximum Value 30

This variable indicates the number of digits by which to increase the scale of the result of division
operations performed with the / operator. The default value is 4. The minimum and maximum values are
0 and 30, respectively. The following example illustrates the effect of increasing the default value.

mysql> SELECT 1/7;
+--------+
| 1/7 |
+--------+
| 0.1429 |
+--------+
mysql> SET div_precision_increment = 12;
mysql> SELECT 1/7;
+----------------+
| 1/7 |
+----------------+
| 0.142857142857 |
+----------------+

• end_markers_in_json

Command-Line Format --end-markers-in-json[={OFF|ON}]

System Variable end_markers_in_json

Scope Global, Session

Dynamic Yes

Type Boolean

Default Value OFF

Whether optimizer JSON output should add end markers. See Section 8.15.9, “The
end_markers_in_json System Variable”.

788

Server System Variables

• eq_range_index_dive_limit

Command-Line Format --eq-range-index-dive-limit=#

System Variable eq_range_index_dive_limit

Scope Global, Session

Dynamic Yes

Type Integer

Default Value 200

Minimum Value 0

Maximum Value 4294967295

This variable indicates the number of equality ranges in an equality comparison condition when the
optimizer should switch from using index dives to index statistics in estimating the number of qualifying
rows. It applies to evaluation of expressions that have either of these equivalent forms, where the
optimizer uses a nonunique index to look up col_name values:

col_name IN(val1, ..., valN)
col_name = val1 OR ... OR col_name = valN

In both cases, the expression contains N equality ranges. The optimizer can make row estimates using
index dives or index statistics. If eq_range_index_dive_limit is greater than 0, the optimizer
uses existing index statistics instead of index dives if there are eq_range_index_dive_limit
or more equality ranges. Thus, to permit use of index dives for up to N equality ranges, set
eq_range_index_dive_limit to N + 1. To disable use of index statistics and always use index dives
regardless of N, set eq_range_index_dive_limit to 0.

For more information, see Equality Range Optimization of Many-Valued Comparisons.

To update table index statistics for best estimates, use ANALYZE TABLE.

• error_count

The number of errors that resulted from the last statement that generated messages. This variable is
read only. See Section 13.7.5.17, “SHOW ERRORS Statement”.

• event_scheduler

Command-Line Format --event-scheduler[=value]

System Variable event_scheduler

Scope Global

Dynamic Yes

Type Enumeration

Default Value OFF

Valid Values OFF

ON

DISABLED

This variable enables or disables, and starts or stops, the Event Scheduler. The possible status values
are ON, OFF, and DISABLED. Turning the Event Scheduler OFF is not the same as disabling the Event

789

Server System Variables

Scheduler, which requires setting the status to DISABLED. This variable and its effects on the Event
Scheduler's operation are discussed in greater detail in Section 23.4.2, “Event Scheduler Configuration”

• explicit_defaults_for_timestamp

Command-Line Format --explicit-defaults-for-
timestamp[={OFF|ON}]

Deprecated Yes

System Variable explicit_defaults_for_timestamp

Scope Global, Session

Dynamic Yes

Type Boolean

Default Value OFF

This system variable determines whether the server enables certain nonstandard
behaviors for default values and NULL-value handling in TIMESTAMP columns. By default,
explicit_defaults_for_timestamp is disabled, which enables the nonstandard behaviors.

If explicit_defaults_for_timestamp is disabled, the server enables the nonstandard behaviors
and handles TIMESTAMP columns as follows:

• TIMESTAMP columns not explicitly declared with the NULL attribute are automatically declared with the
NOT NULL attribute. Assigning such a column a value of NULL is permitted and sets the column to the
current timestamp.

• The first TIMESTAMP column in a table, if not explicitly declared with the NULL attribute or
an explicit DEFAULT or ON UPDATE attribute, is automatically declared with the DEFAULT
CURRENT_TIMESTAMP and ON UPDATE CURRENT_TIMESTAMP attributes.

• TIMESTAMP columns following the first one, if not explicitly declared with the NULL attribute or an
explicit DEFAULT attribute, are automatically declared as DEFAULT '0000-00-00 00:00:00' (the
“zero” timestamp). For inserted rows that specify no explicit value for such a column, the column is
assigned '0000-00-00 00:00:00' and no warning occurs.

Depending on whether strict SQL mode or the NO_ZERO_DATE SQL mode is enabled, a default value
of '0000-00-00 00:00:00' may be invalid. Be aware that the TRADITIONAL SQL mode includes
strict mode and NO_ZERO_DATE. See Section 5.1.10, “Server SQL Modes”.

The nonstandard behaviors just described are deprecated; expect them to be removed in a future
release of MySQL.

If explicit_defaults_for_timestamp is enabled, the server disables the nonstandard behaviors
and handles TIMESTAMP columns as follows:

• It is not possible to assign a TIMESTAMP column a value of NULL to set it to the current timestamp. To
assign the current timestamp, set the column to CURRENT_TIMESTAMP or a synonym such as NOW().

• TIMESTAMP columns not explicitly declared with the NOT NULL attribute are automatically declared
with the NULL attribute and permit NULL values. Assigning such a column a value of NULL sets it to
NULL, not the current timestamp.

• TIMESTAMP columns declared with the NOT NULL attribute do not permit NULL values. For inserts that
specify NULL for such a column, the result is either an error for a single-row insert if strict SQL mode

790

Server System Variables

is enabled, or '0000-00-00 00:00:00' is inserted for multiple-row inserts with strict SQL mode
disabled. In no case does assigning the column a value of NULL set it to the current timestamp.

• TIMESTAMP columns explicitly declared with the NOT NULL attribute and without an explicit DEFAULT
attribute are treated as having no default value. For inserted rows that specify no explicit value for
such a column, the result depends on the SQL mode. If strict SQL mode is enabled, an error occurs.
If strict SQL mode is not enabled, the column is declared with the implicit default of '0000-00-00
00:00:00' and a warning occurs. This is similar to how MySQL treats other temporal types such as
DATETIME.

• No TIMESTAMP column is automatically declared with the DEFAULT CURRENT_TIMESTAMP or ON
UPDATE CURRENT_TIMESTAMP attributes. Those attributes must be explicitly specified.

• The first TIMESTAMP column in a table is not handled differently from TIMESTAMP columns following
the first one.

If explicit_defaults_for_timestamp is disabled at server startup, this warning appears in the
error log:

[Warning] TIMESTAMP with implicit DEFAULT value is deprecated.
Please use --explicit_defaults_for_timestamp server option (see
documentation for more details).

As indicated by the warning, to disable the deprecated nonstandard behaviors, enable the
explicit_defaults_for_timestamp system variable at server startup.

Note

explicit_defaults_for_timestamp is itself deprecated because its only
purpose is to permit control over deprecated TIMESTAMP behaviors that are to be
removed in a future release of MySQL. When removal of those behaviors occurs,
explicit_defaults_for_timestamp no longer has any purpose, and you
can expect it to be removed as well.

For additional information, see Section 11.2.6, “Automatic Initialization and Updating for TIMESTAMP
and DATETIME”.

• external_user

System Variable external_user

Scope Session

Dynamic No

Type String

The external user name used during the authentication process, as set by the plugin used to
authenticate the client. With native (built-in) MySQL authentication, or if the plugin does not set the
value, this variable is NULL. See Section 6.2.14, “Proxy Users”.

• flush

Command-Line Format --flush[={OFF|ON}]

System Variable flush

Scope Global

Dynamic Yes

791

Server System Variables

Type Boolean

Default Value OFF

If ON, the server flushes (synchronizes) all changes to disk after each SQL statement. Normally, MySQL
does a write of all changes to disk only after each SQL statement and lets the operating system handle
the synchronizing to disk. See Section B.3.3.3, “What to Do If MySQL Keeps Crashing”. This variable is
set to ON if you start mysqld with the --flush option.

Note

If flush is enabled, the value of flush_time does not matter and changes to
flush_time have no effect on flush behavior.

• flush_time

Command-Line Format --flush-time=#

System Variable flush_time

Scope Global

Dynamic Yes

Type Integer

Default Value 0

Minimum Value 0

Maximum Value 31536000

Unit seconds

If this is set to a nonzero value, all tables are closed every flush_time seconds to free up resources
and synchronize unflushed data to disk. This option is best used only on systems with minimal
resources.

Note

If flush is enabled, the value of flush_time does not matter and changes to
flush_time have no effect on flush behavior.

• foreign_key_checks

System Variable foreign_key_checks

Scope Global, Session

Dynamic Yes

Type Boolean

Default Value ON

If set to 1 (the default), foreign key constraints are checked. If set to 0, foreign key constraints are
ignored, with a couple of exceptions. When re-creating a table that was dropped, an error is returned
if the table definition does not conform to the foreign key constraints referencing the table. Likewise,
an ALTER TABLE operation returns an error if a foreign key definition is incorrectly formed. For more
information, see Section 13.1.18.5, “FOREIGN KEY Constraints”.

Setting this variable has the same effect on NDB tables as it does for InnoDB tables. Typically you
leave this setting enabled during normal operation, to enforce referential integrity. Disabling foreign

792

Server System Variables

key checking can be useful for reloading InnoDB tables in an order different from that required by their
parent/child relationships. See Section 13.1.18.5, “FOREIGN KEY Constraints”.

Setting foreign_key_checks to 0 also affects data definition statements: DROP SCHEMA drops
a schema even if it contains tables that have foreign keys that are referred to by tables outside the
schema, and DROP TABLE drops tables that have foreign keys that are referred to by other tables.

Note

Setting foreign_key_checks to 1 does not trigger a scan of the existing table
data. Therefore, rows added to the table while foreign_key_checks=0 are not
verified for consistency.

Dropping an index required by a foreign key constraint is not permitted, even with
foreign_key_checks=0. The foreign key constraint must be removed before
dropping the index (Bug #70260).

• ft_boolean_syntax

Command-Line Format --ft-boolean-syntax=name

System Variable ft_boolean_syntax

Scope Global

Dynamic Yes

Type String

Default Value + -><()~*:""&|

The list of operators supported by boolean full-text searches performed using IN BOOLEAN MODE. See
Section 12.9.2, “Boolean Full-Text Searches”.

The default variable value is '+ -><()~*:""&|'. The rules for changing the value are as follows:

• Operator function is determined by position within the string.

• The replacement value must be 14 characters.

• Each character must be an ASCII nonalphanumeric character.

• Either the first or second character must be a space.

• No duplicates are permitted except the phrase quoting operators in positions 11 and 12. These two
characters are not required to be the same, but they are the only two that may be.

• Positions 10, 13, and 14 (which by default are set to :, &, and |) are reserved for future extensions.

• ft_max_word_len

Command-Line Format --ft-max-word-len=#

System Variable ft_max_word_len

Scope Global

Dynamic No

Type Integer

Default Value 84
793

Server System Variables

Minimum Value 10

Maximum Value 84

The maximum length of the word to be included in a MyISAM FULLTEXT index.

Note

FULLTEXT indexes on MyISAM tables must be rebuilt after changing this variable.
Use REPAIR TABLE tbl_name QUICK.

• ft_min_word_len

Command-Line Format --ft-min-word-len=#

System Variable ft_min_word_len

Scope Global

Dynamic No

Type Integer

Default Value 4

Minimum Value 1

Maximum Value 82

The minimum length of the word to be included in a MyISAM FULLTEXT index.

Note

FULLTEXT indexes on MyISAM tables must be rebuilt after changing this variable.
Use REPAIR TABLE tbl_name QUICK.

• ft_query_expansion_limit

Command-Line Format --ft-query-expansion-limit=#

System Variable ft_query_expansion_limit

Scope Global

Dynamic No

Type Integer

Default Value 20

Minimum Value 0

Maximum Value 1000

The number of top matches to use for full-text searches performed using WITH QUERY EXPANSION.

• ft_stopword_file

Command-Line Format --ft-stopword-file=file_name

System Variable ft_stopword_file

Scope Global

Dynamic No

Type File name

794

Server System Variables

The file from which to read the list of stopwords for full-text searches on MyISAM tables. The server looks
for the file in the data directory unless an absolute path name is given to specify a different directory.
All the words from the file are used; comments are not honored. By default, a built-in list of stopwords is
used (as defined in the storage/myisam/ft_static.c file). Setting this variable to the empty string
('') disables stopword filtering. See also Section 12.9.4, “Full-Text Stopwords”.

Note

FULLTEXT indexes on MyISAM tables must be rebuilt after changing this variable
or the contents of the stopword file. Use REPAIR TABLE tbl_name QUICK.

• general_log

Command-Line Format --general-log[={OFF|ON}]

System Variable general_log

Scope Global

Dynamic Yes

Type Boolean

Default Value OFF

Whether the general query log is enabled. The value can be 0 (or OFF) to disable the log or 1 (or ON) to
enable the log. The destination for log output is controlled by the log_output system variable; if that
value is NONE, no log entries are written even if the log is enabled.

• general_log_file

Command-Line Format --general-log-file=file_name

System Variable general_log_file

Scope Global

Dynamic Yes

Type File name

Default Value host_name.log

The name of the general query log file. The default value is host_name.log, but the initial value can be
changed with the --general_log_file option.

• group_concat_max_len

Command-Line Format --group-concat-max-len=#

System Variable group_concat_max_len

Scope Global, Session

Dynamic Yes

Type Integer

Default Value 1024

Minimum Value 4

Maximum Value (64-bit platforms) 18446744073709551615

Maximum Value (32-bit platforms) 4294967295

795

Server System Variables

The maximum permitted result length in bytes for the GROUP_CONCAT() function. The default is 1024.

• have_compress

YES if the zlib compression library is available to the server, NO if not. If not, the COMPRESS() and
UNCOMPRESS() functions cannot be used.

• have_crypt

YES if the crypt() system call is available to the server, NO if not. If not, the ENCRYPT() function
cannot be used.

Note

The ENCRYPT() function is deprecated in MySQL 5.7, will be removed in a
future release of MySQL, and should no longer be used. (For one-way hashing,
consider using SHA2() instead.) Consequently, have_crypt also is deprecated;
expect it to be removed in a future release.

• have_dynamic_loading

YES if mysqld supports dynamic loading of plugins, NO if not. If the value is NO, you cannot use options
such as --plugin-load to load plugins at server startup, or the INSTALL PLUGIN statement to load
plugins at runtime.

• have_geometry

YES if the server supports spatial data types, NO if not.

• have_openssl

This variable is a synonym for have_ssl.

• have_profiling

YES if statement profiling capability is present, NO if not. If present, the profiling system variable
controls whether this capability is enabled or disabled. See Section 13.7.5.31, “SHOW PROFILES
Statement”.

This variable is deprecated; expect it to be removed in a future release of MySQL.

• have_query_cache

YES if mysqld supports the query cache, NO if not.

Note

The query cache is deprecated as of MySQL 5.7.20, and is removed in MySQL
8.0. Deprecation includes have_query_cache.

• have_rtree_keys

YES if RTREE indexes are available, NO if not. (These are used for spatial indexes in MyISAM tables.)

• have_ssl

System Variable have_ssl

796

Server System Variables

Scope Global

Dynamic No

Type String

Valid Values YES (SSL support available)

DISABLED (SSL support was compiled into server,
but server was not started with necessary options
to enable it)

YES if mysqld supports SSL connections, DISABLED if the server was compiled with SSL support,
but was not started with the appropriate connection-encryption options. For more information, see
Section 2.8.6, “Configuring SSL Library Support”.

• have_statement_timeout

System Variable have_statement_timeout

Scope Global

Dynamic No

Type Boolean

Whether the statement execution timeout feature is available (see Statement Execution Time Optimizer
Hints). The value can be NO if the background thread used by this feature could not be initialized.

• have_symlink

YES if symbolic link support is enabled, NO if not. This is required on Unix for support of the DATA
DIRECTORY and INDEX DIRECTORY table options. If the server is started with the --skip-symbolic-
links option, the value is DISABLED.

This variable has no meaning on Windows.

• host_cache_size

Command-Line Format --host-cache-size=#

System Variable host_cache_size

Scope Global

Dynamic Yes

Type Integer

Default Value -1 (signifies autosizing; do not assign this literal
value)

Minimum Value 0

Maximum Value 65536

The MySQL server maintains an in-memory host cache that contains client host name and IP address
information and is used to avoid Domain Name System (DNS) lookups; see Section 5.1.11.2, “DNS
Lookups and the Host Cache”.

The host_cache_size variable controls the size of the host cache, as well as the size of the
Performance Schema host_cache table that exposes the cache contents. Setting host_cache_size
has these effects:

797

Server System Variables

• Setting the size to 0 disables the host cache. With the cache disabled, the server performs a DNS
lookup every time a client connects.

• Changing the size at runtime causes an implicit host cache flushing operation that clears the host
cache, truncates the host_cache table, and unblocks any blocked hosts.

The default value is autosized to 128, plus 1 for a value of max_connections up to 500, plus 1 for
every increment of 20 over 500 in the max_connections value, capped to a limit of 2000.

Using the --skip-host-cache option is similar to setting the host_cache_size system variable to
0, but host_cache_size is more flexible because it can also be used to resize, enable, and disable the
host cache at runtime, not just at server startup.

Starting the server with --skip-host-cache does not prevent runtime changes to the value
of host_cache_size, but such changes have no effect and the cache is not re-enabled even if
host_cache_size is set larger than 0.

Setting the host_cache_size system variable rather than the --skip-host-cache option is
preferred for the reasons given in the previous paragraph. In addition, the --skip-host-cache option
is deprecated in MySQL 8.0, and its removal is expected in a future version of MySQL.

• hostname

System Variable hostname

Scope Global

Dynamic No

Type String

The server sets this variable to the server host name at startup.

• identity

This variable is a synonym for the last_insert_id variable. It exists for compatibility with other
database systems. You can read its value with SELECT @@identity, and set it using SET identity.

• ignore_db_dirs

Deprecated 5.7.16

System Variable ignore_db_dirs

Scope Global

Dynamic No

Type String

A comma-separated list of names that are not considered as database directories in the data directory.
The value is set from any instances of --ignore-db-dir given at server startup.

As of MySQL 5.7.11, --ignore-db-dir can be used at data directory initialization time with mysqld
--initialize to specify directories that the server should ignore for purposes of assessing whether
an existing data directory is considered empty. See Section 2.9.1, “Initializing the Data Directory”.

This system variable is deprecated in MySQL 5.7. With the introduction of the data dictionary in MySQL
8.0, it became superfluous and was removed in that version.

798

Server System Variables

• init_connect

Command-Line Format --init-connect=name

System Variable init_connect

Scope Global

Dynamic Yes

Type String

A string to be executed by the server for each client that connects. The string consists of one or more
SQL statements, separated by semicolon characters.

For users that have the SUPER privilege, the content of init_connect is not executed. This is done so
that an erroneous value for init_connect does not prevent all clients from connecting. For example,
the value might contain a statement that has a syntax error, thus causing client connections to fail. Not
executing init_connect for users that have the SUPER privilege enables them to open a connection
and fix the init_connect value.

As of MySQL 5.7.22, init_connect execution is skipped for any client user with an expired password.
This is done because such a user cannot execute arbitrary statements, and thus init_connect
execution fails, leaving the client unable to connect. Skipping init_connect execution enables the
user to connect and change password.

The server discards any result sets produced by statements in the value of init_connect.

• init_file

Command-Line Format --init-file=file_name

System Variable init_file

Scope Global

Dynamic No

Type File name

If specified, this variable names a file containing SQL statements to be read and executed during the
startup process. Each statement must be on a single line and should not include comments.

If the server is started with any of the --bootstrap, --initialize, or --initialize-insecure
options, it operates in bootstap mode and some functionality is unavailable that limits the statements
permitted in the file. These include statements that relate to account management (such as CREATE
USER or GRANT), replication, and global transaction identifiers. See Section 16.1.3, “Replication with
Global Transaction Identifiers”.

• innodb_xxx

InnoDB system variables are listed in Section 14.15, “InnoDB Startup Options and System Variables”.
These variables control many aspects of storage, memory use, and I/O patterns for InnoDB tables, and
are especially important now that InnoDB is the default storage engine.

• insert_id

The value to be used by the following INSERT or ALTER TABLE statement when inserting an
AUTO_INCREMENT value. This is mainly used with the binary log.

• interactive_timeout

799

Server System Variables

Command-Line Format --interactive-timeout=#

System Variable interactive_timeout

Scope Global, Session

Dynamic Yes

Type Integer

Default Value 28800

Minimum Value 1

Maximum Value 31536000

Unit seconds

The number of seconds the server waits for activity on an interactive connection before closing
it. An interactive client is defined as a client that uses the CLIENT_INTERACTIVE option to
mysql_real_connect(). See also wait_timeout.

• internal_tmp_disk_storage_engine

Command-Line Format --internal-tmp-disk-storage-engine=#

System Variable internal_tmp_disk_storage_engine

Scope Global

Dynamic Yes

Type Enumeration

Default Value INNODB

Valid Values MYISAM

INNODB

The storage engine for on-disk internal temporary tables (see Section 8.4.4, “Internal Temporary Table
Use in MySQL”). Permitted values are MYISAM and INNODB (the default).

The optimizer uses the storage engine defined by internal_tmp_disk_storage_engine for on-disk
internal temporary tables.

When using internal_tmp_disk_storage_engine=INNODB (the default), queries that generate on-
disk internal temporary tables that exceed InnoDB row or column limits return Row size too large
or Too many columns errors. The workaround is to set internal_tmp_disk_storage_engine to
MYISAM.

• join_buffer_size

Command-Line Format --join-buffer-size=#

System Variable join_buffer_size

Scope Global, Session

Dynamic Yes

Type Integer

Default Value 262144

Minimum Value 128

800

https://dev.mysql.com/doc/c-api/5.7/en/mysql-real-connect.html

Server System Variables

Maximum Value (Windows) 4294967168

Maximum Value (Other, 64-bit platforms) 18446744073709551488

Maximum Value (Other, 32-bit platforms) 4294967168

Unit bytes

Block Size 128

The minimum size of the buffer that is used for plain index scans, range index scans, and joins that
do not use indexes and thus perform full table scans. Normally, the best way to get fast joins is to add
indexes. Increase the value of join_buffer_size to get a faster full join when adding indexes is not
possible. One join buffer is allocated for each full join between two tables. For a complex join between
several tables for which indexes are not used, multiple join buffers might be necessary.

The default is 256KB. The maximum permissible setting for join_buffer_size is 4GB−1. Larger
values are permitted for 64-bit platforms (except 64-bit Windows, for which large values are truncated
to 4GB−1 with a warning). The block size is 128, and a value that is not an exact multiple of the block
size is rounded down to the next lower multiple of the block size by MySQL Server before storing the
value for the system variable. The parser allows values up to the maximum unsigned integer value for
the platform (4294967295 or 232−1 for a 32-bit system, 18446744073709551615 or 264−1 for a 64-bit
system) but the actual maximum is a block size lower.

Unless a Block Nested-Loop or Batched Key Access algorithm is used, there is no gain from setting the
buffer larger than required to hold each matching row, and all joins allocate at least the minimum size,
so use caution in setting this variable to a large value globally. It is better to keep the global setting small
and change the session setting to a larger value only in sessions that are doing large joins. Memory
allocation time can cause substantial performance drops if the global size is larger than needed by most
queries that use it.

When Block Nested-Loop is used, a larger join buffer can be beneficial up to the point where all required
columns from all rows in the first table are stored in the join buffer. This depends on the query; the
optimal size may be smaller than holding all rows from the first tables.

When Batched Key Access is used, the value of join_buffer_size defines how large the batch of
keys is in each request to the storage engine. The larger the buffer, the more sequential access is made
to the right hand table of a join operation, which can significantly improve performance.

For additional information about join buffering, see Section 8.2.1.6, “Nested-Loop Join Algorithms”. For
information about Batched Key Access, see Section 8.2.1.11, “Block Nested-Loop and Batched Key
Access Joins”.

• keep_files_on_create

Command-Line Format --keep-files-on-create[={OFF|ON}]

System Variable keep_files_on_create

Scope Global, Session

Dynamic Yes

Type Boolean

Default Value OFF

If a MyISAM table is created with no DATA DIRECTORY option, the .MYD file is created in the database
directory. By default, if MyISAM finds an existing .MYD file in this case, it overwrites it. The same applies
to .MYI files for tables created with no INDEX DIRECTORY option. To suppress this behavior, set the

801

Server System Variables

keep_files_on_create variable to ON (1), in which case MyISAM does not overwrite existing files
and returns an error instead. The default value is OFF (0).

If a MyISAM table is created with a DATA DIRECTORY or INDEX DIRECTORY option and an existing
.MYD or .MYI file is found, MyISAM always returns an error. It does not overwrite a file in the specified
directory.

• key_buffer_size

Command-Line Format --key-buffer-size=#

System Variable key_buffer_size

Scope Global

Dynamic Yes

Type Integer

Default Value 8388608

Minimum Value 0

Maximum Value (64-bit platforms) OS_PER_PROCESS_LIMIT

Maximum Value (32-bit platforms) 4294967295

Unit bytes

Index blocks for MyISAM tables are buffered and are shared by all threads. key_buffer_size is the
size of the buffer used for index blocks. The key buffer is also known as the key cache.

The minimum permissible setting is 0, but you cannot set key_buffer_size to 0 dynamically. A setting
of 0 drops the key cache, which is not permitted at runtime. Setting key_buffer_size to 0 is permitted
only at startup, in which case the key cache is not initialized. Changing the key_buffer_size setting
at runtime from a value of 0 to a permitted non-zero value initializes the key cache.

key_buffer_size can be increased or decreased only in increments or multiples of 4096 bytes.
Increasing or decreasing the setting by a nonconforming value produces a warning and truncates the
setting to a conforming value.

The maximum permissible setting for key_buffer_size is 4GB−1 on 32-bit platforms. Larger values
are permitted for 64-bit platforms. The effective maximum size might be less, depending on your
available physical RAM and per-process RAM limits imposed by your operating system or hardware
platform. The value of this variable indicates the amount of memory requested. Internally, the server
allocates as much memory as possible up to this amount, but the actual allocation might be less.

You can increase the value to get better index handling for all reads and multiple writes; on a system
whose primary function is to run MySQL using the MyISAM storage engine, 25% of the machine's total
memory is an acceptable value for this variable. However, you should be aware that, if you make the
value too large (for example, more than 50% of the machine's total memory), your system might start
to page and become extremely slow. This is because MySQL relies on the operating system to perform
file system caching for data reads, so you must leave some room for the file system cache. You should
also consider the memory requirements of any other storage engines that you may be using in addition
to MyISAM.

For even more speed when writing many rows at the same time, use LOCK TABLES. See
Section 8.2.4.1, “Optimizing INSERT Statements”.

You can check the performance of the key buffer by issuing a SHOW STATUS statement and examining
the Key_read_requests, Key_reads, Key_write_requests, and Key_writes status variables.

802

Server System Variables

(See Section 13.7.5, “SHOW Statements”.) The Key_reads/Key_read_requests ratio should
normally be less than 0.01. The Key_writes/Key_write_requests ratio is usually near 1 if you are
using mostly updates and deletes, but might be much smaller if you tend to do updates that affect many
rows at the same time or if you are using the DELAY_KEY_WRITE table option.

The fraction of the key buffer in use can be determined using key_buffer_size in conjunction
with the Key_blocks_unused status variable and the buffer block size, which is available from the
key_cache_block_size system variable:

1 - ((Key_blocks_unused * key_cache_block_size) / key_buffer_size)

This value is an approximation because some space in the key buffer is allocated internally for
administrative structures. Factors that influence the amount of overhead for these structures include
block size and pointer size. As block size increases, the percentage of the key buffer lost to overhead
tends to decrease. Larger blocks results in a smaller number of read operations (because more keys are
obtained per read), but conversely an increase in reads of keys that are not examined (if not all keys in a
block are relevant to a query).

It is possible to create multiple MyISAM key caches. The size limit of 4GB applies to each cache
individually, not as a group. See Section 8.10.2, “The MyISAM Key Cache”.

• key_cache_age_threshold

Command-Line Format --key-cache-age-threshold=#

System Variable key_cache_age_threshold

Scope Global

Dynamic Yes

Type Integer

Default Value 300

Minimum Value 100

Maximum Value (64-bit platforms) 18446744073709551516

Maximum Value (32-bit platforms) 4294967196

Block Size 100

This value controls the demotion of buffers from the hot sublist of a key cache to the warm sublist. Lower
values cause demotion to happen more quickly. The minimum value is 100. The default value is 300.
See Section 8.10.2, “The MyISAM Key Cache”.

• key_cache_block_size

Command-Line Format --key-cache-block-size=#

System Variable key_cache_block_size

Scope Global

Dynamic Yes

Type Integer

Default Value 1024

Minimum Value 512

Maximum Value 16384

803

Server System Variables

Unit bytes

Block Size 512

The size in bytes of blocks in the key cache. The default value is 1024. See Section 8.10.2, “The
MyISAM Key Cache”.

• key_cache_division_limit

Command-Line Format --key-cache-division-limit=#

System Variable key_cache_division_limit

Scope Global

Dynamic Yes

Type Integer

Default Value 100

Minimum Value 1

Maximum Value 100

The division point between the hot and warm sublists of the key cache buffer list. The value is the
percentage of the buffer list to use for the warm sublist. Permissible values range from 1 to 100. The
default value is 100. See Section 8.10.2, “The MyISAM Key Cache”.

• large_files_support

System Variable large_files_support

Scope Global

Dynamic No

Type Boolean

Whether mysqld was compiled with options for large file support.

• large_pages

Command-Line Format --large-pages[={OFF|ON}]

System Variable large_pages

Scope Global

Dynamic No

Platform Specific Linux

Type Boolean

Default Value OFF

Whether large page support is enabled (via the --large-pages option). See Section 8.12.4.3,
“Enabling Large Page Support”.

• large_page_size

System Variable large_page_size

Scope Global804

Server System Variables

Dynamic No

Type Integer

Default Value 0

Minimum Value 0

Maximum Value 65535

Unit bytes

If large page support is enabled, this shows the size of memory pages. Large memory pages are
supported only on Linux; on other platforms, the value of this variable is always 0. See Section 8.12.4.3,
“Enabling Large Page Support”.

• last_insert_id

The value to be returned from LAST_INSERT_ID(). This is stored in the binary log when you use
LAST_INSERT_ID() in a statement that updates a table. Setting this variable does not update the value
returned by the mysql_insert_id() C API function.

• lc_messages

Command-Line Format --lc-messages=name

System Variable lc_messages

Scope Global, Session

Dynamic Yes

Type String

Default Value en_US

The locale to use for error messages. The default is en_US. The server converts the argument to a
language name and combines it with the value of lc_messages_dir to produce the location for the
error message file. See Section 10.12, “Setting the Error Message Language”.

• lc_messages_dir

Command-Line Format --lc-messages-dir=dir_name

System Variable lc_messages_dir

Scope Global

Dynamic No

Type Directory name

The directory where error messages are located. The server uses the value together with the value of
lc_messages to produce the location for the error message file. See Section 10.12, “Setting the Error
Message Language”.

• lc_time_names

Command-Line Format --lc-time-names=value

System Variable lc_time_names

Scope Global, Session

Dynamic Yes

805

https://dev.mysql.com/doc/c-api/5.7/en/mysql-insert-id.html

Server System Variables

Type String

This variable specifies the locale that controls the language used to display day and month names
and abbreviations. This variable affects the output from the DATE_FORMAT(), DAYNAME() and
MONTHNAME() functions. Locale names are POSIX-style values such as 'ja_JP' or 'pt_BR'.
The default value is 'en_US' regardless of your system's locale setting. For further information, see
Section 10.16, “MySQL Server Locale Support”.

• license

System Variable license

Scope Global

Dynamic No

Type String

Default Value GPL

The type of license the server has.

• local_infile

Command-Line Format --local-infile[={OFF|ON}]

System Variable local_infile

Scope Global

Dynamic Yes

Type Boolean

Default Value ON

This variable controls server-side LOCAL capability for LOAD DATA statements. Depending on the
local_infile setting, the server refuses or permits local data loading by clients that have LOCAL
enabled on the client side.

To explicitly cause the server to refuse or permit LOAD DATA LOCAL statements (regardless of how
client programs and libraries are configured at build time or runtime), start mysqld with local_infile
disabled or enabled, respectively. local_infile can also be set at runtime. For more information, see
Section 6.1.6, “Security Considerations for LOAD DATA LOCAL”.

• lock_wait_timeout

Command-Line Format --lock-wait-timeout=#

System Variable lock_wait_timeout

Scope Global, Session

Dynamic Yes

Type Integer

Default Value 31536000

Minimum Value 1

Maximum Value 31536000

806

Server System Variables

Unit seconds

This variable specifies the timeout in seconds for attempts to acquire metadata locks. The permissible
values range from 1 to 31536000 (1 year). The default is 31536000.

This timeout applies to all statements that use metadata locks. These include DML and DDL operations
on tables, views, stored procedures, and stored functions, as well as LOCK TABLES, FLUSH TABLES
WITH READ LOCK, and HANDLER statements.

This timeout does not apply to implicit accesses to system tables in the mysql database, such as grant
tables modified by GRANT or REVOKE statements or table logging statements. The timeout does apply to
system tables accessed directly, such as with SELECT or UPDATE.

The timeout value applies separately for each metadata lock attempt. A given statement can require
more than one lock, so it is possible for the statement to block for longer than the lock_wait_timeout
value before reporting a timeout error. When lock timeout occurs, ER_LOCK_WAIT_TIMEOUT is reported.

lock_wait_timeout does not apply to delayed inserts, which always execute with a timeout of 1 year.
This is done to avoid unnecessary timeouts because a session that issues a delayed insert receives no
notification of delayed insert timeouts.

• locked_in_memory

System Variable locked_in_memory

Scope Global

Dynamic No

Type Boolean

Default Value OFF

Whether mysqld was locked in memory with --memlock.

• log_error

Command-Line Format --log-error[=file_name]

System Variable log_error

Scope Global

Dynamic No

Type File name

The error log output destination. If the destination is the console, the value is stderr. Otherwise, the
destination is a file and the log_error value is the file name. See Section 5.4.2, “The Error Log”.

• log_error_verbosity

Command-Line Format --log-error-verbosity=#

System Variable log_error_verbosity

Scope Global

Dynamic Yes

Type Integer

Default Value 3

807

https://dev.mysql.com/doc/mysql-errors/5.7/en/server-error-reference.html#error_er_lock_wait_timeout

Server System Variables

Minimum Value 1

Maximum Value 3

The verbosity of the server in writing error, warning, and note messages to the error log. The following
table shows the permitted values. The default is 3.

log_error_verbosity Value Permitted Messages

1 Error messages

2 Error and warning messages

3 Error, warning, and information messages

log_error_verbosity was added in MySQL 5.7.2. It is preferred over, and should be used instead
of, the older log_warnings system variable. See the description of log_warnings for information
about how that variable relates to log_error_verbosity. In particular, assigning a value to
log_warnings assigns a value to log_error_verbosity and vice versa.

• log_output

Command-Line Format --log-output=name

System Variable log_output

Scope Global

Dynamic Yes

Type Set

Default Value FILE

Valid Values TABLE

FILE

NONE

The destination or destinations for general query log and slow query log output. The value is a list one
or more comma-separated words chosen from TABLE, FILE, and NONE. TABLE selects logging to the
general_log and slow_log tables in the mysql system database. FILE selects logging to log files.
NONE disables logging. If NONE is present in the value, it takes precedence over any other words that are
present. TABLE and FILE can both be given to select both log output destinations.

This variable selects log output destinations, but does not enable log output. To do that, enable the
general_log and slow_query_log system variables. For FILE logging, the general_log_file
and slow_query_log_file system variables determine the log file locations. For more information,
see Section 5.4.1, “Selecting General Query Log and Slow Query Log Output Destinations”.

• log_queries_not_using_indexes

Command-Line Format --log-queries-not-using-
indexes[={OFF|ON}]

System Variable log_queries_not_using_indexes

Scope Global

Dynamic Yes

Type Boolean808

Server System Variables

Default Value OFF

If you enable this variable with the slow query log enabled, queries that are expected to retrieve all
rows are logged. See Section 5.4.5, “The Slow Query Log”. This option does not necessarily mean that
no index is used. For example, a query that uses a full index scan uses an index but would be logged
because the index would not limit the number of rows.

• log_slow_admin_statements

Command-Line Format --log-slow-admin-statements[={OFF|
ON}]

System Variable log_slow_admin_statements

Scope Global

Dynamic Yes

Type Boolean

Default Value OFF

Include slow administrative statements in the statements written to the slow query log. Administrative
statements include ALTER TABLE, ANALYZE TABLE, CHECK TABLE, CREATE INDEX, DROP INDEX,
OPTIMIZE TABLE, and REPAIR TABLE.

• log_syslog

Command-Line Format --log-syslog[={OFF|ON}]

System Variable log_syslog

Scope Global

Dynamic Yes

Type Boolean

Default Value (Unix) OFF

Default Value (Windows) ON

Whether to write error log output to the system log. This is the Event Log on Windows, and syslog on
Unix and Unix-like systems. The default value is platform specific:

• On Windows, Event Log output is enabled by default.

• On Unix and Unix-like systems, syslog output is disabled by default.

Regardless of the default, log_syslog can be set explicitly to control output on any supported platform.

System log output control is distinct from sending error output to a file or the console. Error output can be
directed to a file or the console in addition to or instead of the system log as desired. See Section 5.4.2,
“The Error Log”.

• log_syslog_facility

Command-Line Format --log-syslog-facility=value

System Variable log_syslog_facility

Scope Global
809

Server System Variables

Dynamic Yes

Type String

Default Value daemon

The facility for error log output written to syslog (what type of program is sending the message). This
variable has no effect unless the log_syslog system variable is enabled. See Section 5.4.2.3, “Error
Logging to the System Log”.

The permitted values can vary per operating system; consult your system syslog documentation.

This variable does not exist on Windows.

• log_syslog_include_pid

Command-Line Format --log-syslog-include-pid[={OFF|ON}]

System Variable log_syslog_include_pid

Scope Global

Dynamic Yes

Type Boolean

Default Value ON

Whether to include the server process ID in each line of error log output written to syslog. This variable
has no effect unless the log_syslog system variable is enabled. See Section 5.4.2.3, “Error Logging to
the System Log”.

This variable does not exist on Windows.

• log_syslog_tag

Command-Line Format --log-syslog-tag=tag

System Variable log_syslog_tag

Scope Global

Dynamic Yes

Type String

Default Value empty string

The tag to be added to the server identifier in error log output written to syslog. This variable has no
effect unless the log_syslog system variable is enabled. See Section 5.4.2.3, “Error Logging to the
System Log”.

By default, the server identifier is mysqld with no tag. If a tag value of tag is specified, it is appended to
the server identifier with a leading hyphen, resulting in an identifier of mysqld-tag.

On Windows, to use a tag that does not already exist, the server must be run from an account with
Administrator privileges, to permit creation of a registry entry for the tag. Elevated privileges are not
required if the tag already exists.

• log_timestamps

Command-Line Format --log-timestamps=#810

Server System Variables

System Variable log_timestamps

Scope Global

Dynamic Yes

Type Enumeration

Default Value UTC

Valid Values UTC

SYSTEM

This variable controls the time zone of timestamps in messages written to the error log, and in general
query log and slow query log messages written to files. It does not affect the time zone of general query
log and slow query log messages written to tables (mysql.general_log, mysql.slow_log). Rows
retrieved from those tables can be converted from the local system time zone to any desired time zone
with CONVERT_TZ() or by setting the session time_zone system variable.

Permitted log_timestamps values are UTC (the default) and SYSTEM (local system time zone).

Timestamps are written using ISO 8601 / RFC 3339 format: YYYY-MM-DDThh:mm:ss.uuuuuu plus a
tail value of Z signifying Zulu time (UTC) or ±hh:mm (an offset from UTC).

• log_throttle_queries_not_using_indexes

Command-Line Format --log-throttle-queries-not-using-
indexes=#

System Variable log_throttle_queries_not_using_indexes

Scope Global

Dynamic Yes

Type Integer

Default Value 0

Minimum Value 0

Maximum Value 4294967295

If log_queries_not_using_indexes is enabled, the
log_throttle_queries_not_using_indexes variable limits the number of such queries per
minute that can be written to the slow query log. A value of 0 (the default) means “no limit”. For more
information, see Section 5.4.5, “The Slow Query Log”.

• log_warnings

Command-Line Format --log-warnings[=#]

Deprecated Yes

System Variable log_warnings

Scope Global

Dynamic Yes

Type Integer

Default Value 2

Minimum Value 0

811

Server System Variables

Maximum Value (64-bit platforms) 18446744073709551615

Maximum Value (32-bit platforms) 4294967295

Whether to produce additional warning messages to the error log. As of MySQL 5.7.2, information items
previously governed by log_warnings are governed by log_error_verbosity, which is preferred
over, and should be used instead of, the older log_warnings system variable. (The log_warnings
system variable and --log-warnings command-line option are deprecated; expect them to be
removed in a future release of MySQL.)

log_warnings is enabled by default (the default is 1 before MySQL 5.7.2, 2 as of 5.7.2). To disable it,
set it to 0. If the value is greater than 0, the server logs messages about statements that are unsafe for
statement-based logging. If the value is greater than 1, the server logs aborted connections and access-
denied errors for new connection attempts. See Section B.3.2.9, “Communication Errors and Aborted
Connections”.

If you use replication, enabling this variable by setting it greater than 0 is recommended, to get more
information about what is happening, such as messages about network failures and reconnections.

If a replica server is started with log_warnings enabled, the replica prints messages to the error log to
provide information about its status, such as the binary log and relay log coordinates where it starts its
job, when it is switching to another relay log, when it reconnects after a disconnect, and so forth.

Assigning a value to log_warnings assigns a value to log_error_verbosity and vice versa. The
variables are related as follows:

• Suppression of all log_warnings items, achieved with log_warnings=0, is achieved with
log_error_verbosity=1 (errors only).

• Items printed for log_warnings=1 or higher count as warnings and are printed for
log_error_verbosity=2 or higher.

• Items printed for log_warnings=2 count as notes and are printed for log_error_verbosity=3.

As of MySQL 5.7.2, the default log level is controlled by log_error_verbosity, which has a
default of 3. In addition, the default for log_warnings changes from 1 to 2, which corresponds
to log_error_verbosity=3. To achieve a logging level similar to the previous default, set
log_error_verbosity=2.

In MySQL 5.7.2 and higher, use of log_warnings is still permitted but maps onto use of
log_error_verbosity as follows:

• Setting log_warnings=0 is equivalent to log_error_verbosity=1 (errors only).

• Setting log_warnings=1 is equivalent to log_error_verbosity=2 (errors, warnings).

• Setting log_warnings=2 (or higher) is equivalent to log_error_verbosity=3 (errors, warnings,
notes), and the server sets log_warnings to 2 if a larger value is specified.

• long_query_time

Command-Line Format --long-query-time=#

System Variable long_query_time

Scope Global, Session

Dynamic Yes

812

Server System Variables

Type Numeric

Default Value 10

Minimum Value 0

Maximum Value 31536000

Unit seconds

If a query takes longer than this many seconds, the server increments the Slow_queries status
variable. If the slow query log is enabled, the query is logged to the slow query log file. This value
is measured in real time, not CPU time, so a query that is under the threshold on a lightly loaded
system might be above the threshold on a heavily loaded one. The minimum and default values of
long_query_time are 0 and 10, respectively. The maximum is 31536000, which is 365 days in
seconds. The value can be specified to a resolution of microseconds. See Section 5.4.5, “The Slow
Query Log”.

Smaller values of this variable result in more statements being considered long-running, with the result
that more space is required for the slow query log. For very small values (less than one second), the
log may grow quite large in a small time. Increasing the number of statements considered long-running
may also result in false positives for the “excessive Number of Long Running Processes” alert in MySQL
Enterprise Monitor, especially if Group Replication is enabled. For these reasons, very small values
should be used in test environments only, or, in production environments, only for a short period.

• low_priority_updates

Command-Line Format --low-priority-updates[={OFF|ON}]

System Variable low_priority_updates

Scope Global, Session

Dynamic Yes

Type Boolean

Default Value OFF

If set to 1, all INSERT, UPDATE, DELETE, and LOCK TABLE WRITE statements wait until there is no
pending SELECT or LOCK TABLE READ on the affected table. The same effect can be obtained using
{INSERT | REPLACE | DELETE | UPDATE} LOW_PRIORITY ... to lower the priority of only one
query. This variable affects only storage engines that use only table-level locking (such as MyISAM,
MEMORY, and MERGE). See Section 8.11.2, “Table Locking Issues”.

• lower_case_file_system

System Variable lower_case_file_system

Scope Global

Dynamic No

Type Boolean

This variable describes the case sensitivity of file names on the file system where the data directory is
located. OFF means file names are case-sensitive, ON means they are not case-sensitive. This variable
is read only because it reflects a file system attribute and setting it would have no effect on the file
system.

813

Server System Variables

• lower_case_table_names

Command-Line Format --lower-case-table-names[=#]

System Variable lower_case_table_names

Scope Global

Dynamic No

Type Integer

Default Value (macOS) 2

Default Value (Unix) 0

Default Value (Windows) 1

Minimum Value 0

Maximum Value 2

If set to 0, table names are stored as specified and comparisons are case-sensitive. If set to 1, table
names are stored in lowercase on disk and comparisons are not case-sensitive. If set to 2, table names
are stored as given but compared in lowercase. This option also applies to database names and table
aliases. For additional details, see Section 9.2.3, “Identifier Case Sensitivity”.

The default value of this variable is platform-dependent (see lower_case_file_system). On Linux
and other Unix-like systems, the default is 0. On Windows the default value is 1. On macOS, the default
value is 2. On Linux (and other Unix-like systems), setting the value to 2 is not supported; the server
forces the value to 0 instead.

You should not set lower_case_table_names to 0 if you are running MySQL on a system where
the data directory resides on a case-insensitive file system (such as on Windows or macOS). It is an
unsupported combination that could result in a hang condition when running an INSERT INTO ...
SELECT ... FROM tbl_name operation with the wrong tbl_name lettercase. With MyISAM,
accessing table names using different lettercases could cause index corruption.

An error message is printed and the server exits if you attempt to start the server with --
lower_case_table_names=0 on a case-insensitive file system.

The setting of this variable affects the behavior of replication filtering options with regard to case
sensitivity. For more information, see Section 16.2.5, “How Servers Evaluate Replication Filtering Rules”.

• max_allowed_packet

Command-Line Format --max-allowed-packet=#

System Variable max_allowed_packet

Scope Global, Session

Dynamic Yes

Type Integer

Default Value 4194304

Minimum Value 1024

Maximum Value 1073741824

Unit bytes

814

Server System Variables

Block Size 1024

The maximum size of one packet or any generated/intermediate string, or any parameter sent by the
mysql_stmt_send_long_data() C API function. The default is 4MB.

The packet message buffer is initialized to net_buffer_length bytes, but can grow up to
max_allowed_packet bytes when needed. This value by default is small, to catch large (possibly
incorrect) packets.

You must increase this value if you are using large BLOB columns or long strings. It should be as big
as the largest BLOB you want to use. The protocol limit for max_allowed_packet is 1GB. The value
should be a multiple of 1024; nonmultiples are rounded down to the nearest multiple.

When you change the message buffer size by changing the value of the max_allowed_packet
variable, you should also change the buffer size on the client side if your client program permits it.
The default max_allowed_packet value built in to the client library is 1GB, but individual client
programs might override this. For example, mysql and mysqldump have defaults of 16MB and 24MB,
respectively. They also enable you to change the client-side value by setting max_allowed_packet on
the command line or in an option file.

The session value of this variable is read only. The client can receive up to as many bytes as the
session value. However, the server cannot send to the client more bytes than the current global
max_allowed_packet value. (The global value could be less than the session value if the global value
is changed after the client connects.)

• max_connect_errors

Command-Line Format --max-connect-errors=#

System Variable max_connect_errors

Scope Global

Dynamic Yes

Type Integer

Default Value 100

Minimum Value 1

Maximum Value (64-bit platforms) 18446744073709551615

Maximum Value (32-bit platforms) 4294967295

After max_connect_errors successive connection requests from a host are interrupted without a
successful connection, the server blocks that host from further connections. If a connection from a
host is established successfully within fewer than max_connect_errors attempts after a previous
connection was interrupted, the error count for the host is cleared to zero. To unblock blocked hosts,
flush the host cache; see Flushing the Host Cache.

• max_connections

Command-Line Format --max-connections=#

System Variable max_connections

Scope Global

Dynamic Yes

Type Integer
815

https://dev.mysql.com/doc/c-api/5.7/en/mysql-stmt-send-long-data.html

Server System Variables

Default Value 151

Minimum Value 1

Maximum Value 100000

The maximum permitted number of simultaneous client connections. The maximum effective value
is the lesser of the effective value of open_files_limit - 810, and the value actually set for
max_connections.

For more information, see Section 5.1.11.1, “Connection Interfaces”.

• max_delayed_threads

Command-Line Format --max-delayed-threads=#

Deprecated Yes

System Variable max_delayed_threads

Scope Global, Session

Dynamic Yes

Type Integer

Default Value 20

Minimum Value 0

Maximum Value 16384

This system variable is deprecated (because DELAYED inserts are not supported); expect it to be
removed in a future release.

• max_digest_length

Command-Line Format --max-digest-length=#

System Variable max_digest_length

Scope Global

Dynamic No

Type Integer

Default Value 1024

Minimum Value 0

Maximum Value 1048576

Unit bytes

The maximum number of bytes of memory reserved per session for computation of normalized
statement digests. Once that amount of space is used during digest computation, truncation occurs:
no further tokens from a parsed statement are collected or figure into its digest value. Statements that
differ only after that many bytes of parsed tokens produce the same normalized statement digest and are
considered identical if compared or if aggregated for digest statistics.

The length used for calculating a normalized statement digest is the sum of the length of the normalized
statement digest and the length of the statement digest. Since the length of the statement digest is

816

Server System Variables

always 64, when the value of max_digest_length is 1024 (the default), the maximum length for a
normalized SQL statement before truncation occurs is 1024 - 64 = 960 bytes.

Warning

Setting max_digest_length to zero disables digest production, which also
disables server functionality that requires digests, such as MySQL Enterprise
Firewall.

Decreasing the max_digest_length value reduces memory use but causes the digest value of more
statements to become indistinguishable if they differ only at the end. Increasing the value permits longer
statements to be distinguished but increases memory use, particularly for workloads that involve large
numbers of simultaneous sessions (the server allocates max_digest_length bytes per session).

The parser uses this system variable as a limit on the maximum length of normalized statement
digests that it computes. The Performance Schema, if it tracks statement digests, makes
a copy of the digest value, using the performance_schema_max_digest_length.
system variable as a limit on the maximum length of digests that it stores. Consequently, if
performance_schema_max_digest_length is less than max_digest_length, digest values
stored in the Performance Schema are truncated relative to the original digest values.

For more information about statement digesting, see Section 25.10, “Performance Schema Statement
Digests”.

• max_error_count

Command-Line Format --max-error-count=#

System Variable max_error_count

Scope Global, Session

Dynamic Yes

Type Integer

Default Value 64

Minimum Value 0

Maximum Value 65535

The maximum number of error, warning, and information messages to be stored for display by the SHOW
ERRORS and SHOW WARNINGS statements. This is the same as the number of condition areas in the
diagnostics area, and thus the number of conditions that can be inspected by GET DIAGNOSTICS.

• max_execution_time

Command-Line Format --max-execution-time=#

System Variable max_execution_time

Scope Global, Session

Dynamic Yes

Type Integer

Default Value 0

Minimum Value 0

Maximum Value 4294967295

817

Server System Variables

Unit milliseconds

The execution timeout for SELECT statements, in milliseconds. If the value is 0, timeouts are not
enabled.

max_execution_time applies as follows:

• The global max_execution_time value provides the default for the session value for new
connections. The session value applies to SELECT executions executed within the session that include
no MAX_EXECUTION_TIME(N) optimizer hint or for which N is 0.

• max_execution_time applies to read-only SELECT statements. Statements that are not read only
are those that invoke a stored function that modifies data as a side effect.

• max_execution_time is ignored for SELECT statements in stored programs.

• max_heap_table_size

Command-Line Format --max-heap-table-size=#

System Variable max_heap_table_size

Scope Global, Session

Dynamic Yes

Type Integer

Default Value 16777216

Minimum Value 16384

Maximum Value (64-bit platforms) 18446744073709550592

Maximum Value (32-bit platforms) 4294966272

Unit bytes

Block Size 1024

This variable sets the maximum size to which user-created MEMORY tables are permitted to grow. The
value of the variable is used to calculate MEMORY table MAX_ROWS values.

Setting this variable has no effect on any existing MEMORY table, unless the table is re-created with a
statement such as CREATE TABLE or altered with ALTER TABLE or TRUNCATE TABLE. A server restart
also sets the maximum size of existing MEMORY tables to the global max_heap_table_size value.

This variable is also used in conjunction with tmp_table_size to limit the size of internal in-memory
tables. See Section 8.4.4, “Internal Temporary Table Use in MySQL”.

max_heap_table_size is not replicated. See Section 16.4.1.20, “Replication and MEMORY Tables”,
and Section 16.4.1.37, “Replication and Variables”, for more information.

• max_insert_delayed_threads

Deprecated Yes

System Variable max_insert_delayed_threads

Scope Global, Session

Dynamic Yes

Type Integer

818

Server System Variables

Default Value 0

Minimum Value 20

Maximum Value 16384

This variable is a synonym for max_delayed_threads.

This system variable is deprecated (because DELAYED inserts are not supported); expect it to be
removed in a future release.

• max_join_size

Command-Line Format --max-join-size=#

System Variable max_join_size

Scope Global, Session

Dynamic Yes

Type Integer

Default Value 18446744073709551615

Minimum Value 1

Maximum Value 18446744073709551615

Do not permit statements that probably need to examine more than max_join_size rows (for single-
table statements) or row combinations (for multiple-table statements) or that are likely to do more than
max_join_size disk seeks. By setting this value, you can catch statements where keys are not used
properly and that would probably take a long time. Set it if your users tend to perform joins that lack a
WHERE clause, that take a long time, or that return millions of rows. For more information, see Using
Safe-Updates Mode (--safe-updates).

Setting this variable to a value other than DEFAULT resets the value of sql_big_selects to 0. If you
set the sql_big_selects value again, the max_join_size variable is ignored.

If a query result is in the query cache, no result size check is performed, because the result has
previously been computed and it does not burden the server to send it to the client.

• max_length_for_sort_data

Command-Line Format --max-length-for-sort-data=#

System Variable max_length_for_sort_data

Scope Global, Session

Dynamic Yes

Type Integer

Default Value 1024

Minimum Value 4

Maximum Value 8388608

Unit bytes

The cutoff on the size of index values that determines which filesort algorithm to use. See
Section 8.2.1.14, “ORDER BY Optimization”.

819

Server System Variables

• max_points_in_geometry

Command-Line Format --max-points-in-geometry=#

System Variable max_points_in_geometry

Scope Global, Session

Dynamic Yes

Type Integer

Default Value 65536

Minimum Value 3

Maximum Value 1048576

The maximum value of the points_per_circle argument to the ST_Buffer_Strategy() function.

• max_prepared_stmt_count

Command-Line Format --max-prepared-stmt-count=#

System Variable max_prepared_stmt_count

Scope Global

Dynamic Yes

Type Integer

Default Value 16382

Minimum Value 0

Maximum Value 1048576

This variable limits the total number of prepared statements in the server. It can be used in environments
where there is the potential for denial-of-service attacks based on running the server out of memory by
preparing huge numbers of statements. If the value is set lower than the current number of prepared
statements, existing statements are not affected and can be used, but no new statements can be
prepared until the current number drops below the limit. Setting the value to 0 disables prepared
statements.

• max_seeks_for_key

Command-Line Format --max-seeks-for-key=#

System Variable max_seeks_for_key

Scope Global, Session

Dynamic Yes

Type Integer

Default Value (Windows) 4294967295

Default Value (Other, 64-bit platforms) 18446744073709551615

Default Value (Other, 32-bit platforms) 4294967295

Minimum Value 1

Maximum Value (Windows) 4294967295

Maximum Value (Other, 64-bit platforms) 18446744073709551615

Maximum Value (Other, 32-bit platforms) 4294967295

820

Server System Variables

Limit the assumed maximum number of seeks when looking up rows based on a key. The MySQL
optimizer assumes that no more than this number of key seeks are required when searching for
matching rows in a table by scanning an index, regardless of the actual cardinality of the index (see
Section 13.7.5.22, “SHOW INDEX Statement”). By setting this to a low value (say, 100), you can force
MySQL to prefer indexes instead of table scans.

• max_sort_length

Command-Line Format --max-sort-length=#

System Variable max_sort_length

Scope Global, Session

Dynamic Yes

Type Integer

Default Value 1024

Minimum Value 4

Maximum Value 8388608

Unit bytes

The number of bytes to use when sorting data values. The server uses only the first max_sort_length
bytes of each value and ignores the rest. Consequently, values that differ only after the first
max_sort_length bytes compare as equal for GROUP BY, ORDER BY, and DISTINCT operations.

Increasing the value of max_sort_length may require increasing the value of sort_buffer_size as
well. For details, see Section 8.2.1.14, “ORDER BY Optimization”

• max_sp_recursion_depth

Command-Line Format --max-sp-recursion-depth[=#]

System Variable max_sp_recursion_depth

Scope Global, Session

Dynamic Yes

Type Integer

Default Value 0

Minimum Value 0

Maximum Value 255

The number of times that any given stored procedure may be called recursively. The default value for
this option is 0, which completely disables recursion in stored procedures. The maximum value is 255.

Stored procedure recursion increases the demand on thread stack space. If you increase the value of
max_sp_recursion_depth, it may be necessary to increase thread stack size by increasing the value
of thread_stack at server startup.

• max_tmp_tables

This variable is unused. It is deprecated and is removed in MySQL 8.0.

821

Server System Variables

• max_user_connections

Command-Line Format --max-user-connections=#

System Variable max_user_connections

Scope Global, Session

Dynamic Yes

Type Integer

Default Value 0

Minimum Value 0

Maximum Value 4294967295

The maximum number of simultaneous connections permitted to any given MySQL user account. A
value of 0 (the default) means “no limit.”

This variable has a global value that can be set at server startup or runtime. It also has a read-only
session value that indicates the effective simultaneous-connection limit that applies to the account
associated with the current session. The session value is initialized as follows:

• If the user account has a nonzero MAX_USER_CONNECTIONS resource limit, the session
max_user_connections value is set to that limit.

• Otherwise, the session max_user_connections value is set to the global value.

Account resource limits are specified using the CREATE USER or ALTER USER statement. See
Section 6.2.16, “Setting Account Resource Limits”.

• max_write_lock_count

Command-Line Format --max-write-lock-count=#

System Variable max_write_lock_count

Scope Global

Dynamic Yes

Type Integer

Default Value (Windows) 4294967295

Default Value (Other, 64-bit platforms) 18446744073709551615

Default Value (Other, 32-bit platforms) 4294967295

Minimum Value 1

Maximum Value (Windows) 4294967295

Maximum Value (Other, 64-bit platforms) 18446744073709551615

Maximum Value (Other, 32-bit platforms) 4294967295

After this many write locks, permit some pending read lock requests to be processed in between. Write
lock requests have higher priority than read lock requests. However, if max_write_lock_count is set
to some low value (say, 10), read lock requests may be preferred over pending write lock requests if
the read lock requests have already been passed over in favor of 10 write lock requests. Normally this
behavior does not occur because max_write_lock_count by default has a very large value.

822

Server System Variables

• mecab_rc_file

Command-Line Format --mecab-rc-file=file_name

System Variable mecab_rc_file

Scope Global

Dynamic No

Type File name

The mecab_rc_file option is used when setting up the MeCab full-text parser.

The mecab_rc_file option defines the path to the mecabrc configuration file, which is the
configuration file for MeCab. The option is read-only and can only be set at startup. The mecabrc
configuration file is required to initialize MeCab.

For information about the MeCab full-text parser, see Section 12.9.9, “MeCab Full-Text Parser Plugin”.

For information about options that can be specified in the MeCab mecabrc configuration file, refer to the
MeCab Documentation on the Google Developers site.

• metadata_locks_cache_size

Command-Line Format --metadata-locks-cache-size=#

Deprecated Yes

System Variable metadata_locks_cache_size

Scope Global

Dynamic No

Type Integer

Default Value 1024

Minimum Value 1

Maximum Value 1048576

Unit bytes

The size of the metadata locks cache. The server uses this cache to avoid creation and destruction of
synchronization objects. This is particularly helpful on systems where such operations are expensive,
such as Windows XP.

In MySQL 5.7.4, metadata locking implementation changes make this variable unnecessary, and so it is
deprecated; expect it to be removed in a future release of MySQL.

• metadata_locks_hash_instances

Command-Line Format --metadata-locks-hash-instances=#

Deprecated Yes

System Variable metadata_locks_hash_instances

Scope Global

Dynamic No

Type Integer
823

http://mecab.googlecode.com/svn/trunk/mecab/doc/index.html
https://code.google.com/

Server System Variables

Default Value 8

Minimum Value 1

Maximum Value 1024

The set of metadata locks can be partitioned into separate hashes to permit connections
accessing different objects to use different locking hashes and reduce contention. The
metadata_locks_hash_instances system variable specifies the number of hashes (default 8).

In MySQL 5.7.4, metadata locking implementation changes make this variable unnecessary, and so it is
deprecated; expect it to be removed in a future release of MySQL.

• min_examined_row_limit

Command-Line Format --min-examined-row-limit=#

System Variable min_examined_row_limit

Scope Global, Session

Dynamic Yes

Type Integer

Default Value 0

Minimum Value 0

Maximum Value (64-bit platforms) 18446744073709551615

Maximum Value (32-bit platforms) 4294967295

Queries that examine fewer than this number of rows are not logged to the slow query log.

• multi_range_count

Command-Line Format --multi-range-count=#

Deprecated Yes

System Variable multi_range_count

Scope Global, Session

Dynamic Yes

Type Integer

Default Value 256

Minimum Value 1

Maximum Value 4294967295

This variable has no effect. It is deprecated and is removed in MySQL 8.0.

• myisam_data_pointer_size

Command-Line Format --myisam-data-pointer-size=#

System Variable myisam_data_pointer_size

Scope Global

Dynamic Yes

Type Integer

824

Server System Variables

Default Value 6

Minimum Value 2

Maximum Value 7

Unit bytes

The default pointer size in bytes, to be used by CREATE TABLE for MyISAM tables when no MAX_ROWS
option is specified. This variable cannot be less than 2 or larger than 7. The default value is 6. See
Section B.3.2.10, “The table is full”.

• myisam_max_sort_file_size

Command-Line Format --myisam-max-sort-file-size=#

System Variable myisam_max_sort_file_size

Scope Global

Dynamic Yes

Type Integer

Default Value (Windows) 2146435072

Default Value (Other, 64-bit platforms) 9223372036853727232

Default Value (Other, 32-bit platforms) 2147483648

Minimum Value 0

Maximum Value (Windows) 2146435072

Maximum Value (Other, 64-bit platforms) 9223372036853727232

Maximum Value (Other, 32-bit platforms) 2147483648

Unit bytes

The maximum size of the temporary file that MySQL is permitted to use while re-creating a MyISAM
index (during REPAIR TABLE, ALTER TABLE, or LOAD DATA). If the file size would be larger than this
value, the index is created using the key cache instead, which is slower. The value is given in bytes.

If MyISAM index files exceed this size and disk space is available, increasing the value may help
performance. The space must be available in the file system containing the directory where the original
index file is located.

• myisam_mmap_size

Command-Line Format --myisam-mmap-size=#

System Variable myisam_mmap_size

Scope Global

Dynamic No

Type Integer

Default Value (64-bit platforms) 18446744073709551615

Default Value (32-bit platforms) 4294967295

Minimum Value 7

Maximum Value (64-bit platforms) 18446744073709551615

Maximum Value (32-bit platforms) 4294967295
825

Server System Variables

Unit bytes

The maximum amount of memory to use for memory mapping compressed MyISAM files. If many
compressed MyISAM tables are used, the value can be decreased to reduce the likelihood of memory-
swapping problems.

• myisam_recover_options

Command-Line Format --myisam-recover-options[=list]

System Variable myisam_recover_options

Scope Global

Dynamic No

Type Enumeration

Default Value OFF

Valid Values OFF

DEFAULT

BACKUP

FORCE

QUICK

Set the MyISAM storage engine recovery mode. The variable value is any combination of the values of
OFF, DEFAULT, BACKUP, FORCE, or QUICK. If you specify multiple values, separate them by commas.
Specifying the variable with no value at server startup is the same as specifying DEFAULT, and
specifying with an explicit value of "" disables recovery (same as a value of OFF). If recovery is enabled,
each time mysqld opens a MyISAM table, it checks whether the table is marked as crashed or was not
closed properly. (The last option works only if you are running with external locking disabled.) If this is
the case, mysqld runs a check on the table. If the table was corrupted, mysqld attempts to repair it.

The following options affect how the repair works.

Option Description

OFF No recovery.

DEFAULT Recovery without backup, forcing, or quick
checking.

BACKUP If the data file was changed during recovery,
save a backup of the tbl_name.MYD file as
tbl_name-datetime.BAK.

FORCE Run recovery even if we would lose more than one
row from the .MYD file.

QUICK Do not check the rows in the table if there are not
any delete blocks.

Before the server automatically repairs a table, it writes a note about the repair to the error log. If you
want to be able to recover from most problems without user intervention, you should use the options

826

Server System Variables

BACKUP,FORCE. This forces a repair of a table even if some rows would be deleted, but it keeps the old
data file as a backup so that you can later examine what happened.

See Section 15.2.1, “MyISAM Startup Options”.

• myisam_repair_threads

Command-Line Format --myisam-repair-threads=#

Deprecated 5.7.38 (removed in 5.7.39)

System Variable myisam_repair_threads

Scope Global, Session

Dynamic Yes

Type Integer

Default Value 1

Minimum Value 1

Maximum Value (64-bit platforms) 18446744073709551615

Maximum Value (32-bit platforms) 4294967295

Note

This system variable is deprecated in MySQL 5.7; expect it to be removed in a
future release of MySQL.

From MySQL 5.7.38, values other than 1 produce a warning.

If this value is greater than 1, MyISAM table indexes are created in parallel (each index in its own thread)
during the Repair by sorting process. The default value is 1.

Note

Multithreaded repair is beta-quality code.

• myisam_sort_buffer_size

Command-Line Format --myisam-sort-buffer-size=#

System Variable myisam_sort_buffer_size

Scope Global, Session

Dynamic Yes

Type Integer

Default Value 8388608

Minimum Value 4096

Maximum Value (64-bit platforms) 18446744073709551615

Maximum Value (32-bit platforms) 4294967295

Unit bytes

The size of the buffer that is allocated when sorting MyISAM indexes during a REPAIR TABLE or when
creating indexes with CREATE INDEX or ALTER TABLE.

827

Server System Variables

• myisam_stats_method

Command-Line Format --myisam-stats-method=name

System Variable myisam_stats_method

Scope Global, Session

Dynamic Yes

Type Enumeration

Default Value nulls_unequal

Valid Values nulls_unequal

nulls_equal

nulls_ignored

How the server treats NULL values when collecting statistics about the distribution of index values
for MyISAM tables. This variable has three possible values, nulls_equal, nulls_unequal, and
nulls_ignored. For nulls_equal, all NULL index values are considered equal and form a single
value group that has a size equal to the number of NULL values. For nulls_unequal, NULL values are
considered unequal, and each NULL forms a distinct value group of size 1. For nulls_ignored, NULL
values are ignored.

The method that is used for generating table statistics influences how the optimizer chooses indexes for
query execution, as described in Section 8.3.7, “InnoDB and MyISAM Index Statistics Collection”.

• myisam_use_mmap

Command-Line Format --myisam-use-mmap[={OFF|ON}]

System Variable myisam_use_mmap

Scope Global

Dynamic Yes

Type Boolean

Default Value OFF

Use memory mapping for reading and writing MyISAM tables.

• mysql_native_password_proxy_users

Command-Line Format --mysql-native-password-proxy-
users[={OFF|ON}]

System Variable mysql_native_password_proxy_users

Scope Global

Dynamic Yes

Type Boolean

Default Value OFF

This variable controls whether the mysql_native_password built-in authentication plugin supports
proxy users. It has no effect unless the check_proxy_users system variable is enabled. For
information about user proxying, see Section 6.2.14, “Proxy Users”.

828

Server System Variables

• named_pipe

Command-Line Format --named-pipe[={OFF|ON}]

System Variable named_pipe

Scope Global

Dynamic No

Platform Specific Windows

Type Boolean

Default Value OFF

(Windows only.) Indicates whether the server supports connections over named pipes.

• named_pipe_full_access_group

Command-Line Format --named-pipe-full-access-group=value

Introduced 5.7.25

System Variable named_pipe_full_access_group

Scope Global

Dynamic No

Platform Specific Windows

Type String

Default Value empty string

Valid Values empty string

valid Windows local group name

everyone

(Windows only.) The access control granted to clients on the named pipe created by the MySQL server
is set to the minimum necessary for successful communication when the named_pipe system variable
is enabled to support named-pipe connections. Some MySQL client software can open named pipe
connections without any additional configuration; however, other client software may still require full
access to open a named pipe connection.

This variable sets the name of a Windows local group whose members are granted sufficient access by
the MySQL server to use named-pipe clients. As of MySQL 5.7.34, the default value is set to an empty
string, which means that no Windows user is granted full access to the named pipe.

A new Windows local group name (for example, mysql_access_client_users) can be created in
Windows and then used to replace the default value when access is absolutely necessary. In this case,
limit the membership of the group to as few users as possible, removing users from the group when their
client software is upgraded. A non-member of the group who attempts to open a connection to MySQL
with the affected named-pipe client is denied access until a Windows administrator adds the user to the
group. Newly added users must log out and log in again to join the group (required by Windows).

Setting the value to '*everyone*' provides a language-independent way of referring to the Everyone
group on Windows. The Everyone group is not secure by default.

829

Server System Variables

• net_buffer_length

Command-Line Format --net-buffer-length=#

System Variable net_buffer_length

Scope Global, Session

Dynamic Yes

Type Integer

Default Value 16384

Minimum Value 1024

Maximum Value 1048576

Unit bytes

Block Size 1024

Each client thread is associated with a connection buffer and result buffer. Both begin with a size given
by net_buffer_length but are dynamically enlarged up to max_allowed_packet bytes as needed.
The result buffer shrinks to net_buffer_length after each SQL statement.

This variable should not normally be changed, but if you have very little memory, you can set it to the
expected length of statements sent by clients. If statements exceed this length, the connection buffer is
automatically enlarged. The maximum value to which net_buffer_length can be set is 1MB.

The session value of this variable is read only.

• net_read_timeout

Command-Line Format --net-read-timeout=#

System Variable net_read_timeout

Scope Global, Session

Dynamic Yes

Type Integer

Default Value 30

Minimum Value 1

Maximum Value 31536000

Unit seconds

The number of seconds to wait for more data from a connection before aborting the read. When the
server is reading from the client, net_read_timeout is the timeout value controlling when to abort.
When the server is writing to the client, net_write_timeout is the timeout value controlling when to
abort. See also slave_net_timeout.

• net_retry_count

Command-Line Format --net-retry-count=#

System Variable net_retry_count

Scope Global, Session

Dynamic Yes
830

Server System Variables

Type Integer

Default Value 10

Minimum Value 1

Maximum Value (64-bit platforms) 18446744073709551615

Maximum Value (32-bit platforms) 4294967295

If a read or write on a communication port is interrupted, retry this many times before giving up. This
value should be set quite high on FreeBSD because internal interrupts are sent to all threads.

• net_write_timeout

Command-Line Format --net-write-timeout=#

System Variable net_write_timeout

Scope Global, Session

Dynamic Yes

Type Integer

Default Value 60

Minimum Value 1

Maximum Value 31536000

Unit seconds

The number of seconds to wait for a block to be written to a connection before aborting the write. See
also net_read_timeout.

• new

Command-Line Format --new[={OFF|ON}]

System Variable new

Scope Global, Session

Dynamic Yes

Disabled by skip-new

Type Boolean

Default Value OFF

This variable was used in MySQL 4.0 to turn on some 4.1 behaviors, and is retained for backward
compatibility. Its value is always OFF.

In NDB Cluster, setting this variable to ON makes it possible to employ partitioning types other than KEY
or LINEAR KEY with NDB tables. This experimental feature is not supported in production, and is now
deprecated and thus subject to removal in a future release. For additional information, see User-defined
partitioning and the NDB storage engine (NDB Cluster).

• ngram_token_size

Command-Line Format --ngram-token-size=#

System Variable ngram_token_size

Scope Global

831

Server System Variables

Dynamic No

Type Integer

Default Value 2

Minimum Value 1

Maximum Value 10

Defines the n-gram token size for the n-gram full-text parser. The ngram_token_size option is read-
only and can only be modified at startup. The default value is 2 (bigram). The maximum value is 10.

For more information about how to configure this variable, see Section 12.9.8, “ngram Full-Text Parser”.

• offline_mode

Command-Line Format --offline-mode[={OFF|ON}]

System Variable offline_mode

Scope Global

Dynamic Yes

Type Boolean

Default Value OFF

Whether the server is in “offline mode”, which has these characteristics:

• Connected client users who do not have the SUPER privilege are disconnected on the next request,
with an appropriate error. Disconnection includes terminating running statements and releasing locks.
Such clients also cannot initiate new connections, and receive an appropriate error.

• Connected client users who have the SUPER privilege are not disconnected, and can initiate new
connections to manage the server.

• Replica threads are permitted to keep applying data to the server.

Only users who have the SUPER privilege can control offline mode. To put a server in offline mode,
change the value of the offline_mode system variable from OFF to ON. To resume normal operations,
change offline_mode from ON to OFF. In offline mode, clients that are refused access receive an
ER_SERVER_OFFLINE_MODE error.

• old

Command-Line Format --old[={OFF|ON}]

System Variable old

Scope Global

Dynamic No

Type Boolean

Default Value OFF

old is a compatibility variable. It is disabled by default, but can be enabled at startup to revert the server
to behaviors present in older versions.

When old is enabled, it changes the default scope of index hints to that used prior to MySQL 5.1.17.
That is, index hints with no FOR clause apply only to how indexes are used for row retrieval and not

832

https://dev.mysql.com/doc/mysql-errors/5.7/en/server-error-reference.html#error_er_server_offline_mode

Server System Variables

to resolution of ORDER BY or GROUP BY clauses. (See Section 8.9.4, “Index Hints”.) Take care about
enabling this in a replication setup. With statement-based binary logging, having different modes for the
source and replicas might lead to replication errors.

• old_alter_table

Command-Line Format --old-alter-table[={OFF|ON}]

System Variable old_alter_table

Scope Global, Session

Dynamic Yes

Type Boolean

Default Value OFF

When this variable is enabled, the server does not use the optimized method of processing an ALTER
TABLE operation. It reverts to using a temporary table, copying over the data, and then renaming the
temporary table to the original, as used by MySQL 5.0 and earlier. For more information on the operation
of ALTER TABLE, see Section 13.1.8, “ALTER TABLE Statement”.

• old_passwords

Command-Line Format --old-passwords=value

Deprecated Yes

System Variable old_passwords

Scope Global, Session

Dynamic Yes

Type Enumeration

Default Value 0

Valid Values 0

2

Note

This system variable is deprecated in MySQL 5.7; expect it to be removed in a
future release of MySQL.

This variable controls the password hashing method used by the PASSWORD() function. It also
influences password hashing performed by CREATE USER and GRANT statements that specify a
password using an IDENTIFIED BY clause.

The following table shows, for each password hashing method, the permitted value of old_passwords
and which authentication plugins use the hashing method.

Password Hashing Method old_passwords Value Associated Authentication
Plugin

MySQL 4.1 native hashing 0 mysql_native_password

833

Server System Variables

Password Hashing Method old_passwords Value Associated Authentication
Plugin

SHA-256 hashing 2 sha256_password

If you set old_passwords=2, follow the instructions for using the sha256_password plugin at
Section 6.4.1.5, “SHA-256 Pluggable Authentication”.

The server sets the global old_passwords value during startup to be consistent with
the password hashing method required by the authentication plugin indicated by the
default_authentication_plugin system variable.

When a client successfully connects to the server, the server sets the session old_passwords
value appropriately for the account authentication method. For example, if the account uses the
sha256_password authentication plugin, the server sets old_passwords=2.

For additional information about authentication plugins and hashing formats, see Section 6.2.13,
“Pluggable Authentication”, and Section 6.1.2.4, “Password Hashing in MySQL”.

• open_files_limit

Command-Line Format --open-files-limit=#

System Variable open_files_limit

Scope Global

Dynamic No

Type Integer

Default Value 5000, with possible adjustment

Minimum Value 0

Maximum Value platform dependent

The number of file descriptors available to mysqld from the operating system:

• At startup, mysqld reserves descriptors with setrlimit(), using the value requested at by
setting this variable directly or by using the --open-files-limit option to mysqld_safe. If
mysqld produces the error Too many open files, try increasing the open_files_limit value.
Internally, the maximum value for this variable is the maximum unsigned integer value, but the actual
maximum is platform dependent.

• At runtime, the value of open_files_limit indicates the number of file descriptors actually
permitted to mysqld by the operating system, which might differ from the value requested at startup. If
the number of file descriptors requested during startup cannot be allocated, mysqld writes a warning
to the error log.

The effective open_files_limit value is based on the value specified at system startup (if any) and
the values of max_connections and table_open_cache, using these formulas:

• 10 + max_connections + (table_open_cache * 2)

• max_connections * 5

• The operating system limit if that limit is positive but not Infinity.

834

Server System Variables

• If the operating system limit is Infinity: open_files_limit value if specified at startup, 5000 if not.

The server attempts to obtain the number of file descriptors using the maximum of those values. If that
many descriptors cannot be obtained, the server attempts to obtain as many as the system permits.

The effective value is 0 on systems where MySQL cannot change the number of open files.

On Unix, the value cannot be set greater than the value displayed by the ulimit -n command.
On Linux systems using systemd, the value cannot be set greater than LimitNOFile (this
is DefaultLimitNOFILE, if LimitNOFile is not set); otherwise, on Linux, the value of
open_files_limit cannot exceed ulimit -n.

• optimizer_prune_level

Command-Line Format --optimizer-prune-level=#

System Variable optimizer_prune_level

Scope Global, Session

Dynamic Yes

Type Integer

Default Value 1

Minimum Value 0

Maximum Value 1

Controls the heuristics applied during query optimization to prune less-promising partial plans from the
optimizer search space. A value of 0 disables heuristics so that the optimizer performs an exhaustive
search. A value of 1 causes the optimizer to prune plans based on the number of rows retrieved by
intermediate plans.

• optimizer_search_depth

Command-Line Format --optimizer-search-depth=#

System Variable optimizer_search_depth

Scope Global, Session

Dynamic Yes

Type Integer

Default Value 62

Minimum Value 0

Maximum Value 62

The maximum depth of search performed by the query optimizer. Values larger than the number of
relations in a query result in better query plans, but take longer to generate an execution plan for a
query. Values smaller than the number of relations in a query return an execution plan quicker, but the
resulting plan may be far from being optimal. If set to 0, the system automatically picks a reasonable
value.

• optimizer_switch

Command-Line Format --optimizer-switch=value

835

Server System Variables

System Variable optimizer_switch

Scope Global, Session

Dynamic Yes

Type Set

Valid Values (≥ 5.7.33) batched_key_access={on|off}

block_nested_loop={on|off}

condition_fanout_filter={on|off}

derived_merge={on|off}

duplicateweedout={on|off}

engine_condition_pushdown={on|off}

firstmatch={on|off}

index_condition_pushdown={on|off}

index_merge={on|off}

index_merge_intersection={on|off}

index_merge_sort_union={on|off}

index_merge_union={on|off}

loosescan={on|off}

materialization={on|off}

mrr={on|off}

mrr_cost_based={on|off}

prefer_ordering_index={on|off}

semijoin={on|off}

subquery_materialization_cost_based={on|
off}

use_index_extensions={on|off}

Valid Values (≤ 5.7.32) batched_key_access={on|off}

block_nested_loop={on|off}

condition_fanout_filter={on|off}

derived_merge={on|off}

duplicateweedout={on|off}

engine_condition_pushdown={on|off}

836

Server System Variables

firstmatch={on|off}

index_condition_pushdown={on|off}

index_merge={on|off}

index_merge_intersection={on|off}

index_merge_sort_union={on|off}

index_merge_union={on|off}

loosescan={on|off}

materialization={on|off}

mrr={on|off}

mrr_cost_based={on|off}

semijoin={on|off}

subquery_materialization_cost_based={on|
off}

use_index_extensions={on|off}

The optimizer_switch system variable enables control over optimizer behavior. The value of this
variable is a set of flags, each of which has a value of on or off to indicate whether the corresponding
optimizer behavior is enabled or disabled. This variable has global and session values and can be
changed at runtime. The global default can be set at server startup.

To see the current set of optimizer flags, select the variable value:

mysql> SELECT @@optimizer_switch\G
*************************** 1. row ***************************
@@optimizer_switch: index_merge=on,index_merge_union=on,
 index_merge_sort_union=on,
 index_merge_intersection=on,
 engine_condition_pushdown=on,
 index_condition_pushdown=on,
 mrr=on,mrr_cost_based=on,
 block_nested_loop=on,batched_key_access=off,
 materialization=on,semijoin=on,loosescan=on,
 firstmatch=on,duplicateweedout=on,
 subquery_materialization_cost_based=on,
 use_index_extensions=on,
 condition_fanout_filter=on,derived_merge=on,
 prefer_ordering_index=on

For more information about the syntax of this variable and the optimizer behaviors that it controls, see
Section 8.9.2, “Switchable Optimizations”.

• optimizer_trace

Command-Line Format --optimizer-trace=value

System Variable optimizer_trace

Scope Global, Session

837

Server System Variables

Dynamic Yes

Type String

This variable controls optimizer tracing. For details, see Section 8.15, “Tracing the Optimizer”.

• optimizer_trace_features

Command-Line Format --optimizer-trace-features=value

System Variable optimizer_trace_features

Scope Global, Session

Dynamic Yes

Type String

This variable enables or disables selected optimizer tracing features. For details, see Section 8.15,
“Tracing the Optimizer”.

• optimizer_trace_limit

Command-Line Format --optimizer-trace-limit=#

System Variable optimizer_trace_limit

Scope Global, Session

Dynamic Yes

Type Integer

Default Value 1

Minimum Value 0

Maximum Value 2147483647

The maximum number of optimizer traces to display. For details, see Section 8.15, “Tracing the
Optimizer”.

• optimizer_trace_max_mem_size

Command-Line Format --optimizer-trace-max-mem-size=#

System Variable optimizer_trace_max_mem_size

Scope Global, Session

Dynamic Yes

Type Integer

Default Value 16384

Minimum Value 0

Maximum Value 4294967295

Unit bytes

The maximum cumulative size of stored optimizer traces. For details, see Section 8.15, “Tracing the
Optimizer”.

838

Server System Variables

• optimizer_trace_offset

Command-Line Format --optimizer-trace-offset=#

System Variable optimizer_trace_offset

Scope Global, Session

Dynamic Yes

Type Integer

Default Value -1

Minimum Value -2147483647

Maximum Value 2147483647

The offset of optimizer traces to display. For details, see Section 8.15, “Tracing the Optimizer”.

• performance_schema_xxx

Performance Schema system variables are listed in Section 25.15, “Performance Schema System
Variables”. These variables may be used to configure Performance Schema operation.

• parser_max_mem_size

Command-Line Format --parser-max-mem-size=#

Introduced 5.7.12

System Variable parser_max_mem_size

Scope Global, Session

Dynamic Yes

Type Integer

Default Value (64-bit platforms) 18446744073709551615

Default Value (32-bit platforms) 4294967295

Minimum Value 10000000

Maximum Value (64-bit platforms) 18446744073709551615

Maximum Value (32-bit platforms) 4294967295

Unit bytes

The maximum amount of memory available to the parser. The default value places no limit on memory
available. The value can be reduced to protect against out-of-memory situations caused by parsing long
or complex SQL statements.

• pid_file

Command-Line Format --pid-file=file_name

System Variable pid_file

Scope Global

Dynamic No

839

Server System Variables

Type File name

The path name of the file in which the server writes its process ID. The server creates the file in the
data directory unless an absolute path name is given to specify a different directory. If you specify this
variable, you must specify a value. If you do not specify this variable, MySQL uses a default value of
host_name.pid, where host_name is the name of the host machine.

The process ID file is used by other programs such as mysqld_safe to determine the server's process
ID. On Windows, this variable also affects the default error log file name. See Section 5.4.2, “The Error
Log”.

• plugin_dir

Command-Line Format --plugin-dir=dir_name

System Variable plugin_dir

Scope Global

Dynamic No

Type Directory name

Default Value BASEDIR/lib/plugin

The path name of the plugin directory.

If the plugin directory is writable by the server, it may be possible for a user to write executable code
to a file in the directory using SELECT ... INTO DUMPFILE. This can be prevented by making
plugin_dir read only to the server or by setting secure_file_priv to a directory where SELECT
writes can be made safely.

• port

Command-Line Format --port=port_num

System Variable port

Scope Global

Dynamic No

Type Integer

Default Value 3306

Minimum Value 0

Maximum Value 65535

The number of the port on which the server listens for TCP/IP connections. This variable can be set with
the --port option.

• preload_buffer_size

Command-Line Format --preload-buffer-size=#

System Variable preload_buffer_size

Scope Global, Session

Dynamic Yes

Type Integer840

Server System Variables

Default Value 32768

Minimum Value 1024

Maximum Value 1073741824

Unit bytes

The size of the buffer that is allocated when preloading indexes.

• profiling

If set to 0 or OFF (the default), statement profiling is disabled. If set to 1 or ON, statement profiling
is enabled and the SHOW PROFILE and SHOW PROFILES statements provide access to profiling
information. See Section 13.7.5.31, “SHOW PROFILES Statement”.

This variable is deprecated; expect it to be removed in a future release of MySQL.

• profiling_history_size

The number of statements for which to maintain profiling information if profiling is enabled. The
default value is 15. The maximum value is 100. Setting the value to 0 effectively disables profiling. See
Section 13.7.5.31, “SHOW PROFILES Statement”.

This variable is deprecated; expect it to be removed in a future release of MySQL.

• protocol_version

System Variable protocol_version

Scope Global

Dynamic No

Type Integer

Default Value 10

Minimum Value 0

Maximum Value 4294967295

The version of the client/server protocol used by the MySQL server.

• proxy_user

System Variable proxy_user

Scope Session

Dynamic No

Type String

If the current client is a proxy for another user, this variable is the proxy user account name. Otherwise,
this variable is NULL. See Section 6.2.14, “Proxy Users”.

• pseudo_slave_mode

System Variable pseudo_slave_mode

Scope Session

Dynamic Yes

841

Server System Variables

Type Boolean

This system variable is for internal server use. pseudo_slave_mode assists with the correct handling
of transactions that originated on older or newer servers than the server currently processing them.
mysqlbinlog sets the value of pseudo_slave_mode to true before executing any SQL statements.

pseudo_slave_mode has the following effects on the handling of prepared XA transactions, which can
be attached to or detached from the handling session (by default, the session that issues XA START):

• If true, and the handling session has executed an internal-use BINLOG statement, XA transactions are
automatically detached from the session as soon as the first part of the transaction up to XA PREPARE
finishes, so they can be committed or rolled back by any session that has the XA_RECOVER_ADMIN
privilege.

• If false, XA transactions remain attached to the handling session as long as that session is alive,
during which time no other session can commit the transaction. The prepared transaction is only
detached if the session disconnects or the server restarts.

• pseudo_thread_id

System Variable pseudo_thread_id

Scope Session

Dynamic Yes

Type Integer

Default Value 2147483647

Minimum Value 0

Maximum Value 2147483647

This variable is for internal server use.

Warning

Changing the session value of the pseudo_thread_id system variable
changes the value returned by the CONNECTION_ID() function.

• query_alloc_block_size

Command-Line Format --query-alloc-block-size=#

System Variable query_alloc_block_size

Scope Global, Session

Dynamic Yes

Type Integer

Default Value 8192

Minimum Value 1024

Maximum Value 4294966272

Unit bytes

842

https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_xa-recover-admin

Server System Variables

Block Size 1024

The allocation size in bytes of memory blocks that are allocated for objects created during statement
parsing and execution. If you have problems with memory fragmentation, it might help to increase this
parameter.

The block size for the byte number is 1024. A value that is not an exact multiple of the block size is
rounded down to the next lower multiple of the block size by MySQL Server before storing the value for
the system variable. The parser allows values up to the maximum unsigned integer value for the platform
(4294967295 or 232−1 for a 32-bit system, 18446744073709551615 or 264−1 for a 64-bit system) but the
actual maximum is a block size lower.

• query_cache_limit

Command-Line Format --query-cache-limit=#

Deprecated 5.7.20

System Variable query_cache_limit

Scope Global

Dynamic Yes

Type Integer

Default Value 1048576

Minimum Value 0

Maximum Value (64-bit platforms) 18446744073709551615

Maximum Value (32-bit platforms) 4294967295

Unit bytes

Do not cache results that are larger than this number of bytes. The default value is 1MB.

Note

The query cache is deprecated as of MySQL 5.7.20, and is removed in MySQL
8.0. Deprecation includes query_cache_limit.

• query_cache_min_res_unit

Command-Line Format --query-cache-min-res-unit=#

Deprecated 5.7.20

System Variable query_cache_min_res_unit

Scope Global

Dynamic Yes

Type Integer

Default Value 4096

Minimum Value 512

Maximum Value (64-bit platforms) 18446744073709551615

Maximum Value (32-bit platforms) 4294967295

843

Server System Variables

Unit bytes

The minimum size (in bytes) for blocks allocated by the query cache. The default value is 4096 (4KB).
Tuning information for this variable is given in Section 8.10.3.3, “Query Cache Configuration”.

Note

The query cache is deprecated as of MySQL 5.7.20, and is removed in MySQL
8.0. Deprecation includes query_cache_min_res_unit.

• query_cache_size

Command-Line Format --query-cache-size=#

Deprecated 5.7.20

System Variable query_cache_size

Scope Global

Dynamic Yes

Type Integer

Default Value 1048576

Minimum Value 0

Maximum Value (64-bit platforms) 18446744073709551615

Maximum Value (32-bit platforms) 4294967295

Unit bytes

The amount of memory allocated for caching query results. By default, the query cache is
disabled. This is achieved using a default value of 1M, with a default for query_cache_type of
0. (To reduce overhead significantly if you set the size to 0, you should also start the server with
query_cache_type=0.

The permissible values are multiples of 1024; other values are rounded down to the nearest multiple.
For nonzero values of query_cache_size, that many bytes of memory are allocated even if
query_cache_type=0. See Section 8.10.3.3, “Query Cache Configuration”, for more information.

The query cache needs a minimum size of about 40KB to allocate its structures. (The exact size
depends on system architecture.) If you set the value of query_cache_size too small, a warning
occurs, as described in Section 8.10.3.3, “Query Cache Configuration”.

Note

The query cache is deprecated as of MySQL 5.7.20, and is removed in MySQL
8.0. Deprecation includes query_cache_size.

• query_cache_type

Command-Line Format --query-cache-type=#

Deprecated 5.7.20

System Variable query_cache_type

Scope Global, Session

Dynamic Yes
844

Server System Variables

Type Enumeration

Default Value 0

Valid Values 0

1

2

Set the query cache type. Setting the GLOBAL value sets the type for all clients that connect thereafter.
Individual clients can set the SESSION value to affect their own use of the query cache. Possible values
are shown in the following table.

Option Description

0 or OFF Do not cache results in or retrieve results from the
query cache. Note that this does not deallocate
the query cache buffer. To do that, you should set
query_cache_size to 0.

1 or ON Cache all cacheable query results except for those
that begin with SELECT SQL_NO_CACHE.

2 or DEMAND Cache results only for cacheable queries that begin
with SELECT SQL_CACHE.

This variable defaults to OFF.

If the server is started with query_cache_type set to 0, it does not acquire the query cache mutex at
all, which means that the query cache cannot be enabled at runtime and there is reduced overhead in
query execution.

Note

The query cache is deprecated as of MySQL 5.7.20, and is removed in MySQL
8.0. Deprecation includes query_cache_type.

• query_cache_wlock_invalidate

Command-Line Format --query-cache-wlock-invalidate[={OFF|
ON}]

Deprecated 5.7.20

System Variable query_cache_wlock_invalidate

Scope Global, Session

Dynamic Yes

Type Boolean

Default Value OFF

Normally, when one client acquires a WRITE lock on a table, other clients are not blocked from issuing
statements that read from the table if the query results are present in the query cache. Setting this
variable to 1 causes acquisition of a WRITE lock for a table to invalidate any queries in the query cache

845

Server System Variables

that refer to the table. This forces other clients that attempt to access the table to wait while the lock is in
effect.

Note

The query cache is deprecated as of MySQL 5.7.20, and is removed in MySQL
8.0. Deprecation includes query_cache_wlock_invalidate.

• query_prealloc_size

Command-Line Format --query-prealloc-size=#

System Variable query_prealloc_size

Scope Global, Session

Dynamic Yes

Type Integer

Default Value 8192

Minimum Value 8192

Maximum Value (64-bit platforms) 18446744073709550592

Maximum Value (32-bit platforms) 4294966272

Unit bytes

Block Size 1024

The size in bytes of the persistent buffer used for statement parsing and execution. This buffer is not
freed between statements. If you are running complex queries, a larger query_prealloc_size value
might be helpful in improving performance, because it can reduce the need for the server to perform
memory allocation during query execution operations. You should be aware that doing this does not
necessarily eliminate allocation completely; the server may still allocate memory in some situations, such
as for operations relating to transactions, or to stored programs.

• rand_seed1

System Variable rand_seed1

Scope Session

Dynamic Yes

Type Integer

Default Value N/A

Minimum Value 0

Maximum Value 4294967295

The rand_seed1 and rand_seed2 variables exist as session variables only, and can be set but not
read. The variables—but not their values—are shown in the output of SHOW VARIABLES.

The purpose of these variables is to support replication of the RAND() function. For statements that
invoke RAND(), the source passes two values to the replica, where they are used to seed the random
number generator. The replica uses these values to set the session variables rand_seed1 and
rand_seed2 so that RAND() on the replica generates the same value as on the source.

846

Server System Variables

• rand_seed2

See the description for rand_seed1.

• range_alloc_block_size

Command-Line Format --range-alloc-block-size=#

System Variable range_alloc_block_size

Scope Global, Session

Dynamic Yes

Type Integer

Default Value 4096

Minimum Value 4096

Maximum Value (64-bit platforms) 18446744073709550592

Maximum Value 4294966272

Unit bytes

Block Size 1024

The size in bytes of blocks that are allocated when doing range optimization.

The block size for the byte number is 1024. A value that is not an exact multiple of the block size is
rounded down to the next lower multiple of the block size by MySQL Server before storing the value for
the system variable. The parser allows values up to the maximum unsigned integer value for the platform
(4294967295 or 232−1 for a 32-bit system, 18446744073709551615 or 264−1 for a 64-bit system) but the
actual maximum is a block size lower.

• range_optimizer_max_mem_size

Command-Line Format --range-optimizer-max-mem-size=#

System Variable range_optimizer_max_mem_size

Scope Global, Session

Dynamic Yes

Type Integer

Default Value (≥ 5.7.12) 8388608

Default Value (≤ 5.7.11) 1536000

Minimum Value 0

Maximum Value 18446744073709551615

Unit bytes

The limit on memory consumption for the range optimizer. A value of 0 means “no limit.” If an execution
plan considered by the optimizer uses the range access method but the optimizer estimates that the
amount of memory needed for this method would exceed the limit, it abandons the plan and considers
other plans. For more information, see Limiting Memory Use for Range Optimization.

• rbr_exec_mode

System Variable rbr_exec_mode 847

Server System Variables

Scope Session

Dynamic Yes

Type Enumeration

Default Value STRICT

Valid Values STRICT

IDEMPOTENT

For internal use by mysqlbinlog. This variable switches the server between IDEMPOTENT mode and
STRICT mode. IDEMPOTENT mode causes suppression of duplicate-key and no-key-found errors in
BINLOG statements generated by mysqlbinlog. This mode is useful when replaying a row-based
binary log on a server that causes conflicts with existing data. mysqlbinlog sets this mode when you
specify the --idempotent option by writing the following to the output:

SET SESSION RBR_EXEC_MODE=IDEMPOTENT;

• read_buffer_size

Command-Line Format --read-buffer-size=#

System Variable read_buffer_size

Scope Global, Session

Dynamic Yes

Type Integer

Default Value 131072

Minimum Value 8192

Maximum Value 2147479552

Unit bytes

Block Size 4096

Each thread that does a sequential scan for a MyISAM table allocates a buffer of this size (in bytes)
for each table it scans. If you do many sequential scans, you might want to increase this value, which
defaults to 131072. The value of this variable should be a multiple of 4KB. If it is set to a value that is not
a multiple of 4KB, its value is rounded down to the nearest multiple of 4KB.

This option is also used in the following context for all storage engines:

• For caching the indexes in a temporary file (not a temporary table), when sorting rows for ORDER BY.

• For bulk insert into partitions.

• For caching results of nested queries.

read_buffer_size is also used in one other storage engine-specific way: to determine the memory
block size for MEMORY tables.

For more information about memory use during different operations, see Section 8.12.4.1, “How MySQL
Uses Memory”.

848

Server System Variables

• read_only

Command-Line Format --read-only[={OFF|ON}]

System Variable read_only

Scope Global

Dynamic Yes

Type Boolean

Default Value OFF

If the read_only system variable is enabled, the server permits no client updates except from users
who have the SUPER privilege. This variable is disabled by default.

The server also supports a super_read_only system variable (disabled by default), which has these
effects:

• If super_read_only is enabled, the server prohibits client updates, even from users who have the
SUPER privilege.

• Setting super_read_only to ON implicitly forces read_only to ON.

• Setting read_only to OFF implicitly forces super_read_only to OFF.

Even with read_only enabled, the server permits these operations:

• Updates performed by replication threads, if the server is a replica. In replication setups, it can be
useful to enable read_only on replica servers to ensure that replicas accept updates only from the
source server and not from clients.

• Use of ANALYZE TABLE or OPTIMIZE TABLE statements. The purpose of read-only mode is to
prevent changes to table structure or contents. Analysis and optimization do not qualify as such
changes. This means, for example, that consistency checks on read-only replicas can be performed
with mysqlcheck --all-databases --analyze.

• Use of FLUSH STATUS statements, which are always written to the binary log.

• Operations on TEMPORARY tables.

• Inserts into the log tables (mysql.general_log and mysql.slow_log); see Section 5.4.1,
“Selecting General Query Log and Slow Query Log Output Destinations”.

• As of MySQL 5.7.16, updates to Performance Schema tables, such as UPDATE or TRUNCATE TABLE
operations.

Changes to read_only on a replication source server are not replicated to replica servers. The value
can be set on a replica independent of the setting on the source.

The following conditions apply to attempts to enable read_only (including implicit attempts resulting
from enabling super_read_only):

• The attempt fails and an error occurs if you have any explicit locks (acquired with LOCK TABLES) or
have a pending transaction.

• The attempt blocks while other clients have any ongoing statement, active LOCK TABLES WRITE,
or ongoing commit, until the locks are released and the statements and transactions end. While

849

Server System Variables

the attempt to enable read_only is pending, requests by other clients for table locks or to begin
transactions also block until read_only has been set.

• The attempt blocks if there are active transactions that hold metadata locks, until those transactions
end.

• read_only can be enabled while you hold a global read lock (acquired with FLUSH TABLES WITH
READ LOCK) because that does not involve table locks.

• read_rnd_buffer_size

Command-Line Format --read-rnd-buffer-size=#

System Variable read_rnd_buffer_size

Scope Global, Session

Dynamic Yes

Type Integer

Default Value 262144

Minimum Value 1

Maximum Value 2147483647

Unit bytes

This variable is used for reads from MyISAM tables, and, for any storage engine, for Multi-Range Read
optimization.

When reading rows from a MyISAM table in sorted order following a key-sorting operation, the rows are
read through this buffer to avoid disk seeks. See Section 8.2.1.14, “ORDER BY Optimization”. Setting
the variable to a large value can improve ORDER BY performance by a lot. However, this is a buffer
allocated for each client, so you should not set the global variable to a large value. Instead, change the
session variable only from within those clients that need to run large queries.

For more information about memory use during different operations, see Section 8.12.4.1, “How MySQL
Uses Memory”. For information about Multi-Range Read optimization, see Section 8.2.1.10, “Multi-
Range Read Optimization”.

• require_secure_transport

Command-Line Format --require-secure-transport[={OFF|ON}]

System Variable require_secure_transport

Scope Global

Dynamic Yes

Type Boolean

Default Value OFF

Whether client connections to the server are required to use some form of secure transport. When
this variable is enabled, the server permits only TCP/IP connections encrypted using TLS/SSL, or

850

Server System Variables

connections that use a socket file (on Unix) or shared memory (on Windows). The server rejects
nonsecure connection attempts, which fail with an ER_SECURE_TRANSPORT_REQUIRED error.

This capability supplements per-account SSL requirements, which take precedence. For example, if
an account is defined with REQUIRE SSL, enabling require_secure_transport does not make it
possible to use the account to connect using a Unix socket file.

It is possible for a server to have no secure transports available. For example, a server on Windows
supports no secure transports if started without specifying any SSL certificate or key files and
with the shared_memory system variable disabled. Under these conditions, attempts to enable
require_secure_transport at startup cause the server to write a message to the error log and exit.
Attempts to enable the variable at runtime fail with an ER_NO_SECURE_TRANSPORTS_CONFIGURED
error.

See also Configuring Encrypted Connections as Mandatory.

• secure_auth

Command-Line Format --secure-auth[={OFF|ON}]

Deprecated Yes

System Variable secure_auth

Scope Global

Dynamic Yes

Type Boolean

Default Value ON

Valid Values ON

If this variable is enabled, the server blocks connections by clients that attempt to use accounts that
have passwords stored in the old (pre-4.1) format. Enable this variable to prevent all use of passwords
employing the old format (and hence insecure communication over the network).

This variable is deprecated; expect it to be removed in a future release of MySQL. It is always enabled
and attempting to disable it produces an error.

Server startup fails with an error if this variable is enabled and the privilege tables are in pre-4.1 format.
See Section 6.4.1.3, “Migrating Away from Pre-4.1 Password Hashing and the mysql_old_password
Plugin”.

Note

Passwords that use the pre-4.1 hashing method are less secure than passwords
that use the native password hashing method and should be avoided. Pre-4.1
passwords are deprecated and support for them is removed in MySQL 5.7.5. For
account upgrade instructions, see Section 6.4.1.3, “Migrating Away from Pre-4.1
Password Hashing and the mysql_old_password Plugin”.

• secure_file_priv

Command-Line Format --secure-file-priv=dir_name

System Variable secure_file_priv

Scope Global
851

https://dev.mysql.com/doc/mysql-errors/5.7/en/server-error-reference.html#error_er_secure_transport_required
https://dev.mysql.com/doc/mysql-errors/5.7/en/server-error-reference.html#error_er_no_secure_transports_configured

Server System Variables

Dynamic No

Type String

Default Value platform specific

Valid Values empty string

dirname

NULL

This variable is used to limit the effect of data import and export operations, such as those performed by
the LOAD DATA and SELECT ... INTO OUTFILE statements and the LOAD_FILE() function. These
operations are permitted only to users who have the FILE privilege.

secure_file_priv may be set as follows:

• If empty, the variable has no effect. This is not a secure setting.

• If set to the name of a directory, the server limits import and export operations to work only with files in
that directory. The directory must exist; the server does not create it.

• If set to NULL, the server disables import and export operations.

The default value is platform specific and depends on the value of the INSTALL_LAYOUT CMake option,
as shown in the following table. To specify the default secure_file_priv value explicitly if you are
building from source, use the INSTALL_SECURE_FILE_PRIVDIR CMake option.

INSTALL_LAYOUT Value Default secure_file_priv Value

STANDALONE, WIN NULL (>= MySQL 5.7.16), empty (< MySQL 5.7.16)

DEB, RPM, SLES, SVR4 /var/lib/mysql-files

Otherwise mysql-files under the
CMAKE_INSTALL_PREFIX value

To set the default secure_file_priv value for the libmysqld embedded server, use the
INSTALL_SECURE_FILE_PRIV_EMBEDDEDDIR CMake option. The default value for this option is NULL.

The server checks the value of secure_file_priv at startup and writes a warning to the error log
if the value is insecure. A non-NULL value is considered insecure if it is empty, or the value is the data
directory or a subdirectory of it, or a directory that is accessible by all users. If secure_file_priv is
set to a nonexistent path, the server writes an error message to the error log and exits.

• session_track_gtids

Command-Line Format --session-track-gtids=value

System Variable session_track_gtids

Scope Global, Session

Dynamic Yes

Type Enumeration

Default Value OFF

Valid Values OFF

OWN_GTID

852

Server System Variables

ALL_GTIDS

Controls whether the server returns GTIDs to the client, enabling the client to use them to track the
server state. Depending on the variable value, at the end of executing each transaction, the server’s
GTIDs are captured and returned to the client as part of the acknowledgement. The possible values for
session_track_gtids are as follows:

• OFF: The server does not return GTIDs to the client. This is the default.

• OWN_GTID: The server returns the GTIDs for all transactions that were successfully committed by this
client in its current session since the last acknowledgement. Typically, this is the single GTID for the
last transaction committed, but if a single client request resulted in multiple transactions, the server
returns a GTID set containing all the relevant GTIDs.

• ALL_GTIDS: The server returns the global value of its gtid_executed system variable, which it
reads at a point after the transaction is successfully committed. As well as the GTID for the transaction
just committed, this GTID set includes all transactions committed on the server by any client, and can
include transactions committed after the point when the transaction currently being acknowledged was
committed.

session_track_gtids cannot be set within transactional context.

For more information about session state tracking, see Section 5.1.15, “Server Tracking of Client
Session State”.

• session_track_schema

Command-Line Format --session-track-schema[={OFF|ON}]

System Variable session_track_schema

Scope Global, Session

Dynamic Yes

Type Boolean

Default Value ON

Controls whether the server tracks when the default schema (database) is set within the current session
and notifies the client to make the schema name available.

If the schema name tracker is enabled, name notification occurs each time the default schema is set,
even if the new schema name is the same as the old.

For more information about session state tracking, see Section 5.1.15, “Server Tracking of Client
Session State”.

• session_track_state_change

Command-Line Format --session-track-state-change[={OFF|
ON}]

System Variable session_track_state_change

Scope Global, Session

Dynamic Yes

Type Boolean

853

Server System Variables

Default Value OFF

Controls whether the server tracks changes to the state of the current session and notifies the client
when state changes occur. Changes can be reported for these attributes of client session state:

• The default schema (database).

• Session-specific values for system variables.

• User-defined variables.

• Temporary tables.

• Prepared statements.

If the session state tracker is enabled, notification occurs for each change that involves tracked session
attributes, even if the new attribute values are the same as the old. For example, setting a user-defined
variable to its current value results in a notification.

The session_track_state_change variable controls only notification of when changes occur, not
what the changes are. For example, state-change notifications occur when the default schema is set or
tracked session system variables are assigned, but the notification does not include the schema name or
variable values. To receive notification of the schema name or session system variable values, use the
session_track_schema or session_track_system_variables system variable, respectively.

Note

Assigning a value to session_track_state_change itself is not considered a
state change and is not reported as such. However, if its name listed in the value
of session_track_system_variables, any assignments to it do result in
notification of the new value.

For more information about session state tracking, see Section 5.1.15, “Server Tracking of Client
Session State”.

• session_track_system_variables

Command-Line Format --session-track-system-variables=#

System Variable session_track_system_variables

Scope Global, Session

Dynamic Yes

Type String

Default Value time_zone, autocommit,
character_set_client,
character_set_results,
character_set_connection

Controls whether the server tracks assignments to session system variables and notifies the client of the
name and value of each assigned variable. The variable value is a comma-separated list of variables
for which to track assignments. By default, notification is enabled for time_zone, autocommit,

854

Server System Variables

character_set_client, character_set_results, and character_set_connection. (The
latter three variables are those affected by SET NAMES.)

The special value * causes the server to track assignments to all session variables. If given, this value
must be specified by itself without specific system variable names.

To disable notification of session variable assignments, set session_track_system_variables to
the empty string.

If session system variable tracking is enabled, notification occurs for all assignments to tracked session
variables, even if the new values are the same as the old.

For more information about session state tracking, see Section 5.1.15, “Server Tracking of Client
Session State”.

• session_track_transaction_info

Command-Line Format --session-track-transaction-
info=value

System Variable session_track_transaction_info

Scope Global, Session

Dynamic Yes

Type Enumeration

Default Value OFF

Valid Values OFF

STATE

CHARACTERISTICS

Controls whether the server tracks the state and characteristics of transactions within the current session
and notifies the client to make this information available. These session_track_transaction_info
values are permitted:

• OFF: Disable transaction state tracking. This is the default.

• STATE: Enable transaction state tracking without characteristics tracking. State tracking enables the
client to determine whether a transaction is in progress and whether it could be moved to a different
session without being rolled back.

• CHARACTERISTICS: Enable transaction state tracking, including characteristics tracking.
Characteristics tracking enables the client to determine how to restart a transaction in another session
so that it has the same characteristics as in the original session. The following characteristics are
relevant for this purpose:

ISOLATION LEVEL
READ ONLY
READ WRITE
WITH CONSISTENT SNAPSHOT

For a client to safely relocate a transaction to another session, it must track not only transaction state
but also transaction characteristics. In addition, the client must track the transaction_isolation

855

Server System Variables

and transaction_read_only system variables to correctly determine the session defaults. (To track
these variables, list them in the value of the session_track_system_variables system variable.)

For more information about session state tracking, see Section 5.1.15, “Server Tracking of Client
Session State”.

• sha256_password_auto_generate_rsa_keys

Command-Line Format --sha256-password-auto-generate-rsa-
keys[={OFF|ON}]

System Variable sha256_password_auto_generate_rsa_keys

Scope Global

Dynamic No

Type Boolean

Default Value ON

This variable is available if the server was compiled using OpenSSL (see Section 6.3.4, “SSL Library-
Dependent Capabilities”). It controls whether the server autogenerates RSA private/public key-pair files
in the data directory, if they do not already exist.

At startup, the server automatically generates RSA private/public key-pair files in the data directory if
the sha256_password_auto_generate_rsa_keys system variable is enabled, no RSA options
are specified, and the RSA files are missing from the data directory. These files enable secure
password exchange using RSA over unencrypted connections for accounts authenticated by the
sha256_password plugin; see Section 6.4.1.5, “SHA-256 Pluggable Authentication”.

For more information about RSA file autogeneration, including file names and characteristics, see
Section 6.3.3.1, “Creating SSL and RSA Certificates and Keys using MySQL”

The auto_generate_certs system variable is related but controls autogeneration of SSL certificate
and key files needed for secure connections using SSL.

• sha256_password_private_key_path

Command-Line Format --sha256-password-private-key-
path=file_name

System Variable sha256_password_private_key_path

Scope Global

Dynamic No

Type File name

Default Value private_key.pem

This variable is available if MySQL was compiled using OpenSSL (see Section 6.3.4, “SSL
Library-Dependent Capabilities”). Its value is the path name of the RSA private key file for the

856

Server System Variables

sha256_password authentication plugin. If the file is named as a relative path, it is interpreted relative
to the server data directory. The file must be in PEM format.

Important

Because this file stores a private key, its access mode should be restricted so
that only the MySQL server can read it.

For information about sha256_password, see Section 6.4.1.5, “SHA-256 Pluggable Authentication”.

• sha256_password_proxy_users

Command-Line Format --sha256-password-proxy-users[={OFF|
ON}]

System Variable sha256_password_proxy_users

Scope Global

Dynamic Yes

Type Boolean

Default Value OFF

This variable controls whether the sha256_password built-in authentication plugin supports proxy
users. It has no effect unless the check_proxy_users system variable is enabled. For information
about user proxying, see Section 6.2.14, “Proxy Users”.

• sha256_password_public_key_path

Command-Line Format --sha256-password-public-key-
path=file_name

System Variable sha256_password_public_key_path

Scope Global

Dynamic No

Type File name

Default Value public_key.pem

This variable is available if MySQL was compiled using OpenSSL (see Section 6.3.4, “SSL
Library-Dependent Capabilities”). Its value is the path name of the RSA public key file for the
sha256_password authentication plugin. If the file is named as a relative path, it is interpreted relative
to the server data directory. The file must be in PEM format. Because this file stores a public key, copies
can be freely distributed to client users. (Clients that explicitly specify a public key when connecting to
the server using RSA password encryption must use the same public key as that used by the server.)

For information about sha256_password, including information about how clients specify the RSA
public key, see Section 6.4.1.5, “SHA-256 Pluggable Authentication”.

• shared_memory

Command-Line Format --shared-memory[={OFF|ON}]

System Variable shared_memory

Scope Global

Dynamic No

857

Server System Variables

Platform Specific Windows

Type Boolean

Default Value OFF

(Windows only.) Whether the server permits shared-memory connections.

• shared_memory_base_name

Command-Line Format --shared-memory-base-name=name

System Variable shared_memory_base_name

Scope Global

Dynamic No

Platform Specific Windows

Type String

Default Value MYSQL

(Windows only.) The name of shared memory to use for shared-memory connections. This is useful
when running multiple MySQL instances on a single physical machine. The default name is MYSQL. The
name is case-sensitive.

This variable applies only if the server is started with the shared_memory system variable enabled to
support shared-memory connections.

• show_compatibility_56

Command-Line Format --show-compatibility-56[={OFF|ON}]

Deprecated Yes

System Variable show_compatibility_56

Scope Global

Dynamic Yes

Type Boolean

Default Value OFF

The INFORMATION_SCHEMA has tables that contain system and status variable information (see
Section 24.3.11, “The INFORMATION_SCHEMA GLOBAL_VARIABLES and SESSION_VARIABLES
Tables”, and Section 24.3.10, “The INFORMATION_SCHEMA GLOBAL_STATUS and
SESSION_STATUS Tables”). As of MySQL 5.7.6, the Performance Schema also contains system and
status variable tables (see Section 25.12.13, “Performance Schema System Variable Tables”, and
Section 25.12.14, “Performance Schema Status Variable Tables”). The Performance Schema tables are
intended to replace the INFORMATION_SCHEMA tables, which are deprecated as of MySQL 5.7.6 and
are removed in MySQL 8.0.

For advice on migrating away from the INFORMATION_SCHEMA tables to the Performance Schema
tables, see Section 25.20, “Migrating to Performance Schema System and Status Variable Tables”.
To assist in the migration, you can use the show_compatibility_56 system variable, which affects
whether MySQL 5.6 compatibility is enabled with respect to how system and status variable information

858

Server System Variables

is provided by the INFORMATION_SCHEMA and Performance Schema tables, and also by the SHOW
VARIABLES and SHOW STATUS statements.

Note

show_compatibility_56 is deprecated because its only purpose is to permit
control over deprecated system and status variable information sources which
you can expect to be removed in a future release of MySQL. When those sources
are removed, show_compatibility_56 no longer has any purpose, and you
can expect it be removed as well.

The following discussion describes the effects of show_compatibility_56:

• Overview of show_compatibility_56 Effects

• Effect of show_compatibility_56 on SHOW Statements

• Effect of show_compatibility_56 on INFORMATION_SCHEMA Tables

• Effect of show_compatibility_56 on Performance Schema Tables

• Effect of show_compatibility_56 on Slave Status Variables

• Effect of show_compatibility_56 on FLUSH STATUS

For better understanding, it is strongly recommended that you also read these sections:

• Section 25.12.13, “Performance Schema System Variable Tables”

• Section 25.12.14, “Performance Schema Status Variable Tables”

• Section 25.12.15.10, “Status Variable Summary Tables”

Overview of show_compatibility_56 Effects

The show_compatibility_56 system variable affects these aspects of server operation regarding
system and status variables:

• Information available from the SHOW VARIABLES and SHOW STATUS statements

• Information available from the INFORMATION_SCHEMA tables that provide system and status variable
information

• Information available from the Performance Schema tables that provide system and status variable
information

• The effect of the FLUSH STATUS statement on status variables

This list summarizes the effects of show_compatibility_56, with additional details given later:

• When show_compatibility_56 is ON, compatibility with MySQL 5.6 is enabled. Older variable
information sources (SHOW statements, INFORMATION_SCHEMA tables) produce the same output as in
MySQL 5.6.

• When show_compatibility_56 is OFF, compatibility with MySQL 5.6 is disabled. Selecting from
the INFORMATION_SCHEMA tables produces an error because the Performance Schema tables are

859

Server System Variables

intended to replace them. The INFORMATION_SCHEMA tables are deprecated as of MySQL 5.7.6 and
are removed in MySQL 8.0.

To obtain system and status variable information When show_compatibility_56=OFF, use the
Performance Schema tables or the SHOW statements.

Note

When show_compatibility_56=OFF, the SHOW VARIABLES and
SHOW STATUS statements display rows from the Performance Schema
global_variables, session_variables, global_status, and
session_status tables.

As of MySQL 5.7.9, those tables are world readable and accessible without the
SELECT privilege, which means that SELECT is not needed to use the SHOW
statements, either. Before MySQL 5.7.9, the SELECT privilege is required to
access those Performance Schema tables, either directly, or indirectly through
the SHOW statements.

• Several Slave_xxx status variables are available from SHOW STATUS when
show_compatibility_56 is ON. When show_compatibility_56 is OFF, some of those variables
are not exposed to SHOW STATUS. The information they provide is available in replication-related
Performance Schema tables, as described later.

• show_compatibility_56 has no effect on system variable access using @@ notation:
@@GLOBAL.var_name, @@SESSION.var_name, @@var_name.

• show_compatibility_56 has no effect for the embedded server, which produces 5.6-compatible
output in all cases.

The following descriptions detail the effect of setting show_compatibility_56 to ON or OFF in the
contexts in which this variable applies.

Effect of show_compatibility_56 on SHOW Statements

SHOW GLOBAL VARIABLES statement:

• ON: MySQL 5.6 output.

• OFF: Output displays rows from the Performance Schema global_variables table.

SHOW [SESSION | LOCAL] VARIABLES statement:

• ON: MySQL 5.6 output.

• OFF: Output displays rows from the Performance Schema session_variables table. (In MySQL
5.7.6 and 5.7.7, OFF output does not fully reflect all system variable values in effect for the current
session; it includes no rows for global variables that have no session counterpart. This is corrected in
MySQL 5.7.8.)

SHOW GLOBAL STATUS statement:

• ON: MySQL 5.6 output.

860

Server System Variables

• OFF: Output displays rows from the Performance Schema global_status table, plus the Com_xxx
statement execution counters.

OFF output includes no rows for session variables that have no global counterpart, unlike ON output.

SHOW [SESSION | LOCAL] STATUS statement:

• ON: MySQL 5.6 output.

• OFF: Output displays rows from the Performance Schema session_status table, plus the Com_xxx
statement execution counters. (In MySQL 5.7.6 and 5.7.7, OFF output does not fully reflect all status
variable values in effect for the current session; it includes no rows for global variables that have no
session counterpart. This is corrected in MySQL 5.7.8.)

In MySQL 5.7.6 and 5.7.7, for each of the SHOW statements just described, use of a WHERE
clause produces a warning when show_compatibility_56=ON and an error when
show_compatibility_56=OFF. (This applies to WHERE clauses that are not optimized away. For
example, WHERE 1 is trivially true, is optimized away, and thus produces no warning or error.) This
behavior does not occur as of MySQL 5.7.8; WHERE is supported as before 5.7.6.

Effect of show_compatibility_56 on INFORMATION_SCHEMA Tables

INFORMATION_SCHEMA tables (GLOBAL_VARIABLES, SESSION_VARIABLES, GLOBAL_STATUS, and
SESSION_STATUS):

• ON: MySQL 5.6 output, with a deprecation warning.

• OFF: Selecting from these tables produces an error. (Before 5.7.9, selecting from these tables
produces no output, with a deprecation warning.)

Effect of show_compatibility_56 on Performance Schema Tables

Performance Schema system variable tables:

• OFF:

• global_variables: Global system variables only.

• session_variables: System variables in effect for the current session: A row for each session
variable, and a row for each global variable that has no session counterpart.

• variables_by_thread: Session system variables only, for each active session.

861

Server System Variables

• ON: Same output as for OFF. (Before 5.7.8, these tables produce no output.)

Performance Schema status variable tables:

• OFF:

• global_status: Global status variables only.

• session_status: Status variables in effect the current session: A row for each session variable,
and a row for each global variable that has no session counterpart.

• status_by_account Session status variables only, aggregated per account.

• status_by_host: Session status variables only, aggregated per host name.

• status_by_thread: Session status variables only, for each active session.

• status_by_user: Session status variables only, aggregated per user name.

The Performance Schema does not collect statistics for Com_xxx status variables
in the status variable tables. To obtain global and per-session statement execution
counts, use the events_statements_summary_global_by_event_name and
events_statements_summary_by_thread_by_event_name tables, respectively.

• ON: Same output as for OFF. (Before 5.7.9, these tables produce no output.)

Effect of show_compatibility_56 on Slave Status Variables

Replica status variables:

• ON: Several Slave_xxx status variables are available from SHOW STATUS.

• OFF: Some of those replica variables are not exposed to SHOW STATUS or the Performance Schema
status variable tables. The information they provide is available in replication-related Performance
Schema tables. The following table shows which Slave_xxx status variables become unavailable in
SHOW STATUS and their locations in Performance Schema replication tables.

Status Variable Performance Schema Location

Slave_heartbeat_period replication_connection_configuration
table, HEARTBEAT_INTERVAL column

Slave_last_heartbeat replication_connection_status table,
LAST_HEARTBEAT_TIMESTAMP column

Slave_received_heartbeats replication_connection_status table,
COUNT_RECEIVED_HEARTBEATS column

Slave_retried_transactions replication_applier_status table,
COUNT_TRANSACTIONS_RETRIES column

862

Server System Variables

Status Variable Performance Schema Location

Slave_running replication_connection_status and
replication_applier_status tables,
SERVICE_STATE column

Effect of show_compatibility_56 on FLUSH STATUS

FLUSH STATUS statement:

• ON: This statement produces MySQL 5.6 behavior. It adds the current thread's session status variable
values to the global values and resets the session values to zero. Some global variables may be
reset to zero as well. It also resets the counters for key caches (default and named) to zero and sets
Max_used_connections to the current number of open connections.

• OFF: This statement adds the session status from all active sessions to the global status variables,
resets the status of all active sessions, and resets account, host, and user status values aggregated
from disconnected sessions.

• show_create_table_verbosity

Command-Line Format --show-create-table-verbosity[={OFF|
ON}]

Introduced 5.7.22

System Variable show_create_table_verbosity

Scope Global, Session

Dynamic Yes

Type Boolean

Default Value OFF

SHOW CREATE TABLE normally does not show the ROW_FORMAT table option if the row format is the
default format. Enabling this variable causes SHOW CREATE TABLE to display ROW_FORMAT regardless
of whether it is the default format.

• show_old_temporals

Command-Line Format --show-old-temporals[={OFF|ON}]

Deprecated Yes

System Variable show_old_temporals

Scope Global, Session

Dynamic Yes

Type Boolean

Default Value OFF

Whether SHOW CREATE TABLE output includes comments to flag temporal columns found to be in
pre-5.6.4 format (TIME, DATETIME, and TIMESTAMP columns without support for fractional seconds
precision). This variable is disabled by default. If enabled, SHOW CREATE TABLE output looks like this:

CREATE TABLE `mytbl` (
 `ts` timestamp /* 5.5 binary format */ NOT NULL DEFAULT CURRENT_TIMESTAMP,
 `dt` datetime /* 5.5 binary format */ DEFAULT NULL,

863

Server System Variables

 `t` time /* 5.5 binary format */ DEFAULT NULL
) DEFAULT CHARSET=latin1

Output for the COLUMN_TYPE column of the Information Schema COLUMNS table is affected similarly.

This variable is deprecated; expect it to be removed in a future release of MySQL.

• skip_external_locking

Command-Line Format --skip-external-locking[={OFF|ON}]

System Variable skip_external_locking

Scope Global

Dynamic No

Type Boolean

Default Value ON

This is OFF if mysqld uses external locking (system locking), ON if external locking is disabled. This
affects only MyISAM table access.

This variable is set by the --external-locking or --skip-external-locking option. External
locking is disabled by default.

External locking affects only MyISAM table access. For more information, including conditions under
which it can and cannot be used, see Section 8.11.5, “External Locking”.

• skip_name_resolve

Command-Line Format --skip-name-resolve[={OFF|ON}]

System Variable skip_name_resolve

Scope Global

Dynamic No

Type Boolean

Default Value OFF

Whether to resolve host names when checking client connections. If this variable is OFF, mysqld
resolves host names when checking client connections. If it is ON, mysqld uses only IP numbers; in
this case, all Host column values in the grant tables must be IP addresses. See Section 5.1.11.2, “DNS
Lookups and the Host Cache”.

Depending on the network configuration of your system and the Host values for your accounts, clients
may need to connect using an explicit --host option, such as --host=127.0.0.1 or --host=::1.

An attempt to connect to the host 127.0.0.1 normally resolves to the localhost account. However,
this fails if the server is run with skip_name_resolve enabled. If you plan to do that, make sure an
account exists that can accept a connection. For example, to be able to connect as root using --
host=127.0.0.1 or --host=::1, create these accounts:

CREATE USER 'root'@'127.0.0.1' IDENTIFIED BY 'root-password';
CREATE USER 'root'@'::1' IDENTIFIED BY 'root-password';

864

Server System Variables

• skip_networking

Command-Line Format --skip-networking[={OFF|ON}]

System Variable skip_networking

Scope Global

Dynamic No

Type Boolean

Default Value OFF

This variable controls whether the server permits TCP/IP connections. By default, it is disabled (permit
TCP connections). If enabled, the server permits only local (non-TCP/IP) connections and all interaction
with mysqld must be made using named pipes or shared memory (on Windows) or Unix socket files
(on Unix). This option is highly recommended for systems where only local clients are permitted. See
Section 5.1.11.2, “DNS Lookups and the Host Cache”.

• skip_show_database

Command-Line Format --skip-show-database

System Variable skip_show_database

Scope Global

Dynamic No

Type Boolean

Default Value OFF

This prevents people from using the SHOW DATABASES statement if they do not have the SHOW
DATABASES privilege. This can improve security if you have concerns about users being able to see
databases belonging to other users. Its effect depends on the SHOW DATABASES privilege: If the
variable value is ON, the SHOW DATABASES statement is permitted only to users who have the SHOW
DATABASES privilege, and the statement displays all database names. If the value is OFF, SHOW
DATABASES is permitted to all users, but displays the names of only those databases for which the user
has the SHOW DATABASES or other privilege.

Caution

Because a global privilege is considered a privilege for all databases, any global
privilege enables a user to see all database names with SHOW DATABASES or by
examining the INFORMATION_SCHEMA SCHEMATA table.

• slow_launch_time

Command-Line Format --slow-launch-time=#

System Variable slow_launch_time

Scope Global

Dynamic Yes

Type Integer

Default Value 2

Minimum Value 0

Maximum Value 31536000

865

Server System Variables

Unit seconds

If creating a thread takes longer than this many seconds, the server increments the
Slow_launch_threads status variable.

• slow_query_log

Command-Line Format --slow-query-log[={OFF|ON}]

System Variable slow_query_log

Scope Global

Dynamic Yes

Type Boolean

Default Value OFF

Whether the slow query log is enabled. The value can be 0 (or OFF) to disable the log or 1 (or ON) to
enable the log. The destination for log output is controlled by the log_output system variable; if that
value is NONE, no log entries are written even if the log is enabled.

“Slow” is determined by the value of the long_query_time variable. See Section 5.4.5, “The Slow
Query Log”.

• slow_query_log_file

Command-Line Format --slow-query-log-file=file_name

System Variable slow_query_log_file

Scope Global

Dynamic Yes

Type File name

Default Value host_name-slow.log

The name of the slow query log file. The default value is host_name-slow.log, but the initial value
can be changed with the --slow_query_log_file option.

• socket

Command-Line Format --socket={file_name|pipe_name}

System Variable socket

Scope Global

Dynamic No

Type String

Default Value (Windows) MySQL

Default Value (Other) /tmp/mysql.sock

On Unix platforms, this variable is the name of the socket file that is used for local client connections.
The default is /tmp/mysql.sock. (For some distribution formats, the directory might be different, such
as /var/lib/mysql for RPMs.)

On Windows, this variable is the name of the named pipe that is used for local client connections. The
default value is MySQL (not case-sensitive).

866

Server System Variables

• sort_buffer_size

Command-Line Format --sort-buffer-size=#

System Variable sort_buffer_size

Scope Global, Session

Dynamic Yes

Type Integer

Default Value 262144

Minimum Value 32768

Maximum Value (Windows) 4294967295

Maximum Value (Other, 64-bit platforms) 18446744073709551615

Maximum Value (Other, 32-bit platforms) 4294967295

Unit bytes

Each session that must perform a sort allocates a buffer of this size. sort_buffer_size is not
specific to any storage engine and applies in a general manner for optimization. At minimum the
sort_buffer_size value must be large enough to accommodate fifteen tuples in the sort buffer. Also,
increasing the value of max_sort_length may require increasing the value of sort_buffer_size.
For more information, see Section 8.2.1.14, “ORDER BY Optimization”

If you see many Sort_merge_passes per second in SHOW GLOBAL STATUS output, you can consider
increasing the sort_buffer_size value to speed up ORDER BY or GROUP BY operations that cannot
be improved with query optimization or improved indexing.

The optimizer tries to work out how much space is needed but can allocate more, up to the limit. Setting
it larger than required globally slows down most queries that sort. It is best to increase it as a session
setting, and only for the sessions that need a larger size. On Linux, there are thresholds of 256KB and
2MB where larger values may significantly slow down memory allocation, so you should consider staying
below one of those values. Experiment to find the best value for your workload. See Section B.3.3.5,
“Where MySQL Stores Temporary Files”.

The maximum permissible setting for sort_buffer_size is 4GB−1. Larger values are permitted for
64-bit platforms (except 64-bit Windows, for which large values are truncated to 4GB−1 with a warning).

• sql_auto_is_null

System Variable sql_auto_is_null

Scope Global, Session

Dynamic Yes

Type Boolean

Default Value OFF

If this variable is enabled, then after a statement that successfully inserts an automatically generated
AUTO_INCREMENT value, you can find that value by issuing a statement of the following form:

SELECT * FROM tbl_name WHERE auto_col IS NULL

If the statement returns a row, the value returned is the same as if you invoked the LAST_INSERT_ID()
function. For details, including the return value after a multiple-row insert, see Section 12.15,

867

Server System Variables

“Information Functions”. If no AUTO_INCREMENT value was successfully inserted, the SELECT statement
returns no row.

The behavior of retrieving an AUTO_INCREMENT value by using an IS NULL comparison is used by
some ODBC programs, such as Access. See Obtaining Auto-Increment Values. This behavior can be
disabled by setting sql_auto_is_null to OFF.

The default value of sql_auto_is_null is OFF.

• sql_big_selects

System Variable sql_big_selects

Scope Global, Session

Dynamic Yes

Type Boolean

Default Value ON

If set to OFF, MySQL aborts SELECT statements that are likely to take a very long time to execute (that
is, statements for which the optimizer estimates that the number of examined rows exceeds the value of
max_join_size). This is useful when an inadvisable WHERE statement has been issued. The default
value for a new connection is ON, which permits all SELECT statements.

If you set the max_join_size system variable to a value other than DEFAULT, sql_big_selects is
set to OFF.

• sql_buffer_result

System Variable sql_buffer_result

Scope Global, Session

Dynamic Yes

Type Boolean

Default Value OFF

If enabled, sql_buffer_result forces results from SELECT statements to be put into temporary
tables. This helps MySQL free the table locks early and can be beneficial in cases where it takes a long
time to send results to the client. The default value is OFF.

• sql_log_off

System Variable sql_log_off

Scope Global, Session

Dynamic Yes

Type Boolean

Default Value OFF

Valid Values OFF (enable logging)

ON (disable logging)

This variable controls whether logging to the general query log is disabled for the current session
(assuming that the general query log itself is enabled). The default value is OFF (that is, enable logging).868

https://dev.mysql.com/doc/connector-odbc/en/connector-odbc-usagenotes-functionality-last-insert-id.html

Server System Variables

To disable or enable general query logging for the current session, set the session sql_log_off
variable to ON or OFF.

Setting the session value of this system variable is a restricted operation. The session user must have
privileges sufficient to set restricted session variables. See Section 5.1.8.1, “System Variable Privileges”.

• sql_mode

Command-Line Format --sql-mode=name

System Variable sql_mode

Scope Global, Session

Dynamic Yes

Type Set

Default Value ONLY_FULL_GROUP_BY
STRICT_TRANS_TABLES
NO_ZERO_IN_DATE NO_ZERO_DATE
ERROR_FOR_DIVISION_BY_ZERO
NO_AUTO_CREATE_USER
NO_ENGINE_SUBSTITUTION

Valid Values ALLOW_INVALID_DATES

ANSI_QUOTES

ERROR_FOR_DIVISION_BY_ZERO

HIGH_NOT_PRECEDENCE

IGNORE_SPACE

NO_AUTO_CREATE_USER

NO_AUTO_VALUE_ON_ZERO

NO_BACKSLASH_ESCAPES

NO_DIR_IN_CREATE

NO_ENGINE_SUBSTITUTION

NO_FIELD_OPTIONS

NO_KEY_OPTIONS

NO_TABLE_OPTIONS

NO_UNSIGNED_SUBTRACTION

NO_ZERO_DATE

NO_ZERO_IN_DATE

ONLY_FULL_GROUP_BY

PAD_CHAR_TO_FULL_LENGTH

869

Server System Variables

PIPES_AS_CONCAT

REAL_AS_FLOAT

STRICT_ALL_TABLES

STRICT_TRANS_TABLES

The current server SQL mode, which can be set dynamically. For details, see Section 5.1.10, “Server
SQL Modes”.

Note

MySQL installation programs may configure the SQL mode during the installation
process. If the SQL mode differs from the default or from what you expect, check
for a setting in an option file that the server reads at startup.

• sql_notes

System Variable sql_notes

Scope Global, Session

Dynamic Yes

Type Boolean

Default Value ON

If enabled (the default), diagnostics of Note level increment warning_count and the server records
them. If disabled, Note diagnostics do not increment warning_count and the server does not record
them. mysqldump includes output to disable this variable so that reloading the dump file does not
produce warnings for events that do not affect the integrity of the reload operation.

• sql_quote_show_create

System Variable sql_quote_show_create

Scope Global, Session

Dynamic Yes

Type Boolean

Default Value ON

If enabled (the default), the server quotes identifiers for SHOW CREATE TABLE and SHOW CREATE
DATABASE statements. If disabled, quoting is disabled. This option is enabled by default so that
replication works for identifiers that require quoting. See Section 13.7.5.10, “SHOW CREATE TABLE
Statement”, and Section 13.7.5.6, “SHOW CREATE DATABASE Statement”.

• sql_safe_updates

System Variable sql_safe_updates

Scope Global, Session

Dynamic Yes

Type Boolean

Default Value OFF

870

Server System Variables

If this variable is enabled, UPDATE and DELETE statements that do not use a key in the WHERE clause
or a LIMIT clause produce an error. This makes it possible to catch UPDATE and DELETE statements
where keys are not used properly and that would probably change or delete a large number of rows. The
default value is OFF.

For the mysql client, sql_safe_updates can be enabled by using the --safe-updates option. For
more information, see Using Safe-Updates Mode (--safe-updates).

• sql_select_limit

System Variable sql_select_limit

Scope Global, Session

Dynamic Yes

Type Integer

Default Value 18446744073709551615

Minimum Value 0

Maximum Value 18446744073709551615

The maximum number of rows to return from SELECT statements. For more information, see Using Safe-
Updates Mode (--safe-updates).

The default value for a new connection is the maximum number of rows that the server permits per table.
Typical default values are (232)−1 or (264)−1. If you have changed the limit, the default value can be
restored by assigning a value of DEFAULT.

If a SELECT has a LIMIT clause, the LIMIT takes precedence over the value of sql_select_limit.

• sql_warnings

System Variable sql_warnings

Scope Global, Session

Dynamic Yes

Type Boolean

Default Value OFF

This variable controls whether single-row INSERT statements produce an information string if warnings
occur. The default is OFF. Set the value to ON to produce an information string.

• ssl_ca

Command-Line Format --ssl-ca=file_name

System Variable ssl_ca

Scope Global

Dynamic No

Type File name

871

Server System Variables

Default Value NULL

The path name of the Certificate Authority (CA) certificate file in PEM format. The file contains a list of
trusted SSL Certificate Authorities.

• ssl_capath

Command-Line Format --ssl-capath=dir_name

System Variable ssl_capath

Scope Global

Dynamic No

Type Directory name

Default Value NULL

The path name of the directory that contains trusted SSL Certificate Authority (CA) certificate files in
PEM format. You must run OpenSSL rehash on the directory specified by this option prior to using it.
On Linux systems, you can invoke rehash like this:

$> openssl rehash path/to/directory

On Windows platforms, you can use the c_rehash script in a command prompt, like this:

\> c_rehash path/to/directory

See openssl-rehash for complete syntax and other information.

Support for this capability depends on the SSL library used to compile MySQL; see Section 6.3.4, “SSL
Library-Dependent Capabilities”.

• ssl_cert

Command-Line Format --ssl-cert=file_name

System Variable ssl_cert

Scope Global

Dynamic No

Type File name

Default Value NULL

The path name of the server SSL public key certificate file in PEM format.

If the server is started with ssl_cert set to a certificate that uses any restricted cipher or cipher
category, the server starts with support for encrypted connections disabled. For information about cipher
restrictions, see Connection Cipher Configuration.

• ssl_cipher

Command-Line Format --ssl-cipher=name

System Variable ssl_cipher

Scope Global

Dynamic No872

https://docs.openssl.org/3.1/man1/openssl-rehash/

Server System Variables

Type String

Default Value NULL

The list of permissible ciphers for connection encryption. If no cipher in the list is supported, encrypted
connections do not work.

For greatest portability, the cipher list should be a list of one or more cipher names, separated by colons.
This format is understood both by OpenSSL and yaSSL. The following example shows two cipher names
separated by a colon:

[mysqld]
ssl_cipher="DHE-RSA-AES128-GCM-SHA256:AES128-SHA"

OpenSSL supports a more flexible syntax for specifying ciphers, as described in the OpenSSL
documentation at https://www.openssl.org/docs/manmaster/man1/openssl-ciphers.html. yaSSL does not,
so attempts to use that extended syntax fail for a MySQL distribution compiled using yaSSL.

For information about which encryption ciphers MySQL supports, see Section 6.3.2, “Encrypted
Connection TLS Protocols and Ciphers”.

• ssl_crl

Command-Line Format --ssl-crl=file_name

System Variable ssl_crl

Scope Global

Dynamic No

Type File name

Default Value NULL

The path name of the file containing certificate revocation lists in PEM format. Support for revocation-
list capability depends on the SSL library used to compile MySQL. See Section 6.3.4, “SSL Library-
Dependent Capabilities”.

• ssl_crlpath

Command-Line Format --ssl-crlpath=dir_name

System Variable ssl_crlpath

Scope Global

Dynamic No

Type Directory name

Default Value NULL

The path of the directory that contains certificate revocation-list files in PEM format. Support for
revocation-list capability depends on the SSL library used to compile MySQL. See Section 6.3.4, “SSL
Library-Dependent Capabilities”.

• ssl_key

Command-Line Format --ssl-key=file_name

System Variable ssl_key 873

https://www.openssl.org/docs/manmaster/man1/openssl-ciphers.html

Server System Variables

Scope Global

Dynamic No

Type File name

Default Value NULL

The path name of the server SSL private key file in PEM format. For better security, use a certificate with
an RSA key size of at least 2048 bits.

If the key file is protected by a passphrase, the server prompts the user for the passphrase. The
password must be given interactively; it cannot be stored in a file. If the passphrase is incorrect, the
program continues as if it could not read the key.

• stored_program_cache

Command-Line Format --stored-program-cache=#

System Variable stored_program_cache

Scope Global

Dynamic Yes

Type Integer

Default Value 256

Minimum Value 16

Maximum Value 524288

Sets a soft upper limit for the number of cached stored routines per connection. The value of this
variable is specified in terms of the number of stored routines held in each of the two caches maintained
by the MySQL Server for, respectively, stored procedures and stored functions.

Whenever a stored routine is executed this cache size is checked before the first or top-level statement
in the routine is parsed; if the number of routines of the same type (stored procedures or stored functions
according to which is being executed) exceeds the limit specified by this variable, the corresponding
cache is flushed and memory previously allocated for cached objects is freed. This allows the cache to
be flushed safely, even when there are dependencies between stored routines.

• super_read_only

Command-Line Format --super-read-only[={OFF|ON}]

System Variable super_read_only

Scope Global

Dynamic Yes

Type Boolean

Default Value OFF

If the read_only system variable is enabled, the server permits no client updates except from users
who have the SUPER privilege. If the super_read_only system variable is also enabled, the server
prohibits client updates even from users who have SUPER. See the description of the read_only

874

Server System Variables

system variable for a description of read-only mode and information about how read_only and
super_read_only interact.

Client updates prevented when super_read_only is enabled include operations that do not
necessarily appear to be updates, such as CREATE FUNCTION (to install a loadable function) and
INSTALL PLUGIN. These operations are prohibited because they involve changes to tables in the
mysql system database.

Changes to super_read_only on a replication source server are not replicated to replica servers. The
value can be set on a replica independent of the setting on the source.

• sync_frm

Command-Line Format --sync-frm[={OFF|ON}]

Deprecated Yes

System Variable sync_frm

Scope Global

Dynamic Yes

Type Boolean

Default Value ON

If this variable is set to 1, when any nontemporary table is created its .frm file is synchronized to disk
(using fdatasync()). This is slower but safer in case of a crash. The default is 1.

This variable is deprecated in MySQL 5.7 and is removed in MySQL 8.0 (when .frm files become
obsolete).

• system_time_zone

System Variable system_time_zone

Scope Global

Dynamic No

Type String

The server system time zone. When the server begins executing, it inherits a time zone setting from the
machine defaults, possibly modified by the environment of the account used for running the server or the
startup script. The value is used to set system_time_zone. To explicitly specify the system time zone,
set the TZ environment variable or use the --timezone option of the mysqld_safe script.

The system_time_zone variable differs from the time_zone variable. Although they might have
the same value, the latter variable is used to initialize the time zone for each client that connects. See
Section 5.1.13, “MySQL Server Time Zone Support”.

• table_definition_cache

Command-Line Format --table-definition-cache=#

System Variable table_definition_cache

Scope Global

Dynamic Yes

Type Integer

875

Server System Variables

Default Value -1 (signifies autosizing; do not assign this literal
value)

Minimum Value 400

Maximum Value 524288

The number of table definitions (from .frm files) that can be stored in the table definition cache. If you
use a large number of tables, you can create a large table definition cache to speed up opening of
tables. The table definition cache takes less space and does not use file descriptors, unlike the normal
table cache. The minimum value is 400. The default value is based on the following formula, capped to a
limit of 2000:

400 + (table_open_cache / 2)

For InnoDB, the table_definition_cache setting acts as a soft limit for the number of table
instances in the InnoDB data dictionary cache and the number file-per-table tablespaces that can be
open at one time.

If the number of table instances in the InnoDB data dictionary cache exceeds the
table_definition_cache limit, an LRU mechanism begins marking table instances for eviction
and eventually removes them from the InnoDB data dictionary cache. The number of open tables with
cached metadata can be higher than the table_definition_cache limit due to table instances with
foreign key relationships, which are not placed on the LRU list.

The number of file-per-table tablespaces that can be open at one time is limited by both the
table_definition_cache and innodb_open_files settings. If both variables are set, the
highest setting is used. If neither variable is set, the table_definition_cache setting, which
has a higher default value, is used. If the number of open tablespaces exceeds the limit defined by
table_definition_cache or innodb_open_files, an LRU mechanism searches the LRU list for
tablespace files that are fully flushed and not currently being extended. This process is performed each
time a new tablespace is opened. Only inactive tablespaces are closed.

• table_open_cache

Command-Line Format --table-open-cache=#

System Variable table_open_cache

Scope Global

Dynamic Yes

Type Integer

Default Value 2000

Minimum Value 1

Maximum Value 524288

The number of open tables for all threads. Increasing this value increases the number of file descriptors
that mysqld requires. The effective value of this variable is the greater of the effective value of
open_files_limit - 10 - the effective value of max_connections / 2, and 400; that is

MAX(
 (open_files_limit - 10 - max_connections) / 2,
 400

876

Server System Variables

)

You can check whether you need to increase the table cache by checking the Opened_tables
status variable. If the value of Opened_tables is large and you do not use FLUSH TABLES often
(which just forces all tables to be closed and reopened), then you should increase the value of the
table_open_cache variable. For more information about the table cache, see Section 8.4.3.1, “How
MySQL Opens and Closes Tables”.

• table_open_cache_instances

Command-Line Format --table-open-cache-instances=#

System Variable table_open_cache_instances

Scope Global

Dynamic No

Type Integer

Default Value 16

Minimum Value 1

Maximum Value 64

The number of open tables cache instances. To improve scalability by reducing contention among
sessions, the open tables cache can be partitioned into several smaller cache instances of size
table_open_cache / table_open_cache_instances . A session needs to lock only one instance
to access it for DML statements. This segments cache access among instances, permitting higher
performance for operations that use the cache when there are many sessions accessing tables. (DDL
statements still require a lock on the entire cache, but such statements are much less frequent than DML
statements.)

A value of 8 or 16 is recommended on systems that routinely use 16 or more cores. However, if
you have many large triggers on your tables that cause a high memory load, the default setting for
table_open_cache_instances might lead to excessive memory usage. In that situation, it can be
helpful to set table_open_cache_instances to 1 in order to restrict memory usage.

• thread_cache_size

Command-Line Format --thread-cache-size=#

System Variable thread_cache_size

Scope Global

Dynamic Yes

Type Integer

Default Value -1 (signifies autosizing; do not assign this literal
value)

Minimum Value 0

Maximum Value 16384

How many threads the server should cache for reuse. When a client disconnects, the client's threads
are put in the cache if there are fewer than thread_cache_size threads there. Requests for threads
are satisfied by reusing threads taken from the cache if possible, and only when the cache is empty is
a new thread created. This variable can be increased to improve performance if you have a lot of new
connections. Normally, this does not provide a notable performance improvement if you have a good

877

Server System Variables

thread implementation. However, if your server sees hundreds of connections per second you should
normally set thread_cache_size high enough so that most new connections use cached threads. By
examining the difference between the Connections and Threads_created status variables, you can
see how efficient the thread cache is. For details, see Section 5.1.9, “Server Status Variables”.

The default value is based on the following formula, capped to a limit of 100:

8 + (max_connections / 100)

This variable has no effect for the embedded server (libmysqld) and as of MySQL 5.7.2 is no longer
visible within the embedded server.

• thread_handling

Command-Line Format --thread-handling=name

System Variable thread_handling

Scope Global

Dynamic No

Type Enumeration

Default Value one-thread-per-connection

Valid Values no-threads

one-thread-per-connection

loaded-dynamically

The thread-handling model used by the server for connection threads. The permissible values are no-
threads (the server uses a single thread to handle one connection), one-thread-per-connection
(the server uses one thread to handle each client connection), and loaded-dynamically (set by the
thread pool plugin when it initializes). no-threads is useful for debugging under Linux; see Section 5.8,
“Debugging MySQL”.

This variable has no effect for the embedded server (libmysqld) and as of MySQL 5.7.2 is no longer
visible within the embedded server.

• thread_pool_algorithm

Command-Line Format --thread-pool-algorithm=#

System Variable thread_pool_algorithm

Scope Global

878

Server System Variables

Dynamic No

This variable controls which algorithm the thread pool plugin uses:

• A value of 0 (the default) uses a conservative low-concurrency algorithm which is most well tested and
is known to produce very good results.

• A value of 1 increases the concurrency and uses a more aggressive algorithm which at times has
been known to perform 5–10% better on optimal thread counts, but has degrading performance as the
number of connections increases. Its use should be considered as experimental and not supported.

This variable is available only if the thread pool plugin is enabled. See Section 5.5.3, “MySQL Enterprise
Thread Pool”.

• thread_pool_high_priority_connection

Command-Line Format --thread-pool-high-priority-
connection=#

System Variable thread_pool_high_priority_connection

Scope Global, Session

Dynamic Yes

Type Integer

Default Value 0

Minimum Value 0

Maximum Value 1

This variable affects queuing of new statements prior to execution. If the value is 0 (false, the default),
statement queuing uses both the low-priority and high-priority queues. If the value is 1 (true), queued
statements always go to the high-priority queue.

This variable is available only if the thread pool plugin is enabled. See Section 5.5.3, “MySQL Enterprise
Thread Pool”.

• thread_pool_max_unused_threads

Command-Line Format --thread-pool-max-unused-threads=#

System Variable thread_pool_max_unused_threads

Scope Global

Dynamic Yes

The maximum permitted number of unused threads in the thread pool. This variable makes it possible to
limit the amount of memory used by sleeping threads.

A value of 0 (the default) means no limit on the number of sleeping threads. A value of N where N is
greater than 0 means 1 consumer thread and N−1 reserve threads. In this case, if a thread is ready to
sleep but the number of sleeping threads is already at the maximum, the thread exits rather than going
to sleep.

A sleeping thread is either sleeping as a consumer thread or a reserve thread. The thread pool permits
one thread to be the consumer thread when sleeping. If a thread goes to sleep and there is no existing
consumer thread, it sleeps as a consumer thread. When a thread must be woken up, a consumer thread879

Server System Variables

is selected if there is one. A reserve thread is selected only when there is no consumer thread to wake
up.

This variable is available only if the thread pool plugin is enabled. See Section 5.5.3, “MySQL Enterprise
Thread Pool”.

• thread_pool_prio_kickup_timer

Command-Line Format --thread-pool-prio-kickup-timer=#

System Variable thread_pool_prio_kickup_timer

Scope Global

Dynamic Yes

This variable affects statements waiting for execution in the low-priority queue. The value is the number
of milliseconds before a waiting statement is moved to the high-priority queue. The default is 1000 (1
second).

This variable is available only if the thread pool plugin is enabled. See Section 5.5.3, “MySQL Enterprise
Thread Pool”.

• thread_pool_size

Command-Line Format --thread-pool-size=#

System Variable thread_pool_size

Scope Global

Dynamic No

Type Integer

Default Value 16

Minimum Value 1

Maximum Value 64

The number of thread groups in the thread pool. This is the most important parameter controlling thread
pool performance. It affects how many statements can execute simultaneously. If a value outside the
range of permissible values is specified, the thread pool plugin does not load and the server writes a
message to the error log.

This variable is available only if the thread pool plugin is enabled. See Section 5.5.3, “MySQL Enterprise
Thread Pool”.

• thread_pool_stall_limit

Command-Line Format --thread-pool-stall-limit=#

System Variable thread_pool_stall_limit

Scope Global

Dynamic Yes

Type Integer

Default Value 6

Minimum Value 4
880

Server System Variables

Maximum Value 600

Unit milliseconds * 10

This variable affects executing statements. The value is the amount of time a statement has to finish
after starting to execute before it becomes defined as stalled, at which point the thread pool permits the
thread group to begin executing another statement. The value is measured in 10 millisecond units, so
the default of 6 means 60ms. Short wait values permit threads to start more quickly. Short values are
also better for avoiding deadlock situations. Long wait values are useful for workloads that include long-
running statements, to avoid starting too many new statements while the current ones execute.

This variable is available only if the thread pool plugin is enabled. See Section 5.5.3, “MySQL Enterprise
Thread Pool”.

• thread_stack

Command-Line Format --thread-stack=#

System Variable thread_stack

Scope Global

Dynamic No

Type Integer

Default Value (64-bit platforms) 262144

Default Value (32-bit platforms) 196608

Minimum Value 131072

Maximum Value (64-bit platforms) 18446744073709550592

Maximum Value (32-bit platforms) 4294966272

Unit bytes

Block Size 1024

The stack size for each thread. The default is large enough for normal operation. If the thread stack
size is too small, it limits the complexity of the SQL statements that the server can handle, the recursion
depth of stored procedures, and other memory-consuming actions.

• time_format

This variable is unused. It is deprecated and is removed in MySQL 8.0.

• time_zone

System Variable time_zone

Scope Global, Session

Dynamic Yes

Type String

Default Value SYSTEM

Minimum Value -12:59

Maximum Value +13:00

The current time zone. This variable is used to initialize the time zone for each client that connects. By
default, the initial value of this is 'SYSTEM' (which means, “use the value of system_time_zone”).

881

Server System Variables

The value can be specified explicitly at server startup with the --default-time-zone option. See
Section 5.1.13, “MySQL Server Time Zone Support”.

Note

If set to SYSTEM, every MySQL function call that requires a time zone calculation
makes a system library call to determine the current system time zone. This call
may be protected by a global mutex, resulting in contention.

• timestamp

System Variable timestamp

Scope Session

Dynamic Yes

Type Numeric

Default Value UNIX_TIMESTAMP()

Minimum Value 1

Maximum Value 2147483647

Set the time for this client. This is used to get the original timestamp if you use the binary log to
restore rows. timestamp_value should be a Unix epoch timestamp (a value like that returned by
UNIX_TIMESTAMP(), not a value in 'YYYY-MM-DD hh:mm:ss' format) or DEFAULT.

Setting timestamp to a constant value causes it to retain that value until it is changed again. Setting
timestamp to DEFAULT causes its value to be the current date and time as of the time it is accessed.
The maximum value corresponds to '2038-01-19 03:14:07' UTC, the same as for the TIMESTAMP
data type.

timestamp is a DOUBLE rather than BIGINT because its value includes a microseconds part.

SET timestamp affects the value returned by NOW() but not by SYSDATE(). This means that
timestamp settings in the binary log have no effect on invocations of SYSDATE(). The server can be
started with the --sysdate-is-now option to cause SYSDATE() to be a synonym for NOW(), in which
case SET timestamp affects both functions.

• tls_version

Command-Line Format --tls-version=protocol_list

Introduced 5.7.10

System Variable tls_version

Scope Global

Dynamic No

Type String

Default Value (≥ 5.7.28) TLSv1,TLSv1.1,TLSv1.2

Default Value (≤ 5.7.27) TLSv1,TLSv1.1,TLSv1.2 (OpenSSL)

TLSv1,TLSv1.1 (yaSSL)

Which protocols the server permits for encrypted connections. The value is a comma-separated list
containing one or more protocol versions. The protocols that can be named for this variable depend

882

Server System Variables

on the SSL library used to compile MySQL. Permitted protocols should be chosen such as not to leave
“holes” in the list. For details, see Section 6.3.2, “Encrypted Connection TLS Protocols and Ciphers”.

Note

As of MySQL 5.7.35, the TLSv1 and TLSv1.1 connection protocols are
deprecated and support for them is subject to removal in a future version of
MySQL. See Deprecated TLS Protocols.

Setting this variable to an empty string disables encrypted connections.

• tmp_table_size

Command-Line Format --tmp-table-size=#

System Variable tmp_table_size

Scope Global, Session

Dynamic Yes

Type Integer

Default Value 16777216

Minimum Value 1024

Maximum Value 18446744073709551615

Unit bytes

The maximum size of internal in-memory temporary tables. This variable does not apply to user-created
MEMORY tables.

The actual limit is the smaller of tmp_table_size and max_heap_table_size. When an in-memory
temporary table exceeds the limit, MySQL automatically converts it to an on-disk temporary table.
The internal_tmp_disk_storage_engine option defines the storage engine used for on-disk
temporary tables.

Increase the value of tmp_table_size (and max_heap_table_size if necessary) if you do many
advanced GROUP BY queries and you have lots of memory.

You can compare the number of internal on-disk temporary tables created to the total number of internal
temporary tables created by comparing Created_tmp_disk_tables and Created_tmp_tables
values.

See also Section 8.4.4, “Internal Temporary Table Use in MySQL”.

• tmpdir

Command-Line Format --tmpdir=dir_name

System Variable tmpdir

Scope Global

Dynamic No

Type Directory name

The path of the directory to use for creating temporary files. It might be useful if your default /tmp
directory resides on a partition that is too small to hold temporary tables. This variable can be set to a list

883

Server System Variables

of several paths that are used in round-robin fashion. Paths should be separated by colon characters (:)
on Unix and semicolon characters (;) on Windows.

tmpdir can be a non-permanent location, such as a directory on a memory-based file system or a
directory that is cleared when the server host restarts. If the MySQL server is acting as a replica, and
you are using a non-permanent location for tmpdir, consider setting a different temporary directory for
the replica using the slave_load_tmpdir variable. For a replica, the temporary files used to replicate
LOAD DATA statements are stored in this directory, so with a permanent location they can survive
machine restarts, although replication can now continue after a restart if the temporary files have been
removed.

For more information about the storage location of temporary files, see Section B.3.3.5, “Where MySQL
Stores Temporary Files”.

• transaction_alloc_block_size

Command-Line Format --transaction-alloc-block-size=#

System Variable transaction_alloc_block_size

Scope Global, Session

Dynamic Yes

Type Integer

Default Value 8192

Minimum Value 1024

Maximum Value 131072

Unit bytes

Block Size 1024

The amount in bytes by which to increase a per-transaction memory pool which needs memory. See the
description of transaction_prealloc_size.

• transaction_isolation

Command-Line Format --transaction-isolation=name

System Variable (≥ 5.7.20) transaction_isolation

Scope (≥ 5.7.20) Global, Session

Dynamic (≥ 5.7.20) Yes

Type Enumeration

Default Value REPEATABLE-READ

Valid Values READ-UNCOMMITTED

READ-COMMITTED

REPEATABLE-READ

884

Server System Variables

SERIALIZABLE

The transaction isolation level. The default is REPEATABLE-READ.

The transaction isolation level has three scopes: global, session, and next transaction. This three-scope
implementation leads to some nonstandard isolation-level assignment semantics, as described later.

To set the global transaction isolation level at startup, use the --transaction-isolation server
option.

At runtime, the isolation level can be set directly using the SET statement to assign a value to the
transaction_isolation system variable, or indirectly using the SET TRANSACTION statement. If
you set transaction_isolation directly to an isolation level name that contains a space, the name
should be enclosed within quotation marks, with the space replaced by a dash. For example, use this
SET statement to set the global value:

SET GLOBAL transaction_isolation = 'READ-COMMITTED';

Setting the global transaction_isolation value sets the isolation level for all subsequent sessions.
Existing sessions are unaffected.

To set the session or next-level transaction_isolation value, use the SET statement. For most
session system variables, these statements are equivalent ways to set the value:

SET @@SESSION.var_name = value;
SET SESSION var_name = value;
SET var_name = value;
SET @@var_name = value;

As mentioned previously, the transaction isolation level has a next-transaction scope, in addition to the
global and session scopes. To enable the next-transaction scope to be set, SET syntax for assigning
session system variable values has nonstandard semantics for transaction_isolation:

• To set the session isolation level, use any of these syntaxes:

SET @@SESSION.transaction_isolation = value;
SET SESSION transaction_isolation = value;

885

Server System Variables

SET transaction_isolation = value;

For each of those syntaxes, these semantics apply:

• Sets the isolation level for all subsequent transactions performed within the session.

• Permitted within transactions, but does not affect the current ongoing transaction.

• If executed between transactions, overrides any preceding statement that sets the next-transaction
isolation level.

• Corresponds to SET SESSION TRANSACTION ISOLATION LEVEL (with the SESSION keyword).

• To set the next-transaction isolation level, use this syntax:

SET @@transaction_isolation = value;

For that syntax, these semantics apply:

• Sets the isolation level only for the next single transaction performed within the session.

• Subsequent transactions revert to the session isolation level.

• Not permitted within transactions.

• Corresponds to SET TRANSACTION ISOLATION LEVEL (without the SESSION keyword).

For more information about SET TRANSACTION and its relationship to the transaction_isolation
system variable, see Section 13.3.6, “SET TRANSACTION Statement”.

Note

transaction_isolation was added in MySQL 5.7.20 as a synonym for
tx_isolation, which is now deprecated and is removed in MySQL 8.0.
Applications should be adjusted to use transaction_isolation in preference
to tx_isolation.

• transaction_prealloc_size

Command-Line Format --transaction-prealloc-size=#

System Variable transaction_prealloc_size

Scope Global, Session

Dynamic Yes

Type Integer

Default Value 4096

Minimum Value 1024

Maximum Value 131072

Unit bytes

Block Size 1024

There is a per-transaction memory pool from which various transaction-related allocations take memory.
The initial size of the pool in bytes is transaction_prealloc_size. For every allocation that
cannot be satisfied from the pool because it has insufficient memory available, the pool is increased

886

Server System Variables

by transaction_alloc_block_size bytes. When the transaction ends, the pool is truncated to
transaction_prealloc_size bytes.

By making transaction_prealloc_size sufficiently large to contain all statements within a single
transaction, you can avoid many malloc() calls.

• transaction_read_only

Command-Line Format --transaction-read-only[={OFF|ON}]

System Variable (≥ 5.7.20) transaction_read_only

Scope (≥ 5.7.20) Global, Session

Dynamic (≥ 5.7.20) Yes

Type Boolean

Default Value OFF

The transaction access mode. The value can be OFF (read/write; the default) or ON (read only).

The transaction access mode has three scopes: global, session, and next transaction. This three-scope
implementation leads to some nonstandard access-mode assignment semantics, as described later.

To set the global transaction access mode at startup, use the --transaction-read-only server
option.

At runtime, the access mode can be set directly using the SET statement to assign a value to the
transaction_read_only system variable, or indirectly using the SET TRANSACTION statement. For
example, use this SET statement to set the global value:

SET GLOBAL transaction_read_only = ON;

Setting the global transaction_read_only value sets the access mode for all subsequent sessions.
Existing sessions are unaffected.

To set the session or next-level transaction_read_only value, use the SET statement. For most
session system variables, these statements are equivalent ways to set the value:

SET @@SESSION.var_name = value;
SET SESSION var_name = value;
SET var_name = value;
SET @@var_name = value;

As mentioned previously, the transaction access mode has a next-transaction scope, in addition to the
global and session scopes. To enable the next-transaction scope to be set, SET syntax for assigning
session system variable values has nonstandard semantics for transaction_read_only,

• To set the session access mode, use any of these syntaxes:

SET @@SESSION.transaction_read_only = value;
SET SESSION transaction_read_only = value;

887

Server System Variables

SET transaction_read_only = value;

For each of those syntaxes, these semantics apply:

• Sets the access mode for all subsequent transactions performed within the session.

• Permitted within transactions, but does not affect the current ongoing transaction.

• If executed between transactions, overrides any preceding statement that sets the next-transaction
access mode.

• Corresponds to SET SESSION TRANSACTION {READ WRITE | READ ONLY} (with the
SESSION keyword).

• To set the next-transaction access mode, use this syntax:

SET @@transaction_read_only = value;

For that syntax, these semantics apply:

• Sets the access mode only for the next single transaction performed within the session.

• Subsequent transactions revert to the session access mode.

• Not permitted within transactions.

• Corresponds to SET TRANSACTION {READ WRITE | READ ONLY} (without the SESSION
keyword).

For more information about SET TRANSACTION and its relationship to the transaction_read_only
system variable, see Section 13.3.6, “SET TRANSACTION Statement”.

Note

transaction_read_only was added in MySQL 5.7.20 as a synonym for
tx_read_only, which is now deprecated and is removed in MySQL 8.0.
Applications should be adjusted to use transaction_read_only in preference
to tx_read_only.

• tx_isolation

Deprecated 5.7.20

System Variable tx_isolation

Scope Global, Session

Dynamic Yes

Type Enumeration

Default Value REPEATABLE-READ

Valid Values READ-UNCOMMITTED

READ-COMMITTED

REPEATABLE-READ

888

Server System Variables

SERIALIZABLE

The default transaction isolation level. Defaults to REPEATABLE-READ.

Note

transaction_isolation was added in MySQL 5.7.20 as a synonym for
tx_isolation, which is now deprecated and is removed in MySQL 8.0.
Applications should be adjusted to use transaction_isolation in preference
to tx_isolation. See the description of transaction_isolation for
details.

• tx_read_only

Deprecated 5.7.20

System Variable tx_read_only

Scope Global, Session

Dynamic Yes

Type Boolean

Default Value OFF

The default transaction access mode. The value can be OFF (read/write, the default) or ON (read only).

Note

transaction_read_only was added in MySQL 5.7.20 as a synonym for
tx_read_only, which is now deprecated and is removed in MySQL 8.0.
Applications should be adjusted to use transaction_read_only in preference
to tx_read_only. See the description of transaction_read_only for
details.

• unique_checks

System Variable unique_checks

Scope Global, Session

Dynamic Yes

Type Boolean

Default Value ON

If set to 1 (the default), uniqueness checks for secondary indexes in InnoDB tables are performed. If set
to 0, storage engines are permitted to assume that duplicate keys are not present in input data. If you
know for certain that your data does not contain uniqueness violations, you can set this to 0 to speed up
large table imports to InnoDB.

Setting this variable to 0 does not require storage engines to ignore duplicate keys. An engine is still
permitted to check for them and issue duplicate-key errors if it detects them.

• updatable_views_with_limit

Command-Line Format --updatable-views-with-limit[={OFF|
ON}]

889

Server System Variables

System Variable updatable_views_with_limit

Scope Global, Session

Dynamic Yes

Type Boolean

Default Value 1

This variable controls whether updates to a view can be made when the view does not contain all
columns of the primary key defined in the underlying table, if the update statement contains a LIMIT
clause. (Such updates often are generated by GUI tools.) An update is an UPDATE or DELETE statement.
Primary key here means a PRIMARY KEY, or a UNIQUE index in which no column can contain NULL.

The variable can have two values:

• 1 or YES: Issue a warning only (not an error message). This is the default value.

• 0 or NO: Prohibit the update.

• validate_password_xxx

The validate_password plugin implements a set of system variables having names of the form
validate_password_xxx. These variables affect password testing by that plugin; see Section 6.4.3.2,
“Password Validation Plugin Options and Variables”.

• version

The version number for the server. The value might also include a suffix indicating server build or
configuration information. -log indicates that one or more of the general log, slow query log, or binary
log are enabled. -debug indicates that the server was built with debugging support enabled.

• version_comment

System Variable version_comment

Scope Global

Dynamic No

Type String

The CMake configuration program has a COMPILATION_COMMENT option that permits a comment to be
specified when building MySQL. This variable contains the value of that comment. See Section 2.8.7,
“MySQL Source-Configuration Options”.

• version_compile_machine

System Variable version_compile_machine

Scope Global

Dynamic No

Type String

The type of the server binary.

• version_compile_os

System Variable version_compile_os

890

Using System Variables

Scope Global

Dynamic No

Type String

The type of operating system on which MySQL was built.

• wait_timeout

Command-Line Format --wait-timeout=#

System Variable wait_timeout

Scope Global, Session

Dynamic Yes

Type Integer

Default Value 28800

Minimum Value 1

Maximum Value (Windows) 2147483

Maximum Value (Other) 31536000

Unit seconds

The number of seconds the server waits for activity on a noninteractive connection before closing it.

On thread startup, the session wait_timeout value is initialized from the global wait_timeout
value or from the global interactive_timeout value, depending on the type of client (as
defined by the CLIENT_INTERACTIVE connect option to mysql_real_connect()). See also
interactive_timeout.

• warning_count

The number of errors, warnings, and notes that resulted from the last statement that generated
messages. This variable is read only. See Section 13.7.5.40, “SHOW WARNINGS Statement”.

5.1.8 Using System Variables

The MySQL server maintains many system variables that configure its operation. Section 5.1.7, “Server
System Variables”, describes the meaning of these variables. Each system variable has a default value.
System variables can be set at server startup using options on the command line or in an option file.
Most of them can be changed dynamically while the server is running by means of the SET statement,
which enables you to modify operation of the server without having to stop and restart it. You can also use
system variable values in expressions.

Many system variables are built in. System variables implemented by a server plugin are exposed when
the plugin is installed and have names that begin with the plugin name. For example, the audit_log
plugin implements a system variable named audit_log_policy.

There are two scopes in which system variables exist. Global variables affect the overall operation of the
server. Session variables affect its operation for individual client connections. A given system variable can
have both a global and a session value. Global and session system variables are related as follows:

• When the server starts, it initializes each global variable to its default value. These defaults can be
changed by options specified on the command line or in an option file. (See Section 4.2.2, “Specifying
Program Options”.)

891

https://dev.mysql.com/doc/c-api/5.7/en/mysql-real-connect.html

Using System Variables

• The server also maintains a set of session variables for each client that connects. The client's session
variables are initialized at connect time using the current values of the corresponding global variables.
For example, a client's SQL mode is controlled by the session sql_mode value, which is initialized when
the client connects to the value of the global sql_mode value.

For some system variables, the session value is not initialized from the corresponding global value; if so,
that is indicated in the variable description.

System variable values can be set globally at server startup by using options on the command line
or in an option file. At startup, the syntax for system variables is the same as for command options,
so within variable names, dashes and underscores may be used interchangeably. For example, --
general_log=ON and --general-log=ON are equivalent.

When you use a startup option to set a variable that takes a numeric value, the value can be given with a
suffix of K, M, or G (either uppercase or lowercase) to indicate a multiplier of 1024, 10242 or 10243; that is,
units of kilobytes, megabytes, or gigabytes, respectively. Thus, the following command starts the server
with an InnoDB log file size of 16 megabytes and a maximum packet size of one gigabyte:

mysqld --innodb-log-file-size=16M --max-allowed-packet=1G

Within an option file, those variables are set like this:

[mysqld]
innodb_log_file_size=16M
max_allowed_packet=1G

The lettercase of suffix letters does not matter; 16M and 16m are equivalent, as are 1G and 1g.

To restrict the maximum value to which a system variable can be set at runtime with the SET statement,
specify this maximum by using an option of the form --maximum-var_name=value at server startup. For
example, to prevent the value of innodb_log_file_size from being increased to more than 32MB at
runtime, use the option --maximum-innodb-log-file-size=32M.

Many system variables are dynamic and can be changed at runtime by using the SET statement. For a
list, see Section 5.1.8.2, “Dynamic System Variables”. To change a system variable with SET, refer to
it by name, optionally preceded by a modifier. At runtime, system variable names must be written using
underscores, not dashes. The following examples briefly illustrate this syntax:

• Set a global system variable:

SET GLOBAL max_connections = 1000;
SET @@GLOBAL.max_connections = 1000;

• Set a session system variable:

SET SESSION sql_mode = 'TRADITIONAL';
SET @@SESSION.sql_mode = 'TRADITIONAL';
SET @@sql_mode = 'TRADITIONAL';

For complete details about SET syntax, see Section 13.7.4.1, “SET Syntax for Variable Assignment”.
For a description of the privilege requirements for setting system variables, see Section 5.1.8.1, “System
Variable Privileges”

Suffixes for specifying a value multiplier can be used when setting a variable at server startup, but not to
set the value with SET at runtime. On the other hand, with SET you can assign a variable's value using
an expression, which is not true when you set a variable at server startup. For example, the first of the
following lines is legal at server startup, but the second is not:

$> mysql --max_allowed_packet=16M
$> mysql --max_allowed_packet=16*1024*1024

892

Using System Variables

Conversely, the second of the following lines is legal at runtime, but the first is not:

mysql> SET GLOBAL max_allowed_packet=16M;
mysql> SET GLOBAL max_allowed_packet=16*1024*1024;

To display system variable names and values, use the SHOW VARIABLES statement:

mysql> SHOW VARIABLES;
+---------------------------------+-----------------------------------+
| Variable_name | Value |
+---------------------------------+-----------------------------------+
auto_increment_increment	1
auto_increment_offset	1
automatic_sp_privileges	ON
back_log	50
basedir	/home/mysql/
binlog_cache_size	32768
bulk_insert_buffer_size	8388608
character_set_client	utf8
character_set_connection	utf8
character_set_database	latin1
character_set_filesystem	binary
character_set_results	utf8
character_set_server	latin1
character_set_system	utf8
character_sets_dir	/home/mysql/share/mysql/charsets/
collation_connection	utf8_general_ci
collation_database	latin1_swedish_ci
collation_server	latin1_swedish_ci
...	
innodb_autoextend_increment	8
innodb_buffer_pool_size	8388608
innodb_checksums	ON
innodb_commit_concurrency	0
innodb_concurrency_tickets	500
innodb_data_file_path	ibdata1:10M:autoextend
innodb_data_home_dir	
...	
version	5.7.18-log
version_comment	Source distribution
version_compile_machine	i686
version_compile_os	suse-linux
wait_timeout	28800
+---------------------------------+-----------------------------------+

With a LIKE clause, the statement displays only those variables that match the pattern. To obtain a
specific variable name, use a LIKE clause as shown:

SHOW VARIABLES LIKE 'max_join_size';
SHOW SESSION VARIABLES LIKE 'max_join_size';

To get a list of variables whose name match a pattern, use the % wildcard character in a LIKE clause:

SHOW VARIABLES LIKE '%size%';
SHOW GLOBAL VARIABLES LIKE '%size%';

Wildcard characters can be used in any position within the pattern to be matched. Strictly speaking,
because _ is a wildcard that matches any single character, you should escape it as _ to match it literally.
In practice, this is rarely necessary.

For SHOW VARIABLES, if you specify neither GLOBAL nor SESSION, MySQL returns SESSION values.

The reason for requiring the GLOBAL keyword when setting GLOBAL-only variables but not when retrieving
them is to prevent problems in the future:

893

Using System Variables

• Were a SESSION variable to be removed that has the same name as a GLOBAL variable, a client with
privileges sufficient to modify global variables might accidentally change the GLOBAL variable rather than
just the SESSION variable for its own session.

• Were a SESSION variable to be added with the same name as a GLOBAL variable, a client that intends to
change the GLOBAL variable might find only its own SESSION variable changed.

5.1.8.1 System Variable Privileges

A system variable can have a global value that affects server operation as a whole, a session value that
affects only the current session, or both. To modify system variable runtime values, use the SET statement.
See Section 13.7.4.1, “SET Syntax for Variable Assignment”. This section describes the privileges required
to assign values to system variables at runtime.

Setting a global system variable runtime value requires the SUPER privilege.

To set a session system variable runtime value, use the SET SESSION statement. In contrast to setting
global runtime values, setting session runtime values normally requires no special privileges and can be
done by any user to affect the current session. For some system variables, setting the session value may
have effects outside the current session and thus is a restricted operation that can be done only by users
who have the SUPER privilege. If a session system variable is restricted in this way, the variable description
indicates that restriction. Examples include binlog_format and sql_log_bin. Setting the session
value of these variables affects binary logging for the current session, but may also have wider implications
for the integrity of server replication and backups.

5.1.8.2 Dynamic System Variables

Many server system variables are dynamic and can be set at runtime. See Section 13.7.4.1, “SET Syntax
for Variable Assignment”. For a description of the privilege requirements for setting system variables, see
Section 5.1.8.1, “System Variable Privileges”

The following table lists all dynamic system variables applicable within mysqld.

The table lists each variable's data type and scope. The last column indicates whether the scope for each
variable is Global, Session, or both. Please see the corresponding item descriptions for details on setting
and using the variables. Where appropriate, direct links to further information about the items are provided.

Variables that have a type of “string” take a string value. Variables that have a type of “numeric” take a
numeric value. Variables that have a type of “boolean” can be set to 0, 1, ON or OFF. Variables that are
marked as “enumeration” normally should be set to one of the available values for the variable, but can
also be set to the number that corresponds to the desired enumeration value. For enumerated system
variables, the first enumeration value corresponds to 0. This differs from the ENUM data type used for table
columns, for which the first enumeration value corresponds to 1.

Table 5.4 Dynamic System Variable Summary

Variable Name Variable Type Variable Scope

audit_log_connection_policy Enumeration Global

audit_log_disable Boolean Global

audit_log_exclude_accounts String Global

audit_log_flush Boolean Global

audit_log_format_unix_timestamp Boolean Global

audit_log_include_accounts String Global

audit_log_read_buffer_size Integer Varies

894

Using System Variables

Variable Name Variable Type Variable Scope

audit_log_rotate_on_size Integer Global

audit_log_statement_policy Enumeration Global

authentication_ldap_sasl_auth_method_nameString Global

authentication_ldap_sasl_bind_base_dnString Global

authentication_ldap_sasl_bind_root_dnString Global

authentication_ldap_sasl_bind_root_pwdString Global

authentication_ldap_sasl_ca_path String Global

authentication_ldap_sasl_group_search_attrString Global

authentication_ldap_sasl_group_search_filterString Global

authentication_ldap_sasl_init_pool_sizeInteger Global

authentication_ldap_sasl_log_statusInteger Global

authentication_ldap_sasl_max_pool_sizeInteger Global

authentication_ldap_sasl_server_hostString Global

authentication_ldap_sasl_server_portInteger Global

authentication_ldap_sasl_tls Boolean Global

authentication_ldap_sasl_user_search_attrString Global

authentication_ldap_simple_auth_method_nameString Global

authentication_ldap_simple_bind_base_dnString Global

authentication_ldap_simple_bind_root_dnString Global

authentication_ldap_simple_bind_root_pwdString Global

authentication_ldap_simple_ca_pathString Global

authentication_ldap_simple_group_search_attrString Global

authentication_ldap_simple_group_search_filterString Global

authentication_ldap_simple_init_pool_sizeInteger Global

authentication_ldap_simple_log_statusInteger Global

authentication_ldap_simple_max_pool_sizeInteger Global

authentication_ldap_simple_server_hostString Global

authentication_ldap_simple_server_portInteger Global

authentication_ldap_simple_tls Boolean Global

authentication_ldap_simple_user_search_attrString Global

auto_increment_increment Integer Both

auto_increment_offset Integer Both

autocommit Boolean Both

automatic_sp_privileges Boolean Global

avoid_temporal_upgrade Boolean Global

big_tables Boolean Both

binlog_cache_size Integer Global

binlog_checksum String Global

895

Using System Variables

Variable Name Variable Type Variable Scope

binlog_direct_non_transactional_updatesBoolean Both

binlog_error_action Enumeration Global

binlog_format Enumeration Both

binlog_group_commit_sync_delay Integer Global

binlog_group_commit_sync_no_delay_countInteger Global

binlog_max_flush_queue_time Integer Global

binlog_order_commits Boolean Global

binlog_row_image Enumeration Both

binlog_rows_query_log_events Boolean Both

binlog_stmt_cache_size Integer Global

binlog_transaction_dependency_history_sizeInteger Global

binlog_transaction_dependency_trackingEnumeration Global

block_encryption_mode String Both

bulk_insert_buffer_size Integer Both

character_set_client String Both

character_set_connection String Both

character_set_database String Both

character_set_filesystem String Both

character_set_results String Both

character_set_server String Both

check_proxy_users Boolean Global

collation_connection String Both

collation_database String Both

collation_server String Both

completion_type Enumeration Both

concurrent_insert Enumeration Global

connect_timeout Integer Global

connection_control_failed_connections_thresholdInteger Global

connection_control_max_connection_delayInteger Global

connection_control_min_connection_delayInteger Global

debug String Both

debug_sync String Session

default_password_lifetime Integer Global

default_storage_engine Enumeration Both

default_tmp_storage_engine Enumeration Both

default_week_format Integer Both

delay_key_write Enumeration Global

delayed_insert_limit Integer Global

896

Using System Variables

Variable Name Variable Type Variable Scope

delayed_insert_timeout Integer Global

delayed_queue_size Integer Global

div_precision_increment Integer Both

end_markers_in_json Boolean Both

enforce_gtid_consistency Enumeration Global

eq_range_index_dive_limit Integer Both

event_scheduler Enumeration Global

expire_logs_days Integer Global

explicit_defaults_for_timestamp Boolean Both

flush Boolean Global

flush_time Integer Global

foreign_key_checks Boolean Both

ft_boolean_syntax String Global

general_log Boolean Global

general_log_file File name Global

group_concat_max_len Integer Both

group_replication_allow_local_disjoint_gtids_joinBoolean Global

group_replication_allow_local_lower_version_joinBoolean Global

group_replication_auto_increment_incrementInteger Global

group_replication_bootstrap_group Boolean Global

group_replication_components_stop_timeoutInteger Global

group_replication_compression_thresholdInteger Global

group_replication_enforce_update_everywhere_checksBoolean Global

group_replication_exit_state_actionEnumeration Global

group_replication_flow_control_applier_thresholdInteger Global

group_replication_flow_control_certifier_thresholdInteger Global

group_replication_flow_control_modeEnumeration Global

group_replication_force_members String Global

group_replication_group_name String Global

group_replication_group_seeds String Global

group_replication_gtid_assignment_block_sizeInteger Global

group_replication_ip_whitelist String Global

group_replication_local_address String Global

group_replication_member_weight Integer Global

group_replication_poll_spin_loops Integer Global

group_replication_recovery_complete_atEnumeration Global

group_replication_recovery_reconnect_intervalInteger Global

group_replication_recovery_retry_countInteger Global

897

Using System Variables

Variable Name Variable Type Variable Scope

group_replication_recovery_ssl_ca String Global

group_replication_recovery_ssl_capathString Global

group_replication_recovery_ssl_certString Global

group_replication_recovery_ssl_cipherString Global

group_replication_recovery_ssl_crl File name Global

group_replication_recovery_ssl_crlpathDirectory name Global

group_replication_recovery_ssl_keyString Global

group_replication_recovery_ssl_verify_server_certBoolean Global

group_replication_recovery_use_sslBoolean Global

group_replication_single_primary_modeBoolean Global

group_replication_ssl_mode Enumeration Global

group_replication_start_on_boot Boolean Global

group_replication_transaction_size_limitInteger Global

group_replication_unreachable_majority_timeoutInteger Global

gtid_executed_compression_periodInteger Global

gtid_mode Enumeration Global

gtid_next Enumeration Session

gtid_purged String Global

host_cache_size Integer Global

identity Integer Session

init_connect String Global

init_slave String Global

innodb_adaptive_flushing Boolean Global

innodb_adaptive_flushing_lwm Integer Global

innodb_adaptive_hash_index Boolean Global

innodb_adaptive_max_sleep_delay Integer Global

innodb_api_bk_commit_interval Integer Global

innodb_api_trx_level Integer Global

innodb_autoextend_increment Integer Global

innodb_background_drop_list_emptyBoolean Global

innodb_buffer_pool_dump_at_shutdownBoolean Global

innodb_buffer_pool_dump_now Boolean Global

innodb_buffer_pool_dump_pct Integer Global

innodb_buffer_pool_filename File name Global

innodb_buffer_pool_load_abort Boolean Global

innodb_buffer_pool_load_now Boolean Global

innodb_buffer_pool_size Integer Global

innodb_change_buffer_max_size Integer Global

898

Using System Variables

Variable Name Variable Type Variable Scope

innodb_change_buffering Enumeration Global

innodb_change_buffering_debug Integer Global

innodb_checksum_algorithm Enumeration Global

innodb_cmp_per_index_enabled Boolean Global

innodb_commit_concurrency Integer Global

innodb_compress_debug Enumeration Global

innodb_compression_failure_threshold_pctInteger Global

innodb_compression_level Integer Global

innodb_compression_pad_pct_maxInteger Global

innodb_concurrency_tickets Integer Global

innodb_deadlock_detect Boolean Global

innodb_default_row_format Enumeration Global

innodb_disable_resize_buffer_pool_debugBoolean Global

innodb_disable_sort_file_cache Boolean Global

innodb_fast_shutdown Integer Global

innodb_fil_make_page_dirty_debugInteger Global

innodb_file_format String Global

innodb_file_format_max String Global

innodb_file_per_table Boolean Global

innodb_fill_factor Integer Global

innodb_flush_log_at_timeout Integer Global

innodb_flush_log_at_trx_commit Enumeration Global

innodb_flush_neighbors Enumeration Global

innodb_flush_sync Boolean Global

innodb_flushing_avg_loops Integer Global

innodb_ft_aux_table String Global

innodb_ft_enable_diag_print Boolean Global

innodb_ft_enable_stopword Boolean Both

innodb_ft_num_word_optimize Integer Global

innodb_ft_result_cache_limit Integer Global

innodb_ft_server_stopword_table String Global

innodb_ft_user_stopword_table String Both

innodb_io_capacity Integer Global

innodb_io_capacity_max Integer Global

innodb_large_prefix Boolean Global

innodb_limit_optimistic_insert_debugInteger Global

innodb_lock_wait_timeout Integer Both

innodb_log_checkpoint_now Boolean Global

899

Using System Variables

Variable Name Variable Type Variable Scope

innodb_log_checksums Boolean Global

innodb_log_compressed_pages Boolean Global

innodb_log_write_ahead_size Integer Global

innodb_lru_scan_depth Integer Global

innodb_max_dirty_pages_pct Numeric Global

innodb_max_dirty_pages_pct_lwm Numeric Global

innodb_max_purge_lag Integer Global

innodb_max_purge_lag_delay Integer Global

innodb_max_undo_log_size Integer Global

innodb_merge_threshold_set_all_debugInteger Global

innodb_monitor_disable String Global

innodb_monitor_enable String Global

innodb_monitor_reset Enumeration Global

innodb_monitor_reset_all Enumeration Global

innodb_old_blocks_pct Integer Global

innodb_old_blocks_time Integer Global

innodb_online_alter_log_max_size Integer Global

innodb_optimize_fulltext_only Boolean Global

innodb_print_all_deadlocks Boolean Global

innodb_purge_batch_size Integer Global

innodb_purge_rseg_truncate_frequencyInteger Global

innodb_random_read_ahead Boolean Global

innodb_read_ahead_threshold Integer Global

innodb_replication_delay Integer Global

innodb_rollback_segments Integer Global

innodb_saved_page_number_debugInteger Global

innodb_spin_wait_delay Integer Global

innodb_stats_auto_recalc Boolean Global

innodb_stats_include_delete_markedBoolean Global

innodb_stats_method Enumeration Global

innodb_stats_on_metadata Boolean Global

innodb_stats_persistent Boolean Global

innodb_stats_persistent_sample_pagesInteger Global

innodb_stats_sample_pages Integer Global

innodb_stats_transient_sample_pagesInteger Global

innodb_status_output Boolean Global

innodb_status_output_locks Boolean Global

innodb_strict_mode Boolean Both

900

Using System Variables

Variable Name Variable Type Variable Scope

innodb_support_xa Boolean Both

innodb_sync_spin_loops Integer Global

innodb_table_locks Boolean Both

innodb_thread_concurrency Integer Global

innodb_thread_sleep_delay Integer Global

innodb_tmpdir Directory name Both

innodb_trx_purge_view_update_only_debugBoolean Global

innodb_trx_rseg_n_slots_debug Integer Global

innodb_undo_log_truncate Boolean Global

innodb_undo_logs Integer Global

insert_id Integer Session

interactive_timeout Integer Both

internal_tmp_disk_storage_engine Enumeration Global

join_buffer_size Integer Both

keep_files_on_create Boolean Both

key_buffer_size Integer Global

key_cache_age_threshold Integer Global

key_cache_block_size Integer Global

key_cache_division_limit Integer Global

keyring_aws_cmk_id String Global

keyring_aws_region Enumeration Global

keyring_encrypted_file_data File name Global

keyring_encrypted_file_password String Global

keyring_file_data File name Global

keyring_okv_conf_dir Directory name Global

keyring_operations Boolean Global

last_insert_id Integer Session

lc_messages String Both

lc_time_names String Both

local_infile Boolean Global

lock_wait_timeout Integer Both

log_bin_trust_function_creators Boolean Global

log_bin_use_v1_row_events Boolean Global

log_builtin_as_identified_by_passwordBoolean Global

log_error_verbosity Integer Global

log_output Set Global

log_queries_not_using_indexes Boolean Global

log_slow_admin_statements Boolean Global

901

Using System Variables

Variable Name Variable Type Variable Scope

log_slow_slave_statements Boolean Global

log_statements_unsafe_for_binlog Boolean Global

log_syslog Boolean Global

log_syslog_facility String Global

log_syslog_include_pid Boolean Global

log_syslog_tag String Global

log_throttle_queries_not_using_indexesInteger Global

log_timestamps Enumeration Global

log_warnings Integer Global

long_query_time Numeric Both

low_priority_updates Boolean Both

master_info_repository String Global

master_verify_checksum Boolean Global

max_allowed_packet Integer Both

max_binlog_cache_size Integer Global

max_binlog_size Integer Global

max_binlog_stmt_cache_size Integer Global

max_connect_errors Integer Global

max_connections Integer Global

max_delayed_threads Integer Both

max_error_count Integer Both

max_execution_time Integer Both

max_heap_table_size Integer Both

max_insert_delayed_threads Integer Both

max_join_size Integer Both

max_length_for_sort_data Integer Both

max_points_in_geometry Integer Both

max_prepared_stmt_count Integer Global

max_relay_log_size Integer Global

max_seeks_for_key Integer Both

max_sort_length Integer Both

max_sp_recursion_depth Integer Both

max_tmp_tables Integer Both

max_user_connections Integer Both

max_write_lock_count Integer Global

min_examined_row_limit Integer Both

multi_range_count Integer Both

myisam_data_pointer_size Integer Global

902

Using System Variables

Variable Name Variable Type Variable Scope

myisam_max_sort_file_size Integer Global

myisam_repair_threads Integer Both

myisam_sort_buffer_size Integer Both

myisam_stats_method Enumeration Both

myisam_use_mmap Boolean Global

mysql_firewall_mode Boolean Global

mysql_firewall_trace Boolean Global

mysql_native_password_proxy_usersBoolean Global

mysqlx_connect_timeout Integer Global

mysqlx_idle_worker_thread_timeoutInteger Global

mysqlx_max_allowed_packet Integer Global

mysqlx_max_connections Integer Global

mysqlx_min_worker_threads Integer Global

ndb_allow_copying_alter_table Boolean Both

ndb_autoincrement_prefetch_sz Integer Both

ndb_batch_size Integer Both

ndb_blob_read_batch_bytes Integer Both

ndb_blob_write_batch_bytes Integer Both

ndb_cache_check_time Integer Global

ndb_clear_apply_status Boolean Global

ndb_data_node_neighbour Integer Global

ndb_default_column_format Enumeration Global

ndb_default_column_format Enumeration Global

ndb_deferred_constraints Integer Both

ndb_deferred_constraints Integer Both

ndb_distribution Enumeration Global

ndb_distribution Enumeration Global

ndb_eventbuffer_free_percent Integer Global

ndb_eventbuffer_max_alloc Integer Global

ndb_extra_logging Integer Global

ndb_force_send Boolean Both

ndb_fully_replicated Boolean Both

ndb_index_stat_enable Boolean Both

ndb_index_stat_option String Both

ndb_join_pushdown Boolean Both

ndb_log_binlog_index Boolean Global

ndb_log_empty_epochs Boolean Global

ndb_log_empty_epochs Boolean Global

903

Using System Variables

Variable Name Variable Type Variable Scope

ndb_log_empty_update Boolean Global

ndb_log_empty_update Boolean Global

ndb_log_exclusive_reads Boolean Both

ndb_log_exclusive_reads Boolean Both

ndb_log_update_as_write Boolean Global

ndb_log_update_minimal Boolean Global

ndb_log_updated_only Boolean Global

ndb_optimization_delay Integer Global

ndb_optimized_node_selection Integer Global

ndb_read_backup Boolean Global

ndb_recv_thread_activation_thresholdInteger Global

ndb_recv_thread_cpu_mask Bitmap Global

ndb_report_thresh_binlog_epoch_slipInteger Global

ndb_report_thresh_binlog_mem_usageInteger Global

ndb_row_checksum Integer Both

ndb_show_foreign_key_mock_tablesBoolean Global

ndb_slave_conflict_role Enumeration Global

ndb_table_no_logging Boolean Session

ndb_table_temporary Boolean Session

ndb_use_exact_count Boolean Both

ndb_use_transactions Boolean Both

ndbinfo_max_bytes Integer Both

ndbinfo_max_rows Integer Both

ndbinfo_offline Boolean Global

ndbinfo_show_hidden Boolean Both

net_buffer_length Integer Both

net_read_timeout Integer Both

net_retry_count Integer Both

net_write_timeout Integer Both

new Boolean Both

offline_mode Boolean Global

old_alter_table Boolean Both

old_passwords Enumeration Both

optimizer_prune_level Integer Both

optimizer_search_depth Integer Both

optimizer_switch Set Both

optimizer_trace String Both

optimizer_trace_features String Both

904

Using System Variables

Variable Name Variable Type Variable Scope

optimizer_trace_limit Integer Both

optimizer_trace_max_mem_size Integer Both

optimizer_trace_offset Integer Both

parser_max_mem_size Integer Both

performance_schema_show_processlistBoolean Global

preload_buffer_size Integer Both

profiling Boolean Both

profiling_history_size Integer Both

pseudo_slave_mode Boolean Session

pseudo_thread_id Integer Session

query_alloc_block_size Integer Both

query_cache_limit Integer Global

query_cache_min_res_unit Integer Global

query_cache_size Integer Global

query_cache_type Enumeration Both

query_cache_wlock_invalidate Boolean Both

query_prealloc_size Integer Both

rand_seed1 Integer Session

rand_seed2 Integer Session

range_alloc_block_size Integer Both

range_optimizer_max_mem_size Integer Both

rbr_exec_mode Enumeration Session

read_buffer_size Integer Both

read_only Boolean Global

read_rnd_buffer_size Integer Both

relay_log_info_repository String Global

relay_log_purge Boolean Global

replication_optimize_for_static_plugin_configBoolean Global

replication_sender_observe_commit_onlyBoolean Global

require_secure_transport Boolean Global

rewriter_enabled Boolean Global

rewriter_verbose Integer Global

rpl_semi_sync_master_enabled Boolean Global

rpl_semi_sync_master_timeout Integer Global

rpl_semi_sync_master_trace_level Integer Global

rpl_semi_sync_master_wait_for_slave_countInteger Global

rpl_semi_sync_master_wait_no_slaveBoolean Global

rpl_semi_sync_master_wait_point Enumeration Global

905

Using System Variables

Variable Name Variable Type Variable Scope

rpl_semi_sync_slave_enabled Boolean Global

rpl_semi_sync_slave_trace_level Integer Global

rpl_stop_slave_timeout Integer Global

secure_auth Boolean Global

server_id Integer Global

session_track_gtids Enumeration Both

session_track_schema Boolean Both

session_track_state_change Boolean Both

session_track_system_variables String Both

session_track_transaction_info Enumeration Both

sha256_password_proxy_users Boolean Global

show_compatibility_56 Boolean Global

show_create_table_verbosity Boolean Both

show_old_temporals Boolean Both

slave_allow_batching Boolean Global

slave_checkpoint_group Integer Global

slave_checkpoint_period Integer Global

slave_compressed_protocol Boolean Global

slave_exec_mode Enumeration Global

slave_max_allowed_packet Integer Global

slave_net_timeout Integer Global

slave_parallel_type Enumeration Global

slave_parallel_workers Integer Global

slave_pending_jobs_size_max Integer Global

slave_preserve_commit_order Boolean Global

slave_rows_search_algorithms Set Global

slave_sql_verify_checksum Boolean Global

slave_transaction_retries Integer Global

slave_type_conversions Set Global

slow_launch_time Integer Global

slow_query_log Boolean Global

slow_query_log_file File name Global

sort_buffer_size Integer Both

sql_auto_is_null Boolean Both

sql_big_selects Boolean Both

sql_buffer_result Boolean Both

sql_log_bin Boolean Session

sql_log_off Boolean Both

906

Using System Variables

Variable Name Variable Type Variable Scope

sql_mode Set Both

sql_notes Boolean Both

sql_quote_show_create Boolean Both

sql_safe_updates Boolean Both

sql_select_limit Integer Both

sql_slave_skip_counter Integer Global

sql_warnings Boolean Both

stored_program_cache Integer Global

super_read_only Boolean Global

sync_binlog Integer Global

sync_frm Boolean Global

sync_master_info Integer Global

sync_relay_log Integer Global

sync_relay_log_info Integer Global

table_definition_cache Integer Global

table_open_cache Integer Global

thread_cache_size Integer Global

thread_pool_high_priority_connectionInteger Both

thread_pool_max_unused_threads Global

thread_pool_prio_kickup_timer Global

thread_pool_stall_limit Integer Global

time_zone String Both

timestamp Numeric Session

tmp_table_size Integer Both

transaction_alloc_block_size Integer Both

transaction_allow_batching Boolean Session

transaction_isolation Enumeration Both

transaction_prealloc_size Integer Both

transaction_read_only Boolean Both

transaction_write_set_extraction Enumeration Both

tx_isolation Enumeration Both

tx_read_only Boolean Both

unique_checks Boolean Both

updatable_views_with_limit Boolean Both

validate_password_check_user_nameBoolean Global

validate_password_dictionary_file File name Global

validate_password_length Integer Global

validate_password_mixed_case_countInteger Global

907

Using System Variables

Variable Name Variable Type Variable Scope

validate_password_number_count Integer Global

validate_password_policy Enumeration Global

validate_password_special_char_countInteger Global

version_tokens_session String Both

wait_timeout Integer Both

5.1.8.3 Structured System Variables

A structured variable differs from a regular system variable in two respects:

• Its value is a structure with components that specify server parameters considered to be closely related.

• There might be several instances of a given type of structured variable. Each one has a different name
and refers to a different resource maintained by the server.

MySQL supports one structured variable type, which specifies parameters governing the operation of key
caches. A key cache structured variable has these components:

• key_buffer_size

• key_cache_block_size

• key_cache_division_limit

• key_cache_age_threshold

This section describes the syntax for referring to structured variables. Key cache variables are used
for syntax examples, but specific details about how key caches operate are found elsewhere, in
Section 8.10.2, “The MyISAM Key Cache”.

To refer to a component of a structured variable instance, you can use a compound name in
instance_name.component_name format. Examples:

hot_cache.key_buffer_size
hot_cache.key_cache_block_size
cold_cache.key_cache_block_size

For each structured system variable, an instance with the name of default is always predefined. If you
refer to a component of a structured variable without any instance name, the default instance is used.
Thus, default.key_buffer_size and key_buffer_size both refer to the same system variable.

Structured variable instances and components follow these naming rules:

• For a given type of structured variable, each instance must have a name that is unique within variables
of that type. However, instance names need not be unique across structured variable types. For
example, each structured variable has an instance named default, so default is not unique across
variable types.

• The names of the components of each structured variable type must be unique across all system
variable names. If this were not true (that is, if two different types of structured variables could share
component member names), it would not be clear which default structured variable to use for references
to member names that are not qualified by an instance name.

• If a structured variable instance name is not legal as an unquoted identifier, refer to it as a quoted
identifier using backticks. For example, hot-cache is not legal, but `hot-cache` is.

908

Server Status Variables

• global, session, and local are not legal instance names. This avoids a conflict with notation such as
@@GLOBAL.var_name for referring to nonstructured system variables.

Currently, the first two rules have no possibility of being violated because the only structured variable type
is the one for key caches. These rules may assume greater significance if some other type of structured
variable is created in the future.

With one exception, you can refer to structured variable components using compound names in any
context where simple variable names can occur. For example, you can assign a value to a structured
variable using a command-line option:

$> mysqld --hot_cache.key_buffer_size=64K

In an option file, use this syntax:

[mysqld]
hot_cache.key_buffer_size=64K

If you start the server with this option, it creates a key cache named hot_cache with a size of 64KB in
addition to the default key cache that has a default size of 8MB.

Suppose that you start the server as follows:

$> mysqld --key_buffer_size=256K \
 --extra_cache.key_buffer_size=128K \
 --extra_cache.key_cache_block_size=2048

In this case, the server sets the size of the default key cache to 256KB. (You could also have written
--default.key_buffer_size=256K.) In addition, the server creates a second key cache named
extra_cache that has a size of 128KB, with the size of block buffers for caching table index blocks set to
2048 bytes.

The following example starts the server with three different key caches having sizes in a 3:1:1 ratio:

$> mysqld --key_buffer_size=6M \
 --hot_cache.key_buffer_size=2M \
 --cold_cache.key_buffer_size=2M

Structured variable values may be set and retrieved at runtime as well. For example, to set a key cache
named hot_cache to a size of 10MB, use either of these statements:

mysql> SET GLOBAL hot_cache.key_buffer_size = 10*1024*1024;
mysql> SET @@GLOBAL.hot_cache.key_buffer_size = 10*1024*1024;

To retrieve the cache size, do this:

mysql> SELECT @@GLOBAL.hot_cache.key_buffer_size;

However, the following statement does not work. The variable is not interpreted as a compound name, but
as a simple string for a LIKE pattern-matching operation:

mysql> SHOW GLOBAL VARIABLES LIKE 'hot_cache.key_buffer_size';

This is the exception to being able to use structured variable names anywhere a simple variable name may
occur.

5.1.9 Server Status Variables

The MySQL server maintains many status variables that provide information about its operation. You can
view these variables and their values by using the SHOW [GLOBAL | SESSION] STATUS statement (see
Section 13.7.5.35, “SHOW STATUS Statement”). The optional GLOBAL keyword aggregates the values
over all connections, and SESSION shows the values for the current connection.

909

Server Status Variables

mysql> SHOW GLOBAL STATUS;
+-----------------------------------+------------+
| Variable_name | Value |
+-----------------------------------+------------+
Aborted_clients	0
Aborted_connects	0
Bytes_received	155372598
Bytes_sent	1176560426
...	
Connections	30023
Created_tmp_disk_tables	0
Created_tmp_files	3
Created_tmp_tables	2
...	
Threads_created	217
Threads_running	88
Uptime	1389872
+-----------------------------------+------------+

Many status variables are reset to 0 by the FLUSH STATUS statement.

This section provides a description of each status variable. For a status variable summary, see
Section 5.1.5, “Server Status Variable Reference”. For information about status variables specific to NDB
Cluster, see NDB Cluster Status Variables.

The status variables have the meanings shown in the following list.

• Aborted_clients

The number of connections that were aborted because the client died without closing the connection
properly. See Section B.3.2.9, “Communication Errors and Aborted Connections”.

• Aborted_connects

The number of failed attempts to connect to the MySQL server. See Section B.3.2.9, “Communication
Errors and Aborted Connections”.

For additional connection-related information, check the Connection_errors_xxx status variables
and the host_cache table.

As of MySQL 5.7.3, Aborted_connects is not visible in the embedded server because for that server it
is not updated and is not meaningful.

• Binlog_cache_disk_use

The number of transactions that used the temporary binary log cache but that exceeded the value of
binlog_cache_size and used a temporary file to store statements from the transaction.

The number of nontransactional statements that caused the binary log transaction cache to be written to
disk is tracked separately in the Binlog_stmt_cache_disk_use status variable.

• Binlog_cache_use

The number of transactions that used the binary log cache.

• Binlog_stmt_cache_disk_use

The number of nontransaction statements that used the binary log statement cache but that exceeded
the value of binlog_stmt_cache_size and used a temporary file to store those statements.

• Binlog_stmt_cache_use

910

Server Status Variables

The number of nontransactional statements that used the binary log statement cache.

• Bytes_received

The number of bytes received from all clients.

• Bytes_sent

The number of bytes sent to all clients.

• Com_xxx

The Com_xxx statement counter variables indicate the number of times each xxx statement has
been executed. There is one status variable for each type of statement. For example, Com_delete
and Com_update count DELETE and UPDATE statements, respectively. Com_delete_multi and
Com_update_multi are similar but apply to DELETE and UPDATE statements that use multiple-table
syntax.

If a query result is returned from query cache, the server increments the Qcache_hits status variable,
not Com_select. See Section 8.10.3.4, “Query Cache Status and Maintenance”.

All Com_stmt_xxx variables are increased even if a prepared statement argument is unknown or an
error occurred during execution. In other words, their values correspond to the number of requests
issued, not to the number of requests successfully completed. For example, because status variables
are initialized for each server startup and do not persist across restarts, the Com_shutdown variable that
tracks SHUTDOWN statements normally has a value of zero, but can be nonzero if SHUTDOWN statements
were executed but failed.

The Com_stmt_xxx status variables are as follows:

• Com_stmt_prepare

• Com_stmt_execute

• Com_stmt_fetch

• Com_stmt_send_long_data

• Com_stmt_reset

• Com_stmt_close

Those variables stand for prepared statement commands. Their names refer to the COM_xxx command
set used in the network layer. In other words, their values increase whenever prepared statement
API calls such as mysql_stmt_prepare(), mysql_stmt_execute(), and so forth are executed.
However, Com_stmt_prepare, Com_stmt_execute and Com_stmt_close also increase for
PREPARE, EXECUTE, or DEALLOCATE PREPARE, respectively. Additionally, the values of the older
statement counter variables Com_prepare_sql, Com_execute_sql, and Com_dealloc_sql

911

Server Status Variables

increase for the PREPARE, EXECUTE, and DEALLOCATE PREPARE statements. Com_stmt_fetch
stands for the total number of network round-trips issued when fetching from cursors.

Com_stmt_reprepare indicates the number of times statements were automatically reprepared by the
server after metadata changes to tables or views referred to by the statement. A reprepare operation
increments Com_stmt_reprepare, and also Com_stmt_prepare.

Com_explain_other indicates the number of EXPLAIN FOR CONNECTION statements executed. See
Section 8.8.4, “Obtaining Execution Plan Information for a Named Connection”.

Com_change_repl_filter indicates the number of CHANGE REPLICATION FILTER statements
executed.

• Compression

Whether the client connection uses compression in the client/server protocol.

• Connection_errors_xxx

These variables provide information about errors that occur during the client connection process.
They are global only and represent error counts aggregated across connections from all hosts. These
variables track errors not accounted for by the host cache (see Section 5.1.11.2, “DNS Lookups and
the Host Cache”), such as errors that are not associated with TCP connections, occur very early in the
connection process (even before an IP address is known), or are not specific to any particular IP address
(such as out-of-memory conditions).

As of MySQL 5.7.3, the Connection_errors_xxx status variables are not visible in the embedded
server because for that server they are not updated and are not meaningful.

• Connection_errors_accept

The number of errors that occurred during calls to accept() on the listening port.

• Connection_errors_internal

The number of connections refused due to internal errors in the server, such as failure to start a new
thread or an out-of-memory condition.

• Connection_errors_max_connections

The number of connections refused because the server max_connections limit was reached.

• Connection_errors_peer_address

The number of errors that occurred while searching for connecting client IP addresses.

• Connection_errors_select

The number of errors that occurred during calls to select() or poll() on the listening port. (Failure
of this operation does not necessarily means a client connection was rejected.)

• Connection_errors_tcpwrap

The number of connections refused by the libwrap library.

• Connections

The number of connection attempts (successful or not) to the MySQL server.

912

Server Status Variables

• Created_tmp_disk_tables

The number of internal on-disk temporary tables created by the server while executing statements.

You can compare the number of internal on-disk temporary tables created to the total number of internal
temporary tables created by comparing Created_tmp_disk_tables and Created_tmp_tables
values.

See also Section 8.4.4, “Internal Temporary Table Use in MySQL”.

• Created_tmp_files

How many temporary files mysqld has created.

• Created_tmp_tables

The number of internal temporary tables created by the server while executing statements.

You can compare the number of internal on-disk temporary tables created to the total number of internal
temporary tables created by comparing Created_tmp_disk_tables and Created_tmp_tables
values.

See also Section 8.4.4, “Internal Temporary Table Use in MySQL”.

Each invocation of the SHOW STATUS statement uses an internal temporary table and increments the
global Created_tmp_tables value.

• Delayed_errors

This status variable is deprecated (because DELAYED inserts are not supported); expect it to be removed
in a future release.

• Delayed_insert_threads

This status variable is deprecated (because DELAYED inserts are not supported); expect it to be removed
in a future release.

• Delayed_writes

This status variable is deprecated (because DELAYED inserts are not supported); expect it to be removed
in a future release.

• Flush_commands

The number of times the server flushes tables, whether because a user executed a FLUSH TABLES
statement or due to internal server operation. It is also incremented by receipt of a COM_REFRESH
packet. This is in contrast to Com_flush, which indicates how many FLUSH statements have been
executed, whether FLUSH TABLES, FLUSH LOGS, and so forth.

• group_replication_primary_member

Shows the primary member's UUID when the group is operating in single-primary mode. If the group is
operating in multi-primary mode, shows an empty string.

• Handler_commit

The number of internal COMMIT statements.

• Handler_delete

913

Server Status Variables

The number of times that rows have been deleted from tables.

• Handler_external_lock

The server increments this variable for each call to its external_lock() function, which generally
occurs at the beginning and end of access to a table instance. There might be differences among
storage engines. This variable can be used, for example, to discover for a statement that accesses a
partitioned table how many partitions were pruned before locking occurred: Check how much the counter
increased for the statement, subtract 2 (2 calls for the table itself), then divide by 2 to get the number of
partitions locked.

• Handler_mrr_init

The number of times the server uses a storage engine's own Multi-Range Read implementation for table
access.

• Handler_prepare

A counter for the prepare phase of two-phase commit operations.

• Handler_read_first

The number of times the first entry in an index was read. If this value is high, it suggests that the server
is doing a lot of full index scans (for example, SELECT col1 FROM foo, assuming that col1 is
indexed).

• Handler_read_key

The number of requests to read a row based on a key. If this value is high, it is a good indication that
your tables are properly indexed for your queries.

• Handler_read_last

The number of requests to read the last key in an index. With ORDER BY, the server issues a first-key
request followed by several next-key requests, whereas with ORDER BY DESC, the server issues a last-
key request followed by several previous-key requests.

• Handler_read_next

The number of requests to read the next row in key order. This value is incremented if you are querying
an index column with a range constraint or if you are doing an index scan.

• Handler_read_prev

The number of requests to read the previous row in key order. This read method is mainly used to
optimize ORDER BY ... DESC.

• Handler_read_rnd

The number of requests to read a row based on a fixed position. This value is high if you are doing a
lot of queries that require sorting of the result. You probably have a lot of queries that require MySQL to
scan entire tables or you have joins that do not use keys properly.

• Handler_read_rnd_next

The number of requests to read the next row in the data file. This value is high if you are doing a lot of
table scans. Generally this suggests that your tables are not properly indexed or that your queries are
not written to take advantage of the indexes you have.

914

Server Status Variables

• Handler_rollback

The number of requests for a storage engine to perform a rollback operation.

• Handler_savepoint

The number of requests for a storage engine to place a savepoint.

• Handler_savepoint_rollback

The number of requests for a storage engine to roll back to a savepoint.

• Handler_update

The number of requests to update a row in a table.

• Handler_write

The number of requests to insert a row in a table.

• Innodb_available_undo_logs

Note

The Innodb_available_undo_logs status variable is deprecated as of
MySQL 5.7.19; expect it to be removed in a future release.

The total number of available InnoDB rollback segments. Supplements the
innodb_rollback_segments system variable, which defines the number of active rollback segments.

One rollback segment always resides in the system tablespace, and 32 rollback segments are reserved
for use by temporary tables and are hosted in the temporary tablespace (ibtmp1). See Section 14.6.7,
“Undo Logs”.

If you initiate a MySQL instance with 32 or fewer rollback segments, InnoDB still assigns one rollback
segment to the system tablespace and 32 rollback segments to the temporary tablespace. In this case,
Innodb_available_undo_logs reports 33 available rollback segments even though the instance
was initialized with a lesser innodb_rollback_segments value.

• Innodb_buffer_pool_dump_status

The progress of an operation to record the pages held in the InnoDB buffer pool, triggered by the setting
of innodb_buffer_pool_dump_at_shutdown or innodb_buffer_pool_dump_now.

For related information and examples, see Section 14.8.3.6, “Saving and Restoring the Buffer Pool
State”.

• Innodb_buffer_pool_load_status

The progress of an operation to warm up the InnoDB buffer pool by reading in a
set of pages corresponding to an earlier point in time, triggered by the setting of
innodb_buffer_pool_load_at_startup or innodb_buffer_pool_load_now. If the operation
introduces too much overhead, you can cancel it by setting innodb_buffer_pool_load_abort.

For related information and examples, see Section 14.8.3.6, “Saving and Restoring the Buffer Pool
State”.

• Innodb_buffer_pool_bytes_data

915

Server Status Variables

The total number of bytes in the InnoDB buffer pool containing data. The number includes
both dirty and clean pages. For more accurate memory usage calculations than with
Innodb_buffer_pool_pages_data, when compressed tables cause the buffer pool to hold pages of
different sizes.

• Innodb_buffer_pool_pages_data

The number of pages in the InnoDB buffer pool containing data. The number includes both dirty and
clean pages. When using compressed tables, the reported Innodb_buffer_pool_pages_data value
may be larger than Innodb_buffer_pool_pages_total (Bug #59550).

• Innodb_buffer_pool_bytes_dirty

The total current number of bytes held in dirty pages in the InnoDB buffer pool. For more accurate
memory usage calculations than with Innodb_buffer_pool_pages_dirty, when compressed tables
cause the buffer pool to hold pages of different sizes.

• Innodb_buffer_pool_pages_dirty

The current number of dirty pages in the InnoDB buffer pool.

• Innodb_buffer_pool_pages_flushed

The number of requests to flush pages from the InnoDB buffer pool.

• Innodb_buffer_pool_pages_free

The number of free pages in the InnoDB buffer pool.

• Innodb_buffer_pool_pages_latched

The number of latched pages in the InnoDB buffer pool. These are pages currently being read or
written, or that cannot be flushed or removed for some other reason. Calculation of this variable is
expensive, so it is available only when the UNIV_DEBUG system is defined at server build time.

• Innodb_buffer_pool_pages_misc

The number of pages in the InnoDB buffer pool that are busy because they have
been allocated for administrative overhead, such as row locks or the adaptive hash
index. This value can also be calculated as Innodb_buffer_pool_pages_total −
Innodb_buffer_pool_pages_free − Innodb_buffer_pool_pages_data. When using
compressed tables, Innodb_buffer_pool_pages_misc may report an out-of-bounds value (Bug
#59550).

• Innodb_buffer_pool_pages_total

The total size of the InnoDB buffer pool, in pages. When using compressed tables,
the reported Innodb_buffer_pool_pages_data value may be larger than
Innodb_buffer_pool_pages_total (Bug #59550)

• Innodb_buffer_pool_read_ahead

The number of pages read into the InnoDB buffer pool by the read-ahead background thread.

• Innodb_buffer_pool_read_ahead_evicted

The number of pages read into the InnoDB buffer pool by the read-ahead background thread that were
subsequently evicted without having been accessed by queries.

916

Server Status Variables

• Innodb_buffer_pool_read_ahead_rnd

The number of “random” read-aheads initiated by InnoDB. This happens when a query scans a large
portion of a table but in random order.

• Innodb_buffer_pool_read_requests

The number of logical read requests.

• Innodb_buffer_pool_reads

The number of logical reads that InnoDB could not satisfy from the buffer pool, and had to read directly
from disk.

• Innodb_buffer_pool_resize_status

The status of an operation to resize the InnoDB buffer pool dynamically, triggered by setting the
innodb_buffer_pool_size parameter dynamically. The innodb_buffer_pool_size parameter
is dynamic, which allows you to resize the buffer pool without restarting the server. See Configuring
InnoDB Buffer Pool Size Online for related information.

• Innodb_buffer_pool_wait_free

Normally, writes to the InnoDB buffer pool happen in the background. When InnoDB needs to read or
create a page and no clean pages are available, InnoDB flushes some dirty pages first and waits for that
operation to finish. This counter counts instances of these waits. If innodb_buffer_pool_size has
been set properly, this value should be small.

• Innodb_buffer_pool_write_requests

The number of writes done to the InnoDB buffer pool.

• Innodb_data_fsyncs

The number of fsync() operations so far. The frequency of fsync() calls is influenced by the setting
of the innodb_flush_method configuration option.

• Innodb_data_pending_fsyncs

The current number of pending fsync() operations. The frequency of fsync() calls is influenced by
the setting of the innodb_flush_method configuration option.

• Innodb_data_pending_reads

The current number of pending reads.

• Innodb_data_pending_writes

The current number of pending writes.

• Innodb_data_read

The amount of data read since the server was started (in bytes).

• Innodb_data_reads

The total number of data reads (OS file reads).

• Innodb_data_writes

917

Server Status Variables

The total number of data writes.

• Innodb_data_written

The amount of data written so far, in bytes.

• Innodb_dblwr_pages_written

The number of pages that have been written to the doublewrite buffer. See Section 14.12.1, “InnoDB
Disk I/O”.

• Innodb_dblwr_writes

The number of doublewrite operations that have been performed. See Section 14.12.1, “InnoDB Disk I/
O”.

• Innodb_have_atomic_builtins

Indicates whether the server was built with atomic instructions.

• Innodb_log_waits

The number of times that the log buffer was too small and a wait was required for it to be flushed before
continuing.

• Innodb_log_write_requests

The number of write requests for the InnoDB redo log.

• Innodb_log_writes

The number of physical writes to the InnoDB redo log file.

• Innodb_num_open_files

The number of files InnoDB currently holds open.

• Innodb_os_log_fsyncs

The number of fsync() writes done to the InnoDB redo log files.

• Innodb_os_log_pending_fsyncs

The number of pending fsync() operations for the InnoDB redo log files.

• Innodb_os_log_pending_writes

The number of pending writes to the InnoDB redo log files.

• Innodb_os_log_written

The number of bytes written to the InnoDB redo log files.

• Innodb_page_size

InnoDB page size (default 16KB). Many values are counted in pages; the page size enables them to be
easily converted to bytes.

• Innodb_pages_created

918

Server Status Variables

The number of pages created by operations on InnoDB tables.

• Innodb_pages_read

The number of pages read from the InnoDB buffer pool by operations on InnoDB tables.

• Innodb_pages_written

The number of pages written by operations on InnoDB tables.

• Innodb_row_lock_current_waits

The number of row locks currently being waited for by operations on InnoDB tables.

• Innodb_row_lock_time

The total time spent in acquiring row locks for InnoDB tables, in milliseconds.

• Innodb_row_lock_time_avg

The average time to acquire a row lock for InnoDB tables, in milliseconds.

• Innodb_row_lock_time_max

The maximum time to acquire a row lock for InnoDB tables, in milliseconds.

• Innodb_row_lock_waits

The number of times operations on InnoDB tables had to wait for a row lock.

• Innodb_rows_deleted

The number of rows deleted from InnoDB tables.

• Innodb_rows_inserted

The number of rows inserted into InnoDB tables.

• Innodb_rows_read

The number of rows read from InnoDB tables.

• Innodb_rows_updated

The estimated number of rows updated in InnoDB tables.

Note

This value is not meant to be 100% accurate. For an accurate (but more
expensive) result, use ROW_COUNT().

• Innodb_truncated_status_writes

The number of times output from the SHOW ENGINE INNODB STATUS statement has been truncated.

• Key_blocks_not_flushed

The number of key blocks in the MyISAM key cache that have changed but have not yet been flushed to
disk.

919

Server Status Variables

• Key_blocks_unused

The number of unused blocks in the MyISAM key cache. You can use this value to determine how much
of the key cache is in use; see the discussion of key_buffer_size in Section 5.1.7, “Server System
Variables”.

• Key_blocks_used

The number of used blocks in the MyISAM key cache. This value is a high-water mark that indicates the
maximum number of blocks that have ever been in use at one time.

• Key_read_requests

The number of requests to read a key block from the MyISAM key cache.

• Key_reads

The number of physical reads of a key block from disk into the MyISAM key cache. If Key_reads is
large, then your key_buffer_size value is probably too small. The cache miss rate can be calculated
as Key_reads/Key_read_requests.

• Key_write_requests

The number of requests to write a key block to the MyISAM key cache.

• Key_writes

The number of physical writes of a key block from the MyISAM key cache to disk.

• Last_query_cost

The total cost of the last compiled query as computed by the query optimizer. This is useful for
comparing the cost of different query plans for the same query. The default value of 0 means that no
query has been compiled yet. The default value is 0. Last_query_cost has session scope.

Last_query_cost can be computed accurately only for simple, “flat” queries, but not for complex
queries such as those containing subqueries or UNION. For the latter, the value is set to 0.

• Last_query_partial_plans

The number of iterations the query optimizer made in execution plan construction for the previous query.

Last_query_partial_plans has session scope.

• Locked_connects

The number of attempts to connect to locked user accounts. For information about account locking and
unlocking, see Section 6.2.15, “Account Locking”.

• Max_execution_time_exceeded

The number of SELECT statements for which the execution timeout was exceeded.

• Max_execution_time_set

The number of SELECT statements for which a nonzero execution timeout was set. This includes
statements that include a nonzero MAX_EXECUTION_TIME optimizer hint, and statements that include
no such hint but execute while the timeout indicated by the max_execution_time system variable is
nonzero.

920

Server Status Variables

• Max_execution_time_set_failed

The number of SELECT statements for which the attempt to set an execution timeout failed.

• Max_used_connections

The maximum number of connections that have been in use simultaneously since the server started.

• Max_used_connections_time

The time at which Max_used_connections reached its current value.

• Not_flushed_delayed_rows

This status variable is deprecated (because DELAYED inserts are not supported); expect it to be removed
in a future release.

• mecab_charset

The character set currently used by the MeCab full-text parser plugin. For related information, see
Section 12.9.9, “MeCab Full-Text Parser Plugin”.

• Ongoing_anonymous_transaction_count

Shows the number of ongoing transactions which have been marked as anonymous. This can be used
to ensure that no further transactions are waiting to be processed.

• Ongoing_anonymous_gtid_violating_transaction_count

This status variable is only available in debug builds. Shows the number of ongoing transactions which
use gtid_next=ANONYMOUS and that violate GTID consistency.

• Ongoing_automatic_gtid_violating_transaction_count

This status variable is only available in debug builds. Shows the number of ongoing transactions which
use gtid_next=AUTOMATIC and that violate GTID consistency.

• Open_files

The number of files that are open. This count includes regular files opened by the server. It does not
include other types of files such as sockets or pipes. Also, the count does not include files that storage
engines open using their own internal functions rather than asking the server level to do so.

• Open_streams

The number of streams that are open (used mainly for logging).

• Open_table_definitions

The number of cached .frm files.

• Open_tables

The number of tables that are open.

• Opened_files

The number of files that have been opened with my_open() (a mysys library function). Parts of the
server that open files without using this function do not increment the count.

921

Server Status Variables

• Opened_table_definitions

The number of .frm files that have been cached.

• Opened_tables

The number of tables that have been opened. If Opened_tables is big, your table_open_cache
value is probably too small.

• Performance_schema_xxx

Performance Schema status variables are listed in Section 25.16, “Performance Schema Status
Variables”. These variables provide information about instrumentation that could not be loaded or
created due to memory constraints.

• Prepared_stmt_count

The current number of prepared statements. (The maximum number of statements is given by the
max_prepared_stmt_count system variable.)

• Qcache_free_blocks

The number of free memory blocks in the query cache.

Note

The query cache is deprecated as of MySQL 5.7.20, and is removed in MySQL
8.0. Deprecation includes Qcache_free_blocks.

• Qcache_free_memory

The amount of free memory for the query cache.

Note

The query cache is deprecated as of MySQL 5.7.20, and is removed in MySQL
8.0. Deprecation includes Qcache_free_memory.

• Qcache_hits

The number of query cache hits.

The discussion at the beginning of this section indicates how to relate this statement-counting status
variable to other such variables.

Note

The query cache is deprecated as of MySQL 5.7.20, and is removed in MySQL
8.0. Deprecation includes Qcache_hits.

• Qcache_inserts

The number of queries added to the query cache.

Note

The query cache is deprecated as of MySQL 5.7.20, and is removed in MySQL
8.0. Deprecation includes Qcache_inserts.

922

Server Status Variables

• Qcache_lowmem_prunes

The number of queries that were deleted from the query cache because of low memory.

Note

The query cache is deprecated as of MySQL 5.7.20, and is removed in MySQL
8.0. Deprecation includes Qcache_lowmem_prunes.

• Qcache_not_cached

The number of noncached queries (not cacheable, or not cached due to the query_cache_type
setting).

Note

The query cache is deprecated as of MySQL 5.7.20, and is removed in MySQL
8.0. Deprecation includes Qcache_not_cached.

• Qcache_queries_in_cache

The number of queries registered in the query cache.

Note

The query cache is deprecated as of MySQL 5.7.20, and is removed in MySQL
8.0. Deprecation includes Qcache_queries_in_cache.

• Qcache_total_blocks

The total number of blocks in the query cache.

Note

The query cache is deprecated as of MySQL 5.7.20, and is removed in MySQL
8.0. Deprecation includes Qcache_total_blocks.

• Queries

The number of statements executed by the server. This variable includes statements executed within
stored programs, unlike the Questions variable. It does not count COM_PING or COM_STATISTICS
commands.

The discussion at the beginning of this section indicates how to relate this statement-counting status
variable to other such variables.

• Questions

The number of statements executed by the server. This includes only statements sent to the server
by clients and not statements executed within stored programs, unlike the Queries variable. This
variable does not count COM_PING, COM_STATISTICS, COM_STMT_PREPARE, COM_STMT_CLOSE, or
COM_STMT_RESET commands.

The discussion at the beginning of this section indicates how to relate this statement-counting status
variable to other such variables.

923

Server Status Variables

• Rpl_semi_sync_master_clients

The number of semisynchronous replicas.

This variable is available only if the source-side semisynchronous replication plugin is installed.

• Rpl_semi_sync_master_net_avg_wait_time

The average time in microseconds the source waited for a replica reply. This variable is deprecated,
always 0; expect it to be in a future version.

This variable is available only if the source-side semisynchronous replication plugin is installed.

• Rpl_semi_sync_master_net_wait_time

The total time in microseconds the source waited for replica replies. This variable is deprecated, and is
always 0; expect it to be removed in a future version.

This variable is available only if the source-side semisynchronous replication plugin is installed.

• Rpl_semi_sync_master_net_waits

The total number of times the source waited for replica replies.

This variable is available only if the source-side semisynchronous replication plugin is installed.

• Rpl_semi_sync_master_no_times

The number of times the source turned off semisynchronous replication.

This variable is available only if the source-side semisynchronous replication plugin is installed.

• Rpl_semi_sync_master_no_tx

The number of commits that were not acknowledged successfully by a replica.

This variable is available only if the source-side semisynchronous replication plugin is installed.

• Rpl_semi_sync_master_status

Whether semisynchronous replication currently is operational on the source. The value is ON if the plugin
has been enabled and a commit acknowledgment has occurred. It is OFF if the plugin is not enabled or
the source has fallen back to asynchronous replication due to commit acknowledgment timeout.

This variable is available only if the source-side semisynchronous replication plugin is installed.

• Rpl_semi_sync_master_timefunc_failures

The number of times the source failed when calling time functions such as gettimeofday().

This variable is available only if the source-side semisynchronous replication plugin is installed.

• Rpl_semi_sync_master_tx_avg_wait_time

The average time in microseconds the source waited for each transaction.

This variable is available only if the source-side semisynchronous replication plugin is installed.

• Rpl_semi_sync_master_tx_wait_time

924

Server Status Variables

The total time in microseconds the source waited for transactions.

This variable is available only if the source-side semisynchronous replication plugin is installed.

• Rpl_semi_sync_master_tx_waits

The total number of times the source waited for transactions.

This variable is available only if the source-side semisynchronous replication plugin is installed.

• Rpl_semi_sync_master_wait_pos_backtraverse

The total number of times the source waited for an event with binary coordinates lower than events
waited for previously. This can occur when the order in which transactions start waiting for a reply is
different from the order in which their binary log events are written.

This variable is available only if the source-side semisynchronous replication plugin is installed.

• Rpl_semi_sync_master_wait_sessions

The number of sessions currently waiting for replica replies.

This variable is available only if the source-side semisynchronous replication plugin is installed.

• Rpl_semi_sync_master_yes_tx

The number of commits that were acknowledged successfully by a replica.

This variable is available only if the source-side semisynchronous replication plugin is installed.

• Rpl_semi_sync_slave_status

Whether semisynchronous replication currently is operational on the replica. This is ON if the plugin has
been enabled and the replica I/O thread is running, OFF otherwise.

This variable is available only if the replica-side semisynchronous replication plugin is installed.

• Rsa_public_key

This variable is available if MySQL was compiled using OpenSSL (see Section 6.3.4, “SSL
Library-Dependent Capabilities”). Its value is the public key used by the sha256_password
authentication plugin for RSA key pair-based password exchange. The value is nonempty
only if the server successfully initializes the private and public keys in the files named by the
sha256_password_private_key_path and sha256_password_public_key_path system
variables. The value of Rsa_public_key comes from the latter file.

For information about sha256_password, see Section 6.4.1.5, “SHA-256 Pluggable Authentication”.

• Select_full_join

The number of joins that perform table scans because they do not use indexes. If this value is not 0, you
should carefully check the indexes of your tables.

• Select_full_range_join

The number of joins that used a range search on a reference table.

• Select_range

925

Server Status Variables

The number of joins that used ranges on the first table. This is normally not a critical issue even if the
value is quite large.

• Select_range_check

The number of joins without keys that check for key usage after each row. If this is not 0, you should
carefully check the indexes of your tables.

• Select_scan

The number of joins that did a full scan of the first table.

• Slave_heartbeat_period

Shows the replication heartbeat interval (in seconds) on a replication replica.

This variable is affected by the value of the show_compatibility_56 system variable. For details,
see Effect of show_compatibility_56 on Slave Status Variables.

Note

This variable only shows the status of the default replication channel. To
monitor any replication channel, use the HEARTBEAT_INTERVAL column in the
replication_connection_configuration table for the replication channel.
Slave_heartbeat_period is deprecated and is removed in MySQL 8.0.

• Slave_last_heartbeat

Shows when the most recent heartbeat signal was received by a replica, as a TIMESTAMP value.

This variable is affected by the value of the show_compatibility_56 system variable. For details,
see Effect of show_compatibility_56 on Slave Status Variables.

Note

This variable only shows the status of the default replication channel. To monitor
any replication channel, use the LAST_HEARTBEAT_TIMESTAMP column in
the replication_connection_status table for the replication channel.
Slave_last_heartbeat is deprecated and is removed in MySQL 8.0.

• Slave_open_temp_tables

The number of temporary tables that the replica SQL thread currently has open. If the value is greater
than zero, it is not safe to shut down the replica; see Section 16.4.1.29, “Replication and Temporary
Tables”. This variable reports the total count of open temporary tables for all replication channels.

926

Server Status Variables

• Slave_received_heartbeats

This counter increments with each replication heartbeat received by a replication replica since the last
time that the replica was restarted or reset, or a CHANGE MASTER TO statement was issued.

This variable is affected by the value of the show_compatibility_56 system variable. For details,
see Effect of show_compatibility_56 on Slave Status Variables.

Note

This variable only shows the status of the default replication channel. To monitor
any replication channel, use the COUNT_RECEIVED_HEARTBEATS column in
the replication_connection_status table for the replication channel.
Slave_received_heartbeats is deprecated and is removed in MySQL 8.0.

• Slave_retried_transactions

The total number of times since startup that the replication replica SQL thread has retried transactions.

This variable is affected by the value of the show_compatibility_56 system variable. For details,
see Effect of show_compatibility_56 on Slave Status Variables.

Note

This variable only shows the status of the default replication channel. To monitor
any replication channel, use the COUNT_TRANSACTIONS_RETRIES column
in the replication_applier_status table for the replication channel.
Slave_retried_transactions is deprecated and is removed in MySQL 8.0.

• Slave_rows_last_search_algorithm_used

The search algorithm that was most recently used by this replica to locate rows for row-based
replication. The result shows whether the replica used indexes, a table scan, or hashing as the search
algorithm for the last transaction executed on any channel.

The method used depends on the setting for the slave_rows_search_algorithms system variable,
and the keys that are available on the relevant table.

This variable is available only for debug builds of MySQL.

• Slave_running

This is ON if this server is a replica that is connected to a replication source, and both the I/O and SQL
threads are running; otherwise, it is OFF.

This variable is affected by the value of the show_compatibility_56 system variable. For details,
see Effect of show_compatibility_56 on Slave Status Variables.

Note

This variable only shows the status of the default replication channel. To
monitor any replication channel, use the SERVICE_STATE column in the
replication_applier_status or replication_connection_status
tables of the replication channel. Slave_running is deprecated and is removed
in MySQL 8.0.

927

Server Status Variables

• Slow_launch_threads

The number of threads that have taken more than slow_launch_time seconds to create.

This variable is not meaningful in the embedded server (libmysqld) and as of MySQL 5.7.2 is no
longer visible within the embedded server.

• Slow_queries

The number of queries that have taken more than long_query_time seconds. This counter
increments regardless of whether the slow query log is enabled. For information about that log, see
Section 5.4.5, “The Slow Query Log”.

• Sort_merge_passes

The number of merge passes that the sort algorithm has had to do. If this value is large, you should
consider increasing the value of the sort_buffer_size system variable.

• Sort_range

The number of sorts that were done using ranges.

• Sort_rows

The number of sorted rows.

• Sort_scan

The number of sorts that were done by scanning the table.

• Ssl_accept_renegotiates

The number of negotiates needed to establish the connection.

• Ssl_accepts

The number of accepted SSL connections.

• Ssl_callback_cache_hits

The number of callback cache hits.

• Ssl_cipher

The current encryption cipher (empty for unencrypted connections).

• Ssl_cipher_list

The list of possible SSL ciphers (empty for non-SSL connections).

• Ssl_client_connects

The number of SSL connection attempts to an SSL-enabled source.

• Ssl_connect_renegotiates

The number of negotiates needed to establish the connection to an SSL-enabled source.

• Ssl_ctx_verify_depth

928

Server Status Variables

The SSL context verification depth (how many certificates in the chain are tested).

• Ssl_ctx_verify_mode

The SSL context verification mode.

• Ssl_default_timeout

The default SSL timeout.

• Ssl_finished_accepts

The number of successful SSL connections to the server.

• Ssl_finished_connects

The number of successful replica connections to an SSL-enabled source.

• Ssl_server_not_after

The last date for which the SSL certificate is valid. To check SSL certificate expiration information, use
this statement:

mysql> SHOW STATUS LIKE 'Ssl_server_not%';
+-----------------------+--------------------------+
| Variable_name | Value |
+-----------------------+--------------------------+
| Ssl_server_not_after | Apr 28 14:16:39 2025 GMT |
| Ssl_server_not_before | May 1 14:16:39 2015 GMT |
+-----------------------+--------------------------+

• Ssl_server_not_before

The first date for which the SSL certificate is valid.

• Ssl_session_cache_hits

The number of SSL session cache hits.

• Ssl_session_cache_misses

The number of SSL session cache misses.

• Ssl_session_cache_mode

The SSL session cache mode.

• Ssl_session_cache_overflows

The number of SSL session cache overflows.

• Ssl_session_cache_size

The SSL session cache size.

• Ssl_session_cache_timeouts

The number of SSL session cache timeouts.

• Ssl_sessions_reused

929

Server Status Variables

This is equal to 0 if TLS was not used in the current MySQL session, or if a TLS session has not been
reused; otherwise it is equal to 1.

Ssl_sessions_reused has session scope.

• Ssl_used_session_cache_entries

How many SSL session cache entries were used.

• Ssl_verify_depth

The verification depth for replication SSL connections.

• Ssl_verify_mode

The verification mode used by the server for a connection that uses SSL. The value is a bitmask; bits are
defined in the openssl/ssl.h header file:

define SSL_VERIFY_NONE 0x00
define SSL_VERIFY_PEER 0x01
define SSL_VERIFY_FAIL_IF_NO_PEER_CERT 0x02
define SSL_VERIFY_CLIENT_ONCE 0x04

SSL_VERIFY_PEER indicates that the server asks for a client certificate. If the client supplies one, the
server performs verification and proceeds only if verification is successful. SSL_VERIFY_CLIENT_ONCE
indicates that a request for the client certificate is done only in the initial handshake.

• Ssl_version

The SSL protocol version of the connection (for example, TLSv1). If the connection is not encrypted, the
value is empty.

• Table_locks_immediate

The number of times that a request for a table lock could be granted immediately.

• Table_locks_waited

The number of times that a request for a table lock could not be granted immediately and a wait was
needed. If this is high and you have performance problems, you should first optimize your queries, and
then either split your table or tables or use replication.

• Table_open_cache_hits

The number of hits for open tables cache lookups.

• Table_open_cache_misses

The number of misses for open tables cache lookups.

• Table_open_cache_overflows

The number of overflows for the open tables cache. This is the number of times, after a table is
opened or closed, a cache instance has an unused entry and the size of the instance is larger than
table_open_cache / table_open_cache_instances.

930

Server SQL Modes

• Tc_log_max_pages_used

For the memory-mapped implementation of the log that is used by mysqld when it acts as the
transaction coordinator for recovery of internal XA transactions, this variable indicates the largest
number of pages used for the log since the server started. If the product of Tc_log_max_pages_used
and Tc_log_page_size is always significantly less than the log size, the size is larger than necessary
and can be reduced. (The size is set by the --log-tc-size option. This variable is unused: It is
unneeded for binary log-based recovery, and the memory-mapped recovery log method is not used
unless the number of storage engines that are capable of two-phase commit and that support XA
transactions is greater than one. (InnoDB is the only applicable engine.)

• Tc_log_page_size

The page size used for the memory-mapped implementation of the XA recovery log. The default value
is determined using getpagesize(). This variable is unused for the same reasons as described for
Tc_log_max_pages_used.

• Tc_log_page_waits

For the memory-mapped implementation of the recovery log, this variable increments each time the
server was not able to commit a transaction and had to wait for a free page in the log. If this value is
large, you might want to increase the log size (with the --log-tc-size option). For binary log-based
recovery, this variable increments each time the binary log cannot be closed because there are two-
phase commits in progress. (The close operation waits until all such transactions are finished.)

• Threads_cached

The number of threads in the thread cache.

This variable is not meaningful in the embedded server (libmysqld) and as of MySQL 5.7.2 is no
longer visible within the embedded server.

• Threads_connected

The number of currently open connections.

• Threads_created

The number of threads created to handle connections. If Threads_created is big, you may
want to increase the thread_cache_size value. The cache miss rate can be calculated as
Threads_created/Connections.

• Threads_running

The number of threads that are not sleeping.

• Uptime

The number of seconds that the server has been up.

• Uptime_since_flush_status

The number of seconds since the most recent FLUSH STATUS statement.

5.1.10 Server SQL Modes

The MySQL server can operate in different SQL modes, and can apply these modes differently for different
clients, depending on the value of the sql_mode system variable. DBAs can set the global SQL mode to

931

Server SQL Modes

match site server operating requirements, and each application can set its session SQL mode to its own
requirements.

Modes affect the SQL syntax MySQL supports and the data validation checks it performs. This makes it
easier to use MySQL in different environments and to use MySQL together with other database servers.

• Setting the SQL Mode

• The Most Important SQL Modes

• Full List of SQL Modes

• Combination SQL Modes

• Strict SQL Mode

• Comparison of the IGNORE Keyword and Strict SQL Mode

• SQL Mode Changes in MySQL 5.7

For answers to questions often asked about server SQL modes in MySQL, see Section A.3, “MySQL 5.7
FAQ: Server SQL Mode”.

When working with InnoDB tables, consider also the innodb_strict_mode system variable. It enables
additional error checks for InnoDB tables.

Setting the SQL Mode

The default SQL mode in MySQL 5.7 includes these modes: ONLY_FULL_GROUP_BY,
STRICT_TRANS_TABLES, NO_ZERO_IN_DATE, NO_ZERO_DATE, ERROR_FOR_DIVISION_BY_ZERO,
NO_AUTO_CREATE_USER, and NO_ENGINE_SUBSTITUTION.

These modes were added to the default SQL mode in MySQL 5.7: The ONLY_FULL_GROUP_BY and
STRICT_TRANS_TABLES modes were added in MySQL 5.7.5. The NO_AUTO_CREATE_USER mode was
added in MySQL 5.7.7. The ERROR_FOR_DIVISION_BY_ZERO, NO_ZERO_DATE, and NO_ZERO_IN_DATE
modes were added in MySQL 5.7.8. For additional discussion regarding these changes to the default SQL
mode value, see SQL Mode Changes in MySQL 5.7.

To set the SQL mode at server startup, use the --sql-mode="modes" option on the command line, or
sql-mode="modes" in an option file such as my.cnf (Unix operating systems) or my.ini (Windows).
modes is a list of different modes separated by commas. To clear the SQL mode explicitly, set it to an
empty string using --sql-mode="" on the command line, or sql-mode="" in an option file.

Note

MySQL installation programs may configure the SQL mode during the installation
process. If the SQL mode differs from the default or from what you expect, check for
a setting in an option file that the server reads at startup.

To change the SQL mode at runtime, set the global or session sql_mode system variable using a SET
statement:

SET GLOBAL sql_mode = 'modes';
SET SESSION sql_mode = 'modes';

Setting the GLOBAL variable requires the SUPER privilege and affects the operation of all clients that
connect from that time on. Setting the SESSION variable affects only the current client. Each client can
change its session sql_mode value at any time.

932

Server SQL Modes

To determine the current global or session sql_mode setting, select its value:

SELECT @@GLOBAL.sql_mode;
SELECT @@SESSION.sql_mode;

Important

SQL mode and user-defined partitioning. Changing the server SQL mode
after creating and inserting data into partitioned tables can cause major changes
in the behavior of such tables, and could lead to loss or corruption of data. It is
strongly recommended that you never change the SQL mode once you have
created tables employing user-defined partitioning.

When replicating partitioned tables, differing SQL modes on the source and replica
can also lead to problems. For best results, you should always use the same server
SQL mode on the source and replica.

For more information, see Section 22.6, “Restrictions and Limitations on
Partitioning”.

The Most Important SQL Modes

The most important sql_mode values are probably these:

• ANSI

This mode changes syntax and behavior to conform more closely to standard SQL. It is one of the
special combination modes listed at the end of this section.

• STRICT_TRANS_TABLES

If a value could not be inserted as given into a transactional table, abort the statement. For a
nontransactional table, abort the statement if the value occurs in a single-row statement or the first row
of a multiple-row statement. More details are given later in this section.

As of MySQL 5.7.5, the default SQL mode includes STRICT_TRANS_TABLES.

• TRADITIONAL

Make MySQL behave like a “traditional” SQL database system. A simple description of this mode is “give
an error instead of a warning” when inserting an incorrect value into a column. It is one of the special
combination modes listed at the end of this section.

Note

With TRADITIONAL mode enabled, an INSERT or UPDATE aborts as soon as an
error occurs. If you are using a nontransactional storage engine, this may not be
what you want because data changes made prior to the error may not be rolled
back, resulting in a “partially done” update.

When this manual refers to “strict mode,” it means a mode with either or both STRICT_TRANS_TABLES or
STRICT_ALL_TABLES enabled.

Full List of SQL Modes

The following list describes all supported SQL modes:

• ALLOW_INVALID_DATES

933

Server SQL Modes

Do not perform full checking of dates. Check only that the month is in the range from 1 to 12 and the day
is in the range from 1 to 31. This may be useful for Web applications that obtain year, month, and day in
three different fields and store exactly what the user inserted, without date validation. This mode applies
to DATE and DATETIME columns. It does not apply to TIMESTAMP columns, which always require a valid
date.

With ALLOW_INVALID_DATES disabled, the server requires that month and day values be legal, and
not merely in the range 1 to 12 and 1 to 31, respectively. With strict mode disabled, invalid dates such as
'2004-04-31' are converted to '0000-00-00' and a warning is generated. With strict mode enabled,
invalid dates generate an error. To permit such dates, enable ALLOW_INVALID_DATES.

• ANSI_QUOTES

Treat " as an identifier quote character (like the ` quote character) and not as a string quote character.
You can still use ` to quote identifiers with this mode enabled. With ANSI_QUOTES enabled, you cannot
use double quotation marks to quote literal strings because they are interpreted as identifiers.

• ERROR_FOR_DIVISION_BY_ZERO

The ERROR_FOR_DIVISION_BY_ZERO mode affects handling of division by zero, which includes
MOD(N,0). For data-change operations (INSERT, UPDATE), its effect also depends on whether strict
SQL mode is enabled.

• If this mode is not enabled, division by zero inserts NULL and produces no warning.

• If this mode is enabled, division by zero inserts NULL and produces a warning.

• If this mode and strict mode are enabled, division by zero produces an error, unless IGNORE is given
as well. For INSERT IGNORE and UPDATE IGNORE, division by zero inserts NULL and produces a
warning.

For SELECT, division by zero returns NULL. Enabling ERROR_FOR_DIVISION_BY_ZERO causes a
warning to be produced as well, regardless of whether strict mode is enabled.

ERROR_FOR_DIVISION_BY_ZERO is deprecated. ERROR_FOR_DIVISION_BY_ZERO is not part of strict
mode, but should be used in conjunction with strict mode and is enabled by default. A warning occurs
if ERROR_FOR_DIVISION_BY_ZERO is enabled without also enabling strict mode or vice versa. For
additional discussion, see SQL Mode Changes in MySQL 5.7.

Because ERROR_FOR_DIVISION_BY_ZERO is deprecated; expect it to be removed in a future release of
MySQL as a separate mode name and its effect included in the effects of strict SQL mode.

• HIGH_NOT_PRECEDENCE

The precedence of the NOT operator is such that expressions such as NOT a BETWEEN b AND c are
parsed as NOT (a BETWEEN b AND c). In some older versions of MySQL, the expression was parsed
as (NOT a) BETWEEN b AND c. The old higher-precedence behavior can be obtained by enabling the
HIGH_NOT_PRECEDENCE SQL mode.

mysql> SET sql_mode = '';
mysql> SELECT NOT 1 BETWEEN -5 AND 5;
 -> 0
mysql> SET sql_mode = 'HIGH_NOT_PRECEDENCE';
mysql> SELECT NOT 1 BETWEEN -5 AND 5;
 -> 1

• IGNORE_SPACE

934

Server SQL Modes

Permit spaces between a function name and the (character. This causes built-in function names to
be treated as reserved words. As a result, identifiers that are the same as function names must be
quoted as described in Section 9.2, “Schema Object Names”. For example, because there is a COUNT()
function, the use of count as a table name in the following statement causes an error:

mysql> CREATE TABLE count (i INT);
ERROR 1064 (42000): You have an error in your SQL syntax

The table name should be quoted:

mysql> CREATE TABLE `count` (i INT);
Query OK, 0 rows affected (0.00 sec)

The IGNORE_SPACE SQL mode applies to built-in functions, not to loadable functions or stored
functions. It is always permissible to have spaces after a loadable function or stored function name,
regardless of whether IGNORE_SPACE is enabled.

For further discussion of IGNORE_SPACE, see Section 9.2.5, “Function Name Parsing and Resolution”.

• NO_AUTO_CREATE_USER

Prevent the GRANT statement from automatically creating new user accounts if it would otherwise do so,
unless authentication information is specified. The statement must specify a nonempty password using
IDENTIFIED BY or an authentication plugin using IDENTIFIED WITH.

It is preferable to create MySQL accounts with CREATE USER rather than GRANT.
NO_AUTO_CREATE_USER is deprecated and the default SQL mode includes NO_AUTO_CREATE_USER.
Assignments to sql_mode that change the NO_AUTO_CREATE_USER mode state produce a warning,
except assignments that set sql_mode to DEFAULT. Expect NO_AUTO_CREATE_USER to be be
removed in a future release of MySQL, and its effect to be enabled at all times (and for GRANT not to
create accounts any longer).

Previously, before NO_AUTO_CREATE_USER was deprecated, one reason not to enable it was that it
was not replication safe. Now it can be enabled and replication-safe user management performed with
CREATE USER IF NOT EXISTS, DROP USER IF EXISTS, and ALTER USER IF EXISTS rather
than GRANT. These statements enable safe replication when replicas may have different grants than
those on the source. See Section 13.7.1.2, “CREATE USER Statement”, Section 13.7.1.3, “DROP
USER Statement”, and Section 13.7.1.1, “ALTER USER Statement”.

• NO_AUTO_VALUE_ON_ZERO

NO_AUTO_VALUE_ON_ZERO affects handling of AUTO_INCREMENT columns. Normally, you generate the
next sequence number for the column by inserting either NULL or 0 into it. NO_AUTO_VALUE_ON_ZERO
suppresses this behavior for 0 so that only NULL generates the next sequence number.

This mode can be useful if 0 has been stored in a table's AUTO_INCREMENT column. (Storing 0 is not
a recommended practice, by the way.) For example, if you dump the table with mysqldump and then
reload it, MySQL normally generates new sequence numbers when it encounters the 0 values, resulting
in a table with contents different from the one that was dumped. Enabling NO_AUTO_VALUE_ON_ZERO
before reloading the dump file solves this problem. For this reason, mysqldump automatically includes in
its output a statement that enables NO_AUTO_VALUE_ON_ZERO.

935

Server SQL Modes

• NO_BACKSLASH_ESCAPES

Enabling this mode disables the use of the backslash character (\) as an escape character within strings
and identifiers. With this mode enabled, backslash becomes an ordinary character like any other, and
the default escape sequence for LIKE expressions is changed so that no escape character is used.

• NO_DIR_IN_CREATE

When creating a table, ignore all INDEX DIRECTORY and DATA DIRECTORY directives. This option is
useful on replica replication servers.

• NO_ENGINE_SUBSTITUTION

Control automatic substitution of the default storage engine when a statement such as CREATE TABLE
or ALTER TABLE specifies a storage engine that is disabled or not compiled in.

By default, NO_ENGINE_SUBSTITUTION is enabled.

Because storage engines can be pluggable at runtime, unavailable engines are treated the same way:

With NO_ENGINE_SUBSTITUTION disabled, for CREATE TABLE the default engine is used and a
warning occurs if the desired engine is unavailable. For ALTER TABLE, a warning occurs and the table
is not altered.

With NO_ENGINE_SUBSTITUTION enabled, an error occurs and the table is not created or altered if the
desired engine is unavailable.

• NO_FIELD_OPTIONS

Do not print MySQL-specific column options in the output of SHOW CREATE TABLE. This mode is used
by mysqldump in portability mode.

Note

As of MySQL 5.7.22, NO_FIELD_OPTIONS is deprecated. It is removed in
MySQL 8.0.

• NO_KEY_OPTIONS

Do not print MySQL-specific index options in the output of SHOW CREATE TABLE. This mode is used by
mysqldump in portability mode.

Note

As of MySQL 5.7.22, NO_KEY_OPTIONS is deprecated. It is removed in MySQL
8.0.

• NO_TABLE_OPTIONS

Do not print MySQL-specific table options (such as ENGINE) in the output of SHOW CREATE TABLE.
This mode is used by mysqldump in portability mode.

Note

As of MySQL 5.7.22, NO_TABLE_OPTIONS is deprecated. It is removed in
MySQL 8.0.

• NO_UNSIGNED_SUBTRACTION

936

Server SQL Modes

Subtraction between integer values, where one is of type UNSIGNED, produces an unsigned result by
default. If the result would otherwise have been negative, an error results:

mysql> SET sql_mode = '';
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT CAST(0 AS UNSIGNED) - 1;
ERROR 1690 (22003): BIGINT UNSIGNED value is out of range in '(cast(0 as unsigned) - 1)'

If the NO_UNSIGNED_SUBTRACTION SQL mode is enabled, the result is negative:

mysql> SET sql_mode = 'NO_UNSIGNED_SUBTRACTION';
mysql> SELECT CAST(0 AS UNSIGNED) - 1;
+-------------------------+
| CAST(0 AS UNSIGNED) - 1 |
+-------------------------+
| -1 |
+-------------------------+

If the result of such an operation is used to update an UNSIGNED integer column, the result is clipped
to the maximum value for the column type, or clipped to 0 if NO_UNSIGNED_SUBTRACTION is enabled.
With strict SQL mode enabled, an error occurs and the column remains unchanged.

When NO_UNSIGNED_SUBTRACTION is enabled, the subtraction result is signed, even if any operand is
unsigned. For example, compare the type of column c2 in table t1 with that of column c2 in table t2:

mysql> SET sql_mode='';
mysql> CREATE TABLE test (c1 BIGINT UNSIGNED NOT NULL);
mysql> CREATE TABLE t1 SELECT c1 - 1 AS c2 FROM test;
mysql> DESCRIBE t1;
+-------+---------------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+-------+---------------------+------+-----+---------+-------+
| c2 | bigint(21) unsigned | NO | | 0 | |
+-------+---------------------+------+-----+---------+-------+

mysql> SET sql_mode='NO_UNSIGNED_SUBTRACTION';
mysql> CREATE TABLE t2 SELECT c1 - 1 AS c2 FROM test;
mysql> DESCRIBE t2;
+-------+------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+-------+------------+------+-----+---------+-------+
| c2 | bigint(21) | NO | | 0 | |
+-------+------------+------+-----+---------+-------+

This means that BIGINT UNSIGNED is not 100% usable in all contexts. See Section 12.10, “Cast
Functions and Operators”.

937

Server SQL Modes

• NO_ZERO_DATE

The NO_ZERO_DATE mode affects whether the server permits '0000-00-00' as a valid date. Its effect
also depends on whether strict SQL mode is enabled.

• If this mode is not enabled, '0000-00-00' is permitted and inserts produce no warning.

• If this mode is enabled, '0000-00-00' is permitted and inserts produce a warning.

• If this mode and strict mode are enabled, '0000-00-00' is not permitted and inserts produce an
error, unless IGNORE is given as well. For INSERT IGNORE and UPDATE IGNORE, '0000-00-00' is
permitted and inserts produce a warning.

NO_ZERO_DATE is deprecated. NO_ZERO_DATE is not part of strict mode, but should be used in
conjunction with strict mode and is enabled by default. A warning occurs if NO_ZERO_DATE is enabled
without also enabling strict mode or vice versa. For additional discussion, see SQL Mode Changes in
MySQL 5.7.

Because NO_ZERO_DATE is deprecated; expect it to be removed in a future release of MySQL as a
separate mode name and its effect included in the effects of strict SQL mode.

• NO_ZERO_IN_DATE

The NO_ZERO_IN_DATE mode affects whether the server permits dates in which the year part
is nonzero but the month or day part is 0. (This mode affects dates such as '2010-00-01' or
'2010-01-00', but not '0000-00-00'. To control whether the server permits '0000-00-00', use
the NO_ZERO_DATE mode.) The effect of NO_ZERO_IN_DATE also depends on whether strict SQL mode
is enabled.

• If this mode is not enabled, dates with zero parts are permitted and inserts produce no warning.

• If this mode is enabled, dates with zero parts are inserted as '0000-00-00' and produce a warning.

• If this mode and strict mode are enabled, dates with zero parts are not permitted and inserts produce
an error, unless IGNORE is given as well. For INSERT IGNORE and UPDATE IGNORE, dates with zero
parts are inserted as '0000-00-00' and produce a warning.

NO_ZERO_IN_DATE is deprecated. NO_ZERO_IN_DATE is not part of strict mode, but should be used
in conjunction with strict mode and is enabled by default. A warning occurs if NO_ZERO_IN_DATE is
enabled without also enabling strict mode or vice versa. For additional discussion, see SQL Mode
Changes in MySQL 5.7.

Because NO_ZERO_IN_DATE is deprecated; expect it to be removed in a future release of MySQL as a
separate mode name and its effect included in the effects of strict SQL mode.

• ONLY_FULL_GROUP_BY

Reject queries for which the select list, HAVING condition, or ORDER BY list refer to nonaggregated
columns that are neither named in the GROUP BY clause nor are functionally dependent on (uniquely
determined by) GROUP BY columns.

As of MySQL 5.7.5, the default SQL mode includes ONLY_FULL_GROUP_BY. (Before 5.7.5, MySQL does
not detect functional dependency and ONLY_FULL_GROUP_BY is not enabled by default.)

A MySQL extension to standard SQL permits references in the HAVING clause to aliased expressions
in the select list. Before MySQL 5.7.5, enabling ONLY_FULL_GROUP_BY disables this extension,
thus requiring the HAVING clause to be written using unaliased expressions. As of MySQL 5.7.5,

938

Server SQL Modes

this restriction is lifted so that the HAVING clause can refer to aliases regardless of whether
ONLY_FULL_GROUP_BY is enabled.

For additional discussion and examples, see Section 12.19.3, “MySQL Handling of GROUP BY”.

• PAD_CHAR_TO_FULL_LENGTH

By default, trailing spaces are trimmed from CHAR column values on retrieval. If
PAD_CHAR_TO_FULL_LENGTH is enabled, trimming does not occur and retrieved CHAR values are
padded to their full length. This mode does not apply to VARCHAR columns, for which trailing spaces are
retained on retrieval.

mysql> CREATE TABLE t1 (c1 CHAR(10));
Query OK, 0 rows affected (0.37 sec)

mysql> INSERT INTO t1 (c1) VALUES('xy');
Query OK, 1 row affected (0.01 sec)

mysql> SET sql_mode = '';
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT c1, CHAR_LENGTH(c1) FROM t1;
+------+-----------------+
| c1 | CHAR_LENGTH(c1) |
+------+-----------------+
| xy | 2 |
+------+-----------------+
1 row in set (0.00 sec)

mysql> SET sql_mode = 'PAD_CHAR_TO_FULL_LENGTH';
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT c1, CHAR_LENGTH(c1) FROM t1;
+------------+-----------------+
| c1 | CHAR_LENGTH(c1) |
+------------+-----------------+
| xy | 10 |
+------------+-----------------+
1 row in set (0.00 sec)

• PIPES_AS_CONCAT

Treat || as a string concatenation operator (same as CONCAT()) rather than as a synonym for OR.

• REAL_AS_FLOAT

Treat REAL as a synonym for FLOAT. By default, MySQL treats REAL as a synonym for DOUBLE.

• STRICT_ALL_TABLES

Enable strict SQL mode for all storage engines. Invalid data values are rejected. For details, see Strict
SQL Mode.

From MySQL 5.7.4 through 5.7.7, STRICT_ALL_TABLES includes the effect of the
ERROR_FOR_DIVISION_BY_ZERO, NO_ZERO_DATE, and NO_ZERO_IN_DATE modes. For additional
discussion, see SQL Mode Changes in MySQL 5.7.

• STRICT_TRANS_TABLES

Enable strict SQL mode for transactional storage engines, and when possible for nontransactional
storage engines. For details, see Strict SQL Mode.

939

Server SQL Modes

From MySQL 5.7.4 through 5.7.7, STRICT_TRANS_TABLES includes the effect of the
ERROR_FOR_DIVISION_BY_ZERO, NO_ZERO_DATE, and NO_ZERO_IN_DATE modes. For additional
discussion, see SQL Mode Changes in MySQL 5.7.

Combination SQL Modes

The following special modes are provided as shorthand for combinations of mode values from the
preceding list.

• ANSI

Equivalent to REAL_AS_FLOAT, PIPES_AS_CONCAT, ANSI_QUOTES, IGNORE_SPACE, and (as of
MySQL 5.7.5) ONLY_FULL_GROUP_BY.

ANSI mode also causes the server to return an error for queries where a set function S with an outer
reference S(outer_ref) cannot be aggregated in the outer query against which the outer reference
has been resolved. This is such a query:

SELECT * FROM t1 WHERE t1.a IN (SELECT MAX(t1.b) FROM t2 WHERE ...);

Here, MAX(t1.b) cannot aggregated in the outer query because it appears in the WHERE clause of that
query. Standard SQL requires an error in this situation. If ANSI mode is not enabled, the server treats
S(outer_ref) in such queries the same way that it would interpret S(const).

See Section 1.6, “MySQL Standards Compliance”.

• DB2

Equivalent to PIPES_AS_CONCAT, ANSI_QUOTES, IGNORE_SPACE, NO_KEY_OPTIONS,
NO_TABLE_OPTIONS, NO_FIELD_OPTIONS.

Note

As of MySQL 5.7.22, DB2 is deprecated. It is removed in MySQL 8.0.

• MAXDB

Equivalent to PIPES_AS_CONCAT, ANSI_QUOTES, IGNORE_SPACE, NO_KEY_OPTIONS,
NO_TABLE_OPTIONS, NO_FIELD_OPTIONS, NO_AUTO_CREATE_USER.

Note

As of MySQL 5.7.22, MAXDB is deprecated. It is removed in MySQL 8.0.

• MSSQL

Equivalent to PIPES_AS_CONCAT, ANSI_QUOTES, IGNORE_SPACE, NO_KEY_OPTIONS,
NO_TABLE_OPTIONS, NO_FIELD_OPTIONS.

Note

As of MySQL 5.7.22, MSSQL is deprecated. It is removed in MySQL 8.0.

• MYSQL323

940

Server SQL Modes

Equivalent to MYSQL323, HIGH_NOT_PRECEDENCE. This means HIGH_NOT_PRECEDENCE plus some
SHOW CREATE TABLE behaviors specific to MYSQL323:

• TIMESTAMP column display does not include DEFAULT or ON UPDATE attributes.

• String column display does not include character set and collation attributes. For CHAR and VARCHAR
columns, if the collation is binary, BINARY is appended to the column type.

• The ENGINE=engine_name table option displays as TYPE=engine_name.

• For MEMORY tables, the storage engine is displayed as HEAP.

Note

As of MySQL 5.7.22, MYSQL323 is deprecated. It is removed in MySQL 8.0.

• MYSQL40

Equivalent to MYSQL40, HIGH_NOT_PRECEDENCE. This means HIGH_NOT_PRECEDENCE plus some
behaviors specific to MYSQL40. These are the same as for MYSQL323, except that SHOW CREATE
TABLE does not display HEAP as the storage engine for MEMORY tables.

Note

As of MySQL 5.7.22, MYSQL40 is deprecated. It is removed in MySQL 8.0.

• ORACLE

Equivalent to PIPES_AS_CONCAT, ANSI_QUOTES, IGNORE_SPACE, NO_KEY_OPTIONS,
NO_TABLE_OPTIONS, NO_FIELD_OPTIONS, NO_AUTO_CREATE_USER.

Note

As of MySQL 5.7.22, ORACLE is deprecated. It is removed in MySQL 8.0.

• POSTGRESQL

Equivalent to PIPES_AS_CONCAT, ANSI_QUOTES, IGNORE_SPACE, NO_KEY_OPTIONS,
NO_TABLE_OPTIONS, NO_FIELD_OPTIONS.

Note

As of MySQL 5.7.22, POSTGRESQL is deprecated. It is removed in MySQL 8.0.

• TRADITIONAL

Before MySQL 5.7.4, and in MySQL 5.7.8 and later, TRADITIONAL is equivalent to
STRICT_TRANS_TABLES, STRICT_ALL_TABLES, NO_ZERO_IN_DATE, NO_ZERO_DATE,
ERROR_FOR_DIVISION_BY_ZERO, NO_AUTO_CREATE_USER, and NO_ENGINE_SUBSTITUTION.

From MySQL 5.7.4 though 5.7.7, TRADITIONAL is equivalent to STRICT_TRANS_TABLES,
STRICT_ALL_TABLES, NO_AUTO_CREATE_USER, and NO_ENGINE_SUBSTITUTION. The
NO_ZERO_IN_DATE, NO_ZERO_DATE, and ERROR_FOR_DIVISION_BY_ZERO modes are not
named because in those versions their effects are included in the effects of strict SQL mode
(STRICT_ALL_TABLES or STRICT_TRANS_TABLES). Thus, the effects of TRADITIONAL are the same

941

Server SQL Modes

in all MySQL 5.7 versions (and the same as in MySQL 5.6). For additional discussion, see SQL Mode
Changes in MySQL 5.7.

Strict SQL Mode

Strict mode controls how MySQL handles invalid or missing values in data-change statements such as
INSERT or UPDATE. A value can be invalid for several reasons. For example, it might have the wrong data
type for the column, or it might be out of range. A value is missing when a new row to be inserted does not
contain a value for a non-NULL column that has no explicit DEFAULT clause in its definition. (For a NULL
column, NULL is inserted if the value is missing.) Strict mode also affects DDL statements such as CREATE
TABLE.

If strict mode is not in effect, MySQL inserts adjusted values for invalid or missing values and produces
warnings (see Section 13.7.5.40, “SHOW WARNINGS Statement”). In strict mode, you can produce this
behavior by using INSERT IGNORE or UPDATE IGNORE.

For statements such as SELECT that do not change data, invalid values generate a warning in strict mode,
not an error.

Strict mode produces an error for attempts to create a key that exceeds the maximum key length. When
strict mode is not enabled, this results in a warning and truncation of the key to the maximum key length.

Strict mode does not affect whether foreign key constraints are checked. foreign_key_checks can be
used for that. (See Section 5.1.7, “Server System Variables”.)

Strict SQL mode is in effect if either STRICT_ALL_TABLES or STRICT_TRANS_TABLES is enabled,
although the effects of these modes differ somewhat:

• For transactional tables, an error occurs for invalid or missing values in a data-change statement when
either STRICT_ALL_TABLES or STRICT_TRANS_TABLES is enabled. The statement is aborted and
rolled back.

• For nontransactional tables, the behavior is the same for either mode if the bad value occurs in the
first row to be inserted or updated: The statement is aborted and the table remains unchanged. If the
statement inserts or modifies multiple rows and the bad value occurs in the second or later row, the
result depends on which strict mode is enabled:

• For STRICT_ALL_TABLES, MySQL returns an error and ignores the rest of the rows. However,
because the earlier rows have been inserted or updated, the result is a partial update. To avoid this,
use single-row statements, which can be aborted without changing the table.

• For STRICT_TRANS_TABLES, MySQL converts an invalid value to the closest valid value for the
column and inserts the adjusted value. If a value is missing, MySQL inserts the implicit default
value for the column data type. In either case, MySQL generates a warning rather than an error and
continues processing the statement. Implicit defaults are described in Section 11.6, “Data Type Default
Values”.

Strict mode affects handling of division by zero, zero dates, and zeros in dates as follows:

• Strict mode affects handling of division by zero, which includes MOD(N,0):

For data-change operations (INSERT, UPDATE):

• If strict mode is not enabled, division by zero inserts NULL and produces no warning.

• If strict mode is enabled, division by zero produces an error, unless IGNORE is given as well. For
INSERT IGNORE and UPDATE IGNORE, division by zero inserts NULL and produces a warning.

942

Server SQL Modes

For SELECT, division by zero returns NULL. Enabling strict mode causes a warning to be produced as
well.

• Strict mode affects whether the server permits '0000-00-00' as a valid date:

• If strict mode is not enabled, '0000-00-00' is permitted and inserts produce no warning.

• If strict mode is enabled, '0000-00-00' is not permitted and inserts produce an error, unless
IGNORE is given as well. For INSERT IGNORE and UPDATE IGNORE, '0000-00-00' is permitted
and inserts produce a warning.

• Strict mode affects whether the server permits dates in which the year part is nonzero but the month or
day part is 0 (dates such as '2010-00-01' or '2010-01-00'):

• If strict mode is not enabled, dates with zero parts are permitted and inserts produce no warning.

• If strict mode is enabled, dates with zero parts are not permitted and inserts produce an error, unless
IGNORE is given as well. For INSERT IGNORE and UPDATE IGNORE, dates with zero parts are
inserted as '0000-00-00' (which is considered valid with IGNORE) and produce a warning.

For more information about strict mode with respect to IGNORE, see Comparison of the IGNORE Keyword
and Strict SQL Mode.

Before MySQL 5.7.4, and in MySQL 5.7.8 and later, strict mode affects handling of division by zero, zero
dates, and zeros in dates in conjunction with the ERROR_FOR_DIVISION_BY_ZERO, NO_ZERO_DATE, and
NO_ZERO_IN_DATE modes. From MySQL 5.7.4 though 5.7.7, the ERROR_FOR_DIVISION_BY_ZERO,
NO_ZERO_DATE, and NO_ZERO_IN_DATE modes do nothing when named explicitly and their effects are
included in the effects of strict mode. For additional discussion, see SQL Mode Changes in MySQL 5.7.

Comparison of the IGNORE Keyword and Strict SQL Mode

This section compares the effect on statement execution of the IGNORE keyword (which downgrades
errors to warnings) and strict SQL mode (which upgrades warnings to errors). It describes which
statements they affect, and which errors they apply to.

The following table presents a summary comparison of statement behavior when the default is to produce
an error versus a warning. An example of when the default is to produce an error is inserting a NULL into
a NOT NULL column. An example of when the default is to produce a warning is inserting a value of the
wrong data type into a column (such as inserting the string 'abc' into an integer column).

Operational Mode When Statement Default is Error When Statement Default is
Warning

Without IGNORE or strict SQL
mode

Error Warning

With IGNORE Warning Warning (same as without
IGNORE or strict SQL mode)

With strict SQL mode Error (same as without IGNORE or
strict SQL mode)

Error

With IGNORE and strict SQL mode Warning Warning

One conclusion to draw from the table is that when the IGNORE keyword and strict SQL mode are both
in effect, IGNORE takes precedence. This means that, although IGNORE and strict SQL mode can be
considered to have opposite effects on error handling, they do not cancel when used together.

• The Effect of IGNORE on Statement Execution

943

Server SQL Modes

• The Effect of Strict SQL Mode on Statement Execution

The Effect of IGNORE on Statement Execution

Several statements in MySQL support an optional IGNORE keyword. This keyword causes the server
to downgrade certain types of errors and generate warnings instead. For a multiple-row statement,
downgrading an error to a warning may enable a row to be processed. Otherwise, IGNORE causes the
statement to skip to the next row instead of aborting. (For nonignorable errors, an error occurs regardless
of the IGNORE keyword.)

Example: If the table t has a primary key column i containing unique values, attempting to insert the same
value of i into multiple rows normally produces a duplicate-key error:

mysql> CREATE TABLE t (i INT NOT NULL PRIMARY KEY);
mysql> INSERT INTO t (i) VALUES(1),(1);
ERROR 1062 (23000): Duplicate entry '1' for key 'PRIMARY'

With IGNORE, the row containing the duplicate key still is not inserted, but a warning occurs instead of an
error:

mysql> INSERT IGNORE INTO t (i) VALUES(1),(1);
Query OK, 1 row affected, 1 warning (0.01 sec)
Records: 2 Duplicates: 1 Warnings: 1

mysql> SHOW WARNINGS;
+---------+------+---------------------------------------+
| Level | Code | Message |
+---------+------+---------------------------------------+
| Warning | 1062 | Duplicate entry '1' for key 'PRIMARY' |
+---------+------+---------------------------------------+
1 row in set (0.00 sec)

Example: If the table t2 has a NOT NULL column id, attempting to insert NULL produces an error in strict
SQL mode:

mysql> CREATE TABLE t2 (id INT NOT NULL);
mysql> INSERT INTO t2 (id) VALUES(1),(NULL),(3);
ERROR 1048 (23000): Column 'id' cannot be null
mysql> SELECT * FROM t2;
Empty set (0.00 sec)

If the SQL mode is not strict, IGNORE causes the NULL to be inserted as the column implicit default (0 in
this case), which enables the row to be handled without skipping it:

mysql> INSERT INTO t2 (id) VALUES(1),(NULL),(3);
mysql> SELECT * FROM t2;
+----+
| id |
+----+
| 1 |
| 0 |
| 3 |
+----+

These statements support the IGNORE keyword:

• CREATE TABLE ... SELECT: IGNORE does not apply to the CREATE TABLE or SELECT parts of the
statement but to inserts into the table of rows produced by the SELECT. Rows that duplicate an existing
row on a unique key value are discarded.

• DELETE: IGNORE causes MySQL to ignore errors during the process of deleting rows.

• INSERT: With IGNORE, rows that duplicate an existing row on a unique key value are discarded. Rows
set to values that would cause data conversion errors are set to the closest valid values instead.

944

Server SQL Modes

 For partitioned tables where no partition matching a given value is found, IGNORE causes the insert
operation to fail silently for rows containing the unmatched value.

• LOAD DATA, LOAD XML: With IGNORE, rows that duplicate an existing row on a unique key value are
discarded.

• UPDATE: With IGNORE, rows for which duplicate-key conflicts occur on a unique key value are not
updated. Rows updated to values that would cause data conversion errors are updated to the closest
valid values instead.

The IGNORE keyword applies to the following ignorable errors:

• ER_BAD_NULL_ERROR

• ER_DUP_ENTRY

• ER_DUP_ENTRY_WITH_KEY_NAME

• ER_DUP_KEY

• ER_NO_PARTITION_FOR_GIVEN_VALUE

• ER_NO_PARTITION_FOR_GIVEN_VALUE_SILENT

• ER_NO_REFERENCED_ROW_2

• ER_ROW_DOES_NOT_MATCH_GIVEN_PARTITION_SET

• ER_ROW_IS_REFERENCED_2

• ER_SUBQUERY_NO_1_ROW

• ER_VIEW_CHECK_FAILED

The Effect of Strict SQL Mode on Statement Execution

The MySQL server can operate in different SQL modes, and can apply these modes differently for different
clients, depending on the value of the sql_mode system variable. In “strict” SQL mode, the server
upgrades certain warnings to errors.

For example, in non-strict SQL mode, inserting the string 'abc' into an integer column results in
conversion of the value to 0 and a warning:

mysql> SET sql_mode = '';
Query OK, 0 rows affected (0.00 sec)

mysql> INSERT INTO t (i) VALUES('abc');
Query OK, 1 row affected, 1 warning (0.01 sec)

mysql> SHOW WARNINGS;
+---------+------+--+
| Level | Code | Message |
+---------+------+--+
| Warning | 1366 | Incorrect integer value: 'abc' for column 'i' at row 1 |
+---------+------+--+
1 row in set (0.00 sec)

In strict SQL mode, the invalid value is rejected with an error:

mysql> SET sql_mode = 'STRICT_ALL_TABLES';
Query OK, 0 rows affected (0.00 sec)

945

https://dev.mysql.com/doc/mysql-errors/5.7/en/server-error-reference.html#error_er_bad_null_error
https://dev.mysql.com/doc/mysql-errors/5.7/en/server-error-reference.html#error_er_dup_entry
https://dev.mysql.com/doc/mysql-errors/5.7/en/server-error-reference.html#error_er_dup_entry_with_key_name
https://dev.mysql.com/doc/mysql-errors/5.7/en/server-error-reference.html#error_er_dup_key
https://dev.mysql.com/doc/mysql-errors/5.7/en/server-error-reference.html#error_er_no_partition_for_given_value
https://dev.mysql.com/doc/mysql-errors/5.7/en/server-error-reference.html#error_er_no_partition_for_given_value_silent
https://dev.mysql.com/doc/mysql-errors/5.7/en/server-error-reference.html#error_er_no_referenced_row_2
https://dev.mysql.com/doc/mysql-errors/5.7/en/server-error-reference.html#error_er_row_does_not_match_given_partition_set
https://dev.mysql.com/doc/mysql-errors/5.7/en/server-error-reference.html#error_er_row_is_referenced_2
https://dev.mysql.com/doc/mysql-errors/5.7/en/server-error-reference.html#error_er_subquery_no_1_row
https://dev.mysql.com/doc/mysql-errors/5.7/en/server-error-reference.html#error_er_view_check_failed

Server SQL Modes

mysql> INSERT INTO t (i) VALUES('abc');
ERROR 1366 (HY000): Incorrect integer value: 'abc' for column 'i' at row 1

For more information about possible settings of the sql_mode system variable, see Section 5.1.10,
“Server SQL Modes”.

Strict SQL mode applies to the following statements under conditions for which some value might be out of
range or an invalid row is inserted into or deleted from a table:

• ALTER TABLE

• CREATE TABLE

• CREATE TABLE ... SELECT

• DELETE (both single table and multiple table)

• INSERT

• LOAD DATA

• LOAD XML

• SELECT SLEEP()

• UPDATE (both single table and multiple table)

Within stored programs, individual statements of the types just listed execute in strict SQL mode if the
program was defined while strict mode was in effect.

Strict SQL mode applies to the following errors, which represent a class of errors in which an input value
is either invalid or missing. A value is invalid if it has the wrong data type for the column or might be out of
range. A value is missing if a new row to be inserted does not contain a value for a NOT NULL column that
has no explicit DEFAULT clause in its definition.

ER_BAD_NULL_ERROR
ER_CUT_VALUE_GROUP_CONCAT
ER_DATA_TOO_LONG
ER_DATETIME_FUNCTION_OVERFLOW
ER_DIVISION_BY_ZERO
ER_INVALID_ARGUMENT_FOR_LOGARITHM
ER_NO_DEFAULT_FOR_FIELD
ER_NO_DEFAULT_FOR_VIEW_FIELD
ER_TOO_LONG_KEY
ER_TRUNCATED_WRONG_VALUE
ER_TRUNCATED_WRONG_VALUE_FOR_FIELD
ER_WARN_DATA_OUT_OF_RANGE
ER_WARN_NULL_TO_NOTNULL
ER_WARN_TOO_FEW_RECORDS
ER_WRONG_ARGUMENTS
ER_WRONG_VALUE_FOR_TYPE
WARN_DATA_TRUNCATED

Note

Because continued MySQL development defines new errors, there may be errors
not in the preceding list to which strict SQL mode applies.

SQL Mode Changes in MySQL 5.7

In MySQL 5.7.22, these SQL modes are deprecated and are removed in MySQL 8.0: DB2, MAXDB,
MSSQL, MYSQL323, MYSQL40, ORACLE, POSTGRESQL, NO_FIELD_OPTIONS, NO_KEY_OPTIONS,
NO_TABLE_OPTIONS.

946

https://dev.mysql.com/doc/mysql-errors/5.7/en/server-error-reference.html#error_er_bad_null_error
https://dev.mysql.com/doc/mysql-errors/5.7/en/server-error-reference.html#error_er_cut_value_group_concat
https://dev.mysql.com/doc/mysql-errors/5.7/en/server-error-reference.html#error_er_data_too_long
https://dev.mysql.com/doc/mysql-errors/5.7/en/server-error-reference.html#error_er_datetime_function_overflow
https://dev.mysql.com/doc/mysql-errors/5.7/en/server-error-reference.html#error_er_division_by_zero
https://dev.mysql.com/doc/mysql-errors/5.7/en/server-error-reference.html#error_er_invalid_argument_for_logarithm
https://dev.mysql.com/doc/mysql-errors/5.7/en/server-error-reference.html#error_er_no_default_for_field
https://dev.mysql.com/doc/mysql-errors/5.7/en/server-error-reference.html#error_er_no_default_for_view_field
https://dev.mysql.com/doc/mysql-errors/5.7/en/server-error-reference.html#error_er_too_long_key
https://dev.mysql.com/doc/mysql-errors/5.7/en/server-error-reference.html#error_er_truncated_wrong_value
https://dev.mysql.com/doc/mysql-errors/5.7/en/server-error-reference.html#error_er_truncated_wrong_value_for_field
https://dev.mysql.com/doc/mysql-errors/5.7/en/server-error-reference.html#error_er_warn_data_out_of_range
https://dev.mysql.com/doc/mysql-errors/5.7/en/server-error-reference.html#error_er_warn_null_to_notnull
https://dev.mysql.com/doc/mysql-errors/5.7/en/server-error-reference.html#error_er_warn_too_few_records
https://dev.mysql.com/doc/mysql-errors/5.7/en/server-error-reference.html#error_er_wrong_arguments
https://dev.mysql.com/doc/mysql-errors/5.7/en/server-error-reference.html#error_er_wrong_value_for_type
https://dev.mysql.com/doc/mysql-errors/5.7/en/server-error-reference.html#error_warn_data_truncated

Connection Management

In MySQL 5.7, the ONLY_FULL_GROUP_BY SQL mode is enabled by default because GROUP BY
processing has become more sophisticated to include detection of functional dependencies. However,
if you find that having ONLY_FULL_GROUP_BY enabled causes queries for existing applications to be
rejected, either of these actions should restore operation:

• If it is possible to modify an offending query, do so, either so that nonaggregated columns are
functionally dependent on GROUP BY columns, or by referring to nonaggregated columns using
ANY_VALUE().

• If it is not possible to modify an offending query (for example, if it is generated by a third-party
application), set the sql_mode system variable at server startup to not enable ONLY_FULL_GROUP_BY.

In MySQL 5.7, the ERROR_FOR_DIVISION_BY_ZERO, NO_ZERO_DATE, and NO_ZERO_IN_DATE SQL
modes are deprecated. The long term plan is to have the three modes be included in strict SQL mode
and to remove them as explicit modes in a future release of MySQL. For compatibility in MySQL 5.7 with
MySQL 5.6 strict mode and to provide additional time for affected applications to be modified, the following
behaviors apply:

• ERROR_FOR_DIVISION_BY_ZERO, NO_ZERO_DATE, and NO_ZERO_IN_DATE are not part of strict SQL
mode, but it is intended that they be used together with strict mode. As a reminder, a warning occurs if
they are enabled without also enabling strict mode or vice versa.

• ERROR_FOR_DIVISION_BY_ZERO, NO_ZERO_DATE, and NO_ZERO_IN_DATE are enabled by default.

With the preceding changes, stricter data checking is still enabled by default, but the individual modes can
be disabled in environments where it is currently desirable or necessary to do so.

5.1.11 Connection Management

This section describes how MySQL Server manages connections. This includes a description of the
available connection interfaces, how the server uses connection handler threads, details about the
administrative connection interface, and management of DNS lookups.

5.1.11.1 Connection Interfaces

This section describes aspects of how the MySQL server manages client connections.

• Network Interfaces and Connection Manager Threads

• Client Connection Thread Management

• Connection Volume Management

Network Interfaces and Connection Manager Threads

The server is capable of listening for client connections on multiple network interfaces. Connection
manager threads handle client connection requests on the network interfaces that the server listens to:

• On all platforms, one manager thread handles TCP/IP connection requests.

• On Unix, the same manager thread also handles Unix socket file connection requests.

• On Windows, one manager thread handles shared-memory connection requests, and another handles
named-pipe connection requests.

The server does not create threads to handle interfaces that it does not listen to. For example, a Windows
server that does not have support for named-pipe connections enabled does not create a thread to handle
them.

947

Connection Management

Individual server plugins or components may implement their own connection interface:

• X Plugin enables MySQL Server to communicate with clients using X Protocol. See Section 19.4, “X
Plugin”.

Client Connection Thread Management

Connection manager threads associate each client connection with a thread dedicated to it that handles
authentication and request processing for that connection. Manager threads create a new thread when
necessary but try to avoid doing so by consulting the thread cache first to see whether it contains a thread
that can be used for the connection. When a connection ends, its thread is returned to the thread cache if
the cache is not full.

In this connection thread model, there are as many threads as there are clients currently connected, which
has some disadvantages when server workload must scale to handle large numbers of connections.
For example, thread creation and disposal becomes expensive. Also, each thread requires server and
kernel resources, such as stack space. To accommodate a large number of simultaneous connections,
the stack size per thread must be kept small, leading to a situation where it is either too small or the server
consumes large amounts of memory. Exhaustion of other resources can occur as well, and scheduling
overhead can become significant.

MySQL Enterprise Edition includes a thread pool plugin that provides an alternative thread-handling model
designed to reduce overhead and improve performance. It implements a thread pool that increases server
performance by efficiently managing statement execution threads for large numbers of client connections.
See Section 5.5.3, “MySQL Enterprise Thread Pool”.

To control and monitor how the server manages threads that handle client connections, several system
and status variables are relevant. (See Section 5.1.7, “Server System Variables”, and Section 5.1.9,
“Server Status Variables”.)

• The thread_cache_size system variable determines the thread cache size. By default, the
server autosizes the value at startup, but it can be set explicitly to override this default. A value
of 0 disables caching, which causes a thread to be set up for each new connection and disposed
of when the connection terminates. To enable N inactive connection threads to be cached, set
thread_cache_size to N at server startup or at runtime. A connection thread becomes inactive when
the client connection with which it was associated terminates.

• To monitor the number of threads in the cache and how many threads have been created because a
thread could not be taken from the cache, check the Threads_cached and Threads_created status
variables.

• When the thread stack is too small, this limits the complexity of the SQL statements the server can
handle, the recursion depth of stored procedures, and other memory-consuming actions. To set a stack
size of N bytes for each thread, start the server with thread_stack set to N.

Connection Volume Management

To control the maximum number of clients the server permits to connect simultaneously, set the
max_connections system variable at server startup or at runtime. It may be necessary to increase
max_connections if more clients attempt to connect simultaneously then the server is configured to
handle (see Section B.3.2.5, “Too many connections”).

mysqld actually permits max_connections + 1 client connections. The extra connection is reserved
for use by accounts that have the SUPER privilege. By granting the privilege to administrators and not
to normal users (who should not need it), an administrator who also has the PROCESS privilege can
connect to the server and use SHOW PROCESSLIST to diagnose problems even if the maximum number of
unprivileged clients are connected. See Section 13.7.5.29, “SHOW PROCESSLIST Statement”.

948

Connection Management

If the server refuses a connection because the max_connections limit is reached, it increments the
Connection_errors_max_connections status variable.

The maximum number of connections MySQL supports (that is, the maximum value to which
max_connections can be set) depends on several factors:

• The quality of the thread library on a given platform.

• The amount of RAM available.

• The amount of RAM is used for each connection.

• The workload from each connection.

• The desired response time.

• The number of file descriptors available.

Linux or Solaris should be able to support at least 500 to 1000 simultaneous connections routinely and as
many as 10,000 connections if you have many gigabytes of RAM available and the workload from each is
low or the response time target undemanding.

Increasing the max_connections value increases the number of file descriptors that mysqld requires. If
the required number of descriptors are not available, the server reduces the value of max_connections.
For comments on file descriptor limits, see Section 8.4.3.1, “How MySQL Opens and Closes Tables”.

Increasing the open_files_limit system variable may be necessary, which may also require raising
the operating system limit on how many file descriptors can be used by MySQL. Consult your operating
system documentation to determine whether it is possible to increase the limit and how to do so. See also
Section B.3.2.16, “File Not Found and Similar Errors”.

5.1.11.2 DNS Lookups and the Host Cache

The MySQL server maintains an in-memory host cache that contains information about clients: IP address,
host name, and error information. The Performance Schema host_cache table exposes the contents
of the host cache so that it can be examined using SELECT statements. This may help you diagnose the
causes of connection problems. See Section 25.12.16.1, “The host_cache Table”.

The following sections discuss how the host cache works, as well as other topics such as how to configure
and monitor the cache.

• Host Cache Operation

• Configuring the Host Cache

• Monitoring the Host Cache

• Flushing the Host Cache

• Dealing with Blocked Hosts

Host Cache Operation

The server uses the host cache only for non-localhost TCP connections. It does not use the cache for
TCP connections established using a loopback interface address (for example, 127.0.0.1 or ::1), or for
connections established using a Unix socket file, named pipe, or shared memory.

The server uses the host cache for several purposes:

949

Connection Management

• By caching the results of IP-to-host name lookups, the server avoids doing a Domain Name System
(DNS) lookup for each client connection. Instead, for a given host, it needs to perform a lookup only for
the first connection from that host.

• The cache contains information about errors that occur during the client connection process.
Some errors are considered “blocking.” If too many of these occur successively from a given
host without a successful connection, the server blocks further connections from that host. The
max_connect_errors system variable determines the permitted number of successive errors before
blocking occurs.

For each applicable new client connection, the server uses the client IP address to check whether the
client host name is in the host cache. If so, the server refuses or continues to process the connection
request depending on whether or not the host is blocked. If the host is not in the cache, the server attempts
to resolve the host name. First, it resolves the IP address to a host name and resolves that host name back
to an IP address. Then it compares the result to the original IP address to ensure that they are the same.
The server stores information about the result of this operation in the host cache. If the cache is full, the
least recently used entry is discarded.

The server performs host name resolution using the getaddrinfo() system call.

The server handles entries in the host cache like this:

1. When the first TCP client connection reaches the server from a given IP address, a new cache entry
is created to record the client IP, host name, and client lookup validation flag. Initially, the host name
is set to NULL and the flag is false. This entry is also used for subsequent client TCP connections from
the same originating IP.

2. If the validation flag for the client IP entry is false, the server attempts an IP-to-host name-to-IP
DNS resolution. If that is successful, the host name is updated with the resolved host name and the
validation flag is set to true. If resolution is unsuccessful, the action taken depends on whether the error
is permanent or transient. For permanent failures, the host name remains NULL and the validation flag
is set to true. For transient failures, the host name and validation flag remain unchanged. (In this case,
another DNS resolution attempt occurs the next time a client connects from this IP.)

3. If an error occurs while processing an incoming client connection from a given IP address, the server
updates the corresponding error counters in the entry for that IP. For a description of the errors
recorded, see Section 25.12.16.1, “The host_cache Table”.

To unblock blocked hosts, flush the host cache; see Dealing with Blocked Hosts.

It is possible for a blocked host to become unblocked even without flushing the host cache if activity from
other hosts occurs:

• If the cache is full when a connection arrives from a client IP not in the cache, the server discards the
least recently used cache entry to make room for the new entry.

• If the discarded entry is for a blocked host, that host becomes unblocked.

Some connection errors are not associated with TCP connections, occur very early in the connection
process (even before an IP address is known), or are not specific to any particular IP address (such as out-
of-memory conditions). For information about these errors, check the Connection_errors_xxx status
variables (see Section 5.1.9, “Server Status Variables”).

Configuring the Host Cache

The host cache is enabled by default. The host_cache_size system variable controls its size, as well
as the size of the Performance Schema host_cache table that exposes the cache contents. The cache

950

Connection Management

size can be set at server startup and changed at runtime. For example, to set the size to 100 at startup, put
these lines in the server my.cnf file:

[mysqld]
host_cache_size=200

To change the size to 300 at runtime, do this:

SET GLOBAL host_cache_size=300;

Setting host_cache_size to 0, either at server startup or at runtime, disables the host cache. With the
cache disabled, the server performs a DNS lookup every time a client connects.

Changing the cache size at runtime causes an implicit host cache flushing operation that clears the host
cache, truncates the host_cache table, and unblocks any blocked hosts; see Flushing the Host Cache.

Using the --skip-host-cache option is similar to setting the host_cache_size system variable to
0, but host_cache_size is more flexible because it can also be used to resize, enable, and disable the
host cache at runtime, not just at server startup. Starting the server with --skip-host-cache does not
prevent runtime changes to the value of host_cache_size, but such changes have no effect and the
cache is not re-enabled even if host_cache_size is set larger than 0.

To disable DNS host name lookups, start the server with the skip_name_resolve system variable
enabled. In this case, the server uses only IP addresses and not host names to match connecting hosts to
rows in the MySQL grant tables. Only accounts specified in those tables using IP addresses can be used.
(A client may not be able to connect if no account exists that specifies the client IP address.)

If you have a very slow DNS and many hosts, you might be able to improve performance either by enabling
skip_name_resolve to disable DNS lookups, or by increasing the value of host_cache_size to make
the host cache larger.

To disallow TCP/IP connections entirely, start the server with the skip_networking system variable
enabled.

To adjust the permitted number of successive connection errors before host blocking occurs, set the
max_connect_errors system variable. For example, to set the value at startup put these lines in the
server my.cnf file:

[mysqld]
max_connect_errors=10000

To change the value at runtime, do this:

SET GLOBAL max_connect_errors=10000;

Monitoring the Host Cache

The Performance Schema host_cache table exposes the contents of the host cache. This table can be
examined using SELECT statements, which may help you diagnose the causes of connection problems.
The Performance Schema must be enabled or this table is empty. For information about this table, see
Section 25.12.16.1, “The host_cache Table”.

Flushing the Host Cache

Flushing the host cache might be advisable or desirable under these conditions:

• Some of your client hosts change IP address.

• The error message Host 'host_name' is blocked occurs for connections from legitimate hosts.
(See Dealing with Blocked Hosts.)

951

IPv6 Support

Flushing the host cache has these effects:

• It clears the in-memory host cache.

• It removes all rows from the Performance Schema host_cache table that exposes the cache contents.

• It unblocks any blocked hosts. This enables further connection attempts from those hosts.

To flush the host cache, use any of these methods:

• Change the value of the host_cache_size system variable. This requires the SUPER privilege.

• Execute a TRUNCATE TABLE statement that truncates the Performance Schema host_cache table.
This requires the DROP privilege for the table.

• Execute a FLUSH HOSTS statement. This requires the RELOAD privilege.

• Execute a mysqladmin flush-hosts command. This requires the RELOAD privilege.

Dealing with Blocked Hosts

The server uses the host cache to track errors that occur during the client connection process. If the
following error occurs, it means that mysqld has received many connection requests from the given host
that were interrupted in the middle:

Host 'host_name' is blocked because of many connection errors.
Unblock with 'mysqladmin flush-hosts'

The value of the max_connect_errors system variable determines how many successive interrupted
connection requests the server permits before blocking a host. After max_connect_errors failed
requests without a successful connection, the server assumes that something is wrong (for example, that
someone is trying to break in), and blocks the host from further connection requests.

To unblock blocked hosts, flush the host cache; see Flushing the Host Cache.

Alternatively, to avoid having the error message occur, set max_connect_errors as described
in Configuring the Host Cache. The default value of max_connect_errors is 100. Increasing
max_connect_errors to a large value makes it less likely that a host reaches the threshold and
becomes blocked. However, if the Host 'host_name' is blocked error message occurs, first verify
that there is nothing wrong with TCP/IP connections from the blocked hosts. It does no good to increase
the value of max_connect_errors if there are network problems.

5.1.12 IPv6 Support

Support for IPv6 in MySQL includes these capabilities:

• MySQL Server can accept TCP/IP connections from clients connecting over IPv6. For example, this
command connects over IPv6 to the MySQL server on the local host:

$> mysql -h ::1

To use this capability, two things must be true:

• Your system must be configured to support IPv6. See Section 5.1.12.1, “Verifying System Support for
IPv6”.

• The default MySQL server configuration permits IPv6 connections in addition to IPv4 connections. To
change the default configuration, start the server with the bind_address system variable set to an
appropriate value. See Section 5.1.7, “Server System Variables”.

952

IPv6 Support

• MySQL account names permit IPv6 addresses to enable DBAs to specify privileges for clients that
connect to the server over IPv6. See Section 6.2.4, “Specifying Account Names”. IPv6 addresses can be
specified in account names in statements such as CREATE USER, GRANT, and REVOKE. For example:

mysql> CREATE USER 'bill'@'::1' IDENTIFIED BY 'secret';
mysql> GRANT SELECT ON mydb.* TO 'bill'@'::1';

• IPv6 functions enable conversion between string and internal format IPv6 address formats, and checking
whether values represent valid IPv6 addresses. For example, INET6_ATON() and INET6_NTOA() are
similar to INET_ATON() and INET_NTOA(), but handle IPv6 addresses in addition to IPv4 addresses.
See Section 12.20, “Miscellaneous Functions”.

The following sections describe how to set up MySQL so that clients can connect to the server over IPv6.

5.1.12.1 Verifying System Support for IPv6

Before MySQL Server can accept IPv6 connections, the operating system on your server host must
support IPv6. As a simple test to determine whether that is true, try this command:

$> ping6 ::1
16 bytes from ::1, icmp_seq=0 hlim=64 time=0.171 ms
16 bytes from ::1, icmp_seq=1 hlim=64 time=0.077 ms
...

To produce a description of your system's network interfaces, invoke ifconfig -a and look for IPv6
addresses in the output.

If your host does not support IPv6, consult your system documentation for instructions on enabling it. It
might be that you need only reconfigure an existing network interface to add an IPv6 address. Or a more
extensive change might be needed, such as rebuilding the kernel with IPv6 options enabled.

These links may be helpful in setting up IPv6 on various platforms:

• Windows

• Gentoo Linux

• Ubuntu Linux

• Linux (Generic)

• macOS

5.1.12.2 Configuring the MySQL Server to Permit IPv6 Connections

The MySQL server listens on a single network socket for TCP/IP connections. This socket is bound to a
single address, but it is possible for an address to map onto multiple network interfaces. To specify an
address, set bind_address=addr at server startup, where addr is an IPv4 or IPv6 address or a host
name. For details, see the bind_address description in Section 5.1.7, “Server System Variables”.

5.1.12.3 Connecting Using the IPv6 Local Host Address

The following procedure shows how to configure MySQL to permit IPv6 connections by clients that connect
to the local server using the ::1 local host address. The instructions given here assume that your system
supports IPv6.

1. Start the MySQL server with an appropriate bind_address setting to permit it to accept IPv6
connections. For example, put the following lines in the server option file and restart the server:

953

https://msdn.microsoft.com/en-us/library/dd163569.aspx
http://www.gentoo.org/doc/en/ipv6.xml
https://wiki.ubuntu.com/IPv6
http://www.tldp.org/HOWTO/Linux+IPv6-HOWTO/
https://support.apple.com/en-us/HT202237

IPv6 Support

[mysqld]
bind_address = *

Alternatively, you can bind the server to ::1, but that makes the server more restrictive for TCP/IP
connections. It accepts only IPv6 connections for that single address and rejects IPv4 connections. For
more information, see the bind_address description in Section 5.1.7, “Server System Variables”.

2. As an administrator, connect to the server and create an account for a local user who connects from
the ::1 local IPv6 host address:

mysql> CREATE USER 'ipv6user'@'::1' IDENTIFIED BY 'ipv6pass';

For the permitted syntax of IPv6 addresses in account names, see Section 6.2.4, “Specifying Account
Names”. In addition to the CREATE USER statement, you can issue GRANT statements that give specific
privileges to the account, although that is not necessary for the remaining steps in this procedure.

3. Invoke the mysql client to connect to the server using the new account:

$> mysql -h ::1 -u ipv6user -pipv6pass

4. Try some simple statements that show connection information:

mysql> STATUS
...
Connection: ::1 via TCP/IP
...

mysql> SELECT CURRENT_USER(), @@bind_address;
+----------------+----------------+
| CURRENT_USER() | @@bind_address |
+----------------+----------------+
| ipv6user@::1 | :: |
+----------------+----------------+

5.1.12.4 Connecting Using IPv6 Nonlocal Host Addresses

The following procedure shows how to configure MySQL to permit IPv6 connections by remote clients. It is
similar to the preceding procedure for local clients, but the server and client hosts are distinct and each has
its own nonlocal IPv6 address. The example uses these addresses:

Server host: 2001:db8:0:f101::1
Client host: 2001:db8:0:f101::2

These addresses are chosen from the nonroutable address range recommended by IANA for
documentation purposes and suffice for testing on your local network. To accept IPv6 connections from
clients outside the local network, the server host must have a public address. If your network provider
assigns you an IPv6 address, you can use that. Otherwise, another way to obtain an address is to use an
IPv6 broker; see Section 5.1.12.5, “Obtaining an IPv6 Address from a Broker”.

1. Start the MySQL server with an appropriate bind_address setting to permit it to accept IPv6
connections. For example, put the following lines in the server option file and restart the server:

[mysqld]
bind_address = *

Alternatively, you can bind the server to 2001:db8:0:f101::1, but that makes the server more
restrictive for TCP/IP connections. It accepts only IPv6 connections for that single address and rejects
IPv4 connections. For more information, see the bind_address description in Section 5.1.7, “Server
System Variables”.

954

http://www.iana.org/assignments/ipv6-unicast-address-assignments/ipv6-unicast-address-assignments.xml

IPv6 Support

2. On the server host (2001:db8:0:f101::1), create an account for a user who connects from the
client host (2001:db8:0:f101::2):

mysql> CREATE USER 'remoteipv6user'@'2001:db8:0:f101::2' IDENTIFIED BY 'remoteipv6pass';

3. On the client host (2001:db8:0:f101::2), invoke the mysql client to connect to the server using the
new account:

$> mysql -h 2001:db8:0:f101::1 -u remoteipv6user -premoteipv6pass

4. Try some simple statements that show connection information:

mysql> STATUS
...
Connection: 2001:db8:0:f101::1 via TCP/IP
...

mysql> SELECT CURRENT_USER(), @@bind_address;
+-----------------------------------+----------------+
| CURRENT_USER() | @@bind_address |
+-----------------------------------+----------------+
| remoteipv6user@2001:db8:0:f101::2 | :: |
+-----------------------------------+----------------+

5.1.12.5 Obtaining an IPv6 Address from a Broker

If you do not have a public IPv6 address that enables your system to communicate over IPv6 outside
your local network, you can obtain one from an IPv6 broker. The Wikipedia IPv6 Tunnel Broker page
lists several brokers and their features, such as whether they provide static addresses and the supported
routing protocols.

After configuring your server host to use a broker-supplied IPv6 address, start the MySQL server with an
appropriate bind_address setting to permit the server to accept IPv6 connections. For example, put the
following lines in the server option file and restart the server:

[mysqld]
bind_address = *

Alternatively, you can bind the server to the specific IPv6 address provided by the broker, but that makes
the server more restrictive for TCP/IP connections. It accepts only IPv6 connections for that single address
and rejects IPv4 connections. For more information, see the bind_address description in Section 5.1.7,
“Server System Variables”. In addition, if the broker allocates dynamic addresses, the address provided
for your system might change the next time you connect to the broker. If so, any accounts you create that
name the original address become invalid. To bind to a specific address but avoid this change-of-address
problem, you may be able to arrange with the broker for a static IPv6 address.

The following example shows how to use Freenet6 as the broker and the gogoc IPv6 client package on
Gentoo Linux.

1. Create an account at Freenet6 by visiting this URL and signing up:

http://gogonet.gogo6.com

2. After creating the account, go to this URL, sign in, and create a user ID and password for the IPv6
broker:

http://gogonet.gogo6.com/page/freenet6-registration

3. As root, install gogoc:

$> emerge gogoc

955

http://en.wikipedia.org/wiki/List_of_IPv6_tunnel_brokers
http://gogonet.gogo6.com
http://gogonet.gogo6.com/page/freenet6-registration

MySQL Server Time Zone Support

4. Edit /etc/gogoc/gogoc.conf to set the userid and password values. For example:

userid=gogouser
passwd=gogopass

5. Start gogoc:

$> /etc/init.d/gogoc start

To start gogoc each time your system boots, execute this command:

$> rc-update add gogoc default

6. Use ping6 to try to ping a host:

$> ping6 ipv6.google.com

7. To see your IPv6 address:

$> ifconfig tun

5.1.13 MySQL Server Time Zone Support

This section describes the time zone settings maintained by MySQL, how to load the system tables
required for named time support, how to stay current with time zone changes, and how to enable leap-
second support.

For information about time zone settings in replication setups, see Section 16.4.1.15, “Replication and
System Functions” and Section 16.4.1.31, “Replication and Time Zones”.

• Time Zone Variables

• Populating the Time Zone Tables

• Staying Current with Time Zone Changes

• Time Zone Leap Second Support

Time Zone Variables

MySQL Server maintains several time zone settings:

• The server system time zone. When the server starts, it attempts to determine the time zone of the
host machine and uses it to set the system_time_zone system variable. The value does not change
thereafter.

To explicitly specify the system time zone for MySQL Server at startup, set the TZ environment variable
before you start mysqld. If you start the server using mysqld_safe, its --timezone option provides
another way to set the system time zone. The permissible values for TZ and --timezone are system
dependent. Consult your operating system documentation to see what values are acceptable.

• The server current time zone. The global time_zone system variable indicates the time zone the server
currently is operating in. The initial time_zone value is 'SYSTEM', which indicates that the server time
zone is the same as the system time zone.

Note

If set to SYSTEM, every MySQL function call that requires a time zone calculation
makes a system library call to determine the current system time zone. This call
may be protected by a global mutex, resulting in contention.

956

MySQL Server Time Zone Support

The initial global server time zone value can be specified explicitly at startup with the --default-
time-zone option on the command line, or you can use the following line in an option file:

default-time-zone='timezone'

If you have the SUPER privilege, you can set the global server time zone value at runtime with this
statement:

SET GLOBAL time_zone = timezone;

• Per-session time zones. Each client that connects has its own session time zone setting, given by the
session time_zone variable. Initially, the session variable takes its value from the global time_zone
variable, but the client can change its own time zone with this statement:

SET time_zone = timezone;

The session time zone setting affects display and storage of time values that are zone-sensitive. This
includes the values displayed by functions such as NOW() or CURTIME(), and values stored in and
retrieved from TIMESTAMP columns. Values for TIMESTAMP columns are converted from the session time
zone to UTC for storage, and from UTC to the session time zone for retrieval.

The session time zone setting does not affect values displayed by functions such as UTC_TIMESTAMP()
or values in DATE, TIME, or DATETIME columns. Nor are values in those data types stored in UTC; the
time zone applies for them only when converting from TIMESTAMP values. If you want locale-specific
arithmetic for DATE, TIME, or DATETIME values, convert them to UTC, perform the arithmetic, and then
convert back.

The current global and session time zone values can be retrieved like this:

SELECT @@GLOBAL.time_zone, @@SESSION.time_zone;

timezone values can be given in several formats, none of which are case-sensitive:

• As the value 'SYSTEM', indicating that the server time zone is the same as the system time zone.

• As a string indicating an offset from UTC of the form [H]H:MM, prefixed with a + or -, such as
'+10:00', '-6:00', or '+05:30'. A leading zero can optionally be used for hours values less than
10; MySQL prepends a leading zero when storing and retriving the value in such cases. MySQL converts
'-00:00' or '-0:00' to '+00:00'.

A time zone offset must be in the range '-12:59' to '+13:00', inclusive.

• As a named time zone, such as 'Europe/Helsinki', 'US/Eastern', 'MET', or 'UTC'.

Note

Named time zones can be used only if the time zone information tables in the
mysql database have been created and populated. Otherwise, use of a named
time zone results in an error:

mysql> SET time_zone = 'UTC';
ERROR 1298 (HY000): Unknown or incorrect time zone: 'UTC'

Populating the Time Zone Tables

Several tables in the mysql system database exist to store time zone information (see Section 5.3, “The
mysql System Database”). The MySQL installation procedure creates the time zone tables, but does not
load them. To do so manually, use the following instructions.

957

MySQL Server Time Zone Support

Note

Loading the time zone information is not necessarily a one-time operation because
the information changes occasionally. When such changes occur, applications that
use the old rules become out of date and you may find it necessary to reload the
time zone tables to keep the information used by your MySQL server current. See
Staying Current with Time Zone Changes.

If your system has its own zoneinfo database (the set of files describing time zones), use the
mysql_tzinfo_to_sql program to load the time zone tables. Examples of such systems are Linux,
macOS, FreeBSD, and Solaris. One likely location for these files is the /usr/share/zoneinfo directory.
If your system has no zoneinfo database, you can use a downloadable package, as described later in this
section.

To load the time zone tables from the command line, pass the zoneinfo directory path name to
mysql_tzinfo_to_sql and send the output into the mysql program. For example:

mysql_tzinfo_to_sql /usr/share/zoneinfo | mysql -u root -p mysql

The mysql command shown here assumes that you connect to the server using an account such as root
that has privileges for modifying tables in the mysql system database. Adjust the connection parameters
as required.

mysql_tzinfo_to_sql reads your system's time zone files and generates SQL statements from them.
mysql processes those statements to load the time zone tables.

mysql_tzinfo_to_sql also can be used to load a single time zone file or generate leap second
information:

• To load a single time zone file tz_file that corresponds to a time zone name tz_name, invoke
mysql_tzinfo_to_sql like this:

mysql_tzinfo_to_sql tz_file tz_name | mysql -u root -p mysql

With this approach, you must execute a separate command to load the time zone file for each named
zone that the server needs to know about.

• If your time zone must account for leap seconds, initialize leap second information like this, where
tz_file is the name of your time zone file:

mysql_tzinfo_to_sql --leap tz_file | mysql -u root -p mysql

After running mysql_tzinfo_to_sql, restart the server so that it does not continue to use any
previously cached time zone data.

If your system has no zoneinfo database (for example, Windows), you can use a package containing SQL
statements that is available for download at the MySQL Developer Zone:

https://dev.mysql.com/downloads/timezones.html

Warning

Do not use a downloadable time zone package if your system has a zoneinfo
database. Use the mysql_tzinfo_to_sql utility instead. Otherwise, you may
cause a difference in datetime handling between MySQL and other applications on
your system.

To use an SQL-statement time zone package that you have downloaded, unpack it, then load the
unpacked file contents into the time zone tables:

958

https://dev.mysql.com/downloads/timezones.html

MySQL Server Time Zone Support

mysql -u root -p mysql < file_name

Then restart the server.

Warning

Do not use a downloadable time zone package that contains MyISAM tables. That
is intended for older MySQL versions. MySQL 5.7 and higher uses InnoDB for the
time zone tables. Trying to replace them with MyISAM tables causes problems.

Staying Current with Time Zone Changes

When time zone rules change, applications that use the old rules become out of date. To stay current, it is
necessary to make sure that your system uses current time zone information is used. For MySQL, there
are multiple factors to consider in staying current:

• The operating system time affects the value that the MySQL server uses for times if its time zone is set
to SYSTEM. Make sure that your operating system is using the latest time zone information. For most
operating systems, the latest update or service pack prepares your system for the time changes. Check
the website for your operating system vendor for an update that addresses the time changes.

• If you replace the system's /etc/localtime time zone file with a version that uses rules differing from
those in effect at mysqld startup, restart mysqld so that it uses the updated rules. Otherwise, mysqld
might not notice when the system changes its time.

• If you use named time zones with MySQL, make sure that the time zone tables in the mysql database
are up to date:

• If your system has its own zoneinfo database, reload the MySQL time zone tables whenever the
zoneinfo database is updated.

• For systems that do not have their own zoneinfo database, check the MySQL Developer Zone for
updates. When a new update is available, download it and use it to replace the content of your current
time zone tables.

For instructions for both methods, see Populating the Time Zone Tables. mysqld caches time zone
information that it looks up, so after updating the time zone tables, restart mysqld to make sure that it
does not continue to serve outdated time zone data.

If you are uncertain whether named time zones are available, for use either as the server's time zone
setting or by clients that set their own time zone, check whether your time zone tables are empty. The
following query determines whether the table that contains time zone names has any rows:

mysql> SELECT COUNT(*) FROM mysql.time_zone_name;
+----------+
| COUNT(*) |
+----------+
| 0 |
+----------+

A count of zero indicates that the table is empty. In this case, no applications currently are using named
time zones, and you need not update the tables (unless you want to enable named time zone support). A
count greater than zero indicates that the table is not empty and that its contents are available to be used
for named time zone support. In this case, be sure to reload your time zone tables so that applications that
use named time zones obtain correct query results.

To check whether your MySQL installation is updated properly for a change in Daylight Saving Time rules,
use a test like the one following. The example uses values that are appropriate for the 2007 DST 1-hour
change that occurs in the United States on March 11 at 2 a.m.

959

MySQL Server Time Zone Support

The test uses this query:

SELECT
 CONVERT_TZ('2007-03-11 2:00:00','US/Eastern','US/Central') AS time1,
 CONVERT_TZ('2007-03-11 3:00:00','US/Eastern','US/Central') AS time2;

The two time values indicate the times at which the DST change occurs, and the use of named time zones
requires that the time zone tables be used. The desired result is that both queries return the same result
(the input time, converted to the equivalent value in the 'US/Central' time zone).

Before updating the time zone tables, you see an incorrect result like this:

+---------------------+---------------------+
| time1 | time2 |
+---------------------+---------------------+
| 2007-03-11 01:00:00 | 2007-03-11 02:00:00 |
+---------------------+---------------------+

After updating the tables, you should see the correct result:

+---------------------+---------------------+
| time1 | time2 |
+---------------------+---------------------+
| 2007-03-11 01:00:00 | 2007-03-11 01:00:00 |
+---------------------+---------------------+

Time Zone Leap Second Support

Leap second values are returned with a time part that ends with :59:59. This means that a function
such as NOW() can return the same value for two or three consecutive seconds during the leap second.
It remains true that literal temporal values having a time part that ends with :59:60 or :59:61 are
considered invalid.

If it is necessary to search for TIMESTAMP values one second before the leap second, anomalous results
may be obtained if you use a comparison with 'YYYY-MM-DD hh:mm:ss' values. The following example
demonstrates this. It changes the session time zone to UTC so there is no difference between internal
TIMESTAMP values (which are in UTC) and displayed values (which have time zone correction applied).

mysql> CREATE TABLE t1 (
 a INT,
 ts TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
 PRIMARY KEY (ts)
);
Query OK, 0 rows affected (0.01 sec)

mysql> -- change to UTC
mysql> SET time_zone = '+00:00';
Query OK, 0 rows affected (0.00 sec)

mysql> -- Simulate NOW() = '2008-12-31 23:59:59'
mysql> SET timestamp = 1230767999;
Query OK, 0 rows affected (0.00 sec)

mysql> INSERT INTO t1 (a) VALUES (1);
Query OK, 1 row affected (0.00 sec)

mysql> -- Simulate NOW() = '2008-12-31 23:59:60'
mysql> SET timestamp = 1230768000;
Query OK, 0 rows affected (0.00 sec)

mysql> INSERT INTO t1 (a) VALUES (2);

960

Server-Side Help Support

Query OK, 1 row affected (0.00 sec)

mysql> -- values differ internally but display the same
mysql> SELECT a, ts, UNIX_TIMESTAMP(ts) FROM t1;
+------+---------------------+--------------------+
| a | ts | UNIX_TIMESTAMP(ts) |
+------+---------------------+--------------------+
| 1 | 2008-12-31 23:59:59 | 1230767999 |
| 2 | 2008-12-31 23:59:59 | 1230768000 |
+------+---------------------+--------------------+
2 rows in set (0.00 sec)

mysql> -- only the non-leap value matches
mysql> SELECT * FROM t1 WHERE ts = '2008-12-31 23:59:59';
+------+---------------------+
| a | ts |
+------+---------------------+
| 1 | 2008-12-31 23:59:59 |
+------+---------------------+
1 row in set (0.00 sec)

mysql> -- the leap value with seconds=60 is invalid
mysql> SELECT * FROM t1 WHERE ts = '2008-12-31 23:59:60';
Empty set, 2 warnings (0.00 sec)

To work around this, you can use a comparison based on the UTC value actually stored in the column,
which has the leap second correction applied:

mysql> -- selecting using UNIX_TIMESTAMP value return leap value
mysql> SELECT * FROM t1 WHERE UNIX_TIMESTAMP(ts) = 1230768000;
+------+---------------------+
| a | ts |
+------+---------------------+
| 2 | 2008-12-31 23:59:59 |
+------+---------------------+
1 row in set (0.00 sec)

5.1.14 Server-Side Help Support

MySQL Server supports a HELP statement that returns information from the MySQL Reference Manual
(see Section 13.8.3, “HELP Statement”). This information is stored in several tables in the mysql database
(see Section 5.3, “The mysql System Database”). Proper operation of the HELP statement requires that
these help tables be initialized.

For a new installation of MySQL using a binary or source distribution on Unix, help-table content
initialization occurs when you initialize the data directory (see Section 2.9.1, “Initializing the Data
Directory”). For an RPM distribution on Linux or binary distribution on Windows, content initialization occurs
as part of the MySQL installation process.

For a MySQL upgrade using a binary distribution, help-table content is not upgraded automatically, but
you can upgrade it manually. Locate the fill_help_tables.sql file in the share or share/mysql
directory. Change location into that directory and process the file with the mysql client as follows:

mysql -u root -p mysql < fill_help_tables.sql

The command shown here assumes that you connect to the server using an account such as root that
has privileges for modifying tables in the mysql database. Adjust the connection parameters as required.

If you are working with Git and a MySQL development source tree, the source tree contains only a “stub”
version of fill_help_tables.sql. To obtain a non-stub copy, use one from a source or binary
distribution.

961

Server Tracking of Client Session State

Note

Each MySQL series has its own series-specific reference manual, so help-table
content is series specific as well. This has implications for replication because help-
table content should match the MySQL series. If you load MySQL 5.7 help content
into a MySQL 5.7 source server, it does not make sense to replicate that content
to a replica server from a different MySQL series and for which that content is not
appropriate. For this reason, as you upgrade individual servers in a replication
scenario, you should upgrade each server's help tables, using the instructions given
earlier.

5.1.15 Server Tracking of Client Session State

The MySQL server implements several session state trackers. A client can enable these trackers to
receive notification of changes to its session state.

• Uses for Session State Trackers

• Available Session State Trackers

• C API Session State Tracker Support

• Test Suite Session State Tracker Support

Uses for Session State Trackers

Session state trackers have uses such as these:

• To facilitate session migration.

• To facilitate transaction switching.

One use for the tracker mechanism is to provide a means for MySQL connectors and client applications to
determine whether any session context is available to permit session migration from one server to another.
(To change sessions in a load-balanced environment, it is necessary to detect whether there is session
state to take into consideration when deciding whether a switch can be made.)

Another use for the tracker mechanism is to permit applications to know when transactions can be moved
from one session to another. Transaction state tracking enables this, which is useful for applications
that may wish to move transactions from a busy server to one that is less loaded. For example, a load-
balancing connector managing a client connection pool could move transactions between available
sessions in the pool.

However, session switching cannot be done at arbitrary times. If a session is in the middle of a transaction
for which reads or writes have been done, switching to a different session implies a transaction rollback on
the original session. A session switch must be done only when a transaction does not yet have any reads
or writes performed within it.

Examples of when transactions might reasonably be switched:

• Immediately after START TRANSACTION

• After COMMIT AND CHAIN

In addition to knowing transaction state, it is useful to know transaction characteristics, so as to use the
same characteristics if the transaction is moved to a different session. The following characteristics are
relevant for this purpose:

READ ONLY
READ WRITE

962

Server Tracking of Client Session State

ISOLATION LEVEL
WITH CONSISTENT SNAPSHOT

Available Session State Trackers

To support the session-tracking activities, notification is available for these types of client session state
information:

• Changes to these attributes of client session state:

• The default schema (database).

• Session-specific values for system variables.

• User-defined variables.

• Temporary tables.

• Prepared statements.

The session_track_state_change system variable controls this tracker.

• Changes to the default schema name. The session_track_schema system variable controls this
tracker.

• Changes to the session values of system variables. The session_track_system_variables
system variable controls this tracker.

• Available GTIDs. The session_track_gtids system variable controls this tracker.

• Information about transaction state and characteristics. The session_track_transaction_info
system variable controls this tracker.

For descriptions of the tracker-related system variables, see Section 5.1.7, “Server System Variables”.
Those system variables permit control over which change notifications occur, but do not provide a way
to access notification information. Notification occurs in the MySQL client/server protocol, which includes
tracker information in OK packets so that session state changes can be detected.

C API Session State Tracker Support

To enable client applications to extract state-change information from OK packets returned by the server,
the MySQL C API provides a pair of functions:

• mysql_session_track_get_first() fetches the first part of the state-change information received
from the server. See mysql_session_track_get_first().

• mysql_session_track_get_next() fetches any remaining state-change information received from
the server. Following a successful call to mysql_session_track_get_first(), call this function
repeatedly as long as it returns success. See mysql_session_track_get_next().

Test Suite Session State Tracker Support

The mysqltest program has disable_session_track_info and enable_session_track_info
commands that control whether session tracker notifications occur. You can use these commands to see
from the command line what notifications SQL statements produce. Suppose that a file testscript
contains the following mysqltest script:

DROP TABLE IF EXISTS test.t1;
CREATE TABLE test.t1 (i INT, f FLOAT);
--enable_session_track_info

963

https://dev.mysql.com/doc/c-api/5.7/en/mysql-session-track-get-first.html
https://dev.mysql.com/doc/c-api/5.7/en/mysql-session-track-get-first.html
https://dev.mysql.com/doc/c-api/5.7/en/mysql-session-track-get-next.html
https://dev.mysql.com/doc/c-api/5.7/en/mysql-session-track-get-first.html
https://dev.mysql.com/doc/c-api/5.7/en/mysql-session-track-get-next.html

Server Tracking of Client Session State

SET @@SESSION.session_track_schema=ON;
SET @@SESSION.session_track_system_variables='*';
SET @@SESSION.session_track_state_change=ON;
USE information_schema;
SET NAMES 'utf8mb4';
SET @@SESSION.session_track_transaction_info='CHARACTERISTICS';
SET TRANSACTION ISOLATION LEVEL SERIALIZABLE;
SET TRANSACTION READ WRITE;
START TRANSACTION;
SELECT 1;
INSERT INTO test.t1 () VALUES();
INSERT INTO test.t1 () VALUES(1, RAND());
COMMIT;

Run the script as follows to see the information provided by the enabled trackers. For a
description of the Tracker: information displayed by mysqltest for the various trackers, see
mysql_session_track_get_first().

$> mysqltest < testscript
DROP TABLE IF EXISTS test.t1;
CREATE TABLE test.t1 (i INT, f FLOAT);
SET @@SESSION.session_track_schema=ON;
SET @@SESSION.session_track_system_variables='*';
-- Tracker : SESSION_TRACK_SYSTEM_VARIABLES
-- session_track_system_variables
-- *

SET @@SESSION.session_track_state_change=ON;
-- Tracker : SESSION_TRACK_SYSTEM_VARIABLES
-- session_track_state_change
-- ON

USE information_schema;
-- Tracker : SESSION_TRACK_SCHEMA
-- information_schema

-- Tracker : SESSION_TRACK_STATE_CHANGE
-- 1

SET NAMES 'utf8mb4';
-- Tracker : SESSION_TRACK_SYSTEM_VARIABLES
-- character_set_client
-- utf8mb4
-- character_set_connection
-- utf8mb4
-- character_set_results
-- utf8mb4

-- Tracker : SESSION_TRACK_STATE_CHANGE
-- 1

SET @@SESSION.session_track_transaction_info='CHARACTERISTICS';
-- Tracker : SESSION_TRACK_SYSTEM_VARIABLES
-- session_track_transaction_info
-- CHARACTERISTICS

-- Tracker : SESSION_TRACK_STATE_CHANGE
-- 1

-- Tracker : SESSION_TRACK_TRANSACTION_CHARACTERISTICS
--

-- Tracker : SESSION_TRACK_TRANSACTION_STATE
-- ________

SET TRANSACTION ISOLATION LEVEL SERIALIZABLE;
-- Tracker : SESSION_TRACK_TRANSACTION_CHARACTERISTICS

964

https://dev.mysql.com/doc/c-api/5.7/en/mysql-session-track-get-first.html

The Server Shutdown Process

-- SET TRANSACTION ISOLATION LEVEL SERIALIZABLE;

SET TRANSACTION READ WRITE;
-- Tracker : SESSION_TRACK_TRANSACTION_CHARACTERISTICS
-- SET TRANSACTION ISOLATION LEVEL SERIALIZABLE; SET TRANSACTION READ WRITE;

START TRANSACTION;
-- Tracker : SESSION_TRACK_TRANSACTION_CHARACTERISTICS
-- SET TRANSACTION ISOLATION LEVEL SERIALIZABLE; START TRANSACTION READ WRITE;

-- Tracker : SESSION_TRACK_TRANSACTION_STATE
-- T_______

SELECT 1;
1
1
-- Tracker : SESSION_TRACK_TRANSACTION_STATE
-- T_____S_

INSERT INTO test.t1 () VALUES();
-- Tracker : SESSION_TRACK_TRANSACTION_STATE
-- T___W_S_

INSERT INTO test.t1 () VALUES(1, RAND());
-- Tracker : SESSION_TRACK_TRANSACTION_STATE
-- T___WsS_

COMMIT;
-- Tracker : SESSION_TRACK_TRANSACTION_CHARACTERISTICS
--

-- Tracker : SESSION_TRACK_TRANSACTION_STATE
-- ________

ok

Preceding the START TRANSACTION statement, two SET TRANSACTION statements execute
that set the isolation level and access mode characteristics for the next transaction. The
SESSION_TRACK_TRANSACTION_CHARACTERISTICS value indicates those next-transaction values that
have been set.

Following the COMMIT statement that ends the transaction, the
SESSION_TRACK_TRANSACTION_CHARACTERISTICS value is reported as empty. This indicates that the
next-transaction characteristics that were set preceding the start of the transaction have been reset, and
that the session defaults apply. To track changes to those session defaults, track the session values of the
transaction_isolation and transaction_read_only system variables.

To see information about GTIDs, enable the SESSION_TRACK_GTIDS tracker using the
session_track_gtids system system variable.

5.1.16 The Server Shutdown Process

The server shutdown process takes place as follows:

1. The shutdown process is initiated.

This can occur initiated several ways. For example, a user with the SHUTDOWN privilege can execute a
mysqladmin shutdown command. mysqladmin can be used on any platform supported by MySQL.
Other operating system-specific shutdown initiation methods are possible as well: The server shuts
down on Unix when it receives a SIGTERM signal. A server running as a service on Windows shuts
down when the services manager tells it to.

2. The server creates a shutdown thread if necessary.

965

The Server Shutdown Process

Depending on how shutdown was initiated, the server might create a thread to handle the shutdown
process. If shutdown was requested by a client, a shutdown thread is created. If shutdown is the result
of receiving a SIGTERM signal, the signal thread might handle shutdown itself, or it might create a
separate thread to do so. If the server tries to create a shutdown thread and cannot (for example, if
memory is exhausted), it issues a diagnostic message that appears in the error log:

Error: Can't create thread to kill server

3. The server stops accepting new connections.

To prevent new activity from being initiated during shutdown, the server stops accepting new
client connections by closing the handlers for the network interfaces to which it normally listens for
connections: the TCP/IP port, the Unix socket file, the Windows named pipe, and shared memory on
Windows.

4. The server terminates current activity.

For each thread associated with a client connection, the server breaks the connection to the client and
marks the thread as killed. Threads die when they notice that they are so marked. Threads for idle
connections die quickly. Threads that currently are processing statements check their state periodically
and take longer to die. For additional information about thread termination, see Section 13.7.6.4,
“KILL Statement”, in particular for the instructions about killed REPAIR TABLE or OPTIMIZE TABLE
operations on MyISAM tables.

For threads that have an open transaction, the transaction is rolled back. If a thread is updating a
nontransactional table, an operation such as a multiple-row UPDATE or INSERT may leave the table
partially updated because the operation can terminate before completion.

If the server is a source replication server, it treats threads associated with currently connected replicas
like other client threads. That is, each one is marked as killed and exits when it next checks its state.

If the server is a replica, it stops the I/O and SQL threads, if they are active, before marking client
threads as killed. The SQL thread is permitted to finish its current statement (to avoid causing
replication problems), and then stops. If the SQL thread is in the middle of a transaction at this point,
the server waits until the current replication event group (if any) has finished executing, or until the user
issues a KILL QUERY or KILL CONNECTION statement. See also Section 13.4.2.6, “STOP SLAVE
Statement”. Since nontransactional statements cannot be rolled back, in order to guarantee crash-safe
replication, only transactional tables should be used.

Note

To guarantee crash safety on the replica, you must run the replica with --
relay-log-recovery enabled.

See also Section 16.2.4, “Relay Log and Replication Metadata Repositories”).

5. The server shuts down or closes storage engines.

At this stage, the server flushes the table cache and closes all open tables.

Each storage engine performs any actions necessary for tables that it manages. InnoDB flushes its
buffer pool to disk (unless innodb_fast_shutdown is 2), writes the current LSN to the tablespace,
and terminates its own internal threads. MyISAM flushes any pending index writes for a table.

6. The server exits.

966

The MySQL Data Directory

To provide information to management processes, the server returns one of the exit codes described in the
following list. The phrase in parentheses indicates the action taken by systemd in response to the code, for
platforms on which systemd is used to manage the server.

• 0 = successful termination (no restart done)

• 1 = unsuccessful termination (no restart done)

• 2 = unsuccessful termination (restart done)

5.2 The MySQL Data Directory
Information managed by the MySQL server is stored under a directory known as the data directory. The
following list briefly describes the items typically found in the data directory, with cross references for
additional information:

• Data directory subdirectories. Each subdirectory of the data directory is a database directory and
corresponds to a database managed by the server. All MySQL installations have certain standard
databases:

• The mysql directory corresponds to the mysql system database, which contains information required
by the MySQL server as it runs. See Section 5.3, “The mysql System Database”.

• The performance_schema directory corresponds to the Performance Schema, which provides
information used to inspect the internal execution of the server at runtime. See Chapter 25, MySQL
Performance Schema.

• The sys directory corresponds to the sys schema, which provides a set of objects to help interpret
Performance Schema information more easily. See Chapter 26, MySQL sys Schema.

• The ndbinfo directory corresponds to the ndbinfo database that stores information specific to NDB
Cluster (present only for installations built to include NDB Cluster). See Section 21.6.15, “ndbinfo: The
NDB Cluster Information Database”.

Other subdirectories correspond to databases created by users or applications.

Note

INFORMATION_SCHEMA is a standard database, but its implementation uses no
corresponding database directory.

• Log files written by the server. See Section 5.4, “MySQL Server Logs”.

• InnoDB tablespace and log files. See Chapter 14, The InnoDB Storage Engine.

• Default/autogenerated SSL and RSA certificate and key files. See Section 6.3.3, “Creating SSL and RSA
Certificates and Keys”.

• The server process ID file (while the server is running).

Some items in the preceding list can be relocated elsewhere by reconfiguring the server. In addition, the
--datadir option enables the location of the data directory itself to be changed. For a given MySQL
installation, check the server configuration to determine whether items have been moved.

5.3 The mysql System Database
The mysql database is the system database. It contains tables that store information required by the
MySQL server as it runs.

967

Grant System Tables

Tables in the mysql database fall into these categories:

• Grant System Tables

• Object Information System Tables

• Log System Tables

• Server-Side Help System Tables

• Time Zone System Tables

• Replication System Tables

• Optimizer System Tables

• Miscellaneous System Tables

The remainder of this section enumerates the tables in each category, with cross references for additional
information. System tables use the MyISAM storage engine unless otherwise indicated.

Warning

Do not convert MySQL system tables in the mysql database from MyISAM to
InnoDB tables. This is an unsupported operation. If you do this, MySQL does not
restart until you restore the old system tables from a backup or regenerate them by
reinitializing the data directory (see Section 2.9.1, “Initializing the Data Directory”).

Grant System Tables

These system tables contain grant information about user accounts and the privileges held by them:

• user: User accounts, global privileges, and other nonprivilege columns.

• db: Database-level privileges.

• tables_priv: Table-level privileges.

• columns_priv: Column-level privileges.

• procs_priv: Stored procedure and function privileges.

• proxies_priv: Proxy-user privileges.

For more information about the structure, contents, and purpose of the grant tables, see Section 6.2.3,
“Grant Tables”.

Object Information System Tables

These system tables contain information about stored programs, loadable functions, and server-side
plugins:

• event: The registry for Event Scheduler events installed using CREATE EVENT. If the server is started
with the --skip-grant-tables option, the event scheduler is disabled and events registered in the
table do not run. See Section 23.4.2, “Event Scheduler Configuration”.

• func: The registry for loadable functions installed using CREATE FUNCTION. During the normal startup
sequence, the server loads functions registered in this table. If the server is started with the --skip-
grant-tables option, functions registered in the table are not loaded and are unavailable. See
Section 5.6.1, “Installing and Uninstalling Loadable Functions”.

968

Log System Tables

• plugin: The registry for server-side plugins installed using INSTALL PLUGIN. During the normal
startup sequence, the server loads plugins registered in this table. If the server is started with the --
skip-grant-tables option, plugins registered in the table are not loaded and are unavailable. See
Section 5.5.1, “Installing and Uninstalling Plugins”.

The plugin table uses the InnoDB storage engine as of MySQL 5.7.6, MyISAM before that.

• proc: Information about stored procedures and functions. See Section 23.2, “Using Stored Routines”.

Log System Tables

The server uses these system tables for logging:

• general_log: The general query log table.

• slow_log: The slow query log table.

Log tables use the CSV storage engine.

For more information, see Section 5.4, “MySQL Server Logs”.

Server-Side Help System Tables

These system tables contain server-side help information:

• help_category: Information about help categories.

• help_keyword: Keywords associated with help topics.

• help_relation: Mappings between help keywords and topics.

• help_topic: Help topic contents.

These tables use the InnoDB storage engine as of MySQL 5.7.5, MyISAM before that.

For more information, see Section 5.1.14, “Server-Side Help Support”.

Time Zone System Tables

These system tables contain time zone information:

• time_zone: Time zone IDs and whether they use leap seconds.

• time_zone_leap_second: When leap seconds occur.

• time_zone_name: Mappings between time zone IDs and names.

• time_zone_transition, time_zone_transition_type: Time zone descriptions.

These tables use the InnoDB storage engine as of MySQL 5.7.5, MyISAM before that.

For more information, see Section 5.1.13, “MySQL Server Time Zone Support”.

Replication System Tables

The server uses these system tables to support replication:

• gtid_executed: Table for storing GTID values. See mysql.gtid_executed Table.

The gtid_executed table uses the InnoDB storage engine.

969

Optimizer System Tables

• ndb_binlog_index: Binary log information for NDB Cluster replication. See Section 21.7.4, “NDB
Cluster Replication Schema and Tables”.

Prior to NDB 7.5.2, this table employed the MyISAM storage engine. In NDB 7.5.2 and later, it uses
InnoDB. If you are planning an upgrade from a NDB Cluster previous release to NDB 7.5.2 or later, see
Section 21.3.7, “Upgrading and Downgrading NDB Cluster”, for important information relating to this
change.

• slave_master_info, slave_relay_log_info, slave_worker_info: Used to store
replication information on replica servers. See Section 16.2.4, “Relay Log and Replication Metadata
Repositories”.

All three of these tables use the InnoDB storage engine.

Optimizer System Tables

These system tables are for use by the optimizer:

• innodb_index_stats, innodb_table_stats: Used for InnoDB persistent optimizer statistics.
See Section 14.8.11.1, “Configuring Persistent Optimizer Statistics Parameters”.

• server_cost, engine_cost: The optimizer cost model uses tables that contain cost estimate
information about operations that occur during query execution. server_cost contains optimizer cost
estimates for general server operations. engine_cost contains estimates for operations specific to
particular storage engines. See Section 8.9.5, “The Optimizer Cost Model”.

These tables use the InnoDB storage engine.

Miscellaneous System Tables

Other system tables do not fall into the preceding categories:

• audit_log_filter, audit_log_user: If MySQL Enterprise Audit is installed, these tables provide
persistent storage of audit log filter definitions and user accounts. See Audit Log Tables.

• firewall_users, firewall_whitelist: If MySQL Enterprise Firewall is installed, these tables
provide persistent storage for information used by the firewall. See Section 6.4.6, “MySQL Enterprise
Firewall”.

• servers: Used by the FEDERATED storage engine. See Section 15.8.2.2, “Creating a FEDERATED
Table Using CREATE SERVER”.

The servers table uses the InnoDB storage engine as of MySQL 5.7.6, MyISAM before that.

5.4 MySQL Server Logs
MySQL Server has several logs that can help you find out what activity is taking place.

Log Type Information Written to Log

Error log Problems encountered starting, running, or stopping
mysqld

General query log Established client connections and statements
received from clients

Binary log Statements that change data (also used for
replication)

970

Selecting General Query Log and Slow Query Log Output Destinations

Log Type Information Written to Log

Relay log Data changes received from a replication source
server

Slow query log Queries that took more than long_query_time
seconds to execute

DDL log (metadata log) Metadata operations performed by DDL statements

By default, no logs are enabled, except the error log on Windows. (The DDL log is always created when
required, and has no user-configurable options; see Section 5.4.6, “The DDL Log”.) The following log-
specific sections provide information about the server options that enable logging.

By default, the server writes files for all enabled logs in the data directory. You can force the server
to close and reopen the log files (or in some cases switch to a new log file) by flushing the logs. Log
flushing occurs when you issue a FLUSH LOGS statement; execute mysqladmin with a flush-logs or
refresh argument; or execute mysqldump with a --flush-logs option. See Section 13.7.6.3, “FLUSH
Statement”, Section 4.5.2, “mysqladmin — A MySQL Server Administration Program”, and Section 4.5.4,
“mysqldump — A Database Backup Program”. In addition, the binary log is flushed when its size reaches
the value of the max_binlog_size system variable.

You can control the general query and slow query logs during runtime. You can enable or disable logging,
or change the log file name. You can tell the server to write general query and slow query entries to log
tables, log files, or both. For details, see Section 5.4.1, “Selecting General Query Log and Slow Query Log
Output Destinations”, Section 5.4.3, “The General Query Log”, and Section 5.4.5, “The Slow Query Log”.

The relay log is used only on replicas, to hold data changes from the replication source server that must
also be made on the replica. For discussion of relay log contents and configuration, see Section 16.2.4.1,
“The Relay Log”.

For information about log maintenance operations such as expiration of old log files, see Section 5.4.7,
“Server Log Maintenance”.

For information about keeping logs secure, see Section 6.1.2.3, “Passwords and Logging”.

5.4.1 Selecting General Query Log and Slow Query Log Output Destinations

MySQL Server provides flexible control over the destination of output written to the general query log
and the slow query log, if those logs are enabled. Possible destinations for log entries are log files or the
general_log and slow_log tables in the mysql system database. File output, table output, or both can
be selected.

• Log Control at Server Startup

• Log Control at Runtime

• Log Table Benefits and Characteristics

Log Control at Server Startup

The log_output system variable specifies the destination for log output. Setting this variable does not in
itself enable the logs; they must be enabled separately.

• If log_output is not specified at startup, the default logging destination is FILE.

• If log_output is specified at startup, its value is a list one or more comma-separated words chosen
from TABLE (log to tables), FILE (log to files), or NONE (do not log to tables or files). NONE, if present,
takes precedence over any other specifiers.

971

Selecting General Query Log and Slow Query Log Output Destinations

The general_log system variable controls logging to the general query log for the selected log
destinations. If specified at server startup, general_log takes an optional argument of 1 or 0 to enable or
disable the log. To specify a file name other than the default for file logging, set the general_log_file
variable. Similarly, the slow_query_log variable controls logging to the slow query log for the selected
destinations and setting slow_query_log_file specifies a file name for file logging. If either log is
enabled, the server opens the corresponding log file and writes startup messages to it. However, further
logging of queries to the file does not occur unless the FILE log destination is selected.

Examples:

• To write general query log entries to the log table and the log file, use --log_output=TABLE,FILE to
select both log destinations and --general_log to enable the general query log.

• To write general and slow query log entries only to the log tables, use --log_output=TABLE to select
tables as the log destination and --general_log and --slow_query_log to enable both logs.

• To write slow query log entries only to the log file, use --log_output=FILE to select files as the log
destination and --slow_query_log to enable the slow query log. In this case, because the default log
destination is FILE, you could omit the log_output setting.

Log Control at Runtime

The system variables associated with log tables and files enable runtime control over logging:

• The log_output variable indicates the current logging destination. It can be modified at runtime to
change the destination.

• The general_log and slow_query_log variables indicate whether the general query log and slow
query log are enabled (ON) or disabled (OFF). You can set these variables at runtime to control whether
the logs are enabled.

• The general_log_file and slow_query_log_file variables indicate the names of the general
query log and slow query log files. You can set these variables at server startup or at runtime to change
the names of the log files.

• To disable or enable general query logging for the current session, set the session sql_log_off
variable to ON or OFF. (This assumes that the general query log itself is enabled.)

Log Table Benefits and Characteristics

The use of tables for log output offers the following benefits:

• Log entries have a standard format. To display the current structure of the log tables, use these
statements:

SHOW CREATE TABLE mysql.general_log;
SHOW CREATE TABLE mysql.slow_log;

• Log contents are accessible through SQL statements. This enables the use of queries that select only
those log entries that satisfy specific criteria. For example, to select log contents associated with a
particular client (which can be useful for identifying problematic queries from that client), it is easier to do
this using a log table than a log file.

• Logs are accessible remotely through any client that can connect to the server and issue queries (if the
client has the appropriate log table privileges). It is not necessary to log in to the server host and directly
access the file system.

972

Selecting General Query Log and Slow Query Log Output Destinations

The log table implementation has the following characteristics:

• In general, the primary purpose of log tables is to provide an interface for users to observe the runtime
execution of the server, not to interfere with its runtime execution.

• CREATE TABLE, ALTER TABLE, and DROP TABLE are valid operations on a log table. For ALTER
TABLE and DROP TABLE, the log table cannot be in use and must be disabled, as described later.

• By default, the log tables use the CSV storage engine that writes data in comma-separated values
format. For users who have access to the .CSV files that contain log table data, the files are easy to
import into other programs such as spreadsheets that can process CSV input.

The log tables can be altered to use the MyISAM storage engine. You cannot use ALTER TABLE to alter
a log table that is in use. The log must be disabled first. No engines other than CSV or MyISAM are legal
for the log tables.

Log Tables and “Too many open files” Errors.
If you select TABLE as a log destination and the log tables use the CSV storage engine, you may find that
disabling and enabling the general query log or slow query log repeatedly at runtime results in a number
of open file descriptors for the .CSV file, possibly resulting in a “Too many open files” error. To work
around this issue, execute FLUSH TABLES or ensure that the value of open_files_limit is greater
than the value of table_open_cache_instances.

• To disable logging so that you can alter (or drop) a log table, you can use the following strategy.
The example uses the general query log; the procedure for the slow query log is similar but uses the
slow_log table and slow_query_log system variable.

SET @old_log_state = @@GLOBAL.general_log;
SET GLOBAL general_log = 'OFF';
ALTER TABLE mysql.general_log ENGINE = MyISAM;
SET GLOBAL general_log = @old_log_state;

• TRUNCATE TABLE is a valid operation on a log table. It can be used to expire log entries.

• RENAME TABLE is a valid operation on a log table. You can atomically rename a log table (to perform log
rotation, for example) using the following strategy:

USE mysql;
DROP TABLE IF EXISTS general_log2;
CREATE TABLE general_log2 LIKE general_log;
RENAME TABLE general_log TO general_log_backup, general_log2 TO general_log;

• CHECK TABLE is a valid operation on a log table.

• LOCK TABLES cannot be used on a log table.

• INSERT, DELETE, and UPDATE cannot be used on a log table. These operations are permitted only
internally to the server itself.

• FLUSH TABLES WITH READ LOCK and the state of the read_only system variable have no effect on
log tables. The server can always write to the log tables.

• Entries written to the log tables are not written to the binary log and thus are not replicated to replicas.

• To flush the log tables or log files, use FLUSH TABLES or FLUSH LOGS, respectively.

• Partitioning of log tables is not permitted.

• A mysqldump dump includes statements to recreate those tables so that they are not missing after
reloading the dump file. Log table contents are not dumped.

973

The Error Log

5.4.2 The Error Log

This section discusses how to configure the MySQL server for logging of diagnostic messages to the error
log. For information about selecting the error message character set and language, see Section 10.6,
“Error Message Character Set”, and Section 10.12, “Setting the Error Message Language”.

The error log contains a record of mysqld startup and shutdown times. It also contains diagnostic
messages such as errors, warnings, and notes that occur during server startup and shutdown, and while
the server is running. For example, if mysqld notices that a table needs to be automatically checked or
repaired, it writes a message to the error log.

On some operating systems, the error log contains a stack trace if mysqld exits abnormally. The trace can
be used to determine where mysqld exited. See Section 5.8, “Debugging MySQL”.

If used to start mysqld, mysqld_safe may write messages to the error log. For example, when
mysqld_safe notices abnormal mysqld exits, it restarts mysqld and writes a mysqld restarted
message to the error log.

The following sections discuss aspects of configuring error logging. In the discussion, “console” means
stderr, the standard error output. This is your terminal or console window unless the standard error
output has been redirected to a different destination.

The server interprets options that determine where to write error messages somewhat differently for
Windows and Unix systems. Be sure to configure error logging using the information appropriate to your
platform.

5.4.2.1 Error Logging on Windows

On Windows, mysqld uses the --log-error, --pid-file, and --console options to determine
whether mysqld writes the error log to the console or a file, and, if to a file, the file name:

• If --console is given, mysqld writes the error log to the console. (--console takes precedence over
--log-error if both are given, and the following items regarding --log-error do not apply. Prior to
MySQL 5.7, this is reversed: --log-error takes precedence over --console.)

• If --log-error is not given, or is given without naming a file, mysqld writes the error log to a file
named host_name.err in the data directory, unless the --pid-file option is specified. In that case,
the file name is the PID file base name with a suffix of .err in the data directory.

• If --log-error is given to name a file, mysqld writes the error log to that file (with an .err suffix
added if the name has no suffix). The file location is under the data directory unless an absolute path
name is given to specify a different location.

If the server writes the error log to the console, it sets the log_error system variable to stderr.
Otherwise, the server writes the error log to a file and sets log_error to the file name.

In addition, the server by default writes events and error messages to the Windows Event Log within the
Application log:

• Entries marked as Error, Warning, and Note are written to the Event Log, but not messages such as
information statements from individual storage engines.

• Event Log entries have a source of MySQL.

• Information written to the Event Log is controlled using the log_syslog system variable, which on
Windows is enabled by default. See Section 5.4.2.3, “Error Logging to the System Log”.

974

The Error Log

5.4.2.2 Error Logging on Unix and Unix-Like Systems

On Unix and Unix-like systems, mysqld uses the --log-error option to determine whether mysqld
writes the error log to the console or a file, and, if to a file, the file name:

• If --log-error is not given, mysqld writes the error log to the console.

• If --log-error is given without naming a file, mysqld writes the error log to a file named
host_name.err in the data directory.

• If --log-error is given to name a file, mysqld writes the error log to that file (with an .err suffix
added if the name has no suffix). The file location is under the data directory unless an absolute path
name is given to specify a different location.

• If --log-error is given in an option file in a [mysqld], [server], or [mysqld_safe] section,
on systems that use mysqld_safe to start the server, mysqld_safe finds and uses the option, and
passes it to mysqld.

Note

It is common for Yum or APT package installations to configure an error log
file location under /var/log with an option like log-error=/var/log/
mysqld.log in a server configuration file. Removing the path name from the
option causes the host_name.err file in the data directory to be used.

If the server writes the error log to the console, it sets the log_error system variable to stderr.
Otherwise, the server writes the error log to a file and sets log_error to the file name.

5.4.2.3 Error Logging to the System Log

It is possible to have mysqld write the error log to the system log (the Event Log on Windows, and
syslog on Unix and Unix-like systems). To do so, use these system variables:

• log_syslog: Enable this variable to send the error log to the system log. (On Windows, log_syslog
is enabled by default.)

If log_syslog is enabled, the following system variables can also be used for finer control.

• log_syslog_facility: The default facility for syslog messages is daemon. Set this variable to
specify a different facility.

• log_syslog_include_pid: Whether to include the server process ID in each line of syslog output.

• log_syslog_tag: This variable defines a tag to add to the server identifier (mysqld) in syslog
messages. If defined, the tag is appended to the identifier with a leading hyphen.

Note

Error logging to the system log may require additional system configuration. Consult
the system log documentation for your platform.

On Unix and Unix-like systems, control of output to syslog is also available using mysqld_safe, which
can capture server error output and pass it to syslog.

Note

Using mysqld_safe for syslog error logging is deprecated; you should use the
server system variables instead.

975

The General Query Log

mysqld_safe has three error-logging options, --syslog, --skip-syslog, and --log-error. The
default with no logging options or with --skip-syslog is to use the default log file. To explicitly specify
use of an error log file, specify --log-error=file_name to mysqld_safe, which then arranges for
mysqld to write messages to a log file. To use syslog, specify the --syslog option. For syslog output,
a tag can be specified with --syslog-tag=tag_val; this is appended to the mysqld server identifier
with a leading hyphen.

5.4.2.4 Error Log Filtering

The log_error_verbosity system variable controls server verbosity for writing error, warning, and
note messages to the error log. Permitted values are 1 (errors only), 2 (errors and warnings), 3 (errors,
warnings, and notes), with a default of 3. If the value is greater than 2, the server logs aborted connections
and access-denied errors for new connection attempts. See Section B.3.2.9, “Communication Errors and
Aborted Connections”.

5.4.2.5 Error Log Output Format

The ID included in error log messages is that of the thread within mysqld responsible for writing the
message. This indicates which part of the server produced the message, and is consistent with general
query log and slow query log messages, which include the connection thread ID.

The log_timestamps system variable controls the time zone of timestamps in messages written to the
error log (as well as to general query log and slow query log files).

Permitted log_timestamps values are UTC (the default) and SYSTEM (the local system time zone).
Timestamps are written using ISO 8601 / RFC 3339 format: YYYY-MM-DDThh:mm:ss.uuuuuu plus a
tail value of Z signifying Zulu time (UTC) or ±hh:mm (an offset that indicates the local system time zone
adjustment relative to UTC). For example:

2020-08-07T15:02:00.832521Z (UTC)
2020-08-07T10:02:00.832521-05:00 (SYSTEM)

5.4.2.6 Error Log File Flushing and Renaming

If you flush the error log using a FLUSH ERROR LOGS or FLUSH LOGS statment, or a mysqladmin
flush-logs command, the server closes and reopens any error log file to which it is writing. To rename
an error log file, do so manually before flushing. Flushing the logs then opens a new file with the original
file name. For example, assuming a log file name of host_name.err, use the following commands to
rename the file and create a new one:

mv host_name.err host_name.err-old
mysqladmin flush-logs error
mv host_name.err-old backup-directory

On Windows, use rename rather than mv.

If the location of the error log file is not writable by the server, the log-flushing operation fails to create a
new log file. For example, on Linux, the server might write the error log to the /var/log/mysqld.log
file, where the /var/log directory is owned by root and is not writable by mysqld. For information about
handling this case, see Section 5.4.7, “Server Log Maintenance”.

If the server is not writing to a named error log file, no error log file renaming occurs when the error log is
flushed.

5.4.3 The General Query Log

The general query log is a general record of what mysqld is doing. The server writes information to this
log when clients connect or disconnect, and it logs each SQL statement received from clients. The general

976

The General Query Log

query log can be very useful when you suspect an error in a client and want to know exactly what the client
sent to mysqld.

Each line that shows when a client connects also includes using connection_type to indicate the
protocol used to establish the connection. connection_type is one of TCP/IP (TCP/IP connection
established without SSL), SSL/TLS (TCP/IP connection established with SSL), Socket (Unix socket file
connection), Named Pipe (Windows named pipe connection), or Shared Memory (Windows shared
memory connection).

mysqld writes statements to the query log in the order that it receives them, which might differ from the
order in which they are executed. This logging order is in contrast with that of the binary log, for which
statements are written after they are executed but before any locks are released. In addition, the query log
may contain statements that only select data while such statements are never written to the binary log.

When using statement-based binary logging on a replication source server, statements received by its
replicas are written to the query log of each replica. Statements are written to the query log of the source if
a client reads events with the mysqlbinlog utility and passes them to the server.

However, when using row-based binary logging, updates are sent as row changes rather than SQL
statements, and thus these statements are never written to the query log when binlog_format is ROW.
A given update also might not be written to the query log when this variable is set to MIXED, depending on
the statement used. See Section 16.2.1.1, “Advantages and Disadvantages of Statement-Based and Row-
Based Replication”, for more information.

By default, the general query log is disabled. To specify the initial general query log state explicitly,
use --general_log[={0|1}]. With no argument or an argument of 1, --general_log enables
the log. With an argument of 0, this option disables the log. To specify a log file name, use --
general_log_file=file_name. To specify the log destination, use the log_output system variable
(as described in Section 5.4.1, “Selecting General Query Log and Slow Query Log Output Destinations”).

Note

If you specify the TABLE log destination, see Log Tables and “Too many open files”
Errors.

If you specify no name for the general query log file, the default name is host_name.log. The server
creates the file in the data directory unless an absolute path name is given to specify a different directory.

To disable or enable the general query log or change the log file name at runtime, use the global
general_log and general_log_file system variables. Set general_log to 0 (or OFF) to disable
the log or to 1 (or ON) to enable it. Set general_log_file to specify the name of the log file. If a log file
already is open, it is closed and the new file is opened.

When the general query log is enabled, the server writes output to any destinations specified by the
log_output system variable. If you enable the log, the server opens the log file and writes startup
messages to it. However, further logging of queries to the file does not occur unless the FILE log
destination is selected. If the destination is NONE, the server writes no queries even if the general log is
enabled. Setting the log file name has no effect on logging if the log destination value does not contain
FILE.

Server restarts and log flushing do not cause a new general query log file to be generated (although
flushing closes and reopens it). To rename the file and create a new one, use the following commands:

$> mv host_name.log host_name-old.log
$> mysqladmin flush-logs general
$> mv host_name-old.log backup-directory

977

The Binary Log

On Windows, use rename rather than mv.

You can also rename the general query log file at runtime by disabling the log:

SET GLOBAL general_log = 'OFF';

With the log disabled, rename the log file externally (for example, from the command line). Then enable the
log again:

SET GLOBAL general_log = 'ON';

This method works on any platform and does not require a server restart.

To disable or enable general query logging for the current session, set the session sql_log_off variable
to ON or OFF. (This assumes that the general query log itself is enabled.)

Passwords in statements written to the general query log are rewritten by the server not to occur literally in
plain text. Password rewriting can be suppressed for the general query log by starting the server with the
--log-raw option. This option may be useful for diagnostic purposes, to see the exact text of statements
as received by the server, but for security reasons is not recommended for production use. See also
Section 6.1.2.3, “Passwords and Logging”.

An implication of password rewriting is that statements that cannot be parsed (due, for example, to syntax
errors) are not written to the general query log because they cannot be known to be password free. Use
cases that require logging of all statements including those with errors should use the --log-raw option,
bearing in mind that this also bypasses password rewriting.

Password rewriting occurs only when plain text passwords are expected. For statements with syntax that
expect a password hash value, no rewriting occurs. If a plain text password is supplied erroneously for
such syntax, the password is logged as given, without rewriting. For example, the following statement is
logged as shown because a password hash value is expected:

CREATE USER 'user1'@'localhost' IDENTIFIED BY PASSWORD 'not-so-secret';

The log_timestamps system variable controls the time zone of timestamps in messages written to the
general query log file (as well as to the slow query log file and the error log). It does not affect the time
zone of general query log and slow query log messages written to log tables, but rows retrieved from those
tables can be converted from the local system time zone to any desired time zone with CONVERT_TZ() or
by setting the session time_zone system variable.

5.4.4 The Binary Log

The binary log contains “events” that describe database changes such as table creation operations or
changes to table data. It also contains events for statements that potentially could have made changes
(for example, a DELETE which matched no rows), unless row-based logging is used. The binary log also
contains information about how long each statement took that updated data. The binary log has two
important purposes:

• For replication, the binary log on a replication source server provides a record of the data changes
to be sent to replicas. The source sends the events contained in its binary log to its replicas, which
execute those events to make the same data changes that were made on the source. See Section 16.2,
“Replication Implementation”.

• Certain data recovery operations require use of the binary log. After a backup has been restored, the
events in the binary log that were recorded after the backup was made are re-executed. These events
bring databases up to date from the point of the backup. See Section 7.5, “Point-in-Time (Incremental)
Recovery”.

978

The Binary Log

The binary log is not used for statements such as SELECT or SHOW that do not modify data. To log all
statements (for example, to identify a problem query), use the general query log. See Section 5.4.3, “The
General Query Log”.

Running a server with binary logging enabled makes performance slightly slower. However, the benefits of
the binary log in enabling you to set up replication and for restore operations generally outweigh this minor
performance decrement.

The binary log is generally resilient to unexpected halts because only complete transactions are logged or
read back. See Section 16.3.2, “Handling an Unexpected Halt of a Replica” for more information.

Passwords in statements written to the binary log are rewritten by the server not to occur literally in plain
text. See also Section 6.1.2.3, “Passwords and Logging”.

The following discussion describes some of the server options and variables that affect the operation of
binary logging. For a complete list, see Section 16.1.6.4, “Binary Logging Options and Variables”.

To enable the binary log, start the server with the --log-bin[=base_name] option. If no base_name
value is given, the default name is the value of the --pid-file option (which by default is the name of
host machine) followed by -bin. If the base name is given, the server writes the file in the data directory
unless the base name is given with a leading absolute path name to specify a different directory. It is
recommended that you specify a base name explicitly rather than using the default of the host name; see
Section B.3.7, “Known Issues in MySQL”, for the reason.

If you supply an extension in the log name (for example, --log-bin=base_name.extension), the
extension is silently removed and ignored.

mysqld appends a numeric extension to the binary log base name to generate binary log file names. The
number increases each time the server creates a new log file, thus creating an ordered series of files. The
server creates a new file in the series each time any of the following events occurs:

• The server is started or restarted

• The server flushes the logs.

• The size of the current log file reaches max_binlog_size.

A binary log file may become larger than max_binlog_size if you are using large transactions because a
transaction is written to the file in one piece, never split between files.

To keep track of which binary log files have been used, mysqld also creates a binary log index file that
contains the names of the binary log files. By default, this has the same base name as the binary log file,
with the extension '.index'. You can change the name of the binary log index file with the --log-bin-
index[=file_name] option. You should not manually edit this file while mysqld is running; doing so
would confuse mysqld.

The term “binary log file” generally denotes an individual numbered file containing database events. The
term “binary log” collectively denotes the set of numbered binary log files plus the index file.

A client that has privileges sufficient to set restricted session system variables (see Section 5.1.8.1,
“System Variable Privileges”) can disable binary logging of its own statements by using a SET
sql_log_bin=OFF statement.

By default, the server logs the length of the event as well as the event itself and uses this to verify that
the event was written correctly. You can also cause the server to write checksums for the events by
setting the binlog_checksum system variable. When reading back from the binary log, the source
uses the event length by default, but can be made to use checksums if available by enabling the

979

The Binary Log

master_verify_checksum system variable. The replication I/O thread also verifies events received from
the source. You can cause the replication SQL thread to use checksums if available when reading from the
relay log by enabling the slave_sql_verify_checksum system variable.

The format of the events recorded in the binary log is dependent on the binary logging format. Three format
types are supported, row-based logging, statement-based logging and mixed-base logging. The binary
logging format used depends on the MySQL version. For general descriptions of the logging formats, see
Section 5.4.4.1, “Binary Logging Formats”. For detailed information about the format of the binary log, see
MySQL Internals: The Binary Log.

The server evaluates the --binlog-do-db and --binlog-ignore-db options in the same way as it
does the --replicate-do-db and --replicate-ignore-db options. For information about how this
is done, see Section 16.2.5.1, “Evaluation of Database-Level Replication and Binary Logging Options”.

A replica by default does not write to its own binary log any data modifications that are received from the
source. To log these modifications, start the replica with the --log-slave-updates option in addition to
the --log-bin option (see Section 16.1.6.3, “Replica Server Options and Variables”). This is done when
a replica is also to act as a source to other replicas in chained replication.

You can delete all binary log files with the RESET MASTER statement, or a subset of them with PURGE
BINARY LOGS. See Section 13.7.6.6, “RESET Statement”, and Section 13.4.1.1, “PURGE BINARY LOGS
Statement”.

If you are using replication, you should not delete old binary log files on the source until you are sure that
no replica still needs to use them. For example, if your replicas never run more than three days behind,
once a day you can execute mysqladmin flush-logs binary on the source and then remove any
logs that are more than three days old. You can remove the files manually, but it is preferable to use
PURGE BINARY LOGS, which also safely updates the binary log index file for you (and which can take a
date argument). See Section 13.4.1.1, “PURGE BINARY LOGS Statement”.

You can display the contents of binary log files with the mysqlbinlog utility. This can be useful when you
want to reprocess statements in the log for a recovery operation. For example, you can update a MySQL
server from the binary log as follows:

$> mysqlbinlog log_file | mysql -h server_name

mysqlbinlog also can be used to display relay log file contents because they are written using the
same format as binary log files. For more information on the mysqlbinlog utility and how to use it, see
Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”. For more information about the
binary log and recovery operations, see Section 7.5, “Point-in-Time (Incremental) Recovery”.

Binary logging is done immediately after a statement or transaction completes but before any locks are
released or any commit is done. This ensures that the log is logged in commit order.

Updates to nontransactional tables are stored in the binary log immediately after execution.

Within an uncommitted transaction, all updates (UPDATE, DELETE, or INSERT) that change transactional
tables such as InnoDB tables are cached until a COMMIT statement is received by the server. At that point,
mysqld writes the entire transaction to the binary log before the COMMIT is executed.

Modifications to nontransactional tables cannot be rolled back. If a transaction that is rolled back includes
modifications to nontransactional tables, the entire transaction is logged with a ROLLBACK statement at the
end to ensure that the modifications to those tables are replicated.

When a thread that handles the transaction starts, it allocates a buffer of binlog_cache_size to buffer
statements. If a statement is bigger than this, the thread opens a temporary file to store the transaction.
The temporary file is deleted when the thread ends.

980

https://dev.mysql.com/doc/internals/en/binary-log.html

The Binary Log

The Binlog_cache_use status variable shows the number of transactions that used this buffer (and
possibly a temporary file) for storing statements. The Binlog_cache_disk_use status variable shows
how many of those transactions actually had to use a temporary file. These two variables can be used for
tuning binlog_cache_size to a large enough value that avoids the use of temporary files.

The max_binlog_cache_size system variable (default 4GB, which is also the maximum) can be used
to restrict the total size used to cache a multiple-statement transaction. If a transaction is larger than this
many bytes, it fails and rolls back. The minimum value is 4096.

If you are using the binary log and row based logging, concurrent inserts are converted to normal inserts
for CREATE ... SELECT or INSERT ... SELECT statements. This is done to ensure that you can
re-create an exact copy of your tables by applying the log during a backup operation. If you are using
statement-based logging, the original statement is written to the log.

The binary log format has some known limitations that can affect recovery from backups. See
Section 16.4.1, “Replication Features and Issues”.

Binary logging for stored programs is done as described in Section 23.7, “Stored Program Binary Logging”.

Note that the binary log format differs in MySQL 5.7 from previous versions of MySQL, due to
enhancements in replication. See Section 16.4.2, “Replication Compatibility Between MySQL Versions”.

If the server is unable to write to the binary log, flush binary log files, or synchronize the binary log to disk,
the binary log on the source can become inconsistent and replicas can lose synchronization with the
source. The binlog_error_action system variable controls the action taken if an error of this type is
encountered with the binary log.

• The default setting, ABORT_SERVER, makes the server halt binary logging and shut down. At this point,
you can identify and correct the cause of the error. On restart, recovery proceeds as in the case of an
unexpected server halt (see Section 16.3.2, “Handling an Unexpected Halt of a Replica”).

• The setting IGNORE_ERROR provides backward compatibility with older versions of MySQL. With this
setting, the server continues the ongoing transaction and logs the error, then halts binary logging, but
continues to perform updates. At this point, you can identify and correct the cause of the error. To
resume binary logging, log_bin must be enabled again, which requires a server restart. Only use this
option if you require backward compatibility, and the binary log is non-essential on this MySQL server
instance. For example, you might use the binary log only for intermittent auditing or debugging of the
server, and not use it for replication from the server or rely on it for point-in-time restore operations.

By default, the binary log is synchronized to disk at each write (sync_binlog=1). If sync_binlog was
not enabled, and the operating system or machine (not only the MySQL server) crashed, there is a chance
that the last statements of the binary log could be lost. To prevent this, enable the sync_binlog system
variable to synchronize the binary log to disk after every N commit groups. See Section 5.1.7, “Server
System Variables”. The safest value for sync_binlog is 1 (the default), but this is also the slowest.

For example, if you are using InnoDB tables and the MySQL server processes a COMMIT statement, it
writes many prepared transactions to the binary log in sequence, synchronizes the binary log, and then
commits this transaction into InnoDB. If the server unexpectedly exits between those two operations, the
transaction is rolled back by InnoDB at restart but still exists in the binary log. Such an issue is resolved
assuming --innodb_support_xa is set to 1, the default. Although this option is related to the support
of XA transactions in InnoDB, it also ensures that the binary log and InnoDB data files are synchronized.
For this option to provide a greater degree of safety, the MySQL server should also be configured to
synchronize the binary log and the InnoDB logs to disk before committing the transaction. The InnoDB
logs are synchronized by default, and sync_binlog=1 can be used to synchronize the binary log. The
effect of this option is that at restart after a crash, after doing a rollback of transactions, the MySQL server
scans the latest binary log file to collect transaction xid values and calculate the last valid position in the
binary log file. The MySQL server then tells InnoDB to complete any prepared transactions that were

981

The Binary Log

successfully written to the to the binary log, and truncates the binary log to the last valid position. This
ensures that the binary log reflects the exact data of InnoDB tables, and therefore the replica remains in
synchrony with the source because it does not receive a statement which has been rolled back.

Note

innodb_support_xa is deprecated; expect it to be removed in a future release.
InnoDB support for two-phase commit in XA transactions is always enabled as of
MySQL 5.7.10.

If the MySQL server discovers at crash recovery that the binary log is shorter than it should have been, it
lacks at least one successfully committed InnoDB transaction. This should not happen if sync_binlog=1
and the disk/file system do an actual sync when they are requested to (some do not), so the server prints
an error message The binary log file_name is shorter than its expected size. In this
case, this binary log is not correct and replication should be restarted from a fresh snapshot of the source's
data.

The session values of the following system variables are written to the binary log and honored by the
replica when parsing the binary log:

• sql_mode (except that the NO_DIR_IN_CREATE mode is not replicated; see Section 16.4.1.37,
“Replication and Variables”)

• foreign_key_checks

• unique_checks

• character_set_client

• collation_connection

• collation_database

• collation_server

• sql_auto_is_null

5.4.4.1 Binary Logging Formats

The server uses several logging formats to record information in the binary log. The exact format employed
depends on the version of MySQL being used. There are three logging formats:

• Replication capabilities in MySQL originally were based on propagation of SQL statements from source
to replica. This is called statement-based logging. You can cause this format to be used by starting the
server with --binlog-format=STATEMENT.

• In row-based logging, the source writes events to the binary log that indicate how individual table
rows are affected. It is important therefore that tables always use a primary key to ensure rows can be
efficiently identified. You can cause the server to use row-based logging by starting it with --binlog-
format=ROW.

• A third option is also available: mixed logging. With mixed logging, statement-based logging is used by
default, but the logging mode switches automatically to row-based in certain cases as described below.
You can cause MySQL to use mixed logging explicitly by starting mysqld with the option --binlog-
format=MIXED.

The logging format can also be set or limited by the storage engine being used. This helps to eliminate
issues when replicating certain statements between a source and replica which are using different storage
engines.

982

The Binary Log

With statement-based replication, there may be issues with replicating nondeterministic statements. In
deciding whether or not a given statement is safe for statement-based replication, MySQL determines
whether it can guarantee that the statement can be replicated using statement-based logging. If MySQL
cannot make this guarantee, it marks the statement as potentially unreliable and issues the warning,
Statement may not be safe to log in statement format.

You can avoid these issues by using MySQL's row-based replication instead.

5.4.4.2 Setting The Binary Log Format

You can select the binary logging format explicitly by starting the MySQL server with --binlog-
format=type. The supported values for type are:

• STATEMENT causes logging to be statement based.

• ROW causes logging to be row based.

• MIXED causes logging to use mixed format.

Setting the binary logging format does not activate binary logging for the server. The setting only takes
effect when binary logging is enabled on the server, which is the case when the log_bin system variable
is set to ON. In MySQL 5.7, binary logging is not enabled by default, and you enable it using the --log-
bin option.

The logging format also can be switched at runtime, although note that there are a number of situations in
which you cannot do this, as discussed later in this section. Set the global value of the binlog_format
system variable to specify the format for clients that connect subsequent to the change:

mysql> SET GLOBAL binlog_format = 'STATEMENT';
mysql> SET GLOBAL binlog_format = 'ROW';
mysql> SET GLOBAL binlog_format = 'MIXED';

An individual client can control the logging format for its own statements by setting the session value of
binlog_format:

mysql> SET SESSION binlog_format = 'STATEMENT';
mysql> SET SESSION binlog_format = 'ROW';
mysql> SET SESSION binlog_format = 'MIXED';

Changing the global binlog_format value requires privileges sufficient to set global system variables.
Changing the session binlog_format value requires privileges sufficient to set restricted session system
variables. See Section 5.1.8.1, “System Variable Privileges”.

There are several reasons why a client might want to set binary logging on a per-session basis:

• A session that makes many small changes to the database might want to use row-based logging.

• A session that performs updates that match many rows in the WHERE clause might want to use
statement-based logging because it is more efficient to log a few statements than many rows.

• Some statements require a lot of execution time on the source, but result in just a few rows being
modified. It might therefore be beneficial to replicate them using row-based logging.

There are exceptions when you cannot switch the replication format at runtime:

• From within a stored function or a trigger.

• If the NDB storage engine is enabled.

• If the session is currently in row-based replication mode and has open temporary tables.

983

The Binary Log

Trying to switch the format in any of these cases results in an error.

Switching the replication format at runtime is not recommended when any temporary tables exist, because
temporary tables are logged only when using statement-based replication, whereas with row-based
replication they are not logged. With mixed replication, temporary tables are usually logged; exceptions
happen with loadable functions and with the UUID() function.

Switching the replication format while replication is ongoing can also cause issues. Each MySQL
Server can set its own and only its own binary logging format (true whether binlog_format is set
with global or session scope). This means that changing the logging format on a replication source
server does not cause a replica to change its logging format to match. When using STATEMENT mode,
the binlog_format system variable is not replicated. When using MIXED or ROW logging mode, it is
replicated but is ignored by the replica.

A replica is not able to convert binary log entries received in ROW logging format to STATEMENT format
for use in its own binary log. The replica must therefore use ROW or MIXED format if the source does.
Changing the binary logging format on the source from STATEMENT to ROW or MIXED while replication
is ongoing to a replica with STATEMENT format can cause replication to fail with errors such as Error
executing row event: 'Cannot execute statement: impossible to write to binary
log since statement is in row format and BINLOG_FORMAT = STATEMENT.' Changing
the binary logging format on the replica to STATEMENT format when the source is still using MIXED or
ROW format also causes the same type of replication failure. To change the format safely, you must stop
replication and ensure that the same change is made on both the source and the replica.

If you are using InnoDB tables and the transaction isolation level is READ COMMITTED or READ
UNCOMMITTED, only row-based logging can be used. It is possible to change the logging format to
STATEMENT, but doing so at runtime leads very rapidly to errors because InnoDB can no longer perform
inserts.

With the binary log format set to ROW, many changes are written to the binary log using the row-based
format. Some changes, however, still use the statement-based format. Examples include all DDL (data
definition language) statements such as CREATE TABLE, ALTER TABLE, or DROP TABLE.

The --binlog-row-event-max-size option is available for servers that are capable of row-based
replication. Rows are stored into the binary log in chunks having a size in bytes not exceeding the value of
this option. The value must be a multiple of 256. The default value is 8192.

Warning

When using statement-based logging for replication, it is possible for the data on
the source and replica to become different if a statement is designed in such a way
that the data modification is nondeterministic; that is, it is left to the will of the query
optimizer. In general, this is not a good practice even outside of replication. For a
detailed explanation of this issue, see Section B.3.7, “Known Issues in MySQL”.

5.4.4.3 Mixed Binary Logging Format

When running in MIXED logging format, the server automatically switches from statement-based to row-
based logging under the following conditions:

• When a DML statement updates an NDBCLUSTER table.

• When a function contains UUID().

• When one or more tables with AUTO_INCREMENT columns are updated and a trigger or stored
function is invoked. Like all other unsafe statements, this generates a warning if binlog_format =
STATEMENT.

984

The Binary Log

For more information, see Section 16.4.1.1, “Replication and AUTO_INCREMENT”.

• When the body of a view requires row-based replication, the statement creating the view also uses it. For
example, this occurs when the statement creating a view uses the UUID() function.

• When a call to a loadable function is involved.

• If a statement is logged by row and the session that executed the statement has any temporary tables,
logging by row is used for all subsequent statements (except for those accessing temporary tables) until
all temporary tables in use by that session are dropped.

This is true whether or not any temporary tables are actually logged.

Temporary tables cannot be logged using row-based format; thus, once row-based logging is used, all
subsequent statements using that table are unsafe. The server approximates this condition by treating
all statements executed during the session as unsafe until the session no longer holds any temporary
tables.

• When FOUND_ROWS() or ROW_COUNT() is used. (Bug #12092, Bug #30244)

• When USER(), CURRENT_USER(), or CURRENT_USER is used. (Bug #28086)

• When a statement refers to one or more system variables. (Bug #31168)

Exception. The following system variables, when used with session scope (only), do not cause the
logging format to switch:

• auto_increment_increment

• auto_increment_offset

• character_set_client

• character_set_connection

• character_set_database

• character_set_server

• collation_connection

• collation_database

• collation_server

• foreign_key_checks

• identity

• last_insert_id

• lc_time_names

• pseudo_thread_id

• sql_auto_is_null

• time_zone

985

The Binary Log

• timestamp

• unique_checks

For information about determining system variable scope, see Section 5.1.8, “Using System Variables”.

For information about how replication treats sql_mode, see Section 16.4.1.37, “Replication and
Variables”.

• When one of the tables involved is a log table in the mysql database.

• When the LOAD_FILE() function is used. (Bug #39701)

Note

A warning is generated if you try to execute a statement using statement-based
logging that should be written using row-based logging. The warning is shown both
in the client (in the output of SHOW WARNINGS) and through the mysqld error log.
A warning is added to the SHOW WARNINGS table each time such a statement is
executed. However, only the first statement that generated the warning for each
client session is written to the error log to prevent flooding the log.

In addition to the decisions above, individual engines can also determine the logging format used when
information in a table is updated. The logging capabilities of an individual engine can be defined as follows:

• If an engine supports row-based logging, the engine is said to be row-logging capable.

• If an engine supports statement-based logging, the engine is said to be statement-logging capable.

A given storage engine can support either or both logging formats. The following table lists the formats
supported by each engine.

Storage Engine Row Logging Supported Statement Logging Supported

ARCHIVE Yes Yes

BLACKHOLE Yes Yes

CSV Yes Yes

EXAMPLE Yes No

FEDERATED Yes Yes

HEAP Yes Yes

InnoDB Yes Yes when the transaction isolation
level is REPEATABLE READ or
SERIALIZABLE; No otherwise.

MyISAM Yes Yes

MERGE Yes Yes

NDB Yes No

Whether a statement is to be logged and the logging mode to be used is determined according to the type
of statement (safe, unsafe, or binary injected), the binary logging format (STATEMENT, ROW, or MIXED), and
the logging capabilities of the storage engine (statement capable, row capable, both, or neither). (Binary
injection refers to logging a change that must be logged using ROW format.)

Statements may be logged with or without a warning; failed statements are not logged, but generate errors
in the log. This is shown in the following decision table. Type, binlog_format, SLC, and RLC columns

986

The Binary Log

outline the conditions, and Error / Warning and Logged as columns represent the corresponding actions.
SLC stands for “statement-logging capable”, and RLC stands for “row-logging capable”.

Type binlog_formatSLC RLC Error / Warning Logged as

* * No No Error:
Cannot
execute
statement:
Binary logging
is impossible
since at least
one engine is
involved that
is both row-
incapable and
statement-
incapable.

-

Safe STATEMENT Yes No - STATEMENT

Safe MIXED Yes No - STATEMENT

Safe ROW Yes No Error:
Cannot
execute
statement:
Binary logging is
impossible since
BINLOG_FORMAT
= ROW and at
least one table
uses a storage
engine that is
not capable
of row-based
logging.

-

Unsafe STATEMENT Yes No Warning:
Unsafe
statement
binlogged
in statement
format, since
BINLOG_FORMAT
= STATEMENT

STATEMENT

Unsafe MIXED Yes No Error:
Cannot
execute
statement:
Binary logging
of an unsafe
statement is
impossible
when the
storage engine
is limited to

-

987

The Binary Log

Type binlog_formatSLC RLC Error / Warning Logged as
statement-based
logging, even if
BINLOG_FORMAT
= MIXED.

Unsafe ROW Yes No Error:
Cannot
execute
statement:
Binary logging is
impossible since
BINLOG_FORMAT
= ROW and at
least one table
uses a storage
engine that is
not capable
of row-based
logging.

-

Row Injection STATEMENT Yes No Error:
Cannot
execute row
injection:
Binary logging
is not possible
since at least
one table uses a
storage engine
that is not
capable of row-
based logging.

-

Row Injection MIXED Yes No Error:
Cannot
execute row
injection:
Binary logging
is not possible
since at least
one table uses a
storage engine
that is not
capable of row-
based logging.

-

Row Injection ROW Yes No Error:
Cannot
execute row
injection:
Binary logging
is not possible
since at least
one table uses a
storage engine

-

988

The Binary Log

Type binlog_formatSLC RLC Error / Warning Logged as
that is not
capable of row-
based logging.

Safe STATEMENT No Yes Error:
Cannot
execute
statement:
Binary logging is
impossible since
BINLOG_FORMAT
= STATEMENT
and at least
one table uses
a storage
engine that is
not capable of
statement-based
logging.

-

Safe MIXED No Yes - ROW

Safe ROW No Yes - ROW

Unsafe STATEMENT No Yes Error:
Cannot
execute
statement:
Binary logging is
impossible since
BINLOG_FORMAT
= STATEMENT
and at least
one table uses
a storage
engine that is
not capable of
statement-based
logging.

-

Unsafe MIXED No Yes - ROW

Unsafe ROW No Yes - ROW

Row Injection STATEMENT No Yes Error:
Cannot
execute row
injection:
Binary
logging is not
possible since
BINLOG_FORMAT
= STATEMENT.

-

Row Injection MIXED No Yes - ROW

Row Injection ROW No Yes - ROW

989

The Binary Log

Type binlog_formatSLC RLC Error / Warning Logged as

Safe STATEMENT Yes Yes - STATEMENT

Safe MIXED Yes Yes - STATEMENT

Safe ROW Yes Yes - ROW

Unsafe STATEMENT Yes Yes Warning:
Unsafe
statement
binlogged
in statement
format since
BINLOG_FORMAT
= STATEMENT.

STATEMENT

Unsafe MIXED Yes Yes - ROW

Unsafe ROW Yes Yes - ROW

Row Injection STATEMENT Yes Yes Error:
Cannot
execute row
injection:
Binary logging
is not possible
because
BINLOG_FORMAT
= STATEMENT.

-

Row Injection MIXED Yes Yes - ROW

Row Injection ROW Yes Yes - ROW

When a warning is produced by the determination, a standard MySQL warning is produced (and is
available using SHOW WARNINGS). The information is also written to the mysqld error log. Only one
error for each error instance per client connection is logged to prevent flooding the log. The log message
includes the SQL statement that was attempted.

If log_error_verbosity is 2 or greater on a replica, the replica prints messages to the error log to
provide information about its status, such as the binary log and relay log coordinates where it starts its job,
when it is switching to another relay log, when it reconnects after a disconnect, statements that are unsafe
for statement-based logging, and so forth.

5.4.4.4 Logging Format for Changes to mysql Database Tables

The contents of the grant tables in the mysql database can be modified directly (for example, with INSERT
or DELETE) or indirectly (for example, with GRANT or CREATE USER). Statements that affect mysql
database tables are written to the binary log using the following rules:

• Data manipulation statements that change data in mysql database tables directly are logged according
to the setting of the binlog_format system variable. This pertains to statements such as INSERT,
UPDATE, DELETE, REPLACE, DO, LOAD DATA, SELECT, and TRUNCATE TABLE.

• Statements that change the mysql database indirectly are logged as statements regardless of the value
of binlog_format. This pertains to statements such as GRANT, REVOKE, SET PASSWORD, RENAME
USER, CREATE (all forms except CREATE TABLE ... SELECT), ALTER (all forms), and DROP (all
forms).

990

The Slow Query Log

CREATE TABLE ... SELECT is a combination of data definition and data manipulation. The CREATE
TABLE part is logged using statement format and the SELECT part is logged according to the value of
binlog_format.

5.4.5 The Slow Query Log

The slow query log consists of SQL statements that take more than long_query_time seconds to
execute and require at least min_examined_row_limit rows to be examined. The slow query log can
be used to find queries that take a long time to execute and are therefore candidates for optimization.
However, examining a long slow query log can be a time-consuming task. To make this easier, you can
use the mysqldumpslow command to process a slow query log file and summarize its contents. See
Section 4.6.8, “mysqldumpslow — Summarize Slow Query Log Files”.

The time to acquire the initial locks is not counted as execution time. mysqld writes a statement to the
slow query log after it has been executed and after all locks have been released, so log order might differ
from execution order.

• Slow Query Log Parameters

• Slow Query Log Contents

Slow Query Log Parameters

The minimum and default values of long_query_time are 0 and 10, respectively. The value can be
specified to a resolution of microseconds.

By default, administrative statements are not logged, nor are queries that do not use indexes
for lookups. This behavior can be changed using log_slow_admin_statements and
log_queries_not_using_indexes, as described later.

By default, the slow query log is disabled. To specify the initial slow query log state explicitly, use
--slow_query_log[={0|1}]. With no argument or an argument of 1, --slow_query_log
enables the log. With an argument of 0, this option disables the log. To specify a log file name, use --
slow_query_log_file=file_name. To specify the log destination, use the log_output system
variable (as described in Section 5.4.1, “Selecting General Query Log and Slow Query Log Output
Destinations”).

Note

If you specify the TABLE log destination, see Log Tables and “Too many open files”
Errors.

If you specify no name for the slow query log file, the default name is host_name-slow.log. The server
creates the file in the data directory unless an absolute path name is given to specify a different directory.

To disable or enable the slow query log or change the log file name at runtime, use the global
slow_query_log and slow_query_log_file system variables. Set slow_query_log to 0 to disable
the log or to 1 to enable it. Set slow_query_log_file to specify the name of the log file. If a log file
already is open, it is closed and the new file is opened.

The server writes less information to the slow query log if you use the --log-short-format option.

To include slow administrative statements in the slow query log, enable the
log_slow_admin_statements system variable. Administrative statements include ALTER TABLE,
ANALYZE TABLE, CHECK TABLE, CREATE INDEX, DROP INDEX, OPTIMIZE TABLE, and REPAIR
TABLE.

991

The Slow Query Log

To include queries that do not use indexes for row lookups in the statements written to the slow query log,
enable the log_queries_not_using_indexes system variable. (Even with that variable enabled, the
server does not log queries that would not benefit from the presence of an index due to the table having
fewer than two rows.)

When queries that do not use an index are logged, the slow query log may grow quickly. It is possible
to put a rate limit on these queries by setting the log_throttle_queries_not_using_indexes
system variable. By default, this variable is 0, which means there is no limit. Positive values impose a per-
minute limit on logging of queries that do not use indexes. The first such query opens a 60-second window
within which the server logs queries up to the given limit, then suppresses additional queries. If there are
suppressed queries when the window ends, the server logs a summary that indicates how many there
were and the aggregate time spent in them. The next 60-second window begins when the server logs the
next query that does not use indexes.

The server uses the controlling parameters in the following order to determine whether to write a query to
the slow query log:

1. The query must either not be an administrative statement, or log_slow_admin_statements must
be enabled.

2. The query must have taken at least long_query_time seconds, or
log_queries_not_using_indexes must be enabled and the query used no indexes for row
lookups.

3. The query must have examined at least min_examined_row_limit rows.

4. The query must not be suppressed according to the
log_throttle_queries_not_using_indexes setting.

The log_timestamps system variable controls the time zone of timestamps in messages written to the
slow query log file (as well as to the general query log file and the error log). It does not affect the time
zone of general query log and slow query log messages written to log tables, but rows retrieved from those
tables can be converted from the local system time zone to any desired time zone with CONVERT_TZ() or
by setting the session time_zone system variable.

The server does not log queries handled by the query cache.

By default, a replica does not write replicated queries to the slow query log. To change this, enable
the log_slow_slave_statements system variable. Note that if row-based replication is in use
(binlog_format=ROW), log_slow_slave_statements has no effect. Queries are only added to
the replica's slow query log when they are logged in statement format in the binary log, that is, when
binlog_format=STATEMENT is set, or when binlog_format=MIXED is set and the statement is logged
in statement format. Slow queries that are logged in row format when binlog_format=MIXED is set, or
that are logged when binlog_format=ROW is set, are not added to the replica's slow query log, even if
log_slow_slave_statements is enabled.

Slow Query Log Contents

When the slow query log is enabled, the server writes output to any destinations specified by the
log_output system variable. If you enable the log, the server opens the log file and writes startup
messages to it. However, further logging of queries to the file does not occur unless the FILE log
destination is selected. If the destination is NONE, the server writes no queries even if the slow query log is
enabled. Setting the log file name has no effect on logging if FILE is not selected as an output destination.

If the slow query log is enabled and FILE is selected as an output destination, each statement written to
the log is preceded by a line that begins with a # character and has these fields (with all fields on a single
line):

992

The DDL Log

• Query_time: duration

The statement execution time in seconds.

• Lock_time: duration

The time to acquire locks in seconds.

• Rows_sent: N

The number of rows sent to the client.

• Rows_examined:

The number of rows examined by the server layer (not counting any processing internal to storage
engines).

Each statement written to the slow query log file is preceded by a SET statement that includes a timestamp
indicating when the slow statement was logged (which occurs after the statement finishes executing).

Passwords in statements written to the slow query log are rewritten by the server not to occur literally in
plain text. See Section 6.1.2.3, “Passwords and Logging”.

From MySQL 5.7.38, statements that cannot be parsed (due, for example, to syntax errors) are not written
to the slow query log.

5.4.6 The DDL Log

The DDL log, or metadata log, records metadata operations generated by data definition statements
affecting table partitioning, such as ALTER TABLE t3 DROP PARTITION p2, where we must make
certain that the partition is completely dropped and that its definition is removed from the list of partitions
for table t3. MySQL uses this log to recover from a crash occurring in the middle of a partitioning metadata
operation.

A record of partitioning metadata operations is written to the file ddl_log.log, in the MySQL data
directory. This is a binary file; it is not intended to be human-readable, and you should not attempt to
modify its contents in any way.

ddl_log.log is not created until it is actually needed for recording metadata statements, and is removed
following a successful start of mysqld. Thus, it is possible for this file not to be present on a MySQL server
that is functioning in a completely normal manner.

ddl_log.log can hold up to 1048573 entries, equivalent to 4 GB in size. Once this limit is exceeded, you
must rename or remove the file before it is possible to execute any additional DDL statements. This is a
known issue (Bug #83708).

There are no user-configurable server options or variables associated with this file.

5.4.7 Server Log Maintenance

As described in Section 5.4, “MySQL Server Logs”, MySQL Server can create several different log files to
help you see what activity is taking place. However, you must clean up these files regularly to ensure that
the logs do not take up too much disk space.

When using MySQL with logging enabled, you may want to back up and remove old log files from time to
time and tell MySQL to start logging to new files. See Section 7.2, “Database Backup Methods”.

993

Server Log Maintenance

On a Linux (Red Hat) installation, you can use the mysql-log-rotate script for log maintenance. If you
installed MySQL from an RPM distribution, this script should have been installed automatically. Be careful
with this script if you are using the binary log for replication. You should not remove binary logs until you
are certain that their contents have been processed by all replicas.

On other systems, you must install a short script yourself that you start from cron (or its equivalent) for
handling log files.

For the binary log, you can set the expire_logs_days system variable to expire binary log files
automatically after a given number of days (see Section 5.1.7, “Server System Variables”). If you are using
replication, you should set the variable no lower than the maximum number of days your replicas might
lag behind the source. To remove binary logs on demand, use the PURGE BINARY LOGS statement (see
Section 13.4.1.1, “PURGE BINARY LOGS Statement”).

To force MySQL to start using new log files, flush the logs. Log flushing occurs when you execute a FLUSH
LOGS statement or a mysqladmin flush-logs, mysqladmin refresh, mysqldump --flush-logs,
or mysqldump --master-data command. See Section 13.7.6.3, “FLUSH Statement”, Section 4.5.2,
“mysqladmin — A MySQL Server Administration Program”, and Section 4.5.4, “mysqldump — A Database
Backup Program”. In addition, the server flushes the binary log automatically when current binary log file
size reaches the value of the max_binlog_size system variable.

FLUSH LOGS supports optional modifiers to enable selective flushing of individual logs (for example,
FLUSH BINARY LOGS). See Section 13.7.6.3, “FLUSH Statement”.

A log-flushing operation has the following effects:

• If binary logging is enabled, the server closes the current binary log file and opens a new log file with the
next sequence number.

• If general query logging or slow query logging to a log file is enabled, the server closes and reopens the
log file.

• If the server was started with the --log-error option to cause the error log to be written to a file, the
server closes and reopens the log file.

Execution of log-flushing statements or commands requires connecting to the server using an account
that has the RELOAD privilege. On Unix and Unix-like systems, another way to flush the logs is to send a
SIGHUP signal to the server, which can be done by root or the account that owns the server process.
Signals enable log flushing to be performed without having to connect to the server. However, SIGHUP
has additional effects other than log flushing that might be undesirable. For details, see Section 4.10, “Unix
Signal Handling in MySQL”.

As mentioned previously, flushing the binary log creates a new binary log file, whereas flushing the general
query log, slow query log, or error log just closes and reopens the log file. For the latter logs, to cause
a new log file to be created on Unix, rename the current log file first before flushing it. At flush time, the
server opens the new log file with the original name. For example, if the general query log, slow query log,
and error log files are named mysql.log, mysql-slow.log, and err.log, you can use a series of
commands like this from the command line:

cd mysql-data-directory
mv mysql.log mysql.log.old
mv mysql-slow.log mysql-slow.log.old
mv err.log err.log.old
mysqladmin flush-logs

On Windows, use rename rather than mv.

994

MySQL Server Plugins

At this point, you can make a backup of mysql.log.old, mysql-slow.log.old, and err.log.old,
then remove them from disk.

To rename the general query log or slow query log at runtime, first connect to the server and disable the
log:

SET GLOBAL general_log = 'OFF';
SET GLOBAL slow_query_log = 'OFF';

With the logs disabled, rename the log files externally (for example, from the command line). Then enable
the logs again:

SET GLOBAL general_log = 'ON';
SET GLOBAL slow_query_log = 'ON';

This method works on any platform and does not require a server restart.

Note

For the server to recreate a given log file after you have renamed the file externally,
the file location must be writable by the server. This may not always be the
case. For example, on Linux, the server might write the error log as /var/log/
mysqld.log, where /var/log is owned by root and not writable by mysqld. In
this case, log-flushing operations fail to create a new log file.

To handle this situation, you must manually create the new log file with the
proper ownership after renaming the original log file. For example, execute these
commands as root:

mv /var/log/mysqld.log /var/log/mysqld.log.old
install -omysql -gmysql -m0644 /dev/null /var/log/mysqld.log

5.5 MySQL Server Plugins
MySQL supports an plugin API that enables creation of server plugins. Plugins can be loaded at server
startup, or loaded and unloaded at runtime without restarting the server. The plugins supported by this
interface include, but are not limited to, storage engines, INFORMATION_SCHEMA tables, full-text parser
plugins, partitioning support, and server extensions.

MySQL distributions include several plugins that implement server extensions:

• Plugins for authenticating attempts by clients to connect to MySQL Server. Plugins are available for
several authentication protocols. See Section 6.2.13, “Pluggable Authentication”.

• A connection control plugin that enables administrators to introduce an increasing delay after a certain
number of consecutive failed client connection attempts. See Section 6.4.2, “Connection Control
Plugins”.

• A password-validation plugin implements password strength policies and assesses the strength of
potential passwords. See Section 6.4.3, “The Password Validation Plugin”.

• Semisynchronous replication plugins implement an interface to replication capabilities that permit
the source to proceed as long as at least one replica has responded to each transaction. See
Section 16.3.9, “Semisynchronous Replication”.

• Group Replication enables you to create a highly available distributed MySQL service across a group of
MySQL server instances, with data consistency, conflict detection and resolution, and group membership
services all built-in. See Chapter 17, Group Replication.

995

Installing and Uninstalling Plugins

• MySQL Enterprise Edition includes a thread pool plugin that manages connection threads to increase
server performance by efficiently managing statement execution threads for large numbers of client
connections. See Section 5.5.3, “MySQL Enterprise Thread Pool”.

• MySQL Enterprise Edition includes an audit plugin for monitoring and logging of connection and query
activity. See Section 6.4.5, “MySQL Enterprise Audit”.

• MySQL Enterprise Edition includes a firewall plugin that implements an application-level firewall to
enable database administrators to permit or deny SQL statement execution based on matching against
allowlists of accepted statement patterns. See Section 6.4.6, “MySQL Enterprise Firewall”.

• A query rewrite plugin examines statements received by MySQL Server and possibly rewrites them
before the server executes them. See Section 5.5.4, “The Rewriter Query Rewrite Plugin”.

• Version Tokens enables creation of and synchronization around server tokens that applications can
use to prevent accessing incorrect or out-of-date data. Version Tokens is based on a plugin library that
implements a version_tokens plugin and a set of loadable functions. See Section 5.5.5, “Version
Tokens”.

• Keyring plugins provide secure storage for sensitive information. See Section 6.4.4, “The MySQL
Keyring”.

• X Plugin extends MySQL Server to be able to function as a document store. Running X Plugin enables
MySQL Server to communicate with clients using the X Protocol, which is designed to expose the ACID
compliant storage abilities of MySQL as a document store. See Section 19.4, “X Plugin”.

• Test framework plugins test server services. For information about these plugins, see the Plugins for
Testing Plugin Services section of the MySQL Server Doxygen documentation, available at https://
dev.mysql.com/doc/index-other.html.

The following sections describe how to install and uninstall plugins, and how to determine at runtime which
plugins are installed and obtain information about them. For information about writing plugins, see The
MySQL Plugin API.

5.5.1 Installing and Uninstalling Plugins

Server plugins must be loaded into the server before they can be used. MySQL supports plugin loading at
server startup and runtime. It is also possible to control the activation state of loaded plugins at startup, and
to unload them at runtime.

While a plugin is loaded, information about it is available as described in Section 5.5.2, “Obtaining Server
Plugin Information”.

• Installing Plugins

• Controlling Plugin Activation State

• Uninstalling Plugins

Installing Plugins

Before a server plugin can be used, it must be installed using one of the following methods. In the
descriptions, plugin_name stands for a plugin name such as innodb, csv, or validate_password.

• Built-in Plugins

• Plugins Registered in the mysql.plugin System Table

996

https://dev.mysql.com/doc/index-other.html
https://dev.mysql.com/doc/index-other.html
https://dev.mysql.com/doc/extending-mysql/5.7/en/plugin-api.html
https://dev.mysql.com/doc/extending-mysql/5.7/en/plugin-api.html

Installing and Uninstalling Plugins

• Plugins Named with Command-Line Options

• Plugins Installed with the INSTALL PLUGIN Statement

Built-in Plugins

A built-in plugin is known by the server automatically. By default, the server enables the plugin at startup.
Some built-in plugins permit this to be changed with the --plugin_name[=activation_state] option.

Plugins Registered in the mysql.plugin System Table

The mysql.plugin system table serves as a registry of plugins (other than built-in plugins, which need
not be registered). During the normal startup sequence, the server loads plugins registered in the table. By
default, for a plugin loaded from the mysql.plugin table, the server also enables the plugin. This can be
changed with the --plugin_name[=activation_state] option.

If the server is started with the --skip-grant-tables option, plugins registered in the mysql.plugin
table are not loaded and are unavailable.

Plugins Named with Command-Line Options

A plugin located in a plugin library file can be loaded at server startup with the --plugin-load, --
plugin-load-add, or --early-plugin-load option. Normally, for a plugin loaded at startup, the
server also enables the plugin. This can be changed with the --plugin_name[=activation_state]
option.

The --plugin-load and --plugin-load-add options load plugins after built-in plugins and storage
engines have initialized during the server startup sequence. The --early-plugin-load option is used
to load plugins that must be available prior to initialization of built-in plugins and storage engines.

The value of each plugin-loading option is a semicolon-separated list of plugin_library and
name=plugin_library values. Each plugin_library is the name of a library file that contains plugin
code, and each name is the name of a plugin to load. If a plugin library is named without any preceding
plugin name, the server loads all plugins in the library. With a preceding plugin name, the server loads
only the named plugin from the libary. The server looks for plugin library files in the directory named by the
plugin_dir system variable.

Plugin-loading options do not register any plugin in the mysql.plugin table. For subsequent restarts,
the server loads the plugin again only if --plugin-load, --plugin-load-add, or --early-plugin-
load is given again. That is, the option produces a one-time plugin-installation operation that persists for a
single server invocation.

--plugin-load, --plugin-load-add, and --early-plugin-load enable plugins to be loaded
even when --skip-grant-tables is given (which causes the server to ignore the mysql.plugin
table). --plugin-load, --plugin-load-add, and --early-plugin-load also enable plugins to be
loaded at startup that cannot be loaded at runtime.

The --plugin-load-add option complements the --plugin-load option:

• Each instance of --plugin-load resets the set of plugins to load at startup, whereas --plugin-
load-add adds a plugin or plugins to the set of plugins to be loaded without resetting the current set.
Consequently, if multiple instances of --plugin-load are specified, only the last one applies. With
multiple instances of --plugin-load-add, all of them apply.

• The argument format is the same as for --plugin-load, but multiple instances of --plugin-load-
add can be used to avoid specifying a large set of plugins as a single long unwieldy --plugin-load
argument.

997

Installing and Uninstalling Plugins

• --plugin-load-add can be given in the absence of --plugin-load, but any instance of --
plugin-load-add that appears before --plugin-load has no effect because --plugin-load
resets the set of plugins to load.

For example, these options:

--plugin-load=x --plugin-load-add=y

are equivalent to these options:

--plugin-load-add=x --plugin-load-add=y

and are also equivalent to this option:

--plugin-load="x;y"

But these options:

--plugin-load-add=y --plugin-load=x

are equivalent to this option:

--plugin-load=x

Plugins Installed with the INSTALL PLUGIN Statement

A plugin located in a plugin library file can be loaded at runtime with the INSTALL PLUGIN statement.
The statement also registers the plugin in the mysql.plugin table to cause the server to load it
on subsequent restarts. For this reason, INSTALL PLUGIN requires the INSERT privilege for the
mysql.plugin table.

The plugin library file base name depends on your platform. Common suffixes are .so for Unix and Unix-
like systems, .dll for Windows.

Example: The --plugin-load-add option installs a plugin at server startup. To install a plugin named
myplugin from a plugin library file named somepluglib.so, use these lines in a my.cnf file:

[mysqld]
plugin-load-add=myplugin=somepluglib.so

In this case, the plugin is not registered in mysql.plugin. Restarting the server without the --plugin-
load-add option causes the plugin not to be loaded at startup.

Alternatively, the INSTALL PLUGIN statement causes the server to load the plugin code from the library
file at runtime:

INSTALL PLUGIN myplugin SONAME 'somepluglib.so';

INSTALL PLUGIN also causes “permanent” plugin registration: The plugin is listed in the mysql.plugin
table to ensure that the server loads it on subsequent restarts.

Many plugins can be loaded either at server startup or at runtime. However, if a plugin is designed such
that it must be loaded and initialized during server startup, attempts to load it at runtime using INSTALL
PLUGIN produce an error:

mysql> INSTALL PLUGIN myplugin SONAME 'somepluglib.so';
ERROR 1721 (HY000): Plugin 'myplugin' is marked as not dynamically
installable. You have to stop the server to install it.

In this case, you must use --plugin-load, --plugin-load-add, or --early-plugin-load.

998

Installing and Uninstalling Plugins

If a plugin is named both using a --plugin-load, --plugin-load-add, or --early-plugin-load
option and (as a result of an earlier INSTALL PLUGIN statement) in the mysql.plugin table, the server
starts but writes these messages to the error log:

[ERROR] Function 'plugin_name' already exists
[Warning] Couldn't load plugin named 'plugin_name'
with soname 'plugin_object_file'.

Controlling Plugin Activation State

If the server knows about a plugin when it starts (for example, because the plugin is named using
a --plugin-load-add option or is registered in the mysql.plugin table), the server loads
and enables the plugin by default. It is possible to control activation state for such a plugin using a
--plugin_name[=activation_state] startup option, where plugin_name is the name of the plugin
to affect, such as innodb, csv, or validate_password. As with other options, dashes and underscores
are interchangeable in option names. Also, activation state values are not case-sensitive. For example, --
my_plugin=ON and --my-plugin=on are equivalent.

• --plugin_name=OFF

Tells the server to disable the plugin. This may not be possible for certain built-in plugins, such as
mysql_native_password.

• --plugin_name[=ON]

Tells the server to enable the plugin. (Specifying the option as --plugin_name without a value has the
same effect.) If the plugin fails to initialize, the server runs with the plugin disabled.

• --plugin_name=FORCE

Tells the server to enable the plugin, but if plugin initialization fails, the server does not start. In other
words, this option forces the server to run with the plugin enabled or not at all.

• --plugin_name=FORCE_PLUS_PERMANENT

Like FORCE, but in addition prevents the plugin from being unloaded at runtime. If a user attempts to do
so with UNINSTALL PLUGIN, an error occurs.

Plugin activation states are visible in the LOAD_OPTION column of the Information Schema PLUGINS table.

Suppose that CSV, BLACKHOLE, and ARCHIVE are built-in pluggable storage engines and that you want
the server to load them at startup, subject to these conditions: The server is permitted to run if CSV
initialization fails, must require that BLACKHOLE initialization succeeds, and should disable ARCHIVE. To
accomplish that, use these lines in an option file:

[mysqld]
csv=ON
blackhole=FORCE
archive=OFF

The --enable-plugin_name option format is a synonym for --plugin_name=ON. The
--disable-plugin_name and --skip-plugin_name option formats are synonyms for
--plugin_name=OFF.

If a plugin is disabled, either explicitly with OFF or implicitly because it was enabled with ON but fails
to initialize, aspects of server operation that require the plugin change. For example, if the plugin
implements a storage engine, existing tables for the storage engine become inaccessible, and attempts
to create new tables for the storage engine result in tables that use the default storage engine unless the
NO_ENGINE_SUBSTITUTION SQL mode is enabled to cause an error to occur instead.

999

Obtaining Server Plugin Information

Disabling a plugin may require adjustment to other options. For example, if you start the server
using --skip-innodb to disable InnoDB, other innodb_xxx options likely need to be omitted
at startup. In addition, because InnoDB is the default storage engine, it cannot start unless you
specify another available storage engine with --default_storage_engine. You must also set --
default_tmp_storage_engine.

Uninstalling Plugins

At runtime, the UNINSTALL PLUGIN statement disables and uninstalls a plugin known to the server. The
statement unloads the plugin and removes it from the mysql.plugin system table, if it is registered there.
For this reason, UNINSTALL PLUGIN statement requires the DELETE privilege for the mysql.plugin
table. With the plugin no longer registered in the table, the server does not load the plugin during
subsequent restarts.

UNINSTALL PLUGIN can unload a plugin regardless of whether it was loaded at runtime with INSTALL
PLUGIN or at startup with a plugin-loading option, subject to these conditions:

• It cannot unload plugins that are built in to the server. These can be identified as those that have a
library name of NULL in the output from INFORMATION_SCHEMA.PLUGINS or SHOW PLUGINS.

• It cannot unload plugins for which the server was started with
--plugin_name=FORCE_PLUS_PERMANENT, which prevents plugin unloading at runtime. These can
be identified from the LOAD_OPTION column of the Information Schema PLUGINS table.

To uninstall a plugin that currently is loaded at server startup with a plugin-loading option, use this
procedure.

1. Remove from the my.cnf file any options related to the plugin.

2. Restart the server.

3. Plugins normally are installed using either a plugin-loading option at startup or with INSTALL PLUGIN
at runtime, but not both. However, removing options for a plugin from the my.cnf file may not be
sufficient to uninstall it if at some point INSTALL PLUGIN has also been used. If the plugin still
appears in the output from INFORMATION_SCHEMA.PLUGINS or SHOW PLUGINS, use UNINSTALL
PLUGIN to remove it from the mysql.plugin table. Then restart the server again.

5.5.2 Obtaining Server Plugin Information

There are several ways to determine which plugins are installed in the server:

• The Information Schema PLUGINS table contains a row for each loaded plugin. Any that have a
PLUGIN_LIBRARY value of NULL are built in and cannot be unloaded.

mysql> SELECT * FROM INFORMATION_SCHEMA.PLUGINS\G
*************************** 1. row ***************************
 PLUGIN_NAME: binlog
 PLUGIN_VERSION: 1.0
 PLUGIN_STATUS: ACTIVE
 PLUGIN_TYPE: STORAGE ENGINE
 PLUGIN_TYPE_VERSION: 50158.0
 PLUGIN_LIBRARY: NULL
PLUGIN_LIBRARY_VERSION: NULL
 PLUGIN_AUTHOR: MySQL AB
 PLUGIN_DESCRIPTION: This is a pseudo storage engine to represent the binlog in a transaction
 PLUGIN_LICENSE: GPL
 LOAD_OPTION: FORCE
...
*************************** 10. row ***************************

1000

MySQL Enterprise Thread Pool

 PLUGIN_NAME: InnoDB
 PLUGIN_VERSION: 1.0
 PLUGIN_STATUS: ACTIVE
 PLUGIN_TYPE: STORAGE ENGINE
 PLUGIN_TYPE_VERSION: 50158.0
 PLUGIN_LIBRARY: ha_innodb_plugin.so
PLUGIN_LIBRARY_VERSION: 1.0
 PLUGIN_AUTHOR: Innobase Oy
 PLUGIN_DESCRIPTION: Supports transactions, row-level locking,
 and foreign keys
 PLUGIN_LICENSE: GPL
 LOAD_OPTION: ON
...

• The SHOW PLUGINS statement displays a row for each loaded plugin. Any that have a Library value of
NULL are built in and cannot be unloaded.

mysql> SHOW PLUGINS\G
*************************** 1. row ***************************
 Name: binlog
 Status: ACTIVE
 Type: STORAGE ENGINE
Library: NULL
License: GPL
...
*************************** 10. row ***************************
 Name: InnoDB
 Status: ACTIVE
 Type: STORAGE ENGINE
Library: ha_innodb_plugin.so
License: GPL
...

• The mysql.plugin table shows which plugins have been registered with INSTALL PLUGIN. The table
contains only plugin names and library file names, so it does not provide as much information as the
PLUGINS table or the SHOW PLUGINS statement.

5.5.3 MySQL Enterprise Thread Pool

Note

MySQL Enterprise Thread Pool is an extension included in MySQL Enterprise
Edition, a commercial product. To learn more about commercial products, https://
www.mysql.com/products/.

MySQL Enterprise Edition includes MySQL Enterprise Thread Pool, implemented using a server plugin.
The default thread-handling model in MySQL Server executes statements using one thread per client
connection. As more clients connect to the server and execute statements, overall performance degrades.
The thread pool plugin provides an alternative thread-handling model designed to reduce overhead
and improve performance. The plugin implements a thread pool that increases server performance by
efficiently managing statement execution threads for large numbers of client connections.

The thread pool addresses several problems of the model that uses one thread per connection:

• Too many thread stacks make CPU caches almost useless in highly parallel execution workloads. The
thread pool promotes thread stack reuse to minimize the CPU cache footprint.

• With too many threads executing in parallel, context switching overhead is high. This also presents a
challenge to the operating system scheduler. The thread pool controls the number of active threads to
keep the parallelism within the MySQL server at a level that it can handle and that is appropriate for the
server host on which MySQL is executing.

1001

https://www.mysql.com/products/
https://www.mysql.com/products/

MySQL Enterprise Thread Pool

• Too many transactions executing in parallel increases resource contention. In InnoDB, this increases
the time spent holding central mutexes. The thread pool controls when transactions start to ensure that
not too many execute in parallel.

Additional Resources

Section A.15, “MySQL 5.7 FAQ: MySQL Enterprise Thread Pool”

5.5.3.1 Thread Pool Elements

MySQL Enterprise Thread Pool comprises these elements:

• A plugin library file implements a plugin for the thread pool code as well as several associated monitoring
tables that provide information about thread pool operation.

For a detailed description of how the thread pool works, see Section 5.5.3.3, “Thread Pool Operation”.

The INFORMATION_SCHEMA tables are named TP_THREAD_STATE, TP_THREAD_GROUP_STATE, and
TP_THREAD_GROUP_STATS. These tables provide information about thread pool operation. For more
information, see Section 24.5, “INFORMATION_SCHEMA Thread Pool Tables”.

• Several system variables are related to the thread pool. The thread_handling system variable has a
value of loaded-dynamically when the server successfully loads the thread pool plugin.

The other related system variables are implemented by the thread pool plugin and are not available
unless it is enabled. For information about using these variables, see Section 5.5.3.3, “Thread Pool
Operation”, and Section 5.5.3.4, “Thread Pool Tuning”.

• The Performance Schema has instruments that expose information about the thread pool and may be
used to investigate operational performance. To identify them, use this query:

SELECT * FROM performance_schema.setup_instruments
WHERE NAME LIKE '%thread_pool%';

For more information, see Chapter 25, MySQL Performance Schema.

5.5.3.2 Thread Pool Installation

This section describes how to install MySQL Enterprise Thread Pool. For general information about
installing plugins, see Section 5.5.1, “Installing and Uninstalling Plugins”.

To be usable by the server, the plugin library file must be located in the MySQL plugin directory (the
directory named by the plugin_dir system variable). If necessary, configure the plugin directory location
by setting the value of plugin_dir at server startup.

The plugin library file base name is thread_pool. The file name suffix differs per platform (for example,
.so for Unix and Unix-like systems, .dll for Windows).

To enable thread pool capability, load the plugins to be used by starting the server with the --plugin-
load-add option. For example, if you name only the plugin library file, the server loads all plugins that it
contains (that is, the thread pool plugin and all the INFORMATION_SCHEMA tables). To do this, put these
lines in the server my.cnf file, adjusting the .so suffix for your platform as necessary:

[mysqld]
plugin-load-add=thread_pool.so

That is equivalent to loading all thread pool plugins by naming them individually:

[mysqld]

1002

MySQL Enterprise Thread Pool

plugin-load-add=thread_pool=thread_pool.so
plugin-load-add=tp_thread_state=thread_pool.so
plugin-load-add=tp_thread_group_state=thread_pool.so
plugin-load-add=tp_thread_group_stats=thread_pool.so

If desired, you can load individual plugins from the library file. To load the thread pool plugin but not the
INFORMATION_SCHEMA tables, use an option like this:

[mysqld]
plugin-load-add=thread_pool=thread_pool.so

To load the thread pool plugin and only the TP_THREAD_STATE INFORMATION_SCHEMA table, use
options like this:

[mysqld]
plugin-load-add=thread_pool=thread_pool.so
plugin-load-add=tp_thread_state=thread_pool.so

Note

If you do not load all the INFORMATION_SCHEMA tables, some or all MySQL
Enterprise Monitor thread pool graphs are empty.

To verify plugin installation, examine the Information Schema PLUGINS table or use the SHOW PLUGINS
statement (see Section 5.5.2, “Obtaining Server Plugin Information”). For example:

mysql> SELECT PLUGIN_NAME, PLUGIN_STATUS
 FROM INFORMATION_SCHEMA.PLUGINS
 WHERE PLUGIN_NAME LIKE 'thread%' OR PLUGIN_NAME LIKE 'tp%';
+-----------------------+---------------+
| PLUGIN_NAME | PLUGIN_STATUS |
+-----------------------+---------------+
thread_pool	ACTIVE
TP_THREAD_STATE	ACTIVE
TP_THREAD_GROUP_STATE	ACTIVE
TP_THREAD_GROUP_STATS	ACTIVE
+-----------------------+---------------+

If the server loads the thread pool plugin successfully, it sets the thread_handling system variable to
loaded-dynamically.

If a plugin fails to initialize, check the server error log for diagnostic messages.

5.5.3.3 Thread Pool Operation

The thread pool consists of a number of thread groups, each of which manages a set of client connections.
As connections are established, the thread pool assigns them to thread groups in round-robin fashion.

The thread pool exposes system variables that may be used to configure its operation:

• thread_pool_algorithm: The concurrency algorithm to use for scheduling.

• thread_pool_high_priority_connection: How to schedule statement execution for a session.

• thread_pool_max_unused_threads: How many sleeping threads to permit.

• thread_pool_prio_kickup_timer: How long before the thread pool moves a statement awaiting
execution from the low-priority queue to the high-priority queue.

• thread_pool_size: The number of thread groups in the thread pool. This is the most important
parameter controlling thread pool performance.

• thread_pool_stall_limit: The time before an executing statement is considered to be stalled.

1003

MySQL Enterprise Thread Pool

To configure the number of thread groups, use the thread_pool_size system variable. The default
number of groups is 16. For guidelines on setting this variable, see Section 5.5.3.4, “Thread Pool Tuning”.

The maximum number of threads per group is 4096 (or 4095 on some systems where one thread is used
internally).

The thread pool separates connections and threads, so there is no fixed relationship between connections
and the threads that execute statements received from those connections. This differs from the default
thread-handling model that associates one thread with one connection such that a given thread executes
all statements from its connection.

The thread pool tries to ensure a maximum of one thread executing in each group at any time, but
sometimes permits more threads to execute temporarily for best performance:

• Each thread group has a listener thread that listens for incoming statements from the connections
assigned to the group. When a statement arrives, the thread group either begins executing it
immediately or queues it for later execution:

• Immediate execution occurs if the statement is the only one received and no statements are queued or
currently executing.

• Queuing occurs if the statement cannot begin executing immediately.

• If immediate execution occurs, the listener thread performs it. (This means that temporarily no thread
in the group is listening.) If the statement finishes quickly, the executing thread returns to listening for
statements. Otherwise, the thread pool considers the statement stalled and starts another thread as a
listener thread (creating it if necessary). To ensure that no thread group becomes blocked by stalled
statements, the thread pool has a background thread that regularly monitors thread group states.

By using the listening thread to execute a statement that can begin immediately, there is no need to
create an additional thread if the statement finishes quickly. This ensures the most efficient execution
possible in the case of a low number of concurrent threads.

When the thread pool plugin starts, it creates one thread per group (the listener thread), plus the
background thread. Additional threads are created as necessary to execute statements.

• The value of the thread_pool_stall_limit system variable determines the meaning of “finishes
quickly” in the previous item. The default time before threads are considered stalled is 60ms but can be
set to a maximum of 6s. This parameter is configurable to enable you to strike a balance appropriate for
the server work load. Short wait values permit threads to start more quickly. Short values are also better
for avoiding deadlock situations. Long wait values are useful for workloads that include long-running
statements, to avoid starting too many new statements while the current ones execute.

• The thread pool focuses on limiting the number of concurrent short-running statements. Before an
executing statement reaches the stall time, it prevents other statements from beginning to execute.
If the statement executes past the stall time, it is permitted to continue but no longer prevents other
statements from starting. In this way, the thread pool tries to ensure that in each thread group there is
never more than one short-running statement, although there might be multiple long-running statements.
It is undesirable to let long-running statements prevent other statements from executing because there is
no limit on the amount of waiting that might be necessary. For example, on a replication source, a thread
that is sending binary log events to a replica effectively runs forever.

• A statement becomes blocked if it encounters a disk I/O operation or a user level lock (row lock or table
lock). The block would cause the thread group to become unused, so there are callbacks to the thread
pool to ensure that the thread pool can immediately start a new thread in this group to execute another
statement. When a blocked thread returns, the thread pool permits it to restart immediately.

1004

MySQL Enterprise Thread Pool

• There are two queues, a high-priority queue and a low-priority queue. The first statement in a
transaction goes to the low-priority queue. Any following statements for the transaction go to
the high-priority queue if the transaction is ongoing (statements for it have begun executing),
or to the low-priority queue otherwise. Queue assignment can be affected by enabling the
thread_pool_high_priority_connection system variable, which causes all queued statements
for a session to go into the high-priority queue.

Statements for a nontransactional storage engine, or a transactional engine if autocommit is enabled,
are treated as low-priority statements because in this case each statement is a transaction. Thus, given
a mix of statements for InnoDB and MyISAM tables, the thread pool prioritizes those for InnoDB over
those for MyISAM unless autocommit is enabled. With autocommit enabled, all statements are low
priority.

• When the thread group selects a queued statement for execution, it first looks in the high-priority
queue, then in the low-priority queue. If a statement is found, it is removed from its queue and begins to
execute.

• If a statement stays in the low-priority queue too long, the thread pool moves to the high-priority queue.
The value of the thread_pool_prio_kickup_timer system variable controls the time before
movement. For each thread group, a maximum of one statement per 10ms (100 per second) is moved
from the low-priority queue to the high-priority queue.

• The thread pool reuses the most active threads to obtain a much better use of CPU caches. This is a
small adjustment that has a great impact on performance.

• While a thread executes a statement from a user connection, Performance Schema instrumentation
accounts thread activity to the user connection. Otherwise, Performance Schema accounts activity to the
thread pool.

Here are examples of conditions under which a thread group might have multiple threads started to
execute statements:

• One thread begins executing a statement, but runs long enough to be considered stalled. The thread
group permits another thread to begin executing another statement even through the first thread is still
executing.

• One thread begins executing a statement, then becomes blocked and reports this back to the thread
pool. The thread group permits another thread to begin executing another statement.

• One thread begins executing a statement, becomes blocked, but does not report back that it is blocked
because the block does not occur in code that has been instrumented with thread pool callbacks. In
this case, the thread appears to the thread group to be still running. If the block lasts long enough for
the statement to be considered stalled, the group permits another thread to begin executing another
statement.

The thread pool is designed to be scalable across an increasing number of connections. It is also designed
to avoid deadlocks that can arise from limiting the number of actively executing statements. It is important
that threads that do not report back to the thread pool do not prevent other statements from executing and
thus cause the thread pool to become deadlocked. Examples of such statements follow:

• Long-running statements. These would lead to all resources used by only a few statements and they
could prevent all others from accessing the server.

• Binary log dump threads that read the binary log and send it to replicas. This is a kind of long-running
“statement” that runs for a very long time, and that should not prevent other statements from executing.

• Statements blocked on a row lock, table lock, sleep, or any other blocking activity that has not been
reported back to the thread pool by MySQL Server or a storage engine.

1005

MySQL Enterprise Thread Pool

In each case, to prevent deadlock, the statement is moved to the stalled category when it does not
complete quickly, so that the thread group can permit another statement to begin executing. With this
design, when a thread executes or becomes blocked for an extended time, the thread pool moves the
thread to the stalled category and for the rest of the statement's execution, it does not prevent other
statements from executing.

The maximum number of threads that can occur is the sum of max_connections and
thread_pool_size. This can happen in a situation where all connections are in execution mode and an
extra thread is created per group to listen for more statements. This is not necessarily a state that happens
often, but it is theoretically possible.

5.5.3.4 Thread Pool Tuning

This section provides guidelines on setting thread pool system variables for best performance, measured
using a metric such as transactions per second.

thread_pool_size is the most important parameter controlling thread pool performance. It can be set
only at server startup. Our experience in testing the thread pool indicates the following:

• If the primary storage engine is InnoDB, the optimal thread_pool_size setting is likely to be between
16 and 36, with the most common optimal values tending to be from 24 to 36. We have not seen any
situation where the setting has been optimal beyond 36. There may be special cases where a value
smaller than 16 is optimal.

For workloads such as DBT2 and Sysbench, the optimum for InnoDB seems to be usually around 36.
For very write-intensive workloads, the optimal setting can sometimes be lower.

• If the primary storage engine is MyISAM, the thread_pool_size setting should be fairly low. Optimal
performance is often seen with values from 4 to 8. Higher values tend to have a slightly negative but not
dramatic impact on performance.

Another system variable, thread_pool_stall_limit, is important for handling of blocked and long-
running statements. If all calls that block the MySQL Server are reported to the thread pool, it would always
know when execution threads are blocked. However, this may not always be true. For example, blocks
could occur in code that has not been instrumented with thread pool callbacks. For such cases, the thread
pool must be able to identify threads that appear to be blocked. This is done by means of a timeout that
can be tuned using the thread_pool_stall_limit system variable, the value of which is measured
in 10ms units. This parameter ensures that the server does not become completely blocked. The value of
thread_pool_stall_limit has an upper limit of 6 seconds to prevent the risk of a deadlocked server.

thread_pool_stall_limit also enables the thread pool to handle long-running statements. If a long-
running statement was permitted to block a thread group, all other connections assigned to the group
would be blocked and unable to start execution until the long-running statement completed. In the worst
case, this could take hours or even days.

The value of thread_pool_stall_limit should be chosen such that statements that execute longer
than its value are considered stalled. Stalled statements generate a lot of extra overhead since they involve
extra context switches and in some cases even extra thread creations. On the other hand, setting the
thread_pool_stall_limit parameter too high means that long-running statements block a number of
short-running statements for longer than necessary. Short wait values permit threads to start more quickly.
Short values are also better for avoiding deadlock situations. Long wait values are useful for workloads
that include long-running statements, to avoid starting too many new statements while the current ones
execute.

Suppose a server executes a workload where 99.9% of the statements complete within 100ms even when
the server is loaded, and the remaining statements take between 100ms and 2 hours fairly evenly spread.

1006

The Rewriter Query Rewrite Plugin

In this case, it would make sense to set thread_pool_stall_limit to 10 (10 × 10ms = 100ms). The
default value of 6 (60ms) is suitable for servers that primarily execute very simple statements.

The thread_pool_stall_limit parameter can be changed at runtime to enable you to strike a
balance appropriate for the server work load. Assuming that the TP_THREAD_GROUP_STATS table is
enabled, you can use the following query to determine the fraction of executed statements that stalled:

SELECT SUM(STALLED_QUERIES_EXECUTED) / SUM(QUERIES_EXECUTED)
FROM INFORMATION_SCHEMA.TP_THREAD_GROUP_STATS;

This number should be as low as possible. To decrease the likelihood of statements stalling, increase the
value of thread_pool_stall_limit.

When a statement arrives, what is the maximum time it can be delayed before it actually starts executing?
Suppose that the following conditions apply:

• There are 200 statements queued in the low-priority queue.

• There are 10 statements queued in the high-priority queue.

• thread_pool_prio_kickup_timer is set to 10000 (10 seconds).

• thread_pool_stall_limit is set to 100 (1 second).

In the worst case, the 10 high-priority statements represent 10 transactions that continue executing for a
long time. Thus, in the worst case, no statements are moved to the high-priority queue because it already
contains statements awaiting execution. After 10 seconds, the new statement is eligible to be moved to
the high-priority queue. However, before it can be moved, all the statements before it must be moved as
well. This could take another 2 seconds because a maximum of 100 statements per second are moved to
the high-priority queue. Now when the statement reaches the high-priority queue, there could potentially
be many long-running statements ahead of it. In the worst case, every one of those becomes stalled and
it takes 1 second for each statement before the next statement is retrieved from the high-priority queue.
Thus, in this scenario, it takes 222 seconds before the new statement starts executing.

This example shows a worst case for an application. How to handle it depends on the application. If the
application has high requirements for the response time, it should most likely throttle users at a higher
level itself. Otherwise, it can use the thread pool configuration parameters to set some kind of a maximum
waiting time.

5.5.4 The Rewriter Query Rewrite Plugin

MySQL supports query rewrite plugins that can examine and possibly modify SQL statements received by
the server before the server executes them. See Query Rewrite Plugins.

MySQL distributions include a postparse query rewrite plugin named Rewriter and scripts for installing
the plugin and its associated elements. These elements work together to provide SELECT rewriting
capability:

• A server-side plugin named Rewriter examines SELECT statements and may rewrite them, based
on its in-memory cache of rewrite rules. Standalone SELECT statements and SELECT statements in
prepared statements are subject to rewriting. SELECT statements occurring within view definitions or
stored programs are not subject to rewriting.

• The Rewriter plugin uses a database named query_rewrite containing a table named
rewrite_rules. The table provides persistent storage for the rules that the plugin uses to decide
whether to rewrite statements. Users communicate with the plugin by modifying the set of rules stored in
this table. The plugin communicates with users by setting the message column of table rows.

1007

https://dev.mysql.com/doc/extending-mysql/5.7/en/plugin-types.html#query-rewrite-plugin-type

The Rewriter Query Rewrite Plugin

• The query_rewrite database contains a stored procedure named flush_rewrite_rules() that
loads the contents of the rules table into the plugin.

• A loadable function named load_rewrite_rules() is used by the flush_rewrite_rules()
stored procedure.

• The Rewriter plugin exposes system variables that enable plugin configuration and status variables
that provide runtime operational information.

The following sections describe how to install and use the Rewriter plugin, and provide reference
information for its associated elements.

5.5.4.1 Installing or Uninstalling the Rewriter Query Rewrite Plugin

Note

If installed, the Rewriter plugin involves some overhead even when disabled. To
avoid this overhead, do not install the plugin unless you plan to use it.

To install or uninstall the Rewriter query rewrite plugin, choose the appropriate script located in the
share directory of your MySQL installation:

• install_rewriter.sql: Choose this script to install the Rewriter plugin and its associated
elements.

• uninstall_rewriter.sql: Choose this script to uninstall the Rewriter plugin and its associated
elements.

Run the chosen script as follows:

$> mysql -u root -p < install_rewriter.sql
Enter password: (enter root password here)

The example here uses the install_rewriter.sql installation script. Substitute
uninstall_rewriter.sql if you are uninstalling the plugin.

Running an installation script should install and enable the plugin. To verify that, connect to the server and
execute this statement:

mysql> SHOW GLOBAL VARIABLES LIKE 'rewriter_enabled';
+------------------+-------+
| Variable_name | Value |
+------------------+-------+
| rewriter_enabled | ON |
+------------------+-------+

For usage instructions, see Section 5.5.4.2, “Using the Rewriter Query Rewrite Plugin”. For reference
information, see Section 5.5.4.3, “Rewriter Query Rewrite Plugin Reference”.

5.5.4.2 Using the Rewriter Query Rewrite Plugin

To enable or disable the plugin, enable or disable the rewriter_enabled system variable. By default,
the Rewriter plugin is enabled when you install it (see Section 5.5.4.1, “Installing or Uninstalling the
Rewriter Query Rewrite Plugin”). To set the initial plugin state explicitly, you can set the variable at server
startup. For example, to enable the plugin in an option file, use these lines:

[mysqld]
rewriter_enabled=ON

It is also possible to enable or disable the plugin at runtime:

1008

The Rewriter Query Rewrite Plugin

SET GLOBAL rewriter_enabled = ON;
SET GLOBAL rewriter_enabled = OFF;

Assuming that the Rewriter plugin is enabled, it examines and possibly modifies each SELECT statement
received by the server. The plugin determines whether to rewrite statements based on its in-memory cache
of rewriting rules, which are loaded from the rewrite_rules table in the query_rewrite database.

• Adding Rewrite Rules

• How Statement Matching Works

• Rewriting Prepared Statements

• Rewriter Plugin Operational Information

• Rewriter Plugin Use of Character Sets

Adding Rewrite Rules

To add rules for the Rewriter plugin, add rows to the rewrite_rules table, then invoke the
flush_rewrite_rules() stored procedure to load the rules from the table into the plugin. The following
example creates a simple rule to match statements that select a single literal value:

INSERT INTO query_rewrite.rewrite_rules (pattern, replacement)
VALUES('SELECT ?', 'SELECT ? + 1');

The resulting table contents look like this:

mysql> SELECT * FROM query_rewrite.rewrite_rules\G
*************************** 1. row ***************************
 id: 1
 pattern: SELECT ?
 pattern_database: NULL
 replacement: SELECT ? + 1
 enabled: YES
 message: NULL
 pattern_digest: NULL
normalized_pattern: NULL

The rule specifies a pattern template indicating which SELECT statements to match, and a
replacement template indicating how to rewrite matching statements. However, adding the rule to the
rewrite_rules table is not sufficient to cause the Rewriter plugin to use the rule. You must invoke
flush_rewrite_rules() to load the table contents into the plugin in-memory cache:

mysql> CALL query_rewrite.flush_rewrite_rules();

Tip

If your rewrite rules seem not to be working properly, make sure that you have
reloaded the rules table by calling flush_rewrite_rules().

When the plugin reads each rule from the rules table, it computes a normalized (statement digest) form
from the pattern and a digest hash value, and uses them to update the normalized_pattern and
pattern_digest columns:

mysql> SELECT * FROM query_rewrite.rewrite_rules\G
*************************** 1. row ***************************
 id: 1
 pattern: SELECT ?
 pattern_database: NULL
 replacement: SELECT ? + 1
 enabled: YES
 message: NULL

1009

The Rewriter Query Rewrite Plugin

 pattern_digest: 46b876e64cd5c41009d91c754921f1d4
normalized_pattern: select ?

For information about statement digesting, normalized statements, and digest hash values, see
Section 25.10, “Performance Schema Statement Digests”.

If a rule cannot be loaded due to some error, calling flush_rewrite_rules() produces an error:

mysql> CALL query_rewrite.flush_rewrite_rules();
ERROR 1644 (45000): Loading of some rule(s) failed.

When this occurs, the plugin writes an error message to the message column of the rule row to
communicate the problem. Check the rewrite_rules table for rows with non-NULL message column
values to see what problems exist.

Patterns use the same syntax as prepared statements (see Section 13.5.1, “PREPARE Statement”).
Within a pattern template, ? characters act as parameter markers that match data values. The ? characters
should not be enclosed within quotation marks. Parameter markers can be used only where data values
should appear, and they cannot be used for SQL keywords, identifiers, functions, and so on. The plugin
parses a statement to identify the literal values (as defined in Section 9.1, “Literal Values”), so you can put
a parameter marker in place of any literal value.

Like the pattern, the replacement can contain ? characters. For a statement that matches a pattern
template, the plugin rewrites it, replacing ? parameter markers in the replacement using data values
matched by the corresponding markers in the pattern. The result is a complete statement string. The
plugin asks the server to parse it, and returns the result to the server as the representation of the rewritten
statement.

After adding and loading the rule, check whether rewriting occurs according to whether statements match
the rule pattern:

mysql> SELECT PI();
+----------+
| PI() |
+----------+
| 3.141593 |
+----------+
1 row in set (0.01 sec)

mysql> SELECT 10;
+--------+
| 10 + 1 |
+--------+
| 11 |
+--------+
1 row in set, 1 warning (0.00 sec)

No rewriting occurs for the first SELECT statement, but does for the second. The second statement
illustrates that when the Rewriter plugin rewrites a statement, it produces a warning message. To view
the message, use SHOW WARNINGS:

mysql> SHOW WARNINGS\G
*************************** 1. row ***************************
 Level: Note
 Code: 1105
Message: Query 'SELECT 10' rewritten to 'SELECT 10 + 1' by a query rewrite plugin

To enable or disable an existing rule, modify its enabled column and reload the table into the plugin. To
disable rule 1:

UPDATE query_rewrite.rewrite_rules SET enabled = 'NO' WHERE id = 1;
CALL query_rewrite.flush_rewrite_rules();

1010

The Rewriter Query Rewrite Plugin

This enables you to deactivate a rule without removing it from the table.

To re-enable rule 1:

UPDATE query_rewrite.rewrite_rules SET enabled = 'YES' WHERE id = 1;
CALL query_rewrite.flush_rewrite_rules();

The rewrite_rules table contains a pattern_database column that Rewriter uses for matching
table names that are not qualified with a database name:

• Qualified table names in statements match qualified names in the pattern if corresponding database and
table names are identical.

• Unqualified table names in statements match unqualified names in the pattern only if the default
database is the same as pattern_database and the table names are identical.

Suppose that a table named appdb.users has a column named id and that applications are expected
to select rows from the table using a query of one of these forms, where the second can be used when
appdb is the default database:

SELECT * FROM users WHERE appdb.id = id_value;
SELECT * FROM users WHERE id = id_value;

Suppose also that the id column is renamed to user_id (perhaps the table must be modified to
add another type of ID and it is necessary to indicate more specifically what type of ID the id column
represents).

The change means that applications must refer to user_id rather than id in the WHERE clause, but
old applications that cannot be updated no longer work properly. The Rewriter plugin can solve this
problem by matching and rewriting problematic statements. To match the statement SELECT * FROM
appdb.users WHERE id = value and rewrite it as SELECT * FROM appdb.users WHERE
user_id = value, you can insert a row representing a replacement rule into the rewrite rules table. If
you also want to match this SELECT using the unqualified table name, it is also necessary to add an explicit
rule. Using ? as a value placeholder, the two INSERT statements needed look like this:

INSERT INTO query_rewrite.rewrite_rules
 (pattern, replacement) VALUES(
 'SELECT * FROM appdb.users WHERE id = ?',
 'SELECT * FROM appdb.users WHERE user_id = ?'
);
INSERT INTO query_rewrite.rewrite_rules
 (pattern, replacement, pattern_database) VALUES(
 'SELECT * FROM users WHERE id = ?',
 'SELECT * FROM users WHERE user_id = ?',
 'appdb'
);

After adding the two new rules, execute the following statement to cause them to take effect:

CALL query_rewrite.flush_rewrite_rules();

Rewriter uses the first rule to match statements that use the qualified table name, and the second to
match statements that use the unqualified name. The second rule works only when appdb is the default
database.

How Statement Matching Works

The Rewriter plugin uses statement digests and digest hash values to match incoming statements
against rewrite rules in stages. The max_digest_length system variable determines the size of the
buffer used for computing statement digests. Larger values enable computation of digests that distinguish

1011

The Rewriter Query Rewrite Plugin

longer statements. Smaller values use less memory but increase the likelihood of longer statements
colliding with the same digest value.

The plugin matches each statement to the rewrite rules as follows:

1. Compute the statement digest hash value and compare it to the rule digest hash values. This is subject
to false positives, but serves as a quick rejection test.

2. If the statement digest hash value matches any pattern digest hash values, match the normalized
(statement digest) form of the statement to the normalized form of the matching rule patterns.

3. If the normalized statement matches a rule, compare the literal values in the statement and the pattern.
A ? character in the pattern matches any literal value in the statement. If the statement prepares a
SELECT statement, ? in the pattern also matches ? in the statement. Otherwise, corresponding literals
must be the same.

If multiple rules match a statement, it is nondeterministic which one the plugin uses to rewrite the
statement.

If a pattern contains more markers than the replacement, the plugin discards excess data values. If a
pattern contains fewer markers than the replacement, it is an error. The plugin notices this when the rules
table is loaded, writes an error message to the message column of the rule row to communicate the
problem, and sets the Rewriter_reload_error status variable to ON.

Rewriting Prepared Statements

Prepared statements are rewritten at parse time (that is, when they are prepared), not when they are
executed later.

Prepared statements differ from nonprepared statements in that they may contain ? characters as
parameter markers. To match a ? in a prepared statement, a Rewriter pattern must contain ? in the
same location. Suppose that a rewrite rule has this pattern:

SELECT ?, 3

The following table shows several prepared SELECT statements and whether the rule pattern matches
them.

Prepared Statement Whether Pattern Matches Statement

PREPARE s AS 'SELECT 3, 3' Yes

PREPARE s AS 'SELECT ?, 3' Yes

PREPARE s AS 'SELECT 3, ?' No

PREPARE s AS 'SELECT ?, ?' No

Rewriter Plugin Operational Information

The Rewriter plugin makes information available about its operation by means of several status
variables:

mysql> SHOW GLOBAL STATUS LIKE 'Rewriter%';
+-----------------------------------+-------+
| Variable_name | Value |
+-----------------------------------+-------+
Rewriter_number_loaded_rules	1
Rewriter_number_reloads	5
Rewriter_number_rewritten_queries	1
Rewriter_reload_error	ON
+-----------------------------------+-------+

1012

The Rewriter Query Rewrite Plugin

For descriptions of these variables, see Rewriter Query Rewrite Plugin Status Variables.

When you load the rules table by calling the flush_rewrite_rules() stored procedure, if
an error occurs for some rule, the CALL statement produces an error, and the plugin sets the
Rewriter_reload_error status variable to ON:

mysql> CALL query_rewrite.flush_rewrite_rules();
ERROR 1644 (45000): Loading of some rule(s) failed.

mysql> SHOW GLOBAL STATUS LIKE 'Rewriter_reload_error';
+-----------------------+-------+
| Variable_name | Value |
+-----------------------+-------+
| Rewriter_reload_error | ON |
+-----------------------+-------+

In this case, check the rewrite_rules table for rows with non-NULL message column values to see
what problems exist.

Rewriter Plugin Use of Character Sets

When the rewrite_rules table is loaded into the Rewriter plugin, the plugin interprets statements
using the current global value of the character_set_client system variable. If the global
character_set_client value is changed subsequently, the rules table must be reloaded.

A client must have a session character_set_client value identical to what the global value was when
the rules table was loaded or rule matching does not work for that client.

5.5.4.3 Rewriter Query Rewrite Plugin Reference

The following discussion serves as a reference to these elements associated with the Rewriter query
rewrite plugin:

• The Rewriter rules table in the query_rewrite database

• Rewriter procedures and functions

• Rewriter system and status variables

Rewriter Query Rewrite Plugin Rules Table

The rewrite_rules table in the query_rewrite database provides persistent storage for the rules that
the Rewriter plugin uses to decide whether to rewrite statements.

Users communicate with the plugin by modifying the set of rules stored in this table. The plugin
communicates information to users by setting the table's message column.

Note

The rules table is loaded into the plugin by the flush_rewrite_rules stored
procedure. Unless that procedure has been called following the most recent table
modification, the table contents do not necessarily correspond to the set of rules the
plugin is using.

The rewrite_rules table has these columns:

• id

The rule ID. This column is the table primary key. You can use the ID to uniquely identify any rule.

1013

The Rewriter Query Rewrite Plugin

• pattern

The template that indicates the pattern for statements that the rule matches. Use ? to represent
parameter markers that match data values.

• pattern_database

The database used to match unqualified table names in statements. Qualified table names in statements
match qualified names in the pattern if corresponding database and table names are identical.
Unqualified table names in statements match unqualified names in the pattern only if the default
database is the same as pattern_database and the table names are identical.

• replacement

The template that indicates how to rewrite statements matching the pattern column value. Use ?
to represent parameter markers that match data values. In rewritten statements, the plugin replaces
? parameter markers in replacement using data values matched by the corresponding markers in
pattern.

• enabled

Whether the rule is enabled. Load operations (performed by invoking the flush_rewrite_rules()
stored procedure) load the rule from the table into the Rewriter in-memory cache only if this column is
YES.

This column makes it possible to deactivate a rule without removing it: Set the column to a value other
than YES and reload the table into the plugin.

• message

The plugin uses this column for communicating with users. If no error occurs when the rules table is
loaded into memory, the plugin sets the message column to NULL. A non-NULL value indicates an error
and the column contents are the error message. Errors can occur under these circumstances:

• Either the pattern or the replacement is an incorrect SQL statement that produces syntax errors.

• The replacement contains more ? parameter markers than the pattern.

If a load error occurs, the plugin also sets the Rewriter_reload_error status variable to ON.

• pattern_digest

This column is used for debugging and diagnostics. If the column exists when the rules table is loaded
into memory, the plugin updates it with the pattern digest. This column may be useful if you are trying to
determine why some statement fails to be rewritten.

• normalized_pattern

This column is used for debugging and diagnostics. If the column exists when the rules table is loaded
into memory, the plugin updates it with the normalized form of the pattern. This column may be useful if
you are trying to determine why some statement fails to be rewritten.

Rewriter Query Rewrite Plugin Procedures and Functions

Rewriter plugin operation uses a stored procedure that loads the rules table into its in-memory cache,
and a helper loadable function. Under normal operation, users invoke only the stored procedure. The
function is intended to be invoked by the stored procedure, not directly by users.

1014

The Rewriter Query Rewrite Plugin

• flush_rewrite_rules()

This stored procedure uses the load_rewrite_rules() function to load the contents of the
rewrite_rules table into the Rewriter in-memory cache.

Calling flush_rewrite_rules() implies COMMIT.

Invoke this procedure after you modify the rules table to cause the plugin to update its cache from the
new table contents. If any errors occur, the plugin sets the message column for the appropriate rule rows
in the table and sets the Rewriter_reload_error status variable to ON.

• load_rewrite_rules()

This function is a helper routine used by the flush_rewrite_rules() stored procedure.

Rewriter Query Rewrite Plugin System Variables

The Rewriter query rewrite plugin supports the following system variables. These variables are available
only if the plugin is installed (see Section 5.5.4.1, “Installing or Uninstalling the Rewriter Query Rewrite
Plugin”).

• rewriter_enabled

System Variable rewriter_enabled

Scope Global

Dynamic Yes

Type Boolean

Default Value ON

Valid Values OFF

Whether the Rewriter query rewrite plugin is enabled.

• rewriter_verbose

System Variable rewriter_verbose

Scope Global

Dynamic Yes

Type Integer

For internal use.

Rewriter Query Rewrite Plugin Status Variables

The Rewriter query rewrite plugin supports the following status variables. These variables are available
only if the plugin is installed (see Section 5.5.4.1, “Installing or Uninstalling the Rewriter Query Rewrite
Plugin”).

• Rewriter_number_loaded_rules

The number of rewrite plugin rewrite rules successfully loaded from the rewrite_rules table into
memory for use by the Rewriter plugin.

• Rewriter_number_reloads

1015

Version Tokens

The number of times the rewrite_rules table has been loaded into the in-memory cache used by the
Rewriter plugin.

• Rewriter_number_rewritten_queries

The number of queries rewritten by the Rewriter query rewrite plugin since it was loaded.

• Rewriter_reload_error

Whether an error occurred the most recent time that the rewrite_rules table was loaded into the in-
memory cache used by the Rewriter plugin. If the value is OFF, no error occurred. If the value is ON, an
error occurred; check the message column of the rewriter_rules table for error messages.

5.5.5 Version Tokens

MySQL includes Version Tokens, a feature that enables creation of and synchronization around server
tokens that applications can use to prevent accessing incorrect or out-of-date data.

The Version Tokens interface has these characteristics:

• Version tokens are pairs consisting of a name that serves as a key or identifier, plus a value.

• Version tokens can be locked. An application can use token locks to indicate to other cooperating
applications that tokens are in use and should not be modified.

• Version token lists are established per server (for example, to specify the server assignment or
operational state). In addition, an application that communicates with a server can register its own list of
tokens that indicate the state it requires the server to be in. An SQL statement sent by the application to
a server not in the required state produces an error. This is a signal to the application that it should seek
a different server in the required state to receive the SQL statement.

The following sections describe the elements of Version Tokens, discuss how to install and use it, and
provide reference information for its elements.

5.5.5.1 Version Tokens Elements

Version Tokens is based on a plugin library that implements these elements:

• A server-side plugin named version_tokens holds the list of version tokens associated with the server
and subscribes to notifications for statement execution events. The version_tokens plugin uses the
audit plugin API to monitor incoming statements from clients and matches each client's session-specific
version token list against the server version token list. If there is a match, the plugin lets the statement
through and the server continues to process it. Otherwise, the plugin returns an error to the client and
the statement fails.

• A set of loadable functions provides an SQL-level API for manipulating and inspecting the list of server
version tokens maintained by the plugin. The SUPER privilege is required to call any of the Version Token
functions.

• A system variable enables clients to specify the list of version tokens that register the required server
state. If the server has a different state when a client sends a statement, the client receives an error.

5.5.5.2 Installing or Uninstalling Version Tokens

Note

If installed, Version Tokens involves some overhead. To avoid this overhead, do not
install it unless you plan to use it.

1016

https://dev.mysql.com/doc/extending-mysql/5.7/en/plugin-types.html#audit-plugin-type

Version Tokens

This section describes how to install or uninstall Version Tokens, which is implemented in a plugin library
file containing a plugin and loadable functions. For general information about installing or uninstalling
plugins and loadable functions, see Section 5.5.1, “Installing and Uninstalling Plugins”, and Section 5.6.1,
“Installing and Uninstalling Loadable Functions”.

To be usable by the server, the plugin library file must be located in the MySQL plugin directory (the
directory named by the plugin_dir system variable). If necessary, configure the plugin directory location
by setting the value of plugin_dir at server startup.

The plugin library file base name is version_tokens. The file name suffix differs per platform (for
example, .so for Unix and Unix-like systems, .dll for Windows).

To install the Version Tokens plugin and functions, use the INSTALL PLUGIN and CREATE FUNCTION
statements, adjusting the .so suffix for your platform as necessary:

INSTALL PLUGIN version_tokens SONAME 'version_token.so';
CREATE FUNCTION version_tokens_set RETURNS STRING
 SONAME 'version_token.so';
CREATE FUNCTION version_tokens_show RETURNS STRING
 SONAME 'version_token.so';
CREATE FUNCTION version_tokens_edit RETURNS STRING
 SONAME 'version_token.so';
CREATE FUNCTION version_tokens_delete RETURNS STRING
 SONAME 'version_token.so';
CREATE FUNCTION version_tokens_lock_shared RETURNS INT
 SONAME 'version_token.so';
CREATE FUNCTION version_tokens_lock_exclusive RETURNS INT
 SONAME 'version_token.so';
CREATE FUNCTION version_tokens_unlock RETURNS INT
 SONAME 'version_token.so';

You must install the functions to manage the server's version token list, but you must also install the plugin
because the functions do not work correctly without it.

If the plugin and functions are used on a replication source server, install them on all replica servers as well
to avoid replication problems.

Once installed as just described, the plugin and functions remain installed until uninstalled. To remove
them, use the UNINSTALL PLUGIN and DROP FUNCTION statements:

UNINSTALL PLUGIN version_tokens;
DROP FUNCTION version_tokens_set;
DROP FUNCTION version_tokens_show;
DROP FUNCTION version_tokens_edit;
DROP FUNCTION version_tokens_delete;
DROP FUNCTION version_tokens_lock_shared;
DROP FUNCTION version_tokens_lock_exclusive;
DROP FUNCTION version_tokens_unlock;

5.5.5.3 Using Version Tokens

Before using Version Tokens, install it according to the instructions provided at Section 5.5.5.2, “Installing
or Uninstalling Version Tokens”.

A scenario in which Version Tokens can be useful is a system that accesses a collection of MySQL
servers but needs to manage them for load balancing purposes by monitoring them and adjusting server
assignments according to load changes. Such a system comprises these elements:

• The collection of MySQL servers to be managed.

1017

Version Tokens

• An administrative or management application that communicates with the servers and organizes them
into high-availability groups. Groups serve different purposes, and servers within each group may have
different assignments. Assignment of a server within a certain group can change at any time.

• Client applications that access the servers to retrieve and update data, choosing servers according to
the purposes assigned them. For example, a client should not send an update to a read-only server.

Version Tokens permit server access to be managed according to assignment without requiring clients to
repeatedly query the servers about their assignments:

• The management application performs server assignments and establishes version tokens on each
server to reflect its assignment. The application caches this information to provide a central access point
to it.

If at some point the management application needs to change a server assignment (for example, to
change it from permitting writes to read only), it changes the server's version token list and updates its
cache.

• To improve performance, client applications obtain cache information from the management application,
enabling them to avoid having to retrieve information about server assignments for each statement.
Based on the type of statements it issues (for example, reads versus writes), a client selects an
appropriate server and connects to it.

• In addition, the client sends to the server its own client-specific version tokens to register the assignment
it requires of the server. For each statement sent by the client to the server, the server compares its own
token list with the client token list. If the server token list contains all tokens present in the client token list
with the same values, there is a match and the server executes the statement.

On the other hand, perhaps the management application has changed the server assignment and its
version token list. In this case, the new server assignment may now be incompatible with the client
requirements. A token mismatch between the server and client token lists occurs and the server
returns an error in reply to the statement. This is an indication to the client to refresh its version token
information from the management application cache, and to select a new server to communicate with.

The client-side logic for detecting version token errors and selecting a new server can be implemented
different ways:

• The client can handle all version token registration, mismatch detection, and connection switching itself.

• The logic for those actions can be implemented in a connector that manages connections between
clients and MySQL servers. Such a connector might handle mismatch error detection and statement
resending itself, or it might pass the error to the application and leave it to the application to resend the
statement.

The following example illustrates the preceding discussion in more concrete form.

When Version Tokens initializes on a given server, the server's version token list is empty. Token list
maintenance is performed by calling functions. The SUPER privilege is required to call any of the Version
Token functions, so token list modification is expected to be done by a management or administrative
application that has that privilege.

Suppose that a management application communicates with a set of servers that are queried by clients to
access employee and product databases (named emp and prod, respectively). All servers are permitted
to process data retrieval statements, but only some of them are permitted to make database updates. To
handle this on a database-specific basis, the management application establishes a list of version tokens
on each server. In the token list for a given server, token names represent database names and token

1018

Version Tokens

values are read or write depending on whether the database must be used in read-only fashion or
whether it can take reads and writes.

Client applications register a list of version tokens they require the server to match by setting a system
variable. Variable setting occurs on a client-specific basis, so different clients can register different
requirements. By default, the client token list is empty, which matches any server token list. When a client
sets its token list to a nonempty value, matching may succeed or fail, depending on the server version
token list.

To define the version token list for a server, the management application calls the
version_tokens_set() function. (There are also functions for modifying and displaying the token list,
described later.) For example, the application might send these statements to a group of three servers:

Server 1:

mysql> SELECT version_tokens_set('emp=read;prod=read');
+--+
| version_tokens_set('emp=read;prod=read') |
+--+
| 2 version tokens set. |
+--+

Server 2:

mysql> SELECT version_tokens_set('emp=write;prod=read');
+---+
| version_tokens_set('emp=write;prod=read') |
+---+
| 2 version tokens set. |
+---+

Server 3:

mysql> SELECT version_tokens_set('emp=read;prod=write');
+---+
| version_tokens_set('emp=read;prod=write') |
+---+
| 2 version tokens set. |
+---+

The token list in each case is specified as a semicolon-separated list of name=value pairs. The resulting
token list values result in these server assingments:

• Any server accepts reads for either database.

• Only server 2 accepts updates for the emp database.

• Only server 3 accepts updates for the prod database.

In addition to assigning each server a version token list, the management application also maintains a
cache that reflects the server assignments.

Before communicating with the servers, a client application contacts the management application
and retrieves information about server assignments. Then the client selects a server based on those
assignments. Suppose that a client wants to perform both reads and writes on the emp database. Based on
the preceding assignments, only server 2 qualifies. The client connects to server 2 and registers its server
requirements there by setting its version_tokens_session system variable:

mysql> SET @@SESSION.version_tokens_session = 'emp=write';

1019

Version Tokens

For subsequent statements sent by the client to server 2, the server compares its own version token list to
the client list to check whether they match. If so, statements execute normally:

mysql> UPDATE emp.employee SET salary = salary * 1.1 WHERE id = 4981;
Query OK, 1 row affected (0.07 sec)
Rows matched: 1 Changed: 1 Warnings: 0

mysql> SELECT last_name, first_name FROM emp.employee WHERE id = 4981;
+-----------+------------+
| last_name | first_name |
+-----------+------------+
| Smith | Abe |
+-----------+------------+
1 row in set (0.01 sec)

Discrepancies between the server and client version token lists can occur two ways:

• A token name in the version_tokens_session value is not present in the server token list. In this
case, an ER_VTOKEN_PLUGIN_TOKEN_NOT_FOUND error occurs.

• A token value in the version_tokens_session value differs from the value of the corresponding
token in the server token list. In this case, an ER_VTOKEN_PLUGIN_TOKEN_MISMATCH error occurs.

As long as the assignment of server 2 does not change, the client continues to use it for reads and writes.
But suppose that the management application wants to change server assignments so that writes for the
emp database must be sent to server 1 instead of server 2. To do this, it uses version_tokens_edit()
to modify the emp token value on the two servers (and updates its cache of server assignments):

Server 1:

mysql> SELECT version_tokens_edit('emp=write');
+----------------------------------+
| version_tokens_edit('emp=write') |
+----------------------------------+
| 1 version tokens updated. |
+----------------------------------+

Server 2:

mysql> SELECT version_tokens_edit('emp=read');
+---------------------------------+
| version_tokens_edit('emp=read') |
+---------------------------------+
| 1 version tokens updated. |
+---------------------------------+

version_tokens_edit() modifies the named tokens in the server token list and leaves other tokens
unchanged.

The next time the client sends a statement to server 2, its own token list no longer matches the server
token list and an error occurs:

mysql> UPDATE emp.employee SET salary = salary * 1.1 WHERE id = 4982;
ERROR 3136 (42000): Version token mismatch for emp. Correct value read

In this case, the client should contact the management application to obtain updated information about
server assignments, select a new server, and send the failed statement to the new server.

Note

Each client must cooperate with Version Tokens by sending only statements in
accordance with the token list that it registers with a given server. For example, if

1020

https://dev.mysql.com/doc/mysql-errors/5.7/en/server-error-reference.html#error_er_vtoken_plugin_token_not_found
https://dev.mysql.com/doc/mysql-errors/5.7/en/server-error-reference.html#error_er_vtoken_plugin_token_mismatch

Version Tokens

a client registers a token list of 'emp=read', there is nothing in Version Tokens to
prevent the client from sending updates for the emp database. The client itself must
refrain from doing so.

For each statement received from a client, the server implicitly uses locking, as follows:

• Take a shared lock for each token named in the client token list (that is, in the
version_tokens_session value)

• Perform the comparison between the server and client token lists

• Execute the statement or produce an error depending on the comparison result

• Release the locks

The server uses shared locks so that comparisons for multiple sessions can occur without blocking, while
preventing changes to the tokens for any session that attempts to acquire an exclusive lock before it
manipulates tokens of the same names in the server token list.

The preceding example uses only a few of the functions included in the Version Tokens plugin library, but
there are others. One set of functions permits the server's list of version tokens to be manipulated and
inspected. Another set of functions permits version tokens to be locked and unlocked.

These functions permit the server's list of version tokens to be created, changed, removed, and inspected:

• version_tokens_set() completely replaces the current list and assigns a new list. The argument is a
semicolon-separated list of name=value pairs.

• version_tokens_edit() enables partial modifications to the current list. It can add new tokens or
change the values of existing tokens. The argument is a semicolon-separated list of name=value pairs.

• version_tokens_delete() deletes tokens from the current list. The argument is a semicolon-
separated list of token names.

• version_tokens_show() displays the current token list. It takes no argument.

Each of those functions, if successful, returns a binary string indicating what action occurred. The following
example establishes the server token list, modifies it by adding a new token, deletes some tokens, and
displays the resulting token list:

mysql> SELECT version_tokens_set('tok1=a;tok2=b');
+-------------------------------------+
| version_tokens_set('tok1=a;tok2=b') |
+-------------------------------------+
| 2 version tokens set. |
+-------------------------------------+
mysql> SELECT version_tokens_edit('tok3=c');
+-------------------------------+
| version_tokens_edit('tok3=c') |
+-------------------------------+
| 1 version tokens updated. |
+-------------------------------+
mysql> SELECT version_tokens_delete('tok2;tok1');
+------------------------------------+
| version_tokens_delete('tok2;tok1') |
+------------------------------------+
| 2 version tokens deleted. |
+------------------------------------+
mysql> SELECT version_tokens_show();
+-----------------------+

1021

Version Tokens

| version_tokens_show() |
+-----------------------+
| tok3=c; |
+-----------------------+

Warnings occur if a token list is malformed:

mysql> SELECT version_tokens_set('tok1=a; =c');
+----------------------------------+
| version_tokens_set('tok1=a; =c') |
+----------------------------------+
| 1 version tokens set. |
+----------------------------------+
1 row in set, 1 warning (0.00 sec)

mysql> SHOW WARNINGS\G
*************************** 1. row ***************************
 Level: Warning
 Code: 42000
Message: Invalid version token pair encountered. The list provided
 is only partially updated.
1 row in set (0.00 sec)

As mentioned previously, version tokens are defined using a semicolon-separated list of name=value
pairs. Consider this invocation of version_tokens_set():

mysql> SELECT version_tokens_set('tok1=b;;; tok2= a = b ; tok1 = 1\'2 3"4')
+---+
| version_tokens_set('tok1=b;;; tok2= a = b ; tok1 = 1\'2 3"4') |
+---+
| 3 version tokens set. |
+---+

Version Tokens interprets the argument as follows:

• Whitespace around names and values is ignored. Whitespace within names and values is permitted.
(For version_tokens_delete(), which takes a list of names without values, whitespace around
names is ignored.)

• There is no quoting mechanism.

• Order of tokens is not significant except that if a token list contains multiple instances of a given token
name, the last value takes precedence over earlier values.

Given those rules, the preceding version_tokens_set() call results in a token list with
two tokens: tok1 has the value 1'2 3"4, and tok2 has the value a = b. To verify this, call
version_tokens_show():

mysql> SELECT version_tokens_show();
+--------------------------+
| version_tokens_show() |
+--------------------------+
| tok2=a = b;tok1=1'2 3"4; |
+--------------------------+

If the token list contains two tokens, why did version_tokens_set() return the value 3 version
tokens set? That occurred because the original token list contained two definitions for tok1, and the
second definition replaced the first.

The Version Tokens token-manipulation functions place these constraints on token names and values:

• Token names cannot contain = or ; characters and have a maximum length of 64 characters.

1022

Version Tokens

• Token values cannot contain ; characters. Length of values is constrained by the value of the
max_allowed_packet system variable.

• Version Tokens treats token names and values as binary strings, so comparisons are case-sensitive.

Version Tokens also includes a set of functions enabling tokens to be locked and unlocked:

• version_tokens_lock_exclusive() acquires exclusive version token locks. It takes a list of one or
more lock names and a timeout value.

• version_tokens_lock_shared() acquires shared version token locks. It takes a list of one or more
lock names and a timeout value.

• version_tokens_unlock() releases version token locks (exclusive and shared). It takes no
argument.

Each locking function returns nonzero for success. Otherwise, an error occurs:

mysql> SELECT version_tokens_lock_shared('lock1', 'lock2', 0);
+---+
| version_tokens_lock_shared('lock1', 'lock2', 0) |
+---+
| 1 |
+---+

mysql> SELECT version_tokens_lock_shared(NULL, 0);
ERROR 3131 (42000): Incorrect locking service lock name '(null)'.

Locking using Version Tokens locking functions is advisory; applications must agree to cooperate.

It is possible to lock nonexisting token names. This does not create the tokens.

Note

Version Tokens locking functions are based on the locking service described at
Section 5.5.6.1, “The Locking Service”, and thus have the same semantics for
shared and exclusive locks. (Version Tokens uses the locking service routines built
into the server, not the locking service function interface, so those functions need
not be installed to use Version Tokens.) Locks acquired by Version Tokens use
a locking service namespace of version_token_locks. Locking service locks
can be monitored using the Performance Schema, so this is also true for Version
Tokens locks. For details, see Locking Service Monitoring.

For the Version Tokens locking functions, token name arguments are used exactly as specified.
Surrounding whitespace is not ignored and = and ; characters are permitted. This is because Version
Tokens simply passes the token names to be locked as is to the locking service.

5.5.5.4 Version Tokens Reference

The following discussion serves as a reference to these Version Tokens elements:

• Version Tokens Functions

• Version Tokens System Variables

Version Tokens Functions

The Version Tokens plugin library includes several functions. One set of functions permits the server's list
of version tokens to be manipulated and inspected. Another set of functions permits version tokens to be
locked and unlocked. The SUPER privilege is required to invoke any Version Tokens function.

1023

Version Tokens

The following functions permit the server's list of version tokens to be created, changed, removed, and
inspected. Interpretation of name_list and token_list arguments (including whitespace handling)
occurs as described in Section 5.5.5.3, “Using Version Tokens”, which provides details about the syntax for
specifying tokens, as well as additional examples.

• version_tokens_delete(name_list)

Deletes tokens from the server's list of version tokens using the name_list argument and returns a
binary string that indicates the outcome of the operation. name_list is a semicolon-separated list of
version token names to delete.

mysql> SELECT version_tokens_delete('tok1;tok3');
+------------------------------------+
| version_tokens_delete('tok1;tok3') |
+------------------------------------+
| 2 version tokens deleted. |
+------------------------------------+

An argument of NULL is treated as an empty string, which has no effect on the token list.

version_tokens_delete() deletes the tokens named in its argument, if they exist. (It is not an error
to delete nonexisting tokens.) To clear the token list entirely without knowing which tokens are in the list,
pass NULL or a string containing no tokens to version_tokens_set():

mysql> SELECT version_tokens_set(NULL);
+------------------------------+
| version_tokens_set(NULL) |
+------------------------------+
| Version tokens list cleared. |
+------------------------------+
mysql> SELECT version_tokens_set('');
+------------------------------+
| version_tokens_set('') |
+------------------------------+
| Version tokens list cleared. |
+------------------------------+

• version_tokens_edit(token_list)

Modifies the server's list of version tokens using the token_list argument and returns a binary string
that indicates the outcome of the operation. token_list is a semicolon-separated list of name=value
pairs specifying the name of each token to be defined and its value. If a token exists, its value is updated
with the given value. If a token does not exist, it is created with the given value. If the argument is NULL
or a string containing no tokens, the token list remains unchanged.

mysql> SELECT version_tokens_set('tok1=value1;tok2=value2');
+---+
| version_tokens_set('tok1=value1;tok2=value2') |
+---+
| 2 version tokens set. |
+---+
mysql> SELECT version_tokens_edit('tok2=new_value2;tok3=new_value3');
+--+
| version_tokens_edit('tok2=new_value2;tok3=new_value3') |
+--+
| 2 version tokens updated. |
+--+

• version_tokens_set(token_list)

Replaces the server's list of version tokens with the tokens defined in the token_list argument
and returns a binary string that indicates the outcome of the operation. token_list is a semicolon-

1024

Version Tokens

separated list of name=value pairs specifying the name of each token to be defined and its value. If the
argument is NULL or a string containing no tokens, the token list is cleared.

mysql> SELECT version_tokens_set('tok1=value1;tok2=value2');
+---+
| version_tokens_set('tok1=value1;tok2=value2') |
+---+
| 2 version tokens set. |
+---+

• version_tokens_show()

Returns the server's list of version tokens as a binary string containing a semicolon-separated list of
name=value pairs.

mysql> SELECT version_tokens_show();
+--------------------------+
| version_tokens_show() |
+--------------------------+
| tok2=value2;tok1=value1; |
+--------------------------+

The following functions permit version tokens to be locked and unlocked:

• version_tokens_lock_exclusive(token_name[, token_name] ..., timeout)

Acquires exclusive locks on one or more version tokens, specified by name as strings, timing out with an
error if the locks are not acquired within the given timeout value.

mysql> SELECT version_tokens_lock_exclusive('lock1', 'lock2', 10);
+---+
| version_tokens_lock_exclusive('lock1', 'lock2', 10) |
+---+
| 1 |
+---+

• version_tokens_lock_shared(token_name[, token_name] ..., timeout)

Acquires shared locks on one or more version tokens, specified by name as strings, timing out with an
error if the locks are not acquired within the given timeout value.

mysql> SELECT version_tokens_lock_shared('lock1', 'lock2', 10);
+--+
| version_tokens_lock_shared('lock1', 'lock2', 10) |
+--+
| 1 |
+--+

• version_tokens_unlock()

Releases all locks that were acquired within the current session using
version_tokens_lock_exclusive() and version_tokens_lock_shared().

mysql> SELECT version_tokens_unlock();
+-------------------------+
| version_tokens_unlock() |
+-------------------------+
| 1 |
+-------------------------+

The locking functions share these characteristics:

• The return value is nonzero for success. Otherwise, an error occurs.

1025

Version Tokens

• Token names are strings.

• In contrast to argument handling for the functions that manipulate the server token list, whitespace
surrounding token name arguments is not ignored and = and ; characters are permitted.

• It is possible to lock nonexisting token names. This does not create the tokens.

• Timeout values are nonnegative integers representing the time in seconds to wait to acquire locks before
timing out with an error. If the timeout is 0, there is no waiting and the function produces an error if locks
cannot be acquired immediately.

• Version Tokens locking functions are based on the locking service described at Section 5.5.6.1, “The
Locking Service”.

Version Tokens System Variables

Version Tokens supports the following system variables. These variables are unavailable unless the
Version Tokens plugin is installed (see Section 5.5.5.2, “Installing or Uninstalling Version Tokens”).

System variables:

• version_tokens_session

Command-Line Format --version-tokens-session=value

System Variable version_tokens_session

Scope Global, Session

Dynamic Yes

Type String

Default Value NULL

The session value of this variable specifies the client version token list and indicates the tokens that the
client session requires the server version token list to have.

If the version_tokens_session variable is NULL (the default) or has an empty value, any server
version token list matches. (In effect, an empty value disables matching requirements.)

If the version_tokens_session variable has a nonempty value, any mismatch between its value
and the server version token list results in an error for any statement the session sends to the server. A
mismatch occurs under these conditions:

• A token name in the version_tokens_session value is not present in the server token list. In this
case, an ER_VTOKEN_PLUGIN_TOKEN_NOT_FOUND error occurs.

• A token value in the version_tokens_session value differs from the value of the corresponding
token in the server token list. In this case, an ER_VTOKEN_PLUGIN_TOKEN_MISMATCH error occurs.

It is not a mismatch for the server version token list to include a token not named in the
version_tokens_session value.

Suppose that a management application has set the server token list as follows:

mysql> SELECT version_tokens_set('tok1=a;tok2=b;tok3=c');
+--+
| version_tokens_set('tok1=a;tok2=b;tok3=c') |
+--+
| 3 version tokens set. |
+--+

1026

https://dev.mysql.com/doc/mysql-errors/5.7/en/server-error-reference.html#error_er_vtoken_plugin_token_not_found
https://dev.mysql.com/doc/mysql-errors/5.7/en/server-error-reference.html#error_er_vtoken_plugin_token_mismatch

MySQL Plugin Services

A client registers the tokens it requires the server to match by setting its version_tokens_session
value. Then, for each subsequent statement sent by the client, the server checks its token list against the
client version_tokens_session value and produces an error if there is a mismatch:

mysql> SET @@SESSION.version_tokens_session = 'tok1=a;tok2=b';
mysql> SELECT 1;
+---+
| 1 |
+---+
| 1 |
+---+

mysql> SET @@SESSION.version_tokens_session = 'tok1=b';
mysql> SELECT 1;
ERROR 3136 (42000): Version token mismatch for tok1. Correct value a

The first SELECT succeeds because the client tokens tok1 and tok2 are present in the server token list
and each token has the same value in the server list. The second SELECT fails because, although tok1
is present in the server token list, it has a different value than specified by the client.

At this point, any statement sent by the client fails, unless the server token list changes such that it
matches again. Suppose that the management application changes the server token list as follows:

mysql> SELECT version_tokens_edit('tok1=b');
+-------------------------------+
| version_tokens_edit('tok1=b') |
+-------------------------------+
| 1 version tokens updated. |
+-------------------------------+
mysql> SELECT version_tokens_show();
+-----------------------+
| version_tokens_show() |
+-----------------------+
| tok3=c;tok1=b;tok2=b; |
+-----------------------+

Now the client version_tokens_session value matches the server token list and the client can once
again successfully execute statements:

mysql> SELECT 1;
+---+
| 1 |
+---+
| 1 |
+---+

• version_tokens_session_number

Command-Line Format --version-tokens-session-number=#

System Variable version_tokens_session_number

Scope Global, Session

Dynamic No

Type Integer

Default Value 0

This variable is for internal use.

5.5.6 MySQL Plugin Services

1027

MySQL Plugin Services

MySQL server plugins have access to server “plugin services.” The plugin services interface complements
the plugin API by exposing server functionality that plugins can call. For developer information about
writing plugin services, see MySQL Services for Plugins. The following sections describe plugin services
available at the SQL and C-language levels.

5.5.6.1 The Locking Service

MySQL distributions provide a locking interface that is accessible at two levels:

• At the SQL level, as a set of loadable functions that each map onto calls to the service routines.

• As a C language interface, callable as a plugin service from server plugins or loadable functions.

For general information about plugin services, see Section 5.5.6, “MySQL Plugin Services”. For general
information about loadable functions, see Adding a Loadable Function.

The locking interface has these characteristics:

• Locks have three attributes: Lock namespace, lock name, and lock mode:

• Locks are identified by the combination of namespace and lock name. The namespace enables
different applications to use the same lock names without colliding by creating locks in separate
namespaces. For example, if applications A and B use namespaces of ns1 and ns2, respectively,
each application can use lock names lock1 and lock2 without interfering with the other application.

• A lock mode is either read or write. Read locks are shared: If a session has a read lock on a given lock
identifier, other sessions can acquire a read lock on the same identifier. Write locks are exclusive: If a
session has a write lock on a given lock identifier, other sessions cannot acquire a read or write lock
on the same identifier.

• Namespace and lock names must be non-NULL, nonempty, and have a maximum length of 64
characters. A namespace or lock name specified as NULL, the empty string, or a string longer than 64
characters results in an ER_LOCKING_SERVICE_WRONG_NAME error.

• The locking interface treats namespace and lock names as binary strings, so comparisons are case-
sensitive.

• The locking interface provides functions to acquire locks and release locks. No special privilege is
required to call these functions. Privilege checking is the responsibility of the calling application.

• Locks can be waited for if not immediately available. Lock acquisition calls take an integer timeout value
that indicates how many seconds to wait to acquire locks before giving up. If the timeout is reached
without successful lock acquisition, an ER_LOCKING_SERVICE_TIMEOUT error occurs. If the timeout is
0, there is no waiting and the call produces an error if locks cannot be acquired immediately.

• The locking interface detects deadlock between lock-acquisition calls in different sessions. In
this case, the locking service chooses a caller and terminates its lock-acquisition request with an
ER_LOCKING_SERVICE_DEADLOCK error. This error does not cause transactions to roll back. To
choose a session in case of deadlock, the locking service prefers sessions that hold read locks over
sessions that hold write locks.

• A session can acquire multiple locks with a single lock-acquisition call. For a given call, lock
acquisition is atomic: The call succeeeds if all locks are acquired. If acquisition of any lock fails,
the call acquires no locks and fails, typically with an ER_LOCKING_SERVICE_TIMEOUT or
ER_LOCKING_SERVICE_DEADLOCK error.

• A session can acquire multiple locks for the same lock identifier (namespace and lock name
combination). These lock instances can be read locks, write locks, or a mix of both.

1028

https://dev.mysql.com/doc/extending-mysql/5.7/en/services-for-plugins.html
https://dev.mysql.com/doc/extending-mysql/5.7/en/adding-loadable-function.html
https://dev.mysql.com/doc/mysql-errors/5.7/en/server-error-reference.html#error_er_locking_service_wrong_name
https://dev.mysql.com/doc/mysql-errors/5.7/en/server-error-reference.html#error_er_locking_service_timeout
https://dev.mysql.com/doc/mysql-errors/5.7/en/server-error-reference.html#error_er_locking_service_deadlock
https://dev.mysql.com/doc/mysql-errors/5.7/en/server-error-reference.html#error_er_locking_service_timeout
https://dev.mysql.com/doc/mysql-errors/5.7/en/server-error-reference.html#error_er_locking_service_deadlock

MySQL Plugin Services

• Locks acquired within a session are released explicitly by calling a release-locks function, or implicitly
when the session terminates (either normally or abnormally). Locks are not released when transactions
commit or roll back.

• Within a session, all locks for a given namespace when released are released together.

The interface provided by the locking service is distinct from that provided by GET_LOCK() and related
SQL functions (see Section 12.14, “Locking Functions”). For example, GET_LOCK() does not implement
namespaces and provides only exclusive locks, not distinct read and write locks.

The Locking Service C Interface

This section describes how to use the locking service C language interface. To use the function interface
instead, see The Locking Service Function Interface For general characteristics of the locking service
interface, see Section 5.5.6.1, “The Locking Service”. For general information about plugin services, see
Section 5.5.6, “MySQL Plugin Services”.

Source files that use the locking service should include this header file:

#include <mysql/service_locking.h>

To acquire one or more locks, call this function:

int mysql_acquire_locking_service_locks(MYSQL_THD opaque_thd,
 const char* lock_namespace,
 const char**lock_names,
 size_t lock_num,
 enum enum_locking_service_lock_type lock_type,
 unsigned long lock_timeout);

The arguments have these meanings:

• opaque_thd: A thread handle. If specified as NULL, the handle for the current thread is used.

• lock_namespace: A null-terminated string that indicates the lock namespace.

• lock_names: An array of null-terminated strings that provides the names of the locks to acquire.

• lock_num: The number of names in the lock_names array.

• lock_type: The lock mode, either LOCKING_SERVICE_READ or LOCKING_SERVICE_WRITE to
acquire read locks or write locks, respectively.

• lock_timeout: An integer number of seconds to wait to acquire the locks before giving up.

To release locks acquired for a given namespace, call this function:

int mysql_release_locking_service_locks(MYSQL_THD opaque_thd,
 const char* lock_namespace);

The arguments have these meanings:

• opaque_thd: A thread handle. If specified as NULL, the handle for the current thread is used.

• lock_namespace: A null-terminated string that indicates the lock namespace.

Locks acquired or waited for by the locking service can be monitored at the SQL level using the
Performance Schema. For details, see Locking Service Monitoring.

The Locking Service Function Interface

This section describes how to use the locking service interface provided by its loadable functions. To
use the C language interface instead, see The Locking Service C Interface For general characteristics of

1029

MySQL Plugin Services

the locking service interface, see Section 5.5.6.1, “The Locking Service”. For general information about
loadable functions, see Adding a Loadable Function.

• Installing or Uninstalling the Locking Service Function Interface

• Using the Locking Service Function Interface

• Locking Service Monitoring

• Locking Service Interface Function Reference

Installing or Uninstalling the Locking Service Function Interface

The locking service routines described in The Locking Service C Interface need not be installed because
they are built into the server. The same is not true of the loadable functions that map onto calls to the
service routines: The functions must be installed before use. This section describes how to do that. For
general information about loadable function installation, see Section 5.6.1, “Installing and Uninstalling
Loadable Functions”.

The locking service functions are implemented in a plugin library file located in the directory named by the
plugin_dir system variable. The file base name is locking_service. The file name suffix differs per
platform (for example, .so for Unix and Unix-like systems, .dll for Windows).

To install the locking service functions, use the CREATE FUNCTION statement, adjusting the .so suffix for
your platform as necessary:

CREATE FUNCTION service_get_read_locks RETURNS INT
 SONAME 'locking_service.so';
CREATE FUNCTION service_get_write_locks RETURNS INT
 SONAME 'locking_service.so';
CREATE FUNCTION service_release_locks RETURNS INT
 SONAME 'locking_service.so';

If the functions are used on a replication source server, install them on all replica servers as well to avoid
replication problems.

Once installed, the functions remain installed until uninstalled. To remove them, use the DROP FUNCTION
statement:

DROP FUNCTION service_get_read_locks;
DROP FUNCTION service_get_write_locks;
DROP FUNCTION service_release_locks;

Using the Locking Service Function Interface

Before using the locking service functions, install them according to the instructions provided at Installing or
Uninstalling the Locking Service Function Interface.

To acquire one or more read locks, call this function:

mysql> SELECT service_get_read_locks('mynamespace', 'rlock1', 'rlock2', 10);
+---+
| service_get_read_locks('mynamespace', 'rlock1', 'rlock2', 10) |
+---+
| 1 |
+---+

The first argument is the lock namespace. The final argument is an integer timeout indicating how many
seconds to wait to acquire the locks before giving up. The arguments in between are the lock names.

For the example just shown, the function acquires locks with lock identifiers (mynamespace, rlock1)
and (mynamespace, rlock2).

1030

https://dev.mysql.com/doc/extending-mysql/5.7/en/adding-loadable-function.html

MySQL Plugin Services

To acquire write locks rather than read locks, call this function:

mysql> SELECT service_get_write_locks('mynamespace', 'wlock1', 'wlock2', 10);
+--+
| service_get_write_locks('mynamespace', 'wlock1', 'wlock2', 10) |
+--+
| 1 |
+--+

In this case, the lock identifiers are (mynamespace, wlock1) and (mynamespace, wlock2).

To release all locks for a namespace, use this function:

mysql> SELECT service_release_locks('mynamespace');
+--------------------------------------+
| service_release_locks('mynamespace') |
+--------------------------------------+
| 1 |
+--------------------------------------+

Each locking function returns nonzero for success. If the function fails, an error occurs. For example, the
following error occurs because lock names cannot be empty:

mysql> SELECT service_get_read_locks('mynamespace', '', 10);
ERROR 3131 (42000): Incorrect locking service lock name ''.

A session can acquire multiple locks for the same lock identifier. As long as a different session does not
have a write lock for an identifier, the session can acquire any number of read or write locks. Each lock
request for the identifier acquires a new lock. The following statements acquire three write locks with the
same identifier, then three read locks for the same identifier:

SELECT service_get_write_locks('ns', 'lock1', 'lock1', 'lock1', 0);
SELECT service_get_read_locks('ns', 'lock1', 'lock1', 'lock1', 0);

If you examine the Performance Schema metadata_locks table at this point, you find that the
session holds six distinct locks with the same (ns, lock1) identifier. (For details, see Locking Service
Monitoring.)

Because the session holds at least one write lock on (ns, lock1), no other session can acquire a lock
for it, either read or write. If the session held only read locks for the identifier, other sessions could acquire
read locks for it, but not write locks.

Locks for a single lock-acquisition call are acquired atomically, but atomicity does not hold across calls.
Thus, for a statement such as the following, where service_get_write_locks() is called once per
row of the result set, atomicity holds for each individual call, but not for the statement as a whole:

SELECT service_get_write_locks('ns', 'lock1', 'lock2', 0) FROM t1 WHERE ... ;

Caution

Because the locking service returns a separate lock for each successful request for
a given lock identifier, it is possible for a single statement to acquire a large number
of locks. For example:

INSERT INTO ... SELECT service_get_write_locks('ns', t1.col_name, 0) FROM t1;

These types of statements may have certain adverse effects. For example, if the
statement fails part way through and rolls back, locks acquired up to the point of
failure still exist. If the intent is for there to be a correspondence between rows
inserted and locks acquired, that intent is not satisfied. Also, if it is important that
locks are granted in a certain order, be aware that result set order may differ

1031

MySQL Plugin Services

depending on which execution plan the optimizer chooses. For these reasons, it
may be best to limit applications to a single lock-acquisition call per statement.

Locking Service Monitoring

The locking service is implemented using the MySQL Server metadata locks framework, so you monitor
locking service locks acquired or waited for by examining the Performance Schema metadata_locks
table.

First, enable the metadata lock instrument:

mysql> UPDATE performance_schema.setup_instruments SET ENABLED = 'YES'
 -> WHERE NAME = 'wait/lock/metadata/sql/mdl';

Then acquire some locks and check the contents of the metadata_locks table:

mysql> SELECT service_get_write_locks('mynamespace', 'lock1', 0);
+--+
| service_get_write_locks('mynamespace', 'lock1', 0) |
+--+
| 1 |
+--+
mysql> SELECT service_get_read_locks('mynamespace', 'lock2', 0);
+---+
| service_get_read_locks('mynamespace', 'lock2', 0) |
+---+
| 1 |
+---+
mysql> SELECT OBJECT_TYPE, OBJECT_SCHEMA, OBJECT_NAME, LOCK_TYPE, LOCK_STATUS
 -> FROM performance_schema.metadata_locks
 -> WHERE OBJECT_TYPE = 'LOCKING SERVICE'\G
*************************** 1. row ***************************
 OBJECT_TYPE: LOCKING SERVICE
OBJECT_SCHEMA: mynamespace
 OBJECT_NAME: lock1
 LOCK_TYPE: EXCLUSIVE
 LOCK_STATUS: GRANTED
*************************** 2. row ***************************
 OBJECT_TYPE: LOCKING SERVICE
OBJECT_SCHEMA: mynamespace
 OBJECT_NAME: lock2
 LOCK_TYPE: SHARED
 LOCK_STATUS: GRANTED

Locking service locks have an OBJECT_TYPE value of LOCKING SERVICE. This is distinct from, for
example, locks acquired with the GET_LOCK() function, which have an OBJECT_TYPE of USER LEVEL
LOCK.

The lock namespace, name, and mode appear in the OBJECT_SCHEMA, OBJECT_NAME, and LOCK_TYPE
columns. Read and write locks have LOCK_TYPE values of SHARED and EXCLUSIVE, respectively.

The LOCK_STATUS value is GRANTED for an acquired lock, PENDING for a lock that is being waited for.
You see PENDING if one session holds a write lock and another session is attempting to acquire a lock
having the same identifier.

Locking Service Interface Function Reference

The SQL interface to the locking service implements the loadable functions described in this section. For
usage examples, see Using the Locking Service Function Interface.

The functions share these characteristics:

• The return value is nonzero for success. Otherwise, an error occurs.

1032

MySQL Plugin Services

• Namespace and lock names must be non-NULL, nonempty, and have a maximum length of 64
characters.

• Timeout values must be integers indicating how many seconds to wait to acquire locks before giving up
with an error. If the timeout is 0, there is no waiting and the function produces an error if locks cannot be
acquired immediately.

These locking service functions are available:

• service_get_read_locks(namespace, lock_name[, lock_name] ..., timeout)

Acquires one or more read (shared) locks in the given namespace using the given lock names, timing
out with an error if the locks are not acquired within the given timeout value.

• service_get_write_locks(namespace, lock_name[, lock_name] ..., timeout)

Acquires one or more write (exclusive) locks in the given namespace using the given lock names, timing
out with an error if the locks are not acquired within the given timeout value.

• service_release_locks(namespace)

For the given namespace, releases all locks that were acquired within the current session using
service_get_read_locks() and service_get_write_locks().

It is not an error for there to be no locks in the namespace.

5.5.6.2 The Keyring Service

MySQL Server supports a keyring service that enables internal server components and plugins to securely
store sensitive information for later retrieval. MySQL distributions provide a keyring interface that is
accessible at two levels:

• At the SQL level, as a set of loadable functions that each map onto calls to the service routines.

• As a C language interface, callable as a plugin service from server plugins or loadable functions.

This section describes how to use the keyring service functions to store, retrieve, and remove keys in the
MySQL keyring keystore. For information about the SQL interface that uses functions, Section 6.4.4.8,
“General-Purpose Keyring Key-Management Functions”. For general keyring information, see
Section 6.4.4, “The MySQL Keyring”.

The keyring service uses whatever underlying keyring plugin is enabled, if any. If no keyring plugin is
enabled, keyring service calls fail.

A “record” in the keystore consists of data (the key itself) and a unique identifier through which the key is
accessed. The identifier has two parts:

• key_id: The key ID or name. key_id values that begin with mysql_ are reserved by MySQL Server.

• user_id: The session effective user ID. If there is no user context, this value can be NULL. The value
need not actually be a “user”; the meaning depends on the application.

Functions that implement the keyring function interface pass the value of CURRENT_USER() as the
user_id value to keyring service functions.

The keyring service functions have these characteristics in common:

• Each function returns 0 for success, 1 for failure.

1033

MySQL Plugin Services

• The key_id and user_id arguments form a unique combination indicating which key in the keyring to
use.

• The key_type argument provides additional information about the key, such as its encryption method or
intended use.

• Keyring service functions treat key IDs, user names, types, and values as binary strings, so comparisons
are case-sensitive. For example, IDs of MyKey and mykey refer to different keys.

These keyring service functions are available:

• my_key_fetch()

Deobfuscates and retrieves a key from the keyring, along with its type. The function allocates the
memory for the buffers used to store the returned key and key type. The caller should zero or obfuscate
the memory when it is no longer needed, then free it.

Syntax:

my_bool my_key_fetch(const char *key_id, const char **key_type,
 const char* user_id, void **key, size_t *key_len)

Arguments:

• key_id, user_id: Null-terminated strings that as a pair form a unique identifier indicating which key
to fetch.

• key_type: The address of a buffer pointer. The function stores into it a pointer to a null-terminated
string that provides additional information about the key (stored when the key was added).

• key: The address of a buffer pointer. The function stores into it a pointer to the buffer containing the
fetched key data.

• key_len: The address of a variable into which the function stores the size in bytes of the *key buffer.

Return value:

Returns 0 for success, 1 for failure.

• my_key_generate()

Generates a new random key of a given type and length and stores it in the keyring. The key has a
length of key_len and is associated with the identifier formed from key_id and user_id. The type
and length values must be consistent with the values supported by the underlying keyring plugin. See
Section 6.4.4.6, “Supported Keyring Key Types and Lengths”.

Syntax:

my_bool my_key_generate(const char *key_id, const char *key_type,
 const char *user_id, size_t key_len)

Arguments:

• key_id, user_id: Null-terminated strings that as a pair form a unique identifier for the key to be
generated.

• key_type: A null-terminated string that provides additional information about the key.

• key_len: The size in bytes of the key to be generated.

1034

MySQL Server Loadable Functions

Return value:

Returns 0 for success, 1 for failure.

• my_key_remove()

Removes a key from the keyring.

Syntax:

my_bool my_key_remove(const char *key_id, const char* user_id)

Arguments:

• key_id, user_id: Null-terminated strings that as a pair form a unique identifier for the key to be
removed.

Return value:

Returns 0 for success, 1 for failure.

• my_key_store()

Obfuscates and stores a key in the keyring.

Syntax:

my_bool my_key_store(const char *key_id, const char *key_type,
 const char* user_id, void *key, size_t key_len)

Arguments:

• key_id, user_id: Null-terminated strings that as a pair form a unique identifier for the key to be
stored.

• key_type: A null-terminated string that provides additional information about the key.

• key: The buffer containing the key data to be stored.

• key_len: The size in bytes of the key buffer.

Return value:

Returns 0 for success, 1 for failure.

5.6 MySQL Server Loadable Functions

MySQL supports loadable functions, that is, functions that are not built in but can be loaded at runtime
(either during startup or later) to extend server capabilities, or unloaded to remove capabilities. For a table
describing the available loadable functions, see Section 12.2, “Loadable Function Reference”. Loadable
functions contrast with built-in (native) functions, which are implemented as part of the server and are
always available; for a table, see Section 12.1, “Built-In Function and Operator Reference”.

Note

Loadable functions previously were known as user-defined functions (UDFs). That
terminology was something of a misnomer because “user-defined” also can apply

1035

Installing and Uninstalling Loadable Functions

to other types of functions, such as stored functions (a type of stored object written
using SQL) and native functions added by modifying the server source code.

MySQL distributions include loadable functions that implement, in whole or in part, these server
capabilities:

• MySQL Enterprise Edition includes functions that perform encryption operations based on the OpenSSL
library. See Section 6.6, “MySQL Enterprise Encryption”.

• MySQL Enterprise Edition includes functions that provide an SQL-level API for masking and de-
identification operations. See Section 6.5.1, “MySQL Enterprise Data Masking and De-Identification
Elements”.

• MySQL Enterprise Edition includes audit logging for monitoring and logging of connection and query
activity. See Section 6.4.5, “MySQL Enterprise Audit”.

• MySQL Enterprise Edition includes a firewall capability that implements an application-level firewall to
enable database administrators to permit or deny SQL statement execution based on matching against
patterns for accepted statement. See Section 6.4.6, “MySQL Enterprise Firewall”.

• A query rewriter examines statements received by MySQL Server and possibly rewrites them before the
server executes them. See Section 5.5.4, “The Rewriter Query Rewrite Plugin”

• Version Tokens enables creation of and synchronization around server tokens that applications can use
to prevent accessing incorrect or out-of-date data. See Section 5.5.5, “Version Tokens”.

• The MySQL Keyring provides secure storage for sensitive information. See Section 6.4.4, “The MySQL
Keyring”.

• A locking service provides a locking interface for application use. See Section 5.5.6.1, “The Locking
Service”.

The following sections describe how to install and uninstall loadable functions, and how to determine at
runtime which loadable functions are installed and obtain information about them.

For information about writing loadable functions, see Adding Functions to MySQL.

5.6.1 Installing and Uninstalling Loadable Functions

Loadable functions, as the name implies, must be loaded into the server before they can be used. MySQL
supports automatic function loading during server startup and manual loading thereafter.

While a loadable function is loaded, information about it is available as described in Section 5.6.2,
“Obtaining Information About Loadable Functions”.

• Installing Loadable Functions

• Uninstalling Loadable Functions

• Reinstalling or Upgrading Loadable Functions

Installing Loadable Functions

To load a loadable function manually, use the CREATE FUNCTION statement. For example:

CREATE FUNCTION metaphon
 RETURNS STRING
 SONAME 'udf_example.so';

1036

https://dev.mysql.com/doc/extending-mysql/5.7/en/adding-functions.html

Obtaining Information About Loadable Functions

The file base name depends on your platform. Common suffixes are .so for Unix and Unix-like systems,
.dll for Windows.

CREATE FUNCTION has these effects:

• It loads the function into the server to make it available immediately.

• It registers the function in the mysql.func system table to make it persistent across server restarts. For
this reason, CREATE FUNCTION requires the INSERT privilege for the mysql system database.

Automatic loading of loadable functions occurs during the normal server startup sequence. The server
loads functions registered in the mysql.func table. If the server is started with the --skip-grant-
tables option, functions registered in the table are not loaded and are unavailable.

Uninstalling Loadable Functions

To remove a loadable function, use the DROP FUNCTION statement. For example:

DROP FUNCTION metaphon;

DROP FUNCTION has these effects:

• It unloads the function to make it unavailable.

• It removes the function from the mysql.func system table. For this reason, DROP FUNCTION requires
the DELETE privilege for the mysql system database. With the function no longer registered in the
mysql.func table, the server does not load the function during subsequent restarts.

While a loadable function is loaded, information about it is available from the mysql.func system table.
See Section 5.6.2, “Obtaining Information About Loadable Functions”. CREATE FUNCTION adds the
function to the table and DROP FUNCTION removes it.

Reinstalling or Upgrading Loadable Functions

To reinstall or upgrade the shared library associated with a loadable function, issue a DROP FUNCTION
statement, upgrade the shared library, and then issue a CREATE FUNCTION statement. If you upgrade the
shared library first and then use DROP FUNCTION, the server may unexpectedly shut down.

5.6.2 Obtaining Information About Loadable Functions

The mysql.func system table shows which loadable functions have been registered using CREATE
FUNCTION:

SELECT * FROM mysql.func;

The func table has these columns:

• name

The function name as referred to in SQL statements.

• ret

The function return value type. Permitted values are 0 (STRING), 1 (REAL), 2 (INTEGER), 3 (ROW), or 4
(DECIMAL).

• dl

The name of the function library file containing the executable function code. The file is located in the
directory named by the plugin_dir system variable.

1037

Running Multiple MySQL Instances on One Machine

• type

The function type, either function (scalar) or aggregate.

5.7 Running Multiple MySQL Instances on One Machine

In some cases, you might want to run multiple instances of MySQL on a single machine. You might want
to test a new MySQL release while leaving an existing production setup undisturbed. Or you might want to
give different users access to different mysqld servers that they manage themselves. (For example, you
might be an Internet Service Provider that wants to provide independent MySQL installations for different
customers.)

It is possible to use a different MySQL server binary per instance, or use the same binary for multiple
instances, or any combination of the two approaches. For example, you might run a server from MySQL
5.6 and one from MySQL 5.7, to see how different versions handle a given workload. Or you might run
multiple instances of the current production version, each managing a different set of databases.

Whether or not you use distinct server binaries, each instance that you run must be configured with unique
values for several operating parameters. This eliminates the potential for conflict between instances.
Parameters can be set on the command line, in option files, or by setting environment variables. See
Section 4.2.2, “Specifying Program Options”. To see the values used by a given instance, connect to it and
execute a SHOW VARIABLES statement.

The primary resource managed by a MySQL instance is the data directory. Each instance should use a
different data directory, the location of which is specified using the --datadir=dir_name option. For
methods of configuring each instance with its own data directory, and warnings about the dangers of failing
to do so, see Section 5.7.1, “Setting Up Multiple Data Directories”.

In addition to using different data directories, several other options must have different values for each
server instance:

• --port=port_num

--port controls the port number for TCP/IP connections. Alternatively, if the host has multiple network
addresses, you can set the bind_address system variable to cause each server to listen to a different
address.

• --socket={file_name|pipe_name}

--socket controls the Unix socket file path on Unix or the named-pipe name on Windows. On
Windows, it is necessary to specify distinct pipe names only for those servers configured to permit
named-pipe connections.

• --shared-memory-base-name=name

This option is used only on Windows. It designates the shared-memory name used by a Windows server
to permit clients to connect using shared memory. It is necessary to specify distinct shared-memory
names only for those servers configured to permit shared-memory connections.

• --pid-file=file_name

This option indicates the path name of the file in which the server writes its process ID.

If you use the following log file options, their values must differ for each server:

• --general_log_file=file_name

1038

Setting Up Multiple Data Directories

• --log-bin[=file_name]

• --slow_query_log_file=file_name

• --log-error[=file_name]

For further discussion of log file options, see Section 5.4, “MySQL Server Logs”.

To achieve better performance, you can specify the following option differently for each server, to spread
the load between several physical disks:

• --tmpdir=dir_name

Having different temporary directories also makes it easier to determine which MySQL server created any
given temporary file.

If you have multiple MySQL installations in different locations, you can specify the base directory for each
installation with the --basedir=dir_name option. This causes each instance to automatically use a
different data directory, log files, and PID file because the default for each of those parameters is relative
to the base directory. In that case, the only other options you need to specify are the --socket and --
port options. Suppose that you install different versions of MySQL using tar file binary distributions.
These install in different locations, so you can start the server for each installation using the command
bin/mysqld_safe under its corresponding base directory. mysqld_safe determines the proper --
basedir option to pass to mysqld, and you need specify only the --socket and --port options to
mysqld_safe.

As discussed in the following sections, it is possible to start additional servers by specifying appropriate
command options or by setting environment variables. However, if you need to run multiple servers on
a more permanent basis, it is more convenient to use option files to specify for each server those option
values that must be unique to it. The --defaults-file option is useful for this purpose.

5.7.1 Setting Up Multiple Data Directories

Each MySQL Instance on a machine should have its own data directory. The location is specified using the
--datadir=dir_name option.

There are different methods of setting up a data directory for a new instance:

• Create a new data directory.

• Copy an existing data directory.

The following discussion provides more detail about each method.

Warning

Normally, you should never have two servers that update data in the same
databases. This may lead to unpleasant surprises if your operating system does
not support fault-free system locking. If (despite this warning) you run multiple
servers using the same data directory and they have logging enabled, you must
use the appropriate options to specify log file names that are unique to each server.
Otherwise, the servers try to log to the same files.

Even when the preceding precautions are observed, this kind of setup works only
with MyISAM and MERGE tables, and not with any of the other storage engines. Also,
this warning against sharing a data directory among servers always applies in an
NFS environment. Permitting multiple MySQL servers to access a common data

1039

Running Multiple MySQL Instances on Windows

directory over NFS is a very bad idea. The primary problem is that NFS is the speed
bottleneck. It is not meant for such use. Another risk with NFS is that you must
devise a way to ensure that two or more servers do not interfere with each other.
Usually NFS file locking is handled by the lockd daemon, but at the moment there
is no platform that performs locking 100% reliably in every situation.

Create a New Data Directory

With this method, the data directory is in the same state as when you first install MySQL. It has the default
set of MySQL accounts and no user data.

On Unix, initialize the data directory. See Section 2.9, “Postinstallation Setup and Testing”.

On Windows, the data directory is included in the MySQL distribution:

• MySQL Zip archive distributions for Windows contain an unmodified data directory. You can unpack
such a distribution into a temporary location, then copy it data directory to where you are setting up the
new instance.

• Windows MSI package installers create and set up the data directory that the installed server uses, but
also create a pristine “template” data directory named data under the installation directory. After an
installation has been performed using an MSI package, the template data directory can be copied to set
up additional MySQL instances.

Copy an Existing Data Directory

With this method, any MySQL accounts or user data present in the data directory are carried over to the
new data directory.

1. Stop the existing MySQL instance using the data directory. This must be a clean shutdown so that the
instance flushes any pending changes to disk.

2. Copy the data directory to the location where the new data directory should be.

3. Copy the my.cnf or my.ini option file used by the existing instance. This serves as a basis for the
new instance.

4. Modify the new option file so that any pathnames referring to the original data directory refer to the
new data directory. Also, modify any other options that must be unique per instance, such as the
TCP/IP port number and the log files. For a list of parameters that must be unique per instance, see
Section 5.7, “Running Multiple MySQL Instances on One Machine”.

5. Start the new instance, telling it to use the new option file.

5.7.2 Running Multiple MySQL Instances on Windows

You can run multiple servers on Windows by starting them manually from the command line, each with
appropriate operating parameters, or by installing several servers as Windows services and running them
that way. General instructions for running MySQL from the command line or as a service are given in
Section 2.3, “Installing MySQL on Microsoft Windows”. The following sections describe how to start each
server with different values for those options that must be unique per server, such as the data directory.
These options are listed in Section 5.7, “Running Multiple MySQL Instances on One Machine”.

5.7.2.1 Starting Multiple MySQL Instances at the Windows Command Line

The procedure for starting a single MySQL server manually from the command line is described in
Section 2.3.4.6, “Starting MySQL from the Windows Command Line”. To start multiple servers this way,

1040

Running Multiple MySQL Instances on Windows

you can specify the appropriate options on the command line or in an option file. It is more convenient
to place the options in an option file, but it is necessary to make sure that each server gets its own set
of options. To do this, create an option file for each server and tell the server the file name with a --
defaults-file option when you run it.

Suppose that you want to run one instance of mysqld on port 3307 with a data directory of C:\mydata1,
and another instance on port 3308 with a data directory of C:\mydata2. Use this procedure:

1. Make sure that each data directory exists, including its own copy of the mysql database that contains
the grant tables.

2. Create two option files. For example, create one file named C:\my-opts1.cnf that looks like this:

[mysqld]
datadir = C:/mydata1
port = 3307

Create a second file named C:\my-opts2.cnf that looks like this:

[mysqld]
datadir = C:/mydata2
port = 3308

3. Use the --defaults-file option to start each server with its own option file:

C:\> C:\mysql\bin\mysqld --defaults-file=C:\my-opts1.cnf
C:\> C:\mysql\bin\mysqld --defaults-file=C:\my-opts2.cnf

Each server starts in the foreground (no new prompt appears until the server exits later), so you must
issue those two commands in separate console windows.

To shut down the servers, connect to each using the appropriate port number:

C:\> C:\mysql\bin\mysqladmin --port=3307 --host=127.0.0.1 --user=root --password shutdown
C:\> C:\mysql\bin\mysqladmin --port=3308 --host=127.0.0.1 --user=root --password shutdown

Servers configured as just described permit clients to connect over TCP/IP. If your version of Windows
supports named pipes and you also want to permit named-pipe connections, specify options that enable
the named pipe and specify its name. Each server that supports named-pipe connections must use a
unique pipe name. For example, the C:\my-opts1.cnf file might be written like this:

[mysqld]
datadir = C:/mydata1
port = 3307
enable-named-pipe
socket = mypipe1

Modify C:\my-opts2.cnf similarly for use by the second server. Then start the servers as described
previously.

A similar procedure applies for servers that you want to permit shared-memory connections. Enable such
connections by starting the server with the shared_memory system variable enabled and specify a unique
shared-memory name for each server by setting the shared_memory_base_name system variable.

5.7.2.2 Starting Multiple MySQL Instances as Windows Services

On Windows, a MySQL server can run as a Windows service. The procedures for installing, controlling,
and removing a single MySQL service are described in Section 2.3.4.8, “Starting MySQL as a Windows
Service”.

1041

Running Multiple MySQL Instances on Windows

To set up multiple MySQL services, you must make sure that each instance uses a different service name
in addition to the other parameters that must be unique per instance.

For the following instructions, suppose that you want to run the mysqld server from two different versions
of MySQL that are installed at C:\mysql-5.7.9 and C:\mysql-5.7.44, respectively. (This might be
the case if you are running 5.7.9 as your production server, but also want to conduct tests using 5.7.44.)

To install MySQL as a Windows service, use the --install or --install-manual option. For
information about these options, see Section 2.3.4.8, “Starting MySQL as a Windows Service”.

Based on the preceding information, you have several ways to set up multiple services. The following
instructions describe some examples. Before trying any of them, shut down and remove any existing
MySQL services.

• Approach 1: Specify the options for all services in one of the standard option files. To do this, use a
different service name for each server. Suppose that you want to run the 5.7.9 mysqld using the service
name of mysqld1 and the 5.7.44 mysqld using the service name mysqld2. In this case, you can use
the [mysqld1] group for 5.7.9 and the [mysqld2] group for 5.7.44. For example, you can set up C:
\my.cnf like this:

options for mysqld1 service
[mysqld1]
basedir = C:/mysql-5.7.9
port = 3307
enable-named-pipe
socket = mypipe1

options for mysqld2 service
[mysqld2]
basedir = C:/mysql-5.7.44
port = 3308
enable-named-pipe
socket = mypipe2

Install the services as follows, using the full server path names to ensure that Windows registers the
correct executable program for each service:

C:\> C:\mysql-5.7.9\bin\mysqld --install mysqld1
C:\> C:\mysql-5.7.44\bin\mysqld --install mysqld2

To start the services, use the services manager, or NET START or SC START with the appropriate
service names:

C:\> SC START mysqld1
C:\> SC START mysqld2

To stop the services, use the services manager, or use NET STOP or SC STOP with the appropriate
service names:

C:\> SC STOP mysqld1
C:\> SC STOP mysqld2

• Approach 2: Specify options for each server in separate files and use --defaults-file when you
install the services to tell each server what file to use. In this case, each file should list options using a
[mysqld] group.

With this approach, to specify options for the 5.7.9 mysqld, create a file C:\my-opts1.cnf that looks
like this:

[mysqld]
basedir = C:/mysql-5.7.9

1042

Running Multiple MySQL Instances on Unix

port = 3307
enable-named-pipe
socket = mypipe1

For the 5.7.44 mysqld, create a file C:\my-opts2.cnf that looks like this:

[mysqld]
basedir = C:/mysql-5.7.44
port = 3308
enable-named-pipe
socket = mypipe2

Install the services as follows (enter each command on a single line):

C:\> C:\mysql-5.7.9\bin\mysqld --install mysqld1
 --defaults-file=C:\my-opts1.cnf
C:\> C:\mysql-5.7.44\bin\mysqld --install mysqld2
 --defaults-file=C:\my-opts2.cnf

When you install a MySQL server as a service and use a --defaults-file option, the service name
must precede the option.

After installing the services, start and stop them the same way as in the preceding example.

To remove multiple services, use SC DELETE mysqld_service_name for each one. Alternatively, use
mysqld --remove for each one, specifying a service name following the --remove option. If the service
name is the default (MySQL), you can omit it when using mysqld --remove.

5.7.3 Running Multiple MySQL Instances on Unix

Note

The discussion here uses mysqld_safe to launch multiple instances of
MySQL. For MySQL installation using an RPM distribution, server startup and
shutdown is managed by systemd on several Linux platforms. On these platforms,
mysqld_safe is not installed because it is unnecessary. For information about
using systemd to handle multiple MySQL instances, see Section 2.5.10, “Managing
MySQL Server with systemd”.

One way is to run multiple MySQL instances on Unix is to compile different servers with different default
TCP/IP ports and Unix socket files so that each one listens on different network interfaces. Compiling in
different base directories for each installation also results automatically in a separate, compiled-in data
directory, log file, and PID file location for each server.

Assume that an existing 5.6 server is configured for the default TCP/IP port number (3306) and Unix
socket file (/tmp/mysql.sock). To configure a new 5.7.44 server to have different operating parameters,
use a CMake command something like this:

$> cmake . -DMYSQL_TCP_PORT=port_number \
 -DMYSQL_UNIX_ADDR=file_name \
 -DCMAKE_INSTALL_PREFIX=/usr/local/mysql-5.7.44

Here, port_number and file_name must be different from the default TCP/IP port number and Unix
socket file path name, and the CMAKE_INSTALL_PREFIX value should specify an installation directory
different from the one under which the existing MySQL installation is located.

If you have a MySQL server listening on a given port number, you can use the following command to find
out what operating parameters it is using for several important configurable variables, including the base
directory and Unix socket file name:

1043

Using Client Programs in a Multiple-Server Environment

$> mysqladmin --host=host_name --port=port_number variables

With the information displayed by that command, you can tell what option values not to use when
configuring an additional server.

If you specify localhost as the host name, mysqladmin defaults to using a Unix socket file rather than
TCP/IP. To explicitly specify the transport protocol, use the --protocol={TCP|SOCKET|PIPE|MEMORY}
option.

You need not compile a new MySQL server just to start with a different Unix socket file and TCP/IP port
number. It is also possible to use the same server binary and start each invocation of it with different
parameter values at runtime. One way to do so is by using command-line options:

$> mysqld_safe --socket=file_name --port=port_number

To start a second server, provide different --socket and --port option values, and pass a --
datadir=dir_name option to mysqld_safe so that the server uses a different data directory.

Alternatively, put the options for each server in a different option file, then start each server using a --
defaults-file option that specifies the path to the appropriate option file. For example, if the option files
for two server instances are named /usr/local/mysql/my.cnf and /usr/local/mysql/my.cnf2,
start the servers like this: command:

$> mysqld_safe --defaults-file=/usr/local/mysql/my.cnf
$> mysqld_safe --defaults-file=/usr/local/mysql/my.cnf2

Another way to achieve a similar effect is to use environment variables to set the Unix socket file name and
TCP/IP port number:

$> MYSQL_UNIX_PORT=/tmp/mysqld-new.sock
$> MYSQL_TCP_PORT=3307
$> export MYSQL_UNIX_PORT MYSQL_TCP_PORT
$> mysqld --initialize --user=mysql
...set root password...
$> mysqld_safe --datadir=/path/to/datadir &

This is a quick way of starting a second server to use for testing. The nice thing about this method is that
the environment variable settings apply to any client programs that you invoke from the same shell. Thus,
connections for those clients are automatically directed to the second server.

Section 4.9, “Environment Variables”, includes a list of other environment variables you can use to affect
MySQL programs.

On Unix, the mysqld_multi script provides another way to start multiple servers. See Section 4.3.4,
“mysqld_multi — Manage Multiple MySQL Servers”.

5.7.4 Using Client Programs in a Multiple-Server Environment

To connect with a client program to a MySQL server that is listening to different network interfaces from
those compiled into your client, you can use one of the following methods:

• Start the client with --host=host_name --port=port_number to connect using TCP/IP to a remote
server, with --host=127.0.0.1 --port=port_number to connect using TCP/IP to a local server, or
with --host=localhost --socket=file_name to connect to a local server using a Unix socket file
or a Windows named pipe.

• Start the client with --protocol=TCP to connect using TCP/IP, --protocol=SOCKET to connect
using a Unix socket file, --protocol=PIPE to connect using a named pipe, or --protocol=MEMORY
to connect using shared memory. For TCP/IP connections, you may also need to specify --host and

1044

Debugging MySQL

--port options. For the other types of connections, you may need to specify a --socket option to
specify a Unix socket file or Windows named-pipe name, or a --shared-memory-base-name option
to specify the shared-memory name. Shared-memory connections are supported only on Windows.

• On Unix, set the MYSQL_UNIX_PORT and MYSQL_TCP_PORT environment variables to point to the
Unix socket file and TCP/IP port number before you start your clients. If you normally use a specific
socket file or port number, you can place commands to set these environment variables in your .login
file so that they apply each time you log in. See Section 4.9, “Environment Variables”.

• Specify the default Unix socket file and TCP/IP port number in the [client] group of an option file. For
example, you can use C:\my.cnf on Windows, or the .my.cnf file in your home directory on Unix.
See Section 4.2.2.2, “Using Option Files”.

• In a C program, you can specify the socket file or port number arguments in the
mysql_real_connect() call. You can also have the program read option files by calling
mysql_options(). See C API Basic Function Descriptions.

• If you are using the Perl DBD::mysql module, you can read options from MySQL option files. For
example:

$dsn = "DBI:mysql:test;mysql_read_default_group=client;"
 . "mysql_read_default_file=/usr/local/mysql/data/my.cnf";
$dbh = DBI->connect($dsn, $user, $password);

See Section 27.9, “MySQL Perl API”.

Other programming interfaces may provide similar capabilities for reading option files.

5.8 Debugging MySQL
This section describes debugging techniques that assist efforts to track down problems in MySQL.

5.8.1 Debugging a MySQL Server

If you are using some functionality that is very new in MySQL, you can try to run mysqld with the --skip-
new option (which disables all new, potentially unsafe functionality). See Section B.3.3.3, “What to Do If
MySQL Keeps Crashing”.

If mysqld does not want to start, verify that you have no my.cnf files that interfere with your setup! You
can check your my.cnf arguments with mysqld --print-defaults and avoid using them by starting
with mysqld --no-defaults

If mysqld starts to eat up CPU or memory or if it “hangs,” you can use mysqladmin processlist
status to find out if someone is executing a query that takes a long time. It may be a good idea to run
mysqladmin -i10 processlist status in some window if you are experiencing performance
problems or problems when new clients cannot connect.

The command mysqladmin debug dumps some information about locks in use, used memory and query
usage to the MySQL log file. This may help solve some problems. This command also provides some
useful information even if you have not compiled MySQL for debugging!

If the problem is that some tables are getting slower and slower you should try to optimize the table with
OPTIMIZE TABLE or myisamchk. See Chapter 5, MySQL Server Administration. You should also check
the slow queries with EXPLAIN.

You should also read the OS-specific section in this manual for problems that may be unique to your
environment. See Section 2.1, “General Installation Guidance”.

1045

https://dev.mysql.com/doc/c-api/5.7/en/mysql-real-connect.html
https://dev.mysql.com/doc/c-api/5.7/en/mysql-options.html
https://dev.mysql.com/doc/c-api/5.7/en/c-api-function-descriptions.html

Debugging a MySQL Server

5.8.1.1 Compiling MySQL for Debugging

If you have some very specific problem, you can always try to debug MySQL. To do this you must
configure MySQL with the -DWITH_DEBUG=1 option. You can check whether MySQL was compiled
with debugging by doing: mysqld --help. If the --debug flag is listed with the options then you have
debugging enabled. mysqladmin ver also lists the mysqld version as mysql ... --debug in this
case.

If mysqld stops crashing when you configure it with the -DWITH_DEBUG=1 CMake option, you probably
have found a compiler bug or a timing bug within MySQL. In this case, you can try to add -g using the
CMAKE_C_FLAGS and CMAKE_CXX_FLAGS CMake options and not use -DWITH_DEBUG=1. If mysqld
dies, you can at least attach to it with gdb or use gdb on the core file to find out what happened.

When you configure MySQL for debugging you automatically enable a lot of extra safety check functions
that monitor the health of mysqld. If they find something “unexpected,” an entry is written to stderr,
which mysqld_safe directs to the error log! This also means that if you are having some unexpected
problems with MySQL and are using a source distribution, the first thing you should do is to configure
MySQL for debugging. If you believe that you have found a bug, please use the instructions at Section 1.5,
“How to Report Bugs or Problems”.

In the Windows MySQL distribution, mysqld.exe is by default compiled with support for trace files.

5.8.1.2 Creating Trace Files

If the mysqld server does not start or it crashes easily, you can try to create a trace file to find the problem.

To do this, you must have a mysqld that has been compiled with debugging support. You can check this
by executing mysqld -V. If the version number ends with -debug, it is compiled with support for trace
files. (On Windows, the debugging server is named mysqld-debug rather than mysqld.)

Start the mysqld server with a trace log in /tmp/mysqld.trace on Unix or \mysqld.trace on
Windows:

$> mysqld --debug

On Windows, you should also use the --standalone flag to not start mysqld as a service. In a console
window, use this command:

C:\> mysqld-debug --debug --standalone

After this, you can use the mysql.exe command-line tool in a second console window to reproduce the
problem. You can stop the mysqld server with mysqladmin shutdown.

The trace file can become very large! To generate a smaller trace file, you can use debugging options
something like this:

mysqld --debug=d,info,error,query,general,where:O,/tmp/mysqld.trace

This only prints information with the most interesting tags to the trace file.

If you file a bug, please add only those lines from the trace file to the bug report that indicate where
something seems to go wrong. If you cannot locate the wrong place, open a bug report and upload
the whole trace file to the report, so that a MySQL developer can take a look at it. For instructions, see
Section 1.5, “How to Report Bugs or Problems”.

The trace file is made with the DBUG package by Fred Fish. See Section 5.8.3, “The DBUG Package”.

1046

Debugging a MySQL Server

5.8.1.3 Using WER with PDB to create a Windows crashdump

Program Database files (with suffix pdb) are included in the ZIP Archive Debug Binaries & Test Suite
distribution of MySQL. These files provide information for debugging your MySQL installation in the event
of a problem. This is a separate download from the standard MSI or Zip file.

Note

The PDB files are available in a separate file labeled "ZIP Archive Debug Binaries &
Test Suite".

The PDB file contains more detailed information about mysqld and other tools that enables more detailed
trace and dump files to be created. You can use these with WinDbg or Visual Studio to debug mysqld.

For more information on PDB files, see Microsoft Knowledge Base Article 121366. For more information on
the debugging options available, see Debugging Tools for Windows.

To use WinDbg, either install the full Windows Driver Kit (WDK) or install the standalone version.

Important

The .exe and .pdb files must be an exact match (both version number and
MySQL server edition) or WinDBG complains while attempting to load the symbols.

1. To generate a minidump mysqld.dmp, enable the core-file option under the [mysqld] section in
my.ini. Restart the MySQL server after making these changes.

2. Create a directory to store the generated files, such as c:\symbols

3. Determine the path to your windbg.exe executable using the Find GUI or from the command line,
for example: dir /s /b windbg.exe -- a common default is C:\Program Files\Debugging Tools for
Windows (x64)\windbg.exe

4. Launch windbg.exe giving it the paths to mysqld-debug.exe, mysqld.pdb, mysqld.dmp, and the
source code. Alternatively, pass in each path from the WinDbg GUI. For example:

windbg.exe -i "C:\mysql-5.7.44-winx64\bin\"^
 -z "C:\mysql-5.7.44-winx64\data\mysqld.dmp"^
 -srcpath "E:\ade\mysql_archives\5.7\5.7.44\mysql-5.7.44"^
 -y "C:\mysql-5.7.44-winx64\bin;SRV*c:\symbols*http://msdl.microsoft.com/download/symbols"^
 -v -n -c "!analyze -vvvvv"

Note

The ^ character and newline are removed by the Windows command line
processor, so be sure the spaces remain intact.

5.8.1.4 Debugging mysqld under gdb

On most systems you can also start mysqld from gdb to get more information if mysqld crashes.

With some older gdb versions on Linux you must use run --one-thread if you want to be able to debug
mysqld threads. In this case, you can only have one thread active at a time.

NPTL threads (the new thread library on Linux) may cause problems while running mysqld under gdb.
Some symptoms are:

• mysqld hangs during startup (before it writes ready for connections).

• mysqld crashes during a pthread_mutex_lock() or pthread_mutex_unlock() call.

1047

http://support.microsoft.com/kb/121366/
http://www.microsoft.com/whdc/devtools/debugging/default.mspx

Debugging a MySQL Server

In this case, you should set the following environment variable in the shell before starting gdb:

LD_ASSUME_KERNEL=2.4.1
export LD_ASSUME_KERNEL

When running mysqld under gdb, you should disable the stack trace with --skip-stack-trace to be
able to catch segfaults within gdb.

Use the --gdb option to mysqld to install an interrupt handler for SIGINT (needed to stop mysqld with
^C to set breakpoints) and disable stack tracing and core file handling.

It is very hard to debug MySQL under gdb if you do a lot of new connections the whole time as
gdb does not free the memory for old threads. You can avoid this problem by starting mysqld with
thread_cache_size set to a value equal to max_connections + 1. In most cases just using --
thread_cache_size=5' helps a lot!

If you want to get a core dump on Linux if mysqld dies with a SIGSEGV signal, you can start mysqld with
the --core-file option. This core file can be used to make a backtrace that may help you find out why
mysqld died:

$> gdb mysqld core
gdb> backtrace full
gdb> quit

See Section B.3.3.3, “What to Do If MySQL Keeps Crashing”.

If you are using gdb on Linux, you should install a .gdb file, with the following information, in your current
directory:

set print sevenbit off
handle SIGUSR1 nostop noprint
handle SIGUSR2 nostop noprint
handle SIGWAITING nostop noprint
handle SIGLWP nostop noprint
handle SIGPIPE nostop
handle SIGALRM nostop
handle SIGHUP nostop
handle SIGTERM nostop noprint

Here is an example how to debug mysqld:

$> gdb /usr/local/libexec/mysqld
gdb> run
...
backtrace full # Do this when mysqld crashes

Include the preceding output in a bug report, which you can file using the instructions in Section 1.5, “How
to Report Bugs or Problems”.

If mysqld hangs, you can try to use some system tools like strace or /usr/proc/bin/pstack to
examine where mysqld has hung.

strace /tmp/log libexec/mysqld

If you are using the Perl DBI interface, you can turn on debugging information by using the trace method
or by setting the DBI_TRACE environment variable.

5.8.1.5 Using a Stack Trace

On some operating systems, the error log contains a stack trace if mysqld dies unexpectedly. You can
use this to find out where (and maybe why) mysqld died. See Section 5.4.2, “The Error Log”. To get

1048

Debugging a MySQL Server

a stack trace, you must not compile mysqld with the -fomit-frame-pointer option to gcc. See
Section 5.8.1.1, “Compiling MySQL for Debugging”.

A stack trace in the error log looks something like this:

mysqld got signal 11;
Attempting backtrace. You can use the following information
to find out where mysqld died. If you see no messages after
this, something went terribly wrong...

stack_bottom = 0x41fd0110 thread_stack 0x40000
mysqld(my_print_stacktrace+0x32)[0x9da402]
mysqld(handle_segfault+0x28a)[0x6648e9]
/lib/libpthread.so.0[0x7f1a5af000f0]
/lib/libc.so.6(strcmp+0x2)[0x7f1a5a10f0f2]
mysqld(_Z21check_change_passwordP3THDPKcS2_Pcj+0x7c)[0x7412cb]
mysqld(_ZN16set_var_password5checkEP3THD+0xd0)[0x688354]
mysqld(_Z17sql_set_variablesP3THDP4ListI12set_var_baseE+0x68)[0x688494]
mysqld(_Z21mysql_execute_commandP3THD+0x41a0)[0x67a170]
mysqld(_Z11mysql_parseP3THDPKcjPS2_+0x282)[0x67f0ad]
mysqld(_Z16dispatch_command19enum_server_commandP3THDPcj+0xbb7[0x67fdf8]
mysqld(_Z10do_commandP3THD+0x24d)[0x6811b6]
mysqld(handle_one_connection+0x11c)[0x66e05e]

If resolution of function names for the trace fails, the trace contains less information:

mysqld got signal 11;
Attempting backtrace. You can use the following information
to find out where mysqld died. If you see no messages after
this, something went terribly wrong...

stack_bottom = 0x41fd0110 thread_stack 0x40000
[0x9da402]
[0x6648e9]
[0x7f1a5af000f0]
[0x7f1a5a10f0f2]
[0x7412cb]
[0x688354]
[0x688494]
[0x67a170]
[0x67f0ad]
[0x67fdf8]
[0x6811b6]
[0x66e05e]

In the latter case, you can use the resolve_stack_dump utility to determine where mysqld died by
using the following procedure:

1. Copy the numbers from the stack trace to a file, for example mysqld.stack. The numbers should not
include the surrounding square brackets:

0x9da402
0x6648e9
0x7f1a5af000f0
0x7f1a5a10f0f2
0x7412cb
0x688354
0x688494
0x67a170
0x67f0ad
0x67fdf8
0x6811b6
0x66e05e

2. Make a symbol file for the mysqld server:

1049

Debugging a MySQL Server

$> nm -n libexec/mysqld > /tmp/mysqld.sym

If mysqld is not linked statically, use the following command instead:

$> nm -D -n libexec/mysqld > /tmp/mysqld.sym

If you want to decode C++ symbols, use the --demangle, if available, to nm. If your version of nm does
not have this option, you must use the c++filt command after the stack dump has been produced to
demangle the C++ names.

3. Execute the following command:

$> resolve_stack_dump -s /tmp/mysqld.sym -n mysqld.stack

If you were not able to include demangled C++ names in your symbol file, process the
resolve_stack_dump output using c++filt:

$> resolve_stack_dump -s /tmp/mysqld.sym -n mysqld.stack | c++filt

This prints out where mysqld died. If that does not help you find out why mysqld died, you should
create a bug report and include the output from the preceding command with the bug report.

However, in most cases it does not help us to have just a stack trace to find the reason for the problem.
To be able to locate the bug or provide a workaround, in most cases we need to know the statement
that killed mysqld and preferably a test case so that we can repeat the problem! See Section 1.5, “How
to Report Bugs or Problems”.

Newer versions of glibc stack trace functions also print the address as relative to the object. On glibc-
based systems (Linux), the trace for an unexpected exit within a plugin looks something like:

plugin/auth/auth_test_plugin.so(+0x9a6)[0x7ff4d11c29a6]

To translate the relative address (+0x9a6) into a file name and line number, use this command:

$> addr2line -fie auth_test_plugin.so 0x9a6
auth_test_plugin
mysql-trunk/plugin/auth/test_plugin.c:65

The addr2line utility is part of the binutils package on Linux.

On Solaris, the procedure is similar. The Solaris printstack() already prints relative addresses:

plugin/auth/auth_test_plugin.so:0x1510

To translate, use this command:

$> gaddr2line -fie auth_test_plugin.so 0x1510
mysql-trunk/plugin/auth/test_plugin.c:88

Windows already prints the address, function name and line:

000007FEF07E10A4 auth_test_plugin.dll!auth_test_plugin()[test_plugin.c:72]

5.8.1.6 Using Server Logs to Find Causes of Errors in mysqld

Note that before starting mysqld with the general query log enabled, you should check all your tables with
myisamchk. See Chapter 5, MySQL Server Administration.

If mysqld dies or hangs, you should start mysqld with the general query log enabled. See Section 5.4.3,
“The General Query Log”. When mysqld dies again, you can examine the end of the log file for the query
that killed mysqld.

1050

Debugging a MySQL Server

If you use the default general query log file, the log is stored in the database directory as host_name.log
In most cases it is the last query in the log file that killed mysqld, but if possible you should verify this by
restarting mysqld and executing the found query from the mysql command-line tools. If this works, you
should also test all complicated queries that did not complete.

You can also try the command EXPLAIN on all SELECT statements that takes a long time to ensure that
mysqld is using indexes properly. See Section 13.8.2, “EXPLAIN Statement”.

You can find the queries that take a long time to execute by starting mysqld with the slow query log
enabled. See Section 5.4.5, “The Slow Query Log”.

If you find the text mysqld restarted in the error log (normally a file named host_name.err) you
probably have found a query that causes mysqld to fail. If this happens, you should check all your tables
with myisamchk (see Chapter 5, MySQL Server Administration), and test the queries in the MySQL log
files to see whether one fails. If you find such a query, try first upgrading to the newest MySQL version. If
this does not help, report a bug, see Section 1.5, “How to Report Bugs or Problems”.

If you have started mysqld with the myisam_recover_options system variable set, MySQL
automatically checks and tries to repair MyISAM tables if they are marked as 'not closed properly' or
'crashed'. If this happens, MySQL writes an entry in the hostname.err file 'Warning: Checking
table ...' which is followed by Warning: Repairing table if the table needs to be repaired. If you
get a lot of these errors, without mysqld having died unexpectedly just before, then something is wrong
and needs to be investigated further. See Section 5.1.6, “Server Command Options”.

When the server detects MyISAM table corruption, it writes additional information to the error log, such as
the name and line number of the source file, and the list of threads accessing the table. Example: Got an
error from thread_id=1, mi_dynrec.c:368. This is useful information to include in bug reports.

It is not a good sign if mysqld did die unexpectedly, but in this case, you should not investigate the
Checking table... messages, but instead try to find out why mysqld died.

5.8.1.7 Making a Test Case If You Experience Table Corruption

The following procedure applies to MyISAM tables. For information about steps to take when encountering
InnoDB table corruption, see Section 1.5, “How to Report Bugs or Problems”.

If you encounter corrupted MyISAM tables or if mysqld always fails after some update statements, you can
test whether the issue is reproducible by doing the following:

1. Stop the MySQL daemon with mysqladmin shutdown.

2. Make a backup of the tables to guard against the very unlikely case that the repair does something
bad.

3. Check all tables with myisamchk -s database/*.MYI. Repair any corrupted tables with
myisamchk -r database/table.MYI.

4. Make a second backup of the tables.

5. Remove (or move away) any old log files from the MySQL data directory if you need more space.

6. Start mysqld with the binary log enabled. If you want to find a statement that crashes mysqld, you
should start the server with the general query log enabled as well. See Section 5.4.3, “The General
Query Log”, and Section 5.4.4, “The Binary Log”.

7. When you have gotten a crashed table, stop the mysqld server.

8. Restore the backup.

1051

Debugging a MySQL Client

9. Restart the mysqld server without the binary log enabled.

10. Re-execute the statements with mysqlbinlog binary-log-file | mysql. The binary log is
saved in the MySQL database directory with the name hostname-bin.NNNNNN.

11. If the tables are corrupted again or you can get mysqld to die with the above command, you have
found a reproducible bug. FTP the tables and the binary log to our bugs database using the instructions
given in Section 1.5, “How to Report Bugs or Problems”. If you are a support customer, you can use the
MySQL Customer Support Center (https://www.mysql.com/support/) to alert the MySQL team about the
problem and have it fixed as soon as possible.

5.8.2 Debugging a MySQL Client

To be able to debug a MySQL client with the integrated debug package, you should configure MySQL with
-DWITH_DEBUG=1. See Section 2.8.7, “MySQL Source-Configuration Options”.

Before running a client, you should set the MYSQL_DEBUG environment variable:

$> MYSQL_DEBUG=d:t:O,/tmp/client.trace
$> export MYSQL_DEBUG

This causes clients to generate a trace file in /tmp/client.trace.

If you have problems with your own client code, you should attempt to connect to the server and run your
query using a client that is known to work. Do this by running mysql in debugging mode (assuming that
you have compiled MySQL with debugging on):

$> mysql --debug=d:t:O,/tmp/client.trace

This provides useful information in case you mail a bug report. See Section 1.5, “How to Report Bugs or
Problems”.

If your client crashes at some 'legal' looking code, you should check that your mysql.h include file
matches your MySQL library file. A very common mistake is to use an old mysql.h file from an old MySQL
installation with new MySQL library.

5.8.3 The DBUG Package

The MySQL server and most MySQL clients are compiled with the DBUG package originally created by
Fred Fish. When you have configured MySQL for debugging, this package makes it possible to get a trace
file of what the program is doing. See Section 5.8.1.2, “Creating Trace Files”.

This section summarizes the argument values that you can specify in debug options on the command line
for MySQL programs that have been built with debugging support.

The DBUG package can be used by invoking a program with the --debug[=debug_options] or -#
[debug_options] option. If you specify the --debug or -# option without a debug_options value,
most MySQL programs use a default value. The server default is d:t:i:o,/tmp/mysqld.trace on
Unix and d:t:i:O,\mysqld.trace on Windows. The effect of this default is:

• d: Enable output for all debug macros

• t: Trace function calls and exits

• i: Add PID to output lines

• o,/tmp/mysqld.trace, O,\mysqld.trace: Set the debug output file.

1052

https://www.mysql.com/support/

The DBUG Package

Most client programs use a default debug_options value of d:t:o,/tmp/program_name.trace,
regardless of platform.

Here are some example debug control strings as they might be specified on a shell command line:

--debug=d:t
--debug=d:f,main,subr1:F:L:t,20
--debug=d,input,output,files:n
--debug=d:t:i:O,\\mysqld.trace

For mysqld, it is also possible to change DBUG settings at runtime by setting the debug system variable.
This variable has global and session values:

mysql> SET GLOBAL debug = 'debug_options';
mysql> SET SESSION debug = 'debug_options';

Changing the global debug value requires privileges sufficient to set global system variables. Changing
the session debug value requires privileges sufficient to set restricted session system variables. See
Section 5.1.8.1, “System Variable Privileges”.

The debug_options value is a sequence of colon-separated fields:

field_1:field_2:...:field_N

Each field within the value consists of a mandatory flag character, optionally preceded by a + or -
character, and optionally followed by a comma-separated list of modifiers:

[+|-]flag[,modifier,modifier,...,modifier]

The following table describes the permitted flag characters. Unrecognized flag characters are silently
ignored.

Flag Description

d Enable output from DBUG_XXX macros for the
current state. May be followed by a list of keywords,
which enables output only for the DBUG macros with
that keyword. An empty list of keywords enables
output for all macros.

In MySQL, common debug macro keywords to
enable are enter, exit, error, warning, info,
and loop.

D Delay after each debugger output line. The
argument is the delay, in tenths of seconds,
subject to machine capabilities. For example, D,20
specifies a delay of two seconds.

f Limit debugging, tracing, and profiling to the list of
named functions. An empty list enables all functions.
The appropriate d or t flags must still be given; this
flag only limits their actions if they are enabled.

F Identify the source file name for each line of debug
or trace output.

i Identify the process with the PID or thread ID for
each line of debug or trace output.

L Identify the source file line number for each line of
debug or trace output.

1053

The DBUG Package

Flag Description

n Print the current function nesting depth for each line
of debug or trace output.

N Number each line of debug output.

o Redirect the debugger output stream to the
specified file. The default output is stderr.

O Like o, but the file is really flushed between each
write. When needed, the file is closed and reopened
between each write.

a Like o, but opens for append.

A Like O, but opens for append.

p Limit debugger actions to specified processes. A
process must be identified with the DBUG_PROCESS
macro and match one in the list for debugger
actions to occur.

P Print the current process name for each line of
debug or trace output.

r When pushing a new state, do not inherit the
previous state's function nesting level. Useful when
the output is to start at the left margin.

t Enable function call/exit trace lines. May be followed
by a list (containing only one modifier) giving
a numeric maximum trace level, beyond which
no output occurs for either debugging or tracing
macros. The default is a compile time option.

T Print the current timestamp for every line of output.

The leading + or - character and trailing list of modifiers are used for flag characters such as d or f that
can enable a debug operation for all applicable modifiers or just some of them:

• With no leading + or -, the flag value is set to exactly the modifier list as given.

• With a leading + or -, the modifiers in the list are added to or subtracted from the current modifier list.

The following examples show how this works for the d flag. An empty d list enabled output for all debug
macros. A nonempty list enables output only for the macro keywords in the list.

These statements set the d value to the modifier list as given:

mysql> SET debug = 'd';
mysql> SELECT @@debug;
+---------+
| @@debug |
+---------+
| d |
+---------+
mysql> SET debug = 'd,error,warning';
mysql> SELECT @@debug;
+-----------------+
| @@debug |
+-----------------+
| d,error,warning |
+-----------------+

1054

Tracing mysqld Using DTrace

A leading + or - adds to or subtracts from the current d value:

mysql> SET debug = '+d,loop';
mysql> SELECT @@debug;
+----------------------+
| @@debug |
+----------------------+
| d,error,warning,loop |
+----------------------+
mysql> SET debug = '-d,error,loop';
mysql> SELECT @@debug;
+-----------+
| @@debug |
+-----------+
| d,warning |
+-----------+

Adding to “all macros enabled” results in no change:

mysql> SET debug = 'd';
mysql> SELECT @@debug;
+---------+
| @@debug |
+---------+
| d |
+---------+
mysql> SET debug = '+d,loop';
mysql> SELECT @@debug;
+---------+
| @@debug |
+---------+
| d |
+---------+

Disabling all enabled macros disables the d flag entirely:

mysql> SET debug = 'd,error,loop';
mysql> SELECT @@debug;
+--------------+
| @@debug |
+--------------+
| d,error,loop |
+--------------+
mysql> SET debug = '-d,error,loop';
mysql> SELECT @@debug;
+---------+
| @@debug |
+---------+
| |
+---------+

5.8.4 Tracing mysqld Using DTrace

Support for DTrace is deprecated in MySQL 5.7 and is removed in MySQL 8.0.

The DTrace probes in the MySQL server are designed to provide information about the execution of
queries within MySQL and the different areas of the system being utilized during that process. The
organization and triggering of the probes means that the execution of an entire query can be monitored
with one level of probes (query-start and query-done) but by monitoring other probes you can get
successively more detailed information about the execution of the query in terms of the locks used, sort
methods and even row-by-row and storage-engine level execution information.

The DTrace probes are organized so that you can follow the entire query process, from the point of
connection from a client, through the query execution, row-level operations, and back out again. You

1055

Tracing mysqld Using DTrace

can think of the probes as being fired within a specific sequence during a typical client connect/execute/
disconnect sequence, as shown in the following figure.

Figure 5.1 DTrace Probe Sequence

Global information is provided in the arguments to the DTrace probes at various levels. Global information,
that is, the connection ID and user/host and where relevant the query string, is provided at key levels
(connection-start, command-start, query-start, and query-exec-start). As you go deeper
into the probes, it is assumed either you are only interested in the individual executions (row-level probes
provide information on the database and table name only), or that you intend to combine the row-level
probes with the notional parent probes to provide the information about a specific query. Examples of this
are given as the format and arguments of each probe are provided.

MySQL includes support for DTrace probes on these platforms:

• Solaris 10 Update 5 (Solaris 5/08) on SPARC, x86 and x86_64 platforms

• OS X / macOS 10.4 and higher

• Oracle Linux 6 and higher with UEK kernel (as of MySQL 5.7.5)

Enabling the probes should be automatic on these platforms. To explicitly enable or disable the probes
during building, use the -DENABLE_DTRACE=1 or -DENABLE_DTRACE=0 option to CMake.

If a non-Solaris platform includes DTrace support, building mysqld on that platform includes DTrace
support.

Additional Resources

• For more information on DTrace and writing DTrace scripts, read the DTrace User Guide.

• For an introduction to DTrace, see the MySQL Dev Zone article Getting started with DTracing MySQL.

5.8.4.1 mysqld DTrace Probe Reference

MySQL supports the following static probes, organized into groups of functionality.

Table 5.5 MySQL DTrace Probes

Group Probes

Connection connection-start, connection-done

Command command-start, command-done

1056

http://docs.oracle.com/cd/E19253-01/819-5488/
http://dev.mysql.com/tech-resources/articles/mysql-cluster-7.2.html

Tracing mysqld Using DTrace

Group Probes

Query query-start, query-done

Query Parsing query-parse-start, query-parse-done

Query Cache query-cache-hit, query-cache-miss

Query Execution query-exec-start, query-exec-done

Row Level insert-row-start, insert-row-done

update-row-start, update-row-done

delete-row-start, delete-row-done

Row Reads read-row-start, read-row-done

Index Reads index-read-row-start, index-read-row-
done

Lock handler-rdlock-start, handler-rdlock-
done

handler-wrlock-start, handler-wrlock-
done

handler-unlock-start, handler-unlock-
done

Filesort filesort-start, filesort-done

Statement select-start, select-done

insert-start, insert-done

insert-select-start, insert-select-done

update-start, update-done

multi-update-start, multi-update-done

delete-start, delete-done

multi-delete-start, multi-delete-done

Network net-read-start, net-read-done, net-
write-start, net-write-done

Keycache keycache-read-start, keycache-read-
block, keycache-read-done, keycache-
read-hit, keycache-read-miss, keycache-
write-start, keycache-write-block,
keycache-write-done

Note

When extracting the argument data from the probes, each argument is available as
argN, starting with arg0. To identify each argument within the definitions they are
provided with a descriptive name, but you must access the information using the
corresponding argN parameter.

Connection Probes

The connection-start and connection-done probes enclose a connection from a client, regardless
of whether the connection is through a socket or network connection.

connection-start(connectionid, user, host)

1057

Tracing mysqld Using DTrace

connection-done(status, connectionid)

• connection-start: Triggered after a connection and successful login/authentication have been
completed by a client. The arguments contain the connection information:

• connectionid: An unsigned long containing the connection ID. This is the same as the process
ID shown as the Id value in the output from SHOW PROCESSLIST.

• user: The username used when authenticating. The value is blank for the anonymous user.

• host: The host of the client connection. For a connection made using Unix sockets, the value is blank.

• connection-done: Triggered just as the connection to the client has been closed. The arguments are:

• status: The status of the connection when it was closed. A logout operation has a value of 0; any
other termination of the connection has a nonzero value.

• connectionid: The connection ID of the connection that was closed.

The following D script quantifies and summarizes the average duration of individual connections, and
provides a count, dumping the information every 60 seconds:

#!/usr/sbin/dtrace -s

mysql*:::connection-start
{
 self->start = timestamp;
}

mysql*:::connection-done
/self->start/
{
 @ = quantize(((timestamp - self->start)/1000000));
 self->start = 0;
}

tick-60s
{
 printa(@);
}

When executed on a server with a large number of clients you might see output similar to this:

 1 57413 :tick-60s

 value ------------- Distribution ------------- count
 -1 | 0
 0 |@@ 30011
 1 | 59
 2 | 5
 4 | 20
 8 | 29
 16 | 18
 32 | 27
 64 | 30
 128 | 11
 256 | 10
 512 | 1
 1024 | 6
 2048 | 8
 4096 | 9
 8192 | 8
 16384 | 2

1058

Tracing mysqld Using DTrace

 32768 | 1
 65536 | 1
 131072 | 0
 262144 | 1
 524288 | 0

Command Probes

The command probes are executed before and after a client command is executed, including any
SQL statement that might be executed during that period. Commands include operations such as the
initialization of the DB, use of the COM_CHANGE_USER operation (supported by the MySQL protocol), and
manipulation of prepared statements. Many of these commands are used only by the MySQL client API
from various connectors such as PHP and Java.

command-start(connectionid, command, user, host)
command-done(status)

• command-start: Triggered when a command is submitted to the server.

• connectionid: The connection ID of the client executing the command.

• command: An integer representing the command that was executed. Possible values are shown in the
following table.

Value Name Description

00 COM_SLEEP Internal thread state

01 COM_QUIT Close connection

02 COM_INIT_DB Select database (USE ...)

03 COM_QUERY Execute a query

04 COM_FIELD_LIST Get a list of fields

05 COM_CREATE_DB Create a database (deprecated)

06 COM_DROP_DB Drop a database (deprecated)

07 COM_REFRESH Refresh connection

08 COM_SHUTDOWN Shutdown server

09 COM_STATISTICS Get statistics

10 COM_PROCESS_INFO Get processes (SHOW
PROCESSLIST)

11 COM_CONNECT Initialize connection

12 COM_PROCESS_KILL Kill process

13 COM_DEBUG Get debug information

14 COM_PING Ping

15 COM_TIME Internal thread state

16 COM_DELAYED_INSERT Internal thread state

17 COM_CHANGE_USER Change user

18 COM_BINLOG_DUMP Used by a replica or
mysqlbinlog to initiate a
binary log read

19 COM_TABLE_DUMP Used by a replica to get the
source table information

1059

Tracing mysqld Using DTrace

Value Name Description

20 COM_CONNECT_OUT Used by a replica to log a
connection to the server

21 COM_REGISTER_SLAVE Used by a replica during
registration

22 COM_STMT_PREPARE Prepare a statement

23 COM_STMT_EXECUTE Execute a statement

24 COM_STMT_SEND_LONG_DATAUsed by a client when
requesting extended data

25 COM_STMT_CLOSE Close a prepared statement

26 COM_STMT_RESET Reset a prepared statement

27 COM_SET_OPTION Set a server option

28 COM_STMT_FETCH Fetch a prepared statement

• user: The user executing the command.

• host: The client host.

• command-done: Triggered when the command execution completes. The status argument contains 0
if the command executed successfully, or 1 if the statement was terminated before normal completion.

The command-start and command-done probes are best used when combined with the statement
probes to get an idea of overall execution time.

Query Probes

The query-start and query-done probes are triggered when a specific query is received by the server
and when the query has been completed and the information has been successfully sent to the client.

query-start(query, connectionid, database, user, host)
query-done(status)

• query-start: Triggered after the query string has been received from the client. The arguments are:

• query: The full text of the submitted query.

• connectionid: The connection ID of the client that submitted the query. The connection ID equals
the connection ID returned when the client first connects and the Id value in the output from SHOW
PROCESSLIST.

• database: The database name on which the query is being executed.

• user: The username used to connect to the server.

• host: The hostname of the client.

• query-done: Triggered once the query has been executed and the information has been returned
to the client. The probe includes a single argument, status, which returns 0 when the query is
successfully executed and 1 if there was an error.

You can get a simple report of the execution time for each query using the following D script:

#!/usr/sbin/dtrace -s

1060

Tracing mysqld Using DTrace

#pragma D option quiet

dtrace:::BEGIN
{
 printf("%-20s %-20s %-40s %-9s\n", "Who", "Database", "Query", "Time(ms)");
}

mysql*:::query-start
{
 self->query = copyinstr(arg0);
 self->connid = arg1;
 self->db = copyinstr(arg2);
 self->who = strjoin(copyinstr(arg3),strjoin("@",copyinstr(arg4)));
 self->querystart = timestamp;
}

mysql*:::query-done
{
 printf("%-20s %-20s %-40s %-9d\n",self->who,self->db,self->query,
 (timestamp - self->querystart) / 1000000);
}

When executing the above script you should get a basic idea of the execution time of your queries:

$> ./query.d
Who Database Query Time(ms)
root@localhost test select * from t1 order by i limit 10 0
root@localhost test set global query_cache_size=0 0
root@localhost test select * from t1 order by i limit 10 776
root@localhost test select * from t1 order by i limit 10 773
root@localhost test select * from t1 order by i desc limit 10 795

Query Parsing Probes

The query parsing probes are triggered before the original SQL statement is parsed and when the parsing
of the statement and determination of the execution model required to process the statement has been
completed:

query-parse-start(query)
query-parse-done(status)

• query-parse-start: Triggered just before the statement is parsed by the MySQL query parser. The
single argument, query, is a string containing the full text of the original query.

• query-parse-done: Triggered when the parsing of the original statement has been completed.
The status is an integer describing the status of the operation. A 0 indicates that the query was
successfully parsed. A 1 indicates that the parsing of the query failed.

For example, you could monitor the execution time for parsing a given query using the following D script:

#!/usr/sbin/dtrace -s

#pragma D option quiet

mysql*:::query-parse-start
{
 self->parsestart = timestamp;
 self->parsequery = copyinstr(arg0);
}

mysql*:::query-parse-done
/arg0 == 0/
{
 printf("Parsing %s: %d microseconds\n", self->parsequery,((timestamp - self->parsestart)/1000));

1061

Tracing mysqld Using DTrace

}

mysql*:::query-parse-done
/arg0 != 0/
{
 printf("Error parsing %s: %d microseconds\n", self->parsequery,((timestamp - self->parsestart)/1000));
}

In the above script a predicate is used on query-parse-done so that different output is generated based
on the status value of the probe.

When running the script and monitoring the execution:

$> ./query-parsing.d
Error parsing select from t1 join (t2) on (t1.i = t2.i) order by t1.s,t1.i limit 10: 36 ms
Parsing select * from t1 join (t2) on (t1.i = t2.i) order by t1.s,t1.i limit 10: 176 ms

Query Cache Probes

The query cache probes are fired when executing any query. The query-cache-hit query is triggered
when a query exists in the query cache and can be used to return the query cache information. The
arguments contain the original query text and the number of rows returned from the query cache for the
query. If the query is not within the query cache, or the query cache is not enabled, then the query-
cache-miss probe is triggered instead.

query-cache-hit(query, rows)
query-cache-miss(query)

• query-cache-hit: Triggered when the query has been found within the query cache. The first
argument, query, contains the original text of the query. The second argument, rows, is an integer
containing the number of rows in the cached query.

• query-cache-miss: Triggered when the query is not found within the query cache. The first argument,
query, contains the original text of the query.

The query cache probes are best combined with a probe on the main query so that you can determine the
differences in times between using or not using the query cache for specified queries. For example, in the
following D script, the query and query cache information are combined into the information output during
monitoring:

#!/usr/sbin/dtrace -s

#pragma D option quiet

dtrace:::BEGIN
{
 printf("%-20s %-20s %-40s %2s %-9s\n", "Who", "Database", "Query", "QC", "Time(ms)");
}

mysql*:::query-start
{
 self->query = copyinstr(arg0);
 self->connid = arg1;
 self->db = copyinstr(arg2);
 self->who = strjoin(copyinstr(arg3),strjoin("@",copyinstr(arg4)));
 self->querystart = timestamp;
 self->qc = 0;
}

mysql*:::query-cache-hit
{
 self->qc = 1;
}

1062

Tracing mysqld Using DTrace

mysql*:::query-cache-miss
{
 self->qc = 0;
}

mysql*:::query-done
{
 printf("%-20s %-20s %-40s %-2s %-9d\n",self->who,self->db,self->query,(self->qc ? "Y" : "N"),
 (timestamp - self->querystart) / 1000000);
}

When executing the script you can see the effects of the query cache. Initially the query cache is disabled.
If you set the query cache size and then execute the query multiple times you should see that the query
cache is being used to return the query data:

$> ./query-cache.d
root@localhost test select * from t1 order by i limit 10 N 1072
root@localhost set global query_cache_size=262144 N 0
root@localhost test select * from t1 order by i limit 10 N 781
root@localhost test select * from t1 order by i limit 10 Y 0

Query Execution Probes

The query execution probe is triggered when the actual execution of the query starts, after the parsing and
checking the query cache but before any privilege checks or optimization. By comparing the difference
between the start and done probes you can monitor the time actually spent servicing the query (instead of
just handling the parsing and other elements of the query).

query-exec-start(query, connectionid, database, user, host, exec_type)
query-exec-done(status)

Note

The information provided in the arguments for query-start and query-exec-
start are almost identical and designed so that you can choose to monitor
either the entire query process (using query-start) or only the execution (using
query-exec-start) while exposing the core information about the user, client,
and query being executed.

• query-exec-start: Triggered when the execution of a individual query is started. The arguments are:

• query: The full text of the submitted query.

• connectionid: The connection ID of the client that submitted the query. The connection ID equals
the connection ID returned when the client first connects and the Id value in the output from SHOW
PROCESSLIST.

• database: The database name on which the query is being executed.

• user: The username used to connect to the server.

• host: The hostname of the client.

• exec_type: The type of execution. Execution types are determined based on the contents of the
query and where it was submitted. The values for each type are shown in the following table.

Value Description

0 Executed query from sql_parse, top-level query.

1063

Tracing mysqld Using DTrace

Value Description

1 Executed prepared statement

2 Executed cursor statement

3 Executed query in stored procedure

• query-exec-done: Triggered when the execution of the query has completed. The probe includes a
single argument, status, which returns 0 when the query is successfully executed and 1 if there was an
error.

Row-Level Probes

The *row-{start,done} probes are triggered each time a row operation is pushed down to a storage
engine. For example, if you execute an INSERT statement with 100 rows of data, then the insert-row-
start and insert-row-done probes are triggered 100 times each, for each row insert.

insert-row-start(database, table)
insert-row-done(status)

update-row-start(database, table)
update-row-done(status)

delete-row-start(database, table)
delete-row-done(status)

• insert-row-start: Triggered before a row is inserted into a table.

• insert-row-done: Triggered after a row is inserted into a table.

• update-row-start: Triggered before a row is updated in a table.

• update-row-done: Triggered before a row is updated in a table.

• delete-row-start: Triggered before a row is deleted from a table.

• delete-row-done: Triggered before a row is deleted from a table.

The arguments supported by the probes are consistent for the corresponding start and done probes in
each case:

• database: The database name.

• table: The table name.

• status: The status; 0 for success or 1 for failure.

Because the row-level probes are triggered for each individual row access, these probes can be triggered
many thousands of times each second, which may have a detrimental effect on both the monitoring
script and MySQL. The DTrace environment should limit the triggering on these probes to prevent the
performance being adversely affected. Either use the probes sparingly, or use counter or aggregation
functions to report on these probes and then provide a summary when the script terminates or as part of a
query-done or query-exec-done probes.

The following example script summarizes the duration of each row operation within a larger query:

#!/usr/sbin/dtrace -s

#pragma D option quiet

1064

Tracing mysqld Using DTrace

dtrace:::BEGIN
{
 printf("%-2s %-10s %-10s %9s %9s %-s \n",
 "St", "Who", "DB", "ConnID", "Dur ms", "Query");
}

mysql*:::query-start
{
 self->query = copyinstr(arg0);
 self->who = strjoin(copyinstr(arg3),strjoin("@",copyinstr(arg4)));
 self->db = copyinstr(arg2);
 self->connid = arg1;
 self->querystart = timestamp;
 self->rowdur = 0;
}

mysql*:::query-done
{
 this->elapsed = (timestamp - self->querystart) /1000000;
 printf("%2d %-10s %-10s %9d %9d %s\n",
 arg0, self->who, self->db,
 self->connid, this->elapsed, self->query);
}

mysql*:::query-done
/ self->rowdur /
{
 printf("%34s %9d %s\n", "", (self->rowdur/1000000), "-> Row ops");
}

mysql*:::insert-row-start
{
 self->rowstart = timestamp;
}

mysql*:::delete-row-start
{
 self->rowstart = timestamp;
}

mysql*:::update-row-start
{
 self->rowstart = timestamp;
}

mysql*:::insert-row-done
{
 self->rowdur += (timestamp-self->rowstart);
}

mysql*:::delete-row-done
{
 self->rowdur += (timestamp-self->rowstart);
}

mysql*:::update-row-done
{
 self->rowdur += (timestamp-self->rowstart);
}

Running the above script with a query that inserts data into a table, you can monitor the exact time spent
performing the raw row insertion:

St Who DB ConnID Dur ms Query
 0 @localhost test 13 20767 insert into t1(select * from t2)
 4827 -> Row ops

1065

Tracing mysqld Using DTrace

Read Row Probes

The read row probes are triggered at a storage engine level each time a row read operation occurs. These
probes are specified within each storage engine (as opposed to the *row-start probes which are in the
storage engine interface). These probes can therefore be used to monitor individual storage engine row-
level operations and performance. Because these probes are triggered around the storage engine row
read interface, they may be hit a significant number of times during a basic query.

read-row-start(database, table, scan_flag)
read-row-done(status)

• read-row-start: Triggered when a row is read by the storage engine from the specified database
and table. The scan_flag is set to 1 (true) when the read is part of a table scan (that is, a sequential
read), or 0 (false) when the read is of a specific record.

• read-row-done: Triggered when a row read operation within a storage engine completes. The status
returns 0 on success, or a positive value on failure.

Index Probes

The index probes are triggered each time a row is read using one of the indexes for the specified table.
The probe is triggered within the corresponding storage engine for the table.

index-read-row-start(database, table)
index-read-row-done(status)

• index-read-row-start: Triggered when a row is read by the storage engine from the specified
database and table.

• index-read-row-done: Triggered when an indexed row read operation within a storage engine
completes. The status returns 0 on success, or a positive value on failure.

Lock Probes

The lock probes are called whenever an external lock is requested by MySQL for a table using the
corresponding lock mechanism on the table as defined by the table's engine type. There are three different
types of lock, the read lock, write lock, and unlock operations. Using the probes you can determine the
duration of the external locking routine (that is, the time taken by the storage engine to implement the
lock, including any time waiting for another lock to become free) and the total duration of the lock/unlock
process.

handler-rdlock-start(database, table)
handler-rdlock-done(status)

handler-wrlock-start(database, table)
handler-wrlock-done(status)

handler-unlock-start(database, table)
handler-unlock-done(status)

• handler-rdlock-start: Triggered when a read lock is requested on the specified database and
table.

• handler-wrlock-start: Triggered when a write lock is requested on the specified database and
table.

• handler-unlock-start: Triggered when an unlock request is made on the specified database and
table.

1066

Tracing mysqld Using DTrace

• handler-rdlock-done: Triggered when a read lock request completes. The status is 0 if the lock
operation succeeded, or >0 on failure.

• handler-wrlock-done: Triggered when a write lock request completes. The status is 0 if the lock
operation succeeded, or >0 on failure.

• handler-unlock-done: Triggered when an unlock request completes. The status is 0 if the unlock
operation succeeded, or >0 on failure.

You can use arrays to monitor the locking and unlocking of individual tables and then calculate the duration
of the entire table lock using the following script:

#!/usr/sbin/dtrace -s

#pragma D option quiet

mysql*:::handler-rdlock-start
{
 self->rdlockstart = timestamp;
 this->lockref = strjoin(copyinstr(arg0),strjoin("@",copyinstr(arg1)));
 self->lockmap[this->lockref] = self->rdlockstart;
 printf("Start: Lock->Read %s.%s\n",copyinstr(arg0),copyinstr(arg1));
}

mysql*:::handler-wrlock-start
{
 self->wrlockstart = timestamp;
 this->lockref = strjoin(copyinstr(arg0),strjoin("@",copyinstr(arg1)));
 self->lockmap[this->lockref] = self->rdlockstart;
 printf("Start: Lock->Write %s.%s\n",copyinstr(arg0),copyinstr(arg1));
}

mysql*:::handler-unlock-start
{
 self->unlockstart = timestamp;
 this->lockref = strjoin(copyinstr(arg0),strjoin("@",copyinstr(arg1)));
 printf("Start: Lock->Unlock %s.%s (%d ms lock duration)\n",
 copyinstr(arg0),copyinstr(arg1),
 (timestamp - self->lockmap[this->lockref])/1000000);
}

mysql*:::handler-rdlock-done
{
 printf("End: Lock->Read %d ms\n",
 (timestamp - self->rdlockstart)/1000000);
}

mysql*:::handler-wrlock-done
{
 printf("End: Lock->Write %d ms\n",
 (timestamp - self->wrlockstart)/1000000);
}

mysql*:::handler-unlock-done
{
 printf("End: Lock->Unlock %d ms\n",
 (timestamp - self->unlockstart)/1000000);
}

When executed, you should get information both about the duration of the locking process itself, and of the
locks on a specific table:

Start: Lock->Read test.t2
End: Lock->Read 0 ms
Start: Lock->Unlock test.t2 (25743 ms lock duration)

1067

Tracing mysqld Using DTrace

End: Lock->Unlock 0 ms
Start: Lock->Read test.t2
End: Lock->Read 0 ms
Start: Lock->Unlock test.t2 (1 ms lock duration)
End: Lock->Unlock 0 ms
Start: Lock->Read test.t2
End: Lock->Read 0 ms
Start: Lock->Unlock test.t2 (1 ms lock duration)
End: Lock->Unlock 0 ms
Start: Lock->Read test.t2
End: Lock->Read 0 ms

Filesort Probes

The filesort probes are triggered whenever a filesort operation is applied to a table. For more information
on filesort and the conditions under which it occurs, see Section 8.2.1.14, “ORDER BY Optimization”.

filesort-start(database, table)
filesort-done(status, rows)

• filesort-start: Triggered when the filesort operation starts on a table. The two arguments to the
probe, database and table, identify the table being sorted.

• filesort-done: Triggered when the filesort operation completes. Two arguments are supplied, the
status (0 for success, 1 for failure), and the number of rows sorted during the filesort process.

An example of this is in the following script, which tracks the duration of the filesort process in addition to
the duration of the main query:

#!/usr/sbin/dtrace -s

#pragma D option quiet

dtrace:::BEGIN
{
 printf("%-2s %-10s %-10s %9s %18s %-s \n",
 "St", "Who", "DB", "ConnID", "Dur microsec", "Query");
}

mysql*:::query-start
{
 self->query = copyinstr(arg0);
 self->who = strjoin(copyinstr(arg3),strjoin("@",copyinstr(arg4)));
 self->db = copyinstr(arg2);
 self->connid = arg1;
 self->querystart = timestamp;
 self->filesort = 0;
 self->fsdb = "";
 self->fstable = "";
}

mysql*:::filesort-start
{
 self->filesort = timestamp;
 self->fsdb = copyinstr(arg0);
 self->fstable = copyinstr(arg1);
}

mysql*:::filesort-done
{
 this->elapsed = (timestamp - self->filesort) /1000;
 printf("%2d %-10s %-10s %9d %18d Filesort on %s\n",
 arg0, self->who, self->fsdb,
 self->connid, this->elapsed, self->fstable);
}

1068

Tracing mysqld Using DTrace

mysql*:::query-done
{
 this->elapsed = (timestamp - self->querystart) /1000;
 printf("%2d %-10s %-10s %9d %18d %s\n",
 arg0, self->who, self->db,
 self->connid, this->elapsed, self->query);
}

Executing a query on a large table with an ORDER BY clause that triggers a filesort, and then creating an
index on the table and then repeating the same query, you can see the difference in execution speed:

St Who DB ConnID Dur microsec Query
 0 @localhost test 14 11335469 Filesort on t1
 0 @localhost test 14 11335787 select * from t1 order by i limit 100
 0 @localhost test 14 466734378 create index t1a on t1 (i)
 0 @localhost test 14 26472 select * from t1 order by i limit 100

Statement Probes

The individual statement probes are provided to give specific information about different statement types.
For the start probes the string of the query is provided as the only argument. Depending on the statement
type, the information provided by the corresponding done probe can differ. For all done probes the status
of the operation (0 for success, >0 for failure) is provided. For SELECT, INSERT, INSERT ... (SELECT
FROM ...), DELETE, and DELETE FROM t1,t2 operations the number of rows affected is returned.

For UPDATE and UPDATE t1,t2 ... statements the number of rows matched and the number of rows
actually changed is provided. This is because the number of rows actually matched by the corresponding
WHERE clause, and the number of rows changed can differ. MySQL does not update the value of a row if
the value already matches the new setting.

select-start(query)
select-done(status,rows)

insert-start(query)
insert-done(status,rows)

insert-select-start(query)
insert-select-done(status,rows)

update-start(query)
update-done(status,rowsmatched,rowschanged)

multi-update-start(query)
multi-update-done(status,rowsmatched,rowschanged)

delete-start(query)
delete-done(status,rows)

multi-delete-start(query)
multi-delete-done(status,rows)

• select-start: Triggered before a SELECT statement.

• select-done: Triggered at the end of a SELECT statement.

• insert-start: Triggered before a INSERT statement.

• insert-done: Triggered at the end of an INSERT statement.

• insert-select-start: Triggered before an INSERT ... SELECT statement.

• insert-select-done: Triggered at the end of an INSERT ... SELECT statement.

1069

Tracing mysqld Using DTrace

• update-start: Triggered before an UPDATE statement.

• update-done: Triggered at the end of an UPDATE statement.

• multi-update-start: Triggered before an UPDATE statement involving multiple tables.

• multi-update-done: Triggered at the end of an UPDATE statement involving multiple tables.

• delete-start: Triggered before a DELETE statement.

• delete-done: Triggered at the end of a DELETE statement.

• multi-delete-start: Triggered before a DELETE statement involving multiple tables.

• multi-delete-done: Triggered at the end of a DELETE statement involving multiple tables.

The arguments for the statement probes are:

• query: The query string.

• status: The status of the query. 0 for success, and >0 for failure.

• rows: The number of rows affected by the statement. This returns the number rows found for SELECT,
the number of rows deleted for DELETE, and the number of rows successfully inserted for INSERT.

• rowsmatched: The number of rows matched by the WHERE clause of an UPDATE operation.

• rowschanged: The number of rows actually changed during an UPDATE operation.

You use these probes to monitor the execution of these statement types without having to monitor the user
or client executing the statements. A simple example of this is to track the execution times:

#!/usr/sbin/dtrace -s

#pragma D option quiet

dtrace:::BEGIN
{
 printf("%-60s %-8s %-8s %-8s\n", "Query", "RowsU", "RowsM", "Dur (ms)");
}

mysql*:::update-start, mysql*:::insert-start,
mysql*:::delete-start, mysql*:::multi-delete-start,
mysql*:::multi-delete-done, mysql*:::select-start,
mysql*:::insert-select-start, mysql*:::multi-update-start
{
 self->query = copyinstr(arg0);
 self->querystart = timestamp;
}

mysql*:::insert-done, mysql*:::select-done,
mysql*:::delete-done, mysql*:::multi-delete-done, mysql*:::insert-select-done
/ self->querystart /
{
 this->elapsed = ((timestamp - self->querystart)/1000000);
 printf("%-60s %-8d %-8d %d\n",
 self->query,
 0,
 arg1,
 this->elapsed);
 self->querystart = 0;
}

1070

Tracing mysqld Using DTrace

mysql*:::update-done, mysql*:::multi-update-done
/ self->querystart /
{
 this->elapsed = ((timestamp - self->querystart)/1000000);
 printf("%-60s %-8d %-8d %d\n",
 self->query,
 arg1,
 arg2,
 this->elapsed);
 self->querystart = 0;
}

When executed you can see the basic execution times and rows matches:

Query RowsU RowsM Dur (ms)
select * from t2 0 275 0
insert into t2 (select * from t2) 0 275 9
update t2 set i=5 where i > 75 110 110 8
update t2 set i=5 where i < 25 254 134 12
delete from t2 where i < 5 0 0 0

Another alternative is to use the aggregation functions in DTrace to aggregate the execution time of
individual statements together:

#!/usr/sbin/dtrace -s

#pragma D option quiet

mysql*:::update-start, mysql*:::insert-start,
mysql*:::delete-start, mysql*:::multi-delete-start,
mysql*:::multi-delete-done, mysql*:::select-start,
mysql*:::insert-select-start, mysql*:::multi-update-start
{
 self->querystart = timestamp;
}

mysql*:::select-done
{
 @statements["select"] = sum(((timestamp - self->querystart)/1000000));
}

mysql*:::insert-done, mysql*:::insert-select-done
{
 @statements["insert"] = sum(((timestamp - self->querystart)/1000000));
}

mysql*:::update-done, mysql*:::multi-update-done
{
 @statements["update"] = sum(((timestamp - self->querystart)/1000000));
}

mysql*:::delete-done, mysql*:::multi-delete-done
{
 @statements["delete"] = sum(((timestamp - self->querystart)/1000000));
}

tick-30s
{
 printa(@statements);
}

The script just shown aggregates the times spent doing each operation, which could be used to help
benchmark a standard suite of tests.

 delete 0

1071

Tracing mysqld Using DTrace

 update 0
 insert 23
 select 2484

 delete 0
 update 0
 insert 39
 select 10744

 delete 0
 update 26
 insert 56
 select 10944

 delete 0
 update 26
 insert 2287
 select 15985

Network Probes

The network probes monitor the transfer of information from the MySQL server and clients of all types over
the network. The probes are defined as follows:

net-read-start()
net-read-done(status, bytes)
net-write-start(bytes)
net-write-done(status)

• net-read-start: Triggered when a network read operation is started.

• net-read-done: Triggered when the network read operation completes. The status is an integer
representing the return status for the operation, 0 for success and 1 for failure. The bytes argument is
an integer specifying the number of bytes read during the process.

• net-start-bytes: Triggered when data is written to a network socket. The single argument, bytes,
specifies the number of bytes written to the network socket.

• net-write-done: Triggered when the network write operation has completed. The single argument,
status, is an integer representing the return status for the operation, 0 for success and 1 for failure.

You can use the network probes to monitor the time spent reading from and writing to network clients
during execution. The following D script provides an example of this. Both the cumulative time for the read
or write is calculated, and the number of bytes. Note that the dynamic variable size has been increased
(using the dynvarsize option) to cope with the rapid firing of the individual probes for the network reads/
writes.

#!/usr/sbin/dtrace -s

#pragma D option quiet
#pragma D option dynvarsize=4m

dtrace:::BEGIN
{
 printf("%-2s %-30s %-10s %9s %18s %-s \n",
 "St", "Who", "DB", "ConnID", "Dur microsec", "Query");
}

mysql*:::query-start
{
 self->query = copyinstr(arg0);
 self->who = strjoin(copyinstr(arg3),strjoin("@",copyinstr(arg4)));
 self->db = copyinstr(arg2);

1072

Tracing mysqld Using DTrace

 self->connid = arg1;
 self->querystart = timestamp;
 self->netwrite = 0;
 self->netwritecum = 0;
 self->netwritebase = 0;
 self->netread = 0;
 self->netreadcum = 0;
 self->netreadbase = 0;
}

mysql*:::net-write-start
{
 self->netwrite += arg0;
 self->netwritebase = timestamp;
}

mysql*:::net-write-done
{
 self->netwritecum += (timestamp - self->netwritebase);
 self->netwritebase = 0;
}

mysql*:::net-read-start
{
 self->netreadbase = timestamp;
}

mysql*:::net-read-done
{
 self->netread += arg1;
 self->netreadcum += (timestamp - self->netreadbase);
 self->netreadbase = 0;
}

mysql*:::query-done
{
 this->elapsed = (timestamp - self->querystart) /1000000;
 printf("%2d %-30s %-10s %9d %18d %s\n",
 arg0, self->who, self->db,
 self->connid, this->elapsed, self->query);
 printf("Net read: %d bytes (%d ms) write: %d bytes (%d ms)\n",
 self->netread, (self->netreadcum/1000000),
 self->netwrite, (self->netwritecum/1000000));
}

When executing the above script on a machine with a remote client, you can see that approximately a third
of the time spent executing the query is related to writing the query results back to the client.

St Who DB ConnID Dur microsec Query
 0 root@::ffff:198.51.100.108 test 31 3495 select * from t1 limit 1000000
Net read: 0 bytes (0 ms) write: 10000075 bytes (1220 ms)

Keycache Probes

The keycache probes are triggered when using the index key cache used with the MyISAM storage engine.
Probes exist to monitor when data is read into the keycache, cached key data is written from the cache into
a cached file, or when accessing the keycache.

Keycache usage indicates when data is read or written from the index files into the cache, and can be
used to monitor how efficient the memory allocated to the keycache is being used. A high number of
keycache reads across a range of queries may indicate that the keycache is too small for size of data
being accessed.

keycache-read-start(filepath, bytes, mem_used, mem_free)
keycache-read-block(bytes)

1073

Tracing mysqld Using DTrace

keycache-read-hit()
keycache-read-miss()
keycache-read-done(mem_used, mem_free)
keycache-write-start(filepath, bytes, mem_used, mem_free)
keycache-write-block(bytes)
keycache-write-done(mem_used, mem_free)

When reading data from the index files into the keycache, the process first initializes the read operation
(indicated by keycache-read-start), then loads blocks of data (keycache-read-block), and then
the read block is either matches the data being identified (keycache-read-hit) or more data needs
to be read (keycache-read-miss). Once the read operation has completed, reading stops with the
keycache-read-done.

Data can be read from the index file into the keycache only when the specified key is not already within the
keycache.

• keycache-read-start: Triggered when the keycache read operation is started. Data is read from the
specified filepath, reading the specified number of bytes. The mem_used and mem_avail indicate
memory currently used by the keycache and the amount of memory available within the keycache.

• keycache-read-block: Triggered when the keycache reads a block of data, of the specified number
of bytes, from the index file into the keycache.

• keycache-read-hit: Triggered when the block of data read from the index file matches the key data
requested.

• keycache-read-miss: Triggered when the block of data read from the index file does not match the
key data needed.

• keycache-read-done: Triggered when the keycache read operation has completed. The mem_used
and mem_avail indicate memory currently used by the keycache and the amount of memory available
within the keycache.

Keycache writes occur when the index information is updated during an INSERT, UPDATE, or DELETE
operation, and the cached key information is flushed back to the index file.

• keycache-write-start: Triggered when the keycache write operation is started. Data is written
to the specified filepath, reading the specified number of bytes. The mem_used and mem_avail
indicate memory currently used by the keycache and the amount of memory available within the
keycache.

• keycache-write-block: Triggered when the keycache writes a block of data, of the specified number
of bytes, to the index file from the keycache.

• keycache-write-done: Triggered when the keycache write operation has completed. The mem_used
and mem_avail indicate memory currently used by the keycache and the amount of memory available
within the keycache.

1074

Chapter 6 Security

Table of Contents
6.1 General Security Issues .. 1076

6.1.1 Security Guidelines .. 1076
6.1.2 Keeping Passwords Secure .. 1078
6.1.3 Making MySQL Secure Against Attackers ... 1087
6.1.4 Security-Related mysqld Options and Variables ... 1088
6.1.5 How to Run MySQL as a Normal User .. 1089
6.1.6 Security Considerations for LOAD DATA LOCAL ... 1090
6.1.7 Client Programming Security Guidelines .. 1092

6.2 Access Control and Account Management ... 1094
6.2.1 Account User Names and Passwords ... 1095
6.2.2 Privileges Provided by MySQL .. 1097
6.2.3 Grant Tables .. 1104
6.2.4 Specifying Account Names ... 1111
6.2.5 Access Control, Stage 1: Connection Verification ... 1113
6.2.6 Access Control, Stage 2: Request Verification ... 1116
6.2.7 Adding Accounts, Assigning Privileges, and Dropping Accounts 1118
6.2.8 Reserved Accounts .. 1121
6.2.9 When Privilege Changes Take Effect .. 1121
6.2.10 Assigning Account Passwords .. 1122
6.2.11 Password Management .. 1123
6.2.12 Server Handling of Expired Passwords .. 1126
6.2.13 Pluggable Authentication .. 1128
6.2.14 Proxy Users ... 1132
6.2.15 Account Locking ... 1139
6.2.16 Setting Account Resource Limits ... 1140
6.2.17 Troubleshooting Problems Connecting to MySQL ... 1142
6.2.18 SQL-Based Account Activity Auditing .. 1147

6.3 Using Encrypted Connections .. 1148
6.3.1 Configuring MySQL to Use Encrypted Connections .. 1150
6.3.2 Encrypted Connection TLS Protocols and Ciphers ... 1155
6.3.3 Creating SSL and RSA Certificates and Keys .. 1162
6.3.4 SSL Library-Dependent Capabilities .. 1171
6.3.5 Connecting to MySQL Remotely from Windows with SSH .. 1173

6.4 Security Plugins .. 1173
6.4.1 Authentication Plugins .. 1174
6.4.2 Connection Control Plugins .. 1243
6.4.3 The Password Validation Plugin .. 1249
6.4.4 The MySQL Keyring ... 1257
6.4.5 MySQL Enterprise Audit ... 1294
6.4.6 MySQL Enterprise Firewall ... 1365

6.5 MySQL Enterprise Data Masking and De-Identification ... 1381
6.5.1 MySQL Enterprise Data Masking and De-Identification Elements 1383
6.5.2 Installing or Uninstalling MySQL Enterprise Data Masking and De-Identification 1383
6.5.3 Using MySQL Enterprise Data Masking and De-Identification ... 1384
6.5.4 MySQL Enterprise Data Masking and De-Identification Function Reference 1390
6.5.5 MySQL Enterprise Data Masking and De-Identification Function Descriptions 1390

6.6 MySQL Enterprise Encryption .. 1399
6.6.1 MySQL Enterprise Encryption Installation .. 1400

1075

General Security Issues

6.6.2 MySQL Enterprise Encryption Usage and Examples .. 1401
6.6.3 MySQL Enterprise Encryption Function Reference ... 1403
6.6.4 MySQL Enterprise Encryption Function Descriptions .. 1403

6.7 SELinux .. 1407
6.7.1 Check if SELinux is Enabled .. 1408
6.7.2 Changing the SELinux Mode .. 1409
6.7.3 MySQL Server SELinux Policies ... 1409
6.7.4 SELinux File Context .. 1409
6.7.5 SELinux TCP Port Context ... 1411
6.7.6 Troubleshooting SELinux .. 1412

When thinking about security within a MySQL installation, you should consider a wide range of possible
topics and how they affect the security of your MySQL server and related applications:

• General factors that affect security. These include choosing good passwords, not granting unnecessary
privileges to users, ensuring application security by preventing SQL injections and data corruption, and
others. See Section 6.1, “General Security Issues”.

• Security of the installation itself. The data files, log files, and the all the application files of your
installation should be protected to ensure that they are not readable or writable by unauthorized parties.
For more information, see Section 2.9, “Postinstallation Setup and Testing”.

• Access control and security within the database system itself, including the users and databases
granted with access to the databases, views and stored programs in use within the database. For more
information, see Section 6.2, “Access Control and Account Management”.

• The features offered by security-related plugins. See Section 6.4, “Security Plugins”.

• Network security of MySQL and your system. The security is related to the grants for individual users,
but you may also wish to restrict MySQL so that it is available only locally on the MySQL server host, or
to a limited set of other hosts.

• Ensure that you have adequate and appropriate backups of your database files, configuration and log
files. Also be sure that you have a recovery solution in place and test that you are able to successfully
recover the information from your backups. See Chapter 7, Backup and Recovery.

Note

Several topics in this chapter are also addressed in the Secure Deployment Guide,
which provides procedures for deploying a generic binary distribution of MySQL
Enterprise Edition Server with features for managing the security of your MySQL
installation.

6.1 General Security Issues
This section describes general security issues to be aware of and what you can do to make your MySQL
installation more secure against attack or misuse. For information specifically about the access control
system that MySQL uses for setting up user accounts and checking database access, see Section 2.9,
“Postinstallation Setup and Testing”.

For answers to some questions that are often asked about MySQL Server security issues, see Section A.9,
“MySQL 5.7 FAQ: Security”.

6.1.1 Security Guidelines

Anyone using MySQL on a computer connected to the Internet should read this section to avoid the most
common security mistakes.

1076

https://dev.mysql.com/doc/mysql-secure-deployment-guide/5.7/en/

Security Guidelines

In discussing security, it is necessary to consider fully protecting the entire server host (not just the MySQL
server) against all types of applicable attacks: eavesdropping, altering, playback, and denial of service. We
do not cover all aspects of availability and fault tolerance here.

MySQL uses security based on Access Control Lists (ACLs) for all connections, queries, and other
operations that users can attempt to perform. There is also support for SSL-encrypted connections
between MySQL clients and servers. Many of the concepts discussed here are not specific to MySQL at
all; the same general ideas apply to almost all applications.

When running MySQL, follow these guidelines:

• Do not ever give anyone (except MySQL root accounts) access to the user table in the mysql
system database! This is critical.

• Learn how the MySQL access privilege system works (see Section 6.2, “Access Control and Account
Management”). Use the GRANT and REVOKE statements to control access to MySQL. Do not grant more
privileges than necessary. Never grant privileges to all hosts.

Checklist:

• Try mysql -u root. If you are able to connect successfully to the server without being asked for a
password, anyone can connect to your MySQL server as the MySQL root user with full privileges!
Review the MySQL installation instructions, paying particular attention to the information about setting
a root password. See Section 2.9.4, “Securing the Initial MySQL Account”.

• Use the SHOW GRANTS statement to check which accounts have access to what. Then use the
REVOKE statement to remove those privileges that are not necessary.

• Do not store cleartext passwords in your database. If your computer becomes compromised, the intruder
can take the full list of passwords and use them. Instead, use SHA2() or some other one-way hashing
function and store the hash value.

To prevent password recovery using rainbow tables, do not use these functions on a plain password;
instead, choose some string to be used as a salt, and use hash(hash(password)+salt) values.

• Assume that all passwords will be subject to automated cracking attempts using lists of known
passwords, and also to targeted guessing using publicly available information about you, such as social
media posts. Do not choose passwords that consist of easily cracked or guessed items such as a
dictionary word, proper name, sports team name, acronym, or commonly known phrase, particularly if
they are relevant to you. The use of upper case letters, number substitutions and additions, and special
characters does not help if these are used in predictable ways. Also do not choose any password you
have seen used as an example anywhere, or a variation on it, even if it was presented as an example of
a strong password.

Instead, choose passwords that are as long and as unpredictable as possible. That does not mean
the combination needs to be a random string of characters that is difficult to remember and reproduce,
although this is a good approach if you have, for example, password manager software that can
generate and fill such passwords and store them securely. A passphrase containing multiple words
is easy to create, remember, and reproduce, and is much more secure than a typical user-selected
password consisting of a single modified word or a predictable sequence of characters. To create a
secure passphrase, ensure that the words and other items in it are not a known phrase or quotation, do
not occur in a predictable order, and preferably have no previous relationship to each other at all.

• Invest in a firewall. This protects you from at least 50% of all types of exploits in any software. Put
MySQL behind the firewall or in a demilitarized zone (DMZ).

Checklist:

1077

Keeping Passwords Secure

• Try to scan your ports from the Internet using a tool such as nmap. MySQL uses port 3306 by default.
This port should not be accessible from untrusted hosts. As a simple way to check whether your
MySQL port is open, try the following command from some remote machine, where server_host is
the host name or IP address of the host on which your MySQL server runs:

$> telnet server_host 3306

If telnet hangs or the connection is refused, the port is blocked, which is how you want it to be. If
you get a connection and some garbage characters, the port is open, and should be closed on your
firewall or router, unless you really have a good reason to keep it open.

• Applications that access MySQL should not trust any data entered by users, and should be written
using proper defensive programming techniques. See Section 6.1.7, “Client Programming Security
Guidelines”.

• Do not transmit plain (unencrypted) data over the Internet. This information is accessible to everyone
who has the time and ability to intercept it and use it for their own purposes. Instead, use an encrypted
protocol such as SSL or SSH. MySQL supports internal SSL connections. Another technique is to use
SSH port-forwarding to create an encrypted (and compressed) tunnel for the communication.

• Learn to use the tcpdump and strings utilities. In most cases, you can check whether MySQL data
streams are unencrypted by issuing a command like the following:

$> tcpdump -l -i eth0 -w - src or dst port 3306 | strings

This works under Linux and should work with small modifications under other systems.

Warning

If you do not see cleartext data, this does not always mean that the information
actually is encrypted. If you need high security, consult with a security expert.

6.1.2 Keeping Passwords Secure

Passwords occur in several contexts within MySQL. The following sections provide guidelines that enable
end users and administrators to keep these passwords secure and avoid exposing them. There is also a
discussion of how MySQL uses password hashing internally and of a plugin that you can use to enforce
stricter passwords.

6.1.2.1 End-User Guidelines for Password Security

MySQL users should use the following guidelines to keep passwords secure.

When you run a client program to connect to the MySQL server, it is inadvisable to specify your password
in a way that exposes it to discovery by other users. The methods you can use to specify your password
when you run client programs are listed here, along with an assessment of the risks of each method.
In short, the safest methods are to have the client program prompt for the password or to specify the
password in a properly protected option file.

• Use the mysql_config_editor utility, which enables you to store authentication credentials in
an encrypted login path file named .mylogin.cnf. The file can be read later by MySQL client
programs to obtain authentication credentials for connecting to MySQL Server. See Section 4.6.6,
“mysql_config_editor — MySQL Configuration Utility”.

• Use a --password=password or -ppassword option on the command line. For example:

$> mysql -u francis -pfrank db_name

1078

Keeping Passwords Secure

Warning

This is convenient but insecure. On some systems, your password becomes
visible to system status programs such as ps that may be invoked by other users
to display command lines. MySQL clients typically overwrite the command-line
password argument with zeros during their initialization sequence. However,
there is still a brief interval during which the value is visible. Also, on some
systems this overwriting strategy is ineffective and the password remains visible
to ps. (SystemV Unix systems and perhaps others are subject to this problem.)

If your operating environment is set up to display your current command in the title bar of your terminal
window, the password remains visible as long as the command is running, even if the command has
scrolled out of view in the window content area.

• Use the --password or -p option on the command line with no password value specified. In this case,
the client program solicits the password interactively:

$> mysql -u francis -p db_name
Enter password: ********

The * characters indicate where you enter your password. The password is not displayed as you enter it.

It is more secure to enter your password this way than to specify it on the command line because it is
not visible to other users. However, this method of entering a password is suitable only for programs that
you run interactively. If you want to invoke a client from a script that runs noninteractively, there is no
opportunity to enter the password from the keyboard. On some systems, you may even find that the first
line of your script is read and interpreted (incorrectly) as your password.

• Store your password in an option file. For example, on Unix, you can list your password in the [client]
section of the .my.cnf file in your home directory:

[client]
password=password

To keep the password safe, the file should not be accessible to anyone but yourself. To ensure this, set
the file access mode to 400 or 600. For example:

$> chmod 600 .my.cnf

To name from the command line a specific option file containing the password, use the --defaults-
file=file_name option, where file_name is the full path name to the file. For example:

$> mysql --defaults-file=/home/francis/mysql-opts

Section 4.2.2.2, “Using Option Files”, discusses option files in more detail.

• Store your password in the MYSQL_PWD environment variable. See Section 4.9, “Environment Variables”.

This method of specifying your MySQL password must be considered extremely insecure and should
not be used. Some versions of ps include an option to display the environment of running processes.
On some systems, if you set MYSQL_PWD, your password is exposed to any other user who runs ps.
Even on systems without such a version of ps, it is unwise to assume that there are no other methods by
which users can examine process environments.

On Unix, the mysql client writes a record of executed statements to a history file (see Section 4.5.1.3,
“mysql Client Logging”). By default, this file is named .mysql_history and is created in your home

1079

Keeping Passwords Secure

directory. Passwords can be written as plain text in SQL statements such as CREATE USER and ALTER
USER, so if you use these statements, they are logged in the history file. To keep this file safe, use a
restrictive access mode, the same way as described earlier for the .my.cnf file.

If your command interpreter is configured to maintain a history, any file in which the commands are saved
contains MySQL passwords entered on the command line. For example, bash uses ~/.bash_history.
Any such file should have a restrictive access mode.

6.1.2.2 Administrator Guidelines for Password Security

Database administrators should use the following guidelines to keep passwords secure.

MySQL stores passwords for user accounts in the mysql.user system table. Access to this table should
never be granted to any nonadministrative accounts.

Account passwords can be expired so that users must reset them. See Section 6.2.11, “Password
Management”, and Section 6.2.12, “Server Handling of Expired Passwords”.

The validate_password plugin can be used to enforce a policy on acceptable password. See
Section 6.4.3, “The Password Validation Plugin”.

A user who has access to modify the plugin directory (the value of the plugin_dir system variable) or
the my.cnf file that specifies the plugin directory location can replace plugins and modify the capabilities
provided by plugins, including authentication plugins.

Files such as log files to which passwords might be written should be protected. See Section 6.1.2.3,
“Passwords and Logging”.

6.1.2.3 Passwords and Logging

Passwords can be written as plain text in SQL statements such as CREATE USER, GRANT, SET
PASSWORD, and statements that invoke the PASSWORD() function. If such statements are logged by the
MySQL server as written, passwords in them become visible to anyone with access to the logs.

Statement logging avoids writing passwords as cleartext for the following statements:

CREATE USER ... IDENTIFIED BY ...
ALTER USER ... IDENTIFIED BY ...
GRANT ... IDENTIFIED BY ...
SET PASSWORD ...
SLAVE START ... PASSWORD = ...
CREATE SERVER ... OPTIONS(... PASSWORD ...)
ALTER SERVER ... OPTIONS(... PASSWORD ...)

Passwords in those statements are rewritten to not appear literally in statement text written to the general
query log, slow query log, and binary log. Rewriting does not apply to other statements. In particular,
INSERT or UPDATE statements for the mysql.user system table that refer to literal passwords are logged
as is, so you should avoid such statements. (Direct modification of grant tables is discouraged, anyway.)

For the general query log, password rewriting can be suppressed by starting the server with the --log-
raw option. For security reasons, this option is not recommended for production use. For diagnostic
purposes, it may be useful to see the exact text of statements as received by the server.

Contents of the audit log file produced by the audit log plugin are not encrypted. For security reasons, this
file should be written to a directory accessible only to the MySQL server and users with a legitimate reason
to view the log. See Section 6.4.5.3, “MySQL Enterprise Audit Security Considerations”.

1080

Keeping Passwords Secure

Statements received by the server may be rewritten if a query rewrite plugin is installed (see Query Rewrite
Plugins). In this case, the --log-raw option affects statement logging as follows:

• Without --log-raw, the server logs the statement returned by the query rewrite plugin. This may differ
from the statement as received.

• With --log-raw, the server logs the original statement as received.

An implication of password rewriting is that statements that cannot be parsed (due, for example, to syntax
errors) are not written to the general query log because they cannot be known to be password free. Use
cases that require logging of all statements including those with errors should use the --log-raw option,
bearing in mind that this also bypasses password rewriting.

Password rewriting occurs only when plain text passwords are expected. For statements with syntax that
expect a password hash value, no rewriting occurs. If a plain text password is supplied erroneously for
such syntax, the password is logged as given, without rewriting. For example, the following statement is
logged as shown because a password hash value is expected:

CREATE USER 'user1'@'localhost' IDENTIFIED BY PASSWORD 'not-so-secret';

To guard log files against unwarranted exposure, locate them in a directory that restricts access to the
server and the database administrator. If the server logs to tables in the mysql database, grant access to
those tables only to the database administrator.

Replicas store the password for the replication source in the source info repository, which can be either
a file or a table (see Section 16.2.4, “Relay Log and Replication Metadata Repositories”). Ensure that the
repository can be accessed only by the database administrator. An alternative to storing the password in a
file is to use the START SLAVE statement to specify credentials for connecting to the source.

Use a restricted access mode to protect database backups that include log tables or log files containing
passwords.

6.1.2.4 Password Hashing in MySQL

Note

The information in this section applies fully only before MySQL 5.7.5, and only for
accounts that use the mysql_native_password or mysql_old_password
authentication plugins. Support for pre-4.1 password hashes was removed in
MySQL 5.7.5. This includes removal of the mysql_old_password authentication
plugin and the OLD_PASSWORD() function. Also, secure_auth cannot be
disabled, and old_passwords cannot be set to 1.

As of MySQL 5.7.5, only the information about 4.1 password hashes and the
mysql_native_password authentication plugin remains relevant.

MySQL lists user accounts in the user table of the mysql database. Each MySQL account can be
assigned a password, although the user table does not store the cleartext version of the password, but a
hash value computed from it.

MySQL uses passwords in two phases of client/server communication:

• When a client attempts to connect to the server, there is an initial authentication step in which the client
must present a password that has a hash value matching the hash value stored in the user table for the
account the client wants to use.

• After the client connects, it can (if it has sufficient privileges) set or change the password hash for
accounts listed in the user table. The client can do this by using the PASSWORD() function to generate

1081

https://dev.mysql.com/doc/extending-mysql/5.7/en/plugin-types.html#query-rewrite-plugin-type
https://dev.mysql.com/doc/extending-mysql/5.7/en/plugin-types.html#query-rewrite-plugin-type

Keeping Passwords Secure

a password hash, or by using a password-generating statement (CREATE USER, GRANT, or SET
PASSWORD).

In other words, the server checks hash values during authentication when a client first attempts to connect.
The server generates hash values if a connected client invokes the PASSWORD() function or uses a
password-generating statement to set or change a password.

Password hashing methods in MySQL have the history described following. These changes are illustrated
by changes in the result from the PASSWORD() function that computes password hash values and in the
structure of the user table where passwords are stored.

The Original (Pre-4.1) Hashing Method

The original hashing method produced a 16-byte string. Such hashes look like this:

mysql> SELECT PASSWORD('mypass');
+--------------------+
| PASSWORD('mypass') |
+--------------------+
| 6f8c114b58f2ce9e |
+--------------------+

To store account passwords, the Password column of the user table was at this point 16 bytes long.

The 4.1 Hashing Method

MySQL 4.1 introduced password hashing that provided better security and reduced the risk of passwords
being intercepted. There were several aspects to this change:

• Different format of password values produced by the PASSWORD() function

• Widening of the Password column

• Control over the default hashing method

• Control over the permitted hashing methods for clients attempting to connect to the server

The changes in MySQL 4.1 took place in two stages:

• MySQL 4.1.0 used a preliminary version of the 4.1 hashing method. This method was short lived and the
following discussion says nothing more about it.

• In MySQL 4.1.1, the hashing method was modified to produce a longer 41-byte hash value:

mysql> SELECT PASSWORD('mypass');
+---+
| PASSWORD('mypass') |
+---+
| *6C8989366EAF75BB670AD8EA7A7FC1176A95CEF4 |
+---+

The longer password hash format has better cryptographic properties, and client authentication based on
long hashes is more secure than that based on the older short hashes.

To accommodate longer password hashes, the Password column in the user table was changed at this
point to be 41 bytes, its current length.

A widened Password column can store password hashes in both the pre-4.1 and 4.1 formats. The
format of any given hash value can be determined two ways:

1082

Keeping Passwords Secure

• The length: 4.1 and pre-4.1 hashes are 41 and 16 bytes, respectively.

• Password hashes in the 4.1 format always begin with a * character, whereas passwords in the pre-4.1
format never do.

To permit explicit generation of pre-4.1 password hashes, two additional changes were made:

• The OLD_PASSWORD() function was added, which returns hash values in the 16-byte format.

• For compatibility purposes, the old_passwords system variable was added, to enable DBAs and
applications control over the hashing method. The default old_passwords value of 0 causes hashing
to use the 4.1 method (41-byte hash values), but setting old_passwords=1 causes hashing to
use the pre-4.1 method. In this case, PASSWORD() produces 16-byte values and is equivalent to
OLD_PASSWORD()

To permit DBAs control over how clients are permitted to connect, the secure_auth system variable
was added. Starting the server with this variable disabled or enabled permits or prohibits clients to
connect using the older pre-4.1 password hashing method. Before MySQL 5.6.5, secure_auth is
disabled by default. As of 5.6.5, secure_auth is enabled by default to promote a more secure default
configuration DBAs can disable it at their discretion, but this is not recommended, and pre-4.1 password
hashes are deprecated and should be avoided. (For account upgrade instructions, see Section 6.4.1.3,
“Migrating Away from Pre-4.1 Password Hashing and the mysql_old_password Plugin”.)

In addition, the mysql client supports a --secure-auth option that is analogous to secure_auth,
but from the client side. It can be used to prevent connections to less secure accounts that use pre-4.1
password hashing. This option is disabled by default before MySQL 5.6.7, enabled thereafter.

Compatibility Issues Related to Hashing Methods

The widening of the Password column in MySQL 4.1 from 16 bytes to 41 bytes affects installation or
upgrade operations as follows:

• If you perform a new installation of MySQL, the Password column is made 41 bytes long automatically.

• Upgrades from MySQL 4.1 or later to current versions of MySQL should not give rise to any issues in
regard to the Password column because both versions use the same column length and password
hashing method.

• For upgrades from a pre-4.1 release to 4.1 or later, you must upgrade the system tables after upgrading.
(See Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”.)

The 4.1 hashing method is understood only by MySQL 4.1 (and higher) servers and clients, which can
result in some compatibility problems. A 4.1 or higher client can connect to a pre-4.1 server, because the
client understands both the pre-4.1 and 4.1 password hashing methods. However, a pre-4.1 client that
attempts to connect to a 4.1 or higher server may run into difficulties. For example, a 4.0 mysql client may
fail with the following error message:

$> mysql -h localhost -u root
Client does not support authentication protocol requested
by server; consider upgrading MySQL client

The following discussion describes the differences between the pre-4.1 and 4.1 hashing methods, and
what you should do if you upgrade your server but need to maintain backward compatibility with pre-4.1
clients. (However, permitting connections by old clients is not recommended and should be avoided if
possible.) This information is of particular importance to PHP programmers migrating MySQL databases
from versions older than 4.1 to 4.1 or higher.

1083

Keeping Passwords Secure

The differences between short and long password hashes are relevant both for how the server uses
passwords during authentication and for how it generates password hashes for connected clients that
perform password-changing operations.

The way in which the server uses password hashes during authentication is affected by the width of the
Password column:

• If the column is short, only short-hash authentication is used.

• If the column is long, it can hold either short or long hashes, and the server can use either format:

• Pre-4.1 clients can connect, but because they know only about the pre-4.1 hashing method, they can
authenticate only using accounts that have short hashes.

• 4.1 and later clients can authenticate using accounts that have short or long hashes.

Even for short-hash accounts, the authentication process is actually a bit more secure for 4.1 and later
clients than for older clients. In terms of security, the gradient from least to most secure is:

• Pre-4.1 client authenticating with short password hash

• 4.1 or later client authenticating with short password hash

• 4.1 or later client authenticating with long password hash

The way in which the server generates password hashes for connected clients is affected by the width of
the Password column and by the old_passwords system variable. A 4.1 or later server generates long
hashes only if certain conditions are met: The Password column must be wide enough to hold long values
and old_passwords must not be set to 1.

Those conditions apply as follows:

• The Password column must be wide enough to hold long hashes (41 bytes). If the column has not
been updated and still has the pre-4.1 width of 16 bytes, the server notices that long hashes cannot fit
into it and generates only short hashes when a client performs password-changing operations using
the PASSWORD() function or a password-generating statement. This is the behavior that occurs if
you have upgraded from a version of MySQL older than 4.1 to 4.1 or later but have not yet run the
mysql_upgrade program to widen the Password column.

• If the Password column is wide, it can store either short or long password hashes. In this case, the
PASSWORD() function and password-generating statements generate long hashes unless the server was
started with the old_passwords system variable set to 1 to force the server to generate short password
hashes instead.

The purpose of the old_passwords system variable is to permit backward compatibility with pre-4.1
clients under circumstances where the server would otherwise generate long password hashes. The option
does not affect authentication (4.1 and later clients can still use accounts that have long password hashes),
but it does prevent creation of a long password hash in the user table as the result of a password-
changing operation. Were that permitted to occur, the account could no longer be used by pre-4.1 clients.
With old_passwords disabled, the following undesirable scenario is possible:

• An old pre-4.1 client connects to an account that has a short password hash.

• The client changes its own password. With old_passwords disabled, this results in the account having
a long password hash.

• The next time the old client attempts to connect to the account, it cannot, because the account has a
long password hash that requires the 4.1 hashing method during authentication. (Once an account has

1084

Keeping Passwords Secure

a long password hash in the user table, only 4.1 and later clients can authenticate for it because pre-4.1
clients do not understand long hashes.)

This scenario illustrates that, if you must support older pre-4.1 clients, it is problematic to run a 4.1
or higher server without old_passwords set to 1. By running the server with old_passwords=1,
password-changing operations do not generate long password hashes and thus do not cause accounts to
become inaccessible to older clients. (Those clients cannot inadvertently lock themselves out by changing
their password and ending up with a long password hash.)

The downside of old_passwords=1 is that any passwords created or changed use short hashes, even
for 4.1 or later clients. Thus, you lose the additional security provided by long password hashes. To create
an account that has a long hash (for example, for use by 4.1 clients) or to change an existing account to
use a long password hash, an administrator can set the session value of old_passwords set to 0 while
leaving the global value set to 1:

mysql> SET @@SESSION.old_passwords = 0;
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT @@SESSION.old_passwords, @@GLOBAL.old_passwords;
+-------------------------+------------------------+
| @@SESSION.old_passwords | @@GLOBAL.old_passwords |
+-------------------------+------------------------+
| 0 | 1 |
+-------------------------+------------------------+
1 row in set (0.00 sec)

mysql> CREATE USER 'newuser'@'localhost' IDENTIFIED BY 'newpass';
Query OK, 0 rows affected (0.03 sec)

mysql> SET PASSWORD FOR 'existinguser'@'localhost' = PASSWORD('existingpass');
Query OK, 0 rows affected (0.00 sec)

The following scenarios are possible in MySQL 4.1 or later. The factors are whether the Password column
is short or long, and, if long, whether the server is started with old_passwords enabled or disabled.

Scenario 1: Short Password column in user table:

• Only short hashes can be stored in the Password column.

• The server uses only short hashes during client authentication.

• For connected clients, password hash-generating operations involving the PASSWORD() function or
password-generating statements use short hashes exclusively. Any change to an account's password
results in that account having a short password hash.

• The value of old_passwords is irrelevant because with a short Password column, the server
generates only short password hashes anyway.

This scenario occurs when a pre-4.1 MySQL installation has been upgraded to 4.1 or later but
mysql_upgrade has not been run to upgrade the system tables in the mysql database. (This is not a
recommended configuration because it does not permit use of more secure 4.1 password hashing.)

Scenario 2: Long Password column; server started with old_passwords=1:

• Short or long hashes can be stored in the Password column.

• 4.1 and later clients can authenticate for accounts that have short or long hashes.

• Pre-4.1 clients can authenticate only for accounts that have short hashes.

1085

Keeping Passwords Secure

• For connected clients, password hash-generating operations involving the PASSWORD() function or
password-generating statements use short hashes exclusively. Any change to an account's password
results in that account having a short password hash.

In this scenario, newly created accounts have short password hashes because old_passwords=1
prevents generation of long hashes. Also, if you create an account with a long hash before setting
old_passwords to 1, changing the account's password while old_passwords=1 results in the account
being given a short password, causing it to lose the security benefits of a longer hash.

To create a new account that has a long password hash, or to change the password of any existing
account to use a long hash, first set the session value of old_passwords set to 0 while leaving the global
value set to 1, as described previously.

In this scenario, the server has an up to date Password column, but is running with the default password
hashing method set to generate pre-4.1 hash values. This is not a recommended configuration but
may be useful during a transitional period in which pre-4.1 clients and passwords are upgraded to
4.1 or later. When that has been done, it is preferable to run the server with old_passwords=0 and
secure_auth=1.

Scenario 3: Long Password column; server started with old_passwords=0:

• Short or long hashes can be stored in the Password column.

• 4.1 and later clients can authenticate using accounts that have short or long hashes.

• Pre-4.1 clients can authenticate only using accounts that have short hashes.

• For connected clients, password hash-generating operations involving the PASSWORD() function or
password-generating statements use long hashes exclusively. A change to an account's password
results in that account having a long password hash.

As indicated earlier, a danger in this scenario is that it is possible for accounts that have a short password
hash to become inaccessible to pre-4.1 clients. A change to such an account's password made using
the PASSWORD() function or a password-generating statement results in the account being given a long
password hash. From that point on, no pre-4.1 client can connect to the server using that account. The
client must upgrade to 4.1 or later.

If this is a problem, you can change a password in a special way. For example, normally you use SET
PASSWORD as follows to change an account password:

SET PASSWORD FOR 'some_user'@'some_host' = PASSWORD('password');

To change the password but create a short hash, use the OLD_PASSWORD() function instead:

SET PASSWORD FOR 'some_user'@'some_host' = OLD_PASSWORD('password');

OLD_PASSWORD() is useful for situations in which you explicitly want to generate a short hash.

The disadvantages for each of the preceding scenarios may be summarized as follows:

In scenario 1, you cannot take advantage of longer hashes that provide more secure authentication.

In scenario 2, old_passwords=1 prevents accounts with short hashes from becoming inaccessible, but
password-changing operations cause accounts with long hashes to revert to short hashes unless you take
care to change the session value of old_passwords to 0 first.

In scenario 3, accounts with short hashes become inaccessible to pre-4.1 clients if you change their
passwords without explicitly using OLD_PASSWORD().

The best way to avoid compatibility problems related to short password hashes is to not use them:

1086

Making MySQL Secure Against Attackers

• Upgrade all client programs to MySQL 4.1 or later.

• Run the server with old_passwords=0.

• Reset the password for any account with a short password hash to use a long password hash.

• For additional security, run the server with secure_auth=1.

6.1.3 Making MySQL Secure Against Attackers

When you connect to a MySQL server, you should use a password. The password is not transmitted as
cleartext over the connection. Password handling during the client connection sequence was upgraded in
MySQL 4.1.1 to be very secure. If you are still using pre-4.1.1-style passwords, the encryption algorithm is
not as strong as the newer algorithm. With some effort, a clever attacker who can sniff the traffic between
the client and the server can crack the password. (See Section 6.1.2.4, “Password Hashing in MySQL”, for
a discussion of the different password handling methods.)

All other information is transferred as text, and can be read by anyone who is able to watch the connection.
If the connection between the client and the server goes through an untrusted network, and you are
concerned about this, you can use the compressed protocol to make traffic much more difficult to
decipher. You can also use MySQL's internal SSL support to make the connection even more secure.
See Section 6.3, “Using Encrypted Connections”. Alternatively, use SSH to get an encrypted TCP/IP
connection between a MySQL server and a MySQL client. You can find an Open Source SSH client at
http://www.openssh.org/, and a comparison of both Open Source and Commercial SSH clients at http://
en.wikipedia.org/wiki/Comparison_of_SSH_clients.

To make a MySQL system secure, you should strongly consider the following suggestions:

• Require all MySQL accounts to have a password. A client program does not necessarily know the
identity of the person running it. It is common for client/server applications that the user can specify
any user name to the client program. For example, anyone can use the mysql program to connect as
any other person simply by invoking it as mysql -u other_user db_name if other_user has no
password. If all accounts have a password, connecting using another user's account becomes much
more difficult.

For a discussion of methods for setting passwords, see Section 6.2.10, “Assigning Account Passwords”.

• Make sure that the only Unix user account with read or write privileges in the database directories is the
account that is used for running mysqld.

• Never run the MySQL server as the Unix root user. This is extremely dangerous, because any
user with the FILE privilege is able to cause the server to create files as root (for example,
~root/.bashrc). To prevent this, mysqld refuses to run as root unless that is specified explicitly
using the --user=root option.

mysqld can (and should) be run as an ordinary, unprivileged user instead. You can create a separate
Unix account named mysql to make everything even more secure. Use this account only for
administering MySQL. To start mysqld as a different Unix user, add a user option that specifies the
user name in the [mysqld] group of the my.cnf option file where you specify server options. For
example:

[mysqld]
user=mysql

This causes the server to start as the designated user whether you start it manually or by using
mysqld_safe or mysql.server. For more details, see Section 6.1.5, “How to Run MySQL as a
Normal User”.

1087

http://www.openssh.org/
http://en.wikipedia.org/wiki/Comparison_of_SSH_clients
http://en.wikipedia.org/wiki/Comparison_of_SSH_clients

Security-Related mysqld Options and Variables

Running mysqld as a Unix user other than root does not mean that you need to change the root user
name in the user table. User names for MySQL accounts have nothing to do with user names for Unix
accounts.

• Do not grant the FILE privilege to nonadministrative users. Any user that has this privilege can write
a file anywhere in the file system with the privileges of the mysqld daemon. This includes the server's
data directory containing the files that implement the privilege tables. To make FILE-privilege operations
a bit safer, files generated with SELECT ... INTO OUTFILE do not overwrite existing files and are
writable by everyone.

The FILE privilege may also be used to read any file that is world-readable or accessible to the Unix
user that the server runs as. With this privilege, you can read any file into a database table. This could
be abused, for example, by using LOAD DATA to load /etc/passwd into a table, which then can be
displayed with SELECT.

To limit the location in which files can be read and written, set the secure_file_priv system to a
specific directory. See Section 5.1.7, “Server System Variables”.

• Do not grant the PROCESS or SUPER privilege to nonadministrative users. The output of mysqladmin
processlist and SHOW PROCESSLIST shows the text of any statements currently being executed, so
any user who is permitted to see the server process list might be able to see statements issued by other
users such as UPDATE user SET password=PASSWORD('not_secure').

mysqld reserves an extra connection for users who have the SUPER privilege, so that a MySQL root
user can log in and check server activity even if all normal connections are in use.

The SUPER privilege can be used to terminate client connections, change server operation by changing
the value of system variables, and control replication servers.

• Do not permit the use of symlinks to tables. (This capability can be disabled with the --skip-
symbolic-links option.) This is especially important if you run mysqld as root, because anyone
that has write access to the server's data directory then could delete any file in the system! See
Section 8.12.3.2, “Using Symbolic Links for MyISAM Tables on Unix”.

• Stored programs and views should be written using the security guidelines discussed in Section 23.6,
“Stored Object Access Control”.

• If you do not trust your DNS, you should use IP addresses rather than host names in the grant tables.
In any case, you should be very careful about creating grant table entries using host name values that
contain wildcards.

• If you want to restrict the number of connections permitted to a single account, you can do so by setting
the max_user_connections variable in mysqld. The CREATE USER and ALTER USER statements
also support resource control options for limiting the extent of server use permitted to an account. See
Section 13.7.1.2, “CREATE USER Statement”, and Section 13.7.1.1, “ALTER USER Statement”.

• If the plugin directory is writable by the server, it may be possible for a user to write executable code
to a file in the directory using SELECT ... INTO DUMPFILE. This can be prevented by making
plugin_dir read only to the server or by setting secure_file_priv to a directory where SELECT
writes can be made safely.

6.1.4 Security-Related mysqld Options and Variables

The following table shows mysqld options and system variables that affect security. For descriptions
of each of these, see Section 5.1.6, “Server Command Options”, and Section 5.1.7, “Server System
Variables”.

1088

How to Run MySQL as a Normal User

Table 6.1 Security Option and Variable Summary

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

allow-
suspicious-
udfs

Yes Yes

automatic_sp_privilegesYes Yes Yes Global Yes

chroot Yes Yes

des-key-file Yes Yes

local_infile Yes Yes Yes Global Yes

old_passwordsYes Yes Yes Both Yes

safe-user-
create

Yes Yes

secure_auth Yes Yes Yes Global Yes

secure_file_privYes Yes Yes Global No

skip-grant-
tables

Yes Yes

skip_name_resolveYes Yes Yes Global No

skip_networkingYes Yes Yes Global No

skip_show_databaseYes Yes Yes Global No

6.1.5 How to Run MySQL as a Normal User

On Windows, you can run the server as a Windows service using a normal user account.

On Linux, for installations performed using a MySQL repository, RPM packages, or Debian packages, the
MySQL server mysqld should be started by the local mysql operating system user. Starting by another
operating system user is not supported by the init scripts that are included as part of the installation.

On Unix (or Linux for installations performed using tar or tar.gz packages) , the MySQL server mysqld
can be started and run by any user. However, you should avoid running the server as the Unix root user
for security reasons. To change mysqld to run as a normal unprivileged Unix user user_name, you must
do the following:

1. Stop the server if it is running (use mysqladmin shutdown).

2. Change the database directories and files so that user_name has privileges to read and write files in
them (you might need to do this as the Unix root user):

$> chown -R user_name /path/to/mysql/datadir

If you do not do this, the server is unable to access databases or tables when it runs as user_name.

If directories or files within the MySQL data directory are symbolic links, chown -R might not follow
symbolic links for you. If it does not, you must also follow those links and change the directories and
files they point to.

3. Start the server as user user_name. Another alternative is to start mysqld as the Unix root user and
use the --user=user_name option. mysqld starts, then switches to run as the Unix user user_name
before accepting any connections.

1089

Security Considerations for LOAD DATA LOCAL

4. To start the server as the given user automatically at system startup time, specify the user name by
adding a user option to the [mysqld] group of the /etc/my.cnf option file or the my.cnf option file
in the server's data directory. For example:

[mysqld]
user=user_name

If your Unix machine itself is not secured, you should assign passwords to the MySQL root account in the
grant tables. Otherwise, any user with a login account on that machine can run the mysql client with a --
user=root option and perform any operation. (It is a good idea to assign passwords to MySQL accounts
in any case, but especially so when other login accounts exist on the server host.) See Section 2.9.4,
“Securing the Initial MySQL Account”.

6.1.6 Security Considerations for LOAD DATA LOCAL

The LOAD DATA statement loads a data file into a table. The statement can load a file located on the
server host, or, if the LOCAL keyword is specified, on the client host.

The LOCAL version of LOAD DATA has two potential security issues:

• Because LOAD DATA LOCAL is an SQL statement, parsing occurs on the server side, and transfer of
the file from the client host to the server host is initiated by the MySQL server, which tells the client the
file named in the statement. In theory, a patched server could tell the client program to transfer a file of
the server's choosing rather than the file named in the statement. Such a server could access any file
on the client host to which the client user has read access. (A patched server could in fact reply with a
file-transfer request to any statement, not just LOAD DATA LOCAL, so a more fundamental issue is that
clients should not connect to untrusted servers.)

• In a Web environment where the clients are connecting from a Web server, a user could use LOAD
DATA LOCAL to read any files that the Web server process has read access to (assuming that a user
could run any statement against the SQL server). In this environment, the client with respect to the
MySQL server actually is the Web server, not a remote program being run by users who connect to the
Web server.

To avoid connecting to untrusted servers, clients can establish a secure connection and verify the server
identity by connecting using the --ssl-mode=VERIFY_IDENTITY option and the appropriate CA
certificate. To implement this level of verification, you must first ensure that the CA certificate for the
server is reliably available to the replica, otherwise availability issues will result. For more information, see
Command Options for Encrypted Connections.

To avoid LOAD DATA issues, clients should avoid using LOCAL.

Adminstrators and applications can configure whether to permit local data loading as follows:

• On the server side:

• The local_infile system variable controls server-side LOCAL capability. Depending on the
local_infile setting, the server refuses or permits local data loading by clients that request local
data loading.

• By default, local_infile is enabled. To cause the server to refuse or permit LOAD DATA LOCAL
statements explicitly (regardless of how client programs and libraries are configured at build time or
runtime), start mysqld with local_infile disabled or enabled. local_infile can also be set at
runtime.

• On the client side:

1090

Security Considerations for LOAD DATA LOCAL

• The ENABLED_LOCAL_INFILE CMake option controls the compiled-in default LOCAL capability for
the MySQL client library (see Section 2.8.7, “MySQL Source-Configuration Options”). Clients that
make no explicit arrangements therefore have LOCAL capability disabled or enabled according to the
ENABLED_LOCAL_INFILE setting specified at MySQL build time.

• By default, the client library in MySQL binary distributions is compiled with ENABLED_LOCAL_INFILE
enabled. If you compile MySQL from source, configure it with ENABLED_LOCAL_INFILE disabled or
enabled based on whether clients that make no explicit arrangements should have LOCAL capability
disabled or enabled.

• For client programs that use the C API, local data loading capability is determined by the
default compiled into the MySQL client library. To enable or disable it explicitly, invoke the
mysql_options() C API function to disable or enable the MYSQL_OPT_LOCAL_INFILE option. See
mysql_options().

• For the mysql client, local data loading capability is determined by the default compiled into the
MySQL client library. To disable or enable it explicitly, use the --local-infile=0 or --local-
infile[=1] option.

• For the mysqlimport client, local data loading is not used by default. To disable or enable it
explicitly, use the --local=0 or --local[=1] option.

• If you use LOAD DATA LOCAL in Perl scripts or other programs that read the [client] group from
option files, you can add a local-infile option setting to that group. To prevent problems for
programs that do not understand this option, specify it using the loose- prefix:

[client]
loose-local-infile=0

or:

[client]
loose-local-infile=1

• In all cases, successful use of a LOCAL load operation by a client also requires that the server permits
local loading.

If LOCAL capability is disabled, on either the server or client side, a client that attempts to issue a LOAD
DATA LOCAL statement receives the following error message:

ERROR 1148: The used command is not allowed with this MySQL version

MySQL Shell and Local Data Loading

MySQL Shell provides a number of utilities to dump tables, schemas, or server instances and load
them into other instances. When you use these utilities to handle the data, MySQL Shell provides
additional functions such as input preprocessing, multithreaded parallel loading, file compression and
decompression, and handling access to Oracle Cloud Infrastructure Object Storage buckets. To get the
best functionality, always use the most recent version available of MySQL Shell's dump and dump loading
utilities.

MySQL Shell's data upload utilities use LOAD DATA LOCAL INFILE statements to upload data, so the
local_infile system variable must be set to ON on the target server instance. You can do this before
uploading the data, and remove it again afterwards. The utilities handle the file transfer requests safely to
deal with the security considerations discussed in this topic.

1091

https://dev.mysql.com/doc/c-api/5.7/en/mysql-options.html
https://dev.mysql.com/doc/c-api/5.7/en/mysql-options.html

Client Programming Security Guidelines

MySQL Shell includes these dump and dump loading utilities:

Table export utility
util.exportTable()

Exports a MySQL relational table into a data file, which can be uploaded
to a MySQL server instance using MySQL Shell's parallel table import
utility, imported to a different application, or used as a logical backup.
The utility has preset options and customization options to produce
different output formats.

Parallel table import utility
util.importTable()

Inports a data file to a MySQL relational table. The data file can be
the output from MySQL Shell's table export utility or another format
supported by the utility's preset and customization options. The utility
can carry out input preprocessing before adding the data to the table. It
can accept multiple data files to merge into a single relational table, and
automatically decompresses compressed files.

Instance dump utility
util.dumpInstance(),
schema dump utility
util.dumpSchemas(),
and table dump utility
util.dumpTables()

Export an instance, schema, or table to a set of dump files, which can
then be uploaded to a MySQL instance using MySQL Shell's dump
loading utility. The utilities provide Oracle Cloud Infrastructure Object
Storage streaming, MySQL HeatWave Service compatibility checks
and modifications, and the ability to carry out a dry run to identify issues
before proceeding with the dump.

Dump loading utility
util.loadDump()

Import dump files created using MySQL Shell's instance, schema, or
table dump utility into a MySQL HeatWave Service DB System or a
MySQL Server instance. The utility manages the upload process and
provides data streaming from remote storage, parallel loading of tables
or table chunks, progress state tracking, resume and reset capability,
and the option of concurrent loading while the dump is still taking place.
MySQL Shell’s parallel table import utility can be used in combination
with the dump loading utility to modify data before uploading it to the
target MySQL instance.

For details of the utilities, see MySQL Shell Utilities.

6.1.7 Client Programming Security Guidelines

Client applications that access MySQL should use the following guidelines to avoid interpreting external
data incorrectly or exposing sensitive information.

• Handle External Data Properly

• Handle MySQL Error Messages Properly

Handle External Data Properly

Applications that access MySQL should not trust any data entered by users, who can try to trick your code
by entering special or escaped character sequences in Web forms, URLs, or whatever application you
have built. Be sure that your application remains secure if a user tries to perform SQL injection by entering
something like ; DROP DATABASE mysql; into a form. This is an extreme example, but large security
leaks and data loss might occur as a result of hackers using similar techniques, if you do not prepare for
them.

A common mistake is to protect only string data values. Remember to check numeric data as well. If an
application generates a query such as SELECT * FROM table WHERE ID=234 when a user enters
the value 234, the user can enter the value 234 OR 1=1 to cause the application to generate the query
SELECT * FROM table WHERE ID=234 OR 1=1. As a result, the server retrieves every row in the

1092

https://dev.mysql.com/doc/mysql-shell/8.0/en/mysql-shell-utilities.html

Client Programming Security Guidelines

table. This exposes every row and causes excessive server load. The simplest way to protect from
this type of attack is to use single quotation marks around the numeric constants: SELECT * FROM
table WHERE ID='234'. If the user enters extra information, it all becomes part of the string. In a
numeric context, MySQL automatically converts this string to a number and strips any trailing nonnumeric
characters from it.

Sometimes people think that if a database contains only publicly available data, it need not be protected.
This is incorrect. Even if it is permissible to display any row in the database, you should still protect against
denial of service attacks (for example, those that are based on the technique in the preceding paragraph
that causes the server to waste resources). Otherwise, your server becomes unresponsive to legitimate
users.

Checklist:

• Enable strict SQL mode to tell the server to be more restrictive of what data values it accepts. See
Section 5.1.10, “Server SQL Modes”.

• Try to enter single and double quotation marks (' and ") in all of your Web forms. If you get any kind of
MySQL error, investigate the problem right away.

• Try to modify dynamic URLs by adding %22 ("), %23 (#), and %27 (') to them.

• Try to modify data types in dynamic URLs from numeric to character types using the characters shown in
the previous examples. Your application should be safe against these and similar attacks.

• Try to enter characters, spaces, and special symbols rather than numbers in numeric fields. Your
application should remove them before passing them to MySQL or else generate an error. Passing
unchecked values to MySQL is very dangerous!

• Check the size of data before passing it to MySQL.

• Have your application connect to the database using a user name different from the one you use for
administrative purposes. Do not give your applications any access privileges they do not need.

Many application programming interfaces provide a means of escaping special characters in data values.
Properly used, this prevents application users from entering values that cause the application to generate
statements that have a different effect than you intend:

• MySQL SQL statements: Use SQL prepared statements and accept data values only by means of
placeholders; see Section 13.5, “Prepared Statements”.

• MySQL C API: Use the mysql_real_escape_string_quote() API call. Alternatively, use the C
API prepared statement interface and accept data values only by means of placeholders; see C API
Prepared Statement Interface.

• MySQL++: Use the escape and quote modifiers for query streams.

• PHP: Use either the mysqli or pdo_mysql extensions, and not the older ext/mysql extension.
The preferred API's support the improved MySQL authentication protocol and passwords, as well as
prepared statements with placeholders. See also MySQL and PHP.

If the older ext/mysql extension must be used, then for escaping use the
mysql_real_escape_string_quote() function and not mysql_escape_string() or
addslashes() because only mysql_real_escape_string_quote() is character set-aware; the
other functions can be “bypassed” when using (invalid) multibyte character sets.

• Perl DBI: Use placeholders or the quote() method.

1093

https://dev.mysql.com/doc/c-api/5.7/en/mysql-real-escape-string-quote.html
https://dev.mysql.com/doc/c-api/5.7/en/c-api-prepared-statement-interface.html
https://dev.mysql.com/doc/c-api/5.7/en/c-api-prepared-statement-interface.html
https://dev.mysql.com/doc/apis-php/en/
https://dev.mysql.com/doc/c-api/5.7/en/mysql-real-escape-string-quote.html
https://dev.mysql.com/doc/c-api/5.7/en/mysql-escape-string.html
https://dev.mysql.com/doc/c-api/5.7/en/mysql-real-escape-string-quote.html

Access Control and Account Management

• Java JDBC: Use a PreparedStatement object and placeholders.

Other programming interfaces might have similar capabilities.

Handle MySQL Error Messages Properly

It is the application's responsibility to intercept errors that occur as a result of executing SQL statements
with the MySQL database server and handle them appropriately.

The information returned in a MySQL error is not gratuitous because that information is key in debugging
MySQL using applications. It would be nearly impossible, for example, to debug a common 10-way join
SELECT statement without providing information regarding which databases, tables, and other objects are
involved with problems. Thus, MySQL errors must sometimes necessarily contain references to the names
of those objects.

A simple but insecure approach for an application when it receives such an error from MySQL is to
intercept it and display it verbatim to the client. However, revealing error information is a known application
vulnerability type (CWE-209) and the application developer must ensure the application does not have this
vulnerability.

For example, an application that displays a message such as this exposes both a database name and a
table name to clients, which is information a client might attempt to exploit:

ERROR 1146 (42S02): Table 'mydb.mytable' does not exist

Instead, the proper behavior for an application when it receives such an error from MySQL is to log
appropriate information, including the error information, to a secure audit location only accessible to trusted
personnel. The application can return something more generic such as “Internal Error” to the user.

6.2 Access Control and Account Management

MySQL enables the creation of accounts that permit client users to connect to the server and access
data managed by the server. The primary function of the MySQL privilege system is to authenticate a
user who connects from a given host and to associate that user with privileges on a database such as
SELECT, INSERT, UPDATE, and DELETE. Additional functionality includes the ability to grant privileges for
administrative operations.

To control which users can connect, each account can be assigned authentication credentials such as a
password. The user interface to MySQL accounts consists of SQL statements such as CREATE USER,
GRANT, and REVOKE. See Section 13.7.1, “Account Management Statements”.

The MySQL privilege system ensures that all users may perform only the operations permitted to them.
As a user, when you connect to a MySQL server, your identity is determined by the host from which you
connect and the user name you specify. When you issue requests after connecting, the system grants
privileges according to your identity and what you want to do.

MySQL considers both your host name and user name in identifying you because there is no reason
to assume that a given user name belongs to the same person on all hosts. For example, the user
joe who connects from office.example.com need not be the same person as the user joe who
connects from home.example.com. MySQL handles this by enabling you to distinguish users on
different hosts that happen to have the same name: You can grant one set of privileges for connections
by joe from office.example.com, and a different set of privileges for connections by joe from
home.example.com. To see what privileges a given account has, use the SHOW GRANTS statement. For
example:

SHOW GRANTS FOR 'joe'@'office.example.com';

1094

http://cwe.mitre.org/data/definitions/209.html

Account User Names and Passwords

SHOW GRANTS FOR 'joe'@'home.example.com';

Internally, the server stores privilege information in the grant tables of the mysql system database. The
MySQL server reads the contents of these tables into memory when it starts and bases access-control
decisions on the in-memory copies of the grant tables.

MySQL access control involves two stages when you run a client program that connects to the server:

Stage 1: The server accepts or rejects the connection based on your identity and whether you can verify
your identity by supplying the correct password.

Stage 2: Assuming that you can connect, the server checks each statement you issue to determine
whether you have sufficient privileges to perform it. For example, if you try to select rows from a table in a
database or drop a table from the database, the server verifies that you have the SELECT privilege for the
table or the DROP privilege for the database.

For a more detailed description of what happens during each stage, see Section 6.2.5, “Access Control,
Stage 1: Connection Verification”, and Section 6.2.6, “Access Control, Stage 2: Request Verification”. For
help in diagnosing privilege-related problems, see Section 6.2.17, “Troubleshooting Problems Connecting
to MySQL”.

If your privileges are changed (either by yourself or someone else) while you are connected, those
changes do not necessarily take effect immediately for the next statement that you issue. For details
about the conditions under which the server reloads the grant tables, see Section 6.2.9, “When Privilege
Changes Take Effect”.

There are some things that you cannot do with the MySQL privilege system:

• You cannot explicitly specify that a given user should be denied access. That is, you cannot explicitly
match a user and then refuse the connection.

• You cannot specify that a user has privileges to create or drop tables in a database but not to create or
drop the database itself.

• A password applies globally to an account. You cannot associate a password with a specific object such
as a database, table, or routine.

6.2.1 Account User Names and Passwords

MySQL stores accounts in the user table of the mysql system database. An account is defined in terms
of a user name and the client host or hosts from which the user can connect to the server. For information
about account representation in the user table, see Section 6.2.3, “Grant Tables”.

An account may also have authentication credentials such as a password. The credentials are handled
by the account authentication plugin. MySQL supports multiple authentication plugins. Some of them
use built-in authentication methods, whereas others enable authentication using external authentication
methods. See Section 6.2.13, “Pluggable Authentication”.

There are several distinctions between the way user names and passwords are used by MySQL and your
operating system:

• User names, as used by MySQL for authentication purposes, have nothing to do with user names (login
names) as used by Windows or Unix. On Unix, most MySQL clients by default try to log in using the
current Unix user name as the MySQL user name, but that is for convenience only. The default can
be overridden easily, because client programs permit any user name to be specified with a -u or --

1095

Account User Names and Passwords

user option. This means that anyone can attempt to connect to the server using any user name, so you
cannot make a database secure in any way unless all MySQL accounts have passwords. Anyone who
specifies a user name for an account that has no password can connect successfully to the server.

• MySQL user names are up to 32 characters long. Operating system user names may have a different
maximum length.

Warning

The MySQL user name length limit is hardcoded in MySQL servers and clients,
and trying to circumvent it by modifying the definitions of the tables in the mysql
database does not work.

You should never alter the structure of tables in the mysql database in any
manner whatsoever except by means of the procedure that is described in
Section 2.10, “Upgrading MySQL”. Attempting to redefine the MySQL system
tables in any other fashion results in undefined and unsupported behavior.
The server is free to ignore rows that become malformed as a result of such
modifications.

• To authenticate client connections for accounts that use built-in authentication methods, the server uses
passwords stored in the user table. These passwords are distinct from passwords for logging in to your
operating system. There is no necessary connection between the “external” password you use to log in
to a Windows or Unix machine and the password you use to access the MySQL server on that machine.

If the server authenticates a client using some other plugin, the authentication method that the plugin
implements may or may not use a password stored in the user table. In this case, it is possible that an
external password is also used to authenticate to the MySQL server.

• Passwords stored in the user table are encrypted using plugin-specific algorithms. For information
about MySQL native password hashing, see Section 6.1.2.4, “Password Hashing in MySQL”.

• If the user name and password contain only ASCII characters, it is possible to connect to the server
regardless of character set settings. To enable connections when the user name or password contain
non-ASCII characters, client applications should call the mysql_options() C API function with the
MYSQL_SET_CHARSET_NAME option and appropriate character set name as arguments. This causes
authentication to take place using the specified character set. Otherwise, authentication fails unless the
server default character set is the same as the encoding in the authentication defaults.

Standard MySQL client programs support a --default-character-set option that causes
mysql_options() to be called as just described. In addition, character set autodetection is
supported as described in Section 10.4, “Connection Character Sets and Collations”. For programs
that use a connector that is not based on the C API, the connector may provide an equivalent to
mysql_options() that can be used instead. Check the connector documentation.

The preceding notes do not apply for ucs2, utf16, and utf32, which are not permitted as client
character sets.

The MySQL installation process populates the grant tables with an initial root account, as described in
Section 2.9.4, “Securing the Initial MySQL Account”, which also discusses how to assign a password to it.
Thereafter, you normally set up, modify, and remove MySQL accounts using statements such as CREATE
USER, DROP USER, GRANT, and REVOKE. See Section 6.2.7, “Adding Accounts, Assigning Privileges, and
Dropping Accounts”, and Section 13.7.1, “Account Management Statements”.

To connect to a MySQL server with a command-line client, specify user name and password options as
necessary for the account that you want to use:

1096

https://dev.mysql.com/doc/c-api/5.7/en/mysql-options.html
https://dev.mysql.com/doc/c-api/5.7/en/mysql-options.html
https://dev.mysql.com/doc/c-api/5.7/en/mysql-options.html

Privileges Provided by MySQL

$> mysql --user=finley --password db_name

If you prefer short options, the command looks like this:

$> mysql -u finley -p db_name

If you omit the password value following the --password or -p option on the command line (as just
shown), the client prompts for one. Alternatively, the password can be specified on the command line:

$> mysql --user=finley --password=password db_name
$> mysql -u finley -ppassword db_name

If you use the -p option, there must be no space between -p and the following password value.

Specifying a password on the command line should be considered insecure. See Section 6.1.2.1, “End-
User Guidelines for Password Security”. To avoid giving the password on the command line, use an option
file or a login path file. See Section 4.2.2.2, “Using Option Files”, and Section 4.6.6, “mysql_config_editor
— MySQL Configuration Utility”.

For additional information about specifying user names, passwords, and other connection parameters, see
Section 4.2.4, “Connecting to the MySQL Server Using Command Options”.

6.2.2 Privileges Provided by MySQL

The privileges granted to a MySQL account determine which operations the account can perform. MySQL
privileges differ in the contexts in which they apply and at different levels of operation:

• Administrative privileges enable users to manage operation of the MySQL server. These privileges are
global because they are not specific to a particular database.

• Database privileges apply to a database and to all objects within it. These privileges can be granted for
specific databases, or globally so that they apply to all databases.

• Privileges for database objects such as tables, indexes, views, and stored routines can be granted for
specific objects within a database, for all objects of a given type within a database (for example, all
tables in a database), or globally for all objects of a given type in all databases.

Information about account privileges is stored in the grant tables in the mysql system database. For a
description of the structure and contents of these tables, see Section 6.2.3, “Grant Tables”. The MySQL
server reads the contents of the grant tables into memory when it starts, and reloads them under the
circumstances indicated in Section 6.2.9, “When Privilege Changes Take Effect”. The server bases
access-control decisions on the in-memory copies of the grant tables.

Important

Some MySQL releases introduce changes to the grant tables to add new privileges
or features. To make sure that you can take advantage of any new capabilities,
update your grant tables to the current structure whenever you upgrade MySQL.
See Section 2.10, “Upgrading MySQL”.

The following sections summarize the available privileges, provide more detailed descriptions of each
privilege, and offer usage guidelines.

• Summary of Available Privileges

• Privilege Descriptions

1097

Privileges Provided by MySQL

• Privilege-Granting Guidelines

Summary of Available Privileges

The following table shows the privilege names used in GRANT and REVOKE statements, along with the
column name associated with each privilege in the grant tables and the context in which the privilege
applies.

Table 6.2 Permissible Privileges for GRANT and REVOKE

Privilege Grant Table Column Context

ALL [PRIVILEGES] Synonym for “all privileges” Server administration

ALTER Alter_priv Tables

ALTER ROUTINE Alter_routine_priv Stored routines

CREATE Create_priv Databases, tables, or indexes

CREATE ROUTINE Create_routine_priv Stored routines

CREATE TABLESPACE Create_tablespace_priv Server administration

CREATE TEMPORARY TABLES Create_tmp_table_priv Tables

CREATE USER Create_user_priv Server administration

CREATE VIEW Create_view_priv Views

DELETE Delete_priv Tables

DROP Drop_priv Databases, tables, or views

EVENT Event_priv Databases

EXECUTE Execute_priv Stored routines

FILE File_priv File access on server host

GRANT OPTION Grant_priv Databases, tables, or stored
routines

INDEX Index_priv Tables

INSERT Insert_priv Tables or columns

LOCK TABLES Lock_tables_priv Databases

PROCESS Process_priv Server administration

PROXY See proxies_priv table Server administration

REFERENCES References_priv Databases or tables

RELOAD Reload_priv Server administration

REPLICATION CLIENT Repl_client_priv Server administration

REPLICATION SLAVE Repl_slave_priv Server administration

SELECT Select_priv Tables or columns

SHOW DATABASES Show_db_priv Server administration

SHOW VIEW Show_view_priv Views

SHUTDOWN Shutdown_priv Server administration

SUPER Super_priv Server administration

TRIGGER Trigger_priv Tables

1098

Privileges Provided by MySQL

Privilege Grant Table Column Context

UPDATE Update_priv Tables or columns

USAGE Synonym for “no privileges” Server administration

Privilege Descriptions

The following list provides general descriptions of each privilege available in MySQL. Particular SQL
statements might have more specific privilege requirements than indicated here. If so, the description for
the statement in question provides the details.

• ALL, ALL PRIVILEGES

These privilege specifiers are shorthand for “all privileges available at a given privilege level” (except
GRANT OPTION). For example, granting ALL at the global or table level grants all global privileges or all
table-level privileges, respectively.

• ALTER

Enables use of the ALTER TABLE statement to change the structure of tables. ALTER TABLE also
requires the CREATE and INSERT privileges. Renaming a table requires ALTER and DROP on the old
table, CREATE, and INSERT on the new table.

• ALTER ROUTINE

Enables use of statements that alter or drop stored routines (stored procedures and functions).

• CREATE

Enables use of statements that create new databases and tables.

• CREATE ROUTINE

Enables use of statements that create stored routines (stored procedures and functions).

• CREATE TABLESPACE

Enables use of statements that create, alter, or drop tablespaces and log file groups.

• CREATE TEMPORARY TABLES

Enables the creation of temporary tables using the CREATE TEMPORARY TABLE statement.

After a session has created a temporary table, the server performs no further privilege checks on the
table. The creating session can perform any operation on the table, such as DROP TABLE, INSERT,
UPDATE, or SELECT. For more information, see Section 13.1.18.2, “CREATE TEMPORARY TABLE
Statement”.

• CREATE USER

Enables use of the ALTER USER, CREATE USER, DROP USER, RENAME USER, and REVOKE ALL
PRIVILEGES statements.

• CREATE VIEW

Enables use of the CREATE VIEW statement.

• DELETE

1099

Privileges Provided by MySQL

Enables rows to be deleted from tables in a database.

• DROP

Enables use of statements that drop (remove) existing databases, tables, and views. The DROP privilege
is required to use the ALTER TABLE ... DROP PARTITION statement on a partitioned table. The
DROP privilege is also required for TRUNCATE TABLE.

• EVENT

Enables use of statements that create, alter, drop, or display events for the Event Scheduler.

• EXECUTE

Enables use of statements that execute stored routines (stored procedures and functions).

• FILE

Affects the following operations and server behaviors:

• Enables reading and writing files on the server host using the LOAD DATA and SELECT ... INTO
OUTFILE statements and the LOAD_FILE() function. A user who has the FILE privilege can read
any file on the server host that is either world-readable or readable by the MySQL server. (This implies
the user can read any file in any database directory, because the server can access any of those
files.)

• Enables creating new files in any directory where the MySQL server has write access. This includes
the server's data directory containing the files that implement the privilege tables.

• As of MySQL 5.7.17, enables use of the DATA DIRECTORY or INDEX DIRECTORY table option for the
CREATE TABLE statement.

As a security measure, the server does not overwrite existing files.

To limit the location in which files can be read and written, set the secure_file_priv system variable
to a specific directory. See Section 5.1.7, “Server System Variables”.

• GRANT OPTION

Enables you to grant to or revoke from other users those privileges that you yourself possess.

• INDEX

Enables use of statements that create or drop (remove) indexes. INDEX applies to existing tables. If
you have the CREATE privilege for a table, you can include index definitions in the CREATE TABLE
statement.

• INSERT

Enables rows to be inserted into tables in a database. INSERT is also required for the ANALYZE TABLE,
OPTIMIZE TABLE, and REPAIR TABLE table-maintenance statements.

• LOCK TABLES

Enables use of explicit LOCK TABLES statements to lock tables for which you have the SELECT
privilege. This includes use of write locks, which prevents other sessions from reading the locked table.

• PROCESS

1100

Privileges Provided by MySQL

The PROCESS privilege controls access to information about threads executing within the server
(that is, information about statements being executed by sessions). Thread information available
using the SHOW PROCESSLIST statement, the mysqladmin processlist command, the
INFORMATION_SCHEMA.PROCESSLIST table, and the Performance Schema processlist table is
accessible as follows:

• With the PROCESS privilege, a user has access to information about all threads, even those belonging
to other users.

• Without the PROCESS privilege, nonanonymous users have access to information about their own
threads but not threads for other users, and anonymous users have no access to thread information.

Note

The Performance Schema threads table also provides thread information,
but table access uses a different privilege model. See Section 25.12.16.4, “The
threads Table”.

The PROCESS privilege also enables use of the SHOW ENGINE statement, access to the
INFORMATION_SCHEMA InnoDB tables (tables with names that begin with INNODB_), and (as of MySQL
5.7.31) access to the INFORMATION_SCHEMA FILES table.

• PROXY

Enables one user to impersonate or become known as another user. See Section 6.2.14, “Proxy Users”.

• REFERENCES

Creation of a foreign key constraint requires the REFERENCES privilege for the parent table.

• RELOAD

The RELOAD enables the following operations:

• Use of the FLUSH statement.

• Use of mysqladmin commands that are equivalent to FLUSH operations: flush-hosts, flush-
logs, flush-privileges, flush-status, flush-tables, flush-threads, refresh, and
reload.

The reload command tells the server to reload the grant tables into memory. flush-privileges
is a synonym for reload. The refresh command closes and reopens the log files and flushes all
tables. The other flush-xxx commands perform functions similar to refresh, but are more specific
and may be preferable in some instances. For example, if you want to flush just the log files, flush-
logs is a better choice than refresh.

• Use of mysqldump options that perform various FLUSH operations: --flush-logs and --master-
data.

• Use of the RESET statement.

• REPLICATION CLIENT

Enables use of the SHOW MASTER STATUS, SHOW SLAVE STATUS, and SHOW BINARY LOGS
statements.

• REPLICATION SLAVE

1101

Privileges Provided by MySQL

Enables the account to request updates that have been made to databases on the source server, using
the SHOW SLAVE HOSTS, SHOW RELAYLOG EVENTS, and SHOW BINLOG EVENTS statements. This
privilege is also required to use the mysqlbinlog options --read-from-remote-server (-R) and
--read-from-remote-master. Grant this privilege to accounts that are used by replica servers to
connect to the current server as their source.

• SELECT

Enables rows to be selected from tables in a database. SELECT statements require the SELECT privilege
only if they actually access tables. Some SELECT statements do not access tables and can be executed
without permission for any database. For example, you can use SELECT as a simple calculator to
evaluate expressions that make no reference to tables:

SELECT 1+1;
SELECT PI()*2;

The SELECT privilege is also needed for other statements that read column values. For example,
SELECT is needed for columns referenced on the right hand side of col_name=expr assignment in
UPDATE statements or for columns named in the WHERE clause of DELETE or UPDATE statements.

The SELECT privilege is needed for tables or views used with EXPLAIN, including any underlying tables
in view definitions.

• SHOW DATABASES

Enables the account to see database names by issuing the SHOW DATABASE statement. Accounts that
do not have this privilege see only databases for which they have some privileges, and cannot use the
statement at all if the server was started with the --skip-show-database option.

Caution

Because a global privilege is considered a privilege for all databases, any global
privilege enables a user to see all database names with SHOW DATABASES or by
examining the INFORMATION_SCHEMA SCHEMATA table.

• SHOW VIEW

Enables use of the SHOW CREATE VIEW statement. This privilege is also needed for views used with
EXPLAIN.

• SHUTDOWN

Enables use of the SHUTDOWN statement, the mysqladmin shutdown command, and the
mysql_shutdown() C API function.

• SUPER

Affects the following operations and server behaviors:

• Enables server configuration changes by modifying global system variables. For some system
variables, setting the session value also requires the SUPER privilege. If a system variable is restricted
and requires a special privilege to set the session value, the variable description indicates that
restriction. Examples include binlog_format, sql_log_bin, and sql_log_off. See also
Section 5.1.8.1, “System Variable Privileges”.

• Enables changes to global transaction characteristics (see Section 13.3.6, “SET TRANSACTION
Statement”).

1102

https://dev.mysql.com/doc/c-api/5.7/en/mysql-shutdown.html

Privileges Provided by MySQL

• Enables the account to start and stop replication, including Group Replication.

• Enables use of the CHANGE MASTER TO and CHANGE REPLICATION FILTER statements.

• Enables binary log control by means of the PURGE BINARY LOGS and BINLOG statements.

• Enables setting the effective authorization ID when executing a view or stored program. A user with
this privilege can specify any account in the DEFINER attribute of a view or stored program.

• Enables use of the CREATE SERVER, ALTER SERVER, and DROP SERVER statements.

• Enables use of the mysqladmin debug command.

• Enables InnoDB encryption key rotation.

• Enables reading the DES key file by the DES_ENCRYPT() function.

• Enables execution of Version Tokens functions.

• Enables control over client connections not permitted to non-SUPER accounts:

• Enables use of the KILL statement or mysqladmin kill command to kill threads belonging to
other accounts. (An account can always kill its own threads.)

• The server does not execute init_connect system variable content when SUPER clients connect.

• The server accepts one connection from a SUPER client even if the connection limit configured by
the max_connections system variable is reached.

• A server in offline mode (offline_mode enabled) does not terminate SUPER client connections at
the next client request, and accepts new connections from SUPER clients.

• Updates can be performed even when the read_only system variable is enabled. This applies to
explicit table updates, and to use of account-management statements such as GRANT and REVOKE
that update tables implicitly.

You may also need the SUPER privilege to create or alter stored functions if binary logging is enabled, as
described in Section 23.7, “Stored Program Binary Logging”.

• TRIGGER

Enables trigger operations. You must have this privilege for a table to create, drop, execute, or display
triggers for that table.

When a trigger is activated (by a user who has privileges to execute INSERT, UPDATE, or DELETE
statements for the table associated with the trigger), trigger execution requires that the user who defined
the trigger still have the TRIGGER privilege for the table.

• UPDATE

Enables rows to be updated in tables in a database.

• USAGE

This privilege specifier stands for “no privileges.” It is used at the global level with GRANT to modify
account attributes such as resource limits or SSL characteristics without naming specific account

1103

Grant Tables

privileges in the privilege list. SHOW GRANTS displays USAGE to indicate that an account has no
privileges at a privilege level.

Privilege-Granting Guidelines

It is a good idea to grant to an account only those privileges that it needs. You should exercise particular
caution in granting the FILE and administrative privileges:

• FILE can be abused to read into a database table any files that the MySQL server can read on the
server host. This includes all world-readable files and files in the server's data directory. The table can
then be accessed using SELECT to transfer its contents to the client host.

• GRANT OPTION enables users to give their privileges to other users. Two users that have different
privileges and with the GRANT OPTION privilege are able to combine privileges.

• ALTER may be used to subvert the privilege system by renaming tables.

• SHUTDOWN can be abused to deny service to other users entirely by terminating the server.

• PROCESS can be used to view the plain text of currently executing statements, including statements that
set or change passwords.

• SUPER can be used to terminate other sessions or change how the server operates.

• Privileges granted for the mysql system database itself can be used to change passwords and other
access privilege information:

• Passwords are stored encrypted, so a malicious user cannot simply read them to know the
plain text password. However, a user with write access to the mysql.user system table
authentication_string column can change an account's password, and then connect to the
MySQL server using that account.

• INSERT or UPDATE granted for the mysql system database enable a user to add privileges or modify
existing privileges, respectively.

• DROP for the mysql system database enables a user to remote privilege tables, or even the database
itself.

6.2.3 Grant Tables

The mysql system database includes several grant tables that contain information about user accounts
and the privileges held by them. This section describes those tables. For information about other tables in
the system database, see Section 5.3, “The mysql System Database”.

The discussion here describes the underlying structure of the grant tables and how the server uses
their contents when interacting with clients. However, normally you do not modify the grant tables
directly. Modifications occur indirectly when you use account-management statements such as CREATE
USER, GRANT, and REVOKE to set up accounts and control the privileges available to each one. See
Section 13.7.1, “Account Management Statements”. When you use such statements to perform account
manipulations, the server modifies the grant tables on your behalf.

Note

Direct modification of grant tables using statements such as INSERT, UPDATE, or
DELETE is discouraged and done at your own risk. The server is free to ignore rows
that become malformed as a result of such modifications.

1104

Grant Tables

As of MySQL 5.7.18, for any operation that modifies a grant table, the server
checks whether the table has the expected structure and produces an error if
not. To update the tables to the expected structure, perform the MySQL upgrade
procedure. See Section 2.10, “Upgrading MySQL”.

• Grant Table Overview

• The user and db Grant Tables

• The tables_priv and columns_priv Grant Tables

• The procs_priv Grant Table

• The proxies_priv Grant Table

• Grant Table Scope Column Properties

• Grant Table Privilege Column Properties

Grant Table Overview

These mysql database tables contain grant information:

• user: User accounts, global privileges, and other nonprivilege columns.

• db: Database-level privileges.

• tables_priv: Table-level privileges.

• columns_priv: Column-level privileges.

• procs_priv: Stored procedure and function privileges.

• proxies_priv: Proxy-user privileges.

Each grant table contains scope columns and privilege columns:

• Scope columns determine the scope of each row in the tables; that is, the context in which the row
applies. For example, a user table row with Host and User values of 'h1.example.net' and
'bob' applies to authenticating connections made to the server from the host h1.example.net by
a client that specifies a user name of bob. Similarly, a db table row with Host, User, and Db column
values of 'h1.example.net', 'bob' and 'reports' applies when bob connects from the host
h1.example.net to access the reports database. The tables_priv and columns_priv tables
contain scope columns indicating tables or table/column combinations to which each row applies. The
procs_priv scope columns indicate the stored routine to which each row applies.

• Privilege columns indicate which privileges a table row grants; that is, which operations it permits to
be performed. The server combines the information in the various grant tables to form a complete
description of a user's privileges. Section 6.2.6, “Access Control, Stage 2: Request Verification”,
describes the rules for this.

In addition, a grant table may contain columns used for purposes other than scope or privilege
assessment.

The server uses the grant tables in the following manner:

• The user table scope columns determine whether to reject or permit incoming connections. For
permitted connections, any privileges granted in the user table indicate the user's global privileges. Any
privileges granted in this table apply to all databases on the server.

1105

Grant Tables

Caution

Because a global privilege is considered a privilege for all databases, any global
privilege enables a user to see all database names with SHOW DATABASES or by
examining the INFORMATION_SCHEMA SCHEMATA table.

• The db table scope columns determine which users can access which databases from which hosts. The
privilege columns determine the permitted operations. A privilege granted at the database level applies
to the database and to all objects in the database, such as tables and stored programs.

• The tables_priv and columns_priv tables are similar to the db table, but are more fine-grained:
They apply at the table and column levels rather than at the database level. A privilege granted at the
table level applies to the table and to all its columns. A privilege granted at the column level applies only
to a specific column.

• The procs_priv table applies to stored routines (stored procedures and functions). A privilege granted
at the routine level applies only to a single procedure or function.

• The proxies_priv table indicates which users can act as proxies for other users and whether a user
can grant the PROXY privilege to other users.

The server reads the contents of the grant tables into memory when it starts. You can tell it to reload the
tables by issuing a FLUSH PRIVILEGES statement or executing a mysqladmin flush-privileges
or mysqladmin reload command. Changes to the grant tables take effect as indicated in Section 6.2.9,
“When Privilege Changes Take Effect”.

When you modify an account, it is a good idea to verify that your changes have the intended effect.
To check the privileges for a given account, use the SHOW GRANTS statement. For example, to
determine the privileges that are granted to an account with user name and host name values of bob and
pc84.example.com, use this statement:

SHOW GRANTS FOR 'bob'@'pc84.example.com';

To display nonprivilege properties of an account, use SHOW CREATE USER:

SHOW CREATE USER 'bob'@'pc84.example.com';

The user and db Grant Tables

The server uses the user and db tables in the mysql database at both the first and second stages of
access control (see Section 6.2, “Access Control and Account Management”). The columns in the user
and db tables are shown here.

Table 6.3 user and db Table Columns

Table Name user db

Scope columns Host Host

User Db

User

Privilege columns Select_priv Select_priv

Insert_priv Insert_priv

Update_priv Update_priv

Delete_priv Delete_priv

Index_priv Index_priv

1106

Grant Tables

Table Name user db

Alter_priv Alter_priv

Create_priv Create_priv

Drop_priv Drop_priv

Grant_priv Grant_priv

Create_view_priv Create_view_priv

Show_view_priv Show_view_priv

Create_routine_priv Create_routine_priv

Alter_routine_priv Alter_routine_priv

Execute_priv Execute_priv

Trigger_priv Trigger_priv

Event_priv Event_priv

Create_tmp_table_priv Create_tmp_table_priv

Lock_tables_priv Lock_tables_priv

References_priv References_priv

Reload_priv

Shutdown_priv

Process_priv

File_priv

Show_db_priv

Super_priv

Repl_slave_priv

Repl_client_priv

Create_user_priv

Create_tablespace_priv

Security columns ssl_type

ssl_cipher

x509_issuer

x509_subject

plugin

authentication_string

password_expired

password_last_changed

password_lifetime

account_locked

Resource control columns max_questions

max_updates

max_connections

max_user_connections

1107

Grant Tables

The user table plugin and authentication_string columns store authentication plugin and
credential information.

The server uses the plugin named in the plugin column of an account row to authenticate connection
attempts for the account.

The plugin column must be nonempty. At startup, and at runtime when FLUSH PRIVILEGES is
executed, the server checks user table rows. For any row with an empty plugin column, the server
writes a warning to the error log of this form:

[Warning] User entry 'user_name'@'host_name' has an empty plugin
value. The user will be ignored and no one can login with this user
anymore.

To address this problem, see Section 6.4.1.3, “Migrating Away from Pre-4.1 Password Hashing and the
mysql_old_password Plugin”.

The password_expired column permits DBAs to expire account passwords and require users to reset
their password. The default password_expired value is 'N', but can be set to 'Y' with the ALTER
USER statement. After an account's password has been expired, all operations performed by the account in
subsequent connections to the server result in an error until the user issues an ALTER USER statement to
establish a new account password.

Note

Although it is possible to “reset” an expired password by setting it to its current
value, it is preferable, as a matter of good policy, to choose a different password.

password_last_changed is a TIMESTAMP column indicating when the password was last changed. The
value is non-NULL only for accounts that use MySQL built-in authentication methods (accounts that use an
authentication plugin of mysql_native_password or sha256_password). The value is NULL for other
accounts, such as those authenticated using an external authentication system.

password_last_changed is updated by the CREATE USER, ALTER USER, and SET PASSWORD
statements, and by GRANT statements that create an account or change an account password.

password_lifetime indicates the account password lifetime, in days. If the password is past its lifetime
(assessed using the password_last_changed column), the server considers the password expired
when clients connect using the account. A value of N greater than zero means that the password must
be changed every N days. A value of 0 disables automatic password expiration. If the value is NULL (the
default), the global expiration policy applies, as defined by the default_password_lifetime system
variable.

account_locked indicates whether the account is locked (see Section 6.2.15, “Account Locking”).

The tables_priv and columns_priv Grant Tables

During the second stage of access control, the server performs request verification to ensure that each
client has sufficient privileges for each request that it issues. In addition to the user and db grant tables,
the server may also consult the tables_priv and columns_priv tables for requests that involve tables.
The latter tables provide finer privilege control at the table and column levels. They have the columns
shown in the following table.

Table 6.4 tables_priv and columns_priv Table Columns

Table Name tables_priv columns_priv

Scope columns Host Host

1108

Grant Tables

Table Name tables_priv columns_priv

Db Db

User User

Table_name Table_name

Column_name

Privilege columns Table_priv Column_priv

Column_priv

Other columns Timestamp Timestamp

Grantor

The Timestamp and Grantor columns are set to the current timestamp and the CURRENT_USER value,
respectively, but are otherwise unused.

The procs_priv Grant Table

For verification of requests that involve stored routines, the server may consult the procs_priv table,
which has the columns shown in the following table.

Table 6.5 procs_priv Table Columns

Table Name procs_priv

Scope columns Host

Db

User

Routine_name

Routine_type

Privilege columns Proc_priv

Other columns Timestamp

Grantor

The Routine_type column is an ENUM column with values of 'FUNCTION' or 'PROCEDURE' to indicate
the type of routine the row refers to. This column enables privileges to be granted separately for a function
and a procedure with the same name.

The Timestamp and Grantor columns are unused.

The proxies_priv Grant Table

The proxies_priv table records information about proxy accounts. It has these columns:

• Host, User: The proxy account; that is, the account that has the PROXY privilege for the proxied
account.

• Proxied_host, Proxied_user: The proxied account.

• Grantor, Timestamp: Unused.

• With_grant: Whether the proxy account can grant the PROXY privilege to other accounts.

For an account to be able to grant the PROXY privilege to other accounts, it must have a row in the
proxies_priv table with With_grant set to 1 and Proxied_host and Proxied_user set to indicate

1109

Grant Tables

the account or accounts for which the privilege can be granted. For example, the 'root'@'localhost'
account created during MySQL installation has a row in the proxies_priv table that enables granting
the PROXY privilege for ''@'', that is, for all users and all hosts. This enables root to set up proxy users,
as well as to delegate to other accounts the authority to set up proxy users. See Section 6.2.14, “Proxy
Users”.

Grant Table Scope Column Properties

Scope columns in the grant tables contain strings. The default value for each is the empty string. The
following table shows the number of characters permitted in each column.

Table 6.6 Grant Table Scope Column Lengths

Column Name Maximum Permitted Characters

Host, Proxied_host 60

User, Proxied_user 32

Password 41

Db 64

Table_name 64

Column_name 64

Routine_name 64

Host and Proxied_host values are converted to lowercase before being stored in the grant tables.

For access-checking purposes, comparisons of User, Proxied_user, Password,
authentication_string, Db, and Table_name values are case-sensitive. Comparisons of Host,
Proxied_host, Column_name, and Routine_name values are not case-sensitive.

Grant Table Privilege Column Properties

The user and db tables list each privilege in a separate column that is declared as ENUM('N','Y')
DEFAULT 'N'. In other words, each privilege can be disabled or enabled, with the default being disabled.

The tables_priv, columns_priv, and procs_priv tables declare the privilege columns as SET
columns. Values in these columns can contain any combination of the privileges controlled by the table.
Only those privileges listed in the column value are enabled.

Table 6.7 Set-Type Privilege Column Values

Table Name Column Name Possible Set Elements

tables_priv Table_priv 'Select', 'Insert',
'Update', 'Delete',
'Create', 'Drop',
'Grant', 'References',
'Index', 'Alter', 'Create
View', 'Show view',
'Trigger'

tables_priv Column_priv 'Select', 'Insert',
'Update', 'References'

columns_priv Column_priv 'Select', 'Insert',
'Update', 'References'

1110

Specifying Account Names

Table Name Column Name Possible Set Elements

procs_priv Proc_priv 'Execute', 'Alter
Routine', 'Grant'

Only the user table specifies administrative privileges, such as RELOAD and SHUTDOWN. Administrative
operations are operations on the server itself and are not database-specific, so there is no reason to list
these privileges in the other grant tables. Consequently, the server need consult only the user table to
determine whether a user can perform an administrative operation.

The FILE privilege also is specified only in the user table. It is not an administrative privilege as such, but
a user's ability to read or write files on the server host is independent of the database being accessed.

6.2.4 Specifying Account Names

MySQL account names consist of a user name and a host name, which enables creation of distinct
accounts for users with the same user name who connect from different hosts. This section describes the
syntax for account names, including special values and wildcard rules.

Account names appear in SQL statements such as CREATE USER, GRANT, and SET PASSWORD and
follow these rules:

• Account name syntax is 'user_name'@'host_name'.

• The @'host_name' part is optional. An account name consisting only of a user name is equivalent to
'user_name'@'%'. For example, 'me' is equivalent to 'me'@'%'.

• The user name and host name need not be quoted if they are legal as unquoted identifiers. Quotes must
be used if a user_name string contains special characters (such as space or -), or a host_name string
contains special characters or wildcard characters (such as . or %). For example, in the account name
'test-user'@'%.com', both the user name and host name parts require quotes.

• Quote user names and host names as identifiers or as strings, using either backticks (`), single
quotation marks ('), or double quotation marks ("). For string-quoting and identifier-quoting guidelines,
see Section 9.1.1, “String Literals”, and Section 9.2, “Schema Object Names”.

• The user name and host name parts, if quoted, must be quoted separately. That is,
write 'me'@'localhost', not 'me@localhost'. The latter is actually equivalent to
'me@localhost'@'%'.

• A reference to the CURRENT_USER or CURRENT_USER() function is equivalent to specifying the current
client's user name and host name literally.

MySQL stores account names in grant tables in the mysql system database using separate columns for
the user name and host name parts:

• The user table contains one row for each account. The User and Host columns store the user name
and host name. This table also indicates which global privileges the account has.

• Other grant tables indicate privileges an account has for databases and objects within databases. These
tables have User and Host columns to store the account name. Each row in these tables associates
with the account in the user table that has the same User and Host values.

• For access-checking purposes, comparisons of User values are case-sensitive. Comparisons of Host
values are not case-sensitive.

For additional detail about the properties of user names and host names as stored in the grant tables, such
as maximum length, see Grant Table Scope Column Properties.

1111

Specifying Account Names

User names and host names have certain special values or wildcard conventions, as described following.

The user name part of an account name is either a nonblank value that literally matches the user name for
incoming connection attempts, or a blank value (the empty string) that matches any user name. An account
with a blank user name is an anonymous user. To specify an anonymous user in SQL statements, use a
quoted empty user name part, such as ''@'localhost'.

The host name part of an account name can take many forms, and wildcards are permitted:

• A host value can be a host name or an IP address (IPv4 or IPv6). The name 'localhost' indicates the
local host. The IP address '127.0.0.1' indicates the IPv4 loopback interface. The IP address '::1'
indicates the IPv6 loopback interface.

• The % and _ wildcard characters are permitted in host name or IP address values. These have the same
meaning as for pattern-matching operations performed with the LIKE operator. For example, a host
value of '%' matches any host name, whereas a value of '%.mysql.com' matches any host in the
mysql.com domain. '198.51.100.%' matches any host in the 198.51.100 class C network.

Because IP wildcard values are permitted in host values (for example, '198.51.100.%' to
match every host on a subnet), someone could try to exploit this capability by naming a host
198.51.100.somewhere.com. To foil such attempts, MySQL does not perform matching on host
names that start with digits and a dot. For example, if a host is named 1.2.example.com, its name
never matches the host part of account names. An IP wildcard value can match only IP addresses, not
host names.

• For a host value specified as an IPv4 address, a netmask can be given to indicate how many address
bits to use for the network number. Netmask notation cannot be used for IPv6 addresses.

The syntax is host_ip/netmask. For example:

CREATE USER 'david'@'198.51.100.0/255.255.255.0';

This enables david to connect from any client host having an IP address client_ip for which the
following condition is true:

client_ip & netmask = host_ip

That is, for the CREATE USER statement just shown:

client_ip & 255.255.255.0 = 198.51.100.0

IP addresses that satisfy this condition range from 198.51.100.0 to 198.51.100.255.

A netmask typically begins with bits set to 1, followed by bits set to 0. Examples:

• 198.0.0.0/255.0.0.0: Any host on the 198 class A network

• 198.51.0.0/255.255.0.0: Any host on the 198.51 class B network

• 198.51.100.0/255.255.255.0: Any host on the 198.51.100 class C network

• 198.51.100.1: Only the host with this specific IP address

The server performs matching of host values in account names against the client host using the value
returned by the system DNS resolver for the client host name or IP address. Except in the case that the
account host value is specified using netmask notation, the server performs this comparison as a string
match, even for an account host value given as an IP address. This means that you should specify account
host values in the same format used by DNS. Here are examples of problems to watch out for:

1112

Access Control, Stage 1: Connection Verification

• Suppose that a host on the local network has a fully qualified name of host1.example.com. If DNS
returns name lookups for this host as host1.example.com, use that name in account host values. If
DNS returns just host1, use host1 instead.

• If DNS returns the IP address for a given host as 198.51.100.2, that matches an account host
value of 198.51.100.2 but not 198.051.100.2. Similarly, it matches an account host pattern like
198.51.100.% but not 198.051.100.%.

To avoid problems like these, it is advisable to check the format in which your DNS returns host names and
addresses. Use values in the same format in MySQL account names.

6.2.5 Access Control, Stage 1: Connection Verification

When you attempt to connect to a MySQL server, the server accepts or rejects the connection based on
these conditions:

• Your identity and whether you can verify it by supplying the proper credentials.

• Whether your account is locked or unlocked.

The server checks credentials first, then account locking state. A failure at either step causes the server to
deny access to you completely. Otherwise, the server accepts the connection, and then enters Stage 2 and
waits for requests.

The server performs identity and credentials checking using columns in the user table, accepting the
connection only if these conditions are satisfied:

• The client host name and user name match the Host and User columns in some user table row. For
the rules governing permissible Host and User values, see Section 6.2.4, “Specifying Account Names”.

• The client supplies the credentials specified in the row (for example, a password), as indicated by the
authentication_string column. Credentials are interpreted using the authentication plugin named
in the plugin column.

• The row indicates that the account is unlocked. Locking state is recorded in the account_locked
column, which must have a value of 'N'. Account locking can be set or changed with the CREATE USER
or ALTER USER statement.

Your identity is based on two pieces of information:

• Your MySQL user name.

• The client host from which you connect.

If the User column value is nonblank, the user name in an incoming connection must match exactly. If the
User value is blank, it matches any user name. If the user table row that matches an incoming connection
has a blank user name, the user is considered to be an anonymous user with no name, not a user with the
name that the client actually specified. This means that a blank user name is used for all further access
checking for the duration of the connection (that is, during Stage 2).

The authentication_string column can be blank. This is not a wildcard and does not mean that any
password matches. It means that the user must connect without specifying a password. The authentication
method implemented by the plugin that authenticates the client may or may not use the password in the
authentication_string column. In this case, it is possible that an external password is also used to
authenticate to the MySQL server.

1113

Access Control, Stage 1: Connection Verification

Nonblank password values stored in the authentication_string column of the user table are
encrypted. MySQL does not store passwords as cleartext for anyone to see. Rather, the password
supplied by a user who is attempting to connect is encrypted (using the password hashing method
implemented by the account authentication plugin). The encrypted password then is used during the
connection process when checking whether the password is correct. This is done without the encrypted
password ever traveling over the connection. See Section 6.2.1, “Account User Names and Passwords”.

From the MySQL server's point of view, the encrypted password is the real password, so you should never
give anyone access to it. In particular, do not give nonadministrative users read access to tables in the
mysql system database.

The following table shows how various combinations of User and Host values in the user table apply to
incoming connections.

User Value Host Value Permissible Connections

'fred' 'h1.example.net' fred, connecting from
h1.example.net

'' 'h1.example.net' Any user, connecting from
h1.example.net

'fred' '%' fred, connecting from any host

'' '%' Any user, connecting from any
host

'fred' '%.example.net' fred, connecting from any host in
the example.net domain

'fred' 'x.example.%' fred, connecting from
x.example.net,
x.example.com,
x.example.edu, and so on; this
is probably not useful

'fred' '198.51.100.177' fred, connecting from
the host with IP address
198.51.100.177

'fred' '198.51.100.%' fred, connecting from any host in
the 198.51.100 class C subnet

'fred' '198.51.100.0/255.255.255.0'Same as previous example

It is possible for the client host name and user name of an incoming connection to match more than one
row in the user table. The preceding set of examples demonstrates this: Several of the entries shown
match a connection from h1.example.net by fred.

When multiple matches are possible, the server must determine which of them to use. It resolves this issue
as follows:

• Whenever the server reads the user table into memory, it sorts the rows.

• When a client attempts to connect, the server looks through the rows in sorted order.

• The server uses the first row that matches the client host name and user name.

The server uses sorting rules that order rows with the most-specific Host values first:

• Literal IP addresses and host names are the most specific.

1114

Access Control, Stage 1: Connection Verification

• The specificity of a literal IP address is not affected by whether it has a netmask, so 198.51.100.13
and 198.51.100.0/255.255.255.0 are considered equally specific.

• The pattern '%' means “any host” and is least specific.

• The empty string '' also means “any host” but sorts after '%'.

Non-TCP (socket file, named pipe, and shared memory) connections are treated as local connections and
match a host part of localhost if there are any such accounts, or host parts with wildcards that match
localhost otherwise (for example, local%, l%, %).

Rows with the same Host value are ordered with the most-specific User values first. A blank User value
means “any user” and is least specific, so for rows with the same Host value, nonanonymous users sort
before anonymous users.

For rows with equally-specific Host and User values, the order is nondeterministic.

To see how this works, suppose that the user table looks like this:

+-----------+----------+-
| Host | User | ...
+-----------+----------+-
| % | root | ...
| % | jeffrey | ...
| localhost | root | ...
| localhost | | ...
+-----------+----------+-

When the server reads the table into memory, it sorts the rows using the rules just described. The result
after sorting looks like this:

+-----------+----------+-
| Host | User | ...
+-----------+----------+-
| localhost | root | ...
| localhost | | ...
| % | jeffrey | ...
| % | root | ...
+-----------+----------+-

When a client attempts to connect, the server looks through the sorted rows and uses the first match
found. For a connection from localhost by jeffrey, two of the rows from the table match: the one with
Host and User values of 'localhost' and '', and the one with values of '%' and 'jeffrey'. The
'localhost' row appears first in sorted order, so that is the one the server uses.

Here is another example. Suppose that the user table looks like this:

+----------------+----------+-
| Host | User | ...
+----------------+----------+-
| % | jeffrey | ...
| h1.example.net | | ...
+----------------+----------+-

The sorted table looks like this:

+----------------+----------+-
| Host | User | ...
+----------------+----------+-
| h1.example.net | | ...
| % | jeffrey | ...

1115

Access Control, Stage 2: Request Verification

+----------------+----------+-

The first row matches a connection by any user from h1.example.net, whereas the second row matches
a connection by jeffrey from any host.

Note

It is a common misconception to think that, for a given user name, all rows that
explicitly name that user are used first when the server attempts to find a match
for the connection. This is not true. The preceding example illustrates this, where
a connection from h1.example.net by jeffrey is first matched not by the row
containing 'jeffrey' as the User column value, but by the row with no user
name. As a result, jeffrey is authenticated as an anonymous user, even though
he specified a user name when connecting.

If you are able to connect to the server, but your privileges are not what you expect, you probably are
being authenticated as some other account. To find out what account the server used to authenticate you,
use the CURRENT_USER() function. (See Section 12.15, “Information Functions”.) It returns a value in
user_name@host_name format that indicates the User and Host values from the matching user table
row. Suppose that jeffrey connects and issues the following query:

mysql> SELECT CURRENT_USER();
+----------------+
| CURRENT_USER() |
+----------------+
| @localhost |
+----------------+

The result shown here indicates that the matching user table row had a blank User column value. In other
words, the server is treating jeffrey as an anonymous user.

Another way to diagnose authentication problems is to print out the user table and sort it by hand to see
where the first match is being made.

6.2.6 Access Control, Stage 2: Request Verification

After the server accepts a connection, it enters Stage 2 of access control. For each request that you issue
through the connection, the server determines what operation you want to perform, then checks whether
your privileges are sufficient. This is where the privilege columns in the grant tables come into play. These
privileges can come from any of the user, db, tables_priv, columns_priv, or procs_priv tables.
(You may find it helpful to refer to Section 6.2.3, “Grant Tables”, which lists the columns present in each
grant table.)

The user table grants global privileges. The user table row for an account indicates the account
privileges that apply on a global basis no matter what the default database is. For example, if the user
table grants you the DELETE privilege, you can delete rows from any table in any database on the server
host. It is wise to grant privileges in the user table only to people who need them, such as database
administrators. For other users, leave all privileges in the user table set to 'N' and grant privileges at
more specific levels only (for particular databases, tables, columns, or routines).

The db table grants database-specific privileges. Values in the scope columns of this table can take the
following forms:

• A blank User value matches the anonymous user. A nonblank value matches literally; there are no
wildcards in user names.

• The wildcard characters % and _ can be used in the Host and Db columns. These have the same
meaning as for pattern-matching operations performed with the LIKE operator. If you want to use either

1116

Access Control, Stage 2: Request Verification

character literally when granting privileges, you must escape it with a backslash. For example, to include
the underscore character (_) as part of a database name, specify it as _ in the GRANT statement.

• A '%' or blank Host value means “any host.”

• A '%' or blank Db value means “any database.”

The server reads the db table into memory and sorts it at the same time that it reads the user table. The
server sorts the db table based on the Host, Db, and User scope columns. As with the user table, sorting
puts the most-specific values first and least-specific values last, and when the server looks for matching
rows, it uses the first match that it finds.

The tables_priv, columns_priv, and procs_priv tables grant table-specific, column-specific, and
routine-specific privileges. Values in the scope columns of these tables can take the following forms:

• The wildcard characters % and _ can be used in the Host column. These have the same meaning as for
pattern-matching operations performed with the LIKE operator.

• A '%' or blank Host value means “any host.”

• The Db, Table_name, Column_name, and Routine_name columns cannot contain wildcards or be
blank.

The server sorts the tables_priv, columns_priv, and procs_priv tables based on the Host, Db,
and User columns. This is similar to db table sorting, but simpler because only the Host column can
contain wildcards.

The server uses the sorted tables to verify each request that it receives. For requests that require
administrative privileges such as SHUTDOWN or RELOAD, the server checks only the user table row
because that is the only table that specifies administrative privileges. The server grants access if the
row permits the requested operation and denies access otherwise. For example, if you want to execute
mysqladmin shutdown but your user table row does not grant the SHUTDOWN privilege to you, the
server denies access without even checking the db table. (The latter table contains no Shutdown_priv
column, so there is no need to check it.)

For database-related requests (INSERT, UPDATE, and so on), the server first checks the user's global
privileges in the user table row. If the row permits the requested operation, access is granted. If the global
privileges in the user table are insufficient, the server determines the user's database-specific privileges
from the db table:

• The server looks in the db table for a match on the Host, Db, and User columns.

• The Host and User columns are matched to the connecting user's host name and MySQL user name.

• The Db column is matched to the database that the user wants to access.

• If there is no row for the Host and User, access is denied.

After determining the database-specific privileges granted by the db table rows, the server adds them
to the global privileges granted by the user table. If the result permits the requested operation, access
is granted. Otherwise, the server successively checks the user's table and column privileges in the
tables_priv and columns_priv tables, adds those to the user's privileges, and permits or denies
access based on the result. For stored-routine operations, the server uses the procs_priv table rather
than tables_priv and columns_priv.

Expressed in boolean terms, the preceding description of how a user's privileges are calculated may be
summarized like this:

1117

Adding Accounts, Assigning Privileges, and Dropping Accounts

global privileges
OR database privileges
OR table privileges
OR column privileges
OR routine privileges

It may not be apparent why, if the global privileges are initially found to be insufficient for the requested
operation, the server adds those privileges to the database, table, and column privileges later. The reason
is that a request might require more than one type of privilege. For example, if you execute an INSERT
INTO ... SELECT statement, you need both the INSERT and the SELECT privileges. Your privileges
might be such that the user table row grants one privilege global and the db table row grants the other
specifically for the relevant database. In this case, you have the necessary privileges to perform the
request, but the server cannot tell that from either your global or database privileges alone. It must make
an access-control decision based on the combined privileges.

6.2.7 Adding Accounts, Assigning Privileges, and Dropping Accounts

To manage MySQL accounts, use the SQL statements intended for that purpose:

• CREATE USER and DROP USER create and remove accounts.

• GRANT and REVOKE assign privileges to and revoke privileges from accounts.

• SHOW GRANTS displays account privilege assignments.

Account-management statements cause the server to make appropriate modifications to the underlying
grant tables, which are discussed in Section 6.2.3, “Grant Tables”.

Note

Direct modification of grant tables using statements such as INSERT, UPDATE, or
DELETE is discouraged and done at your own risk. The server is free to ignore rows
that become malformed as a result of such modifications.

As of MySQL 5.7.18, for any operation that modifies a grant table, the server
checks whether the table has the expected structure and produces an error if not.
mysql_upgrade must be run to update the tables to the expected structure.

Another option for creating accounts is to use the GUI tool MySQL Workbench. Also, several third-party
programs offer capabilities for MySQL account administration. phpMyAdmin is one such program.

This section discusses the following topics:

• Creating Accounts and Granting Privileges

• Checking Account Privileges and Properties

• Revoking Account Privileges

• Dropping Accounts

For additional information about the statements discussed here, see Section 13.7.1, “Account Management
Statements”.

Creating Accounts and Granting Privileges

The following examples show how to use the mysql client program to set up new accounts. These
examples assume that the MySQL root account has the CREATE USER privilege and all privileges that it
grants to other accounts.

1118

Adding Accounts, Assigning Privileges, and Dropping Accounts

At the command line, connect to the server as the MySQL root user, supplying the appropriate password
at the password prompt:

$> mysql -u root -p
Enter password: (enter root password here)

After connecting to the server, you can add new accounts. The following example uses CREATE USER
and GRANT statements to set up four accounts (where you see 'password', substitute an appropriate
password):

CREATE USER 'finley'@'localhost'
 IDENTIFIED BY 'password';
GRANT ALL
 ON *.*
 TO 'finley'@'localhost'
 WITH GRANT OPTION;

CREATE USER 'finley'@'%.example.com'
 IDENTIFIED BY 'password';
GRANT ALL
 ON *.*
 TO 'finley'@'%.example.com'
 WITH GRANT OPTION;

CREATE USER 'admin'@'localhost'
 IDENTIFIED BY 'password';
GRANT RELOAD,PROCESS
 ON *.*
 TO 'admin'@'localhost';

CREATE USER 'dummy'@'localhost';

The accounts created by those statements have the following properties:

• Two accounts have a user name of finley. Both are superuser accounts with full global privileges to
do anything. The 'finley'@'localhost' account can be used only when connecting from the local
host. The 'finley'@'%.example.com' account uses the '%' wildcard in the host part, so it can be
used to connect from any host in the example.com domain.

The 'finley'@'localhost' account is necessary if there is an anonymous-user account for
localhost. Without the 'finley'@'localhost' account, that anonymous-user account takes
precedence when finley connects from the local host and finley is treated as an anonymous user.
The reason for this is that the anonymous-user account has a more specific Host column value than
the 'finley'@'%' account and thus comes earlier in the user table sort order. (For information about
user table sorting, see Section 6.2.5, “Access Control, Stage 1: Connection Verification”.)

• The 'admin'@'localhost' account can be used only by admin to connect from the local host. It is
granted the global RELOAD and PROCESS administrative privileges. These privileges enable the admin
user to execute the mysqladmin reload, mysqladmin refresh, and mysqladmin flush-xxx
commands, as well as mysqladmin processlist . No privileges are granted for accessing any
databases. You could add such privileges using GRANT statements.

• The 'dummy'@'localhost' account has no password (which is insecure and not recommended). This
account can be used only to connect from the local host. No privileges are granted. It is assumed that
you grant specific privileges to the account using GRANT statements.

The previous example grants privileges at the global level. The next example creates three accounts and
grants them access at lower levels; that is, to specific databases or objects within databases. Each account
has a user name of custom, but the host name parts differ:

CREATE USER 'custom'@'localhost'

1119

Adding Accounts, Assigning Privileges, and Dropping Accounts

 IDENTIFIED BY 'password';
GRANT ALL
 ON bankaccount.*
 TO 'custom'@'localhost';

CREATE USER 'custom'@'host47.example.com'
 IDENTIFIED BY 'password';
GRANT SELECT,INSERT,UPDATE,DELETE,CREATE,DROP
 ON expenses.*
 TO 'custom'@'host47.example.com';

CREATE USER 'custom'@'%.example.com'
 IDENTIFIED BY 'password';
GRANT SELECT,INSERT,UPDATE,DELETE,CREATE,DROP
 ON customer.addresses
 TO 'custom'@'%.example.com';

The three accounts can be used as follows:

• The 'custom'@'localhost' account has all database-level privileges to access the bankaccount
database. The account can be used to connect to the server only from the local host.

• The 'custom'@'host47.example.com' account has specific database-level privileges to access
the expenses database. The account can be used to connect to the server only from the host
host47.example.com.

• The 'custom'@'%.example.com' account has specific table-level privileges to access the
addresses table in the customer database, from any host in the example.com domain. The account
can be used to connect to the server from all machines in the domain due to use of the % wildcard
character in the host part of the account name.

Checking Account Privileges and Properties

To see the privileges for an account, use SHOW GRANTS:

mysql> SHOW GRANTS FOR 'admin'@'localhost';
+---+
| Grants for admin@localhost |
+---+
| GRANT RELOAD, PROCESS ON *.* TO 'admin'@'localhost' |
+---+

To see nonprivilege properties for an account, use SHOW CREATE USER:

mysql> SHOW CREATE USER 'admin'@'localhost'\G
*************************** 1. row ***************************
CREATE USER for admin@localhost: CREATE USER 'admin'@'localhost'
IDENTIFIED WITH 'mysql_native_password'
AS '*67ACDEBDAB923990001F0FFB017EB8ED41861105'
REQUIRE NONE PASSWORD EXPIRE DEFAULT ACCOUNT UNLOCK

Revoking Account Privileges

To revoke account privileges, use the REVOKE statement. Privileges can be revoked at different levels, just
as they can be granted at different levels.

Revoke global privileges:

REVOKE ALL
 ON *.*
 FROM 'finley'@'%.example.com';

1120

Reserved Accounts

REVOKE RELOAD
 ON *.*
 FROM 'admin'@'localhost';

Revoke database-level privileges:

REVOKE CREATE,DROP
 ON expenses.*
 FROM 'custom'@'host47.example.com';

Revoke table-level privileges:

REVOKE INSERT,UPDATE,DELETE
 ON customer.addresses
 FROM 'custom'@'%.example.com';

To check the effect of privilege revocation, use SHOW GRANTS:

mysql> SHOW GRANTS FOR 'admin'@'localhost';
+---+
| Grants for admin@localhost |
+---+
| GRANT PROCESS ON *.* TO 'admin'@'localhost' |
+---+

Dropping Accounts

To remove an account, use the DROP USER statement. For example, to drop some of the accounts created
previously:

DROP USER 'finley'@'localhost';
DROP USER 'finley'@'%.example.com';
DROP USER 'admin'@'localhost';
DROP USER 'dummy'@'localhost';

6.2.8 Reserved Accounts

One part of the MySQL installation process is data directory initialization (see Section 2.9.1, “Initializing
the Data Directory”). During data directory initialization, MySQL creates user accounts that should be
considered reserved:

• 'root'@'localhost: Used for administrative purposes. This account has all privileges and can
perform any operation.

Strictly speaking, this account name is not reserved, in the sense that some installations rename the
root account to something else to avoid exposing a highly privileged account with a well-known name.

• 'mysql.sys'@'localhost': Used as the DEFINER for sys schema objects. Use of the mysql.sys
account avoids problems that occur if a DBA renames or removes the root account. This account is
locked so that it cannot be used for client connections.

• 'mysql.session'@'localhost': Used internally by plugins to access the server. This account is
locked so that it cannot be used for client connections.

6.2.9 When Privilege Changes Take Effect

If the mysqld server is started without the --skip-grant-tables option, it reads all grant table
contents into memory during its startup sequence. The in-memory tables become effective for access
control at that point.

1121

Assigning Account Passwords

If you modify the grant tables indirectly using an account-management statement, the server notices these
changes and loads the grant tables into memory again immediately. Account-management statements are
described in Section 13.7.1, “Account Management Statements”. Examples include GRANT, REVOKE, SET
PASSWORD, and RENAME USER.

If you modify the grant tables directly using statements such as INSERT, UPDATE, or DELETE (which is not
recommended), the changes have no effect on privilege checking until you either tell the server to reload
the tables or restart it. Thus, if you change the grant tables directly but forget to reload them, the changes
have no effect until you restart the server. This may leave you wondering why your changes seem to make
no difference!

To tell the server to reload the grant tables, perform a flush-privileges operation. This can be done by
issuing a FLUSH PRIVILEGES statement or by executing a mysqladmin flush-privileges or
mysqladmin reload command.

A grant table reload affects privileges for each existing client session as follows:

• Table and column privilege changes take effect with the client's next request.

• Database privilege changes take effect the next time the client executes a USE db_name statement.

Note

Client applications may cache the database name; thus, this effect may not be
visible to them without actually changing to a different database.

• Global privileges and passwords are unaffected for a connected client. These changes take effect only in
sessions for subsequent connections.

If the server is started with the --skip-grant-tables option, it does not read the grant tables or
implement any access control. Any user can connect and perform any operation, which is insecure. To
cause a server thus started to read the tables and enable access checking, flush the privileges.

6.2.10 Assigning Account Passwords

Required credentials for clients that connect to the MySQL server can include a password. This section
describes how to assign passwords for MySQL accounts.

MySQL stores credentials in the user table in the mysql system database. Operations that assign or
modify passwords are permitted only to users with the CREATE USER privilege, or, alternatively, privileges
for the mysql database (INSERT privilege to create new accounts, UPDATE privilege to modify existing
accounts). If the read_only system variable is enabled, use of account-modification statements such as
CREATE USER or ALTER USER additionally requires the SUPER privilege.

The discussion here summarizes syntax only for the most common password-assignment statements.
For complete details on other possibilities, see Section 13.7.1.2, “CREATE USER Statement”,
Section 13.7.1.1, “ALTER USER Statement”, Section 13.7.1.4, “GRANT Statement”, and Section 13.7.1.7,
“SET PASSWORD Statement”.

MySQL uses plugins to perform client authentication; see Section 6.2.13, “Pluggable Authentication”.
In password-assigning statements, the authentication plugin associated with an account performs any
hashing required of a cleartext password specified. This enables MySQL to obfuscate passwords prior to
storing them in the mysql.user system table. For the statements described here, MySQL automatically
hashes the password specified. There are also syntax for CREATE USER and ALTER USER that permits
hashed values to be specified literally. For details, see the descriptions of those statements.

1122

Password Management

To assign a password when you create a new account, use CREATE USER and include an IDENTIFIED
BY clause:

CREATE USER 'jeffrey'@'localhost' IDENTIFIED BY 'password';

CREATE USER also supports syntax for specifying the account authentication plugin. See Section 13.7.1.2,
“CREATE USER Statement”.

To assign or change a password for an existing account, use the ALTER USER statement with an
IDENTIFIED BY clause:

ALTER USER 'jeffrey'@'localhost' IDENTIFIED BY 'password';

If you are not connected as an anonymous user, you can change your own password without naming your
own account literally:

ALTER USER USER() IDENTIFIED BY 'password';

To change an account password from the command line, use the mysqladmin command:

mysqladmin -u user_name -h host_name password "password"

The account for which this command sets the password is the one with a row in the mysql.user system
table that matches user_name in the User column and the client host from which you connect in the Host
column.

Warning

Setting a password using mysqladmin should be considered insecure. On some
systems, your password becomes visible to system status programs such as ps
that may be invoked by other users to display command lines. MySQL clients
typically overwrite the command-line password argument with zeros during their
initialization sequence. However, there is still a brief interval during which the value
is visible. Also, on some systems this overwriting strategy is ineffective and the
password remains visible to ps. (SystemV Unix systems and perhaps others are
subject to this problem.)

If you are using MySQL Replication, be aware that, currently, a password used by a replica as part of a
CHANGE MASTER TO statement is effectively limited to 32 characters in length; if the password is longer,
any excess characters are truncated. This is not due to any limit imposed by the MySQL Server generally,
but rather is an issue specific to MySQL Replication. (For more information, see Bug #43439.)

6.2.11 Password Management

MySQL enables database administrators to expire account passwords manually, and to establish a
policy for automatic password expiration. Expiration policy can be established globally, and individual
accounts can be set to either defer to the global policy or override the global policy with specific per-
account behavior.

• Internal Versus External Credentials Storage

• Password Expiration Policy

Internal Versus External Credentials Storage

Some authentication plugins store account credentials internally to MySQL, in the mysql.user system
table:

1123

Password Management

• mysql_native_password

• sha256_password

The discussion in this section applies to such authentication plugins because the password-management
capabilities described here are based on internal credentials storage handled by MySQL itself.

Other authentication plugins store account credentials externally to MySQL. For accounts that use plugins
that perform authentication against an external credentials system, password management must be
handled externally against that system as well.

For information about individual authentication plugins, see Section 6.4.1, “Authentication Plugins”.

Password Expiration Policy

To expire an account password manually, use the ALTER USER statement:

ALTER USER 'jeffrey'@'localhost' PASSWORD EXPIRE;

This operation marks the password expired in the corresponding mysql.user system table row.

Password expiration according to policy is automatic and is based on password age, which for a given
account is assessed from the date and time of its most recent password change. The mysql.user system
table indicates for each account when its password was last changed, and the server automatically treats
the password as expired at client connection time if its age is greater than its permitted lifetime. This works
with no explicit manual password expiration.

To establish automatic password-expiration policy globally, use the default_password_lifetime
system variable. Its default value is 0, which disables automatic password expiration. If the value of
default_password_lifetime is a positive integer N, it indicates the permitted password lifetime, such
that passwords must be changed every N days.

Note

Prior to 5.7.11, the default default_password_lifetime value is 360
(passwords must be changed approximately once per year). For such versions,
be aware that, if you make no changes to the default_password_lifetime
variable or to individual user accounts, each user password expires after 360 days
and the account starts running in restricted mode. Clients that connect to the server
using the account then get an error indicating that the password must be changed:
ERROR 1820 (HY000): You must reset your password using ALTER
USER statement before executing this statement.

However, this is easy to miss for clients that automatically connect to the server,
such as connections made from scripts. To avoid having such clients suddenly stop
working due to a password expiring, make sure to change the password expiration
settings for those clients, like this:

ALTER USER 'script'@'localhost' PASSWORD EXPIRE NEVER

Alternatively, set the default_password_lifetime variable to 0, thus disabling
automatic password expiration for all users.

Examples:

• To establish a global policy that passwords have a lifetime of approximately six months, start the server
with these lines in a server my.cnf file:

1124

Password Management

[mysqld]
default_password_lifetime=180

• To establish a global policy such that passwords never expire, set default_password_lifetime to
0:

[mysqld]
default_password_lifetime=0

• default_password_lifetime can also be changed at runtime:

SET GLOBAL default_password_lifetime = 180;
SET GLOBAL default_password_lifetime = 0;

The global password-expiration policy applies to all accounts that have not been set to override it. To
establish policy for individual accounts, use the PASSWORD EXPIRE options of the CREATE USER and
ALTER USER statements. See Section 13.7.1.2, “CREATE USER Statement”, and Section 13.7.1.1,
“ALTER USER Statement”.

Example account-specific statements:

• Require the password to be changed every 90 days:

CREATE USER 'jeffrey'@'localhost' PASSWORD EXPIRE INTERVAL 90 DAY;
ALTER USER 'jeffrey'@'localhost' PASSWORD EXPIRE INTERVAL 90 DAY;

This expiration option overrides the global policy for all accounts named by the statement.

• Disable password expiration:

CREATE USER 'jeffrey'@'localhost' PASSWORD EXPIRE NEVER;
ALTER USER 'jeffrey'@'localhost' PASSWORD EXPIRE NEVER;

This expiration option overrides the global policy for all accounts named by the statement.

• Defer to the global expiration policy for all accounts named by the statement:

CREATE USER 'jeffrey'@'localhost' PASSWORD EXPIRE DEFAULT;
ALTER USER 'jeffrey'@'localhost' PASSWORD EXPIRE DEFAULT;

When a client successfully connects, the server determines whether the account password has expired:

• The server checks whether the password has been manually expired.

• Otherwise, the server checks whether the password age is greater than its permitted lifetime according
to the automatic password expiration policy. If so, the server considers the password expired.

If the password is expired (whether manually or automatically), the server either disconnects the client
or restricts the operations permitted to it (see Section 6.2.12, “Server Handling of Expired Passwords”).
Operations performed by a restricted client result in an error until the user establishes a new account
password:

mysql> SELECT 1;
ERROR 1820 (HY000): You must reset your password using ALTER USER
statement before executing this statement.

mysql> ALTER USER USER() IDENTIFIED BY 'password';
Query OK, 0 rows affected (0.01 sec)

mysql> SELECT 1;

1125

Server Handling of Expired Passwords

+---+
| 1 |
+---+
| 1 |
+---+
1 row in set (0.00 sec)

This restricted mode of operation permits SET statements, which is useful before MySQL 5.7.6 if SET
PASSWORD must be used instead of ALTER USER and the account password has a hashing format that
requires old_passwords to be set to a value different from its default.

After the client resets the password, the server restores normal access for the session, as well as for
subsequent connections that use the account. It is also possible for an administrative user to reset the
account password, but any existing restricted sessions for that account remain restricted. A client using the
account must disconnect and reconnect before statements can be executed successfully.

Note

Although it is possible to “reset” an expired password by setting it to its current
value, it is preferable, as a matter of good policy, to choose a different password.

6.2.12 Server Handling of Expired Passwords

MySQL provides password-expiration capability, which enables database administrators to require that
users reset their password. Passwords can be expired manually, and on the basis of a policy for automatic
expiration (see Section 6.2.11, “Password Management”).

The ALTER USER statement enables account password expiration. For example:

ALTER USER 'myuser'@'localhost' PASSWORD EXPIRE;

For each connection that uses an account with an expired password, the server either disconnects the
client or restricts the client to “sandbox mode,” in which the server permits the client to perform only those
operations necessary to reset the expired password. Which action is taken by the server depends on both
client and server settings, as discussed later.

If the server disconnects the client, it returns an ER_MUST_CHANGE_PASSWORD_LOGIN error:

$> mysql -u myuser -p
Password: ******
ERROR 1862 (HY000): Your password has expired. To log in you must
change it using a client that supports expired passwords.

If the server restricts the client to sandbox mode, these operations are permitted within the client session:

• The client can reset the account password with ALTER USER or SET PASSWORD. After that has been
done, the server restores normal access for the session, as well as for subsequent connections that use
the account.

Note

Although it is possible to “reset” an expired password by setting it to its current
value, it is preferable, as a matter of good policy, to choose a different password.

• The client can use the SET statement, which is useful before MySQL 5.7.6 if SET PASSWORD
must be used instead of ALTER USER and the account uses an authentication plugin for which the
old_passwords system variable must first be set to a nondefault value to perform password hashing in
a specific way.

1126

https://dev.mysql.com/doc/mysql-errors/5.7/en/server-error-reference.html#error_er_must_change_password_login

Server Handling of Expired Passwords

For any operation not permitted within the session, the server returns an ER_MUST_CHANGE_PASSWORD
error:

mysql> USE performance_schema;
ERROR 1820 (HY000): You must reset your password using ALTER USER
statement before executing this statement.

mysql> SELECT 1;
ERROR 1820 (HY000): You must reset your password using ALTER USER
statement before executing this statement.

That is what normally happens for interactive invocations of the mysql client because by default such
invocations are put in sandbox mode. To resume normal functioning, select a new password.

For noninteractive invocations of the mysql client (for example, in batch mode), the server normally
disconnects the client if the password is expired. To permit noninteractive mysql invocations to stay
connected so that the password can be changed (using the statements permitted in sandbox mode), add
the --connect-expired-password option to the mysql command.

As mentioned previously, whether the server disconnects an expired-password client or restricts it to
sandbox mode depends on a combination of client and server settings. The following discussion describes
the relevant settings and how they interact.

Note

This discussion applies only for accounts with expired passwords. If a client
connects using a nonexpired password, the server handles the client normally.

On the client side, a given client indicates whether it can handle sandbox mode for expired passwords. For
clients that use the C client library, there are two ways to do this:

• Pass the MYSQL_OPT_CAN_HANDLE_EXPIRED_PASSWORDS flag to mysql_options() prior to
connecting:

my_bool arg = 1;
mysql_options(mysql,
 MYSQL_OPT_CAN_HANDLE_EXPIRED_PASSWORDS,
 &arg);

This is the technique used within the mysql client, which enables
MYSQL_OPT_CAN_HANDLE_EXPIRED_PASSWORDS if invoked interactively or with the --connect-
expired-password option.

• Pass the CLIENT_CAN_HANDLE_EXPIRED_PASSWORDS flag to mysql_real_connect() at connect
time:

MYSQL mysql;
mysql_init(&mysql);
if (!mysql_real_connect(&mysql,
 host, user, password, db,
 port, unix_socket,
 CLIENT_CAN_HANDLE_EXPIRED_PASSWORDS))
{
 ... handle error ...
}

Other MySQL Connectors have their own conventions for indicating readiness to handle sandbox mode.
See the documentation for the Connector in which you are interested.

On the server side, if a client indicates that it can handle expired passwords, the server puts it in sandbox
mode.

1127

https://dev.mysql.com/doc/mysql-errors/5.7/en/server-error-reference.html#error_er_must_change_password
https://dev.mysql.com/doc/c-api/5.7/en/mysql-options.html
https://dev.mysql.com/doc/c-api/5.7/en/mysql-real-connect.html

Pluggable Authentication

If a client does not indicate that it can handle expired passwords (or uses an older version
of the client library that cannot so indicate), the server action depends on the value of the
disconnect_on_expired_password system variable:

• If disconnect_on_expired_password is enabled (the default), the server disconnects the client with
an ER_MUST_CHANGE_PASSWORD_LOGIN error.

• If disconnect_on_expired_password is disabled, the server puts the client in sandbox mode.

6.2.13 Pluggable Authentication

When a client connects to the MySQL server, the server uses the user name provided by the client and
the client host to select the appropriate account row from the mysql.user system table. The server then
authenticates the client, determining from the account row which authentication plugin applies to the client:

• If the server cannot find the plugin, an error occurs and the connection attempt is rejected.

• Otherwise, the server invokes that plugin to authenticate the user, and the plugin returns a status to the
server indicating whether the user provided the correct password and is permitted to connect.

Pluggable authentication enables these important capabilities:

• Choice of authentication methods. Pluggable authentication makes it easy for DBAs to choose and
change the authentication method used for individual MySQL accounts.

• External authentication. Pluggable authentication makes it possible for clients to connect to
the MySQL server with credentials appropriate for authentication methods that store credentials
elsewhere than in the mysql.user system table. For example, plugins can be created to use external
authentication methods such as PAM, Windows login IDs, LDAP, or Kerberos.

• Proxy users: If a user is permitted to connect, an authentication plugin can return to the server a user
name different from the name of the connecting user, to indicate that the connecting user is a proxy for
another user (the proxied user). While the connection lasts, the proxy user is treated, for purposes of
access control, as having the privileges of the proxied user. In effect, one user impersonates another.
For more information, see Section 6.2.14, “Proxy Users”.

Note

If you start the server with the --skip-grant-tables option, authentication
plugins are not used even if loaded because the server performs no client
authentication and permits any client to connect. Because this is insecure, you
might want to use --skip-grant-tables in conjunction with enabling the
skip_networking system variable to prevent remote clients from connecting.

• Available Authentication Plugins

• Authentication Plugin Usage

• Restrictions on Pluggable Authentication

Available Authentication Plugins

MySQL 5.7 provides these authentication plugins:

• Plugins that perform native authentication; that is, authentication based on the password
hashing methods in use from before the introduction of pluggable authentication in MySQL. The
mysql_native_password plugin implements authentication based on the native password

1128

https://dev.mysql.com/doc/mysql-errors/5.7/en/server-error-reference.html#error_er_must_change_password_login

Pluggable Authentication

hashing method. The mysql_old_password plugin implements native authentication based on
the older (pre-4.1) password hashing method (and is deprecated and removed in MySQL 5.7.5).
See Section 6.4.1.1, “Native Pluggable Authentication”, and Section 6.4.1.2, “Old Native Pluggable
Authentication”.

• Plugins that perform authentication using SHA-256 password hashing. This is stronger encryption than
that available with native authentication. See Section 6.4.1.5, “SHA-256 Pluggable Authentication”, and
Section 6.4.1.4, “Caching SHA-2 Pluggable Authentication”.

• A client-side plugin that sends the password to the server without hashing or encryption. This plugin is
used in conjunction with server-side plugins that require access to the password exactly as provided by
the client user. See Section 6.4.1.6, “Client-Side Cleartext Pluggable Authentication”.

• A plugin that performs external authentication using PAM (Pluggable Authentication Modules), enabling
MySQL Server to use PAM to authenticate MySQL users. This plugin supports proxy users as well. See
Section 6.4.1.7, “PAM Pluggable Authentication”.

• A plugin that performs external authentication on Windows, enabling MySQL Server to use native
Windows services to authenticate client connections. Users who have logged in to Windows can
connect from MySQL client programs to the server based on the information in their environment without
specifying an additional password. This plugin supports proxy users as well. See Section 6.4.1.8,
“Windows Pluggable Authentication”.

• Plugins that perform authentication using LDAP (Lightweight Directory Access Protocol) to authenticate
MySQL users by accessing directory services such as X.500. These plugins support proxy users as well.
See Section 6.4.1.9, “LDAP Pluggable Authentication”.

• A plugin that prevents all client connections to any account that uses it. Use cases for this plugin include
proxied accounts that should never permit direct login but are accessed only through proxy accounts
and accounts that must be able to execute stored programs and views with elevated privileges without
exposing those privileges to ordinary users. See Section 6.4.1.10, “No-Login Pluggable Authentication”.

• A plugin that authenticates clients that connect from the local host through the Unix socket file. See
Section 6.4.1.11, “Socket Peer-Credential Pluggable Authentication”.

• A test plugin that checks account credentials and logs success or failure to the server error log.
This plugin is intended for testing and development purposes, and as an example of how to write an
authentication plugin. See Section 6.4.1.12, “Test Pluggable Authentication”.

Note

For information about current restrictions on the use of pluggable authentication,
including which connectors support which plugins, see Restrictions on Pluggable
Authentication.

Third-party connector developers should read that section to determine the extent
to which a connector can take advantage of pluggable authentication capabilities
and what steps to take to become more compliant.

If you are interested in writing your own authentication plugins, see Writing Authentication Plugins.

Authentication Plugin Usage

This section provides general instructions for installing and using authentication plugins. For instructions
specific to a given plugin, see the section that describes that plugin under Section 6.4.1, “Authentication
Plugins”.

1129

https://dev.mysql.com/doc/extending-mysql/5.7/en/writing-authentication-plugins.html

Pluggable Authentication

In general, pluggable authentication uses a pair of corresponding plugins on the server and client sides, so
you use a given authentication method like this:

• If necessary, install the plugin library or libraries containing the appropriate plugins. On the server host,
install the library containing the server-side plugin, so that the server can use it to authenticate client
connections. Similarly, on each client host, install the library containing the client-side plugin for use by
client programs. Authentication plugins that are built in need not be installed.

• For each MySQL account that you create, specify the appropriate server-side plugin to use for
authentication. If the account is to use the default authentication plugin, the account-creation statement
need not specify the plugin explicitly. The default_authentication_plugin system variable
configures the default authentication plugin.

• When a client connects, the server-side plugin tells the client program which client-side plugin to use for
authentication.

In the case that an account uses an authentication method that is the default for both the server and
the client program, the server need not communicate to the client which client-side plugin to use, and a
round trip in client/server negotiation can be avoided. This is true for accounts that use native MySQL
authentication.

For standard MySQL clients such as mysql and mysqladmin, the --default-auth=plugin_name
option can be specified on the command line as a hint about which client-side plugin the program can
expect to use, although the server overrides this if the server-side plugin associated with the user account
requires a different client-side plugin.

If the client program does not find the client-side plugin library file, specify a --plugin-dir=dir_name
option to indicate the plugin library directory location.

Restrictions on Pluggable Authentication

The first part of this section describes general restrictions on the applicability of the pluggable
authentication framework described at Section 6.2.13, “Pluggable Authentication”. The second part
describes how third-party connector developers can determine the extent to which a connector can take
advantage of pluggable authentication capabilities and what steps to take to become more compliant.

The term “native authentication” used here refers to authentication against passwords stored in the
mysql.user system table. This is the same authentication method provided by older MySQL servers,
before pluggable authentication was implemented. “Windows native authentication” refers to authentication
using the credentials of a user who has already logged in to Windows, as implemented by the Windows
Native Authentication plugin (“Windows plugin” for short).

• General Pluggable Authentication Restrictions

• Pluggable Authentication and Third-Party Connectors

General Pluggable Authentication Restrictions

• Connector/C++: Clients that use this connector can connect to the server only through accounts that
use native authentication.

Exception: A connector supports pluggable authentication if it was built to link to libmysqlclient
dynamically (rather than statically) and it loads the current version of libmysqlclient if that version is
installed, or if the connector is recompiled from source to link against the current libmysqlclient.

• Connector/NET: Clients that use Connector/NET can connect to the server through accounts that use
native authentication or Windows native authentication.

1130

Pluggable Authentication

• Connector/PHP: Clients that use this connector can connect to the server only through accounts that
use native authentication, when compiled using the MySQL native driver for PHP (mysqlnd).

• Windows native authentication: Connecting through an account that uses the Windows plugin requires
Windows Domain setup. Without it, NTLM authentication is used and then only local connections are
possible; that is, the client and server must run on the same computer.

• Proxy users: Proxy user support is available to the extent that clients can connect through accounts
authenticated with plugins that implement proxy user capability (that is, plugins that can return a user
name different from that of the connecting user). For example, the PAM and Windows plugins support
proxy users. The mysql_native_password and sha256_password authentication plugins do not
support proxy users by default, but can be configured to do so; see Server Support for Proxy User
Mapping.

• Replication: Replicas can employ not only source accounts using native authentication, but can also
connect through source accounts that use nonnative authentication if the required client-side plugin is
available. If the plugin is built into libmysqlclient, it is available by default. Otherwise, the plugin
must be installed on the replica side in the directory named by the replica plugin_dir system variable.

• FEDERATED tables: A FEDERATED table can access the remote table only through accounts on the
remote server that use native authentication.

Pluggable Authentication and Third-Party Connectors

Third-party connector developers can use the following guidelines to determine readiness of a connector to
take advantage of pluggable authentication capabilities and what steps to take to become more compliant:

• An existing connector to which no changes have been made uses native authentication and clients
that use the connector can connect to the server only through accounts that use native authentication.
However, you should test the connector against a recent version of the server to verify that such
connections still work without problem.

Exception: A connector might work with pluggable authentication without any changes if it links
to libmysqlclient dynamically (rather than statically) and it loads the current version of
libmysqlclient if that version is installed.

• To take advantage of pluggable authentication capabilities, a connector that is libmysqlclient-based
should be relinked against the current version of libmysqlclient. This enables the connector to
support connections though accounts that require client-side plugins now built into libmysqlclient
(such as the cleartext plugin needed for PAM authentication and the Windows plugin needed for
Windows native authentication). Linking with a current libmysqlclient also enables the connector to
access client-side plugins installed in the default MySQL plugin directory (typically the directory named
by the default value of the local server's plugin_dir system variable).

If a connector links to libmysqlclient dynamically, it must be ensured that the newer version of
libmysqlclient is installed on the client host and that the connector loads it at runtime.

• Another way for a connector to support a given authentication method is to implement it directly in
the client/server protocol. Connector/NET uses this approach to provide support for Windows native
authentication.

• If a connector should be able to load client-side plugins from a directory different from the default
plugin directory, it must implement some means for client users to specify the directory. Possibilities for
this include a command-line option or environment variable from which the connector can obtain the
directory name. Standard MySQL client programs such as mysql and mysqladmin implement a --
plugin-dir option. See also C API Client Plugin Interface.

1131

https://dev.mysql.com/doc/c-api/5.7/en/c-api-plugin-interface.html

Proxy Users

• Proxy user support by a connector depends, as described earlier in this section, on whether the
authentication methods that it supports permit proxy users.

6.2.14 Proxy Users

The MySQL server authenticates client connections using authentication plugins. The plugin that
authenticates a given connection may request that the connecting (external) user be treated as a different
user for privilege-checking purposes. This enables the external user to be a proxy for the second user; that
is, to assume the privileges of the second user:

• The external user is a “proxy user” (a user who can impersonate or become known as another user).

• The second user is a “proxied user” (a user whose identity and privileges can be assumed by a proxy
user).

This section describes how the proxy user capability works. For general information about authentication
plugins, see Section 6.2.13, “Pluggable Authentication”. For information about specific plugins, see
Section 6.4.1, “Authentication Plugins”. For information about writing authentication plugins that support
proxy users, see Implementing Proxy User Support in Authentication Plugins.

• Requirements for Proxy User Support

• Simple Proxy User Example

• Preventing Direct Login to Proxied Accounts

• Granting and Revoking the PROXY Privilege

• Default Proxy Users

• Default Proxy User and Anonymous User Conflicts

• Server Support for Proxy User Mapping

• Proxy User System Variables

Requirements for Proxy User Support

For proxying to occur for a given authentication plugin, these conditions must be satisfied:

• Proxying must be supported, either by the plugin itself, or by the MySQL server on behalf of the plugin.
In the latter case, server support may need to be enabled explicitly; see Server Support for Proxy User
Mapping.

• The account for the external proxy user must be set up to be authenticated by the plugin. Use the
CREATE USER statement to associate an account with an authentication plugin, or ALTER USER to
change its plugin.

• The account for the proxied user must exist and be granted the privileges to be assumed by the proxy
user. Use the CREATE USER and GRANT statements for this.

• Normally, the proxied user is configured so that it can be used only in proxying scenaries and not for
direct logins.

• The proxy user account must have the PROXY privilege for the proxied account. Use the GRANT
statement for this.

1132

https://dev.mysql.com/doc/extending-mysql/5.7/en/writing-authentication-plugins-proxy-users.html

Proxy Users

• For a client connecting to the proxy account to be treated as a proxy user, the authentication plugin must
return a user name different from the client user name, to indicate the user name of the proxied account
that defines the privileges to be assumed by the proxy user.

Alternatively, for plugins that are provided proxy mapping by the server, the proxied user is determined
from the PROXY privilege held by the proxy user.

The proxy mechanism permits mapping only the external client user name to the proxied user name. There
is no provision for mapping host names:

• When a client connects to the server, the server determines the proper account based on the user name
passed by the client program and the host from which the client connects.

• If that account is a proxy account, the server attempts to determine the appropriate proxied account by
finding a match for a proxied account using the user name returned by the authentication plugin and the
host name of the proxy account. The host name in the proxied account is ignored.

Simple Proxy User Example

Consider the following account definitions:

-- create proxy account
CREATE USER 'employee_ext'@'localhost'
 IDENTIFIED WITH my_auth_plugin
 AS 'my_auth_string';

-- create proxied account and grant its privileges;
-- use mysql_no_login plugin to prevent direct login
CREATE USER 'employee'@'localhost'
 IDENTIFIED WITH mysql_no_login;
GRANT ALL
 ON employees.*
 TO 'employee'@'localhost';

-- grant to proxy account the
-- PROXY privilege for proxied account
GRANT PROXY
 ON 'employee'@'localhost'
 TO 'employee_ext'@'localhost';

When a client connects as employee_ext from the local host, MySQL uses the plugin named
my_auth_plugin to perform authentication. Suppose that my_auth_plugin returns a user name of
employee to the server, based on the content of 'my_auth_string' and perhaps by consulting some
external authentication system. The name employee differs from employee_ext, so returning employee
serves as a request to the server to treat the employee_ext external user, for purposes of privilege
checking, as the employee local user.

In this case, employee_ext is the proxy user and employee is the proxied user.

The server verifies that proxy authentication for employee is possible for the employee_ext user by
checking whether employee_ext (the proxy user) has the PROXY privilege for employee (the proxied
user). If this privilege has not been granted, an error occurs. Otherwise, employee_ext assumes
the privileges of employee. The server checks statements executed during the client session by
employee_ext against the privileges granted to employee. In this case, employee_ext can access
tables in the employees database.

The proxied account, employee, uses the mysql_no_login authentication plugin to prevent clients
from using the account to log in directly. (This assumes that the plugin is installed. For instructions, see
Section 6.4.1.10, “No-Login Pluggable Authentication”.) For alternative methods of protecting proxied
accounts against direct use, see Preventing Direct Login to Proxied Accounts.

1133

Proxy Users

When proxying occurs, the USER() and CURRENT_USER() functions can be used to see the difference
between the connecting user (the proxy user) and the account whose privileges apply during the current
session (the proxied user). For the example just described, those functions return these values:

mysql> SELECT USER(), CURRENT_USER();
+------------------------+--------------------+
| USER() | CURRENT_USER() |
+------------------------+--------------------+
| employee_ext@localhost | employee@localhost |
+------------------------+--------------------+

In the CREATE USER statement that creates the proxy user account, the IDENTIFIED WITH clause
that names the proxy-supporting authentication plugin is optionally followed by an AS 'auth_string'
clause specifying a string that the server passes to the plugin when the user connects. If present, the string
provides information that helps the plugin determine how to map the proxy (external) client user name
to a proxied user name. It is up to each plugin whether it requires the AS clause. If so, the format of the
authentication string depends on how the plugin intends to use it. Consult the documentation for a given
plugin for information about the authentication string values it accepts.

Preventing Direct Login to Proxied Accounts

Proxied accounts generally are intended to be used only by means of proxy accounts. That is, clients
connect using a proxy account, then are mapped onto and assume the privileges of the appropriate
proxied user.

There are multiple ways to ensure that a proxied account cannot be used directly:

• Associate the account with the mysql_no_login authentication plugin. In this case, the account
cannot be used for direct logins under any circumstances. This assumes that the plugin is installed. For
instructions, see Section 6.4.1.10, “No-Login Pluggable Authentication”.

• Include the ACCOUNT LOCK option when you create the account. See Section 13.7.1.2, “CREATE
USER Statement”. With this method, also include a password so that if the account is unlocked later,
it cannot be accessed with no password. (If the validate_password plugin is enabled, it does not
permit creating an account without a password, even if the account is locked. See Section 6.4.3, “The
Password Validation Plugin”.)

• Create the account with a password but do not tell anyone else the password. If you do not let anyone
know the password for the account, clients cannot use it to connect directly to the MySQL server.

Granting and Revoking the PROXY Privilege

The PROXY privilege is needed to enable an external user to connect as and have the privileges of another
user. To grant this privilege, use the GRANT statement. For example:

GRANT PROXY ON 'proxied_user' TO 'proxy_user';

The statement creates a row in the mysql.proxies_priv grant table.

At connect time, proxy_user must represent a valid externally authenticated MySQL user, and
proxied_user must represent a valid locally authenticated user. Otherwise, the connection attempt fails.

The corresponding REVOKE syntax is:

REVOKE PROXY ON 'proxied_user' FROM 'proxy_user';

MySQL GRANT and REVOKE syntax extensions work as usual. Examples:

1134

Proxy Users

-- grant PROXY to multiple accounts
GRANT PROXY ON 'a' TO 'b', 'c', 'd';

-- revoke PROXY from multiple accounts
REVOKE PROXY ON 'a' FROM 'b', 'c', 'd';

-- grant PROXY to an account and enable the account to grant
-- PROXY to the proxied account
GRANT PROXY ON 'a' TO 'd' WITH GRANT OPTION;

-- grant PROXY to default proxy account
GRANT PROXY ON 'a' TO ''@'';

The PROXY privilege can be granted in these cases:

• By a user that has GRANT PROXY ... WITH GRANT OPTION for proxied_user.

• By proxied_user for itself: The value of USER() must exactly match CURRENT_USER() and
proxied_user, for both the user name and host name parts of the account name.

The initial root account created during MySQL installation has the PROXY ... WITH GRANT OPTION
privilege for ''@'', that is, for all users and all hosts. This enables root to set up proxy users, as well as
to delegate to other accounts the authority to set up proxy users. For example, root can do this:

CREATE USER 'admin'@'localhost'
 IDENTIFIED BY 'admin_password';
GRANT PROXY
 ON ''@''
 TO 'admin'@'localhost'
 WITH GRANT OPTION;

Those statements create an admin user that can manage all GRANT PROXY mappings. For example,
admin can do this:

GRANT PROXY ON sally TO joe;

Default Proxy Users

To specify that some or all users should connect using a given authentication plugin, create a “blank”
MySQL account with an empty user name and host name (''@''), associate it with that plugin, and let
the plugin return the real authenticated user name (if different from the blank user). Suppose that there
exists a plugin named ldap_auth that implements LDAP authentication and maps connecting users onto
either a developer or manager account. To set up proxying of users onto these accounts, use the following
statements:

-- create default proxy account
CREATE USER ''@''
 IDENTIFIED WITH ldap_auth
 AS 'O=Oracle, OU=MySQL';

-- create proxied accounts; use
-- mysql_no_login plugin to prevent direct login
CREATE USER 'developer'@'localhost'
 IDENTIFIED WITH mysql_no_login;
CREATE USER 'manager'@'localhost'
 IDENTIFIED WITH mysql_no_login;

-- grant to default proxy account the
-- PROXY privilege for proxied accounts
GRANT PROXY
 ON 'manager'@'localhost'
 TO ''@'';

1135

Proxy Users

GRANT PROXY
 ON 'developer'@'localhost'
 TO ''@'';

Now assume that a client connects as follows:

$> mysql --user=myuser --password ...
Enter password: myuser_password

The server does not find myuser defined as a MySQL user, but because there is a blank user account
(''@'') that matches the client user name and host name, the server authenticates the client against
that account: The server invokes the ldap_auth authentication plugin and passes myuser and
myuser_password to it as the user name and password.

If the ldap_auth plugin finds in the LDAP directory that myuser_password is not the correct password
for myuser, authentication fails and the server rejects the connection.

If the password is correct and ldap_auth finds that myuser is a developer, it returns the user name
developer to the MySQL server, rather than myuser. Returning a user name different from the client
user name of myuser signals to the server that it should treat myuser as a proxy. The server verifies that
''@'' can authenticate as developer (because ''@'' has the PROXY privilege to do so) and accepts
the connection. The session proceeds with myuser having the privileges of the developer proxied user.
(These privileges should be set up by the DBA using GRANT statements, not shown.) The USER() and
CURRENT_USER() functions return these values:

mysql> SELECT USER(), CURRENT_USER();
+------------------+---------------------+
| USER() | CURRENT_USER() |
+------------------+---------------------+
| myuser@localhost | developer@localhost |
+------------------+---------------------+

If the plugin instead finds in the LDAP directory that myuser is a manager, it returns manager as the user
name and the session proceeds with myuser having the privileges of the manager proxied user.

mysql> SELECT USER(), CURRENT_USER();
+------------------+-------------------+
| USER() | CURRENT_USER() |
+------------------+-------------------+
| myuser@localhost | manager@localhost |
+------------------+-------------------+

For simplicity, external authentication cannot be multilevel: Neither the credentials for developer nor
those for manager are taken into account in the preceding example. However, they are still used if a
client tries to connect and authenticate directly as the developer or manager account, which is why
those proxied accounts should be protected against direct login (see Preventing Direct Login to Proxied
Accounts).

Default Proxy User and Anonymous User Conflicts

If you intend to create a default proxy user, check for other existing “match any user” accounts that take
precedence over the default proxy user because they can prevent that user from working as intended.

In the preceding discussion, the default proxy user account has '' in the host part, which matches any
host. If you set up a default proxy user, take care to also check whether nonproxy accounts exist with the
same user part and '%' in the host part, because '%' also matches any host, but has precedence over ''
by the rules that the server uses to sort account rows internally (see Section 6.2.5, “Access Control, Stage
1: Connection Verification”).

1136

Proxy Users

Suppose that a MySQL installation includes these two accounts:

-- create default proxy account
CREATE USER ''@''
 IDENTIFIED WITH some_plugin
 AS 'some_auth_string';
-- create anonymous account
CREATE USER ''@'%'
 IDENTIFIED BY 'anon_user_password';

The first account (''@'') is intended as the default proxy user, used to authenticate connections for users
who do not otherwise match a more-specific account. The second account (''@'%') is an anonymous-
user account, which might have been created, for example, to enable users without their own account to
connect anonymously.

Both accounts have the same user part (''), which matches any user. And each account has a host
part that matches any host. Nevertheless, there is a priority in account matching for connection attempts
because the matching rules sort a host of '%' ahead of ''. For accounts that do not match any more-
specific account, the server attempts to authenticate them against ''@'%' (the anonymous user) rather
than ''@'' (the default proxy user). As a result, the default proxy account is never used.

To avoid this problem, use one of the following strategies:

• Remove the anonymous account so that it does not conflict with the default proxy user.

• Use a more-specific default proxy user that matches ahead of the anonymous user. For example, to
permit only localhost proxy connections, use ''@'localhost':

CREATE USER ''@'localhost'
 IDENTIFIED WITH some_plugin
 AS 'some_auth_string';

In addition, modify any GRANT PROXY statements to name ''@'localhost' rather than ''@'' as the
proxy user.

Be aware that this strategy prevents anonymous-user connections from localhost.

• Use a named default account rather than an anonymous default account. For an example of
this technique, consult the instructions for using the authentication_windows plugin. See
Section 6.4.1.8, “Windows Pluggable Authentication”.

• Create multiple proxy users, one for local connections and one for “everything else” (remote
connections). This can be useful particularly when local users should have different privileges from
remote users.

Create the proxy users:

-- create proxy user for local connections
CREATE USER ''@'localhost'
 IDENTIFIED WITH some_plugin
 AS 'some_auth_string';
-- create proxy user for remote connections
CREATE USER ''@'%'
 IDENTIFIED WITH some_plugin
 AS 'some_auth_string';

Create the proxied users:

-- create proxied user for local connections
CREATE USER 'developer'@'localhost'
 IDENTIFIED WITH mysql_no_login;

1137

Proxy Users

-- create proxied user for remote connections
CREATE USER 'developer'@'%'
 IDENTIFIED WITH mysql_no_login;

Grant to each proxy account the PROXY privilege for the corresponding proxied account:

GRANT PROXY
 ON 'developer'@'localhost'
 TO ''@'localhost';
GRANT PROXY
 ON 'developer'@'%'
 TO ''@'%';

Finally, grant appropriate privileges to the local and remote proxied users (not shown).

Assume that the some_plugin/'some_auth_string' combination causes some_plugin to map
the client user name to developer. Local connections match the ''@'localhost' proxy user, which
maps to the 'developer'@'localhost' proxied user. Remote connections match the ''@'%' proxy
user, which maps to the 'developer'@'%' proxied user.

Server Support for Proxy User Mapping

Some authentication plugins implement proxy user mapping for themselves (for example, the PAM and
Windows authentication plugins). Other authentication plugins do not support proxy users by default.
Of these, some can request that the MySQL server itself map proxy users according to granted proxy
privileges: mysql_native_password, sha256_password. If the check_proxy_users system
variable is enabled, the server performs proxy user mapping for any authentication plugins that make such
a request:

• By default, check_proxy_users is disabled, so the server performs no proxy user mapping even for
authentication plugins that request server support for proxy users.

• If check_proxy_users is enabled, it may also be necessary to enable a plugin-specific system
variable to take advantage of server proxy user mapping support:

• For the mysql_native_password plugin, enable mysql_native_password_proxy_users.

• For the sha256_password plugin, enable sha256_password_proxy_users.

For example, to enable all the preceding capabilities, start the server with these lines in the my.cnf file:

[mysqld]
check_proxy_users=ON
mysql_native_password_proxy_users=ON
sha256_password_proxy_users=ON

Assuming that the relevant system variables have been enabled, create the proxy user as usual using
CREATE USER, then grant it the PROXY privilege to a single other account to be treated as the proxied
user. When the server receives a successful connection request for the proxy user, it finds that the user
has the PROXY privilege and uses it to determine the proper proxied user.

-- create proxy account
CREATE USER 'proxy_user'@'localhost'
 IDENTIFIED WITH mysql_native_password
 BY 'password';

-- create proxied account and grant its privileges;
-- use mysql_no_login plugin to prevent direct login
CREATE USER 'proxied_user'@'localhost'
 IDENTIFIED WITH mysql_no_login;

1138

Account Locking

-- grant privileges to proxied account
GRANT ...
 ON ...
 TO 'proxied_user'@'localhost';

-- grant to proxy account the
-- PROXY privilege for proxied account
GRANT PROXY
 ON 'proxied_user'@'localhost'
 TO 'proxy_user'@'localhost';

To use the proxy account, connect to the server using its name and password:

$> mysql -u proxy_user -p
Enter password: (enter proxy_user password here)

Authentication succeeds, the server finds that proxy_user has the PROXY privilege for proxied_user,
and the session proceeds with proxy_user having the privileges of proxied_user.

Proxy user mapping performed by the server is subject to these restrictions:

• The server does not proxy to or from an anonymous user, even if the associated PROXY privilege is
granted.

• When a single account has been granted proxy privileges for more than one proxied account, server
proxy user mapping is nondeterministic. Therefore, granting to a single account proxy privileges for
multiple proxied accounts is discouraged.

Proxy User System Variables

Two system variables help trace the proxy login process:

• proxy_user: This value is NULL if proxying is not used. Otherwise, it indicates the proxy user account.
For example, if a client authenticates through the ''@'' proxy account, this variable is set as follows:

mysql> SELECT @@proxy_user;
+--------------+
| @@proxy_user |
+--------------+
| ''@'' |
+--------------+

• external_user: Sometimes the authentication plugin may use an external user to authenticate to the
MySQL server. For example, when using Windows native authentication, a plugin that authenticates
using the windows API does not need the login ID passed to it. However, it still uses a Windows user
ID to authenticate. The plugin may return this external user ID (or the first 512 UTF-8 bytes of it) to the
server using the external_user read-only session variable. If the plugin does not set this variable, its
value is NULL.

6.2.15 Account Locking

MySQL supports locking and unlocking user accounts using the ACCOUNT LOCK and ACCOUNT UNLOCK
clauses for the CREATE USER and ALTER USER statements:

• When used with CREATE USER, these clauses specify the initial locking state for a new account. In the
absence of either clause, the account is created in an unlocked state.

If the validate_password plugin is enabled, it does not permit creating an account without a
password, even if the account is locked. See Section 6.4.3, “The Password Validation Plugin”.

1139

Setting Account Resource Limits

• When used with ALTER USER, these clauses specify the new locking state for an existing account. In
the absence of either clause, the account locking state remains unchanged.

Account locking state is recorded in the account_locked column of the mysql.user system table. The
output from SHOW CREATE USER indicates whether an account is locked or unlocked.

If a client attempts to connect to a locked account, the attempt fails. The server increments the
Locked_connects status variable that indicates the number of attempts to connect to a locked account,
returns an ER_ACCOUNT_HAS_BEEN_LOCKED error, and writes a message to the error log:

Access denied for user 'user_name'@'host_name'.
Account is locked.

Locking an account does not affect being able to connect using a proxy user that assumes the identity
of the locked account. It also does not affect the ability to execute stored programs or views that have
a DEFINER attribute naming the locked account. That is, the ability to use a proxied account or stored
programs or views is not affected by locking the account.

The account-locking capability depends on the presence of the account_locked column in the
mysql.user system table. For upgrades from MySQL versions older than 5.7.6, perform the MySQL
upgrade procedure to ensure that this column exists. See Section 2.10, “Upgrading MySQL”. For
nonupgraded installations that have no account_locked column, the server treats all accounts as
unlocked, and using the ACCOUNT LOCK or ACCOUNT UNLOCK clauses produces an error.

6.2.16 Setting Account Resource Limits

One means of restricting client use of MySQL server resources is to set the global
max_user_connections system variable to a nonzero value. This limits the number of simultaneous
connections that can be made by any given account, but places no limits on what a client can do once
connected. In addition, setting max_user_connections does not enable management of individual
accounts. Both types of control are of interest to MySQL administrators.

To address such concerns, MySQL permits limits for individual accounts on use of these server resources:

• The number of queries an account can issue per hour

• The number of updates an account can issue per hour

• The number of times an account can connect to the server per hour

• The number of simultaneous connections to the server by an account

Any statement that a client can issue counts against the query limit, unless its results are served from the
query cache. Only statements that modify databases or tables count against the update limit.

An “account” in this context corresponds to a row in the mysql.user system table. That is, a connection
is assessed against the User and Host values in the user table row that applies to the connection. For
example, an account 'usera'@'%.example.com' corresponds to a row in the user table that has
User and Host values of usera and %.example.com, to permit usera to connect from any host in
the example.com domain. In this case, the server applies resource limits in this row collectively to all
connections by usera from any host in the example.com domain because all such connections use the
same account.

Before MySQL 5.0, an “account” was assessed against the actual host from which a user connects.
This older method of accounting may be selected by starting the server with the --old-style-
user-limits option. In this case, if usera connects simultaneously from host1.example.com and
host2.example.com, the server applies the account resource limits separately to each connection.

1140

https://dev.mysql.com/doc/mysql-errors/5.7/en/server-error-reference.html#error_er_account_has_been_locked

Setting Account Resource Limits

If usera connects again from host1.example.com, the server applies the limits for that connection
together with the existing connection from that host.

To establish resource limits for an account at account-creation time, use the CREATE USER statement.
To modify the limits for an existing account, use ALTER USER. Provide a WITH clause that names each
resource to be limited. The default value for each limit is zero (no limit). For example, to create a new
account that can access the customer database, but only in a limited fashion, issue these statements:

mysql> CREATE USER 'francis'@'localhost' IDENTIFIED BY 'frank'
 -> WITH MAX_QUERIES_PER_HOUR 20
 -> MAX_UPDATES_PER_HOUR 10
 -> MAX_CONNECTIONS_PER_HOUR 5
 -> MAX_USER_CONNECTIONS 2;

The limit types need not all be named in the WITH clause, but those named can be present in any
order. The value for each per-hour limit should be an integer representing a count per hour. For
MAX_USER_CONNECTIONS, the limit is an integer representing the maximum number of simultaneous
connections by the account. If this limit is set to zero, the global max_user_connections system
variable value determines the number of simultaneous connections. If max_user_connections is also
zero, there is no limit for the account.

To modify limits for an existing account, use an ALTER USER statement. The following statement changes
the query limit for francis to 100:

mysql> ALTER USER 'francis'@'localhost' WITH MAX_QUERIES_PER_HOUR 100;

The statement modifies only the limit value specified and leaves the account otherwise unchanged.

To remove a limit, set its value to zero. For example, to remove the limit on how many times per hour
francis can connect, use this statement:

mysql> ALTER USER 'francis'@'localhost' WITH MAX_CONNECTIONS_PER_HOUR 0;

As mentioned previously, the simultaneous-connection limit for an account is determined from the
MAX_USER_CONNECTIONS limit and the max_user_connections system variable. Suppose that the
global max_user_connections value is 10 and three accounts have individual resource limits specified
as follows:

ALTER USER 'user1'@'localhost' WITH MAX_USER_CONNECTIONS 0;
ALTER USER 'user2'@'localhost' WITH MAX_USER_CONNECTIONS 5;
ALTER USER 'user3'@'localhost' WITH MAX_USER_CONNECTIONS 20;

user1 has a connection limit of 10 (the global max_user_connections value) because it has
a MAX_USER_CONNECTIONS limit of zero. user2 and user3 have connection limits of 5 and 20,
respectively, because they have nonzero MAX_USER_CONNECTIONS limits.

The server stores resource limits for an account in the user table row corresponding to the account. The
max_questions, max_updates, and max_connections columns store the per-hour limits, and the
max_user_connections column stores the MAX_USER_CONNECTIONS limit. (See Section 6.2.3, “Grant
Tables”.)

Resource-use counting takes place when any account has a nonzero limit placed on its use of any of the
resources.

As the server runs, it counts the number of times each account uses resources. If an account reaches
its limit on number of connections within the last hour, the server rejects further connections for the
account until that hour is up. Similarly, if the account reaches its limit on the number of queries or updates,
the server rejects further queries or updates until the hour is up. In all such cases, the server issues
appropriate error messages.

1141

Troubleshooting Problems Connecting to MySQL

Resource counting occurs per account, not per client. For example, if your account has a query limit of 50,
you cannot increase your limit to 100 by making two simultaneous client connections to the server. Queries
issued on both connections are counted together.

The current per-hour resource-use counts can be reset globally for all accounts, or individually for a given
account:

• To reset the current counts to zero for all accounts, issue a FLUSH USER_RESOURCES statement.
The counts also can be reset by reloading the grant tables (for example, with a FLUSH PRIVILEGES
statement or a mysqladmin reload command).

• The counts for an individual account can be reset to zero by setting any of its limits again. Specify a limit
value equal to the value currently assigned to the account.

Per-hour counter resets do not affect the MAX_USER_CONNECTIONS limit.

All counts begin at zero when the server starts. Counts do not carry over through server restarts.

For the MAX_USER_CONNECTIONS limit, an edge case can occur if the account currently has open the
maximum number of connections permitted to it: A disconnect followed quickly by a connect can result in
an error (ER_TOO_MANY_USER_CONNECTIONS or ER_USER_LIMIT_REACHED) if the server has not fully
processed the disconnect by the time the connect occurs. When the server finishes disconnect processing,
another connection is once more permitted.

6.2.17 Troubleshooting Problems Connecting to MySQL

If you encounter problems when you try to connect to the MySQL server, the following items describe
some courses of action you can take to correct the problem.

• Make sure that the server is running. If it is not, clients cannot connect to it. For example, if an attempt to
connect to the server fails with a message such as one of those following, one cause might be that the
server is not running:

$> mysql
ERROR 2003: Can't connect to MySQL server on 'host_name' (111)
$> mysql
ERROR 2002: Can't connect to local MySQL server through socket
'/tmp/mysql.sock' (111)

• It might be that the server is running, but you are trying to connect using a TCP/IP port, named pipe, or
Unix socket file different from the one on which the server is listening. To correct this when you invoke
a client program, specify a --port option to indicate the proper port number, or a --socket option to
indicate the proper named pipe or Unix socket file. To find out where the socket file is, you can use this
command:

$> netstat -ln | grep mysql

• Make sure that the server has not been configured to ignore network connections or (if you are
attempting to connect remotely) that it has not been configured to listen only locally on its network
interfaces. If the server was started with the skip_networking system variable enabled, it does not
accept TCP/IP connections at all. If the server was started with the bind_address system variable
set to 127.0.0.1, it listens for TCP/IP connections only locally on the loopback interface and does not
accept remote connections.

• Check to make sure that there is no firewall blocking access to MySQL. Your firewall may be configured
on the basis of the application being executed, or the port number used by MySQL for communication
(3306 by default). Under Linux or Unix, check your IP tables (or similar) configuration to ensure that the

1142

https://dev.mysql.com/doc/mysql-errors/5.7/en/server-error-reference.html#error_er_too_many_user_connections
https://dev.mysql.com/doc/mysql-errors/5.7/en/server-error-reference.html#error_er_user_limit_reached

Troubleshooting Problems Connecting to MySQL

port has not been blocked. Under Windows, applications such as ZoneAlarm or Windows Firewall may
need to be configured not to block the MySQL port.

• The grant tables must be properly set up so that the server can use them for access control. For some
distribution types (such as binary distributions on Windows, or RPM and DEB distributions on Linux),
the installation process initializes the MySQL data directory, including the mysql system database
containing the grant tables. For distributions that do not do this, you must initialize the data directory
manually. For details, see Section 2.9, “Postinstallation Setup and Testing”.

To determine whether you need to initialize the grant tables, look for a mysql directory under the
data directory. (The data directory normally is named data or var and is located under your MySQL
installation directory.) Make sure that you have a file named user.MYD in the mysql database directory.
If not, initialize the data directory. After doing so and starting the server, you should be able to connect to
the server.

• After a fresh installation, if you try to log on to the server as root without using a password, you might
get the following error message.

$> mysql -u root
ERROR 1045 (28000): Access denied for user 'root'@'localhost' (using password: NO)

It means a root password has already been assigned during installation and it has to be supplied. See
Section 2.9.4, “Securing the Initial MySQL Account” on the different ways the password could have been
assigned and, in some cases, how to find it. If you need to reset the root password, see instructions in
Section B.3.3.2, “How to Reset the Root Password”. After you have found or reset your password, log on
again as root using the --password (or -p) option:

$> mysql -u root -p
Enter password:

However, the server is going to let you connect as root without using a password if you have
initialized MySQL using mysqld --initialize-insecure (see Section 2.9.1, “Initializing the Data
Directory” for details). That is a security risk, so you should set a password for the root account; see
Section 2.9.4, “Securing the Initial MySQL Account” for instructions.

• If you have updated an existing MySQL installation to a newer version, did you perform the MySQL
upgrade procedure? If not, do so. The structure of the grant tables changes occasionally when new
capabilities are added, so after an upgrade you should always make sure that your tables have the
current structure. For instructions, see Section 2.10, “Upgrading MySQL”.

• If a client program receives the following error message when it tries to connect, it means that the server
expects passwords in a newer format than the client is capable of generating:

$> mysql
Client does not support authentication protocol requested
by server; consider upgrading MySQL client

For information on how to deal with this, see Section 6.4.1.3, “Migrating Away from Pre-4.1 Password
Hashing and the mysql_old_password Plugin”.

• Remember that client programs use connection parameters specified in option files or environment
variables. If a client program seems to be sending incorrect default connection parameters when you
have not specified them on the command line, check any applicable option files and your environment.
For example, if you get Access denied when you run a client without any options, make sure that you
have not specified an old password in any of your option files!

You can suppress the use of option files by a client program by invoking it with the --no-defaults
option. For example:

1143

Troubleshooting Problems Connecting to MySQL

$> mysqladmin --no-defaults -u root version

The option files that clients use are listed in Section 4.2.2.2, “Using Option Files”. Environment variables
are listed in Section 4.9, “Environment Variables”.

• If you get the following error, it means that you are using an incorrect root password:

$> mysqladmin -u root -pxxxx ver
Access denied for user 'root'@'localhost' (using password: YES)

If the preceding error occurs even when you have not specified a password, it means that you have
an incorrect password listed in some option file. Try the --no-defaults option as described in the
previous item.

For information on changing passwords, see Section 6.2.10, “Assigning Account Passwords”.

If you have lost or forgotten the root password, see Section B.3.3.2, “How to Reset the Root
Password”.

• localhost is a synonym for your local host name, and is also the default host to which clients try to
connect if you specify no host explicitly.

You can use a --host=127.0.0.1 option to name the server host explicitly. This makes a TCP/IP
connection to the local mysqld server. You can also use TCP/IP by specifying a --host option that
uses the actual host name of the local host. In this case, the host name must be specified in a user
table row on the server host, even though you are running the client program on the same host as the
server.

• The Access denied error message tells you who you are trying to log in as, the client host from which
you are trying to connect, and whether you were using a password. Normally, you should have one
row in the user table that exactly matches the host name and user name that were given in the error
message. For example, if you get an error message that contains using password: NO, it means that
you tried to log in without a password.

• If you get an Access denied error when trying to connect to the database with mysql -u
user_name, you may have a problem with the user table. Check this by executing mysql -u root
mysql and issuing this SQL statement:

SELECT * FROM user;

The result should include a row with the Host and User columns matching your client's host name and
your MySQL user name.

• If the following error occurs when you try to connect from a host other than the one on which the MySQL
server is running, it means that there is no row in the user table with a Host value that matches the
client host:

Host ... is not allowed to connect to this MySQL server

You can fix this by setting up an account for the combination of client host name and user name that you
are using when trying to connect.

If you do not know the IP address or host name of the machine from which you are connecting, you
should put a row with '%' as the Host column value in the user table. After trying to connect from the
client machine, use a SELECT USER() query to see how you really did connect. Then change the '%'
in the user table row to the actual host name that shows up in the log. Otherwise, your system is left
insecure because it permits connections from any host for the given user name.

1144

Troubleshooting Problems Connecting to MySQL

On Linux, another reason that this error might occur is that you are using a binary MySQL version that
is compiled with a different version of the glibc library than the one you are using. In this case, you
should either upgrade your operating system or glibc, or download a source distribution of MySQL
version and compile it yourself. A source RPM is normally trivial to compile and install, so this is not a big
problem.

• If you specify a host name when trying to connect, but get an error message where the host name is not
shown or is an IP address, it means that the MySQL server got an error when trying to resolve the IP
address of the client host to a name:

$> mysqladmin -u root -pxxxx -h some_hostname ver
Access denied for user 'root'@'' (using password: YES)

If you try to connect as root and get the following error, it means that you do not have a row in the user
table with a User column value of 'root' and that mysqld cannot resolve the host name for your
client:

Access denied for user ''@'unknown'

These errors indicate a DNS problem. To fix it, execute mysqladmin flush-hosts to reset the
internal DNS host cache. See Section 5.1.11.2, “DNS Lookups and the Host Cache”.

Some permanent solutions are:

• Determine what is wrong with your DNS server and fix it.

• Specify IP addresses rather than host names in the MySQL grant tables.

• Put an entry for the client machine name in /etc/hosts on Unix or \windows\hosts on Windows.

• Start mysqld with the skip_name_resolve system variable enabled.

• Start mysqld with the --skip-host-cache option.

• On Unix, if you are running the server and the client on the same machine, connect to localhost.
For connections to localhost, MySQL programs attempt to connect to the local server by using a
Unix socket file, unless there are connection parameters specified to ensure that the client makes a
TCP/IP connection. For more information, see Section 4.2.4, “Connecting to the MySQL Server Using
Command Options”.

• On Windows, if you are running the server and the client on the same machine and the server
supports named pipe connections, connect to the host name . (period). Connections to . use a
named pipe rather than TCP/IP.

• If mysql -u root works but mysql -h your_hostname -u root results in Access denied
(where your_hostname is the actual host name of the local host), you may not have the correct
name for your host in the user table. A common problem here is that the Host value in the user
table row specifies an unqualified host name, but your system's name resolution routines return a
fully qualified domain name (or vice versa). For example, if you have a row with host 'pluto' in the
user table, but your DNS tells MySQL that your host name is 'pluto.example.com', the row does
not work. Try adding a row to the user table that contains the IP address of your host as the Host
column value. (Alternatively, you could add a row to the user table with a Host value that contains a
wildcard (for example, 'pluto.%'). However, use of Host values ending with % is insecure and is not
recommended!)

1145

Troubleshooting Problems Connecting to MySQL

• If mysql -u user_name works but mysql -u user_name some_db does not, you have not granted
access to the given user for the database named some_db.

• If mysql -u user_name works when executed on the server host, but mysql -h host_name -u
user_name does not work when executed on a remote client host, you have not enabled access to the
server for the given user name from the remote host.

• If you cannot figure out why you get Access denied, remove from the user table all rows that have
Host values containing wildcards (rows that contain '%' or '_' characters). A very common error is
to insert a new row with Host='%' and User='some_user', thinking that this enables you to specify
localhost to connect from the same machine. The reason that this does not work is that the default
privileges include a row with Host='localhost' and User=''. Because that row has a Host value
'localhost' that is more specific than '%', it is used in preference to the new row when connecting
from localhost! The correct procedure is to insert a second row with Host='localhost' and
User='some_user', or to delete the row with Host='localhost' and User=''. After deleting
the row, remember to issue a FLUSH PRIVILEGES statement to reload the grant tables. See also
Section 6.2.5, “Access Control, Stage 1: Connection Verification”.

• If you are able to connect to the MySQL server, but get an Access denied message whenever you
issue a SELECT ... INTO OUTFILE or LOAD DATA statement, your row in the user table does not
have the FILE privilege enabled.

• If you change the grant tables directly (for example, by using INSERT, UPDATE, or DELETE statements)
and your changes seem to be ignored, remember that you must execute a FLUSH PRIVILEGES
statement or a mysqladmin flush-privileges command to cause the server to reload the privilege
tables. Otherwise, your changes have no effect until the next time the server is restarted. Remember
that after you change the root password with an UPDATE statement, you do not need to specify the
new password until after you flush the privileges, because the server does not yet know that you have
changed the password.

• If your privileges seem to have changed in the middle of a session, it may be that a MySQL administrator
has changed them. Reloading the grant tables affects new client connections, but it also affects existing
connections as indicated in Section 6.2.9, “When Privilege Changes Take Effect”.

• If you have access problems with a Perl, PHP, Python, or ODBC program, try to connect to the server
with mysql -u user_name db_name or mysql -u user_name -ppassword db_name. If
you are able to connect using the mysql client, the problem lies with your program, not with the
access privileges. (There is no space between -p and the password; you can also use the --
password=password syntax to specify the password. If you use the -p or --password option with no
password value, MySQL prompts you for the password.)

• For testing purposes, start the mysqld server with the --skip-grant-tables option. Then you
can change the MySQL grant tables and use the SHOW GRANTS statement to check whether your
modifications have the desired effect. When you are satisfied with your changes, execute mysqladmin
flush-privileges to tell the mysqld server to reload the privileges. This enables you to begin using
the new grant table contents without stopping and restarting the server.

• If everything else fails, start the mysqld server with a debugging option (for example, --
debug=d,general,query). This prints host and user information about attempted connections, as well
as information about each command issued. See Section 5.8.3, “The DBUG Package”.

• If you have any other problems with the MySQL grant tables and ask on the MySQL Community Slack,
always provide a dump of the MySQL grant tables. You can dump the tables with the mysqldump
mysql command. To file a bug report, see the instructions at Section 1.5, “How to Report Bugs or
Problems”. In some cases, you may need to restart mysqld with --skip-grant-tables to run
mysqldump.

1146

https://mysqlcommunity.slack.com/

SQL-Based Account Activity Auditing

6.2.18 SQL-Based Account Activity Auditing

Applications can use the following guidelines to perform SQL-based auditing that ties database activity to
MySQL accounts.

MySQL accounts correspond to rows in the mysql.user system table. When a client connects
successfully, the server authenticates the client to a particular row in this table. The User
and Host column values in this row uniquely identify the account and correspond to the
'user_name'@'host_name' format in which account names are written in SQL statements.

The account used to authenticate a client determines which privileges the client has. Normally, the
CURRENT_USER() function can be invoked to determine which account this is for the client user. Its value
is constructed from the User and Host columns of the user table row for the account.

However, there are circumstances under which the CURRENT_USER() value corresponds not to the client
user but to a different account. This occurs in contexts when privilege checking is not based the client's
account:

• Stored routines (procedures and functions) defined with the SQL SECURITY DEFINER characteristic

• Views defined with the SQL SECURITY DEFINER characteristic

• Triggers and events

In those contexts, privilege checking is done against the DEFINER account and CURRENT_USER() refers
to that account, not to the account for the client who invoked the stored routine or view or who caused
the trigger to activate. To determine the invoking user, you can call the USER() function, which returns a
value indicating the actual user name provided by the client and the host from which the client connected.
However, this value does not necessarily correspond directly to an account in the user table, because the
USER() value never contains wildcards, whereas account values (as returned by CURRENT_USER()) may
contain user name and host name wildcards.

For example, a blank user name matches any user, so an account of ''@'localhost' enables clients to
connect as an anonymous user from the local host with any user name. In this case, if a client connects as
user1 from the local host, USER() and CURRENT_USER() return different values:

mysql> SELECT USER(), CURRENT_USER();
+-----------------+----------------+
| USER() | CURRENT_USER() |
+-----------------+----------------+
| user1@localhost | @localhost |
+-----------------+----------------+

The host name part of an account can contain wildcards, too. If the host name contains a '%' or
'_' pattern character or uses netmask notation, the account can be used for clients connecting from
multiple hosts and the CURRENT_USER() value does not indicate which one. For example, the account
'user2'@'%.example.com' can be used by user2 to connect from any host in the example.com
domain. If user2 connects from remote.example.com, USER() and CURRENT_USER() return different
values:

mysql> SELECT USER(), CURRENT_USER();
+--------------------------+---------------------+
| USER() | CURRENT_USER() |
+--------------------------+---------------------+
| user2@remote.example.com | user2@%.example.com |
+--------------------------+---------------------+

If an application must invoke USER() for user auditing (for example, if it does auditing from within triggers)
but must also be able to associate the USER() value with an account in the user table, it is necessary

1147

Using Encrypted Connections

to avoid accounts that contain wildcards in the User or Host column. Specifically, do not permit User to
be empty (which creates an anonymous-user account), and do not permit pattern characters or netmask
notation in Host values. All accounts must have a nonempty User value and literal Host value.

With respect to the previous examples, the ''@'localhost' and 'user2'@'%.example.com'
accounts should be changed not to use wildcards:

RENAME USER ''@'localhost' TO 'user1'@'localhost';
RENAME USER 'user2'@'%.example.com' TO 'user2'@'remote.example.com';

If user2 must be able to connect from several hosts in the example.com domain, there should be a
separate account for each host.

To extract the user name or host name part from a CURRENT_USER() or USER() value, use the
SUBSTRING_INDEX() function:

mysql> SELECT SUBSTRING_INDEX(CURRENT_USER(),'@',1);
+---------------------------------------+
| SUBSTRING_INDEX(CURRENT_USER(),'@',1) |
+---------------------------------------+
| user1 |
+---------------------------------------+

mysql> SELECT SUBSTRING_INDEX(CURRENT_USER(),'@',-1);
+--+
| SUBSTRING_INDEX(CURRENT_USER(),'@',-1) |
+--+
| localhost |
+--+

6.3 Using Encrypted Connections
With an unencrypted connection between the MySQL client and the server, someone with access to the
network could watch all your traffic and inspect the data being sent or received between client and server.

When you must move information over a network in a secure fashion, an unencrypted connection
is unacceptable. To make any kind of data unreadable, use encryption. Encryption algorithms must
include security elements to resist many kinds of known attacks such as changing the order of encrypted
messages or replaying data twice.

MySQL supports encrypted connections between clients and the server using the TLS (Transport Layer
Security) protocol. TLS is sometimes referred to as SSL (Secure Sockets Layer) but MySQL does not
actually use the SSL protocol for encrypted connections because its encryption is weak (see Section 6.3.2,
“Encrypted Connection TLS Protocols and Ciphers”).

TLS uses encryption algorithms to ensure that data received over a public network can be trusted. It has
mechanisms to detect data change, loss, or replay. TLS also incorporates algorithms that provide identity
verification using the X.509 standard.

X.509 makes it possible to identify someone on the Internet. In basic terms, there should be some entity
called a “Certificate Authority” (or CA) that assigns electronic certificates to anyone who needs them.
Certificates rely on asymmetric encryption algorithms that have two encryption keys (a public key and a
secret key). A certificate owner can present the certificate to another party as proof of identity. A certificate
consists of its owner's public key. Any data encrypted using this public key can be decrypted only using the
corresponding secret key, which is held by the owner of the certificate.

MySQL can be compiled for encrypted-connection support using OpenSSL or yaSSL. For a comparison
of the two packages, see Section 6.3.4, “SSL Library-Dependent Capabilities” For information about the
encryption protocols and ciphers each package supports, see Section 6.3.2, “Encrypted Connection TLS
Protocols and Ciphers”.

1148

Using Encrypted Connections

Note

It is possible to compile MySQL using yaSSL as an alternative to OpenSSL only
prior to MySQL 5.7.28. As of MySQL 5.7.28, support for yaSSL is removed and all
MySQL builds use OpenSSL.

By default, MySQL programs attempt to connect using encryption if the server supports encrypted
connections, falling back to an unencrypted connection if an encrypted connection cannot be established.
For information about options that affect use of encrypted connections, see Section 6.3.1, “Configuring
MySQL to Use Encrypted Connections” and Command Options for Encrypted Connections.

MySQL performs encryption on a per-connection basis, and use of encryption for a given user can
be optional or mandatory. This enables you to choose an encrypted or unencrypted connection
according to the requirements of individual applications. For information on how to require users
to use encrypted connections, see the discussion of the REQUIRE clause of the CREATE USER
statement in Section 13.7.1.2, “CREATE USER Statement”. See also the description of the
require_secure_transport system variable at Section 5.1.7, “Server System Variables”

Encrypted connections can be used between source and replica servers. See Section 16.3.8, “Setting Up
Replication to Use Encrypted Connections”.

For information about using encrypted connections from the MySQL C API, see Support for Encrypted
Connections.

It is also possible to connect using encryption from within an SSH connection to the MySQL server host.
For an example, see Section 6.3.5, “Connecting to MySQL Remotely from Windows with SSH”.

Several improvements were made to encrypted-connection support in MySQL 5.7. The following timeline
summarizes the changes:

• 5.7.3: On the client side, an explicit --ssl option is no longer advisory but prescriptive. Given a server
enabled to support encrypted connections, a client program can require an encrypted connection by
specifying only the --ssl option. (Previously, it was necessary for the client to specify either the --
ssl-ca option, or all three of the --ssl-ca, --ssl-key, and --ssl-cert options.) The connection
attempt fails if an encrypted connection cannot be established. Other --ssl-xxx options on the client
side are advisory in the absence of --ssl: The client attempts to connect using encryption but falls back
to an unencrypted connection if an encrypted connection cannot be established.

• 5.7.5: The server-side --ssl option value is enabled by default.

For servers compiled using OpenSSL, the auto_generate_certs and
sha256_password_auto_generate_rsa_keys system variables are available to enable
autogeneration and autodiscovery of SSL/RSA certificate and key files at startup. For certificate and key
autodiscovery, if --ssl is enabled and other --ssl-xxx options are not given to configure encrypted
connections explicitly, the server attempts to enable support for encrypted connections automatically at
startup if it discovers the requisite certificate and key files in the data directory.

• 5.7.6: The mysql_ssl_rsa_setup utility is available to make it easier to manually generate SSL/RSA
certificate and key files. Autodiscovery of SSL/RSA files at startup is expanded to apply to all servers,
whether compiled using OpenSSL or yaSSL. (This means that auto_generate_certs need not be
enabled for autodiscovery to occur.)

If the server discovers at startup that the CA certificate is self-signed, it writes a warning to the
error log. (The certificate is self-signed if created automatically by the server, or manually using
mysql_ssl_rsa_setup.)

1149

https://dev.mysql.com/doc/c-api/5.7/en/c-api-encrypted-connections.html
https://dev.mysql.com/doc/c-api/5.7/en/c-api-encrypted-connections.html

Configuring MySQL to Use Encrypted Connections

• 5.7.7: The C client library attempts to establish an encrypted connection by default if the server supports
encrypted connections. This affects client programs as follows:

• In the absence of an --ssl option, clients attempt to connect using encryption, falling back to an
unencrypted connection if an encrypted connection cannot be established.

• The presence of an explicit --ssl option or a synonym (--ssl=1, --enable-ssl) is prescriptive:
Clients require an encrypted connection and fail if one cannot be established.

• With an --ssl=0 option or a synonym (--skip-ssl, --disable-ssl), clients use an unencrypted
connection.

This change also affects subsequent releases of MySQL Connectors that are based on the C client
library: Connector/C++ and Connector/ODBC.

• 5.7.8: The require_secure_transport system variable is available to control whether client
connections to the server must use some form of secure transport.

• 5.7.10: TLS protocol support is extended from TLSv1 to also include TLSv1.1 and TLSv1.2. The
tls_version system variable on the server side and --tls-version option on the client side
enable the level of support to be selected. See Section 6.3.2, “Encrypted Connection TLS Protocols and
Ciphers”.

• 5.7.11: MySQL client programs support an --ssl-mode option that enables you to specify the security
state of the connection to the server. The --ssl-mode option comprises the capabilities of the client-
side --ssl and --ssl-verify-server-cert options. Consequently, --ssl and --ssl-verify-
server-cert are deprecated, and are removed in MySQL 8.0.

• 5.7.28: Support for yaSSL is removed. All MySQL builds use OpenSSL.

• 5.7.35: The TLSv1 and TLSv1.1 protocols are deprecated.

6.3.1 Configuring MySQL to Use Encrypted Connections

Several configuration parameters are available to indicate whether to use encrypted connections, and to
specify the appropriate certificate and key files. This section provides general guidance about configuring
the server and clients for encrypted connections:

• Server-Side Startup Configuration for Encrypted Connections

• Client-Side Configuration for Encrypted Connections

• Configuring Encrypted Connections as Mandatory

Encrypted connections also can be used in other contexts, as discussed in these additional sections:

• Between source and replica servers. See Section 16.3.8, “Setting Up Replication to Use Encrypted
Connections”.

• Among Group Replication servers. See Section 17.6.2, “Group Replication Secure Socket Layer (SSL)
Support”.

• By client programs that are based on the MySQL C API. See Support for Encrypted Connections.

Instructions for creating any required certificate and key files are available in Section 6.3.3, “Creating SSL
and RSA Certificates and Keys”.

1150

https://dev.mysql.com/doc/c-api/5.7/en/c-api-encrypted-connections.html

Configuring MySQL to Use Encrypted Connections

Server-Side Startup Configuration for Encrypted Connections

On the server side, the --ssl option specifies that the server permits but does not require encrypted
connections. This option is enabled by default, so it need not be specified explicitly.

To require that clients connect using encrypted connections, enable the require_secure_transport
system variable. See Configuring Encrypted Connections as Mandatory.

These system variables on the server side specify the certificate and key files the server uses when
permitting clients to establish encrypted connections:

• ssl_ca: The path name of the Certificate Authority (CA) certificate file. (ssl_capath is similar but
specifies the path name of a directory of CA certificate files.)

• ssl_cert: The path name of the server public key certificate file. This certificate can be sent to the
client and authenticated against the CA certificate that it has.

• ssl_key: The path name of the server private key file.

For example, to enable the server for encrypted connections, start it with these lines in the my.cnf file,
changing the file names as necessary:

[mysqld]
ssl_ca=ca.pem
ssl_cert=server-cert.pem
ssl_key=server-key.pem

To specify in addition that clients are required to use encrypted connections, enable the
require_secure_transport system variable:

[mysqld]
ssl_ca=ca.pem
ssl_cert=server-cert.pem
ssl_key=server-key.pem
require_secure_transport=ON

Each certificate and key system variable names a file in PEM format. Should you need to create the
required certificate and key files, see Section 6.3.3, “Creating SSL and RSA Certificates and Keys”.
MySQL servers compiled using OpenSSL can generate missing certificate and key files automatically at
startup. See Section 6.3.3.1, “Creating SSL and RSA Certificates and Keys using MySQL”. Alternatively, if
you have a MySQL source distribution, you can test your setup using the demonstration certificate and key
files in its mysql-test/std_data directory.

The server performs certificate and key file autodiscovery. If no explicit encrypted-connection options are
given other than --ssl (possibly along with ssl_cipher) to configure encrypted connections, the server
attempts to enable encrypted-connection support automatically at startup:

• If the server discovers valid certificate and key files named ca.pem, server-cert.pem, and server-
key.pem in the data directory, it enables support for encrypted connections by clients. (The files need
not have been generated automatically; what matters is that they have those names and are valid.)

• If the server does not find valid certificate and key files in the data directory, it continues executing but
without support for encrypted connections.

If the server automatically enables encrypted connection support, it writes a note to the error log. If the
server discovers that the CA certificate is self-signed, it writes a warning to the error log. (The certificate is
self-signed if created automatically by the server or manually using mysql_ssl_rsa_setup.)

MySQL also provides these system variables for server-side encrypted-connection control:

1151

Configuring MySQL to Use Encrypted Connections

• ssl_cipher: The list of permissible ciphers for connection encryption.

• ssl_crl: The path name of the file containing certificate revocation lists. (ssl_crlpath is similar but
specifies the path name of a directory of certificate revocation-list files.)

• tls_version: Which encryption protocols the server permits for encrypted connections; see
Section 6.3.2, “Encrypted Connection TLS Protocols and Ciphers”. For example, you can configure
tls_version to prevent clients from using less-secure protocols.

Client-Side Configuration for Encrypted Connections

For a complete list of client options related to establishment of encrypted connections, see Command
Options for Encrypted Connections.

By default, MySQL client programs attempt to establish an encrypted connection if the server supports
encrypted connections, with further control available through the --ssl-mode option:

• In the absence of an --ssl-mode option, clients attempt to connect using encryption, falling back to an
unencrypted connection if an encrypted connection cannot be established. This is also the behavior with
an explicit --ssl-mode=PREFERRED option.

• With --ssl-mode=REQUIRED, clients require an encrypted connection and fail if one cannot be
established.

• With --ssl-mode=DISABLED, clients use an unencrypted connection.

• With --ssl-mode=VERIFY_CA or --ssl-mode=VERIFY_IDENTITY, clients require an encrypted
connection, and also perform verification against the server CA certificate and (with VERIFY_IDENTITY)
against the server host name in its certificate.

Important

The default setting, --ssl-mode=PREFERRED, produces an encrypted connection
if the other default settings are unchanged. However, to help prevent sophisticated
man-in-the-middle attacks, it is important for the client to verify the server’s identity.
The settings --ssl-mode=VERIFY_CA and --ssl-mode=VERIFY_IDENTITY
are a better choice than the default setting to help prevent this type of attack.
VERIFY_CA makes the client check that the server’s certificate is valid.
VERIFY_IDENTITY makes the client check that the server’s certificate is valid,
and also makes the client check that the host name the client is using matches the
identity in the server’s certificate. To implement one of these settings, you must first
ensure that the CA certificate for the server is reliably available to all the clients that
use it in your environment, otherwise availability issues will result. For this reason,
they are not the default setting.

Attempts to establish an unencrypted connection fail if the require_secure_transport system
variable is enabled on the server side to cause the server to require encrypted connections. See
Configuring Encrypted Connections as Mandatory.

The following options on the client side identify the certificate and key files clients use when establishing
encrypted connections to the server. They are similar to the ssl_ca, ssl_cert, and ssl_key system
variables used on the server side, but --ssl-cert and --ssl-key identify the client public and private
key:

• --ssl-ca: The path name of the Certificate Authority (CA) certificate file. This option, if used, must
specify the same certificate used by the server. (--ssl-capath is similar but specifies the path name
of a directory of CA certificate files.)

1152

Configuring MySQL to Use Encrypted Connections

• --ssl-cert: The path name of the client public key certificate file.

• --ssl-key: The path name of the client private key file.

For additional security relative to that provided by the default encryption, clients can supply a CA certificate
matching the one used by the server and enable host name identity verification. In this way, the server and
client place their trust in the same CA certificate and the client verifies that the host to which it connected is
the one intended:

• To specify the CA certificate, use --ssl-ca (or --ssl-capath), and specify --ssl-
mode=VERIFY_CA.

• To enable host name identity verification as well, use --ssl-mode=VERIFY_IDENTITY rather than --
ssl-mode=VERIFY_CA.

Note

Host name identity verification with VERIFY_IDENTITY does not work with self-
signed certificates that are created automatically by the server or manually using
mysql_ssl_rsa_setup (see Section 6.3.3.1, “Creating SSL and RSA Certificates
and Keys using MySQL”). Such self-signed certificates do not contain the server
name as the Common Name value.

Prior to MySQL 5.7.23, host name identity verification also does not work with
certificates that specify the Common Name using wildcards because that name is
compared verbatim to the server name.

MySQL also provides these options for client-side encrypted-connection control:

• --ssl-cipher: The list of permissible ciphers for connection encryption.

• --ssl-crl: The path name of the file containing certificate revocation lists. (--ssl-crlpath is similar
but specifies the path name of a directory of certificate revocation-list files.)

• --tls-version: The permitted encryption protocols; see Section 6.3.2, “Encrypted Connection TLS
Protocols and Ciphers”.

Depending on the encryption requirements of the MySQL account used by a client, the client may be
required to specify certain options to connect using encryption to the MySQL server.

Suppose that you want to connect using an account that has no special encryption requirements or that
was created using a CREATE USER statement that included the REQUIRE SSL clause. Assuming that the
server supports encrypted connections, a client can connect using encryption with no --ssl-mode option
or with an explicit --ssl-mode=PREFERRED option:

mysql

Or:

mysql --ssl-mode=PREFERRED

For an account created with a REQUIRE SSL clause, the connection attempt fails if an encrypted
connection cannot be established. For an account with no special encryption requirements, the attempt
falls back to an unencrypted connection if an encrypted connection cannot be established. To prevent
fallback and fail if an encrypted connection cannot be obtained, connect like this:

mysql --ssl-mode=REQUIRED

1153

Configuring MySQL to Use Encrypted Connections

If the account has more stringent security requirements, other options must be specified to establish an
encrypted connection:

• For accounts created with a REQUIRE X509 clause, clients must specify at least --ssl-cert and --
ssl-key. In addition, --ssl-ca (or --ssl-capath) is recommended so that the public certificate
provided by the server can be verified. For example (enter the command on a single line):

mysql --ssl-ca=ca.pem
 --ssl-cert=client-cert.pem
 --ssl-key=client-key.pem

• For accounts created with a REQUIRE ISSUER or REQUIRE SUBJECT clause, the encryption
requirements are the same as for REQUIRE X509, but the certificate must match the issue or subject,
respectively, specified in the account definition.

For additional information about the REQUIRE clause, see Section 13.7.1.2, “CREATE USER Statement”.

MySQL servers can generate client certificate and key files that clients can use to connect to MySQL
server instances. See Section 6.3.3, “Creating SSL and RSA Certificates and Keys”.

Important

If a client connecting to a MySQL server instance uses an SSL certificate with the
extendedKeyUsage extension (an X.509 v3 extension), the extended key usage
must include client authentication (clientAuth). If the SSL certificate is only
specified for server authentication (serverAuth) and other non-client certificate
purposes, certificate verification fails and the client connection to the MySQL server
instance fails. There is no extendedKeyUsage extension in SSL certificates
generated by MySQL Server (as described in Section 6.3.3.1, “Creating SSL and
RSA Certificates and Keys using MySQL”), and SSL certificates created using
the openssl command following the instructions in Section 6.3.3.2, “Creating
SSL Certificates and Keys Using openssl”. If you use your own client certificate
created in another way, ensure any extendedKeyUsage extension includes client
authentication.

To prevent use of encryption and override other --ssl-xxx options, invoke the client program with --
ssl-mode=DISABLED:

mysql --ssl-mode=DISABLED

To determine whether the current connection with the server uses encryption, check the session value of
the Ssl_cipher status variable. If the value is empty, the connection is not encrypted. Otherwise, the
connection is encrypted and the value indicates the encryption cipher. For example:

mysql> SHOW SESSION STATUS LIKE 'Ssl_cipher';
+---------------+---------------------------+
| Variable_name | Value |
+---------------+---------------------------+
| Ssl_cipher | DHE-RSA-AES128-GCM-SHA256 |
+---------------+---------------------------+

For the mysql client, an alternative is to use the STATUS or \s command and check the SSL line:

mysql> \s
...
SSL: Not in use
...

Or:

1154

Encrypted Connection TLS Protocols and Ciphers

mysql> \s
...
SSL: Cipher in use is DHE-RSA-AES128-GCM-SHA256
...

Configuring Encrypted Connections as Mandatory

For some MySQL deployments it may be not only desirable but mandatory to use encrypted connections
(for example, to satisfy regulatory requirements). This section discusses configuration settings that enable
you to do this. These levels of control are available:

• You can configure the server to require that clients connect using encrypted connections.

• You can invoke individual client programs to require an encrypted connection, even if the server permits
but does not require encryption.

• You can configure individual MySQL accounts to be usable only over encrypted connections.

To require that clients connect using encrypted connections, enable the require_secure_transport
system variable. For example, put these lines in the server my.cnf file:

[mysqld]
require_secure_transport=ON

With require_secure_transport enabled, client connections to the server are required to use some
form of secure transport, and the server permits only TCP/IP connections that use SSL, or connections
that use a socket file (on Unix) or shared memory (on Windows). The server rejects nonsecure connection
attempts, which fail with an ER_SECURE_TRANSPORT_REQUIRED error.

To invoke a client program such that it requires an encrypted connection whether or not the server requires
encryption, use an --ssl-mode option value of REQUIRED, VERIFY_CA, or VERIFY_IDENTITY. For
example:

mysql --ssl-mode=REQUIRED
mysqldump --ssl-mode=VERIFY_CA
mysqladmin --ssl-mode=VERIFY_IDENTITY

To configure a MySQL account to be usable only over encrypted connections, include a REQUIRE
clause in the CREATE USER statement that creates the account, specifying in that clause the encryption
characteristics you require. For example, to require an encrypted connection and the use of a valid X.509
certificate, use REQUIRE X509:

CREATE USER 'jeffrey'@'localhost' REQUIRE X509;

For additional information about the REQUIRE clause, see Section 13.7.1.2, “CREATE USER Statement”.

To modify existing accounts that have no encryption requirements, use the ALTER USER statement.

6.3.2 Encrypted Connection TLS Protocols and Ciphers

MySQL supports multiple TLS protocols and ciphers, and enables configuring which protocols and ciphers
to permit for encrypted connections. It is also possible to determine which protocol and cipher the current
session uses.

• Supported Connection TLS Protocols

• Connection TLS Protocol Configuration

1155

https://dev.mysql.com/doc/mysql-errors/5.7/en/server-error-reference.html#error_er_secure_transport_required

Encrypted Connection TLS Protocols and Ciphers

• Deprecated TLS Protocols

• Connection Cipher Configuration

• Connection TLS Protocol Negotiation

• Monitoring Current Client Session TLS Protocol and Cipher

Supported Connection TLS Protocols

MySQL supports encrypted connections using the TLSv1, TLSv1.1, and TLSv1.2 protocols, listed in order
from less secure to more secure. The set of protocols actually permitted for connections is subject to
multiple factors:

• MySQL configuration. Permitted TLS protocols can be configured on both the server side and client side
to include only a subset of the supported TLS protocols. The configuration on both sides must include at
least one protocol in common or connection attempts cannot negotiate a protocol to use. For details, see
Connection TLS Protocol Negotiation.

• System-wide host configuration. The host system may permit only certain TLS protocols, which means
that MySQL connections cannot use nonpermitted protocols even if MySQL itself permits them:

• Suppose that MySQL configuration permits TLSv1, TLSv1.1, and TLSv1.2, but your host system
configuration permits only connections that use TLSv1.2 or higher. In this case, you cannot establish
MySQL connections that use TLSv1 or TLSv1.1, even though MySQL is configured to permit them,
because the host system does not permit them.

• If MySQL configuration permits TLSv1, TLSv1.1, and TLSv1.2, but your host system configuration
permits only connections that use TLSv1.3 or higher, you cannot establish MySQL connections at all,
because no protocol permitted by MySQL is permitted by the host system.

Workarounds for this issue include:

• Change the system-wide host configuration to permit additional TLS protocols. Consult your operating
system documentation for instructions. For example, your system may have an /etc/ssl/
openssl.cnf file that contains these lines to restrict TLS protocols to TLSv1.2 or higher:

[system_default_sect]
MinProtocol = TLSv1.2

Changing the value to a lower protocol version or None makes the system more permissive. This
workaround has the disadvantage that permitting lower (less secure) protocols may have adverse
security consequences.

• If you cannot or prefer not to change the host system TLS configuration, change MySQL applications
to use higher (more secure) TLS protocols that are permitted by the host system. This may not be
possible for older versions of MySQL that support only lower protocol versions. For example, TLSv1 is
the only supported protocol prior to MySQL 5.6.46, so attempts to connect to a pre-5.6.46 server fail
even if the client is from a newer MySQL version that supports higher protocol versions. In such cases,
an upgrade to a version of MySQL that supports additional TLS versions may be required.

• The SSL library. If the SSL library does not support a particular protocol, neither does MySQL, and any
parts of the following discussion that specify that protocol do not apply.

• When compiled using OpenSSL 1.0.1 or higher, MySQL supports the TLSv1, TLSv1.1, and TLSv1.2
protocols.

• When compiled using yaSSL, MySQL supports the TLSv1 and TLSv1.1 protocols.

1156

Encrypted Connection TLS Protocols and Ciphers

Note

It is possible to compile MySQL using yaSSL as an alternative to OpenSSL only
prior to MySQL 5.7.28. As of MySQL 5.7.28, support for yaSSL is removed and
all MySQL builds use OpenSSL.

Connection TLS Protocol Configuration

On the server side, the value of the tls_version system variable determines which TLS protocols
a MySQL server permits for encrypted connections. The tls_version value applies to connections
from clients and from replica servers using regular source/replica replication. The variable value is a list
of one or more comma-separated protocol versions from this list (not case-sensitive): TLSv1, TLSv1.1,
TLSv1.2. By default, this variable lists all protocols supported by the SSL library used to compile MySQL
(TLSv1,TLSv1.1,TLSv1.2 for OpenSSL, TLSv1,TLSv1.1 for yaSSL). To determine the value of
tls_version at runtime, use this statement:

mysql> SHOW GLOBAL VARIABLES LIKE 'tls_version';
+---------------+-----------------------+
| Variable_name | Value |
+---------------+-----------------------+
| tls_version | TLSv1,TLSv1.1,TLSv1.2 |
+---------------+-----------------------+

To change the value of tls_version, set it at server startup. For example, to permit connections that use
the TLSv1.1 or TLSv1.2 protocol, but prohibit connections that use the less-secure TLSv1 protocol, use
these lines in the server my.cnf file:

[mysqld]
tls_version=TLSv1.1,TLSv1.2

To be even more restrictive and permit only TLSv1.2 connections, set tls_version like this (assuming
that your server is compiled using OpenSSL because yaSSL does not support TLSv1.2):

[mysqld]
tls_version=TLSv1.2

Note

As of MySQL 5.7.35, the TLSv1 and TLSv1.1 connection protocols are deprecated
and support for them is subject to removal in a future version of MySQL. See
Deprecated TLS Protocols.

On the client side, the --tls-version option specifies which TLS protocols a client program permits
for connections to the server. The format of the option value is the same as for the tls_version system
variable described previously (a list of one or more comma-separated protocol versions).

For source/replica replication, the MASTER_TLS_VERSION option for the CHANGE MASTER TO statement
specifies which TLS protocols a replica server permits for connections to the source. The format of
the option value is the same as for the tls_version system variable described previously. See
Section 16.3.8, “Setting Up Replication to Use Encrypted Connections”.

The protocols that can be specified for MASTER_TLS_VERSION depend on the SSL library. This option is
independent of and not affected by the server tls_version value. For example, a server that acts as
a replica can be configured with tls_version set to TLSv1.2 to permit only incoming connections that
use TLSv1.2, but also configured with MASTER_TLS_VERSION set to TLSv1.1 to permit only TLSv1.1 for
outgoing replica connections to the source.

TLS protocol configuration affects which protocol a given connection uses, as described in Connection TLS
Protocol Negotiation.

1157

Encrypted Connection TLS Protocols and Ciphers

Permitted protocols should be chosen such as not to leave “holes” in the list. For example, these server
configuration values do not have holes:

tls_version=TLSv1,TLSv1.1,TLSv1.2
tls_version=TLSv1.1,TLSv1.2
tls_version=TLSv1.2

This value does have a hole and should not be used:

tls_version=TLSv1,TLSv1.2 (TLSv1.1 is missing)

The prohibition on holes also applies in other configuration contexts, such as for clients or replicas.

Unless you intend to disable encrypted connections, the list of permitted protocols should not be empty. If
you set a TLS version parameter to the empty string, encrypted connections cannot be established:

• tls_version: The server does not permit encrypted incoming connections.

• --tls-version: The client does not permit encrypted outgoing connections to the server.

• MASTER_TLS_VERSION: The replica does not permit encrypted outgoing connections to the source.

Deprecated TLS Protocols

As of MySQL 5.7.35, the TLSv1 and TLSv1.1 connection protocols are deprecated and support for them
is subject to removal in a future MySQL version. (For background, refer to the IETF memo Deprecating
TLSv1.0 and TLSv1.1.) It is recommended that connections be made using the more-secure TLSv1.2 and
TLSv1.3 protocols. TLSv1.3 requires that both the MySQL server and the client application be compiled
with OpenSSL 1.1.1 or higher.

On the server side, this deprecation has the following effects:

• If the tls_version system variable is assigned a value containing a deprecated TLS protocol during
server startup, the server writes a warning for each deprecated protocol to the error log.

• If a client successfully connects using a deprecated TLS protocol, the server writes a warning to the error
log.

On the client side, the deprecation has no visible effect. Clients do not issue a warning if configured to
permit a deprecated TLS protocol. This includes:

• Client programs that support a --tls-version option for specifying TLS protocols for connections to
the MySQL server.

• Statements that enable replicas to specify TLS protocols for connections to the source server. (CHANGE
MASTER TO has a MASTER_TLS_VERSION option.)

Connection Cipher Configuration

A default set of ciphers applies to encrypted connections, which can be overridden by explicitly configuring
the permitted ciphers. During connection establishment, both sides of a connection must permit some
cipher in common or the connection fails. Of the permitted ciphers common to both sides, the SSL library
chooses the one supported by the provided certificate that has the highest priority.

To specify a cipher or ciphers for encrypted connections, set the ssl_cipher system variable on the
server side, and use the --ssl-cipher option for client programs.

For source/replica replication connections, where this server instance is the source, set the ssl_cipher
system variable. Where this server instance is the replica, use the MASTER_SSL_CIPHER option for

1158

https://tools.ietf.org/id/draft-ietf-tls-oldversions-deprecate-02.html
https://tools.ietf.org/id/draft-ietf-tls-oldversions-deprecate-02.html

Encrypted Connection TLS Protocols and Ciphers

the CHANGE MASTER TO statement. See Section 16.3.8, “Setting Up Replication to Use Encrypted
Connections”.

A given cipher may work only with particular TLS protocols, which affects the TLS protocol negotiation
process. See Connection TLS Protocol Negotiation.

To determine which ciphers a given server supports, check the session value of the Ssl_cipher_list
status variable:

SHOW SESSION STATUS LIKE 'Ssl_cipher_list';

The Ssl_cipher_list status variable lists the possible SSL ciphers (empty for non-SSL connections).
The set of available ciphers depends on your MySQL version and whether MySQL was compiled using
OpenSSL or yaSSL, and (for OpenSSL) the library version used to compile MySQL.

Note

ECDSA ciphers only work in combination with an SSL certificate that uses ECDSA
for the digital signature, and they do not work with certificates that use RSA. MySQL
Server’s automatic generation process for SSL certificates does not generate
ECDSA signed certificates, it generates only RSA signed certificates. Do not select
ECDSA ciphers unless you have an ECDSA certificate available to you.

MySQL passes a default cipher list to the SSL library.

MySQL passes this default cipher list to OpenSSL:

ECDHE-ECDSA-AES128-GCM-SHA256
ECDHE-ECDSA-AES256-GCM-SHA384
ECDHE-RSA-AES128-GCM-SHA256
ECDHE-RSA-AES256-GCM-SHA384
ECDHE-ECDSA-AES128-SHA256
ECDHE-RSA-AES128-SHA256
ECDHE-ECDSA-AES256-SHA384
ECDHE-RSA-AES256-SHA384
DHE-RSA-AES128-GCM-SHA256
DHE-DSS-AES128-GCM-SHA256
DHE-RSA-AES128-SHA256
DHE-DSS-AES128-SHA256
DHE-DSS-AES256-GCM-SHA384
DHE-RSA-AES256-SHA256
DHE-DSS-AES256-SHA256
ECDHE-RSA-AES128-SHA
ECDHE-ECDSA-AES128-SHA
ECDHE-RSA-AES256-SHA
ECDHE-ECDSA-AES256-SHA
DHE-DSS-AES128-SHA
DHE-RSA-AES128-SHA
TLS_DHE_DSS_WITH_AES_256_CBC_SHA
DHE-RSA-AES256-SHA
AES128-GCM-SHA256
DH-DSS-AES128-GCM-SHA256
ECDH-ECDSA-AES128-GCM-SHA256
AES256-GCM-SHA384
DH-DSS-AES256-GCM-SHA384
ECDH-ECDSA-AES256-GCM-SHA384
AES128-SHA256
DH-DSS-AES128-SHA256
ECDH-ECDSA-AES128-SHA256
AES256-SHA256
DH-DSS-AES256-SHA256
ECDH-ECDSA-AES256-SHA384
AES128-SHA
DH-DSS-AES128-SHA

1159

Encrypted Connection TLS Protocols and Ciphers

ECDH-ECDSA-AES128-SHA
AES256-SHA
DH-DSS-AES256-SHA
ECDH-ECDSA-AES256-SHA
DHE-RSA-AES256-GCM-SHA384
DH-RSA-AES128-GCM-SHA256
ECDH-RSA-AES128-GCM-SHA256
DH-RSA-AES256-GCM-SHA384
ECDH-RSA-AES256-GCM-SHA384
DH-RSA-AES128-SHA256
ECDH-RSA-AES128-SHA256
DH-RSA-AES256-SHA256
ECDH-RSA-AES256-SHA384
ECDHE-RSA-AES128-SHA
ECDHE-ECDSA-AES128-SHA
ECDHE-RSA-AES256-SHA
ECDHE-ECDSA-AES256-SHA
DHE-DSS-AES128-SHA
DHE-RSA-AES128-SHA
TLS_DHE_DSS_WITH_AES_256_CBC_SHA
DHE-RSA-AES256-SHA
AES128-SHA
DH-DSS-AES128-SHA
ECDH-ECDSA-AES128-SHA
AES256-SHA
DH-DSS-AES256-SHA
ECDH-ECDSA-AES256-SHA
DH-RSA-AES128-SHA
ECDH-RSA-AES128-SHA
DH-RSA-AES256-SHA
ECDH-RSA-AES256-SHA
DES-CBC3-SHA

MySQL passes this default cipher list to yaSSL:

DHE-RSA-AES256-SHA
DHE-RSA-AES128-SHA
AES128-RMD
DES-CBC3-RMD
DHE-RSA-AES256-RMD
DHE-RSA-AES128-RMD
DHE-RSA-DES-CBC3-RMD
AES256-SHA
RC4-SHA
RC4-MD5
DES-CBC3-SHA
DES-CBC-SHA
EDH-RSA-DES-CBC3-SHA
EDH-RSA-DES-CBC-SHA
AES128-SHA:AES256-RMD

As of MySQL 5.7.10, these cipher restrictions are in place:

• The following ciphers are permanently restricted:

!DHE-DSS-DES-CBC3-SHA
!DHE-RSA-DES-CBC3-SHA
!ECDH-RSA-DES-CBC3-SHA
!ECDH-ECDSA-DES-CBC3-SHA
!ECDHE-RSA-DES-CBC3-SHA
!ECDHE-ECDSA-DES-CBC3-SHA

• The following categories of ciphers are permanently restricted:

!aNULL
!eNULL
!EXPORT

1160

Encrypted Connection TLS Protocols and Ciphers

!LOW
!MD5
!DES
!RC2
!RC4
!PSK
!SSLv3

If the server is started with the ssl_cert system variable set to a certificate that uses any of the
preceding restricted ciphers or cipher categories, the server starts with support for encrypted connections
disabled.

Connection TLS Protocol Negotiation

Connection attempts in MySQL negotiate use of the highest TLS protocol version available on both sides
for which a protocol-compatible encryption cipher is available on both sides. The negotiation process
depends on factors such as the SSL library used to compile the server and client, the TLS protocol and
encryption cipher configuration, and which key size is used:

• For a connection attempt to succeed, the server and client TLS protocol configuration must permit some
protocol in common.

• Similarly, the server and client encryption cipher configuration must permit some cipher in common.
A given cipher may work only with particular TLS protocols, so a protocol available to the negotiation
process is not chosen unless there is also a compatible cipher.

• If the server and client are compiled using OpenSSL, TLSv1.2 is used if possible. If either or both
the server and client are compiled using yaSSL, TLSv1.1 is used if possible. (“Possible” means that
server and client configuration both must permit the indicated protocol, and both must also permit
some protocol-compatible encryption cipher.) Otherwise, MySQL continues through the list of available
protocols, proceeding from more secure protocols to less secure. Negotiation order is independent of
the order in which protocols are configured. For example, negotiation order is the same regardless of
whether tls_version has a value of TLSv1,TLSv1.1,TLSv1.2 or TLSv1.2,TLSv1.1,TLSv1.

Note

Prior to MySQL 5.7.10, MySQL supports only TLSv1, for both OpenSSL and
yaSSL, and no system variable or client option exist for specifying which TLS
protocols to permit.

• TLSv1.2 does not work with all ciphers that have a key size of 512 bits or less. To use this protocol with
such a key, set the ssl_cipher system variable on the server side or use the --ssl-cipher client
option to specify the cipher name explicitly:

AES128-SHA
AES128-SHA256
AES256-SHA
AES256-SHA256
CAMELLIA128-SHA
CAMELLIA256-SHA
DES-CBC3-SHA
DHE-RSA-AES256-SHA
RC4-MD5
RC4-SHA
SEED-SHA

• For better security, use a certificate with an RSA key size of at least 2048 bits.

If the server and client do not have a permitted protocol in common, and a protocol-compatible cipher in
common, the server terminates the connection request. Examples:

1161

Creating SSL and RSA Certificates and Keys

• If the server is configured with tls_version=TLSv1.1,TLSv1.2:

• Connection attempts fail for clients invoked with --tls-version=TLSv1, and for older clients that
support only TLSv1.

• Similarly, connection attempts fail for replicas configured with MASTER_TLS_VERSION = 'TLSv1',
and for older replicas that support only TLSv1.

• If the server is configured with tls_version=TLSv1 or is an older server that supports only TLSv1:

• Connection attempts fail for clients invoked with --tls-version=TLSv1.1,TLSv1.2.

• Similarly, connection attempts fail for replicas configured with MASTER_TLS_VERSION =
'TLSv1.1,TLSv1.2'.

MySQL permits specifying a list of protocols to support. This list is passed directly down to the underlying
SSL library and is ultimately up to that library what protocols it actually enables from the supplied list.
Please refer to the MySQL source code and the OpenSSL SSL_CTX_new() documentation for information
about how the SSL library handles this.

Monitoring Current Client Session TLS Protocol and Cipher

To determine which encryption TLS protocol and cipher the current client session uses, check the session
values of the Ssl_version and Ssl_cipher status variables:

mysql> SELECT * FROM performance_schema.session_status
 WHERE VARIABLE_NAME IN ('Ssl_version','Ssl_cipher');
+---------------+---------------------------+
| VARIABLE_NAME | VARIABLE_VALUE |
+---------------+---------------------------+
| Ssl_cipher | DHE-RSA-AES128-GCM-SHA256 |
| Ssl_version | TLSv1.2 |
+---------------+---------------------------+

If the connection is not encrypted, both variables have an empty value.

6.3.3 Creating SSL and RSA Certificates and Keys

The following discussion describes how to create the files required for SSL and RSA support in MySQL.
File creation can be performed using facilities provided by MySQL itself, or by invoking the openssl
command directly.

SSL certificate and key files enable MySQL to support encrypted connections using SSL. See
Section 6.3.1, “Configuring MySQL to Use Encrypted Connections”.

RSA key files enable MySQL to support secure password exchange over unencrypted connections for
accounts authenticated by the sha256_password plugin. See Section 6.4.1.5, “SHA-256 Pluggable
Authentication”.

6.3.3.1 Creating SSL and RSA Certificates and Keys using MySQL

MySQL provides these ways to create the SSL certificate and key files and RSA key-pair files required to
support encrypted connections using SSL and secure password exchange using RSA over unencrypted
connections, if those files are missing:

• The server can autogenerate these files at startup, for MySQL distributions compiled using OpenSSL.

• Users can invoke the mysql_ssl_rsa_setup utility manually.

1162

https://www.openssl.org/docs/man1.1.0/ssl/SSL_CTX_new.html

Creating SSL and RSA Certificates and Keys

• For some distribution types, such as RPM and DEB packages, mysql_ssl_rsa_setup invocation
occurs during data directory initialization. In this case, the MySQL distribution need not have been
compiled using OpenSSL as long as the openssl command is available.

Important

Server autogeneration and mysql_ssl_rsa_setup help lower the barrier to
using SSL by making it easier to generate the required files. However, certificates
generated by these methods are self-signed, which may not be very secure. After
you gain experience using such files, consider obtaining certificate/key material
from a registered certificate authority.

Important

If a client connecting to a MySQL server instance uses an SSL certificate with
the extendedKeyUsage extension (an X.509 v3 extension), the extended key
usage must include client authentication (clientAuth). If the SSL certificate
is only specified for server authentication (serverAuth) and other non-client
certificate purposes, certificate verification fails and the client connection to the
MySQL server instance fails. There is no extendedKeyUsage extension in SSL
certificates generated by MySQL Server. If you use your own client certificate
created in another way, ensure any extendedKeyUsage extension includes client
authentication.

• Automatic SSL and RSA File Generation

• Manual SSL and RSA File Generation Using mysql_ssl_rsa_setup

• SSL and RSA File Characteristics

Automatic SSL and RSA File Generation

For MySQL distributions compiled using OpenSSL, the MySQL server has the capability of
automatically generating missing SSL and RSA files at startup. The auto_generate_certs and
sha256_password_auto_generate_rsa_keys system variables control automatic generation of these
files. These variables are enabled by default. They can be enabled at startup and inspected but not set at
runtime.

At startup, the server automatically generates server-side and client-side SSL certificate and key files
in the data directory if the auto_generate_certs system variable is enabled, no SSL options other
than --ssl are specified, and the server-side SSL files are missing from the data directory. These files
enable encrypted client connections using SSL; see Section 6.3.1, “Configuring MySQL to Use Encrypted
Connections”.

1. The server checks the data directory for SSL files with the following names:

ca.pem
server-cert.pem
server-key.pem

2. If any of those files are present, the server creates no SSL files. Otherwise, it creates them, plus some
additional files:

ca.pem Self-signed CA certificate
ca-key.pem CA private key
server-cert.pem Server certificate
server-key.pem Server private key
client-cert.pem Client certificate
client-key.pem Client private key

1163

Creating SSL and RSA Certificates and Keys

3. If the server autogenerates SSL files, it uses the names of the ca.pem, server-cert.pem, and
server-key.pem files to set the corresponding system variables (ssl_ca, ssl_cert, ssl_key).

At startup, the server automatically generates RSA private/public key-pair files in the data directory if all
of these conditions are true: The sha256_password_auto_generate_rsa_keys system variable
is enabled; no RSA options are specified; the RSA files are missing from the data directory. These key-
pair files enable secure password exchange using RSA over unencrypted connections for accounts
authenticated by the sha256_password plugin; see Section 6.4.1.5, “SHA-256 Pluggable Authentication”.

1. The server checks the data directory for RSA files with the following names:

private_key.pem Private member of private/public key pair
public_key.pem Public member of private/public key pair

2. If any of these files are present, the server creates no RSA files. Otherwise, it creates them.

3. If the server autogenerates the RSA files, it uses their names to set the corresponding system variables
(sha256_password_private_key_path, sha256_password_public_key_path).

Manual SSL and RSA File Generation Using mysql_ssl_rsa_setup

MySQL distributions include a mysql_ssl_rsa_setup utility that can be invoked manually to generate
SSL and RSA files. This utility is included with all MySQL distributions, but it does require that the
openssl command be available. For usage instructions, see Section 4.4.5, “mysql_ssl_rsa_setup —
Create SSL/RSA Files”.

SSL and RSA File Characteristics

SSL and RSA files created automatically by the server or by invoking mysql_ssl_rsa_setup have these
characteristics:

• SSL and RSA keys have a size of 2048 bits.

• The SSL CA certificate is self signed.

• The SSL server and client certificates are signed with the CA certificate and key, using the
sha256WithRSAEncryption signature algorithm.

• SSL certificates use these Common Name (CN) values, with the appropriate certificate type (CA, Server,
Client):

ca.pem: MySQL_Server_suffix_Auto_Generated_CA_Certificate
server-cert.pm: MySQL_Server_suffix_Auto_Generated_Server_Certificate
client-cert.pm: MySQL_Server_suffix_Auto_Generated_Client_Certificate

The suffix value is based on the MySQL version number. For files generated by
mysql_ssl_rsa_setup, the suffix can be specified explicitly using the --suffix option.

For files generated by the server, if the resulting CN values exceed 64 characters, the _suffix portion
of the name is omitted.

• SSL files have blank values for Country (C), State or Province (ST), Organization (O), Organization Unit
Name (OU) and email address.

• SSL files created by the server or by mysql_ssl_rsa_setup are valid for ten years from the time of
generation.

• RSA files do not expire.

• SSL files have different serial numbers for each certificate/key pair (1 for CA, 2 for Server, 3 for Client).

1164

Creating SSL and RSA Certificates and Keys

• Files created automatically by the server are owned by the account that runs the server. Files created
using mysql_ssl_rsa_setup are owned by the user who invoked that program. This can be changed
on systems that support the chown() system call if the program is invoked by root and the --uid
option is given to specify the user who should own the files.

• On Unix and Unix-like systems, the file access mode is 644 for certificate files (that is, world readable)
and 600 for key files (that is, accessible only by the account that runs the server).

To see the contents of an SSL certificate (for example, to check the range of dates over which it is valid),
invoke openssl directly:

openssl x509 -text -in ca.pem
openssl x509 -text -in server-cert.pem
openssl x509 -text -in client-cert.pem

It is also possible to check SSL certificate expiration information using this SQL statement:

mysql> SHOW STATUS LIKE 'Ssl_server_not%';
+-----------------------+--------------------------+
| Variable_name | Value |
+-----------------------+--------------------------+
| Ssl_server_not_after | Apr 28 14:16:39 2027 GMT |
| Ssl_server_not_before | May 1 14:16:39 2017 GMT |
+-----------------------+--------------------------+

6.3.3.2 Creating SSL Certificates and Keys Using openssl

This section describes how to use the openssl command to set up SSL certificate and key files for use
by MySQL servers and clients. The first example shows a simplified procedure such as you might use
from the command line. The second shows a script that contains more detail. The first two examples are
intended for use on Unix and both use the openssl command that is part of OpenSSL. The third example
describes how to set up SSL files on Windows.

Note

There are easier alternatives to generating the files required for SSL than
the procedure described here: Let the server autogenerate them or use the
mysql_ssl_rsa_setup program. See Section 6.3.3.1, “Creating SSL and RSA
Certificates and Keys using MySQL”.

Important

Whatever method you use to generate the certificate and key files, the Common
Name value used for the server and client certificates/keys must each differ from
the Common Name value used for the CA certificate. Otherwise, the certificate and
key files do not work for servers compiled using OpenSSL. A typical error in this
case is:

ERROR 2026 (HY000): SSL connection error:
error:00000001:lib(0):func(0):reason(1)

Important

If a client connecting to a MySQL server instance uses an SSL certificate with
the extendedKeyUsage extension (an X.509 v3 extension), the extended key
usage must include client authentication (clientAuth). If the SSL certificate
is only specified for server authentication (serverAuth) and other non-client
certificate purposes, certificate verification fails and the client connection to the
MySQL server instance fails. There is no extendedKeyUsage extension in SSL

1165

Creating SSL and RSA Certificates and Keys

certificates created using the openssl command following the instructions in this
topic. If you use your own client certificate created in another way, ensure any
extendedKeyUsage extension includes client authentication.

• Example 1: Creating SSL Files from the Command Line on Unix

• Example 2: Creating SSL Files Using a Script on Unix

• Example 3: Creating SSL Files on Windows

Example 1: Creating SSL Files from the Command Line on Unix

The following example shows a set of commands to create MySQL server and client certificate and key
files. You must respond to several prompts by the openssl commands. To generate test files, you can
press Enter to all prompts. To generate files for production use, you should provide nonempty responses.

Create clean environment
rm -rf newcerts
mkdir newcerts && cd newcerts

Create CA certificate
openssl genrsa 2048 > ca-key.pem
openssl req -new -x509 -nodes -days 3600 \
 -key ca-key.pem -out ca.pem

Create server certificate, remove passphrase, and sign it
server-cert.pem = public key, server-key.pem = private key
openssl req -newkey rsa:2048 -days 3600 \
 -nodes -keyout server-key.pem -out server-req.pem
openssl rsa -in server-key.pem -out server-key.pem
openssl x509 -req -in server-req.pem -days 3600 \
 -CA ca.pem -CAkey ca-key.pem -set_serial 01 -out server-cert.pem

Create client certificate, remove passphrase, and sign it
client-cert.pem = public key, client-key.pem = private key
openssl req -newkey rsa:2048 -days 3600 \
 -nodes -keyout client-key.pem -out client-req.pem
openssl rsa -in client-key.pem -out client-key.pem
openssl x509 -req -in client-req.pem -days 3600 \
 -CA ca.pem -CAkey ca-key.pem -set_serial 01 -out client-cert.pem

After generating the certificates, verify them:

openssl verify -CAfile ca.pem server-cert.pem client-cert.pem

You should see a response like this:

server-cert.pem: OK
client-cert.pem: OK

To see the contents of a certificate (for example, to check the range of dates over which a certificate is
valid), invoke openssl like this:

openssl x509 -text -in ca.pem
openssl x509 -text -in server-cert.pem
openssl x509 -text -in client-cert.pem

Now you have a set of files that can be used as follows:

• ca.pem: Use this to set the ssl_ca system variable on the server side and the --ssl-ca option on the
client side. (The CA certificate, if used, must be the same on both sides.)

• server-cert.pem, server-key.pem: Use these to set the ssl_cert and ssl_key system
variables on the server side.

1166

Creating SSL and RSA Certificates and Keys

• client-cert.pem, client-key.pem: Use these as the arguments to the --ssl-cert and --ssl-
key options on the client side.

For additional usage instructions, see Section 6.3.1, “Configuring MySQL to Use Encrypted Connections”.

Example 2: Creating SSL Files Using a Script on Unix

Here is an example script that shows how to set up SSL certificate and key files for MySQL. After
executing the script, use the files for SSL connections as described in Section 6.3.1, “Configuring MySQL
to Use Encrypted Connections”.

DIR=`pwd`/openssl
PRIV=$DIR/private

mkdir $DIR $PRIV $DIR/newcerts
cp /usr/share/ssl/openssl.cnf $DIR
replace ./demoCA $DIR -- $DIR/openssl.cnf

Create necessary files: $database, $serial and $new_certs_dir
directory (optional)

touch $DIR/index.txt
echo "01" > $DIR/serial

#
Generation of Certificate Authority(CA)
#

openssl req -new -x509 -keyout $PRIV/cakey.pem -out $DIR/ca.pem \
 -days 3600 -config $DIR/openssl.cnf

Sample output:
Using configuration from /home/finley/openssl/openssl.cnf
Generating a 1024 bit RSA private key
................++++++
.........++++++
writing new private key to '/home/finley/openssl/private/cakey.pem'
Enter PEM pass phrase:
Verifying password - Enter PEM pass phrase:

You are about to be asked to enter information that will be
incorporated into your certificate request.
What you are about to enter is what is called a Distinguished Name
or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.

Country Name (2 letter code) [AU]:FI
State or Province Name (full name) [Some-State]:.
Locality Name (eg, city) []:
Organization Name (eg, company) [Internet Widgits Pty Ltd]:MySQL AB
Organizational Unit Name (eg, section) []:
Common Name (eg, YOUR name) []:MySQL admin
Email Address []:

#
Create server request and key
#
openssl req -new -keyout $DIR/server-key.pem -out \
 $DIR/server-req.pem -days 3600 -config $DIR/openssl.cnf

Sample output:
Using configuration from /home/finley/openssl/openssl.cnf
Generating a 1024 bit RSA private key
..++++++

1167

Creating SSL and RSA Certificates and Keys

..........++++++
writing new private key to '/home/finley/openssl/server-key.pem'
Enter PEM pass phrase:
Verifying password - Enter PEM pass phrase:

You are about to be asked to enter information that will be
incorporated into your certificate request.
What you are about to enter is what is called a Distinguished Name
or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.

Country Name (2 letter code) [AU]:FI
State or Province Name (full name) [Some-State]:.
Locality Name (eg, city) []:
Organization Name (eg, company) [Internet Widgits Pty Ltd]:MySQL AB
Organizational Unit Name (eg, section) []:
Common Name (eg, YOUR name) []:MySQL server
Email Address []:
#
Please enter the following 'extra' attributes
to be sent with your certificate request
A challenge password []:
An optional company name []:

#
Remove the passphrase from the key
#
openssl rsa -in $DIR/server-key.pem -out $DIR/server-key.pem

#
Sign server cert
#
openssl ca -cert $DIR/ca.pem -policy policy_anything \
 -out $DIR/server-cert.pem -config $DIR/openssl.cnf \
 -infiles $DIR/server-req.pem

Sample output:
Using configuration from /home/finley/openssl/openssl.cnf
Enter PEM pass phrase:
Check that the request matches the signature
Signature ok
The Subjects Distinguished Name is as follows
countryName :PRINTABLE:'FI'
organizationName :PRINTABLE:'MySQL AB'
commonName :PRINTABLE:'MySQL admin'
Certificate is to be certified until Sep 13 14:22:46 2003 GMT
(365 days)
Sign the certificate? [y/n]:y
#
#
1 out of 1 certificate requests certified, commit? [y/n]y
Write out database with 1 new entries
Data Base Updated

#
Create client request and key
#
openssl req -new -keyout $DIR/client-key.pem -out \
 $DIR/client-req.pem -days 3600 -config $DIR/openssl.cnf

Sample output:
Using configuration from /home/finley/openssl/openssl.cnf
Generating a 1024 bit RSA private key
.....................................++++++
...++++++

1168

Creating SSL and RSA Certificates and Keys

writing new private key to '/home/finley/openssl/client-key.pem'
Enter PEM pass phrase:
Verifying password - Enter PEM pass phrase:

You are about to be asked to enter information that will be
incorporated into your certificate request.
What you are about to enter is what is called a Distinguished Name
or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.

Country Name (2 letter code) [AU]:FI
State or Province Name (full name) [Some-State]:.
Locality Name (eg, city) []:
Organization Name (eg, company) [Internet Widgits Pty Ltd]:MySQL AB
Organizational Unit Name (eg, section) []:
Common Name (eg, YOUR name) []:MySQL user
Email Address []:
#
Please enter the following 'extra' attributes
to be sent with your certificate request
A challenge password []:
An optional company name []:

#
Remove the passphrase from the key
#
openssl rsa -in $DIR/client-key.pem -out $DIR/client-key.pem

#
Sign client cert
#

openssl ca -cert $DIR/ca.pem -policy policy_anything \
 -out $DIR/client-cert.pem -config $DIR/openssl.cnf \
 -infiles $DIR/client-req.pem

Sample output:
Using configuration from /home/finley/openssl/openssl.cnf
Enter PEM pass phrase:
Check that the request matches the signature
Signature ok
The Subjects Distinguished Name is as follows
countryName :PRINTABLE:'FI'
organizationName :PRINTABLE:'MySQL AB'
commonName :PRINTABLE:'MySQL user'
Certificate is to be certified until Sep 13 16:45:17 2003 GMT
(365 days)
Sign the certificate? [y/n]:y
#
#
1 out of 1 certificate requests certified, commit? [y/n]y
Write out database with 1 new entries
Data Base Updated

#
Create a my.cnf file that you can use to test the certificates
#

cat <<EOF > $DIR/my.cnf
[client]
ssl-ca=$DIR/ca.pem
ssl-cert=$DIR/client-cert.pem
ssl-key=$DIR/client-key.pem
[mysqld]
ssl_ca=$DIR/ca.pem

1169

Creating SSL and RSA Certificates and Keys

ssl_cert=$DIR/server-cert.pem
ssl_key=$DIR/server-key.pem
EOF

Example 3: Creating SSL Files on Windows

Download OpenSSL for Windows if it is not installed on your system. An overview of available packages
can be seen here:

http://www.slproweb.com/products/Win32OpenSSL.html

Choose the Win32 OpenSSL Light or Win64 OpenSSL Light package, depending on your architecture (32-
bit or 64-bit). The default installation location is C:\OpenSSL-Win32 or C:\OpenSSL-Win64, depending
on which package you downloaded. The following instructions assume a default location of C:\OpenSSL-
Win32. Modify this as necessary if you are using the 64-bit package.

If a message occurs during setup indicating '...critical component is missing: Microsoft
Visual C++ 2008 Redistributables', cancel the setup and download one of the following
packages as well, again depending on your architecture (32-bit or 64-bit):

• Visual C++ 2008 Redistributables (x86), available at:

http://www.microsoft.com/downloads/details.aspx?familyid=9B2DA534-3E03-4391-8A4D-074B9F2BC1BF

• Visual C++ 2008 Redistributables (x64), available at:

http://www.microsoft.com/downloads/details.aspx?familyid=bd2a6171-e2d6-4230-b809-9a8d7548c1b6

After installing the additional package, restart the OpenSSL setup procedure.

During installation, leave the default C:\OpenSSL-Win32 as the install path, and also leave the default
option 'Copy OpenSSL DLL files to the Windows system directory' selected.

When the installation has finished, add C:\OpenSSL-Win32\bin to the Windows System Path variable
of your server (depending on your version of Windows, the following path-setting instructions might differ
slightly):

1. On the Windows desktop, right-click the My Computer icon, and select Properties.

2. Select the Advanced tab from the System Properties menu that appears, and click the Environment
Variables button.

3. Under System Variables, select Path, then click the Edit button. The Edit System Variable dialogue
should appear.

4. Add ';C:\OpenSSL-Win32\bin' to the end (notice the semicolon).

5. Press OK 3 times.

6. Check that OpenSSL was correctly integrated into the Path variable by opening a new command
console (Start>Run>cmd.exe) and verifying that OpenSSL is available:

Microsoft Windows [Version ...]
Copyright (c) 2006 Microsoft Corporation. All rights reserved.

C:\Windows\system32>cd \

C:\>openssl
OpenSSL> exit <<< If you see the OpenSSL prompt, installation was successful.

1170

http://www.slproweb.com/products/Win32OpenSSL.html
http://www.microsoft.com/downloads/details.aspx?familyid=9B2DA534-3E03-4391-8A4D-074B9F2BC1BF
http://www.microsoft.com/downloads/details.aspx?familyid=bd2a6171-e2d6-4230-b809-9a8d7548c1b6

SSL Library-Dependent Capabilities

C:\>

After OpenSSL has been installed, use instructions similar to those from Example 1 (shown earlier in this
section), with the following changes:

• Change the following Unix commands:

Create clean environment
rm -rf newcerts
mkdir newcerts && cd newcerts

On Windows, use these commands instead:

Create clean environment
md c:\newcerts
cd c:\newcerts

• When a '\' character is shown at the end of a command line, this '\' character must be removed and
the command lines entered all on a single line.

After generating the certificate and key files, to use them for SSL connections, see Section 6.3.1,
“Configuring MySQL to Use Encrypted Connections”.

6.3.3.3 Creating RSA Keys Using openssl

This section describes how to use the openssl command to set up the RSA key files that enable MySQL
to support secure password exchange over unencrypted connections for accounts authenticated by the
sha256_password plugin.

Note

There are easier alternatives to generating the files required for RSA than
the procedure described here: Let the server autogenerate them or use the
mysql_ssl_rsa_setup program. See Section 6.3.3.1, “Creating SSL and RSA
Certificates and Keys using MySQL”.

To create the RSA private and public key-pair files, run these commands while logged into the system
account used to run the MySQL server so the files are owned by that account:

openssl genrsa -out private_key.pem 2048
openssl rsa -in private_key.pem -pubout -out public_key.pem

Those commands create 2,048-bit keys. To create stronger keys, use a larger value.

Then set the access modes for the key files. The private key should be readable only by the server,
whereas the public key can be freely distributed to client users:

chmod 400 private_key.pem
chmod 444 public_key.pem

6.3.4 SSL Library-Dependent Capabilities

MySQL can be compiled using OpenSSL or yaSSL, both of which enable encrypted connections based on
the OpenSSL API:

• MySQL Enterprise Edition binary distributions are compiled using OpenSSL. It is not possible to use
yaSSL with MySQL Enterprise Edition.

1171

SSL Library-Dependent Capabilities

• MySQL Community Edition binary distributions are compiled using yaSSL.

• MySQL Community Edition source distributions can be compiled using either OpenSSL or yaSSL (see
Section 2.8.6, “Configuring SSL Library Support”).

Note

It is possible to compile MySQL using yaSSL as an alternative to OpenSSL only
prior to MySQL 5.7.28. As of MySQL 5.7.28, support for yaSSL is removed and all
MySQL builds use OpenSSL.

OpenSSL and yaSSL offer the same basic functionality, but MySQL distributions compiled using OpenSSL
have additional features:

• OpenSSL supports TLSv1, TLSv1.1, and TLSv1.2 protocols. yaSSL supports only TLSv1 and TLSv1.1
protocols.

• OpenSSL supports a more flexible syntax for specifying ciphers (for the ssl_cipher system variable
and --ssl-cipher client option), and supports a wider range of encryption ciphers from which to
choose. See Command Options for Encrypted Connections, and Section 6.3.2, “Encrypted Connection
TLS Protocols and Ciphers”.

• OpenSSL supports the ssl_capath system variable and --ssl-capath client option. MySQL
distributions compiled using yaSSL do not because yaSSL does not look in any directory and do
not follow a chained certificate tree. yaSSL requires that all components of the CA certificate tree
be contained within a single CA certificate tree and that each certificate in the file has a unique
SubjectName value. To work around this limitation, concatenate the individual certificate files comprising
the certificate tree into a new file and specify that file as the value of the ssl_ca system variable and --
ssl-ca option.

• OpenSSL supports certificate revocation-list capability (for the ssl_crl and ssl_crlpath system
variables and --ssl-crl and --ssl-crlpath client options). Distributions compiled using yaSSL do
not because revocation lists do not work with yaSSL. (yaSSL accepts these options but silently ignores
them.)

• Accounts that authenticate using the sha256_password plugin can use RSA key files for secure
password exchange over unencrypted connections. See Section 6.4.1.5, “SHA-256 Pluggable
Authentication”.

• The server can automatically generate missing SSL and RSA certificate and key files at startup. See
Section 6.3.3.1, “Creating SSL and RSA Certificates and Keys using MySQL”.

• OpenSSL supports more encryption modes for the AES_ENCRYPT() and AES_DECRYPT() functions.
See Section 12.13, “Encryption and Compression Functions”

Certain OpenSSL-related system and status variables are present only if MySQL was compiled using
OpenSSL:

• auto_generate_certs

• sha256_password_auto_generate_rsa_keys

• sha256_password_private_key_path

• sha256_password_public_key_path

• Rsa_public_key

1172

Connecting to MySQL Remotely from Windows with SSH

To determine whether a server was compiled using OpenSSL, test the existence of any of those variables.
For example, this statement returns a row if OpenSSL was used and an empty result if yaSSL was used:

SHOW STATUS LIKE 'Rsa_public_key';

6.3.5 Connecting to MySQL Remotely from Windows with SSH

This section describes how to get an encrypted connection to a remote MySQL server with SSH. The
information was provided by David Carlson <dcarlson@mplcomm.com>.

1. Install an SSH client on your Windows machine. For a comparison of SSH clients, see http://
en.wikipedia.org/wiki/Comparison_of_SSH_clients.

2. Start your Windows SSH client. Set Host_Name = yourmysqlserver_URL_or_IP. Set
userid=your_userid to log in to your server. This userid value might not be the same as the user
name of your MySQL account.

3. Set up port forwarding. Either do a remote forward (Set local_port: 3306, remote_host:
yourmysqlservername_or_ip, remote_port: 3306) or a local forward (Set port: 3306,
host: localhost, remote port: 3306).

4. Save everything; otherwise you must to redo it the next time.

5. Log in to your server with the SSH session you just created.

6. On your Windows machine, start some ODBC application (such as Access).

7. Create a new file in Windows and link to MySQL using the ODBC driver the same way you normally do,
except type in localhost for the MySQL host server, not yourmysqlservername.

At this point, you should have an ODBC connection to MySQL, encrypted using SSH.

6.4 Security Plugins

MySQL includes several plugins that implement security features:

• Plugins for authenticating attempts by clients to connect to MySQL Server. Plugins are available
for several authentication protocols. For general discussion of the authentication process, see
Section 6.2.13, “Pluggable Authentication”. For characteristics of specific authentication plugins, see
Section 6.4.1, “Authentication Plugins”.

• A password-validation plugin for implementing password strength policies and assessing the strength of
potential passwords. See Section 6.4.3, “The Password Validation Plugin”.

• Keyring plugins that provide secure storage for sensitive information. See Section 6.4.4, “The MySQL
Keyring”.

• (MySQL Enterprise Edition only) MySQL Enterprise Audit, implemented using a server plugin, uses the
open MySQL Audit API to enable standard, policy-based monitoring and logging of connection and query
activity executed on specific MySQL servers. Designed to meet the Oracle audit specification, MySQL
Enterprise Audit provides an out of box, easy to use auditing and compliance solution for applications
that are governed by both internal and external regulatory guidelines. See Section 6.4.5, “MySQL
Enterprise Audit”.

• (MySQL Enterprise Edition only) MySQL Enterprise Firewall, an application-level firewall that enables
database administrators to permit or deny SQL statement execution based on matching against lists of

1173

http://en.wikipedia.org/wiki/Comparison_of_SSH_clients
http://en.wikipedia.org/wiki/Comparison_of_SSH_clients

Authentication Plugins

accepted statement patterns. This helps harden MySQL Server against attacks such as SQL injection or
attempts to exploit applications by using them outside of their legitimate query workload characteristics.
See Section 6.4.6, “MySQL Enterprise Firewall”.

• (MySQL Enterprise Edition only) MySQL Enterprise Data Masking and De-Identification, implemented
as a plugin library containing a plugin and a set of functions. Data masking hides sensitive information
by replacing real values with substitutes. MySQL Enterprise Data Masking and De-Identification
functions enable masking existing data using several methods such as obfuscation (removing identifying
characteristics), generation of formatted random data, and data replacement or substitution. See
Section 6.5, “MySQL Enterprise Data Masking and De-Identification”.

6.4.1 Authentication Plugins

The following sections describe pluggable authentication methods available in MySQL and the plugins
that implement these methods. For general discussion of the authentication process, see Section 6.2.13,
“Pluggable Authentication”.

The default plugin is indicated by the value of the default_authentication_plugin system variable.

6.4.1.1 Native Pluggable Authentication

MySQL includes two plugins that implement native authentication; that is, authentication based on the
password hashing methods in use from before the introduction of pluggable authentication. This section
describes mysql_native_password, which implements authentication against the mysql.user system
table using the native password hashing method. For information about mysql_old_password, which
implements authentication using the older (pre-4.1) native password hashing method, see Section 6.4.1.2,
“Old Native Pluggable Authentication”. For information about these password hashing methods, see
Section 6.1.2.4, “Password Hashing in MySQL”.

The following table shows the plugin names on the server and client sides.

Table 6.8 Plugin and Library Names for Native Password Authentication

Plugin or File Plugin or File Name

Server-side plugin mysql_native_password

Client-side plugin mysql_native_password

Library file None (plugins are built in)

The following sections provide installation and usage information specific to native pluggable
authentication:

• Installing Native Pluggable Authentication

• Using Native Pluggable Authentication

For general information about pluggable authentication in MySQL, see Section 6.2.13, “Pluggable
Authentication”.

Installing Native Pluggable Authentication

The mysql_native_password plugin exists in server and client forms:

• The server-side plugin is built into the server, need not be loaded explicitly, and cannot be disabled by
unloading it.

1174

Authentication Plugins

• The client-side plugin is built into the libmysqlclient client library and is available to any program
linked against libmysqlclient.

Using Native Pluggable Authentication

MySQL client programs use mysql_native_password by default. The --default-auth option can be
used as a hint about which client-side plugin the program can expect to use:

$> mysql --default-auth=mysql_native_password ...

6.4.1.2 Old Native Pluggable Authentication

MySQL includes two plugins that implement native authentication; that is, authentication based on
the password hashing methods in use from before the introduction of pluggable authentication. This
section describes mysql_old_password, which implements authentication against the mysql.user
system table using the older (pre-4.1) native password hashing method. For information about
mysql_native_password, which implements authentication using the native password hashing method,
see Section 6.4.1.1, “Native Pluggable Authentication”. For information about these password hashing
methods, see Section 6.1.2.4, “Password Hashing in MySQL”.

Note

Passwords that use the pre-4.1 hashing method are less secure than
passwords that use the native password hashing method and should be
avoided. Pre-4.1 passwords are deprecated and support for them (including
the mysql_old_password plugin) was removed in MySQL 5.7.5. For account
upgrade instructions, see Section 6.4.1.3, “Migrating Away from Pre-4.1 Password
Hashing and the mysql_old_password Plugin”.

The following table shows the plugin names on the server and client sides.

Table 6.9 Plugin and Library Names for Old Native Password Authentication

Plugin or File Plugin or File Name

Server-side plugin mysql_old_password

Client-side plugin mysql_old_password

Library file None (plugins are built in)

The following sections provide installation and usage information specific to old native pluggable
authentication:

• Installing Old Native Pluggable Authentication

• Using Old Native Pluggable Authentication

For general information about pluggable authentication in MySQL, see Section 6.2.13, “Pluggable
Authentication”.

Installing Old Native Pluggable Authentication

The mysql_old_password plugin exists in server and client forms:

• The server-side plugin is built into the server, need not be loaded explicitly, and cannot be disabled by
unloading it.

1175

Authentication Plugins

• The client-side plugin is built into the libmysqlclient client library and is available to any program
linked against libmysqlclient.

Using Old Native Pluggable Authentication

MySQL client programs can use the --default-auth option to specify the mysql_old_password
plugin as a hint about which client-side plugin the program can expect to use:

$> mysql --default-auth=mysql_old_password ...

6.4.1.3 Migrating Away from Pre-4.1 Password Hashing and the mysql_old_password
Plugin

The MySQL server authenticates connection attempts for each account listed in the mysql.user system
table using the authentication plugin named in the plugin column. If the plugin column is empty, the
server authenticates the account as follows:

• Before MySQL 5.7, the server uses the mysql_native_password or mysql_old_password
plugin implicitly, depending on the format of the password hash in the Password column.
If the Password value is empty or a 4.1 password hash (41 characters), the server uses
mysql_native_password. If the password value is a pre-4.1 password hash (16 characters),
the server uses mysql_old_password. (For additional information about these hash formats, see
Section 6.1.2.4, “Password Hashing in MySQL”.)

• As of MySQL 5.7, the server requires the plugin column to be nonempty and disables accounts that
have an empty plugin value.

Pre-4.1 password hashes and the mysql_old_password plugin are deprecated in MySQL 5.6 and
support for them is removed in MySQL 5.7. They provide a level of security inferior to that offered by 4.1
password hashing and the mysql_native_password plugin.

Given the requirement in MySQL 5.7 that the plugin column must be nonempty, coupled with removal of
mysql_old_password support, DBAs are advised to upgrade accounts as follows:

• Upgrade accounts that use mysql_native_password implicitly to use it explicitly

• Upgrade accounts that use mysql_old_password (either implicitly or explicitly) to use
mysql_native_password explicitly

The instructions in this section describe how to perform those upgrades. The result is that no account has
an empty plugin value and no account uses pre-4.1 password hashing or the mysql_old_password
plugin.

As a variant on these instructions, DBAs might offer users the choice to upgrade to the
sha256_password plugin, which authenticates using SHA-256 password hashes. For information about
this plugin, see Section 6.4.1.5, “SHA-256 Pluggable Authentication”.

The following table lists the types of mysql.user accounts considered in this discussion.

plugin Column Password Column Authentication Result Upgrade Action

Empty Empty Implicitly uses
mysql_native_password

Assign plugin

Empty 4.1 hash Implicitly uses
mysql_native_password

Assign plugin

1176

Authentication Plugins

plugin Column Password Column Authentication Result Upgrade Action

Empty Pre-4.1 hash Implicitly uses
mysql_old_password

Assign plugin, rehash
password

mysql_native_passwordEmpty Explicitly uses
mysql_native_password

None

mysql_native_password4.1 hash Explicitly uses
mysql_native_password

None

mysql_old_password Empty Explicitly uses
mysql_old_password

Upgrade plugin

mysql_old_password Pre-4.1 hash Explicitly uses
mysql_old_password

Upgrade plugin, rehash
password

Accounts corresponding to lines for the mysql_native_password plugin require no upgrade action
(because no change of plugin or hash format is required). For accounts corresponding to lines for which
the password is empty, consider asking the account owners to choose a password (or require it by using
ALTER USER to expire empty account passwords).

Upgrading Accounts from Implicit to Explicit mysql_native_password Use

Accounts that have an empty plugin and a 4.1 password hash use mysql_native_password implicitly.
To upgrade these accounts to use mysql_native_password explicitly, execute these statements:

UPDATE mysql.user SET plugin = 'mysql_native_password'
WHERE plugin = '' AND (Password = '' OR LENGTH(Password) = 41);
FLUSH PRIVILEGES;

Before MySQL 5.7, you can execute those statements to uprade accounts proactively. As of MySQL 5.7,
you can run mysql_upgrade, which performs the same operation among its upgrade actions.

Notes:

• The upgrade operation just described is safe to execute at any time because it makes the
mysql_native_password plugin explicit only for accounts that already use it implicitly.

• This operation requires no password changes, so it can be performed without affecting users or requiring
their involvement in the upgrade process.

Upgrading Accounts from mysql_old_password to mysql_native_password

Accounts that use mysql_old_password (either implicitly or explicitly) should be upgraded to use
mysql_native_password explicitly. This requires changing the plugin and changing the password from
pre-4.1 to 4.1 hash format.

For the accounts covered in this step that must be upgraded, one of these conditions is true:

• The account uses mysql_old_password implicitly because the plugin column is empty and the
password has the pre-4.1 hash format (16 characters).

• The account uses mysql_old_password explicitly.

To identify such accounts, use this query:

SELECT User, Host, Password FROM mysql.user
WHERE (plugin = '' AND LENGTH(Password) = 16)
OR plugin = 'mysql_old_password';

1177

Authentication Plugins

The following discussion provides two methods for updating that set of accounts. They have differing
characteristics, so read both and decide which is most suitable for a given MySQL installation.

Method 1.

Characteristics of this method:

• It requires that server and clients be run with secure_auth=0 until all users have been upgraded to
mysql_native_password. (Otherwise, users cannot connect to the server using their old-format
password hashes for the purpose of upgrading to a new-format hash.)

• It works for MySQL 5.5 and 5.6. In 5.7, it does not work because the server requires accounts to have a
nonempty plugin and disables them otherwise. Therefore, if you have already upgraded to 5.7, choose
Method 2, described later.

You should ensure that the server is running with secure_auth=0.

For all accounts that use mysql_old_password explicitly, set them to the empty plugin:

UPDATE mysql.user SET plugin = ''
WHERE plugin = 'mysql_old_password';
FLUSH PRIVILEGES;

To also expire the password for affected accounts, use these statements instead:

UPDATE mysql.user SET plugin = '', password_expired = 'Y'
WHERE plugin = 'mysql_old_password';
FLUSH PRIVILEGES;

Now affected users can reset their password to use 4.1 hashing. Ask each user who now has an empty
plugin to connect to the server and execute these statements:

SET old_passwords = 0;
SET PASSWORD = PASSWORD('user-chosen-password');

Note

The client-side --secure-auth option is enabled by default, so remind users to
disable it; otherwise, they cannot connect:

$> mysql -u user_name -p --secure-auth=0

After an affected user has executed those statements, you can set the corresponding account plugin to
mysql_native_password to make the plugin explicit. Or you can periodically run these statements to
find and fix any accounts for which affected users have reset their password:

UPDATE mysql.user SET plugin = 'mysql_native_password'
WHERE plugin = '' AND (Password = '' OR LENGTH(Password) = 41);
FLUSH PRIVILEGES;

When there are no more accounts with an empty plugin, this query returns an empty result:

SELECT User, Host, Password FROM mysql.user
WHERE plugin = '' AND LENGTH(Password) = 16;

At that point, all accounts have been migrated away from pre-4.1 password hashing and the server no
longer need be run with secure_auth=0.

Method 2.

Characteristics of this method:

1178

Authentication Plugins

• It assigns each affected account a new password, so you must tell each such user the new password
and ask the user to choose a new one. Communication of passwords to users is outside the scope of
MySQL, but should be done carefully.

• It does not require server or clients to be run with secure_auth=0.

• It works for any version of MySQL 5.5 or later (and for 5.7 has an easier variant).

With this method, you update each account separately due to the need to set passwords individually.
Choose a different password for each account.

Suppose that 'user1'@'localhost' is one of the accounts to be upgraded. Modify it as follows:

• In MySQL 5.7, ALTER USER provides the capability of modifying both the account password and its
authentication plugin, so you need not modify the mysql.user system table directly:

ALTER USER 'user1'@'localhost'
IDENTIFIED WITH mysql_native_password BY 'DBA-chosen-password';

To also expire the account password, use this statement instead:

ALTER USER 'user1'@'localhost'
IDENTIFIED WITH mysql_native_password BY 'DBA-chosen-password'
PASSWORD EXPIRE;

Then tell the user the new password and ask the user to connect to the server with that password and
execute this statement to choose a new password:

ALTER USER USER() IDENTIFIED BY 'user-chosen-password';

• Before MySQL 5.7, you must modify the mysql.user system table directly using these statements:

SET old_passwords = 0;
UPDATE mysql.user SET plugin = 'mysql_native_password',
Password = PASSWORD('DBA-chosen-password')
WHERE (User, Host) = ('user1', 'localhost');
FLUSH PRIVILEGES;

To also expire the account password, use these statements instead:

SET old_passwords = 0;
UPDATE mysql.user SET plugin = 'mysql_native_password',
Password = PASSWORD('DBA-chosen-password'), password_expired = 'Y'
WHERE (User, Host) = ('user1', 'localhost');
FLUSH PRIVILEGES;

Then tell the user the new password and ask the user to connect to the server with that password and
execute these statements to choose a new password:

SET old_passwords = 0;
SET PASSWORD = PASSWORD('user-chosen-password');

Repeat for each account to be upgraded.

6.4.1.4 Caching SHA-2 Pluggable Authentication

MySQL provides two authentication plugins that implement SHA-256 hashing for user account passwords:

• sha256_password: Implements basic SHA-256 authentication.

• caching_sha2_password: Implements SHA-256 authentication (like sha256_password), but uses
caching on the server side for better performance and has additional features for wider applicability. (In

1179

Authentication Plugins

MySQL 5.7, caching_sha2_password is implemented only on the client side, as described later in this
section.)

This section describes the caching SHA-2 authentication plugin, available as of MySQL 5.7.23. For
information about the original basic (noncaching) plugin, see Section 6.4.1.5, “SHA-256 Pluggable
Authentication”.

Important

In MySQL 5.7, the default authentication plugin is mysql_native_password.
As of MySQL 8.0, the default authentication plugin is changed to
caching_sha2_password. To enable MySQL 5.7 clients to connect
to 8.0 and higher servers using accounts that authenticate with
caching_sha2_password, the MySQL 5.7 client library and client programs
support the caching_sha2_password client-side authentication plugin. This
improves MySQL 5.7 client connect-capability compatibility with respect to MySQL
8.0 and higher servers, despite the differences in default authentication plugin.

Limiting caching_sha2_password support in MySQL 5.7 to the client-side plugin
in the client library has these implications compared to MySQL 8.0:

• The caching_sha2_password server-side plugin is not implemented in MySQL
5.7.

• MySQL 5.7 servers do not support creating accounts that authenticate with
caching_sha2_password.

• MySQL 5.7 servers do not implement system and status variables
specific to caching_sha2_password server-side support:
caching_sha2_password_auto_generate_rsa_keys,
caching_sha2_password_private_key_path,
caching_sha2_password_public_key_path,
Caching_sha2_password_rsa_public_key.

In addition, there is no support for MySQL 5.7 replicas to connect to
MySQL 8.0 replication source servers using accounts that authenticate with
caching_sha2_password. That would involve a source replicating to a replica
with a version number lower than the source version, whereas sources normally
replicate to replicas having a version equal to or higher than the source version.

Important

To connect to a MySQL 8.0 or higher server using an account that authenticates
with the caching_sha2_password plugin, you must use either a secure
connection or an unencrypted connection that supports password exchange
using an RSA key pair, as described later in this section. Either way, the
caching_sha2_password plugin uses MySQL's encryption capabilities. See
Section 6.3, “Using Encrypted Connections”.

Note

In the name sha256_password, “sha256” refers to the 256-bit digest length
the plugin uses for encryption. In the name caching_sha2_password, “sha2”
refers more generally to the SHA-2 class of encryption algorithms, of which 256-bit
encryption is one instance. The latter name choice leaves room for future expansion
of possible digest lengths without changing the plugin name.

1180

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_caching_sha2_password_auto_generate_rsa_keys
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_caching_sha2_password_private_key_path
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_caching_sha2_password_public_key_path
https://dev.mysql.com/doc/refman/8.0/en/server-status-variables.html#statvar_Caching_sha2_password_rsa_public_key

Authentication Plugins

The caching_sha2_password plugin has these advantages, compared to sha256_password:

• On the server side, an in-memory cache enables faster reauthentication of users who have connected
previously when they connect again. (This server-side behavior is implemented only in MySQL 8.0 and
higher.)

• Support is provided for client connections that use the Unix socket-file and shared-memory protocols.

The following table shows the plugin name on the client side.

Table 6.10 Plugin and Library Names for SHA-2 Authentication

Plugin or File Plugin or File Name

Client-side plugin caching_sha2_password

Library file None (plugin is built in)

The following sections provide installation and usage information specific to caching SHA-2 pluggable
authentication:

• Installing SHA-2 Pluggable Authentication

• Using SHA-2 Pluggable Authentication

• Cache Operation for SHA-2 Pluggable Authentication

For general information about pluggable authentication in MySQL, see Section 6.2.13, “Pluggable
Authentication”.

Installing SHA-2 Pluggable Authentication

In MySQL 5.7, the caching_sha2_password plugin exists in client form. The client-side plugin is built
into the libmysqlclient client library and is available to any program linked against libmysqlclient.

Using SHA-2 Pluggable Authentication

In MySQL 5.7, the caching_sha2_password client-side plugin enables connecting to MySQL 8.0 or
higher servers using accounts that authenticate with the caching_sha2_password server-side plugin.
The discussion here assumes that an account named 'sha2user'@'localhost' exists on the MySQL
8.0 or higher server. For example, the following statement creates such an account, where password is
the desired account password:

CREATE USER 'sha2user'@'localhost'
IDENTIFIED WITH caching_sha2_password BY 'password';

caching_sha2_password supports connections over secure transport. caching_sha2_password also
supports encrypted password exchange using RSA over unencrypted connections if these conditions are
satisfied:

• The MySQL 5.7 client library and client programs are compiled using OpenSSL, not yaSSL.
caching_sha2_password works with distributions compiled using either package, but RSA support
requires OpenSSL.

Note

It is possible to compile MySQL using yaSSL as an alternative to OpenSSL only
prior to MySQL 5.7.28. As of MySQL 5.7.28, support for yaSSL is removed and
all MySQL builds use OpenSSL.

1181

Authentication Plugins

• The MySQL 8.0 or higher server to which you wish to connect is configured to support RSA (using the
RSA configuration procedure given later in this section).

RSA support has these characteristics, where all aspects that pertain to the server side require a MySQL
8.0 or higher server:

• On the server side, two system variables name the RSA private and public
key-pair files: caching_sha2_password_private_key_path and
caching_sha2_password_public_key_path. The database administrator must set these variables
at server startup if the key files to use have names that differ from the system variable default values.

• The server uses the caching_sha2_password_auto_generate_rsa_keys system variable to
determine whether to automatically generate the RSA key-pair files. See Section 6.3.3, “Creating SSL
and RSA Certificates and Keys”.

• The Caching_sha2_password_rsa_public_key status variable displays the RSA public key value
used by the caching_sha2_password authentication plugin.

• Clients that are in possession of the RSA public key can perform RSA key pair-based password
exchange with the server during the connection process, as described later.

• For connections by accounts that authenticate with caching_sha2_password and RSA key pair-
based password exchange, the server does not send the RSA public key to clients by default. Clients
can use a client-side copy of the required public key, or request the public key from the server.

Use of a trusted local copy of the public key enables the client to avoid a round trip in the client/
server protocol, and is more secure than requesting the public key from the server. On the other hand,
requesting the public key from the server is more convenient (it requires no management of a client-side
file) and may be acceptable in secure network environments.

• For command-line clients, use the --server-public-key-path option to specify the RSA public
key file. Use the --get-server-public-key option to request the public key from the server. The
following programs support the two options: mysql, mysqladmin, mysqlbinlog, mysqlcheck,
mysqldump, mysqlimport, mysqlpump, mysqlshow, mysqlslap, mysqltest.

• For programs that use the C API, call mysql_options() to specify the RSA public key file by
passing the MYSQL_SERVER_PUBLIC_KEY option and the name of the file, or request the public key
from the server by passing the MYSQL_OPT_GET_SERVER_PUBLIC_KEY option.

In all cases, if the option is given to specify a valid public key file, it takes precedence over the option to
request the public key from the server.

For clients that use the caching_sha2_password plugin, passwords are never exposed as cleartext
when connecting to the MySQL 8.0 or higher server. How password transmission occurs depends on
whether a secure connection or RSA encryption is used:

• If the connection is secure, an RSA key pair is unnecessary and is not used. This applies to TCP
connections encrypted using TLS, as well as Unix socket-file and shared-memory connections. The
password is sent as cleartext but cannot be snooped because the connection is secure.

• If the connection is not secure, an RSA key pair is used. This applies to TCP connections not encrypted
using TLS and named-pipe connections. RSA is used only for password exchange between client and
server, to prevent password snooping. When the server receives the encrypted password, it decrypts it.
A scramble is used in the encryption to prevent repeat attacks.

• If a secure connection is not used and RSA encryption is not available, the connection attempt fails
because the password cannot be sent without being exposed as cleartext.

1182

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_caching_sha2_password_private_key_path
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_caching_sha2_password_public_key_path
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_caching_sha2_password_auto_generate_rsa_keys
https://dev.mysql.com/doc/refman/8.0/en/server-status-variables.html#statvar_Caching_sha2_password_rsa_public_key
https://dev.mysql.com/doc/c-api/5.7/en/mysql-options.html

Authentication Plugins

As mentioned previously, RSA password encryption is available only if MySQL 5.7 was compiled using
OpenSSL. The implication for clients from MySQL 5.7 distributions compiled using yaSSL is that, to use
SHA-2 passwords, clients must use an encrypted connection to access the server. See Section 6.3.1,
“Configuring MySQL to Use Encrypted Connections”.

Assuming that MySQL 5.7 has been compiled using OpenSSL, use the following procedure to enable use
of an RSA key pair for password exchange during the client connection process.

Important

Aspects of this procedure that pertain to server configuration must be done on the
MySQL 8.0 or higher server to which you wish to connect using MySQL 5.7 clients,
not on your MySQL 5.7 server.

1. Create the RSA private and public key-pair files using the instructions in Section 6.3.3, “Creating SSL
and RSA Certificates and Keys”.

2. If the private and public key files are located in the data directory and are named private_key.pem
and public_key.pem (the default values of the caching_sha2_password_private_key_path
and caching_sha2_password_public_key_path system variables), the server uses them
automatically at startup.

Otherwise, to name the key files explicitly, set the system variables to the key file names in the server
option file. If the files are located in the server data directory, you need not specify their full path names:

[mysqld]
caching_sha2_password_private_key_path=myprivkey.pem
caching_sha2_password_public_key_path=mypubkey.pem

If the key files are not located in the data directory, or to make their locations explicit in the system
variable values, use full path names:

[mysqld]
caching_sha2_password_private_key_path=/usr/local/mysql/myprivkey.pem
caching_sha2_password_public_key_path=/usr/local/mysql/mypubkey.pem

3. Restart the server, then connect to it and check the Caching_sha2_password_rsa_public_key
status variable value. The actual value differs from that shown here, but should be nonempty:

mysql> SHOW STATUS LIKE 'Caching_sha2_password_rsa_public_key'\G
*************************** 1. row ***************************
Variable_name: Caching_sha2_password_rsa_public_key
 Value: -----BEGIN PUBLIC KEY-----
MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQDO9nRUDd+KvSZgY7cNBZMNpwX6
MvE1PbJFXO7u18nJ9lwc99Du/E7lw6CVXw7VKrXPeHbVQUzGyUNkf45Nz/ckaaJa
aLgJOBCIDmNVnyU54OT/1lcs2xiyfaDMe8fCJ64ZwTnKbY2gkt1IMjUAB5Ogd5kJ
g8aV7EtKwyhHb0c30QIDAQAB
-----END PUBLIC KEY-----

If the value is empty, the server found some problem with the key files. Check the error log for
diagnostic information.

After the server has been configured with the RSA key files, accounts that authenticate with the
caching_sha2_password plugin have the option of using those key files to connect to the server. As
mentioned previously, such accounts can use either a secure connection (in which case RSA is not used)
or an unencrypted connection that performs password exchange using RSA. Suppose that an unencrypted
connection is used. For example:

$> mysql --ssl-mode=DISABLED -u sha2user -p
Enter password: password

1183

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_caching_sha2_password_private_key_path
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_caching_sha2_password_public_key_path
https://dev.mysql.com/doc/refman/8.0/en/server-status-variables.html#statvar_Caching_sha2_password_rsa_public_key

Authentication Plugins

For this connection attempt by sha2user, the server determines that caching_sha2_password is
the appropriate authentication plugin and invokes it (because that was the plugin specified at CREATE
USER time). The plugin finds that the connection is not encrypted and thus requires the password to be
transmitted using RSA encryption. However, the server does not send the public key to the client, and the
client provided no public key, so it cannot encrypt the password and the connection fails:

ERROR 2061 (HY000): Authentication plugin 'caching_sha2_password'
reported error: Authentication requires secure connection.

To request the RSA public key from the server, specify the --get-server-public-key option:

$> mysql --ssl-mode=DISABLED -u sha2user -p --get-server-public-key
Enter password: password

In this case, the server sends the RSA public key to the client, which uses it to encrypt the password and
returns the result to the server. The plugin uses the RSA private key on the server side to decrypt the
password and accepts or rejects the connection based on whether the password is correct.

Alternatively, if the client has a file containing a local copy of the RSA public key required by the server, it
can specify the file using the --server-public-key-path option:

$> mysql --ssl-mode=DISABLED -u sha2user -p --server-public-key-path=file_name
Enter password: password

In this case, the client uses the public key to encrypt the password and returns the result to the server.
The plugin uses the RSA private key on the server side to decrypt the password and accepts or rejects the
connection based on whether the password is correct.

The public key value in the file named by the --server-public-key-path option should be the same
as the key value in the server-side file named by the caching_sha2_password_public_key_path
system variable. If the key file contains a valid public key value but the value is incorrect, an access-denied
error occurs. If the key file does not contain a valid public key, the client program cannot use it.

Client users can obtain the RSA public key two ways:

• The database administrator can provide a copy of the public key file.

• A client user who can connect to the server some other way can use a SHOW STATUS LIKE
'Caching_sha2_password_rsa_public_key' statement and save the returned key value in a file.

Cache Operation for SHA-2 Pluggable Authentication

On the server side, the caching_sha2_password plugin uses an in-memory cache for faster
authentication of clients who have connected previously. For MySQL 5.7, which supports only the
caching_sha2_password client-side plugin, this server-side caching thus takes place on the MySQL 8.0
or higher server to which you connect using MySQL 5.7 clients. For information about cache operation, see
Cache Operation for SHA-2 Pluggable Authentication, in the MySQL 8.0 Reference Manual.

6.4.1.5 SHA-256 Pluggable Authentication

MySQL provides two authentication plugins that implement SHA-256 hashing for user account passwords:

• sha256_password: Implements basic SHA-256 authentication.

• caching_sha2_password: Implements SHA-256 authentication (like sha256_password), but uses
caching on the server side for better performance and has additional features for wider applicability.

This section describes the original noncaching SHA-2 authentication plugin. For information about the
caching plugin, see Section 6.4.1.4, “Caching SHA-2 Pluggable Authentication”.

1184

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_caching_sha2_password_public_key_path
https://dev.mysql.com/doc/refman/8.0/en/caching-sha2-pluggable-authentication.html#caching-sha2-pluggable-authentication-cache-operation

Authentication Plugins

Important

To connect to the server using an account that authenticates with the
sha256_password plugin, you must use either a TLS connection or an
unencrypted connection that supports password exchange using an RSA key pair,
as described later in this section. Either way, the sha256_password plugin uses
MySQL' encryption capabilities. See Section 6.3, “Using Encrypted Connections”.

Note

In the name sha256_password, “sha256” refers to the 256-bit digest length
the plugin uses for encryption. In the name caching_sha2_password, “sha2”
refers more generally to the SHA-2 class of encryption algorithms, of which 256-bit
encryption is one instance. The latter name choice leaves room for future expansion
of possible digest lengths without changing the plugin name.

The following table shows the plugin names on the server and client sides.

Table 6.11 Plugin and Library Names for SHA-256 Authentication

Plugin or File Plugin or File Name

Server-side plugin sha256_password

Client-side plugin sha256_password

Library file None (plugins are built in)

The following sections provide installation and usage information specific to SHA-256 pluggable
authentication:

• Installing SHA-256 Pluggable Authentication

• Using SHA-256 Pluggable Authentication

For general information about pluggable authentication in MySQL, see Section 6.2.13, “Pluggable
Authentication”.

Installing SHA-256 Pluggable Authentication

The sha256_password plugin exists in server and client forms:

• The server-side plugin is built into the server, need not be loaded explicitly, and cannot be disabled by
unloading it.

• The client-side plugin is built into the libmysqlclient client library and is available to any program
linked against libmysqlclient.

Using SHA-256 Pluggable Authentication

To set up an account that uses the sha256_password plugin for SHA-256 password hashing, use the
following statement, where password is the desired account password:

CREATE USER 'sha256user'@'localhost'
IDENTIFIED WITH sha256_password BY 'password';

The server assigns the sha256_password plugin to the account and uses it to encrypt the password
using SHA-256, storing those values in the plugin and authentication_string columns of the
mysql.user system table.

1185

Authentication Plugins

The preceding instructions do not assume that sha256_password is the default authentication plugin. If
sha256_password is the default authentication plugin, a simpler CREATE USER syntax can be used.

To start the server with the default authentication plugin set to sha256_password, put these lines in the
server option file:

[mysqld]
default_authentication_plugin=sha256_password

That causes the sha256_password plugin to be used by default for new accounts. As a result, it is
possible to create the account and set its password without naming the plugin explicitly:

CREATE USER 'sha256user'@'localhost' IDENTIFIED BY 'password';

Another consequence of setting default_authentication_plugin to sha256_password is that, to
use some other plugin for account creation, you must specify that plugin explicitly. For example, to use the
mysql_native_password plugin, use this statement:

CREATE USER 'nativeuser'@'localhost'
IDENTIFIED WITH mysql_native_password BY 'password';

sha256_password supports connections over secure transport. sha256_password also supports
encrypted password exchange using RSA over unencrypted connections if these conditions are satisfied:

• MySQL is compiled using OpenSSL, not yaSSL. sha256_password works with distributions compiled
using either package, but RSA support requires OpenSSL.

Note

It is possible to compile MySQL using yaSSL as an alternative to OpenSSL only
prior to MySQL 5.7.28. As of MySQL 5.7.28, support for yaSSL is removed and
all MySQL builds use OpenSSL.

• The MySQL server to which you wish to connect is configured to support RSA (using the RSA
configuration procedure given later in this section).

RSA support has these characteristics:

• On the server side, two system variables name the RSA private and public key-pair files:
sha256_password_private_key_path and sha256_password_public_key_path. The
database administrator must set these variables at server startup if the key files to use have names that
differ from the system variable default values.

• The server uses the sha256_password_auto_generate_rsa_keys system variable to determine
whether to automatically generate the RSA key-pair files. See Section 6.3.3, “Creating SSL and RSA
Certificates and Keys”.

• The Rsa_public_key status variable displays the RSA public key value used by the
sha256_password authentication plugin.

• Clients that are in possession of the RSA public key can perform RSA key pair-based password
exchange with the server during the connection process, as described later.

• For connections by accounts that authenticate using sha256_password and RSA public key pair-based
password exchange, the server sends the RSA public key to the client as needed. However, if a copy of
the public key is available on the client host, the client can use it to save a round trip in the client/server
protocol:

1186

Authentication Plugins

• For these command-line clients, use the --server-public-key-path option to specify the
RSA public key file: mysql, mysqltest, and (as of MySQL 5.7.23) mysqladmin, mysqlbinlog,
mysqlcheck, mysqldump, mysqlimport, mysqlpump, mysqlshow, mysqlslap, mysqltest.

• For programs that use the C API, call mysql_options() to specify the RSA public key file by
passing the MYSQL_SERVER_PUBLIC_KEY option and the name of the file.

• For replicas, RSA key pair-based password exchange cannot be used to connect to source servers
for accounts that authenticate with the sha256_password plugin. For such accounts, only secure
connections can be used.

For clients that use the sha256_password plugin, passwords are never exposed as cleartext when
connecting to the server. How password transmission occurs depends on whether a secure connection or
RSA encryption is used:

• If the connection is secure, an RSA key pair is unnecessary and is not used. This applies to connections
encrypted using TLS. The password is sent as cleartext but cannot be snooped because the connection
is secure.

Note

Unlike caching_sha2_password, the sha256_password plugin does not
treat shared-memory connections as secure, even though share-memory
transport is secure by default.

• If the connection is not secure, and an RSA key pair is available, the connection remains unencrypted.
This applies to connections not encrypted using TLS. RSA is used only for password exchange between
client and server, to prevent password snooping. When the server receives the encrypted password, it
decrypts it. A scramble is used in the encryption to prevent repeat attacks.

• If a secure connection is not used and RSA encryption is not available, the connection attempt fails
because the password cannot be sent without being exposed as cleartext.

As mentioned previously, RSA password encryption is available only if MySQL was compiled using
OpenSSL. The implication for MySQL distributions compiled using yaSSL is that, to use SHA-256
passwords, clients must use an encrypted connection to access the server. See Section 6.3.1, “Configuring
MySQL to Use Encrypted Connections”.

Note

To use RSA password encryption with sha256_password, the client and server
both must be compiled using OpenSSL, not just one of them.

Assuming that MySQL has been compiled using OpenSSL, use the following procedure to enable use of
an RSA key pair for password exchange during the client connection process:

1. Create the RSA private and public key-pair files using the instructions in Section 6.3.3, “Creating SSL
and RSA Certificates and Keys”.

2. If the private and public key files are located in the data directory and are named private_key.pem
and public_key.pem (the default values of the sha256_password_private_key_path and
sha256_password_public_key_path system variables), the server uses them automatically at
startup.

Otherwise, to name the key files explicitly, set the system variables to the key file names in the server
option file. If the files are located in the server data directory, you need not specify their full path names:

1187

https://dev.mysql.com/doc/c-api/5.7/en/mysql-options.html

Authentication Plugins

[mysqld]
sha256_password_private_key_path=myprivkey.pem
sha256_password_public_key_path=mypubkey.pem

If the key files are not located in the data directory, or to make their locations explicit in the system
variable values, use full path names:

[mysqld]
sha256_password_private_key_path=/usr/local/mysql/myprivkey.pem
sha256_password_public_key_path=/usr/local/mysql/mypubkey.pem

3. Restart the server, then connect to it and check the Rsa_public_key status variable value. The
actual value differs from that shown here, but should be nonempty:

mysql> SHOW STATUS LIKE 'Rsa_public_key'\G
*************************** 1. row ***************************
Variable_name: Rsa_public_key
 Value: -----BEGIN PUBLIC KEY-----
MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQDO9nRUDd+KvSZgY7cNBZMNpwX6
MvE1PbJFXO7u18nJ9lwc99Du/E7lw6CVXw7VKrXPeHbVQUzGyUNkf45Nz/ckaaJa
aLgJOBCIDmNVnyU54OT/1lcs2xiyfaDMe8fCJ64ZwTnKbY2gkt1IMjUAB5Ogd5kJ
g8aV7EtKwyhHb0c30QIDAQAB
-----END PUBLIC KEY-----

If the value is empty, the server found some problem with the key files. Check the error log for
diagnostic information.

After the server has been configured with the RSA key files, accounts that authenticate with the
sha256_password plugin have the option of using those key files to connect to the server. As mentioned
previously, such accounts can use either a secure connection (in which case RSA is not used) or an
unencrypted connection that performs password exchange using RSA. Suppose that an unencrypted
connection is used. For example:

$> mysql --ssl-mode=DISABLED -u sha256user -p
Enter password: password

For this connection attempt by sha256user, the server determines that sha256_password is the
appropriate authentication plugin and invokes it (because that was the plugin specified at CREATE
USER time). The plugin finds that the connection is not encrypted and thus requires the password to be
transmitted using RSA encryption. In this case, the plugin sends the RSA public key to the client, which
uses it to encrypt the password and returns the result to the server. The plugin uses the RSA private key
on the server side to decrypt the password and accepts or rejects the connection based on whether the
password is correct.

The server sends the RSA public key to the client as needed. However, if the client has a file containing
a local copy of the RSA public key required by the server, it can specify the file using the --server-
public-key-path option:

$> mysql --ssl-mode=DISABLED -u sha256user -p --server-public-key-path=file_name
Enter password: password

The public key value in the file named by the --server-public-key-path option should be the same
as the key value in the server-side file named by the sha256_password_public_key_path system
variable. If the key file contains a valid public key value but the value is incorrect, an access-denied error
occurs. If the key file does not contain a valid public key, the client program cannot use it. In this case,
the sha256_password plugin sends the public key to the client as if no --server-public-key-path
option had been specified.

Client users can obtain the RSA public key two ways:

1188

Authentication Plugins

• The database administrator can provide a copy of the public key file.

• A client user who can connect to the server some other way can use a SHOW STATUS LIKE
'Rsa_public_key' statement and save the returned key value in a file.

6.4.1.6 Client-Side Cleartext Pluggable Authentication

A client-side authentication plugin is available that enables clients to send passwords to the server as
cleartext, without hashing or encryption. This plugin is built into the MySQL client library.

The following table shows the plugin name.

Table 6.12 Plugin and Library Names for Cleartext Authentication

Plugin or File Plugin or File Name

Server-side plugin None, see discussion

Client-side plugin mysql_clear_password

Library file None (plugin is built in)

Many client-side authentication plugins perform hashing or encryption of a password before the client
sends it to the server. This enables clients to avoid sending passwords as cleartext.

Hashing or encryption cannot be done for authentication schemes that require the server to receive
the password as entered on the client side. In such cases, the client-side mysql_clear_password
plugin is used, which enables the client to send the password to the server as cleartext. There is no
corresponding server-side plugin. Rather, mysql_clear_password can be used on the client side in
concert with any server-side plugin that needs a cleartext password. (Examples are the PAM and simple
LDAP authentication plugins; see Section 6.4.1.7, “PAM Pluggable Authentication”, and Section 6.4.1.9,
“LDAP Pluggable Authentication”.)

The following discussion provides usage information specific to cleartext pluggable authentication.
For general information about pluggable authentication in MySQL, see Section 6.2.13, “Pluggable
Authentication”.

Note

Sending passwords as cleartext may be a security problem in some configurations.
To avoid problems if there is any possibility that the password would be
intercepted, clients should connect to MySQL Server using a method that protects
the password. Possibilities include SSL (see Section 6.3, “Using Encrypted
Connections”), IPsec, or a private network.

To make inadvertent use of the mysql_clear_password plugin less likely, MySQL clients must explicitly
enable it. This can be done in several ways:

• Set the LIBMYSQL_ENABLE_CLEARTEXT_PLUGIN environment variable to a value that begins with 1, Y,
or y. This enables the plugin for all client connections.

• The mysql, mysqladmin, and mysqlslap client programs (also mysqlcheck, mysqldump, and
mysqlshow for MySQL 5.7.10 and later) support an --enable-cleartext-plugin option that
enables the plugin on a per-invocation basis.

• The mysql_options() C API function supports a MYSQL_ENABLE_CLEARTEXT_PLUGIN option that
enables the plugin on a per-connection basis. Also, any program that uses libmysqlclient and reads
option files can enable the plugin by including an enable-cleartext-plugin option in an option
group read by the client library.

1189

https://dev.mysql.com/doc/c-api/5.7/en/mysql-options.html

Authentication Plugins

6.4.1.7 PAM Pluggable Authentication

Note

PAM pluggable authentication is an extension included in MySQL Enterprise
Edition, a commercial product. To learn more about commercial products, see
https://www.mysql.com/products/.

MySQL Enterprise Edition supports an authentication method that enables MySQL Server to use PAM
(Pluggable Authentication Modules) to authenticate MySQL users. PAM enables a system to use a
standard interface to access various kinds of authentication methods, such as traditional Unix passwords
or an LDAP directory.

PAM pluggable authentication provides these capabilities:

• External authentication: PAM authentication enables MySQL Server to accept connections from users
defined outside the MySQL grant tables and that authenticate using methods supported by PAM.

• Proxy user support: PAM authentication can return to MySQL a user name different from the external
user name passed by the client program, based on the PAM groups the external user is a member
of and the authentication string provided. This means that the plugin can return the MySQL user that
defines the privileges the external PAM-authenticated user should have. For example, an operating
sytem user named joe can connect and have the privileges of a MySQL user named developer.

PAM pluggable authentication has been tested on Linux and macOS.

The following table shows the plugin and library file names. The file name suffix might differ on your
system. The file must be located in the directory named by the plugin_dir system variable. For
installation information, see Installing PAM Pluggable Authentication.

Table 6.13 Plugin and Library Names for PAM Authentication

Plugin or File Plugin or File Name

Server-side plugin authentication_pam

Client-side plugin mysql_clear_password

Library file authentication_pam.so

The client-side mysql_clear_password cleartext plugin that communicates with the server-side
PAM plugin is built into the libmysqlclient client library and is included in all distributions, including
community distributions. Inclusion of the client-side cleartext plugin in all MySQL distributions enables
clients from any distribution to connect to a server that has the server-side PAM plugin loaded.

The following sections provide installation and usage information specific to PAM pluggable authentication:

• How PAM Authentication of MySQL Users Works

• Installing PAM Pluggable Authentication

• Uninstalling PAM Pluggable Authentication

• Using PAM Pluggable Authentication

• PAM Unix Password Authentication without Proxy Users

• PAM LDAP Authentication without Proxy Users

• PAM Unix Password Authentication with Proxy Users and Group Mapping

1190

https://www.mysql.com/products/

Authentication Plugins

• PAM Authentication Access to Unix Password Store

• PAM Authentication Debugging

For general information about pluggable authentication in MySQL, see Section 6.2.13, “Pluggable
Authentication”. For information about the mysql_clear_password plugin, see Section 6.4.1.6, “Client-
Side Cleartext Pluggable Authentication”. For proxy user information, see Section 6.2.14, “Proxy Users”.

How PAM Authentication of MySQL Users Works

This section provides an overview of how MySQL and PAM work together to authenticate MySQL users.
For examples showing how to set up MySQL accounts to use specific PAM services, see Using PAM
Pluggable Authentication.

1. The client program and the server communicate, with the client sending to the server the client user
name (the operating system user name by default) and password:

• The client user name is the external user name.

• For accounts that use the PAM server-side authentication plugin, the corresponding client-side plugin
is mysql_clear_password. This client-side plugin performs no password hashing, with the result
that the client sends the password to the server as cleartext.

2. The server finds a matching MySQL account based on the external user name and the host from which
the client connects. The PAM plugin uses the information passed to it by MySQL Server (such as
user name, host name, password, and authentication string). When you define a MySQL account that
authenticates using PAM, the authentication string contains:

• A PAM service name, which is a name that the system administrator can use to refer to an
authentication method for a particular application. There can be multiple applications associated
with a single database server instance, so the choice of service name is left to the SQL application
developer.

• Optionally, if proxying is to be used, a mapping from PAM groups to MySQL user names.

3. The plugin uses the PAM service named in the authentication string to check the user credentials and
returns 'Authentication succeeded, Username is user_name' or 'Authentication
failed'. The password must be appropriate for the password store used by the PAM service.
Examples:

• For traditional Unix passwords, the service looks up passwords stored in the /etc/shadow file.

• For LDAP, the service looks up passwords stored in an LDAP directory.

If the credentials check fails, the server refuses the connection.

4. Otherwise, the authentication string indicates whether proxying occurs. If the string contains no PAM
group mapping, proxying does not occur. In this case, the MySQL user name is the same as the
external user name.

5. Otherwise, proxying is indicated based on the PAM group mapping, with the MySQL user name
determined based on the first matching group in the mapping list. The meaning of “PAM group”
depends on the PAM service. Examples:

• For traditional Unix passwords, groups are Unix groups defined in the /etc/group file, possibly
supplemented with additional PAM information in a file such as /etc/security/group.conf.

• For LDAP, groups are LDAP groups defined in an LDAP directory.

1191

Authentication Plugins

If the proxy user (the external user) has the PROXY privilege for the proxied MySQL user name,
proxying occurs, with the proxy user assuming the privileges of the proxied user.

Installing PAM Pluggable Authentication

This section describes how to install the server-side PAM authentication plugin. For general information
about installing plugins, see Section 5.5.1, “Installing and Uninstalling Plugins”.

To be usable by the server, the plugin library file must be located in the MySQL plugin directory (the
directory named by the plugin_dir system variable). If necessary, configure the plugin directory location
by setting the value of plugin_dir at server startup.

The plugin library file base name is authentication_pam. The file name suffix differs per platform (for
example, .so for Unix and Unix-like systems, .dll for Windows).

To load the plugin at server startup, use the --plugin-load-add option to name the library file that
contains it. With this plugin-loading method, the option must be given each time the server starts. For
example, put these lines in the server my.cnf file, adjusting the .so suffix for your platform as necessary:

[mysqld]
plugin-load-add=authentication_pam.so

After modifying my.cnf, restart the server to cause the new settings to take effect.

Alternatively, to load the plugin at runtime, use this statement, adjusting the .so suffix for your platform as
necessary:

INSTALL PLUGIN authentication_pam SONAME 'authentication_pam.so';

INSTALL PLUGIN loads the plugin immediately, and also registers it in the mysql.plugins system table
to cause the server to load it for each subsequent normal startup without the need for --plugin-load-
add.

To verify plugin installation, examine the Information Schema PLUGINS table or use the SHOW PLUGINS
statement (see Section 5.5.2, “Obtaining Server Plugin Information”). For example:

mysql> SELECT PLUGIN_NAME, PLUGIN_STATUS
 FROM INFORMATION_SCHEMA.PLUGINS
 WHERE PLUGIN_NAME LIKE '%pam%';
+--------------------+---------------+
| PLUGIN_NAME | PLUGIN_STATUS |
+--------------------+---------------+
| authentication_pam | ACTIVE |
+--------------------+---------------+

If the plugin fails to initialize, check the server error log for diagnostic messages.

To associate MySQL accounts with the PAM plugin, see Using PAM Pluggable Authentication.

Uninstalling PAM Pluggable Authentication

The method used to uninstall the PAM authentication plugin depends on how you installed it:

• If you installed the plugin at server startup using a --plugin-load-add option, restart the server
without the option.

• If you installed the plugin at runtime using an INSTALL PLUGIN statement, it remains installed across
server restarts. To uninstall it, use UNINSTALL PLUGIN:

UNINSTALL PLUGIN authentication_pam;

1192

Authentication Plugins

Using PAM Pluggable Authentication

This section describes in general terms how to use the PAM authentication plugin to connect from MySQL
client programs to the server. The following sections provide instructions for using PAM authentication
in specific ways. It is assumed that the server is running with the server-side PAM plugin enabled, as
described in Installing PAM Pluggable Authentication.

To refer to the PAM authentication plugin in the IDENTIFIED WITH clause of a CREATE USER statement,
use the name authentication_pam. For example:

CREATE USER user
 IDENTIFIED WITH authentication_pam
 AS 'auth_string';

The authentication string specifies the following types of information:

• The PAM service name (see How PAM Authentication of MySQL Users Works). Examples in the
following discussion use a service name of mysql-unix for authentication using traditional Unix
passwords, and mysql-ldap for authentication using LDAP.

• For proxy support, PAM provides a way for a PAM module to return to the server a MySQL user name
other than the external user name passed by the client program when it connects to the server. Use the
authentication string to control the mapping from external user names to MySQL user names. If you want
to take advantage of proxy user capabilities, the authentication string must include this kind of mapping.

For example, if an account uses the mysql-unix PAM service name and should map operating
system users in the root and users PAM groups to the developer and data_entry MySQL users,
respectively, use a statement like this:

CREATE USER user
 IDENTIFIED WITH authentication_pam
 AS 'mysql-unix, root=developer, users=data_entry';

Authentication string syntax for the PAM authentication plugin follows these rules:

• The string consists of a PAM service name, optionally followed by a PAM group mapping list consisting
of one or more keyword/value pairs each specifying a PAM group name and a MySQL user name:

pam_service_name[,pam_group_name=mysql_user_name]...

The plugin parses the authentication string for each connection attempt that uses the account. To
minimize overhead, keep the string as short as possible.

• Each pam_group_name=mysql_user_name pair must be preceded by a comma.

• Leading and trailing spaces not inside double quotation marks are ignored.

• Unquoted pam_service_name, pam_group_name, and mysql_user_name values can contain
anything except equal sign, comma, or space.

• If a pam_service_name, pam_group_name, or mysql_user_name value is quoted with double
quotation marks, everything between the quotation marks is part of the value. This is necessary, for
example, if the value contains space characters. All characters are legal except double quotation mark
and backslash (\). To include either character, escape it with a backslash.

If the plugin successfully authenticates the external user name (the name passed by the client), it looks for
a PAM group mapping list in the authentication string and, if present, uses it to return a different MySQL
user name to the MySQL server based on which PAM groups the external user is a member of:

• If the authentication string contains no PAM group mapping list, the plugin returns the external name.

1193

Authentication Plugins

• If the authentication string does contain a PAM group mapping list, the plugin examines each
pam_group_name=mysql_user_name pair in the list from left to right and tries to find a match for the
pam_group_name value in a non-MySQL directory of the groups assigned to the authenticated user and
returns mysql_user_name for the first match it finds. If the plugin finds no match for any PAM group, it
returns the external name. If the plugin is not capable of looking up a group in a directory, it ignores the
PAM group mapping list and returns the external name.

The following sections describe how to set up several authentication scenarios that use the PAM
authentication plugin:

• No proxy users. This uses PAM only to check login names and passwords. Every external user
permitted to connect to MySQL Server should have a matching MySQL account that is defined to use
PAM authentication. (For a MySQL account of 'user_name'@'host_name' to match the external
user, user_name must be the external user name and host_name must match the host from which the
client connects.) Authentication can be performed by various PAM-supported methods. Later discussion
shows how to authenticate client credentials using traditional Unix passwords, and passwords in LDAP.

PAM authentication, when not done through proxy users or PAM groups, requires the MySQL user name
to be same as the operating system user name. MySQL user names are limited to 32 characters (see
Section 6.2.3, “Grant Tables”), which limits PAM nonproxy authentication to Unix accounts with names of
at most 32 characters.

• Proxy users only, with PAM group mapping. For this scenario, create one or more MySQL accounts
that define different sets of privileges. (Ideally, nobody should connect using those accounts directly.)
Then define a default user authenticating through PAM that uses some mapping scheme (usually based
on the external PAM groups the users are members of) to map all the external user names to the few
MySQL accounts holding the privilege sets. Any client who connects and specifies an external user
name as the client user name is mapped to one of the MySQL accounts and uses its privileges. The
discussion shows how to set this up using traditional Unix passwords, but other PAM methods such as
LDAP could be used instead.

Variations on these scenarios are possible:

• You can permit some users to log in directly (without proxying) but require others to connect through
proxy accounts.

• You can use one PAM authentication method for some users, and another method for other users, by
using differing PAM service names among your PAM-authenticated accounts. For example, you can use
the mysql-unix PAM service for some users, and mysql-ldap for others.

The examples make the following assumptions. You might need to make some adjustments if your system
is set up differently.

• The login name and password are antonio and antonio_password, respectively. Change these to
correspond to the user you want to authenticate.

• The PAM configuration directory is /etc/pam.d.

• The PAM service name corresponds to the authentication method (mysql-unix or mysql-ldap in this
discussion). To use a given PAM service, you must set up a PAM file with the same name in the PAM
configuration directory (creating the file if it does not exist). In addition, you must name the PAM service
in the authentication string of the CREATE USER statement for any account that authenticates using that
PAM service.

The PAM authentication plugin checks at initialization time whether the AUTHENTICATION_PAM_LOG
environment value is set in the server's startup environment. If so, the plugin enables logging of diagnostic

1194

Authentication Plugins

messages to the standard output. Depending on how your server is started, the message might appear
on the console or in the error log. These messages can be helpful for debugging PAM-related issues that
occur when the plugin performs authentication. For more information, see PAM Authentication Debugging.

PAM Unix Password Authentication without Proxy Users

This authentication scenario uses PAM to check external users defined in terms of operating system
user names and Unix passwords, without proxying. Every such external user permitted to connect to
MySQL Server should have a matching MySQL account that is defined to use PAM authentication through
traditional Unix password store.

Note

Traditional Unix passwords are checked using the /etc/shadow file. For
information regarding possible issues related to this file, see PAM Authentication
Access to Unix Password Store.

1. Verify that Unix authentication permits logins to the operating system with the user name antonio and
password antonio_password.

2. Set up PAM to authenticate MySQL connections using traditional Unix passwords by creating a
mysql-unix PAM service file named /etc/pam.d/mysql-unix. The file contents are system
dependent, so check existing login-related files in the /etc/pam.d directory to see what they look like.
On Linux, the mysql-unix file might look like this:

#%PAM-1.0
auth include password-auth
account include password-auth

For macOS, use login rather than password-auth.

The PAM file format might differ on some systems. For example, on Ubuntu and other Debian-based
systems, use these file contents instead:

@include common-auth
@include common-account
@include common-session-noninteractive

3. Create a MySQL account with the same user name as the operating system user name and define it to
authenticate using the PAM plugin and the mysql-unix PAM service:

CREATE USER 'antonio'@'localhost'
 IDENTIFIED WITH authentication_pam
 AS 'mysql-unix';
GRANT ALL PRIVILEGES
 ON mydb.*
 TO 'antonio'@'localhost';

Here, the authentication string contains only the PAM service name, mysql-unix, which authenticates
Unix passwords.

4. Use the mysql command-line client to connect to the MySQL server as antonio. For example:

$> mysql --user=antonio --password --enable-cleartext-plugin
Enter password: antonio_password

The server should permit the connection and the following query returns output as shown:

mysql> SELECT USER(), CURRENT_USER(), @@proxy_user;
+-------------------+-------------------+--------------+

1195

Authentication Plugins

| USER() | CURRENT_USER() | @@proxy_user |
+-------------------+-------------------+--------------+
| antonio@localhost | antonio@localhost | NULL |
+-------------------+-------------------+--------------+

This demonstrates that the antonio operating system user is authenticated to have the privileges
granted to the antonio MySQL user, and that no proxying has occurred.

Note

The client-side mysql_clear_password authentication plugin leaves the
password untouched, so client programs send it to the MySQL server as cleartext.
This enables the password to be passed as is to PAM. A cleartext password is
necessary to use the server-side PAM library, but may be a security problem in
some configurations. These measures minimize the risk:

• To make inadvertent use of the mysql_clear_password plugin less likely,
MySQL clients must explicitly enable it (for example, with the --enable-
cleartext-plugin option). See Section 6.4.1.6, “Client-Side Cleartext
Pluggable Authentication”.

• To avoid password exposure with the mysql_clear_password plugin
enabled, MySQL clients should connect to the MySQL server using an
encrypted connection. See Section 6.3.1, “Configuring MySQL to Use Encrypted
Connections”.

PAM LDAP Authentication without Proxy Users

This authentication scenario uses PAM to check external users defined in terms of operating system user
names and LDAP passwords, without proxying. Every such external user permitted to connect to MySQL
Server should have a matching MySQL account that is defined to use PAM authentication through LDAP.

To use PAM LDAP pluggable authentication for MySQL, these prerequisites must be satisfied:

• An LDAP server must be available for the PAM LDAP service to communicate with.

• Each LDAP user to be authenticated by MySQL must be present in the directory managed by the LDAP
server.

Note

Another way to use LDAP for MySQL user authentication is to use the
LDAP-specific authentication plugins. See Section 6.4.1.9, “LDAP Pluggable
Authentication”.

Configure MySQL for PAM LDAP authentication as follows:

1. Verify that Unix authentication permits logins to the operating system with the user name antonio and
password antonio_password.

2. Set up PAM to authenticate MySQL connections using LDAP by creating a mysql-ldap PAM service
file named /etc/pam.d/mysql-ldap. The file contents are system dependent, so check existing
login-related files in the /etc/pam.d directory to see what they look like. On Linux, the mysql-ldap
file might look like this:

#%PAM-1.0
auth required pam_ldap.so

1196

Authentication Plugins

account required pam_ldap.so

If PAM object files have a suffix different from .so on your system, substitute the correct suffix.

The PAM file format might differ on some systems.

3. Create a MySQL account with the same user name as the operating system user name and define it to
authenticate using the PAM plugin and the mysql-ldap PAM service:

CREATE USER 'antonio'@'localhost'
 IDENTIFIED WITH authentication_pam
 AS 'mysql-ldap';
GRANT ALL PRIVILEGES
 ON mydb.*
 TO 'antonio'@'localhost';

Here, the authentication string contains only the PAM service name, mysql-ldap, which authenticates
using LDAP.

4. Connecting to the server is the same as described in PAM Unix Password Authentication without Proxy
Users.

PAM Unix Password Authentication with Proxy Users and Group Mapping

The authentication scheme described here uses proxying and PAM group mapping to map connecting
MySQL users who authenticate using PAM onto other MySQL accounts that define different sets of
privileges. Users do not connect directly through the accounts that define the privileges. Instead, they
connect through a default proxy account authenticated using PAM, such that all the external users are
mapped to the MySQL accounts that hold the privileges. Any user who connects using the proxy account
is mapped to one of those MySQL accounts, the privileges for which determine the database operations
permitted to the external user.

The procedure shown here uses Unix password authentication. To use LDAP instead, see the early steps
of PAM LDAP Authentication without Proxy Users.

Note

Traditional Unix passwords are checked using the /etc/shadow file. For
information regarding possible issues related to this file, see PAM Authentication
Access to Unix Password Store.

1. Verify that Unix authentication permits logins to the operating system with the user name antonio and
password antonio_password.

2. Verify that antonio is a member of the root or users PAM group.

3. Set up PAM to authenticate the mysql-unix PAM service through operating system users by creating
a file named /etc/pam.d/mysql-unix. The file contents are system dependent, so check existing
login-related files in the /etc/pam.d directory to see what they look like. On Linux, the mysql-unix
file might look like this:

#%PAM-1.0
auth include password-auth
account include password-auth

For macOS, use login rather than password-auth.

The PAM file format might differ on some systems. For example, on Ubuntu and other Debian-based
systems, use these file contents instead:

1197

Authentication Plugins

@include common-auth
@include common-account
@include common-session-noninteractive

4. Create a default proxy user (''@'') that maps external PAM users to the proxied accounts:

CREATE USER ''@''
 IDENTIFIED WITH authentication_pam
 AS 'mysql-unix, root=developer, users=data_entry';

Here, the authentication string contains the PAM service name, mysql-unix, which authenticates
Unix passwords. The authentication string also maps external users in the root and users PAM
groups to the developer and data_entry MySQL user names, respectively.

The PAM group mapping list following the PAM service name is required when you set up proxy users.
Otherwise, the plugin cannot tell how to perform mapping from external user names to the proper
proxied MySQL user names.

Note

If your MySQL installation has anonymous users, they might conflict with the
default proxy user. For more information about this issue, and ways of dealing
with it, see Default Proxy User and Anonymous User Conflicts.

5. Create the proxied accounts and grant to each one the privileges it should have:

CREATE USER 'developer'@'localhost'
 IDENTIFIED WITH mysql_no_login;
CREATE USER 'data_entry'@'localhost'
 IDENTIFIED WITH mysql_no_login;

GRANT ALL PRIVILEGES
 ON mydevdb.*
 TO 'developer'@'localhost';
GRANT ALL PRIVILEGES
 ON mydb.*
 TO 'data_entry'@'localhost';

The proxied accounts use the mysql_no_login authentication plugin to prevent clients from using
the accounts to log in directly to the MySQL server. Instead, it is expected that users who authenticate
using PAM use the developer or data_entry account by proxy based on their PAM group. (This
assumes that the plugin is installed. For instructions, see Section 6.4.1.10, “No-Login Pluggable
Authentication”.) For alternative methods of protecting proxied accounts against direct use, see
Preventing Direct Login to Proxied Accounts.

6. Grant to the proxy account the PROXY privilege for each proxied account:

GRANT PROXY
 ON 'developer'@'localhost'
 TO ''@'';
GRANT PROXY
 ON 'data_entry'@'localhost'
 TO ''@'';

7. Use the mysql command-line client to connect to the MySQL server as antonio.

$> mysql --user=antonio --password --enable-cleartext-plugin
Enter password: antonio_password

The server authenticates the connection using the default ''@'' proxy account. The resulting
privileges for antonio depend on which PAM groups antonio is a member of. If antonio is a

1198

Authentication Plugins

member of the root PAM group, the PAM plugin maps root to the developer MySQL user name
and returns that name to the server. The server verifies that ''@'' has the PROXY privilege for
developer and permits the connection. The following query returns output as shown:

mysql> SELECT USER(), CURRENT_USER(), @@proxy_user;
+-------------------+---------------------+--------------+
| USER() | CURRENT_USER() | @@proxy_user |
+-------------------+---------------------+--------------+
| antonio@localhost | developer@localhost | ''@'' |
+-------------------+---------------------+--------------+

This demonstrates that the antonio operating system user is authenticated to have the privileges
granted to the developer MySQL user, and that proxying occurs through the default proxy account.

If antonio is not a member of the root PAM group but is a member of the users PAM group, a
similar process occurs, but the plugin maps user PAM group membership to the data_entry MySQL
user name and returns that name to the server:

mysql> SELECT USER(), CURRENT_USER(), @@proxy_user;
+-------------------+----------------------+--------------+
| USER() | CURRENT_USER() | @@proxy_user |
+-------------------+----------------------+--------------+
| antonio@localhost | data_entry@localhost | ''@'' |
+-------------------+----------------------+--------------+

This demonstrates that the antonio operating system user is authenticated to have the privileges of
the data_entry MySQL user, and that proxying occurs through the default proxy account.

Note

The client-side mysql_clear_password authentication plugin leaves the
password untouched, so client programs send it to the MySQL server as cleartext.
This enables the password to be passed as is to PAM. A cleartext password is
necessary to use the server-side PAM library, but may be a security problem in
some configurations. These measures minimize the risk:

• To make inadvertent use of the mysql_clear_password plugin less likely,
MySQL clients must explicitly enable it (for example, with the --enable-
cleartext-plugin option). See Section 6.4.1.6, “Client-Side Cleartext
Pluggable Authentication”.

• To avoid password exposure with the mysql_clear_password plugin
enabled, MySQL clients should connect to the MySQL server using an
encrypted connection. See Section 6.3.1, “Configuring MySQL to Use Encrypted
Connections”.

PAM Authentication Access to Unix Password Store

On some systems, Unix authentication uses a password store such as /etc/shadow, a file that typically
has restricted access permissions. This can cause MySQL PAM-based authentication to fail. Unfortunately,
the PAM implementation does not permit distinguishing “password could not be checked” (due, for
example, to inability to read /etc/shadow) from “password does not match.” If you are using Unix
password store for PAM authentication, you may be able to enable access to it from MySQL using one of
the following methods:

• Assuming that the MySQL server is run from the mysql operating system account, put that account in
the shadow group that has /etc/shadow access:

1. Create a shadow group in /etc/group.

1199

Authentication Plugins

2. Add the mysql operating system user to the shadow group in /etc/group.

3. Assign /etc/group to the shadow group and enable the group read permission:

chgrp shadow /etc/shadow
chmod g+r /etc/shadow

4. Restart the MySQL server.

• If you are using the pam_unix module and the unix_chkpwd utility, enable password store access as
follows:

chmod u-s /usr/sbin/unix_chkpwd
setcap cap_dac_read_search+ep /usr/sbin/unix_chkpwd

Adjust the path to unix_chkpwd as necessary for your platform.

PAM Authentication Debugging

The PAM authentication plugin checks at initialization time whether the AUTHENTICATION_PAM_LOG
environment value is set. In MySQL 5.7, and in MySQL NDB Cluster rrior to NDB 7.5.33 and NDB 7.6.29,
the value does not matter. The plugin enables logging of diagnostic messages to the standard output,
including passwords. These messages may be helpful for debugging PAM-related issues that occur when
the plugin performs authentication.

In MySQL NDB Cluster, beginning with versions 7.5.33 and 7.6.29, passwords are not
included if you set AUTHENTICATION_PAM_LOG=1 (or some other arbitrary value);
you can enable logging of debugging messages, passwords included, by setting
AUTHENTICATION_PAM_LOG=PAM_LOG_WITH_SECRET_INFO.

Some messages include reference to PAM plugin source files and line numbers, which enables plugin
actions to be tied more closely to the location in the code where they occur.

Another technique for debugging connection failures and determining what is happening during connection
attempts is to configure PAM authentication to permit all connections, then check the system log files. This
technique should be used only on a temporary basis, and not on a production server.

Configure a PAM service file named /etc/pam.d/mysql-any-password with these contents (the
format may differ on some systems):

#%PAM-1.0
auth required pam_permit.so
account required pam_permit.so

Create an account that uses the PAM plugin and names the mysql-any-password PAM service:

CREATE USER 'testuser'@'localhost'
 IDENTIFIED WITH authentication_pam
 AS 'mysql-any-password';

The mysql-any-password service file causes any authentication attempt to return true, even for
incorrect passwords. If an authentication attempt fails, that tells you the configuration problem is on
the MySQL side. Otherwise, the problem is on the operating system/PAM side. To see what might be
happening, check system log files such as /var/log/secure, /var/log/audit.log, /var/log/
syslog, or /var/log/messages.

After determining what the problem is, remove the mysql-any-password PAM service file to disable
any-password access.

1200

Authentication Plugins

6.4.1.8 Windows Pluggable Authentication

Note

Windows pluggable authentication is an extension included in MySQL Enterprise
Edition, a commercial product. To learn more about commercial products, see
https://www.mysql.com/products/.

MySQL Enterprise Edition for Windows supports an authentication method that performs external
authentication on Windows, enabling MySQL Server to use native Windows services to authenticate client
connections. Users who have logged in to Windows can connect from MySQL client programs to the server
based on the information in their environment without specifying an additional password.

The client and server exchange data packets in the authentication handshake. As a result of this
exchange, the server creates a security context object that represents the identity of the client in the
Windows OS. This identity includes the name of the client account. Windows pluggable authentication
uses the identity of the client to check whether it is a given account or a member of a group. By default,
negotiation uses Kerberos to authenticate, then NTLM if Kerberos is unavailable.

Windows pluggable authentication provides these capabilities:

• External authentication: Windows authentication enables MySQL Server to accept connections from
users defined outside the MySQL grant tables who have logged in to Windows.

• Proxy user support: Windows authentication can return to MySQL a user name different from the
external user name passed by the client program. This means that the plugin can return the MySQL
user that defines the privileges the external Windows-authenticated user should have. For example, a
Windows user named joe can connect and have the privileges of a MySQL user named developer.

The following table shows the plugin and library file names. The file must be located in the directory named
by the plugin_dir system variable.

Table 6.14 Plugin and Library Names for Windows Authentication

Plugin or File Plugin or File Name

Server-side plugin authentication_windows

Client-side plugin authentication_windows_client

Library file authentication_windows.dll

The library file includes only the server-side plugin. The client-side plugin is built into the
libmysqlclient client library.

The server-side Windows authentication plugin is included only in MySQL Enterprise Edition. It is not
included in MySQL community distributions. The client-side plugin is included in all distributions, including
community distributions. This enables clients from any distribution to connect to a server that has the
server-side plugin loaded.

The following sections provide installation and usage information specific to Windows pluggable
authentication:

• Installing Windows Pluggable Authentication

• Uninstalling Windows Pluggable Authentication

• Using Windows Pluggable Authentication

1201

https://www.mysql.com/products/

Authentication Plugins

For general information about pluggable authentication in MySQL, see Section 6.2.13, “Pluggable
Authentication”. For proxy user information, see Section 6.2.14, “Proxy Users”.

Installing Windows Pluggable Authentication

This section describes how to install the server-side Windows authentication plugin. For general
information about installing plugins, see Section 5.5.1, “Installing and Uninstalling Plugins”.

To be usable by the server, the plugin library file must be located in the MySQL plugin directory (the
directory named by the plugin_dir system variable). If necessary, configure the plugin directory location
by setting the value of plugin_dir at server startup.

To load the plugin at server startup, use the --plugin-load-add option to name the library file that
contains it. With this plugin-loading method, the option must be given each time the server starts. For
example, put these lines in the server my.cnf file:

[mysqld]
plugin-load-add=authentication_windows.dll

After modifying my.cnf, restart the server to cause the new settings to take effect.

Alternatively, to load the plugin at runtime, use this statement:

INSTALL PLUGIN authentication_windows SONAME 'authentication_windows.dll';

INSTALL PLUGIN loads the plugin immediately, and also registers it in the mysql.plugins system table
to cause the server to load it for each subsequent normal startup without the need for --plugin-load-
add.

To verify plugin installation, examine the Information Schema PLUGINS table or use the SHOW PLUGINS
statement (see Section 5.5.2, “Obtaining Server Plugin Information”). For example:

mysql> SELECT PLUGIN_NAME, PLUGIN_STATUS
 FROM INFORMATION_SCHEMA.PLUGINS
 WHERE PLUGIN_NAME LIKE '%windows%';
+------------------------+---------------+
| PLUGIN_NAME | PLUGIN_STATUS |
+------------------------+---------------+
| authentication_windows | ACTIVE |
+------------------------+---------------+

If the plugin fails to initialize, check the server error log for diagnostic messages.

To associate MySQL accounts with the Windows authentication plugin, see Using
Windows Pluggable Authentication. Additional plugin control is provided by the
authentication_windows_use_principal_name and authentication_windows_log_level
system variables. See Section 5.1.7, “Server System Variables”.

Uninstalling Windows Pluggable Authentication

The method used to uninstall the Windows authentication plugin depends on how you installed it:

• If you installed the plugin at server startup using a --plugin-load-add option, restart the server
without the option.

• If you installed the plugin at runtime using an INSTALL PLUGIN statement, it remains installed across
server restarts. To uninstall it, use UNINSTALL PLUGIN:

1202

Authentication Plugins

UNINSTALL PLUGIN authentication_windows;

In addition, remove any startup options that set Windows plugin-related system variables.

Using Windows Pluggable Authentication

The Windows authentication plugin supports the use of MySQL accounts such that users who have logged
in to Windows can connect to the MySQL server without having to specify an additional password. It is
assumed that the server is running with the server-side plugin enabled, as described in Installing Windows
Pluggable Authentication. Once the DBA has enabled the server-side plugin and set up accounts to use it,
clients can connect using those accounts with no other setup required on their part.

To refer to the Windows authentication plugin in the IDENTIFIED WITH clause of a CREATE USER
statement, use the name authentication_windows. Suppose that the Windows users Rafal and
Tasha should be permitted to connect to MySQL, as well as any users in the Administrators or Power
Users group. To set this up, create a MySQL account named sql_admin that uses the Windows plugin
for authentication:

CREATE USER sql_admin
 IDENTIFIED WITH authentication_windows
 AS 'Rafal, Tasha, Administrators, "Power Users"';

The plugin name is authentication_windows. The string following the AS keyword is the
authentication string. It specifies that the Windows users named Rafal or Tasha are permitted
to authenticate to the server as the MySQL user sql_admin, as are any Windows users in the
Administrators or Power Users group. The latter group name contains a space, so it must be quoted
with double quote characters.

After you create the sql_admin account, a user who has logged in to Windows can attempt to connect to
the server using that account:

C:\> mysql --user=sql_admin

No password is required here. The authentication_windows plugin uses the Windows security API
to check which Windows user is connecting. If that user is named Rafal or Tasha, or is a member of the
Administrators or Power Users group, the server grants access and the client is authenticated as
sql_admin and has whatever privileges are granted to the sql_admin account. Otherwise, the server
denies access.

Authentication string syntax for the Windows authentication plugin follows these rules:

• The string consists of one or more user mappings separated by commas.

• Each user mapping associates a Windows user or group name with a MySQL user name:

win_user_or_group_name=mysql_user_name
win_user_or_group_name

For the latter syntax, with no mysql_user_name value given, the implicit value is the MySQL user
created by the CREATE USER statement. Thus, these statements are equivalent:

CREATE USER sql_admin
 IDENTIFIED WITH authentication_windows
 AS 'Rafal, Tasha, Administrators, "Power Users"';

CREATE USER sql_admin
 IDENTIFIED WITH authentication_windows
 AS 'Rafal=sql_admin, Tasha=sql_admin, Administrators=sql_admin,

1203

Authentication Plugins

 "Power Users"=sql_admin';

• Each backslash character (\) in a value must be doubled because backslash is the escape character in
MySQL strings.

• Leading and trailing spaces not inside double quotation marks are ignored.

• Unquoted win_user_or_group_name and mysql_user_name values can contain anything except
equal sign, comma, or space.

• If a win_user_or_group_name and or mysql_user_name value is quoted with double quotation
marks, everything between the quotation marks is part of the value. This is necessary, for example, if the
name contains space characters. All characters within double quotes are legal except double quotation
mark and backslash. To include either character, escape it with a backslash.

• win_user_or_group_name values use conventional syntax for Windows principals, either local or in a
domain. Examples (note the doubling of backslashes):

domain\\user
.\\user
domain\\group
.\\group
BUILTIN\\WellKnownGroup

When invoked by the server to authenticate a client, the plugin scans the authentication string left to right
for a user or group match to the Windows user. If there is a match, the plugin returns the corresponding
mysql_user_name to the MySQL server. If there is no match, authentication fails.

A user name match takes preference over a group name match. Suppose that the Windows user named
win_user is a member of win_group and the authentication string looks like this:

'win_group = sql_user1, win_user = sql_user2'

When win_user connects to the MySQL server, there is a match both to win_group and to win_user.
The plugin authenticates the user as sql_user2 because the more-specific user match takes precedence
over the group match, even though the group is listed first in the authentication string.

Windows authentication always works for connections from the same computer on which the server
is running. For cross-computer connections, both computers must be registered with Microsoft Active
Directory. If they are in the same Windows domain, it is unnecessary to specify a domain name. It is also
possible to permit connections from a different domain, as in this example:

CREATE USER sql_accounting
 IDENTIFIED WITH authentication_windows
 AS 'SomeDomain\\Accounting';

Here SomeDomain is the name of the other domain. The backslash character is doubled because it is the
MySQL escape character within strings.

MySQL supports the concept of proxy users whereby a client can connect and authenticate to the MySQL
server using one account but while connected has the privileges of another account (see Section 6.2.14,
“Proxy Users”). Suppose that you want Windows users to connect using a single user name but be
mapped based on their Windows user and group names onto specific MySQL accounts as follows:

• The local_user and MyDomain\domain_user local and domain Windows users should map to the
local_wlad MySQL account.

• Users in the MyDomain\Developers domain group should map to the local_dev MySQL account.

1204

Authentication Plugins

• Local machine administrators should map to the local_admin MySQL account.

To set this up, create a proxy account for Windows users to connect to, and configure this account so that
users and groups map to the appropriate MySQL accounts (local_wlad, local_dev, local_admin).
In addition, grant the MySQL accounts the privileges appropriate to the operations they need to perform.
The following instructions use win_proxy as the proxy account, and local_wlad, local_dev, and
local_admin as the proxied accounts.

1. Create the proxy MySQL account:

CREATE USER win_proxy
 IDENTIFIED WITH authentication_windows
 AS 'local_user = local_wlad,
 MyDomain\\domain_user = local_wlad,
 MyDomain\\Developers = local_dev,
 BUILTIN\\Administrators = local_admin';

2. For proxying to work, the proxied accounts must exist, so create them:

CREATE USER local_wlad
 IDENTIFIED WITH mysql_no_login;
CREATE USER local_dev
 IDENTIFIED WITH mysql_no_login;
CREATE USER local_admin
 IDENTIFIED WITH mysql_no_login;

The proxied accounts use the mysql_no_login authentication plugin to prevent clients from using
the accounts to log in directly to the MySQL server. Instead, it is expected that users who authenticate
using Windows use the win_proxy proxy account. (This assumes that the plugin is installed. For
instructions, see Section 6.4.1.10, “No-Login Pluggable Authentication”.) For alternative methods of
protecting proxied accounts against direct use, see Preventing Direct Login to Proxied Accounts.

You should also execute GRANT statements (not shown) that grant each proxied account the privileges
required for MySQL access.

3. Grant to the proxy account the PROXY privilege for each proxied account:

GRANT PROXY ON local_wlad TO win_proxy;
GRANT PROXY ON local_dev TO win_proxy;
GRANT PROXY ON local_admin TO win_proxy;

Now the Windows users local_user and MyDomain\domain_user can connect to the MySQL server
as win_proxy and when authenticated have the privileges of the account given in the authentication
string (in this case, local_wlad). A user in the MyDomain\Developers group who connects as
win_proxy has the privileges of the local_dev account. A user in the BUILTIN\Administrators
group has the privileges of the local_admin account.

To configure authentication so that all Windows users who do not have their own MySQL account go
through a proxy account, substitute the default proxy account (''@'') for win_proxy in the preceding
instructions. For information about default proxy accounts, see Section 6.2.14, “Proxy Users”.

Note

If your MySQL installation has anonymous users, they might conflict with the default
proxy user. For more information about this issue, and ways of dealing with it, see
Default Proxy User and Anonymous User Conflicts.

To use the Windows authentication plugin with Connector/NET connection strings in Connector/NET 8.0
and higher, see Connector/NET Authentication.

1205

https://dev.mysql.com/doc/connector-net/en/connector-net-authentication.html

Authentication Plugins

6.4.1.9 LDAP Pluggable Authentication

Note

LDAP pluggable authentication is an extension included in MySQL Enterprise
Edition, a commercial product. To learn more about commercial products, see
https://www.mysql.com/products/.

As of MySQL 5.7.19, MySQL Enterprise Edition supports an authentication method that enables MySQL
Server to use LDAP (Lightweight Directory Access Protocol) to authenticate MySQL users by accessing
directory services such as X.500. MySQL uses LDAP to fetch user, credential, and group information.

LDAP pluggable authentication provides these capabilities:

• External authentication: LDAP authentication enables MySQL Server to accept connections from users
defined outside the MySQL grant tables in LDAP directories.

• Proxy user support: LDAP authentication can return to MySQL a user name different from the external
user name passed by the client program, based on the LDAP groups the external user is a member
of. This means that an LDAP plugin can return the MySQL user that defines the privileges the external
LDAP-authenticated user should have. For example, an LDAP user named joe can connect and have
the privileges of a MySQL user named developer, if the LDAP group for joe is developer.

• Security: Using TLS, connections to the LDAP server can be secure.

The following tables show the plugin and library file names for simple and SASL-based LDAP
authentication. The file name suffix might differ on your system. The files must be located in the directory
named by the plugin_dir system variable.

Table 6.15 Plugin and Library Names for Simple LDAP Authentication

Plugin or File Plugin or File Name

Server-side plugin name authentication_ldap_simple

Client-side plugin name mysql_clear_password

Library file name authentication_ldap_simple.so

Table 6.16 Plugin and Library Names for SASL-Based LDAP Authentication

Plugin or File Plugin or File Name

Server-side plugin name authentication_ldap_sasl

Client-side plugin name authentication_ldap_sasl_client

Library file names authentication_ldap_sasl.so,
authentication_ldap_sasl_client.so

The library files include only the authentication_ldap_XXX authentication plugins. The client-side
mysql_clear_password plugin is built into the libmysqlclient client library.

Each server-side LDAP plugin works with a specific client-side plugin:

• The server-side authentication_ldap_simple plugin performs simple LDAP authentication.
For connections by accounts that use this plugin, client programs use the client-side
mysql_clear_password plugin, which sends the password to the server as cleartext. No password

1206

https://www.mysql.com/products/

Authentication Plugins

hashing or encryption is used, so a secure connection between the MySQL client and server is
recommended to prevent password exposure.

• The server-side authentication_ldap_sasl plugin performs SASL-based LDAP
authentication. For connections by accounts that use this plugin, client programs use the client-side
authentication_ldap_sasl_client plugin. The client-side and server-side SASL LDAP plugins
use SASL messages for secure transmission of credentials within the LDAP protocol, to avoid sending
the cleartext password between the MySQL client and server.

The server-side LDAP authentication plugins are included only in MySQL Enterprise Edition. They
are not included in MySQL community distributions. The client-side SASL LDAP plugin is included
in all distributions, including community distributions, and, as mentioned previously, the client-side
mysql_clear_password plugin is built into the libmysqlclient client library, which also is included
in all distributions. This enables clients from any distribution to connect to a server that has the appropriate
server-side plugin loaded.

The following sections provide installation and usage information specific to LDAP pluggable
authentication:

• Prerequisites for LDAP Pluggable Authentication

• How LDAP Authentication of MySQL Users Works

• Installing LDAP Pluggable Authentication

• Uninstalling LDAP Pluggable Authentication

• LDAP Pluggable Authentication and ldap.conf

• Using LDAP Pluggable Authentication

• Simple LDAP Authentication (Without Proxying)

• SASL-Based LDAP Authentication (Without Proxying)

• LDAP Authentication with Proxying

• LDAP Authentication Group Preference and Mapping Specification

• LDAP Authentication User DN Suffixes

• LDAP Authentication Methods

For general information about pluggable authentication in MySQL, see Section 6.2.13, “Pluggable
Authentication”. For information about the mysql_clear_password plugin, see Section 6.4.1.6, “Client-
Side Cleartext Pluggable Authentication”. For proxy user information, see Section 6.2.14, “Proxy Users”.

Note

If your system supports PAM and permits LDAP as a PAM authentication method,
another way to use LDAP for MySQL user authentication is to use the server-
side authentication_pam plugin. See Section 6.4.1.7, “PAM Pluggable
Authentication”.

Prerequisites for LDAP Pluggable Authentication

To use LDAP pluggable authentication for MySQL, these prerequisites must be satisfied:

1207

Authentication Plugins

• An LDAP server must be available for the LDAP authentication plugins to communicate with.

• LDAP users to be authenticated by MySQL must be present in the directory managed by the LDAP
server.

• An LDAP client library must be available on systems where the server-side
authentication_ldap_sasl or authentication_ldap_simple plugin is used. Currently,
supported libraries are the Windows native LDAP library, or the OpenLDAP library on non-Windows
systems.

• To use SASL-based LDAP authentication:

• The LDAP server must be configured to communicate with a SASL server.

• A SASL client library must be available on systems where the client-side
authentication_ldap_sasl_client plugin is used. Currently, the only supported library is the
Cyrus SASL library.

How LDAP Authentication of MySQL Users Works

This section provides a general overview of how MySQL and LDAP work together to authenticate MySQL
users. For examples showing how to set up MySQL accounts to use specific LDAP authentication plugins,
see Using LDAP Pluggable Authentication.

The client connects to the MySQL server, providing the MySQL client user name and the LDAP password:

• For simple LDAP authentication, the client-side and server-side plugins communicate the password
as cleartext. A secure connection between the MySQL client and server is recommended to prevent
password exposure.

• For SASL-based LDAP authentication, the client-side and server-side plugins avoid sending the cleartext
password between the MySQL client and server. For example, the plugins might use SASL messages
for secure transmission of credentials within the LDAP protocol.

If the client user name and host name match no MySQL account, the connection is rejected.

If there is a matching MySQL account, authentication against LDAP occurs. The LDAP server looks for an
entry matching the user and authenticates the entry against the LDAP password:

• If the MySQL account names an LDAP user distinguished name (DN), LDAP authentication uses that
value and the LDAP password provided by the client. (To associate an LDAP user DN with a MySQL
account, include a BY clause that specifies an authentication string in the CREATE USER statement that
creates the account.)

• If the MySQL account names no LDAP user DN, LDAP authentication uses the user name and LDAP
password provided by the client. In this case, the authentication plugin first binds to the LDAP server
using the root DN and password as credentials to find the user DN based on the client user name, then
authenticates that user DN against the LDAP password. This bind using the root credentials fails if the
root DN and password are set to incorrect values, or are empty (not set) and the LDAP server does not
permit anonymous connections.

If the LDAP server finds no match or multiple matches, authentication fails and the client connection is
rejected.

If the LDAP server finds a single match, LDAP authentication succeeds (assuming that the password is
correct), the LDAP server returns the LDAP entry, and the authentication plugin determines the name of
the authenticated user based on that entry:

1208

Authentication Plugins

• If the LDAP entry has a group attribute (by default, the cn attribute), the plugin returns its value as the
authenticated user name.

• If the LDAP entry has no group attribute, the authentication plugin returns the client user name as the
authenticated user name.

The MySQL server compares the client user name with the authenticated user name to determine whether
proxying occurs for the client session:

• If the names are the same, no proxying occurs: The MySQL account matching the client user name is
used for privilege checking.

• If the names differ, proxying occurs: MySQL looks for an account matching the authenticated user name.
That account becomes the proxied user, which is used for privilege checking. The MySQL account that
matched the client user name is treated as the external proxy user.

Installing LDAP Pluggable Authentication

This section describes how to install the server-side LDAP authentication plugins. For general information
about installing plugins, see Section 5.5.1, “Installing and Uninstalling Plugins”.

To be usable by the server, the plugin library files must be located in the MySQL plugin directory (the
directory named by the plugin_dir system variable). If necessary, configure the plugin directory location
by setting the value of plugin_dir at server startup.

The server-side plugin library file base names are authentication_ldap_simple and
authentication_ldap_sasl. The file name suffix differs per platform (for example, .so for Unix and
Unix-like systems, .dll for Windows).

To load the plugins at server startup, use --plugin-load-add options to name the library files that
contain them. With this plugin-loading method, the options must be given each time the server starts. Also,
specify values for any plugin-provided system variables you wish to configure.

Each server-side LDAP plugin exposes a set of system variables that enable its operation to be configured.
Setting most of these is optional, but you must set the variables that specify the LDAP server host (so
the plugin knows where to connect) and base distinguished name for LDAP bind operations (to limit
the scope of searches and obtain faster searches). For details about all LDAP system variables, see
Section 6.4.1.13, “Pluggable Authentication System Variables”.

To load the plugins and set the LDAP server host and base distinguished name for LDAP bind operations,
put lines such as these in your my.cnf file, adjusting the .so suffix for your platform as necessary:

[mysqld]
plugin-load-add=authentication_ldap_simple.so
authentication_ldap_simple_server_host=127.0.0.1
authentication_ldap_simple_bind_base_dn="dc=example,dc=com"
plugin-load-add=authentication_ldap_sasl.so
authentication_ldap_sasl_server_host=127.0.0.1
authentication_ldap_sasl_bind_base_dn="dc=example,dc=com"

After modifying my.cnf, restart the server to cause the new settings to take effect.

Alternatively, to load the plugins at runtime, use these statements, adjusting the .so suffix for your platform
as necessary:

INSTALL PLUGIN authentication_ldap_simple
 SONAME 'authentication_ldap_simple.so';
INSTALL PLUGIN authentication_ldap_sasl

1209

Authentication Plugins

 SONAME 'authentication_ldap_sasl.so';

INSTALL PLUGIN loads the plugin immediately, and also registers it in the mysql.plugins system table
to cause the server to load it for each subsequent normal startup without the need for --plugin-load-
add.

After installing the plugins at runtime, their system variables become available and you can add settings for
them to your my.cnf file to configure the plugins for subsequent restarts. For example:

[mysqld]
authentication_ldap_simple_server_host=127.0.0.1
authentication_ldap_simple_bind_base_dn="dc=example,dc=com"
authentication_ldap_sasl_server_host=127.0.0.1
authentication_ldap_sasl_bind_base_dn="dc=example,dc=com"

After modifying my.cnf, restart the server to cause the new settings to take effect.

To verify plugin installation, examine the Information Schema PLUGINS table or use the SHOW PLUGINS
statement (see Section 5.5.2, “Obtaining Server Plugin Information”). For example:

mysql> SELECT PLUGIN_NAME, PLUGIN_STATUS
 FROM INFORMATION_SCHEMA.PLUGINS
 WHERE PLUGIN_NAME LIKE '%ldap%';
+----------------------------+---------------+
| PLUGIN_NAME | PLUGIN_STATUS |
+----------------------------+---------------+
| authentication_ldap_sasl | ACTIVE |
| authentication_ldap_simple | ACTIVE |
+----------------------------+---------------+

If a plugin fails to initialize, check the server error log for diagnostic messages.

To associate MySQL accounts with an LDAP plugin, see Using LDAP Pluggable Authentication.

Additional Notes for SELinux

On systems running EL6 or EL that have SELinux enabled, changes to the SELinux
policy are required to enable the MySQL LDAP plugins to communicate with the
LDAP service:

1. Create a file mysqlldap.te with these contents:

module mysqlldap 1.0;

require {
 type ldap_port_t;
 type mysqld_t;
 class tcp_socket name_connect;
}

#============= mysqld_t ==============

allow mysqld_t ldap_port_t:tcp_socket name_connect;

2. Compile the security policy module into a binary representation:

checkmodule -M -m mysqlldap.te -o mysqlldap.mod

3. Create an SELinux policy module package:

semodule_package -m mysqlldap.mod -o mysqlldap.pp

4. Install the module package:

1210

Authentication Plugins

semodule -i mysqlldap.pp

5. When the SELinux policy changes have been made, restart the MySQL server:

service mysqld restart

Uninstalling LDAP Pluggable Authentication

The method used to uninstall the LDAP authentication plugins depends on how you installed them:

• If you installed the plugins at server startup using --plugin-load-add options, restart the server
without those options.

• If you installed the plugins at runtime using INSTALL PLUGIN, they remain installed across server
restarts. To uninstall them, use UNINSTALL PLUGIN:

UNINSTALL PLUGIN authentication_ldap_simple;
UNINSTALL PLUGIN authentication_ldap_sasl;

In addition, remove from your my.cnf file any startup options that set LDAP plugin-related system
variables.

LDAP Pluggable Authentication and ldap.conf

For installations that use OpenLDAP, the ldap.conf file provides global defaults for LDAP clients.
Options can be set in this file to affect LDAP clients, including the LDAP authentication plugins. OpenLDAP
uses configuration options in this order of precedence:

• Configuration specified by the LDAP client.

• Configuration specified in the ldap.conf file. To disable use of this file, set the LDAPNOINIT
environment variable.

• OpenLDAP library built-in defaults.

If the library defaults or ldap.conf values do not yield appropriate option values, an LDAP authentication
plugin may be able to set related variables to affect the LDAP configuration directly. For example,
LDAP plugins can override ldap.conf parameters for TLS configuration: System variables are
available to enable TLS and control CA configuration, such as authentication_ldap_simple_tls
and authentication_ldap_simple_ca_path for simple LDAP authentication, and
authentication_ldap_sasl_tls and authentication_ldap_sasl_ca_path for SASL LDAP
authentication.

For more information about ldap.conf consult the ldap.conf(5) man page.

Using LDAP Pluggable Authentication

This section describes how to enable MySQL accounts to connect to the MySQL server using LDAP
pluggable authentication. It is assumed that the server is running with the appropriate server-side plugins
enabled, as described in Installing LDAP Pluggable Authentication, and that the appropriate client-side
plugins are available on the client host.

This section does not describe LDAP configuration or administration. You are assumed to be familiar with
those topics.

The two server-side LDAP plugins each work with a specific client-side plugin:

1211

Authentication Plugins

• The server-side authentication_ldap_simple plugin performs simple LDAP authentication.
For connections by accounts that use this plugin, client programs use the client-side
mysql_clear_password plugin, which sends the password to the server as cleartext. No password
hashing or encryption is used, so a secure connection between the MySQL client and server is
recommended to prevent password exposure.

• The server-side authentication_ldap_sasl plugin performs SASL-based LDAP
authentication. For connections by accounts that use this plugin, client programs use the client-side
authentication_ldap_sasl_client plugin. The client-side and server-side SASL LDAP plugins
use SASL messages for secure transmission of credentials within the LDAP protocol, to avoid sending
the cleartext password between the MySQL client and server.

Overall requirements for LDAP authentication of MySQL users:

• There must be an LDAP directory entry for each user to be authenticated.

• There must be a MySQL user account that specifies a server-side LDAP authentication plugin and
optionally names the associated LDAP user distinguished name (DN). (To associate an LDAP user DN
with a MySQL account, include a BY clause in the CREATE USER statement that creates the account.)
If an account names no LDAP string, LDAP authentication uses the user name specified by the client to
find the LDAP entry.

• Client programs connect using the connection method appropriate for the server-side
authentication plugin the MySQL account uses. For LDAP authentication, connections require
the MySQL user name and LDAP password. In addition, for accounts that use the server-side
authentication_ldap_simple plugin, invoke client programs with the --enable-cleartext-
plugin option to enable the client-side mysql_clear_password plugin.

The instructions here assume the following scenario:

• MySQL users betsy and boris authenticate to the LDAP entries for betsy_ldap and boris_ldap,
respectively. (It is not necessary that the MySQL and LDAP user names differ. The use of different
names in this discussion helps clarify whether an operation context is MySQL or LDAP.)

• LDAP entries use the uid attribute to specify user names. This may vary depending on
LDAP server. Some LDAP servers use the cn attribute for user names rather than uid. To
change the attribute, modify the authentication_ldap_simple_user_search_attr or
authentication_ldap_sasl_user_search_attr system variable appropriately.

• These LDAP entries are available in the directory managed by the LDAP server, to provide distinguished
name values that uniquely identify each user:

uid=betsy_ldap,ou=People,dc=example,dc=com
uid=boris_ldap,ou=People,dc=example,dc=com

• CREATE USER statements that create MySQL accounts name an LDAP user in the BY clause, to
indicate which LDAP entry the MySQL account authenticates against.

The instructions for setting up an account that uses LDAP authentication depend on which server-side
LDAP plugin is used. The following sections describe several usage scenarios.

Simple LDAP Authentication (Without Proxying)

The procedure outlined in this section requires that
authentication_ldap_simple_group_search_attr be set to an empty string, like this:

SET GLOBAL.authentication_ldap_simple_group_search_attr='';

1212

Authentication Plugins

Otherwise, proxying is used by default.

To set up a MySQL account for simple LDAP authentication, use a CREATE USER statement to specify the
authentication_ldap_simple plugin, optionally including the LDAP user distinguished name (DN), as
shown here:

CREATE USER user
 IDENTIFIED WITH authentication_ldap_simple
 [BY 'LDAP user DN'];

Suppose that MySQL user betsy has this entry in the LDAP directory:

uid=betsy_ldap,ou=People,dc=example,dc=com

Then the statement to create the MySQL account for betsy looks like this:

CREATE USER 'betsy'@'localhost'
 IDENTIFIED WITH authentication_ldap_simple
 AS 'uid=betsy_ldap,ou=People,dc=example,dc=com';

The authentication string specified in the BY clause does not include the LDAP password. That must be
provided by the client user at connect time.

Clients connect to the MySQL server by providing the MySQL user name and LDAP password, and by
enabling the client-side mysql_clear_password plugin:

$> mysql --user=betsy --password --enable-cleartext-plugin
Enter password: betsy_ldap_password

Note

The client-side mysql_clear_password authentication plugin leaves the
password untouched, so client programs send it to the MySQL server as cleartext.
This enables the password to be passed as is to the LDAP server. A cleartext
password is necessary to use the server-side LDAP library without SASL, but may
be a security problem in some configurations. These measures minimize the risk:

• To make inadvertent use of the mysql_clear_password plugin less likely,
MySQL clients must explicitly enable it (for example, with the --enable-
cleartext-plugin option). See Section 6.4.1.6, “Client-Side Cleartext
Pluggable Authentication”.

• To avoid password exposure with the mysql_clear_password plugin
enabled, MySQL clients should connect to the MySQL server using an
encrypted connection. See Section 6.3.1, “Configuring MySQL to Use Encrypted
Connections”.

The authentication process occurs as follows:

1. The client-side plugin sends betsy and betsy_password as the client user name and LDAP
password to the MySQL server.

2. The connection attempt matches the 'betsy'@'localhost' account. The
server-side LDAP plugin finds that this account has an authentication string of
'uid=betsy_ldap,ou=People,dc=example,dc=com' to name the LDAP user DN. The plugin
sends this string and the LDAP password to the LDAP server.

3. The LDAP server finds the LDAP entry for betsy_ldap and the password matches, so LDAP
authentication succeeds.

1213

Authentication Plugins

4. The LDAP entry has no group attribute, so the server-side plugin returns the client user name (betsy)
as the authenticated user. This is the same user name supplied by the client, so no proxying occurs
and the client session uses the 'betsy'@'localhost' account for privilege checking.

Had the CREATE USER statement contained no BY clause to specify the betsy_ldap LDAP distinguished
name, authentication attempts would use the user name provided by the client (in this case, betsy). In the
absence of an LDAP entry for betsy, authentication would fail.

SASL-Based LDAP Authentication (Without Proxying)

The procedure outlined in this section requires that
authentication_ldap_sasl_group_search_attr be set to an empty string, like this:

SET GLOBAL.authentication_ldap_sasl_group_search_attr='';

Otherwise, proxying is used by default.

To set up a MySQL account for SALS LDAP authentication, use a CREATE USER statement to specify the
authentication_ldap_sasl plugin, optionally including the LDAP user distinguished name (DN), as
shown here:

CREATE USER user
 IDENTIFIED WITH authentication_ldap_sasl
 [BY 'LDAP user DN'];

Suppose that MySQL user boris has this entry in the LDAP directory:

uid=boris_ldap,ou=People,dc=example,dc=com

Then the statement to create the MySQL account for boris looks like this:

CREATE USER 'boris'@'localhost'
 IDENTIFIED WITH authentication_ldap_sasl
 AS 'uid=boris_ldap,ou=People,dc=example,dc=com';

The authentication string specified in the BY clause does not include the LDAP password. That must be
provided by the client user at connect time.

Clients connect to the MySQL server by providing the MySQL user name and LDAP password:

$> mysql --user=boris --password
Enter password: boris_ldap_password

For the server-side authentication_ldap_sasl plugin, clients use the client-side
authentication_ldap_sasl_client plugin. If a client program does not find the client-side plugin,
specify a --plugin-dir option that names the directory where the plugin library file is installed.

The authentication process for boris is similar to that previously described for betsy with simple LDAP
authentication, except that the client-side and server-side SASL LDAP plugins use SASL messages for
secure transmission of credentials within the LDAP protocol, to avoid sending the cleartext password
between the MySQL client and server.

LDAP Authentication with Proxying

LDAP authentication plugins support proxying, enabling a user to connect to the MySQL server as one
user but assume the privileges of a different user. This section describes basic LDAP plugin proxy support.
The LDAP plugins also support specification of group preference and proxy user mapping; see LDAP
Authentication Group Preference and Mapping Specification.

1214

Authentication Plugins

The proxying implementation described here is based on use of LDAP group attribute values to map
connecting MySQL users who authenticate using LDAP onto other MySQL accounts that define different
sets of privileges. Users do not connect directly through the accounts that define the privileges. Instead,
they connect through a default proxy account authenticated with LDAP, such that all external logins are
mapped to the proxied MySQL accounts that hold the privileges. Any user who connects using the proxy
account is mapped to one of those proxied MySQL accounts, the privileges for which determine the
database operations permitted to the external user.

The instructions here assume the following scenario:

• LDAP entries use the uid and cn attributes to specify user name and group values, respectively. To use
different user and group attribute names, set the appropriate plugin-specific system variables:

• For the authentication_ldap_simple plugin: Set
authentication_ldap_simple_user_search_attr and
authentication_ldap_simple_group_search_attr.

• For the authentication_ldap_sasl plugin: Set
authentication_ldap_sasl_user_search_attr and
authentication_ldap_sasl_group_search_attr.

• These LDAP entries are available in the directory managed by the LDAP server, to provide distinguished
name values that uniquely identify each user:

uid=basha,ou=People,dc=example,dc=com,cn=accounting
uid=basil,ou=People,dc=example,dc=com,cn=front_office

At connect time, the group attribute values become the authenticated user names, so they name the
accounting and front_office proxied accounts.

• The examples assume use of SASL LDAP authentication. Make the appropriate adjustments for simple
LDAP authentication.

Create the default proxy MySQL account:

CREATE USER ''@'%'
 IDENTIFIED WITH authentication_ldap_sasl;

The proxy account definition has no AS 'auth_string' clause to name an LDAP user DN. Thus:

• When a client connects, the client user name becomes the LDAP user name to search for.

• The matching LDAP entry is expected to include a group attribute naming the proxied MySQL account
that defines the privileges the client should have.

Note

If your MySQL installation has anonymous users, they might conflict with the default
proxy user. For more information about this issue, and ways of dealing with it, see
Default Proxy User and Anonymous User Conflicts.

Create the proxied accounts and grant to each one the privileges it should have:

CREATE USER 'accounting'@'localhost'
 IDENTIFIED WITH mysql_no_login;
CREATE USER 'front_office'@'localhost'
 IDENTIFIED WITH mysql_no_login;

GRANT ALL PRIVILEGES
 ON accountingdb.*

1215

Authentication Plugins

 TO 'accounting'@'localhost';
GRANT ALL PRIVILEGES
 ON frontdb.*
 TO 'front_office'@'localhost';

The proxied accounts use the mysql_no_login authentication plugin to prevent clients from using the
accounts to log in directly to the MySQL server. Instead, users who authenticate using LDAP are expected
to use the default ''@'%' proxy account. (This assumes that the mysql_no_login plugin is installed.
For instructions, see Section 6.4.1.10, “No-Login Pluggable Authentication”.) For alternative methods of
protecting proxied accounts against direct use, see Preventing Direct Login to Proxied Accounts.

Grant to the proxy account the PROXY privilege for each proxied account:

GRANT PROXY
 ON 'accounting'@'localhost'
 TO ''@'%';
GRANT PROXY
 ON 'front_office'@'localhost'
 TO ''@'%';

Use the mysql command-line client to connect to the MySQL server as basha.

$> mysql --user=basha --password
Enter password: basha_password (basha LDAP password)

Authentication occurs as follows:

1. The server authenticates the connection using the default ''@'%' proxy account, for client user
basha.

2. The matching LDAP entry is:

uid=basha,ou=People,dc=example,dc=com,cn=accounting

3. The matching LDAP entry has group attribute cn=accounting, so accounting becomes the
authenticated proxied user.

4. The authenticated user differs from the client user name basha, with the result that basha is treated as
a proxy for accounting, and basha assumes the privileges of the proxied accounting account. The
following query returns output as shown:

mysql> SELECT USER(), CURRENT_USER(), @@proxy_user;
+-----------------+----------------------+--------------+
| USER() | CURRENT_USER() | @@proxy_user |
+-----------------+----------------------+--------------+
| basha@localhost | accounting@localhost | ''@'%' |
+-----------------+----------------------+--------------+

This demonstrates that basha uses the privileges granted to the proxied accounting MySQL account,
and that proxying occurs through the default proxy user account.

Now connect as basil instead:

$> mysql --user=basil --password
Enter password: basil_password (basil LDAP password)

The authentication process for basil is similar to that previously described for basha:

1. The server authenticates the connection using the default ''@'%' proxy account, for client user
basil.

2. The matching LDAP entry is:

1216

Authentication Plugins

uid=basil,ou=People,dc=example,dc=com,cn=front_office

3. The matching LDAP entry has group attribute cn=front_office, so front_office becomes the
authenticated proxied user.

4. The authenticated user differs from the client user name basil, with the result that basil is treated
as a proxy for front_office, and basil assumes the privileges of the proxied front_office
account. The following query returns output as shown:

mysql> SELECT USER(), CURRENT_USER(), @@proxy_user;
+-----------------+------------------------+--------------+
| USER() | CURRENT_USER() | @@proxy_user |
+-----------------+------------------------+--------------+
| basil@localhost | front_office@localhost | ''@'%' |
+-----------------+------------------------+--------------+

This demonstrates that basil uses the privileges granted to the proxied front_office MySQL account,
and that proxying occurs through the default proxy user account.

LDAP Authentication Group Preference and Mapping Specification

As described in LDAP Authentication with Proxying, basic LDAP authentication proxying works by the
principle that the plugin uses the first group name returned by the LDAP server as the MySQL proxied user
account name. This simple capability does not enable specifying any preference about which group name
to use if the LDAP server returns multiple group names, or specifying any name other than the group name
as the proxied user name.

As of MySQL 5.7.25, for MySQL accounts that use LDAP authentication, the authentication string can
specify the following information to enable greater proxying flexibility:

• A list of groups in preference order, such that the plugin uses the first group name in the list that matches
a group returned by the LDAP server.

• A mapping from group names to proxied user names, such that a group name when matched can
provide a specified name to use as the proxied user. This provides an alternative to using the group
name as the proxied user.

Consider the following MySQL proxy account definition:

CREATE USER ''@'%'
 IDENTIFIED WITH authentication_ldap_sasl
 AS '+ou=People,dc=example,dc=com#grp1=usera,grp2,grp3=userc';

The authentication string has a user DN suffix ou=People,dc=example,dc=com prefixed by the +
character. Thus, as described in LDAP Authentication User DN Suffixes, the full user DN is constructed
from the user DN suffix as specified, plus the client user name as the uid attribute.

The remaining part of the authentication string begins with #, which signifies the beginning of group
preference and mapping information. This part of the authentication string lists group names in the order
grp1, grp2, grp3. The LDAP plugin compares that list with the set of group names returned by the LDAP
server, looking in list order for a match against the returned names. The plugin uses the first match, or if
there is no match, authentication fails.

Suppose that the LDAP server returns groups grp3, grp2, and grp7. The LDAP plugin uses grp2
because it is the first group in the authentication string that matches, even though it is not the first group
returned by the LDAP server. If the LDAP server returns grp4, grp2, and grp1, the plugin uses grp1
even though grp2 also matches. grp1 has a precedence higher than grp2 because it is listed earlier in
the authentication string.

1217

Authentication Plugins

Assuming that the plugin finds a group name match, it performs mapping from that group name to the
MySQL proxied user name, if there is one. For the example proxy account, mapping occurs as follows:

• If the matching group name is grp1 or grp3, those are associated in the authentication string with user
names usera and userc, respectively. The plugin uses the corresponding associated user name as the
proxied user name.

• If the matching group name is grp2, there is no associated user name in the authentication string. The
plugin uses grp2 as the proxied user name.

If the LDAP server returns a group in DN format, the LDAP plugin parses the group DN to extract the group
name from it.

To specify LDAP group preference and mapping information, these principles apply:

• Begin the group preference and mapping part of the authentication string with a # prefix character.

• The group preference and mapping specification is a list of one or more items, separated by commas.
Each item has the form group_name=user_name or group_name. Items should be listed in group
name preference order. For a group name selected by the plugin as a match from set of group names
returned by the LDAP server, the two syntaxes differ in effect as follows:

• For an item specified as group_name=user_name (with a user name), the group name maps to the
user name, which is used as the MySQL proxied user name.

• For an item specified as group_name (with no user name), the group name is used as the MySQL
proxied user name.

• To quote a group or user name that contains special characters such as space, surround it by double
quote (") characters. For example, if an item has group and user names of my group name and my
user name, it must be written in a group mapping using quotes:

"my group name"="my user name"

If an item has group and user names of my_group_name and my_user_name (which contain no special
characters), it may but need not be written using quotes. Any of the following are valid:

my_group_name=my_user_name
my_group_name="my_user_name"
"my_group_name"=my_user_name
"my_group_name"="my_user_name"

• To escape a character, precede it by a backslash (\). This is useful particularly to include a literal double
quote or backslash, which are otherwise not included literally.

• A user DN need not be present in the authentication string, but if present, it must precede the group
preference and mapping part. A user DN can be given as a full user DN, or as a user DN suffix with a +
prefix character. (See LDAP Authentication User DN Suffixes.)

LDAP Authentication User DN Suffixes

As of MySQL 5.7.21, LDAP authentication plugins permit the authentication string that provides user DN
information to begin with a + prefix character:

• In the absence of a + character, the authentication string value is treated as is without modification.

• If the authentication string begins with +, the plugin constructs the full user DN value from the
user name sent by the client, together with the DN specified in the authentication string (with
the + removed). In the constructed DN, the client user name becomes the value of the attribute

1218

Authentication Plugins

that specifies LDAP user names. This is uid by default; to change the attribute, modify the
appropriate system variable (authentication_ldap_simple_user_search_attr or
authentication_ldap_sasl_user_search_attr). The authentication string is stored as given in
the mysql.user system table, with the full user DN constructed on the fly before authentication.

This account authentication string does not have + at the beginning, so it is taken as the full user DN:

CREATE USER 'baldwin'
 IDENTIFIED WITH authentication_ldap_simple
 AS 'uid=admin,ou=People,dc=example,dc=com';

The client connects with the user name specified in the account (baldwin). In this case, that name is not
used because the authentication string has no prefix and thus fully specifies the user DN.

This account authentication string does have + at the beginning, so it is taken as just part of the user DN:

CREATE USER 'accounting'
 IDENTIFIED WITH authentication_ldap_simple
 AS '+ou=People,dc=example,dc=com';

The client connects with the user name specified in the account (accounting), which in this
case is used as the uid attribute together with the authentication string to construct the user DN:
uid=accounting,ou=People,dc=example,dc=com

The accounts in the preceding examples have a nonempty user name, so the client always connects to
the MySQL server using the same name as specified in the account definition. If an account has an empty
user name, such as the default anonymous ''@'%' proxy account described in LDAP Authentication with
Proxying, clients might connect to the MySQL server with varying user names. But the principle is the
same: If the authentication string begins with +, the plugin uses the user name sent by the client together
with the authentication string to construct the user DN.

LDAP Authentication Methods

The LDAP authentication plugins use a configurable authentication method. The appropriate system
variable and available method choices are plugin-specific:

• For the authentication_ldap_simple plugin: Configure the method by setting the
authentication_ldap_simple_auth_method_name system variable. The permitted choices are
SIMPLE and AD-FOREST.

• For the authentication_ldap_sasl plugin: Configure the method by setting the
authentication_ldap_sasl_auth_method_name system variable. The only permitted choice is
SCRAM-SHA-1.

See the system variable descriptions for information about each permitted method.

6.4.1.10 No-Login Pluggable Authentication

The mysql_no_login server-side authentication plugin prevents all client connections to any account
that uses it. Use cases for this plugin include:

• Accounts that must be able to execute stored programs and views with elevated privileges without
exposing those privileges to ordinary users.

• Proxied accounts that should never permit direct login but are intended to be accessed only through
proxy accounts.

The following table shows the plugin and library file names. The file name suffix might differ on your
system. The file must be located in the directory named by the plugin_dir system variable.

1219

Authentication Plugins

Table 6.17 Plugin and Library Names for No-Login Authentication

Plugin or File Plugin or File Name

Server-side plugin mysql_no_login

Client-side plugin None

Library file mysql_no_login.so

The following sections provide installation and usage information specific to no-login pluggable
authentication:

• Installing No-Login Pluggable Authentication

• Uninstalling No-Login Pluggable Authentication

• Using No-Login Pluggable Authentication

For general information about pluggable authentication in MySQL, see Section 6.2.13, “Pluggable
Authentication”. For proxy user information, see Section 6.2.14, “Proxy Users”.

Installing No-Login Pluggable Authentication

This section describes how to install the no-login authentication plugin. For general information about
installing plugins, see Section 5.5.1, “Installing and Uninstalling Plugins”.

To be usable by the server, the plugin library file must be located in the MySQL plugin directory (the
directory named by the plugin_dir system variable). If necessary, configure the plugin directory location
by setting the value of plugin_dir at server startup.

The plugin library file base name is mysql_no_login. The file name suffix differs per platform (for
example, .so for Unix and Unix-like systems, .dll for Windows).

To load the plugin at server startup, use the --plugin-load-add option to name the library file that
contains it. With this plugin-loading method, the option must be given each time the server starts. For
example, put these lines in the server my.cnf file, adjusting the .so suffix for your platform as necessary:

[mysqld]
plugin-load-add=mysql_no_login.so

After modifying my.cnf, restart the server to cause the new settings to take effect.

Alternatively, to load the plugin at runtime, use this statement, adjusting the .so suffix for your platform as
necessary:

INSTALL PLUGIN mysql_no_login SONAME 'mysql_no_login.so';

INSTALL PLUGIN loads the plugin immediately, and also registers it in the mysql.plugins system table
to cause the server to load it for each subsequent normal startup without the need for --plugin-load-
add.

To verify plugin installation, examine the Information Schema PLUGINS table or use the SHOW PLUGINS
statement (see Section 5.5.2, “Obtaining Server Plugin Information”). For example:

mysql> SELECT PLUGIN_NAME, PLUGIN_STATUS
 FROM INFORMATION_SCHEMA.PLUGINS
 WHERE PLUGIN_NAME LIKE '%login%';
+----------------+---------------+
| PLUGIN_NAME | PLUGIN_STATUS |
+----------------+---------------+

1220

Authentication Plugins

| mysql_no_login | ACTIVE |
+----------------+---------------+

If the plugin fails to initialize, check the server error log for diagnostic messages.

To associate MySQL accounts with the no-login plugin, see Using No-Login Pluggable Authentication.

Uninstalling No-Login Pluggable Authentication

The method used to uninstall the no-login authentication plugin depends on how you installed it:

• If you installed the plugin at server startup using a --plugin-load-add option, restart the server
without the option.

• If you installed the plugin at runtime using an INSTALL PLUGIN statement, it remains installed across
server restarts. To uninstall it, use UNINSTALL PLUGIN:

UNINSTALL PLUGIN mysql_no_login;

Using No-Login Pluggable Authentication

This section describes how to use the no-login authentication plugin to prevent accounts from being used
for connecting from MySQL client programs to the server. It is assumed that the server is running with the
no-login plugin enabled, as described in Installing No-Login Pluggable Authentication.

To refer to the no-login authentication plugin in the IDENTIFIED WITH clause of a CREATE USER
statement, use the name mysql_no_login.

An account that authenticates using mysql_no_login may be used as the DEFINER for stored program
and view objects. If such an object definition also includes SQL SECURITY DEFINER, it executes with that
account's privileges. DBAs can use this behavior to provide access to confidential or sensitive data that is
exposed only through well-controlled interfaces.

The following example illustrates these principles. It defines an account that does not permit client
connections, and associates with it a view that exposes only certain columns of the mysql.user system
table:

CREATE DATABASE nologindb;
CREATE USER 'nologin'@'localhost'
 IDENTIFIED WITH mysql_no_login;
GRANT ALL ON nologindb.*
 TO 'nologin'@'localhost';
GRANT SELECT ON mysql.user
 TO 'nologin'@'localhost';
CREATE DEFINER = 'nologin'@'localhost'
 SQL SECURITY DEFINER
 VIEW nologindb.myview
 AS SELECT User, Host FROM mysql.user;

To provide protected access to the view to an ordinary user, do this:

GRANT SELECT ON nologindb.myview
 TO 'ordinaryuser'@'localhost';

Now the ordinary user can use the view to access the limited information it presents:

SELECT * FROM nologindb.myview;

Attempts by the user to access columns other than those exposed by the view result in an error, as do
attempts to select from the view by users not granted access to it.

1221

Authentication Plugins

Note

Because the nologin account cannot be used directly, the operations required to
set up objects that it uses must be performed by root or similar account that has
the privileges required to create the objects and set DEFINER values.

The mysql_no_login plugin is also useful in proxying scenarios. (For a discussion of concepts involved
in proxying, see Section 6.2.14, “Proxy Users”.) An account that authenticates using mysql_no_login
may be used as a proxied user for proxy accounts:

-- create proxied account
CREATE USER 'proxied_user'@'localhost'
 IDENTIFIED WITH mysql_no_login;
-- grant privileges to proxied account
GRANT ...
 ON ...
 TO 'proxied_user'@'localhost';
-- permit proxy_user to be a proxy account for proxied account
GRANT PROXY
 ON 'proxied_user'@'localhost'
 TO 'proxy_user'@'localhost';

This enables clients to access MySQL through the proxy account (proxy_user) but not to bypass the
proxy mechanism by connecting directly as the proxied user (proxied_user). A client who connects
using the proxy_user account has the privileges of the proxied_user account, but proxied_user
itself cannot be used to connect.

For alternative methods of protecting proxied accounts against direct use, see Preventing Direct Login to
Proxied Accounts.

6.4.1.11 Socket Peer-Credential Pluggable Authentication

The server-side auth_socket authentication plugin authenticates clients that connect from the local
host through the Unix socket file. The plugin uses the SO_PEERCRED socket option to obtain information
about the user running the client program. Thus, the plugin can be used only on systems that support the
SO_PEERCRED option, such as Linux.

The source code for this plugin can be examined as a relatively simple example demonstrating how to
write a loadable authentication plugin.

The following table shows the plugin and library file names. The file must be located in the directory named
by the plugin_dir system variable.

Table 6.18 Plugin and Library Names for Socket Peer-Credential Authentication

Plugin or File Plugin or File Name

Server-side plugin auth_socket

Client-side plugin None, see discussion

Library file auth_socket.so

The following sections provide installation and usage information specific to socket pluggable
authentication:

• Installing Socket Pluggable Authentication

• Uninstalling Socket Pluggable Authentication

• Using Socket Pluggable Authentication

1222

Authentication Plugins

For general information about pluggable authentication in MySQL, see Section 6.2.13, “Pluggable
Authentication”.

Installing Socket Pluggable Authentication

This section describes how to install the socket authentication plugin. For general information about
installing plugins, see Section 5.5.1, “Installing and Uninstalling Plugins”.

To be usable by the server, the plugin library file must be located in the MySQL plugin directory (the
directory named by the plugin_dir system variable). If necessary, configure the plugin directory location
by setting the value of plugin_dir at server startup.

To load the plugin at server startup, use the --plugin-load-add option to name the library file that
contains it. With this plugin-loading method, the option must be given each time the server starts. For
example, put these lines in the server my.cnf file:

[mysqld]
plugin-load-add=auth_socket.so

After modifying my.cnf, restart the server to cause the new settings to take effect.

Alternatively, to load the plugin at runtime, use this statement:

INSTALL PLUGIN auth_socket SONAME 'auth_socket.so';

INSTALL PLUGIN loads the plugin immediately, and also registers it in the mysql.plugins system table
to cause the server to load it for each subsequent normal startup without the need for --plugin-load-
add.

To verify plugin installation, examine the Information Schema PLUGINS table or use the SHOW PLUGINS
statement (see Section 5.5.2, “Obtaining Server Plugin Information”). For example:

mysql> SELECT PLUGIN_NAME, PLUGIN_STATUS
 FROM INFORMATION_SCHEMA.PLUGINS
 WHERE PLUGIN_NAME LIKE '%socket%';
+-------------+---------------+
| PLUGIN_NAME | PLUGIN_STATUS |
+-------------+---------------+
| auth_socket | ACTIVE |
+-------------+---------------+

If the plugin fails to initialize, check the server error log for diagnostic messages.

To associate MySQL accounts with the socket plugin, see Using Socket Pluggable Authentication.

Uninstalling Socket Pluggable Authentication

The method used to uninstall the socket authentication plugin depends on how you installed it:

• If you installed the plugin at server startup using a --plugin-load-add option, restart the server
without the option.

• If you installed the plugin at runtime using an INSTALL PLUGIN statement, it remains installed across
server restarts. To uninstall it, use UNINSTALL PLUGIN:

UNINSTALL PLUGIN auth_socket;

Using Socket Pluggable Authentication

The socket plugin checks whether the socket user name (the operating system user name) matches the
MySQL user name specified by the client program to the server. If the names do not match, the plugin

1223

Authentication Plugins

checks whether the socket user name matches the name specified in the authentication_string
column of the mysql.user system table row. If a match is found, the plugin permits the connection. The
authentication_string value can be specified using an IDENTIFIED ...AS clause with CREATE
USER or ALTER USER.

Suppose that a MySQL account is created for an operating system user named valerie who is to be
authenticated by the auth_socket plugin for connections from the local host through the socket file:

CREATE USER 'valerie'@'localhost' IDENTIFIED WITH auth_socket;

If a user on the local host with a login name of stefanie invokes mysql with the option --
user=valerie to connect through the socket file, the server uses auth_socket to authenticate the
client. The plugin determines that the --user option value (valerie) differs from the client user's name
(stephanie) and refuses the connection. If a user named valerie tries the same thing, the plugin finds
that the user name and the MySQL user name are both valerie and permits the connection. However,
the plugin refuses the connection even for valerie if the connection is made using a different protocol,
such as TCP/IP.

To permit both the valerie and stephanie operating system users to access MySQL through socket file
connections that use the account, this can be done two ways:

• Name both users at account-creation time, one following CREATE USER, and the other in the
authentication string:

CREATE USER 'valerie'@'localhost' IDENTIFIED WITH auth_socket AS 'stephanie';

• If you have already used CREATE USER to create the account for a single user, use ALTER USER to add
the second user:

CREATE USER 'valerie'@'localhost' IDENTIFIED WITH auth_socket;
ALTER USER 'valerie'@'localhost' IDENTIFIED WITH auth_socket AS 'stephanie';

To access the account, both valerie and stephanie specify --user=valerie at connect time.

6.4.1.12 Test Pluggable Authentication

MySQL includes a test plugin that checks account credentials and logs success or failure to the server
error log. This is a loadable plugin (not built in) and must be installed prior to use.

The test plugin source code is separate from the server source, unlike the built-in native plugin, so it can be
examined as a relatively simple example demonstrating how to write a loadable authentication plugin.

Note

This plugin is intended for testing and development purposes, and is not for use in
production environments or on servers that are exposed to public networks.

The following table shows the plugin and library file names. The file name suffix might differ on your
system. The file must be located in the directory named by the plugin_dir system variable.

Table 6.19 Plugin and Library Names for Test Authentication

Plugin or File Plugin or File Name

Server-side plugin test_plugin_server

Client-side plugin auth_test_plugin

Library file auth_test_plugin.so

The following sections provide installation and usage information specific to test pluggable authentication:

1224

Authentication Plugins

• Installing Test Pluggable Authentication

• Uninstalling Test Pluggable Authentication

• Using Test Pluggable Authentication

For general information about pluggable authentication in MySQL, see Section 6.2.13, “Pluggable
Authentication”.

Installing Test Pluggable Authentication

This section describes how to install the server-side test authentication plugin. For general information
about installing plugins, see Section 5.5.1, “Installing and Uninstalling Plugins”.

To be usable by the server, the plugin library file must be located in the MySQL plugin directory (the
directory named by the plugin_dir system variable). If necessary, configure the plugin directory location
by setting the value of plugin_dir at server startup.

To load the plugin at server startup, use the --plugin-load-add option to name the library file that
contains it. With this plugin-loading method, the option must be given each time the server starts. For
example, put these lines in the server my.cnf file, adjusting the .so suffix for your platform as necessary:

[mysqld]
plugin-load-add=auth_test_plugin.so

After modifying my.cnf, restart the server to cause the new settings to take effect.

Alternatively, to load the plugin at runtime, use this statement, adjusting the .so suffix for your platform as
necessary:

INSTALL PLUGIN test_plugin_server SONAME 'auth_test_plugin.so';

INSTALL PLUGIN loads the plugin immediately, and also registers it in the mysql.plugins system table
to cause the server to load it for each subsequent normal startup without the need for --plugin-load-
add.

To verify plugin installation, examine the Information Schema PLUGINS table or use the SHOW PLUGINS
statement (see Section 5.5.2, “Obtaining Server Plugin Information”). For example:

mysql> SELECT PLUGIN_NAME, PLUGIN_STATUS
 FROM INFORMATION_SCHEMA.PLUGINS
 WHERE PLUGIN_NAME LIKE '%test_plugin%';
+--------------------+---------------+
| PLUGIN_NAME | PLUGIN_STATUS |
+--------------------+---------------+
| test_plugin_server | ACTIVE |
+--------------------+---------------+

If the plugin fails to initialize, check the server error log for diagnostic messages.

To associate MySQL accounts with the test plugin, see Using Test Pluggable Authentication.

Uninstalling Test Pluggable Authentication

The method used to uninstall the test authentication plugin depends on how you installed it:

• If you installed the plugin at server startup using a --plugin-load-add option, restart the server
without the option.

• If you installed the plugin at runtime using an INSTALL PLUGIN statement, it remains installed across
server restarts. To uninstall it, use UNINSTALL PLUGIN:

1225

Authentication Plugins

UNINSTALL PLUGIN test_plugin_server;

Using Test Pluggable Authentication

To use the test authentication plugin, create an account and name that plugin in the IDENTIFIED WITH
clause:

CREATE USER 'testuser'@'localhost'
IDENTIFIED WITH test_plugin_server
BY 'testpassword';

Then provide the --user and --password options for that account when you connect to the server. For
example:

$> mysql --user=testuser --password
Enter password: testpassword

The plugin fetches the password as received from the client and compares it with the value stored in the
authentication_string column of the account row in the mysql.user system table. If the two values
match, the plugin returns the authentication_string value as the new effective user ID.

You can look in the server error log for a message indicating whether authentication succeeded (notice that
the password is reported as the “user”):

[Note] Plugin test_plugin_server reported:
'successfully authenticated user testpassword'

6.4.1.13 Pluggable Authentication System Variables

These variables are unavailable unless the appropriate server-side plugin is installed:

• authentication_ldap_sasl for system variables with names of the form
authentication_ldap_sasl_xxx

• authentication_ldap_simple for system variables with names of the form
authentication_ldap_simple_xxx

Table 6.20 Authentication Plugin System Variable Summary

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

authentication_ldap_sasl_auth_method_nameYes Yes Yes Global Yes

authentication_ldap_sasl_bind_base_dnYes Yes Yes Global Yes

authentication_ldap_sasl_bind_root_dnYes Yes Yes Global Yes

authentication_ldap_sasl_bind_root_pwdYes Yes Yes Global Yes

authentication_ldap_sasl_ca_pathYes Yes Yes Global Yes

authentication_ldap_sasl_group_search_attrYes Yes Yes Global Yes

authentication_ldap_sasl_group_search_filterYes Yes Yes Global Yes

authentication_ldap_sasl_init_pool_sizeYes Yes Yes Global Yes

authentication_ldap_sasl_log_statusYes Yes Yes Global Yes

authentication_ldap_sasl_max_pool_sizeYes Yes Yes Global Yes

authentication_ldap_sasl_server_hostYes Yes Yes Global Yes

authentication_ldap_sasl_server_portYes Yes Yes Global Yes

1226

Authentication Plugins

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

authentication_ldap_sasl_tlsYes Yes Yes Global Yes

authentication_ldap_sasl_user_search_attrYes Yes Yes Global Yes

authentication_ldap_simple_auth_method_nameYes Yes Yes Global Yes

authentication_ldap_simple_bind_base_dnYes Yes Yes Global Yes

authentication_ldap_simple_bind_root_dnYes Yes Yes Global Yes

authentication_ldap_simple_bind_root_pwdYes Yes Yes Global Yes

authentication_ldap_simple_ca_pathYes Yes Yes Global Yes

authentication_ldap_simple_group_search_attrYes Yes Yes Global Yes

authentication_ldap_simple_group_search_filterYes Yes Yes Global Yes

authentication_ldap_simple_init_pool_sizeYes Yes Yes Global Yes

authentication_ldap_simple_log_statusYes Yes Yes Global Yes

authentication_ldap_simple_max_pool_sizeYes Yes Yes Global Yes

authentication_ldap_simple_server_hostYes Yes Yes Global Yes

authentication_ldap_simple_server_portYes Yes Yes Global Yes

authentication_ldap_simple_tlsYes Yes Yes Global Yes

authentication_ldap_simple_user_search_attrYes Yes Yes Global Yes

authentication_windows_log_levelYes Yes Yes Global No

authentication_windows_use_principal_nameYes Yes Yes Global No

• authentication_ldap_sasl_auth_method_name

Command-Line Format --authentication-ldap-sasl-auth-
method-name=value

Introduced 5.7.19

System Variable authentication_ldap_sasl_auth_method_name

Scope Global

Dynamic Yes

Type String

Default Value SCRAM-SHA-1

Valid Values SCRAM-SHA-1

For SASL LDAP authentication, the authentication method name. Communication between the
authentication plugin and the LDAP server occurs according to this authentication method to ensure
password security.

These authentication method values are permitted:

• SCRAM-SHA-1: Use a SASL challenge-response mechanism.

The client-side authentication_ldap_sasl_client plugin communicates with the SASL server,
using the password to create a challenge and obtain a SASL request buffer, then passes this buffer to
the server-side authentication_ldap_sasl plugin. The client-side and server-side SASL LDAP
plugins use SASL messages for secure transmission of credentials within the LDAP protocol, to avoid
sending the cleartext password between the MySQL client and server.

1227

Authentication Plugins

• authentication_ldap_sasl_bind_base_dn

Command-Line Format --authentication-ldap-sasl-bind-base-
dn=value

Introduced 5.7.19

System Variable authentication_ldap_sasl_bind_base_dn

Scope Global

Dynamic Yes

Type String

Default Value NULL

For SASL LDAP authentication, the base distinguished name (DN). This variable can be used to limit the
scope of searches by anchoring them at a certain location (the “base”) within the search tree.

Suppose that members of one set of LDAP user entries each have this form:

uid=user_name,ou=People,dc=example,dc=com

And that members of another set of LDAP user entries each have this form:

uid=user_name,ou=Admin,dc=example,dc=com

Then searches work like this for different base DN values:

• If the base DN is ou=People,dc=example,dc=com: Searches find user entries only in the first set.

• If the base DN is ou=Admin,dc=example,dc=com: Searches find user entries only in the second
set.

• If the base DN is ou=dc=example,dc=com: Searches find user entries in the first or second set.

In general, more specific base DN values result in faster searches because they limit the search scope
more.

• authentication_ldap_sasl_bind_root_dn

Command-Line Format --authentication-ldap-sasl-bind-root-
dn=value

Introduced 5.7.19

System Variable authentication_ldap_sasl_bind_root_dn

Scope Global

Dynamic Yes

Type String

Default Value NULL

For SASL LDAP authentication, the root distinguished name (DN). This variable is used in conjunction
with authentication_ldap_sasl_bind_root_pwd as the credentials for authenticating to the

1228

Authentication Plugins

LDAP server for the purpose of performing searches. Authentication uses either one or two LDAP bind
operations, depending on whether the MySQL account names an LDAP user DN:

• If the account does not name a user DN: authentication_ldap_sasl performs
an initial LDAP binding using authentication_ldap_sasl_bind_root_dn and
authentication_ldap_sasl_bind_root_pwd. (These are both empty by default, so if they
are not set, the LDAP server must permit anonymous connections.) The resulting bind LDAP handle
is used to search for the user DN, based on the client user name. authentication_ldap_sasl
performs a second bind using the user DN and client-supplied password.

• If the account does name a user DN: The first bind operation is unnecessary in this case.
authentication_ldap_sasl performs a single bind using the user DN and client-supplied
password. This is faster than if the MySQL account does not specify an LDAP user DN.

• authentication_ldap_sasl_bind_root_pwd

Command-Line Format --authentication-ldap-sasl-bind-root-
pwd=value

Introduced 5.7.19

System Variable authentication_ldap_sasl_bind_root_pwd

Scope Global

Dynamic Yes

Type String

Default Value NULL

For SASL LDAP authentication, the password for the root distinguished name. This variable is used in
conjunction with authentication_ldap_sasl_bind_root_dn. See the description of that variable.

• authentication_ldap_sasl_ca_path

Command-Line Format --authentication-ldap-sasl-ca-
path=value

Introduced 5.7.19

System Variable authentication_ldap_sasl_ca_path

Scope Global

Dynamic Yes

Type String

Default Value NULL

For SASL LDAP authentication, the absolute path of the certificate authority file. Specify this file if it is
desired that the authentication plugin perform verification of the LDAP server certificate.

Note

In addition to setting the authentication_ldap_sasl_ca_path variable to
the file name, you must add the appropriate certificate authority certificates to the
file and enable the authentication_ldap_sasl_tls system variable. These
variables can be set to override the default OpenLDAP TLS configuration; see
LDAP Pluggable Authentication and ldap.conf

• authentication_ldap_sasl_group_search_attr

1229

Authentication Plugins

Command-Line Format --authentication-ldap-sasl-group-
search-attr=value

Introduced 5.7.19

System Variable authentication_ldap_sasl_group_search_attr

Scope Global

Dynamic Yes

Type String

Default Value cn

For SASL LDAP authentication, the name of the attribute that specifies group names in LDAP directory
entries. If authentication_ldap_sasl_group_search_attr has its default value of cn, searches
return the cn value as the group name. For example, if an LDAP entry with a uid value of user1 has a
cn attribute of mygroup, searches for user1 return mygroup as the group name.

This variable should be the empty string if you want no group or proxy authentication.

As of MySQL 5.7.21, if the group search attribute is isMemberOf, LDAP authentication directly retrieves
the user attribute isMemberOf value and assigns it as group information. If the group search attribute is
not isMemberOf, LDAP authentication searches for all groups where the user is a member. (The latter
is the default behavior.) This behavior is based on how LDAP group information can be stored two ways:
1) A group entry can have an attribute named memberUid or member with a value that is a user name;
2) A user entry can have an attribute named isMemberOf with values that are group names.

• authentication_ldap_sasl_group_search_filter

Command-Line Format --authentication-ldap-sasl-group-
search-filter=value

Introduced 5.7.21

System Variable authentication_ldap_sasl_group_search_filter

Scope Global

Dynamic Yes

Type String

Default Value (|(&(objectClass=posixGroup)
(memberUid=%s))(&(objectClass=group)
(member=%s)))

For SASL LDAP authentication, the custom group search filter.

As of MySQL 5.7.22, the search filter value can contain {UA} and {UD} notation to represent the user
name and the full user DN. For example, {UA} is replaced with a user name such as "admin", whereas
{UD} is replaced with a use full DN such as "uid=admin,ou=People,dc=example,dc=com". The
following value is the default, which supports both OpenLDAP and Active Directory:

(|(&(objectClass=posixGroup)(memberUid={UA}))
 (&(objectClass=group)(member={UD})))

Previously, if the group search attribute was isMemberOf or memberOf, it was treated as a user
attribute that has group information. However, in some cases for the user scenario, memberOf was a
simple user attribute that held no group information. For additional flexibility, an optional {GA} prefix

1230

Authentication Plugins

now can be used with the group search attribute. (Previously, it was assumed that if the group search
attribute is isMemberOf, it is treated differently. Now any group attribute with a {GA} prefix is treated as
a user attribute having group names.) For example, with a value of {GA}MemberOf, if the group value is
the DN, the first attribute value from the group DN is returned as the group name.

In MySQL 5.7.21, the search filter used %s notation, expanding it to the user name for OpenLDAP
(&(objectClass=posixGroup)(memberUid=%s)) and to the full user DN for Active Directory
(&(objectClass=group)(member=%s)).

• authentication_ldap_sasl_init_pool_size

Command-Line Format --authentication-ldap-sasl-init-pool-
size=#

Introduced 5.7.19

System Variable authentication_ldap_sasl_init_pool_size

Scope Global

Dynamic Yes

Type Integer

Default Value 10

Minimum Value 0

Maximum Value 32767

Unit connections

For SASL LDAP authentication, the initial size of the pool of connections to the LDAP server. Choose the
value for this variable based on the average number of concurrent authentication requests to the LDAP
server.

The plugin uses authentication_ldap_sasl_init_pool_size and
authentication_ldap_sasl_max_pool_size together for connection-pool management:

• When the authentication plugin initializes, it creates
authentication_ldap_sasl_init_pool_size connections, unless
authentication_ldap_sasl_max_pool_size=0 to disable pooling.

• If the plugin receives an anthentication request when there are no free connections in the current
connection pool, the plugin can create a new connection, up to the maximum connection pool size
given by authentication_ldap_sasl_max_pool_size.

• If the plugin receives a request when the pool size is already at its maximum and there are no free
connections, authentication fails.

• When the plugin unloads, it closes all pooled connections.

Changes to plugin system variable settings may have no effect on connections already in the pool. For
example, modifying the LDAP server host, port, or TLS settings does not affect existing connections.
However, if the original variable values were invalid and the connection pool could not be initialized, the
plugin attempts to reinitialize the pool for the next LDAP request. In this case, the new system variable
values are used for the reinitialization attempt.

If authentication_ldap_sasl_max_pool_size=0 to disable pooling, each LDAP connection
opened by the plugin uses the values the system variables have at that time.

1231

Authentication Plugins

• authentication_ldap_sasl_log_status

Command-Line Format --authentication-ldap-sasl-log-
status=#

Introduced 5.7.19

System Variable authentication_ldap_sasl_log_status

Scope Global

Dynamic Yes

Type Integer

Default Value 1

Minimum Value 1

Maximum Value 5

For SASL LDAP authentication, the logging level for messages written to the error log. The following
table shows the permitted level values and their meanings.

Table 6.21 Log Levels for authentication_ldap_sasl_log_status

Option Value Types of Messages Logged

1 No messages

2 Error messages

3 Error and warning messages

4 Error, warning, and information messages

5 Same as previous level plus debugging messages
from MySQL

On the client side, messages can be logged to the standard output by setting the
AUTHENTICATION_LDAP_CLIENT_LOG environment variable. The permitted and default values are the
same as for authentication_ldap_sasl_log_status.

The AUTHENTICATION_LDAP_CLIENT_LOG environment variable applies only to SASL LDAP
authentication. It has no effect for simple LDAP authentication because the client plugin in that case is
mysql_clear_password, which knows nothing about LDAP operations.

• authentication_ldap_sasl_max_pool_size

Command-Line Format --authentication-ldap-sasl-max-pool-
size=#

Introduced 5.7.19

System Variable authentication_ldap_sasl_max_pool_size

Scope Global

Dynamic Yes

Type Integer

Default Value 1000

Minimum Value 0

1232

Authentication Plugins

Maximum Value 32767

Unit connections

For SASL LDAP authentication, the maximum size of the pool of connections to the LDAP server. To
disable connection pooling, set this variable to 0.

This variable is used in conjunction with authentication_ldap_sasl_init_pool_size. See the
description of that variable.

• authentication_ldap_sasl_server_host

Command-Line Format --authentication-ldap-sasl-server-
host=host_name

Introduced 5.7.19

System Variable authentication_ldap_sasl_server_host

Scope Global

Dynamic Yes

Type String

The LDAP server host for SASL LDAP authentication; this can be a host name or IP address.

• authentication_ldap_sasl_server_port

Command-Line Format --authentication-ldap-sasl-server-
port=port_num

Introduced 5.7.19

System Variable authentication_ldap_sasl_server_port

Scope Global

Dynamic Yes

Type Integer

Default Value 389

Minimum Value 1

Maximum Value 32376

For SASL LDAP authentication, the LDAP server TCP/IP port number.

As of MySQL 5.7.25, if the LDAP port number is configured as 636 or 3269, the plugin uses LDAPS
(LDAP over SSL) instead of LDAP. (LDAPS differs from startTLS.)

• authentication_ldap_sasl_tls

Command-Line Format --authentication-ldap-sasl-tls[={OFF|
ON}]

Introduced 5.7.19

System Variable authentication_ldap_sasl_tls

Scope Global

Dynamic Yes 1233

Authentication Plugins

Type Boolean

Default Value OFF

For SASL LDAP authentication, whether connections by the plugin to the LDAP server are
secure. If this variable is enabled, the plugin uses TLS to connect securely to the LDAP server.
This variable can be set to override the default OpenLDAP TLS configuration; see LDAP
Pluggable Authentication and ldap.conf If you enable this variable, you may also wish to set the
authentication_ldap_sasl_ca_path variable.

MySQL LDAP plugins support the StartTLS method, which initializes TLS on top of a plain LDAP
connection.

As of MySQL 5.7.25, LDAPS can be used by setting the
authentication_ldap_sasl_server_port system variable.

• authentication_ldap_sasl_user_search_attr

Command-Line Format --authentication-ldap-sasl-user-
search-attr=value

Introduced 5.7.19

System Variable authentication_ldap_sasl_user_search_attr

Scope Global

Dynamic Yes

Type String

Default Value uid

For SASL LDAP authentication, the name of the attribute that specifies user names in LDAP directory
entries. If a user distinguished name is not provided, the authentication plugin searches for the name
using this attribute. For example, if the authentication_ldap_sasl_user_search_attr value is
uid, a search for the user name user1 finds entries with a uid value of user1.

• authentication_ldap_simple_auth_method_name

Command-Line Format --authentication-ldap-simple-auth-
method-name=value

Introduced 5.7.19

System Variable authentication_ldap_simple_auth_method_name

Scope Global

Dynamic Yes

Type String

Default Value SIMPLE

Valid Values SIMPLE

1234

Authentication Plugins

AD-FOREST

For simple LDAP authentication, the authentication method name. Communication between the
authentication plugin and the LDAP server occurs according to this authentication method.

Note

For all simple LDAP authentication methods, it is recommended to also set TLS
parameters to require that communication with the LDAP server take place over
secure connections.

These authentication method values are permitted:

• SIMPLE: Use simple LDAP authentication. This method uses either one or two LDAP bind operations,
depending on whether the MySQL account names an LDAP user distinguished name. See the
description of authentication_ldap_simple_bind_root_dn.

• AD-FOREST: A variation on SIMPLE, such that authentication searches all domains in the Active
Directory forest, performing an LDAP bind to each Active Directory domain until the user is found in
some domain.

• authentication_ldap_simple_bind_base_dn

Command-Line Format --authentication-ldap-simple-bind-
base-dn=value

Introduced 5.7.19

System Variable authentication_ldap_simple_bind_base_dn

Scope Global

Dynamic Yes

Type String

1235

Authentication Plugins

Default Value NULL

For simple LDAP authentication, the base distinguished name (DN). This variable can be used to limit
the scope of searches by anchoring them at a certain location (the “base”) within the search tree.

Suppose that members of one set of LDAP user entries each have this form:

uid=user_name,ou=People,dc=example,dc=com

And that members of another set of LDAP user entries each have this form:

uid=user_name,ou=Admin,dc=example,dc=com

Then searches work like this for different base DN values:

• If the base DN is ou=People,dc=example,dc=com: Searches find user entries only in the first set.

• If the base DN is ou=Admin,dc=example,dc=com: Searches find user entries only in the second
set.

• If the base DN is ou=dc=example,dc=com: Searches find user entries in the first or second set.

In general, more specific base DN values result in faster searches because they limit the search scope
more.

• authentication_ldap_simple_bind_root_dn

Command-Line Format --authentication-ldap-simple-bind-
root-dn=value

Introduced 5.7.19

System Variable authentication_ldap_simple_bind_root_dn

Scope Global

Dynamic Yes

Type String

Default Value NULL

For simple LDAP authentication, the root distinguished name (DN). This variable is used in conjunction
with authentication_ldap_simple_bind_root_pwd as the credentials for authenticating to the
LDAP server for the purpose of performing searches. Authentication uses either one or two LDAP bind
operations, depending on whether the MySQL account names an LDAP user DN:

• If the account does not name a user DN: authentication_ldap_simple performs
an initial LDAP binding using authentication_ldap_simple_bind_root_dn and
authentication_ldap_simple_bind_root_pwd. (These are both empty by default, so if they
are not set, the LDAP server must permit anonymous connections.) The resulting bind LDAP handle
is used to search for the user DN, based on the client user name. authentication_ldap_simple
performs a second bind using the user DN and client-supplied password.

• If the account does name a user DN: The first bind operation is unnecessary in this case.
authentication_ldap_simple performs a single bind using the user DN and client-supplied
password. This is faster than if the MySQL account does not specify an LDAP user DN.

1236

Authentication Plugins

• authentication_ldap_simple_bind_root_pwd

Command-Line Format --authentication-ldap-simple-bind-
root-pwd=value

Introduced 5.7.19

System Variable authentication_ldap_simple_bind_root_pwd

Scope Global

Dynamic Yes

Type String

Default Value NULL

For simple LDAP authentication, the password for the root distinguished name. This variable is used
in conjunction with authentication_ldap_simple_bind_root_dn. See the description of that
variable.

• authentication_ldap_simple_ca_path

Command-Line Format --authentication-ldap-simple-ca-
path=value

Introduced 5.7.19

System Variable authentication_ldap_simple_ca_path

Scope Global

Dynamic Yes

Type String

Default Value NULL

For simple LDAP authentication, the absolute path of the certificate authority file. Specify this file if it is
desired that the authentication plugin perform verification of the LDAP server certificate.

Note

In addition to setting the authentication_ldap_simple_ca_path variable
to the file name, you must add the appropriate certificate authority certificates to
the file and enable the authentication_ldap_simple_tls system variable.
These variables can be set to override the default OpenLDAP TLS configuration;
see LDAP Pluggable Authentication and ldap.conf

• authentication_ldap_simple_group_search_attr

Command-Line Format --authentication-ldap-simple-group-
search-attr=value

Introduced 5.7.19

System Variable authentication_ldap_simple_group_search_attr

Scope Global

Dynamic Yes

Type String

1237

Authentication Plugins

Default Value cn

For simple LDAP authentication, the name of the attribute that specifies group names in LDAP directory
entries. If authentication_ldap_simple_group_search_attr has its default value of cn,
searches return the cn value as the group name. For example, if an LDAP entry with a uid value of
user1 has a cn attribute of mygroup, searches for user1 return mygroup as the group name.

As of MySQL 5.7.21, if the group search attribute is isMemberOf, LDAP authentication directly retrieves
the user attribute isMemberOf value and assigns it as group information. If the group search attribute is
not isMemberOf, LDAP authentication searches for all groups where the user is a member. (The latter
is the default behavior.) This behavior is based on how LDAP group information can be stored two ways:
1) A group entry can have an attribute named memberUid or member with a value that is a user name;
2) A user entry can have an attribute named isMemberOf with values that are group names.

• authentication_ldap_simple_group_search_filter

Command-Line Format --authentication-ldap-simple-group-
search-filter=value

Introduced 5.7.21

System Variable authentication_ldap_simple_group_search_filter

Scope Global

Dynamic Yes

Type String

Default Value (|(&(objectClass=posixGroup)
(memberUid=%s))(&(objectClass=group)
(member=%s)))

For simple LDAP authentication, the custom group search filter.

As of MySQL 5.7.22, the search filter value can contain {UA} and {UD} notation to represent the user
name and the full user DN. For example, {UA} is replaced with a user name such as "admin", whereas
{UD} is replaced with a use full DN such as "uid=admin,ou=People,dc=example,dc=com". The
following value is the default, which supports both OpenLDAP and Active Directory:

(|(&(objectClass=posixGroup)(memberUid={UA}))
 (&(objectClass=group)(member={UD})))

Previously, if the group search attribute was isMemberOf or memberOf, it was treated as a user
attribute that has group information. However, in some cases for the user scenario, memberOf was a
simple user attribute that held no group information. For additional flexibility, an optional {GA} prefix
now can be used with the group search attribute. (Previously, it was assumed that if the group search
attribute is isMemberOf, it is treated differently. Now any group attribute with a {GA} prefix is treated as
a user attribute having group names.) For example, with a value of {GA}MemberOf, if the group value is
the DN, the first attribute value from the group DN is returned as the group name.

In MySQL 5.7.21, the search filter used %s notation, expanding it to the user name for OpenLDAP
(&(objectClass=posixGroup)(memberUid=%s)) and to the full user DN for Active Directory
(&(objectClass=group)(member=%s)).

• authentication_ldap_simple_init_pool_size

Command-Line Format --authentication-ldap-simple-init-
pool-size=#

1238

Authentication Plugins

Introduced 5.7.19

System Variable authentication_ldap_simple_init_pool_size

Scope Global

Dynamic Yes

Type Integer

Default Value 10

Minimum Value 0

Maximum Value 32767

Unit connections

For simple LDAP authentication, the initial size of the pool of connections to the LDAP server. Choose
the value for this variable based on the average number of concurrent authentication requests to the
LDAP server.

The plugin uses authentication_ldap_simple_init_pool_size and
authentication_ldap_simple_max_pool_size together for connection-pool management:

• When the authentication plugin initializes, it creates
authentication_ldap_simple_init_pool_size connections, unless
authentication_ldap_simple_max_pool_size=0 to disable pooling.

• If the plugin receives an authentication request when there are no free connections in the current
connection pool, the plugin can create a new connection, up to the maximum connection pool size
given by authentication_ldap_simple_max_pool_size.

• If the plugin receives a request when the pool size is already at its maximum and there are no free
connections, authentication fails.

• When the plugin unloads, it closes all pooled connections.

Changes to plugin system variable settings may have no effect on connections already in the pool. For
example, modifying the LDAP server host, port, or TLS settings does not affect existing connections.
However, if the original variable values were invalid and the connection pool could not be initialized, the
plugin attempts to reinitialize the pool for the next LDAP request. In this case, the new system variable
values are used for the reinitialization attempt.

If authentication_ldap_simple_max_pool_size=0 to disable pooling, each LDAP connection
opened by the plugin uses the values the system variables have at that time.

• authentication_ldap_simple_log_status

Command-Line Format --authentication-ldap-simple-log-
status=#

Introduced 5.7.19

System Variable authentication_ldap_simple_log_status

Scope Global

Dynamic Yes

Type Integer

Default Value 1

1239

Authentication Plugins

Minimum Value 1

Maximum Value 5

For simple LDAP authentication, the logging level for messages written to the error log. The following
table shows the permitted level values and their meanings.

Table 6.22 Log Levels for authentication_ldap_simple_log_status

Option Value Types of Messages Logged

1 No messages

2 Error messages

3 Error and warning messages

4 Error, warning, and information messages

5 Same as previous level plus debugging messages
from MySQL

• authentication_ldap_simple_max_pool_size

Command-Line Format --authentication-ldap-simple-max-
pool-size=#

Introduced 5.7.19

System Variable authentication_ldap_simple_max_pool_size

Scope Global

Dynamic Yes

Type Integer

Default Value 1000

Minimum Value 0

Maximum Value 32767

Unit connections

For simple LDAP authentication, the maximum size of the pool of connections to the LDAP server. To
disable connection pooling, set this variable to 0.

This variable is used in conjunction with authentication_ldap_simple_init_pool_size. See
the description of that variable.

• authentication_ldap_simple_server_host

Command-Line Format --authentication-ldap-simple-server-
host=host_name

Introduced 5.7.19

System Variable authentication_ldap_simple_server_host

Scope Global

Dynamic Yes

1240

Authentication Plugins

Type String

For simple LDAP authentication, the LDAP server host. The permitted values for this variable depend on
the authentication method:

• For authentication_ldap_simple_auth_method_name=SIMPLE: The LDAP server host can
be a host name or IP address.

• For authentication_ldap_simple_auth_method_name=AD-FOREST. The LDAP server
host can be an Active Directory domain name. For example, for an LDAP server URL of ldap://
example.mem.local:389, the domain name can be mem.local.

An Active Directory forest setup can have multiple domains (LDAP server IPs), which can be
discovered using DNS. On Unix and Unix-like systems, some additional setup may be required to
configure your DNS server with SRV records that specify the LDAP servers for the Active Directory
domain. For information about DNS SRV, see RFC 2782.

Suppose that your configuration has these properties:

• The name server that provides information about Active Directory domains has IP address
10.172.166.100.

• The LDAP servers have names ldap1.mem.local through ldap3.mem.local and IP addresses
10.172.166.101 through 10.172.166.103.

You want the LDAP servers to be discoverable using SRV searches. For example, at the command
line, a command like this should list the LDAP servers:

host -t SRV _ldap._tcp.mem.local

Perform the DNS configuration as follows:

1. Add a line to /etc/resolv.conf to specify the name server that provides information about
Active Directory domains:

nameserver 10.172.166.100

2. Configure the appropriate zone file for the name server with SRV records for the LDAP servers:

_ldap._tcp.mem.local. 86400 IN SRV 0 100 389 ldap1.mem.local.
_ldap._tcp.mem.local. 86400 IN SRV 0 100 389 ldap2.mem.local.
_ldap._tcp.mem.local. 86400 IN SRV 0 100 389 ldap3.mem.local.

3. It may also be necessary to specify the IP address for the LDAP servers in /etc/hosts if the
server host cannot be resolved. For example, add lines like this to the file:

10.172.166.101 ldap1.mem.local
10.172.166.102 ldap2.mem.local
10.172.166.103 ldap3.mem.local

With the DNS configured as just described, the server-side LDAP plugin can discover the LDAP
servers and tries to authenticate in all domains until authentication succeeds or there are no more
servers.

Windows needs no such settings as just described. Given the LDAP server host in the
authentication_ldap_simple_server_host value, the Windows LDAP library searches all
domains and attempts to authenticate.

1241

https://tools.ietf.org/html/rfc2782

Authentication Plugins

• authentication_ldap_simple_server_port

Command-Line Format --authentication-ldap-simple-server-
port=port_num

Introduced 5.7.19

System Variable authentication_ldap_simple_server_port

Scope Global

Dynamic Yes

Type Integer

Default Value 389

Minimum Value 1

Maximum Value 32376

For simple LDAP authentication, the LDAP server TCP/IP port number.

As of MySQL 5.7.25, if the LDAP port number is configured as 636 or 3269, the plugin uses LDAPS
(LDAP over SSL) instead of LDAP. (LDAPS differs from startTLS.)

• authentication_ldap_simple_tls

Command-Line Format --authentication-ldap-simple-
tls[={OFF|ON}]

Introduced 5.7.19

System Variable authentication_ldap_simple_tls

Scope Global

Dynamic Yes

Type Boolean

Default Value OFF

For simple LDAP authentication, whether connections by the plugin to the LDAP server are
secure. If this variable is enabled, the plugin uses TLS to connect securely to the LDAP server.
This variable can be set to override the default OpenLDAP TLS configuration; see LDAP
Pluggable Authentication and ldap.conf If you enable this variable, you may also wish to set the
authentication_ldap_simple_ca_path variable.

MySQL LDAP plugins support the StartTLS method, which initializes TLS on top of a plain LDAP
connection.

As of MySQL 5.7.25, LDAPS can be used by setting the
authentication_ldap_simple_server_port system variable.

• authentication_ldap_simple_user_search_attr

Command-Line Format --authentication-ldap-simple-user-
search-attr=value

Introduced 5.7.19

System Variable authentication_ldap_simple_user_search_attr

Scope Global1242

Connection Control Plugins

Dynamic Yes

Type String

Default Value uid

For simple LDAP authentication, the name of the attribute that specifies user names in LDAP directory
entries. If a user distinguished name is not provided, the authentication plugin searches for the name
using this attribute. For example, if the authentication_ldap_simple_user_search_attr value
is uid, a search for the user name user1 finds entries with a uid value of user1.

6.4.2 Connection Control Plugins

As of MySQL 5.7.17, MySQL Server includes a plugin library that enables administrators to introduce an
increasing delay in server response to connection attempts after a configurable number of consecutive
failed attempts. This capability provides a deterrent that slows down brute force attacks against MySQL
user accounts. The plugin library contains two plugins:

• CONNECTION_CONTROL checks incoming connection attempts and adds a delay to server responses as
necessary. This plugin also exposes system variables that enable its operation to be configured and a
status variable that provides rudimentary monitoring information.

The CONNECTION_CONTROL plugin uses the audit plugin interface (see Writing Audit Plugins). To collect
information, it subscribes to the MYSQL_AUDIT_CONNECTION_CLASSMASK event class, and processes
MYSQL_AUDIT_CONNECTION_CONNECT and MYSQL_AUDIT_CONNECTION_CHANGE_USER subevents
to check whether the server should introduce a delay before responding to connection attempts.

• CONNECTION_CONTROL_FAILED_LOGIN_ATTEMPTS implements an INFORMATION_SCHEMA
table that exposes more detailed monitoring information for failed connection attempts.
For more information about this table, see Section 24.6.2, “The INFORMATION_SCHEMA
CONNECTION_CONTROL_FAILED_LOGIN_ATTEMPTS Table”.

The following sections provide information about connection control plugin installation and configuration.

6.4.2.1 Connection Control Plugin Installation

This section describes how to install the connection control plugins, CONNECTION_CONTROL and
CONNECTION_CONTROL_FAILED_LOGIN_ATTEMPTS. For general information about installing plugins,
see Section 5.5.1, “Installing and Uninstalling Plugins”.

To be usable by the server, the plugin library file must be located in the MySQL plugin directory (the
directory named by the plugin_dir system variable). If necessary, configure the plugin directory location
by setting the value of plugin_dir at server startup.

The plugin library file base name is connection_control. The file name suffix differs per platform (for
example, .so for Unix and Unix-like systems, .dll for Windows).

To load the plugins at server startup, use the --plugin-load-add option to name the library file that
contains them. With this plugin-loading method, the option must be given each time the server starts. For
example, put these lines in the server my.cnf file, adjusting the .so suffix for your platform as necessary:

[mysqld]
plugin-load-add=connection_control.so

After modifying my.cnf, restart the server to cause the new settings to take effect.

Alternatively, to load the plugins at runtime, use these statements, adjusting the .so suffix for your platform
as necessary:

1243

https://dev.mysql.com/doc/extending-mysql/5.7/en/writing-audit-plugins.html

Connection Control Plugins

INSTALL PLUGIN CONNECTION_CONTROL
 SONAME 'connection_control.so';
INSTALL PLUGIN CONNECTION_CONTROL_FAILED_LOGIN_ATTEMPTS
 SONAME 'connection_control.so';

INSTALL PLUGIN loads the plugin immediately, and also registers it in the mysql.plugins system table
to cause the server to load it for each subsequent normal startup without the need for --plugin-load-
add.

To verify plugin installation, examine the Information Schema PLUGINS table or use the SHOW PLUGINS
statement (see Section 5.5.2, “Obtaining Server Plugin Information”). For example:

mysql> SELECT PLUGIN_NAME, PLUGIN_STATUS
 FROM INFORMATION_SCHEMA.PLUGINS
 WHERE PLUGIN_NAME LIKE 'connection%';
+--+---------------+
| PLUGIN_NAME | PLUGIN_STATUS |
+--+---------------+
| CONNECTION_CONTROL | ACTIVE |
| CONNECTION_CONTROL_FAILED_LOGIN_ATTEMPTS | ACTIVE |
+--+---------------+

If a plugin fails to initialize, check the server error log for diagnostic messages.

If the plugins have been previously registered with INSTALL PLUGIN or are loaded with --plugin-
load-add, you can use the --connection-control and --connection-control-failed-login-
attempts options at server startup to control plugin activation. For example, to load the plugins at startup
and prevent them from being removed at runtime, use these options:

[mysqld]
plugin-load-add=connection_control.so
connection-control=FORCE_PLUS_PERMANENT
connection-control-failed-login-attempts=FORCE_PLUS_PERMANENT

If it is desired to prevent the server from running without a given connection control plugin, use an option
value of FORCE or FORCE_PLUS_PERMANENT to force server startup to fail if the plugin does not initialize
successfully.

Note

It is possible to install one plugin without the other, but both must be
installed for full connection control capability. In particular, installing only the
CONNECTION_CONTROL_FAILED_LOGIN_ATTEMPTS plugin is of little use
because, without the CONNECTION_CONTROL plugin to provide the data that
populates the CONNECTION_CONTROL_FAILED_LOGIN_ATTEMPTS table, the table
is always empty.

• Connection Delay Configuration

• Connection Failure Assessment

• Connection Failure Monitoring

Connection Delay Configuration

To enable configuring its operation, the CONNECTION_CONTROL plugin exposes these system variables:

• connection_control_failed_connections_threshold: The number of
consecutive failed connection attempts permitted to accounts before the server adds a
delay for subsequent connection attempts. To disable failed-connection counting, set
connection_control_failed_connections_threshold to zero.

1244

Connection Control Plugins

• connection_control_min_connection_delay: The minimum delay in milliseconds for connection
failures above the threshold.

• connection_control_max_connection_delay: The maximum delay in milliseconds for connection
failures above the threshold.

If connection_control_failed_connections_threshold is nonzero, failed-connection counting is
enabled and has these properties:

• The delay is zero up through connection_control_failed_connections_threshold
consecutive failed connection attempts.

• Thereafter, the server adds an increasing delay for subsequent consecutive attempts, until a successful
connection occurs. The initial unadjusted delays begin at 1000 milliseconds (1 second) and increase by
1000 milliseconds per attempt. That is, once delay has been activated for an account, the unadjusted
delays for subsequent failed attempts are 1000 milliseconds, 2000 milliseconds, 3000 milliseconds, and
so forth.

• The actual delay experienced by a client is the unadjusted delay, adjusted to lie
within the values of the connection_control_min_connection_delay and
connection_control_max_connection_delay system variables, inclusive.

• Once delay has been activated for an account, the first successful connection thereafter by the account
also experiences a delay, but failure counting is reset for subsequent connections.

For example, with the default connection_control_failed_connections_threshold
value of 3, there is no delay for the first three consecutive failed connection attempts by an
account. The actual adjusted delays experienced by the account for the fourth and subsequent
failed connections depend on the connection_control_min_connection_delay and
connection_control_max_connection_delay values:

• If connection_control_min_connection_delay and
connection_control_max_connection_delay are 1000 and 20000, the adjusted delays are the
same as the unadjusted delays, up to a maximum of 20000 milliseconds. The fourth and subsequent
failed connections are delayed by 1000 milliseconds, 2000 milliseconds, 3000 milliseconds, and so forth.

• If connection_control_min_connection_delay and
connection_control_max_connection_delay are 1500 and 20000, the adjusted delays for the
fourth and subsequent failed connections are 1500 milliseconds, 2000 milliseconds, 3000 milliseconds,
and so forth, up to a maximum of 20000 milliseconds.

• If connection_control_min_connection_delay and
connection_control_max_connection_delay are 2000 and 3000, the adjusted delays for
the fourth and subsequent failed connections are 2000 milliseconds, 2000 milliseconds, and 3000
milliseconds, with all subsequent failed connections also delayed by 3000 milliseconds.

You can set the CONNECTION_CONTROL system variables at server startup or runtime. Suppose that you
want to permit four consecutive failed connection attempts before the server starts delaying its responses,
with a minimum delay of 2000 milliseconds. To set the relevant variables at server startup, put these lines
in the server my.cnf file:

[mysqld]
plugin-load-add=connection_control.so
connection-control-failed-connections-threshold=4
connection-control-min-connection-delay=2000

To set the variables at runtime, use these statements:

SET GLOBAL connection_control_failed_connections_threshold = 4;

1245

Connection Control Plugins

SET GLOBAL connection_control_min_connection_delay = 1500;

SET GLOBAL sets the value for the running MySQL instance. To make the change permanent, add a line
in your my.cnf file, as shown previously.

The connection_control_min_connection_delay and
connection_control_max_connection_delay system variables both have minimum and maximum
values of 1000 and 2147483647. In addition, the permitted range of values of each variable also depends
on the current value of the other:

• connection_control_min_connection_delay cannot be set greater than the current value of
connection_control_max_connection_delay.

• connection_control_max_connection_delay cannot be set less than the current value of
connection_control_min_connection_delay.

Thus, to make the changes required for some configurations, you might need to set the
variables in a specific order. Suppose that the current minimum and maximum delays
are 1000 and 2000, and that you want to set them to 3000 and 5000. You cannot first
set connection_control_min_connection_delay to 3000 because that is greater
than the current connection_control_max_connection_delay value of 2000.
Instead, set connection_control_max_connection_delay to 5000, then set
connection_control_min_connection_delay to 3000.

Connection Failure Assessment

When the CONNECTION_CONTROL plugin is installed, it checks connection attempts and tracks whether
they fail or succeed. For this purpose, a failed connection attempt is one for which the client user and host
match a known MySQL account but the provided credentials are incorrect, or do not match any known
account.

Failed-connection counting is based on the user/host combination for each connection attempt.
Determination of the applicable user name and host name takes proxying into account and occurs as
follows:

• If the client user proxies another user, the account for failed-connection counting is the
proxying user, not the proxied user. For example, if external_user@example.com
proxies proxy_user@example.com, connection counting uses the proxying user,
external_user@example.com, rather than the proxied user, proxy_user@example.com.
Both external_user@example.com and proxy_user@example.com must have valid entries
in the mysql.user system table and a proxy relationship between them must be defined in the
mysql.proxies_priv system table (see Section 6.2.14, “Proxy Users”).

• If the client user does not proxy another user, but does match a mysql.user entry, counting uses
the CURRENT_USER() value corresponding to that entry. For example, if a user user1 connecting
from a host host1.example.com matches a user1@host1.example.com entry, counting uses
user1@host1.example.com. If the user matches a user1@%.example.com, user1@%.com,
or user1@% entry instead, counting uses user1@%.example.com, user1@%.com, or user1@%,
respectively.

For the cases just described, the connection attempt matches some mysql.user entry, and whether the
request succeeds or fails depends on whether the client provides the correct authentication credentials.
For example, if the client presents an incorrect password, the connection attempt fails.

If the connection attempt matches no mysql.user entry, the attempt fails. In this case, no
CURRENT_USER() value is available and connection-failure counting uses the user name provided
by the client and the client host as determined by the server. For example, if a client attempts to
connect as user user2 from host host2.example.com, the user name part is available in the client

1246

Connection Control Plugins

request and the server determines the host information. The user/host combination used for counting is
user2@host2.example.com.

Note

The server maintains information about which client hosts can possibly connect to
the server (essentially the union of host values for mysql.user entries). If a client
attempts to connect from any other host, the server rejects the attempt at an early
stage of connection setup:

ERROR 1130 (HY000): Host 'host_name' is not
allowed to connect to this MySQL server

Because this type of rejection occurs so early, CONNECTION_CONTROL does not
see it, and does not count it.

Connection Failure Monitoring

To monitor failed connections, use these information sources:

• The Connection_control_delay_generated status variable indicates the number
of times the server added a delay to its response to a failed connection attempt. This
does not count attempts that occur before reaching the threshold defined by the
connection_control_failed_connections_threshold system variable.

• The INFORMATION_SCHEMA CONNECTION_CONTROL_FAILED_LOGIN_ATTEMPTS table provides
information about the current number of consecutive failed connection attempts per account (user/host
combination). This counts all failed attempts, regardless of whether they were delayed.

Assigning a value to connection_control_failed_connections_threshold at runtime has these
effects:

• All accumulated failed-connection counters are reset to zero.

• The Connection_control_delay_generated status variable is reset to zero.

• The CONNECTION_CONTROL_FAILED_LOGIN_ATTEMPTS table becomes empty.

6.4.2.2 Connection Control Plugin System and Status Variables

This section describes the system and status variables that the CONNECTION_CONTROL plugin provides to
enable its operation to be configured and monitored.

• Connection Control Plugin System Variables

• Connection Control Plugin Status Variables

Connection Control Plugin System Variables

If the CONNECTION_CONTROL plugin is installed, it exposes these system variables:

• connection_control_failed_connections_threshold

Command-Line Format --connection-control-failed-
connections-threshold=#

Introduced 5.7.17

System Variable connection_control_failed_connections_threshold

Scope Global

1247

Connection Control Plugins

Dynamic Yes

Type Integer

Default Value 3

Minimum Value 0

Maximum Value 2147483647

The number of consecutive failed connection attempts permitted to accounts before the server adds a
delay for subsequent connection attempts:

• If the variable has a nonzero value N, the server adds a delay beginning with consecutive failed
attempt N+1. If an account has reached the point where connection responses are delayed, a delay
also occurs for the next subsequent successful connection.

• Setting this variable to zero disables failed-connection counting. In this case, the server never adds
delays.

For information about how connection_control_failed_connections_threshold interacts with
other connection control system and status variables, see Section 6.4.2.1, “Connection Control Plugin
Installation”.

• connection_control_max_connection_delay

Command-Line Format --connection-control-max-connection-
delay=#

Introduced 5.7.17

System Variable connection_control_max_connection_delay

Scope Global

Dynamic Yes

Type Integer

Default Value 2147483647

Minimum Value 1000

Maximum Value 2147483647

Unit milliseconds

The maximum delay in milliseconds for server response to failed connection attempts, if
connection_control_failed_connections_threshold is greater than zero.

For information about how connection_control_max_connection_delay interacts with other
connection control system and status variables, see Section 6.4.2.1, “Connection Control Plugin
Installation”.

• connection_control_min_connection_delay

Command-Line Format --connection-control-min-connection-
delay=#

Introduced 5.7.17

System Variable connection_control_min_connection_delay

Scope Global

1248

The Password Validation Plugin

Dynamic Yes

Type Integer

Default Value 1000

Minimum Value 1000

Maximum Value 2147483647

Unit milliseconds

The minimum delay in milliseconds for server response to failed connection attempts, if
connection_control_failed_connections_threshold is greater than zero.

For information about how connection_control_min_connection_delay interacts with other
connection control system and status variables, see Section 6.4.2.1, “Connection Control Plugin
Installation”.

Connection Control Plugin Status Variables

If the CONNECTION_CONTROL plugin is installed, it exposes this status variable:

• Connection_control_delay_generated

The number of times the server added a delay to its response to a failed connection attempt.
This does not count attempts that occur before reaching the threshold defined by the
connection_control_failed_connections_threshold system variable.

This variable provides a simple counter. For more detailed connection
control monitoring information, examine the INFORMATION_SCHEMA
CONNECTION_CONTROL_FAILED_LOGIN_ATTEMPTS table; see Section 24.6.2, “The
INFORMATION_SCHEMA CONNECTION_CONTROL_FAILED_LOGIN_ATTEMPTS Table”.

Assigning a value to connection_control_failed_connections_threshold at runtime resets
Connection_control_delay_generated to zero.

This variable was added in MySQL 5.7.17.

6.4.3 The Password Validation Plugin

The validate_password plugin serves to improve security by requiring account passwords and enabling
strength testing of potential passwords. This plugin exposes a set of system variables that enable you to
configure password policy.

The validate_password plugin implements these capabilities:

• For SQL statements that assign a password supplied as a cleartext value, validate_password
checks the password against the current password policy and rejects the password if it is weak (the
statement returns an ER_NOT_VALID_PASSWORD error). This applies to the ALTER USER, CREATE
USER, GRANT, and SET PASSWORD statements, and passwords given as arguments to the PASSWORD()
function.

• For CREATE USER statements, validate_password requires that a password be given, and that
it satisfies the password policy. This is true even if an account is locked initially because otherwise
unlocking the account later would cause it to become accessible without a password that satisfies the
policy.

1249

https://dev.mysql.com/doc/mysql-errors/5.7/en/server-error-reference.html#error_er_not_valid_password

The Password Validation Plugin

• validate_password implements a VALIDATE_PASSWORD_STRENGTH() SQL function that assesses
the strength of potential passwords. This function takes a password argument and returns an integer
from 0 (weak) to 100 (strong).

Note

For statements that assign, modify, or generate account passwords (ALTER USER,
CREATE USER, GRANT, and SET PASSWORD; statements that use PASSWORD(),
the validate_password capabilities described here apply only to accounts
that use an authentication plugin that stores credentials internally to MySQL. For
accounts that use plugins that perform authentication against a credentials system
external to MySQL, password management must be handled externally against
that system as well. For more information about internal credentials storage, see
Section 6.2.11, “Password Management”.

The preceding restriction does not apply to use of the
VALIDATE_PASSWORD_STRENGTH() function because it does not affect accounts
directly.

Examples:

• validate_password checks the cleartext password in the following statement. Under the default
password policy, which requires passwords to be at least 8 characters long, the password is weak and
the statement produces an error:

mysql> ALTER USER USER() IDENTIFIED BY 'abc';
ERROR 1819 (HY000): Your password does not satisfy the current
policy requirements

• Passwords specified as hashed values are not checked because the original password value is not
available for checking:

mysql> ALTER USER 'jeffrey'@'localhost'
 IDENTIFIED WITH mysql_native_password
 AS '*0D3CED9BEC10A777AEC23CCC353A8C08A633045E';
Query OK, 0 rows affected (0.01 sec)

• This account-creation statement fails, even though the account is locked initially, because it does not
include a password that satisfies the current password policy:

mysql> CREATE USER 'juanita'@'localhost' ACCOUNT LOCK;
ERROR 1819 (HY000): Your password does not satisfy the current
policy requirements

• To check a password, use the VALIDATE_PASSWORD_STRENGTH() function:

mysql> SELECT VALIDATE_PASSWORD_STRENGTH('weak');
+------------------------------------+
| VALIDATE_PASSWORD_STRENGTH('weak') |
+------------------------------------+
| 25 |
+------------------------------------+
mysql> SELECT VALIDATE_PASSWORD_STRENGTH('lessweak$_@123');
+--+
| VALIDATE_PASSWORD_STRENGTH('lessweak$_@123') |
+--+
| 50 |
+--+
mysql> SELECT VALIDATE_PASSWORD_STRENGTH('N0Tweak$_@123!');
+--+
| VALIDATE_PASSWORD_STRENGTH('N0Tweak$_@123!') |
+--+

1250

The Password Validation Plugin

| 100 |
+--+

To configure password checking, modify the system variables having names of the form
validate_password_xxx; these are the parameters that control password policy. See Section 6.4.3.2,
“Password Validation Plugin Options and Variables”.

If validate_password is not installed, the validate_password_xxx system variables are not
available, passwords in statements are not checked, and the VALIDATE_PASSWORD_STRENGTH()
function always returns 0. For example, without the plugin installed, accounts can be assigned passwords
shorter than 8 characters, or no password at all.

Assuming that validate_password is installed, it implements three levels of password
checking: LOW, MEDIUM, and STRONG. The default is MEDIUM; to change this, modify the value of
validate_password_policy. The policies implement increasingly strict password tests. The following
descriptions refer to default parameter values, which can be modified by changing the appropriate system
variables.

• LOW policy tests password length only. Passwords must be at least 8 characters long. To change this
length, modify validate_password_length.

• MEDIUM policy adds the conditions that passwords must contain at least 1 numeric
character, 1 lowercase character, 1 uppercase character, and 1 special (nonalphanumeric)
character. To change these values, modify validate_password_number_count,
validate_password_mixed_case_count, and validate_password_special_char_count.

• STRONG policy adds the condition that password substrings of length 4 or longer must not match
words in the dictionary file, if one has been specified. To specify the dictionary file, modify
validate_password_dictionary_file.

In addition, as of MySQL 5.7.15, validate_password supports the capability of rejecting
passwords that match the user name part of the effective user account for the current session, either
forward or in reverse. To provide control over this capability, validate_password exposes a
validate_password_check_user_name system variable, which is enabled by default.

6.4.3.1 Password Validation Plugin Installation

This section describes how to install the validate_password password-validation plugin. For general
information about installing plugins, see Section 5.5.1, “Installing and Uninstalling Plugins”.

Note

If you installed MySQL 5.7 using the MySQL Yum repository, MySQL SLES
Repository, or RPM packages provided by Oracle, validate_password is
enabled by default after you start your MySQL Server for the first time.

To be usable by the server, the plugin library file must be located in the MySQL plugin directory (the
directory named by the plugin_dir system variable). If necessary, configure the plugin directory location
by setting the value of plugin_dir at server startup.

The plugin library file base name is validate_password. The file name suffix differs per platform (for
example, .so for Unix and Unix-like systems, .dll for Windows).

To load the plugin at server startup, use the --plugin-load-add option to name the library file that
contains it. With this plugin-loading method, the option must be given each time the server starts. For
example, put these lines in the server my.cnf file, adjusting the .so suffix for your platform as necessary:

[mysqld]
plugin-load-add=validate_password.so

1251

https://dev.mysql.com/downloads/repo/yum/
https://dev.mysql.com/downloads/repo/suse/
https://dev.mysql.com/downloads/repo/suse/

The Password Validation Plugin

After modifying my.cnf, restart the server to cause the new settings to take effect.

Alternatively, to load the plugin at runtime, use this statement, adjusting the .so suffix for your platform as
necessary:

INSTALL PLUGIN validate_password SONAME 'validate_password.so';

INSTALL PLUGIN loads the plugin, and also registers it in the mysql.plugins system table to cause the
plugin to be loaded for each subsequent normal server startup without the need for --plugin-load-add.

To verify plugin installation, examine the Information Schema PLUGINS table or use the SHOW PLUGINS
statement (see Section 5.5.2, “Obtaining Server Plugin Information”). For example:

mysql> SELECT PLUGIN_NAME, PLUGIN_STATUS
 FROM INFORMATION_SCHEMA.PLUGINS
 WHERE PLUGIN_NAME LIKE 'validate%';
+-------------------+---------------+
| PLUGIN_NAME | PLUGIN_STATUS |
+-------------------+---------------+
| validate_password | ACTIVE |
+-------------------+---------------+

If the plugin fails to initialize, check the server error log for diagnostic messages.

If the plugin has been previously registered with INSTALL PLUGIN or is loaded with --plugin-load-
add, you can use the --validate-password option at server startup to control plugin activation. For
example, to load the plugin at startup and prevent it from being removed at runtime, use these options:

[mysqld]
plugin-load-add=validate_password.so
validate-password=FORCE_PLUS_PERMANENT

If it is desired to prevent the server from running without the password-validation plugin, use --
validate-password with a value of FORCE or FORCE_PLUS_PERMANENT to force server startup to fail if
the plugin does not initialize successfully.

6.4.3.2 Password Validation Plugin Options and Variables

This section describes the options, system variables, and status variables that validate_password
provides to enable its operation to be configured and monitored.

• Password Validation Plugin Options

• Password Validation Plugin System Variables

• Password Validation Plugin Status Variables

Password Validation Plugin Options

To control activation of the validate_password plugin, use this option:

• --validate-password[=value]

Command-Line Format --validate-password[=value]

Type Enumeration

Default Value ON

Valid Values ON

OFF

1252

The Password Validation Plugin

FORCE

FORCE_PLUS_PERMANENT

This option controls how the server loads the validate_password plugin at startup. The value
should be one of those available for plugin-loading options, as described in Section 5.5.1, “Installing
and Uninstalling Plugins”. For example, --validate-password=FORCE_PLUS_PERMANENT tells the
server to load the plugin at startup and prevents it from being removed while the server is running.

This option is available only if the validate_password plugin has been previously registered with
INSTALL PLUGIN or is loaded with --plugin-load-add. See Section 6.4.3.1, “Password Validation
Plugin Installation”.

Password Validation Plugin System Variables

If the validate_password plugin is enabled, it exposes several system variables that enable
configuration of password checking:

mysql> SHOW VARIABLES LIKE 'validate_password%';
+--------------------------------------+--------+
| Variable_name | Value |
+--------------------------------------+--------+
validate_password_check_user_name	OFF
validate_password_dictionary_file	
validate_password_length	8
validate_password_mixed_case_count	1
validate_password_number_count	1
validate_password_policy	MEDIUM
validate_password_special_char_count	1
+--------------------------------------+--------+

To change how passwords are checked, you can set these system variables at server startup or at
runtime. The following list describes the meaning of each variable.

• validate_password_check_user_name

Command-Line Format --validate-password-check-user-
name[={OFF|ON}]

Introduced 5.7.15

System Variable validate_password_check_user_name

Scope Global

Dynamic Yes

Type Boolean

Default Value OFF

Whether validate_password compares passwords to the user name part of the effective user
account for the current session and rejects them if they match. This variable is unavailable unless
validate_password is installed.

By default, validate_password_check_user_name is disabled. This variable controls user name
matching independent of the value of validate_password_policy.

When validate_password_check_user_name is enabled, it has these effects:

1253

The Password Validation Plugin

• Checking occurs in all contexts for which validate_password is invoked, which includes use of
statements such as ALTER USER or SET PASSWORD to change the current user's password, and
invocation of functions such as PASSWORD() and VALIDATE_PASSWORD_STRENGTH().

• The user names used for comparison are taken from the values of the USER() and
CURRENT_USER() functions for the current session. An implication is that a user who has
sufficient privileges to set another user's password can set the password to that user's name, and
cannot set that user' password to the name of the user executing the statement. For example,
'root'@'localhost' can set the password for 'jeffrey'@'localhost' to 'jeffrey', but
cannot set the password to 'root.

• Only the user name part of the USER() and CURRENT_USER() function values is used, not the host
name part. If a user name is empty, no comparison occurs.

• If a password is the same as the user name or its reverse, a match occurs and the password is
rejected.

• User-name matching is case-sensitive. The password and user name values are compared as binary
strings on a byte-by-byte basis.

• If a password matches the user name, VALIDATE_PASSWORD_STRENGTH() returns 0 regardless of
how other validate_password system variables are set.

• validate_password_dictionary_file

Command-Line Format --validate-password-dictionary-
file=file_name

System Variable validate_password_dictionary_file

Scope Global

Dynamic Yes

Type File name

The path name of the dictionary file that validate_password uses for checking passwords. This
variable is unavailable unless validate_password is installed.

By default, this variable has an empty value and dictionary checks are not performed. For dictionary
checks to occur, the variable value must be nonempty. If the file is named as a relative path, it is
interpreted relative to the server data directory. File contents should be lowercase, one word per line.
Contents are treated as having a character set of utf8. The maximum permitted file size is 1MB.

For the dictionary file to be used during password checking, the password policy must be set to 2
(STRONG); see the description of the validate_password_policy system variable. Assuming that is
true, each substring of the password of length 4 up to 100 is compared to the words in the dictionary file.
Any match causes the password to be rejected. Comparisons are not case-sensitive.

For VALIDATE_PASSWORD_STRENGTH(), the password is checked against all policies,
including STRONG, so the strength assessment includes the dictionary check regardless of the
validate_password_policy value.

validate_password_dictionary_file can be set at runtime and assigning a value causes the
named file to be read without a server restart.

1254

The Password Validation Plugin

• validate_password_length

Command-Line Format --validate-password-length=#

System Variable validate_password_length

Scope Global

Dynamic Yes

Type Integer

Default Value 8

Minimum Value 0

The minimum number of characters that validate_password requires passwords to have. This
variable is unavailable unless validate_password is installed.

The validate_password_length minimum value is a function of several other related system
variables. The value cannot be set less than the value of this expression:

validate_password_number_count
+ validate_password_special_char_count
+ (2 * validate_password_mixed_case_count)

If validate_password adjusts the value of validate_password_length due to the preceding
constraint, it writes a message to the error log.

• validate_password_mixed_case_count

Command-Line Format --validate-password-mixed-case-
count=#

System Variable validate_password_mixed_case_count

Scope Global

Dynamic Yes

Type Integer

Default Value 1

Minimum Value 0

The minimum number of lowercase and uppercase characters that validate_password requires
passwords to have if the password policy is MEDIUM or stronger. This variable is unavailable unless
validate_password is installed.

For a given validate_password_mixed_case_count value, the password must have that many
lowercase characters, and that many uppercase characters.

• validate_password_number_count

Command-Line Format --validate-password-number-count=#

System Variable validate_password_number_count

Scope Global

Dynamic Yes

Type Integer

Default Value 1

1255

The Password Validation Plugin

Minimum Value 0

The minimum number of numeric (digit) characters that validate_password requires passwords
to have if the password policy is MEDIUM or stronger. This variable is unavailable unless
validate_password is installed.

• validate_password_policy

Command-Line Format --validate-password-policy=value

System Variable validate_password_policy

Scope Global

Dynamic Yes

Type Enumeration

Default Value 1

Valid Values 0

1

2

The password policy enforced by validate_password. This variable is unavailable unless
validate_password is installed.

validate_password_policy affects how validate_password uses its other policy-setting system
variables, except for checking passwords against user names, which is controlled independently by
validate_password_check_user_name.

The validate_password_policy value can be specified using numeric values 0, 1, 2,
or the corresponding symbolic values LOW, MEDIUM, STRONG. The following table describes
the tests performed for each policy. For the length test, the required length is the value of the
validate_password_length system variable. Similarly, the required values for the other tests are
given by other validate_password_xxx variables.

Policy Tests Performed

0 or LOW Length

1 or MEDIUM Length; numeric, lowercase/uppercase, and
special characters

2 or STRONG Length; numeric, lowercase/uppercase, and
special characters; dictionary file

• validate_password_special_char_count

Command-Line Format --validate-password-special-char-
count=#

System Variable validate_password_special_char_count

Scope Global

Dynamic Yes

Type Integer

Default Value 11256

The MySQL Keyring

Minimum Value 0

The minimum number of nonalphanumeric characters that validate_password requires
passwords to have if the password policy is MEDIUM or stronger. This variable is unavailable unless
validate_password is installed.

Password Validation Plugin Status Variables

If the validate_password plugin is enabled, it exposes status variables that provide operational
information:

mysql> SHOW STATUS LIKE 'validate_password%';
+---+---------------------+
| Variable_name | Value |
+---+---------------------+
| validate_password.dictionary_file_last_parsed | 2019-10-03 08:33:49 |
| validate_password_dictionary_file_words_count | 1902 |
+---+---------------------+

The following list describes the meaning of each status variable.

• validate_password_dictionary_file_last_parsed

When the dictionary file was last parsed.

• validate_password_dictionary_file_words_count

The number of words read from the dictionary file.

6.4.4 The MySQL Keyring

MySQL Server supports a keyring that enables internal server components and plugins to securely store
sensitive information for later retrieval. The implementation comprises these elements:

• Keyring plugins that manage a backing store or communicate with a storage back end. These keyring
plugins are available:

• keyring_file: Stores keyring data in a file local to the server host. Available in MySQL Community
Edition and MySQL Enterprise Edition distributions as of MySQL 5.7.11. See Section 6.4.4.2, “Using
the keyring_file File-Based Keyring Plugin”.

• keyring_encrypted_file: Stores keyring data in an encrypted, password-protected file local
to the server host. Available in MySQL Enterprise Edition distributions as of MySQL 5.7.21. See
Section 6.4.4.3, “Using the keyring_encrypted_file Encrypted File-Based Keyring Plugin”.

• keyring_okv: A KMIP 1.1 plugin for use with KMIP-compatible back end keyring storage products
such as Oracle Key Vault and Gemalto SafeNet KeySecure Appliance. Available in MySQL Enterprise
Edition distributions as of MySQL 5.7.12. See Section 6.4.4.4, “Using the keyring_okv KMIP Plugin”.

• keyring_aws: Communicates with the Amazon Web Services Key Management Service for key
generation and uses a local file for key storage. Available in MySQL Enterprise Edition distributions
as of MySQL 5.7.19. See Section 6.4.4.5, “Using the keyring_aws Amazon Web Services Keyring
Plugin”.

• A keyring service interface for keyring key management (MySQL 5.7.13 and higher). This service is
accessible at two levels:

• SQL interface: In SQL statements, call the functions described in Section 6.4.4.8, “General-Purpose
Keyring Key-Management Functions”.

1257

The MySQL Keyring

• C interface: In C-language code, call the keyring service functions described in Section 5.5.6.2, “The
Keyring Service”.

• A key migration capability. MySQL 5.7.21 and higher supports migration of keys between keystores,
enabling DBAs to switch a MySQL installation from one keystore to another. See Section 6.4.4.7,
“Migrating Keys Between Keyring Keystores”.

Warning

For encryption key management, the keyring_file and
keyring_encrypted_file plugins are not intended as a regulatory compliance
solution. Security standards such as PCI, FIPS, and others require use of key
management systems to secure, manage, and protect encryption keys in key vaults
or hardware security modules (HSMs).

Within MySQL, keyring service consumers include:

• The InnoDB storage engine uses the keyring to store its key for tablespace encryption. See
Section 14.14, “InnoDB Data-at-Rest Encryption”.

• MySQL Enterprise Audit uses the keyring to store the audit log file encryption password. See Encrypting
Audit Log Files.

For general keyring installation instructions, see Section 6.4.4.1, “Keyring Plugin Installation”. For
installation and configuration information specific to a given keyring plugin, see the section describing that
plugin.

For information about using the keyring functions, see Section 6.4.4.8, “General-Purpose Keyring Key-
Management Functions”.

Keyring plugins and functions access a keyring service that provides the interface to the keyring. For
information about accessing this service and writing keyring plugins, see Section 5.5.6.2, “The Keyring
Service”, and Writing Keyring Plugins.

6.4.4.1 Keyring Plugin Installation

Keyring service consumers require that a keyring plugin be installed. This section describes how to
install the keyring plugin of your choosing. Also, for general information about installing plugins, see
Section 5.5.1, “Installing and Uninstalling Plugins”.

If you intend to use keyring functions in conjunction with the chosen keyring plugin, install the functions
after installing that plugin, using the instructions in Section 6.4.4.8, “General-Purpose Keyring Key-
Management Functions”.

Note

Only one keyring plugin should be enabled at a time. Enabling multiple keyring
plugins is unsupported and results may not be as anticipated.

MySQL provides these keyring plugin choices:

• keyring_file: Stores keyring data in a file local to the server host. Available in MySQL Community
Edition and MySQL Enterprise Edition distributions.

• keyring_encrypted_file: Stores keyring data in an encrypted, password-protected file local to the
server host. Available in MySQL Enterprise Edition distributions.

1258

https://dev.mysql.com/doc/extending-mysql/5.7/en/writing-keyring-plugins.html

The MySQL Keyring

• keyring_okv: A KMIP 1.1 plugin for use with KMIP-compatible back end keyring storage products such
as Oracle Key Vault and Gemalto SafeNet KeySecure Appliance. Available in MySQL Enterprise Edition
distributions.

• keyring_aws: Communicates with the Amazon Web Services Key Management Service as a back
end for key generation and uses a local file for key storage. Available in MySQL Enterprise Edition
distributions.

To be usable by the server, the plugin library file must be located in the MySQL plugin directory (the
directory named by the plugin_dir system variable). If necessary, configure the plugin directory location
by setting the value of plugin_dir at server startup.

The keyring plugin must be loaded early during the server startup sequence so that components can
access it as necessary during their own initialization. For example, the InnoDB storage engine uses the
keyring for tablespace encryption, so the keyring plugin must be loaded and available prior to InnoDB
initialization.

Installation for each keyring plugin is similar. The following instructions describe how to install
keyring_file. To use a different keyring plugin, substitute its name for keyring_file.

The keyring_file plugin library file base name is keyring_file. The file name suffix differs per
platform (for example, .so for Unix and Unix-like systems, .dll for Windows).

To load the plugin, use the --early-plugin-load option to name the plugin library file that contains it.
For example, on platforms where the plugin library file suffix is .so, use these lines in the server my.cnf
file, adjusting the .so suffix for your platform as necessary:

[mysqld]
early-plugin-load=keyring_file.so

Important

In MySQL 5.7.11, the default --early-plugin-load value is the name of the
keyring_file plugin library file, causing that plugin to be loaded by default. In
MySQL 5.7.12 and higher, the default --early-plugin-load value is empty; to
load the keyring_file plugin, you must explicitly specify the option with a value
naming the keyring_file plugin library file.

InnoDB tablespace encryption requires that the keyring plugin to be used be loaded
prior to InnoDB initialization, so this change of default --early-plugin-load
value introduces an incompatibility for upgrades from 5.7.11 to 5.7.12 or higher.
Administrators who have encrypted InnoDB tablespaces must take explicit action to
ensure continued loading of the keyring plugin: Start the server with an --early-
plugin-load option that names the plugin library file.

Before starting the server, check the notes for your chosen keyring plugin for configuration instructions
specific to that plugin:

• keyring_file: Section 6.4.4.2, “Using the keyring_file File-Based Keyring Plugin”.

• keyring_encrypted_file: Section 6.4.4.3, “Using the keyring_encrypted_file Encrypted File-Based
Keyring Plugin”.

• keyring_okv: Section 6.4.4.4, “Using the keyring_okv KMIP Plugin”.

• keyring_aws: Section 6.4.4.5, “Using the keyring_aws Amazon Web Services Keyring Plugin”

1259

The MySQL Keyring

After performing any plugin-specific configuration, start the server. Verify plugin installation by examining
the Information Schema PLUGINS table or use the SHOW PLUGINS statement (see Section 5.5.2,
“Obtaining Server Plugin Information”). For example:

mysql> SELECT PLUGIN_NAME, PLUGIN_STATUS
 FROM INFORMATION_SCHEMA.PLUGINS
 WHERE PLUGIN_NAME LIKE 'keyring%';
+--------------+---------------+
| PLUGIN_NAME | PLUGIN_STATUS |
+--------------+---------------+
| keyring_file | ACTIVE |
+--------------+---------------+

If the plugin fails to initialize, check the server error log for diagnostic messages.

Plugins can be loaded by methods other than --early-plugin-load, such as the --plugin-load or
--plugin-load-add option or the INSTALL PLUGIN statement. However, keyring plugins loaded using
those methods may be available too late in the server startup sequence for certain components that use
the keyring, such as InnoDB:

• Plugin loading using --plugin-load or --plugin-load-add occurs after InnoDB initialization.

• Plugins installed using INSTALL PLUGIN are registered in the mysql.plugin system table and loaded
automatically for subsequent server restarts. However, because mysql.plugin is an InnoDB table,
any plugins named in it can be loaded during startup only after InnoDB initialization.

If no keyring plugin is available when a component tries to access the keyring service, the service cannot
be used by that component. As a result, the component may fail to initialize or may initialize with limited
functionality. For example, if InnoDB finds that there are encrypted tablespaces when it initializes, it
attempts to access the keyring. If the keyring is unavailable, InnoDB can access only unencrypted
tablespaces. To ensure that InnoDB can access encrypted tablespaces as well, use --early-plugin-
load to load the keyring plugin.

6.4.4.2 Using the keyring_file File-Based Keyring Plugin

The keyring_file keyring plugin stores keyring data in a file local to the server host.

Warning

For encryption key management, the keyring_file plugin is not intended as a
regulatory compliance solution. Security standards such as PCI, FIPS, and others
require use of key management systems to secure, manage, and protect encryption
keys in key vaults or hardware security modules (HSMs).

To install keyring_file, use the general instructions found in Section 6.4.4.1, “Keyring Plugin
Installation”, together with the configuration information specific to keyring_file found here.

To be usable during the server startup process, keyring_file must be loaded using the --early-
plugin-load option. The keyring_file_data system variable optionally configures the location of
the file used by the keyring_file plugin for data storage. The default value is platform specific. To
configure the file location explicitly, set the variable value at startup. For example, use these lines in the
server my.cnf file, adjusting the .so suffix and file location for your platform as necessary:

[mysqld]
early-plugin-load=keyring_file.so
keyring_file_data=/usr/local/mysql/mysql-keyring/keyring

If keyring_file_data is set to a new location, the keyring plugin creates a new, empty file containing no
keys; this means that any existing encrypted tables can no longer be accessed.

1260

The MySQL Keyring

Keyring operations are transactional: The keyring_file plugin uses a backup file during write operations
to ensure that it can roll back to the original file if an operation fails. The backup file has the same name as
the value of the keyring_file_data system variable with a suffix of .backup.

For additional information about keyring_file_data, see Section 6.4.4.12, “Keyring System Variables”.

As of MySQL 5.7.17, to ensure that keys are flushed only when the correct keyring storage file exists,
keyring_file stores a SHA-256 checksum of the keyring in the file. Before updating the file, the plugin
verifies that it contains the expected checksum.

The keyring_file plugin supports the functions that comprise the standard MySQL Keyring service
interface. Keyring operations performed by those functions are accessible at two levels:

• SQL interface: In SQL statements, call the functions described in Section 6.4.4.8, “General-Purpose
Keyring Key-Management Functions”.

• C interface: In C-language code, call the keyring service functions described in Section 5.5.6.2, “The
Keyring Service”.

Example (using the SQL interface):

SELECT keyring_key_generate('MyKey', 'AES', 32);
SELECT keyring_key_remove('MyKey');

For information about the characteristics of key values permitted by keyring_file, see Section 6.4.4.6,
“Supported Keyring Key Types and Lengths”.

6.4.4.3 Using the keyring_encrypted_file Encrypted File-Based Keyring Plugin

Note

The keyring_encrypted_file plugin is an extension included in MySQL
Enterprise Edition, a commercial product. To learn more about commercial
products, see https://www.mysql.com/products/.

The keyring_encrypted_file keyring plugin stores keyring data in an encrypted, password-protected
file local to the server host. A password must be specified for the file. This plugin is available as of MySQL
5.7.21.

Warning

For encryption key management, the keyring_encrypted_file plugin is not
intended as a regulatory compliance solution. Security standards such as PCI,
FIPS, and others require use of key management systems to secure, manage, and
protect encryption keys in key vaults or hardware security modules (HSMs).

To install keyring_encrypted_file, use the general instructions found in Section 6.4.4.1, “Keyring
Plugin Installation”, together with the configuration information specific to keyring_encrypted_file
found here.

To be usable during the server startup process, keyring_encrypted_file must be loaded using the
--early-plugin-load option. To specify the password for encrypting the keyring data file, set the
keyring_encrypted_file_password system variable. (The password is mandatory; if not specified at
server startup, keyring_encrypted_file initialization fails.) The keyring_encrypted_file_data
system variable optionally configures the location of the file used by the keyring_encrypted_file
plugin for data storage. The default value is platform specific. To configure the file location explicitly, set the

1261

https://www.mysql.com/products/

The MySQL Keyring

variable value at startup. For example, use these lines in the server my.cnf file, adjusting the .so suffix
and file location for your platform as necessary and substituting your chosen password:

[mysqld]
early-plugin-load=keyring_encrypted_file.so
keyring_encrypted_file_data=/usr/local/mysql/mysql-keyring/keyring-encrypted
keyring_encrypted_file_password=password

Because the my.cnf file stores a password when written as shown, it should have a restrictive mode and
be accessible only to the account used to run the MySQL server.

Keyring operations are transactional: The keyring_encrypted_file plugin uses a backup file during
write operations to ensure that it can roll back to the original file if an operation fails. The backup file has
the same name as the value of the keyring_encrypted_file_data system variable with a suffix of
.backup.

For additional information about the system variables used to configure the keyring_encrypted_file
plugin, see Section 6.4.4.12, “Keyring System Variables”.

To ensure that keys are flushed only when the correct keyring storage file exists,
keyring_encrypted_file stores a SHA-256 checksum of the keyring in the file. Before updating the
file, the plugin verifies that it contains the expected checksum. In addition, keyring_encrypted_file
encrypts file contents using AES before writing the file, and decrypts file contents after reading the file.

The keyring_encrypted_file plugin supports the functions that comprise the standard MySQL
Keyring service interface. Keyring operations performed by those functions are accessible at two levels:

• SQL interface: In SQL statements, call the functions described in Section 6.4.4.8, “General-Purpose
Keyring Key-Management Functions”.

• C interface: In C-language code, call the keyring service functions described in Section 5.5.6.2, “The
Keyring Service”.

Example (using the SQL interface):

SELECT keyring_key_generate('MyKey', 'AES', 32);
SELECT keyring_key_remove('MyKey');

For information about the characteristics of key values permitted by keyring_encrypted_file, see
Section 6.4.4.6, “Supported Keyring Key Types and Lengths”.

6.4.4.4 Using the keyring_okv KMIP Plugin

Note

The keyring_okv plugin is an extension included in MySQL Enterprise Edition,
a commercial product. To learn more about commercial products, see https://
www.mysql.com/products/.

The Key Management Interoperability Protocol (KMIP) enables communication of cryptographic keys
between a key management server and its clients. The keyring_okv keyring plugin uses the KMIP 1.1
protocol to communicate securely as a client of a KMIP back end. Keyring material is generated exclusively
by the back end, not by keyring_okv. The plugin works with these KMIP-compatible products:

• Oracle Key Vault

• Gemalto SafeNet KeySecure Appliance

• Townsend Alliance Key Manager

1262

https://www.mysql.com/products/
https://www.mysql.com/products/

The MySQL Keyring

Each MySQL Server instance must be registered separately as a client for KMIP. If two or more MySQL
Server instances use the same set of credentials, they can interfere with each other’s functioning.

The keyring_okv plugin supports the functions that comprise the standard MySQL Keyring service
interface. Keyring operations performed by those functions are accessible at two levels:

• SQL interface: In SQL statements, call the functions described in Section 6.4.4.8, “General-Purpose
Keyring Key-Management Functions”.

• C interface: In C-language code, call the keyring service functions described in Section 5.5.6.2, “The
Keyring Service”.

Example (using the SQL interface):

SELECT keyring_key_generate('MyKey', 'AES', 32);
SELECT keyring_key_remove('MyKey');

For information about the characteristics of key values permitted by keyring_okv, Section 6.4.4.6,
“Supported Keyring Key Types and Lengths”.

To install keyring_okv, use the general instructions found in Section 6.4.4.1, “Keyring Plugin
Installation”, together with the configuration information specific to keyring_okv found here.

• General keyring_okv Configuration

• Configuring keyring_okv for Oracle Key Vault

• Configuring keyring_okv for Gemalto SafeNet KeySecure Appliance

• Configuring keyring_okv for Townsend Alliance Key Manager

• Password-Protecting the keyring_okv Key File

General keyring_okv Configuration

Regardless of which KMIP back end the keyring_okv plugin uses for keyring storage, the
keyring_okv_conf_dir system variable configures the location of the directory used by keyring_okv
for its support files. The default value is empty, so you must set the variable to name a properly configured
directory before the plugin can communicate with the KMIP back end. Unless you do so, keyring_okv
writes a message to the error log during server startup that it cannot communicate:

[Warning] Plugin keyring_okv reported: 'For keyring_okv to be
initialized, please point the keyring_okv_conf_dir variable to a directory
containing Oracle Key Vault configuration file and ssl materials'

The keyring_okv_conf_dir variable must name a directory that contains the following items:

• okvclient.ora: A file that contains details of the KMIP back end with which keyring_okv
communicates.

• ssl: A directory that contains the certificate and key files required to establish a secure connection with
the KMIP back end: CA.pem, cert.pem, and key.pem. As of MySQL 5.7.20, if the key file is password-
protected, the ssl directory can contain a single-line text file named password.txt containing the
password needed to decrypt the key file.

Both the okvclient.ora file and ssl directory with the certificate and key files are required for
keyring_okv to work properly. The procedure used to populate the configuration directory with these files
depends on the KMIP back end used with keyring_okv, as described elsewhere.

1263

The MySQL Keyring

The configuration directory used by keyring_okv as the location for its support files should have a
restrictive mode and be accessible only to the account used to run the MySQL server. For example,
on Unix and Unix-like systems, to use the /usr/local/mysql/mysql-keyring-okv directory, the
following commands (executed as root) create the directory and set its mode and ownership:

cd /usr/local/mysql
mkdir mysql-keyring-okv
chmod 750 mysql-keyring-okv
chown mysql mysql-keyring-okv
chgrp mysql mysql-keyring-okv

To be usable during the server startup process, keyring_okv must be loaded using the --early-
plugin-load option. Also, set the keyring_okv_conf_dir system variable to tell keyring_okv
where to find its configuration directory. For example, use these lines in the server my.cnf file, adjusting
the .so suffix and directory location for your platform as necessary:

[mysqld]
early-plugin-load=keyring_okv.so
keyring_okv_conf_dir=/usr/local/mysql/mysql-keyring-okv

For additional information about keyring_okv_conf_dir, see Section 6.4.4.12, “Keyring System
Variables”.

Configuring keyring_okv for Oracle Key Vault

The discussion here assumes that you are familiar with Oracle Key Vault. Some pertinent information
sources:

• Oracle Key Vault site

• Oracle Key Vault documentation

In Oracle Key Vault terminology, clients that use Oracle Key Vault to store and retrieve security objects are
called endpoints. To communicate with Oracle Key Vault, it is necessary to register as an endpoint and
enroll by downloading and installing endpoint support files. Note that you must register a separate endpoint
for each MySQL Server instance. If two or more MySQL Server instances use the same endpoint, they can
interfere with each other’s functioning.

The following procedure briefly summarizes the process of setting up keyring_okv for use with Oracle
Key Vault:

1. Create the configuration directory for the keyring_okv plugin to use.

2. Register an endpoint with Oracle Key Vault to obtain an enrollment token.

3. Use the enrollment token to obtain the okvclient.jar client software download.

4. Install the client software to populate the keyring_okv configuration directory that contains the Oracle
Key Vault support files.

Use the following procedure to configure keyring_okv and Oracle Key Vault to work together. This
description only summarizes how to interact with Oracle Key Vault. For details, visit the Oracle Key Vault
site and consult the Oracle Key Vault Administrator's Guide.

1. Create the configuration directory that contains the Oracle Key Vault support files, and make sure that
the keyring_okv_conf_dir system variable is set to name that directory (for details, see General
keyring_okv Configuration).

1264

http://www.oracle.com/technetwork/database/options/key-management/overview/index.html
http://www.oracle.com/technetwork/database/options/key-management/documentation/index.html
http://www.oracle.com/technetwork/database/options/key-management/overview/index.html

The MySQL Keyring

2. Log in to the Oracle Key Vault management console as a user who has the System Administrator role.

3. Select the Endpoints tab to arrive at the Endpoints page. On the Endpoints page, click Add.

4. Provide the required endpoint information and click Register. The endpoint type should be Other.
Successful registration results in an enrollment token.

5. Log out from the Oracle Key Vault server.

6. Connect again to the Oracle Key Vault server, this time without logging in. Use the endpoint enrollment
token to enroll and request the okvclient.jar software download. Save this file to your system.

7. Install the okvclient.jar file using the following command (you must have JDK 1.4 or higher):

java -jar okvclient.jar -d dir_name [-v]

The directory name following the -d option is the location in which to install extracted files. The -v
option, if given, causes log information to be produced that may be useful if the command fails.

When the command asks for an Oracle Key Vault endpoint password, do not provide one. Instead,
press Enter. (The result is that no password is required when the endpoint connects to Oracle Key
Vault.)

The preceding command produces an okvclient.ora file, which should be in this location under the
directory named by the -d option in the preceding java -jar command:

install_dir/conf/okvclient.ora

The expected file contents include lines that look like this:

SERVER=host_ip:port_num
STANDBY_SERVER=host_ip:port_num

Note

If the existing file is not in this format, then create a new file with the lines shown
in the previous example. Also, consider backing up the okvclient.ora file
before you run the okvutil command. Restore the file as needed.

The keyring_okv plugin attempts to communicate with the server running on the host named by the
SERVER variable and falls back to STANDBY_SERVER if that fails:

• For the SERVER variable, a setting in the okvclient.ora file is mandatory.

• For the STANDBY_SERVER variable, a setting in the okvclient.ora file is optional, as of MySQL
5.7.19. Prior to MySQL 5.7.19, a setting for STANDBY_SERVER is mandatory; if okvclient.ora is
generated with no setting for STANDBY_SERVER, keyring_okv fails to initialize. The workaround is
to check oraclient.ora and add a “dummy” setting for STANDBY_SERVER, if one is missing. For
example:

STANDBY_SERVER=127.0.0.1:5696

8. Go to the Oracle Key Vault installer directory and test the setup by running this command:

okvutil/bin/okvutil list

The output should look something like this:

Unique ID Type Identifier
255AB8DE-C97F-482C-E053-0100007F28B9 Symmetric Key -

1265

The MySQL Keyring

264BF6E0-A20E-7C42-E053-0100007FB29C Symmetric Key -

For a fresh Oracle Key Vault server (a server without any key in it), the output looks like this instead, to
indicate that there are no keys in the vault:

no objects found

9. Use this command to extract the ssl directory containing SSL materials from the okvclient.jar file:

jar xf okvclient.jar ssl

10. Copy the Oracle Key Vault support files (the okvclient.ora file and the ssl directory) into the
configuration directory.

11. (Optional) If you wish to password-protect the key file, use the instructions in Password-Protecting the
keyring_okv Key File.

After completing the preceding procedure, restart the MySQL server. It loads the keyring_okv plugin and
keyring_okv uses the files in its configuration directory to communicate with Oracle Key Vault.

Configuring keyring_okv for Gemalto SafeNet KeySecure Appliance

Gemalto SafeNet KeySecure Appliance uses the KMIP protocol (version 1.1 or 1.2). As of MySQL 5.7.18,
the keyring_okv keyring plugin (which supports KMIP 1.1) can use KeySecure as its KMIP back end for
keyring storage.

Use the following procedure to configure keyring_okv and KeySecure to work together. The description
only summarizes how to interact with KeySecure. For details, consult the section named Add a KMIP
Server in the KeySecure User Guide.

1. Create the configuration directory that contains the KeySecure support files, and make sure that the
keyring_okv_conf_dir system variable is set to name that directory (for details, see General
keyring_okv Configuration).

2. In the configuration directory, create a subdirectory named ssl to use for storing the required SSL
certificate and key files.

3. In the configuration directory, create a file named okvclient.ora. It should have following format:

SERVER=host_ip:port_num
STANDBY_SERVER=host_ip:port_num

For example, if KeySecure is running on host 198.51.100.20 and listening on port 9002, the
okvclient.ora file looks like this:

SERVER=198.51.100.20:9002
STANDBY_SERVER=198.51.100.20:9002

4. Connect to the KeySecure Management Console as an administrator with credentials for Certificate
Authorities access.

5. Navigate to Security >> Local CAs and create a local certificate authority (CA).

6. Go to Trusted CA Lists. Select Default and click on Properties. Then select Edit for Trusted Certificate
Authority List and add the CA just created.

7. Download the CA and save it in the ssl directory as a file named CA.pem.

8. Navigate to Security >> Certificate Requests and create a certificate. Then you can download a
compressed tar file containing certificate PEM files.

1266

https://www2.gemalto.com/aws-marketplace/usage/vks/uploadedFiles/Support_and_Downloads/AWS/007-012362-001-keysecure-appliance-user-guide-v7.1.0.pdf

The MySQL Keyring

9. Extract the PEM files from in the downloaded file. For example, if the file name is
csr_w_pk_pkcs8.gz, decompress and unpack it using this command:

tar zxvf csr_w_pk_pkcs8.gz

Two files result from the extraction operation: certificate_request.pem and
private_key_pkcs8.pem.

10. Use this openssl command to decrypt the private key and create a file named key.pem:

openssl pkcs8 -in private_key_pkcs8.pem -out key.pem

11. Copy the key.pem file into the ssl directory.

12. Copy the certificate request in certificate_request.pem into the clipboard.

13. Navigate to Security >> Local CAs. Select the same CA that you created earlier (the one you
downloaded to create the CA.pem file), and click Sign Request. Paste the Certificate Request from the
clipboard, choose a certificate purpose of Client (the keyring is a client of KeySecure), and click Sign
Request. The result is a certificate signed with the selected CA in a new page.

14. Copy the signed certificate to the clipboard, then save the clipboard contents as a file named
cert.pem in the ssl directory.

15. (Optional) If you wish to password-protect the key file, use the instructions in Password-Protecting the
keyring_okv Key File.

After completing the preceding procedure, restart the MySQL server. It loads the keyring_okv plugin and
keyring_okv uses the files in its configuration directory to communicate with KeySecure.

Configuring keyring_okv for Townsend Alliance Key Manager

Townsend Alliance Key Manager uses the KMIP protocol. The keyring_okv keyring plugin can use
Alliance Key Manager as its KMIP back end for keyring storage. For additional information, see Alliance
Key Manager for MySQL.

Password-Protecting the keyring_okv Key File

As of MySQL 5.7.20, you can optionally protect the key file with a password and supply a file containing
the password to enable the key file to be decrypted. To so do, change location to the ssl directory and
perform these steps:

1. Encrypt the key.pem key file. For example, use a command like this, and enter the encryption
password at the prompts:

$> openssl rsa -des3 -in key.pem -out key.pem.new
Enter PEM pass phrase:
Verifying - Enter PEM pass phrase:

2. Save the encryption password in a single-line text file named password.txt in the ssl directory.

3. Verify that the encrypted key file can be decrypted using the following command. The decrypted file
should display on the console:

$> openssl rsa -in key.pem.new -passin file:password.txt

4. Remove the original key.pem file and rename key.pem.new to key.pem.

5. Change the ownership and access mode of new key.pem file and password.txt file as necessary to
ensure that they have the same restrictions as other files in the ssl directory.

1267

https://www.townsendsecurity.com/product/encryption-key-management-mysql
https://www.townsendsecurity.com/product/encryption-key-management-mysql

The MySQL Keyring

6.4.4.5 Using the keyring_aws Amazon Web Services Keyring Plugin

Note

The keyring_aws plugin is an extension included in MySQL Enterprise Edition,
a commercial product. To learn more about commercial products, see https://
www.mysql.com/products/.

The keyring_aws keyring plugin communicates with the Amazon Web Services Key Management
Service (AWS KMS) as a back end for key generation and uses a local file for key storage. All keyring
material is generated exclusively by the AWS server, not by keyring_aws.

MySQL Enterprise Edition can work with keyring_aws on Red Hat Enterprise Linux, SUSE Linux
Enterprise Server, Debian, Ubuntu, macOS, and Windows. MySQL Enterprise Edition does not support the
use of keyring_aws on these platforms:

• EL6

• Generic Linux (glibc2.12)

• Solaris

The discussion here assumes that you are familiar with AWS in general and KMS in particular. Some
pertinent information sources:

• AWS site

• KMS documentation

The following sections provide configuration and usage information for the keyring_aws keyring plugin:

• keyring_aws Configuration

• keyring_aws Operation

• keyring_aws Credential Changes

keyring_aws Configuration

To install keyring_aws, use the general instructions found in Section 6.4.4.1, “Keyring Plugin
Installation”, together with the plugin-specific configuration information found here.

The plugin library file contains the keyring_aws plugin and two loadable functions,
keyring_aws_rotate_cmk() and keyring_aws_rotate_keys().

To configure keyring_aws, you must obtain a secret access key that provides credentials for
communicating with AWS KMS and write it to a configuration file:

1. Create an AWS KMS account.

2. Use AWS KMS to create a secret access key ID and secret access key. The access key serves to
verify your identity and that of your applications.

3. Use the AWS KMS account to create a customer master key (CMK) ID. At MySQL startup, set the
keyring_aws_cmk_id system variable to the CMK ID value. This variable is mandatory and there is
no default. (Its value can be changed at runtime if desired using SET GLOBAL.)

4. If necessary, create the directory in which the configuration file should be located. The directory should
have a restrictive mode and be accessible only to the account used to run the MySQL server. For

1268

https://www.mysql.com/products/
https://www.mysql.com/products/
https://aws.amazon.com/kms/
https://docs.aws.amazon.com/kms/

The MySQL Keyring

example, on many Unix and Unix-like systems, such as Oracle Enterprise Linux, to use /usr/local/
mysql/mysql-keyring/keyring_aws_conf as the file name, the following commands (executed
as root) create its parent directory and set the directory mode and ownership:

$> cd /usr/local/mysql
$> mkdir mysql-keyring
$> chmod 750 mysql-keyring
$> chown mysql mysql-keyring
$> chgrp mysql mysql-keyring

At MySQL startup, set the keyring_aws_conf_file system variable to /usr/local/mysql/
mysql-keyring/keyring_aws_conf to indicate the configuration file location to the server.

The location of the configuration file may vary according to Linux distribution; the directory for this
file may also already be provided by a system module or other application such as AppArmor. For
example, under AppArmor on recent editions of Ubuntu Linux, the keyring directory is specified as
/var/lib/mysql-keyring. See Ubuntu Server: AppArmor for more information about using
AppArmor on Ubuntu systems; see also this example MySQL configuration file. For other operating
platforms, see the system documentation for guidance.

5. Prepare the keyring_aws configuration file, which should contain two lines:

• Line 1: The secret access key ID

• Line 2: The secret access key

For example, if the key ID is wwwwwwwwwwwwwEXAMPLE and the key is xxxxxxxxxxxxx/yyyyyyy/
zzzzzzzzEXAMPLEKEY, the configuration file looks like this:

wwwwwwwwwwwwwEXAMPLE
xxxxxxxxxxxxx/yyyyyyy/zzzzzzzzEXAMPLEKEY

To be usable during the server startup process, keyring_aws must be loaded using the --early-
plugin-load option. The keyring_aws_cmk_id system variable is mandatory and configures the
customer master key (CMK) ID obtained from the AWS KMS server. The keyring_aws_conf_file
and keyring_aws_data_file system variables optionally configure the locations of the files used by
the keyring_aws plugin for configuration information and data storage. The file location variable default
values are platform specific. To configure the locations explicitly, set the variable values at startup. For
example, use these lines in the server my.cnf file, adjusting the .so suffix and file locations for your
platform as necessary:

[mysqld]
early-plugin-load=keyring_aws.so
keyring_aws_cmk_id='arn:aws:kms:us-west-2:111122223333:key/abcd1234-ef56-ab12-cd34-ef56abcd1234'
keyring_aws_conf_file=/usr/local/mysql/mysql-keyring/keyring_aws_conf
keyring_aws_data_file=/usr/local/mysql/mysql-keyring/keyring_aws_data

For the keyring_aws plugin to start successfully, the configuration file must exist and contain valid secret
access key information, initialized as described previously. The storage file need not exist. If it does not,
keyring_aws attempts to create it (as well as its parent directory, if necessary).

Important

The default AWS region is us-east-1. For any other region, you must also set
keyring_aws_region explicitly in my.cnf.

For additional information about the system variables used to configure the keyring_aws plugin, see
Section 6.4.4.12, “Keyring System Variables”.

1269

https://documentation.ubuntu.com/server/how-to/security/apparmor/index.html
https://exampleconfig.com/view/mysql-ubuntu20-04-etc-apparmor-d-usr-sbin-mysqld

The MySQL Keyring

Start the MySQL server and install the functions associated with the keyring_aws plugin. This is a one-
time operation, performed by executing the following statements, adjusting the .so suffix for your platform
as necessary:

CREATE FUNCTION keyring_aws_rotate_cmk RETURNS INTEGER
 SONAME 'keyring_aws.so';
CREATE FUNCTION keyring_aws_rotate_keys RETURNS INTEGER
 SONAME 'keyring_aws.so';

For additional information about the keyring_aws functions, see Section 6.4.4.9, “Plugin-Specific Keyring
Key-Management Functions”.

keyring_aws Operation

At plugin startup, the keyring_aws plugin reads the AWS secret access key ID and key from its
configuration file. It also reads any encrypted keys contained in its storage file into its in-memory cache.

During operation, keyring_aws maintains encrypted keys in the in-memory cache and uses the storage
file as local persistent storage. Each keyring operation is transactional: keyring_aws either successfully
changes both the in-memory key cache and the keyring storage file, or the operation fails and the keyring
state remains unchanged.

To ensure that keys are flushed only when the correct keyring storage file exists, keyring_aws stores a
SHA-256 checksum of the keyring in the file. Before updating the file, the plugin verifies that it contains the
expected checksum.

The keyring_aws plugin supports the functions that comprise the standard MySQL Keyring service
interface. Keyring operations performed by these functions are accessible at two levels:

• SQL interface: In SQL statements, call the functions described in Section 6.4.4.8, “General-Purpose
Keyring Key-Management Functions”.

• C interface: In C-language code, call the keyring service functions described in Section 5.5.6.2, “The
Keyring Service”.

Example (using the SQL interface):

SELECT keyring_key_generate('MyKey', 'AES', 32);
SELECT keyring_key_remove('MyKey');

In addition, the keyring_aws_rotate_cmk() and keyring_aws_rotate_keys() functions “extend”
the keyring plugin interface to provide AWS-related capabilities not covered by the standard keyring
service interface. These capabilities are accessible only by calling these functions using SQL. There are no
corresponding C-languge key service functions.

For information about the characteristics of key values permitted by keyring_aws, see Section 6.4.4.6,
“Supported Keyring Key Types and Lengths”.

keyring_aws Credential Changes

Assuming that the keyring_aws plugin has initialized properly at server startup, it is possible to change
the credentials used for communicating with AWS KMS:

1. Use AWS KMS to create a new secret access key ID and secret access key.

2. Store the new credentials in the configuration file (the file named by the keyring_aws_conf_file
system variable). The file format is as described previously.

1270

The MySQL Keyring

3. Reinitialize the keyring_aws plugin so that it re-reads the configuration file. Assuming that the new
credentials are valid, the plugin should initialize successfully.

There are two ways to reinitialize the plugin:

• Restart the server. This is simpler and has no side effects, but is not suitable for installations that
require minimal server downtime with as few restarts as possible.

• Reinitialize the plugin without restarting the server by executing the following statements, adjusting
the .so suffix for your platform as necessary:

UNINSTALL PLUGIN keyring_aws;
INSTALL PLUGIN keyring_aws SONAME 'keyring_aws.so';

Note

In addition to loading a plugin at runtime, INSTALL PLUGIN has the side
effect of registering the plugin it in the mysql.plugin system table. Because
of this, if you decide to stop using keyring_aws, it is not sufficient to remove
the --early-plugin-load option from the set of options used to start the
server. That stops the plugin from loading early, but the server still attempts
to load it when it gets to the point in the startup sequence where it loads the
plugins registered in mysql.plugin.

Consequently, if you execute the UNINSTALL PLUGIN plus INSTALL
PLUGIN sequence just described to change the AWS KMS credentials, then
to stop using keyring_aws, it is necessary to execute UNINSTALL PLUGIN
again to unregister the plugin in addition to removing the --early-plugin-
load option.

6.4.4.6 Supported Keyring Key Types and Lengths

MySQL Keyring supports keys of different types (encryption algorithms) and lengths:

• The available key types depend on which keyring plugin is installed.

• The permitted key lengths are subject to multiple factors:

• General keyring loadable-function interface limits (for keys managed using one of the keyring functions
described in Section 6.4.4.8, “General-Purpose Keyring Key-Management Functions”), or limits from
back end implementations. These length limits can vary by key operation type.

• In addition to the general limits, individual keyring plugins may impose restrictions on key lengths per
key type.

Table 6.23, “General Keyring Key Length Limits” shows the general key-length limits. (The lower limits for
keyring_aws are imposed by the AWS KMS interface, not the keyring functions.) Table 6.24, “Keyring
Plugin Key Types and Lengths” shows the key types each keyring plugin permits, as well as any plugin-
specific key-length restrictions.

Table 6.23 General Keyring Key Length Limits

Key Operation Maximum Key Length

Generate key 2,048 bytes; 1,024 for keyring_aws

Store key 2,048 bytes

1271

The MySQL Keyring

Key Operation Maximum Key Length

Fetch key 2,048 bytes

Table 6.24 Keyring Plugin Key Types and Lengths

Plugin Name Permitted Key Type Plugin-Specific Length
Restrictions

keyring_aws AES 16, 24, or 32 bytes

keyring_encrypted_file AES

DSA

RSA

None

None

None

keyring_file AES

DSA

RSA

None

None

None

keyring_okv AES 16, 24, or 32 bytes

6.4.4.7 Migrating Keys Between Keyring Keystores

A keyring migration copies keys from one keystore to another, enabling a DBA to switch a MySQL
installation to a different keystore. to another. A successful migration operation has this result:

• The destination keystore contains the keys it had prior to the migration, plus the keys from the source
keystore.

• The source keystore remains the same before and after the migration (because keys are copied, not
moved).

If a key to be copied already exists in the destination keystore, an error occurs and the destination keystore
is restored to its premigration state.

The following sections discuss the characteristics of offline and online migrations and describe how to
perform migrations.

• Offline and Online Key Migrations

• Key Migration Using a Migration Server

• Key Migration Involving Multiple Running Servers

Offline and Online Key Migrations

A key migration is either offline or online:

• Offline migration: For use when you are sure that no running server on the local host is using the source
or destination keystore. In this case, the migration operation can copy keys from the source keystore
to the destination without the possibility of a running server modifying keystore content during the
operation.

• Online migration: For use when a running server on the local host is using the source or destination
keystore. In this case, care must be taken to prevent that server from updating keystores during the
migration. This involves connecting to the running server and instructing it to pause keyring operations

1272

The MySQL Keyring

so that keys can be copied safely from the source keystore to the destination. When key copying is
complete, the running server is permitted to resume keyring operations.

When you plan a key migration, use these points to decide whether it should be offline or online:

• Do not perform offline migration involving a keystore that is in use by a running server.

• Pausing keyring operations during an online migration is accomplished by connecting to the running
server and setting its global keyring_operations system variable to OFF before key copying and ON
after key copying. This has several implications:

• keyring_operations was introduced in MySQL 5.7.21, so online migration is possible only if
the running server is from MySQL 5.7.21 or higher. If the running server is older, you must stop
it, perform an offline migration, and restart it. All migration instructions elsewhere that refer to
keyring_operations are subject to this condition.

• The account used to connect to the running server must have the SUPER privilege required to modify
keyring_operations.

• For an online migration, the migration operation takes care of enabling and disabling
keyring_operations on the running server. If the migration operation exits abnormally (for
example, if it is forcibly terminated), it is possible for keyring_operations to remain disabled on
the running server, leaving it unable to perform keyring operations. In this case, it may be necessary to
connect to the running server and enable keyring_operations manually using this statement:

SET GLOBAL keyring_operations = ON;

• Online key migration provides for pausing keyring operations on a single running server. To perform a
migration if multiple running servers are using the keystores involved, use the procedure described at
Key Migration Involving Multiple Running Servers.

Key Migration Using a Migration Server

As of MySQL 5.7.21, a MySQL server becomes a migration server if invoked in a special operational mode
that supports key migration. A migration server does not accept client connections. Instead, it runs only
long enough to migrate keys, then exits. A migration server reports errors to the console (the standard
error output).

To perform a key migration operation using a migration server, determine the key migration options
required to specify which keyring plugins or components are involved, and whether the migration is offline
or online:

• To indicate the source and destination keyring plugins, specify these options:

• --keyring-migration-source: The source keyring plugin that manages the keys to be migrated.

• --keyring-migration-destination: The destination keyring plugin to which the migrated keys
are to be copied.

These options tell the server to run in key migration mode. For key migration operations, both options
are mandatory. The source and destination plugins must differ, and the migration server must support
both plugins.

• For an offline migration, no additional key migration options are needed.

• For an online migration, some running server currently is using the source or destination keystore. To
invoke the migration server, specify additional key migration options that indicate how to connect to the

1273

The MySQL Keyring

running server. This is necessary so that the migration server can connect to the running server and tell
it to pause keyring use during the migration operation.

Use of any of the following options signifies an online migration:

• --keyring-migration-host: The host where the running server is located. This is always the
local host because the migration server can migrate keys only between keystores managed by local
plugins.

• --keyring-migration-user, --keyring-migration-password: The account credentials to
use to connect to the running server.

• --keyring-migration-port: For TCP/IP connections, the port number to connect to on the
running server.

• --keyring-migration-socket: For Unix socket file or Windows named pipe connections, the
socket file or named pipe to connect to on the running server.

For additional details about the key migration options, see Section 6.4.4.11, “Keyring Command Options”.

Start the migration server with key migration options indicating the source and destination keystores and
whether the migration is offline or online, possibly with other options. Keep the following considerations in
mind:

• Other server options might be required, such as configuration parameters for the two keyring plugins.
For example, if keyring_file is the source or destination, you must set the keyring_file_data
system variable if the keyring data file location is not the default location. Other non-keyring options may
be required as well. One way to specify these options is by using --defaults-file to name an option
file that contains the required options.

• The migration server expects path name option values to be full paths. Relative path names may not be
resolved as you expect.

• The user who invokes a server in key-migration mode must not be the root operating system user,
unless the --user option is specified with a non-root user name to run the server as that user.

• The user a server in key-migration mode runs as must have permission to read and write any local
keyring files, such as the data file for a file-based plugin.

If you invoke the migration server from a system account different from that normally used to run
MySQL, it might create keyring directories or files that are inaccessible to the server during normal
operation. Suppose that mysqld normally runs as the mysql operating system user, but you invoke the
migration server while logged in as isabel. Any new directories or files created by the migration server
are owned by isabel. Subsequent startup fails when a server run as the mysql operating system user
attempts to access file system objects owned by isabel.

To avoid this issue, start the migration server as the root operating system user and provide a --
user=user_name option, where user_name is the system account normally used to run MySQL.
Alternatively, after the migration, examine the keyring-related file system objects and change their
ownership and permissions if necessary using chown, chmod, or similar commands, so that the objects
are accessible to the running server.

Example command line for offline migration (enter the command on a single line):

mysqld --defaults-file=/usr/local/mysql/etc/my.cnf
 --keyring-migration-source=keyring_file.so
 --keyring-migration-destination=keyring_encrypted_file.so
 --keyring_encrypted_file_password=password

1274

The MySQL Keyring

Example command line for online migration:

mysqld --defaults-file=/usr/local/mysql/etc/my.cnf
 --keyring-migration-source=keyring_file.so
 --keyring-migration-destination=keyring_encrypted_file.so
 --keyring_encrypted_file_password=password
 --keyring-migration-host=127.0.0.1
 --keyring-migration-user=root
 --keyring-migration-password=root_password

The key migration server performs a migration operation as follows:

1. (Online migration only) Connect to the running server using the connection options.

2. (Online migration only) Disable keyring_operations on the running server.

3. Load the source and destination keyring plugins.

4. Copy keys from the source keystore to the destination.

5. Unload the keyring plugins.

6. (Online migration only) Enable keyring_operations on the running server.

7. (Online migration only) Disconnect from the running server.

If an error occurs during key migration, the destination keystore is restored to its premigration state.

Important

For an online migration operation, the migration server takes care of enabling
and disabling keyring_operations on the running server. If the migration
server exits abnormally (for example, if it is forcibly terminated), it is possible for
keyring_operations to remain disabled on the running server, leaving it unable
to perform keyring operations. In this case, it may be necessary to connect to the
running server and enable keyring_operations manually using this statement:

SET GLOBAL keyring_operations = ON;

After a successful online key migration operation, the running server might need to be restarted:

• If the running server was using the source keystore before the migration and should continue to use it
after the migration, it need not be restarted after the migration.

• If the running server was using the destination keystore before the migration and should continue to
use it after the migration, it should be restarted after the migration to load all keys migrated into the
destination keystore.

• If the running server was using the source keystore before the migration but should use the destination
keystore after the migration, it must be reconfigured to use the destination keystore and restarted. In this
case, be aware that although the running server is paused from modifying the source keystore during
the migration itself, it is not paused during the interval between the migration and the subsequent restart.
Care should be taken that the server does not modify the source keystore during this interval because
any such changes will not be reflected in the destination keystore.

Key Migration Involving Multiple Running Servers

Online key migration provides for pausing keyring operations on a single running server. To perform a
migration if multiple running servers are using the keystores involved, use this procedure:

1275

The MySQL Keyring

1. Connect to each running server manually and set keyring_operations=OFF. This ensures that no
running server is using the source or destination keystore and satisfies the required condition for offline
migration.

2. Use a migration server to perform an offline key migration for each paused server.

3. Connect to each running server manually and set keyring_operations=ON.

All running servers must support the keyring_operations system variable. Any server that does not
must be stopped before the migration and restarted after.

6.4.4.8 General-Purpose Keyring Key-Management Functions

MySQL Server supports a keyring service that enables internal server components and plugins to store
sensitive information securely for later retrieval.

As of MySQL 5.7.13, MySQL Server includes an SQL interface for keyring key management, implemented
as a set of general-purpose functions that access the capabilities provided by the internal keyring service.
The keyring functions are contained in a plugin library file, which also contains a keyring_udf plugin
that must be enabled prior to function invocation. For these functions to be used, a keyring plugin such as
keyring_file or keyring_okv must be enabled.

The functions described here are general-purpose and intended for use with any keyring component or
plugin. A given keyring component or plugin may also provide functions of its own that are intended for
use only with that component or plugin; see Section 6.4.4.9, “Plugin-Specific Keyring Key-Management
Functions”.

The following sections provide installation instructions for the keyring functions and demonstrate how
to use them. For information about the keyring service functions invoked by these functions, see
Section 5.5.6.2, “The Keyring Service”. For general keyring information, see Section 6.4.4, “The MySQL
Keyring”.

• Installing or Uninstalling General-Purpose Keyring Functions

• Using General-Purpose Keyring Functions

• General-Purpose Keyring Function Reference

Installing or Uninstalling General-Purpose Keyring Functions

This section describes how to install or uninstall the keyring functions, which are implemented in a plugin
library file that also contains a keyring_udf plugin. For general information about installing or uninstalling
plugins and loadable functions, see Section 5.5.1, “Installing and Uninstalling Plugins”, and Section 5.6.1,
“Installing and Uninstalling Loadable Functions”.

The keyring functions enable keyring key management operations, but the keyring_udf plugin must also
be installed because the functions do not work correctly without it. Attempts to use the functions without the
keyring_udf plugin result in an error.

To be usable by the server, the plugin library file must be located in the MySQL plugin directory (the
directory named by the plugin_dir system variable). If necessary, configure the plugin directory location
by setting the value of plugin_dir at server startup.

The plugin library file base name is keyring_udf. The file name suffix differs per platform (for example,
.so for Unix and Unix-like systems, .dll for Windows).

1276

The MySQL Keyring

To install the keyring_udf plugin and the keyring functions, use the INSTALL PLUGIN and CREATE
FUNCTION statements, adjusting the .so suffix for your platform as necessary:

INSTALL PLUGIN keyring_udf SONAME 'keyring_udf.so';
CREATE FUNCTION keyring_key_generate RETURNS INTEGER
 SONAME 'keyring_udf.so';
CREATE FUNCTION keyring_key_fetch RETURNS STRING
 SONAME 'keyring_udf.so';
CREATE FUNCTION keyring_key_length_fetch RETURNS INTEGER
 SONAME 'keyring_udf.so';
CREATE FUNCTION keyring_key_type_fetch RETURNS STRING
 SONAME 'keyring_udf.so';
CREATE FUNCTION keyring_key_store RETURNS INTEGER
 SONAME 'keyring_udf.so';
CREATE FUNCTION keyring_key_remove RETURNS INTEGER
 SONAME 'keyring_udf.so';

If the plugin and functions are used on a source replication server, install them on all replicas as well to
avoid replication issues.

Once installed as just described, the plugin and functions remain installed until uninstalled. To remove
them, use the UNINSTALL PLUGIN and DROP FUNCTION statements:

UNINSTALL PLUGIN keyring_udf;
DROP FUNCTION keyring_key_generate;
DROP FUNCTION keyring_key_fetch;
DROP FUNCTION keyring_key_length_fetch;
DROP FUNCTION keyring_key_type_fetch;
DROP FUNCTION keyring_key_store;
DROP FUNCTION keyring_key_remove;

Using General-Purpose Keyring Functions

Before using the keyring general-purpose functions, install them according to the instructions provided in
Installing or Uninstalling General-Purpose Keyring Functions.

The keyring functions are subject to these constraints:

• To use any keyring function, the keyring_udf plugin must be enabled. Otherwise, an error occurs:

ERROR 1123 (HY000): Can't initialize function 'keyring_key_generate';
This function requires keyring_udf plugin which is not installed.
Please install

To install the keyring_udf plugin, see Installing or Uninstalling General-Purpose Keyring Functions.

• The keyring functions invoke keyring service functions (see Section 5.5.6.2, “The Keyring Service”).
The service functions in turn use whatever keyring plugin is installed (for example, keyring_file
or keyring_okv). Therefore, to use any keyring function, some underlying keyring plugin must be
enabled. Otherwise, an error occurs:

ERROR 3188 (HY000): Function 'keyring_key_generate' failed because
underlying keyring service returned an error. Please check if a
keyring plugin is installed and that provided arguments are valid
for the keyring you are using.

To install a keyring plugin, see Section 6.4.4.1, “Keyring Plugin Installation”.

• A user must possess the global EXECUTE privilege to use any keyring function. Otherwise, an error
occurs:

ERROR 1123 (HY000): Can't initialize function 'keyring_key_generate';

1277

The MySQL Keyring

The user is not privileged to execute this function. User needs to
have EXECUTE

To grant the global EXECUTE privilege to a user, use this statement:

GRANT EXECUTE ON *.* TO user;

Alternatively, should you prefer to avoid granting the global EXECUTE privilege while still permitting users
to access specific key-management operations, “wrapper” stored programs can be defined (a technique
described later in this section).

• A key stored in the keyring by a given user can be manipulated later only by the same user. That is, the
value of the CURRENT_USER() function at the time of key manipulation must have the same value as
when the key was stored in the keyring. (This constraint rules out the use of the keyring functions for
manipulation of instance-wide keys, such as those created by InnoDB to support tablespace encryption.)

To enable multiple users to perform operations on the same key, “wrapper” stored programs can be
defined (a technique described later in this section).

• Keyring functions support the key types and lengths supported by the underlying keyring plugin. For
information about keys specific to a particular keyring plugin, see Section 6.4.4.6, “Supported Keyring
Key Types and Lengths”.

To create a new random key and store it in the keyring, call keyring_key_generate(), passing to it
an ID for the key, along with the key type (encryption method) and its length in bytes. The following call
creates a 2,048-bit DSA-encrypted key named MyKey:

mysql> SELECT keyring_key_generate('MyKey', 'DSA', 256);
+---+
| keyring_key_generate('MyKey', 'DSA', 256) |
+---+
| 1 |
+---+

A return value of 1 indicates success. If the key cannot be created, the return value is NULL and an error
occurs. One reason this might be is that the underlying keyring plugin does not support the specified
combination of key type and key length; see Section 6.4.4.6, “Supported Keyring Key Types and Lengths”.

To be able to check the return type regardless of whether an error occurs, use SELECT ... INTO
@var_name and test the variable value:

mysql> SELECT keyring_key_generate('', '', -1) INTO @x;
ERROR 3188 (HY000): Function 'keyring_key_generate' failed because
underlying keyring service returned an error. Please check if a
keyring plugin is installed and that provided arguments are valid
for the keyring you are using.
mysql> SELECT @x;
+------+
| @x |
+------+
| NULL |
+------+
mysql> SELECT keyring_key_generate('x', 'AES', 16) INTO @x;
mysql> SELECT @x;
+------+
| @x |
+------+
| 1 |
+------+

This technique also applies to other keyring functions that for failure return a value and an error.

1278

The MySQL Keyring

The ID passed to keyring_key_generate() provides a means by which to refer to the key in
subsequent functions calls. For example, use the key ID to retrieve its type as a string or its length in bytes
as an integer:

mysql> SELECT keyring_key_type_fetch('MyKey');
+---------------------------------+
| keyring_key_type_fetch('MyKey') |
+---------------------------------+
| DSA |
+---------------------------------+
mysql> SELECT keyring_key_length_fetch('MyKey');
+-----------------------------------+
| keyring_key_length_fetch('MyKey') |
+-----------------------------------+
| 256 |
+-----------------------------------+

To retrieve a key value, pass the key ID to keyring_key_fetch(). The following example uses HEX()
to display the key value because it may contain nonprintable characters. The example also uses a short
key for brevity, but be aware that longer keys provide better security:

mysql> SELECT keyring_key_generate('MyShortKey', 'DSA', 8);
+--+
| keyring_key_generate('MyShortKey', 'DSA', 8) |
+--+
| 1 |
+--+
mysql> SELECT HEX(keyring_key_fetch('MyShortKey'));
+--------------------------------------+
| HEX(keyring_key_fetch('MyShortKey')) |
+--------------------------------------+
| 1DB3B0FC3328A24C |
+--------------------------------------+

Keyring functions treat key IDs, types, and values as binary strings, so comparisons are case-sensitive.
For example, IDs of MyKey and mykey refer to different keys.

To remove a key, pass the key ID to keyring_key_remove():

mysql> SELECT keyring_key_remove('MyKey');
+-----------------------------+
| keyring_key_remove('MyKey') |
+-----------------------------+
| 1 |
+-----------------------------+

To obfuscate and store a key that you provide, pass the key ID, type, and value to
keyring_key_store():

mysql> SELECT keyring_key_store('AES_key', 'AES', 'Secret string');
+--+
| keyring_key_store('AES_key', 'AES', 'Secret string') |
+--+
| 1 |
+--+

As indicated previously, a user must have the global EXECUTE privilege to call keyring functions, and the
user who stores a key in the keyring initially must be the same user who performs subsequent operations
on the key later, as determined from the CURRENT_USER() value in effect for each function call. To permit
key operations to users who do not have the global EXECUTE privilege or who may not be the key “owner,”
use this technique:

1. Define “wrapper” stored programs that encapsulate the required key operations and have a DEFINER
value equal to the key owner.

1279

The MySQL Keyring

2. Grant the EXECUTE privilege for specific stored programs to the individual users who should be able to
invoke them.

3. If the operations implemented by the wrapper stored programs do not include key creation, create
any necessary keys in advance, using the account named as the DEFINER in the stored program
definitions.

This technique enables keys to be shared among users and provides to DBAs more fine-grained control
over who can do what with keys, without having to grant global privileges.

The following example shows how to set up a shared key named SharedKey that is owned by the DBA,
and a get_shared_key() stored function that provides access to the current key value. The value can
be retrieved by any user with the EXECUTE privilege for that function, which is created in the key_schema
schema.

From a MySQL administrative account ('root'@'localhost' in this example), create the administrative
schema and the stored function to access the key:

mysql> CREATE SCHEMA key_schema;

mysql> CREATE DEFINER = 'root'@'localhost'
 FUNCTION key_schema.get_shared_key()
 RETURNS BLOB READS SQL DATA
 RETURN keyring_key_fetch('SharedKey');

From the administrative account, ensure that the shared key exists:

mysql> SELECT keyring_key_generate('SharedKey', 'DSA', 8);
+---+
| keyring_key_generate('SharedKey', 'DSA', 8) |
+---+
| 1 |
+---+

From the administrative account, create an ordinary user account to which key access is to be granted:

mysql> CREATE USER 'key_user'@'localhost'
 IDENTIFIED BY 'key_user_pwd';

From the key_user account, verify that, without the proper EXECUTE privilege, the new account cannot
access the shared key:

mysql> SELECT HEX(key_schema.get_shared_key());
ERROR 1370 (42000): execute command denied to user 'key_user'@'localhost'
for routine 'key_schema.get_shared_key'

From the administrative account, grant EXECUTE to key_user for the stored function:

mysql> GRANT EXECUTE ON FUNCTION key_schema.get_shared_key
 TO 'key_user'@'localhost';

From the key_user account, verify that the key is now accessible:

mysql> SELECT HEX(key_schema.get_shared_key());
+----------------------------------+
| HEX(key_schema.get_shared_key()) |
+----------------------------------+
| 9BAFB9E75CEEB013 |

1280

The MySQL Keyring

+----------------------------------+

General-Purpose Keyring Function Reference

For each general-purpose keyring function, this section describes its purpose, calling sequence, and
return value. For information about the conditions under which these functions can be invoked, see Using
General-Purpose Keyring Functions.

• keyring_key_fetch(key_id)

Given a key ID, deobfuscates and returns the key value.

Arguments:

• key_id: A string that specifies the key ID.

Return value:

Returns the key value as a string for success, NULL if the key does not exist, or NULL and an error for
failure.

Note

Key values retrieved using keyring_key_fetch() are subject to the general
keyring function limits described in Section 6.4.4.6, “Supported Keyring Key
Types and Lengths”. A key value longer than that length can be stored using
a keyring service function (see Section 5.5.6.2, “The Keyring Service”), but if
retrieved using keyring_key_fetch() is truncated to the general keyring
function limit.

Example:

mysql> SELECT keyring_key_generate('RSA_key', 'RSA', 16);
+--+
| keyring_key_generate('RSA_key', 'RSA', 16) |
+--+
| 1 |
+--+
mysql> SELECT HEX(keyring_key_fetch('RSA_key'));
+-----------------------------------+
| HEX(keyring_key_fetch('RSA_key')) |
+-----------------------------------+
| 91C2253B696064D3556984B6630F891A |
+-----------------------------------+
mysql> SELECT keyring_key_type_fetch('RSA_key');
+-----------------------------------+
| keyring_key_type_fetch('RSA_key') |
+-----------------------------------+
| RSA |
+-----------------------------------+
mysql> SELECT keyring_key_length_fetch('RSA_key');
+-------------------------------------+
| keyring_key_length_fetch('RSA_key') |
+-------------------------------------+
| 16 |
+-------------------------------------+

The example uses HEX() to display the key value because it may contain nonprintable characters. The
example also uses a short key for brevity, but be aware that longer keys provide better security.

• keyring_key_generate(key_id, key_type, key_length)

1281

The MySQL Keyring

Generates a new random key with a given ID, type, and length, and stores it in the keyring. The type
and length values must be consistent with the values supported by the underlying keyring plugin. See
Section 6.4.4.6, “Supported Keyring Key Types and Lengths”.

Arguments:

• key_id: A string that specifies the key ID.

• key_type: A string that specifies the key type.

• key_length: An integer that specifies the key length in bytes.

Return value:

Returns 1 for success, or NULL and an error for failure.

Example:

mysql> SELECT keyring_key_generate('RSA_key', 'RSA', 384);
+---+
| keyring_key_generate('RSA_key', 'RSA', 384) |
+---+
| 1 |
+---+

• keyring_key_length_fetch(key_id)

Given a key ID, returns the key length.

Arguments:

• key_id: A string that specifies the key ID.

Return value:

Returns the key length in bytes as an integer for success, NULL if the key does not exist, or NULL and an
error for failure.

Example:

See the description of keyring_key_fetch().

• keyring_key_remove(key_id)

Removes the key with a given ID from the keyring.

Arguments:

• key_id: A string that specifies the key ID.

Return value:

Returns 1 for success, or NULL for failure.

Example:

mysql> SELECT keyring_key_remove('AES_key');
+-------------------------------+
| keyring_key_remove('AES_key') |

1282

The MySQL Keyring

+-------------------------------+
| 1 |
+-------------------------------+

• keyring_key_store(key_id, key_type, key)

Obfuscates and stores a key in the keyring.

Arguments:

• key_id: A string that specifies the key ID.

• key_type: A string that specifies the key type.

• key: A string that specifies the key value.

Return value:

Returns 1 for success, or NULL and an error for failure.

Example:

mysql> SELECT keyring_key_store('new key', 'DSA', 'My key value');
+---+
| keyring_key_store('new key', 'DSA', 'My key value') |
+---+
| 1 |
+---+

• keyring_key_type_fetch(key_id)

Given a key ID, returns the key type.

Arguments:

• key_id: A string that specifies the key ID.

Return value:

Returns the key type as a string for success, NULL if the key does not exist, or NULL and an error for
failure.

Example:

See the description of keyring_key_fetch().

6.4.4.9 Plugin-Specific Keyring Key-Management Functions

For each keyring plugin-specific function, this section describes its purpose, calling sequence, and return
value. For information about general-purpose keyring functions, see Section 6.4.4.8, “General-Purpose
Keyring Key-Management Functions”.

• keyring_aws_rotate_cmk()

Associated keyring plugin: keyring_aws

keyring_aws_rotate_cmk() rotates the customer master key (CMK). Rotation changes only the key
that AWS KMS uses for subsequent data key-encryption operations. AWS KMS maintains previous CMK
versions, so keys generated using previous CMKs remain decryptable after rotation.

1283

The MySQL Keyring

Rotation changes the CMK value used inside AWS KMS but does not change the ID used to
refer to it, so there is no need to change the keyring_aws_cmk_id system variable after calling
keyring_aws_rotate_cmk().

This function requires the SUPER privilege.

Arguments:

None.

Return value:

Returns 1 for success, or NULL and an error for failure.

• keyring_aws_rotate_keys()

Associated keyring plugin: keyring_aws

keyring_aws_rotate_keys() rotates keys stored in the keyring_aws storage file named by the
keyring_aws_data_file system variable. Rotation sends each key stored in the file to AWS KMS
for re-encryption using the value of the keyring_aws_cmk_id system variable as the CMK value, and
stores the new encrypted keys in the file.

keyring_aws_rotate_keys() is useful for key re-encryption under these circumstances:

• After rotating the CMK; that is, after invoking the keyring_aws_rotate_cmk() function.

• After changing the keyring_aws_cmk_id system variable to a different key value.

This function requires the SUPER privilege.

Arguments:

None.

Return value:

Returns 1 for success, or NULL and an error for failure.

6.4.4.10 Keyring Metadata

To see whether a keyring plugin is loaded, check the Information Schema PLUGINS table or use the SHOW
PLUGINS statement (see Section 5.5.2, “Obtaining Server Plugin Information”). For example:

mysql> SELECT PLUGIN_NAME, PLUGIN_STATUS
 FROM INFORMATION_SCHEMA.PLUGINS
 WHERE PLUGIN_NAME LIKE 'keyring%';
+--------------+---------------+
| PLUGIN_NAME | PLUGIN_STATUS |
+--------------+---------------+
| keyring_file | ACTIVE |
+--------------+---------------+

6.4.4.11 Keyring Command Options

MySQL supports the following keyring-related command-line options:

• --keyring-migration-destination=plugin

1284

The MySQL Keyring

Command-Line Format --keyring-migration-
destination=plugin_name

Introduced 5.7.21

Type String

The destination keyring plugin for key migration. See Section 6.4.4.7, “Migrating Keys Between Keyring
Keystores”. The format and interpretation of the option value is the same as described for the --
keyring-migration-source option.

Note

--keyring-migration-source and --keyring-migration-
destination are mandatory for all keyring migration operations. The source
and destination plugins must differ, and the migration server must support both
plugins.

• --keyring-migration-host=host_name

Command-Line Format --keyring-migration-host=host_name

Introduced 5.7.21

Type String

Default Value localhost

The host location of the running server that is currently using one of the key migration keystores. See
Section 6.4.4.7, “Migrating Keys Between Keyring Keystores”. Migration always occurs on the local
host, so the option always specifies a value for connecting to a local server, such as localhost,
127.0.0.1, ::1, or the local host IP address or host name.

• --keyring-migration-password[=password]

Command-Line Format --keyring-migration-
password[=password]

Introduced 5.7.21

Type String

The password of the MySQL account used for connecting to the running server that is currently using
one of the key migration keystores. See Section 6.4.4.7, “Migrating Keys Between Keyring Keystores”.

The password value is optional. If not given, the server prompts for one. If given, there must be no space
between --keyring-migration-password= and the password following it. If no password option is
specified, the default is to send no password.

Specifying a password on the command line should be considered insecure. See Section 6.1.2.1, “End-
User Guidelines for Password Security”. You can use an option file to avoid giving the password on the
command line. In this case, the file should have a restrictive mode and be accessible only to the account
used to run the migration server.

• --keyring-migration-port=port_num

Command-Line Format --keyring-migration-port=port_num

Introduced 5.7.21

1285

The MySQL Keyring

Type Numeric

Default Value 3306

For TCP/IP connections, the port number for connecting to the running server that is currently using one
of the key migration keystores. See Section 6.4.4.7, “Migrating Keys Between Keyring Keystores”.

• --keyring-migration-socket=path

Command-Line Format --keyring-migration-
socket={file_name|pipe_name}

Introduced 5.7.21

Type String

For Unix socket file or Windows named pipe connections, the socket file or named pipe for connecting
to the running server that is currently using one of the key migration keystores. See Section 6.4.4.7,
“Migrating Keys Between Keyring Keystores”.

• --keyring-migration-source=plugin

Command-Line Format --keyring-migration-
source=plugin_name

Introduced 5.7.21

Type String

The source keyring plugin for key migration. See Section 6.4.4.7, “Migrating Keys Between Keyring
Keystores”.

The option value is similar to that for --plugin-load, except that only one plugin library can
be specified. The value is given as plugin_library or name=plugin_library, where
plugin_library is the name of a library file that contains plugin code, and name is the name of a
plugin to load. If a plugin library is named without any preceding plugin name, the server loads all plugins
in the library. With a preceding plugin name, the server loads only the named plugin from the libary. The
server looks for plugin library files in the directory named by the plugin_dir system variable.

Note

--keyring-migration-source and --keyring-migration-
destination are mandatory for all keyring migration operations. The source
and destination plugins must differ, and the migration server must support both
plugins.

• --keyring-migration-user=user_name

Command-Line Format --keyring-migration-user=user_name

Introduced 5.7.21

Type String

The user name of the MySQL account used for connecting to the running server that is currently using
one of the key migration keystores. See Section 6.4.4.7, “Migrating Keys Between Keyring Keystores”.

6.4.4.12 Keyring System Variables1286

The MySQL Keyring

MySQL Keyring plugins support the following system variables. Use them to configure keyring plugin
operation. These variables are unavailable unless the appropriate keyring plugin is installed (see
Section 6.4.4.1, “Keyring Plugin Installation”).

• keyring_aws_cmk_id

Command-Line Format --keyring-aws-cmk-id=value

Introduced 5.7.19

System Variable keyring_aws_cmk_id

Scope Global

Dynamic Yes

Type String

The customer master key (CMK) ID obtained from the AWS KMS server and used by the keyring_aws
plugin. This variable is unavailable unless that plugin is installed.

This variable is mandatory. If not specified, keyring_aws initialization fails.

• keyring_aws_conf_file

Command-Line Format --keyring-aws-conf-file=file_name

Introduced 5.7.19

System Variable keyring_aws_conf_file

Scope Global

Dynamic No

Type File name

Default Value platform specific

The location of the configuration file for the keyring_aws plugin. This variable is unavailable unless that
plugin is installed.

At plugin startup, keyring_aws reads the AWS secret access key ID and key from the configuration
file. For the keyring_aws plugin to start successfully, the configuration file must exist and contain
valid secret access key information, initialized as described in Section 6.4.4.5, “Using the keyring_aws
Amazon Web Services Keyring Plugin”.

The default file name is keyring_aws_conf, located in the default keyring file directory. The location of
this default directory is the same as for the keyring_file_data system variable. See the description
of that variable for details, as well as for considerations to take into account if you create the directory
manually.

• keyring_aws_data_file

Command-Line Format --keyring-aws-data-file

Introduced 5.7.19

System Variable keyring_aws_data_file

Scope Global

Dynamic No

Type File name

1287

The MySQL Keyring

Default Value platform specific

The location of the storage file for the keyring_aws plugin. This variable is unavailable unless that
plugin is installed.

At plugin startup, if the value assigned to keyring_aws_data_file specifies a file that does not exist,
the keyring_aws plugin attempts to create it (as well as its parent directory, if necessary). If the file
does exist, keyring_aws reads any encrypted keys contained in the file into its in-memory cache.
keyring_aws does not cache unencrypted keys in memory.

The default file name is keyring_aws_data, located in the default keyring file directory. The location of
this default directory is the same as for the keyring_file_data system variable. See the description
of that variable for details, as well as for considerations to take into account if you create the directory
manually.

• keyring_aws_region

Command-Line Format --keyring-aws-region=value

Introduced 5.7.19

System Variable keyring_aws_region

Scope Global

Dynamic Yes

Type Enumeration

Default Value us-east-1

Valid Values (≥ 5.7.39) af-south-1

ap-east-1

ap-northeast-1

ap-northeast-2

ap-northeast-3

ap-south-1

ap-southeast-1

ap-southeast-2

ca-central-1

cn-north-1

cn-northwest-1

eu-central-1

eu-north-1

eu-south-1

eu-west-1

1288

The MySQL Keyring

eu-west-2

eu-west-3

me-south-1

sa-east-1

us-east-1

us-east-2

us-gov-east-1

us-iso-east-1

us-iso-west-1

us-isob-east-1

us-west-1

us-west-2

Valid Values (≥ 5.7.27, ≤ 5.7.38) ap-northeast-1

ap-northeast-2

ap-south-1

ap-southeast-1

ap-southeast-2

ca-central-1

cn-north-1

cn-northwest-1

eu-central-1

eu-west-1

eu-west-2

eu-west-3

sa-east-1

us-east-1

us-east-2

us-west-1

us-west-2

1289

The MySQL Keyring

Valid Values (≥ 5.7.19, ≤ 5.7.26) ap-northeast-1

ap-northeast-2

ap-south-1

ap-southeast-1

ap-southeast-2

eu-central-1

eu-west-1

sa-east-1

us-east-1

us-west-1

us-west-2

The AWS region for the keyring_aws plugin. This variable is unavailable unless that plugin is installed.

If not set, the AWS region defaults to us-east-1. Thus, for any other region, this variable must be set
explicitly.

• keyring_encrypted_file_data

Command-Line Format --keyring-encrypted-file-
data=file_name

Introduced 5.7.21

System Variable keyring_encrypted_file_data

Scope Global

Dynamic Yes

Type File name

Default Value platform specific

The path name of the data file used for secure data storage by the keyring_encrypted_file plugin.
This variable is unavailable unless that plugin is installed. The file location should be in a directory
considered for use only by keyring plugins. For example, do not locate the file under the data directory.

Keyring operations are transactional: The keyring_encrypted_file plugin uses a backup file during
write operations to ensure that it can roll back to the original file if an operation fails. The backup file has
the same name as the value of the keyring_encrypted_file_data system variable with a suffix of
.backup.

Do not use the same keyring_encrypted_file data file for multiple MySQL instances. Each
instance should have its own unique data file.

The default file name is keyring_encrypted, located in a directory that is platform specific
and depends on the value of the INSTALL_LAYOUT CMake option, as shown in the following
table. To specify the default directory for the file explicitly if you are building from source, use the
INSTALL_MYSQLKEYRINGDIR CMake option.

1290

The MySQL Keyring

INSTALL_LAYOUT Value Default keyring_encrypted_file_data
Value

DEB, RPM, SLES, SVR4 /var/lib/mysql-keyring/
keyring_encrypted

Otherwise keyring/keyring_encrypted under the
CMAKE_INSTALL_PREFIX value

At plugin startup, if the value assigned to keyring_encrypted_file_data specifies a file that does
not exist, the keyring_encrypted_file plugin attempts to create it (as well as its parent directory, if
necessary).

If you create the directory manually, it should have a restrictive mode and be accessible only to the
account used to run the MySQL server. For example, on Unix and Unix-like systems, to use the /usr/
local/mysql/mysql-keyring directory, the following commands (executed as root) create the
directory and set its mode and ownership:

cd /usr/local/mysql
mkdir mysql-keyring
chmod 750 mysql-keyring
chown mysql mysql-keyring
chgrp mysql mysql-keyring

If the keyring_encrypted_file plugin cannot create or access its data file, it writes an error
message to the error log. If an attempted runtime assignment to keyring_encrypted_file_data
results in an error, the variable value remains unchanged.

Important

Once the keyring_encrypted_file plugin has created its data file
and started to use it, it is important not to remove the file. Loss of the
file causes data encrypted using its keys to become inaccessible. (It is
permissible to rename or move the file, as long as you change the value of
keyring_encrypted_file_data to match.)

• keyring_encrypted_file_password

Command-Line Format --keyring-encrypted-file-
password=password

Introduced 5.7.21

System Variable keyring_encrypted_file_password

Scope Global

Dynamic Yes

1291

The MySQL Keyring

Type String

The password used by the keyring_encrypted_file plugin. This variable is unavailable unless that
plugin is installed.

This variable is mandatory. If not specified, keyring_encrypted_file initialization fails.

If this variable is specified in an option file, the file should have a restrictive mode and be accessible only
to the account used to run the MySQL server.

Important

Once the keyring_encrypted_file_password value has been
set, changing it does not rotate the keyring password and could make
the server inaccessible. If an incorrect password is provided, the
keyring_encrypted_file plugin cannot load keys from the encrypted keyring
file.

The password value cannot be displayed at runtime with SHOW VARIABLES or the Performance Schema
global_variables table because the display value is obfuscated.

• keyring_file_data

Command-Line Format --keyring-file-data=file_name

Introduced 5.7.11

System Variable keyring_file_data

Scope Global

Dynamic Yes

Type File name

Default Value platform specific

The path name of the data file used for secure data storage by the keyring_file plugin. This variable
is unavailable unless that plugin is installed. The file location should be in a directory considered for use
only by keyring plugins. For example, do not locate the file under the data directory.

Keyring operations are transactional: The keyring_file plugin uses a backup file during write
operations to ensure that it can roll back to the original file if an operation fails. The backup file has the
same name as the value of the keyring_file_data system variable with a suffix of .backup.

Do not use the same keyring_file data file for multiple MySQL instances. Each instance should have
its own unique data file.

The default file name is keyring, located in a directory that is platform specific and depends on the
value of the INSTALL_LAYOUT CMake option, as shown in the following table. To specify the default
directory for the file explicitly if you are building from source, use the INSTALL_MYSQLKEYRINGDIR
CMake option.

INSTALL_LAYOUT Value Default keyring_file_data Value

DEB, RPM, SLES, SVR4 /var/lib/mysql-keyring/keyring

1292

The MySQL Keyring

INSTALL_LAYOUT Value Default keyring_file_data Value

Otherwise keyring/keyring under the
CMAKE_INSTALL_PREFIX value

At plugin startup, if the value assigned to keyring_file_data specifies a file that does not exist, the
keyring_file plugin attempts to create it (as well as its parent directory, if necessary).

If you create the directory manually, it should have a restrictive mode and be accessible only to the
account used to run the MySQL server. For example, on Unix and Unix-like systems, to use the /usr/
local/mysql/mysql-keyring directory, the following commands (executed as root) create the
directory and set its mode and ownership:

cd /usr/local/mysql
mkdir mysql-keyring
chmod 750 mysql-keyring
chown mysql mysql-keyring
chgrp mysql mysql-keyring

If the keyring_file plugin cannot create or access its data file, it writes an error message to the error
log. If an attempted runtime assignment to keyring_file_data results in an error, the variable value
remains unchanged.

Important

Once the keyring_file plugin has created its data file and started to use it,
it is important not to remove the file. For example, InnoDB uses the file to store
the master key used to decrypt the data in tables that use InnoDB tablespace
encryption; see Section 14.14, “InnoDB Data-at-Rest Encryption”. Loss of the file
causes data in such tables to become inaccessible. (It is permissible to rename
or move the file, as long as you change the value of keyring_file_data to
match.) It is recommended that you create a separate backup of the keyring data
file immediately after you create the first encrypted table and before and after
master key rotation.

• keyring_okv_conf_dir

Command-Line Format --keyring-okv-conf-dir=dir_name

Introduced 5.7.12

System Variable keyring_okv_conf_dir

Scope Global

Dynamic Yes

Type Directory name

Default Value empty string

The path name of the directory that stores configuration information used by the keyring_okv plugin.
This variable is unavailable unless that plugin is installed. The location should be a directory considered
for use only by the keyring_okv plugin. For example, do not locate the directory under the data
directory.

The default keyring_okv_conf_dir value is empty. For the keyring_okv plugin to be able
to access Oracle Key Vault, the value must be set to a directory that contains Oracle Key Vault

1293

MySQL Enterprise Audit

configuration and SSL materials. For instructions on setting up this directory, see Section 6.4.4.4, “Using
the keyring_okv KMIP Plugin”.

The directory should have a restrictive mode and be accessible only to the account used to run the
MySQL server. For example, on Unix and Unix-like systems, to use the /usr/local/mysql/mysql-
keyring-okv directory, the following commands (executed as root) create the directory and set its
mode and ownership:

cd /usr/local/mysql
mkdir mysql-keyring-okv
chmod 750 mysql-keyring-okv
chown mysql mysql-keyring-okv
chgrp mysql mysql-keyring-okv

If the value assigned to keyring_okv_conf_dir specifies a directory that does not exist, or that
does not contain configuration information that enables a connection to Oracle Key Vault to be
established, keyring_okv writes an error message to the error log. If an attempted runtime assignment
to keyring_okv_conf_dir results in an error, the variable value and keyring operation remain
unchanged.

• keyring_operations

Introduced 5.7.21

System Variable keyring_operations

Scope Global

Dynamic Yes

Type Boolean

Default Value ON

Whether keyring operations are enabled. This variable is used during key migration operations. See
Section 6.4.4.7, “Migrating Keys Between Keyring Keystores”.

6.4.5 MySQL Enterprise Audit

Note

MySQL Enterprise Audit is an extension included in MySQL Enterprise Edition,
a commercial product. To learn more about commercial products, see https://
www.mysql.com/products/.

MySQL Enterprise Edition includes MySQL Enterprise Audit, implemented using a server plugin named
audit_log. MySQL Enterprise Audit uses the open MySQL Audit API to enable standard, policy-based
monitoring, logging, and blocking of connection and query activity executed on specific MySQL servers.
Designed to meet the Oracle audit specification, MySQL Enterprise Audit provides an out of box, easy
to use auditing and compliance solution for applications that are governed by both internal and external
regulatory guidelines.

When installed, the audit plugin enables MySQL Server to produce a log file containing an audit record
of server activity. The log contents include when clients connect and disconnect, and what actions they
perform while connected, such as which databases and tables they access.

After you install the audit plugin (see Section 6.4.5.2, “Installing or Uninstalling MySQL Enterprise Audit”), it
writes an audit log file. By default, the file is named audit.log in the server data directory. To change the
name of the file, set the audit_log_file system variable at server startup.

1294

https://www.mysql.com/products/
https://www.mysql.com/products/

MySQL Enterprise Audit

By default, audit log file contents are written in new-style XML format, without compression or encryption.
To select the file format, set the audit_log_format system variable at server startup. For details on file
format and contents, see Section 6.4.5.4, “Audit Log File Formats”.

For more information about controlling how logging occurs, including audit log file naming and format
selection, see Section 6.4.5.5, “Configuring Audit Logging Characteristics”. To perform filtering of audited
events, see Section 6.4.5.7, “Audit Log Filtering”. For descriptions of the parameters used to configure the
audit log plugin, see Audit Log Options and Variables.

If the audit log plugin is enabled, the Performance Schema (see Chapter 25, MySQL Performance
Schema) has instrumentation for it. To identify the relevant instruments, use this query:

SELECT NAME FROM performance_schema.setup_instruments
WHERE NAME LIKE '%/alog/%';

6.4.5.1 Elements of MySQL Enterprise Audit

MySQL Enterprise Audit is based on the audit log plugin and related elements:

• A server-side plugin named audit_log examines auditable events and determines whether to write
them to the audit log.

• A set of functions enables manipulation of filtering definitions that control logging behavior, the
encryption password, and log file reading.

• Tables in the mysql system database provide persistent storage of filter and user account data.

• System variables enable audit log configuration and status variables provide runtime operational
information.

Note

Prior to MySQL 5.7.13, MySQL Enterprise Audit consists only of the audit_log
plugin and operates in legacy mode. See Section 6.4.5.10, “Legacy Mode Audit Log
Filtering”.

6.4.5.2 Installing or Uninstalling MySQL Enterprise Audit

This section describes how to install or uninstall MySQL Enterprise Audit, which is implemented using the
audit log plugin and related elements described in Section 6.4.5.1, “Elements of MySQL Enterprise Audit”.
For general information about installing plugins, see Section 5.5.1, “Installing and Uninstalling Plugins”.

Important

Read this entire section before following its instructions. Parts of the procedure
differ depending on your environment.

Note

If installed, the audit_log plugin involves some minimal overhead even when
disabled. To avoid this overhead, do not install MySQL Enterprise Audit unless you
plan to use it.

To be usable by the server, the plugin library file must be located in the MySQL plugin directory (the
directory named by the plugin_dir system variable). If necessary, configure the plugin directory location
by setting the value of plugin_dir at server startup.

1295

MySQL Enterprise Audit

Note

The instructions here apply to MySQL 5.7.13 and later.

Also, prior to MySQL 5.7.13, MySQL Enterprise Audit consists only of the
audit_log plugin and includes none of the other elements described in
Section 6.4.5.1, “Elements of MySQL Enterprise Audit”. As of MySQL 5.7.13, if the
audit_log plugin is already installed from a version of MySQL prior to 5.7.13,
uninstall it using the following statement and restart the server before installing the
current version:

UNINSTALL PLUGIN audit_log;

To install MySQL Enterprise Audit, look in the share directory of your MySQL installation and choose the
script that is appropriate for your platform. The available scripts differ in the suffix used to refer to the plugin
library file:

• audit_log_filter_win_install.sql: Choose this script for Windows systems that use .dll as
the file name suffix.

• audit_log_filter_linux_install.sql: Choose this script for Linux and similar systems that use
.so as the file name suffix.

Run the script as follows. The example here uses the Linux installation script. Make the appropriate
substitution for your system.

$> mysql -u root -p < audit_log_filter_linux_install.sql
Enter password: (enter root password here)

Note

Some MySQL versions have introduced changes to the structure of the MySQL
Enterprise Audit tables. To ensure that your tables are up to date for upgrades
from earlier versions of MySQL 5.7, run mysql_upgrade --force (which also
performs any other needed updates). If you prefer to run the update statements
only for the MySQL Enterprise Audit tables, see the following discussion.

As of MySQL 5.7.23, for new MySQL installations, the USER and HOST columns
in the audit_log_user table used by MySQL Enterprise Audit have definitions
that better correspond to the definitions of the User and Host columns in the
mysql.user system table. For upgrades to 5.7.23 or higher of an installation for
which MySQL Enterprise Audit is already installed, it is recommended that you alter
the table definitions as follows:

ALTER TABLE mysql.audit_log_user
 DROP FOREIGN KEY audit_log_user_ibfk_1;
ALTER TABLE mysql.audit_log_filter
 ENGINE=InnoDB;
ALTER TABLE mysql.audit_log_filter
 CONVERT TO CHARACTER SET utf8 COLLATE utf8_bin;
ALTER TABLE mysql.audit_log_user
 ENGINE=InnoDB;
ALTER TABLE mysql.audit_log_user
 CONVERT TO CHARACTER SET utf8 COLLATE utf8_bin;
ALTER TABLE mysql.audit_log_user
 MODIFY COLUMN USER VARCHAR(32);
ALTER TABLE mysql.audit_log_user
 ADD FOREIGN KEY (FILTERNAME) REFERENCES mysql.audit_log_filter(NAME);

1296

MySQL Enterprise Audit

As of MySQL 5.7.21, for a new installation of MySQL Enterprise Audit, InnoDB
is used instead of MyISAM for the audit log tables. For upgrades to 5.7.21 or
higher of an installation for which MySQL Enterprise Audit is already installed, it is
recommended that you alter the audit log tables to use InnoDB:

ALTER TABLE mysql.audit_log_user ENGINE=InnoDB;
ALTER TABLE mysql.audit_log_filter ENGINE=InnoDB;

Note

To use MySQL Enterprise Audit in the context of source/replica replication, Group
Replication, or InnoDB Cluster, you must use MySQL 5.7.21 or higher, and ensure
that the audit log tables use InnoDB as just described. Then you must prepare
the replica nodes prior to running the installation script on the source node. This is
necessary because the INSTALL PLUGIN statement in the script is not replicated.

1. On each replica node, extract the INSTALL PLUGIN statement from the
installation script and execute it manually.

2. On the source node, run the installation script as described previously.

To verify plugin installation, examine the Information Schema PLUGINS table or use the SHOW PLUGINS
statement (see Section 5.5.2, “Obtaining Server Plugin Information”). For example:

mysql> SELECT PLUGIN_NAME, PLUGIN_STATUS
 FROM INFORMATION_SCHEMA.PLUGINS
 WHERE PLUGIN_NAME LIKE 'audit%';
+-------------+---------------+
| PLUGIN_NAME | PLUGIN_STATUS |
+-------------+---------------+
| audit_log | ACTIVE |
+-------------+---------------+

If the plugin fails to initialize, check the server error log for diagnostic messages.

After MySQL Enterprise Audit is installed, you can use the --audit-log option for subsequent server
startups to control audit_log plugin activation. For example, to prevent the plugin from being removed at
runtime, use this option:

[mysqld]
audit-log=FORCE_PLUS_PERMANENT

If it is desired to prevent the server from running without the audit plugin, use --audit-log with a
value of FORCE or FORCE_PLUS_PERMANENT to force server startup to fail if the plugin does not initialize
successfully.

Important

By default, rule-based audit log filtering logs no auditable events for any users.
This differs from legacy audit log behavior (prior to MySQL 5.7.13), which logs
all auditable events for all users (see Section 6.4.5.10, “Legacy Mode Audit Log
Filtering”). Should you wish to produce log-everything behavior with rule-based
filtering, create a simple filter to enable logging and assign it to the default account:

SELECT audit_log_filter_set_filter('log_all', '{ "filter": { "log": true } }');
SELECT audit_log_filter_set_user('%', 'log_all');

The filter assigned to % is used for connections from any account that has no
explicitly assigned filter (which initially is true for all accounts).

1297

MySQL Enterprise Audit

Once installed as just described, MySQL Enterprise Audit remains installed until uninstalled. To remove it,
execute the following statements:

DROP TABLE IF EXISTS mysql.audit_log_user;
DROP TABLE IF EXISTS mysql.audit_log_filter;
UNINSTALL PLUGIN audit_log;
DROP FUNCTION audit_log_filter_set_filter;
DROP FUNCTION audit_log_filter_remove_filter;
DROP FUNCTION audit_log_filter_set_user;
DROP FUNCTION audit_log_filter_remove_user;
DROP FUNCTION audit_log_filter_flush;
DROP FUNCTION audit_log_encryption_password_get;
DROP FUNCTION audit_log_encryption_password_set;
DROP FUNCTION audit_log_read;
DROP FUNCTION audit_log_read_bookmark;

6.4.5.3 MySQL Enterprise Audit Security Considerations

By default, contents of audit log files produced by the audit log plugin are not encrypted and may contain
sensitive information, such as the text of SQL statements. For security reasons, audit log files should be
written to a directory accessible only to the MySQL server and to users with a legitimate reason to view
the log. The default file name is audit.log in the data directory. This can be changed by setting the
audit_log_file system variable at server startup. Other audit log files may exist due to log rotation.

For additional security, enable audit log file encryption. See Encrypting Audit Log Files.

6.4.5.4 Audit Log File Formats

The MySQL server calls the audit log plugin to write an audit record to its log file whenever an auditable
event occurs. Typically the first audit record written after plugin startup contains the server description
and startup options. Elements following that one represent events such as client connect and disconnect
events, executed SQL statements, and so forth. Only top-level statements are logged, not statements
within stored programs such as triggers or stored procedures. Contents of files referenced by statements
such as LOAD DATA are not logged.

To select the log format that the audit log plugin uses to write its log file, set the audit_log_format
system variable at server startup. These formats are available:

• New-style XML format (audit_log_format=NEW): An XML format that has better compatibility with
Oracle Audit Vault than old-style XML format. MySQL 5.7 uses new-style XML format by default.

• Old-style XML format (audit_log_format=OLD): The original audit log format used by default in older
MySQL series.

• JSON format (audit_log_format=JSON)

By default, audit log file contents are written in new-style XML format, without compression or encryption.

Note

For information about issues to consider when changing the log format, see
Selecting Audit Log File Format.

The following sections describe the available audit logging formats:

• New-Style XML Audit Log File Format

• Old-Style XML Audit Log File Format

• JSON Audit Log File Format

1298

MySQL Enterprise Audit

New-Style XML Audit Log File Format

Here is a sample log file in new-style XML format (audit_log_format=NEW), reformatted slightly for
readability:

<?xml version="1.0" encoding="utf-8"?>
<AUDIT>
 <AUDIT_RECORD>
 <TIMESTAMP>2019-10-03T14:06:33 UTC</TIMESTAMP>
 <RECORD_ID>1_2019-10-03T14:06:33</RECORD_ID>
 <NAME>Audit</NAME>
 <SERVER_ID>1</SERVER_ID>
 <VERSION>1</VERSION>
 <STARTUP_OPTIONS>/usr/local/mysql/bin/mysqld
 --socket=/usr/local/mysql/mysql.sock
 --port=3306</STARTUP_OPTIONS>
 <OS_VERSION>i686-Linux</OS_VERSION>
 <MYSQL_VERSION>5.7.21-log</MYSQL_VERSION>
 </AUDIT_RECORD>
 <AUDIT_RECORD>
 <TIMESTAMP>2019-10-03T14:09:38 UTC</TIMESTAMP>
 <RECORD_ID>2_2019-10-03T14:06:33</RECORD_ID>
 <NAME>Connect</NAME>
 <CONNECTION_ID>5</CONNECTION_ID>
 <STATUS>0</STATUS>
 <STATUS_CODE>0</STATUS_CODE>
 <USER>root</USER>
 <OS_LOGIN/>
 <HOST>localhost</HOST>
 <IP>127.0.0.1</IP>
 <COMMAND_CLASS>connect</COMMAND_CLASS>
 <CONNECTION_TYPE>SSL/TLS</CONNECTION_TYPE>
 <PRIV_USER>root</PRIV_USER>
 <PROXY_USER/>
 <DB>test</DB>
 </AUDIT_RECORD>

...

 <AUDIT_RECORD>
 <TIMESTAMP>2019-10-03T14:09:38 UTC</TIMESTAMP>
 <RECORD_ID>6_2019-10-03T14:06:33</RECORD_ID>
 <NAME>Query</NAME>
 <CONNECTION_ID>5</CONNECTION_ID>
 <STATUS>0</STATUS>
 <STATUS_CODE>0</STATUS_CODE>
 <USER>root[root] @ localhost [127.0.0.1]</USER>
 <OS_LOGIN/>
 <HOST>localhost</HOST>
 <IP>127.0.0.1</IP>
 <COMMAND_CLASS>drop_table</COMMAND_CLASS>
 <SQLTEXT>DROP TABLE IF EXISTS t</SQLTEXT>
 </AUDIT_RECORD>

...

 <AUDIT_RECORD>
 <TIMESTAMP>2019-10-03T14:09:39 UTC</TIMESTAMP>
 <RECORD_ID>8_2019-10-03T14:06:33</RECORD_ID>
 <NAME>Quit</NAME>
 <CONNECTION_ID>5</CONNECTION_ID>
 <STATUS>0</STATUS>
 <STATUS_CODE>0</STATUS_CODE>
 <USER>root</USER>
 <OS_LOGIN/>
 <HOST>localhost</HOST>
 <IP>127.0.0.1</IP>

1299

MySQL Enterprise Audit

 <COMMAND_CLASS>connect</COMMAND_CLASS>
 <CONNECTION_TYPE>SSL/TLS</CONNECTION_TYPE>
 </AUDIT_RECORD>

...

 <AUDIT_RECORD>
 <TIMESTAMP>2019-10-03T14:09:43 UTC</TIMESTAMP>
 <RECORD_ID>11_2019-10-03T14:06:33</RECORD_ID>
 <NAME>Quit</NAME>
 <CONNECTION_ID>6</CONNECTION_ID>
 <STATUS>0</STATUS>
 <STATUS_CODE>0</STATUS_CODE>
 <USER>root</USER>
 <OS_LOGIN/>
 <HOST>localhost</HOST>
 <IP>127.0.0.1</IP>
 <COMMAND_CLASS>connect</COMMAND_CLASS>
 <CONNECTION_TYPE>SSL/TLS</CONNECTION_TYPE>
 </AUDIT_RECORD>
 <AUDIT_RECORD>
 <TIMESTAMP>2019-10-03T14:09:45 UTC</TIMESTAMP>
 <RECORD_ID>12_2019-10-03T14:06:33</RECORD_ID>
 <NAME>NoAudit</NAME>
 <SERVER_ID>1</SERVER_ID>
 </AUDIT_RECORD>
</AUDIT>

The audit log file is written as XML, using UTF-8 (up to 4 bytes per character). The root element is
<AUDIT>. The root element contains <AUDIT_RECORD> elements, each of which provides information
about an audited event. When the audit log plugin begins writing a new log file, it writes the XML
declaration and opening <AUDIT> root element tag. When the plugin closes a log file, it writes the closing
</AUDIT> root element tag. The closing tag is not present while the file is open.

Elements within <AUDIT_RECORD> elements have these characteristics:

• Some elements appear in every <AUDIT_RECORD> element. Others are optional and may appear
depending on the audit record type.

• Order of elements within an <AUDIT_RECORD> element is not guaranteed.

• Element values are not fixed length. Long values may be truncated as indicated in the element
descriptions given later.

• The <, >, ", and & characters are encoded as <, >, ", and &, respectively. NUL
bytes (U+00) are encoded as the ? character.

• Characters not valid as XML characters are encoded using numeric character references. Valid XML
characters are:

#x9 | #xA | #xD | [#x20-#xD7FF] | [#xE000-#xFFFD] | [#x10000-#x10FFFF]

The following elements are mandatory in every <AUDIT_RECORD> element:

• <NAME>

A string representing the type of instruction that generated the audit event, such as a command that the
server received from a client.

Example:

<NAME>Query</NAME>

1300

MySQL Enterprise Audit

Some common <NAME> values:

Audit When auditing starts, which may be server startup time
Connect When a client connects, also known as logging in
Query An SQL statement (executed directly)
Prepare Preparation of an SQL statement; usually followed by Execute
Execute Execution of an SQL statement; usually follows Prepare
Shutdown Server shutdown
Quit When a client disconnects
NoAudit Auditing has been turned off

The possible values are Audit, Binlog Dump, Change user, Close stmt, Connect Out,
Connect, Create DB, Daemon, Debug, Delayed insert, Drop DB, Execute, Fetch, Field
List, Init DB, Kill, Long Data, NoAudit, Ping, Prepare, Processlist, Query, Quit,
Refresh, Register Slave, Reset stmt, Set option, Shutdown, Sleep, Statistics, Table
Dump, TableDelete, TableInsert, TableRead, TableUpdate, Time.

Many of these values correspond to the COM_xxx command values listed in the my_command.h
header file. For example, Create DB and Change user correspond to COM_CREATE_DB and
COM_CHANGE_USER, respectively.

Events having <NAME> values of TableXXX accompany Query events. For example, the following
statement generates one Query event, two TableRead events, and a TableInsert events:

INSERT INTO t3 SELECT t1.* FROM t1 JOIN t2;

Each TableXXX event contains <TABLE> and <DB> elements to identify the table to which the event
refers and the database that contains the table.

• <RECORD_ID>

A unique identifier for the audit record. The value is composed from a sequence number and timestamp,
in the format SEQ_TIMESTAMP. When the audit log plugin opens the audit log file, it initializes the
sequence number to the size of the audit log file, then increments the sequence by 1 for each record
logged. The timestamp is a UTC value in YYYY-MM-DDThh:mm:ss format indicating the date and time
when the audit log plugin opened the file.

Example:

<RECORD_ID>12_2019-10-03T14:06:33</RECORD_ID>

• <TIMESTAMP>

A string representing a UTC value in YYYY-MM-DDThh:mm:ss UTC format indicating the date and time
when the audit event was generated. For example, the event corresponding to execution of an SQL
statement received from a client has a <TIMESTAMP> value occurring after the statement finishes, not
when it was received.

Example:

<TIMESTAMP>2019-10-03T14:09:45 UTC</TIMESTAMP>

The following elements are optional in <AUDIT_RECORD> elements. Many of them occur only with specific
<NAME> element values.

• <COMMAND_CLASS>

A string that indicates the type of action performed.

1301

MySQL Enterprise Audit

Example:

<COMMAND_CLASS>drop_table</COMMAND_CLASS>

The values correspond to the statement/sql/xxx command counters. For example, xxx is
drop_table and select for DROP TABLE and SELECT statements, respectively. The following
statement displays the possible names:

SELECT REPLACE(EVENT_NAME, 'statement/sql/', '') AS name
FROM performance_schema.events_statements_summary_global_by_event_name
WHERE EVENT_NAME LIKE 'statement/sql/%'
ORDER BY name;

• <CONNECTION_ID>

An unsigned integer representing the client connection identifier. This is the same as the value returned
by the CONNECTION_ID() function within the session.

Example:

<CONNECTION_ID>127</CONNECTION_ID>

• <CONNECTION_TYPE>

The security state of the connection to the server. Permitted values are TCP/IP (TCP/IP connection
established without encryption), SSL/TLS (TCP/IP connection established with encryption), Socket
(Unix socket file connection), Named Pipe (Windows named pipe connection), and Shared Memory
(Windows shared memory connection).

Example:

<CONNECTION_TYPE>SSL/TLS</CONNECTION_TYPE>

• <DB>

A string representing a database name.

Example:

<DB>test</DB>

For connect events, this element indicates the default database; the element is empty if there is no
default database. For table-access events, the element indicates the database to which the accessed
table belongs.

• <HOST>

A string representing the client host name.

Example:

<HOST>localhost</HOST>

• <IP>

A string representing the client IP address.

Example:

<IP>127.0.0.1</IP>

1302

MySQL Enterprise Audit

• <MYSQL_VERSION>

A string representing the MySQL server version. This is the same as the value of the VERSION()
function or version system variable.

Example:

<MYSQL_VERSION>5.7.21-log</MYSQL_VERSION>

• <OS_LOGIN>

A string representing the external user name used during the authentication process, as set by the plugin
used to authenticate the client. With native (built-in) MySQL authentication, or if the plugin does not set
the value, this element is empty. The value is the same as that of the external_user system variable
(see Section 6.2.14, “Proxy Users”).

Example:

<OS_LOGIN>jeffrey</OS_LOGIN>

• <OS_VERSION>

A string representing the operating system on which the server was built or is running.

Example:

<OS_VERSION>x86_64-Linux</OS_VERSION>

• <PRIV_USER>

A string representing the user that the server authenticated the client as. This is the user name that the
server uses for privilege checking, and may differ from the <USER> value.

Example:

<PRIV_USER>jeffrey</PRIV_USER>

• <PROXY_USER>

A string representing the proxy user (see Section 6.2.14, “Proxy Users”). The value is empty if user
proxying is not in effect.

Example:

<PROXY_USER>developer</PROXY_USER>

• <SERVER_ID>

An unsigned integer representing the server ID. This is the same as the value of the server_id system
variable.

Example:

<SERVER_ID>1</SERVER_ID>

• <SQLTEXT>

A string representing the text of an SQL statement. The value can be empty. Long values may be
truncated. The string, like the audit log file itself, is written using UTF-8 (up to 4 bytes per character), so1303

MySQL Enterprise Audit

the value may be the result of conversion. For example, the original statement might have been received
from the client as an SJIS string.

Example:

<SQLTEXT>DELETE FROM t1</SQLTEXT>

• <STARTUP_OPTIONS>

A string representing the options that were given on the command line or in option files when the MySQL
server was started. The first option is the path to the server executable.

Example:

<STARTUP_OPTIONS>/usr/local/mysql/bin/mysqld
 --port=3306 --log_output=FILE</STARTUP_OPTIONS>

• <STATUS>

An unsigned integer representing the command status: 0 for success, nonzero if an error occurred.
This is the same as the value of the mysql_errno() C API function. See the description for
<STATUS_CODE> for information about how it differs from <STATUS>.

The audit log does not contain the SQLSTATE value or error message. To see the associations between
error codes, SQLSTATE values, and messages, see Server Error Message Reference.

Warnings are not logged.

Example:

<STATUS>1051</STATUS>

• <STATUS_CODE>

An unsigned integer representing the command status: 0 for success, 1 if an error occurred.

The STATUS_CODE value differs from the STATUS value: STATUS_CODE is 0 for success and 1 for
error, which is compatible with the EZ_collector consumer for Audit Vault. STATUS is the value of the
mysql_errno() C API function. This is 0 for success and nonzero for error, and thus is not necessarily
1 for error.

Example:

<STATUS_CODE>0</STATUS_CODE>

• <TABLE>

A string representing a table name.

Example:

<TABLE>t3</TABLE>

• <USER>

A string representing the user name sent by the client. This may differ from the <PRIV_USER> value.

Example:

<USER>root[root] @ localhost [127.0.0.1]</USER>

1304

https://dev.mysql.com/doc/c-api/5.7/en/mysql-errno.html
https://dev.mysql.com/doc/mysql-errors/5.7/en/server-error-reference.html
https://dev.mysql.com/doc/c-api/5.7/en/mysql-errno.html

MySQL Enterprise Audit

• <VERSION>

An unsigned integer representing the version of the audit log file format.

Example:

<VERSION>1</VERSION>

Old-Style XML Audit Log File Format

Here is a sample log file in old-style XML format (audit_log_format=OLD), reformatted slightly for
readability:

<?xml version="1.0" encoding="utf-8"?>
<AUDIT>
 <AUDIT_RECORD
 TIMESTAMP="2019-10-03T14:25:00 UTC"
 RECORD_ID="1_2019-10-03T14:25:00"
 NAME="Audit"
 SERVER_ID="1"
 VERSION="1"
 STARTUP_OPTIONS="--port=3306"
 OS_VERSION="i686-Linux"
 MYSQL_VERSION="5.7.21-log"/>
 <AUDIT_RECORD
 TIMESTAMP="2019-10-03T14:25:24 UTC"
 RECORD_ID="2_2019-10-03T14:25:00"
 NAME="Connect"
 CONNECTION_ID="4"
 STATUS="0"
 STATUS_CODE="0"
 USER="root"
 OS_LOGIN=""
 HOST="localhost"
 IP="127.0.0.1"
 COMMAND_CLASS="connect"
 CONNECTION_TYPE="SSL/TLS"
 PRIV_USER="root"
 PROXY_USER=""
 DB="test"/>

...

 <AUDIT_RECORD
 TIMESTAMP="2019-10-03T14:25:24 UTC"
 RECORD_ID="6_2019-10-03T14:25:00"
 NAME="Query"
 CONNECTION_ID="4"
 STATUS="0"
 STATUS_CODE="0"
 USER="root[root] @ localhost [127.0.0.1]"
 OS_LOGIN=""
 HOST="localhost"
 IP="127.0.0.1"
 COMMAND_CLASS="drop_table"
 SQLTEXT="DROP TABLE IF EXISTS t"/>

...

 <AUDIT_RECORD
 TIMESTAMP="2019-10-03T14:25:24 UTC"
 RECORD_ID="8_2019-10-03T14:25:00"
 NAME="Quit"
 CONNECTION_ID="4"
 STATUS="0"
 STATUS_CODE="0"

1305

MySQL Enterprise Audit

 USER="root"
 OS_LOGIN=""
 HOST="localhost"
 IP="127.0.0.1"
 COMMAND_CLASS="connect"
 CONNECTION_TYPE="SSL/TLS"/>
 <AUDIT_RECORD
 TIMESTAMP="2019-10-03T14:25:32 UTC"
 RECORD_ID="12_2019-10-03T14:25:00"
 NAME="NoAudit"
 SERVER_ID="1"/>
</AUDIT>

The audit log file is written as XML, using UTF-8 (up to 4 bytes per character). The root element is
<AUDIT>. The root element contains <AUDIT_RECORD> elements, each of which provides information
about an audited event. When the audit log plugin begins writing a new log file, it writes the XML
declaration and opening <AUDIT> root element tag. When the plugin closes a log file, it writes the closing
</AUDIT> root element tag. The closing tag is not present while the file is open.

Attributes of <AUDIT_RECORD> elements have these characteristics:

• Some attributes appear in every <AUDIT_RECORD> element. Others are optional and may appear
depending on the audit record type.

• Order of attributes within an <AUDIT_RECORD> element is not guaranteed.

• Attribute values are not fixed length. Long values may be truncated as indicated in the attribute
descriptions given later.

• The <, >, ", and & characters are encoded as <, >, ", and &, respectively. NUL
bytes (U+00) are encoded as the ? character.

• Characters not valid as XML characters are encoded using numeric character references. Valid XML
characters are:

#x9 | #xA | #xD | [#x20-#xD7FF] | [#xE000-#xFFFD] | [#x10000-#x10FFFF]

The following attributes are mandatory in every <AUDIT_RECORD> element:

• NAME

A string representing the type of instruction that generated the audit event, such as a command that the
server received from a client.

Example: NAME="Query"

Some common NAME values:

Audit When auditing starts, which may be server startup time
Connect When a client connects, also known as logging in
Query An SQL statement (executed directly)
Prepare Preparation of an SQL statement; usually followed by Execute
Execute Execution of an SQL statement; usually follows Prepare
Shutdown Server shutdown
Quit When a client disconnects
NoAudit Auditing has been turned off

The possible values are Audit, Binlog Dump, Change user, Close stmt, Connect Out,
Connect, Create DB, Daemon, Debug, Delayed insert, Drop DB, Execute, Fetch, Field
List, Init DB, Kill, Long Data, NoAudit, Ping, Prepare, Processlist, Query, Quit,
Refresh, Register Slave, Reset stmt, Set option, Shutdown, Sleep, Statistics, Table
Dump, TableDelete, TableInsert, TableRead, TableUpdate, Time.

1306

MySQL Enterprise Audit

Many of these values correspond to the COM_xxx command values listed in the my_command.h
header file. For example, "Create DB" and "Change user" correspond to COM_CREATE_DB and
COM_CHANGE_USER, respectively.

Events having NAME values of TableXXX accompany Query events. For example, the following
statement generates one Query event, two TableRead events, and a TableInsert events:

INSERT INTO t3 SELECT t1.* FROM t1 JOIN t2;

Each TableXXX event has TABLE and DB attributes to identify the table to which the event refers and
the database that contains the table.

• RECORD_ID

A unique identifier for the audit record. The value is composed from a sequence number and timestamp,
in the format SEQ_TIMESTAMP. When the audit log plugin opens the audit log file, it initializes the
sequence number to the size of the audit log file, then increments the sequence by 1 for each record
logged. The timestamp is a UTC value in YYYY-MM-DDThh:mm:ss format indicating the date and time
when the audit log plugin opened the file.

Example: RECORD_ID="12_2019-10-03T14:25:00"

• TIMESTAMP

A string representing a UTC value in YYYY-MM-DDThh:mm:ss UTC format indicating the date and time
when the audit event was generated. For example, the event corresponding to execution of an SQL
statement received from a client has a TIMESTAMP value occurring after the statement finishes, not
when it was received.

Example: TIMESTAMP="2019-10-03T14:25:32 UTC"

The following attributes are optional in <AUDIT_RECORD> elements. Many of them occur only for elements
with specific values of the NAME attribute.

• COMMAND_CLASS

A string that indicates the type of action performed.

Example: COMMAND_CLASS="drop_table"

The values correspond to the statement/sql/xxx command counters. For example, xxx is
drop_table and select for DROP TABLE and SELECT statements, respectively. The following
statement displays the possible names:

SELECT REPLACE(EVENT_NAME, 'statement/sql/', '') AS name
FROM performance_schema.events_statements_summary_global_by_event_name
WHERE EVENT_NAME LIKE 'statement/sql/%'
ORDER BY name;

• CONNECTION_ID

An unsigned integer representing the client connection identifier. This is the same as the value returned
by the CONNECTION_ID() function within the session.

Example: CONNECTION_ID="127"

• CONNECTION_TYPE

1307

MySQL Enterprise Audit

The security state of the connection to the server. Permitted values are TCP/IP (TCP/IP connection
established without encryption), SSL/TLS (TCP/IP connection established with encryption), Socket
(Unix socket file connection), Named Pipe (Windows named pipe connection), and Shared Memory
(Windows shared memory connection).

Example: CONNECTION_TYPE="SSL/TLS"

• DB

A string representing a database name.

Example: DB="test"

For connect events, this attribute indicates the default database; the attribute is empty if there is no
default database. For table-access events, the attribute indicates the database to which the accessed
table belongs.

• HOST

A string representing the client host name.

Example: HOST="localhost"

• IP

A string representing the client IP address.

Example: IP="127.0.0.1"

• MYSQL_VERSION

A string representing the MySQL server version. This is the same as the value of the VERSION()
function or version system variable.

Example: MYSQL_VERSION="5.7.21-log"

• OS_LOGIN

A string representing the external user name used during the authentication process, as set by the plugin
used to authenticate the client. With native (built-in) MySQL authentication, or if the plugin does not set
the value, this attribute is empty. The value is the same as that of the external_user system variable
(see Section 6.2.14, “Proxy Users”).

Example: OS_LOGIN="jeffrey"

• OS_VERSION

A string representing the operating system on which the server was built or is running.

Example: OS_VERSION="x86_64-Linux"

• PRIV_USER

A string representing the user that the server authenticated the client as. This is the user name that the
server uses for privilege checking, and it may differ from the USER value.

Example: PRIV_USER="jeffrey"

1308

MySQL Enterprise Audit

• PROXY_USER

A string representing the proxy user (see Section 6.2.14, “Proxy Users”). The value is empty if user
proxying is not in effect.

Example: PROXY_USER="developer"

• SERVER_ID

An unsigned integer representing the server ID. This is the same as the value of the server_id system
variable.

Example: SERVER_ID="1"

• SQLTEXT

A string representing the text of an SQL statement. The value can be empty. Long values may be
truncated. The string, like the audit log file itself, is written using UTF-8 (up to 4 bytes per character), so
the value may be the result of conversion. For example, the original statement might have been received
from the client as an SJIS string.

Example: SQLTEXT="DELETE FROM t1"

• STARTUP_OPTIONS

A string representing the options that were given on the command line or in option files when the MySQL
server was started.

Example: STARTUP_OPTIONS="--port=3306 --log_output=FILE"

• STATUS

An unsigned integer representing the command status: 0 for success, nonzero if an error occurred. This
is the same as the value of the mysql_errno() C API function. See the description for STATUS_CODE
for information about how it differs from STATUS.

The audit log does not contain the SQLSTATE value or error message. To see the associations between
error codes, SQLSTATE values, and messages, see Server Error Message Reference.

Warnings are not logged.

Example: STATUS="1051"

• STATUS_CODE

An unsigned integer representing the command status: 0 for success, 1 if an error occurred.

The STATUS_CODE value differs from the STATUS value: STATUS_CODE is 0 for success and 1 for
error, which is compatible with the EZ_collector consumer for Audit Vault. STATUS is the value of the
mysql_errno() C API function. This is 0 for success and nonzero for error, and thus is not necessarily
1 for error.

Example: STATUS_CODE="0"

1309

https://dev.mysql.com/doc/c-api/5.7/en/mysql-errno.html
https://dev.mysql.com/doc/mysql-errors/5.7/en/server-error-reference.html
https://dev.mysql.com/doc/c-api/5.7/en/mysql-errno.html

MySQL Enterprise Audit

• TABLE

A string representing a table name.

Example: TABLE="t3"

• USER

A string representing the user name sent by the client. This may differ from the PRIV_USER value.

• VERSION

An unsigned integer representing the version of the audit log file format.

Example: VERSION="1"

JSON Audit Log File Format

For JSON-format audit logging (audit_log_format=JSON), the log file contents form a JSON array
with each array element representing an audited event as a JSON hash of key-value pairs. Examples of
complete event records appear later in this section. The following is an excerpt of partial events:

[
 {
 "timestamp": "2019-10-03 13:50:01",
 "id": 0,
 "class": "audit",
 "event": "startup",
 ...
 },
 {
 "timestamp": "2019-10-03 15:02:32",
 "id": 0,
 "class": "connection",
 "event": "connect",
 ...
 },
 ...
 {
 "timestamp": "2019-10-03 17:37:26",
 "id": 0,
 "class": "table_access",
 "event": "insert",
 ...
 }
 ...
]

The audit log file is written using UTF-8 (up to 4 bytes per character). When the audit log plugin begins
writing a new log file, it writes the opening [array marker. When the plugin closes a log file, it writes the
closing] array marker. The closing marker is not present while the file is open.

Items within audit records have these characteristics:

• Some items appear in every audit record. Others are optional and may appear depending on the audit
record type.

• Order of items within an audit record is not guaranteed.

• Item values are not fixed length. Long values may be truncated as indicated in the item descriptions
given later.

1310

MySQL Enterprise Audit

• The " and \ characters are encoded as \" and \\, respectively.

The following examples show the JSON object formats for different event types (as indicated by the class
and event items), reformatted slightly for readability:

Auditing startup event:

{ "timestamp": "2019-10-03 14:21:56",
 "id": 0,
 "class": "audit",
 "event": "startup",
 "connection_id": 0,
 "startup_data": { "server_id": 1,
 "os_version": "i686-Linux",
 "mysql_version": "5.7.21-log",
 "args": ["/usr/local/mysql/bin/mysqld",
 "--loose-audit-log-format=JSON",
 "--log-error=log.err",
 "--pid-file=mysqld.pid",
 "--port=3306"] } }

When the audit log plugin starts as a result of server startup (as opposed to being enabled at runtime),
connection_id is set to 0, and account and login are not present.

Auditing shutdown event:

{ "timestamp": "2019-10-03 14:28:20",
 "id": 3,
 "class": "audit",
 "event": "shutdown",
 "connection_id": 0,
 "shutdown_data": { "server_id": 1 } }

When the audit log plugin is uninstalled as a result of server shutdown (as opposed to being disabled at
runtime), connection_id is set to 0, and account and login are not present.

Connect or change-user event:

{ "timestamp": "2019-10-03 14:23:18",
 "id": 1,
 "class": "connection",
 "event": "connect",
 "connection_id": 5,
 "account": { "user": "root", "host": "localhost" },
 "login": { "user": "root", "os": "", "ip": "::1", "proxy": "" },
 "connection_data": { "connection_type": "ssl",
 "status": 0,
 "db": "test" } }

Disconnect event:

{ "timestamp": "2019-10-03 14:24:45",
 "id": 3,
 "class": "connection",
 "event": "disconnect",
 "connection_id": 5,
 "account": { "user": "root", "host": "localhost" },
 "login": { "user": "root", "os": "", "ip": "::1", "proxy": "" },
 "connection_data": { "connection_type": "ssl" } }

Query event:

{ "timestamp": "2019-10-03 14:23:35",
 "id": 2,
 "class": "general",

1311

MySQL Enterprise Audit

 "event": "status",
 "connection_id": 5,
 "account": { "user": "root", "host": "localhost" },
 "login": { "user": "root", "os": "", "ip": "::1", "proxy": "" },
 "general_data": { "command": "Query",
 "sql_command": "show_variables",
 "query": "SHOW VARIABLES",
 "status": 0 } }

Table access event (read, delete, insert, update):

{ "timestamp": "2019-10-03 14:23:41",
 "id": 0,
 "class": "table_access",
 "event": "insert",
 "connection_id": 5,
 "account": { "user": "root", "host": "localhost" },
 "login": { "user": "root", "os": "", "ip": "127.0.0.1", "proxy": "" },
 "table_access_data": { "db": "test",
 "table": "t1",
 "query": "INSERT INTO t1 (i) VALUES(1),(2),(3)",
 "sql_command": "insert" } }

The items in the following list appear at the top level of JSON-format audit records: Each item value is
either a scalar or a JSON hash. For items that have a hash value, the description lists only the item names
within that hash. For more complete descriptions of second-level hash items, see later in this section.

• account

The MySQL account associated with the event. The value is a hash containing these items equivalent to
the value of the CURRENT_USER() function within the section: user, host.

Example:

"account": { "user": "root", "host": "localhost" }

• class

A string representing the event class. The class defines the type of event, when taken together with the
event item that specifies the event subclass.

Example:

"class": "connection"

The following table shows the permitted combinations of class and event values.

Table 6.25 Audit Log Class and Event Combinations

Class Value Permitted Event Values

audit startup, shutdown

connection connect, change_user, disconnect

general status

table_access_data read, delete, insert, update

• connection_data

Information about a client connection. The value is a hash containing these items: connection_type,
status, db. This item occurs only for audit records with a class value of connection.

1312

MySQL Enterprise Audit

Example:

"connection_data": { "connection_type": "ssl",
 "status": 0,
 "db": "test" }

• connection_id

An unsigned integer representing the client connection identifier. This is the same as the value returned
by the CONNECTION_ID() function within the session.

Example:

"connection_id": 5

• event

A string representing the subclass of the event class. The subclass defines the type of event, when
taken together with the class item that specifies the event class. For more information, see the class
item description.

Example:

"event": "connect"

• general_data

Information about an executed statement or command. The value is a hash containing these items:
command, sql_command, query, status. This item occurs only for audit records with a class value
of general.

Example:

"general_data": { "command": "Query",
 "sql_command": "show_variables",
 "query": "SHOW VARIABLES",
 "status": 0 }

• id

An unsigned integer representing an event ID.

Example:

"id": 2

For audit records that have the same timestamp value, their id values distinguish them and form a
sequence. Within the audit log, timestamp/id pairs are unique. These pairs are bookmarks that identify
event locations within the log.

• login

Information indicating how a client connected to the server. The value is a hash containing these items:
user, os, ip, proxy.

Example:

"login": { "user": "root", "os": "", "ip": "::1", "proxy": "" }

• shutdown_data

1313

MySQL Enterprise Audit

Information pertaining to audit log plugin termination. The value is a hash containing these items:
server_id This item occurs only for audit records with class and event values of audit and
shutdown, respectively.

Example:

"shutdown_data": { "server_id": 1 }

• startup_data

Information pertaining to audit log plugin initialization. The value is a hash containing these items:
server_id, os_version, mysql_version, args. This item occurs only for audit records with class
and event values of audit and startup, respectively.

Example:

"startup_data": { "server_id": 1,
 "os_version": "i686-Linux",
 "mysql_version": "5.7.21-log",
 "args": ["/usr/local/mysql/bin/mysqld",
 "--loose-audit-log-format=JSON",
 "--log-error=log.err",
 "--pid-file=mysqld.pid",
 "--port=3306"] }

• table_access_data

Information about an access to a table. The value is a hash containing these items: db, table, query,
sql_command, This item occurs only for audit records with a class value of table_access.

Example:

"table_access_data": { "db": "test",
 "table": "t1",
 "query": "INSERT INTO t1 (i) VALUES(1),(2),(3)",
 "sql_command": "insert" }

• time

This field is similar to that in the timestamp field, but the value is an integer and represents the UNIX
timestamp value indicating the date and time when the audit event was generated.

Example:

"time" : 1618498687

The time field occurs in JSON-format log files only if the audit_log_format_unix_timestamp
system variable is enabled.

• timestamp

A string representing a UTC value in YYYY-MM-DD hh:mm:ss format indicating the date and time when
the audit event was generated. For example, the event corresponding to execution of an SQL statement

1314

MySQL Enterprise Audit

received from a client has a timestamp value occurring after the statement finishes, not when it was
received.

Example:

"timestamp": "2019-10-03 13:50:01"

For audit records that have the same timestamp value, their id values distinguish them and form a
sequence. Within the audit log, timestamp/id pairs are unique. These pairs are bookmarks that identify
event locations within the log.

These items appear within hash values associated with top-level items of JSON-format audit records:

• args

An array of options that were given on the command line or in option files when the MySQL server was
started. The first option is the path to the server executable.

Example:

"args": ["/usr/local/mysql/bin/mysqld",
 "--loose-audit-log-format=JSON",
 "--log-error=log.err",
 "--pid-file=mysqld.pid",
 "--port=3306"]

• command

A string representing the type of instruction that generated the audit event, such as a command that the
server received from a client.

Example:

"command": "Query"

• connection_type

The security state of the connection to the server. Permitted values are tcp/ip (TCP/IP connection
established without encryption), ssl (TCP/IP connection established with encryption), socket (Unix
socket file connection), named_pipe (Windows named pipe connection), and shared_memory
(Windows shared memory connection).

Example:

"connection_type": "tcp/tcp"

• db

A string representing a database name. For connection_data, it is the default database. For
table_access_data, it is the table database.

Example:

"db": "test"

• host

A string representing the client host name.

Example:

1315

MySQL Enterprise Audit

"host": "localhost"

• ip

A string representing the client IP address.

Example:

"ip": "::1"

• mysql_version

A string representing the MySQL server version. This is the same as the value of the VERSION()
function or version system variable.

Example:

"mysql_version": "5.7.21-log"

• os

A string representing the external user name used during the authentication process, as set by the plugin
used to authenticate the client. With native (built-in) MySQL authentication, or if the plugin does not set
the value, this attribute is empty. The value is the same as that of the external_user system variable.
See Section 6.2.14, “Proxy Users”.

Example:

"os": "jeffrey"

• os_version

A string representing the operating system on which the server was built or is running.

Example:

"os_version": "i686-Linux"

• proxy

A string representing the proxy user (see Section 6.2.14, “Proxy Users”). The value is empty if user
proxying is not in effect.

Example:

"proxy": "developer"

• query

A string representing the text of an SQL statement. The value can be empty. Long values may be
truncated. The string, like the audit log file itself, is written using UTF-8 (up to 4 bytes per character), so
the value may be the result of conversion. For example, the original statement might have been received
from the client as an SJIS string.

Example:

"query": "DELETE FROM t1"

• server_id

1316

MySQL Enterprise Audit

An unsigned integer representing the server ID. This is the same as the value of the server_id system
variable.

Example:

"server_id": 1

• sql_command

A string that indicates the SQL statement type.

Example:

"sql_command": "insert"

The values correspond to the statement/sql/xxx command counters. For example, xxx is
drop_table and select for DROP TABLE and SELECT statements, respectively. The following
statement displays the possible names:

SELECT REPLACE(EVENT_NAME, 'statement/sql/', '') AS name
FROM performance_schema.events_statements_summary_global_by_event_name
WHERE EVENT_NAME LIKE 'statement/sql/%'
ORDER BY name;

• status

An unsigned integer representing the command status: 0 for success, nonzero if an error occurred. This
is the same as the value of the mysql_errno() C API function.

The audit log does not contain the SQLSTATE value or error message. To see the associations between
error codes, SQLSTATE values, and messages, see Server Error Message Reference.

Warnings are not logged.

Example:

"status": 1051

• table

A string representing a table name.

Example:

"table": "t1"

• user

A string representing a user name. The meaning differs depending on the item within which user
occurs:

• Within account items, user is a string representing the user that the server authenticated the client
as. This is the user name that the server uses for privilege checking.

• Within login items, user is a string representing the user name sent by the client.

Example:

"user": "root"

1317

https://dev.mysql.com/doc/c-api/5.7/en/mysql-errno.html
https://dev.mysql.com/doc/mysql-errors/5.7/en/server-error-reference.html

MySQL Enterprise Audit

6.4.5.5 Configuring Audit Logging Characteristics

This section describes how to configure audit logging characteristics, such as the file to which the audit log
plugin writes events, the format of written events, whether to enable log file compression and encryption,
and space management.

• Naming Conventions for Audit Log Files

• Selecting Audit Log File Format

• Compressing Audit Log Files

• Encrypting Audit Log Files

• Manually Uncompressing and Decrypting Audit Log Files

• Space Management of Audit Log Files

• Write Strategies for Audit Logging

For additional information about the functions and system variables that affect audit logging, see Audit Log
Functions, and Audit Log Options and Variables.

The audit log plugin can also control which audited events are written to the audit log file, based on event
content or the account from which events originate. See Section 6.4.5.7, “Audit Log Filtering”.

Naming Conventions for Audit Log Files

To configure the audit log file name, set the audit_log_file system variable at server startup. The
default name is audit.log in the server data directory. For best security, write the audit log to a directory
accessible only to the MySQL server and to users with a legitimate reason to view the log.

As of MySQL 5.7.21, the plugin interprets the audit_log_file value as composed of an optional
leading directory name, a base name, and an optional suffix. If compression or encryption are enabled,
the effective file name (the name actually used to create the log file) differs from the configured file name
because it has additional suffixes:

• If compression is enabled, the plugin adds a suffix of .gz.

• If encryption is enabled, the plugin adds a suffix of .enc. The audit log plugin stores the encryption
password in the keyring (see Encrypting Audit Log Files.

The effective audit log file name is the name resulting from the addition of applicable compression and
encryption suffixes to the configured file name. For example, if the configured audit_log_file value is
audit.log, the effective file name is one of the values shown in the following table.

Enabled Features Effective File Name

No compression or encryption audit.log

Compression audit.log.gz

Encryption audit.log.enc

Compression, encryption audit.log.gz.enc

Prior to MySQL 5.7.21, the configured and effective log file names are the same. For example, if the
configured audit_log_file value is audit.log, the audit log plugin writes to audit.log.

1318

MySQL Enterprise Audit

The audit log plugin performs certain actions during initialization and termination based on the effective
audit log file name:

As of MySQL 5.7.21:

• During initialization, the plugin checks whether a file with the audit log file name already exists
and renames it if so. (In this case, the plugin assumes that the previous server invocation exited
unexpectedly with the audit log plugin running.) The plugin then writes to a new empty audit log file.

• During termination, the plugin renames the audit log file.

• File renaming (whether during plugin initialization or termination) occurs according to the usual rules for
automatic size-based log file rotation; see Manual Audit Log File Rotation.

Prior to MySQL 5.7.21, only the XML log formats are available and the plugin performs rudimentary
integrity checking:

• During initialization, the plugin checks whether the file ends with an </AUDIT> tag and truncates the tag
before writing any <AUDIT_RECORD> elements. If the log file exists but does not end with </AUDIT> or
the </AUDIT> tag cannot be truncated, the plugin considers the file malformed and renames it. (Such
renaming can occur if the server exits unexpectedly with the audit log plugin running.) The plugin then
writes to a new empty audit log file.

• At termination, no file renaming occurs.

• When renaming occurs at plugin initialization, the renamed file has .corrupted, a timestamp, and
.xml added to the end. For example, if the file name is audit.log, the plugin renames it to a value
such as audit.log.corrupted.15081807937726520.xml. The timestamp value is similar to a
Unix timestamp, with the last 7 digits representing the fractional second part. For information about
interpreting the timestamp, see Space Management of Audit Log Files.

Selecting Audit Log File Format

To configure the audit log file format, set the audit_log_format system variable at server startup.
These formats are available:

• NEW: New-style XML format. This is the default.

• OLD: Old-style XML format.

• JSON: JSON format.

For details about each format, see Section 6.4.5.4, “Audit Log File Formats”.

If you change audit_log_format, it is recommended that you also change audit_log_file. For
example, if you set audit_log_format to JSON, set audit_log_file to audit.json. Otherwise,
newer log files will have a different format than older files, but they will all have the same base name with
nothing to indicate when the format changed.

Note

Prior to MySQL 5.7.21, changing the value of audit_log_format can result
in writing log entries in one format to an existing log file that contains entries in a
different format. To avoid this issue, use the following procedure:

1. Stop the server.

2. Either change the value of the audit_log_file system variable so the plugin
writes to a different file, or rename the current audit log file manually.

1319

MySQL Enterprise Audit

3. Restart the server with the new value of audit_log_format. The audit log
plugin creates a new log file and writes entries to it in the selected format.

Compressing Audit Log Files

Audit log file compression is available as of MySQL 5.7.21. Compression can be enabled for any log
format.

To configure audit log file compression, set the audit_log_compression system variable at server
startup. Permitted values are NONE (no compression; the default) and GZIP (GNU Zip compression).

If both compression and encryption are enabled, compression occurs before encryption. To recover the
original file manually, first decrypt it, then uncompress it. See Manually Uncompressing and Decrypting
Audit Log Files.

Encrypting Audit Log Files

Audit log file encryption is available as of MySQL 5.7.21. Encryption can be enabled for any log format.
Encryption is based on a user-defined password (with the exception of the initial password, which the audit
log plugin generates). To use this feature, the MySQL keyring must be enabled because audit logging uses
it for password storage. Any keyring plugin can be used; for instructions, see Section 6.4.4, “The MySQL
Keyring”.

To configure audit log file encryption, set the audit_log_encryption system variable at server startup.
Permitted values are NONE (no encryption; the default) and AES (AES-256-CBC cipher encryption).

To set or get an encryption password at runtime, use these audit log functions:

• To set the current encryption password, invoke audit_log_encryption_password_set().
This function stores the new password in the keyring. If encryption is enabled, it also performs a log
file rotation operation that renames the current log file, and begins a new log file encrypted with the
password. File renaming occurs according to the usual rules for automatic size-based log file rotation;
see Manual Audit Log File Rotation.

Previously written audit log files are not re-encrypted with the new password. Keep a record of the
previous password should you need to decrypt those files manually.

• To get the current encryption password, invoke audit_log_encryption_password_get(), which
retrieves the password from the keyring.

For additional information about audit log encryption functions, see Audit Log Functions.

When the audit log plugin initializes, if it finds that log file encryption is enabled, it checks whether
the keyring contains an audit log encryption password. If not, the plugin automatically generates a
random initial encryption password and stores it in the keyring. To discover this password, invoke
audit_log_encryption_password_get().

If both compression and encryption are enabled, compression occurs before encryption. To recover the
original file manually, first decrypt it, then uncompress it. See Manually Uncompressing and Decrypting
Audit Log Files.

Manually Uncompressing and Decrypting Audit Log Files

Audit log files can be uncompressed and decrypted using standard tools. This should be done only for log
files that have been closed (archived) and are no longer in use, not for the log file that the audit log plugin

1320

MySQL Enterprise Audit

is currently writing. You can recognize archived log files because they have been renamed by the audit log
plugin to include a timestamp in the file name just after the base name.

For this discussion, assume that audit_log_file is set to audit.log. In that case, an archived audit
log file has one of the names shown in the following table.

Enabled Features Archived File Name

No compression or encryption audit.timestamp.log

Compression audit.timestamp.log.gz

Encryption audit.timestamp.log.enc

Compression, encryption audit.timestamp.log.gz.enc

To uncompress a compressed log file manually, use gunzip, gzip -d, or equivalent command. For
example:

gunzip -c audit.timestamp.log.gz > audit.timestamp.log

To decrypt an encrypted log file manually, use the openssl command. For example:

openssl enc -d -aes-256-cbc -pass pass:password -md sha256
 -in audit.timestamp.log.enc
 -out audit.timestamp.log

If both compression and encryption are enabled for audit logging, compression occurs before encryption.
In this case, the file name has .gz and .enc suffixes added, corresponding to the order in which those
operations occur. To recover the original file manually, perform the operations in reverse. That is, first
decrypt the file, then uncompress it:

openssl enc -d -aes-256-cbc -pass pass:password -md sha256
 -in audit.timestamp.log.gz.enc
 -out audit.timestamp.log.gz
gunzip -c audit.timestamp.log.gz > audit.timestamp.log

Space Management of Audit Log Files

The audit log file has the potential to grow quite large and consume a great deal of disk space. To manage
the space used, log rotation can be employed. This involves rotating the current log file by renaming
it, then opening a new current log file using the original name. Rotation can be performed manually, or
configured to occur automatically.

To configure audit log file space management, use the following system variables:

• If audit_log_rotate_on_size is 0 (the default), automatic log file rotation is disabled:

• No rotation occurs unless performed manually.

• To rotate the current file, manually rename it, then enable audit_log_flush to close it and open a
new current log file using the original name; see Manual Audit Log File Rotation.

• If audit_log_rotate_on_size is greater than 0, automatic audit log file rotation is enabled:

• Automatic rotation occurs when a write to the current log file causes its size to exceed the
audit_log_rotate_on_size value, as well as under certain other conditions; see Automatic Audit
Log File Rotation. When rotation occurs, the audit log plugin renames the current log file and opens a
new current log file using the original name.

• With automatic rotation enabled, audit_log_flush has no effect.

1321

MySQL Enterprise Audit

Note

For JSON-format log files, rotation also occurs when the value of the
audit_log_format_unix_timestamp system variable is changed at runtime.
However, this does not occur for space-management purposes, but rather so that,
for a given JSON-format log file, all records in the file either do or do not include the
time field.

Note

Rotated (renamed) log files are not removed automatically. For example, with
size-based log file rotation, renamed log files have unique names and accumulate
indefinitely. They do not rotate off the end of the name sequence. To avoid
excessive use of space, remove old files periodically, backing them up first as
necessary.

The following sections describe log file rotation in greater detail.

• Manual Audit Log File Rotation

• Automatic Audit Log File Rotation

Manual Audit Log File Rotation

If audit_log_rotate_on_size is 0 (the default), no log rotation occurs unless performed manually. In
this case, the audit log plugin closes and reopens the log file when the audit_log_flush value changes
from disabled to enabled. Log file renaming must be done externally to the server. Suppose that the log file
name is audit.log and you want to maintain the three most recent log files, cycling through the names
audit.log.1 through audit.log.3. On Unix, perform rotation manually like this:

1. From the command line, rename the current log files:

mv audit.log.2 audit.log.3
mv audit.log.1 audit.log.2
mv audit.log audit.log.1

This strategy overwrites the current audit.log.3 contents, placing a bound on the number of
archived log files and the space they use.

2. At this point, the plugin is still writing to the current log file, which has been renamed to audit.log.1.
Connect to the server and flush the log file so the plugin closes it and reopens a new audit.log file:

SET GLOBAL audit_log_flush = ON;

audit_log_flush is special in that its value remains OFF so that you need not disable it explicitly
before enabling it again to perform another flush.

Note

For JSON-format logging, renaming audit log files manually makes them
unavailable to the log-reading functions because the audit log plugin can no longer
determine that they are part of the log file sequence (see Section 6.4.5.6, “Reading
Audit Log Files”). Consider setting audit_log_rotate_on_size greater than 0
to use size-based rotation instead.

Automatic Audit Log File Rotation

If audit_log_rotate_on_size is greater than 0, setting audit_log_flush has no effect. Instead,
whenever a write to the current log file causes its size to exceed the audit_log_rotate_on_size

1322

MySQL Enterprise Audit

value, the audit log plugin automatically renames the current log file and opens a new current log file using
the original name.

Automatic size-based rotation also occurs under these conditions:

• During plugin initialization, if a file with the audit log file name already exists (see Naming Conventions
for Audit Log Files).

• During plugin termination.

• When the audit_log_encryption_password_set() function is called to set the encryption
password.

The plugin renames the original file as follows:

• As of MySQL 5.7.21, the renamed file has a timestamp inserted after its base name and before
its suffix. For example, if the file name is audit.log, the plugin renames it to a value such as
audit.20180115T140633.log. The timestamp is a UTC value in YYYYMMDDThhmmss format. For
XML logging, the timestamp indicates rotation time. For JSON logging, the timestamp is that of the last
event written to the file.

If log files are encrypted, the original file name already contains a timestamp indicating
the encryption password creation time (see Naming Conventions for Audit Log Files). In
this case, the file name after rotation contains two timestamps. For example, an encrypted
log file named audit.log.20180110T130749-1.enc is renamed to a value such as
audit.20180115T140633.log.20180110T130749-1.enc.

• Prior to MySQL 5.7.21, the renamed file has a timestamp and .xml added to the end.
For example, if the file name is audit.log, the plugin renames it to a value such as
audit.log.15159344437726520.xml. The timestamp value is similar to a Unix timestamp, with
the last 7 digits representing the fractional second part. By inserting a decimal point, the value can be
interpreted using the FROM_UNIXTIME() function:

mysql> SELECT FROM_UNIXTIME(1515934443.7726520);
+-----------------------------------+
| FROM_UNIXTIME(1515934443.7726520) |
+-----------------------------------+
| 2018-01-14 06:54:03.772652 |
+-----------------------------------+

Write Strategies for Audit Logging

The audit log plugin can use any of several strategies for log writes. Regardless of strategy, logging occurs
on a best-effort basis, with no guarantee of consistency.

To specify a write strategy, set the audit_log_strategy system variable at server startup. By default,
the strategy value is ASYNCHRONOUS and the plugin logs asynchronously to a buffer, waiting if the
buffer is full. You can tell the plugin not to wait (PERFORMANCE) or to log synchronously, either using
file system caching (SEMISYNCHRONOUS) or forcing output with a sync() call after each write request
(SYNCHRONOUS).

For asynchronous write strategy, the audit_log_buffer_size system variable is the buffer size in
bytes. Set this variable at server startup to change the buffer size. The plugin uses a single buffer, which
it allocates when it initializes and removes when it terminates. The plugin does not allocate this buffer for
nonasynchronous write strategies.

Asynchronous logging strategy has these characteristics:

1323

MySQL Enterprise Audit

• Minimal impact on server performance and scalability.

• Blocking of threads that generate audit events for the shortest possible time; that is, time to allocate the
buffer plus time to copy the event to the buffer.

• Output goes to the buffer. A separate thread handles writes from the buffer to the log file.

With asynchronous logging, the integrity of the log file may be compromised if a problem occurs during a
write to the file or if the plugin does not shut down cleanly (for example, in the event that the server host
exits unexpectedly). To reduce this risk, set audit_log_strategy to use synchronous logging.

A disadvantage of PERFORMANCE strategy is that it drops events when the buffer is full. For a heavily
loaded server, the audit log may have events missing.

6.4.5.6 Reading Audit Log Files

The audit log plugin supports functions that provide an SQL interface for reading JSON-format audit log
files. (This capability does not apply to log files written in other formats.)

When the audit log plugin initializes and is configured for JSON logging, it uses the directory containing
the current audit log file as the location to search for readable audit log files. The plugin determines the file
location, base name, and suffix from the value of the audit_log_file system variable, then looks for
files with names that match the following pattern, where [...] indicates optional file name parts:

basename[.timestamp].suffix[.gz][.enc]

If a file name ends with .enc, the file is encrypted and reading its unencrypted contents requires a
decryption password obtained from the keyring. For more information about encrypted audit log files, see
Encrypting Audit Log Files.

The plugin ignores files that have been renamed manually and do not match the pattern, and files that
were encrypted with a password no longer available in the keyring. The plugin opens each remaining
candidate file, verifies that the file actually contains JSON audit events, and sorts the files using the
timestamps from the first event of each file. The result is a sequence of files that are subject to access
using the log-reading functions:

• audit_log_read() reads events from the audit log or closes the reading process.

• audit_log_read_bookmark() returns a bookmark for the most recently written audit log event. This
bookmark is suitable for passing to audit_log_read() to indicate where to begin reading.

audit_log_read() takes an optional JSON string argument, and the result returned from a successful
call to either function is a JSON string.

To use the functions to read the audit log, follow these principles:

• Call audit_log_read() to read events beginning from a given position or the current position, or to
close reading:

• To initialize an audit log read sequence, pass an argument that indicates the position at which to
begin. One way to do so is to pass the bookmark returned by audit_log_read_bookmark():

SELECT audit_log_read(audit_log_read_bookmark());

• To continue reading from the current position in the sequence, call audit_log_read() with no
position specified:

SELECT audit_log_read();

1324

MySQL Enterprise Audit

• To explicitly close the read sequence, pass a JSON null argument:

SELECT audit_log_read('null');

It is unnecessary to close reading explicitly. Reading is closed implicitly when the session ends or a
new read sequence is initialized by calling audit_log_read() with an argument that indicates the
position at which to begin.

• A successful call to audit_log_read() to read events returns a JSON string containing an array of
audit events:

• If the final value of the returned array is not a JSON null value, there are more events following those
just read and audit_log_read() can be called again to read more of them.

• If the final value of the returned array is a JSON null value, there are no more events left to be read in
the current read sequence.

Each non-null array element is an event represented as a JSON hash. For example:

[
 {
 "timestamp": "2020-05-18 13:39:33", "id": 0,
 "class": "connection", "event": "connect",
 ...
 },
 {
 "timestamp": "2020-05-18 13:39:33", "id": 1,
 "class": "general", "event": "status",
 ...
 },
 {
 "timestamp": "2020-05-18 13:39:33", "id": 2,
 "class": "connection", "event": "disconnect",
 ...
 },
 null
]

For more information about the content of JSON-format audit events, see JSON Audit Log File Format.

• An audit_log_read() call to read events that does not specify a position produces an error under any
of these conditions:

• A read sequence has not yet been initialized by passing a position to audit_log_read().

• There are no more events left to be read in the current read sequence; that is, audit_log_read()
previously returned an array ending with a JSON null value.

• The most recent read sequence has been closed by passing a JSON null value to
audit_log_read().

To read events under those conditions, it is necessary to first initialize a read sequence by calling
audit_log_read() with an argument that specifies a position.

To specify a position to audit_log_read(), pass a bookmark, which is a JSON hash containing
timestamp and id elements that uniquely identify a particular event. Here is an example bookmark,
obtained by calling the audit_log_read_bookmark() function:

mysql> SELECT audit_log_read_bookmark();
+---+

1325

MySQL Enterprise Audit

| audit_log_read_bookmark() |
+---+
| { "timestamp": "2020-05-18 21:03:44", "id": 0 } |
+---+

Passing the current bookmark to audit_log_read() initializes event reading beginning at the bookmark
position:

mysql> SELECT audit_log_read(audit_log_read_bookmark());
+---+
| audit_log_read(audit_log_read_bookmark()) |
+---+
| [{"timestamp":"2020-05-18 22:41:24","id":0,"class":"connection", ... |
+---+

The argument to audit_log_read() is optional. If present, it can be a JSON null value to close the
read sequence, or a JSON hash.

Within a hash argument to audit_log_read(), items are optional and control aspects of the read
operation such as the position at which to begin reading or how many events to read. The following items
are significant (other items are ignored):

• timestamp, id: The position within the audit log of the first event to read. If the position is omitted
from the argument, reading continues from the current position. The timestamp and id items together
comprise a bookmark that uniquely identify a particular event. If an audit_log_read() argument
includes either item, it must include both to completely specify a position or an error occurs.

• max_array_length: The maximum number of events to read from the log. If this item is omitted, the
default is to read to the end of the log or until the read buffer is full, whichever comes first.

Example arguments accepted by audit_log_read():

• Read events starting with the event that has the exact timestamp and event ID:

audit_log_read('{ "timestamp": "2020-05-24 12:30:00", "id": 0 }')

• Like the previous example, but read at most 3 events:

audit_log_read('{ "timestamp": "2020-05-24 12:30:00", "id": 0, "max_array_length": 3 }')

• Read events from the current position in the read sequence:

audit_log_read()

• Read at most 5 events beginning at the current position in the read sequence:

audit_log_read('{ "max_array_length": 5 }')

• Close the current read sequence:

audit_log_read('null')

To use the binary JSON string with functions that require a nonbinary string (such as functions that
manipulate JSON values), perform a conversion to utf8mb4. Suppose that a call to obtain a bookmark
produces this value:

mysql> SET @mark := audit_log_read_bookmark();
mysql> SELECT @mark;
+---+
| @mark |
+---+
| { "timestamp": "2020-05-18 16:10:28", "id": 2 } |
+---+

1326

MySQL Enterprise Audit

Calling audit_log_read() with that argument can return multiple events. To limit audit_log_read()
to reading at most N events, convert the string to utf8mb4, then add to it a max_array_length item with
that value. For example, to read a single event, modify the string as follows:

mysql> SET @mark = CONVERT(@mark USING utf8mb4);
mysql> SET @mark := JSON_SET(@mark, '$.max_array_length', 1);
mysql> SELECT @mark;
+--+
| @mark |
+--+
| {"id": 2, "timestamp": "2020-05-18 16:10:28", "max_array_length": 1} |
+--+

The modified string, when passed to audit_log_read(), produces a result containing at most one
event, no matter how many are available.

To read a specific number of events beginning at the current position, pass a JSON hash that includes a
max_array_length value but no position. This statement invoked repeatedly returns five events each
time until no more events are available:

SELECT audit_log_read('{"max_array_length": 5}');

To set a limit on the number of bytes that audit_log_read() reads, set the
audit_log_read_buffer_size system variable. As of MySQL 5.7.23, this variable has
a default of 32KB and can be set at runtime. Each client should set its session value of
audit_log_read_buffer_size appropriately for its use of audit_log_read(). Prior to MySQL
5.7.23, audit_log_read_buffer_size has a default of 1MB, affects all clients, and can be changed
only at server startup.

For additional information about audit log-reading functions, see Audit Log Functions.

6.4.5.7 Audit Log Filtering

Note

As of MySQL 5.7.13, for audit log filtering to work as described here, the audit log
plugin and the accompanying audit tables and functions must be installed. If the
plugin is installed without the accompanying audit tables and functions needed
for rule-based filtering, the plugin operates in legacy filtering mode, described
in Section 6.4.5.10, “Legacy Mode Audit Log Filtering”. Legacy mode is filtering
behavior as it was prior to MySQL 5.7.13; that is, before the introduction of rule-
based filtering.

• Properties of Audit Log Filtering

• Constraints on Audit Log Filtering Functions

• Using Audit Log Filtering Functions

Properties of Audit Log Filtering

The audit log plugin has the capability of controlling logging of audited events by filtering them:

• Audited events can be filtered using these characteristics:

• User account

• Audit event class

1327

MySQL Enterprise Audit

• Audit event subclass

• Audit event fields such as those that indicate operation status or SQL statement executed

• Audit filtering is rule based:

• A filter definition creates a set of auditing rules. Definitions can be configured to include or exclude
events for logging based on the characteristics just described.

• As of MySQL 5.7.20, filter rules have the capability of blocking (aborting) execution of qualifying
events, in addition to existing capabilities for event logging.

• Multiple filters can be defined, and any given filter can be assigned to any number of user accounts.

• It is possible to define a default filter to use with any user account that has no explicitly assigned filter.

For information about writing filtering rules, see Section 6.4.5.8, “Writing Audit Log Filter Definitions”.

• Audit log filters can be defined and modified using an SQL interface based on function calls. By default,
audit log filter definitions are stored in the mysql system database, and you can display audit filters
by querying the mysql.audit_log_filter table. It is possible to use a different database for this
purpose, in which case you should query the database_name.audit_log_filter table instead. See
Section 6.4.5.2, “Installing or Uninstalling MySQL Enterprise Audit”, for more information.

• Within a given session, the value of the read-only audit_log_filter_id system variable indicates
whether a filter is assigned to the session.

Note

By default, rule-based audit log filtering logs no auditable events for any users. To
log all auditable events for all users, use the following statements, which create a
simple filter to enable logging and assign it to the default account:

SELECT audit_log_filter_set_filter('log_all', '{ "filter": { "log": true } }');
SELECT audit_log_filter_set_user('%', 'log_all');

The filter assigned to % is used for connections from any account that has no
explicitly assigned filter (which initially is true for all accounts).

As previously mentioned, the SQL interface for audit filtering control is function based. The following list
briefly summarizes these functions:

• audit_log_filter_set_filter(): Define a filter.

• audit_log_filter_remove_filter(): Remove a filter.

• audit_log_filter_set_user(): Start filtering a user account.

• audit_log_filter_remove_user(): Stop filtering a user account.

• audit_log_filter_flush(): Flush manual changes to the filter tables to affect ongoing filtering.

For usage examples and complete details about the filtering functions, see Using Audit Log Filtering
Functions, and Audit Log Functions.

Constraints on Audit Log Filtering Functions

Audit log filtering functions are subject to these constraints:

1328

MySQL Enterprise Audit

• To use any filtering function, the audit_log plugin must be enabled or an error occurs. In addition,
the audit tables must exist or an error occurs. To install the audit_log plugin and its accompanying
functions and tables, see Section 6.4.5.2, “Installing or Uninstalling MySQL Enterprise Audit”.

• To use any filtering function, a user must possess the SUPER privilege or an error occurs. To grant the
SUPER privilege to a user account, use this statement:

GRANT SUPER ON *.* TO user;

Alternatively, should you prefer to avoid granting the SUPER privilege while still permitting users
to access specific filtering functions, “wrapper” stored programs can be defined. This technique is
described in the context of keyring functions in Using General-Purpose Keyring Functions; it can be
adapted for use with filtering functions.

• The audit_log plugin operates in legacy mode if it is installed but the accompanying audit tables and
functions are not created. The plugin writes these messages to the error log at server startup:

[Warning] Plugin audit_log reported: 'Failed to open the audit log filter tables.'
[Warning] Plugin audit_log reported: 'Audit Log plugin supports a filtering,
which has not been installed yet. Audit Log plugin will run in the legacy
mode, which will be disabled in the next release.'

In legacy mode, filtering can be done based only on event account or status. For details, see
Section 6.4.5.10, “Legacy Mode Audit Log Filtering”.

Using Audit Log Filtering Functions

Before using the audit log functions, install them according to the instructions provided in Section 6.4.5.2,
“Installing or Uninstalling MySQL Enterprise Audit”. The SUPER privilege is required to use any of these
functions.

The audit log filtering functions enable filtering control by providing an interface to create, modify, and
remove filter definitions and assign filters to user accounts.

Filter definitions are JSON values. For information about using JSON data in MySQL, see Section 11.5,
“The JSON Data Type”. This section shows some simple filter definitions. For more information about filter
definitions, see Section 6.4.5.8, “Writing Audit Log Filter Definitions”.

When a connection arrives, the audit log plugin determines which filter to use for the new session by
searching for the user account name in the current filter assignments:

• If a filter is assigned to the user, the audit log uses that filter.

• Otherwise, if no user-specific filter assignment exists, but there is a filter assigned to the default account
(%), the audit log uses the default filter.

• Otherwise, the audit log selects no audit events from the session for processing.

If a change-user operation occurs during a session (see mysql_change_user()), filter assignment for the
session is updated using the same rules but for the new user.

By default, no accounts have a filter assigned, so no processing of auditable events occurs for any
account.

Suppose that you want to change the default to be to log only connection-related activity (for example,
to see connect, change-user, and disconnect events, but not the SQL statements users execute while
connected). To achieve this, define a filter (shown here named log_conn_events) that enables logging

1329

https://dev.mysql.com/doc/c-api/5.7/en/mysql-change-user.html

MySQL Enterprise Audit

only of events in the connection class, and assign that filter to the default account, represented by the %
account name:

SET @f = '{ "filter": { "class": { "name": "connection" } } }';
SELECT audit_log_filter_set_filter('log_conn_events', @f);
SELECT audit_log_filter_set_user('%', 'log_conn_events');

Now the audit log uses this default account filter for connections from any account that has no explicitly
defined filter.

To assign a filter explicitly to a particular user account or accounts, define the filter, then assign it to the
relevant accounts:

SELECT audit_log_filter_set_filter('log_all', '{ "filter": { "log": true } }');
SELECT audit_log_filter_set_user('user1@localhost', 'log_all');
SELECT audit_log_filter_set_user('user2@localhost', 'log_all');

Now full logging is enabled for user1@localhost and user2@localhost. Connections from other
accounts continue to be filtered using the default account filter.

To disassociate a user account from its current filter, either unassign the filter or assign a different filter:

• To unassign the filter from the user account:

SELECT audit_log_filter_remove_user('user1@localhost');

Filtering of current sessions for the account remains unaffected. Subsequent connections from the
account are filtered using the default account filter if there is one, and are not logged otherwise.

• To assign a different filter to the user account:

SELECT audit_log_filter_set_filter('log_nothing', '{ "filter": { "log": false } }');
SELECT audit_log_filter_set_user('user1@localhost', 'log_nothing');

Filtering of current sessions for the account remains unaffected. Subsequent connections from the
account are filtered using the new filter. For the filter shown here, that means no logging for new
connections from user1@localhost.

For audit log filtering, user name and host name comparisons are case-sensitive. This differs from
comparisons for privilege checking, for which host name comparisons are not case-sensitive.

To remove a filter, do this:

SELECT audit_log_filter_remove_filter('log_nothing');

Removing a filter also unassigns it from any users to whom it is assigned, including any current sessions
for those users.

The filtering functions just described affect audit filtering immediately and update the audit log tables in
the mysql system database that store filters and user accounts (see Audit Log Tables). It is also possible
to modify the audit log tables directly using statements such as INSERT, UPDATE, and DELETE, but
such changes do not affect filtering immediately. To flush your changes and make them operational, call
audit_log_filter_flush():

SELECT audit_log_filter_flush();

Warning

audit_log_filter_flush() should be used only after modifying the audit
tables directly, to force reloading all filters. Otherwise, this function should

1330

MySQL Enterprise Audit

be avoided. It is, in effect, a simplified version of unloading and reloading the
audit_log plugin with UNINSTALL PLUGIN plus INSTALL PLUGIN.

audit_log_filter_flush() affects all current sessions and detaches them
from their previous filters. Current sessions are no longer logged unless they
disconnect and reconnect, or execute a change-user operation.

To determine whether a filter is assigned to the current session, check the session value of the read-only
audit_log_filter_id system variable. If the value is 0, no filter is assigned. A nonzero value indicates
the internally maintained ID of the assigned filter:

mysql> SELECT @@audit_log_filter_id;
+-----------------------+
| @@audit_log_filter_id |
+-----------------------+
| 2 |
+-----------------------+

6.4.5.8 Writing Audit Log Filter Definitions

Filter definitions are JSON values. For information about using JSON data in MySQL, see Section 11.5,
“The JSON Data Type”.

Filter definitions have this form, where actions indicates how filtering takes place:

{ "filter": actions }

The following discussion describes permitted constructs in filter definitions.

• Logging All Events

• Logging Specific Event Classes

• Logging Specific Event Subclasses

• Inclusive and Exclusive Logging

• Testing Event Field Values

• Blocking Execution of Specific Events

• Logical Operators

• Referencing Predefined Variables

• Referencing Predefined Functions

• Replacing a User Filter

Logging All Events

To explicitly enable or disable logging of all events, use a log item in the filter:

{
 "filter": { "log": true }
}

The log value can be either true or false.

The preceding filter enables logging of all events. It is equivalent to:

1331

MySQL Enterprise Audit

{
 "filter": { }
}

Logging behavior depends on the log value and whether class or event items are specified:

• With log specified, its given value is used.

• Without log specified, logging is true if no class or event item is specified, and false otherwise (in
which case, class or event can include their own log item).

Logging Specific Event Classes

To log events of a specific class, use a class item in the filter, with its name field denoting the name of the
class to log:

{
 "filter": {
 "class": { "name": "connection" }
 }
}

The name value can be connection, general, or table_access to log connection, general, or table-
access events, respectively.

The preceding filter enables logging of events in the connection class. It is equivalent to the following
filter with log items made explicit:

{
 "filter": {
 "log": false,
 "class": { "log": true,
 "name": "connection" }
 }
}

To enable logging of multiple classes, define the class value as a JSON array element that names the
classes:

{
 "filter": {
 "class": [
 { "name": "connection" },
 { "name": "general" },
 { "name": "table_access" }
]
 }
}

Note

When multiple instances of a given item appear at the same level within a filter
definition, the item values can be combined into a single instance of that item within
an array value. The preceding definition can be written like this:

{
 "filter": {
 "class": [
 { "name": ["connection", "general", "table_access"] }
]
 }
}

1332

MySQL Enterprise Audit

Logging Specific Event Subclasses

To select specific event subclasses, use an event item containing a name item that names the
subclasses. The default action for events selected by an event item is to log them. For example, this filter
enables logging for the named event subclasses:

{
 "filter": {
 "class": [
 {
 "name": "connection",
 "event": [
 { "name": "connect" },
 { "name": "disconnect" }
]
 },
 { "name": "general" },
 {
 "name": "table_access",
 "event": [
 { "name": "insert" },
 { "name": "delete" },
 { "name": "update" }
]
 }
]
 }
}

The event item can also contain explicit log items to indicate whether to log qualifying events. This
event item selects multiple events and explicitly indicates logging behavior for them:

"event": [
 { "name": "read", "log": false },
 { "name": "insert", "log": true },
 { "name": "delete", "log": true },
 { "name": "update", "log": true }
]

As of MySQL 5.7.20, the event item can also indicate whether to block qualifying events, if it contains an
abort item. For details, see Blocking Execution of Specific Events.

Table 6.26, “Event Class and Subclass Combinations” describes the permitted subclass values for each
event class.

Table 6.26 Event Class and Subclass Combinations

Event Class Event Subclass Description

connection connect Connection initiation (successful
or unsuccessful)

connection change_user User re-authentication with
different user/password during
session

connection disconnect Connection termination

general status General operation information

table_access read Table read statements, such as
SELECT or INSERT INTO ...
SELECT

1333

MySQL Enterprise Audit

Event Class Event Subclass Description

table_access delete Table delete statements, such as
DELETE or TRUNCATE TABLE

table_access insert Table insert statements, such as
INSERT or REPLACE

table_access update Table update statements, such as
UPDATE

Table 6.27, “Log and Abort Characteristics Per Event Class and Subclass Combination” describes for each
event subclass whether it can be logged or aborted.

Table 6.27 Log and Abort Characteristics Per Event Class and Subclass Combination

Event Class Event Subclass Can be Logged Can be Aborted

connection connect Yes No

connection change_user Yes No

connection disconnect Yes No

general status Yes No

table_access read Yes Yes

table_access delete Yes Yes

table_access insert Yes Yes

table_access update Yes Yes

Inclusive and Exclusive Logging

A filter can be defined in inclusive or exclusive mode:

• Inclusive mode logs only explicitly specified items.

• Exclusive mode logs everything but explicitly specified items.

To perform inclusive logging, disable logging globally and enable logging for specific classes. This filter
logs connect and disconnect events in the connection class, and events in the general class:

{
 "filter": {
 "log": false,
 "class": [
 {
 "name": "connection",
 "event": [
 { "name": "connect", "log": true },
 { "name": "disconnect", "log": true }
]
 },
 { "name": "general", "log": true }
]
 }
}

To perform exclusive logging, enable logging globally and disable logging for specific classes. This filter
logs everything except events in the general class:

{

1334

MySQL Enterprise Audit

 "filter": {
 "log": true,
 "class":
 { "name": "general", "log": false }
 }
}

This filter logs change_user events in the connection class, and table_access events, by virtue of
not logging everything else:

{
 "filter": {
 "log": true,
 "class": [
 {
 "name": "connection",
 "event": [
 { "name": "connect", "log": false },
 { "name": "disconnect", "log": false }
]
 },
 { "name": "general", "log": false }
]
 }
}

Testing Event Field Values

To enable logging based on specific event field values, specify a field item within the log item that
indicates the field name and its expected value:

{
 "filter": {
 "class": {
 "name": "general",
 "event": {
 "name": "status",
 "log": {
 "field": { "name": "general_command.str", "value": "Query" }
 }
 }
 }
 }
}

Each event contains event class-specific fields that can be accessed from within a filter to perform custom
filtering.

An event in the connection class indicates when a connection-related activity occurs during a session,
such as a user connecting to or disconnecting from the server. Table 6.28, “Connection Event Fields”
indicates the permitted fields for connection events.

Table 6.28 Connection Event Fields

Field Name Field Type Description

status integer Event status:

0: OK

Otherwise: Failed

connection_id unsigned integer Connection ID

1335

MySQL Enterprise Audit

Field Name Field Type Description

user.str string User name specified during
authentication

user.length unsigned integer User name length

priv_user.str string Authenticated user name (account
user name)

priv_user.length unsigned integer Authenticated user name length

external_user.str string External user name (provided by
third-party authentication plugin)

external_user.length unsigned integer External user name length

proxy_user.str string Proxy user name

proxy_user.length unsigned integer Proxy user name length

host.str string Connected user host

host.length unsigned integer Connected user host length

ip.str string Connected user IP address

ip.length unsigned integer Connected user IP address length

database.str string Database name specified at
connect time

database.length unsigned integer Database name length

connection_type integer Connection type:

0 or "::undefined": Undefined

1 or "::tcp/ip": TCP/IP

2 or "::socket": Socket

3 or "::named_pipe": Named
pipe

4 or "::ssl": TCP/IP with
encryption

5 or "::shared_memory":
Shared memory

The "::xxx" values are symbolic pseudo-constants that may be given instead of the literal numeric
values. They must be quoted as strings and are case-sensitive.

An event in the general class indicates the status code of an operation and its details. Table 6.29,
“General Event Fields” indicates the permitted fields for general events.

Table 6.29 General Event Fields

Field Name Field Type Description

general_error_code integer Event status:

0: OK

Otherwise: Failed

1336

MySQL Enterprise Audit

Field Name Field Type Description

general_thread_id unsigned integer Connection/thread ID

general_user.str string User name specified during
authentication

general_user.length unsigned integer User name length

general_command.str string Command name

general_command.length unsigned integer Command name length

general_query.str string SQL statement text

general_query.length unsigned integer SQL statement text length

general_host.str string Host name

general_host.length unsigned integer Host name length

general_sql_command.str string SQL command type name

general_sql_command.length unsigned integer SQL command type name length

general_external_user.str string External user name (provided by
third-party authentication plugin)

general_external_user.lengthunsigned integer External user name length

general_ip.str string Connected user IP address

general_ip.length unsigned integer Connection user IP address length

general_command.str indicates a command name: Query, Execute, Quit, or Change user.

A general event with the general_command.str field set to Query or Execute contains
general_sql_command.str set to a value that specifies the type of SQL command: alter_db,
alter_db_upgrade, admin_commands, and so forth. The available general_sql_command.str
values can be seen as the last components of the Performance Schema instruments displayed by this
statement:

mysql> SELECT NAME FROM performance_schema.setup_instruments
 WHERE NAME LIKE 'statement/sql/%' ORDER BY NAME;
+---------------------------------------+
| NAME |
+---------------------------------------+
| statement/sql/alter_db |
| statement/sql/alter_db_upgrade |
| statement/sql/alter_event |
| statement/sql/alter_function |
| statement/sql/alter_instance |
| statement/sql/alter_procedure |
| statement/sql/alter_server |
...

An event in the table_access class provides information about a specific type of access to a table.
Table 6.30, “Table-Access Event Fields” indicates the permitted fields for table_access events.

Table 6.30 Table-Access Event Fields

Field Name Field Type Description

connection_id unsigned integer Event connection ID

sql_command_id integer SQL command ID

query.str string SQL statement text

1337

MySQL Enterprise Audit

Field Name Field Type Description

query.length unsigned integer SQL statement text length

table_database.str string Database name associated with
event

table_database.length unsigned integer Database name length

table_name.str string Table name associated with event

table_name.length unsigned integer Table name length

The following list shows which statements produce which table-access events:

• read event:

• SELECT

• INSERT ... SELECT (for tables referenced in SELECT clause)

• REPLACE ... SELECT (for tables referenced in SELECT clause)

• UPDATE ... WHERE (for tables referenced in WHERE clause)

• HANDLER ... READ

• delete event:

• DELETE

• TRUNCATE TABLE

• insert event:

• INSERT

• INSERT ... SELECT (for table referenced in INSERT clause)

• REPLACE

• REPLACE ... SELECT (for table referenced in REPLACE clause

• LOAD DATA

• LOAD XML

• update event:

• UPDATE

• UPDATE ... WHERE (for tables referenced in UPDATE clause)

Blocking Execution of Specific Events

As of MySQL 5.7.20, event items can include an abort item that indicates whether to prevent qualifying
events from executing. abort enables rules to be written that block execution of specific SQL statements.

The abort item must appear within an event item. For example:

"event": {

1338

MySQL Enterprise Audit

 "name": qualifying event subclass names
 "abort": condition
}

For event subclasses selected by the name item, the abort action is true or false, depending on
condition evaluation. If the condition evaluates to true, the event is blocked. Otherwise, the event
continues executing.

The condition specification can be as simple as true or false, or it can be more complex such that
evaluation depends on event characteristics.

This filter blocks INSERT, UPDATE, and DELETE statements:

{
 "filter": {
 "class": {
 "name": "table_access",
 "event": {
 "name": ["insert", "update", "delete"],
 "abort": true
 }
 }
 }
}

This more complex filter blocks the same statements, but only for a specific table
(finances.bank_account):

{
 "filter": {
 "class": {
 "name": "table_access",
 "event": {
 "name": ["insert", "update", "delete"],
 "abort": {
 "and": [
 { "field": { "name": "table_database.str", "value": "finances" } },
 { "field": { "name": "table_name.str", "value": "bank_account" } }
]
 }
 }
 }
 }
}

Statements matched and blocked by the filter return an error to the client:

ERROR 1045 (28000): Statement was aborted by an audit log filter

Not all events can be blocked (see Table 6.27, “Log and Abort Characteristics Per Event Class and
Subclass Combination”). For an event that cannot be blocked, the audit log writes a warning to the error
log rather than blocking it.

For attempts to define a filter in which the abort item appears elsewhere than in an event item, an error
occurs.

Logical Operators

Logical operators (and, or, not) permit construction of complex conditions, enabling more advanced
filtering configurations to be written. The following log item logs only general events with
general_command fields having a specific value and length:

1339

MySQL Enterprise Audit

{
 "filter": {
 "class": {
 "name": "general",
 "event": {
 "name": "status",
 "log": {
 "or": [
 {
 "and": [
 { "field": { "name": "general_command.str", "value": "Query" } },
 { "field": { "name": "general_command.length", "value": 5 } }
]
 },
 {
 "and": [
 { "field": { "name": "general_command.str", "value": "Execute" } },
 { "field": { "name": "general_command.length", "value": 7 } }
]
 }
]
 }
 }
 }
 }
}

Referencing Predefined Variables

To refer to a predefined variable in a log condition, use a variable item, which takes name and value
items and tests equality of the named variable against a given value:

"variable": {
 "name": "variable_name",
 "value": comparison_value
}

This is true if variable_name has the value comparison_value, false otherwise.

Example:

{
 "filter": {
 "class": {
 "name": "general",
 "event": {
 "name": "status",
 "log": {
 "variable": {
 "name": "audit_log_connection_policy_value",
 "value": "::none"
 }
 }
 }
 }
 }
}

Each predefined variable corresponds to a system variable. By writing a filter that tests a
predefined variable, you can modify filter operation by setting the corresponding system variable,
without having to redefine the filter. For example, by writing a filter that tests the value of the
audit_log_connection_policy_value predefined variable, you can modify filter operation by
changing the value of the audit_log_connection_policy system variable.

1340

MySQL Enterprise Audit

The audit_log_xxx_policy system variables are used for the legacy mode audit log (see
Section 6.4.5.10, “Legacy Mode Audit Log Filtering”). With rule-based audit log filtering, those variables
remain visible (for example, using SHOW VARIABLES), but changes to them have no effect unless you
write filters containing constructs that refer to them.

The following list describes the permitted predefined variables for variable items:

• audit_log_connection_policy_value

This variable corresponds to the value of the audit_log_connection_policy system variable.
The value is an unsigned integer. Table 6.31, “audit_log_connection_policy_value Values” shows the
permitted values and the corresponding audit_log_connection_policy values.

Table 6.31 audit_log_connection_policy_value Values

Value Corresponding audit_log_connection_policy
Value

0 or "::none" NONE

1 or "::errors" ERRORS

2 or "::all" ALL

The "::xxx" values are symbolic pseudo-constants that may be given instead of the literal numeric
values. They must be quoted as strings and are case-sensitive.

• audit_log_policy_value

This variable corresponds to the value of the audit_log_policy system variable. The value is an
unsigned integer. Table 6.32, “audit_log_policy_value Values” shows the permitted values and the
corresponding audit_log_policy values.

Table 6.32 audit_log_policy_value Values

Value Corresponding audit_log_policy Value

0 or "::none" NONE

1 or "::logins" LOGINS

2 or "::all" ALL

3 or "::queries" QUERIES

The "::xxx" values are symbolic pseudo-constants that may be given instead of the literal numeric
values. They must be quoted as strings and are case-sensitive.

• audit_log_statement_policy_value

This variable corresponds to the value of the audit_log_statement_policy system variable.
The value is an unsigned integer. Table 6.33, “audit_log_statement_policy_value Values” shows the
permitted values and the corresponding audit_log_statement_policy values.

Table 6.33 audit_log_statement_policy_value Values

Value Corresponding audit_log_statement_policy
Value

0 or "::none" NONE

1 or "::errors" ERRORS

1341

MySQL Enterprise Audit

Value Corresponding audit_log_statement_policy
Value

2 or "::all" ALL

The "::xxx" values are symbolic pseudo-constants that may be given instead of the literal numeric
values. They must be quoted as strings and are case-sensitive.

Referencing Predefined Functions

To refer to a predefined function in a log condition, use a function item, which takes name and args
items to specify the function name and its arguments, respectively:

"function": {
 "name": "function_name",
 "args": arguments
}

The name item should specify the function name only, without parentheses or the argument list.

The args item must satisfy these conditions:

• If the function takes no arguments, no args item should be given.

• If the function does take arguments, an args item is needed, and the arguments must be given in the
order listed in the function description. Arguments can refer to predefined variables, event fields, or string
or numeric constants.

If the number of arguments is incorrect or the arguments are not of the correct data types required by the
function an error occurs.

Example:

{
 "filter": {
 "class": {
 "name": "general",
 "event": {
 "name": "status",
 "log": {
 "function": {
 "name": "find_in_include_list",
 "args": [{ "string": [{ "field": "user.str" },
 { "string": "@"},
 { "field": "host.str" }] }]
 }
 }
 }
 }
 }
}

The preceding filter determines whether to log general class status events depending on whether the
current user is found in the audit_log_include_accounts system variable. That user is constructed
using fields in the event.

The following list describes the permitted predefined functions for function items:

• audit_log_exclude_accounts_is_null()

Checks whether the audit_log_exclude_accounts system variable is NULL. This function can be
helpful when defining filters that correspond to the legacy audit log implementation.

1342

MySQL Enterprise Audit

Arguments:

None.

• audit_log_include_accounts_is_null()

Checks whether the audit_log_include_accounts system variable is NULL. This function can be
helpful when defining filters that correspond to the legacy audit log implementation.

Arguments:

None.

• debug_sleep(millisec)

Sleeps for the given number of milliseconds. This function is used during performance measurement.

debug_sleep() is available for debug builds only.

Arguments:

• millisec: An unsigned integer that specifies the number of milliseconds to sleep.

• find_in_exclude_list(account)

Checks whether an account string exists in the audit log exclude list (the value of the
audit_log_exclude_accounts system variable).

Arguments:

• account: A string that specifies the user account name.

• find_in_include_list(account)

Checks whether an account string exists in the audit log include list (the value of the
audit_log_include_accounts system variable).

Arguments:

• account: A string that specifies the user account name.

• string_find(text, substr)

Checks whether the substr value is contained in the text value. This search is case-sensitive.

Arguments:

• text: The text string to search.

• substr: The substring to search for in text.

Replacing a User Filter

In some cases, the filter definition can be changed dynamically. To do this, define a filter configuration
within an existing filter. For example:

{
 "filter": {

1343

MySQL Enterprise Audit

 "id": "main",
 "class": {
 "name": "table_access",
 "event": {
 "name": ["update", "delete"],
 "log": false,
 "filter": {
 "class": {
 "name": "general",
 "event" : { "name": "status",
 "filter": { "ref": "main" } }
 },
 "activate": {
 "or": [
 { "field": { "name": "table_name.str", "value": "temp_1" } },
 { "field": { "name": "table_name.str", "value": "temp_2" } }
]
 }
 }
 }
 }
 }
}

A new filter is activated when the activate item within a subfilter evaluates to true. Using activate in
a top-level filter is not permitted.

A new filter can be replaced with the original one by using a ref item inside the subfilter to refer to the
original filter id.

The filter shown operates like this:

• The main filter waits for table_access events, either update or delete.

• If the update or delete table_access event occurs on the temp_1 or temp_2 table, the filter is
replaced with the internal one (without an id, since there is no need to refer to it explicitly).

• If the end of the command is signalled (general / status event), an entry is written to the audit log file
and the filter is replaced with the main filter.

The filter is useful to log statements that update or delete anything from the temp_1 or temp_2 tables,
such as this one:

UPDATE temp_1, temp_3 SET temp_1.a=21, temp_3.a=23;

The statement generates multiple table_access events, but the audit log file contains only general or
status entries.

Note

Any id values used in the definition are evaluated with respect only to that
definition. They have nothing to do with the value of the audit_log_filter_id
system variable.

6.4.5.9 Disabling Audit Logging

The audit_log_disable variable, introduced in MySQL 5.7.37, permits disabling audit logging for all
connecting and connected sessions. The audit_log_disable variable can be set in a MySQL Server
option file, in a command-line startup string, or at runtime using a SET statement; for example:

SET GLOBAL audit_log_disable = true;

1344

MySQL Enterprise Audit

Setting audit_log_disable to true disables the audit log plugin. The plugin is re-enabled when
audit_log_disable is set back to false, which is the default setting.

Starting the audit log plugin with audit_log_disable = true generates a warning
(ER_WARN_AUDIT_LOG_DISABLED) with the following message: Audit Log is disabled. Enable
it with audit_log_disable = false. Setting audit_log_disable to false also generates
warning. When audit_log_disable is set to true, audit log function calls and variable changes generate
a session warning.

Setting the runtime value of audit_log_disable requires the SUPER privilege.

6.4.5.10 Legacy Mode Audit Log Filtering

Note

This section describes legacy audit log filtering, which applies under either of these
circumstances:

• Before MySQL 5.7.13, that is, prior to the introduction of rule-based audit log
filtering described in Section 6.4.5.7, “Audit Log Filtering”.

• As of MySQL 5.7.13, if the audit_log plugin is installed without the
accompanying audit tables and functions needed for rule-based filtering.

The audit log plugin can filter audited events. This enables you to control whether audited events are
written to the audit log file based on the account from which events originate or event status. Status filtering
occurs separately for connection events and statement events.

• Legacy Event Filtering by Account

• Legacy Event Filtering by Status

Legacy Event Filtering by Account

To filter audited events based on the originating account, set one (not both) of the following system
variables at server startup or runtime. These variables apply only for legacy audit log filtering.

• audit_log_include_accounts: The accounts to include in audit logging. If this variable is set, only
these accounts are audited.

• audit_log_exclude_accounts: The accounts to exclude from audit logging. If this variable is set, all
but these accounts are audited.

The value for either variable can be NULL or a string containing one or more comma-separated account
names, each in user_name@host_name format. By default, both variables are NULL, in which case, no
account filtering is done and auditing occurs for all accounts.

Modifications to audit_log_include_accounts or audit_log_exclude_accounts affect only
connections created subsequent to the modification, not existing connections.

Example: To enable audit logging only for the user1 and user2 local host accounts, set the
audit_log_include_accounts system variable like this:

SET GLOBAL audit_log_include_accounts = 'user1@localhost,user2@localhost';

Only one of audit_log_include_accounts or audit_log_exclude_accounts can be non-NULL at
a time:

1345

MySQL Enterprise Audit

• If you set audit_log_include_accounts, the server sets audit_log_exclude_accounts to
NULL.

• If you attempt to set audit_log_exclude_accounts, an error occurs unless
audit_log_include_accounts is NULL. In this case, you must first clear
audit_log_include_accounts by setting it to NULL.

-- This sets audit_log_exclude_accounts to NULL
SET GLOBAL audit_log_include_accounts = value;

-- This fails because audit_log_include_accounts is not NULL
SET GLOBAL audit_log_exclude_accounts = value;

-- To set audit_log_exclude_accounts, first set
-- audit_log_include_accounts to NULL
SET GLOBAL audit_log_include_accounts = NULL;
SET GLOBAL audit_log_exclude_accounts = value;

If you inspect the value of either variable, be aware that SHOW VARIABLES displays NULL as an empty
string. To display NULL as NULL, use SELECT instead:

mysql> SHOW VARIABLES LIKE 'audit_log_include_accounts';
+----------------------------+-------+
| Variable_name | Value |
+----------------------------+-------+
| audit_log_include_accounts | |
+----------------------------+-------+
mysql> SELECT @@audit_log_include_accounts;
+------------------------------+
| @@audit_log_include_accounts |
+------------------------------+
| NULL |
+------------------------------+

If a user name or host name requires quoting because it contains a comma, space, or other special
character, quote it using single quotes. If the variable value itself is quoted with single quotes, double each
inner single quote or escape it with a backslash. The following statements each enable audit logging for the
local root account and are equivalent, even though the quoting styles differ:

SET GLOBAL audit_log_include_accounts = 'root@localhost';
SET GLOBAL audit_log_include_accounts = '''root''@''localhost''';
SET GLOBAL audit_log_include_accounts = '\'root\'@\'localhost\'';
SET GLOBAL audit_log_include_accounts = "'root'@'localhost'";

The last statement does not work if the ANSI_QUOTES SQL mode is enabled because in that mode double
quotes signify identifier quoting, not string quoting.

Legacy Event Filtering by Status

To filter audited events based on status, set the following system variables at server startup or runtime.
These variables apply only for legacy audit log filtering. For JSON audit log filtering, different status
variables apply; see Audit Log Options and Variables.

• audit_log_connection_policy: Logging policy for connection events

• audit_log_statement_policy: Logging policy for statement events

Each variable takes a value of ALL (log all associated events; this is the default), ERRORS (log only failed
events), or NONE (do not log events). For example, to log all statement events but only failed connection
events, use these settings:

SET GLOBAL audit_log_statement_policy = ALL;

1346

MySQL Enterprise Audit

SET GLOBAL audit_log_connection_policy = ERRORS;

Another policy system variable, audit_log_policy, is available but does not afford as much control as
audit_log_connection_policy and audit_log_statement_policy. It can be set only at server
startup. At runtime, it is a read-only variable. It takes a value of ALL (log all events; this is the default),
LOGINS (log connection events), QUERIES (log statement events), or NONE (do not log events). For any of
those values, the audit log plugin logs all selected events without distinction as to success or failure. Use of
audit_log_policy at startup works as follows:

• If you do not set audit_log_policy or set it to its default of ALL, any explicit settings for
audit_log_connection_policy or audit_log_statement_policy apply as specified. If not
specified, they default to ALL.

• If you set audit_log_policy to a non-ALL value, that value takes precedence over and is used to
set audit_log_connection_policy and audit_log_statement_policy, as indicated in the
following table. If you also set either of those variables to a value other than their default of ALL, the
server writes a message to the error log to indicate that their values are being overridden.

Startup audit_log_policy Value Resulting
audit_log_connection_policy
Value

Resulting
audit_log_statement_policy
Value

LOGINS ALL NONE

QUERIES NONE ALL

NONE NONE NONE

6.4.5.11 Audit Log Reference

The following sections provide a reference to MySQL Enterprise Audit elements:

• Audit Log Tables

• Audit Log Functions

• Audit Log Option and Variable Reference

• Audit Log Options and Variables

• Audit Log Status Variables

To install the audit log tables and functions, use the instructions provided in Section 6.4.5.2, “Installing or
Uninstalling MySQL Enterprise Audit”. Unless those objects are installed, the audit_log plugin operates
in legacy mode. See Section 6.4.5.10, “Legacy Mode Audit Log Filtering”.

Audit Log Tables

MySQL Enterprise Audit uses tables in the mysql system database for persistent storage of filter and user
account data. The tables can be accessed only by users who have privileges for that database. The tables
use the InnoDB storage engine (MyISAM prior to MySQL 5.7.21).

If these tables are missing, the audit_log plugin operates in legacy mode. See Section 6.4.5.10, “Legacy
Mode Audit Log Filtering”.

The audit_log_filter table stores filter definitions. The table has these columns:

• NAME

The filter name.

1347

MySQL Enterprise Audit

• FILTER

The filter definition associated with the filter name. Definitions are stored as JSON values.

The audit_log_user table stores user account information. The table has these columns:

• USER

The user name part of an account. For an account user1@localhost, the USER part is user1.

• HOST

The host name part of an account. For an account user1@localhost, the HOST part is localhost.

• FILTERNAME

The name of the filter assigned to the account. The filter name associates the account with a filter
defined in the audit_log_filter table.

Audit Log Functions

This section describes, for each audit log function, its purpose, calling sequence, and return value. For
information about the conditions under which these functions can be invoked, see Section 6.4.5.7, “Audit
Log Filtering”.

Each audit log function returns a string that indicates whether the operation succeeded. OK indicates
success. ERROR: message indicates failure.

Audit log functions treat string arguments as binary strings (which means they do not distinguish
lettercase), and string return values are binary strings.

If an audit log function is invoked from within the mysql client, binary string results display using
hexadecimal notation, depending on the value of the --binary-as-hex. For more information about that
option, see Section 4.5.1, “mysql — The MySQL Command-Line Client”.

These audit log functions are available:

• audit_log_encryption_password_get()

Retrieves the current audit log encryption password as a binary string. The password is fetched from
the MySQL keyring, which must be enabled or an error occurs. Any keyring plugin can be used; for
instructions, see Section 6.4.4, “The MySQL Keyring”.

For additional information about audit log encryption, see Encrypting Audit Log Files.

Arguments:

None.

Return value:

The password string for success (up to 766 bytes), or NULL and an error for failure.

Example:

mysql> SELECT audit_log_encryption_password_get();
+-------------------------------------+
| audit_log_encryption_password_get() |

1348

MySQL Enterprise Audit

+-------------------------------------+
| secret |
+-------------------------------------+

• audit_log_encryption_password_set(password)

Sets the audit log encryption password to the argument, stores the password in the MySQL keyring. If
encryption is enabled, the function performs a log file rotation operation that renames the current log file,
and begins a new log file encrypted with the password. The keyring must be enabled or an error occurs.
Any keyring plugin can be used; for instructions, see Section 6.4.4, “The MySQL Keyring”.

For additional information about audit log encryption, see Encrypting Audit Log Files.

Arguments:

password: The password string. The maximum permitted length is 766 bytes.

Return value:

1 for success, 0 for failure.

Example:

mysql> SELECT audit_log_encryption_password_set(password);
+---+
| audit_log_encryption_password_set(password) |
+---+
| 1 |
+---+

• audit_log_filter_flush()

Calling any of the other filtering functions affects operational audit log filtering immediately and updates
the audit log tables. If instead you modify the contents of those tables directly using statements such as
INSERT, UPDATE, and DELETE, the changes do not affect filtering immediately. To flush your changes
and make them operational, call audit_log_filter_flush().

Warning

audit_log_filter_flush() should be used only after modifying the audit
tables directly, to force reloading all filters. Otherwise, this function should
be avoided. It is, in effect, a simplified version of unloading and reloading the
audit_log plugin with UNINSTALL PLUGIN plus INSTALL PLUGIN.

audit_log_filter_flush() affects all current sessions and detaches them
from their previous filters. Current sessions are no longer logged unless they
disconnect and reconnect, or execute a change-user operation.

If this function fails, an error message is returned and the audit log is disabled until the next successful
call to audit_log_filter_flush().

Arguments:

None.

Return value:

A string that indicates whether the operation succeeded. OK indicates success. ERROR: message
indicates failure.

1349

MySQL Enterprise Audit

Example:

mysql> SELECT audit_log_filter_flush();
+--------------------------+
| audit_log_filter_flush() |
+--------------------------+
| OK |
+--------------------------+

• audit_log_filter_remove_filter(filter_name)

Given a filter name, removes the filter from the current set of filters. It is not an error for the filter not to
exist.

If a removed filter is assigned to any user accounts, those users stop being filtered (they are removed
from the audit_log_user table). Termination of filtering includes any current sessions for those users:
They are detached from the filter and no longer logged.

Arguments:

• filter_name: A string that specifies the filter name.

Return value:

A string that indicates whether the operation succeeded. OK indicates success. ERROR: message
indicates failure.

Example:

mysql> SELECT audit_log_filter_remove_filter('SomeFilter');
+--+
| audit_log_filter_remove_filter('SomeFilter') |
+--+
| OK |
+--+

• audit_log_filter_remove_user(user_name)

Given a user account name, cause the user to be no longer assigned to a filter. It is not an error if
the user has no filter assigned. Filtering of current sessions for the user remains unaffected. New
connections for the user are filtered using the default account filter if there is one, and are not logged
otherwise.

If the name is %, the function removes the default account filter that is used for any user account that has
no explicitly assigned filter.

Arguments:

• user_name: The user account name as a string in user_name@host_name format, or % to represent
the default account.

Return value:

A string that indicates whether the operation succeeded. OK indicates success. ERROR: message
indicates failure.

Example:

mysql> SELECT audit_log_filter_remove_user('user1@localhost');

1350

MySQL Enterprise Audit

+---+
| audit_log_filter_remove_user('user1@localhost') |
+---+
| OK |
+---+

• audit_log_filter_set_filter(filter_name, definition)

Given a filter name and definition, adds the filter to the current set of filters. If the filter already exists and
is used by any current sessions, those sessions are detached from the filter and are no longer logged.
This occurs because the new filter definition has a new filter ID that differs from its previous ID.

Arguments:

• filter_name: A string that specifies the filter name.

• definition: A JSON value that specifies the filter definition.

Return value:

A string that indicates whether the operation succeeded. OK indicates success. ERROR: message
indicates failure.

Example:

mysql> SET @f = '{ "filter": { "log": false } }';
mysql> SELECT audit_log_filter_set_filter('SomeFilter', @f);
+---+
| audit_log_filter_set_filter('SomeFilter', @f) |
+---+
| OK |
+---+

• audit_log_filter_set_user(user_name, filter_name)

Given a user account name and a filter name, assigns the filter to the user. A user can be assigned only
one filter, so if the user was already assigned a filter, the assignment is replaced. Filtering of current
sessions for the user remains unaffected. New connections are filtered using the new filter.

As a special case, the name % represents the default account. The filter is used for connections from any
user account that has no explicitly assigned filter.

Arguments:

• user_name: The user account name as a string in user_name@host_name format, or % to represent
the default account.

• filter_name: A string that specifies the filter name.

Return value:

A string that indicates whether the operation succeeded. OK indicates success. ERROR: message
indicates failure.

Example:

mysql> SELECT audit_log_filter_set_user('user1@localhost', 'SomeFilter');
+--+
| audit_log_filter_set_user('user1@localhost', 'SomeFilter') |
+--+

1351

MySQL Enterprise Audit

| OK |
+--+

• audit_log_read([arg])

Reads the audit log and returns a binary JSON string result. If the audit log format is not JSON, an error
occurs.

With no argument or a JSON hash argument, audit_log_read() reads events from the audit log and
returns a JSON string containing an array of audit events. Items in the hash argument influence how
reading occurs, as described later. Each element in the returned array is an event represented as a
JSON hash, with the exception that the last element may be a JSON null value to indicate no following
events are available to read.

With an argument consisting of a JSON null value, audit_log_read() closes the current read
sequence.

For additional details about the audit log-reading process, see Section 6.4.5.6, “Reading Audit Log
Files”.

Arguments:

arg: The argument is optional. If omitted, the function reads events from the current position. If present,
the argument can be a JSON null value to close the read sequence, or a JSON hash. Within a hash
argument, items are optional and control aspects of the read operation such as the position at which to
begin reading or how many events to read. The following items are significant (other items are ignored):

• timestamp, id: The position within the audit log of the first event to read. If the position is omitted
from the argument, reading continues from the current position. The timestamp and id items
together comprise a bookmark that uniquely identify a particular event. If an audit_log_read()
argument includes either item, it must include both to completely specify a position or an error occurs.

To obtain a bookmark for the most recently written event, call audit_log_read_bookmark().

• max_array_length: The maximum number of events to read from the log. If this item is omitted, the
default is to read to the end of the log or until the read buffer is full, whichever comes first.

Return value:

If the call succeeds, the return value is a binary JSON string containing an array of audit events, or a
JSON null value if that was passed as the argument to close the read sequence. If the call fails, the
return value is NULL and an error occurs.

Example:

mysql> SELECT audit_log_read(audit_log_read_bookmark());
+---+
| audit_log_read(audit_log_read_bookmark()) |
+---+
| [{"timestamp":"2020-05-18 22:41:24","id":0,"class":"connection", ... |
+---+
mysql> SELECT audit_log_read('null');
+------------------------+
| audit_log_read('null') |
+------------------------+
| null |
+------------------------+

1352

MySQL Enterprise Audit

• audit_log_read_bookmark()

Returns a binary JSON string representing a bookmark for the most recently written audit log event. If the
audit log format is not JSON, an error occurs.

The bookmark is a JSON hash with timestamp and id items that uniquely identify the position of an
event within the audit log. It is suitable for passing to audit_log_read() to indicate to that function the
position at which to begin reading.

For additional details about the audit log-reading process, see Section 6.4.5.6, “Reading Audit Log
Files”.

Arguments:

None.

Return value:

A binary JSON string containing a bookmark for success, or NULL and an error for failure.

Example:

mysql> SELECT audit_log_read_bookmark();
+---+
| audit_log_read_bookmark() |
+---+
| { "timestamp": "2019-10-03 21:03:44", "id": 0 } |
+---+

Audit Log Option and Variable Reference

Table 6.34 Audit Log Option and Variable Reference

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

audit-log Yes Yes

audit_log_buffer_sizeYes Yes Yes Global No

audit_log_compressionYes Yes Yes Global No

audit_log_connection_policyYes Yes Yes Global Yes

audit_log_current_session Yes Both No

Audit_log_current_size Yes Global No

audit_log_disableYes Yes Yes Global Yes

audit_log_encryptionYes Yes Yes Global No

Audit_log_event_max_drop_size Yes Global No

Audit_log_events Yes Global No

Audit_log_events_filtered Yes Global No

Audit_log_events_lost Yes Global No

Audit_log_events_written Yes Global No

audit_log_exclude_accountsYes Yes Yes Global Yes

audit_log_file Yes Yes Yes Global No

audit_log_filter_id Yes Both No

1353

MySQL Enterprise Audit

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

audit_log_flush Yes Global Yes

audit_log_formatYes Yes Yes Global No

audit_log_include_accountsYes Yes Yes Global Yes

audit_log_policyYes Yes Yes Global No

audit_log_read_buffer_sizeYes Yes Yes Varies Varies

audit_log_rotate_on_sizeYes Yes Yes Global Yes

audit_log_statement_policyYes Yes Yes Global Yes

audit_log_strategyYes Yes Yes Global No

Audit_log_total_size Yes Global No

Audit_log_write_waits Yes Global No

Audit Log Options and Variables

This section describes the command options and system variables that configure operation of MySQL
Enterprise Audit. If values specified at startup time are incorrect, the audit_log plugin may fail to initialize
properly and the server does not load it. In this case, the server may also produce error messages for other
audit log settings because it does not recognize them.

To configure activation of the audit log plugin, use this option:

• --audit-log[=value]

Command-Line Format --audit-log[=value]

Type Enumeration

Default Value ON

Valid Values ON

OFF

FORCE

FORCE_PLUS_PERMANENT

This option controls how the server loads the audit_log plugin at startup. It is available only if the
plugin has been previously registered with INSTALL PLUGIN or is loaded with --plugin-load or --
plugin-load-add. See Section 6.4.5.2, “Installing or Uninstalling MySQL Enterprise Audit”.

The option value should be one of those available for plugin-loading options, as
described in Section 5.5.1, “Installing and Uninstalling Plugins”. For example, --audit-
log=FORCE_PLUS_PERMANENT tells the server to load the plugin and prevent it from being removed
while the server is running.

If the audit log plugin is enabled, it exposes several system variables that permit control over logging:

mysql> SHOW VARIABLES LIKE 'audit_log%';
+--------------------------------------+--------------+
| Variable_name | Value |
+--------------------------------------+--------------+
audit_log_buffer_size	1048576
audit_log_compression	NONE
audit_log_connection_policy	ALL

1354

MySQL Enterprise Audit

audit_log_current_session	OFF
audit_log_disable	OFF
audit_log_encryption	NONE
audit_log_exclude_accounts	
audit_log_file	audit.log
audit_log_filter_id	0
audit_log_flush	OFF
audit_log_format	NEW
audit_log_format_unix_timestamp	OFF
audit_log_include_accounts	
audit_log_policy	ALL
audit_log_read_buffer_size	32768
audit_log_rotate_on_size	0
audit_log_statement_policy	ALL
audit_log_strategy	ASYNCHRONOUS
+--------------------------------------+--------------+

You can set any of these variables at server startup, and some of them at runtime. Those that are available
only for legacy mode audit log filtering are so noted.

• audit_log_buffer_size

Command-Line Format --audit-log-buffer-size=#

System Variable audit_log_buffer_size

Scope Global

Dynamic No

Type Integer

Default Value 1048576

Minimum Value 4096

Maximum Value (64-bit platforms) 18446744073709547520

Maximum Value (32-bit platforms) 4294967295

Unit bytes

Block Size 4096

When the audit log plugin writes events to the log asynchronously, it uses a buffer to store event
contents prior to writing them. This variable controls the size of that buffer, in bytes. The server adjusts
the value to a multiple of 4096. The plugin uses a single buffer, which it allocates when it initializes and
removes when it terminates. The plugin allocates this buffer only if logging is asynchronous.

• audit_log_compression

Command-Line Format --audit-log-compression=value

Introduced 5.7.21

System Variable audit_log_compression

Scope Global

Dynamic No

Type Enumeration

Default Value NONE

Valid Values NONE

GZIP

1355

MySQL Enterprise Audit

The type of compression for the audit log file. Permitted values are NONE (no compression; the default)
and GZIP (GNU Zip compression). For more information, see Compressing Audit Log Files.

• audit_log_connection_policy

Command-Line Format --audit-log-connection-policy=value

System Variable audit_log_connection_policy

Scope Global

Dynamic Yes

Type Enumeration

Default Value ALL

Valid Values ALL

ERRORS

NONE

Note

This variable applies only to legacy mode audit log filtering (see Section 6.4.5.10,
“Legacy Mode Audit Log Filtering”).

The policy controlling how the audit log plugin writes connection events to its log file. The following table
shows the permitted values.

Value Description

ALL Log all connection events

ERRORS Log only failed connection events

NONE Do not log connection events

Note

At server startup, any explicit value given for audit_log_connection_policy
may be overridden if audit_log_policy is also specified, as described in
Section 6.4.5.5, “Configuring Audit Logging Characteristics”.

• audit_log_current_session

System Variable audit_log_current_session

Scope Global, Session

Dynamic No

Type Boolean

Default Value depends on filtering policy

Whether audit logging is enabled for the current session. The session value of this variable is read only.
It is set when the session begins based on the values of the audit_log_include_accounts and
audit_log_exclude_accounts system variables. The audit log plugin uses the session value to
determine whether to audit events for the session. (There is a global value, but the plugin does not use
it.)

1356

MySQL Enterprise Audit

• audit_log_disable

Command-Line Format --audit-log-disable[={OFF|ON}]

Introduced 5.7.37

System Variable audit_log_disable

Scope Global

Dynamic Yes

Type Boolean

Default Value OFF

Permits disabling audit logging for all connecting and connected sessions. Disabling audit logging
requires the SUPER privilege. See Section 6.4.5.9, “Disabling Audit Logging”.

• audit_log_encryption

Command-Line Format --audit-log-encryption=value

Introduced 5.7.21

System Variable audit_log_encryption

Scope Global

Dynamic No

Type Enumeration

Default Value NONE

Valid Values NONE

AES

The type of encryption for the audit log file. Permitted values are NONE (no encryption; the default) and
AES (AES-256-CBC cipher encryption). For more information, see Encrypting Audit Log Files.

• audit_log_exclude_accounts

Command-Line Format --audit-log-exclude-accounts=value

System Variable audit_log_exclude_accounts

Scope Global

Dynamic Yes

Type String

1357

MySQL Enterprise Audit

Default Value NULL

Note

This variable applies only to legacy mode audit log filtering (see Section 6.4.5.10,
“Legacy Mode Audit Log Filtering”).

The accounts for which events should not be logged. The value should be NULL or a string containing a
list of one or more comma-separated account names. For more information, see Section 6.4.5.7, “Audit
Log Filtering”.

Modifications to audit_log_exclude_accounts affect only connections created subsequent to the
modification, not existing connections.

• audit_log_file

Command-Line Format --audit-log-file=file_name

System Variable audit_log_file

Scope Global

Dynamic No

Type File name

Default Value audit.log

The base name and suffix of the file to which the audit log plugin writes events. The default value is
audit.log, regardless of logging format. To have the name suffix correspond to the format, set the
name explicitly, choosing a different suffix (for example, audit.xml for XML format, audit.json for
JSON format).

If the value of audit_log_file is a relative path name, the plugin interprets it relative to the data
directory. If the value is a full path name, the plugin uses the value as is. A full path name may be useful
if it is desirable to locate audit files on a separate file system or directory. For security reasons, write the
audit log file to a directory accessible only to the MySQL server and to users with a legitimate reason to
view the log.

For details about how the audit log plugin interprets the audit_log_file value and the rules for file
renaming that occurs at plugin initialization and termination, see Naming Conventions for Audit Log Files.

As of MySQL 5.7.21, the audit log plugin uses the directory containing the audit log file (determined
from the audit_log_file value) as the location to search for readable audit log files. From these log
files and the current file, the plugin constructs a list of the ones that are subject to use with the audit log
bookmarking and reading functions. See Section 6.4.5.6, “Reading Audit Log Files”.

• audit_log_filter_id

Introduced 5.7.13

System Variable audit_log_filter_id

Scope Global, Session

Dynamic No

Type Integer

Default Value 1

Minimum Value 0

1358

MySQL Enterprise Audit

Maximum Value 4294967295

The session value of this variable indicates the internally maintained ID of the audit filter for the current
session. A value of 0 means that the session has no filter assigned.

• audit_log_flush

System Variable audit_log_flush

Scope Global

Dynamic Yes

Type Boolean

Default Value OFF

If audit_log_rotate_on_size is 0, automatic audit log file rotation is disabled and rotation occurs
only when performed manually. In that case, enabling audit_log_flush by setting it to 1 or ON causes
the audit log plugin to close and reopen its log file to flush it. (The variable value remains OFF so that you
need not disable it explicitly before enabling it again to perform another flush.) For more information, see
Section 6.4.5.5, “Configuring Audit Logging Characteristics”.

• audit_log_format

Command-Line Format --audit-log-format=value

System Variable audit_log_format

Scope Global

Dynamic No

Type Enumeration

Default Value NEW

Valid Values (≥ 5.7.21) OLD

NEW

JSON

Valid Values (≤ 5.7.20) OLD

NEW

The audit log file format. Permitted values are OLD (old-style XML), NEW (new-style XML; the default),
and (as of MySQL 5.7.21) JSON. For details about each format, see Section 6.4.5.4, “Audit Log File
Formats”.

Note

For information about issues to consider when changing the log format, see
Selecting Audit Log File Format.

• audit_log_format_unix_timestamp

Command-Line Format --audit-log-format-unix-
timestamp[={OFF|ON}]

Introduced 5.7.35 1359

MySQL Enterprise Audit

System Variable audit_log_format_unix_timestamp

Scope Global

Dynamic Yes

Type Boolean

Default Value OFF

This variable applies only for JSON-format audit log output. When that is true, enabling this variable
causes each log file record to include a time field. The field value is an integer that represents the UNIX
timestamp value indicating the date and time when the audit event was generated.

Changing the value of this variable at runtime causes log file rotation so that, for a given JSON-format
log file, all records in the file either do or do not include the time field.

• audit_log_include_accounts

Command-Line Format --audit-log-include-accounts=value

System Variable audit_log_include_accounts

Scope Global

Dynamic Yes

Type String

Default Value NULL

Note

This variable applies only to legacy mode audit log filtering (see Section 6.4.5.10,
“Legacy Mode Audit Log Filtering”).

The accounts for which events should be logged. The value should be NULL or a string containing a list
of one or more comma-separated account names. For more information, see Section 6.4.5.7, “Audit Log
Filtering”.

Modifications to audit_log_include_accounts affect only connections created subsequent to the
modification, not existing connections.

• audit_log_policy

Command-Line Format --audit-log-policy=value

System Variable audit_log_policy

Scope Global

Dynamic No

Type Enumeration

Default Value ALL

Valid Values ALL

LOGINS

QUERIES

1360

MySQL Enterprise Audit

NONE

Note

This variable applies only to legacy mode audit log filtering (see Section 6.4.5.10,
“Legacy Mode Audit Log Filtering”).

The policy controlling how the audit log plugin writes events to its log file. The following table shows the
permitted values.

Value Description

ALL Log all events

LOGINS Log only login events

QUERIES Log only query events

NONE Log nothing (disable the audit stream)

audit_log_policy can be set only at server startup. At runtime, it is a read-only variable. Two
other system variables, audit_log_connection_policy and audit_log_statement_policy,
provide finer control over logging policy and can be set either at startup or at runtime. If you use
audit_log_policy at startup instead of the other two variables, the server uses its value to set those
variables. For more information about the policy variables and their interaction, see Section 6.4.5.5,
“Configuring Audit Logging Characteristics”.

• audit_log_read_buffer_size

Command-Line Format --audit-log-read-buffer-size=#

Introduced 5.7.21

System Variable audit_log_read_buffer_size

Scope (≥ 5.7.23) Global, Session

Scope (≤ 5.7.22) Global

Dynamic (≥ 5.7.23) Yes

Dynamic (≤ 5.7.22) No

Type Integer

Default Value (≥ 5.7.23) 32768

Default Value (≤ 5.7.22) 1048576

Minimum Value (≥ 5.7.23) 32768

Minimum Value (≤ 5.7.22) 1024

Maximum Value 4194304

Unit bytes

The buffer size for reading from the audit log file, in bytes. The audit_log_read() function reads no
more than this many bytes. Log file reading is supported only for JSON log format. For more information,
see Section 6.4.5.6, “Reading Audit Log Files”.

As of MySQL 5.7.23, this variable has a default of 32KB and can be set at runtime. Each client
should set its session value of audit_log_read_buffer_size appropriately for its use of

1361

MySQL Enterprise Audit

audit_log_read(). Prior to MySQL 5.7.23, audit_log_read_buffer_size has a default of 1MB,
affects all clients, and can be changed only at server startup.

• audit_log_rotate_on_size

Command-Line Format --audit-log-rotate-on-size=#

System Variable audit_log_rotate_on_size

Scope Global

Dynamic Yes

Type Integer

Default Value 0

Minimum Value 0

Maximum Value 18446744073709551615

Unit bytes

Block Size 4096

If audit_log_rotate_on_size is 0, the audit log plugin does not perform automatic size-based log
file rotation. If rotation is to occur, you must perform it manually; see Manual Audit Log File Rotation.

If audit_log_rotate_on_size is greater than 0, automatic size-based log file rotation occurs.
Whenever a write to the log file causes its size to exceed the audit_log_rotate_on_size value, the
audit log plugin renames the current log file and opens a new current log file using the original name.

If you set audit_log_rotate_on_size to a value that is not a multiple of 4096, it is truncated to the
nearest multiple. In particular, setting it to a value less than 4096 sets it to 0 and no rotation occurs,
except manually.

For more information about audit log file rotation, see Space Management of Audit Log Files.

• audit_log_statement_policy

Command-Line Format --audit-log-statement-policy=value

System Variable audit_log_statement_policy

Scope Global

Dynamic Yes

Type Enumeration

Default Value ALL

Valid Values ALL

ERRORS

NONE

Note

This variable applies only to legacy mode audit log filtering (see Section 6.4.5.10,
“Legacy Mode Audit Log Filtering”).

The policy controlling how the audit log plugin writes statement events to its log file. The following table
shows the permitted values.

1362

MySQL Enterprise Audit

Value Description

ALL Log all statement events

ERRORS Log only failed statement events

NONE Do not log statement events

Note

At server startup, any explicit value given for audit_log_statement_policy
may be overridden if audit_log_policy is also specified, as described in
Section 6.4.5.5, “Configuring Audit Logging Characteristics”.

• audit_log_strategy

Command-Line Format --audit-log-strategy=value

System Variable audit_log_strategy

Scope Global

Dynamic No

Type Enumeration

Default Value ASYNCHRONOUS

Valid Values ASYNCHRONOUS

PERFORMANCE

SEMISYNCHRONOUS

SYNCHRONOUS

The logging method used by the audit log plugin. These strategy values are permitted:

• ASYNCHRONOUS: Log asynchronously. Wait for space in the output buffer.

• PERFORMANCE: Log asynchronously. Drop requests for which there is insufficient space in the output
buffer.

• SEMISYNCHRONOUS: Log synchronously. Permit caching by the operating system.

• SYNCHRONOUS: Log synchronously. Call sync() after each request.

Audit Log Status Variables

If the audit log plugin is enabled, it exposes several status variables that provide operational information.
These variables are available for legacy mode audit filtering and JSON mode audit filtering.

• Audit_log_current_size

The size of the current audit log file. The value increases when an event is written to the log and is reset
to 0 when the log is rotated.

• Audit_log_event_max_drop_size

The size of the largest dropped event in performance logging mode. For a description of logging modes,
see Section 6.4.5.5, “Configuring Audit Logging Characteristics”.

1363

MySQL Enterprise Audit

• Audit_log_events

The number of events handled by the audit log plugin, whether or not they were written to the log based
on filtering policy (see Section 6.4.5.5, “Configuring Audit Logging Characteristics”).

• Audit_log_events_filtered

The number of events handled by the audit log plugin that were filtered (not written to the log) based on
filtering policy (see Section 6.4.5.5, “Configuring Audit Logging Characteristics”).

• Audit_log_events_lost

The number of events lost in performance logging mode because an event was larger than the available
audit log buffer space. This value may be useful for assessing how to set audit_log_buffer_size
to size the buffer for performance mode. For a description of logging modes, see Section 6.4.5.5,
“Configuring Audit Logging Characteristics”.

• Audit_log_events_written

The number of events written to the audit log.

• Audit_log_total_size

The total size of events written to all audit log files. Unlike Audit_log_current_size, the value of
Audit_log_total_size increases even when the log is rotated.

• Audit_log_write_waits

The number of times an event had to wait for space in the audit log buffer in asynchronous
logging mode. For a description of logging modes, see Section 6.4.5.5, “Configuring Audit Logging
Characteristics”.

6.4.5.12 Audit Log Restrictions

MySQL Enterprise Audit is subject to these general restrictions:

• Only SQL statements are logged. Changes made by no-SQL APIs, such as memcached, Node.JS, and
the NDB API, are not logged.

• Only top-level statements are logged, not statements within stored programs such as triggers or stored
procedures.

• Contents of files referenced by statements such as LOAD DATA are not logged.

• Prior to MySQL 5.7.21, MySQL Enterprise Audit uses MyISAM tables in the mysql system database.
Group Replication does not support MyISAM tables. Consequently, MySQL Enterprise Audit and Group
Replication cannot be used together.

NDB Cluster. It is possible to use MySQL Enterprise Audit with MySQL NDB Cluster, subject to the
following conditions:

• All changes to be logged must be done using the SQL interface. Changes using no-SQL interfaces, such
as those provided by the NDB API, memcached, or ClusterJ, are not logged.

• The plugin must be installed on each MySQL server that is used to execute SQL on the cluster.

• Audit plugin data must be aggregated amongst all MySQL servers used with the cluster. This
aggregation is the responsibility of the application or user.

1364

MySQL Enterprise Firewall

6.4.6 MySQL Enterprise Firewall

Note

MySQL Enterprise Firewall is an extension included in MySQL Enterprise Edition,
a commercial product. To learn more about commercial products, see https://
www.mysql.com/products/.

MySQL Enterprise Edition includes MySQL Enterprise Firewall, an application-level firewall that enables
database administrators to permit or deny SQL statement execution based on matching against lists of
accepted statement patterns. This helps harden MySQL Server against attacks such as SQL injection or
attempts to exploit applications by using them outside of their legitimate query workload characteristics.

Each MySQL account registered with the firewall has its own statement allowlist, enabling protection to
be tailored per account. For a given account, the firewall can operate in recording, protecting, or detecting
mode, for training in the accepted statement patterns, active protection against unacceptable statements,
or passive detection of unacceptable statements. The diagram illustrates how the firewall processes
incoming statements in each mode.

1365

https://www.mysql.com/products/
https://www.mysql.com/products/

MySQL Enterprise Firewall

Figure 6.1 MySQL Enterprise Firewall Operation

The following sections describe the elements of MySQL Enterprise Firewall, discuss how to install and use
it, and provide reference information for its elements.

6.4.6.1 Elements of MySQL Enterprise Firewall

MySQL Enterprise Firewall is based on a plugin library that includes these elements:

• A server-side plugin named MYSQL_FIREWALL examines SQL statements before they execute and,
based on the registered firewall profiles, renders a decision whether to execute or reject each statement.

• Server-side plugins named MYSQL_FIREWALL_USERS and MYSQL_FIREWALL_WHITELIST implement
INFORMATION_SCHEMA tables that provide views into the registered profiles.

• Profiles are cached in memory for better performance. Tables in the mysql system database provide
persistent backing storage of firewall data.

1366

MySQL Enterprise Firewall

• Stored procedures perform tasks such as registering firewall profiles, establishing their operational
mode, and managing transfer of firewall data between the in-memory cache and persistent storage.

• Administrative functions provide an API for lower-level tasks such as synchronizing the cache with
persistent storage.

• System variables enable firewall configuration and status variables provide runtime operational
information.

6.4.6.2 Installing or Uninstalling MySQL Enterprise Firewall

MySQL Enterprise Firewall installation is a one-time operation that installs the elements described in
Section 6.4.6.1, “Elements of MySQL Enterprise Firewall”. Installation can be performed using a graphical
interface or manually:

• On Windows, MySQL Installer includes an option to enable MySQL Enterprise Firewall for you.

• MySQL Workbench 6.3.4 or higher can install MySQL Enterprise Firewall, enable or disable an installed
firewall, or uninstall the firewall.

• Manual MySQL Enterprise Firewall installation involves running a script located in the share directory of
your MySQL installation.

Important

Read this entire section before following its instructions. Parts of the procedure
differ depending on your environment.

Note

If installed, MySQL Enterprise Firewall involves some minimal overhead even when
disabled. To avoid this overhead, do not install the firewall unless you plan to use it.

Note

MySQL Enterprise Firewall does not work together with the query cache. If the
query cache is enabled, disable it before installing the firewall (see Section 8.10.3.3,
“Query Cache Configuration”).

For usage instructions, see Section 6.4.6.3, “Using MySQL Enterprise Firewall”. For reference information,
see Section 6.4.6.4, “MySQL Enterprise Firewall Reference”.

• Installing MySQL Enterprise Firewall

• Uninstalling MySQL Enterprise Firewall

Installing MySQL Enterprise Firewall

If MySQL Enterprise Firewall is already installed from an older version of MySQL, uninstall it using the
instructions given later in this section and then restart your server before installing the current version. In
this case, it is also necessary to register your configuration again.

On Windows, you can use MySQL Installer to install MySQL Enterprise Firewall, as shown in Figure 6.2,
“MySQL Enterprise Firewall Installation on Windows”. Check the Enable MySQL Enterprise Firewall
check box. (Open Firewall port for network access has a different purpose. It refers to Windows Firewall
and controls whether Windows blocks the TCP/IP port on which the MySQL server listens for client
connections.)

1367

MySQL Enterprise Firewall

Figure 6.2 MySQL Enterprise Firewall Installation on Windows

To install MySQL Enterprise Firewall using MySQL Workbench 6.3.4 or higher, see MySQL Enterprise
Firewall Interface.

To install MySQL Enterprise Firewall manually, look in the share directory of your MySQL installation and
choose the script that is appropriate for your platform. The available scripts differ in the suffix used to refer
to the plugin library file:

• win_install_firewall.sql: Choose this script for Windows systems that use .dll as the file
name suffix.

• linux_install_firewall.sql: Choose this script for Linux and similar systems that use .so as the
file name suffix.

The installation script creates stored procedures in the default database, mysql. Run the script as
follows on the command line. The example here uses the Linux installation script. Make the appropriate
substitutions for your system.

$> mysql -u root -p < linux_install_firewall.sql
Enter password: (enter root password here)

Note

As of MySQL 5.7.21, for a new installation of MySQL Enterprise Firewall, InnoDB
is used instead of MyISAM for the firewall tables. For upgrades to 5.7.21 or higher

1368

https://dev.mysql.com/doc/workbench/en/wb-mysql-firewall.html
https://dev.mysql.com/doc/workbench/en/wb-mysql-firewall.html

MySQL Enterprise Firewall

of an installation for which MySQL Enterprise Firewall is already installed, it is
recommended that you alter the firewall tables to use InnoDB:

ALTER TABLE mysql.firewall_users ENGINE=InnoDB;
ALTER TABLE mysql.firewall_whitelist ENGINE=InnoDB;

Note

To use MySQL Enterprise Firewall in the context of source/replica replication,
Group Replication, or InnoDB Cluster, you must use MySQL 5.7.21 or higher,
and ensure that the firewall tables use InnoDB as just described. Then you must
prepare the replica nodes prior to running the installation script on the source node.
This is necessary because the INSTALL PLUGIN statements in the script are not
replicated.

1. On each replica node, extract the INSTALL PLUGIN statements from the
installation script and execute them manually.

2. On the source node, run the installation script as described previously.

Installing MySQL Enterprise Firewall either using a graphical interface or manually should enable the
firewall. To verify that, connect to the server and execute this statement:

mysql> SHOW GLOBAL VARIABLES LIKE 'mysql_firewall_mode';
+---------------------+-------+
| Variable_name | Value |
+---------------------+-------+
| mysql_firewall_mode | ON |
+---------------------+-------+

If the plugin fails to initialize, check the server error log for diagnostic messages.

Uninstalling MySQL Enterprise Firewall

MySQL Enterprise Firewall can be uninstalled using MySQL Workbench or manually.

To uninstall MySQL Enterprise Firewall using MySQL Workbench 6.3.4 or higher, see MySQL Enterprise
Firewall Interface, in Chapter 29, MySQL Workbench.

To uninstall MySQL Enterprise Firewall manually, execute the following statements. Statements use IF
EXISTS because, depending on the previously installed firewall version, some objects might not exist.

DROP TABLE IF EXISTS mysql.firewall_users;
DROP TABLE IF EXISTS mysql.firewall_whitelist;

UNINSTALL PLUGIN MYSQL_FIREWALL;
UNINSTALL PLUGIN MYSQL_FIREWALL_USERS;
UNINSTALL PLUGIN MYSQL_FIREWALL_WHITELIST;

DROP FUNCTION IF EXISTS mysql_firewall_flush_status;
DROP FUNCTION IF EXISTS normalize_statement;
DROP FUNCTION IF EXISTS read_firewall_users;
DROP FUNCTION IF EXISTS read_firewall_whitelist;
DROP FUNCTION IF EXISTS set_firewall_mode;

DROP PROCEDURE IF EXISTS mysql.sp_reload_firewall_rules;
DROP PROCEDURE IF EXISTS mysql.sp_set_firewall_mode;

6.4.6.3 Using MySQL Enterprise Firewall

Before using MySQL Enterprise Firewall, install it according to the instructions provided in Section 6.4.6.2,
“Installing or Uninstalling MySQL Enterprise Firewall”. Also, MySQL Enterprise Firewall does not work

1369

https://dev.mysql.com/doc/workbench/en/wb-mysql-firewall.html
https://dev.mysql.com/doc/workbench/en/wb-mysql-firewall.html

MySQL Enterprise Firewall

together with the query cache; disable the query cache if it is enabled (see Section 8.10.3.3, “Query Cache
Configuration”).

This section describes how to configure MySQL Enterprise Firewall using SQL statements. Alternatively,
MySQL Workbench 6.3.4 or higher provides a graphical interface for firewall control. See MySQL
Enterprise Firewall Interface.

• Enabling or Disabling the Firewall

• Assigning Firewall Privileges

• Firewall Concepts

• Registering Firewall Account Profiles

• Monitoring the Firewall

Enabling or Disabling the Firewall

To enable or disable the firewall, set the mysql_firewall_mode system variable. By default, this
variable is enabled when the firewall is installed. To control the initial firewall state explicitly, you can set
the variable at server startup. For example, to enable the firewall in an option file, use these lines:

[mysqld]
mysql_firewall_mode=ON

After modifying my.cnf, restart the server to cause the new setting to take effect.

It is also possible to disable or enable the firewall at runtime:

SET GLOBAL mysql_firewall_mode = OFF;
SET GLOBAL mysql_firewall_mode = ON;

Assigning Firewall Privileges

With the firewall installed, grant the appropriate privileges to the MySQL account or accounts to be used for
administering it:

• Grant the EXECUTE privilege for the firewall stored procedures in the mysql system database. These
may invoke administrative functions, so stored procedure access also requires the privileges needed for
those functions.

• Grant the SUPER privilege so that the firewall administrative functions can be executed.

Firewall Concepts

The MySQL server permits clients to connect and receives from them SQL statements to be executed. If
the firewall is enabled, the server passes to it each incoming statement that does not immediately fail with
a syntax error. Based on whether the firewall accepts the statement, the server executes it or returns an
error to the client. This section describes how the firewall accomplishes the task of accepting or rejecting
statements.

• Firewall Profiles

• Firewall Statement Matching

• Profile Operational Modes

Firewall Profiles

The firewall uses a registry of profiles that determine whether to permit statement execution. Profiles have
these attributes:

1370

https://dev.mysql.com/doc/workbench/en/wb-mysql-firewall.html
https://dev.mysql.com/doc/workbench/en/wb-mysql-firewall.html

MySQL Enterprise Firewall

• An allowlist. The allowlist is the set of rules that defines which statements are acceptable to the profile.

• A current operational mode. The mode enables the profile to be used in different ways. For example: the
profile can be placed in training mode to establish the allowlist; the allowlist can be used for restricting
statement execution or intrusion detection; the profile can be disabled entirely.

• A scope of applicability. The scope indicates which client connections the profile applies to.

The firewall supports account-based profiles such that each profile matches a particular client account
(client user name and host name combination). For example, you can register one account profile for
which the allowlist applies to connections originating from admin@localhost and another account
profile for which the allowlist applies to connections originating from myapp@apphost.example.com.

Initially, no profiles exist, so by default, the firewall accepts all statements and has no effect on which
statements MySQL accounts can execute. To apply firewall protective capabilities, explicit action is
required:

• Register one or more profiles with the firewall.

• Train the firewall by establishing the allowlist for each profile; that is, the types of statements the profile
permits clients to execute.

• Place the trained profiles in protecting mode to harden MySQL against unauthorized statement
execution:

• MySQL associates each client session with a specific user name and host name combination. This
combination is the session account.

• For each client connection, the firewall uses the session account to determine which profile applies to
handling incoming statements from the client.

The firewall accepts only statements permitted by the applicable profile allowlist.

The profile-based protection afforded by the firewall enables implementation of strategies such as these:

• If an application has unique protection requirements, configure it to use an account not used for any
other purpose and set up a profile for that account.

• If related applications share protection requirements, configure them all to use the same account (and
thus the same account profile).

Firewall Statement Matching

Statement matching performed by the firewall does not use SQL statements as received from clients.
Instead, the server converts incoming statements to normalized digest form and firewall operation uses
these digests. The benefit of statement normalization is that it enables similar statements to be grouped
and recognized using a single pattern. For example, these statements are distinct from each other:

SELECT first_name, last_name FROM customer WHERE customer_id = 1;
select first_name, last_name from customer where customer_id = 99;
SELECT first_name, last_name FROM customer WHERE customer_id = 143;

But all of them have the same normalized digest form:

SELECT `first_name` , `last_name` FROM `customer` WHERE `customer_id` = ?

By using normalization, firewall allowlists can store digests that each match many different statements
received from clients. For more information about normalization and digests, see Section 25.10,
“Performance Schema Statement Digests”.

1371

MySQL Enterprise Firewall

Warning

Setting the max_digest_length system variable to zero disables digest
production, which also disables server functionality that requires digests, such as
MySQL Enterprise Firewall.

Profile Operational Modes

Each profile registered with the firewall has its own operational mode, chosen from these values:

• OFF: This mode disables the profile. The firewall considers it inactive and ignores it.

• RECORDING: This is the firewall training mode. Incoming statements received from a client that matches
the profile are considered acceptable for the profile and become part of its “fingerprint.” The firewall
records the normalized digest form of each statement to learn the acceptable statement patterns for the
profile. Each pattern is a rule, and the union of the rules is the profile allowlist.

• PROTECTING: In this mode, the profile allows or prevents statement execution. The firewall matches
incoming statements against the profile allowlist, accepting only statements that match and rejecting
those that do not. After training a profile in RECORDING mode, switch it to PROTECTING mode to harden
MySQL against access by statements that deviate from the allowlist. If the mysql_firewall_trace
system variable is enabled, the firewall also writes rejected statements to the error log.

• DETECTING: This mode detects but not does not block intrusions (statements that are suspicious
because they match nothing in the profile allowlist). In DETECTING mode, the firewall writes suspicious
statements to the error log but accepts them without denying access.

When a profile is assigned any of the preceding mode values, the firewall stores the mode in the profile.
Firewall mode-setting operations also permit a mode value of RESET, but this value is not stored: setting a
profile to RESET mode causes the firewall to delete all rules for the profile and set its mode to OFF.

Note

Messages written to the error log in DETECTING mode or because
mysql_firewall_trace is enabled are written as Notes, which are information
messages. To ensure that such messages appear in the error log and are not
discarded, set the log_error_verbosity system variable to a value of 3.

As previously mentioned, MySQL associates each client session with a specific user name and host name
combination known as the session account. The firewall matches the session account against registered
profiles to determine which profile applies to handling incoming statements from the session:

• The firewall ignores inactive profiles (profiles with a mode of OFF).

• The session account matches an active account profile having the same user and host, if there is one.
There is at most one such account profile.

After matching the session account to registered profiles, the firewall handles each incoming statement as
follows:

• If there is no applicable profile, the firewall imposes no restrictions and accepts the statement.

• If there is an applicable profile, its mode determines statement handling:

• In RECORDING mode, the firewall adds the statement to the profile allowlist rules and accepts it.

• In PROTECTING mode, the firewall compares the statement to the rules in the profile
allowlist. The firewall accepts the statement if there is a match, and rejects it otherwise. If the

1372

MySQL Enterprise Firewall

mysql_firewall_trace system variable is enabled, the firewall also writes rejected statements to
the error log.

• In DETECTING mode, the firewall detects instrusions without denying access. The firewall accepts
the statement, but also matches it to the profile allowlist, as in PROTECTING mode. If the statement is
suspicious (nonmatching), the firewall writes it to the error log.

Registering Firewall Account Profiles

MySQL Enterprise Firewall enables profiles to be registered that correspond to individual accounts. To use
a firewall account profile to protect MySQL against incoming statements from a given account, follow these
steps:

1. Register the account profile and put it in RECORDING mode.

2. Connect to the MySQL server using the account and execute statements to be learned. This trains the
account profile and establishes the rules that form the profile allowlist.

3. Switch the account profile to PROTECTING mode. When a client connects to the server using the
account, the account profile allowlist restricts statement execution.

4. Should additional training be necessary, switch the account profile to RECORDING mode again, update
its allowlist with new statement patterns, then switch it back to PROTECTING mode.

Observe these guidelines for firewall-related account references:

• Take note of the context in which account references occur. To name an account for firewall operations,
specify it as a single quoted string ('user_name@host_name'). This differs from the usual MySQL
convention for statements such as CREATE USER and GRANT, for which you quote the user and host
parts of an account name separately ('user_name'@'host_name').

The requirement for naming accounts as a single quoted string for firewall operations means that you
cannot use accounts that have embedded @ characters in the user name.

• The firewall assesses statements against accounts represented by actual user and host names as
authenticated by the server. When registering accounts in profiles, do not use wildcard characters or
netmasks:

• Suppose that an account named me@%.example.org exists and a client uses it to connect to the
server from the host abc.example.org.

• The account name contains a % wildcard character, but the server authenticates the client as having a
user name of me and host name of abc.example.com, and that is what the firewall sees.

• Consequently, the account name to use for firewall operations is me@abc.example.org rather than
me@%.example.org.

The following procedure shows how to register an account profile with the firewall, train the firewall to
know the acceptable statements for that profile (its allowlist), and use the profile to protect MySQL against
execution of unacceptable statements by the account. The example account, fwuser@localhost, is
presumed for use by an application that accesses tables in the sakila database (available at https://
dev.mysql.com/doc/index-other.html).

Use an administrative MySQL account to perform the steps in this procedure, except those steps
designated for execution by the fwuser@localhost account that corresponds to the account profile
registered with the firewall. For statements executed using this account, the default database should be
sakila. (You can use a different database by adjusting the instructions accordingly.)

1373

https://dev.mysql.com/doc/index-other.html
https://dev.mysql.com/doc/index-other.html

MySQL Enterprise Firewall

1. If necessary, create the account to use for executing statements (choose an appropriate password) and
grant it privileges for the sakila database:

CREATE USER 'fwuser'@'localhost' IDENTIFIED BY 'password';
GRANT ALL ON sakila.* TO 'fwuser'@'localhost';

2. Use the sp_set_firewall_mode() stored procedure to register the account profile with the firewall
and place the profile in RECORDING (training) mode:

CALL mysql.sp_set_firewall_mode('fwuser@localhost', 'RECORDING');

3. To train the registered account profile, connect to the server as fwuser from the server host so that
the firewall sees a session account of fwuser@localhost. Then use the account to execute some
statements to be considered legitimate for the profile. For example:

SELECT first_name, last_name FROM customer WHERE customer_id = 1;
UPDATE rental SET return_date = NOW() WHERE rental_id = 1;
SELECT get_customer_balance(1, NOW());

Because the profile is in RECORDING mode, the firewall records the normalized digest form of the
statements as rules in the profile allowlist.

Note

Until the fwuser@localhost account profile receives statements in
RECORDING mode, its allowlist is empty, which is equivalent to “deny all.” No
statement can match an empty allowlist, which has these implications:

• The account profile cannot be switched to PROTECTING mode. It would
reject every statement, effectively prohibiting the account from executing any
statement.

• The account profile can be switched to DETECTING mode. In this case, the
profile accepts every statement but logs it as suspicious.

4. At this point, the account profile information is cached. To see this information, query the
INFORMATION_SCHEMA firewall tables:

mysql> SELECT MODE FROM INFORMATION_SCHEMA.MYSQL_FIREWALL_USERS
 WHERE USERHOST = 'fwuser@localhost';
+-----------+
| MODE |
+-----------+
| RECORDING |
+-----------+
mysql> SELECT RULE FROM INFORMATION_SCHEMA.MYSQL_FIREWALL_WHITELIST
 WHERE USERHOST = 'fwuser@localhost';
+--+
| RULE |
+--+
| SELECT `first_name` , `last_name` FROM `customer` WHERE `customer_id` = ? |
| SELECT `get_customer_balance` (? , NOW ()) |
| UPDATE `rental` SET `return_date` = NOW () WHERE `rental_id` = ? |
| SELECT @@`version_comment` LIMIT ? |

1374

MySQL Enterprise Firewall

+--+

Note

The @@version_comment rule comes from a statement sent automatically by
the mysql client when you connect to the server.

Important

Train the firewall under conditions matching application use. For example, to
determine server characteristics and capabilities, a given MySQL connector
might send statements to the server at the beginning of each session. If an
application normally is used through that connector, train the firewall using the
connector, too. That enables those initial statements to become part of the
allowlist for the account profile associated with the application.

5. Invoke sp_set_firewall_mode() again, this time switching the account profile to PROTECTING
mode:

CALL mysql.sp_set_firewall_mode('fwuser@localhost', 'PROTECTING');

Important

Switching the account profile out of RECORDING mode synchronizes its cached
data to the mysql system database tables that provide persistent underlying
storage. If you do not switch the mode for a profile that is being recorded, the
cached data is not written to persistent storage and is lost when the server is
restarted.

6. Test the account profile by using the account to execute some acceptable and unacceptable
statements. The firewall matches each statement from the account against the profile allowlist and
accepts or rejects it:

• This statement is not identical to a training statement but produces the same normalized statement
as one of them, so the firewall accepts it:

mysql> SELECT first_name, last_name FROM customer WHERE customer_id = '48';
+------------+-----------+
| first_name | last_name |
+------------+-----------+
| ANN | EVANS |
+------------+-----------+

• These statements match nothing in the allowlist, so the firewall rejects each with an error:

mysql> SELECT first_name, last_name FROM customer WHERE customer_id = 1 OR TRUE;
ERROR 1045 (28000): Statement was blocked by Firewall
mysql> SHOW TABLES LIKE 'customer%';
ERROR 1045 (28000): Statement was blocked by Firewall
mysql> TRUNCATE TABLE mysql.slow_log;
ERROR 1045 (28000): Statement was blocked by Firewall

• If the mysql_firewall_trace system variable is enabled, the firewall also writes rejected
statements to the error log. For example:

[Note] Plugin MYSQL_FIREWALL reported:
'ACCESS DENIED for fwuser@localhost. Reason: No match in whitelist.
Statement: TRUNCATE TABLE `mysql` . `slow_log` '

These log messages may be helpful in identifying the source of attacks, should that be necessary.

1375

MySQL Enterprise Firewall

The firewall account profile now is trained for the fwuser@localhost account. When clients connect
using that account and attempt to execute statements, the profile protects MySQL against statements not
matched by the profile allowlist.

It is possible to detect intrusions by logging nonmatching statements as suspicious without denying access.
First, put the account profile in DETECTING mode:

CALL mysql.sp_set_firewall_mode('fwuser@localhost', 'DETECTING');

Then, using the account, execute a statement that does not match the account profile allowlist. In
DETECTING mode, the firewall permits the nonmatching statement to execute:

mysql> SHOW TABLES LIKE 'customer%';
+------------------------------+
| Tables_in_sakila (customer%) |
+------------------------------+
| customer |
| customer_list |
+------------------------------+

In addition, the firewall writes a message to the error log:

[Note] Plugin MYSQL_FIREWALL reported:
'SUSPICIOUS STATEMENT from 'fwuser@localhost'. Reason: No match in whitelist.
Statement: SHOW TABLES LIKE ? '

To disable an account profile, change its mode to OFF:

CALL mysql.sp_set_firewall_mode(user, 'OFF');

To forget all training for a profile and disable it, reset it:

CALL mysql.sp_set_firewall_mode(user, 'RESET');

The reset operation causes the firewall to delete all rules for the profile and set its mode to OFF.

Monitoring the Firewall

To assess firewall activity, examine its status variables. For example, after performing the procedure
shown earlier to train and protect the fwuser@localhost account, the variables look like this:

mysql> SHOW GLOBAL STATUS LIKE 'Firewall%';
+----------------------------+-------+
| Variable_name | Value |
+----------------------------+-------+
Firewall_access_denied	3
Firewall_access_granted	4
Firewall_access_suspicious	1
Firewall_cached_entries	4
+----------------------------+-------+

The variables indicate the number of statements rejected, accepted, logged as suspicious, and
added to the cache, respectively. The Firewall_access_granted count is 4 because of the
@@version_comment statement sent by the mysql client each of the three times you connected using
the registered account, plus the SHOW TABLES statement that was not blocked in DETECTING mode.

6.4.6.4 MySQL Enterprise Firewall Reference

The following sections provide a reference to MySQL Enterprise Firewall elements:

• MySQL Enterprise Firewall Tables

• MySQL Enterprise Firewall Stored Procedures

1376

MySQL Enterprise Firewall

• MySQL Enterprise Firewall Administrative Functions

• MySQL Enterprise Firewall System Variables

• MySQL Enterprise Firewall Status Variables

MySQL Enterprise Firewall Tables

MySQL Enterprise Firewall maintains profile information on a per-group and per-account basis, using
tables in the firewall database for persistent storage and Information Schema tables to provide views into
in-memory cached data. When enabled, the firewall bases operational decisions on the cached data.
The firewall database can be the mysql system database or a custom schema (see Installing MySQL
Enterprise Firewall).

Tables in the firewall database are covered in this section. For information about MySQL Enterprise
Firewall Information Schema tables, see Section 24.7, “INFORMATION_SCHEMA MySQL Enterprise
Firewall Tables”.

Each mysql system database table is accessible only by accounts that have the SELECT privilege for it.
The INFORMATION_SCHEMA tables are accessible by anyone.

The mysql.firewall_users table lists names and operational modes of registered firewall
account profiles. The table has the following columns (with the corresponding Information Schema
MYSQL_FIREWALL_USERS table having similar but not necessarily identical columns):

• USERHOST

The account profile name. Each account name has the format user_name@host_name.

• MODE

The current operational mode for the profile. Permitted mode values are OFF, DETECTING,
PROTECTING, RECORDING, and RESET. For details about their meanings, see Firewall Concepts.

The mysql.firewall_whitelist table lists allowlist rules of registered firewall account
profiles. The table has the following columns (with the corresponding Information Schema
MYSQL_FIREWALL_WHITELIST table having similar but not necessarily identical columns):

• USERHOST

The account profile name. Each account name has the format user_name@host_name.

• RULE

A normalized statement indicating an acceptable statement pattern for the profile. A profile allowlist is the
union of its rules.

• ID

An integer column that is a primary key for the table. This column was added in MySQL 5.7.23.

MySQL Enterprise Firewall Stored Procedures

MySQL Enterprise Firewall stored procedures perform tasks such as registering profiles with the firewall,
establishing their operational mode, and managing transfer of firewall data between the cache and
persistent storage. These procedures invoke administrative functions that provide an API for lower-level
tasks.

1377

MySQL Enterprise Firewall

Firewall stored procedures are created in the mysql system database. To invoke a firewall stored
procedure, either do so while mysql is the default database, or qualify the procedure name with the
database name. For example:

CALL mysql.sp_set_firewall_mode(user, mode);

The following list describes each firewall stored procedure:

• sp_reload_firewall_rules(user)

This stored procedure provides control over firewall operation for individual account profiles. The
procedure uses firewall administrative functions to reload the in-memory rules for an account profile from
the rules stored in the mysql.firewall_whitelist table.

Arguments:

• user: The name of the affected account profile, as a string in user_name@host_name format.

Example:

CALL mysql.sp_reload_firewall_rules('fwuser@localhost');

Warning

This procedure clears the account profile in-memory allowlist rules before
reloading them from persistent storage, and sets the profile mode to OFF. If the
profile mode was not OFF prior to the sp_reload_firewall_rules() call,
use sp_set_firewall_mode() to restore its previous mode after reloading
the rules. For example, if the profile was in PROTECTING mode, that is no longer
true after calling sp_reload_firewall_rules() and you must set it to
PROTECTING again explicitly.

• sp_set_firewall_mode(user, mode)

This stored procedure establishes the operational mode for a firewall account profile, after registering the
profile with the firewall if it was not already registered. The procedure also invokes firewall administrative
functions as necessary to transfer firewall data between the cache and persistent storage. This
procedure may be called even if the mysql_firewall_mode system variable is OFF, although setting
the mode for a profile has no operational effect until the firewall is enabled.

Arguments:

• user: The name of the affected account profile, as a string in user_name@host_name format.

• mode: The operational mode for the profile, as a string. Permitted mode values are OFF, DETECTING,
PROTECTING, RECORDING, and RESET. For details about their meanings, see Firewall Concepts.

Switching an account profile to any mode but RECORDING synchronizes its firewall cache data to the
mysql system database tables that provide persistent underlying storage. Switching the mode from OFF
to RECORDING reloads the allowlist from the mysql.firewall_whitelist table into the cache.

If an account profile has an empty allowlist, its mode cannot be set to PROTECTING because the profile
would reject every statement, effectively prohibiting the account from executing statements. In response
to such a mode-setting attempt, the firewall produces a diagnostic message that is returned as a result
set rather than as an SQL error:

mysql> CALL mysql.sp_set_firewall_mode('a@b','PROTECTING');
+--+

1378

MySQL Enterprise Firewall

| set_firewall_mode(arg_userhost, arg_mode) |
+--+
| ERROR: PROTECTING mode requested for a@b but the whitelist is empty. |
+--+
1 row in set (0.02 sec)

Query OK, 0 rows affected (0.02 sec)

MySQL Enterprise Firewall Administrative Functions

MySQL Enterprise Firewall administrative functions provide an API for lower-level tasks such as
synchronizing the firewall cache with the underlying system tables.

Under normal operation, these functions are invoked by the firewall stored procedures, not directly by
users. For that reason, these function descriptions do not include details such as information about their
arguments and return types.

• Firewall Account Profile Functions

• Firewall Miscellaneous Functions

Firewall Account Profile Functions

These functions perform management operations on firewall account profiles:

• read_firewall_users(user, mode)

This aggregate function updates the firewall account profile cache through a SELECT statement on the
mysql.firewall_users table. It requires the SUPER privilege.

Example:

SELECT read_firewall_users('fwuser@localhost', 'RECORDING')
FROM mysql.firewall_users;

• read_firewall_whitelist(user, rule)

This aggregate function updates the recorded-statement cache for the named account profile through a
SELECT statement on the mysql.firewall_whitelist table. It requires the SUPER privilege.

Example:

SELECT read_firewall_whitelist('fwuser@localhost', fw.rule)
FROM mysql.firewall_whitelist AS fw
WHERE USERHOST = 'fwuser@localhost';

• set_firewall_mode(user, mode)

This function manages the account profile cache and establishes the profile operational mode. It requires
the SUPER privilege.

Example:

SELECT set_firewall_mode('fwuser@localhost', 'RECORDING');

Firewall Miscellaneous Functions

These functions perform miscellaneous firewall operations:

• mysql_firewall_flush_status()

1379

MySQL Enterprise Firewall

This function resets several firewall status variables to 0:

• Firewall_access_denied

• Firewall_access_granted

• Firewall_access_suspicious

This function requires the SUPER privilege.

Example:

SELECT mysql_firewall_flush_status();

• normalize_statement(stmt)

This function normalizes an SQL statement into the digest form used for allowlist rules. It requires the
SUPER privilege.

Example:

SELECT normalize_statement('SELECT * FROM t1 WHERE c1 > 2');

MySQL Enterprise Firewall System Variables

MySQL Enterprise Firewall supports the following system variables. Use them to configure firewall
operation. These variables are unavailable unless the firewall is installed (see Section 6.4.6.2, “Installing or
Uninstalling MySQL Enterprise Firewall”).

• mysql_firewall_mode

Command-Line Format --mysql-firewall-mode[={OFF|ON}]

System Variable mysql_firewall_mode

Scope Global

Dynamic Yes

Type Boolean

Default Value ON

Whether MySQL Enterprise Firewall is enabled (the default) or disabled.

• mysql_firewall_trace

Command-Line Format --mysql-firewall-trace[={OFF|ON}]

System Variable mysql_firewall_trace

Scope Global

Dynamic Yes

Type Boolean

Default Value OFF

Whether the MySQL Enterprise Firewall trace is enabled or disabled (the default). When
mysql_firewall_trace is enabled, for PROTECTING mode, the firewall writes rejected statements to
the error log.

1380

MySQL Enterprise Data Masking and De-Identification

MySQL Enterprise Firewall Status Variables

MySQL Enterprise Firewall supports the following status variables. Use them to obtain information
about firewall operational status. These variables are unavailable unless the firewall is installed (see
Section 6.4.6.2, “Installing or Uninstalling MySQL Enterprise Firewall”). Firewall status variables are set to
0 whenever the MYSQL_FIREWALL plugin is installed or the server is started. Many of them are reset to
zero by the mysql_firewall_flush_status() function (see MySQL Enterprise Firewall Administrative
Functions).

• Firewall_access_denied

The number of statements rejected by MySQL Enterprise Firewall.

• Firewall_access_granted

The number of statements accepted by MySQL Enterprise Firewall.

• Firewall_access_suspicious

The number of statements logged by MySQL Enterprise Firewall as suspicious for users who are in
DETECTING mode.

• Firewall_cached_entries

The number of statements recorded by MySQL Enterprise Firewall, including duplicates.

6.5 MySQL Enterprise Data Masking and De-Identification
Note

MySQL Enterprise Data Masking and De-Identification is an extension included in
MySQL Enterprise Edition, a commercial product. To learn more about commercial
products, https://www.mysql.com/products/.

As of MySQL 5.7.24, MySQL Enterprise Edition provides data masking and de-identification capabilities:

• Transformation of existing data to mask it and remove identifying characteristics, such as changing all
digits of a credit card number but the last four to 'X' characters.

• Generation of random data, such as email addresses and payment card numbers.

The way that applications use these capabilities depends on the purpose for which the data is used and
who accesses it:

• Applications that use sensitive data may protect it by performing data masking and permitting use of
partially masked data for client identification. Example: A call center may ask for clients to provide their
last four Social Security number digits.

• Applications that require properly formatted data, but not necessarily the original data, can synthesize
sample data. Example: An application developer who is testing data validators but has no access to
original data may synthesize random data with the same format.

Example 1:

Medical research facilities can hold patient data that comprises a mix of personal and medical data. This
may include genetic sequences (long strings), test results stored in JSON format, and other data types.
Although the data may be used mostly by automated analysis software, access to genome data or test

1381

https://www.mysql.com/products/

MySQL Enterprise Data Masking and De-Identification

results of particular patients is still possible. In such cases, data masking should be used to render this
information not personally identifiable.

Example 2:

A credit card processor company provides a set of services using sensitive data, such as:

• Processing a large number of financial transactions per second.

• Storing a large amount of transaction-related data.

• Protecting transaction-related data with strict requirements for personal data.

• Handling client complaints about transactions using reversible or partially masked data.

A typical transaction may include many types of sensitive information, including:

• Credit card number.

• Transaction type and amount.

• Merchant type.

• Transaction cryptogram (to confirm transaction legitimacy).

• Geolocation of GPS-equipped terminal (for fraud detection).

Those types of information may then be joined within a bank or other card-issuing financial institution with
client personal data, such as:

• Full client name (either person or company).

• Address.

• Date of birth.

• Social Security number.

• Email address.

• Phone number.

Various employee roles within both the card processing company and the financial institution require
access to that data. Some of these roles may require access only to masked data. Other roles may require
access to the original data on a case-to-case basis, which is recorded in audit logs.

Masking and de-identification are core to regulatory compliance, so MySQL Enterprise Data Masking and
De-Identification can help application developers satisfy privacy requirements:

• PCI – DSS: Payment Card Data.

• HIPAA: Privacy of Health Data, Health Information Technology for Economic and Clinical Health Act
(HITECH Act).

• EU General Data Protection Directive (GDPR): Protection of Personal Data.

• Data Protection Act (UK): Protection of Personal Data.

• Sarbanes Oxley, GLBA, The USA Patriot Act, Identity Theft and Assumption Deterrence Act of 1998.

• FERPA – Student Data, NASD, CA SB1386 and AB 1950, State Data Protection Laws, Basel II.

1382

MySQL Enterprise Data Masking and De-Identification Elements

The following sections describe the elements of MySQL Enterprise Data Masking and De-Identification,
discuss how to install and use it, and provide reference information for its elements.

6.5.1 MySQL Enterprise Data Masking and De-Identification Elements

MySQL Enterprise Data Masking and De-Identification is based on a plugin library that implements these
elements:

• A server-side plugin named data_masking.

• A set of loadable functions provides an SQL-level API for performing masking and de-identification
operations. Some of these functions require the SUPER privilege.

6.5.2 Installing or Uninstalling MySQL Enterprise Data Masking and De-
Identification

This section describes how to install or uninstall MySQL Enterprise Data Masking and De-Identification,
which is implemented as a plugin library file containing a plugin and several loadable functions. For general
information about installing or uninstalling plugins and loadable functions, see Section 5.5.1, “Installing and
Uninstalling Plugins”, and Section 5.6.1, “Installing and Uninstalling Loadable Functions”.

To be usable by the server, the plugin library file must be located in the MySQL plugin directory (the
directory named by the plugin_dir system variable). If necessary, configure the plugin directory location
by setting the value of plugin_dir at server startup.

The plugin library file base name is data_masking. The file name suffix differs per platform (for example,
.so for Unix and Unix-like systems, .dll for Windows).

To install the MySQL Enterprise Data Masking and De-Identification plugin and functions, use the
INSTALL PLUGIN and CREATE FUNCTION statements, adjusting the .so suffix for your platform as
necessary:

INSTALL PLUGIN data_masking SONAME 'data_masking.so';
CREATE FUNCTION gen_blacklist RETURNS STRING
 SONAME 'data_masking.so';
CREATE FUNCTION gen_dictionary RETURNS STRING
 SONAME 'data_masking.so';
CREATE FUNCTION gen_dictionary_drop RETURNS STRING
 SONAME 'data_masking.so';
CREATE FUNCTION gen_dictionary_load RETURNS STRING
 SONAME 'data_masking.so';
CREATE FUNCTION gen_range RETURNS INTEGER
 SONAME 'data_masking.so';
CREATE FUNCTION gen_rnd_email RETURNS STRING
 SONAME 'data_masking.so';
CREATE FUNCTION gen_rnd_pan RETURNS STRING
 SONAME 'data_masking.so';
CREATE FUNCTION gen_rnd_ssn RETURNS STRING
 SONAME 'data_masking.so';
CREATE FUNCTION gen_rnd_us_phone RETURNS STRING
 SONAME 'data_masking.so';
CREATE FUNCTION mask_inner RETURNS STRING
 SONAME 'data_masking.so';
CREATE FUNCTION mask_outer RETURNS STRING
 SONAME 'data_masking.so';
CREATE FUNCTION mask_pan RETURNS STRING
 SONAME 'data_masking.so';
CREATE FUNCTION mask_pan_relaxed RETURNS STRING
 SONAME 'data_masking.so';
CREATE FUNCTION mask_ssn RETURNS STRING
 SONAME 'data_masking.so';

1383

Using MySQL Enterprise Data Masking and De-Identification

If the plugin and functions are used on a replication source server, install them on all replica servers as well
to avoid replication issues.

Once installed as just described, the plugin and functions remain installed until uninstalled. To remove
them, use the UNINSTALL PLUGIN and DROP FUNCTION statements:

UNINSTALL PLUGIN data_masking;
DROP FUNCTION gen_blacklist;
DROP FUNCTION gen_dictionary;
DROP FUNCTION gen_dictionary_drop;
DROP FUNCTION gen_dictionary_load;
DROP FUNCTION gen_range;
DROP FUNCTION gen_rnd_email;
DROP FUNCTION gen_rnd_pan;
DROP FUNCTION gen_rnd_ssn;
DROP FUNCTION gen_rnd_us_phone;
DROP FUNCTION mask_inner;
DROP FUNCTION mask_outer;
DROP FUNCTION mask_pan;
DROP FUNCTION mask_pan_relaxed;
DROP FUNCTION mask_ssn;

6.5.3 Using MySQL Enterprise Data Masking and De-Identification

Before using MySQL Enterprise Data Masking and De-Identification, install it according to the
instructions provided at Section 6.5.2, “Installing or Uninstalling MySQL Enterprise Data Masking and De-
Identification”.

To use MySQL Enterprise Data Masking and De-Identification in applications, invoke the functions that are
appropriate for the operations you wish to perform. For detailed function descriptions, see Section 6.5.5,
“MySQL Enterprise Data Masking and De-Identification Function Descriptions”. This section demonstrates
how to use the functions to carry out some representative tasks. It first presents an overview of the
available functions, followed by some examples of how the functions might be used in real-world context:

• Masking Data to Remove Identifying Characteristics

• Generating Random Data with Specific Characteristics

• Generating Random Data Using Dictionaries

• Using Masked Data for Customer Identification

• Creating Views that Display Masked Data

Masking Data to Remove Identifying Characteristics

MySQL provides general-purpose masking functions that mask arbitrary strings, and special-purpose
masking functions that mask specific types of values.

General-Purpose Masking Functions

mask_inner() and mask_outer() are general-purpose functions that mask parts of arbitrary strings
based on position within the string:

• mask_inner() masks the interior of its string argument, leaving the ends unmasked. Other arguments
specify the sizes of the unmasked ends.

mysql> SELECT mask_inner('This is a string', 5, 1);
+--------------------------------------+
| mask_inner('This is a string', 5, 1) |

1384

Using MySQL Enterprise Data Masking and De-Identification

+--------------------------------------+
| This XXXXXXXXXXg |
+--------------------------------------+
mysql> SELECT mask_inner('This is a string', 1, 5);
+--------------------------------------+
| mask_inner('This is a string', 1, 5) |
+--------------------------------------+
| TXXXXXXXXXXtring |
+--------------------------------------+

• mask_outer() does the reverse, masking the ends of its string argument, leaving the interior
unmasked. Other arguments specify the sizes of the masked ends.

mysql> SELECT mask_outer('This is a string', 5, 1);
+--------------------------------------+
| mask_outer('This is a string', 5, 1) |
+--------------------------------------+
| XXXXXis a strinX |
+--------------------------------------+
mysql> SELECT mask_outer('This is a string', 1, 5);
+--------------------------------------+
| mask_outer('This is a string', 1, 5) |
+--------------------------------------+
| Xhis is a sXXXXX |
+--------------------------------------+

By default, mask_inner() and mask_outer() use 'X' as the masking character, but permit an optional
masking-character argument:

mysql> SELECT mask_inner('This is a string', 5, 1, '*');
+---+
| mask_inner('This is a string', 5, 1, '*') |
+---+
| This **********g |
+---+
mysql> SELECT mask_outer('This is a string', 5, 1, '#');
+---+
| mask_outer('This is a string', 5, 1, '#') |
+---+
| #####is a strin# |
+---+

Special-Purpose Masking Functions

Other masking functions expect a string argument representing a specific type of value and mask it to
remove identifying characteristics.

Note

The examples here supply function arguments using the random value generation
functions that return the appropriate type of value. For more information about
generation functions, see Generating Random Data with Specific Characteristics.

Payment card Primary Account Number masking. Masking functions provide strict and relaxed
masking of Primary Account Numbers.

• mask_pan() masks all but the last four digits of the number:

mysql> SELECT mask_pan(gen_rnd_pan());
+-------------------------+
| mask_pan(gen_rnd_pan()) |
+-------------------------+
| XXXXXXXXXXXX2461 |
+-------------------------+

1385

Using MySQL Enterprise Data Masking and De-Identification

• mask_pan_relaxed() is similar but does not mask the first six digits that indicate the payment card
issuer unmasked:

mysql> SELECT mask_pan_relaxed(gen_rnd_pan());
+---------------------------------+
| mask_pan_relaxed(gen_rnd_pan()) |
+---------------------------------+
| 770630XXXXXX0807 |
+---------------------------------+

US Social Security number masking. mask_ssn() masks all but the last four digits of the number:

mysql> SELECT mask_ssn(gen_rnd_ssn());
+-------------------------+
| mask_ssn(gen_rnd_ssn()) |
+-------------------------+
| XXX-XX-1723 |
+-------------------------+

Generating Random Data with Specific Characteristics

Several functions generate random values. These values can be used for testing, simulation, and so forth.

gen_range() returns a random integer selected from a given range:

mysql> SELECT gen_range(1, 10);
+------------------+
| gen_range(1, 10) |
+------------------+
| 6 |
+------------------+

gen_rnd_email() returns a random email address in the example.com domain:

mysql> SELECT gen_rnd_email();
+---------------------------+
| gen_rnd_email() |
+---------------------------+
| ayxnq.xmkpvvy@example.com |
+---------------------------+

gen_rnd_pan() returns a random payment card Primary Account Number (PAN).

Because it cannot be guaranteed that the number generated is not assigned to a legitimate
payment account, the result of gen_rnd_pan() should never be displayed, other than for testing
purposes. For display in applications, always employ a masking function such as mask_pan() or
mask_pan_relaxed(). We show such use of the latter function with gen_rnd_pan() here:

mysql> SELECT mask_pan_relaxed(gen_rnd_pan());
+-----------------------------------+
| mask_pan_relaxed(gen_rnd_pan()) |
+-----------------------------------+
| 707064XXXXXX4850 |
+-----------------------------------+

gen_rnd_ssn() returns a random US Social Security number whose first and second parts are each
chosen from a range not used for legitimate numbers:

mysql> SELECT gen_rnd_ssn();
+---------------+
| gen_rnd_ssn() |
+---------------+
| 912-45-1615 |
+---------------+

1386

Using MySQL Enterprise Data Masking and De-Identification

gen_rnd_us_phone() returns a random US phone number in the 555 area code not used for legitimate
numbers:

mysql> SELECT gen_rnd_us_phone();
+--------------------+
| gen_rnd_us_phone() |
+--------------------+
| 1-555-747-5627 |
+--------------------+

Generating Random Data Using Dictionaries

MySQL Enterprise Data Masking and De-Identification enables dictionaries to be used as sources of
random values. To use a dictionary, it must first be loaded from a file and given a name. Each loaded
dictionary becomes part of the dictionary registry. Items then can be selected from registered dictionaries
and used as random values or as replacements for other values.

A valid dictionary file has these characteristics:

• The file contents are plain text, one term per line.

• Empty lines are ignored.

• The file must contain at least one term.

Suppose that a file named de_cities.txt contains these city names in Germany:

Berlin
Munich
Bremen

Also suppose that a file named us_cities.txt contains these city names in the United States:

Chicago
Houston
Phoenix
El Paso
Detroit

Assume that the secure_file_priv system variable is set to /usr/local/mysql/mysql-files. In
that case, copy the dictionary files to that directory so that the MySQL server can access them. Then use
gen_dictionary_load() to load the dictionaries into the dictionary registry and assign them names:

mysql> SELECT gen_dictionary_load('/usr/local/mysql/mysql-files/de_cities.txt', 'DE_Cities');
+--+
| gen_dictionary_load('/usr/local/mysql/mysql-files/de_cities.txt', 'DE_Cities') |
+--+
| Dictionary load success |
+--+
mysql> SELECT gen_dictionary_load('/usr/local/mysql/mysql-files/us_cities.txt', 'US_Cities');
+--+
| gen_dictionary_load('/usr/local/mysql/mysql-files/us_cities.txt', 'US_Cities') |
+--+
| Dictionary load success |
+--+

To select a random term from a dictionary, use gen_dictionary():

mysql> SELECT gen_dictionary('DE_Cities');
+-----------------------------+
| gen_dictionary('DE_Cities') |
+-----------------------------+
| Berlin |

1387

Using MySQL Enterprise Data Masking and De-Identification

+-----------------------------+
mysql> SELECT gen_dictionary('US_Cities');
+-----------------------------+
| gen_dictionary('US_Cities') |
+-----------------------------+
| Phoenix |
+-----------------------------+

To select a random term from multiple dictionaries, randomly select one of the dictionaries, then select a
term from it:

mysql> SELECT gen_dictionary(ELT(gen_range(1,2), 'DE_Cities', 'US_Cities'));
+---+
| gen_dictionary(ELT(gen_range(1,2), 'DE_Cities', 'US_Cities')) |
+---+
| Detroit |
+---+
mysql> SELECT gen_dictionary(ELT(gen_range(1,2), 'DE_Cities', 'US_Cities'));
+---+
| gen_dictionary(ELT(gen_range(1,2), 'DE_Cities', 'US_Cities')) |
+---+
| Bremen |
+---+

The gen_blacklist() function enables a term from one dictionary to be replaced by a term from
another dictionary, which effects masking by substitution. Its arguments are the term to replace, the
dictionary in which the term appears, and the dictionary from which to choose a replacement. For example,
to substitute a US city for a German city, or vice versa, use gen_blacklist() like this:

mysql> SELECT gen_blacklist('Munich', 'DE_Cities', 'US_Cities');
+---+
| gen_blacklist('Munich', 'DE_Cities', 'US_Cities') |
+---+
| Houston |
+---+
mysql> SELECT gen_blacklist('El Paso', 'US_Cities', 'DE_Cities');
+--+
| gen_blacklist('El Paso', 'US_Cities', 'DE_Cities') |
+--+
| Bremen |
+--+

If the term to replace is not in the first dictionary, gen_blacklist() returns it unchanged:

mysql> SELECT gen_blacklist('Moscow', 'DE_Cities', 'US_Cities');
+---+
| gen_blacklist('Moscow', 'DE_Cities', 'US_Cities') |
+---+
| Moscow |
+---+

Using Masked Data for Customer Identification

At customer-service call centers, one common identity verification technique is to ask customers to provide
their last four Social Security number (SSN) digits. For example, a customer might say her name is Joanna
Bond and that her last four SSN digits are 0007.

Suppose that a customer table containing customer records has these columns:

• id: Customer ID number.

• first_name: Customer first name.

• last_name: Customer last name.

1388

Using MySQL Enterprise Data Masking and De-Identification

• ssn: Customer Social Security number.

For example, the table might be defined as follows:

CREATE TABLE customer
(
 id BIGINT NOT NULL AUTO_INCREMENT PRIMARY KEY,
 first_name VARCHAR(40),
 last_name VARCHAR(40),
 ssn VARCHAR(11)
);

The application used by customer-service representatives to check the customer SSN might execute a
query like this:

mysql> SELECT id, ssn
 -> FROM customer
 -> WHERE first_name = 'Joanna' AND last_name = 'Bond';
+-----+-------------+
| id | ssn |
+-----+-------------+
| 786 | 906-39-0007 |
+-----+-------------+

However, that exposes the SSN to the customer-service representative, who has no need to see anything
but the last four digits. Instead, the application can use this query to display only the masked SSN:

mysql> SELECT id, mask_ssn(CONVERT(ssn USING binary)) AS masked_ssn
 -> FROM customer
 -> WHERE first_name = 'Joanna' AND last_name = 'Bond';
+-----+-------------+
| id | masked_ssn |
+-----+-------------+
| 786 | XXX-XX-0007 |
+-----+-------------+

Now the representative sees only what is necessary, and customer privacy is preserved.

Why was the CONVERT() function used for the argument to mask_ssn()? Because mask_ssn()
requires an argument of length 11. Thus, even though ssn is defined as VARCHAR(11), if the ssn
column has a multibyte character set, it may appear to be longer than 11 bytes when passed to a loadable
function, and an error occurs. Converting the value to a binary string ensures that the function sees an
argument of length 11.

A similar technique may be needed for other data masking functions when string arguments do not have a
single-byte character set.

Creating Views that Display Masked Data

If masked data from a table is used for multiple queries, it may be convenient to define a view that
produces masked data. That way, applications can select from the view without performing masking in
individual queries.

For example, a masking view on the customer table from the previous section can be defined like this:

CREATE VIEW masked_customer AS
SELECT id, first_name, last_name,
mask_ssn(CONVERT(ssn USING binary)) AS masked_ssn
FROM customer;

Then the query to look up a customer becomes simpler but still returns masked data:

1389

MySQL Enterprise Data Masking and De-Identification Function Reference

mysql> SELECT id, masked_ssn
mysql> FROM masked_customer
mysql> WHERE first_name = 'Joanna' AND last_name = 'Bond';
+-----+-------------+
| id | masked_ssn |
+-----+-------------+
| 786 | XXX-XX-0007 |
+-----+-------------+

6.5.4 MySQL Enterprise Data Masking and De-Identification Function
Reference

Table 6.35 MySQL Enterprise Data Masking and De-Identification Functions

Name Description

gen_blacklist() Perform dictionary term replacement

gen_dictionary_drop() Remove dictionary from registry

gen_dictionary_load() Load dictionary into registry

gen_dictionary() Return random term from dictionary

gen_range() Generate random number within range

gen_rnd_email() Generate random email address

gen_rnd_pan() Generate random payment card Primary Account
Number

gen_rnd_ssn() Generate random US Social Security Number

gen_rnd_us_phone() Generate random US phone number

mask_inner() Mask interior part of string

mask_outer() Mask left and right parts of string

mask_pan() Mask payment card Primary Account Number part
of string

mask_pan_relaxed() Mask payment card Primary Account Number part
of string

mask_ssn() Mask US Social Security Number

6.5.5 MySQL Enterprise Data Masking and De-Identification Function
Descriptions

The MySQL Enterprise Data Masking and De-Identification plugin library includes several functions, which
may be grouped into these categories:

• Data Masking Functions

• Random Data Generation Functions

• Random Data Dictionary-Based Functions

These functions treat string arguments as binary strings (which means they do not distinguish lettercase),
and string return values are binary strings. If a string return value should be in a different character set,
convert it. The following example shows how to convert the result of gen_rnd_email() to the utf8mb4
character set:

SET @email = CONVERT(gen_rnd_email() USING utf8mb4);

1390

MySQL Enterprise Data Masking and De-Identification Function Descriptions

It may also be necessary to convert string arguments, as illustrated in Using Masked Data for Customer
Identification.

If a MySQL Enterprise Data Masking and De-Identification function is invoked from within the mysql client,
binary string results display using hexadecimal notation, depending on the value of the --binary-as-
hex. For more information about that option, see Section 4.5.1, “mysql — The MySQL Command-Line
Client”.

Data Masking Functions

Each function in this section performs a masking operation on its string argument and returns the masked
result.

• mask_inner(str, margin1, margin2 [, mask_char])

Masks the interior part of a string, leaving the ends untouched, and returns the result. An optional
masking character can be specified.

Arguments:

• str: The string to mask.

• margin1: A nonnegative integer that specifies the number of characters on the left end of the string to
remain unmasked. If the value is 0, no left end characters remain unmasked.

• margin2: A nonnegative integer that specifies the number of characters on the right end of the string
to remain unmasked. If the value is 0, no right end characters remain unmasked.

• mask_char: (Optional) The single character to use for masking. The default is 'X' if mask_char is
not given.

The masking character must be a single-byte character. Attempts to use a multibyte character produce
an error.

Return value:

The masked string, or NULL if either margin is negative.

If the sum of the margin values is larger than the argument length, no masking occurs and the argument
is returned unchanged.

Example:

mysql> SELECT mask_inner('abcdef', 1, 2), mask_inner('abcdef',0, 5);
+----------------------------+---------------------------+
| mask_inner('abcdef', 1, 2) | mask_inner('abcdef',0, 5) |
+----------------------------+---------------------------+
| aXXXef | Xbcdef |
+----------------------------+---------------------------+
mysql> SELECT mask_inner('abcdef', 1, 2, '*'), mask_inner('abcdef',0, 5, '#');
+---------------------------------+--------------------------------+
| mask_inner('abcdef', 1, 2, '*') | mask_inner('abcdef',0, 5, '#') |
+---------------------------------+--------------------------------+
| a***ef | #bcdef |
+---------------------------------+--------------------------------+

• mask_outer(str, margin1, margin2 [, mask_char])

Masks the left and right ends of a string, leaving the interior unmasked, and returns the result. An
optional masking character can be specified.

1391

MySQL Enterprise Data Masking and De-Identification Function Descriptions

Arguments:

• str: The string to mask.

• margin1: A nonnegative integer that specifies the number of characters on the left end of the string to
mask. If the value is 0, no left end characters are masked.

• margin2: A nonnegative integer that specifies the number of characters on the right end of the string
to mask. If the value is 0, no right end characters are masked.

• mask_char: (Optional) The single character to use for masking. The default is 'X' if mask_char is
not given.

The masking character must be a single-byte character. Attempts to use a multibyte character produce
an error.

Return value:

The masked string, or NULL if either margin is negative.

If the sum of the margin values is larger than the argument length, the entire argument is masked.

Example:

mysql> SELECT mask_outer('abcdef', 1, 2), mask_outer('abcdef',0, 5);
+----------------------------+---------------------------+
| mask_outer('abcdef', 1, 2) | mask_outer('abcdef',0, 5) |
+----------------------------+---------------------------+
| XbcdXX | aXXXXX |
+----------------------------+---------------------------+
mysql> SELECT mask_outer('abcdef', 1, 2, '*'), mask_outer('abcdef',0, 5, '#');
+---------------------------------+--------------------------------+
| mask_outer('abcdef', 1, 2, '*') | mask_outer('abcdef',0, 5, '#') |
+---------------------------------+--------------------------------+
| *bcd** | a##### |
+---------------------------------+--------------------------------+

• mask_pan(str)

Masks a payment card Primary Account Number and returns the number with all but the last four digits
replaced by 'X' characters.

Arguments:

• str: The string to mask. The string must be a suitable length for the Primary Account Number, but is
not otherwise checked.

Return value:

The masked payment number as a string. If the argument is shorter than required, it is returned
unchanged.

Example:

mysql> SELECT mask_pan(gen_rnd_pan());
+-------------------------+
| mask_pan(gen_rnd_pan()) |
+-------------------------+
| XXXXXXXXXXXX9102 |
+-------------------------+

1392

MySQL Enterprise Data Masking and De-Identification Function Descriptions

mysql> SELECT mask_pan(gen_rnd_pan(19));
+---------------------------+
| mask_pan(gen_rnd_pan(19)) |
+---------------------------+
| XXXXXXXXXXXXXXX8268 |
+---------------------------+
mysql> SELECT mask_pan('a*Z');
+-----------------+
| mask_pan('a*Z') |
+-----------------+
| a*Z |
+-----------------+

• mask_pan_relaxed(str)

Masks a payment card Primary Account Number and returns the number with all but the first six and last
four digits replaced by 'X' characters. The first six digits indicate the payment card issuer.

Arguments:

• str: The string to mask. The string must be a suitable length for the Primary Account Number, but is
not otherwise checked.

Return value:

The masked payment number as a string. If the argument is shorter than required, it is returned
unchanged.

Example:

mysql> SELECT mask_pan_relaxed(gen_rnd_pan());
+---------------------------------+
| mask_pan_relaxed(gen_rnd_pan()) |
+---------------------------------+
| 551279XXXXXX3108 |
+---------------------------------+
mysql> SELECT mask_pan_relaxed(gen_rnd_pan(19));
+-----------------------------------+
| mask_pan_relaxed(gen_rnd_pan(19)) |
+-----------------------------------+
| 462634XXXXXXXXX6739 |
+-----------------------------------+
mysql> SELECT mask_pan_relaxed('a*Z');
+-------------------------+
| mask_pan_relaxed('a*Z') |
+-------------------------+
| a*Z |
+-------------------------+

1393

MySQL Enterprise Data Masking and De-Identification Function Descriptions

• mask_ssn(str)

Masks a US Social Security number and returns the number with all but the last four digits replaced by
'X' characters.

Arguments:

• str: The string to mask. The string must be 11 characters long, but is not otherwise checked.

Return value:

The masked Social Security number as a string, or NULL if the argument is not the correct length.

Example:

mysql> SELECT mask_ssn('909-63-6922'), mask_ssn('abcdefghijk');
+-------------------------+-------------------------+
| mask_ssn('909-63-6922') | mask_ssn('abcdefghijk') |
+-------------------------+-------------------------+
| XXX-XX-6922 | XXX-XX-hijk |
+-------------------------+-------------------------+
mysql> SELECT mask_ssn('909');
+-----------------+
| mask_ssn('909') |
+-----------------+
| NULL |
+-----------------+

Random Data Generation Functions

The functions in this section generate random values for different types of data. When possible, generated
values have characteristics reserved for demonstration or test values, to avoid having them mistaken for
legitimate data. For example, gen_rnd_us_phone() returns a US phone number that uses the 555 area
code, which is not assigned to phone numbers in actual use. Individual function descriptions describe any
exceptions to this principle.

• gen_range(lower, upper)

Generates a random number chosen from a specified range.

Arguments:

• lower: An integer that specifies the lower boundary of the range.

• upper: An integer that specifies the upper boundary of the range, which must not be less than the
lower boundary.

Return value:

A random integer in the range from lower to upper, inclusive, or NULL if the upper argument is less
than lower.

Example:

mysql> SELECT gen_range(100, 200), gen_range(-1000, -800);
+---------------------+------------------------+
| gen_range(100, 200) | gen_range(-1000, -800) |
+---------------------+------------------------+
| 177 | -917 |
+---------------------+------------------------+
mysql> SELECT gen_range(1, 0);

1394

MySQL Enterprise Data Masking and De-Identification Function Descriptions

+-----------------+
| gen_range(1, 0) |
+-----------------+
| NULL |
+-----------------+

• gen_rnd_email()

Generates a random email address in the example.com domain.

Arguments:

None.

Return value:

A random email address as a string.

Example:

mysql> SELECT gen_rnd_email();
+---------------------------+
| gen_rnd_email() |
+---------------------------+
| ijocv.mwvhhuf@example.com |
+---------------------------+

• gen_rnd_pan([size])

Generates a random payment card Primary Account Number. The number passes the Luhn check (an
algorithm that performs a checksum verification against a check digit).

Warning

Values returned from gen_rnd_pan() should be used only for test purposes,
and are not suitable for publication. There is no way to guarantee that a given
return value is not assigned to a legitimate payment account. Should it be
necessary to publish a gen_rnd_pan() result, consider masking it with
mask_pan() or mask_pan_relaxed().

Arguments:

• size: (Optional) An integer that specifies the size of the result. The default is 16 if size is not given. If
given, size must be an integer in the range from 12 to 19.

Return value:

A random payment number as a string, or NULL if a size argument outside the permitted range is given.

Example:

mysql> SELECT mask_pan(gen_rnd_pan());
+-------------------------+
| mask_pan(gen_rnd_pan()) |
+-------------------------+
| XXXXXXXXXXXX5805 |
+-------------------------+
mysql> SELECT mask_pan(gen_rnd_pan(19));
+---------------------------+
| mask_pan(gen_rnd_pan(19)) |
+---------------------------+

1395

MySQL Enterprise Data Masking and De-Identification Function Descriptions

| XXXXXXXXXXXXXXX5067 |
+---------------------------+
mysql> SELECT mask_pan_relaxed(gen_rnd_pan());
+---------------------------------+
| mask_pan_relaxed(gen_rnd_pan()) |
+---------------------------------+
| 398403XXXXXX9547 |
+---------------------------------+
mysql> SELECT mask_pan_relaxed(gen_rnd_pan(19));
+-----------------------------------+
| mask_pan_relaxed(gen_rnd_pan(19)) |
+-----------------------------------+
| 578416XXXXXXXXX6509 |
+-----------------------------------+
mysql> SELECT gen_rnd_pan(11), gen_rnd_pan(20);
+-----------------+-----------------+
| gen_rnd_pan(11) | gen_rnd_pan(20) |
+-----------------+-----------------+
| NULL | NULL |
+-----------------+-----------------+

• gen_rnd_ssn()

Generates a random US Social Security number in AAA-BB-CCCC format. The AAA part is greater than
900 and the BB part is less than 70; these values are outside the ranges used for legitimate Social
Security numbers.

Arguments:

None.

Return value:

A random Social Security number as a string.

Example:

mysql> SELECT gen_rnd_ssn();
+---------------+
| gen_rnd_ssn() |
+---------------+
| 951-26-0058 |
+---------------+

• gen_rnd_us_phone()

Generates a random US phone number in 1-555-AAA-BBBB format. The 555 area code is not used for
legitimate phone numbers.

Arguments:

None.

Return value:

A random US phone number as a string.

Example:

mysql> SELECT gen_rnd_us_phone();
+--------------------+
| gen_rnd_us_phone() |
+--------------------+

1396

MySQL Enterprise Data Masking and De-Identification Function Descriptions

| 1-555-682-5423 |
+--------------------+

Random Data Dictionary-Based Functions

The functions in this section manipulate dictionaries of terms and perform generation and masking
operations based on them. Some of these functions require the SUPER privilege.

When a dictionary is loaded, it becomes part of the dictionary registry and is assigned a name to be used
by other dictionary functions. Dictionaries are loaded from plain text files containing one term per line.
Empty lines are ignored. To be valid, a dictionary file must contain at least one nonempty line.

• gen_blacklist(str, dictionary_name, replacement_dictionary_name)

Replaces a term present in one dictionary with a term from a second dictionary and returns the
replacement term. This masks the original term by substitution.

Arguments:

• str: A string that indicates the term to replace.

• dictionary_name: A string that names the dictionary containing the term to replace.

• replacement_dictionary_name: A string that names the dictionary from which to choose the
replacement term.

Return value:

A string randomly chosen from replacement_dictionary_name as a replacement for str, or str
if it does not appear in dictionary_name, or NULL if either dictionary name is not in the dictionary
registry.

If the term to replace appears in both dictionaries, it is possible for the return value to be the same term.

Example:

mysql> SELECT gen_blacklist('Berlin', 'DE_Cities', 'US_Cities');
+---+
| gen_blacklist('Berlin', 'DE_Cities', 'US_Cities') |
+---+
| Phoenix |
+---+

• gen_dictionary(dictionary_name)

Returns a random term from a dictionary.

Arguments:

• dictionary_name: A string that names the dictionary from which to choose the term.

Return value:

A random term from the dictionary as a string, or NULL if the dictionary name is not in the dictionary
registry.

Example:

mysql> SELECT gen_dictionary('mydict');
+--------------------------+

1397

MySQL Enterprise Data Masking and De-Identification Function Descriptions

| gen_dictionary('mydict') |
+--------------------------+
| My term |
+--------------------------+
mysql> SELECT gen_dictionary('no-such-dict');
+--------------------------------+
| gen_dictionary('no-such-dict') |
+--------------------------------+
| NULL |
+--------------------------------+

• gen_dictionary_drop(dictionary_name)

Removes a dictionary from the dictionary registry.

This function requires the SUPER privilege.

Arguments:

• dictionary_name: A string that names the dictionary to remove from the dictionary registry.

Return value:

A string that indicates whether the drop operation succeeded. Dictionary removed indicates
success. Dictionary removal error indicates failure.

Example:

mysql> SELECT gen_dictionary_drop('mydict');
+-------------------------------+
| gen_dictionary_drop('mydict') |
+-------------------------------+
| Dictionary removed |
+-------------------------------+
mysql> SELECT gen_dictionary_drop('no-such-dict');
+-------------------------------------+
| gen_dictionary_drop('no-such-dict') |
+-------------------------------------+
| Dictionary removal error |
+-------------------------------------+

1398

MySQL Enterprise Encryption

• gen_dictionary_load(dictionary_path, dictionary_name)

Loads a file into the dictionary registry and assigns the dictionary a name to be used with other functions
that require a dictionary name argument.

This function requires the SUPER privilege.

Important

Dictionaries are not persistent. Any dictionary used by applications must be
loaded for each server startup.

Once loaded into the registry, a dictionary is used as is, even if the underlying dictionary file
changes. To reload a dictionary, first drop it with gen_dictionary_drop(), then load it again with
gen_dictionary_load().

Arguments:

• dictionary_path: A string that specifies the path name of the dictionary file.

• dictionary_name: A string that provides a name for the dictionary.

Return value:

A string that indicates whether the load operation succeeded. Dictionary load success indicates
success. Dictionary load error indicates failure. Dictionary load failure can occur for several
reasons, including:

• A dictionary with the given name is already loaded.

• The dictionary file is not found.

• The dictionary file contains no terms.

• The secure_file_priv system variable is set and the dictionary file is not located in the directory
named by the variable.

Example:

mysql> SELECT gen_dictionary_load('/usr/local/mysql/mysql-files/mydict','mydict');
+---+
| gen_dictionary_load('/usr/local/mysql/mysql-files/mydict','mydict') |
+---+
| Dictionary load success |
+---+
mysql> SELECT gen_dictionary_load('/dev/null','null');
+---+
| gen_dictionary_load('/dev/null','null') |
+---+
| Dictionary load error |
+---+

6.6 MySQL Enterprise Encryption

Note

MySQL Enterprise Encryption is an extension included in MySQL Enterprise
Edition, a commercial product. To learn more about commercial products, https://
www.mysql.com/products/.

1399

https://www.mysql.com/products/
https://www.mysql.com/products/

MySQL Enterprise Encryption Installation

MySQL Enterprise Edition includes a set of encryption functions based on the OpenSSL library that expose
OpenSSL capabilities at the SQL level. These functions enable Enterprise applications to perform the
following operations:

• Implement added data protection using public-key asymmetric cryptography

• Create public and private keys and digital signatures

• Perform asymmetric encryption and decryption

• Use cryptographic hashing for digital signing and data verification and validation

MySQL Enterprise Encryption supports the RSA, DSA, and DH cryptographic algorithms.

MySQL Enterprise Encryption is supplied as a library of loadable functions, from which individual functions
can be installed individually.

6.6.1 MySQL Enterprise Encryption Installation

MySQL Enterprise Encryption functions are located in a loadable function library file installed in the plugin
directory (the directory named by the plugin_dir system variable). The function library base name is
openssl_udf and the suffix is platform dependent. For example, the file name on Linux or Windows is
openssl_udf.so or openssl_udf.dll, respectively.

To install functions from the library file, use the CREATE FUNCTION statement. To load all functions from
the library, use this set of statements, adjusting the file name suffix as necessary:

CREATE FUNCTION asymmetric_decrypt RETURNS STRING
 SONAME 'openssl_udf.so';
CREATE FUNCTION asymmetric_derive RETURNS STRING
 SONAME 'openssl_udf.so';
CREATE FUNCTION asymmetric_encrypt RETURNS STRING
 SONAME 'openssl_udf.so';
CREATE FUNCTION asymmetric_sign RETURNS STRING
 SONAME 'openssl_udf.so';
CREATE FUNCTION asymmetric_verify RETURNS INTEGER
 SONAME 'openssl_udf.so';
CREATE FUNCTION create_asymmetric_priv_key RETURNS STRING
 SONAME 'openssl_udf.so';
CREATE FUNCTION create_asymmetric_pub_key RETURNS STRING
 SONAME 'openssl_udf.so';
CREATE FUNCTION create_dh_parameters RETURNS STRING
 SONAME 'openssl_udf.so';
CREATE FUNCTION create_digest RETURNS STRING
 SONAME 'openssl_udf.so';

Once installed, the functions remain installed across server restarts. To unload the functions, use the DROP
FUNCTION statement:

DROP FUNCTION asymmetric_decrypt;
DROP FUNCTION asymmetric_derive;
DROP FUNCTION asymmetric_encrypt;
DROP FUNCTION asymmetric_sign;
DROP FUNCTION asymmetric_verify;
DROP FUNCTION create_asymmetric_priv_key;
DROP FUNCTION create_asymmetric_pub_key;
DROP FUNCTION create_dh_parameters;
DROP FUNCTION create_digest;

In the CREATE FUNCTION and DROP FUNCTION statements, the function names must be specified in
lowercase. This differs from their use at function invocation time, for which you can use any lettercase.

1400

MySQL Enterprise Encryption Usage and Examples

The CREATE FUNCTION and DROP FUNCTION statements require the INSERT and DROP privilege,
respectively, for the mysql database.

6.6.2 MySQL Enterprise Encryption Usage and Examples

To use MySQL Enterprise Encryption in applications, invoke the functions that are appropriate for the
operations you wish to perform. This section demonstrates how to carry out some representative tasks:

• Create a private/public key pair using RSA encryption

• Use the private key to encrypt data and the public key to decrypt it

• Generate a digest from a string

• Use the digest with a key pair

• Create a symmetric key

• Limit CPU usage by key-generation operations

Create a private/public key pair using RSA encryption

-- Encryption algorithm; can be 'DSA' or 'DH' instead
SET @algo = 'RSA';
-- Key length in bits; make larger for stronger keys
SET @key_len = 1024;

-- Create private key
SET @priv = create_asymmetric_priv_key(@algo, @key_len);
-- Derive corresponding public key from private key, using same algorithm
SET @pub = create_asymmetric_pub_key(@algo, @priv);

Now you can use the key pair to encrypt and decrypt data, sign and verify data, or generate symmetric
keys.

Use the private key to encrypt data and the public key to decrypt it

This requires that the members of the key pair be RSA keys.

SET @ciphertext = asymmetric_encrypt(@algo, 'My secret text', @priv);
SET @plaintext = asymmetric_decrypt(@algo, @ciphertext, @pub);

Conversely, you can encrypt using the public key and decrypt using the private key.

SET @ciphertext = asymmetric_encrypt(@algo, 'My secret text', @pub);
SET @plaintext = asymmetric_decrypt(@algo, @ciphertext, @priv);

In either case, the algorithm specified for the encryption and decryption functions must match that used to
generate the keys.

Generate a digest from a string

-- Digest type; can be 'SHA256', 'SHA384', or 'SHA512' instead
SET @dig_type = 'SHA224';

-- Generate digest string
SET @dig = create_digest(@dig_type, 'My text to digest');

Use the digest with a key pair

The key pair can be used to sign data, then verify that the signature matches the digest.

-- Encryption algorithm; could be 'DSA' instead; keys must
-- have been created using same algorithm

1401

MySQL Enterprise Encryption Usage and Examples

SET @algo = 'RSA';

-- Generate signature for digest and verify signature against digest
SET @sig = asymmetric_sign(@algo, @dig, @priv, @dig_type);
-- Verify signature against digest
SET @verf = asymmetric_verify(@algo, @dig, @sig, @pub, @dig_type);

Create a symmetric key

This requires DH private/public keys as inputs, created using a shared symmetric secret. Create the secret
by passing the key length to create_dh_parameters(), then pass the secret as the “key length” to
create_asymmetric_priv_key().

-- Generate DH shared symmetric secret
SET @dhp = create_dh_parameters(1024);
-- Generate DH key pairs
SET @algo = 'DH';
SET @priv1 = create_asymmetric_priv_key(@algo, @dhp);
SET @pub1 = create_asymmetric_pub_key(@algo, @priv1);
SET @priv2 = create_asymmetric_priv_key(@algo, @dhp);
SET @pub2 = create_asymmetric_pub_key(@algo, @priv2);

-- Generate symmetric key using public key of first party,
-- private key of second party
SET @sym1 = asymmetric_derive(@pub1, @priv2);

-- Or use public key of second party, private key of first party
SET @sym2 = asymmetric_derive(@pub2, @priv1);

Key string values can be created at runtime and stored into a variable or table using SET, SELECT, or
INSERT:

SET @priv1 = create_asymmetric_priv_key('RSA', 1024);
SELECT create_asymmetric_priv_key('RSA', 1024) INTO @priv2;
INSERT INTO t (key_col) VALUES(create_asymmetric_priv_key('RSA', 1024));

Key string values stored in files can be read using the LOAD_FILE() function by users who have the FILE
privilege.

Digest and signature strings can be handled similarly.

Limit CPU usage by key-generation operations

The create_asymmetric_priv_key() and create_dh_parameters() encryption functions take
a key-length parameter, and the amount of CPU resources required by these functions increases as the
key length increases. For some installations, this might result in unacceptable CPU usage if applications
frequently generate excessively long keys.

OpenSSL imposes a minimum key length of 1,024 bits for all keys. OpenSSL also imposes
a maximum key length of 10,000 bits and 16,384 bits for DSA and RSA keys, respectively,
for create_asymmetric_priv_key(), and a maximum key length of 10,000 bits for
create_dh_parameters(). If those maximum values are too high, three environment variables are
available as of MySQL 5.7.17 to enable MySQL server administrators to set lower maximum lengths for
key generation, and thereby to limit CPU usage:

• MYSQL_OPENSSL_UDF_DSA_BITS_THRESHOLD: Maximum DSA key length in bits for
create_asymmetric_priv_key(). The minimum and maximum values for this variable are 1,024
and 10,000.

• MYSQL_OPENSSL_UDF_RSA_BITS_THRESHOLD: Maximum RSA key length in bits for
create_asymmetric_priv_key(). The minimum and maximum values for this variable are 1,024
and 16,384.

1402

MySQL Enterprise Encryption Function Reference

• MYSQL_OPENSSL_UDF_DH_BITS_THRESHOLD: Maximum key length in bits for
create_dh_parameters(). The minimum and maximum values for this variable are 1,024 and
10,000.

To use any of these environment variables, set them in the environment of the process that
starts the server. If set, their values take precedence over the maximum key lengths imposed by
OpenSSL. For example, to set a maximum key length of 4,096 bits for DSA and RSA keys for
create_asymmetric_priv_key(), set these variables:

export MYSQL_OPENSSL_UDF_DSA_BITS_THRESHOLD=4096
export MYSQL_OPENSSL_UDF_RSA_BITS_THRESHOLD=4096

The example uses Bourne shell syntax. The syntax for other shells may differ.

6.6.3 MySQL Enterprise Encryption Function Reference
Table 6.36 MySQL Enterprise Encryption Functions

Name Description

asymmetric_decrypt() Decrypt ciphertext using private or public key

asymmetric_derive() Derive symmetric key from asymmetric keys

asymmetric_encrypt() Encrypt cleartext using private or public key

asymmetric_sign() Generate signature from digest

asymmetric_verify() Verify that signature matches digest

create_asymmetric_priv_key() Create private key

create_asymmetric_pub_key() Create public key

create_dh_parameters() Generate shared DH secret

create_digest() Generate digest from string

6.6.4 MySQL Enterprise Encryption Function Descriptions

MySQL Enterprise Encryption functions have these general characteristics:

• For arguments of the wrong type or an incorrect number of arguments, each function returns an error.

• If the arguments are not suitable to permit a function to perform the requested operation, it returns NULL
or 0 as appropriate. This occurs, for example, if a function does not support a specified algorithm, a
key length is too short or long, or a string expected to be a key string in PEM format is not a valid key.
(OpenSSL imposes its own key-length limits, and server administrators can impose additional limits on
maximum key length by setting environment variables. See Section 6.6.2, “MySQL Enterprise Encryption
Usage and Examples”.)

• The underlying SSL library takes care of randomness initialization.

Several of the functions take an encryption algorithm argument. The following table summarizes the
supported algorithms by function.

Table 6.37 Supported Algorithms by Function

Function Supported Algorithms

asymmetric_decrypt() RSA

asymmetric_derive() DH

asymmetric_encrypt() RSA

1403

MySQL Enterprise Encryption Function Descriptions

Function Supported Algorithms

asymmetric_sign() RSA, DSA

asymmetric_verify() RSA, DSA

create_asymmetric_priv_key() RSA, DSA, DH

create_asymmetric_pub_key() RSA, DSA, DH

create_dh_parameters() DH

Note

Although you can create keys using any of the RSA, DSA, or DH encryption
algorithms, other functions that take key arguments might accept only certain types
of keys. For example, asymmetric_encrypt() and asymmetric_decrypt()
accept only RSA keys.

The following descriptions describe the calling sequences for MySQL Enterprise Encryption functions.
For additional examples and discussion, see Section 6.6.2, “MySQL Enterprise Encryption Usage and
Examples”.

• asymmetric_decrypt(algorithm, crypt_str, key_str)

Decrypts an encrypted string using the given algorithm and key string, and returns the resulting plaintext
as a binary string. If decryption fails, the result is NULL.

key_str must be a valid key string in PEM format. For successful decryption, it must be the public or
private key string corresponding to the private or public key string used with asymmetric_encrypt()
to produce the encrypted string. algorithm indicates the encryption algorithm used to create the key.

Supported algorithm values: 'RSA'

For a usage example, see the description of asymmetric_encrypt().

• asymmetric_derive(pub_key_str, priv_key_str)

Derives a symmetric key using the private key of one party and the public key of another, and returns the
resulting key as a binary string. If key derivation fails, the result is NULL.

pub_key_str and priv_key_str must be valid key strings in PEM format. They must be created
using the DH algorithm.

Suppose that you have two pairs of public and private keys:

SET @dhp = create_dh_parameters(1024);
SET @priv1 = create_asymmetric_priv_key('DH', @dhp);
SET @pub1 = create_asymmetric_pub_key('DH', @priv1);
SET @priv2 = create_asymmetric_priv_key('DH', @dhp);
SET @pub2 = create_asymmetric_pub_key('DH', @priv2);

Suppose further that you use the private key from one pair and the public key from the other pair to
create a symmetric key string. Then this symmetric key identity relationship holds:

asymmetric_derive(@pub1, @priv2) = asymmetric_derive(@pub2, @priv1)

• asymmetric_encrypt(algorithm, str, key_str)

Encrypts a string using the given algorithm and key string, and returns the resulting ciphertext as a
binary string. If encryption fails, the result is NULL.

1404

MySQL Enterprise Encryption Function Descriptions

The str length cannot be greater than the key_str length − 11, in bytes

key_str must be a valid key string in PEM format. algorithm indicates the encryption algorithm used
to create the key.

Supported algorithm values: 'RSA'

To encrypt a string, pass a private or public key string to asymmetric_encrypt(). To recover the
original unencrypted string, pass the encrypted string to asymmetric_decrypt(), along with the
public or private key string correponding to the private or public key string used for encryption.

-- Generate private/public key pair
SET @priv = create_asymmetric_priv_key('RSA', 1024);
SET @pub = create_asymmetric_pub_key('RSA', @priv);

-- Encrypt using private key, decrypt using public key
SET @ciphertext = asymmetric_encrypt('RSA', 'The quick brown fox', @priv);
SET @plaintext = asymmetric_decrypt('RSA', @ciphertext, @pub);

-- Encrypt using public key, decrypt using private key
SET @ciphertext = asymmetric_encrypt('RSA', 'The quick brown fox', @pub);
SET @plaintext = asymmetric_decrypt('RSA', @ciphertext, @priv);

Suppose that:

SET @s = a string to be encrypted
SET @priv = a valid private RSA key string in PEM format
SET @pub = the corresponding public RSA key string in PEM format

Then these identity relationships hold:

asymmetric_decrypt('RSA', asymmetric_encrypt('RSA', @s, @priv), @pub) = @s
asymmetric_decrypt('RSA', asymmetric_encrypt('RSA', @s, @pub), @priv) = @s

• asymmetric_sign(algorithm, digest_str, priv_key_str, digest_type)

Signs a digest string using a private key string, and returns the signature as a binary string. If signing
fails, the result is NULL.

digest_str is the digest string. It can be generated by calling create_digest(). digest_type
indicates the digest algorithm used to generate the digest string.

priv_key_str is the private key string to use for signing the digest string. It must be a valid key string
in PEM format. algorithm indicates the encryption algorithm used to create the key.

Supported algorithm values: 'RSA', 'DSA'

Supported digest_type values: 'SHA224', 'SHA256', 'SHA384', 'SHA512'

For a usage example, see the description of asymmetric_verify().

1405

MySQL Enterprise Encryption Function Descriptions

• asymmetric_verify(algorithm, digest_str, sig_str, pub_key_str, digest_type)

Verifies whether the signature string matches the digest string, and returns 1 or 0 to indicate whether
verification succeeded or failed.

digest_str is the digest string. It can be generated by calling create_digest(). digest_type
indicates the digest algorithm used to generate the digest string.

sig_str is the signature string. It can be generated by calling asymmetric_sign().

pub_key_str is the public key string of the signer. It corresponds to the private key passed to
asymmetric_sign() to generate the signature string and must be a valid key string in PEM format.
algorithm indicates the encryption algorithm used to create the key.

Supported algorithm values: 'RSA', 'DSA'

Supported digest_type values: 'SHA224', 'SHA256', 'SHA384', 'SHA512'

-- Set the encryption algorithm and digest type
SET @algo = 'RSA';
SET @dig_type = 'SHA224';

-- Create private/public key pair
SET @priv = create_asymmetric_priv_key(@algo, 1024);
SET @pub = create_asymmetric_pub_key(@algo, @priv);

-- Generate digest from string
SET @dig = create_digest(@dig_type, 'The quick brown fox');

-- Generate signature for digest and verify signature against digest
SET @sig = asymmetric_sign(@algo, @dig, @priv, @dig_type);
SET @verf = asymmetric_verify(@algo, @dig, @sig, @pub, @dig_type);

• create_asymmetric_priv_key(algorithm, {key_len|dh_secret})

Creates a private key using the given algorithm and key length or DH secret, and returns the key as a
binary string in PEM format. If key generation fails, the result is NULL.

Supported algorithm values: 'RSA', 'DSA', 'DH'

Supported key_len values: The minimum key length in bits is 1,024. The maximum key length depends
on the algorithm: 16,384 for RSA and 10,000 for DSA. These key-length limits are constraints imposed
by OpenSSL. Server administrators can impose additional limits on maximum key length by setting
environment variables. See Section 6.6.2, “MySQL Enterprise Encryption Usage and Examples”.

For DH keys, pass a shared DH secret instead of a key length. To create the secret, pass the key length
to create_dh_parameters().

This example creates a 2,048-bit DSA private key, then derives a public key from the private key:

SET @priv = create_asymmetric_priv_key('DSA', 2048);

1406

SELinux

SET @pub = create_asymmetric_pub_key('DSA', @priv);

For an example showing DH key generation, see the description of asymmetric_derive().

Some general considerations in choosing key lengths and encryption algorithms:

• The strength of encryption for private and public keys increases with the key size, but the time for key
generation increases as well.

• Generation of DH keys takes much longer than RSA or RSA keys.

• Asymmetric encryption functions are slower than symmetric functions. If performance is an important
factor and the functions are to be used very frequently, you are better off using symmetric encryption.
For example, consider using AES_ENCRYPT() and AES_DECRYPT().

• create_asymmetric_pub_key(algorithm, priv_key_str)

Derives a public key from the given private key using the given algorithm, and returns the key as a binary
string in PEM format. If key derivation fails, the result is NULL.

priv_key_str must be a valid key string in PEM format. algorithm indicates the encryption
algorithm used to create the key.

Supported algorithm values: 'RSA', 'DSA', 'DH'

For a usage example, see the description of create_asymmetric_priv_key().

• create_dh_parameters(key_len)

Creates a shared secret for generating a DH private/public key pair and returns a binary string that can
be passed to create_asymmetric_priv_key(). If secret generation fails, the result is null.

Supported key_len values: The minimum and maximum key lengths in bits are 1,024 and 10,000.
These key-length limits are constraints imposed by OpenSSL. Server administrators can impose
additional limits on maximum key length by setting environment variables. See Section 6.6.2, “MySQL
Enterprise Encryption Usage and Examples”.

For an example showing how to use the return value for generating symmetric keys, see the description
of asymmetric_derive().

SET @dhp = create_dh_parameters(1024);

• create_digest(digest_type, str)

Creates a digest from the given string using the given digest type, and returns the digest as a binary
string. If digest generation fails, the result is NULL.

Supported digest_type values: 'SHA224', 'SHA256', 'SHA384', 'SHA512'

SET @dig = create_digest('SHA512', The quick brown fox');

The resulting digest string is suitable for use with asymmetric_sign() and asymmetric_verify().

6.7 SELinux

Security-Enhanced Linux (SELinux) is a mandatory access control (MAC) system that implements access
rights by applying a security label referred to as an SELinux context to each system object. SELinux policy

1407

Check if SELinux is Enabled

modules use SELinux contexts to define rules for how processes, files, ports, and other system objects
interact with each other. Interaction between system objects is only permitted if a policy rule allows it.

An SELinux context (the label applied to a system object) has the following fields: user, role, type, and
security level. Type information rather than the entire SELinux context is used most commonly to
define rules for how processes interact with other system objects. MySQL SELinux policy modules, for
example, define policy rules using type information.

You can view SELinux contexts using operating system commands such as ls and ps with the -Z option.
Assuming that SELinux is enabled and a MySQL Server is running, the following commands show the
SELinux context for the mysqld process and MySQL data directory:

mysqld process:

$> ps -eZ | grep mysqld
system_u:system_r:mysqld_t:s0 5924 ? 00:00:03 mysqld

MySQL data directory:

$> cd /var/lib
$> ls -Z | grep mysql
system_u:object_r:mysqld_db_t:s0 mysql

where:

• system_u is an SELinux user identity for system processes and objects.

• system_r is an SELinux role used for system processes.

• objects_r is an SELinux role used for system objects.

• mysqld_t is the type associated with the mysqld process.

• mysqld_db_t is the type associated with the MySQL data directory and its files.

• s0 is the security level.

For more information about interpreting SELinux contexts, refer to your distribution's SELinux
documentation.

6.7.1 Check if SELinux is Enabled

SELinux is enabled by default on some Linux distributions including Oracle Linux, RHEL, CentOS, and
Fedora. Use the sestatus command to determine if SELinux is enabled on your distribution:

$> sestatus
SELinux status: enabled
SELinuxfs mount: /sys/fs/selinux
SELinux root directory: /etc/selinux
Loaded policy name: targeted
Current mode: enforcing
Mode from config file: enforcing
Policy MLS status: enabled
Policy deny_unknown status: allowed
Memory protection checking: actual (secure)
Max kernel policy version: 31

If SELinux is disabled or the sestatus command is not found, refer to your distribution's SELinux
documentation for guidance before enabling SELinux.

1408

Changing the SELinux Mode

6.7.2 Changing the SELinux Mode

SELinux supports enforcing, permissive, and disabled modes. Enforcing mode is the default. Permissive
mode allows operations that are not permitted in enforcing mode and logs those operations to the SELinux
audit log. Permissive mode is typically used when developing policies or troubleshooting. In disabled
mode, polices are not enforced, and contexts are not applied to system objects, which makes it difficult to
enable SELinux later.

To view the current SELinux mode, use the sestatus command mentioned previously or the
getenforce utility.

$> getenforce
Enforcing

To change the SELinux mode, use the setenforce utility:

$> setenforce 0
$> getenforce
Permissive

$> setenforce 1
$> getenforce
Enforcing

Changes made with setenforce are lost when you restart the system. To permanently change the
SELinux mode, edit the /etc/selinux/config file and restart the system.

6.7.3 MySQL Server SELinux Policies

MySQL Server SELinux policy modules are typically installed by default. You can view installed modules
using the semodule -l command. MySQL Server SELinux policy modules include:

• mysqld_selinux

• mysqld_safe_selinux

For information about MySQL Server SELinux policy modules, refer to the SELinux manual pages. The
manual pages provide information about types and Booleans associated with the MySQL service. Manual
pages are named in the service-name_selinux format.

man mysqld_selinux

If SELinux manual pages are not available, refer to your distribution's SELinux documentation for
information about how to generate manual pages using the sepolicy manpage utility.

6.7.4 SELinux File Context

The MySQL Server reads from and writes to many files. If the SELinux context is not set correctly for these
files, access to the files could be denied.

The instructions that follow use the semanage binary to manage file context; on RHEL, it's part of the
policycoreutils-python-utils package:

yum install -y policycoreutils-python-utils

After installing the semanage binary, you can list MySQL file contexts using semanage with the fcontext
option.

semanage fcontext -l | grep -i mysql

1409

SELinux File Context

Setting the MySQL Data Directory Context

The default data directory location is /var/lib/mysql/; and the SELinux context used is mysqld_db_t.

If you edit the configuration file to use a different location for the data directory, or for any of the files
normally in the data directory (such as the binary logs), you may need to set the context for the new
location. For example:

semanage fcontext -a -t mysqld_db_t "/path/to/my/custom/datadir(/.*)?"
restorecon -Rv /path/to/my/custom/datadir

semanage fcontext -a -t mysqld_db_t "/path/to/my/custom/logdir(/.*)?"
restorecon -Rv /path/to/my/custom/logdir

Setting the MySQL Error Log File Context

The default location for RedHat RPMs is /var/log/mysqld.log; and the SELinux context type used is
mysqld_log_t.

If you edit the configuration file to use a different location, you may need to set the context for the new
location. For example:

semanage fcontext -a -t mysqld_log_t "/path/to/my/custom/error.log"
restorecon -Rv /path/to/my/custom/error.log

Setting the PID File Context

The default location for the PID file is /var/run/mysqld/mysqld.pid; and the SELinux context type
used is mysqld_var_run_t.

If you edit the configuration file to use a different location, you may need to set the context for the new
location. For example:

semanage fcontext -a -t mysqld_var_run_t "/path/to/my/custom/pidfile/directory/.*?"
restorecon -Rv /path/to/my/custom/pidfile/directory

Setting the Unix Domain Socket Context

The default location for the Unix domain socket is /var/lib/mysql/mysql.sock; and the SELinux
context type used is mysqld_var_run_t.

If you edit the configuration file to use a different location, you may need to set the context for the new
location. For example:

semanage fcontext -a -t mysqld_var_run_t "/path/to/my/custom/mysql\.sock"
restorecon -Rv /path/to/my/custom/mysql.sock

Setting the secure_file_priv Directory Context

For MySQL versions since 5.6.34, 5.7.16, and 8.0.11.

Installing the MySQL Server RPM creates a /var/lib/mysql-files/ directory but does not set the
SELinux context for it. The /var/lib/mysql-files/ directory is intended to be used for operations
such as SELECT ... INTO OUTFILE.

If you enabled the use of this directory by setting secure_file_priv, you may need to set the context
like so:

semanage fcontext -a -t mysqld_db_t "/var/lib/mysql-files/(/.*)?"

1410

SELinux TCP Port Context

restorecon -Rv /var/lib/mysql-files

Edit this path if you used a different location. For security purposes, this directory should never be within
the data directory.

For more information about this variable, see the secure_file_priv documentation.

6.7.5 SELinux TCP Port Context

The instructions that follow use the semanage binary to manage port context; on RHEL, it's part of the
policycoreutils-python-utils package:

yum install -y policycoreutils-python-utils

After installing the semanage binary, you can list ports defined with the mysqld_port_t context using
semanage with the port option.

$> semanage port -l | grep mysqld
mysqld_port_t tcp 1186, 3306, 63132-63164

6.7.5.1 Setting the TCP Port Context for mysqld

The default TCP port for mysqld is 3306; and the SELinux context type used is mysqld_port_t.

If you configure mysqld to use a different TCP port, you may need to set the context for the new port.
For example to define the SELinux context for a non-default port such as port 3307:

semanage port -a -t mysqld_port_t -p tcp 3307

To confirm that the port is added:

$> semanage port -l | grep mysqld
mysqld_port_t tcp 3307, 1186, 3306, 63132-63164

6.7.5.2 Setting the TCP Port Context for MySQL Features

If you enable certain MySQL features, you might need to set the SELinux TCP port context for additional
ports used by those features. If ports used by MySQL features do not have the correct SELinux context,
the features might not function correctly.

The following sections describe how to set port contexts for MySQL features. Generally, the same method
can be used to set the port context for any MySQL features. For information about ports used by MySQL
features, refer to the MySQL Port Reference.

Setting the TCP Port Context for Group Replication

If SELinux is enabled, you must set the port context for the Group Replication communication port, which
is defined by the group_replication_local_address variable. mysqld must be able to bind to the
Group Replication communication port and listen there. InnoDB Cluster relies on Group Replication so this
applies equally to instances used in a cluster. To view ports currently used by MySQL, issue:

semanage port -l | grep mysqld

Assuming the Group Replication communication port is 33061, set the port context by issuing:

semanage port -a -t mysqld_port_t -p tcp 33061

Setting the TCP Port Context for Document Store

1411

https://dev.mysql.com/doc/mysql-port-reference/en/

Troubleshooting SELinux

If SELinux is enabled, you must set the port context for the communication port used by X Plugin, which is
defined by the mysqlx_port variable. mysqld must be able to bind to the X Plugin communication port
and listen there.

Assuming the X Plugin communication port is 33060, set the port context by issuing:

semanage port -a -t mysqld_port_t -p tcp 33060

6.7.6 Troubleshooting SELinux

Troubleshooting SELinux typically involves placing SELinux into permissive mode, rerunning problematic
operations, checking for access denial messages in the SELinux audit log, and placing SELinux back into
enforcing mode after problems are resolved.

To avoid placing the entire system into permissive mode using setenforce, you can permit only the
MySQL service to run permissively by placing its SELinux domain (mysqld_t) into permissive mode using
the semanage command:

semanage permissive -a mysqld_t

When you are finished troubleshooting, use this command to place the mysqld_t domain back into
enforcing mode:

semanage permissive -d mysqld_t

SELinux writes logs for denied operations to /var/log/audit/audit.log. You can check for denials
by searching for “denied” messages.

grep "denied" /var/log/audit/audit.log

The following sections describes a few common areas where SELinux-related issues may be encountered.

File Contexts

If a MySQL directory or file has an incorrect SELinux context, access may be denied. This issue can occur
if MySQL is configured to read from or write to a non-default directory or file. For example, if you configure
MySQL to use a non-default data directory, the directory may not have the expected SELinux context.

Attempting to start the MySQL service on a non-default data directory with an invalid SELinux context
causes the following startup failure.

$> systemctl start mysql.service
Job for mysqld.service failed because the control process exited with error code.
See "systemctl status mysqld.service" and "journalctl -xe" for details.

In this case, a “denial” message is logged to /var/log/audit/audit.log:

$> grep "denied" /var/log/audit/audit.log
type=AVC msg=audit(1587133719.786:194): avc: denied { write } for pid=7133 comm="mysqld"
name="mysql" dev="dm-0" ino=51347078 scontext=system_u:system_r:mysqld_t:s0
tcontext=unconfined_u:object_r:default_t:s0 tclass=dir permissive=0

For information about setting the proper SELinux context for MySQL directories and files, see
Section 6.7.4, “SELinux File Context”.

Port Access

SELinux expects services such as MySQL Server to use specific ports. Changing ports without updating
the SELinux policies may cause a service failure.

1412

Troubleshooting SELinux

The mysqld_port_t port type defines the ports that the MySQL listens on. If you configure the MySQL
Server to use a non-default port, such as port 3307, and do not update the policy to reflect the change, the
MySQL service fails to start:

$> systemctl start mysqld.service
Job for mysqld.service failed because the control process exited with error code.
See "systemctl status mysqld.service" and "journalctl -xe" for details.

In this case, a denial message is logged to /var/log/audit/audit.log:

$> grep "denied" /var/log/audit/audit.log
type=AVC msg=audit(1587134375.845:198): avc: denied { name_bind } for pid=7340
comm="mysqld" src=3307 scontext=system_u:system_r:mysqld_t:s0
tcontext=system_u:object_r:unreserved_port_t:s0 tclass=tcp_socket permissive=0

For information about setting the proper SELinux port context for MySQL, see Section 6.7.5, “SELinux TCP
Port Context”. Similar port access issues can occur when enabling MySQL features that use ports that are
not defined with the required context. For more information, see Section 6.7.5.2, “Setting the TCP Port
Context for MySQL Features”.

Application Changes

SELinux may not be aware of application changes. For example, a new release, an application extension,
or a new feature may access system resources in a way that is not permitted by SELinux, resulting in
access denials. In such cases, you can use the audit2allow utility to create custom policies to permit
access where it is required. The typical method for creating custom policies is to change the SELinux mode
to permissive, identify access denial messages in the SELinux audit log, and use the audit2allow utility
to create custom policies to permit access.

For information about using the audit2allow utility, refer to your distribution's SELinux documentation.

If you encounter access issues for MySQL that you believe should be handled by standard MySQL
SELinux policy modules, please open a bug report in your distribution's bug tracking system.

1413

1414

Chapter 7 Backup and Recovery

Table of Contents
7.1 Backup and Recovery Types ... 1416
7.2 Database Backup Methods .. 1419
7.3 Example Backup and Recovery Strategy ... 1421

7.3.1 Establishing a Backup Policy .. 1422
7.3.2 Using Backups for Recovery ... 1424
7.3.3 Backup Strategy Summary ... 1424

7.4 Using mysqldump for Backups .. 1424
7.4.1 Dumping Data in SQL Format with mysqldump .. 1425
7.4.2 Reloading SQL-Format Backups ... 1426
7.4.3 Dumping Data in Delimited-Text Format with mysqldump ... 1427
7.4.4 Reloading Delimited-Text Format Backups .. 1428
7.4.5 mysqldump Tips ... 1428

7.5 Point-in-Time (Incremental) Recovery .. 1430
7.5.1 Point-in-Time Recovery Using Binary Log ... 1431
7.5.2 Point-in-Time Recovery Using Event Positions ... 1432

7.6 MyISAM Table Maintenance and Crash Recovery .. 1433
7.6.1 Using myisamchk for Crash Recovery ... 1434
7.6.2 How to Check MyISAM Tables for Errors .. 1435
7.6.3 How to Repair MyISAM Tables ... 1435
7.6.4 MyISAM Table Optimization .. 1438
7.6.5 Setting Up a MyISAM Table Maintenance Schedule ... 1438

It is important to back up your databases so that you can recover your data and be up and running again
in case problems occur, such as system crashes, hardware failures, or users deleting data by mistake.
Backups are also essential as a safeguard before upgrading a MySQL installation, and they can be used to
transfer a MySQL installation to another system or to set up replica servers.

MySQL offers a variety of backup strategies from which you can choose the methods that best suit the
requirements for your installation. This chapter discusses several backup and recovery topics with which
you should be familiar:

• Types of backups: Logical versus physical, full versus incremental, and so forth.

• Methods for creating backups.

• Recovery methods, including point-in-time recovery.

• Backup scheduling, compression, and encryption.

• Table maintenance, to enable recovery of corrupt tables.

Additional Resources

Resources related to backup or to maintaining data availability include the following:

• Customers of MySQL Enterprise Edition can use the MySQL Enterprise Backup product for backups.
For an overview of the MySQL Enterprise Backup product, see Section 28.1, “MySQL Enterprise Backup
Overview”.

1415

Backup and Recovery Types

• A forum dedicated to backup issues is available at https://forums.mysql.com/list.php?28.

• Details for mysqldump can be found in Chapter 4, MySQL Programs.

• The syntax of the SQL statements described here is given in Chapter 13, SQL Statements.

• For additional information about InnoDB backup procedures, see Section 14.19.1, “InnoDB Backup”.

• Replication enables you to maintain identical data on multiple servers. This has several benefits, such
as enabling client query load to be distributed over servers, availability of data even if a given server is
taken offline or fails, and the ability to make backups with no impact on the source by using a replica
server. See Chapter 16, Replication.

• MySQL InnoDB Cluster is a collection of products that work together to provide a high availability
solution. A group of MySQL servers can be configured to create a cluster using MySQL Shell. The
cluster of servers has a single source, called the primary, which acts as the read-write source. Multiple
secondary servers are replicas of the source. A minimum of three servers are required to create a high
availability cluster. A client application is connected to the primary via MySQL Router. If the primary fails,
a secondary is automatically promoted to the role of primary, and MySQL Router routes requests to the
new primary.

• NDB Cluster provides a high-availability, high-redundancy version of MySQL adapted for the distributed
computing environment. See Chapter 21, MySQL NDB Cluster 7.5 and NDB Cluster 7.6, which provides
information about MySQL NDB Cluster 7.5 (based on MySQL 5.7 but containing the latest improvements
and fixes for the NDB storage engine).

7.1 Backup and Recovery Types
This section describes the characteristics of different types of backups.

Physical (Raw) Versus Logical Backups

Physical backups consist of raw copies of the directories and files that store database contents. This type
of backup is suitable for large, important databases that need to be recovered quickly when problems
occur.

Logical backups save information represented as logical database structure (CREATE DATABASE, CREATE
TABLE statements) and content (INSERT statements or delimited-text files). This type of backup is suitable
for smaller amounts of data where you might edit the data values or table structure, or recreate the data on
a different machine architecture.

Physical backup methods have these characteristics:

• The backup consists of exact copies of database directories and files. Typically this is a copy of all or
part of the MySQL data directory.

• Physical backup methods are faster than logical because they involve only file copying without
conversion.

• Output is more compact than for logical backup.

• Because backup speed and compactness are important for busy, important databases, the MySQL
Enterprise Backup product performs physical backups. For an overview of the MySQL Enterprise
Backup product, see Section 28.1, “MySQL Enterprise Backup Overview”.

• Backup and restore granularity ranges from the level of the entire data directory down to the level of
individual files. This may or may not provide for table-level granularity, depending on storage engine. For

1416

https://forums.mysql.com/list.php?28

Online Versus Offline Backups

example, InnoDB tables can each be in a separate file, or share file storage with other InnoDB tables;
each MyISAM table corresponds uniquely to a set of files.

• In addition to databases, the backup can include any related files such as log or configuration files.

• Data from MEMORY tables is tricky to back up this way because their contents are not stored on disk.
(The MySQL Enterprise Backup product has a feature where you can retrieve data from MEMORY tables
during a backup.)

• Backups are portable only to other machines that have identical or similar hardware characteristics.

• Backups can be performed while the MySQL server is not running. If the server is running, it is
necessary to perform appropriate locking so that the server does not change database contents during
the backup. MySQL Enterprise Backup does this locking automatically for tables that require it.

• Physical backup tools include the mysqlbackup of MySQL Enterprise Backup for InnoDB or any other
tables, or file system-level commands (such as cp, scp, tar, rsync) for MyISAM tables.

• For restore:

• MySQL Enterprise Backup restores InnoDB and other tables that it backed up.

• ndb_restore restores NDB tables.

• Files copied at the file system level can be copied back to their original locations with file system
commands.

Logical backup methods have these characteristics:

• The backup is done by querying the MySQL server to obtain database structure and content information.

• Backup is slower than physical methods because the server must access database information and
convert it to logical format. If the output is written on the client side, the server must also send it to the
backup program.

• Output is larger than for physical backup, particularly when saved in text format.

• Backup and restore granularity is available at the server level (all databases), database level (all tables
in a particular database), or table level. This is true regardless of storage engine.

• The backup does not include log or configuration files, or other database-related files that are not part of
databases.

• Backups stored in logical format are machine independent and highly portable.

• Logical backups are performed with the MySQL server running. The server is not taken offline.

• Logical backup tools include the mysqldump program and the SELECT ... INTO OUTFILE
statement. These work for any storage engine, even MEMORY.

• To restore logical backups, SQL-format dump files can be processed using the mysql client. To load
delimited-text files, use the LOAD DATA statement or the mysqlimport client.

Online Versus Offline Backups

Online backups take place while the MySQL server is running so that the database information can be
obtained from the server. Offline backups take place while the server is stopped. This distinction can also

1417

Local Versus Remote Backups

be described as “hot” versus “cold” backups; a “warm” backup is one where the server remains running but
locked against modifying data while you access database files externally.

Online backup methods have these characteristics:

• The backup is less intrusive to other clients, which can connect to the MySQL server during the backup
and may be able to access data depending on what operations they need to perform.

• Care must be taken to impose appropriate locking so that data modifications do not take place that
would compromise backup integrity. The MySQL Enterprise Backup product does such locking
automatically.

Offline backup methods have these characteristics:

• Clients can be affected adversely because the server is unavailable during backup. For that reason,
such backups are often taken from a replica server that can be taken offline without harming availability.

• The backup procedure is simpler because there is no possibility of interference from client activity.

A similar distinction between online and offline applies for recovery operations, and similar characteristics
apply. However, it is more likely for clients to be affected for online recovery than for online backup
because recovery requires stronger locking. During backup, clients might be able to read data while it is
being backed up. Recovery modifies data and does not just read it, so clients must be prevented from
accessing data while it is being restored.

Local Versus Remote Backups

A local backup is performed on the same host where the MySQL server runs, whereas a remote backup
is done from a different host. For some types of backups, the backup can be initiated from a remote host
even if the output is written locally on the server. host.

• mysqldump can connect to local or remote servers. For SQL output (CREATE and INSERT statements),
local or remote dumps can be done and generate output on the client. For delimited-text output (with the
--tab option), data files are created on the server host.

• SELECT ... INTO OUTFILE can be initiated from a local or remote client host, but the output file is
created on the server host.

• Physical backup methods typically are initiated locally on the MySQL server host so that the server can
be taken offline, although the destination for copied files might be remote.

Snapshot Backups

Some file system implementations enable “snapshots” to be taken. These provide logical copies of the file
system at a given point in time, without requiring a physical copy of the entire file system. (For example,
the implementation may use copy-on-write techniques so that only parts of the file system modified after
the snapshot time need be copied.) MySQL itself does not provide the capability for taking file system
snapshots. It is available through third-party solutions such as Veritas, LVM, or ZFS.

Full Versus Incremental Backups

A full backup includes all data managed by a MySQL server at a given point in time. An incremental
backup consists of the changes made to the data during a given time span (from one point in time to
another). MySQL has different ways to perform full backups, such as those described earlier in this section.
Incremental backups are made possible by enabling the server's binary log, which the server uses to
record data changes.

1418

Full Versus Point-in-Time (Incremental) Recovery

Full Versus Point-in-Time (Incremental) Recovery

A full recovery restores all data from a full backup. This restores the server instance to the state that it
had when the backup was made. If that state is not sufficiently current, a full recovery can be followed by
recovery of incremental backups made since the full backup, to bring the server to a more up-to-date state.

Incremental recovery is recovery of changes made during a given time span. This is also called point-in-
time recovery because it makes a server's state current up to a given time. Point-in-time recovery is based
on the binary log and typically follows a full recovery from the backup files that restores the server to its
state when the backup was made. Then the data changes written in the binary log files are applied as
incremental recovery to redo data modifications and bring the server up to the desired point in time.

Table Maintenance

Data integrity can be compromised if tables become corrupt. For InnoDB tables, this is not a typical issue.
For programs to check MyISAM tables and repair them if problems are found, see Section 7.6, “MyISAM
Table Maintenance and Crash Recovery”.

Backup Scheduling, Compression, and Encryption

Backup scheduling is valuable for automating backup procedures. Compression of backup output reduces
space requirements, and encryption of the output provides better security against unauthorized access of
backed-up data. MySQL itself does not provide these capabilities. The MySQL Enterprise Backup product
can compress InnoDB backups, and compression or encryption of backup output can be achieved using
file system utilities. Other third-party solutions may be available.

7.2 Database Backup Methods

This section summarizes some general methods for making backups.

Making a Hot Backup with MySQL Enterprise Backup

Customers of MySQL Enterprise Edition can use the MySQL Enterprise Backup product to do physical
backups of entire instances or selected databases, tables, or both. This product includes features for
incremental and compressed backups. Backing up the physical database files makes restore much faster
than logical techniques such as the mysqldump command. InnoDB tables are copied using a hot backup
mechanism. (Ideally, the InnoDB tables should represent a substantial majority of the data.) Tables
from other storage engines are copied using a warm backup mechanism. For an overview of the MySQL
Enterprise Backup product, see Section 28.1, “MySQL Enterprise Backup Overview”.

Making Backups with mysqldump

The mysqldump program can make backups. It can back up all kinds of tables. (See Section 7.4, “Using
mysqldump for Backups”.)

For InnoDB tables, it is possible to perform an online backup that takes no locks on tables using the --
single-transaction option to mysqldump. See Section 7.3.1, “Establishing a Backup Policy”.

Making Backups by Copying Table Files

For storage engines that represent each table using its own files, tables can be backed up by copying
those files. For example, MyISAM tables are stored as files, so it is easy to do a backup by copying files

1419

Making Delimited-Text File Backups

(*.frm, *.MYD, and *.MYI files). To get a consistent backup, stop the server or lock and flush the
relevant tables:

FLUSH TABLES tbl_list WITH READ LOCK;

You need only a read lock; this enables other clients to continue to query the tables while you are making a
copy of the files in the database directory. The flush is needed to ensure that the all active index pages are
written to disk before you start the backup. See Section 13.3.5, “LOCK TABLES and UNLOCK TABLES
Statements”, and Section 13.7.6.3, “FLUSH Statement”.

You can also create a binary backup simply by copying all table files, as long as the server is not updating
anything. (But note that table file copying methods do not work if your database contains InnoDB tables.
Also, even if the server is not actively updating data, InnoDB may still have modified data cached in
memory and not flushed to disk.)

Making Delimited-Text File Backups

To create a text file containing a table's data, you can use SELECT * INTO OUTFILE 'file_name'
FROM tbl_name. The file is created on the MySQL server host, not the client host. For this statement,
the output file cannot already exist because permitting files to be overwritten constitutes a security risk.
See Section 13.2.9, “SELECT Statement”. This method works for any kind of data file, but saves only table
data, not the table structure.

Another way to create text data files (along with files containing CREATE TABLE statements for the backed
up tables) is to use mysqldump with the --tab option. See Section 7.4.3, “Dumping Data in Delimited-
Text Format with mysqldump”.

To reload a delimited-text data file, use LOAD DATA or mysqlimport.

Making Incremental Backups by Enabling the Binary Log

MySQL supports incremental backups: You must start the server with the --log-bin option to enable
binary logging; see Section 5.4.4, “The Binary Log”. The binary log files provide you with the information
you need to replicate changes to the database that are made subsequent to the point at which you
performed a backup. At the moment you want to make an incremental backup (containing all changes
that happened since the last full or incremental backup), you should rotate the binary log by using FLUSH
LOGS. This done, you need to copy to the backup location all binary logs which range from the one of the
moment of the last full or incremental backup to the last but one. These binary logs are the incremental
backup; at restore time, you apply them as explained in Section 7.5, “Point-in-Time (Incremental)
Recovery”. The next time you do a full backup, you should also rotate the binary log using FLUSH LOGS or
mysqldump --flush-logs. See Section 4.5.4, “mysqldump — A Database Backup Program”.

Making Backups Using Replicas

If you have performance problems with your source server while making backups, one strategy that
can help is to set up replication and perform backups on the replica rather than on the source. See
Section 16.3.1, “Using Replication for Backups”.

If you are backing up a replica server, you should back up its source info and relay log info repositories
(see Section 16.2.4, “Relay Log and Replication Metadata Repositories”) when you back up the replica's
databases, regardless of the backup method you choose. These information files are always needed to
resume replication after you restore the replica's data. If your replica is replicating LOAD DATA statements,
you should also back up any SQL_LOAD-* files that exist in the directory that the replica uses for this
purpose. The replica needs these files to resume replication of any interrupted LOAD DATA operations.

1420

Recovering Corrupt Tables

The location of this directory is the value of the slave_load_tmpdir system variable. If the server was
not started with that variable set, the directory location is the value of the tmpdir system variable.

Recovering Corrupt Tables

If you have to restore MyISAM tables that have become corrupt, try to recover them using REPAIR TABLE
or myisamchk -r first. That should work in 99.9% of all cases. If myisamchk fails, see Section 7.6,
“MyISAM Table Maintenance and Crash Recovery”.

Making Backups Using a File System Snapshot

If you are using a Veritas file system, you can make a backup like this:

1. From a client program, execute FLUSH TABLES WITH READ LOCK.

2. From another shell, execute mount vxfs snapshot.

3. From the first client, execute UNLOCK TABLES.

4. Copy files from the snapshot.

5. Unmount the snapshot.

Similar snapshot capabilities may be available in other file systems, such as LVM or ZFS.

7.3 Example Backup and Recovery Strategy

This section discusses a procedure for performing backups that enables you to recover data after several
types of crashes:

• Operating system crash

• Power failure

• File system crash

• Hardware problem (hard drive, motherboard, and so forth)

The example commands do not include options such as --user and --password for the mysqldump
and mysql client programs. You should include such options as necessary to enable client programs to
connect to the MySQL server.

Assume that data is stored in the InnoDB storage engine, which has support for transactions and
automatic crash recovery. Assume also that the MySQL server is under load at the time of the crash. If it
were not, no recovery would ever be needed.

For cases of operating system crashes or power failures, we can assume that MySQL's disk data is
available after a restart. The InnoDB data files might not contain consistent data due to the crash, but
InnoDB reads its logs and finds in them the list of pending committed and noncommitted transactions that
have not been flushed to the data files. InnoDB automatically rolls back those transactions that were not
committed, and flushes to its data files those that were committed. Information about this recovery process
is conveyed to the user through the MySQL error log. The following is an example log excerpt:

InnoDB: Database was not shut down normally.
InnoDB: Starting recovery from log files...
InnoDB: Starting log scan based on checkpoint at
InnoDB: log sequence number 0 13674004

1421

Establishing a Backup Policy

InnoDB: Doing recovery: scanned up to log sequence number 0 13739520
InnoDB: Doing recovery: scanned up to log sequence number 0 13805056
InnoDB: Doing recovery: scanned up to log sequence number 0 13870592
InnoDB: Doing recovery: scanned up to log sequence number 0 13936128
...
InnoDB: Doing recovery: scanned up to log sequence number 0 20555264
InnoDB: Doing recovery: scanned up to log sequence number 0 20620800
InnoDB: Doing recovery: scanned up to log sequence number 0 20664692
InnoDB: 1 uncommitted transaction(s) which must be rolled back
InnoDB: Starting rollback of uncommitted transactions
InnoDB: Rolling back trx no 16745
InnoDB: Rolling back of trx no 16745 completed
InnoDB: Rollback of uncommitted transactions completed
InnoDB: Starting an apply batch of log records to the database...
InnoDB: Apply batch completed
InnoDB: Started
mysqld: ready for connections

For the cases of file system crashes or hardware problems, we can assume that the MySQL disk data is
not available after a restart. This means that MySQL fails to start successfully because some blocks of
disk data are no longer readable. In this case, it is necessary to reformat the disk, install a new one, or
otherwise correct the underlying problem. Then it is necessary to recover our MySQL data from backups,
which means that backups must already have been made. To make sure that is the case, design and
implement a backup policy.

7.3.1 Establishing a Backup Policy

To be useful, backups must be scheduled regularly. A full backup (a snapshot of the data at a point in time)
can be done in MySQL with several tools. For example, MySQL Enterprise Backup can perform a physical
backup of an entire instance, with optimizations to minimize overhead and avoid disruption when backing
up InnoDB data files; mysqldump provides online logical backup. This discussion uses mysqldump.

Assume that we make a full backup of all our InnoDB tables in all databases using the following command
on Sunday at 1 p.m., when load is low:

$> mysqldump --all-databases --master-data --single-transaction > backup_sunday_1_PM.sql

The resulting .sql file produced by mysqldump contains a set of SQL INSERT statements that can be
used to reload the dumped tables at a later time.

This backup operation acquires a global read lock on all tables at the beginning of the dump (using FLUSH
TABLES WITH READ LOCK). As soon as this lock has been acquired, the binary log coordinates are read
and the lock is released. If long updating statements are running when the FLUSH statement is issued, the
backup operation may stall until those statements finish. After that, the dump becomes lock-free and does
not disturb reads and writes on the tables.

It was assumed earlier that the tables to back up are InnoDB tables, so --single-transaction uses
a consistent read and guarantees that data seen by mysqldump does not change. (Changes made by
other clients to InnoDB tables are not seen by the mysqldump process.) If the backup operation includes
nontransactional tables, consistency requires that they do not change during the backup. For example, for
the MyISAM tables in the mysql database, there must be no administrative changes to MySQL accounts
during the backup.

Full backups are necessary, but it is not always convenient to create them. They produce large backup
files and take time to generate. They are not optimal in the sense that each successive full backup includes
all data, even that part that has not changed since the previous full backup. It is more efficient to make an
initial full backup, and then to make incremental backups. The incremental backups are smaller and take
less time to produce. The tradeoff is that, at recovery time, you cannot restore your data just by reloading
the full backup. You must also process the incremental backups to recover the incremental changes.

1422

Establishing a Backup Policy

To make incremental backups, we need to save the incremental changes. In MySQL, these changes
are represented in the binary log, so the MySQL server should always be started with the --log-bin
option to enable that log. With binary logging enabled, the server writes each data change into a file while it
updates data. Looking at the data directory of a MySQL server that was started with the --log-bin option
and that has been running for some days, we find these MySQL binary log files:

-rw-rw---- 1 guilhem guilhem 1277324 Nov 10 23:59 gbichot2-bin.000001
-rw-rw---- 1 guilhem guilhem 4 Nov 10 23:59 gbichot2-bin.000002
-rw-rw---- 1 guilhem guilhem 79 Nov 11 11:06 gbichot2-bin.000003
-rw-rw---- 1 guilhem guilhem 508 Nov 11 11:08 gbichot2-bin.000004
-rw-rw---- 1 guilhem guilhem 220047446 Nov 12 16:47 gbichot2-bin.000005
-rw-rw---- 1 guilhem guilhem 998412 Nov 14 10:08 gbichot2-bin.000006
-rw-rw---- 1 guilhem guilhem 361 Nov 14 10:07 gbichot2-bin.index

Each time it restarts, the MySQL server creates a new binary log file using the next number in the
sequence. While the server is running, you can also tell it to close the current binary log file and begin
a new one manually by issuing a FLUSH LOGS SQL statement or with a mysqladmin flush-logs
command. mysqldump also has an option to flush the logs. The .index file in the data directory contains
the list of all MySQL binary logs in the directory.

The MySQL binary logs are important for recovery because they form the set of incremental backups. If
you make sure to flush the logs when you make your full backup, the binary log files created afterward
contain all the data changes made since the backup. Let's modify the previous mysqldump command a
bit so that it flushes the MySQL binary logs at the moment of the full backup, and so that the dump file
contains the name of the new current binary log:

$> mysqldump --single-transaction --flush-logs --master-data=2 \
 --all-databases > backup_sunday_1_PM.sql

After executing this command, the data directory contains a new binary log file, gbichot2-bin.000007,
because the --flush-logs option causes the server to flush its logs. The --master-data option
causes mysqldump to write binary log information to its output, so the resulting .sql dump file includes
these lines:

-- Position to start replication or point-in-time recovery from
-- CHANGE MASTER TO MASTER_LOG_FILE='gbichot2-bin.000007',MASTER_LOG_POS=4;

Because the mysqldump command made a full backup, those lines mean two things:

• The dump file contains all changes made before any changes written to the gbichot2-bin.000007
binary log file or higher.

• All data changes logged after the backup are not present in the dump file, but are present in the
gbichot2-bin.000007 binary log file or higher.

On Monday at 1 p.m., we can create an incremental backup by flushing the logs to begin a new binary log
file. For example, executing a mysqladmin flush-logs command creates gbichot2-bin.000008.
All changes between the Sunday 1 p.m. full backup and Monday 1 p.m. are in the gbichot2-
bin.000007 file. This incremental backup is important, so it is a good idea to copy it to a safe place.
(For example, back it up on tape or DVD, or copy it to another machine.) On Tuesday at 1 p.m., execute
another mysqladmin flush-logs command. All changes between Monday 1 p.m. and Tuesday 1 p.m.
are in the gbichot2-bin.000008 file (which also should be copied somewhere safe).

The MySQL binary logs take up disk space. To free up space, purge them from time to time. One way to
do this is by deleting the binary logs that are no longer needed, such as when we make a full backup:

$> mysqldump --single-transaction --flush-logs --master-data=2 \
 --all-databases --delete-master-logs > backup_sunday_1_PM.sql

1423

Using Backups for Recovery

Note

Deleting the MySQL binary logs with mysqldump --delete-master-logs can
be dangerous if your server is a replication source server, because replica servers
might not yet fully have processed the contents of the binary log. The description
for the PURGE BINARY LOGS statement explains what should be verified before
deleting the MySQL binary logs. See Section 13.4.1.1, “PURGE BINARY LOGS
Statement”.

7.3.2 Using Backups for Recovery

Now, suppose that we have a catastrophic unexpected exit on Wednesday at 8 a.m. that requires recovery
from backups. To recover, first we restore the last full backup we have (the one from Sunday 1 p.m.). The
full backup file is just a set of SQL statements, so restoring it is very easy:

$> mysql < backup_sunday_1_PM.sql

At this point, the data is restored to its state as of Sunday 1 p.m.. To restore the changes made since then,
we must use the incremental backups; that is, the gbichot2-bin.000007 and gbichot2-bin.000008
binary log files. Fetch the files if necessary from where they were backed up, and then process their
contents like this:

$> mysqlbinlog gbichot2-bin.000007 gbichot2-bin.000008 | mysql

We now have recovered the data to its state as of Tuesday 1 p.m., but still are missing the changes from
that date to the date of the crash. To not lose them, we would have needed to have the MySQL server
store its MySQL binary logs into a safe location (RAID disks, SAN, ...) different from the place where it
stores its data files, so that these logs were not on the destroyed disk. (That is, we can start the server with
a --log-bin option that specifies a location on a different physical device from the one on which the data
directory resides. That way, the logs are safe even if the device containing the directory is lost.) If we had
done this, we would have the gbichot2-bin.000009 file (and any subsequent files) at hand, and we
could apply them using mysqlbinlog and mysql to restore the most recent data changes with no loss up
to the moment of the crash:

$> mysqlbinlog gbichot2-bin.000009 ... | mysql

For more information about using mysqlbinlog to process binary log files, see Section 7.5, “Point-in-
Time (Incremental) Recovery”.

7.3.3 Backup Strategy Summary

In case of an operating system crash or power failure, InnoDB itself does all the job of recovering data. But
to make sure that you can sleep well, observe the following guidelines:

• Always run the MySQL server with the --log-bin option, or even --log-bin=log_name, where
the log file name is located on some safe media different from the drive on which the data directory is
located. If you have such safe media, this technique can also be good for disk load balancing (which
results in a performance improvement).

• Make periodic full backups, using the mysqldump command shown earlier in Section 7.3.1,
“Establishing a Backup Policy”, that makes an online, nonblocking backup.

• Make periodic incremental backups by flushing the logs with FLUSH LOGS or mysqladmin flush-
logs.

7.4 Using mysqldump for Backups

1424

Dumping Data in SQL Format with mysqldump

This section describes how to use mysqldump to produce dump files, and how to reload dump files. A
dump file can be used in several ways:

• As a backup to enable data recovery in case of data loss.

• As a source of data for setting up replicas.

• As a source of data for experimentation:

• To make a copy of a database that you can use without changing the original data.

• To test potential upgrade incompatibilities.

mysqldump produces two types of output, depending on whether the --tab option is given:

• Without --tab, mysqldump writes SQL statements to the standard output. This output consists of
CREATE statements to create dumped objects (databases, tables, stored routines, and so forth), and
INSERT statements to load data into tables. The output can be saved in a file and reloaded later
using mysql to recreate the dumped objects. Options are available to modify the format of the SQL
statements, and to control which objects are dumped.

• With --tab, mysqldump produces two output files for each dumped table. The server writes one file
as tab-delimited text, one line per table row. This file is named tbl_name.txt in the output directory.
The server also sends a CREATE TABLE statement for the table to mysqldump, which writes it as a file
named tbl_name.sql in the output directory.

7.4.1 Dumping Data in SQL Format with mysqldump

This section describes how to use mysqldump to create SQL-format dump files. For information about
reloading such dump files, see Section 7.4.2, “Reloading SQL-Format Backups”.

By default, mysqldump writes information as SQL statements to the standard output. You can save the
output in a file:

$> mysqldump [arguments] > file_name

To dump all databases, invoke mysqldump with the --all-databases option:

$> mysqldump --all-databases > dump.sql

To dump only specific databases, name them on the command line and use the --databases option:

$> mysqldump --databases db1 db2 db3 > dump.sql

The --databases option causes all names on the command line to be treated as database names.
Without this option, mysqldump treats the first name as a database name and those following as table
names.

With --all-databases or --databases, mysqldump writes CREATE DATABASE and USE statements
prior to the dump output for each database. This ensures that when the dump file is reloaded, it creates
each database if it does not exist and makes it the default database so database contents are loaded
into the same database from which they came. If you want to cause the dump file to force a drop of each
database before recreating it, use the --add-drop-database option as well. In this case, mysqldump
writes a DROP DATABASE statement preceding each CREATE DATABASE statement.

To dump a single database, name it on the command line:

1425

Reloading SQL-Format Backups

$> mysqldump --databases test > dump.sql

In the single-database case, it is permissible to omit the --databases option:

$> mysqldump test > dump.sql

The difference between the two preceding commands is that without --databases, the dump output
contains no CREATE DATABASE or USE statements. This has several implications:

• When you reload the dump file, you must specify a default database name so that the server knows
which database to reload.

• For reloading, you can specify a database name different from the original name, which enables you to
reload the data into a different database.

• If the database to be reloaded does not exist, you must create it first.

• Because the output contains no CREATE DATABASE statement, the --add-drop-database option
has no effect. If you use it, it produces no DROP DATABASE statement.

To dump only specific tables from a database, name them on the command line following the database
name:

$> mysqldump test t1 t3 t7 > dump.sql

7.4.2 Reloading SQL-Format Backups

To reload a dump file written by mysqldump that consists of SQL statements, use it as input to the mysql
client. If the dump file was created by mysqldump with the --all-databases or --databases option, it
contains CREATE DATABASE and USE statements and it is not necessary to specify a default database into
which to load the data:

$> mysql < dump.sql

Alternatively, from within mysql, use a source command:

mysql> source dump.sql

If the file is a single-database dump not containing CREATE DATABASE and USE statements, create the
database first (if necessary):

$> mysqladmin create db1

Then specify the database name when you load the dump file:

$> mysql db1 < dump.sql

Alternatively, from within mysql, create the database, select it as the default database, and load the dump
file:

mysql> CREATE DATABASE IF NOT EXISTS db1;
mysql> USE db1;
mysql> source dump.sql

Note

For Windows PowerShell users: Because the "<" character is reserved for future
use in PowerShell, an alternative approach is required, such as using quotes
cmd.exe /c "mysql < dump.sql".

1426

Dumping Data in Delimited-Text Format with mysqldump

7.4.3 Dumping Data in Delimited-Text Format with mysqldump

This section describes how to use mysqldump to create delimited-text dump files. For information about
reloading such dump files, see Section 7.4.4, “Reloading Delimited-Text Format Backups”.

If you invoke mysqldump with the --tab=dir_name option, it uses dir_name as the output directory and
dumps tables individually in that directory using two files for each table. The table name is the base name
for these files. For a table named t1, the files are named t1.sql and t1.txt. The .sql file contains a
CREATE TABLE statement for the table. The .txt file contains the table data, one line per table row.

The following command dumps the contents of the db1 database to files in the /tmp database:

$> mysqldump --tab=/tmp db1

The .txt files containing table data are written by the server, so they are owned by the system account
used for running the server. The server uses SELECT ... INTO OUTFILE to write the files, so you must
have the FILE privilege to perform this operation, and an error occurs if a given .txt file already exists.

The server sends the CREATE definitions for dumped tables to mysqldump, which writes them to .sql
files. These files therefore are owned by the user who executes mysqldump.

It is best that --tab be used only for dumping a local server. If you use it with a remote server, the --
tab directory must exist on both the local and remote hosts, and the .txt files are written by the server
in the remote directory (on the server host), whereas the .sql files are written by mysqldump in the local
directory (on the client host).

For mysqldump --tab, the server by default writes table data to .txt files one line per row with tabs
between column values, no quotation marks around column values, and newline as the line terminator.
(These are the same defaults as for SELECT ... INTO OUTFILE.)

To enable data files to be written using a different format, mysqldump supports these options:

• --fields-terminated-by=str

The string for separating column values (default: tab).

• --fields-enclosed-by=char

The character within which to enclose column values (default: no character).

• --fields-optionally-enclosed-by=char

The character within which to enclose non-numeric column values (default: no character).

• --fields-escaped-by=char

The character for escaping special characters (default: no escaping).

• --lines-terminated-by=str

The line-termination string (default: newline).

Depending on the value you specify for any of these options, it might be necessary on the command line
to quote or escape the value appropriately for your command interpreter. Alternatively, specify the value
using hex notation. Suppose that you want mysqldump to quote column values within double quotation
marks. To do so, specify double quote as the value for the --fields-enclosed-by option. But this

1427

Reloading Delimited-Text Format Backups

character is often special to command interpreters and must be treated specially. For example, on Unix,
you can quote the double quote like this:

--fields-enclosed-by='"'

On any platform, you can specify the value in hex:

--fields-enclosed-by=0x22

It is common to use several of the data-formatting options together. For example, to dump tables in
comma-separated values format with lines terminated by carriage-return/newline pairs (\r\n), use this
command (enter it on a single line):

$> mysqldump --tab=/tmp --fields-terminated-by=,
 --fields-enclosed-by='"' --lines-terminated-by=0x0d0a db1

Should you use any of the data-formatting options to dump table data, you must specify the same format
when you reload data files later, to ensure proper interpretation of the file contents.

7.4.4 Reloading Delimited-Text Format Backups

For backups produced with mysqldump --tab, each table is represented in the output directory by an
.sql file containing the CREATE TABLE statement for the table, and a .txt file containing the table data.
To reload a table, first change location into the output directory. Then process the .sql file with mysql to
create an empty table and process the .txt file to load the data into the table:

$> mysql db1 < t1.sql
$> mysqlimport db1 t1.txt

An alternative to using mysqlimport to load the data file is to use the LOAD DATA statement from within
the mysql client:

mysql> USE db1;
mysql> LOAD DATA INFILE 't1.txt' INTO TABLE t1;

If you used any data-formatting options with mysqldump when you initially dumped the table, you must
use the same options with mysqlimport or LOAD DATA to ensure proper interpretation of the data file
contents:

$> mysqlimport --fields-terminated-by=,
 --fields-enclosed-by='"' --lines-terminated-by=0x0d0a db1 t1.txt

Or:

mysql> USE db1;
mysql> LOAD DATA INFILE 't1.txt' INTO TABLE t1
 FIELDS TERMINATED BY ',' FIELDS ENCLOSED BY '"'
 LINES TERMINATED BY '\r\n';

7.4.5 mysqldump Tips

This section surveys techniques that enable you to use mysqldump to solve specific problems:

• How to make a copy a database

• How to copy a database from one server to another

• How to dump stored programs (stored procedures and functions, triggers, and events)

1428

mysqldump Tips

• How to dump definitions and data separately

7.4.5.1 Making a Copy of a Database

$> mysqldump db1 > dump.sql
$> mysqladmin create db2
$> mysql db2 < dump.sql

Do not use --databases on the mysqldump command line because that causes USE db1 to be included
in the dump file, which overrides the effect of naming db2 on the mysql command line.

7.4.5.2 Copy a Database from one Server to Another

On Server 1:

$> mysqldump --databases db1 > dump.sql

Copy the dump file from Server 1 to Server 2.

On Server 2:

$> mysql < dump.sql

Use of --databases with the mysqldump command line causes the dump file to include CREATE
DATABASE and USE statements that create the database if it does exist and make it the default database
for the reloaded data.

Alternatively, you can omit --databases from the mysqldump command. Then you need to create the
database on Server 2 (if necessary) and to specify it as the default database when you reload the dump
file.

On Server 1:

$> mysqldump db1 > dump.sql

On Server 2:

$> mysqladmin create db1
$> mysql db1 < dump.sql

You can specify a different database name in this case, so omitting --databases from the mysqldump
command enables you to dump data from one database and load it into another.

7.4.5.3 Dumping Stored Programs

Several options control how mysqldump handles stored programs (stored procedures and functions,
triggers, and events):

• --events: Dump Event Scheduler events

• --routines: Dump stored procedures and functions

• --triggers: Dump triggers for tables

The --triggers option is enabled by default so that when tables are dumped, they are accompanied by
any triggers they have. The other options are disabled by default and must be specified explicitly to dump
the corresponding objects. To disable any of these options explicitly, use its skip form: --skip-events,
--skip-routines, or --skip-triggers.

1429

Point-in-Time (Incremental) Recovery

7.4.5.4 Dumping Table Definitions and Content Separately

The --no-data option tells mysqldump not to dump table data, resulting in the dump file containing only
statements to create the tables. Conversely, the --no-create-info option tells mysqldump to suppress
CREATE statements from the output, so that the dump file contains only table data.

For example, to dump table definitions and data separately for the test database, use these commands:

$> mysqldump --no-data test > dump-defs.sql
$> mysqldump --no-create-info test > dump-data.sql

For a definition-only dump, add the --routines and --events options to also include stored routine and
event definitions:

$> mysqldump --no-data --routines --events test > dump-defs.sql

7.4.5.5 Using mysqldump to Test for Upgrade Incompatibilities

When contemplating a MySQL upgrade, it is prudent to install the newer version separately from your
current production version. Then you can dump the database and database object definitions from the
production server and load them into the new server to verify that they are handled properly. (This is also
useful for testing downgrades.)

On the production server:

$> mysqldump --all-databases --no-data --routines --events > dump-defs.sql

On the upgraded server:

$> mysql < dump-defs.sql

Because the dump file does not contain table data, it can be processed quickly. This enables you to spot
potential incompatibilities without waiting for lengthy data-loading operations. Look for warnings or errors
while the dump file is being processed.

After you have verified that the definitions are handled properly, dump the data and try to load it into the
upgraded server.

On the production server:

$> mysqldump --all-databases --no-create-info > dump-data.sql

On the upgraded server:

$> mysql < dump-data.sql

Now check the table contents and run some test queries.

7.5 Point-in-Time (Incremental) Recovery

Point-in-time recovery refers to recovery of data changes up to a given point in time. Typically, this type
of recovery is performed after restoring a full backup that brings the server to its state as of the time the
backup was made. (The full backup can be made in several ways, such as those listed in Section 7.2,
“Database Backup Methods”.) Point-in-time recovery then brings the server up to date incrementally from
the time of the full backup to a more recent time.

1430

Point-in-Time Recovery Using Binary Log

7.5.1 Point-in-Time Recovery Using Binary Log

This section explains the general idea of using the binary log to perform a point-in-time-recovery. The next
section, Section 7.5.2, “Point-in-Time Recovery Using Event Positions”, explains the operation in details
with an example.

Note

Many of the examples in this and the next section use the mysql client to process
binary log output produced by mysqlbinlog. If your binary log contains \0 (null)
characters, that output cannot be parsed by mysql unless you invoke it with the --
binary-mode option.

The source of information for point-in-time recovery is the set of binary log files generated subsequent to
the full backup operation. Therefore, to allow a server to be restored to a point-in-time, binary logging must
be enabled on it (see Section 5.4.4, “The Binary Log” for details).

To restore data from the binary log, you must know the name and location of the current binary log files. By
default, the server creates binary log files in the data directory, but a path name can be specified with the
--log-bin option to place the files in a different location. To see a listing of all binary log files, use this
statement:

mysql> SHOW BINARY LOGS;

To determine the name of the current binary log file, issue the following statement:

mysql> SHOW MASTER STATUS;

The mysqlbinlog utility converts the events in the binary log files from binary format to text so that they
can be viewed or applied. mysqlbinlog has options for selecting sections of the binary log based on
event times or position of events within the log. See Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”.

Applying events from the binary log causes the data modifications they represent to be reexecuted. This
enables recovery of data changes for a given span of time. To apply events from the binary log, process
mysqlbinlog output using the mysql client:

$> mysqlbinlog binlog_files | mysql -u root -p

Viewing log contents can be useful when you need to determine event times or positions to select partial
log contents prior to executing events. To view events from the log, send mysqlbinlog output into a
paging program:

$> mysqlbinlog binlog_files | more

Alternatively, save the output in a file and view the file in a text editor:

$> mysqlbinlog binlog_files > tmpfile
$> ... edit tmpfile ...

After editing the file, apply the contents as follows:

$> mysql -u root -p < tmpfile

If you have more than one binary log to apply on the MySQL server, use a single connection to apply the
contents of all binary log files that you want to process. Here is one way to do so:

$> mysqlbinlog binlog.000001 binlog.000002 | mysql -u root -p

1431

Point-in-Time Recovery Using Event Positions

Another approach is to write the whole log to a single file and then process the file:

$> mysqlbinlog binlog.000001 > /tmp/statements.sql
$> mysqlbinlog binlog.000002 >> /tmp/statements.sql
$> mysql -u root -p -e "source /tmp/statements.sql"

7.5.2 Point-in-Time Recovery Using Event Positions

The last section, Section 7.5.1, “Point-in-Time Recovery Using Binary Log”, explains the general idea of
using the binary log to perform a point-in-time-recovery. The section explains the operation in details with
an example.

As an example, suppose that around 13:00:00 on May 27, 2020, an SQL statement was executed that
deleted a table. You can perform a point-in-time recovery to restore the server up to its state right before
the table deletion. These are some sample steps to achieve that:

1. Restore the last full backup created before the point-in-time of interest (call it tp, which is 13:00:00
on May 27, 2020 in our example). When finished, note the binary log position up to which you have
restored the server for later use, and restart the server.

Note

While the last binary log position recovered is also displayed by InnoDB after
the restore and server restart, that is not a reliable means for obtaining the
ending log position of your restore, as there could be DDL events and non-
InnoDB changes that have taken place after the time reflected by the displayed
position. Your backup and restore tool should provide you with the last binary
log position for your recovery: for example, if you are using mysqlbinlog for
the task, check the stop position of the binary log replay; if you are using MySQL
Enterprise Backup, the last binary log position has been saved in your backup.
See Point-in-Time Recovery.

2. Find the precise binary log event position corresponding to the point in time up to which you want to
restore your database. In our example, given that we know the rough time where the table deletion
took place (tp), we can find the log position by checking the log contents around that time using the
mysqlbinlog utility. Use the --start-datetime and --stop-datetime options to specify a short
time period around tp, and then look for the event in the output. For example:

$> mysqlbinlog --start-datetime="2020-05-27 12:59:00" --stop-datetime="2020-05-27 13:06:00" \
 --verbose /var/lib/mysql/bin.123456 | grep -C 12 "DROP TABLE"
at 1868
#200527 13:00:30 server id 2 end_log_pos 1985 CRC32 0x8b894489 Query thread_id=8 exec_time=0 error_code=0
use `pets`/*!*/;
SET TIMESTAMP=1590598830/*!*/;
SET @@session.pseudo_thread_id=8/*!*/;
SET @@session.foreign_key_checks=1, @@session.sql_auto_is_null=0, @@session.unique_checks=1, @@session.autocommit=1/*!*/;
SET @@session.sql_mode=1436549152/*!80005 &~0x1003ff00*//*!*/;
SET @@session.auto_increment_increment=1, @@session.auto_increment_offset=1/*!*/;
/*!\C latin1 *//*!*/;
SET @@session.character_set_client=8,@@session.collation_connection=8,@@session.collation_server=8/*!*/;
SET @@session.lc_time_names=0/*!*/;
SET @@session.collation_database=DEFAULT/*!*/;
DROP TABLE `cats` /* generated by server */
/*!*/;
at 1985
#200527 13:05:06 server id 2 end_log_pos 2050 CRC32 0x2f8d0249 Anonymous_GTID last_committed=6 sequence_number=7 rbr_only=yes original_committed_timestamp=0 immediate_commit_timestamp=0 transaction_length=0
/*!50718 SET TRANSACTION ISOLATION LEVEL READ COMMITTED*//*!*/;
original_commit_timestamp=0 (1969-12-31 19:00:00.000000 EST)
immediate_commit_timestamp=0 (1969-12-31 19:00:00.000000 EST)
/*!80001 SET @@session.original_commit_timestamp=0*//*!*/;

1432

https://dev.mysql.com/doc/mysql-enterprise-backup/4.1/en/advanced.point.html

MyISAM Table Maintenance and Crash Recovery

/*!80014 SET @@session.original_server_version=0*//*!*/;
/*!80014 SET @@session.immediate_server_version=0*//*!*/;
SET @@SESSION.GTID_NEXT= 'ANONYMOUS'/*!*/;
at 2050
#200527 13:05:06 server id 2 end_log_pos 2122 CRC32 0x56280bb1 Query thread_id=8 exec_time=0 error_code=0

From the output of mysqlbinlog, the DROP TABLE `pets`.`cats` statement can be found
in the segment of the binary log between the line # at 1868 and # at 1985, which means the
statement takes place after the log position 1868, and the log is at position 1985 after the DROP TABLE
statement.

Note

Only use the --start-datetime and --stop-datetime options to help you
find the actual event positions of interest. Using the two options to specify the
range of binary log segment to apply is not recommended: there is a higher risk
of missing binary log events when using the options. Use --start-position
and --stop-position instead.

3. Apply the events in binary log file to the server, starting with the log position your found in step 1
(assume it is 1006) and ending at the position you have found in step 2 that is before your point-in-time
of interest (which is 1868):

$> mysqlbinlog --start-position=1006 --stop-position=1868 /var/lib/mysql/bin.123456 \
 | mysql -u root -p

The command recovers all the transactions from the starting position until just before the stop position.
Because the output of mysqlbinlog includes SET TIMESTAMP statements before each SQL
statement recorded, the recovered data and related MySQL logs reflect the original times at which the
transactions were executed.

Your database has now been restored to the point-in-time of interest, tp, right before the table
pets.cats was dropped.

4. Beyond the point-in-time recovery that has been finished, if you also want to reexecute all the
statements after your point-in-time of interest, use mysqlbinlog again to apply all the events after
tp to the server. We noted in step 2 that after the statement we wanted to skip, the log is at position
1985; we can use it for the --start-position option, so that any statements after the position are
included:

$> mysqlbinlog --start-position=1985 /var/lib/mysql/bin.123456 \
 | mysql -u root -p

Your database has been restored the latest statement recorded in the binary log file, but with the
selected event skipped.

7.6 MyISAM Table Maintenance and Crash Recovery

This section discusses how to use myisamchk to check or repair MyISAM tables (tables that have .MYD
and .MYI files for storing data and indexes). For general myisamchk background, see Section 4.6.3,
“myisamchk — MyISAM Table-Maintenance Utility”. Other table-repair information can be found at
Section 2.10.12, “Rebuilding or Repairing Tables or Indexes”.

You can use myisamchk to check, repair, or optimize database tables. The following sections describe
how to perform these operations and how to set up a table maintenance schedule. For information about
using myisamchk to get information about your tables, see Section 4.6.3.5, “Obtaining Table Information
with myisamchk”.

1433

Using myisamchk for Crash Recovery

Even though table repair with myisamchk is quite secure, it is always a good idea to make a backup
before doing a repair or any maintenance operation that could make a lot of changes to a table.

myisamchk operations that affect indexes can cause MyISAM FULLTEXT indexes to be rebuilt with full-text
parameters that are incompatible with the values used by the MySQL server. To avoid this problem, follow
the guidelines in Section 4.6.3.1, “myisamchk General Options”.

MyISAM table maintenance can also be done using the SQL statements that perform operations similar to
what myisamchk can do:

• To check MyISAM tables, use CHECK TABLE.

• To repair MyISAM tables, use REPAIR TABLE.

• To optimize MyISAM tables, use OPTIMIZE TABLE.

• To analyze MyISAM tables, use ANALYZE TABLE.

For additional information about these statements, see Section 13.7.2, “Table Maintenance Statements”.

These statements can be used directly or by means of the mysqlcheck client program. One advantage
of these statements over myisamchk is that the server does all the work. With myisamchk, you must
make sure that the server does not use the tables at the same time so that there is no unwanted interaction
between myisamchk and the server.

7.6.1 Using myisamchk for Crash Recovery

This section describes how to check for and deal with data corruption in MySQL databases. If your tables
become corrupted frequently, you should try to find the reason why. See Section B.3.3.3, “What to Do If
MySQL Keeps Crashing”.

For an explanation of how MyISAM tables can become corrupted, see Section 15.2.4, “MyISAM Table
Problems”.

If you run mysqld with external locking disabled (which is the default), you cannot reliably use myisamchk
to check a table when mysqld is using the same table. If you can be certain that no one can access
the tables through mysqld while you run myisamchk, you have only to execute mysqladmin flush-
tables before you start checking the tables. If you cannot guarantee this, you must stop mysqld while
you check the tables. If you run myisamchk to check tables that mysqld is updating at the same time, you
may get a warning that a table is corrupt even when it is not.

If the server is run with external locking enabled, you can use myisamchk to check tables at any time. In
this case, if the server tries to update a table that myisamchk is using, the server waits for myisamchk to
finish before it continues.

If you use myisamchk to repair or optimize tables, you must always ensure that the mysqld server is not
using the table (this also applies if external locking is disabled). If you do not stop mysqld, you should at
least do a mysqladmin flush-tables before you run myisamchk. Your tables may become corrupted
if the server and myisamchk access the tables simultaneously.

When performing crash recovery, it is important to understand that each MyISAM table tbl_name in a
database corresponds to the three files in the database directory shown in the following table.

File Purpose

tbl_name.frm Definition (format) file

tbl_name.MYD Data file

1434

How to Check MyISAM Tables for Errors

File Purpose

tbl_name.MYI Index file

Each of these three file types is subject to corruption in various ways, but problems occur most often in
data files and index files.

myisamchk works by creating a copy of the .MYD data file row by row. It ends the repair stage by
removing the old .MYD file and renaming the new file to the original file name. If you use --quick,
myisamchk does not create a temporary .MYD file, but instead assumes that the .MYD file is correct
and generates only a new index file without touching the .MYD file. This is safe, because myisamchk
automatically detects whether the .MYD file is corrupt and aborts the repair if it is. You can also specify the
--quick option twice to myisamchk. In this case, myisamchk does not abort on some errors (such as
duplicate-key errors) but instead tries to resolve them by modifying the .MYD file. Normally the use of two
--quick options is useful only if you have too little free disk space to perform a normal repair. In this case,
you should at least make a backup of the table before running myisamchk.

7.6.2 How to Check MyISAM Tables for Errors

To check a MyISAM table, use the following commands:

• myisamchk tbl_name

This finds 99.99% of all errors. What it cannot find is corruption that involves only the data file (which is
very unusual). If you want to check a table, you should normally run myisamchk without options or with
the -s (silent) option.

• myisamchk -m tbl_name

This finds 99.999% of all errors. It first checks all index entries for errors and then reads through all
rows. It calculates a checksum for all key values in the rows and verifies that the checksum matches the
checksum for the keys in the index tree.

• myisamchk -e tbl_name

This does a complete and thorough check of all data (-e means “extended check”). It does a check-read
of every key for each row to verify that they indeed point to the correct row. This may take a long time for
a large table that has many indexes. Normally, myisamchk stops after the first error it finds. If you want
to obtain more information, you can add the -v (verbose) option. This causes myisamchk to keep going,
up through a maximum of 20 errors.

• myisamchk -e -i tbl_name

This is like the previous command, but the -i option tells myisamchk to print additional statistical
information.

In most cases, a simple myisamchk command with no arguments other than the table name is sufficient to
check a table.

7.6.3 How to Repair MyISAM Tables

The discussion in this section describes how to use myisamchk on MyISAM tables (extensions .MYI and
.MYD).

You can also use the CHECK TABLE and REPAIR TABLE statements to check and repair MyISAM tables.
See Section 13.7.2.2, “CHECK TABLE Statement”, and Section 13.7.2.5, “REPAIR TABLE Statement”.

1435

How to Repair MyISAM Tables

Symptoms of corrupted tables include queries that abort unexpectedly and observable errors such as
these:

• tbl_name.frm is locked against change

• Can't find file tbl_name.MYI (Errcode: nnn)

• Unexpected end of file

• Record file is crashed

• Got error nnn from table handler

To get more information about the error, run perror nnn, where nnn is the error number. The following
example shows how to use perror to find the meanings for the most common error numbers that indicate
a problem with a table:

$> perror 126 127 132 134 135 136 141 144 145
MySQL error code 126 = Index file is crashed
MySQL error code 127 = Record-file is crashed
MySQL error code 132 = Old database file
MySQL error code 134 = Record was already deleted (or record file crashed)
MySQL error code 135 = No more room in record file
MySQL error code 136 = No more room in index file
MySQL error code 141 = Duplicate unique key or constraint on write or update
MySQL error code 144 = Table is crashed and last repair failed
MySQL error code 145 = Table was marked as crashed and should be repaired

Note that error 135 (no more room in record file) and error 136 (no more room in index file) are not errors
that can be fixed by a simple repair. In this case, you must use ALTER TABLE to increase the MAX_ROWS
and AVG_ROW_LENGTH table option values:

ALTER TABLE tbl_name MAX_ROWS=xxx AVG_ROW_LENGTH=yyy;

If you do not know the current table option values, use SHOW CREATE TABLE.

For the other errors, you must repair your tables. myisamchk can usually detect and fix most problems
that occur.

The repair process involves up to four stages, described here. Before you begin, you should change
location to the database directory and check the permissions of the table files. On Unix, make sure that
they are readable by the user that mysqld runs as (and to you, because you need to access the files you
are checking). If it turns out you need to modify files, they must also be writable by you.

This section is for the cases where a table check fails (such as those described in Section 7.6.2, “How to
Check MyISAM Tables for Errors”), or you want to use the extended features that myisamchk provides.

The myisamchk options used for table maintenance with are described in Section 4.6.3, “myisamchk —
MyISAM Table-Maintenance Utility”. myisamchk also has variables that you can set to control memory
allocation that may improve performance. See Section 4.6.3.6, “myisamchk Memory Usage”.

If you are going to repair a table from the command line, you must first stop the mysqld server. Note that
when you do mysqladmin shutdown on a remote server, the mysqld server is still available for a while
after mysqladmin returns, until all statement-processing has stopped and all index changes have been
flushed to disk.

Stage 1: Checking your tables

Run myisamchk *.MYI or myisamchk -e *.MYI if you have more time. Use the -s (silent) option to
suppress unnecessary information.

1436

How to Repair MyISAM Tables

If the mysqld server is stopped, you should use the --update-state option to tell myisamchk to mark
the table as “checked.”

You have to repair only those tables for which myisamchk announces an error. For such tables, proceed
to Stage 2.

If you get unexpected errors when checking (such as out of memory errors), or if myisamchk crashes,
go to Stage 3.

Stage 2: Easy safe repair

First, try myisamchk -r -q tbl_name (-r -q means “quick recovery mode”). This attempts to repair
the index file without touching the data file. If the data file contains everything that it should and the delete
links point at the correct locations within the data file, this should work, and the table is fixed. Start repairing
the next table. Otherwise, use the following procedure:

1. Make a backup of the data file before continuing.

2. Use myisamchk -r tbl_name (-r means “recovery mode”). This removes incorrect rows and
deleted rows from the data file and reconstructs the index file.

3. If the preceding step fails, use myisamchk --safe-recover tbl_name. Safe recovery mode uses
an old recovery method that handles a few cases that regular recovery mode does not (but is slower).

Note

If you want a repair operation to go much faster, you should set the values of the
sort_buffer_size and key_buffer_size variables each to about 25% of your
available memory when running myisamchk.

If you get unexpected errors when repairing (such as out of memory errors), or if myisamchk crashes,
go to Stage 3.

Stage 3: Difficult repair

You should reach this stage only if the first 16KB block in the index file is destroyed or contains incorrect
information, or if the index file is missing. In this case, it is necessary to create a new index file. Do so as
follows:

1. Move the data file to a safe place.

2. Use the table description file to create new (empty) data and index files:

$> mysql db_name

mysql> SET autocommit=1;
mysql> TRUNCATE TABLE tbl_name;
mysql> quit

3. Copy the old data file back onto the newly created data file. (Do not just move the old file back onto the
new file. You want to retain a copy in case something goes wrong.)

Important

If you are using replication, you should stop it prior to performing the above
procedure, since it involves file system operations, and these are not logged by
MySQL.

Go back to Stage 2. myisamchk -r -q should work. (This should not be an endless loop.)

1437

MyISAM Table Optimization

You can also use the REPAIR TABLE tbl_name USE_FRM SQL statement, which performs the whole
procedure automatically. There is also no possibility of unwanted interaction between a utility and the
server, because the server does all the work when you use REPAIR TABLE. See Section 13.7.2.5,
“REPAIR TABLE Statement”.

Stage 4: Very difficult repair

You should reach this stage only if the .frm description file has also crashed. That should never happen,
because the description file is not changed after the table is created:

1. Restore the description file from a backup and go back to Stage 3. You can also restore the index file
and go back to Stage 2. In the latter case, you should start with myisamchk -r.

2. If you do not have a backup but know exactly how the table was created, create a copy of the table in
another database. Remove the new data file, and then move the .frm description and .MYI index files
from the other database to your crashed database. This gives you new description and index files, but
leaves the .MYD data file alone. Go back to Stage 2 and attempt to reconstruct the index file.

7.6.4 MyISAM Table Optimization

To coalesce fragmented rows and eliminate wasted space that results from deleting or updating rows, run
myisamchk in recovery mode:

$> myisamchk -r tbl_name

You can optimize a table in the same way by using the OPTIMIZE TABLE SQL statement. OPTIMIZE
TABLE does a table repair and a key analysis, and also sorts the index tree so that key lookups are faster.
There is also no possibility of unwanted interaction between a utility and the server, because the server
does all the work when you use OPTIMIZE TABLE. See Section 13.7.2.4, “OPTIMIZE TABLE Statement”.

myisamchk has a number of other options that you can use to improve the performance of a table:

• --analyze or -a: Perform key distribution analysis. This improves join performance by enabling the join
optimizer to better choose the order in which to join the tables and which indexes it should use.

• --sort-index or -S: Sort the index blocks. This optimizes seeks and makes table scans that use
indexes faster.

• --sort-records=index_num or -R index_num: Sort data rows according to a given index.
This makes your data much more localized and may speed up range-based SELECT and ORDER BY
operations that use this index.

For a full description of all available options, see Section 4.6.3, “myisamchk — MyISAM Table-
Maintenance Utility”.

7.6.5 Setting Up a MyISAM Table Maintenance Schedule

It is a good idea to perform table checks on a regular basis rather than waiting for problems to occur. One
way to check and repair MyISAM tables is with the CHECK TABLE and REPAIR TABLE statements. See
Section 13.7.2, “Table Maintenance Statements”.

Another way to check tables is to use myisamchk. For maintenance purposes, you can use myisamchk
-s. The -s option (short for --silent) causes myisamchk to run in silent mode, printing messages only
when errors occur.

It is also a good idea to enable automatic MyISAM table checking. For example, whenever the machine
has done a restart in the middle of an update, you usually need to check each table that could have been

1438

Setting Up a MyISAM Table Maintenance Schedule

affected before it is used further. (These are “expected crashed tables.”) To cause the server to check
MyISAM tables automatically, start it with the myisam_recover_options system variable set. See
Section 5.1.7, “Server System Variables”.

You should also check your tables regularly during normal system operation. For example, you can run a
cron job to check important tables once a week, using a line like this in a crontab file:

35 0 * * 0 /path/to/myisamchk --fast --silent /path/to/datadir/*/*.MYI

This prints out information about crashed tables so that you can examine and repair them as necessary.

To start with, execute myisamchk -s each night on all tables that have been updated during the last 24
hours. As you see that problems occur infrequently, you can back off the checking frequency to once a
week or so.

Normally, MySQL tables need little maintenance. If you are performing many updates to MyISAM tables
with dynamic-sized rows (tables with VARCHAR, BLOB, or TEXT columns) or have tables with many deleted
rows you may want to defragment/reclaim space from the tables from time to time. You can do this by
using OPTIMIZE TABLE on the tables in question. Alternatively, if you can stop the mysqld server for a
while, change location into the data directory and use this command while the server is stopped:

$> myisamchk -r -s --sort-index --myisam_sort_buffer_size=16M */*.MYI

1439

1440

Chapter 8 Optimization

Table of Contents
8.1 Optimization Overview ... 1443
8.2 Optimizing SQL Statements .. 1444

8.2.1 Optimizing SELECT Statements ... 1444
8.2.2 Optimizing Subqueries, Derived Tables, and View References .. 1489
8.2.3 Optimizing INFORMATION_SCHEMA Queries .. 1500
8.2.4 Optimizing Data Change Statements ... 1505
8.2.5 Optimizing Database Privileges ... 1506
8.2.6 Other Optimization Tips .. 1507

8.3 Optimization and Indexes .. 1507
8.3.1 How MySQL Uses Indexes ... 1507
8.3.2 Primary Key Optimization ... 1509
8.3.3 Foreign Key Optimization ... 1509
8.3.4 Column Indexes ... 1509
8.3.5 Multiple-Column Indexes .. 1511
8.3.6 Verifying Index Usage .. 1512
8.3.7 InnoDB and MyISAM Index Statistics Collection ... 1512
8.3.8 Comparison of B-Tree and Hash Indexes .. 1514
8.3.9 Use of Index Extensions ... 1515
8.3.10 Optimizer Use of Generated Column Indexes .. 1517
8.3.11 Indexed Lookups from TIMESTAMP Columns ... 1519

8.4 Optimizing Database Structure .. 1521
8.4.1 Optimizing Data Size .. 1521
8.4.2 Optimizing MySQL Data Types ... 1523
8.4.3 Optimizing for Many Tables .. 1525
8.4.4 Internal Temporary Table Use in MySQL ... 1526
8.4.5 Limits on Number of Databases and Tables .. 1528
8.4.6 Limits on Table Size .. 1528
8.4.7 Limits on Table Column Count and Row Size .. 1530

8.5 Optimizing for InnoDB Tables .. 1532
8.5.1 Optimizing Storage Layout for InnoDB Tables ... 1532
8.5.2 Optimizing InnoDB Transaction Management .. 1533
8.5.3 Optimizing InnoDB Read-Only Transactions .. 1534
8.5.4 Optimizing InnoDB Redo Logging ... 1535
8.5.5 Bulk Data Loading for InnoDB Tables ... 1536
8.5.6 Optimizing InnoDB Queries .. 1537
8.5.7 Optimizing InnoDB DDL Operations .. 1537
8.5.8 Optimizing InnoDB Disk I/O .. 1538
8.5.9 Optimizing InnoDB Configuration Variables .. 1541
8.5.10 Optimizing InnoDB for Systems with Many Tables ... 1543

8.6 Optimizing for MyISAM Tables .. 1543
8.6.1 Optimizing MyISAM Queries ... 1543
8.6.2 Bulk Data Loading for MyISAM Tables .. 1544
8.6.3 Optimizing REPAIR TABLE Statements .. 1545

8.7 Optimizing for MEMORY Tables .. 1547
8.8 Understanding the Query Execution Plan ... 1547

8.8.1 Optimizing Queries with EXPLAIN .. 1547
8.8.2 EXPLAIN Output Format .. 1548
8.8.3 Extended EXPLAIN Output Format ... 1562

1441

8.8.4 Obtaining Execution Plan Information for a Named Connection 1564
8.8.5 Estimating Query Performance ... 1565

8.9 Controlling the Query Optimizer ... 1566
8.9.1 Controlling Query Plan Evaluation ... 1566
8.9.2 Switchable Optimizations .. 1566
8.9.3 Optimizer Hints .. 1571
8.9.4 Index Hints .. 1577
8.9.5 The Optimizer Cost Model .. 1580

8.10 Buffering and Caching ... 1583
8.10.1 InnoDB Buffer Pool Optimization ... 1583
8.10.2 The MyISAM Key Cache .. 1584
8.10.3 The MySQL Query Cache .. 1588
8.10.4 Caching of Prepared Statements and Stored Programs .. 1595

8.11 Optimizing Locking Operations .. 1597
8.11.1 Internal Locking Methods .. 1597
8.11.2 Table Locking Issues .. 1599
8.11.3 Concurrent Inserts .. 1601
8.11.4 Metadata Locking ... 1601
8.11.5 External Locking ... 1604

8.12 Optimizing the MySQL Server ... 1606
8.12.1 System Factors .. 1606
8.12.2 Optimizing Disk I/O .. 1606
8.12.3 Using Symbolic Links ... 1608
8.12.4 Optimizing Memory Use ... 1611

8.13 Measuring Performance (Benchmarking) .. 1617
8.13.1 Measuring the Speed of Expressions and Functions .. 1618
8.13.2 Using Your Own Benchmarks ... 1618
8.13.3 Measuring Performance with performance_schema .. 1619

8.14 Examining Server Thread (Process) Information ... 1619
8.14.1 Accessing the Process List ... 1619
8.14.2 Thread Command Values ... 1621
8.14.3 General Thread States ... 1623
8.14.4 Query Cache Thread States ... 1629
8.14.5 Replication Source Thread States ... 1630
8.14.6 Replication Replica I/O Thread States ... 1630
8.14.7 Replication Replica SQL Thread States ... 1632
8.14.8 Replication Replica Connection Thread States ... 1632
8.14.9 NDB Cluster Thread States .. 1633
8.14.10 Event Scheduler Thread States ... 1634

8.15 Tracing the Optimizer .. 1634
8.15.1 Typical Usage .. 1634
8.15.2 System Variables Controlling Tracing .. 1634
8.15.3 Traceable Statements ... 1635
8.15.4 Tuning Trace Purging ... 1636
8.15.5 Tracing Memory Usage .. 1637
8.15.6 Privilege Checking .. 1637
8.15.7 Interaction with the --debug Option ... 1637
8.15.8 The optimizer_trace System Variable .. 1637
8.15.9 The end_markers_in_json System Variable ... 1637
8.15.10 Selecting Optimizer Features to Trace ... 1637
8.15.11 Trace General Structure ... 1638
8.15.12 Example ... 1638
8.15.13 Displaying Traces in Other Applications ... 1649
8.15.14 Preventing the Use of Optimizer Trace .. 1649

1442

Optimization Overview

8.15.15 Testing Optimizer Trace .. 1649
8.15.16 Optimizer Trace Implementation .. 1650

This chapter explains how to optimize MySQL performance and provides examples. Optimization involves
configuring, tuning, and measuring performance, at several levels. Depending on your job role (developer,
DBA, or a combination of both), you might optimize at the level of individual SQL statements, entire
applications, a single database server, or multiple networked database servers. Sometimes you can be
proactive and plan in advance for performance, while other times you might troubleshoot a configuration
or code issue after a problem occurs. Optimizing CPU and memory usage can also improve scalability,
allowing the database to handle more load without slowing down.

8.1 Optimization Overview

Database performance depends on several factors at the database level, such as tables, queries, and
configuration settings. These software constructs result in CPU and I/O operations at the hardware level,
which you must minimize and make as efficient as possible. As you work on database performance, you
start by learning the high-level rules and guidelines for the software side, and measuring performance
using wall-clock time. As you become an expert, you learn more about what happens internally, and start
measuring things such as CPU cycles and I/O operations.

Typical users aim to get the best database performance out of their existing software and hardware
configurations. Advanced users look for opportunities to improve the MySQL software itself, or develop
their own storage engines and hardware appliances to expand the MySQL ecosystem.

• Optimizing at the Database Level

• Optimizing at the Hardware Level

• Balancing Portability and Performance

Optimizing at the Database Level

The most important factor in making a database application fast is its basic design:

• Are the tables structured properly? In particular, do the columns have the right data types, and does
each table have the appropriate columns for the type of work? For example, applications that perform
frequent updates often have many tables with few columns, while applications that analyze large
amounts of data often have few tables with many columns.

• Are the right indexes in place to make queries efficient?

• Are you using the appropriate storage engine for each table, and taking advantage of the strengths and
features of each storage engine you use? In particular, the choice of a transactional storage engine
such as InnoDB or a nontransactional one such as MyISAM can be very important for performance and
scalability.

Note

InnoDB is the default storage engine for new tables. In practice, the advanced
InnoDB performance features mean that InnoDB tables often outperform the
simpler MyISAM tables, especially for a busy database.

• Does each table use an appropriate row format? This choice also depends on the storage engine used
for the table. In particular, compressed tables use less disk space and so require less disk I/O to read

1443

Optimizing at the Hardware Level

and write the data. Compression is available for all kinds of workloads with InnoDB tables, and for read-
only MyISAM tables.

• Does the application use an appropriate locking strategy? For example, by allowing shared access
when possible so that database operations can run concurrently, and requesting exclusive access when
appropriate so that critical operations get top priority. Again, the choice of storage engine is significant.
The InnoDB storage engine handles most locking issues without involvement from you, allowing for
better concurrency in the database and reducing the amount of experimentation and tuning for your
code.

• Are all memory areas used for caching sized correctly? That is, large enough to hold frequently
accessed data, but not so large that they overload physical memory and cause paging. The main
memory areas to configure are the InnoDB buffer pool, the MyISAM key cache, and the MySQL query
cache.

Optimizing at the Hardware Level

Any database application eventually hits hardware limits as the database becomes more and more busy.
A DBA must evaluate whether it is possible to tune the application or reconfigure the server to avoid these
bottlenecks, or whether more hardware resources are required. System bottlenecks typically arise from
these sources:

• Disk seeks. It takes time for the disk to find a piece of data. With modern disks, the mean time for this
is usually lower than 10ms, so we can in theory do about 100 seeks a second. This time improves
slowly with new disks and is very hard to optimize for a single table. The way to optimize seek time is to
distribute the data onto more than one disk.

• Disk reading and writing. When the disk is at the correct position, we need to read or write the data. With
modern disks, one disk delivers at least 10–20MB/s throughput. This is easier to optimize than seeks
because you can read in parallel from multiple disks.

• CPU cycles. When the data is in main memory, we must process it to get our result. Having large tables
compared to the amount of memory is the most common limiting factor. But with small tables, speed is
usually not the problem.

• Memory bandwidth. When the CPU needs more data than can fit in the CPU cache, main memory
bandwidth becomes a bottleneck. This is an uncommon bottleneck for most systems, but one to be
aware of.

Balancing Portability and Performance

To use performance-oriented SQL extensions in a portable MySQL program, you can wrap MySQL-
specific keywords in a statement within /*! */ comment delimiters. Other SQL servers ignore the
commented keywords. For information about writing comments, see Section 9.6, “Comments”.

8.2 Optimizing SQL Statements

The core logic of a database application is performed through SQL statements, whether issued directly
through an interpreter or submitted behind the scenes through an API. The tuning guidelines in this section
help to speed up all kinds of MySQL applications. The guidelines cover SQL operations that read and
write data, the behind-the-scenes overhead for SQL operations in general, and operations used in specific
scenarios such as database monitoring.

8.2.1 Optimizing SELECT Statements

1444

Optimizing SELECT Statements

Queries, in the form of SELECT statements, perform all the lookup operations in the database. Tuning
these statements is a top priority, whether to achieve sub-second response times for dynamic web pages,
or to chop hours off the time to generate huge overnight reports.

Besides SELECT statements, the tuning techniques for queries also apply to constructs such as CREATE
TABLE...AS SELECT, INSERT INTO...SELECT, and WHERE clauses in DELETE statements. Those
statements have additional performance considerations because they combine write operations with the
read-oriented query operations.

NDB Cluster supports a join pushdown optimization whereby a qualifying join is sent in its entirety to NDB
Cluster data nodes, where it can be distributed among them and executed in parallel. For more information
about this optimization, see Conditions for NDB pushdown joins.

The main considerations for optimizing queries are:

• To make a slow SELECT ... WHERE query faster, the first thing to check is whether you can add an
index. Set up indexes on columns used in the WHERE clause, to speed up evaluation, filtering, and the
final retrieval of results. To avoid wasted disk space, construct a small set of indexes that speed up
many related queries used in your application.

Indexes are especially important for queries that reference different tables, using features such as
joins and foreign keys. You can use the EXPLAIN statement to determine which indexes are used for a
SELECT. See Section 8.3.1, “How MySQL Uses Indexes” and Section 8.8.1, “Optimizing Queries with
EXPLAIN”.

• Isolate and tune any part of the query, such as a function call, that takes excessive time. Depending on
how the query is structured, a function could be called once for every row in the result set, or even once
for every row in the table, greatly magnifying any inefficiency.

• Minimize the number of full table scans in your queries, particularly for big tables.

• Keep table statistics up to date by using the ANALYZE TABLE statement periodically, so the optimizer
has the information needed to construct an efficient execution plan.

• Learn the tuning techniques, indexing techniques, and configuration parameters that are specific to
the storage engine for each table. Both InnoDB and MyISAM have sets of guidelines for enabling and
sustaining high performance in queries. For details, see Section 8.5.6, “Optimizing InnoDB Queries” and
Section 8.6.1, “Optimizing MyISAM Queries”.

• You can optimize single-query transactions for InnoDB tables, using the technique in Section 8.5.3,
“Optimizing InnoDB Read-Only Transactions”.

• Avoid transforming the query in ways that make it hard to understand, especially if the optimizer does
some of the same transformations automatically.

• If a performance issue is not easily solved by one of the basic guidelines, investigate the internal details
of the specific query by reading the EXPLAIN plan and adjusting your indexes, WHERE clauses, join
clauses, and so on. (When you reach a certain level of expertise, reading the EXPLAIN plan might be
your first step for every query.)

• Adjust the size and properties of the memory areas that MySQL uses for caching. With efficient use of
the InnoDB buffer pool, MyISAM key cache, and the MySQL query cache, repeated queries run faster
because the results are retrieved from memory the second and subsequent times.

• Even for a query that runs fast using the cache memory areas, you might still optimize further so that
they require less cache memory, making your application more scalable. Scalability means that your

1445

Optimizing SELECT Statements

application can handle more simultaneous users, larger requests, and so on without experiencing a big
drop in performance.

• Deal with locking issues, where the speed of your query might be affected by other sessions accessing
the tables at the same time.

8.2.1.1 WHERE Clause Optimization

This section discusses optimizations that can be made for processing WHERE clauses. The examples
use SELECT statements, but the same optimizations apply for WHERE clauses in DELETE and UPDATE
statements.

Note

Because work on the MySQL optimizer is ongoing, not all of the optimizations that
MySQL performs are documented here.

You might be tempted to rewrite your queries to make arithmetic operations faster, while sacrificing
readability. Because MySQL does similar optimizations automatically, you can often avoid this work, and
leave the query in a more understandable and maintainable form. Some of the optimizations performed by
MySQL follow:

• Removal of unnecessary parentheses:

 ((a AND b) AND c OR (((a AND b) AND (c AND d))))
-> (a AND b AND c) OR (a AND b AND c AND d)

• Constant folding:

 (a<b AND b=c) AND a=5
-> b>5 AND b=c AND a=5

• Constant condition removal:

 (b>=5 AND b=5) OR (b=6 AND 5=5) OR (b=7 AND 5=6)
-> b=5 OR b=6

• Constant expressions used by indexes are evaluated only once.

• COUNT(*) on a single table without a WHERE is retrieved directly from the table information for MyISAM
and MEMORY tables. This is also done for any NOT NULL expression when used with only one table.

• Early detection of invalid constant expressions. MySQL quickly detects that some SELECT statements
are impossible and returns no rows.

• HAVING is merged with WHERE if you do not use GROUP BY or aggregate functions (COUNT(), MIN(),
and so on).

• For each table in a join, a simpler WHERE is constructed to get a fast WHERE evaluation for the table and
also to skip rows as soon as possible.

• All constant tables are read first before any other tables in the query. A constant table is any of the
following:

• An empty table or a table with one row.

• A table that is used with a WHERE clause on a PRIMARY KEY or a UNIQUE index, where all index parts
are compared to constant expressions and are defined as NOT NULL.

All of the following tables are used as constant tables:

1446

Optimizing SELECT Statements

SELECT * FROM t WHERE primary_key=1;
SELECT * FROM t1,t2
 WHERE t1.primary_key=1 AND t2.primary_key=t1.id;

• The best join combination for joining the tables is found by trying all possibilities. If all columns in ORDER
BY and GROUP BY clauses come from the same table, that table is preferred first when joining.

• If there is an ORDER BY clause and a different GROUP BY clause, or if the ORDER BY or GROUP BY
contains columns from tables other than the first table in the join queue, a temporary table is created.

• If you use the SQL_SMALL_RESULT modifier, MySQL uses an in-memory temporary table.

• Each table index is queried, and the best index is used unless the optimizer believes that it is more
efficient to use a table scan. At one time, a scan was used based on whether the best index spanned
more than 30% of the table, but a fixed percentage no longer determines the choice between using an
index or a scan. The optimizer now is more complex and bases its estimate on additional factors such as
table size, number of rows, and I/O block size.

• In some cases, MySQL can read rows from the index without even consulting the data file. If all columns
used from the index are numeric, only the index tree is used to resolve the query.

• Before each row is output, those that do not match the HAVING clause are skipped.

Some examples of queries that are very fast:

SELECT COUNT(*) FROM tbl_name;

SELECT MIN(key_part1),MAX(key_part1) FROM tbl_name;

SELECT MAX(key_part2) FROM tbl_name
 WHERE key_part1=constant;

SELECT ... FROM tbl_name
 ORDER BY key_part1,key_part2,... LIMIT 10;

SELECT ... FROM tbl_name
 ORDER BY key_part1 DESC, key_part2 DESC, ... LIMIT 10;

MySQL resolves the following queries using only the index tree, assuming that the indexed columns are
numeric:

SELECT key_part1,key_part2 FROM tbl_name WHERE key_part1=val;

SELECT COUNT(*) FROM tbl_name
 WHERE key_part1=val1 AND key_part2=val2;

SELECT MAX(key_part2) FROM tbl_name GROUP BY key_part1;

The following queries use indexing to retrieve the rows in sorted order without a separate sorting pass:

SELECT ... FROM tbl_name
 ORDER BY key_part1,key_part2,... ;

SELECT ... FROM tbl_name
 ORDER BY key_part1 DESC, key_part2 DESC, ... ;

8.2.1.2 Range Optimization

The range access method uses a single index to retrieve a subset of table rows that are contained within
one or several index value intervals. It can be used for a single-part or multiple-part index. The following
sections describe conditions under which the optimizer uses range access.

1447

Optimizing SELECT Statements

• Range Access Method for Single-Part Indexes

• Range Access Method for Multiple-Part Indexes

• Equality Range Optimization of Many-Valued Comparisons

• Range Optimization of Row Constructor Expressions

• Limiting Memory Use for Range Optimization

Range Access Method for Single-Part Indexes

For a single-part index, index value intervals can be conveniently represented by corresponding conditions
in the WHERE clause, denoted as range conditions rather than “intervals.”

The definition of a range condition for a single-part index is as follows:

• For both BTREE and HASH indexes, comparison of a key part with a constant value is a range condition
when using the =, <=>, IN(), IS NULL, or IS NOT NULL operators.

• Additionally, for BTREE indexes, comparison of a key part with a constant value is a range condition
when using the >, <, >=, <=, BETWEEN, !=, or <> operators, or LIKE comparisons if the argument to
LIKE is a constant string that does not start with a wildcard character.

• For all index types, multiple range conditions combined with OR or AND form a range condition.

“Constant value” in the preceding descriptions means one of the following:

• A constant from the query string

• A column of a const or system table from the same join

• The result of an uncorrelated subquery

• Any expression composed entirely from subexpressions of the preceding types

Here are some examples of queries with range conditions in the WHERE clause:

SELECT * FROM t1
 WHERE key_col > 1
 AND key_col < 10;

SELECT * FROM t1
 WHERE key_col = 1
 OR key_col IN (15,18,20);

SELECT * FROM t1
 WHERE key_col LIKE 'ab%'
 OR key_col BETWEEN 'bar' AND 'foo';

Some nonconstant values may be converted to constants during the optimizer constant propagation phase.

MySQL tries to extract range conditions from the WHERE clause for each of the possible indexes. During
the extraction process, conditions that cannot be used for constructing the range condition are dropped,
conditions that produce overlapping ranges are combined, and conditions that produce empty ranges are
removed.

Consider the following statement, where key1 is an indexed column and nonkey is not indexed:

SELECT * FROM t1 WHERE
 (key1 < 'abc' AND (key1 LIKE 'abcde%' OR key1 LIKE '%b')) OR

1448

Optimizing SELECT Statements

 (key1 < 'bar' AND nonkey = 4) OR
 (key1 < 'uux' AND key1 > 'z');

The extraction process for key key1 is as follows:

1. Start with original WHERE clause:

(key1 < 'abc' AND (key1 LIKE 'abcde%' OR key1 LIKE '%b')) OR
(key1 < 'bar' AND nonkey = 4) OR
(key1 < 'uux' AND key1 > 'z')

2. Remove nonkey = 4 and key1 LIKE '%b' because they cannot be used for a range scan. The
correct way to remove them is to replace them with TRUE, so that we do not miss any matching rows
when doing the range scan. Replacing them with TRUE yields:

(key1 < 'abc' AND (key1 LIKE 'abcde%' OR TRUE)) OR
(key1 < 'bar' AND TRUE) OR
(key1 < 'uux' AND key1 > 'z')

3. Collapse conditions that are always true or false:

• (key1 LIKE 'abcde%' OR TRUE) is always true

• (key1 < 'uux' AND key1 > 'z') is always false

Replacing these conditions with constants yields:

(key1 < 'abc' AND TRUE) OR (key1 < 'bar' AND TRUE) OR (FALSE)

Removing unnecessary TRUE and FALSE constants yields:

(key1 < 'abc') OR (key1 < 'bar')

4. Combining overlapping intervals into one yields the final condition to be used for the range scan:

(key1 < 'bar')

In general (and as demonstrated by the preceding example), the condition used for a range scan is less
restrictive than the WHERE clause. MySQL performs an additional check to filter out rows that satisfy the
range condition but not the full WHERE clause.

The range condition extraction algorithm can handle nested AND/OR constructs of arbitrary depth, and its
output does not depend on the order in which conditions appear in WHERE clause.

MySQL does not support merging multiple ranges for the range access method for spatial indexes. To
work around this limitation, you can use a UNION with identical SELECT statements, except that you put
each spatial predicate in a different SELECT.

Range Access Method for Multiple-Part Indexes

Range conditions on a multiple-part index are an extension of range conditions for a single-part index. A
range condition on a multiple-part index restricts index rows to lie within one or several key tuple intervals.
Key tuple intervals are defined over a set of key tuples, using ordering from the index.

For example, consider a multiple-part index defined as key1(key_part1, key_part2, key_part3),
and the following set of key tuples listed in key order:

key_part1 key_part2 key_part3
 NULL 1 'abc'
 NULL 1 'xyz'
 NULL 2 'foo'

1449

Optimizing SELECT Statements

 1 1 'abc'
 1 1 'xyz'
 1 2 'abc'
 2 1 'aaa'

The condition key_part1 = 1 defines this interval:

(1,-inf,-inf) <= (key_part1,key_part2,key_part3) < (1,+inf,+inf)

The interval covers the 4th, 5th, and 6th tuples in the preceding data set and can be used by the range
access method.

By contrast, the condition key_part3 = 'abc' does not define a single interval and cannot be used by
the range access method.

The following descriptions indicate how range conditions work for multiple-part indexes in greater detail.

• For HASH indexes, each interval containing identical values can be used. This means that the interval
can be produced only for conditions in the following form:

 key_part1 cmp const1
AND key_part2 cmp const2
AND ...
AND key_partN cmp constN;

Here, const1, const2, … are constants, cmp is one of the =, <=>, or IS NULL comparison operators,
and the conditions cover all index parts. (That is, there are N conditions, one for each part of an N-part
index.) For example, the following is a range condition for a three-part HASH index:

key_part1 = 1 AND key_part2 IS NULL AND key_part3 = 'foo'

For the definition of what is considered to be a constant, see Range Access Method for Single-Part
Indexes.

• For a BTREE index, an interval might be usable for conditions combined with AND, where each condition
compares a key part with a constant value using =, <=>, IS NULL, >, <, >=, <=, !=, <>, BETWEEN,
or LIKE 'pattern' (where 'pattern' does not start with a wildcard). An interval can be used as
long as it is possible to determine a single key tuple containing all rows that match the condition (or two
intervals if <> or != is used).

The optimizer attempts to use additional key parts to determine the interval as long as the comparison
operator is =, <=>, or IS NULL. If the operator is >, <, >=, <=, !=, <>, BETWEEN, or LIKE, the optimizer
uses it but considers no more key parts. For the following expression, the optimizer uses = from the first
comparison. It also uses >= from the second comparison but considers no further key parts and does not
use the third comparison for interval construction:

key_part1 = 'foo' AND key_part2 >= 10 AND key_part3 > 10

The single interval is:

('foo',10,-inf) < (key_part1,key_part2,key_part3) < ('foo',+inf,+inf)

It is possible that the created interval contains more rows than the initial condition. For example, the
preceding interval includes the value ('foo', 11, 0), which does not satisfy the original condition.

• If conditions that cover sets of rows contained within intervals are combined with OR, they form a
condition that covers a set of rows contained within the union of their intervals. If the conditions are
combined with AND, they form a condition that covers a set of rows contained within the intersection of
their intervals. For example, for this condition on a two-part index:

1450

Optimizing SELECT Statements

(key_part1 = 1 AND key_part2 < 2) OR (key_part1 > 5)

The intervals are:

(1,-inf) < (key_part1,key_part2) < (1,2)
(5,-inf) < (key_part1,key_part2)

In this example, the interval on the first line uses one key part for the left bound and two key parts for
the right bound. The interval on the second line uses only one key part. The key_len column in the
EXPLAIN output indicates the maximum length of the key prefix used.

In some cases, key_len may indicate that a key part was used, but that might be not what you would
expect. Suppose that key_part1 and key_part2 can be NULL. Then the key_len column displays
two key part lengths for the following condition:

key_part1 >= 1 AND key_part2 < 2

But, in fact, the condition is converted to this:

key_part1 >= 1 AND key_part2 IS NOT NULL

For a description of how optimizations are performed to combine or eliminate intervals for range conditions
on a single-part index, see Range Access Method for Single-Part Indexes. Analogous steps are performed
for range conditions on multiple-part indexes.

Equality Range Optimization of Many-Valued Comparisons

Consider these expressions, where col_name is an indexed column:

col_name IN(val1, ..., valN)
col_name = val1 OR ... OR col_name = valN

Each expression is true if col_name is equal to any of several values. These comparisons are equality
range comparisons (where the “range” is a single value). The optimizer estimates the cost of reading
qualifying rows for equality range comparisons as follows:

• If there is a unique index on col_name, the row estimate for each range is 1 because at most one row
can have the given value.

• Otherwise, any index on col_name is nonunique and the optimizer can estimate the row count for each
range using dives into the index or index statistics.

With index dives, the optimizer makes a dive at each end of a range and uses the number of rows in the
range as the estimate. For example, the expression col_name IN (10, 20, 30) has three equality
ranges and the optimizer makes two dives per range to generate a row estimate. Each pair of dives yields
an estimate of the number of rows that have the given value.

Index dives provide accurate row estimates, but as the number of comparison values in the expression
increases, the optimizer takes longer to generate a row estimate. Use of index statistics is less accurate
than index dives but permits faster row estimation for large value lists.

The eq_range_index_dive_limit system variable enables you to configure the number of values at
which the optimizer switches from one row estimation strategy to the other. To permit use of index dives for
comparisons of up to N equality ranges, set eq_range_index_dive_limit to N + 1. To disable use of
statistics and always use index dives regardless of N, set eq_range_index_dive_limit to 0.

To update table index statistics for best estimates, use ANALYZE TABLE.

1451

Optimizing SELECT Statements

Even under conditions when index dives would otherwise be used, they are skipped for queries that satisfy
all these conditions:

• A single-index FORCE INDEX index hint is present. The idea is that if index use is forced, there is
nothing to be gained from the additional overhead of performing dives into the index.

• The index is nonunique and not a FULLTEXT index.

• No subquery is present.

• No DISTINCT, GROUP BY, or ORDER BY clause is present.

Those dive-skipping conditions apply only for single-table queries. Index dives are not skipped for multiple-
table queries (joins).

Range Optimization of Row Constructor Expressions

The optimizer is able to apply the range scan access method to queries of this form:

SELECT ... FROM t1 WHERE (col_1, col_2) IN (('a', 'b'), ('c', 'd'));

Previously, for range scans to be used, it was necessary to write the query as:

SELECT ... FROM t1 WHERE (col_1 = 'a' AND col_2 = 'b')
OR (col_1 = 'c' AND col_2 = 'd');

For the optimizer to use a range scan, queries must satisfy these conditions:

• Only IN() predicates are used, not NOT IN().

• On the left side of the IN() predicate, the row constructor contains only column references.

• On the right side of the IN() predicate, row constructors contain only runtime constants, which are
either literals or local column references that are bound to constants during execution.

• On the right side of the IN() predicate, there is more than one row constructor.

For more information about the optimizer and row constructors, see Section 8.2.1.19, “Row Constructor
Expression Optimization”

Limiting Memory Use for Range Optimization

To control the memory available to the range optimizer, use the range_optimizer_max_mem_size
system variable:

• A value of 0 means “no limit.”

• With a value greater than 0, the optimizer tracks the memory consumed when considering the range
access method. If the specified limit is about to be exceeded, the range access method is abandoned
and other methods, including a full table scan, are considered instead. This could be less optimal. If this
happens, the following warning occurs (where N is the current range_optimizer_max_mem_size
value):

Warning 3170 Memory capacity of N bytes for
 'range_optimizer_max_mem_size' exceeded. Range
 optimization was not done for this query.

• For UPDATE and DELETE statements, if the optimizer falls back to a full table scan and the
sql_safe_updates system variable is enabled, an error occurs rather than a warning because, in

1452

Optimizing SELECT Statements

effect, no key is used to determine which rows to modify. For more information, see Using Safe-Updates
Mode (--safe-updates).

For individual queries that exceed the available range optimization memory and for which the optimizer
falls back to less optimal plans, increasing the range_optimizer_max_mem_size value may improve
performance.

To estimate the amount of memory needed to process a range expression, use these guidelines:

• For a simple query such as the following, where there is one candidate key for the range access method,
each predicate combined with OR uses approximately 230 bytes:

SELECT COUNT(*) FROM t
WHERE a=1 OR a=2 OR a=3 OR .. . a=N;

• Similarly for a query such as the following, each predicate combined with AND uses approximately 125
bytes:

SELECT COUNT(*) FROM t
WHERE a=1 AND b=1 AND c=1 ... N;

• For a query with IN() predicates:

SELECT COUNT(*) FROM t
WHERE a IN (1,2, ..., M) AND b IN (1,2, ..., N);

Each literal value in an IN() list counts as a predicate combined with OR. If there are two IN() lists, the
number of predicates combined with OR is the product of the number of literal values in each list. Thus,
the number of predicates combined with OR in the preceding case is M × N.

Before 5.7.11, the number of bytes per predicate combined with OR was higher, approximately 700 bytes.

8.2.1.3 Index Merge Optimization

The Index Merge access method retrieves rows with multiple range scans and merges their results into
one. This access method merges index scans from a single table only, not scans across multiple tables.
The merge can produce unions, intersections, or unions-of-intersections of its underlying scans.

Example queries for which Index Merge may be used:

SELECT * FROM tbl_name WHERE key1 = 10 OR key2 = 20;

SELECT * FROM tbl_name
 WHERE (key1 = 10 OR key2 = 20) AND non_key = 30;

SELECT * FROM t1, t2
 WHERE (t1.key1 IN (1,2) OR t1.key2 LIKE 'value%')
 AND t2.key1 = t1.some_col;

SELECT * FROM t1, t2
 WHERE t1.key1 = 1
 AND (t2.key1 = t1.some_col OR t2.key2 = t1.some_col2);

Note

The Index Merge optimization algorithm has the following known limitations:

• If your query has a complex WHERE clause with deep AND/OR nesting and MySQL
does not choose the optimal plan, try distributing terms using the following
identity transformations:

1453

Optimizing SELECT Statements

(x AND y) OR z => (x OR z) AND (y OR z)
(x OR y) AND z => (x AND z) OR (y AND z)

• Index Merge is not applicable to full-text indexes.

In EXPLAIN output, the Index Merge method appears as index_merge in the type column. In this case,
the key column contains a list of indexes used, and key_len contains a list of the longest key parts for
those indexes.

The Index Merge access method has several algorithms, which are displayed in the Extra field of
EXPLAIN output:

• Using intersect(...)

• Using union(...)

• Using sort_union(...)

The following sections describe these algorithms in greater detail. The optimizer chooses between different
possible Index Merge algorithms and other access methods based on cost estimates of the various
available options.

Use of Index Merge is subject to the value of the index_merge, index_merge_intersection,
index_merge_union, and index_merge_sort_union flags of the optimizer_switch system
variable. See Section 8.9.2, “Switchable Optimizations”. By default, all those flags are on. To enable only
certain algorithms, set index_merge to off, and enable only such of the others as should be permitted.

• Index Merge Intersection Access Algorithm

• Index Merge Union Access Algorithm

• Index Merge Sort-Union Access Algorithm

Index Merge Intersection Access Algorithm

This access algorithm is applicable when a WHERE clause is converted to several range conditions on
different keys combined with AND, and each condition is one of the following:

• An N-part expression of this form, where the index has exactly N parts (that is, all index parts are
covered):

key_part1 = const1 AND key_part2 = const2 ... AND key_partN = constN

• Any range condition over the primary key of an InnoDB table.

Examples:

SELECT * FROM innodb_table
 WHERE primary_key < 10 AND key_col1 = 20;

SELECT * FROM tbl_name
 WHERE key1_part1 = 1 AND key1_part2 = 2 AND key2 = 2;

The Index Merge intersection algorithm performs simultaneous scans on all used indexes and produces
the intersection of row sequences that it receives from the merged index scans.

If all columns used in the query are covered by the used indexes, full table rows are not retrieved
(EXPLAIN output contains Using index in Extra field in this case). Here is an example of such a query:

1454

Optimizing SELECT Statements

SELECT COUNT(*) FROM t1 WHERE key1 = 1 AND key2 = 1;

If the used indexes do not cover all columns used in the query, full rows are retrieved only when the range
conditions for all used keys are satisfied.

If one of the merged conditions is a condition over the primary key of an InnoDB table, it is not used for
row retrieval, but is used to filter out rows retrieved using other conditions.

Index Merge Union Access Algorithm

The criteria for this algorithm are similar to those for the Index Merge intersection algorithm. The algorithm
is applicable when the table's WHERE clause is converted to several range conditions on different keys
combined with OR, and each condition is one of the following:

• An N-part expression of this form, where the index has exactly N parts (that is, all index parts are
covered):

key_part1 = const1 OR key_part2 = const2 ... OR key_partN = constN

• Any range condition over a primary key of an InnoDB table.

• A condition for which the Index Merge intersection algorithm is applicable.

Examples:

SELECT * FROM t1
 WHERE key1 = 1 OR key2 = 2 OR key3 = 3;

SELECT * FROM innodb_table
 WHERE (key1 = 1 AND key2 = 2)
 OR (key3 = 'foo' AND key4 = 'bar') AND key5 = 5;

Index Merge Sort-Union Access Algorithm

This access algorithm is applicable when the WHERE clause is converted to several range conditions
combined by OR, but the Index Merge union algorithm is not applicable.

Examples:

SELECT * FROM tbl_name
 WHERE key_col1 < 10 OR key_col2 < 20;

SELECT * FROM tbl_name
 WHERE (key_col1 > 10 OR key_col2 = 20) AND nonkey_col = 30;

The difference between the sort-union algorithm and the union algorithm is that the sort-union algorithm
must first fetch row IDs for all rows and sort them before returning any rows.

8.2.1.4 Engine Condition Pushdown Optimization

This optimization improves the efficiency of direct comparisons between a nonindexed column and
a constant. In such cases, the condition is “pushed down” to the storage engine for evaluation. This
optimization can be used only by the NDB storage engine.

For NDB Cluster, this optimization can eliminate the need to send nonmatching rows over the network
between the cluster's data nodes and the MySQL server that issued the query, and can speed up queries
where it is used by a factor of 5 to 10 times over cases where condition pushdown could be but is not used.

Suppose that an NDB Cluster table is defined as follows:

1455

Optimizing SELECT Statements

CREATE TABLE t1 (
 a INT,
 b INT,
 KEY(a)
) ENGINE=NDB;

Engine condition pushdown can be used with queries such as the one shown here, which includes a
comparison between a nonindexed column and a constant:

SELECT a, b FROM t1 WHERE b = 10;

The use of engine condition pushdown can be seen in the output of EXPLAIN:

mysql> EXPLAIN SELECT a,b FROM t1 WHERE b = 10\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: t1
 type: ALL
possible_keys: NULL
 key: NULL
 key_len: NULL
 ref: NULL
 rows: 10
 Extra: Using where with pushed condition

However, engine condition pushdown cannot be used with either of these two queries:

SELECT a,b FROM t1 WHERE a = 10;
SELECT a,b FROM t1 WHERE b + 1 = 10;

Engine condition pushdown is not applicable to the first query because an index exists on column a.
(An index access method would be more efficient and so would be chosen in preference to condition
pushdown.) Engine condition pushdown cannot be employed for the second query because the
comparison involving the nonindexed column b is indirect. (However, engine condition pushdown could be
applied if you were to reduce b + 1 = 10 to b = 9 in the WHERE clause.)

Engine condition pushdown may also be employed when an indexed column is compared with a constant
using a > or < operator:

mysql> EXPLAIN SELECT a, b FROM t1 WHERE a < 2\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: t1
 type: range
possible_keys: a
 key: a
 key_len: 5
 ref: NULL
 rows: 2
 Extra: Using where with pushed condition

Other supported comparisons for engine condition pushdown include the following:

• column [NOT] LIKE pattern

pattern must be a string literal containing the pattern to be matched; for syntax, see Section 12.8.1,
“String Comparison Functions and Operators”.

• column IS [NOT] NULL

• column IN (value_list)

1456

Optimizing SELECT Statements

Each item in the value_list must be a constant, literal value.

• column BETWEEN constant1 AND constant2

constant1 and constant2 must each be a constant, literal value.

In all of the cases in the preceding list, it is possible for the condition to be converted into the form of one or
more direct comparisons between a column and a constant.

Engine condition pushdown is enabled by default. To disable it at server startup, set the
optimizer_switch system variable's engine_condition_pushdown flag to off. For example, in a
my.cnf file, use these lines:

[mysqld]
optimizer_switch=engine_condition_pushdown=off

At runtime, disable condition pushdown like this:

SET optimizer_switch='engine_condition_pushdown=off';

Limitations. Engine condition pushdown is subject to the following limitations:

• Engine condition pushdown is supported only by the NDB storage engine.

• Columns may be compared with constants only; however, this includes expressions which evaluate to
constant values.

• Columns used in comparisons cannot be of any of the BLOB or TEXT types. This exclusion extends to
JSON, BIT, and ENUM columns as well.

• A string value to be compared with a column must use the same collation as the column.

• Joins are not directly supported; conditions involving multiple tables are pushed separately where
possible. Use extended EXPLAIN output to determine which conditions are actually pushed down. See
Section 8.8.3, “Extended EXPLAIN Output Format”.

8.2.1.5 Index Condition Pushdown Optimization

Index Condition Pushdown (ICP) is an optimization for the case where MySQL retrieves rows from a table
using an index. Without ICP, the storage engine traverses the index to locate rows in the base table and
returns them to the MySQL server which evaluates the WHERE condition for the rows. With ICP enabled,
and if parts of the WHERE condition can be evaluated by using only columns from the index, the MySQL
server pushes this part of the WHERE condition down to the storage engine. The storage engine then
evaluates the pushed index condition by using the index entry and only if this is satisfied is the row read
from the table. ICP can reduce the number of times the storage engine must access the base table and the
number of times the MySQL server must access the storage engine.

Applicability of the Index Condition Pushdown optimization is subject to these conditions:

• ICP is used for the range, ref, eq_ref, and ref_or_null access methods when there is a need to
access full table rows.

• ICP can be used for InnoDB and MyISAM tables, including partitioned InnoDB and MyISAM tables.

• For InnoDB tables, ICP is used only for secondary indexes. The goal of ICP is to reduce the number of
full-row reads and thereby reduce I/O operations. For InnoDB clustered indexes, the complete record is
already read into the InnoDB buffer. Using ICP in this case does not reduce I/O.

1457

Optimizing SELECT Statements

• ICP is not supported with secondary indexes created on virtual generated columns. InnoDB supports
secondary indexes on virtual generated columns.

• Conditions that refer to subqueries cannot be pushed down.

• Conditions that refer to stored functions cannot be pushed down. Storage engines cannot invoke stored
functions.

• Triggered conditions cannot be pushed down. (For information about triggered conditions, see
Section 8.2.2.3, “Optimizing Subqueries with the EXISTS Strategy”.)

To understand how this optimization works, first consider how an index scan proceeds when Index
Condition Pushdown is not used:

1. Get the next row, first by reading the index tuple, and then by using the index tuple to locate and read
the full table row.

2. Test the part of the WHERE condition that applies to this table. Accept or reject the row based on the test
result.

Using Index Condition Pushdown, the scan proceeds like this instead:

1. Get the next row's index tuple (but not the full table row).

2. Test the part of the WHERE condition that applies to this table and can be checked using only index
columns. If the condition is not satisfied, proceed to the index tuple for the next row.

3. If the condition is satisfied, use the index tuple to locate and read the full table row.

4. Test the remaining part of the WHERE condition that applies to this table. Accept or reject the row based
on the test result.

EXPLAIN output shows Using index condition in the Extra column when Index Condition
Pushdown is used. It does not show Using index because that does not apply when full table rows must
be read.

Suppose that a table contains information about people and their addresses and that the table has an
index defined as INDEX (zipcode, lastname, firstname). If we know a person's zipcode value
but are not sure about the last name, we can search like this:

SELECT * FROM people
 WHERE zipcode='95054'
 AND lastname LIKE '%etrunia%'
 AND address LIKE '%Main Street%';

MySQL can use the index to scan through people with zipcode='95054'. The second part (lastname
LIKE '%etrunia%') cannot be used to limit the number of rows that must be scanned, so without Index
Condition Pushdown, this query must retrieve full table rows for all people who have zipcode='95054'.

With Index Condition Pushdown, MySQL checks the lastname LIKE '%etrunia%' part before reading
the full table row. This avoids reading full rows corresponding to index tuples that match the zipcode
condition but not the lastname condition.

Index Condition Pushdown is enabled by default. It can be controlled with the optimizer_switch system
variable by setting the index_condition_pushdown flag:

SET optimizer_switch = 'index_condition_pushdown=off';
SET optimizer_switch = 'index_condition_pushdown=on';

1458

Optimizing SELECT Statements

See Section 8.9.2, “Switchable Optimizations”.

8.2.1.6 Nested-Loop Join Algorithms

MySQL executes joins between tables using a nested-loop algorithm or variations on it.

• Nested-Loop Join Algorithm

• Block Nested-Loop Join Algorithm

Nested-Loop Join Algorithm

A simple nested-loop join (NLJ) algorithm reads rows from the first table in a loop one at a time, passing
each row to a nested loop that processes the next table in the join. This process is repeated as many times
as there remain tables to be joined.

Assume that a join between three tables t1, t2, and t3 is to be executed using the following join types:

Table Join Type
t1 range
t2 ref
t3 ALL

If a simple NLJ algorithm is used, the join is processed like this:

for each row in t1 matching range {
 for each row in t2 matching reference key {
 for each row in t3 {
 if row satisfies join conditions, send to client
 }
 }
}

Because the NLJ algorithm passes rows one at a time from outer loops to inner loops, it typically reads
tables processed in the inner loops many times.

Block Nested-Loop Join Algorithm

A Block Nested-Loop (BNL) join algorithm uses buffering of rows read in outer loops to reduce the number
of times that tables in inner loops must be read. For example, if 10 rows are read into a buffer and the
buffer is passed to the next inner loop, each row read in the inner loop can be compared against all 10
rows in the buffer. This reduces by an order of magnitude the number of times the inner table must be
read.

MySQL join buffering has these characteristics:

• Join buffering can be used when the join is of type ALL or index (in other words, when no possible
keys can be used, and a full scan is done, of either the data or index rows, respectively), or range. Use
of buffering is also applicable to outer joins, as described in Section 8.2.1.11, “Block Nested-Loop and
Batched Key Access Joins”.

• A join buffer is never allocated for the first nonconstant table, even if it would be of type ALL or index.

• Only columns of interest to a join are stored in its join buffer, not whole rows.

• The join_buffer_size system variable determines the size of each join buffer used to process a
query.

• One buffer is allocated for each join that can be buffered, so a given query might be processed using
multiple join buffers.

1459

Optimizing SELECT Statements

• A join buffer is allocated prior to executing the join and freed after the query is done.

For the example join described previously for the NLJ algorithm (without buffering), the join is done as
follows using join buffering:

for each row in t1 matching range {
 for each row in t2 matching reference key {
 store used columns from t1, t2 in join buffer
 if buffer is full {
 for each row in t3 {
 for each t1, t2 combination in join buffer {
 if row satisfies join conditions, send to client
 }
 }
 empty join buffer
 }
 }
}

if buffer is not empty {
 for each row in t3 {
 for each t1, t2 combination in join buffer {
 if row satisfies join conditions, send to client
 }
 }
}

If S is the size of each stored t1, t2 combination in the join buffer and C is the number of combinations in
the buffer, the number of times table t3 is scanned is:

(S * C)/join_buffer_size + 1

The number of t3 scans decreases as the value of join_buffer_size increases, up to the point when
join_buffer_size is large enough to hold all previous row combinations. At that point, no speed is
gained by making it larger.

8.2.1.7 Nested Join Optimization

The syntax for expressing joins permits nested joins. The following discussion refers to the join syntax
described in Section 13.2.9.2, “JOIN Clause”.

The syntax of table_factor is extended in comparison with the SQL Standard. The latter accepts only
table_reference, not a list of them inside a pair of parentheses. This is a conservative extension if we
consider each comma in a list of table_reference items as equivalent to an inner join. For example:

SELECT * FROM t1 LEFT JOIN (t2, t3, t4)
 ON (t2.a=t1.a AND t3.b=t1.b AND t4.c=t1.c)

Is equivalent to:

SELECT * FROM t1 LEFT JOIN (t2 CROSS JOIN t3 CROSS JOIN t4)
 ON (t2.a=t1.a AND t3.b=t1.b AND t4.c=t1.c)

In MySQL, CROSS JOIN is syntactically equivalent to INNER JOIN; they can replace each other. In
standard SQL, they are not equivalent. INNER JOIN is used with an ON clause; CROSS JOIN is used
otherwise.

In general, parentheses can be ignored in join expressions containing only inner join operations. Consider
this join expression:

t1 LEFT JOIN (t2 LEFT JOIN t3 ON t2.b=t3.b OR t2.b IS NULL)

1460

Optimizing SELECT Statements

 ON t1.a=t2.a

After removing parentheses and grouping operations to the left, that join expression transforms into this
expression:

(t1 LEFT JOIN t2 ON t1.a=t2.a) LEFT JOIN t3
 ON t2.b=t3.b OR t2.b IS NULL

Yet, the two expressions are not equivalent. To see this, suppose that the tables t1, t2, and t3 have the
following state:

• Table t1 contains rows (1), (2)

• Table t2 contains row (1,101)

• Table t3 contains row (101)

In this case, the first expression returns a result set including the rows (1,1,101,101),
(2,NULL,NULL,NULL), whereas the second expression returns the rows (1,1,101,101),
(2,NULL,NULL,101):

mysql> SELECT *
 FROM t1
 LEFT JOIN
 (t2 LEFT JOIN t3 ON t2.b=t3.b OR t2.b IS NULL)
 ON t1.a=t2.a;
+------+------+------+------+
| a | a | b | b |
+------+------+------+------+
| 1 | 1 | 101 | 101 |
| 2 | NULL | NULL | NULL |
+------+------+------+------+

mysql> SELECT *
 FROM (t1 LEFT JOIN t2 ON t1.a=t2.a)
 LEFT JOIN t3
 ON t2.b=t3.b OR t2.b IS NULL;
+------+------+------+------+
| a | a | b | b |
+------+------+------+------+
| 1 | 1 | 101 | 101 |
| 2 | NULL | NULL | 101 |
+------+------+------+------+

In the following example, an outer join operation is used together with an inner join operation:

t1 LEFT JOIN (t2, t3) ON t1.a=t2.a

That expression cannot be transformed into the following expression:

t1 LEFT JOIN t2 ON t1.a=t2.a, t3

For the given table states, the two expressions return different sets of rows:

mysql> SELECT *
 FROM t1 LEFT JOIN (t2, t3) ON t1.a=t2.a;
+------+------+------+------+
| a | a | b | b |
+------+------+------+------+
| 1 | 1 | 101 | 101 |
| 2 | NULL | NULL | NULL |
+------+------+------+------+

mysql> SELECT *

1461

Optimizing SELECT Statements

 FROM t1 LEFT JOIN t2 ON t1.a=t2.a, t3;
+------+------+------+------+
| a | a | b | b |
+------+------+------+------+
| 1 | 1 | 101 | 101 |
| 2 | NULL | NULL | 101 |
+------+------+------+------+

Therefore, if we omit parentheses in a join expression with outer join operators, we might change the result
set for the original expression.

More exactly, we cannot ignore parentheses in the right operand of the left outer join operation and in
the left operand of a right join operation. In other words, we cannot ignore parentheses for the inner table
expressions of outer join operations. Parentheses for the other operand (operand for the outer table) can
be ignored.

The following expression:

(t1,t2) LEFT JOIN t3 ON P(t2.b,t3.b)

Is equivalent to this expression for any tables t1,t2,t3 and any condition P over attributes t2.b and
t3.b:

t1, t2 LEFT JOIN t3 ON P(t2.b,t3.b)

Whenever the order of execution of join operations in a join expression (joined_table) is not from left to
right, we talk about nested joins. Consider the following queries:

SELECT * FROM t1 LEFT JOIN (t2 LEFT JOIN t3 ON t2.b=t3.b) ON t1.a=t2.a
 WHERE t1.a > 1

SELECT * FROM t1 LEFT JOIN (t2, t3) ON t1.a=t2.a
 WHERE (t2.b=t3.b OR t2.b IS NULL) AND t1.a > 1

Those queries are considered to contain these nested joins:

t2 LEFT JOIN t3 ON t2.b=t3.b
t2, t3

In the first query, the nested join is formed with a left join operation. In the second query, it is formed with
an inner join operation.

In the first query, the parentheses can be omitted: The grammatical structure of the join expression dictates
the same order of execution for join operations. For the second query, the parentheses cannot be omitted,
although the join expression here can be interpreted unambiguously without them. In our extended syntax,
the parentheses in (t2, t3) of the second query are required, although theoretically the query could be
parsed without them: We still would have unambiguous syntactical structure for the query because LEFT
JOIN and ON play the role of the left and right delimiters for the expression (t2,t3).

The preceding examples demonstrate these points:

• For join expressions involving only inner joins (and not outer joins), parentheses can be removed and
joins evaluated left to right. In fact, tables can be evaluated in any order.

• The same is not true, in general, for outer joins or for outer joins mixed with inner joins. Removal of
parentheses may change the result.

Queries with nested outer joins are executed in the same pipeline manner as queries with inner joins. More
exactly, a variation of the nested-loop join algorithm is exploited. Recall the algorithm by which the nested-

1462

Optimizing SELECT Statements

loop join executes a query (see Section 8.2.1.6, “Nested-Loop Join Algorithms”). Suppose that a join query
over 3 tables T1,T2,T3 has this form:

SELECT * FROM T1 INNER JOIN T2 ON P1(T1,T2)
 INNER JOIN T3 ON P2(T2,T3)
 WHERE P(T1,T2,T3)

Here, P1(T1,T2) and P2(T3,T3) are some join conditions (on expressions), whereas P(T1,T2,T3) is
a condition over columns of tables T1,T2,T3.

The nested-loop join algorithm would execute this query in the following manner:

FOR each row t1 in T1 {
 FOR each row t2 in T2 such that P1(t1,t2) {
 FOR each row t3 in T3 such that P2(t2,t3) {
 IF P(t1,t2,t3) {
 t:=t1||t2||t3; OUTPUT t;
 }
 }
 }
}

The notation t1||t2||t3 indicates a row constructed by concatenating the columns of rows t1, t2,
and t3. In some of the following examples, NULL where a table name appears means a row in which
NULL is used for each column of that table. For example, t1||t2||NULL indicates a row constructed by
concatenating the columns of rows t1 and t2, and NULL for each column of t3. Such a row is said to be
NULL-complemented.

Now consider a query with nested outer joins:

SELECT * FROM T1 LEFT JOIN
 (T2 LEFT JOIN T3 ON P2(T2,T3))
 ON P1(T1,T2)
 WHERE P(T1,T2,T3)

For this query, modify the nested-loop pattern to obtain:

FOR each row t1 in T1 {
 BOOL f1:=FALSE;
 FOR each row t2 in T2 such that P1(t1,t2) {
 BOOL f2:=FALSE;
 FOR each row t3 in T3 such that P2(t2,t3) {
 IF P(t1,t2,t3) {
 t:=t1||t2||t3; OUTPUT t;
 }
 f2=TRUE;
 f1=TRUE;
 }
 IF (!f2) {
 IF P(t1,t2,NULL) {
 t:=t1||t2||NULL; OUTPUT t;
 }
 f1=TRUE;
 }
 }
 IF (!f1) {
 IF P(t1,NULL,NULL) {
 t:=t1||NULL||NULL; OUTPUT t;
 }
 }
}

In general, for any nested loop for the first inner table in an outer join operation, a flag is introduced that
is turned off before the loop and is checked after the loop. The flag is turned on when for the current row

1463

Optimizing SELECT Statements

from the outer table a match from the table representing the inner operand is found. If at the end of the
loop cycle the flag is still off, no match has been found for the current row of the outer table. In this case,
the row is complemented by NULL values for the columns of the inner tables. The result row is passed to
the final check for the output or into the next nested loop, but only if the row satisfies the join condition of all
embedded outer joins.

In the example, the outer join table expressed by the following expression is embedded:

(T2 LEFT JOIN T3 ON P2(T2,T3))

For the query with inner joins, the optimizer could choose a different order of nested loops, such as this
one:

FOR each row t3 in T3 {
 FOR each row t2 in T2 such that P2(t2,t3) {
 FOR each row t1 in T1 such that P1(t1,t2) {
 IF P(t1,t2,t3) {
 t:=t1||t2||t3; OUTPUT t;
 }
 }
 }
}

For queries with outer joins, the optimizer can choose only such an order where loops for outer tables
precede loops for inner tables. Thus, for our query with outer joins, only one nesting order is possible. For
the following query, the optimizer evaluates two different nestings. In both nestings, T1 must be processed
in the outer loop because it is used in an outer join. T2 and T3 are used in an inner join, so that join must
be processed in the inner loop. However, because the join is an inner join, T2 and T3 can be processed in
either order.

SELECT * T1 LEFT JOIN (T2,T3) ON P1(T1,T2) AND P2(T1,T3)
 WHERE P(T1,T2,T3)

One nesting evaluates T2, then T3:

FOR each row t1 in T1 {
 BOOL f1:=FALSE;
 FOR each row t2 in T2 such that P1(t1,t2) {
 FOR each row t3 in T3 such that P2(t1,t3) {
 IF P(t1,t2,t3) {
 t:=t1||t2||t3; OUTPUT t;
 }
 f1:=TRUE
 }
 }
 IF (!f1) {
 IF P(t1,NULL,NULL) {
 t:=t1||NULL||NULL; OUTPUT t;
 }
 }
}

The other nesting evaluates T3, then T2:

FOR each row t1 in T1 {
 BOOL f1:=FALSE;
 FOR each row t3 in T3 such that P2(t1,t3) {
 FOR each row t2 in T2 such that P1(t1,t2) {
 IF P(t1,t2,t3) {
 t:=t1||t2||t3; OUTPUT t;
 }
 f1:=TRUE
 }

1464

Optimizing SELECT Statements

 }
 IF (!f1) {
 IF P(t1,NULL,NULL) {
 t:=t1||NULL||NULL; OUTPUT t;
 }
 }
}

When discussing the nested-loop algorithm for inner joins, we omitted some details whose impact on the
performance of query execution may be huge. We did not mention so-called “pushed-down” conditions.
Suppose that our WHERE condition P(T1,T2,T3) can be represented by a conjunctive formula:

P(T1,T2,T2) = C1(T1) AND C2(T2) AND C3(T3).

In this case, MySQL actually uses the following nested-loop algorithm for the execution of the query with
inner joins:

FOR each row t1 in T1 such that C1(t1) {
 FOR each row t2 in T2 such that P1(t1,t2) AND C2(t2) {
 FOR each row t3 in T3 such that P2(t2,t3) AND C3(t3) {
 IF P(t1,t2,t3) {
 t:=t1||t2||t3; OUTPUT t;
 }
 }
 }
}

You see that each of the conjuncts C1(T1), C2(T2), C3(T3) are pushed out of the most inner loop to
the most outer loop where it can be evaluated. If C1(T1) is a very restrictive condition, this condition
pushdown may greatly reduce the number of rows from table T1 passed to the inner loops. As a result, the
execution time for the query may improve immensely.

For a query with outer joins, the WHERE condition is to be checked only after it has been found that
the current row from the outer table has a match in the inner tables. Thus, the optimization of pushing
conditions out of the inner nested loops cannot be applied directly to queries with outer joins. Here we must
introduce conditional pushed-down predicates guarded by the flags that are turned on when a match has
been encountered.

Recall this example with outer joins:

P(T1,T2,T3)=C1(T1) AND C(T2) AND C3(T3)

For that example, the nested-loop algorithm using guarded pushed-down conditions looks like this:

FOR each row t1 in T1 such that C1(t1) {
 BOOL f1:=FALSE;
 FOR each row t2 in T2
 such that P1(t1,t2) AND (f1?C2(t2):TRUE) {
 BOOL f2:=FALSE;
 FOR each row t3 in T3
 such that P2(t2,t3) AND (f1&&f2?C3(t3):TRUE) {
 IF (f1&&f2?TRUE:(C2(t2) AND C3(t3))) {
 t:=t1||t2||t3; OUTPUT t;
 }
 f2=TRUE;
 f1=TRUE;
 }
 IF (!f2) {
 IF (f1?TRUE:C2(t2) && P(t1,t2,NULL)) {
 t:=t1||t2||NULL; OUTPUT t;
 }
 f1=TRUE;
 }

1465

Optimizing SELECT Statements

 }
 IF (!f1 && P(t1,NULL,NULL)) {
 t:=t1||NULL||NULL; OUTPUT t;
 }
}

In general, pushed-down predicates can be extracted from join conditions such as P1(T1,T2) and
P(T2,T3). In this case, a pushed-down predicate is guarded also by a flag that prevents checking the
predicate for the NULL-complemented row generated by the corresponding outer join operation.

Access by key from one inner table to another in the same nested join is prohibited if it is induced by a
predicate from the WHERE condition.

8.2.1.8 Outer Join Optimization

Outer joins include LEFT JOIN and RIGHT JOIN.

MySQL implements an A LEFT JOIN B join_specification as follows:

• Table B is set to depend on table A and all tables on which A depends.

• Table A is set to depend on all tables (except B) that are used in the LEFT JOIN condition.

• The LEFT JOIN condition is used to decide how to retrieve rows from table B. (In other words, any
condition in the WHERE clause is not used.)

• All standard join optimizations are performed, with the exception that a table is always read after all
tables on which it depends. If there is a circular dependency, an error occurs.

• All standard WHERE optimizations are performed.

• If there is a row in A that matches the WHERE clause, but there is no row in B that matches the ON
condition, an extra B row is generated with all columns set to NULL.

• If you use LEFT JOIN to find rows that do not exist in some table and you have the following test:
col_name IS NULL in the WHERE part, where col_name is a column that is declared as NOT NULL,
MySQL stops searching for more rows (for a particular key combination) after it has found one row that
matches the LEFT JOIN condition.

The RIGHT JOIN implementation is analogous to that of LEFT JOIN with the table roles reversed. Right
joins are converted to equivalent left joins, as described in Section 8.2.1.9, “Outer Join Simplification”.

For a LEFT JOIN, if the WHERE condition is always false for the generated NULL row, the LEFT JOIN
is changed to an inner join. For example, the WHERE clause would be false in the following query if
t2.column1 were NULL:

SELECT * FROM t1 LEFT JOIN t2 ON (column1) WHERE t2.column2=5;

Therefore, it is safe to convert the query to an inner join:

SELECT * FROM t1, t2 WHERE t2.column2=5 AND t1.column1=t2.column1;

Now the optimizer can use table t2 before table t1 if doing so would result in a better query plan.
To provide a hint about the table join order, use STRAIGHT_JOIN; see Section 13.2.9, “SELECT
Statement”. However, STRAIGHT_JOIN may prevent indexes from being used because it disables
semijoin transformations; see Section 8.2.2.1, “Optimizing Subqueries, Derived Tables, and View
References with Semijoin Transformations”.

1466

Optimizing SELECT Statements

8.2.1.9 Outer Join Simplification

Table expressions in the FROM clause of a query are simplified in many cases.

At the parser stage, queries with right outer join operations are converted to equivalent queries containing
only left join operations. In the general case, the conversion is performed such that this right join:

(T1, ...) RIGHT JOIN (T2, ...) ON P(T1, ..., T2, ...)

Becomes this equivalent left join:

(T2, ...) LEFT JOIN (T1, ...) ON P(T1, ..., T2, ...)

All inner join expressions of the form T1 INNER JOIN T2 ON P(T1,T2) are replaced by the list T1,T2,
P(T1,T2) being joined as a conjunct to the WHERE condition (or to the join condition of the embedding
join, if there is any).

When the optimizer evaluates plans for outer join operations, it takes into consideration only plans where,
for each such operation, the outer tables are accessed before the inner tables. The optimizer choices are
limited because only such plans enable outer joins to be executed using the nested-loop algorithm.

Consider a query of this form, where R(T2) greatly narrows the number of matching rows from table T2:

SELECT * T1 FROM T1
 LEFT JOIN T2 ON P1(T1,T2)
 WHERE P(T1,T2) AND R(T2)

If the query is executed as written, the optimizer has no choice but to access the less-restricted table T1
before the more-restricted table T2, which may produce a very inefficient execution plan.

Instead, MySQL converts the query to a query with no outer join operation if the WHERE condition is null-
rejected. (That is, it converts the outer join to an inner join.) A condition is said to be null-rejected for an
outer join operation if it evaluates to FALSE or UNKNOWN for any NULL-complemented row generated for the
operation.

Thus, for this outer join:

T1 LEFT JOIN T2 ON T1.A=T2.A

Conditions such as these are null-rejected because they cannot be true for any NULL-complemented row
(with T2 columns set to NULL):

T2.B IS NOT NULL
T2.B > 3
T2.C <= T1.C
T2.B < 2 OR T2.C > 1

Conditions such as these are not null-rejected because they might be true for a NULL-complemented row:

T2.B IS NULL
T1.B < 3 OR T2.B IS NOT NULL
T1.B < 3 OR T2.B > 3

The general rules for checking whether a condition is null-rejected for an outer join operation are simple:

• It is of the form A IS NOT NULL, where A is an attribute of any of the inner tables

• It is a predicate containing a reference to an inner table that evaluates to UNKNOWN when one of its
arguments is NULL

1467

Optimizing SELECT Statements

• It is a conjunction containing a null-rejected condition as a conjunct

• It is a disjunction of null-rejected conditions

A condition can be null-rejected for one outer join operation in a query and not null-rejected for another. In
this query, the WHERE condition is null-rejected for the second outer join operation but is not null-rejected
for the first one:

SELECT * FROM T1 LEFT JOIN T2 ON T2.A=T1.A
 LEFT JOIN T3 ON T3.B=T1.B
 WHERE T3.C > 0

If the WHERE condition is null-rejected for an outer join operation in a query, the outer join operation is
replaced by an inner join operation.

For example, in the preceding query, the second outer join is null-rejected and can be replaced by an inner
join:

SELECT * FROM T1 LEFT JOIN T2 ON T2.A=T1.A
 INNER JOIN T3 ON T3.B=T1.B
 WHERE T3.C > 0

For the original query, the optimizer evaluates only plans compatible with the single table-access order
T1,T2,T3. For the rewritten query, it additionally considers the access order T3,T1,T2.

A conversion of one outer join operation may trigger a conversion of another. Thus, the query:

SELECT * FROM T1 LEFT JOIN T2 ON T2.A=T1.A
 LEFT JOIN T3 ON T3.B=T2.B
 WHERE T3.C > 0

Is first converted to the query:

SELECT * FROM T1 LEFT JOIN T2 ON T2.A=T1.A
 INNER JOIN T3 ON T3.B=T2.B
 WHERE T3.C > 0

Which is equivalent to the query:

SELECT * FROM (T1 LEFT JOIN T2 ON T2.A=T1.A), T3
 WHERE T3.C > 0 AND T3.B=T2.B

The remaining outer join operation can also be replaced by an inner join because the condition
T3.B=T2.B is null-rejected. This results in a query with no outer joins at all:

SELECT * FROM (T1 INNER JOIN T2 ON T2.A=T1.A), T3
 WHERE T3.C > 0 AND T3.B=T2.B

Sometimes the optimizer succeeds in replacing an embedded outer join operation, but cannot convert the
embedding outer join. The following query:

SELECT * FROM T1 LEFT JOIN
 (T2 LEFT JOIN T3 ON T3.B=T2.B)
 ON T2.A=T1.A
 WHERE T3.C > 0

Is converted to:

SELECT * FROM T1 LEFT JOIN
 (T2 INNER JOIN T3 ON T3.B=T2.B)
 ON T2.A=T1.A
 WHERE T3.C > 0

1468

Optimizing SELECT Statements

That can be rewritten only to the form still containing the embedding outer join operation:

SELECT * FROM T1 LEFT JOIN
 (T2,T3)
 ON (T2.A=T1.A AND T3.B=T2.B)
 WHERE T3.C > 0

Any attempt to convert an embedded outer join operation in a query must take into account the join
condition for the embedding outer join together with the WHERE condition. In this query, the WHERE
condition is not null-rejected for the embedded outer join, but the join condition of the embedding outer join
T2.A=T1.A AND T3.C=T1.C is null-rejected:

SELECT * FROM T1 LEFT JOIN
 (T2 LEFT JOIN T3 ON T3.B=T2.B)
 ON T2.A=T1.A AND T3.C=T1.C
 WHERE T3.D > 0 OR T1.D > 0

Consequently, the query can be converted to:

SELECT * FROM T1 LEFT JOIN
 (T2, T3)
 ON T2.A=T1.A AND T3.C=T1.C AND T3.B=T2.B
 WHERE T3.D > 0 OR T1.D > 0

8.2.1.10 Multi-Range Read Optimization

Reading rows using a range scan on a secondary index can result in many random disk accesses to the
base table when the table is large and not stored in the storage engine's cache. With the Disk-Sweep
Multi-Range Read (MRR) optimization, MySQL tries to reduce the number of random disk access for
range scans by first scanning the index only and collecting the keys for the relevant rows. Then the keys
are sorted and finally the rows are retrieved from the base table using the order of the primary key. The
motivation for Disk-sweep MRR is to reduce the number of random disk accesses and instead achieve a
more sequential scan of the base table data.

The Multi-Range Read optimization provides these benefits:

• MRR enables data rows to be accessed sequentially rather than in random order, based on index tuples.
The server obtains a set of index tuples that satisfy the query conditions, sorts them according to data
row ID order, and uses the sorted tuples to retrieve data rows in order. This makes data access more
efficient and less expensive.

• MRR enables batch processing of requests for key access for operations that require access to data
rows through index tuples, such as range index scans and equi-joins that use an index for the join
attribute. MRR iterates over a sequence of index ranges to obtain qualifying index tuples. As these
results accumulate, they are used to access the corresponding data rows. It is not necessary to acquire
all index tuples before starting to read data rows.

The MRR optimization is not supported with secondary indexes created on virtual generated columns.
InnoDB supports secondary indexes on virtual generated columns.

The following scenarios illustrate when MRR optimization can be advantageous:

Scenario A: MRR can be used for InnoDB and MyISAM tables for index range scans and equi-join
operations.

1. A portion of the index tuples are accumulated in a buffer.

2. The tuples in the buffer are sorted by their data row ID.

1469

Optimizing SELECT Statements

3. Data rows are accessed according to the sorted index tuple sequence.

Scenario B: MRR can be used for NDB tables for multiple-range index scans or when performing an equi-
join by an attribute.

1. A portion of ranges, possibly single-key ranges, is accumulated in a buffer on the central node where
the query is submitted.

2. The ranges are sent to the execution nodes that access data rows.

3. The accessed rows are packed into packages and sent back to the central node.

4. The received packages with data rows are placed in a buffer.

5. Data rows are read from the buffer.

When MRR is used, the Extra column in EXPLAIN output shows Using MRR.

InnoDB and MyISAM do not use MRR if full table rows need not be accessed to produce the query result.
This is the case if results can be produced entirely on the basis on information in the index tuples (through
a covering index); MRR provides no benefit.

Two optimizer_switch system variable flags provide an interface to the use of MRR optimization.
The mrr flag controls whether MRR is enabled. If mrr is enabled (on), the mrr_cost_based flag
controls whether the optimizer attempts to make a cost-based choice between using and not using MRR
(on) or uses MRR whenever possible (off). By default, mrr is on and mrr_cost_based is on. See
Section 8.9.2, “Switchable Optimizations”.

For MRR, a storage engine uses the value of the read_rnd_buffer_size system variable
as a guideline for how much memory it can allocate for its buffer. The engine uses up to
read_rnd_buffer_size bytes and determines the number of ranges to process in a single pass.

8.2.1.11 Block Nested-Loop and Batched Key Access Joins

In MySQL, a Batched Key Access (BKA) Join algorithm is available that uses both index access to the
joined table and a join buffer. The BKA algorithm supports inner join, outer join, and semijoin operations,
including nested outer joins. Benefits of BKA include improved join performance due to more efficient
table scanning. Also, the Block Nested-Loop (BNL) Join algorithm previously used only for inner joins is
extended and can be employed for outer join and semijoin operations, including nested outer joins.

The following sections discuss the join buffer management that underlies the extension of the original
BNL algorithm, the extended BNL algorithm, and the BKA algorithm. For information about semijoin
strategies, see Section 8.2.2.1, “Optimizing Subqueries, Derived Tables, and View References with
Semijoin Transformations”

• Join Buffer Management for Block Nested-Loop and Batched Key Access Algorithms

• Block Nested-Loop Algorithm for Outer Joins and Semijoins

• Batched Key Access Joins

• Optimizer Hints for Block Nested-Loop and Batched Key Access Algorithms

Join Buffer Management for Block Nested-Loop and Batched Key Access Algorithms

MySQL can employ join buffers to execute not only inner joins without index access to the inner table,
but also outer joins and semijoins that appear after subquery flattening. Moreover, a join buffer can be
effectively used when there is an index access to the inner table.

1470

Optimizing SELECT Statements

The join buffer management code slightly more efficiently utilizes join buffer space when storing the values
of the interesting row columns: No additional bytes are allocated in buffers for a row column if its value is
NULL, and the minimum number of bytes is allocated for any value of the VARCHAR type.

The code supports two types of buffers, regular and incremental. Suppose that join buffer B1 is employed
to join tables t1 and t2 and the result of this operation is joined with table t3 using join buffer B2:

• A regular join buffer contains columns from each join operand. If B2 is a regular join buffer, each row r
put into B2 is composed of the columns of a row r1 from B1 and the interesting columns of a matching
row r2 from table t3.

• An incremental join buffer contains only columns from rows of the table produced by the second join
operand. That is, it is incremental to a row from the first operand buffer. If B2 is an incremental join
buffer, it contains the interesting columns of the row r2 together with a link to the row r1 from B1.

Incremental join buffers are always incremental relative to a join buffer from an earlier join operation, so the
buffer from the first join operation is always a regular buffer. In the example just given, the buffer B1 used
to join tables t1 and t2 must be a regular buffer.

Each row of the incremental buffer used for a join operation contains only the interesting columns of a row
from the table to be joined. These columns are augmented with a reference to the interesting columns of
the matched row from the table produced by the first join operand. Several rows in the incremental buffer
can refer to the same row r whose columns are stored in the previous join buffers insofar as all these rows
match row r.

Incremental buffers enable less frequent copying of columns from buffers used for previous join operations.
This provides a savings in buffer space because in the general case a row produced by the first join
operand can be matched by several rows produced by the second join operand. It is unnecessary to make
several copies of a row from the first operand. Incremental buffers also provide a savings in processing
time due to the reduction in copying time.

The block_nested_loop and batched_key_access flags of the optimizer_switch system
variable control how the optimizer uses the Block Nested-Loop and Batched Key Access join algorithms.
By default, block_nested_loop is on and batched_key_access is off. See Section 8.9.2,
“Switchable Optimizations”. Optimizer hints may also be applied; see Optimizer Hints for Block Nested-
Loop and Batched Key Access Algorithms.

For information about semijoin strategies, see Section 8.2.2.1, “Optimizing Subqueries, Derived Tables,
and View References with Semijoin Transformations”

Block Nested-Loop Algorithm for Outer Joins and Semijoins

The original implementation of the MySQL BNL algorithm is extended to support outer join and semijoin
operations.

When these operations are executed with a join buffer, each row put into the buffer is supplied with a
match flag.

If an outer join operation is executed using a join buffer, each row of the table produced by the second
operand is checked for a match against each row in the join buffer. When a match is found, a new
extended row is formed (the original row plus columns from the second operand) and sent for further
extensions by the remaining join operations. In addition, the match flag of the matched row in the buffer is
enabled. After all rows of the table to be joined have been examined, the join buffer is scanned. Each row
from the buffer that does not have its match flag enabled is extended by NULL complements (NULL values
for each column in the second operand) and sent for further extensions by the remaining join operations.

1471

Optimizing SELECT Statements

The block_nested_loop flag of the optimizer_switch system variable controls how the optimizer
uses the Block Nested-Loop algorithm. By default, block_nested_loop is on. See Section 8.9.2,
“Switchable Optimizations”. Optimizer hints may also be applied; see Optimizer Hints for Block Nested-
Loop and Batched Key Access Algorithms.

In EXPLAIN output, use of BNL for a table is signified when the Extra value contains Using join
buffer (Block Nested Loop) and the type value is ALL, index, or range.

Some cases involving the combination of one or more subqueries with one or more left joins, particularly
those returning many rows, may use BNL even though it is not ideal in such instances. This is a known
issue which is fixed in MySQL 8.0. If upgrading MySQL is not immediately feasible for you, you may
wish to disable BNL in the meantime by setting optimizer_switch='block_nested_loop=off' or
employing the NO_BNL optimizer hint to let the optimizer choose a better plan, using one or more index
hints (see Section 8.9.4, “Index Hints”), or some combination of these, to improve the performance of such
queries.

For information about semijoin strategies, see Section 8.2.2.1, “Optimizing Subqueries, Derived Tables,
and View References with Semijoin Transformations”

Batched Key Access Joins

MySQL implements a method of joining tables called the Batched Key Access (BKA) join algorithm. BKA
can be applied when there is an index access to the table produced by the second join operand. Like the
BNL join algorithm, the BKA join algorithm employs a join buffer to accumulate the interesting columns of
the rows produced by the first operand of the join operation. Then the BKA algorithm builds keys to access
the table to be joined for all rows in the buffer and submits these keys in a batch to the database engine
for index lookups. The keys are submitted to the engine through the Multi-Range Read (MRR) interface
(see Section 8.2.1.10, “Multi-Range Read Optimization”). After submission of the keys, the MRR engine
functions perform lookups in the index in an optimal way, fetching the rows of the joined table found by
these keys, and starts feeding the BKA join algorithm with matching rows. Each matching row is coupled
with a reference to a row in the join buffer.

When BKA is used, the value of join_buffer_size defines how large the batch of keys is in each
request to the storage engine. The larger the buffer, the more sequential access is made to the right hand
table of a join operation, which can significantly improve performance.

For BKA to be used, the batched_key_access flag of the optimizer_switch system variable must be
set to on. BKA uses MRR, so the mrr flag must also be on. Currently, the cost estimation for MRR is too
pessimistic. Hence, it is also necessary for mrr_cost_based to be off for BKA to be used. The following
setting enables BKA:

mysql> SET optimizer_switch='mrr=on,mrr_cost_based=off,batched_key_access=on';

There are two scenarios by which MRR functions execute:

• The first scenario is used for conventional disk-based storage engines such as InnoDB and MyISAM.
For these engines, usually the keys for all rows from the join buffer are submitted to the MRR interface
at once. Engine-specific MRR functions perform index lookups for the submitted keys, get row IDs (or
primary keys) from them, and then fetch rows for all these selected row IDs one by one by request from
BKA algorithm. Every row is returned with an association reference that enables access to the matched
row in the join buffer. The rows are fetched by the MRR functions in an optimal way: They are fetched in
the row ID (primary key) order. This improves performance because reads are in disk order rather than
random order.

• The second scenario is used for remote storage engines such as NDB. A package of keys for a portion
of rows from the join buffer, together with their associations, is sent by a MySQL Server (SQL node) to

1472

Optimizing SELECT Statements

NDB Cluster data nodes. In return, the SQL node receives a package (or several packages) of matching
rows coupled with corresponding associations. The BKA join algorithm takes these rows and builds new
joined rows. Then a new set of keys is sent to the data nodes and the rows from the returned packages
are used to build new joined rows. The process continues until the last keys from the join buffer are
sent to the data nodes, and the SQL node has received and joined all rows matching these keys. This
improves performance because fewer key-bearing packages sent by the SQL node to the data nodes
means fewer round trips between it and the data nodes to perform the join operation.

With the first scenario, a portion of the join buffer is reserved to store row IDs (primary keys) selected by
index lookups and passed as a parameter to the MRR functions.

There is no special buffer to store keys built for rows from the join buffer. Instead, a function that builds the
key for the next row in the buffer is passed as a parameter to the MRR functions.

In EXPLAIN output, use of BKA for a table is signified when the Extra value contains Using join
buffer (Batched Key Access) and the type value is ref or eq_ref.

Optimizer Hints for Block Nested-Loop and Batched Key Access Algorithms

In addition to using the optimizer_switch system variable to control optimizer use of the BNL and BKA
algorithms session-wide, MySQL supports optimizer hints to influence the optimizer on a per-statement
basis. See Section 8.9.3, “Optimizer Hints”.

To use a BNL or BKA hint to enable join buffering for any inner table of an outer join, join buffering must be
enabled for all inner tables of the outer join.

8.2.1.12 Condition Filtering

In join processing, prefix rows are those rows passed from one table in a join to the next. In general, the
optimizer attempts to put tables with low prefix counts early in the join order to keep the number of row
combinations from increasing rapidly. To the extent that the optimizer can use information about conditions
on rows selected from one table and passed to the next, the more accurately it can compute row estimates
and choose the best execution plan.

Without condition filtering, the prefix row count for a table is based on the estimated number of rows
selected by the WHERE clause according to whichever access method the optimizer chooses. Condition
filtering enables the optimizer to use other relevant conditions in the WHERE clause not taken into account
by the access method, and thus improve its prefix row count estimates. For example, even though there
might be an index-based access method that can be used to select rows from the current table in a join,
there might also be additional conditions for the table in the WHERE clause that can filter (further restrict) the
estimate for qualifying rows passed to the next table.

A condition contributes to the filtering estimate only if:

• It refers to the current table.

• It depends on a constant value or values from earlier tables in the join sequence.

• It was not already taken into account by the access method.

In EXPLAIN output, the rows column indicates the row estimate for the chosen access method, and
the filtered column reflects the effect of condition filtering. filtered values are expressed as
percentages. The maximum value is 100, which means no filtering of rows occurred. Values decreasing
from 100 indicate increasing amounts of filtering.

The prefix row count (the number of rows estimated to be passed from the current table in a join to the
next) is the product of the rows and filtered values. That is, the prefix row count is the estimated row

1473

Optimizing SELECT Statements

count, reduced by the estimated filtering effect. For example, if rows is 1000 and filtered is 20%,
condition filtering reduces the estimated row count of 1000 to a prefix row count of 1000 × 20% = 1000 × .2
= 200.

Consider the following query:

SELECT *
 FROM employee JOIN department ON employee.dept_no = department.dept_no
 WHERE employee.first_name = 'John'
 AND employee.hire_date BETWEEN '2018-01-01' AND '2018-06-01';

Suppose that the data set has these characteristics:

• The employee table has 1024 rows.

• The department table has 12 rows.

• Both tables have an index on dept_no.

• The employee table has an index on first_name.

• 8 rows satisfy this condition on employee.first_name:

employee.first_name = 'John'

• 150 rows satisfy this condition on employee.hire_date:

employee.hire_date BETWEEN '2018-01-01' AND '2018-06-01'

• 1 row satisfies both conditions:

employee.first_name = 'John'
AND employee.hire_date BETWEEN '2018-01-01' AND '2018-06-01'

Without condition filtering, EXPLAIN produces output like this:

+----+------------+--------+------------------+---------+---------+------+----------+
| id | table | type | possible_keys | key | ref | rows | filtered |
+----+------------+--------+------------------+---------+---------+------+----------+
| 1 | employee | ref | name,h_date,dept | name | const | 8 | 100.00 |
| 1 | department | eq_ref | PRIMARY | PRIMARY | dept_no | 1 | 100.00 |
+----+------------+--------+------------------+---------+---------+------+----------+

For employee, the access method on the name index picks up the 8 rows that match a name of 'John'.
No filtering is done (filtered is 100%), so all rows are prefix rows for the next table: The prefix row count
is rows × filtered = 8 × 100% = 8.

With condition filtering, the optimizer additionally takes into account conditions from the WHERE clause not
taken into account by the access method. In this case, the optimizer uses heuristics to estimate a filtering
effect of 16.31% for the BETWEEN condition on employee.hire_date. As a result, EXPLAIN produces
output like this:

+----+------------+--------+------------------+---------+---------+------+----------+
| id | table | type | possible_keys | key | ref | rows | filtered |
+----+------------+--------+------------------+---------+---------+------+----------+
| 1 | employee | ref | name,h_date,dept | name | const | 8 | 16.31 |
| 1 | department | eq_ref | PRIMARY | PRIMARY | dept_no | 1 | 100.00 |
+----+------------+--------+------------------+---------+---------+------+----------+

Now the prefix row count is rows × filtered = 8 × 16.31% = 1.3, which more closely reflects actual data
set.

1474

Optimizing SELECT Statements

Normally, the optimizer does not calculate the condition filtering effect (prefix row count reduction) for the
last joined table because there is no next table to pass rows to. An exception occurs for EXPLAIN: To
provide more information, the filtering effect is calculated for all joined tables, including the last one.

To control whether the optimizer considers additional filtering conditions, use the
condition_fanout_filter flag of the optimizer_switch system variable (see Section 8.9.2,
“Switchable Optimizations”). This flag is enabled by default but can be disabled to suppress condition
filtering (for example, if a particular query is found to yield better performance without it).

If the optimizer overestimates the effect of condition filtering, performance may be worse than if condition
filtering is not used. In such cases, these techniques may help:

• If a column is not indexed, index it so that the optimizer has some information about the distribution of
column values and can improve its row estimates.

• Change the join order. Ways to accomplish this include join-order optimizer hints (see Section 8.9.3,
“Optimizer Hints”), STRAIGHT_JOIN immediately following the SELECT, and the STRAIGHT_JOIN join
operator.

• Disable condition filtering for the session:

SET optimizer_switch = 'condition_fanout_filter=off';

8.2.1.13 IS NULL Optimization

MySQL can perform the same optimization on col_name IS NULL that it can use for col_name =
constant_value. For example, MySQL can use indexes and ranges to search for NULL with IS NULL.

Examples:

SELECT * FROM tbl_name WHERE key_col IS NULL;

SELECT * FROM tbl_name WHERE key_col <=> NULL;

SELECT * FROM tbl_name
 WHERE key_col=const1 OR key_col=const2 OR key_col IS NULL;

If a WHERE clause includes a col_name IS NULL condition for a column that is declared as NOT NULL,
that expression is optimized away. This optimization does not occur in cases when the column might
produce NULL anyway (for example, if it comes from a table on the right side of a LEFT JOIN).

MySQL can also optimize the combination col_name = expr OR col_name IS NULL, a form that is
common in resolved subqueries. EXPLAIN shows ref_or_null when this optimization is used.

This optimization can handle one IS NULL for any key part.

Some examples of queries that are optimized, assuming that there is an index on columns a and b of table
t2:

SELECT * FROM t1 WHERE t1.a=expr OR t1.a IS NULL;

SELECT * FROM t1, t2 WHERE t1.a=t2.a OR t2.a IS NULL;

SELECT * FROM t1, t2
 WHERE (t1.a=t2.a OR t2.a IS NULL) AND t2.b=t1.b;

SELECT * FROM t1, t2
 WHERE t1.a=t2.a AND (t2.b=t1.b OR t2.b IS NULL);

SELECT * FROM t1, t2
 WHERE (t1.a=t2.a AND t2.a IS NULL AND ...)

1475

Optimizing SELECT Statements

 OR (t1.a=t2.a AND t2.a IS NULL AND ...);

ref_or_null works by first doing a read on the reference key, and then a separate search for rows with a
NULL key value.

The optimization can handle only one IS NULL level. In the following query, MySQL uses key lookups only
on the expression (t1.a=t2.a AND t2.a IS NULL) and is not able to use the key part on b:

SELECT * FROM t1, t2
 WHERE (t1.a=t2.a AND t2.a IS NULL)
 OR (t1.b=t2.b AND t2.b IS NULL);

8.2.1.14 ORDER BY Optimization

This section describes when MySQL can use an index to satisfy an ORDER BY clause, the filesort
operation used when an index cannot be used, and execution plan information available from the optimizer
about ORDER BY.

An ORDER BY with and without LIMIT may return rows in different orders, as discussed in
Section 8.2.1.17, “LIMIT Query Optimization”.

• Use of Indexes to Satisfy ORDER BY

• Use of filesort to Satisfy ORDER BY

• Influencing ORDER BY Optimization

• ORDER BY Execution Plan Information Available

Use of Indexes to Satisfy ORDER BY

In some cases, MySQL may use an index to satisfy an ORDER BY clause and avoid the extra sorting
involved in performing a filesort operation.

The index may also be used even if the ORDER BY does not match the index exactly, as long as all unused
portions of the index and all extra ORDER BY columns are constants in the WHERE clause. If the index does
not contain all columns accessed by the query, the index is used only if index access is cheaper than other
access methods.

Assuming that there is an index on (key_part1, key_part2), the following queries may use the index
to resolve the ORDER BY part. Whether the optimizer actually does so depends on whether reading the
index is more efficient than a table scan if columns not in the index must also be read.

• In this query, the index on (key_part1, key_part2) enables the optimizer to avoid sorting:

SELECT * FROM t1
 ORDER BY key_part1, key_part2;

However, the query uses SELECT *, which may select more columns than key_part1 and
key_part2. In that case, scanning an entire index and looking up table rows to find columns not in
the index may be more expensive than scanning the table and sorting the results. If so, the optimizer is
not likely to use the index. If SELECT * selects only the index columns, the index is used and sorting
avoided.

If t1 is an InnoDB table, the table primary key is implicitly part of the index, and the index can be used
to resolve the ORDER BY for this query:

SELECT pk, key_part1, key_part2 FROM t1
 ORDER BY key_part1, key_part2;

1476

Optimizing SELECT Statements

• In this query, key_part1 is constant, so all rows accessed through the index are in key_part2 order,
and an index on (key_part1, key_part2) avoids sorting if the WHERE clause is selective enough to
make an index range scan cheaper than a table scan:

SELECT * FROM t1
 WHERE key_part1 = constant
 ORDER BY key_part2;

• In the next two queries, whether the index is used is similar to the same queries without DESC shown
previously:

SELECT * FROM t1
 ORDER BY key_part1 DESC, key_part2 DESC;

SELECT * FROM t1
 WHERE key_part1 = constant
 ORDER BY key_part2 DESC;

• In the next two queries, key_part1 is compared to a constant. The index is used if the WHERE clause is
selective enough to make an index range scan cheaper than a table scan:

SELECT * FROM t1
 WHERE key_part1 > constant
 ORDER BY key_part1 ASC;

SELECT * FROM t1
 WHERE key_part1 < constant
 ORDER BY key_part1 DESC;

• In the next query, the ORDER BY does not name key_part1, but all rows selected have a constant
key_part1 value, so the index can still be used:

SELECT * FROM t1
 WHERE key_part1 = constant1 AND key_part2 > constant2
 ORDER BY key_part2;

In some cases, MySQL cannot use indexes to resolve the ORDER BY, although it may still use indexes to
find the rows that match the WHERE clause. Examples:

• The query uses ORDER BY on different indexes:

SELECT * FROM t1 ORDER BY key1, key2;

• The query uses ORDER BY on nonconsecutive parts of an index:

SELECT * FROM t1 WHERE key2=constant ORDER BY key1_part1, key1_part3;

• The query mixes ASC and DESC:

SELECT * FROM t1 ORDER BY key_part1 DESC, key_part2 ASC;

• The index used to fetch the rows differs from the one used in the ORDER BY:

SELECT * FROM t1 WHERE key2=constant ORDER BY key1;

• The query uses ORDER BY with an expression that includes terms other than the index column name:

SELECT * FROM t1 ORDER BY ABS(key);
SELECT * FROM t1 ORDER BY -key;

• The query joins many tables, and the columns in the ORDER BY are not all from the first nonconstant
table that is used to retrieve rows. (This is the first table in the EXPLAIN output that does not have a
const join type.)

1477

Optimizing SELECT Statements

• The query has different ORDER BY and GROUP BY expressions.

• There is an index on only a prefix of a column named in the ORDER BY clause. In this case, the index
cannot be used to fully resolve the sort order. For example, if only the first 10 bytes of a CHAR(20)
column are indexed, the index cannot distinguish values past the 10th byte and a filesort is needed.

• The index does not store rows in order. For example, this is true for a HASH index in a MEMORY table.

Availability of an index for sorting may be affected by the use of column aliases. Suppose that the column
t1.a is indexed. In this statement, the name of the column in the select list is a. It refers to t1.a, as does
the reference to a in the ORDER BY, so the index on t1.a can be used:

SELECT a FROM t1 ORDER BY a;

In this statement, the name of the column in the select list is also a, but it is the alias name. It refers to
ABS(a), as does the reference to a in the ORDER BY, so the index on t1.a cannot be used:

SELECT ABS(a) AS a FROM t1 ORDER BY a;

In the following statement, the ORDER BY refers to a name that is not the name of a column in the select
list. But there is a column in t1 named a, so the ORDER BY refers to t1.a and the index on t1.a can be
used. (The resulting sort order may be completely different from the order for ABS(a), of course.)

SELECT ABS(a) AS b FROM t1 ORDER BY a;

By default, MySQL sorts GROUP BY col1, col2, ... queries as if you also included ORDER BY
col1, col2, ... in the query. If you include an explicit ORDER BY clause that contains the same
column list, MySQL optimizes it away without any speed penalty, although the sorting still occurs.

If a query includes GROUP BY but you want to avoid the overhead of sorting the result, you can suppress
sorting by specifying ORDER BY NULL. For example:

INSERT INTO foo
SELECT a, COUNT(*) FROM bar GROUP BY a ORDER BY NULL;

The optimizer may still choose to use sorting to implement grouping operations. ORDER BY NULL
suppresses sorting of the result, not prior sorting done by grouping operations to determine the result.

Note

GROUP BY implicitly sorts by default (that is, in the absence of ASC or DESC
designators for GROUP BY columns). However, relying on implicit GROUP BY sorting
(that is, sorting in the absence of ASC or DESC designators) or explicit sorting
for GROUP BY (that is, by using explicit ASC or DESC designators for GROUP BY
columns) is deprecated. To produce a given sort order, provide an ORDER BY
clause.

Use of filesort to Satisfy ORDER BY

If an index cannot be used to satisfy an ORDER BY clause, MySQL performs a filesort operation that
reads table rows and sorts them. A filesort constitutes an extra sorting phase in query execution.

To obtain memory for filesort operations, the optimizer allocates a fixed amount of
sort_buffer_size bytes up front. Individual sessions can change the session value of this variable as
desired to avoid excessive memory use, or to allocate more memory as necessary.

A filesort operation uses temporary disk files as necessary if the result set is too large to fit in memory.
Some types of queries are particularly suited to completely in-memory filesort operations. For example,

1478

Optimizing SELECT Statements

the optimizer can use filesort to efficiently handle in memory, without temporary files, the ORDER BY
operation for queries (and subqueries) of the following form:

SELECT ... FROM single_table ... ORDER BY non_index_column [DESC] LIMIT [M,]N;

Such queries are common in web applications that display only a few rows from a larger result set.
Examples:

SELECT col1, ... FROM t1 ... ORDER BY name LIMIT 10;
SELECT col1, ... FROM t1 ... ORDER BY RAND() LIMIT 15;

Influencing ORDER BY Optimization

For slow ORDER BY queries for which filesort is not used, try lowering the
max_length_for_sort_data system variable to a value that is appropriate to trigger a filesort. (A
symptom of setting the value of this variable too high is a combination of high disk activity and low CPU
activity.)

To increase ORDER BY speed, check whether you can get MySQL to use indexes rather than an extra
sorting phase. If this is not possible, try the following strategies:

• Increase the sort_buffer_size variable value. Ideally, the value should be large enough for the
entire result set to fit in the sort buffer (to avoid writes to disk and merge passes), but at minimum the
value must be large enough to accommodate 15 tuples. (Up to 15 temporary disk files are merged and
there must be room in memory for at least one tuple per file.)

Take into account that the size of column values stored in the sort buffer is affected by the
max_sort_length system variable value. For example, if tuples store values of long string columns
and you increase the value of max_sort_length, the size of sort buffer tuples increases as well and
may require you to increase sort_buffer_size. For column values calculated as a result of string
expressions (such as those that invoke a string-valued function), the filesort algorithm cannot tell the
maximum length of expression values, so it must allocate max_sort_length bytes for each tuple.

To monitor the number of merge passes (to merge temporary files), check the Sort_merge_passes
status variable.

• Increase the read_rnd_buffer_size variable value so that more rows are read at a time.

• Change the tmpdir system variable to point to a dedicated file system with large amounts of free space.
The variable value can list several paths that are used in round-robin fashion; you can use this feature
to spread the load across several directories. Separate the paths by colon characters (:) on Unix and
semicolon characters (;) on Windows. The paths should name directories in file systems located on
different physical disks, not different partitions on the same disk.

ORDER BY Execution Plan Information Available

With EXPLAIN (see Section 8.8.1, “Optimizing Queries with EXPLAIN”), you can check whether MySQL
can use indexes to resolve an ORDER BY clause:

• If the Extra column of EXPLAIN output does not contain Using filesort, the index is used and a
filesort is not performed.

• If the Extra column of EXPLAIN output contains Using filesort, the index is not used and a
filesort is performed.

In addition, if a filesort is performed, optimizer trace output includes a filesort_summary block. For
example:

1479

Optimizing SELECT Statements

"filesort_summary": {
 "rows": 100,
 "examined_rows": 100,
 "number_of_tmp_files": 0,
 "sort_buffer_size": 25192,
 "sort_mode": "<sort_key, packed_additional_fields>"
}

The sort_mode value provides information about the contents of tuples in the sort buffer:

• <sort_key, rowid>: This indicates that sort buffer tuples are pairs that contain the sort key value and
row ID of the original table row. Tuples are sorted by sort key value and the row ID is used to read the
row from the table.

• <sort_key, additional_fields>: This indicates that sort buffer tuples contain the sort key value
and columns referenced by the query. Tuples are sorted by sort key value and column values are read
directly from the tuple.

• <sort_key, packed_additional_fields>: Like the previous variant, but the additional columns
are packed tightly together instead of using a fixed-length encoding.

EXPLAIN does not distinguish whether the optimizer does or does not perform a filesort
in memory. Use of an in-memory filesort can be seen in optimizer trace output. Look for
filesort_priority_queue_optimization. For information about the optimizer trace, see
Section 8.15, “Tracing the Optimizer”.

8.2.1.15 GROUP BY Optimization

The most general way to satisfy a GROUP BY clause is to scan the whole table and create a new temporary
table where all rows from each group are consecutive, and then use this temporary table to discover
groups and apply aggregate functions (if any). In some cases, MySQL is able to do much better than that
and avoid creation of temporary tables by using index access.

The most important preconditions for using indexes for GROUP BY are that all GROUP BY columns
reference attributes from the same index, and that the index stores its keys in order (as is true, for
example, for a BTREE index, but not for a HASH index). Whether use of temporary tables can be replaced
by index access also depends on which parts of an index are used in a query, the conditions specified for
these parts, and the selected aggregate functions.

There are two ways to execute a GROUP BY query through index access, as detailed in the following
sections. The first method applies the grouping operation together with all range predicates (if any). The
second method first performs a range scan, and then groups the resulting tuples.

In MySQL, GROUP BY is used for sorting, so the server may also apply ORDER BY optimizations to
grouping. However, relying on implicit or explicit GROUP BY sorting is deprecated. See Section 8.2.1.14,
“ORDER BY Optimization”.

• Loose Index Scan

• Tight Index Scan

Loose Index Scan

The most efficient way to process GROUP BY is when an index is used to directly retrieve the grouping
columns. With this access method, MySQL uses the property of some index types that the keys are
ordered (for example, BTREE). This property enables use of lookup groups in an index without having
to consider all keys in the index that satisfy all WHERE conditions. This access method considers only a
fraction of the keys in an index, so it is called a Loose Index Scan. When there is no WHERE clause, a

1480

Optimizing SELECT Statements

Loose Index Scan reads as many keys as the number of groups, which may be a much smaller number
than that of all keys. If the WHERE clause contains range predicates (see the discussion of the range join
type in Section 8.8.1, “Optimizing Queries with EXPLAIN”), a Loose Index Scan looks up the first key of
each group that satisfies the range conditions, and again reads the smallest possible number of keys. This
is possible under the following conditions:

• The query is over a single table.

• The GROUP BY names only columns that form a leftmost prefix of the index and no other columns. (If,
instead of GROUP BY, the query has a DISTINCT clause, all distinct attributes refer to columns that form
a leftmost prefix of the index.) For example, if a table t1 has an index on (c1,c2,c3), Loose Index
Scan is applicable if the query has GROUP BY c1, c2. It is not applicable if the query has GROUP BY
c2, c3 (the columns are not a leftmost prefix) or GROUP BY c1, c2, c4 (c4 is not in the index).

• The only aggregate functions used in the select list (if any) are MIN() and MAX(), and all of them refer
to the same column. The column must be in the index and must immediately follow the columns in the
GROUP BY.

• Any other parts of the index than those from the GROUP BY referenced in the query must be constants
(that is, they must be referenced in equalities with constants), except for the argument of MIN() or
MAX() functions.

• For columns in the index, full column values must be indexed, not just a prefix. For example, with c1
VARCHAR(20), INDEX (c1(10)), the index uses only a prefix of c1 values and cannot be used for
Loose Index Scan.

If Loose Index Scan is applicable to a query, the EXPLAIN output shows Using index for group-by
in the Extra column.

Assume that there is an index idx(c1,c2,c3) on table t1(c1,c2,c3,c4). The Loose Index Scan
access method can be used for the following queries:

SELECT c1, c2 FROM t1 GROUP BY c1, c2;
SELECT DISTINCT c1, c2 FROM t1;
SELECT c1, MIN(c2) FROM t1 GROUP BY c1;
SELECT c1, c2 FROM t1 WHERE c1 < const GROUP BY c1, c2;
SELECT MAX(c3), MIN(c3), c1, c2 FROM t1 WHERE c2 > const GROUP BY c1, c2;
SELECT c2 FROM t1 WHERE c1 < const GROUP BY c1, c2;
SELECT c1, c2 FROM t1 WHERE c3 = const GROUP BY c1, c2;

The following queries cannot be executed with this quick select method, for the reasons given:

• There are aggregate functions other than MIN() or MAX():

SELECT c1, SUM(c2) FROM t1 GROUP BY c1;

• The columns in the GROUP BY clause do not form a leftmost prefix of the index:

SELECT c1, c2 FROM t1 GROUP BY c2, c3;

• The query refers to a part of a key that comes after the GROUP BY part, and for which there is no
equality with a constant:

SELECT c1, c3 FROM t1 GROUP BY c1, c2;

Were the query to include WHERE c3 = const, Loose Index Scan could be used.

The Loose Index Scan access method can be applied to other forms of aggregate function references in
the select list, in addition to the MIN() and MAX() references already supported:

1481

Optimizing SELECT Statements

• AVG(DISTINCT), SUM(DISTINCT), and COUNT(DISTINCT) are supported. AVG(DISTINCT)
and SUM(DISTINCT) take a single argument. COUNT(DISTINCT) can have more than one column
argument.

• There must be no GROUP BY or DISTINCT clause in the query.

• The Loose Index Scan limitations described previously still apply.

Assume that there is an index idx(c1,c2,c3) on table t1(c1,c2,c3,c4). The Loose Index Scan
access method can be used for the following queries:

SELECT COUNT(DISTINCT c1), SUM(DISTINCT c1) FROM t1;

SELECT COUNT(DISTINCT c1, c2), COUNT(DISTINCT c2, c1) FROM t1;

Tight Index Scan

A Tight Index Scan may be either a full index scan or a range index scan, depending on the query
conditions.

When the conditions for a Loose Index Scan are not met, it still may be possible to avoid creation of
temporary tables for GROUP BY queries. If there are range conditions in the WHERE clause, this method
reads only the keys that satisfy these conditions. Otherwise, it performs an index scan. Because this
method reads all keys in each range defined by the WHERE clause, or scans the whole index if there are
no range conditions, it is called a Tight Index Scan. With a Tight Index Scan, the grouping operation is
performed only after all keys that satisfy the range conditions have been found.

For this method to work, it is sufficient that there be a constant equality condition for all columns in a query
referring to parts of the key coming before or in between parts of the GROUP BY key. The constants from
the equality conditions fill in any “gaps” in the search keys so that it is possible to form complete prefixes
of the index. These index prefixes then can be used for index lookups. If the GROUP BY result requires
sorting, and it is possible to form search keys that are prefixes of the index, MySQL also avoids extra
sorting operations because searching with prefixes in an ordered index already retrieves all the keys in
order.

Assume that there is an index idx(c1,c2,c3) on table t1(c1,c2,c3,c4). The following queries do
not work with the Loose Index Scan access method described previously, but still work with the Tight Index
Scan access method.

• There is a gap in the GROUP BY, but it is covered by the condition c2 = 'a':

SELECT c1, c2, c3 FROM t1 WHERE c2 = 'a' GROUP BY c1, c3;

• The GROUP BY does not begin with the first part of the key, but there is a condition that provides a
constant for that part:

SELECT c1, c2, c3 FROM t1 WHERE c1 = 'a' GROUP BY c2, c3;

8.2.1.16 DISTINCT Optimization

DISTINCT combined with ORDER BY needs a temporary table in many cases.

Because DISTINCT may use GROUP BY, learn how MySQL works with columns in ORDER BY or HAVING
clauses that are not part of the selected columns. See Section 12.19.3, “MySQL Handling of GROUP BY”.

In most cases, a DISTINCT clause can be considered as a special case of GROUP BY. For example, the
following two queries are equivalent:

1482

Optimizing SELECT Statements

SELECT DISTINCT c1, c2, c3 FROM t1
WHERE c1 > const;

SELECT c1, c2, c3 FROM t1
WHERE c1 > const GROUP BY c1, c2, c3;

Due to this equivalence, the optimizations applicable to GROUP BY queries can be also applied to queries
with a DISTINCT clause. Thus, for more details on the optimization possibilities for DISTINCT queries, see
Section 8.2.1.15, “GROUP BY Optimization”.

When combining LIMIT row_count with DISTINCT, MySQL stops as soon as it finds row_count
unique rows.

If you do not use columns from all tables named in a query, MySQL stops scanning any unused tables as
soon as it finds the first match. In the following case, assuming that t1 is used before t2 (which you can
check with EXPLAIN), MySQL stops reading from t2 (for any particular row in t1) when it finds the first
row in t2:

SELECT DISTINCT t1.a FROM t1, t2 where t1.a=t2.a;

8.2.1.17 LIMIT Query Optimization

If you need only a specified number of rows from a result set, use a LIMIT clause in the query, rather than
fetching the whole result set and throwing away the extra data.

MySQL sometimes optimizes a query that has a LIMIT row_count clause and no HAVING clause:

• If you select only a few rows with LIMIT, MySQL uses indexes in some cases when normally it would
prefer to do a full table scan.

• If you combine LIMIT row_count with ORDER BY, MySQL stops sorting as soon as it has found the
first row_count rows of the sorted result, rather than sorting the entire result. If ordering is done by
using an index, this is very fast. If a filesort must be done, all rows that match the query without the
LIMIT clause are selected, and most or all of them are sorted, before the first row_count are found.
After the initial rows have been found, MySQL does not sort any remainder of the result set.

One manifestation of this behavior is that an ORDER BY query with and without LIMIT may return rows
in different order, as described later in this section.

• If you combine LIMIT row_count with DISTINCT, MySQL stops as soon as it finds row_count
unique rows.

• In some cases, a GROUP BY can be resolved by reading the index in order (or doing a sort on the index),
then calculating summaries until the index value changes. In this case, LIMIT row_count does not
calculate any unnecessary GROUP BY values.

• As soon as MySQL has sent the required number of rows to the client, it aborts the query unless you
are using SQL_CALC_FOUND_ROWS. In that case, the number of rows can be retrieved with SELECT
FOUND_ROWS(). See Section 12.15, “Information Functions”.

• LIMIT 0 quickly returns an empty set. This can be useful for checking the validity of a query. It can also
be employed to obtain the types of the result columns within applications that use a MySQL API that
makes result set metadata available. With the mysql client program, you can use the --column-type-
info option to display result column types.

• If the server uses temporary tables to resolve a query, it uses the LIMIT row_count clause to
calculate how much space is required.

1483

Optimizing SELECT Statements

• If an index is not used for ORDER BY but a LIMIT clause is also present, the optimizer may be able to
avoid using a merge file and sort the rows in memory using an in-memory filesort operation.

If multiple rows have identical values in the ORDER BY columns, the server is free to return those rows in
any order, and may do so differently depending on the overall execution plan. In other words, the sort order
of those rows is nondeterministic with respect to the nonordered columns.

One factor that affects the execution plan is LIMIT, so an ORDER BY query with and without LIMIT
may return rows in different orders. Consider this query, which is sorted by the category column but
nondeterministic with respect to the id and rating columns:

mysql> SELECT * FROM ratings ORDER BY category;
+----+----------+--------+
| id | category | rating |
+----+----------+--------+
1	1	4.5
5	1	3.2
3	2	3.7
4	2	3.5
6	2	3.5
2	3	5.0
7	3	2.7
+----+----------+--------+

Including LIMIT may affect order of rows within each category value. For example, this is a valid query
result:

mysql> SELECT * FROM ratings ORDER BY category LIMIT 5;
+----+----------+--------+
| id | category | rating |
+----+----------+--------+
1	1	4.5
5	1	3.2
4	2	3.5
3	2	3.7
6	2	3.5
+----+----------+--------+

In each case, the rows are sorted by the ORDER BY column, which is all that is required by the SQL
standard.

If it is important to ensure the same row order with and without LIMIT, include additional columns in the
ORDER BY clause to make the order deterministic. For example, if id values are unique, you can make
rows for a given category value appear in id order by sorting like this:

mysql> SELECT * FROM ratings ORDER BY category, id;
+----+----------+--------+
| id | category | rating |
+----+----------+--------+
1	1	4.5
5	1	3.2
3	2	3.7
4	2	3.5
6	2	3.5
2	3	5.0
7	3	2.7
+----+----------+--------+

mysql> SELECT * FROM ratings ORDER BY category, id LIMIT 5;
+----+----------+--------+
| id | category | rating |
+----+----------+--------+
| 1 | 1 | 4.5 |
| 5 | 1 | 3.2 |

1484

Optimizing SELECT Statements

3	2	3.7
4	2	3.5
6	2	3.5
+----+----------+--------+

For a query with an ORDER BY or GROUP BY and a LIMIT clause, the optimizer tries to choose an ordered
index by default when it appears doing so would speed up query execution. Prior to MySQL 5.7.33, there
was no way to override this behavior, even in cases where using some other optimization might be faster.
Beginning with MySQL 5.7.33, it is possible to turn off this optimization by setting the optimizer_switch
system variable's prefer_ordering_index flag to off.

Example: First we create and populate a table t as shown here:

Create and populate a table t:

mysql> CREATE TABLE t (
 -> id1 BIGINT NOT NULL,
 -> id2 BIGINT NOT NULL,
 -> c1 VARCHAR(50) NOT NULL,
 -> c2 VARCHAR(50) NOT NULL,
 -> PRIMARY KEY (id1),
 -> INDEX i (id2, c1)
 ->);

[Insert some rows into table t - not shown]

Verify that the prefer_ordering_index flag is enabled:

mysql> SELECT @@optimizer_switch LIKE '%prefer_ordering_index=on%';
+--+
| @@optimizer_switch LIKE '%prefer_ordering_index=on%' |
+--+
| 1 |
+--+

Since the following query has a LIMIT clause, we expect it to use an ordered index, if possible. In this
case, as we can see from the EXPLAIN output, it uses the table's primary key.

mysql> EXPLAIN SELECT c2 FROM t
 -> WHERE id2 > 3
 -> ORDER BY id1 ASC LIMIT 2\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: t
 partitions: NULL
 type: index
possible_keys: i
 key: PRIMARY
 key_len: 8
 ref: NULL
 rows: 2
 filtered: 70.00
 Extra: Using where

Now we disable the prefer_ordering_index flag, and re-run the same query; this time it uses the
index i (which includes the id2 column used in the WHERE clause), and a filesort:

mysql> SET optimizer_switch = "prefer_ordering_index=off";

mysql> EXPLAIN SELECT c2 FROM t
 -> WHERE id2 > 3
 -> ORDER BY id1 ASC LIMIT 2\G
*************************** 1. row ***************************
 id: 1

1485

Optimizing SELECT Statements

 select_type: SIMPLE
 table: t
 partitions: NULL
 type: range
possible_keys: i
 key: i
 key_len: 8
 ref: NULL
 rows: 14
 filtered: 100.00
 Extra: Using index condition; Using filesort

See also Section 8.9.2, “Switchable Optimizations”.

8.2.1.18 Function Call Optimization

MySQL functions are tagged internally as deterministic or nondeterministic. A function is nondeterministic
if, given fixed values for its arguments, it can return different results for different invocations. Examples of
nondeterministic functions: RAND(), UUID().

If a function is tagged nondeterministic, a reference to it in a WHERE clause is evaluated for every row
(when selecting from one table) or combination of rows (when selecting from a multiple-table join).

MySQL also determines when to evaluate functions based on types of arguments, whether the arguments
are table columns or constant values. A deterministic function that takes a table column as argument must
be evaluated whenever that column changes value.

Nondeterministic functions may affect query performance. For example, some optimizations may not be
available, or more locking might be required. The following discussion uses RAND() but applies to other
nondeterministic functions as well.

Suppose that a table t has this definition:

CREATE TABLE t (id INT NOT NULL PRIMARY KEY, col_a VARCHAR(100));

Consider these two queries:

SELECT * FROM t WHERE id = POW(1,2);
SELECT * FROM t WHERE id = FLOOR(1 + RAND() * 49);

Both queries appear to use a primary key lookup because of the equality comparison against the primary
key, but that is true only for the first of them:

• The first query always produces a maximum of one row because POW() with constant arguments is a
constant value and is used for index lookup.

• The second query contains an expression that uses the nondeterministic function RAND(), which is not
constant in the query but in fact has a new value for every row of table t. Consequently, the query reads
every row of the table, evaluates the predicate for each row, and outputs all rows for which the primary
key matches the random value. This might be zero, one, or multiple rows, depending on the id column
values and the values in the RAND() sequence.

The effects of nondeterminism are not limited to SELECT statements. This UPDATE statement uses a
nondeterministic function to select rows to be modified:

UPDATE t SET col_a = some_expr WHERE id = FLOOR(1 + RAND() * 49);

Presumably the intent is to update at most a single row for which the primary key matches the expression.
However, it might update zero, one, or multiple rows, depending on the id column values and the values in
the RAND() sequence.

1486

Optimizing SELECT Statements

The behavior just described has implications for performance and replication:

• Because a nondeterministic function does not produce a constant value, the optimizer cannot use
strategies that might otherwise be applicable, such as index lookups. The result may be a table scan.

• InnoDB might escalate to a range-key lock rather than taking a single row lock for one matching row.

• Updates that do not execute deterministically are unsafe for replication.

The difficulties stem from the fact that the RAND() function is evaluated once for every row of the table. To
avoid multiple function evaluations, use one of these techniques:

• Move the expression containing the nondeterministic function to a separate statement, saving the value
in a variable. In the original statement, replace the expression with a reference to the variable, which the
optimizer can treat as a constant value:

SET @keyval = FLOOR(1 + RAND() * 49);
UPDATE t SET col_a = some_expr WHERE id = @keyval;

• Assign the random value to a variable in a derived table. This technique causes the variable to be
assigned a value, once, prior to its use in the comparison in the WHERE clause:

SET optimizer_switch = 'derived_merge=off';
UPDATE t, (SELECT @keyval := FLOOR(1 + RAND() * 49)) AS dt
SET col_a = some_expr WHERE id = @keyval;

As mentioned previously, a nondeterministic expression in the WHERE clause might prevent optimizations
and result in a table scan. However, it may be possible to partially optimize the WHERE clause if other
expressions are deterministic. For example:

SELECT * FROM t WHERE partial_key=5 AND some_column=RAND();

If the optimizer can use partial_key to reduce the set of rows selected, RAND() is executed fewer
times, which diminishes the effect of nondeterminism on optimization.

8.2.1.19 Row Constructor Expression Optimization

Row constructors permit simultaneous comparisons of multiple values. For example, these two statements
are semantically equivalent:

SELECT * FROM t1 WHERE (column1,column2) = (1,1);
SELECT * FROM t1 WHERE column1 = 1 AND column2 = 1;

In addition, the optimizer handles both expressions the same way.

The optimizer is less likely to use available indexes if the row constructor columns do not cover the prefix
of an index. Consider the following table, which has a primary key on (c1, c2, c3):

CREATE TABLE t1 (
 c1 INT, c2 INT, c3 INT, c4 CHAR(100),
 PRIMARY KEY(c1,c2,c3)
);

In this query, the WHERE clause uses all columns in the index. However, the row constructor itself does not
cover an index prefix, with the result that the optimizer uses only c1 (key_len=4, the size of c1):

mysql> EXPLAIN SELECT * FROM t1
 WHERE c1=1 AND (c2,c3) > (1,1)\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE

1487

Optimizing SELECT Statements

 table: t1
 partitions: NULL
 type: ref
possible_keys: PRIMARY
 key: PRIMARY
 key_len: 4
 ref: const
 rows: 3
 filtered: 100.00
 Extra: Using where

In such cases, rewriting the row constructor expression using an equivalent nonconstructor expression
may result in more complete index use. For the given query, the row constructor and equivalent
nonconstructor expressions are:

(c2,c3) > (1,1)
c2 > 1 OR ((c2 = 1) AND (c3 > 1))

Rewriting the query to use the nonconstructor expression results in the optimizer using all three columns in
the index (key_len=12):

mysql> EXPLAIN SELECT * FROM t1
 WHERE c1 = 1 AND (c2 > 1 OR ((c2 = 1) AND (c3 > 1)))\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: t1
 partitions: NULL
 type: range
possible_keys: PRIMARY
 key: PRIMARY
 key_len: 12
 ref: NULL
 rows: 3
 filtered: 100.00
 Extra: Using where

Thus, for better results, avoid mixing row constructors with AND/OR expressions. Use one or the other.

Under certain conditions, the optimizer can apply the range access method to IN() expressions that have
row constructor arguments. See Range Optimization of Row Constructor Expressions.

8.2.1.20 Avoiding Full Table Scans

The output from EXPLAIN shows ALL in the type column when MySQL uses a full table scan to resolve a
query. This usually happens under the following conditions:

• The table is so small that it is faster to perform a table scan than to bother with a key lookup. This is
common for tables with fewer than 10 rows and a short row length.

• There are no usable restrictions in the ON or WHERE clause for indexed columns.

• You are comparing indexed columns with constant values and MySQL has calculated (based on the
index tree) that the constants cover too large a part of the table and that a table scan would be faster.
See Section 8.2.1.1, “WHERE Clause Optimization”.

• You are using a key with low cardinality (many rows match the key value) through another column. In
this case, MySQL assumes that by using the key it is likely to perform many key lookups and that a table
scan would be faster.

For small tables, a table scan often is appropriate and the performance impact is negligible. For large
tables, try the following techniques to avoid having the optimizer incorrectly choose a table scan:

1488

Optimizing Subqueries, Derived Tables, and View References

• Use ANALYZE TABLE tbl_name to update the key distributions for the scanned table. See
Section 13.7.2.1, “ANALYZE TABLE Statement”.

• Use FORCE INDEX for the scanned table to tell MySQL that table scans are very expensive compared to
using the given index:

SELECT * FROM t1, t2 FORCE INDEX (index_for_column)
 WHERE t1.col_name=t2.col_name;

See Section 8.9.4, “Index Hints”.

• Start mysqld with the --max-seeks-for-key=1000 option or use SET max_seeks_for_key=1000
to tell the optimizer to assume that no key scan causes more than 1,000 key seeks. See Section 5.1.7,
“Server System Variables”.

8.2.2 Optimizing Subqueries, Derived Tables, and View References

The MySQL query optimizer has different strategies available to evaluate subqueries:

• For IN (or =ANY) subqueries, the optimizer has these choices:

• Semijoin

• Materialization

• EXISTS strategy

• For NOT IN (or <>ALL) subqueries, the optimizer has these choices:

• Materialization

• EXISTS strategy

For derived tables, the optimizer has these choices (which also apply to view references):

• Merge the derived table into the outer query block

• Materialize the derived table to an internal temporary table

The following discussion provides more information about the preceding optimization strategies.

Note

A limitation on UPDATE and DELETE statements that use a subquery to modify a
single table is that the optimizer does not use semijoin or materialization subquery
optimizations. As a workaround, try rewriting them as multiple-table UPDATE and
DELETE statements that use a join rather than a subquery.

8.2.2.1 Optimizing Subqueries, Derived Tables, and View References with Semijoin
Transformations

A semijoin is a preparation-time transformation that enables multiple execution strategies such as table
pullout, duplicate weedout, first match, loose scan, and materialization. The optimizer uses semijoin
strategies to improve subquery execution, as described in this section.

For an inner join between two tables, the join returns a row from one table as many times as there are
matches in the other table. But for some questions, the only information that matters is whether there is

1489

Optimizing Subqueries, Derived Tables, and View References

a match, not the number of matches. Suppose that there are tables named class and roster that list
classes in a course curriculum and class rosters (students enrolled in each class), respectively. To list the
classes that actually have students enrolled, you could use this join:

SELECT class.class_num, class.class_name
FROM class INNER JOIN roster
WHERE class.class_num = roster.class_num;

However, the result lists each class once for each enrolled student. For the question being asked, this is
unnecessary duplication of information.

Assuming that class_num is a primary key in the class table, duplicate suppression is possible by using
SELECT DISTINCT, but it is inefficient to generate all matching rows first only to eliminate duplicates later.

The same duplicate-free result can be obtained by using a subquery:

SELECT class_num, class_name
FROM class
WHERE class_num IN (SELECT class_num FROM roster);

Here, the optimizer can recognize that the IN clause requires the subquery to return only one instance of
each class number from the roster table. In this case, the query can use a semijoin; that is, an operation
that returns only one instance of each row in class that is matched by rows in roster.

Outer join and inner join syntax is permitted in the outer query specification, and table references may be
base tables, derived tables, or view references.

In MySQL, a subquery must satisfy these criteria to be handled as a semijoin:

• It must be an IN (or =ANY) subquery that appears at the top level of the WHERE or ON clause, possibly as
a term in an AND expression. For example:

SELECT ...
FROM ot1, ...
WHERE (oe1, ...) IN (SELECT ie1, ... FROM it1, ... WHERE ...);

Here, ot_i and it_i represent tables in the outer and inner parts of the query, and oe_i and ie_i
represent expressions that refer to columns in the outer and inner tables.

• It must be a single SELECT without UNION constructs.

• It must not contain a GROUP BY or HAVING clause.

• It must not be implicitly grouped (it must contain no aggregate functions).

• It must not have ORDER BY with LIMIT.

• The statement must not use the STRAIGHT_JOIN join type in the outer query.

• The STRAIGHT_JOIN modifier must not be present.

• The number of outer and inner tables together must be less than the maximum number of tables
permitted in a join.

The subquery may be correlated or uncorrelated. DISTINCT is permitted, as is LIMIT unless ORDER BY is
also used.

If a subquery meets the preceding criteria, MySQL converts it to a semijoin and makes a cost-based choice
from these strategies:

1490

Optimizing Subqueries, Derived Tables, and View References

• Convert the subquery to a join, or use table pullout and run the query as an inner join between subquery
tables and outer tables. Table pullout pulls a table out from the subquery to the outer query.

• Duplicate Weedout: Run the semijoin as if it was a join and remove duplicate records using a temporary
table.

• FirstMatch: When scanning the inner tables for row combinations and there are multiple instances of a
given value group, choose one rather than returning them all. This "shortcuts" scanning and eliminates
production of unnecessary rows.

• LooseScan: Scan a subquery table using an index that enables a single value to be chosen from each
subquery's value group.

• Materialize the subquery into an indexed temporary table that is used to perform a join, where the index
is used to remove duplicates. The index might also be used later for lookups when joining the temporary
table with the outer tables; if not, the table is scanned. For more information about materialization, see
Section 8.2.2.2, “Optimizing Subqueries with Materialization”.

Each of these strategies can be enabled or disabled using the following optimizer_switch system
variable flags:

• The semijoin flag controls whether semijoins are used.

• If semijoin is enabled, the firstmatch, loosescan, duplicateweedout, and materialization
flags enable finer control over the permitted semijoin strategies.

• If the duplicateweedout semijoin strategy is disabled, it is not used unless all other applicable
strategies are also disabled.

• If duplicateweedout is disabled, on occasion the optimizer may generate a query plan that is far from
optimal. This occurs due to heuristic pruning during greedy search, which can be avoided by setting
optimizer_prune_level=0.

These flags are enabled by default. See Section 8.9.2, “Switchable Optimizations”.

The optimizer minimizes differences in handling of views and derived tables. This affects queries that use
the STRAIGHT_JOIN modifier and a view with an IN subquery that can be converted to a semijoin. The
following query illustrates this because the change in processing causes a change in transformation, and
thus a different execution strategy:

CREATE VIEW v AS
SELECT *
FROM t1
WHERE a IN (SELECT b
 FROM t2);

SELECT STRAIGHT_JOIN *
FROM t3 JOIN v ON t3.x = v.a;

The optimizer first looks at the view and converts the IN subquery to a semijoin, then checks whether it is
possible to merge the view into the outer query. Because the STRAIGHT_JOIN modifier in the outer query
prevents semijoin, the optimizer refuses the merge, causing derived table evaluation using a materialized
table.

EXPLAIN output indicates the use of semijoin strategies as follows:

• Semijoined tables show up in the outer select. For extended EXPLAIN output, the text displayed
by a following SHOW WARNINGS shows the rewritten query, which displays the semijoin structure.
(See Section 8.8.3, “Extended EXPLAIN Output Format”.) From this you can get an idea about which

1491

Optimizing Subqueries, Derived Tables, and View References

tables were pulled out of the semijoin. If a subquery was converted to a semijoin, you can see that the
subquery predicate is gone and its tables and WHERE clause were merged into the outer query join list
and WHERE clause.

• Temporary table use for Duplicate Weedout is indicated by Start temporary and End temporary
in the Extra column. Tables that were not pulled out and are in the range of EXPLAIN output rows
covered by Start temporary and End temporary have their rowid in the temporary table.

• FirstMatch(tbl_name) in the Extra column indicates join shortcutting.

• LooseScan(m..n) in the Extra column indicates use of the LooseScan strategy. m and n are key part
numbers.

• Temporary table use for materialization is indicated by rows with a select_type value of
MATERIALIZED and rows with a table value of <subqueryN>.

8.2.2.2 Optimizing Subqueries with Materialization

The optimizer uses materialization to enable more efficient subquery processing. Materialization speeds up
query execution by generating a subquery result as a temporary table, normally in memory. The first time
MySQL needs the subquery result, it materializes that result into a temporary table. Any subsequent time
the result is needed, MySQL refers again to the temporary table. The optimizer may index the table with a
hash index to make lookups fast and inexpensive. The index contains unique values to eliminate duplicates
and make the table smaller.

Subquery materialization uses an in-memory temporary table when possible, falling back to on-disk
storage if the table becomes too large. See Section 8.4.4, “Internal Temporary Table Use in MySQL”.

If materialization is not used, the optimizer sometimes rewrites a noncorrelated subquery as a correlated
subquery. For example, the following IN subquery is noncorrelated (where_condition involves only
columns from t2 and not t1):

SELECT * FROM t1
WHERE t1.a IN (SELECT t2.b FROM t2 WHERE where_condition);

The optimizer might rewrite this as an EXISTS correlated subquery:

SELECT * FROM t1
WHERE EXISTS (SELECT t2.b FROM t2 WHERE where_condition AND t1.a=t2.b);

Subquery materialization using a temporary table avoids such rewrites and makes it possible to execute
the subquery only once rather than once per row of the outer query.

For subquery materialization to be used in MySQL, the optimizer_switch system variable
materialization flag must be enabled. (See Section 8.9.2, “Switchable Optimizations”.) With the
materialization flag enabled, materialization applies to subquery predicates that appear anywhere (in
the select list, WHERE, ON, GROUP BY, HAVING, or ORDER BY), for predicates that fall into any of these use
cases:

• The predicate has this form, when no outer expression oe_i or inner expression ie_i is nullable. N is 1
or larger.

(oe_1, oe_2, ..., oe_N) [NOT] IN (SELECT ie_1, i_2, ..., ie_N ...)

• The predicate has this form, when there is a single outer expression oe and inner expression ie. The
expressions can be nullable.

oe [NOT] IN (SELECT ie ...)

1492

Optimizing Subqueries, Derived Tables, and View References

• The predicate is IN or NOT IN and a result of UNKNOWN (NULL) has the same meaning as a result of
FALSE.

The following examples illustrate how the requirement for equivalence of UNKNOWN and FALSE predicate
evaluation affects whether subquery materialization can be used. Assume that where_condition
involves columns only from t2 and not t1 so that the subquery is noncorrelated.

This query is subject to materialization:

SELECT * FROM t1
WHERE t1.a IN (SELECT t2.b FROM t2 WHERE where_condition);

Here, it does not matter whether the IN predicate returns UNKNOWN or FALSE. Either way, the row from t1
is not included in the query result.

An example where subquery materialization is not used is the following query, where t2.b is a nullable
column:

SELECT * FROM t1
WHERE (t1.a,t1.b) NOT IN (SELECT t2.a,t2.b FROM t2
 WHERE where_condition);

The following restrictions apply to the use of subquery materialization:

• The types of the inner and outer expressions must match. For example, the optimizer might be able to
use materialization if both expressions are integer or both are decimal, but cannot if one expression is
integer and the other is decimal.

• The inner expression cannot be a BLOB.

Use of EXPLAIN with a query provides some indication of whether the optimizer uses subquery
materialization:

• Compared to query execution that does not use materialization, select_type may change from
DEPENDENT SUBQUERY to SUBQUERY. This indicates that, for a subquery that would be executed once
per outer row, materialization enables the subquery to be executed just once.

• For extended EXPLAIN output, the text displayed by a following SHOW WARNINGS includes
materialize and materialized-subquery.

8.2.2.3 Optimizing Subqueries with the EXISTS Strategy

Certain optimizations are applicable to comparisons that use the IN (or =ANY) operator to test subquery
results. This section discusses these optimizations, particularly with regard to the challenges that NULL
values present. The last part of the discussion suggests how you can help the optimizer.

Consider the following subquery comparison:

outer_expr IN (SELECT inner_expr FROM ... WHERE subquery_where)

MySQL evaluates queries “from outside to inside.” That is, it first obtains the value of the outer expression
outer_expr, and then runs the subquery and captures the rows that it produces.

A very useful optimization is to “inform” the subquery that the only rows of interest are those where the
inner expression inner_expr is equal to outer_expr. This is done by pushing down an appropriate
equality into the subquery's WHERE clause to make it more restrictive. The converted comparison looks like
this:

EXISTS (SELECT 1 FROM ... WHERE subquery_where AND outer_expr=inner_expr)

1493

Optimizing Subqueries, Derived Tables, and View References

After the conversion, MySQL can use the pushed-down equality to limit the number of rows it must
examine to evaluate the subquery.

More generally, a comparison of N values to a subquery that returns N-value rows is subject to the same
conversion. If oe_i and ie_i represent corresponding outer and inner expression values, this subquery
comparison:

(oe_1, ..., oe_N) IN
 (SELECT ie_1, ..., ie_N FROM ... WHERE subquery_where)

Becomes:

EXISTS (SELECT 1 FROM ... WHERE subquery_where
 AND oe_1 = ie_1
 AND ...
 AND oe_N = ie_N)

For simplicity, the following discussion assumes a single pair of outer and inner expression values.

The conversion just described has its limitations. It is valid only if we ignore possible NULL values. That is,
the “pushdown” strategy works as long as both of these conditions are true:

• outer_expr and inner_expr cannot be NULL.

• You need not distinguish NULL from FALSE subquery results. If the subquery is a part of an OR or AND
expression in the WHERE clause, MySQL assumes that you do not care. Another instance where the
optimizer notices that NULL and FALSE subquery results need not be distinguished is this construct:

... WHERE outer_expr IN (subquery)

In this case, the WHERE clause rejects the row whether IN (subquery) returns NULL or FALSE.

When either or both of those conditions do not hold, optimization is more complex.

Suppose that outer_expr is known to be a non-NULL value but the subquery does not produce a row
such that outer_expr = inner_expr. Then outer_expr IN (SELECT ...) evaluates as follows:

• NULL, if the SELECT produces any row where inner_expr is NULL

• FALSE, if the SELECT produces only non-NULL values or produces nothing

In this situation, the approach of looking for rows with outer_expr = inner_expr is no longer valid. It
is necessary to look for such rows, but if none are found, also look for rows where inner_expr is NULL.
Roughly speaking, the subquery can be converted to something like this:

EXISTS (SELECT 1 FROM ... WHERE subquery_where AND
 (outer_expr=inner_expr OR inner_expr IS NULL))

The need to evaluate the extra IS NULL condition is why MySQL has the ref_or_null access method:

mysql> EXPLAIN
 SELECT outer_expr IN (SELECT t2.maybe_null_key
 FROM t2, t3 WHERE ...)
 FROM t1;
*************************** 1. row ***************************
 id: 1
 select_type: PRIMARY
 table: t1
...
*************************** 2. row ***************************
 id: 2
 select_type: DEPENDENT SUBQUERY
 table: t2

1494

Optimizing Subqueries, Derived Tables, and View References

 type: ref_or_null
possible_keys: maybe_null_key
 key: maybe_null_key
 key_len: 5
 ref: func
 rows: 2
 Extra: Using where; Using index
...

The unique_subquery and index_subquery subquery-specific access methods also have “or NULL”
variants.

The additional OR ... IS NULL condition makes query execution slightly more complicated (and some
optimizations within the subquery become inapplicable), but generally this is tolerable.

The situation is much worse when outer_expr can be NULL. According to the SQL interpretation of NULL
as “unknown value,” NULL IN (SELECT inner_expr ...) should evaluate to:

• NULL, if the SELECT produces any rows

• FALSE, if the SELECT produces no rows

For proper evaluation, it is necessary to be able to check whether the SELECT has produced any rows
at all, so outer_expr = inner_expr cannot be pushed down into the subquery. This is a problem
because many real world subqueries become very slow unless the equality can be pushed down.

Essentially, there must be different ways to execute the subquery depending on the value of outer_expr.

The optimizer chooses SQL compliance over speed, so it accounts for the possibility that outer_expr
might be NULL:

• If outer_expr is NULL, to evaluate the following expression, it is necessary to execute the SELECT to
determine whether it produces any rows:

NULL IN (SELECT inner_expr FROM ... WHERE subquery_where)

It is necessary to execute the original SELECT here, without any pushed-down equalities of the kind
mentioned previously.

• On the other hand, when outer_expr is not NULL, it is absolutely essential that this comparison:

outer_expr IN (SELECT inner_expr FROM ... WHERE subquery_where)

Be converted to this expression that uses a pushed-down condition:

EXISTS (SELECT 1 FROM ... WHERE subquery_where AND outer_expr=inner_expr)

Without this conversion, subqueries are slow.

To solve the dilemma of whether or not to push down conditions into the subquery, the conditions are
wrapped within “trigger” functions. Thus, an expression of the following form:

outer_expr IN (SELECT inner_expr FROM ... WHERE subquery_where)

Is converted into:

EXISTS (SELECT 1 FROM ... WHERE subquery_where
 AND trigcond(outer_expr=inner_expr))

More generally, if the subquery comparison is based on several pairs of outer and inner expressions, the
conversion takes this comparison:

1495

Optimizing Subqueries, Derived Tables, and View References

(oe_1, ..., oe_N) IN (SELECT ie_1, ..., ie_N FROM ... WHERE subquery_where)

And converts it to this expression:

EXISTS (SELECT 1 FROM ... WHERE subquery_where
 AND trigcond(oe_1=ie_1)
 AND ...
 AND trigcond(oe_N=ie_N)
)

Each trigcond(X) is a special function that evaluates to the following values:

• X when the “linked” outer expression oe_i is not NULL

• TRUE when the “linked” outer expression oe_i is NULL

Note

Trigger functions are not triggers of the kind that you create with CREATE
TRIGGER.

Equalities that are wrapped within trigcond() functions are not first class predicates for the query
optimizer. Most optimizations cannot deal with predicates that may be turned on and off at query execution
time, so they assume any trigcond(X) to be an unknown function and ignore it. Triggered equalities can
be used by those optimizations:

• Reference optimizations: trigcond(X=Y [OR Y IS NULL]) can be used to construct ref, eq_ref,
or ref_or_null table accesses.

• Index lookup-based subquery execution engines: trigcond(X=Y) can be used to construct
unique_subquery or index_subquery accesses.

• Table-condition generator: If the subquery is a join of several tables, the triggered condition is checked
as soon as possible.

When the optimizer uses a triggered condition to create some kind of index lookup-based access (as for
the first two items of the preceding list), it must have a fallback strategy for the case when the condition is
turned off. This fallback strategy is always the same: Do a full table scan. In EXPLAIN output, the fallback
shows up as Full scan on NULL key in the Extra column:

mysql> EXPLAIN SELECT t1.col1,
 t1.col1 IN (SELECT t2.key1 FROM t2 WHERE t2.col2=t1.col2) FROM t1\G
*************************** 1. row ***************************
 id: 1
 select_type: PRIMARY
 table: t1
 ...
*************************** 2. row ***************************
 id: 2
 select_type: DEPENDENT SUBQUERY
 table: t2
 type: index_subquery
possible_keys: key1
 key: key1
 key_len: 5
 ref: func
 rows: 2
 Extra: Using where; Full scan on NULL key

If you run EXPLAIN followed by SHOW WARNINGS, you can see the triggered condition:

*************************** 1. row ***************************

1496

Optimizing Subqueries, Derived Tables, and View References

 Level: Note
 Code: 1003
Message: select `test`.`t1`.`col1` AS `col1`,
 <in_optimizer>(`test`.`t1`.`col1`,
 <exists>(<index_lookup>(<cache>(`test`.`t1`.`col1`) in t2
 on key1 checking NULL
 where (`test`.`t2`.`col2` = `test`.`t1`.`col2`) having
 trigcond(<is_not_null_test>(`test`.`t2`.`key1`))))) AS
 `t1.col1 IN (select t2.key1 from t2 where t2.col2=t1.col2)`
 from `test`.`t1`

The use of triggered conditions has some performance implications. A NULL IN (SELECT ...)
expression now may cause a full table scan (which is slow) when it previously did not. This is the price paid
for correct results (the goal of the trigger-condition strategy is to improve compliance, not speed).

For multiple-table subqueries, execution of NULL IN (SELECT ...) is particularly slow because the join
optimizer does not optimize for the case where the outer expression is NULL. It assumes that subquery
evaluations with NULL on the left side are very rare, even if there are statistics that indicate otherwise.
On the other hand, if the outer expression might be NULL but never actually is, there is no performance
penalty.

To help the query optimizer better execute your queries, use these suggestions:

• Declare a column as NOT NULL if it really is. This also helps other aspects of the optimizer by simplifying
condition testing for the column.

• If you need not distinguish a NULL from FALSE subquery result, you can easily avoid the slow execution
path. Replace a comparison that looks like this:

outer_expr IN (SELECT inner_expr FROM ...)

with this expression:

(outer_expr IS NOT NULL) AND (outer_expr IN (SELECT inner_expr FROM ...))

Then NULL IN (SELECT ...) is never evaluated because MySQL stops evaluating AND parts as
soon as the expression result is clear.

Another possible rewrite:

EXISTS (SELECT inner_expr FROM ...
 WHERE inner_expr=outer_expr)

This would apply when you need not distinguish NULL from FALSE subquery results, in which case you
may actually want EXISTS.

The subquery_materialization_cost_based flag of the optimizer_switch system variable
enables control over the choice between subquery materialization and IN-to-EXISTS subquery
transformation. See Section 8.9.2, “Switchable Optimizations”.

8.2.2.4 Optimizing Derived Tables and View References with Merging or Materialization

The optimizer can handle derived table references using two strategies (which also apply to view
references):

• Merge the derived table into the outer query block

• Materialize the derived table to an internal temporary table

Example 1:

1497

Optimizing Subqueries, Derived Tables, and View References

SELECT * FROM (SELECT * FROM t1) AS derived_t1;

With merging of the derived table derived_t1, that query is executed similar to:

SELECT * FROM t1;

Example 2:

SELECT *
 FROM t1 JOIN (SELECT t2.f1 FROM t2) AS derived_t2 ON t1.f2=derived_t2.f1
 WHERE t1.f1 > 0;

With merging of the derived table derived_t2, that query is executed similar to:

SELECT t1.*, t2.f1
 FROM t1 JOIN t2 ON t1.f2=t2.f1
 WHERE t1.f1 > 0;

With materialization, derived_t1 and derived_t2 are each treated as a separate table within their
respective queries.

The optimizer handles derived tables and view references the same way: It avoids unnecessary
materialization whenever possible, which enables pushing down conditions from the outer query to derived
tables and produces more efficient execution plans. (For an example, see Section 8.2.2.2, “Optimizing
Subqueries with Materialization”.)

If merging would result in an outer query block that references more than 61 base tables, the optimizer
chooses materialization instead.

The optimizer propagates an ORDER BY clause in a derived table or view reference to the outer query
block if these conditions are all true:

• The outer query is not grouped or aggregated.

• The outer query does not specify DISTINCT, HAVING, or ORDER BY.

• The outer query has this derived table or view reference as the only source in the FROM clause.

Otherwise, the optimizer ignores the ORDER BY clause.

The following means are available to influence whether the optimizer attempts to merge derived tables and
view references into the outer query block:

• The derived_merge flag of the optimizer_switch system variable can be used, assuming that
no other rule prevents merging. See Section 8.9.2, “Switchable Optimizations”. By default, the flag is
enabled to permit merging. Disabling the flag prevents merging and avoids ER_UPDATE_TABLE_USED
errors.

The derived_merge flag also applies to views that contain no ALGORITHM clause. Thus, if an
ER_UPDATE_TABLE_USED error occurs for a view reference that uses an expression equivalent to
the subquery, adding ALGORITHM=TEMPTABLE to the view definition prevents merging and takes
precedence over the derived_merge value.

• It is possible to disable merging by using in the subquery any constructs that prevent merging, although
these are not as explicit in their effect on materialization. Constructs that prevent merging are the same
for derived tables and view references:

• Aggregate functions (SUM(), MIN(), MAX(), COUNT(), and so forth)

• DISTINCT

1498

https://dev.mysql.com/doc/mysql-errors/5.7/en/server-error-reference.html#error_er_update_table_used
https://dev.mysql.com/doc/mysql-errors/5.7/en/server-error-reference.html#error_er_update_table_used

Optimizing Subqueries, Derived Tables, and View References

• GROUP BY

• HAVING

• LIMIT

• UNION or UNION ALL

• Subqueries in the select list

• Assignments to user variables

• Refererences only to literal values (in this case, there is no underlying table)

The derived_merge flag also applies to views that contain no ALGORITHM clause. Thus, if an
ER_UPDATE_TABLE_USED error occurs for a view reference that uses an expression equivalent to the
subquery, adding ALGORITHM=TEMPTABLE to the view definition prevents merging and takes precedence
over the current derived_merge value.

If the optimizer chooses the materialization strategy rather than merging for a derived table, it handles the
query as follows:

• The optimizer postpones derived table materialization until its contents are needed during query
execution. This improves performance because delaying materialization may result in not having to do it
at all. Consider a query that joins the result of a derived table to another table: If the optimizer processes
that other table first and finds that it returns no rows, the join need not be carried out further and the
optimizer can completely skip materializing the derived table.

• During query execution, the optimizer may add an index to a derived table to speed up row retrieval from
it.

Consider the following EXPLAIN statement, for a SELECT query that contains a derived table:

EXPLAIN SELECT * FROM (SELECT * FROM t1) AS derived_t1;

The optimizer avoids materializing the derived table by delaying it until the result is needed during SELECT
execution. In this case, the query is not executed (because it occurs in an EXPLAIN statement), so the
result is never needed.

Even for queries that are executed, delay of derived table materialization may enable the optimizer to avoid
materialization entirely. When this happens, query execution is quicker by the time needed to perform
materialization. Consider the following query, which joins the result of a derived table to another table:

SELECT *
 FROM t1 JOIN (SELECT t2.f1 FROM t2) AS derived_t2
 ON t1.f2=derived_t2.f1
 WHERE t1.f1 > 0;

If the optimization processes t1 first and the WHERE clause produces an empty result, the join must
necessarily be empty and the derived table need not be materialized.

For cases when a derived table requires materialization, the optimizer may add an index to the
materialized table to speed up access to it. If such an index enables ref access to the table, it can greatly
reduce amount of data read during query execution. Consider the following query:

SELECT *
 FROM t1 JOIN (SELECT DISTINCT f1 FROM t2) AS derived_t2
 ON t1.f1=derived_t2.f1;

1499

https://dev.mysql.com/doc/mysql-errors/5.7/en/server-error-reference.html#error_er_update_table_used

Optimizing INFORMATION_SCHEMA Queries

The optimizer constructs an index over column f1 from derived_t2 if doing so would enable use of ref
access for the lowest cost execution plan. After adding the index, the optimizer can treat the materialized
derived table the same as a regular table with an index, and it benefits similarly from the generated index.
The overhead of index creation is negligible compared to the cost of query execution without the index. If
ref access would result in higher cost than some other access method, the optimizer creates no index and
loses nothing.

For optimizer trace output, a merged derived table or view reference is not shown as a node. Only its
underlying tables appear in the top query's plan.

8.2.3 Optimizing INFORMATION_SCHEMA Queries

Applications that monitor databases may make frequent use of INFORMATION_SCHEMA tables. Certain
types of queries for INFORMATION_SCHEMA tables can be optimized to execute more quickly. The goal
is to minimize file operations (for example, scanning a directory or opening a table file) to collect the
information that makes up these dynamic tables.

Note

Comparison behavior for database and table names in INFORMATION_SCHEMA
queries might differ from what you expect. For details, see Section 10.8.7, “Using
Collation in INFORMATION_SCHEMA Searches”.

1) Try to use constant lookup values for database and table names in the WHERE clause

You can take advantage of this principle as follows:

• To look up databases or tables, use expressions that evaluate to a constant, such as literal values,
functions that return a constant, or scalar subqueries.

• Avoid queries that use a nonconstant database name lookup value (or no lookup value) because they
require a scan of the data directory to find matching database directory names.

• Within a database, avoid queries that use a nonconstant table name lookup value (or no lookup value)
because they require a scan of the database directory to find matching table files.

This principle applies to the INFORMATION_SCHEMA tables shown in the following table, which shows the
columns for which a constant lookup value enables the server to avoid a directory scan. For example, if
you are selecting from TABLES, using a constant lookup value for TABLE_SCHEMA in the WHERE clause
enables a data directory scan to be avoided.

Table Column to specify to avoid data
directory scan

Column to specify to avoid
database directory scan

COLUMNS TABLE_SCHEMA TABLE_NAME

KEY_COLUMN_USAGE TABLE_SCHEMA TABLE_NAME

PARTITIONS TABLE_SCHEMA TABLE_NAME

REFERENTIAL_CONSTRAINTS CONSTRAINT_SCHEMA TABLE_NAME

STATISTICS TABLE_SCHEMA TABLE_NAME

TABLES TABLE_SCHEMA TABLE_NAME

TABLE_CONSTRAINTS TABLE_SCHEMA TABLE_NAME

TRIGGERS EVENT_OBJECT_SCHEMA EVENT_OBJECT_TABLE

VIEWS TABLE_SCHEMA TABLE_NAME

1500

Optimizing INFORMATION_SCHEMA Queries

The benefit of a query that is limited to a specific constant database name is that checks need be made
only for the named database directory. Example:

SELECT TABLE_NAME FROM INFORMATION_SCHEMA.TABLES
WHERE TABLE_SCHEMA = 'test';

Use of the literal database name test enables the server to check only the test database directory,
regardless of how many databases there might be. By contrast, the following query is less efficient
because it requires a scan of the data directory to determine which database names match the pattern
'test%':

SELECT TABLE_NAME FROM INFORMATION_SCHEMA.TABLES
WHERE TABLE_SCHEMA LIKE 'test%';

For a query that is limited to a specific constant table name, checks need be made only for the named
table within the corresponding database directory. Example:

SELECT TABLE_NAME FROM INFORMATION_SCHEMA.TABLES
WHERE TABLE_SCHEMA = 'test' AND TABLE_NAME = 't1';

Use of the literal table name t1 enables the server to check only the files for the t1 table, regardless of
how many tables there might be in the test database. By contrast, the following query requires a scan of
the test database directory to determine which table names match the pattern 't%':

SELECT TABLE_NAME FROM INFORMATION_SCHEMA.TABLES
WHERE TABLE_SCHEMA = 'test' AND TABLE_NAME LIKE 't%';

The following query requires a scan of the database directory to determine matching database names
for the pattern 'test%', and for each matching database, it requires a scan of the database directory to
determine matching table names for the pattern 't%':

SELECT TABLE_NAME FROM INFORMATION_SCHEMA.TABLES
WHERE TABLE_SCHEMA = 'test%' AND TABLE_NAME LIKE 't%';

2) Write queries that minimize the number of table files that must be opened

For queries that refer to certain INFORMATION_SCHEMA table columns, several optimizations are available
that minimize the number of table files that must be opened. Example:

SELECT TABLE_NAME, ENGINE FROM INFORMATION_SCHEMA.TABLES
WHERE TABLE_SCHEMA = 'test';

In this case, after the server has scanned the database directory to determine the names of the tables
in the database, those names become available with no further file system lookups. Thus, TABLE_NAME
requires no files to be opened. The ENGINE (storage engine) value can be determined by opening the
table's .frm file, without touching other table files such as the .MYD or .MYI file.

Some values, such as INDEX_LENGTH for MyISAM tables, require opening the .MYD or .MYI file as well.

The file-opening optimization types are denoted thus:

• SKIP_OPEN_TABLE: Table files do not need to be opened. The information has already become
available within the query by scanning the database directory.

• OPEN_FRM_ONLY: Only the table's .frm file need be opened.

• OPEN_TRIGGER_ONLY: Only the table's .TRG file need be opened.

• OPEN_FULL_TABLE: The unoptimized information lookup. The .frm, .MYD, and .MYI files must be
opened.

1501

Optimizing INFORMATION_SCHEMA Queries

The following list indicates how the preceding optimization types apply to INFORMATION_SCHEMA table
columns. For tables and columns not named, none of the optimizations apply.

• COLUMNS: OPEN_FRM_ONLY applies to all columns

• KEY_COLUMN_USAGE: OPEN_FULL_TABLE applies to all columns

• PARTITIONS: OPEN_FULL_TABLE applies to all columns

• REFERENTIAL_CONSTRAINTS: OPEN_FULL_TABLE applies to all columns

• STATISTICS:

Column Optimization type

TABLE_CATALOG OPEN_FRM_ONLY

TABLE_SCHEMA OPEN_FRM_ONLY

TABLE_NAME OPEN_FRM_ONLY

NON_UNIQUE OPEN_FRM_ONLY

INDEX_SCHEMA OPEN_FRM_ONLY

INDEX_NAME OPEN_FRM_ONLY

SEQ_IN_INDEX OPEN_FRM_ONLY

COLUMN_NAME OPEN_FRM_ONLY

COLLATION OPEN_FRM_ONLY

CARDINALITY OPEN_FULL_TABLE

SUB_PART OPEN_FRM_ONLY

PACKED OPEN_FRM_ONLY

NULLABLE OPEN_FRM_ONLY

INDEX_TYPE OPEN_FULL_TABLE

COMMENT OPEN_FRM_ONLY

• TABLES:

Column Optimization type

TABLE_CATALOG SKIP_OPEN_TABLE

TABLE_SCHEMA SKIP_OPEN_TABLE

TABLE_NAME SKIP_OPEN_TABLE

TABLE_TYPE OPEN_FRM_ONLY

ENGINE OPEN_FRM_ONLY

VERSION OPEN_FRM_ONLY

ROW_FORMAT OPEN_FULL_TABLE

TABLE_ROWS OPEN_FULL_TABLE

AVG_ROW_LENGTH OPEN_FULL_TABLE

DATA_LENGTH OPEN_FULL_TABLE

MAX_DATA_LENGTH OPEN_FULL_TABLE

1502

Optimizing INFORMATION_SCHEMA Queries

Column Optimization type

INDEX_LENGTH OPEN_FULL_TABLE

DATA_FREE OPEN_FULL_TABLE

AUTO_INCREMENT OPEN_FULL_TABLE

CREATE_TIME OPEN_FULL_TABLE

UPDATE_TIME OPEN_FULL_TABLE

CHECK_TIME OPEN_FULL_TABLE

TABLE_COLLATION OPEN_FRM_ONLY

CHECKSUM OPEN_FULL_TABLE

CREATE_OPTIONS OPEN_FRM_ONLY

TABLE_COMMENT OPEN_FRM_ONLY

• TABLE_CONSTRAINTS: OPEN_FULL_TABLE applies to all columns

• TRIGGERS: OPEN_TRIGGER_ONLY applies to all columns

• VIEWS:

Column Optimization type

TABLE_CATALOG OPEN_FRM_ONLY

TABLE_SCHEMA OPEN_FRM_ONLY

TABLE_NAME OPEN_FRM_ONLY

VIEW_DEFINITION OPEN_FRM_ONLY

CHECK_OPTION OPEN_FRM_ONLY

IS_UPDATABLE OPEN_FULL_TABLE

DEFINER OPEN_FRM_ONLY

SECURITY_TYPE OPEN_FRM_ONLY

CHARACTER_SET_CLIENT OPEN_FRM_ONLY

COLLATION_CONNECTION OPEN_FRM_ONLY

3) Use EXPLAIN to determine whether the server can use INFORMATION_SCHEMA optimizations for a
query

This applies particularly for INFORMATION_SCHEMA queries that search for information from more than
one database, which might take a long time and impact performance. The Extra value in EXPLAIN
output indicates which, if any, of the optimizations described earlier the server can use to evaluate
INFORMATION_SCHEMA queries. The following examples demonstrate the kinds of information you can
expect to see in the Extra value.

mysql> EXPLAIN SELECT TABLE_NAME FROM INFORMATION_SCHEMA.VIEWS WHERE
 TABLE_SCHEMA = 'test' AND TABLE_NAME = 'v1'\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: VIEWS
 type: ALL
possible_keys: NULL
 key: TABLE_SCHEMA,TABLE_NAME
 key_len: NULL

1503

Optimizing INFORMATION_SCHEMA Queries

 ref: NULL
 rows: NULL
 Extra: Using where; Open_frm_only; Scanned 0 databases

Use of constant database and table lookup values enables the server to avoid directory scans. For
references to VIEWS.TABLE_NAME, only the .frm file need be opened.

mysql> EXPLAIN SELECT TABLE_NAME, ROW_FORMAT FROM INFORMATION_SCHEMA.TABLES\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: TABLES
 type: ALL
possible_keys: NULL
 key: NULL
 key_len: NULL
 ref: NULL
 rows: NULL
 Extra: Open_full_table; Scanned all databases

No lookup values are provided (there is no WHERE clause), so the server must scan the data directory
and each database directory. For each table thus identified, the table name and row format are selected.
TABLE_NAME requires no further table files to be opened (the SKIP_OPEN_TABLE optimization applies).
ROW_FORMAT requires all table files to be opened (OPEN_FULL_TABLE applies). EXPLAIN reports
OPEN_FULL_TABLE because it is more expensive than SKIP_OPEN_TABLE.

mysql> EXPLAIN SELECT TABLE_NAME, TABLE_TYPE FROM INFORMATION_SCHEMA.TABLES
 WHERE TABLE_SCHEMA = 'test'\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: TABLES
 type: ALL
possible_keys: NULL
 key: TABLE_SCHEMA
 key_len: NULL
 ref: NULL
 rows: NULL
 Extra: Using where; Open_frm_only; Scanned 1 database

No table name lookup value is provided, so the server must scan the test database directory. For the
TABLE_NAME and TABLE_TYPE columns, the SKIP_OPEN_TABLE and OPEN_FRM_ONLY optimizations
apply, respectively. EXPLAIN reports OPEN_FRM_ONLY because it is more expensive.

mysql> EXPLAIN SELECT B.TABLE_NAME
 FROM INFORMATION_SCHEMA.TABLES AS A, INFORMATION_SCHEMA.COLUMNS AS B
 WHERE A.TABLE_SCHEMA = 'test'
 AND A.TABLE_NAME = 't1'
 AND B.TABLE_NAME = A.TABLE_NAME\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: A
 type: ALL
possible_keys: NULL
 key: TABLE_SCHEMA,TABLE_NAME
 key_len: NULL
 ref: NULL
 rows: NULL
 Extra: Using where; Skip_open_table; Scanned 0 databases
*************************** 2. row ***************************
 id: 1
 select_type: SIMPLE
 table: B
 type: ALL

1504

Optimizing Data Change Statements

possible_keys: NULL
 key: NULL
 key_len: NULL
 ref: NULL
 rows: NULL
 Extra: Using where; Open_frm_only; Scanned all databases;
 Using join buffer

For the first EXPLAIN output row: Constant database and table lookup values enable the server to avoid
directory scans for TABLES values. References to TABLES.TABLE_NAME require no further table files.

For the second EXPLAIN output row: All COLUMNS table values are OPEN_FRM_ONLY lookups, so
COLUMNS.TABLE_NAME requires the .frm file to be opened.

mysql> EXPLAIN SELECT * FROM INFORMATION_SCHEMA.COLLATIONS\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: COLLATIONS
 type: ALL
possible_keys: NULL
 key: NULL
 key_len: NULL
 ref: NULL
 rows: NULL
 Extra:

In this case, no optimizations apply because COLLATIONS is not one of the INFORMATION_SCHEMA tables
for which optimizations are available.

8.2.4 Optimizing Data Change Statements

This section explains how to speed up data change statements: INSERT, UPDATE, and DELETE.
Traditional OLTP applications and modern web applications typically do many small data change
operations, where concurrency is vital. Data analysis and reporting applications typically run data change
operations that affect many rows at once, where the main considerations is the I/O to write large amounts
of data and keep indexes up-to-date. For inserting and updating large volumes of data (known in the
industry as ETL, for “extract-transform-load”), sometimes you use other SQL statements or external
commands, that mimic the effects of INSERT, UPDATE, and DELETE statements.

8.2.4.1 Optimizing INSERT Statements

To optimize insert speed, combine many small operations into a single large operation. Ideally, you make a
single connection, send the data for many new rows at once, and delay all index updates and consistency
checking until the very end.

The time required for inserting a row is determined by the following factors, where the numbers indicate
approximate proportions:

• Connecting: (3)

• Sending query to server: (2)

• Parsing query: (2)

• Inserting row: (1 × size of row)

• Inserting indexes: (1 × number of indexes)

• Closing: (1)

1505

Optimizing Database Privileges

This does not take into consideration the initial overhead to open tables, which is done once for each
concurrently running query.

The size of the table slows down the insertion of indexes by log N, assuming B-tree indexes.

You can use the following methods to speed up inserts:

• If you are inserting many rows from the same client at the same time, use INSERT statements with
multiple VALUES lists to insert several rows at a time. This is considerably faster (many times faster in
some cases) than using separate single-row INSERT statements. If you are adding data to a nonempty
table, you can tune the bulk_insert_buffer_size variable to make data insertion even faster. See
Section 5.1.7, “Server System Variables”.

• When loading a table from a text file, use LOAD DATA. This is usually 20 times faster than using INSERT
statements. See Section 13.2.6, “LOAD DATA Statement”.

• Take advantage of the fact that columns have default values. Insert values explicitly only when the value
to be inserted differs from the default. This reduces the parsing that MySQL must do and improves the
insert speed.

• See Section 8.5.5, “Bulk Data Loading for InnoDB Tables” for tips specific to InnoDB tables.

• See Section 8.6.2, “Bulk Data Loading for MyISAM Tables” for tips specific to MyISAM tables.

8.2.4.2 Optimizing UPDATE Statements

An update statement is optimized like a SELECT query with the additional overhead of a write. The speed
of the write depends on the amount of data being updated and the number of indexes that are updated.
Indexes that are not changed do not get updated.

Another way to get fast updates is to delay updates and then do many updates in a row later. Performing
multiple updates together is much quicker than doing one at a time if you lock the table.

For a MyISAM table that uses dynamic row format, updating a row to a longer total length may split the
row. If you do this often, it is very important to use OPTIMIZE TABLE occasionally. See Section 13.7.2.4,
“OPTIMIZE TABLE Statement”.

8.2.4.3 Optimizing DELETE Statements

The time required to delete individual rows in a MyISAM table is exactly proportional to the number of
indexes. To delete rows more quickly, you can increase the size of the key cache by increasing the
key_buffer_size system variable. See Section 5.1.1, “Configuring the Server”.

To delete all rows from a MyISAM table, TRUNCATE TABLE tbl_name is faster than DELETE FROM
tbl_name. Truncate operations are not transaction-safe; an error occurs when attempting one in the
course of an active transaction or active table lock. See Section 13.1.34, “TRUNCATE TABLE Statement”.

8.2.5 Optimizing Database Privileges

The more complex your privilege setup, the more overhead applies to all SQL statements. Simplifying the
privileges established by GRANT statements enables MySQL to reduce permission-checking overhead
when clients execute statements. For example, if you do not grant any table-level or column-level
privileges, the server need not ever check the contents of the tables_priv and columns_priv tables.
Similarly, if you place no resource limits on any accounts, the server does not have to perform resource
counting. If you have a very high statement-processing load, consider using a simplified grant structure to
reduce permission-checking overhead.

1506

Other Optimization Tips

8.2.6 Other Optimization Tips

This section lists a number of miscellaneous tips for improving query processing speed:

• If your application makes several database requests to perform related updates, combining the
statements into a stored routine can help performance. Similarly, if your application computes a single
result based on several column values or large volumes of data, combining the computation into a
loadable function can help performance. The resulting fast database operations are then available to be
reused by other queries, applications, and even code written in different programming languages. See
Section 23.2, “Using Stored Routines” and Adding Functions to MySQL for more information.

• To fix any compression issues that occur with ARCHIVE tables, use OPTIMIZE TABLE. See
Section 15.5, “The ARCHIVE Storage Engine”.

• If possible, classify reports as “live” or as “statistical”, where data needed for statistical reports is created
only from summary tables that are generated periodically from the live data.

• If you have data that does not conform well to a rows-and-columns table structure, you can pack and
store data into a BLOB column. In this case, you must provide code in your application to pack and
unpack information, but this might save I/O operations to read and write the sets of related values.

• With Web servers, store images and other binary assets as files, with the path name stored in the
database rather than the file itself. Most Web servers are better at caching files than database contents,
so using files is generally faster. (Although you must handle backups and storage issues yourself in this
case.)

• If you need really high speed, look at the low-level MySQL interfaces. For example, by accessing
the MySQL InnoDB or MyISAM storage engine directly, you could get a substantial speed increase
compared to using the SQL interface.

Similarly, for databases using the NDBCLUSTER storage engine, you may wish to investigate possible
use of the NDB API (see MySQL NDB Cluster API Developer Guide).

• Replication can provide a performance benefit for some operations. You can distribute client retrievals
among replicas to split up the load. To avoid slowing down the source while making backups, you can
make backups using a replica. See Chapter 16, Replication.

8.3 Optimization and Indexes
The best way to improve the performance of SELECT operations is to create indexes on one or more of
the columns that are tested in the query. The index entries act like pointers to the table rows, allowing
the query to quickly determine which rows match a condition in the WHERE clause, and retrieve the other
column values for those rows. All MySQL data types can be indexed.

Although it can be tempting to create an indexes for every possible column used in a query, unnecessary
indexes waste space and waste time for MySQL to determine which indexes to use. Indexes also add to
the cost of inserts, updates, and deletes because each index must be updated. You must find the right
balance to achieve fast queries using the optimal set of indexes.

8.3.1 How MySQL Uses Indexes

Indexes are used to find rows with specific column values quickly. Without an index, MySQL must begin
with the first row and then read through the entire table to find the relevant rows. The larger the table, the
more this costs. If the table has an index for the columns in question, MySQL can quickly determine the
position to seek to in the middle of the data file without having to look at all the data. This is much faster
than reading every row sequentially.

1507

https://dev.mysql.com/doc/extending-mysql/5.7/en/adding-functions.html
https://dev.mysql.com/doc/ndbapi/en/

How MySQL Uses Indexes

Most MySQL indexes (PRIMARY KEY, UNIQUE, INDEX, and FULLTEXT) are stored in B-trees. Exceptions:
Indexes on spatial data types use R-trees; MEMORY tables also support hash indexes; InnoDB uses
inverted lists for FULLTEXT indexes.

In general, indexes are used as described in the following discussion. Characteristics specific to hash
indexes (as used in MEMORY tables) are described in Section 8.3.8, “Comparison of B-Tree and Hash
Indexes”.

MySQL uses indexes for these operations:

• To find the rows matching a WHERE clause quickly.

• To eliminate rows from consideration. If there is a choice between multiple indexes, MySQL normally
uses the index that finds the smallest number of rows (the most selective index).

• If the table has a multiple-column index, any leftmost prefix of the index can be used by the optimizer
to look up rows. For example, if you have a three-column index on (col1, col2, col3), you have
indexed search capabilities on (col1), (col1, col2), and (col1, col2, col3). For more
information, see Section 8.3.5, “Multiple-Column Indexes”.

• To retrieve rows from other tables when performing joins. MySQL can use indexes on columns more
efficiently if they are declared as the same type and size. In this context, VARCHAR and CHAR are
considered the same if they are declared as the same size. For example, VARCHAR(10) and CHAR(10)
are the same size, but VARCHAR(10) and CHAR(15) are not.

For comparisons between nonbinary string columns, both columns should use the same character set.
For example, comparing a utf8 column with a latin1 column precludes use of an index.

Comparison of dissimilar columns (comparing a string column to a temporal or numeric column, for
example) may prevent use of indexes if values cannot be compared directly without conversion. For a
given value such as 1 in the numeric column, it might compare equal to any number of values in the
string column such as '1', ' 1', '00001', or '01.e1'. This rules out use of any indexes for the string
column.

• To find the MIN() or MAX() value for a specific indexed column key_col. This is optimized by a
preprocessor that checks whether you are using WHERE key_part_N = constant on all key parts
that occur before key_col in the index. In this case, MySQL does a single key lookup for each MIN()
or MAX() expression and replaces it with a constant. If all expressions are replaced with constants, the
query returns at once. For example:

SELECT MIN(key_part2),MAX(key_part2)
 FROM tbl_name WHERE key_part1=10;

• To sort or group a table if the sorting or grouping is done on a leftmost prefix of a usable index (for
example, ORDER BY key_part1, key_part2). If all key parts are followed by DESC, the key is read
in reverse order. See Section 8.2.1.14, “ORDER BY Optimization”, and Section 8.2.1.15, “GROUP BY
Optimization”.

• In some cases, a query can be optimized to retrieve values without consulting the data rows. (An index
that provides all the necessary results for a query is called a covering index.) If a query uses from a table
only columns that are included in some index, the selected values can be retrieved from the index tree
for greater speed:

SELECT key_part3 FROM tbl_name
 WHERE key_part1=1

Indexes are less important for queries on small tables, or big tables where report queries process most or
all of the rows. When a query needs to access most of the rows, reading sequentially is faster than working

1508

Primary Key Optimization

through an index. Sequential reads minimize disk seeks, even if not all the rows are needed for the query.
See Section 8.2.1.20, “Avoiding Full Table Scans” for details.

8.3.2 Primary Key Optimization

The primary key for a table represents the column or set of columns that you use in your most vital queries.
It has an associated index, for fast query performance. Query performance benefits from the NOT NULL
optimization, because it cannot include any NULL values. With the InnoDB storage engine, the table data
is physically organized to do ultra-fast lookups and sorts based on the primary key column or columns.

If your table is big and important, but does not have an obvious column or set of columns to use as a
primary key, you might create a separate column with auto-increment values to use as the primary key.
These unique IDs can serve as pointers to corresponding rows in other tables when you join tables using
foreign keys.

8.3.3 Foreign Key Optimization

If a table has many columns, and you query many different combinations of columns, it might be efficient
to split the less-frequently used data into separate tables with a few columns each, and relate them back
to the main table by duplicating the numeric ID column from the main table. That way, each small table can
have a primary key for fast lookups of its data, and you can query just the set of columns that you need
using a join operation. Depending on how the data is distributed, the queries might perform less I/O and
take up less cache memory because the relevant columns are packed together on disk. (To maximize
performance, queries try to read as few data blocks as possible from disk; tables with only a few columns
can fit more rows in each data block.)

8.3.4 Column Indexes

The most common type of index involves a single column, storing copies of the values from that column in
a data structure, allowing fast lookups for the rows with the corresponding column values. The B-tree data
structure lets the index quickly find a specific value, a set of values, or a range of values, corresponding to
operators such as =, >, ≤, BETWEEN, IN, and so on, in a WHERE clause.

The maximum number of indexes per table and the maximum index length is defined per storage engine.
See Chapter 14, The InnoDB Storage Engine, and Chapter 15, Alternative Storage Engines. All storage
engines support at least 16 indexes per table and a total index length of at least 256 bytes. Most storage
engines have higher limits.

For additional information about column indexes, see Section 13.1.14, “CREATE INDEX Statement”.

• Index Prefixes

• FULLTEXT Indexes

• Spatial Indexes

• Indexes in the MEMORY Storage Engine

Index Prefixes

With col_name(N) syntax in an index specification for a string column, you can create an index that uses
only the first N characters of the column. Indexing only a prefix of column values in this way can make the
index file much smaller. When you index a BLOB or TEXT column, you must specify a prefix length for the
index. For example:

CREATE TABLE test (blob_col BLOB, INDEX(blob_col(10)));

1509

Column Indexes

Prefixes can be up to 1000 bytes long (767 bytes for InnoDB tables, unless you have
innodb_large_prefix set).

Note

Prefix limits are measured in bytes, whereas the prefix length in CREATE TABLE,
ALTER TABLE, and CREATE INDEX statements is interpreted as number of
characters for nonbinary string types (CHAR, VARCHAR, TEXT) and number of
bytes for binary string types (BINARY, VARBINARY, BLOB). Take this into account
when specifying a prefix length for a nonbinary string column that uses a multibyte
character set.

If a search term exceeds the index prefix length, the index is used to exclude non-matching rows, and the
remaining rows are examined for possible matches.

For additional information about index prefixes, see Section 13.1.14, “CREATE INDEX Statement”.

FULLTEXT Indexes

FULLTEXT indexes are used for full-text searches. Only the InnoDB and MyISAM storage engines support
FULLTEXT indexes and only for CHAR, VARCHAR, and TEXT columns. Indexing always takes place over the
entire column and column prefix indexing is not supported. For details, see Section 12.9, “Full-Text Search
Functions”.

Optimizations are applied to certain kinds of FULLTEXT queries against single InnoDB tables. Queries with
these characteristics are particularly efficient:

• FULLTEXT queries that only return the document ID, or the document ID and the search rank.

• FULLTEXT queries that sort the matching rows in descending order of score and apply a LIMIT clause
to take the top N matching rows. For this optimization to apply, there must be no WHERE clauses and
only a single ORDER BY clause in descending order.

• FULLTEXT queries that retrieve only the COUNT(*) value of rows matching a search term, with
no additional WHERE clauses. Code the WHERE clause as WHERE MATCH(text) AGAINST
('other_text'), without any > 0 comparison operator.

For queries that contain full-text expressions, MySQL evaluates those expressions during the optimization
phase of query execution. The optimizer does not just look at full-text expressions and make estimates, it
actually evaluates them in the process of developing an execution plan.

An implication of this behavior is that EXPLAIN for full-text queries is typically slower than for non-full-text
queries for which no expression evaluation occurs during the optimization phase.

EXPLAIN for full-text queries may show Select tables optimized away in the Extra column due to
matching occurring during optimization; in this case, no table access need occur during later execution.

Spatial Indexes

You can create indexes on spatial data types. MyISAM and InnoDB support R-tree indexes on spatial
types. Other storage engines use B-trees for indexing spatial types (except for ARCHIVE, which does not
support spatial type indexing).

Indexes in the MEMORY Storage Engine

The MEMORY storage engine uses HASH indexes by default, but also supports BTREE indexes.

1510

Multiple-Column Indexes

8.3.5 Multiple-Column Indexes

MySQL can create composite indexes (that is, indexes on multiple columns). An index may consist of up
to 16 columns. For certain data types, you can index a prefix of the column (see Section 8.3.4, “Column
Indexes”).

MySQL can use multiple-column indexes for queries that test all the columns in the index, or queries
that test just the first column, the first two columns, the first three columns, and so on. If you specify the
columns in the right order in the index definition, a single composite index can speed up several kinds of
queries on the same table.

A multiple-column index can be considered a sorted array, the rows of which contain values that are
created by concatenating the values of the indexed columns.

Note

As an alternative to a composite index, you can introduce a column that is “hashed”
based on information from other columns. If this column is short, reasonably unique,
and indexed, it might be faster than a “wide” index on many columns. In MySQL, it
is very easy to use this extra column:

SELECT * FROM tbl_name
 WHERE hash_col=MD5(CONCAT(val1,val2))
 AND col1=val1 AND col2=val2;

Suppose that a table has the following specification:

CREATE TABLE test (
 id INT NOT NULL,
 last_name CHAR(30) NOT NULL,
 first_name CHAR(30) NOT NULL,
 PRIMARY KEY (id),
 INDEX name (last_name,first_name)
);

The name index is an index over the last_name and first_name columns. The index can be used for
lookups in queries that specify values in a known range for combinations of last_name and first_name
values. It can also be used for queries that specify just a last_name value because that column is a
leftmost prefix of the index (as described later in this section). Therefore, the name index is used for
lookups in the following queries:

SELECT * FROM test WHERE last_name='Jones';

SELECT * FROM test
 WHERE last_name='Jones' AND first_name='John';

SELECT * FROM test
 WHERE last_name='Jones'
 AND (first_name='John' OR first_name='Jon');

SELECT * FROM test
 WHERE last_name='Jones'
 AND first_name >='M' AND first_name < 'N';

However, the name index is not used for lookups in the following queries:

SELECT * FROM test WHERE first_name='John';

SELECT * FROM test
 WHERE last_name='Jones' OR first_name='John';

Suppose that you issue the following SELECT statement:

1511

Verifying Index Usage

SELECT * FROM tbl_name
 WHERE col1=val1 AND col2=val2;

If a multiple-column index exists on col1 and col2, the appropriate rows can be fetched directly. If
separate single-column indexes exist on col1 and col2, the optimizer attempts to use the Index Merge
optimization (see Section 8.2.1.3, “Index Merge Optimization”), or attempts to find the most restrictive index
by deciding which index excludes more rows and using that index to fetch the rows.

If the table has a multiple-column index, any leftmost prefix of the index can be used by the optimizer
to look up rows. For example, if you have a three-column index on (col1, col2, col3), you have
indexed search capabilities on (col1), (col1, col2), and (col1, col2, col3).

MySQL cannot use the index to perform lookups if the columns do not form a leftmost prefix of the index.
Suppose that you have the SELECT statements shown here:

SELECT * FROM tbl_name WHERE col1=val1;
SELECT * FROM tbl_name WHERE col1=val1 AND col2=val2;

SELECT * FROM tbl_name WHERE col2=val2;
SELECT * FROM tbl_name WHERE col2=val2 AND col3=val3;

If an index exists on (col1, col2, col3), only the first two queries use the index. The third and fourth
queries do involve indexed columns, but do not use an index to perform lookups because (col2) and
(col2, col3) are not leftmost prefixes of (col1, col2, col3).

8.3.6 Verifying Index Usage

Always check whether all your queries really use the indexes that you have created in the tables. Use the
EXPLAIN statement, as described in Section 8.8.1, “Optimizing Queries with EXPLAIN”.

8.3.7 InnoDB and MyISAM Index Statistics Collection

Storage engines collect statistics about tables for use by the optimizer. Table statistics are based on value
groups, where a value group is a set of rows with the same key prefix value. For optimizer purposes, an
important statistic is the average value group size.

MySQL uses the average value group size in the following ways:

• To estimate how many rows must be read for each ref access

• To estimate how many rows a partial join produces; that is, the number of rows that an operation of this
form produces:

(...) JOIN tbl_name ON tbl_name.key = expr

As the average value group size for an index increases, the index is less useful for those two purposes
because the average number of rows per lookup increases: For the index to be good for optimization
purposes, it is best that each index value target a small number of rows in the table. When a given index
value yields a large number of rows, the index is less useful and MySQL is less likely to use it.

The average value group size is related to table cardinality, which is the number of value groups. The SHOW
INDEX statement displays a cardinality value based on N/S, where N is the number of rows in the table
and S is the average value group size. That ratio yields an approximate number of value groups in the
table.

For a join based on the <=> comparison operator, NULL is not treated differently from any other value:
NULL <=> NULL, just as N <=> N for any other N.

1512

InnoDB and MyISAM Index Statistics Collection

However, for a join based on the = operator, NULL is different from non-NULL values: expr1 = expr2 is
not true when expr1 or expr2 (or both) are NULL. This affects ref accesses for comparisons of the form
tbl_name.key = expr: MySQL does not access the table if the current value of expr is NULL, because
the comparison cannot be true.

For = comparisons, it does not matter how many NULL values are in the table. For optimization purposes,
the relevant value is the average size of the non-NULL value groups. However, MySQL does not currently
enable that average size to be collected or used.

For InnoDB and MyISAM tables, you have some control over collection of table statistics by means of the
innodb_stats_method and myisam_stats_method system variables, respectively. These variables
have three possible values, which differ as follows:

• When the variable is set to nulls_equal, all NULL values are treated as identical (that is, they all form
a single value group).

If the NULL value group size is much higher than the average non-NULL value group size, this method
skews the average value group size upward. This makes index appear to the optimizer to be less useful
than it really is for joins that look for non-NULL values. Consequently, the nulls_equal method may
cause the optimizer not to use the index for ref accesses when it should.

• When the variable is set to nulls_unequal, NULL values are not considered the same. Instead, each
NULL value forms a separate value group of size 1.

If you have many NULL values, this method skews the average value group size downward. If the
average non-NULL value group size is large, counting NULL values each as a group of size 1 causes the
optimizer to overestimate the value of the index for joins that look for non-NULL values. Consequently,
the nulls_unequal method may cause the optimizer to use this index for ref lookups when other
methods may be better.

• When the variable is set to nulls_ignored, NULL values are ignored.

If you tend to use many joins that use <=> rather than =, NULL values are not special in comparisons and
one NULL is equal to another. In this case, nulls_equal is the appropriate statistics method.

The innodb_stats_method system variable has a global value; the myisam_stats_method system
variable has both global and session values. Setting the global value affects statistics collection for tables
from the corresponding storage engine. Setting the session value affects statistics collection only for the
current client connection. This means that you can force a table's statistics to be regenerated with a given
method without affecting other clients by setting the session value of myisam_stats_method.

To regenerate MyISAM table statistics, you can use any of the following methods:

• Execute myisamchk --stats_method=method_name --analyze

• Change the table to cause its statistics to go out of date (for example, insert a row and then delete it),
and then set myisam_stats_method and issue an ANALYZE TABLE statement

Some caveats regarding the use of innodb_stats_method and myisam_stats_method:

• You can force table statistics to be collected explicitly, as just described. However, MySQL may also
collect statistics automatically. For example, if during the course of executing statements for a table,
some of those statements modify the table, MySQL may collect statistics. (This may occur for bulk
inserts or deletes, or some ALTER TABLE statements, for example.) If this happens, the statistics are
collected using whatever value innodb_stats_method or myisam_stats_method has at the time.
Thus, if you collect statistics using one method, but the system variable is set to the other method when
a table's statistics are collected automatically later, the other method is used.

1513

Comparison of B-Tree and Hash Indexes

• There is no way to tell which method was used to generate statistics for a given table.

• These variables apply only to InnoDB and MyISAM tables. Other storage engines have only one method
for collecting table statistics. Usually it is closer to the nulls_equal method.

8.3.8 Comparison of B-Tree and Hash Indexes

Understanding the B-tree and hash data structures can help predict how different queries perform on
different storage engines that use these data structures in their indexes, particularly for the MEMORY
storage engine that lets you choose B-tree or hash indexes.

• B-Tree Index Characteristics

• Hash Index Characteristics

B-Tree Index Characteristics

A B-tree index can be used for column comparisons in expressions that use the =, >, >=, <, <=, or
BETWEEN operators. The index also can be used for LIKE comparisons if the argument to LIKE is a
constant string that does not start with a wildcard character. For example, the following SELECT statements
use indexes:

SELECT * FROM tbl_name WHERE key_col LIKE 'Patrick%';
SELECT * FROM tbl_name WHERE key_col LIKE 'Pat%_ck%';

In the first statement, only rows with 'Patrick' <= key_col < 'Patricl' are considered. In the
second statement, only rows with 'Pat' <= key_col < 'Pau' are considered.

The following SELECT statements do not use indexes:

SELECT * FROM tbl_name WHERE key_col LIKE '%Patrick%';
SELECT * FROM tbl_name WHERE key_col LIKE other_col;

In the first statement, the LIKE value begins with a wildcard character. In the second statement, the LIKE
value is not a constant.

If you use ... LIKE '%string%' and string is longer than three characters, MySQL uses the Turbo
Boyer-Moore algorithm to initialize the pattern for the string and then uses this pattern to perform the
search more quickly.

A search using col_name IS NULL employs indexes if col_name is indexed.

Any index that does not span all AND levels in the WHERE clause is not used to optimize the query. In other
words, to be able to use an index, a prefix of the index must be used in every AND group.

The following WHERE clauses use indexes:

... WHERE index_part1=1 AND index_part2=2 AND other_column=3

 /* index = 1 OR index = 2 */
... WHERE index=1 OR A=10 AND index=2

 /* optimized like "index_part1='hello'" */
... WHERE index_part1='hello' AND index_part3=5

 /* Can use index on index1 but not on index2 or index3 */
... WHERE index1=1 AND index2=2 OR index1=3 AND index3=3;

These WHERE clauses do not use indexes:

 /* index_part1 is not used */
... WHERE index_part2=1 AND index_part3=2

1514

Use of Index Extensions

 /* Index is not used in both parts of the WHERE clause */
... WHERE index=1 OR A=10

 /* No index spans all rows */
... WHERE index_part1=1 OR index_part2=10

Sometimes MySQL does not use an index, even if one is available. One circumstance under which
this occurs is when the optimizer estimates that using the index would require MySQL to access a very
large percentage of the rows in the table. (In this case, a table scan is likely to be much faster because it
requires fewer seeks.) However, if such a query uses LIMIT to retrieve only some of the rows, MySQL
uses an index anyway, because it can much more quickly find the few rows to return in the result.

Hash Index Characteristics

Hash indexes have somewhat different characteristics from those just discussed:

• They are used only for equality comparisons that use the = or <=> operators (but are very fast). They are
not used for comparison operators such as < that find a range of values. Systems that rely on this type
of single-value lookup are known as “key-value stores”; to use MySQL for such applications, use hash
indexes wherever possible.

• The optimizer cannot use a hash index to speed up ORDER BY operations. (This type of index cannot be
used to search for the next entry in order.)

• MySQL cannot determine approximately how many rows there are between two values (this is used by
the range optimizer to decide which index to use). This may affect some queries if you change a MyISAM
or InnoDB table to a hash-indexed MEMORY table.

• Only whole keys can be used to search for a row. (With a B-tree index, any leftmost prefix of the key can
be used to find rows.)

8.3.9 Use of Index Extensions

InnoDB automatically extends each secondary index by appending the primary key columns to it. Consider
this table definition:

CREATE TABLE t1 (
 i1 INT NOT NULL DEFAULT 0,
 i2 INT NOT NULL DEFAULT 0,
 d DATE DEFAULT NULL,
 PRIMARY KEY (i1, i2),
 INDEX k_d (d)
) ENGINE = InnoDB;

This table defines the primary key on columns (i1, i2). It also defines a secondary index k_d on
column (d), but internally InnoDB extends this index and treats it as columns (d, i1, i2).

The optimizer takes into account the primary key columns of the extended secondary index when
determining how and whether to use that index. This can result in more efficient query execution plans and
better performance.

The optimizer can use extended secondary indexes for ref, range, and index_merge index access, for
Loose Index Scan access, for join and sorting optimization, and for MIN()/MAX() optimization.

The following example shows how execution plans are affected by whether the optimizer uses extended
secondary indexes. Suppose that t1 is populated with these rows:

INSERT INTO t1 VALUES
(1, 1, '1998-01-01'), (1, 2, '1999-01-01'),

1515

Use of Index Extensions

(1, 3, '2000-01-01'), (1, 4, '2001-01-01'),
(1, 5, '2002-01-01'), (2, 1, '1998-01-01'),
(2, 2, '1999-01-01'), (2, 3, '2000-01-01'),
(2, 4, '2001-01-01'), (2, 5, '2002-01-01'),
(3, 1, '1998-01-01'), (3, 2, '1999-01-01'),
(3, 3, '2000-01-01'), (3, 4, '2001-01-01'),
(3, 5, '2002-01-01'), (4, 1, '1998-01-01'),
(4, 2, '1999-01-01'), (4, 3, '2000-01-01'),
(4, 4, '2001-01-01'), (4, 5, '2002-01-01'),
(5, 1, '1998-01-01'), (5, 2, '1999-01-01'),
(5, 3, '2000-01-01'), (5, 4, '2001-01-01'),
(5, 5, '2002-01-01');

Now consider this query:

EXPLAIN SELECT COUNT(*) FROM t1 WHERE i1 = 3 AND d = '2000-01-01'

The execution plan depends on whether the extended index is used.

When the optimizer does not consider index extensions, it treats the index k_d as only (d). EXPLAIN for
the query produces this result:

mysql> EXPLAIN SELECT COUNT(*) FROM t1 WHERE i1 = 3 AND d = '2000-01-01'\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: t1
 type: ref
possible_keys: PRIMARY,k_d
 key: k_d
 key_len: 4
 ref: const
 rows: 5
 Extra: Using where; Using index

When the optimizer takes index extensions into account, it treats k_d as (d, i1, i2). In this case, it can
use the leftmost index prefix (d, i1) to produce a better execution plan:

mysql> EXPLAIN SELECT COUNT(*) FROM t1 WHERE i1 = 3 AND d = '2000-01-01'\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: t1
 type: ref
possible_keys: PRIMARY,k_d
 key: k_d
 key_len: 8
 ref: const,const
 rows: 1
 Extra: Using index

In both cases, key indicates that the optimizer uses secondary index k_d but the EXPLAIN output shows
these improvements from using the extended index:

• key_len goes from 4 bytes to 8 bytes, indicating that key lookups use columns d and i1, not just d.

• The ref value changes from const to const,const because the key lookup uses two key parts, not
one.

• The rows count decreases from 5 to 1, indicating that InnoDB should need to examine fewer rows to
produce the result.

• The Extra value changes from Using where; Using index to Using index. This means that
rows can be read using only the index, without consulting columns in the data row.

1516

Optimizer Use of Generated Column Indexes

Differences in optimizer behavior for use of extended indexes can also be seen with SHOW STATUS:

FLUSH TABLE t1;
FLUSH STATUS;
SELECT COUNT(*) FROM t1 WHERE i1 = 3 AND d = '2000-01-01';
SHOW STATUS LIKE 'handler_read%'

The preceding statements include FLUSH TABLES and FLUSH STATUS to flush the table cache and clear
the status counters.

Without index extensions, SHOW STATUS produces this result:

+-----------------------+-------+
| Variable_name | Value |
+-----------------------+-------+
Handler_read_first	0
Handler_read_key	1
Handler_read_last	0
Handler_read_next	5
Handler_read_prev	0
Handler_read_rnd	0
Handler_read_rnd_next	0
+-----------------------+-------+

With index extensions, SHOW STATUS produces this result. The Handler_read_next value decreases
from 5 to 1, indicating more efficient use of the index:

+-----------------------+-------+
| Variable_name | Value |
+-----------------------+-------+
Handler_read_first	0
Handler_read_key	1
Handler_read_last	0
Handler_read_next	1
Handler_read_prev	0
Handler_read_rnd	0
Handler_read_rnd_next	0
+-----------------------+-------+

The use_index_extensions flag of the optimizer_switch system variable permits control over
whether the optimizer takes the primary key columns into account when determining how to use an
InnoDB table's secondary indexes. By default, use_index_extensions is enabled. To check whether
disabling use of index extensions improves performance, use this statement:

SET optimizer_switch = 'use_index_extensions=off';

Use of index extensions by the optimizer is subject to the usual limits on the number of key parts in an
index (16) and the maximum key length (3072 bytes).

8.3.10 Optimizer Use of Generated Column Indexes

MySQL supports indexes on generated columns. For example:

CREATE TABLE t1 (f1 INT, gc INT AS (f1 + 1) STORED, INDEX (gc));

The generated column, gc, is defined as the expression f1 + 1. The column is also indexed and the
optimizer can take that index into account during execution plan construction. In the following query, the
WHERE clause refers to gc and the optimizer considers whether the index on that column yields a more
efficient plan:

SELECT * FROM t1 WHERE gc > 9;

1517

Optimizer Use of Generated Column Indexes

The optimizer can use indexes on generated columns to generate execution plans, even in the absence
of direct references in queries to those columns by name. This occurs if the WHERE, ORDER BY, or GROUP
BY clause refers to an expression that matches the definition of some indexed generated column. The
following query does not refer directly to gc but does use an expression that matches the definition of gc:

SELECT * FROM t1 WHERE f1 + 1 > 9;

The optimizer recognizes that the expression f1 + 1 matches the definition of gc and that gc is indexed,
so it considers that index during execution plan construction. You can see this using EXPLAIN:

mysql> EXPLAIN SELECT * FROM t1 WHERE f1 + 1 > 9\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: t1
 partitions: NULL
 type: range
possible_keys: gc
 key: gc
 key_len: 5
 ref: NULL
 rows: 1
 filtered: 100.00
 Extra: Using index condition

In effect, the optimizer has replaced the expression f1 + 1 with the name of the generated column that
matches the expression. That is also apparent in the rewritten query available in the extended EXPLAIN
information displayed by SHOW WARNINGS:

mysql> SHOW WARNINGS\G
*************************** 1. row ***************************
 Level: Note
 Code: 1003
Message: /* select#1 */ select `test`.`t1`.`f1` AS `f1`,`test`.`t1`.`gc`
 AS `gc` from `test`.`t1` where (`test`.`t1`.`gc` > 9)

The following restrictions and conditions apply to the optimizer's use of generated column indexes:

• For a query expression to match a generated column definition, the expression must be identical and
it must have the same result type. For example, if the generated column expression is f1 + 1, the
optimizer does not recognize a match if the query uses 1 + f1, or if f1 + 1 (an integer expression) is
compared with a string.

• The optimization applies to these operators: =, <, <=, >, >=, BETWEEN, and IN().

For operators other than BETWEEN and IN(), either operand can be replaced by a matching generated
column. For BETWEEN and IN(), only the first argument can be replaced by a matching generated
column, and the other arguments must have the same result type. BETWEEN and IN() are not yet
supported for comparisons involving JSON values.

• The generated column must be defined as an expression that contains at least a function call or one
of the operators mentioned in the preceding item. The expression cannot consist of a simple reference
to another column. For example, gc INT AS (f1) STORED consists only of a column reference, so
indexes on gc are not considered.

• For comparisons of strings to indexed generated columns that compute a value from a JSON function
that returns a quoted string, JSON_UNQUOTE() is needed in the column definition to remove the extra
quotes from the function value. (For direct comparison of a string to the function result, the JSON
comparator handles quote removal, but this does not occur for index lookups.) For example, instead of
writing a column definition like this:

1518

Indexed Lookups from TIMESTAMP Columns

doc_name TEXT AS (JSON_EXTRACT(jdoc, '$.name')) STORED

Write it like this:

doc_name TEXT AS (JSON_UNQUOTE(JSON_EXTRACT(jdoc, '$.name'))) STORED

With the latter definition, the optimizer can detect a match for both of these comparisons:

... WHERE JSON_EXTRACT(jdoc, '$.name') = 'some_string' ...

... WHERE JSON_UNQUOTE(JSON_EXTRACT(jdoc, '$.name')) = 'some_string' ...

Without JSON_UNQUOTE() in the column definition, the optimizer detects a match only for the first of
those comparisons.

• If the optimizer fails to choose the desired index, an index hint can be used to force the optimizer to
make a different choice.

8.3.11 Indexed Lookups from TIMESTAMP Columns

Temporal values are stored in TIMESTAMP columns as UTC values, and values inserted into and retrieved
from TIMESTAMP columns are converted between the session time zone and UTC. (This is the same
type of conversion performed by the CONVERT_TZ() function. If the session time zone is UTC, there is
effectively no time zone conversion.)

Due to conventions for local time zone changes such as Daylight Saving Time (DST), conversions between
UTC and non-UTC time zones are not one-to-one in both directions. UTC values that are distinct may not
be distinct in another time zone. The following example shows distinct UTC values that become identical in
a non-UTC time zone:

mysql> CREATE TABLE tstable (ts TIMESTAMP);
mysql> SET time_zone = 'UTC'; -- insert UTC values
mysql> INSERT INTO tstable VALUES
 ('2018-10-28 00:30:00'),
 ('2018-10-28 01:30:00');
mysql> SELECT ts FROM tstable;
+---------------------+
| ts |
+---------------------+
| 2018-10-28 00:30:00 |
| 2018-10-28 01:30:00 |
+---------------------+
mysql> SET time_zone = 'MET'; -- retrieve non-UTC values
mysql> SELECT ts FROM tstable;
+---------------------+
| ts |
+---------------------+
| 2018-10-28 02:30:00 |
| 2018-10-28 02:30:00 |
+---------------------+

Note

To use named time zones such as 'MET' or 'Europe/Amsterdam', the time
zone tables must be properly set up. For instructions, see Section 5.1.13, “MySQL
Server Time Zone Support”.

You can see that the two distinct UTC values are the same when converted to the 'MET' time zone. This
phenomenon can lead to different results for a given TIMESTAMP column query, depending on whether the
optimizer uses an index to execute the query.

1519

Indexed Lookups from TIMESTAMP Columns

Suppose that a query selects values from the table shown earlier using a WHERE clause to search the ts
column for a single specific value such as a user-provided timestamp literal:

SELECT ts FROM tstable
WHERE ts = 'literal';

Suppose further that the query executes under these conditions:

• The session time zone is not UTC and has a DST shift. For example:

SET time_zone = 'MET';

• Unique UTC values stored in the TIMESTAMP column are not unique in the session time zone due to
DST shifts. (The example shown earlier illustrates how this can occur.)

• The query specifies a search value that is within the hour of entry into DST in the session time zone.

Under those conditions, the comparison in the WHERE clause occurs in different ways for nonindexed and
indexed lookups and leads to different results:

• If there is no index or the optimizer cannot use it, comparisons occur in the session time zone. The
optimizer performs a table scan in which it retrieves each ts column value, converts it from UTC to the
session time zone, and compares it to the search value (also interpreted in the session time zone):

mysql> SELECT ts FROM tstable
 WHERE ts = '2018-10-28 02:30:00';
+---------------------+
| ts |
+---------------------+
| 2018-10-28 02:30:00 |
| 2018-10-28 02:30:00 |
+---------------------+

Because the stored ts values are converted to the session time zone, it is possible for the query to
return two timestamp values that are distinct as UTC values but equal in the session time zone: One
value that occurs before the DST shift when clocks are changed, and one value that was occurs after the
DST shift.

• If there is a usable index, comparisons occur in UTC. The optimizer performs an index scan, first
converting the search value from the session time zone to UTC, then comparing the result to the UTC
index entries:

mysql> ALTER TABLE tstable ADD INDEX (ts);
mysql> SELECT ts FROM tstable
 WHERE ts = '2018-10-28 02:30:00';
+---------------------+
| ts |
+---------------------+
| 2018-10-28 02:30:00 |
+---------------------+

In this case, the (converted) search value is matched only to index entries, and because the index
entries for the distinct stored UTC values are also distinct, the search value can match only one of them.

Due to different optimizer operation for nonindexed and indexed lookups, the query produces different
results in each case. The result from the nonindexed lookup returns all values that match in the session
time zone. The indexed lookup cannot do so:

• It is performed within the storage engine, which knows only about UTC values.

• For the two distinct session time zone values that map to the same UTC value, the indexed lookup
matches only the corresponding UTC index entry and returns only a single row.

1520

Optimizing Database Structure

In the preceding discussion, the data set stored in tstable happens to consist of distinct UTC values. In
such cases, all index-using queries of the form shown match at most one index entry.

If the index is not UNIQUE, it is possible for the table (and the index) to store multiple instances of a given
UTC value. For example, the ts column might contain multiple instances of the UTC value '2018-10-28
00:30:00'. In this case, the index-using query would return each of them (converted to the MET value
'2018-10-28 02:30:00' in the result set). It remains true that index-using queries match the converted
search value to a single value in the UTC index entries, rather than matching multiple UTC values that
convert to the search value in the session time zone.

If it is important to return all ts values that match in the session time zone, the workaround is to suppress
use of the index with an IGNORE INDEX hint:

mysql> SELECT ts FROM tstable
 IGNORE INDEX (ts)
 WHERE ts = '2018-10-28 02:30:00';
+---------------------+
| ts |
+---------------------+
| 2018-10-28 02:30:00 |
| 2018-10-28 02:30:00 |
+---------------------+

The same lack of one-to-one mapping for time zone conversions in both directions occurs in other contexts
as well, such as conversions performed with the FROM_UNIXTIME() and UNIX_TIMESTAMP() functions.
See Section 12.7, “Date and Time Functions”.

8.4 Optimizing Database Structure
In your role as a database designer, look for the most efficient way to organize your schemas, tables, and
columns. As when tuning application code, you minimize I/O, keep related items together, and plan ahead
so that performance stays high as the data volume increases. Starting with an efficient database design
makes it easier for team members to write high-performing application code, and makes the database
likely to endure as applications evolve and are rewritten.

8.4.1 Optimizing Data Size

Design your tables to minimize their space on the disk. This can result in huge improvements by reducing
the amount of data written to and read from disk. Smaller tables normally require less main memory while
their contents are being actively processed during query execution. Any space reduction for table data also
results in smaller indexes that can be processed faster.

MySQL supports many different storage engines (table types) and row formats. For each table, you can
decide which storage and indexing method to use. Choosing the proper table format for your application
can give you a big performance gain. See Chapter 14, The InnoDB Storage Engine, and Chapter 15,
Alternative Storage Engines.

You can get better performance for a table and minimize storage space by using the techniques listed
here:

• Table Columns

• Row Format

• Indexes

• Joins

• Normalization

1521

Optimizing Data Size

Table Columns

• Use the most efficient (smallest) data types possible. MySQL has many specialized types that save
disk space and memory. For example, use the smaller integer types if possible to get smaller tables.
MEDIUMINT is often a better choice than INT because a MEDIUMINT column uses 25% less space.

• Declare columns to be NOT NULL if possible. It makes SQL operations faster, by enabling better use of
indexes and eliminating overhead for testing whether each value is NULL. You also save some storage
space, one bit per column. If you really need NULL values in your tables, use them. Just avoid the default
setting that allows NULL values in every column.

Row Format

• InnoDB tables are created using the DYNAMIC row format by default. To use a row format other than
DYNAMIC, configure innodb_default_row_format, or specify the ROW_FORMAT option explicitly in a
CREATE TABLE or ALTER TABLE statement.

The compact family of row formats, which includes COMPACT, DYNAMIC, and COMPRESSED, decreases
row storage space at the cost of increasing CPU use for some operations. If your workload is a typical
one that is limited by cache hit rates and disk speed it is likely to be faster. If it is a rare case that is
limited by CPU speed, it might be slower.

The compact family of row formats also optimizes CHAR column storage when using a variable-length
character set such as utf8mb3 or utf8mb4. With ROW_FORMAT=REDUNDANT, CHAR(N) occupies N ×
the maximum byte length of the character set. Many languages can be written primarily using single-byte
utf8 characters, so a fixed storage length often wastes space. With the compact family of rows formats,
InnoDB allocates a variable amount of storage in the range of N to N × the maximum byte length of the
character set for these columns by stripping trailing spaces. The minimum storage length is N bytes
to facilitate in-place updates in typical cases. For more information, see Section 14.11, “InnoDB Row
Formats”.

• To minimize space even further by storing table data in compressed form, specify
ROW_FORMAT=COMPRESSED when creating InnoDB tables, or run the myisampack command on
an existing MyISAM table. (InnoDB compressed tables are readable and writable, while MyISAM
compressed tables are read-only.)

• For MyISAM tables, if you do not have any variable-length columns (VARCHAR, TEXT, or BLOB columns),
a fixed-size row format is used. This is faster but may waste some space. See Section 15.2.3, “MyISAM
Table Storage Formats”. You can hint that you want to have fixed length rows even if you have VARCHAR
columns with the CREATE TABLE option ROW_FORMAT=FIXED.

Indexes

• The primary index of a table should be as short as possible. This makes identification of each row easy
and efficient. For InnoDB tables, the primary key columns are duplicated in each secondary index entry,
so a short primary key saves considerable space if you have many secondary indexes.

• Create only the indexes that you need to improve query performance. Indexes are good for retrieval, but
slow down insert and update operations. If you access a table mostly by searching on a combination of
columns, create a single composite index on them rather than a separate index for each column. The
first part of the index should be the column most used. If you always use many columns when selecting
from the table, the first column in the index should be the one with the most duplicates, to obtain better
compression of the index.

• If it is very likely that a long string column has a unique prefix on the first number of characters, it is
better to index only this prefix, using MySQL's support for creating an index on the leftmost part of

1522

Optimizing MySQL Data Types

the column (see Section 13.1.14, “CREATE INDEX Statement”). Shorter indexes are faster, not only
because they require less disk space, but because they also give you more hits in the index cache, and
thus fewer disk seeks. See Section 5.1.1, “Configuring the Server”.

Joins

• In some circumstances, it can be beneficial to split into two a table that is scanned very often. This is
especially true if it is a dynamic-format table and it is possible to use a smaller static format table that
can be used to find the relevant rows when scanning the table.

• Declare columns with identical information in different tables with identical data types, to speed up joins
based on the corresponding columns.

• Keep column names simple, so that you can use the same name across different tables and simplify
join queries. For example, in a table named customer, use a column name of name instead of
customer_name. To make your names portable to other SQL servers, consider keeping them shorter
than 18 characters.

Normalization

• Normally, try to keep all data nonredundant (observing what is referred to in database theory as third
normal form). Instead of repeating lengthy values such as names and addresses, assign them unique
IDs, repeat these IDs as needed across multiple smaller tables, and join the tables in queries by
referencing the IDs in the join clause.

• If speed is more important than disk space and the maintenance costs of keeping multiple copies of
data, for example in a business intelligence scenario where you analyze all the data from large tables,
you can relax the normalization rules, duplicating information or creating summary tables to gain more
speed.

8.4.2 Optimizing MySQL Data Types

8.4.2.1 Optimizing for Numeric Data

• For unique IDs or other values that can be represented as either strings or numbers, prefer numeric
columns to string columns. Since large numeric values can be stored in fewer bytes than the
corresponding strings, it is faster and takes less memory to transfer and compare them.

• If you are using numeric data, it is faster in many cases to access information from a database (using
a live connection) than to access a text file. Information in the database is likely to be stored in a more
compact format than in the text file, so accessing it involves fewer disk accesses. You also save code in
your application because you can avoid parsing the text file to find line and column boundaries.

8.4.2.2 Optimizing for Character and String Types

For character and string columns, follow these guidelines:

• Use binary collation order for fast comparison and sort operations, when you do not need language-
specific collation features. You can use the BINARY operator to use binary collation within a particular
query.

• When comparing values from different columns, declare those columns with the same character set and
collation wherever possible, to avoid string conversions while running the query.

• For column values less than 8KB in size, use binary VARCHAR instead of BLOB. The GROUP BY and
ORDER BY clauses can generate temporary tables, and these temporary tables can use the MEMORY
storage engine if the original table does not contain any BLOB columns.

1523

Optimizing MySQL Data Types

• If a table contains string columns such as name and address, but many queries do not retrieve those
columns, consider splitting the string columns into a separate table and using join queries with a foreign
key when necessary. When MySQL retrieves any value from a row, it reads a data block containing all
the columns of that row (and possibly other adjacent rows). Keeping each row small, with only the most
frequently used columns, allows more rows to fit in each data block. Such compact tables reduce disk I/
O and memory usage for common queries.

• When you use a randomly generated value as a primary key in an InnoDB table, prefix it with an
ascending value such as the current date and time if possible. When consecutive primary values are
physically stored near each other, InnoDB can insert and retrieve them faster.

• See Section 8.4.2.1, “Optimizing for Numeric Data” for reasons why a numeric column is usually
preferable to an equivalent string column.

8.4.2.3 Optimizing for BLOB Types

• When storing a large blob containing textual data, consider compressing it first. Do not use this
technique when the entire table is compressed by InnoDB or MyISAM.

• For a table with several columns, to reduce memory requirements for queries that do not use the BLOB
column, consider splitting the BLOB column into a separate table and referencing it with a join query
when needed.

• Since the performance requirements to retrieve and display a BLOB value might be very different from
other data types, you could put the BLOB-specific table on a different storage device or even a separate
database instance. For example, to retrieve a BLOB might require a large sequential disk read that is
better suited to a traditional hard drive than to an SSD device.

• See Section 8.4.2.2, “Optimizing for Character and String Types” for reasons why a binary VARCHAR
column is sometimes preferable to an equivalent BLOB column.

• Rather than testing for equality against a very long text string, you can store a hash of the column value
in a separate column, index that column, and test the hashed value in queries. (Use the MD5() or
CRC32() function to produce the hash value.) Since hash functions can produce duplicate results for
different inputs, you still include a clause AND blob_column = long_string_value in the query to
guard against false matches; the performance benefit comes from the smaller, easily scanned index for
the hashed values.

8.4.2.4 Using PROCEDURE ANALYSE

ANALYSE([max_elements[,max_memory]])

Note

PROCEDURE ANALYSE() is deprecated as of MySQL 5.7.18, and is removed in
MySQL 8.0.

ANALYSE() examines the result from a query and returns an analysis of the results that suggests optimal
data types for each column that may help reduce table sizes. To obtain this analysis, append PROCEDURE
ANALYSE to the end of a SELECT statement:

SELECT ... FROM ... WHERE ... PROCEDURE ANALYSE([max_elements,[max_memory]])

For example:

SELECT col1, col2 FROM table1 PROCEDURE ANALYSE(10, 2000);

1524

Optimizing for Many Tables

The results show some statistics for the values returned by the query, and propose an optimal data type
for the columns. This can be helpful for checking your existing tables, or after importing new data. You
may need to try different settings for the arguments so that PROCEDURE ANALYSE() does not suggest the
ENUM data type when it is not appropriate.

The arguments are optional and are used as follows:

• max_elements (default 256) is the maximum number of distinct values that ANALYSE() notices per
column. This is used by ANALYSE() to check whether the optimal data type should be of type ENUM; if
there are more than max_elements distinct values, then ENUM is not a suggested type.

• max_memory (default 8192) is the maximum amount of memory that ANALYSE() should allocate per
column while trying to find all distinct values.

A PROCEDURE clause is not permitted in a UNION statement.

8.4.3 Optimizing for Many Tables

Some techniques for keeping individual queries fast involve splitting data across many tables. When the
number of tables runs into the thousands or even millions, the overhead of dealing with all these tables
becomes a new performance consideration.

8.4.3.1 How MySQL Opens and Closes Tables

When you execute a mysqladmin status command, you should see something like this:

Uptime: 426 Running threads: 1 Questions: 11082
Reloads: 1 Open tables: 12

The Open tables value of 12 can be somewhat puzzling if you have fewer than 12 tables.

MySQL is multithreaded, so there may be many clients issuing queries for a given table simultaneously.
To minimize the problem with multiple client sessions having different states on the same table, the table
is opened independently by each concurrent session. This uses additional memory but normally increases
performance. With MyISAM tables, one extra file descriptor is required for the data file for each client that
has the table open. (By contrast, the index file descriptor is shared between all sessions.)

The table_open_cache and max_connections system variables affect the maximum number of files
the server keeps open. If you increase one or both of these values, you may run up against a limit imposed
by your operating system on the per-process number of open file descriptors. Many operating systems
permit you to increase the open-files limit, although the method varies widely from system to system.
Consult your operating system documentation to determine whether it is possible to increase the limit and
how to do so.

table_open_cache is related to max_connections. For example, for 200 concurrent running
connections, specify a table cache size of at least 200 * N, where N is the maximum number of tables
per join in any of the queries which you execute. You must also reserve some extra file descriptors for
temporary tables and files.

Make sure that your operating system can handle the number of open file descriptors implied by the
table_open_cache setting. If table_open_cache is set too high, MySQL may run out of file
descriptors and exhibit symptoms such as refusing connections or failing to perform queries.

Also take into account that the MyISAM storage engine needs two file descriptors for each unique open
table. For a partitioned MyISAM table, two file descriptors are required for each partition of the opened
table. (When MyISAM opens a partitioned table, it opens every partition of this table, whether or not a given
partition is actually used. See MyISAM and partition file descriptor usage.) To increase the number of file

1525

Internal Temporary Table Use in MySQL

descriptors available to MySQL, set the open_files_limit system variable. See Section B.3.2.16, “File
Not Found and Similar Errors”.

The cache of open tables is kept at a level of table_open_cache entries. The server autosizes the cache
size at startup. To set the size explicitly, set the table_open_cache system variable at startup. MySQL
may temporarily open more tables than this to execute queries, as described later in this section.

MySQL closes an unused table and removes it from the table cache under the following circumstances:

• When the cache is full and a thread tries to open a table that is not in the cache.

• When the cache contains more than table_open_cache entries and a table in the cache is no longer
being used by any threads.

• When a table-flushing operation occurs. This happens when someone issues a FLUSH TABLES
statement or executes a mysqladmin flush-tables or mysqladmin refresh command.

When the table cache fills up, the server uses the following procedure to locate a cache entry to use:

• Tables not currently in use are released, beginning with the table least recently used.

• If a new table must be opened, but the cache is full and no tables can be released, the cache is
temporarily extended as necessary. When the cache is in a temporarily extended state and a table goes
from a used to unused state, the table is closed and released from the cache.

A MyISAM table is opened for each concurrent access. This means the table needs to be opened twice if
two threads access the same table or if a thread accesses the table twice in the same query (for example,
by joining the table to itself). Each concurrent open requires an entry in the table cache. The first open of
any MyISAM table takes two file descriptors: one for the data file and one for the index file. Each additional
use of the table takes only one file descriptor for the data file. The index file descriptor is shared among all
threads.

If you are opening a table with the HANDLER tbl_name OPEN statement, a dedicated table object is
allocated for the thread. This table object is not shared by other threads and is not closed until the thread
calls HANDLER tbl_name CLOSE or the thread terminates. When this happens, the table is put back in
the table cache (if the cache is not full). See Section 13.2.4, “HANDLER Statement”.

To determine whether your table cache is too small, check the Opened_tables status variable, which
indicates the number of table-opening operations since the server started:

mysql> SHOW GLOBAL STATUS LIKE 'Opened_tables';
+---------------+-------+
| Variable_name | Value |
+---------------+-------+
| Opened_tables | 2741 |
+---------------+-------+

If the value is very large or increases rapidly, even when you have not issued many FLUSH TABLES
statements, increase the table_open_cache value at server startup.

8.4.3.2 Disadvantages of Creating Many Tables in the Same Database

If you have many MyISAM tables in the same database directory, open, close, and create operations are
slow. If you execute SELECT statements on many different tables, there is a little overhead when the table
cache is full, because for every table that has to be opened, another must be closed. You can reduce this
overhead by increasing the number of entries permitted in the table cache.

8.4.4 Internal Temporary Table Use in MySQL

1526

Internal Temporary Table Use in MySQL

In some cases, the server creates internal temporary tables while processing statements. Users have no
direct control over when this occurs.

The server creates temporary tables under conditions such as these:

• Evaluation of UNION statements, with some exceptions described later.

• Evaluation of some views, such those that use the TEMPTABLE algorithm, UNION, or aggregation.

• Evaluation of derived tables (see Section 13.2.10.8, “Derived Tables”).

• Tables created for subquery or semijoin materialization (see Section 8.2.2, “Optimizing Subqueries,
Derived Tables, and View References”).

• Evaluation of statements that contain an ORDER BY clause and a different GROUP BY clause, or for
which the ORDER BY or GROUP BY contains columns from tables other than the first table in the join
queue.

• Evaluation of DISTINCT combined with ORDER BY may require a temporary table.

• For queries that use the SQL_SMALL_RESULT modifier, MySQL uses an in-memory temporary table,
unless the query also contains elements (described later) that require on-disk storage.

• To evaluate INSERT ... SELECT statements that select from and insert into the same table, MySQL
creates an internal temporary table to hold the rows from the SELECT, then inserts those rows into the
target table. See Section 13.2.5.1, “INSERT ... SELECT Statement”.

• Evaluation of multiple-table UPDATE statements.

• Evaluation of GROUP_CONCAT() or COUNT(DISTINCT) expressions.

To determine whether a statement requires a temporary table, use EXPLAIN and check the Extra column
to see whether it says Using temporary (see Section 8.8.1, “Optimizing Queries with EXPLAIN”).
EXPLAIN does not necessarily say Using temporary for derived or materialized temporary tables.

Some query conditions prevent the use of an in-memory temporary table, in which case the server uses an
on-disk table instead:

• Presence of a BLOB or TEXT column in the table. This includes user-defined variables having a string
value because they are treated as BLOB or TEXT columns, depending on whether their value is a binary
or nonbinary string, respectively.

• Presence of any string column with a maximum length larger than 512 (bytes for binary strings,
characters for nonbinary strings) in the SELECT list, if UNION or UNION ALL is used.

• The SHOW COLUMNS and DESCRIBE statements use BLOB as the type for some columns, thus the
temporary table used for the results is an on-disk table.

The server does not use a temporary table for UNION statements that meet certain qualifications. Instead,
it retains from temporary table creation only the data structures necessary to perform result column
typecasting. The table is not fully instantiated and no rows are written to or read from it; rows are sent
directly to the client. The result is reduced memory and disk requirements, and smaller delay before
the first row is sent to the client because the server need not wait until the last query block is executed.
EXPLAIN and optimizer trace output reflects this execution strategy: The UNION RESULT query block is
not present because that block corresponds to the part that reads from the temporary table.

These conditions qualify a UNION for evaluation without a temporary table:

1527

Limits on Number of Databases and Tables

• The union is UNION ALL, not UNION or UNION DISTINCT.

• There is no global ORDER BY clause.

• The union is not the top-level query block of an {INSERT | REPLACE} ... SELECT ... statement.

Internal Temporary Table Storage Engine

An internal temporary table can be held in memory and processed by the MEMORY storage engine, or
stored on disk by the InnoDB or MyISAM storage engine.

If an internal temporary table is created as an in-memory table but becomes too large, MySQL
automatically converts it to an on-disk table. The maximum size for in-memory temporary tables is defined
by the tmp_table_size or max_heap_table_size value, whichever is smaller. This differs from
MEMORY tables explicitly created with CREATE TABLE. For such tables, only the max_heap_table_size
variable determines how large a table can grow, and there is no conversion to on-disk format.

The internal_tmp_disk_storage_engine variable defines the storage engine the server uses to
manage on-disk internal temporary tables. Permitted values are INNODB (the default) and MYISAM.

Note

When using internal_tmp_disk_storage_engine=INNODB, queries that
generate on-disk internal temporary tables that exceed InnoDB row or column limits
return Row size too large or Too many columns errors. The workaround is
to set internal_tmp_disk_storage_engine to MYISAM.

When an internal temporary table is created in memory or on disk, the server increments the
Created_tmp_tables value. When an internal temporary table is created on disk, the server increments
the Created_tmp_disk_tables value. If too many internal temporary tables are created on disk,
consider increasing the tmp_table_size and max_heap_table_size settings.

Internal Temporary Table Storage Format

In-memory temporary tables are managed by the MEMORY storage engine, which uses fixed-length row
format. VARCHAR and VARBINARY column values are padded to the maximum column length, in effect
storing them as CHAR and BINARY columns.

On-disk temporary tables are managed by the InnoDB or MyISAM storage engine (depending on
the internal_tmp_disk_storage_engine setting). Both engines store temporary tables using
dynamic-width row format. Columns take only as much storage as needed, which reduces disk I/O, space
requirements, and processing time compared to on-disk tables that use fixed-length rows.

For statements that initially create an internal temporary table in memory, then convert it to an on-disk
table, better performance might be achieved by skipping the conversion step and creating the table on disk
to begin with. The big_tables variable can be used to force disk storage of internal temporary tables.

8.4.5 Limits on Number of Databases and Tables

MySQL has no limit on the number of databases. The underlying file system may have a limit on the
number of directories.

MySQL has no limit on the number of tables. The underlying file system may have a limit on the number
of files that represent tables. Individual storage engines may impose engine-specific constraints. InnoDB
permits up to 4 billion tables.

8.4.6 Limits on Table Size

1528

Limits on Table Size

The effective maximum table size for MySQL databases is usually determined by operating system
constraints on file sizes, not by MySQL internal limits. For up-to-date information operating system file size
limits, refer to the documentation specific to your operating system.

Windows users, please note that FAT and VFAT (FAT32) are not considered suitable for production use
with MySQL. Use NTFS instead.

If you encounter a full-table error, there are several reasons why it might have occurred:

• The disk might be full.

• You are using InnoDB tables and have run out of room in an InnoDB tablespace file. The maximum
tablespace size is also the maximum size for a table. For tablespace size limits, see Section 14.23,
“InnoDB Limits”.

Generally, partitioning of tables into multiple tablespace files is recommended for tables larger than 1TB
in size.

• You have hit an operating system file size limit. For example, you are using MyISAM tables on an
operating system that supports files only up to 2GB in size and you have hit this limit for the data file or
index file.

• You are using a MyISAM table and the space required for the table exceeds what is permitted by the
internal pointer size. MyISAM permits data and index files to grow up to 256TB by default, but this limit
can be changed up to the maximum permissible size of 65,536TB (2567 − 1 bytes).

If you need a MyISAM table that is larger than the default limit and your operating system supports
large files, the CREATE TABLE statement supports AVG_ROW_LENGTH and MAX_ROWS options. See
Section 13.1.18, “CREATE TABLE Statement”. The server uses these options to determine how large a
table to permit.

If the pointer size is too small for an existing table, you can change the options with ALTER TABLE to
increase a table's maximum permissible size. See Section 13.1.8, “ALTER TABLE Statement”.

ALTER TABLE tbl_name MAX_ROWS=1000000000 AVG_ROW_LENGTH=nnn;

You have to specify AVG_ROW_LENGTH only for tables with BLOB or TEXT columns; in this case, MySQL
cannot optimize the space required based only on the number of rows.

To change the default size limit for MyISAM tables, set the myisam_data_pointer_size, which sets
the number of bytes used for internal row pointers. The value is used to set the pointer size for new
tables if you do not specify the MAX_ROWS option. The value of myisam_data_pointer_size can be
from 2 to 7. For example, for tables that use the dynamic storage format, a value of 4 permits tables up
to 4GB; a value of 6 permits tables up to 256TB. Tables that use the fixed storage format have a larger
maximum data length. For storage format characteristics, see Section 15.2.3, “MyISAM Table Storage
Formats”.

You can check the maximum data and index sizes by using this statement:

SHOW TABLE STATUS FROM db_name LIKE 'tbl_name';

You also can use myisamchk -dv /path/to/table-index-file. See Section 13.7.5, “SHOW
Statements”, or Section 4.6.3, “myisamchk — MyISAM Table-Maintenance Utility”.

Other ways to work around file-size limits for MyISAM tables are as follows:

• If your large table is read only, you can use myisampack to compress it. myisampack usually
compresses a table by at least 50%, so you can have, in effect, much bigger tables. myisampack

1529

Limits on Table Column Count and Row Size

also can merge multiple tables into a single table. See Section 4.6.5, “myisampack — Generate
Compressed, Read-Only MyISAM Tables”.

• MySQL includes a MERGE library that enables you to handle a collection of MyISAM tables that have
identical structure as a single MERGE table. See Section 15.7, “The MERGE Storage Engine”.

• You are using the MEMORY (HEAP) storage engine; in this case you need to increase the value of the
max_heap_table_size system variable. See Section 5.1.7, “Server System Variables”.

8.4.7 Limits on Table Column Count and Row Size

This section describes limits on the number of columns in tables and the size of individual rows.

• Column Count Limits

• Row Size Limits

Column Count Limits

MySQL has hard limit of 4096 columns per table, but the effective maximum may be less for a given table.
The exact column limit depends on several factors:

• The maximum row size for a table constrains the number (and possibly size) of columns because the
total length of all columns cannot exceed this size. See Row Size Limits.

• The storage requirements of individual columns constrain the number of columns that fit within a given
maximum row size. Storage requirements for some data types depend on factors such as storage
engine, storage format, and character set. See Section 11.7, “Data Type Storage Requirements”.

• Storage engines may impose additional restrictions that limit table column count. For example, InnoDB
has a limit of 1017 columns per table. See Section 14.23, “InnoDB Limits”. For information about other
storage engines, see Chapter 15, Alternative Storage Engines.

• Each table has an .frm file that contains the table definition. The definition affects the content of this file
in ways that may affect the number of columns permitted in the table. See Limits Imposed by .frm File
Structure.

Row Size Limits

The maximum row size for a given table is determined by several factors:

• The internal representation of a MySQL table has a maximum row size limit of 65,535 bytes, even if the
storage engine is capable of supporting larger rows. BLOB and TEXT columns only contribute 9 to 12
bytes toward the row size limit because their contents are stored separately from the rest of the row.

• The maximum row size for an InnoDB table, which applies to data stored locally within a database
page, is slightly less than half a page for 4KB, 8KB, 16KB, and 32KB innodb_page_size settings. For
example, the maximum row size is slightly less than 8KB for the default 16KB InnoDB page size. For
64KB pages, the maximum row size is slightly less than 16KB. See Section 14.23, “InnoDB Limits”.

If a row containing variable-length columns exceeds the InnoDB maximum row size, InnoDB selects
variable-length columns for external off-page storage until the row fits within the InnoDB row size limit.
The amount of data stored locally for variable-length columns that are stored off-page differs by row
format. For more information, see Section 14.11, “InnoDB Row Formats”.

• Different storage formats use different amounts of page header and trailer data, which affects the
amount of storage available for rows.

1530

Limits on Table Column Count and Row Size

• For information about InnoDB row formats, see Section 14.11, “InnoDB Row Formats”.

• For information about MyISAM storage formats, see Section 15.2.3, “MyISAM Table Storage Formats”.

Row Size Limit Examples

• The MySQL maximum row size limit of 65,535 bytes is demonstrated in the following InnoDB and
MyISAM examples. The limit is enforced regardless of storage engine, even though the storage engine
may be capable of supporting larger rows.

mysql> CREATE TABLE t (a VARCHAR(10000), b VARCHAR(10000),
 c VARCHAR(10000), d VARCHAR(10000), e VARCHAR(10000),
 f VARCHAR(10000), g VARCHAR(6000)) ENGINE=InnoDB CHARACTER SET latin1;
ERROR 1118 (42000): Row size too large. The maximum row size for the used
table type, not counting BLOBs, is 65535. This includes storage overhead,
check the manual. You have to change some columns to TEXT or BLOBs

mysql> CREATE TABLE t (a VARCHAR(10000), b VARCHAR(10000),
 c VARCHAR(10000), d VARCHAR(10000), e VARCHAR(10000),
 f VARCHAR(10000), g VARCHAR(6000)) ENGINE=MyISAM CHARACTER SET latin1;
ERROR 1118 (42000): Row size too large. The maximum row size for the used
table type, not counting BLOBs, is 65535. This includes storage overhead,
check the manual. You have to change some columns to TEXT or BLOBs

In the following MyISAM example, changing a column to TEXT avoids the 65,535-byte row size limit and
permits the operation to succeed because BLOB and TEXT columns only contribute 9 to 12 bytes toward
the row size.

mysql> CREATE TABLE t (a VARCHAR(10000), b VARCHAR(10000),
 c VARCHAR(10000), d VARCHAR(10000), e VARCHAR(10000),
 f VARCHAR(10000), g TEXT(6000)) ENGINE=MyISAM CHARACTER SET latin1;
Query OK, 0 rows affected (0.02 sec)

The operation succeeds for an InnoDB table because changing a column to TEXT avoids the MySQL
65,535-byte row size limit, and InnoDB off-page storage of variable-length columns avoids the InnoDB
row size limit.

mysql> CREATE TABLE t (a VARCHAR(10000), b VARCHAR(10000),
 c VARCHAR(10000), d VARCHAR(10000), e VARCHAR(10000),
 f VARCHAR(10000), g TEXT(6000)) ENGINE=InnoDB CHARACTER SET latin1;
Query OK, 0 rows affected (0.02 sec)

• Storage for variable-length columns includes length bytes, which are counted toward the row size. For
example, a VARCHAR(255) CHARACTER SET utf8mb3 column takes two bytes to store the length of
the value, so each value can take up to 767 bytes.

The statement to create table t1 succeeds because the columns require 32,765 + 2 bytes and 32,766 +
2 bytes, which falls within the maximum row size of 65,535 bytes:

mysql> CREATE TABLE t1
 (c1 VARCHAR(32765) NOT NULL, c2 VARCHAR(32766) NOT NULL)
 ENGINE = InnoDB CHARACTER SET latin1;
Query OK, 0 rows affected (0.02 sec)

The statement to create table t2 fails because, although the column length is within the maximum length
of 65,535 bytes, two additional bytes are required to record the length, which causes the row size to
exceed 65,535 bytes:

mysql> CREATE TABLE t2
 (c1 VARCHAR(65535) NOT NULL)
 ENGINE = InnoDB CHARACTER SET latin1;

1531

Optimizing for InnoDB Tables

ERROR 1118 (42000): Row size too large. The maximum row size for the used
table type, not counting BLOBs, is 65535. This includes storage overhead,
check the manual. You have to change some columns to TEXT or BLOBs

Reducing the column length to 65,533 or less permits the statement to succeed.

mysql> CREATE TABLE t2
 (c1 VARCHAR(65533) NOT NULL)
 ENGINE = InnoDB CHARACTER SET latin1;
Query OK, 0 rows affected (0.01 sec)

• For MyISAM tables, NULL columns require additional space in the row to record whether their values are
NULL. Each NULL column takes one bit extra, rounded up to the nearest byte.

The statement to create table t3 fails because MyISAM requires space for NULL columns in addition to
the space required for variable-length column length bytes, causing the row size to exceed 65,535 bytes:

mysql> CREATE TABLE t3
 (c1 VARCHAR(32765) NULL, c2 VARCHAR(32766) NULL)
 ENGINE = MyISAM CHARACTER SET latin1;
ERROR 1118 (42000): Row size too large. The maximum row size for the used
table type, not counting BLOBs, is 65535. This includes storage overhead,
check the manual. You have to change some columns to TEXT or BLOBs

For information about InnoDB NULL column storage, see Section 14.11, “InnoDB Row Formats”.

• InnoDB restricts row size (for data stored locally within the database page) to slightly less than half a
database page for 4KB, 8KB, 16KB, and 32KB innodb_page_size settings, and to slightly less than
16KB for 64KB pages.

The statement to create table t4 fails because the defined columns exceed the row size limit for a 16KB
InnoDB page.

mysql> CREATE TABLE t4 (
 c1 CHAR(255),c2 CHAR(255),c3 CHAR(255),
 c4 CHAR(255),c5 CHAR(255),c6 CHAR(255),
 c7 CHAR(255),c8 CHAR(255),c9 CHAR(255),
 c10 CHAR(255),c11 CHAR(255),c12 CHAR(255),
 c13 CHAR(255),c14 CHAR(255),c15 CHAR(255),
 c16 CHAR(255),c17 CHAR(255),c18 CHAR(255),
 c19 CHAR(255),c20 CHAR(255),c21 CHAR(255),
 c22 CHAR(255),c23 CHAR(255),c24 CHAR(255),
 c25 CHAR(255),c26 CHAR(255),c27 CHAR(255),
 c28 CHAR(255),c29 CHAR(255),c30 CHAR(255),
 c31 CHAR(255),c32 CHAR(255),c33 CHAR(255)
) ENGINE=InnoDB ROW_FORMAT=COMPACT DEFAULT CHARSET latin1;
ERROR 1118 (42000): Row size too large (> 8126). Changing some columns to TEXT or BLOB or using
ROW_FORMAT=DYNAMIC or ROW_FORMAT=COMPRESSED may help. In current row format, BLOB prefix of 768
bytes is stored inline.

8.5 Optimizing for InnoDB Tables

InnoDB is the storage engine that MySQL customers typically use in production databases where reliability
and concurrency are important. InnoDB is the default storage engine in MySQL. This section explains how
to optimize database operations for InnoDB tables.

8.5.1 Optimizing Storage Layout for InnoDB Tables

• Once your data reaches a stable size, or a growing table has increased by tens or some hundreds
of megabytes, consider using the OPTIMIZE TABLE statement to reorganize the table and compact
any wasted space. The reorganized tables require less disk I/O to perform full table scans. This is a

1532

Optimizing InnoDB Transaction Management

straightforward technique that can improve performance when other techniques such as improving index
usage or tuning application code are not practical.

OPTIMIZE TABLE copies the data part of the table and rebuilds the indexes. The benefits come from
improved packing of data within indexes, and reduced fragmentation within the tablespaces and on disk.
The benefits vary depending on the data in each table. You may find that there are significant gains
for some and not for others, or that the gains decrease over time until you next optimize the table. This
operation can be slow if the table is large or if the indexes being rebuilt do not fit into the buffer pool. The
first run after adding a lot of data to a table is often much slower than later runs.

• In InnoDB, having a long PRIMARY KEY (either a single column with a lengthy value, or several
columns that form a long composite value) wastes a lot of disk space. The primary key value for a
row is duplicated in all the secondary index records that point to the same row. (See Section 14.6.2.1,
“Clustered and Secondary Indexes”.) Create an AUTO_INCREMENT column as the primary key if your
primary key is long, or index a prefix of a long VARCHAR column instead of the entire column.

• Use the VARCHAR data type instead of CHAR to store variable-length strings or for columns with many
NULL values. A CHAR(N) column always takes N characters to store data, even if the string is shorter or
its value is NULL. Smaller tables fit better in the buffer pool and reduce disk I/O.

When using COMPACT row format (the default InnoDB format) and variable-length character sets, such
as utf8 or sjis, CHAR(N) columns occupy a variable amount of space, but still at least N bytes.

• For tables that are big, or contain lots of repetitive text or numeric data, consider using COMPRESSED
row format. Less disk I/O is required to bring data into the buffer pool, or to perform full table scans.
Before making a permanent decision, measure the amount of compression you can achieve by using
COMPRESSED versus COMPACT row format.

8.5.2 Optimizing InnoDB Transaction Management

To optimize InnoDB transaction processing, find the ideal balance between the performance overhead
of transactional features and the workload of your server. For example, an application might encounter
performance issues if it commits thousands of times per second, and different performance issues if it
commits only every 2-3 hours.

• The default MySQL setting AUTOCOMMIT=1 can impose performance limitations on a busy database
server. Where practical, wrap several related data change operations into a single transaction, by issuing
SET AUTOCOMMIT=0 or a START TRANSACTION statement, followed by a COMMIT statement after
making all the changes.

InnoDB must flush the log to disk at each transaction commit if that transaction made modifications to
the database. When each change is followed by a commit (as with the default autocommit setting), the I/
O throughput of the storage device puts a cap on the number of potential operations per second.

• Alternatively, for transactions that consist only of a single SELECT statement, turning on AUTOCOMMIT
helps InnoDB to recognize read-only transactions and optimize them. See Section 8.5.3, “Optimizing
InnoDB Read-Only Transactions” for requirements.

• Avoid performing rollbacks after inserting, updating, or deleting huge numbers of rows. If a big
transaction is slowing down server performance, rolling it back can make the problem worse, potentially
taking several times as long to perform as the original data change operations. Killing the database
process does not help, because the rollback starts again on server startup.

To minimize the chance of this issue occurring:

• Increase the size of the buffer pool so that all the data change changes can be cached rather than
immediately written to disk.

1533

Optimizing InnoDB Read-Only Transactions

• Set innodb_change_buffering=all so that update and delete operations are buffered in addition
to inserts.

• Consider issuing COMMIT statements periodically during the big data change operation, possibly
breaking a single delete or update into multiple statements that operate on smaller numbers of rows.

To get rid of a runaway rollback once it occurs, increase the buffer pool so that the rollback becomes
CPU-bound and runs fast, or kill the server and restart with innodb_force_recovery=3, as explained
in Section 14.19.2, “InnoDB Recovery”.

This issue is expected to be infrequent with the default setting innodb_change_buffering=all,
which allows update and delete operations to be cached in memory, making them faster to perform in
the first place, and also faster to roll back if needed. Make sure to use this parameter setting on servers
that process long-running transactions with many inserts, updates, or deletes.

• If you can afford the loss of some of the latest committed transactions if an unexpected exit occurs, you
can set the innodb_flush_log_at_trx_commit parameter to 0. InnoDB tries to flush the log once
per second anyway, although the flush is not guaranteed. Also, set the value of innodb_support_xa
to 0, which reduces the number of disk flushes due to synchronizing on disk data and the binary log.

Note

innodb_support_xa is deprecated; expect it to be removed in a future release.
As of MySQL 5.7.10, InnoDB support for two-phase commit in XA transactions is
always enabled and disabling innodb_support_xa is no longer permitted.

• When rows are modified or deleted, the rows and associated undo logs are not physically removed
immediately, or even immediately after the transaction commits. The old data is preserved until
transactions that started earlier or concurrently are finished, so that those transactions can access the
previous state of modified or deleted rows. Thus, a long-running transaction can prevent InnoDB from
purging data that was changed by a different transaction.

• When rows are modified or deleted within a long-running transaction, other transactions using the READ
COMMITTED and REPEATABLE READ isolation levels have to do more work to reconstruct the older data
if they read those same rows.

• When a long-running transaction modifies a table, queries against that table from other transactions do
not make use of the covering index technique. Queries that normally could retrieve all the result columns
from a secondary index, instead look up the appropriate values from the table data.

If secondary index pages are found to have a PAGE_MAX_TRX_ID that is too new, or if records in the
secondary index are delete-marked, InnoDB may need to look up records using a clustered index.

8.5.3 Optimizing InnoDB Read-Only Transactions

InnoDB can avoid the overhead associated with setting up the transaction ID (TRX_ID field) for
transactions that are known to be read-only. A transaction ID is only needed for a transaction that might
perform write operations or locking reads such as SELECT ... FOR UPDATE. Eliminating unnecessary
transaction IDs reduces the size of internal data structures that are consulted each time a query or data
change statement constructs a read view.

InnoDB detects read-only transactions when:

• The transaction is started with the START TRANSACTION READ ONLY statement. In this case,
attempting to make changes to the database (for InnoDB, MyISAM, or other types of tables) causes an
error, and the transaction continues in read-only state:

1534

Optimizing InnoDB Redo Logging

ERROR 1792 (25006): Cannot execute statement in a READ ONLY transaction.

You can still make changes to session-specific temporary tables in a read-only transaction, or issue
locking queries for them, because those changes and locks are not visible to any other transaction.

• The autocommit setting is turned on, so that the transaction is guaranteed to be a single statement,
and the single statement making up the transaction is a “non-locking” SELECT statement. That is, a
SELECT that does not use a FOR UPDATE or LOCK IN SHARED MODE clause.

• The transaction is started without the READ ONLY option, but no updates or statements that explicitly
lock rows have been executed yet. Until updates or explicit locks are required, a transaction stays in
read-only mode.

Thus, for a read-intensive application such as a report generator, you can tune a sequence of InnoDB
queries by grouping them inside START TRANSACTION READ ONLY and COMMIT, or by turning on the
autocommit setting before running the SELECT statements, or simply by avoiding any data change
statements interspersed with the queries.

For information about START TRANSACTION and autocommit, see Section 13.3.1, “START
TRANSACTION, COMMIT, and ROLLBACK Statements”.

Note

Transactions that qualify as auto-commit, non-locking, and read-only (AC-NL-RO)
are kept out of certain internal InnoDB data structures and are therefore not listed
in SHOW ENGINE INNODB STATUS output.

8.5.4 Optimizing InnoDB Redo Logging

Consider the following guidelines for optimizing redo logging:

• Make your redo log files big, even as big as the buffer pool. When InnoDB has written the redo log files
full, it must write the modified contents of the buffer pool to disk in a checkpoint. Small redo log files
cause many unnecessary disk writes. Although historically big redo log files caused lengthy recovery
times, recovery is now much faster and you can confidently use large redo log files.

The size and number of redo log files are configured using the innodb_log_file_size and
innodb_log_files_in_group configuration options. For information about modifying an existing
redo log file configuration, see Changing the Number or Size of InnoDB Redo Log Files.

• Consider increasing the size of the log buffer. A large log buffer enables large transactions to run without
a need to write the log to disk before the transactions commit. Thus, if you have transactions that update,
insert, or delete many rows, making the log buffer larger saves disk I/O. Log buffer size is configured
using the innodb_log_buffer_size configuration option.

• Configure the innodb_log_write_ahead_size configuration option to avoid “read-on-write”. This
option defines the write-ahead block size for the redo log. Set innodb_log_write_ahead_size to
match the operating system or file system cache block size. Read-on-write occurs when redo log blocks
are not entirely cached to the operating system or file system due to a mismatch between write-ahead
block size for the redo log and operating system or file system cache block size.

Valid values for innodb_log_write_ahead_size are multiples of the InnoDB log file block size
(2n). The minimum value is the InnoDB log file block size (512). Write-ahead does not occur when the
minimum value is specified. The maximum value is equal to the innodb_page_size value. If you
specify a value for innodb_log_write_ahead_size that is larger than the innodb_page_size
value, the innodb_log_write_ahead_size setting is truncated to the innodb_page_size value.

1535

Bulk Data Loading for InnoDB Tables

Setting the innodb_log_write_ahead_size value too low in relation to the operating system or file
system cache block size results in read-on-write. Setting the value too high may have a slight impact on
fsync performance for log file writes due to several blocks being written at once.

8.5.5 Bulk Data Loading for InnoDB Tables

These performance tips supplement the general guidelines for fast inserts in Section 8.2.4.1, “Optimizing
INSERT Statements”.

• When importing data into InnoDB, turn off autocommit mode, because it performs a log flush to disk for
every insert. To disable autocommit during your import operation, surround it with SET autocommit
and COMMIT statements:

SET autocommit=0;
... SQL import statements ...
COMMIT;

The mysqldump option --opt creates dump files that are fast to import into an InnoDB table, even
without wrapping them with the SET autocommit and COMMIT statements.

• If you have UNIQUE constraints on secondary keys, you can speed up table imports by temporarily
turning off the uniqueness checks during the import session:

SET unique_checks=0;
... SQL import statements ...
SET unique_checks=1;

For big tables, this saves a lot of disk I/O because InnoDB can use its change buffer to write secondary
index records in a batch. Be certain that the data contains no duplicate keys.

• If you have FOREIGN KEY constraints in your tables, you can speed up table imports by turning off the
foreign key checks for the duration of the import session:

SET foreign_key_checks=0;
... SQL import statements ...
SET foreign_key_checks=1;

For big tables, this can save a lot of disk I/O.

• Use the multiple-row INSERT syntax to reduce communication overhead between the client and the
server if you need to insert many rows:

INSERT INTO yourtable VALUES (1,2), (5,5), ...;

This tip is valid for inserts into any table, not just InnoDB tables.

• When doing bulk inserts into tables with auto-increment columns, set innodb_autoinc_lock_mode
to 2 instead of the default value 1. See Section 14.6.1.6, “AUTO_INCREMENT Handling in InnoDB” for
details.

• When performing bulk inserts, it is faster to insert rows in PRIMARY KEY order. InnoDB tables use a
clustered index, which makes it relatively fast to use data in the order of the PRIMARY KEY. Performing
bulk inserts in PRIMARY KEY order is particularly important for tables that do not fit entirely within the
buffer pool.

• For optimal performance when loading data into an InnoDB FULLTEXT index, follow this set of steps:

1. Define a column FTS_DOC_ID at table creation time, of type BIGINT UNSIGNED NOT NULL, with a
unique index named FTS_DOC_ID_INDEX. For example:

1536

Optimizing InnoDB Queries

CREATE TABLE t1 (
FTS_DOC_ID BIGINT unsigned NOT NULL AUTO_INCREMENT,
title varchar(255) NOT NULL DEFAULT '',
text mediumtext NOT NULL,
PRIMARY KEY (`FTS_DOC_ID`)
) ENGINE=InnoDB DEFAULT CHARSET=latin1;
CREATE UNIQUE INDEX FTS_DOC_ID_INDEX on t1(FTS_DOC_ID);

2. Load the data into the table.

3. Create the FULLTEXT index after the data is loaded.

Note

When adding FTS_DOC_ID column at table creation time, ensure that the
FTS_DOC_ID column is updated when the FULLTEXT indexed column is
updated, as the FTS_DOC_ID must increase monotonically with each INSERT
or UPDATE. If you choose not to add the FTS_DOC_ID at table creation time and
have InnoDB manage DOC IDs for you, InnoDB adds the FTS_DOC_ID as a
hidden column with the next CREATE FULLTEXT INDEX call. This approach,
however, requires a table rebuild which can impact performance.

8.5.6 Optimizing InnoDB Queries

To tune queries for InnoDB tables, create an appropriate set of indexes on each table. See Section 8.3.1,
“How MySQL Uses Indexes” for details. Follow these guidelines for InnoDB indexes:

• Because each InnoDB table has a primary key (whether you request one or not), specify a set of
primary key columns for each table, columns that are used in the most important and time-critical
queries.

• Do not specify too many or too long columns in the primary key, because these column values are
duplicated in each secondary index. When an index contains unnecessary data, the I/O to read this data
and memory to cache it reduce the performance and scalability of the server.

• Do not create a separate secondary index for each column, because each query can only make use of
one index. Indexes on rarely tested columns or columns with only a few different values might not be
helpful for any queries. If you have many queries for the same table, testing different combinations of
columns, try to create a small number of concatenated indexes rather than a large number of single-
column indexes. If an index contains all the columns needed for the result set (known as a covering
index), the query might be able to avoid reading the table data at all.

• If an indexed column cannot contain any NULL values, declare it as NOT NULL when you create the
table. The optimizer can better determine which index is most effective to use for a query, when it knows
whether each column contains NULL values.

• You can optimize single-query transactions for InnoDB tables, using the technique in Section 8.5.3,
“Optimizing InnoDB Read-Only Transactions”.

8.5.7 Optimizing InnoDB DDL Operations

• Many DDL operations on tables and indexes (CREATE, ALTER, and DROP statements) can be performed
online. See Section 14.13, “InnoDB and Online DDL” for details.

• Online DDL support for adding secondary indexes means that you can generally speed up the process
of creating and loading a table and associated indexes by creating the table without secondary indexes,
then adding secondary indexes after the data is loaded.

1537

Optimizing InnoDB Disk I/O

• Use TRUNCATE TABLE to empty a table, not DELETE FROM tbl_name. Foreign key constraints can
make a TRUNCATE statement work like a regular DELETE statement, in which case a sequence of
commands like DROP TABLE and CREATE TABLE might be fastest.

• Because the primary key is integral to the storage layout of each InnoDB table, and changing the
definition of the primary key involves reorganizing the whole table, always set up the primary key as part
of the CREATE TABLE statement, and plan ahead so that you do not need to ALTER or DROP the primary
key afterward.

8.5.8 Optimizing InnoDB Disk I/O

If you follow best practices for database design and tuning techniques for SQL operations, but your
database is still slow due to heavy disk I/O activity, consider these disk I/O optimizations. If the Unix top
tool or the Windows Task Manager shows that the CPU usage percentage with your workload is less than
70%, your workload is probably disk-bound.

• Increase buffer pool size

When table data is cached in the InnoDB buffer pool, it can be accessed repeatedly by queries without
requiring any disk I/O. Specify the size of the buffer pool with the innodb_buffer_pool_size
option. This memory area is important enough that it is typically recommended that
innodb_buffer_pool_size is configured to 50 to 75 percent of system memory. For more
information see, Section 8.12.4.1, “How MySQL Uses Memory”.

• Adjust the flush method

In some versions of GNU/Linux and Unix, flushing files to disk with the Unix fsync() call (which
InnoDB uses by default) and similar methods is surprisingly slow. If database write performance is an
issue, conduct benchmarks with the innodb_flush_method parameter set to O_DSYNC.

• Use a noop or deadline I/O scheduler with native AIO on Linux

InnoDB uses the asynchronous I/O subsystem (native AIO) on Linux to perform read-ahead and write
requests for data file pages. This behavior is controlled by the innodb_use_native_aio configuration
option, which is enabled by default. With native AIO, the type of I/O scheduler has greater influence on I/
O performance. Generally, noop and deadline I/O schedulers are recommended. Conduct benchmarks
to determine which I/O scheduler provides the best results for your workload and environment. For more
information, see Section 14.8.7, “Using Asynchronous I/O on Linux”.

• Use direct I/O on Solaris 10 for x86_64 architecture

When using the InnoDB storage engine on Solaris 10 for x86_64 architecture (AMD Opteron), use direct
I/O for InnoDB-related files to avoid degradation of InnoDB performance. To use direct I/O for an entire
UFS file system used for storing InnoDB-related files, mount it with the forcedirectio option; see
mount_ufs(1M). (The default on Solaris 10/x86_64 is not to use this option.) To apply direct I/O only to
InnoDB file operations rather than the whole file system, set innodb_flush_method = O_DIRECT.
With this setting, InnoDB calls directio() instead of fcntl() for I/O to data files (not for I/O to log
files).

• Use raw storage for data and log files with Solaris 2.6 or later

When using the InnoDB storage engine with a large innodb_buffer_pool_size value on any
release of Solaris 2.6 and up and any platform (sparc/x86/x64/amd64), conduct benchmarks with
InnoDB data files and log files on raw devices or on a separate direct I/O UFS file system, using the
forcedirectio mount option as described previously. (It is necessary to use the mount option rather
than setting innodb_flush_method if you want direct I/O for the log files.) Users of the Veritas file
system VxFS should use the convosync=direct mount option.

1538

Optimizing InnoDB Disk I/O

Do not place other MySQL data files, such as those for MyISAM tables, on a direct I/O file system.
Executables or libraries must not be placed on a direct I/O file system.

• Use additional storage devices

Additional storage devices could be used to set up a RAID configuration. For related information, see
Section 8.12.2, “Optimizing Disk I/O”.

Alternatively, InnoDB tablespace data files and log files can be placed on different physical disks. For
more information, refer to the following sections:

• Section 14.8.1, “InnoDB Startup Configuration”

• Section 14.6.1.2, “Creating Tables Externally”

• Creating a General Tablespace

• Section 14.6.1.4, “Moving or Copying InnoDB Tables”

• Consider non-rotational storage

Non-rotational storage generally provides better performance for random I/O operations; and rotational
storage for sequential I/O operations. When distributing data and log files across rotational and non-
rotational storage devices, consider the type of I/O operations that are predominantly performed on each
file.

Random I/O-oriented files typically include file-per-table and general tablespace data files, undo
tablespace files, and temporary tablespace files. Sequential I/O-oriented files include InnoDB system

1539

Optimizing InnoDB Disk I/O

tablespace files (due to doublewrite buffering and change buffering) and log files such as binary log files
and redo log files.

Review settings for the following configuration options when using non-rotational storage:

• innodb_checksum_algorithm

The crc32 option uses a faster checksum algorithm and is recommended for fast storage systems.

• innodb_flush_neighbors

Optimizes I/O for rotational storage devices. Disable it for non-rotational storage or a mix of rotational
and non-rotational storage.

• innodb_io_capacity

The default setting of 200 is generally sufficient for a lower-end non-rotational storage device. For
higher-end, bus-attached devices, consider a higher setting such as 1000.

• innodb_io_capacity_max

The default value of 2000 is intended for workloads that use non-rotational storage. For a high-end,
bus-attached non-rotational storage device, consider a higher setting such as 2500.

• innodb_log_compressed_pages

If redo logs are on non-rotational storage, consider disabling this option to reduce logging. See Disable
logging of compressed pages.

• innodb_log_file_size

If redo logs are on non-rotational storage, configure this option to maximize caching and write
combining.

• innodb_page_size

Consider using a page size that matches the internal sector size of the disk. Early-generation SSD
devices often have a 4KB sector size. Some newer devices have a 16KB sector size. The default
InnoDB page size is 16KB. Keeping the page size close to the storage device block size minimizes
the amount of unchanged data that is rewritten to disk.

• binlog_row_image

If binary logs are on non-rotational storage and all tables have primary keys, consider setting this
option to minimal to reduce logging.

Ensure that TRIM support is enabled for your operating system. It is typically enabled by default.

• Increase I/O capacity to avoid backlogs

If throughput drops periodically because of InnoDB checkpoint operations, consider increasing the
value of the innodb_io_capacity configuration option. Higher values cause more frequent flushing,
avoiding the backlog of work that can cause dips in throughput.

• Lower I/O capacity if flushing does not fall behind

If the system is not falling behind with InnoDB flushing operations, consider lowering the value of the
innodb_io_capacity configuration option. Typically, you keep this option value as low as practical,

1540

Optimizing InnoDB Configuration Variables

but not so low that it causes periodic drops in throughput as mentioned in the preceding bullet. In a
typical scenario where you could lower the option value, you might see a combination like this in the
output from SHOW ENGINE INNODB STATUS:

• History list length low, below a few thousand.

• Insert buffer merges close to rows inserted.

• Modified pages in buffer pool consistently well below innodb_max_dirty_pages_pct of the buffer
pool. (Measure at a time when the server is not doing bulk inserts; it is normal during bulk inserts for
the modified pages percentage to rise significantly.)

• Log sequence number - Last checkpoint is at less than 7/8 or ideally less than 6/8 of the
total size of the InnoDB log files.

• Store system tablespace files on Fusion-io devices

You can take advantage of a doublewrite buffer-related I/O optimization by storing system tablespace
files (“ibdata files”) on Fusion-io devices that support atomic writes. In this case, doublewrite buffering
(innodb_doublewrite) is automatically disabled and Fusion-io atomic writes are used for all data
files. This feature is only supported on Fusion-io hardware and is only enabled for Fusion-io NVMFS
on Linux. To take full advantage of this feature, an innodb_flush_method setting of O_DIRECT is
recommended.

Note

Because the doublewrite buffer setting is global, doublewrite buffering is also
disabled for data files residing on non-Fusion-io hardware.

• Disable logging of compressed pages

When using the InnoDB table compression feature, images of re-compressed pages are written
to the redo log when changes are made to compressed data. This behavior is controlled by
innodb_log_compressed_pages, which is enabled by default to prevent corruption that can occur if
a different version of the zlib compression algorithm is used during recovery. If you are certain that the
zlib version is not subject to change, disable innodb_log_compressed_pages to reduce redo log
generation for workloads that modify compressed data.

8.5.9 Optimizing InnoDB Configuration Variables

Different settings work best for servers with light, predictable loads, versus servers that are running near
full capacity all the time, or that experience spikes of high activity.

Because the InnoDB storage engine performs many of its optimizations automatically, many performance-
tuning tasks involve monitoring to ensure that the database is performing well, and changing configuration
options when performance drops. See Section 14.17, “InnoDB Integration with MySQL Performance
Schema” for information about detailed InnoDB performance monitoring.

The main configuration steps you can perform include:

• Enabling InnoDB to use high-performance memory allocators on systems that include them. See
Section 14.8.4, “Configuring the Memory Allocator for InnoDB”.

• Controlling the types of data change operations for which InnoDB buffers the changed data, to avoid
frequent small disk writes. See Configuring Change Buffering. Because the default is to buffer all types
of data change operations, only change this setting if you need to reduce the amount of buffering.

1541

Optimizing InnoDB Configuration Variables

• Turning the adaptive hash indexing feature on and off using the innodb_adaptive_hash_index
option. See Section 14.5.3, “Adaptive Hash Index” for more information. You might change this setting
during periods of unusual activity, then restore it to its original setting.

• Setting a limit on the number of concurrent threads that InnoDB processes, if context switching is a
bottleneck. See Section 14.8.5, “Configuring Thread Concurrency for InnoDB”.

• Controlling the amount of prefetching that InnoDB does with its read-ahead operations. When the
system has unused I/O capacity, more read-ahead can improve the performance of queries. Too much
read-ahead can cause periodic drops in performance on a heavily loaded system. See Section 14.8.3.4,
“Configuring InnoDB Buffer Pool Prefetching (Read-Ahead)”.

• Increasing the number of background threads for read or write operations, if you have a high-end I/O
subsystem that is not fully utilized by the default values. See Section 14.8.6, “Configuring the Number of
Background InnoDB I/O Threads”.

• Controlling how much I/O InnoDB performs in the background. See Section 14.8.8, “Configuring InnoDB
I/O Capacity”. You might scale back this setting if you observe periodic drops in performance.

• Controlling the algorithm that determines when InnoDB performs certain types of background writes.
See Section 14.8.3.5, “Configuring Buffer Pool Flushing”. The algorithm works for some types of
workloads but not others, so might turn off this setting if you observe periodic drops in performance.

• Taking advantage of multicore processors and their cache memory configuration, to minimize delays in
context switching. See Section 14.8.9, “Configuring Spin Lock Polling”.

• Preventing one-time operations such as table scans from interfering with the frequently accessed data
stored in the InnoDB buffer cache. See Section 14.8.3.3, “Making the Buffer Pool Scan Resistant”.

• Adjusting log files to a size that makes sense for reliability and crash recovery. InnoDB log files have
often been kept small to avoid long startup times after a crash. Optimizations introduced in MySQL 5.5
speed up certain steps of the crash recovery process. In particular, scanning the redo log and applying
the redo log are faster due to improved algorithms for memory management. If you have kept your log
files artificially small to avoid long startup times, you can now consider increasing log file size to reduce
the I/O that occurs due recycling of redo log records.

• Configuring the size and number of instances for the InnoDB buffer pool, especially important for
systems with multi-gigabyte buffer pools. See Section 14.8.3.2, “Configuring Multiple Buffer Pool
Instances”.

• Increasing the maximum number of concurrent transactions, which dramatically improves scalability for
the busiest databases. See Section 14.6.7, “Undo Logs”.

• Moving purge operations (a type of garbage collection) into a background thread. See Section 14.8.10,
“Purge Configuration”. To effectively measure the results of this setting, tune the other I/O-related and
thread-related configuration settings first.

• Reducing the amount of switching that InnoDB does between concurrent threads, so that
SQL operations on a busy server do not queue up and form a “traffic jam”. Set a value for the
innodb_thread_concurrency option, up to approximately 32 for a high-powered modern system.
Increase the value for the innodb_concurrency_tickets option, typically to 5000 or so. This
combination of options sets a cap on the number of threads that InnoDB processes at any one time,
and allows each thread to do substantial work before being swapped out, so that the number of waiting
threads stays low and operations can complete without excessive context switching.

1542

Optimizing InnoDB for Systems with Many Tables

8.5.10 Optimizing InnoDB for Systems with Many Tables

• If you have configured non-persistent optimizer statistics (a non-default configuration), InnoDB
computes index cardinality values for a table the first time that table is accessed after startup, instead
of storing such values in the table. This step can take significant time on systems that partition the data
into many tables. Since this overhead only applies to the initial table open operation, to “warm up” a
table for later use, access it immediately after startup by issuing a statement such as SELECT 1 FROM
tbl_name LIMIT 1.

Optimizer statistics are persisted to disk by default, enabled by the innodb_stats_persistent
configuration option. For information about persistent optimizer statistics, see Section 14.8.11.1,
“Configuring Persistent Optimizer Statistics Parameters”.

8.6 Optimizing for MyISAM Tables

The MyISAM storage engine performs best with read-mostly data or with low-concurrency operations,
because table locks limit the ability to perform simultaneous updates. In MySQL, InnoDB is the default
storage engine rather than MyISAM.

8.6.1 Optimizing MyISAM Queries

Some general tips for speeding up queries on MyISAM tables:

• To help MySQL better optimize queries, use ANALYZE TABLE or run myisamchk --analyze on
a table after it has been loaded with data. This updates a value for each index part that indicates the
average number of rows that have the same value. (For unique indexes, this is always 1.) MySQL uses
this to decide which index to choose when you join two tables based on a nonconstant expression. You
can check the result from the table analysis by using SHOW INDEX FROM tbl_name and examining the
Cardinality value. myisamchk --description --verbose shows index distribution information.

• To sort an index and data according to an index, use myisamchk --sort-index --sort-
records=1 (assuming that you want to sort on index 1). This is a good way to make queries faster if
you have a unique index from which you want to read all rows in order according to the index. The first
time you sort a large table this way, it may take a long time.

• Try to avoid complex SELECT queries on MyISAM tables that are updated frequently, to avoid problems
with table locking that occur due to contention between readers and writers.

• MyISAM supports concurrent inserts: If a table has no free blocks in the middle of the data file, you can
INSERT new rows into it at the same time that other threads are reading from the table. If it is important
to be able to do this, consider using the table in ways that avoid deleting rows. Another possibility is to
run OPTIMIZE TABLE to defragment the table after you have deleted a lot of rows from it. This behavior
is altered by setting the concurrent_insert variable. You can force new rows to be appended
(and therefore permit concurrent inserts), even in tables that have deleted rows. See Section 8.11.3,
“Concurrent Inserts”.

• For MyISAM tables that change frequently, try to avoid all variable-length columns (VARCHAR, BLOB,
and TEXT). The table uses dynamic row format if it includes even a single variable-length column. See
Chapter 15, Alternative Storage Engines.

• It is normally not useful to split a table into different tables just because the rows become large. In
accessing a row, the biggest performance hit is the disk seek needed to find the first byte of the row.
After finding the data, most modern disks can read the entire row fast enough for most applications. The
only cases where splitting up a table makes an appreciable difference is if it is a MyISAM table using

1543

Bulk Data Loading for MyISAM Tables

dynamic row format that you can change to a fixed row size, or if you very often need to scan the table
but do not need most of the columns. See Chapter 15, Alternative Storage Engines.

• Use ALTER TABLE ... ORDER BY expr1, expr2, ... if you usually retrieve rows in expr1,
expr2, ... order. By using this option after extensive changes to the table, you may be able to get
higher performance.

• If you often need to calculate results such as counts based on information from a lot of rows, it may be
preferable to introduce a new table and update the counter in real time. An update of the following form
is very fast:

UPDATE tbl_name SET count_col=count_col+1 WHERE key_col=constant;

This is very important when you use MySQL storage engines such as MyISAM that has only table-level
locking (multiple readers with single writers). This also gives better performance with most database
systems, because the row locking manager in this case has less to do.

• Use OPTIMIZE TABLE periodically to avoid fragmentation with dynamic-format MyISAM tables. See
Section 15.2.3, “MyISAM Table Storage Formats”.

• Declaring a MyISAM table with the DELAY_KEY_WRITE=1 table option makes index updates faster
because they are not flushed to disk until the table is closed. The downside is that if something kills
the server while such a table is open, you must ensure that the table is okay by running the server with
the myisam_recover_options system variable set, or by running myisamchk before restarting
the server. (However, even in this case, you should not lose anything by using DELAY_KEY_WRITE,
because the key information can always be generated from the data rows.)

• Strings are automatically prefix- and end-space compressed in MyISAM indexes. See Section 13.1.14,
“CREATE INDEX Statement”.

• You can increase performance by caching queries or answers in your application and then executing
many inserts or updates together. Locking the table during this operation ensures that the index cache
is only flushed once after all updates. You can also take advantage of MySQL's query cache to achieve
similar results; see Section 8.10.3, “The MySQL Query Cache”.

8.6.2 Bulk Data Loading for MyISAM Tables

These performance tips supplement the general guidelines for fast inserts in Section 8.2.4.1, “Optimizing
INSERT Statements”.

• For a MyISAM table, you can use concurrent inserts to add rows at the same time that SELECT
statements are running, if there are no deleted rows in middle of the data file. See Section 8.11.3,
“Concurrent Inserts”.

• With some extra work, it is possible to make LOAD DATA run even faster for a MyISAM table when the
table has many indexes. Use the following procedure:

1. Execute a FLUSH TABLES statement or a mysqladmin flush-tables command.

2. Use myisamchk --keys-used=0 -rq /path/to/db/tbl_name to remove all use of indexes
for the table.

3. Insert data into the table with LOAD DATA. This does not update any indexes and therefore is very
fast.

4. If you intend only to read from the table in the future, use myisampack to compress it. See
Section 15.2.3.3, “Compressed Table Characteristics”.

1544

Optimizing REPAIR TABLE Statements

5. Re-create the indexes with myisamchk -rq /path/to/db/tbl_name. This creates the index
tree in memory before writing it to disk, which is much faster than updating the index during LOAD
DATA because it avoids lots of disk seeks. The resulting index tree is also perfectly balanced.

6. Execute a FLUSH TABLES statement or a mysqladmin flush-tables command.

LOAD DATA performs the preceding optimization automatically if the MyISAM table into which you insert
data is empty. The main difference between automatic optimization and using the procedure explicitly
is that you can let myisamchk allocate much more temporary memory for the index creation than you
might want the server to allocate for index re-creation when it executes the LOAD DATA statement.

You can also disable or enable the nonunique indexes for a MyISAM table by using the following
statements rather than myisamchk. If you use these statements, you can skip the FLUSH TABLES
operations:

ALTER TABLE tbl_name DISABLE KEYS;
ALTER TABLE tbl_name ENABLE KEYS;

• To speed up INSERT operations that are performed with multiple statements for nontransactional tables,
lock your tables:

LOCK TABLES a WRITE;
INSERT INTO a VALUES (1,23),(2,34),(4,33);
INSERT INTO a VALUES (8,26),(6,29);
...
UNLOCK TABLES;

This benefits performance because the index buffer is flushed to disk only once, after all INSERT
statements have completed. Normally, there would be as many index buffer flushes as there are INSERT
statements. Explicit locking statements are not needed if you can insert all rows with a single INSERT.

Locking also lowers the total time for multiple-connection tests, although the maximum wait time for
individual connections might go up because they wait for locks. Suppose that five clients attempt to
perform inserts simultaneously as follows:

• Connection 1 does 1000 inserts

• Connections 2, 3, and 4 do 1 insert

• Connection 5 does 1000 inserts

If you do not use locking, connections 2, 3, and 4 finish before 1 and 5. If you use locking, connections 2,
3, and 4 probably do not finish before 1 or 5, but the total time should be about 40% faster.

INSERT, UPDATE, and DELETE operations are very fast in MySQL, but you can obtain better overall
performance by adding locks around everything that does more than about five successive inserts or
updates. If you do very many successive inserts, you could do a LOCK TABLES followed by an UNLOCK
TABLES once in a while (each 1,000 rows or so) to permit other threads to access table. This would still
result in a nice performance gain.

INSERT is still much slower for loading data than LOAD DATA, even when using the strategies just
outlined.

• To increase performance for MyISAM tables, for both LOAD DATA and INSERT, enlarge the key cache
by increasing the key_buffer_size system variable. See Section 5.1.1, “Configuring the Server”.

8.6.3 Optimizing REPAIR TABLE Statements

1545

Optimizing REPAIR TABLE Statements

REPAIR TABLE for MyISAM tables is similar to using myisamchk for repair operations, and some of the
same performance optimizations apply:

• myisamchk has variables that control memory allocation. You may be able to its improve performance
by setting these variables, as described in Section 4.6.3.6, “myisamchk Memory Usage”.

• For REPAIR TABLE, the same principle applies, but because the repair is done by the server, you set
server system variables instead of myisamchk variables. Also, in addition to setting memory-allocation
variables, increasing the myisam_max_sort_file_size system variable increases the likelihood that
the repair uses the faster filesort method and avoids the slower repair by key cache method. Set the
variable to the maximum file size for your system, after checking to be sure that there is enough free
space to hold a copy of the table files. The free space must be available in the file system containing the
original table files.

Suppose that a myisamchk table-repair operation is done using the following options to set its memory-
allocation variables:

--key_buffer_size=128M --myisam_sort_buffer_size=256M
--read_buffer_size=64M --write_buffer_size=64M

Some of those myisamchk variables correspond to server system variables:

myisamchk Variable System Variable

key_buffer_size key_buffer_size

myisam_sort_buffer_size myisam_sort_buffer_size

read_buffer_size read_buffer_size

write_buffer_size none

Each of the server system variables can be set at runtime, and some of them
(myisam_sort_buffer_size, read_buffer_size) have a session value in addition to a global
value. Setting a session value limits the effect of the change to your current session and does not affect
other users. Changing a global-only variable (key_buffer_size, myisam_max_sort_file_size)
affects other users as well. For key_buffer_size, you must take into account that the buffer is shared
with those users. For example, if you set the myisamchk key_buffer_size variable to 128MB, you
could set the corresponding key_buffer_size system variable larger than that (if it is not already set
larger), to permit key buffer use by activity in other sessions. However, changing the global key buffer size
invalidates the buffer, causing increased disk I/O and slowdown for other sessions. An alternative that
avoids this problem is to use a separate key cache, assign to it the indexes from the table to be repaired,
and deallocate it when the repair is complete. See Section 8.10.2.2, “Multiple Key Caches”.

Based on the preceding remarks, a REPAIR TABLE operation can be done as follows to use settings
similar to the myisamchk command. Here a separate 128MB key buffer is allocated and the file system is
assumed to permit a file size of at least 100GB.

SET SESSION myisam_sort_buffer_size = 256*1024*1024;
SET SESSION read_buffer_size = 64*1024*1024;
SET GLOBAL myisam_max_sort_file_size = 100*1024*1024*1024;
SET GLOBAL repair_cache.key_buffer_size = 128*1024*1024;
CACHE INDEX tbl_name IN repair_cache;
LOAD INDEX INTO CACHE tbl_name;
REPAIR TABLE tbl_name ;
SET GLOBAL repair_cache.key_buffer_size = 0;

If you intend to change a global variable but want to do so only for the duration of a REPAIR TABLE
operation to minimally affect other users, save its value in a user variable and restore it afterward. For
example:

SET @old_myisam_sort_buffer_size = @@GLOBAL.myisam_max_sort_file_size;

1546

Optimizing for MEMORY Tables

SET GLOBAL myisam_max_sort_file_size = 100*1024*1024*1024;
REPAIR TABLE tbl_name ;
SET GLOBAL myisam_max_sort_file_size = @old_myisam_max_sort_file_size;

The system variables that affect REPAIR TABLE can be set globally at server startup if you want the
values to be in effect by default. For example, add these lines to the server my.cnf file:

[mysqld]
myisam_sort_buffer_size=256M
key_buffer_size=1G
myisam_max_sort_file_size=100G

These settings do not include read_buffer_size. Setting read_buffer_size globally to a large value
does so for all sessions and can cause performance to suffer due to excessive memory allocation for a
server with many simultaneous sessions.

8.7 Optimizing for MEMORY Tables
Consider using MEMORY tables for noncritical data that is accessed often, and is read-only or rarely
updated. Benchmark your application against equivalent InnoDB or MyISAM tables under a realistic
workload, to confirm that any additional performance is worth the risk of losing data, or the overhead of
copying data from a disk-based table at application start.

For best performance with MEMORY tables, examine the kinds of queries against each table, and specify
the type to use for each associated index, either a B-tree index or a hash index. On the CREATE INDEX
statement, use the clause USING BTREE or USING HASH. B-tree indexes are fast for queries that do
greater-than or less-than comparisons through operators such as > or BETWEEN. Hash indexes are only
fast for queries that look up single values through the = operator, or a restricted set of values through
the IN operator. For why USING BTREE is often a better choice than the default USING HASH, see
Section 8.2.1.20, “Avoiding Full Table Scans”. For implementation details of the different types of MEMORY
indexes, see Section 8.3.8, “Comparison of B-Tree and Hash Indexes”.

8.8 Understanding the Query Execution Plan
Depending on the details of your tables, columns, indexes, and the conditions in your WHERE clause,
the MySQL optimizer considers many techniques to efficiently perform the lookups involved in an SQL
query. A query on a huge table can be performed without reading all the rows; a join involving several
tables can be performed without comparing every combination of rows. The set of operations that the
optimizer chooses to perform the most efficient query is called the “query execution plan”, also known as
the EXPLAIN plan. Your goals are to recognize the aspects of the EXPLAIN plan that indicate a query is
optimized well, and to learn the SQL syntax and indexing techniques to improve the plan if you see some
inefficient operations.

8.8.1 Optimizing Queries with EXPLAIN

The EXPLAIN statement provides information about how MySQL executes statements:

• EXPLAIN works with SELECT, DELETE, INSERT, REPLACE, and UPDATE statements.

• When EXPLAIN is used with an explainable statement, MySQL displays information from the optimizer
about the statement execution plan. That is, MySQL explains how it would process the statement,
including information about how tables are joined and in which order. For information about using
EXPLAIN to obtain execution plan information, see Section 8.8.2, “EXPLAIN Output Format”.

• When EXPLAIN is used with FOR CONNECTION connection_id rather than an explainable
statement, it displays the execution plan for the statement executing in the named connection. See
Section 8.8.4, “Obtaining Execution Plan Information for a Named Connection”.

1547

EXPLAIN Output Format

• For SELECT statements, EXPLAIN produces additional execution plan information that can be displayed
using SHOW WARNINGS. See Section 8.8.3, “Extended EXPLAIN Output Format”.

• EXPLAIN is useful for examining queries involving partitioned tables. See Section 22.3.5, “Obtaining
Information About Partitions”.

• The FORMAT option can be used to select the output format. TRADITIONAL presents the output in
tabular format. This is the default if no FORMAT option is present. JSON format displays the information in
JSON format.

 With the help of EXPLAIN, you can see where you should add indexes to tables so that the statement
executes faster by using indexes to find rows. You can also use EXPLAIN to check whether the optimizer
joins the tables in an optimal order. To give a hint to the optimizer to use a join order corresponding
to the order in which the tables are named in a SELECT statement, begin the statement with SELECT
STRAIGHT_JOIN rather than just SELECT. (See Section 13.2.9, “SELECT Statement”.) However,
STRAIGHT_JOIN may prevent indexes from being used because it disables semijoin transformations.
See Section 8.2.2.1, “Optimizing Subqueries, Derived Tables, and View References with Semijoin
Transformations”.

The optimizer trace may sometimes provide information complementary to that of EXPLAIN. However, the
optimizer trace format and content are subject to change between versions. For details, see Section 8.15,
“Tracing the Optimizer”.

If you have a problem with indexes not being used when you believe that they should be, run ANALYZE
TABLE to update table statistics, such as cardinality of keys, that can affect the choices the optimizer
makes. See Section 13.7.2.1, “ANALYZE TABLE Statement”.

Note

EXPLAIN can also be used to obtain information about the columns in a
table. EXPLAIN tbl_name is synonymous with DESCRIBE tbl_name and
SHOW COLUMNS FROM tbl_name. For more information, see Section 13.8.1,
“DESCRIBE Statement”, and Section 13.7.5.5, “SHOW COLUMNS Statement”.

8.8.2 EXPLAIN Output Format

The EXPLAIN statement provides information about how MySQL executes statements. EXPLAIN works
with SELECT, DELETE, INSERT, REPLACE, and UPDATE statements.

EXPLAIN returns a row of information for each table used in the SELECT statement. It lists the tables in
the output in the order that MySQL would read them while processing the statement. MySQL resolves all
joins using a nested-loop join method. This means that MySQL reads a row from the first table, and then
finds a matching row in the second table, the third table, and so on. When all tables are processed, MySQL
outputs the selected columns and backtracks through the table list until a table is found for which there are
more matching rows. The next row is read from this table and the process continues with the next table.

EXPLAIN output includes partition information. Also, for SELECT statements, EXPLAIN generates
extended information that can be displayed with SHOW WARNINGS following the EXPLAIN (see
Section 8.8.3, “Extended EXPLAIN Output Format”).

Note

In older MySQL releases, partition and extended information was produced using
EXPLAIN PARTITIONS and EXPLAIN EXTENDED. Those syntaxes are still
recognized for backward compatibility but partition and extended output is now
enabled by default, so the PARTITIONS and EXTENDED keywords are superfluous

1548

EXPLAIN Output Format

and deprecated. Their use results in a warning; expect them to be removed from
EXPLAIN syntax in a future MySQL release.

You cannot use the deprecated PARTITIONS and EXTENDED keywords together in
the same EXPLAIN statement. In addition, neither of these keywords can be used
together with the FORMAT option.

Note

MySQL Workbench has a Visual Explain capability that provides a visual
representation of EXPLAIN output. See Tutorial: Using Explain to Improve Query
Performance.

• EXPLAIN Output Columns

• EXPLAIN Join Types

• EXPLAIN Extra Information

• EXPLAIN Output Interpretation

EXPLAIN Output Columns

This section describes the output columns produced by EXPLAIN. Later sections provide additional
information about the type and Extra columns.

Each output row from EXPLAIN provides information about one table. Each row contains the values
summarized in Table 8.1, “EXPLAIN Output Columns”, and described in more detail following the table.
Column names are shown in the table's first column; the second column provides the equivalent property
name shown in the output when FORMAT=JSON is used.

Table 8.1 EXPLAIN Output Columns

Column JSON Name Meaning

id select_id The SELECT identifier

select_type None The SELECT type

table table_name The table for the output row

partitions partitions The matching partitions

type access_type The join type

possible_keys possible_keys The possible indexes to choose

key key The index actually chosen

key_len key_length The length of the chosen key

ref ref The columns compared to the
index

rows rows Estimate of rows to be examined

filtered filtered Percentage of rows filtered by
table condition

Extra None Additional information

Note

JSON properties which are NULL are not displayed in JSON-formatted EXPLAIN
output.

1549

https://dev.mysql.com/doc/workbench/en/wb-tutorial-visual-explain-dbt3.html
https://dev.mysql.com/doc/workbench/en/wb-tutorial-visual-explain-dbt3.html

EXPLAIN Output Format

• id (JSON name: select_id)

The SELECT identifier. This is the sequential number of the SELECT within the query. The value can be
NULL if the row refers to the union result of other rows. In this case, the table column shows a value
like <unionM,N> to indicate that the row refers to the union of the rows with id values of M and N.

• select_type (JSON name: none)

The type of SELECT, which can be any of those shown in the following table. A JSON-formatted
EXPLAIN exposes the SELECT type as a property of a query_block, unless it is SIMPLE or PRIMARY.
The JSON names (where applicable) are also shown in the table.

select_type Value JSON Name Meaning

SIMPLE None Simple SELECT (not using UNION
or subqueries)

PRIMARY None Outermost SELECT

UNION None Second or later SELECT
statement in a UNION

DEPENDENT UNION dependent (true) Second or later SELECT
statement in a UNION, dependent
on outer query

UNION RESULT union_result Result of a UNION.

SUBQUERY None First SELECT in subquery

DEPENDENT SUBQUERY dependent (true) First SELECT in subquery,
dependent on outer query

DERIVED None Derived table

MATERIALIZED materialized_from_subqueryMaterialized subquery

UNCACHEABLE SUBQUERY cacheable (false) A subquery for which the result
cannot be cached and must be
re-evaluated for each row of the
outer query

UNCACHEABLE UNION cacheable (false) The second or later select in
a UNION that belongs to an
uncacheable subquery (see
UNCACHEABLE SUBQUERY)

DEPENDENT typically signifies the use of a correlated subquery. See Section 13.2.10.7, “Correlated
Subqueries”.

DEPENDENT SUBQUERY evaluation differs from UNCACHEABLE SUBQUERY evaluation. For DEPENDENT
SUBQUERY, the subquery is re-evaluated only once for each set of different values of the variables from
its outer context. For UNCACHEABLE SUBQUERY, the subquery is re-evaluated for each row of the outer
context.

Cacheability of subqueries differs from caching of query results in the query cache (which is described in
Section 8.10.3.1, “How the Query Cache Operates”). Subquery caching occurs during query execution,
whereas the query cache is used to store results only after query execution finishes.

When you specify FORMAT=JSON with EXPLAIN, the output has no single property directly
equivalent to select_type; the query_block property corresponds to a given SELECT. Properties
equivalent to most of the SELECT subquery types just shown are available (an example being

1550

EXPLAIN Output Format

materialized_from_subquery for MATERIALIZED), and are displayed when appropriate. There are
no JSON equivalents for SIMPLE or PRIMARY.

The select_type value for non-SELECT statements displays the statement type for affected tables.
For example, select_type is DELETE for DELETE statements.

• table (JSON name: table_name)

The name of the table to which the row of output refers. This can also be one of the following values:

• <unionM,N>: The row refers to the union of the rows with id values of M and N.

• <derivedN>: The row refers to the derived table result for the row with an id value of N. A derived
table may result, for example, from a subquery in the FROM clause.

• <subqueryN>: The row refers to the result of a materialized subquery for the row with an id value of
N. See Section 8.2.2.2, “Optimizing Subqueries with Materialization”.

• partitions (JSON name: partitions)

The partitions from which records would be matched by the query. The value is NULL for nonpartitioned
tables. See Section 22.3.5, “Obtaining Information About Partitions”.

• type (JSON name: access_type)

The join type. For descriptions of the different types, see EXPLAIN Join Types.

• possible_keys (JSON name: possible_keys)

The possible_keys column indicates the indexes from which MySQL can choose to find the rows in
this table. Note that this column is totally independent of the order of the tables as displayed in the output
from EXPLAIN. That means that some of the keys in possible_keys might not be usable in practice
with the generated table order.

If this column is NULL (or undefined in JSON-formatted output), there are no relevant indexes. In this
case, you may be able to improve the performance of your query by examining the WHERE clause to
check whether it refers to some column or columns that would be suitable for indexing. If so, create
an appropriate index and check the query with EXPLAIN again. See Section 13.1.8, “ALTER TABLE
Statement”.

To see what indexes a table has, use SHOW INDEX FROM tbl_name.

• key (JSON name: key)

The key column indicates the key (index) that MySQL actually decided to use. If MySQL decides to use
one of the possible_keys indexes to look up rows, that index is listed as the key value.

It is possible for key to name an index that is not present in the possible_keys value. This can
happen if none of the possible_keys indexes are suitable for looking up rows, but all the columns
selected by the query are columns of some other index. That is, the named index covers the selected

1551

EXPLAIN Output Format

columns, so although it is not used to determine which rows to retrieve, an index scan is more efficient
than a data row scan.

For InnoDB, a secondary index might cover the selected columns even if the query also selects the
primary key because InnoDB stores the primary key value with each secondary index. If key is NULL,
MySQL found no index to use for executing the query more efficiently.

To force MySQL to use or ignore an index listed in the possible_keys column, use FORCE INDEX,
USE INDEX, or IGNORE INDEX in your query. See Section 8.9.4, “Index Hints”.

For MyISAM tables, running ANALYZE TABLE helps the optimizer choose better indexes. For MyISAM
tables, myisamchk --analyze does the same. See Section 13.7.2.1, “ANALYZE TABLE Statement”,
and Section 7.6, “MyISAM Table Maintenance and Crash Recovery”.

• key_len (JSON name: key_length)

The key_len column indicates the length of the key that MySQL decided to use. The value of key_len
enables you to determine how many parts of a multiple-part key MySQL actually uses. If the key column
says NULL, the key_len column also says NULL.

Due to the key storage format, the key length is one greater for a column that can be NULL than for a
NOT NULL column.

• ref (JSON name: ref)

The ref column shows which columns or constants are compared to the index named in the key
column to select rows from the table.

If the value is func, the value used is the result of some function. To see which function, use SHOW
WARNINGS following EXPLAIN to see the extended EXPLAIN output. The function might actually be an
operator such as an arithmetic operator.

• rows (JSON name: rows)

The rows column indicates the number of rows MySQL believes it must examine to execute the query.

For InnoDB tables, this number is an estimate, and may not always be exact.

• filtered (JSON name: filtered)

The filtered column indicates an estimated percentage of table rows filtered by the table condition.
The maximum value is 100, which means no filtering of rows occurred. Values decreasing from 100
indicate increasing amounts of filtering. rows shows the estimated number of rows examined and rows
× filtered shows the number of rows joined with the following table. For example, if rows is 1000 and
filtered is 50.00 (50%), the number of rows to be joined with the following table is 1000 × 50% = 500.

• Extra (JSON name: none)

This column contains additional information about how MySQL resolves the query. For descriptions of
the different values, see EXPLAIN Extra Information.

There is no single JSON property corresponding to the Extra column; however, values that can occur in
this column are exposed as JSON properties, or as the text of the message property.

1552

EXPLAIN Output Format

EXPLAIN Join Types

The type column of EXPLAIN output describes how tables are joined. In JSON-formatted output, these
are found as values of the access_type property. The following list describes the join types, ordered from
the best type to the worst:

• system

The table has only one row (= system table). This is a special case of the const join type.

• const

The table has at most one matching row, which is read at the start of the query. Because there is only
one row, values from the column in this row can be regarded as constants by the rest of the optimizer.
const tables are very fast because they are read only once.

const is used when you compare all parts of a PRIMARY KEY or UNIQUE index to constant values. In
the following queries, tbl_name can be used as a const table:

SELECT * FROM tbl_name WHERE primary_key=1;

SELECT * FROM tbl_name
 WHERE primary_key_part1=1 AND primary_key_part2=2;

• eq_ref

One row is read from this table for each combination of rows from the previous tables. Other than the
system and const types, this is the best possible join type. It is used when all parts of an index are
used by the join and the index is a PRIMARY KEY or UNIQUE NOT NULL index.

eq_ref can be used for indexed columns that are compared using the = operator. The comparison
value can be a constant or an expression that uses columns from tables that are read before this table.
In the following examples, MySQL can use an eq_ref join to process ref_table:

SELECT * FROM ref_table,other_table
 WHERE ref_table.key_column=other_table.column;

SELECT * FROM ref_table,other_table
 WHERE ref_table.key_column_part1=other_table.column
 AND ref_table.key_column_part2=1;

• ref

All rows with matching index values are read from this table for each combination of rows from the
previous tables. ref is used if the join uses only a leftmost prefix of the key or if the key is not a
PRIMARY KEY or UNIQUE index (in other words, if the join cannot select a single row based on the key
value). If the key that is used matches only a few rows, this is a good join type.

ref can be used for indexed columns that are compared using the = or <=> operator. In the following
examples, MySQL can use a ref join to process ref_table:

SELECT * FROM ref_table WHERE key_column=expr;

SELECT * FROM ref_table,other_table
 WHERE ref_table.key_column=other_table.column;

SELECT * FROM ref_table,other_table
 WHERE ref_table.key_column_part1=other_table.column
 AND ref_table.key_column_part2=1;

• fulltext

1553

EXPLAIN Output Format

The join is performed using a FULLTEXT index.

• ref_or_null

This join type is like ref, but with the addition that MySQL does an extra search for rows that contain
NULL values. This join type optimization is used most often in resolving subqueries. In the following
examples, MySQL can use a ref_or_null join to process ref_table:

SELECT * FROM ref_table
 WHERE key_column=expr OR key_column IS NULL;

See Section 8.2.1.13, “IS NULL Optimization”.

• index_merge

This join type indicates that the Index Merge optimization is used. In this case, the key column in the
output row contains a list of indexes used, and key_len contains a list of the longest key parts for the
indexes used. For more information, see Section 8.2.1.3, “Index Merge Optimization”.

• unique_subquery

This type replaces eq_ref for some IN subqueries of the following form:

value IN (SELECT primary_key FROM single_table WHERE some_expr)

unique_subquery is just an index lookup function that replaces the subquery completely for better
efficiency.

• index_subquery

This join type is similar to unique_subquery. It replaces IN subqueries, but it works for nonunique
indexes in subqueries of the following form:

value IN (SELECT key_column FROM single_table WHERE some_expr)

• range

Only rows that are in a given range are retrieved, using an index to select the rows. The key column in
the output row indicates which index is used. The key_len contains the longest key part that was used.
The ref column is NULL for this type.

range can be used when a key column is compared to a constant using any of the =, <>, >, >=, <, <=,
IS NULL, <=>, BETWEEN, LIKE, or IN() operators:

SELECT * FROM tbl_name
 WHERE key_column = 10;

SELECT * FROM tbl_name
 WHERE key_column BETWEEN 10 and 20;

SELECT * FROM tbl_name
 WHERE key_column IN (10,20,30);

SELECT * FROM tbl_name
 WHERE key_part1 = 10 AND key_part2 IN (10,20,30);

1554

EXPLAIN Output Format

• index

The index join type is the same as ALL, except that the index tree is scanned. This occurs two ways:

• If the index is a covering index for the queries and can be used to satisfy all data required from the
table, only the index tree is scanned. In this case, the Extra column says Using index. An index-
only scan usually is faster than ALL because the size of the index usually is smaller than the table
data.

• A full table scan is performed using reads from the index to look up data rows in index order. Uses
index does not appear in the Extra column.

MySQL can use this join type when the query uses only columns that are part of a single index.

• ALL

A full table scan is done for each combination of rows from the previous tables. This is normally not good
if the table is the first table not marked const, and usually very bad in all other cases. Normally, you
can avoid ALL by adding indexes that enable row retrieval from the table based on constant values or
column values from earlier tables.

EXPLAIN Extra Information

The Extra column of EXPLAIN output contains additional information about how MySQL resolves the
query. The following list explains the values that can appear in this column. Each item also indicates for
JSON-formatted output which property displays the Extra value. For some of these, there is a specific
property. The others display as the text of the message property.

If you want to make your queries as fast as possible, look out for Extra column values of Using
filesort and Using temporary, or, in JSON-formatted EXPLAIN output, for using_filesort and
using_temporary_table properties equal to true.

• Child of 'table' pushed join@1 (JSON: message text)

This table is referenced as the child of table in a join that can be pushed down to the NDB kernel.
Applies only in NDB Cluster, when pushed-down joins are enabled. See the description of the
ndb_join_pushdown server system variable for more information and examples.

• const row not found (JSON property: const_row_not_found)

For a query such as SELECT ... FROM tbl_name, the table was empty.

• Deleting all rows (JSON property: message)

For DELETE, some storage engines (such as MyISAM) support a handler method that removes all table
rows in a simple and fast way. This Extra value is displayed if the engine uses this optimization.

• Distinct (JSON property: distinct)

MySQL is looking for distinct values, so it stops searching for more rows for the current row combination
after it has found the first matching row.

• FirstMatch(tbl_name) (JSON property: first_match)

The semijoin FirstMatch join shortcutting strategy is used for tbl_name.

• Full scan on NULL key (JSON property: message)

1555

EXPLAIN Output Format

This occurs for subquery optimization as a fallback strategy when the optimizer cannot use an index-
lookup access method.

• Impossible HAVING (JSON property: message)

The HAVING clause is always false and cannot select any rows.

• Impossible WHERE (JSON property: message)

The WHERE clause is always false and cannot select any rows.

• Impossible WHERE noticed after reading const tables (JSON property: message)

MySQL has read all const (and system) tables and notice that the WHERE clause is always false.

• LooseScan(m..n) (JSON property: message)

The semijoin LooseScan strategy is used. m and n are key part numbers.

• No matching min/max row (JSON property: message)

No row satisfies the condition for a query such as SELECT MIN(...) FROM ... WHERE condition.

• no matching row in const table (JSON property: message)

For a query with a join, there was an empty table or a table with no rows satisfying a unique index
condition.

• No matching rows after partition pruning (JSON property: message)

For DELETE or UPDATE, the optimizer found nothing to delete or update after partition pruning. It is
similar in meaning to Impossible WHERE for SELECT statements.

• No tables used (JSON property: message)

The query has no FROM clause, or has a FROM DUAL clause.

For INSERT or REPLACE statements, EXPLAIN displays this value when there is no SELECT part.
For example, it appears for EXPLAIN INSERT INTO t VALUES(10) because that is equivalent to
EXPLAIN INSERT INTO t SELECT 10 FROM DUAL.

• Not exists (JSON property: message)

MySQL was able to do a LEFT JOIN optimization on the query and does not examine more rows in this
table for the previous row combination after it finds one row that matches the LEFT JOIN criteria. Here
is an example of the type of query that can be optimized this way:

SELECT * FROM t1 LEFT JOIN t2 ON t1.id=t2.id
 WHERE t2.id IS NULL;

Assume that t2.id is defined as NOT NULL. In this case, MySQL scans t1 and looks up the rows in
t2 using the values of t1.id. If MySQL finds a matching row in t2, it knows that t2.id can never be
NULL, and does not scan through the rest of the rows in t2 that have the same id value. In other words,
for each row in t1, MySQL needs to do only a single lookup in t2, regardless of how many rows actually
match in t2.

1556

EXPLAIN Output Format

• Plan isn't ready yet (JSON property: none)

This value occurs with EXPLAIN FOR CONNECTION when the optimizer has not finished creating
the execution plan for the statement executing in the named connection. If execution plan output
comprises multiple lines, any or all of them could have this Extra value, depending on the progress of
the optimizer in determining the full execution plan.

• Range checked for each record (index map: N) (JSON property: message)

MySQL found no good index to use, but found that some of indexes might be used after column values
from preceding tables are known. For each row combination in the preceding tables, MySQL checks
whether it is possible to use a range or index_merge access method to retrieve rows. This is not very
fast, but is faster than performing a join with no index at all. The applicability criteria are as described
in Section 8.2.1.2, “Range Optimization”, and Section 8.2.1.3, “Index Merge Optimization”, with the
exception that all column values for the preceding table are known and considered to be constants.

Indexes are numbered beginning with 1, in the same order as shown by SHOW INDEX for the table. The
index map value N is a bitmask value that indicates which indexes are candidates. For example, a value
of 0x19 (binary 11001) means that indexes 1, 4, and 5 are considered.

• Scanned N databases (JSON property: message)

This indicates how many directory scans the server performs when processing a query for
INFORMATION_SCHEMA tables, as described in Section 8.2.3, “Optimizing INFORMATION_SCHEMA
Queries”. The value of N can be 0, 1, or all.

• Select tables optimized away (JSON property: message)

The optimizer determined 1) that at most one row should be returned, and 2) that to produce this row,
a deterministic set of rows must be read. When the rows to be read can be read during the optimization
phase (for example, by reading index rows), there is no need to read any tables during query execution.

The first condition is fulfilled when the query is implicitly grouped (contains an aggregate function but no
GROUP BY clause). The second condition is fulfilled when one row lookup is performed per index used.
The number of indexes read determines the number of rows to read.

Consider the following implicitly grouped query:

SELECT MIN(c1), MIN(c2) FROM t1;

Suppose that MIN(c1) can be retrieved by reading one index row and MIN(c2) can be retrieved by
reading one row from a different index. That is, for each column c1 and c2, there exists an index where

1557

EXPLAIN Output Format

the column is the first column of the index. In this case, one row is returned, produced by reading two
deterministic rows.

This Extra value does not occur if the rows to read are not deterministic. Consider this query:

SELECT MIN(c2) FROM t1 WHERE c1 <= 10;

Suppose that (c1, c2) is a covering index. Using this index, all rows with c1 <= 10 must be scanned
to find the minimum c2 value. By contrast, consider this query:

SELECT MIN(c2) FROM t1 WHERE c1 = 10;

In this case, the first index row with c1 = 10 contains the minimum c2 value. Only one row must be
read to produce the returned row.

For storage engines that maintain an exact row count per table (such as MyISAM, but not InnoDB), this
Extra value can occur for COUNT(*) queries for which the WHERE clause is missing or always true
and there is no GROUP BY clause. (This is an instance of an implicitly grouped query where the storage
engine influences whether a deterministic number of rows can be read.)

• Skip_open_table, Open_frm_only, Open_full_table (JSON property: message)

These values indicate file-opening optimizations that apply to queries for INFORMATION_SCHEMA tables,
as described in Section 8.2.3, “Optimizing INFORMATION_SCHEMA Queries”.

• Skip_open_table: Table files do not need to be opened. The information has already become
available within the query by scanning the database directory.

• Open_frm_only: Only the table's .frm file need be opened.

• Open_full_table: The unoptimized information lookup. The .frm, .MYD, and .MYI files must be
opened.

• Start temporary, End temporary (JSON property: message)

This indicates temporary table use for the semijoin Duplicate Weedout strategy.

• unique row not found (JSON property: message)

For a query such as SELECT ... FROM tbl_name, no rows satisfy the condition for a UNIQUE index
or PRIMARY KEY on the table.

• Using filesort (JSON property: using_filesort)

MySQL must do an extra pass to find out how to retrieve the rows in sorted order. The sort is done by
going through all rows according to the join type and storing the sort key and pointer to the row for all
rows that match the WHERE clause. The keys then are sorted and the rows are retrieved in sorted order.
See Section 8.2.1.14, “ORDER BY Optimization”.

• Using index (JSON property: using_index)

The column information is retrieved from the table using only information in the index tree without having
to do an additional seek to read the actual row. This strategy can be used when the query uses only
columns that are part of a single index.

For InnoDB tables that have a user-defined clustered index, that index can be used even when Using
index is absent from the Extra column. This is the case if type is index and key is PRIMARY.

1558

EXPLAIN Output Format

• Using index condition (JSON property: using_index_condition)

Tables are read by accessing index tuples and testing them first to determine whether to read full table
rows. In this way, index information is used to defer (“push down”) reading full table rows unless it is
necessary. See Section 8.2.1.5, “Index Condition Pushdown Optimization”.

• Using index for group-by (JSON property: using_index_for_group_by)

Similar to the Using index table access method, Using index for group-by indicates that
MySQL found an index that can be used to retrieve all columns of a GROUP BY or DISTINCT query
without any extra disk access to the actual table. Additionally, the index is used in the most efficient way
so that for each group, only a few index entries are read. For details, see Section 8.2.1.15, “GROUP BY
Optimization”.

• Using join buffer (Block Nested Loop), Using join buffer (Batched Key Access)
(JSON property: using_join_buffer)

Tables from earlier joins are read in portions into the join buffer, and then their rows are used from
the buffer to perform the join with the current table. (Block Nested Loop) indicates use of the
Block Nested-Loop algorithm and (Batched Key Access) indicates use of the Batched Key Access
algorithm. That is, the keys from the table on the preceding line of the EXPLAIN output are buffered, and
the matching rows are fetched in batches from the table represented by the line in which Using join
buffer appears.

In JSON-formatted output, the value of using_join_buffer is always either one of Block Nested
Loop or Batched Key Access.

For more information about these algorithms, see Block Nested-Loop Join Algorithm, and Batched Key
Access Joins.

• Using MRR (JSON property: message)

Tables are read using the Multi-Range Read optimization strategy. See Section 8.2.1.10, “Multi-Range
Read Optimization”.

• Using sort_union(...), Using union(...), Using intersect(...) (JSON property:
message)

These indicate the particular algorithm showing how index scans are merged for the index_merge join
type. See Section 8.2.1.3, “Index Merge Optimization”.

• Using temporary (JSON property: using_temporary_table)

To resolve the query, MySQL needs to create a temporary table to hold the result. This typically happens
if the query contains GROUP BY and ORDER BY clauses that list columns differently.

• Using where (JSON property: attached_condition)

A WHERE clause is used to restrict which rows to match against the next table or send to the client.
Unless you specifically intend to fetch or examine all rows from the table, you may have something
wrong in your query if the Extra value is not Using where and the table join type is ALL or index.

Using where has no direct counterpart in JSON-formatted output; the attached_condition
property contains any WHERE condition used.

1559

EXPLAIN Output Format

• Using where with pushed condition (JSON property: message)

This item applies to NDB tables only. It means that NDB Cluster is using the Condition Pushdown
optimization to improve the efficiency of a direct comparison between a nonindexed column and a
constant. In such cases, the condition is “pushed down” to the cluster's data nodes and is evaluated on
all data nodes simultaneously. This eliminates the need to send nonmatching rows over the network, and
can speed up such queries by a factor of 5 to 10 times over cases where Condition Pushdown could be
but is not used. For more information, see Section 8.2.1.4, “Engine Condition Pushdown Optimization”.

• Zero limit (JSON property: message)

The query had a LIMIT 0 clause and cannot select any rows.

EXPLAIN Output Interpretation

You can get a good indication of how good a join is by taking the product of the values in the rows column
of the EXPLAIN output. This should tell you roughly how many rows MySQL must examine to execute
the query. If you restrict queries with the max_join_size system variable, this row product also is used
to determine which multiple-table SELECT statements to execute and which to abort. See Section 5.1.1,
“Configuring the Server”.

The following example shows how a multiple-table join can be optimized progressively based on the
information provided by EXPLAIN.

Suppose that you have the SELECT statement shown here and that you plan to examine it using EXPLAIN:

EXPLAIN SELECT tt.TicketNumber, tt.TimeIn,
 tt.ProjectReference, tt.EstimatedShipDate,
 tt.ActualShipDate, tt.ClientID,
 tt.ServiceCodes, tt.RepetitiveID,
 tt.CurrentProcess, tt.CurrentDPPerson,
 tt.RecordVolume, tt.DPPrinted, et.COUNTRY,
 et_1.COUNTRY, do.CUSTNAME
 FROM tt, et, et AS et_1, do
 WHERE tt.SubmitTime IS NULL
 AND tt.ActualPC = et.EMPLOYID
 AND tt.AssignedPC = et_1.EMPLOYID
 AND tt.ClientID = do.CUSTNMBR;

For this example, make the following assumptions:

• The columns being compared have been declared as follows.

Table Column Data Type

tt ActualPC CHAR(10)

tt AssignedPC CHAR(10)

tt ClientID CHAR(10)

et EMPLOYID CHAR(15)

do CUSTNMBR CHAR(15)

• The tables have the following indexes.

Table Index

tt ActualPC

tt AssignedPC

1560

EXPLAIN Output Format

Table Index

tt ClientID

et EMPLOYID (primary key)

do CUSTNMBR (primary key)

• The tt.ActualPC values are not evenly distributed.

Initially, before any optimizations have been performed, the EXPLAIN statement produces the following
information:

table type possible_keys key key_len ref rows Extra
et ALL PRIMARY NULL NULL NULL 74
do ALL PRIMARY NULL NULL NULL 2135
et_1 ALL PRIMARY NULL NULL NULL 74
tt ALL AssignedPC, NULL NULL NULL 3872
 ClientID,
 ActualPC
 Range checked for each record (index map: 0x23)

Because type is ALL for each table, this output indicates that MySQL is generating a Cartesian product of
all the tables; that is, every combination of rows. This takes quite a long time, because the product of the
number of rows in each table must be examined. For the case at hand, this product is 74 × 2135 × 74 ×
3872 = 45,268,558,720 rows. If the tables were bigger, you can only imagine how long it would take.

One problem here is that MySQL can use indexes on columns more efficiently if they are declared as the
same type and size. In this context, VARCHAR and CHAR are considered the same if they are declared as
the same size. tt.ActualPC is declared as CHAR(10) and et.EMPLOYID is CHAR(15), so there is a
length mismatch.

To fix this disparity between column lengths, use ALTER TABLE to lengthen ActualPC from 10 characters
to 15 characters:

mysql> ALTER TABLE tt MODIFY ActualPC VARCHAR(15);

Now tt.ActualPC and et.EMPLOYID are both VARCHAR(15). Executing the EXPLAIN statement again
produces this result:

table type possible_keys key key_len ref rows Extra
tt ALL AssignedPC, NULL NULL NULL 3872 Using
 ClientID, where
 ActualPC
do ALL PRIMARY NULL NULL NULL 2135
 Range checked for each record (index map: 0x1)
et_1 ALL PRIMARY NULL NULL NULL 74
 Range checked for each record (index map: 0x1)
et eq_ref PRIMARY PRIMARY 15 tt.ActualPC 1

This is not perfect, but is much better: The product of the rows values is less by a factor of 74. This version
executes in a couple of seconds.

A second alteration can be made to eliminate the column length mismatches for the tt.AssignedPC =
et_1.EMPLOYID and tt.ClientID = do.CUSTNMBR comparisons:

mysql> ALTER TABLE tt MODIFY AssignedPC VARCHAR(15),
 MODIFY ClientID VARCHAR(15);

After that modification, EXPLAIN produces the output shown here:

table type possible_keys key key_len ref rows Extra

1561

Extended EXPLAIN Output Format

et ALL PRIMARY NULL NULL NULL 74
tt ref AssignedPC, ActualPC 15 et.EMPLOYID 52 Using
 ClientID, where
 ActualPC
et_1 eq_ref PRIMARY PRIMARY 15 tt.AssignedPC 1
do eq_ref PRIMARY PRIMARY 15 tt.ClientID 1

At this point, the query is optimized almost as well as possible. The remaining problem is that, by default,
MySQL assumes that values in the tt.ActualPC column are evenly distributed, and that is not the case
for the tt table. Fortunately, it is easy to tell MySQL to analyze the key distribution:

mysql> ANALYZE TABLE tt;

With the additional index information, the join is perfect and EXPLAIN produces this result:

table type possible_keys key key_len ref rows Extra
tt ALL AssignedPC NULL NULL NULL 3872 Using
 ClientID, where
 ActualPC
et eq_ref PRIMARY PRIMARY 15 tt.ActualPC 1
et_1 eq_ref PRIMARY PRIMARY 15 tt.AssignedPC 1
do eq_ref PRIMARY PRIMARY 15 tt.ClientID 1

 The rows column in the output from EXPLAIN is an educated guess from the MySQL join optimizer.
Check whether the numbers are even close to the truth by comparing the rows product with the actual
number of rows that the query returns. If the numbers are quite different, you might get better performance
by using STRAIGHT_JOIN in your SELECT statement and trying to list the tables in a different order
in the FROM clause. (However, STRAIGHT_JOIN may prevent indexes from being used because it
disables semijoin transformations. See Section 8.2.2.1, “Optimizing Subqueries, Derived Tables, and View
References with Semijoin Transformations”.)

It is possible in some cases to execute statements that modify data when EXPLAIN SELECT is used with a
subquery; for more information, see Section 13.2.10.8, “Derived Tables”.

8.8.3 Extended EXPLAIN Output Format

For SELECT statements, the EXPLAIN statement produces extra (“extended”) information that is not part
of EXPLAIN output but can be viewed by issuing a SHOW WARNINGS statement following EXPLAIN. The
Message value in SHOW WARNINGS output displays how the optimizer qualifies table and column names in
the SELECT statement, what the SELECT looks like after the application of rewriting and optimization rules,
and possibly other notes about the optimization process.

The extended information displayable with a SHOW WARNINGS statement following EXPLAIN is produced
only for SELECT statements. SHOW WARNINGS displays an empty result for other explainable statements
(DELETE, INSERT, REPLACE, and UPDATE).

Note

In older MySQL releases, extended information was produced using EXPLAIN
EXTENDED. That syntax is still recognized for backward compatibility but extended
output is now enabled by default, so the EXTENDED keyword is superfluous and
deprecated. Its use results in a warning; expect it to be removed from EXPLAIN
syntax in a future MySQL release.

Here is an example of extended EXPLAIN output:

mysql> EXPLAIN
 SELECT t1.a, t1.a IN (SELECT t2.a FROM t2) FROM t1\G
*************************** 1. row ***************************

1562

Extended EXPLAIN Output Format

 id: 1
 select_type: PRIMARY
 table: t1
 type: index
possible_keys: NULL
 key: PRIMARY
 key_len: 4
 ref: NULL
 rows: 4
 filtered: 100.00
 Extra: Using index
*************************** 2. row ***************************
 id: 2
 select_type: SUBQUERY
 table: t2
 type: index
possible_keys: a
 key: a
 key_len: 5
 ref: NULL
 rows: 3
 filtered: 100.00
 Extra: Using index
2 rows in set, 1 warning (0.00 sec)

mysql> SHOW WARNINGS\G
*************************** 1. row ***************************
 Level: Note
 Code: 1003
Message: /* select#1 */ select `test`.`t1`.`a` AS `a`,
 <in_optimizer>(`test`.`t1`.`a`,`test`.`t1`.`a` in
 (<materialize> (/* select#2 */ select `test`.`t2`.`a`
 from `test`.`t2` where 1 having 1),
 <primary_index_lookup>(`test`.`t1`.`a` in
 <temporary table> on <auto_key>
 where ((`test`.`t1`.`a` = `materialized-subquery`.`a`))))) AS `t1.a
 IN (SELECT t2.a FROM t2)` from `test`.`t1`
1 row in set (0.00 sec)

Because the statement displayed by SHOW WARNINGS may contain special markers to provide information
about query rewriting or optimizer actions, the statement is not necessarily valid SQL and is not intended
to be executed. The output may also include rows with Message values that provide additional non-SQL
explanatory notes about actions taken by the optimizer.

The following list describes special markers that can appear in the extended output displayed by SHOW
WARNINGS:

• <auto_key>

An automatically generated key for a temporary table.

• <cache>(expr)

The expression (such as a scalar subquery) is executed once and the resulting value is saved in
memory for later use. For results consisting of multiple values, a temporary table may be created and
you might see <temporary table> instead.

• <exists>(query fragment)

The subquery predicate is converted to an EXISTS predicate and the subquery is transformed so that it
can be used together with the EXISTS predicate.

• <in_optimizer>(query fragment)

1563

Obtaining Execution Plan Information for a Named Connection

This is an internal optimizer object with no user significance.

• <index_lookup>(query fragment)

The query fragment is processed using an index lookup to find qualifying rows.

• <if>(condition, expr1, expr2)

If the condition is true, evaluate to expr1, otherwise expr2.

• <is_not_null_test>(expr)

A test to verify that the expression does not evaluate to NULL.

• <materialize>(query fragment)

Subquery materialization is used.

• `materialized-subquery`.col_name

A reference to the column col_name in an internal temporary table materialized to hold the result from
evaluating a subquery.

• <primary_index_lookup>(query fragment)

The query fragment is processed using a primary key lookup to find qualifying rows.

• <ref_null_helper>(expr)

This is an internal optimizer object with no user significance.

• /* select#N */ select_stmt

The SELECT is associated with the row in non-extended EXPLAIN output that has an id value of N.

• outer_tables semi join (inner_tables)

A semijoin operation. inner_tables shows the tables that were not pulled out. See Section 8.2.2.1,
“Optimizing Subqueries, Derived Tables, and View References with Semijoin Transformations”.

• <temporary table>

This represents an internal temporary table created to cache an intermediate result.

When some tables are of const or system type, expressions involving columns from these tables are
evaluated early by the optimizer and are not part of the displayed statement. However, with FORMAT=JSON,
some const table accesses are displayed as a ref access that uses a const value.

8.8.4 Obtaining Execution Plan Information for a Named Connection

To obtain the execution plan for an explainable statement executing in a named connection, use this
statement:

EXPLAIN [options] FOR CONNECTION connection_id;

EXPLAIN FOR CONNECTION returns the EXPLAIN information that is currently being used to execute
a query in a given connection. Because of changes to data (and supporting statistics) it may produce a
different result from running EXPLAIN on the equivalent query text. This difference in behavior can be

1564

Estimating Query Performance

useful in diagnosing more transient performance problems. For example, if you are running a statement in
one session that is taking a long time to complete, using EXPLAIN FOR CONNECTION in another session
may yield useful information about the cause of the delay.

connection_id is the connection identifier, as obtained from the INFORMATION_SCHEMA PROCESSLIST
table or the SHOW PROCESSLIST statement. If you have the PROCESS privilege, you can specify the
identifier for any connection. Otherwise, you can specify the identifier only for your own connections.

If the named connection is not executing a statement, the result is empty. Otherwise, EXPLAIN FOR
CONNECTION applies only if the statement being executed in the named connection is explainable. This
includes SELECT, DELETE, INSERT, REPLACE, and UPDATE. (However, EXPLAIN FOR CONNECTION
does not work for prepared statements, even prepared statements of those types.)

If the named connection is executing an explainable statement, the output is what you would obtain by
using EXPLAIN on the statement itself.

If the named connection is executing a statement that is not explainable, an error occurs. For example, you
cannot name the connection identifier for your current session because EXPLAIN is not explainable:

mysql> SELECT CONNECTION_ID();
+-----------------+
| CONNECTION_ID() |
+-----------------+
| 373 |
+-----------------+
1 row in set (0.00 sec)

mysql> EXPLAIN FOR CONNECTION 373;
ERROR 1889 (HY000): EXPLAIN FOR CONNECTION command is supported
only for SELECT/UPDATE/INSERT/DELETE/REPLACE

The Com_explain_other status variable indicates the number of EXPLAIN FOR CONNECTION
statements executed.

8.8.5 Estimating Query Performance

In most cases, you can estimate query performance by counting disk seeks. For small tables, you can
usually find a row in one disk seek (because the index is probably cached). For bigger tables, you can
estimate that, using B-tree indexes, you need this many seeks to find a row: log(row_count) /
log(index_block_length / 3 * 2 / (index_length + data_pointer_length)) + 1.

In MySQL, an index block is usually 1,024 bytes and the data pointer is usually four bytes. For a
500,000-row table with a key value length of three bytes (the size of MEDIUMINT), the formula indicates
log(500,000)/log(1024/3*2/(3+4)) + 1 = 4 seeks.

This index would require storage of about 500,000 * 7 * 3/2 = 5.2MB (assuming a typical index buffer fill
ratio of 2/3), so you probably have much of the index in memory and so need only one or two calls to read
data to find the row.

For writes, however, you need four seek requests to find where to place a new index value and normally
two seeks to update the index and write the row.

The preceding discussion does not mean that your application performance slowly degenerates by log N.
As long as everything is cached by the OS or the MySQL server, things become only marginally slower
as the table gets bigger. After the data gets too big to be cached, things start to go much slower until your
applications are bound only by disk seeks (which increase by log N). To avoid this, increase the key cache
size as the data grows. For MyISAM tables, the key cache size is controlled by the key_buffer_size
system variable. See Section 5.1.1, “Configuring the Server”.

1565

Controlling the Query Optimizer

8.9 Controlling the Query Optimizer
MySQL provides optimizer control through system variables that affect how query plans are evaluated,
switchable optimizations, optimizer and index hints, and the optimizer cost model.

8.9.1 Controlling Query Plan Evaluation

The task of the query optimizer is to find an optimal plan for executing an SQL query. Because the
difference in performance between “good” and “bad” plans can be orders of magnitude (that is, seconds
versus hours or even days), most query optimizers, including that of MySQL, perform a more or less
exhaustive search for an optimal plan among all possible query evaluation plans. For join queries, the
number of possible plans investigated by the MySQL optimizer grows exponentially with the number of
tables referenced in a query. For small numbers of tables (typically less than 7 to 10) this is not a problem.
However, when larger queries are submitted, the time spent in query optimization may easily become the
major bottleneck in the server's performance.

A more flexible method for query optimization enables the user to control how exhaustive the optimizer
is in its search for an optimal query evaluation plan. The general idea is that the fewer plans that are
investigated by the optimizer, the less time it spends in compiling a query. On the other hand, because the
optimizer skips some plans, it may miss finding an optimal plan.

The behavior of the optimizer with respect to the number of plans it evaluates can be controlled using two
system variables:

• The optimizer_prune_level variable tells the optimizer to skip certain plans based on estimates of
the number of rows accessed for each table. Our experience shows that this kind of “educated guess”
rarely misses optimal plans, and may dramatically reduce query compilation times. That is why this
option is on (optimizer_prune_level=1) by default. However, if you believe that the optimizer
missed a better query plan, this option can be switched off (optimizer_prune_level=0) with the risk
that query compilation may take much longer. Note that, even with the use of this heuristic, the optimizer
still explores a roughly exponential number of plans.

• The optimizer_search_depth variable tells how far into the “future” of each incomplete plan
the optimizer should look to evaluate whether it should be expanded further. Smaller values of
optimizer_search_depth may result in orders of magnitude smaller query compilation times. For
example, queries with 12, 13, or more tables may easily require hours and even days to compile if
optimizer_search_depth is close to the number of tables in the query. At the same time, if compiled
with optimizer_search_depth equal to 3 or 4, the optimizer may compile in less than a minute for
the same query. If you are unsure of what a reasonable value is for optimizer_search_depth, this
variable can be set to 0 to tell the optimizer to determine the value automatically.

8.9.2 Switchable Optimizations

The optimizer_switch system variable enables control over optimizer behavior. Its value is a set of
flags, each of which has a value of on or off to indicate whether the corresponding optimizer behavior
is enabled or disabled. This variable has global and session values and can be changed at runtime. The
global default can be set at server startup.

To see the current set of optimizer flags, select the variable value:

mysql> SELECT @@optimizer_switch\G
*************************** 1. row ***************************
@@optimizer_switch: index_merge=on,index_merge_union=on,
 index_merge_sort_union=on,
 index_merge_intersection=on,
 engine_condition_pushdown=on,

1566

Switchable Optimizations

 index_condition_pushdown=on,
 mrr=on,mrr_cost_based=on,
 block_nested_loop=on,batched_key_access=off,
 materialization=on,semijoin=on,loosescan=on,
 firstmatch=on,duplicateweedout=on,
 subquery_materialization_cost_based=on,
 use_index_extensions=on,
 condition_fanout_filter=on,derived_merge=on,
 prefer_ordering_index=on

To change the value of optimizer_switch, assign a value consisting of a comma-separated list of one
or more commands:

SET [GLOBAL|SESSION] optimizer_switch='command[,command]...';

Each command value should have one of the forms shown in the following table.

Command Syntax Meaning

default Reset every optimization to its default value

opt_name=default Set the named optimization to its default value

opt_name=off Disable the named optimization

opt_name=on Enable the named optimization

The order of the commands in the value does not matter, although the default command is executed
first if present. Setting an opt_name flag to default sets it to whichever of on or off is its default value.
Specifying any given opt_name more than once in the value is not permitted and causes an error. Any
errors in the value cause the assignment to fail with an error, leaving the value of optimizer_switch
unchanged.

The following list describes the permissible opt_name flag names, grouped by optimization strategy:

• Batched Key Access Flags

• batched_key_access (default off)

Controls use of BKA join algorithm.

For batched_key_access to have any effect when set to on, the mrr flag must also be on. Currently,
the cost estimation for MRR is too pessimistic. Hence, it is also necessary for mrr_cost_based to be
off for BKA to be used.

For more information, see Section 8.2.1.11, “Block Nested-Loop and Batched Key Access Joins”.

• Block Nested-Loop Flags

• block_nested_loop (default on)

Controls use of BNL join algorithm.

For more information, see Section 8.2.1.11, “Block Nested-Loop and Batched Key Access Joins”.

• Condition Filtering Flags

• condition_fanout_filter (default on)

Controls use of condition filtering.

For more information, see Section 8.2.1.12, “Condition Filtering”.

1567

Switchable Optimizations

• Derived Table Merging Flags

• derived_merge (default on)

Controls merging of derived tables and views into outer query block.

The derived_merge flag controls whether the optimizer attempts to merge derived tables and view
references into the outer query block, assuming that no other rule prevents merging; for example, an
ALGORITHM directive for a view takes precedence over the derived_merge setting. By default, the flag
is on to enable merging.

For more information, see Section 8.2.2.4, “Optimizing Derived Tables and View References with
Merging or Materialization”.

• Engine Condition Pushdown Flags

• engine_condition_pushdown (default on)

Controls engine condition pushdown.

For more information, see Section 8.2.1.4, “Engine Condition Pushdown Optimization”.

• Index Condition Pushdown Flags

• index_condition_pushdown (default on)

Controls index condition pushdown.

For more information, see Section 8.2.1.5, “Index Condition Pushdown Optimization”.

• Index Extensions Flags

• use_index_extensions (default on)

Controls use of index extensions.

For more information, see Section 8.3.9, “Use of Index Extensions”.

• Index Merge Flags

• index_merge (default on)

Controls all Index Merge optimizations.

• index_merge_intersection (default on)

Controls the Index Merge Intersection Access optimization.

• index_merge_sort_union (default on)

Controls the Index Merge Sort-Union Access optimization.

• index_merge_union (default on)

Controls the Index Merge Union Access optimization.

For more information, see Section 8.2.1.3, “Index Merge Optimization”.

• Limit Optimization Flags

1568

Switchable Optimizations

• prefer_ordering_index (default on)

Controls whether, in the case of a query having an ORDER BY or GROUP BY with a LIMIT clause,
the optimizer tries to use an ordered index instead of an unordered index, a filesort, or some other
optimization. This optimzation is performed by default whenever the optimizer determines that using it
would allow for faster execution of the query.

Because the algorithm that makes this determination cannot handle every conceivable case (due in
part to the assumption that the distribution of data is always more or less uniform), there are cases in
which this optimization may not be desirable. Prior to MySQL 5.7.33, it ws not possible to disable this
optimization, but in MySQL 5.7.33 and later, while it remains the default behavior, it can be disabled by
setting the prefer_ordering_index flag to off.

For more information and examples, see Section 8.2.1.17, “LIMIT Query Optimization”.

• Multi-Range Read Flags

• mrr (default on)

Controls the Multi-Range Read strategy.

• mrr_cost_based (default on)

Controls use of cost-based MRR if mrr=on.

For more information, see Section 8.2.1.10, “Multi-Range Read Optimization”.

• Semijoin Flags

• duplicateweedout (default on)

Controls the semijoin Duplicate Weedout strategy.

• firstmatch (default on)

Controls the semijoin FirstMatch strategy.

• loosescan (default on)

Controls the semijoin LooseScan strategy (not to be confused with Loose Index Scan for GROUP BY).

• semijoin (default on)

Controls all semijoin strategies.

The semijoin, firstmatch, loosescan, and duplicateweedout flags enable control over
semijoin strategies. The semijoin flag controls whether semijoins are used. If it is set to on, the
firstmatch and loosescan flags enable finer control over the permitted semijoin strategies.

If the duplicateweedout semijoin strategy is disabled, it is not used unless all other applicable
strategies are also disabled.

If semijoin and materialization are both on, semijoins also use materialization where applicable.
These flags are on by default.

For more information, see Section 8.2.2.1, “Optimizing Subqueries, Derived Tables, and View
References with Semijoin Transformations”.

1569

Switchable Optimizations

• Subquery Materialization Flags

• materialization (default on)

Controls materialization (including semijoin materialization).

• subquery_materialization_cost_based (default on)

Use cost-based materialization choice.

The materialization flag controls whether subquery materialization is used. If semijoin and
materialization are both on, semijoins also use materialization where applicable. These flags are
on by default.

The subquery_materialization_cost_based flag enables control over the choice between
subquery materialization and IN-to-EXISTS subquery transformation. If the flag is on (the default), the
optimizer performs a cost-based choice between subquery materialization and IN-to-EXISTS subquery
transformation if either method could be used. If the flag is off, the optimizer chooses subquery
materialization over IN-to-EXISTS subquery transformation.

For more information, see Section 8.2.2, “Optimizing Subqueries, Derived Tables, and View
References”.

When you assign a value to optimizer_switch, flags that are not mentioned keep their current values.
This makes it possible to enable or disable specific optimizer behaviors in a single statement without
affecting other behaviors. The statement does not depend on what other optimizer flags exist and what
their values are. Suppose that all Index Merge optimizations are enabled:

mysql> SELECT @@optimizer_switch\G
*************************** 1. row ***************************
@@optimizer_switch: index_merge=on,index_merge_union=on,
 index_merge_sort_union=on,
 index_merge_intersection=on,
 engine_condition_pushdown=on,
 index_condition_pushdown=on,
 mrr=on,mrr_cost_based=on,
 block_nested_loop=on,batched_key_access=off,
 materialization=on,semijoin=on,loosescan=on,
 firstmatch=on,duplicateweedout=on,
 subquery_materialization_cost_based=on,
 use_index_extensions=on,
 condition_fanout_filter=on,derived_merge=on,
 prefer_ordering_index=on

If the server is using the Index Merge Union or Index Merge Sort-Union access methods for certain queries
and you want to check whether the optimizer performs better without them, set the variable value like this:

mysql> SET optimizer_switch='index_merge_union=off,index_merge_sort_union=off';

mysql> SELECT @@optimizer_switch\G
*************************** 1. row ***************************
@@optimizer_switch: index_merge=on,index_merge_union=off,
 index_merge_sort_union=off,
 index_merge_intersection=on,
 engine_condition_pushdown=on,
 index_condition_pushdown=on,
 mrr=on,mrr_cost_based=on,
 block_nested_loop=on,batched_key_access=off,
 materialization=on,semijoin=on,loosescan=on,
 firstmatch=on,duplicateweedout=on,
 subquery_materialization_cost_based=on,
 use_index_extensions=on,

1570

Optimizer Hints

 condition_fanout_filter=on,derived_merge=on,
 prefer_ordering_index=on

8.9.3 Optimizer Hints

One means of control over optimizer strategies is to set the optimizer_switch system variable (see
Section 8.9.2, “Switchable Optimizations”). Changes to this variable affect execution of all subsequent
queries; to affect one query differently from another, it is necessary to change optimizer_switch before
each one.

another way to control the optimizer is by using optimizer hints, which can be specified within individual
statements. Because optimizer hints apply on a per-statement basis, they provide finer control over
statement execution plans than can be achieved using optimizer_switch. For example, you can enable
an optimization for one table in a statement and disable the optimization for a different table. Hints within a
statement take precedence over optimizer_switch flags.

Examples:

SELECT /*+ NO_RANGE_OPTIMIZATION(t3 PRIMARY, f2_idx) */ f1
 FROM t3 WHERE f1 > 30 AND f1 < 33;
SELECT /*+ BKA(t1) NO_BKA(t2) */ * FROM t1 INNER JOIN t2 WHERE ...;
SELECT /*+ NO_ICP(t1, t2) */ * FROM t1 INNER JOIN t2 WHERE ...;
SELECT /*+ SEMIJOIN(FIRSTMATCH, LOOSESCAN) */ * FROM t1 ...;
EXPLAIN SELECT /*+ NO_ICP(t1) */ * FROM t1 WHERE ...;

Note

The mysql client by default strips comments from SQL statements sent to the
server (including optimizer hints) until MySQL 5.7.7, when it was changed to pass
optimizer hints to the server. To ensure that optimizer hints are not stripped if you
are using an older version of the mysql client with a version of the server that
understands optimizer hints, invoke mysql with the --comments option.

Optimizer hints, described here, differ from index hints, described in Section 8.9.4, “Index Hints”. Optimizer
and index hints may be used separately or together.

• Optimizer Hint Overview

• Optimizer Hint Syntax

• Table-Level Optimizer Hints

• Index-Level Optimizer Hints

• Subquery Optimizer Hints

• Statement Execution Time Optimizer Hints

• Optimizer Hints for Naming Query Blocks

Optimizer Hint Overview

Optimizer hints apply at different scope levels:

• Global: The hint affects the entire statement

• Query block: The hint affects a particular query block within a statement

• Table-level: The hint affects a particular table within a query block

1571

Optimizer Hints

• Index-level: The hint affects a particular index within a table

The following table summarizes the available optimizer hints, the optimizer strategies they affect, and the
scope or scopes at which they apply. More details are given later.

Table 8.2 Optimizer Hints Available

Hint Name Description Applicable Scopes

BKA, NO_BKA Affects Batched Key Access join
processing

Query block, table

BNL, NO_BNL Affects Block Nested-Loop join
processing

Query block, table

MAX_EXECUTION_TIME Limits statement execution time Global

MRR, NO_MRR Affects Multi-Range Read
optimization

Table, index

NO_ICP Affects Index Condition Pushdown
optimization

Table, index

NO_RANGE_OPTIMIZATION Affects range optimization Table, index

QB_NAME Assigns name to query block Query block

SEMIJOIN, NO_SEMIJOIN semijoin strategies Query block

SUBQUERY Affects materialization, IN-
to-EXISTS subquery stratgies

Query block

Disabling an optimization prevents the optimizer from using it. Enabling an optimization means the
optimizer is free to use the strategy if it applies to statement execution, not that the optimizer necessarily
uses it.

Optimizer Hint Syntax

MySQL supports comments in SQL statements as described in Section 9.6, “Comments”. Optimizer hints
must be specified within /*+ ... */ comments. That is, optimizer hints use a variant of /* ... */ C-
style comment syntax, with a + character following the /* comment opening sequence. Examples:

/*+ BKA(t1) */
/*+ BNL(t1, t2) */
/*+ NO_RANGE_OPTIMIZATION(t4 PRIMARY) */
/*+ QB_NAME(qb2) */

Whitespace is permitted after the + character.

The parser recognizes optimizer hint comments after the initial keyword of SELECT, UPDATE, INSERT,
REPLACE, and DELETE statements. Hints are permitted in these contexts:

• At the beginning of query and data change statements:

SELECT /*+ ... */ ...
INSERT /*+ ... */ ...
REPLACE /*+ ... */ ...
UPDATE /*+ ... */ ...
DELETE /*+ ... */ ...

• At the beginning of query blocks:

(SELECT /*+ ... */ ...)

1572

Optimizer Hints

(SELECT ...) UNION (SELECT /*+ ... */ ...)
(SELECT /*+ ... */ ...) UNION (SELECT /*+ ... */ ...)
UPDATE ... WHERE x IN (SELECT /*+ ... */ ...)
INSERT ... SELECT /*+ ... */ ...

• In hintable statements prefaced by EXPLAIN. For example:

EXPLAIN SELECT /*+ ... */ ...
EXPLAIN UPDATE ... WHERE x IN (SELECT /*+ ... */ ...)

The implication is that you can use EXPLAIN to see how optimizer hints affect execution plans. Use
SHOW WARNINGS immediately after EXPLAIN to see how hints are used. The extended EXPLAIN
output displayed by a following SHOW WARNINGS indicates which hints were used. Ignored hints are not
displayed.

A hint comment may contain multiple hints, but a query block cannot contain multiple hint comments. This
is valid:

SELECT /*+ BNL(t1) BKA(t2) */ ...

But this is invalid:

SELECT /*+ BNL(t1) */ /* BKA(t2) */ ...

When a hint comment contains multiple hints, the possibility of duplicates and conflicts exists. The
following general guidelines apply. For specific hint types, additional rules may apply, as indicated in the
hint descriptions.

• Duplicate hints: For a hint such as /*+ MRR(idx1) MRR(idx1) */, MySQL uses the first hint and
issues a warning about the duplicate hint.

• Conflicting hints: For a hint such as /*+ MRR(idx1) NO_MRR(idx1) */, MySQL uses the first hint
and issues a warning about the second conflicting hint.

Query block names are identifiers and follow the usual rules about what names are valid and how to quote
them (see Section 9.2, “Schema Object Names”).

Hint names, query block names, and strategy names are not case-sensitive. References to table and index
names follow the usual identifier case sensitivity rules (see Section 9.2.3, “Identifier Case Sensitivity”).

Table-Level Optimizer Hints

Table-level hints affect use of the Block Nested-Loop (BNL) and Batched Key Access (BKA) join-
processing algorithms (see Section 8.2.1.11, “Block Nested-Loop and Batched Key Access Joins”). These
hint types apply to specific tables, or all tables in a query block.

Syntax of table-level hints:

hint_name([@query_block_name] [tbl_name [, tbl_name] ...])
hint_name([tbl_name@query_block_name [, tbl_name@query_block_name] ...])

The syntax refers to these terms:

• hint_name: These hint names are permitted:

• BKA, NO_BKA: Enable or disable BKA for the specified tables.

• BNL, NO_BNL: Enable or disable BNL for the specified tables.

1573

Optimizer Hints

Note

To use a BNL or BKA hint to enable join buffering for any inner table of an outer
join, join buffering must be enabled for all inner tables of the outer join.

• tbl_name: The name of a table used in the statement. The hint applies to all tables that it names. If the
hint names no tables, it applies to all tables of the query block in which it occurs.

If a table has an alias, hints must refer to the alias, not the table name.

Table names in hints cannot be qualified with schema names.

• query_block_name: The query block to which the hint applies. If the hint includes no
leading @query_block_name, the hint applies to the query block in which it occurs. For
tbl_name@query_block_name syntax, the hint applies to the named table in the named query block.
To assign a name to a query block, see Optimizer Hints for Naming Query Blocks.

Examples:

SELECT /*+ NO_BKA(t1, t2) */ t1.* FROM t1 INNER JOIN t2 INNER JOIN t3;
SELECT /*+ NO_BNL() BKA(t1) */ t1.* FROM t1 INNER JOIN t2 INNER JOIN t3;

A table-level hint applies to tables that receive records from previous tables, not sender tables. Consider
this statement:

SELECT /*+ BNL(t2) */ FROM t1, t2;

If the optimizer chooses to process t1 first, it applies a Block Nested-Loop join to t2 by buffering the rows
from t1 before starting to read from t2. If the optimizer instead chooses to process t2 first, the hint has no
effect because t2 is a sender table.

Index-Level Optimizer Hints

Index-level hints affect which index-processing strategies the optimizer uses for particular tables or
indexes. These hint types affect use of Index Condition Pushdown (ICP), Multi-Range Read (MRR), and
range optimizations (see Section 8.2.1, “Optimizing SELECT Statements”).

Syntax of index-level hints:

hint_name([@query_block_name] tbl_name [index_name [, index_name] ...])
hint_name(tbl_name@query_block_name [index_name [, index_name] ...])

The syntax refers to these terms:

• hint_name: These hint names are permitted:

• MRR, NO_MRR: Enable or disable MRR for the specified table or indexes. MRR hints apply only to
InnoDB and MyISAM tables.

• NO_ICP: Disable ICP for the specified table or indexes. By default, ICP is a candidate optimization
strategy, so there is no hint for enabling it.

• NO_RANGE_OPTIMIZATION: Disable index range access for the specified table or indexes. This hint
also disables Index Merge and Loose Index Scan for the table or indexes. By default, range access is
a candidate optimization strategy, so there is no hint for enabling it.

This hint may be useful when the number of ranges may be high and range optimization would require
many resources.

1574

Optimizer Hints

• tbl_name: The table to which the hint applies.

• index_name: The name of an index in the named table. The hint applies to all indexes that it names. If
the hint names no indexes, it applies to all indexes in the table.

To refer to a primary key, use the name PRIMARY. To see the index names for a table, use SHOW
INDEX.

• query_block_name: The query block to which the hint applies. If the hint includes no
leading @query_block_name, the hint applies to the query block in which it occurs. For
tbl_name@query_block_name syntax, the hint applies to the named table in the named query block.
To assign a name to a query block, see Optimizer Hints for Naming Query Blocks.

Examples:

SELECT /*+ MRR(t1) */ * FROM t1 WHERE f2 <= 3 AND 3 <= f3;
SELECT /*+ NO_RANGE_OPTIMIZATION(t3 PRIMARY, f2_idx) */ f1
 FROM t3 WHERE f1 > 30 AND f1 < 33;
INSERT INTO t3(f1, f2, f3)
 (SELECT /*+ NO_ICP(t2) */ t2.f1, t2.f2, t2.f3 FROM t1,t2
 WHERE t1.f1=t2.f1 AND t2.f2 BETWEEN t1.f1
 AND t1.f2 AND t2.f2 + 1 >= t1.f1 + 1);

Subquery Optimizer Hints

Subquery hints affect whether to use semijoin transformations and which semijoin strategies to permit, and,
when semijoins are not used, whether to use subquery materialization or IN-to-EXISTS transformations.
For more information about these optimizations, see Section 8.2.2, “Optimizing Subqueries, Derived
Tables, and View References”.

Syntax of hints that affect semijoin strategies:

hint_name([@query_block_name] [strategy [, strategy] ...])

The syntax refers to these terms:

• hint_name: These hint names are permitted:

• SEMIJOIN, NO_SEMIJOIN: Enable or disable the named semijoin strategies.

• strategy: A semijoin strategy to be enabled or disabled. These strategy names are permitted:
DUPSWEEDOUT, FIRSTMATCH, LOOSESCAN, MATERIALIZATION.

For SEMIJOIN hints, if no strategies are named, semijoin is used if possible based on the strategies
enabled according to the optimizer_switch system variable. If strategies are named but inapplicable
for the statement, DUPSWEEDOUT is used.

For NO_SEMIJOIN hints, if no strategies are named, semijoin is not used. If strategies are named that
rule out all applicable strategies for the statement, DUPSWEEDOUT is used.

If one subquery is nested within another and both are merged into a semijoin of an outer query, any
specification of semijoin strategies for the innermost query are ignored. SEMIJOIN and NO_SEMIJOIN
hints can still be used to enable or disable semijoin transformations for such nested subqueries.

If DUPSWEEDOUT is disabled, on occasion the optimizer may generate a query plan that is far from
optimal. This occurs due to heuristic pruning during greedy search, which can be avoided by setting
optimizer_prune_level=0.

Examples:

1575

Optimizer Hints

SELECT /*+ NO_SEMIJOIN(@subq1 FIRSTMATCH, LOOSESCAN) */ * FROM t2
 WHERE t2.a IN (SELECT /*+ QB_NAME(subq1) */ a FROM t3);
SELECT /*+ SEMIJOIN(@subq1 MATERIALIZATION, DUPSWEEDOUT) */ * FROM t2
 WHERE t2.a IN (SELECT /*+ QB_NAME(subq1) */ a FROM t3);

Syntax of hints that affect whether to use subquery materialization or IN-to-EXISTS transformations:

SUBQUERY([@query_block_name] strategy)

The hint name is always SUBQUERY.

For SUBQUERY hints, these strategy values are permitted: INTOEXISTS, MATERIALIZATION.

Examples:

SELECT id, a IN (SELECT /*+ SUBQUERY(MATERIALIZATION) */ a FROM t1) FROM t2;
SELECT * FROM t2 WHERE t2.a IN (SELECT /*+ SUBQUERY(INTOEXISTS) */ a FROM t1);

For semijoin and SUBQUERY hints, a leading @query_block_name specifies the query block to which the
hint applies. If the hint includes no leading @query_block_name, the hint applies to the query block in
which it occurs. To assign a name to a query block, see Optimizer Hints for Naming Query Blocks.

If a hint comment contains multiple subquery hints, the first is used. If there are other following hints of that
type, they produce a warning. Following hints of other types are silently ignored.

Statement Execution Time Optimizer Hints

The MAX_EXECUTION_TIME hint is permitted only for SELECT statements. It places a limit N (a timeout
value in milliseconds) on how long a statement is permitted to execute before the server terminates it:

MAX_EXECUTION_TIME(N)

Example with a timeout of 1 second (1000 milliseconds):

SELECT /*+ MAX_EXECUTION_TIME(1000) */ * FROM t1 INNER JOIN t2 WHERE ...

The MAX_EXECUTION_TIME(N) hint sets a statement execution timeout of N milliseconds. If this option
is absent or N is 0, the statement timeout established by the max_execution_time system variable
applies.

The MAX_EXECUTION_TIME hint is applicable as follows:

• For statements with multiple SELECT keywords, such as unions or statements with subqueries,
MAX_EXECUTION_TIME applies to the entire statement and must appear after the first SELECT.

• It applies to read-only SELECT statements. Statements that are not read only are those that invoke a
stored function that modifies data as a side effect.

• It does not apply to SELECT statements in stored programs and is ignored.

Optimizer Hints for Naming Query Blocks

Table-level, index-level, and subquery optimizer hints permit specific query blocks to be named as part of
their argument syntax. To create these names, use the QB_NAME hint, which assigns a name to the query
block in which it occurs:

QB_NAME(name)

QB_NAME hints can be used to make explicit in a clear way which query blocks other hints apply to.
They also permit all non-query block name hints to be specified within a single hint comment for easier
understanding of complex statements. Consider the following statement:

1576

Index Hints

SELECT ...
 FROM (SELECT ...
 FROM (SELECT ... FROM ...)) ...

QB_NAME hints assign names to query blocks in the statement:

SELECT /*+ QB_NAME(qb1) */ ...
 FROM (SELECT /*+ QB_NAME(qb2) */ ...
 FROM (SELECT /*+ QB_NAME(qb3) */ ... FROM ...)) ...

Then other hints can use those names to refer to the appropriate query blocks:

SELECT /*+ QB_NAME(qb1) MRR(@qb1 t1) BKA(@qb2) NO_MRR(@qb3t1 idx1, id2) */ ...
 FROM (SELECT /*+ QB_NAME(qb2) */ ...
 FROM (SELECT /*+ QB_NAME(qb3) */ ... FROM ...)) ...

The resulting effect is as follows:

• MRR(@qb1 t1) applies to table t1 in query block qb1.

• BKA(@qb2) applies to query block qb2.

• NO_MRR(@qb3 t1 idx1, id2) applies to indexes idx1 and idx2 in table t1 in query block qb3.

Query block names are identifiers and follow the usual rules about what names are valid and how to quote
them (see Section 9.2, “Schema Object Names”). For example, a query block name that contains spaces
must be quoted, which can be done using backticks:

SELECT /*+ BKA(@`my hint name`) */ ...
 FROM (SELECT /*+ QB_NAME(`my hint name`) */ ...) ...

If the ANSI_QUOTES SQL mode is enabled, it is also possible to quote query block names within double
quotation marks:

SELECT /*+ BKA(@"my hint name") */ ...
 FROM (SELECT /*+ QB_NAME("my hint name") */ ...) ...

8.9.4 Index Hints

Index hints give the optimizer information about how to choose indexes during query processing. Index
hints, described here, differ from optimizer hints, described in Section 8.9.3, “Optimizer Hints”. Index and
optimizer hints may be used separately or together.

Index hints apply to SELECT and UPDATE statements. They also work with multi-table DELETE statements,
but not with single-table DELETE, as shown later in this section.

Index hints are specified following a table name. (For the general syntax for specifying tables in a SELECT
statement, see Section 13.2.9.2, “JOIN Clause”.) The syntax for referring to an individual table, including
index hints, looks like this:

tbl_name [[AS] alias] [index_hint_list]

index_hint_list:
 index_hint [index_hint] ...

index_hint:
 USE {INDEX|KEY}
 [FOR {JOIN|ORDER BY|GROUP BY}] ([index_list])
 | {IGNORE|FORCE} {INDEX|KEY}
 [FOR {JOIN|ORDER BY|GROUP BY}] (index_list)

1577

Index Hints

index_list:
 index_name [, index_name] ...

The USE INDEX (index_list) hint tells MySQL to use only one of the named indexes to find rows in
the table. The alternative syntax IGNORE INDEX (index_list) tells MySQL to not use some particular
index or indexes. These hints are useful if EXPLAIN shows that MySQL is using the wrong index from the
list of possible indexes.

The FORCE INDEX hint acts like USE INDEX (index_list), with the addition that a table scan is
assumed to be very expensive. In other words, a table scan is used only if there is no way to use one of
the named indexes to find rows in the table.

Each hint requires index names, not column names. To refer to a primary key, use the name PRIMARY. To
see the index names for a table, use the SHOW INDEX statement or the Information Schema STATISTICS
table.

An index_name value need not be a full index name. It can be an unambiguous prefix of an index name.
If a prefix is ambiguous, an error occurs.

Examples:

SELECT * FROM table1 USE INDEX (col1_index,col2_index)
 WHERE col1=1 AND col2=2 AND col3=3;

SELECT * FROM table1 IGNORE INDEX (col3_index)
 WHERE col1=1 AND col2=2 AND col3=3;

The syntax for index hints has the following characteristics:

• It is syntactically valid to omit index_list for USE INDEX, which means “use no indexes.” Omitting
index_list for FORCE INDEX or IGNORE INDEX is a syntax error.

• You can specify the scope of an index hint by adding a FOR clause to the hint. This provides more fine-
grained control over optimizer selection of an execution plan for various phases of query processing.
To affect only the indexes used when MySQL decides how to find rows in the table and how to process
joins, use FOR JOIN. To influence index usage for sorting or grouping rows, use FOR ORDER BY or FOR
GROUP BY.

• You can specify multiple index hints:

SELECT * FROM t1 USE INDEX (i1) IGNORE INDEX FOR ORDER BY (i2) ORDER BY a;

It is not an error to name the same index in several hints (even within the same hint):

SELECT * FROM t1 USE INDEX (i1) USE INDEX (i1,i1);

However, it is an error to mix USE INDEX and FORCE INDEX for the same table:

SELECT * FROM t1 USE INDEX FOR JOIN (i1) FORCE INDEX FOR JOIN (i2);

If an index hint includes no FOR clause, the scope of the hint is to apply to all parts of the statement. For
example, this hint:

IGNORE INDEX (i1)

is equivalent to this combination of hints:

IGNORE INDEX FOR JOIN (i1)
IGNORE INDEX FOR ORDER BY (i1)
IGNORE INDEX FOR GROUP BY (i1)

1578

Index Hints

In MySQL 5.0, hint scope with no FOR clause was to apply only to row retrieval. To cause the server to
use this older behavior when no FOR clause is present, enable the old system variable at server startup.
Take care about enabling this variable in a replication setup. With statement-based binary logging, having
different modes for the source and replicas might lead to replication errors.

When index hints are processed, they are collected in a single list by type (USE, FORCE, IGNORE) and by
scope (FOR JOIN, FOR ORDER BY, FOR GROUP BY). For example:

SELECT * FROM t1
 USE INDEX () IGNORE INDEX (i2) USE INDEX (i1) USE INDEX (i2);

is equivalent to:

SELECT * FROM t1
 USE INDEX (i1,i2) IGNORE INDEX (i2);

The index hints then are applied for each scope in the following order:

1. {USE|FORCE} INDEX is applied if present. (If not, the optimizer-determined set of indexes is used.)

2. IGNORE INDEX is applied over the result of the previous step. For example, the following two queries
are equivalent:

SELECT * FROM t1 USE INDEX (i1) IGNORE INDEX (i2) USE INDEX (i2);

SELECT * FROM t1 USE INDEX (i1);

For FULLTEXT searches, index hints work as follows:

• For natural language mode searches, index hints are silently ignored. For example, IGNORE
INDEX(i1) is ignored with no warning and the index is still used.

• For boolean mode searches, index hints with FOR ORDER BY or FOR GROUP BY are silently ignored.
Index hints with FOR JOIN or no FOR modifier are honored. In contrast to how hints apply for
non-FULLTEXT searches, the hint is used for all phases of query execution (finding rows and retrieval,
grouping, and ordering). This is true even if the hint is given for a non-FULLTEXT index.

For example, the following two queries are equivalent:

SELECT * FROM t
 USE INDEX (index1)
 IGNORE INDEX FOR ORDER BY (index1)
 IGNORE INDEX FOR GROUP BY (index1)
 WHERE ... IN BOOLEAN MODE ... ;

SELECT * FROM t
 USE INDEX (index1)
 WHERE ... IN BOOLEAN MODE ... ;

Index hints work with DELETE statements, but only if you use multi-table DELETE syntax, as shown here:

mysql> EXPLAIN DELETE FROM t1 USE INDEX(col2)
 -> WHERE col1 BETWEEN 1 AND 100 AND COL2 BETWEEN 1 AND 100\G
ERROR 1064 (42000): You have an error in your SQL syntax; check the manual that
corresponds to your MySQL server version for the right syntax to use near 'use
index(col2) where col1 between 1 and 100 and col2 between 1 and 100' at line 1

mysql> EXPLAIN DELETE t1.* FROM t1 USE INDEX(col2)
 -> WHERE col1 BETWEEN 1 AND 100 AND COL2 BETWEEN 1 AND 100\G
*************************** 1. row ***************************
 id: 1
 select_type: DELETE

1579

The Optimizer Cost Model

 table: t1
 partitions: NULL
 type: range
possible_keys: col2
 key: col2
 key_len: 5
 ref: NULL
 rows: 72
 filtered: 11.11
 Extra: Using where
1 row in set, 1 warning (0.00 sec)

8.9.5 The Optimizer Cost Model

To generate execution plans, the optimizer uses a cost model that is based on estimates of the cost of
various operations that occur during query execution. The optimizer has a set of compiled-in default “cost
constants” available to it to make decisions regarding execution plans.

The optimizer also has a database of cost estimates to use during execution plan construction. These
estimates are stored in the server_cost and engine_cost tables in the mysql system database and
are configurable at any time. The intent of these tables is to make it possible to easily adjust the cost
estimates that the optimizer uses when it attempts to arrive at query execution plans.

• Cost Model General Operation

• The Cost Model Database

• Making Changes to the Cost Model Database

Cost Model General Operation

The configurable optimizer cost model works like this:

• The server reads the cost model tables into memory at startup and uses the in-memory values at
runtime. Any non-NULL cost estimate specified in the tables takes precedence over the corresponding
compiled-in default cost constant. Any NULL estimate indicates to the optimizer to use the compiled-in
default.

• At runtime, the server may re-read the cost tables. This occurs when a storage engine is dynamically
loaded or when a FLUSH OPTIMIZER_COSTS statement is executed.

• Cost tables enable server administrators to easily adjust cost estimates by changing entries in the tables.
It is also easy to revert to a default by setting an entry's cost to NULL. The optimizer uses the in-memory
cost values, so changes to the tables should be followed by FLUSH OPTIMIZER_COSTS to take effect.

• The in-memory cost estimates that are current when a client session begins apply throughout that
session until it ends. In particular, if the server re-reads the cost tables, any changed estimates apply
only to subsequently started sessions. Existing sessions are unaffected.

• Cost tables are specific to a given server instance. The server does not replicate cost table changes to
replicas.

The Cost Model Database

The optimizer cost model database consists of two tables in the mysql system database that contain cost
estimate information for operations that occur during query execution:

• server_cost: Optimizer cost estimates for general server operations

1580

The Optimizer Cost Model

• engine_cost: Optimizer cost estimates for operations specific to particular storage engines

The server_cost table contains these columns:

• cost_name

The name of a cost estimate used in the cost model. The name is not case-sensitive. If the server does
not recognize the cost name when it reads this table, it writes a warning to the error log.

• cost_value

The cost estimate value. If the value is non-NULL, the server uses it as the cost. Otherwise, it uses the
default estimate (the compiled-in value). DBAs can change a cost estimate by updating this column. If
the server finds that the cost value is invalid (nonpositive) when it reads this table, it writes a warning to
the error log.

To override a default cost estimate (for an entry that specifies NULL), set the cost to a non-NULL value.
To revert to the default, set the value to NULL. Then execute FLUSH OPTIMIZER_COSTS to tell the
server to re-read the cost tables.

• last_update

The time of the last row update.

• comment

A descriptive comment associated with the cost estimate. DBAs can use this column to provide
information about why a cost estimate row stores a particular value.

The primary key for the server_cost table is the cost_name column, so it is not possible to create
multiple entries for any cost estimate.

The server recognizes these cost_name values for the server_cost table:

• disk_temptable_create_cost (default 40.0), disk_temptable_row_cost (default 1.0)

The cost estimates for internally created temporary tables stored in a disk-based storage engine (either
InnoDB or MyISAM). Increasing these values increases the cost estimate of using internal temporary
tables and makes the optimizer prefer query plans with less use of them. For information about such
tables, see Section 8.4.4, “Internal Temporary Table Use in MySQL”.

The larger default values for these disk parameters compared to the default values for the corresponding
memory parameters (memory_temptable_create_cost, memory_temptable_row_cost) reflects
the greater cost of processing disk-based tables.

• key_compare_cost (default 0.1)

The cost of comparing record keys. Increasing this value causes a query plan that compares many keys
to become more expensive. For example, a query plan that performs a filesort becomes relatively
more expensive compared to a query plan that avoids sorting by using an index.

• memory_temptable_create_cost (default 2.0), memory_temptable_row_cost (default 0.2)

The cost estimates for internally created temporary tables stored in the MEMORY storage engine.
Increasing these values increases the cost estimate of using internal temporary tables and makes the
optimizer prefer query plans with less use of them. For information about such tables, see Section 8.4.4,
“Internal Temporary Table Use in MySQL”.

1581

The Optimizer Cost Model

The smaller default values for these memory parameters compared to the default values for the
corresponding disk parameters (disk_temptable_create_cost, disk_temptable_row_cost)
reflects the lesser cost of processing memory-based tables.

• row_evaluate_cost (default 0.2)

The cost of evaluating record conditions. Increasing this value causes a query plan that examines many
rows to become more expensive compared to a query plan that examines fewer rows. For example, a
table scan becomes relatively more expensive compared to a range scan that reads fewer rows.

The engine_cost table contains these columns:

• engine_name

The name of the storage engine to which this cost estimate applies. The name is not case-sensitive.
If the value is default, it applies to all storage engines that have no named entry of their own. If the
server does not recognize the engine name when it reads this table, it writes a warning to the error log.

• device_type

The device type to which this cost estimate applies. The column is intended for specifying different cost
estimates for different storage device types, such as hard disk drives versus solid state drives. Currently,
this information is not used and 0 is the only permitted value.

• cost_name

Same as in the server_cost table.

• cost_value

Same as in the server_cost table.

• last_update

Same as in the server_cost table.

• comment

Same as in the server_cost table.

The primary key for the engine_cost table is a tuple comprising the (cost_name, engine_name,
device_type) columns, so it is not possible to create multiple entries for any combination of values in
those columns.

The server recognizes these cost_name values for the engine_cost table:

• io_block_read_cost (default 1.0)

The cost of reading an index or data block from disk. Increasing this value causes a query plan that
reads many disk blocks to become more expensive compared to a query plan that reads fewer disk
blocks. For example, a table scan becomes relatively more expensive compared to a range scan that
reads fewer blocks.

• memory_block_read_cost (default 1.0)

Similar to io_block_read_cost, but represents the cost of reading an index or data block from an in-
memory database buffer.

1582

Buffering and Caching

If the io_block_read_cost and memory_block_read_cost values differ, the execution plan may
change between two runs of the same query. Suppose that the cost for memory access is less than the
cost for disk access. In that case, at server startup before data has been read into the buffer pool, you may
get a different plan than after the query has been run because then the data is in memory.

Making Changes to the Cost Model Database

For DBAs who wish to change the cost model parameters from their defaults, try doubling or halving the
value and measuring the effect.

Changes to the io_block_read_cost and memory_block_read_cost parameters are most likely
to yield worthwhile results. These parameter values enable cost models for data access methods to take
into account the costs of reading information from different sources; that is, the cost of reading information
from disk versus reading information already in a memory buffer. For example, all other things being equal,
setting io_block_read_cost to a value larger than memory_block_read_cost causes the optimizer
to prefer query plans that read information already held in memory to plans that must read from disk.

This example shows how to change the default value for io_block_read_cost:

UPDATE mysql.engine_cost
 SET cost_value = 2.0
 WHERE cost_name = 'io_block_read_cost';
FLUSH OPTIMIZER_COSTS;

This example shows how to change the value of io_block_read_cost only for the InnoDB storage
engine:

INSERT INTO mysql.engine_cost
 VALUES ('InnoDB', 0, 'io_block_read_cost', 3.0,
 CURRENT_TIMESTAMP, 'Using a slower disk for InnoDB');
FLUSH OPTIMIZER_COSTS;

8.10 Buffering and Caching
MySQL uses several strategies that cache information in memory buffers to increase performance.

8.10.1 InnoDB Buffer Pool Optimization

InnoDB maintains a storage area called the buffer pool for caching data and indexes in memory. Knowing
how the InnoDB buffer pool works, and taking advantage of it to keep frequently accessed data in
memory, is an important aspect of MySQL tuning.

For an explanation of the inner workings of the InnoDB buffer pool, an overview of its LRU replacement
algorithm, and general configuration information, see Section 14.5.1, “Buffer Pool”.

For additional InnoDB buffer pool configuration and tuning information, see these sections:

• Section 14.8.3.4, “Configuring InnoDB Buffer Pool Prefetching (Read-Ahead)”

• Section 14.8.3.5, “Configuring Buffer Pool Flushing”

• Section 14.8.3.3, “Making the Buffer Pool Scan Resistant”

• Section 14.8.3.2, “Configuring Multiple Buffer Pool Instances”

• Section 14.8.3.6, “Saving and Restoring the Buffer Pool State”

• Section 14.8.3.1, “Configuring InnoDB Buffer Pool Size”

1583

The MyISAM Key Cache

8.10.2 The MyISAM Key Cache

To minimize disk I/O, the MyISAM storage engine exploits a strategy that is used by many database
management systems. It employs a cache mechanism to keep the most frequently accessed table blocks
in memory:

• For index blocks, a special structure called the key cache (or key buffer) is maintained. The structure
contains a number of block buffers where the most-used index blocks are placed.

• For data blocks, MySQL uses no special cache. Instead it relies on the native operating system file
system cache.

This section first describes the basic operation of the MyISAM key cache. Then it discusses features that
improve key cache performance and that enable you to better control cache operation:

• Multiple sessions can access the cache concurrently.

• You can set up multiple key caches and assign table indexes to specific caches.

To control the size of the key cache, use the key_buffer_size system variable. If this variable is set
equal to zero, no key cache is used. The key cache also is not used if the key_buffer_size value is too
small to allocate the minimal number of block buffers (8).

When the key cache is not operational, index files are accessed using only the native file system buffering
provided by the operating system. (In other words, table index blocks are accessed using the same
strategy as that employed for table data blocks.)

An index block is a contiguous unit of access to the MyISAM index files. Usually the size of an index block
is equal to the size of nodes of the index B-tree. (Indexes are represented on disk using a B-tree data
structure. Nodes at the bottom of the tree are leaf nodes. Nodes above the leaf nodes are nonleaf nodes.)

All block buffers in a key cache structure are the same size. This size can be equal to, greater than, or less
than the size of a table index block. Usually one these two values is a multiple of the other.

When data from any table index block must be accessed, the server first checks whether it is available in
some block buffer of the key cache. If it is, the server accesses data in the key cache rather than on disk.
That is, it reads from the cache or writes into it rather than reading from or writing to disk. Otherwise, the
server chooses a cache block buffer containing a different table index block (or blocks) and replaces the
data there by a copy of required table index block. As soon as the new index block is in the cache, the
index data can be accessed.

If it happens that a block selected for replacement has been modified, the block is considered “dirty.” In this
case, prior to being replaced, its contents are flushed to the table index from which it came.

Usually the server follows an LRU (Least Recently Used) strategy: When choosing a block for
replacement, it selects the least recently used index block. To make this choice easier, the key cache
module maintains all used blocks in a special list (LRU chain) ordered by time of use. When a block
is accessed, it is the most recently used and is placed at the end of the list. When blocks need to be
replaced, blocks at the beginning of the list are the least recently used and become the first candidates for
eviction.

The InnoDB storage engine also uses an LRU algorithm, to manage its buffer pool. See Section 14.5.1,
“Buffer Pool”.

8.10.2.1 Shared Key Cache Access

Threads can access key cache buffers simultaneously, subject to the following conditions:

1584

The MyISAM Key Cache

• A buffer that is not being updated can be accessed by multiple sessions.

• A buffer that is being updated causes sessions that need to use it to wait until the update is complete.

• Multiple sessions can initiate requests that result in cache block replacements, as long as they do not
interfere with each other (that is, as long as they need different index blocks, and thus cause different
cache blocks to be replaced).

Shared access to the key cache enables the server to improve throughput significantly.

8.10.2.2 Multiple Key Caches

Shared access to the key cache improves performance but does not eliminate contention among sessions
entirely. They still compete for control structures that manage access to the key cache buffers. To reduce
key cache access contention further, MySQL also provides multiple key caches. This feature enables you
to assign different table indexes to different key caches.

Where there are multiple key caches, the server must know which cache to use when processing queries
for a given MyISAM table. By default, all MyISAM table indexes are cached in the default key cache. To
assign table indexes to a specific key cache, use the CACHE INDEX statement (see Section 13.7.6.2,
“CACHE INDEX Statement”). For example, the following statement assigns indexes from the tables t1, t2,
and t3 to the key cache named hot_cache:

mysql> CACHE INDEX t1, t2, t3 IN hot_cache;
+---------+--------------------+----------+----------+
| Table | Op | Msg_type | Msg_text |
+---------+--------------------+----------+----------+
test.t1	assign_to_keycache	status	OK
test.t2	assign_to_keycache	status	OK
test.t3	assign_to_keycache	status	OK
+---------+--------------------+----------+----------+

The key cache referred to in a CACHE INDEX statement can be created by setting its size with a SET
GLOBAL parameter setting statement or by using server startup options. For example:

mysql> SET GLOBAL keycache1.key_buffer_size=128*1024;

To destroy a key cache, set its size to zero:

mysql> SET GLOBAL keycache1.key_buffer_size=0;

You cannot destroy the default key cache. Any attempt to do this is ignored:

mysql> SET GLOBAL key_buffer_size = 0;

mysql> SHOW VARIABLES LIKE 'key_buffer_size';
+-----------------+---------+
| Variable_name | Value |
+-----------------+---------+
| key_buffer_size | 8384512 |
+-----------------+---------+

Key cache variables are structured system variables that have a name and components. For
keycache1.key_buffer_size, keycache1 is the cache variable name and key_buffer_size is the
cache component. See Section 5.1.8.3, “Structured System Variables”, for a description of the syntax used
for referring to structured key cache system variables.

By default, table indexes are assigned to the main (default) key cache created at the server startup. When
a key cache is destroyed, all indexes assigned to it are reassigned to the default key cache.

For a busy server, you can use a strategy that involves three key caches:

1585

The MyISAM Key Cache

• A “hot” key cache that takes up 20% of the space allocated for all key caches. Use this for tables that are
heavily used for searches but that are not updated.

• A “cold” key cache that takes up 20% of the space allocated for all key caches. Use this cache for
medium-sized, intensively modified tables, such as temporary tables.

• A “warm” key cache that takes up 60% of the key cache space. Employ this as the default key cache, to
be used by default for all other tables.

One reason the use of three key caches is beneficial is that access to one key cache structure does not
block access to the others. Statements that access tables assigned to one cache do not compete with
statements that access tables assigned to another cache. Performance gains occur for other reasons as
well:

• The hot cache is used only for retrieval queries, so its contents are never modified. Consequently,
whenever an index block needs to be pulled in from disk, the contents of the cache block chosen for
replacement need not be flushed first.

• For an index assigned to the hot cache, if there are no queries requiring an index scan, there is a high
probability that the index blocks corresponding to nonleaf nodes of the index B-tree remain in the cache.

• An update operation most frequently executed for temporary tables is performed much faster when
the updated node is in the cache and need not be read from disk first. If the size of the indexes of the
temporary tables are comparable with the size of cold key cache, the probability is very high that the
updated node is in the cache.

The CACHE INDEX statement sets up an association between a table and a key cache, but the association
is lost each time the server restarts. If you want the association to take effect each time the server starts,
one way to accomplish this is to use an option file: Include variable settings that configure your key
caches, and an init_file system variable that names a file containing CACHE INDEX statements to be
executed. For example:

key_buffer_size = 4G
hot_cache.key_buffer_size = 2G
cold_cache.key_buffer_size = 2G
init_file=/path/to/data-directory/mysqld_init.sql

The statements in mysqld_init.sql are executed each time the server starts. The file should contain
one SQL statement per line. The following example assigns several tables each to hot_cache and
cold_cache:

CACHE INDEX db1.t1, db1.t2, db2.t3 IN hot_cache
CACHE INDEX db1.t4, db2.t5, db2.t6 IN cold_cache

8.10.2.3 Midpoint Insertion Strategy

By default, the key cache management system uses a simple LRU strategy for choosing key cache blocks
to be evicted, but it also supports a more sophisticated method called the midpoint insertion strategy.

When using the midpoint insertion strategy, the LRU chain is divided into two parts: a hot sublist and a
warm sublist. The division point between two parts is not fixed, but the key cache management system
takes care that the warm part is not “too short,” always containing at least key_cache_division_limit
percent of the key cache blocks. key_cache_division_limit is a component of structured key cache
variables, so its value is a parameter that can be set per cache.

When an index block is read from a table into the key cache, it is placed at the end of the warm sublist.
After a certain number of hits (accesses of the block), it is promoted to the hot sublist. At present, the
number of hits required to promote a block (3) is the same for all index blocks.

1586

The MyISAM Key Cache

A block promoted into the hot sublist is placed at the end of the list. The block then circulates within this
sublist. If the block stays at the beginning of the sublist for a long enough time, it is demoted to the warm
sublist. This time is determined by the value of the key_cache_age_threshold component of the key
cache.

The threshold value prescribes that, for a key cache containing N blocks, the block at the beginning of the
hot sublist not accessed within the last N * key_cache_age_threshold / 100 hits is to be moved
to the beginning of the warm sublist. It then becomes the first candidate for eviction, because blocks for
replacement always are taken from the beginning of the warm sublist.

The midpoint insertion strategy enables you to keep more-valued blocks always in the cache. If you prefer
to use the plain LRU strategy, leave the key_cache_division_limit value set to its default of 100.

The midpoint insertion strategy helps to improve performance when execution of a query that
requires an index scan effectively pushes out of the cache all the index blocks corresponding to
valuable high-level B-tree nodes. To avoid this, you must use a midpoint insertion strategy with the
key_cache_division_limit set to much less than 100. Then valuable frequently hit nodes are
preserved in the hot sublist during an index scan operation as well.

8.10.2.4 Index Preloading

If there are enough blocks in a key cache to hold blocks of an entire index, or at least the blocks
corresponding to its nonleaf nodes, it makes sense to preload the key cache with index blocks before
starting to use it. Preloading enables you to put the table index blocks into a key cache buffer in the most
efficient way: by reading the index blocks from disk sequentially.

Without preloading, the blocks are still placed into the key cache as needed by queries. Although the
blocks stay in the cache, because there are enough buffers for all of them, they are fetched from disk in
random order, and not sequentially.

To preload an index into a cache, use the LOAD INDEX INTO CACHE statement. For example, the
following statement preloads nodes (index blocks) of indexes of the tables t1 and t2:

mysql> LOAD INDEX INTO CACHE t1, t2 IGNORE LEAVES;
+---------+--------------+----------+----------+
| Table | Op | Msg_type | Msg_text |
+---------+--------------+----------+----------+
| test.t1 | preload_keys | status | OK |
| test.t2 | preload_keys | status | OK |
+---------+--------------+----------+----------+

The IGNORE LEAVES modifier causes only blocks for the nonleaf nodes of the index to be preloaded.
Thus, the statement shown preloads all index blocks from t1, but only blocks for the nonleaf nodes from
t2.

If an index has been assigned to a key cache using a CACHE INDEX statement, preloading places index
blocks into that cache. Otherwise, the index is loaded into the default key cache.

8.10.2.5 Key Cache Block Size

It is possible to specify the size of the block buffers for an individual key cache using the
key_cache_block_size variable. This permits tuning of the performance of I/O operations for index
files.

The best performance for I/O operations is achieved when the size of read buffers is equal to the size of
the native operating system I/O buffers. But setting the size of key nodes equal to the size of the I/O buffer
does not always ensure the best overall performance. When reading the big leaf nodes, the server pulls in
a lot of unnecessary data, effectively preventing reading other leaf nodes.

1587

The MySQL Query Cache

To control the size of blocks in the .MYI index file of MyISAM tables, use the --myisam-block-size
option at server startup.

8.10.2.6 Restructuring a Key Cache

A key cache can be restructured at any time by updating its parameter values. For example:

mysql> SET GLOBAL cold_cache.key_buffer_size=4*1024*1024;

If you assign to either the key_buffer_size or key_cache_block_size key cache component a
value that differs from the component's current value, the server destroys the cache's old structure and
creates a new one based on the new values. If the cache contains any dirty blocks, the server saves them
to disk before destroying and re-creating the cache. Restructuring does not occur if you change other key
cache parameters.

When restructuring a key cache, the server first flushes the contents of any dirty buffers to disk. After that,
the cache contents become unavailable. However, restructuring does not block queries that need to use
indexes assigned to the cache. Instead, the server directly accesses the table indexes using native file
system caching. File system caching is not as efficient as using a key cache, so although queries execute,
a slowdown can be anticipated. After the cache has been restructured, it becomes available again for
caching indexes assigned to it, and the use of file system caching for the indexes ceases.

8.10.3 The MySQL Query Cache

Note

The query cache is deprecated as of MySQL 5.7.20, and is removed in MySQL 8.0.

The query cache stores the text of a SELECT statement together with the corresponding result that was
sent to the client. If an identical statement is received later, the server retrieves the results from the query
cache rather than parsing and executing the statement again. The query cache is shared among sessions,
so a result set generated by one client can be sent in response to the same query issued by another client.

The query cache can be useful in an environment where you have tables that do not change very often and
for which the server receives many identical queries. This is a typical situation for many Web servers that
generate many dynamic pages based on database content.

The query cache does not return stale data. When tables are modified, any relevant entries in the query
cache are flushed.

Note

The query cache does not work in an environment where you have multiple mysqld
servers updating the same MyISAM tables.

The query cache is used for prepared statements under the conditions described in Section 8.10.3.1, “How
the Query Cache Operates”.

Note

The query cache is not supported for partitioned tables, and is automatically
disabled for queries involving partitioned tables. The query cache cannot be
enabled for such queries.

Some performance data for the query cache follows. These results were generated by running the MySQL
benchmark suite on a Linux Alpha 2×500MHz system with 2GB RAM and a 64MB query cache.

1588

The MySQL Query Cache

• If all the queries you are performing are simple (such as selecting a row from a table with one row),
but still differ so that the queries cannot be cached, the overhead for having the query cache active
is 13%. This could be regarded as the worst case scenario. In real life, queries tend to be much more
complicated, so the overhead normally is significantly lower.

• Searches for a single row in a single-row table are 238% faster with the query cache than without it. This
can be regarded as close to the minimum speedup to be expected for a query that is cached.

To disable the query cache at server startup, set the query_cache_size system variable to 0. By
disabling the query cache code, there is no noticeable overhead.

The query cache offers the potential for substantial performance improvement, but do not assume that it
does so under all circumstances. With some query cache configurations or server workloads, you might
actually see a performance decrease:

• Be cautious about sizing the query cache excessively large, which increases the overhead required to
maintain the cache, possibly beyond the benefit of enabling it. Sizes in tens of megabytes are usually
beneficial. Sizes in the hundreds of megabytes might not be.

• Server workload has a significant effect on query cache efficiency. A query mix consisting almost entirely
of a fixed set of SELECT statements is much more likely to benefit from enabling the cache than a mix in
which frequent INSERT statements cause continual invalidation of results in the cache. In some cases,
a workaround is to use the SQL_NO_CACHE option to prevent results from even entering the cache for
SELECT statements that use frequently modified tables. (See Section 8.10.3.2, “Query Cache SELECT
Options”.)

To verify that enabling the query cache is beneficial, test the operation of your MySQL server with the
cache enabled and disabled. Then retest periodically because query cache efficiency may change as
server workload changes.

8.10.3.1 How the Query Cache Operates

Note

The query cache is deprecated as of MySQL 5.7.20, and is removed in MySQL 8.0.

This section describes how the query cache works when it is operational. Section 8.10.3.3, “Query Cache
Configuration”, describes how to control whether it is operational.

Incoming queries are compared to those in the query cache before parsing, so the following two queries
are regarded as different by the query cache:

SELECT * FROM tbl_name
Select * from tbl_name

Queries must be exactly the same (byte for byte) to be seen as identical. In addition, query strings that
are identical may be treated as different for other reasons. Queries that use different databases, different
protocol versions, or different default character sets are considered different queries and are cached
separately.

The cache is not used for queries of the following types:

• Queries that are a subquery of an outer query

• Queries executed within the body of a stored function, trigger, or event

Before a query result is fetched from the query cache, MySQL checks whether the user has SELECT
privilege for all databases and tables involved. If this is not the case, the cached result is not used.

1589

The MySQL Query Cache

If a query result is returned from query cache, the server increments the Qcache_hits status variable, not
Com_select. See Section 8.10.3.4, “Query Cache Status and Maintenance”.

If a table changes, all cached queries that use the table become invalid and are removed from the cache.
This includes queries that use MERGE tables that map to the changed table. A table can be changed by
many types of statements, such as INSERT, UPDATE, DELETE, TRUNCATE TABLE, ALTER TABLE, DROP
TABLE, or DROP DATABASE.

The query cache also works within transactions when using InnoDB tables.

The result from a SELECT query on a view is cached.

The query cache works for SELECT SQL_CALC_FOUND_ROWS ... queries and stores a value that is
returned by a following SELECT FOUND_ROWS() query. FOUND_ROWS() returns the correct value even if
the preceding query was fetched from the cache because the number of found rows is also stored in the
cache. The SELECT FOUND_ROWS() query itself cannot be cached.

Prepared statements that are issued using the binary protocol using mysql_stmt_prepare() and
mysql_stmt_execute() (see C API Prepared Statement Interface), are subject to limitations on
caching. Comparison with statements in the query cache is based on the text of the statement after
expansion of ? parameter markers. The statement is compared only with other cached statements
that were executed using the binary protocol. That is, for query cache purposes, prepared statements
issued using the binary protocol are distinct from prepared statements issued using the text protocol (see
Section 13.5, “Prepared Statements”).

A query cannot be cached if it uses any of the following functions:

• AES_DECRYPT()

• AES_ENCRYPT()

• BENCHMARK()

• CONNECTION_ID()

• CONVERT_TZ()

• CURDATE()

• CURRENT_DATE()

• CURRENT_TIME()

• CURRENT_TIMESTAMP()

• CURRENT_USER()

• CURTIME()

• DATABASE()

• ENCRYPT() with one parameter

• FOUND_ROWS()

• GET_LOCK()

• IS_FREE_LOCK()

• IS_USED_LOCK()

1590

https://dev.mysql.com/doc/c-api/5.7/en/mysql-stmt-prepare.html
https://dev.mysql.com/doc/c-api/5.7/en/mysql-stmt-execute.html
https://dev.mysql.com/doc/c-api/5.7/en/c-api-prepared-statement-interface.html

The MySQL Query Cache

• LAST_INSERT_ID()

• LOAD_FILE()

• MASTER_POS_WAIT()

• NOW()

• PASSWORD()

• RAND()

• RANDOM_BYTES()

• RELEASE_ALL_LOCKS()

• RELEASE_LOCK()

• SLEEP()

• SYSDATE()

• UNIX_TIMESTAMP() with no parameters

• USER()

• UUID()

• UUID_SHORT()

A query also is not cached under these conditions:

• It refers to loadable functions or stored functions.

• It refers to user variables or local stored program variables.

• It refers to tables in the mysql, INFORMATION_SCHEMA, or performance_schema database.

• It refers to any partitioned tables.

• It is of any of the following forms:

SELECT ... LOCK IN SHARE MODE
SELECT ... FOR UPDATE
SELECT ... INTO OUTFILE ...
SELECT ... INTO DUMPFILE ...
SELECT * FROM ... WHERE autoincrement_col IS NULL

The last form is not cached because it is used as the ODBC workaround for obtaining the last insert ID
value. See the Connector/ODBC section of Chapter 27, Connectors and APIs.

Statements within transactions that use SERIALIZABLE isolation level also cannot be cached because
they use LOCK IN SHARE MODE locking.

• It uses TEMPORARY tables.

• It does not use any tables.

• It generates warnings.

• The user has a column-level privilege for any of the involved tables.

1591

The MySQL Query Cache

8.10.3.2 Query Cache SELECT Options

Note

The query cache is deprecated as of MySQL 5.7.20, and is removed in MySQL 8.0.

Two query cache-related options may be specified in SELECT statements:

• SQL_CACHE

The query result is cached if it is cacheable and the value of the query_cache_type system variable is
ON or DEMAND.

•
SQL_NO_CACHE

The server does not use the query cache. It neither checks the query cache to see whether the result is
already cached, nor does it cache the query result.

Examples:

SELECT SQL_CACHE id, name FROM customer;
SELECT SQL_NO_CACHE id, name FROM customer;

8.10.3.3 Query Cache Configuration

Note

The query cache is deprecated as of MySQL 5.7.20, and is removed in MySQL 8.0.

The have_query_cache server system variable indicates whether the query cache is available:

mysql> SHOW VARIABLES LIKE 'have_query_cache';
+------------------+-------+
| Variable_name | Value |
+------------------+-------+
| have_query_cache | YES |
+------------------+-------+

When using a standard MySQL binary, this value is always YES, even if query caching is disabled.

Several other system variables control query cache operation. These can be set in an option file or on the
command line when starting mysqld. The query cache system variables all have names that begin with
query_cache_. They are described briefly in Section 5.1.7, “Server System Variables”, with additional
configuration information given here.

To set the size of the query cache, set the query_cache_size system variable. Setting it to 0 disables
the query cache, as does setting query_cache_type=0. By default, the query cache is disabled. This is
achieved using a default size of 1M, with a default for query_cache_type of 0.

To reduce overhead significantly, start the server with query_cache_type=0 if you do not intend to use
the query cache.

Note

When using the Windows Configuration Wizard to install or configure MySQL, the
default value for query_cache_size is configured automatically for you based on
the different configuration types available. When using the Windows Configuration

1592

The MySQL Query Cache

Wizard, the query cache may be enabled (that is, set to a nonzero value) due to
the selected configuration. The query cache is also controlled by the setting of the
query_cache_type variable. Check the values of these variables as set in your
my.ini file after configuration has taken place.

When you set query_cache_size to a nonzero value, keep in mind that the query cache needs a
minimum size of about 40KB to allocate its structures. (The exact size depends on system architecture.) If
you set the value too small, you'll get a warning, as in this example:

mysql> SET GLOBAL query_cache_size = 40000;
Query OK, 0 rows affected, 1 warning (0.00 sec)

mysql> SHOW WARNINGS\G
*************************** 1. row ***************************
 Level: Warning
 Code: 1282
Message: Query cache failed to set size 39936;
 new query cache size is 0

mysql> SET GLOBAL query_cache_size = 41984;
Query OK, 0 rows affected (0.00 sec)

mysql> SHOW VARIABLES LIKE 'query_cache_size';
+------------------+-------+
| Variable_name | Value |
+------------------+-------+
| query_cache_size | 41984 |
+------------------+-------+

For the query cache to actually be able to hold any query results, its size must be set larger:

mysql> SET GLOBAL query_cache_size = 1000000;
Query OK, 0 rows affected (0.04 sec)

mysql> SHOW VARIABLES LIKE 'query_cache_size';
+------------------+--------+
| Variable_name | Value |
+------------------+--------+
| query_cache_size | 999424 |
+------------------+--------+
1 row in set (0.00 sec)

The query_cache_size value is aligned to the nearest 1024 byte block. The value reported may
therefore be different from the value that you assign.

If the query cache size is greater than 0, the query_cache_type variable influences how it works. This
variable can be set to the following values:

• A value of 0 or OFF prevents caching or retrieval of cached results.

• A value of 1 or ON enables caching except of those statements that begin with SELECT SQL_NO_CACHE.

• A value of 2 or DEMAND causes caching of only those statements that begin with SELECT SQL_CACHE.

If query_cache_size is 0, you should also set query_cache_type variable to 0. In this case, the
server does not acquire the query cache mutex at all, which means that the query cache cannot be
enabled at runtime and there is reduced overhead in query execution.

Setting the GLOBAL query_cache_type value determines query cache behavior for all clients that
connect after the change is made. Individual clients can control cache behavior for their own connection by
setting the SESSION query_cache_type value. For example, a client can disable use of the query cache
for its own queries like this:

1593

The MySQL Query Cache

mysql> SET SESSION query_cache_type = OFF;

If you set query_cache_type at server startup (rather than at runtime with a SET statement), only the
numeric values are permitted.

To control the maximum size of individual query results that can be cached, set the query_cache_limit
system variable. The default value is 1MB.

Be careful not to set the size of the cache too large. Due to the need for threads to lock the cache during
updates, you may see lock contention issues with a very large cache.

Note

You can set the maximum size that can be specified for the query cache at runtime
with the SET statement by using the --maximum-query_cache_size=32M option
on the command line or in the configuration file.

When a query is to be cached, its result (the data sent to the client) is stored in the query cache during
result retrieval. Therefore the data usually is not handled in one big chunk. The query cache allocates
blocks for storing this data on demand, so when one block is filled, a new block is allocated. Because
memory allocation operation is costly (timewise), the query cache allocates blocks with a minimum size
given by the query_cache_min_res_unit system variable. When a query is executed, the last result
block is trimmed to the actual data size so that unused memory is freed. Depending on the types of queries
your server executes, you might find it helpful to tune the value of query_cache_min_res_unit:

• The default value of query_cache_min_res_unit is 4KB. This should be adequate for most cases.

• If you have a lot of queries with small results, the default block size may lead to memory fragmentation,
as indicated by a large number of free blocks. Fragmentation can force the query cache to
prune (delete) queries from the cache due to lack of memory. In this case, decrease the value of
query_cache_min_res_unit. The number of free blocks and queries removed due to pruning are
given by the values of the Qcache_free_blocks and Qcache_lowmem_prunes status variables.

• If most of your queries have large results (check the Qcache_total_blocks and
Qcache_queries_in_cache status variables), you can increase performance by increasing
query_cache_min_res_unit. However, be careful to not make it too large (see the previous item).

8.10.3.4 Query Cache Status and Maintenance

Note

The query cache is deprecated as of MySQL 5.7.20, and is removed in MySQL 8.0.

To check whether the query cache is present in your MySQL server, use the following statement:

mysql> SHOW VARIABLES LIKE 'have_query_cache';
+------------------+-------+
| Variable_name | Value |
+------------------+-------+
| have_query_cache | YES |
+------------------+-------+

You can defragment the query cache to better utilize its memory with the FLUSH QUERY CACHE
statement. The statement does not remove any queries from the cache.

The RESET QUERY CACHE statement removes all query results from the query cache. The FLUSH
TABLES statement also does this.

1594

Caching of Prepared Statements and Stored Programs

To monitor query cache performance, use SHOW STATUS to view the cache status variables:

mysql> SHOW STATUS LIKE 'Qcache%';
+-------------------------+--------+
| Variable_name | Value |
+-------------------------+--------+
Qcache_free_blocks	36
Qcache_free_memory	138488
Qcache_hits	79570
Qcache_inserts	27087
Qcache_lowmem_prunes	3114
Qcache_not_cached	22989
Qcache_queries_in_cache	415
Qcache_total_blocks	912
+-------------------------+--------+

Descriptions of each of these variables are given in Section 5.1.9, “Server Status Variables”. Some uses
for them are described here.

The total number of SELECT queries is given by this formula:

 Com_select
+ Qcache_hits
+ queries with errors found by parser

The Com_select value is given by this formula:

 Qcache_inserts
+ Qcache_not_cached
+ queries with errors found during the column-privileges check

The query cache uses variable-length blocks, so Qcache_total_blocks and Qcache_free_blocks
may indicate query cache memory fragmentation. After FLUSH QUERY CACHE, only a single free block
remains.

Every cached query requires a minimum of two blocks (one for the query text and one or more for the
query results). Also, every table that is used by a query requires one block. However, if two or more
queries use the same table, only one table block needs to be allocated.

The information provided by the Qcache_lowmem_prunes status variable can help you tune the query
cache size. It counts the number of queries that have been removed from the cache to free up memory for
caching new queries. The query cache uses a least recently used (LRU) strategy to decide which queries
to remove from the cache. Tuning information is given in Section 8.10.3.3, “Query Cache Configuration”.

8.10.4 Caching of Prepared Statements and Stored Programs

For certain statements that a client might execute multiple times during a session, the server converts the
statement to an internal structure and caches that structure to be used during execution. Caching enables
the server to perform more efficiently because it avoids the overhead of reconverting the statement should
it be needed again during the session. Conversion and caching occurs for these statements:

• Prepared statements, both those processed at the SQL level (using the PREPARE statement) and those
processed using the binary client/server protocol (using the mysql_stmt_prepare() C API function).
The max_prepared_stmt_count system variable controls the total number of statements the server
caches. (The sum of the number of prepared statements across all sessions.)

• Stored programs (stored procedures and functions, triggers, and events). In this case, the server
converts and caches the entire program body. The stored_program_cache system variable indicates
the approximate number of stored programs the server caches per session.

1595

https://dev.mysql.com/doc/c-api/5.7/en/mysql-stmt-prepare.html

Caching of Prepared Statements and Stored Programs

The server maintains caches for prepared statements and stored programs on a per-session basis.
Statements cached for one session are not accessible to other sessions. When a session ends, the server
discards any statements cached for it.

When the server uses a cached internal statement structure, it must take care that the structure does not
go out of date. Metadata changes can occur for an object used by the statement, causing a mismatch
between the current object definition and the definition as represented in the internal statement structure.
Metadata changes occur for DDL statements such as those that create, drop, alter, rename, or truncate
tables, or that analyze, optimize, or repair tables. Table content changes (for example, with INSERT or
UPDATE) do not change metadata, nor do SELECT statements.

Here is an illustration of the problem. Suppose that a client prepares this statement:

PREPARE s1 FROM 'SELECT * FROM t1';

The SELECT * expands in the internal structure to the list of columns in the table. If the set of columns in
the table is modified with ALTER TABLE, the prepared statement goes out of date. If the server does not
detect this change the next time the client executes s1, the prepared statement returns incorrect results.

To avoid problems caused by metadata changes to tables or views referred to by the prepared statement,
the server detects these changes and automatically reprepares the statement when it is next executed.
That is, the server reparses the statement and rebuilds the internal structure. Reparsing also occurs after
referenced tables or views are flushed from the table definition cache, either implicitly to make room for
new entries in the cache, or explicitly due to FLUSH TABLES.

Similarly, if changes occur to objects used by a stored program, the server reparses affected statements
within the program.

The server also detects metadata changes for objects in expressions. These might be used in statements
specific to stored programs, such as DECLARE CURSOR or flow-control statements such as IF, CASE, and
RETURN.

To avoid reparsing entire stored programs, the server reparses affected statements or expressions within a
program only as needed. Examples:

• Suppose that metadata for a table or view is changed. Reparsing occurs for a SELECT * within the
program that accesses the table or view, but not for a SELECT * that does not access the table or view.

• When a statement is affected, the server reparses it only partially if possible. Consider this CASE
statement:

CASE case_expr
 WHEN when_expr1 ...
 WHEN when_expr2 ...
 WHEN when_expr3 ...
 ...
END CASE

If a metadata change affects only WHEN when_expr3, that expression is reparsed. case_expr and the
other WHEN expressions are not reparsed.

Reparsing uses the default database and SQL mode that were in effect for the original conversion to
internal form.

The server attempts reparsing up to three times. An error occurs if all attempts fail.

Reparsing is automatic, but to the extent that it occurs, diminishes prepared statement and stored program
performance.

1596

Optimizing Locking Operations

For prepared statements, the Com_stmt_reprepare status variable tracks the number of repreparations.

8.11 Optimizing Locking Operations
MySQL manages contention for table contents using locking:

• Internal locking is performed within the MySQL server itself to manage contention for table contents
by multiple threads. This type of locking is internal because it is performed entirely by the server and
involves no other programs. See Section 8.11.1, “Internal Locking Methods”.

• External locking occurs when the server and other programs lock MyISAM table files to coordinate
among themselves which program can access the tables at which time. See Section 8.11.5, “External
Locking”.

8.11.1 Internal Locking Methods

This section discusses internal locking; that is, locking performed within the MySQL server itself to manage
contention for table contents by multiple sessions. This type of locking is internal because it is performed
entirely by the server and involves no other programs. For locking performed on MySQL files by other
programs, see Section 8.11.5, “External Locking”.

• Row-Level Locking

• Table-Level Locking

• Choosing the Type of Locking

Row-Level Locking

MySQL uses row-level locking for InnoDB tables to support simultaneous write access by multiple
sessions, making them suitable for multi-user, highly concurrent, and OLTP applications.

To avoid deadlocks when performing multiple concurrent write operations on a single InnoDB table,
acquire necessary locks at the start of the transaction by issuing a SELECT ... FOR UPDATE statement
for each group of rows expected to be modified, even if the data change statements come later in the
transaction. If transactions modify or lock more than one table, issue the applicable statements in the same
order within each transaction. Deadlocks affect performance rather than representing a serious error,
because InnoDB automatically detects deadlock conditions and rolls back one of the affected transactions.

On high concurrency systems, deadlock detection can cause a slowdown when numerous threads
wait for the same lock. At times, it may be more efficient to disable deadlock detection and rely on the
innodb_lock_wait_timeout setting for transaction rollback when a deadlock occurs. Deadlock
detection can be disabled using the innodb_deadlock_detect configuration option.

Advantages of row-level locking:

• Fewer lock conflicts when different sessions access different rows.

• Fewer changes for rollbacks.

• Possible to lock a single row for a long time.

Table-Level Locking

MySQL uses table-level locking for MyISAM, MEMORY, and MERGE tables, permitting only one session to
update those tables at a time. This locking level makes these storage engines more suitable for read-only,
read-mostly, or single-user applications.

1597

Internal Locking Methods

These storage engines avoid deadlocks by always requesting all needed locks at once at the beginning
of a query and always locking the tables in the same order. The tradeoff is that this strategy reduces
concurrency; other sessions that want to modify the table must wait until the current data change statement
finishes.

Advantages of table-level locking:

• Relatively little memory required (row locking requires memory per row or group of rows locked)

• Fast when used on a large part of the table because only a single lock is involved.

• Fast if you often do GROUP BY operations on a large part of the data or must scan the entire table
frequently.

MySQL grants table write locks as follows:

1. If there are no locks on the table, put a write lock on it.

2. Otherwise, put the lock request in the write lock queue.

MySQL grants table read locks as follows:

1. If there are no write locks on the table, put a read lock on it.

2. Otherwise, put the lock request in the read lock queue.

Table updates are given higher priority than table retrievals. Therefore, when a lock is released, the lock
is made available to the requests in the write lock queue and then to the requests in the read lock queue.
This ensures that updates to a table are not “starved” even when there is heavy SELECT activity for the
table. However, if there are many updates for a table, SELECT statements wait until there are no more
updates.

For information on altering the priority of reads and writes, see Section 8.11.2, “Table Locking Issues”.

You can analyze the table lock contention on your system by checking the Table_locks_immediate
and Table_locks_waited status variables, which indicate the number of times that requests for table
locks could be granted immediately and the number that had to wait, respectively:

mysql> SHOW STATUS LIKE 'Table%';
+-----------------------+---------+
| Variable_name | Value |
+-----------------------+---------+
| Table_locks_immediate | 1151552 |
| Table_locks_waited | 15324 |
+-----------------------+---------+

The Performance Schema lock tables also provide locking information. See Section 25.12.12,
“Performance Schema Lock Tables”.

The MyISAM storage engine supports concurrent inserts to reduce contention between readers and writers
for a given table: If a MyISAM table has no free blocks in the middle of the data file, rows are always
inserted at the end of the data file. In this case, you can freely mix concurrent INSERT and SELECT
statements for a MyISAM table without locks. That is, you can insert rows into a MyISAM table at the
same time other clients are reading from it. Holes can result from rows having been deleted from or
updated in the middle of the table. If there are holes, concurrent inserts are disabled but are enabled
again automatically when all holes have been filled with new data. To control this behavior, use the
concurrent_insert system variable. See Section 8.11.3, “Concurrent Inserts”.

If you acquire a table lock explicitly with LOCK TABLES, you can request a READ LOCAL lock rather than a
READ lock to enable other sessions to perform concurrent inserts while you have the table locked.

1598

Table Locking Issues

To perform many INSERT and SELECT operations on a table t1 when concurrent inserts are not possible,
you can insert rows into a temporary table temp_t1 and update the real table with the rows from the
temporary table:

mysql> LOCK TABLES t1 WRITE, temp_t1 WRITE;
mysql> INSERT INTO t1 SELECT * FROM temp_t1;
mysql> DELETE FROM temp_t1;
mysql> UNLOCK TABLES;

Choosing the Type of Locking

Generally, table locks are superior to row-level locks in the following cases:

• Most statements for the table are reads.

• Statements for the table are a mix of reads and writes, where writes are updates or deletes for a single
row that can be fetched with one key read:

UPDATE tbl_name SET column=value WHERE unique_key_col=key_value;
DELETE FROM tbl_name WHERE unique_key_col=key_value;

• SELECT combined with concurrent INSERT statements, and very few UPDATE or DELETE statements.

• Many scans or GROUP BY operations on the entire table without any writers.

With higher-level locks, you can more easily tune applications by supporting locks of different types,
because the lock overhead is less than for row-level locks.

Options other than row-level locking:

• Versioning (such as that used in MySQL for concurrent inserts) where it is possible to have one writer at
the same time as many readers. This means that the database or table supports different views for the
data depending on when access begins. Other common terms for this are “time travel,” “copy on write,”
or “copy on demand.”

• Copy on demand is in many cases superior to row-level locking. However, in the worst case, it can use
much more memory than using normal locks.

• Instead of using row-level locks, you can employ application-level locks, such as those provided by
GET_LOCK() and RELEASE_LOCK() in MySQL. These are advisory locks, so they work only with
applications that cooperate with each other. See Section 12.14, “Locking Functions”.

8.11.2 Table Locking Issues

InnoDB tables use row-level locking so that multiple sessions and applications can read from and write to
the same table simultaneously, without making each other wait or producing inconsistent results. For this
storage engine, avoid using the LOCK TABLES statement, because it does not offer any extra protection,
but instead reduces concurrency. The automatic row-level locking makes these tables suitable for your
busiest databases with your most important data, while also simplifying application logic since you do not
need to lock and unlock tables. Consequently, the InnoDB storage engine is the default in MySQL.

MySQL uses table locking (instead of page, row, or column locking) for all storage engines except InnoDB.
The locking operations themselves do not have much overhead. But because only one session can write
to a table at any one time, for best performance with these other storage engines, use them primarily for
tables that are queried often and rarely inserted into or updated.

• Performance Considerations Favoring InnoDB

• Workarounds for Locking Performance Issues

1599

Table Locking Issues

Performance Considerations Favoring InnoDB

When choosing whether to create a table using InnoDB or a different storage engine, keep in mind the
following disadvantages of table locking:

• Table locking enables many sessions to read from a table at the same time, but if a session wants to
write to a table, it must first get exclusive access, meaning it might have to wait for other sessions to
finish with the table first. During the update, all other sessions that want to access this particular table
must wait until the update is done.

• Table locking causes problems when a session is waiting because the disk is full and free space needs
to become available before the session can proceed. In this case, all sessions that want to access the
problem table are also put in a waiting state until more disk space is made available.

• A SELECT statement that takes a long time to run prevents other sessions from updating the table in the
meantime, making the other sessions appear slow or unresponsive. While a session is waiting to get
exclusive access to the table for updates, other sessions that issue SELECT statements queue up behind
it, reducing concurrency even for read-only sessions.

Workarounds for Locking Performance Issues

The following items describe some ways to avoid or reduce contention caused by table locking:

• Consider switching the table to the InnoDB storage engine, either using CREATE TABLE ...
ENGINE=INNODB during setup, or using ALTER TABLE ... ENGINE=INNODB for an existing table.
See Chapter 14, The InnoDB Storage Engine for more details about this storage engine.

• Optimize SELECT statements to run faster so that they lock tables for a shorter time. You might have to
create some summary tables to do this.

• Start mysqld with --low-priority-updates. For storage engines that use only table-level locking
(such as MyISAM, MEMORY, and MERGE), this gives all statements that update (modify) a table lower
priority than SELECT statements. In this case, the second SELECT statement in the preceding scenario
would execute before the UPDATE statement, and would not wait for the first SELECT to finish.

• To specify that all updates issued in a specific connection should be done with low priority, set the
low_priority_updates server system variable equal to 1.

• To give a specific INSERT, UPDATE, or DELETE statement lower priority, use the LOW_PRIORITY
attribute.

• To give a specific SELECT statement higher priority, use the HIGH_PRIORITY attribute. See
Section 13.2.9, “SELECT Statement”.

• Start mysqld with a low value for the max_write_lock_count system variable to force MySQL to
temporarily elevate the priority of all SELECT statements that are waiting for a table after a specific
number of write locks to the table occur (for example, for insert operations). This permits read locks after
a certain number of write locks.

• If you have problems with mixed SELECT and DELETE statements, the LIMIT option to DELETE may
help. See Section 13.2.2, “DELETE Statement”.

• Using SQL_BUFFER_RESULT with SELECT statements can help to make the duration of table locks
shorter. See Section 13.2.9, “SELECT Statement”.

• Splitting table contents into separate tables may help, by allowing queries to run against columns in one
table, while updates are confined to columns in a different table.

1600

Concurrent Inserts

• You could change the locking code in mysys/thr_lock.c to use a single queue. In this case, write
locks and read locks would have the same priority, which might help some applications.

8.11.3 Concurrent Inserts

The MyISAM storage engine supports concurrent inserts to reduce contention between readers and writers
for a given table: If a MyISAM table has no holes in the data file (deleted rows in the middle), an INSERT
statement can be executed to add rows to the end of the table at the same time that SELECT statements
are reading rows from the table. If there are multiple INSERT statements, they are queued and performed
in sequence, concurrently with the SELECT statements. The results of a concurrent INSERT may not be
visible immediately.

The concurrent_insert system variable can be set to modify the concurrent-insert processing.
By default, the variable is set to AUTO (or 1) and concurrent inserts are handled as just described. If
concurrent_insert is set to NEVER (or 0), concurrent inserts are disabled. If the variable is set to
ALWAYS (or 2), concurrent inserts at the end of the table are permitted even for tables that have deleted
rows. See also the description of the concurrent_insert system variable.

If you are using the binary log, concurrent inserts are converted to normal inserts for CREATE ...
SELECT or INSERT ... SELECT statements. This is done to ensure that you can re-create an exact
copy of your tables by applying the log during a backup operation. See Section 5.4.4, “The Binary Log”. In
addition, for those statements a read lock is placed on the selected-from table such that inserts into that
table are blocked. The effect is that concurrent inserts for that table must wait as well.

With LOAD DATA, if you specify CONCURRENT with a MyISAM table that satisfies the condition for
concurrent inserts (that is, it contains no free blocks in the middle), other sessions can retrieve data from
the table while LOAD DATA is executing. Use of the CONCURRENT option affects the performance of LOAD
DATA a bit, even if no other session is using the table at the same time.

If you specify HIGH_PRIORITY, it overrides the effect of the --low-priority-updates option if the
server was started with that option. It also causes concurrent inserts not to be used.

For LOCK TABLE, the difference between READ LOCAL and READ is that READ LOCAL permits
nonconflicting INSERT statements (concurrent inserts) to execute while the lock is held. However, this
cannot be used if you are going to manipulate the database using processes external to the server while
you hold the lock.

8.11.4 Metadata Locking

MySQL uses metadata locking to manage concurrent access to database objects and to ensure
data consistency. Metadata locking applies not just to tables, but also to schemas, stored programs
(procedures, functions, triggers, scheduled events), tablespaces, user locks acquired with the
GET_LOCK() function (see Section 12.14, “Locking Functions”), and locks acquired with the locking
service described in Section 5.5.6.1, “The Locking Service”.

The Performance Schema metadata_locks table exposes metadata lock information, which can be
useful for seeing which sessions hold locks, are blocked waiting for locks, and so forth. For details, see
Section 25.12.12.1, “The metadata_locks Table”.

Metadata locking does involve some overhead, which increases as query volume increases. Metadata
contention increases the more that multiple queries attempt to access the same objects.

Metadata locking is not a replacement for the table definition cache, and its mutexes and locks differ from
the LOCK_open mutex. The following discussion provides some information about how metadata locking
works.

1601

Metadata Locking

• Metadata Lock Acquisition

• Metadata Lock Release

Metadata Lock Acquisition

If there are multiple waiters for a given lock, the highest-priority lock request is satisfied first, with an
exception related to the max_write_lock_count system variable. Write lock requests have higher
priority than read lock requests. However, if max_write_lock_count is set to some low value (say,
10), read lock requests may be preferred over pending write lock requests if the read lock requests
have already been passed over in favor of 10 write lock requests. Normally this behavior does not occur
because max_write_lock_count by default has a very large value.

Statements acquire metadata locks one by one, not simultaneously, and perform deadlock detection in the
process.

DML statements normally acquire locks in the order in which tables are mentioned in the statement.

DDL statements, LOCK TABLES, and other similar statements try to reduce the number of possible
deadlocks between concurrent DDL statements by acquiring locks on explicitly named tables in name
order. Locks might be acquired in a different order for implicitly used tables (such as tables in foreign key
relationships that also must be locked).

For example, RENAME TABLE is a DDL statement that acquires locks in name order:

• This RENAME TABLE statement renames tbla to something else, and renames tblc to tbla:

RENAME TABLE tbla TO tbld, tblc TO tbla;

The statement acquires metadata locks, in order, on tbla, tblc, and tbld (because tbld follows
tblc in name order):

• This slightly different statement also renames tbla to something else, and renames tblc to tbla:

RENAME TABLE tbla TO tblb, tblc TO tbla;

In this case, the statement acquires metadata locks, in order, on tbla, tblb, and tblc (because tblb
precedes tblc in name order):

Both statements acquire locks on tbla and tblc, in that order, but differ in whether the lock on the
remaining table name is acquired before or after tblc.

Metadata lock acquisition order can make a difference in operation outcome when multiple transactions
execute concurrently, as the following example illustrates.

Begin with two tables x and x_new that have identical structure. Three clients issue statements that involve
these tables:

Client 1:

LOCK TABLE x WRITE, x_new WRITE;

The statement requests and acquires write locks in name order on x and x_new.

Client 2:

INSERT INTO x VALUES(1);

The statement requests and blocks waiting for a write lock on x.

1602

Metadata Locking

Client 3:

RENAME TABLE x TO x_old, x_new TO x;

The statement requests exclusive locks in name order on x, x_new, and x_old, but blocks waiting for the
lock on x.

Client 1:

UNLOCK TABLES;

The statement releases the write locks on x and x_new. The exclusive lock request for x by Client 3 has
higher priority than the write lock request by Client 2, so Client 3 acquires its lock on x, then also on x_new
and x_old, performs the renaming, and releases its locks. Client 2 then acquires its lock on x, performs
the insert, and releases its lock.

Lock acquisition order results in the RENAME TABLE executing before the INSERT. The x into which the
insert occurs is the table that was named x_new when Client 2 issued the insert and was renamed to x by
Client 3:

mysql> SELECT * FROM x;
+------+
| i |
+------+
| 1 |
+------+

mysql> SELECT * FROM x_old;
Empty set (0.01 sec)

Now begin instead with tables named x and new_x that have identical structure. Again, three clients issue
statements that involve these tables:

Client 1:

LOCK TABLE x WRITE, new_x WRITE;

The statement requests and acquires write locks in name order on new_x and x.

Client 2:

INSERT INTO x VALUES(1);

The statement requests and blocks waiting for a write lock on x.

Client 3:

RENAME TABLE x TO old_x, new_x TO x;

The statement requests exclusive locks in name order on new_x, old_x, and x, but blocks waiting for the
lock on new_x.

Client 1:

UNLOCK TABLES;

The statement releases the write locks on x and new_x. For x, the only pending request is by Client 2, so
Client 2 acquires its lock, performs the insert, and releases the lock. For new_x, the only pending request
is by Client 3, which is permitted to acquire that lock (and also the lock on old_x). The rename operation
still blocks for the lock on x until the Client 2 insert finishes and releases its lock. Then Client 3 acquires the
lock on x, performs the rename, and releases its lock.

1603

External Locking

In this case, lock acquisition order results in the INSERT executing before the RENAME TABLE. The x into
which the insert occurs is the original x, now renamed to old_x by the rename operation:

mysql> SELECT * FROM x;
Empty set (0.01 sec)

mysql> SELECT * FROM old_x;
+------+
| i |
+------+
| 1 |
+------+

If order of lock acquisition in concurrent statements makes a difference to an application in operation
outcome, as in the preceding example, you may be able to adjust the table names to affect the order of
lock acquisition.

Metadata Lock Release

To ensure transaction serializability, the server must not permit one session to perform a data definition
language (DDL) statement on a table that is used in an uncompleted explicitly or implicitly started
transaction in another session. The server achieves this by acquiring metadata locks on tables used within
a transaction and deferring release of those locks until the transaction ends. A metadata lock on a table
prevents changes to the table's structure. This locking approach has the implication that a table that is
being used by a transaction within one session cannot be used in DDL statements by other sessions until
the transaction ends.

This principle applies not only to transactional tables, but also to nontransactional tables. Suppose that a
session begins a transaction that uses transactional table t and nontransactional table nt as follows:

START TRANSACTION;
SELECT * FROM t;
SELECT * FROM nt;

The server holds metadata locks on both t and nt until the transaction ends. If another session attempts
a DDL or write lock operation on either table, it blocks until metadata lock release at transaction end. For
example, a second session blocks if it attempts any of these operations:

DROP TABLE t;
ALTER TABLE t ...;
DROP TABLE nt;
ALTER TABLE nt ...;
LOCK TABLE t ... WRITE;

The same behavior applies for The LOCK TABLES ... READ. That is, explicitly or implicitly started
transactions that update any table (transactional or nontransactional) block and are blocked by LOCK
TABLES ... READ for that table.

If the server acquires metadata locks for a statement that is syntactically valid but fails during execution,
it does not release the locks early. Lock release is still deferred to the end of the transaction because the
failed statement is written to the binary log and the locks protect log consistency.

In autocommit mode, each statement is in effect a complete transaction, so metadata locks acquired for
the statement are held only to the end of the statement.

Metadata locks acquired during a PREPARE statement are released once the statement has been
prepared, even if preparation occurs within a multiple-statement transaction.

8.11.5 External Locking

1604

External Locking

External locking is the use of file system locking to manage contention for MyISAM database tables by
multiple processes. External locking is used in situations where a single process such as the MySQL
server cannot be assumed to be the only process that requires access to tables. Here are some examples:

• If you run multiple servers that use the same database directory (not recommended), each server must
have external locking enabled.

• If you use myisamchk to perform table maintenance operations on MyISAM tables, you must either
ensure that the server is not running, or that the server has external locking enabled so that it locks table
files as necessary to coordinate with myisamchk for access to the tables. The same is true for use of
myisampack to pack MyISAM tables.

If the server is run with external locking enabled, you can use myisamchk at any time for read
operations such a checking tables. In this case, if the server tries to update a table that myisamchk is
using, the server waits for myisamchk to finish before it continues.

If you use myisamchk for write operations such as repairing or optimizing tables, or if you use
myisampack to pack tables, you must always ensure that the mysqld server is not using the table. If
you do not stop mysqld, at least do a mysqladmin flush-tables before you run myisamchk. Your
tables may become corrupted if the server and myisamchk access the tables simultaneously.

With external locking in effect, each process that requires access to a table acquires a file system lock for
the table files before proceeding to access the table. If all necessary locks cannot be acquired, the process
is blocked from accessing the table until the locks can be obtained (after the process that currently holds
the locks releases them).

External locking affects server performance because the server must sometimes wait for other processes
before it can access tables.

External locking is unnecessary if you run a single server to access a given data directory (which is the
usual case) and if no other programs such as myisamchk need to modify tables while the server is
running. If you only read tables with other programs, external locking is not required, although myisamchk
might report warnings if the server changes tables while myisamchk is reading them.

With external locking disabled, to use myisamchk, you must either stop the server while myisamchk
executes or else lock and flush the tables before running myisamchk. (See Section 8.12.1, “System
Factors”.) To avoid this requirement, use the CHECK TABLE and REPAIR TABLE statements to check and
repair MyISAM tables.

For mysqld, external locking is controlled by the value of the skip_external_locking system variable.
When this variable is enabled, external locking is disabled, and vice versa. External locking is disabled by
default.

Use of external locking can be controlled at server startup by using the --external-locking or --
skip-external-locking option.

If you do use external locking option to enable updates to MyISAM tables from many MySQL processes,
you must ensure that the following conditions are satisfied:

• Do not use the query cache for queries that use tables that are updated by another process.

• Do not start the server with the delay_key_write system variable set to ALL or use the
DELAY_KEY_WRITE=1 table option for any shared tables. Otherwise, index corruption can occur.

The easiest way to satisfy these conditions is to always use --external-locking together with --
delay-key-write=OFF and --query-cache-size=0. (This is not done by default because in many
setups it is useful to have a mixture of the preceding options.)

1605

Optimizing the MySQL Server

8.12 Optimizing the MySQL Server

This section discusses optimization techniques for the database server, primarily dealing with system
configuration rather than tuning SQL statements. The information in this section is appropriate for
DBAs who want to ensure performance and scalability across the servers they manage; for developers
constructing installation scripts that include setting up the database; and people running MySQL
themselves for development, testing, and so on who want to maximize their own productivity.

8.12.1 System Factors

Some system-level factors can affect performance in a major way:

• If you have enough RAM, you could remove all swap devices. Some operating systems use a swap
device in some contexts even if you have free memory.

• Avoid external locking for MyISAM tables. The default is for external locking to be disabled. The --
external-locking and --skip-external-locking options explicitly enable and disable external
locking.

Disabling external locking does not affect MySQL's functionality as long as you run only one server. Just
remember to take down the server (or lock and flush the relevant tables) before you run myisamchk. On
some systems it is mandatory to disable external locking because it does not work, anyway.

The only case in which you cannot disable external locking is when you run multiple MySQL servers
(not clients) on the same data, or if you run myisamchk to check (not repair) a table without telling the
server to flush and lock the tables first. Note that using multiple MySQL servers to access the same data
concurrently is generally not recommended, except when using NDB Cluster.

The LOCK TABLES and UNLOCK TABLES statements use internal locking, so you can use them even if
external locking is disabled.

8.12.2 Optimizing Disk I/O

This section describes ways to configure storage devices when you can devote more and faster storage
hardware to the database server. For information about optimizing an InnoDB configuration to improve I/O
performance, see Section 8.5.8, “Optimizing InnoDB Disk I/O”.

• Disk seeks are a huge performance bottleneck. This problem becomes more apparent when the amount
of data starts to grow so large that effective caching becomes impossible. For large databases where
you access data more or less randomly, you can be sure that you need at least one disk seek to read
and a couple of disk seeks to write things. To minimize this problem, use disks with low seek times.

• Increase the number of available disk spindles (and thereby reduce the seek overhead) by either
symlinking files to different disks or striping the disks:

• Using symbolic links

This means that, for MyISAM tables, you symlink the index file and data files from their usual location
in the data directory to another disk (that may also be striped). This makes both the seek and read
times better, assuming that the disk is not used for other purposes as well. See Section 8.12.3, “Using
Symbolic Links”.

Symbolic links are not supported for use with InnoDB tables. However, it is possible to place InnoDB
data and log files on different physical disks. For more information, see Section 8.5.8, “Optimizing
InnoDB Disk I/O”.

1606

Optimizing Disk I/O

• Striping

Striping means that you have many disks and put the first block on the first disk, the second block
on the second disk, and the N-th block on the (N MOD number_of_disks) disk, and so on. This
means if your normal data size is less than the stripe size (or perfectly aligned), you get much better
performance. Striping is very dependent on the operating system and the stripe size, so benchmark
your application with different stripe sizes. See Section 8.13.2, “Using Your Own Benchmarks”.

The speed difference for striping is very dependent on the parameters. Depending on how you set the
striping parameters and number of disks, you may get differences measured in orders of magnitude.
You have to choose to optimize for random or sequential access.

• For reliability, you may want to use RAID 0+1 (striping plus mirroring), but in this case, you need 2 × N
drives to hold N drives of data. This is probably the best option if you have the money for it. However,
you may also have to invest in some volume-management software to handle it efficiently.

• A good option is to vary the RAID level according to how critical a type of data is. For example, store
semi-important data that can be regenerated on a RAID 0 disk, but store really important data such as
host information and logs on a RAID 0+1 or RAID N disk. RAID N can be a problem if you have many
writes, due to the time required to update the parity bits.

• You can also set the parameters for the file system that the database uses:

If you do not need to know when files were last accessed (which is not really useful on a database
server), you can mount your file systems with the -o noatime option. That skips updates to the last
access time in inodes on the file system, which avoids some disk seeks.

On many operating systems, you can set a file system to be updated asynchronously by mounting it with
the -o async option. If your computer is reasonably stable, this should give you better performance
without sacrificing too much reliability. (This flag is on by default on Linux.)

Using NFS with MySQL

You should be cautious when considering whether to use NFS with MySQL. Potential issues, which vary
by operating system and NFS version, include the following:

• MySQL data and log files placed on NFS volumes becoming locked and unavailable for use. Locking
issues may occur in cases where multiple instances of MySQL access the same data directory or
where MySQL is shut down improperly, due to a power outage, for example. NFS version 4 addresses
underlying locking issues with the introduction of advisory and lease-based locking. However, sharing a
data directory among MySQL instances is not recommended.

• Data inconsistencies introduced due to messages received out of order or lost network traffic. To avoid
this issue, use TCP with hard and intr mount options.

• Maximum file size limitations. NFS Version 2 clients can only access the lowest 2GB of a file (signed 32
bit offset). NFS Version 3 clients support larger files (up to 64 bit offsets). The maximum supported file
size also depends on the local file system of the NFS server.

Using NFS within a professional SAN environment or other storage system tends to offer greater reliability
than using NFS outside of such an environment. However, NFS within a SAN environment may be slower
than directly attached or bus-attached non-rotational storage.

If you choose to use NFS, NFS Version 4 or later is recommended, as is testing your NFS setup thoroughly
before deploying into a production environment.

1607

Using Symbolic Links

8.12.3 Using Symbolic Links

You can move databases or tables from the database directory to other locations and replace them with
symbolic links to the new locations. You might want to do this, for example, to move a database to a file
system with more free space or increase the speed of your system by spreading your tables to different
disks.

For InnoDB tables, use the DATA DIRECTORY clause of the CREATE TABLE statement instead of
symbolic links, as explained in Section 14.6.1.2, “Creating Tables Externally”. This new feature is a
supported, cross-platform technique.

The recommended way to do this is to symlink entire database directories to a different disk. Symlink
MyISAM tables only as a last resort.

To determine the location of your data directory, use this statement:

SHOW VARIABLES LIKE 'datadir';

8.12.3.1 Using Symbolic Links for Databases on Unix

On Unix, the way to symlink a database is first to create a directory on some disk where you have free
space and then to create a soft link to it from the MySQL data directory.

$> mkdir /dr1/databases/test
$> ln -s /dr1/databases/test /path/to/datadir

MySQL does not support linking one directory to multiple databases. Replacing a database directory with
a symbolic link works as long as you do not make a symbolic link between databases. Suppose that you
have a database db1 under the MySQL data directory, and then make a symlink db2 that points to db1:

$> cd /path/to/datadir
$> ln -s db1 db2

The result is that, for any table tbl_a in db1, there also appears to be a table tbl_a in db2. If one client
updates db1.tbl_a and another client updates db2.tbl_a, problems are likely to occur.

8.12.3.2 Using Symbolic Links for MyISAM Tables on Unix

Symlinks are fully supported only for MyISAM tables. For files used by tables for other storage engines, you
may get strange problems if you try to use symbolic links. For InnoDB tables, use the alternative technique
explained in Section 14.6.1.2, “Creating Tables Externally” instead.

Do not symlink tables on systems that do not have a fully operational realpath() call. (Linux and Solaris
support realpath()). To determine whether your system supports symbolic links, check the value of the
have_symlink system variable using this statement:

SHOW VARIABLES LIKE 'have_symlink';

The handling of symbolic links for MyISAM tables works as follows:

• In the data directory, you always have the table format (.frm) file, the data (.MYD) file, and the index
(.MYI) file. The data file and index file can be moved elsewhere and replaced in the data directory by
symlinks. The format file cannot.

• You can symlink the data file and the index file independently to different directories.

• To instruct a running MySQL server to perform the symlinking, use the DATA DIRECTORY and
INDEX DIRECTORY options to CREATE TABLE. See Section 13.1.18, “CREATE TABLE Statement”.
Alternatively, if mysqld is not running, symlinking can be accomplished manually using ln -s from the
command line.

1608

Using Symbolic Links

Note

The path used with either or both of the DATA DIRECTORY and INDEX
DIRECTORY options may not include the MySQL data directory. (Bug #32167)

• myisamchk does not replace a symlink with the data file or index file. It works directly on the file to
which the symlink points. Any temporary files are created in the directory where the data file or index file
is located. The same is true for the ALTER TABLE, OPTIMIZE TABLE, and REPAIR TABLE statements.

• Note

When you drop a table that is using symlinks, both the symlink and the file to
which the symlink points are dropped. This is an extremely good reason not to
run mysqld as the root operating system user or permit operating system users
to have write access to MySQL database directories.

• If you rename a table with ALTER TABLE ... RENAME or RENAME TABLE and you do not move the
table to another database, the symlinks in the database directory are renamed to the new names and the
data file and index file are renamed accordingly.

• If you use ALTER TABLE ... RENAME or RENAME TABLE to move a table to another database,
the table is moved to the other database directory. If the table name changed, the symlinks in the
new database directory are renamed to the new names and the data file and index file are renamed
accordingly.

• If you are not using symlinks, start mysqld with the --skip-symbolic-links option to ensure that no
one can use mysqld to drop or rename a file outside of the data directory.

These table symlink operations are not supported:

• ALTER TABLE ignores the DATA DIRECTORY and INDEX DIRECTORY table options.

• As indicated previously, only the data and index files can be symbolic links. The .frm file must never
be a symbolic link. Attempting to do this (for example, to make one table name a synonym for another)
produces incorrect results. Suppose that you have a database db1 under the MySQL data directory, a
table tbl1 in this database, and in the db1 directory you make a symlink tbl2 that points to tbl1:

$> cd /path/to/datadir/db1
$> ln -s tbl1.frm tbl2.frm
$> ln -s tbl1.MYD tbl2.MYD
$> ln -s tbl1.MYI tbl2.MYI

Problems result if one thread reads db1.tbl1 and another thread updates db1.tbl2:

• The query cache is “fooled” (it has no way of knowing that tbl1 has not been updated, so it returns
outdated results).

• ALTER statements on tbl2 fail.

8.12.3.3 Using Symbolic Links for Databases on Windows

On Windows, symbolic links can be used for database directories. This enables you to put a database
directory at a different location (for example, on a different disk) by setting up a symbolic link to it. Use of
database symlinks on Windows is similar to their use on Unix, although the procedure for setting up the link
differs.

Suppose that you want to place the database directory for a database named mydb at D:\data\mydb. To
do this, create a symbolic link in the MySQL data directory that points to D:\data\mydb. However, before

1609

Using Symbolic Links

creating the symbolic link, make sure that the D:\data\mydb directory exists by creating it if necessary. If
you already have a database directory named mydb in the data directory, move it to D:\data. Otherwise,
the symbolic link is ineffective. To avoid problems, make sure that the server is not running when you move
the database directory.

On Windows, you can create a symlink using the mklink command. This command requires
administrative privileges.

1. Make sure that the desired path to the database exists. For this example, we use D:\data\mydb, and
a database named mydb.

2. If the database does not already exist, issue CREATE DATABASE mydb in the mysql client to create it.

3. Stop the MySQL service.

4. Using Windows Explorer or the command line, move the directory mydb from the data directory to D:
\data, replacing the directory of the same name.

5. If you are not already using the command prompt, open it, and change location to the data directory,
like this:

C:\> cd \path\to\datadir

If your MySQL installation is in the default location, you can use this:

C:\> cd C:\ProgramData\MySQL\MySQL Server 5.7\Data

6. In the data directory, create a symlink named mydb that points to the location of the database directory:

C:\> mklink /d mydb D:\data\mydb

7. Start the MySQL service.

After this, all tables created in the database mydb are created in D:\data\mydb.

Alternatively, on any version of Windows supported by MySQL, you can create a symbolic link to a MySQL
database by creating a .sym file in the data directory that contains the path to the destination directory.
The file should be named db_name.sym, where db_name is the database name.

Support for database symbolic links on Windows using .sym files is enabled by default. If you do not
need .sym file symbolic links, you can disable support for them by starting mysqld with the --skip-
symbolic-links option. To determine whether your system supports .sym file symbolic links, check the
value of the have_symlink system variable using this statement:

SHOW VARIABLES LIKE 'have_symlink';

To create a .sym file symlink, use this procedure:

1. Change location into the data directory:

C:\> cd \path\to\datadir

2. In the data directory, create a text file named mydb.sym that contains this path name: D:\data\mydb
\

Note

The path name to the new database and tables should be absolute. If you
specify a relative path, the location is relative to the mydb.sym file.

1610

Optimizing Memory Use

After this, all tables created in the database mydb are created in D:\data\mydb.

Note

Because support for .sym files is redundant with native symlink support available
using mklink, use of .sym files is deprecated; expect support for them to be
removed in a future MySQL release.

The following limitations apply to the use of .sym files for database symbolic linking on Windows. These
limitations do not apply for symlinks created using mklink.

• The symbolic link is not used if a directory with the same name as the database exists in the MySQL
data directory.

• The --innodb_file_per_table option cannot be used.

• If you run mysqld as a service, you cannot use a mapped drive to a remote server as the destination of
the symbolic link. As a workaround, you can use the full path (\\servername\path\).

8.12.4 Optimizing Memory Use

8.12.4.1 How MySQL Uses Memory

MySQL allocates buffers and caches to improve performance of database operations. The default
configuration is designed to permit a MySQL server to start on a virtual machine that has approximately
512MB of RAM. You can improve MySQL performance by increasing the values of certain cache and
buffer-related system variables. You can also modify the default configuration to run MySQL on systems
with limited memory.

The following list describes some of the ways that MySQL uses memory. Where applicable, relevant
system variables are referenced. Some items are storage engine or feature specific.

• The InnoDB buffer pool is a memory area that holds cached InnoDB data for tables, indexes, and other
auxiliary buffers. For efficiency of high-volume read operations, the buffer pool is divided into pages that
can potentially hold multiple rows. For efficiency of cache management, the buffer pool is implemented
as a linked list of pages; data that is rarely used is aged out of the cache, using a variation of the LRU
algorithm. For more information, see Section 14.5.1, “Buffer Pool”.

The size of the buffer pool is important for system performance:

• InnoDB allocates memory for the entire buffer pool at server startup, using malloc() operations.
The innodb_buffer_pool_size system variable defines the buffer pool size. Typically, a
recommended innodb_buffer_pool_size value is 50 to 75 percent of system memory.
innodb_buffer_pool_size can be configured dynamically, while the server is running. For more
information, see Section 14.8.3.1, “Configuring InnoDB Buffer Pool Size”.

• On systems with a large amount of memory, you can improve concurrency by dividing the buffer pool
into multiple buffer pool instances. The innodb_buffer_pool_instances system variable defines
the number of buffer pool instances.

• A buffer pool that is too small may cause excessive churning as pages are flushed from the buffer pool
only to be required again a short time later.

• A buffer pool that is too large may cause swapping due to competition for memory.

• All threads share the MyISAM key buffer. The key_buffer_size system variable determines its size.

1611

Optimizing Memory Use

For each MyISAM table the server opens, the index file is opened once; the data file is opened once for
each concurrently running thread that accesses the table. For each concurrent thread, a table structure,
column structures for each column, and a buffer of size 3 * N are allocated (where N is the maximum
row length, not counting BLOB columns). A BLOB column requires five to eight bytes plus the length of
the BLOB data. The MyISAM storage engine maintains one extra row buffer for internal use.

• The myisam_use_mmap system variable can be set to 1 to enable memory-mapping for all MyISAM
tables.

• If an internal in-memory temporary table becomes too large (as determined using the tmp_table_size
and max_heap_table_size system variables), MySQL automatically converts the table from
in-memory to on-disk format. On-disk temporary tables use the storage engine defined by the
internal_tmp_disk_storage_engine system variable. You can increase the permissible
temporary table size as described in Section 8.4.4, “Internal Temporary Table Use in MySQL”.

For MEMORY tables explicitly created with CREATE TABLE, only the max_heap_table_size system
variable determines how large a table can grow, and there is no conversion to on-disk format.

• The MySQL Performance Schema is a feature for monitoring MySQL server execution at a low level.
The Performance Schema dynamically allocates memory incrementally, scaling its memory use to actual
server load, instead of allocating required memory during server startup. Once memory is allocated, it
is not freed until the server is restarted. For more information, see Section 25.17, “The Performance
Schema Memory-Allocation Model”.

• Each thread that the server uses to manage client connections requires some thread-specific space. The
following list indicates these and which system variables control their size:

• A stack (thread_stack)

• A connection buffer (net_buffer_length)

• A result buffer (net_buffer_length)

The connection buffer and result buffer each begin with a size equal to net_buffer_length bytes,
but are dynamically enlarged up to max_allowed_packet bytes as needed. The result buffer shrinks
to net_buffer_length bytes after each SQL statement. While a statement is running, a copy of the
current statement string is also allocated.

Each connection thread uses memory for computing statement digests. The server allocates
max_digest_length bytes per session. See Section 25.10, “Performance Schema Statement
Digests”.

• All threads share the same base memory.

• When a thread is no longer needed, the memory allocated to it is released and returned to the system
unless the thread goes back into the thread cache. In that case, the memory remains allocated.

• Each request that performs a sequential scan of a table allocates a read buffer. The
read_buffer_size system variable determines the buffer size.

• When reading rows in an arbitrary sequence (for example, following a sort), a random-read buffer may
be allocated to avoid disk seeks. The read_rnd_buffer_size system variable determines the buffer
size.

• All joins are executed in a single pass, and most joins can be done without even using a temporary
table. Most temporary tables are memory-based hash tables. Temporary tables with a large row length
(calculated as the sum of all column lengths) or that contain BLOB columns are stored on disk.

1612

Optimizing Memory Use

• Most requests that perform a sort allocate a sort buffer and zero to two temporary files depending on the
result set size. See Section B.3.3.5, “Where MySQL Stores Temporary Files”.

• Almost all parsing and calculating is done in thread-local and reusable memory pools. No memory
overhead is needed for small items, thus avoiding the normal slow memory allocation and freeing.
Memory is allocated only for unexpectedly large strings.

• For each table having BLOB columns, a buffer is enlarged dynamically to read in larger BLOB values. If
you scan a table, the buffer grows as large as the largest BLOB value.

• MySQL requires memory and descriptors for the table cache. Handler structures for all in-use tables
are saved in the table cache and managed as “First In, First Out” (FIFO). The table_open_cache
system variable defines the initial table cache size; see Section 8.4.3.1, “How MySQL Opens and Closes
Tables”.

MySQL also requires memory for the table definition cache. The table_definition_cache system
variable defines the number of table definitions (from .frm files) that can be stored in the table definition
cache. If you use a large number of tables, you can create a large table definition cache to speed up the
opening of tables. The table definition cache takes less space and does not use file descriptors, unlike
the table cache.

• A FLUSH TABLES statement or mysqladmin flush-tables command closes all tables that are not
in use at once and marks all in-use tables to be closed when the currently executing thread finishes. This
effectively frees most in-use memory. FLUSH TABLES does not return until all tables have been closed.

• The server caches information in memory as a result of GRANT, CREATE USER, CREATE SERVER,
and INSTALL PLUGIN statements. This memory is not released by the corresponding REVOKE, DROP
USER, DROP SERVER, and UNINSTALL PLUGIN statements, so for a server that executes many
instances of the statements that cause caching, cached memory use is very likely to increase unless it is
freed with FLUSH PRIVILEGES.

ps and other system status programs may report that mysqld uses a lot of memory. This may be caused
by thread stacks on different memory addresses. For example, the Solaris version of ps counts the unused
memory between stacks as used memory. To verify this, check available swap with swap -s. We test
mysqld with several memory-leakage detectors (both commercial and Open Source), so there should be
no memory leaks.

8.12.4.2 Monitoring MySQL Memory Usage

The following example demonstrates how to use Performance Schema and sys schema to monitor MySQL
memory usage.

Most Performance Schema memory instrumentation is disabled by default. Instruments can be enabled
by updating the ENABLED column of the Performance Schema setup_instruments table. Memory
instruments have names in the form of memory/code_area/instrument_name, where code_area is a
value such as sql or innodb, and instrument_name is the instrument detail.

1. To view available MySQL memory instruments, query the Performance Schema setup_instruments
table. The following query returns hundreds of memory instruments for all code areas.

mysql> SELECT * FROM performance_schema.setup_instruments
 WHERE NAME LIKE '%memory%';

You can narrow results by specifying a code area. For example, you can limit results to InnoDB
memory instruments by specifying innodb as the code area.

mysql> SELECT * FROM performance_schema.setup_instruments
 WHERE NAME LIKE '%memory/innodb%';

1613

Optimizing Memory Use

+---+---------+-------+
| NAME | ENABLED | TIMED |
+---+---------+-------+
memory/innodb/adaptive hash index	NO	NO
memory/innodb/buf_buf_pool	NO	NO
memory/innodb/dict_stats_bg_recalc_pool_t	NO	NO
memory/innodb/dict_stats_index_map_t	NO	NO
memory/innodb/dict_stats_n_diff_on_level	NO	NO
memory/innodb/other	NO	NO
memory/innodb/row_log_buf	NO	NO
memory/innodb/row_merge_sort	NO	NO
memory/innodb/std	NO	NO
memory/innodb/trx_sys_t::rw_trx_ids	NO	NO
...

Depending on your MySQL installation, code areas may include performance_schema, sql,
client, innodb, myisam, csv, memory, blackhole, archive, partition, and others.

2. To enable memory instruments, add a performance-schema-instrument rule to your MySQL
configuration file. For example, to enable all memory instruments, add this rule to your configuration file
and restart the server:

performance-schema-instrument='memory/%=COUNTED'

Note

Enabling memory instruments at startup ensures that memory allocations that
occur at startup are counted.

After restarting the server, the ENABLED column of the Performance Schema setup_instruments
table should report YES for memory instruments that you enabled. The TIMED column in the
setup_instruments table is ignored for memory instruments because memory operations are not
timed.

mysql> SELECT * FROM performance_schema.setup_instruments
 WHERE NAME LIKE '%memory/innodb%';
+---+---------+-------+
| NAME | ENABLED | TIMED |
+---+---------+-------+
memory/innodb/adaptive hash index	NO	NO
memory/innodb/buf_buf_pool	NO	NO
memory/innodb/dict_stats_bg_recalc_pool_t	NO	NO
memory/innodb/dict_stats_index_map_t	NO	NO
memory/innodb/dict_stats_n_diff_on_level	NO	NO
memory/innodb/other	NO	NO
memory/innodb/row_log_buf	NO	NO
memory/innodb/row_merge_sort	NO	NO
memory/innodb/std	NO	NO
memory/innodb/trx_sys_t::rw_trx_ids	NO	NO
...

3. Query memory instrument data. In this example, memory instrument data is queried in the
Performance Schema memory_summary_global_by_event_name table, which summarizes data by
EVENT_NAME. The EVENT_NAME is the name of the instrument.

The following query returns memory data for the InnoDB buffer pool. For column descriptions, see
Section 25.12.15.9, “Memory Summary Tables”.

mysql> SELECT * FROM performance_schema.memory_summary_global_by_event_name
 WHERE EVENT_NAME LIKE 'memory/innodb/buf_buf_pool'\G
 EVENT_NAME: memory/innodb/buf_buf_pool
 COUNT_ALLOC: 1
 COUNT_FREE: 0

1614

Optimizing Memory Use

 SUM_NUMBER_OF_BYTES_ALLOC: 137428992
 SUM_NUMBER_OF_BYTES_FREE: 0
 LOW_COUNT_USED: 0
 CURRENT_COUNT_USED: 1
 HIGH_COUNT_USED: 1
 LOW_NUMBER_OF_BYTES_USED: 0
CURRENT_NUMBER_OF_BYTES_USED: 137428992
 HIGH_NUMBER_OF_BYTES_USED: 137428992

The same underlying data can be queried using the sys schema
memory_global_by_current_bytes table, which shows current memory usage within the server
globally, broken down by allocation type.

mysql> SELECT * FROM sys.memory_global_by_current_bytes
 WHERE event_name LIKE 'memory/innodb/buf_buf_pool'\G
*************************** 1. row ***************************
 event_name: memory/innodb/buf_buf_pool
 current_count: 1
 current_alloc: 131.06 MiB
current_avg_alloc: 131.06 MiB
 high_count: 1
 high_alloc: 131.06 MiB
 high_avg_alloc: 131.06 MiB

This sys schema query aggregates currently allocated memory (current_alloc) by code area:

mysql> SELECT SUBSTRING_INDEX(event_name,'/',2) AS
 code_area, sys.format_bytes(SUM(current_alloc))
 AS current_alloc
 FROM sys.x$memory_global_by_current_bytes
 GROUP BY SUBSTRING_INDEX(event_name,'/',2)
 ORDER BY SUM(current_alloc) DESC;
+---------------------------+---------------+
| code_area | current_alloc |
+---------------------------+---------------+
memory/innodb	843.24 MiB
memory/performance_schema	81.29 MiB
memory/mysys	8.20 MiB
memory/sql	2.47 MiB
memory/memory	174.01 KiB
memory/myisam	46.53 KiB
memory/blackhole	512 bytes
memory/federated	512 bytes
memory/csv	512 bytes
memory/vio	496 bytes
+---------------------------+---------------+

For more information about sys schema, see Chapter 26, MySQL sys Schema.

8.12.4.3 Enabling Large Page Support

Some hardware and operating system architectures support memory pages greater than the default
(usually 4KB). The actual implementation of this support depends on the underlying hardware and
operating system. Applications that perform a lot of memory accesses may obtain performance
improvements by using large pages due to reduced Translation Lookaside Buffer (TLB) misses.

In MySQL, large pages can be used by InnoDB, to allocate memory for its buffer pool and additional
memory pool.

Standard use of large pages in MySQL attempts to use the largest size supported, up to 4MB. Under
Solaris, a “super large pages” feature enables uses of pages up to 256MB. This feature is available for
recent SPARC platforms. It can be enabled or disabled by using the --super-large-pages or --skip-
super-large-pages option.

1615

Optimizing Memory Use

MySQL also supports the Linux implementation of large page support (which is called HugeTLB in Linux).

Before large pages can be used on Linux, the kernel must be enabled to support them and it is necessary
to configure the HugeTLB memory pool. For reference, the HugeTBL API is documented in the
Documentation/vm/hugetlbpage.txt file of your Linux sources.

The kernels for some recent systems such as Red Hat Enterprise Linux may have the large pages feature
enabled by default. To check whether this is true for your kernel, use the following command and look for
output lines containing “huge”:

$> grep -i huge /proc/meminfo
AnonHugePages: 2658304 kB
ShmemHugePages: 0 kB
HugePages_Total: 0
HugePages_Free: 0
HugePages_Rsvd: 0
HugePages_Surp: 0
Hugepagesize: 2048 kB
Hugetlb: 0 kB

The nonempty command output indicates that large page support is present, but the zero values indicate
that no pages are configured for use.

If your kernel needs to be reconfigured to support large pages, consult the hugetlbpage.txt file for
instructions.

Assuming that your Linux kernel has large page support enabled, configure it for use by MySQL using the
following steps:

1. Determine the number of large pages needed. This is the size of the InnoDB buffer pool divided by
the large page size, which we can calculate as innodb_buffer_pool_size / Hugepagesize.
Assuming the default value for the innodb_buffer_pool_size (128MB) and using the
Hugepagesize value obtained from /proc/meminfo (2MB), this is 128MB / 2MB, or 64 Huge Pages.
We call this value P.

2. As system root, open the file /etc/sysctl.conf in a text editor, and add the line shown here, where
P is the number of large pages obtained in the previous step:

vm.nr_hugepages=P

Using the actual value obtained previously, the additional line should look like this:

vm.nr_hugepages=66

Save the updated file.

3. As system root, run the following command:

$> sudo sysctl -p

Note

On some systems the large pages file may be named slightly differently; for
example, some distributions call it nr_hugepages. In the event sysctl returns
an error relating to the file name, check the name of the corresponding file in /
proc/sys/vm and use that instead.

To verify the large page configuration, check /proc/meminfo again as described previously. Now you
should see some additional nonzero values in the output, similar to this:

1616

Measuring Performance (Benchmarking)

$> grep -i huge /proc/meminfo
AnonHugePages: 2686976 kB
ShmemHugePages: 0 kB
HugePages_Total: 233
HugePages_Free: 233
HugePages_Rsvd: 0
HugePages_Surp: 0
Hugepagesize: 2048 kB
Hugetlb: 477184 kB

4. Optionally, you may wish to compact the Linux VM. You can do this using a sequence of commands,
possibly in a script file, similar to what is shown here:

sync
sync
sync
echo 3 > /proc/sys/vm/drop_caches
echo 1 > /proc/sys/vm/compact_memory

See your operating platform documentation for more information about how to do this.

5. Check any configuration files such as my.cnf used by the server, and make sure that
innodb_buffer_pool_chunk_size is set larger than the huge page size. The default for this
variable is 128M.

6. Large page support in the MySQL server is disabled by default. To enable it, start the server with --
large-pages. You can also do so by adding the following line to the [mysqld] section of the server
my.cnf file:

large-pages=ON

With this option enabled, InnoDB uses large pages automatically for its buffer pool and additional
memory pool. If InnoDB cannot do this, it falls back to use of traditional memory and writes a warning
to the error log: Warning: Using conventional memory pool.

You can verify that MySQL is now using large pages by checking /proc/meminfo again after restarting
mysqld, like this:

$> grep -i huge /proc/meminfo
AnonHugePages: 2516992 kB
ShmemHugePages: 0 kB
HugePages_Total: 233
HugePages_Free: 222
HugePages_Rsvd: 55
HugePages_Surp: 0
Hugepagesize: 2048 kB
Hugetlb: 477184 kB

8.13 Measuring Performance (Benchmarking)
To measure performance, consider the following factors:

• Whether you are measuring the speed of a single operation on a quiet system, or how a set of
operations (a “workload”) works over a period of time. With simple tests, you usually test how changing
one aspect (a configuration setting, the set of indexes on a table, the SQL clauses in a query) affects
performance. Benchmarks are typically long-running and elaborate performance tests, where the results
could dictate high-level choices such as hardware and storage configuration, or how soon to upgrade to
a new MySQL version.

• For benchmarking, sometimes you must simulate a heavy database workload to get an accurate picture.

1617

Measuring the Speed of Expressions and Functions

• Performance can vary depending on so many different factors that a difference of a few percentage
points might not be a decisive victory. The results might shift the opposite way when you test in a
different environment.

• Certain MySQL features help or do not help performance depending on the workload. For completeness,
always test performance with those features turned on and turned off. The two most important features
to try with each workload are the MySQL query cache, and the adaptive hash index for InnoDB tables.

This section progresses from simple and direct measurement techniques that a single developer can do, to
more complicated ones that require additional expertise to perform and interpret the results.

8.13.1 Measuring the Speed of Expressions and Functions

To measure the speed of a specific MySQL expression or function, invoke the BENCHMARK() function
using the mysql client program. Its syntax is BENCHMARK(loop_count,expr). The return value is
always zero, but mysql prints a line displaying approximately how long the statement took to execute. For
example:

mysql> SELECT BENCHMARK(1000000,1+1);
+------------------------+
| BENCHMARK(1000000,1+1) |
+------------------------+
| 0 |
+------------------------+
1 row in set (0.32 sec)

This result was obtained on a Pentium II 400MHz system. It shows that MySQL can execute 1,000,000
simple addition expressions in 0.32 seconds on that system.

The built-in MySQL functions are typically highly optimized, but there may be some exceptions.
BENCHMARK() is an excellent tool for finding out if some function is a problem for your queries.

8.13.2 Using Your Own Benchmarks

Benchmark your application and database to find out where the bottlenecks are. After fixing one bottleneck
(or by replacing it with a “dummy” module), you can proceed to identify the next bottleneck. Even if the
overall performance for your application currently is acceptable, you should at least make a plan for each
bottleneck and decide how to solve it if someday you really need the extra performance.

A free benchmark suite is the Open Source Database Benchmark, available at http://osdb.sourceforge.net/.

It is very common for a problem to occur only when the system is very heavily loaded. We have had many
customers who contact us when they have a (tested) system in production and have encountered load
problems. In most cases, performance problems turn out to be due to issues of basic database design (for
example, table scans are not good under high load) or problems with the operating system or libraries.
Most of the time, these problems would be much easier to fix if the systems were not already in production.

To avoid problems like this, benchmark your whole application under the worst possible load:

• The mysqlslap program can be helpful for simulating a high load produced by multiple clients issuing
queries simultaneously. See Section 4.5.8, “mysqlslap — A Load Emulation Client”.

• You can also try benchmarking packages such as SysBench and DBT2, available at https://
launchpad.net/sysbench, and http://osdldbt.sourceforge.net/#dbt2.

These programs or packages can bring a system to its knees, so be sure to use them only on your
development systems.

1618

http://osdb.sourceforge.net/
https://launchpad.net/sysbench
https://launchpad.net/sysbench
http://osdldbt.sourceforge.net/#dbt2

Measuring Performance with performance_schema

8.13.3 Measuring Performance with performance_schema

You can query the tables in the performance_schema database to see real-time information about the
performance characteristics of your server and the applications it is running. See Chapter 25, MySQL
Performance Schema for details.

8.14 Examining Server Thread (Process) Information
To ascertain what your MySQL server is doing, it can be helpful to examine the process list, which
indicates the operations currently being performed by the set of threads executing within the server. For
example:

mysql> SHOW PROCESSLIST\G
*************************** 1. row ***************************
 Id: 1
 User: event_scheduler
 Host: localhost
 db: NULL
Command: Daemon
 Time: 2756681
 State: Waiting on empty queue
 Info: NULL
*************************** 2. row ***************************
 Id: 20
 User: me
 Host: localhost:52943
 db: test
Command: Query
 Time: 0
 State: starting
 Info: SHOW PROCESSLIST

Threads can be killed with the KILL statement. See Section 13.7.6.4, “KILL Statement”.

8.14.1 Accessing the Process List

The following discussion enumerates the sources of process information, the privileges required to see
process information, and describes the content of process list entries.

• Sources of Process Information

• Privileges Required to Access the Process List

• Content of Process List Entries

Sources of Process Information

Process information is available from these sources:

• The SHOW PROCESSLIST statement: Section 13.7.5.29, “SHOW PROCESSLIST Statement”

• The mysqladmin processlist command: Section 4.5.2, “mysqladmin — A MySQL Server
Administration Program”

• The INFORMATION_SCHEMA PROCESSLIST table: Section 24.3.18, “The INFORMATION_SCHEMA
PROCESSLIST Table”

• The Performance Schema processlist table: Section 25.12.16.3, “The processlist Table”

• The Performance Schema threads table columns with names having a prefix of PROCESSLIST_:
Section 25.12.16.4, “The threads Table”

1619

Accessing the Process List

• The sys schema processlist and session views: Section 26.4.3.22, “The processlist and x
$processlist Views”, and Section 26.4.3.33, “The session and x$session Views”

The threads table compares to SHOW PROCESSLIST, INFORMATION_SCHEMA PROCESSLIST, and
mysqladmin processlist as follows:

• Access to the threads table does not require a mutex and has minimal impact on server performance.
The other sources have negative performance consequences because they require a mutex.

Note

As of MySQL 5.7.39, an alternative implementation for SHOW PROCESSLIST
is available based on the Performance Schema processlist table, which,
like the threads table, does not require a mutex and has better performance
characteristics. For details, see Section 25.12.16.3, “The processlist Table”.

• The threads table displays background threads, which the other sources do not. It also provides
additional information for each thread that the other sources do not, such as whether the thread is a
foreground or background thread, and the location within the server associated with the thread. This
means that the threads table can be used to monitor thread activity the other sources cannot.

• You can enable or disable Performance Schema thread monitoring, as described in Section 25.12.16.4,
“The threads Table”.

For these reasons, DBAs who perform server monitoring using one of the other thread information sources
may wish to monitor using the threads table instead.

The sys schema processlist view presents information from the Performance Schema threads table
in a more accessible format. The sys schema session view presents information about user sessions
like the sys schema processlist view, but with background processes filtered out.

Privileges Required to Access the Process List

For most sources of process information, if you have the PROCESS privilege, you can see all threads, even
those belonging to other users. Otherwise (without the PROCESS privilege), nonanonymous users have
access to information about their own threads but not threads for other users, and anonymous users have
no access to thread information.

The Performance Schema threads table also provides thread information, but table access uses a
different privilege model. See Section 25.12.16.4, “The threads Table”.

Content of Process List Entries

Each process list entry contains several pieces of information. The following list describes them using the
labels from SHOW PROCESSLIST output. Other process information sources use similar labels.

• Id is the connection identifier for the client associated with the thread.

• User and Host indicate the account associated with the thread.

• db is the default database for the thread, or NULL if none has been selected.

• Command and State indicate what the thread is doing.

Most states correspond to very quick operations. If a thread stays in a given state for many seconds,
there might be a problem that needs to be investigated.

The following sections list the possible Command values, and State values grouped by category. The
meaning for some of these values is self-evident. For others, additional description is provided.

1620

Thread Command Values

Note

Applications that examine process list information should be aware that the
commands and states are subject to change.

• Time indicates how long the thread has been in its current state. The thread's notion of the current time
may be altered in some cases: The thread can change the time with SET TIMESTAMP = value. For
a replica SQL thread, the value is the number of seconds between the timestamp of the last replicated
event and the real time of the replica host. See Section 16.2.3, “Replication Threads”.

• Info indicates the statement the thread is executing, or NULL if it is executing no statement. For SHOW
PROCESSLIST, this value contains only the first 100 characters of the statement. To see complete
statements, use SHOW FULL PROCESSLIST (or query a diffferent process information source).

8.14.2 Thread Command Values

A thread can have any of the following Command values:

• Binlog Dump

This is a thread on a replication source for sending binary log contents to a replica.

• Change user

The thread is executing a change user operation.

• Close stmt

The thread is closing a prepared statement.

• Connect

A replica is connected to its source.

• Connect Out

A replica is connecting to its source.

• Create DB

The thread is executing a create database operation.

• Daemon

This thread is internal to the server, not a thread that services a client connection.

• Debug

The thread is generating debugging information.

• Delayed insert

The thread is a delayed insert handler.

• Drop DB

The thread is executing a drop database operation.

• Error

1621

Thread Command Values

• Execute

The thread is executing a prepared statement.

• Fetch

The thread is fetching the results from executing a prepared statement.

• Field List

The thread is retrieving information for table columns.

• Init DB

The thread is selecting a default database.

• Kill

The thread is killing another thread.

• Long Data

The thread is retrieving long data in the result of executing a prepared statement.

• Ping

The thread is handling a server ping request.

• Prepare

The thread is preparing a prepared statement.

• Processlist

The thread is producing information about server threads.

• Query

The thread is executing a statement.

• Quit

The thread is terminating.

• Refresh

The thread is flushing table, logs, or caches, or resetting status variable or replication server information.

• Register Slave

The thread is registering a replica server.

• Reset stmt

The thread is resetting a prepared statement.

• Set option

The thread is setting or resetting a client statement execution option.

1622

General Thread States

• Shutdown

The thread is shutting down the server.

• Sleep

The thread is waiting for the client to send a new statement to it.

• Statistics

The thread is producing server status information.

• Time

Unused.

8.14.3 General Thread States

The following list describes thread State values that are associated with general query processing and
not more specialized activities such as replication. Many of these are useful only for finding bugs in the
server.

• After create

This occurs when the thread creates a table (including internal temporary tables), at the end of the
function that creates the table. This state is used even if the table could not be created due to some
error.

• altering table

The server is in the process of executing an in-place ALTER TABLE.

• Analyzing

The thread is calculating a MyISAM table key distributions (for example, for ANALYZE TABLE).

• checking permissions

The thread is checking whether the server has the required privileges to execute the statement.

• Checking table

The thread is performing a table check operation.

• cleaning up

The thread has processed one command and is preparing to free memory and reset certain state
variables.

• committing alter table to storage engine

The server has finished an in-place ALTER TABLE and is committing the result.

• closing tables

The thread is flushing the changed table data to disk and closing the used tables. This should be a fast
operation. If not, verify that you do not have a full disk and that the disk is not in very heavy use.

• converting HEAP to ondisk

1623

General Thread States

The thread is converting an internal temporary table from a MEMORY table to an on-disk table.

• copy to tmp table

The thread is processing an ALTER TABLE statement. This state occurs after the table with the new
structure has been created but before rows are copied into it.

For a thread in this state, the Performance Schema can be used to obtain about the progress of the copy
operation. See Section 25.12.5, “Performance Schema Stage Event Tables”.

• Copying to group table

If a statement has different ORDER BY and GROUP BY criteria, the rows are sorted by group and copied
to a temporary table.

• Copying to tmp table

The server is copying to a temporary table in memory.

• Copying to tmp table on disk

The server is copying to a temporary table on disk. The temporary result set has become too large (see
Section 8.4.4, “Internal Temporary Table Use in MySQL”). Consequently, the thread is changing the
temporary table from in-memory to disk-based format to save memory.

• Creating index

The thread is processing ALTER TABLE ... ENABLE KEYS for a MyISAM table.

• Creating sort index

The thread is processing a SELECT that is resolved using an internal temporary table.

• creating table

The thread is creating a table. This includes creation of temporary tables.

• Creating tmp table

The thread is creating a temporary table in memory or on disk. If the table is created in memory but later
is converted to an on-disk table, the state during that operation is Copying to tmp table on disk.

• deleting from main table

The server is executing the first part of a multiple-table delete. It is deleting only from the first table, and
saving columns and offsets to be used for deleting from the other (reference) tables.

• deleting from reference tables

The server is executing the second part of a multiple-table delete and deleting the matched rows from
the other tables.

• discard_or_import_tablespace

The thread is processing an ALTER TABLE ... DISCARD TABLESPACE or ALTER TABLE ...
IMPORT TABLESPACE statement.

• end

1624

General Thread States

This occurs at the end but before the cleanup of ALTER TABLE, CREATE VIEW, DELETE, INSERT,
SELECT, or UPDATE statements.

For the end state, the following operations could be happening:

• Removing query cache entries after data in a table is changed

• Writing an event to the binary log

• Freeing memory buffers, including for blobs

• executing

The thread has begun executing a statement.

• Execution of init_command

The thread is executing statements in the value of the init_command system variable.

• freeing items

The thread has executed a command. Some freeing of items done during this state involves the query
cache. This state is usually followed by cleaning up.

• FULLTEXT initialization

The server is preparing to perform a natural-language full-text search.

• init

This occurs before the initialization of ALTER TABLE, DELETE, INSERT, SELECT, or UPDATE
statements. Actions taken by the server in this state include flushing the binary log, the InnoDB log, and
some query cache cleanup operations.

• Killed

Someone has sent a KILL statement to the thread and it should abort next time it checks the kill flag.
The flag is checked in each major loop in MySQL, but in some cases it might still take a short time for
the thread to die. If the thread is locked by some other thread, the kill takes effect as soon as the other
thread releases its lock.

• logging slow query

The thread is writing a statement to the slow-query log.

• login

The initial state for a connection thread until the client has been authenticated successfully.

• manage keys

The server is enabling or disabling a table index.

• Opening tables

The thread is trying to open a table. This is should be very fast procedure, unless something prevents
opening. For example, an ALTER TABLE or a LOCK TABLE statement can prevent opening a table until
the statement is finished. It is also worth checking that your table_open_cache value is large enough.

1625

General Thread States

• optimizing

The server is performing initial optimizations for a query.

• preparing

This state occurs during query optimization.

• preparing for alter table

The server is preparing to execute an in-place ALTER TABLE.

• Purging old relay logs

The thread is removing unneeded relay log files.

• query end

This state occurs after processing a query but before the freeing items state.

• Receiving from client

The server is reading a packet from the client. This state is called Reading from net prior to MySQL
5.7.8.

• Removing duplicates

The query was using SELECT DISTINCT in such a way that MySQL could not optimize away the
distinct operation at an early stage. Because of this, MySQL requires an extra stage to remove all
duplicated rows before sending the result to the client.

• removing tmp table

The thread is removing an internal temporary table after processing a SELECT statement. This state is
not used if no temporary table was created.

• rename

The thread is renaming a table.

• rename result table

The thread is processing an ALTER TABLE statement, has created the new table, and is renaming it to
replace the original table.

• Reopen tables

The thread got a lock for the table, but noticed after getting the lock that the underlying table structure
changed. It has freed the lock, closed the table, and is trying to reopen it.

• Repair by sorting

The repair code is using a sort to create indexes.

• Repair done

The thread has completed a multithreaded repair for a MyISAM table.

• Repair with keycache

1626

General Thread States

The repair code is using creating keys one by one through the key cache. This is much slower than
Repair by sorting.

• Rolling back

The thread is rolling back a transaction.

• Saving state

For MyISAM table operations such as repair or analysis, the thread is saving the new table state to the
.MYI file header. State includes information such as number of rows, the AUTO_INCREMENT counter,
and key distributions.

• Searching rows for update

The thread is doing a first phase to find all matching rows before updating them. This has to be done if
the UPDATE is changing the index that is used to find the involved rows.

• Sending data

The thread is reading and processing rows for a SELECT statement, and sending data to the client.
Because operations occurring during this state tend to perform large amounts of disk access (reads), it is
often the longest-running state over the lifetime of a given query.

• Sending to client

The server is writing a packet to the client. This state is called Writing to net prior to MySQL 5.7.8.

• setup

The thread is beginning an ALTER TABLE operation.

• Sorting for group

The thread is doing a sort to satisfy a GROUP BY.

• Sorting for order

The thread is doing a sort to satisfy an ORDER BY.

• Sorting index

The thread is sorting index pages for more efficient access during a MyISAM table optimization
operation.

• Sorting result

For a SELECT statement, this is similar to Creating sort index, but for nontemporary tables.

• starting

The first stage at the beginning of statement execution.

• statistics

The server is calculating statistics to develop a query execution plan. If a thread is in this state for a long
time, the server is probably disk-bound performing other work.

• System lock

1627

General Thread States

The thread has called mysql_lock_tables() and the thread state has not been updated since. This
is a very general state that can occur for many reasons.

For example, the thread is going to request or is waiting for an internal or external system lock for the
table. This can occur when InnoDB waits for a table-level lock during execution of LOCK TABLES. If
this state is being caused by requests for external locks and you are not using multiple mysqld servers
that are accessing the same MyISAM tables, you can disable external system locks with the --skip-
external-locking option. However, external locking is disabled by default, so it is likely that this
option has no effect. For SHOW PROFILE, this state means the thread is requesting the lock (not waiting
for it).

• update

The thread is getting ready to start updating the table.

• Updating

The thread is searching for rows to update and is updating them.

• updating main table

The server is executing the first part of a multiple-table update. It is updating only the first table, and
saving columns and offsets to be used for updating the other (reference) tables.

• updating reference tables

The server is executing the second part of a multiple-table update and updating the matched rows from
the other tables.

• User lock

The thread is going to request or is waiting for an advisory lock requested with a GET_LOCK() call. For
SHOW PROFILE, this state means the thread is requesting the lock (not waiting for it).

• User sleep

The thread has invoked a SLEEP() call.

• Waiting for commit lock

FLUSH TABLES WITH READ LOCK is waiting for a commit lock.

• Waiting for global read lock

FLUSH TABLES WITH READ LOCK is waiting for a global read lock or the global read_only system
variable is being set.

• Waiting for tables

The thread got a notification that the underlying structure for a table has changed and it needs to reopen
the table to get the new structure. However, to reopen the table, it must wait until all other threads have
closed the table in question.

This notification takes place if another thread has used FLUSH TABLES or one of the following
statements on the table in question: FLUSH TABLES tbl_name, ALTER TABLE, RENAME TABLE,
REPAIR TABLE, ANALYZE TABLE, or OPTIMIZE TABLE.

• Waiting for table flush

1628

Query Cache Thread States

The thread is executing FLUSH TABLES and is waiting for all threads to close their tables, or the thread
got a notification that the underlying structure for a table has changed and it needs to reopen the table to
get the new structure. However, to reopen the table, it must wait until all other threads have closed the
table in question.

This notification takes place if another thread has used FLUSH TABLES or one of the following
statements on the table in question: FLUSH TABLES tbl_name, ALTER TABLE, RENAME TABLE,
REPAIR TABLE, ANALYZE TABLE, or OPTIMIZE TABLE.

• Waiting for lock_type lock

The server is waiting to acquire a THR_LOCK lock or a lock from the metadata locking subsystem, where
lock_type indicates the type of lock.

This state indicates a wait for a THR_LOCK:

• Waiting for table level lock

These states indicate a wait for a metadata lock:

• Waiting for event metadata lock

• Waiting for global read lock

• Waiting for schema metadata lock

• Waiting for stored function metadata lock

• Waiting for stored procedure metadata lock

• Waiting for table metadata lock

• Waiting for trigger metadata lock

For information about table lock indicators, see Section 8.11.1, “Internal Locking Methods”. For
information about metadata locking, see Section 8.11.4, “Metadata Locking”. To see which locks
are blocking lock requests, use the Performance Schema lock tables described at Section 25.12.12,
“Performance Schema Lock Tables”.

• Waiting on cond

A generic state in which the thread is waiting for a condition to become true. No specific state information
is available.

• Writing to net

The server is writing a packet to the network. This state is called Sending to client as of MySQL
5.7.8.

8.14.4 Query Cache Thread States

These thread states are associated with the query cache (see Section 8.10.3, “The MySQL Query Cache”).

• checking privileges on cached query

The server is checking whether the user has privileges to access a cached query result.

1629

Replication Source Thread States

• checking query cache for query

The server is checking whether the current query is present in the query cache.

• invalidating query cache entries

Query cache entries are being marked invalid because the underlying tables have changed.

• sending cached result to client

The server is taking the result of a query from the query cache and sending it to the client.

• storing result in query cache

The server is storing the result of a query in the query cache.

• Waiting for query cache lock

This state occurs while a session is waiting to take the query cache lock. This can happen for any
statement that needs to perform some query cache operation, such as an INSERT or DELETE that
invalidates the query cache, a SELECT that looks for a cached entry, RESET QUERY CACHE, and so
forth.

8.14.5 Replication Source Thread States

The following list shows the most common states you may see in the State column for the Binlog
Dump thread of the replication source. If you see no Binlog Dump threads on a source, this means that
replication is not running; that is, that no replicas are currently connected.

• Finished reading one binlog; switching to next binlog

The thread has finished reading a binary log file and is opening the next one to send to the replica.

• Master has sent all binlog to slave; waiting for more updates

The thread has read all remaining updates from the binary logs and sent them to the replica. The thread
is now idle, waiting for new events to appear in the binary log resulting from new updates occurring on
the source.

• Sending binlog event to slave

Binary logs consist of events, where an event is usually an update plus some other information. The
thread has read an event from the binary log and is now sending it to the replica.

• Waiting to finalize termination

A very brief state that occurs as the thread is stopping.

8.14.6 Replication Replica I/O Thread States

The following list shows the most common states you see in the State column for a replica server I/O
thread. This state also appears in the Slave_IO_State column displayed by SHOW SLAVE STATUS, so
you can get a good view of what is happening by using that statement.

• Checking master version

A state that occurs very briefly, after the connection to the source is established.

1630

Replication Replica I/O Thread States

• Connecting to master

The thread is attempting to connect to the source.

• Queueing master event to the relay log

The thread has read an event and is copying it to the relay log so that the SQL thread can process it.

• Reconnecting after a failed binlog dump request

The thread is trying to reconnect to the source.

• Reconnecting after a failed master event read

The thread is trying to reconnect to the source. When connection is established again, the state
becomes Waiting for master to send event.

• Registering slave on master

A state that occurs very briefly after the connection to the source is established.

• Requesting binlog dump

A state that occurs very briefly, after the connection to the source is established. The thread sends to the
source a request for the contents of its binary logs, starting from the requested binary log file name and
position.

• Waiting for its turn to commit

A state that occurs when the replica thread is waiting for older worker threads to commit if
slave_preserve_commit_order is enabled.

• Waiting for master to send event

The thread has connected to the source and is waiting for binary log events to arrive. This can last for a
long time if the source is idle. If the wait lasts for slave_net_timeout seconds, a timeout occurs. At
that point, the thread considers the connection to be broken and makes an attempt to reconnect.

• Waiting for master update

The initial state before Connecting to master.

• Waiting for slave mutex on exit

A state that occurs briefly as the thread is stopping.

• Waiting for the slave SQL thread to free enough relay log space

You are using a nonzero relay_log_space_limit value, and the relay logs have grown large
enough that their combined size exceeds this value. The I/O thread is waiting until the SQL thread frees
enough space by processing relay log contents so that it can delete some relay log files.

• Waiting to reconnect after a failed binlog dump request

If the binary log dump request failed (due to disconnection), the thread goes into this state while it
sleeps, then tries to reconnect periodically. The interval between retries can be specified using the
CHANGE MASTER TO statement.

• Waiting to reconnect after a failed master event read

1631

Replication Replica SQL Thread States

An error occurred while reading (due to disconnection). The thread is sleeping for the number of seconds
set by the CHANGE MASTER TO statement (default 60) before attempting to reconnect.

8.14.7 Replication Replica SQL Thread States

The following list shows the most common states you may see in the State column for a replica server
SQL thread:

• Making temporary file (append) before replaying LOAD DATA INFILE

The thread is executing a LOAD DATA statement and is appending the data to a temporary file
containing the data from which the replica reads rows.

• Making temporary file (create) before replaying LOAD DATA INFILE

The thread is executing a LOAD DATA statement and is creating a temporary file containing the data
from which the replica reads rows. This state can only be encountered if the original LOAD DATA
statement was logged by a source running a version of MySQL lower than MySQL 5.0.3.

• Reading event from the relay log

The thread has read an event from the relay log so that the event can be processed.

• Slave has read all relay log; waiting for more updates

The thread has processed all events in the relay log files, and is now waiting for the I/O thread to write
new events to the relay log.

• Waiting for an event from Coordinator

Using the multithreaded replica (slave_parallel_workers is greater than 1), one of the replica
worker threads is waiting for an event from the coordinator thread.

• Waiting for slave mutex on exit

A very brief state that occurs as the thread is stopping.

• Waiting for Slave Workers to free pending events

This waiting action occurs when the total size of events being processed by Workers exceeds the size of
the slave_pending_jobs_size_max system variable. The Coordinator resumes scheduling when the
size drops below this limit. This state occurs only when slave_parallel_workers is set greater than
0.

• Waiting for the next event in relay log

The initial state before Reading event from the relay log.

• Waiting until MASTER_DELAY seconds after master executed event

The SQL thread has read an event but is waiting for the replica delay to lapse. This delay is set with the
MASTER_DELAY option of CHANGE MASTER TO.

The Info column for the SQL thread may also show the text of a statement. This indicates that the thread
has read an event from the relay log, extracted the statement from it, and may be executing it.

8.14.8 Replication Replica Connection Thread States

1632

NDB Cluster Thread States

These thread states occur on a replica server but are associated with connection threads, not with the I/O
or SQL threads.

• Changing master

The thread is processing a CHANGE MASTER TO statement.

• Killing slave

The thread is processing a STOP SLAVE statement.

• Opening master dump table

This state occurs after Creating table from master dump.

• Reading master dump table data

This state occurs after Opening master dump table.

• Rebuilding the index on master dump table

This state occurs after Reading master dump table data.

8.14.9 NDB Cluster Thread States

• Committing events to binlog

• Opening mysql.ndb_apply_status

• Processing events

The thread is processing events for binary logging.

• Processing events from schema table

The thread is doing the work of schema replication.

• Shutting down

• Syncing ndb table schema operation and binlog

This is used to have a correct binary log of schema operations for NDB.

• Waiting for allowed to take ndbcluster global schema lock

The thread is waiting for permission to take a global schema lock.

• Waiting for event from ndbcluster

The server is acting as an SQL node in an NDB Cluster, and is connected to a cluster management
node.

• Waiting for first event from ndbcluster

• Waiting for ndbcluster binlog update to reach current position

• Waiting for ndbcluster global schema lock

The thread is waiting for a global schema lock held by another thread to be released.

• Waiting for ndbcluster to start

1633

Event Scheduler Thread States

• Waiting for schema epoch

The thread is waiting for a schema epoch (that is, a global checkpoint).

8.14.10 Event Scheduler Thread States

These states occur for the Event Scheduler thread, threads that are created to execute scheduled events,
or threads that terminate the scheduler.

• Clearing

The scheduler thread or a thread that was executing an event is terminating and is about to end.

• Initialized

The scheduler thread or a thread that executes an event has been initialized.

• Waiting for next activation

The scheduler has a nonempty event queue but the next activation is in the future.

• Waiting for scheduler to stop

The thread issued SET GLOBAL event_scheduler=OFF and is waiting for the scheduler to stop.

• Waiting on empty queue

The scheduler's event queue is empty and it is sleeping.

8.15 Tracing the Optimizer
The MySQL optimizer includes the capability to perform tracing; the interface is provided by a set of
optimizer_trace_xxx system variables and the INFORMATION_SCHEMA.OPTIMIZER_TRACE table.

8.15.1 Typical Usage

To perform optimizer tracing entails the following steps:

1. Enable tracing by executing SET optimizer_trace="enabled=ON".

2. Execute the statement to be traced. See Section 8.15.3, “Traceable Statements”, for a listing of
statements which can be traced.

3. Examine the contents of the INFORMATION_SCHEMA.OPTIMIZER_TRACE table.

4. To examine traces for multiple queries, repeat the previous two steps as needed.

5. To disable tracing after you have finished, execute SET optimizer_trace="enabled=OFF".

You can trace only statements which are executed within the current session; you cannot see traces from
other sessions.

8.15.2 System Variables Controlling Tracing

The following system variables affect optimizer tracing:

• optimizer_trace: Enables or disables optimizer tracing. See Section 8.15.8, “The optimizer_trace
System Variable”.

1634

Traceable Statements

• optimizer_trace_features: Enables or disables selected features of the MySQL Optimizer, using
the syntax shown here:

SET optimizer_trace_features=option=value[,option=value][,...]

option:
 {greedy_search | range_optimizer | dynamic_range | repeated_subselect}

value:
 {on | off | default}

See Section 8.15.10, “Selecting Optimizer Features to Trace”, for more information on the effects of
these.

• optimizer_trace_max_mem_size: Maximum amount of memory that can be used for storing all
traces.

• optimizer_trace_limit: The maximum number of optimizer traces to be shown. See
Section 8.15.4, “Tuning Trace Purging”, for more information.

• optimizer_trace_offset: Offset of the first trace shown. See Section 8.15.4, “Tuning Trace
Purging”.

• end_markers_in_json: If set to 1, causes the trace to repeat the key (if present) near the closing
bracket. This also affects the output of EXPLAIN FORMAT=JSON in those versions of MySQL which
support this statement. See Section 8.15.9, “The end_markers_in_json System Variable”.

8.15.3 Traceable Statements

Statements which are traceable are listed here:

• SELECT

• INSERT

• REPLACE

• UPDATE

• DELETE

• EXPLAIN with any of the preceding statements

• SET

• DO

• DECLARE, CASE, IF, and RETURN as used in stored routines

• CALL

Tracing is supported for both INSERT and REPLACE statements using VALUES, VALUES ROW, or SELECT.

Traces of multi-table UPDATE and DELETE statements are supported.

Tracing of SET optimizer_trace is not supported.

For statements which are prepared and executed in separate steps, preparation and execution are traced
separately.

1635

Tuning Trace Purging

8.15.4 Tuning Trace Purging

By default, each new trace overwrites the previous trace. Thus, if a statement contains substatements
(such as invoking stored procedures, stored functions, or triggers), the topmost statement and
substatements each generate one trace, but at the end of execution, the trace for only the last
substatement is visible.

A user who wants to see the trace of a different substatement can enable or disable tracing for the
desired substatement, but this requires editing the routine code, which may not always be possible.
Another solution is to tune trace purging. This is done by setting the optimizer_trace_offset and
optimizer_trace_limit system variables, like this:

SET optimizer_trace_offset=offset, optimizer_trace_limit=limit;

offset is a signed integer (default -1); limit is a positive integer (default 1). Such a SET statement has
the following effects:

• All traces previously stored are cleared from memory.

• A subsequent SELECT from the OPTIMIZER_TRACE table returns the first limit traces of the offset
oldest stored traces (if offset >= 0), or the first limit traces of the -offset newest stored traces (if
offset < 0).

Examples:

• SET optimizer_trace_offset=-1, optimizer_trace_limit=1: The most recent trace is
shown (the default).

• SET optimizer_trace_offset=-2, optimizer_trace_limit=1: The next-to-last trace is
shown.

• SET optimizer_trace_offset=-5, optimizer_trace_limit=5: The last five traces are
shown.

Negative values for offset can thus prove useful when the substatements of interest are the last few in a
stored routine. For example:

SET optimizer_trace_offset=-5, optimizer_trace_limit=5;

CALL stored_routine(); # more than 5 substatements in this routine

SELECT * FROM information_schema.OPTIMIZER_TRACE; # see only the last 5 traces

A positive offset can be useful when one knows that the interesting substatements are the first few in a
stored routine.

The more accurately these two variables are set, the less memory is used. For example, SET
optimizer_trace_offset=0, optimizer_trace_limit=5 requires sufficient memory to store
five traces, so if only the three first are needed, is is better to use SET optimizer_trace_offset=0,
optimizer_trace_limit=3, since tracing stops after limit traces. A stored routine may have a loop
which executes many substatements and thus generates many traces, which can use a lot of memory;
in such cases, choosing appropriate values for offset and limit can restrict tracing to, for example, a
single iteration of the loop. This also decreases the impact of tracing on execution speed.

If offset is greater than or equal to 0, only limit traces are kept in memory. If offset is less than 0,
that is not true: instead, -offset traces are kept in memory. Even if limit is smaller than -offset,
excluding the last statement, the last statement must still be traced because it will be within the limit after

1636

Tracing Memory Usage

executing one more statement. Since an offset less than 0 is counted from the end, the “window” moves as
more statements execute.

Using optimizer_trace_offset and optimizer_trace_limit, which are restrictions at the trace
producer level, provide better (greater) speed and (less) memory usage than setting offsets or limits at
the trace consumer (SQL) level with SELECT * FROM OPTIMIZER_TRACE LIMIT limit OFFSET
offset, which saves almost nothing.

8.15.5 Tracing Memory Usage

Each stored trace is a string, which is extended (using realloc()) as optimization progresses
by appending more data to it. The optimizer_trace_max_mem_size server system variable
sets a limit on the total amount of memory used by all traces currently being stored. If this limit is
reached, the current trace is not extended, which means the trace is incomplete; in this case the
MISSING_BYTES_BEYOND_MAX_MEM_SIZE column shows the number of bytes missing from the trace.

8.15.6 Privilege Checking

In complex scenarios where the query uses SQL SECURITY DEFINER views or stored routines, it may
be that a user is denied from seeing the trace of its query because it lacks some extra privileges on those
objects. In that case, the trace will be shown as empty and the INSUFFICIENT_PRIVILEGES column will
show "1".

8.15.7 Interaction with the --debug Option

Anything written to the trace is automatically written to the debug file.

8.15.8 The optimizer_trace System Variable

The optimizer_trace system variable has these on/off switches:

• enabled: Enables (ON) or disables (OFF) tracing

• one_line: If set to ON, the trace contains no whitespace, thus conserving space. This renders the trace
difficult to read for humans, still usable by JSON parsers, since they ignore whitespace.

8.15.9 The end_markers_in_json System Variable

When reading a very large JSON document, it can be difficult to pair its closing bracket and opening
brackets; setting end_markers_in_json=ON repeats the structure's key, if it has one, near the closing
bracket. This variable affects both optimizer traces and the output of EXPLAIN FORMAT=JSON.

Note

If end_markers_in_json is enabled, the repetition of the key means the result is
not a valid JSON document, and causes JSON parsers to throw an error.

8.15.10 Selecting Optimizer Features to Trace

Some features in the optimizer can be invoked many times during statement optimization and execution,
and thus can make the trace grow beyond reason. They are:

• Greedy search: With an N-table join, this could explore factorial(N) plans.

• Range optimizer

• Dynamic range optimization: Shown as range checked for each record in EXPLAIN output; each
outer row causes a re-run of the range optimizer.

1637

Trace General Structure

• Subqueries: A subquery in which the WHERE clause may be executed once per row.

Those features can be excluded from tracing by setting one or more switches of the
optimizer_trace_features system variable to OFF. These switches are listed here:

• greedy_search: Greedy search is not traced.

• range_optimizer: The range optimizer is not traced.

• dynamic_range: Only the first call to the range optimizer on this JOIN_TAB::SQL_SELECT is traced.

• repeated_subselect: Only the first execution of this Item_subselect is traced.

8.15.11 Trace General Structure

A trace follows the actual execution path very closely; for each join, there is a join preparation object, a join
optimization object, and a join execution object. Query transformations (IN to EXISTS, outer join to inner
join, and so on), simplifications (elimination of clauses), and equality propagation are shown in subobjects.
Calls to the range optimizer, cost evaluations, reasons why an access path is chosen over another one, or
why a sorting method is chosen over another one, are shown as well.

8.15.12 Example

Here we take an example from the test suite.

#
Tracing of ORDER BY & GROUP BY simplification.
#
SET optimizer_trace="enabled=on",end_markers_in_json=on; # make readable
SET optimizer_trace_max_mem_size=1000000; # avoid small default

CREATE TABLE t1 (
 pk INT, col_int_key INT,
 col_varchar_key VARCHAR(1),
 col_varchar_nokey VARCHAR(1)
);

INSERT INTO t1 VALUES
 (10,7,'v','v'),(11,0,'s','s'),(12,9,'l','l'),(13,3,'y','y'),(14,4,'c','c'),
 (15,2,'i','i'),(16,5,'h','h'),(17,3,'q','q'),(18,1,'a','a'),(19,3,'v','v'),
 (20,6,'u','u'),(21,7,'s','s'),(22,5,'y','y'),(23,1,'z','z'),(24,204,'h','h'),
 (25,224,'p','p'),(26,9,'e','e'),(27,5,'i','i'),(28,0,'y','y'),(29,3,'w','w');

CREATE TABLE t2 (
 pk INT, col_int_key INT,
 col_varchar_key VARCHAR(1),
 col_varchar_nokey VARCHAR(1),
 PRIMARY KEY (pk)
);

INSERT INTO t2 VALUES
 (1,4,'b','b'),(2,8,'y','y'),(3,0,'p','p'),(4,0,'f','f'),(5,0,'p','p'),
 (6,7,'d','d'),(7,7,'f','f'),(8,5,'j','j'),(9,3,'e','e'),(10,188,'u','u'),
 (11,4,'v','v'),(12,9,'u','u'),(13,6,'i','i'),(14,1,'x','x'),(15,5,'l','l'),
 (16,6,'q','q'),(17,2,'n','n'),(18,4,'r','r'),(19,231,'c','c'),(20,4,'h','h'),
 (21,3,'k','k'),(22,3,'t','t'),(23,7,'t','t'),(24,6,'k','k'),(25,7,'g','g'),
 (26,9,'z','z'),(27,4,'n','n'),(28,4,'j','j'),(29,2,'l','l'),(30,1,'d','d'),
 (31,2,'t','t'),(32,194,'y','y'),(33,2,'i','i'),(34,3,'j','j'),(35,8,'r','r'),
 (36,4,'b','b'),(37,9,'o','o'),(38,4,'k','k'),(39,5,'a','a'),(40,5,'f','f'),
 (41,9,'t','t'),(42,3,'c','c'),(43,8,'c','c'),(44,0,'r','r'),(45,98,'k','k'),
 (46,3,'l','l'),(47,1,'o','o'),(48,0,'t','t'),(49,189,'v','v'),(50,8,'x','x'),
 (51,3,'j','j'),(52,3,'x','x'),(53,9,'k','k'),(54,6,'o','o'),(55,8,'z','z'),
 (56,3,'n','n'),(57,9,'c','c'),(58,5,'d','d'),(59,9,'s','s'),(60,2,'j','j'),

1638

Example

 (61,2,'w','w'),(62,5,'f','f'),(63,8,'p','p'),(64,6,'o','o'),(65,9,'f','f'),
 (66,0,'x','x'),(67,3,'q','q'),(68,6,'g','g'),(69,5,'x','x'),(70,8,'p','p'),
 (71,2,'q','q'),(72,120,'q','q'),(73,25,'v','v'),(74,1,'g','g'),(75,3,'l','l'),
 (76,1,'w','w'),(77,3,'h','h'),(78,153,'c','c'),(79,5,'o','o'),(80,9,'o','o'),
 (81,1,'v','v'),(82,8,'y','y'),(83,7,'d','d'),(84,6,'p','p'),(85,2,'z','z'),
 (86,4,'t','t'),(87,7,'b','b'),(88,3,'y','y'),(89,8,'k','k'),(90,4,'c','c'),
 (91,6,'z','z'),(92,1,'t','t'),(93,7,'o','o'),(94,1,'u','u'),(95,0,'t','t'),
 (96,2,'k','k'),(97,7,'u','u'),(98,2,'b','b'),(99,1,'m','m'),(100,5,'o','o');

SELECT SUM(alias2.col_varchar_nokey) AS c1, alias2.pk AS c2
 FROM t1 AS alias1
 STRAIGHT_JOIN t2 AS alias2
 ON alias2.pk = alias1.col_int_key
 WHERE alias1.pk
 GROUP BY c2
 ORDER BY alias1.col_int_key, alias2.pk;

+------+----+
| c1 | c2 |
+------+----+
0	1
0	2
0	3
0	4
0	5
0	6
0	7
0	9
+------+----+

Note

For reference, the complete trace is shown uninterrupted at the end of this section.

Now we can examine the trace, whose first column (QUERY), containing the original statement to be traced,
is shown here:

SELECT * FROM INFORMATION_SCHEMA.OPTIMIZER_TRACE\G
*************************** 1. row ***************************
QUERY: SELECT SUM(alias2.col_varchar_nokey) AS c1, alias2.pk AS c2
 FROM t1 AS alias1
 STRAIGHT_JOIN t2 AS alias2
 ON alias2.pk = alias1.col_int_key
 WHERE alias1.pk
 GROUP BY c2
 ORDER BY alias1.col_int_key, alias2.pk

This can be useful mark when several traces are stored.

The TRACE column begins by showing that execution of the statement is made up of discrete steps, like
this:

"steps": [
 {

This is followed by the preparation of the join for the first (and only) SELECT in the statement being traced,
as shown here:

"steps": [
 {
 "expanded_query": "/* select#1 */ select \
 sum(`test`.`alias2`.`col_varchar_nokey`) AS \
 `SUM(alias2.col_varchar_nokey)`,`test`.`alias2`.`pk` AS `field2` \
 from (`test`.`t1` `alias1` straight_join `test`.`t2` `alias2` \
 on((`test`.`alias2`.`pk` = `test`.`alias1`.`col_int_key`))) \

1639

Example

 where `test`.`alias1`.`pk` \
 group by `test`.`alias2`.`pk` \
 order by `test`.`alias1`.`col_int_key`,`test`.`alias2`.`pk`"
 }
] /* steps */
 } /* join_preparation */
 },

The output just shown displays the query as it is used for preparing the join; all columns (fields) have been
resolved to their databases and tables, and each SELECT is annotated with a sequence number, which can
be useful when studying subqueries.

The next portion of the trace shows how the join is optimized, starting with condition processing:

 {
 "join_optimization": {
 "select#": 1,
 "steps": [
 {
 "condition_processing": {
 "condition": "WHERE",
 "original_condition": "(`test`.`alias1`.`pk` and \
 (`test`.`alias2`.`pk` = `test`.`alias1`.`col_int_key`))",
 "steps": [
 {
 "transformation": "equality_propagation",
 "resulting_condition": "(`test`.`alias1`.`pk` and \
 multiple equal(`test`.`alias2`.`pk`, \
 `test`.`alias1`.`col_int_key`))"
 },
 {
 "transformation": "constant_propagation",
 "resulting_condition": "(`test`.`alias1`.`pk` and \
 multiple equal(`test`.`alias2`.`pk`, \
 `test`.`alias1`.`col_int_key`))"
 },
 {
 "transformation": "trivial_condition_removal",
 "resulting_condition": "(`test`.`alias1`.`pk` and \
 multiple equal(`test`.`alias2`.`pk`, \
 `test`.`alias1`.`col_int_key`))"
 }
] /* steps */
 } /* condition_processing */
 },

Next, the optimizer checks for possible ref accesses, and identifies one:

 {
 "ref_optimizer_key_uses": [
 {
 "database": "test",
 "table": "alias2",
 "field": "pk",
 "equals": "`test`.`alias1`.`col_int_key`",
 "null_rejecting": true
 }
] /* ref_optimizer_key_uses */
 },

A ref access which rejects NULL has been identified: no NULL in test.alias1.col_int_key can have
a match. (Observe that it could have a match, were the operator a null-safe equals <=>).

Next, for every table in the query, we estimate the cost of, and number of records returned by, a table scan
or a range access.

1640

Example

We need to find an optimal order for the tables. Normally, greedy search is used, but since the statement
uses a straight join, only the requested order is explored, and one or more access methods are selected.
As shown in this portion of the trace, we can choose a table scan:

 {
"records_estimation": [
 {
 "database": "test",
 "table": "alias1",
 "const_keys_added": {
 "keys": [
] /* keys */,
 "cause": "group_by"
 } /* const_keys_added */,
 "range_analysis": {
 "table_scan": {
 "records": 20,
 "cost": 8.1977
 } /* table_scan */
 } /* range_analysis */
 },
 {
 "database": "test",
 "table": "alias2",
 "const_keys_added": {
 "keys": [
 "PRIMARY"
] /* keys */,
 "cause": "group_by"
 } /* const_keys_added */,
 "range_analysis": {
 "table_scan": {
 "records": 100,
 "cost": 24.588
 } /* table_scan */,
 "potential_range_indices": [
 {
 "index": "PRIMARY",
 "usable": true,
 "key_parts": [
 "pk"
] /* key_parts */
 }
] /* potential_range_indices */,
 "setup_range_conditions": [
] /* setup_range_conditions */,
 "group_index_range": {
 "chosen": false,
 "cause": "not_single_table"
 } /* group_index_range */
 } /* range_analysis */
 }
] /* records_estimation */
 },

As just shown in the second portion of the range analysis, it is not possible to use GROUP_MIN_MAX
because it accepts only one table, and we have two in the join. This means that no range access is
possible.

The optimizer estimates that reading the first table, and applying any required conditions to it, yields 20
rows:

 {
"considered_execution_plans": [
 {
 "database": "test",

1641

Example

 "table": "alias1",
 "best_access_path": {
 "considered_access_paths": [
 {
 "access_type": "scan",
 "records": 20,
 "cost": 2.0977,
 "chosen": true
 }
] /* considered_access_paths */
 } /* best_access_path */,
 "cost_for_plan": 6.0977,
 "records_for_plan": 20,

For alias2, we choose ref access on the primary key rather than a table scan, because the number of
records returned by the latter (75) is far greater than that returned by ref access (1), as shown here:

 "rest_of_plan": [
 {
 "database": "test",
 "table": "alias2",
 "best_access_path": {
 "considered_access_paths": [
 {
 "access_type": "ref",
 "index": "PRIMARY",
 "records": 1,
 "cost": 20.2,
 "chosen": true
 },
 {
 "access_type": "scan",
 "using_join_cache": true,
 "records": 75,
 "cost": 7.4917,
 "chosen": false
 }
] /* considered_access_paths */
 } /* best_access_path */,
 "cost_for_plan": 30.098,
 "records_for_plan": 20,
 "chosen": true
 }
] /* rest_of_plan */
 }
] /* considered_execution_plans */
 },

Now that the order of tables is fixed, we can split the WHERE condition into chunks which can be tested
early (pushdown of conditions down the join tree):

 {
 "attaching_conditions_to_tables": {
 "original_condition": "((`test`.`alias2`.`pk` = \
 `test`.`alias1`.`col_int_key`) and `test`.`alias1`.`pk`)",
 "attached_conditions_computation": [
] /* attached_conditions_computation */,
 "attached_conditions_summary": [
 {
 "database": "test",
 "table": "alias1",
 "attached": "(`test`.`alias1`.`pk` and \
 (`test`.`alias1`.`col_int_key` is not null))"
 },

This condition can be tested on rows of alias1 without reading rows from alias2.

1642

Example

 {
 "database": "test",
 "table": "alias2",
 "attached": null
 }
] /* attached_conditions_summary */
 } /* attaching_conditions_to_tables */
 },
 {

Now we try to simplify the ORDER BY:

 "clause_processing": {
 "clause": "ORDER BY",
 "original_clause": "`test`.`alias1`.`col_int_key`,`test`.`alias2`.`pk`",
 "items": [
 {
 "item": "`test`.`alias1`.`col_int_key`"
 },
 {
 "item": "`test`.`alias2`.`pk`",
 "eq_ref_to_preceding_items": true
 }
] /* items */,

Because the WHERE clause contains alias2.pk=alias1.col_int_key, ordering by both columns is
unnecessary; we can order by the first column alone, since the second column is always equal to it.

 "resulting_clause_is_simple": true,
 "resulting_clause": "`test`.`alias1`.`col_int_key`"
 } /* clause_processing */
 },

The shorter ORDER BY clause (which is not visible in in the output of EXPLAIN) can be implemented as an
index scan, since it uses only a single column of one table.

 {
 "clause_processing": {
 "clause": "GROUP BY",
 "original_clause": "`test`.`alias2`.`pk`",
 "items": [
 {
 "item": "`test`.`alias2`.`pk`"
 }
] /* items */,
 "resulting_clause_is_simple": false,
 "resulting_clause": "`test`.`alias2`.`pk`"
 } /* clause_processing */
 },
 {
 "refine_plan": [
 {
 "database": "test",
 "table": "alias1",
 "scan_type": "table"
 },
 {
 "database": "test",
 "table": "alias2"
 }
] /* refine_plan */
 }
] /* steps */
 } /* join_optimization */
 },
 {

1643

Example

Now the join is executed:

 "join_execution": {
 "select#": 1,
 "steps": [
] /* steps */
 } /* join_execution */
 }
] /* steps */
 } 0 0

All traces have the same basic structure. If a statement uses subqueries, there can be mutliple
preparations, optimizations, and executions, as well as subquery-specific transformations.

The complete trace is shown here:

mysql> SELECT * FROM INFORMATION_SCHEMA.OPTIMIZER_TRACE\G
*************************** 1. row ***************************
 QUERY: SELECT SUM(alias2.col_varchar_nokey) AS c1, alias2.pk AS c2
 FROM t1 AS alias1
 STRAIGHT_JOIN t2 AS alias2
 ON alias2.pk = alias1.col_int_key
 WHERE alias1.pk
 GROUP BY c2
 ORDER BY alias1.col_int_key, alias2.pk
 TRACE: {
 "steps": [
 {
 "join_preparation": {
 "select#": 1,
 "steps": [
 {
 "expanded_query": "/* select#1 */ select sum(`alias2`.`col_varchar_nokey`) AS `c1`,`alias2`.`pk` AS `c2` from (`t1` `alias1` straight_join `t2` `alias2` on((`alias2`.`pk` = `alias1`.`col_int_key`))) where (0 <> `alias1`.`pk`) group by `c2` order by `alias1`.`col_int_key`,`alias2`.`pk`"
 },
 {
 "transformations_to_nested_joins": {
 "transformations": [
 "JOIN_condition_to_WHERE",
 "parenthesis_removal"
] /* transformations */,
 "expanded_query": "/* select#1 */ select sum(`alias2`.`col_varchar_nokey`) AS `c1`,`alias2`.`pk` AS `c2` from `t1` `alias1` straight_join `t2` `alias2` where ((0 <> `alias1`.`pk`) and (`alias2`.`pk` = `alias1`.`col_int_key`)) group by `c2` order by `alias1`.`col_int_key`,`alias2`.`pk`"
 } /* transformations_to_nested_joins */
 },
 {
 "functional_dependencies_of_GROUP_columns": {
 "all_columns_of_table_map_bits": [
 1
] /* all_columns_of_table_map_bits */,
 "columns": [
 "test.alias2.pk",
 "test.alias1.col_int_key"
] /* columns */
 } /* functional_dependencies_of_GROUP_columns */
 }
] /* steps */
 } /* join_preparation */
 },
 {
 "join_optimization": {
 "select#": 1,
 "steps": [
 {
 "condition_processing": {
 "condition": "WHERE",
 "original_condition": "((0 <> `alias1`.`pk`) and (`alias2`.`pk` = `alias1`.`col_int_key`))",
 "steps": [
 {

1644

Example

 "transformation": "equality_propagation",
 "resulting_condition": "((0 <> `alias1`.`pk`) and multiple equal(`alias2`.`pk`, `alias1`.`col_int_key`))"
 },
 {
 "transformation": "constant_propagation",
 "resulting_condition": "((0 <> `alias1`.`pk`) and multiple equal(`alias2`.`pk`, `alias1`.`col_int_key`))"
 },
 {
 "transformation": "trivial_condition_removal",
 "resulting_condition": "((0 <> `alias1`.`pk`) and multiple equal(`alias2`.`pk`, `alias1`.`col_int_key`))"
 }
] /* steps */
 } /* condition_processing */
 },
 {
 "substitute_generated_columns": {
 } /* substitute_generated_columns */
 },
 {
 "table_dependencies": [
 {
 "table": "`t1` `alias1`",
 "row_may_be_null": false,
 "map_bit": 0,
 "depends_on_map_bits": [
] /* depends_on_map_bits */
 },
 {
 "table": "`t2` `alias2`",
 "row_may_be_null": false,
 "map_bit": 1,
 "depends_on_map_bits": [
 0
] /* depends_on_map_bits */
 }
] /* table_dependencies */
 },
 {
 "ref_optimizer_key_uses": [
 {
 "table": "`t2` `alias2`",
 "field": "pk",
 "equals": "`alias1`.`col_int_key`",
 "null_rejecting": true
 }
] /* ref_optimizer_key_uses */
 },
 {
 "rows_estimation": [
 {
 "table": "`t1` `alias1`",
 "table_scan": {
 "rows": 20,
 "cost": 0.25
 } /* table_scan */
 },
 {
 "table": "`t2` `alias2`",
 "const_keys_added": {
 "keys": [
 "PRIMARY"
] /* keys */,
 "cause": "group_by"
 } /* const_keys_added */,
 "range_analysis": {
 "table_scan": {
 "rows": 100,

1645

Example

 "cost": 12.35
 } /* table_scan */,
 "potential_range_indexes": [
 {
 "index": "PRIMARY",
 "usable": true,
 "key_parts": [
 "pk"
] /* key_parts */
 }
] /* potential_range_indexes */,
 "setup_range_conditions": [
] /* setup_range_conditions */,
 "group_index_skip_scan": {
 "chosen": false,
 "cause": "not_single_table"
 } /* group_index_skip_scan */,
 "skip_scan_range": {
 "chosen": false,
 "cause": "not_single_table"
 } /* skip_scan_range */
 } /* range_analysis */
 }
] /* rows_estimation */
 },
 {
 "considered_execution_plans": [
 {
 "plan_prefix": [
] /* plan_prefix */,
 "table": "`t1` `alias1`",
 "best_access_path": {
 "considered_access_paths": [
 {
 "rows_to_scan": 20,
 "filtering_effect": [
] /* filtering_effect */,
 "final_filtering_effect": 0.9,
 "access_type": "scan",
 "resulting_rows": 18,
 "cost": 2.25,
 "chosen": true
 }
] /* considered_access_paths */
 } /* best_access_path */,
 "condition_filtering_pct": 100,
 "rows_for_plan": 18,
 "cost_for_plan": 2.25,
 "rest_of_plan": [
 {
 "plan_prefix": [
 "`t1` `alias1`"
] /* plan_prefix */,
 "table": "`t2` `alias2`",
 "best_access_path": {
 "considered_access_paths": [
 {
 "access_type": "eq_ref",
 "index": "PRIMARY",
 "rows": 1,
 "cost": 6.3,
 "chosen": true,
 "cause": "clustered_pk_chosen_by_heuristics"
 },
 {
 "rows_to_scan": 100,
 "filtering_effect": [

1646

Example

] /* filtering_effect */,
 "final_filtering_effect": 1,
 "access_type": "scan",
 "using_join_cache": true,
 "buffers_needed": 1,
 "resulting_rows": 100,
 "cost": 180.25,
 "chosen": false
 }
] /* considered_access_paths */
 } /* best_access_path */,
 "condition_filtering_pct": 100,
 "rows_for_plan": 18,
 "cost_for_plan": 8.55,
 "chosen": true
 }
] /* rest_of_plan */
 }
] /* considered_execution_plans */
 },
 {
 "attaching_conditions_to_tables": {
 "original_condition": "((`alias2`.`pk` = `alias1`.`col_int_key`) and (0 <> `alias1`.`pk`))",
 "attached_conditions_computation": [
] /* attached_conditions_computation */,
 "attached_conditions_summary": [
 {
 "table": "`t1` `alias1`",
 "attached": "((0 <> `alias1`.`pk`) and (`alias1`.`col_int_key` is not null))"
 },
 {
 "table": "`t2` `alias2`",
 "attached": "(`alias2`.`pk` = `alias1`.`col_int_key`)"
 }
] /* attached_conditions_summary */
 } /* attaching_conditions_to_tables */
 },
 {
 "optimizing_distinct_group_by_order_by": {
 "simplifying_order_by": {
 "original_clause": "`alias1`.`col_int_key`,`alias2`.`pk`",
 "items": [
 {
 "item": "`alias1`.`col_int_key`"
 },
 {
 "item": "`alias2`.`pk`",
 "eq_ref_to_preceding_items": true
 }
] /* items */,
 "resulting_clause_is_simple": true,
 "resulting_clause": "`alias1`.`col_int_key`"
 } /* simplifying_order_by */,
 "simplifying_group_by": {
 "original_clause": "`c2`",
 "items": [
 {
 "item": "`alias2`.`pk`"
 }
] /* items */,
 "resulting_clause_is_simple": false,
 "resulting_clause": "`c2`"
 } /* simplifying_group_by */
 } /* optimizing_distinct_group_by_order_by */
 },
 {
 "finalizing_table_conditions": [

1647

Example

 {
 "table": "`t1` `alias1`",
 "original_table_condition": "((0 <> `alias1`.`pk`) and (`alias1`.`col_int_key` is not null))",
 "final_table_condition ": "((0 <> `alias1`.`pk`) and (`alias1`.`col_int_key` is not null))"
 },
 {
 "table": "`t2` `alias2`",
 "original_table_condition": "(`alias2`.`pk` = `alias1`.`col_int_key`)",
 "final_table_condition ": null
 }
] /* finalizing_table_conditions */
 },
 {
 "refine_plan": [
 {
 "table": "`t1` `alias1`"
 },
 {
 "table": "`t2` `alias2`"
 }
] /* refine_plan */
 },
 {
 "considering_tmp_tables": [
 {
 "adding_tmp_table_in_plan_at_position": 2,
 "write_method": "continuously_update_group_row"
 },
 {
 "adding_sort_to_table": ""
 } /* filesort */
] /* considering_tmp_tables */
 }
] /* steps */
 } /* join_optimization */
 },
 {
 "join_execution": {
 "select#": 1,
 "steps": [
 {
 "temp_table_aggregate": {
 "select#": 1,
 "steps": [
 {
 "creating_tmp_table": {
 "tmp_table_info": {
 "table": "<temporary>",
 "in_plan_at_position": 2,
 "columns": 3,
 "row_length": 18,
 "key_length": 4,
 "unique_constraint": false,
 "makes_grouped_rows": true,
 "cannot_insert_duplicates": false,
 "location": "TempTable"
 } /* tmp_table_info */
 } /* creating_tmp_table */
 }
] /* steps */
 } /* temp_table_aggregate */
 },
 {
 "sorting_table": "<temporary>",
 "filesort_information": [
 {
 "direction": "asc",

1648

Displaying Traces in Other Applications

 "expression": "`alias1`.`col_int_key`"
 }
] /* filesort_information */,
 "filesort_priority_queue_optimization": {
 "usable": false,
 "cause": "not applicable (no LIMIT)"
 } /* filesort_priority_queue_optimization */,
 "filesort_execution": [
] /* filesort_execution */,
 "filesort_summary": {
 "memory_available": 262144,
 "key_size": 9,
 "row_size": 26,
 "max_rows_per_buffer": 7710,
 "num_rows_estimate": 18446744073709551615,
 "num_rows_found": 8,
 "num_initial_chunks_spilled_to_disk": 0,
 "peak_memory_used": 32832,
 "sort_algorithm": "std::sort",
 "unpacked_addon_fields": "skip_heuristic",
 "sort_mode": "<fixed_sort_key, additional_fields>"
 } /* filesort_summary */
 }
] /* steps */
 } /* join_execution */
 }
] /* steps */
}
MISSING_BYTES_BEYOND_MAX_MEM_SIZE: 0
 INSUFFICIENT_PRIVILEGES: 0

8.15.13 Displaying Traces in Other Applications

Examining a trace in the mysql command-line client can be made less difficult using the pager less
command (or your operating platform's equivalent). An alternative can be to send the trace to a file,
similarly to what is shown here:

SELECT TRACE INTO DUMPFILE file
FROM INFORMATION_SCHEMA.OPTIMIZER_TRACE;

You can then pass this file to a JSON-aware text editor or other viewer, such as the JsonView add-on for
Firefox and Chrome, which shows objects in color and allows objects to be expanded or collapsed.

INTO DUMPFILE is preferable to INTO OUTFILE for this purpose, since the latter escapes newlines. As
noted previously, you should ensure that end_markers_in_json is OFFwhen executing the SELECT
INTO statement, so that the output is valid JSON.

8.15.14 Preventing the Use of Optimizer Trace

If, for some reason, you wish to prevent users from seeing traces of their queries, start the server with the
options shown here:

--maximum-optimizer-trace-max-mem-size=0 --optimizer-trace-max-mem-size=0

This sets the maximum size to 0 and prevents users from changing this limit, thus truncating all traces to 0
bytes.

8.15.15 Testing Optimizer Trace

This feature is tested in mysql-test/suite/opt_trace and unittest/gunit/opt_trace-t.

1649

https://jsonview.com/
https://jsonview.com/

Optimizer Trace Implementation

8.15.16 Optimizer Trace Implementation

See the files sql/opt_trace*, starting with sql/opt_trace.h. A trace is started by creating
an instance of Opt_trace_start; information is added to this trace by creating instances of
Opt_trace_object and Opt_trace_array, and by using the add() methods of these classes.

1650

Chapter 9 Language Structure

Table of Contents
9.1 Literal Values .. 1651

9.1.1 String Literals ... 1651
9.1.2 Numeric Literals ... 1654
9.1.3 Date and Time Literals ... 1654
9.1.4 Hexadecimal Literals .. 1657
9.1.5 Bit-Value Literals .. 1659
9.1.6 Boolean Literals ... 1660
9.1.7 NULL Values ... 1660

9.2 Schema Object Names ... 1660
9.2.1 Identifier Length Limits ... 1662
9.2.2 Identifier Qualifiers ... 1663
9.2.3 Identifier Case Sensitivity ... 1665
9.2.4 Mapping of Identifiers to File Names ... 1667
9.2.5 Function Name Parsing and Resolution ... 1669

9.3 Keywords and Reserved Words .. 1673
9.4 User-Defined Variables ... 1697
9.5 Expressions .. 1701
9.6 Comments .. 1705

This chapter discusses the rules for writing the following elements of SQL statements when using MySQL:

• Literal values such as strings and numbers

• Identifiers such as database, table, and column names

• Keywords and reserved words

• User-defined and system variables

• Expressions

• Comments

9.1 Literal Values
This section describes how to write literal values in MySQL. These include strings, numbers, hexadecimal
and bit values, boolean values, and NULL. The section also covers various nuances that you may
encounter when dealing with these basic types in MySQL.

9.1.1 String Literals

A string is a sequence of bytes or characters, enclosed within either single quote (') or double quote (")
characters. Examples:

'a string'
"another string"

Quoted strings placed next to each other are concatenated to a single string. The following lines are
equivalent:

1651

String Literals

'a string'
'a' ' ' 'string'

If the ANSI_QUOTES SQL mode is enabled, string literals can be quoted only within single quotation marks
because a string quoted within double quotation marks is interpreted as an identifier.

A binary string is a string of bytes. Every binary string has a character set and collation named binary. A
nonbinary string is a string of characters. It has a character set other than binary and a collation that is
compatible with the character set.

For both types of strings, comparisons are based on the numeric values of the string unit. For binary
strings, the unit is the byte; comparisons use numeric byte values. For nonbinary strings, the unit is the
character and some character sets support multibyte characters; comparisons use numeric character
code values. Character code ordering is a function of the string collation. (For more information, see
Section 10.8.5, “The binary Collation Compared to _bin Collations”.)

Note

Within the mysql client, binary strings display using hexadecimal notation,
depending on the value of the --binary-as-hex. For more information about that
option, see Section 4.5.1, “mysql — The MySQL Command-Line Client”.

A character string literal may have an optional character set introducer and COLLATE clause, to designate
it as a string that uses a particular character set and collation:

[_charset_name]'string' [COLLATE collation_name]

Examples:

SELECT _latin1'string';
SELECT _binary'string';
SELECT _utf8'string' COLLATE utf8_danish_ci;

You can use N'literal' (or n'literal') to create a string in the national character set. These
statements are equivalent:

SELECT N'some text';
SELECT n'some text';
SELECT _utf8'some text';

For information about these forms of string syntax, see Section 10.3.7, “The National Character Set”, and
Section 10.3.8, “Character Set Introducers”.

Within a string, certain sequences have special meaning unless the NO_BACKSLASH_ESCAPES SQL mode
is enabled. Each of these sequences begins with a backslash (\), known as the escape character. MySQL
recognizes the escape sequences shown in Table 9.1, “Special Character Escape Sequences”. For all
other escape sequences, backslash is ignored. That is, the escaped character is interpreted as if it was not
escaped. For example, \x is just x. These sequences are case-sensitive. For example, \b is interpreted
as a backspace, but \B is interpreted as B. Escape processing is done according to the character set
indicated by the character_set_connection system variable. This is true even for strings that
are preceded by an introducer that indicates a different character set, as discussed in Section 10.3.6,
“Character String Literal Character Set and Collation”.

Table 9.1 Special Character Escape Sequences

Escape Sequence Character Represented by Sequence

\0 An ASCII NUL (X'00') character

1652

String Literals

Escape Sequence Character Represented by Sequence

\' A single quote (') character

\" A double quote (") character

\b A backspace character

\n A newline (linefeed) character

\r A carriage return character

\t A tab character

\Z ASCII 26 (Control+Z); see note following the table

\\ A backslash (\) character

\% A % character; see note following the table

_ A _ character; see note following the table

The ASCII 26 character can be encoded as \Z to enable you to work around the problem that ASCII 26
stands for END-OF-FILE on Windows. ASCII 26 within a file causes problems if you try to use mysql
db_name < file_name.

The \% and _ sequences are used to search for literal instances of % and _ in pattern-matching contexts
where they would otherwise be interpreted as wildcard characters. See the description of the LIKE
operator in Section 12.8.1, “String Comparison Functions and Operators”. If you use \% or _ outside of
pattern-matching contexts, they evaluate to the strings \% and _, not to % and _.

There are several ways to include quote characters within a string:

• A ' inside a string quoted with ' may be written as ''.

• A " inside a string quoted with " may be written as "".

• Precede the quote character by an escape character (\).

• A ' inside a string quoted with " needs no special treatment and need not be doubled or escaped. In the
same way, " inside a string quoted with ' needs no special treatment.

The following SELECT statements demonstrate how quoting and escaping work:

mysql> SELECT 'hello', '"hello"', '""hello""', 'hel''lo', '\'hello';
+-------+---------+-----------+--------+--------+
| hello | "hello" | ""hello"" | hel'lo | 'hello |
+-------+---------+-----------+--------+--------+

mysql> SELECT "hello", "'hello'", "''hello''", "hel""lo", "\"hello";
+-------+---------+-----------+--------+--------+
| hello | 'hello' | ''hello'' | hel"lo | "hello |
+-------+---------+-----------+--------+--------+

mysql> SELECT 'This\nIs\nFour\nLines';
+--------------------+
| This
Is
Four
Lines |
+--------------------+

mysql> SELECT 'disappearing\ backslash';
+------------------------+
| disappearing backslash |
+------------------------+

1653

Numeric Literals

To insert binary data into a string column (such as a BLOB column), you should represent certain
characters by escape sequences. Backslash (\) and the quote character used to quote the string must be
escaped. In certain client environments, it may also be necessary to escape NUL or Control+Z. The mysql
client truncates quoted strings containing NUL characters if they are not escaped, and Control+Z may be
taken for END-OF-FILE on Windows if not escaped. For the escape sequences that represent each of
these characters, see Table 9.1, “Special Character Escape Sequences”.

When writing application programs, any string that might contain any of these special characters must be
properly escaped before the string is used as a data value in an SQL statement that is sent to the MySQL
server. You can do this in two ways:

• Process the string with a function that escapes the special characters. In a C program, you can
use the mysql_real_escape_string_quote() C API function to escape characters. See
mysql_real_escape_string_quote(). Within SQL statements that construct other SQL statements, you
can use the QUOTE() function. The Perl DBI interface provides a quote method to convert special
characters to the proper escape sequences. See Section 27.9, “MySQL Perl API”. Other language
interfaces may provide a similar capability.

• As an alternative to explicitly escaping special characters, many MySQL APIs provide a placeholder
capability that enables you to insert special markers into a statement string, and then bind data values
to them when you issue the statement. In this case, the API takes care of escaping special characters in
the values for you.

9.1.2 Numeric Literals

Number literals include exact-value (integer and DECIMAL) literals and approximate-value (floating-point)
literals.

Integers are represented as a sequence of digits. Numbers may include . as a decimal separator.
Numbers may be preceded by - or + to indicate a negative or positive value, respectively. Numbers
represented in scientific notation with a mantissa and exponent are approximate-value numbers.

Exact-value numeric literals have an integer part or fractional part, or both. They may be signed. Examples:
1, .2, 3.4, -5, -6.78, +9.10.

Approximate-value numeric literals are represented in scientific notation with a mantissa and exponent.
Either or both parts may be signed. Examples: 1.2E3, 1.2E-3, -1.2E3, -1.2E-3.

Two numbers that look similar may be treated differently. For example, 2.34 is an exact-value (fixed-point)
number, whereas 2.34E0 is an approximate-value (floating-point) number.

The DECIMAL data type is a fixed-point type and calculations are exact. In MySQL, the DECIMAL type
has several synonyms: NUMERIC, DEC, FIXED. The integer types also are exact-value types. For more
information about exact-value calculations, see Section 12.21, “Precision Math”.

The FLOAT and DOUBLE data types are floating-point types and calculations are approximate. In MySQL,
types that are synonymous with FLOAT or DOUBLE are DOUBLE PRECISION and REAL.

An integer may be used in floating-point context; it is interpreted as the equivalent floating-point number.

9.1.3 Date and Time Literals

• Standard SQL and ODBC Date and Time Literals

• String and Numeric Literals in Date and Time Context

1654

https://dev.mysql.com/doc/c-api/5.7/en/mysql-real-escape-string-quote.html
https://dev.mysql.com/doc/c-api/5.7/en/mysql-real-escape-string-quote.html

Date and Time Literals

Date and time values can be represented in several formats, such as quoted strings or as numbers,
depending on the exact type of the value and other factors. For example, in contexts where MySQL
expects a date, it interprets any of '2015-07-21', '20150721', and 20150721 as a date.

This section describes the acceptable formats for date and time literals. For more information about the
temporal data types, such as the range of permitted values, see Section 11.2, “Date and Time Data
Types”.

Standard SQL and ODBC Date and Time Literals

Standard SQL requires temporal literals to be specified using a type keyword and a string. The space
between the keyword and string is optional.

DATE 'str'
TIME 'str'
TIMESTAMP 'str'

MySQL recognizes but, unlike standard SQL, does not require the type keyword. Applications that are to
be standard-compliant should include the type keyword for temporal literals.

MySQL also recognizes the ODBC syntax corresponding to the standard SQL syntax:

{ d 'str' }
{ t 'str' }
{ ts 'str' }

MySQL uses the type keywords and the ODBC constructions to produce DATE, TIME, and DATETIME
values, respectively, including a trailing fractional seconds part if specified. The TIMESTAMP syntax
produces a DATETIME value in MySQL because DATETIME has a range that more closely corresponds to
the standard SQL TIMESTAMP type, which has a year range from 0001 to 9999. (The MySQL TIMESTAMP
year range is 1970 to 2038.)

String and Numeric Literals in Date and Time Context

MySQL recognizes DATE values in these formats:

• As a string in either 'YYYY-MM-DD' or 'YY-MM-DD' format. A “relaxed” syntax is permitted: Any
punctuation character may be used as the delimiter between date parts. For example, '2012-12-31',
'2012/12/31', '2012^12^31', and '2012@12@31' are equivalent.

• As a string with no delimiters in either 'YYYYMMDD' or 'YYMMDD' format, provided that the string makes
sense as a date. For example, '20070523' and '070523' are interpreted as '2007-05-23', but
'071332' is illegal (it has nonsensical month and day parts) and becomes '0000-00-00'.

• As a number in either YYYYMMDD or YYMMDD format, provided that the number makes sense as a date.
For example, 19830905 and 830905 are interpreted as '1983-09-05'.

MySQL recognizes DATETIME and TIMESTAMP values in these formats:

• As a string in either 'YYYY-MM-DD hh:mm:ss' or 'YY-MM-DD hh:mm:ss' format. A “relaxed” syntax
is permitted here, too: Any punctuation character may be used as the delimiter between date parts or
time parts. For example, '2012-12-31 11:30:45', '2012^12^31 11+30+45', '2012/12/31
11*30*45', and '2012@12@31 11^30^45' are equivalent.

The only delimiter recognized between a date and time part and a fractional seconds part is the decimal
point.

1655

Date and Time Literals

The date and time parts can be separated by T rather than a space. For example, '2012-12-31
11:30:45' '2012-12-31T11:30:45' are equivalent.

• As a string with no delimiters in either 'YYYYMMDDhhmmss' or 'YYMMDDhhmmss' format, provided
that the string makes sense as a date. For example, '20070523091528' and '070523091528' are
interpreted as '2007-05-23 09:15:28', but '071122129015' is illegal (it has a nonsensical minute
part) and becomes '0000-00-00 00:00:00'.

• As a number in either YYYYMMDDhhmmss or YYMMDDhhmmss format, provided that the number
makes sense as a date. For example, 19830905132800 and 830905132800 are interpreted as
'1983-09-05 13:28:00'.

A DATETIME or TIMESTAMP value can include a trailing fractional seconds part in up to microseconds
(6 digits) precision. The fractional part should always be separated from the rest of the time by a decimal
point; no other fractional seconds delimiter is recognized. For information about fractional seconds support
in MySQL, see Section 11.2.7, “Fractional Seconds in Time Values”.

Dates containing two-digit year values are ambiguous because the century is unknown. MySQL interprets
two-digit year values using these rules:

• Year values in the range 70-99 become 1970-1999.

• Year values in the range 00-69 become 2000-2069.

See also Section 11.2.10, “2-Digit Years in Dates”.

For values specified as strings that include date part delimiters, it is unnecessary to specify two digits for
month or day values that are less than 10. '2015-6-9' is the same as '2015-06-09'. Similarly, for
values specified as strings that include time part delimiters, it is unnecessary to specify two digits for hour,
minute, or second values that are less than 10. '2015-10-30 1:2:3' is the same as '2015-10-30
01:02:03'.

Values specified as numbers should be 6, 8, 12, or 14 digits long. If a number is 8 or 14 digits long, it is
assumed to be in YYYYMMDD or YYYYMMDDhhmmss format and that the year is given by the first 4 digits.
If the number is 6 or 12 digits long, it is assumed to be in YYMMDD or YYMMDDhhmmss format and that the
year is given by the first 2 digits. Numbers that are not one of these lengths are interpreted as though
padded with leading zeros to the closest length.

Values specified as nondelimited strings are interpreted according their length. For a string 8 or 14
characters long, the year is assumed to be given by the first 4 characters. Otherwise, the year is assumed
to be given by the first 2 characters. The string is interpreted from left to right to find year, month, day,
hour, minute, and second values, for as many parts as are present in the string. This means you should not
use strings that have fewer than 6 characters. For example, if you specify '9903', thinking that represents
March, 1999, MySQL converts it to the “zero” date value. This occurs because the year and month values
are 99 and 03, but the day part is completely missing. However, you can explicitly specify a value of zero
to represent missing month or day parts. For example, to insert the value '1999-03-00', use '990300'.

MySQL recognizes TIME values in these formats:

• As a string in 'D hh:mm:ss' format. You can also use one of the following “relaxed” syntaxes:
'hh:mm:ss', 'hh:mm', 'D hh:mm', 'D hh', or 'ss'. Here D represents days and can have a value
from 0 to 34.

• As a string with no delimiters in 'hhmmss' format, provided that it makes sense as a time. For example,
'101112' is understood as '10:11:12', but '109712' is illegal (it has a nonsensical minute part)
and becomes '00:00:00'.

1656

Hexadecimal Literals

• As a number in hhmmss format, provided that it makes sense as a time. For example, 101112 is
understood as '10:11:12'. The following alternative formats are also understood: ss, mmss, or
hhmmss.

A trailing fractional seconds part is recognized in the 'D hh:mm:ss.fraction',
'hh:mm:ss.fraction', 'hhmmss.fraction', and hhmmss.fraction time formats, where
fraction is the fractional part in up to microseconds (6 digits) precision. The fractional part should
always be separated from the rest of the time by a decimal point; no other fractional seconds delimiter is
recognized. For information about fractional seconds support in MySQL, see Section 11.2.7, “Fractional
Seconds in Time Values”.

For TIME values specified as strings that include a time part delimiter, it is unnecessary to specify two
digits for hours, minutes, or seconds values that are less than 10. '8:3:2' is the same as '08:03:02'.

9.1.4 Hexadecimal Literals

Hexadecimal literal values are written using X'val' or 0xval notation, where val contains hexadecimal
digits (0..9, A..F). Lettercase of the digits and of any leading X does not matter. A leading 0x is case-
sensitive and cannot be written as 0X.

Legal hexadecimal literals:

X'01AF'
X'01af'
x'01AF'
x'01af'
0x01AF
0x01af

Illegal hexadecimal literals:

X'0G' (G is not a hexadecimal digit)
0X01AF (0X must be written as 0x)

Values written using X'val' notation must contain an even number of digits or a syntax error occurs. To
correct the problem, pad the value with a leading zero:

mysql> SET @s = X'FFF';
ERROR 1064 (42000): You have an error in your SQL syntax;
check the manual that corresponds to your MySQL server
version for the right syntax to use near 'X'FFF''

mysql> SET @s = X'0FFF';
Query OK, 0 rows affected (0.00 sec)

Values written using 0xval notation that contain an odd number of digits are treated as having an extra
leading 0. For example, 0xaaa is interpreted as 0x0aaa.

By default, a hexadecimal literal is a binary string, where each pair of hexadecimal digits represents a
character:

mysql> SELECT X'4D7953514C', CHARSET(X'4D7953514C');
+---------------+------------------------+
| X'4D7953514C' | CHARSET(X'4D7953514C') |
+---------------+------------------------+
| MySQL | binary |
+---------------+------------------------+
mysql> SELECT 0x5461626c65, CHARSET(0x5461626c65);
+--------------+-----------------------+
| 0x5461626c65 | CHARSET(0x5461626c65) |
+--------------+-----------------------+

1657

Hexadecimal Literals

| Table | binary |
+--------------+-----------------------+

A hexadecimal literal may have an optional character set introducer and COLLATE clause, to designate it
as a string that uses a particular character set and collation:

[_charset_name] X'val' [COLLATE collation_name]

Examples:

SELECT _latin1 X'4D7953514C';
SELECT _utf8 0x4D7953514C COLLATE utf8_danish_ci;

The examples use X'val' notation, but 0xval notation permits introducers as well. For information about
introducers, see Section 10.3.8, “Character Set Introducers”.

In numeric contexts, MySQL treats a hexadecimal literal like a BIGINT UNSIGNED (64-bit unsigned
integer). To ensure numeric treatment of a hexadecimal literal, use it in numeric context. Ways to do this
include adding 0 or using CAST(... AS UNSIGNED). For example, a hexadecimal literal assigned to
a user-defined variable is a binary string by default. To assign the value as a number, use it in numeric
context:

mysql> SET @v1 = X'41';
mysql> SET @v2 = X'41'+0;
mysql> SET @v3 = CAST(X'41' AS UNSIGNED);
mysql> SELECT @v1, @v2, @v3;
+------+------+------+
| @v1 | @v2 | @v3 |
+------+------+------+
| A | 65 | 65 |
+------+------+------+

An empty hexadecimal value (X'') evaluates to a zero-length binary string. Converted to a number, it
produces 0:

mysql> SELECT CHARSET(X''), LENGTH(X'');
+--------------+-------------+
| CHARSET(X'') | LENGTH(X'') |
+--------------+-------------+
| binary | 0 |
+--------------+-------------+
mysql> SELECT X''+0;
+-------+
| X''+0 |
+-------+
| 0 |
+-------+

The X'val' notation is based on standard SQL. The 0x notation is based on ODBC, for which
hexadecimal strings are often used to supply values for BLOB columns.

To convert a string or a number to a string in hexadecimal format, use the HEX() function:

mysql> SELECT HEX('cat');
+------------+
| HEX('cat') |
+------------+
| 636174 |
+------------+
mysql> SELECT X'636174';
+-----------+
| X'636174' |
+-----------+

1658

Bit-Value Literals

| cat |
+-----------+

9.1.5 Bit-Value Literals

Bit-value literals are written using b'val' or 0bval notation. val is a binary value written using zeros and
ones. Lettercase of any leading b does not matter. A leading 0b is case-sensitive and cannot be written as
0B.

Legal bit-value literals:

b'01'
B'01'
0b01

Illegal bit-value literals:

b'2' (2 is not a binary digit)
0B01 (0B must be written as 0b)

By default, a bit-value literal is a binary string:

mysql> SELECT b'1000001', CHARSET(b'1000001');
+------------+---------------------+
| b'1000001' | CHARSET(b'1000001') |
+------------+---------------------+
| A | binary |
+------------+---------------------+
mysql> SELECT 0b1100001, CHARSET(0b1100001);
+-----------+--------------------+
| 0b1100001 | CHARSET(0b1100001) |
+-----------+--------------------+
| a | binary |
+-----------+--------------------+

A bit-value literal may have an optional character set introducer and COLLATE clause, to designate it as a
string that uses a particular character set and collation:

[_charset_name] b'val' [COLLATE collation_name]

Examples:

SELECT _latin1 b'1000001';
SELECT _utf8 0b1000001 COLLATE utf8_danish_ci;

The examples use b'val' notation, but 0bval notation permits introducers as well. For information about
introducers, see Section 10.3.8, “Character Set Introducers”.

In numeric contexts, MySQL treats a bit literal like an integer. To ensure numeric treatment of a bit literal,
use it in numeric context. Ways to do this include adding 0 or using CAST(... AS UNSIGNED). For
example, a bit literal assigned to a user-defined variable is a binary string by default. To assign the value
as a number, use it in numeric context:

mysql> SET @v1 = b'1100001';
mysql> SET @v2 = b'1100001'+0;
mysql> SET @v3 = CAST(b'1100001' AS UNSIGNED);
mysql> SELECT @v1, @v2, @v3;
+------+------+------+
| @v1 | @v2 | @v3 |
+------+------+------+
| a | 97 | 97 |
+------+------+------+

1659

Boolean Literals

An empty bit value (b'') evaluates to a zero-length binary string. Converted to a number, it produces 0:

mysql> SELECT CHARSET(b''), LENGTH(b'');
+--------------+-------------+
| CHARSET(b'') | LENGTH(b'') |
+--------------+-------------+
| binary | 0 |
+--------------+-------------+
mysql> SELECT b''+0;
+-------+
| b''+0 |
+-------+
| 0 |
+-------+

Bit-value notation is convenient for specifying values to be assigned to BIT columns:

mysql> CREATE TABLE t (b BIT(8));
mysql> INSERT INTO t SET b = b'11111111';
mysql> INSERT INTO t SET b = b'1010';
mysql> INSERT INTO t SET b = b'0101';

Bit values in result sets are returned as binary values, which may not display well. To convert a bit value to
printable form, use it in numeric context or use a conversion function such as BIN() or HEX(). High-order
0 digits are not displayed in the converted value.

mysql> SELECT b+0, BIN(b), OCT(b), HEX(b) FROM t;
+------+----------+--------+--------+
| b+0 | BIN(b) | OCT(b) | HEX(b) |
+------+----------+--------+--------+
255	11111111	377	FF
10	1010	12	A
5	101	5	5
+------+----------+--------+--------+

9.1.6 Boolean Literals

The constants TRUE and FALSE evaluate to 1 and 0, respectively. The constant names can be written in
any lettercase.

mysql> SELECT TRUE, true, FALSE, false;
 -> 1, 1, 0, 0

9.1.7 NULL Values

The NULL value means “no data.” NULL can be written in any lettercase. A synonym is \N (case-sensitive).
Treatment of \N as a synonym for NULL in SQL statements is deprecated as of MySQL 5.7.18 and is
removed in MySQL 8.0; use NULL instead.

Be aware that the NULL value is different from values such as 0 for numeric types or the empty string for
string types. For more information, see Section B.3.4.3, “Problems with NULL Values”.

For text file import or export operations performed with LOAD DATA or SELECT ... INTO OUTFILE,
NULL is represented by the \N sequence. See Section 13.2.6, “LOAD DATA Statement”. Use of \N in text
files is unaffected by the deprecation of \N in SQL statements.

For sorting with ORDER BY, NULL values sort before other values for ascending sorts, after other values for
descending sorts.

9.2 Schema Object Names

1660

Schema Object Names

Certain objects within MySQL, including database, table, index, column, alias, view, stored procedure,
partition, tablespace, and other object names are known as identifiers. This section describes the
permissible syntax for identifiers in MySQL. Section 9.2.1, “Identifier Length Limits”, indicates the maximum
length of each type of identifier. Section 9.2.3, “Identifier Case Sensitivity”, describes which types of
identifiers are case-sensitive and under what conditions.

An identifier may be quoted or unquoted. If an identifier contains special characters or is a reserved word,
you must quote it whenever you refer to it. (Exception: A reserved word that follows a period in a qualified
name must be an identifier, so it need not be quoted.) Reserved words are listed at Section 9.3, “Keywords
and Reserved Words”.

Internally, identifiers are converted to and are stored as Unicode (UTF-8). The permissible Unicode
characters in identifiers are those in the Basic Multilingual Plane (BMP). Supplementary characters are not
permitted. Identifiers thus may contain these characters:

• Permitted characters in unquoted identifiers:

• ASCII: [0-9,a-z,A-Z$_] (basic Latin letters, digits 0-9, dollar, underscore)

• Extended: U+0080 .. U+FFFF

• Permitted characters in quoted identifiers include the full Unicode Basic Multilingual Plane (BMP), except
U+0000:

• ASCII: U+0001 .. U+007F

• Extended: U+0080 .. U+FFFF

• ASCII NUL (U+0000) and supplementary characters (U+10000 and higher) are not permitted in quoted
or unquoted identifiers.

• Identifiers may begin with a digit but unless quoted may not consist solely of digits.

• Database, table, and column names cannot end with space characters.

The identifier quote character is the backtick (`):

mysql> SELECT * FROM `select` WHERE `select`.id > 100;

If the ANSI_QUOTES SQL mode is enabled, it is also permissible to quote identifiers within double
quotation marks:

mysql> CREATE TABLE "test" (col INT);
ERROR 1064: You have an error in your SQL syntax...
mysql> SET sql_mode='ANSI_QUOTES';
mysql> CREATE TABLE "test" (col INT);
Query OK, 0 rows affected (0.00 sec)

The ANSI_QUOTES mode causes the server to interpret double-quoted strings as identifiers. Consequently,
when this mode is enabled, string literals must be enclosed within single quotation marks. They
cannot be enclosed within double quotation marks. The server SQL mode is controlled as described in
Section 5.1.10, “Server SQL Modes”.

Identifier quote characters can be included within an identifier if you quote the identifier. If the character
to be included within the identifier is the same as that used to quote the identifier itself, then you need to
double the character. The following statement creates a table named a`b that contains a column named
c"d:

mysql> CREATE TABLE `a``b` (`c"d` INT);

1661

Identifier Length Limits

In the select list of a query, a quoted column alias can be specified using identifier or string quoting
characters:

mysql> SELECT 1 AS `one`, 2 AS 'two';
+-----+-----+
| one | two |
+-----+-----+
| 1 | 2 |
+-----+-----+

Elsewhere in the statement, quoted references to the alias must use identifier quoting or the reference is
treated as a string literal.

It is recommended that you do not use names that begin with Me or MeN, where M and N are integers. For
example, avoid using 1e as an identifier, because an expression such as 1e+3 is ambiguous. Depending
on context, it might be interpreted as the expression 1e + 3 or as the number 1e+3.

Be careful when using MD5() to produce table names because it can produce names in illegal or
ambiguous formats such as those just described.

A user variable cannot be used directly in an SQL statement as an identifier or as part of an identifier. See
Section 9.4, “User-Defined Variables”, for more information and examples of workarounds.

Special characters in database and table names are encoded in the corresponding file system names as
described in Section 9.2.4, “Mapping of Identifiers to File Names”. If you have databases or tables from an
older version of MySQL that contain special characters and for which the underlying directory names or file
names have not been updated to use the new encoding, the server displays their names with a prefix of
#mysql50#. For information about referring to such names or converting them to the newer encoding, see
that section.

9.2.1 Identifier Length Limits

The following table describes the maximum length for each type of identifier.

Identifier Type Maximum Length (characters)

Database 64 (NDB storage engine: 63)

Table 64 (NDB storage engine: 63)

Column 64

Index 64

Constraint 64

Stored Program 64

View 64

Tablespace 64

Server 64

Log File Group 64

Alias 256 (see exception following table)

Compound Statement Label 16

User-Defined Variable 64

Aliases for column names in CREATE VIEW statements are checked against the maximum column length
of 64 characters (not the maximum alias length of 256 characters).

1662

Identifier Qualifiers

For constraint definitions that include no constraint name, the server internally generates a name derived
from the associated table name. For example, internally generated foreign key constraint names consist
of the table name plus _ibfk_ and a number. If the table name is close to the length limit for constraint
names, the additional characters required for the constraint name may cause that name to exceed the limit,
resulting in an error.

Identifiers are stored using Unicode (UTF-8). This applies to identifiers in table definitions that are stored
in .frm files and to identifiers stored in the grant tables in the mysql database. The sizes of the identifier
string columns in the grant tables are measured in characters. You can use multibyte characters without
reducing the number of characters permitted for values stored in these columns.

NDB Cluster imposes a maximum length of 63 characters for names of databases and tables. See
Section 21.2.7.5, “Limits Associated with Database Objects in NDB Cluster”.

Values such as user name and host names in MySQL account names are strings rather than identifiers.
For information about the maximum length of such values as stored in grant tables, see Grant Table Scope
Column Properties.

9.2.2 Identifier Qualifiers

Object names may be unqualified or qualified. An unqualified name is permitted in contexts where
interpretation of the name is unambiguous. A qualified name includes at least one qualifier to clarify the
interpretive context by overriding a default context or providing missing context.

For example, this statement creates a table using the unqualified name t1:

CREATE TABLE t1 (i INT);

Because t1 includes no qualifier to specify a database, the statement creates the table in the default
database. If there is no default database, an error occurs.

This statement creates a table using the qualified name db1.t1:

CREATE TABLE db1.t1 (i INT);

Because db1.t1 includes a database qualifier db1, the statement creates t1 in the database named db1,
regardless of the default database. The qualifier must be specified if there is no default database. The
qualifier may be specified if there is a default database, to specify a database different from the default, or
to make the database explicit if the default is the same as the one specified.

Qualifiers have these characteristics:

• An unqualified name consists of a single identifier. A qualified name consists of multiple identifiers.

• The components of a multiple-part name must be separated by period (.) characters. The initial parts of
a multiple-part name act as qualifiers that affect the context within which to interpret the final identifier.

• The qualifier character is a separate token and need not be contiguous with the associated identifiers.
For example, tbl_name.col_name and tbl_name . col_name are equivalent.

• If any components of a multiple-part name require quoting, quote them individually rather than quoting
the name as a whole. For example, write `my-table`.`my-column`, not `my-table.my-column`.

• A reserved word that follows a period in a qualified name must be an identifier, so in that context it need
not be quoted.

• The syntax .tbl_name means the table tbl_name in the default database.

1663

Identifier Qualifiers

Note

This syntax is deprecated as of MySQL 5.7.20; expect it to be removed in a future
version of MySQL.

The permitted qualifiers for object names depend on the object type:

• A database name is fully qualified and takes no qualifier:

CREATE DATABASE db1;

• A table, view, or stored program name may be given a database-name qualifier. Examples of unqualified
and qualified names in CREATE statements:

CREATE TABLE mytable ...;
CREATE VIEW myview ...;
CREATE PROCEDURE myproc ...;
CREATE FUNCTION myfunc ...;
CREATE EVENT myevent ...;

CREATE TABLE mydb.mytable ...;
CREATE VIEW mydb.myview ...;
CREATE PROCEDURE mydb.myproc ...;
CREATE FUNCTION mydb.myfunc ...;
CREATE EVENT mydb.myevent ...;

• A trigger is associated with a table, so any qualifier applies to the table name:

CREATE TRIGGER mytrigger ... ON mytable ...;

CREATE TRIGGER mytrigger ... ON mydb.mytable ...;

• A column name may be given multiple qualifiers to indicate context in statements that reference it, as
shown in the following table.

Column Reference Meaning

col_name Column col_name from whichever table used in
the statement contains a column of that name

tbl_name.col_name Column col_name from table tbl_name of the
default database

db_name.tbl_name.col_name Column col_name from table tbl_name of the
database db_name

In other words, a column name may be given a table-name qualifier, which itself may be given
a database-name qualifier. Examples of unqualified and qualified column references in SELECT
statements:

SELECT c1 FROM mytable
WHERE c2 > 100;

SELECT mytable.c1 FROM mytable
WHERE mytable.c2 > 100;

SELECT mydb.mytable.c1 FROM mydb.mytable
WHERE mydb.mytable.c2 > 100;

You need not specify a qualifier for an object reference in a statement unless the unqualified reference is
ambiguous. Suppose that column c1 occurs only in table t1, c2 only in t2, and c in both t1 and t2. Any

1664

Identifier Case Sensitivity

unqualified reference to c is ambiguous in a statement that refers to both tables and must be qualified as
t1.c or t2.c to indicate which table you mean:

SELECT c1, c2, t1.c FROM t1 INNER JOIN t2
WHERE t2.c > 100;

Similarly, to retrieve from a table t in database db1 and from a table t in database db2 in the same
statement, you must qualify the table references: For references to columns in those tables, qualifiers are
required only for column names that appear in both tables. Suppose that column c1 occurs only in table
db1.t, c2 only in db2.t, and c in both db1.t and db2.t. In this case, c is ambiguous and must be
qualified but c1 and c2 need not be:

SELECT c1, c2, db1.t.c FROM db1.t INNER JOIN db2.t
WHERE db2.t.c > 100;

Table aliases enable qualified column references to be written more simply:

SELECT c1, c2, t1.c FROM db1.t AS t1 INNER JOIN db2.t AS t2
WHERE t2.c > 100;

9.2.3 Identifier Case Sensitivity

In MySQL, databases correspond to directories within the data directory. Each table within a database
corresponds to at least one file within the database directory (and possibly more, depending on the
storage engine). Triggers also correspond to files. Consequently, the case sensitivity of the underlying
operating system plays a part in the case sensitivity of database, table, and trigger names. This means
such names are not case-sensitive in Windows, but are case-sensitive in most varieties of Unix. One
notable exception is macOS, which is Unix-based but uses a default file system type (HFS+) that is not
case-sensitive. However, macOS also supports UFS volumes, which are case-sensitive just as on any
Unix. See Section 1.6.1, “MySQL Extensions to Standard SQL”. The lower_case_table_names system
variable also affects how the server handles identifier case sensitivity, as described later in this section.

Note

Although database, table, and trigger names are not case-sensitive on some
platforms, you should not refer to one of these using different cases within the same
statement. The following statement would not work because it refers to a table both
as my_table and as MY_TABLE:

mysql> SELECT * FROM my_table WHERE MY_TABLE.col=1;

Column, index, stored routine, and event names are not case-sensitive on any platform, nor are column
aliases.

However, names of logfile groups are case-sensitive. This differs from standard SQL.

By default, table aliases are case-sensitive on Unix, but not so on Windows or macOS. The following
statement would not work on Unix, because it refers to the alias both as a and as A:

mysql> SELECT col_name FROM tbl_name AS a
 WHERE a.col_name = 1 OR A.col_name = 2;

However, this same statement is permitted on Windows. To avoid problems caused by such differences,
it is best to adopt a consistent convention, such as always creating and referring to databases and tables
using lowercase names. This convention is recommended for maximum portability and ease of use.

How table and database names are stored on disk and used in MySQL is affected by the
lower_case_table_names system variable, which you can set when starting mysqld.

1665

Identifier Case Sensitivity

lower_case_table_names can take the values shown in the following table. This variable does not
affect case sensitivity of trigger identifiers. On Unix, the default value of lower_case_table_names is 0.
On Windows, the default value is 1. On macOS, the default value is 2.

Value Meaning

0 Table and database names are stored on disk
using the lettercase specified in the CREATE
TABLE or CREATE DATABASE statement. Name
comparisons are case-sensitive. You should not
set this variable to 0 if you are running MySQL on a
system that has case-insensitive file names (such
as Windows or macOS). If you force this variable
to 0 with --lower-case-table-names=0 on a
case-insensitive file system and access MyISAM
tablenames using different lettercases, index
corruption may result.

1 Table names are stored in lowercase on disk and
name comparisons are not case-sensitive. MySQL
converts all table names to lowercase on storage
and lookup. This behavior also applies to database
names and table aliases.

2 Table and database names are stored on disk using
the lettercase specified in the CREATE TABLE
or CREATE DATABASE statement, but MySQL
converts them to lowercase on lookup. Name
comparisons are not case-sensitive. This works
only on file systems that are not case-sensitive!
InnoDB table names and view names are stored in
lowercase, as for lower_case_table_names=1.

If you are using MySQL on only one platform, you do not normally have to change the
lower_case_table_names variable from its default value. However, you may encounter difficulties if you
want to transfer tables between platforms that differ in file system case sensitivity. For example, on Unix,
you can have two different tables named my_table and MY_TABLE, but on Windows these two names are
considered identical. To avoid data transfer problems arising from lettercase of database or table names,
you have two options:

• Use lower_case_table_names=1 on all systems. The main disadvantage with this is that when you
use SHOW TABLES or SHOW DATABASES, you do not see the names in their original lettercase.

• Use lower_case_table_names=0 on Unix and lower_case_table_names=2 on Windows. This
preserves the lettercase of database and table names. The disadvantage of this is that you must ensure
that your statements always refer to your database and table names with the correct lettercase on
Windows. If you transfer your statements to Unix, where lettercase is significant, they do not work if the
lettercase is incorrect.

Exception: If you are using InnoDB tables and you are trying to avoid these data transfer problems,
you should set lower_case_table_names to 1 on all platforms to force names to be converted to
lowercase.

If you plan to set the lower_case_table_names system variable to 1 on Unix, you must first convert
your old database and table names to lowercase before stopping mysqld and restarting it with the new
variable setting. To do this for an individual table, use RENAME TABLE:

1666

Mapping of Identifiers to File Names

RENAME TABLE T1 TO t1;

To convert one or more entire databases, dump them before setting lower_case_table_names, then
drop the databases, and reload them after setting lower_case_table_names:

1. Use mysqldump to dump each database:

mysqldump --databases db1 > db1.sql
mysqldump --databases db2 > db2.sql
...

Do this for each database that must be recreated.

2. Use DROP DATABASE to drop each database.

3. Stop the server, set lower_case_table_names, and restart the server.

4. Reload the dump file for each database. Because lower_case_table_names is set, each database
and table name is converted to lowercase as it is re-created:

mysql < db1.sql
mysql < db2.sql
...

Object names may be considered duplicates if their uppercase forms are equal according to a binary
collation. That is true for names of cursors, conditions, procedures, functions, savepoints, stored routine
parameters, stored program local variables, and plugins. It is not true for names of columns, constraints,
databases, partitions, statements prepared with PREPARE, tables, triggers, users, and user-defined
variables.

File system case sensitivity can affect searches in string columns of INFORMATION_SCHEMA tables. For
more information, see Section 10.8.7, “Using Collation in INFORMATION_SCHEMA Searches”.

9.2.4 Mapping of Identifiers to File Names

There is a correspondence between database and table identifiers and names in the file system. For the
basic structure, MySQL represents each database as a directory in the data directory, and each table by
one or more files in the appropriate database directory. For the table format files (.FRM), the data is always
stored in this structure and location.

For the data and index files, the exact representation on disk is storage engine specific. These files
may be stored in the same location as the FRM files, or the information may be stored in a separate file.
InnoDB data is stored in the InnoDB data files. If you are using tablespaces with InnoDB, then the specific
tablespace files you create are used instead.

Any character is legal in database or table identifiers except ASCII NUL (X'00'). MySQL encodes
any characters that are problematic in the corresponding file system objects when it creates database
directories or table files:

• Basic Latin letters (a..zA..Z), digits (0..9) and underscore (_) are encoded as is. Consequently, their
case sensitivity directly depends on file system features.

• All other national letters from alphabets that have uppercase/lowercase mapping are encoded as shown
in the following table. Values in the Code Range column are UCS-2 values.

Code Range Pattern Number Used Unused Blocks

00C0..017F [@][0..4][g..z] 5*20= 100 97 3 Latin-1
Supplement +

1667

Mapping of Identifiers to File Names

Code Range Pattern Number Used Unused Blocks
Latin Extended-
A

0370..03FF [@][5..9][g..z] 5*20= 100 88 12 Greek and
Coptic

0400..052F [@][g..z][0..6] 20*7= 140 137 3 Cyrillic + Cyrillic
Supplement

0530..058F [@][g..z][7..8] 20*2= 40 38 2 Armenian

2160..217F [@][g..z][9] 20*1= 20 16 4 Number Forms

0180..02AF [@][g..z][a..k] 20*11=220 203 17 Latin Extended-
B + IPA
Extensions

1E00..1EFF [@][g..z][l..r] 20*7= 140 136 4 Latin Extended
Additional

1F00..1FFF [@][g..z][s..z] 20*8= 160 144 16 Greek Extended

.... [@][a..f][g..z] 6*20= 120 0 120 RESERVED

24B6..24E9 [@][@][a..z] 26 26 0 Enclosed
Alphanumerics

FF21..FF5A [@][a..z][@] 26 26 0 Halfwidth and
Fullwidth forms

One of the bytes in the sequence encodes lettercase. For example: LATIN CAPITAL LETTER A WITH
GRAVE is encoded as @0G, whereas LATIN SMALL LETTER A WITH GRAVE is encoded as @0g. Here
the third byte (G or g) indicates lettercase. (On a case-insensitive file system, both letters are treated as
the same.)

For some blocks, such as Cyrillic, the second byte determines lettercase. For other blocks, such as
Latin1 Supplement, the third byte determines lettercase. If two bytes in the sequence are letters (as
in Greek Extended), the leftmost letter character stands for lettercase. All other letter bytes must be in
lowercase.

• All nonletter characters except underscore (_), as well as letters from alphabets that do not have
uppercase/lowercase mapping (such as Hebrew) are encoded using hexadecimal representation using
lowercase letters for hexadecimal digits a..f:

0x003F -> @003f
0xFFFF -> @ffff

The hexadecimal values correspond to character values in the ucs2 double-byte character set.

On Windows, some names such as nul, prn, and aux are encoded by appending @@@ to the name when
the server creates the corresponding file or directory. This occurs on all platforms for portability of the
corresponding database object between platforms.

If you have databases or tables from a version of MySQL older than 5.1.6 that contain special
characters and for which the underlying directory names or file names have not been updated to use
the new encoding, the server displays their names with a prefix of #mysql50# in the output from
INFORMATION_SCHEMA tables or SHOW statements. For example, if you have a table named a@b and its
name encoding has not been updated, SHOW TABLES displays it like this:

mysql> SHOW TABLES;
+----------------+

1668

Function Name Parsing and Resolution

| Tables_in_test |
+----------------+
| #mysql50#a@b |
+----------------+

To refer to such a name for which the encoding has not been updated, you must supply the #mysql50#
prefix:

mysql> SHOW COLUMNS FROM `a@b`;
ERROR 1146 (42S02): Table 'test.a@b' doesn't exist

mysql> SHOW COLUMNS FROM `#mysql50#a@b`;
+-------+---------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+-------+---------+------+-----+---------+-------+
| i | int(11) | YES | | NULL | |
+-------+---------+------+-----+---------+-------+

To update old names to eliminate the need to use the special prefix to refer to them, re-encode them with
mysqlcheck. The following commands update all names to the new encoding:

mysqlcheck --check-upgrade --all-databases
mysqlcheck --fix-db-names --fix-table-names --all-databases

To check only specific databases or tables, omit --all-databases and provide the appropriate
database or table arguments. For information about mysqlcheck invocation syntax, see Section 4.5.3,
“mysqlcheck — A Table Maintenance Program”.

Note

The #mysql50# prefix is intended only to be used internally by the server. You
should not create databases or tables with names that use this prefix.

Also, mysqlcheck cannot fix names that contain literal instances of the @ character
that is used for encoding special characters. If you have databases or tables that
contain this character, use mysqldump to dump them before upgrading to MySQL
5.1.6 or later, and then reload the dump file after upgrading.

Note

Conversion of pre-MySQL 5.1 database names containing special characters to
5.1 format with the addition of a #mysql50# prefix is deprecated; expect it to be
removed in a future version of MySQL. Because such conversions are deprecated,
the --fix-db-names and --fix-table-names options for mysqlcheck
and the UPGRADE DATA DIRECTORY NAME clause for the ALTER DATABASE
statement are also deprecated.

Upgrades are supported only from one release series to another (for example, 5.0
to 5.1, or 5.1 to 5.5), so there should be little remaining need for conversion of older
5.0 database names to current versions of MySQL. As a workaround, upgrade a
MySQL 5.0 installation to MySQL 5.1 before upgrading to a more recent release.

9.2.5 Function Name Parsing and Resolution

MySQL supports built-in (native) functions, loadable functions, and stored functions. This section describes
how the server recognizes whether the name of a built-in function is used as a function call or as an
identifier, and how the server determines which function to use in cases when functions of different types
exist with a given name.

1669

Function Name Parsing and Resolution

• Built-In Function Name Parsing

• Function Name Resolution

Built-In Function Name Parsing

The parser uses default rules for parsing names of built-in functions. These rules can be changed by
enabling the IGNORE_SPACE SQL mode.

When the parser encounters a word that is the name of a built-in function, it must determine whether the
name signifies a function call or is instead a nonexpression reference to an identifier such as a table or
column name. For example, in the following statements, the first reference to count is a function call,
whereas the second reference is a table name:

SELECT COUNT(*) FROM mytable;
CREATE TABLE count (i INT);

The parser should recognize the name of a built-in function as indicating a function call only when parsing
what is expected to be an expression. That is, in nonexpression context, function names are permitted as
identifiers.

However, some built-in functions have special parsing or implementation considerations, so the parser
uses the following rules by default to distinguish whether their names are being used as function calls or as
identifiers in nonexpression context:

• To use the name as a function call in an expression, there must be no whitespace between the name
and the following (parenthesis character.

• Conversely, to use the function name as an identifier, it must not be followed immediately by a
parenthesis.

The requirement that function calls be written with no whitespace between the name and the parenthesis
applies only to the built-in functions that have special considerations. COUNT is one such name. The sql/
lex.h source file lists the names of these special functions for which following whitespace determines
their interpretation: names defined by the SYM_FN() macro in the symbols[] array.

The following list names the functions in MySQL 5.7 that are affected by the IGNORE_SPACE setting
and listed as special in the sql/lex.h source file. You may find it easiest to treat the no-whitespace
requirement as applying to all function calls.

• ADDDATE

• BIT_AND

• BIT_OR

• BIT_XOR

• CAST

• COUNT

• CURDATE

• CURTIME

• DATE_ADD

• DATE_SUB

1670

Function Name Parsing and Resolution

• EXTRACT

• GROUP_CONCAT

• MAX

• MID

• MIN

• NOW

• POSITION

• SESSION_USER

• STD

• STDDEV

• STDDEV_POP

• STDDEV_SAMP

• SUBDATE

• SUBSTR

• SUBSTRING

• SUM

• SYSDATE

• SYSTEM_USER

• TRIM

• VARIANCE

• VAR_POP

• VAR_SAMP

For functions not listed as special in sql/lex.h, whitespace does not matter. They are interpreted as
function calls only when used in expression context and may be used freely as identifiers otherwise. ASCII
is one such name. However, for these nonaffected function names, interpretation may vary in expression
context: func_name () is interpreted as a built-in function if there is one with the given name; if not,
func_name () is interpreted as a loadable function or stored function if one exists with that name.

The IGNORE_SPACE SQL mode can be used to modify how the parser treats function names that are
whitespace-sensitive:

• With IGNORE_SPACE disabled, the parser interprets the name as a function call when there is no
whitespace between the name and the following parenthesis. This occurs even when the function name
is used in nonexpression context:

mysql> CREATE TABLE count(i INT);
ERROR 1064 (42000): You have an error in your SQL syntax ...
near 'count(i INT)'

1671

Function Name Parsing and Resolution

To eliminate the error and cause the name to be treated as an identifier, either use whitespace following
the name or write it as a quoted identifier (or both):

CREATE TABLE count (i INT);
CREATE TABLE `count`(i INT);
CREATE TABLE `count` (i INT);

• With IGNORE_SPACE enabled, the parser loosens the requirement that there be no whitespace between
the function name and the following parenthesis. This provides more flexibility in writing function calls.
For example, either of the following function calls are legal:

SELECT COUNT(*) FROM mytable;
SELECT COUNT (*) FROM mytable;

However, enabling IGNORE_SPACE also has the side effect that the parser treats the affected function
names as reserved words (see Section 9.3, “Keywords and Reserved Words”). This means that a space
following the name no longer signifies its use as an identifier. The name can be used in function calls
with or without following whitespace, but causes a syntax error in nonexpression context unless it is
quoted. For example, with IGNORE_SPACE enabled, both of the following statements fail with a syntax
error because the parser interprets count as a reserved word:

CREATE TABLE count(i INT);
CREATE TABLE count (i INT);

To use the function name in nonexpression context, write it as a quoted identifier:

CREATE TABLE `count`(i INT);
CREATE TABLE `count` (i INT);

To enable the IGNORE_SPACE SQL mode, use this statement:

SET sql_mode = 'IGNORE_SPACE';

IGNORE_SPACE is also enabled by certain other composite modes such as ANSI that include it in their
value:

SET sql_mode = 'ANSI';

Check Section 5.1.10, “Server SQL Modes”, to see which composite modes enable IGNORE_SPACE.

To minimize the dependency of SQL code on the IGNORE_SPACE setting, use these guidelines:

• Avoid creating loadable functions or stored functions that have the same name as a built-in function.

• Avoid using function names in nonexpression context. For example, these statements use count (one
of the affected function names affected by IGNORE_SPACE), so they fail with or without whitespace
following the name if IGNORE_SPACE is enabled:

CREATE TABLE count(i INT);
CREATE TABLE count (i INT);

If you must use a function name in nonexpression context, write it as a quoted identifier:

CREATE TABLE `count`(i INT);
CREATE TABLE `count` (i INT);

Function Name Resolution

The following rules describe how the server resolves references to function names for function creation
and invocation:

1672

Keywords and Reserved Words

• Built-in functions and loadable functions

An error occurs if you try to create a loadable function with the same name as a built-in function.

• Built-in functions and stored functions

It is possible to create a stored function with the same name as a built-in function, but to invoke
the stored function it is necessary to qualify it with a schema name. For example, if you create a
stored function named PI in the test schema, invoke it as test.PI() because the server resolves
PI() without a qualifier as a reference to the built-in function. The server generates a warning if the
stored function name collides with a built-in function name. The warning can be displayed with SHOW
WARNINGS.

• Loadable functions and stored functions

Loadable functions and stored functions share the same namespace, so you cannot create a loadable
function and a stored function with the same name.

The preceding function name resolution rules have implications for upgrading to versions of MySQL that
implement new built-in functions:

• If you have already created a loadable function with a given name and upgrade MySQL to a version that
implements a new built-in function with the same name, the loadable function becomes inaccessible. To
correct this, use DROP FUNCTION to drop the loadable function and CREATE FUNCTION to re-create
the loadable function with a different nonconflicting name. Then modify any affected code to use the new
name.

• If a new version of MySQL implements a built-in function with the same name as an existing stored
function, you have two choices: Rename the stored function to use a nonconflicting name, or change
calls to the function so that they use a schema qualifier (that is, use schema_name.func_name()
syntax). In either case, modify any affected code accordingly.

9.3 Keywords and Reserved Words
Keywords are words that have significance in SQL. Certain keywords, such as SELECT, DELETE, or
BIGINT, are reserved and require special treatment for use as identifiers such as table and column names.
This may also be true for the names of built-in functions.

Nonreserved keywords are permitted as identifiers without quoting. Reserved words are permitted as
identifiers if you quote them as described in Section 9.2, “Schema Object Names”:

mysql> CREATE TABLE interval (begin INT, end INT);
ERROR 1064 (42000): You have an error in your SQL syntax ...
near 'interval (begin INT, end INT)'

BEGIN and END are keywords but not reserved, so their use as identifiers does not require quoting.
INTERVAL is a reserved keyword and must be quoted to be used as an identifier:

mysql> CREATE TABLE `interval` (begin INT, end INT);
Query OK, 0 rows affected (0.01 sec)

Exception: A word that follows a period in a qualified name must be an identifier, so it need not be quoted
even if it is reserved:

mysql> CREATE TABLE mydb.interval (begin INT, end INT);
Query OK, 0 rows affected (0.01 sec)

Names of built-in functions are permitted as identifiers but may require care to be used as such. For
example, COUNT is acceptable as a column name. However, by default, no whitespace is permitted in

1673

MySQL 5.7 Keywords and Reserved Words

function invocations between the function name and the following (character. This requirement enables
the parser to distinguish whether the name is used in a function call or in nonfunction context. For further
details on recognition of function names, see Section 9.2.5, “Function Name Parsing and Resolution”.

• MySQL 5.7 Keywords and Reserved Words

• MySQL 5.7 New Keywords and Reserved Words

• MySQL 5.7 Removed Keywords and Reserved Words

MySQL 5.7 Keywords and Reserved Words

The following list shows the keywords and reserved words in MySQL 5.7, along with changes to individual
words from version to version. Reserved keywords are marked with (R). In addition, _FILENAME is
reserved.

At some point, you might upgrade to a higher version, so it is a good idea to have a look at future reserved
words, too. You can find these in the manuals that cover higher versions of MySQL. Most of the reserved
words in the list are forbidden by standard SQL as column or table names (for example, GROUP). A few are
reserved because MySQL needs them and uses a yacc parser.

A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

A

• ACCESSIBLE (R)

• ACCOUNT; added in 5.7.6 (nonreserved)

• ACTION

• ADD (R)

• AFTER

• AGAINST

• AGGREGATE

• ALGORITHM

• ALL (R)

• ALTER (R)

• ALWAYS; added in 5.7.6 (nonreserved)

• ANALYSE

• ANALYZE (R)

• AND (R)

• ANY

• AS (R)

• ASC (R)

1674

MySQL 5.7 Keywords and Reserved Words

• ASCII

• ASENSITIVE (R)

• AT

• AUTOEXTEND_SIZE

• AUTO_INCREMENT

• AVG

• AVG_ROW_LENGTH

B

• BACKUP

• BEFORE (R)

• BEGIN

• BETWEEN (R)

• BIGINT (R)

• BINARY (R)

• BINLOG

• BIT

• BLOB (R)

• BLOCK

• BOOL

• BOOLEAN

• BOTH (R)

• BTREE

• BY (R)

• BYTE

C

• CACHE

• CALL (R)

• CASCADE (R)

• CASCADED

• CASE (R)

1675

MySQL 5.7 Keywords and Reserved Words

• CATALOG_NAME

• CHAIN

• CHANGE (R)

• CHANGED

• CHANNEL; added in 5.7.6 (nonreserved)

• CHAR (R)

• CHARACTER (R)

• CHARSET

• CHECK (R)

• CHECKSUM

• CIPHER

• CLASS_ORIGIN

• CLIENT

• CLOSE

• COALESCE

• CODE

• COLLATE (R)

• COLLATION

• COLUMN (R)

• COLUMNS

• COLUMN_FORMAT

• COLUMN_NAME

• COMMENT

• COMMIT

• COMMITTED

• COMPACT

• COMPLETION

• COMPRESSED

• COMPRESSION; added in 5.7.8 (nonreserved)

• CONCURRENT

1676

MySQL 5.7 Keywords and Reserved Words

• CONDITION (R)

• CONNECTION

• CONSISTENT

• CONSTRAINT (R)

• CONSTRAINT_CATALOG

• CONSTRAINT_NAME

• CONSTRAINT_SCHEMA

• CONTAINS

• CONTEXT

• CONTINUE (R)

• CONVERT (R)

• CPU

• CREATE (R)

• CROSS (R)

• CUBE

• CURRENT

• CURRENT_DATE (R)

• CURRENT_TIME (R)

• CURRENT_TIMESTAMP (R)

• CURRENT_USER (R)

• CURSOR (R)

• CURSOR_NAME

D

• DATA

• DATABASE (R)

• DATABASES (R)

• DATAFILE

• DATE

• DATETIME

• DAY

1677

MySQL 5.7 Keywords and Reserved Words

• DAY_HOUR (R)

• DAY_MICROSECOND (R)

• DAY_MINUTE (R)

• DAY_SECOND (R)

• DEALLOCATE

• DEC (R)

• DECIMAL (R)

• DECLARE (R)

• DEFAULT (R)

• DEFAULT_AUTH

• DEFINER

• DELAYED (R)

• DELAY_KEY_WRITE

• DELETE (R)

• DESC (R)

• DESCRIBE (R)

• DES_KEY_FILE

• DETERMINISTIC (R)

• DIAGNOSTICS

• DIRECTORY

• DISABLE

• DISCARD

• DISK

• DISTINCT (R)

• DISTINCTROW (R)

• DIV (R)

• DO

• DOUBLE (R)

• DROP (R)

• DUAL (R)

1678

MySQL 5.7 Keywords and Reserved Words

• DUMPFILE

• DUPLICATE

• DYNAMIC

E

• EACH (R)

• ELSE (R)

• ELSEIF (R)

• ENABLE

• ENCLOSED (R)

• ENCRYPTION; added in 5.7.11 (nonreserved)

• END

• ENDS

• ENGINE

• ENGINES

• ENUM

• ERROR

• ERRORS

• ESCAPE

• ESCAPED (R)

• EVENT

• EVENTS

• EVERY

• EXCHANGE

• EXECUTE

• EXISTS (R)

• EXIT (R)

• EXPANSION

• EXPIRE

• EXPLAIN (R)

• EXPORT

1679

MySQL 5.7 Keywords and Reserved Words

• EXTENDED

• EXTENT_SIZE

F

• FALSE (R)

• FAST

• FAULTS

• FETCH (R)

• FIELDS

• FILE

• FILE_BLOCK_SIZE; added in 5.7.6 (nonreserved)

• FILTER; added in 5.7.3 (nonreserved)

• FIRST

• FIXED

• FLOAT (R)

• FLOAT4 (R)

• FLOAT8 (R)

• FLUSH

• FOLLOWS; added in 5.7.2 (nonreserved)

• FOR (R)

• FORCE (R)

• FOREIGN (R)

• FORMAT

• FOUND

• FROM (R)

• FULL

• FULLTEXT (R)

• FUNCTION

G

• GENERAL

• GENERATED (R); added in 5.7.6 (reserved)

1680

MySQL 5.7 Keywords and Reserved Words

• GEOMETRY

• GEOMETRYCOLLECTION

• GET (R)

• GET_FORMAT

• GLOBAL

• GRANT (R)

• GRANTS

• GROUP (R)

• GROUP_REPLICATION; added in 5.7.6 (nonreserved)

H

• HANDLER

• HASH

• HAVING (R)

• HELP

• HIGH_PRIORITY (R)

• HOST

• HOSTS

• HOUR

• HOUR_MICROSECOND (R)

• HOUR_MINUTE (R)

• HOUR_SECOND (R)

I

• IDENTIFIED

• IF (R)

• IGNORE (R)

• IGNORE_SERVER_IDS

• IMPORT

• IN (R)

• INDEX (R)

• INDEXES

1681

MySQL 5.7 Keywords and Reserved Words

• INFILE (R)

• INITIAL_SIZE

• INNER (R)

• INOUT (R)

• INSENSITIVE (R)

• INSERT (R)

• INSERT_METHOD

• INSTALL

• INSTANCE; added in 5.7.11 (nonreserved)

• INT (R)

• INT1 (R)

• INT2 (R)

• INT3 (R)

• INT4 (R)

• INT8 (R)

• INTEGER (R)

• INTERVAL (R)

• INTO (R)

• INVOKER

• IO

• IO_AFTER_GTIDS (R)

• IO_BEFORE_GTIDS (R)

• IO_THREAD

• IPC

• IS (R)

• ISOLATION

• ISSUER

• ITERATE (R)

J

• JOIN (R)

1682

MySQL 5.7 Keywords and Reserved Words

• JSON; added in 5.7.8 (nonreserved)

K

• KEY (R)

• KEYS (R)

• KEY_BLOCK_SIZE

• KILL (R)

L

• LANGUAGE

• LAST

• LEADING (R)

• LEAVE (R)

• LEAVES

• LEFT (R)

• LESS

• LEVEL

• LIKE (R)

• LIMIT (R)

• LINEAR (R)

• LINES (R)

• LINESTRING

• LIST

• LOAD (R)

• LOCAL

• LOCALTIME (R)

• LOCALTIMESTAMP (R)

• LOCK (R)

• LOCKS

• LOGFILE

• LOGS

• LONG (R)

1683

MySQL 5.7 Keywords and Reserved Words

• LONGBLOB (R)

• LONGTEXT (R)

• LOOP (R)

• LOW_PRIORITY (R)

M

• MASTER

• MASTER_AUTO_POSITION

• MASTER_BIND (R)

• MASTER_CONNECT_RETRY

• MASTER_DELAY

• MASTER_HEARTBEAT_PERIOD

• MASTER_HOST

• MASTER_LOG_FILE

• MASTER_LOG_POS

• MASTER_PASSWORD

• MASTER_PORT

• MASTER_RETRY_COUNT

• MASTER_SERVER_ID

• MASTER_SSL

• MASTER_SSL_CA

• MASTER_SSL_CAPATH

• MASTER_SSL_CERT

• MASTER_SSL_CIPHER

• MASTER_SSL_CRL

• MASTER_SSL_CRLPATH

• MASTER_SSL_KEY

• MASTER_SSL_VERIFY_SERVER_CERT (R)

• MASTER_TLS_VERSION; added in 5.7.10 (nonreserved)

• MASTER_USER

• MATCH (R)

1684

MySQL 5.7 Keywords and Reserved Words

• MAXVALUE (R)

• MAX_CONNECTIONS_PER_HOUR

• MAX_QUERIES_PER_HOUR

• MAX_ROWS

• MAX_SIZE

• MAX_STATEMENT_TIME; added in 5.7.4 (nonreserved); removed in 5.7.8

• MAX_UPDATES_PER_HOUR

• MAX_USER_CONNECTIONS

• MEDIUM

• MEDIUMBLOB (R)

• MEDIUMINT (R)

• MEDIUMTEXT (R)

• MEMORY

• MERGE

• MESSAGE_TEXT

• MICROSECOND

• MIDDLEINT (R)

• MIGRATE

• MINUTE

• MINUTE_MICROSECOND (R)

• MINUTE_SECOND (R)

• MIN_ROWS

• MOD (R)

• MODE

• MODIFIES (R)

• MODIFY

• MONTH

• MULTILINESTRING

• MULTIPOINT

• MULTIPOLYGON

1685

MySQL 5.7 Keywords and Reserved Words

• MUTEX

• MYSQL_ERRNO

N

• NAME

• NAMES

• NATIONAL

• NATURAL (R)

• NCHAR

• NDB

• NDBCLUSTER

• NEVER; added in 5.7.4 (nonreserved)

• NEW

• NEXT

• NO

• NODEGROUP

• NONBLOCKING; removed in 5.7.6

• NONE

• NOT (R)

• NO_WAIT

• NO_WRITE_TO_BINLOG (R)

• NULL (R)

• NUMBER

• NUMERIC (R)

• NVARCHAR

O

• OFFSET

• OLD_PASSWORD; removed in 5.7.5

• ON (R)

• ONE

• ONLY

1686

MySQL 5.7 Keywords and Reserved Words

• OPEN

• OPTIMIZE (R)

• OPTIMIZER_COSTS (R); added in 5.7.5 (reserved)

• OPTION (R)

• OPTIONALLY (R)

• OPTIONS

• OR (R)

• ORDER (R)

• OUT (R)

• OUTER (R)

• OUTFILE (R)

• OWNER

P

• PACK_KEYS

• PAGE

• PARSER

• PARSE_GCOL_EXPR; added in 5.7.6 (reserved); became nonreserved in 5.7.8

• PARTIAL

• PARTITION (R)

• PARTITIONING

• PARTITIONS

• PASSWORD

• PHASE

• PLUGIN

• PLUGINS

• PLUGIN_DIR

• POINT

• POLYGON

• PORT

• PRECEDES; added in 5.7.2 (nonreserved)

1687

MySQL 5.7 Keywords and Reserved Words

• PRECISION (R)

• PREPARE

• PRESERVE

• PREV

• PRIMARY (R)

• PRIVILEGES

• PROCEDURE (R)

• PROCESSLIST

• PROFILE

• PROFILES

• PROXY

• PURGE (R)

Q

• QUARTER

• QUERY

• QUICK

R

• RANGE (R)

• READ (R)

• READS (R)

• READ_ONLY

• READ_WRITE (R)

• REAL (R)

• REBUILD

• RECOVER

• REDOFILE

• REDO_BUFFER_SIZE

• REDUNDANT

• REFERENCES (R)

• REGEXP (R)

1688

MySQL 5.7 Keywords and Reserved Words

• RELAY

• RELAYLOG

• RELAY_LOG_FILE

• RELAY_LOG_POS

• RELAY_THREAD

• RELEASE (R)

• RELOAD

• REMOVE

• RENAME (R)

• REORGANIZE

• REPAIR

• REPEAT (R)

• REPEATABLE

• REPLACE (R)

• REPLICATE_DO_DB; added in 5.7.3 (nonreserved)

• REPLICATE_DO_TABLE; added in 5.7.3 (nonreserved)

• REPLICATE_IGNORE_DB; added in 5.7.3 (nonreserved)

• REPLICATE_IGNORE_TABLE; added in 5.7.3 (nonreserved)

• REPLICATE_REWRITE_DB; added in 5.7.3 (nonreserved)

• REPLICATE_WILD_DO_TABLE; added in 5.7.3 (nonreserved)

• REPLICATE_WILD_IGNORE_TABLE; added in 5.7.3 (nonreserved)

• REPLICATION

• REQUIRE (R)

• RESET

• RESIGNAL (R)

• RESTORE

• RESTRICT (R)

• RESUME

• RETURN (R)

• RETURNED_SQLSTATE

1689

MySQL 5.7 Keywords and Reserved Words

• RETURNS

• REVERSE

• REVOKE (R)

• RIGHT (R)

• RLIKE (R)

• ROLLBACK

• ROLLUP

• ROTATE; added in 5.7.11 (nonreserved)

• ROUTINE

• ROW

• ROWS

• ROW_COUNT

• ROW_FORMAT

• RTREE

S

• SAVEPOINT

• SCHEDULE

• SCHEMA (R)

• SCHEMAS (R)

• SCHEMA_NAME

• SECOND

• SECOND_MICROSECOND (R)

• SECURITY

• SELECT (R)

• SENSITIVE (R)

• SEPARATOR (R)

• SERIAL

• SERIALIZABLE

• SERVER

• SESSION

1690

MySQL 5.7 Keywords and Reserved Words

• SET (R)

• SHARE

• SHOW (R)

• SHUTDOWN

• SIGNAL (R)

• SIGNED

• SIMPLE

• SLAVE

• SLOW

• SMALLINT (R)

• SNAPSHOT

• SOCKET

• SOME

• SONAME

• SOUNDS

• SOURCE

• SPATIAL (R)

• SPECIFIC (R)

• SQL (R)

• SQLEXCEPTION (R)

• SQLSTATE (R)

• SQLWARNING (R)

• SQL_AFTER_GTIDS

• SQL_AFTER_MTS_GAPS

• SQL_BEFORE_GTIDS

• SQL_BIG_RESULT (R)

• SQL_BUFFER_RESULT

• SQL_CACHE

• SQL_CALC_FOUND_ROWS (R)

• SQL_NO_CACHE

1691

MySQL 5.7 Keywords and Reserved Words

• SQL_SMALL_RESULT (R)

• SQL_THREAD

• SQL_TSI_DAY

• SQL_TSI_HOUR

• SQL_TSI_MINUTE

• SQL_TSI_MONTH

• SQL_TSI_QUARTER

• SQL_TSI_SECOND

• SQL_TSI_WEEK

• SQL_TSI_YEAR

• SSL (R)

• STACKED

• START

• STARTING (R)

• STARTS

• STATS_AUTO_RECALC

• STATS_PERSISTENT

• STATS_SAMPLE_PAGES

• STATUS

• STOP

• STORAGE

• STORED (R); added in 5.7.6 (reserved)

• STRAIGHT_JOIN (R)

• STRING

• SUBCLASS_ORIGIN

• SUBJECT

• SUBPARTITION

• SUBPARTITIONS

• SUPER

• SUSPEND

1692

MySQL 5.7 Keywords and Reserved Words

• SWAPS

• SWITCHES

T

• TABLE (R)

• TABLES

• TABLESPACE

• TABLE_CHECKSUM

• TABLE_NAME

• TEMPORARY

• TEMPTABLE

• TERMINATED (R)

• TEXT

• THAN

• THEN (R)

• TIME

• TIMESTAMP

• TIMESTAMPADD

• TIMESTAMPDIFF

• TINYBLOB (R)

• TINYINT (R)

• TINYTEXT (R)

• TO (R)

• TRAILING (R)

• TRANSACTION

• TRIGGER (R)

• TRIGGERS

• TRUE (R)

• TRUNCATE

• TYPE

• TYPES

1693

MySQL 5.7 Keywords and Reserved Words

U

• UNCOMMITTED

• UNDEFINED

• UNDO (R)

• UNDOFILE

• UNDO_BUFFER_SIZE

• UNICODE

• UNINSTALL

• UNION (R)

• UNIQUE (R)

• UNKNOWN

• UNLOCK (R)

• UNSIGNED (R)

• UNTIL

• UPDATE (R)

• UPGRADE

• USAGE (R)

• USE (R)

• USER

• USER_RESOURCES

• USE_FRM

• USING (R)

• UTC_DATE (R)

• UTC_TIME (R)

• UTC_TIMESTAMP (R)

V

• VALIDATION; added in 5.7.5 (nonreserved)

• VALUE

• VALUES (R)

• VARBINARY (R)

1694

MySQL 5.7 Keywords and Reserved Words

• VARCHAR (R)

• VARCHARACTER (R)

• VARIABLES

• VARYING (R)

• VIEW

• VIRTUAL (R); added in 5.7.6 (reserved)

W

• WAIT

• WARNINGS

• WEEK

• WEIGHT_STRING

• WHEN (R)

• WHERE (R)

• WHILE (R)

• WITH (R)

• WITHOUT; added in 5.7.5 (nonreserved)

• WORK

• WRAPPER

• WRITE (R)

X

• X509

• XA

• XID; added in 5.7.5 (nonreserved)

• XML

• XOR (R)

Y

• YEAR

• YEAR_MONTH (R)

Z

• ZEROFILL (R)

1695

MySQL 5.7 New Keywords and Reserved Words

MySQL 5.7 New Keywords and Reserved Words

The following list shows the keywords and reserved words that are added in MySQL 5.7, compared to
MySQL 5.6. Reserved keywords are marked with (R).

A | C | E | F | G | I | J | M | N | O | P | R | S | V | W | X

A

• ACCOUNT

• ALWAYS

C

• CHANNEL

• COMPRESSION

E

• ENCRYPTION

F

• FILE_BLOCK_SIZE

• FILTER

• FOLLOWS

G

• GENERATED (R)

• GROUP_REPLICATION

I

• INSTANCE

J

• JSON

M

• MASTER_TLS_VERSION

N

• NEVER

O

• OPTIMIZER_COSTS (R)

P

• PARSE_GCOL_EXPR

1696

MySQL 5.7 Removed Keywords and Reserved Words

• PRECEDES

R

• REPLICATE_DO_DB

• REPLICATE_DO_TABLE

• REPLICATE_IGNORE_DB

• REPLICATE_IGNORE_TABLE

• REPLICATE_REWRITE_DB

• REPLICATE_WILD_DO_TABLE

• REPLICATE_WILD_IGNORE_TABLE

• ROTATE

S

• STACKED

• STORED (R)

V

• VALIDATION

• VIRTUAL (R)

W

• WITHOUT

X

• XID

MySQL 5.7 Removed Keywords and Reserved Words

The following list shows the keywords and reserved words that are removed in MySQL 5.7, compared to
MySQL 5.6. Reserved keywords are marked with (R).

• OLD_PASSWORD

9.4 User-Defined Variables
You can store a value in a user-defined variable in one statement and refer to it later in another statement.
This enables you to pass values from one statement to another.

User variables are written as @var_name, where the variable name var_name consists of alphanumeric
characters, ., _, and $. A user variable name can contain other characters if you quote it as a string or
identifier (for example, @'my-var', @"my-var", or @`my-var`).

User-defined variables are session specific. A user variable defined by one client cannot be
seen or used by other clients. (Exception: A user with access to the Performance Schema

1697

User-Defined Variables

user_variables_by_thread table can see all user variables for all sessions.) All variables for a given
client session are automatically freed when that client exits.

User variable names are not case-sensitive. Names have a maximum length of 64 characters.

One way to set a user-defined variable is by issuing a SET statement:

SET @var_name = expr [, @var_name = expr] ...

For SET, either = or := can be used as the assignment operator.

User variables can be assigned a value from a limited set of data types: integer, decimal, floating-point,
binary or nonbinary string, or NULL value. Assignment of decimal and real values does not preserve the
precision or scale of the value. A value of a type other than one of the permissible types is converted to
a permissible type. For example, a value having a temporal or spatial data type is converted to a binary
string. A value having the JSON data type is converted to a string with a character set of utf8mb4 and a
collation of utf8mb4_bin.

If a user variable is assigned a nonbinary (character) string value, it has the same character set and
collation as the string. The coercibility of user variables is implicit. (This is the same coercibility as for table
column values.)

Hexadecimal or bit values assigned to user variables are treated as binary strings. To assign a
hexadecimal or bit value as a number to a user variable, use it in numeric context. For example, add 0 or
use CAST(... AS UNSIGNED):

mysql> SET @v1 = X'41';
mysql> SET @v2 = X'41'+0;
mysql> SET @v3 = CAST(X'41' AS UNSIGNED);
mysql> SELECT @v1, @v2, @v3;
+------+------+------+
| @v1 | @v2 | @v3 |
+------+------+------+
| A | 65 | 65 |
+------+------+------+
mysql> SET @v1 = b'1000001';
mysql> SET @v2 = b'1000001'+0;
mysql> SET @v3 = CAST(b'1000001' AS UNSIGNED);
mysql> SELECT @v1, @v2, @v3;
+------+------+------+
| @v1 | @v2 | @v3 |
+------+------+------+
| A | 65 | 65 |
+------+------+------+

If the value of a user variable is selected in a result set, it is returned to the client as a string.

If you refer to a variable that has not been initialized, it has a value of NULL and a type of string.

User variables may be used in most contexts where expressions are permitted. This does not currently
include contexts that explicitly require a literal value, such as in the LIMIT clause of a SELECT statement,
or the IGNORE N LINES clause of a LOAD DATA statement.

It is also possible to assign a value to a user variable in statements other than SET. (This functionality is
deprecated in MySQL 8.0 and subject to removal in a subsequent release.) When making an assignment
in this way, the assignment operator must be := and not = because the latter is treated as the comparison
operator = in statements other than SET:

mysql> SET @t1=1, @t2=2, @t3:=4;
mysql> SELECT @t1, @t2, @t3, @t4 := @t1+@t2+@t3;

1698

User-Defined Variables

+------+------+------+--------------------+
| @t1 | @t2 | @t3 | @t4 := @t1+@t2+@t3 |
+------+------+------+--------------------+
| 1 | 2 | 4 | 7 |
+------+------+------+--------------------+

As a general rule, other than in SET statements, you should never assign a value to a user variable and
read the value within the same statement. For example, to increment a variable, this is okay:

SET @a = @a + 1;

For other statements, such as SELECT, you might get the results you expect, but this is not guaranteed.
In the following statement, you might think that MySQL evaluates @a first and then does an assignment
second:

SELECT @a, @a:=@a+1, ...;

However, the order of evaluation for expressions involving user variables is undefined.

Another issue with assigning a value to a variable and reading the value within the same non-SET
statement is that the default result type of a variable is based on its type at the start of the statement. The
following example illustrates this:

mysql> SET @a='test';
mysql> SELECT @a,(@a:=20) FROM tbl_name;

For this SELECT statement, MySQL reports to the client that column one is a string and converts all
accesses of @a to strings, even though @a is set to a number for the second row. After the SELECT
statement executes, @a is regarded as a number for the next statement.

To avoid problems with this behavior, either do not assign a value to and read the value of the same
variable within a single statement, or else set the variable to 0, 0.0, or '' to define its type before you use
it.

In a SELECT statement, each select expression is evaluated only when sent to the client. This means that
in a HAVING, GROUP BY, or ORDER BY clause, referring to a variable that is assigned a value in the select
expression list does not work as expected:

mysql> SELECT (@aa:=id) AS a, (@aa+3) AS b FROM tbl_name HAVING b=5;

The reference to b in the HAVING clause refers to an alias for an expression in the select list that uses
@aa. This does not work as expected: @aa contains the value of id from the previous selected row, not
from the current row.

User variables are intended to provide data values. They cannot be used directly in an SQL statement as
an identifier or as part of an identifier, such as in contexts where a table or database name is expected, or
as a reserved word such as SELECT. This is true even if the variable is quoted, as shown in the following
example:

mysql> SELECT c1 FROM t;
+----+
| c1 |
+----+
| 0 |
+----+
| 1 |
+----+
2 rows in set (0.00 sec)

mysql> SET @col = "c1";

1699

User-Defined Variables

Query OK, 0 rows affected (0.00 sec)

mysql> SELECT @col FROM t;
+------+
| @col |
+------+
| c1 |
+------+
1 row in set (0.00 sec)

mysql> SELECT `@col` FROM t;
ERROR 1054 (42S22): Unknown column '@col' in 'field list'

mysql> SET @col = "`c1`";
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT @col FROM t;
+------+
| @col |
+------+
| `c1` |
+------+
1 row in set (0.00 sec)

An exception to this principle that user variables cannot be used to provide identifiers, is when you are
constructing a string for use as a prepared statement to execute later. In this case, user variables can be
used to provide any part of the statement. The following example illustrates how this can be done:

mysql> SET @c = "c1";
Query OK, 0 rows affected (0.00 sec)

mysql> SET @s = CONCAT("SELECT ", @c, " FROM t");
Query OK, 0 rows affected (0.00 sec)

mysql> PREPARE stmt FROM @s;
Query OK, 0 rows affected (0.04 sec)
Statement prepared

mysql> EXECUTE stmt;
+----+
| c1 |
+----+
| 0 |
+----+
| 1 |
+----+
2 rows in set (0.00 sec)

mysql> DEALLOCATE PREPARE stmt;
Query OK, 0 rows affected (0.00 sec)

See Section 13.5, “Prepared Statements”, for more information.

A similar technique can be used in application programs to construct SQL statements using program
variables, as shown here using PHP 5:

<?php
 $mysqli = new mysqli("localhost", "user", "pass", "test");

 if(mysqli_connect_errno())
 die("Connection failed: %s\n", mysqli_connect_error());

 $col = "c1";

 $query = "SELECT $col FROM t";

1700

Expressions

 $result = $mysqli->query($query);

 while($row = $result->fetch_assoc())
 {
 echo "<p>" . $row["$col"] . "</p>\n";
 }

 $result->close();

 $mysqli->close();
?>

Assembling an SQL statement in this fashion is sometimes known as “Dynamic SQL”.

9.5 Expressions

This section lists the grammar rules that expressions must follow in MySQL and provides additional
information about the types of terms that may appear in expressions.

• Expression Syntax

• Expression Term Notes

• Temporal Intervals

Expression Syntax

The following grammar rules define expression syntax in MySQL. The grammar shown here is based on
that given in the sql/sql_yacc.yy file of MySQL source distributions. For additional information about
some of the expression terms, see Expression Term Notes.

expr:
 expr OR expr
 | expr || expr
 | expr XOR expr
 | expr AND expr
 | expr && expr
 | NOT expr
 | ! expr
 | boolean_primary IS [NOT] {TRUE | FALSE | UNKNOWN}
 | boolean_primary

boolean_primary:
 boolean_primary IS [NOT] NULL
 | boolean_primary <=> predicate
 | boolean_primary comparison_operator predicate
 | boolean_primary comparison_operator {ALL | ANY} (subquery)
 | predicate

comparison_operator: = | >= | > | <= | < | <> | !=

predicate:
 bit_expr [NOT] IN (subquery)
 | bit_expr [NOT] IN (expr [, expr] ...)
 | bit_expr [NOT] BETWEEN bit_expr AND predicate
 | bit_expr SOUNDS LIKE bit_expr
 | bit_expr [NOT] LIKE simple_expr [ESCAPE simple_expr]
 | bit_expr [NOT] REGEXP bit_expr
 | bit_expr

bit_expr:
 bit_expr | bit_expr
 | bit_expr & bit_expr

1701

Expression Term Notes

 | bit_expr << bit_expr
 | bit_expr >> bit_expr
 | bit_expr + bit_expr
 | bit_expr - bit_expr
 | bit_expr * bit_expr
 | bit_expr / bit_expr
 | bit_expr DIV bit_expr
 | bit_expr MOD bit_expr
 | bit_expr % bit_expr
 | bit_expr ^ bit_expr
 | bit_expr + interval_expr
 | bit_expr - interval_expr
 | simple_expr

simple_expr:
 literal
 | identifier
 | function_call
 | simple_expr COLLATE collation_name
 | param_marker
 | variable
 | simple_expr || simple_expr
 | + simple_expr
 | - simple_expr
 | ~ simple_expr
 | ! simple_expr
 | BINARY simple_expr
 | (expr [, expr] ...)
 | ROW (expr, expr [, expr] ...)
 | (subquery)
 | EXISTS (subquery)
 | {identifier expr}
 | match_expr
 | case_expr
 | interval_expr

For operator precedence, see Section 12.4.1, “Operator Precedence”. The precedence and meaning of
some operators depends on the SQL mode:

• By default, || is a logical OR operator. With PIPES_AS_CONCAT enabled, || is string concatenation,
with a precedence between ^ and the unary operators.

• By default, ! has a higher precedence than NOT. With HIGH_NOT_PRECEDENCE enabled, ! and NOT
have the same precedence.

See Section 5.1.10, “Server SQL Modes”.

Expression Term Notes

For literal value syntax, see Section 9.1, “Literal Values”.

For identifier syntax, see Section 9.2, “Schema Object Names”.

Variables can be user variables, system variables, or stored program local variables or parameters:

• User variables: Section 9.4, “User-Defined Variables”

• System variables: Section 5.1.8, “Using System Variables”

• Stored program local variables: Section 13.6.4.1, “Local Variable DECLARE Statement”

• Stored program parameters: Section 13.1.16, “CREATE PROCEDURE and CREATE FUNCTION
Statements”

1702

Temporal Intervals

param_marker is ? as used in prepared statements for placeholders. See Section 13.5.1, “PREPARE
Statement”.

(subquery) indicates a subquery that returns a single value; that is, a scalar subquery. See
Section 13.2.10.1, “The Subquery as Scalar Operand”.

{identifier expr} is ODBC escape syntax and is accepted for ODBC compatibility. The value is
expr. The { and } curly braces in the syntax should be written literally; they are not metasyntax as used
elsewhere in syntax descriptions.

match_expr indicates a MATCH expression. See Section 12.9, “Full-Text Search Functions”.

case_expr indicates a CASE expression. See Section 12.5, “Flow Control Functions”.

interval_expr represents a temporal interval. See Temporal Intervals.

Temporal Intervals

interval_expr in expressions represents a temporal interval. Intervals have this syntax:

INTERVAL expr unit

expr represents a quantity. unit represents the unit for interpreting the quantity; it is a specifier such as
HOUR, DAY, or WEEK. The INTERVAL keyword and the unit specifier are not case-sensitive.

The following table shows the expected form of the expr argument for each unit value.

Table 9.2 Temporal Interval Expression and Unit Arguments

unit Value Expected expr Format

MICROSECOND MICROSECONDS

SECOND SECONDS

MINUTE MINUTES

HOUR HOURS

DAY DAYS

WEEK WEEKS

MONTH MONTHS

QUARTER QUARTERS

YEAR YEARS

SECOND_MICROSECOND 'SECONDS.MICROSECONDS'

MINUTE_MICROSECOND 'MINUTES:SECONDS.MICROSECONDS'

MINUTE_SECOND 'MINUTES:SECONDS'

HOUR_MICROSECOND 'HOURS:MINUTES:SECONDS.MICROSECONDS'

HOUR_SECOND 'HOURS:MINUTES:SECONDS'

HOUR_MINUTE 'HOURS:MINUTES'

DAY_MICROSECOND 'DAYS
HOURS:MINUTES:SECONDS.MICROSECONDS'

DAY_SECOND 'DAYS HOURS:MINUTES:SECONDS'

DAY_MINUTE 'DAYS HOURS:MINUTES'

1703

Temporal Intervals

unit Value Expected expr Format

DAY_HOUR 'DAYS HOURS'

YEAR_MONTH 'YEARS-MONTHS'

MySQL permits any punctuation delimiter in the expr format. Those shown in the table are the suggested
delimiters.

Temporal intervals are used for certain functions, such as DATE_ADD() and DATE_SUB():

mysql> SELECT DATE_ADD('2018-05-01',INTERVAL 1 DAY);
 -> '2018-05-02'
mysql> SELECT DATE_SUB('2018-05-01',INTERVAL 1 YEAR);
 -> '2017-05-01'
mysql> SELECT DATE_ADD('2020-12-31 23:59:59',
 -> INTERVAL 1 SECOND);
 -> '2021-01-01 00:00:00'
mysql> SELECT DATE_ADD('2018-12-31 23:59:59',
 -> INTERVAL 1 DAY);
 -> '2019-01-01 23:59:59'
mysql> SELECT DATE_ADD('2100-12-31 23:59:59',
 -> INTERVAL '1:1' MINUTE_SECOND);
 -> '2101-01-01 00:01:00'
mysql> SELECT DATE_SUB('2025-01-01 00:00:00',
 -> INTERVAL '1 1:1:1' DAY_SECOND);
 -> '2024-12-30 22:58:59'
mysql> SELECT DATE_ADD('1900-01-01 00:00:00',
 -> INTERVAL '-1 10' DAY_HOUR);
 -> '1899-12-30 14:00:00'
mysql> SELECT DATE_SUB('1998-01-02', INTERVAL 31 DAY);
 -> '1997-12-02'
mysql> SELECT DATE_ADD('1992-12-31 23:59:59.000002',
 -> INTERVAL '1.999999' SECOND_MICROSECOND);
 -> '1993-01-01 00:00:01.000001'

Temporal arithmetic also can be performed in expressions using INTERVAL together with the + or -
operator:

date + INTERVAL expr unit
date - INTERVAL expr unit

INTERVAL expr unit is permitted on either side of the + operator if the expression on the other side is
a date or datetime value. For the - operator, INTERVAL expr unit is permitted only on the right side,
because it makes no sense to subtract a date or datetime value from an interval.

mysql> SELECT '2018-12-31 23:59:59' + INTERVAL 1 SECOND;
 -> '2019-01-01 00:00:00'
mysql> SELECT INTERVAL 1 DAY + '2018-12-31';
 -> '2019-01-01'
mysql> SELECT '2025-01-01' - INTERVAL 1 SECOND;
 -> '2024-12-31 23:59:59'

The EXTRACT() function uses the same kinds of unit specifiers as DATE_ADD() or DATE_SUB(), but
extracts parts from the date rather than performing date arithmetic:

mysql> SELECT EXTRACT(YEAR FROM '2019-07-02');
 -> 2019
mysql> SELECT EXTRACT(YEAR_MONTH FROM '2019-07-02 01:02:03');
 -> 201907

Temporal intervals can be used in CREATE EVENT statements:

CREATE EVENT myevent

1704

Comments

 ON SCHEDULE AT CURRENT_TIMESTAMP + INTERVAL 1 HOUR
 DO
 UPDATE myschema.mytable SET mycol = mycol + 1;

If you specify an interval value that is too short (does not include all the interval parts that would be
expected from the unit keyword), MySQL assumes that you have left out the leftmost parts of the interval
value. For example, if you specify a unit of DAY_SECOND, the value of expr is expected to have days,
hours, minutes, and seconds parts. If you specify a value like '1:10', MySQL assumes that the days
and hours parts are missing and the value represents minutes and seconds. In other words, '1:10'
DAY_SECOND is interpreted in such a way that it is equivalent to '1:10' MINUTE_SECOND. This is
analogous to the way that MySQL interprets TIME values as representing elapsed time rather than as a
time of day.

expr is treated as a string, so be careful if you specify a nonstring value with INTERVAL. For example,
with an interval specifier of HOUR_MINUTE, '6/4' is treated as 6 hours, four minutes, whereas 6/4 evaluates
to 1.5000 and is treated as 1 hour, 5000 minutes:

mysql> SELECT '6/4', 6/4;
 -> 1.5000
mysql> SELECT DATE_ADD('2019-01-01', INTERVAL '6/4' HOUR_MINUTE);
 -> '2019-01-01 06:04:00'
mysql> SELECT DATE_ADD('2019-01-01', INTERVAL 6/4 HOUR_MINUTE);
 -> '2019-01-04 12:20:00'

To ensure interpretation of the interval value as you expect, a CAST() operation may be used. To treat
6/4 as 1 hour, 5 minutes, cast it to a DECIMAL value with a single fractional digit:

mysql> SELECT CAST(6/4 AS DECIMAL(3,1));
 -> 1.5
mysql> SELECT DATE_ADD('1970-01-01 12:00:00',
 -> INTERVAL CAST(6/4 AS DECIMAL(3,1)) HOUR_MINUTE);
 -> '1970-01-01 13:05:00'

If you add to or subtract from a date value something that contains a time part, the result is automatically
converted to a datetime value:

mysql> SELECT DATE_ADD('2023-01-01', INTERVAL 1 DAY);
 -> '2023-01-02'
mysql> SELECT DATE_ADD('2023-01-01', INTERVAL 1 HOUR);
 -> '2023-01-01 01:00:00'

If you add MONTH, YEAR_MONTH, or YEAR and the resulting date has a day that is larger than the maximum
day for the new month, the day is adjusted to the maximum days in the new month:

mysql> SELECT DATE_ADD('2019-01-30', INTERVAL 1 MONTH);
 -> '2019-02-28'

Date arithmetic operations require complete dates and do not work with incomplete dates such as
'2016-07-00' or badly malformed dates:

mysql> SELECT DATE_ADD('2016-07-00', INTERVAL 1 DAY);
 -> NULL
mysql> SELECT '2005-03-32' + INTERVAL 1 MONTH;
 -> NULL

9.6 Comments

MySQL Server supports three comment styles:

• From a # character to the end of the line.

1705

Comments

• From a -- sequence to the end of the line. In MySQL, the -- (double-dash) comment style requires
the second dash to be followed by at least one whitespace or control character, such as a space or tab.
This syntax differs slightly from standard SQL comment syntax, as discussed in Section 1.6.2.4, “'--' as
the Start of a Comment”.

• From a /* sequence to the following */ sequence, as in the C programming language. This syntax
enables a comment to extend over multiple lines because the beginning and closing sequences need not
be on the same line.

The following example demonstrates all three comment styles:

mysql> SELECT 1+1; # This comment continues to the end of line
mysql> SELECT 1+1; -- This comment continues to the end of line
mysql> SELECT 1 /* this is an in-line comment */ + 1;
mysql> SELECT 1+
/*
this is a
multiple-line comment
*/
1;

Nested comments are not supported. (Under some conditions, nested comments might be permitted, but
usually are not, and users should avoid them.)

MySQL Server supports certain variants of C-style comments. These enable you to write code that
includes MySQL extensions, but is still portable, by using comments of the following form:

/*! MySQL-specific code */

In this case, MySQL Server parses and executes the code within the comment as it would any other SQL
statement, but other SQL servers ignore the extensions. For example, MySQL Server recognizes the
STRAIGHT_JOIN keyword in the following statement, but other servers do not:

SELECT /*! STRAIGHT_JOIN */ col1 FROM table1,table2 WHERE ...

If you add a version number after the ! character, the syntax within the comment is executed only if the
MySQL version is greater than or equal to the specified version number. The KEY_BLOCK_SIZE keyword
in the following comment is executed only by servers from MySQL 5.1.10 or higher:

CREATE TABLE t1(a INT, KEY (a)) /*!50110 KEY_BLOCK_SIZE=1024 */;

The version number uses the format Mmmrr, where M is a major version, mm is a two-digit minor version,
and rr is a two-digit release number. For example: In a statement to be run only by a MySQL server
version 5.7.31 or later, use 50731 in the comment.

The comment syntax just described applies to how the mysqld server parses SQL statements. The mysql
client program also performs some parsing of statements before sending them to the server. (It does this to
determine statement boundaries within a multiple-statement input line.) For information about differences
between the server and mysql client parsers, see Section 4.5.1.6, “mysql Client Tips”.

Comments in /*!12345 ... */ format are not stored on the server. If this format is used to comment
stored programs, the comments are not retained in the program body.

Another variant of C-style comment syntax is used to specify optimizer hints. Hint comments include a +
character following the /* comment opening sequence. Example:

SELECT /*+ BKA(t1) */ FROM ... ;

For more information, see Section 8.9.3, “Optimizer Hints”.

1706

Comments

The use of short-form mysql commands such as \C within multiple-line /* ... */ comments is not
supported. Short-form commands do work within single-line /*! ... */ version comments, as do /
*+ ... */ optimizer-hint comments, which are stored in object definitions. If there is a concern that
optimizer-hint comments may be stored in object definitions so that dump files when reloaded with mysql
would result in execution of such commands, either invoke mysql with the --binary-mode option or use
a reload client other than mysql.

1707

1708

Chapter 10 Character Sets, Collations, Unicode

Table of Contents
10.1 Character Sets and Collations in General ... 1710
10.2 Character Sets and Collations in MySQL ... 1711

10.2.1 Character Set Repertoire .. 1713
10.2.2 UTF-8 for Metadata .. 1714

10.3 Specifying Character Sets and Collations ... 1716
10.3.1 Collation Naming Conventions .. 1716
10.3.2 Server Character Set and Collation ... 1717
10.3.3 Database Character Set and Collation ... 1718
10.3.4 Table Character Set and Collation .. 1719
10.3.5 Column Character Set and Collation ... 1719
10.3.6 Character String Literal Character Set and Collation ... 1721
10.3.7 The National Character Set .. 1723
10.3.8 Character Set Introducers ... 1723
10.3.9 Examples of Character Set and Collation Assignment .. 1725
10.3.10 Compatibility with Other DBMSs .. 1726

10.4 Connection Character Sets and Collations ... 1726
10.5 Configuring Application Character Set and Collation ... 1732
10.6 Error Message Character Set .. 1734
10.7 Column Character Set Conversion ... 1735
10.8 Collation Issues .. 1736

10.8.1 Using COLLATE in SQL Statements ... 1736
10.8.2 COLLATE Clause Precedence .. 1737
10.8.3 Character Set and Collation Compatibility .. 1737
10.8.4 Collation Coercibility in Expressions .. 1737
10.8.5 The binary Collation Compared to _bin Collations .. 1739
10.8.6 Examples of the Effect of Collation ... 1741
10.8.7 Using Collation in INFORMATION_SCHEMA Searches .. 1742

10.9 Unicode Support ... 1744
10.9.1 The utf8mb4 Character Set (4-Byte UTF-8 Unicode Encoding) 1746
10.9.2 The utf8mb3 Character Set (3-Byte UTF-8 Unicode Encoding) 1747
10.9.3 The utf8 Character Set (Alias for utf8mb3) .. 1747
10.9.4 The ucs2 Character Set (UCS-2 Unicode Encoding) .. 1747
10.9.5 The utf16 Character Set (UTF-16 Unicode Encoding) ... 1748
10.9.6 The utf16le Character Set (UTF-16LE Unicode Encoding) .. 1748
10.9.7 The utf32 Character Set (UTF-32 Unicode Encoding) ... 1748
10.9.8 Converting Between 3-Byte and 4-Byte Unicode Character Sets 1749

10.10 Supported Character Sets and Collations ... 1751
10.10.1 Unicode Character Sets .. 1752
10.10.2 West European Character Sets ... 1758
10.10.3 Central European Character Sets .. 1759
10.10.4 South European and Middle East Character Sets ... 1760
10.10.5 Baltic Character Sets .. 1761
10.10.6 Cyrillic Character Sets .. 1761
10.10.7 Asian Character Sets .. 1762
10.10.8 The Binary Character Set ... 1766

10.11 Restrictions on Character Sets .. 1767
10.12 Setting the Error Message Language ... 1768

1709

Character Sets and Collations in General

10.13 Adding a Character Set ... 1768
10.13.1 Character Definition Arrays ... 1770
10.13.2 String Collating Support for Complex Character Sets .. 1771
10.13.3 Multi-Byte Character Support for Complex Character Sets .. 1771

10.14 Adding a Collation to a Character Set .. 1772
10.14.1 Collation Implementation Types ... 1773
10.14.2 Choosing a Collation ID .. 1776
10.14.3 Adding a Simple Collation to an 8-Bit Character Set ... 1777
10.14.4 Adding a UCA Collation to a Unicode Character Set .. 1778

10.15 Character Set Configuration ... 1785
10.16 MySQL Server Locale Support .. 1786

MySQL includes character set support that enables you to store data using a variety of character sets
and perform comparisons according to a variety of collations. The default MySQL server character set
and collation are latin1 and latin1_swedish_ci, but you can specify character sets at the server,
database, table, column, and string literal levels.

This chapter discusses the following topics:

• What are character sets and collations?

• The multiple-level default system for character set assignment.

• Syntax for specifying character sets and collations.

• Affected functions and operations.

• Unicode support.

• The character sets and collations that are available, with notes.

• Selecting the language for error messages.

• Selecting the locale for day and month names.

Character set issues affect not only data storage, but also communication between client programs and
the MySQL server. If you want the client program to communicate with the server using a character
set different from the default, you'll need to indicate which one. For example, to use the utf8 Unicode
character set, issue this statement after connecting to the server:

SET NAMES 'utf8';

For more information about configuring character sets for application use and character set-related issues
in client/server communication, see Section 10.5, “Configuring Application Character Set and Collation”,
and Section 10.4, “Connection Character Sets and Collations”.

10.1 Character Sets and Collations in General

A character set is a set of symbols and encodings. A collation is a set of rules for comparing characters in
a character set. Let's make the distinction clear with an example of an imaginary character set.

Suppose that we have an alphabet with four letters: A, B, a, b. We give each letter a number: A = 0, B = 1,
a = 2, b = 3. The letter A is a symbol, the number 0 is the encoding for A, and the combination of all four
letters and their encodings is a character set.

1710

Character Sets and Collations in MySQL

Suppose that we want to compare two string values, A and B. The simplest way to do this is to look at the
encodings: 0 for A and 1 for B. Because 0 is less than 1, we say A is less than B. What we've just done is
apply a collation to our character set. The collation is a set of rules (only one rule in this case): “compare
the encodings.” We call this simplest of all possible collations a binary collation.

But what if we want to say that the lowercase and uppercase letters are equivalent? Then we would have
at least two rules: (1) treat the lowercase letters a and b as equivalent to A and B; (2) then compare the
encodings. We call this a case-insensitive collation. It is a little more complex than a binary collation.

In real life, most character sets have many characters: not just A and B but whole alphabets, sometimes
multiple alphabets or eastern writing systems with thousands of characters, along with many special
symbols and punctuation marks. Also in real life, most collations have many rules, not just for whether
to distinguish lettercase, but also for whether to distinguish accents (an “accent” is a mark attached to a
character as in German Ö), and for multiple-character mappings (such as the rule that Ö = OE in one of the
two German collations).

MySQL can do these things for you:

• Store strings using a variety of character sets.

• Compare strings using a variety of collations.

• Mix strings with different character sets or collations in the same server, the same database, or even the
same table.

• Enable specification of character set and collation at any level.

To use these features effectively, you must know what character sets and collations are available, how to
change the defaults, and how they affect the behavior of string operators and functions.

10.2 Character Sets and Collations in MySQL

MySQL Server supports multiple character sets. To display the available character sets, use the
INFORMATION_SCHEMA CHARACTER_SETS table or the SHOW CHARACTER SET statement. A partial
listing follows. For more complete information, see Section 10.10, “Supported Character Sets and
Collations”.

mysql> SHOW CHARACTER SET;
+----------+---------------------------------+---------------------+--------+
| Charset | Description | Default collation | Maxlen |
+----------+---------------------------------+---------------------+--------+
| big5 | Big5 Traditional Chinese | big5_chinese_ci | 2 |
...
| latin1 | cp1252 West European | latin1_swedish_ci | 1 |
| latin2 | ISO 8859-2 Central European | latin2_general_ci | 1 |
...
| utf8 | UTF-8 Unicode | utf8_general_ci | 3 |
| ucs2 | UCS-2 Unicode | ucs2_general_ci | 2 |
...
| utf8mb4 | UTF-8 Unicode | utf8mb4_general_ci | 4 |
...
| binary | Binary pseudo charset | binary | 1 |
...

By default, the SHOW CHARACTER SET statement displays all available character sets. It takes an optional
LIKE or WHERE clause that indicates which character set names to match. For example:

mysql> SHOW CHARACTER SET LIKE 'latin%';
+---------+-----------------------------+-------------------+--------+

1711

Character Sets and Collations in MySQL

| Charset | Description | Default collation | Maxlen |
+---------+-----------------------------+-------------------+--------+
latin1	cp1252 West European	latin1_swedish_ci	1
latin2	ISO 8859-2 Central European	latin2_general_ci	1
latin5	ISO 8859-9 Turkish	latin5_turkish_ci	1
latin7	ISO 8859-13 Baltic	latin7_general_ci	1
+---------+-----------------------------+-------------------+--------+

A given character set always has at least one collation, and most character sets have several. To list the
display collations for a character set, use the INFORMATION_SCHEMA COLLATIONS table or the SHOW
COLLATION statement.

By default, the SHOW COLLATION statement displays all available collations. It takes an optional LIKE or
WHERE clause that indicates which collation names to display. For example, to see the collations for the
default character set, latin1 (cp1252 West European), use this statement:

mysql> SHOW COLLATION WHERE Charset = 'latin1';
+-------------------+---------+----+---------+----------+---------+
| Collation | Charset | Id | Default | Compiled | Sortlen |
+-------------------+---------+----+---------+----------+---------+
latin1_german1_ci	latin1	5		Yes	1
latin1_swedish_ci	latin1	8	Yes	Yes	1
latin1_danish_ci	latin1	15		Yes	1
latin1_german2_ci	latin1	31		Yes	2
latin1_bin	latin1	47		Yes	1
latin1_general_ci	latin1	48		Yes	1
latin1_general_cs	latin1	49		Yes	1
latin1_spanish_ci	latin1	94		Yes	1
+-------------------+---------+----+---------+----------+---------+

The latin1 collations have the following meanings.

Collation Meaning

latin1_bin Binary according to latin1 encoding

latin1_danish_ci Danish/Norwegian

latin1_general_ci Multilingual (Western European)

latin1_general_cs Multilingual (ISO Western European), case-sensitive

latin1_german1_ci German DIN-1 (dictionary order)

latin1_german2_ci German DIN-2 (phone book order)

latin1_spanish_ci Modern Spanish

latin1_swedish_ci Swedish/Finnish

Collations have these general characteristics:

• Two different character sets cannot have the same collation.

• Each character set has a default collation. For example, the default collations for latin1 and utf8
are latin1_swedish_ci and utf8_general_ci, respectively. The INFORMATION_SCHEMA
CHARACTER_SETS table and the SHOW CHARACTER SET statement indicate the default collation
for each character set. The INFORMATION_SCHEMA COLLATIONS table and the SHOW COLLATION
statement have a column that indicates for each collation whether it is the default for its character set
(Yes if so, empty if not).

• Collation names start with the name of the character set with which they are associated, generally
followed by one or more suffixes indicating other collation characteristics. For additional information
about naming conventions, see Section 10.3.1, “Collation Naming Conventions”.

1712

Character Set Repertoire

When a character set has multiple collations, it might not be clear which collation is most suitable for
a given application. To avoid choosing an inappropriate collation, perform some comparisons with
representative data values to make sure that a given collation sorts values the way you expect.

10.2.1 Character Set Repertoire

The repertoire of a character set is the collection of characters in the set.

String expressions have a repertoire attribute, which can have two values:

• ASCII: The expression can contain only ASCII characters; that is, characters in the Unicode range U
+0000 to U+007F.

• UNICODE: The expression can contain characters in the Unicode range U+0000 to U+10FFFF.
This includes characters in the Basic Multilingual Plane (BMP) range (U+0000 to U+FFFF) and
supplementary characters outside the BMP range (U+10000 to U+10FFFF).

The ASCII range is a subset of UNICODE range, so a string with ASCII repertoire can be converted
safely without loss of information to the character set of any string with UNICODE repertoire. It can also be
converted safely to any character set that is a superset of the ascii character set. (All MySQL character
sets are supersets of ascii with the exception of swe7, which reuses some punctuation characters for
Swedish accented characters.)

The use of repertoire enables character set conversion in expressions for many cases where MySQL
would otherwise return an “illegal mix of collations” error when the rules for collation coercibility are
insufficient to resolve ambiguities. (For information about coercibility, see Section 10.8.4, “Collation
Coercibility in Expressions”.)

The following discussion provides examples of expressions and their repertoires, and describes how the
use of repertoire changes string expression evaluation:

• The repertoire for a string constant depends on string content and may differ from the repertoire of the
string character set. Consider these statements:

SET NAMES utf8; SELECT 'abc';
SELECT _utf8'def';
SELECT N'MySQL';

Although the character set is utf8 in each of the preceding cases, the strings do not actually contain
any characters outside the ASCII range, so their repertoire is ASCII rather than UNICODE.

• A column having the ascii character set has ASCII repertoire because of its character set. In the
following table, c1 has ASCII repertoire:

CREATE TABLE t1 (c1 CHAR(1) CHARACTER SET ascii);

The following example illustrates how repertoire enables a result to be determined in a case where an
error occurs without repertoire:

CREATE TABLE t1 (
 c1 CHAR(1) CHARACTER SET latin1,
 c2 CHAR(1) CHARACTER SET ascii
);
INSERT INTO t1 VALUES ('a','b');
SELECT CONCAT(c1,c2) FROM t1;

Without repertoire, this error occurs:

ERROR 1267 (HY000): Illegal mix of collations (latin1_swedish_ci,IMPLICIT)
and (ascii_general_ci,IMPLICIT) for operation 'concat'

1713

UTF-8 for Metadata

Using repertoire, subset to superset (ascii to latin1) conversion can occur and a result is returned:

+---------------+
| CONCAT(c1,c2) |
+---------------+
| ab |
+---------------+

• Functions with one string argument inherit the repertoire of their argument. The result of
UPPER(_utf8'abc') has ASCII repertoire because its argument has ASCII repertoire. (Despite the
_utf8 introducer, the string 'abc' contains no characters outside the ASCII range.)

• For functions that return a string but do not have string arguments and use
character_set_connection as the result character set, the result repertoire is ASCII if
character_set_connection is ascii, and UNICODE otherwise:

FORMAT(numeric_column, 4);

Use of repertoire changes how MySQL evaluates the following example:

SET NAMES ascii;
CREATE TABLE t1 (a INT, b VARCHAR(10) CHARACTER SET latin1);
INSERT INTO t1 VALUES (1,'b');
SELECT CONCAT(FORMAT(a, 4), b) FROM t1;

Without repertoire, this error occurs:

ERROR 1267 (HY000): Illegal mix of collations (ascii_general_ci,COERCIBLE)
and (latin1_swedish_ci,IMPLICIT) for operation 'concat'

With repertoire, a result is returned:

+-------------------------+
| CONCAT(FORMAT(a, 4), b) |
+-------------------------+
| 1.0000b |
+-------------------------+

• Functions with two or more string arguments use the “widest” argument repertoire for the result
repertoire, where UNICODE is wider than ASCII. Consider the following CONCAT() calls:

CONCAT(_ucs2 X'0041', _ucs2 X'0042')
CONCAT(_ucs2 X'0041', _ucs2 X'00C2')

For the first call, the repertoire is ASCII because both arguments are within the ASCII range. For the
second call, the repertoire is UNICODE because the second argument is outside the ASCII range.

• The repertoire for function return values is determined based on the repertoire of only those arguments
that affect the result's character set and collation.

IF(column1 < column2, 'smaller', 'greater')

The result repertoire is ASCII because the two string arguments (the second argument and the third
argument) both have ASCII repertoire. The first argument does not matter for the result repertoire, even
if the expression uses string values.

10.2.2 UTF-8 for Metadata

Metadata is “the data about the data.” Anything that describes the database—as opposed to being the
contents of the database—is metadata. Thus column names, database names, user names, version

1714

UTF-8 for Metadata

names, and most of the string results from SHOW are metadata. This is also true of the contents of tables in
INFORMATION_SCHEMA because those tables by definition contain information about database objects.

Representation of metadata must satisfy these requirements:

• All metadata must be in the same character set. Otherwise, neither the SHOW statements nor SELECT
statements for tables in INFORMATION_SCHEMA would work properly because different rows in the same
column of the results of these operations would be in different character sets.

• Metadata must include all characters in all languages. Otherwise, users would not be able to name
columns and tables using their own languages.

To satisfy both requirements, MySQL stores metadata in a Unicode character set, namely UTF-8. This
does not cause any disruption if you never use accented or non-Latin characters. But if you do, you should
be aware that metadata is in UTF-8.

The metadata requirements mean that the return values of the USER(), CURRENT_USER(),
SESSION_USER(), SYSTEM_USER(), DATABASE(), and VERSION() functions have the UTF-8 character
set by default.

The server sets the character_set_system system variable to the name of the metadata character set:

mysql> SHOW VARIABLES LIKE 'character_set_system';
+----------------------+-------+
| Variable_name | Value |
+----------------------+-------+
| character_set_system | utf8 |
+----------------------+-------+

Storage of metadata using Unicode does not mean that the server returns headers of columns and the
results of DESCRIBE functions in the character_set_system character set by default. When you use
SELECT column1 FROM t, the name column1 itself is returned from the server to the client in the
character set determined by the value of the character_set_results system variable, which has a
default value of utf8. If you want the server to pass metadata results back in a different character set, use
the SET NAMES statement to force the server to perform character set conversion. SET NAMES sets the
character_set_results and other related system variables. (See Section 10.4, “Connection Character
Sets and Collations”.) Alternatively, a client program can perform the conversion after receiving the result
from the server. It is more efficient for the client to perform the conversion, but this option is not always
available for all clients.

If character_set_results is set to NULL, no conversion is performed and the server returns metadata
using its original character set (the set indicated by character_set_system).

Error messages returned from the server to the client are converted to the client character set
automatically, as with metadata.

If you are using (for example) the USER() function for comparison or assignment within a single statement,
don't worry. MySQL performs some automatic conversion for you.

SELECT * FROM t1 WHERE USER() = latin1_column;

This works because the contents of latin1_column are automatically converted to UTF-8 before the
comparison.

INSERT INTO t1 (latin1_column) SELECT USER();

This works because the contents of USER() are automatically converted to latin1 before the
assignment.

1715

Specifying Character Sets and Collations

Although automatic conversion is not in the SQL standard, the standard does say that every character
set is (in terms of supported characters) a “subset” of Unicode. Because it is a well-known principle that
“what applies to a superset can apply to a subset,” we believe that a collation for Unicode can apply for
comparisons with non-Unicode strings. For more information about coercion of strings, see Section 10.8.4,
“Collation Coercibility in Expressions”.

10.3 Specifying Character Sets and Collations

There are default settings for character sets and collations at four levels: server, database, table, and
column. The description in the following sections may appear complex, but it has been found in practice
that multiple-level defaulting leads to natural and obvious results.

CHARACTER SET is used in clauses that specify a character set. CHARSET can be used as a synonym for
CHARACTER SET.

Character set issues affect not only data storage, but also communication between client programs and
the MySQL server. If you want the client program to communicate with the server using a character
set different from the default, you'll need to indicate which one. For example, to use the utf8 Unicode
character set, issue this statement after connecting to the server:

SET NAMES 'utf8';

For more information about character set-related issues in client/server communication, see Section 10.4,
“Connection Character Sets and Collations”.

10.3.1 Collation Naming Conventions

MySQL collation names follow these conventions:

• A collation name starts with the name of the character set with which it is associated, generally followed
by one or more suffixes indicating other collation characteristics. For example, utf8_general_ci
and latin1_swedish_ci are collations for the utf8 and latin1 character sets, respectively. The
binary character set has a single collation, also named binary, with no suffixes.

• A language-specific collation includes a language name. For example, utf8_turkish_ci and
utf8_hungarian_ci sort characters for the utf8 character set using the rules of Turkish and
Hungarian, respectively.

• Collation suffixes indicate whether a collation is case-sensitive, accent-sensitive, or kana-sensitive (or
some combination thereof), or binary. The following table shows the suffixes used to indicate these
characteristics.

Table 10.1 Collation Suffix Meanings

Suffix Meaning

_ai Accent-insensitive

_as Accent-sensitive

_ci Case-insensitive

_cs Case-sensitive

_bin Binary

For nonbinary collation names that do not specify accent sensitivity, it is determined by case sensitivity.
If a collation name does not contain _ai or _as, _ci in the name implies _ai and _cs in the name

1716

Server Character Set and Collation

implies _as. For example, latin1_general_ci is explicitly case-insensitive and implicitly accent-
insensitive, and latin1_general_cs is explicitly case-sensitive and implicitly accent-sensitive.

For the binary collation of the binary character set, comparisons are based on numeric byte values.
For the _bin collation of a nonbinary character set, comparisons are based on numeric character code
values, which differ from byte values for multibyte characters. For information about the differences
between the binary collation of the binary character set and the _bin collations of nonbinary
character sets, see Section 10.8.5, “The binary Collation Compared to _bin Collations”.

• Collation names for Unicode character sets may include a version number to indicate the version of
the Unicode Collation Algorithm (UCA) on which the collation is based. UCA-based collations without a
version number in the name use the version-4.0.0 UCA weight keys. For example:

• utf8_unicode_520_ci is based on UCA 5.2.0 weight keys (http://www.unicode.org/Public/
UCA/5.2.0/allkeys.txt).

• utf8_unicode_ci (with no version named) is based on UCA 4.0.0 weight keys (http://
www.unicode.org/Public/UCA/4.0.0/allkeys-4.0.0.txt).

• For Unicode character sets, the xxx_general_mysql500_ci collations preserve the pre-5.1.24
ordering of the original xxx_general_ci collations and permit upgrades for tables created before
MySQL 5.1.24 (Bug #27877).

10.3.2 Server Character Set and Collation

MySQL Server has a server character set and a server collation. By default, these are latin1 and
latin1_swedish_ci, but they can be set explicitly at server startup on the command line or in an option
file and changed at runtime.

Initially, the server character set and collation depend on the options that you use when you start
mysqld. You can use --character-set-server for the character set. Along with it, you can add --
collation-server for the collation. If you don't specify a character set, that is the same as saying
--character-set-server=latin1. If you specify only a character set (for example, latin1) but
not a collation, that is the same as saying --character-set-server=latin1 --collation-
server=latin1_swedish_ci because latin1_swedish_ci is the default collation for latin1.
Therefore, the following three commands all have the same effect:

mysqld
mysqld --character-set-server=latin1
mysqld --character-set-server=latin1 \
 --collation-server=latin1_swedish_ci

One way to change the settings is by recompiling. To change the default server character set and collation
when building from sources, use the DEFAULT_CHARSET and DEFAULT_COLLATION options for CMake.
For example:

cmake . -DDEFAULT_CHARSET=latin1

Or:

cmake . -DDEFAULT_CHARSET=latin1 \
 -DDEFAULT_COLLATION=latin1_german1_ci

Both mysqld and CMake verify that the character set/collation combination is valid. If not, each program
displays an error message and terminates.

The server character set and collation are used as default values if the database character set and
collation are not specified in CREATE DATABASE statements. They have no other purpose.

1717

http://www.unicode.org/Public/UCA/5.2.0/allkeys.txt
http://www.unicode.org/Public/UCA/5.2.0/allkeys.txt
http://www.unicode.org/Public/UCA/4.0.0/allkeys-4.0.0.txt
http://www.unicode.org/Public/UCA/4.0.0/allkeys-4.0.0.txt

Database Character Set and Collation

The current server character set and collation can be determined from the values of the
character_set_server and collation_server system variables. These variables can be changed
at runtime.

10.3.3 Database Character Set and Collation

Every database has a database character set and a database collation. The CREATE DATABASE and
ALTER DATABASE statements have optional clauses for specifying the database character set and
collation:

CREATE DATABASE db_name
 [[DEFAULT] CHARACTER SET charset_name]
 [[DEFAULT] COLLATE collation_name]

ALTER DATABASE db_name
 [[DEFAULT] CHARACTER SET charset_name]
 [[DEFAULT] COLLATE collation_name]

The keyword SCHEMA can be used instead of DATABASE.

All database options are stored in a text file named db.opt that can be found in the database directory.

The CHARACTER SET and COLLATE clauses make it possible to create databases with different character
sets and collations on the same MySQL server.

Example:

CREATE DATABASE db_name CHARACTER SET latin1 COLLATE latin1_swedish_ci;

MySQL chooses the database character set and database collation in the following manner:

• If both CHARACTER SET charset_name and COLLATE collation_name are specified, character set
charset_name and collation collation_name are used.

• If CHARACTER SET charset_name is specified without COLLATE, character set charset_name
and its default collation are used. To see the default collation for each character set, use the SHOW
CHARACTER SET statement or query the INFORMATION_SCHEMA CHARACTER_SETS table.

• If COLLATE collation_name is specified without CHARACTER SET, the character set associated with
collation_name and collation collation_name are used.

• Otherwise (neither CHARACTER SET nor COLLATE is specified), the server character set and server
collation are used.

The character set and collation for the default database can be determined from the values of the
character_set_database and collation_database system variables. The server sets these
variables whenever the default database changes. If there is no default database, the variables have
the same value as the corresponding server-level system variables, character_set_server and
collation_server.

To see the default character set and collation for a given database, use these statements:

USE db_name;
SELECT @@character_set_database, @@collation_database;

Alternatively, to display the values without changing the default database:

SELECT DEFAULT_CHARACTER_SET_NAME, DEFAULT_COLLATION_NAME
FROM INFORMATION_SCHEMA.SCHEMATA WHERE SCHEMA_NAME = 'db_name';

1718

Table Character Set and Collation

The database character set and collation affect these aspects of server operation:

• For CREATE TABLE statements, the database character set and collation are used as default values for
table definitions if the table character set and collation are not specified. To override this, provide explicit
CHARACTER SET and COLLATE table options.

• For LOAD DATA statements that include no CHARACTER SET clause, the server uses the character set
indicated by the character_set_database system variable to interpret the information in the file. To
override this, provide an explicit CHARACTER SET clause.

• For stored routines (procedures and functions), the database character set and collation in effect at
routine creation time are used as the character set and collation of character data parameters for
which the declaration includes no CHARACTER SET or a COLLATE attribute. To override this, provide
CHARACTER SET and COLLATE explicitly.

10.3.4 Table Character Set and Collation

Every table has a table character set and a table collation. The CREATE TABLE and ALTER TABLE
statements have optional clauses for specifying the table character set and collation:

CREATE TABLE tbl_name (column_list)
 [[DEFAULT] CHARACTER SET charset_name]
 [COLLATE collation_name]]

ALTER TABLE tbl_name
 [[DEFAULT] CHARACTER SET charset_name]
 [COLLATE collation_name]

Example:

CREATE TABLE t1 (...)
CHARACTER SET latin1 COLLATE latin1_danish_ci;

MySQL chooses the table character set and collation in the following manner:

• If both CHARACTER SET charset_name and COLLATE collation_name are specified, character set
charset_name and collation collation_name are used.

• If CHARACTER SET charset_name is specified without COLLATE, character set charset_name
and its default collation are used. To see the default collation for each character set, use the SHOW
CHARACTER SET statement or query the INFORMATION_SCHEMA CHARACTER_SETS table.

• If COLLATE collation_name is specified without CHARACTER SET, the character set associated with
collation_name and collation collation_name are used.

• Otherwise (neither CHARACTER SET nor COLLATE is specified), the database character set and collation
are used.

The table character set and collation are used as default values for column definitions if the column
character set and collation are not specified in individual column definitions. The table character set and
collation are MySQL extensions; there are no such things in standard SQL.

10.3.5 Column Character Set and Collation

Every “character” column (that is, a column of type CHAR, VARCHAR, a TEXT type, or any synonym) has
a column character set and a column collation. Column definition syntax for CREATE TABLE and ALTER
TABLE has optional clauses for specifying the column character set and collation:

col_name {CHAR | VARCHAR | TEXT} (col_length)

1719

Column Character Set and Collation

 [CHARACTER SET charset_name]
 [COLLATE collation_name]

These clauses can also be used for ENUM and SET columns:

col_name {ENUM | SET} (val_list)
 [CHARACTER SET charset_name]
 [COLLATE collation_name]

Examples:

CREATE TABLE t1
(
 col1 VARCHAR(5)
 CHARACTER SET latin1
 COLLATE latin1_german1_ci
);

ALTER TABLE t1 MODIFY
 col1 VARCHAR(5)
 CHARACTER SET latin1
 COLLATE latin1_swedish_ci;

MySQL chooses the column character set and collation in the following manner:

• If both CHARACTER SET charset_name and COLLATE collation_name are specified, character set
charset_name and collation collation_name are used.

CREATE TABLE t1
(
 col1 CHAR(10) CHARACTER SET utf8 COLLATE utf8_unicode_ci
) CHARACTER SET latin1 COLLATE latin1_bin;

The character set and collation are specified for the column, so they are used. The column has character
set utf8 and collation utf8_unicode_ci.

• If CHARACTER SET charset_name is specified without COLLATE, character set charset_name and
its default collation are used.

CREATE TABLE t1
(
 col1 CHAR(10) CHARACTER SET utf8
) CHARACTER SET latin1 COLLATE latin1_bin;

The character set is specified for the column, but the collation is not. The column has character set
utf8 and the default collation for utf8, which is utf8_general_ci. To see the default collation for
each character set, use the SHOW CHARACTER SET statement or query the INFORMATION_SCHEMA
CHARACTER_SETS table.

• If COLLATE collation_name is specified without CHARACTER SET, the character set associated with
collation_name and collation collation_name are used.

CREATE TABLE t1
(
 col1 CHAR(10) COLLATE utf8_polish_ci
) CHARACTER SET latin1 COLLATE latin1_bin;

The collation is specified for the column, but the character set is not. The column has collation
utf8_polish_ci and the character set is the one associated with the collation, which is utf8.

• Otherwise (neither CHARACTER SET nor COLLATE is specified), the table character set and collation are
used.

1720

Character String Literal Character Set and Collation

CREATE TABLE t1
(
 col1 CHAR(10)
) CHARACTER SET latin1 COLLATE latin1_bin;

Neither the character set nor collation is specified for the column, so the table defaults are used. The
column has character set latin1 and collation latin1_bin.

The CHARACTER SET and COLLATE clauses are standard SQL.

If you use ALTER TABLE to convert a column from one character set to another, MySQL attempts to map
the data values, but if the character sets are incompatible, there may be data loss.

10.3.6 Character String Literal Character Set and Collation

Every character string literal has a character set and a collation.

For the simple statement SELECT 'string', the string has the connection default character set and
collation defined by the character_set_connection and collation_connection system variables.

A character string literal may have an optional character set introducer and COLLATE clause, to designate
it as a string that uses a particular character set and collation:

[_charset_name]'string' [COLLATE collation_name]

The _charset_name expression is formally called an introducer. It tells the parser, “the string that follows
uses character set charset_name.” An introducer does not change the string to the introducer character
set like CONVERT() would do. It does not change the string value, although padding may occur. The
introducer is just a signal. See Section 10.3.8, “Character Set Introducers”.

Examples:

SELECT 'abc';
SELECT _latin1'abc';
SELECT _binary'abc';
SELECT _utf8'abc' COLLATE utf8_danish_ci;

Character set introducers and the COLLATE clause are implemented according to standard SQL
specifications.

MySQL determines the character set and collation of a character string literal in the following manner:

• If both _charset_name and COLLATE collation_name are specified, character set charset_name
and collation collation_name are used. collation_name must be a permitted collation for
charset_name.

• If _charset_name is specified but COLLATE is not specified, character set charset_name and its
default collation are used. To see the default collation for each character set, use the SHOW CHARACTER
SET statement or query the INFORMATION_SCHEMA CHARACTER_SETS table.

• If _charset_name is not specified but COLLATE collation_name is specified, the connection
default character set given by the character_set_connection system variable and collation
collation_name are used. collation_name must be a permitted collation for the connection default
character set.

• Otherwise (neither _charset_name nor COLLATE collation_name is specified), the
connection default character set and collation given by the character_set_connection and
collation_connection system variables are used.

1721

Character String Literal Character Set and Collation

Examples:

• A nonbinary string with latin1 character set and latin1_german1_ci collation:

SELECT _latin1'Müller' COLLATE latin1_german1_ci;

• A nonbinary string with utf8 character set and its default collation (that is, utf8_general_ci):

SELECT _utf8'Müller';

• A binary string with binary character set and its default collation (that is, binary):

SELECT _binary'Müller';

• A nonbinary string with the connection default character set and utf8_general_ci collation (fails if the
connection character set is not utf8):

SELECT 'Müller' COLLATE utf8_general_ci;

• A string with the connection default character set and collation:

SELECT 'Müller';

An introducer indicates the character set for the following string, but does not change how the parser
performs escape processing within the string. Escapes are always interpreted by the parser according to
the character set given by character_set_connection.

The following examples show that escape processing occurs using character_set_connection
even in the presence of an introducer. The examples use SET NAMES (which changes
character_set_connection, as discussed in Section 10.4, “Connection Character Sets and
Collations”), and display the resulting strings using the HEX() function so that the exact string contents can
be seen.

Example 1:

mysql> SET NAMES latin1;
mysql> SELECT HEX('à\n'), HEX(_sjis'à\n');
+------------+-----------------+
| HEX('à\n') | HEX(_sjis'à\n') |
+------------+-----------------+
| E00A | E00A |
+------------+-----------------+

Here, à (hexadecimal value E0) is followed by \n, the escape sequence for newline. The escape sequence
is interpreted using the character_set_connection value of latin1 to produce a literal newline
(hexadecimal value 0A). This happens even for the second string. That is, the _sjis introducer does not
affect the parser's escape processing.

Example 2:

mysql> SET NAMES sjis;
mysql> SELECT HEX('à\n'), HEX(_latin1'à\n');
+------------+-------------------+
| HEX('à\n') | HEX(_latin1'à\n') |
+------------+-------------------+
| E05C6E | E05C6E |
+------------+-------------------+

Here, character_set_connection is sjis, a character set in which the sequence of à followed by
\ (hexadecimal values 05 and 5C) is a valid multibyte character. Hence, the first two bytes of the string
are interpreted as a single sjis character, and the \ is not interpreted as an escape character. The

1722

The National Character Set

following n (hexadecimal value 6E) is not interpreted as part of an escape sequence. This is true even for
the second string; the _latin1 introducer does not affect escape processing.

10.3.7 The National Character Set

Standard SQL defines NCHAR or NATIONAL CHAR as a way to indicate that a CHAR column should use
some predefined character set. MySQL uses utf8 as this predefined character set. For example, these
data type declarations are equivalent:

CHAR(10) CHARACTER SET utf8
NATIONAL CHARACTER(10)
NCHAR(10)

As are these:

VARCHAR(10) CHARACTER SET utf8
NATIONAL VARCHAR(10)
NVARCHAR(10)
NCHAR VARCHAR(10)
NATIONAL CHARACTER VARYING(10)
NATIONAL CHAR VARYING(10)

You can use N'literal' (or n'literal') to create a string in the national character set. These
statements are equivalent:

SELECT N'some text';
SELECT n'some text';
SELECT _utf8'some text';

10.3.8 Character Set Introducers

A character string literal, hexadecimal literal, or bit-value literal may have an optional character set
introducer and COLLATE clause, to designate it as a string that uses a particular character set and
collation:

[_charset_name] literal [COLLATE collation_name]

The _charset_name expression is formally called an introducer. It tells the parser, “the string that follows
uses character set charset_name.” An introducer does not change the string to the introducer character
set like CONVERT() would do. It does not change the string value, although padding may occur. The
introducer is just a signal.

For character string literals, space between the introducer and the string is permitted but optional.

For character set literals, an introducer indicates the character set for the following string, but does not
change how the parser performs escape processing within the string. Escapes are always interpreted
by the parser according to the character set given by character_set_connection. For additional
discussion and examples, see Section 10.3.6, “Character String Literal Character Set and Collation”.

Examples:

SELECT 'abc';
SELECT _latin1'abc';
SELECT _binary'abc';
SELECT _utf8'abc' COLLATE utf8_danish_ci;

SELECT _latin1 X'4D7953514C';
SELECT _utf8 0x4D7953514C COLLATE utf8_danish_ci;

1723

Character Set Introducers

SELECT _latin1 b'1000001';
SELECT _utf8 0b1000001 COLLATE utf8_danish_ci;

Character set introducers and the COLLATE clause are implemented according to standard SQL
specifications.

Character string literals can be designated as binary strings by using the _binary introducer.
Hexadecimal literals and bit-value literals are binary strings by default, so _binary is permitted, but
unnecessary.

MySQL determines the character set and collation of a character string literal, hexadecimal literal, or bit-
value literal in the following manner:

• If both _charset_name and COLLATE collation_name are specified, character set charset_name
and collation collation_name are used. collation_name must be a permitted collation for
charset_name.

• If _charset_name is specified but COLLATE is not specified, character set charset_name and its
default collation are used. To see the default collation for each character set, use the SHOW CHARACTER
SET statement or query the INFORMATION_SCHEMA CHARACTER_SETS table.

• If _charset_name is not specified but COLLATE collation_name is specified:

• For a character string literal, the connection default character set given by the
character_set_connection system variable and collation collation_name are used.
collation_name must be a permitted collation for the connection default character set.

• For a hexadecimal literal or bit-value literal, the only permitted collation is binary because these
types of literals are binary strings by default.

• Otherwise (neither _charset_name nor COLLATE collation_name is specified):

• For a character string literal, the connection default character set and collation given by the
character_set_connection and collation_connection system variables are used.

• For a hexadecimal literal or bit-value literal, the character set and collation are binary.

Examples:

• Nonbinary strings with latin1 character set and latin1_german1_ci collation:

SELECT _latin1'Müller' COLLATE latin1_german1_ci;
SELECT _latin1 X'0A0D' COLLATE latin1_german1_ci;
SELECT _latin1 b'0110' COLLATE latin1_german1_ci;

• Nonbinary strings with utf8 character set and its default collation (that is, utf8_general_ci):

SELECT _utf8'Müller';
SELECT _utf8 X'0A0D';
SELECT _utf8 b'0110';

• Binary strings with binary character set and its default collation (that is, binary):

SELECT _binary'Müller';
SELECT X'0A0D';
SELECT b'0110';

The hexadecimal literal and bit-value literal need no introducer because they are binary strings by
default.

1724

Examples of Character Set and Collation Assignment

• A nonbinary string with the connection default character set and utf8_general_ci collation (fails if the
connection character set is not utf8):

SELECT 'Müller' COLLATE utf8_general_ci;

This construction (COLLATE only) does not work for hexadecimal literals or bit literals because their
character set is binary no matter the connection character set, and binary is not compatible with the
utf8_general_ci collation. The only permitted COLLATE clause in the absence of an introducer is
COLLATE binary.

• A string with the connection default character set and collation:

SELECT 'Müller';

10.3.9 Examples of Character Set and Collation Assignment

The following examples show how MySQL determines default character set and collation values.

Example 1: Table and Column Definition

CREATE TABLE t1
(
 c1 CHAR(10) CHARACTER SET latin1 COLLATE latin1_german1_ci
) DEFAULT CHARACTER SET latin2 COLLATE latin2_bin;

Here we have a column with a latin1 character set and a latin1_german1_ci collation. The definition
is explicit, so that is straightforward. Notice that there is no problem with storing a latin1 column in a
latin2 table.

Example 2: Table and Column Definition

CREATE TABLE t1
(
 c1 CHAR(10) CHARACTER SET latin1
) DEFAULT CHARACTER SET latin1 COLLATE latin1_danish_ci;

This time we have a column with a latin1 character set and a default collation. Although it might seem
natural, the default collation is not taken from the table level. Instead, because the default collation for
latin1 is always latin1_swedish_ci, column c1 has a collation of latin1_swedish_ci (not
latin1_danish_ci).

Example 3: Table and Column Definition

CREATE TABLE t1
(
 c1 CHAR(10)
) DEFAULT CHARACTER SET latin1 COLLATE latin1_danish_ci;

We have a column with a default character set and a default collation. In this circumstance, MySQL checks
the table level to determine the column character set and collation. Consequently, the character set for
column c1 is latin1 and its collation is latin1_danish_ci.

Example 4: Database, Table, and Column Definition

CREATE DATABASE d1
 DEFAULT CHARACTER SET latin2 COLLATE latin2_czech_cs;
USE d1;
CREATE TABLE t1
(

1725

Compatibility with Other DBMSs

 c1 CHAR(10)
);

We create a column without specifying its character set and collation. We're also not specifying a character
set and a collation at the table level. In this circumstance, MySQL checks the database level to determine
the table settings, which thereafter become the column settings.) Consequently, the character set for
column c1 is latin2 and its collation is latin2_czech_cs.

10.3.10 Compatibility with Other DBMSs

For MaxDB compatibility these two statements are the same:

CREATE TABLE t1 (f1 CHAR(N) UNICODE);
CREATE TABLE t1 (f1 CHAR(N) CHARACTER SET ucs2);

10.4 Connection Character Sets and Collations

A “connection” is what a client program makes when it connects to the server, to begin a session within
which it interacts with the server. The client sends SQL statements, such as queries, over the session
connection. The server sends responses, such as result sets or error messages, over the connection back
to the client.

• Connection Character Set and Collation System Variables

• Impermissible Client Character Sets

• Client Program Connection Character Set Configuration

• SQL Statements for Connection Character Set Configuration

• Connection Character Set Error Handling

Connection Character Set and Collation System Variables

Several character set and collation system variables relate to a client's interaction with the server. Some of
these have been mentioned in earlier sections:

• The character_set_server and collation_server system variables indicate the server
character set and collation. See Section 10.3.2, “Server Character Set and Collation”.

• The character_set_database and collation_database system variables indicate the character
set and collation of the default database. See Section 10.3.3, “Database Character Set and Collation”.

Additional character set and collation system variables are involved in handling traffic for the connection
between a client and the server. Every client has session-specific connection-related character set and
collation system variables. These session system variable values are initialized at connect time, but can be
changed within the session.

Several questions about character set and collation handling for client connections can be answered in
terms of system variables:

• What character set are statements in when they leave the client?

The server takes the character_set_client system variable to be the character set in which
statements are sent by the client.

1726

Impermissible Client Character Sets

Note

Some character sets cannot be used as the client character set. See
Impermissible Client Character Sets.

• What character set should the server translate statements to after receiving them?

To determine this, the server uses the character_set_connection and collation_connection
system variables:

• The server converts statements sent by the client from character_set_client to
character_set_connection. Exception: For string literals that have an introducer such as
_utf8mb4 or _latin2, the introducer determines the character set. See Section 10.3.8, “Character
Set Introducers”.

• collation_connection is important for comparisons of literal strings. For comparisons of strings
with column values, collation_connection does not matter because columns have their own
collation, which has a higher collation precedence (see Section 10.8.4, “Collation Coercibility in
Expressions”).

• What character set should the server translate query results to before shipping them back to the client?

The character_set_results system variable indicates the character set in which the server returns
query results to the client. This includes result data such as column values, result metadata such as
column names, and error messages.

To tell the server to perform no conversion of result sets or error messages, set
character_set_results to NULL or binary:

SET character_set_results = NULL;
SET character_set_results = binary;

For more information about character sets and error messages, see Section 10.6, “Error Message
Character Set”.

To see the values of the character set and collation system variables that apply to the current session, use
this statement:

SELECT * FROM performance_schema.session_variables
WHERE VARIABLE_NAME IN (
'character_set_client', 'character_set_connection',
'character_set_results', 'collation_connection'
) ORDER BY VARIABLE_NAME;

The following simpler statements also display the connection variables, but include other related variables
as well. They can be useful to see all character set and collation system variables:

SHOW SESSION VARIABLES LIKE 'character_set_%';
SHOW SESSION VARIABLES LIKE 'collation_%';

Clients can fine-tune the settings for these variables, or depend on the defaults (in which case, you can
skip the rest of this section). If you do not use the defaults, you must change the character settings for
each connection to the server.

Impermissible Client Character Sets

The character_set_client system variable cannot be set to certain character sets:

1727

Client Program Connection Character Set Configuration

ucs2
utf16
utf16le
utf32

Attempting to use any of those character sets as the client character set produces an error:

mysql> SET character_set_client = 'ucs2';
ERROR 1231 (42000): Variable 'character_set_client'
can't be set to the value of 'ucs2'

The same error occurs if any of those character sets are used in the following contexts, all of which result
in an attempt to set character_set_client to the named character set:

• The --default-character-set=charset_name command option used by MySQL client programs
such as mysql and mysqladmin.

• The SET NAMES 'charset_name' statement.

• The SET CHARACTER SET 'charset_name' statement.

Client Program Connection Character Set Configuration

When a client connects to the server, it indicates which character set it wants to use for communication
with the server. (Actually, the client indicates the default collation for that character set, from
which the server can determine the character set.) The server uses this information to set the
character_set_client, character_set_results, character_set_connection system
variables to the character set, and collation_connection to the character set default collation. In
effect, the server performs the equivalent of a SET NAMES operation.

If the server does not support the requested character set or collation, it falls back to using the server
character set and collation to configure the connection. For additional detail about this fallback behavior,
see Connection Character Set Error Handling.

The mysql, mysqladmin, mysqlcheck, mysqlimport, and mysqlshow client programs determine the
default character set to use as follows:

• In the absence of other information, each client uses the compiled-in default character set, usually
latin1.

• Each client can autodetect which character set to use based on the operating system setting, such as
the value of the LANG or LC_ALL locale environment variable on Unix systems or the code page setting
on Windows systems. For systems on which the locale is available from the OS, the client uses it to
set the default character set rather than using the compiled-in default. For example, setting LANG to
ru_RU.KOI8-R causes the koi8r character set to be used. Thus, users can configure the locale in
their environment for use by MySQL clients.

The OS character set is mapped to the closest MySQL character set if there is no exact match. If the
client does not support the matching character set, it uses the compiled-in default. For example, ucs2 is
not supported as a connection character set, so it maps to the compiled-in default.

C applications can use character set autodetection based on the OS setting by invoking
mysql_options() as follows before connecting to the server:

mysql_options(mysql,
 MYSQL_SET_CHARSET_NAME,
 MYSQL_AUTODETECT_CHARSET_NAME);

1728

https://dev.mysql.com/doc/c-api/5.7/en/mysql-options.html

SQL Statements for Connection Character Set Configuration

• Each client supports a --default-character-set option, which enables users to specify the
character set explicitly to override whatever default the client otherwise determines.

Note

Some character sets cannot be used as the client character set. Attempting
to use them with --default-character-set produces an error. See
Impermissible Client Character Sets.

With the mysql client, to use a character set different from the default, you could explicitly execute a SET
NAMES statement every time you connect to the server (see Client Program Connection Character Set
Configuration). To accomplish the same result more easily, specify the character set in your option file.
For example, the following option file setting changes the three connection-related character set system
variables set to koi8r each time you invoke mysql:

[mysql]
default-character-set=koi8r

If you are using the mysql client with auto-reconnect enabled (which is not recommended), it is preferable
to use the charset command rather than SET NAMES. For example:

mysql> charset koi8r
Charset changed

The charset command issues a SET NAMES statement, and also changes the default character set that
mysql uses when it reconnects after the connection has dropped.

When configuration client programs, you must also consider the environment within which they execute.
See Section 10.5, “Configuring Application Character Set and Collation”.

SQL Statements for Connection Character Set Configuration

After a connection has been established, clients can change the character set and collation system
variables for the current session. These variables can be changed individually using SET statements, but
two more convenient statements affect the connection-related character set sytem variables as a group:

• SET NAMES 'charset_name' [COLLATE 'collation_name']

SET NAMES indicates what character set the client uses to send SQL statements to the server. Thus,
SET NAMES 'cp1251' tells the server, “future incoming messages from this client are in character
set cp1251.” It also specifies the character set that the server should use for sending results back to
the client. (For example, it indicates what character set to use for column values if you use a SELECT
statement that produces a result set.)

A SET NAMES 'charset_name' statement is equivalent to these three statements:

SET character_set_client = charset_name;
SET character_set_results = charset_name;
SET character_set_connection = charset_name;

Setting character_set_connection to charset_name also implicitly sets
collation_connection to the default collation for charset_name. It is unnecessary to set that
collation explicitly. To specify a particular collation to use for collation_connection, add a COLLATE
clause:

SET NAMES 'charset_name' COLLATE 'collation_name'

• SET CHARACTER SET 'charset_name'

1729

Connection Character Set Error Handling

SET CHARACTER SET is similar to SET NAMES but sets character_set_connection and
collation_connection to character_set_database and collation_database (which, as
mentioned previously, indicate the character set and collation of the default database).

A SET CHARACTER SET charset_name statement is equivalent to these three statements:

SET character_set_client = charset_name;
SET character_set_results = charset_name;
SET collation_connection = @@collation_database;

Setting collation_connection also implicitly sets character_set_connection to the character
set associated with the collation (equivalent to executing SET character_set_connection =
@@character_set_database). It is unnecessary to set character_set_connection explicitly.

Note

Some character sets cannot be used as the client character set. Attempting to
use them with SET NAMES or SET CHARACTER SET produces an error. See
Impermissible Client Character Sets.

Example: Suppose that column1 is defined as CHAR(5) CHARACTER SET latin2. If you do not say
SET NAMES or SET CHARACTER SET, then for SELECT column1 FROM t, the server sends back all
the values for column1 using the character set that the client specified when it connected. On the other
hand, if you say SET NAMES 'latin1' or SET CHARACTER SET 'latin1' before issuing the SELECT
statement, the server converts the latin2 values to latin1 just before sending results back. Conversion
may be lossy for characters that are not in both character sets.

Connection Character Set Error Handling

Attempts to use an inappropriate connection character set or collation can produce an error, or cause the
server to fall back to its default character set and collation for a given connection. This section describes
problems that can occur when configuring the connection character set. These problems can occur when
establishing a connection or when changing the character set within an established connection.

• Connect-Time Error Handling

• Runtime Error Handling

Connect-Time Error Handling

Some character sets cannot be used as the client character set; see Impermissible Client Character Sets.
If you specify a character set that is valid but not permitted as a client character set, the server returns an
error:

$> mysql --default-character-set=ucs2
ERROR 1231 (42000): Variable 'character_set_client' can't be set to
the value of 'ucs2'

If you specify a character set that the client does not recognize, it produces an error:

$> mysql --default-character-set=bogus
mysql: Character set 'bogus' is not a compiled character set and is
not specified in the '/usr/local/mysql/share/charsets/Index.xml' file
ERROR 2019 (HY000): Can't initialize character set bogus
(path: /usr/local/mysql/share/charsets/)

If you specify a character set that the client recognizes but the server does not, the server falls back
to its default character set and collation. Suppose that the server is configured to use latin1 and
latin1_swedish_ci as its defaults, and that it does not recognize gb18030 as a valid character set.

1730

Connection Character Set Error Handling

A client that specifies --default-character-set=gb18030 is able to connect to the server, but the
resulting character set is not what the client wants:

mysql> SHOW SESSION VARIABLES LIKE 'character_set_%';
+--------------------------+--------+
| Variable_name | Value |
+--------------------------+--------+
| character_set_client | latin1 |
| character_set_connection | latin1 |
...
| character_set_results | latin1 |
...
+--------------------------+--------+
mysql> SHOW SESSION VARIABLES LIKE 'collation_connection';
+----------------------+-------------------+
| Variable_name | Value |
+----------------------+-------------------+
| collation_connection | latin1_swedish_ci |
+----------------------+-------------------+

You can see that the connection system variables have been set to reflect a character set and collation of
latin1 and latin1_swedish_ci. This occurs because the server cannot satisfy the client character set
request and falls back to its defaults.

In this case, the client cannot use the character set that it wants because the server does not support
it. The client must either be willing to use a different character set, or connect to a different server that
supports the desired character set.

The same problem occurs in a more subtle context: When the client tells the server to use a character set
that the server recognizes, but the default collation for that character set on the client side is not known
on the server side. This occurs, for example, when a MySQL 8.0 client wants to connect to a MySQL
5.7 server using utf8mb4 as the client character set. A client that specifies --default-character-
set=utf8mb4 is able to connect to the server. However, as in the previous example, the server falls back
to its default character set and collation, not what the client requested:

mysql> SHOW SESSION VARIABLES LIKE 'character_set_%';
+--------------------------+--------+
| Variable_name | Value |
+--------------------------+--------+
| character_set_client | latin1 |
| character_set_connection | latin1 |
...
| character_set_results | latin1 |
...
+--------------------------+--------+
mysql> SHOW SESSION VARIABLES LIKE 'collation_connection';
+----------------------+-------------------+
| Variable_name | Value |
+----------------------+-------------------+
| collation_connection | latin1_swedish_ci |
+----------------------+-------------------+

Why does this occur? After all, utf8mb4 is known to the 8.0 client and the 5.7 server, so both of them
recognize it. To understand this behavior, it is necessary to understand that when the client tells the server
which character set it wants to use, it really tells the server the default collation for that character set.
Therefore, the aforementioned behavior occurs due to a combination of factors:

• The default collation for utf8mb4 differs between MySQL 5.7 and 8.0 (utf8mb4_general_ci for 5.7,
utf8mb4_0900_ai_ci for 8.0).

• When the 8.0 client requests a character set of utf8mb4, what it sends to the server is the default 8.0
utf8mb4 collation; that is, the utf8mb4_0900_ai_ci.

1731

Configuring Application Character Set and Collation

• utf8mb4_0900_ai_ci is implemented only as of MySQL 8.0, so the 5.7 server does not recognize it.

• Because the 5.7 server does not recognize utf8mb4_0900_ai_ci, it cannot satisfy the client
character set request, and falls back to its default character set and collation (latin1 and
latin1_swedish_ci).

In this case, the client can still use utf8mb4 by issuing a SET NAMES 'utf8mb4' statement after
connecting. The resulting collation is the 5.7 default utf8mb4 collation; that is, utf8mb4_general_ci.
If the client additionally wants a collation of utf8mb4_0900_ai_ci, it cannot achieve that because the
server does not recognize that collation. The client must either be willing to use a different utf8mb4
collation, or connect to a server from MySQL 8.0 or higher.

Runtime Error Handling

Within an established connection, the client can request a change of connection character set and collation
with SET NAMES or SET CHARACTER SET.

Some character sets cannot be used as the client character set; see Impermissible Client Character Sets.
If you specify a character set that is valid but not permitted as a client character set, the server returns an
error:

mysql> SET NAMES 'ucs2';
ERROR 1231 (42000): Variable 'character_set_client' can't be set to
the value of 'ucs2'

If the server does not recognize the character set (or the collation), it produces an error:

mysql> SET NAMES 'bogus';
ERROR 1115 (42000): Unknown character set: 'bogus'

mysql> SET NAMES 'utf8mb4' COLLATE 'bogus';
ERROR 1273 (HY000): Unknown collation: 'bogus'

Tip

A client that wants to verify whether its requested character set was honored by the
server can execute the following statement after connecting and checking that the
result is the expected character set:

SELECT @@character_set_client;

10.5 Configuring Application Character Set and Collation
For applications that store data using the default MySQL character set and collation (latin1,
latin1_swedish_ci), no special configuration should be needed. If applications require data storage
using a different character set or collation, you can configure character set information several ways:

• Specify character settings per database. For example, applications that use one database might use the
default of latin1, whereas applications that use another database might use sjis.

• Specify character settings at server startup. This causes the server to use the given settings for all
applications that do not make other arrangements.

• Specify character settings at configuration time, if you build MySQL from source. This causes the server
to use the given settings as the defaults for all applications, without having to specify them at server
startup.

When different applications require different character settings, the per-database technique provides a
good deal of flexibility. If most or all applications use the same character set, specifying character settings
at server startup or configuration time may be most convenient.

1732

Configuring Application Character Set and Collation

For the per-database or server-startup techniques, the settings control the character set for data storage.
Applications must also tell the server which character set to use for client/server communications, as
described in the following instructions.

The examples shown here assume use of the utf8 character set and utf8_general_ci collation in
particular contexts as an alternative to the defaults of latin1 and latin1_swedish_ci.

• Specify character settings per database. To create a database such that its tables use a given
default character set and collation for data storage, use a CREATE DATABASE statement like this:

CREATE DATABASE mydb
 CHARACTER SET utf8
 COLLATE utf8_general_ci;

Tables created in the database use utf8 and utf8_general_ci by default for any character columns.

Applications that use the database should also configure their connection to the server each time
they connect. This can be done by executing a SET NAMES 'utf8' statement after connecting. The
statement can be used regardless of connection method (the mysql client, PHP scripts, and so forth).

In some cases, it may be possible to configure the connection to use the desired character set some
other way. For example, to connect using mysql, you can specify the --default-character-
set=utf8 command-line option to achieve the same effect as SET NAMES 'utf8'.

For more information about configuring client connections, see Section 10.4, “Connection Character Sets
and Collations”.

Note

If you use ALTER DATABASE to change the database default character set or
collation, existing stored routines in the database that use those defaults must
be dropped and recreated so that they use the new defaults. (In a stored routine,
variables with character data types use the database defaults if the character
set or collation are not specified explicitly. See Section 13.1.16, “CREATE
PROCEDURE and CREATE FUNCTION Statements”.)

• Specify character settings at server startup. To select a character set and collation at server
startup, use the --character-set-server and --collation-server options. For example, to
specify the options in an option file, include these lines:

[mysqld]
character-set-server=utf8
collation-server=utf8_general_ci

These settings apply server-wide and apply as the defaults for databases created by any application,
and for tables created in those databases.

It is still necessary for applications to configure their connection using SET NAMES or equivalent
after they connect, as described previously. You might be tempted to start the server with the --
init_connect="SET NAMES 'utf8'" option to cause SET NAMES to be executed automatically
for each client that connects. However, this may yield inconsistent results because the init_connect
value is not executed for users who have the SUPER privilege.

• Specify character settings at MySQL configuration time. To select a character set and collation if
you configure and build MySQL from source, use the DEFAULT_CHARSET and DEFAULT_COLLATION
CMake options:

cmake . -DDEFAULT_CHARSET=utf8 \

1733

Error Message Character Set

 -DDEFAULT_COLLATION=utf8_general_ci

The resulting server uses utf8 and utf8_general_ci as the default for databases and tables and
for client connections. It is unnecessary to use --character-set-server and --collation-
server to specify those defaults at server startup. It is also unnecessary for applications to configure
their connection using SET NAMES or equivalent after they connect to the server.

Regardless of how you configure the MySQL character set for application use, you must also consider the
environment within which those applications execute. For example, if you send statements using UTF-8
text taken from a file that you create in an editor, you should edit the file with the locale of your environment
set to UTF-8 so that the file encoding is correct and so that the operating system handles it correctly. If
you use the mysql client from within a terminal window, the window must be configured to use UTF-8
or characters may not display properly. For a script that executes in a Web environment, the script must
handle character encoding properly for its interaction with the MySQL server, and it must generate pages
that correctly indicate the encoding so that browsers know how to display the content of the pages. For
example, you can include this <meta> tag within your <head> element:

<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />

10.6 Error Message Character Set
This section describes how the MySQL server uses character sets for constructing error messages. For
information about the language of error messages (rather than the character set), see Section 10.12,
“Setting the Error Message Language”. For general information about configuring error logging, see
Section 5.4.2, “The Error Log”.

• Character Set for Error Message Construction

• Character Set for Error Message Disposition

Character Set for Error Message Construction

The server constructs error messages as follows:

• The message template uses UTF-8 (utf8mb3).

• Parameters in the message template are replaced with values that apply to a specific error occurrence:

• Identifiers such as table or column names use UTF-8 internally so they are copied as is.

• Character (nonbinary) string values are converted from their character set to UTF-8.

• Binary string values are copied as is for bytes in the range 0x20 to 0x7E, and using \x hexadecimal
encoding for bytes outside that range. For example, if a duplicate-key error occurs for an attempt to
insert 0x41CF9F into a VARBINARY unique column, the resulting error message uses UTF-8 with
some bytes hexadecimal encoded:

Duplicate entry 'A\xCF\x9F' for key 1

Character Set for Error Message Disposition

An error message, once constructed, can be written by the server to the error log or sent to clients:

• If the server writes the error message to the error log, it writes it in UTF-8, as constructed, without
conversion to another character set.

• If the server sends the error message to a client program, the server converts it from
UTF-8 to the character set specified by the character_set_results system variable. If

1734

Column Character Set Conversion

character_set_results has a value of NULL or binary, no conversion occurs. No conversion
occurs if the variable value is utf8mb3 or utf8mb4, either, because those character sets have a
repertoire that includes all UTF-8 characters used in message construction.

If characters cannot be represented in character_set_results, some encoding may occur during
the conversion. The encoding uses Unicode code point values:

• Characters in the Basic Multilingual Plane (BMP) range (0x0000 to 0xFFFF) are written using \nnnn
notation.

• Characters outside the BMP range (0x10000 to 0x10FFFF) are written using \+nnnnnn notation.

Clients can set character_set_results to control the character set in which they receive error
messages. The variable can be set directly, or indirectly by means such as SET NAMES. For more
information about character_set_results, see Section 10.4, “Connection Character Sets and
Collations”.

10.7 Column Character Set Conversion
To convert a binary or nonbinary string column to use a particular character set, use ALTER TABLE. For
successful conversion to occur, one of the following conditions must apply:

• If the column has a binary data type (BINARY, VARBINARY, BLOB), all the values that it contains must
be encoded using a single character set (the character set you're converting the column to). If you use a
binary column to store information in multiple character sets, MySQL has no way to know which values
use which character set and cannot convert the data properly.

• If the column has a nonbinary data type (CHAR, VARCHAR, TEXT), its contents should be encoded in the
column character set, not some other character set. If the contents are encoded in a different character
set, you can convert the column to use a binary data type first, and then to a nonbinary column with the
desired character set.

Suppose that a table t has a binary column named col1 defined as VARBINARY(50). Assuming that
the information in the column is encoded using a single character set, you can convert it to a nonbinary
column that has that character set. For example, if col1 contains binary data representing characters in
the greek character set, you can convert it as follows:

ALTER TABLE t MODIFY col1 VARCHAR(50) CHARACTER SET greek;

If your original column has a type of BINARY(50), you could convert it to CHAR(50), but the resulting
values are padded with 0x00 bytes at the end, which may be undesirable. To remove these bytes, use the
TRIM() function:

UPDATE t SET col1 = TRIM(TRAILING 0x00 FROM col1);

Suppose that table t has a nonbinary column named col1 defined as CHAR(50) CHARACTER SET
latin1 but you want to convert it to use utf8 so that you can store values from many languages. The
following statement accomplishes this:

ALTER TABLE t MODIFY col1 CHAR(50) CHARACTER SET utf8;

Conversion may be lossy if the column contains characters that are not in both character sets.

A special case occurs if you have old tables from before MySQL 4.1 where a nonbinary column contains
values that actually are encoded in a character set different from the server's default character set. For
example, an application might have stored sjis values in a column, even though MySQL's default
character set was different. It is possible to convert the column to use the proper character set but an

1735

Collation Issues

additional step is required. Suppose that the server's default character set was latin1 and col1 is
defined as CHAR(50) but its contents are sjis values. The first step is to convert the column to a
binary data type, which removes the existing character set information without performing any character
conversion:

ALTER TABLE t MODIFY col1 BLOB;

The next step is to convert the column to a nonbinary data type with the proper character set:

ALTER TABLE t MODIFY col1 CHAR(50) CHARACTER SET sjis;

This procedure requires that the table not have been modified already with statements such as INSERT or
UPDATE after an upgrade to MySQL 4.1 or higher. In that case, MySQL stores new values in the column
using latin1, and the column contains a mix of sjis and latin1 values and cannot be converted
properly.

If you specified attributes when creating a column initially, you should also specify them when altering the
table with ALTER TABLE. For example, if you specified NOT NULL and an explicit DEFAULT value, you
should also provide them in the ALTER TABLE statement. Otherwise, the resulting column definition does
not include those attributes.

To convert all character columns in a table, the ALTER TABLE ... CONVERT TO CHARACTER SET
charset statement may be useful. See Section 13.1.8, “ALTER TABLE Statement”.

Note

ALTER TABLE statements which make changes in table or column character sets
or collations must be performed using ALGORITHM=COPY. For more information,
see Section 14.13.1, “Online DDL Operations”.

10.8 Collation Issues
The following sections discuss various aspects of character set collations.

10.8.1 Using COLLATE in SQL Statements

With the COLLATE clause, you can override whatever the default collation is for a comparison. COLLATE
may be used in various parts of SQL statements. Here are some examples:

• With ORDER BY:

SELECT k
FROM t1
ORDER BY k COLLATE latin1_german2_ci;

• With AS:

SELECT k COLLATE latin1_german2_ci AS k1
FROM t1
ORDER BY k1;

• With GROUP BY:

SELECT k
FROM t1
GROUP BY k COLLATE latin1_german2_ci;

• With aggregate functions:

SELECT MAX(k COLLATE latin1_german2_ci)

1736

COLLATE Clause Precedence

FROM t1;

• With DISTINCT:

SELECT DISTINCT k COLLATE latin1_german2_ci
FROM t1;

• With WHERE:

 SELECT *
 FROM t1
 WHERE _latin1 'Müller' COLLATE latin1_german2_ci = k;

 SELECT *
 FROM t1
 WHERE k LIKE _latin1 'Müller' COLLATE latin1_german2_ci;

• With HAVING:

SELECT k
FROM t1
GROUP BY k
HAVING k = _latin1 'Müller' COLLATE latin1_german2_ci;

10.8.2 COLLATE Clause Precedence

The COLLATE clause has high precedence (higher than ||), so the following two expressions are
equivalent:

x || y COLLATE z
x || (y COLLATE z)

10.8.3 Character Set and Collation Compatibility

Each character set has one or more collations, but each collation is associated with one and only one
character set. Therefore, the following statement causes an error message because the latin2_bin
collation is not legal with the latin1 character set:

mysql> SELECT _latin1 'x' COLLATE latin2_bin;
ERROR 1253 (42000): COLLATION 'latin2_bin' is not valid
for CHARACTER SET 'latin1'

10.8.4 Collation Coercibility in Expressions

In the great majority of statements, it is obvious what collation MySQL uses to resolve a comparison
operation. For example, in the following cases, it should be clear that the collation is the collation of column
x:

SELECT x FROM T ORDER BY x;
SELECT x FROM T WHERE x = x;
SELECT DISTINCT x FROM T;

However, with multiple operands, there can be ambiguity. For example, this statement performs a
comparison between the column x and the string literal 'Y':

SELECT x FROM T WHERE x = 'Y';

If x and 'Y' have the same collation, there is no ambiguity about the collation to use for the comparison.
But if they have different collations, should the comparison use the collation of x, or of 'Y'? Both x and
'Y' have collations, so which collation takes precedence?

1737

Collation Coercibility in Expressions

A mix of collations may also occur in contexts other than comparison. For example, a multiple-argument
concatenation operation such as CONCAT(x,'Y') combines its arguments to produce a single string.
What collation should the result have?

To resolve questions like these, MySQL checks whether the collation of one item can be coerced to the
collation of the other. MySQL assigns coercibility values as follows:

• An explicit COLLATE clause has a coercibility of 0 (not coercible at all).

• The concatenation of two strings with different collations has a coercibility of 1.

• The collation of a column or a stored routine parameter or local variable has a coercibility of 2.

• A “system constant” (the string returned by functions such as USER() or VERSION()) has a coercibility
of 3.

• The collation of a literal has a coercibility of 4.

• The collation of a numeric or temporal value has a coercibility of 5.

• NULL or an expression that is derived from NULL has a coercibility of 6.

MySQL uses coercibility values with the following rules to resolve ambiguities:

• Use the collation with the lowest coercibility value.

• If both sides have the same coercibility, then:

• If both sides are Unicode, or both sides are not Unicode, it is an error.

• If one of the sides has a Unicode character set, and another side has a non-Unicode character set, the
side with Unicode character set wins, and automatic character set conversion is applied to the non-
Unicode side. For example, the following statement does not return an error:

SELECT CONCAT(utf8_column, latin1_column) FROM t1;

It returns a result that has a character set of utf8 and the same collation as utf8_column. Values of
latin1_column are automatically converted to utf8 before concatenating.

• For an operation with operands from the same character set but that mix a _bin collation and a _ci
or _cs collation, the _bin collation is used. This is similar to how operations that mix nonbinary and
binary strings evaluate the operands as binary strings, applied to collations rather than data types.

Although automatic conversion is not in the SQL standard, the standard does say that every character
set is (in terms of supported characters) a “subset” of Unicode. Because it is a well-known principle that
“what applies to a superset can apply to a subset,” we believe that a collation for Unicode can apply
for comparisons with non-Unicode strings. More generally, MySQL uses the concept of character set
repertoire, which can sometimes be used to determine subset relationships among character sets and
enable conversion of operands in operations that would otherwise produce an error. See Section 10.2.1,
“Character Set Repertoire”.

The following table illustrates some applications of the preceding rules.

Comparison Collation Used

column1 = 'A' Use collation of column1

column1 = 'A' COLLATE x Use collation of 'A' COLLATE x

1738

The binary Collation Compared to _bin Collations

Comparison Collation Used

column1 COLLATE x = 'A' COLLATE y Error

To determine the coercibility of a string expression, use the COERCIBILITY() function (see
Section 12.15, “Information Functions”):

mysql> SELECT COERCIBILITY(_utf8'A' COLLATE utf8_bin);
 -> 0
mysql> SELECT COERCIBILITY(VERSION());
 -> 3
mysql> SELECT COERCIBILITY('A');
 -> 4
mysql> SELECT COERCIBILITY(1000);
 -> 5
mysql> SELECT COERCIBILITY(NULL);
 -> 6

For implicit conversion of a numeric or temporal value to a string, such as occurs for the argument 1 in
the expression CONCAT(1, 'abc'), the result is a character (nonbinary) string that has a character set
and collation determined by the character_set_connection and collation_connection system
variables. See Section 12.3, “Type Conversion in Expression Evaluation”.

10.8.5 The binary Collation Compared to _bin Collations

This section describes how the binary collation for binary strings compares to _bin collations for
nonbinary strings.

Binary strings (as stored using the BINARY, VARBINARY, and BLOB data types) have a character set and
collation named binary. Binary strings are sequences of bytes and the numeric values of those bytes
determine comparison and sort order. See Section 10.10.8, “The Binary Character Set”.

Nonbinary strings (as stored using the CHAR, VARCHAR, and TEXT data types) have a character set and
collation other than binary. A given nonbinary character set can have several collations, each of which
defines a particular comparison and sort order for the characters in the set. One of these is the binary
collation, indicated by a _bin suffix in the collation name. For example, the binary collation for utf8 and
latin1 is named utf8_bin and latin1_bin, respectively.

The binary collation differs from _bin collations in several respects, discussed in the following sections:

• The Unit for Comparison and Sorting

• Character Set Conversion

• Lettercase Conversion

• Trailing Space Handling in Comparisons

• Trailing Space Handling for Inserts and Retrievals

The Unit for Comparison and Sorting

Binary strings are sequences of bytes. For the binary collation, comparison and sorting are based on
numeric byte values. Nonbinary strings are sequences of characters, which might be multibyte. Collations
for nonbinary strings define an ordering of the character values for comparison and sorting. For _bin
collations, this ordering is based on numeric character code values, which is similar to ordering for binary
strings except that character code values might be multibyte.

1739

The binary Collation Compared to _bin Collations

Character Set Conversion

A nonbinary string has a character set and is automatically converted to another character set in many
cases, even when the string has a _bin collation:

• When assigning column values to another column that has a different character set:

UPDATE t1 SET utf8_bin_column=latin1_column;
INSERT INTO t1 (latin1_column) SELECT utf8_bin_column FROM t2;

• When assigning column values for INSERT or UPDATE using a string literal:

SET NAMES latin1;
INSERT INTO t1 (utf8_bin_column) VALUES ('string-in-latin1');

• When sending results from the server to a client:

SET NAMES latin1;
SELECT utf8_bin_column FROM t2;

For binary string columns, no conversion occurs. For cases similar to those preceding, the string value is
copied byte-wise.

Lettercase Conversion

Collations for nonbinary character sets provide information about lettercase of characters, so characters
in a nonbinary string can be converted from one lettercase to another, even for _bin collations that ignore
lettercase for ordering:

mysql> SET NAMES utf8mb4 COLLATE utf8mb4_bin;
mysql> SELECT LOWER('aA'), UPPER('zZ');
+-------------+-------------+
| LOWER('aA') | UPPER('zZ') |
+-------------+-------------+
| aa | ZZ |
+-------------+-------------+

The concept of lettercase does not apply to bytes in a binary string. To perform lettercase conversion, the
string must first be converted to a nonbinary string using a character set appropriate for the data stored in
the string:

mysql> SET NAMES binary;
mysql> SELECT LOWER('aA'), LOWER(CONVERT('aA' USING utf8mb4));
+-------------+------------------------------------+
| LOWER('aA') | LOWER(CONVERT('aA' USING utf8mb4)) |
+-------------+------------------------------------+
| aA | aa |
+-------------+------------------------------------+

Trailing Space Handling in Comparisons

Nonbinary strings have PAD SPACE behavior for all collations, including _bin collations. Trailing spaces
are insignificant in comparisons:

mysql> SET NAMES utf8 COLLATE utf8_bin;
mysql> SELECT 'a ' = 'a';
+------------+
| 'a ' = 'a' |
+------------+
| 1 |
+------------+

1740

Examples of the Effect of Collation

For binary strings, all bytes are significant in comparisons, including trailing spaces:

mysql> SET NAMES binary;
mysql> SELECT 'a ' = 'a';
+------------+
| 'a ' = 'a' |
+------------+
| 0 |
+------------+

Trailing Space Handling for Inserts and Retrievals

CHAR(N) columns store nonbinary strings N characters long. For inserts, values shorter than N characters
are extended with spaces. For retrievals, trailing spaces are removed.

BINARY(N) columns store binary strings N bytes long. For inserts, values shorter than N bytes are
extended with 0x00 bytes. For retrievals, nothing is removed; a value of the declared length is always
returned.

mysql> CREATE TABLE t1 (
 a CHAR(10) CHARACTER SET utf8 COLLATE utf8_bin,
 b BINARY(10)
);
mysql> INSERT INTO t1 VALUES ('x','x');
mysql> INSERT INTO t1 VALUES ('x ','x ');
mysql> SELECT a, b, HEX(a), HEX(b) FROM t1;
+------+------------+--------+----------------------+
| a | b | HEX(a) | HEX(b) |
+------+------------+--------+----------------------+
| x | x | 78 | 78000000000000000000 |
| x | x | 78 | 78200000000000000000 |
+------+------------+--------+----------------------+

10.8.6 Examples of the Effect of Collation

Example 1: Sorting German Umlauts

Suppose that column X in table T has these latin1 column values:

Muffler
Müller
MX Systems
MySQL

Suppose also that the column values are retrieved using the following statement:

SELECT X FROM T ORDER BY X COLLATE collation_name;

The following table shows the resulting order of the values if we use ORDER BY with different collations.

latin1_swedish_ci latin1_german1_ci latin1_german2_ci

Muffler Muffler Müller

MX Systems Müller Muffler

Müller MX Systems MX Systems

MySQL MySQL MySQL

The character that causes the different sort orders in this example is the U with two dots over it (ü), which
the Germans call “U-umlaut.”

1741

Using Collation in INFORMATION_SCHEMA Searches

• The first column shows the result of the SELECT using the Swedish/Finnish collating rule, which says
that U-umlaut sorts with Y.

• The second column shows the result of the SELECT using the German DIN-1 rule, which says that U-
umlaut sorts with U.

• The third column shows the result of the SELECT using the German DIN-2 rule, which says that U-umlaut
sorts with UE.

Example 2: Searching for German Umlauts

Suppose that you have three tables that differ only by the character set and collation used:

mysql> SET NAMES utf8;
mysql> CREATE TABLE german1 (
 c CHAR(10)
) CHARACTER SET latin1 COLLATE latin1_german1_ci;
mysql> CREATE TABLE german2 (
 c CHAR(10)
) CHARACTER SET latin1 COLLATE latin1_german2_ci;
mysql> CREATE TABLE germanutf8 (
 c CHAR(10)
) CHARACTER SET utf8 COLLATE utf8_unicode_ci;

Each table contains two records:

mysql> INSERT INTO german1 VALUES ('Bar'), ('Bär');
mysql> INSERT INTO german2 VALUES ('Bar'), ('Bär');
mysql> INSERT INTO germanutf8 VALUES ('Bar'), ('Bär');

Two of the above collations have an A = Ä equality, and one has no such equality
(latin1_german2_ci). For that reason, you'll get these results in comparisons:

mysql> SELECT * FROM german1 WHERE c = 'Bär';
+------+
| c |
+------+
| Bar |
| Bär |
+------+
mysql> SELECT * FROM german2 WHERE c = 'Bär';
+------+
| c |
+------+
| Bär |
+------+
mysql> SELECT * FROM germanutf8 WHERE c = 'Bär';
+------+
| c |
+------+
| Bar |
| Bär |
+------+

This is not a bug but rather a consequence of the sorting properties of latin1_german1_ci and
utf8_unicode_ci (the sorting shown is done according to the German DIN 5007 standard).

10.8.7 Using Collation in INFORMATION_SCHEMA Searches

String columns in INFORMATION_SCHEMA tables have a collation of utf8_general_ci, which is case-
insensitive. However, for values that correspond to objects that are represented in the file system, such

1742

Using Collation in INFORMATION_SCHEMA Searches

as databases and tables, searches in INFORMATION_SCHEMA string columns can be case-sensitive
or case-insensitive, depending on the characteristics of the underlying file system and the value of the
lower_case_table_names system variable. For example, searches may be case-sensitive if the file
system is case-sensitive. This section describes this behavior and how to modify it if necessary; see also
Bug #34921.

Suppose that a query searches the SCHEMATA.SCHEMA_NAME column for the test database. On Linux,
file systems are case-sensitive, so comparisons of SCHEMATA.SCHEMA_NAME with 'test' match, but
comparisons with 'TEST' do not:

mysql> SELECT SCHEMA_NAME FROM INFORMATION_SCHEMA.SCHEMATA
 WHERE SCHEMA_NAME = 'test';
+-------------+
| SCHEMA_NAME |
+-------------+
| test |
+-------------+

mysql> SELECT SCHEMA_NAME FROM INFORMATION_SCHEMA.SCHEMATA
 WHERE SCHEMA_NAME = 'TEST';
Empty set (0.00 sec)

These results occur with the lower_case_table_names system variable set to 0. Changing the value of
lower_case_table_names to 1 or 2 causes the second query to return the same (nonempty) result as
the first query.

On Windows or macOS, file systems are not case-sensitive, so comparisons match both 'test' and
'TEST':

mysql> SELECT SCHEMA_NAME FROM INFORMATION_SCHEMA.SCHEMATA
 WHERE SCHEMA_NAME = 'test';
+-------------+
| SCHEMA_NAME |
+-------------+
| test |
+-------------+

mysql> SELECT SCHEMA_NAME FROM INFORMATION_SCHEMA.SCHEMATA
 WHERE SCHEMA_NAME = 'TEST';
+-------------+
| SCHEMA_NAME |
+-------------+
| TEST |
+-------------+

The value of lower_case_table_names makes no difference in this context.

The preceding behavior occurs because the utf8_general_ci collation is not used for
INFORMATION_SCHEMA queries when searching for values that correspond to objects
represented in the file system. It is a result of file system-scanning optimizations implemented for
INFORMATION_SCHEMA searches. For information about these optimizations, see Section 8.2.3,
“Optimizing INFORMATION_SCHEMA Queries”.

If the result of a string operation on an INFORMATION_SCHEMA column differs from expectations, a
workaround is to use an explicit COLLATE clause to force a suitable collation (see Section 10.8.1, “Using
COLLATE in SQL Statements”). For example, to perform a case-insensitive search, use COLLATE with the
INFORMATION_SCHEMA column name:

mysql> SELECT SCHEMA_NAME FROM INFORMATION_SCHEMA.SCHEMATA
 WHERE SCHEMA_NAME COLLATE utf8_general_ci = 'test';
+-------------+

1743

Unicode Support

| SCHEMA_NAME |
+-------------+
| test |
+-------------+

mysql> SELECT SCHEMA_NAME FROM INFORMATION_SCHEMA.SCHEMATA
 WHERE SCHEMA_NAME COLLATE utf8_general_ci = 'TEST';
+-------------+
| SCHEMA_NAME |
+-------------+
| test |
+-------------+

In the preceding queries, it is important to apply the COLLATE clause to the INFORMATION_SCHEMA
column name. Applying COLLATE to the comparison value has no effect.

You can also use the UPPER() or LOWER() function:

WHERE UPPER(SCHEMA_NAME) = 'TEST'
WHERE LOWER(SCHEMA_NAME) = 'test'

Although a case-insensitive comparison can be performed even on platforms with case-sensitive file
systems, as just shown, it is not necessarily always the right thing to do. On such platforms, it is possible
to have multiple objects with names that differ only in lettercase. For example, tables named city, CITY,
and City can all exist simultaneously. Consider whether a search should match all such names or just one
and write queries accordingly. The first of the following comparisons (with utf8_bin) is case-sensitive; the
others are not:

WHERE TABLE_NAME COLLATE utf8_bin = 'City'
WHERE TABLE_NAME COLLATE utf8_general_ci = 'city'
WHERE UPPER(TABLE_NAME) = 'CITY'
WHERE LOWER(TABLE_NAME) = 'city'

Searches in INFORMATION_SCHEMA string columns for values that refer to INFORMATION_SCHEMA
itself do use the utf8_general_ci collation because INFORMATION_SCHEMA is a “virtual” database
not represented in the file system. For example, comparisons with SCHEMATA.SCHEMA_NAME match
'information_schema' or 'INFORMATION_SCHEMA' regardless of platform:

mysql> SELECT SCHEMA_NAME FROM INFORMATION_SCHEMA.SCHEMATA
 WHERE SCHEMA_NAME = 'information_schema';
+--------------------+
| SCHEMA_NAME |
+--------------------+
| information_schema |
+--------------------+

mysql> SELECT SCHEMA_NAME FROM INFORMATION_SCHEMA.SCHEMATA
 WHERE SCHEMA_NAME = 'INFORMATION_SCHEMA';
+--------------------+
| SCHEMA_NAME |
+--------------------+
| information_schema |
+--------------------+

10.9 Unicode Support

The Unicode Standard includes characters from the Basic Multilingual Plane (BMP) and supplementary
characters that lie outside the BMP. This section describes support for Unicode in MySQL. For information
about the Unicode Standard itself, visit the Unicode Consortium website.

BMP characters have these characteristics:

1744

http://www.unicode.org/

Unicode Support

• Their code point values are between 0 and 65535 (or U+0000 and U+FFFF).

• They can be encoded in a variable-length encoding using 8, 16, or 24 bits (1 to 3 bytes).

• They can be encoded in a fixed-length encoding using 16 bits (2 bytes).

• They are sufficient for almost all characters in major languages.

Supplementary characters lie outside the BMP:

• Their code point values are between U+10000 and U+10FFFF).

• Unicode support for supplementary characters requires character sets that have a range outside BMP
characters and therefore take more space than BMP characters (up to 4 bytes per character).

The UTF-8 (Unicode Transformation Format with 8-bit units) method for encoding Unicode data is
implemented according to RFC 3629, which describes encoding sequences that take from one to four
bytes. The idea of UTF-8 is that various Unicode characters are encoded using byte sequences of different
lengths:

• Basic Latin letters, digits, and punctuation signs use one byte.

• Most European and Middle East script letters fit into a 2-byte sequence: extended Latin letters (with tilde,
macron, acute, grave and other accents), Cyrillic, Greek, Armenian, Hebrew, Arabic, Syriac, and others.

• Korean, Chinese, and Japanese ideographs use 3-byte or 4-byte sequences.

MySQL supports these Unicode character sets:

• utf8mb4: A UTF-8 encoding of the Unicode character set using one to four bytes per character.

• utf8mb3: A UTF-8 encoding of the Unicode character set using one to three bytes per character.

• utf8: An alias for utf8mb3.

• ucs2: The UCS-2 encoding of the Unicode character set using two bytes per character.

• utf16: The UTF-16 encoding for the Unicode character set using two or four bytes per character. Like
ucs2 but with an extension for supplementary characters.

• utf16le: The UTF-16LE encoding for the Unicode character set. Like utf16 but little-endian rather
than big-endian.

• utf32: The UTF-32 encoding for the Unicode character set using four bytes per character.

Table 10.2, “Unicode Character Set General Characteristics”, summarizes the general characteristics of
Unicode character sets supported by MySQL.

Table 10.2 Unicode Character Set General Characteristics

Character Set Supported Characters Required Storage Per Character

utf8mb3, utf8 BMP only 1, 2, or 3 bytes

ucs2 BMP only 2 bytes

utf8mb4 BMP and supplementary 1, 2, 3, or 4 bytes

utf16 BMP and supplementary 2 or 4 bytes

utf16le BMP and supplementary 2 or 4 bytes

1745

The utf8mb4 Character Set (4-Byte UTF-8 Unicode Encoding)

Character Set Supported Characters Required Storage Per Character

utf32 BMP and supplementary 4 bytes

Characters outside the BMP compare as REPLACEMENT CHARACTER and convert to '?' when
converted to a Unicode character set that supports only BMP characters (utf8mb3 or ucs2).

If you use character sets that support supplementary characters and thus are “wider” than the BMP-
only utf8mb3 and ucs2 character sets, there are potential incompatibility issues for your applications;
see Section 10.9.8, “Converting Between 3-Byte and 4-Byte Unicode Character Sets”. That section also
describes how to convert tables from the (3-byte) utf8mb3 to the (4-byte) utf8mb4, and what constraints
may apply in doing so.

A similar set of collations is available for most Unicode character sets. For example, each has a Danish
collation, the names of which are utf8mb4_danish_ci, utf8mb3_danish_ci, utf8_danish_ci,
ucs2_danish_ci, utf16_danish_ci, and utf32_danish_ci. The exception is utf16le, which has
only two collations. For information about Unicode collations and their differentiating properties, including
collation properties for supplementary characters, see Section 10.10.1, “Unicode Character Sets”.

The MySQL implementation of UCS-2, UTF-16, and UTF-32 stores characters in big-endian byte order and
does not use a byte order mark (BOM) at the beginning of values. Other database systems might use little-
endian byte order or a BOM. In such cases, conversion of values must be performed when transferring
data between those systems and MySQL. The implementation of UTF-16LE is little-endian.

MySQL uses no BOM for UTF-8 values.

Client applications that communicate with the server using Unicode should set the client character set
accordingly (for example, by issuing a SET NAMES 'utf8mb4' statement). Some character sets cannot
be used as the client character set. Attempting to use them with SET NAMES or SET CHARACTER SET
produces an error. See Impermissible Client Character Sets.

The following sections provide additional detail on the Unicode character sets in MySQL.

10.9.1 The utf8mb4 Character Set (4-Byte UTF-8 Unicode Encoding)

The utf8mb4 character set has these characteristics:

• Supports BMP and supplementary characters.

• Requires a maximum of four bytes per multibyte character.

utf8mb4 contrasts with the utf8mb3 character set, which supports only BMP characters and uses a
maximum of three bytes per character:

• For a BMP character, utf8mb4 and utf8mb3 have identical storage characteristics: same code values,
same encoding, same length.

• For a supplementary character, utf8mb4 requires four bytes to store it, whereas utf8mb3 cannot
store the character at all. When converting utf8mb3 columns to utf8mb4, you need not worry about
converting supplementary characters because there are none.

utf8mb4 is a superset of utf8mb3, so for an operation such as the following concatenation, the result has
character set utf8mb4 and the collation of utf8mb4_col:

SELECT CONCAT(utf8mb3_col, utf8mb4_col);

Similarly, the following comparison in the WHERE clause works according to the collation of utf8mb4_col:

1746

The utf8mb3 Character Set (3-Byte UTF-8 Unicode Encoding)

SELECT * FROM utf8mb3_tbl, utf8mb4_tbl
WHERE utf8mb3_tbl.utf8mb3_col = utf8mb4_tbl.utf8mb4_col;

For information about data type storage as it relates to multibyte character sets, see String Type Storage
Requirements.

10.9.2 The utf8mb3 Character Set (3-Byte UTF-8 Unicode Encoding)

The utf8mb3 character set has these characteristics:

• Supports BMP characters only (no support for supplementary characters)

• Requires a maximum of three bytes per multibyte character.

Applications that use UTF-8 data but require supplementary character support should use utf8mb4 rather
than utf8mb3 (see Section 10.9.1, “The utf8mb4 Character Set (4-Byte UTF-8 Unicode Encoding)”).

Exactly the same set of characters is available in utf8mb3 and ucs2. That is, they have the same
repertoire.

utf8 is an alias for utf8mb3; the character limit is implicit, rather than explicit in the name.

utf8mb3 can be used in CHARACTER SET clauses, and utf8mb3_collation_substring in
COLLATE clauses, where collation_substring is bin, czech_ci, danish_ci, esperanto_ci,
estonian_ci, and so forth. For example:

CREATE TABLE t (s1 CHAR(1)) CHARACTER SET utf8mb3;
SELECT * FROM t WHERE s1 COLLATE utf8mb3_general_ci = 'x';
DECLARE x VARCHAR(5) CHARACTER SET utf8mb3 COLLATE utf8mb3_danish_ci;
SELECT CAST('a' AS CHAR CHARACTER SET utf8) COLLATE utf8_czech_ci;

MySQL immediately converts instances of utf8mb3 in statements to utf8, so in statements such as
SHOW CREATE TABLE or SELECT CHARACTER_SET_NAME FROM INFORMATION_SCHEMA.COLUMNS
or SELECT COLLATION_NAME FROM INFORMATION_SCHEMA.COLUMNS, users see the name utf8 or
utf8_collation_substring.

utf8mb3 is also valid in contexts other than CHARACTER SET clauses. For example:

mysqld --character-set-server=utf8mb3

SET NAMES 'utf8mb3'; /* and other SET statements that have similar effect */
SELECT _utf8mb3 'a';

For information about data type storage as it relates to multibyte character sets, see String Type Storage
Requirements.

10.9.3 The utf8 Character Set (Alias for utf8mb3)

utf8 is an alias for the utf8mb3 character set. For more information, see Section 10.9.2, “The utf8mb3
Character Set (3-Byte UTF-8 Unicode Encoding)”.

10.9.4 The ucs2 Character Set (UCS-2 Unicode Encoding)

In UCS-2, every character is represented by a 2-byte Unicode code with the most significant byte first. For
example: LATIN CAPITAL LETTER A has the code 0x0041 and it is stored as a 2-byte sequence: 0x00
0x41. CYRILLIC SMALL LETTER YERU (Unicode 0x044B) is stored as a 2-byte sequence: 0x04 0x4B.
For Unicode characters and their codes, please refer to the Unicode Consortium website.

1747

http://www.unicode.org/

The utf16 Character Set (UTF-16 Unicode Encoding)

The ucs2 character set has these characteristics:

• Supports BMP characters only (no support for supplementary characters)

• Uses a fixed-length 16-bit encoding and requires two bytes per character.

10.9.5 The utf16 Character Set (UTF-16 Unicode Encoding)

The utf16 character set is the ucs2 character set with an extension that enables encoding of
supplementary characters:

• For a BMP character, utf16 and ucs2 have identical storage characteristics: same code values, same
encoding, same length.

• For a supplementary character, utf16 has a special sequence for representing the character using 32
bits. This is called the “surrogate” mechanism: For a number greater than 0xffff, take 10 bits and add
them to 0xd800 and put them in the first 16-bit word, take 10 more bits and add them to 0xdc00 and put
them in the next 16-bit word. Consequently, all supplementary characters require 32 bits, where the first
16 bits are a number between 0xd800 and 0xdbff, and the last 16 bits are a number between 0xdc00
and 0xdfff. Examples are in Section 15.5 Surrogates Area of the Unicode 4.0 document.

Because utf16 supports surrogates and ucs2 does not, there is a validity check that applies only in
utf16: You cannot insert a top surrogate without a bottom surrogate, or vice versa. For example:

INSERT INTO t (ucs2_column) VALUES (0xd800); /* legal */
INSERT INTO t (utf16_column)VALUES (0xd800); /* illegal */

There is no validity check for characters that are technically valid but are not true Unicode (that is,
characters that Unicode considers to be “unassigned code points” or “private use” characters or even
“illegals” like 0xffff). For example, since U+F8FF is the Apple Logo, this is legal:

INSERT INTO t (utf16_column)VALUES (0xf8ff); /* legal */

Such characters cannot be expected to mean the same thing to everyone.

Because MySQL must allow for the worst case (that one character requires four bytes) the maximum
length of a utf16 column or index is only half of the maximum length for a ucs2 column or index. For
example, the maximum length of a MEMORY table index key is 3072 bytes, so these statements create
tables with the longest permitted indexes for ucs2 and utf16 columns:

CREATE TABLE tf (s1 VARCHAR(1536) CHARACTER SET ucs2) ENGINE=MEMORY;
CREATE INDEX i ON tf (s1);
CREATE TABLE tg (s1 VARCHAR(768) CHARACTER SET utf16) ENGINE=MEMORY;
CREATE INDEX i ON tg (s1);

10.9.6 The utf16le Character Set (UTF-16LE Unicode Encoding)

This is the same as utf16 but is little-endian rather than big-endian.

10.9.7 The utf32 Character Set (UTF-32 Unicode Encoding)

The utf32 character set is fixed length (like ucs2 and unlike utf16). utf32 uses 32 bits for every
character, unlike ucs2 (which uses 16 bits for every character), and unlike utf16 (which uses 16 bits for
some characters and 32 bits for others).

utf32 takes twice as much space as ucs2 and more space than utf16, but utf32 has the same
advantage as ucs2 that it is predictable for storage: The required number of bytes for utf32 equals the

1748

http://www.unicode.org/versions/Unicode4.0.0/ch15.pdf

Converting Between 3-Byte and 4-Byte Unicode Character Sets

number of characters times 4. Also, unlike utf16, there are no tricks for encoding in utf32, so the stored
value equals the code value.

To demonstrate how the latter advantage is useful, here is an example that shows how to determine a
utf8mb4 value given the utf32 code value:

/* Assume code value = 100cc LINEAR B WHEELED CHARIOT */
CREATE TABLE tmp (utf32_col CHAR(1) CHARACTER SET utf32,
 utf8mb4_col CHAR(1) CHARACTER SET utf8mb4);
INSERT INTO tmp VALUES (0x000100cc,NULL);
UPDATE tmp SET utf8mb4_col = utf32_col;
SELECT HEX(utf32_col),HEX(utf8mb4_col) FROM tmp;

MySQL is very forgiving about additions of unassigned Unicode characters or private-use-area characters.
There is in fact only one validity check for utf32: No code value may be greater than 0x10ffff. For
example, this is illegal:

INSERT INTO t (utf32_column) VALUES (0x110000); /* illegal */

10.9.8 Converting Between 3-Byte and 4-Byte Unicode Character Sets

This section describes issues that you may face when converting character data between the utf8mb3
and utf8mb4 character sets.

Note

This discussion focuses primarily on converting between utf8mb3 and utf8mb4,
but similar principles apply to converting between the ucs2 character set and
character sets such as utf16 or utf32.

The utf8mb3 and utf8mb4 character sets differ as follows:

• utf8mb3 supports only characters in the Basic Multilingual Plane (BMP). utf8mb4 additionally supports
supplementary characters that lie outside the BMP.

• utf8mb3 uses a maximum of three bytes per character. utf8mb4 uses a maximum of four bytes per
character.

Note

This discussion refers to the utf8mb3 and utf8mb4 character set names to
be explicit about referring to 3-byte and 4-byte UTF-8 character set data. The
exception is that in table definitions, utf8 is used because MySQL converts
instances of utf8mb3 specified in such definitions to utf8, which is an alias for
utf8mb3.

One advantage of converting from utf8mb3 to utf8mb4 is that this enables applications to use
supplementary characters. One tradeoff is that this may increase data storage space requirements.

In terms of table content, conversion from utf8mb3 to utf8mb4 presents no problems:

• For a BMP character, utf8mb4 and utf8mb3 have identical storage characteristics: same code values,
same encoding, same length.

• For a supplementary character, utf8mb4 requires four bytes to store it, whereas utf8mb3 cannot
store the character at all. When converting utf8mb3 columns to utf8mb4, you need not worry about
converting supplementary characters because there are none.

1749

Converting Between 3-Byte and 4-Byte Unicode Character Sets

In terms of table structure, these are the primary potential incompatibilities:

• For the variable-length character data types (VARCHAR and the TEXT types), the maximum permitted
length in characters is less for utf8mb4 columns than for utf8mb3 columns.

• For all character data types (CHAR, VARCHAR, and the TEXT types), the maximum number of characters
that can be indexed is less for utf8mb4 columns than for utf8mb3 columns.

Consequently, to convert tables from utf8mb3 to utf8mb4, it may be necessary to change some column
or index definitions.

Tables can be converted from utf8mb3 to utf8mb4 by using ALTER TABLE. Suppose that a table has
this definition:

CREATE TABLE t1 (
 col1 CHAR(10) CHARACTER SET utf8 COLLATE utf8_unicode_ci NOT NULL,
 col2 CHAR(10) CHARACTER SET utf8 COLLATE utf8_bin NOT NULL
) CHARACTER SET utf8;

The following statement converts t1 to use utf8mb4:

ALTER TABLE t1
 DEFAULT CHARACTER SET utf8mb4,
 MODIFY col1 CHAR(10)
 CHARACTER SET utf8mb4 COLLATE utf8mb4_unicode_ci NOT NULL,
 MODIFY col2 CHAR(10)
 CHARACTER SET utf8mb4 COLLATE utf8mb4_bin NOT NULL;

The catch when converting from utf8mb3 to utf8mb4 is that the maximum length of a column or index
key is unchanged in terms of bytes. Therefore, it is smaller in terms of characters because the maximum
length of a character is four bytes instead of three. For the CHAR, VARCHAR, and TEXT data types, watch
for these issues when converting your MySQL tables:

• Check all definitions of utf8mb3 columns and make sure they do not exceed the maximum length for
the storage engine.

• Check all indexes on utf8mb3 columns and make sure they do not exceed the maximum length for the
storage engine. Sometimes the maximum can change due to storage engine enhancements.

If the preceding conditions apply, you must either reduce the defined length of columns or indexes, or
continue to use utf8mb3 rather than utf8mb4.

Here are some examples where structural changes may be needed:

• A TINYTEXT column can hold up to 255 bytes, so it can hold up to 85 3-byte or 63 4-byte characters.
Suppose that you have a TINYTEXT column that uses utf8mb3 but must be able to contain more than
63 characters. You cannot convert it to utf8mb4 unless you also change the data type to a longer type
such as TEXT.

Similarly, a very long VARCHAR column may need to be changed to one of the longer TEXT types if you
want to convert it from utf8mb3 to utf8mb4.

• InnoDB has a maximum index length of 767 bytes for tables that use COMPACT or REDUNDANT row
format, so for utf8mb3 or utf8mb4 columns, you can index a maximum of 255 or 191 characters,
respectively. If you currently have utf8mb3 columns with indexes longer than 191 characters, you must
index a smaller number of characters.

In an InnoDB table that uses COMPACT or REDUNDANT row format, these column and index definitions
are legal:

1750

Supported Character Sets and Collations

col1 VARCHAR(500) CHARACTER SET utf8, INDEX (col1(255))

To use utf8mb4 instead, the index must be smaller:

col1 VARCHAR(500) CHARACTER SET utf8mb4, INDEX (col1(191))

Note

For InnoDB tables that use COMPRESSED or DYNAMIC row format, you
can enable the innodb_large_prefix option to permit index key
prefixes longer than 767 bytes (up to 3072 bytes). Creating such tables
also requires the option values innodb_file_format=barracuda
and innodb_file_per_table=true.) In this case, enabling the
innodb_large_prefix option enables you to index a maximum of 1024 or
768 characters for utf8mb3 or utf8mb4 columns, respectively. For related
information, see Section 14.23, “InnoDB Limits”.

The preceding types of changes are most likely to be required only if you have very long columns or
indexes. Otherwise, you should be able to convert your tables from utf8mb3 to utf8mb4 without
problems, using ALTER TABLE as described previously.

The following items summarize other potential incompatibilities:

• SET NAMES 'utf8mb4' causes use of the 4-byte character set for connection character sets. As long
as no 4-byte characters are sent from the server, there should be no problems. Otherwise, applications
that expect to receive a maximum of three bytes per character may have problems. Conversely,
applications that expect to send 4-byte characters must ensure that the server understands them.

• For replication, if character sets that support supplementary characters are to be used on the source, all
replicas must understand them as well.

Also, keep in mind the general principle that if a table has different definitions on the source and replica,
this can lead to unexpected results. For example, the differences in maximum index key length make it
risky to use utf8mb3 on the source and utf8mb4 on the replica.

If you have converted to utf8mb4, utf16, utf16le, or utf32, and then decide to convert back to
utf8mb3 or ucs2 (for example, to downgrade to an older version of MySQL), these considerations apply:

• utf8mb3 and ucs2 data should present no problems.

• The server must be recent enough to recognize definitions referring to the character set from which you
are converting.

• For object definitions that refer to the utf8mb4 character set, you can dump them with mysqldump prior
to downgrading, edit the dump file to change instances of utf8mb4 to utf8, and reload the file in the
older server, as long as there are no 4-byte characters in the data. The older server sees utf8 in the
dump file object definitions and creates new objects that use the (3-byte) utf8 character set.

10.10 Supported Character Sets and Collations

This section indicates which character sets MySQL supports. There is one subsection for each group of
related character sets. For each character set, the permissible collations are listed.

To list the available character sets and their default collations, use the SHOW CHARACTER SET statement
or query the INFORMATION_SCHEMA CHARACTER_SETS table. For example:

1751

Unicode Character Sets

mysql> SHOW CHARACTER SET;
+----------+---------------------------------+---------------------+--------+
| Charset | Description | Default collation | Maxlen |
+----------+---------------------------------+---------------------+--------+
big5	Big5 Traditional Chinese	big5_chinese_ci	2
dec8	DEC West European	dec8_swedish_ci	1
cp850	DOS West European	cp850_general_ci	1
hp8	HP West European	hp8_english_ci	1
koi8r	KOI8-R Relcom Russian	koi8r_general_ci	1
latin1	cp1252 West European	latin1_swedish_ci	1
latin2	ISO 8859-2 Central European	latin2_general_ci	1
swe7	7bit Swedish	swe7_swedish_ci	1
ascii	US ASCII	ascii_general_ci	1
ujis	EUC-JP Japanese	ujis_japanese_ci	3
sjis	Shift-JIS Japanese	sjis_japanese_ci	2
hebrew	ISO 8859-8 Hebrew	hebrew_general_ci	1
tis620	TIS620 Thai	tis620_thai_ci	1
euckr	EUC-KR Korean	euckr_korean_ci	2
koi8u	KOI8-U Ukrainian	koi8u_general_ci	1
gb2312	GB2312 Simplified Chinese	gb2312_chinese_ci	2
greek	ISO 8859-7 Greek	greek_general_ci	1
cp1250	Windows Central European	cp1250_general_ci	1
gbk	GBK Simplified Chinese	gbk_chinese_ci	2
latin5	ISO 8859-9 Turkish	latin5_turkish_ci	1
armscii8	ARMSCII-8 Armenian	armscii8_general_ci	1
utf8	UTF-8 Unicode	utf8_general_ci	3
ucs2	UCS-2 Unicode	ucs2_general_ci	2
cp866	DOS Russian	cp866_general_ci	1
keybcs2	DOS Kamenicky Czech-Slovak	keybcs2_general_ci	1
macce	Mac Central European	macce_general_ci	1
macroman	Mac West European	macroman_general_ci	1
cp852	DOS Central European	cp852_general_ci	1
latin7	ISO 8859-13 Baltic	latin7_general_ci	1
utf8mb4	UTF-8 Unicode	utf8mb4_general_ci	4
cp1251	Windows Cyrillic	cp1251_general_ci	1
utf16	UTF-16 Unicode	utf16_general_ci	4
utf16le	UTF-16LE Unicode	utf16le_general_ci	4
cp1256	Windows Arabic	cp1256_general_ci	1
cp1257	Windows Baltic	cp1257_general_ci	1
utf32	UTF-32 Unicode	utf32_general_ci	4
binary	Binary pseudo charset	binary	1
geostd8	GEOSTD8 Georgian	geostd8_general_ci	1
cp932	SJIS for Windows Japanese	cp932_japanese_ci	2
eucjpms	UJIS for Windows Japanese	eucjpms_japanese_ci	3
gb18030	China National Standard GB18030	gb18030_chinese_ci	4
+----------+---------------------------------+---------------------+--------+

In cases where a character set has multiple collations, it might not be clear which collation is most
suitable for a given application. To avoid choosing the wrong collation, it can be helpful to perform some
comparisons with representative data values to make sure that a given collation sorts values the way you
expect.

10.10.1 Unicode Character Sets

This section describes the collations available for Unicode character sets and their differentiating
properties. For general information about Unicode, see Section 10.9, “Unicode Support”.

MySQL supports multiple Unicode character sets:

• utf8mb4: A UTF-8 encoding of the Unicode character set using one to four bytes per character.

• utf8mb3: A UTF-8 encoding of the Unicode character set using one to three bytes per character.

• utf8: An alias for utf8mb3.

1752

Unicode Character Sets

• ucs2: The UCS-2 encoding of the Unicode character set using two bytes per character.

• utf16: The UTF-16 encoding for the Unicode character set using two or four bytes per character. Like
ucs2 but with an extension for supplementary characters.

• utf16le: The UTF-16LE encoding for the Unicode character set. Like utf16 but little-endian rather
than big-endian.

• utf32: The UTF-32 encoding for the Unicode character set using four bytes per character.

utf8mb4, utf16, utf16le, and utf32 support Basic Multilingual Plane (BMP) characters and
supplementary characters that lie outside the BMP. utf8 and ucs2 support only BMP characters.

Most Unicode character sets have a general collation (indicated by _general in the name or
by the absence of a language specifier), a binary collation (indicated by _bin in the name),
and several language-specific collations (indicated by language specifiers). For example, for
utf8mb4, utf8mb4_general_ci and utf8mb4_bin are its general and binary collations, and
utf8mb4_danish_ci is one of its language-specific collations.

Collation support for utf16le is limited. The only collations available are utf16le_general_ci and
utf16le_bin. These are similar to utf16_general_ci and utf16_bin.

• Unicode Collation Algorithm (UCA) Versions

• Language-Specific Collations

• _general_ci Versus _unicode_ci Collations

• Character Collating Weights

• Miscellaneous Information

Unicode Collation Algorithm (UCA) Versions

MySQL implements the xxx_unicode_ci collations according to the Unicode Collation Algorithm (UCA)
described at http://www.unicode.org/reports/tr10/. The collation uses the version-4.0.0 UCA weight keys:
http://www.unicode.org/Public/UCA/4.0.0/allkeys-4.0.0.txt. The xxx_unicode_ci collations have only
partial support for the Unicode Collation Algorithm. Some characters are not supported, and combining
marks are not fully supported. This affects primarily Vietnamese, Yoruba, and some smaller languages
such as Navajo. A combined character is considered different from the same character written with a single
unicode character in string comparisons, and the two characters are considered to have a different length
(for example, as returned by the CHAR_LENGTH() function or in result set metadata).

Unicode collations based on UCA versions higher than 4.0.0 include the version in the collation name.
Thus, utf8_unicode_520_ci is based on UCA 5.2.0 weight keys (http://www.unicode.org/Public/
UCA/5.2.0/allkeys.txt).

The LOWER() and UPPER() functions perform case folding according to the collation of their argument.
A character that has uppercase and lowercase versions only in a Unicode version higher than 4.0.0 is
converted by these functions only if the argument collation uses a high enough UCA version.

Language-Specific Collations

MySQL implements language-specific Unicode collations if the ordering based only on the Unicode
Collation Algorithm (UCA) does not work well for a language. Language-specific collations are UCA-based,
with additional language tailoring rules. Examples of such rules appear later in this section. For questions

1753

http://www.unicode.org/reports/tr10/
http://www.unicode.org/Public/UCA/4.0.0/allkeys-4.0.0.txt
http://www.unicode.org/Public/UCA/5.2.0/allkeys.txt
http://www.unicode.org/Public/UCA/5.2.0/allkeys.txt

Unicode Character Sets

about particular language orderings, http://unicode.org provides Common Locale Data Repository (CLDR)
collation charts at http://www.unicode.org/cldr/charts/30/collation/index.html.

A language name shown in the following table indicates a language-specific collation. Unicode character
sets may include collations for one or more of these languages.

Table 10.3 Unicode Collation Language Specifiers

Language Language Specifier

Classical Latin roman

Croatian croatian

Czech czech

Danish danish

Esperanto esperanto

Estonian estonian

German phone book order german2

Hungarian hungarian

Icelandic icelandic

Latvian latvian

Lithuanian lithuanian

Persian persian

Polish polish

Romanian romanian

Sinhala sinhala

Slovak slovak

Slovenian slovenian

Modern Spanish spanish

Traditional Spanish spanish2

Swedish swedish

Turkish turkish

Vietnamese vietnamese

Croatian collations are tailored for these Croatian letters: Č, Ć, Dž, Đ, Lj, Nj, Š, Ž.

Danish collations may also be used for Norwegian.

For Classical Latin collations, I and J compare as equal, and U and V compare as equal.

Spanish collations are available for modern and traditional Spanish. For both, ñ (n-tilde) is a separate letter
between n and o. In addition, for traditional Spanish, ch is a separate letter between c and d, and ll is a
separate letter between l and m.

Traditional Spanish collations may also be used for Asturian and Galician.

Swedish collations include Swedish rules. For example, in Swedish, the following relationship holds, which
is not something expected by a German or French speaker:

1754

http://unicode.org
http://www.unicode.org/cldr/charts/30/collation/index.html

Unicode Character Sets

Ü = Y < Ö

_general_ci Versus _unicode_ci Collations

For any Unicode character set, operations performed using the xxx_general_ci collation are faster
than those for the xxx_unicode_ci collation. For example, comparisons for the utf8_general_ci
collation are faster, but slightly less correct, than comparisons for utf8_unicode_ci. The reason is
that utf8_unicode_ci supports mappings such as expansions; that is, when one character compares
as equal to combinations of other characters. For example, ß is equal to ss in German and some other
languages. utf8_unicode_ci also supports contractions and ignorable characters. utf8_general_ci
is a legacy collation that does not support expansions, contractions, or ignorable characters. It can make
only one-to-one comparisons between characters.

To further illustrate, the following equalities hold in both utf8_general_ci and utf8_unicode_ci (for
the effect of this in comparisons or searches, see Section 10.8.6, “Examples of the Effect of Collation”):

Ä = A
Ö = O
Ü = U

A difference between the collations is that this is true for utf8_general_ci:

ß = s

Whereas this is true for utf8_unicode_ci, which supports the German DIN-1 ordering (also known as
dictionary order):

ß = ss

MySQL implements utf8 language-specific collations if the ordering with utf8_unicode_ci does not
work well for a language. For example, utf8_unicode_ci works fine for German dictionary order and
French, so there is no need to create special utf8 collations.

utf8_general_ci also is satisfactory for both German and French, except that ß is equal to s, and not to
ss. If this is acceptable for your application, you should use utf8_general_ci because it is faster. If this
is not acceptable (for example, if you require German dictionary order), use utf8_unicode_ci because it
is more accurate.

If you require German DIN-2 (phone book) ordering, use the utf8_german2_ci collation, which
compares the following sets of characters equal:

Ä = Æ = AE
Ö = Œ = OE
Ü = UE
ß = ss

utf8_german2_ci is similar to latin1_german2_ci, but the latter does not compare Æ equal to AE
or Œ equal to OE. There is no utf8_german_ci corresponding to latin1_german_ci for German
dictionary order because utf8_general_ci suffices.

Character Collating Weights

A character's collating weight is determined as follows:

• For all Unicode collations except the _bin (binary) collations, MySQL performs a table lookup to find a
character's collating weight.

1755

Unicode Character Sets

• For _bin collations, the weight is based on the code point, possibly with leading zero bytes added.

Collating weights can be displayed using the WEIGHT_STRING() function. (See Section 12.8, “String
Functions and Operators”.) If a collation uses a weight lookup table, but a character is not in the table (for
example, because it is a “new” character), collating weight determination becomes more complex:

• For BMP characters in general collations (xxx_general_ci), the weight is the code point.

• For BMP characters in UCA collations (for example, xxx_unicode_ci and language-specific
collations), the following algorithm applies:

if (code >= 0x3400 && code <= 0x4DB5)
 base= 0xFB80; /* CJK Ideograph Extension */
else if (code >= 0x4E00 && code <= 0x9FA5)
 base= 0xFB40; /* CJK Ideograph */
else
 base= 0xFBC0; /* All other characters */
aaaa= base + (code >> 15);
bbbb= (code & 0x7FFF) | 0x8000;

The result is a sequence of two collating elements, aaaa followed by bbbb. For example:

mysql> SELECT HEX(WEIGHT_STRING(_ucs2 0x04CF COLLATE ucs2_unicode_ci));
+--+
| HEX(WEIGHT_STRING(_ucs2 0x04CF COLLATE ucs2_unicode_ci)) |
+--+
| FBC084CF |
+--+

Thus, U+04cf CYRILLIC SMALL LETTER PALOCHKA is, with all UCA 4.0.0 collations, greater than U
+04c0 CYRILLIC LETTER PALOCHKA. With UCA 5.2.0 collations, all palochkas sort together.

• For supplementary characters in general collations, the weight is the weight for 0xfffd REPLACEMENT
CHARACTER. For supplementary characters in UCA 4.0.0 collations, their collating weight is 0xfffd.
That is, to MySQL, all supplementary characters are equal to each other, and greater than almost all
BMP characters.

An example with Deseret characters and COUNT(DISTINCT):

CREATE TABLE t (s1 VARCHAR(5) CHARACTER SET utf32 COLLATE utf32_unicode_ci);
INSERT INTO t VALUES (0xfffd); /* REPLACEMENT CHARACTER */
INSERT INTO t VALUES (0x010412); /* DESERET CAPITAL LETTER BEE */
INSERT INTO t VALUES (0x010413); /* DESERET CAPITAL LETTER TEE */
SELECT COUNT(DISTINCT s1) FROM t;

The result is 2 because in the MySQL xxx_unicode_ci collations, the replacement character has a
weight of 0x0dc6, whereas Deseret Bee and Deseret Tee both have a weight of 0xfffd. (Were the
utf32_general_ci collation used instead, the result is 1 because all three characters have a weight of
0xfffd in that collation.)

An example with cuneiform characters and WEIGHT_STRING():

/*
The four characters in the INSERT string are
00000041 # LATIN CAPITAL LETTER A
0001218F # CUNEIFORM SIGN KAB
000121A7 # CUNEIFORM SIGN KISH
00000042 # LATIN CAPITAL LETTER B
*/
CREATE TABLE t (s1 CHAR(4) CHARACTER SET utf32 COLLATE utf32_unicode_ci);
INSERT INTO t VALUES (0x000000410001218f000121a700000042);
SELECT HEX(WEIGHT_STRING(s1)) FROM t;

1756

Unicode Character Sets

The result is:

0E33 FFFD FFFD 0E4A

0E33 and 0E4A are primary weights as in UCA 4.0.0. FFFD is the weight for KAB and also for KISH.

The rule that all supplementary characters are equal to each other is nonoptimal but is not expected to
cause trouble. These characters are very rare, so it is very rare that a multi-character string consists
entirely of supplementary characters. In Japan, since the supplementary characters are obscure Kanji
ideographs, the typical user does not care what order they are in, anyway. If you really want rows sorted
by the MySQL rule and secondarily by code point value, it is easy:

ORDER BY s1 COLLATE utf32_unicode_ci, s1 COLLATE utf32_bin

• For supplementary characters based on UCA versions higher than 4.0.0 (for example,
xxx_unicode_520_ci), supplementary characters do not necessarily all have the same collating
weight. Some have explicit weights from the UCA allkeys.txt file. Others have weights calculated
from this algorithm:

aaaa= base + (code >> 15);
bbbb= (code & 0x7FFF) | 0x8000;

There is a difference between “ordering by the character's code value” and “ordering by the character's
binary representation,” a difference that appears only with utf16_bin, because of surrogates.

Suppose that utf16_bin (the binary collation for utf16) was a binary comparison “byte by byte” rather
than “character by character.” If that were so, the order of characters in utf16_bin would differ from
the order in utf8_bin. For example, the following chart shows two rare characters. The first character
is in the range E000-FFFF, so it is greater than a surrogate but less than a supplementary. The second
character is a supplementary.

Code point Character utf8 utf16
---------- --------- ---- -----
0FF9D HALFWIDTH KATAKANA LETTER N EF BE 9D FF 9D
10384 UGARITIC LETTER DELTA F0 90 8E 84 D8 00 DF 84

The two characters in the chart are in order by code point value because 0xff9d < 0x10384. And they
are in order by utf8 value because 0xef < 0xf0. But they are not in order by utf16 value, if we use
byte-by-byte comparison, because 0xff > 0xd8.

So MySQL's utf16_bin collation is not “byte by byte.” It is “by code point.” When MySQL sees a
supplementary-character encoding in utf16, it converts to the character's code-point value, and then
compares. Therefore, utf8_bin and utf16_bin are the same ordering. This is consistent with the
SQL:2008 standard requirement for a UCS_BASIC collation: “UCS_BASIC is a collation in which the
ordering is determined entirely by the Unicode scalar values of the characters in the strings being sorted.
It is applicable to the UCS character repertoire. Since every character repertoire is a subset of the UCS
repertoire, the UCS_BASIC collation is potentially applicable to every character set. NOTE 11: The
Unicode scalar value of a character is its code point treated as an unsigned integer.”

If the character set is ucs2, comparison is byte-by-byte, but ucs2 strings should not contain surrogates,
anyway.

Miscellaneous Information

The xxx_general_mysql500_ci collations preserve the pre-5.1.24 ordering of the original
xxx_general_ci collations and permit upgrades for tables created before MySQL 5.1.24 (Bug #27877).

1757

ftp://www.unicode.org/Public/UCA/4.0.0/allkeys-4.0.0.txt

West European Character Sets

10.10.2 West European Character Sets

Western European character sets cover most West European languages, such as French, Spanish,
Catalan, Basque, Portuguese, Italian, Albanian, Dutch, German, Danish, Swedish, Norwegian, Finnish,
Faroese, Icelandic, Irish, Scottish, and English.

• ascii (US ASCII) collations:

• ascii_bin

• ascii_general_ci (default)

• cp850 (DOS West European) collations:

• cp850_bin

• cp850_general_ci (default)

• dec8 (DEC Western European) collations:

• dec8_bin

• dec8_swedish_ci (default)

• hp8 (HP Western European) collations:

• hp8_bin

• hp8_english_ci (default)

• latin1 (cp1252 West European) collations:

• latin1_bin

• latin1_danish_ci

• latin1_general_ci

• latin1_general_cs

• latin1_german1_ci

• latin1_german2_ci

• latin1_spanish_ci

• latin1_swedish_ci (default)

latin1 is the default character set. MySQL's latin1 is the same as the Windows cp1252 character
set. This means it is the same as the official ISO 8859-1 or IANA (Internet Assigned Numbers
Authority) latin1, except that IANA latin1 treats the code points between 0x80 and 0x9f as
“undefined,” whereas cp1252, and therefore MySQL's latin1, assign characters for those positions.
For example, 0x80 is the Euro sign. For the “undefined” entries in cp1252, MySQL translates 0x81 to
Unicode 0x0081, 0x8d to 0x008d, 0x8f to 0x008f, 0x90 to 0x0090, and 0x9d to 0x009d.

The latin1_swedish_ci collation is the default that probably is used by the majority of MySQL
customers. Although it is frequently said that it is based on the Swedish/Finnish collation rules, there are
Swedes and Finns who disagree with this statement.

1758

Central European Character Sets

The latin1_german1_ci and latin1_german2_ci collations are based on the DIN-1 and DIN-2
standards, where DIN stands for Deutsches Institut für Normung (the German equivalent of ANSI). DIN-1
is called the “dictionary collation” and DIN-2 is called the “phone book collation.” For an example of the
effect this has in comparisons or when doing searches, see Section 10.8.6, “Examples of the Effect of
Collation”.

• latin1_german1_ci (dictionary) rules:

Ä = A
Ö = O
Ü = U
ß = s

• latin1_german2_ci (phone-book) rules:

Ä = AE
Ö = OE
Ü = UE
ß = ss

In the latin1_spanish_ci collation, ñ (n-tilde) is a separate letter between n and o.

• macroman (Mac West European) collations:

• macroman_bin

• macroman_general_ci (default)

• swe7 (7bit Swedish) collations:

• swe7_bin

• swe7_swedish_ci (default)

10.10.3 Central European Character Sets

MySQL provides some support for character sets used in the Czech Republic, Slovakia, Hungary,
Romania, Slovenia, Croatia, Poland, and Serbia (Latin).

• cp1250 (Windows Central European) collations:

• cp1250_bin

• cp1250_croatian_ci

• cp1250_czech_cs

• cp1250_general_ci (default)

• cp1250_polish_ci

• cp852 (DOS Central European) collations:

• cp852_bin

• cp852_general_ci (default)

• keybcs2 (DOS Kamenicky Czech-Slovak) collations:

1759

South European and Middle East Character Sets

• keybcs2_bin

• keybcs2_general_ci (default)

• latin2 (ISO 8859-2 Central European) collations:

• latin2_bin

• latin2_croatian_ci

• latin2_czech_cs

• latin2_general_ci (default)

• latin2_hungarian_ci

• macce (Mac Central European) collations:

• macce_bin

• macce_general_ci (default)

10.10.4 South European and Middle East Character Sets

South European and Middle Eastern character sets supported by MySQL include Armenian, Arabic,
Georgian, Greek, Hebrew, and Turkish.

• armscii8 (ARMSCII-8 Armenian) collations:

• armscii8_bin

• armscii8_general_ci (default)

• cp1256 (Windows Arabic) collations:

• cp1256_bin

• cp1256_general_ci (default)

• geostd8 (GEOSTD8 Georgian) collations:

• geostd8_bin

• geostd8_general_ci (default)

• greek (ISO 8859-7 Greek) collations:

• greek_bin

• greek_general_ci (default)

• hebrew (ISO 8859-8 Hebrew) collations:

• hebrew_bin

• hebrew_general_ci (default)

• latin5 (ISO 8859-9 Turkish) collations:

1760

Baltic Character Sets

• latin5_bin

• latin5_turkish_ci (default)

10.10.5 Baltic Character Sets

The Baltic character sets cover Estonian, Latvian, and Lithuanian languages.

• cp1257 (Windows Baltic) collations:

• cp1257_bin

• cp1257_general_ci (default)

• cp1257_lithuanian_ci

• latin7 (ISO 8859-13 Baltic) collations:

• latin7_bin

• latin7_estonian_cs

• latin7_general_ci (default)

• latin7_general_cs

10.10.6 Cyrillic Character Sets

The Cyrillic character sets and collations are for use with Belarusian, Bulgarian, Russian, Ukrainian, and
Serbian (Cyrillic) languages.

• cp1251 (Windows Cyrillic) collations:

• cp1251_bin

• cp1251_bulgarian_ci

• cp1251_general_ci (default)

• cp1251_general_cs

• cp1251_ukrainian_ci

• cp866 (DOS Russian) collations:

• cp866_bin

• cp866_general_ci (default)

• koi8r (KOI8-R Relcom Russian) collations:

• koi8r_bin

• koi8r_general_ci (default)

• koi8u (KOI8-U Ukrainian) collations:

• koi8u_bin

1761

Asian Character Sets

• koi8u_general_ci (default)

10.10.7 Asian Character Sets

The Asian character sets that we support include Chinese, Japanese, Korean, and Thai. These can
be complicated. For example, the Chinese sets must allow for thousands of different characters. See
Section 10.10.7.1, “The cp932 Character Set”, for additional information about the cp932 and sjis
character sets. See Section 10.10.7.2, “The gb18030 Character Set”, for additional information about
character set support for the Chinese National Standard GB 18030.

For answers to some common questions and problems relating support for Asian character sets in MySQL,
see Section A.11, “MySQL 5.7 FAQ: MySQL Chinese, Japanese, and Korean Character Sets”.

• big5 (Big5 Traditional Chinese) collations:

• big5_bin

• big5_chinese_ci (default)

• cp932 (SJIS for Windows Japanese) collations:

• cp932_bin

• cp932_japanese_ci (default)

• eucjpms (UJIS for Windows Japanese) collations:

• eucjpms_bin

• eucjpms_japanese_ci (default)

• euckr (EUC-KR Korean) collations:

• euckr_bin

• euckr_korean_ci (default)

• gb2312 (GB2312 Simplified Chinese) collations:

• gb2312_bin

• gb2312_chinese_ci (default)

• gbk (GBK Simplified Chinese) collations:

• gbk_bin

• gbk_chinese_ci (default)

• gb18030 (China National Standard GB18030) collations:

• gb18030_bin

• gb18030_chinese_ci (default)

• gb18030_unicode_520_ci

• sjis (Shift-JIS Japanese) collations:

1762

Asian Character Sets

• sjis_bin

• sjis_japanese_ci (default)

• tis620 (TIS620 Thai) collations:

• tis620_bin

• tis620_thai_ci (default)

• ujis (EUC-JP Japanese) collations:

• ujis_bin

• ujis_japanese_ci (default)

The big5_chinese_ci collation sorts on number of strokes.

10.10.7.1 The cp932 Character Set

Why is cp932 needed?

In MySQL, the sjis character set corresponds to the Shift_JIS character set defined by IANA, which
supports JIS X0201 and JIS X0208 characters. (See http://www.iana.org/assignments/character-sets.)

However, the meaning of “SHIFT JIS” as a descriptive term has become very vague and it often includes
the extensions to Shift_JIS that are defined by various vendors.

For example, “SHIFT JIS” used in Japanese Windows environments is a Microsoft extension of
Shift_JIS and its exact name is Microsoft Windows Codepage : 932 or cp932. In addition to
the characters supported by Shift_JIS, cp932 supports extension characters such as NEC special
characters, NEC selected—IBM extended characters, and IBM selected characters.

Many Japanese users have experienced problems using these extension characters. These problems
stem from the following factors:

• MySQL automatically converts character sets.

• Character sets are converted using Unicode (ucs2).

• The sjis character set does not support the conversion of these extension characters.

• There are several conversion rules from so-called “SHIFT JIS” to Unicode, and some characters are
converted to Unicode differently depending on the conversion rule. MySQL supports only one of these
rules (described later).

The MySQL cp932 character set is designed to solve these problems.

Because MySQL supports character set conversion, it is important to separate IANA Shift_JIS and
cp932 into two different character sets because they provide different conversion rules.

How does cp932 differ from sjis?

The cp932 character set differs from sjis in the following ways:

• cp932 supports NEC special characters, NEC selected—IBM extended characters, and IBM selected
characters.

1763

http://www.iana.org/assignments/character-sets

Asian Character Sets

• Some cp932 characters have two different code points, both of which convert to the same Unicode code
point. When converting from Unicode back to cp932, one of the code points must be selected. For this
“round trip conversion,” the rule recommended by Microsoft is used. (See http://support.microsoft.com/
kb/170559/EN-US/.)

The conversion rule works like this:

• If the character is in both JIS X 0208 and NEC special characters, use the code point of JIS X 0208.

• If the character is in both NEC special characters and IBM selected characters, use the code point of
NEC special characters.

• If the character is in both IBM selected characters and NEC selected—IBM extended characters, use
the code point of IBM extended characters.

The table shown at https://msdn.microsoft.com/en-us/goglobal/cc305152.aspx provides information
about the Unicode values of cp932 characters. For cp932 table entries with characters under which
a four-digit number appears, the number represents the corresponding Unicode (ucs2) encoding. For
table entries with an underlined two-digit value appears, there is a range of cp932 character values that
begin with those two digits. Clicking such a table entry takes you to a page that displays the Unicode
value for each of the cp932 characters that begin with those digits.

The following links are of special interest. They correspond to the encodings for the following sets of
characters:

• NEC special characters (lead byte 0x87):

https://msdn.microsoft.com/en-us/goglobal/gg674964

• NEC selected—IBM extended characters (lead byte 0xED and 0xEE):

https://msdn.microsoft.com/en-us/goglobal/gg671837
https://msdn.microsoft.com/en-us/goglobal/gg671838

• IBM selected characters (lead byte 0xFA, 0xFB, 0xFC):

https://msdn.microsoft.com/en-us/goglobal/gg671839
https://msdn.microsoft.com/en-us/goglobal/gg671840
https://msdn.microsoft.com/en-us/goglobal/gg671841

• cp932 supports conversion of user-defined characters in combination with eucjpms, and solves
the problems with sjis/ujis conversion. For details, please refer to http://www.sljfaq.org/afaq/
encodings.html.

For some characters, conversion to and from ucs2 is different for sjis and cp932. The following tables
illustrate these differences.

Conversion to ucs2:

sjis/cp932 Value sjis -> ucs2 Conversion cp932 -> ucs2 Conversion

5C 005C 005C

7E 007E 007E

815C 2015 2015

815F 005C FF3C

8160 301C FF5E

8161 2016 2225

1764

http://support.microsoft.com/kb/170559/EN-US/
http://support.microsoft.com/kb/170559/EN-US/
https://msdn.microsoft.com/en-us/goglobal/cc305152.aspx
https://msdn.microsoft.com/en-us/goglobal/gg674964
https://msdn.microsoft.com/en-us/goglobal/gg671837
https://msdn.microsoft.com/en-us/goglobal/gg671838
https://msdn.microsoft.com/en-us/goglobal/gg671839
https://msdn.microsoft.com/en-us/goglobal/gg671840
https://msdn.microsoft.com/en-us/goglobal/gg671841
http://www.sljfaq.org/afaq/encodings.html
http://www.sljfaq.org/afaq/encodings.html

Asian Character Sets

sjis/cp932 Value sjis -> ucs2 Conversion cp932 -> ucs2 Conversion

817C 2212 FF0D

8191 00A2 FFE0

8192 00A3 FFE1

81CA 00AC FFE2

Conversion from ucs2:

ucs2 value ucs2 -> sjis Conversion ucs2 -> cp932 Conversion

005C 815F 5C

007E 7E 7E

00A2 8191 3F

00A3 8192 3F

00AC 81CA 3F

2015 815C 815C

2016 8161 3F

2212 817C 3F

2225 3F 8161

301C 8160 3F

FF0D 3F 817C

FF3C 3F 815F

FF5E 3F 8160

FFE0 3F 8191

FFE1 3F 8192

FFE2 3F 81CA

Users of any Japanese character sets should be aware that using --character-set-client-
handshake (or --skip-character-set-client-handshake) has an important effect. See
Section 5.1.6, “Server Command Options”.

10.10.7.2 The gb18030 Character Set

In MySQL, the gb18030 character set corresponds to the “Chinese National Standard GB 18030-2005:
Information technology—Chinese coded character set”, which is the official character set of the People's
Republic of China (PRC).

Characteristics of the MySQL gb18030 Character Set

• Supports all code points defined by the GB 18030-2005 standard. Unassigned code points in the
ranges (GB+8431A439, GB+90308130) and (GB+E3329A36, GB+EF39EF39) are treated as '?' (0x3F).
Conversion of unassigned code points return '?'.

• Supports UPPER and LOWER conversion for all GB18030 code points. Case folding defined by Unicode
is also supported (based on CaseFolding-6.3.0.txt).

• Supports Conversion of data to and from other character sets.

• Supports SQL statements such as SET NAMES.

1765

The Binary Character Set

• Supports comparison between gb18030 strings, and between gb18030 strings and strings of other
character sets. There is a conversion if strings have different character sets. Comparisons that include or
ignore trailing spaces are also supported.

• The private use area (U+E000, U+F8FF) in Unicode is mapped to gb18030.

• There is no mapping between (U+D800, U+DFFF) and GB18030. Attempted conversion of code points
in this range returns '?'.

• If an incoming sequence is illegal, an error or warning is returned. If an illegal sequence is used in
CONVERT(), an error is returned. Otherwise, a warning is returned.

• For consistency with utf8 and utf8mb4, UPPER is not supported for ligatures.

• Searches for ligatures also match uppercase ligatures when using the gb18030_unicode_520_ci
collation.

• If a character has more than one uppercase character, the chosen uppercase character is the one
whose lowercase is the character itself.

• The minimum multibyte length is 1 and the maximum is 4. The character set determines the length of a
sequence using the first 1 or 2 bytes.

Supported Collations

• gb18030_bin: A binary collation.

• gb18030_chinese_ci: The default collation, which supports Pinyin. Sorting of non-Chinese characters
is based on the order of the original sort key. The original sort key is GB(UPPER(ch)) if UPPER(ch)
exists. Otherwise, the original sort key is GB(ch). Chinese characters are sorted according to the Pinyin
collation defined in the Unicode Common Locale Data Repository (CLDR 24). Non-Chinese characters
are sorted before Chinese characters with the exception of GB+FE39FE39, which is the code point
maximum.

• gb18030_unicode_520_ci: A Unicode collation. Use this collation if you need to ensure that ligatures
are sorted correctly.

10.10.8 The Binary Character Set

The binary character set is the character set for binary strings, which are sequences of bytes. The
binary character set has one collation, also named binary. Comparison and sorting are based on
numeric byte values, rather than on numeric character code values (which for multibyte characters differ
from numeric byte values). For information about the differences between the binary collation of the
binary character set and the _bin collations of nonbinary character sets, see Section 10.8.5, “The binary
Collation Compared to _bin Collations”.

For the binary character set, the concepts of lettercase and accent equivalence do not apply:

• For single-byte characters stored as binary strings, character and byte boundaries are the same, so
lettercase and accent differences are significant in comparisons. That is, the binary collation is case-
sensitive and accent-sensitive.

mysql> SET NAMES 'binary';
mysql> SELECT CHARSET('abc'), COLLATION('abc');
+----------------+------------------+
| CHARSET('abc') | COLLATION('abc') |
+----------------+------------------+
| binary | binary |
+----------------+------------------+

1766

Restrictions on Character Sets

mysql> SELECT 'abc' = 'ABC', 'a' = 'ä';
+---------------+------------+
| 'abc' = 'ABC' | 'a' = 'ä' |
+---------------+------------+
| 0 | 0 |
+---------------+------------+

• For multibyte characters stored as binary strings, character and byte boundaries differ. Character
boundaries are lost, so comparisons that depend on them are not meaningful.

To perform lettercase conversion of a binary string, first convert it to a nonbinary string using a character
set appropriate for the data stored in the string:

mysql> SET @str = BINARY 'New York';
mysql> SELECT LOWER(@str), LOWER(CONVERT(@str USING utf8mb4));
+-------------+------------------------------------+
| LOWER(@str) | LOWER(CONVERT(@str USING utf8mb4)) |
+-------------+------------------------------------+
| New York | new york |
+-------------+------------------------------------+

To convert a string expression to a binary string, these constructs are equivalent:

BINARY expr
CAST(expr AS BINARY)
CONVERT(expr USING BINARY)

If a value is a character string literal, the _binary introducer may be used to designate it as a binary
string. For example:

_binary 'a'

The _binary introducer is permitted for hexadecimal literals and bit-value literals as well, but
unnecessary; such literals are binary strings by default.

For more information about introducers, see Section 10.3.8, “Character Set Introducers”.

Note

Within the mysql client, binary strings display using hexadecimal notation,
depending on the value of the --binary-as-hex. For more information about that
option, see Section 4.5.1, “mysql — The MySQL Command-Line Client”.

10.11 Restrictions on Character Sets
• Identifiers are stored in mysql database tables (user, db, and so forth) using utf8, but identifiers

can contain only characters in the Basic Multilingual Plane (BMP). Supplementary characters are not
permitted in identifiers.

• The ucs2, utf16, utf16le, and utf32 character sets have the following restrictions:

• None of them can be used as the client character set. See Impermissible Client Character Sets.

• It is currently not possible to use LOAD DATA to load data files that use these character sets.

• FULLTEXT indexes cannot be created on a column that uses any of these character sets. However,
you can perform IN BOOLEAN MODE searches on the column without an index.

• The use of ENCRYPT() with these character sets is not recommended because the underlying system
call expects a string terminated by a zero byte.

1767

Setting the Error Message Language

• The REGEXP and RLIKE operators work in byte-wise fashion, so they are not multibyte safe and
may produce unexpected results with multibyte character sets. In addition, these operators compare
characters by their byte values and accented characters may not compare as equal even if a given
collation treats them as equal.

10.12 Setting the Error Message Language

By default, mysqld produces error messages in English, but they can be displayed instead in any of
several other languages: Czech, Danish, Dutch, Estonian, French, German, Greek, Hungarian, Italian,
Japanese, Korean, Norwegian, Norwegian-ny, Polish, Portuguese, Romanian, Russian, Slovak, Spanish,
or Swedish. This applies to messages the server writes to the error log and sends to clients.

To select the language in which the server writes error messages, follow the instructions in this section.
For information about changing the character set for error messages (rather than the language), see
Section 10.6, “Error Message Character Set”. For general information about configuring error logging, see
Section 5.4.2, “The Error Log”.

The server searches for the error message file using these rules:

• It looks for the file in a directory constructed from two system variable values, lc_messages_dir and
lc_messages, with the latter converted to a language name. Suppose that you start the server using
this command:

mysqld --lc_messages_dir=/usr/share/mysql --lc_messages=fr_FR

In this case, mysqld maps the locale fr_FR to the language french and looks for the error file in the /
usr/share/mysql/french directory.

By default, the language files are located in the share/mysql/LANGUAGE directory under the MySQL
base directory.

• If the message file cannot be found in the directory constructed as just described, the server ignores the
lc_messages value and uses only the lc_messages_dir value as the location in which to look.

The lc_messages_dir system variable can be set only at server startup and has only a global read-only
value at runtime. lc_messages can be set at server startup and has global and session values that can
be modified at runtime. Thus, the error message language can be changed while the server is running, and
each client can have its own error message language by setting its session lc_messages value to the
desired locale name. For example, if the server is using the fr_FR locale for error messages, a client can
execute this statement to receive error messages in English:

SET lc_messages = 'en_US';

10.13 Adding a Character Set

This section discusses the procedure for adding a character set to MySQL. The proper procedure depends
on whether the character set is simple or complex:

• If the character set does not need special string collating routines for sorting and does not need multibyte
character support, it is simple.

• If the character set needs either of those features, it is complex.

For example, greek and swe7 are simple character sets, whereas big5 and czech are complex
character sets.

1768

Adding a Character Set

To use the following instructions, you must have a MySQL source distribution. In the instructions, MYSET
represents the name of the character set that you want to add.

1. Add a <charset> element for MYSET to the sql/share/charsets/Index.xml file. Use the
existing contents in the file as a guide to adding new contents. A partial listing for the latin1
<charset> element follows:

<charset name="latin1">
 <family>Western</family>
 <description>cp1252 West European</description>
 ...
 <collation name="latin1_swedish_ci" id="8" order="Finnish, Swedish">
 <flag>primary</flag>
 <flag>compiled</flag>
 </collation>
 <collation name="latin1_danish_ci" id="15" order="Danish"/>
 ...
 <collation name="latin1_bin" id="47" order="Binary">
 <flag>binary</flag>
 <flag>compiled</flag>
 </collation>
 ...
</charset>

The <charset> element must list all the collations for the character set. These must include at least a
binary collation and a default (primary) collation. The default collation is often named using a suffix of
general_ci (general, case-insensitive). It is possible for the binary collation to be the default collation,
but usually they are different. The default collation should have a primary flag. The binary collation
should have a binary flag.

You must assign a unique ID number to each collation. The range of IDs from 1024 to 2047 is reserved
for user-defined collations. To find the maximum of the currently used collation IDs, use this query:

SELECT MAX(ID) FROM INFORMATION_SCHEMA.COLLATIONS;

2. This step depends on whether you are adding a simple or complex character set. A simple character
set requires only a configuration file, whereas a complex character set requires C source file that
defines collation functions, multibyte functions, or both.

For a simple character set, create a configuration file, MYSET.xml, that describes the character
set properties. Create this file in the sql/share/charsets directory. You can use a copy of
latin1.xml as the basis for this file. The syntax for the file is very simple:

• Comments are written as ordinary XML comments (<!-- text -->).

• Words within <map> array elements are separated by arbitrary amounts of whitespace.

• Each word within <map> array elements must be a number in hexadecimal format.

• The <map> array element for the <ctype> element has 257 words. The other <map> array elements
after that have 256 words. See Section 10.13.1, “Character Definition Arrays”.

• For each collation listed in the <charset> element for the character set in Index.xml, MYSET.xml
must contain a <collation> element that defines the character ordering.

For a complex character set, create a C source file that describes the character set properties and
defines the support routines necessary to properly perform operations on the character set:

• Create the file ctype-MYSET.c in the strings directory. Look at one of the existing ctype-*.c
files (such as ctype-big5.c) to see what needs to be defined. The arrays in your file must have

1769

Character Definition Arrays

names like ctype_MYSET, to_lower_MYSET, and so on. These correspond to the arrays for a
simple character set. See Section 10.13.1, “Character Definition Arrays”.

• For each <collation> element listed in the <charset> element for the character set in
Index.xml, the ctype-MYSET.c file must provide an implementation of the collation.

• If the character set requires string collating functions, see Section 10.13.2, “String Collating Support
for Complex Character Sets”.

• If the character set requires multibyte character support, see Section 10.13.3, “Multi-Byte Character
Support for Complex Character Sets”.

3. Modify the configuration information. Use the existing configuration information as a guide to adding
information for MYSYS. The example here assumes that the character set has default and binary
collations, but more lines are needed if MYSET has additional collations.

a. Edit mysys/charset-def.c, and “register” the collations for the new character set.

Add these lines to the “declaration” section:

#ifdef HAVE_CHARSET_MYSET
extern CHARSET_INFO my_charset_MYSET_general_ci;
extern CHARSET_INFO my_charset_MYSET_bin;
#endif

Add these lines to the “registration” section:

#ifdef HAVE_CHARSET_MYSET
 add_compiled_collation(&my_charset_MYSET_general_ci);
 add_compiled_collation(&my_charset_MYSET_bin);
#endif

b. If the character set uses ctype-MYSET.c, edit strings/CMakeLists.txt and add
ctype-MYSET.c to the definition of the STRINGS_SOURCES variable.

c. Edit cmake/character_sets.cmake:

i. Add MYSET to the value of with CHARSETS_AVAILABLE in alphabetic order.

ii. Add MYSET to the value of CHARSETS_COMPLEX in alphabetic order. This is needed even for
simple character sets, or CMake does not recognize -DDEFAULT_CHARSET=MYSET.

4. Reconfigure, recompile, and test.

10.13.1 Character Definition Arrays

Each simple character set has a configuration file located in the sql/share/charsets directory. For a
character set named MYSYS, the file is named MYSET.xml. It uses <map> array elements to list character
set properties. <map> elements appear within these elements:

• <ctype> defines attributes for each character.

• <lower> and <upper> list the lowercase and uppercase characters.

• <unicode> maps 8-bit character values to Unicode values.

• <collation> elements indicate character ordering for comparison and sorting, one element per
collation. Binary collations need no <map> element because the character codes themselves provide the
ordering.

1770

String Collating Support for Complex Character Sets

For a complex character set as implemented in a ctype-MYSET.c file in the strings directory,
there are corresponding arrays: ctype_MYSET[], to_lower_MYSET[], and so forth. Not every
complex character set has all of the arrays. See also the existing ctype-*.c files for examples. See the
CHARSET_INFO.txt file in the strings directory for additional information.

Most of the arrays are indexed by character value and have 256 elements. The <ctype> array is indexed
by character value + 1 and has 257 elements. This is a legacy convention for handling EOF.

<ctype> array elements are bit values. Each element describes the attributes of a single character in the
character set. Each attribute is associated with a bitmask, as defined in include/m_ctype.h:

#define _MY_U 01 /* Upper case */
#define _MY_L 02 /* Lower case */
#define _MY_NMR 04 /* Numeral (digit) */
#define _MY_SPC 010 /* Spacing character */
#define _MY_PNT 020 /* Punctuation */
#define _MY_CTR 040 /* Control character */
#define _MY_B 0100 /* Blank */
#define _MY_X 0200 /* heXadecimal digit */

The <ctype> value for a given character should be the union of the applicable bitmask values that
describe the character. For example, 'A' is an uppercase character (_MY_U) as well as a hexadecimal
digit (_MY_X), so its ctype value should be defined like this:

ctype['A'+1] = _MY_U | _MY_X = 01 | 0200 = 0201

The bitmask values in m_ctype.h are octal values, but the elements of the <ctype> array in MYSET.xml
should be written as hexadecimal values.

The <lower> and <upper> arrays hold the lowercase and uppercase characters corresponding to each
member of the character set. For example:

lower['A'] should contain 'a'
upper['a'] should contain 'A'

Each <collation> array indicates how characters should be ordered for comparison and sorting
purposes. MySQL sorts characters based on the values of this information. In some cases, this is the same
as the <upper> array, which means that sorting is case-insensitive. For more complicated sorting rules
(for complex character sets), see the discussion of string collating in Section 10.13.2, “String Collating
Support for Complex Character Sets”.

10.13.2 String Collating Support for Complex Character Sets

For a simple character set named MYSET, sorting rules are specified in the MYSET.xml configuration
file using <map> array elements within <collation> elements. If the sorting rules for your language
are too complex to be handled with simple arrays, you must define string collating functions in the
ctype-MYSET.c source file in the strings directory.

The existing character sets provide the best documentation and examples to show how these functions
are implemented. Look at the ctype-*.c files in the strings directory, such as the files for the big5,
czech, gbk, sjis, and tis160 character sets. Take a look at the MY_COLLATION_HANDLER structures
to see how they are used. See also the CHARSET_INFO.txt file in the strings directory for additional
information.

10.13.3 Multi-Byte Character Support for Complex Character Sets

If you want to add support for a new character set named MYSET that includes multibyte characters, you
must use multibyte character functions in the ctype-MYSET.c source file in the strings directory.

1771

Adding a Collation to a Character Set

The existing character sets provide the best documentation and examples to show how these functions
are implemented. Look at the ctype-*.c files in the strings directory, such as the files for the euc_kr,
gb2312, gbk, sjis, and ujis character sets. Take a look at the MY_CHARSET_HANDLER structures to
see how they are used. See also the CHARSET_INFO.txt file in the strings directory for additional
information.

10.14 Adding a Collation to a Character Set

A collation is a set of rules that defines how to compare and sort character strings. Each collation in
MySQL belongs to a single character set. Every character set has at least one collation, and most have
two or more collations.

A collation orders characters based on weights. Each character in a character set maps to a weight.
Characters with equal weights compare as equal, and characters with unequal weights compare according
to the relative magnitude of their weights.

The WEIGHT_STRING() function can be used to see the weights for the characters in a
string. The value that it returns to indicate weights is a binary string, so it is convenient to use
HEX(WEIGHT_STRING(str)) to display the weights in printable form. The following example shows that
weights do not differ for lettercase for the letters in 'AaBb' if it is a nonbinary case-insensitive string, but
do differ if it is a binary string:

mysql> SELECT HEX(WEIGHT_STRING('AaBb' COLLATE latin1_swedish_ci));
+--+
| HEX(WEIGHT_STRING('AaBb' COLLATE latin1_swedish_ci)) |
+--+
| 41414242 |
+--+
mysql> SELECT HEX(WEIGHT_STRING(BINARY 'AaBb'));
+-----------------------------------+
| HEX(WEIGHT_STRING(BINARY 'AaBb')) |
+-----------------------------------+
| 41614262 |
+-----------------------------------+

MySQL supports several collation implementations, as discussed in Section 10.14.1, “Collation
Implementation Types”. Some of these can be added to MySQL without recompiling:

• Simple collations for 8-bit character sets.

• UCA-based collations for Unicode character sets.

• Binary (xxx_bin) collations.

The following sections describe how to add user-defined collations of the first two types to existing
character sets. All existing character sets already have a binary collation, so there is no need here to
describe how to add one.

Summary of the procedure for adding a new user-defined collation:

1. Choose a collation ID.

2. Add configuration information that names the collation and describes the character-ordering rules.

3. Restart the server.

4. Verify that the server recognizes the collation.

1772

Additional Resources

The instructions here cover only user-defined collations that can be added without recompiling MySQL.
To add a collation that does require recompiling (as implemented by means of functions in a C source
file), use the instructions in Section 10.13, “Adding a Character Set”. However, instead of adding all the
information required for a complete character set, just modify the appropriate files for an existing character
set. That is, based on what is already present for the character set's current collations, add data structures,
functions, and configuration information for the new collation.

Note

If you modify an existing user-defined collation, that may affect the ordering of rows
for indexes on columns that use the collation. In this case, rebuild any such indexes
to avoid problems such as incorrect query results. See Section 2.10.12, “Rebuilding
or Repairing Tables or Indexes”.

Additional Resources

• Example showing how to add a collation for full-text searches: Section 12.9.7, “Adding a User-Defined
Collation for Full-Text Indexing”

• The Unicode Collation Algorithm (UCA) specification: http://www.unicode.org/reports/tr10/

• The Locale Data Markup Language (LDML) specification: http://www.unicode.org/reports/tr35/

10.14.1 Collation Implementation Types

MySQL implements several types of collations:

Simple collations for 8-bit character sets

This kind of collation is implemented using an array of 256 weights that defines a one-to-one mapping from
character codes to weights. latin1_swedish_ci is an example. It is a case-insensitive collation, so the
uppercase and lowercase versions of a character have the same weights and they compare as equal.

mysql> SET NAMES 'latin1' COLLATE 'latin1_swedish_ci';
Query OK, 0 rows affected (0.01 sec)

mysql> SELECT HEX(WEIGHT_STRING('a')), HEX(WEIGHT_STRING('A'));
+-------------------------+-------------------------+
| HEX(WEIGHT_STRING('a')) | HEX(WEIGHT_STRING('A')) |
+-------------------------+-------------------------+
| 41 | 41 |
+-------------------------+-------------------------+
1 row in set (0.01 sec)

mysql> SELECT 'a' = 'A';
+-----------+
| 'a' = 'A' |
+-----------+
| 1 |
+-----------+
1 row in set (0.12 sec)

For implementation instructions, see Section 10.14.3, “Adding a Simple Collation to an 8-Bit Character
Set”.

Complex collations for 8-bit character sets

This kind of collation is implemented using functions in a C source file that define how to order characters,
as described in Section 10.13, “Adding a Character Set”.

1773

http://www.unicode.org/reports/tr10/
http://www.unicode.org/reports/tr35/

Collation Implementation Types

Collations for non-Unicode multibyte character sets

For this type of collation, 8-bit (single-byte) and multibyte characters are handled differently. For 8-bit
characters, character codes map to weights in case-insensitive fashion. (For example, the single-byte
characters 'a' and 'A' both have a weight of 0x41.) For multibyte characters, there are two types of
relationship between character codes and weights:

• Weights equal character codes. sjis_japanese_ci is an example of this kind of collation. The
multibyte character 'ぢ' has a character code of 0x82C0, and the weight is also 0x82C0.

mysql> CREATE TABLE t1
 (c1 VARCHAR(2) CHARACTER SET sjis COLLATE sjis_japanese_ci);
Query OK, 0 rows affected (0.01 sec)

mysql> INSERT INTO t1 VALUES ('a'),('A'),(0x82C0);
Query OK, 3 rows affected (0.00 sec)
Records: 3 Duplicates: 0 Warnings: 0

mysql> SELECT c1, HEX(c1), HEX(WEIGHT_STRING(c1)) FROM t1;
+------+---------+------------------------+
| c1 | HEX(c1) | HEX(WEIGHT_STRING(c1)) |
+------+---------+------------------------+
a	61	41
A	41	41
ぢ	82C0	82C0
+------+---------+------------------------+
3 rows in set (0.00 sec)

• Character codes map one-to-one to weights, but a code is not necessarily equal to the weight.
gbk_chinese_ci is an example of this kind of collation. The multibyte character '膰' has a character
code of 0x81B0 but a weight of 0xC286.

mysql> CREATE TABLE t1
 (c1 VARCHAR(2) CHARACTER SET gbk COLLATE gbk_chinese_ci);
Query OK, 0 rows affected (0.33 sec)

mysql> INSERT INTO t1 VALUES ('a'),('A'),(0x81B0);
Query OK, 3 rows affected (0.00 sec)
Records: 3 Duplicates: 0 Warnings: 0

mysql> SELECT c1, HEX(c1), HEX(WEIGHT_STRING(c1)) FROM t1;
+------+---------+------------------------+
| c1 | HEX(c1) | HEX(WEIGHT_STRING(c1)) |
+------+---------+------------------------+
a	61	41
A	41	41
膰	81B0	C286
+------+---------+------------------------+
3 rows in set (0.00 sec)

For implementation instructions, see Section 10.13, “Adding a Character Set”.

Collations for Unicode multibyte character sets

Some of these collations are based on the Unicode Collation Algorithm (UCA), others are not.

Non-UCA collations have a one-to-one mapping from character code to weight. In MySQL, such collations
are case-insensitive and accent-insensitive. utf8_general_ci is an example: 'a', 'A', 'À', and 'á'
each have different character codes but all have a weight of 0x0041 and compare as equal.

mysql> SET NAMES 'utf8' COLLATE 'utf8_general_ci';
Query OK, 0 rows affected (0.00 sec)

1774

Collation Implementation Types

mysql> CREATE TABLE t1
 (c1 CHAR(1) CHARACTER SET UTF8 COLLATE utf8_general_ci);
Query OK, 0 rows affected (0.01 sec)

mysql> INSERT INTO t1 VALUES ('a'),('A'),('À'),('á');
Query OK, 4 rows affected (0.00 sec)
Records: 4 Duplicates: 0 Warnings: 0

mysql> SELECT c1, HEX(c1), HEX(WEIGHT_STRING(c1)) FROM t1;
+------+---------+------------------------+
| c1 | HEX(c1) | HEX(WEIGHT_STRING(c1)) |
+------+---------+------------------------+
a	61	0041
A	41	0041
À	C380	0041
á	C3A1	0041
+------+---------+------------------------+
4 rows in set (0.00 sec)

UCA-based collations in MySQL have these properties:

• If a character has weights, each weight uses 2 bytes (16 bits).

• A character may have zero weights (or an empty weight). In this case, the character is ignorable.
Example: "U+0000 NULL" does not have a weight and is ignorable.

• A character may have one weight. Example: 'a' has a weight of 0x0E33.

mysql> SET NAMES 'utf8' COLLATE 'utf8_unicode_ci';
Query OK, 0 rows affected (0.05 sec)

mysql> SELECT HEX('a'), HEX(WEIGHT_STRING('a'));
+----------+-------------------------+
| HEX('a') | HEX(WEIGHT_STRING('a')) |
+----------+-------------------------+
| 61 | 0E33 |
+----------+-------------------------+
1 row in set (0.02 sec)

• A character may have many weights. This is an expansion. Example: The German letter 'ß' (SZ
ligature, or SHARP S) has a weight of 0x0FEA0FEA.

mysql> SET NAMES 'utf8' COLLATE 'utf8_unicode_ci';
Query OK, 0 rows affected (0.11 sec)

mysql> SELECT HEX('ß'), HEX(WEIGHT_STRING('ß'));
+-----------+--------------------------+
| HEX('ß') | HEX(WEIGHT_STRING('ß')) |
+-----------+--------------------------+
| C39F | 0FEA0FEA |
+-----------+--------------------------+
1 row in set (0.00 sec)

• Many characters may have one weight. This is a contraction. Example: 'ch' is a single letter in Czech
and has a weight of 0x0EE2.

mysql> SET NAMES 'utf8' COLLATE 'utf8_czech_ci';
Query OK, 0 rows affected (0.09 sec)

mysql> SELECT HEX('ch'), HEX(WEIGHT_STRING('ch'));
+-----------+--------------------------+
| HEX('ch') | HEX(WEIGHT_STRING('ch')) |
+-----------+--------------------------+
| 6368 | 0EE2 |

1775

Choosing a Collation ID

+-----------+--------------------------+
1 row in set (0.00 sec)

A many-characters-to-many-weights mapping is also possible (this is contraction with expansion), but is
not supported by MySQL.

For implementation instructions, for a non-UCA collation, see Section 10.13, “Adding a Character Set”. For
a UCA collation, see Section 10.14.4, “Adding a UCA Collation to a Unicode Character Set”.

Miscellaneous collations

There are also a few collations that do not fall into any of the previous categories.

10.14.2 Choosing a Collation ID

Each collation must have a unique ID. To add a collation, you must choose an ID value that is not currently
used. MySQL supports two-byte collation IDs. The range of IDs from 1024 to 2047 is reserved for user-
defined collations.

The collation ID that you choose appears in these contexts:

• The ID column of the Information Schema COLLATIONS table.

• The Id column of SHOW COLLATION output.

• The charsetnr member of the MYSQL_FIELD C API data structure.

• The number member of the MY_CHARSET_INFO data structure returned by the
mysql_get_character_set_info() C API function.

To determine the largest currently used ID, issue the following statement:

mysql> SELECT MAX(ID) FROM INFORMATION_SCHEMA.COLLATIONS;
+---------+
| MAX(ID) |
+---------+
| 247 |
+---------+

To display a list of all currently used IDs, issue this statement:

mysql> SELECT ID FROM INFORMATION_SCHEMA.COLLATIONS ORDER BY ID;
+-----+
| ID |
+-----+
| 1 |
| 2 |
| ... |
| 52 |
| 53 |
| 57 |
| 58 |
| ... |
| 98 |
| 99 |
| 128 |
| 129 |
| ... |
| 247 |
+-----+

1776

https://dev.mysql.com/doc/c-api/5.7/en/mysql-get-character-set-info.html

Adding a Simple Collation to an 8-Bit Character Set

Warning

Before upgrading, you should save the configuration files that you change. If you
upgrade in place, the process replaces the modified files.

10.14.3 Adding a Simple Collation to an 8-Bit Character Set

This section describes how to add a simple collation for an 8-bit character set by writing the <collation>
elements associated with a <charset> character set description in the MySQL Index.xml file. The
procedure described here does not require recompiling MySQL. The example adds a collation named
latin1_test_ci to the latin1 character set.

1. Choose a collation ID, as shown in Section 10.14.2, “Choosing a Collation ID”. The following steps use
an ID of 1024.

2. Modify the Index.xml and latin1.xml configuration files. These files are located in the directory
named by the character_sets_dir system variable. You can check the variable value as follows,
although the path name might be different on your system:

mysql> SHOW VARIABLES LIKE 'character_sets_dir';
+--------------------+---+
| Variable_name | Value |
+--------------------+---+
| character_sets_dir | /user/local/mysql/share/mysql/charsets/ |
+--------------------+---+

3. Choose a name for the collation and list it in the Index.xml file. Find the <charset> element for the
character set to which the collation is being added, and add a <collation> element that indicates the
collation name and ID, to associate the name with the ID. For example:

<charset name="latin1">
 ...
 <collation name="latin1_test_ci" id="1024"/>
 ...
</charset>

4. In the latin1.xml configuration file, add a <collation> element that names the collation and that
contains a <map> element that defines a character code-to-weight mapping table for character codes 0
to 255. Each value within the <map> element must be a number in hexadecimal format.

<collation name="latin1_test_ci">
<map>
 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F
 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F
 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F
 30 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F
 40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F
 50 51 52 53 54 55 56 57 58 59 5A 5B 5C 5D 5E 5F
 60 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F
 50 51 52 53 54 55 56 57 58 59 5A 7B 7C 7D 7E 7F
 80 81 82 83 84 85 86 87 88 89 8A 8B 8C 8D 8E 8F
 90 91 92 93 94 95 96 97 98 99 9A 9B 9C 9D 9E 9F
 A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 AA AB AC AD AE AF
 B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 BA BB BC BD BE BF
 41 41 41 41 5B 5D 5B 43 45 45 45 45 49 49 49 49
 44 4E 4F 4F 4F 4F 5C D7 5C 55 55 55 59 59 DE DF
 41 41 41 41 5B 5D 5B 43 45 45 45 45 49 49 49 49
 44 4E 4F 4F 4F 4F 5C F7 5C 55 55 55 59 59 DE FF
</map>
</collation>

5. Restart the server and use this statement to verify that the collation is present:

1777

Adding a UCA Collation to a Unicode Character Set

mysql> SHOW COLLATION WHERE Collation = 'latin1_test_ci';
+----------------+---------+------+---------+----------+---------+
| Collation | Charset | Id | Default | Compiled | Sortlen |
+----------------+---------+------+---------+----------+---------+
| latin1_test_ci | latin1 | 1024 | | | 1 |
+----------------+---------+------+---------+----------+---------+

10.14.4 Adding a UCA Collation to a Unicode Character Set

This section describes how to add a UCA collation for a Unicode character set by writing the
<collation> element within a <charset> character set description in the MySQL Index.xml file.
The procedure described here does not require recompiling MySQL. It uses a subset of the Locale Data
Markup Language (LDML) specification, which is available at http://www.unicode.org/reports/tr35/. With
this method, you need not define the entire collation. Instead, you begin with an existing “base” collation
and describe the new collation in terms of how it differs from the base collation. The following table lists the
base collations of the Unicode character sets for which UCA collations can be defined. It is not possible to
create user-defined UCA collations for utf16le; there is no utf16le_unicode_ci collation that would
serve as the basis for such collations.

Table 10.4 MySQL Character Sets Available for User-Defined UCA Collations

Character Set Base Collation

utf8 utf8_unicode_ci

ucs2 ucs2_unicode_ci

utf16 utf16_unicode_ci

utf32 utf32_unicode_ci

The following sections show how to add a collation that is defined using LDML syntax, and provide a
summary of LDML rules supported in MySQL.

10.14.4.1 Defining a UCA Collation Using LDML Syntax

To add a UCA collation for a Unicode character set without recompiling MySQL, use the following
procedure. If you are unfamiliar with the LDML rules used to describe the collation's sort characteristics,
see Section 10.14.4.2, “LDML Syntax Supported in MySQL”.

The example adds a collation named utf8_phone_ci to the utf8 character set. The collation is
designed for a scenario involving a Web application for which users post their names and phone numbers.
Phone numbers can be given in very different formats:

+7-12345-67
+7-12-345-67
+7 12 345 67
+7 (12) 345 67
+71234567

The problem raised by dealing with these kinds of values is that the varying permissible formats make
searching for a specific phone number very difficult. The solution is to define a new collation that reorders
punctuation characters, making them ignorable.

1. Choose a collation ID, as shown in Section 10.14.2, “Choosing a Collation ID”. The following steps use
an ID of 1029.

2. To modify the Index.xml configuration file. This file is located in the directory named by the
character_sets_dir system variable. You can check the variable value as follows, although the
path name might be different on your system:

1778

http://www.unicode.org/reports/tr35/

Adding a UCA Collation to a Unicode Character Set

mysql> SHOW VARIABLES LIKE 'character_sets_dir';
+--------------------+---+
| Variable_name | Value |
+--------------------+---+
| character_sets_dir | /user/local/mysql/share/mysql/charsets/ |
+--------------------+---+

3. Choose a name for the collation and list it in the Index.xml file. In addition, you'll need to provide the
collation ordering rules. Find the <charset> element for the character set to which the collation is
being added, and add a <collation> element that indicates the collation name and ID, to associate
the name with the ID. Within the <collation> element, provide a <rules> element containing the
ordering rules:

<charset name="utf8">
 ...
 <collation name="utf8_phone_ci" id="1029">
 <rules>
 <reset>\u0000</reset>
 <i>\u0020</i> <!-- space -->
 <i>\u0028</i> <!-- left parenthesis -->
 <i>\u0029</i> <!-- right parenthesis -->
 <i>\u002B</i> <!-- plus -->
 <i>\u002D</i> <!-- hyphen -->
 </rules>
 </collation>
 ...
</charset>

4. If you want a similar collation for other Unicode character sets, add other <collation> elements. For
example, to define ucs2_phone_ci, add a <collation> element to the <charset name="ucs2">
element. Remember that each collation must have its own unique ID.

5. Restart the server and use this statement to verify that the collation is present:

mysql> SHOW COLLATION WHERE Collation = 'utf8_phone_ci';
+---------------+---------+------+---------+----------+---------+
| Collation | Charset | Id | Default | Compiled | Sortlen |
+---------------+---------+------+---------+----------+---------+
| utf8_phone_ci | utf8 | 1029 | | | 8 |
+---------------+---------+------+---------+----------+---------+

Now test the collation to make sure that it has the desired properties.

Create a table containing some sample phone numbers using the new collation:

mysql> CREATE TABLE phonebook (
 name VARCHAR(64),
 phone VARCHAR(64) CHARACTER SET utf8 COLLATE utf8_phone_ci
);
Query OK, 0 rows affected (0.09 sec)

mysql> INSERT INTO phonebook VALUES ('Svoj','+7 912 800 80 02');
Query OK, 1 row affected (0.00 sec)

mysql> INSERT INTO phonebook VALUES ('Hf','+7 (912) 800 80 04');
Query OK, 1 row affected (0.00 sec)

mysql> INSERT INTO phonebook VALUES ('Bar','+7-912-800-80-01');
Query OK, 1 row affected (0.00 sec)

mysql> INSERT INTO phonebook VALUES ('Ramil','(7912) 800 80 03');
Query OK, 1 row affected (0.00 sec)

mysql> INSERT INTO phonebook VALUES ('Sanja','+380 (912) 8008005');

1779

Adding a UCA Collation to a Unicode Character Set

Query OK, 1 row affected (0.00 sec)

Run some queries to see whether the ignored punctuation characters are in fact ignored for comparison
and sorting:

mysql> SELECT * FROM phonebook ORDER BY phone;
+-------+--------------------+
| name | phone |
+-------+--------------------+
Sanja	+380 (912) 8008005
Bar	+7-912-800-80-01
Svoj	+7 912 800 80 02
Ramil	(7912) 800 80 03
Hf	+7 (912) 800 80 04
+-------+--------------------+
5 rows in set (0.00 sec)

mysql> SELECT * FROM phonebook WHERE phone='+7(912)800-80-01';
+------+------------------+
| name | phone |
+------+------------------+
| Bar | +7-912-800-80-01 |
+------+------------------+
1 row in set (0.00 sec)

mysql> SELECT * FROM phonebook WHERE phone='79128008001';
+------+------------------+
| name | phone |
+------+------------------+
| Bar | +7-912-800-80-01 |
+------+------------------+
1 row in set (0.00 sec)

mysql> SELECT * FROM phonebook WHERE phone='7 9 1 2 8 0 0 8 0 0 1';
+------+------------------+
| name | phone |
+------+------------------+
| Bar | +7-912-800-80-01 |
+------+------------------+
1 row in set (0.00 sec)

10.14.4.2 LDML Syntax Supported in MySQL

This section describes the LDML syntax that MySQL recognizes. This is a subset of the syntax described
in the LDML specification available at http://www.unicode.org/reports/tr35/, which should be consulted
for further information. MySQL recognizes a large enough subset of the syntax that, in many cases, it is
possible to download a collation definition from the Unicode Common Locale Data Repository and paste
the relevant part (that is, the part between the <rules> and </rules> tags) into the MySQL Index.xml
file. The rules described here are all supported except that character sorting occurs only at the primary
level. Rules that specify differences at secondary or higher sort levels are recognized (and thus can be
included in collation definitions) but are treated as equality at the primary level.

The MySQL server generates diagnostics when it finds problems while parsing the Index.xml file. See
Section 10.14.4.3, “Diagnostics During Index.xml Parsing”.

Character Representation

Characters named in LDML rules can be written literally or in \unnnn format, where nnnn is the
hexadecimal Unicode code point value. For example, A and á can be written literally or as \u0041 and
\u00E1. Within hexadecimal values, the digits A through F are not case-sensitive; \u00E1 and \u00e1
are equivalent. For UCA 4.0.0 collations, hexadecimal notation can be used only for characters in the Basic
Multilingual Plane, not for characters outside the BMP range of 0000 to FFFF. For UCA 5.2.0 collations,
hexadecimal notation can be used for any character.

1780

http://www.unicode.org/reports/tr35/

Adding a UCA Collation to a Unicode Character Set

The Index.xml file itself should be written using UTF-8 encoding.

Syntax Rules

LDML has reset rules and shift rules to specify character ordering. Orderings are given as a set of rules
that begin with a reset rule that establishes an anchor point, followed by shift rules that indicate how
characters sort relative to the anchor point.

• A <reset> rule does not specify any ordering in and of itself. Instead, it “resets” the ordering for
subsequent shift rules to cause them to be taken in relation to a given character. Either of the following
rules resets subsequent shift rules to be taken in relation to the letter 'A':

<reset>A</reset>

<reset>\u0041</reset>

• The <p>, <s>, and <t> shift rules define primary, secondary, and tertiary differences of a character from
another character:

• Use primary differences to distinguish separate letters.

• Use secondary differences to distinguish accent variations.

• Use tertiary differences to distinguish lettercase variations.

Either of these rules specifies a primary shift rule for the 'G' character:

<p>G</p>

<p>\u0047</p>

• The <i> shift rule indicates that one character sorts identically to another. The following rules cause 'b'
to sort the same as 'a':

<reset>a</reset>
<i>b</i>

• Abbreviated shift syntax specifies multiple shift rules using a single pair of tags. The following table
shows the correspondence between abbreviated syntax rules and the equivalent nonabbreviated rules.

Table 10.5 Abbreviated Shift Syntax

Abbreviated Syntax Nonabbreviated Syntax

<pc>xyz</pc> <p>x</p><p>y</p><p>z</p>

<sc>xyz</sc> <s>x</s><s>y</s><s>z</s>

<tc>xyz</tc> <t>x</t><t>y</t><t>z</t>

<ic>xyz</ic> <i>x</i><i>y</i><i>z</i>

• An expansion is a reset rule that establishes an anchor point for a multiple-character sequence. MySQL
supports expansions 2 to 6 characters long. The following rules put 'z' greater at the primary level than
the sequence of three characters 'abc':

<reset>abc</reset>
<p>z</p>

• A contraction is a shift rule that sorts a multiple-character sequence. MySQL supports contractions 2 to
6 characters long. The following rules put the sequence of three characters 'xyz' greater at the primary
level than 'a':

1781

Adding a UCA Collation to a Unicode Character Set

<reset>a</reset>
<p>xyz</p>

• Long expansions and long contractions can be used together. These rules put the sequence of three
characters 'xyz' greater at the primary level than the sequence of three characters 'abc':

<reset>abc</reset>
<p>xyz</p>

• Normal expansion syntax uses <x> plus <extend> elements to specify an expansion. The following
rules put the character 'k' greater at the secondary level than the sequence 'ch'. That is, 'k'
behaves as if it expands to a character after 'c' followed by 'h':

<reset>c</reset>
<x><s>k</s><extend>h</extend></x>

This syntax permits long sequences. These rules sort the sequence 'ccs' greater at the tertiary level
than the sequence 'cscs':

<reset>cs</reset>
<x><t>ccs</t><extend>cs</extend></x>

The LDML specification describes normal expansion syntax as “tricky.” See that specification for details.

• Previous context syntax uses <x> plus <context> elements to specify that the context before a
character affects how it sorts. The following rules put '-' greater at the secondary level than 'a', but
only when '-' occurs after 'b':

<reset>a</reset>
<x><context>b</context><s>-</s></x>

• Previous context syntax can include the <extend> element. These rules put 'def' greater at the
primary level than 'aghi', but only when 'def' comes after 'abc':

<reset>a</reset>
<x><context>abc</context><p>def</p><extend>ghi</extend></x>

• Reset rules permit a before attribute. Normally, shift rules after a reset rule indicate characters that sort
after the reset character. Shift rules after a reset rule that has the before attribute indicate characters
that sort before the reset character. The following rules put the character 'b' immediately before 'a' at
the primary level:

<reset before="primary">a</reset>
<p>b</p>

Permissible before attribute values specify the sort level by name or the equivalent numeric value:

<reset before="primary">
<reset before="1">

<reset before="secondary">
<reset before="2">

<reset before="tertiary">
<reset before="3">

• A reset rule can name a logical reset position rather than a literal character:

<first_tertiary_ignorable/>
<last_tertiary_ignorable/>
<first_secondary_ignorable/>
<last_secondary_ignorable/>

1782

Adding a UCA Collation to a Unicode Character Set

<first_primary_ignorable/>
<last_primary_ignorable/>
<first_variable/>
<last_variable/>
<first_non_ignorable/>
<last_non_ignorable/>
<first_trailing/>
<last_trailing/>

These rules put 'z' greater at the primary level than nonignorable characters that have a Default
Unicode Collation Element Table (DUCET) entry and that are not CJK:

<reset><last_non_ignorable/></reset>
<p>z</p>

Logical positions have the code points shown in the following table.

Table 10.6 Logical Reset Position Code Points

Logical Position Unicode 4.0.0 Code Point Unicode 5.2.0 Code Point

<first_non_ignorable/> U+02D0 U+02D0

<last_non_ignorable/> U+A48C U+1342E

<first_primary_ignorable/
>

U+0332 U+0332

<last_primary_ignorable/> U+20EA U+101FD

<first_secondary_ignorable/
>

U+0000 U+0000

<last_secondary_ignorable/
>

U+FE73 U+FE73

<first_tertiary_ignorable/
>

U+0000 U+0000

<last_tertiary_ignorable/
>

U+FE73 U+FE73

<first_trailing/> U+0000 U+0000

<last_trailing/> U+0000 U+0000

<first_variable/> U+0009 U+0009

<last_variable/> U+2183 U+1D371

• The <collation> element permits a shift-after-method attribute that affects character weight
calculation for shift rules. The attribute has these permitted values:

• simple: Calculate character weights as for reset rules that do not have a before attribute. This is the
default if the attribute is not given.

• expand: Use expansions for shifts after reset rules.

Suppose that '0' and '1' have weights of 0E29 and 0E2A and we want to put all basic Latin letters
between '0' and '1':

<reset>0</reset>

1783

Adding a UCA Collation to a Unicode Character Set

<pc>abcdefghijklmnopqrstuvwxyz</pc>

For simple shift mode, weights are calculated as follows:

'a' has weight 0E29+1
'b' has weight 0E29+2
'c' has weight 0E29+3
...

However, there are not enough vacant positions to put 26 characters between '0' and '1'. The result
is that digits and letters are intermixed.

To solve this, use shift-after-method="expand". Then weights are calculated like this:

'a' has weight [0E29][233D+1]
'b' has weight [0E29][233D+2]
'c' has weight [0E29][233D+3]
...

233D is the UCA 4.0.0 weight for character 0xA48C, which is the last nonignorable character (a sort of
the greatest character in the collation, excluding CJK). UCA 5.2.0 is similar but uses 3ACA, for character
0x1342E.

MySQL-Specific LDML Extensions

An extension to LDML rules permits the <collation> element to include an optional version attribute
in <collation> tags to indicate the UCA version on which the collation is based. If the version attribute
is omitted, its default value is 4.0.0. For example, this specification indicates a collation that is based on
UCA 5.2.0:

<collation id="nnn" name="utf8_xxx_ci" version="5.2.0">
...
</collation>

10.14.4.3 Diagnostics During Index.xml Parsing

The MySQL server generates diagnostics when it finds problems while parsing the Index.xml file:

• Unknown tags are written to the error log. For example, the following message results if a collation
definition contains a <aaa> tag:

[Warning] Buffered warning: Unknown LDML tag:
'charsets/charset/collation/rules/aaa'

• If collation initialization is not possible, the server reports an “Unknown collation” error, and also
generates warnings explaining the problems, such as in the previous example. In other cases, when a
collation description is generally correct but contains some unknown tags, the collation is initialized and
is available for use. The unknown parts are ignored, but a warning is generated in the error log.

• Problems with collations generate warnings that clients can display with SHOW WARNINGS. Suppose that
a reset rule contains an expansion longer than the maximum supported length of 6 characters:

<reset>abcdefghi</reset>
<i>x</i>

An attempt to use the collation produces warnings:

mysql> SELECT _utf8'test' COLLATE utf8_test_ci;
ERROR 1273 (HY000): Unknown collation: 'utf8_test_ci'
mysql> SHOW WARNINGS;
+---------+------+--+

1784

Character Set Configuration

| Level | Code | Message |
+---------+------+--+
| Error | 1273 | Unknown collation: 'utf8_test_ci' |
| Warning | 1273 | Expansion is too long at 'abcdefghi=x' |
+---------+------+--+

10.15 Character Set Configuration
The MySQL server has a compiled-in default character set and collation. To change these defaults, use
the --character-set-server and --collation-server options when you start the server. See
Section 5.1.6, “Server Command Options”. The collation must be a legal collation for the default character
set. To determine which collations are available for each character set, use the SHOW COLLATION
statement or query the INFORMATION_SCHEMA COLLATIONS table.

If you try to use a character set that is not compiled into your binary, you might run into the following
problems:

• If your program uses an incorrect path to determine where the character sets are stored (which is
typically the share/mysql/charsets or share/charsets directory under the MySQL installation
directory), this can be fixed by using the --character-sets-dir option when you run the program.
For example, to specify a directory to be used by MySQL client programs, list it in the [client] group
of your option file. The examples given here show what the setting might look like for Unix or Windows,
respectively:

[client]
character-sets-dir=/usr/local/mysql/share/mysql/charsets

[client]
character-sets-dir="C:/Program Files/MySQL/MySQL Server 5.7/share/charsets"

• If the character set is a complex character set that cannot be loaded dynamically, you must recompile
the program with support for the character set.

For Unicode character sets, you can define collations without recompiling by using LDML notation. See
Section 10.14.4, “Adding a UCA Collation to a Unicode Character Set”.

• If the character set is a dynamic character set, but you do not have a configuration file for it, you should
install the configuration file for the character set from a new MySQL distribution.

• If your character set index file (Index.xml) does not contain the name for the character set, your
program displays an error message:

Character set 'charset_name' is not a compiled character set and is not
specified in the '/usr/share/mysql/charsets/Index.xml' file

To solve this problem, you should either get a new index file or manually add the name of any missing
character sets to the current file.

You can force client programs to use specific character set as follows:

[client]
default-character-set=charset_name

This is normally unnecessary. However, when character_set_system differs from
character_set_server or character_set_client, and you input characters manually (as database
object identifiers, column values, or both), these may be displayed incorrectly in output from the client or
the output itself may be formatted incorrectly. In such cases, starting the mysql client with --default-
character-set=system_character_set—that is, setting the client character set to match the system
character set—should fix the problem.

1785

MySQL Server Locale Support

10.16 MySQL Server Locale Support

The locale indicated by the lc_time_names system variable controls the language used to display
day and month names and abbreviations. This variable affects the output from the DATE_FORMAT(),
DAYNAME(), and MONTHNAME() functions.

lc_time_names does not affect the STR_TO_DATE() or GET_FORMAT() function.

The lc_time_names value does not affect the result from FORMAT(), but this function takes an optional
third parameter that enables a locale to be specified to be used for the result number's decimal point,
thousands separator, and grouping between separators. Permissible locale values are the same as the
legal values for the lc_time_names system variable.

Locale names have language and region subtags listed by IANA (http://www.iana.org/assignments/
language-subtag-registry) such as 'ja_JP' or 'pt_BR'. The default value is 'en_US' regardless of your
system's locale setting, but you can set the value at server startup, or set the GLOBAL value at runtime
if you have privileges sufficient to set global system variables; see Section 5.1.8.1, “System Variable
Privileges”. Any client can examine the value of lc_time_names or set its SESSION value to affect the
locale for its own connection.

mysql> SET NAMES 'utf8';
Query OK, 0 rows affected (0.09 sec)

mysql> SELECT @@lc_time_names;
+-----------------+
| @@lc_time_names |
+-----------------+
| en_US |
+-----------------+
1 row in set (0.00 sec)

mysql> SELECT DAYNAME('2010-01-01'), MONTHNAME('2010-01-01');
+-----------------------+-------------------------+
| DAYNAME('2010-01-01') | MONTHNAME('2010-01-01') |
+-----------------------+-------------------------+
| Friday | January |
+-----------------------+-------------------------+
1 row in set (0.00 sec)

mysql> SELECT DATE_FORMAT('2010-01-01','%W %a %M %b');
+---+
| DATE_FORMAT('2010-01-01','%W %a %M %b') |
+---+
| Friday Fri January Jan |
+---+
1 row in set (0.00 sec)

mysql> SET lc_time_names = 'es_MX';
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT @@lc_time_names;
+-----------------+
| @@lc_time_names |
+-----------------+
| es_MX |
+-----------------+
1 row in set (0.00 sec)

mysql> SELECT DAYNAME('2010-01-01'), MONTHNAME('2010-01-01');
+-----------------------+-------------------------+
| DAYNAME('2010-01-01') | MONTHNAME('2010-01-01') |
+-----------------------+-------------------------+
| viernes | enero |

1786

http://www.iana.org/assignments/language-subtag-registry
http://www.iana.org/assignments/language-subtag-registry

MySQL Server Locale Support

+-----------------------+-------------------------+
1 row in set (0.00 sec)

mysql> SELECT DATE_FORMAT('2010-01-01','%W %a %M %b');
+---+
| DATE_FORMAT('2010-01-01','%W %a %M %b') |
+---+
| viernes vie enero ene |
+---+
1 row in set (0.00 sec)

The day or month name for each of the affected functions is converted from utf8 to the character set
indicated by the character_set_connection system variable.

lc_time_names may be set to any of the following locale values. The set of locales supported by MySQL
may differ from those supported by your operating system.

Locale Value Meaning

ar_AE Arabic - United Arab Emirates

ar_BH Arabic - Bahrain

ar_DZ Arabic - Algeria

ar_EG Arabic - Egypt

ar_IN Arabic - India

ar_IQ Arabic - Iraq

ar_JO Arabic - Jordan

ar_KW Arabic - Kuwait

ar_LB Arabic - Lebanon

ar_LY Arabic - Libya

ar_MA Arabic - Morocco

ar_OM Arabic - Oman

ar_QA Arabic - Qatar

ar_SA Arabic - Saudi Arabia

ar_SD Arabic - Sudan

ar_SY Arabic - Syria

ar_TN Arabic - Tunisia

ar_YE Arabic - Yemen

be_BY Belarusian - Belarus

bg_BG Bulgarian - Bulgaria

ca_ES Catalan - Spain

cs_CZ Czech - Czech Republic

da_DK Danish - Denmark

de_AT German - Austria

de_BE German - Belgium

de_CH German - Switzerland

de_DE German - Germany

de_LU German - Luxembourg

1787

MySQL Server Locale Support

Locale Value Meaning

el_GR Greek - Greece

en_AU English - Australia

en_CA English - Canada

en_GB English - United Kingdom

en_IN English - India

en_NZ English - New Zealand

en_PH English - Philippines

en_US English - United States

en_ZA English - South Africa

en_ZW English - Zimbabwe

es_AR Spanish - Argentina

es_BO Spanish - Bolivia

es_CL Spanish - Chile

es_CO Spanish - Colombia

es_CR Spanish - Costa Rica

es_DO Spanish - Dominican Republic

es_EC Spanish - Ecuador

es_ES Spanish - Spain

es_GT Spanish - Guatemala

es_HN Spanish - Honduras

es_MX Spanish - Mexico

es_NI Spanish - Nicaragua

es_PA Spanish - Panama

es_PE Spanish - Peru

es_PR Spanish - Puerto Rico

es_PY Spanish - Paraguay

es_SV Spanish - El Salvador

es_US Spanish - United States

es_UY Spanish - Uruguay

es_VE Spanish - Venezuela

et_EE Estonian - Estonia

eu_ES Basque - Spain

fi_FI Finnish - Finland

fo_FO Faroese - Faroe Islands

fr_BE French - Belgium

fr_CA French - Canada

fr_CH French - Switzerland

fr_FR French - France

1788

MySQL Server Locale Support

Locale Value Meaning

fr_LU French - Luxembourg

gl_ES Galician - Spain

gu_IN Gujarati - India

he_IL Hebrew - Israel

hi_IN Hindi - India

hr_HR Croatian - Croatia

hu_HU Hungarian - Hungary

id_ID Indonesian - Indonesia

is_IS Icelandic - Iceland

it_CH Italian - Switzerland

it_IT Italian - Italy

ja_JP Japanese - Japan

ko_KR Korean - Republic of Korea

lt_LT Lithuanian - Lithuania

lv_LV Latvian - Latvia

mk_MK Macedonian - North Macedonia

mn_MN Mongolia - Mongolian

ms_MY Malay - Malaysia

nb_NO Norwegian(Bokmål) - Norway

nl_BE Dutch - Belgium

nl_NL Dutch - The Netherlands

no_NO Norwegian - Norway

pl_PL Polish - Poland

pt_BR Portugese - Brazil

pt_PT Portugese - Portugal

rm_CH Romansh - Switzerland

ro_RO Romanian - Romania

ru_RU Russian - Russia

ru_UA Russian - Ukraine

sk_SK Slovak - Slovakia

sl_SI Slovenian - Slovenia

sq_AL Albanian - Albania

sr_RS Serbian - Serbia

sv_FI Swedish - Finland

sv_SE Swedish - Sweden

ta_IN Tamil - India

te_IN Telugu - India

th_TH Thai - Thailand

1789

MySQL Server Locale Support

Locale Value Meaning

tr_TR Turkish - Turkey

uk_UA Ukrainian - Ukraine

ur_PK Urdu - Pakistan

vi_VN Vietnamese - Vietnam

zh_CN Chinese - China

zh_HK Chinese - Hong Kong

zh_TW Chinese - Taiwan

1790

Chapter 11 Data Types

Table of Contents
11.1 Numeric Data Types ... 1792

11.1.1 Numeric Data Type Syntax ... 1792
11.1.2 Integer Types (Exact Value) - INTEGER, INT, SMALLINT, TINYINT, MEDIUMINT,
BIGINT ... 1796
11.1.3 Fixed-Point Types (Exact Value) - DECIMAL, NUMERIC .. 1796
11.1.4 Floating-Point Types (Approximate Value) - FLOAT, DOUBLE 1797
11.1.5 Bit-Value Type - BIT ... 1797
11.1.6 Numeric Type Attributes ... 1797
11.1.7 Out-of-Range and Overflow Handling .. 1798

11.2 Date and Time Data Types ... 1800
11.2.1 Date and Time Data Type Syntax ... 1801
11.2.2 The DATE, DATETIME, and TIMESTAMP Types ... 1803
11.2.3 The TIME Type .. 1805
11.2.4 The YEAR Type ... 1806
11.2.5 2-Digit YEAR(2) Limitations and Migrating to 4-Digit YEAR ... 1806
11.2.6 Automatic Initialization and Updating for TIMESTAMP and DATETIME 1809
11.2.7 Fractional Seconds in Time Values ... 1813
11.2.8 What Calendar Is Used By MySQL? ... 1813
11.2.9 Conversion Between Date and Time Types ... 1814
11.2.10 2-Digit Years in Dates .. 1815

11.3 String Data Types ... 1815
11.3.1 String Data Type Syntax ... 1815
11.3.2 The CHAR and VARCHAR Types ... 1819
11.3.3 The BINARY and VARBINARY Types ... 1821
11.3.4 The BLOB and TEXT Types ... 1822
11.3.5 The ENUM Type .. 1824
11.3.6 The SET Type ... 1827

11.4 Spatial Data Types ... 1829
11.4.1 Spatial Data Types ... 1831
11.4.2 The OpenGIS Geometry Model ... 1832
11.4.3 Supported Spatial Data Formats ... 1838
11.4.4 Geometry Well-Formedness and Validity ... 1841
11.4.5 Creating Spatial Columns ... 1841
11.4.6 Populating Spatial Columns .. 1842
11.4.7 Fetching Spatial Data ... 1843
11.4.8 Optimizing Spatial Analysis ... 1843
11.4.9 Creating Spatial Indexes ... 1843
11.4.10 Using Spatial Indexes ... 1844

11.5 The JSON Data Type ... 1846
11.6 Data Type Default Values ... 1860
11.7 Data Type Storage Requirements .. 1862
11.8 Choosing the Right Type for a Column .. 1866
11.9 Using Data Types from Other Database Engines .. 1867

MySQL supports SQL data types in several categories: numeric types, date and time types, string
(character and byte) types, spatial types, and the JSON data type. This chapter provides an overview and
more detailed description of the properties of the types in each category, and a summary of the data type
storage requirements. The initial overviews are intentionally brief. Consult the more detailed descriptions

1791

Numeric Data Types

for additional information about particular data types, such as the permissible formats in which you can
specify values.

Data type descriptions use these conventions:

• For integer types, M indicates the maximum display width. For floating-point and fixed-point types, M is
the total number of digits that can be stored (the precision). For string types, M is the maximum length.
The maximum permissible value of M depends on the data type.

• D applies to floating-point and fixed-point types and indicates the number of digits following the
decimal point (the scale). The maximum possible value is 30, but should be no greater than M−2.

• fsp applies to the TIME, DATETIME, and TIMESTAMP types and represents fractional seconds
precision; that is, the number of digits following the decimal point for fractional parts of seconds. The
fsp value, if given, must be in the range 0 to 6. A value of 0 signifies that there is no fractional part. If
omitted, the default precision is 0. (This differs from the standard SQL default of 6, for compatibility with
previous MySQL versions.)

• Square brackets ([and]) indicate optional parts of type definitions.

11.1 Numeric Data Types
MySQL supports all standard SQL numeric data types. These types include the exact numeric data types
(INTEGER, SMALLINT, DECIMAL, and NUMERIC), as well as the approximate numeric data types (FLOAT,
REAL, and DOUBLE PRECISION). The keyword INT is a synonym for INTEGER, and the keywords DEC
and FIXED are synonyms for DECIMAL. MySQL treats DOUBLE as a synonym for DOUBLE PRECISION (a
nonstandard extension). MySQL also treats REAL as a synonym for DOUBLE PRECISION (a nonstandard
variation), unless the REAL_AS_FLOAT SQL mode is enabled.

The BIT data type stores bit values and is supported for MyISAM, MEMORY, InnoDB, and NDB tables.

For information about how MySQL handles assignment of out-of-range values to columns and overflow
during expression evaluation, see Section 11.1.7, “Out-of-Range and Overflow Handling”.

For information about storage requirements of the numeric data types, see Section 11.7, “Data Type
Storage Requirements”.

For descriptions of functions that operate on numeric values, see Section 12.6, “Numeric Functions and
Operators”. The data type used for the result of a calculation on numeric operands depends on the types of
the operands and the operations performed on them. For more information, see Section 12.6.1, “Arithmetic
Operators”.

11.1.1 Numeric Data Type Syntax

For integer data types, M indicates the minimum display width. The maximum display width is 255. Display
width is unrelated to the range of values a type can store, as described in Section 11.1.6, “Numeric Type
Attributes”.

For floating-point and fixed-point data types, M is the total number of digits that can be stored.

If you specify ZEROFILL for a numeric column, MySQL automatically adds the UNSIGNED attribute to the
column.

Numeric data types that permit the UNSIGNED attribute also permit SIGNED. However, these data types
are signed by default, so the SIGNED attribute has no effect.

SERIAL is an alias for BIGINT UNSIGNED NOT NULL AUTO_INCREMENT UNIQUE.

1792

Numeric Data Type Syntax

SERIAL DEFAULT VALUE in the definition of an integer column is an alias for NOT NULL
AUTO_INCREMENT UNIQUE.

Warning

When you use subtraction between integer values where one is of type UNSIGNED,
the result is unsigned unless the NO_UNSIGNED_SUBTRACTION SQL mode is
enabled. See Section 12.10, “Cast Functions and Operators”.

• BIT[(M)]

A bit-value type. M indicates the number of bits per value, from 1 to 64. The default is 1 if M is omitted.

• TINYINT[(M)] [UNSIGNED] [ZEROFILL]

A very small integer. The signed range is -128 to 127. The unsigned range is 0 to 255.

• BOOL, BOOLEAN

These types are synonyms for TINYINT(1). A value of zero is considered false. Nonzero values are
considered true:

mysql> SELECT IF(0, 'true', 'false');
+------------------------+
| IF(0, 'true', 'false') |
+------------------------+
| false |
+------------------------+

mysql> SELECT IF(1, 'true', 'false');
+------------------------+
| IF(1, 'true', 'false') |
+------------------------+
| true |
+------------------------+

mysql> SELECT IF(2, 'true', 'false');
+------------------------+
| IF(2, 'true', 'false') |
+------------------------+
| true |
+------------------------+

However, the values TRUE and FALSE are merely aliases for 1 and 0, respectively, as shown here:

mysql> SELECT IF(0 = FALSE, 'true', 'false');
+--------------------------------+
| IF(0 = FALSE, 'true', 'false') |
+--------------------------------+
| true |
+--------------------------------+

mysql> SELECT IF(1 = TRUE, 'true', 'false');
+-------------------------------+
| IF(1 = TRUE, 'true', 'false') |
+-------------------------------+
| true |
+-------------------------------+

mysql> SELECT IF(2 = TRUE, 'true', 'false');
+-------------------------------+
| IF(2 = TRUE, 'true', 'false') |
+-------------------------------+
| false |

1793

Numeric Data Type Syntax

+-------------------------------+

mysql> SELECT IF(2 = FALSE, 'true', 'false');
+--------------------------------+
| IF(2 = FALSE, 'true', 'false') |
+--------------------------------+
| false |
+--------------------------------+

The last two statements display the results shown because 2 is equal to neither 1 nor 0.

• SMALLINT[(M)] [UNSIGNED] [ZEROFILL]

A small integer. The signed range is -32768 to 32767. The unsigned range is 0 to 65535.

• MEDIUMINT[(M)] [UNSIGNED] [ZEROFILL]

A medium-sized integer. The signed range is -8388608 to 8388607. The unsigned range is 0 to
16777215.

• INT[(M)] [UNSIGNED] [ZEROFILL]

A normal-size integer. The signed range is -2147483648 to 2147483647. The unsigned range is 0 to
4294967295.

• INTEGER[(M)] [UNSIGNED] [ZEROFILL]

This type is a synonym for INT.

• BIGINT[(M)] [UNSIGNED] [ZEROFILL]

A large integer. The signed range is -9223372036854775808 to 9223372036854775807. The
unsigned range is 0 to 18446744073709551615.

SERIAL is an alias for BIGINT UNSIGNED NOT NULL AUTO_INCREMENT UNIQUE.

Some things you should be aware of with respect to BIGINT columns:

• All arithmetic is done using signed BIGINT or DOUBLE values, so you should not use unsigned big
integers larger than 9223372036854775807 (63 bits) except with bit functions! If you do that, some
of the last digits in the result may be wrong because of rounding errors when converting a BIGINT
value to a DOUBLE.

MySQL can handle BIGINT in the following cases:

• When using integers to store large unsigned values in a BIGINT column.

• In MIN(col_name) or MAX(col_name), where col_name refers to a BIGINT column.

• When using operators (+, -, *, and so on) where both operands are integers.

• You can always store an exact integer value in a BIGINT column by storing it using a string. In this
case, MySQL performs a string-to-number conversion that involves no intermediate double-precision
representation.

• The -, +, and * operators use BIGINT arithmetic when both operands are integer values. This
means that if you multiply two big integers (or results from functions that return integers), you may get
unexpected results when the result is larger than 9223372036854775807.

• DECIMAL[(M[,D])] [UNSIGNED] [ZEROFILL]

1794

Numeric Data Type Syntax

A packed “exact” fixed-point number. M is the total number of digits (the precision) and D is the number of
digits after the decimal point (the scale). The decimal point and (for negative numbers) the - sign are not
counted in M. If D is 0, values have no decimal point or fractional part. The maximum number of digits (M)
for DECIMAL is 65. The maximum number of supported decimals (D) is 30. If D is omitted, the default is
0. If M is omitted, the default is 10. (There is also a limit on how long the text of DECIMAL literals can be;
see Section 12.21.3, “Expression Handling”.)

UNSIGNED, if specified, disallows negative values.

All basic calculations (+, -, *, /) with DECIMAL columns are done with a precision of 65 digits.

• DEC[(M[,D])] [UNSIGNED] [ZEROFILL], NUMERIC[(M[,D])] [UNSIGNED] [ZEROFILL],
FIXED[(M[,D])] [UNSIGNED] [ZEROFILL]

These types are synonyms for DECIMAL. The FIXED synonym is available for compatibility with other
database systems.

• FLOAT[(M,D)] [UNSIGNED] [ZEROFILL]

A small (single-precision) floating-point number. Permissible values are -3.402823466E+38 to
-1.175494351E-38, 0, and 1.175494351E-38 to 3.402823466E+38. These are the theoretical
limits, based on the IEEE standard. The actual range might be slightly smaller depending on your
hardware or operating system.

M is the total number of digits and D is the number of digits following the decimal point. If M and D are
omitted, values are stored to the limits permitted by the hardware. A single-precision floating-point
number is accurate to approximately 7 decimal places.

FLOAT(M,D) is a nonstandard MySQL extension.

UNSIGNED, if specified, disallows negative values.

Using FLOAT might give you some unexpected problems because all calculations in MySQL are done
with double precision. See Section B.3.4.7, “Solving Problems with No Matching Rows”.

• FLOAT(p) [UNSIGNED] [ZEROFILL]

A floating-point number. p represents the precision in bits, but MySQL uses this value only to determine
whether to use FLOAT or DOUBLE for the resulting data type. If p is from 0 to 24, the data type becomes
FLOAT with no M or D values. If p is from 25 to 53, the data type becomes DOUBLE with no M or D values.
The range of the resulting column is the same as for the single-precision FLOAT or double-precision
DOUBLE data types described earlier in this section.

 FLOAT(p) syntax is provided for ODBC compatibility.

• DOUBLE[(M,D)] [UNSIGNED] [ZEROFILL]

A normal-size (double-precision) floating-point number. Permissible values are
-1.7976931348623157E+308 to -2.2250738585072014E-308, 0, and
2.2250738585072014E-308 to 1.7976931348623157E+308. These are the theoretical limits,
based on the IEEE standard. The actual range might be slightly smaller depending on your hardware or
operating system.

M is the total number of digits and D is the number of digits following the decimal point. If M and D are
omitted, values are stored to the limits permitted by the hardware. A double-precision floating-point
number is accurate to approximately 15 decimal places.

1795

Integer Types (Exact Value) - INTEGER, INT, SMALLINT, TINYINT, MEDIUMINT, BIGINT

DOUBLE(M,D) is a nonstandard MySQL extension.

UNSIGNED, if specified, disallows negative values.

• DOUBLE PRECISION[(M,D)] [UNSIGNED] [ZEROFILL], REAL[(M,D)] [UNSIGNED]
[ZEROFILL]

These types are synonyms for DOUBLE. Exception: If the REAL_AS_FLOAT SQL mode is enabled, REAL
is a synonym for FLOAT rather than DOUBLE.

11.1.2 Integer Types (Exact Value) - INTEGER, INT, SMALLINT, TINYINT,
MEDIUMINT, BIGINT

MySQL supports the SQL standard integer types INTEGER (or INT) and SMALLINT. As an extension to
the standard, MySQL also supports the integer types TINYINT, MEDIUMINT, and BIGINT. The following
table shows the required storage and range for each integer type.

Table 11.1 Required Storage and Range for Integer Types Supported by MySQL

Type Storage (Bytes) Minimum Value
Signed

Minimum Value
Unsigned

Maximum
Value Signed

Maximum
Value
Unsigned

TINYINT 1 -128 0 127 255

SMALLINT 2 -32768 0 32767 65535

MEDIUMINT 3 -8388608 0 8388607 16777215

INT 4 -2147483648 0 2147483647 4294967295

BIGINT 8 -263 0 263-1 264-1

11.1.3 Fixed-Point Types (Exact Value) - DECIMAL, NUMERIC

The DECIMAL and NUMERIC types store exact numeric data values. These types are used when it
is important to preserve exact precision, for example with monetary data. In MySQL, NUMERIC is
implemented as DECIMAL, so the following remarks about DECIMAL apply equally to NUMERIC.

MySQL stores DECIMAL values in binary format. See Section 12.21, “Precision Math”.

In a DECIMAL column declaration, the precision and scale can be (and usually is) specified. For example:

salary DECIMAL(5,2)

In this example, 5 is the precision and 2 is the scale. The precision represents the number of significant
digits that are stored for values, and the scale represents the number of digits that can be stored following
the decimal point.

Standard SQL requires that DECIMAL(5,2) be able to store any value with five digits and two decimals,
so values that can be stored in the salary column range from -999.99 to 999.99.

In standard SQL, the syntax DECIMAL(M) is equivalent to DECIMAL(M,0). Similarly, the syntax DECIMAL
is equivalent to DECIMAL(M,0), where the implementation is permitted to decide the value of M. MySQL
supports both of these variant forms of DECIMAL syntax. The default value of M is 10.

If the scale is 0, DECIMAL values contain no decimal point or fractional part.

The maximum number of digits for DECIMAL is 65, but the actual range for a given DECIMAL column can
be constrained by the precision or scale for a given column. When such a column is assigned a value with

1796

Floating-Point Types (Approximate Value) - FLOAT, DOUBLE

more digits following the decimal point than are permitted by the specified scale, the value is converted to
that scale. (The precise behavior is operating system-specific, but generally the effect is truncation to the
permissible number of digits.)

11.1.4 Floating-Point Types (Approximate Value) - FLOAT, DOUBLE

The FLOAT and DOUBLE types represent approximate numeric data values. MySQL uses four bytes for
single-precision values and eight bytes for double-precision values.

For FLOAT, the SQL standard permits an optional specification of the precision (but not the range of the
exponent) in bits following the keyword FLOAT in parentheses, that is, FLOAT(p). MySQL also supports
this optional precision specification, but the precision value in FLOAT(p) is used only to determine storage
size. A precision from 0 to 23 results in a 4-byte single-precision FLOAT column. A precision from 24 to 53
results in an 8-byte double-precision DOUBLE column.

MySQL permits a nonstandard syntax: FLOAT(M,D) or REAL(M,D) or DOUBLE PRECISION(M,D). Here,
(M,D) means than values can be stored with up to M digits in total, of which D digits may be after the
decimal point. For example, a column defined as FLOAT(7,4) looks like -999.9999 when displayed.
MySQL performs rounding when storing values, so if you insert 999.00009 into a FLOAT(7,4) column,
the approximate result is 999.0001.

Because floating-point values are approximate and not stored as exact values, attempts to treat them
as exact in comparisons may lead to problems. They are also subject to platform or implementation
dependencies. For more information, see Section B.3.4.8, “Problems with Floating-Point Values”.

For maximum portability, code requiring storage of approximate numeric data values should use FLOAT or
DOUBLE PRECISION with no specification of precision or number of digits.

11.1.5 Bit-Value Type - BIT

The BIT data type is used to store bit values. A type of BIT(M) enables storage of M-bit values. M can
range from 1 to 64.

To specify bit values, b'value' notation can be used. value is a binary value written using zeros and
ones. For example, b'111' and b'10000000' represent 7 and 128, respectively. See Section 9.1.5, “Bit-
Value Literals”.

If you assign a value to a BIT(M) column that is less than M bits long, the value is padded on the left with
zeros. For example, assigning a value of b'101' to a BIT(6) column is, in effect, the same as assigning
b'000101'.

NDB Cluster. The maximum combined size of all BIT columns used in a given NDB table must not
exceed 4096 bits.

11.1.6 Numeric Type Attributes

MySQL supports an extension for optionally specifying the display width of integer data types in
parentheses following the base keyword for the type. For example, INT(4) specifies an INT with a display
width of four digits. This optional display width may be used by applications to display integer values
having a width less than the width specified for the column by left-padding them with spaces. (That is, this
width is present in the metadata returned with result sets. Whether it is used is up to the application.)

The display width does not constrain the range of values that can be stored in the column. Nor does it
prevent values wider than the column display width from being displayed correctly. For example, a column
specified as SMALLINT(3) has the usual SMALLINT range of -32768 to 32767, and values outside the
range permitted by three digits are displayed in full using more than three digits.

1797

Out-of-Range and Overflow Handling

When used in conjunction with the optional (nonstandard) ZEROFILL attribute, the default padding of
spaces is replaced with zeros. For example, for a column declared as INT(4) ZEROFILL, a value of 5 is
retrieved as 0005.

Note

The ZEROFILL attribute is ignored for columns involved in expressions or UNION
queries.

If you store values larger than the display width in an integer column that has
the ZEROFILL attribute, you may experience problems when MySQL generates
temporary tables for some complicated joins. In these cases, MySQL assumes that
the data values fit within the column display width.

All integer types can have an optional (nonstandard) UNSIGNED attribute. An unsigned type can be used
to permit only nonnegative numbers in a column or when you need a larger upper numeric range for the
column. For example, if an INT column is UNSIGNED, the size of the column's range is the same but its
endpoints shift up, from -2147483648 and 2147483647 to 0 and 4294967295.

Floating-point and fixed-point types also can be UNSIGNED. As with integer types, this attribute prevents
negative values from being stored in the column. Unlike the integer types, the upper range of column
values remains the same.

If you specify ZEROFILL for a numeric column, MySQL automatically adds the UNSIGNED attribute.

Integer or floating-point data types can have the AUTO_INCREMENT attribute. When you insert a value of
NULL into an indexed AUTO_INCREMENT column, the column is set to the next sequence value. Typically
this is value+1, where value is the largest value for the column currently in the table. (AUTO_INCREMENT
sequences begin with 1.)

Storing 0 into an AUTO_INCREMENT column has the same effect as storing NULL, unless the
NO_AUTO_VALUE_ON_ZERO SQL mode is enabled.

Inserting NULL to generate AUTO_INCREMENT values requires that the column be declared NOT NULL.
If the column is declared NULL, inserting NULL stores a NULL. When you insert any other value into an
AUTO_INCREMENT column, the column is set to that value and the sequence is reset so that the next
automatically generated value follows sequentially from the inserted value.

Negative values for AUTO_INCREMENT columns are not supported.

11.1.7 Out-of-Range and Overflow Handling

When MySQL stores a value in a numeric column that is outside the permissible range of the column data
type, the result depends on the SQL mode in effect at the time:

• If strict SQL mode is enabled, MySQL rejects the out-of-range value with an error, and the insert fails, in
accordance with the SQL standard.

• If no restrictive modes are enabled, MySQL clips the value to the appropriate endpoint of the column
data type range and stores the resulting value instead.

When an out-of-range value is assigned to an integer column, MySQL stores the value representing the
corresponding endpoint of the column data type range.

When a floating-point or fixed-point column is assigned a value that exceeds the range implied by the
specified (or default) precision and scale, MySQL stores the value representing the corresponding
endpoint of that range.

1798

Out-of-Range and Overflow Handling

Suppose that a table t1 has this definition:

CREATE TABLE t1 (i1 TINYINT, i2 TINYINT UNSIGNED);

With strict SQL mode enabled, an out of range error occurs:

mysql> SET sql_mode = 'TRADITIONAL';
mysql> INSERT INTO t1 (i1, i2) VALUES(256, 256);
ERROR 1264 (22003): Out of range value for column 'i1' at row 1
mysql> SELECT * FROM t1;
Empty set (0.00 sec)

With strict SQL mode not enabled, clipping with warnings occurs:

mysql> SET sql_mode = '';
mysql> INSERT INTO t1 (i1, i2) VALUES(256, 256);
mysql> SHOW WARNINGS;
+---------+------+---+
| Level | Code | Message |
+---------+------+---+
| Warning | 1264 | Out of range value for column 'i1' at row 1 |
| Warning | 1264 | Out of range value for column 'i2' at row 1 |
+---------+------+---+
mysql> SELECT * FROM t1;
+------+------+
| i1 | i2 |
+------+------+
| 127 | 255 |
+------+------+

When strict SQL mode is not enabled, column-assignment conversions that occur due to clipping are
reported as warnings for ALTER TABLE, LOAD DATA, UPDATE, and multiple-row INSERT statements. In
strict mode, these statements fail, and some or all the values are not inserted or changed, depending on
whether the table is a transactional table and other factors. For details, see Section 5.1.10, “Server SQL
Modes”.

Overflow during numeric expression evaluation results in an error. For example, the largest signed BIGINT
value is 9223372036854775807, so the following expression produces an error:

mysql> SELECT 9223372036854775807 + 1;
ERROR 1690 (22003): BIGINT value is out of range in '(9223372036854775807 + 1)'

To enable the operation to succeed in this case, convert the value to unsigned;

mysql> SELECT CAST(9223372036854775807 AS UNSIGNED) + 1;
+---+
| CAST(9223372036854775807 AS UNSIGNED) + 1 |
+---+
| 9223372036854775808 |
+---+

Whether overflow occurs depends on the range of the operands, so another way to handle the preceding
expression is to use exact-value arithmetic because DECIMAL values have a larger range than integers:

mysql> SELECT 9223372036854775807.0 + 1;
+---------------------------+
| 9223372036854775807.0 + 1 |
+---------------------------+
| 9223372036854775808.0 |
+---------------------------+

Subtraction between integer values, where one is of type UNSIGNED, produces an unsigned result by
default. If the result would otherwise have been negative, an error results:

1799

Date and Time Data Types

mysql> SET sql_mode = '';
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT CAST(0 AS UNSIGNED) - 1;
ERROR 1690 (22003): BIGINT UNSIGNED value is out of range in '(cast(0 as unsigned) - 1)'

If the NO_UNSIGNED_SUBTRACTION SQL mode is enabled, the result is negative:

mysql> SET sql_mode = 'NO_UNSIGNED_SUBTRACTION';
mysql> SELECT CAST(0 AS UNSIGNED) - 1;
+-------------------------+
| CAST(0 AS UNSIGNED) - 1 |
+-------------------------+
| -1 |
+-------------------------+

If the result of such an operation is used to update an UNSIGNED integer column, the result is clipped to the
maximum value for the column type, or clipped to 0 if NO_UNSIGNED_SUBTRACTION is enabled. If strict
SQL mode is enabled, an error occurs and the column remains unchanged.

11.2 Date and Time Data Types

The date and time data types for representing temporal values are DATE, TIME, DATETIME, TIMESTAMP,
and YEAR. Each temporal type has a range of valid values, as well as a “zero” value that may be used
when you specify an invalid value that MySQL cannot represent. The TIMESTAMP and DATETIME types
have special automatic updating behavior, described in Section 11.2.6, “Automatic Initialization and
Updating for TIMESTAMP and DATETIME”.

For information about storage requirements of the temporal data types, see Section 11.7, “Data Type
Storage Requirements”.

For descriptions of functions that operate on temporal values, see Section 12.7, “Date and Time
Functions”.

Keep in mind these general considerations when working with date and time types:

• MySQL retrieves values for a given date or time type in a standard output format, but it attempts to
interpret a variety of formats for input values that you supply (for example, when you specify a value to
be assigned to or compared to a date or time type). For a description of the permitted formats for date
and time types, see Section 9.1.3, “Date and Time Literals”. It is expected that you supply valid values.
Unpredictable results may occur if you use values in other formats.

• Although MySQL tries to interpret values in several formats, date parts must always be given in year-
month-day order (for example, '98-09-04'), rather than in the month-day-year or day-month-year
orders commonly used elsewhere (for example, '09-04-98', '04-09-98'). To convert strings in other
orders to year-month-day order, the STR_TO_DATE() function may be useful.

• Dates containing 2-digit year values are ambiguous because the century is unknown. MySQL interprets
2-digit year values using these rules:

• Year values in the range 70-99 become 1970-1999.

• Year values in the range 00-69 become 2000-2069.

See also Section 11.2.10, “2-Digit Years in Dates”.

• Conversion of values from one temporal type to another occurs according to the rules in Section 11.2.9,
“Conversion Between Date and Time Types”.

1800

Date and Time Data Type Syntax

• MySQL automatically converts a date or time value to a number if the value is used in numeric context
and vice versa.

• By default, when MySQL encounters a value for a date or time type that is out of range or otherwise
invalid for the type, it converts the value to the “zero” value for that type. The exception is that out-of-
range TIME values are clipped to the appropriate endpoint of the TIME range.

• By setting the SQL mode to the appropriate value, you can specify more exactly what kind of dates you
want MySQL to support. (See Section 5.1.10, “Server SQL Modes”.) You can get MySQL to accept
certain dates, such as '2009-11-31', by enabling the ALLOW_INVALID_DATES SQL mode. This is
useful when you want to store a “possibly wrong” value which the user has specified (for example, in a
web form) in the database for future processing. Under this mode, MySQL verifies only that the month is
in the range from 1 to 12 and that the day is in the range from 1 to 31.

• MySQL permits you to store dates where the day or month and day are zero in a DATE or DATETIME
column. This is useful for applications that need to store birthdates for which you may not know the
exact date. In this case, you simply store the date as '2009-00-00' or '2009-01-00'. However, with
dates such as these, you should not expect to get correct results for functions such as DATE_SUB()
or DATE_ADD() that require complete dates. To disallow zero month or day parts in dates, enable the
NO_ZERO_IN_DATE mode.

• MySQL permits you to store a “zero” value of '0000-00-00' as a “dummy date.” In some cases,
this is more convenient than using NULL values, and uses less data and index space. To disallow
'0000-00-00', enable the NO_ZERO_DATE mode.

• “Zero” date or time values used through Connector/ODBC are converted automatically to NULL because
ODBC cannot handle such values.

The following table shows the format of the “zero” value for each type. The “zero” values are special, but
you can store or refer to them explicitly using the values shown in the table. You can also do this using the
values '0' or 0, which are easier to write. For temporal types that include a date part (DATE, DATETIME,
and TIMESTAMP), use of these values may produce warning or errors. The precise behavior depends on
which, if any, of the strict and NO_ZERO_DATE SQL modes are enabled; see Section 5.1.10, “Server SQL
Modes”.

Data Type “Zero” Value

DATE '0000-00-00'

TIME '00:00:00'

DATETIME '0000-00-00 00:00:00'

TIMESTAMP '0000-00-00 00:00:00'

YEAR 0000

11.2.1 Date and Time Data Type Syntax

The date and time data types for representing temporal values are DATE, TIME, DATETIME, TIMESTAMP,
and YEAR.

For the DATE and DATETIME range descriptions, “supported” means that although earlier values might
work, there is no guarantee.

MySQL permits fractional seconds for TIME, DATETIME, and TIMESTAMP values, with up to microseconds
(6 digits) precision. To define a column that includes a fractional seconds part, use the syntax

1801

Date and Time Data Type Syntax

type_name(fsp), where type_name is TIME, DATETIME, or TIMESTAMP, and fsp is the fractional
seconds precision. For example:

CREATE TABLE t1 (t TIME(3), dt DATETIME(6), ts TIMESTAMP(0));

The fsp value, if given, must be in the range 0 to 6. A value of 0 signifies that there is no fractional part.
If omitted, the default precision is 0. (This differs from the standard SQL default of 6, for compatibility with
previous MySQL versions.)

Any TIMESTAMP or DATETIME column in a table can have automatic initialization and updating properties;
see Section 11.2.6, “Automatic Initialization and Updating for TIMESTAMP and DATETIME”.

• DATE

A date. The supported range is '1000-01-01' to '9999-12-31'. MySQL displays DATE values
in 'YYYY-MM-DD' format, but permits assignment of values to DATE columns using either strings or
numbers.

• DATETIME[(fsp)]

A date and time combination. The supported range is '1000-01-01 00:00:00.000000' to
'9999-12-31 23:59:59.499999'. MySQL displays DATETIME values in 'YYYY-MM-DD
hh:mm:ss[.fraction]' format, but permits assignment of values to DATETIME columns using either
strings or numbers.

An optional fsp value in the range from 0 to 6 may be given to specify fractional seconds precision. A
value of 0 signifies that there is no fractional part. If omitted, the default precision is 0.

Automatic initialization and updating to the current date and time for DATETIME columns can be
specified using DEFAULT and ON UPDATE column definition clauses, as described in Section 11.2.6,
“Automatic Initialization and Updating for TIMESTAMP and DATETIME”.

• TIMESTAMP[(fsp)]

A timestamp. The range is '1970-01-01 00:00:01.000000' UTC to '2038-01-19
03:14:07.499999' UTC. TIMESTAMP values are stored as the number of seconds since the
epoch ('1970-01-01 00:00:00' UTC). A TIMESTAMP cannot represent the value '1970-01-01
00:00:00' because that is equivalent to 0 seconds from the epoch and the value 0 is reserved for
representing '0000-00-00 00:00:00', the “zero” TIMESTAMP value.

An optional fsp value in the range from 0 to 6 may be given to specify fractional seconds precision. A
value of 0 signifies that there is no fractional part. If omitted, the default precision is 0.

The way the server handles TIMESTAMP definitions depends on the value of the
explicit_defaults_for_timestamp system variable (see Section 5.1.7, “Server System
Variables”).

If explicit_defaults_for_timestamp is enabled, there is no automatic assignment of the
DEFAULT CURRENT_TIMESTAMP or ON UPDATE CURRENT_TIMESTAMP attributes to any TIMESTAMP
column. They must be included explicitly in the column definition. Also, any TIMESTAMP not explicitly
declared as NOT NULL permits NULL values.

If explicit_defaults_for_timestamp is disabled, the server handles TIMESTAMP as follows:

Unless specified otherwise, the first TIMESTAMP column in a table is defined to be automatically set
to the date and time of the most recent modification if not explicitly assigned a value. This makes
TIMESTAMP useful for recording the timestamp of an INSERT or UPDATE operation. You can also set

1802

The DATE, DATETIME, and TIMESTAMP Types

any TIMESTAMP column to the current date and time by assigning it a NULL value, unless it has been
defined with the NULL attribute to permit NULL values.

Automatic initialization and updating to the current date and time can be specified using DEFAULT
CURRENT_TIMESTAMP and ON UPDATE CURRENT_TIMESTAMP column definition clauses. By default,
the first TIMESTAMP column has these properties, as previously noted. However, any TIMESTAMP
column in a table can be defined to have these properties.

• TIME[(fsp)]

A time. The range is '-838:59:59.000000' to '838:59:59.000000'. MySQL displays TIME
values in 'hh:mm:ss[.fraction]' format, but permits assignment of values to TIME columns using
either strings or numbers.

An optional fsp value in the range from 0 to 6 may be given to specify fractional seconds precision. A
value of 0 signifies that there is no fractional part. If omitted, the default precision is 0.

• YEAR[(4)]

A year in 4-digit format. MySQL displays YEAR values in YYYY format, but permits assignment of values
to YEAR columns using either strings or numbers. Values display as 1901 to 2155, or 0000.

Note

The YEAR(2) data type is deprecated and support for it is removed in MySQL
5.7.5. To convert 2-digit YEAR(2) columns to 4-digit YEAR columns, see
Section 11.2.5, “2-Digit YEAR(2) Limitations and Migrating to 4-Digit YEAR”.

For additional information about YEAR display format and interpretation of input values, see
Section 11.2.4, “The YEAR Type”.

The SUM() and AVG() aggregate functions do not work with temporal values. (They convert the values to
numbers, losing everything after the first nonnumeric character.) To work around this problem, convert to
numeric units, perform the aggregate operation, and convert back to a temporal value. Examples:

SELECT SEC_TO_TIME(SUM(TIME_TO_SEC(time_col))) FROM tbl_name;
SELECT FROM_DAYS(SUM(TO_DAYS(date_col))) FROM tbl_name;

Note

The MySQL server can be run with the MAXDB SQL mode enabled. In this case,
TIMESTAMP is identical with DATETIME. If this mode is enabled at the time that a
table is created, TIMESTAMP columns are created as DATETIME columns. As a
result, such columns use DATETIME display format, have the same range of values,
and there is no automatic initialization or updating to the current date and time. See
Section 5.1.10, “Server SQL Modes”.

Note

As of MySQL 5.7.22, MAXDB is deprecated; expect it to removed in a future version
of MySQL.

11.2.2 The DATE, DATETIME, and TIMESTAMP Types

The DATE, DATETIME, and TIMESTAMP types are related. This section describes their characteristics,
how they are similar, and how they differ. MySQL recognizes DATE, DATETIME, and TIMESTAMP values in

1803

The DATE, DATETIME, and TIMESTAMP Types

several formats, described in Section 9.1.3, “Date and Time Literals”. For the DATE and DATETIME range
descriptions, “supported” means that although earlier values might work, there is no guarantee.

The DATE type is used for values with a date part but no time part. MySQL retrieves and displays DATE
values in 'YYYY-MM-DD' format. The supported range is '1000-01-01' to '9999-12-31'.

The DATETIME type is used for values that contain both date and time parts. MySQL retrieves and
displays DATETIME values in 'YYYY-MM-DD hh:mm:ss' format. The supported range is '1000-01-01
00:00:00' to '9999-12-31 23:59:59'.

The TIMESTAMP data type is used for values that contain both date and time parts. TIMESTAMP has a
range of '1970-01-01 00:00:01' UTC to '2038-01-19 03:14:07' UTC.

A DATETIME or TIMESTAMP value can include a trailing fractional seconds part in up to microseconds
(6 digits) precision. In particular, any fractional part in a value inserted into a DATETIME or TIMESTAMP
column is stored rather than discarded. With the fractional part included, the format for these values
is 'YYYY-MM-DD hh:mm:ss[.fraction]', the range for DATETIME values is '1000-01-01
00:00:00.000000' to '9999-12-31 23:59:59.499999', and the range for TIMESTAMP values is
'1970-01-01 00:00:01.000000' to '2038-01-19 03:14:07.499999'. The fractional part should
always be separated from the rest of the time by a decimal point; no other fractional seconds delimiter is
recognized. For information about fractional seconds support in MySQL, see Section 11.2.7, “Fractional
Seconds in Time Values”.

The TIMESTAMP and DATETIME data types offer automatic initialization and updating to the current date
and time. For more information, see Section 11.2.6, “Automatic Initialization and Updating for TIMESTAMP
and DATETIME”.

MySQL converts TIMESTAMP values from the current time zone to UTC for storage, and back from UTC to
the current time zone for retrieval. (This does not occur for other types such as DATETIME.) By default, the
current time zone for each connection is the server's time. The time zone can be set on a per-connection
basis. As long as the time zone setting remains constant, you get back the same value you store. If you
store a TIMESTAMP value, and then change the time zone and retrieve the value, the retrieved value is
different from the value you stored. This occurs because the same time zone was not used for conversion
in both directions. The current time zone is available as the value of the time_zone system variable. For
more information, see Section 5.1.13, “MySQL Server Time Zone Support”.

Invalid DATE, DATETIME, or TIMESTAMP values are converted to the “zero” value of the appropriate type
('0000-00-00' or '0000-00-00 00:00:00'), if the SQL mode permits this conversion. The precise
behavior depends on which if any of strict SQL mode and the NO_ZERO_DATE SQL mode are enabled; see
Section 5.1.10, “Server SQL Modes”.

Be aware of certain properties of date value interpretation in MySQL:

• MySQL permits a “relaxed” format for values specified as strings, in which any punctuation character
may be used as the delimiter between date parts or time parts. In some cases, this syntax can be
deceiving. For example, a value such as '10:11:12' might look like a time value because of the :, but
is interpreted as the year '2010-11-12' if used in date context. The value '10:45:15' is converted
to '0000-00-00' because '45' is not a valid month.

The only delimiter recognized between a date and time part and a fractional seconds part is the decimal
point.

• The server requires that month and day values be valid, and not merely in the range 1 to 12 and 1 to
31, respectively. With strict mode disabled, invalid dates such as '2004-04-31' are converted to
'0000-00-00' and a warning is generated. With strict mode enabled, invalid dates generate an error.
To permit such dates, enable ALLOW_INVALID_DATES. See Section 5.1.10, “Server SQL Modes”, for
more information.

1804

The TIME Type

• MySQL does not accept TIMESTAMP values that include a zero in the day or month column or values
that are not a valid date. The sole exception to this rule is the special “zero” value '0000-00-00
00:00:00', if the SQL mode permits this value. The precise behavior depends on which if any of strict
SQL mode and the NO_ZERO_DATE SQL mode are enabled; see Section 5.1.10, “Server SQL Modes”.

• Dates containing 2-digit year values are ambiguous because the century is unknown. MySQL interprets
2-digit year values using these rules:

• Year values in the range 00-69 become 2000-2069.

• Year values in the range 70-99 become 1970-1999.

See also Section 11.2.10, “2-Digit Years in Dates”.

Note

The MySQL server can be run with the MAXDB SQL mode enabled. In this case,
TIMESTAMP is identical with DATETIME. If this mode is enabled at the time that a
table is created, TIMESTAMP columns are created as DATETIME columns. As a
result, such columns use DATETIME display format, have the same range of values,
and there is no automatic initialization or updating to the current date and time. See
Section 5.1.10, “Server SQL Modes”.

Note

As of MySQL 5.7.22, MAXDB is deprecated; expect it to removed in a future version
of MySQL.

11.2.3 The TIME Type

MySQL retrieves and displays TIME values in 'hh:mm:ss' format (or 'hhh:mm:ss' format for large
hours values). TIME values may range from '-838:59:59' to '838:59:59'. The hours part may be so
large because the TIME type can be used not only to represent a time of day (which must be less than 24
hours), but also elapsed time or a time interval between two events (which may be much greater than 24
hours, or even negative).

MySQL recognizes TIME values in several formats, some of which can include a trailing fractional
seconds part in up to microseconds (6 digits) precision. See Section 9.1.3, “Date and Time Literals”. For
information about fractional seconds support in MySQL, see Section 11.2.7, “Fractional Seconds in Time
Values”. In particular, any fractional part in a value inserted into a TIME column is stored rather than
discarded. With the fractional part included, the range for TIME values is '-838:59:59.000000' to
'838:59:59.000000'.

Be careful about assigning abbreviated values to a TIME column. MySQL interprets abbreviated TIME
values with colons as time of the day. That is, '11:12' means '11:12:00', not '00:11:12'. MySQL
interprets abbreviated values without colons using the assumption that the two rightmost digits represent
seconds (that is, as elapsed time rather than as time of day). For example, you might think of '1112' and
1112 as meaning '11:12:00' (12 minutes after 11 o'clock), but MySQL interprets them as '00:11:12'
(11 minutes, 12 seconds). Similarly, '12' and 12 are interpreted as '00:00:12'.

The only delimiter recognized between a time part and a fractional seconds part is the decimal point.

By default, values that lie outside the TIME range but are otherwise valid are clipped to the closest
endpoint of the range. For example, '-850:00:00' and '850:00:00' are converted to '-838:59:59'
and '838:59:59'. Invalid TIME values are converted to '00:00:00'. Note that because '00:00:00'
is itself a valid TIME value, there is no way to tell, from a value of '00:00:00' stored in a table, whether
the original value was specified as '00:00:00' or whether it was invalid.

1805

The YEAR Type

For more restrictive treatment of invalid TIME values, enable strict SQL mode to cause errors to occur. See
Section 5.1.10, “Server SQL Modes”.

11.2.4 The YEAR Type

The YEAR type is a 1-byte type used to represent year values. It can be declared as YEAR with an implicit
display width of 4 characters, or equivalently as YEAR(4) with an explicit display width.

Note

The 2-digit YEAR(2) data type is deprecated and support for it is removed in
MySQL 5.7.5. To convert 2-digit YEAR(2) columns to 4-digit YEAR columns, see
Section 11.2.5, “2-Digit YEAR(2) Limitations and Migrating to 4-Digit YEAR”.

MySQL displays YEAR values in YYYY format, with a range of 1901 to 2155, and 0000.

YEAR accepts input values in a variety of formats:

• As 4-digit strings in the range '1901' to '2155'.

• As 4-digit numbers in the range 1901 to 2155.

• As 1- or 2-digit strings in the range '0' to '99'. MySQL converts values in the ranges '0' to '69' and
'70' to '99' to YEAR values in the ranges 2000 to 2069 and 1970 to 1999.

• As 1- or 2-digit numbers in the range 0 to 99. MySQL converts values in the ranges 1 to 69 and 70 to 99
to YEAR values in the ranges 2001 to 2069 and 1970 to 1999.

The result of inserting a numeric 0 has a display value of 0000 and an internal value of 0000. To insert
zero and have it be interpreted as 2000, specify it as a string '0' or '00'.

• As the result of functions that return a value that is acceptable in YEAR context, such as NOW().

If strict SQL mode is not enabled, MySQL converts invalid YEAR values to 0000. In strict SQL mode,
attempting to insert an invalid YEAR value produces an error.

See also Section 11.2.10, “2-Digit Years in Dates”.

11.2.5 2-Digit YEAR(2) Limitations and Migrating to 4-Digit YEAR

This section describes problems that can occur when using the 2-digit YEAR(2) data type and provides
information about converting existing YEAR(2) columns to 4-digit year-valued columns, which can be
declared as YEAR with an implicit display width of 4 characters, or equivalently as YEAR(4) with an explicit
display width.

Although the internal range of values for YEAR/YEAR(4) and the deprecated YEAR(2) type is the same
(1901 to 2155, and 0000), the display width for YEAR(2) makes that type inherently ambiguous because
displayed values indicate only the last two digits of the internal values and omit the century digits. The
result can be a loss of information under certain circumstances. For this reason, avoid using YEAR(2) in
your applications and use YEAR/YEAR(4) wherever you need a year-valued data type. As of MySQL 5.7.5,
support for YEAR(2) is removed and existing 2-digit YEAR(2) columns must be converted to 4-digit YEAR
columns to become usable again.

YEAR(2) Limitations

Issues with the YEAR(2) data type include ambiguity of displayed values, and possible loss of information
when values are dumped and reloaded or converted to strings.

1806

2-Digit YEAR(2) Limitations and Migrating to 4-Digit YEAR

• Displayed YEAR(2) values can be ambiguous. It is possible for up to three YEAR(2) values that have
different internal values to have the same displayed value, as the following example demonstrates:

mysql> CREATE TABLE t (y2 YEAR(2), y4 YEAR);
Query OK, 0 rows affected, 1 warning (0.01 sec)

mysql> INSERT INTO t (y2) VALUES(1912),(2012),(2112);
Query OK, 3 rows affected (0.00 sec)
Records: 3 Duplicates: 0 Warnings: 0

mysql> UPDATE t SET y4 = y2;
Query OK, 3 rows affected (0.00 sec)
Rows matched: 3 Changed: 3 Warnings: 0

mysql> SELECT * FROM t;
+------+------+
| y2 | y4 |
+------+------+
12	1912
12	2012
12	2112
+------+------+
3 rows in set (0.00 sec)

• If you use mysqldump to dump the table created in the preceding example, the dump file represents
all y2 values using the same 2-digit representation (12). If you reload the table from the dump file, all
resulting rows have internal value 2012 and display value 12, thus losing the distinctions between them.

• Conversion of a 2-digit or 4-digit YEAR data value to string form uses the data type display width.
Suppose that a YEAR(2) column and a YEAR/YEAR(4) column both contain the value 1970. Assigning
each column to a string results in a value of '70' or '1970', respectively. That is, loss of information
occurs for conversion from YEAR(2) to string.

• Values outside the range from 1970 to 2069 are stored incorrectly when inserted into a YEAR(2)
column in a CSV table. For example, inserting 2211 results in a display value of 11 but an internal value
of 2011.

To avoid these problems, use the 4-digit YEAR or YEAR(4) data type rather than the 2-digit YEAR(2) data
type. Suggestions regarding migration strategies appear later in this section.

Reduced/Removed YEAR(2) Support in MySQL 5.7

Before MySQL 5.7.5, support for YEAR(2) is diminished. As of MySQL 5.7.5, support for YEAR(2) is
removed.

• YEAR(2) column definitions for new tables produce warnings or errors:

• Before MySQL 5.7.5, YEAR(2) column definitions for new tables are converted (with an
ER_INVALID_YEAR_COLUMN_LENGTH warning) to 4-digit YEAR columns:

mysql> CREATE TABLE t1 (y YEAR(2));
Query OK, 0 rows affected, 1 warning (0.04 sec)

mysql> SHOW WARNINGS\G
*************************** 1. row ***************************
 Level: Warning
 Code: 1818
Message: YEAR(2) column type is deprecated. Creating YEAR(4) column instead.
1 row in set (0.00 sec)

mysql> SHOW CREATE TABLE t1\G
*************************** 1. row ***************************

1807

https://dev.mysql.com/doc/mysql-errors/5.7/en/server-error-reference.html#error_er_invalid_year_column_length

2-Digit YEAR(2) Limitations and Migrating to 4-Digit YEAR

 Table: t1
Create Table: CREATE TABLE `t1` (
 `y` year(4) DEFAULT NULL
) ENGINE=InnoDB DEFAULT CHARSET=latin1
1 row in set (0.00 sec)

• As of MySQL 5.7.5, YEAR(2) column definitions for new tables produce an
ER_INVALID_YEAR_COLUMN_LENGTH error:

mysql> CREATE TABLE t1 (y YEAR(2));
ERROR 1818 (HY000): Supports only YEAR or YEAR(4) column.

• YEAR(2) column in existing tables remain as YEAR(2):

• Before MySQL 5.7.5, YEAR(2) is processed in queries as in older versions of MySQL.

• As of MySQL 5.7.5, YEAR(2) columns in queries produce warnings or errors.

• Several programs or statements convert YEAR(2) columns to 4-digit YEAR columns automatically:

• ALTER TABLE statements that result in a table rebuild.

• REPAIR TABLE (which CHECK TABLE recommends you use, if it finds a table that contains YEAR(2)
columns).

• mysql_upgrade (which uses REPAIR TABLE).

• Dumping with mysqldump and reloading the dump file. Unlike the conversions performed by the
preceding three items, a dump and reload has the potential to change data values.

A MySQL upgrade usually involves at least one of the last two items. However, with respect to YEAR(2),
mysql_upgrade is preferable to mysqldump, which, as noted, can change data values.

Migrating from YEAR(2) to 4-Digit YEAR

To convert 2-digit YEAR(2) columns to 4-digit YEAR columns, you can do so manually at any time without
upgrading. Alternatively, you can upgrade to a version of MySQL with reduced or removed support for
YEAR(2) (MySQL 5.6.6 or later), then have MySQL convert YEAR(2) columns automatically. In the latter
case, avoid upgrading by dumping and reloading your data because that can change data values. In
addition, if you use replication, there are upgrade considerations you must take into account.

To convert 2-digit YEAR(2) columns to 4-digit YEAR manually, use ALTER TABLE or REPAIR TABLE.
Suppose that a table t1 has this definition:

CREATE TABLE t1 (ycol YEAR(2) NOT NULL DEFAULT '70');

Modify the column using ALTER TABLE as follows:

ALTER TABLE t1 FORCE;

The ALTER TABLE statement converts the table without changing YEAR(2) values. If the server is a
replication source, the ALTER TABLE statement replicates to replicas and makes the corresponding table
change on each one.

Another migration method is to perform a binary upgrade: Upgrade MySQL in place without dumping and
reloading your data. Then run mysql_upgrade, which uses REPAIR TABLE to convert 2-digit YEAR(2)
columns to 4-digit YEAR columns without changing data values. If the server is a replication source, the
REPAIR TABLE statements replicate to replicas and make the corresponding table changes on each one,
unless you invoke mysql_upgrade with the --skip-write-binlog option.

1808

https://dev.mysql.com/doc/mysql-errors/5.7/en/server-error-reference.html#error_er_invalid_year_column_length

Automatic Initialization and Updating for TIMESTAMP and DATETIME

Upgrades to replication servers usually involve upgrading replicas to a newer version of MySQL, then
upgrading the source. For example, if a source and replica both run MySQL 5.5, a typical upgrade
sequence involves upgrading the replica to 5.6, then upgrading the source to 5.6. With regard to the
different treatment of YEAR(2) as of MySQL 5.6.6, that upgrade sequence results in a problem: Suppose
that the replica has been upgraded but not yet the source. Then creating a table containing a 2-digit
YEAR(2) column on the source results in a table containing a 4-digit YEAR column on the replica.
Consequently, the following operations have a different result on the source and replica, if you use
statement-based replication:

• Inserting numeric 0. The resulting value has an internal value of 2000 on the source but 0000 on the
replica.

• Converting YEAR(2) to string. This operation uses the display value of YEAR(2) on the source but
YEAR(4) on the replica.

To avoid such problems, modify all 2-digit YEAR(2) columns on the source to 4-digit YEAR columns before
upgrading. (Use ALTER TABLE, as described previously.) That makes it possible to upgrade normally
(replica first, then source) without introducing any YEAR(2) to YEAR(4) differences between the source
and replica.

One migration method should be avoided: Do not dump your data with mysqldump and reload the dump
file after upgrading. That has the potential to change YEAR(2) values, as described previously.

A migration from 2-digit YEAR(2) columns to 4-digit YEAR columns should also involve examining
application code for the possibility of changed behavior under conditions such as these:

• Code that expects selecting a YEAR column to produce exactly two digits.

• Code that does not account for different handling for inserts of numeric 0: Inserting 0 into YEAR(2) or
YEAR(4) results in an internal value of 2000 or 0000, respectively.

11.2.6 Automatic Initialization and Updating for TIMESTAMP and DATETIME

TIMESTAMP and DATETIME columns can be automatically initializated and updated to the current date and
time (that is, the current timestamp).

For any TIMESTAMP or DATETIME column in a table, you can assign the current timestamp as the default
value, the auto-update value, or both:

• An auto-initialized column is set to the current timestamp for inserted rows that specify no value for the
column.

• An auto-updated column is automatically updated to the current timestamp when the value of any other
column in the row is changed from its current value. An auto-updated column remains unchanged if all
other columns are set to their current values. To prevent an auto-updated column from updating when
other columns change, explicitly set it to its current value. To update an auto-updated column even
when other columns do not change, explicitly set it to the value it should have (for example, set it to
CURRENT_TIMESTAMP).

In addition, if the explicit_defaults_for_timestamp system variable is disabled, you can initialize
or update any TIMESTAMP (but not DATETIME) column to the current date and time by assigning it a NULL
value, unless it has been defined with the NULL attribute to permit NULL values.

To specify automatic properties, use the DEFAULT CURRENT_TIMESTAMP and ON UPDATE
CURRENT_TIMESTAMP clauses in column definitions. The order of the clauses does not matter. If both are
present in a column definition, either can occur first. Any of the synonyms for CURRENT_TIMESTAMP have

1809

Automatic Initialization and Updating for TIMESTAMP and DATETIME

the same meaning as CURRENT_TIMESTAMP. These are CURRENT_TIMESTAMP(), NOW(), LOCALTIME,
LOCALTIME(), LOCALTIMESTAMP, and LOCALTIMESTAMP().

Use of DEFAULT CURRENT_TIMESTAMP and ON UPDATE CURRENT_TIMESTAMP is specific to
TIMESTAMP and DATETIME. The DEFAULT clause also can be used to specify a constant (nonautomatic)
default value (for example, DEFAULT 0 or DEFAULT '2000-01-01 00:00:00').

Note

The following examples use DEFAULT 0, a default that can produce warnings or
errors depending on whether strict SQL mode or the NO_ZERO_DATE SQL mode
is enabled. Be aware that the TRADITIONAL SQL mode includes strict mode and
NO_ZERO_DATE. See Section 5.1.10, “Server SQL Modes”.

TIMESTAMP or DATETIME column definitions can specify the current timestamp for both the default
and auto-update values, for one but not the other, or for neither. Different columns can have different
combinations of automatic properties. The following rules describe the possibilities:

• With both DEFAULT CURRENT_TIMESTAMP and ON UPDATE CURRENT_TIMESTAMP, the column has
the current timestamp for its default value and is automatically updated to the current timestamp.

CREATE TABLE t1 (
 ts TIMESTAMP DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP,
 dt DATETIME DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP
);

• With a DEFAULT clause but no ON UPDATE CURRENT_TIMESTAMP clause, the column has the given
default value and is not automatically updated to the current timestamp.

The default depends on whether the DEFAULT clause specifies CURRENT_TIMESTAMP or a constant
value. With CURRENT_TIMESTAMP, the default is the current timestamp.

CREATE TABLE t1 (
 ts TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
 dt DATETIME DEFAULT CURRENT_TIMESTAMP
);

With a constant, the default is the given value. In this case, the column has no automatic properties at
all.

CREATE TABLE t1 (
 ts TIMESTAMP DEFAULT 0,
 dt DATETIME DEFAULT 0
);

• With an ON UPDATE CURRENT_TIMESTAMP clause and a constant DEFAULT clause, the column is
automatically updated to the current timestamp and has the given constant default value.

CREATE TABLE t1 (
 ts TIMESTAMP DEFAULT 0 ON UPDATE CURRENT_TIMESTAMP,
 dt DATETIME DEFAULT 0 ON UPDATE CURRENT_TIMESTAMP
);

• With an ON UPDATE CURRENT_TIMESTAMP clause but no DEFAULT clause, the column is automatically
updated to the current timestamp but does not have the current timestamp for its default value.

The default in this case is type dependent. TIMESTAMP has a default of 0 unless defined with the NULL
attribute, in which case the default is NULL.

CREATE TABLE t1 (
 ts1 TIMESTAMP ON UPDATE CURRENT_TIMESTAMP, -- default 0

1810

Automatic Initialization and Updating for TIMESTAMP and DATETIME

 ts2 TIMESTAMP NULL ON UPDATE CURRENT_TIMESTAMP -- default NULL
);

DATETIME has a default of NULL unless defined with the NOT NULL attribute, in which case the default
is 0.

CREATE TABLE t1 (
 dt1 DATETIME ON UPDATE CURRENT_TIMESTAMP, -- default NULL
 dt2 DATETIME NOT NULL ON UPDATE CURRENT_TIMESTAMP -- default 0
);

TIMESTAMP and DATETIME columns have no automatic properties unless they are specified explicitly,
with this exception: If the explicit_defaults_for_timestamp system variable is disabled, the first
TIMESTAMP column has both DEFAULT CURRENT_TIMESTAMP and ON UPDATE CURRENT_TIMESTAMP
if neither is specified explicitly. To suppress automatic properties for the first TIMESTAMP column, use one
of these strategies:

• Enable the explicit_defaults_for_timestamp system variable. In this case, the DEFAULT
CURRENT_TIMESTAMP and ON UPDATE CURRENT_TIMESTAMP clauses that specify automatic
initialization and updating are available, but are not assigned to any TIMESTAMP column unless explicitly
included in the column definition.

• Alternatively, if explicit_defaults_for_timestamp is disabled, do either of the following:

• Define the column with a DEFAULT clause that specifies a constant default value.

• Specify the NULL attribute. This also causes the column to permit NULL values, which means that
you cannot assign the current timestamp by setting the column to NULL. Assigning NULL sets the
column to NULL, not the current timestamp. To assign the current timestamp, set the column to
CURRENT_TIMESTAMP or a synonym such as NOW().

Consider these table definitions:

CREATE TABLE t1 (
 ts1 TIMESTAMP DEFAULT 0,
 ts2 TIMESTAMP DEFAULT CURRENT_TIMESTAMP
 ON UPDATE CURRENT_TIMESTAMP);
CREATE TABLE t2 (
 ts1 TIMESTAMP NULL,
 ts2 TIMESTAMP DEFAULT CURRENT_TIMESTAMP
 ON UPDATE CURRENT_TIMESTAMP);
CREATE TABLE t3 (
 ts1 TIMESTAMP NULL DEFAULT 0,
 ts2 TIMESTAMP DEFAULT CURRENT_TIMESTAMP
 ON UPDATE CURRENT_TIMESTAMP);

The tables have these properties:

• In each table definition, the first TIMESTAMP column has no automatic initialization or updating.

• The tables differ in how the ts1 column handles NULL values. For t1, ts1 is NOT NULL and assigning
it a value of NULL sets it to the current timestamp. For t2 and t3, ts1 permits NULL and assigning it a
value of NULL sets it to NULL.

• t2 and t3 differ in the default value for ts1. For t2, ts1 is defined to permit NULL, so the default is also
NULL in the absence of an explicit DEFAULT clause. For t3, ts1 permits NULL but has an explicit default
of 0.

If a TIMESTAMP or DATETIME column definition includes an explicit fractional seconds precision value
anywhere, the same value must be used throughout the column definition. This is permitted:

1811

Automatic Initialization and Updating for TIMESTAMP and DATETIME

CREATE TABLE t1 (
 ts TIMESTAMP(6) DEFAULT CURRENT_TIMESTAMP(6) ON UPDATE CURRENT_TIMESTAMP(6)
);

This is not permitted:

CREATE TABLE t1 (
 ts TIMESTAMP(6) DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP(3)
);

TIMESTAMP Initialization and the NULL Attribute

If the explicit_defaults_for_timestamp system variable is disabled, TIMESTAMP columns by
default are NOT NULL, cannot contain NULL values, and assigning NULL assigns the current timestamp.
To permit a TIMESTAMP column to contain NULL, explicitly declare it with the NULL attribute. In this
case, the default value also becomes NULL unless overridden with a DEFAULT clause that specifies a
different default value. DEFAULT NULL can be used to explicitly specify NULL as the default value. (For
a TIMESTAMP column not declared with the NULL attribute, DEFAULT NULL is invalid.) If a TIMESTAMP
column permits NULL values, assigning NULL sets it to NULL, not to the current timestamp.

The following table contains several TIMESTAMP columns that permit NULL values:

CREATE TABLE t
(
 ts1 TIMESTAMP NULL DEFAULT NULL,
 ts2 TIMESTAMP NULL DEFAULT 0,
 ts3 TIMESTAMP NULL DEFAULT CURRENT_TIMESTAMP
);

A TIMESTAMP column that permits NULL values does not take on the current timestamp at insert time
except under one of the following conditions:

• Its default value is defined as CURRENT_TIMESTAMP and no value is specified for the column

• CURRENT_TIMESTAMP or any of its synonyms such as NOW() is explicitly inserted into the column

In other words, a TIMESTAMP column defined to permit NULL values auto-initializes only if its definition
includes DEFAULT CURRENT_TIMESTAMP:

CREATE TABLE t (ts TIMESTAMP NULL DEFAULT CURRENT_TIMESTAMP);

If the TIMESTAMP column permits NULL values but its definition does not include DEFAULT
CURRENT_TIMESTAMP, you must explicitly insert a value corresponding to the current date and time.
Suppose that tables t1 and t2 have these definitions:

CREATE TABLE t1 (ts TIMESTAMP NULL DEFAULT '0000-00-00 00:00:00');
CREATE TABLE t2 (ts TIMESTAMP NULL DEFAULT NULL);

To set the TIMESTAMP column in either table to the current timestamp at insert time, explicitly assign it that
value. For example:

INSERT INTO t2 VALUES (CURRENT_TIMESTAMP);
INSERT INTO t1 VALUES (NOW());

If the explicit_defaults_for_timestamp system variable is enabled, TIMESTAMP columns permit
NULL values only if declared with the NULL attribute. Also, TIMESTAMP columns do not permit assigning
NULL to assign the current timestamp, whether declared with the NULL or NOT NULL attribute. To assign
the current timestamp, set the column to CURRENT_TIMESTAMP or a synonym such as NOW().

1812

Fractional Seconds in Time Values

11.2.7 Fractional Seconds in Time Values

MySQL has fractional seconds support for TIME, DATETIME, and TIMESTAMP values, with up to
microseconds (6 digits) precision:

• To define a column that includes a fractional seconds part, use the syntax type_name(fsp), where
type_name is TIME, DATETIME, or TIMESTAMP, and fsp is the fractional seconds precision. For
example:

CREATE TABLE t1 (t TIME(3), dt DATETIME(6));

The fsp value, if given, must be in the range 0 to 6. A value of 0 signifies that there is no fractional part.
If omitted, the default precision is 0. (This differs from the standard SQL default of 6, for compatibility
with previous MySQL versions.)

• Inserting a TIME, DATE, or TIMESTAMP value with a fractional seconds part into a column of the same
type but having fewer fractional digits results in rounding. Consider a table created and populated as
follows:

CREATE TABLE fractest(c1 TIME(2), c2 DATETIME(2), c3 TIMESTAMP(2));
INSERT INTO fractest VALUES
('17:51:04.777', '2018-09-08 17:51:04.777', '2018-09-08 17:51:04.777');

The temporal values are inserted into the table with rounding:

mysql> SELECT * FROM fractest;
+-------------+------------------------+------------------------+
| c1 | c2 | c3 |
+-------------+------------------------+------------------------+
| 17:51:04.78 | 2018-09-08 17:51:04.78 | 2018-09-08 17:51:04.78 |
+-------------+------------------------+------------------------+

No warning or error is given when such rounding occurs. This behavior follows the SQL standard, and is
not affected by the server sql_mode setting.

• Functions that take temporal arguments accept values with fractional seconds. Return values from
temporal functions include fractional seconds as appropriate. For example, NOW() with no argument
returns the current date and time with no fractional part, but takes an optional argument from 0 to 6 to
specify that the return value includes a fractional seconds part of that many digits.

• Syntax for temporal literals produces temporal values: DATE 'str', TIME 'str', and TIMESTAMP
'str', and the ODBC-syntax equivalents. The resulting value includes a trailing fractional seconds part
if specified. Previously, the temporal type keyword was ignored and these constructs produced the string
value. See Standard SQL and ODBC Date and Time Literals

11.2.8 What Calendar Is Used By MySQL?

MySQL uses what is known as a proleptic Gregorian calendar.

Every country that has switched from the Julian to the Gregorian calendar has had to discard at least ten
days during the switch. To see how this works, consider the month of October 1582, when the first Julian-
to-Gregorian switch occurred.

Monday Tuesday Wednesday Thursday Friday Saturday Sunday

1 2 3 4 15 16 17

18 19 20 21 22 23 24

25 26 27 28 29 30 31

1813

Conversion Between Date and Time Types

There are no dates between October 4 and October 15. This discontinuity is called the cutover. Any dates
before the cutover are Julian, and any dates following the cutover are Gregorian. Dates during a cutover
are nonexistent.

A calendar applied to dates when it was not actually in use is called proleptic. Thus, if we assume there
was never a cutover and Gregorian rules always rule, we have a proleptic Gregorian calendar. This is what
is used by MySQL, as is required by standard SQL. For this reason, dates prior to the cutover stored as
MySQL DATE or DATETIME values must be adjusted to compensate for the difference. It is important to
realize that the cutover did not occur at the same time in all countries, and that the later it happened, the
more days were lost. For example, in Great Britain, it took place in 1752, when Wednesday September
2 was followed by Thursday September 14. Russia remained on the Julian calendar until 1918, losing 13
days in the process, and what is popularly referred to as its “October Revolution” occurred in November
according to the Gregorian calendar.

11.2.9 Conversion Between Date and Time Types

To some extent, you can convert a value from one temporal type to another. However, there may be some
alteration of the value or loss of information. In all cases, conversion between temporal types is subject to
the range of valid values for the resulting type. For example, although DATE, DATETIME, and TIMESTAMP
values all can be specified using the same set of formats, the types do not all have the same range of
values. TIMESTAMP values cannot be earlier than 1970 UTC or later than '2038-01-19 03:14:07'
UTC. This means that a date such as '1968-01-01', while valid as a DATE or DATETIME value, is not
valid as a TIMESTAMP value and is converted to 0.

Conversion of DATE values:

• Conversion to a DATETIME or TIMESTAMP value adds a time part of '00:00:00' because the DATE
value contains no time information.

• Conversion to a TIME value is not useful; the result is '00:00:00'.

Conversion of DATETIME and TIMESTAMP values:

• Conversion to a DATE value takes fractional seconds into account and rounds the time part. For
example, '1999-12-31 23:59:59.499' becomes '1999-12-31', whereas '1999-12-31
23:59:59.500' becomes '2000-01-01'.

• Conversion to a TIME value discards the date part because the TIME type contains no date information.

For conversion of TIME values to other temporal types, the value of CURRENT_DATE() is used for the date
part. The TIME is interpreted as elapsed time (not time of day) and added to the date. This means that the
date part of the result differs from the current date if the time value is outside the range from '00:00:00'
to '23:59:59'.

Suppose that the current date is '2012-01-01'. TIME values of '12:00:00', '24:00:00',
and '-12:00:00', when converted to DATETIME or TIMESTAMP values, result in '2012-01-01
12:00:00', '2012-01-02 00:00:00', and '2011-12-31 12:00:00', respectively.

Conversion of TIME to DATE is similar but discards the time part from the result: '2012-01-01',
'2012-01-02', and '2011-12-31', respectively.

Explicit conversion can be used to override implicit conversion. For example, in comparison of DATE
and DATETIME values, the DATE value is coerced to the DATETIME type by adding a time part of
'00:00:00'. To perform the comparison by ignoring the time part of the DATETIME value instead, use
the CAST() function in the following way:

date_col = CAST(datetime_col AS DATE)

1814

2-Digit Years in Dates

Conversion of TIME and DATETIME values to numeric form (for example, by adding +0) depends on
whether the value contains a fractional seconds part. TIME(N) or DATETIME(N) is converted to integer
when N is 0 (or omitted) and to a DECIMAL value with N decimal digits when N is greater than 0:

mysql> SELECT CURTIME(), CURTIME()+0, CURTIME(3)+0;
+-----------+-------------+--------------+
| CURTIME() | CURTIME()+0 | CURTIME(3)+0 |
+-----------+-------------+--------------+
| 09:28:00 | 92800 | 92800.887 |
+-----------+-------------+--------------+
mysql> SELECT NOW(), NOW()+0, NOW(3)+0;
+---------------------+----------------+--------------------+
| NOW() | NOW()+0 | NOW(3)+0 |
+---------------------+----------------+--------------------+
| 2012-08-15 09:28:00 | 20120815092800 | 20120815092800.889 |
+---------------------+----------------+--------------------+

11.2.10 2-Digit Years in Dates

Date values with 2-digit years are ambiguous because the century is unknown. Such values must be
interpreted into 4-digit form because MySQL stores years internally using 4 digits.

For DATETIME, DATE, and TIMESTAMP types, MySQL interprets dates specified with ambiguous year
values using these rules:

• Year values in the range 00-69 become 2000-2069.

• Year values in the range 70-99 become 1970-1999.

For YEAR, the rules are the same, with this exception: A numeric 00 inserted into YEAR results in 0000
rather than 2000. To specify zero for YEAR and have it be interpreted as 2000, specify it as a string '0' or
'00'.

Remember that these rules are only heuristics that provide reasonable guesses as to what your data
values mean. If the rules used by MySQL do not produce the values you require, you must provide
unambiguous input containing 4-digit year values.

ORDER BY properly sorts YEAR values that have 2-digit years.

Some functions like MIN() and MAX() convert a YEAR to a number. This means that a value with a 2-digit
year does not work properly with these functions. The fix in this case is to convert the YEAR to 4-digit year
format.

11.3 String Data Types
The string data types are CHAR, VARCHAR, BINARY, VARBINARY, BLOB, TEXT, ENUM, and SET.

For information about storage requirements of the string data types, see Section 11.7, “Data Type Storage
Requirements”.

For descriptions of functions that operate on string values, see Section 12.8, “String Functions and
Operators”.

11.3.1 String Data Type Syntax

The string data types are CHAR, VARCHAR, BINARY, VARBINARY, BLOB, TEXT, ENUM, and SET.

In some cases, MySQL may change a string column to a type different from that given in a CREATE TABLE
or ALTER TABLE statement. See Section 13.1.18.6, “Silent Column Specification Changes”.

1815

String Data Type Syntax

For definitions of character string columns (CHAR, VARCHAR, and the TEXT types), MySQL interprets length
specifications in character units. For definitions of binary string columns (BINARY, VARBINARY, and the
BLOB types), MySQL interprets length specifications in byte units.

Column definitions for character string data types CHAR, VARCHAR, the TEXT types, ENUM, SET, and any
synonyms) can specify the column character set and collation:

• CHARACTER SET specifies the character set. If desired, a collation for the character set can be specified
with the COLLATE attribute, along with any other attributes. For example:

CREATE TABLE t
(
 c1 VARCHAR(20) CHARACTER SET utf8,
 c2 TEXT CHARACTER SET latin1 COLLATE latin1_general_cs
);

This table definition creates a column named c1 that has a character set of utf8 with the default
collation for that character set, and a column named c2 that has a character set of latin1 and a case-
sensitive (_cs) collation.

The rules for assigning the character set and collation when either or both of CHARACTER SET and the
COLLATE attribute are missing are described in Section 10.3.5, “Column Character Set and Collation”.

CHARSET is a synonym for CHARACTER SET.

• Specifying the CHARACTER SET binary attribute for a character string data type causes the column
to be created as the corresponding binary string data type: CHAR becomes BINARY, VARCHAR becomes
VARBINARY, and TEXT becomes BLOB. For the ENUM and SET data types, this does not occur; they are
created as declared. Suppose that you specify a table using this definition:

CREATE TABLE t
(
 c1 VARCHAR(10) CHARACTER SET binary,
 c2 TEXT CHARACTER SET binary,
 c3 ENUM('a','b','c') CHARACTER SET binary
);

The resulting table has this definition:

CREATE TABLE t
(
 c1 VARBINARY(10),
 c2 BLOB,
 c3 ENUM('a','b','c') CHARACTER SET binary
);

• The BINARY attribute is a nonstandard MySQL extension that is shorthand for specifying the binary
(_bin) collation of the column character set (or of the table default character set if no column character
set is specified). In this case, comparison and sorting are based on numeric character code values.
Suppose that you specify a table using this definition:

CREATE TABLE t
(
 c1 VARCHAR(10) CHARACTER SET latin1 BINARY,
 c2 TEXT BINARY
) CHARACTER SET utf8mb4;

The resulting table has this definition:

CREATE TABLE t (
 c1 VARCHAR(10) CHARACTER SET latin1 COLLATE latin1_bin,
 c2 TEXT CHARACTER SET utf8mb4 COLLATE utf8mb4_bin

1816

String Data Type Syntax

) CHARACTER SET utf8mb4;

• The ASCII attribute is shorthand for CHARACTER SET latin1.

• The UNICODE attribute is shorthand for CHARACTER SET ucs2.

Character column comparison and sorting are based on the collation assigned to the column. For the
CHAR, VARCHAR, TEXT, ENUM, and SET data types, you can declare a column with a binary (_bin) collation
or the BINARY attribute to cause comparison and sorting to use the underlying character code values
rather than a lexical ordering.

For additional information about use of character sets in MySQL, see Chapter 10, Character Sets,
Collations, Unicode.

• [NATIONAL] CHAR[(M)] [CHARACTER SET charset_name] [COLLATE
collation_name]

A fixed-length string that is always right-padded with spaces to the specified length when stored. M
represents the column length in characters. The range of M is 0 to 255. If M is omitted, the length is 1.

Note

Trailing spaces are removed when CHAR values are retrieved unless the
PAD_CHAR_TO_FULL_LENGTH SQL mode is enabled.

CHAR is shorthand for CHARACTER. NATIONAL CHAR (or its equivalent short form, NCHAR) is the
standard SQL way to define that a CHAR column should use some predefined character set. MySQL
uses utf8 as this predefined character set. Section 10.3.7, “The National Character Set”.

The CHAR BYTE data type is an alias for the BINARY data type. This is a compatibility feature.

MySQL permits you to create a column of type CHAR(0). This is useful primarily when you must be
compliant with old applications that depend on the existence of a column but that do not actually use
its value. CHAR(0) is also quite nice when you need a column that can take only two values: A column
that is defined as CHAR(0) NULL occupies only one bit and can take only the values NULL and '' (the
empty string).

• [NATIONAL] VARCHAR(M) [CHARACTER SET charset_name] [COLLATE
collation_name]

A variable-length string. M represents the maximum column length in characters. The range of M is 0 to
65,535. The effective maximum length of a VARCHAR is subject to the maximum row size (65,535 bytes,
which is shared among all columns) and the character set used. For example, utf8 characters can
require up to three bytes per character, so a VARCHAR column that uses the utf8 character set can be
declared to be a maximum of 21,844 characters. See Section 8.4.7, “Limits on Table Column Count and
Row Size”.

MySQL stores VARCHAR values as a 1-byte or 2-byte length prefix plus data. The length prefix indicates
the number of bytes in the value. A VARCHAR column uses one length byte if values require no more
than 255 bytes, two length bytes if values may require more than 255 bytes.

Note

MySQL follows the standard SQL specification, and does not remove trailing
spaces from VARCHAR values.

1817

String Data Type Syntax

VARCHAR is shorthand for CHARACTER VARYING. NATIONAL VARCHAR is the standard SQL way to
define that a VARCHAR column should use some predefined character set. MySQL uses utf8 as this
predefined character set. Section 10.3.7, “The National Character Set”. NVARCHAR is shorthand for
NATIONAL VARCHAR.

• BINARY[(M)]

The BINARY type is similar to the CHAR type, but stores binary byte strings rather than nonbinary
character strings. An optional length M represents the column length in bytes. If omitted, M defaults to 1.

• VARBINARY(M)

The VARBINARY type is similar to the VARCHAR type, but stores binary byte strings rather than nonbinary
character strings. M represents the maximum column length in bytes.

• TINYBLOB

A BLOB column with a maximum length of 255 (28 − 1) bytes. Each TINYBLOB value is stored using a 1-
byte length prefix that indicates the number of bytes in the value.

• TINYTEXT [CHARACTER SET charset_name] [COLLATE collation_name]

A TEXT column with a maximum length of 255 (28 − 1) characters. The effective maximum length is less
if the value contains multibyte characters. Each TINYTEXT value is stored using a 1-byte length prefix
that indicates the number of bytes in the value.

• BLOB[(M)]

A BLOB column with a maximum length of 65,535 (216 − 1) bytes. Each BLOB value is stored using a 2-
byte length prefix that indicates the number of bytes in the value.

An optional length M can be given for this type. If this is done, MySQL creates the column as the smallest
BLOB type large enough to hold values M bytes long.

• TEXT[(M)] [CHARACTER SET charset_name] [COLLATE collation_name]

A TEXT column with a maximum length of 65,535 (216 − 1) bytes. The effective maximum length is less
if the value contains multibyte characters. Each TEXT value is stored using a 2-byte length prefix that
indicates the number of bytes in the value.

An optional length M can be given for this type. If this is done, MySQL creates the column as the smallest
TEXT type large enough to hold values M characters long.

• MEDIUMBLOB

A BLOB column with a maximum length of 16,777,215 (224 − 1) bytes. Each MEDIUMBLOB value is stored
using a 3-byte length prefix that indicates the number of bytes in the value.

• MEDIUMTEXT [CHARACTER SET charset_name] [COLLATE collation_name]

A TEXT column with a maximum length of 16,777,215 (224 − 1) characters. The effective maximum
length is less if the value contains multibyte characters. Each MEDIUMTEXT value is stored using a 3-
byte length prefix that indicates the number of bytes in the value.

1818

The CHAR and VARCHAR Types

• LONGBLOB

A BLOB column with a maximum length of 4,294,967,295 or 4GB (232 − 1) bytes. The effective maximum
length of LONGBLOB columns depends on the configured maximum packet size in the client/server
protocol and available memory. Each LONGBLOB value is stored using a 4-byte length prefix that
indicates the number of bytes in the value.

• LONGTEXT [CHARACTER SET charset_name] [COLLATE collation_name]

A TEXT column with a maximum length of 4,294,967,295 or 4GB (232 − 1) characters. The effective
maximum length is less if the value contains multibyte characters. The effective maximum length of
LONGTEXT columns also depends on the configured maximum packet size in the client/server protocol
and available memory. Each LONGTEXT value is stored using a 4-byte length prefix that indicates the
number of bytes in the value.

• ENUM('value1','value2',...) [CHARACTER SET charset_name] [COLLATE
collation_name]

An enumeration. A string object that can have only one value, chosen from the list of values 'value1',
'value2', ..., NULL or the special '' error value. ENUM values are represented internally as integers.

An ENUM column can have a maximum of 65,535 distinct elements. (The practical limit is less than
3000.) A table can have no more than 255 unique element list definitions among its ENUM and SET
columns considered as a group. For more information on these limits, see Limits Imposed by .frm File
Structure.

• SET('value1','value2',...) [CHARACTER SET charset_name] [COLLATE
collation_name]

A set. A string object that can have zero or more values, each of which must be chosen from the list of
values 'value1', 'value2', ... SET values are represented internally as integers.

A SET column can have a maximum of 64 distinct members. A table can have no more than 255 unique
element list definitions among its ENUM and SET columns considered as a group. For more information
on this limit, see Limits Imposed by .frm File Structure.

11.3.2 The CHAR and VARCHAR Types

The CHAR and VARCHAR types are similar, but differ in the way they are stored and retrieved. They also
differ in maximum length and in whether trailing spaces are retained.

The CHAR and VARCHAR types are declared with a length that indicates the maximum number of characters
you want to store. For example, CHAR(30) can hold up to 30 characters.

The length of a CHAR column is fixed to the length that you declare when you create the table. The
length can be any value from 0 to 255. When CHAR values are stored, they are right-padded with
spaces to the specified length. When CHAR values are retrieved, trailing spaces are removed unless the
PAD_CHAR_TO_FULL_LENGTH SQL mode is enabled.

Values in VARCHAR columns are variable-length strings. The length can be specified as a value from
0 to 65,535. The effective maximum length of a VARCHAR is subject to the maximum row size (65,535
bytes, which is shared among all columns) and the character set used. See Section 8.4.7, “Limits on Table
Column Count and Row Size”.

In contrast to CHAR, VARCHAR values are stored as a 1-byte or 2-byte length prefix plus data. The length
prefix indicates the number of bytes in the value. A column uses one length byte if values require no more
than 255 bytes, two length bytes if values may require more than 255 bytes.

1819

The CHAR and VARCHAR Types

If strict SQL mode is not enabled and you assign a value to a CHAR or VARCHAR column that exceeds
the column's maximum length, the value is truncated to fit and a warning is generated. For truncation of
nonspace characters, you can cause an error to occur (rather than a warning) and suppress insertion of
the value by using strict SQL mode. See Section 5.1.10, “Server SQL Modes”.

For VARCHAR columns, trailing spaces in excess of the column length are truncated prior to insertion and a
warning is generated, regardless of the SQL mode in use. For CHAR columns, truncation of excess trailing
spaces from inserted values is performed silently regardless of the SQL mode.

VARCHAR values are not padded when they are stored. Trailing spaces are retained when values are
stored and retrieved, in conformance with standard SQL.

The following table illustrates the differences between CHAR and VARCHAR by showing the result of storing
various string values into CHAR(4) and VARCHAR(4) columns (assuming that the column uses a single-
byte character set such as latin1).

Value CHAR(4) Storage Required VARCHAR(4) Storage Required

'' ' ' 4 bytes '' 1 byte

'ab' 'ab ' 4 bytes 'ab' 3 bytes

'abcd' 'abcd' 4 bytes 'abcd' 5 bytes

'abcdefgh' 'abcd' 4 bytes 'abcd' 5 bytes

The values shown as stored in the last row of the table apply only when not using strict SQL mode; if strict
mode is enabled, values that exceed the column length are not stored, and an error results.

InnoDB encodes fixed-length fields greater than or equal to 768 bytes in length as variable-length fields,
which can be stored off-page. For example, a CHAR(255) column can exceed 768 bytes if the maximum
byte length of the character set is greater than 3, as it is with utf8mb4.

If a given value is stored into the CHAR(4) and VARCHAR(4) columns, the values retrieved from the
columns are not always the same because trailing spaces are removed from CHAR columns upon retrieval.
The following example illustrates this difference:

mysql> CREATE TABLE vc (v VARCHAR(4), c CHAR(4));
Query OK, 0 rows affected (0.01 sec)

mysql> INSERT INTO vc VALUES ('ab ', 'ab ');
Query OK, 1 row affected (0.00 sec)

mysql> SELECT CONCAT('(', v, ')'), CONCAT('(', c, ')') FROM vc;
+---------------------+---------------------+
| CONCAT('(', v, ')') | CONCAT('(', c, ')') |
+---------------------+---------------------+
| (ab) | (ab) |
+---------------------+---------------------+
1 row in set (0.06 sec)

Values in CHAR, VARCHAR, and TEXT columns are sorted and compared according to the character set
collation assigned to the column.

All MySQL collations are of type PAD SPACE. This means that all CHAR, VARCHAR, and TEXT values are
compared without regard to any trailing spaces. “Comparison” in this context does not include the LIKE
pattern-matching operator, for which trailing spaces are significant. For example:

mysql> CREATE TABLE names (myname CHAR(10));
Query OK, 0 rows affected (0.03 sec)

mysql> INSERT INTO names VALUES ('Jones');

1820

The BINARY and VARBINARY Types

Query OK, 1 row affected (0.00 sec)

mysql> SELECT myname = 'Jones', myname = 'Jones ' FROM names;
+------------------+--------------------+
| myname = 'Jones' | myname = 'Jones ' |
+------------------+--------------------+
| 1 | 1 |
+------------------+--------------------+
1 row in set (0.00 sec)

mysql> SELECT myname LIKE 'Jones', myname LIKE 'Jones ' FROM names;
+---------------------+-----------------------+
| myname LIKE 'Jones' | myname LIKE 'Jones ' |
+---------------------+-----------------------+
| 1 | 0 |
+---------------------+-----------------------+
1 row in set (0.00 sec)

This is not affected by the server SQL mode.

Note

For more information about MySQL character sets and collations, see Chapter 10,
Character Sets, Collations, Unicode. For additional information about storage
requirements, see Section 11.7, “Data Type Storage Requirements”.

For those cases where trailing pad characters are stripped or comparisons ignore them, if a column has an
index that requires unique values, inserting into the column values that differ only in number of trailing pad
characters results in a duplicate-key error. For example, if a table contains 'a', an attempt to store 'a '
causes a duplicate-key error.

11.3.3 The BINARY and VARBINARY Types

The BINARY and VARBINARY types are similar to CHAR and VARCHAR, except that they store binary strings
rather than nonbinary strings. That is, they store byte strings rather than character strings. This means they
have the binary character set and collation, and comparison and sorting are based on the numeric values
of the bytes in the values.

The permissible maximum length is the same for BINARY and VARBINARY as it is for CHAR and VARCHAR,
except that the length for BINARY and VARBINARY is measured in bytes rather than characters.

The BINARY and VARBINARY data types are distinct from the CHAR BINARY and VARCHAR BINARY
data types. For the latter types, the BINARY attribute does not cause the column to be treated as a binary
string column. Instead, it causes the binary (_bin) collation for the column character set (or the table
default character set if no column character set is specified) to be used, and the column itself stores
nonbinary character strings rather than binary byte strings. For example, if the default character set is
latin1, CHAR(5) BINARY is treated as CHAR(5) CHARACTER SET latin1 COLLATE latin1_bin.
This differs from BINARY(5), which stores 5-byte binary strings that have the binary character set and
collation. For information about the differences between the binary collation of the binary character set
and the _bin collations of nonbinary character sets, see Section 10.8.5, “The binary Collation Compared
to _bin Collations”.

If strict SQL mode is not enabled and you assign a value to a BINARY or VARBINARY column that exceeds
the column's maximum length, the value is truncated to fit and a warning is generated. For cases of
truncation, to cause an error to occur (rather than a warning) and suppress insertion of the value, use strict
SQL mode. See Section 5.1.10, “Server SQL Modes”.

When BINARY values are stored, they are right-padded with the pad value to the specified length. The
pad value is 0x00 (the zero byte). Values are right-padded with 0x00 for inserts, and no trailing bytes

1821

The BLOB and TEXT Types

are removed for retrievals. All bytes are significant in comparisons, including ORDER BY and DISTINCT
operations. 0x00 and space differ in comparisons, with 0x00 sorting before space.

Example: For a BINARY(3) column, 'a ' becomes 'a \0' when inserted. 'a\0' becomes 'a\0\0'
when inserted. Both inserted values remain unchanged for retrievals.

For VARBINARY, there is no padding for inserts and no bytes are stripped for retrievals. All bytes are
significant in comparisons, including ORDER BY and DISTINCT operations. 0x00 and space differ in
comparisons, with 0x00 sorting before space.

For those cases where trailing pad bytes are stripped or comparisons ignore them, if a column has an
index that requires unique values, inserting values into the column that differ only in number of trailing
pad bytes results in a duplicate-key error. For example, if a table contains 'a', an attempt to store 'a\0'
causes a duplicate-key error.

You should consider the preceding padding and stripping characteristics carefully if you plan to use the
BINARY data type for storing binary data and you require that the value retrieved be exactly the same as
the value stored. The following example illustrates how 0x00-padding of BINARY values affects column
value comparisons:

mysql> CREATE TABLE t (c BINARY(3));
Query OK, 0 rows affected (0.01 sec)

mysql> INSERT INTO t SET c = 'a';
Query OK, 1 row affected (0.01 sec)

mysql> SELECT HEX(c), c = 'a', c = 'a\0\0' from t;
+--------+---------+-------------+
| HEX(c) | c = 'a' | c = 'a\0\0' |
+--------+---------+-------------+
| 610000 | 0 | 1 |
+--------+---------+-------------+
1 row in set (0.09 sec)

If the value retrieved must be the same as the value specified for storage with no padding, it might be
preferable to use VARBINARY or one of the BLOB data types instead.

Note

Within the mysql client, binary strings display using hexadecimal notation,
depending on the value of the --binary-as-hex. For more information about that
option, see Section 4.5.1, “mysql — The MySQL Command-Line Client”.

11.3.4 The BLOB and TEXT Types

A BLOB is a binary large object that can hold a variable amount of data. The four BLOB types are
TINYBLOB, BLOB, MEDIUMBLOB, and LONGBLOB. These differ only in the maximum length of the
values they can hold. The four TEXT types are TINYTEXT, TEXT, MEDIUMTEXT, and LONGTEXT. These
correspond to the four BLOB types and have the same maximum lengths and storage requirements. See
Section 11.7, “Data Type Storage Requirements”.

BLOB values are treated as binary strings (byte strings). They have the binary character set and collation,
and comparison and sorting are based on the numeric values of the bytes in column values. TEXT values
are treated as nonbinary strings (character strings). They have a character set other than binary, and
values are sorted and compared based on the collation of the character set.

If strict SQL mode is not enabled and you assign a value to a BLOB or TEXT column that exceeds the
column's maximum length, the value is truncated to fit and a warning is generated. For truncation of

1822

The BLOB and TEXT Types

nonspace characters, you can cause an error to occur (rather than a warning) and suppress insertion of
the value by using strict SQL mode. See Section 5.1.10, “Server SQL Modes”.

Truncation of excess trailing spaces from values to be inserted into TEXT columns always generates a
warning, regardless of the SQL mode.

For TEXT and BLOB columns, there is no padding on insert and no bytes are stripped on select.

If a TEXT column is indexed, index entry comparisons are space-padded at the end. This means that, if the
index requires unique values, duplicate-key errors occur for values that differ only in the number of trailing
spaces. For example, if a table contains 'a', an attempt to store 'a ' causes a duplicate-key error. This
is not true for BLOB columns.

In most respects, you can regard a BLOB column as a VARBINARY column that can be as large as you like.
Similarly, you can regard a TEXT column as a VARCHAR column. BLOB and TEXT differ from VARBINARY
and VARCHAR in the following ways:

• For indexes on BLOB and TEXT columns, you must specify an index prefix length. For CHAR and
VARCHAR, a prefix length is optional. See Section 8.3.4, “Column Indexes”.

• BLOB and TEXT columns cannot have DEFAULT values.

If you use the BINARY attribute with a TEXT data type, the column is assigned the binary (_bin) collation
of the column character set.

LONG and LONG VARCHAR map to the MEDIUMTEXT data type. This is a compatibility feature.

MySQL Connector/ODBC defines BLOB values as LONGVARBINARY and TEXT values as LONGVARCHAR.

Because BLOB and TEXT values can be extremely long, you might encounter some constraints in using
them:

• Only the first max_sort_length bytes of the column are used when sorting. The default value of
max_sort_length is 1024. You can make more bytes significant in sorting or grouping by increasing
the value of max_sort_length at server startup or runtime. Any client can change the value of its
session max_sort_length variable:

mysql> SET max_sort_length = 2000;
mysql> SELECT id, comment FROM t
 -> ORDER BY comment;

• Instances of BLOB or TEXT columns in the result of a query that is processed using a temporary table
causes the server to use a table on disk rather than in memory because the MEMORY storage engine
does not support those data types (see Section 8.4.4, “Internal Temporary Table Use in MySQL”). Use of
disk incurs a performance penalty, so include BLOB or TEXT columns in the query result only if they are
really needed. For example, avoid using SELECT *, which selects all columns.

• The maximum size of a BLOB or TEXT object is determined by its type, but the largest value you actually
can transmit between the client and server is determined by the amount of available memory and the
size of the communications buffers. You can change the message buffer size by changing the value of
the max_allowed_packet variable, but you must do so for both the server and your client program.
For example, both mysql and mysqldump enable you to change the client-side max_allowed_packet
value. See Section 5.1.1, “Configuring the Server”, Section 4.5.1, “mysql — The MySQL Command-
Line Client”, and Section 4.5.4, “mysqldump — A Database Backup Program”. You may also want to
compare the packet sizes and the size of the data objects you are storing with the storage requirements,
see Section 11.7, “Data Type Storage Requirements”

1823

The ENUM Type

Each BLOB or TEXT value is represented internally by a separately allocated object. This is in contrast to all
other data types, for which storage is allocated once per column when the table is opened.

In some cases, it may be desirable to store binary data such as media files in BLOB or TEXT columns.
You may find MySQL's string handling functions useful for working with such data. See Section 12.8,
“String Functions and Operators”. For security and other reasons, it is usually preferable to do so using
application code rather than giving application users the FILE privilege. You can discuss specifics for
various languages and platforms in the MySQL Forums (http://forums.mysql.com/).

Note

Within the mysql client, binary strings display using hexadecimal notation,
depending on the value of the --binary-as-hex. For more information about that
option, see Section 4.5.1, “mysql — The MySQL Command-Line Client”.

11.3.5 The ENUM Type

An ENUM is a string object with a value chosen from a list of permitted values that are enumerated explicitly
in the column specification at table creation time.

See Section 11.3.1, “String Data Type Syntax” for ENUM type syntax and length limits.

The ENUM type has these advantages:

• Compact data storage in situations where a column has a limited set of possible values. The strings you
specify as input values are automatically encoded as numbers. See Section 11.7, “Data Type Storage
Requirements” for storage requirements for the ENUM type.

• Readable queries and output. The numbers are translated back to the corresponding strings in query
results.

and these potential issues to consider:

• If you make enumeration values that look like numbers, it is easy to mix up the literal values with their
internal index numbers, as explained in Enumeration Limitations.

• Using ENUM columns in ORDER BY clauses requires extra care, as explained in Enumeration Sorting.

• Creating and Using ENUM Columns

• Index Values for Enumeration Literals

• Handling of Enumeration Literals

• Empty or NULL Enumeration Values

• Enumeration Sorting

• Enumeration Limitations

Creating and Using ENUM Columns

An enumeration value must be a quoted string literal. For example, you can create a table with an ENUM
column like this:

CREATE TABLE shirts (
 name VARCHAR(40),
 size ENUM('x-small', 'small', 'medium', 'large', 'x-large')

1824

http://forums.mysql.com/

The ENUM Type

);
INSERT INTO shirts (name, size) VALUES ('dress shirt','large'), ('t-shirt','medium'),
 ('polo shirt','small');
SELECT name, size FROM shirts WHERE size = 'medium';
+---------+--------+
| name | size |
+---------+--------+
| t-shirt | medium |
+---------+--------+
UPDATE shirts SET size = 'small' WHERE size = 'large';
COMMIT;

Inserting 1 million rows into this table with a value of 'medium' would require 1 million bytes of storage, as
opposed to 6 million bytes if you stored the actual string 'medium' in a VARCHAR column.

Index Values for Enumeration Literals

Each enumeration value has an index:

• The elements listed in the column specification are assigned index numbers, beginning with 1.

• The index value of the empty string error value is 0. This means that you can use the following SELECT
statement to find rows into which invalid ENUM values were assigned:

mysql> SELECT * FROM tbl_name WHERE enum_col=0;

• The index of the NULL value is NULL.

• The term “index” here refers to a position within the list of enumeration values. It has nothing to do with
table indexes.

For example, a column specified as ENUM('Mercury', 'Venus', 'Earth') can have any of the
values shown here. The index of each value is also shown.

Value Index

NULL NULL

'' 0

'Mercury' 1

'Venus' 2

'Earth' 3

An ENUM column can have a maximum of 65,535 distinct elements. (The practical limit is less than 3000.)
A table can have no more than 255 unique element list definitions among its ENUM and SET columns
considered as a group. For more information on these limits, see Limits Imposed by .frm File Structure.

If you retrieve an ENUM value in a numeric context, the column value's index is returned. For example, you
can retrieve numeric values from an ENUM column like this:

mysql> SELECT enum_col+0 FROM tbl_name;

Functions such as SUM() or AVG() that expect a numeric argument cast the argument to a number if
necessary. For ENUM values, the index number is used in the calculation.

Handling of Enumeration Literals

Trailing spaces are automatically deleted from ENUM member values in the table definition when a table is
created.

1825

The ENUM Type

When retrieved, values stored into an ENUM column are displayed using the lettercase that was used in
the column definition. Note that ENUM columns can be assigned a character set and collation. For binary or
case-sensitive collations, lettercase is taken into account when assigning values to the column.

If you store a number into an ENUM column, the number is treated as the index into the possible values,
and the value stored is the enumeration member with that index. (However, this does not work with LOAD
DATA, which treats all input as strings.) If the numeric value is quoted, it is still interpreted as an index
if there is no matching string in the list of enumeration values. For these reasons, it is not advisable to
define an ENUM column with enumeration values that look like numbers, because this can easily become
confusing. For example, the following column has enumeration members with string values of '0', '1',
and '2', but numeric index values of 1, 2, and 3:

numbers ENUM('0','1','2')

If you store 2, it is interpreted as an index value, and becomes '1' (the value with index 2). If you store
'2', it matches an enumeration value, so it is stored as '2'. If you store '3', it does not match any
enumeration value, so it is treated as an index and becomes '2' (the value with index 3).

mysql> INSERT INTO t (numbers) VALUES(2),('2'),('3');
mysql> SELECT * FROM t;
+---------+
| numbers |
+---------+
| 1 |
| 2 |
| 2 |
+---------+

To determine all possible values for an ENUM column, use SHOW COLUMNS FROM tbl_name LIKE
'enum_col' and parse the ENUM definition in the Type column of the output.

In the C API, ENUM values are returned as strings. For information about using result set metadata to
distinguish them from other strings, see C API Basic Data Structures.

Empty or NULL Enumeration Values

An enumeration value can also be the empty string ('') or NULL under certain circumstances:

• If you insert an invalid value into an ENUM (that is, a string not present in the list of permitted values), the
empty string is inserted instead as a special error value. This string can be distinguished from a “normal”
empty string by the fact that this string has the numeric value 0. See Index Values for Enumeration
Literals for details about the numeric indexes for the enumeration values.

If strict SQL mode is enabled, attempts to insert invalid ENUM values result in an error.

• If an ENUM column is declared to permit NULL, the NULL value is a valid value for the column, and the
default value is NULL. If an ENUM column is declared NOT NULL, its default value is the first element of
the list of permitted values.

Enumeration Sorting

ENUM values are sorted based on their index numbers, which depend on the order in which the
enumeration members were listed in the column specification. For example, 'b' sorts before 'a' for
ENUM('b', 'a'). The empty string sorts before nonempty strings, and NULL values sort before all other
enumeration values.

To prevent unexpected results when using the ORDER BY clause on an ENUM column, use one of these
techniques:

1826

https://dev.mysql.com/doc/c-api/5.7/en/c-api-data-structures.html

The SET Type

• Specify the ENUM list in alphabetic order.

• Make sure that the column is sorted lexically rather than by index number by coding ORDER BY
CAST(col AS CHAR) or ORDER BY CONCAT(col).

Enumeration Limitations

An enumeration value cannot be an expression, even one that evaluates to a string value.

For example, this CREATE TABLE statement does not work because the CONCAT function cannot be used
to construct an enumeration value:

CREATE TABLE sizes (
 size ENUM('small', CONCAT('med','ium'), 'large')
);

You also cannot employ a user variable as an enumeration value. This pair of statements do not work:

SET @mysize = 'medium';

CREATE TABLE sizes (
 size ENUM('small', @mysize, 'large')
);

We strongly recommend that you do not use numbers as enumeration values, because it does not save
on storage over the appropriate TINYINT or SMALLINT type, and it is easy to mix up the strings and the
underlying number values (which might not be the same) if you quote the ENUM values incorrectly. If you
do use a number as an enumeration value, always enclose it in quotation marks. If the quotation marks
are omitted, the number is regarded as an index. See Handling of Enumeration Literals to see how even a
quoted number could be mistakenly used as a numeric index value.

Duplicate values in the definition cause a warning, or an error if strict SQL mode is enabled.

11.3.6 The SET Type

A SET is a string object that can have zero or more values, each of which must be chosen from a list
of permitted values specified when the table is created. SET column values that consist of multiple set
members are specified with members separated by commas (,). A consequence of this is that SET
member values should not themselves contain commas.

For example, a column specified as SET('one', 'two') NOT NULL can have any of these values:

''
'one'
'two'
'one,two'

A SET column can have a maximum of 64 distinct members. A table can have no more than 255 unique
element list definitions among its ENUM and SET columns considered as a group. For more information on
this limit, see Limits Imposed by .frm File Structure.

Duplicate values in the definition cause a warning, or an error if strict SQL mode is enabled.

Trailing spaces are automatically deleted from SET member values in the table definition when a table is
created.

See String Type Storage Requirements for storage requirements for the SET type.

See Section 11.3.1, “String Data Type Syntax” for SET type syntax and length limits.

1827

The SET Type

When retrieved, values stored in a SET column are displayed using the lettercase that was used in the
column definition. Note that SET columns can be assigned a character set and collation. For binary or
case-sensitive collations, lettercase is taken into account when assigning values to the column.

MySQL stores SET values numerically, with the low-order bit of the stored value corresponding to
the first set member. If you retrieve a SET value in a numeric context, the value retrieved has bits set
corresponding to the set members that make up the column value. For example, you can retrieve numeric
values from a SET column like this:

mysql> SELECT set_col+0 FROM tbl_name;

If a number is stored into a SET column, the bits that are set in the binary representation of the number
determine the set members in the column value. For a column specified as SET('a','b','c','d'), the
members have the following decimal and binary values.

SET Member Decimal Value Binary Value

'a' 1 0001

'b' 2 0010

'c' 4 0100

'd' 8 1000

If you assign a value of 9 to this column, that is 1001 in binary, so the first and fourth SET value members
'a' and 'd' are selected and the resulting value is 'a,d'.

For a value containing more than one SET element, it does not matter what order the elements are listed
in when you insert the value. It also does not matter how many times a given element is listed in the value.
When the value is retrieved later, each element in the value appears once, with elements listed according
to the order in which they were specified at table creation time. Suppose that a column is specified as
SET('a','b','c','d'):

mysql> CREATE TABLE myset (col SET('a', 'b', 'c', 'd'));

If you insert the values 'a,d', 'd,a', 'a,d,d', 'a,d,a', and 'd,a,d':

mysql> INSERT INTO myset (col) VALUES
-> ('a,d'), ('d,a'), ('a,d,a'), ('a,d,d'), ('d,a,d');
Query OK, 5 rows affected (0.01 sec)
Records: 5 Duplicates: 0 Warnings: 0

Then all these values appear as 'a,d' when retrieved:

mysql> SELECT col FROM myset;
+------+
| col |
+------+
| a,d |
| a,d |
| a,d |
| a,d |
| a,d |
+------+
5 rows in set (0.04 sec)

If you set a SET column to an unsupported value, the value is ignored and a warning is issued:

mysql> INSERT INTO myset (col) VALUES ('a,d,d,s');
Query OK, 1 row affected, 1 warning (0.03 sec)

mysql> SHOW WARNINGS;
+---------+------+--+

1828

Spatial Data Types

| Level | Code | Message |
+---------+------+--+
| Warning | 1265 | Data truncated for column 'col' at row 1 |
+---------+------+--+
1 row in set (0.04 sec)

mysql> SELECT col FROM myset;
+------+
| col |
+------+
| a,d |
| a,d |
| a,d |
| a,d |
| a,d |
| a,d |
+------+
6 rows in set (0.01 sec)

If strict SQL mode is enabled, attempts to insert invalid SET values result in an error.

SET values are sorted numerically. NULL values sort before non-NULL SET values.

Functions such as SUM() or AVG() that expect a numeric argument cast the argument to a number if
necessary. For SET values, the cast operation causes the numeric value to be used.

Normally, you search for SET values using the FIND_IN_SET() function or the LIKE operator:

mysql> SELECT * FROM tbl_name WHERE FIND_IN_SET('value',set_col)>0;
mysql> SELECT * FROM tbl_name WHERE set_col LIKE '%value%';

The first statement finds rows where set_col contains the value set member. The second is similar, but
not the same: It finds rows where set_col contains value anywhere, even as a substring of another set
member.

The following statements also are permitted:

mysql> SELECT * FROM tbl_name WHERE set_col & 1;
mysql> SELECT * FROM tbl_name WHERE set_col = 'val1,val2';

The first of these statements looks for values containing the first set member. The second looks for an
exact match. Be careful with comparisons of the second type. Comparing set values to 'val1,val2'
returns different results than comparing values to 'val2,val1'. You should specify the values in the
same order they are listed in the column definition.

To determine all possible values for a SET column, use SHOW COLUMNS FROM tbl_name LIKE
set_col and parse the SET definition in the Type column of the output.

In the C API, SET values are returned as strings. For information about using result set metadata to
distinguish them from other strings, see C API Basic Data Structures.

11.4 Spatial Data Types
The Open Geospatial Consortium (OGC) is an international consortium of more than 250 companies,
agencies, and universities participating in the development of publicly available conceptual solutions that
can be useful with all kinds of applications that manage spatial data.

The Open Geospatial Consortium publishes the OpenGIS® Implementation Standard for Geographic
information - Simple Feature Access - Part 2: SQL Option, a document that proposes several conceptual
ways for extending an SQL RDBMS to support spatial data. This specification is available from the OGC
website at http://www.opengeospatial.org/standards/sfs.

1829

https://dev.mysql.com/doc/c-api/5.7/en/c-api-data-structures.html
http://www.opengeospatial.org
http://www.opengeospatial.org/standards/sfs

MySQL GIS Conformance and Compatibility

Following the OGC specification, MySQL implements spatial extensions as a subset of the SQL with
Geometry Types environment. This term refers to an SQL environment that has been extended with a set
of geometry types. A geometry-valued SQL column is implemented as a column that has a geometry type.
The specification describes a set of SQL geometry types, as well as functions on those types to create and
analyze geometry values.

MySQL spatial extensions enable the generation, storage, and analysis of geographic features:

• Data types for representing spatial values

• Functions for manipulating spatial values

• Spatial indexing for improved access times to spatial columns

The spatial data types and functions are available for MyISAM, InnoDB, NDB, and ARCHIVE tables. For
indexing spatial columns, MyISAM and InnoDB support both SPATIAL and non-SPATIAL indexes. The
other storage engines support non-SPATIAL indexes, as described in Section 13.1.14, “CREATE INDEX
Statement”.

A geographic feature is anything in the world that has a location. A feature can be:

• An entity. For example, a mountain, a pond, a city.

• A space. For example, town district, the tropics.

• A definable location. For example, a crossroad, as a particular place where two streets intersect.

Some documents use the term geospatial feature to refer to geographic features.

Geometry is another word that denotes a geographic feature. Originally the word geometry meant
measurement of the earth. Another meaning comes from cartography, referring to the geometric features
that cartographers use to map the world.

The discussion here considers these terms synonymous: geographic feature, geospatial feature,
feature, or geometry. The term most commonly used is geometry, defined as a point or an aggregate of
points representing anything in the world that has a location.

The following material covers these topics:

• The spatial data types implemented in MySQL model

• The basis of the spatial extensions in the OpenGIS geometry model

• Data formats for representing spatial data

• How to use spatial data in MySQL

• Use of indexing for spatial data

• MySQL differences from the OpenGIS specification

For information about functions that operate on spatial data, see Section 12.16, “Spatial Analysis
Functions”.

MySQL GIS Conformance and Compatibility

MySQL does not implement the following GIS features:

1830

Additional Resources

• Additional Metadata Views

OpenGIS specifications propose several additional metadata views. For example, a system view named
GEOMETRY_COLUMNS contains a description of geometry columns, one row for each geometry column in
the database.

• The OpenGIS function Length() on LineString and MultiLineString should be called in MySQL
as ST_Length()

The problem is that there is an existing SQL function Length() that calculates the length of string
values, and sometimes it is not possible to distinguish whether the function is called in a textual or spatial
context.

Additional Resources

The Open Geospatial Consortium publishes the OpenGIS® Implementation Standard for Geographic
information - Simple feature access - Part 2: SQL option, a document that proposes several conceptual
ways for extending an SQL RDBMS to support spatial data. The Open Geospatial Consortium (OGC)
maintains a website at http://www.opengeospatial.org/. The specification is available there at http://
www.opengeospatial.org/standards/sfs. It contains additional information relevant to the material here.

If you have questions or concerns about the use of the spatial extensions to MySQL, you can discuss them
in the GIS forum: https://forums.mysql.com/list.php?23.

11.4.1 Spatial Data Types

MySQL has spatial data types that correspond to OpenGIS classes. The basis for these types is described
in Section 11.4.2, “The OpenGIS Geometry Model”.

Some spatial data types hold single geometry values:

• GEOMETRY

• POINT

• LINESTRING

• POLYGON

GEOMETRY can store geometry values of any type. The other single-value types (POINT, LINESTRING,
and POLYGON) restrict their values to a particular geometry type.

The other spatial data types hold collections of values:

• MULTIPOINT

• MULTILINESTRING

• MULTIPOLYGON

• GEOMETRYCOLLECTION

GEOMETRYCOLLECTION can store a collection of objects of any type. The other collection types
(MULTIPOINT, MULTILINESTRING, and MULTIPOLYGON) restrict collection members to those having a
particular geometry type.

Example: To create a table named geom that has a column named g that can store values of any geometry
type, use this statement:

1831

http://www.opengeospatial.org/
http://www.opengeospatial.org/standards/sfs
http://www.opengeospatial.org/standards/sfs
https://forums.mysql.com/list.php?23

The OpenGIS Geometry Model

CREATE TABLE geom (g GEOMETRY);

SPATIAL indexes can be created on NOT NULL spatial columns, so if you plan to index the column,
declare it NOT NULL:

CREATE TABLE geom (g GEOMETRY NOT NULL);

For other examples showing how to use spatial data types in MySQL, see Section 11.4.5, “Creating Spatial
Columns”.

11.4.2 The OpenGIS Geometry Model

The set of geometry types proposed by OGC's SQL with Geometry Types environment is based on the
OpenGIS Geometry Model. In this model, each geometric object has the following general properties:

• It is associated with a spatial reference system, which describes the coordinate space in which the object
is defined.

• It belongs to some geometry class.

11.4.2.1 The Geometry Class Hierarchy

The geometry classes define a hierarchy as follows:

• Geometry (noninstantiable)

• Point (instantiable)

• Curve (noninstantiable)

• LineString (instantiable)

• Line

• LinearRing

• Surface (noninstantiable)

• Polygon (instantiable)

• GeometryCollection (instantiable)

• MultiPoint (instantiable)

• MultiCurve (noninstantiable)

• MultiLineString (instantiable)

• MultiSurface (noninstantiable)

• MultiPolygon (instantiable)

It is not possible to create objects in noninstantiable classes. It is possible to create objects in instantiable
classes. All classes have properties, and instantiable classes may also have assertions (rules that define
valid class instances).

Geometry is the base class. It is an abstract class. The instantiable subclasses of Geometry are
restricted to zero-, one-, and two-dimensional geometric objects that exist in two-dimensional coordinate

1832

The OpenGIS Geometry Model

space. All instantiable geometry classes are defined so that valid instances of a geometry class are
topologically closed (that is, all defined geometries include their boundary).

The base Geometry class has subclasses for Point, Curve, Surface, and GeometryCollection:

• Point represents zero-dimensional objects.

• Curve represents one-dimensional objects, and has subclass LineString, with sub-subclasses Line
and LinearRing.

• Surface is designed for two-dimensional objects and has subclass Polygon.

• GeometryCollection has specialized zero-, one-, and two-dimensional collection classes named
MultiPoint, MultiLineString, and MultiPolygon for modeling geometries corresponding to
collections of Points, LineStrings, and Polygons, respectively. MultiCurve and MultiSurface
are introduced as abstract superclasses that generalize the collection interfaces to handle Curves and
Surfaces.

Geometry, Curve, Surface, MultiCurve, and MultiSurface are defined as noninstantiable classes.
They define a common set of methods for their subclasses and are included for extensibility.

Point, LineString, Polygon, GeometryCollection, MultiPoint, MultiLineString, and
MultiPolygon are instantiable classes.

11.4.2.2 Geometry Class

Geometry is the root class of the hierarchy. It is a noninstantiable class but has a number of properties,
described in the following list, that are common to all geometry values created from any of the Geometry
subclasses. Particular subclasses have their own specific properties, described later.

Geometry Properties

A geometry value has the following properties:

• Its type. Each geometry belongs to one of the instantiable classes in the hierarchy.

• Its SRID, or spatial reference identifier. This value identifies the geometry's associated spatial reference
system that describes the coordinate space in which the geometry object is defined.

In MySQL, the SRID value is an integer associated with the geometry value. The maximum usable SRID
value is 232−1. If a larger value is given, only the lower 32 bits are used. All computations are done
assuming SRID 0, regardless of the actual SRID value. SRID 0 represents an infinite flat Cartesian plane
with no units assigned to its axes.

• Its coordinates in its spatial reference system, represented as double-precision (8-byte) numbers.
All nonempty geometries include at least one pair of (X,Y) coordinates. Empty geometries contain no
coordinates.

Coordinates are related to the SRID. For example, in different coordinate systems, the distance between
two objects may differ even when objects have the same coordinates, because the distance on the
planar coordinate system and the distance on the geodetic system (coordinates on the Earth's surface)
are different things.

• Its interior, boundary, and exterior.

Every geometry occupies some position in space. The exterior of a geometry is all space not occupied
by the geometry. The interior is the space occupied by the geometry. The boundary is the interface
between the geometry's interior and exterior.

1833

The OpenGIS Geometry Model

• Its MBR (minimum bounding rectangle), or envelope. This is the bounding geometry, formed by the
minimum and maximum (X,Y) coordinates:

((MINX MINY, MAXX MINY, MAXX MAXY, MINX MAXY, MINX MINY))

• Whether the value is simple or nonsimple. Geometry values of types (LineString, MultiPoint,
MultiLineString) are either simple or nonsimple. Each type determines its own assertions for being
simple or nonsimple.

• Whether the value is closed or not closed. Geometry values of types (LineString, MultiString)
are either closed or not closed. Each type determines its own assertions for being closed or not closed.

• Whether the value is empty or nonempty A geometry is empty if it does not have any points. Exterior,
interior, and boundary of an empty geometry are not defined (that is, they are represented by a NULL
value). An empty geometry is defined to be always simple and has an area of 0.

• Its dimension. A geometry can have a dimension of −1, 0, 1, or 2:

• −1 for an empty geometry.

• 0 for a geometry with no length and no area.

• 1 for a geometry with nonzero length and zero area.

• 2 for a geometry with nonzero area.

Point objects have a dimension of zero. LineString objects have a dimension of 1. Polygon objects
have a dimension of 2. The dimensions of MultiPoint, MultiLineString, and MultiPolygon
objects are the same as the dimensions of the elements they consist of.

11.4.2.3 Point Class

A Point is a geometry that represents a single location in coordinate space.

Point Examples

• Imagine a large-scale map of the world with many cities. A Point object could represent each city.

• On a city map, a Point object could represent a bus stop.

Point Properties

• X-coordinate value.

• Y-coordinate value.

• Point is defined as a zero-dimensional geometry.

• The boundary of a Point is the empty set.

11.4.2.4 Curve Class

A Curve is a one-dimensional geometry, usually represented by a sequence of points. Particular
subclasses of Curve define the type of interpolation between points. Curve is a noninstantiable class.

Curve Properties

• A Curve has the coordinates of its points.

• A Curve is defined as a one-dimensional geometry.

1834

The OpenGIS Geometry Model

• A Curve is simple if it does not pass through the same point twice, with the exception that a curve can
still be simple if the start and end points are the same.

• A Curve is closed if its start point is equal to its endpoint.

• The boundary of a closed Curve is empty.

• The boundary of a nonclosed Curve consists of its two endpoints.

• A Curve that is simple and closed is a LinearRing.

11.4.2.5 LineString Class

A LineString is a Curve with linear interpolation between points.

LineString Examples

• On a world map, LineString objects could represent rivers.

• In a city map, LineString objects could represent streets.

LineString Properties

• A LineString has coordinates of segments, defined by each consecutive pair of points.

• A LineString is a Line if it consists of exactly two points.

• A LineString is a LinearRing if it is both closed and simple.

11.4.2.6 Surface Class

A Surface is a two-dimensional geometry. It is a noninstantiable class. Its only instantiable subclass is
Polygon.

Simple surfaces in three-dimensional space are isomorphic to planar surfaces.

Polyhedral surfaces are formed by “stitching” together simple surfaces along their boundaries, polyhedral
surfaces in three-dimensional space may not be planar as a whole.

Surface Properties

• A Surface is defined as a two-dimensional geometry.

• The OpenGIS specification defines a simple Surface as a geometry that consists of a single “patch”
that is associated with a single exterior boundary and zero or more interior boundaries.

• The boundary of a simple Surface is the set of closed curves corresponding to its exterior and interior
boundaries.

11.4.2.7 Polygon Class

A Polygon is a planar Surface representing a multisided geometry. It is defined by a single exterior
boundary and zero or more interior boundaries, where each interior boundary defines a hole in the
Polygon.

Polygon Examples

• On a region map, Polygon objects could represent forests, districts, and so on.

Polygon Assertions

1835

The OpenGIS Geometry Model

• The boundary of a Polygon consists of a set of LinearRing objects (that is, LineString objects that
are both simple and closed) that make up its exterior and interior boundaries.

• A Polygon has no rings that cross. The rings in the boundary of a Polygon may intersect at a Point,
but only as a tangent.

• A Polygon has no lines, spikes, or punctures.

• A Polygon has an interior that is a connected point set.

• A Polygon may have holes. The exterior of a Polygon with holes is not connected. Each hole defines a
connected component of the exterior.

The preceding assertions make a Polygon a simple geometry.

11.4.2.8 GeometryCollection Class

A GeometryCollection is a geometry that is a collection of zero or more geometries of any class.

All the elements in a geometry collection must be in the same spatial reference system (that is, in the same
coordinate system). There are no other constraints on the elements of a geometry collection, although
the subclasses of GeometryCollection described in the following sections may restrict membership.
Restrictions may be based on:

• Element type (for example, a MultiPoint may contain only Point elements)

• Dimension

• Constraints on the degree of spatial overlap between elements

11.4.2.9 MultiPoint Class

A MultiPoint is a geometry collection composed of Point elements. The points are not connected or
ordered in any way.

MultiPoint Examples

• On a world map, a MultiPoint could represent a chain of small islands.

• On a city map, a MultiPoint could represent the outlets for a ticket office.

MultiPoint Properties

• A MultiPoint is a zero-dimensional geometry.

• A MultiPoint is simple if no two of its Point values are equal (have identical coordinate values).

• The boundary of a MultiPoint is the empty set.

11.4.2.10 MultiCurve Class

A MultiCurve is a geometry collection composed of Curve elements. MultiCurve is a noninstantiable
class.

MultiCurve Properties

• A MultiCurve is a one-dimensional geometry.

• A MultiCurve is simple if and only if all of its elements are simple; the only intersections between any
two elements occur at points that are on the boundaries of both elements.

1836

The OpenGIS Geometry Model

• A MultiCurve boundary is obtained by applying the “mod 2 union rule” (also known as the “odd-even
rule”): A point is in the boundary of a MultiCurve if it is in the boundaries of an odd number of Curve
elements.

• A MultiCurve is closed if all of its elements are closed.

• The boundary of a closed MultiCurve is always empty.

11.4.2.11 MultiLineString Class

A MultiLineString is a MultiCurve geometry collection composed of LineString elements.

MultiLineString Examples

• On a region map, a MultiLineString could represent a river system or a highway system.

11.4.2.12 MultiSurface Class

A MultiSurface is a geometry collection composed of surface elements. MultiSurface is a
noninstantiable class. Its only instantiable subclass is MultiPolygon.

MultiSurface Assertions

• Surfaces within a MultiSurface have no interiors that intersect.

• Surfaces within a MultiSurface have boundaries that intersect at most at a finite number of points.

11.4.2.13 MultiPolygon Class

A MultiPolygon is a MultiSurface object composed of Polygon elements.

MultiPolygon Examples

• On a region map, a MultiPolygon could represent a system of lakes.

MultiPolygon Assertions

• A MultiPolygon has no two Polygon elements with interiors that intersect.

• A MultiPolygon has no two Polygon elements that cross (crossing is also forbidden by the previous
assertion), or that touch at an infinite number of points.

• A MultiPolygon may not have cut lines, spikes, or punctures. A MultiPolygon is a regular, closed
point set.

• A MultiPolygon that has more than one Polygon has an interior that is not connected. The number of
connected components of the interior of a MultiPolygon is equal to the number of Polygon values in
the MultiPolygon.

MultiPolygon Properties

• A MultiPolygon is a two-dimensional geometry.

• A MultiPolygon boundary is a set of closed curves (LineString values) corresponding to the
boundaries of its Polygon elements.

• Each Curve in the boundary of the MultiPolygon is in the boundary of exactly one Polygon element.

• Every Curve in the boundary of an Polygon element is in the boundary of the MultiPolygon.

1837

Supported Spatial Data Formats

11.4.3 Supported Spatial Data Formats

Two standard spatial data formats are used to represent geometry objects in queries:

• Well-Known Text (WKT) format

• Well-Known Binary (WKB) format

Internally, MySQL stores geometry values in a format that is not identical to either WKT or WKB format.
(Internal format is like WKB but with an initial 4 bytes to indicate the SRID.)

There are functions available to convert between different data formats; see Section 12.16.6, “Geometry
Format Conversion Functions”.

The following sections describe the spatial data formats MySQL uses:

• Well-Known Text (WKT) Format

• Well-Known Binary (WKB) Format

• Internal Geometry Storage Format

Well-Known Text (WKT) Format

The Well-Known Text (WKT) representation of geometry values is designed for exchanging geometry
data in ASCII form. The OpenGIS specification provides a Backus-Naur grammar that specifies the formal
production rules for writing WKT values (see Section 11.4, “Spatial Data Types”).

Examples of WKT representations of geometry objects:

• A Point:

POINT(15 20)

The point coordinates are specified with no separating comma. This differs from the syntax for the SQL
Point() function, which requires a comma between the coordinates. Take care to use the syntax
appropriate to the context of a given spatial operation. For example, the following statements both
use ST_X() to extract the X-coordinate from a Point object. The first produces the object directly
using the Point() function. The second uses a WKT representation converted to a Point with
ST_GeomFromText().

mysql> SELECT ST_X(Point(15, 20));
+---------------------+
| ST_X(POINT(15, 20)) |
+---------------------+
| 15 |
+---------------------+

mysql> SELECT ST_X(ST_GeomFromText('POINT(15 20)'));
+---------------------------------------+
| ST_X(ST_GeomFromText('POINT(15 20)')) |
+---------------------------------------+
| 15 |
+---------------------------------------+

• A LineString with four points:

LINESTRING(0 0, 10 10, 20 25, 50 60)

The point coordinate pairs are separated by commas.

1838

Supported Spatial Data Formats

• A Polygon with one exterior ring and one interior ring:

POLYGON((0 0,10 0,10 10,0 10,0 0),(5 5,7 5,7 7,5 7, 5 5))

• A MultiPoint with three Point values:

MULTIPOINT(0 0, 20 20, 60 60)

As of MySQL 5.7.9, spatial functions such as ST_MPointFromText() and ST_GeomFromText() that
accept WKT-format representations of MultiPoint values permit individual points within values to be
surrounded by parentheses. For example, both of the following function calls are valid, whereas before
MySQL 5.7.9 the second one produces an error:

ST_MPointFromText('MULTIPOINT (1 1, 2 2, 3 3)')
ST_MPointFromText('MULTIPOINT ((1 1), (2 2), (3 3))')

As of MySQL 5.7.9, output for MultiPoint values includes parentheses around each point. For
example:

mysql> SET @mp = 'MULTIPOINT(1 1, 2 2, 3 3)';
mysql> SELECT ST_AsText(ST_GeomFromText(@mp));
+---------------------------------+
| ST_AsText(ST_GeomFromText(@mp)) |
+---------------------------------+
| MULTIPOINT((1 1),(2 2),(3 3)) |
+---------------------------------+

Before MySQL 5.7.9, output for the same value does not include parentheses around each point:

mysql> SET @mp = 'MULTIPOINT(1 1, 2 2, 3 3)';
mysql> SELECT ST_AsText(ST_GeomFromText(@mp));
+---------------------------------+
| ST_AsText(ST_GeomFromText(@mp)) |
+---------------------------------+
| MULTIPOINT(1 1,2 2,3 3) |
+---------------------------------+

• A MultiLineString with two LineString values:

MULTILINESTRING((10 10, 20 20), (15 15, 30 15))

• A MultiPolygon with two Polygon values:

MULTIPOLYGON(((0 0,10 0,10 10,0 10,0 0)),((5 5,7 5,7 7,5 7, 5 5)))

• A GeometryCollection consisting of two Point values and one LineString:

GEOMETRYCOLLECTION(POINT(10 10), POINT(30 30), LINESTRING(15 15, 20 20))

Well-Known Binary (WKB) Format

The Well-Known Binary (WKB) representation of geometric values is used for exchanging geometry data
as binary streams represented by BLOB values containing geometric WKB information. This format is
defined by the OpenGIS specification (see Section 11.4, “Spatial Data Types”). It is also defined in the ISO
SQL/MM Part 3: Spatial standard.

WKB uses 1-byte unsigned integers, 4-byte unsigned integers, and 8-byte double-precision numbers (IEEE
754 format). A byte is eight bits.

For example, a WKB value that corresponds to POINT(1 -1) consists of this sequence of 21 bytes, each
represented by two hexadecimal digits:

1839

Supported Spatial Data Formats

0101000000000000000000F03F000000000000F0BF

The sequence consists of the components shown in the following table.

Table 11.2 WKB Components Example

Component Size Value

Byte order 1 byte 01

WKB type 4 bytes 01000000

X coordinate 8 bytes 000000000000F03F

Y coordinate 8 bytes 000000000000F0BF

Component representation is as follows:

• The byte order indicator is either 1 or 0 to signify little-endian or big-endian storage. The little-endian
and big-endian byte orders are also known as Network Data Representation (NDR) and External Data
Representation (XDR), respectively.

• The WKB type is a code that indicates the geometry type. MySQL uses values from 1 through 7 to
indicate Point, LineString, Polygon, MultiPoint, MultiLineString, MultiPolygon, and
GeometryCollection.

• A Point value has X and Y coordinates, each represented as a double-precision value.

WKB values for more complex geometry values have more complex data structures, as detailed in the
OpenGIS specification.

Internal Geometry Storage Format

MySQL stores geometry values using 4 bytes to indicate the SRID followed by the WKB representation of
the value. For a description of WKB format, see Well-Known Binary (WKB) Format.

For the WKB part, these MySQL-specific considerations apply:

• The byte-order indicator byte is 1 because MySQL stores geometries as little-endian values.

• MySQL supports geometry types of Point, LineString, Polygon, MultiPoint,
MultiLineString, MultiPolygon, and GeometryCollection. Other geometry types are not
supported.

The LENGTH() function returns the space in bytes required for value storage. Example:

mysql> SET @g = ST_GeomFromText('POINT(1 -1)');
mysql> SELECT LENGTH(@g);
+------------+
| LENGTH(@g) |
+------------+
| 25 |
+------------+
mysql> SELECT HEX(@g);
+--+
| HEX(@g) |
+--+
| 000000000101000000000000000000F03F000000000000F0BF |
+--+

The value length is 25 bytes, made up of these components (as can be seen from the hexadecimal value):

• 4 bytes for integer SRID (0)

1840

Geometry Well-Formedness and Validity

• 1 byte for integer byte order (1 = little-endian)

• 4 bytes for integer type information (1 = Point)

• 8 bytes for double-precision X coordinate (1)

• 8 bytes for double-precision Y coordinate (−1)

11.4.4 Geometry Well-Formedness and Validity

For geometry values, MySQL distinguishes between the concepts of syntactically well-formed and
geometrically valid.

A geometry is syntactically well-formed if it satisfies conditions such as those in this (nonexhaustive) list:

• Linestrings have at least two points

• Polygons have at least one ring

• Polygon rings are closed (first and last points the same)

• Polygon rings have at least 4 points (minimum polygon is a triangle with first and last points the same)

• Collections are not empty (except GeometryCollection)

A geometry is geometrically valid if it is syntactically well-formed and satisfies conditions such as those in
this (nonexhaustive) list:

• Polygons are not self-intersecting

• Polygon interior rings are inside the exterior ring

• Multipolygons do not have overlapping polygons

Spatial functions fail if a geometry is not syntactically well-formed. Spatial import functions that parse
WKT or WKB values raise an error for attempts to create a geometry that is not syntactically well-formed.
Syntactic well-formedness is also checked for attempts to store geometries into tables.

It is permitted to insert, select, and update geometrically invalid geometries, but they must be syntactically
well-formed. Due to the computational expense, MySQL does not check explicitly for geometric validity.
Spatial computations may detect some cases of invalid geometries and raise an error, but they may also
return an undefined result without detecting the invalidity. Applications that require geometically valid
geometries should check them using the ST_IsValid() function.

11.4.5 Creating Spatial Columns

MySQL provides a standard way of creating spatial columns for geometry types, for example, with CREATE
TABLE or ALTER TABLE. Spatial columns are supported for MyISAM, InnoDB, NDB, and ARCHIVE tables.
See also the notes about spatial indexes under Section 11.4.9, “Creating Spatial Indexes”.

• Use the CREATE TABLE statement to create a table with a spatial column:

CREATE TABLE geom (g GEOMETRY);

• Use the ALTER TABLE statement to add or drop a spatial column to or from an existing table:

ALTER TABLE geom ADD pt POINT;
ALTER TABLE geom DROP pt;

1841

Populating Spatial Columns

11.4.6 Populating Spatial Columns

After you have created spatial columns, you can populate them with spatial data.

Values should be stored in internal geometry format, but you can convert them to that format from either
Well-Known Text (WKT) or Well-Known Binary (WKB) format. The following examples demonstrate how to
insert geometry values into a table by converting WKT values to internal geometry format:

• Perform the conversion directly in the INSERT statement:

INSERT INTO geom VALUES (ST_GeomFromText('POINT(1 1)'));

SET @g = 'POINT(1 1)';
INSERT INTO geom VALUES (ST_GeomFromText(@g));

• Perform the conversion prior to the INSERT:

SET @g = ST_GeomFromText('POINT(1 1)');
INSERT INTO geom VALUES (@g);

The following examples insert more complex geometries into the table:

SET @g = 'LINESTRING(0 0,1 1,2 2)';
INSERT INTO geom VALUES (ST_GeomFromText(@g));

SET @g = 'POLYGON((0 0,10 0,10 10,0 10,0 0),(5 5,7 5,7 7,5 7, 5 5))';
INSERT INTO geom VALUES (ST_GeomFromText(@g));

SET @g =
'GEOMETRYCOLLECTION(POINT(1 1),LINESTRING(0 0,1 1,2 2,3 3,4 4))';
INSERT INTO geom VALUES (ST_GeomFromText(@g));

The preceding examples use ST_GeomFromText() to create geometry values. You can also use type-
specific functions:

SET @g = 'POINT(1 1)';
INSERT INTO geom VALUES (ST_PointFromText(@g));

SET @g = 'LINESTRING(0 0,1 1,2 2)';
INSERT INTO geom VALUES (ST_LineStringFromText(@g));

SET @g = 'POLYGON((0 0,10 0,10 10,0 10,0 0),(5 5,7 5,7 7,5 7, 5 5))';
INSERT INTO geom VALUES (ST_PolygonFromText(@g));

SET @g =
'GEOMETRYCOLLECTION(POINT(1 1),LINESTRING(0 0,1 1,2 2,3 3,4 4))';
INSERT INTO geom VALUES (ST_GeomCollFromText(@g));

A client application program that wants to use WKB representations of geometry values is responsible for
sending correctly formed WKB in queries to the server. There are several ways to satisfy this requirement.
For example:

• Inserting a POINT(1 1) value with hex literal syntax:

INSERT INTO geom VALUES
(ST_GeomFromWKB(X'0101000000000000000000F03F000000000000F03F'));

• An ODBC application can send a WKB representation, binding it to a placeholder using an argument of
BLOB type:

INSERT INTO geom VALUES (ST_GeomFromWKB(?))

Other programming interfaces may support a similar placeholder mechanism.

1842

Fetching Spatial Data

• In a C program, you can escape a binary value using mysql_real_escape_string_quote() and
include the result in a query string that is sent to the server. See mysql_real_escape_string_quote().

11.4.7 Fetching Spatial Data

Geometry values stored in a table can be fetched in internal format. You can also convert them to WKT or
WKB format.

• Fetching spatial data in internal format:

Fetching geometry values using internal format can be useful in table-to-table transfers:

CREATE TABLE geom2 (g GEOMETRY) SELECT g FROM geom;

• Fetching spatial data in WKT format:

The ST_AsText() function converts a geometry from internal format to a WKT string.

SELECT ST_AsText(g) FROM geom;

• Fetching spatial data in WKB format:

The ST_AsBinary() function converts a geometry from internal format to a BLOB containing the WKB
value.

SELECT ST_AsBinary(g) FROM geom;

11.4.8 Optimizing Spatial Analysis

For MyISAM and InnoDB tables, search operations in columns containing spatial data can be optimized
using SPATIAL indexes. The most typical operations are:

• Point queries that search for all objects that contain a given point

• Region queries that search for all objects that overlap a given region

MySQL uses R-Trees with quadratic splitting for SPATIAL indexes on spatial columns. A SPATIAL
index is built using the minimum bounding rectangle (MBR) of a geometry. For most geometries, the MBR
is a minimum rectangle that surrounds the geometries. For a horizontal or a vertical linestring, the MBR is a
rectangle degenerated into the linestring. For a point, the MBR is a rectangle degenerated into the point.

It is also possible to create normal indexes on spatial columns. In a non-SPATIAL index, you must declare
a prefix for any spatial column except for POINT columns.

MyISAM and InnoDB support both SPATIAL and non-SPATIAL indexes. Other storage engines support
non-SPATIAL indexes, as described in Section 13.1.14, “CREATE INDEX Statement”.

11.4.9 Creating Spatial Indexes

For InnoDB and MyISAM tables, MySQL can create spatial indexes using syntax similar to that for creating
regular indexes, but using the SPATIAL keyword. Columns in spatial indexes must be declared NOT NULL.
The following examples demonstrate how to create spatial indexes:

• With CREATE TABLE:

CREATE TABLE geom (g GEOMETRY NOT NULL, SPATIAL INDEX(g));

• With ALTER TABLE:

1843

https://dev.mysql.com/doc/c-api/5.7/en/mysql-real-escape-string-quote.html
https://dev.mysql.com/doc/c-api/5.7/en/mysql-real-escape-string-quote.html

Using Spatial Indexes

CREATE TABLE geom (g GEOMETRY NOT NULL);
ALTER TABLE geom ADD SPATIAL INDEX(g);

• With CREATE INDEX:

CREATE TABLE geom (g GEOMETRY NOT NULL);
CREATE SPATIAL INDEX g ON geom (g);

SPATIAL INDEX creates an R-tree index. For storage engines that support nonspatial indexing of spatial
columns, the engine creates a B-tree index. A B-tree index on spatial values is useful for exact-value
lookups, but not for range scans.

For more information on indexing spatial columns, see Section 13.1.14, “CREATE INDEX Statement”.

To drop spatial indexes, use ALTER TABLE or DROP INDEX:

• With ALTER TABLE:

ALTER TABLE geom DROP INDEX g;

• With DROP INDEX:

DROP INDEX g ON geom;

Example: Suppose that a table geom contains more than 32,000 geometries, which are stored in the
column g of type GEOMETRY. The table also has an AUTO_INCREMENT column fid for storing object ID
values.

mysql> DESCRIBE geom;
+-------+----------+------+-----+---------+----------------+
| Field | Type | Null | Key | Default | Extra |
+-------+----------+------+-----+---------+----------------+
| fid | int(11) | | PRI | NULL | auto_increment |
| g | geometry | | | | |
+-------+----------+------+-----+---------+----------------+
2 rows in set (0.00 sec)

mysql> SELECT COUNT(*) FROM geom;
+----------+
| count(*) |
+----------+
| 32376 |
+----------+
1 row in set (0.00 sec)

To add a spatial index on the column g, use this statement:

mysql> ALTER TABLE geom ADD SPATIAL INDEX(g);
Query OK, 32376 rows affected (4.05 sec)
Records: 32376 Duplicates: 0 Warnings: 0

11.4.10 Using Spatial Indexes

The optimizer investigates whether available spatial indexes can be involved in the search for queries that
use a function such as MBRContains() or MBRWithin() in the WHERE clause. The following query finds
all objects that are in the given rectangle:

mysql> SET @poly =
 -> 'Polygon((30000 15000,
 31000 15000,
 31000 16000,
 30000 16000,

1844

Using Spatial Indexes

 30000 15000))';
mysql> SELECT fid,ST_AsText(g) FROM geom WHERE
 -> MBRContains(ST_GeomFromText(@poly),g);
+-----+---+
| fid | ST_AsText(g) |
+-----+---+
21	LINESTRING(30350.4 15828.8,30350.6 15845,30333.8 15845,30 ...
22	LINESTRING(30350.6 15871.4,30350.6 15887.8,30334 15887.8, ...
23	LINESTRING(30350.6 15914.2,30350.6 15930.4,30334 15930.4, ...
24	LINESTRING(30290.2 15823,30290.2 15839.4,30273.4 15839.4, ...
25	LINESTRING(30291.4 15866.2,30291.6 15882.4,30274.8 15882. ...
26	LINESTRING(30291.6 15918.2,30291.6 15934.4,30275 15934.4, ...
249	LINESTRING(30337.8 15938.6,30337.8 15946.8,30320.4 15946. ...
1	LINESTRING(30250.4 15129.2,30248.8 15138.4,30238.2 15136. ...
2	LINESTRING(30220.2 15122.8,30217.2 15137.8,30207.6 15136, ...
3	LINESTRING(30179 15114.4,30176.6 15129.4,30167 15128,3016 ...
4	LINESTRING(30155.2 15121.4,30140.4 15118.6,30142 15109,30 ...
5	LINESTRING(30192.4 15085,30177.6 15082.2,30179.2 15072.4, ...
6	LINESTRING(30244 15087,30229 15086.2,30229.4 15076.4,3024 ...
7	LINESTRING(30200.6 15059.4,30185.6 15058.6,30186 15048.8, ...
10	LINESTRING(30179.6 15017.8,30181 15002.8,30190.8 15003.6, ...
11	LINESTRING(30154.2 15000.4,30168.6 15004.8,30166 15014.2, ...
13	LINESTRING(30105 15065.8,30108.4 15050.8,30118 15053,3011 ...
154	LINESTRING(30276.2 15143.8,30261.4 15141,30263 15131.4,30 ...
155	LINESTRING(30269.8 15084,30269.4 15093.4,30258.6 15093,30 ...
157	LINESTRING(30128.2 15011,30113.2 15010.2,30113.6 15000.4, ...
+-----+---+
20 rows in set (0.00 sec)

Use EXPLAIN to check the way this query is executed:

mysql> SET @poly =
 -> 'Polygon((30000 15000,
 31000 15000,
 31000 16000,
 30000 16000,
 30000 15000))';
mysql> EXPLAIN SELECT fid,ST_AsText(g) FROM geom WHERE
 -> MBRContains(ST_GeomFromText(@poly),g)\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: geom
 type: range
possible_keys: g
 key: g
 key_len: 32
 ref: NULL
 rows: 50
 Extra: Using where
1 row in set (0.00 sec)

Check what would happen without a spatial index:

mysql> SET @poly =
 -> 'Polygon((30000 15000,
 31000 15000,
 31000 16000,
 30000 16000,
 30000 15000))';
mysql> EXPLAIN SELECT fid,ST_AsText(g) FROM g IGNORE INDEX (g) WHERE
 -> MBRContains(ST_GeomFromText(@poly),g)\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: geom
 type: ALL

1845

The JSON Data Type

possible_keys: NULL
 key: NULL
 key_len: NULL
 ref: NULL
 rows: 32376
 Extra: Using where
1 row in set (0.00 sec)

Executing the SELECT statement without the spatial index yields the same result but causes the execution
time to rise from 0.00 seconds to 0.46 seconds:

mysql> SET @poly =
 -> 'Polygon((30000 15000,
 31000 15000,
 31000 16000,
 30000 16000,
 30000 15000))';
mysql> SELECT fid,ST_AsText(g) FROM geom IGNORE INDEX (g) WHERE
 -> MBRContains(ST_GeomFromText(@poly),g);
+-----+---+
| fid | ST_AsText(g) |
+-----+---+
1	LINESTRING(30250.4 15129.2,30248.8 15138.4,30238.2 15136. ...
2	LINESTRING(30220.2 15122.8,30217.2 15137.8,30207.6 15136, ...
3	LINESTRING(30179 15114.4,30176.6 15129.4,30167 15128,3016 ...
4	LINESTRING(30155.2 15121.4,30140.4 15118.6,30142 15109,30 ...
5	LINESTRING(30192.4 15085,30177.6 15082.2,30179.2 15072.4, ...
6	LINESTRING(30244 15087,30229 15086.2,30229.4 15076.4,3024 ...
7	LINESTRING(30200.6 15059.4,30185.6 15058.6,30186 15048.8, ...
10	LINESTRING(30179.6 15017.8,30181 15002.8,30190.8 15003.6, ...
11	LINESTRING(30154.2 15000.4,30168.6 15004.8,30166 15014.2, ...
13	LINESTRING(30105 15065.8,30108.4 15050.8,30118 15053,3011 ...
21	LINESTRING(30350.4 15828.8,30350.6 15845,30333.8 15845,30 ...
22	LINESTRING(30350.6 15871.4,30350.6 15887.8,30334 15887.8, ...
23	LINESTRING(30350.6 15914.2,30350.6 15930.4,30334 15930.4, ...
24	LINESTRING(30290.2 15823,30290.2 15839.4,30273.4 15839.4, ...
25	LINESTRING(30291.4 15866.2,30291.6 15882.4,30274.8 15882. ...
26	LINESTRING(30291.6 15918.2,30291.6 15934.4,30275 15934.4, ...
154	LINESTRING(30276.2 15143.8,30261.4 15141,30263 15131.4,30 ...
155	LINESTRING(30269.8 15084,30269.4 15093.4,30258.6 15093,30 ...
157	LINESTRING(30128.2 15011,30113.2 15010.2,30113.6 15000.4, ...
249	LINESTRING(30337.8 15938.6,30337.8 15946.8,30320.4 15946. ...
+-----+---+
20 rows in set (0.46 sec)

11.5 The JSON Data Type
• Creating JSON Values

• Normalization, Merging, and Autowrapping of JSON Values

• Searching and Modifying JSON Values

• JSON Path Syntax

• Comparison and Ordering of JSON Values

• Converting between JSON and non-JSON values

• Aggregation of JSON Values

As of MySQL 5.7.8, MySQL supports a native JSON (JavaScript Object Notation) data type defined by
RFC 8259 that enables efficient access to data in JSON documents. The JSON data type provides these
advantages over storing JSON-format strings in a string column:

1846

https://datatracker.ietf.org/doc/html/rfc8259

Creating JSON Values

• Automatic validation of JSON documents stored in JSON columns. Invalid documents produce an error.

• Optimized storage format. JSON documents stored in JSON columns are converted to an internal format
that permits quick read access to document elements. When the server later must read a JSON value
stored in this binary format, the value need not be parsed from a text representation. The binary format
is structured to enable the server to look up subobjects or nested values directly by key or array index
without reading all values before or after them in the document.

Note

This discussion uses JSON in monotype to indicate specifically the JSON data type
and “JSON” in regular font to indicate JSON data in general.

The space required to store a JSON document is roughly the same as for LONGBLOB or LONGTEXT;
see Section 11.7, “Data Type Storage Requirements”, for more information. It is important to keep
in mind that the size of any JSON document stored in a JSON column is limited to the value of the
max_allowed_packet system variable. (When the server is manipulating a JSON value internally in
memory, it can be larger than this; the limit applies when the server stores it.)

A JSON column cannot have a non-NULL default value.

Along with the JSON data type, a set of SQL functions is available to enable operations on JSON values,
such as creation, manipulation, and searching. The following discussion shows examples of these
operations. For details about individual functions, see Section 12.17, “JSON Functions”.

A set of spatial functions for operating on GeoJSON values is also available. See Section 12.16.11,
“Spatial GeoJSON Functions”.

JSON columns, like columns of other binary types, are not indexed directly; instead, you can create
an index on a generated column that extracts a scalar value from the JSON column. See Indexing a
Generated Column to Provide a JSON Column Index, for a detailed example.

The MySQL optimizer also looks for compatible indexes on virtual columns that match JSON expressions.

MySQL NDB Cluster 7.5 (7.5.2 and later) supports JSON columns and MySQL JSON functions, including
creation of an index on a column generated from a JSON column as a workaround for being unable to
index a JSON column. A maximum of 3 JSON columns per NDB table is supported.

The next few sections provide basic information regarding the creation and manipulation of JSON values.

Creating JSON Values

A JSON array contains a list of values separated by commas and enclosed within [and] characters:

["abc", 10, null, true, false]

A JSON object contains a set of key-value pairs separated by commas and enclosed within { and }
characters:

{"k1": "value", "k2": 10}

As the examples illustrate, JSON arrays and objects can contain scalar values that are strings or numbers,
the JSON null literal, or the JSON boolean true or false literals. Keys in JSON objects must be strings.
Temporal (date, time, or datetime) scalar values are also permitted:

["12:18:29.000000", "2015-07-29", "2015-07-29 12:18:29.000000"]

Nesting is permitted within JSON array elements and JSON object key values:

1847

Creating JSON Values

[99, {"id": "HK500", "cost": 75.99}, ["hot", "cold"]]
{"k1": "value", "k2": [10, 20]}

You can also obtain JSON values from a number of functions supplied by MySQL for this purpose (see
Section 12.17.2, “Functions That Create JSON Values”) as well as by casting values of other types to the
JSON type using CAST(value AS JSON) (see Converting between JSON and non-JSON values). The
next several paragraphs describe how MySQL handles JSON values provided as input.

In MySQL, JSON values are written as strings. MySQL parses any string used in a context that requires
a JSON value, and produces an error if it is not valid as JSON. These contexts include inserting a value
into a column that has the JSON data type and passing an argument to a function that expects a JSON
value (usually shown as json_doc or json_val in the documentation for MySQL JSON functions), as the
following examples demonstrate:

• Attempting to insert a value into a JSON column succeeds if the value is a valid JSON value, but fails if it
is not:

mysql> CREATE TABLE t1 (jdoc JSON);
Query OK, 0 rows affected (0.20 sec)

mysql> INSERT INTO t1 VALUES('{"key1": "value1", "key2": "value2"}');
Query OK, 1 row affected (0.01 sec)

mysql> INSERT INTO t1 VALUES('[1, 2,');
ERROR 3140 (22032) at line 2: Invalid JSON text:
"Invalid value." at position 6 in value (or column) '[1, 2,'.

Positions for “at position N” in such error messages are 0-based, but should be considered rough
indications of where the problem in a value actually occurs.

• The JSON_TYPE() function expects a JSON argument and attempts to parse it into a JSON value. It
returns the value's JSON type if it is valid and produces an error otherwise:

mysql> SELECT JSON_TYPE('["a", "b", 1]');
+----------------------------+
| JSON_TYPE('["a", "b", 1]') |
+----------------------------+
| ARRAY |
+----------------------------+

mysql> SELECT JSON_TYPE('"hello"');
+----------------------+
| JSON_TYPE('"hello"') |
+----------------------+
| STRING |
+----------------------+

mysql> SELECT JSON_TYPE('hello');
ERROR 3146 (22032): Invalid data type for JSON data in argument 1
to function json_type; a JSON string or JSON type is required.

MySQL handles strings used in JSON context using the utf8mb4 character set and utf8mb4_bin
collation. Strings in other character sets are converted to utf8mb4 as necessary. (For strings in the ascii
or utf8 character sets, no conversion is needed because ascii and utf8 are subsets of utf8mb4.)

As an alternative to writing JSON values using literal strings, functions exist for composing JSON values
from component elements. JSON_ARRAY() takes a (possibly empty) list of values and returns a JSON
array containing those values:

mysql> SELECT JSON_ARRAY('a', 1, NOW());
+--+
| JSON_ARRAY('a', 1, NOW()) |

1848

Creating JSON Values

+--+
| ["a", 1, "2015-07-27 09:43:47.000000"] |
+--+

JSON_OBJECT() takes a (possibly empty) list of key-value pairs and returns a JSON object containing
those pairs:

mysql> SELECT JSON_OBJECT('key1', 1, 'key2', 'abc');
+---------------------------------------+
| JSON_OBJECT('key1', 1, 'key2', 'abc') |
+---------------------------------------+
| {"key1": 1, "key2": "abc"} |
+---------------------------------------+

JSON_MERGE() takes two or more JSON documents and returns the combined result:

mysql> SELECT JSON_MERGE('["a", 1]', '{"key": "value"}');
+--+
| JSON_MERGE('["a", 1]', '{"key": "value"}') |
+--+
| ["a", 1, {"key": "value"}] |
+--+

For information about the merging rules, see Normalization, Merging, and Autowrapping of JSON Values.

JSON values can be assigned to user-defined variables:

mysql> SET @j = JSON_OBJECT('key', 'value');
mysql> SELECT @j;
+------------------+
| @j |
+------------------+
| {"key": "value"} |
+------------------+

However, user-defined variables cannot be of JSON data type, so although @j in the preceding example
looks like a JSON value and has the same character set and collation as a JSON value, it does not have
the JSON data type. Instead, the result from JSON_OBJECT() is converted to a string when assigned to the
variable.

Strings produced by converting JSON values have a character set of utf8mb4 and a collation of
utf8mb4_bin:

mysql> SELECT CHARSET(@j), COLLATION(@j);
+-------------+---------------+
| CHARSET(@j) | COLLATION(@j) |
+-------------+---------------+
| utf8mb4 | utf8mb4_bin |
+-------------+---------------+

Because utf8mb4_bin is a binary collation, comparison of JSON values is case-sensitive.

mysql> SELECT JSON_ARRAY('x') = JSON_ARRAY('X');
+-----------------------------------+
| JSON_ARRAY('x') = JSON_ARRAY('X') |
+-----------------------------------+
| 0 |
+-----------------------------------+

Case sensitivity also applies to the JSON null, true, and false literals, which always must be written in
lowercase:

mysql> SELECT JSON_VALID('null'), JSON_VALID('Null'), JSON_VALID('NULL');

1849

Creating JSON Values

+--------------------+--------------------+--------------------+
| JSON_VALID('null') | JSON_VALID('Null') | JSON_VALID('NULL') |
+--------------------+--------------------+--------------------+
| 1 | 0 | 0 |
+--------------------+--------------------+--------------------+

mysql> SELECT CAST('null' AS JSON);
+----------------------+
| CAST('null' AS JSON) |
+----------------------+
| null |
+----------------------+
1 row in set (0.00 sec)

mysql> SELECT CAST('NULL' AS JSON);
ERROR 3141 (22032): Invalid JSON text in argument 1 to function cast_as_json:
"Invalid value." at position 0 in 'NULL'.

Case sensitivity of the JSON literals differs from that of the SQL NULL, TRUE, and FALSE literals, which
can be written in any lettercase:

mysql> SELECT ISNULL(null), ISNULL(Null), ISNULL(NULL);
+--------------+--------------+--------------+
| ISNULL(null) | ISNULL(Null) | ISNULL(NULL) |
+--------------+--------------+--------------+
| 1 | 1 | 1 |
+--------------+--------------+--------------+

Sometimes it may be necessary or desirable to insert quote characters (" or ') into a JSON document.
Assume for this example that you want to insert some JSON objects containing strings representing
sentences that state some facts about MySQL, each paired with an appropriate keyword, into a table
created using the SQL statement shown here:

mysql> CREATE TABLE facts (sentence JSON);

Among these keyword-sentence pairs is this one:

mascot: The MySQL mascot is a dolphin named "Sakila".

One way to insert this as a JSON object into the facts table is to use the MySQL JSON_OBJECT()
function. In this case, you must escape each quote character using a backslash, as shown here:

mysql> INSERT INTO facts VALUES
 > (JSON_OBJECT("mascot", "Our mascot is a dolphin named \"Sakila\"."));

This does not work in the same way if you insert the value as a JSON object literal, in which case, you
must use the double backslash escape sequence, like this:

mysql> INSERT INTO facts VALUES
 > ('{"mascot": "Our mascot is a dolphin named \\"Sakila\\"."}');

Using the double backslash keeps MySQL from performing escape sequence processing, and instead
causes it to pass the string literal to the storage engine for processing. After inserting the JSON object in
either of the ways just shown, you can see that the backslashes are present in the JSON column value by
doing a simple SELECT, like this:

mysql> SELECT sentence FROM facts;
+---+
| sentence |
+---+
| {"mascot": "Our mascot is a dolphin named \"Sakila\"."} |
+---+

1850

Normalization, Merging, and Autowrapping of JSON Values

To look up this particular sentence employing mascot as the key, you can use the column-path operator -
>, as shown here:

mysql> SELECT col->"$.mascot" FROM qtest;
+---+
| col->"$.mascot" |
+---+
| "Our mascot is a dolphin named \"Sakila\"." |
+---+
1 row in set (0.00 sec)

This leaves the backslashes intact, along with the surrounding quote marks. To display the desired value
using mascot as the key, but without including the surrounding quote marks or any escapes, use the inline
path operator ->>, like this:

mysql> SELECT sentence->>"$.mascot" FROM facts;
+---+
| sentence->>"$.mascot" |
+---+
| Our mascot is a dolphin named "Sakila". |
+---+

Note

The previous example does not work as shown if the NO_BACKSLASH_ESCAPES
server SQL mode is enabled. If this mode is set, a single backslash instead
of double backslashes can be used to insert the JSON object literal, and the
backslashes are preserved. If you use the JSON_OBJECT() function when
performing the insert and this mode is set, you must alternate single and double
quotes, like this:

mysql> INSERT INTO facts VALUES
 > (JSON_OBJECT('mascot', 'Our mascot is a dolphin named "Sakila".'));

See the description of the JSON_UNQUOTE() function for more information about
the effects of this mode on escaped characters in JSON values.

Normalization, Merging, and Autowrapping of JSON Values

When a string is parsed and found to be a valid JSON document, it is also normalized: Members with keys
that duplicate a key found earlier in the document are discarded (even if the values differ). The object value
produced by the following JSON_OBJECT() call does not include the second key1 element because that
key name occurs earlier in the value:

mysql> SELECT JSON_OBJECT('key1', 1, 'key2', 'abc', 'key1', 'def');
+--+
| JSON_OBJECT('key1', 1, 'key2', 'abc', 'key1', 'def') |
+--+
| {"key1": 1, "key2": "abc"} |
+--+

Note

This “first key wins” handling of duplicate keys is not consistent with RFC 7159. This
is a known issue in MySQL 5.7, which is fixed in MySQL 8.0. (Bug #86866, Bug
#26369555)

MySQL also discards extra whitespace between keys, values, or elements in the original JSON document,
and leaves (or inserts, when necessary) a single space following each comma (,) or colon (:) when
displaying it. This is done to enhance readibility.

1851

https://tools.ietf.org/html/rfc7159

Normalization, Merging, and Autowrapping of JSON Values

MySQL functions that produce JSON values (see Section 12.17.2, “Functions That Create JSON Values”)
always return normalized values.

To make lookups more efficient, it also sorts the keys of a JSON object. You should be aware that the
result of this ordering is subject to change and not guaranteed to be consistent across releases.

Merging JSON Values

In contexts that combine multiple arrays, the arrays are merged into a single array by concatenating arrays
named later to the end of the first array. In the following example, JSON_MERGE() merges its arguments
into a single array:

mysql> SELECT JSON_MERGE('[1, 2]', '["a", "b"]', '[true, false]');
+---+
| JSON_MERGE('[1, 2]', '["a", "b"]', '[true, false]') |
+---+
| [1, 2, "a", "b", true, false] |
+---+

Normalization is also performed when values are inserted into JSON columns, as shown here:

mysql> CREATE TABLE t1 (c1 JSON);

mysql> INSERT INTO t1 VALUES
 > ('{"x": 17, "x": "red"}'),
 > ('{"x": 17, "x": "red", "x": [3, 5, 7]}');

mysql> SELECT c1 FROM t1;
+-----------+
| c1 |
+-----------+
| {"x": 17} |
| {"x": 17} |
+-----------+

Multiple objects when merged produce a single object. If multiple objects have the same key, the value for
that key in the resulting merged object is an array containing the key values:

mysql> SELECT JSON_MERGE('{"a": 1, "b": 2}', '{"c": 3, "a": 4}');
+--+
| JSON_MERGE('{"a": 1, "b": 2}', '{"c": 3, "a": 4}') |
+--+
| {"a": [1, 4], "b": 2, "c": 3} |
+--+

Nonarray values used in a context that requires an array value are autowrapped: The value is surrounded
by [and] characters to convert it to an array. In the following statement, each argument is autowrapped
as an array ([1], [2]). These are then merged to produce a single result array:

mysql> SELECT JSON_MERGE('1', '2');
+----------------------+
| JSON_MERGE('1', '2') |
+----------------------+
| [1, 2] |
+----------------------+

Array and object values are merged by autowrapping the object as an array and merging the two arrays:

mysql> SELECT JSON_MERGE('[10, 20]', '{"a": "x", "b": "y"}');
+--+
| JSON_MERGE('[10, 20]', '{"a": "x", "b": "y"}') |
+--+
| [10, 20, {"a": "x", "b": "y"}] |

1852

Searching and Modifying JSON Values

+--+

Searching and Modifying JSON Values

A JSON path expression selects a value within a JSON document.

Path expressions are useful with functions that extract parts of or modify a JSON document, to specify
where within that document to operate. For example, the following query extracts from a JSON document
the value of the member with the name key:

mysql> SELECT JSON_EXTRACT('{"id": 14, "name": "Aztalan"}', '$.name');
+---+
| JSON_EXTRACT('{"id": 14, "name": "Aztalan"}', '$.name') |
+---+
| "Aztalan" |
+---+

Path syntax uses a leading $ character to represent the JSON document under consideration, optionally
followed by selectors that indicate successively more specific parts of the document:

• A period followed by a key name names the member in an object with the given key. The key name
must be specified within double quotation marks if the name without quotes is not legal within path
expressions (for example, if it contains a space).

• [N] appended to a path that selects an array names the value at position N within the array. Array
positions are integers beginning with zero. If path does not select an array value, path[0] evaluates to
the same value as path:

mysql> SELECT JSON_SET('"x"', '$[0]', 'a');
+------------------------------+
| JSON_SET('"x"', '$[0]', 'a') |
+------------------------------+
| "a" |
+------------------------------+
1 row in set (0.00 sec)

• Paths can contain * or ** wildcards:

• .[*] evaluates to the values of all members in a JSON object.

• [*] evaluates to the values of all elements in a JSON array.

• prefix**suffix evaluates to all paths that begin with the named prefix and end with the named
suffix.

• A path that does not exist in the document (evaluates to nonexistent data) evaluates to NULL.

Let $ refer to this JSON array with three elements:

[3, {"a": [5, 6], "b": 10}, [99, 100]]

Then:

• $[0] evaluates to 3.

• $[1] evaluates to {"a": [5, 6], "b": 10}.

• $[2] evaluates to [99, 100].

• $[3] evaluates to NULL (it refers to the fourth array element, which does not exist).

1853

Searching and Modifying JSON Values

Because $[1] and $[2] evaluate to nonscalar values, they can be used as the basis for more-specific
path expressions that select nested values. Examples:

• $[1].a evaluates to [5, 6].

• $[1].a[1] evaluates to 6.

• $[1].b evaluates to 10.

• $[2][0] evaluates to 99.

As mentioned previously, path components that name keys must be quoted if the unquoted key name is
not legal in path expressions. Let $ refer to this value:

{"a fish": "shark", "a bird": "sparrow"}

The keys both contain a space and must be quoted:

• $."a fish" evaluates to shark.

• $."a bird" evaluates to sparrow.

Paths that use wildcards evaluate to an array that can contain multiple values:

mysql> SELECT JSON_EXTRACT('{"a": 1, "b": 2, "c": [3, 4, 5]}', '$.*');
+---+
| JSON_EXTRACT('{"a": 1, "b": 2, "c": [3, 4, 5]}', '$.*') |
+---+
| [1, 2, [3, 4, 5]] |
+---+
mysql> SELECT JSON_EXTRACT('{"a": 1, "b": 2, "c": [3, 4, 5]}', '$.c[*]');
+--+
| JSON_EXTRACT('{"a": 1, "b": 2, "c": [3, 4, 5]}', '$.c[*]') |
+--+
| [3, 4, 5] |
+--+

In the following example, the path $**.b evaluates to multiple paths ($.a.b and $.c.b) and produces an
array of the matching path values:

mysql> SELECT JSON_EXTRACT('{"a": {"b": 1}, "c": {"b": 2}}', '$**.b');
+---+
| JSON_EXTRACT('{"a": {"b": 1}, "c": {"b": 2}}', '$**.b') |
+---+
| [1, 2] |
+---+

In MySQL 5.7.9 and later, you can use column->path with a JSON column identifier and JSON path
expression as a synonym for JSON_EXTRACT(column, path). See Section 12.17.3, “Functions That
Search JSON Values”, for more information. See also Indexing a Generated Column to Provide a JSON
Column Index.

Some functions take an existing JSON document, modify it in some way, and return the resulting modified
document. Path expressions indicate where in the document to make changes. For example, the
JSON_SET(), JSON_INSERT(), and JSON_REPLACE() functions each take a JSON document, plus one
or more path/value pairs that describe where to modify the document and the values to use. The functions
differ in how they handle existing and nonexisting values within the document.

Consider this document:

mysql> SET @j = '["a", {"b": [true, false]}, [10, 20]]';

1854

JSON Path Syntax

JSON_SET() replaces values for paths that exist and adds values for paths that do not exist:.

mysql> SELECT JSON_SET(@j, '$[1].b[0]', 1, '$[2][2]', 2);
+--+
| JSON_SET(@j, '$[1].b[0]', 1, '$[2][2]', 2) |
+--+
| ["a", {"b": [1, false]}, [10, 20, 2]] |
+--+

In this case, the path $[1].b[0] selects an existing value (true), which is replaced with the value
following the path argument (1). The path $[2][2] does not exist, so the corresponding value (2) is
added to the value selected by $[2].

JSON_INSERT() adds new values but does not replace existing values:

mysql> SELECT JSON_INSERT(@j, '$[1].b[0]', 1, '$[2][2]', 2);
+---+
| JSON_INSERT(@j, '$[1].b[0]', 1, '$[2][2]', 2) |
+---+
| ["a", {"b": [true, false]}, [10, 20, 2]] |
+---+

JSON_REPLACE() replaces existing values and ignores new values:

mysql> SELECT JSON_REPLACE(@j, '$[1].b[0]', 1, '$[2][2]', 2);
+--+
| JSON_REPLACE(@j, '$[1].b[0]', 1, '$[2][2]', 2) |
+--+
| ["a", {"b": [1, false]}, [10, 20]] |
+--+

The path/value pairs are evaluated left to right. The document produced by evaluating one pair becomes
the new value against which the next pair is evaluated.

JSON_REMOVE() takes a JSON document and one or more paths that specify values to be removed from
the document. The return value is the original document minus the values selected by paths that exist
within the document:

mysql> SELECT JSON_REMOVE(@j, '$[2]', '$[1].b[1]', '$[1].b[1]');
+---+
| JSON_REMOVE(@j, '$[2]', '$[1].b[1]', '$[1].b[1]') |
+---+
| ["a", {"b": [true]}] |
+---+

The paths have these effects:

• $[2] matches [10, 20] and removes it.

• The first instance of $[1].b[1] matches false in the b element and removes it.

• The second instance of $[1].b[1] matches nothing: That element has already been removed, the path
no longer exists, and has no effect.

JSON Path Syntax

Many of the JSON functions supported by MySQL and described elsewhere in this Manual (see
Section 12.17, “JSON Functions”) require a path expression in order to identify a specific element in a
JSON document. A path consists of the path's scope followed by one or more path legs. For paths used
in MySQL JSON functions, the scope is always the document being searched or otherwise operated on,
represented by a leading $ character. Path legs are separated by period characters (.). Cells in arrays

1855

Comparison and Ordering of JSON Values

are represented by [N], where N is a non-negative integer. Names of keys must be double-quoted strings
or valid ECMAScript identifiers (see http://www.ecma-international.org/ecma-262/5.1/
#sec-7.6). Path expressions, like JSON text, should be encoded using the ascii, utf8, or utf8mb4
character set. Other character encodings are implicitly coerced to utf8mb4. The complete syntax is shown
here:

pathExpression:
 scope[(pathLeg)*]

pathLeg:
 member | arrayLocation | doubleAsterisk

member:
 period (keyName | asterisk)

arrayLocation:
 leftBracket (nonNegativeInteger | asterisk) rightBracket

keyName:
 ESIdentifier | doubleQuotedString

doubleAsterisk:
 '**'

period:
 '.'

asterisk:
 '*'

leftBracket:
 '['

rightBracket:
 ']'

As noted previously, in MySQL, the scope of the path is always the document being operated on,
represented as $. You can use '$' as a synonym for the document in JSON path expressions.

Note

Some implementations support column references for scopes of JSON paths;
currently, MySQL does not support these.

The wildcard * and ** tokens are used as follows:

• .* represents the values of all members in the object.

• [*] represents the values of all cells in the array.

• [prefix]**suffix represents all paths beginning with prefix and ending with suffix. prefix is
optional, while suffix is required; in other words, a path may not end in **.

In addition, a path may not contain the sequence ***.

For path syntax examples, see the descriptions of the various JSON functions that take paths as
arguments, such as JSON_CONTAINS_PATH(), JSON_SET(), and JSON_REPLACE(). For examples
which include the use of the * and ** wildcards, see the description of the JSON_SEARCH() function.

Comparison and Ordering of JSON Values

JSON values can be compared using the =, <, <=, >, >=, <>, !=, and <=> operators.

1856

Comparison and Ordering of JSON Values

The following comparison operators and functions are not yet supported with JSON values:

• BETWEEN

• IN()

• GREATEST()

• LEAST()

A workaround for the comparison operators and functions just listed is to cast JSON values to a native
MySQL numeric or string data type so they have a consistent non-JSON scalar type.

Comparison of JSON values takes place at two levels. The first level of comparison is based on the JSON
types of the compared values. If the types differ, the comparison result is determined solely by which type
has higher precedence. If the two values have the same JSON type, a second level of comparison occurs
using type-specific rules.

The following list shows the precedences of JSON types, from highest precedence to the lowest. (The type
names are those returned by the JSON_TYPE() function.) Types shown together on a line have the same
precedence. Any value having a JSON type listed earlier in the list compares greater than any value having
a JSON type listed later in the list.

BLOB
BIT
OPAQUE
DATETIME
TIME
DATE
BOOLEAN
ARRAY
OBJECT
STRING
INTEGER, DOUBLE
NULL

For JSON values of the same precedence, the comparison rules are type specific:

• BLOB

The first N bytes of the two values are compared, where N is the number of bytes in the shorter value. If
the first N bytes of the two values are identical, the shorter value is ordered before the longer value.

• BIT

Same rules as for BLOB.

• OPAQUE

Same rules as for BLOB. OPAQUE values are values that are not classified as one of the other types.

• DATETIME

A value that represents an earlier point in time is ordered before a value that represents a later point in
time. If two values originally come from the MySQL DATETIME and TIMESTAMP types, respectively, they
are equal if they represent the same point in time.

• TIME

The smaller of two time values is ordered before the larger one.

1857

Comparison and Ordering of JSON Values

• DATE

The earlier date is ordered before the more recent date.

• ARRAY

Two JSON arrays are equal if they have the same length and values in corresponding positions in the
arrays are equal.

If the arrays are not equal, their order is determined by the elements in the first position where there is
a difference. The array with the smaller value in that position is ordered first. If all values of the shorter
array are equal to the corresponding values in the longer array, the shorter array is ordered first.

Example:

[] < ["a"] < ["ab"] < ["ab", "cd", "ef"] < ["ab", "ef"]

• BOOLEAN

The JSON false literal is less than the JSON true literal.

• OBJECT

Two JSON objects are equal if they have the same set of keys, and each key has the same value in both
objects.

Example:

{"a": 1, "b": 2} = {"b": 2, "a": 1}

The order of two objects that are not equal is unspecified but deterministic.

• STRING

Strings are ordered lexically on the first N bytes of the utf8mb4 representation of the two strings being
compared, where N is the length of the shorter string. If the first N bytes of the two strings are identical,
the shorter string is considered smaller than the longer string.

Example:

"a" < "ab" < "b" < "bc"

This ordering is equivalent to the ordering of SQL strings with collation utf8mb4_bin. Because
utf8mb4_bin is a binary collation, comparison of JSON values is case-sensitive:

"A" < "a"

• INTEGER, DOUBLE

JSON values can contain exact-value numbers and approximate-value numbers. For a general
discussion of these types of numbers, see Section 9.1.2, “Numeric Literals”.

The rules for comparing native MySQL numeric types are discussed in Section 12.3, “Type Conversion
in Expression Evaluation”, but the rules for comparing numbers within JSON values differ somewhat:

• In a comparison between two columns that use the native MySQL INT and DOUBLE numeric types,
respectively, it is known that all comparisons involve an integer and a double, so the integer is
converted to double for all rows. That is, exact-value numbers are converted to approximate-value
numbers.

1858

Converting between JSON and non-JSON values

• On the other hand, if the query compares two JSON columns containing numbers, it cannot be
known in advance whether numbers are integer or double. To provide the most consistent behavior
across all rows, MySQL converts approximate-value numbers to exact-value numbers. The resulting
ordering is consistent and does not lose precision for the exact-value numbers. For example,
given the scalars 9223372036854775805, 9223372036854775806, 9223372036854775807 and
9.223372036854776e18, the order is such as this:

9223372036854775805 < 9223372036854775806 < 9223372036854775807
< 9.223372036854776e18 = 9223372036854776000 < 9223372036854776001

Were JSON comparisons to use the non-JSON numeric comparison rules, inconsistent ordering could
occur. The usual MySQL comparison rules for numbers yield these orderings:

• Integer comparison:

9223372036854775805 < 9223372036854775806 < 9223372036854775807

(not defined for 9.223372036854776e18)

• Double comparison:

9223372036854775805 = 9223372036854775806 = 9223372036854775807 = 9.223372036854776e18

For comparison of any JSON value to SQL NULL, the result is UNKNOWN.

For comparison of JSON and non-JSON values, the non-JSON value is converted to JSON according to
the rules in the following table, then the values compared as described previously.

Converting between JSON and non-JSON values

The following table provides a summary of the rules that MySQL follows when casting between JSON
values and values of other types:

Table 11.3 JSON Conversion Rules

other type CAST(other type AS JSON) CAST(JSON AS other type)

JSON No change No change

utf8 character type (utf8mb4,
utf8, ascii)

The string is parsed into a JSON
value.

The JSON value is serialized into
a utf8mb4 string.

Other character types Other character encodings are
implicitly converted to utf8mb4
and treated as described for utf8
character type.

The JSON value is serialized into
a utf8mb4 string, then cast to
the other character encoding. The
result may not be meaningful.

NULL Results in a NULL value of type
JSON.

Not applicable.

Geometry types The geometry value is converted
into a JSON document by calling
ST_AsGeoJSON().

Illegal operation. Workaround:
Pass the result of
CAST(json_val AS CHAR) to
ST_GeomFromGeoJSON().

All other types Results in a JSON document
consisting of a single scalar value.

Succeeds if the JSON document
consists of a single scalar value
of the target type and that scalar
value can be cast to the target

1859

Aggregation of JSON Values

other type CAST(other type AS JSON) CAST(JSON AS other type)
type. Otherwise, returns NULL and
produces a warning.

ORDER BY and GROUP BY for JSON values works according to these principles:

• Ordering of scalar JSON values uses the same rules as in the preceding discussion.

• For ascending sorts, SQL NULL orders before all JSON values, including the JSON null literal; for
descending sorts, SQL NULL orders after all JSON values, including the JSON null literal.

• Sort keys for JSON values are bound by the value of the max_sort_length system variable, so keys
that differ only after the first max_sort_length bytes compare as equal.

• Sorting of nonscalar values is not currently supported and a warning occurs.

For sorting, it can be beneficial to cast a JSON scalar to some other native MySQL type. For example, if a
column named jdoc contains JSON objects having a member consisting of an id key and a nonnegative
value, use this expression to sort by id values:

ORDER BY CAST(JSON_EXTRACT(jdoc, '$.id') AS UNSIGNED)

If there happens to be a generated column defined to use the same expression as in the ORDER BY,
the MySQL optimizer recognizes that and considers using the index for the query execution plan. See
Section 8.3.10, “Optimizer Use of Generated Column Indexes”.

Aggregation of JSON Values

For aggregation of JSON values, SQL NULL values are ignored as for other data types. Non-NULL values
are converted to a numeric type and aggregated, except for MIN(), MAX(), and GROUP_CONCAT().
The conversion to number should produce a meaningful result for JSON values that are numeric scalars,
although (depending on the values) truncation and loss of precision may occur. Conversion to number of
other JSON values may not produce a meaningful result.

11.6 Data Type Default Values

Data type specifications can have explicit or implicit default values.

• Explicit Default Handling

• Implicit Default Handling

Explicit Default Handling

A DEFAULT value clause in a data type specification explicitly indicates a default value for a column.
Examples:

CREATE TABLE t1 (
 i INT DEFAULT -1,
 c VARCHAR(10) DEFAULT '',
 price DOUBLE(16,2) DEFAULT '0.00'
);

SERIAL DEFAULT VALUE is a special case. In the definition of an integer column, it is an alias for NOT
NULL AUTO_INCREMENT UNIQUE.

1860

Implicit Default Handling

With one exception, the default value specified in a DEFAULT clause must be a literal constant; it cannot be
a function or an expression. This means, for example, that you cannot set the default for a date column to
be the value of a function such as NOW() or CURRENT_DATE. The exception is that, for TIMESTAMP and
DATETIME columns, you can specify CURRENT_TIMESTAMP as the default. See Section 11.2.6, “Automatic
Initialization and Updating for TIMESTAMP and DATETIME”.

The BLOB, TEXT, GEOMETRY, and JSON data types cannot be assigned a default value.

Implicit Default Handling

If a data type specification includes no explicit DEFAULT value, MySQL determines the default value as
follows:

If the column can take NULL as a value, the column is defined with an explicit DEFAULT NULL clause.

If the column cannot take NULL as a value, MySQL defines the column with no explicit DEFAULT clause.

For data entry into a NOT NULL column that has no explicit DEFAULT clause, if an INSERT or REPLACE
statement includes no value for the column, or an UPDATE statement sets the column to NULL, MySQL
handles the column according to the SQL mode in effect at the time:

• If strict SQL mode is enabled, an error occurs for transactional tables and the statement is rolled back.
For nontransactional tables, an error occurs, but if this happens for the second or subsequent row of a
multiple-row statement, any rows preceding the error have already been inserted.

• If strict mode is not enabled, MySQL sets the column to the implicit default value for the column data
type.

Suppose that a table t is defined as follows:

CREATE TABLE t (i INT NOT NULL);

In this case, i has no explicit default, so in strict mode each of the following statements produce an error
and no row is inserted. When not using strict mode, only the third statement produces an error; the implicit
default is inserted for the first two statements, but the third fails because DEFAULT(i) cannot produce a
value:

INSERT INTO t VALUES();
INSERT INTO t VALUES(DEFAULT);
INSERT INTO t VALUES(DEFAULT(i));

See Section 5.1.10, “Server SQL Modes”.

For a given table, the SHOW CREATE TABLE statement displays which columns have an explicit DEFAULT
clause.

Implicit defaults are defined as follows:

• For numeric types, the default is 0, with the exception that for integer or floating-point types declared with
the AUTO_INCREMENT attribute, the default is the next value in the sequence.

• For date and time types other than TIMESTAMP, the default is the appropriate “zero” value for the type.
This is also true for TIMESTAMP if the explicit_defaults_for_timestamp system variable is
enabled (see Section 5.1.7, “Server System Variables”). Otherwise, for the first TIMESTAMP column in a
table, the default value is the current date and time. See Section 11.2, “Date and Time Data Types”.

• For string types other than ENUM, the default value is the empty string. For ENUM, the default is the first
enumeration value.

1861

Data Type Storage Requirements

11.7 Data Type Storage Requirements

• InnoDB Table Storage Requirements

• NDB Table Storage Requirements

• Numeric Type Storage Requirements

• Date and Time Type Storage Requirements

• String Type Storage Requirements

• Spatial Type Storage Requirements

• JSON Storage Requirements

The storage requirements for table data on disk depend on several factors. Different storage engines
represent data types and store raw data differently. Table data might be compressed, either for a column
or an entire row, complicating the calculation of storage requirements for a table or column.

Despite differences in storage layout on disk, the internal MySQL APIs that communicate and exchange
information about table rows use a consistent data structure that applies across all storage engines.

This section includes guidelines and information for the storage requirements for each data type supported
by MySQL, including the internal format and size for storage engines that use a fixed-size representation
for data types. Information is listed by category or storage engine.

The internal representation of a table has a maximum row size of 65,535 bytes, even if the storage engine
is capable of supporting larger rows. This figure excludes BLOB or TEXT columns, which contribute only
9 to 12 bytes toward this size. For BLOB and TEXT data, the information is stored internally in a different
area of memory than the row buffer. Different storage engines handle the allocation and storage of this
data in different ways, according to the method they use for handling the corresponding types. For more
information, see Chapter 15, Alternative Storage Engines, and Section 8.4.7, “Limits on Table Column
Count and Row Size”.

InnoDB Table Storage Requirements

See Section 14.11, “InnoDB Row Formats” for information about storage requirements for InnoDB tables.

NDB Table Storage Requirements

Important

NDB tables use 4-byte alignment; all NDB data storage is done in multiples of 4
bytes. Thus, a column value that would typically take 15 bytes requires 16 bytes in
an NDB table. For example, in NDB tables, the TINYINT, SMALLINT, MEDIUMINT,
and INTEGER (INT) column types each require 4 bytes storage per record due to
the alignment factor.

Each BIT(M) column takes M bits of storage space. Although an individual BIT
column is not 4-byte aligned, NDB reserves 4 bytes (32 bits) per row for the first
1-32 bits needed for BIT columns, then another 4 bytes for bits 33-64, and so on.

While a NULL itself does not require any storage space, NDB reserves 4 bytes per
row if the table definition contains any columns defined as NULL, up to 32 NULL

1862

Numeric Type Storage Requirements

columns. (If an NDB Cluster table is defined with more than 32 NULL columns up to
64 NULL columns, then 8 bytes per row are reserved.)

Every table using the NDB storage engine requires a primary key; if you do not define a primary key, a
“hidden” primary key is created by NDB. This hidden primary key consumes 31-35 bytes per table record.

You can use the ndb_size.pl Perl script to estimate NDB storage requirements. It connects to a current
MySQL (not NDB Cluster) database and creates a report on how much space that database would require
if it used the NDB storage engine. See Section 21.5.28, “ndb_size.pl — NDBCLUSTER Size Requirement
Estimator” for more information.

Numeric Type Storage Requirements

Data Type Storage Required

TINYINT 1 byte

SMALLINT 2 bytes

MEDIUMINT 3 bytes

INT, INTEGER 4 bytes

BIGINT 8 bytes

FLOAT(p) 4 bytes if 0 <= p <= 24, 8 bytes if 25 <= p <= 53

FLOAT 4 bytes

DOUBLE [PRECISION], REAL 8 bytes

DECIMAL(M,D), NUMERIC(M,D) Varies; see following discussion

BIT(M) approximately (M+7)/8 bytes

Values for DECIMAL (and NUMERIC) columns are represented using a binary format that packs nine
decimal (base 10) digits into four bytes. Storage for the integer and fractional parts of each value are
determined separately. Each multiple of nine digits requires four bytes, and the “leftover” digits require
some fraction of four bytes. The storage required for excess digits is given by the following table.

Leftover Digits Number of Bytes

0 0

1 1

2 1

3 2

4 2

5 3

6 3

7 4

8 4

Date and Time Type Storage Requirements

For TIME, DATETIME, and TIMESTAMP columns, the storage required for tables created before MySQL
5.6.4 differs from tables created from 5.6.4 on. This is due to a change in 5.6.4 that permits these types to
have a fractional part, which requires from 0 to 3 bytes.

1863

String Type Storage Requirements

Data Type Storage Required Before
MySQL 5.6.4

Storage Required as of MySQL
5.6.4

YEAR 1 byte 1 byte

DATE 3 bytes 3 bytes

TIME 3 bytes 3 bytes + fractional seconds
storage

DATETIME 8 bytes 5 bytes + fractional seconds
storage

TIMESTAMP 4 bytes 4 bytes + fractional seconds
storage

As of MySQL 5.6.4, storage for YEAR and DATE remains unchanged. However, TIME, DATETIME, and
TIMESTAMP are represented differently. DATETIME is packed more efficiently, requiring 5 rather than 8
bytes for the nonfractional part, and all three parts have a fractional part that requires from 0 to 3 bytes,
depending on the fractional seconds precision of stored values.

Fractional Seconds Precision Storage Required

0 0 bytes

1, 2 1 byte

3, 4 2 bytes

5, 6 3 bytes

For example, TIME(0), TIME(2), TIME(4), and TIME(6) use 3, 4, 5, and 6 bytes, respectively. TIME
and TIME(0) are equivalent and require the same storage.

For details about internal representation of temporal values, see MySQL Internals: Important Algorithms
and Structures.

String Type Storage Requirements

In the following table, M represents the declared column length in characters for nonbinary string types and
bytes for binary string types. L represents the actual length in bytes of a given string value.

Data Type Storage Required

CHAR(M) The compact family of InnoDB row formats optimize
storage for variable-length character sets. See
COMPACT Row Format Storage Characteristics.
Otherwise, M × w bytes, <= M <= 255, where w
is the number of bytes required for the maximum-
length character in the character set.

BINARY(M) M bytes, 0 <= M <= 255

VARCHAR(M), VARBINARY(M) L + 1 bytes if column values require 0 − 255 bytes,
L + 2 bytes if values may require more than 255
bytes

TINYBLOB, TINYTEXT L + 1 bytes, where L < 28

BLOB, TEXT L + 2 bytes, where L < 216

MEDIUMBLOB, MEDIUMTEXT L + 3 bytes, where L < 224

1864

https://dev.mysql.com/doc/internals/en/algorithms.html
https://dev.mysql.com/doc/internals/en/algorithms.html

String Type Storage Requirements

Data Type Storage Required

LONGBLOB, LONGTEXT L + 4 bytes, where L < 232

ENUM('value1','value2',...) 1 or 2 bytes, depending on the number of
enumeration values (65,535 values maximum)

SET('value1','value2',...) 1, 2, 3, 4, or 8 bytes, depending on the number of
set members (64 members maximum)

Variable-length string types are stored using a length prefix plus data. The length prefix requires from one
to four bytes depending on the data type, and the value of the prefix is L (the byte length of the string). For
example, storage for a MEDIUMTEXT value requires L bytes to store the value plus three bytes to store the
length of the value.

To calculate the number of bytes used to store a particular CHAR, VARCHAR, or TEXT column value, you
must take into account the character set used for that column and whether the value contains multibyte
characters. In particular, when using a utf8 Unicode character set, you must keep in mind that not all
characters use the same number of bytes. utf8mb3 and utf8mb4 character sets can require up to three
and four bytes per character, respectively. For a breakdown of the storage used for different categories of
utf8mb3 or utf8mb4 characters, see Section 10.9, “Unicode Support”.

VARCHAR, VARBINARY, and the BLOB and TEXT types are variable-length types. For each, the storage
requirements depend on these factors:

• The actual length of the column value

• The column's maximum possible length

• The character set used for the column, because some character sets contain multibyte characters

For example, a VARCHAR(255) column can hold a string with a maximum length of 255 characters.
Assuming that the column uses the latin1 character set (one byte per character), the actual storage
required is the length of the string (L), plus one byte to record the length of the string. For the string
'abcd', L is 4 and the storage requirement is five bytes. If the same column is instead declared to use the
ucs2 double-byte character set, the storage requirement is 10 bytes: The length of 'abcd' is eight bytes
and the column requires two bytes to store lengths because the maximum length is greater than 255 (up to
510 bytes).

The effective maximum number of bytes that can be stored in a VARCHAR or VARBINARY column is subject
to the maximum row size of 65,535 bytes, which is shared among all columns. For a VARCHAR column that
stores multibyte characters, the effective maximum number of characters is less. For example, utf8mb3
characters can require up to three bytes per character, so a VARCHAR column that uses the utf8mb3
character set can be declared to be a maximum of 21,844 characters. See Section 8.4.7, “Limits on Table
Column Count and Row Size”.

InnoDB encodes fixed-length fields greater than or equal to 768 bytes in length as variable-length fields,
which can be stored off-page. For example, a CHAR(255) column can exceed 768 bytes if the maximum
byte length of the character set is greater than 3, as it is with utf8mb4.

The NDB storage engine supports variable-width columns. This means that a VARCHAR column in an NDB
Cluster table requires the same amount of storage as would any other storage engine, with the exception
that such values are 4-byte aligned. Thus, the string 'abcd' stored in a VARCHAR(50) column using the
latin1 character set requires 8 bytes (rather than 5 bytes for the same column value in a MyISAM table).

TEXT, BLOB, and JSON columns are implemented differently in the NDB storage engine, wherein each
row in the column is made up of two separate parts. One of these is of fixed size (256 bytes for TEXT and

1865

Spatial Type Storage Requirements

BLOB, 4000 bytes for JSON), and is actually stored in the original table. The other consists of any data in
excess of 256 bytes, which is stored in a hidden blob parts table. The size of the rows in this second table
are determined by the exact type of the column, as shown in the following table:

Type Blob Part Size

BLOB, TEXT 2000

MEDIUMBLOB, MEDIUMTEXT 4000

LONGBLOB, LONGTEXT 13948

JSON 8100

This means that the size of a TEXT column is 256 if size <= 256 (where size represents the size of the
row); otherwise, the size is 256 + size + (2000 × (size − 256) % 2000).

No blob parts are stored separately by NDB for TINYBLOB or TINYTEXT column values.

You can increase the size of an NDB blob column's blob part to the maximum of 13948 using NDB_COLUMN
in a column comment when creating or altering the parent table. See NDB_COLUMN Options, for more
information.

The size of an ENUM object is determined by the number of different enumeration values. One byte is used
for enumerations with up to 255 possible values. Two bytes are used for enumerations having between
256 and 65,535 possible values. See Section 11.3.5, “The ENUM Type”.

The size of a SET object is determined by the number of different set members. If the set size is N, the
object occupies (N+7)/8 bytes, rounded up to 1, 2, 3, 4, or 8 bytes. A SET can have a maximum of 64
members. See Section 11.3.6, “The SET Type”.

Spatial Type Storage Requirements

MySQL stores geometry values using 4 bytes to indicate the SRID followed by the WKB representation of
the value. The LENGTH() function returns the space in bytes required for value storage.

For descriptions of WKB and internal storage formats for spatial values, see Section 11.4.3, “Supported
Spatial Data Formats”.

JSON Storage Requirements

In general, the storage requirement for a JSON column is approximately the same as for a LONGBLOB or
LONGTEXT column; that is, the space consumed by a JSON document is roughly the same as it would be
for the document's string representation stored in a column of one of these types. However, there is an
overhead imposed by the binary encoding, including metadata and dictionaries needed for lookup, of the
individual values stored in the JSON document. For example, a string stored in a JSON document requires
4 to 10 bytes additional storage, depending on the length of the string and the size of the object or array in
which it is stored.

In addition, MySQL imposes a limit on the size of any JSON document stored in a JSON column such that it
cannot be any larger than the value of max_allowed_packet.

11.8 Choosing the Right Type for a Column

For optimum storage, you should try to use the most precise type in all cases. For example, if an integer
column is used for values in the range from 1 to 99999, MEDIUMINT UNSIGNED is the best type. Of the
types that represent all the required values, this type uses the least amount of storage.

1866

Using Data Types from Other Database Engines

All basic calculations (+, -, *, and /) with DECIMAL columns are done with precision of 65 decimal (base
10) digits. See Section 11.1.1, “Numeric Data Type Syntax”.

If accuracy is not too important or if speed is the highest priority, the DOUBLE type may be good enough.
For high precision, you can always convert to a fixed-point type stored in a BIGINT. This enables you to do
all calculations with 64-bit integers and then convert results back to floating-point values as necessary.

11.9 Using Data Types from Other Database Engines

To facilitate the use of code written for SQL implementations from other vendors, MySQL maps data types
as shown in the following table. These mappings make it easier to import table definitions from other
database systems into MySQL.

Other Vendor Type MySQL Type

BOOL TINYINT

BOOLEAN TINYINT

CHARACTER VARYING(M) VARCHAR(M)

FIXED DECIMAL

FLOAT4 FLOAT

FLOAT8 DOUBLE

INT1 TINYINT

INT2 SMALLINT

INT3 MEDIUMINT

INT4 INT

INT8 BIGINT

LONG VARBINARY MEDIUMBLOB

LONG VARCHAR MEDIUMTEXT

LONG MEDIUMTEXT

MIDDLEINT MEDIUMINT

NUMERIC DECIMAL

Data type mapping occurs at table creation time, after which the original type specifications are discarded.
If you create a table with types used by other vendors and then issue a DESCRIBE tbl_name statement,
MySQL reports the table structure using the equivalent MySQL types. For example:

mysql> CREATE TABLE t (a BOOL, b FLOAT8, c LONG VARCHAR, d NUMERIC);
Query OK, 0 rows affected (0.00 sec)

mysql> DESCRIBE t;
+-------+---------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+-------+---------------+------+-----+---------+-------+
a	tinyint(1)	YES		NULL	
b	double	YES		NULL	
c	mediumtext	YES		NULL	
d	decimal(10,0)	YES		NULL	
+-------+---------------+------+-----+---------+-------+
4 rows in set (0.01 sec)

1867

1868

Chapter 12 Functions and Operators

Table of Contents
12.1 Built-In Function and Operator Reference .. 1871
12.2 Loadable Function Reference .. 1891
12.3 Type Conversion in Expression Evaluation ... 1893
12.4 Operators ... 1896

12.4.1 Operator Precedence ... 1898
12.4.2 Comparison Functions and Operators ... 1899
12.4.3 Logical Operators ... 1905
12.4.4 Assignment Operators .. 1907

12.5 Flow Control Functions .. 1908
12.6 Numeric Functions and Operators .. 1910

12.6.1 Arithmetic Operators ... 1911
12.6.2 Mathematical Functions .. 1913

12.7 Date and Time Functions .. 1922
12.8 String Functions and Operators ... 1944

12.8.1 String Comparison Functions and Operators .. 1962
12.8.2 Regular Expressions .. 1965
12.8.3 Character Set and Collation of Function Results .. 1971

12.9 Full-Text Search Functions .. 1972
12.9.1 Natural Language Full-Text Searches .. 1973
12.9.2 Boolean Full-Text Searches .. 1977
12.9.3 Full-Text Searches with Query Expansion ... 1983
12.9.4 Full-Text Stopwords .. 1984
12.9.5 Full-Text Restrictions .. 1988
12.9.6 Fine-Tuning MySQL Full-Text Search .. 1989
12.9.7 Adding a User-Defined Collation for Full-Text Indexing ... 1992
12.9.8 ngram Full-Text Parser ... 1993
12.9.9 MeCab Full-Text Parser Plugin ... 1996

12.10 Cast Functions and Operators ... 2000
12.11 XML Functions .. 2007
12.12 Bit Functions and Operators .. 2018
12.13 Encryption and Compression Functions .. 2021
12.14 Locking Functions ... 2033
12.15 Information Functions .. 2035
12.16 Spatial Analysis Functions ... 2045

12.16.1 Spatial Function Reference ... 2045
12.16.2 Argument Handling by Spatial Functions ... 2051
12.16.3 Functions That Create Geometry Values from WKT Values .. 2052
12.16.4 Functions That Create Geometry Values from WKB Values .. 2055
12.16.5 MySQL-Specific Functions That Create Geometry Values ... 2058
12.16.6 Geometry Format Conversion Functions .. 2059
12.16.7 Geometry Property Functions .. 2060
12.16.8 Spatial Operator Functions .. 2069
12.16.9 Functions That Test Spatial Relations Between Geometry Objects 2072
12.16.10 Spatial Geohash Functions ... 2078
12.16.11 Spatial GeoJSON Functions .. 2080
12.16.12 Spatial Convenience Functions ... 2082

12.17 JSON Functions .. 2085
12.17.1 JSON Function Reference .. 2085

1869

12.17.2 Functions That Create JSON Values ... 2087
12.17.3 Functions That Search JSON Values .. 2088
12.17.4 Functions That Modify JSON Values ... 2097
12.17.5 Functions That Return JSON Value Attributes .. 2107
12.17.6 JSON Utility Functions .. 2110

12.18 Functions Used with Global Transaction Identifiers (GTIDs) ... 2113
12.19 Aggregate Functions ... 2115

12.19.1 Aggregate Function Descriptions ... 2115
12.19.2 GROUP BY Modifiers ... 2122
12.19.3 MySQL Handling of GROUP BY ... 2126
12.19.4 Detection of Functional Dependence ... 2130

12.20 Miscellaneous Functions .. 2133
12.21 Precision Math .. 2141

12.21.1 Types of Numeric Values .. 2142
12.21.2 DECIMAL Data Type Characteristics ... 2142
12.21.3 Expression Handling ... 2143
12.21.4 Rounding Behavior ... 2145
12.21.5 Precision Math Examples .. 2146

Expressions can be used at several points in SQL statements, such as in the ORDER BY or HAVING
clauses of SELECT statements, in the WHERE clause of a SELECT, DELETE, or UPDATE statement, or in
SET statements. Expressions can be written using values from several sources, such as literal values,
column values, NULL, variables, built-in functions and operators, loadable functions, and stored functions
(a type of stored object).

This chapter describes the built-in functions and operators that are permitted for writing expressions in
MySQL. For information about loadable functions and stored functions, see Section 5.6, “MySQL Server
Loadable Functions”, and Section 23.2, “Using Stored Routines”. For the rules describing how the server
interprets references to different kinds of functions, see Section 9.2.5, “Function Name Parsing and
Resolution”.

An expression that contains NULL always produces a NULL value unless otherwise indicated in the
documentation for a particular function or operator.

Note

By default, there must be no whitespace between a function name and the
parenthesis following it. This helps the MySQL parser distinguish between function
calls and references to tables or columns that happen to have the same name as a
function. However, spaces around function arguments are permitted.

To tell the MySQL server to accept spaces after function names by starting it
with the --sql-mode=IGNORE_SPACE option. (See Section 5.1.10, “Server
SQL Modes”.) Individual client programs can request this behavior by using the
CLIENT_IGNORE_SPACE option for mysql_real_connect(). In either case, all
function names become reserved words.

For the sake of brevity, some examples in this chapter display the output from the mysql program in
abbreviated form. Rather than showing examples in this format:

mysql> SELECT MOD(29,9);
+-----------+
| mod(29,9) |
+-----------+
| 2 |
+-----------+
1 rows in set (0.00 sec)

1870

https://dev.mysql.com/doc/c-api/5.7/en/mysql-real-connect.html

Built-In Function and Operator Reference

This format is used instead:

mysql> SELECT MOD(29,9);
 -> 2

12.1 Built-In Function and Operator Reference
The following table lists each built-in (native) function and operator and provides a short description of
each one. For a table listing functions that are loadable at runtime, see Section 12.2, “Loadable Function
Reference”.

Table 12.1 Built-In Functions and Operators

Name Description Introduced Deprecated

& Bitwise AND

> Greater than operator

>> Right shift

>= Greater than or equal
operator

< Less than operator

<>, != Not equal operator

<< Left shift

<= Less than or equal
operator

<=> NULL-safe equal to
operator

%, MOD Modulo operator

* Multiplication operator

+ Addition operator

- Minus operator

- Change the sign of the
argument

-> Return value from JSON
column after evaluating
path; equivalent to
JSON_EXTRACT().

->> Return value from JSON
column after evaluating
path and unquoting the
result; equivalent to
JSON_UNQUOTE(JSON_EXTRACT()).

5.7.13

/ Division operator

:= Assign a value

= Assign a value (as part
of a SET statement, or as
part of the SET clause in
an UPDATE statement)

= Equal operator

1871

Built-In Function and Operator Reference

Name Description Introduced Deprecated

^ Bitwise XOR

ABS() Return the absolute value

ACOS() Return the arc cosine

ADDDATE() Add time values
(intervals) to a date value

ADDTIME() Add time

AES_DECRYPT() Decrypt using AES

AES_ENCRYPT() Encrypt using AES

AND, && Logical AND

ANY_VALUE() Suppress
ONLY_FULL_GROUP_BY
value rejection

Area() Return Polygon or
MultiPolygon area

Yes

AsBinary(), AsWKB() Convert from internal
geometry format to WKB

Yes

ASCII() Return numeric value of
left-most character

ASIN() Return the arc sine

AsText(), AsWKT() Convert from internal
geometry format to WKT

Yes

ATAN() Return the arc tangent

ATAN2(), ATAN() Return the arc tangent of
the two arguments

AVG() Return the average value
of the argument

BENCHMARK() Repeatedly execute an
expression

BETWEEN ... AND ... Whether a value is within
a range of values

BIN() Return a string containing
binary representation of a
number

BINARY Cast a string to a binary
string

BIT_AND() Return bitwise AND

BIT_COUNT() Return the number of bits
that are set

BIT_LENGTH() Return length of
argument in bits

BIT_OR() Return bitwise OR

BIT_XOR() Return bitwise XOR

1872

Built-In Function and Operator Reference

Name Description Introduced Deprecated

Buffer() Return geometry of
points within given
distance from geometry

Yes

CASE Case operator

CAST() Cast a value as a certain
type

CEIL() Return the smallest
integer value not less
than the argument

CEILING() Return the smallest
integer value not less
than the argument

Centroid() Return centroid as a
point

Yes

CHAR() Return the character for
each integer passed

CHAR_LENGTH() Return number of
characters in argument

CHARACTER_LENGTH() Synonym for
CHAR_LENGTH()

CHARSET() Return the character set
of the argument

COALESCE() Return the first non-NULL
argument

COERCIBILITY() Return the collation
coercibility value of the
string argument

COLLATION() Return the collation of the
string argument

COMPRESS() Return result as a binary
string

CONCAT() Return concatenated
string

CONCAT_WS() Return concatenate with
separator

CONNECTION_ID() Return the connection
ID (thread ID) for the
connection

Contains() Whether MBR of one
geometry contains MBR
of another

Yes

CONV() Convert numbers
between different number
bases

1873

Built-In Function and Operator Reference

Name Description Introduced Deprecated

CONVERT() Cast a value as a certain
type

CONVERT_TZ() Convert from one time
zone to another

ConvexHull() Return convex hull of
geometry

Yes

COS() Return the cosine

COT() Return the cotangent

COUNT() Return a count of the
number of rows returned

COUNT(DISTINCT) Return the count of
a number of different
values

CRC32() Compute a cyclic
redundancy check value

Crosses() Whether one geometry
crosses another

Yes

CURDATE() Return the current date

CURRENT_DATE(),
CURRENT_DATE

Synonyms for
CURDATE()

CURRENT_TIME(),
CURRENT_TIME

Synonyms for
CURTIME()

CURRENT_TIMESTAMP(),
CURRENT_TIMESTAMP

Synonyms for NOW()

CURRENT_USER(),
CURRENT_USER

The authenticated user
name and host name

CURTIME() Return the current time

DATABASE() Return the default
(current) database name

DATE() Extract the date part
of a date or datetime
expression

DATE_ADD() Add time values
(intervals) to a date value

DATE_FORMAT() Format date as specified

DATE_SUB() Subtract a time value
(interval) from a date

DATEDIFF() Subtract two dates

DAY() Synonym for
DAYOFMONTH()

DAYNAME() Return the name of the
weekday

1874

Built-In Function and Operator Reference

Name Description Introduced Deprecated

DAYOFMONTH() Return the day of the
month (0-31)

DAYOFWEEK() Return the weekday
index of the argument

DAYOFYEAR() Return the day of the
year (1-366)

DECODE() Decode a string
encrypted using
ENCODE()

Yes

DEFAULT() Return the default value
for a table column

DEGREES() Convert radians to
degrees

DES_DECRYPT() Decrypt a string Yes

DES_ENCRYPT() Encrypt a string Yes

Dimension() Dimension of geometry Yes

Disjoint() Whether MBRs of two
geometries are disjoint

Yes

DIV Integer division

ELT() Return string at index
number

ENCODE() Encode a string Yes

ENCRYPT() Encrypt a string Yes

EndPoint() End Point of LineString Yes

Envelope() Return MBR of geometry Yes

Equals() Whether MBRs of two
geometries are equal

Yes

EXISTS() Whether the result of a
query contains any rows

EXP() Raise to the power of

EXPORT_SET() Return a string such that
for every bit set in the
value bits, you get an on
string and for every unset
bit, you get an off string

ExteriorRing() Return exterior ring of
Polygon

Yes

EXTRACT() Extract part of a date

ExtractValue() Extract a value from an
XML string using XPath
notation

1875

Built-In Function and Operator Reference

Name Description Introduced Deprecated

FIELD() Index (position) of first
argument in subsequent
arguments

FIND_IN_SET() Index (position) of first
argument within second
argument

FLOOR() Return the largest integer
value not greater than the
argument

FORMAT() Return a number
formatted to specified
number of decimal places

FOUND_ROWS() For a SELECT with a
LIMIT clause, the number
of rows that would be
returned were there no
LIMIT clause

FROM_BASE64() Decode base64 encoded
string and return result

FROM_DAYS() Convert a day number to
a date

FROM_UNIXTIME() Format Unix timestamp
as a date

GeomCollFromText(),
GeometryCollectionFromText()

Return geometry
collection from WKT

Yes

GeomCollFromWKB(),
GeometryCollectionFromWKB()

Return geometry
collection from WKB

Yes

GeometryCollection()Construct geometry
collection from
geometries

GeometryN() Return N-th geometry
from geometry collection

Yes

GeometryType() Return name of geometry
type

Yes

GeomFromText(),
GeometryFromText()

Return geometry from
WKT

Yes

GeomFromWKB(),
GeometryFromWKB()

Return geometry from
WKB

Yes

GET_FORMAT() Return a date format
string

GET_LOCK() Get a named lock

GLength() Return length of
LineString

Yes

GREATEST() Return the largest
argument

1876

Built-In Function and Operator Reference

Name Description Introduced Deprecated

GROUP_CONCAT() Return a concatenated
string

GTID_SUBSET() Return true if all GTIDs
in subset are also in set;
otherwise false.

GTID_SUBTRACT() Return all GTIDs in set
that are not in subset.

HEX() Hexadecimal
representation of decimal
or string value

HOUR() Extract the hour

IF() If/else construct

IFNULL() Null if/else construct

IN() Whether a value is within
a set of values

INET_ATON() Return the numeric value
of an IP address

INET_NTOA() Return the IP address
from a numeric value

INET6_ATON() Return the numeric value
of an IPv6 address

INET6_NTOA() Return the IPv6 address
from a numeric value

INSERT() Insert substring at
specified position up
to specified number of
characters

INSTR() Return the index of
the first occurrence of
substring

InteriorRingN() Return N-th interior ring
of Polygon

Yes

Intersects() Whether MBRs of two
geometries intersect

Yes

INTERVAL() Return the index of the
argument that is less
than the first argument

IS Test a value against a
boolean

IS_FREE_LOCK() Whether the named lock
is free

IS_IPV4() Whether argument is an
IPv4 address

1877

Built-In Function and Operator Reference

Name Description Introduced Deprecated

IS_IPV4_COMPAT() Whether argument is an
IPv4-compatible address

IS_IPV4_MAPPED() Whether argument is an
IPv4-mapped address

IS_IPV6() Whether argument is an
IPv6 address

IS NOT Test a value against a
boolean

IS NOT NULL NOT NULL value test

IS NULL NULL value test

IS_USED_LOCK() Whether the named
lock is in use; return
connection identifier if
true

IsClosed() Whether a geometry is
closed and simple

Yes

IsEmpty() Whether a geometry is
empty

Yes

ISNULL() Test whether the
argument is NULL

IsSimple() Whether a geometry is
simple

Yes

JSON_APPEND() Append data to JSON
document

Yes

JSON_ARRAY() Create JSON array

JSON_ARRAY_APPEND() Append data to JSON
document

JSON_ARRAY_INSERT() Insert into JSON array

JSON_ARRAYAGG() Return result set as a
single JSON array

5.7.22

JSON_CONTAINS() Whether JSON document
contains specific object at
path

JSON_CONTAINS_PATH()Whether JSON document
contains any data at path

JSON_DEPTH() Maximum depth of JSON
document

JSON_EXTRACT() Return data from JSON
document

JSON_INSERT() Insert data into JSON
document

JSON_KEYS() Array of keys from JSON
document

1878

Built-In Function and Operator Reference

Name Description Introduced Deprecated

JSON_LENGTH() Number of elements in
JSON document

JSON_MERGE() Merge JSON
documents, preserving
duplicate keys.
Deprecated synonym for
JSON_MERGE_PRESERVE()

5.7.22

JSON_MERGE_PATCH() Merge JSON documents,
replacing values of
duplicate keys

5.7.22

JSON_MERGE_PRESERVE()Merge JSON documents,
preserving duplicate keys

5.7.22

JSON_OBJECT() Create JSON object

JSON_OBJECTAGG() Return result set as a
single JSON object

5.7.22

JSON_PRETTY() Print a JSON document
in human-readable
format

5.7.22

JSON_QUOTE() Quote JSON document

JSON_REMOVE() Remove data from JSON
document

JSON_REPLACE() Replace values in JSON
document

JSON_SEARCH() Path to value within
JSON document

JSON_SET() Insert data into JSON
document

JSON_STORAGE_SIZE() Space used for storage
of binary representation
of a JSON document

5.7.22

JSON_TYPE() Type of JSON value

JSON_UNQUOTE() Unquote JSON value

JSON_VALID() Whether JSON value is
valid

LAST_DAY Return the last day of the
month for the argument

LAST_INSERT_ID() Value of the
AUTOINCREMENT
column for the last
INSERT

LCASE() Synonym for LOWER()

LEAST() Return the smallest
argument

1879

Built-In Function and Operator Reference

Name Description Introduced Deprecated

LEFT() Return the leftmost
number of characters as
specified

LENGTH() Return the length of a
string in bytes

LIKE Simple pattern matching

LineFromText(),
LineStringFromText()

Construct LineString from
WKT

Yes

LineFromWKB(),
LineStringFromWKB()

Construct LineString from
WKB

Yes

LineString() Construct LineString from
Point values

LN() Return the natural
logarithm of the argument

LOAD_FILE() Load the named file

LOCALTIME(),
LOCALTIME

Synonym for NOW()

LOCALTIMESTAMP,
LOCALTIMESTAMP()

Synonym for NOW()

LOCATE() Return the position of
the first occurrence of
substring

LOG() Return the natural
logarithm of the first
argument

LOG10() Return the base-10
logarithm of the argument

LOG2() Return the base-2
logarithm of the argument

LOWER() Return the argument in
lowercase

LPAD() Return the string
argument, left-padded
with the specified string

LTRIM() Remove leading spaces

MAKE_SET() Return a set of comma-
separated strings that
have the corresponding
bit in bits set

MAKEDATE() Create a date from the
year and day of year

MAKETIME() Create time from hour,
minute, second

1880

Built-In Function and Operator Reference

Name Description Introduced Deprecated

MASTER_POS_WAIT() Block until the replica
has read and applied
all updates up to the
specified position

MATCH() Perform full-text search

MAX() Return the maximum
value

MBRContains() Whether MBR of one
geometry contains MBR
of another

MBRCoveredBy() Whether one MBR is
covered by another

MBRCovers() Whether one MBR
covers another

MBRDisjoint() Whether MBRs of two
geometries are disjoint

MBREqual() Whether MBRs of two
geometries are equal

Yes

MBREquals() Whether MBRs of two
geometries are equal

MBRIntersects() Whether MBRs of two
geometries intersect

MBROverlaps() Whether MBRs of two
geometries overlap

MBRTouches() Whether MBRs of two
geometries touch

MBRWithin() Whether MBR of one
geometry is within MBR
of another

MD5() Calculate MD5 checksum

MICROSECOND() Return the microseconds
from argument

MID() Return a substring
starting from the
specified position

MIN() Return the minimum
value

MINUTE() Return the minute from
the argument

MLineFromText(),
MultiLineStringFromText()

Construct MultiLineString
from WKT

Yes

MLineFromWKB(),
MultiLineStringFromWKB()

Construct MultiLineString
from WKB

Yes

MOD() Return the remainder

1881

Built-In Function and Operator Reference

Name Description Introduced Deprecated

MONTH() Return the month from
the date passed

MONTHNAME() Return the name of the
month

MPointFromText(),
MultiPointFromText()

Construct MultiPoint from
WKT

Yes

MPointFromWKB(),
MultiPointFromWKB()

Construct MultiPoint from
WKB

Yes

MPolyFromText(),
MultiPolygonFromText()

Construct MultiPolygon
from WKT

Yes

MPolyFromWKB(),
MultiPolygonFromWKB()

Construct MultiPolygon
from WKB

Yes

MultiLineString() Contruct MultiLineString
from LineString values

MultiPoint() Construct MultiPoint from
Point values

MultiPolygon() Construct MultiPolygon
from Polygon values

NAME_CONST() Cause the column to
have the given name

NOT, ! Negates value

NOT BETWEEN ...
AND ...

Whether a value is not
within a range of values

NOT EXISTS() Whether the result of a
query contains no rows

NOT IN() Whether a value is not
within a set of values

NOT LIKE Negation of simple
pattern matching

NOT REGEXP Negation of REGEXP

NOW() Return the current date
and time

NULLIF() Return NULL if expr1 =
expr2

NumGeometries() Return number of
geometries in geometry
collection

Yes

NumInteriorRings() Return number of interior
rings in Polygon

Yes

NumPoints() Return number of points
in LineString

Yes

OCT() Return a string containing
octal representation of a
number

1882

Built-In Function and Operator Reference

Name Description Introduced Deprecated

OCTET_LENGTH() Synonym for LENGTH()

OR, || Logical OR

ORD() Return character code for
leftmost character of the
argument

Overlaps() Whether MBRs of two
geometries overlap

Yes

PASSWORD() Calculate and return a
password string

Yes

PERIOD_ADD() Add a period to a year-
month

PERIOD_DIFF() Return the number of
months between periods

PI() Return the value of pi

Point() Construct Point from
coordinates

PointFromText() Construct Point from
WKT

Yes

PointFromWKB() Construct Point from
WKB

Yes

PointN() Return N-th point from
LineString

Yes

PolyFromText(),
PolygonFromText()

Construct Polygon from
WKT

Yes

PolyFromWKB(),
PolygonFromWKB()

Construct Polygon from
WKB

Yes

Polygon() Construct Polygon from
LineString arguments

POSITION() Synonym for LOCATE()

POW() Return the argument
raised to the specified
power

POWER() Return the argument
raised to the specified
power

PROCEDURE ANALYSE() Analyze the results of a
query

5.7.18

QUARTER() Return the quarter from a
date argument

QUOTE() Escape the argument for
use in an SQL statement

RADIANS() Return argument
converted to radians

1883

Built-In Function and Operator Reference

Name Description Introduced Deprecated

RAND() Return a random floating-
point value

RANDOM_BYTES() Return a random byte
vector

REGEXP Whether string matches
regular expression

RELEASE_ALL_LOCKS() Release all current
named locks

RELEASE_LOCK() Release the named lock

REPEAT() Repeat a string the
specified number of times

REPLACE() Replace occurrences of a
specified string

REVERSE() Reverse the characters in
a string

RIGHT() Return the specified
rightmost number of
characters

RLIKE Whether string matches
regular expression

ROUND() Round the argument

ROW_COUNT() The number of rows
updated

RPAD() Append string the
specified number of times

RTRIM() Remove trailing spaces

SCHEMA() Synonym for
DATABASE()

SEC_TO_TIME() Converts seconds to
'hh:mm:ss' format

SECOND() Return the second (0-59)

SESSION_USER() Synonym for USER()

SHA1(), SHA() Calculate an SHA-1 160-
bit checksum

SHA2() Calculate an SHA-2
checksum

SIGN() Return the sign of the
argument

SIN() Return the sine of the
argument

SLEEP() Sleep for a number of
seconds

SOUNDEX() Return a soundex string

1884

Built-In Function and Operator Reference

Name Description Introduced Deprecated

SOUNDS LIKE Compare sounds

SPACE() Return a string of the
specified number of
spaces

Distance() The distance of one
geometry from another

Yes

SQRT() Return the square root of
the argument

SRID() Return spatial reference
system ID for geometry

Yes

ST_Area() Return Polygon or
MultiPolygon area

ST_AsBinary(),
ST_AsWKB()

Convert from internal
geometry format to WKB

ST_AsGeoJSON() Generate GeoJSON
object from geometry

ST_AsText(),
ST_AsWKT()

Convert from internal
geometry format to WKT

ST_Buffer() Return geometry of
points within given
distance from geometry

ST_Buffer_Strategy()Produce strategy option
for ST_Buffer()

ST_Centroid() Return centroid as a
point

ST_Contains() Whether one geometry
contains another

ST_ConvexHull() Return convex hull of
geometry

ST_Crosses() Whether one geometry
crosses another

ST_Difference() Return point set
difference of two
geometries

ST_Dimension() Dimension of geometry

ST_Disjoint() Whether one geometry is
disjoint from another

ST_Distance() The distance of one
geometry from another

ST_Distance_Sphere()Minimum distance on
earth between two
geometries

ST_EndPoint() End Point of LineString

ST_Envelope() Return MBR of geometry

1885

Built-In Function and Operator Reference

Name Description Introduced Deprecated

ST_Equals() Whether one geometry is
equal to another

ST_ExteriorRing() Return exterior ring of
Polygon

ST_GeoHash() Produce a geohash value

ST_GeomCollFromText(),
ST_GeometryCollectionFromText(),
ST_GeomCollFromTxt()

Return geometry
collection from WKT

ST_GeomCollFromWKB(),
ST_GeometryCollectionFromWKB()

Return geometry
collection from WKB

ST_GeometryN() Return N-th geometry
from geometry collection

ST_GeometryType() Return name of geometry
type

ST_GeomFromGeoJSON()Generate geometry from
GeoJSON object

ST_GeomFromText(),
ST_GeometryFromText()

Return geometry from
WKT

ST_GeomFromWKB(),
ST_GeometryFromWKB()

Return geometry from
WKB

ST_InteriorRingN() Return N-th interior ring
of Polygon

ST_Intersection() Return point set
intersection of two
geometries

ST_Intersects() Whether one geometry
intersects another

ST_IsClosed() Whether a geometry is
closed and simple

ST_IsEmpty() Whether a geometry is
empty

ST_IsSimple() Whether a geometry is
simple

ST_IsValid() Whether a geometry is
valid

ST_LatFromGeoHash() Return latitude from
geohash value

ST_Length() Return length of
LineString

ST_LineFromText(),
ST_LineStringFromText()

Construct LineString from
WKT

ST_LineFromWKB(),
ST_LineStringFromWKB()

Construct LineString from
WKB

1886

Built-In Function and Operator Reference

Name Description Introduced Deprecated

ST_LongFromGeoHash()Return longitude from
geohash value

ST_MakeEnvelope() Rectangle around two
points

ST_MLineFromText(),
ST_MultiLineStringFromText()

Construct MultiLineString
from WKT

ST_MLineFromWKB(),
ST_MultiLineStringFromWKB()

Construct MultiLineString
from WKB

ST_MPointFromText(),
ST_MultiPointFromText()

Construct MultiPoint from
WKT

ST_MPointFromWKB(),
ST_MultiPointFromWKB()

Construct MultiPoint from
WKB

ST_MPolyFromText(),
ST_MultiPolygonFromText()

Construct MultiPolygon
from WKT

ST_MPolyFromWKB(),
ST_MultiPolygonFromWKB()

Construct MultiPolygon
from WKB

ST_NumGeometries() Return number of
geometries in geometry
collection

ST_NumInteriorRing(),
ST_NumInteriorRings()

Return number of interior
rings in Polygon

ST_NumPoints() Return number of points
in LineString

ST_Overlaps() Whether one geometry
overlaps another

ST_PointFromGeoHash()Convert geohash value to
POINT value

ST_PointFromText() Construct Point from
WKT

ST_PointFromWKB() Construct Point from
WKB

ST_PointN() Return N-th point from
LineString

ST_PolyFromText(),
ST_PolygonFromText()

Construct Polygon from
WKT

ST_PolyFromWKB(),
ST_PolygonFromWKB()

Construct Polygon from
WKB

ST_Simplify() Return simplified
geometry

ST_SRID() Return spatial reference
system ID for geometry

ST_StartPoint() Start Point of LineString

1887

Built-In Function and Operator Reference

Name Description Introduced Deprecated

ST_SymDifference() Return point set
symmetric difference of
two geometries

ST_Touches() Whether one geometry
touches another

ST_Union() Return point set union of
two geometries

ST_Validate() Return validated
geometry

ST_Within() Whether one geometry is
within another

ST_X() Return X coordinate of
Point

ST_Y() Return Y coordinate of
Point

StartPoint() Start Point of LineString Yes

STD() Return the population
standard deviation

STDDEV() Return the population
standard deviation

STDDEV_POP() Return the population
standard deviation

STDDEV_SAMP() Return the sample
standard deviation

STR_TO_DATE() Convert a string to a date

STRCMP() Compare two strings

SUBDATE() Synonym for
DATE_SUB() when
invoked with three
arguments

SUBSTR() Return the substring as
specified

SUBSTRING() Return the substring as
specified

SUBSTRING_INDEX() Return a substring
from a string before
the specified number
of occurrences of the
delimiter

SUBTIME() Subtract times

SUM() Return the sum

SYSDATE() Return the time at which
the function executes

SYSTEM_USER() Synonym for USER()

1888

Built-In Function and Operator Reference

Name Description Introduced Deprecated

TAN() Return the tangent of the
argument

TIME() Extract the time portion of
the expression passed

TIME_FORMAT() Format as time

TIME_TO_SEC() Return the argument
converted to seconds

TIMEDIFF() Subtract time

TIMESTAMP() With a single argument,
this function returns
the date or datetime
expression; with two
arguments, the sum of
the arguments

TIMESTAMPADD() Add an interval to a
datetime expression

TIMESTAMPDIFF() Return the difference
of two datetime
expressions, using the
units specified

TO_BASE64() Return the argument
converted to a base-64
string

TO_DAYS() Return the date argument
converted to days

TO_SECONDS() Return the date or
datetime argument
converted to seconds
since Year 0

Touches() Whether one geometry
touches another

Yes

TRIM() Remove leading and
trailing spaces

TRUNCATE() Truncate to specified
number of decimal places

UCASE() Synonym for UPPER()

UNCOMPRESS() Uncompress a string
compressed

UNCOMPRESSED_LENGTH()Return the length
of a string before
compression

UNHEX() Return a string containing
hex representation of a
number

UNIX_TIMESTAMP() Return a Unix timestamp

1889

Built-In Function and Operator Reference

Name Description Introduced Deprecated

UpdateXML() Return replaced XML
fragment

UPPER() Convert to uppercase

USER() The user name and host
name provided by the
client

UTC_DATE() Return the current UTC
date

UTC_TIME() Return the current UTC
time

UTC_TIMESTAMP() Return the current UTC
date and time

UUID() Return a Universal
Unique Identifier (UUID)

UUID_SHORT() Return an integer-valued
universal identifier

VALIDATE_PASSWORD_STRENGTH()Determine strength of
password

VALUES() Define the values to be
used during an INSERT

VAR_POP() Return the population
standard variance

VAR_SAMP() Return the sample
variance

VARIANCE() Return the population
standard variance

VERSION() Return a string that
indicates the MySQL
server version

WAIT_FOR_EXECUTED_GTID_SET()Wait until the given
GTIDs have executed on
the replica.

WAIT_UNTIL_SQL_THREAD_AFTER_GTIDS()Use
WAIT_FOR_EXECUTED_GTID_SET().

WEEK() Return the week number

WEEKDAY() Return the weekday
index

WEEKOFYEAR() Return the calendar week
of the date (1-53)

WEIGHT_STRING() Return the weight string
for a string

Within() Whether MBR of one
geometry is within MBR
of another

Yes

1890

Loadable Function Reference

Name Description Introduced Deprecated

X() Return X coordinate of
Point

Yes

XOR Logical XOR

Y() Return Y coordinate of
Point

Yes

YEAR() Return the year

YEARWEEK() Return the year and
week

| Bitwise OR

~ Bitwise inversion

12.2 Loadable Function Reference
The following table lists each function that is loadable at runtime and provides a short description of each
one. For a table listing built-in functions and operators, see Section 12.1, “Built-In Function and Operator
Reference”

For general information about loadable functions, see Section 5.6, “MySQL Server Loadable Functions”.

Table 12.2 Loadable Functions

Name Description

asymmetric_decrypt() Decrypt ciphertext using private or public key

asymmetric_derive() Derive symmetric key from asymmetric keys

asymmetric_encrypt() Encrypt cleartext using private or public key

asymmetric_sign() Generate signature from digest

asymmetric_verify() Verify that signature matches digest

audit_log_encryption_password_get() Fetch audit log encryption password

audit_log_encryption_password_set() Set audit log encryption password

audit_log_filter_flush() Flush audit log filter tables

audit_log_filter_remove_filter() Remove audit log filter

audit_log_filter_remove_user() Unassign audit log filter from user

audit_log_filter_set_filter() Define audit log filter

audit_log_filter_set_user() Assign audit log filter to user

audit_log_read() Return audit log records

audit_log_read_bookmark() Bookmark for most recent audit log event

create_asymmetric_priv_key() Create private key

create_asymmetric_pub_key() Create public key

create_dh_parameters() Generate shared DH secret

create_digest() Generate digest from string

flush_rewrite_rules() Load rewrite_rules table into Rewriter cache

gen_blacklist() Perform dictionary term replacement

gen_dictionary_drop() Remove dictionary from registry

1891

Loadable Function Reference

Name Description

gen_dictionary_load() Load dictionary into registry

gen_dictionary() Return random term from dictionary

gen_range() Generate random number within range

gen_rnd_email() Generate random email address

gen_rnd_pan() Generate random payment card Primary Account
Number

gen_rnd_ssn() Generate random US Social Security Number

gen_rnd_us_phone() Generate random US phone number

keyring_aws_rotate_cmk() Rotate AWS customer master key

keyring_aws_rotate_keys() Rotate keys in keyring_aws storage file

keyring_key_fetch() Fetch keyring key value

keyring_key_generate() Generate random keyring key

keyring_key_length_fetch() Return keyring key length

keyring_key_remove() Remove keyring key

keyring_key_store() Store key in keyring

keyring_key_type_fetch() Return keyring key type

load_rewrite_rules() Rewriter plugin helper routine

mask_inner() Mask interior part of string

mask_outer() Mask left and right parts of string

mask_pan() Mask payment card Primary Account Number part
of string

mask_pan_relaxed() Mask payment card Primary Account Number part
of string

mask_ssn() Mask US Social Security Number

mysql_firewall_flush_status() Reset firewall status variables

normalize_statement() Normalize SQL statement to digest form

read_firewall_users() Update firewall account profile cache

read_firewall_whitelist() Update firewall account profile recorded-statement
cache

service_get_read_locks() Acquire locking service shared locks

service_get_write_locks() Acquire locking service exclusive locks

service_release_locks() Release locking service locks

set_firewall_mode() Establish firewall account profile operational mode

version_tokens_delete() Delete tokens from version tokens list

version_tokens_edit() Modify version tokens list

version_tokens_lock_exclusive() Acquire exclusive locks on version tokens

version_tokens_lock_shared() Acquire shared locks on version tokens

version_tokens_set() Set version tokens list

version_tokens_show() Return version tokens list

1892

Type Conversion in Expression Evaluation

Name Description

version_tokens_unlock() Release version tokens locks

12.3 Type Conversion in Expression Evaluation
When an operator is used with operands of different types, type conversion occurs to make the operands
compatible. Some conversions occur implicitly. For example, MySQL automatically converts strings to
numbers as necessary, and vice versa.

mysql> SELECT 1+'1';
 -> 2
mysql> SELECT CONCAT(2,' test');
 -> '2 test'

It is also possible to convert a number to a string explicitly using the CAST() function. Conversion occurs
implicitly with the CONCAT() function because it expects string arguments.

mysql> SELECT 38.8, CAST(38.8 AS CHAR);
 -> 38.8, '38.8'
mysql> SELECT 38.8, CONCAT(38.8);
 -> 38.8, '38.8'

See later in this section for information about the character set of implicit number-to-string conversions,
and for modified rules that apply to CREATE TABLE ... SELECT statements.

The following rules describe how conversion occurs for comparison operations:

• If one or both arguments are NULL, the result of the comparison is NULL, except for the NULL-safe <=>
equality comparison operator. For NULL <=> NULL, the result is true. No conversion is needed.

• If both arguments in a comparison operation are strings, they are compared as strings.

• If both arguments are integers, they are compared as integers.

• Hexadecimal values are treated as binary strings if not compared to a number.

• If one of the arguments is a TIMESTAMP or DATETIME column and the other argument is a constant,
the constant is converted to a timestamp before the comparison is performed. This is done to be
more ODBC-friendly. This is not done for the arguments to IN(). To be safe, always use complete
datetime, date, or time strings when doing comparisons. For example, to achieve best results when
using BETWEEN with date or time values, use CAST() to explicitly convert the values to the desired data
type.

A single-row subquery from a table or tables is not considered a constant. For example, if a subquery
returns an integer to be compared to a DATETIME value, the comparison is done as two integers.
The integer is not converted to a temporal value. To compare the operands as DATETIME values, use
CAST() to explicitly convert the subquery value to DATETIME.

• If one of the arguments is a decimal value, comparison depends on the other argument. The arguments
are compared as decimal values if the other argument is a decimal or integer value, or as floating-point
values if the other argument is a floating-point value.

• In all other cases, the arguments are compared as floating-point (double-precision) numbers. For
example, a comparison of string and numeric operands takes place as a comparison of floating-point
numbers.

For information about conversion of values from one temporal type to another, see Section 11.2.9,
“Conversion Between Date and Time Types”.

1893

Type Conversion in Expression Evaluation

Comparison of JSON values takes place at two levels. The first level of comparison is based on the JSON
types of the compared values. If the types differ, the comparison result is determined solely by which
type has higher precedence. If the two values have the same JSON type, a second level of comparison
occurs using type-specific rules. For comparison of JSON and non-JSON values, the non-JSON value is
converted to JSON and the values compared as JSON values. For details, see Comparison and Ordering
of JSON Values.

The following examples illustrate conversion of strings to numbers for comparison operations:

mysql> SELECT 1 > '6x';
 -> 0
mysql> SELECT 7 > '6x';
 -> 1
mysql> SELECT 0 > 'x6';
 -> 0
mysql> SELECT 0 = 'x6';
 -> 1

For comparisons of a string column with a number, MySQL cannot use an index on the column to look up
the value quickly. If str_col is an indexed string column, the index cannot be used when performing the
lookup in the following statement:

SELECT * FROM tbl_name WHERE str_col=1;

The reason for this is that there are many different strings that may convert to the value 1, such as '1', '
1', or '1a'.

Another issue can arise when comparing a string column with integer 0. Consider table t1 created and
populated as shown here:

mysql> CREATE TABLE t1 (
 -> c1 INT NOT NULL AUTO_INCREMENT,
 -> c2 INT DEFAULT NULL,
 -> c3 VARCHAR(25) DEFAULT NULL,
 -> PRIMARY KEY (c1)
 ->);
Query OK, 0 rows affected (0.03 sec)

mysql> INSERT INTO t1 VALUES ROW(1, 52, 'grape'), ROW(2, 139, 'apple'),
 -> ROW(3, 37, 'peach'), ROW(4, 221, 'watermelon'),
 -> ROW(5, 83, 'pear');
Query OK, 5 rows affected (0.01 sec)
Records: 5 Duplicates: 0 Warnings: 0

Observe the result when selecting from this table and comparing c3, which is a VARCHAR column, with
integer 0:

mysql> SELECT * FROM t1 WHERE c3 = 0;
+----+------+------------+
| c1 | c2 | c3 |
+----+------+------------+
1	52	grape
2	139	apple
3	37	peach
4	221	watermelon
5	83	pear
+----+------+------------+
5 rows in set, 5 warnings (0.00 sec)

This occurs even when using strict SQL mode. To prevent this from happening, quote the value, as shown
here:

mysql> SELECT * FROM t1 WHERE c3 = '0';
Empty set (0.00 sec)

1894

Type Conversion in Expression Evaluation

This does not occur when SELECT is part of a data definition statement such as CREATE TABLE ...
SELECT; in strict mode, the statement fails due to the invalid comparison:

mysql> CREATE TABLE t2 SELECT * FROM t1 WHERE c3 = 0;
ERROR 1292 (22007): Truncated incorrect DOUBLE value: 'grape'

When the 0 is quoted, the statement succeeds, but the table created contains no rows because there were
none matching '0', as shown here:

mysql> CREATE TABLE t2 SELECT * FROM t1 WHERE c3 = '0';
Query OK, 0 rows affected (0.03 sec)
Records: 0 Duplicates: 0 Warnings: 0

mysql> SELECT * FROM t2;
Empty set (0.00 sec)

This is a known issue, which is due to the fact that strict mode is not applied when processing SELECT.
See also Strict SQL Mode.

Comparisons between floating-point numbers and large integer values are approximate because the
integer is converted to double-precision floating point before comparison, which is not capable of
representing all 64-bit integers exactly. For example, the integer value 253 + 1 is not representable as a
float, and is rounded to 253 or 253 + 2 before a float comparison, depending on the platform.

To illustrate, only the first of the following comparisons compares equal values, but both comparisons
return true (1):

mysql> SELECT '9223372036854775807' = 9223372036854775807;
 -> 1
mysql> SELECT '9223372036854775807' = 9223372036854775806;
 -> 1

When conversions from string to floating-point and from integer to floating-point occur, they do not
necessarily occur the same way. The integer may be converted to floating-point by the CPU, whereas the
string is converted digit by digit in an operation that involves floating-point multiplications. Also, results can
be affected by factors such as computer architecture or the compiler version or optimization level. One way
to avoid such problems is to use CAST() so that a value is not converted implicitly to a float-point number:

mysql> SELECT CAST('9223372036854775807' AS UNSIGNED) = 9223372036854775806;
 -> 0

For more information about floating-point comparisons, see Section B.3.4.8, “Problems with Floating-Point
Values”.

The server includes dtoa, a conversion library that provides the basis for improved conversion between
string or DECIMAL values and approximate-value (FLOAT/DOUBLE) numbers:

• Consistent conversion results across platforms, which eliminates, for example, Unix versus Windows
conversion differences.

• Accurate representation of values in cases where results previously did not provide sufficient precision,
such as for values close to IEEE limits.

• Conversion of numbers to string format with the best possible precision. The precision of dtoa is always
the same or better than that of the standard C library functions.

Because the conversions produced by this library differ in some cases from non-dtoa results, the potential
exists for incompatibilities in applications that rely on previous results. For example, applications that
depend on a specific exact result from previous conversions might need adjustment to accommodate
additional precision.

1895

Operators

The dtoa library provides conversions with the following properties. D represents a value with a DECIMAL
or string representation, and F represents a floating-point number in native binary (IEEE) format.

• F -> D conversion is done with the best possible precision, returning D as the shortest string that yields F
when read back in and rounded to the nearest value in native binary format as specified by IEEE.

• D -> F conversion is done such that F is the nearest native binary number to the input decimal string D.

These properties imply that F -> D -> F conversions are lossless unless F is -inf, +inf, or NaN. The latter
values are not supported because the SQL standard defines them as invalid values for FLOAT or DOUBLE.

For D -> F -> D conversions, a sufficient condition for losslessness is that D uses 15 or fewer digits of
precision, is not a denormal value, -inf, +inf, or NaN. In some cases, the conversion is lossless even if D
has more than 15 digits of precision, but this is not always the case.

Implicit conversion of a numeric or temporal value to string produces a value that has a character set
and collation determined by the character_set_connection and collation_connection system
variables. (These variables commonly are set with SET NAMES. For information about connection
character sets, see Section 10.4, “Connection Character Sets and Collations”.)

This means that such a conversion results in a character (nonbinary) string (a CHAR, VARCHAR, or
LONGTEXT value), except in the case that the connection character set is set to binary. In that case, the
conversion result is a binary string (a BINARY, VARBINARY, or LONGBLOB value).

For integer expressions, the preceding remarks about expression evaluation apply somewhat differently for
expression assignment; for example, in a statement such as this:

CREATE TABLE t SELECT integer_expr;

In this case, the table in the column resulting from the expression has type INT or BIGINT depending
on the length of the integer expression. If the maximum length of the expression does not fit in an INT,
BIGINT is used instead. The length is taken from the max_length value of the SELECT result set
metadata (see C API Basic Data Structures). This means that you can force a BIGINT rather than INT by
use of a sufficiently long expression:

CREATE TABLE t SELECT 000000000000000000000;

12.4 Operators
Table 12.3 Operators

Name Description Introduced

& Bitwise AND

> Greater than operator

>> Right shift

>= Greater than or equal operator

< Less than operator

<>, != Not equal operator

<< Left shift

<= Less than or equal operator

<=> NULL-safe equal to operator

%, MOD Modulo operator

* Multiplication operator

1896

https://dev.mysql.com/doc/c-api/5.7/en/c-api-data-structures.html

Operators

Name Description Introduced

+ Addition operator

- Minus operator

- Change the sign of the argument

-> Return value from JSON column
after evaluating path; equivalent to
JSON_EXTRACT().

->> Return value from JSON column
after evaluating path and
unquoting the result; equivalent to
JSON_UNQUOTE(JSON_EXTRACT()).

5.7.13

/ Division operator

:= Assign a value

= Assign a value (as part of a SET
statement, or as part of the SET
clause in an UPDATE statement)

= Equal operator

^ Bitwise XOR

AND, && Logical AND

BETWEEN ... AND ... Whether a value is within a range
of values

BINARY Cast a string to a binary string

CASE Case operator

DIV Integer division

EXISTS() Whether the result of a query
contains any rows

IN() Whether a value is within a set of
values

IS Test a value against a boolean

IS NOT Test a value against a boolean

IS NOT NULL NOT NULL value test

IS NULL NULL value test

LIKE Simple pattern matching

NOT, ! Negates value

NOT BETWEEN ... AND ... Whether a value is not within a
range of values

NOT EXISTS() Whether the result of a query
contains no rows

NOT IN() Whether a value is not within a set
of values

NOT LIKE Negation of simple pattern
matching

NOT REGEXP Negation of REGEXP

1897

Operator Precedence

Name Description Introduced

OR, || Logical OR

REGEXP Whether string matches regular
expression

RLIKE Whether string matches regular
expression

SOUNDS LIKE Compare sounds

XOR Logical XOR

| Bitwise OR

~ Bitwise inversion

12.4.1 Operator Precedence

Operator precedences are shown in the following list, from highest precedence to the lowest. Operators
that are shown together on a line have the same precedence.

INTERVAL
BINARY, COLLATE
!
- (unary minus), ~ (unary bit inversion)
^
*, /, DIV, %, MOD
-, +
<<, >>
&
|
= (comparison), <=>, >=, >, <=, <, <>, !=, IS, LIKE, REGEXP, IN
BETWEEN, CASE, WHEN, THEN, ELSE
NOT
AND, &&
XOR
OR, ||
= (assignment), :=

The precedence of = depends on whether it is used as a comparison operator (=) or as an assignment
operator (=). When used as a comparison operator, it has the same precedence as <=>, >=, >, <=, <, <>,
!=, IS, LIKE, REGEXP, and IN(). When used as an assignment operator, it has the same precedence as
:=. Section 13.7.4.1, “SET Syntax for Variable Assignment”, and Section 9.4, “User-Defined Variables”,
explain how MySQL determines which interpretation of = should apply.

For operators that occur at the same precedence level within an expression, evaluation proceeds left to
right, with the exception that assignments evaluate right to left.

The precedence and meaning of some operators depends on the SQL mode:

• By default, || is a logical OR operator. With PIPES_AS_CONCAT enabled, || is string concatenation,
with a precedence between ^ and the unary operators.

• By default, ! has a higher precedence than NOT. With HIGH_NOT_PRECEDENCE enabled, ! and NOT
have the same precedence.

See Section 5.1.10, “Server SQL Modes”.

The precedence of operators determines the order of evaluation of terms in an expression. To override this
order and group terms explicitly, use parentheses. For example:

1898

Comparison Functions and Operators

mysql> SELECT 1+2*3;
 -> 7
mysql> SELECT (1+2)*3;
 -> 9

12.4.2 Comparison Functions and Operators

Table 12.4 Comparison Operators

Name Description

> Greater than operator

>= Greater than or equal operator

< Less than operator

<>, != Not equal operator

<= Less than or equal operator

<=> NULL-safe equal to operator

= Equal operator

BETWEEN ... AND ... Whether a value is within a range of values

COALESCE() Return the first non-NULL argument

EXISTS() Whether the result of a query contains any rows

GREATEST() Return the largest argument

IN() Whether a value is within a set of values

INTERVAL() Return the index of the argument that is less than
the first argument

IS Test a value against a boolean

IS NOT Test a value against a boolean

IS NOT NULL NOT NULL value test

IS NULL NULL value test

ISNULL() Test whether the argument is NULL

LEAST() Return the smallest argument

LIKE Simple pattern matching

NOT BETWEEN ... AND ... Whether a value is not within a range of values

NOT EXISTS() Whether the result of a query contains no rows

NOT IN() Whether a value is not within a set of values

NOT LIKE Negation of simple pattern matching

STRCMP() Compare two strings

Comparison operations result in a value of 1 (TRUE), 0 (FALSE), or NULL. These operations work for
both numbers and strings. Strings are automatically converted to numbers and numbers to strings as
necessary.

The following relational comparison operators can be used to compare not only scalar operands, but row
operands:

1899

Comparison Functions and Operators

= > < >= <= <> !=

The descriptions for those operators later in this section detail how they work with row operands. For
additional examples of row comparisons in the context of row subqueries, see Section 13.2.10.5, “Row
Subqueries”.

Some of the functions in this section return values other than 1 (TRUE), 0 (FALSE), or NULL. LEAST() and
GREATEST() are examples of such functions; Section 12.3, “Type Conversion in Expression Evaluation”,
describes the rules for comparison operations performed by these and similar functions for determining
their return values.

To convert a value to a specific type for comparison purposes, you can use the CAST() function. String
values can be converted to a different character set using CONVERT(). See Section 12.10, “Cast Functions
and Operators”.

By default, string comparisons are not case-sensitive and use the current character set. The default is
latin1 (cp1252 West European), which also works well for English.

• =

Equal:

mysql> SELECT 1 = 0;
 -> 0
mysql> SELECT '0' = 0;
 -> 1
mysql> SELECT '0.0' = 0;
 -> 1
mysql> SELECT '0.01' = 0;
 -> 0
mysql> SELECT '.01' = 0.01;
 -> 1

For row comparisons, (a, b) = (x, y) is equivalent to:

(a = x) AND (b = y)

• <=>

NULL-safe equal. This operator performs an equality comparison like the = operator, but returns 1 rather
than NULL if both operands are NULL, and 0 rather than NULL if one operand is NULL.

The <=> operator is equivalent to the standard SQL IS NOT DISTINCT FROM operator.

mysql> SELECT 1 <=> 1, NULL <=> NULL, 1 <=> NULL;
 -> 1, 1, 0
mysql> SELECT 1 = 1, NULL = NULL, 1 = NULL;
 -> 1, NULL, NULL

For row comparisons, (a, b) <=> (x, y) is equivalent to:

(a <=> x) AND (b <=> y)

• <>, !=

Not equal:

mysql> SELECT '.01' <> '0.01';
 -> 1
mysql> SELECT .01 <> '0.01';
 -> 0
mysql> SELECT 'zapp' <> 'zappp';

1900

Comparison Functions and Operators

 -> 1

For row comparisons, (a, b) <> (x, y) and (a, b) != (x, y) are equivalent to:

(a <> x) OR (b <> y)

• <=

Less than or equal:

mysql> SELECT 0.1 <= 2;
 -> 1

For row comparisons, (a, b) <= (x, y) is equivalent to:

(a < x) OR ((a = x) AND (b <= y))

• <

Less than:

mysql> SELECT 2 < 2;
 -> 0

For row comparisons, (a, b) < (x, y) is equivalent to:

(a < x) OR ((a = x) AND (b < y))

• >=

Greater than or equal:

mysql> SELECT 2 >= 2;
 -> 1

For row comparisons, (a, b) >= (x, y) is equivalent to:

(a > x) OR ((a = x) AND (b >= y))

• >

Greater than:

mysql> SELECT 2 > 2;
 -> 0

For row comparisons, (a, b) > (x, y) is equivalent to:

(a > x) OR ((a = x) AND (b > y))

• expr BETWEEN min AND max

If expr is greater than or equal to min and expr is less than or equal to max, BETWEEN returns 1,
otherwise it returns 0. This is equivalent to the expression (min <= expr AND expr <= max) if
all the arguments are of the same type. Otherwise type conversion takes place according to the rules
described in Section 12.3, “Type Conversion in Expression Evaluation”, but applied to all the three
arguments.

mysql> SELECT 2 BETWEEN 1 AND 3, 2 BETWEEN 3 and 1;
 -> 1, 0
mysql> SELECT 1 BETWEEN 2 AND 3;
 -> 0

1901

Comparison Functions and Operators

mysql> SELECT 'b' BETWEEN 'a' AND 'c';
 -> 1
mysql> SELECT 2 BETWEEN 2 AND '3';
 -> 1
mysql> SELECT 2 BETWEEN 2 AND 'x-3';
 -> 0

For best results when using BETWEEN with date or time values, use CAST() to explicitly convert the
values to the desired data type. Examples: If you compare a DATETIME to two DATE values, convert the
DATE values to DATETIME values. If you use a string constant such as '2001-1-1' in a comparison to
a DATE, cast the string to a DATE.

• expr NOT BETWEEN min AND max

This is the same as NOT (expr BETWEEN min AND max).

• COALESCE(value,...)

Returns the first non-NULL value in the list, or NULL if there are no non-NULL values.

The return type of COALESCE() is the aggregated type of the argument types.

mysql> SELECT COALESCE(NULL,1);
 -> 1
mysql> SELECT COALESCE(NULL,NULL,NULL);
 -> NULL

• EXISTS(query)

Whether the result of a query contains any rows.

CREATE TABLE t (col VARCHAR(3));
INSERT INTO t VALUES ('aaa', 'bbb', 'ccc', 'eee');

SELECT EXISTS (SELECT * FROM t WHERE col LIKE 'c%');
 -> 1

SELECT EXISTS (SELECT * FROM t WHERE col LIKE 'd%');
 -> 0

• NOT EXISTS(query)

Whether the result of a query contains no rows:

SELECT NOT EXISTS (SELECT * FROM t WHERE col LIKE 'c%');
 -> 0

SELECT NOT EXISTS (SELECT * FROM t WHERE col LIKE 'd%');
 -> 1

• GREATEST(value1,value2,...)

With two or more arguments, returns the largest (maximum-valued) argument. The arguments are
compared using the same rules as for LEAST().

mysql> SELECT GREATEST(2,0);
 -> 2
mysql> SELECT GREATEST(34.0,3.0,5.0,767.0);
 -> 767.0
mysql> SELECT GREATEST('B','A','C');
 -> 'C'

GREATEST() returns NULL if any argument is NULL.

1902

Comparison Functions and Operators

• expr IN (value,...)

Returns 1 (true) if expr is equal to any of the values in the IN() list, else returns 0 (false).

Type conversion takes place according to the rules described in Section 12.3, “Type Conversion in
Expression Evaluation”, applied to all the arguments. If no type conversion is needed for the values in
the IN() list, they are all constants of the same type, and expr can be compared to each of them as a
value of the same type (possibly after type conversion), an optimization takes place. The values the list
are sorted and the search for expr is done using a binary search, which makes the IN() operation very
quick.

mysql> SELECT 2 IN (0,3,5,7);
 -> 0
mysql> SELECT 'wefwf' IN ('wee','wefwf','weg');
 -> 1

IN() can be used to compare row constructors:

mysql> SELECT (3,4) IN ((1,2), (3,4));
 -> 1
mysql> SELECT (3,4) IN ((1,2), (3,5));
 -> 0

You should never mix quoted and unquoted values in an IN() list because the comparison rules
for quoted values (such as strings) and unquoted values (such as numbers) differ. Mixing types may
therefore lead to inconsistent results. For example, do not write an IN() expression like this:

SELECT val1 FROM tbl1 WHERE val1 IN (1,2,'a');

Instead, write it like this:

SELECT val1 FROM tbl1 WHERE val1 IN ('1','2','a');

Implicit type conversion may produce nonintuitive results:

mysql> SELECT 'a' IN (0), 0 IN ('b');
 -> 1, 1

In both cases, the comparison values are converted to floating-point values, yielding 0.0 in each case,
and a comparison result of 1 (true).

The number of values in the IN() list is only limited by the max_allowed_packet value.

To comply with the SQL standard, IN() returns NULL not only if the expression on the left hand side is
NULL, but also if no match is found in the list and one of the expressions in the list is NULL.

IN() syntax can also be used to write certain types of subqueries. See Section 13.2.10.3, “Subqueries
with ANY, IN, or SOME”.

• expr NOT IN (value,...)

This is the same as NOT (expr IN (value,...)).

• INTERVAL(N,N1,N2,N3,...)

Returns 0 if N ≤ N1, 1 if N ≤ N2 and so on, or -1 if N is NULL. All arguments are treated as integers. It is
required that N1 ≤ N2 ≤ N3 ≤ ... ≤ Nn for this function to work correctly. This is because a binary search
is used (very fast).

mysql> SELECT INTERVAL(23, 1, 15, 17, 30, 44, 200);

1903

Comparison Functions and Operators

 -> 3
mysql> SELECT INTERVAL(10, 1, 10, 100, 1000);
 -> 2
mysql> SELECT INTERVAL(22, 23, 30, 44, 200);
 -> 0

• IS boolean_value

Tests a value against a boolean value, where boolean_value can be TRUE, FALSE, or UNKNOWN.

mysql> SELECT 1 IS TRUE, 0 IS FALSE, NULL IS UNKNOWN;
 -> 1, 1, 1

• IS NOT boolean_value

Tests a value against a boolean value, where boolean_value can be TRUE, FALSE, or UNKNOWN.

mysql> SELECT 1 IS NOT UNKNOWN, 0 IS NOT UNKNOWN, NULL IS NOT UNKNOWN;
 -> 1, 1, 0

• IS NULL

Tests whether a value is NULL.

mysql> SELECT 1 IS NULL, 0 IS NULL, NULL IS NULL;
 -> 0, 0, 1

To work well with ODBC programs, MySQL supports the following extra features when using IS NULL:

• If sql_auto_is_null variable is set to 1, then after a statement that successfully inserts an
automatically generated AUTO_INCREMENT value, you can find that value by issuing a statement of
the following form:

SELECT * FROM tbl_name WHERE auto_col IS NULL

If the statement returns a row, the value returned is the same as if you invoked the
LAST_INSERT_ID() function. For details, including the return value after a multiple-row insert, see
Section 12.15, “Information Functions”. If no AUTO_INCREMENT value was successfully inserted, the
SELECT statement returns no row.

The behavior of retrieving an AUTO_INCREMENT value by using an IS NULL comparison can be
disabled by setting sql_auto_is_null = 0. See Section 5.1.7, “Server System Variables”.

The default value of sql_auto_is_null is 0.

• For DATE and DATETIME columns that are declared as NOT NULL, you can find the special date
'0000-00-00' by using a statement like this:

SELECT * FROM tbl_name WHERE date_column IS NULL

This is needed to get some ODBC applications to work because ODBC does not support a
'0000-00-00' date value.

See Obtaining Auto-Increment Values, and the description for the FLAG_AUTO_IS_NULL option at
Connector/ODBC Connection Parameters.

• IS NOT NULL

Tests whether a value is not NULL.

mysql> SELECT 1 IS NOT NULL, 0 IS NOT NULL, NULL IS NOT NULL;

1904

https://dev.mysql.com/doc/connector-odbc/en/connector-odbc-usagenotes-functionality-last-insert-id.html
https://dev.mysql.com/doc/connector-odbc/en/connector-odbc-configuration-connection-parameters.html

Logical Operators

 -> 1, 1, 0

• ISNULL(expr)

If expr is NULL, ISNULL() returns 1, otherwise it returns 0.

mysql> SELECT ISNULL(1+1);
 -> 0
mysql> SELECT ISNULL(1/0);
 -> 1

ISNULL() can be used instead of = to test whether a value is NULL. (Comparing a value to NULL using
= always yields NULL.)

The ISNULL() function shares some special behaviors with the IS NULL comparison operator. See the
description of IS NULL.

• LEAST(value1,value2,...)

With two or more arguments, returns the smallest (minimum-valued) argument. The arguments are
compared using the following rules:

• If any argument is NULL, the result is NULL. No comparison is needed.

• If all arguments are integer-valued, they are compared as integers.

• If at least one argument is double precision, they are compared as double-precision values.
Otherwise, if at least one argument is a DECIMAL value, they are compared as DECIMAL values.

• If the arguments comprise a mix of numbers and strings, they are compared as numbers.

• If any argument is a nonbinary (character) string, the arguments are compared as nonbinary strings.

• In all other cases, the arguments are compared as binary strings.

The return type of LEAST() is the aggregated type of the comparison argument types.

mysql> SELECT LEAST(2,0);
 -> 0
mysql> SELECT LEAST(34.0,3.0,5.0,767.0);
 -> 3.0
mysql> SELECT LEAST('B','A','C');
 -> 'A'

12.4.3 Logical Operators

Table 12.5 Logical Operators

Name Description

AND, && Logical AND

NOT, ! Negates value

OR, || Logical OR

XOR Logical XOR

In SQL, all logical operators evaluate to TRUE, FALSE, or NULL (UNKNOWN). In MySQL, these are
implemented as 1 (TRUE), 0 (FALSE), and NULL. Most of this is common to different SQL database
servers, although some servers may return any nonzero value for TRUE.

1905

Logical Operators

MySQL evaluates any nonzero, non-NULL value to TRUE. For example, the following statements all assess
to TRUE:

mysql> SELECT 10 IS TRUE;
-> 1
mysql> SELECT -10 IS TRUE;
-> 1
mysql> SELECT 'string' IS NOT NULL;
-> 1

• NOT, !

Logical NOT. Evaluates to 1 if the operand is 0, to 0 if the operand is nonzero, and NOT NULL returns
NULL.

mysql> SELECT NOT 10;
 -> 0
mysql> SELECT NOT 0;
 -> 1
mysql> SELECT NOT NULL;
 -> NULL
mysql> SELECT ! (1+1);
 -> 0
mysql> SELECT ! 1+1;
 -> 1

The last example produces 1 because the expression evaluates the same way as (!1)+1.

• AND, &&

Logical AND. Evaluates to 1 if all operands are nonzero and not NULL, to 0 if one or more operands are
0, otherwise NULL is returned.

mysql> SELECT 1 AND 1;
 -> 1
mysql> SELECT 1 AND 0;
 -> 0
mysql> SELECT 1 AND NULL;
 -> NULL
mysql> SELECT 0 AND NULL;
 -> 0
mysql> SELECT NULL AND 0;
 -> 0

• OR, ||

Logical OR. When both operands are non-NULL, the result is 1 if any operand is nonzero, and 0
otherwise. With a NULL operand, the result is 1 if the other operand is nonzero, and NULL otherwise. If
both operands are NULL, the result is NULL.

mysql> SELECT 1 OR 1;
 -> 1
mysql> SELECT 1 OR 0;
 -> 1
mysql> SELECT 0 OR 0;
 -> 0
mysql> SELECT 0 OR NULL;
 -> NULL
mysql> SELECT 1 OR NULL;
 -> 1

1906

Assignment Operators

Note

If the PIPES_AS_CONCAT SQL mode is enabled, || signifies the SQL-standard
string concatenation operator (like CONCAT()).

• XOR

Logical XOR. Returns NULL if either operand is NULL. For non-NULL operands, evaluates to 1 if an odd
number of operands is nonzero, otherwise 0 is returned.

mysql> SELECT 1 XOR 1;
 -> 0
mysql> SELECT 1 XOR 0;
 -> 1
mysql> SELECT 1 XOR NULL;
 -> NULL
mysql> SELECT 1 XOR 1 XOR 1;
 -> 1

a XOR b is mathematically equal to (a AND (NOT b)) OR ((NOT a) and b).

12.4.4 Assignment Operators

Table 12.6 Assignment Operators

Name Description

:= Assign a value

= Assign a value (as part of a SET statement, or as
part of the SET clause in an UPDATE statement)

• :=

Assignment operator. Causes the user variable on the left hand side of the operator to take on the value
to its right. The value on the right hand side may be a literal value, another variable storing a value, or
any legal expression that yields a scalar value, including the result of a query (provided that this value
is a scalar value). You can perform multiple assignments in the same SET statement. You can perform
multiple assignments in the same statement.

Unlike =, the := operator is never interpreted as a comparison operator. This means you can use := in
any valid SQL statement (not just in SET statements) to assign a value to a variable.

mysql> SELECT @var1, @var2;
 -> NULL, NULL
mysql> SELECT @var1 := 1, @var2;
 -> 1, NULL
mysql> SELECT @var1, @var2;
 -> 1, NULL
mysql> SELECT @var1, @var2 := @var1;
 -> 1, 1
mysql> SELECT @var1, @var2;
 -> 1, 1

mysql> SELECT @var1:=COUNT(*) FROM t1;
 -> 4
mysql> SELECT @var1;
 -> 4

You can make value assignments using := in other statements besides SELECT, such as UPDATE, as
shown here:

1907

Flow Control Functions

mysql> SELECT @var1;
 -> 4
mysql> SELECT * FROM t1;
 -> 1, 3, 5, 7

mysql> UPDATE t1 SET c1 = 2 WHERE c1 = @var1:= 1;
Query OK, 1 row affected (0.00 sec)
Rows matched: 1 Changed: 1 Warnings: 0

mysql> SELECT @var1;
 -> 1
mysql> SELECT * FROM t1;
 -> 2, 3, 5, 7

While it is also possible both to set and to read the value of the same variable in a single SQL statement
using the := operator, this is not recommended. Section 9.4, “User-Defined Variables”, explains why you
should avoid doing this.

• =

This operator is used to perform value assignments in two cases, described in the next two paragraphs.

Within a SET statement, = is treated as an assignment operator that causes the user variable on the
left hand side of the operator to take on the value to its right. (In other words, when used in a SET
statement, = is treated identically to :=.) The value on the right hand side may be a literal value, another
variable storing a value, or any legal expression that yields a scalar value, including the result of a query
(provided that this value is a scalar value). You can perform multiple assignments in the same SET
statement.

In the SET clause of an UPDATE statement, = also acts as an assignment operator; in this case,
however, it causes the column named on the left hand side of the operator to assume the value given
to the right, provided any WHERE conditions that are part of the UPDATE are met. You can make multiple
assignments in the same SET clause of an UPDATE statement.

In any other context, = is treated as a comparison operator.

mysql> SELECT @var1, @var2;
 -> NULL, NULL
mysql> SELECT @var1 := 1, @var2;
 -> 1, NULL
mysql> SELECT @var1, @var2;
 -> 1, NULL
mysql> SELECT @var1, @var2 := @var1;
 -> 1, 1
mysql> SELECT @var1, @var2;
 -> 1, 1

For more information, see Section 13.7.4.1, “SET Syntax for Variable Assignment”, Section 13.2.11,
“UPDATE Statement”, and Section 13.2.10, “Subqueries”.

12.5 Flow Control Functions
Table 12.7 Flow Control Operators

Name Description

CASE Case operator

IF() If/else construct

IFNULL() Null if/else construct

1908

Flow Control Functions

Name Description

NULLIF() Return NULL if expr1 = expr2

• CASE value WHEN compare_value THEN result [WHEN compare_value THEN result
...] [ELSE result] END

CASE WHEN condition THEN result [WHEN condition THEN result ...] [ELSE
result] END

The first CASE syntax returns the result for the first value=compare_value comparison that is true.
The second syntax returns the result for the first condition that is true. If no comparison or condition is
true, the result after ELSE is returned, or NULL if there is no ELSE part.

Note

The syntax of the CASE operator described here differs slightly from that of the
SQL CASE statement described in Section 13.6.5.1, “CASE Statement”, for use
inside stored programs. The CASE statement cannot have an ELSE NULL clause,
and it is terminated with END CASE instead of END.

The return type of a CASE expression result is the aggregated type of all result values.

mysql> SELECT CASE 1 WHEN 1 THEN 'one'
 -> WHEN 2 THEN 'two' ELSE 'more' END;
 -> 'one'
mysql> SELECT CASE WHEN 1>0 THEN 'true' ELSE 'false' END;
 -> 'true'
mysql> SELECT CASE BINARY 'B'
 -> WHEN 'a' THEN 1 WHEN 'b' THEN 2 END;
 -> NULL

• IF(expr1,expr2,expr3)

If expr1 is TRUE (expr1 <> 0 and expr1 IS NOT NULL), IF() returns expr2. Otherwise, it returns
expr3.

Note

There is also an IF statement, which differs from the IF() function described
here. See Section 13.6.5.2, “IF Statement”.

If only one of expr2 or expr3 is explicitly NULL, the result type of the IF() function is the type of the
non-NULL expression.

The default return type of IF() (which may matter when it is stored into a temporary table) is calculated
as follows:

• If expr2 or expr3 produce a string, the result is a string.

If expr2 and expr3 are both strings, the result is case-sensitive if either string is case-sensitive.

• If expr2 or expr3 produce a floating-point value, the result is a floating-point value.

• If expr2 or expr3 produce an integer, the result is an integer.

mysql> SELECT IF(1>2,2,3);
 -> 3
mysql> SELECT IF(1<2,'yes','no');
 -> 'yes'

1909

Numeric Functions and Operators

mysql> SELECT IF(STRCMP('test','test1'),'no','yes');
 -> 'no'

• IFNULL(expr1,expr2)

If expr1 is not NULL, IFNULL() returns expr1; otherwise it returns expr2.

mysql> SELECT IFNULL(1,0);
 -> 1
mysql> SELECT IFNULL(NULL,10);
 -> 10
mysql> SELECT IFNULL(1/0,10);
 -> 10
mysql> SELECT IFNULL(1/0,'yes');
 -> 'yes'

The default return type of IFNULL(expr1,expr2) is the more “general” of the two expressions, in the
order STRING, REAL, or INTEGER. Consider the case of a table based on expressions or where MySQL
must internally store a value returned by IFNULL() in a temporary table:

mysql> CREATE TABLE tmp SELECT IFNULL(1,'test') AS test;
mysql> DESCRIBE tmp;
+-------+--------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+-------+--------------+------+-----+---------+-------+
| test | varbinary(4) | NO | | | |
+-------+--------------+------+-----+---------+-------+

In this example, the type of the test column is VARBINARY(4) (a string type).

• NULLIF(expr1,expr2)

Returns NULL if expr1 = expr2 is true, otherwise returns expr1. This is the same as CASE WHEN
expr1 = expr2 THEN NULL ELSE expr1 END.

The return value has the same type as the first argument.

mysql> SELECT NULLIF(1,1);
 -> NULL
mysql> SELECT NULLIF(1,2);
 -> 1

Note

MySQL evaluates expr1 twice if the arguments are not equal.

12.6 Numeric Functions and Operators
Table 12.8 Numeric Functions and Operators

Name Description

%, MOD Modulo operator

* Multiplication operator

+ Addition operator

- Minus operator

- Change the sign of the argument

/ Division operator

1910

Arithmetic Operators

Name Description

ABS() Return the absolute value

ACOS() Return the arc cosine

ASIN() Return the arc sine

ATAN() Return the arc tangent

ATAN2(), ATAN() Return the arc tangent of the two arguments

CEIL() Return the smallest integer value not less than the
argument

CEILING() Return the smallest integer value not less than the
argument

CONV() Convert numbers between different number bases

COS() Return the cosine

COT() Return the cotangent

CRC32() Compute a cyclic redundancy check value

DEGREES() Convert radians to degrees

DIV Integer division

EXP() Raise to the power of

FLOOR() Return the largest integer value not greater than the
argument

LN() Return the natural logarithm of the argument

LOG() Return the natural logarithm of the first argument

LOG10() Return the base-10 logarithm of the argument

LOG2() Return the base-2 logarithm of the argument

MOD() Return the remainder

PI() Return the value of pi

POW() Return the argument raised to the specified power

POWER() Return the argument raised to the specified power

RADIANS() Return argument converted to radians

RAND() Return a random floating-point value

ROUND() Round the argument

SIGN() Return the sign of the argument

SIN() Return the sine of the argument

SQRT() Return the square root of the argument

TAN() Return the tangent of the argument

TRUNCATE() Truncate to specified number of decimal places

12.6.1 Arithmetic Operators

Table 12.9 Arithmetic Operators

Name Description

%, MOD Modulo operator

1911

Arithmetic Operators

Name Description

* Multiplication operator

+ Addition operator

- Minus operator

- Change the sign of the argument

/ Division operator

DIV Integer division

The usual arithmetic operators are available. The result is determined according to the following rules:

• In the case of -, +, and *, the result is calculated with BIGINT (64-bit) precision if both operands are
integers.

• If both operands are integers and any of them are unsigned, the result is an unsigned integer. For
subtraction, if the NO_UNSIGNED_SUBTRACTION SQL mode is enabled, the result is signed even if any
operand is unsigned.

• If any of the operands of a +, -, /, *, % is a real or string value, the precision of the result is the precision
of the operand with the maximum precision.

• In division performed with /, the scale of the result when using two exact-value operands is the scale
of the first operand plus the value of the div_precision_increment system variable (which is 4 by
default). For example, the result of the expression 5.05 / 0.014 has a scale of six decimal places
(360.714286).

These rules are applied for each operation, such that nested calculations imply the precision of each
component. Hence, (14620 / 9432456) / (24250 / 9432456), resolves first to (0.0014) /
(0.0026), with the final result having 8 decimal places (0.60288653).

Because of these rules and the way they are applied, care should be taken to ensure that components and
subcomponents of a calculation use the appropriate level of precision. See Section 12.10, “Cast Functions
and Operators”.

For information about handling of overflow in numeric expression evaluation, see Section 11.1.7, “Out-of-
Range and Overflow Handling”.

Arithmetic operators apply to numbers. For other types of values, alternative operations may be available.
For example, to add date values, use DATE_ADD(); see Section 12.7, “Date and Time Functions”.

• +

Addition:

mysql> SELECT 3+5;
 -> 8

• -

Subtraction:

mysql> SELECT 3-5;
 -> -2

• -

Unary minus. This operator changes the sign of the operand.

1912

Mathematical Functions

mysql> SELECT - 2;
 -> -2

Note

If this operator is used with a BIGINT, the return value is also a BIGINT. This
means that you should avoid using - on integers that may have the value of −263.

• *

Multiplication:

mysql> SELECT 3*5;
 -> 15
mysql> SELECT 18014398509481984*18014398509481984.0;
 -> 324518553658426726783156020576256.0
mysql> SELECT 18014398509481984*18014398509481984;
 -> out-of-range error

The last expression produces an error because the result of the integer multiplication exceeds the 64-bit
range of BIGINT calculations. (See Section 11.1, “Numeric Data Types”.)

• /

Division:

mysql> SELECT 3/5;
 -> 0.60

Division by zero produces a NULL result:

mysql> SELECT 102/(1-1);
 -> NULL

A division is calculated with BIGINT arithmetic only if performed in a context where its result is converted
to an integer.

• DIV

Integer division. Discards from the division result any fractional part to the right of the decimal point.

If either operand has a noninteger type, the operands are converted to DECIMAL and divided using
DECIMAL arithmetic before converting the result to BIGINT. If the result exceeds BIGINT range, an
error occurs.

mysql> SELECT 5 DIV 2, -5 DIV 2, 5 DIV -2, -5 DIV -2;
 -> 2, -2, -2, 2

• N % M, N MOD M

Modulo operation. Returns the remainder of N divided by M. For more information, see the description for
the MOD() function in Section 12.6.2, “Mathematical Functions”.

12.6.2 Mathematical Functions

Table 12.10 Mathematical Functions

Name Description

ABS() Return the absolute value

1913

Mathematical Functions

Name Description

ACOS() Return the arc cosine

ASIN() Return the arc sine

ATAN() Return the arc tangent

ATAN2(), ATAN() Return the arc tangent of the two arguments

CEIL() Return the smallest integer value not less than the
argument

CEILING() Return the smallest integer value not less than the
argument

CONV() Convert numbers between different number bases

COS() Return the cosine

COT() Return the cotangent

CRC32() Compute a cyclic redundancy check value

DEGREES() Convert radians to degrees

EXP() Raise to the power of

FLOOR() Return the largest integer value not greater than the
argument

LN() Return the natural logarithm of the argument

LOG() Return the natural logarithm of the first argument

LOG10() Return the base-10 logarithm of the argument

LOG2() Return the base-2 logarithm of the argument

MOD() Return the remainder

PI() Return the value of pi

POW() Return the argument raised to the specified power

POWER() Return the argument raised to the specified power

RADIANS() Return argument converted to radians

RAND() Return a random floating-point value

ROUND() Round the argument

SIGN() Return the sign of the argument

SIN() Return the sine of the argument

SQRT() Return the square root of the argument

TAN() Return the tangent of the argument

TRUNCATE() Truncate to specified number of decimal places

All mathematical functions return NULL in the event of an error.

• ABS(X)

Returns the absolute value of X, or NULL if X is NULL.

The result type is derived from the argument type. An implication of this is that
ABS(-9223372036854775808) produces an error because the result cannot be stored in a signed
BIGINT value.

1914

Mathematical Functions

mysql> SELECT ABS(2);
 -> 2
mysql> SELECT ABS(-32);
 -> 32

This function is safe to use with BIGINT values.

• ACOS(X)

Returns the arc cosine of X, that is, the value whose cosine is X. Returns NULL if X is not in the range -1
to 1.

mysql> SELECT ACOS(1);
 -> 0
mysql> SELECT ACOS(1.0001);
 -> NULL
mysql> SELECT ACOS(0);
 -> 1.5707963267949

• ASIN(X)

Returns the arc sine of X, that is, the value whose sine is X. Returns NULL if X is not in the range -1 to 1.

mysql> SELECT ASIN(0.2);
 -> 0.20135792079033
mysql> SELECT ASIN('foo');

+-------------+
| ASIN('foo') |
+-------------+
| 0 |
+-------------+
1 row in set, 1 warning (0.00 sec)

mysql> SHOW WARNINGS;
+---------+------+---+
| Level | Code | Message |
+---------+------+---+
| Warning | 1292 | Truncated incorrect DOUBLE value: 'foo' |
+---------+------+---+

• ATAN(X)

Returns the arc tangent of X, that is, the value whose tangent is X.

mysql> SELECT ATAN(2);
 -> 1.1071487177941
mysql> SELECT ATAN(-2);
 -> -1.1071487177941

• ATAN(Y,X), ATAN2(Y,X)

Returns the arc tangent of the two variables X and Y. It is similar to calculating the arc tangent of Y / X,
except that the signs of both arguments are used to determine the quadrant of the result.

mysql> SELECT ATAN(-2,2);
 -> -0.78539816339745
mysql> SELECT ATAN2(PI(),0);
 -> 1.5707963267949

• CEIL(X)

CEIL() is a synonym for CEILING().

1915

Mathematical Functions

• CEILING(X)

Returns the smallest integer value not less than X.

mysql> SELECT CEILING(1.23);
 -> 2
mysql> SELECT CEILING(-1.23);
 -> -1

For exact-value numeric arguments, the return value has an exact-value numeric type. For string or
floating-point arguments, the return value has a floating-point type.

• CONV(N,from_base,to_base)

Converts numbers between different number bases. Returns a string representation of the number
N, converted from base from_base to base to_base. Returns NULL if any argument is NULL. The
argument N is interpreted as an integer, but may be specified as an integer or a string. The minimum
base is 2 and the maximum base is 36. If from_base is a negative number, N is regarded as a signed
number. Otherwise, N is treated as unsigned. CONV() works with 64-bit precision.

mysql> SELECT CONV('a',16,2);
 -> '1010'
mysql> SELECT CONV('6E',18,8);
 -> '172'
mysql> SELECT CONV(-17,10,-18);
 -> '-H'
mysql> SELECT CONV(10+'10'+'10'+X'0a',10,10);
 -> '40'

• COS(X)

Returns the cosine of X, where X is given in radians.

mysql> SELECT COS(PI());
 -> -1

• COT(X)

Returns the cotangent of X.

mysql> SELECT COT(12);
 -> -1.5726734063977
mysql> SELECT COT(0);
 -> out-of-range error

• CRC32(expr)

Computes a cyclic redundancy check value and returns a 32-bit unsigned value. The result is NULL if the
argument is NULL. The argument is expected to be a string and (if possible) is treated as one if it is not.

mysql> SELECT CRC32('MySQL');
 -> 3259397556
mysql> SELECT CRC32('mysql');
 -> 2501908538

• DEGREES(X)

Returns the argument X, converted from radians to degrees.

mysql> SELECT DEGREES(PI());
 -> 180
mysql> SELECT DEGREES(PI() / 2);
 -> 90

1916

Mathematical Functions

• EXP(X)

Returns the value of e (the base of natural logarithms) raised to the power of X. The inverse of this
function is LOG() (using a single argument only) or LN().

mysql> SELECT EXP(2);
 -> 7.3890560989307
mysql> SELECT EXP(-2);
 -> 0.13533528323661
mysql> SELECT EXP(0);
 -> 1

• FLOOR(X)

Returns the largest integer value not greater than X.

mysql> SELECT FLOOR(1.23), FLOOR(-1.23);
 -> 1, -2

For exact-value numeric arguments, the return value has an exact-value numeric type. For string or
floating-point arguments, the return value has a floating-point type.

• FORMAT(X,D)

Formats the number X to a format like '#,###,###.##', rounded to D decimal places, and returns the
result as a string. For details, see Section 12.8, “String Functions and Operators”.

• HEX(N_or_S)

This function can be used to obtain a hexadecimal representation of a decimal number or a string; the
manner in which it does so varies according to the argument's type. See this function's description in
Section 12.8, “String Functions and Operators”, for details.

• LN(X)

Returns the natural logarithm of X; that is, the base-e logarithm of X. If X is less than or equal to 0.0E0,
the function returns NULL and a warning “Invalid argument for logarithm” is reported.

mysql> SELECT LN(2);
 -> 0.69314718055995
mysql> SELECT LN(-2);
 -> NULL

This function is synonymous with LOG(X). The inverse of this function is the EXP() function.

• LOG(X), LOG(B,X)

If called with one parameter, this function returns the natural logarithm of X. If X is less than or equal to
0.0E0, the function returns NULL and a warning “Invalid argument for logarithm” is reported.

The inverse of this function (when called with a single argument) is the EXP() function.

mysql> SELECT LOG(2);
 -> 0.69314718055995
mysql> SELECT LOG(-2);
 -> NULL

If called with two parameters, this function returns the logarithm of X to the base B. If X is less than or
equal to 0, or if B is less than or equal to 1, then NULL is returned.

mysql> SELECT LOG(2,65536);

1917

Mathematical Functions

 -> 16
mysql> SELECT LOG(10,100);
 -> 2
mysql> SELECT LOG(1,100);
 -> NULL

LOG(B,X) is equivalent to LOG(X) / LOG(B).

• LOG2(X)

Returns the base-2 logarithm of X. If X is less than or equal to 0.0E0, the function returns NULL and a
warning “Invalid argument for logarithm” is reported.

mysql> SELECT LOG2(65536);
 -> 16
mysql> SELECT LOG2(-100);
 -> NULL

LOG2() is useful for finding out how many bits a number requires for storage. This function is
approximately equivalent to the expression LOG(X) / LOG(2).

• LOG10(X)

Returns the base-10 logarithm of X. If X is less than or equal to 0.0E0, the function returns NULL and a
warning “Invalid argument for logarithm” is reported.

mysql> SELECT LOG10(2);
 -> 0.30102999566398
mysql> SELECT LOG10(100);
 -> 2
mysql> SELECT LOG10(-100);
 -> NULL

LOG10(X) is approximately equivalent to LOG(10,X).

• MOD(N,M), N % M, N MOD M

Modulo operation. Returns the remainder of N divided by M.

mysql> SELECT MOD(234, 10);
 -> 4
mysql> SELECT 253 % 7;
 -> 1
mysql> SELECT MOD(29,9);
 -> 2
mysql> SELECT 29 MOD 9;
 -> 2

This function is safe to use with BIGINT values.

MOD() also works on values that have a fractional part and returns the exact remainder after division:

mysql> SELECT MOD(34.5,3);
 -> 1.5

MOD(N,0) returns NULL.

1918

Mathematical Functions

• PI()

Returns the value of π (pi). The default number of decimal places displayed is seven, but MySQL uses
the full double-precision value internally.

Because the return value of this function is a double-precision value, its exact representation may vary
between platforms or implementations. This also applies to any expressions making use of PI(). See
Section 11.1.4, “Floating-Point Types (Approximate Value) - FLOAT, DOUBLE”.

mysql> SELECT PI();
 -> 3.141593
mysql> SELECT PI()+0.000000000000000000;
 -> 3.141592653589793000

• POW(X,Y)

Returns the value of X raised to the power of Y.

mysql> SELECT POW(2,2);
 -> 4
mysql> SELECT POW(2,-2);
 -> 0.25

• POWER(X,Y)

This is a synonym for POW().

• RADIANS(X)

Returns the argument X, converted from degrees to radians. (Note that π radians equals 180 degrees.)

mysql> SELECT RADIANS(90);
 -> 1.5707963267949

• RAND([N])

Returns a random floating-point value v in the range 0 <= v < 1.0. To obtain a random integer R in
the range i <= R < j, use the expression FLOOR(i + RAND() * (j − i)). For example, to obtain a
random integer in the range the range 7 <= R < 12, use the following statement:

SELECT FLOOR(7 + (RAND() * 5));

If an integer argument N is specified, it is used as the seed value:

• With a constant initializer argument, the seed is initialized once when the statement is prepared, prior
to execution.

• With a nonconstant initializer argument (such as a column name), the seed is initialized with the value
for each invocation of RAND().

One implication of this behavior is that for equal argument values, RAND(N) returns the same value
each time, and thus produces a repeatable sequence of column values. In the following example, the
sequence of values produced by RAND(3) is the same both places it occurs.

mysql> CREATE TABLE t (i INT);
Query OK, 0 rows affected (0.42 sec)

mysql> INSERT INTO t VALUES(1),(2),(3);
Query OK, 3 rows affected (0.00 sec)
Records: 3 Duplicates: 0 Warnings: 0

1919

Mathematical Functions

mysql> SELECT i, RAND() FROM t;
+------+------------------+
| i | RAND() |
+------+------------------+
1	0.61914388706828
2	0.93845168309142
3	0.83482678498591
+------+------------------+
3 rows in set (0.00 sec)

mysql> SELECT i, RAND(3) FROM t;
+------+------------------+
| i | RAND(3) |
+------+------------------+
1	0.90576975597606
2	0.37307905813035
3	0.14808605345719
+------+------------------+
3 rows in set (0.00 sec)

mysql> SELECT i, RAND() FROM t;
+------+------------------+
| i | RAND() |
+------+------------------+
1	0.35877890638893
2	0.28941420772058
3	0.37073435016976
+------+------------------+
3 rows in set (0.00 sec)

mysql> SELECT i, RAND(3) FROM t;
+------+------------------+
| i | RAND(3) |
+------+------------------+
1	0.90576975597606
2	0.37307905813035
3	0.14808605345719
+------+------------------+
3 rows in set (0.01 sec)

RAND() in a WHERE clause is evaluated for every row (when selecting from one table) or combination of
rows (when selecting from a multiple-table join). Thus, for optimizer purposes, RAND() is not a constant
value and cannot be used for index optimizations. For more information, see Section 8.2.1.18, “Function
Call Optimization”.

Use of a column with RAND() values in an ORDER BY or GROUP BY clause may yield unexpected
results because for either clause a RAND() expression can be evaluated multiple times for the same
row, each time returning a different result. If the goal is to retrieve rows in random order, you can use a
statement like this:

SELECT * FROM tbl_name ORDER BY RAND();

To select a random sample from a set of rows, combine ORDER BY RAND() with LIMIT:

SELECT * FROM table1, table2 WHERE a=b AND c<d ORDER BY RAND() LIMIT 1000;

RAND() is not meant to be a perfect random generator. It is a fast way to generate random numbers on
demand that is portable between platforms for the same MySQL version.

This function is unsafe for statement-based replication. A warning is logged if you use this function when
binlog_format is set to STATEMENT.

1920

Mathematical Functions

• ROUND(X), ROUND(X,D)

Rounds the argument X to D decimal places. The rounding algorithm depends on the data type of X. D
defaults to 0 if not specified. D can be negative to cause D digits left of the decimal point of the value X to
become zero. The maximum absolute value for D is 30; any digits in excess of 30 (or -30) are truncated.

mysql> SELECT ROUND(-1.23);
 -> -1
mysql> SELECT ROUND(-1.58);
 -> -2
mysql> SELECT ROUND(1.58);
 -> 2
mysql> SELECT ROUND(1.298, 1);
 -> 1.3
mysql> SELECT ROUND(1.298, 0);
 -> 1
mysql> SELECT ROUND(23.298, -1);
 -> 20
mysql> SELECT ROUND(.12345678901234567890123456789012345, 35);
 -> 0.123456789012345678901234567890

The return value has the same type as the first argument (assuming that it is integer, double, or
decimal). This means that for an integer argument, the result is an integer (no decimal places):

mysql> SELECT ROUND(150.000,2), ROUND(150,2);
+------------------+--------------+
| ROUND(150.000,2) | ROUND(150,2) |
+------------------+--------------+
| 150.00 | 150 |
+------------------+--------------+

ROUND() uses the following rules depending on the type of the first argument:

• For exact-value numbers, ROUND() uses the “round half away from zero” or “round toward nearest”
rule: A value with a fractional part of .5 or greater is rounded up to the next integer if positive or down
to the next integer if negative. (In other words, it is rounded away from zero.) A value with a fractional
part less than .5 is rounded down to the next integer if positive or up to the next integer if negative.

• For approximate-value numbers, the result depends on the C library. On many systems, this means
that ROUND() uses the “round to nearest even” rule: A value with a fractional part exactly halfway
between two integers is rounded to the nearest even integer.

The following example shows how rounding differs for exact and approximate values:

mysql> SELECT ROUND(2.5), ROUND(25E-1);
+------------+--------------+
| ROUND(2.5) | ROUND(25E-1) |
+------------+--------------+
| 3 | 2 |
+------------+--------------+

For more information, see Section 12.21, “Precision Math”.

• SIGN(X)

Returns the sign of the argument as -1, 0, or 1, depending on whether X is negative, zero, or positive.

mysql> SELECT SIGN(-32);
 -> -1
mysql> SELECT SIGN(0);
 -> 0
mysql> SELECT SIGN(234);

1921

Date and Time Functions

 -> 1

• SIN(X)

Returns the sine of X, where X is given in radians.

mysql> SELECT SIN(PI());
 -> 1.2246063538224e-16
mysql> SELECT ROUND(SIN(PI()));
 -> 0

• SQRT(X)

Returns the square root of a nonnegative number X.

mysql> SELECT SQRT(4);
 -> 2
mysql> SELECT SQRT(20);
 -> 4.4721359549996
mysql> SELECT SQRT(-16);
 -> NULL

• TAN(X)

Returns the tangent of X, where X is given in radians.

mysql> SELECT TAN(PI());
 -> -1.2246063538224e-16
mysql> SELECT TAN(PI()+1);
 -> 1.5574077246549

• TRUNCATE(X,D)

Returns the number X, truncated to D decimal places. If D is 0, the result has no decimal point or
fractional part. D can be negative to cause D digits left of the decimal point of the value X to become
zero.

mysql> SELECT TRUNCATE(1.223,1);
 -> 1.2
mysql> SELECT TRUNCATE(1.999,1);
 -> 1.9
mysql> SELECT TRUNCATE(1.999,0);
 -> 1
mysql> SELECT TRUNCATE(-1.999,1);
 -> -1.9
mysql> SELECT TRUNCATE(122,-2);
 -> 100
mysql> SELECT TRUNCATE(10.28*100,0);
 -> 1028

All numbers are rounded toward zero.

12.7 Date and Time Functions
This section describes the functions that can be used to manipulate temporal values. See Section 11.2,
“Date and Time Data Types”, for a description of the range of values each date and time type has and the
valid formats in which values may be specified.

Table 12.11 Date and Time Functions

Name Description

ADDDATE() Add time values (intervals) to a date value

1922

Date and Time Functions

Name Description

ADDTIME() Add time

CONVERT_TZ() Convert from one time zone to another

CURDATE() Return the current date

CURRENT_DATE(), CURRENT_DATE Synonyms for CURDATE()

CURRENT_TIME(), CURRENT_TIME Synonyms for CURTIME()

CURRENT_TIMESTAMP(), CURRENT_TIMESTAMP Synonyms for NOW()

CURTIME() Return the current time

DATE() Extract the date part of a date or datetime
expression

DATE_ADD() Add time values (intervals) to a date value

DATE_FORMAT() Format date as specified

DATE_SUB() Subtract a time value (interval) from a date

DATEDIFF() Subtract two dates

DAY() Synonym for DAYOFMONTH()

DAYNAME() Return the name of the weekday

DAYOFMONTH() Return the day of the month (0-31)

DAYOFWEEK() Return the weekday index of the argument

DAYOFYEAR() Return the day of the year (1-366)

EXTRACT() Extract part of a date

FROM_DAYS() Convert a day number to a date

FROM_UNIXTIME() Format Unix timestamp as a date

GET_FORMAT() Return a date format string

HOUR() Extract the hour

LAST_DAY Return the last day of the month for the argument

LOCALTIME(), LOCALTIME Synonym for NOW()

LOCALTIMESTAMP, LOCALTIMESTAMP() Synonym for NOW()

MAKEDATE() Create a date from the year and day of year

MAKETIME() Create time from hour, minute, second

MICROSECOND() Return the microseconds from argument

MINUTE() Return the minute from the argument

MONTH() Return the month from the date passed

MONTHNAME() Return the name of the month

NOW() Return the current date and time

PERIOD_ADD() Add a period to a year-month

PERIOD_DIFF() Return the number of months between periods

QUARTER() Return the quarter from a date argument

SEC_TO_TIME() Converts seconds to 'hh:mm:ss' format

SECOND() Return the second (0-59)

1923

Date and Time Functions

Name Description

STR_TO_DATE() Convert a string to a date

SUBDATE() Synonym for DATE_SUB() when invoked with three
arguments

SUBTIME() Subtract times

SYSDATE() Return the time at which the function executes

TIME() Extract the time portion of the expression passed

TIME_FORMAT() Format as time

TIME_TO_SEC() Return the argument converted to seconds

TIMEDIFF() Subtract time

TIMESTAMP() With a single argument, this function returns the
date or datetime expression; with two arguments,
the sum of the arguments

TIMESTAMPADD() Add an interval to a datetime expression

TIMESTAMPDIFF() Return the difference of two datetime expressions,
using the units specified

TO_DAYS() Return the date argument converted to days

TO_SECONDS() Return the date or datetime argument converted to
seconds since Year 0

UNIX_TIMESTAMP() Return a Unix timestamp

UTC_DATE() Return the current UTC date

UTC_TIME() Return the current UTC time

UTC_TIMESTAMP() Return the current UTC date and time

WEEK() Return the week number

WEEKDAY() Return the weekday index

WEEKOFYEAR() Return the calendar week of the date (1-53)

YEAR() Return the year

YEARWEEK() Return the year and week

Here is an example that uses date functions. The following query selects all rows with a date_col value
from within the last 30 days:

mysql> SELECT something FROM tbl_name
 -> WHERE DATE_SUB(CURDATE(),INTERVAL 30 DAY) <= date_col;

The query also selects rows with dates that lie in the future.

Functions that expect date values usually accept datetime values and ignore the time part. Functions that
expect time values usually accept datetime values and ignore the date part.

Functions that return the current date or time each are evaluated only once per query at the start of
query execution. This means that multiple references to a function such as NOW() within a single query
always produce the same result. (For our purposes, a single query also includes a call to a stored program
(stored routine, trigger, or event) and all subprograms called by that program.) This principle also applies
to CURDATE(), CURTIME(), UTC_DATE(), UTC_TIME(), UTC_TIMESTAMP(), and to any of their
synonyms.

1924

Date and Time Functions

The CURRENT_TIMESTAMP(), CURRENT_TIME(), CURRENT_DATE(), and FROM_UNIXTIME() functions
return values in the current session time zone, which is available as the session value of the time_zone
system variable. In addition, UNIX_TIMESTAMP() assumes that its argument is a datetime value in the
session time zone. See Section 5.1.13, “MySQL Server Time Zone Support”.

Some date functions can be used with “zero” dates or incomplete dates such as '2001-11-00', whereas
others cannot. Functions that extract parts of dates typically work with incomplete dates and thus can
return 0 when you might otherwise expect a nonzero value. For example:

mysql> SELECT DAYOFMONTH('2001-11-00'), MONTH('2005-00-00');
 -> 0, 0

Other functions expect complete dates and return NULL for incomplete dates. These include functions that
perform date arithmetic or that map parts of dates to names. For example:

mysql> SELECT DATE_ADD('2006-05-00',INTERVAL 1 DAY);
 -> NULL
mysql> SELECT DAYNAME('2006-05-00');
 -> NULL

Several functions are strict when passed a DATE() function value as their argument and reject
incomplete dates with a day part of zero: CONVERT_TZ(), DATE_ADD(), DATE_SUB(), DAYOFYEAR(),
TIMESTAMPDIFF(), TO_DAYS(), TO_SECONDS(), WEEK(), WEEKDAY(), WEEKOFYEAR(),
YEARWEEK().

Fractional seconds for TIME, DATETIME, and TIMESTAMP values are supported, with up to microsecond
precision. Functions that take temporal arguments accept values with fractional seconds. Return values
from temporal functions include fractional seconds as appropriate.

• ADDDATE(date,INTERVAL expr unit), ADDDATE(expr,days)

When invoked with the INTERVAL form of the second argument, ADDDATE() is a synonym for
DATE_ADD(). The related function SUBDATE() is a synonym for DATE_SUB(). For information on the
INTERVAL unit argument, see Temporal Intervals.

mysql> SELECT DATE_ADD('2008-01-02', INTERVAL 31 DAY);
 -> '2008-02-02'
mysql> SELECT ADDDATE('2008-01-02', INTERVAL 31 DAY);
 -> '2008-02-02'

When invoked with the days form of the second argument, MySQL treats it as an integer number of
days to be added to expr.

mysql> SELECT ADDDATE('2008-01-02', 31);
 -> '2008-02-02'

• ADDTIME(expr1,expr2)

ADDTIME() adds expr2 to expr1 and returns the result. expr1 is a time or datetime expression, and
expr2 is a time expression.

mysql> SELECT ADDTIME('2007-12-31 23:59:59.999999', '1 1:1:1.000002');
 -> '2008-01-02 01:01:01.000001'
mysql> SELECT ADDTIME('01:00:00.999999', '02:00:00.999998');
 -> '03:00:01.999997'

• CONVERT_TZ(dt,from_tz,to_tz)

CONVERT_TZ() converts a datetime value dt from the time zone given by from_tz to the time zone
given by to_tz and returns the resulting value. Time zones are specified as described in Section 5.1.13,
“MySQL Server Time Zone Support”. This function returns NULL if the arguments are invalid.

1925

Date and Time Functions

If the value falls out of the supported range of the TIMESTAMP type when converted from from_tz to
UTC, no conversion occurs. The TIMESTAMP range is described in Section 11.2.1, “Date and Time Data
Type Syntax”.

mysql> SELECT CONVERT_TZ('2004-01-01 12:00:00','GMT','MET');
 -> '2004-01-01 13:00:00'
mysql> SELECT CONVERT_TZ('2004-01-01 12:00:00','+00:00','+10:00');
 -> '2004-01-01 22:00:00'

Note

To use named time zones such as 'MET' or 'Europe/Amsterdam', the
time zone tables must be properly set up. For instructions, see Section 5.1.13,
“MySQL Server Time Zone Support”.

• CURDATE()

Returns the current date as a value in 'YYYY-MM-DD' or YYYYMMDD format, depending on whether the
function is used in string or numeric context.

mysql> SELECT CURDATE();
 -> '2008-06-13'
mysql> SELECT CURDATE() + 0;
 -> 20080613

• CURRENT_DATE, CURRENT_DATE()

CURRENT_DATE and CURRENT_DATE() are synonyms for CURDATE().

• CURRENT_TIME, CURRENT_TIME([fsp])

CURRENT_TIME and CURRENT_TIME() are synonyms for CURTIME().

• CURRENT_TIMESTAMP, CURRENT_TIMESTAMP([fsp])

CURRENT_TIMESTAMP and CURRENT_TIMESTAMP() are synonyms for NOW().

• CURTIME([fsp])

Returns the current time as a value in 'hh:mm:ss' or hhmmss format, depending on whether the
function is used in string or numeric context. The value is expressed in the session time zone.

If the fsp argument is given to specify a fractional seconds precision from 0 to 6, the return value
includes a fractional seconds part of that many digits.

mysql> SELECT CURTIME();
 -> '23:50:26'
mysql> SELECT CURTIME() + 0;
 -> 235026.000000

• DATE(expr)

Extracts the date part of the date or datetime expression expr.

mysql> SELECT DATE('2003-12-31 01:02:03');
 -> '2003-12-31'

1926

Date and Time Functions

• DATEDIFF(expr1,expr2)

DATEDIFF() returns expr1 − expr2 expressed as a value in days from one date to the other. expr1
and expr2 are date or date-and-time expressions. Only the date parts of the values are used in the
calculation.

mysql> SELECT DATEDIFF('2007-12-31 23:59:59','2007-12-30');
 -> 1
mysql> SELECT DATEDIFF('2010-11-30 23:59:59','2010-12-31');
 -> -31

• DATE_ADD(date,INTERVAL expr unit), DATE_SUB(date,INTERVAL expr unit)

These functions perform date arithmetic. The date argument specifies the starting date or datetime
value. expr is an expression specifying the interval value to be added or subtracted from the starting
date. expr is evaluated as a string; it may start with a - for negative intervals. unit is a keyword
indicating the units in which the expression should be interpreted.

For more information about temporal interval syntax, including a full list of unit specifiers, the expected
form of the expr argument for each unit value, and rules for operand interpretation in temporal
arithmetic, see Temporal Intervals.

The return value depends on the arguments:

• DATE if the date argument is a DATE value and your calculations involve only YEAR, MONTH, and DAY
parts (that is, no time parts).

• DATETIME if the first argument is a DATETIME (or TIMESTAMP) value, or if the first argument is a
DATE and the unit value uses HOURS, MINUTES, or SECONDS.

• String otherwise.

To ensure that the result is DATETIME, you can use CAST() to convert the first argument to DATETIME.

mysql> SELECT DATE_ADD('2018-05-01',INTERVAL 1 DAY);
 -> '2018-05-02'
mysql> SELECT DATE_SUB('2018-05-01',INTERVAL 1 YEAR);
 -> '2017-05-01'
mysql> SELECT DATE_ADD('2020-12-31 23:59:59',
 -> INTERVAL 1 SECOND);
 -> '2021-01-01 00:00:00'
mysql> SELECT DATE_ADD('2018-12-31 23:59:59',
 -> INTERVAL 1 DAY);
 -> '2019-01-01 23:59:59'
mysql> SELECT DATE_ADD('2100-12-31 23:59:59',
 -> INTERVAL '1:1' MINUTE_SECOND);
 -> '2101-01-01 00:01:00'
mysql> SELECT DATE_SUB('2025-01-01 00:00:00',
 -> INTERVAL '1 1:1:1' DAY_SECOND);
 -> '2024-12-30 22:58:59'
mysql> SELECT DATE_ADD('1900-01-01 00:00:00',
 -> INTERVAL '-1 10' DAY_HOUR);
 -> '1899-12-30 14:00:00'
mysql> SELECT DATE_SUB('1998-01-02', INTERVAL 31 DAY);
 -> '1997-12-02'
mysql> SELECT DATE_ADD('1992-12-31 23:59:59.000002',
 -> INTERVAL '1.999999' SECOND_MICROSECOND);

1927

Date and Time Functions

 -> '1993-01-01 00:00:01.000001'

When adding a MONTH interval to a DATE or DATETIME value, and the resulting date includes a day that
does not exist in the given month, the day is adjusted to the last day of the month, as shown here:

mysql> SELECT DATE_ADD('2024-03-30', INTERVAL 1 MONTH) AS d1,
 > DATE_ADD('2024-03-31', INTERVAL 1 MONTH) AS d2;
+------------+------------+
| d1 | d2 |
+------------+------------+
| 2024-04-30 | 2024-04-30 |
+------------+------------+
1 row in set (0.00 sec)

• DATE_FORMAT(date,format)

Formats the date value according to the format string.

The specifiers shown in the following table may be used in the format string. The % character
is required before format specifier characters. The specifiers apply to other functions as well:
STR_TO_DATE(), TIME_FORMAT(), UNIX_TIMESTAMP().

Specifier Description

%a Abbreviated weekday name (Sun..Sat)

%b Abbreviated month name (Jan..Dec)

%c Month, numeric (0..12)

%D Day of the month with English suffix (0th, 1st,
2nd, 3rd, …)

%d Day of the month, numeric (00..31)

%e Day of the month, numeric (0..31)

%f Microseconds (000000..999999)

%H Hour (00..23)

%h Hour (01..12)

%I Hour (01..12)

%i Minutes, numeric (00..59)

%j Day of year (001..366)

%k Hour (0..23)

%l Hour (1..12)

%M Month name (January..December)

%m Month, numeric (00..12)

%p AM or PM

%r Time, 12-hour (hh:mm:ss followed by AM or PM)

%S Seconds (00..59)

%s Seconds (00..59)

%T Time, 24-hour (hh:mm:ss)

%U Week (00..53), where Sunday is the first day of the
week; WEEK() mode 0

1928

Date and Time Functions

Specifier Description

%u Week (00..53), where Monday is the first day of
the week; WEEK() mode 1

%V Week (01..53), where Sunday is the first day of the
week; WEEK() mode 2; used with %X

%v Week (01..53), where Monday is the first day of
the week; WEEK() mode 3; used with %x

%W Weekday name (Sunday..Saturday)

%w Day of the week (0=Sunday..6=Saturday)

%X Year for the week where Sunday is the first day of
the week, numeric, four digits; used with %V

%x Year for the week, where Monday is the first day of
the week, numeric, four digits; used with %v

%Y Year, numeric, four digits

%y Year, numeric (two digits)

%% A literal % character

%x x, for any “x” not listed above

Ranges for the month and day specifiers begin with zero due to the fact that MySQL permits the storing
of incomplete dates such as '2014-00-00'.

The language used for day and month names and abbreviations is controlled by the value of the
lc_time_names system variable (Section 10.16, “MySQL Server Locale Support”).

For the %U, %u, %V, and %v specifiers, see the description of the WEEK() function for information about
the mode values. The mode affects how week numbering occurs.

DATE_FORMAT() returns a string with a character set and collation given by
character_set_connection and collation_connection so that it can return month and
weekday names containing non-ASCII characters.

mysql> SELECT DATE_FORMAT('2009-10-04 22:23:00', '%W %M %Y');
 -> 'Sunday October 2009'
mysql> SELECT DATE_FORMAT('2007-10-04 22:23:00', '%H:%i:%s');
 -> '22:23:00'
mysql> SELECT DATE_FORMAT('1900-10-04 22:23:00',
 -> '%D %y %a %d %m %b %j');
 -> '4th 00 Thu 04 10 Oct 277'
mysql> SELECT DATE_FORMAT('1997-10-04 22:23:00',
 -> '%H %k %I %r %T %S %w');
 -> '22 22 10 10:23:00 PM 22:23:00 00 6'
mysql> SELECT DATE_FORMAT('1999-01-01', '%X %V');
 -> '1998 52'
mysql> SELECT DATE_FORMAT('2006-06-00', '%d');
 -> '00'

• DATE_SUB(date,INTERVAL expr unit)

See the description for DATE_ADD().

• DAY(date)

DAY() is a synonym for DAYOFMONTH().

1929

Date and Time Functions

• DAYNAME(date)

Returns the name of the weekday for date. The language used for the name is controlled by the value
of the lc_time_names system variable (Section 10.16, “MySQL Server Locale Support”).

mysql> SELECT DAYNAME('2007-02-03');
 -> 'Saturday'

• DAYOFMONTH(date)

Returns the day of the month for date, in the range 1 to 31, or 0 for dates such as '0000-00-00' or
'2008-00-00' that have a zero day part.

mysql> SELECT DAYOFMONTH('2007-02-03');
 -> 3

• DAYOFWEEK(date)

Returns the weekday index for date (1 = Sunday, 2 = Monday, …, 7 = Saturday). These index values
correspond to the ODBC standard.

mysql> SELECT DAYOFWEEK('2007-02-03');
 -> 7

• DAYOFYEAR(date)

Returns the day of the year for date, in the range 1 to 366.

mysql> SELECT DAYOFYEAR('2007-02-03');
 -> 34

• EXTRACT(unit FROM date)

The EXTRACT() function uses the same kinds of unit specifiers as DATE_ADD() or DATE_SUB(),
but extracts parts from the date rather than performing date arithmetic. For information on the unit
argument, see Temporal Intervals.

mysql> SELECT EXTRACT(YEAR FROM '2019-07-02');
 -> 2019
mysql> SELECT EXTRACT(YEAR_MONTH FROM '2019-07-02 01:02:03');
 -> 201907
mysql> SELECT EXTRACT(DAY_MINUTE FROM '2019-07-02 01:02:03');
 -> 20102
mysql> SELECT EXTRACT(MICROSECOND
 -> FROM '2003-01-02 10:30:00.000123');
 -> 123

• FROM_DAYS(N)

Given a day number N, returns a DATE value.

mysql> SELECT FROM_DAYS(730669);
 -> '2000-07-03'

Use FROM_DAYS() with caution on old dates. It is not intended for use with values that precede the
advent of the Gregorian calendar (1582). See Section 11.2.8, “What Calendar Is Used By MySQL?”.

• FROM_UNIXTIME(unix_timestamp[,format])

Returns a representation of unix_timestamp as a datetime or character string value. The value
returned is expressed using the session time zone. (Clients can set the session time zone as described
in Section 5.1.13, “MySQL Server Time Zone Support”.) unix_timestamp is an internal timestamp

1930

Date and Time Functions

value representing seconds since '1970-01-01 00:00:00' UTC, such as produced by the
UNIX_TIMESTAMP() function.

If format is omitted, this function returns a DATETIME value.

If unix_timestamp is an integer, the fractional seconds precision of the DATETIME is zero. When
unix_timestamp is a decimal value, the fractional seconds precision of the DATETIME is the same as
the precision of the decimal value, up to a maximum of 6. When unix_timestamp is a floating point
number, the fractional seconds precision of the datetime is 6.

format is used to format the result in the same way as the format string used for the DATE_FORMAT()
function. If format is supplied, the value returned is a VARCHAR.

mysql> SELECT FROM_UNIXTIME(1447430881);
 -> '2015-11-13 10:08:01'
mysql> SELECT FROM_UNIXTIME(1447430881) + 0;
 -> 20151113100801
mysql> SELECT FROM_UNIXTIME(1447430881,
 -> '%Y %D %M %h:%i:%s %x');
 -> '2015 13th November 10:08:01 2015'

Note

If you use UNIX_TIMESTAMP() and FROM_UNIXTIME() to convert between
values in a non-UTC time zone and Unix timestamp values, the conversion is
lossy because the mapping is not one-to-one in both directions. For details, see
the description of the UNIX_TIMESTAMP() function.

• GET_FORMAT({DATE|TIME|DATETIME}, {'EUR'|'USA'|'JIS'|'ISO'|'INTERNAL'})

Returns a format string. This function is useful in combination with the DATE_FORMAT() and the
STR_TO_DATE() functions.

The possible values for the first and second arguments result in several possible format strings (for the
specifiers used, see the table in the DATE_FORMAT() function description). ISO format refers to ISO
9075, not ISO 8601.

Function Call Result

GET_FORMAT(DATE,'USA') '%m.%d.%Y'

GET_FORMAT(DATE,'JIS') '%Y-%m-%d'

GET_FORMAT(DATE,'ISO') '%Y-%m-%d'

GET_FORMAT(DATE,'EUR') '%d.%m.%Y'

GET_FORMAT(DATE,'INTERNAL') '%Y%m%d'

GET_FORMAT(DATETIME,'USA') '%Y-%m-%d %H.%i.%s'

GET_FORMAT(DATETIME,'JIS') '%Y-%m-%d %H:%i:%s'

GET_FORMAT(DATETIME,'ISO') '%Y-%m-%d %H:%i:%s'

GET_FORMAT(DATETIME,'EUR') '%Y-%m-%d %H.%i.%s'

GET_FORMAT(DATETIME,'INTERNAL') '%Y%m%d%H%i%s'

GET_FORMAT(TIME,'USA') '%h:%i:%s %p'

GET_FORMAT(TIME,'JIS') '%H:%i:%s'

GET_FORMAT(TIME,'ISO') '%H:%i:%s'

1931

Date and Time Functions

Function Call Result

GET_FORMAT(TIME,'EUR') '%H.%i.%s'

GET_FORMAT(TIME,'INTERNAL') '%H%i%s'

TIMESTAMP can also be used as the first argument to GET_FORMAT(), in which case the function
returns the same values as for DATETIME.

mysql> SELECT DATE_FORMAT('2003-10-03',GET_FORMAT(DATE,'EUR'));
 -> '03.10.2003'
mysql> SELECT STR_TO_DATE('10.31.2003',GET_FORMAT(DATE,'USA'));
 -> '2003-10-31'

• HOUR(time)

Returns the hour for time. The range of the return value is 0 to 23 for time-of-day values. However, the
range of TIME values actually is much larger, so HOUR can return values greater than 23.

mysql> SELECT HOUR('10:05:03');
 -> 10
mysql> SELECT HOUR('272:59:59');
 -> 272

• LAST_DAY(date)

Takes a date or datetime value and returns the corresponding value for the last day of the month.
Returns NULL if the argument is invalid.

mysql> SELECT LAST_DAY('2003-02-05');
 -> '2003-02-28'
mysql> SELECT LAST_DAY('2004-02-05');
 -> '2004-02-29'
mysql> SELECT LAST_DAY('2004-01-01 01:01:01');
 -> '2004-01-31'
mysql> SELECT LAST_DAY('2003-03-32');
 -> NULL

• LOCALTIME, LOCALTIME([fsp])

LOCALTIME and LOCALTIME() are synonyms for NOW().

• LOCALTIMESTAMP, LOCALTIMESTAMP([fsp])

LOCALTIMESTAMP and LOCALTIMESTAMP() are synonyms for NOW().

• MAKEDATE(year,dayofyear)

Returns a date, given year and day-of-year values. dayofyear must be greater than 0 or the result is
NULL.

mysql> SELECT MAKEDATE(2011,31), MAKEDATE(2011,32);
 -> '2011-01-31', '2011-02-01'
mysql> SELECT MAKEDATE(2011,365), MAKEDATE(2014,365);
 -> '2011-12-31', '2014-12-31'
mysql> SELECT MAKEDATE(2011,0);
 -> NULL

• MAKETIME(hour,minute,second)

Returns a time value calculated from the hour, minute, and second arguments.

The second argument can have a fractional part.

1932

Date and Time Functions

mysql> SELECT MAKETIME(12,15,30);
 -> '12:15:30'

• MICROSECOND(expr)

Returns the microseconds from the time or datetime expression expr as a number in the range from 0
to 999999.

mysql> SELECT MICROSECOND('12:00:00.123456');
 -> 123456
mysql> SELECT MICROSECOND('2019-12-31 23:59:59.000010');
 -> 10

• MINUTE(time)

Returns the minute for time, in the range 0 to 59.

mysql> SELECT MINUTE('2008-02-03 10:05:03');
 -> 5

• MONTH(date)

Returns the month for date, in the range 1 to 12 for January to December, or 0 for dates such as
'0000-00-00' or '2008-00-00' that have a zero month part.

mysql> SELECT MONTH('2008-02-03');
 -> 2

• MONTHNAME(date)

Returns the full name of the month for date. The language used for the name is controlled by the value
of the lc_time_names system variable (Section 10.16, “MySQL Server Locale Support”).

mysql> SELECT MONTHNAME('2008-02-03');
 -> 'February'

• NOW([fsp])

Returns the current date and time as a value in 'YYYY-MM-DD hh:mm:ss' or YYYYMMDDhhmmss
format, depending on whether the function is used in string or numeric context. The value is expressed in
the session time zone.

If the fsp argument is given to specify a fractional seconds precision from 0 to 6, the return value
includes a fractional seconds part of that many digits.

mysql> SELECT NOW();
 -> '2007-12-15 23:50:26'
mysql> SELECT NOW() + 0;
 -> 20071215235026.000000

NOW() returns a constant time that indicates the time at which the statement began to execute. (Within
a stored function or trigger, NOW() returns the time at which the function or triggering statement began
to execute.) This differs from the behavior for SYSDATE(), which returns the exact time at which it
executes.

mysql> SELECT NOW(), SLEEP(2), NOW();
+---------------------+----------+---------------------+
| NOW() | SLEEP(2) | NOW() |
+---------------------+----------+---------------------+
| 2006-04-12 13:47:36 | 0 | 2006-04-12 13:47:36 |
+---------------------+----------+---------------------+

1933

Date and Time Functions

mysql> SELECT SYSDATE(), SLEEP(2), SYSDATE();
+---------------------+----------+---------------------+
| SYSDATE() | SLEEP(2) | SYSDATE() |
+---------------------+----------+---------------------+
| 2006-04-12 13:47:44 | 0 | 2006-04-12 13:47:46 |
+---------------------+----------+---------------------+

In addition, the SET TIMESTAMP statement affects the value returned by NOW() but not by SYSDATE().
This means that timestamp settings in the binary log have no effect on invocations of SYSDATE().
Setting the timestamp to a nonzero value causes each subsequent invocation of NOW() to return that
value. Setting the timestamp to zero cancels this effect so that NOW() once again returns the current
date and time.

See the description for SYSDATE() for additional information about the differences between the two
functions.

• PERIOD_ADD(P,N)

Adds N months to period P (in the format YYMM or YYYYMM). Returns a value in the format YYYYMM.

Note

The period argument P is not a date value.

mysql> SELECT PERIOD_ADD(200801,2);
 -> 200803

• PERIOD_DIFF(P1,P2)

Returns the number of months between periods P1 and P2. P1 and P2 should be in the format YYMM or
YYYYMM. Note that the period arguments P1 and P2 are not date values.

mysql> SELECT PERIOD_DIFF(200802,200703);
 -> 11

• QUARTER(date)

Returns the quarter of the year for date, in the range 1 to 4.

mysql> SELECT QUARTER('2008-04-01');
 -> 2

• SECOND(time)

Returns the second for time, in the range 0 to 59.

mysql> SELECT SECOND('10:05:03');
 -> 3

• SEC_TO_TIME(seconds)

Returns the seconds argument, converted to hours, minutes, and seconds, as a TIME value. The range
of the result is constrained to that of the TIME data type. A warning occurs if the argument corresponds
to a value outside that range.

mysql> SELECT SEC_TO_TIME(2378);
 -> '00:39:38'
mysql> SELECT SEC_TO_TIME(2378) + 0;
 -> 3938

1934

Date and Time Functions

• STR_TO_DATE(str,format)

This is the inverse of the DATE_FORMAT() function. It takes a string str and a format string format.
STR_TO_DATE() returns a DATETIME value if the format string contains both date and time parts, or a
DATE or TIME value if the string contains only date or time parts. If str or format is NULL, the function
returns NULL. If the date, time, or datetime value extracted from str cannot be parsed according to the
rules followed by the server, STR_TO_DATE() returns NULL and produces a warning.

The server scans str attempting to match format to it. The format string can contain literal characters
and format specifiers beginning with %. Literal characters in format must match literally in str. Format
specifiers in format must match a date or time part in str. For the specifiers that can be used in
format, see the DATE_FORMAT() function description.

mysql> SELECT STR_TO_DATE('01,5,2013','%d,%m,%Y');
 -> '2013-05-01'
mysql> SELECT STR_TO_DATE('May 1, 2013','%M %d,%Y');
 -> '2013-05-01'

Scanning starts at the beginning of str and fails if format is found not to match. Extra characters at the
end of str are ignored.

mysql> SELECT STR_TO_DATE('a09:30:17','a%h:%i:%s');
 -> '09:30:17'
mysql> SELECT STR_TO_DATE('a09:30:17','%h:%i:%s');
 -> NULL
mysql> SELECT STR_TO_DATE('09:30:17a','%h:%i:%s');
 -> '09:30:17'

Unspecified date or time parts have a value of 0, so incompletely specified values in str produce a
result with some or all parts set to 0:

mysql> SELECT STR_TO_DATE('abc','abc');
 -> '0000-00-00'
mysql> SELECT STR_TO_DATE('9','%m');
 -> '0000-09-00'
mysql> SELECT STR_TO_DATE('9','%s');
 -> '00:00:09'

Range checking on the parts of date values is as described in Section 11.2.2, “The DATE, DATETIME,
and TIMESTAMP Types”. This means, for example, that “zero” dates or dates with part values of 0 are
permitted unless the SQL mode is set to disallow such values.

mysql> SELECT STR_TO_DATE('00/00/0000', '%m/%d/%Y');
 -> '0000-00-00'
mysql> SELECT STR_TO_DATE('04/31/2004', '%m/%d/%Y');
 -> '2004-04-31'

If the NO_ZERO_DATE SQL mode is enabled, zero dates are disallowed. In that case, STR_TO_DATE()
returns NULL and generates a warning:

mysql> SET sql_mode = '';
mysql> SELECT STR_TO_DATE('00/00/0000', '%m/%d/%Y');
+---------------------------------------+
| STR_TO_DATE('00/00/0000', '%m/%d/%Y') |
+---------------------------------------+
| 0000-00-00 |
+---------------------------------------+
mysql> SET sql_mode = 'NO_ZERO_DATE';
mysql> SELECT STR_TO_DATE('00/00/0000', '%m/%d/%Y');
+---------------------------------------+
| STR_TO_DATE('00/00/0000', '%m/%d/%Y') |
+---------------------------------------+

1935

Date and Time Functions

| NULL |
+---------------------------------------+
mysql> SHOW WARNINGS\G
*************************** 1. row ***************************
 Level: Warning
 Code: 1411
Message: Incorrect datetime value: '00/00/0000' for function str_to_date

Prior to MySQL 5.7.44, it was possible to pass an invalid date string such as '2021-11-31' to this
function. In MySQL 5.7.44 and later, STR_TO_DATE() performs complete range checking and raises an
error if the date after conversion would be invalid.

Note

You cannot use format "%X%V" to convert a year-week string to a date because
the combination of a year and week does not uniquely identify a year and month
if the week crosses a month boundary. To convert a year-week to a date, you
should also specify the weekday:

mysql> SELECT STR_TO_DATE('200442 Monday', '%X%V %W');
 -> '2004-10-18'

You should also be aware that, for dates and the date portions of datetime values, STR_TO_DATE()
checks (only) the individual year, month, and day of month values for validity. More precisely, this
means that the year is checked to be sure that it is in the range 0-9999 inclusive, the month is checked
to ensure that it is in the range 1-12 inclusive, and the day of month is checked to make sure that it
is in the range 1-31 inclusive, but the server does not check the values in combination. For example,
SELECT STR_TO_DATE('23-2-31', '%Y-%m-%d') returns 2023-02-31. Enabling or disabling the
ALLOW_INVALID_DATES server SQL mode has no effect on this behavior. See Section 11.2.2, “The
DATE, DATETIME, and TIMESTAMP Types”, for more information.

• SUBDATE(date,INTERVAL expr unit), SUBDATE(expr,days)

When invoked with the INTERVAL form of the second argument, SUBDATE() is a synonym for
DATE_SUB(). For information on the INTERVAL unit argument, see the discussion for DATE_ADD().

mysql> SELECT DATE_SUB('2008-01-02', INTERVAL 31 DAY);
 -> '2007-12-02'
mysql> SELECT SUBDATE('2008-01-02', INTERVAL 31 DAY);
 -> '2007-12-02'

The second form enables the use of an integer value for days. In such cases, it is interpreted as the
number of days to be subtracted from the date or datetime expression expr.

mysql> SELECT SUBDATE('2008-01-02 12:00:00', 31);
 -> '2007-12-02 12:00:00'

• SUBTIME(expr1,expr2)

SUBTIME() returns expr1 − expr2 expressed as a value in the same format as expr1. expr1 is a
time or datetime expression, and expr2 is a time expression.

mysql> SELECT SUBTIME('2007-12-31 23:59:59.999999','1 1:1:1.000002');
 -> '2007-12-30 22:58:58.999997'
mysql> SELECT SUBTIME('01:00:00.999999', '02:00:00.999998');
 -> '-00:59:59.999999'

1936

Date and Time Functions

• SYSDATE([fsp])

Returns the current date and time as a value in 'YYYY-MM-DD hh:mm:ss' or YYYYMMDDhhmmss
format, depending on whether the function is used in string or numeric context.

If the fsp argument is given to specify a fractional seconds precision from 0 to 6, the return value
includes a fractional seconds part of that many digits.

SYSDATE() returns the time at which it executes. This differs from the behavior for NOW(), which returns
a constant time that indicates the time at which the statement began to execute. (Within a stored function
or trigger, NOW() returns the time at which the function or triggering statement began to execute.)

mysql> SELECT NOW(), SLEEP(2), NOW();
+---------------------+----------+---------------------+
| NOW() | SLEEP(2) | NOW() |
+---------------------+----------+---------------------+
| 2006-04-12 13:47:36 | 0 | 2006-04-12 13:47:36 |
+---------------------+----------+---------------------+

mysql> SELECT SYSDATE(), SLEEP(2), SYSDATE();
+---------------------+----------+---------------------+
| SYSDATE() | SLEEP(2) | SYSDATE() |
+---------------------+----------+---------------------+
| 2006-04-12 13:47:44 | 0 | 2006-04-12 13:47:46 |
+---------------------+----------+---------------------+

In addition, the SET TIMESTAMP statement affects the value returned by NOW() but not by SYSDATE().
This means that timestamp settings in the binary log have no effect on invocations of SYSDATE().

Because SYSDATE() can return different values even within the same statement, and is not affected by
SET TIMESTAMP, it is nondeterministic and therefore unsafe for replication if statement-based binary
logging is used. If that is a problem, you can use row-based logging.

Alternatively, you can use the --sysdate-is-now option to cause SYSDATE() to be an alias for
NOW(). This works if the option is used on both the source and the replica.

The nondeterministic nature of SYSDATE() also means that indexes cannot be used for evaluating
expressions that refer to it.

• TIME(expr)

Extracts the time part of the time or datetime expression expr and returns it as a string.

This function is unsafe for statement-based replication. A warning is logged if you use this function when
binlog_format is set to STATEMENT.

mysql> SELECT TIME('2003-12-31 01:02:03');
 -> '01:02:03'
mysql> SELECT TIME('2003-12-31 01:02:03.000123');
 -> '01:02:03.000123'

1937

Date and Time Functions

• TIMEDIFF(expr1,expr2)

TIMEDIFF() returns expr1 − expr2 expressed as a time value. expr1 and expr2 are strings which
are converted to TIME or DATETIME expressions; these must be of the same type following conversion.

The result returned by TIMEDIFF() is limited to the range allowed for TIME values. Alternatively, you
can use either of the functions TIMESTAMPDIFF() and UNIX_TIMESTAMP(), both of which return
integers.

mysql> SELECT TIMEDIFF('2000:01:01 00:00:00',
 -> '2000:01:01 00:00:00.000001');
 -> '-00:00:00.000001'
mysql> SELECT TIMEDIFF('2008-12-31 23:59:59.000001',
 -> '2008-12-30 01:01:01.000002');
 -> '46:58:57.999999'

• TIMESTAMP(expr), TIMESTAMP(expr1,expr2)

With a single argument, this function returns the date or datetime expression expr as a datetime value.
With two arguments, it adds the time expression expr2 to the date or datetime expression expr1 and
returns the result as a datetime value.

mysql> SELECT TIMESTAMP('2003-12-31');
 -> '2003-12-31 00:00:00'
mysql> SELECT TIMESTAMP('2003-12-31 12:00:00','12:00:00');
 -> '2004-01-01 00:00:00'

• TIMESTAMPADD(unit,interval,datetime_expr)

Adds the integer expression interval to the date or datetime expression datetime_expr. The
unit for interval is given by the unit argument, which should be one of the following values:
MICROSECOND (microseconds), SECOND, MINUTE, HOUR, DAY, WEEK, MONTH, QUARTER, or YEAR.

The unit value may be specified using one of keywords as shown, or with a prefix of SQL_TSI_. For
example, DAY and SQL_TSI_DAY both are legal.

mysql> SELECT TIMESTAMPADD(MINUTE,1,'2003-01-02');
 -> '2003-01-02 00:01:00'
mysql> SELECT TIMESTAMPADD(WEEK,1,'2003-01-02');
 -> '2003-01-09'

When adding a MONTH interval to a DATE or DATETIME value, and the resulting date includes a day that
does not exist in the given month, the day is adjusted to the last day of the month, as shown here:

mysql> SELECT TIMESTAMPADD(MONTH, 1, DATE '2024-03-30') AS t1,
 > TIMESTAMPADD(MONTH, 1, DATE '2024-03-31') AS t2;
+------------+------------+
| t1 | t2 |
+------------+------------+
| 2024-04-30 | 2024-04-30 |
+------------+------------+
1 row in set (0.00 sec)

• TIMESTAMPDIFF(unit,datetime_expr1,datetime_expr2)

Returns datetime_expr2 − datetime_expr1, where datetime_expr1 and datetime_expr2
are date or datetime expressions. One expression may be a date and the other a datetime; a date value
is treated as a datetime having the time part '00:00:00' where necessary. The unit for the result (an

1938

Date and Time Functions

integer) is given by the unit argument. The legal values for unit are the same as those listed in the
description of the TIMESTAMPADD() function.

mysql> SELECT TIMESTAMPDIFF(MONTH,'2003-02-01','2003-05-01');
 -> 3
mysql> SELECT TIMESTAMPDIFF(YEAR,'2002-05-01','2001-01-01');
 -> -1
mysql> SELECT TIMESTAMPDIFF(MINUTE,'2003-02-01','2003-05-01 12:05:55');
 -> 128885

Note

The order of the date or datetime arguments for this function is the opposite of
that used with the TIMESTAMP() function when invoked with 2 arguments.

• TIME_FORMAT(time,format)

This is used like the DATE_FORMAT() function, but the format string may contain format specifiers only
for hours, minutes, seconds, and microseconds. Other specifiers produce a NULL value or 0.

If the time value contains an hour part that is greater than 23, the %H and %k hour format specifiers
produce a value larger than the usual range of 0..23. The other hour format specifiers produce the hour
value modulo 12.

mysql> SELECT TIME_FORMAT('100:00:00', '%H %k %h %I %l');
 -> '100 100 04 04 4'

• TIME_TO_SEC(time)

Returns the time argument, converted to seconds.

mysql> SELECT TIME_TO_SEC('22:23:00');
 -> 80580
mysql> SELECT TIME_TO_SEC('00:39:38');
 -> 2378

• TO_DAYS(date)

Given a date date, returns a day number (the number of days since year 0).

mysql> SELECT TO_DAYS(950501);
 -> 728779
mysql> SELECT TO_DAYS('2007-10-07');
 -> 733321

TO_DAYS() is not intended for use with values that precede the advent of the Gregorian calendar
(1582), because it does not take into account the days that were lost when the calendar was changed.
For dates before 1582 (and possibly a later year in other locales), results from this function are not
reliable. See Section 11.2.8, “What Calendar Is Used By MySQL?”, for details.

Remember that MySQL converts two-digit year values in dates to four-digit form using the rules in
Section 11.2, “Date and Time Data Types”. For example, '2008-10-07' and '08-10-07' are seen as
identical dates:

mysql> SELECT TO_DAYS('2008-10-07'), TO_DAYS('08-10-07');
 -> 733687, 733687

In MySQL, the zero date is defined as '0000-00-00', even though this date is itself considered invalid.
This means that, for '0000-00-00' and '0000-01-01', TO_DAYS() returns the values shown here:

mysql> SELECT TO_DAYS('0000-00-00');

1939

Date and Time Functions

+-----------------------+
| to_days('0000-00-00') |
+-----------------------+
| NULL |
+-----------------------+
1 row in set, 1 warning (0.00 sec)

mysql> SHOW WARNINGS;
+---------+------+--+
| Level | Code | Message |
+---------+------+--+
| Warning | 1292 | Incorrect datetime value: '0000-00-00' |
+---------+------+--+
1 row in set (0.00 sec)

mysql> SELECT TO_DAYS('0000-01-01');
+-----------------------+
| to_days('0000-01-01') |
+-----------------------+
| 1 |
+-----------------------+
1 row in set (0.00 sec)

This is true whether or not the ALLOW_INVALID_DATES SQL server mode is enabled.

• TO_SECONDS(expr)

Given a date or datetime expr, returns the number of seconds since the year 0. If expr is not a valid
date or datetime value, returns NULL.

mysql> SELECT TO_SECONDS(950501);
 -> 62966505600
mysql> SELECT TO_SECONDS('2009-11-29');
 -> 63426672000
mysql> SELECT TO_SECONDS('2009-11-29 13:43:32');
 -> 63426721412
mysql> SELECT TO_SECONDS(NOW());
 -> 63426721458

Like TO_DAYS(), TO_SECONDS() is not intended for use with values that precede the advent of the
Gregorian calendar (1582), because it does not take into account the days that were lost when the
calendar was changed. For dates before 1582 (and possibly a later year in other locales), results from
this function are not reliable. See Section 11.2.8, “What Calendar Is Used By MySQL?”, for details.

Like TO_DAYS(), TO_SECONDS(), converts two-digit year values in dates to four-digit form using the
rules in Section 11.2, “Date and Time Data Types”.

In MySQL, the zero date is defined as '0000-00-00', even though this date is itself considered invalid.
This means that, for '0000-00-00' and '0000-01-01', TO_SECONDS() returns the values shown
here:

mysql> SELECT TO_SECONDS('0000-00-00');
+--------------------------+
| TO_SECONDS('0000-00-00') |
+--------------------------+
| NULL |
+--------------------------+
1 row in set, 1 warning (0.00 sec)

mysql> SHOW WARNINGS;
+---------+------+--+
| Level | Code | Message |
+---------+------+--+

1940

Date and Time Functions

| Warning | 1292 | Incorrect datetime value: '0000-00-00' |
+---------+------+--+
1 row in set (0.00 sec)

mysql> SELECT TO_SECONDS('0000-01-01');
+--------------------------+
| TO_SECONDS('0000-01-01') |
+--------------------------+
| 86400 |
+--------------------------+
1 row in set (0.00 sec)

This is true whether or not the ALLOW_INVALID_DATES SQL server mode is enabled.

• UNIX_TIMESTAMP([date])

If UNIX_TIMESTAMP() is called with no date argument, it returns a Unix timestamp representing
seconds since '1970-01-01 00:00:00' UTC.

If UNIX_TIMESTAMP() is called with a date argument, it returns the value of the argument as seconds
since '1970-01-01 00:00:00' UTC. The server interprets date as a value in the session time
zone and converts it to an internal Unix timestamp value in UTC. (Clients can set the session time zone
as described in Section 5.1.13, “MySQL Server Time Zone Support”.) The date argument may be
a DATE, DATETIME, or TIMESTAMP string, or a number in YYMMDD, YYMMDDhhmmss, YYYYMMDD, or
YYYYMMDDhhmmss format. If the argument includes a time part, it may optionally include a fractional
seconds part.

The return value is an integer if no argument is given or the argument does not include a fractional
seconds part, or DECIMAL if an argument is given that includes a fractional seconds part.

When the date argument is a TIMESTAMP column, UNIX_TIMESTAMP() returns the internal timestamp
value directly, with no implicit “string-to-Unix-timestamp” conversion.

The valid range of argument values is the same as for the TIMESTAMP data type: '1970-01-01
00:00:01.000000' UTC to '2038-01-19 03:14:07.999999' UTC. If you pass an out-of-range
date to UNIX_TIMESTAMP(), it returns 0.

mysql> SELECT UNIX_TIMESTAMP();
 -> 1447431666
mysql> SELECT UNIX_TIMESTAMP('2015-11-13 10:20:19');
 -> 1447431619
mysql> SELECT UNIX_TIMESTAMP('2015-11-13 10:20:19.012');
 -> 1447431619.012

If you use UNIX_TIMESTAMP() and FROM_UNIXTIME() to convert between values in a non-UTC time
zone and Unix timestamp values, the conversion is lossy because the mapping is not one-to-one in both
directions. For example, due to conventions for local time zone changes such as Daylight Saving Time
(DST), it is possible for UNIX_TIMESTAMP() to map two values that are distinct in a non-UTC time zone
to the same Unix timestamp value. FROM_UNIXTIME() maps that value back to only one of the original
values. Here is an example, using values that are distinct in the MET time zone:

mysql> SET time_zone = 'MET';
mysql> SELECT UNIX_TIMESTAMP('2005-03-27 03:00:00');
+---------------------------------------+
| UNIX_TIMESTAMP('2005-03-27 03:00:00') |
+---------------------------------------+
| 1111885200 |
+---------------------------------------+
mysql> SELECT UNIX_TIMESTAMP('2005-03-27 02:00:00');

1941

Date and Time Functions

+---------------------------------------+
| UNIX_TIMESTAMP('2005-03-27 02:00:00') |
+---------------------------------------+
| 1111885200 |
+---------------------------------------+
mysql> SELECT FROM_UNIXTIME(1111885200);
+---------------------------+
| FROM_UNIXTIME(1111885200) |
+---------------------------+
| 2005-03-27 03:00:00 |
+---------------------------+

Note

To use named time zones such as 'MET' or 'Europe/Amsterdam', the
time zone tables must be properly set up. For instructions, see Section 5.1.13,
“MySQL Server Time Zone Support”.

If you want to subtract UNIX_TIMESTAMP() columns, you might want to cast them to signed integers.
See Section 12.10, “Cast Functions and Operators”.

• UTC_DATE, UTC_DATE()

Returns the current UTC date as a value in 'YYYY-MM-DD' or YYYYMMDD format, depending on whether
the function is used in string or numeric context.

mysql> SELECT UTC_DATE(), UTC_DATE() + 0;
 -> '2003-08-14', 20030814

• UTC_TIME, UTC_TIME([fsp])

Returns the current UTC time as a value in 'hh:mm:ss' or hhmmss format, depending on whether the
function is used in string or numeric context.

If the fsp argument is given to specify a fractional seconds precision from 0 to 6, the return value
includes a fractional seconds part of that many digits.

mysql> SELECT UTC_TIME(), UTC_TIME() + 0;
 -> '18:07:53', 180753.000000

• UTC_TIMESTAMP, UTC_TIMESTAMP([fsp])

Returns the current UTC date and time as a value in 'YYYY-MM-DD hh:mm:ss' or YYYYMMDDhhmmss
format, depending on whether the function is used in string or numeric context.

If the fsp argument is given to specify a fractional seconds precision from 0 to 6, the return value
includes a fractional seconds part of that many digits.

mysql> SELECT UTC_TIMESTAMP(), UTC_TIMESTAMP() + 0;
 -> '2003-08-14 18:08:04', 20030814180804.000000

• WEEK(date[,mode])

This function returns the week number for date. The two-argument form of WEEK() enables you
to specify whether the week starts on Sunday or Monday and whether the return value should

1942

Date and Time Functions

be in the range from 0 to 53 or from 1 to 53. If the mode argument is omitted, the value of the
default_week_format system variable is used. See Section 5.1.7, “Server System Variables”.

The following table describes how the mode argument works.

Mode First day of week Range Week 1 is the first
week …

0 Sunday 0-53 with a Sunday in this
year

1 Monday 0-53 with 4 or more days this
year

2 Sunday 1-53 with a Sunday in this
year

3 Monday 1-53 with 4 or more days this
year

4 Sunday 0-53 with 4 or more days this
year

5 Monday 0-53 with a Monday in this
year

6 Sunday 1-53 with 4 or more days this
year

7 Monday 1-53 with a Monday in this
year

For mode values with a meaning of “with 4 or more days this year,” weeks are numbered according to
ISO 8601:1988:

• If the week containing January 1 has 4 or more days in the new year, it is week 1.

• Otherwise, it is the last week of the previous year, and the next week is week 1.

mysql> SELECT WEEK('2008-02-20');
 -> 7
mysql> SELECT WEEK('2008-02-20',0);
 -> 7
mysql> SELECT WEEK('2008-02-20',1);
 -> 8
mysql> SELECT WEEK('2008-12-31',1);
 -> 53

If a date falls in the last week of the previous year, MySQL returns 0 if you do not use 2, 3, 6, or 7 as the
optional mode argument:

mysql> SELECT YEAR('2000-01-01'), WEEK('2000-01-01',0);
 -> 2000, 0

One might argue that WEEK() should return 52 because the given date actually occurs in the 52nd week
of 1999. WEEK() returns 0 instead so that the return value is “the week number in the given year.” This

1943

String Functions and Operators

makes use of the WEEK() function reliable when combined with other functions that extract a date part
from a date.

If you prefer a result evaluated with respect to the year that contains the first day of the week for the
given date, use 0, 2, 5, or 7 as the optional mode argument.

mysql> SELECT WEEK('2000-01-01',2);
 -> 52

Alternatively, use the YEARWEEK() function:

mysql> SELECT YEARWEEK('2000-01-01');
 -> 199952
mysql> SELECT MID(YEARWEEK('2000-01-01'),5,2);
 -> '52'

• WEEKDAY(date)

Returns the weekday index for date (0 = Monday, 1 = Tuesday, … 6 = Sunday).

mysql> SELECT WEEKDAY('2008-02-03 22:23:00');
 -> 6
mysql> SELECT WEEKDAY('2007-11-06');
 -> 1

• WEEKOFYEAR(date)

Returns the calendar week of the date as a number in the range from 1 to 53. WEEKOFYEAR() is a
compatibility function that is equivalent to WEEK(date,3).

mysql> SELECT WEEKOFYEAR('2008-02-20');
 -> 8

• YEAR(date)

Returns the year for date, in the range 1000 to 9999, or 0 for the “zero” date.

mysql> SELECT YEAR('1987-01-01');
 -> 1987

• YEARWEEK(date), YEARWEEK(date,mode)

Returns year and week for a date. The year in the result may be different from the year in the date
argument for the first and the last week of the year.

The mode argument works exactly like the mode argument to WEEK(). For the single-argument syntax,
a mode value of 0 is used. Unlike WEEK(), the value of default_week_format does not influence
YEARWEEK().

mysql> SELECT YEARWEEK('1987-01-01');
 -> 198652

The week number is different from what the WEEK() function would return (0) for optional arguments 0
or 1, as WEEK() then returns the week in the context of the given year.

12.8 String Functions and Operators
Table 12.12 String Functions and Operators

Name Description

ASCII() Return numeric value of left-most character

1944

String Functions and Operators

Name Description

BIN() Return a string containing binary representation of a
number

BIT_LENGTH() Return length of argument in bits

CHAR() Return the character for each integer passed

CHAR_LENGTH() Return number of characters in argument

CHARACTER_LENGTH() Synonym for CHAR_LENGTH()

CONCAT() Return concatenated string

CONCAT_WS() Return concatenate with separator

ELT() Return string at index number

EXPORT_SET() Return a string such that for every bit set in the
value bits, you get an on string and for every unset
bit, you get an off string

FIELD() Index (position) of first argument in subsequent
arguments

FIND_IN_SET() Index (position) of first argument within second
argument

FORMAT() Return a number formatted to specified number of
decimal places

FROM_BASE64() Decode base64 encoded string and return result

HEX() Hexadecimal representation of decimal or string
value

INSERT() Insert substring at specified position up to specified
number of characters

INSTR() Return the index of the first occurrence of substring

LCASE() Synonym for LOWER()

LEFT() Return the leftmost number of characters as
specified

LENGTH() Return the length of a string in bytes

LIKE Simple pattern matching

LOAD_FILE() Load the named file

LOCATE() Return the position of the first occurrence of
substring

LOWER() Return the argument in lowercase

LPAD() Return the string argument, left-padded with the
specified string

LTRIM() Remove leading spaces

MAKE_SET() Return a set of comma-separated strings that have
the corresponding bit in bits set

MATCH() Perform full-text search

MID() Return a substring starting from the specified
position

1945

String Functions and Operators

Name Description

NOT LIKE Negation of simple pattern matching

NOT REGEXP Negation of REGEXP

OCT() Return a string containing octal representation of a
number

OCTET_LENGTH() Synonym for LENGTH()

ORD() Return character code for leftmost character of the
argument

POSITION() Synonym for LOCATE()

QUOTE() Escape the argument for use in an SQL statement

REGEXP Whether string matches regular expression

REPEAT() Repeat a string the specified number of times

REPLACE() Replace occurrences of a specified string

REVERSE() Reverse the characters in a string

RIGHT() Return the specified rightmost number of characters

RLIKE Whether string matches regular expression

RPAD() Append string the specified number of times

RTRIM() Remove trailing spaces

SOUNDEX() Return a soundex string

SOUNDS LIKE Compare sounds

SPACE() Return a string of the specified number of spaces

STRCMP() Compare two strings

SUBSTR() Return the substring as specified

SUBSTRING() Return the substring as specified

SUBSTRING_INDEX() Return a substring from a string before the specified
number of occurrences of the delimiter

TO_BASE64() Return the argument converted to a base-64 string

TRIM() Remove leading and trailing spaces

UCASE() Synonym for UPPER()

UNHEX() Return a string containing hex representation of a
number

UPPER() Convert to uppercase

WEIGHT_STRING() Return the weight string for a string

String-valued functions return NULL if the length of the result would be greater than the value of the
max_allowed_packet system variable. See Section 5.1.1, “Configuring the Server”.

For functions that operate on string positions, the first position is numbered 1.

For functions that take length arguments, noninteger arguments are rounded to the nearest integer.

• ASCII(str)

1946

String Functions and Operators

Returns the numeric value of the leftmost character of the string str. Returns 0 if str is the empty
string. Returns NULL if str is NULL. ASCII() works for 8-bit characters.

mysql> SELECT ASCII('2');
 -> 50
mysql> SELECT ASCII(2);
 -> 50
mysql> SELECT ASCII('dx');
 -> 100

See also the ORD() function.

• BIN(N)

Returns a string representation of the binary value of N, where N is a longlong (BIGINT) number. This is
equivalent to CONV(N,10,2). Returns NULL if N is NULL.

mysql> SELECT BIN(12);
 -> '1100'

• BIT_LENGTH(str)

Returns the length of the string str in bits.

mysql> SELECT BIT_LENGTH('text');
 -> 32

• CHAR(N,... [USING charset_name])

CHAR() interprets each argument N as an integer and returns a string consisting of the characters given
by the code values of those integers. NULL values are skipped.

mysql> SELECT CHAR(77,121,83,81,'76');
 -> 'MySQL'
mysql> SELECT CHAR(77,77.3,'77.3');
 -> 'MMM'

CHAR() arguments larger than 255 are converted into multiple result bytes. For example, CHAR(256) is
equivalent to CHAR(1,0), and CHAR(256*256) is equivalent to CHAR(1,0,0):

mysql> SELECT HEX(CHAR(1,0)), HEX(CHAR(256));
+----------------+----------------+
| HEX(CHAR(1,0)) | HEX(CHAR(256)) |
+----------------+----------------+
| 0100 | 0100 |
+----------------+----------------+
mysql> SELECT HEX(CHAR(1,0,0)), HEX(CHAR(256*256));
+------------------+--------------------+
| HEX(CHAR(1,0,0)) | HEX(CHAR(256*256)) |
+------------------+--------------------+
| 010000 | 010000 |
+------------------+--------------------+

By default, CHAR() returns a binary string. To produce a string in a given character set, use the optional
USING clause:

mysql> SELECT CHARSET(CHAR(X'65')), CHARSET(CHAR(X'65' USING utf8));
+----------------------+---------------------------------+
| CHARSET(CHAR(X'65')) | CHARSET(CHAR(X'65' USING utf8)) |
+----------------------+---------------------------------+
| binary | utf8 |

1947

String Functions and Operators

+----------------------+---------------------------------+

If USING is given and the result string is illegal for the given character set, a warning is issued. Also, if
strict SQL mode is enabled, the result from CHAR() becomes NULL.

If CHAR() is invoked from within the mysql client, binary strings display using hexadecimal notation,
depending on the value of the --binary-as-hex. For more information about that option, see
Section 4.5.1, “mysql — The MySQL Command-Line Client”.

• CHAR_LENGTH(str)

Returns the length of the string str, measured in code points. A multibyte character counts as a single
code point. This means that, for a string containing two 3-byte characters, LENGTH() returns 6, whereas
CHAR_LENGTH() returns 2, as shown here:

mysql> SET @dolphin:='海豚';
Query OK, 0 rows affected (0.01 sec)

mysql> SELECT LENGTH(@dolphin), CHAR_LENGTH(@dolphin);
+------------------+-----------------------+
| LENGTH(@dolphin) | CHAR_LENGTH(@dolphin) |
+------------------+-----------------------+
| 6 | 2 |
+------------------+-----------------------+
1 row in set (0.00 sec)

• CHARACTER_LENGTH(str)

CHARACTER_LENGTH() is a synonym for CHAR_LENGTH().

• CONCAT(str1,str2,...)

Returns the string that results from concatenating the arguments. May have one or more arguments. If
all arguments are nonbinary strings, the result is a nonbinary string. If the arguments include any binary
strings, the result is a binary string. A numeric argument is converted to its equivalent nonbinary string
form.

CONCAT() returns NULL if any argument is NULL.

mysql> SELECT CONCAT('My', 'S', 'QL');
 -> 'MySQL'
mysql> SELECT CONCAT('My', NULL, 'QL');
 -> NULL
mysql> SELECT CONCAT(14.3);
 -> '14.3'

For quoted strings, concatenation can be performed by placing the strings next to each other:

mysql> SELECT 'My' 'S' 'QL';
 -> 'MySQL'

If CONCAT() is invoked from within the mysql client, binary string results display using hexadecimal
notation, depending on the value of the --binary-as-hex. For more information about that option, see
Section 4.5.1, “mysql — The MySQL Command-Line Client”.

• CONCAT_WS(separator,str1,str2,...)

CONCAT_WS() stands for Concatenate With Separator and is a special form of CONCAT(). The first
argument is the separator for the rest of the arguments. The separator is added between the strings to

1948

String Functions and Operators

be concatenated. The separator can be a string, as can the rest of the arguments. If the separator is
NULL, the result is NULL.

mysql> SELECT CONCAT_WS(',', 'First name', 'Second name', 'Last Name');
 -> 'First name,Second name,Last Name'
mysql> SELECT CONCAT_WS(',', 'First name', NULL, 'Last Name');
 -> 'First name,Last Name'

CONCAT_WS() does not skip empty strings. However, it does skip any NULL values after the separator
argument.

• ELT(N,str1,str2,str3,...)

ELT() returns the Nth element of the list of strings: str1 if N = 1, str2 if N = 2, and so on. Returns
NULL if N is less than 1 or greater than the number of arguments. ELT() is the complement of FIELD().

mysql> SELECT ELT(1, 'Aa', 'Bb', 'Cc', 'Dd');
 -> 'Aa'
mysql> SELECT ELT(4, 'Aa', 'Bb', 'Cc', 'Dd');
 -> 'Dd'

• EXPORT_SET(bits,on,off[,separator[,number_of_bits]])

Returns a string such that for every bit set in the value bits, you get an on string and for every bit not
set in the value, you get an off string. Bits in bits are examined from right to left (from low-order to
high-order bits). Strings are added to the result from left to right, separated by the separator string
(the default being the comma character ,). The number of bits examined is given by number_of_bits,
which has a default of 64 if not specified. number_of_bits is silently clipped to 64 if larger than 64. It is
treated as an unsigned integer, so a value of −1 is effectively the same as 64.

mysql> SELECT EXPORT_SET(5,'Y','N',',',4);
 -> 'Y,N,Y,N'
mysql> SELECT EXPORT_SET(6,'1','0',',',10);
 -> '0,1,1,0,0,0,0,0,0,0'

• FIELD(str,str1,str2,str3,...)

Returns the index (position) of str in the str1, str2, str3, ... list. Returns 0 if str is not found.

If all arguments to FIELD() are strings, all arguments are compared as strings. If all arguments are
numbers, they are compared as numbers. Otherwise, the arguments are compared as double.

If str is NULL, the return value is 0 because NULL fails equality comparison with any value. FIELD() is
the complement of ELT().

mysql> SELECT FIELD('Bb', 'Aa', 'Bb', 'Cc', 'Dd', 'Ff');
 -> 2
mysql> SELECT FIELD('Gg', 'Aa', 'Bb', 'Cc', 'Dd', 'Ff');
 -> 0

• FIND_IN_SET(str,strlist)

Returns a value in the range of 1 to N if the string str is in the string list strlist consisting of
N substrings. A string list is a string composed of substrings separated by , characters. If the first
argument is a constant string and the second is a column of type SET, the FIND_IN_SET() function
is optimized to use bit arithmetic. Returns 0 if str is not in strlist or if strlist is the empty string.
Returns NULL if either argument is NULL. This function does not work properly if the first argument
contains a comma (,) character.

mysql> SELECT FIND_IN_SET('b','a,b,c,d');

1949

String Functions and Operators

 -> 2

• FORMAT(X,D[,locale])

Formats the number X to a format like '#,###,###.##', rounded to D decimal places, and returns the
result as a string. If D is 0, the result has no decimal point or fractional part.

The optional third parameter enables a locale to be specified to be used for the result number's decimal
point, thousands separator, and grouping between separators. Permissible locale values are the same
as the legal values for the lc_time_names system variable (see Section 10.16, “MySQL Server Locale
Support”). If no locale is specified, the default is 'en_US'.

mysql> SELECT FORMAT(12332.123456, 4);
 -> '12,332.1235'
mysql> SELECT FORMAT(12332.1,4);
 -> '12,332.1000'
mysql> SELECT FORMAT(12332.2,0);
 -> '12,332'
mysql> SELECT FORMAT(12332.2,2,'de_DE');
 -> '12.332,20'

• FROM_BASE64(str)

Takes a string encoded with the base-64 encoded rules used by TO_BASE64() and returns the decoded
result as a binary string. The result is NULL if the argument is NULL or not a valid base-64 string. See the
description of TO_BASE64() for details about the encoding and decoding rules.

mysql> SELECT TO_BASE64('abc'), FROM_BASE64(TO_BASE64('abc'));
 -> 'JWJj', 'abc'

If FROM_BASE64() is invoked from within the mysql client, binary strings display using hexadecimal
notation, depending on the value of the --binary-as-hex. For more information about that option, see
Section 4.5.1, “mysql — The MySQL Command-Line Client”.

• HEX(str), HEX(N)

For a string argument str, HEX() returns a hexadecimal string representation of str where each byte
of each character in str is converted to two hexadecimal digits. (Multibyte characters therefore become
more than two digits.) The inverse of this operation is performed by the UNHEX() function.

For a numeric argument N, HEX() returns a hexadecimal string representation of the value of N treated
as a longlong (BIGINT) number. This is equivalent to CONV(N,10,16). The inverse of this operation is
performed by CONV(HEX(N),16,10).

mysql> SELECT X'616263', HEX('abc'), UNHEX(HEX('abc'));
 -> 'abc', 616263, 'abc'
mysql> SELECT HEX(255), CONV(HEX(255),16,10);
 -> 'FF', 255

• INSERT(str,pos,len,newstr)

Returns the string str, with the substring beginning at position pos and len characters long replaced
by the string newstr. Returns the original string if pos is not within the length of the string. Replaces the
rest of the string from position pos if len is not within the length of the rest of the string. Returns NULL if
any argument is NULL.

mysql> SELECT INSERT('Quadratic', 3, 4, 'What');
 -> 'QuWhattic'
mysql> SELECT INSERT('Quadratic', -1, 4, 'What');
 -> 'Quadratic'
mysql> SELECT INSERT('Quadratic', 3, 100, 'What');

1950

String Functions and Operators

 -> 'QuWhat'

This function is multibyte safe.

• INSTR(str,substr)

Returns the position of the first occurrence of substring substr in string str. This is the same as the
two-argument form of LOCATE(), except that the order of the arguments is reversed.

mysql> SELECT INSTR('foobarbar', 'bar');
 -> 4
mysql> SELECT INSTR('xbar', 'foobar');
 -> 0

This function is multibyte safe, and is case-sensitive only if at least one argument is a binary string.

• LCASE(str)

LCASE() is a synonym for LOWER().

LCASE() used in a view is rewritten as LOWER() when storing the view's definition. (Bug #12844279)

• LEFT(str,len)

Returns the leftmost len characters from the string str, or NULL if any argument is NULL.

mysql> SELECT LEFT('foobarbar', 5);
 -> 'fooba'

This function is multibyte safe.

• LENGTH(str)

Returns the length of the string str, measured in bytes. A multibyte character counts as multiple
bytes. This means that for a string containing five 2-byte characters, LENGTH() returns 10, whereas
CHAR_LENGTH() returns 5.

mysql> SELECT LENGTH('text');
 -> 4

Note

The Length() OpenGIS spatial function is named ST_Length() in MySQL.

• LOAD_FILE(file_name)

Reads the file and returns the file contents as a string. To use this function, the file must be located
on the server host, you must specify the full path name to the file, and you must have the FILE
privilege. The file must be readable by all and its size less than max_allowed_packet bytes. If the
secure_file_priv system variable is set to a nonempty directory name, the file to be loaded must be
located in that directory.

If the file does not exist or cannot be read because one of the preceding conditions is not satisfied, the
function returns NULL.

The character_set_filesystem system variable controls interpretation of file names that are given
as literal strings.

mysql> UPDATE t
 SET blob_col=LOAD_FILE('/tmp/picture')

1951

String Functions and Operators

 WHERE id=1;

• LOCATE(substr,str), LOCATE(substr,str,pos)

The first syntax returns the position of the first occurrence of substring substr in string str. The
second syntax returns the position of the first occurrence of substring substr in string str, starting at
position pos. Returns 0 if substr is not in str. Returns NULL if substr or str is NULL.

mysql> SELECT LOCATE('bar', 'foobarbar');
 -> 4
mysql> SELECT LOCATE('xbar', 'foobar');
 -> 0
mysql> SELECT LOCATE('bar', 'foobarbar', 5);
 -> 7

This function is multibyte safe, and is case-sensitive only if at least one argument is a binary string.

• LOWER(str)

Returns the string str with all characters changed to lowercase according to the current character set
mapping. The default is latin1 (cp1252 West European).

mysql> SELECT LOWER('QUADRATICALLY');
 -> 'quadratically'

LOWER() (and UPPER()) are ineffective when applied to binary strings (BINARY, VARBINARY, BLOB).
To perform lettercase conversion of a binary string, first convert it to a nonbinary string using a character
set appropriate for the data stored in the string:

mysql> SET @str = BINARY 'New York';
mysql> SELECT LOWER(@str), LOWER(CONVERT(@str USING latin1));
+-------------+-----------------------------------+
| LOWER(@str) | LOWER(CONVERT(@str USING latin1)) |
+-------------+-----------------------------------+
| New York | new york |
+-------------+-----------------------------------+

For collations of Unicode character sets, LOWER() and UPPER() work according to the Unicode
Collation Algorithm (UCA) version in the collation name, if there is one, and UCA 4.0.0 if no version
is specified. For example, utf8_unicode_520_ci works according to UCA 5.2.0, whereas
utf8_unicode_ci works according to UCA 4.0.0. See Section 10.10.1, “Unicode Character Sets”.

This function is multibyte safe.

In previous versions of MySQL, LOWER() used within a view was rewritten as LCASE() when storing
the view's definition. In MySQL 5.7, LOWER() is never rewritten in such cases, but LCASE() used within
views is instead rewritten as LOWER(). (Bug #12844279)

• LPAD(str,len,padstr)

Returns the string str, left-padded with the string padstr to a length of len characters. If str is longer
than len, the return value is shortened to len characters.

mysql> SELECT LPAD('hi',4,'??');
 -> '??hi'
mysql> SELECT LPAD('hi',1,'??');
 -> 'h'

• LTRIM(str)

Returns the string str with leading space characters removed.

1952

String Functions and Operators

mysql> SELECT LTRIM(' barbar');
 -> 'barbar'

This function is multibyte safe.

• MAKE_SET(bits,str1,str2,...)

Returns a set value (a string containing substrings separated by , characters) consisting of the strings
that have the corresponding bit in bits set. str1 corresponds to bit 0, str2 to bit 1, and so on. NULL
values in str1, str2, ... are not appended to the result.

mysql> SELECT MAKE_SET(1,'a','b','c');
 -> 'a'
mysql> SELECT MAKE_SET(1 | 4,'hello','nice','world');
 -> 'hello,world'
mysql> SELECT MAKE_SET(1 | 4,'hello','nice',NULL,'world');
 -> 'hello'
mysql> SELECT MAKE_SET(0,'a','b','c');
 -> ''

• MID(str,pos), MID(str FROM pos), MID(str,pos,len), MID(str FROM pos FOR len)

MID(str,pos,len) is a synonym for SUBSTRING(str,pos,len).

• OCT(N)

Returns a string representation of the octal value of N, where N is a longlong (BIGINT) number. This is
equivalent to CONV(N,10,8). Returns NULL if N is NULL.

mysql> SELECT OCT(12);
 -> '14'

• OCTET_LENGTH(str)

OCTET_LENGTH() is a synonym for LENGTH().

• ORD(str)

If the leftmost character of the string str is a multibyte character, returns the code for that character,
calculated from the numeric values of its constituent bytes using this formula:

 (1st byte code)
+ (2nd byte code * 256)
+ (3rd byte code * 256^2) ...

If the leftmost character is not a multibyte character, ORD() returns the same value as the ASCII()
function.

mysql> SELECT ORD('2');
 -> 50

• POSITION(substr IN str)

POSITION(substr IN str) is a synonym for LOCATE(substr,str).

• QUOTE(str)

Quotes a string to produce a result that can be used as a properly escaped data value in an SQL
statement. The string is returned enclosed by single quotation marks and with each instance of
backslash (\), single quote ('), ASCII NUL, and Control+Z preceded by a backslash. If the argument is
NULL, the return value is the word “NULL” without enclosing single quotation marks.

1953

String Functions and Operators

mysql> SELECT QUOTE('Don\'t!');
 -> 'Don\'t!'
mysql> SELECT QUOTE(NULL);
 -> NULL

For comparison, see the quoting rules for literal strings and within the C API in Section 9.1.1, “String
Literals”, and mysql_real_escape_string_quote().

• REPEAT(str,count)

Returns a string consisting of the string str repeated count times. If count is less than 1, returns an
empty string. Returns NULL if str or count are NULL.

mysql> SELECT REPEAT('MySQL', 3);
 -> 'MySQLMySQLMySQL'

• REPLACE(str,from_str,to_str)

Returns the string str with all occurrences of the string from_str replaced by the string to_str.
REPLACE() performs a case-sensitive match when searching for from_str.

mysql> SELECT REPLACE('www.mysql.com', 'w', 'Ww');
 -> 'WwWwWw.mysql.com'

This function is multibyte safe.

• REVERSE(str)

Returns the string str with the order of the characters reversed.

mysql> SELECT REVERSE('abc');
 -> 'cba'

This function is multibyte safe.

• RIGHT(str,len)

Returns the rightmost len characters from the string str, or NULL if any argument is NULL.

mysql> SELECT RIGHT('foobarbar', 4);
 -> 'rbar'

This function is multibyte safe.

• RPAD(str,len,padstr)

Returns the string str, right-padded with the string padstr to a length of len characters. If str is
longer than len, the return value is shortened to len characters.

mysql> SELECT RPAD('hi',5,'?');
 -> 'hi???'
mysql> SELECT RPAD('hi',1,'?');
 -> 'h'

This function is multibyte safe.

1954

https://dev.mysql.com/doc/c-api/5.7/en/mysql-real-escape-string-quote.html

String Functions and Operators

• RTRIM(str)

Returns the string str with trailing space characters removed.

mysql> SELECT RTRIM('barbar ');
 -> 'barbar'

This function is multibyte safe.

• SOUNDEX(str)

Returns a soundex string from str. Two strings that sound almost the same should have identical
soundex strings. A standard soundex string is four characters long, but the SOUNDEX() function returns
an arbitrarily long string. You can use SUBSTRING() on the result to get a standard soundex string.
All nonalphabetic characters in str are ignored. All international alphabetic characters outside the A-Z
range are treated as vowels.

Important

When using SOUNDEX(), you should be aware of the following limitations:

• This function, as currently implemented, is intended to work well with strings that are in the English
language only. Strings in other languages may not produce reliable results.

• This function is not guaranteed to provide consistent results with strings that use multibyte character
sets, including utf-8. See Bug #22638 for more information.

mysql> SELECT SOUNDEX('Hello');
 -> 'H400'
mysql> SELECT SOUNDEX('Quadratically');
 -> 'Q36324'

Note

This function implements the original Soundex algorithm, not the more popular
enhanced version (also described by D. Knuth). The difference is that original
version discards vowels first and duplicates second, whereas the enhanced
version discards duplicates first and vowels second.

• expr1 SOUNDS LIKE expr2

This is the same as SOUNDEX(expr1) = SOUNDEX(expr2).

• SPACE(N)

Returns a string consisting of N space characters.

mysql> SELECT SPACE(6);
 -> ' '

• SUBSTR(str,pos), SUBSTR(str FROM pos), SUBSTR(str,pos,len), SUBSTR(str FROM pos
FOR len)

SUBSTR() is a synonym for SUBSTRING().

1955

String Functions and Operators

• SUBSTRING(str,pos), SUBSTRING(str FROM pos), SUBSTRING(str,pos,len),
SUBSTRING(str FROM pos FOR len)

The forms without a len argument return a substring from string str starting at position pos. The forms
with a len argument return a substring len characters long from string str, starting at position pos.
The forms that use FROM are standard SQL syntax. It is also possible to use a negative value for pos.
In this case, the beginning of the substring is pos characters from the end of the string, rather than the
beginning. A negative value may be used for pos in any of the forms of this function. A value of 0 for
pos returns an empty string.

For all forms of SUBSTRING(), the position of the first character in the string from which the substring is
to be extracted is reckoned as 1.

mysql> SELECT SUBSTRING('Quadratically',5);
 -> 'ratically'
mysql> SELECT SUBSTRING('foobarbar' FROM 4);
 -> 'barbar'
mysql> SELECT SUBSTRING('Quadratically',5,6);
 -> 'ratica'
mysql> SELECT SUBSTRING('Sakila', -3);
 -> 'ila'
mysql> SELECT SUBSTRING('Sakila', -5, 3);
 -> 'aki'
mysql> SELECT SUBSTRING('Sakila' FROM -4 FOR 2);
 -> 'ki'

This function is multibyte safe.

If len is less than 1, the result is the empty string.

• SUBSTRING_INDEX(str,delim,count)

Returns the substring from string str before count occurrences of the delimiter delim. If count
is positive, everything to the left of the final delimiter (counting from the left) is returned. If count
is negative, everything to the right of the final delimiter (counting from the right) is returned.
SUBSTRING_INDEX() performs a case-sensitive match when searching for delim.

mysql> SELECT SUBSTRING_INDEX('www.mysql.com', '.', 2);
 -> 'www.mysql'
mysql> SELECT SUBSTRING_INDEX('www.mysql.com', '.', -2);
 -> 'mysql.com'

This function is multibyte safe.

• TO_BASE64(str)

Converts the string argument to base-64 encoded form and returns the result as a character string with
the connection character set and collation. If the argument is not a string, it is converted to a string
before conversion takes place. The result is NULL if the argument is NULL. Base-64 encoded strings can
be decoded using the FROM_BASE64() function.

mysql> SELECT TO_BASE64('abc'), FROM_BASE64(TO_BASE64('abc'));

1956

String Functions and Operators

 -> 'JWJj', 'abc'

Different base-64 encoding schemes exist. These are the encoding and decoding rules used by
TO_BASE64() and FROM_BASE64():

• The encoding for alphabet value 62 is '+'.

• The encoding for alphabet value 63 is '/'.

• Encoded output consists of groups of 4 printable characters. Each 3 bytes of the input data are
encoded using 4 characters. If the last group is incomplete, it is padded with '=' characters to a
length of 4.

• A newline is added after each 76 characters of encoded output to divide long output into multiple lines.

• Decoding recognizes and ignores newline, carriage return, tab, and space.

• TRIM([{BOTH | LEADING | TRAILING} [remstr] FROM] str), TRIM([remstr FROM] str)

Returns the string str with all remstr prefixes or suffixes removed. If none of the specifiers BOTH,
LEADING, or TRAILING is given, BOTH is assumed. remstr is optional and, if not specified, spaces are
removed.

mysql> SELECT TRIM(' bar ');
 -> 'bar'
mysql> SELECT TRIM(LEADING 'x' FROM 'xxxbarxxx');
 -> 'barxxx'
mysql> SELECT TRIM(BOTH 'x' FROM 'xxxbarxxx');
 -> 'bar'
mysql> SELECT TRIM(TRAILING 'xyz' FROM 'barxxyz');
 -> 'barx'

This function is multibyte safe.

• UCASE(str)

UCASE() is a synonym for UPPER().

In MySQL 5.7, UCASE() used in a view is rewritten as UPPER() when storing the view's definition. (Bug
#12844279)

• UNHEX(str)

For a string argument str, UNHEX(str) interprets each pair of characters in the argument as a
hexadecimal number and converts it to the byte represented by the number. The return value is a binary
string.

mysql> SELECT UNHEX('4D7953514C');
 -> 'MySQL'
mysql> SELECT X'4D7953514C';
 -> 'MySQL'
mysql> SELECT UNHEX(HEX('string'));
 -> 'string'
mysql> SELECT HEX(UNHEX('1267'));
 -> '1267'

The characters in the argument string must be legal hexadecimal digits: '0' .. '9', 'A' .. 'F', 'a' ..
'f'. If the argument contains any nonhexadecimal digits, the result is NULL:

mysql> SELECT UNHEX('GG');
+-------------+

1957

String Functions and Operators

| UNHEX('GG') |
+-------------+
| NULL |
+-------------+

A NULL result can occur if the argument to UNHEX() is a BINARY column, because values are padded
with 0x00 bytes when stored but those bytes are not stripped on retrieval. For example, '41' is stored
into a CHAR(3) column as '41 ' and retrieved as '41' (with the trailing pad space stripped), so
UNHEX() for the column value returns X'41'. By contrast, '41' is stored into a BINARY(3) column
as '41\0' and retrieved as '41\0' (with the trailing pad 0x00 byte not stripped). '\0' is not a legal
hexadecimal digit, so UNHEX() for the column value returns NULL.

For a numeric argument N, the inverse of HEX(N) is not performed by UNHEX(). Use
CONV(HEX(N),16,10) instead. See the description of HEX().

If UNHEX() is invoked from within the mysql client, binary strings display using hexadecimal notation,
depending on the value of the --binary-as-hex. For more information about that option, see
Section 4.5.1, “mysql — The MySQL Command-Line Client”.

• UPPER(str)

Returns the string str with all characters changed to uppercase according to the current character set
mapping. The default is latin1 (cp1252 West European).

mysql> SELECT UPPER('Hej');
 -> 'HEJ'

See the description of LOWER() for information that also applies to UPPER(). This included information
about how to perform lettercase conversion of binary strings (BINARY, VARBINARY, BLOB) for which
these functions are ineffective, and information about case folding for Unicode character sets.

This function is multibyte safe.

In previous versions of MySQL, UPPER() used within a view was rewritten as UCASE() when storing
the view's definition. In MySQL 5.7, UPPER() is never rewritten in such cases, but UCASE() used within
views is instead rewritten as UPPER(). (Bug #12844279)

1958

String Functions and Operators

• WEIGHT_STRING(str [AS {CHAR|BINARY}(N)] [LEVEL levels] [flags])

levels: N [ASC|DESC|REVERSE] [, N [ASC|DESC|REVERSE]] ...

This function returns the weight string for the input string. The return value is a binary string that
represents the comparison and sorting value of the string. It has these properties:

• If WEIGHT_STRING(str1) = WEIGHT_STRING(str2), then str1 = str2 (str1 and str2 are
considered equal)

• If WEIGHT_STRING(str1) < WEIGHT_STRING(str2), then str1 < str2 (str1 sorts before
str2)

WEIGHT_STRING() is a debugging function intended for internal use. Its behavior can change without
notice between MySQL versions. It can be used for testing and debugging of collations, especially if you
are adding a new collation. See Section 10.14, “Adding a Collation to a Character Set”.

This list briefly summarizes the arguments. More details are given in the discussion following the list.

• str: The input string expression.

• AS clause: Optional; cast the input string to a given type and length.

• LEVEL clause: Optional; specify weight levels for the return value.

• flags: Optional; unused.

The input string, str, is a string expression. If the input is a nonbinary (character) string such as a
CHAR, VARCHAR, or TEXT value, the return value contains the collation weights for the string. If the
input is a binary (byte) string such as a BINARY, VARBINARY, or BLOB value, the return value is the
same as the input (the weight for each byte in a binary string is the byte value). If the input is NULL,
WEIGHT_STRING() returns NULL.

Examples:

mysql> SET @s = _latin1 'AB' COLLATE latin1_swedish_ci;
mysql> SELECT @s, HEX(@s), HEX(WEIGHT_STRING(@s));
+------+---------+------------------------+
| @s | HEX(@s) | HEX(WEIGHT_STRING(@s)) |
+------+---------+------------------------+
| AB | 4142 | 4142 |
+------+---------+------------------------+

mysql> SET @s = _latin1 'ab' COLLATE latin1_swedish_ci;
mysql> SELECT @s, HEX(@s), HEX(WEIGHT_STRING(@s));
+------+---------+------------------------+
| @s | HEX(@s) | HEX(WEIGHT_STRING(@s)) |
+------+---------+------------------------+
| ab | 6162 | 4142 |
+------+---------+------------------------+

mysql> SET @s = CAST('AB' AS BINARY);
mysql> SELECT @s, HEX(@s), HEX(WEIGHT_STRING(@s));
+------+---------+------------------------+
| @s | HEX(@s) | HEX(WEIGHT_STRING(@s)) |
+------+---------+------------------------+
| AB | 4142 | 4142 |
+------+---------+------------------------+

mysql> SET @s = CAST('ab' AS BINARY);
mysql> SELECT @s, HEX(@s), HEX(WEIGHT_STRING(@s));

1959

String Functions and Operators

+------+---------+------------------------+
| @s | HEX(@s) | HEX(WEIGHT_STRING(@s)) |
+------+---------+------------------------+
| ab | 6162 | 6162 |
+------+---------+------------------------+

The preceding examples use HEX() to display the WEIGHT_STRING() result. Because the result is a
binary value, HEX() can be especially useful when the result contains nonprinting values, to display it in
printable form:

mysql> SET @s = CONVERT(X'C39F' USING utf8) COLLATE utf8_czech_ci;
mysql> SELECT HEX(WEIGHT_STRING(@s));
+------------------------+
| HEX(WEIGHT_STRING(@s)) |
+------------------------+
| 0FEA0FEA |
+------------------------+

For non-NULL return values, the data type of the value is VARBINARY if its length is within the maximum
length for VARBINARY, otherwise the data type is BLOB.

The AS clause may be given to cast the input string to a nonbinary or binary string and to force it to a
given length:

• AS CHAR(N) casts the string to a nonbinary string and pads it on the right with spaces to a length of N
characters. N must be at least 1. If N is less than the length of the input string, the string is truncated to
N characters. No warning occurs for truncation.

• AS BINARY(N) is similar but casts the string to a binary string, N is measured in bytes (not
characters), and padding uses 0x00 bytes (not spaces).

mysql> SET NAMES 'latin1';
mysql> SELECT HEX(WEIGHT_STRING('ab' AS CHAR(4)));
+-------------------------------------+
| HEX(WEIGHT_STRING('ab' AS CHAR(4))) |
+-------------------------------------+
| 41422020 |
+-------------------------------------+
mysql> SET NAMES 'utf8';
mysql> SELECT HEX(WEIGHT_STRING('ab' AS CHAR(4)));
+-------------------------------------+
| HEX(WEIGHT_STRING('ab' AS CHAR(4))) |
+-------------------------------------+
| 0041004200200020 |
+-------------------------------------+

mysql> SELECT HEX(WEIGHT_STRING('ab' AS BINARY(4)));
+---------------------------------------+
| HEX(WEIGHT_STRING('ab' AS BINARY(4))) |
+---------------------------------------+
| 61620000 |

1960

String Functions and Operators

+---------------------------------------+

The LEVEL clause may be given to specify that the return value should contain weights for specific
collation levels.

The levels specifier following the LEVEL keyword may be given either as a list of one or more integers
separated by commas, or as a range of two integers separated by a dash. Whitespace around the
punctuation characters does not matter.

Examples:

LEVEL 1
LEVEL 2, 3, 5
LEVEL 1-3

Any level less than 1 is treated as 1. Any level greater than the maximum for the input string collation is
treated as maximum for the collation. The maximum varies per collation, but is never greater than 6.

In a list of levels, levels must be given in increasing order. In a range of levels, if the second number is
less than the first, it is treated as the first number (for example, 4-2 is the same as 4-4).

If the LEVEL clause is omitted, MySQL assumes LEVEL 1 - max, where max is the maximum level for
the collation.

If LEVEL is specified using list syntax (not range syntax), any level number can be followed by these
modifiers:

• ASC: Return the weights without modification. This is the default.

• DESC: Return bitwise-inverted weights (for example, 0x78f0 DESC = 0x870f).

• REVERSE: Return the weights in reverse order (that is,the weights for the reversed string, with the first
character last and the last first).

Examples:

mysql> SELECT HEX(WEIGHT_STRING(0x007fff LEVEL 1));
+--------------------------------------+
| HEX(WEIGHT_STRING(0x007fff LEVEL 1)) |
+--------------------------------------+
| 007FFF |
+--------------------------------------+

mysql> SELECT HEX(WEIGHT_STRING(0x007fff LEVEL 1 DESC));
+---+
| HEX(WEIGHT_STRING(0x007fff LEVEL 1 DESC)) |
+---+
| FF8000 |
+---+

mysql> SELECT HEX(WEIGHT_STRING(0x007fff LEVEL 1 REVERSE));
+--+
| HEX(WEIGHT_STRING(0x007fff LEVEL 1 REVERSE)) |
+--+
| FF7F00 |
+--+

mysql> SELECT HEX(WEIGHT_STRING(0x007fff LEVEL 1 DESC REVERSE));
+---+
| HEX(WEIGHT_STRING(0x007fff LEVEL 1 DESC REVERSE)) |
+---+
| 0080FF |

1961

String Comparison Functions and Operators

+---+

The flags clause currently is unused.

If WEIGHT_STRING() is invoked from within the mysql client, binary strings display using hexadecimal
notation, depending on the value of the --binary-as-hex. For more information about that option, see
Section 4.5.1, “mysql — The MySQL Command-Line Client”.

12.8.1 String Comparison Functions and Operators

Table 12.13 String Comparison Functions and Operators

Name Description

LIKE Simple pattern matching

NOT LIKE Negation of simple pattern matching

STRCMP() Compare two strings

If a string function is given a binary string as an argument, the resulting string is also a binary string. A
number converted to a string is treated as a binary string. This affects only comparisons.

Normally, if any expression in a string comparison is case-sensitive, the comparison is performed in case-
sensitive fashion.

If a string function is invoked from within the mysql client, binary strings display using hexadecimal
notation, depending on the value of the --binary-as-hex. For more information about that option, see
Section 4.5.1, “mysql — The MySQL Command-Line Client”.

• expr LIKE pat [ESCAPE 'escape_char']

Pattern matching using an SQL pattern. Returns 1 (TRUE) or 0 (FALSE). If either expr or pat is NULL,
the result is NULL.

The pattern need not be a literal string. For example, it can be specified as a string expression or
table column. In the latter case, the column must be defined as one of the MySQL string types (see
Section 11.3, “String Data Types”).

Per the SQL standard, LIKE performs matching on a per-character basis, thus it can produce results
different from the = comparison operator:

mysql> SELECT 'ä' LIKE 'ae' COLLATE latin1_german2_ci;
+---+
| 'ä' LIKE 'ae' COLLATE latin1_german2_ci |
+---+
| 0 |
+---+
mysql> SELECT 'ä' = 'ae' COLLATE latin1_german2_ci;
+--------------------------------------+
| 'ä' = 'ae' COLLATE latin1_german2_ci |
+--------------------------------------+
| 1 |
+--------------------------------------+

In particular, trailing spaces are significant, which is not true for comparisons of nonbinary strings (CHAR,
VARCHAR, and TEXT values) performed with the = operator:

mysql> SELECT 'a' = 'a ', 'a' LIKE 'a ';
+------------+---------------+
| 'a' = 'a ' | 'a' LIKE 'a ' |
+------------+---------------+

1962

String Comparison Functions and Operators

| 1 | 0 |
+------------+---------------+
1 row in set (0.00 sec)

With LIKE you can use the following two wildcard characters in the pattern:

• % matches any number of characters, even zero characters.

• _ matches exactly one character.

mysql> SELECT 'David!' LIKE 'David_';
 -> 1
mysql> SELECT 'David!' LIKE '%D%v%';
 -> 1

To test for literal instances of a wildcard character, precede it by the escape character. If you do not
specify the ESCAPE character, \ is assumed, unless the NO_BACKSLASH_ESCAPES SQL mode is
enabled. In that case, no escape character is used.

• \% matches one % character.

• _ matches one _ character.

mysql> SELECT 'David!' LIKE 'David_';
 -> 0
mysql> SELECT 'David_' LIKE 'David_';
 -> 1

To specify a different escape character, use the ESCAPE clause:

mysql> SELECT 'David_' LIKE 'David|_' ESCAPE '|';
 -> 1

The escape sequence should be one character long to specify the escape character, or empty to specify
that no escape character is used. The expression must evaluate as a constant at execution time. If the
NO_BACKSLASH_ESCAPES SQL mode is enabled, the sequence cannot be empty.

The following statements illustrate that string comparisons are not case-sensitive unless one of the
operands is case-sensitive (uses a case-sensitive collation or is a binary string):

mysql> SELECT 'abc' LIKE 'ABC';
 -> 1
mysql> SELECT 'abc' LIKE _latin1 'ABC' COLLATE latin1_general_cs;
 -> 0
mysql> SELECT 'abc' LIKE _latin1 'ABC' COLLATE latin1_bin;
 -> 0
mysql> SELECT 'abc' LIKE BINARY 'ABC';
 -> 0

As an extension to standard SQL, MySQL permits LIKE on numeric expressions.

mysql> SELECT 10 LIKE '1%';
 -> 1

MySQL attempts in such cases to perform implicit conversion of the expression to a string. See
Section 12.3, “Type Conversion in Expression Evaluation”.

Note

MySQL uses C escape syntax in strings (for example, \n to represent the
newline character). If you want a LIKE string to contain a literal \, you must

1963

String Comparison Functions and Operators

double it. (Unless the NO_BACKSLASH_ESCAPES SQL mode is enabled, in which
case no escape character is used.) For example, to search for \n, specify it as
\\n. To search for \, specify it as \\\\; this is because the backslashes are
stripped once by the parser and again when the pattern match is made, leaving a
single backslash to be matched against.

Exception: At the end of the pattern string, backslash can be specified as \\.
At the end of the string, backslash stands for itself because there is nothing
following to escape. Suppose that a table contains the following values:

mysql> SELECT filename FROM t1;
+--------------+
| filename |
+--------------+
| C: |
| C:\ |
| C:\Programs |
| C:\Programs\ |
+--------------+

To test for values that end with backslash, you can match the values using either
of the following patterns:

mysql> SELECT filename, filename LIKE '%\\' FROM t1;
+--------------+---------------------+
| filename | filename LIKE '%\\' |
+--------------+---------------------+
C:	0
C:\	1
C:\Programs	0
C:\Programs\	1
+--------------+---------------------+

mysql> SELECT filename, filename LIKE '%\\\\' FROM t1;
+--------------+-----------------------+
| filename | filename LIKE '%\\\\' |
+--------------+-----------------------+
C:	0
C:\	1
C:\Programs	0
C:\Programs\	1
+--------------+-----------------------+

• expr NOT LIKE pat [ESCAPE 'escape_char']

This is the same as NOT (expr LIKE pat [ESCAPE 'escape_char']).

Note

Aggregate queries involving NOT LIKE comparisons with columns containing
NULL may yield unexpected results. For example, consider the following table
and data:

CREATE TABLE foo (bar VARCHAR(10));

INSERT INTO foo VALUES (NULL), (NULL);

The query SELECT COUNT(*) FROM foo WHERE bar LIKE '%baz%';
returns 0. You might assume that SELECT COUNT(*) FROM foo WHERE bar
NOT LIKE '%baz%'; would return 2. However, this is not the case: The second
query returns 0. This is because NULL NOT LIKE expr always returns NULL,
regardless of the value of expr. The same is true for aggregate queries involving

1964

Regular Expressions

NULL and comparisons using NOT RLIKE or NOT REGEXP. In such cases, you
must test explicitly for NOT NULL using OR (and not AND), as shown here:

SELECT COUNT(*) FROM foo WHERE bar NOT LIKE '%baz%' OR bar IS NULL;

• STRCMP(expr1,expr2)

STRCMP() returns 0 if the strings are the same, -1 if the first argument is smaller than the second
according to the current sort order, and 1 otherwise.

mysql> SELECT STRCMP('text', 'text2');
 -> -1
mysql> SELECT STRCMP('text2', 'text');
 -> 1
mysql> SELECT STRCMP('text', 'text');
 -> 0

STRCMP() performs the comparison using the collation of the arguments.

mysql> SET @s1 = _latin1 'x' COLLATE latin1_general_ci;
mysql> SET @s2 = _latin1 'X' COLLATE latin1_general_ci;
mysql> SET @s3 = _latin1 'x' COLLATE latin1_general_cs;
mysql> SET @s4 = _latin1 'X' COLLATE latin1_general_cs;
mysql> SELECT STRCMP(@s1, @s2), STRCMP(@s3, @s4);
+------------------+------------------+
| STRCMP(@s1, @s2) | STRCMP(@s3, @s4) |
+------------------+------------------+
| 0 | 1 |
+------------------+------------------+

If the collations are incompatible, one of the arguments must be converted to be compatible with the
other. See Section 10.8.4, “Collation Coercibility in Expressions”.

mysql> SELECT STRCMP(@s1, @s3);
ERROR 1267 (HY000): Illegal mix of collations (latin1_general_ci,IMPLICIT)
and (latin1_general_cs,IMPLICIT) for operation 'strcmp'
mysql> SELECT STRCMP(@s1, @s3 COLLATE latin1_general_ci);
+--+
| STRCMP(@s1, @s3 COLLATE latin1_general_ci) |
+--+
| 0 |
+--+

12.8.2 Regular Expressions
Table 12.14 Regular Expression Functions and Operators

Name Description

NOT REGEXP Negation of REGEXP

REGEXP Whether string matches regular expression

RLIKE Whether string matches regular expression

A regular expression is a powerful way of specifying a pattern for a complex search. This section discusses
the operators available for regular expression matching and illustrates, with examples, some of the special
characters and constructs that can be used for regular expression operations. See also Section 3.3.4.7,
“Pattern Matching”.

MySQL uses Henry Spencer's implementation of regular expressions, which is aimed at conformance
with POSIX 1003.2. MySQL uses the extended version to support regular expression pattern-matching
operations in SQL statements. This section does not contain all the details that can be found in Henry

1965

Regular Expressions

Spencer's regex(7) manual page. That manual page is included in MySQL source distributions, in the
regex.7 file under the regex directory.

• Regular Expression Function and Operator Descriptions

• Regular Expression Syntax

Regular Expression Function and Operator Descriptions

• expr NOT REGEXP pat, expr NOT RLIKE pat

This is the same as NOT (expr REGEXP pat).

• expr REGEXP pat, expr RLIKE pat

Returns 1 if the string expr matches the regular expression specified by the pattern pat, 0 otherwise. If
either expr or pat is NULL, the return value is NULL.

RLIKE is a synonym for REGEXP.

The pattern can be an extended regular expression, the syntax for which is discussed in Regular
Expression Syntax. The pattern need not be a literal string. For example, it can be specified as a string
expression or table column.

Note

MySQL uses C escape syntax in strings (for example, \n to represent the
newline character). If you want your expr or pat argument to contain a literal \,
you must double it. (Unless the NO_BACKSLASH_ESCAPES SQL mode is enabled,
in which case no escape character is used.)

Regular expression operations use the character set and collation of the string expression and pattern
arguments when deciding the type of a character and performing the comparison. If the arguments have
different character sets or collations, coercibility rules apply as described in Section 10.8.4, “Collation
Coercibility in Expressions”. If either argument is a binary string, the arguments are handled in case-
sensitive fashion as binary strings.

mysql> SELECT 'Michael!' REGEXP '.*';
+------------------------+
| 'Michael!' REGEXP '.*' |
+------------------------+
| 1 |
+------------------------+
mysql> SELECT 'new*\n*line' REGEXP 'new*.*line';
+---------------------------------------+
| 'new*\n*line' REGEXP 'new*.*line' |
+---------------------------------------+
| 0 |
+---------------------------------------+
mysql> SELECT 'a' REGEXP '^[a-d]';
+---------------------+
| 'a' REGEXP '^[a-d]' |
+---------------------+
| 1 |
+---------------------+

Warning

The REGEXP and RLIKE operators work in byte-wise fashion, so they are not
multibyte safe and may produce unexpected results with multibyte character

1966

Regular Expressions

sets. In addition, these operators compare characters by their byte values and
accented characters may not compare as equal even if a given collation treats
them as equal.

Regular Expression Syntax

A regular expression describes a set of strings. The simplest regular expression is one that has no special
characters in it. For example, the regular expression hello matches hello and nothing else.

Nontrivial regular expressions use certain special constructs so that they can match more than one string.
For example, the regular expression hello|world contains the | alternation operator and matches either
the hello or world.

As a more complex example, the regular expression B[an]*s matches any of the strings Bananas,
Baaaaas, Bs, and any other string starting with a B, ending with an s, and containing any number of a or n
characters in between.

A regular expression for the REGEXP operator may use any of the following special characters and
constructs:

• ^

Match the beginning of a string.

mysql> SELECT 'fo\nfo' REGEXP '^fo$'; -> 0
mysql> SELECT 'fofo' REGEXP '^fo'; -> 1

• $

Match the end of a string.

mysql> SELECT 'fo\no' REGEXP '^fo\no$'; -> 1
mysql> SELECT 'fo\no' REGEXP '^fo$'; -> 0

• .

Match any character (including carriage return and newline).

mysql> SELECT 'fofo' REGEXP '^f.*$'; -> 1
mysql> SELECT 'fo\r\nfo' REGEXP '^f.*$'; -> 1

• a*

Match any sequence of zero or more a characters.

mysql> SELECT 'Ban' REGEXP '^Ba*n'; -> 1
mysql> SELECT 'Baaan' REGEXP '^Ba*n'; -> 1
mysql> SELECT 'Bn' REGEXP '^Ba*n'; -> 1

• a+

Match any sequence of one or more a characters.

mysql> SELECT 'Ban' REGEXP '^Ba+n'; -> 1
mysql> SELECT 'Bn' REGEXP '^Ba+n'; -> 0

• a?

Match either zero or one a character.

mysql> SELECT 'Bn' REGEXP '^Ba?n'; -> 1
mysql> SELECT 'Ban' REGEXP '^Ba?n'; -> 1

1967

Regular Expressions

mysql> SELECT 'Baan' REGEXP '^Ba?n'; -> 0

• de|abc

Alternation; match either of the sequences de or abc.

mysql> SELECT 'pi' REGEXP 'pi|apa'; -> 1
mysql> SELECT 'axe' REGEXP 'pi|apa'; -> 0
mysql> SELECT 'apa' REGEXP 'pi|apa'; -> 1
mysql> SELECT 'apa' REGEXP '^(pi|apa)$'; -> 1
mysql> SELECT 'pi' REGEXP '^(pi|apa)$'; -> 1
mysql> SELECT 'pix' REGEXP '^(pi|apa)$'; -> 0

• (abc)*

Match zero or more instances of the sequence abc.

mysql> SELECT 'pi' REGEXP '^(pi)*$'; -> 1
mysql> SELECT 'pip' REGEXP '^(pi)*$'; -> 0
mysql> SELECT 'pipi' REGEXP '^(pi)*$'; -> 1

• {1}, {2,3}

Repetition; {n} and {m,n} notation provide a more general way of writing regular expressions that
match many occurrences of the previous atom (or “piece”) of the pattern. m and n are integers.

• a*

Can be written as a{0,}.

• a+

Can be written as a{1,}.

• a?

Can be written as a{0,1}.

To be more precise, a{n} matches exactly n instances of a. a{n,} matches n or more instances of a.
a{m,n} matches m through n instances of a, inclusive. If both m and n are given, m must be less than or
equal to n.

m and n must be in the range from 0 to RE_DUP_MAX (default 255), inclusive.

mysql> SELECT 'abcde' REGEXP 'a[bcd]{2}e'; -> 0
mysql> SELECT 'abcde' REGEXP 'a[bcd]{3}e'; -> 1
mysql> SELECT 'abcde' REGEXP 'a[bcd]{1,10}e'; -> 1

• [a-dX], [^a-dX]

Matches any character that is (or is not, if ^ is used) either a, b, c, d or X. A - character between two
other characters forms a range that matches all characters from the first character to the second. For
example, [0-9] matches any decimal digit. To include a literal] character, it must immediately follow
the opening bracket [. To include a literal - character, it must be written first or last. Any character that
does not have a defined special meaning inside a [] pair matches only itself.

mysql> SELECT 'aXbc' REGEXP '[a-dXYZ]'; -> 1
mysql> SELECT 'aXbc' REGEXP '^[a-dXYZ]$'; -> 0
mysql> SELECT 'aXbc' REGEXP '^[a-dXYZ]+$'; -> 1
mysql> SELECT 'aXbc' REGEXP '^[^a-dXYZ]+$'; -> 0
mysql> SELECT 'gheis' REGEXP '^[^a-dXYZ]+$'; -> 1

1968

Regular Expressions

mysql> SELECT 'gheisa' REGEXP '^[^a-dXYZ]+$'; -> 0

• [.characters.]

Within a bracket expression (written using [and]), matches the sequence of characters of that collating
element. characters is either a single character or a character name like newline. The following
table lists the permissible character names.

The following table shows the permissible character names and the characters that they match. For
characters given as numeric values, the values are represented in octal.

Name Character Name Character

NUL 0 SOH 001

STX 002 ETX 003

EOT 004 ENQ 005

ACK 006 BEL 007

alert 007 BS 010

backspace '\b' HT 011

tab '\t' LF 012

newline '\n' VT 013

vertical-tab '\v' FF 014

form-feed '\f' CR 015

carriage-return '\r' SO 016

SI 017 DLE 020

DC1 021 DC2 022

DC3 023 DC4 024

NAK 025 SYN 026

ETB 027 CAN 030

EM 031 SUB 032

ESC 033 IS4 034

FS 034 IS3 035

GS 035 IS2 036

RS 036 IS1 037

US 037 space ' '

exclamation-mark '!' quotation-mark '"'

number-sign '#' dollar-sign '$'

percent-sign '%' ampersand '&'

apostrophe '\'' left-parenthesis '('

right-parenthesis ')' asterisk '*'

plus-sign '+' comma ','

hyphen '-' hyphen-minus '-'

period '.' full-stop '.'

1969

Regular Expressions

Name Character Name Character

slash '/' solidus '/'

zero '0' one '1'

two '2' three '3'

four '4' five '5'

six '6' seven '7'

eight '8' nine '9'

colon ':' semicolon ';'

less-than-sign '<' equals-sign '='

greater-than-sign '>' question-mark '?'

commercial-at '@' left-square-
bracket

'['

backslash '\\' reverse-solidus '\\'

right-square-
bracket

']' circumflex '^'

circumflex-accent '^' underscore '_'

low-line '_' grave-accent '`'

left-brace '{' left-curly-bracket '{'

vertical-line '|' right-brace '}'

right-curly-
bracket

'}' tilde '~'

DEL 177

mysql> SELECT '~' REGEXP '[[.~.]]'; -> 1
mysql> SELECT '~' REGEXP '[[.tilde.]]'; -> 1

• [=character_class=]

Within a bracket expression (written using [and]), [=character_class=] represents an
equivalence class. It matches all characters with the same collation value, including itself. For example,
if o and (+) are the members of an equivalence class, [[=o=]], [[=(+)=]], and [o(+)] are all
synonymous. An equivalence class may not be used as an endpoint of a range.

• [:character_class:]

Within a bracket expression (written using [and]), [:character_class:] represents a character
class that matches all characters belonging to that class. The following table lists the standard class
names. These names stand for the character classes defined in the ctype(3) manual page. A
particular locale may provide other class names. A character class may not be used as an endpoint of a
range.

Character Class Name Meaning

alnum Alphanumeric characters

alpha Alphabetic characters

blank Whitespace characters

cntrl Control characters

1970

Character Set and Collation of Function Results

Character Class Name Meaning

digit Digit characters

graph Graphic characters

lower Lowercase alphabetic characters

print Graphic or space characters

punct Punctuation characters

space Space, tab, newline, and carriage return

upper Uppercase alphabetic characters

xdigit Hexadecimal digit characters

mysql> SELECT 'justalnums' REGEXP '[[:alnum:]]+'; -> 1
mysql> SELECT '!!' REGEXP '[[:alnum:]]+'; -> 0

• [[:<:]], [[:>:]]

These markers stand for word boundaries. They match the beginning and end of words, respectively. A
word is a sequence of word characters that is not preceded by or followed by word characters. A word
character is an alphanumeric character in the alnum class or an underscore (_).

mysql> SELECT 'a word a' REGEXP '[[:<:]]word[[:>:]]'; -> 1
mysql> SELECT 'a xword a' REGEXP '[[:<:]]word[[:>:]]'; -> 0

To use a literal instance of a special character in a regular expression, precede it by two backslash (\)
characters. The MySQL parser interprets one of the backslashes, and the regular expression library
interprets the other. For example, to match the string 1+2 that contains the special + character, only the
last of the following regular expressions is the correct one:

mysql> SELECT '1+2' REGEXP '1+2'; -> 0
mysql> SELECT '1+2' REGEXP '1\+2'; -> 0
mysql> SELECT '1+2' REGEXP '1\\+2'; -> 1

12.8.3 Character Set and Collation of Function Results

MySQL has many operators and functions that return a string. This section answers the question: What is
the character set and collation of such a string?

For simple functions that take string input and return a string result as output, the output's character set
and collation are the same as those of the principal input value. For example, UPPER(X) returns a string
with the same character string and collation as X. The same applies for INSTR(), LCASE(), LOWER(),
LTRIM(), MID(), REPEAT(), REPLACE(), REVERSE(), RIGHT(), RPAD(), RTRIM(), SOUNDEX(),
SUBSTRING(), TRIM(), UCASE(), and UPPER().

Note

The REPLACE() function, unlike all other functions, always ignores the collation of
the string input and performs a case-sensitive comparison.

If a string input or function result is a binary string, the string has the binary character set and collation.
This can be checked by using the CHARSET() and COLLATION() functions, both of which return binary
for a binary string argument:

mysql> SELECT CHARSET(BINARY 'a'), COLLATION(BINARY 'a');
+---------------------+-----------------------+
| CHARSET(BINARY 'a') | COLLATION(BINARY 'a') |

1971

Full-Text Search Functions

+---------------------+-----------------------+
| binary | binary |
+---------------------+-----------------------+

For operations that combine multiple string inputs and return a single string output, the “aggregation rules”
of standard SQL apply for determining the collation of the result:

• If an explicit COLLATE Y occurs, use Y.

• If explicit COLLATE Y and COLLATE Z occur, raise an error.

• Otherwise, if all collations are Y, use Y.

• Otherwise, the result has no collation.

For example, with CASE ... WHEN a THEN b WHEN b THEN c COLLATE X END, the resulting
collation is X. The same applies for UNION, ||, CONCAT(), ELT(), GREATEST(), IF(), and LEAST().

For operations that convert to character data, the character set and collation of the strings that result from
the operations are defined by the character_set_connection and collation_connection system
variables that determine the default connection character set and collation (see Section 10.4, “Connection
Character Sets and Collations”). This applies only to CAST(), CONV(), FORMAT(), HEX(), and SPACE().

As of MySQL 5.7.19, an exception to the preceding principle occurs for expressions for virtual generated
columns. In such expressions, the table character set is used for CONV() or HEX() results, regardless of
connection character set.

If there is any question about the character set or collation of the result returned by a string function, use
the CHARSET() or COLLATION() function to find out:

mysql> SELECT USER(), CHARSET(USER()), COLLATION(USER());
+----------------+-----------------+-------------------+
| USER() | CHARSET(USER()) | COLLATION(USER()) |
+----------------+-----------------+-------------------+
| test@localhost | utf8 | utf8_general_ci |
+----------------+-----------------+-------------------+
mysql> SELECT CHARSET(COMPRESS('abc')), COLLATION(COMPRESS('abc'));
+--------------------------+----------------------------+
| CHARSET(COMPRESS('abc')) | COLLATION(COMPRESS('abc')) |
+--------------------------+----------------------------+
| binary | binary |
+--------------------------+----------------------------+

12.9 Full-Text Search Functions
MATCH (col1,col2,...) AGAINST (expr [search_modifier])

search_modifier:
 {
 IN NATURAL LANGUAGE MODE
 | IN NATURAL LANGUAGE MODE WITH QUERY EXPANSION
 | IN BOOLEAN MODE
 | WITH QUERY EXPANSION
 }

MySQL has support for full-text indexing and searching:

• A full-text index in MySQL is an index of type FULLTEXT.

• Full-text indexes can be used only with InnoDB or MyISAM tables, and can be created only for CHAR,
VARCHAR, or TEXT columns.

1972

Natural Language Full-Text Searches

• MySQL provides a built-in full-text ngram parser that supports Chinese, Japanese, and Korean (CJK),
and an installable MeCab full-text parser plugin for Japanese. Parsing differences are outlined in
Section 12.9.8, “ngram Full-Text Parser”, and Section 12.9.9, “MeCab Full-Text Parser Plugin”.

• A FULLTEXT index definition can be given in the CREATE TABLE statement when a table is created, or
added later using ALTER TABLE or CREATE INDEX.

• For large data sets, it is much faster to load your data into a table that has no FULLTEXT index and then
create the index after that, than to load data into a table that has an existing FULLTEXT index.

Full-text searching is performed using MATCH() AGAINST() syntax. MATCH() takes a comma-separated
list that names the columns to be searched. AGAINST takes a string to search for, and an optional modifier
that indicates what type of search to perform. The search string must be a string value that is constant
during query evaluation. This rules out, for example, a table column because that can differ for each row.

There are three types of full-text searches:

• A natural language search interprets the search string as a phrase in natural human language (a
phrase in free text). There are no special operators, with the exception of double quote (") characters.
The stopword list applies. For more information about stopword lists, see Section 12.9.4, “Full-Text
Stopwords”.

Full-text searches are natural language searches if the IN NATURAL LANGUAGE MODE modifier is
given or if no modifier is given. For more information, see Section 12.9.1, “Natural Language Full-Text
Searches”.

• A boolean search interprets the search string using the rules of a special query language. The string
contains the words to search for. It can also contain operators that specify requirements such that a word
must be present or absent in matching rows, or that it should be weighted higher or lower than usual.
Certain common words (stopwords) are omitted from the search index and do not match if present in the
search string. The IN BOOLEAN MODE modifier specifies a boolean search. For more information, see
Section 12.9.2, “Boolean Full-Text Searches”.

• A query expansion search is a modification of a natural language search. The search string is used to
perform a natural language search. Then words from the most relevant rows returned by the search are
added to the search string and the search is done again. The query returns the rows from the second
search. The IN NATURAL LANGUAGE MODE WITH QUERY EXPANSION or WITH QUERY EXPANSION
modifier specifies a query expansion search. For more information, see Section 12.9.3, “Full-Text
Searches with Query Expansion”.

For information about FULLTEXT query performance, see Section 8.3.4, “Column Indexes”.

For more information about InnoDB FULLTEXT indexes, see Section 14.6.2.4, “InnoDB Full-Text Indexes”.

Constraints on full-text searching are listed in Section 12.9.5, “Full-Text Restrictions”.

The myisam_ftdump utility dumps the contents of a MyISAM full-text index. This may be helpful for
debugging full-text queries. See Section 4.6.2, “myisam_ftdump — Display Full-Text Index information”.

12.9.1 Natural Language Full-Text Searches

By default or with the IN NATURAL LANGUAGE MODE modifier, the MATCH() function performs a natural
language search for a string against a text collection. A collection is a set of one or more columns included
in a FULLTEXT index. The search string is given as the argument to AGAINST(). For each row in the
table, MATCH() returns a relevance value; that is, a similarity measure between the search string and the
text in that row in the columns named in the MATCH() list.

1973

Natural Language Full-Text Searches

mysql> CREATE TABLE articles (
 -> id INT UNSIGNED AUTO_INCREMENT NOT NULL PRIMARY KEY,
 -> title VARCHAR(200),
 -> body TEXT,
 -> FULLTEXT (title,body)
 ->) ENGINE=InnoDB;
Query OK, 0 rows affected (0.08 sec)

mysql> INSERT INTO articles (title,body) VALUES
 -> ('MySQL Tutorial','DBMS stands for DataBase ...'),
 -> ('How To Use MySQL Well','After you went through a ...'),
 -> ('Optimizing MySQL','In this tutorial, we show ...'),
 -> ('1001 MySQL Tricks','1. Never run mysqld as root. 2. ...'),
 -> ('MySQL vs. YourSQL','In the following database comparison ...'),
 -> ('MySQL Security','When configured properly, MySQL ...');
Query OK, 6 rows affected (0.01 sec)
Records: 6 Duplicates: 0 Warnings: 0

mysql> SELECT * FROM articles
 -> WHERE MATCH (title,body)
 -> AGAINST ('database' IN NATURAL LANGUAGE MODE);
+----+-------------------+--+
| id | title | body |
+----+-------------------+--+
| 1 | MySQL Tutorial | DBMS stands for DataBase ... |
| 5 | MySQL vs. YourSQL | In the following database comparison ... |
+----+-------------------+--+
2 rows in set (0.00 sec)

By default, the search is performed in case-insensitive fashion. To perform a case-sensitive full-text
search, use a binary collation for the indexed columns. For example, a column that uses the latin1
character set of can be assigned a collation of latin1_bin to make it case-sensitive for full-text
searches.

When MATCH() is used in a WHERE clause, as in the example shown earlier, the rows returned are
automatically sorted with the highest relevance first as long as the following conditions are met:

• There must be no explicit ORDER BY clause.

• The search must be performed using a full-text index scan rather than a table scan.

• If the query joins tables, the full-text index scan must be the leftmost non-constant table in the join.

Given the conditions just listed, it is usually less effort to specify using ORDER BY an explicit sort order
when one is necessary or desired.

Relevance values are nonnegative floating-point numbers. Zero relevance means no similarity. Relevance
is computed based on the number of words in the row (document), the number of unique words in the row,
the total number of words in the collection, and the number of rows that contain a particular word.

Note

The term “document” may be used interchangeably with the term “row”, and both
terms refer to the indexed part of the row. The term “collection” refers to the indexed
columns and encompasses all rows.

To simply count matches, you could use a query like this:

mysql> SELECT COUNT(*) FROM articles
 -> WHERE MATCH (title,body)
 -> AGAINST ('database' IN NATURAL LANGUAGE MODE);
+----------+
| COUNT(*) |

1974

Natural Language Full-Text Searches

+----------+
| 2 |
+----------+
1 row in set (0.00 sec)

You might find it quicker to rewrite the query as follows:

mysql> SELECT
 -> COUNT(IF(MATCH (title,body) AGAINST ('database' IN NATURAL LANGUAGE MODE), 1, NULL))
 -> AS count
 -> FROM articles;
+-------+
| count |
+-------+
| 2 |
+-------+
1 row in set (0.03 sec)

The first query does some extra work (sorting the results by relevance) but also can use an index lookup
based on the WHERE clause. The index lookup might make the first query faster if the search matches
few rows. The second query performs a full table scan, which might be faster than the index lookup if the
search term was present in most rows.

For natural-language full-text searches, the columns named in the MATCH() function must be the same
columns included in some FULLTEXT index in your table. For the preceding query, the columns named in
the MATCH() function (title and body) are the same as those named in the definition of the article
table's FULLTEXT index. To search the title or body separately, you would create separate FULLTEXT
indexes for each column.

You can also perform a boolean search or a search with query expansion. These search types are
described in Section 12.9.2, “Boolean Full-Text Searches”, and Section 12.9.3, “Full-Text Searches with
Query Expansion”.

A full-text search that uses an index can name columns only from a single table in the MATCH() clause
because an index cannot span multiple tables. For MyISAM tables, a boolean search can be done in the
absence of an index (albeit more slowly), in which case it is possible to name columns from multiple tables.

The preceding example is a basic illustration that shows how to use the MATCH() function where rows
are returned in order of decreasing relevance. The next example shows how to retrieve the relevance
values explicitly. Returned rows are not ordered because the SELECT statement includes neither WHERE
nor ORDER BY clauses:

mysql> SELECT id, MATCH (title,body)
 -> AGAINST ('Tutorial' IN NATURAL LANGUAGE MODE) AS score
 -> FROM articles;
+----+---------------------+
| id | score |
+----+---------------------+
1	0.22764469683170319
2	0
3	0.22764469683170319
4	0
5	0
6	0
+----+---------------------+
6 rows in set (0.00 sec)

The following example is more complex. The query returns the relevance values and it also sorts the rows
in order of decreasing relevance. To achieve this result, specify MATCH() twice: once in the SELECT list
and once in the WHERE clause. This causes no additional overhead, because the MySQL optimizer notices
that the two MATCH() calls are identical and invokes the full-text search code only once.

1975

Natural Language Full-Text Searches

mysql> SELECT id, body, MATCH (title,body)
 -> AGAINST ('Security implications of running MySQL as root'
 -> IN NATURAL LANGUAGE MODE) AS score
 -> FROM articles
 -> WHERE MATCH (title,body)
 -> AGAINST('Security implications of running MySQL as root'
 -> IN NATURAL LANGUAGE MODE);
+----+-------------------------------------+-----------------+
| id | body | score |
+----+-------------------------------------+-----------------+
| 4 | 1. Never run mysqld as root. 2. ... | 1.5219271183014 |
| 6 | When configured properly, MySQL ... | 1.3114095926285 |
+----+-------------------------------------+-----------------+
2 rows in set (0.00 sec)

A phrase that is enclosed within double quote (") characters matches only rows that contain the phrase
literally, as it was typed. The full-text engine splits the phrase into words and performs a search in the
FULLTEXT index for the words. Nonword characters need not be matched exactly: Phrase searching
requires only that matches contain exactly the same words as the phrase and in the same order. For
example, "test phrase" matches "test, phrase". If the phrase contains no words that are in the
index, the result is empty. For example, if all words are either stopwords or shorter than the minimum
length of indexed words, the result is empty.

The MySQL FULLTEXT implementation regards any sequence of true word characters (letters, digits, and
underscores) as a word. That sequence may also contain apostrophes ('), but not more than one in a row.
This means that aaa'bbb is regarded as one word, but aaa''bbb is regarded as two words. Apostrophes
at the beginning or the end of a word are stripped by the FULLTEXT parser; 'aaa'bbb' would be parsed
as aaa'bbb.

The built-in FULLTEXT parser determines where words start and end by looking for certain delimiter
characters; for example, (space), , (comma), and . (period). If words are not separated by delimiters (as
in, for example, Chinese), the built-in FULLTEXT parser cannot determine where a word begins or ends. To
be able to add words or other indexed terms in such languages to a FULLTEXT index that uses the built-
in FULLTEXT parser, you must preprocess them so that they are separated by some arbitrary delimiter.
Alternatively, you can create FULLTEXT indexes using the ngram parser plugin (for Chinese, Japanese, or
Korean) or the MeCab parser plugin (for Japanese).

It is possible to write a plugin that replaces the built-in full-text parser. For details, see The MySQL Plugin
API. For example parser plugin source code, see the plugin/fulltext directory of a MySQL source
distribution.

Some words are ignored in full-text searches:

• Any word that is too short is ignored. The default minimum length of words that are found by full-text
searches is three characters for InnoDB search indexes, or four characters for MyISAM. You can control
the cutoff by setting a configuration option before creating the index: innodb_ft_min_token_size
configuration option for InnoDB search indexes, or ft_min_word_len for MyISAM.

Note

This behavior does not apply to FULLTEXT indexes that use the ngram parser.
For the ngram parser, token length is defined by the ngram_token_size option.

• Words in the stopword list are ignored. A stopword is a word such as “the” or “some” that is so
common that it is considered to have zero semantic value. There is a built-in stopword list, but it
can be overridden by a user-defined list. The stopword lists and related configuration options are
different for InnoDB search indexes and MyISAM ones. Stopword processing is controlled by the
configuration options innodb_ft_enable_stopword, innodb_ft_server_stopword_table,

1976

https://dev.mysql.com/doc/extending-mysql/5.7/en/plugin-api.html
https://dev.mysql.com/doc/extending-mysql/5.7/en/plugin-api.html

Boolean Full-Text Searches

and innodb_ft_user_stopword_table for InnoDB search indexes, and ft_stopword_file for
MyISAM ones.

See Section 12.9.4, “Full-Text Stopwords” to view default stopword lists and how to change them. The
default minimum word length can be changed as described in Section 12.9.6, “Fine-Tuning MySQL Full-
Text Search”.

Every correct word in the collection and in the query is weighted according to its significance in the
collection or query. Thus, a word that is present in many documents has a lower weight, because it has
lower semantic value in this particular collection. Conversely, if the word is rare, it receives a higher weight.
The weights of the words are combined to compute the relevance of the row. This technique works best
with large collections.

MyISAM Limitation

For very small tables, word distribution does not adequately reflect their semantic
value, and this model may sometimes produce bizarre results for search indexes on
MyISAM tables. For example, although the word “MySQL” is present in every row of
the articles table shown earlier, a search for the word in a MyISAM search index
produces no results:

mysql> SELECT * FROM articles
 -> WHERE MATCH (title,body)
 -> AGAINST ('MySQL' IN NATURAL LANGUAGE MODE);
Empty set (0.00 sec)

The search result is empty because the word “MySQL” is present in at least 50% of
the rows, and so is effectively treated as a stopword. This filtering technique is more
suitable for large data sets, where you might not want the result set to return every
second row from a 1GB table, than for small data sets where it might cause poor
results for popular terms.

The 50% threshold can surprise you when you first try full-text searching to see how
it works, and makes InnoDB tables more suited to experimentation with full-text
searches. If you create a MyISAM table and insert only one or two rows of text into
it, every word in the text occurs in at least 50% of the rows. As a result, no search
returns any results until the table contains more rows. Users who need to bypass
the 50% limitation can build search indexes on InnoDB tables, or use the boolean
search mode explained in Section 12.9.2, “Boolean Full-Text Searches”.

12.9.2 Boolean Full-Text Searches

MySQL can perform boolean full-text searches using the IN BOOLEAN MODE modifier. With this modifier,
certain characters have special meaning at the beginning or end of words in the search string. In the
following query, the + and - operators indicate that a word must be present or absent, respectively, for
a match to occur. Thus, the query retrieves all the rows that contain the word “MySQL” but that do not
contain the word “YourSQL”:

mysql> SELECT * FROM articles WHERE MATCH (title,body)
 -> AGAINST ('+MySQL -YourSQL' IN BOOLEAN MODE);
+----+-----------------------+-------------------------------------+
| id | title | body |
+----+-----------------------+-------------------------------------+
1	MySQL Tutorial	DBMS stands for DataBase ...
2	How To Use MySQL Well	After you went through a ...
3	Optimizing MySQL	In this tutorial, we show ...
4	1001 MySQL Tricks	1. Never run mysqld as root. 2. ...
6	MySQL Security	When configured properly, MySQL ...

1977

Boolean Full-Text Searches

+----+-----------------------+-------------------------------------+

Note

In implementing this feature, MySQL uses what is sometimes referred to as implied
Boolean logic, in which

• + stands for AND

• - stands for NOT

• [no operator] implies OR

Boolean full-text searches have these characteristics:

• They do not automatically sort rows in order of decreasing relevance.

• InnoDB tables require a FULLTEXT index on all columns of the MATCH() expression to perform boolean
queries. Boolean queries against a MyISAM search index can work even without a FULLTEXT index,
although a search executed in this fashion would be quite slow.

• The minimum and maximum word length full-text parameters apply to FULLTEXT indexes created
using the built-in FULLTEXT parser and MeCab parser plugin. innodb_ft_min_token_size and
innodb_ft_max_token_size are used for InnoDB search indexes. ft_min_word_len and
ft_max_word_len are used for MyISAM search indexes.

Minimum and maximum word length full-text parameters do not apply to FULLTEXT indexes created
using the ngram parser. ngram token size is defined by the ngram_token_size option.

• The stopword list applies, controlled by innodb_ft_enable_stopword,
innodb_ft_server_stopword_table, and innodb_ft_user_stopword_table for InnoDB
search indexes, and ft_stopword_file for MyISAM ones.

• InnoDB full-text search does not support the use of multiple operators on a single search word, as in
this example: '++apple'. Use of multiple operators on a single search word returns a syntax error to
standard out. MyISAM full-text search successfully processes the same search, ignoring all operators
except for the operator immediately adjacent to the search word.

• InnoDB full-text search only supports leading plus or minus signs. For example, InnoDB supports
'+apple' but does not support 'apple+'. Specifying a trailing plus or minus sign causes InnoDB to
report a syntax error.

• InnoDB full-text search does not support the use of a leading plus sign with wildcard ('+*'), a plus and
minus sign combination ('+-'), or leading a plus and minus sign combination ('+-apple'). These
invalid queries return a syntax error.

• InnoDB full-text search does not support the use of the @ symbol in boolean full-text searches. The @
symbol is reserved for use by the @distance proximity search operator.

• They do not use the 50% threshold that applies to MyISAM search indexes.

The boolean full-text search capability supports the following operators:

• +

A leading or trailing plus sign indicates that this word must be present in each row that is returned.
InnoDB only supports leading plus signs.

• -

1978

Boolean Full-Text Searches

A leading or trailing minus sign indicates that this word must not be present in any of the rows that are
returned. InnoDB only supports leading minus signs.

Note: The - operator acts only to exclude rows that are otherwise matched by other search terms. Thus,
a boolean-mode search that contains only terms preceded by - returns an empty result. It does not
return “all rows except those containing any of the excluded terms.”

• (no operator)

By default (when neither + nor - is specified), the word is optional, but the rows that contain it are rated
higher. This mimics the behavior of MATCH() AGAINST() without the IN BOOLEAN MODE modifier.

• @distance

This operator works on InnoDB tables only. It tests whether two or more words all start within a specified
distance from each other, measured in words. Specify the search words within a double-quoted string
immediately before the @distance operator, for example, MATCH(col1) AGAINST('"word1 word2
word3" @8' IN BOOLEAN MODE)

• > <

These two operators are used to change a word's contribution to the relevance value that is assigned
to a row. The > operator increases the contribution and the < operator decreases it. See the example
following this list.

• ()

Parentheses group words into subexpressions. Parenthesized groups can be nested.

• ~

A leading tilde acts as a negation operator, causing the word's contribution to the row's relevance to
be negative. This is useful for marking “noise” words. A row containing such a word is rated lower than
others, but is not excluded altogether, as it would be with the - operator.

• *

The asterisk serves as the truncation (or wildcard) operator. Unlike the other operators, it is appended to
the word to be affected. Words match if they begin with the word preceding the * operator.

If a word is specified with the truncation operator, it is not stripped from a boolean query, even if it is too
short or a stopword. Whether a word is too short is determined from the innodb_ft_min_token_size
setting for InnoDB tables, or ft_min_word_len for MyISAM tables. These options are not applicable to
FULLTEXT indexes that use the ngram parser.

The wildcarded word is considered as a prefix that must be present at the start of one or more words. If
the minimum word length is 4, a search for '+word +the*' could return fewer rows than a search for
'+word +the', because the second query ignores the too-short search term the.

• "

A phrase that is enclosed within double quote (") characters matches only rows that contain the phrase
literally, as it was typed. The full-text engine splits the phrase into words and performs a search in the
FULLTEXT index for the words. Nonword characters need not be matched exactly: Phrase searching
requires only that matches contain exactly the same words as the phrase and in the same order. For
example, "test phrase" matches "test, phrase".

1979

Boolean Full-Text Searches

If the phrase contains no words that are in the index, the result is empty. The words might not be in the
index because of a combination of factors: if they do not exist in the text, are stopwords, or are shorter
than the minimum length of indexed words.

The following examples demonstrate some search strings that use boolean full-text operators:

• 'apple banana'

Find rows that contain at least one of the two words.

• '+apple +juice'

Find rows that contain both words.

• '+apple macintosh'

Find rows that contain the word “apple”, but rank rows higher if they also contain “macintosh”.

• '+apple -macintosh'

Find rows that contain the word “apple” but not “macintosh”.

• '+apple ~macintosh'

Find rows that contain the word “apple”, but if the row also contains the word “macintosh”, rate it lower
than if row does not. This is “softer” than a search for '+apple -macintosh', for which the presence
of “macintosh” causes the row not to be returned at all.

• '+apple +(>turnover <strudel)'

Find rows that contain the words “apple” and “turnover”, or “apple” and “strudel” (in any order), but rank
“apple turnover” higher than “apple strudel”.

• 'apple*'

Find rows that contain words such as “apple”, “apples”, “applesauce”, or “applet”.

• '"some words"'

Find rows that contain the exact phrase “some words” (for example, rows that contain “some words of
wisdom” but not “some noise words”). Note that the " characters that enclose the phrase are operator
characters that delimit the phrase. They are not the quotation marks that enclose the search string itself.

Relevancy Rankings for InnoDB Boolean Mode Search

InnoDB full-text search is modeled on the Sphinx full-text search engine, and the algorithms used are
based on BM25 and TF-IDF ranking algorithms. For these reasons, relevancy rankings for InnoDB
boolean full-text search may differ from MyISAM relevancy rankings.

InnoDB uses a variation of the “term frequency-inverse document frequency” (TF-IDF) weighting system
to rank a document's relevance for a given full-text search query. The TF-IDF weighting is based on how
frequently a word appears in a document, offset by how frequently the word appears in all documents in
the collection. In other words, the more frequently a word appears in a document, and the less frequently
the word appears in the document collection, the higher the document is ranked.

1980

http://sphinxsearch.com/
http://en.wikipedia.org/wiki/Okapi_BM25
http://en.wikipedia.org/wiki/TF-IDF

Boolean Full-Text Searches

How Relevancy Ranking is Calculated

The term frequency (TF) value is the number of times that a word appears in a document. The
inverse document frequency (IDF) value of a word is calculated using the following formula, where
total_records is the number of records in the collection, and matching_records is the number of
records that the search term appears in.

${IDF} = log10(${total_records} / ${matching_records})

When a document contains a word multiple times, the IDF value is multiplied by the TF value:

${TF} * ${IDF}

Using the TF and IDF values, the relevancy ranking for a document is calculated using this formula:

${rank} = ${TF} * ${IDF} * ${IDF}

The formula is demonstrated in the following examples.

Relevancy Ranking for a Single Word Search

This example demonstrates the relevancy ranking calculation for a single-word search.

mysql> CREATE TABLE articles (
 -> id INT UNSIGNED AUTO_INCREMENT NOT NULL PRIMARY KEY,
 -> title VARCHAR(200),
 -> body TEXT,
 -> FULLTEXT (title,body)
 ->) ENGINE=InnoDB;
Query OK, 0 rows affected (1.04 sec)

mysql> INSERT INTO articles (title,body) VALUES
 -> ('MySQL Tutorial','This database tutorial ...'),
 -> ("How To Use MySQL",'After you went through a ...'),
 -> ('Optimizing Your Database','In this database tutorial ...'),
 -> ('MySQL vs. YourSQL','When comparing databases ...'),
 -> ('MySQL Security','When configured properly, MySQL ...'),
 -> ('Database, Database, Database','database database database'),
 -> ('1001 MySQL Tricks','1. Never run mysqld as root. 2. ...'),
 -> ('MySQL Full-Text Indexes', 'MySQL fulltext indexes use a ..');
Query OK, 8 rows affected (0.06 sec)
Records: 8 Duplicates: 0 Warnings: 0

mysql> SELECT id, title, body,
 -> MATCH (title,body) AGAINST ('database' IN BOOLEAN MODE) AS score
 -> FROM articles ORDER BY score DESC;
+----+------------------------------+-------------------------------------+---------------------+
| id | title | body | score |
+----+------------------------------+-------------------------------------+---------------------+
6	Database, Database, Database	database database database	1.0886961221694946
3	Optimizing Your Database	In this database tutorial ...	0.36289870738983154
1	MySQL Tutorial	This database tutorial ...	0.18144935369491577
2	How To Use MySQL	After you went through a ...	0
4	MySQL vs. YourSQL	When comparing databases ...	0
5	MySQL Security	When configured properly, MySQL ...	0
7	1001 MySQL Tricks	1. Never run mysqld as root. 2. ...	0
8	MySQL Full-Text Indexes	MySQL fulltext indexes use a ..	0
+----+------------------------------+-------------------------------------+---------------------+
8 rows in set (0.00 sec)

There are 8 records in total, with 3 that match the “database” search term. The first record (id 6) contains
the search term 6 times and has a relevancy ranking of 1.0886961221694946. This ranking value is
calculated using a TF value of 6 (the “database” search term appears 6 times in record id 6) and an IDF
value of 0.42596873216370745, which is calculated as follows (where 8 is the total number of records and
3 is the number of records that the search term appears in):

1981

Boolean Full-Text Searches

${IDF} = LOG10(8 / 3) = 0.42596873216370745

The TF and IDF values are then entered into the ranking formula:

${rank} = ${TF} * ${IDF} * ${IDF}

Performing the calculation in the MySQL command-line client returns a ranking value of
1.088696164686938.

mysql> SELECT 6*LOG10(8/3)*LOG10(8/3);
+-------------------------+
| 6*LOG10(8/3)*LOG10(8/3) |
+-------------------------+
| 1.088696164686938 |
+-------------------------+
1 row in set (0.00 sec)

Note

You may notice a slight difference in the ranking values returned by the
SELECT ... MATCH ... AGAINST statement and the MySQL command-line
client (1.0886961221694946 versus 1.088696164686938). The difference is
due to how the casts between integers and floats/doubles are performed internally
by InnoDB (along with related precision and rounding decisions), and how they are
performed elsewhere, such as in the MySQL command-line client or other types of
calculators.

Relevancy Ranking for a Multiple Word Search

This example demonstrates the relevancy ranking calculation for a multiple-word full-text search based on
the articles table and data used in the previous example.

If you search on more than one word, the relevancy ranking value is a sum of the relevancy ranking value
for each word, as shown in this formula:

${rank} = ${TF} * ${IDF} * ${IDF} + ${TF} * ${IDF} * ${IDF}

Performing a search on two terms ('mysql tutorial') returns the following results:

mysql> SELECT id, title, body, MATCH (title,body)
 -> AGAINST ('mysql tutorial' IN BOOLEAN MODE) AS score
 -> FROM articles ORDER BY score DESC;
+----+------------------------------+-------------------------------------+----------------------+
| id | title | body | score |
+----+------------------------------+-------------------------------------+----------------------+
1	MySQL Tutorial	This database tutorial ...	0.7405621409416199
3	Optimizing Your Database	In this database tutorial ...	0.3624762296676636
5	MySQL Security	When configured properly, MySQL ...	0.031219376251101494
8	MySQL Full-Text Indexes	MySQL fulltext indexes use a ..	0.031219376251101494
2	How To Use MySQL	After you went through a ...	0.015609688125550747
4	MySQL vs. YourSQL	When comparing databases ...	0.015609688125550747
7	1001 MySQL Tricks	1. Never run mysqld as root. 2. ...	0.015609688125550747
6	Database, Database, Database	database database database	0
+----+------------------------------+-------------------------------------+----------------------+
8 rows in set (0.00 sec)

In the first record (id 8), 'mysql' appears once and 'tutorial' appears twice. There are six matching records
for 'mysql' and two matching records for 'tutorial'. The MySQL command-line client returns the expected
ranking value when inserting these values into the ranking formula for a multiple word search:

mysql> SELECT (1*log10(8/6)*log10(8/6)) + (2*log10(8/2)*log10(8/2));
+---+
| (1*log10(8/6)*log10(8/6)) + (2*log10(8/2)*log10(8/2)) |
+---+

1982

Full-Text Searches with Query Expansion

| 0.7405621541938003 |
+---+
1 row in set (0.00 sec)

Note

The slight difference in the ranking values returned by the SELECT ...
MATCH ... AGAINST statement and the MySQL command-line client is explained
in the preceding example.

12.9.3 Full-Text Searches with Query Expansion

Full-text search supports query expansion (and in particular, its variant “blind query expansion”). This is
generally useful when a search phrase is too short, which often means that the user is relying on implied
knowledge that the full-text search engine lacks. For example, a user searching for “database” may really
mean that “MySQL”, “Oracle”, “DB2”, and “RDBMS” all are phrases that should match “databases” and
should be returned, too. This is implied knowledge.

Blind query expansion (also known as automatic relevance feedback) is enabled by adding WITH QUERY
EXPANSION or IN NATURAL LANGUAGE MODE WITH QUERY EXPANSION following the search phrase.
It works by performing the search twice, where the search phrase for the second search is the original
search phrase concatenated with the few most highly relevant documents from the first search. Thus,
if one of these documents contains the word “databases” and the word “MySQL”, the second search
finds the documents that contain the word “MySQL” even if they do not contain the word “database”. The
following example shows this difference:

mysql> SELECT * FROM articles
 WHERE MATCH (title,body)
 AGAINST ('database' IN NATURAL LANGUAGE MODE);
+----+-------------------+--+
| id | title | body |
+----+-------------------+--+
| 1 | MySQL Tutorial | DBMS stands for DataBase ... |
| 5 | MySQL vs. YourSQL | In the following database comparison ... |
+----+-------------------+--+
2 rows in set (0.00 sec)

mysql> SELECT * FROM articles
 WHERE MATCH (title,body)
 AGAINST ('database' WITH QUERY EXPANSION);
+----+-----------------------+--+
| id | title | body |
+----+-----------------------+--+
5	MySQL vs. YourSQL	In the following database comparison ...
1	MySQL Tutorial	DBMS stands for DataBase ...
3	Optimizing MySQL	In this tutorial we show ...
6	MySQL Security	When configured properly, MySQL ...
2	How To Use MySQL Well	After you went through a ...
4	1001 MySQL Tricks	1. Never run mysqld as root. 2. ...
+----+-----------------------+--+
6 rows in set (0.00 sec)

Another example could be searching for books by Georges Simenon about Maigret, when a user is not
sure how to spell “Maigret”. A search for “Megre and the reluctant witnesses” finds only “Maigret and the
Reluctant Witnesses” without query expansion. A search with query expansion finds all books with the
word “Maigret” on the second pass.

Note

Because blind query expansion tends to increase noise significantly by returning
nonrelevant documents, use it only when a search phrase is short.

1983

Full-Text Stopwords

12.9.4 Full-Text Stopwords

The stopword list is loaded and searched for full-text queries using the server character set and
collation (the values of the character_set_server and collation_server system variables).
False hits or misses might occur for stopword lookups if the stopword file or columns used for full-text
indexing or searches have a character set or collation different from character_set_server or
collation_server.

Case sensitivity of stopword lookups depends on the server collation. For example, lookups are case-
insensitive if the collation is latin1_swedish_ci, whereas lookups are case-sensitive if the collation is
latin1_general_cs or latin1_bin.

• Stopwords for InnoDB Search Indexes

• Stopwords for MyISAM Search Indexes

Stopwords for InnoDB Search Indexes

InnoDB has a relatively short list of default stopwords, because documents from technical, literary, and
other sources often use short words as keywords or in significant phrases. For example, you might search
for “to be or not to be” and expect to get a sensible result, rather than having all those words ignored.

To see the default InnoDB stopword list, query the Information Schema
INNODB_FT_DEFAULT_STOPWORD table.

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_FT_DEFAULT_STOPWORD;
+-------+
| value |
+-------+
| a |
| about |
| an |
| are |
| as |
| at |
| be |
| by |
| com |
| de |
| en |
| for |
| from |
| how |
| i |
| in |
| is |
| it |
| la |
| of |
| on |
| or |
| that |
| the |
| this |
| to |
| was |
| what |
| when |
| where |
| who |
| will |
| with |
| und |

1984

Full-Text Stopwords

| the |
| www |
+-------+
36 rows in set (0.00 sec)

To define your own stopword list for all InnoDB tables, define a table with the same structure as
the INNODB_FT_DEFAULT_STOPWORD table, populate it with stopwords, and set the value of the
innodb_ft_server_stopword_table option to a value in the form db_name/table_name before
creating the full-text index. The stopword table must have a single VARCHAR column named value. The
following example demonstrates creating and configuring a new global stopword table for InnoDB.

-- Create a new stopword table

mysql> CREATE TABLE my_stopwords(value VARCHAR(30)) ENGINE = INNODB;
Query OK, 0 rows affected (0.01 sec)

-- Insert stopwords (for simplicity, a single stopword is used in this example)

mysql> INSERT INTO my_stopwords(value) VALUES ('Ishmael');
Query OK, 1 row affected (0.00 sec)

-- Create the table

mysql> CREATE TABLE opening_lines (
id INT UNSIGNED AUTO_INCREMENT NOT NULL PRIMARY KEY,
opening_line TEXT(500),
author VARCHAR(200),
title VARCHAR(200)
) ENGINE=InnoDB;
Query OK, 0 rows affected (0.01 sec)

-- Insert data into the table

mysql> INSERT INTO opening_lines(opening_line,author,title) VALUES
('Call me Ishmael.','Herman Melville','Moby-Dick'),
('A screaming comes across the sky.','Thomas Pynchon','Gravity\'s Rainbow'),
('I am an invisible man.','Ralph Ellison','Invisible Man'),
('Where now? Who now? When now?','Samuel Beckett','The Unnamable'),
('It was love at first sight.','Joseph Heller','Catch-22'),
('All this happened, more or less.','Kurt Vonnegut','Slaughterhouse-Five'),
('Mrs. Dalloway said she would buy the flowers herself.','Virginia Woolf','Mrs. Dalloway'),
('It was a pleasure to burn.','Ray Bradbury','Fahrenheit 451');
Query OK, 8 rows affected (0.00 sec)
Records: 8 Duplicates: 0 Warnings: 0

-- Set the innodb_ft_server_stopword_table option to the new stopword table

mysql> SET GLOBAL innodb_ft_server_stopword_table = 'test/my_stopwords';
Query OK, 0 rows affected (0.00 sec)

-- Create the full-text index (which rebuilds the table if no FTS_DOC_ID column is defined)

mysql> CREATE FULLTEXT INDEX idx ON opening_lines(opening_line);
Query OK, 0 rows affected, 1 warning (1.17 sec)
Records: 0 Duplicates: 0 Warnings: 1

Verify that the specified stopword ('Ishmael') does not appear by querying the Information Schema
INNODB_FT_INDEX_TABLE table.

Note

By default, words less than 3 characters in length or greater than 84 characters in
length do not appear in an InnoDB full-text search index. Maximum and minimum
word length values are configurable using the innodb_ft_max_token_size and

1985

Full-Text Stopwords

innodb_ft_min_token_size variables. This default behavior does not apply to
the ngram parser plugin. ngram token size is defined by the ngram_token_size
option.

mysql> SET GLOBAL innodb_ft_aux_table='test/opening_lines';
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT word FROM INFORMATION_SCHEMA.INNODB_FT_INDEX_TABLE LIMIT 15;
+-----------+
| word |
+-----------+
| across |
| all |
| burn |
| buy |
| call |
| comes |
| dalloway |
| first |
| flowers |
| happened |
| herself |
| invisible |
| less |
| love |
| man |
+-----------+
15 rows in set (0.00 sec)

To create stopword lists on a table-by-table basis, create other stopword tables and use the
innodb_ft_user_stopword_table option to specify the stopword table that you want to use before
you create the full-text index.

Stopwords for MyISAM Search Indexes

The stopword file is loaded and searched using latin1 if character_set_server is ucs2, utf16,
utf16le, or utf32.

 To override the default stopword list for MyISAM tables, set the ft_stopword_file system variable.
(See Section 5.1.7, “Server System Variables”.) The variable value should be the path name of the file
containing the stopword list, or the empty string to disable stopword filtering. The server looks for the file
in the data directory unless an absolute path name is given to specify a different directory. After changing
the value of this variable or the contents of the stopword file, restart the server and rebuild your FULLTEXT
indexes.

The stopword list is free-form, separating stopwords with any nonalphanumeric character such as newline,
space, or comma. Exceptions are the underscore character (_) and a single apostrophe (') which are
treated as part of a word. The character set of the stopword list is the server's default character set; see
Section 10.3.2, “Server Character Set and Collation”.

The following list shows the default stopwords for MyISAM search indexes. In a MySQL source distribution,
you can find this list in the storage/myisam/ft_static.c file.

a's able about above according
accordingly across actually after afterwards
again against ain't all allow
allows almost alone along already
also although always am among
amongst an and another any
anybody anyhow anyone anything anyway
anyways anywhere apart appear appreciate
appropriate are aren't around as
aside ask asking associated at

1986

Full-Text Stopwords

available away awfully be became
because become becomes becoming been
before beforehand behind being believe
below beside besides best better
between beyond both brief but
by c'mon c's came can
can't cannot cant cause causes
certain certainly changes clearly co
com come comes concerning consequently
consider considering contain containing contains
corresponding could couldn't course currently
definitely described despite did didn't
different do does doesn't doing
don't done down downwards during
each edu eg eight either
else elsewhere enough entirely especially
et etc even ever every
everybody everyone everything everywhere ex
exactly example except far few
fifth first five followed following
follows for former formerly forth
four from further furthermore get
gets getting given gives go
goes going gone got gotten
greetings had hadn't happens hardly
has hasn't have haven't having
he he's hello help hence
her here here's hereafter hereby
herein hereupon hers herself hi
him himself his hither hopefully
how howbeit however i'd i'll
i'm i've ie if ignored
immediate in inasmuch inc indeed
indicate indicated indicates inner insofar
instead into inward is isn't
it it'd it'll it's its
itself just keep keeps kept
know known knows last lately
later latter latterly least less
lest let let's like liked
likely little look looking looks
ltd mainly many may maybe
me mean meanwhile merely might
more moreover most mostly much
must my myself name namely
nd near nearly necessary need
needs neither never nevertheless new
next nine no nobody non
none noone nor normally not
nothing novel now nowhere obviously
of off often oh ok
okay old on once one
ones only onto or other
others otherwise ought our ours
ourselves out outside over overall
own particular particularly per perhaps
placed please plus possible presumably
probably provides que quite qv
rather rd re really reasonably
regarding regardless regards relatively respectively
right said same saw say
saying says second secondly see
seeing seem seemed seeming seems
seen self selves sensible sent
serious seriously seven several shall
she should shouldn't since six
so some somebody somehow someone

1987

Full-Text Restrictions

something sometime sometimes somewhat somewhere
soon sorry specified specify specifying
still sub such sup sure
t's take taken tell tends
th than thank thanks thanx
that that's thats the their
theirs them themselves then thence
there there's thereafter thereby therefore
therein theres thereupon these they
they'd they'll they're they've think
third this thorough thoroughly those
though three through throughout thru
thus to together too took
toward towards tried tries truly
try trying twice two un
under unfortunately unless unlikely until
unto up upon us use
used useful uses using usually
value various very via viz
vs want wants was wasn't
way we we'd we'll we're
we've welcome well went were
weren't what what's whatever when
whence whenever where where's whereafter
whereas whereby wherein whereupon wherever
whether which while whither who
who's whoever whole whom whose
why will willing wish with
within without won't wonder would
wouldn't yes yet you you'd
you'll you're you've your yours
yourself yourselves zero

12.9.5 Full-Text Restrictions

• Full-text searches are supported for InnoDB and MyISAM tables only.

• Full-text searches are not supported for partitioned tables. See Section 22.6, “Restrictions and
Limitations on Partitioning”.

• Full-text searches can be used with most multibyte character sets. The exception is that for Unicode, the
utf8 character set can be used, but not the ucs2 character set. Although FULLTEXT indexes on ucs2
columns cannot be used, you can perform IN BOOLEAN MODE searches on a ucs2 column that has no
such index.

The remarks for utf8 also apply to utf8mb4, and the remarks for ucs2 also apply to utf16, utf16le,
and utf32.

• Ideographic languages such as Chinese and Japanese do not have word delimiters. Therefore, the built-
in full-text parser cannot determine where words begin and end in these and other such languages.

A character-based ngram full-text parser that supports Chinese, Japanese, and Korean (CJK), and a
word-based MeCab parser plugin that supports Japanese are provided for use with InnoDB and MyISAM
tables.

• Although the use of multiple character sets within a single table is supported, all columns in a FULLTEXT
index must use the same character set and collation.

• The MATCH() column list must match exactly the column list in some FULLTEXT index definition for the
table, unless this MATCH() is IN BOOLEAN MODE on a MyISAM table. For MyISAM tables, boolean-
mode searches can be done on nonindexed columns, although they are likely to be slow.

1988

Fine-Tuning MySQL Full-Text Search

• The argument to AGAINST() must be a string value that is constant during query evaluation. This rules
out, for example, a table column because that can differ for each row.

• Index hints are more limited for FULLTEXT searches than for non-FULLTEXT searches. See
Section 8.9.4, “Index Hints”.

• For InnoDB, all DML operations (INSERT, UPDATE, DELETE) involving columns with full-text indexes
are processed at transaction commit time. For example, for an INSERT operation, an inserted string is
tokenized and decomposed into individual words. The individual words are then added to full-text index
tables when the transaction is committed. As a result, full-text searches only return committed data.

• The '%' character is not a supported wildcard character for full-text searches.

12.9.6 Fine-Tuning MySQL Full-Text Search

MySQL's full-text search capability has few user-tunable parameters. You can exert more control over full-
text searching behavior if you have a MySQL source distribution because some changes require source
code modifications. See Section 2.8, “Installing MySQL from Source”.

Full-text search is carefully tuned for effectiveness. Modifying the default behavior in most cases can
actually decrease effectiveness. Do not alter the MySQL sources unless you know what you are doing.

Most full-text variables described in this section must be set at server startup time. A server restart is
required to change them; they cannot be modified while the server is running.

Some variable changes require that you rebuild the FULLTEXT indexes in your tables. Instructions for
doing so are given later in this section.

• Configuring Minimum and Maximum Word Length

• Configuring the Natural Language Search Threshold

• Modifying Boolean Full-Text Search Operators

• Character Set Modifications

• Rebuilding InnoDB Full-Text Indexes

• Optimizing InnoDB Full-Text Indexes

• Rebuilding MyISAM Full-Text Indexes

Configuring Minimum and Maximum Word Length

The minimum and maximum lengths of words to be indexed are defined by the
innodb_ft_min_token_size and innodb_ft_max_token_size for InnoDB search indexes, and
ft_min_word_len and ft_max_word_len for MyISAM ones.

Note

Minimum and maximum word length full-text parameters do not apply to FULLTEXT
indexes created using the ngram parser. ngram token size is defined by the
ngram_token_size option.

After changing any of these options, rebuild your FULLTEXT indexes for the change to take effect. For
example, to make two-character words searchable, you could put the following lines in an option file:

[mysqld]

1989

Fine-Tuning MySQL Full-Text Search

innodb_ft_min_token_size=2
ft_min_word_len=2

Then restart the server and rebuild your FULLTEXT indexes. For MyISAM tables, note the remarks
regarding myisamchk in the instructions that follow for rebuilding MyISAM full-text indexes.

Configuring the Natural Language Search Threshold

For MyISAM search indexes, the 50% threshold for natural language searches is determined by the
particular weighting scheme chosen. To disable it, look for the following line in storage/myisam/
ftdefs.h:

#define GWS_IN_USE GWS_PROB

Change that line to this:

#define GWS_IN_USE GWS_FREQ

Then recompile MySQL. There is no need to rebuild the indexes in this case.

Note

By making this change, you severely decrease MySQL's ability to provide adequate
relevance values for the MATCH() function. If you really need to search for such
common words, it would be better to search using IN BOOLEAN MODE instead,
which does not observe the 50% threshold.

Modifying Boolean Full-Text Search Operators

To change the operators used for boolean full-text searches on MyISAM tables, set the
ft_boolean_syntax system variable. (InnoDB does not have an equivalent setting.) This variable
can be changed while the server is running, but you must have privileges sufficient to set global system
variables (see Section 5.1.8.1, “System Variable Privileges”). No rebuilding of indexes is necessary in this
case.

Character Set Modifications

For the built-in full-text parser, you can change the set of characters that are considered word characters in
several ways, as described in the following list. After making the modification, rebuild the indexes for each
table that contains any FULLTEXT indexes. Suppose that you want to treat the hyphen character ('-') as a
word character. Use one of these methods:

• Modify the MySQL source: In storage/innobase/handler/ha_innodb.cc (for InnoDB), or in
storage/myisam/ftdefs.h (for MyISAM), see the true_word_char() and misc_word_char()
macros. Add '-' to one of those macros and recompile MySQL.

• Modify a character set file: This requires no recompilation. The true_word_char() macro uses
a “character type” table to distinguish letters and numbers from other characters. . You can edit the
contents of the <ctype><map> array in one of the character set XML files to specify that '-' is
a “letter.” Then use the given character set for your FULLTEXT indexes. For information about the
<ctype><map> array format, see Section 10.13.1, “Character Definition Arrays”.

• Add a new collation for the character set used by the indexed columns, and alter the columns to use that
collation. For general information about adding collations, see Section 10.14, “Adding a Collation to a
Character Set”. For an example specific to full-text indexing, see Section 12.9.7, “Adding a User-Defined
Collation for Full-Text Indexing”.

1990

Fine-Tuning MySQL Full-Text Search

Rebuilding InnoDB Full-Text Indexes

For the changes to take effect, FULLTEXT indexes must be rebuilt after modifying any of the
following full-text index variables: innodb_ft_min_token_size; innodb_ft_max_token_size;
innodb_ft_server_stopword_table; innodb_ft_user_stopword_table;
innodb_ft_enable_stopword; ngram_token_size. Modifying innodb_ft_min_token_size,
innodb_ft_max_token_size, or ngram_token_size requires restarting the server.

To rebuild FULLTEXT indexes for an InnoDB table, use ALTER TABLE with the DROP INDEX and ADD
INDEX options to drop and re-create each index.

Optimizing InnoDB Full-Text Indexes

Running OPTIMIZE TABLE on a table with a full-text index rebuilds the full-text index, removing deleted
Document IDs and consolidating multiple entries for the same word, where possible.

To optimize a full-text index, enable innodb_optimize_fulltext_only and run OPTIMIZE TABLE.

mysql> set GLOBAL innodb_optimize_fulltext_only=ON;
Query OK, 0 rows affected (0.01 sec)

mysql> OPTIMIZE TABLE opening_lines;
+--------------------+----------+----------+----------+
| Table | Op | Msg_type | Msg_text |
+--------------------+----------+----------+----------+
| test.opening_lines | optimize | status | OK |
+--------------------+----------+----------+----------+
1 row in set (0.01 sec)

To avoid lengthy rebuild times for full-text indexes on large tables, you can use the
innodb_ft_num_word_optimize option to perform the optimization in stages. The
innodb_ft_num_word_optimize option defines the number of words that are optimized each time
OPTIMIZE TABLE is run. The default setting is 2000, which means that 2000 words are optimized each
time OPTIMIZE TABLE is run. Subsequent OPTIMIZE TABLE operations continue from where the
preceding OPTIMIZE TABLE operation ended.

Rebuilding MyISAM Full-Text Indexes

If you modify full-text variables that affect indexing (ft_min_word_len, ft_max_word_len, or
ft_stopword_file), or if you change the stopword file itself, you must rebuild your FULLTEXT indexes
after making the changes and restarting the server.

To rebuild the FULLTEXT indexes for a MyISAM table, it is sufficient to do a QUICK repair operation:

mysql> REPAIR TABLE tbl_name QUICK;

Alternatively, use ALTER TABLE as just described. In some cases, this may be faster than a repair
operation.

Each table that contains any FULLTEXT index must be repaired as just shown. Otherwise, queries for the
table may yield incorrect results, and modifications to the table cause the server to see the table as corrupt
and in need of repair.

If you use myisamchk to perform an operation that modifies MyISAM table indexes (such as repair or
analyze), the FULLTEXT indexes are rebuilt using the default full-text parameter values for minimum word
length, maximum word length, and stopword file unless you specify otherwise. This can result in queries
failing.

The problem occurs because these parameters are known only by the server. They are not stored in
MyISAM index files. To avoid the problem if you have modified the minimum or maximum word length or

1991

Adding a User-Defined Collation for Full-Text Indexing

stopword file values used by the server, specify the same ft_min_word_len, ft_max_word_len, and
ft_stopword_file values for myisamchk that you use for mysqld. For example, if you have set the
minimum word length to 3, you can repair a table with myisamchk like this:

myisamchk --recover --ft_min_word_len=3 tbl_name.MYI

To ensure that myisamchk and the server use the same values for full-text parameters, place each one in
both the [mysqld] and [myisamchk] sections of an option file:

[mysqld]
ft_min_word_len=3

[myisamchk]
ft_min_word_len=3

An alternative to using myisamchk for MyISAM table index modification is to use the REPAIR TABLE,
ANALYZE TABLE, OPTIMIZE TABLE, or ALTER TABLE statements. These statements are performed by
the server, which knows the proper full-text parameter values to use.

12.9.7 Adding a User-Defined Collation for Full-Text Indexing

This section describes how to add a user-defined collation for full-text searches using the built-in full-text
parser. The sample collation is like latin1_swedish_ci but treats the '-' character as a letter rather
than as a punctuation character so that it can be indexed as a word character. General information about
adding collations is given in Section 10.14, “Adding a Collation to a Character Set”; it is assumed that you
have read it and are familiar with the files involved.

To add a collation for full-text indexing, use the following procedure. The instructions here add a collation
for a simple character set, which as discussed in Section 10.14, “Adding a Collation to a Character Set”,
can be created using a configuration file that describes the character set properties. For a complex
character set such as Unicode, create collations using C source files that describe the character set
properties.

1. Add a collation to the Index.xml file. The permitted range of IDs for user-defined collations is given
in Section 10.14.2, “Choosing a Collation ID”. The ID must be unused, so choose a value different from
1025 if that ID is already taken on your system.

<charset name="latin1">
...
<collation name="latin1_fulltext_ci" id="1025"/>
</charset>

2. Declare the sort order for the collation in the latin1.xml file. In this case, the order can be copied
from latin1_swedish_ci:

<collation name="latin1_fulltext_ci">
<map>
00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F
10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F
20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F
30 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F
40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F
50 51 52 53 54 55 56 57 58 59 5A 5B 5C 5D 5E 5F
60 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F
50 51 52 53 54 55 56 57 58 59 5A 7B 7C 7D 7E 7F
80 81 82 83 84 85 86 87 88 89 8A 8B 8C 8D 8E 8F
90 91 92 93 94 95 96 97 98 99 9A 9B 9C 9D 9E 9F
A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 AA AB AC AD AE AF
B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 BA BB BC BD BE BF
41 41 41 41 5C 5B 5C 43 45 45 45 45 49 49 49 49
44 4E 4F 4F 4F 4F 5D D7 D8 55 55 55 59 59 DE DF

1992

ngram Full-Text Parser

41 41 41 41 5C 5B 5C 43 45 45 45 45 49 49 49 49
44 4E 4F 4F 4F 4F 5D F7 D8 55 55 55 59 59 DE FF
</map>
</collation>

3. Modify the ctype array in latin1.xml. Change the value corresponding to 0x2D (which is the code
for the '-' character) from 10 (punctuation) to 01 (uppercase letter). In the following array, this is the
element in the fourth row down, third value from the end.

<ctype>
<map>
00
20 20 20 20 20 20 20 20 20 28 28 28 28 28 20 20
20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20
48 10 10 10 10 10 10 10 10 10 10 10 10 01 10 10
84 84 84 84 84 84 84 84 84 84 10 10 10 10 10 10
10 81 81 81 81 81 81 01 01 01 01 01 01 01 01 01
01 01 01 01 01 01 01 01 01 01 01 10 10 10 10 10
10 82 82 82 82 82 82 02 02 02 02 02 02 02 02 02
02 02 02 02 02 02 02 02 02 02 02 10 10 10 10 20
10 00 10 02 10 10 10 10 10 10 01 10 01 00 01 00
00 10 10 10 10 10 10 10 10 10 02 10 02 00 02 01
48 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01
01 01 01 01 01 01 01 10 01 01 01 01 01 01 01 02
02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02
02 02 02 02 02 02 02 10 02 02 02 02 02 02 02 02
</map>
</ctype>

4. Restart the server.

5. To employ the new collation, include it in the definition of columns that are to use it:

mysql> DROP TABLE IF EXISTS t1;
Query OK, 0 rows affected (0.13 sec)

mysql> CREATE TABLE t1 (
 a TEXT CHARACTER SET latin1 COLLATE latin1_fulltext_ci,
 FULLTEXT INDEX(a)
) ENGINE=InnoDB;
Query OK, 0 rows affected (0.47 sec)

6. Test the collation to verify that hyphen is considered as a word character:

mysql> INSERT INTO t1 VALUEs ('----'),('....'),('abcd');
Query OK, 3 rows affected (0.22 sec)
Records: 3 Duplicates: 0 Warnings: 0

mysql> SELECT * FROM t1 WHERE MATCH a AGAINST ('----' IN BOOLEAN MODE);
+------+
| a |
+------+
| ---- |
+------+
1 row in set (0.00 sec)

12.9.8 ngram Full-Text Parser

The built-in MySQL full-text parser uses the white space between words as a delimiter to determine where
words begin and end, which is a limitation when working with ideographic languages that do not use word
delimiters. To address this limitation, MySQL provides an ngram full-text parser that supports Chinese,
Japanese, and Korean (CJK). The ngram full-text parser is supported for use with InnoDB and MyISAM.

1993

ngram Full-Text Parser

Note

MySQL also provides a MeCab full-text parser plugin for Japanese, which tokenizes
documents into meaningful words. For more information, see Section 12.9.9,
“MeCab Full-Text Parser Plugin”.

An ngram is a contiguous sequence of n characters from a given sequence of text. The ngram parser
tokenizes a sequence of text into a contiguous sequence of n characters. For example, you can tokenize
“abcd” for different values of n using the ngram full-text parser.

n=1: 'a', 'b', 'c', 'd'
n=2: 'ab', 'bc', 'cd'
n=3: 'abc', 'bcd'
n=4: 'abcd'

The ngram full-text parser is a built-in server plugin. As with other built-in server plugins, it is automatically
loaded when the server is started.

The full-text search syntax described in Section 12.9, “Full-Text Search Functions” applies to the ngram
parser plugin. Differences in parsing behavior are described in this section. Full-text-related configuration
options, except for minimum and maximum word length options (innodb_ft_min_token_size,
innodb_ft_max_token_size, ft_min_word_len, ft_max_word_len) are also applicable.

Configuring ngram Token Size

The ngram parser has a default ngram token size of 2 (bigram). For example, with a token size of 2, the
ngram parser parses the string “abc def” into four tokens: “ab”, “bc”, “de” and “ef”.

ngram token size is configurable using the ngram_token_size configuration option, which has a
minimum value of 1 and maximum value of 10.

Typically, ngram_token_size is set to the size of the largest token that you want to search for. If you
only intend to search for single characters, set ngram_token_size to 1. A smaller token size produces
a smaller full-text search index, and faster searches. If you need to search for words comprised of more
than one character, set ngram_token_size accordingly. For example, “Happy Birthday” is “生日快乐” in
simplified Chinese, where “生日” is “birthday”, and “快乐” translates as “happy”. To search on two-character
words such as these, set ngram_token_size to a value of 2 or higher.

As a read-only variable, ngram_token_size may only be set as part of a startup string or in a
configuration file:

• Startup string:

mysqld --ngram_token_size=2

• Configuration file:

[mysqld]
ngram_token_size=2

Note

The following minimum and maximum word length configuration options are ignored
for FULLTEXT indexes that use the ngram parser: innodb_ft_min_token_size,
innodb_ft_max_token_size, ft_min_word_len, and ft_max_word_len.

Creating a FULLTEXT Index that Uses the ngram Parser

To create a FULLTEXT index that uses the ngram parser, specify WITH PARSER ngram with CREATE
TABLE, ALTER TABLE, or CREATE INDEX.

1994

ngram Full-Text Parser

The following example demonstrates creating a table with an ngram FULLTEXT index, inserting
sample data (Simplified Chinese text), and viewing tokenized data in the Information Schema
INNODB_FT_INDEX_CACHE table.

mysql> USE test;

mysql> CREATE TABLE articles (
 id INT UNSIGNED AUTO_INCREMENT NOT NULL PRIMARY KEY,
 title VARCHAR(200),
 body TEXT,
 FULLTEXT (title,body) WITH PARSER ngram
) ENGINE=InnoDB CHARACTER SET utf8mb4;

mysql> SET NAMES utf8mb4;

INSERT INTO articles (title,body) VALUES
 ('数据库管理','在本教程中我将向你展示如何管理数据库'),

 ('数据库应用开发','学习开发数据库应用程序');

mysql> SET GLOBAL innodb_ft_aux_table="test/articles";

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_FT_INDEX_CACHE ORDER BY doc_id, position;

To add a FULLTEXT index to an existing table, you can use ALTER TABLE or CREATE INDEX. For
example:

CREATE TABLE articles (
 id INT UNSIGNED AUTO_INCREMENT NOT NULL PRIMARY KEY,
 title VARCHAR(200),
 body TEXT
) ENGINE=InnoDB CHARACTER SET utf8;

ALTER TABLE articles ADD FULLTEXT INDEX ft_index (title,body) WITH PARSER ngram;

Or:

CREATE FULLTEXT INDEX ft_index ON articles (title,body) WITH PARSER ngram;

ngram Parser Space Handling

The ngram parser eliminates spaces when parsing. For example:

• “ab cd” is parsed to “ab”, “cd”

• “a bc” is parsed to “bc”

ngram Parser Stopword Handling

The built-in MySQL full-text parser compares words to entries in the stopword list. If a word is equal to an
entry in the stopword list, the word is excluded from the index. For the ngram parser, stopword handling
is performed differently. Instead of excluding tokens that are equal to entries in the stopword list, the
ngram parser excludes tokens that contain stopwords. For example, assuming ngram_token_size=2, a
document that contains “a,b” is parsed to “a,” and “,b”. If a comma (“,”) is defined as a stopword, both “a,”
and “,b” are excluded from the index because they contain a comma.

By default, the ngram parser uses the default stopword list, which contains a list of English stopwords. For
a stopword list applicable to Chinese, Japanese, or Korean, you must create your own. For information
about creating a stopword list, see Section 12.9.4, “Full-Text Stopwords”.

Stopwords greater in length than ngram_token_size are ignored.

1995

MeCab Full-Text Parser Plugin

ngram Parser Term Search

For natural language mode search, the search term is converted to a union of ngram terms. For example,
the string “abc” (assuming ngram_token_size=2) is converted to “ab bc”. Given two documents, one
containing “ab” and the other containing “abc”, the search term “ab bc” matches both documents.

For boolean mode search, the search term is converted to an ngram phrase search. For example, the
string 'abc' (assuming ngram_token_size=2) is converted to '“ab bc”'. Given two documents, one
containing 'ab' and the other containing 'abc', the search phrase '“ab bc”' only matches the document
containing 'abc'.

ngram Parser Wildcard Search

Because an ngram FULLTEXT index contains only ngrams, and does not contain information about the
beginning of terms, wildcard searches may return unexpected results. The following behaviors apply to
wildcard searches using ngram FULLTEXT search indexes:

• If the prefix term of a wildcard search is shorter than ngram token size, the query returns all
indexed rows that contain ngram tokens starting with the prefix term. For example, assuming
ngram_token_size=2, a search on “a*” returns all rows starting with “a”.

• If the prefix term of a wildcard search is longer than ngram token size, the prefix term is converted to an
ngram phrase and the wildcard operator is ignored. For example, assuming ngram_token_size=2, an
“abc*” wildcard search is converted to “ab bc”.

ngram Parser Phrase Search

Phrase searches are converted to ngram phrase searches. For example, The search phrase “abc” is
converted to “ab bc”, which returns documents containing “abc” and “ab bc”.

The search phrase “abc def” is converted to “ab bc de ef”, which returns documents containing “abc def”
and “ab bc de ef”. A document that contains “abcdef” is not returned.

12.9.9 MeCab Full-Text Parser Plugin

The built-in MySQL full-text parser uses the white space between words as a delimiter to determine where
words begin and end, which is a limitation when working with ideographic languages that do not use word
delimiters. To address this limitation for Japanese, MySQL provides a MeCab full-text parser plugin. The
MeCab full-text parser plugin is supported for use with InnoDB and MyISAM.

Note

MySQL also provides an ngram full-text parser plugin that supports Japanese. For
more information, see Section 12.9.8, “ngram Full-Text Parser”.

The MeCab full-text parser plugin is a full-text parser plugin for Japanese that tokenizes a sequence of
text into meaningful words. For example, MeCab tokenizes “データベース管理” (“Database Management”)
into “データベース” (“Database”) and “管理” (“Management”). By comparison, the ngram full-text parser
tokenizes text into a contiguous sequence of n characters, where n represents a number between 1 and
10.

In addition to tokenizing text into meaningful words, MeCab indexes are typically smaller than ngram
indexes, and MeCab full-text searches are generally faster. One drawback is that it may take longer for the
MeCab full-text parser to tokenize documents, compared to the ngram full-text parser.

1996

MeCab Full-Text Parser Plugin

The full-text search syntax described in Section 12.9, “Full-Text Search Functions” applies to the MeCab
parser plugin. Differences in parsing behavior are described in this section. Full-text related configuration
options are also applicable.

For additional information about the MeCab parser, refer to the MeCab: Yet Another Part-of-Speech and
Morphological Analyzer project on Github.

Installing the MeCab Parser Plugin

The MeCab parser plugin requires mecab and mecab-ipadic.

On supported Fedora, Debian and Ubuntu platforms (except Ubuntu 12.04 where the system mecab
version is too old), MySQL dynamically links to the system mecab installation if it is installed to
the default location. On other supported Unix-like platforms, libmecab.so is statically linked in
libpluginmecab.so, which is located in the MySQL plugin directory. mecab-ipadic is included in
MySQL binaries and is located in MYSQL_HOME\lib\mecab.

You can install mecab and mecab-ipadic using a native package management utility (on Fedora,
Debian, and Ubuntu), or you can build mecab and mecab-ipadic from source. For information about
installing mecab and mecab-ipadic using a native package management utility, see Installing MeCab
From a Binary Distribution (Optional). If you want to build mecab and mecab-ipadic from source, see
Building MeCab From Source (Optional).

On Windows, libmecab.dll is found in the MySQL bin directory. mecab-ipadic is located in
MYSQL_HOME/lib/mecab.

To install and configure the MeCab parser plugin, perform the following steps:

1. In the MySQL configuration file, set the mecab_rc_file configuration option to the location of the
mecabrc configuration file, which is the configuration file for MeCab. If you are using the MeCab
package distributed with MySQL, the mecabrc file is located in MYSQL_HOME/lib/mecab/etc/.

[mysqld]
loose-mecab-rc-file=MYSQL_HOME/lib/mecab/etc/mecabrc

The loose prefix is an option modifier. The mecab_rc_file option is not recognized by MySQL
until the MeCaB parser plugin is installed but it must be set before attempting to install the MeCaB
parser plugin. The loose prefix allows you restart MySQL without encountering an error due to an
unrecognized variable.

If you use your own MeCab installation, or build MeCab from source, the location of the mecabrc
configuration file may differ.

For information about the MySQL configuration file and its location, see Section 4.2.2.2, “Using Option
Files”.

2. Also in the MySQL configuration file, set the minimum token size to 1 or 2, which are the values
recommended for use with the MeCab parser. For InnoDB tables, minimum token size is defined by
the innodb_ft_min_token_size configuration option, which has a default value of 3. For MyISAM
tables, minimum token size is defined by ft_min_word_len, which has a default value of 4.

[mysqld]
innodb_ft_min_token_size=1

3. Modify the mecabrc configuration file to specify the dictionary you want to use. The mecab-
ipadic package distributed with MySQL binaries includes three dictionaries (ipadic_euc-jp,
ipadic_sjis, and ipadic_utf-8). The mecabrc configuration file packaged with MySQL contains
and entry similar to the following:

1997

http://taku910.github.io/mecab/
http://taku910.github.io/mecab/

MeCab Full-Text Parser Plugin

dicdir = /path/to/mysql/lib/mecab/lib/mecab/dic/ipadic_euc-jp

To use the ipadic_utf-8 dictionary, for example, modify the entry as follows:

dicdir=MYSQL_HOME/lib/mecab/dic/ipadic_utf-8

If you are using your own MeCab installation or have built MeCab from source, the default dicdir
entry in the mecabrc file differs, as do the dictionaries and their location.

Note

After the MeCab parser plugin is installed, you can use the mecab_charset
status variable to view the character set used with MeCab. The three MeCab
dictionaries provided with the MySQL binary support the following character
sets.

• The ipadic_euc-jp dictionary supports the ujis and eucjpms character
sets.

• The ipadic_sjis dictionary supports the sjis and cp932 character sets.

• The ipadic_utf-8 dictionary supports the utf8 and utf8mb4 character
sets.

mecab_charset only reports the first supported character set. For
example, the ipadic_utf-8 dictionary supports both utf8 and utf8mb4.
mecab_charset always reports utf8 when this dictionary is in use.

4. Restart MySQL.

5. Install the MeCab parser plugin:

The MeCab parser plugin is installed using INSTALL PLUGIN. The plugin name is mecab, and the
shared library name is libpluginmecab.so. For additional information about installing plugins, see
Section 5.5.1, “Installing and Uninstalling Plugins”.

INSTALL PLUGIN mecab SONAME 'libpluginmecab.so';

Once installed, the MeCab parser plugin loads at every normal MySQL restart.

6. Verify that the MeCab parser plugin is loaded using the SHOW PLUGINS statement.

mysql> SHOW PLUGINS;

A mecab plugin should appear in the list of plugins.

Creating a FULLTEXT Index that uses the MeCab Parser

To create a FULLTEXT index that uses the mecab parser, specify WITH PARSER ngram with CREATE
TABLE, ALTER TABLE, or CREATE INDEX.

This example demonstrates creating a table with a mecab FULLTEXT index, inserting sample data, and
viewing tokenized data in the Information Schema INNODB_FT_INDEX_CACHE table:

mysql> USE test;

mysql> CREATE TABLE articles (
 id INT UNSIGNED AUTO_INCREMENT NOT NULL PRIMARY KEY,

1998

MeCab Full-Text Parser Plugin

 title VARCHAR(200),
 body TEXT,
 FULLTEXT (title,body) WITH PARSER mecab
) ENGINE=InnoDB CHARACTER SET utf8;

mysql> SET NAMES utf8;

mysql> INSERT INTO articles (title,body) VALUES
 ('データベース管理','このチュートリアルでは、私はどのようにデータベースを管理する方法を紹介します'),

 ('データベースアプリケーション開発','データベースアプリケーションを開発することを学ぶ');

mysql> SET GLOBAL innodb_ft_aux_table="test/articles";

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_FT_INDEX_CACHE ORDER BY doc_id, position;

To add a FULLTEXT index to an existing table, you can use ALTER TABLE or CREATE INDEX. For
example:

CREATE TABLE articles (
 id INT UNSIGNED AUTO_INCREMENT NOT NULL PRIMARY KEY,
 title VARCHAR(200),
 body TEXT
) ENGINE=InnoDB CHARACTER SET utf8;

ALTER TABLE articles ADD FULLTEXT INDEX ft_index (title,body) WITH PARSER mecab;

Or:

CREATE FULLTEXT INDEX ft_index ON articles (title,body) WITH PARSER mecab;

MeCab Parser Space Handling

The MeCab parser uses spaces as separators in query strings. For example, the MeCab parser tokenizes
データベース管理 as データベース and 管理.

MeCab Parser Stopword Handling

By default, the MeCab parser uses the default stopword list, which contains a short list of English
stopwords. For a stopword list applicable to Japanese, you must create your own. For information about
creating stopword lists, see Section 12.9.4, “Full-Text Stopwords”.

MeCab Parser Term Search

For natural language mode search, the search term is converted to a union of tokens. For example,
データベース管理 is converted to データベース 管理.

SELECT COUNT(*) FROM articles WHERE MATCH(title,body) AGAINST('データベース管理' IN NATURAL LANGUAGE MODE);

For boolean mode search, the search term is converted to a search phrase. For example,
データベース管理 is converted to データベース 管理.

SELECT COUNT(*) FROM articles WHERE MATCH(title,body) AGAINST('データベース管理' IN BOOLEAN MODE);

MeCab Parser Wildcard Search

Wildcard search terms are not tokenized. A search on データベース管理* is performed on the prefix,
データベース管理.

SELECT COUNT(*) FROM articles WHERE MATCH(title,body) AGAINST('データベース*' IN BOOLEAN MODE);

1999

Cast Functions and Operators

MeCab Parser Phrase Search

Phrases are tokenized. For example, データベース管理 is tokenized as データベース 管理.

SELECT COUNT(*) FROM articles WHERE MATCH(title,body) AGAINST('"データベース管理"' IN BOOLEAN MODE);

Installing MeCab From a Binary Distribution (Optional)

This section describes how to install mecab and mecab-ipadic from a binary distribution using a native
package management utility. For example, on Fedora, you can use Yum to perform the installation:

yum mecab-devel

On Debian or Ubuntu, you can perform an APT installation:

apt-get install mecab
apt-get install mecab-ipadic

Installing MeCab From Source (Optional)

If you want to build mecab and mecab-ipadic from source, basic installation steps are provided below.
For additional information, refer to the MeCab documentation.

1. Download the tar.gz packages for mecab and mecab-ipadic from http://taku910.github.io/mecab/
#download. As of February, 2016, the latest available packages are mecab-0.996.tar.gz and
mecab-ipadic-2.7.0-20070801.tar.gz.

2. Install mecab:

tar zxfv mecab-0.996.tar
cd mecab-0.996
./configure
make
make check
su
make install

3. Install mecab-ipadic:

tar zxfv mecab-ipadic-2.7.0-20070801.tar
cd mecab-ipadic-2.7.0-20070801
./configure
make
su
make install

4. Compile MySQL using the WITH_MECAB CMake option. Set the WITH_MECAB option to system if you
have installed mecab and mecab-ipadic to the default location.

-DWITH_MECAB=system

If you defined a custom installation directory, set WITH_MECAB to the custom directory. For example:

-DWITH_MECAB=/path/to/mecab

12.10 Cast Functions and Operators
Table 12.15 Cast Functions and Operators

Name Description

BINARY Cast a string to a binary string

2000

http://taku910.github.io/mecab/#download
http://taku910.github.io/mecab/#download

Cast Function and Operator Descriptions

Name Description

CAST() Cast a value as a certain type

CONVERT() Cast a value as a certain type

Cast functions and operators enable conversion of values from one data type to another.

• Cast Function and Operator Descriptions

• Character Set Conversions

• Character Set Conversions for String Comparisons

• Other Uses for Cast Operations

Cast Function and Operator Descriptions

• BINARY expr

The BINARY operator converts the expression to a binary string (a string that has the binary character
set and binary collation). A common use for BINARY is to force a character string comparison to be
done byte by byte using numeric byte values rather than character by character. The BINARY operator
also causes trailing spaces in comparisons to be significant. For information about the differences
between the binary collation of the binary character set and the _bin collations of nonbinary
character sets, see Section 10.8.5, “The binary Collation Compared to _bin Collations”.

mysql> SELECT 'a' = 'A';
 -> 1
mysql> SELECT BINARY 'a' = 'A';
 -> 0
mysql> SELECT 'a' = 'a ';
 -> 1
mysql> SELECT BINARY 'a' = 'a ';
 -> 0

In a comparison, BINARY affects the entire operation; it can be given before either operand with the
same result.

To convert a string expression to a binary string, these constructs are equivalent:

CONVERT(expr USING BINARY)
CAST(expr AS BINARY)
BINARY expr

If a value is a string literal, it can be designated as a binary string without converting it by using the
_binary character set introducer:

mysql> SELECT 'a' = 'A';
 -> 1
mysql> SELECT _binary 'a' = 'A';
 -> 0

For information about introducers, see Section 10.3.8, “Character Set Introducers”.

The BINARY operator in expressions differs in effect from the BINARY attribute in character column
definitions. For a character column defined with the BINARY attribute, MySQL assigns the table default
character set and the binary (_bin) collation of that character set. Every nonbinary character set has a
_bin collation. For example, if the table default character set is utf8, these two column definitions are
equivalent:

2001

Cast Function and Operator Descriptions

CHAR(10) BINARY
CHAR(10) CHARACTER SET utf8 COLLATE utf8_bin

The use of CHARACTER SET binary in the definition of a CHAR, VARCHAR, or TEXT column causes the
column to be treated as the corresponding binary string data type. For example, the following pairs of
definitions are equivalent:

CHAR(10) CHARACTER SET binary
BINARY(10)

VARCHAR(10) CHARACTER SET binary
VARBINARY(10)

TEXT CHARACTER SET binary
BLOB

If BINARY is invoked from within the mysql client, binary strings display using hexadecimal notation,
depending on the value of the --binary-as-hex. For more information about that option, see
Section 4.5.1, “mysql — The MySQL Command-Line Client”.

• CAST(expr AS type)

CAST(expr AS type takes an expression of any type and produces a result value of the specified
type. This operation may also be expressed as CONVERT(expr, type), which is equivalent.

These type values are permitted:

• BINARY[(N)]

Produces a string with the VARBINARY data type, except that when the expression expr is empty
(zero length), the result type is BINARY(0). If the optional length N is given, BINARY(N) causes the
cast to use no more than N bytes of the argument. Values shorter than N bytes are padded with 0x00
bytes to a length of N. If the optional length N is not given, MySQL calculates the maximum length from
the expression. If the supplied or calculated length is greater than an internal threshold, the result type
is BLOB. If the length is still too long, the result type is LONGBLOB.

For a description of how casting to BINARY affects comparisons, see Section 11.3.3, “The BINARY
and VARBINARY Types”.

• CHAR[(N)] [charset_info]

Produces a string with the VARCHAR data type, unless the expression expr is empty (zero length),
in which case the result type is CHAR(0). If the optional length N is given, CHAR(N) causes the
cast to use no more than N characters of the argument. No padding occurs for values shorter than
N characters. If the optional length N is not given, MySQL calculates the maximum length from the
expression. If the supplied or calculated length is greater than an internal threshold, the result type is
TEXT. If the length is still too long, the result type is LONGTEXT.

With no charset_info clause, CHAR produces a string with the default character set. To specify the
character set explicitly, these charset_info values are permitted:

• CHARACTER SET charset_name: Produces a string with the given character set.

• ASCII: Shorthand for CHARACTER SET latin1.

• UNICODE: Shorthand for CHARACTER SET ucs2.

In all cases, the string has the character set default collation.

2002

Cast Function and Operator Descriptions

• DATE

Produces a DATE value.

• DATETIME[(M)]

Produces a DATETIME value. If the optional M value is given, it specifies the fractional seconds
precision.

• DECIMAL[(M[,D])]

Produces a DECIMAL value. If the optional M and D values are given, they specify the maximum
number of digits (the precision) and the number of digits following the decimal point (the scale). If D is
omitted, 0 is assumed. If M is omitted, 10 is assumed.

• JSON

Produces a JSON value. For details on the rules for conversion of values between JSON and other
types, see Comparison and Ordering of JSON Values.

• NCHAR[(N)]

Like CHAR, but produces a string with the national character set. See Section 10.3.7, “The National
Character Set”.

Unlike CHAR, NCHAR does not permit trailing character set information to be specified.

• SIGNED [INTEGER]

Produces a signed BIGINT value.

• TIME[(M)]

Produces a TIME value. If the optional M value is given, it specifies the fractional seconds precision.

• UNSIGNED [INTEGER]

Produces an unsigned BIGINT value.

• CONVERT(expr USING transcoding_name)

CONVERT(expr,type)

CONVERT(expr USING transcoding_name) is standard SQL syntax. The non-USING form of
CONVERT() is ODBC syntax.

CONVERT(expr USING transcoding_name) converts data between different character sets. In
MySQL, transcoding names are the same as the corresponding character set names. For example, this
statement converts the string 'abc' in the default character set to the corresponding string in the utf8
character set:

SELECT CONVERT('abc' USING utf8);

CONVERT(expr, type) syntax (without USING) takes an expression and a type value specifying a
result type, and produces a result value of the specified type. This operation may also be expressed as
CAST(expr AS type), which is equivalent. For more information, see the description of CAST().

2003

Character Set Conversions

Character Set Conversions

CONVERT() with a USING clause converts data between character sets:

CONVERT(expr USING transcoding_name)

In MySQL, transcoding names are the same as the corresponding character set names.

Examples:

SELECT CONVERT('test' USING utf8);
SELECT CONVERT(_latin1'Müller' USING utf8);
INSERT INTO utf8_table (utf8_column)
 SELECT CONVERT(latin1_column USING utf8) FROM latin1_table;

To convert strings between character sets, you can also use CONVERT(expr, type) syntax (without
USING), or CAST(expr AS type), which is equivalent:

CONVERT(string, CHAR[(N)] CHARACTER SET charset_name)
CAST(string AS CHAR[(N)] CHARACTER SET charset_name)

Examples:

SELECT CONVERT('test', CHAR CHARACTER SET utf8);
SELECT CAST('test' AS CHAR CHARACTER SET utf8);

If you specify CHARACTER SET charset_name as just shown, the character set and collation
of the result are charset_name and the default collation of charset_name. If you omit
CHARACTER SET charset_name, the character set and collation of the result are defined by the
character_set_connection and collation_connection system variables that determine
the default connection character set and collation (see Section 10.4, “Connection Character Sets and
Collations”).

A COLLATE clause is not permitted within a CONVERT() or CAST() call, but you can apply it to the function
result. For example, these are legal:

SELECT CONVERT('test' USING utf8) COLLATE utf8_bin;
SELECT CONVERT('test', CHAR CHARACTER SET utf8) COLLATE utf8_bin;
SELECT CAST('test' AS CHAR CHARACTER SET utf8) COLLATE utf8_bin;

But these are illegal:

SELECT CONVERT('test' USING utf8 COLLATE utf8_bin);
SELECT CONVERT('test', CHAR CHARACTER SET utf8 COLLATE utf8_bin);
SELECT CAST('test' AS CHAR CHARACTER SET utf8 COLLATE utf8_bin);

For string literals, another way to specify the character set is to use a character set introducer. _latin1
and _latin2 in the preceding example are instances of introducers. Unlike conversion functions such
as CAST(), or CONVERT(), which convert a string from one character set to another, an introducer
designates a string literal as having a particular character set, with no conversion involved. For more
information, see Section 10.3.8, “Character Set Introducers”.

Character Set Conversions for String Comparisons

Normally, you cannot compare a BLOB value or other binary string in case-insensitive fashion because
binary strings use the binary character set, which has no collation with the concept of lettercase. To
perform a case-insensitive comparison, first use the CONVERT() or CAST() function to convert the value
to a nonbinary string. Comparisons of the resulting string use its collation. For example, if the conversion

2004

Other Uses for Cast Operations

result collation is not case-sensitive, a LIKE operation is not case-sensitive. That is true for the following
operation because the default latin1 collation (latin1_swedish_ci) is not case-sensitive:

SELECT 'A' LIKE CONVERT(blob_col USING latin1)
 FROM tbl_name;

To specify a particular collation for the converted string, use a COLLATE clause following the CONVERT()
call:

SELECT 'A' LIKE CONVERT(blob_col USING latin1) COLLATE latin1_german1_ci
 FROM tbl_name;

To use a different character set, substitute its name for latin1 in the preceding statements (and similarly
to use a different collation).

CONVERT() and CAST() can be used more generally for comparing strings represented in different
character sets. For example, a comparison of these strings results in an error because they have different
character sets:

mysql> SET @s1 = _latin1 'abc', @s2 = _latin2 'abc';
mysql> SELECT @s1 = @s2;
ERROR 1267 (HY000): Illegal mix of collations (latin1_swedish_ci,IMPLICIT)
and (latin2_general_ci,IMPLICIT) for operation '='

Converting one of the strings to a character set compatible with the other enables the comparison to occur
without error:

mysql> SELECT @s1 = CONVERT(@s2 USING latin1);
+---------------------------------+
| @s1 = CONVERT(@s2 USING latin1) |
+---------------------------------+
| 1 |
+---------------------------------+

Character set conversion is also useful preceding lettercase conversion of binary strings. LOWER() and
UPPER() are ineffective when applied directly to binary strings because the concept of lettercase does
not apply. To perform lettercase conversion of a binary string, first convert it to a nonbinary string using a
character set appropriate for the data stored in the string:

mysql> SET @str = BINARY 'New York';
mysql> SELECT LOWER(@str), LOWER(CONVERT(@str USING latin1));
+-------------+-----------------------------------+
| LOWER(@str) | LOWER(CONVERT(@str USING latin1)) |
+-------------+-----------------------------------+
| New York | new york |
+-------------+-----------------------------------+

Be aware that if you apply BINARY, CAST(), or CONVERT() to an indexed column, MySQL may not be
able to use the index efficiently.

Other Uses for Cast Operations

The cast functions are useful for creating a column with a specific type in a CREATE TABLE ... SELECT
statement:

mysql> CREATE TABLE new_table SELECT CAST('2000-01-01' AS DATE) AS c1;
mysql> SHOW CREATE TABLE new_table\G
*************************** 1. row ***************************
 Table: new_table
Create Table: CREATE TABLE `new_table` (
 `c1` date DEFAULT NULL
) ENGINE=InnoDB DEFAULT CHARSET=latin1

2005

Other Uses for Cast Operations

The cast functions are useful for sorting ENUM columns in lexical order. Normally, sorting of ENUM columns
occurs using the internal numeric values. Casting the values to CHAR results in a lexical sort:

SELECT enum_col FROM tbl_name ORDER BY CAST(enum_col AS CHAR);

CAST() also changes the result if you use it as part of a more complex expression such as
CONCAT('Date: ',CAST(NOW() AS DATE)).

For temporal values, there is little need to use CAST() to extract data in different formats. Instead, use a
function such as EXTRACT(), DATE_FORMAT(), or TIME_FORMAT(). See Section 12.7, “Date and Time
Functions”.

To cast a string to a number, it normally suffices to use the string value in numeric context:

mysql> SELECT 1+'1';
 -> 2

That is also true for hexadecimal and bit literals, which are binary strings by default:

mysql> SELECT X'41', X'41'+0;
 -> 'A', 65
mysql> SELECT b'1100001', b'1100001'+0;
 -> 'a', 97

A string used in an arithmetic operation is converted to a floating-point number during expression
evaluation.

A number used in string context is converted to a string:

mysql> SELECT CONCAT('hello you ',2);
 -> 'hello you 2'

For information about implicit conversion of numbers to strings, see Section 12.3, “Type Conversion in
Expression Evaluation”.

MySQL supports arithmetic with both signed and unsigned 64-bit values. For numeric operators (such
as + or -) where one of the operands is an unsigned integer, the result is unsigned by default (see
Section 12.6.1, “Arithmetic Operators”). To override this, use the SIGNED or UNSIGNED cast operator to
cast a value to a signed or unsigned 64-bit integer, respectively.

mysql> SELECT 1 - 2;
 -> -1
mysql> SELECT CAST(1 - 2 AS UNSIGNED);
 -> 18446744073709551615
mysql> SELECT CAST(CAST(1 - 2 AS UNSIGNED) AS SIGNED);
 -> -1

If either operand is a floating-point value, the result is a floating-point value and is not affected by the
preceding rule. (In this context, DECIMAL column values are regarded as floating-point values.)

mysql> SELECT CAST(1 AS UNSIGNED) - 2.0;
 -> -1.0

The SQL mode affects the result of conversion operations (see Section 5.1.10, “Server SQL Modes”).
Examples:

• For conversion of a “zero” date string to a date, CONVERT() and CAST() return NULL and produce a
warning when the NO_ZERO_DATE SQL mode is enabled.

• For integer subtraction, if the NO_UNSIGNED_SUBTRACTION SQL mode is enabled, the subtraction
result is signed even if any operand is unsigned.

2006

XML Functions

12.11 XML Functions
Table 12.16 XML Functions

Name Description

ExtractValue() Extract a value from an XML string using XPath
notation

UpdateXML() Return replaced XML fragment

This section discusses XML and related functionality in MySQL.

Note

It is possible to obtain XML-formatted output from MySQL in the mysql and
mysqldump clients by invoking them with the --xml option. See Section 4.5.1,
“mysql — The MySQL Command-Line Client”, and Section 4.5.4, “mysqldump — A
Database Backup Program”.

Two functions providing basic XPath 1.0 (XML Path Language, version 1.0) capabilities are available.
Some basic information about XPath syntax and usage is provided later in this section; however, an in-
depth discussion of these topics is beyond the scope of this manual, and you should refer to the XML Path
Language (XPath) 1.0 standard for definitive information. A useful resource for those new to XPath or who
desire a refresher in the basics is the Zvon.org XPath Tutorial, which is available in several languages.

Note

These functions remain under development. We continue to improve these and
other aspects of XML and XPath functionality in MySQL 5.7 and onwards. You may
discuss these, ask questions about them, and obtain help from other users with
them in the MySQL XML User Forum.

XPath expressions used with these functions support user variables and local stored program variables.
User variables are weakly checked; variables local to stored programs are strongly checked (see also Bug
#26518):

• User variables (weak checking). Variables using the syntax $@variable_name (that is, user
variables) are not checked. No warnings or errors are issued by the server if a variable has the wrong
type or has previously not been assigned a value. This also means the user is fully responsible for
any typographical errors, since no warnings are given if (for example) $@myvairable is used where
$@myvariable was intended.

Example:

mysql> SET @xml = '<a>XY';
Query OK, 0 rows affected (0.00 sec)

mysql> SET @i =1, @j = 2;
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT @i, ExtractValue(@xml, '//b[$@i]');
+------+--------------------------------+
| @i | ExtractValue(@xml, '//b[$@i]') |
+------+--------------------------------+
| 1 | X |
+------+--------------------------------+
1 row in set (0.00 sec)

mysql> SELECT @j, ExtractValue(@xml, '//b[$@j]');
+------+--------------------------------+

2007

http://www.w3.org/TR/xpath
http://www.w3.org/TR/xpath
http://www.zvon.org/xxl/XPathTutorial/
https://forums.mysql.com/list.php?44

XML Functions

| @j | ExtractValue(@xml, '//b[$@j]') |
+------+--------------------------------+
| 2 | Y |
+------+--------------------------------+
1 row in set (0.00 sec)

mysql> SELECT @k, ExtractValue(@xml, '//b[$@k]');
+------+--------------------------------+
| @k | ExtractValue(@xml, '//b[$@k]') |
+------+--------------------------------+
| NULL | |
+------+--------------------------------+
1 row in set (0.00 sec)

• Variables in stored programs (strong checking). Variables using the syntax $variable_name
can be declared and used with these functions when they are called inside stored programs. Such
variables are local to the stored program in which they are defined, and are strongly checked for type
and value.

Example:

mysql> DELIMITER |

mysql> CREATE PROCEDURE myproc ()
 -> BEGIN
 -> DECLARE i INT DEFAULT 1;
 -> DECLARE xml VARCHAR(25) DEFAULT '<a>X<a>Y<a>Z';
 ->
 -> WHILE i < 4 DO
 -> SELECT xml, i, ExtractValue(xml, '//a[$i]');
 -> SET i = i+1;
 -> END WHILE;
 -> END |
Query OK, 0 rows affected (0.01 sec)

mysql> DELIMITER ;

mysql> CALL myproc();
+--------------------------+---+------------------------------+
| xml | i | ExtractValue(xml, '//a[$i]') |
+--------------------------+---+------------------------------+
| <a>X<a>Y<a>Z | 1 | X |
+--------------------------+---+------------------------------+
1 row in set (0.00 sec)

+--------------------------+---+------------------------------+
| xml | i | ExtractValue(xml, '//a[$i]') |
+--------------------------+---+------------------------------+
| <a>X<a>Y<a>Z | 2 | Y |
+--------------------------+---+------------------------------+
1 row in set (0.01 sec)

+--------------------------+---+------------------------------+
| xml | i | ExtractValue(xml, '//a[$i]') |
+--------------------------+---+------------------------------+
| <a>X<a>Y<a>Z | 3 | Z |
+--------------------------+---+------------------------------+
1 row in set (0.01 sec)

Parameters. Variables used in XPath expressions inside stored routines that are passed in as
parameters are also subject to strong checking.

Expressions containing user variables or variables local to stored programs must otherwise (except
for notation) conform to the rules for XPath expressions containing variables as given in the XPath 1.0
specification.

2008

XML Functions

Note

A user variable used to store an XPath expression is treated as an empty string.
Because of this, it is not possible to store an XPath expression as a user variable.
(Bug #32911)

• ExtractValue(xml_frag, xpath_expr)

ExtractValue() takes two string arguments, a fragment of XML markup xml_frag and an XPath
expression xpath_expr (also known as a locator); it returns the text (CDATA) of the first text node which
is a child of the element or elements matched by the XPath expression.

Using this function is the equivalent of performing a match using the xpath_expr after appending
/text(). In other words, ExtractValue('<a>Sakila', '/a/b') and
ExtractValue('<a>Sakila', '/a/b/text()') produce the same result.

If multiple matches are found, the content of the first child text node of each matching element is
returned (in the order matched) as a single, space-delimited string.

If no matching text node is found for the expression (including the implicit /text())—for whatever
reason, as long as xpath_expr is valid, and xml_frag consists of elements which are properly nested
and closed—an empty string is returned. No distinction is made between a match on an empty element
and no match at all. This is by design.

If you need to determine whether no matching element was found in xml_frag or such an element was
found but contained no child text nodes, you should test the result of an expression that uses the XPath
count() function. For example, both of these statements return an empty string, as shown here:

mysql> SELECT ExtractValue('<a>', '/a/b');
+-------------------------------------+
| ExtractValue('<a>', '/a/b') |
+-------------------------------------+
| |
+-------------------------------------+
1 row in set (0.00 sec)

mysql> SELECT ExtractValue('<a><c/>', '/a/b');
+-------------------------------------+
| ExtractValue('<a><c/>', '/a/b') |
+-------------------------------------+
| |
+-------------------------------------+
1 row in set (0.00 sec)

However, you can determine whether there was actually a matching element using the following:

mysql> SELECT ExtractValue('<a>', 'count(/a/b)');
+-------------------------------------+
| ExtractValue('<a>', 'count(/a/b)') |
+-------------------------------------+
| 1 |
+-------------------------------------+
1 row in set (0.00 sec)

mysql> SELECT ExtractValue('<a><c/>', 'count(/a/b)');
+-------------------------------------+
| ExtractValue('<a><c/>', 'count(/a/b)') |
+-------------------------------------+
| 0 |
+-------------------------------------+

2009

XML Functions

1 row in set (0.01 sec)

Important

ExtractValue() returns only CDATA, and does not return any tags that might
be contained within a matching tag, nor any of their content (see the result
returned as val1 in the following example).

mysql> SELECT
 -> ExtractValue('<a>cccddd', '/a') AS val1,
 -> ExtractValue('<a>cccddd', '/a/b') AS val2,
 -> ExtractValue('<a>cccddd', '//b') AS val3,
 -> ExtractValue('<a>cccddd', '/b') AS val4,
 -> ExtractValue('<a>cccdddeee', '//b') AS val5;

+------+------+------+------+---------+
| val1 | val2 | val3 | val4 | val5 |
+------+------+------+------+---------+
| ccc | ddd | ddd | | ddd eee |
+------+------+------+------+---------+

This function uses the current SQL collation for making comparisons with contains(), performing the
same collation aggregation as other string functions (such as CONCAT()), in taking into account the
collation coercibility of their arguments; see Section 10.8.4, “Collation Coercibility in Expressions”, for an
explanation of the rules governing this behavior.

(Previously, binary—that is, case-sensitive—comparison was always used.)

NULL is returned if xml_frag contains elements which are not properly nested or closed, and a warning
is generated, as shown in this example:

mysql> SELECT ExtractValue('<a>c<b', '//a');
+-----------------------------------+
| ExtractValue('<a>c<b', '//a') |
+-----------------------------------+
| NULL |
+-----------------------------------+
1 row in set, 1 warning (0.00 sec)

mysql> SHOW WARNINGS\G
*************************** 1. row ***************************
 Level: Warning
 Code: 1525
Message: Incorrect XML value: 'parse error at line 1 pos 11:
 END-OF-INPUT unexpected ('>' wanted)'
1 row in set (0.00 sec)

mysql> SELECT ExtractValue('<a>c', '//a');
+-------------------------------------+
| ExtractValue('<a>c', '//a') |
+-------------------------------------+
| c |
+-------------------------------------+
1 row in set (0.00 sec)

2010

XML Functions

• UpdateXML(xml_target, xpath_expr, new_xml)

This function replaces a single portion of a given fragment of XML markup xml_target with a new XML
fragment new_xml, and then returns the changed XML. The portion of xml_target that is replaced
matches an XPath expression xpath_expr supplied by the user.

If no expression matching xpath_expr is found, or if multiple matches are found, the function returns
the original xml_target XML fragment. All three arguments should be strings.

mysql> SELECT
 -> UpdateXML('<a>ccc<d></d>', '/a', '<e>fff</e>') AS val1,
 -> UpdateXML('<a>ccc<d></d>', '/b', '<e>fff</e>') AS val2,
 -> UpdateXML('<a>ccc<d></d>', '//b', '<e>fff</e>') AS val3,
 -> UpdateXML('<a>ccc<d></d>', '/a/d', '<e>fff</e>') AS val4,
 -> UpdateXML('<a><d></d>ccc<d></d>', '/a/d', '<e>fff</e>') AS val5
 -> \G

*************************** 1. row ***************************
val1: <e>fff</e>
val2: <a>ccc<d></d>
val3: <a><e>fff</e><d></d>
val4: <a>ccc<e>fff</e>
val5: <a><d></d>ccc<d></d>

Note

A discussion in depth of XPath syntax and usage are beyond the scope of this
manual. Please see the XML Path Language (XPath) 1.0 specification for definitive
information. A useful resource for those new to XPath or who are wishing a
refresher in the basics is the Zvon.org XPath Tutorial, which is available in several
languages.

Descriptions and examples of some basic XPath expressions follow:

• /tag

Matches <tag/> if and only if <tag/> is the root element.

Example: /a has a match in <a> because it matches the outermost (root) tag. It does not
match the inner a element in <a/> because in this instance it is the child of another element.

• /tag1/tag2

Matches <tag2/> if and only if it is a child of <tag1/>, and <tag1/> is the root element.

Example: /a/b matches the b element in the XML fragment <a> because it is a child of the
root element a. It does not have a match in <a/> because in this case, b is the root element
(and hence the child of no other element). Nor does the XPath expression have a match in <a><c><b/
></c>; here, b is a descendant of a, but not actually a child of a.

This construct is extendable to three or more elements. For example, the XPath expression /a/b/c
matches the c element in the fragment <a><c/>.

• //tag

Matches any instance of <tag>.

Example: //a matches the a element in any of the following: <a><c/>; <c><a></
a>; <c><a/></c>.

2011

http://www.w3.org/TR/xpath
http://www.zvon.org/xxl/XPathTutorial/

XML Functions

// can be combined with /. For example, //a/b matches the b element in either of the fragments
<a> or <c><a></c>.

Note

//tag is the equivalent of /descendant-or-self::*/tag. A common
error is to confuse this with /descendant-or-self::tag, although the latter
expression can actually lead to very different results, as can be seen here:

mysql> SET @xml = '<a><c>w</c>x<d>y</d>z';
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT @xml;
+---+
| @xml |
+---+
| <a><c>w</c>x<d>y</d>z |
+---+
1 row in set (0.00 sec)

mysql> SELECT ExtractValue(@xml, '//b[1]');
+------------------------------+
| ExtractValue(@xml, '//b[1]') |
+------------------------------+
| x z |
+------------------------------+
1 row in set (0.00 sec)

mysql> SELECT ExtractValue(@xml, '//b[2]');
+------------------------------+
| ExtractValue(@xml, '//b[2]') |
+------------------------------+
| |
+------------------------------+
1 row in set (0.01 sec)

mysql> SELECT ExtractValue(@xml, '/descendant-or-self::*/b[1]');
+---+
| ExtractValue(@xml, '/descendant-or-self::*/b[1]') |
+---+
| x z |
+---+
1 row in set (0.06 sec)

mysql> SELECT ExtractValue(@xml, '/descendant-or-self::*/b[2]');
+---+
| ExtractValue(@xml, '/descendant-or-self::*/b[2]') |
+---+
| |
+---+
1 row in set (0.00 sec)

mysql> SELECT ExtractValue(@xml, '/descendant-or-self::b[1]');
+---+
| ExtractValue(@xml, '/descendant-or-self::b[1]') |
+---+
| z |
+---+
1 row in set (0.00 sec)

mysql> SELECT ExtractValue(@xml, '/descendant-or-self::b[2]');
+---+
| ExtractValue(@xml, '/descendant-or-self::b[2]') |

2012

XML Functions

+---+
| x |
+---+
1 row in set (0.00 sec)

• The * operator acts as a “wildcard” that matches any element. For example, the expression /*/b
matches the b element in either of the XML fragments <a> or <c></c>. However, the
expression does not produce a match in the fragment <a/> because b must be a child of some
other element. The wildcard may be used in any position: The expression /*/b/* matches any child of
a b element that is itself not the root element.

• You can match any of several locators using the | (UNION) operator. For example, the expression //
b|//c matches all b and c elements in the XML target.

• It is also possible to match an element based on the value of one or more of its attributes. This done
using the syntax tag[@attribute="value"]. For example, the expression //b[@id="idB"]
matches the second b element in the fragment <a><b id="idA"/><c/><b id="idB"/></
a>. To match against any element having attribute="value", use the XPath expression //
*[attribute="value"].

To filter multiple attribute values, simply use multiple attribute-comparison clauses in succession. For
example, the expression //b[@c="x"][@d="y"] matches the element <b c="x" d="y"/> occurring
anywhere in a given XML fragment.

To find elements for which the same attribute matches any of several values, you can use multiple
locators joined by the | operator. For example, to match all b elements whose c attributes have either of
the values 23 or 17, use the expression //b[@c="23"]|//b[@c="17"]. You can also use the logical
or operator for this purpose: //b[@c="23" or @c="17"].

Note

The difference between or and | is that or joins conditions, while | joins result
sets.

XPath Limitations. The XPath syntax supported by these functions is currently subject to the following
limitations:

• Nodeset-to-nodeset comparison (such as '/a/b[@c=@d]') is not supported.

• All of the standard XPath comparison operators are supported. (Bug #22823)

• Relative locator expressions are resolved in the context of the root node. For example, consider the
following query and result:

mysql> SELECT ExtractValue(
 -> '<a><b c="1">X<b c="2">Y',
 -> 'a/b'
 ->) AS result;
+--------+
| result |
+--------+
| X Y |
+--------+
1 row in set (0.03 sec)

In this case, the locator a/b resolves to /a/b.

Relative locators are also supported within predicates. In the following example, d[../@c="1"] is
resolved as /a/b[@c="1"]/d:

2013

XML Functions

mysql> SELECT ExtractValue(
 -> '<a>
 -> <b c="1"><d>X</d>
 -> <b c="2"><d>X</d>
 -> ',
 -> 'a/b/d[../@c="1"]')
 -> AS result;
+--------+
| result |
+--------+
| X |
+--------+
1 row in set (0.00 sec)

• Locators prefixed with expressions that evaluate as scalar values—including variable references, literals,
numbers, and scalar function calls—are not permitted, and their use results in an error.

• The :: operator is not supported in combination with node types such as the following:

• axis::comment()

• axis::text()

• axis::processing-instructions()

• axis::node()

However, name tests (such as axis::name and axis::*) are supported, as shown in these examples:

mysql> SELECT ExtractValue('<a>x<c>y</c>','/a/child::b');
+---+
| ExtractValue('<a>x<c>y</c>','/a/child::b') |
+---+
| x |
+---+
1 row in set (0.02 sec)

mysql> SELECT ExtractValue('<a>x<c>y</c>','/a/child::*');
+---+
| ExtractValue('<a>x<c>y</c>','/a/child::*') |
+---+
| x y |
+---+
1 row in set (0.01 sec)

• “Up-and-down” navigation is not supported in cases where the path would lead “above” the root element.
That is, you cannot use expressions which match on descendants of ancestors of a given element,
where one or more of the ancestors of the current element is also an ancestor of the root element (see
Bug #16321).

2014

XML Functions

• The following XPath functions are not supported, or have known issues as indicated:

• id()

• lang()

• local-name()

• name()

• namespace-uri()

• normalize-space()

• starts-with()

• string()

• substring-after()

• substring-before()

• translate()

• The following axes are not supported:

• following-sibling

• following

• preceding-sibling

• preceding

XPath expressions passed as arguments to ExtractValue() and UpdateXML() may contain the colon
character (:) in element selectors, which enables their use with markup employing XML namespaces
notation. For example:

mysql> SET @xml = '<a>111<b:c>222<d>333</d><e:f>444</e:f></b:c>';
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT ExtractValue(@xml, '//e:f');
+-----------------------------+
| ExtractValue(@xml, '//e:f') |
+-----------------------------+
| 444 |
+-----------------------------+
1 row in set (0.00 sec)

mysql> SELECT UpdateXML(@xml, '//b:c', '<g:h>555</g:h>');
+--+
| UpdateXML(@xml, '//b:c', '<g:h>555</g:h>') |
+--+
| <a>111<g:h>555</g:h> |
+--+
1 row in set (0.00 sec)

This is similar in some respects to what is permitted by Apache Xalan and some other parsers, and is
much simpler than requiring namespace declarations or the use of the namespace-uri() and local-
name() functions.

2015

http://xalan.apache.org/

XML Functions

Error handling. For both ExtractValue() and UpdateXML(), the XPath locator used must be valid
and the XML to be searched must consist of elements which are properly nested and closed. If the locator
is invalid, an error is generated:

mysql> SELECT ExtractValue('<a>c', '/&a');
ERROR 1105 (HY000): XPATH syntax error: '&a'

If xml_frag does not consist of elements which are properly nested and closed, NULL is returned and a
warning is generated, as shown in this example:

mysql> SELECT ExtractValue('<a>c<b', '//a');
+-----------------------------------+
| ExtractValue('<a>c<b', '//a') |
+-----------------------------------+
| NULL |
+-----------------------------------+
1 row in set, 1 warning (0.00 sec)

mysql> SHOW WARNINGS\G
*************************** 1. row ***************************
 Level: Warning
 Code: 1525
Message: Incorrect XML value: 'parse error at line 1 pos 11:
 END-OF-INPUT unexpected ('>' wanted)'
1 row in set (0.00 sec)

mysql> SELECT ExtractValue('<a>c', '//a');
+-------------------------------------+
| ExtractValue('<a>c', '//a') |
+-------------------------------------+
| c |
+-------------------------------------+
1 row in set (0.00 sec)

Important

The replacement XML used as the third argument to UpdateXML() is not checked
to determine whether it consists solely of elements which are properly nested and
closed.

XPath Injection. code injection occurs when malicious code is introduced into the system to gain
unauthorized access to privileges and data. It is based on exploiting assumptions made by developers
about the type and content of data input from users. XPath is no exception in this regard.

A common scenario in which this can happen is the case of application which handles authorization by
matching the combination of a login name and password with those found in an XML file, using an XPath
expression like this one:

//user[login/text()='neapolitan' and password/text()='1c3cr34m']/attribute::id

This is the XPath equivalent of an SQL statement like this one:

SELECT id FROM users WHERE login='neapolitan' AND password='1c3cr34m';

A PHP application employing XPath might handle the login process like this:

<?php

 $file = "users.xml";

 $login = $POST["login"];
 $password = $POST["password"];

2016

XML Functions

 $xpath = "//user[login/text()=$login and password/text()=$password]/attribute::id";

 if(file_exists($file))
 {
 $xml = simplexml_load_file($file);

 if($result = $xml->xpath($xpath))
 echo "You are now logged in as user $result[0].";
 else
 echo "Invalid login name or password.";
 }
 else
 exit("Failed to open $file.");

?>

No checks are performed on the input. This means that a malevolent user can “short-circuit” the test by
entering ' or 1=1 for both the login name and password, resulting in $xpath being evaluated as shown
here:

//user[login/text()='' or 1=1 and password/text()='' or 1=1]/attribute::id

Since the expression inside the square brackets always evaluates as true, it is effectively the same as
this one, which matches the id attribute of every user element in the XML document:

//user/attribute::id

One way in which this particular attack can be circumvented is simply by quoting the variable names to
be interpolated in the definition of $xpath, forcing the values passed from a Web form to be converted to
strings:

$xpath = "//user[login/text()='$login' and password/text()='$password']/attribute::id";

This is the same strategy that is often recommended for preventing SQL injection attacks. In general, the
practices you should follow for preventing XPath injection attacks are the same as for preventing SQL
injection:

• Never accepted untested data from users in your application.

• Check all user-submitted data for type; reject or convert data that is of the wrong type

• Test numeric data for out of range values; truncate, round, or reject values that are out of range. Test
strings for illegal characters and either strip them out or reject input containing them.

• Do not output explicit error messages that might provide an unauthorized user with clues that could be
used to compromise the system; log these to a file or database table instead.

Just as SQL injection attacks can be used to obtain information about database schemas, so can XPath
injection be used to traverse XML files to uncover their structure, as discussed in Amit Klein's paper Blind
XPath Injection (PDF file, 46KB).

It is also important to check the output being sent back to the client. Consider what can happen when we
use the MySQL ExtractValue() function:

mysql> SELECT ExtractValue(
 -> LOAD_FILE('users.xml'),
 -> '//user[login/text()="" or 1=1 and password/text()="" or 1=1]/attribute::id'
 ->) AS id;
+-------------------------------+
| id |
+-------------------------------+
| 00327 13579 02403 42354 28570 |

2017

http://www.packetstormsecurity.org/papers/bypass/Blind_XPath_Injection_20040518.pdf
http://www.packetstormsecurity.org/papers/bypass/Blind_XPath_Injection_20040518.pdf

Bit Functions and Operators

+-------------------------------+
1 row in set (0.01 sec)

Because ExtractValue() returns multiple matches as a single space-delimited string, this injection
attack provides every valid ID contained within users.xml to the user as a single row of output. As an
extra safeguard, you should also test output before returning it to the user. Here is a simple example:

mysql> SELECT @id = ExtractValue(
 -> LOAD_FILE('users.xml'),
 -> '//user[login/text()="" or 1=1 and password/text()="" or 1=1]/attribute::id'
 ->);
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT IF(
 -> INSTR(@id, ' ') = 0,
 -> @id,
 -> 'Unable to retrieve user ID')
 -> AS singleID;
+----------------------------+
| singleID |
+----------------------------+
| Unable to retrieve user ID |
+----------------------------+
1 row in set (0.00 sec)

In general, the guidelines for returning data to users securely are the same as for accepting user input.
These can be summed up as:

• Always test outgoing data for type and permissible values.

• Never permit unauthorized users to view error messages that might provide information about the
application that could be used to exploit it.

12.12 Bit Functions and Operators
Table 12.17 Bit Functions and Operators

Name Description

& Bitwise AND

>> Right shift

<< Left shift

^ Bitwise XOR

BIT_COUNT() Return the number of bits that are set

| Bitwise OR

~ Bitwise inversion

The following list describes available bit functions and operators:

• |

Bitwise OR.

The result is an unsigned 64-bit integer.

mysql> SELECT 29 | 15;
 -> 31

• &

2018

Bit Functions and Operators

Bitwise AND.

The result is an unsigned 64-bit integer.

mysql> SELECT 29 & 15;
 -> 13

• ^

Bitwise XOR.

The result is an unsigned 64-bit integer.

mysql> SELECT 1 ^ 1;
 -> 0
mysql> SELECT 1 ^ 0;
 -> 1
mysql> SELECT 11 ^ 3;
 -> 8

• <<

Shifts a longlong (BIGINT) number to the left.

The result is an unsigned 64-bit integer. The value is truncated to 64 bits. In particular, if the shift count is
greater or equal to the width of an unsigned 64-bit number, the result is zero.

mysql> SELECT 1 << 2;
 -> 4

• >>

Shifts a longlong (BIGINT) number to the right.

The result is an unsigned 64-bit integer. The value is truncated to 64 bits. In particular, if the shift count is
greater or equal to the width of an unsigned 64-bit number, the result is zero.

mysql> SELECT 4 >> 2;
 -> 1

• ~

Invert all bits.

The result is an unsigned 64-bit integer.

mysql> SELECT 5 & ~1;
 -> 4

• BIT_COUNT(N)

Returns the number of bits that are set in the argument N as an unsigned 64-bit integer, or NULL if the
argument is NULL.

mysql> SELECT BIT_COUNT(29), BIT_COUNT(b'101010');
 -> 4, 3

Bit functions and operators comprise BIT_COUNT(), BIT_AND(), BIT_OR(), BIT_XOR(), &, |, ^, ~,
<<, and >>. (The BIT_AND(), BIT_OR(), and BIT_XOR() functions are aggregate functions described
at Section 12.19.1, “Aggregate Function Descriptions”.) Currently, bit functions and operators require

2019

Bit Functions and Operators

BIGINT (64-bit integer) arguments and return BIGINT values, so they have a maximum range of 64 bits.
Arguments of other types are converted to BIGINT and truncation might occur.

An extension for MySQL 8.0 changes this cast-to-BIGINT behavior: Bit functions and operators permit
binary string type arguments (BINARY, VARBINARY, and the BLOB types), enabling them to take
arguments and produce return values larger than 64 bits. Consequently, bit operations on binary
arguments in MySQL 5.7 might produce different results in MySQL 8.0. To provide advance notice about
this potential change in behavior, the server produces warnings as of MySQL 5.7.11 for bit operations for
which binary arguments are not converted to integer in MySQL 8.0. These warnings afford an opportunity
to rewrite affected statements. To produce MySQL 5.7 behavior explicitly in a way that does not change
after an upgrade to 8.0, cast bit-operation binary arguments to convert them to integer.

The five problematic expression types to watch out for are:

nonliteral_binary { & | ^ } binary
binary { & | ^ } nonliteral_binary
nonliteral_binary { << >> } anything
~ nonliteral_binary
AGGR_BIT_FUNC(nonliteral_binary)

Those expressions return BIGINT in MySQL 5.7, binary string in 8.0.

Explanation of notation:

• { op1 op2 ... }: List of operators that apply to the given expression type.

• binary: Any kind of binary string argument, including a hexadecimal literal, bit literal, or NULL literal.

• nonliteral_binary: An argument that is a binary string value other than a hexadecimal literal, bit
literal, or NULL literal.

• AGGR_BIT_FUNC: An aggregate function that takes bit-value arguments: BIT_AND(), BIT_OR(),
BIT_XOR().

The server produces a single warning for each problematic expression in a statement, not a warning for
each row processed. Suppose that a statement containing two problematic expressions selects three
rows from a table. The number of warnings per statement execution is two, not six. The following example
illustrates this.

mysql> CREATE TABLE t(vbin1 VARBINARY(32), vbin2 VARBINARY(32));
Query OK, 0 rows affected (0.03 sec)

mysql> INSERT INTO t VALUES (3,1), (3,2), (3,3);
Query OK, 3 rows affected (0.01 sec)
Records: 3 Duplicates: 0 Warnings: 0

mysql> SELECT HEX(vbin1 & vbin2) AS op1,
 -> HEX(vbin1 | vbin2) AS op2
 -> FROM t;
+------+------+
| op1 | op2 |
+------+------+
1	3
2	3
3	3
+------+------+
3 rows in set, 2 warnings (0.00 sec)

mysql> SHOW WARNINGS\G
*************************** 1. row ***************************
 Level: Warning

2020

Encryption and Compression Functions

 Code: 1287
Message: Bitwise operations on BINARY will change behavior in a future
 version, check the 'Bit functions' section in the manual.
*************************** 2. row ***************************
 Level: Warning
 Code: 1287
Message: Bitwise operations on BINARY will change behavior in a future
 version, check the 'Bit functions' section in the manual.
2 rows in set (0.00 sec)

To avoid having an affected statement produce a different result after an upgrade to MySQL 8.0, rewrite it
so that it generates no bit-operation warnings. To do this, cast at least one binary argument to BIGINT with
CAST(... AS UNSIGNED). This makes the MySQL 5.7 implicit binary-to-integer cast explicit:

mysql> SELECT HEX(CAST(vbin1 AS UNSIGNED) & CAST(vbin2 AS UNSIGNED)) AS op1,
 -> HEX(CAST(vbin1 AS UNSIGNED) | CAST(vbin2 AS UNSIGNED)) AS op2
 -> FROM t;
+------+------+
| op1 | op2 |
+------+------+
1	3
2	3
3	3
+------+------+
3 rows in set (0.01 sec)

mysql> SHOW WARNINGS\G
Empty set (0.00 sec)

With the statement rewritten as shown, MySQL 8.0 respects the intention to treat the binary arguments as
integers and produces the same result as in 5.7. Also, replicating the statement from MySQL 5.7 to 8.0
does not produce different results on different servers.

An affected statement that cannot be rewritten is subject to these potential problems with respect to
upgrades and replication:

• The statement might return a different result after an upgrade to MySQL 8.0.

• Replication to MySQL 8.0 from older versions might fail for statement-based and mixed-format
binary logging. This is also true for replaying older binary logs on an 8.0 server (for example, using
mysqlbinlog). To avoid this, switch to row-based binary logging on the older source server.

12.13 Encryption and Compression Functions
Table 12.18 Encryption Functions

Name Description Deprecated

AES_DECRYPT() Decrypt using AES

AES_ENCRYPT() Encrypt using AES

COMPRESS() Return result as a binary string

DECODE() Decode a string encrypted using
ENCODE()

Yes

DES_DECRYPT() Decrypt a string Yes

DES_ENCRYPT() Encrypt a string Yes

ENCODE() Encode a string Yes

ENCRYPT() Encrypt a string Yes

MD5() Calculate MD5 checksum

2021

Encryption and Compression Functions

Name Description Deprecated

PASSWORD() Calculate and return a password
string

Yes

RANDOM_BYTES() Return a random byte vector

SHA1(), SHA() Calculate an SHA-1 160-bit
checksum

SHA2() Calculate an SHA-2 checksum

UNCOMPRESS() Uncompress a string compressed

UNCOMPRESSED_LENGTH() Return the length of a string
before compression

VALIDATE_PASSWORD_STRENGTH()Determine strength of password

Many encryption and compression functions return strings for which the result might contain arbitrary byte
values. If you want to store these results, use a column with a VARBINARY or BLOB binary string data type.
This avoids potential problems with trailing space removal or character set conversion that would change
data values, such as may occur if you use a nonbinary string data type (CHAR, VARCHAR, TEXT).

Some encryption functions return strings of ASCII characters: MD5(), PASSWORD(), SHA(), SHA1(),
SHA2(). Their return value is a string that has a character set and collation determined by the
character_set_connection and collation_connection system variables. This is a nonbinary
string unless the character set is binary.

If an application stores values from a function such as MD5() or SHA1() that returns a string of hex
digits, more efficient storage and comparisons can be obtained by converting the hex representation to
binary using UNHEX() and storing the result in a BINARY(N) column. Each pair of hexadecimal digits
requires one byte in binary form, so the value of N depends on the length of the hex string. N is 16 for an
MD5() value and 20 for a SHA1() value. For SHA2(), N ranges from 28 to 32 depending on the argument
specifying the desired bit length of the result.

The size penalty for storing the hex string in a CHAR column is at least two times, up to eight times if the
value is stored in a column that uses the utf8 character set (where each character uses 4 bytes). Storing
the string also results in slower comparisons because of the larger values and the need to take character
set collation rules into account.

Suppose that an application stores MD5() string values in a CHAR(32) column:

CREATE TABLE md5_tbl (md5_val CHAR(32), ...);
INSERT INTO md5_tbl (md5_val, ...) VALUES(MD5('abcdef'), ...);

To convert hex strings to more compact form, modify the application to use UNHEX() and BINARY(16)
instead as follows:

CREATE TABLE md5_tbl (md5_val BINARY(16), ...);
INSERT INTO md5_tbl (md5_val, ...) VALUES(UNHEX(MD5('abcdef')), ...);

Applications should be prepared to handle the very rare case that a hashing function produces the same
value for two different input values. One way to make collisions detectable is to make the hash column a
primary key.

Note

Exploits for the MD5 and SHA-1 algorithms have become known. You may wish
to consider using another one-way encryption function described in this section
instead, such as SHA2().

2022

Encryption and Compression Functions

Caution

Passwords or other sensitive values supplied as arguments to encryption functions
are sent as cleartext to the MySQL server unless an SSL connection is used. Also,
such values appear in any MySQL logs to which they are written. To avoid these
types of exposure, applications can encrypt sensitive values on the client side
before sending them to the server. The same considerations apply to encryption
keys. To avoid exposing these, applications can use stored procedures to encrypt
and decrypt values on the server side.

• AES_DECRYPT(crypt_str,key_str[,init_vector][,kdf_name][,salt][,info |
iterations])

This function decrypts data using the official AES (Advanced Encryption Standard) algorithm. For more
information, see the description of AES_ENCRYPT().

Statements that use AES_DECRYPT() are unsafe for statement-based replication.

• AES_ENCRYPT(str,key_str[,init_vector][,kdf_name][,salt][,info | iterations])

AES_ENCRYPT() and AES_DECRYPT() implement encryption and decryption of data using the official
AES (Advanced Encryption Standard) algorithm, previously known as “Rijndael.” The AES standard
permits various key lengths. By default these functions implement AES with a 128-bit key length.
Key lengths of 196 or 256 bits can be used, as described later. The key length is a trade off between
performance and security.

AES_ENCRYPT() encrypts the string str using the key string key_str, and returns a binary string
containing the encrypted output. AES_DECRYPT() decrypts the encrypted string crypt_str using the
key string key_str, and returns the original plaintext string. If either function argument is NULL, the
function returns NULL. If AES_DECRYPT() detects invalid data or incorrect padding, it returns NULL.
However, it is possible for AES_DECRYPT() to return a non-NULL value (possibly garbage) if the input
data or the key is invalid.

As of MySQL 5.7.40, these functions support the use of a key derivation function (KDF) to create a
cryptographically strong secret key from the information passed in key_str. The derived key is used
to encrypt and decrypt the data, and it remains in the MySQL Server instance and is not accessible
to users. Using a KDF is highly recommended, as it provides better security than specifying your
own premade key or deriving it by a simpler method as you use the function. The functions support
HKDF (available from OpenSSL 1.1.0), for which you can specify an optional salt and context-specific
information to include in the keying material, and PBKDF2 (available from OpenSSL 1.0.2), for which you
can specify an optional salt and set the number of iterations used to produce the key.

AES_ENCRYPT() and AES_DECRYPT() permit control of the block encryption mode. The
block_encryption_mode system variable controls the mode for block-based encryption algorithms.
Its default value is aes-128-ecb, which signifies encryption using a key length of 128 bits and ECB
mode. For a description of the permitted values of this variable, see Section 5.1.7, “Server System
Variables”. The optional init_vector argument is used to provide an initialization vector for block
encryption modes that require it.

Statements that use AES_ENCRYPT() or AES_DECRYPT() are unsafe for statement-based replication.

If AES_ENCRYPT() is invoked from within the mysql client, binary strings display using hexadecimal
notation, depending on the value of the --binary-as-hex. For more information about that option, see
Section 4.5.1, “mysql — The MySQL Command-Line Client”.

The arguments for the AES_ENCRYPT() and AES_DECRYPT() functions are as follows:

2023

Encryption and Compression Functions

str The string for AES_ENCRYPT() to encrypt using the key string
key_str, or (as of MySQL 5.7.40) the key derived from it by the
specified KDF. The string can be any length. Padding is automatically
added to str so it is a multiple of a block as required by block-based
algorithms such as AES. This padding is automatically removed by
the AES_DECRYPT() function.

crypt_str The encrypted string for AES_DECRYPT() to decrypt using the key
string key_str, or (from MySQL 5.7.40) the key derived from it
by the specified KDF. The string can be any length. The length of
crypt_str can be calculated from the length of the original string
using this formula:

16 * (trunc(string_length / 16) + 1)

key_str The encryption key, or the input keying material that is used as the
basis for deriving a key using a key derivation function (KDF). For the
same instance of data, use the same value of key_str for encryption
with AES_ENCRYPT() and decryption with AES_DECRYPT().

If you are using a KDF, which you can from MySQL 5.7.40, key_str
can be any arbitrary information such as a password or passphrase.
In the further arguments for the function, you specify the KDF name,
then add further options to increase the security as appropriate for the
KDF.

When you use a KDF, the function creates a cryptographically strong
secret key from the information passed in key_str and any salt or
additional information that you provide in the other arguments. The
derived key is used to encrypt and decrypt the data, and it remains
in the MySQL Server instance and is not accessible to users. Using
a KDF is highly recommended, as it provides better security than
specifying your own premade key or deriving it by a simpler method
as you use the function.

If you are not using a KDF, for a key length of 128 bits, the most
secure way to pass a key to the key_str argument is to create a
truly random 128-bit value and pass it as a binary value. For example:

INSERT INTO t
VALUES (1,AES_ENCRYPT('text',UNHEX('F3229A0B371ED2D9441B830D21A390C3')));

A passphrase can be used to generate an AES key by hashing the
passphrase. For example:

INSERT INTO t
VALUES (1,AES_ENCRYPT('text', UNHEX(SHA2('My secret passphrase',512))));

If you exceed the maximum key length of 128 bits, a warning is
returned. If you are not using a KDF, do not pass a password or
passphrase directly to key_str, hash it first. Previous versions of
this documentation suggested the former approach, but it is no longer
recommended as the examples shown here are more secure.

init_vector An initialization vector, for block encryption modes that require
it. The block_encryption_mode system variable controls

2024

Encryption and Compression Functions

the mode. For the same instance of data, use the same value of
init_vector for encryption with AES_ENCRYPT() and decryption
with AES_DECRYPT().

Note

If you are using a KDF, you must specify
an initialization vector or a null string for
this argument, in order to access the later
arguments to define the KDF.

For modes that require an initialization vector, it must be 16 bytes
or longer (bytes in excess of 16 are ignored). An error occurs
if init_vector is missing. For modes that do not require an
initialization vector, it is ignored and a warning is generated if
init_vector is specified, unless you are using a KDF.

The default value for the block_encryption_mode system
variable is aes-128-ecb, or ECB mode, which does not require an
initialization vector. The alternative permitted block encryption modes
CBC, CFB1, CFB8, CFB128, and OFB all require an initialization
vector.

A random string of bytes to use for the initialization vector can be
produced by calling RANDOM_BYTES(16).

kdf_name The name of the key derivation function (KDF) to create a key from
the input keying material passed in key_str, and other arguments
as appropriate for the KDF. This optional argument is available from
MySQL 5.7.40.

For the same instance of data, use the same value of kdf_name
for encryption with AES_ENCRYPT() and decryption with
AES_DECRYPT(). When you specify kdf_name, you must specify
init_vector, using either a valid initialization vector, or a null string
if the encryption mode does not require an initialization vector.

The following values are supported:

hkdf HKDF, which is available from
OpenSSL 1.1.0. HKDF extracts
a pseudorandom key from the
keying material then expands it
into additional keys. With HKDF,
you can specify an optional salt
(salt) and context-specific
information such as application
details (info) to include in the
keying material.

pbkdf2_hmac PBKDF2, which is available from
OpenSSL 1.0.2. PBKDF2 applies
a pseudorandom function to the
keying material, and repeats this
process a large number of times

2025

Encryption and Compression Functions

to produce the key. With PBKDF2,
you can specify an optional salt
(salt) to include in the keying
material, and set the number of
iterations used to produce the key
(iterations).

In this example, HKDF is specified as the key derivation function, and
a salt and context information are provided. The argument for the
initialization vector is included but is the empty string:

SELECT AES_ENCRYPT('mytext','mykeystring', '', 'hkdf', 'salt', 'info');

In this example, PBKDF2 is specified as the key derivation function,
a salt is provided, and the number of iterations is doubled from the
recommended minimum:

SELECT AES_ENCRYPT('mytext','mykeystring', '', 'pbkdf2_hmac','salt', '2000');

salt A salt to be passed to the key derivation function (KDF). This optional
argument is available from MySQL 5.7.40. Both HKDF and PBKDF2
can use salts, and their use is recommended to help prevent attacks
based on dictionaries of common passwords or rainbow tables.

A salt consists of random data, which for security must be different
for each encryption operation. A random string of bytes to use for the
salt can be produced by calling RANDOM_BYTES(). This example
produces a 64-bit salt:

SET @salt = RANDOM_BYTES(8);

For the same instance of data, use the same value of salt
for encryption with AES_ENCRYPT() and decryption with
AES_DECRYPT(). The salt can safely be stored along with the
encrypted data.

info Context-specific information for HKDF to include in the keying
material, such as information about the application. This optional
argument is available from MySQL 5.7.40 when you specify hkdf
as the KDF name. HKDF adds this information to the keying material
specified in key_str and the salt specified in salt to produce the
key.

For the same instance of data, use the same value of info
for encryption with AES_ENCRYPT() and decryption with
AES_DECRYPT().

iterations The iteration count for PBKDF2 to use when producing the key.
This optional argument is available from MySQL 5.7.40 when you
specify pbkdf2_hmac as the KDF name. A higher count gives
greater resistance to brute-force attacks because it has a greater
computational cost for the attacker, but the same is necessarily
true for the key derivation process. The default if you do not specify

2026

Encryption and Compression Functions

this argument is 1000, which is the minimum recommended by the
OpenSSL standard.

For the same instance of data, use the same value of iterations
for encryption with AES_ENCRYPT() and decryption with
AES_DECRYPT().

mysql> SET block_encryption_mode = 'aes-256-cbc';
mysql> SET @key_str = SHA2('My secret passphrase',512);
mysql> SET @init_vector = RANDOM_BYTES(16);
mysql> SET @crypt_str = AES_ENCRYPT('text',@key_str,@init_vector);
mysql> SELECT AES_DECRYPT(@crypt_str,@key_str,@init_vector);
+---+
| AES_DECRYPT(@crypt_str,@key_str,@init_vector) |
+---+
| text |
+---+

• COMPRESS(string_to_compress)

Compresses a string and returns the result as a binary string. This function requires MySQL to have
been compiled with a compression library such as zlib. Otherwise, the return value is always NULL.
The compressed string can be uncompressed with UNCOMPRESS().

mysql> SELECT LENGTH(COMPRESS(REPEAT('a',1000)));
 -> 21
mysql> SELECT LENGTH(COMPRESS(''));
 -> 0
mysql> SELECT LENGTH(COMPRESS('a'));
 -> 13
mysql> SELECT LENGTH(COMPRESS(REPEAT('a',16)));
 -> 15

The compressed string contents are stored the following way:

• Empty strings are stored as empty strings.

• Nonempty strings are stored as a 4-byte length of the uncompressed string (low byte first), followed by
the compressed string. If the string ends with space, an extra . character is added to avoid problems
with endspace trimming should the result be stored in a CHAR or VARCHAR column. (However,
use of nonbinary string data types such as CHAR or VARCHAR to store compressed strings is not
recommended anyway because character set conversion may occur. Use a VARBINARY or BLOB
binary string column instead.)

If COMPRESS() is invoked from within the mysql client, binary strings display using hexadecimal
notation, depending on the value of the --binary-as-hex. For more information about that option, see
Section 4.5.1, “mysql — The MySQL Command-Line Client”.

• DECODE(crypt_str,pass_str)

DECODE() decrypts the encrypted string crypt_str using pass_str as the password. crypt_str
should be a string returned from ENCODE().

Note

The ENCODE() and DECODE() functions are deprecated in MySQL 5.7, and
should no longer be used. Expect them to be removed in a future MySQL
release. Consider using AES_ENCRYPT() and AES_DECRYPT() instead.

2027

Encryption and Compression Functions

• DES_DECRYPT(crypt_str[,key_str])

Decrypts a string encrypted with DES_ENCRYPT(). If an error occurs, this function returns NULL.

This function works only if MySQL has been configured with SSL support. See Section 6.3, “Using
Encrypted Connections”.

If no key_str argument is given, DES_DECRYPT() examines the first byte of the encrypted string to
determine the DES key number that was used to encrypt the original string, and then reads the key from
the DES key file to decrypt the message. For this to work, the user must have the SUPER privilege. The
key file can be specified with the --des-key-file server option.

If you pass this function a key_str argument, that string is used as the key for decrypting the message.

If the crypt_str argument does not appear to be an encrypted string, MySQL returns the given
crypt_str.

Note

The DES_ENCRYPT() and DES_DECRYPT() functions are deprecated in MySQL
5.7, are removed in MySQL 8.0, and should no longer be used. Consider using
AES_ENCRYPT() and AES_DECRYPT() instead.

• DES_ENCRYPT(str[,{key_num|key_str}])

Encrypts the string with the given key using the Triple-DES algorithm.

This function works only if MySQL has been configured with SSL support. See Section 6.3, “Using
Encrypted Connections”.

The encryption key to use is chosen based on the second argument to DES_ENCRYPT(), if one was
given. With no argument, the first key from the DES key file is used. With a key_num argument, the
given key number (0 to 9) from the DES key file is used. With a key_str argument, the given key string
is used to encrypt str.

The key file can be specified with the --des-key-file server option.

The return string is a binary string where the first character is CHAR(128 | key_num). If an error
occurs, DES_ENCRYPT() returns NULL.

The 128 is added to make it easier to recognize an encrypted key. If you use a string key, key_num is
127.

The string length for the result is given by this formula:

new_len = orig_len + (8 - (orig_len % 8)) + 1

Each line in the DES key file has the following format:

key_num des_key_str

Each key_num value must be a number in the range from 0 to 9. Lines in the file may be in any order.
des_key_str is the string that is used to encrypt the message. There should be at least one space

2028

Encryption and Compression Functions

between the number and the key. The first key is the default key that is used if you do not specify any
key argument to DES_ENCRYPT().

You can tell MySQL to read new key values from the key file with the FLUSH DES_KEY_FILE
statement. This requires the RELOAD privilege.

One benefit of having a set of default keys is that it gives applications a way to check for the existence of
encrypted column values, without giving the end user the right to decrypt those values.

Note

The DES_ENCRYPT() and DES_DECRYPT() functions are deprecated in MySQL
5.7, are removed in MySQL 8.0, and should no longer be used. Consider using
AES_ENCRYPT() and AES_DECRYPT() instead.

mysql> SELECT customer_address FROM customer_table
 > WHERE crypted_credit_card = DES_ENCRYPT('credit_card_number');

If DES_ENCRYPT() is invoked from within the mysql client, binary strings display using hexadecimal
notation, depending on the value of the --binary-as-hex. For more information about that option, see
Section 4.5.1, “mysql — The MySQL Command-Line Client”.

• ENCODE(str,pass_str)

ENCODE() encrypts str using pass_str as the password. The result is a binary string of the same
length as str. To decrypt the result, use DECODE().

Note

The ENCODE() and DECODE() functions are deprecated in MySQL 5.7, and
should no longer be used. Expect them to be removed in a future MySQL
release.

If you still need to use ENCODE(), a salt value must be used with it to reduce risk. For example:

ENCODE('cleartext', CONCAT('my_random_salt','my_secret_password'))

A new random salt value must be used whenever a password is updated.

If ENCODE() is invoked from within the mysql client, binary strings display using hexadecimal notation,
depending on the value of the --binary-as-hex. For more information about that option, see
Section 4.5.1, “mysql — The MySQL Command-Line Client”.

• ENCRYPT(str[,salt])

Encrypts str using the Unix crypt() system call and returns a binary string. The salt argument
must be a string with at least two characters or else the result is NULL. If no salt argument is given, a
random value is used.

Note

The ENCRYPT() function is deprecated in MySQL 5.7, are removed in MySQL
8.0, and should no longer be used. For one-way hashing, consider using SHA2()
instead.

mysql> SELECT ENCRYPT('hello');

2029

Encryption and Compression Functions

 -> 'VxuFAJXVARROc'

ENCRYPT() ignores all but the first eight characters of str, at least on some systems. This behavior is
determined by the implementation of the underlying crypt() system call.

The use of ENCRYPT() with the ucs2, utf16, utf16le, or utf32 multibyte character sets is not
recommended because the system call expects a string terminated by a zero byte.

If crypt() is not available on your system (as is the case with Windows), ENCRYPT() always returns
NULL.

If ENCRYPT() is invoked from within the mysql client, binary strings display using hexadecimal notation,
depending on the value of the --binary-as-hex. For more information about that option, see
Section 4.5.1, “mysql — The MySQL Command-Line Client”.

• MD5(str)

Calculates an MD5 128-bit checksum for the string. The value is returned as a string of 32 hexadecimal
digits, or NULL if the argument was NULL. The return value can, for example, be used as a hash key.
See the notes at the beginning of this section about storing hash values efficiently.

The return value is a string in the connection character set.

mysql> SELECT MD5('testing');
 -> 'ae2b1fca515949e5d54fb22b8ed95575'

This is the “RSA Data Security, Inc. MD5 Message-Digest Algorithm.”

See the note regarding the MD5 algorithm at the beginning this section.

• PASSWORD(str)

Note

This function is deprecated in MySQL 5.7 and is removed in MySQL 8.0.

Returns a hashed password string calculated from the cleartext password str. The return value is a
string in the connection character set, or NULL if the argument is NULL. This function is the SQL interface
to the algorithm used by the server to encrypt MySQL passwords for storage in the mysql.user grant
table.

The old_passwords system variable controls the password hashing method used by the PASSWORD()
function. It also influences password hashing performed by CREATE USER and GRANT statements that
specify a password using an IDENTIFIED BY clause.

The following table shows, for each password hashing method, the permitted value of old_passwords
and which authentication plugins use the hashing method.

Password Hashing Method old_passwords Value Associated Authentication
Plugin

MySQL 4.1 native hashing 0 mysql_native_password

SHA-256 hashing 2 sha256_password

SHA-256 password hashing (old_passwords=2) uses a random salt value, which makes the result
from PASSWORD() nondeterministic. Consequently, statements that use this function are not safe for
statement-based replication and cannot be stored in the query cache.

2030

Encryption and Compression Functions

Encryption performed by PASSWORD() is one-way (not reversible), but it is not the same type of
encryption used for Unix passwords.

Note

PASSWORD() is used by the authentication system in MySQL Server; you should
not use it in your own applications. For that purpose, consider a more secure
function such as SHA2() instead. Also see RFC 2195, section 2 (Challenge-
Response Authentication Mechanism (CRAM)), for more information about
handling passwords and authentication securely in your applications.

Caution

Under some circumstances, statements that invoke PASSWORD() may
be recorded in server logs or on the client side in a history file such as
~/.mysql_history, which means that cleartext passwords may be read
by anyone having read access to that information. For information about the
conditions under which this occurs for the server logs and how to control it, see
Section 6.1.2.3, “Passwords and Logging”. For similar information about client-
side logging, see Section 4.5.1.3, “mysql Client Logging”.

• RANDOM_BYTES(len)

This function returns a binary string of len random bytes generated using the random number generator
of the SSL library. Permitted values of len range from 1 to 1024. For values outside that range, an error
occurs.

RANDOM_BYTES() can be used to provide the initialization vector for the AES_DECRYPT() and
AES_ENCRYPT() functions. For use in that context, len must be at least 16. Larger values are
permitted, but bytes in excess of 16 are ignored.

RANDOM_BYTES() generates a random value, which makes its result nondeterministic. Consequently,
statements that use this function are unsafe for statement-based replication and cannot be stored in the
query cache.

If RANDOM_BYTES() is invoked from within the mysql client, binary strings display using hexadecimal
notation, depending on the value of the --binary-as-hex. For more information about that option, see
Section 4.5.1, “mysql — The MySQL Command-Line Client”.

• SHA1(str), SHA(str)

Calculates an SHA-1 160-bit checksum for the string, as described in RFC 3174 (Secure Hash
Algorithm). The value is returned as a string of 40 hexadecimal digits, or NULL if the argument was
NULL. One of the possible uses for this function is as a hash key. See the notes at the beginning of this
section about storing hash values efficiently. SHA() is synonymous with SHA1().

The return value is a string in the connection character set.

mysql> SELECT SHA1('abc');
 -> 'a9993e364706816aba3e25717850c26c9cd0d89d'

SHA1() can be considered a cryptographically more secure equivalent of MD5(). However, see the note
regarding the MD5 and SHA-1 algorithms at the beginning this section.

2031

http://www.faqs.org/rfcs/rfc2195.html
http://www.faqs.org/rfcs/rfc2195.html

Encryption and Compression Functions

• SHA2(str, hash_length)

Calculates the SHA-2 family of hash functions (SHA-224, SHA-256, SHA-384, and SHA-512). The first
argument is the plaintext string to be hashed. The second argument indicates the desired bit length of
the result, which must have a value of 224, 256, 384, 512, or 0 (which is equivalent to 256). If either
argument is NULL or the hash length is not one of the permitted values, the return value is NULL.
Otherwise, the function result is a hash value containing the desired number of bits. See the notes at the
beginning of this section about storing hash values efficiently.

The return value is a string in the connection character set.

mysql> SELECT SHA2('abc', 224);
 -> '23097d223405d8228642a477bda255b32aadbce4bda0b3f7e36c9da7'

This function works only if MySQL has been configured with SSL support. See Section 6.3, “Using
Encrypted Connections”.

SHA2() can be considered cryptographically more secure than MD5() or SHA1().

• UNCOMPRESS(string_to_uncompress)

Uncompresses a string compressed by the COMPRESS() function. If the argument is not a compressed
value, the result is NULL. This function requires MySQL to have been compiled with a compression
library such as zlib. Otherwise, the return value is always NULL.

mysql> SELECT UNCOMPRESS(COMPRESS('any string'));
 -> 'any string'
mysql> SELECT UNCOMPRESS('any string');
 -> NULL

• UNCOMPRESSED_LENGTH(compressed_string)

Returns the length that the compressed string had before being compressed.

mysql> SELECT UNCOMPRESSED_LENGTH(COMPRESS(REPEAT('a',30)));
 -> 30

• VALIDATE_PASSWORD_STRENGTH(str)

Given an argument representing a plaintext password, this function returns an integer to indicate how
strong the password is. The return value ranges from 0 (weak) to 100 (strong).

Password assessment by VALIDATE_PASSWORD_STRENGTH() is done by the validate_password
plugin. If that plugin is not installed, the function always returns 0. For information about installing
validate_password, see Section 6.4.3, “The Password Validation Plugin”. To examine or configure
the parameters that affect password testing, check or set the system variables implemented by
validate_password. See Section 6.4.3.2, “Password Validation Plugin Options and Variables”.

The password is subjected to increasingly strict tests and the return value reflects
which tests were satisfied, as shown in the following table. In addition, if the
validate_password_check_user_name system variable is enabled and the password
matches the user name, VALIDATE_PASSWORD_STRENGTH() returns 0 regardless of how other
validate_password system variables are set.

Password Test Return Value

Length < 4 0

Length ≥ 4 and < validate_password_length 25
2032

Locking Functions

Password Test Return Value

Satisfies policy 1 (LOW) 50

Satisfies policy 2 (MEDIUM) 75

Satisfies policy 3 (STRONG) 100

12.14 Locking Functions

This section describes functions used to manipulate user-level locks.

Table 12.19 Locking Functions

Name Description

GET_LOCK() Get a named lock

IS_FREE_LOCK() Whether the named lock is free

IS_USED_LOCK() Whether the named lock is in use; return connection
identifier if true

RELEASE_ALL_LOCKS() Release all current named locks

RELEASE_LOCK() Release the named lock

• GET_LOCK(str,timeout)

Tries to obtain a lock with a name given by the string str, using a timeout of timeout seconds. A
negative timeout value means infinite timeout. The lock is exclusive. While held by one session, other
sessions cannot obtain a lock of the same name.

Returns 1 if the lock was obtained successfully, 0 if the attempt timed out (for example, because another
client has previously locked the name), or NULL if an error occurred (such as running out of memory or
the thread was killed with mysqladmin kill).

A lock obtained with GET_LOCK() is released explicitly by executing RELEASE_LOCK() or implicitly
when your session terminates (either normally or abnormally). Locks obtained with GET_LOCK() are not
released when transactions commit or roll back.

In MySQL 5.7, GET_LOCK() was reimplemented using the metadata locking (MDL) subsystem and its
capabilities were extended. Multiple simultaneous locks can be acquired and GET_LOCK() does not
release any existing locks.

It is even possible for a given session to acquire multiple locks for the same name. Other sessions
cannot acquire a lock with that name until the acquiring session releases all its locks for the name.

As a result of the MDL reimplementation, uniquely named locks acquired with GET_LOCK() appear
in the Performance Schema metadata_locks table. The OBJECT_TYPE column says USER LEVEL
LOCK and the OBJECT_NAME column indicates the lock name. In the case that multiple locks are
acquired for the same name, only the first lock for the name registers a row in the metadata_locks
table. Subsequent locks for the name increment a counter in the lock but do not acquire additional
metadata locks. The metadata_locks row for the lock is deleted when the last lock instance on the
name is released.

The capability of acquiring multiple locks means there is the possibility of deadlock among clients.
When this happens, the server chooses a caller and terminates its lock-acquisition request with an
ER_USER_LOCK_DEADLOCK error. This error does not cause transactions to roll back.

2033

https://dev.mysql.com/doc/mysql-errors/5.7/en/server-error-reference.html#error_er_user_lock_deadlock

Locking Functions

Before MySQL 5.7, only a single simultaneous lock can be acquired and GET_LOCK() releases any
existing lock. The difference in lock acquisition behavior as of MySQL 5.7 can be seen by the following
example. Suppose that you execute these statements:

SELECT GET_LOCK('lock1',10);
SELECT GET_LOCK('lock2',10);
SELECT RELEASE_LOCK('lock2');
SELECT RELEASE_LOCK('lock1');

In MySQL 5.7 or later, the second GET_LOCK() acquires a second lock and both RELEASE_LOCK()
calls return 1 (success). Before MySQL 5.7, the second GET_LOCK() releases the first lock ('lock1')
and the second RELEASE_LOCK() returns NULL (failure) because there is no 'lock1' to release.

MySQL 5.7 and later enforces a maximum length on lock names of 64 characters. Previously, no limit
was enforced.

GET_LOCK() can be used to implement application locks or to simulate record locks. Names are locked
on a server-wide basis. If a name has been locked within one session, GET_LOCK() blocks any request
by another session for a lock with the same name. This enables clients that agree on a given lock name
to use the name to perform cooperative advisory locking. But be aware that it also enables a client that
is not among the set of cooperating clients to lock a name, either inadvertently or deliberately, and thus
prevent any of the cooperating clients from locking that name. One way to reduce the likelihood of this is
to use lock names that are database-specific or application-specific. For example, use lock names of the
form db_name.str or app_name.str.

If multiple clients are waiting for a lock, the order in which they acquire it is undefined. Applications
should not assume that clients acquire the lock in the same order that they issued the lock requests.

GET_LOCK() is unsafe for statement-based replication. A warning is logged if you use this function
when binlog_format is set to STATEMENT.

Since GET_LOCK() establishes a lock only on a single mysqld, it is not suitable for use with
NDB Cluster, which has no way of enforcing an SQL lock across multiple MySQL servers. See
Section 21.2.7.10, “Limitations Relating to Multiple NDB Cluster Nodes”, for more information.

Caution

With the capability of acquiring multiple named locks, it is possible for a single
statement to acquire a large number of locks. For example:

INSERT INTO ... SELECT GET_LOCK(t1.col_name) FROM t1;

These types of statements may have certain adverse effects. For example, if the
statement fails part way through and rolls back, locks acquired up to the point of
failure still exist. If the intent is for there to be a correspondence between rows
inserted and locks acquired, that intent is not satisfied. Also, if it is important that
locks are granted in a certain order, be aware that result set order may differ
depending on which execution plan the optimizer chooses. For these reasons, it
may be best to limit applications to a single lock-acquisition call per statement.

A different locking interface is available as either a plugin service or a set of loadable functions. This
interface provides lock namespaces and distinct read and write locks, unlike the interface provided by
GET_LOCK() and related functions. For details, see Section 5.5.6.1, “The Locking Service”.

2034

Information Functions

• IS_FREE_LOCK(str)

Checks whether the lock named str is free to use (that is, not locked). Returns 1 if the lock is free (no
one is using the lock), 0 if the lock is in use, and NULL if an error occurs (such as an incorrect argument).

This function is unsafe for statement-based replication. A warning is logged if you use this function when
binlog_format is set to STATEMENT.

• IS_USED_LOCK(str)

Checks whether the lock named str is in use (that is, locked). If so, it returns the connection identifier of
the client session that holds the lock. Otherwise, it returns NULL.

This function is unsafe for statement-based replication. A warning is logged if you use this function when
binlog_format is set to STATEMENT.

• RELEASE_ALL_LOCKS()

Releases all named locks held by the current session and returns the number of locks released (0 if
there were none)

This function is unsafe for statement-based replication. A warning is logged if you use this function when
binlog_format is set to STATEMENT.

• RELEASE_LOCK(str)

Releases the lock named by the string str that was obtained with GET_LOCK(). Returns 1 if the lock
was released, 0 if the lock was not established by this thread (in which case the lock is not released),
and NULL if the named lock did not exist. The lock does not exist if it was never obtained by a call to
GET_LOCK() or if it has previously been released.

The DO statement is convenient to use with RELEASE_LOCK(). See Section 13.2.3, “DO Statement”.

This function is unsafe for statement-based replication. A warning is logged if you use this function when
binlog_format is set to STATEMENT.

12.15 Information Functions
Table 12.20 Information Functions

Name Description

BENCHMARK() Repeatedly execute an expression

CHARSET() Return the character set of the argument

COERCIBILITY() Return the collation coercibility value of the string
argument

COLLATION() Return the collation of the string argument

CONNECTION_ID() Return the connection ID (thread ID) for the
connection

CURRENT_USER(), CURRENT_USER The authenticated user name and host name

DATABASE() Return the default (current) database name

FOUND_ROWS() For a SELECT with a LIMIT clause, the number of
rows that would be returned were there no LIMIT
clause

2035

Information Functions

Name Description

LAST_INSERT_ID() Value of the AUTOINCREMENT column for the last
INSERT

ROW_COUNT() The number of rows updated

SCHEMA() Synonym for DATABASE()

SESSION_USER() Synonym for USER()

SYSTEM_USER() Synonym for USER()

USER() The user name and host name provided by the
client

VERSION() Return a string that indicates the MySQL server
version

• BENCHMARK(count,expr)

The BENCHMARK() function executes the expression expr repeatedly count times. It may be used
to time how quickly MySQL processes the expression. The result value is 0, or NULL for inappropriate
arguments such as a NULL or negative repeat count.

The intended use is from within the mysql client, which reports query execution times:

mysql> SELECT BENCHMARK(1000000,AES_ENCRYPT('hello','goodbye'));
+---+
| BENCHMARK(1000000,AES_ENCRYPT('hello','goodbye')) |
+---+
| 0 |
+---+
1 row in set (4.74 sec)

The time reported is elapsed time on the client end, not CPU time on the server end. It is advisable to
execute BENCHMARK() several times, and to interpret the result with regard to how heavily loaded the
server machine is.

BENCHMARK() is intended for measuring the runtime performance of scalar expressions, which has
some significant implications for the way that you use it and interpret the results:

• Only scalar expressions can be used. Although the expression can be a subquery, it must return a
single column and at most a single row. For example, BENCHMARK(10, (SELECT * FROM t)) fails
if the table t has more than one column or more than one row.

• Executing a SELECT expr statement N times differs from executing SELECT BENCHMARK(N,
expr) in terms of the amount of overhead involved. The two have very different execution profiles
and you should not expect them to take the same amount of time. The former involves the parser,
optimizer, table locking, and runtime evaluation N times each. The latter involves only runtime
evaluation N times, and all the other components just once. Memory structures already allocated are
reused, and runtime optimizations such as local caching of results already evaluated for aggregate
functions can alter the results. Use of BENCHMARK() thus measures performance of the runtime
component by giving more weight to that component and removing the “noise” introduced by the
network, parser, optimizer, and so forth.

• CHARSET(str)

Returns the character set of the string argument.

mysql> SELECT CHARSET('abc');
 -> 'latin1'

2036

Information Functions

mysql> SELECT CHARSET(CONVERT('abc' USING utf8));
 -> 'utf8'
mysql> SELECT CHARSET(USER());
 -> 'utf8'

• COERCIBILITY(str)

Returns the collation coercibility value of the string argument.

mysql> SELECT COERCIBILITY('abc' COLLATE latin1_swedish_ci);
 -> 0
mysql> SELECT COERCIBILITY(USER());
 -> 3
mysql> SELECT COERCIBILITY('abc');
 -> 4
mysql> SELECT COERCIBILITY(1000);
 -> 5

The return values have the meanings shown in the following table. Lower values have higher
precedence.

Coercibility Meaning Example

0 Explicit collation Value with COLLATE clause

1 No collation Concatenation of strings with
different collations

2 Implicit collation Column value, stored routine
parameter or local variable

3 System constant USER() return value

4 Coercible Literal string

5 Numeric Numeric or temporal value

6 Ignorable NULL or an expression derived
from NULL

For more information, see Section 10.8.4, “Collation Coercibility in Expressions”.

• COLLATION(str)

Returns the collation of the string argument.

mysql> SELECT COLLATION('abc');
 -> 'latin1_swedish_ci'
mysql> SELECT COLLATION(_utf8'abc');
 -> 'utf8_general_ci'

• CONNECTION_ID()

Returns the connection ID (thread ID) for the connection. Every connection has an ID that is unique
among the set of currently connected clients.

The value returned by CONNECTION_ID() is the same type of value as displayed in the ID column of
the Information Schema PROCESSLIST table, the Id column of SHOW PROCESSLIST output, and the
PROCESSLIST_ID column of the Performance Schema threads table.

mysql> SELECT CONNECTION_ID();

2037

Information Functions

 -> 23786

Warning

Changing the session value of the pseudo_thread_id system variable
changes the value returned by the CONNECTION_ID() function.

• CURRENT_USER, CURRENT_USER()

Returns the user name and host name combination for the MySQL account that the server used to
authenticate the current client. This account determines your access privileges. The return value is a
string in the utf8 character set.

The value of CURRENT_USER() can differ from the value of USER().

mysql> SELECT USER();
 -> 'davida@localhost'
mysql> SELECT * FROM mysql.user;
ERROR 1044: Access denied for user ''@'localhost' to
database 'mysql'
mysql> SELECT CURRENT_USER();
 -> '@localhost'

The example illustrates that although the client specified a user name of davida (as indicated by the
value of the USER() function), the server authenticated the client using an anonymous user account (as
seen by the empty user name part of the CURRENT_USER() value). One way this might occur is that
there is no account listed in the grant tables for davida.

Within a stored program or view, CURRENT_USER() returns the account for the user who defined the
object (as given by its DEFINER value) unless defined with the SQL SECURITY INVOKER characteristic.
In the latter case, CURRENT_USER() returns the object's invoker.

Triggers and events have no option to define the SQL SECURITY characteristic, so for these objects,
CURRENT_USER() returns the account for the user who defined the object. To return the invoker, use
USER() or SESSION_USER().

The following statements support use of the CURRENT_USER() function to take the place of the name of
(and, possibly, a host for) an affected user or a definer; in such cases, CURRENT_USER() is expanded
where and as needed:

• DROP USER

• RENAME USER

• GRANT

• REVOKE

• CREATE FUNCTION

• CREATE PROCEDURE

• CREATE TRIGGER

• CREATE EVENT

• CREATE VIEW

• ALTER EVENT

2038

Information Functions

• ALTER VIEW

• SET PASSWORD

For information about the implications that this expansion of CURRENT_USER() has for replication, see
Section 16.4.1.8, “Replication of CURRENT_USER()”.

• DATABASE()

Returns the default (current) database name as a string in the utf8 character set. If there is no default
database, DATABASE() returns NULL. Within a stored routine, the default database is the database that
the routine is associated with, which is not necessarily the same as the database that is the default in the
calling context.

mysql> SELECT DATABASE();
 -> 'test'

If there is no default database, DATABASE() returns NULL.

• FOUND_ROWS()

A SELECT statement may include a LIMIT clause to restrict the number of rows the server returns to
the client. In some cases, it is desirable to know how many rows the statement would have returned
without the LIMIT, but without running the statement again. To obtain this row count, include an
SQL_CALC_FOUND_ROWS option in the SELECT statement, and then invoke FOUND_ROWS() afterward:

mysql> SELECT SQL_CALC_FOUND_ROWS * FROM tbl_name
 -> WHERE id > 100 LIMIT 10;
mysql> SELECT FOUND_ROWS();

The second SELECT returns a number indicating how many rows the first SELECT would have returned
had it been written without the LIMIT clause.

In the absence of the SQL_CALC_FOUND_ROWS option in the most recent successful SELECT statement,
FOUND_ROWS() returns the number of rows in the result set returned by that statement. If the statement
includes a LIMIT clause, FOUND_ROWS() returns the number of rows up to the limit. For example,
FOUND_ROWS() returns 10 or 60, respectively, if the statement includes LIMIT 10 or LIMIT 50, 10.

The row count available through FOUND_ROWS() is transient and not intended to be available past the
statement following the SELECT SQL_CALC_FOUND_ROWS statement. If you need to refer to the value
later, save it:

mysql> SELECT SQL_CALC_FOUND_ROWS * FROM ... ;
mysql> SET @rows = FOUND_ROWS();

If you are using SELECT SQL_CALC_FOUND_ROWS, MySQL must calculate how many rows are in the
full result set. However, this is faster than running the query again without LIMIT, because the result set
need not be sent to the client.

SQL_CALC_FOUND_ROWS and FOUND_ROWS() can be useful in situations when you want to restrict the
number of rows that a query returns, but also determine the number of rows in the full result set without
running the query again. An example is a Web script that presents a paged display containing links to

2039

Information Functions

the pages that show other sections of a search result. Using FOUND_ROWS() enables you to determine
how many other pages are needed for the rest of the result.

The use of SQL_CALC_FOUND_ROWS and FOUND_ROWS() is more complex for UNION statements than
for simple SELECT statements, because LIMIT may occur at multiple places in a UNION. It may be
applied to individual SELECT statements in the UNION, or global to the UNION result as a whole.

The intent of SQL_CALC_FOUND_ROWS for UNION is that it should return the row count that would be
returned without a global LIMIT. The conditions for use of SQL_CALC_FOUND_ROWS with UNION are:

• The SQL_CALC_FOUND_ROWS keyword must appear in the first SELECT of the UNION.

• The value of FOUND_ROWS() is exact only if UNION ALL is used. If UNION without ALL is used,
duplicate removal occurs and the value of FOUND_ROWS() is only approximate.

• If no LIMIT is present in the UNION, SQL_CALC_FOUND_ROWS is ignored and returns the number of
rows in the temporary table that is created to process the UNION.

Beyond the cases described here, the behavior of FOUND_ROWS() is undefined (for example, its value
following a SELECT statement that fails with an error).

Important

FOUND_ROWS() is not replicated reliably using statement-based replication. This
function is automatically replicated using row-based replication.

• LAST_INSERT_ID(), LAST_INSERT_ID(expr)

With no argument, LAST_INSERT_ID() returns a BIGINT UNSIGNED (64-bit) value representing the
first automatically generated value successfully inserted for an AUTO_INCREMENT column as a result of
the most recently executed INSERT statement. The value of LAST_INSERT_ID() remains unchanged if
no rows are successfully inserted.

With an argument, LAST_INSERT_ID() returns an unsigned integer.

For example, after inserting a row that generates an AUTO_INCREMENT value, you can get the value like
this:

mysql> SELECT LAST_INSERT_ID();
 -> 195

The currently executing statement does not affect the value of LAST_INSERT_ID(). Suppose that
you generate an AUTO_INCREMENT value with one statement, and then refer to LAST_INSERT_ID()
in a multiple-row INSERT statement that inserts rows into a table with its own AUTO_INCREMENT
column. The value of LAST_INSERT_ID() remains stable in the second statement; its value for the
second and later rows is not affected by the earlier row insertions. (However, if you mix references to
LAST_INSERT_ID() and LAST_INSERT_ID(expr), the effect is undefined.)

If the previous statement returned an error, the value of LAST_INSERT_ID() is undefined. For
transactional tables, if the statement is rolled back due to an error, the value of LAST_INSERT_ID() is
left undefined. For manual ROLLBACK, the value of LAST_INSERT_ID() is not restored to that before
the transaction; it remains as it was at the point of the ROLLBACK.

Within the body of a stored routine (procedure or function) or a trigger, the value of LAST_INSERT_ID()
changes the same way as for statements executed outside the body of these kinds of objects. The effect

2040

Information Functions

of a stored routine or trigger upon the value of LAST_INSERT_ID() that is seen by following statements
depends on the kind of routine:

• If a stored procedure executes statements that change the value of LAST_INSERT_ID(), the
changed value is seen by statements that follow the procedure call.

• For stored functions and triggers that change the value, the value is restored when the function or
trigger ends, so statements following them do not see a changed value.

The ID that was generated is maintained in the server on a per-connection basis. This means that the
value returned by the function to a given client is the first AUTO_INCREMENT value generated for most
recent statement affecting an AUTO_INCREMENT column by that client. This value cannot be affected by
other clients, even if they generate AUTO_INCREMENT values of their own. This behavior ensures that
each client can retrieve its own ID without concern for the activity of other clients, and without the need
for locks or transactions.

The value of LAST_INSERT_ID() is not changed if you set the AUTO_INCREMENT column of a row to a
non-“magic” value (that is, a value that is not NULL and not 0).

Important

If you insert multiple rows using a single INSERT statement,
LAST_INSERT_ID() returns the value generated for the first inserted row only.
The reason for this is to make it possible to reproduce easily the same INSERT
statement against some other server.

For example:

mysql> USE test;

mysql> CREATE TABLE t (
 id INT AUTO_INCREMENT NOT NULL PRIMARY KEY,
 name VARCHAR(10) NOT NULL
);

mysql> INSERT INTO t VALUES (NULL, 'Bob');

mysql> SELECT * FROM t;
+----+------+
| id | name |
+----+------+
| 1 | Bob |
+----+------+

mysql> SELECT LAST_INSERT_ID();
+------------------+
| LAST_INSERT_ID() |
+------------------+
| 1 |
+------------------+

mysql> INSERT INTO t VALUES
 (NULL, 'Mary'), (NULL, 'Jane'), (NULL, 'Lisa');

mysql> SELECT * FROM t;
+----+------+
| id | name |
+----+------+
1	Bob
2	Mary
3	Jane
4	Lisa

2041

Information Functions

+----+------+

mysql> SELECT LAST_INSERT_ID();
+------------------+
| LAST_INSERT_ID() |
+------------------+
| 2 |
+------------------+

Although the second INSERT statement inserted three new rows into t, the ID generated for the first of
these rows was 2, and it is this value that is returned by LAST_INSERT_ID() for the following SELECT
statement.

If you use INSERT IGNORE and the row is ignored, the LAST_INSERT_ID() remains unchanged from
the current value (or 0 is returned if the connection has not yet performed a successful INSERT) and,
for non-transactional tables, the AUTO_INCREMENT counter is not incremented. For InnoDB tables,
the AUTO_INCREMENT counter is incremented if innodb_autoinc_lock_mode is set to 1 or 2, as
demonstrated in the following example:

mysql> USE test;

mysql> SELECT @@innodb_autoinc_lock_mode;
+----------------------------+
| @@innodb_autoinc_lock_mode |
+----------------------------+
| 1 |
+----------------------------+

mysql> CREATE TABLE `t` (
 `id` INT(11) NOT NULL AUTO_INCREMENT,
 `val` INT(11) DEFAULT NULL,
 PRIMARY KEY (`id`),
 UNIQUE KEY `i1` (`val`)
) ENGINE=InnoDB DEFAULT CHARSET=latin1;

Insert two rows

mysql> INSERT INTO t (val) VALUES (1),(2);

With auto_increment_offset=1, the inserted rows
result in an AUTO_INCREMENT value of 3

mysql> SHOW CREATE TABLE t\G
*************************** 1. row ***************************
 Table: t
Create Table: CREATE TABLE `t` (
 `id` int(11) NOT NULL AUTO_INCREMENT,
 `val` int(11) DEFAULT NULL,
 PRIMARY KEY (`id`),
 UNIQUE KEY `i1` (`val`)
) ENGINE=InnoDB AUTO_INCREMENT=3 DEFAULT CHARSET=latin1

LAST_INSERT_ID() returns the first automatically generated
value that is successfully inserted for the AUTO_INCREMENT column

mysql> SELECT LAST_INSERT_ID();
+------------------+
| LAST_INSERT_ID() |
+------------------+
| 1 |
+------------------+

The attempted insertion of duplicate rows fail but errors are ignored

mysql> INSERT IGNORE INTO t (val) VALUES (1),(2);

2042

Information Functions

Query OK, 0 rows affected (0.00 sec)
Records: 2 Duplicates: 2 Warnings: 0

With innodb_autoinc_lock_mode=1, the AUTO_INCREMENT counter
is incremented for the ignored rows

mysql> SHOW CREATE TABLE t\G
*************************** 1. row ***************************
 Table: t
Create Table: CREATE TABLE `t` (
 `id` int(11) NOT NULL AUTO_INCREMENT,
 `val` int(11) DEFAULT NULL,
 PRIMARY KEY (`id`),
 UNIQUE KEY `i1` (`val`)
) ENGINE=InnoDB AUTO_INCREMENT=5 DEFAULT CHARSET=latin1

The LAST_INSERT_ID is unchanged because the previous insert was unsuccessful

mysql> SELECT LAST_INSERT_ID();
+------------------+
| LAST_INSERT_ID() |
+------------------+
| 1 |
+------------------+

For more information, see Section 14.6.1.6, “AUTO_INCREMENT Handling in InnoDB”.

If expr is given as an argument to LAST_INSERT_ID(), the value of the argument is returned by the
function and is remembered as the next value to be returned by LAST_INSERT_ID(). This can be used
to simulate sequences:

1. Create a table to hold the sequence counter and initialize it:

mysql> CREATE TABLE sequence (id INT NOT NULL);
mysql> INSERT INTO sequence VALUES (0);

2. Use the table to generate sequence numbers like this:

mysql> UPDATE sequence SET id=LAST_INSERT_ID(id+1);
mysql> SELECT LAST_INSERT_ID();

The UPDATE statement increments the sequence counter and causes the next call to
LAST_INSERT_ID() to return the updated value. The SELECT statement retrieves that value. The
mysql_insert_id() C API function can also be used to get the value. See mysql_insert_id().

You can generate sequences without calling LAST_INSERT_ID(), but the utility of using the function
this way is that the ID value is maintained in the server as the last automatically generated value. It is
multi-user safe because multiple clients can issue the UPDATE statement and get their own sequence
value with the SELECT statement (or mysql_insert_id()), without affecting or being affected by other
clients that generate their own sequence values.

Note that mysql_insert_id() is only updated after INSERT and UPDATE statements, so you cannot
use the C API function to retrieve the value for LAST_INSERT_ID(expr) after executing other SQL
statements like SELECT or SET.

2043

https://dev.mysql.com/doc/c-api/5.7/en/mysql-insert-id.html
https://dev.mysql.com/doc/c-api/5.7/en/mysql-insert-id.html
https://dev.mysql.com/doc/c-api/5.7/en/mysql-insert-id.html
https://dev.mysql.com/doc/c-api/5.7/en/mysql-insert-id.html

Information Functions

• ROW_COUNT()

ROW_COUNT() returns a value as follows:

• DDL statements: 0. This applies to statements such as CREATE TABLE or DROP TABLE.

• DML statements other than SELECT: The number of affected rows. This applies to statements such
as UPDATE, INSERT, or DELETE (as before), but now also to statements such as ALTER TABLE and
LOAD DATA.

• SELECT: -1 if the statement returns a result set, or the number of rows “affected” if it does not. For
example, for SELECT * FROM t1, ROW_COUNT() returns -1. For SELECT * FROM t1 INTO
OUTFILE 'file_name', ROW_COUNT() returns the number of rows written to the file.

• SIGNAL statements: 0.

For UPDATE statements, the affected-rows value by default is the number of rows actually changed. If
you specify the CLIENT_FOUND_ROWS flag to mysql_real_connect() when connecting to mysqld,
the affected-rows value is the number of rows “found”; that is, matched by the WHERE clause.

For REPLACE statements, the affected-rows value is 2 if the new row replaced an old row, because in
this case, one row was inserted after the duplicate was deleted.

For INSERT ... ON DUPLICATE KEY UPDATE statements, the affected-rows value per row is 1 if the
row is inserted as a new row, 2 if an existing row is updated, and 0 if an existing row is set to its current
values. If you specify the CLIENT_FOUND_ROWS flag, the affected-rows value is 1 (not 0) if an existing
row is set to its current values.

The ROW_COUNT() value is similar to the value from the mysql_affected_rows() C API function and
the row count that the mysql client displays following statement execution.

mysql> INSERT INTO t VALUES(1),(2),(3);
Query OK, 3 rows affected (0.00 sec)
Records: 3 Duplicates: 0 Warnings: 0

mysql> SELECT ROW_COUNT();
+-------------+
| ROW_COUNT() |
+-------------+
| 3 |
+-------------+
1 row in set (0.00 sec)

mysql> DELETE FROM t WHERE i IN(1,2);
Query OK, 2 rows affected (0.00 sec)

mysql> SELECT ROW_COUNT();
+-------------+
| ROW_COUNT() |
+-------------+
| 2 |
+-------------+
1 row in set (0.00 sec)

Important

ROW_COUNT() is not replicated reliably using statement-based replication. This
function is automatically replicated using row-based replication.

2044

https://dev.mysql.com/doc/c-api/5.7/en/mysql-real-connect.html
https://dev.mysql.com/doc/c-api/5.7/en/mysql-affected-rows.html

Spatial Analysis Functions

• SCHEMA()

This function is a synonym for DATABASE().

• SESSION_USER()

SESSION_USER() is a synonym for USER().

• SYSTEM_USER()

SYSTEM_USER() is a synonym for USER().

• USER()

Returns the current MySQL user name and host name as a string in the utf8 character set.

mysql> SELECT USER();
 -> 'davida@localhost'

The value indicates the user name you specified when connecting to the server, and the client host from
which you connected. The value can be different from that of CURRENT_USER().

• VERSION()

Returns a string that indicates the MySQL server version. The string uses the utf8 character set. The
value might have a suffix in addition to the version number. See the description of the version system
variable in Section 5.1.7, “Server System Variables”.

This function is unsafe for statement-based replication. A warning is logged if you use this function when
binlog_format is set to STATEMENT.

mysql> SELECT VERSION();
 -> '5.7.44-standard'

12.16 Spatial Analysis Functions

MySQL provides functions to perform various operations on spatial data. These functions can be grouped
into several major categories according to the type of operation they perform:

• Functions that create geometries in various formats (WKT, WKB, internal)

• Functions that convert geometries between formats

• Functions that access qualitative or quantitative properties of a geometry

• Functions that describe relations between two geometries

• Functions that create new geometries from existing ones

For general background about MySQL support for using spatial data, see Section 11.4, “Spatial Data
Types”.

12.16.1 Spatial Function Reference

The following table lists each spatial function and provides a short description of each one.

2045

Spatial Function Reference

Table 12.21 Spatial Functions

Name Description Deprecated

Area() Return Polygon or MultiPolygon
area

Yes

AsBinary(), AsWKB() Convert from internal geometry
format to WKB

Yes

AsText(), AsWKT() Convert from internal geometry
format to WKT

Yes

Buffer() Return geometry of points within
given distance from geometry

Yes

Centroid() Return centroid as a point Yes

Contains() Whether MBR of one geometry
contains MBR of another

Yes

ConvexHull() Return convex hull of geometry Yes

Crosses() Whether one geometry crosses
another

Yes

Dimension() Dimension of geometry Yes

Disjoint() Whether MBRs of two geometries
are disjoint

Yes

EndPoint() End Point of LineString Yes

Envelope() Return MBR of geometry Yes

Equals() Whether MBRs of two geometries
are equal

Yes

ExteriorRing() Return exterior ring of Polygon Yes

GeomCollFromText(),
GeometryCollectionFromText()

Return geometry collection from
WKT

Yes

GeomCollFromWKB(),
GeometryCollectionFromWKB()

Return geometry collection from
WKB

Yes

GeometryCollection() Construct geometry collection
from geometries

GeometryN() Return N-th geometry from
geometry collection

Yes

GeometryType() Return name of geometry type Yes

GeomFromText(),
GeometryFromText()

Return geometry from WKT Yes

GeomFromWKB(),
GeometryFromWKB()

Return geometry from WKB Yes

GLength() Return length of LineString Yes

InteriorRingN() Return N-th interior ring of
Polygon

Yes

Intersects() Whether MBRs of two geometries
intersect

Yes

2046

Spatial Function Reference

Name Description Deprecated

IsClosed() Whether a geometry is closed and
simple

Yes

IsEmpty() Whether a geometry is empty Yes

IsSimple() Whether a geometry is simple Yes

LineFromText(),
LineStringFromText()

Construct LineString from WKT Yes

LineFromWKB(),
LineStringFromWKB()

Construct LineString from WKB Yes

LineString() Construct LineString from Point
values

MBRContains() Whether MBR of one geometry
contains MBR of another

MBRCoveredBy() Whether one MBR is covered by
another

MBRCovers() Whether one MBR covers another

MBRDisjoint() Whether MBRs of two geometries
are disjoint

MBREqual() Whether MBRs of two geometries
are equal

Yes

MBREquals() Whether MBRs of two geometries
are equal

MBRIntersects() Whether MBRs of two geometries
intersect

MBROverlaps() Whether MBRs of two geometries
overlap

MBRTouches() Whether MBRs of two geometries
touch

MBRWithin() Whether MBR of one geometry is
within MBR of another

MLineFromText(),
MultiLineStringFromText()

Construct MultiLineString from
WKT

Yes

MLineFromWKB(),
MultiLineStringFromWKB()

Construct MultiLineString from
WKB

Yes

MPointFromText(),
MultiPointFromText()

Construct MultiPoint from WKT Yes

MPointFromWKB(),
MultiPointFromWKB()

Construct MultiPoint from WKB Yes

MPolyFromText(),
MultiPolygonFromText()

Construct MultiPolygon from WKT Yes

MPolyFromWKB(),
MultiPolygonFromWKB()

Construct MultiPolygon from WKB Yes

MultiLineString() Contruct MultiLineString from
LineString values

2047

Spatial Function Reference

Name Description Deprecated

MultiPoint() Construct MultiPoint from Point
values

MultiPolygon() Construct MultiPolygon from
Polygon values

NumGeometries() Return number of geometries in
geometry collection

Yes

NumInteriorRings() Return number of interior rings in
Polygon

Yes

NumPoints() Return number of points in
LineString

Yes

Overlaps() Whether MBRs of two geometries
overlap

Yes

Point() Construct Point from coordinates

PointFromText() Construct Point from WKT Yes

PointFromWKB() Construct Point from WKB Yes

PointN() Return N-th point from LineString Yes

PolyFromText(),
PolygonFromText()

Construct Polygon from WKT Yes

PolyFromWKB(),
PolygonFromWKB()

Construct Polygon from WKB Yes

Polygon() Construct Polygon from LineString
arguments

Distance() The distance of one geometry
from another

Yes

SRID() Return spatial reference system
ID for geometry

Yes

ST_Area() Return Polygon or MultiPolygon
area

ST_AsBinary(), ST_AsWKB() Convert from internal geometry
format to WKB

ST_AsGeoJSON() Generate GeoJSON object from
geometry

ST_AsText(), ST_AsWKT() Convert from internal geometry
format to WKT

ST_Buffer() Return geometry of points within
given distance from geometry

ST_Buffer_Strategy() Produce strategy option for
ST_Buffer()

ST_Centroid() Return centroid as a point

ST_Contains() Whether one geometry contains
another

ST_ConvexHull() Return convex hull of geometry

2048

Spatial Function Reference

Name Description Deprecated

ST_Crosses() Whether one geometry crosses
another

ST_Difference() Return point set difference of two
geometries

ST_Dimension() Dimension of geometry

ST_Disjoint() Whether one geometry is disjoint
from another

ST_Distance() The distance of one geometry
from another

ST_Distance_Sphere() Minimum distance on earth
between two geometries

ST_EndPoint() End Point of LineString

ST_Envelope() Return MBR of geometry

ST_Equals() Whether one geometry is equal to
another

ST_ExteriorRing() Return exterior ring of Polygon

ST_GeoHash() Produce a geohash value

ST_GeomCollFromText(),
ST_GeometryCollectionFromText(),
ST_GeomCollFromTxt()

Return geometry collection from
WKT

ST_GeomCollFromWKB(),
ST_GeometryCollectionFromWKB()

Return geometry collection from
WKB

ST_GeometryN() Return N-th geometry from
geometry collection

ST_GeometryType() Return name of geometry type

ST_GeomFromGeoJSON() Generate geometry from
GeoJSON object

ST_GeomFromText(),
ST_GeometryFromText()

Return geometry from WKT

ST_GeomFromWKB(),
ST_GeometryFromWKB()

Return geometry from WKB

ST_InteriorRingN() Return N-th interior ring of
Polygon

ST_Intersection() Return point set intersection of
two geometries

ST_Intersects() Whether one geometry intersects
another

ST_IsClosed() Whether a geometry is closed and
simple

ST_IsEmpty() Whether a geometry is empty

ST_IsSimple() Whether a geometry is simple

ST_IsValid() Whether a geometry is valid

2049

Spatial Function Reference

Name Description Deprecated

ST_LatFromGeoHash() Return latitude from geohash
value

ST_Length() Return length of LineString

ST_LineFromText(),
ST_LineStringFromText()

Construct LineString from WKT

ST_LineFromWKB(),
ST_LineStringFromWKB()

Construct LineString from WKB

ST_LongFromGeoHash() Return longitude from geohash
value

ST_MakeEnvelope() Rectangle around two points

ST_MLineFromText(),
ST_MultiLineStringFromText()

Construct MultiLineString from
WKT

ST_MLineFromWKB(),
ST_MultiLineStringFromWKB()

Construct MultiLineString from
WKB

ST_MPointFromText(),
ST_MultiPointFromText()

Construct MultiPoint from WKT

ST_MPointFromWKB(),
ST_MultiPointFromWKB()

Construct MultiPoint from WKB

ST_MPolyFromText(),
ST_MultiPolygonFromText()

Construct MultiPolygon from WKT

ST_MPolyFromWKB(),
ST_MultiPolygonFromWKB()

Construct MultiPolygon from WKB

ST_NumGeometries() Return number of geometries in
geometry collection

ST_NumInteriorRing(),
ST_NumInteriorRings()

Return number of interior rings in
Polygon

ST_NumPoints() Return number of points in
LineString

ST_Overlaps() Whether one geometry overlaps
another

ST_PointFromGeoHash() Convert geohash value to POINT
value

ST_PointFromText() Construct Point from WKT

ST_PointFromWKB() Construct Point from WKB

ST_PointN() Return N-th point from LineString

ST_PolyFromText(),
ST_PolygonFromText()

Construct Polygon from WKT

ST_PolyFromWKB(),
ST_PolygonFromWKB()

Construct Polygon from WKB

ST_Simplify() Return simplified geometry

ST_SRID() Return spatial reference system
ID for geometry

ST_StartPoint() Start Point of LineString

2050

Argument Handling by Spatial Functions

Name Description Deprecated

ST_SymDifference() Return point set symmetric
difference of two geometries

ST_Touches() Whether one geometry touches
another

ST_Union() Return point set union of two
geometries

ST_Validate() Return validated geometry

ST_Within() Whether one geometry is within
another

ST_X() Return X coordinate of Point

ST_Y() Return Y coordinate of Point

StartPoint() Start Point of LineString Yes

Touches() Whether one geometry touches
another

Yes

Within() Whether MBR of one geometry is
within MBR of another

Yes

X() Return X coordinate of Point Yes

Y() Return Y coordinate of Point Yes

12.16.2 Argument Handling by Spatial Functions

Spatial values, or geometries, have the properties described in Section 11.4.2.2, “Geometry Class”. The
following discussion lists general spatial function argument-handling characteristics. Specific functions or
groups of functions may have additional or different argument-handling characteristics, as discussed in the
sections where those function descriptions occur. Where that is true, those descriptions take precedence
over the general discussion here.

Spatial functions are defined only for valid geometry values. See Section 11.4.4, “Geometry Well-
Formedness and Validity”.

The spatial reference identifier (SRID) of a geometry identifies the coordinate space in which the geometry
is defined. In MySQL, the SRID value is an integer associated with the geometry value. The maximum
usable SRID value is 232−1. If a larger value is given, only the lower 32 bits are used.

In MySQL, all computations are done assuming SRID 0, regardless of the actual SRID value. SRID 0
represents an infinite flat Cartesian plane with no units assigned to its axes. In the future, computations
may use the specified SRID values. To ensure SRID 0 behavior, create geometry values using SRID 0.
SRID 0 is the default for new geometry values if no SRID is specified.

Geometry values produced by any spatial function inherit the SRID of the geometry arguments.

The Open Geospatial Consortium guidelines require that input polygons already be closed, so unclosed
polygons are rejected as invalid rather than being closed.

Empty geometry-collection handling is as follows: An empty WKT input geometry collection may be
specified as 'GEOMETRYCOLLECTION()'. This is also the output WKT resulting from a spatial operation
that produces an empty geometry collection.

During parsing of a nested geometry collection, the collection is flattened and its basic components are
used in various GIS operations to compute results. This provides additional flexibility to users because it is

2051

http://www.opengeospatial.org

Functions That Create Geometry Values from WKT Values

unnecessary to be concerned about the uniqueness of geometry data. Nested geometry collections may
be produced from nested GIS function calls without having to be explicitly flattened first.

12.16.3 Functions That Create Geometry Values from WKT Values

These functions take as arguments a Well-Known Text (WKT) representation and, optionally, a spatial
reference system identifier (SRID). They return the corresponding geometry.

ST_GeomFromText() accepts a WKT value of any geometry type as its first argument. Other functions
provide type-specific construction functions for construction of geometry values of each geometry type.

For a description of WKT format, see Well-Known Text (WKT) Format.

• GeomCollFromText(wkt [, srid]), GeometryCollectionFromText(wkt [, srid])

ST_GeomCollFromText(), ST_GeometryCollectionFromText(), ST_GeomCollFromTxt(),
GeomCollFromText(), and GeometryCollectionFromText() are synonyms. For more
information, see the description of ST_GeomCollFromText().

GeomCollFromText() and GeometryCollectionFromText() are deprecated; expect
them to be removed in a future MySQL release. Use ST_GeomCollFromText() and
ST_GeometryCollectionFromText() instead.

• GeomFromText(wkt [, srid]), GeometryFromText(wkt [, srid])

ST_GeomFromText(), ST_GeometryFromText(), GeomFromText(), and GeometryFromText()
are synonyms. For more information, see the description of ST_GeomFromText().

GeomFromText() and GeometryFromText() are deprecated; expect them to be removed in a future
MySQL release. Use ST_GeomFromText() and ST_GeometryFromText() instead.

• LineFromText(wkt [, srid]), LineStringFromText(wkt [, srid])

ST_LineFromText(), ST_LineStringFromText(), LineFromText(), and
LineStringFromText() are synonyms. For more information, see the description of
ST_LineFromText().

LineFromText() and LineStringFromText() are deprecated; expect them to be removed in a
future MySQL release. Use ST_LineFromText() and ST_LineStringFromText() instead.

• MLineFromText(wkt [, srid]), MultiLineStringFromText(wkt [, srid])

ST_MLineFromText(), ST_MultiLineStringFromText(), MLineFromText(), and
MultiLineStringFromText() are synonyms. For more information, see the description of
ST_MLineFromText().

MLineFromText() and MultiLineStringFromText() are deprecated; expect them to be removed
in a future MySQL release. Use ST_MLineFromText() and ST_MultiLineStringFromText()
instead.

• MPointFromText(wkt [, srid]), MultiPointFromText(wkt [, srid])

ST_MPointFromText(), ST_MultiPointFromText(), MPointFromText(), and
MultiPointFromText() are synonyms. For more information, see the description of
ST_MPointFromText().

MPointFromText() and MultiPointFromText() are deprecated; expect them to be removed in a
future MySQL release. Use ST_MPointFromText() and ST_MultiPointFromText() instead.

2052

Functions That Create Geometry Values from WKT Values

• MPolyFromText(wkt [, srid]), MultiPolygonFromText(wkt [, srid])

ST_MPolyFromText(), ST_MultiPolygonFromText(), MPolyFromText(), and
MultiPolygonFromText() are synonyms. For more information, see the description of
ST_MPolyFromText().

MPolyFromText() and MultiPolygonFromText() are deprecated; expect them to be removed in a
future MySQL release. Use ST_MPolyFromText() and ST_MultiPolygonFromText() instead.

• PointFromText(wkt [, srid])

ST_PointFromText() and PointFromText() are synonyms. For more information, see the
description of ST_PointFromText().

PointFromText() is deprecated; expect it to be removed in a future MySQL release. Use
ST_PointFromText() instead.

• PolyFromText(wkt [, srid]), PolygonFromText(wkt [, srid])

ST_PolyFromText(), ST_PolygonFromText(), PolyFromText(), and PolygonFromText() are
synonyms. For more information, see the description of ST_PolyFromText().

PolyFromText() and PolygonFromText() are deprecated; expect them to be removed in a future
MySQL release. Use ST_PolyFromText() and ST_PolygonFromText() instead.

• ST_GeomCollFromText(wkt [, srid]), ST_GeometryCollectionFromText(wkt [,
srid]), ST_GeomCollFromTxt(wkt [, srid])

Constructs a GeometryCollection value using its WKT representation and SRID.

If the geometry argument is NULL or not a syntactically well-formed geometry, or if the SRID argument is
NULL, the return value is NULL.

mysql> SET @g = "MULTILINESTRING((10 10, 11 11), (9 9, 10 10))";
mysql> SELECT ST_AsText(ST_GeomCollFromText(@g));
+--+
| ST_AsText(ST_GeomCollFromText(@g)) |
+--+
| MULTILINESTRING((10 10,11 11),(9 9,10 10)) |
+--+

ST_GeomCollFromText(), ST_GeometryCollectionFromText(), ST_GeomCollFromTxt(),
GeomCollFromText(), and GeometryCollectionFromText() are synonyms.

• ST_GeomFromText(wkt [, srid]), ST_GeometryFromText(wkt [, srid])

Constructs a geometry value of any type using its WKT representation and SRID.

If the geometry argument is NULL or not a syntactically well-formed geometry, or if the SRID argument is
NULL, the return value is NULL.

ST_GeomFromText(), ST_GeometryFromText(), GeomFromText(), and GeometryFromText()
are synonyms.

2053

Functions That Create Geometry Values from WKT Values

• ST_LineFromText(wkt [, srid]), ST_LineStringFromText(wkt [, srid])

Constructs a LineString value using its WKT representation and SRID.

If the geometry argument is NULL or not a syntactically well-formed geometry, or if the SRID argument is
NULL, the return value is NULL.

ST_LineFromText(), ST_LineStringFromText(), LineFromText(), and
LineStringFromText() are synonyms.

• ST_MLineFromText(wkt [, srid]), ST_MultiLineStringFromText(wkt [, srid])

Constructs a MultiLineString value using its WKT representation and SRID.

If the geometry argument is NULL or not a syntactically well-formed geometry, or if the SRID argument is
NULL, the return value is NULL.

ST_MLineFromText(), ST_MultiLineStringFromText(), MLineFromText(), and
MultiLineStringFromText() are synonyms.

• ST_MPointFromText(wkt [, srid]), ST_MultiPointFromText(wkt [, srid])

Constructs a MultiPoint value using its WKT representation and SRID.

If the geometry argument is NULL or not a syntactically well-formed geometry, or if the SRID argument is
NULL, the return value is NULL.

Functions such as ST_MPointFromText() and ST_GeomFromText() that accept WKT-format
representations of MultiPoint values permit individual points within values to be surrounded by
parentheses. For example, both of the following function calls are valid:

ST_MPointFromText('MULTIPOINT (1 1, 2 2, 3 3)')
ST_MPointFromText('MULTIPOINT ((1 1), (2 2), (3 3))')

ST_MPointFromText(), ST_MultiPointFromText(), MPointFromText(), and
MultiPointFromText() are synonyms.

• ST_MPolyFromText(wkt [, srid]), ST_MultiPolygonFromText(wkt [, srid])

Constructs a MultiPolygon value using its WKT representation and SRID.

If the geometry argument is NULL or not a syntactically well-formed geometry, or if the SRID argument is
NULL, the return value is NULL.

ST_MPolyFromText(), ST_MultiPolygonFromText(), MPolyFromText(), and
MultiPolygonFromText() are synonyms.

• ST_PointFromText(wkt [, srid])

Constructs a Point value using its WKT representation and SRID.

If the geometry argument is NULL or not a syntactically well-formed geometry, or if the SRID argument is
NULL, the return value is NULL.

ST_PointFromText() and PointFromText() are synonyms.

• ST_PolyFromText(wkt [, srid]), ST_PolygonFromText(wkt [, srid])

Constructs a Polygon value using its WKT representation and SRID.

2054

Functions That Create Geometry Values from WKB Values

If the geometry argument is NULL or not a syntactically well-formed geometry, or if the SRID argument is
NULL, the return value is NULL.

ST_PolyFromText(), ST_PolygonFromText(), PolyFromText(), and PolygonFromText() are
synonyms.

12.16.4 Functions That Create Geometry Values from WKB Values

These functions take as arguments a BLOB containing a Well-Known Binary (WKB) representation and,
optionally, a spatial reference system identifier (SRID). They return the corresponding geometry.

ST_GeomFromWKB() accepts a WKB value of any geometry type as its first argument. Other functions
provide type-specific construction functions for construction of geometry values of each geometry type.

These functions also accept geometry objects as returned by the functions in Section 12.16.5, “MySQL-
Specific Functions That Create Geometry Values”. Thus, those functions may be used to provide the first
argument to the functions in this section. However, as of MySQL 5.7.19, use of geometry arguments is
deprecated and generates a warning. Geometry arguments are not accepted in MySQL 8.0. To migrate
calls from using geometry arguments to using WKB arguments, follow these guidelines:

For a description of WKB format, see Well-Known Binary (WKB) Format.

• Rewrite constructs such as ST_GeomFromWKB(Point(0, 0)) as Point(0, 0).

• Rewrite constructs such as ST_GeomFromWKB(Point(0, 0), 4326) as
ST_GeomFromWKB(ST_AsWKB(Point(0, 0)), 4326). (Alternatively, in MySQL 8.0, you can use
ST_SRID(Point(0, 0), 4326).)

• GeomCollFromWKB(wkb [, srid]), GeometryCollectionFromWKB(wkb [, srid])

ST_GeomCollFromWKB(), ST_GeometryCollectionFromWKB(), GeomCollFromWKB(), and
GeometryCollectionFromWKB() are synonyms. For more information, see the description of
ST_GeomCollFromWKB().

GeomCollFromWKB() and GeometryCollectionFromWKB() are deprecated; expect
them to be removed in a future MySQL release. Use ST_GeomCollFromWKB() and
ST_GeometryCollectionFromWKB() instead.

• GeomFromWKB(wkb [, srid]), GeometryFromWKB(wkb [, srid])

ST_GeomFromWKB(), ST_GeometryFromWKB(), GeomFromWKB(), and GeometryFromWKB() are
synonyms. For more information, see the description of ST_GeomFromWKB().

GeomFromWKB() and GeometryFromWKB() are deprecated; expect them to be removed in a future
MySQL release. Use ST_GeomFromWKB() and ST_GeometryFromWKB() instead.

• LineFromWKB(wkb [, srid]), LineStringFromWKB(wkb [, srid])

ST_LineFromWKB(), ST_LineStringFromWKB(), LineFromWKB(), and LineStringFromWKB()
are synonyms. For more information, see the description of ST_LineFromWKB().

LineFromWKB() and LineStringFromWKB() are deprecated; expect them to be removed in a future
MySQL release. Use ST_LineFromWKB() and ST_LineStringFromWKB() instead.

• MLineFromWKB(wkb [, srid]), MultiLineStringFromWKB(wkb [, srid])

2055

Functions That Create Geometry Values from WKB Values

ST_MLineFromWKB(), ST_MultiLineStringFromWKB(), MLineFromWKB(), and
MultiLineStringFromWKB() are synonyms. For more information, see the description of
ST_MLineFromWKB().

MLineFromWKB() and MultiLineStringFromWKB() are deprecated; expect them to be removed in
a future MySQL release. Use ST_MLineFromWKB() and ST_MultiLineStringFromWKB() instead.

• MPointFromWKB(wkb [, srid]), MultiPointFromWKB(wkb [, srid])

ST_MPointFromWKB(), ST_MultiPointFromWKB(), MPointFromWKB(), and
MultiPointFromWKB() are synonyms. For more information, see the description of
ST_MPointFromWKB().

MPointFromWKB() and MultiPointFromWKB() are deprecated; expect them to be removed in a
future MySQL release. Use ST_MPointFromWKB() and ST_MultiPointFromWKB() instead.

• MPolyFromWKB(wkb [, srid]), MultiPolygonFromWKB(wkb [, srid])

ST_MPolyFromWKB(), ST_MultiPolygonFromWKB(), MPolyFromWKB(), and
MultiPolygonFromWKB() are synonyms. For more information, see the description of
ST_MPolyFromWKB().

MPolyFromWKB() and MultiPolygonFromWKB() are deprecated; expect them to be removed in a
future MySQL release. Use ST_MPolyFromWKB() and ST_MultiPolygonFromWKB() instead.

• PointFromWKB(wkb [, srid])

ST_PointFromWKB() and PointFromWKB() are synonyms. For more information, see the description
of ST_PointFromWKB().

PointFromWKB() is deprecated; expect it to be removed in a future MySQL release. Use
ST_PointFromWKB() instead.

• PolyFromWKB(wkb [, srid]), PolygonFromWKB(wkb [, srid])

ST_PolyFromWKB(), ST_PolygonFromWKB(), PolyFromWKB(), and PolygonFromWKB() are
synonyms. For more information, see the description of ST_PolyFromWKB().

PolyFromWKB() and PolygonFromWKB() are deprecated; expect them to be removed in a future
MySQL release. Use ST_PolyFromWKB() and ST_PolygonFromWKB() instead.

• ST_GeomCollFromWKB(wkb [, srid]), ST_GeometryCollectionFromWKB(wkb [, srid])

Constructs a GeometryCollection value using its WKB representation and SRID.

The result is NULL if the WKB or SRID argument is NULL.

ST_GeomCollFromWKB(), ST_GeometryCollectionFromWKB(), GeomCollFromWKB(), and
GeometryCollectionFromWKB() are synonyms.

2056

Functions That Create Geometry Values from WKB Values

• ST_GeomFromWKB(wkb [, srid]), ST_GeometryFromWKB(wkb [, srid])

Constructs a geometry value of any type using its WKB representation and SRID.

The result is NULL if the WKB or SRID argument is NULL.

ST_GeomFromWKB(), ST_GeometryFromWKB(), GeomFromWKB(), and GeometryFromWKB() are
synonyms.

• ST_LineFromWKB(wkb [, srid]), ST_LineStringFromWKB(wkb [, srid])

Constructs a LineString value using its WKB representation and SRID.

The result is NULL if the WKB or SRID argument is NULL.

ST_LineFromWKB(), ST_LineStringFromWKB(), LineFromWKB(), and LineStringFromWKB()
are synonyms.

• ST_MLineFromWKB(wkb [, srid]), ST_MultiLineStringFromWKB(wkb [, srid])

Constructs a MultiLineString value using its WKB representation and SRID.

The result is NULL if the WKB or SRID argument is NULL.

ST_MLineFromWKB(), ST_MultiLineStringFromWKB(), MLineFromWKB(), and
MultiLineStringFromWKB() are synonyms.

• ST_MPointFromWKB(wkb [, srid]), ST_MultiPointFromWKB(wkb [, srid])

Constructs a MultiPoint value using its WKB representation and SRID.

The result is NULL if the WKB or SRID argument is NULL.

ST_MPointFromWKB(), ST_MultiPointFromWKB(), MPointFromWKB(), and
MultiPointFromWKB() are synonyms.

• ST_MPolyFromWKB(wkb [, srid]), ST_MultiPolygonFromWKB(wkb [, srid])

Constructs a MultiPolygon value using its WKB representation and SRID.

The result is NULL if the WKB or SRID argument is NULL.

ST_MPolyFromWKB(), ST_MultiPolygonFromWKB(), MPolyFromWKB(), and
MultiPolygonFromWKB() are synonyms.

• ST_PointFromWKB(wkb [, srid])

Constructs a Point value using its WKB representation and SRID.

The result is NULL if the WKB or SRID argument is NULL.

ST_PointFromWKB() and PointFromWKB() are synonyms.

2057

MySQL-Specific Functions That Create Geometry Values

• ST_PolyFromWKB(wkb [, srid]), ST_PolygonFromWKB(wkb [, srid])

Constructs a Polygon value using its WKB representation and SRID.

The result is NULL if the WKB or SRID argument is NULL.

ST_PolyFromWKB(), ST_PolygonFromWKB(), PolyFromWKB(), and PolygonFromWKB() are
synonyms.

12.16.5 MySQL-Specific Functions That Create Geometry Values

MySQL provides a set of useful nonstandard functions for creating geometry values. The functions
described in this section are MySQL extensions to the OpenGIS specification.

These functions produce geometry objects from either WKB values or geometry objects as arguments. If
any argument is not a proper WKB or geometry representation of the proper object type, the return value is
NULL.

For example, you can insert the geometry return value from Point() directly into a POINT column:

INSERT INTO t1 (pt_col) VALUES(Point(1,2));

• GeometryCollection(g [, g] ...)

Constructs a GeometryCollection value from the geometry arguments.

GeometryCollection() returns all the proper geometries contained in the arguments even if a
nonsupported geometry is present.

GeometryCollection() with no arguments is permitted as a way to create an empty geometry.

• LineString(pt [, pt] ...)

Constructs a LineString value from a number of Point or WKB Point arguments. If the number of
arguments is less than two, the return value is NULL.

• MultiLineString(ls [, ls] ...)

Constructs a MultiLineString value using LineString or WKB LineString arguments.

• MultiPoint(pt [, pt2] ...)

Constructs a MultiPoint value using Point or WKB Point arguments.

• MultiPolygon(poly [, poly] ...)

Constructs a MultiPolygon value from a set of Polygon or WKB Polygon arguments.

• Point(x, y)

Constructs a Point using its coordinates.

• Polygon(ls [, ls] ...)

Constructs a Polygon value from a number of LineString or WKB LineString arguments. If any
argument does not represent a LinearRing (that is, not a closed and simple LineString), the return
value is NULL.

2058

Geometry Format Conversion Functions

12.16.6 Geometry Format Conversion Functions

MySQL supports the functions listed in this section for converting geometry values from internal geometry
format to WKT or WKB format.

There are also functions to convert a string from WKT or WKB format to internal geometry format. See
Section 12.16.3, “Functions That Create Geometry Values from WKT Values”, and Section 12.16.4,
“Functions That Create Geometry Values from WKB Values”.

• AsBinary(g), AsWKB(g)

ST_AsBinary(), ST_AsWKB(), AsBinary(), and AsWKB() are synonyms. For more information, see
the description of ST_AsBinary().

AsBinary() and AsWKB() are deprecated; expect them to be removed in a future MySQL release. Use
ST_AsBinary() and ST_AsWKB() instead.

• AsText(g), AsWKT(g)

ST_AsText(), ST_AsWKT(), AsText(), and AsWKT() are synonyms. For more information, see the
description of ST_AsText().

AsText() and AsWKT() are deprecated; expect them to be removed in a future MySQL release. Use
ST_AsText() and ST_AsWKT() instead.

• ST_AsBinary(g), ST_AsWKB(g)

Converts a value in internal geometry format to its WKB representation and returns the binary result.

If the argument is NULL, the return value is NULL. If the argument is not a syntactically well-formed
geometry, an ER_GIS_INVALID_DATA error occurs.

SELECT ST_AsBinary(g) FROM geom;

ST_AsBinary(), ST_AsWKB(), AsBinary(), and AsWKB() are synonyms.

• ST_AsText(g), ST_AsWKT(g)

Converts a value in internal geometry format to its WKT representation and returns the string result.

If the argument is NULL, the return value is NULL. If the argument is not a syntactically well-formed
geometry, an ER_GIS_INVALID_DATA error occurs.

mysql> SET @g = 'LineString(1 1,2 2,3 3)';
mysql> SELECT ST_AsText(ST_GeomFromText(@g));
+--------------------------------+
| ST_AsText(ST_GeomFromText(@g)) |
+--------------------------------+
| LINESTRING(1 1,2 2,3 3) |
+--------------------------------+

ST_AsText(), ST_AsWKT(), AsText(), and AsWKT() are synonyms.

Output for MultiPoint values includes parentheses around each point. For example:

mysql> SET @mp = 'MULTIPOINT(1 1, 2 2, 3 3)';
mysql> SELECT ST_AsText(ST_GeomFromText(@mp));
+---------------------------------+
| ST_AsText(ST_GeomFromText(@mp)) |
+---------------------------------+

2059

https://dev.mysql.com/doc/mysql-errors/5.7/en/server-error-reference.html#error_er_gis_invalid_data
https://dev.mysql.com/doc/mysql-errors/5.7/en/server-error-reference.html#error_er_gis_invalid_data

Geometry Property Functions

| MULTIPOINT((1 1),(2 2),(3 3)) |
+---------------------------------+

12.16.7 Geometry Property Functions

Each function that belongs to this group takes a geometry value as its argument and returns some
quantitative or qualitative property of the geometry. Some functions restrict their argument type. Such
functions return NULL if the argument is of an incorrect geometry type. For example, the ST_Area()
polygon function returns NULL if the object type is neither Polygon nor MultiPolygon.

12.16.7.1 General Geometry Property Functions

The functions listed in this section do not restrict their argument and accept a geometry value of any type.

• Dimension(g)

ST_Dimension() and Dimension() are synonyms. For more information, see the description of
ST_Dimension().

Dimension() is deprecated; expect it to be removed in a future MySQL release. Use
ST_Dimension() instead.

• Envelope(g)

ST_Envelope() and Envelope() are synonyms. For more information, see the description of
ST_Envelope().

Envelope() is deprecated; expect it to be removed in a future MySQL release. Use ST_Envelope()
instead.

• GeometryType(g)

ST_GeometryType() and GeometryType() are synonyms. For more information, see the description
of ST_GeometryType().

GeometryType() is deprecated; expect it to be removed in a future MySQL release. Use
ST_GeometryType() instead.

• IsEmpty(g)

ST_IsEmpty() and IsEmpty() are synonyms. For more information, see the description of
ST_IsEmpty().

IsEmpty() is deprecated; expect it to be removed in a future MySQL release. Use ST_IsEmpty()
instead.

• IsSimple(g)

ST_IsSimple() and IsSimple() are synonyms. For more information, see the description of
ST_IsSimple().

IsSimple() is deprecated; expect it to be removed in a future MySQL release. Use ST_IsSimple()
instead.

• SRID(g)

ST_SRID() and SRID() are synonyms. For more information, see the description of ST_SRID().

SRID() is deprecated; expect it to be removed in a future MySQL release. Use ST_SRID() instead.

2060

Geometry Property Functions

• ST_Dimension(g)

Returns the inherent dimension of the geometry value g, or NULL if the argument is NULL. The
dimension can be −1, 0, 1, or 2. The meaning of these values is given in Section 11.4.2.2, “Geometry
Class”.

mysql> SELECT ST_Dimension(ST_GeomFromText('LineString(1 1,2 2)'));
+--+
| ST_Dimension(ST_GeomFromText('LineString(1 1,2 2)')) |
+--+
| 1 |
+--+

ST_Dimension() and Dimension() are synonyms.

• ST_Envelope(g)

Returns the minimum bounding rectangle (MBR) for the geometry value g, or NULL if the argument is
NULL. The result is returned as a Polygon value that is defined by the corner points of the bounding
box:

POLYGON((MINX MINY, MAXX MINY, MAXX MAXY, MINX MAXY, MINX MINY))

mysql> SELECT ST_AsText(ST_Envelope(ST_GeomFromText('LineString(1 1,2 2)')));
+--+
| ST_AsText(ST_Envelope(ST_GeomFromText('LineString(1 1,2 2)'))) |
+--+
| POLYGON((1 1,2 1,2 2,1 2,1 1)) |
+--+

If the argument is a point or a vertical or horizontal line segment, ST_Envelope() returns the point or
the line segment as its MBR rather than returning an invalid polygon:

mysql> SELECT ST_AsText(ST_Envelope(ST_GeomFromText('LineString(1 1,1 2)')));
+--+
| ST_AsText(ST_Envelope(ST_GeomFromText('LineString(1 1,1 2)'))) |
+--+
| LINESTRING(1 1,1 2) |
+--+

ST_Envelope() and Envelope() are synonyms.

• ST_GeometryType(g)

Returns a binary string indicating the name of the geometry type of which the geometry instance g is a
member, or NULL if the argument is NULL. The name corresponds to one of the instantiable Geometry
subclasses.

mysql> SELECT ST_GeometryType(ST_GeomFromText('POINT(1 1)'));
+--+
| ST_GeometryType(ST_GeomFromText('POINT(1 1)')) |
+--+
| POINT |
+--+

ST_GeometryType() and GeometryType() are synonyms.

2061

Geometry Property Functions

• ST_IsEmpty(g)

This function is a placeholder that returns 0 for any valid geometry value, 1 for any invalid geometry
value, or NULL if the argument is NULL.

MySQL does not support GIS EMPTY values such as POINT EMPTY.

ST_IsEmpty() and IsEmpty() are synonyms.

• ST_IsSimple(g)

Returns 1 if the geometry value g has no anomalous geometric points, such as self-intersection or self-
tangency. ST_IsSimple() returns 0 if the argument is not simple, and NULL if the argument is NULL.

The descriptions of the instantiable geometric classes given under Section 11.4.2, “The OpenGIS
Geometry Model” includes the specific conditions that cause class instances to be classified as not
simple.

ST_IsSimple() and IsSimple() are synonyms.

• ST_SRID(g)

Returns an integer indicating the spatial reference system ID associated with the geometry value g, or
NULL if the argument is NULL.

mysql> SELECT ST_SRID(ST_GeomFromText('LineString(1 1,2 2)',101));
+---+
| ST_SRID(ST_GeomFromText('LineString(1 1,2 2)',101)) |
+---+
| 101 |
+---+

ST_SRID() and SRID() are synonyms.

12.16.7.2 Point Property Functions

A Point consists of X and Y coordinates, which may be obtained using the following functions:

• ST_X(p)

Returns the X-coordinate value for the Point object p as a double-precision number.

mysql> SELECT ST_X(Point(56.7, 53.34));
+--------------------------+
| ST_X(Point(56.7, 53.34)) |
+--------------------------+
| 56.7 |
+--------------------------+

ST_X() and X() are synonyms.

• ST_Y(p)

Returns the Y-coordinate value for the Point object p as a double-precision number.

mysql> SELECT ST_Y(Point(56.7, 53.34));
+--------------------------+
| ST_Y(Point(56.7, 53.34)) |
+--------------------------+
| 53.34 |
+--------------------------+

2062

Geometry Property Functions

ST_Y() and Y() are synonyms.

• X(p)

ST_X() and X() are synonyms. For more information, see the description of ST_X().

X() is deprecated; expect it to be removed in a future MySQL release. Use ST_X() instead.

• Y(p)

ST_Y() and Y() are synonyms. For more information, see the description of ST_Y().

Y() is deprecated; expect it to be removed in a future MySQL release. Use ST_Y() instead.

12.16.7.3 LineString and MultiLineString Property Functions

A LineString consists of Point values. You can extract particular points of a LineString, count the
number of points that it contains, or obtain its length.

Some functions in this section also work for MultiLineString values.

• EndPoint(ls)

ST_EndPoint() and EndPoint() are synonyms. For more information, see the description of
ST_EndPoint().

EndPoint() is deprecated; expect it to be removed in a future MySQL release. Use ST_EndPoint()
instead.

• GLength(ls)

GLength() is a nonstandard name. It corresponds to the OpenGIS ST_Length() function. (There is
an existing SQL function Length() that calculates the length of string values.)

GLength() is deprecated; expect it to be removed in a future MySQL release. Use ST_Length()
instead.

• IsClosed(ls)

ST_IsClosed() and IsClosed() are synonyms. For more information, see the description of
ST_IsClosed().

IsClosed() is deprecated; expect it to be removed in a future MySQL release. Use ST_IsClosed()
instead.

• NumPoints(ls)

ST_NumPoints() and NumPoints() are synonyms. For more information, see the description of
ST_NumPoints().

NumPoints() is deprecated; expect it to be removed in a future MySQL release. Use
ST_NumPoints() instead.

• PointN(ls, N)

ST_PointN() and PointN() are synonyms. For more information, see the description of
ST_PointN().

2063

Geometry Property Functions

PointN() is deprecated; expect it to be removed in a future MySQL release. Use ST_PointN()
instead.

• ST_EndPoint(ls)

Returns the Point that is the endpoint of the LineString value ls. If the argument is NULL or an
empty geometry, the return value is NULL.

mysql> SET @ls = 'LineString(1 1,2 2,3 3)';
mysql> SELECT ST_AsText(ST_EndPoint(ST_GeomFromText(@ls)));
+--+
| ST_AsText(ST_EndPoint(ST_GeomFromText(@ls))) |
+--+
| POINT(3 3) |
+--+

ST_EndPoint() and EndPoint() are synonyms.

• ST_IsClosed(ls)

For a LineString value ls, ST_IsClosed() returns 1 if ls is closed (that is, its ST_StartPoint()
and ST_EndPoint() values are the same). If the argument is NULL or an empty geometry, the return
value is NULL.

For a MultiLineString value ls, ST_IsClosed() returns 1 if ls is closed (that is, the
ST_StartPoint() and ST_EndPoint() values are the same for each LineString in ls).

ST_IsClosed() returns 0 if ls is not closed.

mysql> SET @ls1 = 'LineString(1 1,2 2,3 3,2 2)';
mysql> SET @ls2 = 'LineString(1 1,2 2,3 3,1 1)';

mysql> SELECT ST_IsClosed(ST_GeomFromText(@ls1));
+------------------------------------+
| ST_IsClosed(ST_GeomFromText(@ls1)) |
+------------------------------------+
| 0 |
+------------------------------------+

mysql> SELECT ST_IsClosed(ST_GeomFromText(@ls2));
+------------------------------------+
| ST_IsClosed(ST_GeomFromText(@ls2)) |
+------------------------------------+
| 1 |
+------------------------------------+

mysql> SET @ls3 = 'MultiLineString((1 1,2 2,3 3),(4 4,5 5))';

mysql> SELECT ST_IsClosed(ST_GeomFromText(@ls3));
+------------------------------------+
| ST_IsClosed(ST_GeomFromText(@ls3)) |
+------------------------------------+
| 0 |
+------------------------------------+

ST_IsClosed() and IsClosed() are synonyms.

• ST_Length(ls)

Returns a double-precision number indicating the length of the LineString or MultiLineString
value ls in its associated spatial reference system. The length of a MultiLineString value is equal to

2064

Geometry Property Functions

the sum of the lengths of its elements. If the argument is NULL or an empty geometry, the return value is
NULL.

mysql> SET @ls = 'LineString(1 1,2 2,3 3)';
mysql> SELECT ST_Length(ST_GeomFromText(@ls));
+---------------------------------+
| ST_Length(ST_GeomFromText(@ls)) |
+---------------------------------+
| 2.8284271247461903 |
+---------------------------------+

mysql> SET @mls = 'MultiLineString((1 1,2 2,3 3),(4 4,5 5))';
mysql> SELECT ST_Length(ST_GeomFromText(@mls));
+----------------------------------+
| ST_Length(ST_GeomFromText(@mls)) |
+----------------------------------+
| 4.242640687119286 |
+----------------------------------+

ST_Length() should be used in preference to GLength(), which has a nonstandard name.

• ST_NumPoints(ls)

Returns the number of Point objects in the LineString value ls. If the argument is NULL or an empty
geometry, the return value is NULL.

mysql> SET @ls = 'LineString(1 1,2 2,3 3)';
mysql> SELECT ST_NumPoints(ST_GeomFromText(@ls));
+------------------------------------+
| ST_NumPoints(ST_GeomFromText(@ls)) |
+------------------------------------+
| 3 |
+------------------------------------+

ST_NumPoints() and NumPoints() are synonyms.

• ST_PointN(ls, N)

Returns the N-th Point in the Linestring value ls. Points are numbered beginning with 1. If any
argument is NULL or the geometry argument is an empty geometry, the return value is NULL.

mysql> SET @ls = 'LineString(1 1,2 2,3 3)';
mysql> SELECT ST_AsText(ST_PointN(ST_GeomFromText(@ls),2));
+--+
| ST_AsText(ST_PointN(ST_GeomFromText(@ls),2)) |
+--+
| POINT(2 2) |
+--+

ST_PointN() and PointN() are synonyms.

• ST_StartPoint(ls)

Returns the Point that is the start point of the LineString value ls. If the argument is NULL or an
empty geometry, the return value is NULL.

mysql> SET @ls = 'LineString(1 1,2 2,3 3)';
mysql> SELECT ST_AsText(ST_StartPoint(ST_GeomFromText(@ls)));
+--+
| ST_AsText(ST_StartPoint(ST_GeomFromText(@ls))) |
+--+
| POINT(1 1) |

2065

Geometry Property Functions

+--+

ST_StartPoint() and StartPoint() are synonyms.

• StartPoint(ls)

ST_StartPoint() and StartPoint() are synonyms. For more information, see the description of
ST_StartPoint().

StartPoint() is deprecated; expect it to be removed in a future MySQL release. Use
ST_StartPoint() instead.

12.16.7.4 Polygon and MultiPolygon Property Functions

Functions in this section return properties of Polygon or MultiPolygon values.

• Area({poly|mpoly})

ST_Area() and Area() are synonyms. For more information, see the description of ST_Area().

Area() is deprecated; expect it to be removed in a future MySQL release. Use ST_Area() instead.

• Centroid({poly|mpoly})

ST_Centroid() and Centroid() are synonyms. For more information, see the description of
ST_Centroid().

Centroid() is deprecated; expect it to be removed in a future MySQL release. Use ST_Centroid()
instead.

• ExteriorRing(poly)

ST_ExteriorRing() and ExteriorRing() are synonyms. For more information, see the description
of ST_ExteriorRing().

ExteriorRing() is deprecated; expect it to be removed in a future MySQL release. Use
ST_ExteriorRing() instead.

• InteriorRingN(poly, N)

ST_InteriorRingN() and InteriorRingN() are synonyms. For more information, see the
description of ST_InteriorRingN().

InteriorRingN() is deprecated; expect it to be removed in a future MySQL release. Use
ST_InteriorRingN() instead.

• NumInteriorRings(poly)

ST_NumInteriorRings() and NumInteriorRings() are synonyms. For more information, see the
description of ST_NumInteriorRings().

NumInteriorRings() is deprecated; expect it to be removed in a future MySQL release. Use
ST_NumInteriorRings() instead.

• ST_Area({poly|mpoly})

Returns a double-precision number indicating the area of the Polygon or MultiPolygon argument,
as measured in its spatial reference system. For arguments of dimension 0 or 1, the result is 0. If the
argument is an empty geometry the return value is 0. If the argument is NULL the return value is NULL.

2066

Geometry Property Functions

The result is the sum of the area values of all components for a geometry collection. If a geometry
collection is empty, its area is returned as 0.

mysql> SET @poly =
 'Polygon((0 0,0 3,3 0,0 0),(1 1,1 2,2 1,1 1))';
mysql> SELECT ST_Area(ST_GeomFromText(@poly));
+---------------------------------+
| ST_Area(ST_GeomFromText(@poly)) |
+---------------------------------+
| 4 |
+---------------------------------+

mysql> SET @mpoly =
 'MultiPolygon(((0 0,0 3,3 3,3 0,0 0),(1 1,1 2,2 2,2 1,1 1)))';
mysql> SELECT ST_Area(ST_GeomFromText(@mpoly));
+----------------------------------+
| ST_Area(ST_GeomFromText(@mpoly)) |
+----------------------------------+
| 8 |
+----------------------------------+

ST_Area() and Area() are synonyms.

• ST_Centroid({poly|mpoly})

Returns the mathematical centroid for the Polygon or MultiPolygon argument as a Point. The
result is not guaranteed to be on the MultiPolygon. If the argument is NULL or an empty geometry, the
return value is NULL.

This function processes geometry collections by computing the centroid point for components of highest
dimension in the collection. Such components are extracted and made into a single MultiPolygon,
MultiLineString, or MultiPoint for centroid computation. If the argument is an empty geometry
collection, the return value is NULL.

mysql> SET @poly =
 ST_GeomFromText('POLYGON((0 0,10 0,10 10,0 10,0 0),(5 5,7 5,7 7,5 7,5 5))');
mysql> SELECT ST_GeometryType(@poly),ST_AsText(ST_Centroid(@poly));
+------------------------+--+
| ST_GeometryType(@poly) | ST_AsText(ST_Centroid(@poly)) |
+------------------------+--+
| POLYGON | POINT(4.958333333333333 4.958333333333333) |
+------------------------+--+

ST_Centroid() and Centroid() are synonyms.

• ST_ExteriorRing(poly)

Returns the exterior ring of the Polygon value poly as a LineString. If the argument is NULL or an
empty geometry, the return value is NULL.

mysql> SET @poly =
 'Polygon((0 0,0 3,3 3,3 0,0 0),(1 1,1 2,2 2,2 1,1 1))';
mysql> SELECT ST_AsText(ST_ExteriorRing(ST_GeomFromText(@poly)));
+--+
| ST_AsText(ST_ExteriorRing(ST_GeomFromText(@poly))) |
+--+
| LINESTRING(0 0,0 3,3 3,3 0,0 0) |
+--+

ST_ExteriorRing() and ExteriorRing() are synonyms.

• ST_InteriorRingN(poly, N)

2067

Geometry Property Functions

Returns the N-th interior ring for the Polygon value poly as a LineString. Rings are numbered
beginning with 1. If the argument is NULL or an empty geometry, the return value is NULL.

mysql> SET @poly =
 'Polygon((0 0,0 3,3 3,3 0,0 0),(1 1,1 2,2 2,2 1,1 1))';
mysql> SELECT ST_AsText(ST_InteriorRingN(ST_GeomFromText(@poly),1));
+---+
| ST_AsText(ST_InteriorRingN(ST_GeomFromText(@poly),1)) |
+---+
| LINESTRING(1 1,1 2,2 2,2 1,1 1) |
+---+

ST_InteriorRingN() and InteriorRingN() are synonyms.

• ST_NumInteriorRing(poly), ST_NumInteriorRings(poly)

Returns the number of interior rings in the Polygon value poly. If the argument is NULL or an empty
geometry, the return value is NULL.

mysql> SET @poly =
 'Polygon((0 0,0 3,3 3,3 0,0 0),(1 1,1 2,2 2,2 1,1 1))';
mysql> SELECT ST_NumInteriorRings(ST_GeomFromText(@poly));
+---+
| ST_NumInteriorRings(ST_GeomFromText(@poly)) |
+---+
| 1 |
+---+

ST_NumInteriorRing(), ST_NumInteriorRings(), and NumInteriorRings() are synonyms.

12.16.7.5 GeometryCollection Property Functions

These functions return properties of GeometryCollection values.

• GeometryN(gc, N)

ST_GeometryN() and GeometryN() are synonyms. For more information, see the description of
ST_GeometryN().

GeometryN() is deprecated; expect it to be removed in a future MySQL release. Use
ST_GeometryN() instead.

• NumGeometries(gc)

ST_NumGeometries() and NumGeometries() are synonyms. For more information, see the
description of ST_NumGeometries().

NumGeometries() is deprecated; expect it to be removed in a future MySQL release. Use
ST_NumGeometries() instead.

• ST_GeometryN(gc, N)

Returns the N-th geometry in the GeometryCollection value gc. Geometries are numbered
beginning with 1. If any argument is NULL or the geometry argument is an empty geometry, the return
value is NULL.

mysql> SET @gc = 'GeometryCollection(Point(1 1),LineString(2 2, 3 3))';
mysql> SELECT ST_AsText(ST_GeometryN(ST_GeomFromText(@gc),1));
+---+
| ST_AsText(ST_GeometryN(ST_GeomFromText(@gc),1)) |

2068

Spatial Operator Functions

+---+
| POINT(1 1) |
+---+

ST_GeometryN() and GeometryN() are synonyms.

• ST_NumGeometries(gc)

Returns the number of geometries in the GeometryCollection value gc. If the argument is NULL or
an empty geometry, the return value is NULL.

mysql> SET @gc = 'GeometryCollection(Point(1 1),LineString(2 2, 3 3))';
mysql> SELECT ST_NumGeometries(ST_GeomFromText(@gc));
+--+
| ST_NumGeometries(ST_GeomFromText(@gc)) |
+--+
| 2 |
+--+

ST_NumGeometries() and NumGeometries() are synonyms.

12.16.8 Spatial Operator Functions

OpenGIS proposes a number of functions that can produce geometries. They are designed to implement
spatial operators.

These functions support all argument type combinations except those that are inapplicable according to the
Open Geospatial Consortium specification.

In addition, Section 12.16.7, “Geometry Property Functions”, discusses several functions that construct
new geometries from existing ones. See that section for descriptions of these functions:

• ST_Envelope(g)

• ST_StartPoint(ls)

• ST_EndPoint(ls)

• ST_PointN(ls, N)

• ST_ExteriorRing(poly)

• ST_InteriorRingN(poly, N)

• ST_GeometryN(gc, N)

These spatial operator functions are available:

• Buffer(g, d [, strategy1 [, strategy2 [, strategy3]]])

ST_Buffer() and Buffer() are synonyms. For more information, see the description of
ST_Buffer().

Buffer() is deprecated; expect it to be removed in a future MySQL release. Use ST_Buffer()
instead.

• ConvexHull(g)

ST_ConvexHull() and ConvexHull() are synonyms. For more information, see the description of
ST_ConvexHull().

2069

http://www.opengeospatial.org

Spatial Operator Functions

ConvexHull() is deprecated; expect it to be removed in a future MySQL release. Use
ST_ConvexHull() instead.

• ST_Buffer(g, d [, strategy1 [, strategy2 [, strategy3]]])

Returns a geometry that represents all points whose distance from the geometry value g is less than or
equal to a distance of d, or NULL if any argument is NULL. The SRID of the geometry argument must be
0 because ST_Buffer() supports only the Cartesian coordinate system. If any geometry argument is
not a syntactically well-formed geometry, an ER_GIS_INVALID_DATA error occurs.

If the geometry argument is empty, ST_Buffer() returns an empty geometry.

If the distance is 0, ST_Buffer() returns the geometry argument unchanged:

mysql> SET @pt = ST_GeomFromText('POINT(0 0)');
mysql> SELECT ST_AsText(ST_Buffer(@pt, 0));
+------------------------------+
| ST_AsText(ST_Buffer(@pt, 0)) |
+------------------------------+
| POINT(0 0) |
+------------------------------+

ST_Buffer() supports negative distances for Polygon and MultiPolygon values, and for geometry
collections containing Polygon or MultiPolygon values. The result may be an empty geometry.
An ER_WRONG_ARGUMENTS error occurs for ST_Buffer() with a negative distance for Point,
MultiPoint, LineString, and MultiLineString values, and for geometry collections not
containing any Polygon or MultiPolygon values.

ST_Buffer() permits up to three optional strategy arguments following the distance argument.
Strategies influence buffer computation. These arguments are byte string values produced by the
ST_Buffer_Strategy() function, to be used for point, join, and end strategies:

• Point strategies apply to Point and MultiPoint geometries. If no point strategy is specified, the
default is ST_Buffer_Strategy('point_circle', 32).

• Join strategies apply to LineString, MultiLineString, Polygon, and MultiPolygon
geometries. If no join strategy is specified, the default is ST_Buffer_Strategy('join_round',
32).

• End strategies apply to LineString and MultiLineString geometries. If no end strategy is
specified, the default is ST_Buffer_Strategy('end_round', 32).

Up to one strategy of each type may be specified, and they may be given in any order. If multiple
strategies of a given type are specified, an ER_WRONG_ARGUMENTS error occurs.

mysql> SET @pt = ST_GeomFromText('POINT(0 0)');
mysql> SET @pt_strategy = ST_Buffer_Strategy('point_square');
mysql> SELECT ST_AsText(ST_Buffer(@pt, 2, @pt_strategy));
+--+
| ST_AsText(ST_Buffer(@pt, 2, @pt_strategy)) |
+--+
| POLYGON((-2 -2,2 -2,2 2,-2 2,-2 -2)) |
+--+

mysql> SET @ls = ST_GeomFromText('LINESTRING(0 0,0 5,5 5)');
mysql> SET @end_strategy = ST_Buffer_Strategy('end_flat');
mysql> SET @join_strategy = ST_Buffer_Strategy('join_round', 10);
mysql> SELECT ST_AsText(ST_Buffer(@ls, 5, @end_strategy, @join_strategy))
+---+

2070

https://dev.mysql.com/doc/mysql-errors/5.7/en/server-error-reference.html#error_er_gis_invalid_data
https://dev.mysql.com/doc/mysql-errors/5.7/en/server-error-reference.html#error_er_wrong_arguments
https://dev.mysql.com/doc/mysql-errors/5.7/en/server-error-reference.html#error_er_wrong_arguments

Spatial Operator Functions

| ST_AsText(ST_Buffer(@ls, 5, @end_strategy, @join_strategy)) |
+---+
| POLYGON((5 5,5 10,0 10,-3.5355339059327373 8.535533905932738, |
| -5 5,-5 0,0 0,5 0,5 5)) |
+---+

ST_Buffer() and Buffer() are synonyms.

• ST_Buffer_Strategy(strategy [, points_per_circle])

This function returns a strategy byte string for use with ST_Buffer() to influence buffer computation. If
any argument is NULL, the return value is NULL. If any argument is invalid, an ER_WRONG_ARGUMENTS
error occurs.

Information about strategies is available at Boost.org.

The first argument must be a string indicating a strategy option:

• For point strategies, permitted values are 'point_circle' and 'point_square'.

• For join strategies, permitted values are 'join_round' and 'join_miter'.

• For end strategies, permitted values are 'end_round' and 'end_flat'.

If the first argument is 'point_circle', 'join_round', 'join_miter', or 'end_round',
the points_per_circle argument must be given as a positive numeric value. The maximum
points_per_circle value is the value of the max_points_in_geometry system variable. If the
first argument is 'point_square' or 'end_flat', the points_per_circle argument must not be
given or an ER_WRONG_ARGUMENTS error occurs.

For examples, see the description of ST_Buffer().

• ST_ConvexHull(g)

Returns a geometry that represents the convex hull of the geometry value g. If the argument is NULL, the
return value is NULL.

This function computes a geometry's convex hull by first checking whether its vertex points are colinear.
The function returns a linear hull if so, a polygon hull otherwise. This function processes geometry
collections by extracting all vertex points of all components of the collection, creating a MultiPoint
value from them, and computing its convex hull. If the argument is an empty geometry collection, the
return value is NULL.

mysql> SET @g = 'MULTIPOINT(5 0,25 0,15 10,15 25)';
mysql> SELECT ST_AsText(ST_ConvexHull(ST_GeomFromText(@g)));
+---+
| ST_AsText(ST_ConvexHull(ST_GeomFromText(@g))) |
+---+
| POLYGON((5 0,25 0,15 25,5 0)) |
+---+

ST_ConvexHull() and ConvexHull() are synonyms.

• ST_Difference(g1, g2)

Returns a geometry that represents the point set difference of the geometry values g1 and g2. If any
argument is NULL, the return value is NULL.

mysql> SET @g1 = Point(1,1), @g2 = Point(2,2);
mysql> SELECT ST_AsText(ST_Difference(@g1, @g2));

2071

https://dev.mysql.com/doc/mysql-errors/5.7/en/server-error-reference.html#error_er_wrong_arguments
http://www.boost.org
https://dev.mysql.com/doc/mysql-errors/5.7/en/server-error-reference.html#error_er_wrong_arguments

Functions That Test Spatial Relations Between Geometry Objects

+------------------------------------+
| ST_AsText(ST_Difference(@g1, @g2)) |
+------------------------------------+
| POINT(1 1) |
+------------------------------------+

• ST_Intersection(g1, g2)

Returns a geometry that represents the point set intersection of the geometry values g1 and g2. If any
argument is NULL, the return value is NULL.

mysql> SET @g1 = ST_GeomFromText('LineString(1 1, 3 3)');
mysql> SET @g2 = ST_GeomFromText('LineString(1 3, 3 1)');
mysql> SELECT ST_AsText(ST_Intersection(@g1, @g2));
+--------------------------------------+
| ST_AsText(ST_Intersection(@g1, @g2)) |
+--------------------------------------+
| POINT(2 2) |
+--------------------------------------+

• ST_SymDifference(g1, g2)

Returns a geometry that represents the point set symmetric difference of the geometry values g1 and
g2, which is defined as:

g1 symdifference g2 := (g1 union g2) difference (g1 intersection g2)

Or, in function call notation:

ST_SymDifference(g1, g2) = ST_Difference(ST_Union(g1, g2), ST_Intersection(g1, g2))

If any argument is NULL, the return value is NULL.

mysql> SET @g1 = ST_GeomFromText('MULTIPOINT(5 0,15 10,15 25)');
mysql> SET @g2 = ST_GeomFromText('MULTIPOINT(1 1,15 10,15 25)');
mysql> SELECT ST_AsText(ST_SymDifference(@g1, @g2));
+---------------------------------------+
| ST_AsText(ST_SymDifference(@g1, @g2)) |
+---------------------------------------+
| MULTIPOINT((1 1),(5 0)) |
+---------------------------------------+

• ST_Union(g1, g2)

Returns a geometry that represents the point set union of the geometry values g1 and g2. If any
argument is NULL, the return value is NULL.

mysql> SET @g1 = ST_GeomFromText('LineString(1 1, 3 3)');
mysql> SET @g2 = ST_GeomFromText('LineString(1 3, 3 1)');
mysql> SELECT ST_AsText(ST_Union(@g1, @g2));
+--------------------------------------+
| ST_AsText(ST_Union(@g1, @g2)) |
+--------------------------------------+
| MULTILINESTRING((1 1,3 3),(1 3,3 1)) |
+--------------------------------------+

12.16.9 Functions That Test Spatial Relations Between Geometry Objects

The functions described in this section take two geometries as arguments and return a qualitative or
quantitative relation between them.

2072

Functions That Test Spatial Relations Between Geometry Objects

MySQL implements two sets of functions using function names defined by the OpenGIS specification. One
set tests the relationship between two geometry values using precise object shapes, the other set uses
object minimum bounding rectangles (MBRs).

There is also a MySQL-specific set of MBR-based functions available to test the relationship between two
geometry values.

12.16.9.1 Spatial Relation Functions That Use Object Shapes

The OpenGIS specification defines the following functions to test the relationship between two geometry
values g1 and g2, using precise object shapes. The return values 1 and 0 indicate true and false,
respectively, except for ST_Distance() and Distance(), which return distance values.

These functions support all argument type combinations except those that are inapplicable according to the
Open Geospatial Consortium specification.

• Crosses(g1, g2)

ST_Crosses() and Crosses() are synonyms. For more information, see the description of
ST_Crosses().

Crosses() is deprecated; expect it to be removed in a future MySQL release. Use ST_Crosses()
instead.

• Distance(g1, g2)

ST_Distance() and Distance() are synonyms. For more information, see the description of
ST_Distance().

Distance() is deprecated; expect it to be removed in a future MySQL release. Use ST_Distance()
instead.

• ST_Contains(g1, g2)

Returns 1 or 0 to indicate whether g1 completely contains g2. This tests the opposite relationship as
ST_Within().

• ST_Crosses(g1, g2)

The term spatially crosses denotes a spatial relation between two given geometries that has the
following properties:

• The two geometries intersect.

• Their intersection results in a geometry that has a dimension that is one less than the maximum
dimension of the two given geometries.

• Their intersection is not equal to either of the two given geometries.

This function returns 1 or 0 to indicate whether g1 spatially crosses g2. If g1 is a Polygon or a
MultiPolygon, or if g2 is a Point or a MultiPoint, the return value is NULL.

This function returns 0 if called with an inapplicable geometry argument type combination. For example,
it returns 0 if the first argument is a Polygon or MultiPolygon and/or the second argument is a
Point or MultiPoint.

Returns 1 if g1 spatially crosses g2. Returns NULL if g1 is a Polygon or a MultiPolygon, or if g2 is a
Point or a MultiPoint. Otherwise, returns 0.

2073

Functions That Test Spatial Relations Between Geometry Objects

This function returns 0 if called with an inapplicable geometry argument type combination. For example,
it returns 0 if the first argument is a Polygon or MultiPolygon and/or the second argument is a
Point or MultiPoint.

ST_Crosses() and Crosses() are synonyms.

• ST_Disjoint(g1, g2)

Returns 1 or 0 to indicate whether g1 is spatially disjoint from (does not intersect) g2.

• ST_Distance(g1, g2)

Returns the distance between g1 and g2. If either argument is NULL or an empty geometry, the return
value is NULL.

This function processes geometry collections by returning the shortest distance among all combinations
of the components of the two geometry arguments.

If an intermediate or final result produces NaN or a negative number, an ER_GIS_INVALID_DATA error
occurs.

mysql> SET @g1 = Point(1,1);
mysql> SET @g2 = Point(2,2);
mysql> SELECT ST_Distance(@g1, @g2);
+-----------------------+
| ST_Distance(@g1, @g2) |
+-----------------------+
| 1.4142135623730951 |
+-----------------------+

ST_Distance() and Distance() are synonyms.

• ST_Equals(g1, g2)

Returns 1 or 0 to indicate whether g1 is spatially equal to g2.

mysql> SET @g1 = Point(1,1), @g2 = Point(2,2);
mysql> SELECT ST_Equals(@g1, @g1), ST_Equals(@g1, @g2);
+---------------------+---------------------+
| ST_Equals(@g1, @g1) | ST_Equals(@g1, @g2) |
+---------------------+---------------------+
| 1 | 0 |
+---------------------+---------------------+

• ST_Intersects(g1, g2)

Returns 1 or 0 to indicate whether g1 spatially intersects g2.

• ST_Overlaps(g1, g2)

Two geometries spatially overlap if they intersect and their intersection results in a geometry of the same
dimension but not equal to either of the given geometries.

This function returns 1 or 0 to indicate whether g1 spatially overlaps g2.

This function returns 0 if called with an inapplicable geometry argument type combination. For example,
it returns 0 if called with geometries of different dimensions or any argument is a Point.

2074

https://dev.mysql.com/doc/mysql-errors/5.7/en/server-error-reference.html#error_er_gis_invalid_data

Functions That Test Spatial Relations Between Geometry Objects

• ST_Touches(g1, g2)

Two geometries spatially touch if their interiors do not intersect, but the boundary of one of the
geometries intersects either the boundary or the interior of the other.

This function returns 1 or 0 to indicate whether g1 spatially touches g2.

This function returns 0 if called with an inapplicable geometry argument type combination. For example,
it returns 0 if either of the arguments is a Point or MultiPoint.

ST_Touches() and Touches() are synonyms.

• ST_Within(g1, g2)

Returns 1 or 0 to indicate whether g1 is spatially within g2. This tests the opposite relationship as
ST_Contains().

• Touches(g1, g2)

ST_Touches() and Touches() are synonyms. For more information, see the description of
ST_Touches().

Touches() is deprecated; expect it to be removed in a future MySQL release. Use ST_Touches()
instead.

12.16.9.2 Spatial Relation Functions That Use Minimum Bounding Rectangles

MySQL provides several MySQL-specific functions that test the relationship between minimum bounding
rectangles (MBRs) of two geometries g1 and g2. The return values 1 and 0 indicate true and false,
respectively.

A corresponding set of MBR functions defined according to the OpenGIS specification is described later in
this section.

• MBRContains(g1, g2)

Returns 1 or 0 to indicate whether the minimum bounding rectangle of g1 contains the minimum
bounding rectangle of g2. This tests the opposite relationship as MBRWithin().

mysql> SET @g1 = ST_GeomFromText('Polygon((0 0,0 3,3 3,3 0,0 0))');
mysql> SET @g2 = ST_GeomFromText('Point(1 1)');
mysql> SELECT MBRContains(@g1,@g2), MBRWithin(@g2,@g1);
+----------------------+--------------------+
| MBRContains(@g1,@g2) | MBRWithin(@g2,@g1) |
+----------------------+--------------------+
| 1 | 1 |
+----------------------+--------------------+

MBRContains() and Contains() are synonyms.

• MBRCoveredBy(g1, g2)

Returns 1 or 0 to indicate whether the minimum bounding rectangle of g1 is covered by the minimum
bounding rectangle of g2. This tests the opposite relationship as MBRCovers().

MBRCoveredBy() handles its arguments as follows:

• If either argument is NULL or an empty geometry, the return value is NULL.

2075

Functions That Test Spatial Relations Between Geometry Objects

• If either argument is not a syntactically well-formed geometry byte string, an ER_GIS_INVALID_DATA
error occurs.

• Otherwise, the return value is non-NULL.

mysql> SET @g1 = ST_GeomFromText('Polygon((0 0,0 3,3 3,3 0,0 0))');
mysql> SET @g2 = ST_GeomFromText('Point(1 1)');
mysql> SELECT MBRCovers(@g1,@g2), MBRCoveredby(@g1,@g2);
+--------------------+-----------------------+
| MBRCovers(@g1,@g2) | MBRCoveredby(@g1,@g2) |
+--------------------+-----------------------+
| 1 | 0 |
+--------------------+-----------------------+
mysql> SELECT MBRCovers(@g2,@g1), MBRCoveredby(@g2,@g1);
+--------------------+-----------------------+
| MBRCovers(@g2,@g1) | MBRCoveredby(@g2,@g1) |
+--------------------+-----------------------+
| 0 | 1 |
+--------------------+-----------------------+

• MBRCovers(g1, g2)

Returns 1 or 0 to indicate whether the minimum bounding rectangle of g1 covers the minimum bounding
rectangle of g2. This tests the opposite relationship as MBRCoveredBy(). See the description of
MBRCoveredBy() for examples.

MBRCovers() handles its arguments as follows:

• If either argument is NULL or an empty geometry, the return value is NULL.

• If either argument is not a syntactically well-formed geometry byte string, an ER_GIS_INVALID_DATA
error occurs.

• Otherwise, the return value is non-NULL.

• MBRDisjoint(g1, g2)

Returns 1 or 0 to indicate whether the minimum bounding rectangles of the two geometries g1 and g2
are disjoint (do not intersect).

MBRDisjoint() and Disjoint() are synonyms.

• MBREqual(g1, g2)

Returns 1 or 0 to indicate whether the minimum bounding rectangles of the two geometries g1 and g2
are the same.

MBREqual() is deprecated; expect it to be removed in a future MySQL release. Use MBREquals()
instead.

• MBREquals(g1, g2)

Returns 1 or 0 to indicate whether the minimum bounding rectangles of the two geometries g1 and g2
are the same.

MBREquals(), MBREqual(), and Equals() are synonyms.

2076

https://dev.mysql.com/doc/mysql-errors/5.7/en/server-error-reference.html#error_er_gis_invalid_data
https://dev.mysql.com/doc/mysql-errors/5.7/en/server-error-reference.html#error_er_gis_invalid_data

Functions That Test Spatial Relations Between Geometry Objects

• MBRIntersects(g1, g2)

Returns 1 or 0 to indicate whether the minimum bounding rectangles of the two geometries g1 and g2
intersect.

MBRIntersects() and Intersects() are synonyms.

• MBROverlaps(g1, g2)

Two geometries spatially overlap if they intersect and their intersection results in a geometry of the same
dimension but not equal to either of the given geometries.

This function returns 1 or 0 to indicate whether the minimum bounding rectangles of the two geometries
g1 and g2 overlap.

MBROverlaps() and Overlaps() are synonyms.

• MBRTouches(g1, g2)

Two geometries spatially touch if their interiors do not intersect, but the boundary of one of the
geometries intersects either the boundary or the interior of the other.

This function returns 1 or 0 to indicate whether the minimum bounding rectangles of the two geometries
g1 and g2 touch.

• MBRWithin(g1, g2)

Returns 1 or 0 to indicate whether the minimum bounding rectangle of g1 is within the minimum
bounding rectangle of g2. This tests the opposite relationship as MBRContains().

mysql> SET @g1 = ST_GeomFromText('Polygon((0 0,0 3,3 3,3 0,0 0))');
mysql> SET @g2 = ST_GeomFromText('Polygon((0 0,0 5,5 5,5 0,0 0))');
mysql> SELECT MBRWithin(@g1,@g2), MBRWithin(@g2,@g1);
+--------------------+--------------------+
| MBRWithin(@g1,@g2) | MBRWithin(@g2,@g1) |
+--------------------+--------------------+
| 1 | 0 |
+--------------------+--------------------+

MBRWithin() and Within() are synonyms.

The OpenGIS specification defines the following functions that test the relationship between two geometry
values g1 and g2. The MySQL implementation uses minimum bounding rectangles, so these functions
return the same result as the corresponding MBR-based functions described earlier in this section. The
return values 1 and 0 indicate true and false, respectively.

These functions support all argument type combinations except those that are inapplicable according to the
Open Geospatial Consortium specification.

• Contains(g1, g2)

MBRContains() and Contains() are synonyms. For more information, see the description of
MBRContains().

Contains() is deprecated; expect it to be removed in a future MySQL release. Use MBRContains()
instead.

• Disjoint(g1, g2)

2077

Spatial Geohash Functions

MBRDisjoint() and Disjoint() are synonyms. For more information, see the description of
MBRDisjoint().

Disjoint() is deprecated; expect it to be removed in a future MySQL release. Use MBRDisjoint()
instead.

• Equals(g1, g2)

MBREquals() and Equals() are synonyms. For more information, see the description of
MBREquals().

Equals() is deprecated; expect it to be removed in a future MySQL release. Use MBREquals()
instead.

• Intersects(g1, g2)

MBRIntersects() and Intersects() are synonyms. For more information, see the description of
MBRIntersects().

Intersects() is deprecated; expect it to be removed in a future MySQL release. Use
MBRIntersects() instead.

• Overlaps(g1, g2)

MBROverlaps() and Overlaps() are synonyms. For more information, see the description of
MBROverlaps().

Overlaps() is deprecated; expect it to be removed in a future MySQL release. Use MBROverlaps()
instead.

• Within(g1, g2)

MBRWithin() and Within() are synonyms. For more information, see the description of
MBRWithin().

Within() is deprecated; expect it to be removed in a future MySQL release. Use MBRWithin()
instead.

12.16.10 Spatial Geohash Functions

Geohash is a system for encoding latitude and longitude coordinates of arbitrary precision
into a text string. Geohash values are strings that contain only characters chosen from
"0123456789bcdefghjkmnpqrstuvwxyz".

The functions in this section enable manipulation of geohash values, which provides applications the
capabilities of importing and exporting geohash data, and of indexing and searching geohash values.

• ST_GeoHash(longitude, latitude, max_length), ST_GeoHash(point, max_length)

Returns a geohash string in the connection character set and collation.

If any argument is NULL, the return value is NULL. If any argument is invalid, an error occurs.

For the first syntax, the longitude must be a number in the range [−180, 180], and the latitude
must be a number in the range [−90, 90]. For the second syntax, a POINT value is required, where the X
and Y coordinates are in the valid ranges for longitude and latitude, respectively.

2078

Spatial Geohash Functions

The resulting string is no longer than max_length characters, which has an upper limit of 100. The
string might be shorter than max_length characters because the algorithm that creates the geohash
value continues until it has created a string that is either an exact representation of the location or
max_length characters, whichever comes first.

mysql> SELECT ST_GeoHash(180,0,10), ST_GeoHash(-180,-90,15);
+----------------------+-------------------------+
| ST_GeoHash(180,0,10) | ST_GeoHash(-180,-90,15) |
+----------------------+-------------------------+
| xbpbpbpbpb | 000000000000000 |
+----------------------+-------------------------+

• ST_LatFromGeoHash(geohash_str)

Returns the latitude from a geohash string value, as a DOUBLE value in the range [−90, 90].

If the argument is NULL, the return value is NULL. If the argument is invalid, an error occurs.

The ST_LatFromGeoHash() decoding function reads no more than 433 characters from the
geohash_str argument. That represents the upper limit on information in the internal representation of
coordinate values. Characters past the 433rd are ignored, even if they are otherwise illegal and produce
an error.

mysql> SELECT ST_LatFromGeoHash(ST_GeoHash(45,-20,10));
+--+
| ST_LatFromGeoHash(ST_GeoHash(45,-20,10)) |
+--+
| -20 |
+--+

• ST_LongFromGeoHash(geohash_str)

Returns the longitude from a geohash string value, as a DOUBLE value in the range [−180, 180].

If the argument is NULL, the return value is NULL. If the argument is invalid, an error occurs.

The remarks in the description of ST_LatFromGeoHash() regarding the maximum number of
characters processed from the geohash_str argument also apply to ST_LongFromGeoHash().

mysql> SELECT ST_LongFromGeoHash(ST_GeoHash(45,-20,10));
+---+
| ST_LongFromGeoHash(ST_GeoHash(45,-20,10)) |
+---+
| 45 |
+---+

2079

Spatial GeoJSON Functions

• ST_PointFromGeoHash(geohash_str, srid)

Returns a POINT value containing the decoded geohash value, given a geohash string value.

The X and Y coordinates of the point are the longitude in the range [−180, 180] and the latitude in the
range [−90, 90], respectively.

If any argument is NULL, the return value is NULL. If any argument is invalid, an error occurs.

The srid argument is an unsigned 32-bit integer.

The remarks in the description of ST_LatFromGeoHash() regarding the maximum number of
characters processed from the geohash_str argument also apply to ST_PointFromGeoHash().

mysql> SET @gh = ST_GeoHash(45,-20,10);
mysql> SELECT ST_AsText(ST_PointFromGeoHash(@gh,0));
+---------------------------------------+
| ST_AsText(ST_PointFromGeoHash(@gh,0)) |
+---------------------------------------+
| POINT(45 -20) |
+---------------------------------------+

12.16.11 Spatial GeoJSON Functions

This section describes functions for converting between GeoJSON documents and spatial values.
GeoJSON is an open standard for encoding geometric/geographical features. For more information, see
http://geojson.org. The functions discussed here follow GeoJSON specification revision 1.0.

GeoJSON supports the same geometric/geographic data types that MySQL supports. Feature and
FeatureCollection objects are not supported, except that geometry objects are extracted from them. CRS
support is limited to values that identify an SRID.

MySQL also supports a native JSON data type and a set of SQL functions to enable operations on JSON
values. For more information, see Section 11.5, “The JSON Data Type”, and Section 12.17, “JSON
Functions”.

• ST_AsGeoJSON(g [, max_dec_digits [, options]])

Generates a GeoJSON object from the geometry g. The object string has the connection character set
and collation.

If any argument is NULL, the return value is NULL. If any non-NULL argument is invalid, an error occurs.

max_dec_digits, if specified, limits the number of decimal digits for coordinates and causes rounding
of output. If not specified, this argument defaults to its maximum value of 232 − 1. The minimum is 0.

options, if specified, is a bitmask. The following table shows the permitted flag values. If the geometry
argument has an SRID of 0, no CRS object is produced even for those flag values that request one.

Flag Value Meaning

0 No options. This is the default if options is not
specified.

1 Add a bounding box to the output.

2 Add a short-format CRS URN to the output. The
default format is a short format (EPSG:srid).

2080

http://geojson.org

Spatial GeoJSON Functions

Flag Value Meaning

4 Add a long-format CRS URN
(urn:ogc:def:crs:EPSG::srid). This flag
overrides flag 2. For example, option values of 5
and 7 mean the same (add a bounding box and a
long-format CRS URN).

mysql> SELECT ST_AsGeoJSON(ST_GeomFromText('POINT(11.11111 12.22222)'),2);
+---+
| ST_AsGeoJSON(ST_GeomFromText('POINT(11.11111 12.22222)'),2) |
+---+
| {"type": "Point", "coordinates": [11.11, 12.22]} |
+---+

• ST_GeomFromGeoJSON(str [, options [, srid]])

Parses a string str representing a GeoJSON object and returns a geometry.

If any argument is NULL, the return value is NULL. If any non-NULL argument is invalid, an error occurs.

options, if given, describes how to handle GeoJSON documents that contain geometries with
coordinate dimensions higher than 2. The following table shows the permitted options values.

Option Value Meaning

1 Reject the document and produce an error. This is
the default if options is not specified.

2, 3, 4 Accept the document and strip off the coordinates
for higher coordinate dimensions.

options values of 2, 3, and 4 currently produce the same effect. If geometries with coordinate
dimensions higher than 2 are supported in the future, these values can be expected to produce different
effects.

The srid argument, if given, must be a 32-bit unsigned integer. If not given, the geometry return value
has an SRID of 4326.

GeoJSON geometry, feature, and feature collection objects may have a crs property. The parsing
function parses named CRS URNs in the urn:ogc:def:crs:EPSG::srid and EPSG:srid
namespaces, but not CRSs given as link objects. Also, urn:ogc:def:crs:OGC:1.3:CRS84 is
recognized as SRID 4326. If an object has a CRS that is not understood, an error occurs, with the
exception that if the optional srid argument is given, any CRS is ignored even if it is invalid.

As specified in the GeoJSON specification, parsing is case-sensitive for the type member of the
GeoJSON input (Point, LineString, and so forth). The specification is silent regarding case
sensitivity for other parsing, which in MySQL is not case-sensitive.

This example shows the parsing result for a simple GeoJSON object:

mysql> SET @json = '{ "type": "Point", "coordinates": [102.0, 0.0]}';
mysql> SELECT ST_AsText(ST_GeomFromGeoJSON(@json));
+--------------------------------------+
| ST_AsText(ST_GeomFromGeoJSON(@json)) |
+--------------------------------------+
| POINT(102 0) |
+--------------------------------------+

2081

Spatial Convenience Functions

12.16.12 Spatial Convenience Functions

The functions in this section provide convenience operations on geometry values.

• ST_Distance_Sphere(g1, g2 [, radius])

Returns the mimimum spherical distance between two points and/or multipoints on a sphere, in meters,
or NULL if any geometry argument is NULL or empty.

Calculations use a spherical earth and a configurable radius. The optional radius argument should
be given in meters. If omitted, the default radius is 6,370,986 meters. An ER_WRONG_ARGUMENTS error
occurs if the radius argument is present but not positive.

The geometry arguments should consist of points that specify (longitude, latitude) coordinate values:

• Longitude and latitude are the first and second coordinates of the point, respectively.

• Both coordinates are in degrees.

• Longitude values must be in the range (-180, 180]. Positive values are east of the prime meridian.

• Latitude values must be in the range [-90, 90]. Positive values are north of the equator.

Supported argument combinations are (Point, Point), (Point, MultiPoint), and (MultiPoint,
Point). An ER_GIS_UNSUPPORTED_ARGUMENT error occurs for other combinations.

If any geometry argument is not a syntactically well-formed geometry byte string, an
ER_GIS_INVALID_DATA error occurs.

mysql> SET @pt1 = ST_GeomFromText('POINT(0 0)');
mysql> SET @pt2 = ST_GeomFromText('POINT(180 0)');
mysql> SELECT ST_Distance_Sphere(@pt1, @pt2);
+--------------------------------+
| ST_Distance_Sphere(@pt1, @pt2) |
+--------------------------------+
| 20015042.813723423 |
+--------------------------------+

• ST_IsValid(g)

Returns 1 if the argument is syntactically well-formed and is geometrically valid, 0 if the argument is not
syntactically well-formed or is not geometrically valid. If the argument is NULL, the return value is NULL.
Geometry validity is defined by the OGC specification.

The only valid empty geometry is represented in the form of an empty geometry collection value.
ST_IsValid() returns 1 in this case.

ST_IsValid() works only for the Cartesian coordinate system and requires a geometry argument with
an SRID of 0. An ER_WRONG_ARGUMENTS error occurs otherwise.

mysql> SET @ls1 = ST_GeomFromText('LINESTRING(0 0,-0.00 0,0.0 0)');
mysql> SET @ls2 = ST_GeomFromText('LINESTRING(0 0, 1 1)');
mysql> SELECT ST_IsValid(@ls1);
+------------------+
| ST_IsValid(@ls1) |
+------------------+
| 0 |
+------------------+
mysql> SELECT ST_IsValid(@ls2);
+------------------+

2082

https://dev.mysql.com/doc/mysql-errors/5.7/en/server-error-reference.html#error_er_wrong_arguments
https://dev.mysql.com/doc/mysql-errors/5.7/en/server-error-reference.html#error_er_gis_unsupported_argument
https://dev.mysql.com/doc/mysql-errors/5.7/en/server-error-reference.html#error_er_gis_invalid_data
https://dev.mysql.com/doc/mysql-errors/5.7/en/server-error-reference.html#error_er_wrong_arguments

Spatial Convenience Functions

| ST_IsValid(@ls2) |
+------------------+
| 1 |
+------------------+

• ST_MakeEnvelope(pt1, pt2)

Returns the rectangle that forms the envelope around two points, as a Point, LineString, or
Polygon. If any argument is NULL, the return value is NULL.

Calculations are done using the Cartesian coordinate system rather than on a sphere, spheroid, or on
earth.

Given two points pt1 and pt2, ST_MakeEnvelope() creates the result geometry on an abstract plane
like this:

• If pt1 and pt2 are equal, the result is the point pt1.

• Otherwise, if (pt1, pt2) is a vertical or horizontal line segment, the result is the line segment
(pt1, pt2).

• Otherwise, the result is a polygon using pt1 and pt2 as diagonal points.

The result geometry has an SRID of 0.

ST_MakeEnvelope() requires Point geometry arguments with an SRID of 0. An
ER_WRONG_ARGUMENTS error occurs otherwise.

If any argument is not a syntactically well-formed geometry byte string, or if any coordinate value of the
two points is infinite or NaN, an ER_GIS_INVALID_DATA error occurs.

mysql> SET @pt1 = ST_GeomFromText('POINT(0 0)');
mysql> SET @pt2 = ST_GeomFromText('POINT(1 1)');
mysql> SELECT ST_AsText(ST_MakeEnvelope(@pt1, @pt2));
+--+
| ST_AsText(ST_MakeEnvelope(@pt1, @pt2)) |
+--+
| POLYGON((0 0,1 0,1 1,0 1,0 0)) |
+--+

2083

https://dev.mysql.com/doc/mysql-errors/5.7/en/server-error-reference.html#error_er_wrong_arguments
https://dev.mysql.com/doc/mysql-errors/5.7/en/server-error-reference.html#error_er_gis_invalid_data

Spatial Convenience Functions

• ST_Simplify(g, max_distance)

Simplifies a geometry using the Douglas-Peucker algorithm and returns a simplified value of the same
type. If any argument is NULL, the return value is NULL.

The geometry may be any geometry type, although the Douglas-Peucker algorithm may not actually
process every type. A geometry collection is processed by giving its components one by one to the
simplification algorithm, and the returned geometries are put into a geometry collection as result.

The max_distance argument is the distance (in units of the input coordinates) of a vertex to other
segments to be removed. Vertices within this distance of the simplified linestring are removed. If the
max_distance argument is not positive, or is NaN, an ER_WRONG_ARGUMENTS error occurs.

According to Boost.Geometry, geometries might become invalid as a result of the simplification
process, and the process might create self-intersections. To check the validity of the result, pass it to
ST_IsValid().

If the geometry argument is not a syntactically well-formed geometry byte string, an
ER_GIS_INVALID_DATA error occurs.

mysql> SET @g = ST_GeomFromText('LINESTRING(0 0,0 1,1 1,1 2,2 2,2 3,3 3)');
mysql> SELECT ST_AsText(ST_Simplify(@g, 0.5));
+---------------------------------+
| ST_AsText(ST_Simplify(@g, 0.5)) |
+---------------------------------+
| LINESTRING(0 0,0 1,1 1,2 3,3 3) |
+---------------------------------+
mysql> SELECT ST_AsText(ST_Simplify(@g, 1.0));
+---------------------------------+
| ST_AsText(ST_Simplify(@g, 1.0)) |
+---------------------------------+
| LINESTRING(0 0,3 3) |
+---------------------------------+

• ST_Validate(g)

Validates a geometry according to the OGC specification. A geometry can be syntactically well-formed
(WKB value plus SRID) but geometrically invalid. For example, this polygon is geometrically invalid:
POLYGON((0 0, 0 0, 0 0, 0 0, 0 0))

ST_Validate() returns the geometry if it is syntactically well-formed and is geometrically valid, NULL if
the argument is not syntactically well-formed or is not geometrically valid or is NULL.

ST_Validate() can be used to filter out invalid geometry data, although at a cost. For applications that
require more precise results not tainted by invalid data, this penalty may be worthwhile.

If the geometry argument is valid, it is returned as is, except that if an input Polygon or MultiPolygon
has clockwise rings, those rings are reversed before checking for validity. If the geometry is valid, the
value with the reversed rings is returned.

The only valid empty geometry is represented in the form of an empty geometry collection value.
ST_Validate() returns it directly without further checks in this case.

ST_Validate() works only for the Cartesian coordinate system and requires a geometry argument
with an SRID of 0. An ER_WRONG_ARGUMENTS error occurs otherwise.

mysql> SET @ls1 = ST_GeomFromText('LINESTRING(0 0)');
mysql> SET @ls2 = ST_GeomFromText('LINESTRING(0 0, 1 1)');
mysql> SELECT ST_AsText(ST_Validate(@ls1));

2084

https://dev.mysql.com/doc/mysql-errors/5.7/en/server-error-reference.html#error_er_wrong_arguments
https://dev.mysql.com/doc/mysql-errors/5.7/en/server-error-reference.html#error_er_gis_invalid_data
https://dev.mysql.com/doc/mysql-errors/5.7/en/server-error-reference.html#error_er_wrong_arguments

JSON Functions

+------------------------------+
| ST_AsText(ST_Validate(@ls1)) |
+------------------------------+
| NULL |
+------------------------------+
mysql> SELECT ST_AsText(ST_Validate(@ls2));
+------------------------------+
| ST_AsText(ST_Validate(@ls2)) |
+------------------------------+
| LINESTRING(0 0,1 1) |
+------------------------------+

12.17 JSON Functions

The functions described in this section perform operations on JSON values. For discussion of the JSON
data type and additional examples showing how to use these functions, see Section 11.5, “The JSON Data
Type”.

For functions that take a JSON argument, an error occurs if the argument is not a valid JSON value.
Arguments parsed as JSON are indicated by json_doc; arguments indicated by val are not parsed.

Functions that return JSON values always perform normalization of these values (see Normalization,
Merging, and Autowrapping of JSON Values), and thus orders them. The precise outcome of the sort is
subject to change at any time; do not rely on it to be consistent between releases.

Unless otherwise indicated, the JSON functions were added in MySQL 5.7.8.

A set of spatial functions for operating on GeoJSON values is also available. See Section 12.16.11,
“Spatial GeoJSON Functions”.

12.17.1 JSON Function Reference

Table 12.22 JSON Functions

Name Description Introduced Deprecated

-> Return value from JSON
column after evaluating
path; equivalent to
JSON_EXTRACT().

->> Return value from JSON
column after evaluating
path and unquoting the
result; equivalent to
JSON_UNQUOTE(JSON_EXTRACT()).

5.7.13

JSON_APPEND() Append data to JSON
document

Yes

JSON_ARRAY() Create JSON array

JSON_ARRAY_APPEND() Append data to JSON
document

JSON_ARRAY_INSERT() Insert into JSON array

JSON_CONTAINS() Whether JSON document
contains specific object at
path

2085

JSON Function Reference

Name Description Introduced Deprecated

JSON_CONTAINS_PATH()Whether JSON document
contains any data at path

JSON_DEPTH() Maximum depth of JSON
document

JSON_EXTRACT() Return data from JSON
document

JSON_INSERT() Insert data into JSON
document

JSON_KEYS() Array of keys from JSON
document

JSON_LENGTH() Number of elements in
JSON document

JSON_MERGE() Merge JSON
documents, preserving
duplicate keys.
Deprecated synonym for
JSON_MERGE_PRESERVE()

5.7.22

JSON_MERGE_PATCH() Merge JSON documents,
replacing values of
duplicate keys

5.7.22

JSON_MERGE_PRESERVE()Merge JSON documents,
preserving duplicate keys

5.7.22

JSON_OBJECT() Create JSON object

JSON_PRETTY() Print a JSON document
in human-readable
format

5.7.22

JSON_QUOTE() Quote JSON document

JSON_REMOVE() Remove data from JSON
document

JSON_REPLACE() Replace values in JSON
document

JSON_SEARCH() Path to value within
JSON document

JSON_SET() Insert data into JSON
document

JSON_STORAGE_SIZE() Space used for storage
of binary representation
of a JSON document

5.7.22

JSON_TYPE() Type of JSON value

JSON_UNQUOTE() Unquote JSON value

JSON_VALID() Whether JSON value is
valid

MySQL 5.7.22 and later supports two aggregate JSON functions JSON_ARRAYAGG() and
JSON_OBJECTAGG(). See Section 12.19, “Aggregate Functions”, for descriptions of these.

2086

Functions That Create JSON Values

Also beginning with MySQL 5.7.22:

• “pretty-printing” of JSON values in an easy-to-read format can be obtained using the JSON_PRETTY()
function.

• You can see how much storage space a given JSON value takes up using JSON_STORAGE_SIZE().

For complete descriptions of these two functions, see Section 12.17.6, “JSON Utility Functions”.

12.17.2 Functions That Create JSON Values

The functions listed in this section compose JSON values from component elements.

• JSON_ARRAY([val[, val] ...])

Evaluates a (possibly empty) list of values and returns a JSON array containing those values.

mysql> SELECT JSON_ARRAY(1, "abc", NULL, TRUE, CURTIME());
+---+
| JSON_ARRAY(1, "abc", NULL, TRUE, CURTIME()) |
+---+
| [1, "abc", null, true, "11:30:24.000000"] |
+---+

• JSON_OBJECT([key, val[, key, val] ...])

Evaluates a (possibly empty) list of key-value pairs and returns a JSON object containing those pairs. An
error occurs if any key name is NULL or the number of arguments is odd.

mysql> SELECT JSON_OBJECT('id', 87, 'name', 'carrot');
+---+
| JSON_OBJECT('id', 87, 'name', 'carrot') |
+---+
| {"id": 87, "name": "carrot"} |
+---+

• JSON_QUOTE(string)

Quotes a string as a JSON value by wrapping it with double quote characters and escaping interior
quote and other characters, then returning the result as a utf8mb4 string. Returns NULL if the argument
is NULL.

This function is typically used to produce a valid JSON string literal for inclusion within a JSON
document.

Certain special characters are escaped with backslashes per the escape sequences shown in
Table 12.23, “JSON_UNQUOTE() Special Character Escape Sequences”.

mysql> SELECT JSON_QUOTE('null'), JSON_QUOTE('"null"');
+--------------------+----------------------+
| JSON_QUOTE('null') | JSON_QUOTE('"null"') |
+--------------------+----------------------+
| "null" | "\"null\"" |
+--------------------+----------------------+
mysql> SELECT JSON_QUOTE('[1, 2, 3]');
+-------------------------+
| JSON_QUOTE('[1, 2, 3]') |
+-------------------------+
| "[1, 2, 3]" |
+-------------------------+

2087

Functions That Search JSON Values

You can also obtain JSON values by casting values of other types to the JSON type using CAST(value
AS JSON); see Converting between JSON and non-JSON values, for more information.

Two aggregate functions generating JSON values are available (MySQL 5.7.22 and later).
JSON_ARRAYAGG() returns a result set as a single JSON array, and JSON_OBJECTAGG() returns a result
set as a single JSON object. For more information, see Section 12.19, “Aggregate Functions”.

12.17.3 Functions That Search JSON Values

The functions in this section perform search operations on JSON values to extract data from them, report
whether data exists at a location within them, or report the path to data within them.

• JSON_CONTAINS(target, candidate[, path])

Indicates by returning 1 or 0 whether a given candidate JSON document is contained within a target
JSON document, or—if a path argument was supplied—whether the candidate is found at a specific
path within the target. Returns NULL if any argument is NULL, or if the path argument does not identify a
section of the target document. An error occurs if target or candidate is not a valid JSON document,
or if the path argument is not a valid path expression or contains a * or ** wildcard.

To check only whether any data exists at the path, use JSON_CONTAINS_PATH() instead.

The following rules define containment:

• A candidate scalar is contained in a target scalar if and only if they are comparable and are equal.
Two scalar values are comparable if they have the same JSON_TYPE() types, with the exception that
values of types INTEGER and DECIMAL are also comparable to each other.

• A candidate array is contained in a target array if and only if every element in the candidate is
contained in some element of the target.

• A candidate nonarray is contained in a target array if and only if the candidate is contained in some
element of the target.

• A candidate object is contained in a target object if and only if for each key in the candidate there is a
key with the same name in the target and the value associated with the candidate key is contained in
the value associated with the target key.

Otherwise, the candidate value is not contained in the target document.

mysql> SET @j = '{"a": 1, "b": 2, "c": {"d": 4}}';
mysql> SET @j2 = '1';
mysql> SELECT JSON_CONTAINS(@j, @j2, '$.a');
+-------------------------------+
| JSON_CONTAINS(@j, @j2, '$.a') |
+-------------------------------+
| 1 |
+-------------------------------+
mysql> SELECT JSON_CONTAINS(@j, @j2, '$.b');
+-------------------------------+
| JSON_CONTAINS(@j, @j2, '$.b') |
+-------------------------------+
| 0 |
+-------------------------------+

mysql> SET @j2 = '{"d": 4}';
mysql> SELECT JSON_CONTAINS(@j, @j2, '$.a');
+-------------------------------+
| JSON_CONTAINS(@j, @j2, '$.a') |
+-------------------------------+

2088

Functions That Search JSON Values

| 0 |
+-------------------------------+
mysql> SELECT JSON_CONTAINS(@j, @j2, '$.c');
+-------------------------------+
| JSON_CONTAINS(@j, @j2, '$.c') |
+-------------------------------+
| 1 |
+-------------------------------+

• JSON_CONTAINS_PATH(json_doc, one_or_all, path[, path] ...)

Returns 0 or 1 to indicate whether a JSON document contains data at a given path or paths. Returns
NULL if any argument is NULL. An error occurs if the json_doc argument is not a valid JSON document,
any path argument is not a valid path expression, or one_or_all is not 'one' or 'all'.

To check for a specific value at a path, use JSON_CONTAINS() instead.

The return value is 0 if no specified path exists within the document. Otherwise, the return value
depends on the one_or_all argument:

• 'one': 1 if at least one path exists within the document, 0 otherwise.

• 'all': 1 if all paths exist within the document, 0 otherwise.

mysql> SET @j = '{"a": 1, "b": 2, "c": {"d": 4}}';
mysql> SELECT JSON_CONTAINS_PATH(@j, 'one', '$.a', '$.e');
+---+
| JSON_CONTAINS_PATH(@j, 'one', '$.a', '$.e') |
+---+
| 1 |
+---+
mysql> SELECT JSON_CONTAINS_PATH(@j, 'all', '$.a', '$.e');
+---+
| JSON_CONTAINS_PATH(@j, 'all', '$.a', '$.e') |
+---+
| 0 |
+---+
mysql> SELECT JSON_CONTAINS_PATH(@j, 'one', '$.c.d');
+--+
| JSON_CONTAINS_PATH(@j, 'one', '$.c.d') |
+--+
| 1 |
+--+
mysql> SELECT JSON_CONTAINS_PATH(@j, 'one', '$.a.d');
+--+
| JSON_CONTAINS_PATH(@j, 'one', '$.a.d') |
+--+
| 0 |
+--+

• JSON_EXTRACT(json_doc, path[, path] ...)

Returns data from a JSON document, selected from the parts of the document matched by the path
arguments. Returns NULL if any argument is NULL or no paths locate a value in the document. An error
occurs if the json_doc argument is not a valid JSON document or any path argument is not a valid
path expression.

The return value consists of all values matched by the path arguments. If it is possible that those
arguments could return multiple values, the matched values are autowrapped as an array, in the order
corresponding to the paths that produced them. Otherwise, the return value is the single matched value.

mysql> SELECT JSON_EXTRACT('[10, 20, [30, 40]]', '$[1]');
+--+

2089

Functions That Search JSON Values

| JSON_EXTRACT('[10, 20, [30, 40]]', '$[1]') |
+--+
| 20 |
+--+
mysql> SELECT JSON_EXTRACT('[10, 20, [30, 40]]', '$[1]', '$[0]');
+--+
| JSON_EXTRACT('[10, 20, [30, 40]]', '$[1]', '$[0]') |
+--+
| [20, 10] |
+--+
mysql> SELECT JSON_EXTRACT('[10, 20, [30, 40]]', '$[2][*]');
+---+
| JSON_EXTRACT('[10, 20, [30, 40]]', '$[2][*]') |
+---+
| [30, 40] |
+---+

MySQL 5.7.9 and later supports the -> operator as shorthand for this function as used with 2 arguments
where the left hand side is a JSON column identifier (not an expression) and the right hand side is the
JSON path to be matched within the column.

• column->path

In MySQL 5.7.9 and later, the -> operator serves as an alias for the JSON_EXTRACT() function when
used with two arguments, a column identifier on the left and a JSON path (a string literal) on the right
that is evaluated against the JSON document (the column value). You can use such expressions in
place of column references wherever they occur in SQL statements.

The two SELECT statements shown here produce the same output:

mysql> SELECT c, JSON_EXTRACT(c, "$.id"), g
 > FROM jemp
 > WHERE JSON_EXTRACT(c, "$.id") > 1
 > ORDER BY JSON_EXTRACT(c, "$.name");
+-------------------------------+-----------+------+
| c | c->"$.id" | g |
+-------------------------------+-----------+------+
{"id": "3", "name": "Barney"}	"3"	3
{"id": "4", "name": "Betty"}	"4"	4
{"id": "2", "name": "Wilma"}	"2"	2
+-------------------------------+-----------+------+
3 rows in set (0.00 sec)

mysql> SELECT c, c->"$.id", g
 > FROM jemp
 > WHERE c->"$.id" > 1
 > ORDER BY c->"$.name";
+-------------------------------+-----------+------+
| c | c->"$.id" | g |
+-------------------------------+-----------+------+
{"id": "3", "name": "Barney"}	"3"	3
{"id": "4", "name": "Betty"}	"4"	4
{"id": "2", "name": "Wilma"}	"2"	2
+-------------------------------+-----------+------+
3 rows in set (0.00 sec)

This functionality is not limited to SELECT, as shown here:

mysql> ALTER TABLE jemp ADD COLUMN n INT;
Query OK, 0 rows affected (0.68 sec)
Records: 0 Duplicates: 0 Warnings: 0

mysql> UPDATE jemp SET n=1 WHERE c->"$.id" = "4";
Query OK, 1 row affected (0.04 sec)

2090

Functions That Search JSON Values

Rows matched: 1 Changed: 1 Warnings: 0

mysql> SELECT c, c->"$.id", g, n
 > FROM jemp
 > WHERE JSON_EXTRACT(c, "$.id") > 1
 > ORDER BY c->"$.name";
+-------------------------------+-----------+------+------+
| c | c->"$.id" | g | n |
+-------------------------------+-----------+------+------+
{"id": "3", "name": "Barney"}	"3"	3	NULL
{"id": "4", "name": "Betty"}	"4"	4	1
{"id": "2", "name": "Wilma"}	"2"	2	NULL
+-------------------------------+-----------+------+------+
3 rows in set (0.00 sec)

mysql> DELETE FROM jemp WHERE c->"$.id" = "4";
Query OK, 1 row affected (0.04 sec)

mysql> SELECT c, c->"$.id", g, n
 > FROM jemp
 > WHERE JSON_EXTRACT(c, "$.id") > 1
 > ORDER BY c->"$.name";
+-------------------------------+-----------+------+------+
| c | c->"$.id" | g | n |
+-------------------------------+-----------+------+------+
| {"id": "3", "name": "Barney"} | "3" | 3 | NULL |
| {"id": "2", "name": "Wilma"} | "2" | 2 | NULL |
+-------------------------------+-----------+------+------+
2 rows in set (0.00 sec)

(See Indexing a Generated Column to Provide a JSON Column Index, for the statements used to create
and populate the table just shown.)

This also works with JSON array values, as shown here:

mysql> CREATE TABLE tj10 (a JSON, b INT);
Query OK, 0 rows affected (0.26 sec)

mysql> INSERT INTO tj10
 > VALUES ("[3,10,5,17,44]", 33), ("[3,10,5,17,[22,44,66]]", 0);
Query OK, 1 row affected (0.04 sec)

mysql> SELECT a->"$[4]" FROM tj10;
+--------------+
| a->"$[4]" |
+--------------+
| 44 |
| [22, 44, 66] |
+--------------+
2 rows in set (0.00 sec)

mysql> SELECT * FROM tj10 WHERE a->"$[0]" = 3;
+------------------------------+------+
| a | b |
+------------------------------+------+
| [3, 10, 5, 17, 44] | 33 |
| [3, 10, 5, 17, [22, 44, 66]] | 0 |
+------------------------------+------+
2 rows in set (0.00 sec)

Nested arrays are supported. An expression using -> evaluates as NULL if no matching key is found in
the target JSON document, as shown here:

mysql> SELECT * FROM tj10 WHERE a->"$[4][1]" IS NOT NULL;
+------------------------------+------+
| a | b |

2091

Functions That Search JSON Values

+------------------------------+------+
| [3, 10, 5, 17, [22, 44, 66]] | 0 |
+------------------------------+------+

mysql> SELECT a->"$[4][1]" FROM tj10;
+--------------+
| a->"$[4][1]" |
+--------------+
| NULL |
| 44 |
+--------------+
2 rows in set (0.00 sec)

This is the same behavior as seen in such cases when using JSON_EXTRACT():

mysql> SELECT JSON_EXTRACT(a, "$[4][1]") FROM tj10;
+----------------------------+
| JSON_EXTRACT(a, "$[4][1]") |
+----------------------------+
| NULL |
| 44 |
+----------------------------+
2 rows in set (0.00 sec)

• column->>path

This is an improved, unquoting extraction operator available in MySQL 5.7.13 and later. Whereas the -
> operator simply extracts a value, the ->> operator in addition unquotes the extracted result. In other
words, given a JSON column value column and a path expression path (a string literal), the following
three expressions return the same value:

• JSON_UNQUOTE(JSON_EXTRACT(column, path))

• JSON_UNQUOTE(column -> path)

• column->>path

The ->> operator can be used wherever JSON_UNQUOTE(JSON_EXTRACT()) would be allowed. This
includes (but is not limited to) SELECT lists, WHERE and HAVING clauses, and ORDER BY and GROUP BY
clauses.

The next few statements demonstrate some ->> operator equivalences with other expressions in the
mysql client:

mysql> SELECT * FROM jemp WHERE g > 2;
+-------------------------------+------+
| c | g |
+-------------------------------+------+
| {"id": "3", "name": "Barney"} | 3 |
| {"id": "4", "name": "Betty"} | 4 |
+-------------------------------+------+
2 rows in set (0.01 sec)

mysql> SELECT c->'$.name' AS name
 -> FROM jemp WHERE g > 2;
+----------+
| name |
+----------+
| "Barney" |
| "Betty" |
+----------+
2 rows in set (0.00 sec)

2092

Functions That Search JSON Values

mysql> SELECT JSON_UNQUOTE(c->'$.name') AS name
 -> FROM jemp WHERE g > 2;
+--------+
| name |
+--------+
| Barney |
| Betty |
+--------+
2 rows in set (0.00 sec)

mysql> SELECT c->>'$.name' AS name
 -> FROM jemp WHERE g > 2;
+--------+
| name |
+--------+
| Barney |
| Betty |
+--------+
2 rows in set (0.00 sec)

See Indexing a Generated Column to Provide a JSON Column Index, for the SQL statements used to
create and populate the jemp table in the set of examples just shown.

This operator can also be used with JSON arrays, as shown here:

mysql> CREATE TABLE tj10 (a JSON, b INT);
Query OK, 0 rows affected (0.26 sec)

mysql> INSERT INTO tj10 VALUES
 -> ('[3,10,5,"x",44]', 33),
 -> ('[3,10,5,17,[22,"y",66]]', 0);
Query OK, 2 rows affected (0.04 sec)
Records: 2 Duplicates: 0 Warnings: 0

mysql> SELECT a->"$[3]", a->"$[4][1]" FROM tj10;
+-----------+--------------+
| a->"$[3]" | a->"$[4][1]" |
+-----------+--------------+
| "x" | NULL |
| 17 | "y" |
+-----------+--------------+
2 rows in set (0.00 sec)

mysql> SELECT a->>"$[3]", a->>"$[4][1]" FROM tj10;
+------------+---------------+
| a->>"$[3]" | a->>"$[4][1]" |
+------------+---------------+
| x | NULL |
| 17 | y |
+------------+---------------+
2 rows in set (0.00 sec)

As with ->, the ->> operator is always expanded in the output of EXPLAIN, as the following example
demonstrates:

mysql> EXPLAIN SELECT c->>'$.name' AS name
 -> FROM jemp WHERE g > 2\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: jemp
 partitions: NULL
 type: range
possible_keys: i
 key: i
 key_len: 5

2093

Functions That Search JSON Values

 ref: NULL
 rows: 2
 filtered: 100.00
 Extra: Using where
1 row in set, 1 warning (0.00 sec)

mysql> SHOW WARNINGS\G
*************************** 1. row ***************************
 Level: Note
 Code: 1003
Message: /* select#1 */ select
json_unquote(json_extract(`jtest`.`jemp`.`c`,'$.name')) AS `name` from
`jtest`.`jemp` where (`jtest`.`jemp`.`g` > 2)
1 row in set (0.00 sec)

This is similar to how MySQL expands the -> operator in the same circumstances.

The ->> operator was added in MySQL 5.7.13.

• JSON_KEYS(json_doc[, path])

Returns the keys from the top-level value of a JSON object as a JSON array, or, if a path argument is
given, the top-level keys from the selected path. Returns NULL if any argument is NULL, the json_doc
argument is not an object, or path, if given, does not locate an object. An error occurs if the json_doc
argument is not a valid JSON document or the path argument is not a valid path expression or contains
a * or ** wildcard.

The result array is empty if the selected object is empty. If the top-level value has nested subobjects, the
return value does not include keys from those subobjects.

mysql> SELECT JSON_KEYS('{"a": 1, "b": {"c": 30}}');
+---------------------------------------+
| JSON_KEYS('{"a": 1, "b": {"c": 30}}') |
+---------------------------------------+
| ["a", "b"] |
+---------------------------------------+
mysql> SELECT JSON_KEYS('{"a": 1, "b": {"c": 30}}', '$.b');
+--+
| JSON_KEYS('{"a": 1, "b": {"c": 30}}', '$.b') |
+--+
| ["c"] |
+--+

• JSON_SEARCH(json_doc, one_or_all, search_str[, escape_char[, path] ...])

Returns the path to the given string within a JSON document. Returns NULL if any of the json_doc,
search_str, or path arguments are NULL; no path exists within the document; or search_str is not
found. An error occurs if the json_doc argument is not a valid JSON document, any path argument is

2094

Functions That Search JSON Values

not a valid path expression, one_or_all is not 'one' or 'all', or escape_char is not a constant
expression.

The one_or_all argument affects the search as follows:

• 'one': The search terminates after the first match and returns one path string. It is undefined which
match is considered first.

• 'all': The search returns all matching path strings such that no duplicate paths are included. If there
are multiple strings, they are autowrapped as an array. The order of the array elements is undefined.

Within the search_str search string argument, the % and _ characters work as for the LIKE operator:
% matches any number of characters (including zero characters), and _ matches exactly one character.

To specify a literal % or _ character in the search string, precede it by the escape character. The default
is \ if the escape_char argument is missing or NULL. Otherwise, escape_char must be a constant
that is empty or one character.

For more information about matching and escape character behavior, see the description of LIKE
in Section 12.8.1, “String Comparison Functions and Operators”. For escape character handling, a
difference from the LIKE behavior is that the escape character for JSON_SEARCH() must evaluate to
a constant at compile time, not just at execution time. For example, if JSON_SEARCH() is used in a
prepared statement and the escape_char argument is supplied using a ? parameter, the parameter
value might be constant at execution time, but is not at compile time.

search_str and path are always interpeted as utf8mb4 strings, regardless of their actual encoding.
This is a known issue which is fixed in MySQL 8.0 (Bug #32449181).

mysql> SET @j = '["abc", [{"k": "10"}, "def"], {"x":"abc"}, {"y":"bcd"}]';

mysql> SELECT JSON_SEARCH(@j, 'one', 'abc');
+-------------------------------+
| JSON_SEARCH(@j, 'one', 'abc') |
+-------------------------------+
| "$[0]" |
+-------------------------------+

mysql> SELECT JSON_SEARCH(@j, 'all', 'abc');
+-------------------------------+
| JSON_SEARCH(@j, 'all', 'abc') |
+-------------------------------+
| ["$[0]", "$[2].x"] |
+-------------------------------+

mysql> SELECT JSON_SEARCH(@j, 'all', 'ghi');
+-------------------------------+
| JSON_SEARCH(@j, 'all', 'ghi') |
+-------------------------------+
| NULL |
+-------------------------------+

mysql> SELECT JSON_SEARCH(@j, 'all', '10');
+------------------------------+
| JSON_SEARCH(@j, 'all', '10') |
+------------------------------+
| "$[1][0].k" |
+------------------------------+

mysql> SELECT JSON_SEARCH(@j, 'all', '10', NULL, '$');
+---+
| JSON_SEARCH(@j, 'all', '10', NULL, '$') |
+---+

2095

Functions That Search JSON Values

| "$[1][0].k" |
+---+

mysql> SELECT JSON_SEARCH(@j, 'all', '10', NULL, '$[*]');
+--+
| JSON_SEARCH(@j, 'all', '10', NULL, '$[*]') |
+--+
| "$[1][0].k" |
+--+

mysql> SELECT JSON_SEARCH(@j, 'all', '10', NULL, '$**.k');
+---+
| JSON_SEARCH(@j, 'all', '10', NULL, '$**.k') |
+---+
| "$[1][0].k" |
+---+

mysql> SELECT JSON_SEARCH(@j, 'all', '10', NULL, '$[*][0].k');
+---+
| JSON_SEARCH(@j, 'all', '10', NULL, '$[*][0].k') |
+---+
| "$[1][0].k" |
+---+

mysql> SELECT JSON_SEARCH(@j, 'all', '10', NULL, '$[1]');
+--+
| JSON_SEARCH(@j, 'all', '10', NULL, '$[1]') |
+--+
| "$[1][0].k" |
+--+

mysql> SELECT JSON_SEARCH(@j, 'all', '10', NULL, '$[1][0]');
+---+
| JSON_SEARCH(@j, 'all', '10', NULL, '$[1][0]') |
+---+
| "$[1][0].k" |
+---+

mysql> SELECT JSON_SEARCH(@j, 'all', 'abc', NULL, '$[2]');
+---+
| JSON_SEARCH(@j, 'all', 'abc', NULL, '$[2]') |
+---+
| "$[2].x" |
+---+

mysql> SELECT JSON_SEARCH(@j, 'all', '%a%');
+-------------------------------+
| JSON_SEARCH(@j, 'all', '%a%') |
+-------------------------------+
| ["$[0]", "$[2].x"] |
+-------------------------------+

mysql> SELECT JSON_SEARCH(@j, 'all', '%b%');
+-------------------------------+
| JSON_SEARCH(@j, 'all', '%b%') |
+-------------------------------+
| ["$[0]", "$[2].x", "$[3].y"] |
+-------------------------------+

mysql> SELECT JSON_SEARCH(@j, 'all', '%b%', NULL, '$[0]');
+---+
| JSON_SEARCH(@j, 'all', '%b%', NULL, '$[0]') |
+---+
| "$[0]" |
+---+

mysql> SELECT JSON_SEARCH(@j, 'all', '%b%', NULL, '$[2]');

2096

Functions That Modify JSON Values

+---+
| JSON_SEARCH(@j, 'all', '%b%', NULL, '$[2]') |
+---+
| "$[2].x" |
+---+

mysql> SELECT JSON_SEARCH(@j, 'all', '%b%', NULL, '$[1]');
+---+
| JSON_SEARCH(@j, 'all', '%b%', NULL, '$[1]') |
+---+
| NULL |
+---+

mysql> SELECT JSON_SEARCH(@j, 'all', '%b%', '', '$[1]');
+---+
| JSON_SEARCH(@j, 'all', '%b%', '', '$[1]') |
+---+
| NULL |
+---+

mysql> SELECT JSON_SEARCH(@j, 'all', '%b%', '', '$[3]');
+---+
| JSON_SEARCH(@j, 'all', '%b%', '', '$[3]') |
+---+
| "$[3].y" |
+---+

For more information about the JSON path syntax supported by MySQL, including rules governing the
wildcard operators * and **, see JSON Path Syntax.

12.17.4 Functions That Modify JSON Values

The functions in this section modify JSON values and return the result.

• JSON_APPEND(json_doc, path, val[, path, val] ...)

Appends values to the end of the indicated arrays within a JSON document and returns the result. This
function was renamed to JSON_ARRAY_APPEND() in MySQL 5.7.9; the alias JSON_APPEND() is now
deprecated in MySQL 5.7, and is removed in MySQL 8.0.

• JSON_ARRAY_APPEND(json_doc, path, val[, path, val] ...)

Appends values to the end of the indicated arrays within a JSON document and returns the result.
Returns NULL if any argument is NULL. An error occurs if the json_doc argument is not a valid JSON
document or any path argument is not a valid path expression or contains a * or ** wildcard.

The path-value pairs are evaluated left to right. The document produced by evaluating one pair becomes
the new value against which the next pair is evaluated.

If a path selects a scalar or object value, that value is autowrapped within an array and the new value
is added to that array. Pairs for which the path does not identify any value in the JSON document are
ignored.

mysql> SET @j = '["a", ["b", "c"], "d"]';
mysql> SELECT JSON_ARRAY_APPEND(@j, '$[1]', 1);
+----------------------------------+
| JSON_ARRAY_APPEND(@j, '$[1]', 1) |
+----------------------------------+
| ["a", ["b", "c", 1], "d"] |
+----------------------------------+
mysql> SELECT JSON_ARRAY_APPEND(@j, '$[0]', 2);
+----------------------------------+
| JSON_ARRAY_APPEND(@j, '$[0]', 2) |

2097

Functions That Modify JSON Values

+----------------------------------+
| [["a", 2], ["b", "c"], "d"] |
+----------------------------------+
mysql> SELECT JSON_ARRAY_APPEND(@j, '$[1][0]', 3);
+-------------------------------------+
| JSON_ARRAY_APPEND(@j, '$[1][0]', 3) |
+-------------------------------------+
| ["a", [["b", 3], "c"], "d"] |
+-------------------------------------+

mysql> SET @j = '{"a": 1, "b": [2, 3], "c": 4}';
mysql> SELECT JSON_ARRAY_APPEND(@j, '$.b', 'x');
+------------------------------------+
| JSON_ARRAY_APPEND(@j, '$.b', 'x') |
+------------------------------------+
| {"a": 1, "b": [2, 3, "x"], "c": 4} |
+------------------------------------+
mysql> SELECT JSON_ARRAY_APPEND(@j, '$.c', 'y');
+--------------------------------------+
| JSON_ARRAY_APPEND(@j, '$.c', 'y') |
+--------------------------------------+
| {"a": 1, "b": [2, 3], "c": [4, "y"]} |
+--------------------------------------+

mysql> SET @j = '{"a": 1}';
mysql> SELECT JSON_ARRAY_APPEND(@j, '$', 'z');
+---------------------------------+
| JSON_ARRAY_APPEND(@j, '$', 'z') |
+---------------------------------+
| [{"a": 1}, "z"] |
+---------------------------------+

• JSON_ARRAY_INSERT(json_doc, path, val[, path, val] ...)

Updates a JSON document, inserting into an array within the document and returning the modified
document. Returns NULL if any argument is NULL. An error occurs if the json_doc argument is not
a valid JSON document or any path argument is not a valid path expression or contains a * or **
wildcard or does not end with an array element identifier.

The path-value pairs are evaluated left to right. The document produced by evaluating one pair becomes
the new value against which the next pair is evaluated.

Pairs for which the path does not identify any array in the JSON document are ignored. If a path
identifies an array element, the corresponding value is inserted at that element position, shifting any
following values to the right. If a path identifies an array position past the end of an array, the value is
inserted at the end of the array.

mysql> SET @j = '["a", {"b": [1, 2]}, [3, 4]]';
mysql> SELECT JSON_ARRAY_INSERT(@j, '$[1]', 'x');
+------------------------------------+
| JSON_ARRAY_INSERT(@j, '$[1]', 'x') |
+------------------------------------+
| ["a", "x", {"b": [1, 2]}, [3, 4]] |
+------------------------------------+
mysql> SELECT JSON_ARRAY_INSERT(@j, '$[100]', 'x');
+--------------------------------------+
| JSON_ARRAY_INSERT(@j, '$[100]', 'x') |
+--------------------------------------+
| ["a", {"b": [1, 2]}, [3, 4], "x"] |
+--------------------------------------+
mysql> SELECT JSON_ARRAY_INSERT(@j, '$[1].b[0]', 'x');
+---+
| JSON_ARRAY_INSERT(@j, '$[1].b[0]', 'x') |
+---+

2098

Functions That Modify JSON Values

| ["a", {"b": ["x", 1, 2]}, [3, 4]] |
+---+
mysql> SELECT JSON_ARRAY_INSERT(@j, '$[2][1]', 'y');
+---------------------------------------+
| JSON_ARRAY_INSERT(@j, '$[2][1]', 'y') |
+---------------------------------------+
| ["a", {"b": [1, 2]}, [3, "y", 4]] |
+---------------------------------------+
mysql> SELECT JSON_ARRAY_INSERT(@j, '$[0]', 'x', '$[2][1]', 'y');
+--+
| JSON_ARRAY_INSERT(@j, '$[0]', 'x', '$[2][1]', 'y') |
+--+
| ["x", "a", {"b": [1, 2]}, [3, 4]] |
+--+

Earlier modifications affect the positions of the following elements in the array, so subsequent paths in
the same JSON_ARRAY_INSERT() call should take this into account. In the final example, the second
path inserts nothing because the path no longer matches anything after the first insert.

• JSON_INSERT(json_doc, path, val[, path, val] ...)

Inserts data into a JSON document and returns the result. Returns NULL if any argument is NULL. An
error occurs if the json_doc argument is not a valid JSON document or any path argument is not a
valid path expression or contains a * or ** wildcard.

The path-value pairs are evaluated left to right. The document produced by evaluating one pair becomes
the new value against which the next pair is evaluated.

A path-value pair for an existing path in the document is ignored and does not overwrite the existing
document value. A path-value pair for a nonexisting path in the document adds the value to the
document if the path identifies one of these types of values:

• A member not present in an existing object. The member is added to the object and associated with
the new value.

• A position past the end of an existing array. The array is extended with the new value. If the existing
value is not an array, it is autowrapped as an array, then extended with the new value.

Otherwise, a path-value pair for a nonexisting path in the document is ignored and has no effect.

For a comparison of JSON_INSERT(), JSON_REPLACE(), and JSON_SET(), see the discussion of
JSON_SET().

mysql> SET @j = '{ "a": 1, "b": [2, 3]}';
mysql> SELECT JSON_INSERT(@j, '$.a', 10, '$.c', '[true, false]');
+--+
| JSON_INSERT(@j, '$.a', 10, '$.c', '[true, false]') |
+--+
| {"a": 1, "b": [2, 3], "c": "[true, false]"} |
+--+

The third and final value listed in the result is a quoted string and not an array like the second one (which
is not quoted in the output); no casting of values to the JSON type is performed. To insert the array as an
array, you must perform such casts explicitly, as shown here:

mysql> SELECT JSON_INSERT(@j, '$.a', 10, '$.c', CAST('[true, false]' AS JSON));
+--+
| JSON_INSERT(@j, '$.a', 10, '$.c', CAST('[true, false]' AS JSON)) |
+--+
| {"a": 1, "b": [2, 3], "c": [true, false]} |
+--+

2099

Functions That Modify JSON Values

1 row in set (0.00 sec)

• JSON_MERGE(json_doc, json_doc[, json_doc] ...)

Merges two or more JSON documents. Synonym for JSON_MERGE_PRESERVE(); deprecated in MySQL
5.7.22 and subject to removal in a future release.

mysql> SELECT JSON_MERGE('[1, 2]', '[true, false]');
+---------------------------------------+
| JSON_MERGE('[1, 2]', '[true, false]') |
+---------------------------------------+
| [1, 2, true, false] |
+---------------------------------------+
1 row in set, 1 warning (0.00 sec)

mysql> SHOW WARNINGS\G
*************************** 1. row ***************************
 Level: Warning
 Code: 1287
Message: 'JSON_MERGE' is deprecated and will be removed in a future release. \
 Please use JSON_MERGE_PRESERVE/JSON_MERGE_PATCH instead
1 row in set (0.00 sec)

For additional examples, see the entry for JSON_MERGE_PRESERVE().

• JSON_MERGE_PATCH(json_doc, json_doc[, json_doc] ...)

Performs an RFC 7396 compliant merge of two or more JSON documents and returns the merged
result, without preserving members having duplicate keys. Raises an error if at least one of the
documents passed as arguments to this function is not valid.

Note

For an explanation and example of the differences between this function and
JSON_MERGE_PRESERVE(), see JSON_MERGE_PATCH() compared with
JSON_MERGE_PRESERVE().

JSON_MERGE_PATCH() performs a merge as follows:

1. If the first argument is not an object, the result of the merge is the same as if an empty object had
been merged with the second argument.

2. If the second argument is not an object, the result of the merge is the second argument.

3. If both arguments are objects, the result of the merge is an object with the following members:

• All members of the first object which do not have a corresponding member with the same key in
the second object.

• All members of the second object which do not have a corresponding key in the first object, and
whose value is not the JSON null literal.

• All members with a key that exists in both the first and the second object, and whose value in
the second object is not the JSON null literal. The values of these members are the results of
recursively merging the value in the first object with the value in the second object.

For additional information, see Normalization, Merging, and Autowrapping of JSON Values.

mysql> SELECT JSON_MERGE_PATCH('[1, 2]', '[true, false]');
+---+

2100

https://tools.ietf.org/html/rfc7396

Functions That Modify JSON Values

| JSON_MERGE_PATCH('[1, 2]', '[true, false]') |
+---+
| [true, false] |
+---+

mysql> SELECT JSON_MERGE_PATCH('{"name": "x"}', '{"id": 47}');
+---+
| JSON_MERGE_PATCH('{"name": "x"}', '{"id": 47}') |
+---+
| {"id": 47, "name": "x"} |
+---+

mysql> SELECT JSON_MERGE_PATCH('1', 'true');
+-------------------------------+
| JSON_MERGE_PATCH('1', 'true') |
+-------------------------------+
| true |
+-------------------------------+

mysql> SELECT JSON_MERGE_PATCH('[1, 2]', '{"id": 47}');
+--+
| JSON_MERGE_PATCH('[1, 2]', '{"id": 47}') |
+--+
| {"id": 47} |
+--+

mysql> SELECT JSON_MERGE_PATCH('{ "a": 1, "b":2 }',
 > '{ "a": 3, "c":4 }');
+---+
| JSON_MERGE_PATCH('{ "a": 1, "b":2 }','{ "a": 3, "c":4 }') |
+---+
| {"a": 3, "b": 2, "c": 4} |
+---+

mysql> SELECT JSON_MERGE_PATCH('{ "a": 1, "b":2 }','{ "a": 3, "c":4 }',
 > '{ "a": 5, "d":6 }');
+---+
| JSON_MERGE_PATCH('{ "a": 1, "b":2 }','{ "a": 3, "c":4 }','{ "a": 5, "d":6 }') |
+---+
| {"a": 5, "b": 2, "c": 4, "d": 6} |
+---+

You can use this function to remove a member by specifying null as the value of the same member in
the seond argument, as shown here:

mysql> SELECT JSON_MERGE_PATCH('{"a":1, "b":2}', '{"b":null}');
+--+
| JSON_MERGE_PATCH('{"a":1, "b":2}', '{"b":null}') |
+--+
| {"a": 1} |
+--+

This example shows that the function operates in a recursive fashion; that is, values of members are not
limited to scalars, but rather can themselves be JSON documents:

mysql> SELECT JSON_MERGE_PATCH('{"a":{"x":1}}', '{"a":{"y":2}}');
+--+
| JSON_MERGE_PATCH('{"a":{"x":1}}', '{"a":{"y":2}}') |
+--+
| {"a": {"x": 1, "y": 2}} |

2101

Functions That Modify JSON Values

+--+

JSON_MERGE_PATCH() is supported in MySQL 5.7.22 and later.

JSON_MERGE_PATCH() compared with JSON_MERGE_PRESERVE(). The behavior of
JSON_MERGE_PATCH() is the same as that of JSON_MERGE_PRESERVE(), with the following two
exceptions:

• JSON_MERGE_PATCH() removes any member in the first object with a matching key in the second
object, provided that the value associated with the key in the second object is not JSON null.

• If the second object has a member with a key matching a member in the first object,
JSON_MERGE_PATCH() replaces the value in the first object with the value in the second object,
whereas JSON_MERGE_PRESERVE() appends the second value to the first value.

This example compares the results of merging the same 3 JSON objects, each having a matching key
"a", with each of these two functions:

mysql> SET @x = '{ "a": 1, "b": 2 }',
 > @y = '{ "a": 3, "c": 4 }',
 > @z = '{ "a": 5, "d": 6 }';

mysql> SELECT JSON_MERGE_PATCH(@x, @y, @z) AS Patch,
 -> JSON_MERGE_PRESERVE(@x, @y, @z) AS Preserve\G
*************************** 1. row ***************************
 Patch: {"a": 5, "b": 2, "c": 4, "d": 6}
Preserve: {"a": [1, 3, 5], "b": 2, "c": 4, "d": 6}

• JSON_MERGE_PRESERVE(json_doc, json_doc[, json_doc] ...)

Merges two or more JSON documents and returns the merged result. Returns NULL if any argument is
NULL. An error occurs if any argument is not a valid JSON document.

Merging takes place according to the following rules. For additional information, see Normalization,
Merging, and Autowrapping of JSON Values.

• Adjacent arrays are merged to a single array.

• Adjacent objects are merged to a single object.

• A scalar value is autowrapped as an array and merged as an array.

• An adjacent array and object are merged by autowrapping the object as an array and merging the two
arrays.

mysql> SELECT JSON_MERGE_PRESERVE('[1, 2]', '[true, false]');
+--+
| JSON_MERGE_PRESERVE('[1, 2]', '[true, false]') |
+--+
| [1, 2, true, false] |
+--+

mysql> SELECT JSON_MERGE_PRESERVE('{"name": "x"}', '{"id": 47}');
+--+
| JSON_MERGE_PRESERVE('{"name": "x"}', '{"id": 47}') |
+--+
| {"id": 47, "name": "x"} |
+--+

mysql> SELECT JSON_MERGE_PRESERVE('1', 'true');
+----------------------------------+

2102

Functions That Modify JSON Values

| JSON_MERGE_PRESERVE('1', 'true') |
+----------------------------------+
| [1, true] |
+----------------------------------+

mysql> SELECT JSON_MERGE_PRESERVE('[1, 2]', '{"id": 47}');
+---+
| JSON_MERGE_PRESERVE('[1, 2]', '{"id": 47}') |
+---+
| [1, 2, {"id": 47}] |
+---+

mysql> SELECT JSON_MERGE_PRESERVE('{ "a": 1, "b": 2 }',
 > '{ "a": 3, "c": 4 }');
+--+
| JSON_MERGE_PRESERVE('{ "a": 1, "b": 2 }','{ "a": 3, "c":4 }') |
+--+
| {"a": [1, 3], "b": 2, "c": 4} |
+--+

mysql> SELECT JSON_MERGE_PRESERVE('{ "a": 1, "b": 2 }','{ "a": 3, "c": 4 }',
 > '{ "a": 5, "d": 6 }');
+--+
| JSON_MERGE_PRESERVE('{ "a": 1, "b": 2 }','{ "a": 3, "c": 4 }','{ "a": 5, "d": 6 }') |
+--+
| {"a": [1, 3, 5], "b": 2, "c": 4, "d": 6} |
+--+

This function was added in MySQL 5.7.22 as a synonym for JSON_MERGE(). The JSON_MERGE()
function is now deprecated, and is subject to removal in a future release of MySQL.

This function is similar to but differs from JSON_MERGE_PATCH() in significant respects; see
JSON_MERGE_PATCH() compared with JSON_MERGE_PRESERVE(), for more information.

• JSON_REMOVE(json_doc, path[, path] ...)

Removes data from a JSON document and returns the result. Returns NULL if any argument is NULL.
An error occurs if the json_doc argument is not a valid JSON document or any path argument is not a
valid path expression or is $ or contains a * or ** wildcard.

The path arguments are evaluated left to right. The document produced by evaluating one path
becomes the new value against which the next path is evaluated.

It is not an error if the element to be removed does not exist in the document; in that case, the path does
not affect the document.

mysql> SET @j = '["a", ["b", "c"], "d"]';
mysql> SELECT JSON_REMOVE(@j, '$[1]');
+-------------------------+
| JSON_REMOVE(@j, '$[1]') |
+-------------------------+
| ["a", "d"] |
+-------------------------+

2103

Functions That Modify JSON Values

• JSON_REPLACE(json_doc, path, val[, path, val] ...)

Replaces existing values in a JSON document and returns the result. Returns NULL if json_doc or any
path argument is NULL. An error occurs if the json_doc argument is not a valid JSON document or
any path argument is not a valid path expression or contains a * or ** wildcard.

The path-value pairs are evaluated left to right. The document produced by evaluating one pair becomes
the new value against which the next pair is evaluated.

A path-value pair for an existing path in the document overwrites the existing document value with the
new value. A path-value pair for a nonexisting path in the document is ignored and has no effect.

For a comparison of JSON_INSERT(), JSON_REPLACE(), and JSON_SET(), see the discussion of
JSON_SET().

mysql> SET @j = '{ "a": 1, "b": [2, 3]}';
mysql> SELECT JSON_REPLACE(@j, '$.a', 10, '$.c', '[true, false]');
+---+
| JSON_REPLACE(@j, '$.a', 10, '$.c', '[true, false]') |
+---+
| {"a": 10, "b": [2, 3]} |
+---+

mysql> SELECT JSON_REPLACE(NULL, '$.a', 10, '$.c', '[true, false]');
+---+
| JSON_REPLACE(NULL, '$.a', 10, '$.c', '[true, false]') |
+---+
| NULL |
+---+

mysql> SELECT JSON_REPLACE(@j, NULL, 10, '$.c', '[true, false]');
+--+
| JSON_REPLACE(@j, NULL, 10, '$.c', '[true, false]') |
+--+
| NULL |
+--+

mysql> SELECT JSON_REPLACE(@j, '$.a', NULL, '$.c', '[true, false]');
+---+
| JSON_REPLACE(@j, '$.a', NULL, '$.c', '[true, false]') |
+---+
| {"a": null, "b": [2, 3]} |
+---+

• JSON_SET(json_doc, path, val[, path, val] ...)

Inserts or updates data in a JSON document and returns the result. Returns NULL if json_doc or path
is NULL, or if path, when given, does not locate an object. Otherwise, an error occurs if the json_doc

2104

Functions That Modify JSON Values

argument is not a valid JSON document or any path argument is not a valid path expression or contains
a * or ** wildcard.

The path-value pairs are evaluated left to right. The document produced by evaluating one pair becomes
the new value against which the next pair is evaluated.

A path-value pair for an existing path in the document overwrites the existing document value with the
new value. A path-value pair for a nonexisting path in the document adds the value to the document if
the path identifies one of these types of values:

• A member not present in an existing object. The member is added to the object and associated with
the new value.

• A position past the end of an existing array. The array is extended with the new value. If the existing
value is not an array, it is autowrapped as an array, then extended with the new value.

Otherwise, a path-value pair for a nonexisting path in the document is ignored and has no effect.

The JSON_SET(), JSON_INSERT(), and JSON_REPLACE() functions are related:

• JSON_SET() replaces existing values and adds nonexisting values.

• JSON_INSERT() inserts values without replacing existing values.

• JSON_REPLACE() replaces only existing values.

The following examples illustrate these differences, using one path that does exist in the document ($.a)
and another that does not exist ($.c):

mysql> SET @j = '{ "a": 1, "b": [2, 3]}';
mysql> SELECT JSON_SET(@j, '$.a', 10, '$.c', '[true, false]');
+---+
| JSON_SET(@j, '$.a', 10, '$.c', '[true, false]') |
+---+
| {"a": 10, "b": [2, 3], "c": "[true, false]"} |
+---+
mysql> SELECT JSON_INSERT(@j, '$.a', 10, '$.c', '[true, false]');
+--+
| JSON_INSERT(@j, '$.a', 10, '$.c', '[true, false]') |
+--+
| {"a": 1, "b": [2, 3], "c": "[true, false]"} |
+--+
mysql> SELECT JSON_REPLACE(@j, '$.a', 10, '$.c', '[true, false]');
+---+
| JSON_REPLACE(@j, '$.a', 10, '$.c', '[true, false]') |
+---+
| {"a": 10, "b": [2, 3]} |
+---+

• JSON_UNQUOTE(json_val)

Unquotes JSON value and returns the result as a utf8mb4 string. Returns NULL if the argument is
NULL. An error occurs if the value starts and ends with double quotes but is not a valid JSON string
literal.

Within a string, certain sequences have special meaning unless the NO_BACKSLASH_ESCAPES SQL
mode is enabled. Each of these sequences begins with a backslash (\), known as the escape character.
MySQL recognizes the escape sequences shown in Table 12.23, “JSON_UNQUOTE() Special
Character Escape Sequences”. For all other escape sequences, backslash is ignored. That is, the

2105

Functions That Modify JSON Values

escaped character is interpreted as if it was not escaped. For example, \x is just x. These sequences
are case-sensitive. For example, \b is interpreted as a backspace, but \B is interpreted as B.

Table 12.23 JSON_UNQUOTE() Special Character Escape Sequences

Escape Sequence Character Represented by Sequence

\" A double quote (") character

\b A backspace character

\f A formfeed character

\n A newline (linefeed) character

\r A carriage return character

\t A tab character

\\ A backslash (\) character

\uXXXX UTF-8 bytes for Unicode value XXXX

Two simple examples of the use of this function are shown here:

mysql> SET @j = '"abc"';
mysql> SELECT @j, JSON_UNQUOTE(@j);
+-------+------------------+
| @j | JSON_UNQUOTE(@j) |
+-------+------------------+
| "abc" | abc |
+-------+------------------+
mysql> SET @j = '[1, 2, 3]';
mysql> SELECT @j, JSON_UNQUOTE(@j);
+-----------+------------------+
| @j | JSON_UNQUOTE(@j) |
+-----------+------------------+
| [1, 2, 3] | [1, 2, 3] |
+-----------+------------------+

The following set of examples shows how JSON_UNQUOTE handles escapes with
NO_BACKSLASH_ESCAPES disabled and enabled:

mysql> SELECT @@sql_mode;
+------------+
| @@sql_mode |
+------------+
| |
+------------+

mysql> SELECT JSON_UNQUOTE('"\\t\\u0032"');
+------------------------------+
| JSON_UNQUOTE('"\\t\\u0032"') |
+------------------------------+
| 2 |
+------------------------------+

mysql> SET @@sql_mode = 'NO_BACKSLASH_ESCAPES';
mysql> SELECT JSON_UNQUOTE('"\\t\\u0032"');
+------------------------------+
| JSON_UNQUOTE('"\\t\\u0032"') |
+------------------------------+
| \t\u0032 |
+------------------------------+

mysql> SELECT JSON_UNQUOTE('"\t\u0032"');
+----------------------------+

2106

Functions That Return JSON Value Attributes

| JSON_UNQUOTE('"\t\u0032"') |
+----------------------------+
| 2 |
+----------------------------+

12.17.5 Functions That Return JSON Value Attributes

The functions in this section return attributes of JSON values.

• JSON_DEPTH(json_doc)

Returns the maximum depth of a JSON document. Returns NULL if the argument is NULL. An error
occurs if the argument is not a valid JSON document.

An empty array, empty object, or scalar value has depth 1. A nonempty array containing only elements
of depth 1 or nonempty object containing only member values of depth 1 has depth 2. Otherwise, a
JSON document has depth greater than 2.

mysql> SELECT JSON_DEPTH('{}'), JSON_DEPTH('[]'), JSON_DEPTH('true');
+------------------+------------------+--------------------+
| JSON_DEPTH('{}') | JSON_DEPTH('[]') | JSON_DEPTH('true') |
+------------------+------------------+--------------------+
| 1 | 1 | 1 |
+------------------+------------------+--------------------+
mysql> SELECT JSON_DEPTH('[10, 20]'), JSON_DEPTH('[[], {}]');
+------------------------+------------------------+
| JSON_DEPTH('[10, 20]') | JSON_DEPTH('[[], {}]') |
+------------------------+------------------------+
| 2 | 2 |
+------------------------+------------------------+
mysql> SELECT JSON_DEPTH('[10, {"a": 20}]');
+-------------------------------+
| JSON_DEPTH('[10, {"a": 20}]') |
+-------------------------------+
| 3 |
+-------------------------------+

• JSON_LENGTH(json_doc[, path])

Returns the length of a JSON document, or, if a path argument is given, the length of the value within
the document identified by the path. Returns NULL if any argument is NULL or the path argument does
not identify a value in the document. An error occurs if the json_doc argument is not a valid JSON
document or the path argument is not a valid path expression or contains a * or ** wildcard.

The length of a document is determined as follows:

• The length of a scalar is 1.

• The length of an array is the number of array elements.

• The length of an object is the number of object members.

• The length does not count the length of nested arrays or objects.

mysql> SELECT JSON_LENGTH('[1, 2, {"a": 3}]');
+---------------------------------+
| JSON_LENGTH('[1, 2, {"a": 3}]') |
+---------------------------------+
| 3 |
+---------------------------------+
mysql> SELECT JSON_LENGTH('{"a": 1, "b": {"c": 30}}');
+---+

2107

Functions That Return JSON Value Attributes

| JSON_LENGTH('{"a": 1, "b": {"c": 30}}') |
+---+
| 2 |
+---+
mysql> SELECT JSON_LENGTH('{"a": 1, "b": {"c": 30}}', '$.b');
+--+
| JSON_LENGTH('{"a": 1, "b": {"c": 30}}', '$.b') |
+--+
| 1 |
+--+

• JSON_TYPE(json_val)

Returns a utf8mb4 string indicating the type of a JSON value. This can be an object, an array, or a
scalar type, as shown here:

mysql> SET @j = '{"a": [10, true]}';
mysql> SELECT JSON_TYPE(@j);
+---------------+
| JSON_TYPE(@j) |
+---------------+
| OBJECT |
+---------------+
mysql> SELECT JSON_TYPE(JSON_EXTRACT(@j, '$.a'));
+------------------------------------+
| JSON_TYPE(JSON_EXTRACT(@j, '$.a')) |
+------------------------------------+
| ARRAY |
+------------------------------------+
mysql> SELECT JSON_TYPE(JSON_EXTRACT(@j, '$.a[0]'));
+---------------------------------------+
| JSON_TYPE(JSON_EXTRACT(@j, '$.a[0]')) |
+---------------------------------------+
| INTEGER |
+---------------------------------------+
mysql> SELECT JSON_TYPE(JSON_EXTRACT(@j, '$.a[1]'));
+---------------------------------------+
| JSON_TYPE(JSON_EXTRACT(@j, '$.a[1]')) |
+---------------------------------------+
| BOOLEAN |
+---------------------------------------+

JSON_TYPE() returns NULL if the argument is NULL:

mysql> SELECT JSON_TYPE(NULL);
+-----------------+
| JSON_TYPE(NULL) |
+-----------------+
| NULL |
+-----------------+

An error occurs if the argument is not a valid JSON value:

mysql> SELECT JSON_TYPE(1);
ERROR 3146 (22032): Invalid data type for JSON data in argument 1

2108

Functions That Return JSON Value Attributes

to function json_type; a JSON string or JSON type is required.

For a non-NULL, non-error result, the following list describes the possible JSON_TYPE() return values:

• Purely JSON types:

• OBJECT: JSON objects

• ARRAY: JSON arrays

• BOOLEAN: The JSON true and false literals

• NULL: The JSON null literal

• Numeric types:

• INTEGER: MySQL TINYINT, SMALLINT, MEDIUMINT and INT and BIGINT scalars

• DOUBLE: MySQL DOUBLE FLOAT scalars

• DECIMAL: MySQL DECIMAL and NUMERIC scalars

• Temporal types:

• DATETIME: MySQL DATETIME and TIMESTAMP scalars

• DATE: MySQL DATE scalars

• TIME: MySQL TIME scalars

• String types:

• STRING: MySQL utf8 character type scalars: CHAR, VARCHAR, TEXT, ENUM, and SET

• Binary types:

• BLOB: MySQL binary type scalars: BINARY, VARBINARY, BLOB

• BIT: MySQL BIT scalars

• All other types:

• OPAQUE (raw bits)

• JSON_VALID(val)

Returns 0 or 1 to indicate whether a value is valid JSON. Returns NULL if the argument is NULL.

mysql> SELECT JSON_VALID('{"a": 1}');
+------------------------+
| JSON_VALID('{"a": 1}') |
+------------------------+
| 1 |
+------------------------+
mysql> SELECT JSON_VALID('hello'), JSON_VALID('"hello"');
+---------------------+-----------------------+
| JSON_VALID('hello') | JSON_VALID('"hello"') |
+---------------------+-----------------------+
| 0 | 1 |
+---------------------+-----------------------+

2109

JSON Utility Functions

12.17.6 JSON Utility Functions

This section documents utility functions that act on JSON values, or strings that can be parsed
as JSON values. JSON_PRETTY() prints out a JSON value in a format that is easy to read.
JSON_STORAGE_SIZE() shows the amount of storage space used by a given JSON value.

• JSON_PRETTY(json_val)

Provides pretty-printing of JSON values similar to that implemented in PHP and by other languages and
database systems. The value supplied must be a JSON value or a valid string representation of a JSON
value. Extraneous whitespaces and newlines present in this value have no effect on the output. For a
NULL value, the function returns NULL. If the value is not a JSON document, or if it cannot be parsed as
one, the function fails with an error.

Formatting of the output from this function adheres to the following rules:

• Each array element or object member appears on a separate line, indented by one additional level as
compared to its parent.

• Each level of indentation adds two leading spaces.

• A comma separating individual array elements or object members is printed before the newline that
separates the two elements or members.

• The key and the value of an object member are separated by a colon followed by a space (': ').

• An empty object or array is printed on a single line. No space is printed between the opening and
closing brace.

• Special characters in string scalars and key names are escaped employing the same rules used by
the JSON_QUOTE() function.

mysql> SELECT JSON_PRETTY('123'); # scalar
+--------------------+
| JSON_PRETTY('123') |
+--------------------+
| 123 |
+--------------------+

mysql> SELECT JSON_PRETTY("[1,3,5]"); # array
+------------------------+
| JSON_PRETTY("[1,3,5]") |
+------------------------+
| [
 1,
 3,
 5
] |
+------------------------+

mysql> SELECT JSON_PRETTY('{"a":"10","b":"15","x":"25"}'); # object
+---+
| JSON_PRETTY('{"a":"10","b":"15","x":"25"}') |
+---+
| {
 "a": "10",
 "b": "15",
 "x": "25"
} |
+---+

2110

JSON Utility Functions

mysql> SELECT JSON_PRETTY('["a",1,{"key1":
 > "value1"},"5", "77" ,
 > {"key2":["value3","valueX",
 > "valueY"]},"j", "2"]')\G # nested arrays and objects
*************************** 1. row ***************************
JSON_PRETTY('["a",1,{"key1":
 "value1"},"5", "77" ,
 {"key2":["value3","valuex",
 "valuey"]},"j", "2"]'): [
 "a",
 1,
 {
 "key1": "value1"
 },
 "5",
 "77",
 {
 "key2": [
 "value3",
 "valuex",
 "valuey"
]
 },
 "j",
 "2"
]

Added in MySQL 5.7.22.

• JSON_STORAGE_SIZE(json_val)

This function returns the number of bytes used to store the binary representation of a JSON document.
When the argument is a JSON column, this is the space used to store the JSON document. json_val
must be a valid JSON document or a string which can be parsed as one. In the case where it is string,
the function returns the amount of storage space in the JSON binary representation that is created by
parsing the string as JSON and converting it to binary. It returns NULL if the argument is NULL.

An error results when json_val is not NULL, and is not—or cannot be successfully parsed as—a JSON
document.

To illustrate this function's behavior when used with a JSON column as its argument, we create a table
named jtable containing a JSON column jcol, insert a JSON value into the table, then obtain the
storage space used by this column with JSON_STORAGE_SIZE(), as shown here:

mysql> CREATE TABLE jtable (jcol JSON);
Query OK, 0 rows affected (0.42 sec)

mysql> INSERT INTO jtable VALUES
 -> ('{"a": 1000, "b": "wxyz", "c": "[1, 3, 5, 7]"}');
Query OK, 1 row affected (0.04 sec)

mysql> SELECT
 -> jcol,
 -> JSON_STORAGE_SIZE(jcol) AS Size
 -> FROM jtable;
+---+------+
| jcol | Size |
+---+------+
| {"a": 1000, "b": "wxyz", "c": "[1, 3, 5, 7]"} | 47 |
+---+------+

2111

JSON Utility Functions

1 row in set (0.00 sec)

According to the output of JSON_STORAGE_SIZE(), the JSON document inserted into the column takes
up 47 bytes. Following an update, the function shows the storage used for the newly-set value:

mysql> UPDATE jtable
mysql> SET jcol = '{"a": 4.55, "b": "wxyz", "c": "[true, false]"}';
Query OK, 1 row affected (0.04 sec)
Rows matched: 1 Changed: 1 Warnings: 0

mysql> SELECT
 -> jcol,
 -> JSON_STORAGE_SIZE(jcol) AS Size
 -> FROM jtable;
+--+------+
| jcol | Size |
+--+------+
| {"a": 4.55, "b": "wxyz", "c": "[true, false]"} | 56 |
+--+------+
1 row in set (0.00 sec)

This function also shows the space currently used to store a JSON document in a user variable:

mysql> SET @j = '[100, "sakila", [1, 3, 5], 425.05]';
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT @j, JSON_STORAGE_SIZE(@j) AS Size;
+------------------------------------+------+
| @j | Size |
+------------------------------------+------+
| [100, "sakila", [1, 3, 5], 425.05] | 45 |
+------------------------------------+------+
1 row in set (0.00 sec)

mysql> SET @j = JSON_SET(@j, '$[1]', "json");
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT @j, JSON_STORAGE_SIZE(@j) AS Size;
+----------------------------------+------+
| @j | Size |
+----------------------------------+------+
| [100, "json", [1, 3, 5], 425.05] | 43 |
+----------------------------------+------+
1 row in set (0.00 sec)

mysql> SET @j = JSON_SET(@j, '$[2][0]', JSON_ARRAY(10, 20, 30));
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT @j, JSON_STORAGE_SIZE(@j) AS Size;
+---+------+
| @j | Size |
+---+------+
| [100, "json", [[10, 20, 30], 3, 5], 425.05] | 56 |
+---+------+
1 row in set (0.00 sec)

For a JSON literal, this function also returns the current storage space used, as shown here:

mysql> SELECT
 -> JSON_STORAGE_SIZE('[100, "sakila", [1, 3, 5], 425.05]') AS A,
 -> JSON_STORAGE_SIZE('{"a": 1000, "b": "a", "c": "[1, 3, 5, 7]"}') AS B,
 -> JSON_STORAGE_SIZE('{"a": 1000, "b": "wxyz", "c": "[1, 3, 5, 7]"}') AS C,
 -> JSON_STORAGE_SIZE('[100, "json", [[10, 20, 30], 3, 5], 425.05]') AS D;
+----+----+----+----+
| A | B | C | D |
+----+----+----+----+

2112

Functions Used with Global Transaction Identifiers (GTIDs)

| 45 | 44 | 47 | 56 |
+----+----+----+----+
1 row in set (0.00 sec)

This function was added in MySQL 5.7.22.

12.18 Functions Used with Global Transaction Identifiers (GTIDs)
The functions described in this section are used with GTID-based replication. It is important to keep in mind
that all of these functions take string representations of GTID sets as arguments. As such, the GTID sets
must always be quoted when used with them. See GTID Sets for more information.

The union of two GTID sets is simply their representations as strings, joined together with an interposed
comma. In other words, you can define a very simple function for obtaining the union of two GTID sets,
similar to that created here:

CREATE FUNCTION GTID_UNION(g1 TEXT, g2 TEXT)
 RETURNS TEXT DETERMINISTIC
 RETURN CONCAT(g1,',',g2);

For more information about GTIDs and how these GTID functions are used in practice, see Section 16.1.3,
“Replication with Global Transaction Identifiers”.

Table 12.24 GTID Functions

Name Description

GTID_SUBSET() Return true if all GTIDs in subset are also in set;
otherwise false.

GTID_SUBTRACT() Return all GTIDs in set that are not in subset.

WAIT_FOR_EXECUTED_GTID_SET() Wait until the given GTIDs have executed on the
replica.

WAIT_UNTIL_SQL_THREAD_AFTER_GTIDS() Use WAIT_FOR_EXECUTED_GTID_SET().

• GTID_SUBSET(set1,set2)

Given two sets of global transaction identifiers set1 and set2, returns true if all GTIDs in set1 are also
in set2. Returns false otherwise.

The GTID sets used with this function are represented as strings, as shown in the following examples:

mysql> SELECT GTID_SUBSET('3E11FA47-71CA-11E1-9E33-C80AA9429562:23',
 -> '3E11FA47-71CA-11E1-9E33-C80AA9429562:21-57')\G
*************************** 1. row ***************************
GTID_SUBSET('3E11FA47-71CA-11E1-9E33-C80AA9429562:23',
 '3E11FA47-71CA-11E1-9E33-C80AA9429562:21-57'): 1
1 row in set (0.00 sec)

mysql> SELECT GTID_SUBSET('3E11FA47-71CA-11E1-9E33-C80AA9429562:23-25',
 -> '3E11FA47-71CA-11E1-9E33-C80AA9429562:21-57')\G
*************************** 1. row ***************************
GTID_SUBSET('3E11FA47-71CA-11E1-9E33-C80AA9429562:23-25',
 '3E11FA47-71CA-11E1-9E33-C80AA9429562:21-57'): 1
1 row in set (0.00 sec)

mysql> SELECT GTID_SUBSET('3E11FA47-71CA-11E1-9E33-C80AA9429562:20-25',
 -> '3E11FA47-71CA-11E1-9E33-C80AA9429562:21-57')\G
*************************** 1. row ***************************
GTID_SUBSET('3E11FA47-71CA-11E1-9E33-C80AA9429562:20-25',
 '3E11FA47-71CA-11E1-9E33-C80AA9429562:21-57'): 0
1 row in set (0.00 sec)

2113

Functions Used with Global Transaction Identifiers (GTIDs)

• GTID_SUBTRACT(set1,set2)

Given two sets of global transaction identifiers set1 and set2, returns only those GTIDs from set1 that
are not in set2.

All GTID sets used with this function are represented as strings and must be quoted, as shown in these
examples:

mysql> SELECT GTID_SUBTRACT('3E11FA47-71CA-11E1-9E33-C80AA9429562:21-57',
 -> '3E11FA47-71CA-11E1-9E33-C80AA9429562:21')\G
*************************** 1. row ***************************
GTID_SUBTRACT('3E11FA47-71CA-11E1-9E33-C80AA9429562:21-57',
 '3E11FA47-71CA-11E1-9E33-C80AA9429562:21'): 3e11fa47-71ca-11e1-9e33-c80aa9429562:22-57
1 row in set (0.00 sec)

mysql> SELECT GTID_SUBTRACT('3E11FA47-71CA-11E1-9E33-C80AA9429562:21-57',
 -> '3E11FA47-71CA-11E1-9E33-C80AA9429562:20-25')\G
*************************** 1. row ***************************
GTID_SUBTRACT('3E11FA47-71CA-11E1-9E33-C80AA9429562:21-57',
 '3E11FA47-71CA-11E1-9E33-C80AA9429562:20-25'): 3e11fa47-71ca-11e1-9e33-c80aa9429562:26-57
1 row in set (0.00 sec)

mysql> SELECT GTID_SUBTRACT('3E11FA47-71CA-11E1-9E33-C80AA9429562:21-57',
 -> '3E11FA47-71CA-11E1-9E33-C80AA9429562:23-24')\G
*************************** 1. row ***************************
GTID_SUBTRACT('3E11FA47-71CA-11E1-9E33-C80AA9429562:21-57',
 '3E11FA47-71CA-11E1-9E33-C80AA9429562:23-24'): 3e11fa47-71ca-11e1-9e33-c80aa9429562:21-22:25-57
1 row in set (0.01 sec)

Subtracting a GTID set from itself produces an empty set, as shown here:

mysql> SELECT GTID_SUBTRACT('3E11FA47-71CA-11E1-9E33-C80AA9429562:21-57',
 -> '3E11FA47-71CA-11E1-9E33-C80AA9429562:21-57')\G
*************************** 1. row ***************************
GTID_SUBTRACT('3E11FA47-71CA-11E1-9E33-C80AA9429562:21-57',
 '3E11FA47-71CA-11E1-9E33-C80AA9429562:21-57'):
1 row in set (0.00 sec)

• WAIT_FOR_EXECUTED_GTID_SET(gtid_set[, timeout])

Wait until the server has applied all of the transactions whose global transaction identifiers are contained
in gtid_set; that is, until the condition GTID_SUBSET(gtid_subset, @@GLOBAL.gtid_executed)
holds. See Section 16.1.3.1, “GTID Format and Storage” for a definition of GTID sets.

If a timeout is specified, and timeout seconds elapse before all of the transactions in the GTID set
have been applied, the function stops waiting. timeout is optional, and the default timeout is 0 seconds,
in which case the function always waits until all of the transactions in the GTID set have been applied.
timeout must be greater than or equal to 0; as of MySQL 5.7.18, when running in strict SQL mode, a
negative timeout value is immediately rejected with an error; otherwise the function returns NULL, and
raises a warning.

WAIT_FOR_EXECUTED_GTID_SET() monitors all the GTIDs that are applied on the server, including
transactions that arrive from all replication channels and user clients. It does not take into account
whether replication channels have been started or stopped.

For more information, see Section 16.1.3, “Replication with Global Transaction Identifiers”.

GTID sets used with this function are represented as strings and so must be quoted as shown in the
following example:

mysql> SELECT WAIT_FOR_EXECUTED_GTID_SET('3E11FA47-71CA-11E1-9E33-C80AA9429562:1-5');

2114

Aggregate Functions

 -> 0

For a syntax description for GTID sets, see Section 16.1.3.1, “GTID Format and Storage”.

For WAIT_FOR_EXECUTED_GTID_SET(), the return value is the state of the query, where 0 represents
success, and 1 represents timeout. Any other failures generate an error.

gtid_mode cannot be changed to OFF while any client is using this function to wait for GTIDs to be
applied.

• WAIT_UNTIL_SQL_THREAD_AFTER_GTIDS(gtid_set[, timeout][,channel])

WAIT_UNTIL_SQL_THREAD_AFTER_GTIDS() is similar to WAIT_FOR_EXECUTED_GTID_SET() in
that it waits until all of the transactions whose global transaction identifiers are contained in gtid_set
have been applied, or until timeout seconds have elapsed, whichever occurs first. However,
WAIT_UNTIL_SQL_THREAD_AFTER_GTIDS() applies to a specific replication channel, and stops only
after the transactions have been applied on the specified channel, for which the applier must be running.
In contrast, WAIT_FOR_EXECUTED_GTID_SET() stops after the transactions have been applied,
regardless of where they were applied (on any replication channel or any user client), and whether or not
any replication channels are running.

timeout must be greater than or equal to 0; as of MySQL 5.7.18, when running in strict SQL mode,
a negative timeout value is immediately rejected with an error (ER_WRONG_ARGUMENTS); otherwise
WAIT_UNTIL_SQL_THREAD_AFTER_GTIDS() returns NULL, and raises a warning.

The channel option names which replication channel the function applies to. If no channel is named
and no channels other than the default replication channel exist, the function applies to the default
replication channel. If multiple replication channels exist, you must specify a channel as otherwise it is
not known which replication channel the function applies to. See Section 16.2.2, “Replication Channels”
for more information on replication channels.

Note

Because WAIT_UNTIL_SQL_THREAD_AFTER_GTIDS() applies to a
specific replication channel, if an expected transaction arrives on a different
replication channel or from a user client, for example in a failover or manual
recovery situation, the function can hang indefinitely if no timeout is set. Use
WAIT_FOR_EXECUTED_GTID_SET() instead to ensure correct handling of
transactions in these situations.

GTID sets used with WAIT_UNTIL_SQL_THREAD_AFTER_GTIDS() are represented as
strings and must be quoted in the same way as for WAIT_FOR_EXECUTED_GTID_SET(). For
WAIT_UNTIL_SQL_THREAD_AFTER_GTIDS(), the return value for the function is an arbitrary positive
number. If GTID-based replication is not active (that is, if the value of the gtid_mode variable is OFF),
then this value is undefined and WAIT_UNTIL_SQL_THREAD_AFTER_GTIDS() returns NULL. If the
replica is not running then the function also returns NULL.

gtid_mode cannot be changed to OFF while any client is using this function to wait for GTIDs to be
applied.

12.19 Aggregate Functions
Aggregate functions operate on sets of values. They are often used with a GROUP BY clause to group
values into subsets.

12.19.1 Aggregate Function Descriptions

2115

https://dev.mysql.com/doc/mysql-errors/5.7/en/server-error-reference.html#error_er_wrong_arguments

Aggregate Function Descriptions

This section describes aggregate functions that operate on sets of values. They are often used with a
GROUP BY clause to group values into subsets.

Table 12.25 Aggregate Functions

Name Description Introduced

AVG() Return the average value of the
argument

BIT_AND() Return bitwise AND

BIT_OR() Return bitwise OR

BIT_XOR() Return bitwise XOR

COUNT() Return a count of the number of
rows returned

COUNT(DISTINCT) Return the count of a number of
different values

GROUP_CONCAT() Return a concatenated string

JSON_ARRAYAGG() Return result set as a single JSON
array

5.7.22

JSON_OBJECTAGG() Return result set as a single JSON
object

5.7.22

MAX() Return the maximum value

MIN() Return the minimum value

STD() Return the population standard
deviation

STDDEV() Return the population standard
deviation

STDDEV_POP() Return the population standard
deviation

STDDEV_SAMP() Return the sample standard
deviation

SUM() Return the sum

VAR_POP() Return the population standard
variance

VAR_SAMP() Return the sample variance

VARIANCE() Return the population standard
variance

Unless otherwise stated, aggregate functions ignore NULL values.

If you use an aggregate function in a statement containing no GROUP BY clause, it is equivalent to
grouping on all rows. For more information, see Section 12.19.3, “MySQL Handling of GROUP BY”.

For numeric arguments, the variance and standard deviation functions return a DOUBLE value. The SUM()
and AVG() functions return a DECIMAL value for exact-value arguments (integer or DECIMAL), and a
DOUBLE value for approximate-value arguments (FLOAT or DOUBLE).

The SUM() and AVG() aggregate functions do not work with temporal values. (They convert the values to
numbers, losing everything after the first nonnumeric character.) To work around this problem, convert to
numeric units, perform the aggregate operation, and convert back to a temporal value. Examples:

2116

Aggregate Function Descriptions

SELECT SEC_TO_TIME(SUM(TIME_TO_SEC(time_col))) FROM tbl_name;
SELECT FROM_DAYS(SUM(TO_DAYS(date_col))) FROM tbl_name;

Functions such as SUM() or AVG() that expect a numeric argument cast the argument to a number if
necessary. For SET or ENUM values, the cast operation causes the underlying numeric value to be used.

The BIT_AND(), BIT_OR(), and BIT_XOR() aggregate functions perform bit operations. They require
BIGINT (64-bit integer) arguments and return BIGINT values. Arguments of other types are converted
to BIGINT and truncation might occur. For information about a change in MySQL 8.0 that permits
bit operations to take binary string type arguments (BINARY, VARBINARY, and the BLOB types), see
Section 12.12, “Bit Functions and Operators”.

• AVG([DISTINCT] expr)

Returns the average value of expr. The DISTINCT option can be used to return the average of the
distinct values of expr.

If there are no matching rows, AVG() returns NULL.

mysql> SELECT student_name, AVG(test_score)
 FROM student
 GROUP BY student_name;

• BIT_AND(expr)

Returns the bitwise AND of all bits in expr. The calculation is performed with 64-bit (BIGINT) precision.

If there are no matching rows, BIT_AND() returns a neutral value (all bits set to 1).

• BIT_OR(expr)

Returns the bitwise OR of all bits in expr. The calculation is performed with 64-bit (BIGINT) precision.

If there are no matching rows, BIT_OR() returns a neutral value (all bits set to 0).

• BIT_XOR(expr)

Returns the bitwise XOR of all bits in expr. The calculation is performed with 64-bit (BIGINT) precision.

If there are no matching rows, BIT_XOR() returns a neutral value (all bits set to 0).

• COUNT(expr)

Returns a count of the number of non-NULL values of expr in the rows retrieved by a SELECT
statement. The result is a BIGINT value.

If there are no matching rows, COUNT() returns 0.

mysql> SELECT student.student_name,COUNT(*)
 FROM student,course
 WHERE student.student_id=course.student_id
 GROUP BY student_name;

COUNT(*) is somewhat different in that it returns a count of the number of rows retrieved, whether or not
they contain NULL values.

For transactional storage engines such as InnoDB, storing an exact row count is problematic. Multiple
transactions may be occurring at the same time, each of which may affect the count.

2117

Aggregate Function Descriptions

InnoDB does not keep an internal count of rows in a table because concurrent transactions might “see”
different numbers of rows at the same time. Consequently, SELECT COUNT(*) statements only count
rows visible to the current transaction.

Prior to MySQL 5.7.18, InnoDB processes SELECT COUNT(*) statements by scanning the clustered
index. As of MySQL 5.7.18, InnoDB processes SELECT COUNT(*) statements by traversing the
smallest available secondary index unless an index or optimizer hint directs the optimizer to use a
different index. If a secondary index is not present, the clustered index is scanned.

Processing SELECT COUNT(*) statements takes some time if index records are not entirely in the
buffer pool. For a faster count, create a counter table and let your application update it according to the
inserts and deletes it does. However, this method may not scale well in situations where thousands of
concurrent transactions are initiating updates to the same counter table. If an approximate row count is
sufficient, use SHOW TABLE STATUS.

InnoDB handles SELECT COUNT(*) and SELECT COUNT(1) operations in the same way. There is no
performance difference.

For MyISAM tables, COUNT(*) is optimized to return very quickly if the SELECT retrieves from one table,
no other columns are retrieved, and there is no WHERE clause. For example:

mysql> SELECT COUNT(*) FROM student;

This optimization only applies to MyISAM tables, because an exact row count is stored for this storage
engine and can be accessed very quickly. COUNT(1) is only subject to the same optimization if the first
column is defined as NOT NULL.

• COUNT(DISTINCT expr,[expr...])

Returns a count of the number of rows with different non-NULL expr values.

If there are no matching rows, COUNT(DISTINCT) returns 0.

mysql> SELECT COUNT(DISTINCT results) FROM student;

In MySQL, you can obtain the number of distinct expression combinations that do not contain NULL by
giving a list of expressions. In standard SQL, you would have to do a concatenation of all expressions
inside COUNT(DISTINCT ...).

• GROUP_CONCAT(expr)

This function returns a string result with the concatenated non-NULL values from a group. It returns NULL
if there are no non-NULL values. The full syntax is as follows:

GROUP_CONCAT([DISTINCT] expr [,expr ...]
 [ORDER BY {unsigned_integer | col_name | expr}
 [ASC | DESC] [,col_name ...]]
 [SEPARATOR str_val])

mysql> SELECT student_name,
 GROUP_CONCAT(test_score)
 FROM student
 GROUP BY student_name;

Or:

mysql> SELECT student_name,
 GROUP_CONCAT(DISTINCT test_score
 ORDER BY test_score DESC SEPARATOR ' ')

2118

Aggregate Function Descriptions

 FROM student
 GROUP BY student_name;

In MySQL, you can get the concatenated values of expression combinations. To eliminate duplicate
values, use the DISTINCT clause. To sort values in the result, use the ORDER BY clause. To sort
in reverse order, add the DESC (descending) keyword to the name of the column you are sorting by
in the ORDER BY clause. The default is ascending order; this may be specified explicitly using the
ASC keyword. The default separator between values in a group is comma (,). To specify a separator
explicitly, use SEPARATOR followed by the string literal value that should be inserted between group
values. To eliminate the separator altogether, specify SEPARATOR ''.

The result is truncated to the maximum length that is given by the group_concat_max_len system
variable, which has a default value of 1024. The value can be set higher, although the effective
maximum length of the return value is constrained by the value of max_allowed_packet. The syntax
to change the value of group_concat_max_len at runtime is as follows, where val is an unsigned
integer:

SET [GLOBAL | SESSION] group_concat_max_len = val;

The return value is a nonbinary or binary string, depending on whether the arguments are nonbinary or
binary strings. The result type is TEXT or BLOB unless group_concat_max_len is less than or equal to
512, in which case the result type is VARCHAR or VARBINARY.

If GROUP_CONCAT() is invoked from within the mysql client, binary string results display using
hexadecimal notation, depending on the value of the --binary-as-hex. For more information about
that option, see Section 4.5.1, “mysql — The MySQL Command-Line Client”.

See also CONCAT() and CONCAT_WS(): Section 12.8, “String Functions and Operators”.

• JSON_ARRAYAGG(col_or_expr)

Aggregates a result set as a single JSON array whose elements consist of the rows. The order of
elements in this array is undefined. The function acts on a column or an expression that evaluates to a
single value. Returns NULL if the result contains no rows, or in the event of an error.

mysql> SELECT o_id, attribute, value FROM t3;
+------+-----------+-------+
| o_id | attribute | value |
+------+-----------+-------+
2	color	red
2	fabric	silk
3	color	green
3	shape	square
+------+-----------+-------+
4 rows in set (0.00 sec)

mysql> SELECT o_id, JSON_ARRAYAGG(attribute) AS attributes
 -> FROM t3 GROUP BY o_id;
+------+---------------------+
| o_id | attributes |
+------+---------------------+
| 2 | ["color", "fabric"] |
| 3 | ["color", "shape"] |
+------+---------------------+
2 rows in set (0.00 sec)

Added in MySQL 5.7.22.

2119

Aggregate Function Descriptions

• JSON_OBJECTAGG(key, value)

Takes two column names or expressions as arguments, the first of these being used as a key and the
second as a value, and returns a JSON object containing key-value pairs. Returns NULL if the result
contains no rows, or in the event of an error. An error occurs if any key name is NULL or the number of
arguments is not equal to 2.

mysql> SELECT o_id, attribute, value FROM t3;
+------+-----------+-------+
| o_id | attribute | value |
+------+-----------+-------+
2	color	red
2	fabric	silk
3	color	green
3	shape	square
+------+-----------+-------+
4 rows in set (0.00 sec)

mysql> SELECT o_id, JSON_OBJECTAGG(attribute, value)
 -> FROM t3 GROUP BY o_id;
+------+---------------------------------------+
| o_id | JSON_OBJECTAGG(attribute, value) |
+------+---------------------------------------+
| 2 | {"color": "red", "fabric": "silk"} |
| 3 | {"color": "green", "shape": "square"} |
+------+---------------------------------------+
2 rows in set (0.00 sec)

Duplicate key handling. When the result of this function is normalized, values having duplicate keys
are discarded. In keeping with the MySQL JSON data type specification that does not permit duplicate
keys, only the last value encountered is used with that key in the returned object (“last duplicate key
wins”). This means that the result of using this function on columns from a SELECT can depend on the
order in which the rows are returned, which is not guaranteed.

Consider the following:

mysql> CREATE TABLE t(c VARCHAR(10), i INT);
Query OK, 0 rows affected (0.33 sec)

mysql> INSERT INTO t VALUES ('key', 3), ('key', 4), ('key', 5);
Query OK, 3 rows affected (0.10 sec)
Records: 3 Duplicates: 0 Warnings: 0

mysql> SELECT c, i FROM t;
+------+------+
| c | i |
+------+------+
key	3
key	4
key	5
+------+------+
3 rows in set (0.00 sec)

mysql> SELECT JSON_OBJECTAGG(c, i) FROM t;
+----------------------+
| JSON_OBJECTAGG(c, i) |
+----------------------+
| {"key": 5} |
+----------------------+
1 row in set (0.00 sec)

mysql> DELETE FROM t;
Query OK, 3 rows affected (0.08 sec)

2120

Aggregate Function Descriptions

mysql> INSERT INTO t VALUES ('key', 3), ('key', 5), ('key', 4);
Query OK, 3 rows affected (0.06 sec)
Records: 3 Duplicates: 0 Warnings: 0

mysql> SELECT c, i FROM t;
+------+------+
| c | i |
+------+------+
key	3
key	5
key	4
+------+------+
3 rows in set (0.00 sec)

mysql> SELECT JSON_OBJECTAGG(c, i) FROM t;
+----------------------+
| JSON_OBJECTAGG(c, i) |
+----------------------+
| {"key": 4} |
+----------------------+
1 row in set (0.00 sec)

See Normalization, Merging, and Autowrapping of JSON Values, for additional information and
examples.

Added in MySQL 5.7.22.

• MAX([DISTINCT] expr)

Returns the maximum value of expr. MAX() may take a string argument; in such cases, it returns the
maximum string value. See Section 8.3.1, “How MySQL Uses Indexes”. The DISTINCT keyword can
be used to find the maximum of the distinct values of expr, however, this produces the same result as
omitting DISTINCT.

If there are no matching rows, MAX() returns NULL.

mysql> SELECT student_name, MIN(test_score), MAX(test_score)
 FROM student
 GROUP BY student_name;

For MAX(), MySQL currently compares ENUM and SET columns by their string value rather than by the
string's relative position in the set. This differs from how ORDER BY compares them.

• MIN([DISTINCT] expr)

Returns the minimum value of expr. MIN() may take a string argument; in such cases, it returns the
minimum string value. See Section 8.3.1, “How MySQL Uses Indexes”. The DISTINCT keyword can
be used to find the minimum of the distinct values of expr, however, this produces the same result as
omitting DISTINCT.

If there are no matching rows, MIN() returns NULL.

mysql> SELECT student_name, MIN(test_score), MAX(test_score)
 FROM student
 GROUP BY student_name;

For MIN(), MySQL currently compares ENUM and SET columns by their string value rather than by the
string's relative position in the set. This differs from how ORDER BY compares them.

2121

GROUP BY Modifiers

• STD(expr)

Returns the population standard deviation of expr. STD() is a synonym for the standard SQL function
STDDEV_POP(), provided as a MySQL extension.

If there are no matching rows, STD() returns NULL.

• STDDEV(expr)

Returns the population standard deviation of expr. STDDEV() is a synonym for the standard SQL
function STDDEV_POP(), provided for compatibility with Oracle.

If there are no matching rows, STDDEV() returns NULL.

• STDDEV_POP(expr)

Returns the population standard deviation of expr (the square root of VAR_POP()). You can also use
STD() or STDDEV(), which are equivalent but not standard SQL.

If there are no matching rows, STDDEV_POP() returns NULL.

• STDDEV_SAMP(expr)

Returns the sample standard deviation of expr (the square root of VAR_SAMP().

If there are no matching rows, STDDEV_SAMP() returns NULL.

• SUM([DISTINCT] expr)

Returns the sum of expr. If the return set has no rows, SUM() returns NULL. The DISTINCT keyword
can be used to sum only the distinct values of expr.

If there are no matching rows, SUM() returns NULL.

• VAR_POP(expr)

Returns the population standard variance of expr. It considers rows as the whole population, not as
a sample, so it has the number of rows as the denominator. You can also use VARIANCE(), which is
equivalent but is not standard SQL.

If there are no matching rows, VAR_POP() returns NULL.

• VAR_SAMP(expr)

Returns the sample variance of expr. That is, the denominator is the number of rows minus one.

If there are no matching rows, VAR_SAMP() returns NULL.

• VARIANCE(expr)

Returns the population standard variance of expr. VARIANCE() is a synonym for the standard SQL
function VAR_POP(), provided as a MySQL extension.

If there are no matching rows, VARIANCE() returns NULL.

12.19.2 GROUP BY Modifiers

The GROUP BY clause permits a WITH ROLLUP modifier that causes summary output to include extra rows
that represent higher-level (that is, super-aggregate) summary operations. ROLLUP thus enables you to

2122

GROUP BY Modifiers

answer questions at multiple levels of analysis with a single query. For example, ROLLUP can be used to
provide support for OLAP (Online Analytical Processing) operations.

Suppose that a sales table has year, country, product, and profit columns for recording sales
profitability:

CREATE TABLE sales
(
 year INT,
 country VARCHAR(20),
 product VARCHAR(32),
 profit INT
);

To summarize table contents per year, use a simple GROUP BY like this:

mysql> SELECT year, SUM(profit) AS profit
 FROM sales
 GROUP BY year;
+------+--------+
| year | profit |
+------+--------+
| 2000 | 4525 |
| 2001 | 3010 |
+------+--------+

The output shows the total (aggregate) profit for each year. To also determine the total profit summed
over all years, you must add up the individual values yourself or run an additional query. Or you can use
ROLLUP, which provides both levels of analysis with a single query. Adding a WITH ROLLUP modifier to the
GROUP BY clause causes the query to produce another (super-aggregate) row that shows the grand total
over all year values:

mysql> SELECT year, SUM(profit) AS profit
 FROM sales
 GROUP BY year WITH ROLLUP;
+------+--------+
| year | profit |
+------+--------+
2000	4525
2001	3010
NULL	7535
+------+--------+

The NULL value in the year column identifies the grand total super-aggregate line.

ROLLUP has a more complex effect when there are multiple GROUP BY columns. In this case, each
time there is a change in value in any but the last grouping column, the query produces an extra super-
aggregate summary row.

For example, without ROLLUP, a summary of the sales table based on year, country, and product
might look like this, where the output indicates summary values only at the year/country/product level of
analysis:

mysql> SELECT year, country, product, SUM(profit) AS profit
 FROM sales
 GROUP BY year, country, product;
+------+---------+------------+--------+
| year | country | product | profit |
+------+---------+------------+--------+
2000	Finland	Computer	1500
2000	Finland	Phone	100
2000	India	Calculator	150
2000	India	Computer	1200
2000	USA	Calculator	75

2123

GROUP BY Modifiers

2000	USA	Computer	1500
2001	Finland	Phone	10
2001	USA	Calculator	50
2001	USA	Computer	2700
2001	USA	TV	250
+------+---------+------------+--------+

With ROLLUP added, the query produces several extra rows:

mysql> SELECT year, country, product, SUM(profit) AS profit
 FROM sales
 GROUP BY year, country, product WITH ROLLUP;
+------+---------+------------+--------+
| year | country | product | profit |
+------+---------+------------+--------+
2000	Finland	Computer	1500
2000	Finland	Phone	100
2000	Finland	NULL	1600
2000	India	Calculator	150
2000	India	Computer	1200
2000	India	NULL	1350
2000	USA	Calculator	75
2000	USA	Computer	1500
2000	USA	NULL	1575
2000	NULL	NULL	4525
2001	Finland	Phone	10
2001	Finland	NULL	10
2001	USA	Calculator	50
2001	USA	Computer	2700
2001	USA	TV	250
2001	USA	NULL	3000
2001	NULL	NULL	3010
NULL	NULL	NULL	7535
+------+---------+------------+--------+

Now the output includes summary information at four levels of analysis, not just one:

• Following each set of product rows for a given year and country, an extra super-aggregate summary row
appears showing the total for all products. These rows have the product column set to NULL.

• Following each set of rows for a given year, an extra super-aggregate summary row appears showing
the total for all countries and products. These rows have the country and products columns set to
NULL.

• Finally, following all other rows, an extra super-aggregate summary row appears showing the grand total
for all years, countries, and products. This row has the year, country, and products columns set to
NULL.

The NULL indicators in each super-aggregate row are produced when the row is sent to the client. The
server looks at the columns named in the GROUP BY clause following the leftmost one that has changed
value. For any column in the result set with a name that matches any of those names, its value is set to
NULL. (If you specify grouping columns by column position, the server identifies which columns to set to
NULL by position.)

Because the NULL values in the super-aggregate rows are placed into the result set at such a late stage in
query processing, you can test them as NULL values only in the select list or HAVING clause. You cannot
test them as NULL values in join conditions or the WHERE clause to determine which rows to select. For
example, you cannot add WHERE product IS NULL to the query to eliminate from the output all but the
super-aggregate rows.

The NULL values do appear as NULL on the client side and can be tested as such using any MySQL client
programming interface. However, at this point, you cannot distinguish whether a NULL represents a regular

2124

GROUP BY Modifiers

grouped value or a super-aggregate value. In MySQL 8.0, you can use the GROUPING() function to test
the distinction.

Other Considerations When using ROLLUP

The following discussion lists some behaviors specific to the MySQL implementation of ROLLUP.

When you use ROLLUP, you cannot also use an ORDER BY clause to sort the results. In other words,
ROLLUP and ORDER BY are mutually exclusive in MySQL. However, you still have some control over sort
order. To work around the restriction that prevents using ROLLUP with ORDER BY and achieve a specific
sort order of grouped results, generate the grouped result set as a derived table and apply ORDER BY to it.
For example:

mysql> SELECT * FROM
 (SELECT year, SUM(profit) AS profit
 FROM sales GROUP BY year WITH ROLLUP) AS dt
 ORDER BY year DESC;
+------+--------+
| year | profit |
+------+--------+
2001	3010
2000	4525
NULL	7535
+------+--------+

In this case, the super-aggregate summary rows sort with the rows from which they are calculated, and
their placement depends on sort order (at the beginning for ascending sort, at the end for descending sort).

LIMIT can be used to restrict the number of rows returned to the client. LIMIT is applied after ROLLUP, so
the limit applies against the extra rows added by ROLLUP. For example:

mysql> SELECT year, country, product, SUM(profit) AS profit
 FROM sales
 GROUP BY year, country, product WITH ROLLUP
 LIMIT 5;
+------+---------+------------+--------+
| year | country | product | profit |
+------+---------+------------+--------+
2000	Finland	Computer	1500
2000	Finland	Phone	100
2000	Finland	NULL	1600
2000	India	Calculator	150
2000	India	Computer	1200
+------+---------+------------+--------+

Using LIMIT with ROLLUP may produce results that are more difficult to interpret, because there is less
context for understanding the super-aggregate rows.

A MySQL extension permits a column that does not appear in the GROUP BY list to be named in the
select list. (For information about nonaggregated columns and GROUP BY, see Section 12.19.3, “MySQL
Handling of GROUP BY”.) In this case, the server is free to choose any value from this nonaggregated
column in summary rows, and this includes the extra rows added by WITH ROLLUP. For example, in the
following query, country is a nonaggregated column that does not appear in the GROUP BY list and
values chosen for this column are nondeterministic:

mysql> SELECT year, country, SUM(profit) AS profit
 FROM sales
 GROUP BY year WITH ROLLUP;
+------+---------+--------+
| year | country | profit |
+------+---------+--------+
| 2000 | India | 4525 |
| 2001 | USA | 3010 |

2125

https://dev.mysql.com/doc/refman/8.0/en/miscellaneous-functions.html#function_grouping

MySQL Handling of GROUP BY

| NULL | USA | 7535 |
+------+---------+--------+

This behavior is permitted when the ONLY_FULL_GROUP_BY SQL mode is not enabled. If that mode is
enabled, the server rejects the query as illegal because country is not listed in the GROUP BY clause.
With ONLY_FULL_GROUP_BY enabled, you can still execute the query by using the ANY_VALUE() function
for nondeterministic-value columns:

mysql> SELECT year, ANY_VALUE(country) AS country, SUM(profit) AS profit
 FROM sales
 GROUP BY year WITH ROLLUP;
+------+---------+--------+
| year | country | profit |
+------+---------+--------+
2000	India	4525
2001	USA	3010
NULL	USA	7535
+------+---------+--------+

12.19.3 MySQL Handling of GROUP BY

SQL-92 and earlier does not permit queries for which the select list, HAVING condition, or ORDER BY list
refer to nonaggregated columns that are not named in the GROUP BY clause. For example, this query is
illegal in standard SQL-92 because the nonaggregated name column in the select list does not appear in
the GROUP BY:

SELECT o.custid, c.name, MAX(o.payment)
 FROM orders AS o, customers AS c
 WHERE o.custid = c.custid
 GROUP BY o.custid;

For the query to be legal in SQL-92, the name column must be omitted from the select list or named in the
GROUP BY clause.

SQL:1999 and later permits such nonaggregates per optional feature T301 if they are functionally
dependent on GROUP BY columns: If such a relationship exists between name and custid, the query is
legal. This would be the case, for example, were custid a primary key of customers.

MySQL 5.7.5 and later implements detection of functional dependence. If the ONLY_FULL_GROUP_BY SQL
mode is enabled (which it is by default), MySQL rejects queries for which the select list, HAVING condition,
or ORDER BY list refer to nonaggregated columns that are neither named in the GROUP BY clause nor
are functionally dependent on them. (Before 5.7.5, MySQL does not detect functional dependency and
ONLY_FULL_GROUP_BY is not enabled by default.)

MySQL 5.7.5 and later also permits a nonaggregate column not named in a GROUP BY clause when
ONLY_FULL_GROUP_BY SQL mode is enabled, provided that this column is limited to a single value, as
shown in the following example:

mysql> CREATE TABLE mytable (
 -> id INT UNSIGNED NOT NULL PRIMARY KEY,
 -> a VARCHAR(10),
 -> b INT
 ->);

mysql> INSERT INTO mytable
 -> VALUES (1, 'abc', 1000),
 -> (2, 'abc', 2000),
 -> (3, 'def', 4000);

mysql> SET SESSION sql_mode = sys.list_add(@@session.sql_mode, 'ONLY_FULL_GROUP_BY');

mysql> SELECT a, SUM(b) FROM mytable WHERE a = 'abc';

2126

MySQL Handling of GROUP BY

+------+--------+
| a | SUM(b) |
+------+--------+
| abc | 3000 |
+------+--------+

It is also possible to have more than one nonaggregate column in the SELECT list when employing
ONLY_FULL_GROUP_BY. In this case, every such column must be limited to a single value, and all such
limiting conditions must be joined by logical AND, as shown here:

mysql> DROP TABLE IF EXISTS mytable;

mysql> CREATE TABLE mytable (
 -> id INT UNSIGNED NOT NULL PRIMARY KEY,
 -> a VARCHAR(10),
 -> b VARCHAR(10),
 -> c INT
 ->);

mysql> INSERT INTO mytable
 -> VALUES (1, 'abc', 'qrs', 1000),
 -> (2, 'abc', 'tuv', 2000),
 -> (3, 'def', 'qrs', 4000),
 -> (4, 'def', 'tuv', 8000),
 -> (5, 'abc', 'qrs', 16000),
 -> (6, 'def', 'tuv', 32000);

mysql> SELECT @@session.sql_mode;
+---+
| @@session.sql_mode |
+---+
| ONLY_FULL_GROUP_BY,STRICT_TRANS_TABLES,NO_ENGINE_SUBSTITUTION |
+---+

mysql> SELECT a, b, SUM(c) FROM mytable
 -> WHERE a = 'abc' AND b = 'qrs';
+------+------+--------+
| a | b | SUM(c) |
+------+------+--------+
| abc | qrs | 17000 |
+------+------+--------+

If ONLY_FULL_GROUP_BY is disabled, a MySQL extension to the standard SQL use of GROUP BY permits
the select list, HAVING condition, or ORDER BY list to refer to nonaggregated columns even if the columns
are not functionally dependent on GROUP BY columns. This causes MySQL to accept the preceding query.
In this case, the server is free to choose any value from each group, so unless they are the same, the
values chosen are nondeterministic, which is probably not what you want. Furthermore, the selection of
values from each group cannot be influenced by adding an ORDER BY clause. Result set sorting occurs
after values have been chosen, and ORDER BY does not affect which value within each group the server
chooses. Disabling ONLY_FULL_GROUP_BY is useful primarily when you know that, due to some property
of the data, all values in each nonaggregated column not named in the GROUP BY are the same for each
group.

You can achieve the same effect without disabling ONLY_FULL_GROUP_BY by using ANY_VALUE() to
refer to the nonaggregated column.

The following discussion demonstrates functional dependence, the error message MySQL produces
when functional dependence is absent, and ways of causing MySQL to accept a query in the absence of
functional dependence.

This query might be invalid with ONLY_FULL_GROUP_BY enabled because the nonaggregated address
column in the select list is not named in the GROUP BY clause:

2127

MySQL Handling of GROUP BY

SELECT name, address, MAX(age) FROM t GROUP BY name;

The query is valid if name is a primary key of t or is a unique NOT NULL column. In such cases, MySQL
recognizes that the selected column is functionally dependent on a grouping column. For example, if name
is a primary key, its value determines the value of address because each group has only one value of the
primary key and thus only one row. As a result, there is no randomness in the choice of address value in
a group and no need to reject the query.

The query is invalid if name is not a primary key of t or a unique NOT NULL column. In this case, no
functional dependency can be inferred and an error occurs:

mysql> SELECT name, address, MAX(age) FROM t GROUP BY name;
ERROR 1055 (42000): Expression #2 of SELECT list is not in GROUP
BY clause and contains nonaggregated column 'mydb.t.address' which
is not functionally dependent on columns in GROUP BY clause; this
is incompatible with sql_mode=only_full_group_by

If you know that, for a given data set, each name value in fact uniquely determines the address value,
address is effectively functionally dependent on name. To tell MySQL to accept the query, you can use
the ANY_VALUE() function:

SELECT name, ANY_VALUE(address), MAX(age) FROM t GROUP BY name;

Alternatively, disable ONLY_FULL_GROUP_BY.

The preceding example is quite simple, however. In particular, it is unlikely you would group on a
single primary key column because every group would contain only one row. For addtional examples
demonstrating functional dependence in more complex queries, see Section 12.19.4, “Detection of
Functional Dependence”.

If a query has aggregate functions and no GROUP BY clause, it cannot have nonaggregated columns in the
select list, HAVING condition, or ORDER BY list with ONLY_FULL_GROUP_BY enabled:

mysql> SELECT name, MAX(age) FROM t;
ERROR 1140 (42000): In aggregated query without GROUP BY, expression
#1 of SELECT list contains nonaggregated column 'mydb.t.name'; this
is incompatible with sql_mode=only_full_group_by

Without GROUP BY, there is a single group and it is nondeterministic which name value to choose for the
group. Here, too, ANY_VALUE() can be used, if it is immaterial which name value MySQL chooses:

SELECT ANY_VALUE(name), MAX(age) FROM t;

In MySQL 5.7.5 and later, ONLY_FULL_GROUP_BY also affects handling of queries that use DISTINCT and
ORDER BY. Consider the case of a table t with three columns c1, c2, and c3 that contains these rows:

c1 c2 c3
1 2 A
3 4 B
1 2 C

Suppose that we execute the following query, expecting the results to be ordered by c3:

SELECT DISTINCT c1, c2 FROM t ORDER BY c3;

To order the result, duplicates must be eliminated first. But to do so, should we keep the first row or the
third? This arbitrary choice influences the retained value of c3, which in turn influences ordering and
makes it arbitrary as well. To prevent this problem, a query that has DISTINCT and ORDER BY is rejected
as invalid if any ORDER BY expression does not satisfy at least one of these conditions:

2128

MySQL Handling of GROUP BY

• The expression is equal to one in the select list

• All columns referenced by the expression and belonging to the query's selected tables are elements of
the select list

Another MySQL extension to standard SQL permits references in the HAVING clause to aliased
expressions in the select list. For example, the following query returns name values that occur only once in
table orders:

SELECT name, COUNT(name) FROM orders
 GROUP BY name
 HAVING COUNT(name) = 1;

The MySQL extension permits the use of an alias in the HAVING clause for the aggregated column:

SELECT name, COUNT(name) AS c FROM orders
 GROUP BY name
 HAVING c = 1;

Note

Before MySQL 5.7.5, enabling ONLY_FULL_GROUP_BY disables this extension,
thus requiring the HAVING clause to be written using unaliased expressions.

Standard SQL permits only column expressions in GROUP BY clauses, so a statement such as this is
invalid because FLOOR(value/100) is a noncolumn expression:

SELECT id, FLOOR(value/100)
 FROM tbl_name
 GROUP BY id, FLOOR(value/100);

MySQL extends standard SQL to permit noncolumn expressions in GROUP BY clauses and considers the
preceding statement valid.

Standard SQL also does not permit aliases in GROUP BY clauses. MySQL extends standard SQL to permit
aliases, so another way to write the query is as follows:

SELECT id, FLOOR(value/100) AS val
 FROM tbl_name
 GROUP BY id, val;

The alias val is considered a column expression in the GROUP BY clause.

In the presence of a noncolumn expression in the GROUP BY clause, MySQL recognizes equality between
that expression and expressions in the select list. This means that with ONLY_FULL_GROUP_BY SQL mode
enabled, the query containing GROUP BY id, FLOOR(value/100) is valid because that same FLOOR()
expression occurs in the select list. However, MySQL does not try to recognize functional dependence
on GROUP BY noncolumn expressions, so the following query is invalid with ONLY_FULL_GROUP_BY
enabled, even though the third selected expression is a simple formula of the id column and the FLOOR()
expression in the GROUP BY clause:

SELECT id, FLOOR(value/100), id+FLOOR(value/100)
 FROM tbl_name
 GROUP BY id, FLOOR(value/100);

A workaround is to use a derived table:

SELECT id, F, id+F
 FROM
 (SELECT id, FLOOR(value/100) AS F
 FROM tbl_name
 GROUP BY id, FLOOR(value/100)) AS dt;

2129

Detection of Functional Dependence

12.19.4 Detection of Functional Dependence

The following discussion provides several examples of the ways in which MySQL detects functional
dependencies. The examples use this notation:

{X} -> {Y}

Understand this as “X uniquely determines Y,” which also means that Y is functionally dependent on X.

The examples use the world database, which can be downloaded from https://dev.mysql.com/doc/index-
other.html. You can find details on how to install the database on the same page.

• Functional Dependencies Derived from Keys

• Functional Dependencies Derived from Multiple-Column Keys and from Equalities

• Functional Dependency Special Cases

• Functional Dependencies and Views

• Combinations of Functional Dependencies

Functional Dependencies Derived from Keys

The following query selects, for each country, a count of spoken languages:

SELECT co.Name, COUNT(*)
FROM countrylanguage cl, country co
WHERE cl.CountryCode = co.Code
GROUP BY co.Code;

co.Code is a primary key of co, so all columns of co are functionally dependent on it, as expressed using
this notation:

{co.Code} -> {co.*}

Thus, co.name is functionally dependent on GROUP BY columns and the query is valid.

A UNIQUE index over a NOT NULL column could be used instead of a primary key and the same functional
dependence would apply. (This is not true for a UNIQUE index that permits NULL values because it permits
multiple NULL values and in that case uniqueness is lost.)

Functional Dependencies Derived from Multiple-Column Keys and from Equalities

This query selects, for each country, a list of all spoken languages and how many people speak them:

SELECT co.Name, cl.Language,
cl.Percentage * co.Population / 100.0 AS SpokenBy
FROM countryLanguage cl, country co
WHERE cl.CountryCode = co.Code
GROUP BY cl.CountryCode, cl.Language;

The pair (cl.CountryCode, cl.Language) is a two-column composite primary key of cl, so that column
pair uniquely determines all columns of cl:

{cl.CountryCode, cl.Language} -> {cl.*}

Moreover, because of the equality in the WHERE clause:

{cl.CountryCode} -> {co.Code}

And, because co.Code is primary key of co:

2130

https://dev.mysql.com/doc/index-other.html
https://dev.mysql.com/doc/index-other.html

Detection of Functional Dependence

{co.Code} -> {co.*}

“Uniquely determines” relationships are transitive, therefore:

{cl.CountryCode, cl.Language} -> {cl.*,co.*}

As a result, the query is valid.

As with the previous example, a UNIQUE key over NOT NULL columns could be used instead of a primary
key.

An INNER JOIN condition can be used instead of WHERE. The same functional dependencies apply:

SELECT co.Name, cl.Language,
cl.Percentage * co.Population/100.0 AS SpokenBy
FROM countrylanguage cl INNER JOIN country co
ON cl.CountryCode = co.Code
GROUP BY cl.CountryCode, cl.Language;

Functional Dependency Special Cases

Whereas an equality test in a WHERE condition or INNER JOIN condition is symmetric, an equality test in
an outer join condition is not, because tables play different roles.

Assume that referential integrity has been accidentally broken and there exists a row of
countrylanguage without a corresponding row in country. Consider the same query as in the previous
example, but with a LEFT JOIN:

SELECT co.Name, cl.Language,
cl.Percentage * co.Population/100.0 AS SpokenBy
FROM countrylanguage cl LEFT JOIN country co
ON cl.CountryCode = co.Code
GROUP BY cl.CountryCode, cl.Language;

For a given value of cl.CountryCode, the value of co.Code in the join result is either found in a
matching row (determined by cl.CountryCode) or is NULL-complemented if there is no match (also
determined by cl.CountryCode). In each case, this relationship applies:

{cl.CountryCode} -> {co.Code}

cl.CountryCode is itself functionally dependent on {cl.CountryCode, cl.Language} which is a
primary key.

If in the join result co.Code is NULL-complemented, co.Name is as well. If co.Code is not NULL-
complemented, then because co.Code is a primary key, it determines co.Name. Therefore, in all cases:

{co.Code} -> {co.Name}

Which yields:

{cl.CountryCode, cl.Language} -> {cl.*,co.*}

As a result, the query is valid.

However, suppose that the tables are swapped, as in this query:

SELECT co.Name, cl.Language,
cl.Percentage * co.Population/100.0 AS SpokenBy
FROM country co LEFT JOIN countrylanguage cl
ON cl.CountryCode = co.Code
GROUP BY cl.CountryCode, cl.Language;

Now this relationship does not apply:

2131

Detection of Functional Dependence

{cl.CountryCode, cl.Language} -> {cl.*,co.*}

All NULL-complemented rows made for cl are put into a single group (they have both GROUP BY columns
equal to NULL), and inside this group the value of co.Name can vary. The query is invalid and MySQL
rejects it.

Functional dependence in outer joins is thus linked to whether determinant columns belong to the left or
right side of the LEFT JOIN. Determination of functional dependence becomes more complex if there are
nested outer joins or the join condition does not consist entirely of equality comparisons.

Functional Dependencies and Views

Suppose that a view on countries produces their code, their name in uppercase, and how many different
official languages they have:

CREATE VIEW country2 AS
SELECT co.Code, UPPER(co.Name) AS UpperName,
COUNT(cl.Language) AS OfficialLanguages
FROM country AS co JOIN countrylanguage AS cl
ON cl.CountryCode = co.Code
WHERE cl.isOfficial = 'T'
GROUP BY co.Code;

This definition is valid because:

{co.Code} -> {co.*}

In the view result, the first selected column is co.Code, which is also the group column and thus
determines all other selected expressions:

{country2.Code} -> {country2.*}

MySQL understands this and uses this information, as described following.

This query displays countries, how many different official languages they have, and how many cities they
have, by joining the view with the city table:

SELECT co2.Code, co2.UpperName, co2.OfficialLanguages,
COUNT(*) AS Cities
FROM country2 AS co2 JOIN city ci
ON ci.CountryCode = co2.Code
GROUP BY co2.Code;

This query is valid because, as seen previously:

{co2.Code} -> {co2.*}

MySQL is able to discover a functional dependency in the result of a view and use that to validate a query
which uses the view. The same would be true if country2 were a derived table, as in:

SELECT co2.Code, co2.UpperName, co2.OfficialLanguages,
COUNT(*) AS Cities
FROM
(
 SELECT co.Code, UPPER(co.Name) AS UpperName,
 COUNT(cl.Language) AS OfficialLanguages
 FROM country AS co JOIN countrylanguage AS cl
 ON cl.CountryCode=co.Code
 WHERE cl.isOfficial='T'
 GROUP BY co.Code
) AS co2
JOIN city ci ON ci.CountryCode = co2.Code
GROUP BY co2.Code;

2132

Miscellaneous Functions

Combinations of Functional Dependencies

MySQL is able to combine all of the preceding types of functional dependencies (key based, equality
based, view based) to validate more complex queries.

12.20 Miscellaneous Functions

Table 12.26 Miscellaneous Functions

Name Description

ANY_VALUE() Suppress ONLY_FULL_GROUP_BY value rejection

DEFAULT() Return the default value for a table column

INET_ATON() Return the numeric value of an IP address

INET_NTOA() Return the IP address from a numeric value

INET6_ATON() Return the numeric value of an IPv6 address

INET6_NTOA() Return the IPv6 address from a numeric value

IS_IPV4() Whether argument is an IPv4 address

IS_IPV4_COMPAT() Whether argument is an IPv4-compatible address

IS_IPV4_MAPPED() Whether argument is an IPv4-mapped address

IS_IPV6() Whether argument is an IPv6 address

NAME_CONST() Cause the column to have the given name

SLEEP() Sleep for a number of seconds

UUID() Return a Universal Unique Identifier (UUID)

UUID_SHORT() Return an integer-valued universal identifier

VALUES() Define the values to be used during an INSERT

• ANY_VALUE(arg)

This function is useful for GROUP BY queries when the ONLY_FULL_GROUP_BY SQL mode is enabled,
for cases when MySQL rejects a query that you know is valid for reasons that MySQL cannot determine.
The function return value and type are the same as the return value and type of its argument, but the
function result is not checked for the ONLY_FULL_GROUP_BY SQL mode.

For example, if name is a nonindexed column, the following query fails with ONLY_FULL_GROUP_BY
enabled:

mysql> SELECT name, address, MAX(age) FROM t GROUP BY name;
ERROR 1055 (42000): Expression #2 of SELECT list is not in GROUP
BY clause and contains nonaggregated column 'mydb.t.address' which
is not functionally dependent on columns in GROUP BY clause; this
is incompatible with sql_mode=only_full_group_by

The failure occurs because address is a nonaggregated column that is neither named among GROUP
BY columns nor functionally dependent on them. As a result, the address value for rows within each
name group is nondeterministic. There are multiple ways to cause MySQL to accept the query:

• Alter the table to make name a primary key or a unique NOT NULL column. This enables MySQL to
determine that address is functionally dependent on name; that is, address is uniquely determined
by name. (This technique is inapplicable if NULL must be permitted as a valid name value.)

2133

Miscellaneous Functions

• Use ANY_VALUE() to refer to address:

SELECT name, ANY_VALUE(address), MAX(age) FROM t GROUP BY name;

In this case, MySQL ignores the nondeterminism of address values within each name group and
accepts the query. This may be useful if you simply do not care which value of a nonaggregated
column is chosen for each group. ANY_VALUE() is not an aggregate function, unlike functions such as
SUM() or COUNT(). It simply acts to suppress the test for nondeterminism.

• Disable ONLY_FULL_GROUP_BY. This is equivalent to using ANY_VALUE() with
ONLY_FULL_GROUP_BY enabled, as described in the previous item.

ANY_VALUE() is also useful if functional dependence exists between columns but MySQL cannot
determine it. The following query is valid because age is functionally dependent on the grouping column
age-1, but MySQL cannot tell that and rejects the query with ONLY_FULL_GROUP_BY enabled:

SELECT age FROM t GROUP BY age-1;

To cause MySQL to accept the query, use ANY_VALUE():

SELECT ANY_VALUE(age) FROM t GROUP BY age-1;

ANY_VALUE() can be used for queries that refer to aggregate functions in the absence of a GROUP BY
clause:

mysql> SELECT name, MAX(age) FROM t;
ERROR 1140 (42000): In aggregated query without GROUP BY, expression
#1 of SELECT list contains nonaggregated column 'mydb.t.name'; this
is incompatible with sql_mode=only_full_group_by

Without GROUP BY, there is a single group and it is nondeterministic which name value to choose for the
group. ANY_VALUE() tells MySQL to accept the query:

SELECT ANY_VALUE(name), MAX(age) FROM t;

It may be that, due to some property of a given data set, you know that a selected nonaggregated
column is effectively functionally dependent on a GROUP BY column. For example, an application may
enforce uniqueness of one column with respect to another. In this case, using ANY_VALUE() for the
effectively functionally dependent column may make sense.

For additional discussion, see Section 12.19.3, “MySQL Handling of GROUP BY”.

• DEFAULT(col_name)

Returns the default value for a table column. An error results if the column has no default value.

mysql> UPDATE t SET i = DEFAULT(i)+1 WHERE id < 100;

• FORMAT(X,D)

Formats the number X to a format like '#,###,###.##', rounded to D decimal places, and returns the
result as a string. For details, see Section 12.8, “String Functions and Operators”.

• INET_ATON(expr)

Given the dotted-quad representation of an IPv4 network address as a string, returns an integer that
represents the numeric value of the address in network byte order (big endian). INET_ATON() returns
NULL if it does not understand its argument.

2134

Miscellaneous Functions

mysql> SELECT INET_ATON('10.0.5.9');
 -> 167773449

For this example, the return value is calculated as 10×2563 + 0×2562 + 5×256 + 9.

INET_ATON() may or may not return a non-NULL result for short-form IP addresses (such as '127.1'
as a representation of '127.0.0.1'). Because of this, INET_ATON()a should not be used for such
addresses.

Note

To store values generated by INET_ATON(), use an INT UNSIGNED
column rather than INT, which is signed. If you use a signed column, values
corresponding to IP addresses for which the first octet is greater than 127 cannot
be stored correctly. See Section 11.1.7, “Out-of-Range and Overflow Handling”.

• INET_NTOA(expr)

Given a numeric IPv4 network address in network byte order, returns the dotted-quad string
representation of the address as a string in the connection character set. INET_NTOA() returns NULL if
it does not understand its argument.

mysql> SELECT INET_NTOA(167773449);
 -> '10.0.5.9'

• INET6_ATON(expr)

Given an IPv6 or IPv4 network address as a string, returns a binary string that represents the numeric
value of the address in network byte order (big endian). Because numeric-format IPv6 addresses
require more bytes than the largest integer type, the representation returned by this function has the
VARBINARY data type: VARBINARY(16) for IPv6 addresses and VARBINARY(4) for IPv4 addresses. If
the argument is not a valid address, INET6_ATON() returns NULL.

The following examples use HEX() to display the INET6_ATON() result in printable form:

mysql> SELECT HEX(INET6_ATON('fdfe::5a55:caff:fefa:9089'));
 -> 'FDFE0000000000005A55CAFFFEFA9089'
mysql> SELECT HEX(INET6_ATON('10.0.5.9'));
 -> '0A000509'

INET6_ATON() observes several constraints on valid arguments. These are given in the following list
along with examples.

• A trailing zone ID is not permitted, as in fe80::3%1 or fe80::3%eth0.

• A trailing network mask is not permitted, as in 2001:45f:3:ba::/64 or 198.51.100.0/24.

• For values representing IPv4 addresses, only classless addresses are supported. Classful addresses
such as 198.51.1 are rejected. A trailing port number is not permitted, as in 198.51.100.2:8080.
Hexadecimal numbers in address components are not permitted, as in 198.0xa0.1.2. Octal
numbers are not supported: 198.51.010.1 is treated as 198.51.10.1, not 198.51.8.1. These
IPv4 constraints also apply to IPv6 addresses that have IPv4 address parts, such as IPv4-compatible
or IPv4-mapped addresses.

To convert an IPv4 address expr represented in numeric form as an INT value to an IPv6 address
represented in numeric form as a VARBINARY value, use this expression:

INET6_ATON(INET_NTOA(expr))

2135

Miscellaneous Functions

For example:

mysql> SELECT HEX(INET6_ATON(INET_NTOA(167773449)));
 -> '0A000509'

If INET6_ATON() is invoked from within the mysql client, binary strings display using hexadecimal
notation, depending on the value of the --binary-as-hex. For more information about that option, see
Section 4.5.1, “mysql — The MySQL Command-Line Client”.

• INET6_NTOA(expr)

Given an IPv6 or IPv4 network address represented in numeric form as a binary string, returns the string
representation of the address as a string in the connection character set. If the argument is not a valid
address, INET6_NTOA() returns NULL.

INET6_NTOA() has these properties:

• It does not use operating system functions to perform conversions, thus the output string is platform
independent.

• The return string has a maximum length of 39 (4 x 8 + 7). Given this statement:

CREATE TABLE t AS SELECT INET6_NTOA(expr) AS c1;

The resulting table would have this definition:

CREATE TABLE t (c1 VARCHAR(39) CHARACTER SET utf8 DEFAULT NULL);

• The return string uses lowercase letters for IPv6 addresses.

mysql> SELECT INET6_NTOA(INET6_ATON('fdfe::5a55:caff:fefa:9089'));
 -> 'fdfe::5a55:caff:fefa:9089'
mysql> SELECT INET6_NTOA(INET6_ATON('10.0.5.9'));
 -> '10.0.5.9'

mysql> SELECT INET6_NTOA(UNHEX('FDFE0000000000005A55CAFFFEFA9089'));
 -> 'fdfe::5a55:caff:fefa:9089'
mysql> SELECT INET6_NTOA(UNHEX('0A000509'));
 -> '10.0.5.9'

If INET6_NTOA() is invoked from within the mysql client, binary strings display using hexadecimal
notation, depending on the value of the --binary-as-hex. For more information about that option, see
Section 4.5.1, “mysql — The MySQL Command-Line Client”.

• IS_IPV4(expr)

Returns 1 if the argument is a valid IPv4 address specified as a string, 0 otherwise.

mysql> SELECT IS_IPV4('10.0.5.9'), IS_IPV4('10.0.5.256');
 -> 1, 0

For a given argument, if IS_IPV4() returns 1, INET_ATON() (and INET6_ATON()) returns a value
that is not NULL. The converse statement is not true: In some cases, INET_ATON() returns a value
other than NULL when IS_IPV4() returns 0.

As implied by the preceding remarks, IS_IPV4() is more strict than INET_ATON() about what
constitutes a valid IPv4 address, so it may be useful for applications that need to perform strong checks
against invalid values. Alternatively, use INET6_ATON() to convert IPv4 addresses to internal form

2136

Miscellaneous Functions

and check for a NULL result (which indicates an invalid address). INET6_ATON() is equally strong as
IS_IPV4() about checking IPv4 addresses.

• IS_IPV4_COMPAT(expr)

This function takes an IPv6 address represented in numeric form as a binary string, as returned by
INET6_ATON(). It returns 1 if the argument is a valid IPv4-compatible IPv6 address, 0 otherwise. IPv4-
compatible addresses have the form ::ipv4_address.

mysql> SELECT IS_IPV4_COMPAT(INET6_ATON('::10.0.5.9'));
 -> 1
mysql> SELECT IS_IPV4_COMPAT(INET6_ATON('::ffff:10.0.5.9'));
 -> 0

The IPv4 part of an IPv4-compatible address can also be represented using hexadecimal notation. For
example, 198.51.100.1 has this raw hexadecimal value:

mysql> SELECT HEX(INET6_ATON('198.51.100.1'));
 -> 'C6336401'

Expressed in IPv4-compatible form, ::198.51.100.1 is equivalent to ::c0a8:0001 or (without
leading zeros) ::c0a8:1

mysql> SELECT
 -> IS_IPV4_COMPAT(INET6_ATON('::198.51.100.1')),
 -> IS_IPV4_COMPAT(INET6_ATON('::c0a8:0001')),
 -> IS_IPV4_COMPAT(INET6_ATON('::c0a8:1'));
 -> 1, 1, 1

• IS_IPV4_MAPPED(expr)

This function takes an IPv6 address represented in numeric form as a binary string, as returned by
INET6_ATON(). It returns 1 if the argument is a valid IPv4-mapped IPv6 address, 0 otherwise. IPv4-
mapped addresses have the form ::ffff:ipv4_address.

mysql> SELECT IS_IPV4_MAPPED(INET6_ATON('::10.0.5.9'));
 -> 0
mysql> SELECT IS_IPV4_MAPPED(INET6_ATON('::ffff:10.0.5.9'));
 -> 1

As with IS_IPV4_COMPAT() the IPv4 part of an IPv4-mapped address can also be represented using
hexadecimal notation:

mysql> SELECT
 -> IS_IPV4_MAPPED(INET6_ATON('::ffff:198.51.100.1')),
 -> IS_IPV4_MAPPED(INET6_ATON('::ffff:c0a8:0001')),
 -> IS_IPV4_MAPPED(INET6_ATON('::ffff:c0a8:1'));
 -> 1, 1, 1

• IS_IPV6(expr)

Returns 1 if the argument is a valid IPv6 address specified as a string, 0 otherwise. This function does
not consider IPv4 addresses to be valid IPv6 addresses.

mysql> SELECT IS_IPV6('10.0.5.9'), IS_IPV6('::1');
 -> 0, 1

For a given argument, if IS_IPV6() returns 1, INET6_ATON() returns a value tht si not NULL.

2137

Miscellaneous Functions

• MASTER_POS_WAIT(log_name,log_pos[,timeout][,channel])

This function is useful for control of source-replica synchronization. It blocks until the replica has read
and applied all updates up to the specified position in the source log. The return value is the number of
log events the replica had to wait for to advance to the specified position. The function returns NULL if
the replica SQL thread is not started, the replica's source information is not initialized, the arguments
are incorrect, or an error occurs. It returns -1 if the timeout has been exceeded. If the replica SQL
thread stops while MASTER_POS_WAIT() is waiting, the function returns NULL. If the replica is past the
specified position, the function returns immediately.

On a multithreaded replica, the function waits until expiry of the limit set by the
slave_checkpoint_group or slave_checkpoint_period system variable, when the checkpoint
operation is called to update the status of the replica. Depending on the setting for the system variables,
the function might therefore return some time after the specified position was reached.

If a timeout value is specified, MASTER_POS_WAIT() stops waiting when timeout seconds have
elapsed. timeout must be greater than or equal to 0. (As of MySQL 5.7.18, when the server is running
in strict SQL mode, a negative timeout value is immediately rejected with ER_WRONG_ARGUMENTS;
otherwise the function returns NULL, and raises a warning.)

The optional channel value enables you to name which replication channel the function applies to. See
Section 16.2.2, “Replication Channels” for more information.

This function is unsafe for statement-based replication. A warning is logged if you use this function when
binlog_format is set to STATEMENT.

• NAME_CONST(name,value)

Returns the given value. When used to produce a result set column, NAME_CONST() causes the column
to have the given name. The arguments should be constants.

mysql> SELECT NAME_CONST('myname', 14);
+--------+
| myname |
+--------+
| 14 |
+--------+

This function is for internal use only. The server uses it when writing statements from stored programs
that contain references to local program variables, as described in Section 23.7, “Stored Program Binary
Logging”. You might see this function in the output from mysqlbinlog.

For your applications, you can obtain exactly the same result as in the example just shown by using
simple aliasing, like this:

mysql> SELECT 14 AS myname;
+--------+
| myname |
+--------+
| 14 |
+--------+
1 row in set (0.00 sec)

See Section 13.2.9, “SELECT Statement”, for more information about column aliases.

2138

https://dev.mysql.com/doc/mysql-errors/5.7/en/server-error-reference.html#error_er_wrong_arguments

Miscellaneous Functions

• SLEEP(duration)

Sleeps (pauses) for the number of seconds given by the duration argument, then returns 0. The
duration may have a fractional part. If the argument is NULL or negative, SLEEP() produces a warning,
or an error in strict SQL mode.

When sleep returns normally (without interruption), it returns 0:

mysql> SELECT SLEEP(1000);
+-------------+
| SLEEP(1000) |
+-------------+
| 0 |
+-------------+

When SLEEP() is the only thing invoked by a query that is interrupted, it returns 1 and the query itself
returns no error. This is true whether the query is killed or times out:

• This statement is interrupted using KILL QUERY from another session:

mysql> SELECT SLEEP(1000);
+-------------+
| SLEEP(1000) |
+-------------+
| 1 |
+-------------+

• This statement is interrupted by timing out:

mysql> SELECT /*+ MAX_EXECUTION_TIME(1) */ SLEEP(1000);
+-------------+
| SLEEP(1000) |
+-------------+
| 1 |
+-------------+

When SLEEP() is only part of a query that is interrupted, the query returns an error:

• This statement is interrupted using KILL QUERY from another session:

mysql> SELECT 1 FROM t1 WHERE SLEEP(1000);
ERROR 1317 (70100): Query execution was interrupted

• This statement is interrupted by timing out:

mysql> SELECT /*+ MAX_EXECUTION_TIME(1000) */ 1 FROM t1 WHERE SLEEP(1000);
ERROR 3024 (HY000): Query execution was interrupted, maximum statement
execution time exceeded

This function is unsafe for statement-based replication. A warning is logged if you use this function when
binlog_format is set to STATEMENT.

2139

Miscellaneous Functions

• UUID()

Returns a Universal Unique Identifier (UUID) generated according to RFC 4122, “A Universally Unique
IDentifier (UUID) URN Namespace” (http://www.ietf.org/rfc/rfc4122.txt).

A UUID is designed as a number that is globally unique in space and time. Two calls to UUID() are
expected to generate two different values, even if these calls are performed on two separate devices not
connected to each other.

Warning

Although UUID() values are intended to be unique, they are not necessarily
unguessable or unpredictable. If unpredictability is required, UUID values should
be generated some other way.

UUID() returns a value that conforms to UUID version 1 as described in RFC 4122. The value is a 128-
bit number represented as a utf8 string of five hexadecimal numbers in aaaaaaaa-bbbb-cccc-
dddd-eeeeeeeeeeee format:

• The first three numbers are generated from the low, middle, and high parts of a timestamp. The high
part also includes the UUID version number.

• The fourth number preserves temporal uniqueness in case the timestamp value loses monotonicity
(for example, due to daylight saving time).

• The fifth number is an IEEE 802 node number that provides spatial uniqueness. A random number is
substituted if the latter is not available (for example, because the host device has no Ethernet card,
or it is unknown how to find the hardware address of an interface on the host operating system). In
this case, spatial uniqueness cannot be guaranteed. Nevertheless, a collision should have very low
probability.

The MAC address of an interface is taken into account only on FreeBSD, Linux, and Windows. On
other operating systems, MySQL uses a randomly generated 48-bit number.

mysql> SELECT UUID();
 -> '6ccd780c-baba-1026-9564-5b8c656024db'

This function is unsafe for statement-based replication. A warning is logged if you use this function when
binlog_format is set to STATEMENT.

• UUID_SHORT()

Returns a “short” universal identifier as a 64-bit unsigned integer. Values returned by UUID_SHORT()
differ from the string-format 128-bit identifiers returned by the UUID() function and have different

2140

http://www.ietf.org/rfc/rfc4122.txt

Precision Math

uniqueness properties. The value of UUID_SHORT() is guaranteed to be unique if the following
conditions hold:

• The server_id value of the current server is between 0 and 255 and is unique among your set of
source and replica servers

• You do not set back the system time for your server host between mysqld restarts

• You invoke UUID_SHORT() on average fewer than 16 million times per second between mysqld
restarts

The UUID_SHORT() return value is constructed this way:

 (server_id & 255) << 56
+ (server_startup_time_in_seconds << 24)
+ incremented_variable++;

mysql> SELECT UUID_SHORT();
 -> 92395783831158784

Note

UUID_SHORT() does not work with statement-based replication.

• VALUES(col_name)

In an INSERT ... ON DUPLICATE KEY UPDATE statement, you can use the VALUES(col_name)
function in the UPDATE clause to refer to column values from the INSERT portion of the statement. In
other words, VALUES(col_name) in the UPDATE clause refers to the value of col_name that would
be inserted, had no duplicate-key conflict occurred. This function is especially useful in multiple-row
inserts. The VALUES() function is meaningful only in the ON DUPLICATE KEY UPDATE clause of
INSERT statements and returns NULL otherwise. See Section 13.2.5.2, “INSERT ... ON DUPLICATE
KEY UPDATE Statement”.

mysql> INSERT INTO table (a,b,c) VALUES (1,2,3),(4,5,6)
 -> ON DUPLICATE KEY UPDATE c=VALUES(a)+VALUES(b);

12.21 Precision Math

MySQL provides support for precision math: numeric value handling that results in extremely accurate
results and a high degree control over invalid values. Precision math is based on these two features:

• SQL modes that control how strict the server is about accepting or rejecting invalid data.

• The MySQL library for fixed-point arithmetic.

These features have several implications for numeric operations and provide a high degree of compliance
with standard SQL:

• Precise calculations: For exact-value numbers, calculations do not introduce floating-point errors.
Instead, exact precision is used. For example, MySQL treats a number such as .0001 as an exact value
rather than as an approximation, and summing it 10,000 times produces a result of exactly 1, not a value
that is merely “close” to 1.

• Well-defined rounding behavior: For exact-value numbers, the result of ROUND() depends on its
argument, not on environmental factors such as how the underlying C library works.

2141

Types of Numeric Values

• Platform independence: Operations on exact numeric values are the same across different platforms
such as Windows and Unix.

• Control over handling of invalid values: Overflow and division by zero are detectable and can be
treated as errors. For example, you can treat a value that is too large for a column as an error rather
than having the value truncated to lie within the range of the column's data type. Similarly, you can treat
division by zero as an error rather than as an operation that produces a result of NULL. The choice of
which approach to take is determined by the setting of the server SQL mode.

The following discussion covers several aspects of how precision math works, including possible
incompatibilities with older applications. At the end, some examples are given that demonstrate how
MySQL handles numeric operations precisely. For information about controlling the SQL mode, see
Section 5.1.10, “Server SQL Modes”.

12.21.1 Types of Numeric Values

The scope of precision math for exact-value operations includes the exact-value data types (integer and
DECIMAL types) and exact-value numeric literals. Approximate-value data types and numeric literals are
handled as floating-point numbers.

Exact-value numeric literals have an integer part or fractional part, or both. They may be signed. Examples:
1, .2, 3.4, -5, -6.78, +9.10.

Approximate-value numeric literals are represented in scientific notation with a mantissa and exponent.
Either or both parts may be signed. Examples: 1.2E3, 1.2E-3, -1.2E3, -1.2E-3.

Two numbers that look similar may be treated differently. For example, 2.34 is an exact-value (fixed-point)
number, whereas 2.34E0 is an approximate-value (floating-point) number.

The DECIMAL data type is a fixed-point type and calculations are exact. In MySQL, the DECIMAL type has
several synonyms: NUMERIC, DEC, FIXED. The integer types also are exact-value types.

The FLOAT and DOUBLE data types are floating-point types and calculations are approximate. In MySQL,
types that are synonymous with FLOAT or DOUBLE are DOUBLE PRECISION and REAL.

12.21.2 DECIMAL Data Type Characteristics

This section discusses the characteristics of the DECIMAL data type (and its synonyms), with particular
regard to the following topics:

• Maximum number of digits

• Storage format

• Storage requirements

• The nonstandard MySQL extension to the upper range of DECIMAL columns

The declaration syntax for a DECIMAL column is DECIMAL(M,D). The ranges of values for the arguments
are as follows:

• M is the maximum number of digits (the precision). It has a range of 1 to 65.

• D is the number of digits to the right of the decimal point (the scale). It has a range of 0 to 30 and must
be no larger than M.

If D is omitted, the default is 0. If M is omitted, the default is 10.

2142

Expression Handling

The maximum value of 65 for M means that calculations on DECIMAL values are accurate up to 65 digits.
This limit of 65 digits of precision also applies to exact-value numeric literals, so the maximum range of
such literals differs from before. (There is also a limit on how long the text of DECIMAL literals can be; see
Section 12.21.3, “Expression Handling”.)

Values for DECIMAL columns are stored using a binary format that packs nine decimal digits into 4 bytes.
The storage requirements for the integer and fractional parts of each value are determined separately.
Each multiple of nine digits requires 4 bytes, and any remaining digits left over require some fraction of 4
bytes. The storage required for remaining digits is given by the following table.

Leftover Digits Number of Bytes

0 0

1–2 1

3–4 2

5–6 3

7–9 4

For example, a DECIMAL(18,9) column has nine digits on either side of the decimal point, so the integer
part and the fractional part each require 4 bytes. A DECIMAL(20,6) column has fourteen integer digits
and six fractional digits. The integer digits require four bytes for nine of the digits and 3 bytes for the
remaining five digits. The six fractional digits require 3 bytes.

DECIMAL columns do not store a leading + character or - character or leading 0 digits. If you insert
+0003.1 into a DECIMAL(5,1) column, it is stored as 3.1. For negative numbers, a literal - character is
not stored.

DECIMAL columns do not permit values larger than the range implied by the column definition. For
example, a DECIMAL(3,0) column supports a range of -999 to 999. A DECIMAL(M,D) column permits
up to M - D digits to the left of the decimal point.

The SQL standard requires that the precision of NUMERIC(M,D) be exactly M digits. For DECIMAL(M,D),
the standard requires a precision of at least M digits but permits more. In MySQL, DECIMAL(M,D) and
NUMERIC(M,D) are the same, and both have a precision of exactly M digits.

For a full explanation of the internal format of DECIMAL values, see the file strings/decimal.c in a
MySQL source distribution. The format is explained (with an example) in the decimal2bin() function.

12.21.3 Expression Handling

With precision math, exact-value numbers are used as given whenever possible. For example, numbers in
comparisons are used exactly as given without a change in value. In strict SQL mode, for INSERT into a
column with an exact data type (DECIMAL or integer), a number is inserted with its exact value if it is within
the column range. When retrieved, the value should be the same as what was inserted. (If strict SQL mode
is not enabled, truncation for INSERT is permissible.)

Handling of a numeric expression depends on what kind of values the expression contains:

• If any approximate values are present, the expression is approximate and is evaluated using floating-
point arithmetic.

• If no approximate values are present, the expression contains only exact values. If any exact value
contains a fractional part (a value following the decimal point), the expression is evaluated using

2143

Expression Handling

DECIMAL exact arithmetic and has a precision of 65 digits. The term “exact” is subject to the limits of
what can be represented in binary. For example, 1.0/3.0 can be approximated in decimal notation as
.333..., but not written as an exact number, so (1.0/3.0)*3.0 does not evaluate to exactly 1.0.

• Otherwise, the expression contains only integer values. The expression is exact and is evaluated using
integer arithmetic and has a precision the same as BIGINT (64 bits).

If a numeric expression contains any strings, they are converted to double-precision floating-point values
and the expression is approximate.

Inserts into numeric columns are affected by the SQL mode, which is controlled by the sql_mode
system variable. (See Section 5.1.10, “Server SQL Modes”.) The following discussion mentions
strict mode (selected by the STRICT_ALL_TABLES or STRICT_TRANS_TABLES mode values) and
ERROR_FOR_DIVISION_BY_ZERO. To turn on all restrictions, you can simply use TRADITIONAL mode,
which includes both strict mode values and ERROR_FOR_DIVISION_BY_ZERO:

SET sql_mode='TRADITIONAL';

If a number is inserted into an exact type column (DECIMAL or integer), it is inserted with its exact value if it
is within the column range and precision.

If the value has too many digits in the fractional part, rounding occurs and a note is generated. Rounding
is done as described in Section 12.21.4, “Rounding Behavior”. Truncation due to rounding of the fractional
part is not an error, even in strict mode.

If the value has too many digits in the integer part, it is too large (out of range) and is handled as follows:

• If strict mode is not enabled, the value is truncated to the nearest legal value and a warning is generated.

• If strict mode is enabled, an overflow error occurs.

For DECIMAL literals, in addition to the precision limit of 65 digits, there is a limit on how long the text of
the literal can be. If the value exceeds approximately 80 characters, unexpected results can occur. For
example:

mysql> SELECT
 CAST(0020.01 AS DECIMAL(15,2)) as val;
+------------------+
| val |
+------------------+
| 9999999999999.99 |
+------------------+
1 row in set, 2 warnings (0.00 sec)

mysql> SHOW WARNINGS;
+---------+------+--+
| Level | Code | Message |
+---------+------+--+
| Warning | 1292 | Truncated incorrect DECIMAL value: '20' |
| Warning | 1264 | Out of range value for column 'val' at row 1 |
+---------+------+--+
2 rows in set (0.00 sec)

Underflow is not detected, so underflow handling is undefined.

For inserts of strings into numeric columns, conversion from string to number is handled as follows if the
string has nonnumeric contents:

• A string that does not begin with a number cannot be used as a number and produces an error in strict
mode, or a warning otherwise. This includes the empty string.

2144

Rounding Behavior

• A string that begins with a number can be converted, but the trailing nonnumeric portion is truncated.
If the truncated portion contains anything other than spaces, this produces an error in strict mode, or a
warning otherwise.

By default, division by zero produces a result of NULL and no warning. By setting the SQL mode
appropriately, division by zero can be restricted.

With the ERROR_FOR_DIVISION_BY_ZERO SQL mode enabled, MySQL handles division by zero
differently:

• If strict mode is not enabled, a warning occurs.

• If strict mode is enabled, inserts and updates involving division by zero are prohibited, and an error
occurs.

In other words, inserts and updates involving expressions that perform division by zero can be treated as
errors, but this requires ERROR_FOR_DIVISION_BY_ZERO in addition to strict mode.

Suppose that we have this statement:

INSERT INTO t SET i = 1/0;

This is what happens for combinations of strict and ERROR_FOR_DIVISION_BY_ZERO modes.

sql_mode Value Result

'' (Default) No warning, no error; i is set to NULL.

strict No warning, no error; i is set to NULL.

ERROR_FOR_DIVISION_BY_ZERO Warning, no error; i is set to NULL.

strict,ERROR_FOR_DIVISION_BY_ZERO Error condition; no row is inserted.

12.21.4 Rounding Behavior

This section discusses precision math rounding for the ROUND() function and for inserts into columns with
exact-value types (DECIMAL and integer).

The ROUND() function rounds differently depending on whether its argument is exact or approximate:

• For exact-value numbers, ROUND() uses the “round half up” rule: A value with a fractional part of .5
or greater is rounded up to the next integer if positive or down to the next integer if negative. (In other
words, it is rounded away from zero.) A value with a fractional part less than .5 is rounded down to the
next integer if positive or up to the next integer if negative. (In other words, it is rounded toward zero.)

• For approximate-value numbers, the result depends on the C library. On many systems, this means that
ROUND() uses the “round to nearest even” rule: A value with a fractional part exactly half way between
two integers is rounded to the nearest even integer.

The following example shows how rounding differs for exact and approximate values:

mysql> SELECT ROUND(2.5), ROUND(25E-1);
+------------+--------------+
| ROUND(2.5) | ROUND(25E-1) |
+------------+--------------+
| 3 | 2 |
+------------+--------------+

For inserts into a DECIMAL or integer column, the target is an exact data type, so rounding uses “round half
away from zero,” regardless of whether the value to be inserted is exact or approximate:

2145

Precision Math Examples

mysql> CREATE TABLE t (d DECIMAL(10,0));
Query OK, 0 rows affected (0.00 sec)

mysql> INSERT INTO t VALUES(2.5),(2.5E0);
Query OK, 2 rows affected, 2 warnings (0.00 sec)
Records: 2 Duplicates: 0 Warnings: 2

mysql> SHOW WARNINGS;
+-------+------+--+
| Level | Code | Message |
+-------+------+--+
| Note | 1265 | Data truncated for column 'd' at row 1 |
| Note | 1265 | Data truncated for column 'd' at row 2 |
+-------+------+--+
2 rows in set (0.00 sec)

mysql> SELECT d FROM t;
+------+
| d |
+------+
| 3 |
| 3 |
+------+
2 rows in set (0.00 sec)

The SHOW WARNINGS statement displays the notes that are generated by truncation due to rounding of the
fractional part. Such truncation is not an error, even in strict SQL mode (see Section 12.21.3, “Expression
Handling”).

12.21.5 Precision Math Examples

This section provides some examples that show precision math query results in MySQL. These examples
demonstrate the principles described in Section 12.21.3, “Expression Handling”, and Section 12.21.4,
“Rounding Behavior”.

Example 1. Numbers are used with their exact value as given when possible:

mysql> SELECT (.1 + .2) = .3;
+----------------+
| (.1 + .2) = .3 |
+----------------+
| 1 |
+----------------+

For floating-point values, results are inexact:

mysql> SELECT (.1E0 + .2E0) = .3E0;
+----------------------+
| (.1E0 + .2E0) = .3E0 |
+----------------------+
| 0 |
+----------------------+

Another way to see the difference in exact and approximate value handling is to add a small number to a
sum many times. Consider the following stored procedure, which adds .0001 to a variable 1,000 times.

CREATE PROCEDURE p ()
BEGIN
 DECLARE i INT DEFAULT 0;
 DECLARE d DECIMAL(10,4) DEFAULT 0;
 DECLARE f FLOAT DEFAULT 0;
 WHILE i < 10000 DO
 SET d = d + .0001;

2146

Precision Math Examples

 SET f = f + .0001E0;
 SET i = i + 1;
 END WHILE;
 SELECT d, f;
END;

The sum for both d and f logically should be 1, but that is true only for the decimal calculation. The
floating-point calculation introduces small errors:

+--------+------------------+
| d | f |
+--------+------------------+
| 1.0000 | 0.99999999999991 |
+--------+------------------+

Example 2. Multiplication is performed with the scale required by standard SQL. That is, for two numbers
X1 and X2 that have scale S1 and S2, the scale of the result is S1 + S2:

mysql> SELECT .01 * .01;
+-----------+
| .01 * .01 |
+-----------+
| 0.0001 |
+-----------+

Example 3. Rounding behavior for exact-value numbers is well-defined:

Rounding behavior (for example, with the ROUND() function) is independent of the implementation of the
underlying C library, which means that results are consistent from platform to platform.

• Rounding for exact-value columns (DECIMAL and integer) and exact-valued numbers uses the “round
half away from zero” rule. A value with a fractional part of .5 or greater is rounded away from zero to the
nearest integer, as shown here:

mysql> SELECT ROUND(2.5), ROUND(-2.5);
+------------+-------------+
| ROUND(2.5) | ROUND(-2.5) |
+------------+-------------+
| 3 | -3 |
+------------+-------------+

• Rounding for floating-point values uses the C library, which on many systems uses the “round to nearest
even” rule. A value with a fractional part exactly half way between two integers is rounded to the nearest
even integer:

mysql> SELECT ROUND(2.5E0), ROUND(-2.5E0);
+--------------+---------------+
| ROUND(2.5E0) | ROUND(-2.5E0) |
+--------------+---------------+
| 2 | -2 |
+--------------+---------------+

Example 4. In strict mode, inserting a value that is out of range for a column causes an error, rather than
truncation to a legal value.

When MySQL is not running in strict mode, truncation to a legal value occurs:

mysql> SET sql_mode='';
Query OK, 0 rows affected (0.00 sec)

mysql> CREATE TABLE t (i TINYINT);
Query OK, 0 rows affected (0.01 sec)

2147

Precision Math Examples

mysql> INSERT INTO t SET i = 128;
Query OK, 1 row affected, 1 warning (0.00 sec)

mysql> SELECT i FROM t;
+------+
| i |
+------+
| 127 |
+------+
1 row in set (0.00 sec)

However, an error occurs if strict mode is in effect:

mysql> SET sql_mode='STRICT_ALL_TABLES';
Query OK, 0 rows affected (0.00 sec)

mysql> CREATE TABLE t (i TINYINT);
Query OK, 0 rows affected (0.00 sec)

mysql> INSERT INTO t SET i = 128;
ERROR 1264 (22003): Out of range value adjusted for column 'i' at row 1

mysql> SELECT i FROM t;
Empty set (0.00 sec)

Example 5: In strict mode and with ERROR_FOR_DIVISION_BY_ZERO set, division by zero causes an
error, not a result of NULL.

In nonstrict mode, division by zero has a result of NULL:

mysql> SET sql_mode='';
Query OK, 0 rows affected (0.01 sec)

mysql> CREATE TABLE t (i TINYINT);
Query OK, 0 rows affected (0.00 sec)

mysql> INSERT INTO t SET i = 1 / 0;
Query OK, 1 row affected (0.00 sec)

mysql> SELECT i FROM t;
+------+
| i |
+------+
| NULL |
+------+
1 row in set (0.03 sec)

However, division by zero is an error if the proper SQL modes are in effect:

mysql> SET sql_mode='STRICT_ALL_TABLES,ERROR_FOR_DIVISION_BY_ZERO';
Query OK, 0 rows affected (0.00 sec)

mysql> CREATE TABLE t (i TINYINT);
Query OK, 0 rows affected (0.00 sec)

mysql> INSERT INTO t SET i = 1 / 0;
ERROR 1365 (22012): Division by 0

mysql> SELECT i FROM t;
Empty set (0.01 sec)

Example 6. Exact-value literals are evaluated as exact values.

Approximate-value literals are evaluated using floating point, but exact-value literals are handled as
DECIMAL:

2148

Precision Math Examples

mysql> CREATE TABLE t SELECT 2.5 AS a, 25E-1 AS b;
Query OK, 1 row affected (0.01 sec)
Records: 1 Duplicates: 0 Warnings: 0

mysql> DESCRIBE t;
+-------+-----------------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+-------+-----------------------+------+-----+---------+-------+
| a | decimal(2,1) unsigned | NO | | 0.0 | |
| b | double | NO | | 0 | |
+-------+-----------------------+------+-----+---------+-------+
2 rows in set (0.01 sec)

Example 7. If the argument to an aggregate function is an exact numeric type, the result is also an exact
numeric type, with a scale at least that of the argument.

Consider these statements:

mysql> CREATE TABLE t (i INT, d DECIMAL, f FLOAT);
mysql> INSERT INTO t VALUES(1,1,1);
mysql> CREATE TABLE y SELECT AVG(i), AVG(d), AVG(f) FROM t;

The result is a double only for the floating-point argument. For exact type arguments, the result is also an
exact type:

mysql> DESCRIBE y;
+--------+---------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+--------+---------------+------+-----+---------+-------+
AVG(i)	decimal(14,4)	YES		NULL	
AVG(d)	decimal(14,4)	YES		NULL	
AVG(f)	double	YES		NULL	
+--------+---------------+------+-----+---------+-------+

The result is a double only for the floating-point argument. For exact type arguments, the result is also an
exact type.

2149

2150

Chapter 13 SQL Statements

Table of Contents
13.1 Data Definition Statements .. 2152

13.1.1 ALTER DATABASE Statement ... 2152
13.1.2 ALTER EVENT Statement .. 2154
13.1.3 ALTER FUNCTION Statement .. 2155
13.1.4 ALTER INSTANCE Statement .. 2155
13.1.5 ALTER LOGFILE GROUP Statement .. 2156
13.1.6 ALTER PROCEDURE Statement .. 2157
13.1.7 ALTER SERVER Statement .. 2157
13.1.8 ALTER TABLE Statement ... 2158
13.1.9 ALTER TABLESPACE Statement ... 2181
13.1.10 ALTER VIEW Statement ... 2183
13.1.11 CREATE DATABASE Statement ... 2183
13.1.12 CREATE EVENT Statement .. 2184
13.1.13 CREATE FUNCTION Statement ... 2188
13.1.14 CREATE INDEX Statement .. 2188
13.1.15 CREATE LOGFILE GROUP Statement ... 2194
13.1.16 CREATE PROCEDURE and CREATE FUNCTION Statements 2196
13.1.17 CREATE SERVER Statement ... 2201
13.1.18 CREATE TABLE Statement .. 2202
13.1.19 CREATE TABLESPACE Statement ... 2252
13.1.20 CREATE TRIGGER Statement ... 2258
13.1.21 CREATE VIEW Statement .. 2260
13.1.22 DROP DATABASE Statement ... 2265
13.1.23 DROP EVENT Statement ... 2266
13.1.24 DROP FUNCTION Statement ... 2266
13.1.25 DROP INDEX Statement .. 2266
13.1.26 DROP LOGFILE GROUP Statement ... 2267
13.1.27 DROP PROCEDURE and DROP FUNCTION Statements .. 2267
13.1.28 DROP SERVER Statement ... 2268
13.1.29 DROP TABLE Statement .. 2268
13.1.30 DROP TABLESPACE Statement ... 2269
13.1.31 DROP TRIGGER Statement ... 2270
13.1.32 DROP VIEW Statement .. 2270
13.1.33 RENAME TABLE Statement ... 2271
13.1.34 TRUNCATE TABLE Statement ... 2272

13.2 Data Manipulation Statements ... 2273
13.2.1 CALL Statement ... 2273
13.2.2 DELETE Statement .. 2274
13.2.3 DO Statement .. 2278
13.2.4 HANDLER Statement ... 2279
13.2.5 INSERT Statement ... 2280
13.2.6 LOAD DATA Statement .. 2289
13.2.7 LOAD XML Statement .. 2300
13.2.8 REPLACE Statement .. 2308
13.2.9 SELECT Statement .. 2310
13.2.10 Subqueries ... 2327
13.2.11 UPDATE Statement .. 2340

13.3 Transactional and Locking Statements ... 2344

2151

Data Definition Statements

13.3.1 START TRANSACTION, COMMIT, and ROLLBACK Statements 2344
13.3.2 Statements That Cannot Be Rolled Back ... 2347
13.3.3 Statements That Cause an Implicit Commit ... 2347
13.3.4 SAVEPOINT, ROLLBACK TO SAVEPOINT, and RELEASE SAVEPOINT Statements 2348
13.3.5 LOCK TABLES and UNLOCK TABLES Statements ... 2349
13.3.6 SET TRANSACTION Statement .. 2355
13.3.7 XA Transactions ... 2358

13.4 Replication Statements .. 2363
13.4.1 SQL Statements for Controlling Replication Source Servers .. 2363
13.4.2 SQL Statements for Controlling Replica Servers .. 2366
13.4.3 SQL Statements for Controlling Group Replication ... 2381

13.5 Prepared Statements .. 2382
13.5.1 PREPARE Statement ... 2386
13.5.2 EXECUTE Statement ... 2386
13.5.3 DEALLOCATE PREPARE Statement .. 2386

13.6 Compound Statements .. 2387
13.6.1 BEGIN ... END Compound Statement .. 2387
13.6.2 Statement Labels ... 2387
13.6.3 DECLARE Statement ... 2388
13.6.4 Variables in Stored Programs ... 2388
13.6.5 Flow Control Statements .. 2390
13.6.6 Cursors .. 2395
13.6.7 Condition Handling ... 2397

13.7 Database Administration Statements .. 2425
13.7.1 Account Management Statements ... 2425
13.7.2 Table Maintenance Statements ... 2454
13.7.3 Plugin and Loadable Function Statements ... 2465
13.7.4 SET Statements ... 2468
13.7.5 SHOW Statements ... 2473
13.7.6 Other Administrative Statements ... 2526

13.8 Utility Statements .. 2537
13.8.1 DESCRIBE Statement .. 2537
13.8.2 EXPLAIN Statement ... 2537
13.8.3 HELP Statement .. 2540
13.8.4 USE Statement .. 2542

This chapter describes the syntax for the SQL statements supported by MySQL.

13.1 Data Definition Statements

13.1.1 ALTER DATABASE Statement

ALTER {DATABASE | SCHEMA} [db_name]
 alter_option ...
ALTER {DATABASE | SCHEMA} db_name
 UPGRADE DATA DIRECTORY NAME

alter_option: {
 [DEFAULT] CHARACTER SET [=] charset_name
 | [DEFAULT] COLLATE [=] collation_name
}

ALTER DATABASE enables you to change the overall characteristics of a database. These characteristics
are stored in the db.opt file in the database directory. This statement requires the ALTER privilege on the
database. ALTER SCHEMA is a synonym for ALTER DATABASE.

2152

ALTER DATABASE Statement

The database name can be omitted from the first syntax, in which case the statement applies to the default
database. An error occurs if there is no default database.

• Character Set and Collation Options

• Upgrading from Versions Older than MySQL 5.1

Character Set and Collation Options

The CHARACTER SET clause changes the default database character set. The COLLATE clause changes
the default database collation. For information about character set and collation names, see Chapter 10,
Character Sets, Collations, Unicode.

To see the available character sets and collations, use the SHOW CHARACTER SET and SHOW
COLLATION statements, respectively. See Section 13.7.5.3, “SHOW CHARACTER SET Statement”, and
Section 13.7.5.4, “SHOW COLLATION Statement”.

A stored routine that uses the database defaults when the routine is created includes those defaults as part
of its definition. (In a stored routine, variables with character data types use the database defaults if the
character set or collation are not specified explicitly. See Section 13.1.16, “CREATE PROCEDURE and
CREATE FUNCTION Statements”.) If you change the default character set or collation for a database, any
stored routines that are to use the new defaults must be dropped and recreated.

Upgrading from Versions Older than MySQL 5.1

The syntax that includes the UPGRADE DATA DIRECTORY NAME clause updates the name of the directory
associated with the database to use the encoding implemented in MySQL 5.1 for mapping database
names to database directory names (see Section 9.2.4, “Mapping of Identifiers to File Names”). This
clause is for use under these conditions:

• It is intended when upgrading MySQL to 5.1 or later from older versions.

• It is intended to update a database directory name to the current encoding format if the name contains
special characters that need encoding.

• The statement is used by mysqlcheck (as invoked by mysql_upgrade).

For example, if a database in MySQL 5.0 has the name a-b-c, the name contains instances of the -
(dash) character. In MySQL 5.0, the database directory is also named a-b-c, which is not necessarily safe
for all file systems. In MySQL 5.1 and later, the same database name is encoded as a@002db@002dc to
produce a file system-neutral directory name.

When a MySQL installation is upgraded to MySQL 5.1 or later from an older version,the server displays a
name such as a-b-c (which is in the old format) as #mysql50#a-b-c, and you must refer to the name
using the #mysql50# prefix. Use UPGRADE DATA DIRECTORY NAME in this case to explicitly tell the
server to re-encode the database directory name to the current encoding format:

ALTER DATABASE `#mysql50#a-b-c` UPGRADE DATA DIRECTORY NAME;

After executing this statement, you can refer to the database as a-b-c without the special #mysql50#
prefix.

Note

The UPGRADE DATA DIRECTORY NAME clause is deprecated in MySQL 5.7 and
removed in MySQL 8.0. If it is necessary to convert MySQL 5.0 database or table
names, a workaround is to upgrade a MySQL 5.0 installation to MySQL 5.1 before
upgrading to MySQL 8.0.

2153

ALTER EVENT Statement

13.1.2 ALTER EVENT Statement
ALTER
 [DEFINER = user]
 EVENT event_name
 [ON SCHEDULE schedule]
 [ON COMPLETION [NOT] PRESERVE]
 [RENAME TO new_event_name]
 [ENABLE | DISABLE | DISABLE ON SLAVE]
 [COMMENT 'string']
 [DO event_body]

The ALTER EVENT statement changes one or more of the characteristics of an existing event without
the need to drop and recreate it. The syntax for each of the DEFINER, ON SCHEDULE, ON COMPLETION,
COMMENT, ENABLE / DISABLE, and DO clauses is exactly the same as when used with CREATE EVENT.
(See Section 13.1.12, “CREATE EVENT Statement”.)

Any user can alter an event defined on a database for which that user has the EVENT privilege. When a
user executes a successful ALTER EVENT statement, that user becomes the definer for the affected event.

ALTER EVENT works only with an existing event:

mysql> ALTER EVENT no_such_event
 > ON SCHEDULE
 > EVERY '2:3' DAY_HOUR;
ERROR 1517 (HY000): Unknown event 'no_such_event'

In each of the following examples, assume that the event named myevent is defined as shown here:

CREATE EVENT myevent
 ON SCHEDULE
 EVERY 6 HOUR
 COMMENT 'A sample comment.'
 DO
 UPDATE myschema.mytable SET mycol = mycol + 1;

The following statement changes the schedule for myevent from once every six hours starting immediately
to once every twelve hours, starting four hours from the time the statement is run:

ALTER EVENT myevent
 ON SCHEDULE
 EVERY 12 HOUR
 STARTS CURRENT_TIMESTAMP + INTERVAL 4 HOUR;

It is possible to change multiple characteristics of an event in a single statement. This example changes
the SQL statement executed by myevent to one that deletes all records from mytable; it also changes
the schedule for the event such that it executes once, one day after this ALTER EVENT statement is run.

ALTER EVENT myevent
 ON SCHEDULE
 AT CURRENT_TIMESTAMP + INTERVAL 1 DAY
 DO
 TRUNCATE TABLE myschema.mytable;

Specify the options in an ALTER EVENT statement only for those characteristics that you want to change;
omitted options keep their existing values. This includes any default values for CREATE EVENT such as
ENABLE.

To disable myevent, use this ALTER EVENT statement:

ALTER EVENT myevent
 DISABLE;

2154

ALTER FUNCTION Statement

The ON SCHEDULE clause may use expressions involving built-in MySQL functions and user variables to
obtain any of the timestamp or interval values which it contains. You cannot use stored routines or
loadable functions in such expressions, and you cannot use any table references; however, you can use
SELECT FROM DUAL. This is true for both ALTER EVENT and CREATE EVENT statements. References to
stored routines, loadable functions, and tables in such cases are specifically not permitted, and fail with an
error (see Bug #22830).

Although an ALTER EVENT statement that contains another ALTER EVENT statement in its DO clause
appears to succeed, when the server attempts to execute the resulting scheduled event, the execution fails
with an error.

To rename an event, use the ALTER EVENT statement's RENAME TO clause. This statement renames the
event myevent to yourevent:

ALTER EVENT myevent
 RENAME TO yourevent;

You can also move an event to a different database using ALTER EVENT ... RENAME TO ... and
db_name.event_name notation, as shown here:

ALTER EVENT olddb.myevent
 RENAME TO newdb.myevent;

To execute the previous statement, the user executing it must have the EVENT privilege on both the olddb
and newdb databases.

Note

There is no RENAME EVENT statement.

The value DISABLE ON SLAVE is used on a replica instead of ENABLE or DISABLE to indicate an event
that was created on the source and replicated to the replica, but that is not executed on the replica.
Normally, DISABLE ON SLAVE is set automatically as required; however, there are some circumstances
under which you may want or need to change it manually. See Section 16.4.1.16, “Replication of Invoked
Features”, for more information.

13.1.3 ALTER FUNCTION Statement
ALTER FUNCTION func_name [characteristic ...]

characteristic: {
 COMMENT 'string'
 | LANGUAGE SQL
 | { CONTAINS SQL | NO SQL | READS SQL DATA | MODIFIES SQL DATA }
 | SQL SECURITY { DEFINER | INVOKER }
}

This statement can be used to change the characteristics of a stored function. More than one change may
be specified in an ALTER FUNCTION statement. However, you cannot change the parameters or body of
a stored function using this statement; to make such changes, you must drop and re-create the function
using DROP FUNCTION and CREATE FUNCTION.

You must have the ALTER ROUTINE privilege for the function. (That privilege is granted automatically to
the function creator.) If binary logging is enabled, the ALTER FUNCTION statement might also require the
SUPER privilege, as described in Section 23.7, “Stored Program Binary Logging”.

13.1.4 ALTER INSTANCE Statement
ALTER INSTANCE ROTATE INNODB MASTER KEY

2155

ALTER LOGFILE GROUP Statement

ALTER INSTANCE, introduced in MySQL 5.7.11, defines actions applicable to a MySQL server instance.
The statement supports these actions:

• ALTER INSTANCE ROTATE INNODB MASTER KEY

This action rotates the master encryption key used for InnoDB tablespace encryption. Key rotation
requires the SUPER privilege. To perform this action, a keyring plugin must be installed and configured.
For instructions, see Section 6.4.4, “The MySQL Keyring”.

ALTER INSTANCE ROTATE INNODB MASTER KEY supports concurrent DML. However, it cannot
be run concurrently with CREATE TABLE ... ENCRYPTION or ALTER TABLE ... ENCRYPTION
operations, and locks are taken to prevent conflicts that could arise from concurrent execution of these
statements. If one of the conflicting statements is running, it must complete before another can proceed.

ALTER INSTANCE actions are written to the binary log so that they can be executed on replicated
servers.

For additional ALTER INSTANCE ROTATE INNODB MASTER KEY usage information, see
Section 14.14, “InnoDB Data-at-Rest Encryption”. For information about keyring plugins, see
Section 6.4.4, “The MySQL Keyring”.

13.1.5 ALTER LOGFILE GROUP Statement
ALTER LOGFILE GROUP logfile_group
 ADD UNDOFILE 'file_name'
 [INITIAL_SIZE [=] size]
 [WAIT]
 ENGINE [=] engine_name

This statement adds an UNDO file named 'file_name' to an existing log file group logfile_group. An
ALTER LOGFILE GROUP statement has one and only one ADD UNDOFILE clause. No DROP UNDOFILE
clause is currently supported.

Note

All NDB Cluster Disk Data objects share the same namespace. This means that
each Disk Data object must be uniquely named (and not merely each Disk Data
object of a given type). For example, you cannot have a tablespace and an undo
log file with the same name, or an undo log file and a data file with the same name.

The optional INITIAL_SIZE parameter sets the UNDO file's initial size in bytes; if not specified, the initial
size defaults to 134217728 (128 MB). You may optionally follow size with a one-letter abbreviation for an
order of magnitude, similar to those used in my.cnf. Generally, this is one of the letters M (megabytes) or
G (gigabytes). (Bug #13116514, Bug #16104705, Bug #62858)

On 32-bit systems, the maximum supported value for INITIAL_SIZE is 4294967296 (4 GB). (Bug
#29186)

The minimum allowed value for INITIAL_SIZE is 1048576 (1 MB). (Bug #29574)

Note

WAIT is parsed but otherwise ignored. This keyword currently has no effect, and is
intended for future expansion.

The ENGINE parameter (required) determines the storage engine which is used by this log file group,
with engine_name being the name of the storage engine. Currently, the only accepted values for
engine_name are “NDBCLUSTER” and “NDB”. The two values are equivalent.

2156

ALTER PROCEDURE Statement

Here is an example, which assumes that the log file group lg_3 has already been created using CREATE
LOGFILE GROUP (see Section 13.1.15, “CREATE LOGFILE GROUP Statement”):

ALTER LOGFILE GROUP lg_3
 ADD UNDOFILE 'undo_10.dat'
 INITIAL_SIZE=32M
 ENGINE=NDBCLUSTER;

When ALTER LOGFILE GROUP is used with ENGINE = NDBCLUSTER (alternatively, ENGINE = NDB), an
UNDO log file is created on each NDB Cluster data node. You can verify that the UNDO files were created
and obtain information about them by querying the Information Schema FILES table. For example:

mysql> SELECT FILE_NAME, LOGFILE_GROUP_NUMBER, EXTRA
 -> FROM INFORMATION_SCHEMA.FILES
 -> WHERE LOGFILE_GROUP_NAME = 'lg_3';
+-------------+----------------------+----------------+
| FILE_NAME | LOGFILE_GROUP_NUMBER | EXTRA |
+-------------+----------------------+----------------+
newdata.dat	0	CLUSTER_NODE=3
newdata.dat	0	CLUSTER_NODE=4
undo_10.dat	11	CLUSTER_NODE=3
undo_10.dat	11	CLUSTER_NODE=4
+-------------+----------------------+----------------+
4 rows in set (0.01 sec)

(See Section 24.3.9, “The INFORMATION_SCHEMA FILES Table”.)

Memory used for UNDO_BUFFER_SIZE comes from the global pool whose size is determined by the value
of the SharedGlobalMemory data node configuration parameter. This includes any default value implied
for this option by the setting of the InitialLogFileGroup data node configuration parameter.

ALTER LOGFILE GROUP is useful only with Disk Data storage for NDB Cluster. For more information, see
Section 21.6.11, “NDB Cluster Disk Data Tables”.

13.1.6 ALTER PROCEDURE Statement

ALTER PROCEDURE proc_name [characteristic ...]

characteristic: {
 COMMENT 'string'
 | LANGUAGE SQL
 | { CONTAINS SQL | NO SQL | READS SQL DATA | MODIFIES SQL DATA }
 | SQL SECURITY { DEFINER | INVOKER }
}

This statement can be used to change the characteristics of a stored procedure. More than one change
may be specified in an ALTER PROCEDURE statement. However, you cannot change the parameters or
body of a stored procedure using this statement; to make such changes, you must drop and re-create the
procedure using DROP PROCEDURE and CREATE PROCEDURE.

You must have the ALTER ROUTINE privilege for the procedure. By default, that privilege is
granted automatically to the procedure creator. This behavior can be changed by disabling the
automatic_sp_privileges system variable. See Section 23.2.2, “Stored Routines and MySQL
Privileges”.

13.1.7 ALTER SERVER Statement

ALTER SERVER server_name
 OPTIONS (option [, option] ...)

2157

ALTER TABLE Statement

Alters the server information for server_name, adjusting any of the options permitted in the CREATE
SERVER statement. The corresponding fields in the mysql.servers table are updated accordingly. This
statement requires the SUPER privilege.

For example, to update the USER option:

ALTER SERVER s OPTIONS (USER 'sally');

ALTER SERVER causes an implicit commit. See Section 13.3.3, “Statements That Cause an Implicit
Commit”.

ALTER SERVER is not written to the binary log, regardless of the logging format that is in use.

13.1.8 ALTER TABLE Statement
ALTER TABLE tbl_name
 [alter_option [, alter_option] ...]
 [partition_options]

alter_option: {
 table_options
 | ADD [COLUMN] col_name column_definition
 [FIRST | AFTER col_name]
 | ADD [COLUMN] (col_name column_definition,...)
 | ADD {INDEX | KEY} [index_name]
 [index_type] (key_part,...) [index_option] ...
 | ADD {FULLTEXT | SPATIAL} [INDEX | KEY] [index_name]
 (key_part,...) [index_option] ...
 | ADD [CONSTRAINT [symbol]] PRIMARY KEY
 [index_type] (key_part,...)
 [index_option] ...
 | ADD [CONSTRAINT [symbol]] UNIQUE [INDEX | KEY]
 [index_name] [index_type] (key_part,...)
 [index_option] ...
 | ADD [CONSTRAINT [symbol]] FOREIGN KEY
 [index_name] (col_name,...)
 reference_definition
 | ADD CHECK (expr)
 | ALGORITHM [=] {DEFAULT | INPLACE | COPY}
 | ALTER [COLUMN] col_name {
 SET DEFAULT {literal | (expr)}
 | DROP DEFAULT
 }
 | CHANGE [COLUMN] old_col_name new_col_name column_definition
 [FIRST | AFTER col_name]
 | [DEFAULT] CHARACTER SET [=] charset_name [COLLATE [=] collation_name]
 | CONVERT TO CHARACTER SET charset_name [COLLATE collation_name]
 | {DISABLE | ENABLE} KEYS
 | {DISCARD | IMPORT} TABLESPACE
 | DROP [COLUMN] col_name
 | DROP {INDEX | KEY} index_name
 | DROP PRIMARY KEY
 | DROP FOREIGN KEY fk_symbol
 | FORCE
 | LOCK [=] {DEFAULT | NONE | SHARED | EXCLUSIVE}
 | MODIFY [COLUMN] col_name column_definition
 [FIRST | AFTER col_name]
 | ORDER BY col_name [, col_name] ...
 | RENAME {INDEX | KEY} old_index_name TO new_index_name
 | RENAME [TO | AS] new_tbl_name
 | {WITHOUT | WITH} VALIDATION
}

partition_options:
 partition_option [partition_option] ...

2158

ALTER TABLE Statement

partition_option: {
 ADD PARTITION (partition_definition)
 | DROP PARTITION partition_names
 | DISCARD PARTITION {partition_names | ALL} TABLESPACE
 | IMPORT PARTITION {partition_names | ALL} TABLESPACE
 | TRUNCATE PARTITION {partition_names | ALL}
 | COALESCE PARTITION number
 | REORGANIZE PARTITION partition_names INTO (partition_definitions)
 | EXCHANGE PARTITION partition_name WITH TABLE tbl_name [{WITH | WITHOUT} VALIDATION]
 | ANALYZE PARTITION {partition_names | ALL}
 | CHECK PARTITION {partition_names | ALL}
 | OPTIMIZE PARTITION {partition_names | ALL}
 | REBUILD PARTITION {partition_names | ALL}
 | REPAIR PARTITION {partition_names | ALL}
 | REMOVE PARTITIONING
 | UPGRADE PARTITIONING
}

key_part:
 col_name [(length)] [ASC | DESC]

index_type:
 USING {BTREE | HASH}

index_option: {
 KEY_BLOCK_SIZE [=] value
 | index_type
 | WITH PARSER parser_name
 | COMMENT 'string'
}

table_options:
 table_option [[,] table_option] ...

table_option: {
 AUTO_INCREMENT [=] value
 | AVG_ROW_LENGTH [=] value
 | [DEFAULT] CHARACTER SET [=] charset_name
 | CHECKSUM [=] {0 | 1}
 | [DEFAULT] COLLATE [=] collation_name
 | COMMENT [=] 'string'
 | COMPRESSION [=] {'ZLIB' | 'LZ4' | 'NONE'}
 | CONNECTION [=] 'connect_string'
 | {DATA | INDEX} DIRECTORY [=] 'absolute path to directory'
 | DELAY_KEY_WRITE [=] {0 | 1}
 | ENCRYPTION [=] {'Y' | 'N'}
 | ENGINE [=] engine_name
 | INSERT_METHOD [=] { NO | FIRST | LAST }
 | KEY_BLOCK_SIZE [=] value
 | MAX_ROWS [=] value
 | MIN_ROWS [=] value
 | PACK_KEYS [=] {0 | 1 | DEFAULT}
 | PASSWORD [=] 'string'
 | ROW_FORMAT [=] {DEFAULT | DYNAMIC | FIXED | COMPRESSED | REDUNDANT | COMPACT}
 | STATS_AUTO_RECALC [=] {DEFAULT | 0 | 1}
 | STATS_PERSISTENT [=] {DEFAULT | 0 | 1}
 | STATS_SAMPLE_PAGES [=] value
 | TABLESPACE tablespace_name [STORAGE {DISK | MEMORY}]
 | UNION [=] (tbl_name[,tbl_name]...)
}

partition_options:
 (see CREATE TABLE options)

2159

ALTER TABLE Statement

ALTER TABLE changes the structure of a table. For example, you can add or delete columns, create or
destroy indexes, change the type of existing columns, or rename columns or the table itself. You can also
change characteristics such as the storage engine used for the table or the table comment.

• To use ALTER TABLE, you need ALTER, CREATE, and INSERT privileges for the table. Renaming a
table requires ALTER and DROP on the old table, ALTER, CREATE, and INSERT on the new table.

• Following the table name, specify the alterations to be made. If none are given, ALTER TABLE does
nothing.

• The syntax for many of the permissible alterations is similar to clauses of the CREATE TABLE statement.
column_definition clauses use the same syntax for ADD and CHANGE as for CREATE TABLE. For
more information, see Section 13.1.18, “CREATE TABLE Statement”.

• The word COLUMN is optional and can be omitted.

• Multiple ADD, ALTER, DROP, and CHANGE clauses are permitted in a single ALTER TABLE statement,
separated by commas. This is a MySQL extension to standard SQL, which permits only one of each
clause per ALTER TABLE statement. For example, to drop multiple columns in a single statement, do
this:

ALTER TABLE t2 DROP COLUMN c, DROP COLUMN d;

• If a storage engine does not support an attempted ALTER TABLE operation, a warning may result.
Such warnings can be displayed with SHOW WARNINGS. See Section 13.7.5.40, “SHOW WARNINGS
Statement”. For information on troubleshooting ALTER TABLE, see Section B.3.6.1, “Problems with
ALTER TABLE”.

• For information about generated columns, see Section 13.1.8.2, “ALTER TABLE and Generated
Columns”.

• For usage examples, see Section 13.1.8.3, “ALTER TABLE Examples”.

• With the mysql_info() C API function, you can find out how many rows were copied by ALTER
TABLE. See mysql_info().

There are several additional aspects to the ALTER TABLE statement, described under the following topics
in this section:

• Table Options

• Performance and Space Requirements

• Concurrency Control

• Adding and Dropping Columns

• Renaming, Redefining, and Reordering Columns

• Primary Keys and Indexes

• Foreign Keys and Other Constraints

• Changing the Character Set

• Discarding and Importing InnoDB Tablespaces

• Row Order for MyISAM Tables

• Partitioning Options

2160

https://dev.mysql.com/doc/c-api/5.7/en/mysql-info.html
https://dev.mysql.com/doc/c-api/5.7/en/mysql-info.html

ALTER TABLE Statement

Table Options

table_options signifies table options of the kind that can be used in the CREATE TABLE statement,
such as ENGINE, AUTO_INCREMENT, AVG_ROW_LENGTH, MAX_ROWS, ROW_FORMAT, or TABLESPACE.

For descriptions of all table options, see Section 13.1.18, “CREATE TABLE Statement”. However, ALTER
TABLE ignores DATA DIRECTORY and INDEX DIRECTORY when given as table options. ALTER TABLE
permits them only as partitioning options, and, as of MySQL 5.7.17, requires that you have the FILE
privilege.

Use of table options with ALTER TABLE provides a convenient way of altering single table characteristics.
For example:

• If t1 is currently not an InnoDB table, this statement changes its storage engine to InnoDB:

ALTER TABLE t1 ENGINE = InnoDB;

• See Section 14.6.1.5, “Converting Tables from MyISAM to InnoDB” for considerations when switching
tables to the InnoDB storage engine.

• When you specify an ENGINE clause, ALTER TABLE rebuilds the table. This is true even if the table
already has the specified storage engine.

• Running ALTER TABLE tbl_name ENGINE=INNODB on an existing InnoDB table performs a
“null” ALTER TABLE operation, which can be used to defragment an InnoDB table, as described in
Section 14.12.4, “Defragmenting a Table”. Running ALTER TABLE tbl_name FORCE on an InnoDB
table performs the same function.

• ALTER TABLE tbl_name ENGINE=INNODB and ALTER TABLE tbl_name FORCE use online
DDL. For more information, see Section 14.13, “InnoDB and Online DDL”.

• The outcome of attempting to change the storage engine of a table is affected by whether the desired
storage engine is available and the setting of the NO_ENGINE_SUBSTITUTION SQL mode, as
described in Section 5.1.10, “Server SQL Modes”.

• To prevent inadvertent loss of data, ALTER TABLE cannot be used to change the storage engine of a
table to MERGE or BLACKHOLE.

• To change the InnoDB table to use compressed row-storage format:

ALTER TABLE t1 ROW_FORMAT = COMPRESSED;

• To enable or disable encryption for an InnoDB table in a file-per-table tablespace:

ALTER TABLE t1 ENCRYPTION='Y';
ALTER TABLE t1 ENCRYPTION='N';

A keyring plugin must be installed and configured to use the ENCRYPTION option. For more information,
see Section 14.14, “InnoDB Data-at-Rest Encryption”.

The ENCRYPTION option is supported only by the InnoDB storage engine; thus it works only
if the table already uses InnoDB (and you do not change the table's storage engine), or if the
ALTER TABLE statement also specifies ENGINE=InnoDB. Otherwise the statement is rejected with
ER_CHECK_NOT_IMPLEMENTED.

• To reset the current auto-increment value:

ALTER TABLE t1 AUTO_INCREMENT = 13;

2161

https://dev.mysql.com/doc/mysql-errors/5.7/en/server-error-reference.html#error_er_check_not_implemented

ALTER TABLE Statement

You cannot reset the counter to a value less than or equal to the value that is currently in use. For
both InnoDB and MyISAM, if the value is less than or equal to the maximum value currently in the
AUTO_INCREMENT column, the value is reset to the current maximum AUTO_INCREMENT column value
plus one.

• To change the default table character set:

ALTER TABLE t1 CHARACTER SET = utf8;

See also Changing the Character Set.

• To add (or change) a table comment:

ALTER TABLE t1 COMMENT = 'New table comment';

• Use ALTER TABLE with the TABLESPACE option to move InnoDB tables between existing general
tablespaces, file-per-table tablespaces, and the system tablespace. See Moving Tables Between
Tablespaces Using ALTER TABLE.

• ALTER TABLE ... TABLESPACE operations always cause a full table rebuild, even if the
TABLESPACE attribute has not changed from its previous value.

• ALTER TABLE ... TABLESPACE syntax does not support moving a table from a temporary
tablespace to a persistent tablespace.

• The DATA DIRECTORY clause, which is supported with CREATE TABLE ... TABLESPACE, is not
supported with ALTER TABLE ... TABLESPACE, and is ignored if specified.

• For more information about the capabilities and limitations of the TABLESPACE option, see CREATE
TABLE.

• MySQL NDB Cluster 7.5.2 and later supports setting NDB_TABLE options for controlling a table's
partition balance (fragment count type), read-from-any-replica capability, full replication, or any
combination of these, as part of the table comment for an ALTER TABLE statement in the same manner
as for CREATE TABLE, as shown in this example:

ALTER TABLE t1 COMMENT = "NDB_TABLE=READ_BACKUP=0,PARTITION_BALANCE=FOR_RA_BY_NODE";

It is also possible to set NDB_COMMENT options for columns of NDB tables as part of an ALTER TABLE
statement, like this one:

ALTER TABLE t1
 CHANGE COLUMN c1 c1 BLOB
 COMMENT = 'NDB_COLUMN=MAX_BLOB_PART_SIZE';

Bear in mind that ALTER TABLE ... COMMENT ... discards any existing comment for the table. See
Setting NDB_TABLE options, for additional information and examples.

To verify that the table options were changed as intended, use SHOW CREATE TABLE, or query the
Information Schema TABLES table.

Performance and Space Requirements

ALTER TABLE operations are processed using one of the following algorithms:

• COPY: Operations are performed on a copy of the original table, and table data is copied from the original
table to the new table row by row. Concurrent DML is not permitted.

2162

ALTER TABLE Statement

• INPLACE: Operations avoid copying table data but may rebuild the table in place. An exclusive metadata
lock on the table may be taken briefly during preparation and execution phases of the operation.
Typically, concurrent DML is supported.

For tables using the NDB storage engine, these algorithms work as follows:

• COPY: NDB creates a copy of the table and alters it; the NDB Cluster handler then copies the data
between the old and new versions of the table. Subsequently, NDB deletes the old table and renames the
new one.

This is sometimes also referred to as a “copying” or “offline” ALTER TABLE.

• INPLACE: The data nodes make the required changes; the NDB Cluster handler does not copy data or
otherwise take part.

This is sometimes also referred to as a “non-copying” or “online” ALTER TABLE.

See Section 21.6.12, “Online Operations with ALTER TABLE in NDB Cluster”, for more information.

The ALGORITHM clause is optional. If the ALGORITHM clause is omitted, MySQL uses
ALGORITHM=INPLACE for storage engines and ALTER TABLE clauses that support it. Otherwise,
ALGORITHM=COPY is used.

Specifying an ALGORITHM clause requires the operation to use the specified algorithm for clauses and
storage engines that support it, or fail with an error otherwise. Specifying ALGORITHM=DEFAULT is the
same as omitting the ALGORITHM clause.

ALTER TABLE operations that use the COPY algorithm wait for other operations that are modifying the
table to complete. After alterations are applied to the table copy, data is copied over, the original table
is deleted, and the table copy is renamed to the name of the original table. While the ALTER TABLE
operation executes, the original table is readable by other sessions (with the exception noted shortly).
Updates and writes to the table started after the ALTER TABLE operation begins are stalled until the
new table is ready, then are automatically redirected to the new table. The temporary copy of the table is
created in the database directory of the original table unless it is a RENAME TO operation that moves the
table to a database that resides in a different directory.

The exception referred to earlier is that ALTER TABLE blocks reads (not just writes) at the point where it is
ready to install a new version of the table .frm file, discard the old file, and clear outdated table structures
from the table and table definition caches. At this point, it must acquire an exclusive lock. To do so, it waits
for current readers to finish, and blocks new reads and writes.

An ALTER TABLE operation that uses the COPY algorithm prevents concurrent DML operations.
Concurrent queries are still allowed. That is, a table-copying operation always includes at least
the concurrency restrictions of LOCK=SHARED (allow queries but not DML). You can further restrict
concurrency for operations that support the LOCK clause by specifying LOCK=EXCLUSIVE, which prevents
DML and queries. For more information, see Concurrency Control.

To force use of the COPY algorithm for an ALTER TABLE operation that would otherwise not use it, enable
the old_alter_table system variable or specify ALGORITHM=COPY. If there is a conflict between the
old_alter_table setting and an ALGORITHM clause with a value other than DEFAULT, the ALGORITHM
clause takes precedence.

For InnoDB tables, an ALTER TABLE operation that uses the COPY algorithm on a table that resides in a
shared tablespace can increase the amount of space used by the tablespace. Such operations require as
much additional space as the data in the table plus indexes. For a table residing in a shared tablespace,

2163

ALTER TABLE Statement

the additional space used during the operation is not released back to the operating system as it is for a
table that resides in a file-per-table tablespace.

For information about space requirements for online DDL operations, see Section 14.13.3, “Online DDL
Space Requirements”.

ALTER TABLE operations that support the INPLACE algorithm include:

• ALTER TABLE operations supported by the InnoDB online DDL feature. See Section 14.13.1, “Online
DDL Operations”.

• Renaming a table. MySQL renames files that correspond to the table tbl_name without making a copy.
(You can also use the RENAME TABLE statement to rename tables. See Section 13.1.33, “RENAME
TABLE Statement”.) Privileges granted specifically for the renamed table are not migrated to the new
name. They must be changed manually.

• Operations that only modify table metadata. These operations are immediate because the server only
alters the table .frm file, not touch table contents. Metadata-only operations include:

• Renaming a column.

• Changing the default value of a column (except for NDB tables).

• Modifying the definition of an ENUM or SET column by adding new enumeration or set members to the
end of the list of valid member values, as long as the storage size of the data type does not change.
For example, adding a member to a SET column that has 8 members changes the required storage
per value from 1 byte to 2 bytes; this requires a table copy. Adding members in the middle of the list
causes renumbering of existing members, which requires a table copy.

• Renaming an index.

• Adding or dropping a secondary index, for InnoDB and NDB tables. See Section 14.13, “InnoDB and
Online DDL”.

• For NDB tables, operations that add and drop indexes on variable-width columns. These operations
occur online, without table copying and without blocking concurrent DML actions for most of their
duration. See Section 21.6.12, “Online Operations with ALTER TABLE in NDB Cluster”.

ALTER TABLE upgrades MySQL 5.5 temporal columns to 5.6 format for ADD COLUMN, CHANGE COLUMN,
MODIFY COLUMN, ADD INDEX, and FORCE operations. This conversion cannot be done using the
INPLACE algorithm because the table must be rebuilt, so specifying ALGORITHM=INPLACE in these cases
results in an error. Specify ALGORITHM=COPY if necessary.

If an ALTER TABLE operation on a multicolumn index used to partition a table by KEY changes the order of
the columns, it can only be performed using ALGORITHM=COPY.

The WITHOUT VALIDATION and WITH VALIDATION clauses affect whether ALTER TABLE performs an
in-place operation for virtual generated column modifications. See Section 13.1.8.2, “ALTER TABLE and
Generated Columns”.

NDB Cluster formerly supported online ALTER TABLE operations using the ONLINE and OFFLINE
keywords. These keywords are no longer supported; their use causes a syntax error. MySQL NDB Cluster
7.5 (and later) supports online operations using the same ALGORITHM=INPLACE syntax used with the
standard MySQL Server. NDB does not support changing a tablespace online. See Section 21.6.12, “Online
Operations with ALTER TABLE in NDB Cluster”, for more information.

ALTER TABLE with DISCARD ... PARTITION ... TABLESPACE or IMPORT ... PARTITION ...
TABLESPACE does not create any temporary tables or temporary partition files.

2164

ALTER TABLE Statement

ALTER TABLE with ADD PARTITION, DROP PARTITION, COALESCE PARTITION, REBUILD
PARTITION, or REORGANIZE PARTITION does not create temporary tables (except when used with NDB
tables); however, these operations can and do create temporary partition files.

ADD or DROP operations for RANGE or LIST partitions are immediate operations or nearly so. ADD or
COALESCE operations for HASH or KEY partitions copy data between all partitions, unless LINEAR HASH
or LINEAR KEY was used; this is effectively the same as creating a new table, although the ADD or
COALESCE operation is performed partition by partition. REORGANIZE operations copy only changed
partitions and do not touch unchanged ones.

For MyISAM tables, you can speed up index re-creation (the slowest part of the alteration process) by
setting the myisam_sort_buffer_size system variable to a high value.

Concurrency Control

For ALTER TABLE operations that support it, you can use the LOCK clause to control the level of
concurrent reads and writes on a table while it is being altered. Specifying a non-default value for this
clause enables you to require a certain amount of concurrent access or exclusivity during the alter
operation, and halts the operation if the requested degree of locking is not available. The parameters for
the LOCK clause are:

• LOCK = DEFAULT

Maximum level of concurrency for the given ALGORITHM clause (if any) and ALTER TABLE operation:
Permit concurrent reads and writes if supported. If not, permit concurrent reads if supported. If not,
enforce exclusive access.

• LOCK = NONE

If supported, permit concurrent reads and writes. Otherwise, an error occurs.

• LOCK = SHARED

If supported, permit concurrent reads but block writes. Writes are blocked even if concurrent writes are
supported by the storage engine for the given ALGORITHM clause (if any) and ALTER TABLE operation.
If concurrent reads are not supported, an error occurs.

• LOCK = EXCLUSIVE

Enforce exclusive access. This is done even if concurrent reads/writes are supported by the storage
engine for the given ALGORITHM clause (if any) and ALTER TABLE operation.

Adding and Dropping Columns

Use ADD to add new columns to a table, and DROP to remove existing columns. DROP col_name is a
MySQL extension to standard SQL.

To add a column at a specific position within a table row, use FIRST or AFTER col_name. The default is
to add the column last.

If a table contains only one column, the column cannot be dropped. If what you intend is to remove the
table, use the DROP TABLE statement instead.

If columns are dropped from a table, the columns are also removed from any index of which they are a
part. If all columns that make up an index are dropped, the index is dropped as well.

Renaming, Redefining, and Reordering Columns

2165

ALTER TABLE Statement

The CHANGE, MODIFY, and ALTER clauses enable the names and definitions of existing columns to be
altered. They have these comparative characteristics:

• CHANGE:

• Can rename a column and change its definition, or both.

• Has more capability than MODIFY, but at the expense of convenience for some operations. CHANGE
requires naming the column twice if not renaming it.

• With FIRST or AFTER, can reorder columns.

• MODIFY:

• Can change a column definition but not its name.

• More convenient than CHANGE to change a column definition without renaming it.

• With FIRST or AFTER, can reorder columns.

• ALTER: Used only to change a column default value.

CHANGE is a MySQL extension to standard SQL. MODIFY is a MySQL extension for Oracle compatibility.

To alter a column to change both its name and definition, use CHANGE, specifying the old and new names
and the new definition. For example, to rename an INT NOT NULL column from a to b and change its
definition to use the BIGINT data type while retaining the NOT NULL attribute, do this:

ALTER TABLE t1 CHANGE a b BIGINT NOT NULL;

To change a column definition but not its name, use CHANGE or MODIFY. With CHANGE, the syntax requires
two column names, so you must specify the same name twice to leave the name unchanged. For example,
to change the definition of column b, do this:

ALTER TABLE t1 CHANGE b b INT NOT NULL;

MODIFY is more convenient to change the definition without changing the name because it requires the
column name only once:

ALTER TABLE t1 MODIFY b INT NOT NULL;

To change a column name but not its definition, use CHANGE. The syntax requires a column definition, so
to leave the definition unchanged, you must respecify the definition the column currently has. For example,
to rename an INT NOT NULL column from b to a, do this:

ALTER TABLE t1 CHANGE b a INT NOT NULL;

For column definition changes using CHANGE or MODIFY, the definition must include the data type and
all attributes that should apply to the new column, other than index attributes such as PRIMARY KEY
or UNIQUE. Attributes present in the original definition but not specified for the new definition are not
carried forward. Suppose that a column col1 is defined as INT UNSIGNED DEFAULT 1 COMMENT 'my
column' and you modify the column as follows, intending to change only INT to BIGINT:

ALTER TABLE t1 MODIFY col1 BIGINT;

That statement changes the data type from INT to BIGINT, but it also drops the UNSIGNED, DEFAULT,
and COMMENT attributes. To retain them, the statement must include them explicitly:

2166

ALTER TABLE Statement

ALTER TABLE t1 MODIFY col1 BIGINT UNSIGNED DEFAULT 1 COMMENT 'my column';

For data type changes using CHANGE or MODIFY, MySQL tries to convert existing column values to the
new type as well as possible.

Warning

This conversion may result in alteration of data. For example, if you shorten a string
column, values may be truncated. To prevent the operation from succeeding if
conversions to the new data type would result in loss of data, enable strict SQL
mode before using ALTER TABLE (see Section 5.1.10, “Server SQL Modes”).

If you use CHANGE or MODIFY to shorten a column for which an index exists on the column, and the
resulting column length is less than the index length, MySQL shortens the index automatically.

For columns renamed by CHANGE, MySQL automatically renames these references to the renamed
column:

• Indexes that refer to the old column, including indexes and disabled MyISAM indexes.

• Foreign keys that refer to the old column.

For columns renamed by CHANGE, MySQL does not automatically rename these references to the
renamed column:

• Generated column and partition expressions that refer to the renamed column. You must use CHANGE to
redefine such expressions in the same ALTER TABLE statement as the one that renames the column.

• Views and stored programs that refer to the renamed column. You must manually alter the definition of
these objects to refer to the new column name.

To reorder columns within a table, use FIRST and AFTER in CHANGE or MODIFY operations.

ALTER ... SET DEFAULT or ALTER ... DROP DEFAULT specify a new default value for a column
or remove the old default value, respectively. If the old default is removed and the column can be NULL,
the new default is NULL. If the column cannot be NULL, MySQL assigns a default value as described in
Section 11.6, “Data Type Default Values”.

ALTER ... SET DEFAULT cannot be used with the CURRENT_TIMESTAMP function.

Primary Keys and Indexes

DROP PRIMARY KEY drops the primary key. If there is no primary key, an error occurs. For information
about the performance characteristics of primary keys, especially for InnoDB tables, see Section 8.3.2,
“Primary Key Optimization”.

If you add a UNIQUE INDEX or PRIMARY KEY to a table, MySQL stores it before any nonunique index to
permit detection of duplicate keys as early as possible.

DROP INDEX removes an index. This is a MySQL extension to standard SQL. See Section 13.1.25,
“DROP INDEX Statement”. To determine index names, use SHOW INDEX FROM tbl_name.

Some storage engines permit you to specify an index type when creating an index. The syntax for the
index_type specifier is USING type_name. For details about USING, see Section 13.1.14, “CREATE
INDEX Statement”. The preferred position is after the column list. You should expect support for use of the
option before the column list to be removed in a future MySQL release.

2167

ALTER TABLE Statement

index_option values specify additional options for an index. For details about permissible
index_option values, see Section 13.1.14, “CREATE INDEX Statement”.

RENAME INDEX old_index_name TO new_index_name renames an index. This is a MySQL
extension to standard SQL. The content of the table remains unchanged. old_index_name must be
the name of an existing index in the table that is not dropped by the same ALTER TABLE statement.
new_index_name is the new index name, which cannot duplicate the name of an index in the resulting
table after changes have been applied. Neither index name can be PRIMARY.

If you use ALTER TABLE on a MyISAM table, all nonunique indexes are created in a separate batch (as for
REPAIR TABLE). This should make ALTER TABLE much faster when you have many indexes.

For MyISAM tables, key updating can be controlled explicitly. Use ALTER TABLE ... DISABLE KEYS
to tell MySQL to stop updating nonunique indexes. Then use ALTER TABLE ... ENABLE KEYS to
re-create missing indexes. MyISAM does this with a special algorithm that is much faster than inserting
keys one by one, so disabling keys before performing bulk insert operations should give a considerable
speedup. Using ALTER TABLE ... DISABLE KEYS requires the INDEX privilege in addition to the
privileges mentioned earlier.

While the nonunique indexes are disabled, they are ignored for statements such as SELECT and EXPLAIN
that otherwise would use them.

After an ALTER TABLE statement, it may be necessary to run ANALYZE TABLE to update index cardinality
information. See Section 13.7.5.22, “SHOW INDEX Statement”.

Foreign Keys and Other Constraints

The FOREIGN KEY and REFERENCES clauses are supported by the InnoDB and NDB storage
engines, which implement ADD [CONSTRAINT [symbol]] FOREIGN KEY [index_name] (...)
REFERENCES ... (...). See Section 1.6.3.2, “FOREIGN KEY Constraints”. For other storage engines,
the clauses are parsed but ignored.

The CHECK constraint clause is parsed but ignored by all storage engines. See Section 13.1.18, “CREATE
TABLE Statement”. The reason for accepting but ignoring syntax clauses is for compatibility, to make it
easier to port code from other SQL servers, and to run applications that create tables with references. See
Section 1.6.2, “MySQL Differences from Standard SQL”.

For ALTER TABLE, unlike CREATE TABLE, ADD FOREIGN KEY ignores index_name if given and uses
an automatically generated foreign key name. As a workaround, include the CONSTRAINT clause to specify
the foreign key name:

ADD CONSTRAINT name FOREIGN KEY (....) ...

Important

MySQL silently ignores inline REFERENCES specifications, where the references
are defined as part of the column specification. MySQL accepts only REFERENCES
clauses defined as part of a separate FOREIGN KEY specification.

Note

Partitioned InnoDB tables do not support foreign keys. This restriction does not
apply to NDB tables, including those explicitly partitioned by [LINEAR] KEY. For
more information, see Section 22.6.2, “Partitioning Limitations Relating to Storage
Engines”.

MySQL Server and NDB Cluster both support the use of ALTER TABLE to drop foreign keys:

2168

ALTER TABLE Statement

ALTER TABLE tbl_name DROP FOREIGN KEY fk_symbol;

Adding and dropping a foreign key in the same ALTER TABLE statement is supported for ALTER
TABLE ... ALGORITHM=INPLACE but not for ALTER TABLE ... ALGORITHM=COPY.

The server prohibits changes to foreign key columns that have the potential to cause loss of referential
integrity. A workaround is to use ALTER TABLE ... DROP FOREIGN KEY before changing the column
definition and ALTER TABLE ... ADD FOREIGN KEY afterward. Examples of prohibited changes
include:

• Changes to the data type of foreign key columns that may be unsafe. For example, changing
VARCHAR(20) to VARCHAR(30) is permitted, but changing it to VARCHAR(1024) is not because that
alters the number of length bytes required to store individual values.

• Changing a NULL column to NOT NULL in non-strict mode is prohibited to prevent converting NULL
values to default non-NULL values, for which there are no corresponding values in the referenced table.
The operation is permitted in strict mode, but an error is returned if any such conversion is required.

ALTER TABLE tbl_name RENAME new_tbl_name changes internally generated foreign key constraint
names and user-defined foreign key constraint names that begin with the string “tbl_name_ibfk_” to
reflect the new table name. InnoDB interprets foreign key constraint names that begin with the string
“tbl_name_ibfk_” as internally generated names.

Changing the Character Set

 To change the table default character set and all character columns (CHAR, VARCHAR, TEXT) to a new
character set, use a statement like this:

ALTER TABLE tbl_name CONVERT TO CHARACTER SET charset_name;

The statement also changes the collation of all character columns. If you specify no COLLATE clause to
indicate which collation to use, the statement uses default collation for the character set. If this collation is
inappropriate for the intended table use (for example, if it would change from a case-sensitive collation to a
case-insensitive collation), specify a collation explicitly.

For a column that has a data type of VARCHAR or one of the TEXT types, CONVERT TO CHARACTER
SET changes the data type as necessary to ensure that the new column is long enough to store as many
characters as the original column. For example, a TEXT column has two length bytes, which store the byte-
length of values in the column, up to a maximum of 65,535. For a latin1 TEXT column, each character
requires a single byte, so the column can store up to 65,535 characters. If the column is converted to
utf8, each character might require up to three bytes, for a maximum possible length of 3 × 65,535 =
196,605 bytes. That length does not fit in a TEXT column's length bytes, so MySQL converts the data type
to MEDIUMTEXT, which is the smallest string type for which the length bytes can record a value of 196,605.
Similarly, a VARCHAR column might be converted to MEDIUMTEXT.

To avoid data type changes of the type just described, do not use CONVERT TO CHARACTER SET.
Instead, use MODIFY to change individual columns. For example:

ALTER TABLE t MODIFY latin1_text_col TEXT CHARACTER SET utf8;
ALTER TABLE t MODIFY latin1_varchar_col VARCHAR(M) CHARACTER SET utf8;

If you specify CONVERT TO CHARACTER SET binary, the CHAR, VARCHAR, and TEXT columns are
converted to their corresponding binary string types (BINARY, VARBINARY, BLOB). This means that the
columns no longer have a character set and a subsequent CONVERT TO operation does not apply to them.

If charset_name is DEFAULT in a CONVERT TO CHARACTER SET operation, the character set named by
the character_set_database system variable is used.

2169

ALTER TABLE Statement

Warning

The CONVERT TO operation converts column values between the original and
named character sets. This is not what you want if you have a column in one
character set (like latin1) but the stored values actually use some other,
incompatible character set (like utf8). In this case, you have to do the following for
each such column:

ALTER TABLE t1 CHANGE c1 c1 BLOB;
ALTER TABLE t1 CHANGE c1 c1 TEXT CHARACTER SET utf8;

The reason this works is that there is no conversion when you convert to or from
BLOB columns.

To change only the default character set for a table, use this statement:

ALTER TABLE tbl_name DEFAULT CHARACTER SET charset_name;

The word DEFAULT is optional. The default character set is the character set that is used if you do not
specify the character set for columns that you add to a table later (for example, with ALTER TABLE ...
ADD column).

When the foreign_key_checks system variable is enabled, which is the default setting, character
set conversion is not permitted on tables that include a character string column used in a foreign key
constraint. The workaround is to disable foreign_key_checks before performing the character set
conversion. You must perform the conversion on both tables involved in the foreign key constraint before
re-enabling foreign_key_checks. If you re-enable foreign_key_checks after converting only
one of the tables, an ON DELETE CASCADE or ON UPDATE CASCADE operation could corrupt data in
the referencing table due to implicit conversion that occurs during these operations (Bug #45290, Bug
#74816).

Discarding and Importing InnoDB Tablespaces

An InnoDB table created in its own file-per-table tablespace can be imported from a backup or from
another MySQL server instance using DISCARD TABLEPACE and IMPORT TABLESPACE clauses. See
Section 14.6.1.3, “Importing InnoDB Tables”.

Row Order for MyISAM Tables

ORDER BY enables you to create the new table with the rows in a specific order. This option is useful
primarily when you know that you query the rows in a certain order most of the time. By using this option
after major changes to the table, you might be able to get higher performance. In some cases, it might
make sorting easier for MySQL if the table is in order by the column that you want to order it by later.

Note

The table does not remain in the specified order after inserts and deletes.

ORDER BY syntax permits one or more column names to be specified for sorting, each of which optionally
can be followed by ASC or DESC to indicate ascending or descending sort order, respectively. The default is
ascending order. Only column names are permitted as sort criteria; arbitrary expressions are not permitted.
This clause should be given last after any other clauses.

ORDER BY does not make sense for InnoDB tables because InnoDB always orders table rows according
to the clustered index.

When used on a partitioned table, ALTER TABLE ... ORDER BY orders rows within each partition only.

2170

ALTER TABLE Statement

Partitioning Options

partition_options signifies options that can be used with partitioned tables for repartitioning, to add,
drop, discard, import, merge, and split partitions, and to perform partitioning maintenance.

It is possible for an ALTER TABLE statement to contain a PARTITION BY or REMOVE PARTITIONING
clause in an addition to other alter specifications, but the PARTITION BY or REMOVE PARTITIONING
clause must be specified last after any other specifications. The ADD PARTITION, DROP PARTITION,
DISCARD PARTITION, IMPORT PARTITION, COALESCE PARTITION, REORGANIZE PARTITION,
EXCHANGE PARTITION, ANALYZE PARTITION, CHECK PARTITION, and REPAIR PARTITION options
cannot be combined with other alter specifications in a single ALTER TABLE, since the options just listed
act on individual partitions.

For more information about partition options, see Section 13.1.18, “CREATE TABLE Statement”, and
Section 13.1.8.1, “ALTER TABLE Partition Operations”. For information about and examples of ALTER
TABLE ... EXCHANGE PARTITION statements, see Section 22.3.3, “Exchanging Partitions and
Subpartitions with Tables”.

Prior to MySQL 5.7.6, partitioned InnoDB tables used the generic ha_partition partitioning handler
employed by MyISAM and other storage engines not supplying their own partitioning handlers; in MySQL
5.7.6 and later, such tables are created using the InnoDB storage engine's own (or “native”) partitioning
handler. Beginning with MySQL 5.7.9, you can upgrade an InnoDB table that was created in MySQL
5.7.6 or earlier (that is, created using ha_partition) to the InnoDB native partition handler using
ALTER TABLE ... UPGRADE PARTITIONING. (Bug #76734, Bug #20727344) This ALTER TABLE
syntax does not accept any other options and can be used only on a single table at a time. You can also
use mysql_upgrade in MySQL 5.7.9 or later to upgrade older partitioned InnoDB tables to the native
partitioning handler.

13.1.8.1 ALTER TABLE Partition Operations

Partitioning-related clauses for ALTER TABLE can be used with partitioned tables for repartitioning, to add,
drop, discard, import, merge, and split partitions, and to perform partitioning maintenance.

• Simply using a partition_options clause with ALTER TABLE on a partitioned table repartitions
the table according to the partitioning scheme defined by the partition_options. This clause
always begins with PARTITION BY, and follows the same syntax and other rules as apply to the
partition_options clause for CREATE TABLE (for more detailed information, see Section 13.1.18,
“CREATE TABLE Statement”), and can also be used to partition an existing table that is not already
partitioned. For example, consider a (nonpartitioned) table defined as shown here:

CREATE TABLE t1 (
 id INT,
 year_col INT
);

This table can be partitioned by HASH, using the id column as the partitioning key, into 8 partitions by
means of this statement:

ALTER TABLE t1
 PARTITION BY HASH(id)
 PARTITIONS 8;

MySQL supports an ALGORITHM option with [SUB]PARTITION BY [LINEAR] KEY. ALGORITHM=1
causes the server to use the same key-hashing functions as MySQL 5.1 when computing the placement
of rows in partitions; ALGORITHM=2 means that the server employs the key-hashing functions
implemented and used by default for new KEY partitioned tables in MySQL 5.5 and later. (Partitioned
tables created with the key-hashing functions employed in MySQL 5.5 and later cannot be used by a
MySQL 5.1 server.) Not specifying the option has the same effect as using ALGORITHM=2. This option

2171

ALTER TABLE Statement

is intended for use chiefly when upgrading or downgrading [LINEAR] KEY partitioned tables between
MySQL 5.1 and later MySQL versions, or for creating tables partitioned by KEY or LINEAR KEY on a
MySQL 5.5 or later server which can be used on a MySQL 5.1 server.

To upgrade a KEY partitioned table that was created in MySQL 5.1, first execute SHOW CREATE TABLE
and note the exact columns and number of partitions shown. Now execute an ALTER TABLE statement
using exactly the same column list and number of partitions as in the CREATE TABLE statement, while
adding ALGORITHM=2 immediately following the PARTITION BY keywords. (You should also include
the LINEAR keyword if it was used for the original table definition.) An example from a session in the
mysql client is shown here:

mysql> SHOW CREATE TABLE p\G
*************************** 1. row ***************************
 Table: p
Create Table: CREATE TABLE `p` (
 `id` int(11) NOT NULL AUTO_INCREMENT,
 `cd` datetime NOT NULL,
 PRIMARY KEY (`id`)
) ENGINE=InnoDB DEFAULT CHARSET=latin1
/*!50100 PARTITION BY LINEAR KEY (id)
PARTITIONS 32 */
1 row in set (0.00 sec)

mysql> ALTER TABLE p PARTITION BY LINEAR KEY ALGORITHM=2 (id) PARTITIONS 32;
Query OK, 0 rows affected (5.34 sec)
Records: 0 Duplicates: 0 Warnings: 0

mysql> SHOW CREATE TABLE p\G
*************************** 1. row ***************************
 Table: p
Create Table: CREATE TABLE `p` (
 `id` int(11) NOT NULL AUTO_INCREMENT,
 `cd` datetime NOT NULL,
 PRIMARY KEY (`id`)
) ENGINE=InnoDB DEFAULT CHARSET=latin1
/*!50100 PARTITION BY LINEAR KEY (id)
PARTITIONS 32 */
1 row in set (0.00 sec)

Downgrading a table created using the default key-hashing used in MySQL 5.5 and later to enable its
use by a MySQL 5.1 server is similar, except in this case you should use ALGORITHM=1 to force the
table's partitions to be rebuilt using the MySQL 5.1 key-hashing functions. It is recommended that you
not do this except when necessary for compatibility with a MySQL 5.1 server, as the improved KEY
hashing functions used by default in MySQL 5.5 and later provide fixes for a number of issues found in
the older implementation.

Note

A table upgraded by means of ALTER TABLE ... PARTITION BY
ALGORITHM=2 [LINEAR] KEY ... can no longer be used by a MySQL 5.1
server. (Such a table would need to be downgraded with ALTER TABLE ...
PARTITION BY ALGORITHM=1 [LINEAR] KEY ... before it could be used
again by a MySQL 5.1 server.)

The table that results from using an ALTER TABLE ... PARTITION BY statement must follow
the same rules as one created using CREATE TABLE ... PARTITION BY. This includes the rules
governing the relationship between any unique keys (including any primary key) that the table might
have, and the column or columns used in the partitioning expression, as discussed in Section 22.6.1,

2172

ALTER TABLE Statement

“Partitioning Keys, Primary Keys, and Unique Keys”. The CREATE TABLE ... PARTITION BY rules
for specifying the number of partitions also apply to ALTER TABLE ... PARTITION BY.

The partition_definition clause for ALTER TABLE ADD PARTITION supports the same options
as the clause of the same name for the CREATE TABLE statement. (See Section 13.1.18, “CREATE
TABLE Statement”, for the syntax and description.) Suppose that you have the partitioned table created
as shown here:

CREATE TABLE t1 (
 id INT,
 year_col INT
)
PARTITION BY RANGE (year_col) (
 PARTITION p0 VALUES LESS THAN (1991),
 PARTITION p1 VALUES LESS THAN (1995),
 PARTITION p2 VALUES LESS THAN (1999)
);

You can add a new partition p3 to this table for storing values less than 2002 as follows:

ALTER TABLE t1 ADD PARTITION (PARTITION p3 VALUES LESS THAN (2002));

DROP PARTITION can be used to drop one or more RANGE or LIST partitions. This statement cannot
be used with HASH or KEY partitions; instead, use COALESCE PARTITION (see below). Any data that
was stored in the dropped partitions named in the partition_names list is discarded. For example,
given the table t1 defined previously, you can drop the partitions named p0 and p1 as shown here:

ALTER TABLE t1 DROP PARTITION p0, p1;

Note

DROP PARTITION does not work with tables that use the NDB storage engine.
See Section 22.3.1, “Management of RANGE and LIST Partitions”, and
Section 21.2.7, “Known Limitations of NDB Cluster”.

ADD PARTITION and DROP PARTITION do not currently support IF [NOT] EXISTS.

DISCARD PARTITION ... TABLESPACE and IMPORT PARTITION ... TABLESPACE options
extend the Transportable Tablespace feature to individual InnoDB table partitions. Each InnoDB table
partition has its own tablespace file (.ibd file). The Transportable Tablespace feature makes it easy to
copy the tablespaces from a running MySQL server instance to another running instance, or to perform a

2173

ALTER TABLE Statement

restore on the same instance. Both options take a list of one or more comma-separated partition names.
For example:

ALTER TABLE t1 DISCARD PARTITION p2, p3 TABLESPACE;

ALTER TABLE t1 IMPORT PARTITION p2, p3 TABLESPACE;

When running DISCARD PARTITION ... TABLESPACE and IMPORT PARTITION ...
TABLESPACE on subpartitioned tables, both partition and subpartition names are allowed. When a
partition name is specified, subpartitions of that partition are included.

The Transportable Tablespace feature also supports copying or restoring partitioned InnoDB tables. For
more information, see Section 14.6.1.3, “Importing InnoDB Tables”.

Renames of partitioned tables are supported. You can rename individual partitions indirectly using
ALTER TABLE ... REORGANIZE PARTITION; however, this operation copies the partition's data.

To delete rows from selected partitions, use the TRUNCATE PARTITION option. This option takes a
comma-separated list of one or more partition names. For example, consider the table t1 as defined
here:

CREATE TABLE t1 (
 id INT,
 year_col INT
)
PARTITION BY RANGE (year_col) (
 PARTITION p0 VALUES LESS THAN (1991),
 PARTITION p1 VALUES LESS THAN (1995),
 PARTITION p2 VALUES LESS THAN (1999),
 PARTITION p3 VALUES LESS THAN (2003),
 PARTITION p4 VALUES LESS THAN (2007)
);

To delete all rows from partition p0, use the following statement:

ALTER TABLE t1 TRUNCATE PARTITION p0;

The statement just shown has the same effect as the following DELETE statement:

DELETE FROM t1 WHERE year_col < 1991;

When truncating multiple partitions, the partitions do not have to be contiguous: This can greatly simplify
delete operations on partitioned tables that would otherwise require very complex WHERE conditions if
done with DELETE statements. For example, this statement deletes all rows from partitions p1 and p3:

ALTER TABLE t1 TRUNCATE PARTITION p1, p3;

An equivalent DELETE statement is shown here:

DELETE FROM t1 WHERE
 (year_col >= 1991 AND year_col < 1995)
 OR

2174

ALTER TABLE Statement

 (year_col >= 2003 AND year_col < 2007);

If you use the ALL keyword in place of the list of partition names, the statement acts on all table
partitions.

TRUNCATE PARTITION merely deletes rows; it does not alter the definition of the table itself, or of any
of its partitions.

To verify that the rows were dropped, check the INFORMATION_SCHEMA.PARTITIONS table, using a
query such as this one:

SELECT PARTITION_NAME, TABLE_ROWS
 FROM INFORMATION_SCHEMA.PARTITIONS
 WHERE TABLE_NAME = 't1';

TRUNCATE PARTITION is supported only for partitioned tables that use the MyISAM, InnoDB, or
MEMORY storage engine. It also works on BLACKHOLE tables (but has no effect). It is not supported for
ARCHIVE tables.

COALESCE PARTITION can be used with a table that is partitioned by HASH or KEY to reduce the
number of partitions by number. Suppose that you have created table t2 as follows:

CREATE TABLE t2 (
 name VARCHAR (30),
 started DATE
)
PARTITION BY HASH(YEAR(started))
PARTITIONS 6;

To reduce the number of partitions used by t2 from 6 to 4, use the following statement:

ALTER TABLE t2 COALESCE PARTITION 2;

The data contained in the last number partitions are merged into the remaining partitions. In this case,
partitions 4 and 5 are merged into the first 4 partitions (the partitions numbered 0, 1, 2, and 3).

To change some but not all the partitions used by a partitioned table, you can use REORGANIZE
PARTITION. This statement can be used in several ways:

• To merge a set of partitions into a single partition. This is done by naming several partitions in the
partition_names list and supplying a single definition for partition_definition.

• To split an existing partition into several partitions. Accomplish this by naming a single partition for
partition_names and providing multiple partition_definitions.

• To change the ranges for a subset of partitions defined using VALUES LESS THAN or the value lists
for a subset of partitions defined using VALUES IN.

• This statement may also be used without the partition_names INTO
(partition_definitions) option on tables that are automatically partitioned using HASH
partitioning to force redistribution of data. (Currently, only NDB tables are automatically partitioned in
this way.) This is useful in NDB Cluster where, after you have added new NDB Cluster data nodes
online to an existing NDB Cluster, you wish to redistribute existing NDB Cluster table data to the new

2175

ALTER TABLE Statement

data nodes. In such cases, you should invoke the statement with the ALGORITHM=INPLACE option; in
other words, as shown here:

ALTER TABLE table ALGORITHM=INPLACE, REORGANIZE PARTITION;

You cannot perform other DDL concurrently with online table reorganization—that is, no other DDL
statements can be issued while an ALTER TABLE ... ALGORITHM=INPLACE, REORGANIZE
PARTITION statement is executing. For more information about adding NDB Cluster data nodes
online, see Section 21.6.7, “Adding NDB Cluster Data Nodes Online”.

Note

ALTER TABLE ... ALGORITHM=INPLACE, REORGANIZE PARTITION
does not work with tables which were created using the MAX_ROWS
option, because it uses the constant MAX_ROWS value specified in the
original CREATE TABLE statement to determine the number of partitions
required, so no new partitions are created. Instead, you can use ALTER
TABLE ... ALGORITHM=INPLACE, MAX_ROWS=rows to increase the
maximum number of rows for such a table; in this case, ALTER TABLE ...
ALGORITHM=INPLACE, REORGANIZE PARTITION is not needed (and
causes an error if executed). The value of rows must be greater than the value
specified for MAX_ROWS in the original CREATE TABLE statement for this to
work.

Employing MAX_ROWS to force the number of table partitions is deprecated
in NDB 7.5.4 and later; use PARTITION_BALANCE instead (see Setting
NDB_TABLE options).

Attempting to use REORGANIZE PARTITION without the partition_names INTO
(partition_definitions) option on explicitly partitioned tables results in the error REORGANIZE
PARTITION without parameters can only be used on auto-partitioned tables
using HASH partitioning.

Note

For partitions that have not been explicitly named, MySQL automatically provides
the default names p0, p1, p2, and so on. The same is true with regard to
subpartitions.

For more detailed information about and examples of ALTER TABLE ... REORGANIZE PARTITION
statements, see Section 22.3.1, “Management of RANGE and LIST Partitions”.

• To exchange a table partition or subpartition with a table, use the ALTER TABLE ... EXCHANGE
PARTITION statement—that is, to move any existing rows in the partition or subpartition to the
nonpartitioned table, and any existing rows in the nonpartitioned table to the table partition or
subpartition.

For usage information and examples, see Section 22.3.3, “Exchanging Partitions and Subpartitions with
Tables”.

• Several options provide partition maintenance and repair functionality analogous to that implemented
for nonpartitioned tables by statements such as CHECK TABLE and REPAIR TABLE (which are
also supported for partitioned tables; for more information, see Section 13.7.2, “Table Maintenance
Statements”). These include ANALYZE PARTITION, CHECK PARTITION, OPTIMIZE PARTITION,
REBUILD PARTITION, and REPAIR PARTITION. Each of these options takes a partition_names
clause consisting of one or more names of partitions, separated by commas. The partitions must already

2176

ALTER TABLE Statement

exist in the table to be altered. You can also use the ALL keyword in place of partition_names,
in which case the statement acts on all table partitions. For more information and examples, see
Section 22.3.4, “Maintenance of Partitions”.

Some MySQL storage engines, such as InnoDB, do not support per-partition optimization. For a
partitioned table using such a storage engine, ALTER TABLE ... OPTIMIZE PARTITION causes
the entire table to rebuilt and analyzed, and an appropriate warning to be issued. (Bug #11751825, Bug
#42822)

To work around this problem, use the statements ALTER TABLE ... REBUILD PARTITION and
ALTER TABLE ... ANALYZE PARTITION instead.

The ANALYZE PARTITION, CHECK PARTITION, OPTIMIZE PARTITION, and REPAIR PARTITION
options are not permitted for tables which are not partitioned.

• In MySQL 5.7.9 and later, you can use ALTER TABLE ... UPGRADE PARTITIONING to upgrade a
partitioned InnoDB table that was created with the old generic partitioning handler to the InnoDB native
partitioning employed in MySQL 5.7.6 and later. Also beginning with MySQL 5.7.9, the mysql_upgrade
utility checks for such partitioned InnoDB tables and attempts to upgrade them to native partitioning as
part of its normal operations.

Important

Partitioned InnoDB tables that do not use the InnoDB native partitioning
handler cannot be used in MySQL 8.0 or later. ALTER TABLE ... UPGRADE
PARTITIONING is not supported in MySQL 8.0 or later; therefore, any partitioned
InnoDB tables that employ the generic handler must be upgraded to the InnoDB
native handler before upgrading your MySQL installation to MySQL 8.0 or later.

• REMOVE PARTITIONING enables you to remove a table's partitioning without otherwise affecting the
table or its data. This option can be combined with other ALTER TABLE options such as those used to
add, drop, or rename columns or indexes.

• Using the ENGINE option with ALTER TABLE changes the storage engine used by the table without
affecting the partitioning.

When ALTER TABLE ... EXCHANGE PARTITION or ALTER TABLE ... TRUNCATE PARTITION is
run against a partitioned table that uses MyISAM (or another storage engine that makes use of table-level
locking), only those partitions that are actually read from are locked. (This does not apply to partitioned
tables using a storage enginethat employs row-level locking, such as InnoDB.) See Section 22.6.4,
“Partitioning and Locking”.

It is possible for an ALTER TABLE statement to contain a PARTITION BY or REMOVE PARTITIONING
clause in an addition to other alter specifications, but the PARTITION BY or REMOVE PARTITIONING
clause must be specified last after any other specifications.

The ADD PARTITION, DROP PARTITION, COALESCE PARTITION, REORGANIZE PARTITION,
ANALYZE PARTITION, CHECK PARTITION, and REPAIR PARTITION options cannot be combined with
other alter specifications in a single ALTER TABLE, since the options just listed act on individual partitions.
For more information, see Section 13.1.8.1, “ALTER TABLE Partition Operations”.

Only a single instance of any one of the following options can be used in a given ALTER TABLE
statement: PARTITION BY, ADD PARTITION, DROP PARTITION, TRUNCATE PARTITION, EXCHANGE
PARTITION, REORGANIZE PARTITION, or COALESCE PARTITION, ANALYZE PARTITION, CHECK
PARTITION, OPTIMIZE PARTITION, REBUILD PARTITION, REMOVE PARTITIONING.

For example, the following two statements are invalid:

2177

ALTER TABLE Statement

ALTER TABLE t1 ANALYZE PARTITION p1, ANALYZE PARTITION p2;

ALTER TABLE t1 ANALYZE PARTITION p1, CHECK PARTITION p2;

In the first case, you can analyze partitions p1 and p2 of table t1 concurrently using a single statement
with a single ANALYZE PARTITION option that lists both of the partitions to be analyzed, like this:

ALTER TABLE t1 ANALYZE PARTITION p1, p2;

In the second case, it is not possible to perform ANALYZE and CHECK operations on different partitions of
the same table concurrently. Instead, you must issue two separate statements, like this:

ALTER TABLE t1 ANALYZE PARTITION p1;
ALTER TABLE t1 CHECK PARTITION p2;

REBUILD operations are currently unsupported for subpartitions. The REBUILD keyword is expressly
disallowed with subpartitions, and causes ALTER TABLE to fail with an error if so used.

CHECK PARTITION and REPAIR PARTITION operations fail when the partition to be checked or
repaired contains any duplicate key errors.

For more information about these statements, see Section 22.3.4, “Maintenance of Partitions”.

13.1.8.2 ALTER TABLE and Generated Columns

ALTER TABLE operations permitted for generated columns are ADD, MODIFY, and CHANGE.

• Generated columns can be added.

CREATE TABLE t1 (c1 INT);
ALTER TABLE t1 ADD COLUMN c2 INT GENERATED ALWAYS AS (c1 + 1) STORED;

• The data type and expression of generated columns can be modified.

CREATE TABLE t1 (c1 INT, c2 INT GENERATED ALWAYS AS (c1 + 1) STORED);
ALTER TABLE t1 MODIFY COLUMN c2 TINYINT GENERATED ALWAYS AS (c1 + 5) STORED;

• Generated columns can be renamed or dropped, if no other column refers to them.

CREATE TABLE t1 (c1 INT, c2 INT GENERATED ALWAYS AS (c1 + 1) STORED);
ALTER TABLE t1 CHANGE c2 c3 INT GENERATED ALWAYS AS (c1 + 1) STORED;
ALTER TABLE t1 DROP COLUMN c3;

• Virtual generated columns cannot be altered to stored generated columns, or vice versa. To work around
this, drop the column, then add it with the new definition.

CREATE TABLE t1 (c1 INT, c2 INT GENERATED ALWAYS AS (c1 + 1) VIRTUAL);
ALTER TABLE t1 DROP COLUMN c2;
ALTER TABLE t1 ADD COLUMN c2 INT GENERATED ALWAYS AS (c1 + 1) STORED;

• Nongenerated columns can be altered to stored but not virtual generated columns.

CREATE TABLE t1 (c1 INT, c2 INT);
ALTER TABLE t1 MODIFY COLUMN c2 INT GENERATED ALWAYS AS (c1 + 1) STORED;

• Stored but not virtual generated columns can be altered to nongenerated columns. The stored generated
values become the values of the nongenerated column.

CREATE TABLE t1 (c1 INT, c2 INT GENERATED ALWAYS AS (c1 + 1) STORED);
ALTER TABLE t1 MODIFY COLUMN c2 INT;

• ADD COLUMN is not an in-place operation for stored columns (done without using a temporary table)
because the expression must be evaluated by the server. For stored columns, indexing changes are

2178

ALTER TABLE Statement

done in place, and expression changes are not done in place. Changes to column comments are done in
place.

• For non-partitioned tables, ADD COLUMN and DROP COLUMN are in-place operations for virtual columns.
However, adding or dropping a virtual column cannot be performed in place in combination with other
ALTER TABLE operations.

For partitioned tables, ADD COLUMN and DROP COLUMN are not in-place operations for virtual columns.

• InnoDB supports secondary indexes on virtual generated columns. Adding or dropping a
secondary index on a virtual generated column is an in-place operation. For more information, see
Section 13.1.18.8, “Secondary Indexes and Generated Columns”.

• When a VIRTUAL generated column is added to a table or modified, it is not ensured that values
being calculated by the generated column expression are not out of range for the column. This can
lead to inconsistent data being returned and unexpectedly failed statements. To permit control over
whether validation occurs for such columns, ALTER TABLE supports WITHOUT VALIDATION and WITH
VALIDATION clauses:

• With WITHOUT VALIDATION (the default if neither clause is specified), an in-place operation is
performed (if possible), data integrity is not checked, and the statement finishes more quickly.
However, later reads from the table might report warnings or errors for the column if values are out of
range.

• With WITH VALIDATION, ALTER TABLE copies the table. If an out-of-range or any other error
occurs, the statement fails. Because a table copy is performed, the statement takes longer.

WITHOUT VALIDATION and WITH VALIDATION are permitted only with ADD COLUMN, CHANGE
COLUMN, and MODIFY COLUMN operations. Otherwise, an ER_WRONG_USAGE error occurs.

• As of MySQL 5.7.10, if expression evaluation causes truncation or provides incorrect input to a function,
the ALTER TABLE statement terminates with an error and the DDL operation is rejected.

• An ALTER TABLE statement that changes the default value of a column col_name may also change
the value of a generated column expression that refers to the column using DEFAULT(col_name). For
this reason, as of MySQL 5.7.13, ALTER TABLE operations that change the definition of a column cause
a table rebuild if any generated column expression uses DEFAULT().

13.1.8.3 ALTER TABLE Examples

Begin with a table t1 created as shown here:

CREATE TABLE t1 (a INTEGER, b CHAR(10));

To rename the table from t1 to t2:

ALTER TABLE t1 RENAME t2;

To change column a from INTEGER to TINYINT NOT NULL (leaving the name the same), and to change
column b from CHAR(10) to CHAR(20) as well as renaming it from b to c:

ALTER TABLE t2 MODIFY a TINYINT NOT NULL, CHANGE b c CHAR(20);

To add a new TIMESTAMP column named d:

ALTER TABLE t2 ADD d TIMESTAMP;

To add an index on column d and a UNIQUE index on column a:

2179

https://dev.mysql.com/doc/mysql-errors/5.7/en/server-error-reference.html#error_er_wrong_usage

ALTER TABLE Statement

ALTER TABLE t2 ADD INDEX (d), ADD UNIQUE (a);

To remove column c:

ALTER TABLE t2 DROP COLUMN c;

To add a new AUTO_INCREMENT integer column named c:

ALTER TABLE t2 ADD c INT UNSIGNED NOT NULL AUTO_INCREMENT,
 ADD PRIMARY KEY (c);

We indexed c (as a PRIMARY KEY) because AUTO_INCREMENT columns must be indexed, and we
declare c as NOT NULL because primary key columns cannot be NULL.

For NDB tables, it is also possible to change the storage type used for a table or column. For example,
consider an NDB table created as shown here:

mysql> CREATE TABLE t1 (c1 INT) TABLESPACE ts_1 ENGINE NDB;
Query OK, 0 rows affected (1.27 sec)

To convert this table to disk-based storage, you can use the following ALTER TABLE statement:

mysql> ALTER TABLE t1 TABLESPACE ts_1 STORAGE DISK;
Query OK, 0 rows affected (2.99 sec)
Records: 0 Duplicates: 0 Warnings: 0

mysql> SHOW CREATE TABLE t1\G
*************************** 1. row ***************************
 Table: t1
Create Table: CREATE TABLE `t1` (
 `c1` int(11) DEFAULT NULL
) /*!50100 TABLESPACE ts_1 STORAGE DISK */
ENGINE=ndbcluster DEFAULT CHARSET=latin1
1 row in set (0.01 sec)

It is not necessary that the tablespace was referenced when the table was originally created; however, the
tablespace must be referenced by the ALTER TABLE:

mysql> CREATE TABLE t2 (c1 INT) ts_1 ENGINE NDB;
Query OK, 0 rows affected (1.00 sec)

mysql> ALTER TABLE t2 STORAGE DISK;
ERROR 1005 (HY000): Can't create table 'c.#sql-1750_3' (errno: 140)
mysql> ALTER TABLE t2 TABLESPACE ts_1 STORAGE DISK;
Query OK, 0 rows affected (3.42 sec)
Records: 0 Duplicates: 0 Warnings: 0
mysql> SHOW CREATE TABLE t2\G
*************************** 1. row ***************************
 Table: t1
Create Table: CREATE TABLE `t2` (
 `c1` int(11) DEFAULT NULL
) /*!50100 TABLESPACE ts_1 STORAGE DISK */
ENGINE=ndbcluster DEFAULT CHARSET=latin1
1 row in set (0.01 sec)

To change the storage type of an individual column, you can use ALTER TABLE ... MODIFY
[COLUMN]. For example, suppose you create an NDB Cluster Disk Data table with two columns, using this
CREATE TABLE statement:

mysql> CREATE TABLE t3 (c1 INT, c2 INT)
 -> TABLESPACE ts_1 STORAGE DISK ENGINE NDB;
Query OK, 0 rows affected (1.34 sec)

To change column c2 from disk-based to in-memory storage, include a STORAGE MEMORY clause in the
column definition used by the ALTER TABLE statement, as shown here:

2180

ALTER TABLESPACE Statement

mysql> ALTER TABLE t3 MODIFY c2 INT STORAGE MEMORY;
Query OK, 0 rows affected (3.14 sec)
Records: 0 Duplicates: 0 Warnings: 0

You can make an in-memory column into a disk-based column by using STORAGE DISK in a similar
fashion.

Column c1 uses disk-based storage, since this is the default for the table (determined by the table-level
STORAGE DISK clause in the CREATE TABLE statement). However, column c2 uses in-memory storage,
as can be seen here in the output of SHOW CREATE TABLE:

mysql> SHOW CREATE TABLE t3\G
*************************** 1. row ***************************
 Table: t3
Create Table: CREATE TABLE `t3` (
 `c1` int(11) DEFAULT NULL,
 `c2` int(11) /*!50120 STORAGE MEMORY */ DEFAULT NULL
) /*!50100 TABLESPACE ts_1 STORAGE DISK */ ENGINE=ndbcluster DEFAULT CHARSET=latin1
1 row in set (0.02 sec)

When you add an AUTO_INCREMENT column, column values are filled in with sequence numbers
automatically. For MyISAM tables, you can set the first sequence number by executing SET
INSERT_ID=value before ALTER TABLE or by using the AUTO_INCREMENT=value table option.

With MyISAM tables, if you do not change the AUTO_INCREMENT column, the sequence number is not
affected. If you drop an AUTO_INCREMENT column and then add another AUTO_INCREMENT column, the
numbers are resequenced beginning with 1.

When replication is used, adding an AUTO_INCREMENT column to a table might not produce the same
ordering of the rows on the replica and the source. This occurs because the order in which the rows are
numbered depends on the specific storage engine used for the table and the order in which the rows were
inserted. If it is important to have the same order on the source and replica, the rows must be ordered
before assigning an AUTO_INCREMENT number. Assuming that you want to add an AUTO_INCREMENT
column to the table t1, the following statements produce a new table t2 identical to t1 but with an
AUTO_INCREMENT column:

CREATE TABLE t2 (id INT AUTO_INCREMENT PRIMARY KEY)
SELECT * FROM t1 ORDER BY col1, col2;

This assumes that the table t1 has columns col1 and col2.

This set of statements also produces a new table t2 identical to t1, with the addition of an
AUTO_INCREMENT column:

CREATE TABLE t2 LIKE t1;
ALTER TABLE t2 ADD id INT AUTO_INCREMENT PRIMARY KEY;
INSERT INTO t2 SELECT * FROM t1 ORDER BY col1, col2;

Important

To guarantee the same ordering on both source and replica, all columns of t1 must
be referenced in the ORDER BY clause.

Regardless of the method used to create and populate the copy having the AUTO_INCREMENT column, the
final step is to drop the original table and then rename the copy:

DROP TABLE t1;
ALTER TABLE t2 RENAME t1;

13.1.9 ALTER TABLESPACE Statement

2181

ALTER TABLESPACE Statement

ALTER TABLESPACE tablespace_name
 {ADD | DROP} DATAFILE 'file_name'
 [INITIAL_SIZE [=] size]
 [WAIT]
 ENGINE [=] engine_name

This statement is used either to add a new data file, or to drop a data file from a tablespace.

The ADD DATAFILE variant enables you to specify an initial size using an INITIAL_SIZE clause, where
size is measured in bytes; the default value is 134217728 (128 MB). You may optionally follow size with
a one-letter abbreviation for an order of magnitude, similar to those used in my.cnf. Generally, this is one
of the letters M (megabytes) or G (gigabytes).

Note

All NDB Cluster Disk Data objects share the same namespace. This means that
each Disk Data object must be uniquely named (and not merely each Disk Data
object of a given type). For example, you cannot have a tablespace and a data file
with the same name, or an undo log file and a tablespace with the same name.

On 32-bit systems, the maximum supported value for INITIAL_SIZE is 4294967296 (4 GB). (Bug
#29186)

INITIAL_SIZE is rounded, explicitly, as for CREATE TABLESPACE.

Once a data file has been created, its size cannot be changed; however, you can add more data files to the
tablespace using additional ALTER TABLESPACE ... ADD DATAFILE statements.

Using DROP DATAFILE with ALTER TABLESPACE drops the data file 'file_name' from the tablespace.
You cannot drop a data file from a tablespace which is in use by any table; in other words, the data file
must be empty (no extents used). See Section 21.6.11.1, “NDB Cluster Disk Data Objects”. In addition, any
data file to be dropped must previously have been added to the tablespace with CREATE TABLESPACE or
ALTER TABLESPACE.

Both ALTER TABLESPACE ... ADD DATAFILE and ALTER TABLESPACE ... DROP DATAFILE
require an ENGINE clause which specifies the storage engine used by the tablespace. Currently, the only
accepted values for engine_name are NDB and NDBCLUSTER.

WAIT is parsed but otherwise ignored, and so has no effect in MySQL 5.7. It is intended for future
expansion.

When ALTER TABLESPACE ... ADD DATAFILE is used with ENGINE = NDB, a data file is created on
each Cluster data node. You can verify that the data files were created and obtain information about them
by querying the Information Schema FILES table. For example, the following query shows all data files
belonging to the tablespace named newts:

mysql> SELECT LOGFILE_GROUP_NAME, FILE_NAME, EXTRA
 -> FROM INFORMATION_SCHEMA.FILES
 -> WHERE TABLESPACE_NAME = 'newts' AND FILE_TYPE = 'DATAFILE';
+--------------------+--------------+----------------+
| LOGFILE_GROUP_NAME | FILE_NAME | EXTRA |
+--------------------+--------------+----------------+
lg_3	newdata.dat	CLUSTER_NODE=3
lg_3	newdata.dat	CLUSTER_NODE=4
lg_3	newdata2.dat	CLUSTER_NODE=3
lg_3	newdata2.dat	CLUSTER_NODE=4
+--------------------+--------------+----------------+
2 rows in set (0.03 sec)

See Section 24.3.9, “The INFORMATION_SCHEMA FILES Table”.

2182

ALTER VIEW Statement

ALTER TABLESPACE is useful only with Disk Data storage for NDB Cluster. See Section 21.6.11, “NDB
Cluster Disk Data Tables”.

13.1.10 ALTER VIEW Statement
ALTER
 [ALGORITHM = {UNDEFINED | MERGE | TEMPTABLE}]
 [DEFINER = user]
 [SQL SECURITY { DEFINER | INVOKER }]
 VIEW view_name [(column_list)]
 AS select_statement
 [WITH [CASCADED | LOCAL] CHECK OPTION]

This statement changes the definition of a view, which must exist. The syntax is similar to that for CREATE
VIEW see Section 13.1.21, “CREATE VIEW Statement”). This statement requires the CREATE VIEW and
DROP privileges for the view, and some privilege for each column referred to in the SELECT statement.
ALTER VIEW is permitted only to the definer or users with the SUPER privilege.

13.1.11 CREATE DATABASE Statement
CREATE {DATABASE | SCHEMA} [IF NOT EXISTS] db_name
 [create_option] ...

create_option: [DEFAULT] {
 CHARACTER SET [=] charset_name
 | COLLATE [=] collation_name
}

CREATE DATABASE creates a database with the given name. To use this statement, you need the CREATE
privilege for the database. CREATE SCHEMA is a synonym for CREATE DATABASE.

An error occurs if the database exists and you did not specify IF NOT EXISTS.

CREATE DATABASE is not permitted within a session that has an active LOCK TABLES statement.

Each create_option specifies a database characteristic. Database characteristics are stored in
the db.opt file in the database directory. The CHARACTER SET option specifies the default database
character set. The COLLATE option specifies the default database collation. For information about
character set and collation names, see Chapter 10, Character Sets, Collations, Unicode.

To see the available character sets and collations, use the SHOW CHARACTER SET and SHOW
COLLATION statements, respectively. See Section 13.7.5.3, “SHOW CHARACTER SET Statement”, and
Section 13.7.5.4, “SHOW COLLATION Statement”.

A database in MySQL is implemented as a directory containing files that correspond to tables in the
database. Because there are no tables in a database when it is initially created, the CREATE DATABASE
statement creates only a directory under the MySQL data directory and the db.opt file. Rules for
permissible database names are given in Section 9.2, “Schema Object Names”. If a database name
contains special characters, the name for the database directory contains encoded versions of those
characters as described in Section 9.2.4, “Mapping of Identifiers to File Names”.

If you manually create a directory under the data directory (for example, with mkdir), the server considers
it a database directory and it shows up in the output of SHOW DATABASES.

When you create a database, let the server manage the directory and the files in it. Manipulating database
directories and files directly can cause inconsistencies and unexpected results.

MySQL has no limit on the number of databases. The underlying file system may have a limit on the
number of directories.

2183

CREATE EVENT Statement

You can also use the mysqladmin program to create databases. See Section 4.5.2, “mysqladmin — A
MySQL Server Administration Program”.

13.1.12 CREATE EVENT Statement
CREATE
 [DEFINER = user]
 EVENT
 [IF NOT EXISTS]
 event_name
 ON SCHEDULE schedule
 [ON COMPLETION [NOT] PRESERVE]
 [ENABLE | DISABLE | DISABLE ON SLAVE]
 [COMMENT 'string']
 DO event_body;

schedule: {
 AT timestamp [+ INTERVAL interval] ...
 | EVERY interval
 [STARTS timestamp [+ INTERVAL interval] ...]
 [ENDS timestamp [+ INTERVAL interval] ...]
}

interval:
 quantity {YEAR | QUARTER | MONTH | DAY | HOUR | MINUTE |
 WEEK | SECOND | YEAR_MONTH | DAY_HOUR | DAY_MINUTE |
 DAY_SECOND | HOUR_MINUTE | HOUR_SECOND | MINUTE_SECOND}

This statement creates and schedules a new event. The event does not run unless the Event Scheduler
is enabled. For information about checking Event Scheduler status and enabling it if necessary, see
Section 23.4.2, “Event Scheduler Configuration”.

CREATE EVENT requires the EVENT privilege for the schema in which the event is to be created. If
the DEFINER clause is present, the privileges required depend on the user value, as discussed in
Section 23.6, “Stored Object Access Control”.

The minimum requirements for a valid CREATE EVENT statement are as follows:

• The keywords CREATE EVENT plus an event name, which uniquely identifies the event in a database
schema.

• An ON SCHEDULE clause, which determines when and how often the event executes.

• A DO clause, which contains the SQL statement to be executed by an event.

This is an example of a minimal CREATE EVENT statement:

CREATE EVENT myevent
 ON SCHEDULE AT CURRENT_TIMESTAMP + INTERVAL 1 HOUR
 DO
 UPDATE myschema.mytable SET mycol = mycol + 1;

The previous statement creates an event named myevent. This event executes once—one hour following
its creation—by running an SQL statement that increments the value of the myschema.mytable table's
mycol column by 1.

The event_name must be a valid MySQL identifier with a maximum length of 64 characters. Event
names are not case-sensitive, so you cannot have two events named myevent and MyEvent in the same
schema. In general, the rules governing event names are the same as those for names of stored routines.
See Section 9.2, “Schema Object Names”.

2184

CREATE EVENT Statement

An event is associated with a schema. If no schema is indicated as part of event_name, the default
(current) schema is assumed. To create an event in a specific schema, qualify the event name with a
schema using schema_name.event_name syntax.

The DEFINER clause specifies the MySQL account to be used when checking access privileges at event
execution time. If the DEFINER clause is present, the user value should be a MySQL account specified
as 'user_name'@'host_name', CURRENT_USER, or CURRENT_USER(). The permitted user values
depend on the privileges you hold, as discussed in Section 23.6, “Stored Object Access Control”. Also see
that section for additional information about event security.

If the DEFINER clause is omitted, the default definer is the user who executes the CREATE EVENT
statement. This is the same as specifying DEFINER = CURRENT_USER explicitly.

Within an event body, the CURRENT_USER function returns the account used to check privileges at
event execution time, which is the DEFINER user. For information about user auditing within events, see
Section 6.2.18, “SQL-Based Account Activity Auditing”.

IF NOT EXISTS has the same meaning for CREATE EVENT as for CREATE TABLE: If an event named
event_name already exists in the same schema, no action is taken, and no error results. (However, a
warning is generated in such cases.)

The ON SCHEDULE clause determines when, how often, and for how long the event_body defined for the
event repeats. This clause takes one of two forms:

• AT timestamp is used for a one-time event. It specifies that the event executes one time only
at the date and time given by timestamp, which must include both the date and time, or must be
an expression that resolves to a datetime value. You may use a value of either the DATETIME or
TIMESTAMP type for this purpose. If the date is in the past, a warning occurs, as shown here:

mysql> SELECT NOW();
+---------------------+
| NOW() |
+---------------------+
| 2006-02-10 23:59:01 |
+---------------------+
1 row in set (0.04 sec)

mysql> CREATE EVENT e_totals
 -> ON SCHEDULE AT '2006-02-10 23:59:00'
 -> DO INSERT INTO test.totals VALUES (NOW());
Query OK, 0 rows affected, 1 warning (0.00 sec)

mysql> SHOW WARNINGS\G
*************************** 1. row ***************************
 Level: Note
 Code: 1588
Message: Event execution time is in the past and ON COMPLETION NOT
 PRESERVE is set. The event was dropped immediately after
 creation.

CREATE EVENT statements which are themselves invalid—for whatever reason—fail with an error.

You may use CURRENT_TIMESTAMP to specify the current date and time. In such a case, the event acts
as soon as it is created.

To create an event which occurs at some point in the future relative to the current date and time—such
as that expressed by the phrase “three weeks from now”—you can use the optional clause + INTERVAL
interval. The interval portion consists of two parts, a quantity and a unit of time, and follows
the syntax rules described in Temporal Intervals, except that you cannot use any units keywords that
involving microseconds when defining an event. With some interval types, complex time units may

2185

CREATE EVENT Statement

be used. For example, “two minutes and ten seconds” can be expressed as + INTERVAL '2:10'
MINUTE_SECOND.

You can also combine intervals. For example, AT CURRENT_TIMESTAMP + INTERVAL 3 WEEK +
INTERVAL 2 DAY is equivalent to “three weeks and two days from now”. Each portion of such a clause
must begin with + INTERVAL.

• To repeat actions at a regular interval, use an EVERY clause. The EVERY keyword is followed by an
interval as described in the previous discussion of the AT keyword. (+ INTERVAL is not used with
EVERY.) For example, EVERY 6 WEEK means “every six weeks”.

Although + INTERVAL clauses are not permitted in an EVERY clause, you can use the same complex
time units permitted in a + INTERVAL.

An EVERY clause may contain an optional STARTS clause. STARTS is followed by a timestamp value
that indicates when the action should begin repeating, and may also use + INTERVAL interval to
specify an amount of time “from now”. For example, EVERY 3 MONTH STARTS CURRENT_TIMESTAMP
+ INTERVAL 1 WEEK means “every three months, beginning one week from now”. Similarly, you
can express “every two weeks, beginning six hours and fifteen minutes from now” as EVERY 2 WEEK
STARTS CURRENT_TIMESTAMP + INTERVAL '6:15' HOUR_MINUTE. Not specifying STARTS is
the same as using STARTS CURRENT_TIMESTAMP—that is, the action specified for the event begins
repeating immediately upon creation of the event.

An EVERY clause may contain an optional ENDS clause. The ENDS keyword is followed by a timestamp
value that tells MySQL when the event should stop repeating. You may also use + INTERVAL
interval with ENDS; for instance, EVERY 12 HOUR STARTS CURRENT_TIMESTAMP + INTERVAL
30 MINUTE ENDS CURRENT_TIMESTAMP + INTERVAL 4 WEEK is equivalent to “every twelve hours,
beginning thirty minutes from now, and ending four weeks from now”. Not using ENDS means that the
event continues executing indefinitely.

ENDS supports the same syntax for complex time units as STARTS does.

You may use STARTS, ENDS, both, or neither in an EVERY clause.

If a repeating event does not terminate within its scheduling interval, the result may be multiple instances
of the event executing simultaneously. If this is undesirable, you should institute a mechanism to prevent
simultaneous instances. For example, you could use the GET_LOCK() function, or row or table locking.

The ON SCHEDULE clause may use expressions involving built-in MySQL functions and user variables to
obtain any of the timestamp or interval values which it contains. You may not use stored functions
or loadable functions in such expressions, nor may you use any table references; however, you may use
SELECT FROM DUAL. This is true for both CREATE EVENT and ALTER EVENT statements. References to
stored functions, loadable functions, and tables in such cases are specifically not permitted, and fail with an
error (see Bug #22830).

Times in the ON SCHEDULE clause are interpreted using the current session time_zone value. This
becomes the event time zone; that is, the time zone that is used for event scheduling and is in effect
within the event as it executes. These times are converted to UTC and stored along with the event time
zone in the mysql.event table. This enables event execution to proceed as defined regardless of any
subsequent changes to the server time zone or daylight saving time effects. For additional information
about representation of event times, see Section 23.4.4, “Event Metadata”. See also Section 13.7.5.18,
“SHOW EVENTS Statement”, and Section 24.3.8, “The INFORMATION_SCHEMA EVENTS Table”.

Normally, once an event has expired, it is immediately dropped. You can override this behavior by
specifying ON COMPLETION PRESERVE. Using ON COMPLETION NOT PRESERVE merely makes the
default nonpersistent behavior explicit.

2186

CREATE EVENT Statement

You can create an event but prevent it from being active using the DISABLE keyword. Alternatively, you
can use ENABLE to make explicit the default status, which is active. This is most useful in conjunction with
ALTER EVENT (see Section 13.1.2, “ALTER EVENT Statement”).

A third value may also appear in place of ENABLE or DISABLE; DISABLE ON SLAVE is set for the status
of an event on a replica to indicate that the event was created on the source and replicated to the replica,
but is not executed on the replica. See Section 16.4.1.16, “Replication of Invoked Features”.

You may supply a comment for an event using a COMMENT clause. comment may be any string of up to 64
characters that you wish to use for describing the event. The comment text, being a string literal, must be
surrounded by quotation marks.

The DO clause specifies an action carried by the event, and consists of an SQL statement. Nearly any
valid MySQL statement that can be used in a stored routine can also be used as the action statement for
a scheduled event. (See Section 23.8, “Restrictions on Stored Programs”.) For example, the following
event e_hourly deletes all rows from the sessions table once per hour, where this table is part of the
site_activity schema:

CREATE EVENT e_hourly
 ON SCHEDULE
 EVERY 1 HOUR
 COMMENT 'Clears out sessions table each hour.'
 DO
 DELETE FROM site_activity.sessions;

MySQL stores the sql_mode system variable setting in effect when an event is created or altered, and
always executes the event with this setting in force, regardless of the current server SQL mode when the
event begins executing.

A CREATE EVENT statement that contains an ALTER EVENT statement in its DO clause appears to
succeed; however, when the server attempts to execute the resulting scheduled event, the execution fails
with an error.

Note

Statements such as SELECT or SHOW that merely return a result set have no effect
when used in an event; the output from these is not sent to the MySQL Monitor,
nor is it stored anywhere. However, you can use statements such as SELECT ...
INTO and INSERT INTO ... SELECT that store a result. (See the next example
in this section for an instance of the latter.)

The schema to which an event belongs is the default schema for table references in the DO clause. Any
references to tables in other schemas must be qualified with the proper schema name.

As with stored routines, you can use compound-statement syntax in the DO clause by using the BEGIN and
END keywords, as shown here:

delimiter |

CREATE EVENT e_daily
 ON SCHEDULE
 EVERY 1 DAY
 COMMENT 'Saves total number of sessions then clears the table each day'
 DO
 BEGIN
 INSERT INTO site_activity.totals (time, total)
 SELECT CURRENT_TIMESTAMP, COUNT(*)
 FROM site_activity.sessions;
 DELETE FROM site_activity.sessions;
 END |

2187

CREATE FUNCTION Statement

delimiter ;

This example uses the delimiter command to change the statement delimiter. See Section 23.1,
“Defining Stored Programs”.

More complex compound statements, such as those used in stored routines, are possible in an event. This
example uses local variables, an error handler, and a flow control construct:

delimiter |

CREATE EVENT e
 ON SCHEDULE
 EVERY 5 SECOND
 DO
 BEGIN
 DECLARE v INTEGER;
 DECLARE CONTINUE HANDLER FOR SQLEXCEPTION BEGIN END;

 SET v = 0;

 WHILE v < 5 DO
 INSERT INTO t1 VALUES (0);
 UPDATE t2 SET s1 = s1 + 1;
 SET v = v + 1;
 END WHILE;
 END |

delimiter ;

There is no way to pass parameters directly to or from events; however, it is possible to invoke a stored
routine with parameters within an event:

CREATE EVENT e_call_myproc
 ON SCHEDULE
 AT CURRENT_TIMESTAMP + INTERVAL 1 DAY
 DO CALL myproc(5, 27);

If an event's definer has privileges sufficient to set global system variables (see Section 5.1.8.1, “System
Variable Privileges”), the event can read and write global variables. As granting such privileges entails a
potential for abuse, extreme care must be taken in doing so.

Generally, any statements that are valid in stored routines may be used for action statements executed
by events. For more information about statements permissible within stored routines, see Section 23.2.1,
“Stored Routine Syntax”. You can create an event as part of a stored routine, but an event cannot be
created by another event.

13.1.13 CREATE FUNCTION Statement

The CREATE FUNCTION statement is used to create stored functions and loadable functions:

• For information about creating stored functions, see Section 13.1.16, “CREATE PROCEDURE and
CREATE FUNCTION Statements”.

• For information about creating loadable functions, see Section 13.7.3.1, “CREATE FUNCTION
Statement for Loadable Functions”.

13.1.14 CREATE INDEX Statement
CREATE [UNIQUE | FULLTEXT | SPATIAL] INDEX index_name
 [index_type]
 ON tbl_name (key_part,...)
 [index_option]
 [algorithm_option | lock_option] ...

2188

CREATE INDEX Statement

key_part:
 col_name [(length)] [ASC | DESC]

index_option: {
 KEY_BLOCK_SIZE [=] value
 | index_type
 | WITH PARSER parser_name
 | COMMENT 'string'
}

index_type:
 USING {BTREE | HASH}

algorithm_option:
 ALGORITHM [=] {DEFAULT | INPLACE | COPY}

lock_option:
 LOCK [=] {DEFAULT | NONE | SHARED | EXCLUSIVE}

Normally, you create all indexes on a table at the time the table itself is created with CREATE TABLE. See
Section 13.1.18, “CREATE TABLE Statement”. This guideline is especially important for InnoDB tables,
where the primary key determines the physical layout of rows in the data file. CREATE INDEX enables you
to add indexes to existing tables.

CREATE INDEX is mapped to an ALTER TABLE statement to create indexes. See Section 13.1.8, “ALTER
TABLE Statement”. CREATE INDEX cannot be used to create a PRIMARY KEY; use ALTER TABLE
instead. For more information about indexes, see Section 8.3.1, “How MySQL Uses Indexes”.

InnoDB supports secondary indexes on virtual columns. For more information, see Section 13.1.18.8,
“Secondary Indexes and Generated Columns”.

When the innodb_stats_persistent setting is enabled, run the ANALYZE TABLE statement for an
InnoDB table after creating an index on that table.

An index specification of the form (key_part1, key_part2, ...) creates an index with multiple
key parts. Index key values are formed by concatenating the values of the given key parts. For example
(col1, col2, col3) specifies a multiple-column index with index keys consisting of values from col1,
col2, and col3.

A key_part specification can end with ASC or DESC. These keywords are permitted for future extensions
for specifying ascending or descending index value storage. Currently, they are parsed but ignored; index
values are always stored in ascending order.

The following sections describe different aspects of the CREATE INDEX statement:

• Column Prefix Key Parts

• Unique Indexes

• Full-Text Indexes

• Spatial Indexes

• Index Options

• Table Copying and Locking Options

Column Prefix Key Parts

For string columns, indexes can be created that use only the leading part of column values, using
col_name(length) syntax to specify an index prefix length:

2189

CREATE INDEX Statement

• Prefixes can be specified for CHAR, VARCHAR, BINARY, and VARBINARY key parts.

• Prefixes must be specified for BLOB and TEXT key parts. Additionally, BLOB and TEXT columns can be
indexed only for InnoDB, MyISAM, and BLACKHOLE tables.

• Prefix limits are measured in bytes. However, prefix lengths for index specifications in CREATE TABLE,
ALTER TABLE, and CREATE INDEX statements are interpreted as number of characters for nonbinary
string types (CHAR, VARCHAR, TEXT) and number of bytes for binary string types (BINARY, VARBINARY,
BLOB). Take this into account when specifying a prefix length for a nonbinary string column that uses a
multibyte character set.

Prefix support and lengths of prefixes (where supported) are storage engine dependent. For example,
a prefix can be up to 767 bytes long for InnoDB tables or 3072 bytes if the innodb_large_prefix
option is enabled. For MyISAM tables, the prefix length limit is 1000 bytes. The NDB storage engine does
not support prefixes (see Section 21.2.7.6, “Unsupported or Missing Features in NDB Cluster”).

As of MySQL 5.7.17, if a specified index prefix exceeds the maximum column data type size, CREATE
INDEX handles the index as follows:

• For a nonunique index, either an error occurs (if strict SQL mode is enabled), or the index length is
reduced to lie within the maximum column data type size and a warning is produced (if strict SQL mode
is not enabled).

• For a unique index, an error occurs regardless of SQL mode because reducing the index length might
enable insertion of nonunique entries that do not meet the specified uniqueness requirement.

The statement shown here creates an index using the first 10 characters of the name column (assuming
that name has a nonbinary string type):

CREATE INDEX part_of_name ON customer (name(10));

If names in the column usually differ in the first 10 characters, lookups performed using this index should
not be much slower than using an index created from the entire name column. Also, using column prefixes
for indexes can make the index file much smaller, which could save a lot of disk space and might also
speed up INSERT operations.

Unique Indexes

A UNIQUE index creates a constraint such that all values in the index must be distinct. An error occurs if
you try to add a new row with a key value that matches an existing row. If you specify a prefix value for a
column in a UNIQUE index, the column values must be unique within the prefix length. A UNIQUE index
permits multiple NULL values for columns that can contain NULL.

If a table has a PRIMARY KEY or UNIQUE NOT NULL index that consists of a single column that has an
integer type, you can use _rowid to refer to the indexed column in SELECT statements, as follows:

• _rowid refers to the PRIMARY KEY column if there is a PRIMARY KEY consisting of a single integer
column. If there is a PRIMARY KEY but it does not consist of a single integer column, _rowid cannot be
used.

• Otherwise, _rowid refers to the column in the first UNIQUE NOT NULL index if that index consists of a
single integer column. If the first UNIQUE NOT NULL index does not consist of a single integer column,
_rowid cannot be used.

Full-Text Indexes

FULLTEXT indexes are supported only for InnoDB and MyISAM tables and can include only CHAR,
VARCHAR, and TEXT columns. Indexing always happens over the entire column; column prefix indexing is

2190

CREATE INDEX Statement

not supported and any prefix length is ignored if specified. See Section 12.9, “Full-Text Search Functions”,
for details of operation.

Spatial Indexes

The MyISAM, InnoDB, NDB, and ARCHIVE storage engines support spatial columns such as POINT and
GEOMETRY. (Section 11.4, “Spatial Data Types”, describes the spatial data types.) However, support for
spatial column indexing varies among engines. Spatial and nonspatial indexes on spatial columns are
available according to the following rules.

Spatial indexes on spatial columns (created using SPATIAL INDEX) have these characteristics:

• Available only for MyISAM and InnoDB tables. Specifying SPATIAL INDEX for other storage engines
results in an error.

• Indexed columns must be NOT NULL.

• Column prefix lengths are prohibited. The full width of each column is indexed.

Nonspatial indexes on spatial columns (created with INDEX, UNIQUE, or PRIMARY KEY) have these
characteristics:

• Permitted for any storage engine that supports spatial columns except ARCHIVE.

• Columns can be NULL unless the index is a primary key.

• For each spatial column in a non-SPATIAL index except POINT columns, a column prefix length must
be specified. (This is the same requirement as for indexed BLOB columns.) The prefix length is given in
bytes.

• The index type for a non-SPATIAL index depends on the storage engine. Currently, B-tree is used.

• Permitted for a column that can have NULL values only for InnoDB, MyISAM, and MEMORY tables.

Index Options

Following the key part list, index options can be given. An index_option value can be any of the
following:

• KEY_BLOCK_SIZE [=] value

For MyISAM tables, KEY_BLOCK_SIZE optionally specifies the size in bytes to use for index key blocks.
The value is treated as a hint; a different size could be used if necessary. A KEY_BLOCK_SIZE value
specified for an individual index definition overrides a table-level KEY_BLOCK_SIZE value.

KEY_BLOCK_SIZE is not supported at the index level for InnoDB tables. See Section 13.1.18, “CREATE
TABLE Statement”.

• index_type

Some storage engines permit you to specify an index type when creating an index. For example:

CREATE TABLE lookup (id INT) ENGINE = MEMORY;
CREATE INDEX id_index ON lookup (id) USING BTREE;

Table 13.1, “Index Types Per Storage Engine” shows the permissible index type values supported by
different storage engines. Where multiple index types are listed, the first one is the default when no index
type specifier is given. Storage engines not listed in the table do not support an index_type clause in
index definitions.

2191

CREATE INDEX Statement

Table 13.1 Index Types Per Storage Engine

Storage Engine Permissible Index Types

InnoDB BTREE

MyISAM BTREE

MEMORY/HEAP HASH, BTREE

NDB HASH, BTREE (see note in text)

The index_type clause cannot be used for FULLTEXT INDEX or SPATIAL INDEX specifications.
Full-text index implementation is storage engine dependent. Spatial indexes are implemented as R-tree
indexes.

BTREE indexes are implemented by the NDB storage engine as T-tree indexes.

Note

For indexes on NDB table columns, the USING option can be specified only
for a unique index or primary key. USING HASH prevents the creation of an
ordered index; otherwise, creating a unique index or primary key on an NDB table
automatically results in the creation of both an ordered index and a hash index,
each of which indexes the same set of columns.

For unique indexes that include one or more NULL columns of an NDB table,
the hash index can be used only to look up literal values, which means that IS
[NOT] NULL conditions require a full scan of the table. One workaround is to
make sure that a unique index using one or more NULL columns on such a table
is always created in such a way that it includes the ordered index; that is, avoid
employing USING HASH when creating the index.

If you specify an index type that is not valid for a given storage engine, but another index type is
available that the engine can use without affecting query results, the engine uses the available type. The
parser recognizes RTREE as a type name, but currently this cannot be specified for any storage engine.

Note

Use of the index_type option before the ON tbl_name clause is deprecated;
you should expect support for use of the option in this position to be removed in
a future MySQL release. If an index_type option is given in both the earlier and
later positions, the final option applies.

TYPE type_name is recognized as a synonym for USING type_name. However, USING is the
preferred form.

The following tables show index characteristics for the storage engines that support the index_type
option.

Table 13.2 InnoDB Storage Engine Index Characteristics

Index Class Index Type Stores NULL
VALUES

Permits
Multiple NULL
Values

IS NULL Scan
Type

IS NOT NULL
Scan Type

Primary key BTREE No No N/A N/A

Unique BTREE Yes Yes Index Index

2192

CREATE INDEX Statement

Index Class Index Type Stores NULL
VALUES

Permits
Multiple NULL
Values

IS NULL Scan
Type

IS NOT NULL
Scan Type

Key BTREE Yes Yes Index Index

FULLTEXT N/A Yes Yes Table Table

SPATIAL N/A No No N/A N/A

Table 13.3 MyISAM Storage Engine Index Characteristics

Index Class Index Type Stores NULL
VALUES

Permits
Multiple NULL
Values

IS NULL Scan
Type

IS NOT NULL
Scan Type

Primary key BTREE No No N/A N/A

Unique BTREE Yes Yes Index Index

Key BTREE Yes Yes Index Index

FULLTEXT N/A Yes Yes Table Table

SPATIAL N/A No No N/A N/A

Table 13.4 MEMORY Storage Engine Index Characteristics

Index Class Index Type Stores NULL
VALUES

Permits
Multiple NULL
Values

IS NULL Scan
Type

IS NOT NULL
Scan Type

Primary key BTREE No No N/A N/A

Unique BTREE Yes Yes Index Index

Key BTREE Yes Yes Index Index

Primary key HASH No No N/A N/A

Unique HASH Yes Yes Index Index

Key HASH Yes Yes Index Index

Table 13.5 NDB Storage Engine Index Characteristics

Index Class Index Type Stores NULL
VALUES

Permits
Multiple NULL
Values

IS NULL Scan
Type

IS NOT NULL
Scan Type

Primary key BTREE No No Index Index

Unique BTREE Yes Yes Index Index

Key BTREE Yes Yes Index Index

Primary key HASH No No Table (see note
1)

Table (see note
1)

Unique HASH Yes Yes Table (see note
1)

Table (see note
1)

2193

CREATE LOGFILE GROUP Statement

Index Class Index Type Stores NULL
VALUES

Permits
Multiple NULL
Values

IS NULL Scan
Type

IS NOT NULL
Scan Type

Key HASH Yes Yes Table (see note
1)

Table (see note
1)

Table note:

1. If USING HASH is specified that prevents creation of an implicit ordered index.

• WITH PARSER parser_name

This option can be used only with FULLTEXT indexes. It associates a parser plugin with the index if full-
text indexing and searching operations need special handling. InnoDB and MyISAM support full-text
parser plugins. If you have a MyISAM table with an associated full-text parser plugin, you can convert the
table to InnoDB using ALTER TABLE. See Full-Text Parser Plugins and Writing Full-Text Parser Plugins
for more information.

• COMMENT 'string'

Index definitions can include an optional comment of up to 1024 characters.

The MERGE_THRESHOLD for index pages can be configured for individual indexes using the
index_option COMMENT clause of the CREATE INDEX statement. For example:

CREATE TABLE t1 (id INT);
CREATE INDEX id_index ON t1 (id) COMMENT 'MERGE_THRESHOLD=40';

If the page-full percentage for an index page falls below the MERGE_THRESHOLD value when a row is
deleted or when a row is shortened by an update operation, InnoDB attempts to merge the index page
with a neighboring index page. The default MERGE_THRESHOLD value is 50, which is the previously
hardcoded value.

MERGE_THRESHOLD can also be defined at the index level and table level using CREATE TABLE
and ALTER TABLE statements. For more information, see Section 14.8.12, “Configuring the Merge
Threshold for Index Pages”.

Table Copying and Locking Options

ALGORITHM and LOCK clauses may be given to influence the table copying method and level of
concurrency for reading and writing the table while its indexes are being modified. They have the same
meaning as for the ALTER TABLE statement. For more information, see Section 13.1.8, “ALTER TABLE
Statement”

NDB Cluster formerly supported online CREATE INDEX operations using an alternative syntax that is no
longer supported. NDB Cluster now supports online operations using the same ALGORITHM=INPLACE
syntax used with the standard MySQL Server. See Section 21.6.12, “Online Operations with ALTER
TABLE in NDB Cluster”, for more information.

13.1.15 CREATE LOGFILE GROUP Statement
CREATE LOGFILE GROUP logfile_group
 ADD UNDOFILE 'undo_file'
 [INITIAL_SIZE [=] initial_size]
 [UNDO_BUFFER_SIZE [=] undo_buffer_size]
 [REDO_BUFFER_SIZE [=] redo_buffer_size]
 [NODEGROUP [=] nodegroup_id]

2194

https://dev.mysql.com/doc/extending-mysql/5.7/en/plugin-types.html#full-text-plugin-type
https://dev.mysql.com/doc/extending-mysql/5.7/en/writing-full-text-plugins.html

CREATE LOGFILE GROUP Statement

 [WAIT]
 [COMMENT [=] 'string']
 ENGINE [=] engine_name

This statement creates a new log file group named logfile_group having a single UNDO file named
'undo_file'. A CREATE LOGFILE GROUP statement has one and only one ADD UNDOFILE clause. For
rules covering the naming of log file groups, see Section 9.2, “Schema Object Names”.

Note

All NDB Cluster Disk Data objects share the same namespace. This means that
each Disk Data object must be uniquely named (and not merely each Disk Data
object of a given type). For example, you cannot have a tablespace and a log file
group with the same name, or a tablespace and a data file with the same name.

There can be only one log file group per NDB Cluster instance at any given time.

The optional INITIAL_SIZE parameter sets the UNDO file's initial size; if not specified, it defaults to 128M
(128 megabytes). The optional UNDO_BUFFER_SIZE parameter sets the size used by the UNDO buffer for
the log file group; The default value for UNDO_BUFFER_SIZE is 8M (eight megabytes); this value cannot
exceed the amount of system memory available. Both of these parameters are specified in bytes. You may
optionally follow either or both of these with a one-letter abbreviation for an order of magnitude, similar to
those used in my.cnf. Generally, this is one of the letters M (for megabytes) or G (for gigabytes).

Memory used for UNDO_BUFFER_SIZE comes from the global pool whose size is determined by the value
of the SharedGlobalMemory data node configuration parameter. This includes any default value implied
for this option by the setting of the InitialLogFileGroup data node configuration parameter.

The maximum permitted for UNDO_BUFFER_SIZE is 629145600 (600 MB).

On 32-bit systems, the maximum supported value for INITIAL_SIZE is 4294967296 (4 GB). (Bug
#29186)

The minimum allowed value for INITIAL_SIZE is 1048576 (1 MB).

The ENGINE option determines the storage engine to be used by this log file group, with engine_name
being the name of the storage engine. In MySQL 5.7, this must be NDB (or NDBCLUSTER). If ENGINE is not
set, MySQL tries to use the engine specified by the default_storage_engine server system variable
(formerly storage_engine). In any case, if the engine is not specified as NDB or NDBCLUSTER, the
CREATE LOGFILE GROUP statement appears to succeed but actually fails to create the log file group, as
shown here:

mysql> CREATE LOGFILE GROUP lg1
 -> ADD UNDOFILE 'undo.dat' INITIAL_SIZE = 10M;
Query OK, 0 rows affected, 1 warning (0.00 sec)

mysql> SHOW WARNINGS;
+-------+------+--+
| Level | Code | Message |
+-------+------+--+
| Error | 1478 | Table storage engine 'InnoDB' does not support the create option 'TABLESPACE or LOGFILE GROUP' |
+-------+------+--+
1 row in set (0.00 sec)

mysql> DROP LOGFILE GROUP lg1 ENGINE = NDB;
ERROR 1529 (HY000): Failed to drop LOGFILE GROUP

mysql> CREATE LOGFILE GROUP lg1
 -> ADD UNDOFILE 'undo.dat' INITIAL_SIZE = 10M
 -> ENGINE = NDB;
Query OK, 0 rows affected (2.97 sec)

2195

CREATE PROCEDURE and CREATE FUNCTION Statements

The fact that the CREATE LOGFILE GROUP statement does not actually return an error when a non-NDB
storage engine is named, but rather appears to succeed, is a known issue which we hope to address in a
future release of NDB Cluster.

REDO_BUFFER_SIZE, NODEGROUP, WAIT, and COMMENT are parsed but ignored, and so have no effect in
MySQL 5.7. These options are intended for future expansion.

When used with ENGINE [=] NDB, a log file group and associated UNDO log file are created on each
Cluster data node. You can verify that the UNDO files were created and obtain information about them by
querying the Information Schema FILES table. For example:

mysql> SELECT LOGFILE_GROUP_NAME, LOGFILE_GROUP_NUMBER, EXTRA
 -> FROM INFORMATION_SCHEMA.FILES
 -> WHERE FILE_NAME = 'undo_10.dat';
+--------------------+----------------------+----------------+
| LOGFILE_GROUP_NAME | LOGFILE_GROUP_NUMBER | EXTRA |
+--------------------+----------------------+----------------+
| lg_3 | 11 | CLUSTER_NODE=3 |
| lg_3 | 11 | CLUSTER_NODE=4 |
+--------------------+----------------------+----------------+
2 rows in set (0.06 sec)

CREATE LOGFILE GROUP is useful only with Disk Data storage for NDB Cluster. See Section 21.6.11,
“NDB Cluster Disk Data Tables”.

13.1.16 CREATE PROCEDURE and CREATE FUNCTION Statements

CREATE
 [DEFINER = user]
 PROCEDURE sp_name ([proc_parameter[,...]])
 [characteristic ...] routine_body

CREATE
 [DEFINER = user]
 FUNCTION sp_name ([func_parameter[,...]])
 RETURNS type
 [characteristic ...] routine_body

proc_parameter:
 [IN | OUT | INOUT] param_name type

func_parameter:
 param_name type

type:
 Any valid MySQL data type

characteristic: {
 COMMENT 'string'
 | LANGUAGE SQL
 | [NOT] DETERMINISTIC
 | { CONTAINS SQL | NO SQL | READS SQL DATA | MODIFIES SQL DATA }
 | SQL SECURITY { DEFINER | INVOKER }
}

routine_body:
 Valid SQL routine statement

These statements are used to create a stored routine (a stored procedure or function). That is, the
specified routine becomes known to the server. By default, a stored routine is associated with the
default database. To associate the routine explicitly with a given database, specify the name as
db_name.sp_name when you create it.

2196

CREATE PROCEDURE and CREATE FUNCTION Statements

The CREATE FUNCTION statement is also used in MySQL to support loadable functions. See
Section 13.7.3.1, “CREATE FUNCTION Statement for Loadable Functions”. A loadable function can be
regarded as an external stored function. Stored functions share their namespace with loadable functions.
See Section 9.2.5, “Function Name Parsing and Resolution”, for the rules describing how the server
interprets references to different kinds of functions.

To invoke a stored procedure, use the CALL statement (see Section 13.2.1, “CALL Statement”). To invoke
a stored function, refer to it in an expression. The function returns a value during expression evaluation.

CREATE PROCEDURE and CREATE FUNCTION require the CREATE ROUTINE privilege. If the DEFINER
clause is present, the privileges required depend on the user value, as discussed in Section 23.6,
“Stored Object Access Control”. If binary logging is enabled, CREATE FUNCTION might require the SUPER
privilege, as discussed in Section 23.7, “Stored Program Binary Logging”.

By default, MySQL automatically grants the ALTER ROUTINE and EXECUTE privileges to the routine
creator. This behavior can be changed by disabling the automatic_sp_privileges system variable.
See Section 23.2.2, “Stored Routines and MySQL Privileges”.

The DEFINER and SQL SECURITY clauses specify the security context to be used when checking access
privileges at routine execution time, as described later in this section.

If the routine name is the same as the name of a built-in SQL function, a syntax error occurs unless you
use a space between the name and the following parenthesis when defining the routine or invoking it later.
For this reason, avoid using the names of existing SQL functions for your own stored routines.

The IGNORE_SPACE SQL mode applies to built-in functions, not to stored routines. It is always permissible
to have spaces after a stored routine name, regardless of whether IGNORE_SPACE is enabled.

The parameter list enclosed within parentheses must always be present. If there are no parameters, an
empty parameter list of () should be used. Parameter names are not case-sensitive.

Each parameter is an IN parameter by default. To specify otherwise for a parameter, use the keyword OUT
or INOUT before the parameter name.

Note

Specifying a parameter as IN, OUT, or INOUT is valid only for a PROCEDURE. For a
FUNCTION, parameters are always regarded as IN parameters.

An IN parameter passes a value into a procedure. The procedure might modify the value, but the
modification is not visible to the caller when the procedure returns. An OUT parameter passes a value from
the procedure back to the caller. Its initial value is NULL within the procedure, and its value is visible to the
caller when the procedure returns. An INOUT parameter is initialized by the caller, can be modified by the
procedure, and any change made by the procedure is visible to the caller when the procedure returns.

For each OUT or INOUT parameter, pass a user-defined variable in the CALL statement that invokes the
procedure so that you can obtain its value when the procedure returns. If you are calling the procedure
from within another stored procedure or function, you can also pass a routine parameter or local routine
variable as an OUT or INOUT parameter. If you are calling the procedure from within a trigger, you can also
pass NEW.col_name as an OUT or INOUT parameter.

For information about the effect of unhandled conditions on procedure parameters, see Section 13.6.7.8,
“Condition Handling and OUT or INOUT Parameters”.

Routine parameters cannot be referenced in statements prepared within the routine; see Section 23.8,
“Restrictions on Stored Programs”.

2197

CREATE PROCEDURE and CREATE FUNCTION Statements

The following example shows a simple stored procedure that, given a country code, counts the number of
cities for that country that appear in the city table of the world database. The country code is passed
using an IN parameter, and the city count is returned using an OUT parameter:

mysql> delimiter //

mysql> CREATE PROCEDURE citycount (IN country CHAR(3), OUT cities INT)
 BEGIN
 SELECT COUNT(*) INTO cities FROM world.city
 WHERE CountryCode = country;
 END//
Query OK, 0 rows affected (0.01 sec)

mysql> delimiter ;

mysql> CALL citycount('JPN', @cities); -- cities in Japan
Query OK, 1 row affected (0.00 sec)

mysql> SELECT @cities;
+---------+
| @cities |
+---------+
| 248 |
+---------+
1 row in set (0.00 sec)

mysql> CALL citycount('FRA', @cities); -- cities in France
Query OK, 1 row affected (0.00 sec)

mysql> SELECT @cities;
+---------+
| @cities |
+---------+
| 40 |
+---------+
1 row in set (0.00 sec)

The example uses the mysql client delimiter command to change the statement delimiter from ; to //
while the procedure is being defined. This enables the ; delimiter used in the procedure body to be passed
through to the server rather than being interpreted by mysql itself. See Section 23.1, “Defining Stored
Programs”.

The RETURNS clause may be specified only for a FUNCTION, for which it is mandatory. It indicates the
return type of the function, and the function body must contain a RETURN value statement. If the RETURN
statement returns a value of a different type, the value is coerced to the proper type. For example, if a
function specifies an ENUM or SET value in the RETURNS clause, but the RETURN statement returns an
integer, the value returned from the function is the string for the corresponding ENUM member of set of SET
members.

The following example function takes a parameter, performs an operation using an SQL function, and
returns the result. In this case, it is unnecessary to use delimiter because the function definition
contains no internal ; statement delimiters:

mysql> CREATE FUNCTION hello (s CHAR(20))
 -> RETURNS CHAR(50) DETERMINISTIC
 -> RETURN CONCAT('Hello, ',s,'!');
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT hello('world');
+----------------+
| hello('world') |
+----------------+
| Hello, world! |

2198

CREATE PROCEDURE and CREATE FUNCTION Statements

+----------------+
1 row in set (0.00 sec)

Parameter types and function return types can be declared to use any valid data type. The COLLATE
attribute can be used if preceded by a CHARACTER SET specification.

The routine_body consists of a valid SQL routine statement. This can be a simple statement such as
SELECT or INSERT, or a compound statement written using BEGIN and END. Compound statements can
contain declarations, loops, and other control structure statements. The syntax for these statements is
described in Section 13.6, “Compound Statements”. In practice, stored functions tend to use compound
statements, unless the body consists of a single RETURN statement.

MySQL permits routines to contain DDL statements, such as CREATE and DROP. MySQL also permits
stored procedures (but not stored functions) to contain SQL transaction statements such as COMMIT.
Stored functions may not contain statements that perform explicit or implicit commit or rollback. Support for
these statements is not required by the SQL standard, which states that each DBMS vendor may decide
whether to permit them.

Statements that return a result set can be used within a stored procedure but not within a stored function.
This prohibition includes SELECT statements that do not have an INTO var_list clause and other
statements such as SHOW, EXPLAIN, and CHECK TABLE. For statements that can be determined at
function definition time to return a result set, a Not allowed to return a result set from a
function error occurs (ER_SP_NO_RETSET). For statements that can be determined only at runtime to
return a result set, a PROCEDURE %s can't return a result set in the given context error
occurs (ER_SP_BADSELECT).

USE statements within stored routines are not permitted. When a routine is invoked, an implicit USE
db_name is performed (and undone when the routine terminates). The causes the routine to have the
given default database while it executes. References to objects in databases other than the routine default
database should be qualified with the appropriate database name.

For additional information about statements that are not permitted in stored routines, see Section 23.8,
“Restrictions on Stored Programs”.

For information about invoking stored procedures from within programs written in a language that has a
MySQL interface, see Section 13.2.1, “CALL Statement”.

MySQL stores the sql_mode system variable setting in effect when a routine is created or altered, and
always executes the routine with this setting in force, regardless of the current server SQL mode when the
routine begins executing.

The switch from the SQL mode of the invoker to that of the routine occurs after evaluation of arguments
and assignment of the resulting values to routine parameters. If you define a routine in strict SQL mode
but invoke it in nonstrict mode, assignment of arguments to routine parameters does not take place in strict
mode. If you require that expressions passed to a routine be assigned in strict SQL mode, you should
invoke the routine with strict mode in effect.

The COMMENT characteristic is a MySQL extension, and may be used to describe the stored routine. This
information is displayed by the SHOW CREATE PROCEDURE and SHOW CREATE FUNCTION statements.

The LANGUAGE characteristic indicates the language in which the routine is written. The server ignores this
characteristic; only SQL routines are supported.

A routine is considered “deterministic” if it always produces the same result for the same input parameters,
and “not deterministic” otherwise. If neither DETERMINISTIC nor NOT DETERMINISTIC is given in the
routine definition, the default is NOT DETERMINISTIC. To declare that a function is deterministic, you must
specify DETERMINISTIC explicitly.

2199

https://dev.mysql.com/doc/mysql-errors/5.7/en/server-error-reference.html#error_er_sp_no_retset
https://dev.mysql.com/doc/mysql-errors/5.7/en/server-error-reference.html#error_er_sp_badselect

CREATE PROCEDURE and CREATE FUNCTION Statements

Assessment of the nature of a routine is based on the “honesty” of the creator: MySQL does not check that
a routine declared DETERMINISTIC is free of statements that produce nondeterministic results. However,
misdeclaring a routine might affect results or affect performance. Declaring a nondeterministic routine as
DETERMINISTIC might lead to unexpected results by causing the optimizer to make incorrect execution
plan choices. Declaring a deterministic routine as NONDETERMINISTIC might diminish performance by
causing available optimizations not to be used.

If binary logging is enabled, the DETERMINISTIC characteristic affects which routine definitions MySQL
accepts. See Section 23.7, “Stored Program Binary Logging”.

A routine that contains the NOW() function (or its synonyms) or RAND() is nondeterministic, but it might
still be replication-safe. For NOW(), the binary log includes the timestamp and replicates correctly. RAND()
also replicates correctly as long as it is called only a single time during the execution of a routine. (You can
consider the routine execution timestamp and random number seed as implicit inputs that are identical on
the source and replica.)

Several characteristics provide information about the nature of data use by the routine. In MySQL, these
characteristics are advisory only. The server does not use them to constrain what kinds of statements a
routine is permitted to execute.

• CONTAINS SQL indicates that the routine does not contain statements that read or write data. This is the
default if none of these characteristics is given explicitly. Examples of such statements are SET @x = 1
or DO RELEASE_LOCK('abc'), which execute but neither read nor write data.

• NO SQL indicates that the routine contains no SQL statements.

• READS SQL DATA indicates that the routine contains statements that read data (for example, SELECT),
but not statements that write data.

• MODIFIES SQL DATA indicates that the routine contains statements that may write data (for example,
INSERT or DELETE).

The SQL SECURITY characteristic can be DEFINER or INVOKER to specify the security context; that is,
whether the routine executes using the privileges of the account named in the routine DEFINER clause or
the user who invokes it. This account must have permission to access the database with which the routine
is associated. The default value is DEFINER. The user who invokes the routine must have the EXECUTE
privilege for it, as must the DEFINER account if the routine executes in definer security context.

The DEFINER clause specifies the MySQL account to be used when checking access privileges at routine
execution time for routines that have the SQL SECURITY DEFINER characteristic.

If the DEFINER clause is present, the user value should be a MySQL account specified as
'user_name'@'host_name', CURRENT_USER, or CURRENT_USER(). The permitted user values
depend on the privileges you hold, as discussed in Section 23.6, “Stored Object Access Control”. Also see
that section for additional information about stored routine security.

If the DEFINER clause is omitted, the default definer is the user who executes the CREATE PROCEDURE or
CREATE FUNCTION statement. This is the same as specifying DEFINER = CURRENT_USER explicitly.

Within the body of a stored routine that is defined with the SQL SECURITY DEFINER characteristic, the
CURRENT_USER function returns the routine's DEFINER value. For information about user auditing within
stored routines, see Section 6.2.18, “SQL-Based Account Activity Auditing”.

Consider the following procedure, which displays a count of the number of MySQL accounts listed in the
mysql.user system table:

CREATE DEFINER = 'admin'@'localhost' PROCEDURE account_count()
BEGIN

2200

CREATE SERVER Statement

 SELECT 'Number of accounts:', COUNT(*) FROM mysql.user;
END;

The procedure is assigned a DEFINER account of 'admin'@'localhost' no matter which user defines
it. It executes with the privileges of that account no matter which user invokes it (because the default
security characteristic is DEFINER). The procedure succeeds or fails depending on whether invoker has
the EXECUTE privilege for it and 'admin'@'localhost' has the SELECT privilege for the mysql.user
table.

Now suppose that the procedure is defined with the SQL SECURITY INVOKER characteristic:

CREATE DEFINER = 'admin'@'localhost' PROCEDURE account_count()
SQL SECURITY INVOKER
BEGIN
 SELECT 'Number of accounts:', COUNT(*) FROM mysql.user;
END;

The procedure still has a DEFINER of 'admin'@'localhost', but in this case, it executes with the
privileges of the invoking user. Thus, the procedure succeeds or fails depending on whether the invoker
has the EXECUTE privilege for it and the SELECT privilege for the mysql.user table.

The server handles the data type of a routine parameter, local routine variable created with DECLARE, or
function return value as follows:

• Assignments are checked for data type mismatches and overflow. Conversion and overflow problems
result in warnings, or errors in strict SQL mode.

• Only scalar values can be assigned. For example, a statement such as SET x = (SELECT 1, 2) is
invalid.

• For character data types, if CHARACTER SET is includedd in the declaration, the specified character set
and its default collation is used. If the COLLATE attribute is also present, that collation is used rather than
the default collation.

If CHARACTER SET and COLLATE are not present, the database character set and collation in effect at
routine creation time are used. To avoid having the server use the database character set and collation,
provide an explicit CHARACTER SET and a COLLATE attribute for character data parameters.

If you alter the database default character set or collation, stored routines that are to use the new
database defaults must be dropped and recreated.

The database character set and collation are given by the value of the character_set_database
and collation_database system variables. For more information, see Section 10.3.3, “Database
Character Set and Collation”.

13.1.17 CREATE SERVER Statement
CREATE SERVER server_name
 FOREIGN DATA WRAPPER wrapper_name
 OPTIONS (option [, option] ...)

option: {
 HOST character-literal
 | DATABASE character-literal
 | USER character-literal
 | PASSWORD character-literal
 | SOCKET character-literal
 | OWNER character-literal
 | PORT numeric-literal
}

2201

CREATE TABLE Statement

This statement creates the definition of a server for use with the FEDERATED storage engine. The CREATE
SERVER statement creates a new row in the servers table in the mysql database. This statement
requires the SUPER privilege.

The server_name should be a unique reference to the server. Server definitions are global within the
scope of the server, it is not possible to qualify the server definition to a specific database. server_name
has a maximum length of 64 characters (names longer than 64 characters are silently truncated), and is
case-insensitive. You may specify the name as a quoted string.

The wrapper_name is an identifier and may be quoted with single quotation marks.

For each option you must specify either a character literal or numeric literal. Character literals are UTF-8,
support a maximum length of 64 characters and default to a blank (empty) string. String literals are silently
truncated to 64 characters. Numeric literals must be a number between 0 and 9999, default value is 0.

Note

The OWNER option is currently not applied, and has no effect on the ownership or
operation of the server connection that is created.

The CREATE SERVER statement creates an entry in the mysql.servers table that can later be used with
the CREATE TABLE statement when creating a FEDERATED table. The options that you specify are used
to populate the columns in the mysql.servers table. The table columns are Server_name, Host, Db,
Username, Password, Port and Socket.

For example:

CREATE SERVER s
FOREIGN DATA WRAPPER mysql
OPTIONS (USER 'Remote', HOST '198.51.100.106', DATABASE 'test');

Be sure to specify all options necessary to establish a connection to the server. The user name, host
name, and database name are mandatory. Other options might be required as well, such as password.

The data stored in the table can be used when creating a connection to a FEDERATED table:

CREATE TABLE t (s1 INT) ENGINE=FEDERATED CONNECTION='s';

For more information, see Section 15.8, “The FEDERATED Storage Engine”.

CREATE SERVER causes an implicit commit. See Section 13.3.3, “Statements That Cause an Implicit
Commit”.

CREATE SERVER is not written to the binary log, regardless of the logging format that is in use.

13.1.18 CREATE TABLE Statement
CREATE [TEMPORARY] TABLE [IF NOT EXISTS] tbl_name
 (create_definition,...)
 [table_options]
 [partition_options]

CREATE [TEMPORARY] TABLE [IF NOT EXISTS] tbl_name
 [(create_definition,...)]
 [table_options]
 [partition_options]
 [IGNORE | REPLACE]
 [AS] query_expression

CREATE [TEMPORARY] TABLE [IF NOT EXISTS] tbl_name
 { LIKE old_tbl_name | (LIKE old_tbl_name) }

2202

CREATE TABLE Statement

create_definition: {
 col_name column_definition
 | {INDEX | KEY} [index_name] [index_type] (key_part,...)
 [index_option] ...
 | {FULLTEXT | SPATIAL} [INDEX | KEY] [index_name] (key_part,...)
 [index_option] ...
 | [CONSTRAINT [symbol]] PRIMARY KEY
 [index_type] (key_part,...)
 [index_option] ...
 | [CONSTRAINT [symbol]] UNIQUE [INDEX | KEY]
 [index_name] [index_type] (key_part,...)
 [index_option] ...
 | [CONSTRAINT [symbol]] FOREIGN KEY
 [index_name] (col_name,...)
 reference_definition
 | CHECK (expr)
}

column_definition: {
 data_type [NOT NULL | NULL] [DEFAULT default_value]
 [AUTO_INCREMENT] [UNIQUE [KEY]] [[PRIMARY] KEY]
 [COMMENT 'string']
 [COLLATE collation_name]
 [COLUMN_FORMAT {FIXED | DYNAMIC | DEFAULT}]
 [STORAGE {DISK | MEMORY}]
 [reference_definition]
 | data_type
 [COLLATE collation_name]
 [GENERATED ALWAYS] AS (expr)
 [VIRTUAL | STORED] [NOT NULL | NULL]
 [UNIQUE [KEY]] [[PRIMARY] KEY]
 [COMMENT 'string']
 [reference_definition]
}

data_type:
 (see Chapter 11, Data Types)

key_part:
 col_name [(length)] [ASC | DESC]

index_type:
 USING {BTREE | HASH}

index_option: {
 KEY_BLOCK_SIZE [=] value
 | index_type
 | WITH PARSER parser_name
 | COMMENT 'string'
}

reference_definition:
 REFERENCES tbl_name (key_part,...)
 [MATCH FULL | MATCH PARTIAL | MATCH SIMPLE]
 [ON DELETE reference_option]
 [ON UPDATE reference_option]

reference_option:
 RESTRICT | CASCADE | SET NULL | NO ACTION | SET DEFAULT

table_options:
 table_option [[,] table_option] ...

table_option: {
 AUTO_INCREMENT [=] value
 | AVG_ROW_LENGTH [=] value
 | [DEFAULT] CHARACTER SET [=] charset_name

2203

CREATE TABLE Statement

 | CHECKSUM [=] {0 | 1}
 | [DEFAULT] COLLATE [=] collation_name
 | COMMENT [=] 'string'
 | COMPRESSION [=] {'ZLIB' | 'LZ4' | 'NONE'}
 | CONNECTION [=] 'connect_string'
 | {DATA | INDEX} DIRECTORY [=] 'absolute path to directory'
 | DELAY_KEY_WRITE [=] {0 | 1}
 | ENCRYPTION [=] {'Y' | 'N'}
 | ENGINE [=] engine_name
 | INSERT_METHOD [=] { NO | FIRST | LAST }
 | KEY_BLOCK_SIZE [=] value
 | MAX_ROWS [=] value
 | MIN_ROWS [=] value
 | PACK_KEYS [=] {0 | 1 | DEFAULT}
 | PASSWORD [=] 'string'
 | ROW_FORMAT [=] {DEFAULT | DYNAMIC | FIXED | COMPRESSED | REDUNDANT | COMPACT}
 | STATS_AUTO_RECALC [=] {DEFAULT | 0 | 1}
 | STATS_PERSISTENT [=] {DEFAULT | 0 | 1}
 | STATS_SAMPLE_PAGES [=] value
 | tablespace_option
 | UNION [=] (tbl_name[,tbl_name]...)
}

partition_options:
 PARTITION BY
 { [LINEAR] HASH(expr)
 | [LINEAR] KEY [ALGORITHM={1 | 2}] (column_list)
 | RANGE{(expr) | COLUMNS(column_list)}
 | LIST{(expr) | COLUMNS(column_list)} }
 [PARTITIONS num]
 [SUBPARTITION BY
 { [LINEAR] HASH(expr)
 | [LINEAR] KEY [ALGORITHM={1 | 2}] (column_list) }
 [SUBPARTITIONS num]
]
 [(partition_definition [, partition_definition] ...)]

partition_definition:
 PARTITION partition_name
 [VALUES
 {LESS THAN {(expr | value_list) | MAXVALUE}
 |
 IN (value_list)}]
 [[STORAGE] ENGINE [=] engine_name]
 [COMMENT [=] 'string']
 [DATA DIRECTORY [=] 'data_dir']
 [INDEX DIRECTORY [=] 'index_dir']
 [MAX_ROWS [=] max_number_of_rows]
 [MIN_ROWS [=] min_number_of_rows]
 [TABLESPACE [=] tablespace_name]
 [(subpartition_definition [, subpartition_definition] ...)]

subpartition_definition:
 SUBPARTITION logical_name
 [[STORAGE] ENGINE [=] engine_name]
 [COMMENT [=] 'string']
 [DATA DIRECTORY [=] 'data_dir']
 [INDEX DIRECTORY [=] 'index_dir']
 [MAX_ROWS [=] max_number_of_rows]
 [MIN_ROWS [=] min_number_of_rows]
 [TABLESPACE [=] tablespace_name]

tablespace_option:
 TABLESPACE tablespace_name [STORAGE DISK]
 | [TABLESPACE tablespace_name] STORAGE MEMORY

query_expression:

2204

CREATE TABLE Statement

 SELECT ... (Some valid select or union statement)

CREATE TABLE creates a table with the given name. You must have the CREATE privilege for the table.

By default, tables are created in the default database, using the InnoDB storage engine. An error occurs if
the table exists, if there is no default database, or if the database does not exist.

MySQL has no limit on the number of tables. The underlying file system may have a limit on the number
of files that represent tables. Individual storage engines may impose engine-specific constraints. InnoDB
permits up to 4 billion tables.

For information about the physical representation of a table, see Section 13.1.18.1, “Files Created by
CREATE TABLE”.

There are several aspects to the CREATE TABLE statement, described under the following topics in this
section:

• Table Name

• Temporary Tables

• Table Cloning and Copying

• Column Data Types and Attributes

• Indexes and Foreign Keys

• Table Options

• Table Partitioning

Table Name

• tbl_name

The table name can be specified as db_name.tbl_name to create the table in a specific database.
This works regardless of whether there is a default database, assuming that the database exists.
If you use quoted identifiers, quote the database and table names separately. For example, write
`mydb`.`mytbl`, not `mydb.mytbl`.

Rules for permissible table names are given in Section 9.2, “Schema Object Names”.

• IF NOT EXISTS

Prevents an error from occurring if the table exists. However, there is no verification that the existing
table has a structure identical to that indicated by the CREATE TABLE statement.

Temporary Tables

You can use the TEMPORARY keyword when creating a table. A TEMPORARY table is visible only within
the current session, and is dropped automatically when the session is closed. For more information, see
Section 13.1.18.2, “CREATE TEMPORARY TABLE Statement”.

Table Cloning and Copying

• LIKE

Use CREATE TABLE ... LIKE to create an empty table based on the definition of another table,
including any column attributes and indexes defined in the original table:

2205

CREATE TABLE Statement

CREATE TABLE new_tbl LIKE orig_tbl;

For more information, see Section 13.1.18.3, “CREATE TABLE ... LIKE Statement”.

• [AS] query_expression

To create one table from another, add a SELECT statement at the end of the CREATE TABLE statement:

CREATE TABLE new_tbl AS SELECT * FROM orig_tbl;

For more information, see Section 13.1.18.4, “CREATE TABLE ... SELECT Statement”.

• IGNORE | REPLACE

The IGNORE and REPLACE options indicate how to handle rows that duplicate unique key values when
copying a table using a SELECT statement.

For more information, see Section 13.1.18.4, “CREATE TABLE ... SELECT Statement”.

Column Data Types and Attributes

There is a hard limit of 4096 columns per table, but the effective maximum may be less for a given table
and depends on the factors discussed in Section 8.4.7, “Limits on Table Column Count and Row Size”.

• data_type

data_type represents the data type in a column definition. For a full description of the syntax
available for specifying column data types, as well as information about the properties of each type, see
Chapter 11, Data Types.

• Some attributes do not apply to all data types. AUTO_INCREMENT applies only to integer and floating-
point types. DEFAULT does not apply to the BLOB, TEXT, GEOMETRY, and JSON types.

• Character data types (CHAR, VARCHAR, the TEXT types, ENUM, SET, and any synonyms) can include
CHARACTER SET to specify the character set for the column. CHARSET is a synonym for CHARACTER
SET. A collation for the character set can be specified with the COLLATE attribute, along with any other
attributes. For details, see Chapter 10, Character Sets, Collations, Unicode. Example:

CREATE TABLE t (c CHAR(20) CHARACTER SET utf8 COLLATE utf8_bin);

MySQL 5.7 interprets length specifications in character column definitions in characters. Lengths for
BINARY and VARBINARY are in bytes.

• For CHAR, VARCHAR, BINARY, and VARBINARY columns, indexes can be created that use only the
leading part of column values, using col_name(length) syntax to specify an index prefix length.
BLOB and TEXT columns also can be indexed, but a prefix length must be given. Prefix lengths are
given in characters for nonbinary string types and in bytes for binary string types. That is, index entries
consist of the first length characters of each column value for CHAR, VARCHAR, and TEXT columns,
and the first length bytes of each column value for BINARY, VARBINARY, and BLOB columns.
Indexing only a prefix of column values like this can make the index file much smaller. For additional
information about index prefixes, see Section 13.1.14, “CREATE INDEX Statement”.

Only the InnoDB and MyISAM storage engines support indexing on BLOB and TEXT columns. For
example:

CREATE TABLE test (blob_col BLOB, INDEX(blob_col(10)));

2206

CREATE TABLE Statement

As of MySQL 5.7.17, if a specified index prefix exceeds the maximum column data type size, CREATE
TABLE handles the index as follows:

• For a nonunique index, either an error occurs (if strict SQL mode is enabled), or the index length is
reduced to lie within the maximum column data type size and a warning is produced (if strict SQL
mode is not enabled).

• For a unique index, an error occurs regardless of SQL mode because reducing the index length
might enable insertion of nonunique entries that do not meet the specified uniqueness requirement.

• JSON columns cannot be indexed. You can work around this restriction by creating an index on a
generated column that extracts a scalar value from the JSON column. See Indexing a Generated
Column to Provide a JSON Column Index, for a detailed example.

• NOT NULL | NULL

If neither NULL nor NOT NULL is specified, the column is treated as though NULL had been specified.

In MySQL 5.7, only the InnoDB, MyISAM, and MEMORY storage engines support indexes on columns
that can have NULL values. In other cases, you must declare indexed columns as NOT NULL or an error
results.

• DEFAULT

Specifies a default value for a column. For more information about default value handling, including the
case that a column definition includes no explicit DEFAULT value, see Section 11.6, “Data Type Default
Values”.

If the NO_ZERO_DATE or NO_ZERO_IN_DATE SQL mode is enabled and a date-valued default is not
correct according to that mode, CREATE TABLE produces a warning if strict SQL mode is not enabled
and an error if strict mode is enabled. For example, with NO_ZERO_IN_DATE enabled, c1 DATE
DEFAULT '2010-00-00' produces a warning.

• AUTO_INCREMENT

An integer or floating-point column can have the additional attribute AUTO_INCREMENT. When you insert
a value of NULL (recommended) or 0 into an indexed AUTO_INCREMENT column, the column is set to
the next sequence value. Typically this is value+1, where value is the largest value for the column
currently in the table. AUTO_INCREMENT sequences begin with 1.

To retrieve an AUTO_INCREMENT value after inserting a row, use the LAST_INSERT_ID() SQL
function or the mysql_insert_id() C API function. See Section 12.15, “Information Functions”, and
mysql_insert_id().

If the NO_AUTO_VALUE_ON_ZERO SQL mode is enabled, you can store 0 in AUTO_INCREMENT columns
as 0 without generating a new sequence value. See Section 5.1.10, “Server SQL Modes”.

There can be only one AUTO_INCREMENT column per table, it must be indexed, and it cannot have a
DEFAULT value. An AUTO_INCREMENT column works properly only if it contains only positive values.
Inserting a negative number is regarded as inserting a very large positive number. This is done to avoid

2207

https://dev.mysql.com/doc/c-api/5.7/en/mysql-insert-id.html
https://dev.mysql.com/doc/c-api/5.7/en/mysql-insert-id.html

CREATE TABLE Statement

precision problems when numbers “wrap” over from positive to negative and also to ensure that you do
not accidentally get an AUTO_INCREMENT column that contains 0.

For MyISAM tables, you can specify an AUTO_INCREMENT secondary column in a multiple-column key.
See Section 3.6.9, “Using AUTO_INCREMENT”.

To make MySQL compatible with some ODBC applications, you can find the AUTO_INCREMENT value
for the last inserted row with the following query:

SELECT * FROM tbl_name WHERE auto_col IS NULL

This method requires that sql_auto_is_null variable is not set to 0. See Section 5.1.7, “Server
System Variables”.

For information about InnoDB and AUTO_INCREMENT, see Section 14.6.1.6, “AUTO_INCREMENT
Handling in InnoDB”. For information about AUTO_INCREMENT and MySQL Replication, see
Section 16.4.1.1, “Replication and AUTO_INCREMENT”.

• COMMENT

A comment for a column can be specified with the COMMENT option, up to 1024 characters long. The
comment is displayed by the SHOW CREATE TABLE and SHOW FULL COLUMNS statements. It is also
shown in the COLUMN_COMMENT column of the Information Schema COLUMNS table.

• COLUMN_FORMAT

In NDB Cluster, it is also possible to specify a data storage format for individual columns of NDB tables
using COLUMN_FORMAT. Permissible column formats are FIXED, DYNAMIC, and DEFAULT. FIXED is
used to specify fixed-width storage, DYNAMIC permits the column to be variable-width, and DEFAULT
causes the column to use fixed-width or variable-width storage as determined by the column's data type
(possibly overridden by a ROW_FORMAT specifier).

Beginning with MySQL NDB Cluster 7.5.4, for NDB tables, the default value for COLUMN_FORMAT is
FIXED. (The default had been switched to DYNAMIC in MySQL NDB Cluster 7.5.1, but this change was
reverted to maintain backwards compatibility with existing GA release series.) (Bug #24487363)

In NDB Cluster, the maximum possible offset for a column defined with COLUMN_FORMAT=FIXED is
8188 bytes. For more information and possible workarounds, see Section 21.2.7.5, “Limits Associated
with Database Objects in NDB Cluster”.

COLUMN_FORMAT currently has no effect on columns of tables using storage engines other than NDB. In
MySQL 5.7 and later, COLUMN_FORMAT is silently ignored.

• STORAGE

For NDB tables, it is possible to specify whether the column is stored on disk or in memory by using
a STORAGE clause. STORAGE DISK causes the column to be stored on disk, and STORAGE MEMORY
causes in-memory storage to be used. The CREATE TABLE statement used must still include a
TABLESPACE clause:

mysql> CREATE TABLE t1 (
 -> c1 INT STORAGE DISK,
 -> c2 INT STORAGE MEMORY
 ->) ENGINE NDB;
ERROR 1005 (HY000): Can't create table 'c.t1' (errno: 140)

mysql> CREATE TABLE t1 (
 -> c1 INT STORAGE DISK,
 -> c2 INT STORAGE MEMORY

2208

CREATE TABLE Statement

 ->) TABLESPACE ts_1 ENGINE NDB;
Query OK, 0 rows affected (1.06 sec)

For NDB tables, STORAGE DEFAULT is equivalent to STORAGE MEMORY.

The STORAGE clause has no effect on tables using storage engines other than NDB. The STORAGE
keyword is supported only in the build of mysqld that is supplied with NDB Cluster; it is not recognized
in any other version of MySQL, where any attempt to use the STORAGE keyword causes a syntax error.

• GENERATED ALWAYS

Used to specify a generated column expression. For information about generated columns, see
Section 13.1.18.7, “CREATE TABLE and Generated Columns”.

Stored generated columns can be indexed. InnoDB supports secondary indexes on virtual generated
columns. See Section 13.1.18.8, “Secondary Indexes and Generated Columns”.

Indexes and Foreign Keys

Several keywords apply to creation of indexes and foreign keys. For general background in addition to
the following descriptions, see Section 13.1.14, “CREATE INDEX Statement”, and Section 13.1.18.5,
“FOREIGN KEY Constraints”.

• CONSTRAINT symbol

The CONSTRAINT symbol clause may be given to name a constraint. If the clause is not given, or
a symbol is not included following the CONSTRAINT keyword, MySQL automatically generates a
constraint name, with the exception noted below. The symbol value, if used, must be unique per
schema (database), per constraint type. A duplicate symbol results in an error. See also the discussion
about length limits of generated constraint identifiers at Section 9.2.1, “Identifier Length Limits”.

Note

If the CONSTRAINT symbol clause is not given in a foreign key definition, or a
symbol is not included following the CONSTRAINT keyword, NDB uses the foreign
key index name.

The SQL standard specifies that all types of constraints (primary key, unique index, foreign key, check)
belong to the same namespace. In MySQL, each constraint type has its own namespace per schema.
Consequently, names for each type of constraint must be unique per schema.

• PRIMARY KEY

A unique index where all key columns must be defined as NOT NULL. If they are not explicitly declared
as NOT NULL, MySQL declares them so implicitly (and silently). A table can have only one PRIMARY
KEY. The name of a PRIMARY KEY is always PRIMARY, which thus cannot be used as the name for any
other kind of index.

If you do not have a PRIMARY KEY and an application asks for the PRIMARY KEY in your tables,
MySQL returns the first UNIQUE index that has no NULL columns as the PRIMARY KEY.

In InnoDB tables, keep the PRIMARY KEY short to minimize storage overhead for secondary indexes.
Each secondary index entry contains a copy of the primary key columns for the corresponding row. (See
Section 14.6.2.1, “Clustered and Secondary Indexes”.)

2209

CREATE TABLE Statement

In the created table, a PRIMARY KEY is placed first, followed by all UNIQUE indexes, and then the
nonunique indexes. This helps the MySQL optimizer to prioritize which index to use and also more
quickly to detect duplicated UNIQUE keys.

A PRIMARY KEY can be a multiple-column index. However, you cannot create a multiple-column index
using the PRIMARY KEY key attribute in a column specification. Doing so only marks that single column
as primary. You must use a separate PRIMARY KEY(key_part, ...) clause.

If a table has a PRIMARY KEY or UNIQUE NOT NULL index that consists of a single column that has an
integer type, you can use _rowid to refer to the indexed column in SELECT statements, as described in
Unique Indexes.

In MySQL, the name of a PRIMARY KEY is PRIMARY. For other indexes, if you do not assign a name,
the index is assigned the same name as the first indexed column, with an optional suffix (_2, _3, ...)
to make it unique. You can see index names for a table using SHOW INDEX FROM tbl_name. See
Section 13.7.5.22, “SHOW INDEX Statement”.

• KEY | INDEX

KEY is normally a synonym for INDEX. The key attribute PRIMARY KEY can also be specified as just
KEY when given in a column definition. This was implemented for compatibility with other database
systems.

• UNIQUE

A UNIQUE index creates a constraint such that all values in the index must be distinct. An error occurs
if you try to add a new row with a key value that matches an existing row. For all engines, a UNIQUE
index permits multiple NULL values for columns that can contain NULL. If you specify a prefix value for a
column in a UNIQUE index, the column values must be unique within the prefix length.

If a table has a PRIMARY KEY or UNIQUE NOT NULL index that consists of a single column that has an
integer type, you can use _rowid to refer to the indexed column in SELECT statements, as described in
Unique Indexes.

• FULLTEXT

A FULLTEXT index is a special type of index used for full-text searches. Only the InnoDB and MyISAM
storage engines support FULLTEXT indexes. They can be created only from CHAR, VARCHAR, and TEXT
columns. Indexing always happens over the entire column; column prefix indexing is not supported and
any prefix length is ignored if specified. See Section 12.9, “Full-Text Search Functions”, for details of
operation. A WITH PARSER clause can be specified as an index_option value to associate a parser
plugin with the index if full-text indexing and searching operations need special handling. This clause is
valid only for FULLTEXT indexes. Both InnoDB and MyISAM support full-text parser plugins. See Full-
Text Parser Plugins and Writing Full-Text Parser Plugins for more information.

• SPATIAL

You can create SPATIAL indexes on spatial data types. Spatial types are supported only for MyISAM
and InnoDB tables, and indexed columns must be declared as NOT NULL. See Section 11.4, “Spatial
Data Types”.

• FOREIGN KEY

MySQL supports foreign keys, which let you cross-reference related data across tables, and foreign key
constraints, which help keep this spread-out data consistent. For definition and option information, see
reference_definition, and reference_option.

2210

https://dev.mysql.com/doc/extending-mysql/5.7/en/plugin-types.html#full-text-plugin-type
https://dev.mysql.com/doc/extending-mysql/5.7/en/plugin-types.html#full-text-plugin-type
https://dev.mysql.com/doc/extending-mysql/5.7/en/writing-full-text-plugins.html

CREATE TABLE Statement

Partitioned tables employing the InnoDB storage engine do not support foreign keys. See Section 22.6,
“Restrictions and Limitations on Partitioning”, for more information.

• CHECK

The CHECK clause is parsed but ignored by all storage engines.

• key_part

• A key_part specification can end with ASC or DESC. These keywords are permitted for future
extensions for specifying ascending or descending index value storage. Currently, they are parsed but
ignored; index values are always stored in ascending order.

• Prefixes, defined by the length attribute, can be up to 767 bytes long for InnoDB tables or 3072
bytes if the innodb_large_prefix option is enabled. For MyISAM tables, the prefix length limit is
1000 bytes.

Prefix limits are measured in bytes. However, prefix lengths for index specifications in CREATE
TABLE, ALTER TABLE, and CREATE INDEX statements are interpreted as number of characters for
nonbinary string types (CHAR, VARCHAR, TEXT) and number of bytes for binary string types (BINARY,
VARBINARY, BLOB). Take this into account when specifying a prefix length for a nonbinary string
column that uses a multibyte character set.

• index_type

Some storage engines permit you to specify an index type when creating an index. The syntax for the
index_type specifier is USING type_name.

Example:

CREATE TABLE lookup
 (id INT, INDEX USING BTREE (id))
 ENGINE = MEMORY;

The preferred position for USING is after the index column list. It can be given before the column list, but
support for use of the option in that position is deprecated; expect it to be removed in a future MySQL
release.

• index_option

index_option values specify additional options for an index.

• KEY_BLOCK_SIZE

For MyISAM tables, KEY_BLOCK_SIZE optionally specifies the size in bytes to use for index key
blocks. The value is treated as a hint; a different size could be used if necessary. A KEY_BLOCK_SIZE
value specified for an individual index definition overrides the table-level KEY_BLOCK_SIZE value.

For information about the table-level KEY_BLOCK_SIZE attribute, see Table Options.

• WITH PARSER

The WITH PARSER option can be used only with FULLTEXT indexes. It associates a parser plugin
with the index if full-text indexing and searching operations need special handling. Both InnoDB and

2211

CREATE TABLE Statement

MyISAM support full-text parser plugins. If you have a MyISAM table with an associated full-text parser
plugin, you can convert the table to InnoDB using ALTER TABLE.

• COMMENT

Index definitions can include an optional comment of up to 1024 characters.

You can set the InnoDB MERGE_THRESHOLD value for an individual index using the index_option
COMMENT clause. See Section 14.8.12, “Configuring the Merge Threshold for Index Pages”.

For more information about permissible index_option values, see Section 13.1.14, “CREATE INDEX
Statement”. For more information about indexes, see Section 8.3.1, “How MySQL Uses Indexes”.

• reference_definition

For reference_definition syntax details and examples, see Section 13.1.18.5, “FOREIGN KEY
Constraints”.

InnoDB and NDB tables support checking of foreign key constraints. The columns of the referenced
table must always be explicitly named. Both ON DELETE and ON UPDATE actions on foreign keys
are supported. For more detailed information and examples, see Section 13.1.18.5, “FOREIGN KEY
Constraints”.

For other storage engines, MySQL Server parses and ignores the FOREIGN KEY syntax in CREATE
TABLE statements.

Important

For users familiar with the ANSI/ISO SQL Standard, please note that no storage
engine, including InnoDB, recognizes or enforces the MATCH clause used in
referential integrity constraint definitions. Use of an explicit MATCH clause does
not have the specified effect, and also causes ON DELETE and ON UPDATE
clauses to be ignored. For these reasons, specifying MATCH should be avoided.

The MATCH clause in the SQL standard controls how NULL values in a composite
(multiple-column) foreign key are handled when comparing to a primary key.
InnoDB essentially implements the semantics defined by MATCH SIMPLE, which
permit a foreign key to be all or partially NULL. In that case, the (child table) row
containing such a foreign key is permitted to be inserted, and does not match any
row in the referenced (parent) table. It is possible to implement other semantics
using triggers.

Additionally, MySQL requires that the referenced columns be indexed for
performance. However, InnoDB does not enforce any requirement that the
referenced columns be declared UNIQUE or NOT NULL. The handling of foreign
key references to nonunique keys or keys that contain NULL values is not well
defined for operations such as UPDATE or DELETE CASCADE. You are advised
to use foreign keys that reference only keys that are both UNIQUE (or PRIMARY)
and NOT NULL.

MySQL parses but ignores “inline REFERENCES specifications” (as defined
in the SQL standard) where the references are defined as part of the column
specification. MySQL accepts REFERENCES clauses only when specified as
part of a separate FOREIGN KEY specification. For more information, see
Section 1.6.2.3, “FOREIGN KEY Constraint Differences”.

2212

CREATE TABLE Statement

• reference_option

For information about the RESTRICT, CASCADE, SET NULL, NO ACTION, and SET DEFAULT options,
see Section 13.1.18.5, “FOREIGN KEY Constraints”.

Table Options

Table options are used to optimize the behavior of the table. In most cases, you do not have to specify any
of them. These options apply to all storage engines unless otherwise indicated. Options that do not apply
to a given storage engine may be accepted and remembered as part of the table definition. Such options
then apply if you later use ALTER TABLE to convert the table to use a different storage engine.

• ENGINE

Specifies the storage engine for the table, using one of the names shown in the following table. The
engine name can be unquoted or quoted. The quoted name 'DEFAULT' is recognized but ignored.

Storage Engine Description

InnoDB Transaction-safe tables with row locking and
foreign keys. The default storage engine for new
tables. See Chapter 14, The InnoDB Storage
Engine, and in particular Section 14.1, “Introduction
to InnoDB” if you have MySQL experience but are
new to InnoDB.

MyISAM The binary portable storage engine that is primarily
used for read-only or read-mostly workloads. See
Section 15.2, “The MyISAM Storage Engine”.

MEMORY The data for this storage engine is stored only
in memory. See Section 15.3, “The MEMORY
Storage Engine”.

CSV Tables that store rows in comma-separated values
format. See Section 15.4, “The CSV Storage
Engine”.

ARCHIVE The archiving storage engine. See Section 15.5,
“The ARCHIVE Storage Engine”.

EXAMPLE An example engine. See Section 15.9, “The
EXAMPLE Storage Engine”.

FEDERATED Storage engine that accesses remote tables. See
Section 15.8, “The FEDERATED Storage Engine”.

HEAP This is a synonym for MEMORY.

MERGE A collection of MyISAM tables used as one table.
Also known as MRG_MyISAM. See Section 15.7,
“The MERGE Storage Engine”.

NDB Clustered, fault-tolerant, memory-based tables,
supporting transactions and foreign keys. Also
known as NDBCLUSTER. See Chapter 21, MySQL
NDB Cluster 7.5 and NDB Cluster 7.6.

By default, if a storage engine is specified that is not available, the statement fails with an error. You
can override this behavior by removing NO_ENGINE_SUBSTITUTION from the server SQL mode (see
Section 5.1.10, “Server SQL Modes”) so that MySQL allows substitution of the specified engine with the

2213

CREATE TABLE Statement

default storage engine instead. Normally in such cases, this is InnoDB, which is the default value for
the default_storage_engine system variable. When NO_ENGINE_SUBSTITUTION is disabled, a
warning occurs if the storage engine specification is not honored.

• AUTO_INCREMENT

The initial AUTO_INCREMENT value for the table. In MySQL 5.7, this works for MyISAM, MEMORY,
InnoDB, and ARCHIVE tables. To set the first auto-increment value for engines that do not support the
AUTO_INCREMENT table option, insert a “dummy” row with a value one less than the desired value after
creating the table, and then delete the dummy row.

For engines that support the AUTO_INCREMENT table option in CREATE TABLE statements, you can
also use ALTER TABLE tbl_name AUTO_INCREMENT = N to reset the AUTO_INCREMENT value. The
value cannot be set lower than the maximum value currently in the column.

• AVG_ROW_LENGTH

An approximation of the average row length for your table. You need to set this only for large tables with
variable-size rows.

When you create a MyISAM table, MySQL uses the product of the MAX_ROWS and AVG_ROW_LENGTH
options to decide how big the resulting table is. If you don't specify either option, the maximum size
for MyISAM data and index files is 256TB by default. (If your operating system does not support files
that large, table sizes are constrained by the file size limit.) If you want to keep down the pointer sizes
to make the index smaller and faster and you don't really need big files, you can decrease the default
pointer size by setting the myisam_data_pointer_size system variable. (See Section 5.1.7, “Server
System Variables”.) If you want all your tables to be able to grow above the default limit and are willing to
have your tables slightly slower and larger than necessary, you can increase the default pointer size by
setting this variable. Setting the value to 7 permits table sizes up to 65,536TB.

• [DEFAULT] CHARACTER SET

Specifies a default character set for the table. CHARSET is a synonym for CHARACTER SET. If the
character set name is DEFAULT, the database character set is used.

• CHECKSUM

Set this to 1 if you want MySQL to maintain a live checksum for all rows (that is, a checksum that MySQL
updates automatically as the table changes). This makes the table a little slower to update, but also
makes it easier to find corrupted tables. The CHECKSUM TABLE statement reports the checksum.
(MyISAM only.)

• [DEFAULT] COLLATE

Specifies a default collation for the table.

• COMMENT

A comment for the table, up to 2048 characters long.

You can set the InnoDB MERGE_THRESHOLD value for a table using the table_option COMMENT
clause. See Section 14.8.12, “Configuring the Merge Threshold for Index Pages”.

Setting NDB_TABLE options. In MySQL NDB Cluster 7.5.2 and later, the table comment in a
CREATE TABLE or ALTER TABLE statement can also be used to specify one to four of the NDB_TABLE
options NOLOGGING, READ_BACKUP, PARTITION_BALANCE, or FULLY_REPLICATED as a set of name-

2214

CREATE TABLE Statement

value pairs, separated by commas if need be, immediately following the string NDB_TABLE= that begins
the quoted comment text. An example statement using this syntax is shown here (emphasized text):

CREATE TABLE t1 (
 c1 INT NOT NULL AUTO_INCREMENT PRIMARY KEY,
 c2 VARCHAR(100),
 c3 VARCHAR(100))
ENGINE=NDB
COMMENT="NDB_TABLE=READ_BACKUP=0,PARTITION_BALANCE=FOR_RP_BY_NODE";

Spaces are not permitted within the quoted string. The string is case-insensitive.

The comment is displayed as part of the ouput of SHOW CREATE TABLE. The text of the comment is
also available as the TABLE_COMMENT column of the MySQL Information Schema TABLES table.

This comment syntax is also supported with ALTER TABLE statements for NDB tables. Keep in mind that
a table comment used with ALTER TABLE replaces any existing comment which the table might have
had perviously.

Setting the MERGE_THRESHOLD option in table comments is not supported for NDB tables (it is ignored).

For complete syntax information and examples, see Section 13.1.18.9, “Setting NDB Comment Options”.

• COMPRESSION

The compression algorithm used for page level compression for InnoDB tables. Supported values
include Zlib, LZ4, and None. The COMPRESSION attribute was introduced with the transparent page
compression feature. Page compression is only supported with InnoDB tables that reside in file-per-
table tablespaces, and is only available on Linux and Windows platforms that support sparse files and
hole punching. For more information, see Section 14.9.2, “InnoDB Page Compression”.

• CONNECTION

The connection string for a FEDERATED table.

Note

Older versions of MySQL used a COMMENT option for the connection string.

• DATA DIRECTORY, INDEX DIRECTORY

For InnoDB, the DATA DIRECTORY='directory' clause permits creating a table outside of the data
directory. The innodb_file_per_table variable must be enabled to use the DATA DIRECTORY
clause. The full directory path must be specified. For more information, see Section 14.6.1.2, “Creating
Tables Externally”.

When creating MyISAM tables, you can use the DATA DIRECTORY='directory' clause, the INDEX
DIRECTORY='directory' clause, or both. They specify where to put a MyISAM table's data file and
index file, respectively. Unlike InnoDB tables, MySQL does not create subdirectories that correspond

2215

CREATE TABLE Statement

to the database name when creating a MyISAM table with a DATA DIRECTORY or INDEX DIRECTORY
option. Files are created in the directory that is specified.

As of MySQL 5.7.17, you must have the FILE privilege to use the DATA DIRECTORY or INDEX
DIRECTORY table option.

Important

Table-level DATA DIRECTORY and INDEX DIRECTORY options are ignored for
partitioned tables. (Bug #32091)

These options work only when you are not using the --skip-symbolic-links option. Your operating
system must also have a working, thread-safe realpath() call. See Section 8.12.3.2, “Using Symbolic
Links for MyISAM Tables on Unix”, for more complete information.

If a MyISAM table is created with no DATA DIRECTORY option, the .MYD file is created in the database
directory. By default, if MyISAM finds an existing .MYD file in this case, it overwrites it. The same applies
to .MYI files for tables created with no INDEX DIRECTORY option. To suppress this behavior, start the
server with the --keep_files_on_create option, in which case MyISAM does not overwrite existing
files and returns an error instead.

If a MyISAM table is created with a DATA DIRECTORY or INDEX DIRECTORY option and an existing
.MYD or .MYI file is found, MyISAM always returns an error. It does not overwrite a file in the specified
directory.

Important

You cannot use path names that contain the MySQL data directory with DATA
DIRECTORY or INDEX DIRECTORY. This includes partitioned tables and
individual table partitions. (See Bug #32167.)

• DELAY_KEY_WRITE

Set this to 1 if you want to delay key updates for the table until the table is closed. See the description of
the delay_key_write system variable in Section 5.1.7, “Server System Variables”. (MyISAM only.)

• ENCRYPTION

Set the ENCRYPTION option to 'Y' to enable page-level data encryption for an InnoDB table created
in a file-per-table tablespace. Option values are not case-sensitive. The ENCRYPTION option was
introduced with the InnoDB tablespace encryption feature; see Section 14.14, “InnoDB Data-at-Rest
Encryption”. A keyring plugin must be installed and configured before encryption can be enabled.

The ENCRYPTION option is supported only by the InnoDB storage engine; thus it works only if the
default storage engine is InnoDB, or if the CREATE TABLE statement also specifies ENGINE=InnoDB.
Otherwise the statement is rejected with ER_CHECK_NOT_IMPLEMENTED.

• INSERT_METHOD

If you want to insert data into a MERGE table, you must specify with INSERT_METHOD the table into which
the row should be inserted. INSERT_METHOD is an option useful for MERGE tables only. Use a value
of FIRST or LAST to have inserts go to the first or last table, or a value of NO to prevent inserts. See
Section 15.7, “The MERGE Storage Engine”.

2216

https://dev.mysql.com/doc/mysql-errors/5.7/en/server-error-reference.html#error_er_check_not_implemented

CREATE TABLE Statement

• KEY_BLOCK_SIZE

For MyISAM tables, KEY_BLOCK_SIZE optionally specifies the size in bytes to use for index key blocks.
The value is treated as a hint; a different size could be used if necessary. A KEY_BLOCK_SIZE value
specified for an individual index definition overrides the table-level KEY_BLOCK_SIZE value.

For InnoDB tables, KEY_BLOCK_SIZE specifies the page size in kilobytes to use for compressed
InnoDB tables. The KEY_BLOCK_SIZE value is treated as a hint; a different size could
be used by InnoDB if necessary. KEY_BLOCK_SIZE can only be less than or equal to the
innodb_page_size value. A value of 0 represents the default compressed page size, which is half
of the innodb_page_size value. Depending on innodb_page_size, possible KEY_BLOCK_SIZE
values include 0, 1, 2, 4, 8, and 16. See Section 14.9.1, “InnoDB Table Compression” for more
information.

Oracle recommends enabling innodb_strict_mode when specifying KEY_BLOCK_SIZE for InnoDB
tables. When innodb_strict_mode is enabled, specifying an invalid KEY_BLOCK_SIZE value returns
an error. If innodb_strict_mode is disabled, an invalid KEY_BLOCK_SIZE value results in a warning,
and the KEY_BLOCK_SIZE option is ignored.

The Create_options column in response to SHOW TABLE STATUS reports the originally specified
KEY_BLOCK_SIZE option, as does SHOW CREATE TABLE.

InnoDB only supports KEY_BLOCK_SIZE at the table level.

KEY_BLOCK_SIZE is not supported with 32KB and 64KB innodb_page_size values. InnoDB table
compression does not support these pages sizes.

• MAX_ROWS

The maximum number of rows you plan to store in the table. This is not a hard limit, but rather a hint to
the storage engine that the table must be able to store at least this many rows.

Important

The use of MAX_ROWS with NDB tables to control the number of table partitions
is deprecated as of NDB Cluster 7.5.4. It remains supported in later versions
for backward compatibility, but is subject to removal in a future release. Use
PARTITION_BALANCE instead; see Setting NDB_TABLE options.

The NDB storage engine treats this value as a maximum. If you plan to create very large NDB Cluster
tables (containing millions of rows), you should use this option to insure that NDB allocates sufficient
number of index slots in the hash table used for storing hashes of the table's primary keys by setting
MAX_ROWS = 2 * rows, where rows is the number of rows that you expect to insert into the table.

The maximum MAX_ROWS value is 4294967295; larger values are truncated to this limit.

• MIN_ROWS

The minimum number of rows you plan to store in the table. The MEMORY storage engine uses this option
as a hint about memory use.

• PACK_KEYS

Takes effect only with MyISAM tables. Set this option to 1 if you want to have smaller indexes.
This usually makes updates slower and reads faster. Setting the option to 0 disables all packing of
keys. Setting it to DEFAULT tells the storage engine to pack only long CHAR, VARCHAR, BINARY, or
VARBINARY columns.

2217

CREATE TABLE Statement

If you do not use PACK_KEYS, the default is to pack strings, but not numbers. If you use PACK_KEYS=1,
numbers are packed as well.

When packing binary number keys, MySQL uses prefix compression:

• Every key needs one extra byte to indicate how many bytes of the previous key are the same for the
next key.

• The pointer to the row is stored in high-byte-first order directly after the key, to improve compression.

This means that if you have many equal keys on two consecutive rows, all following “same” keys usually
only take two bytes (including the pointer to the row). Compare this to the ordinary case where the
following keys takes storage_size_for_key + pointer_size (where the pointer size is usually
4). Conversely, you get a significant benefit from prefix compression only if you have many numbers that
are the same. If all keys are totally different, you use one byte more per key, if the key is not a key that
can have NULL values. (In this case, the packed key length is stored in the same byte that is used to
mark if a key is NULL.)

• PASSWORD

This option is unused. If you have a need to scramble your .frm files and make them unusable to any
other MySQL server, please contact our sales department.

• ROW_FORMAT

Defines the physical format in which the rows are stored.

When creating a table with strict mode disabled, the storage engine's default row format is used if the
specified row format is not supported. The actual row format of the table is reported in the Row_format
column in response to SHOW TABLE STATUS. The Create_options column shows the row format
that was specified in the CREATE TABLE statement, as does SHOW CREATE TABLE.

Row format choices differ depending on the storage engine used for the table.

For InnoDB tables:

• The default row format is defined by innodb_default_row_format, which has a default setting
of DYNAMIC. The default row format is used when the ROW_FORMAT option is not defined or when
ROW_FORMAT=DEFAULT is used.

If the ROW_FORMAT option is not defined, or if ROW_FORMAT=DEFAULT is used, operations
that rebuild a table also silently change the row format of the table to the default defined by
innodb_default_row_format. For more information, see Defining the Row Format of a Table.

• For more efficient InnoDB storage of data types, especially BLOB types, use the DYNAMIC. See
DYNAMIC Row Format for requirements associated with the DYNAMIC row format.

• To enable compression for InnoDB tables, specify ROW_FORMAT=COMPRESSED. See Section 14.9,
“InnoDB Table and Page Compression” for requirements associated with the COMPRESSED row
format.

• The row format used in older versions of MySQL can still be requested by specifying the REDUNDANT
row format.

• When you specify a non-default ROW_FORMAT clause, consider also enabling the
innodb_strict_mode configuration option.

2218

CREATE TABLE Statement

• ROW_FORMAT=FIXED is not supported. If ROW_FORMAT=FIXED is specified while
innodb_strict_mode is disabled, InnoDB issues a warning and assumes ROW_FORMAT=DYNAMIC.
If ROW_FORMAT=FIXED is specified while innodb_strict_mode is enabled, which is the default,
InnoDB returns an error.

• For additional information about InnoDB row formats, see Section 14.11, “InnoDB Row Formats”.

For MyISAM tables, the option value can be FIXED or DYNAMIC for static or variable-length row format.
myisampack sets the type to COMPRESSED. See Section 15.2.3, “MyISAM Table Storage Formats”.

For NDB tables, the default ROW_FORMAT in MySQL NDB Cluster 7.5.1 and later is DYNAMIC.
(Previously, it was FIXED.)

• STATS_AUTO_RECALC

Specifies whether to automatically recalculate persistent statistics for an InnoDB table. The
value DEFAULT causes the persistent statistics setting for the table to be determined by the
innodb_stats_auto_recalc configuration option. The value 1 causes statistics to be recalculated
when 10% of the data in the table has changed. The value 0 prevents automatic recalculation for this
table; with this setting, issue an ANALYZE TABLE statement to recalculate the statistics after making
substantial changes to the table. For more information about the persistent statistics feature, see
Section 14.8.11.1, “Configuring Persistent Optimizer Statistics Parameters”.

• STATS_PERSISTENT

Specifies whether to enable persistent statistics for an InnoDB table. The value DEFAULT causes
the persistent statistics setting for the table to be determined by the innodb_stats_persistent
configuration option. The value 1 enables persistent statistics for the table, while the value 0 turns off
this feature. After enabling persistent statistics through a CREATE TABLE or ALTER TABLE statement,
issue an ANALYZE TABLE statement to calculate the statistics, after loading representative data into the
table. For more information about the persistent statistics feature, see Section 14.8.11.1, “Configuring
Persistent Optimizer Statistics Parameters”.

• STATS_SAMPLE_PAGES

The number of index pages to sample when estimating cardinality and other statistics for an indexed
column, such as those calculated by ANALYZE TABLE. For more information, see Section 14.8.11.1,
“Configuring Persistent Optimizer Statistics Parameters”.

2219

CREATE TABLE Statement

• TABLESPACE

The TABLESPACE clause can be used to create an InnoDB table in an existing general tablespace, a
file-per-table tablespace, or the system tablespace.

CREATE TABLE tbl_name ... TABLESPACE [=] tablespace_name

The general tablespace that you specify must exist prior to using the TABLESPACE clause. For
information about general tablespaces, see Section 14.6.3.3, “General Tablespaces”.

The tablespace_name is a case-sensitive identifier. It may be quoted or unquoted. The forward slash
character (“/”) is not permitted. Names beginning with “innodb_” are reserved for special use.

To create a table in the system tablespace, specify innodb_system as the tablespace name.

CREATE TABLE tbl_name ... TABLESPACE [=] innodb_system

Using TABLESPACE [=] innodb_system, you can place a table of any uncompressed row format
in the system tablespace regardless of the innodb_file_per_table setting. For example, you
can add a table with ROW_FORMAT=DYNAMIC to the system tablespace using TABLESPACE [=]
innodb_system.

To create a table in a file-per-table tablespace, specify innodb_file_per_table as the tablespace
name.

CREATE TABLE tbl_name ... TABLESPACE [=] innodb_file_per_table

Note

If innodb_file_per_table is enabled, you need not specify
TABLESPACE=innodb_file_per_table to create an InnoDB file-per-table

2220

CREATE TABLE Statement

tablespace. InnoDB tables are created in file-per-table tablespaces by default
when innodb_file_per_table is enabled.

Note

Support for creating table partitions in shared InnoDB tablespaces is deprecated
in MySQL 5.7.24; expect it to be removed in a future version of MySQL. Shared
tablespaces include the InnoDB system tablespace and general tablespaces.

The DATA DIRECTORY clause is permitted with CREATE TABLE ...
TABLESPACE=innodb_file_per_table but is otherwise not supported for use in combination with
the TABLESPACE option.

Note

Support for TABLESPACE = innodb_file_per_table and TABLESPACE =
innodb_temporary clauses with CREATE TEMPORARY TABLE is deprecated
as of MySQL 5.7.24; expect it to be removed in a future version of MySQL.

The STORAGE table option is employed only with NDB tables. STORAGE determines the type of storage
used, and can be either of DISK or MEMORY.

TABLESPACE ... STORAGE DISK assigns a table to an NDB Cluster Disk Data tablespace. STORAGE
DISK cannot be used in CREATE TABLE unless preceded by TABLESPACE tablespace_name.

For STORAGE MEMORY, the tablespace name is optional, thus, you can use TABLESPACE
tablespace_name STORAGE MEMORY or simply STORAGE MEMORY to specify explicitly that the table
is in-memory.

See Section 21.6.11, “NDB Cluster Disk Data Tables”, for more information.

• UNION

Used to access a collection of identical MyISAM tables as one. This works only with MERGE tables. See
Section 15.7, “The MERGE Storage Engine”.

You must have SELECT, UPDATE, and DELETE privileges for the tables you map to a MERGE table.

Note

Formerly, all tables used had to be in the same database as the MERGE table
itself. This restriction no longer applies.

Table Partitioning

partition_options can be used to control partitioning of the table created with CREATE TABLE.

Not all options shown in the syntax for partition_options at the beginning of this section are available
for all partitioning types. Please see the listings for the following individual types for information specific to
each type, and see Chapter 22, Partitioning, for more complete information about the workings of and uses
for partitioning in MySQL, as well as additional examples of table creation and other statements relating to
MySQL partitioning.

Partitions can be modified, merged, added to tables, and dropped from tables. For basic information about
the MySQL statements to accomplish these tasks, see Section 13.1.8, “ALTER TABLE Statement”. For
more detailed descriptions and examples, see Section 22.3, “Partition Management”.

2221

CREATE TABLE Statement

• PARTITION BY

If used, a partition_options clause begins with PARTITION BY. This clause contains the function
that is used to determine the partition; the function returns an integer value ranging from 1 to num,
where num is the number of partitions. (The maximum number of user-defined partitions which a table
may contain is 1024; the number of subpartitions—discussed later in this section—is included in this
maximum.)

Note

The expression (expr) used in a PARTITION BY clause cannot refer to any
columns not in the table being created; such references are specifically not
permitted and cause the statement to fail with an error. (Bug #29444)

• HASH(expr)

Hashes one or more columns to create a key for placing and locating rows. expr is an expression
using one or more table columns. This can be any valid MySQL expression (including MySQL functions)
that yields a single integer value. For example, these are both valid CREATE TABLE statements using
PARTITION BY HASH:

CREATE TABLE t1 (col1 INT, col2 CHAR(5))
 PARTITION BY HASH(col1);

CREATE TABLE t1 (col1 INT, col2 CHAR(5), col3 DATETIME)
 PARTITION BY HASH (YEAR(col3));

You may not use either VALUES LESS THAN or VALUES IN clauses with PARTITION BY HASH.

PARTITION BY HASH uses the remainder of expr divided by the number of partitions (that is, the
modulus). For examples and additional information, see Section 22.2.4, “HASH Partitioning”.

The LINEAR keyword entails a somewhat different algorithm. In this case, the number of the partition in
which a row is stored is calculated as the result of one or more logical AND operations. For discussion
and examples of linear hashing, see Section 22.2.4.1, “LINEAR HASH Partitioning”.

• KEY(column_list)

This is similar to HASH, except that MySQL supplies the hashing function so as to guarantee an even
data distribution. The column_list argument is simply a list of 1 or more table columns (maximum:
16). This example shows a simple table partitioned by key, with 4 partitions:

CREATE TABLE tk (col1 INT, col2 CHAR(5), col3 DATE)
 PARTITION BY KEY(col3)
 PARTITIONS 4;

For tables that are partitioned by key, you can employ linear partitioning by using the LINEAR keyword.
This has the same effect as with tables that are partitioned by HASH. That is, the partition number is
found using the & operator rather than the modulus (see Section 22.2.4.1, “LINEAR HASH Partitioning”,
and Section 22.2.5, “KEY Partitioning”, for details). This example uses linear partitioning by key to
distribute data between 5 partitions:

CREATE TABLE tk (col1 INT, col2 CHAR(5), col3 DATE)
 PARTITION BY LINEAR KEY(col3)
 PARTITIONS 5;

The ALGORITHM={1 | 2} option is supported with [SUB]PARTITION BY [LINEAR] KEY.
ALGORITHM=1 causes the server to use the same key-hashing functions as MySQL 5.1; ALGORITHM=2
means that the server employs the key-hashing functions used by default for new KEY partitioned tables

2222

CREATE TABLE Statement

in MySQL 5.7 and later. Not specifying the option has the same effect as using ALGORITHM=2. This
option is intended for use chiefly when upgrading [LINEAR] KEY partitioned tables from MySQL 5.1 to
later MySQL versions. For more information, see Section 13.1.8.1, “ALTER TABLE Partition Operations”.

mysqldump writes this option encased in versioned comments, like this:

CREATE TABLE t1 (a INT)
/*!50100 PARTITION BY KEY */ /*!50611 ALGORITHM = 1 */ /*!50100 ()
 PARTITIONS 3 */

This causes MySQL 5.6.10 and earlier servers to ignore the option, which would otherwise cause a
syntax error in those versions.

ALGORITHM=1 is shown when necessary in the output of SHOW CREATE TABLE using versioned
comments in the same manner as mysqldump. ALGORITHM=2 is always omitted from SHOW CREATE
TABLE output, even if this option was specified when creating the original table.

You may not use either VALUES LESS THAN or VALUES IN clauses with PARTITION BY KEY.

• RANGE(expr)

In this case, expr shows a range of values using a set of VALUES LESS THAN operators. When using
range partitioning, you must define at least one partition using VALUES LESS THAN. You cannot use
VALUES IN with range partitioning.

Note

For tables partitioned by RANGE, VALUES LESS THAN must be used with either
an integer literal value or an expression that evaluates to a single integer value.
In MySQL 5.7, you can overcome this limitation in a table that is defined using
PARTITION BY RANGE COLUMNS, as described later in this section.

Suppose that you have a table that you wish to partition on a column containing year values, according
to the following scheme.

Partition Number: Years Range:

0 1990 and earlier

1 1991 to 1994

2 1995 to 1998

3 1999 to 2002

4 2003 to 2005

5 2006 and later

A table implementing such a partitioning scheme can be realized by the CREATE TABLE statement
shown here:

CREATE TABLE t1 (
 year_col INT,
 some_data INT
)
PARTITION BY RANGE (year_col) (
 PARTITION p0 VALUES LESS THAN (1991),
 PARTITION p1 VALUES LESS THAN (1995),
 PARTITION p2 VALUES LESS THAN (1999),
 PARTITION p3 VALUES LESS THAN (2002),
 PARTITION p4 VALUES LESS THAN (2006),

2223

CREATE TABLE Statement

 PARTITION p5 VALUES LESS THAN MAXVALUE
);

PARTITION ... VALUES LESS THAN ... statements work in a consecutive fashion. VALUES LESS
THAN MAXVALUE works to specify “leftover” values that are greater than the maximum value otherwise
specified.

VALUES LESS THAN clauses work sequentially in a manner similar to that of the case portions of a
switch ... case block (as found in many programming languages such as C, Java, and PHP). That
is, the clauses must be arranged in such a way that the upper limit specified in each successive VALUES
LESS THAN is greater than that of the previous one, with the one referencing MAXVALUE coming last of
all in the list.

• RANGE COLUMNS(column_list)

This variant on RANGE facilitates partition pruning for queries using range conditions on multiple columns
(that is, having conditions such as WHERE a = 1 AND b < 10 or WHERE a = 1 AND b = 10
AND c < 10). It enables you to specify value ranges in multiple columns by using a list of columns
in the COLUMNS clause and a set of column values in each PARTITION ... VALUES LESS THAN
(value_list) partition definition clause. (In the simplest case, this set consists of a single column.)
The maximum number of columns that can be referenced in the column_list and value_list is 16.

The column_list used in the COLUMNS clause may contain only names of columns; each column in
the list must be one of the following MySQL data types: the integer types; the string types; and time or
date column types. Columns using BLOB, TEXT, SET, ENUM, BIT, or spatial data types are not permitted;
columns that use floating-point number types are also not permitted. You also may not use functions or
arithmetic expressions in the COLUMNS clause.

The VALUES LESS THAN clause used in a partition definition must specify a literal value for each
column that appears in the COLUMNS() clause; that is, the list of values used for each VALUES LESS
THAN clause must contain the same number of values as there are columns listed in the COLUMNS
clause. An attempt to use more or fewer values in a VALUES LESS THAN clause than there are in the
COLUMNS clause causes the statement to fail with the error Inconsistency in usage of column
lists for partitioning.... You cannot use NULL for any value appearing in VALUES LESS
THAN. It is possible to use MAXVALUE more than once for a given column other than the first, as shown in
this example:

CREATE TABLE rc (
 a INT NOT NULL,
 b INT NOT NULL
)
PARTITION BY RANGE COLUMNS(a,b) (
 PARTITION p0 VALUES LESS THAN (10,5),
 PARTITION p1 VALUES LESS THAN (20,10),
 PARTITION p2 VALUES LESS THAN (50,MAXVALUE),
 PARTITION p3 VALUES LESS THAN (65,MAXVALUE),
 PARTITION p4 VALUES LESS THAN (MAXVALUE,MAXVALUE)
);

Each value used in a VALUES LESS THAN value list must match the type of the corresponding column
exactly; no conversion is made. For example, you cannot use the string '1' for a value that matches a
column that uses an integer type (you must use the numeral 1 instead), nor can you use the numeral 1
for a value that matches a column that uses a string type (in such a case, you must use a quoted string:
'1').

For more information, see Section 22.2.1, “RANGE Partitioning”, and Section 22.4, “Partition Pruning”.

2224

CREATE TABLE Statement

• LIST(expr)

This is useful when assigning partitions based on a table column with a restricted set of possible values,
such as a state or country code. In such a case, all rows pertaining to a certain state or country can be
assigned to a single partition, or a partition can be reserved for a certain set of states or countries. It
is similar to RANGE, except that only VALUES IN may be used to specify permissible values for each
partition.

VALUES IN is used with a list of values to be matched. For instance, you could create a partitioning
scheme such as the following:

CREATE TABLE client_firms (
 id INT,
 name VARCHAR(35)
)
PARTITION BY LIST (id) (
 PARTITION r0 VALUES IN (1, 5, 9, 13, 17, 21),
 PARTITION r1 VALUES IN (2, 6, 10, 14, 18, 22),
 PARTITION r2 VALUES IN (3, 7, 11, 15, 19, 23),
 PARTITION r3 VALUES IN (4, 8, 12, 16, 20, 24)
);

When using list partitioning, you must define at least one partition using VALUES IN. You cannot use
VALUES LESS THAN with PARTITION BY LIST.

Note

For tables partitioned by LIST, the value list used with VALUES IN must consist
of integer values only. In MySQL 5.7, you can overcome this limitation using
partitioning by LIST COLUMNS, which is described later in this section.

• LIST COLUMNS(column_list)

This variant on LIST facilitates partition pruning for queries using comparison conditions on multiple
columns (that is, having conditions such as WHERE a = 5 AND b = 5 or WHERE a = 1 AND b =
10 AND c = 5). It enables you to specify values in multiple columns by using a list of columns in the
COLUMNS clause and a set of column values in each PARTITION ... VALUES IN (value_list)
partition definition clause.

The rules governing regarding data types for the column list used in LIST COLUMNS(column_list)
and the value list used in VALUES IN(value_list) are the same as those for the column list used
in RANGE COLUMNS(column_list) and the value list used in VALUES LESS THAN(value_list),
respectively, except that in the VALUES IN clause, MAXVALUE is not permitted, and you may use NULL.

There is one important difference between the list of values used for VALUES IN with PARTITION
BY LIST COLUMNS as opposed to when it is used with PARTITION BY LIST. When used with
PARTITION BY LIST COLUMNS, each element in the VALUES IN clause must be a set of column
values; the number of values in each set must be the same as the number of columns used in the
COLUMNS clause, and the data types of these values must match those of the columns (and occur in the
same order). In the simplest case, the set consists of a single column. The maximum number of columns
that can be used in the column_list and in the elements making up the value_list is 16.

The table defined by the following CREATE TABLE statement provides an example of a table using LIST
COLUMNS partitioning:

CREATE TABLE lc (
 a INT NULL,
 b INT NULL
)

2225

CREATE TABLE Statement

PARTITION BY LIST COLUMNS(a,b) (
 PARTITION p0 VALUES IN((0,0), (NULL,NULL)),
 PARTITION p1 VALUES IN((0,1), (0,2), (0,3), (1,1), (1,2)),
 PARTITION p2 VALUES IN((1,0), (2,0), (2,1), (3,0), (3,1)),
 PARTITION p3 VALUES IN((1,3), (2,2), (2,3), (3,2), (3,3))
);

• PARTITIONS num

The number of partitions may optionally be specified with a PARTITIONS num clause, where num is the
number of partitions. If both this clause and any PARTITION clauses are used, num must be equal to the
total number of any partitions that are declared using PARTITION clauses.

Note

Whether or not you use a PARTITIONS clause in creating a table that is
partitioned by RANGE or LIST, you must still include at least one PARTITION
VALUES clause in the table definition (see below).

• SUBPARTITION BY

A partition may optionally be divided into a number of subpartitions. This can be indicated by using the
optional SUBPARTITION BY clause. Subpartitioning may be done by HASH or KEY. Either of these may
be LINEAR. These work in the same way as previously described for the equivalent partitioning types. (It
is not possible to subpartition by LIST or RANGE.)

The number of subpartitions can be indicated using the SUBPARTITIONS keyword followed by an
integer value.

• Rigorous checking of the value used in PARTITIONS or SUBPARTITIONS clauses is applied and this
value must adhere to the following rules:

• The value must be a positive, nonzero integer.

• No leading zeros are permitted.

• The value must be an integer literal, and cannot not be an expression. For example, PARTITIONS
0.2E+01 is not permitted, even though 0.2E+01 evaluates to 2. (Bug #15890)

• partition_definition

Each partition may be individually defined using a partition_definition clause. The individual
parts making up this clause are as follows:

• PARTITION partition_name

Specifies a logical name for the partition.

• VALUES

For range partitioning, each partition must include a VALUES LESS THAN clause; for list partitioning,
you must specify a VALUES IN clause for each partition. This is used to determine which rows are

2226

CREATE TABLE Statement

to be stored in this partition. See the discussions of partitioning types in Chapter 22, Partitioning, for
syntax examples.

• [STORAGE] ENGINE

The partitioning handler accepts a [STORAGE] ENGINE option for both PARTITION and
SUBPARTITION. Currently, the only way in which this can be used is to set all partitions or all
subpartitions to the same storage engine, and an attempt to set different storage engines for
partitions or subpartitions in the same table raises the error ERROR 1469 (HY000): The mix of
handlers in the partitions is not permitted in this version of MySQL. We
expect to lift this restriction on partitioning in a future MySQL release.

• COMMENT

An optional COMMENT clause may be used to specify a string that describes the partition. Example:

COMMENT = 'Data for the years previous to 1999'

The maximum length for a partition comment is 1024 characters.

• DATA DIRECTORY and INDEX DIRECTORY

DATA DIRECTORY and INDEX DIRECTORY may be used to indicate the directory where, respectively,
the data and indexes for this partition are to be stored. Both the data_dir and the index_dir must
be absolute system path names.

As of MySQL 5.7.17, you must have the FILE privilege to use the DATA DIRECTORY or INDEX
DIRECTORY partition option.

Example:

CREATE TABLE th (id INT, name VARCHAR(30), adate DATE)
PARTITION BY LIST(YEAR(adate))
(
 PARTITION p1999 VALUES IN (1995, 1999, 2003)
 DATA DIRECTORY = '/var/appdata/95/data'
 INDEX DIRECTORY = '/var/appdata/95/idx',
 PARTITION p2000 VALUES IN (1996, 2000, 2004)
 DATA DIRECTORY = '/var/appdata/96/data'
 INDEX DIRECTORY = '/var/appdata/96/idx',
 PARTITION p2001 VALUES IN (1997, 2001, 2005)
 DATA DIRECTORY = '/var/appdata/97/data'
 INDEX DIRECTORY = '/var/appdata/97/idx',
 PARTITION p2002 VALUES IN (1998, 2002, 2006)
 DATA DIRECTORY = '/var/appdata/98/data'
 INDEX DIRECTORY = '/var/appdata/98/idx'
);

DATA DIRECTORY and INDEX DIRECTORY behave in the same way as in the CREATE TABLE
statement's table_option clause as used for MyISAM tables.

One data directory and one index directory may be specified per partition. If left unspecified, the data
and indexes are stored by default in the table's database directory.

On Windows, the DATA DIRECTORY and INDEX DIRECTORY options are not supported for individual
partitions or subpartitions of MyISAM tables, and the INDEX DIRECTORY option is not supported for

2227

CREATE TABLE Statement

individual partitions or subpartitions of InnoDB tables. These options are ignored on Windows, except
that a warning is generated. (Bug #30459)

Note

The DATA DIRECTORY and INDEX DIRECTORY options are ignored for
creating partitioned tables if NO_DIR_IN_CREATE is in effect. (Bug #24633)

• MAX_ROWS and MIN_ROWS

May be used to specify, respectively, the maximum and minimum number of rows to be stored in
the partition. The values for max_number_of_rows and min_number_of_rows must be positive
integers. As with the table-level options with the same names, these act only as “suggestions” to the
server and are not hard limits.

• TABLESPACE

May be used to designate a tablespace for the partition. Supported by NDB Cluster. For InnoDB
tables, it may be used to designate a file-per-table tablespace for the partition by specifying
TABLESPACE `innodb_file_per_table`. All partitions must belong to the same storage engine.

Note

Support for placing InnoDB table partitions in shared InnoDB tablespaces
is deprecated in MySQL 5.7.24; expect it to be removed in a future MySQL
version. Shared tablespaces include the InnoDB system tablespace and
general tablespaces.

• subpartition_definition

The partition definition may optionally contain one or more subpartition_definition clauses.
Each of these consists at a minimum of the SUBPARTITION name, where name is an identifier for the
subpartition. Except for the replacement of the PARTITION keyword with SUBPARTITION, the syntax for
a subpartition definition is identical to that for a partition definition.

Subpartitioning must be done by HASH or KEY, and can be done only on RANGE or LIST partitions. See
Section 22.2.6, “Subpartitioning”.

Partitioning by Generated Columns

Partitioning by generated columns is permitted. For example:

CREATE TABLE t1 (
 s1 INT,
 s2 INT AS (EXP(s1)) STORED
)
PARTITION BY LIST (s2) (
 PARTITION p1 VALUES IN (1)
);

Partitioning sees a generated column as a regular column, which enables workarounds for limitations on
functions that are not permitted for partitioning (see Section 22.6.3, “Partitioning Limitations Relating to
Functions”). The preceding example demonstrates this technique: EXP() cannot be used directly in the
PARTITION BY clause, but a generated column defined using EXP() is permitted.

13.1.18.1 Files Created by CREATE TABLE

MySQL represents each table by an .frm table format (definition) file in the database directory. The
storage engine for the table might create other files as well.

2228

CREATE TABLE Statement

For an InnoDB table created in a file-per-table tablespace or general tablespace, table data and
associated indexes are stored in a .ibd file in the database directory. When an InnoDB table is created
in the system tablespace, table data and indexes are stored in the ibdata* files that represent the system
tablespace. The innodb_file_per_table option controls whether tables are created in file-per-
table tablespaces or the system tablespace, by default. The TABLESPACE option can be used to place
a table in a file-per-table tablespace, general tablespace, or the system tablespace, regardless of the
innodb_file_per_table setting.

For MyISAM tables, the storage engine creates data and index files. Thus, for each MyISAM table
tbl_name, there are three disk files.

File Purpose

tbl_name.frm Table format (definition) file

tbl_name.MYD Data file

tbl_name.MYI Index file

Chapter 15, Alternative Storage Engines, describes what files each storage engine creates to represent
tables. If a table name contains special characters, the names for the table files contain encoded versions
of those characters as described in Section 9.2.4, “Mapping of Identifiers to File Names”.

Limits Imposed by .frm File Structure

As described previously, each table has an .frm file that contains the table definition. The server uses
the following expression to check some of the table information stored in the file against an upper limit of
64KB:

if (info_length+(ulong) create_fields.elements*FCOMP+288+
 n_length+int_length+com_length > 65535L || int_count > 255)

The portion of the information stored in the .frm file that is checked against the expression cannot grow
beyond the 64KB limit, so if the table definition reaches this size, no more columns can be added.

The relevant factors in the expression are:

• info_length is space needed for “screens.” This is related to MySQL's Unireg heritage.

• create_fields.elements is the number of columns.

• FCOMP is 17.

• n_length is the total length of all column names, including one byte per name as a separator.

• int_length is related to the list of values for ENUM and SET columns. In this context, “int” does not
mean “integer.” It means “interval,” a term that refers collectively to ENUM and SET columns.

• int_count is the number of unique ENUM and SET definitions.

• com_length is the total length of column comments.

The expression just described has several implications for permitted table definitions:

• Using long column names can reduce the maximum number of columns, as can the inclusion of ENUM or
SET columns, or use of column comments.

• A table can have no more than 255 unique ENUM and SET definitions. Columns with identical element
lists are considered the same against this limt. For example, if a table contains these two columns, they
count as one (not two) toward this limit because the definitions are identical:

e1 ENUM('a','b','c')

2229

CREATE TABLE Statement

e2 ENUM('a','b','c')

• The sum of the length of element names in the unique ENUM and SET definitions counts toward the 64KB
limit, so although the theoretical limit on number of elements in a given ENUM column is 65,535, the
practical limit is less than 3000.

13.1.18.2 CREATE TEMPORARY TABLE Statement

You can use the TEMPORARY keyword when creating a table. A TEMPORARY table is visible only within
the current session, and is dropped automatically when the session is closed. This means that two
different sessions can use the same temporary table name without conflicting with each other or with an
existing non-TEMPORARY table of the same name. (The existing table is hidden until the temporary table is
dropped.)

CREATE TABLE causes an implicit commit, except when used with the TEMPORARY keyword. See
Section 13.3.3, “Statements That Cause an Implicit Commit”.

TEMPORARY tables have a very loose relationship with databases (schemas). Dropping a database
does not automatically drop any TEMPORARY tables created within that database. Also, you can create a
TEMPORARY table in a nonexistent database if you qualify the table name with the database name in the
CREATE TABLE statement. In this case, all subsequent references to the table must be qualified with the
database name.

To create a temporary table, you must have the CREATE TEMPORARY TABLES privilege. After a session
has created a temporary table, the server performs no further privilege checks on the table. The creating
session can perform any operation on the table, such as DROP TABLE, INSERT, UPDATE, or SELECT.

One implication of this behavior is that a session can manipulate its temporary tables even if the
current user has no privilege to create them. Suppose that the current user does not have the CREATE
TEMPORARY TABLES privilege but is able to execute a definer-context stored procedure that executes with
the privileges of a user who does have CREATE TEMPORARY TABLES and that creates a temporary table.
While the procedure executes, the session uses the privileges of the defining user. After the procedure
returns, the effective privileges revert to those of the current user, which can still see the temporary table
and perform any operation on it.

Note

Support for TABLESPACE = innodb_file_per_table and TABLESPACE =
innodb_temporary clauses with CREATE TEMPORARY TABLE is deprecated as
of MySQL 5.7.24; expect it to be removed in a future version of MySQL.

13.1.18.3 CREATE TABLE ... LIKE Statement

Use CREATE TABLE ... LIKE to create an empty table based on the definition of another table,
including any column attributes and indexes defined in the original table:

CREATE TABLE new_tbl LIKE orig_tbl;

The copy is created using the same version of the table storage format as the original table. The SELECT
privilege is required on the original table.

LIKE works only for base tables, not for views.

Important

You cannot execute CREATE TABLE or CREATE TABLE ... LIKE while a LOCK
TABLES statement is in effect.

2230

CREATE TABLE Statement

CREATE TABLE ... LIKE makes the same checks as CREATE TABLE and does
not just copy the .frm file. This means that, if the current SQL mode is different
from the mode in effect when the original table was created, the table definition
might be considered invalid for the new mode, and the statement fails.

For CREATE TABLE ... LIKE, the destination table preserves generated column information from the
original table.

CREATE TABLE ... LIKE does not preserve any DATA DIRECTORY or INDEX DIRECTORY table
options that were specified for the original table, or any foreign key definitions.

If the original table is a TEMPORARY table, CREATE TABLE ... LIKE does not preserve TEMPORARY. To
create a TEMPORARY destination table, use CREATE TEMPORARY TABLE ... LIKE.

13.1.18.4 CREATE TABLE ... SELECT Statement

You can create one table from another by adding a SELECT statement at the end of the CREATE TABLE
statement:

CREATE TABLE new_tbl [AS] SELECT * FROM orig_tbl;

MySQL creates new columns for all elements in the SELECT. For example:

mysql> CREATE TABLE test (a INT NOT NULL AUTO_INCREMENT,
 -> PRIMARY KEY (a), KEY(b))
 -> ENGINE=InnoDB SELECT b,c FROM test2;

This creates an InnoDB table with three columns, a, b, and c. The ENGINE option is part of the CREATE
TABLE statement, and should not be used following the SELECT; this would result in a syntax error. The
same is true for other CREATE TABLE options such as CHARSET.

Notice that the columns from the SELECT statement are appended to the right side of the table, not
overlapped onto it. Take the following example:

mysql> SELECT * FROM foo;
+---+
| n |
+---+
| 1 |
+---+

mysql> CREATE TABLE bar (m INT) SELECT n FROM foo;
Query OK, 1 row affected (0.02 sec)
Records: 1 Duplicates: 0 Warnings: 0

mysql> SELECT * FROM bar;
+------+---+
| m | n |
+------+---+
| NULL | 1 |
+------+---+
1 row in set (0.00 sec)

For each row in table foo, a row is inserted in bar with the values from foo and default values for the new
columns.

In a table resulting from CREATE TABLE ... SELECT, columns named only in the CREATE TABLE part
come first. Columns named in both parts or only in the SELECT part come after that. The data type of
SELECT columns can be overridden by also specifying the column in the CREATE TABLE part.

If any errors occur while copying the data to the table, it is automatically dropped and not created.

2231

CREATE TABLE Statement

You can precede the SELECT by IGNORE or REPLACE to indicate how to handle rows that duplicate unique
key values. With IGNORE, rows that duplicate an existing row on a unique key value are discarded. With
REPLACE, new rows replace rows that have the same unique key value. If neither IGNORE nor REPLACE is
specified, duplicate unique key values result in an error. For more information, see The Effect of IGNORE
on Statement Execution.

Because the ordering of the rows in the underlying SELECT statements cannot always be determined,
CREATE TABLE ... IGNORE SELECT and CREATE TABLE ... REPLACE SELECT statements are
flagged as unsafe for statement-based replication. Such statements produce a warning in the error log
when using statement-based mode and are written to the binary log using the row-based format when
using MIXED mode. See also Section 16.2.1.1, “Advantages and Disadvantages of Statement-Based and
Row-Based Replication”.

CREATE TABLE ... SELECT does not automatically create any indexes for you. This is done
intentionally to make the statement as flexible as possible. If you want to have indexes in the created table,
you should specify these before the SELECT statement:

mysql> CREATE TABLE bar (UNIQUE (n)) SELECT n FROM foo;

For CREATE TABLE ... SELECT, the destination table does not preserve information about whether
columns in the selected-from table are generated columns. The SELECT part of the statement cannot
assign values to generated columns in the destination table.

Some conversion of data types might occur. For example, the AUTO_INCREMENT attribute is not
preserved, and VARCHAR columns can become CHAR columns. Retrained attributes are NULL (or NOT
NULL) and, for those columns that have them, CHARACTER SET, COLLATION, COMMENT, and the
DEFAULT clause.

When creating a table with CREATE TABLE ... SELECT, make sure to alias any function calls or
expressions in the query. If you do not, the CREATE statement might fail or result in undesirable column
names.

CREATE TABLE artists_and_works
 SELECT artist.name, COUNT(work.artist_id) AS number_of_works
 FROM artist LEFT JOIN work ON artist.id = work.artist_id
 GROUP BY artist.id;

You can also explicitly specify the data type for a column in the created table:

CREATE TABLE foo (a TINYINT NOT NULL) SELECT b+1 AS a FROM bar;

For CREATE TABLE ... SELECT, if IF NOT EXISTS is given and the target table exists, nothing is
inserted into the destination table, and the statement is not logged.

To ensure that the binary log can be used to re-create the original tables, MySQL does not permit
concurrent inserts during CREATE TABLE ... SELECT.

You cannot use FOR UPDATE as part of the SELECT in a statement such as CREATE TABLE new_table
SELECT ... FROM old_table If you attempt to do so, the statement fails.

13.1.18.5 FOREIGN KEY Constraints

MySQL supports foreign keys, which permit cross-referencing related data across tables, and foreign key
constraints, which help keep the related data consistent.

A foreign key relationship involves a parent table that holds the initial column values, and a child table with
column values that reference the parent column values. A foreign key constraint is defined on the child
table.

2232

CREATE TABLE Statement

The essential syntax for a defining a foreign key constraint in a CREATE TABLE or ALTER TABLE
statement includes the following:

[CONSTRAINT [symbol]] FOREIGN KEY
 [index_name] (col_name, ...)
 REFERENCES tbl_name (col_name,...)
 [ON DELETE reference_option]
 [ON UPDATE reference_option]

reference_option:
 RESTRICT | CASCADE | SET NULL | NO ACTION | SET DEFAULT

Foreign key constraint usage is described under the following topics in this section:

• Identifiers

• Conditions and Restrictions

• Referential Actions

• Foreign Key Constraint Examples

• Adding Foreign Key Constraints

• Dropping Foreign Key Constraints

• Foreign Key Checks

• Foreign Key Definitions and Metadata

• Foreign Key Errors

Identifiers

Foreign key constraint naming is governed by the following rules:

• The CONSTRAINT symbol value is used, if defined.

• If the CONSTRAINT symbol clause is not defined, or a symbol is not included following the CONSTRAINT
keyword:

• For InnoDB tables, a constraint name is generated automatically.

• For NDB tables, the FOREIGN KEY index_name value is used, if defined. Otherwise, a constraint
name is generated automatically.

• The CONSTRAINT symbol value, if defined, must be unique in the database. A duplicate
symbol results in an error similar to: ERROR 1005 (HY000): Can't create table
'test.fk1' (errno: 121).

Table and column identifiers in a FOREIGN KEY ... REFERENCES clause can be quoted within backticks
(`). Alternatively, double quotation marks (") can be used if the ANSI_QUOTES SQL mode is enabled. The
lower_case_table_names system variable setting is also taken into account.

Conditions and Restrictions

Foreign key constraints are subject to the following conditions and restrictions:

• Parent and child tables must use the same storage engine, and they cannot be defined as temporary
tables.

2233

CREATE TABLE Statement

• Creating a foreign key constraint requires the REFERENCES privilege on the parent table.

• Corresponding columns in the foreign key and the referenced key must have similar data types. The size
and sign of fixed precision types such as INTEGER and DECIMAL must be the same. The length of string
types need not be the same. For nonbinary (character) string columns, the character set and collation
must be the same.

• MySQL supports foreign key references between one column and another within a table. (A column
cannot have a foreign key reference to itself.) In these cases, a “child table record” refers to a dependent
record within the same table.

• MySQL requires indexes on foreign keys and referenced keys so that foreign key checks can be fast
and not require a table scan. In the referencing table, there must be an index where the foreign key
columns are listed as the first columns in the same order. Such an index is created on the referencing
table automatically if it does not exist. This index might be silently dropped later if you create another
index that can be used to enforce the foreign key constraint. index_name, if given, is used as described
previously.

• InnoDB permits a foreign key to reference any index column or group of columns. However, in the
referenced table, there must be an index where the referenced columns are the first columns in the
same order. Hidden columns that InnoDB adds to an index are also considered (see Section 14.6.2.1,
“Clustered and Secondary Indexes”).

NDB requires an explicit unique key (or primary key) on any column referenced as a foreign key. InnoDB
does not, which is an extension of standard SQL.

• Index prefixes on foreign key columns are not supported. Consequently, BLOB and TEXT columns
cannot be included in a foreign key because indexes on those columns must always include a prefix
length.

• InnoDB does not currently support foreign keys for tables with user-defined partitioning. This includes
both parent and child tables.

This restriction does not apply for NDB tables that are partitioned by KEY or LINEAR KEY (the only user
partitioning types supported by the NDB storage engine); these may have foreign key references or be
the targets of such references.

• A table in a foreign key relationship cannot be altered to use another storage engine. To change the
storage engine, you must drop any foreign key constraints first.

• A foreign key constraint cannot reference a virtual generated column.

• Prior to 5.7.16, a foreign key constraint cannot reference a secondary index defined on a virtual
generated column.

For information about how the MySQL implementation of foreign key constraints differs from the SQL
standard, see Section 1.6.2.3, “FOREIGN KEY Constraint Differences”.

Referential Actions

When an UPDATE or DELETE operation affects a key value in the parent table that has matching rows
in the child table, the result depends on the referential action specified by ON UPDATE and ON DELETE
subclauses of the FOREIGN KEY clause. Referential actions include:

• CASCADE: Delete or update the row from the parent table and automatically delete or update the
matching rows in the child table. Both ON DELETE CASCADE and ON UPDATE CASCADE are supported.

2234

CREATE TABLE Statement

Between two tables, do not define several ON UPDATE CASCADE clauses that act on the same column
in the parent table or in the child table.

If a FOREIGN KEY clause is defined on both tables in a foreign key relationship, making both tables
a parent and child, an ON UPDATE CASCADE or ON DELETE CASCADE subclause defined for one
FOREIGN KEY clause must be defined for the other in order for cascading operations to succeed. If
an ON UPDATE CASCADE or ON DELETE CASCADE subclause is only defined for one FOREIGN KEY
clause, cascading operations fail with an error.

Note

Cascaded foreign key actions do not activate triggers.

• SET NULL: Delete or update the row from the parent table and set the foreign key column or columns
in the child table to NULL. Both ON DELETE SET NULL and ON UPDATE SET NULL clauses are
supported.

If you specify a SET NULL action, make sure that you have not declared the columns in the child table
as NOT NULL.

• RESTRICT: Rejects the delete or update operation for the parent table. Specifying RESTRICT (or NO
ACTION) is the same as omitting the ON DELETE or ON UPDATE clause.

• NO ACTION: A keyword from standard SQL. For InnoDB, this is equivalent to RESTRICT; the delete or
update operation for the parent table is immediately rejected if there is a related foreign key value in the
referenced table. NDB supports deferred checks, and NO ACTION specifies a deferred check; when this
is used, constraint checks are not performed until commit time. Note that for NDB tables, this causes all
foreign key checks made for both parent and child tables to be deferred.

• SET DEFAULT: This action is recognized by the MySQL parser, but both InnoDB and NDB reject table
definitions containing ON DELETE SET DEFAULT or ON UPDATE SET DEFAULT clauses.

For storage engines that support foreign keys, MySQL rejects any INSERT or UPDATE operation that
attempts to create a foreign key value in a child table if there is no matching candidate key value in the
parent table.

For an ON DELETE or ON UPDATE that is not specified, the default action is always RESTRICT.

For NDB tables, ON UPDATE CASCADE is not supported where the reference is to the parent table's
primary key.

As of NDB 7.5.14 and NDB 7.6.10: For NDB tables, ON DELETE CASCADE is not supported where the child
table contains one or more columns of any of the TEXT or BLOB types. (Bug #89511, Bug #27484882)

InnoDB performs cascading operations using a depth-first search algorithm on the records of the index
that corresponds to the foreign key constraint.

A foreign key constraint on a stored generated column cannot use CASCADE, SET NULL, or SET DEFAULT
as ON UPDATE referential actions, nor can it use SET NULL or SET DEFAULT as ON DELETE referential
actions.

A foreign key constraint on the base column of a stored generated column cannot use CASCADE, SET
NULL, or SET DEFAULT as ON UPDATE or ON DELETE referential actions.

In MySQL 5.7.13 and earlier, InnoDB does not permit defining a foreign key constraint with a cascading
referential action on the base column of an indexed virtual generated column. This restriction is lifted in
MySQL 5.7.14.

2235

CREATE TABLE Statement

In MySQL 5.7.13 and earlier, InnoDB does not permit defining cascading referential actions on non-virtual
foreign key columns that are explicitly included in a virtual index. This restriction is lifted in MySQL 5.7.14.

Foreign Key Constraint Examples

This simple example relates parent and child tables through a single-column foreign key:

CREATE TABLE parent (
 id INT NOT NULL,
 PRIMARY KEY (id)
) ENGINE=INNODB;

CREATE TABLE child (
 id INT,
 parent_id INT,
 INDEX par_ind (parent_id),
 FOREIGN KEY (parent_id)
 REFERENCES parent(id)
 ON DELETE CASCADE
) ENGINE=INNODB;

This is a more complex example in which a product_order table has foreign keys for two other tables.
One foreign key references a two-column index in the product table. The other references a single-
column index in the customer table:

CREATE TABLE product (
 category INT NOT NULL, id INT NOT NULL,
 price DECIMAL,
 PRIMARY KEY(category, id)
) ENGINE=INNODB;

CREATE TABLE customer (
 id INT NOT NULL,
 PRIMARY KEY (id)
) ENGINE=INNODB;

CREATE TABLE product_order (
 no INT NOT NULL AUTO_INCREMENT,
 product_category INT NOT NULL,
 product_id INT NOT NULL,
 customer_id INT NOT NULL,

 PRIMARY KEY(no),
 INDEX (product_category, product_id),
 INDEX (customer_id),

 FOREIGN KEY (product_category, product_id)
 REFERENCES product(category, id)
 ON UPDATE CASCADE ON DELETE RESTRICT,

 FOREIGN KEY (customer_id)
 REFERENCES customer(id)
) ENGINE=INNODB;

Adding Foreign Key Constraints

You can add a foreign key constraint to an existing table using the following ALTER TABLE syntax:

ALTER TABLE tbl_name
 ADD [CONSTRAINT [symbol]] FOREIGN KEY
 [index_name] (col_name, ...)
 REFERENCES tbl_name (col_name,...)
 [ON DELETE reference_option]
 [ON UPDATE reference_option]

2236

CREATE TABLE Statement

The foreign key can be self referential (referring to the same table). When you add a foreign key constraint
to a table using ALTER TABLE, remember to first create an index on the column(s) referenced by the
foreign key.

Dropping Foreign Key Constraints

You can drop a foreign key constraint using the following ALTER TABLE syntax:

ALTER TABLE tbl_name DROP FOREIGN KEY fk_symbol;

If the FOREIGN KEY clause defined a CONSTRAINT name when you created the constraint, you can refer
to that name to drop the foreign key constraint. Otherwise, a constraint name was generated internally, and
you must use that value. To determine the foreign key constraint name, use SHOW CREATE TABLE:

mysql> SHOW CREATE TABLE child\G
*************************** 1. row ***************************
 Table: child
Create Table: CREATE TABLE `child` (
 `id` int(11) DEFAULT NULL,
 `parent_id` int(11) DEFAULT NULL,
 KEY `par_ind` (`parent_id`),
 CONSTRAINT `child_ibfk_1` FOREIGN KEY (`parent_id`)
 REFERENCES `parent` (`id`) ON DELETE CASCADE
) ENGINE=InnoDB DEFAULT CHARSET=latin1

mysql> ALTER TABLE child DROP FOREIGN KEY `child_ibfk_1`;

Adding and dropping a foreign key in the same ALTER TABLE statement is supported for ALTER
TABLE ... ALGORITHM=INPLACE. It is not supported for ALTER TABLE ... ALGORITHM=COPY.

Foreign Key Checks

In MySQL, InnoDB and NDB tables support checking of foreign key constraints. Foreign key checking is
controlled by the foreign_key_checks variable, which is enabled by default. Typically, you leave this
variable enabled during normal operation to enforce referential integrity. The foreign_key_checks
variable has the same effect on NDB tables as it does for InnoDB tables.

The foreign_key_checks variable is dynamic and supports both global and session scopes. For
information about using system variables, see Section 5.1.8, “Using System Variables”.

Disabling foreign key checking is useful when:

• Dropping a table that is referenced by a foreign key constraint. A referenced table can only be dropped
after foreign_key_checks is disabled. When you drop a table, constraints defined on the table are
also dropped.

• Reloading tables in different order than required by their foreign key relationships. For example,
mysqldump produces correct definitions of tables in the dump file, including foreign key constraints for
child tables. To make it easier to reload dump files for tables with foreign key relationships, mysqldump
automatically includes a statement in the dump output that disables foreign_key_checks. This
enables you to import the tables in any order in case the dump file contains tables that are not correctly
ordered for foreign keys. Disabling foreign_key_checks also speeds up the import operation by
avoiding foreign key checks.

• Executing LOAD DATA operations, to avoid foreign key checking.

• Performing an ALTER TABLE operation on a table that has a foreign key relationship.

When foreign_key_checks is disabled, foreign key constraints are ignored, with the following
exceptions:

2237

CREATE TABLE Statement

• Recreating a table that was previously dropped returns an error if the table definition does not conform
to the foreign key constraints that reference the table. The table must have the correct column names
and types. It must also have indexes on the referenced keys. If these requirements are not satisfied,
MySQL returns Error 1005 that refers to errno: 150 in the error message, which means that a foreign key
constraint was not correctly formed.

• Altering a table returns an error (errno: 150) if a foreign key definition is incorrectly formed for the altered
table.

• Dropping an index required by a foreign key constraint. The foreign key constraint must be removed
before dropping the index.

• Creating a foreign key constraint where a column references a nonmatching column type.

Disabling foreign_key_checks has these additional implications:

• It is permitted to drop a database that contains tables with foreign keys that are referenced by tables
outside the database.

• It is permitted to drop a table with foreign keys referenced by other tables.

• Enabling foreign_key_checks does not trigger a scan of table data, which means that rows
added to a table while foreign_key_checks is disabled are not checked for consistency when
foreign_key_checks is re-enabled.

Foreign Key Definitions and Metadata

To view a foreign key definition, use SHOW CREATE TABLE:

mysql> SHOW CREATE TABLE child\G
*************************** 1. row ***************************
 Table: child
Create Table: CREATE TABLE `child` (
 `id` int(11) DEFAULT NULL,
 `parent_id` int(11) DEFAULT NULL,
 KEY `par_ind` (`parent_id`),
 CONSTRAINT `child_ibfk_1` FOREIGN KEY (`parent_id`)
 REFERENCES `parent` (`id`) ON DELETE CASCADE
) ENGINE=InnoDB DEFAULT CHARSET=latin1

You can obtain information about foreign keys from the Information Schema KEY_COLUMN_USAGE table.
An example of a query against this table is shown here:

mysql> SELECT TABLE_SCHEMA, TABLE_NAME, COLUMN_NAME, CONSTRAINT_NAME
 FROM INFORMATION_SCHEMA.KEY_COLUMN_USAGE
 WHERE REFERENCED_TABLE_SCHEMA IS NOT NULL;
+--------------+------------+-------------+-----------------+
| TABLE_SCHEMA | TABLE_NAME | COLUMN_NAME | CONSTRAINT_NAME |
+--------------+------------+-------------+-----------------+
| test | child | parent_id | child_ibfk_1 |
+--------------+------------+-------------+-----------------+

You can obtain information specific to InnoDB foreign keys from the INNODB_SYS_FOREIGN and
INNODB_SYS_FOREIGN_COLS tables. Example queries are show here:

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_SYS_FOREIGN \G
*************************** 1. row ***************************
 ID: test/child_ibfk_1
FOR_NAME: test/child
REF_NAME: test/parent

2238

CREATE TABLE Statement

 N_COLS: 1
 TYPE: 1

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_SYS_FOREIGN_COLS \G
*************************** 1. row ***************************
 ID: test/child_ibfk_1
FOR_COL_NAME: parent_id
REF_COL_NAME: id
 POS: 0

Foreign Key Errors

In the event of a foreign key error involving InnoDB tables (usually Error 150 in the MySQL Server),
information about the latest foreign key error can be obtained by checking SHOW ENGINE INNODB
STATUS output.

mysql> SHOW ENGINE INNODB STATUS\G
...

LATEST FOREIGN KEY ERROR

2014-10-16 18:35:18 0x7fc2a95c1700 Transaction:
TRANSACTION 1814, ACTIVE 0 sec inserting
mysql tables in use 1, locked 1
4 lock struct(s), heap size 1136, 3 row lock(s), undo log entries 3
MySQL thread id 2, OS thread handle 140474041767680, query id 74 localhost
root update
INSERT INTO child VALUES
 (NULL, 1)
 , (NULL, 2)
 , (NULL, 3)
 , (NULL, 4)
 , (NULL, 5)
 , (NULL, 6)
Foreign key constraint fails for table `mysql`.`child`:
,
 CONSTRAINT `child_ibfk_1` FOREIGN KEY (`parent_id`) REFERENCES `parent`
 (`id`) ON DELETE CASCADE ON UPDATE CASCADE
Trying to add in child table, in index par_ind tuple:
DATA TUPLE: 2 fields;
 0: len 4; hex 80000003; asc ;;
 1: len 4; hex 80000003; asc ;;

But in parent table `mysql`.`parent`, in index PRIMARY,
the closest match we can find is record:
PHYSICAL RECORD: n_fields 3; compact format; info bits 0
 0: len 4; hex 80000004; asc ;;
 1: len 6; hex 00000000070a; asc ;;
 2: len 7; hex aa0000011d0134; asc 4;;
...

Warning

ER_NO_REFERENCED_ROW_2 and ER_ROW_IS_REFERENCED_2 error messages
for foreign key operations expose information about parent tables, even if the user
has no parent table access privileges. To hide information about parent tables,
include the appropriate condition handlers in application code and stored programs.

13.1.18.6 Silent Column Specification Changes

In some cases, MySQL silently changes column specifications from those given in a CREATE TABLE or
ALTER TABLE statement. These might be changes to a data type, to attributes associated with a data
type, or to an index specification.

2239

https://dev.mysql.com/doc/mysql-errors/5.7/en/server-error-reference.html#error_er_no_referenced_row_2
https://dev.mysql.com/doc/mysql-errors/5.7/en/server-error-reference.html#error_er_row_is_referenced_2

CREATE TABLE Statement

All changes are subject to the internal row-size limit of 65,535 bytes, which may cause some attempts at
data type changes to fail. See Section 8.4.7, “Limits on Table Column Count and Row Size”.

• Columns that are part of a PRIMARY KEY are made NOT NULL even if not declared that way.

• Trailing spaces are automatically deleted from ENUM and SET member values when the table is created.

• MySQL maps certain data types used by other SQL database vendors to MySQL types. See
Section 11.9, “Using Data Types from Other Database Engines”.

• If you include a USING clause to specify an index type that is not permitted for a given storage engine,
but there is another index type available that the engine can use without affecting query results, the
engine uses the available type.

• If strict SQL mode is not enabled, a VARCHAR column with a length specification greater than 65535
is converted to TEXT, and a VARBINARY column with a length specification greater than 65535 is
converted to BLOB. Otherwise, an error occurs in either of these cases.

• Specifying the CHARACTER SET binary attribute for a character data type causes the column
to be created as the corresponding binary data type: CHAR becomes BINARY, VARCHAR becomes
VARBINARY, and TEXT becomes BLOB. For the ENUM and SET data types, this does not occur; they are
created as declared. Suppose that you specify a table using this definition:

CREATE TABLE t
(
 c1 VARCHAR(10) CHARACTER SET binary,
 c2 TEXT CHARACTER SET binary,
 c3 ENUM('a','b','c') CHARACTER SET binary
);

The resulting table has this definition:

CREATE TABLE t
(
 c1 VARBINARY(10),
 c2 BLOB,
 c3 ENUM('a','b','c') CHARACTER SET binary
);

To see whether MySQL used a data type other than the one you specified, issue a DESCRIBE or SHOW
CREATE TABLE statement after creating or altering the table.

Certain other data type changes can occur if you compress a table using myisampack. See
Section 15.2.3.3, “Compressed Table Characteristics”.

13.1.18.7 CREATE TABLE and Generated Columns

CREATE TABLE supports the specification of generated columns. Values of a generated column are
computed from an expression included in the column definition.

Generated columns are supported by the NDB storage engine beginning with MySQL NDB Cluster 7.5.3.

The following simple example shows a table that stores the lengths of the sides of right triangles in the
sidea and sideb columns, and computes the length of the hypotenuse in sidec (the square root of the
sums of the squares of the other sides):

CREATE TABLE triangle (
 sidea DOUBLE,
 sideb DOUBLE,

2240

CREATE TABLE Statement

 sidec DOUBLE AS (SQRT(sidea * sidea + sideb * sideb))
);
INSERT INTO triangle (sidea, sideb) VALUES(1,1),(3,4),(6,8);

Selecting from the table yields this result:

mysql> SELECT * FROM triangle;
+-------+-------+--------------------+
| sidea | sideb | sidec |
+-------+-------+--------------------+
1	1	1.4142135623730951
3	4	5
6	8	10
+-------+-------+--------------------+

Any application that uses the triangle table has access to the hypotenuse values without having to
specify the expression that calculates them.

Generated column definitions have this syntax:

col_name data_type [GENERATED ALWAYS] AS (expr)
 [VIRTUAL | STORED] [NOT NULL | NULL]
 [UNIQUE [KEY]] [[PRIMARY] KEY]
 [COMMENT 'string']

AS (expr) indicates that the column is generated and defines the expression used to compute column
values. AS may be preceded by GENERATED ALWAYS to make the generated nature of the column more
explicit. Constructs that are permitted or prohibited in the expression are discussed later.

The VIRTUAL or STORED keyword indicates how column values are stored, which has implications for
column use:

• VIRTUAL: Column values are not stored, but are evaluated when rows are read, immediately after any
BEFORE triggers. A virtual column takes no storage.

InnoDB supports secondary indexes on virtual columns. See Section 13.1.18.8, “Secondary Indexes
and Generated Columns”.

• STORED: Column values are evaluated and stored when rows are inserted or updated. A stored column
does require storage space and can be indexed.

The default is VIRTUAL if neither keyword is specified.

It is permitted to mix VIRTUAL and STORED columns within a table.

Other attributes may be given to indicate whether the column is indexed or can be NULL, or provide a
comment.

Generated column expressions must adhere to the following rules. An error occurs if an expression
contains disallowed constructs.

• Literals, deterministic built-in functions, and operators are permitted. A function is deterministic if, given
the same data in tables, multiple invocations produce the same result, independently of the connected
user. Examples of functions that are nondeterministic and fail this definition: CONNECTION_ID(),
CURRENT_USER(), NOW().

• Stored functions and loadable functions are not permitted.

• Stored procedure and function parameters are not permitted.

2241

CREATE TABLE Statement

• Variables (system variables, user-defined variables, and stored program local variables) are not
permitted.

• Subqueries are not permitted.

• A generated column definition can refer to other generated columns, but only those occurring earlier in
the table definition. A generated column definition can refer to any base (nongenerated) column in the
table whether its definition occurs earlier or later.

• The AUTO_INCREMENT attribute cannot be used in a generated column definition.

• An AUTO_INCREMENT column cannot be used as a base column in a generated column definition.

• As of MySQL 5.7.10, if expression evaluation causes truncation or provides incorrect input to a function,
the CREATE TABLE statement terminates with an error and the DDL operation is rejected.

If the expression evaluates to a data type that differs from the declared column type, implicit coercion to
the declared type occurs according to the usual MySQL type-conversion rules. See Section 12.3, “Type
Conversion in Expression Evaluation”.

Note

If any component of the expression depends on the SQL mode, different results
may occur for different uses of the table unless the SQL mode is the same during
all uses.

For CREATE TABLE ... LIKE, the destination table preserves generated column information from the
original table.

For CREATE TABLE ... SELECT, the destination table does not preserve information about whether
columns in the selected-from table are generated columns. The SELECT part of the statement cannot
assign values to generated columns in the destination table.

Partitioning by generated columns is permitted. See Table Partitioning.

A foreign key constraint on a stored generated column cannot use CASCADE, SET NULL, or SET DEFAULT
as ON UPDATE referential actions, nor can it use SET NULL or SET DEFAULT as ON DELETE referential
actions.

A foreign key constraint on the base column of a stored generated column cannot use CASCADE, SET
NULL, or SET DEFAULT as ON UPDATE or ON DELETE referential actions.

A foreign key constraint cannot reference a virtual generated column.

Triggers cannot use NEW.col_name or use OLD.col_name to refer to generated columns.

For INSERT, REPLACE, and UPDATE, if a generated column is inserted into, replaced, or updated explicitly,
the only permitted value is DEFAULT.

A generated column in a view is considered updatable because it is possible to assign to it. However, if
such a column is updated explicitly, the only permitted value is DEFAULT.

Generated columns have several use cases, such as these:

• Virtual generated columns can be used as a way to simplify and unify queries. A complicated condition
can be defined as a generated column and referred to from multiple queries on the table to ensure that
all of them use exactly the same condition.

2242

CREATE TABLE Statement

• Stored generated columns can be used as a materialized cache for complicated conditions that are
costly to calculate on the fly.

• Generated columns can simulate functional indexes: Use a generated column to define a functional
expression and index it. This can be useful for working with columns of types that cannot be indexed
directly, such as JSON columns; see Indexing a Generated Column to Provide a JSON Column Index, for
a detailed example.

For stored generated columns, the disadvantage of this approach is that values are stored twice; once
as the value of the generated column and once in the index.

• If a generated column is indexed, the optimizer recognizes query expressions that match the column
definition and uses indexes from the column as appropriate during query execution, even if a query does
not refer to the column directly by name. For details, see Section 8.3.10, “Optimizer Use of Generated
Column Indexes”.

Example:

Suppose that a table t1 contains first_name and last_name columns and that applications frequently
construct the full name using an expression like this:

SELECT CONCAT(first_name,' ',last_name) AS full_name FROM t1;

One way to avoid writing out the expression is to create a view v1 on t1, which simplifies applications by
enabling them to select full_name directly without using an expression:

CREATE VIEW v1 AS
SELECT *, CONCAT(first_name,' ',last_name) AS full_name FROM t1;

SELECT full_name FROM v1;

A generated column also enables applications to select full_name directly without the need to define a
view:

CREATE TABLE t1 (
 first_name VARCHAR(10),
 last_name VARCHAR(10),
 full_name VARCHAR(255) AS (CONCAT(first_name,' ',last_name))
);

SELECT full_name FROM t1;

13.1.18.8 Secondary Indexes and Generated Columns

InnoDB supports secondary indexes on virtual generated columns. Other index types are not supported. A
secondary index defined on a virtual column is sometimes referred to as a “virtual index”.

A secondary index may be created on one or more virtual columns or on a combination of virtual columns
and regular columns or stored generated columns. Secondary indexes that include virtual columns may be
defined as UNIQUE.

When a secondary index is created on a virtual generated column, generated column values are
materialized in the records of the index. If the index is a covering index (one that includes all the columns
retrieved by a query), generated column values are retrieved from materialized values in the index
structure instead of computed “on the fly”.

There are additional write costs to consider when using a secondary index on a virtual column due to
computation performed when materializing virtual column values in secondary index records during
INSERT and UPDATE operations. Even with additional write costs, secondary indexes on virtual columns

2243

CREATE TABLE Statement

may be preferable to generated stored columns, which are materialized in the clustered index, resulting
in larger tables that require more disk space and memory. If a secondary index is not defined on a virtual
column, there are additional costs for reads, as virtual column values must be computed each time the
column's row is examined.

Values of an indexed virtual column are MVCC-logged to avoid unnecessary recomputation of generated
column values during rollback or during a purge operation. The data length of logged values is limited by
the index key limit of 767 bytes for COMPACT and REDUNDANT row formats, and 3072 bytes for DYNAMIC
and COMPRESSED row formats.

Adding or dropping a secondary index on a virtual column is an in-place operation.

Prior to 5.7.16, a foreign key constraint cannot reference a secondary index defined on a virtual generated
column.

In MySQL 5.7.13 and earlier, InnoDB does not permit defining a foreign key constraint with a cascading
referential action on the base column of an indexed generated virtual column. This restriction is lifted in
MySQL 5.7.14.

Indexing a Generated Column to Provide a JSON Column Index

As noted elsewhere, JSON columns cannot be indexed directly. To create an index that references such a
column indirectly, you can define a generated column that extracts the information that should be indexed,
then create an index on the generated column, as shown in this example:

mysql> CREATE TABLE jemp (
 -> c JSON,
 -> g INT GENERATED ALWAYS AS (c->"$.id"),
 -> INDEX i (g)
 ->);
Query OK, 0 rows affected (0.28 sec)

mysql> INSERT INTO jemp (c) VALUES
 > ('{"id": "1", "name": "Fred"}'), ('{"id": "2", "name": "Wilma"}'),
 > ('{"id": "3", "name": "Barney"}'), ('{"id": "4", "name": "Betty"}');
Query OK, 4 rows affected (0.04 sec)
Records: 4 Duplicates: 0 Warnings: 0

mysql> SELECT c->>"$.name" AS name
 > FROM jemp WHERE g > 2;
+--------+
| name |
+--------+
| Barney |
| Betty |
+--------+
2 rows in set (0.00 sec)

mysql> EXPLAIN SELECT c->>"$.name" AS name
 > FROM jemp WHERE g > 2\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: jemp
 partitions: NULL
 type: range
possible_keys: i
 key: i
 key_len: 5
 ref: NULL
 rows: 2
 filtered: 100.00
 Extra: Using where

2244

CREATE TABLE Statement

1 row in set, 1 warning (0.00 sec)

mysql> SHOW WARNINGS\G
*************************** 1. row ***************************
 Level: Note
 Code: 1003
Message: /* select#1 */ select json_unquote(json_extract(`test`.`jemp`.`c`,'$.name'))
AS `name` from `test`.`jemp` where (`test`.`jemp`.`g` > 2)
1 row in set (0.00 sec)

(We have wrapped the output from the last statement in this example to fit the viewing area.)

The -> operator is supported in MySQL 5.7.9 and later. The ->> operator is supported beginning with
MySQL 5.7.13.

When you use EXPLAIN on a SELECT or other SQL statement containing one or more expressions
that use the -> or ->> operator, these expressions are translated into their equivalents using
JSON_EXTRACT() and (if needed) JSON_UNQUOTE() instead, as shown here in the output from SHOW
WARNINGS immediately following this EXPLAIN statement:

mysql> EXPLAIN SELECT c->>"$.name"
 > FROM jemp WHERE g > 2 ORDER BY c->"$.name"\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: jemp
 partitions: NULL
 type: range
possible_keys: i
 key: i
 key_len: 5
 ref: NULL
 rows: 2
 filtered: 100.00
 Extra: Using where; Using filesort
1 row in set, 1 warning (0.00 sec)

mysql> SHOW WARNINGS\G
*************************** 1. row ***************************
 Level: Note
 Code: 1003
Message: /* select#1 */ select json_unquote(json_extract(`test`.`jemp`.`c`,'$.name')) AS
`c->>"$.name"` from `test`.`jemp` where (`test`.`jemp`.`g` > 2) order by
json_extract(`test`.`jemp`.`c`,'$.name')
1 row in set (0.00 sec)

See the descriptions of the -> and ->> operators, as well as those of the JSON_EXTRACT() and
JSON_UNQUOTE() functions, for additional information and examples.

This technique also can be used to provide indexes that indirectly reference columns of other types that
cannot be indexed directly, such as GEOMETRY columns.

JSON columns and indirect indexing in NDB Cluster

 It is also possible to use indirect indexing of JSON columns in MySQL NDB Cluster, subject to the
following conditions:

1. NDB handles a JSON column value internally as a BLOB. This means that any NDB table having one or
more JSON columns must have a primary key, else it cannot be recorded in the binary log.

2. The NDB storage engine does not support indexing of virtual columns. Since the default for generated
columns is VIRTUAL, you must specify explicitly the generated column to which to apply the indirect
index as STORED.

2245

CREATE TABLE Statement

The CREATE TABLE statement used to create the table jempn shown here is a version of the jemp table
shown previously, with modifications making it compatible with NDB:

CREATE TABLE jempn (
 a BIGINT(20) NOT NULL AUTO_INCREMENT PRIMARY KEY,
 c JSON DEFAULT NULL,
 g INT GENERATED ALWAYS AS (c->"$.name") STORED,
 INDEX i (g)
) ENGINE=NDB;

We can populate this table using the following INSERT statement:

INSERT INTO jempn (a, c) VALUES
 (NULL, '{"id": "1", "name": "Fred"}'),
 (NULL, '{"id": "2", "name": "Wilma"}'),
 (NULL, '{"id": "3", "name": "Barney"}'),
 (NULL, '{"id": "4", "name": "Betty"}');

Now NDB can use index i, as shown here:

mysql> EXPLAIN SELECT c->>"$.name" AS name
 FROM jempn WHERE g > 2\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: jempn
 partitions: p0,p1
 type: range
possible_keys: i
 key: i
 key_len: 5
 ref: NULL
 rows: 3
 filtered: 100.00
 Extra: Using where with pushed condition (`test`.`jempn`.`g` > 2)
1 row in set, 1 warning (0.00 sec)

mysql> SHOW WARNINGS\G
*************************** 1. row ***************************
 Level: Note
 Code: 1003
Message: /* select#1 */ select
json_unquote(json_extract(`test`.`jempn`.`c`,'$.name')) AS `name` from
`test`.`jempn` where (`test`.`jempn`.`g` > 2)
1 row in set (0.00 sec)

You should keep in mind that a stored generated column, as well as any index on such a column, uses
DataMemory. In NDB 7.5, an index on a stored generated column also uses IndexMemory.

13.1.18.9 Setting NDB Comment Options

• NDB_COLUMN Options

• NDB_TABLE Options

 It is possible to set a number of options specific to NDB Cluster in the table comment or column
comments of an NDB table. Table-level options for controlling read from any replica and partition balance
can be embedded in a table comment using NDB_TABLE.

NDB_COLUMN can be used in a column comment to set the size of the blob parts table column used for
storing parts of blob values by NDB to its maximum. This works for BLOB, MEDIUMBLOB, LONGBLOB, TEXT,
MEDIUMTEXT, LONGTEXT, and JSON columns.

2246

CREATE TABLE Statement

NDB_TABLE can be used in a table comment to set options relating to partition balance and whether the
table is fully replicated, among others.

The remainder of this section describes these options and their use.

NDB_COLUMN Options

 In NDB Cluster, a column comment in a CREATE TABLE or ALTER TABLE statement can also be
used to specify an NDB_COLUMN option. NDB 7.5 and 7.6 support a single column comment option
MAX_BLOB_PART_SIZE; syntax for this option is shown here:

COMMENT 'NDB_COLUMN=MAX_BLOB_PART_SIZE[={0|1}]'

The = sign and the value following it are optional. Using any value other than 0 or 1 results in a syntax
error.

The effect of using MAX_BLOB_PART_SIZE in a column comment is to set the blob part size of a TEXT
or BLOB column to the maximum number of bytes supported for this by NDB (13948). This option can
be applied to any blob column type supported by MySQL except TINYBLOB or TINYTEXT (BLOB,
MEDIUMBLOB, LONGBLOB, TEXT, MEDIUMTEXT, LONGTEXT). MAX_BLOB_PART_SIZE has no effect on
JSON columns.

You should also keep in mind, especially when working with TEXT columns, that the value set by
MAX_BLOB_PART_SIZE represents column size in bytes. It does not indicate the number of characters,
which varies according to the character set and collation used by the column.

To see the effects of this option, we first run the following SQL statement in the mysql client
to create a table with two BLOB columns, one (c1) with no extra options, and another (c2) with
MAX_BLOB_PART_SIZE:

mysql> CREATE TABLE test.t (
 -> p INT PRIMARY KEY,
 -> c1 BLOB,
 -> c2 BLOB COMMENT 'NDB_COLUMN=MAX_BLOB_PART_SIZE'
 ->) ENGINE NDB;
Query OK, 0 rows affected (0.32 sec)

From the system shell, run the ndb_desc utility to obtain information about the table just created, as
shown in this example:

$> ndb_desc -d test t
-- t --
Version: 1
Fragment type: HashMapPartition
K Value: 6
Min load factor: 78
Max load factor: 80
Temporary table: no
Number of attributes: 3
Number of primary keys: 1
Length of frm data: 324
Row Checksum: 1
Row GCI: 1
SingleUserMode: 0
ForceVarPart: 1
FragmentCount: 2
ExtraRowGciBits: 0
ExtraRowAuthorBits: 0
TableStatus: Retrieved
HashMap: DEFAULT-HASHMAP-3840-2
-- Attributes --

2247

CREATE TABLE Statement

p Int PRIMARY KEY DISTRIBUTION KEY AT=FIXED ST=MEMORY
c1 Blob(256,2000,0) NULL AT=MEDIUM_VAR ST=MEMORY BV=2 BT=NDB$BLOB_22_1
c2 Blob(256,13948,0) NULL AT=MEDIUM_VAR ST=MEMORY BV=2 BT=NDB$BLOB_22_2
-- Indexes --
PRIMARY KEY(p) - UniqueHashIndex
PRIMARY(p) - OrderedIndex

Column information in the output is listed under Attributes; for columns c1 and c2 it is displayed here
in emphasized text. For c1, the blob part size is 2000, the default value; for c2, it is 13948, as set by
MAX_BLOB_PART_SIZE.

You can change the blob part size for a given blob column of an NDB table using an ALTER TABLE
statement such as this one, and verifying the changes afterwards using SHOW CREATE TABLE:

mysql> ALTER TABLE test.t
 -> DROP COLUMN c1,
 -> ADD COLUMN c1 BLOB COMMENT 'NDB_COLUMN=MAX_BLOB_PART_SIZE',
 -> CHANGE COLUMN c2 c2 BLOB AFTER c1;
Query OK, 0 rows affected (0.47 sec)
Records: 0 Duplicates: 0 Warnings: 0

mysql> SHOW CREATE TABLE test.t\G
*************************** 1. row ***************************
 Table: t
Create Table: CREATE TABLE `t` (
 `p` int(11) NOT NULL,
 `c1` blob COMMENT 'NDB_COLUMN=MAX_BLOB_PART_SIZE',
 `c2` blob,
 PRIMARY KEY (`p`)
) ENGINE=ndbcluster DEFAULT CHARSET=latin1
1 row in set (0.00 sec)

mysql> EXIT
Bye

The output of ndb_desc shows that the blob part sizes of the columns have been changed as expected:

$> ndb_desc -d test t
-- t --
Version: 16777220
Fragment type: HashMapPartition
K Value: 6
Min load factor: 78
Max load factor: 80
Temporary table: no
Number of attributes: 3
Number of primary keys: 1
Length of frm data: 324
Row Checksum: 1
Row GCI: 1
SingleUserMode: 0
ForceVarPart: 1
FragmentCount: 2
ExtraRowGciBits: 0
ExtraRowAuthorBits: 0
TableStatus: Retrieved
HashMap: DEFAULT-HASHMAP-3840-2
-- Attributes --
p Int PRIMARY KEY DISTRIBUTION KEY AT=FIXED ST=MEMORY
c1 Blob(256,13948,0) NULL AT=MEDIUM_VAR ST=MEMORY BV=2 BT=NDB$BLOB_26_1
c2 Blob(256,2000,0) NULL AT=MEDIUM_VAR ST=MEMORY BV=2 BT=NDB$BLOB_26_2
-- Indexes --
PRIMARY KEY(p) - UniqueHashIndex
PRIMARY(p) - OrderedIndex

NDBT_ProgramExit: 0 - OK

2248

CREATE TABLE Statement

Changing a column's blob part size must be done using a copying ALTER TABLE; this operation cannot be
performed online (see Section 21.6.12, “Online Operations with ALTER TABLE in NDB Cluster”).

For more information about how NDB stores columns of blob types, see String Type Storage Requirements.

NDB_TABLE Options

 For an NDB Cluster table, the table comment in a CREATE TABLE or ALTER TABLE statement can
also be used to specify an NDB_TABLE option, which consists of one or more name-value pairs, separated
by commas if need be, following the string NDB_TABLE=. Complete syntax for names and values syntax is
shown here:

COMMENT="NDB_TABLE=ndb_table_option[,ndb_table_option[,...]]"

ndb_table_option: {
 NOLOGGING={1 | 0}
 | READ_BACKUP={1 | 0}
 | PARTITION_BALANCE={FOR_RP_BY_NODE | FOR_RA_BY_NODE | FOR_RP_BY_LDM
 | FOR_RA_BY_LDM | FOR_RA_BY_LDM_X_2
 | FOR_RA_BY_LDM_X_3 | FOR_RA_BY_LDM_X_4}
 | FULLY_REPLICATED={1 | 0}
}

Spaces are not permitted within the quoted string. The string is case-insensitive.

The four NDB table options that can be set as part of a comment in this way are described in more detail in
the next few paragraphs.

 NOLOGGING: By default, NDB tables are logged, and checkpointed. This makes them durable to whole
cluster failures. Using NOLOGGING when creating or altering a table means that this table is not redo
logged or included in local checkpoints. In this case, the table is still replicated across the data nodes
for high availability, and updated using transactions, but changes made to it are not recorded in the data
node's redo logs, and its content is not checkpointed to disk; when recovering from a cluster failure, the
cluster retains the table definition, but none of its rows—that is, the table is empty.

Using such nonlogging tables reduces the data node's demands on disk I/O and storage, as well as CPU
for checkpointing CPU. This may be suitable for short-lived data which is frequently updated, and where
the loss of all data in the unlikely event of a total cluster failure is acceptable.

It is also possible to use the ndb_table_no_logging system variable to cause any NDB tables
created or altered while this variable is in effect to behave as though it had been created with the
NOLOGGING comment. Unlike when using the comment directly, there is nothing in this case in the output
of SHOW CREATE TABLE to indicate that it is a nonlogging table. Using the table comment approach
is recommended since it offers per-table control of the feature, and this aspect of the table schema is
embedded in the table creation statement where it can be found easily by SQL-based tools.

 READ_BACKUP: Setting this option to 1 has the same effect as though ndb_read_backup were enabled;
enables reading from any replica. Doing so greatly improves the performance of reads from the table at a
relatively small cost to write performance.

Starting with MySQL NDB Cluster 7.5.3, you can set READ_BACKUP for an existing table online (Bug
#80858, Bug #23001617), using an ALTER TABLE statement similar to one of those shown here:

ALTER TABLE ... ALGORITHM=INPLACE, COMMENT="NDB_TABLE=READ_BACKUP=1";

ALTER TABLE ... ALGORITHM=INPLACE, COMMENT="NDB_TABLE=READ_BACKUP=0";

Prior to MySQL NDB Cluster 7.5.4, setting READ_BACKUP to 1 also caused FRAGMENT_COUNT_TYPE to be
set to ONE_PER_LDM_PER_NODE_GROUP.

2249

CREATE TABLE Statement

For more information about the ALGORITHM option for ALTER TABLE, see Section 21.6.12, “Online
Operations with ALTER TABLE in NDB Cluster”.

 PARTITION_BALANCE: Provides additional control over assignment and placement of partitions. The
following four schemes are supported:

1. FOR_RP_BY_NODE: One partition per node.

Only one LDM on each node stores a primary partition. Each partition is stored in the same LDM (same
ID) on all nodes.

2. FOR_RA_BY_NODE: One partition per node group.

Each node stores a single partition, which can be either a primary replica or a backup replica. Each
partition is stored in the same LDM on all nodes.

3. FOR_RP_BY_LDM: One partition for each LDM on each node; the default.

This is the same behavior as prior to MySQL NDB Cluster 7.5.2, except for a slightly different mapping
of partitions to LDMs, starting with LDM 0 and placing one partition per node group, then moving on to
the next LDM.

In MySQL NDB Cluster 7.5.4 and later, this is the setting used if READ_BACKUP is set to 1. (Bug
#82634, Bug #24482114)

4. FOR_RA_BY_LDM: One partition per LDM in each node group.

These partitions can be primary or backup partitions.

Prior to MySQL NDB Cluster 7.5.4, this was the setting used if READ_BACKUP was set to 1.

5. FOR_RA_BY_LDM_X_2: Two partitions per LDM in each node group.

These partitions can be primary or backup partitions.

This setting was added in NDB 7.5.4.

6. FOR_RA_BY_LDM_X_3: Three partitions per LDM in each node group.

These partitions can be primary or backup partitions.

This setting was added in NDB 7.5.4.

7. FOR_RA_BY_LDM_X_4: Four partitions per LDM in each node group.

These partitions can be primary or backup partitions.

This setting was added in NDB 7.5.4.

Beginning with NDB 7.5.4, PARTITION_BALANCE is the preferred interface for setting the number of
partitions per table. Using MAX_ROWS to force the number of partitions is deprecated as of NDB 7.5.4,
continues to be supported in NDB 7.6 for backward compatibility, but is subject to removal in a future
release of MySQL NDB Cluster. (Bug #81759, Bug #23544301)

Prior to MySQL NDB Cluster 7.5.4, PARTITION_BALANCE was named FRAGMENT_COUNT_TYPE,
and accepted as its value one of (in the same order as that of the listing just shown) ONE_PER_NODE,
ONE_PER_NODE_GROUP, ONE_PER_LDM_PER_NODE, or ONE_PER_LDM_PER_NODE_GROUP. (Bug #81761,
Bug #23547525)

2250

CREATE TABLE Statement

 FULLY_REPLICATED controls whether the table is fully replicated, that is, whether each data node has a
complete copy of the table. To enable full replication of the table, use FULLY_REPLICATED=1.

This setting can also be controlled using the ndb_fully_replicated system variable. Setting it to
ON enables the option by default for all new NDB tables; the default is OFF, which maintains the previous
behavior (as in MySQL NDB Cluster 7.5.1 and earlier, before support for fully replicated tables was
introduced). The ndb_data_node_neighbour system variable is also used for fully replicated tables,
to ensure that when a fully replicated table is accessed, we access the data node which is local to this
MySQL Server.

An example of a CREATE TABLE statement using such a comment when creating an NDB table is shown
here:

mysql> CREATE TABLE t1 (
 > c1 INT NOT NULL AUTO_INCREMENT PRIMARY KEY,
 > c2 VARCHAR(100),
 > c3 VARCHAR(100))
 > ENGINE=NDB
 >
COMMENT="NDB_TABLE=READ_BACKUP=0,PARTITION_BALANCE=FOR_RP_BY_NODE";

The comment is displayed as part of the ouput of SHOW CREATE TABLE. The text of the comment is also
available from querying the MySQL Information Schema TABLES table, as in this example:

mysql> SELECT TABLE_NAME, TABLE_SCHEMA, TABLE_COMMENT
 > FROM INFORMATION_SCHEMA.TABLES WHERE TABLE_NAME="t1"\G
*************************** 1. row ***************************
 TABLE_NAME: t1
 TABLE_SCHEMA: test
TABLE_COMMENT: NDB_TABLE=READ_BACKUP=0,PARTITION_BALANCE=FOR_RP_BY_NODE
1 row in set (0.01 sec)

This comment syntax is also supported with ALTER TABLE statements for NDB tables, as shown here:

mysql> ALTER TABLE t1 COMMENT="NDB_TABLE=PARTITION_BALANCE=FOR_RA_BY_NODE";
Query OK, 0 rows affected (0.40 sec)
Records: 0 Duplicates: 0 Warnings: 0

Beginning with NDB 7.6.15, the TABLE_COMMENT column displays the comment that is required to re-
create the table as it is following the ALTER TABLE statement, like this:

mysql> SELECT TABLE_NAME, TABLE_SCHEMA, TABLE_COMMENT
 -> FROM INFORMATION_SCHEMA.TABLES WHERE TABLE_NAME="t1"\G
*************************** 1. row ***************************
 TABLE_NAME: t1
 TABLE_SCHEMA: test
TABLE_COMMENT: NDB_TABLE=READ_BACKUP=0,PARTITION_BALANCE=FOR_RP_BY_NODE
1 row in set (0.01 sec)

mysql> SELECT TABLE_NAME, TABLE_SCHEMA, TABLE_COMMENT
 > FROM INFORMATION_SCHEMA.TABLES WHERE TABLE_NAME="t1";
+------------+--------------+--+
| TABLE_NAME | TABLE_SCHEMA | TABLE_COMMENT |
+------------+--------------+--+
| t1 | c | NDB_TABLE=PARTITION_BALANCE=FOR_RA_BY_NODE |
| t1 | d | |
+------------+--------------+--+
2 rows in set (0.01 sec)

Keep in mind that a table comment used with ALTER TABLE replaces any existing comment which the
table might have.

mysql> ALTER TABLE t1 COMMENT="NDB_TABLE=PARTITION_BALANCE=FOR_RA_BY_NODE";
Query OK, 0 rows affected (0.40 sec)

2251

CREATE TABLESPACE Statement

Records: 0 Duplicates: 0 Warnings: 0

mysql> SELECT TABLE_NAME, TABLE_SCHEMA, TABLE_COMMENT
 > FROM INFORMATION_SCHEMA.TABLES WHERE TABLE_NAME="t1";
+------------+--------------+--+
| TABLE_NAME | TABLE_SCHEMA | TABLE_COMMENT |
+------------+--------------+--+
| t1 | c | NDB_TABLE=PARTITION_BALANCE=FOR_RA_BY_NODE |
| t1 | d | |
+------------+--------------+--+
2 rows in set (0.01 sec)

Prior to NDB 7.6.15, the table comment used with ALTER TABLE replaced any existing comment which
the table might have had. This meant that (for example) the READ_BACKUP value was not carried over to
the new comment set by the ALTER TABLE statement, and that any unspecified values reverted to their
defaults. (BUG#30428829) There was thus no longer any way using SQL to retrieve the value previously
set for the comment. To keep comment values from reverting to their defaults, it was necessry to preserve
any such values from the existing comment string and include them in the comment passed to ALTER
TABLE.

You can also see the value of the PARTITION_BALANCE option in the output of ndb_desc. ndb_desc
also shows whether the READ_BACKUP and FULLY_REPLICATED options are set for the table. See the
description of this program for more information.

13.1.19 CREATE TABLESPACE Statement
CREATE TABLESPACE tablespace_name

 InnoDB and NDB:
 ADD DATAFILE 'file_name'

 InnoDB only:
 [FILE_BLOCK_SIZE = value]

 NDB only:
 USE LOGFILE GROUP logfile_group
 [EXTENT_SIZE [=] extent_size]
 [INITIAL_SIZE [=] initial_size]
 [AUTOEXTEND_SIZE [=] autoextend_size]
 [MAX_SIZE [=] max_size]
 [NODEGROUP [=] nodegroup_id]
 [WAIT]
 [COMMENT [=] 'string']

 InnoDB and NDB:
 [ENGINE [=] engine_name]

This statement is used to create a tablespace. The precise syntax and semantics depend on the storage
engine used. In standard MySQL 5.7 releases, this is always an InnoDB tablespace. MySQL NDB Cluster
7.5 also supports tablespaces using the NDB storage engine in addition to those using InnoDB.

• Considerations for InnoDB

• Considerations for NDB Cluster

• Options

• Notes

• InnoDB Examples

• NDB Example

2252

CREATE TABLESPACE Statement

Considerations for InnoDB

CREATE TABLESPACE syntax is used to create general tablespaces. A general tablespace is a shared
tablespace. It can hold multiple tables, and supports all table row formats. General tablespaces can be
created in a location relative to or independent of the data directory.

After creating an InnoDB general tablespace, you can use CREATE TABLE tbl_name ...
TABLESPACE [=] tablespace_name or ALTER TABLE tbl_name TABLESPACE [=]
tablespace_name to add tables to the tablespace. For more information, see Section 14.6.3.3, “General
Tablespaces”.

Considerations for NDB Cluster

This statement is used to create a tablespace, which can contain one or more data files, providing storage
space for NDB Cluster Disk Data tables (see Section 21.6.11, “NDB Cluster Disk Data Tables”). One data
file is created and added to the tablespace using this statement. Additional data files may be added to
the tablespace by using the ALTER TABLESPACE statement (see Section 13.1.9, “ALTER TABLESPACE
Statement”).

Note

All NDB Cluster Disk Data objects share the same namespace. This means that
each Disk Data object must be uniquely named (and not merely each Disk Data
object of a given type). For example, you cannot have a tablespace and a log file
group with the same name, or a tablespace and a data file with the same name.

A log file group of one or more UNDO log files must be assigned to the tablespace to be created with the
USE LOGFILE GROUP clause. logfile_group must be an existing log file group created with CREATE
LOGFILE GROUP (see Section 13.1.15, “CREATE LOGFILE GROUP Statement”). Multiple tablespaces
may use the same log file group for UNDO logging.

When setting EXTENT_SIZE or INITIAL_SIZE, you may optionally follow the number with a one-letter
abbreviation for an order of magnitude, similar to those used in my.cnf. Generally, this is one of the letters
M (for megabytes) or G (for gigabytes).

INITIAL_SIZE and EXTENT_SIZE are subject to rounding as follows:

• EXTENT_SIZE is rounded up to the nearest whole multiple of 32K.

• INITIAL_SIZE is rounded down to the nearest whole multiple of 32K; this result is rounded up to the
nearest whole multiple of EXTENT_SIZE (after any rounding).

Note

NDB reserves 4% of a tablespace for data node restart operations. This reserved
space cannot be used for data storage. This restriction applies beginning with NDB
7.6.

The rounding just described is done explicitly, and a warning is issued by the MySQL Server when
any such rounding is performed. The rounded values are also used by the NDB kernel for calculating
Information Schema FILES column values and other purposes. However, to avoid an unexpected result,
we suggest that you always use whole multiples of 32K in specifying these options.

When CREATE TABLESPACE is used with ENGINE [=] NDB, a tablespace and associated data file are
created on each Cluster data node. You can verify that the data files were created and obtain information
about them by querying the Information Schema FILES table. (See the example later in this section.)

2253

CREATE TABLESPACE Statement

(See Section 24.3.9, “The INFORMATION_SCHEMA FILES Table”.)

Options

• ADD DATAFILE: Defines the name of a tablespace data file; this option is always required. The
file_name, including any specified path, must be quoted with single or double quotation marks. File
names (not counting the file extension) and directory names must be at least one byte in length. Zero
length file names and directory names are not supported.

Because there are considerable differences in how InnoDB and NDB treat data files, the two storage
engines are covered separately in the discussion that follows.

InnoDB data files. An InnoDB tablespace supports only a single data file, whose name must include
a .ibd extension.

For an InnoDB tablespace, the data file is created by default in the MySQL data directory (datadir).
To place the data file in a location other than the default, include an absolute directory path or a path
relative to the default location.

When an InnoDB tablespace is created outside of the data directory, an isl file is created in the data
directory. To avoid conflicts with implicitly created file-per-table tablespaces, creating an InnoDB general
tablespace in a subdirectory under the data directory is not supported. When creating an InnoDB
general tablespace outside of the data directory, the directory must exist prior to creating the tablespace.

Note

In MySQL 5.7, ALTER TABLESPACE is not supported by InnoDB.

NDB data files. An NDB tablespace supports multiple data files which can have any legal file names;
more data files can be added to an NDB Cluster tablespace following its creation by using an ALTER
TABLESPACE statement.

An NDB tablespace data file is created by default in the data node file system directory—that is, the
directory named ndb_nodeid_fs/TS under the data node's data directory (DataDir), where nodeid
is the data node's NodeId. To place the data file in a location other than the default, include an absolute
directory path or a path relative to the default location. If the directory specified does not exist, NDB
attempts to create it; the system user account under which the data node process is running must have
the appropriate permissions to do so.

Note

When determining the path used for a data file, NDB does not expand the ~ (tilde)
character.

When multiple data nodes are run on the same physical host, the following considerations apply:

• You cannot specify an absolute path when creating a data file.

• It is not possible to create tablespace data files outside the data node file system directory, unless
each data node has a separate data directory.

• If each data node has its own data directory, data files can be created anywhere within this directory.

• If each data node has its own data directory, it may also be possible to create a data file outside the
node's data directory using a relative path, as long as this path resolves to a unique location on the
host file system for each data node running on that host.

2254

CREATE TABLESPACE Statement

• FILE_BLOCK_SIZE: This option—which is specific to InnoDB, and is ignored by NDB—defines the block
size for the tablespace data file. Values can be specified in bytes or kilobytes. For example, an 8 kilobyte
file block size can be specified as 8192 or 8K. If you do not specify this option, FILE_BLOCK_SIZE
defaults to the innodb_page_size value. FILE_BLOCK_SIZE is required when you intend to use the
tablespace for storing compressed InnoDB tables (ROW_FORMAT=COMPRESSED). In this case, you must
define the tablespace FILE_BLOCK_SIZE when creating the tablespace.

If FILE_BLOCK_SIZE is equal the innodb_page_size value, the tablespace can contain only
tables having an uncompressed row format (COMPACT, REDUNDANT, and DYNAMIC). Tables with a
COMPRESSED row format have a different physical page size than uncompressed tables. Therefore,
compressed tables cannot coexist in the same tablespace as uncompressed tables.

For a general tablespace to contain compressed tables, FILE_BLOCK_SIZE must be specified, and the
FILE_BLOCK_SIZE value must be a valid compressed page size in relation to the innodb_page_size
value. Also, the physical page size of the compressed table (KEY_BLOCK_SIZE) must be equal to
FILE_BLOCK_SIZE/1024. For example, if innodb_page_size=16K, and FILE_BLOCK_SIZE=8K,
the KEY_BLOCK_SIZE of the table must be 8. For more information, see Section 14.6.3.3, “General
Tablespaces”.

• USE LOGFILE GROUP: Required for NDB, this is the name of a log file group previously created using
CREATE LOGFILE GROUP. Not supported for InnoDB, where it fails with an error.

• EXTENT_SIZE: This option is specific to NDB, and is not supported by InnoDB, where it fails with an
error. EXTENT_SIZE sets the size, in bytes, of the extents used by any files belonging to the tablespace.
The default value is 1M. The minimum size is 32K, and theoretical maximum is 2G, although the
practical maximum size depends on a number of factors. In most cases, changing the extent size does
not have any measurable effect on performance, and the default value is recommended for all but the
most unusual situations.

An extent is a unit of disk space allocation. One extent is filled with as much data as that extent can
contain before another extent is used. In theory, up to 65,535 (64K) extents may used per data file;
however, the recommended maximum is 32,768 (32K). The recommended maximum size for a single
data file is 32G—that is, 32K extents × 1 MB per extent. In addition, once an extent is allocated to a
given partition, it cannot be used to store data from a different partition; an extent cannot store data
from more than one partition. This means, for example that a tablespace having a single datafile whose
INITIAL_SIZE (described in the following item) is 256 MB and whose EXTENT_SIZE is 128M has just
two extents, and so can be used to store data from at most two different disk data table partitions.

You can see how many extents remain free in a given data file by querying the Information Schema
FILES table, and so derive an estimate for how much space remains free in the file. For further
discussion and examples, see Section 24.3.9, “The INFORMATION_SCHEMA FILES Table”.

• INITIAL_SIZE: This option is specific to NDB, and is not supported by InnoDB, where it fails with an
error.

The INITIAL_SIZE parameter sets the total size in bytes of the data file that was specific using ADD
DATATFILE. Once this file has been created, its size cannot be changed; however, you can add more
data files to the tablespace using ALTER TABLESPACE ... ADD DATAFILE.

INITIAL_SIZE is optional; its default value is 134217728 (128 MB).

On 32-bit systems, the maximum supported value for INITIAL_SIZE is 4294967296 (4 GB).

• AUTOEXTEND_SIZE: Currently ignored by MySQL; reserved for possible future use. Has no effect in any
release of MySQL 5.7 or MySQL NDB Cluster 7.5, regardless of the storage engine used.

2255

CREATE TABLESPACE Statement

• MAX_SIZE: Currently ignored by MySQL; reserved for possible future use. Has no effect in any release
of MySQL 5.7 or MySQL NDB Cluster 7.5, regardless of the storage engine used.

• NODEGROUP: Currently ignored by MySQL; reserved for possible future use. Has no effect in any release
of MySQL 5.7 or MySQL NDB Cluster 7.5, regardless of the storage engine used.

• WAIT: Currently ignored by MySQL; reserved for possible future use. Has no effect in any release of
MySQL 5.7 or MySQL NDB Cluster 7.5, regardless of the storage engine used.

• COMMENT: Currently ignored by MySQL; reserved for possible future use. Has no effect in any release of
MySQL 5.7 or MySQL NDB Cluster 7.5, regardless of the storage engine used.

• ENGINE: Defines the storage engine which uses the tablespace, where engine_name is the name
of the storage engine. Currently, only the InnoDB storage engine is supported by standard MySQL
5.7 releases. MySQL NDB Cluster 7.5 supports both NDB and InnoDB tablespaces. The value of the
default_storage_engine system variable is used for ENGINE if the option is not specified.

Notes

• For the rules covering the naming of MySQL tablespaces, see Section 9.2, “Schema Object Names”. In
addition to these rules, the slash character (“/”) is not permitted, nor can you use names beginning with
innodb_, as this prefix is reserved for system use.

• Tablespaces do not support temporary tables.

• innodb_file_per_table, innodb_file_format, and innodb_file_format_max settings have
no influence on CREATE TABLESPACE operations. innodb_file_per_table does not need to be
enabled. General tablespaces support all table row formats regardless of file format settings. Likewise,
general tablespaces support the addition of tables of any row format using CREATE TABLE ...
TABLESPACE, regardless of file format settings.

• innodb_strict_mode is not applicable to general tablespaces. Tablespace management rules
are strictly enforced independently of innodb_strict_mode. If CREATE TABLESPACE parameters
are incorrect or incompatible, the operation fails regardless of the innodb_strict_mode setting.
When a table is added to a general tablespace using CREATE TABLE ... TABLESPACE or ALTER
TABLE ... TABLESPACE, innodb_strict_mode is ignored but the statement is evaluated as if
innodb_strict_mode is enabled.

• Use DROP TABLESPACE to remove a tablespace. All tables must be dropped from a tablespace
using DROP TABLE prior to dropping the tablespace. Before dropping an NDB Cluster tablespace you
must also remove all its data files using one or more ALTER TABLESPACE ... DROP DATATFILE
statements. See Section 21.6.11.1, “NDB Cluster Disk Data Objects”.

• All parts of an InnoDB table added to an InnoDB general tablespace reside in the general tablespace,
including indexes and BLOB pages.

For an NDB table assigned to a tablespace, only those columns which are not indexed are stored on disk,
and actually use the tablespace data files. Indexes and indexed columns for all NDB tables are always
kept in memory.

• Similar to the system tablespace, truncating or dropping tables stored in a general tablespace creates
free space internally in the general tablespace .ibd data file which can only be used for new InnoDB
data. Space is not released back to the operating system as it is for file-per-table tablespaces.

• A general tablespace is not associated with any database or schema.

• ALTER TABLE ... DISCARD TABLESPACE and ALTER TABLE ...IMPORT TABLESPACE are not
supported for tables that belong to a general tablespace.

2256

CREATE TABLESPACE Statement

• The server uses tablespace-level metadata locking for DDL that references general tablespaces.
By comparison, the server uses table-level metadata locking for DDL that references file-per-table
tablespaces.

• A generated or existing tablespace cannot be changed to a general tablespace.

• Tables stored in a general tablespace can only be opened in MySQL 5.7.6 or later due to the addition of
new table flags.

• There is no conflict between general tablespace names and file-per-table tablespace names. The “/”
character, which is present in file-per-table tablespace names, is not permitted in general tablespace
names.

• mysqldump and mysqlpump do not dump InnoDB CREATE TABLESPACE statements.

InnoDB Examples

This example demonstrates creating a general tablespace and adding three uncompressed tables of
different row formats.

mysql> CREATE TABLESPACE `ts1` ADD DATAFILE 'ts1.ibd' ENGINE=INNODB;

mysql> CREATE TABLE t1 (c1 INT PRIMARY KEY) TABLESPACE ts1 ROW_FORMAT=REDUNDANT;

mysql> CREATE TABLE t2 (c1 INT PRIMARY KEY) TABLESPACE ts1 ROW_FORMAT=COMPACT;

mysql> CREATE TABLE t3 (c1 INT PRIMARY KEY) TABLESPACE ts1 ROW_FORMAT=DYNAMIC;

This example demonstrates creating a general tablespace and adding a compressed table. The example
assumes a default innodb_page_size value of 16K. The FILE_BLOCK_SIZE of 8192 requires that the
compressed table have a KEY_BLOCK_SIZE of 8.

mysql> CREATE TABLESPACE `ts2` ADD DATAFILE 'ts2.ibd' FILE_BLOCK_SIZE = 8192 Engine=InnoDB;

mysql> CREATE TABLE t4 (c1 INT PRIMARY KEY) TABLESPACE ts2 ROW_FORMAT=COMPRESSED KEY_BLOCK_SIZE=8;

NDB Example

Suppose that you wish to create an NDB Cluster Disk Data tablespace named myts using a datafile
named mydata-1.dat. An NDB tablespace always requires the use of a log file group consisting of one or
more undo log files. For this example, we first create a log file group named mylg that contains one undo
long file named myundo-1.dat, using the CREATE LOGFILE GROUP statement shown here:

mysql> CREATE LOGFILE GROUP myg1
 -> ADD UNDOFILE 'myundo-1.dat'
 -> ENGINE=NDB;
Query OK, 0 rows affected (3.29 sec)

Now you can create the tablespace previously described using the following statement:

mysql> CREATE TABLESPACE myts
 -> ADD DATAFILE 'mydata-1.dat'
 -> USE LOGFILE GROUP mylg
 -> ENGINE=NDB;
Query OK, 0 rows affected (2.98 sec)

You can now create a Disk Data table using a CREATE TABLE statement with the TABLESPACE and
STORAGE DISK options, similar to what is shown here:

mysql> CREATE TABLE mytable (
 -> id INT UNSIGNED NOT NULL AUTO_INCREMENT PRIMARY KEY,

2257

CREATE TRIGGER Statement

 -> lname VARCHAR(50) NOT NULL,
 -> fname VARCHAR(50) NOT NULL,
 -> dob DATE NOT NULL,
 -> joined DATE NOT NULL,
 -> INDEX(last_name, first_name)
 ->)
 -> TABLESPACE myts STORAGE DISK
 -> ENGINE=NDB;
Query OK, 0 rows affected (1.41 sec)

It is important to note that only the dob and joined columns from mytable are actually stored on disk,
due to the fact that the id, lname, and fname columns are all indexed.

As mentioned previously, when CREATE TABLESPACE is used with ENGINE [=] NDB, a tablespace and
associated data file are created on each NDB Cluster data node. You can verify that the data files were
created and obtain information about them by querying the Information Schema FILES table, as shown
here:

mysql> SELECT FILE_NAME, FILE_TYPE, LOGFILE_GROUP_NAME, STATUS, EXTRA
 -> FROM INFORMATION_SCHEMA.FILES
 -> WHERE TABLESPACE_NAME = 'myts';

+--------------+------------+--------------------+--------+----------------+
| file_name | file_type | logfile_group_name | status | extra |
+--------------+------------+--------------------+--------+----------------+
mydata-1.dat	DATAFILE	mylg	NORMAL	CLUSTER_NODE=5
mydata-1.dat	DATAFILE	mylg	NORMAL	CLUSTER_NODE=6
NULL	TABLESPACE	mylg	NORMAL	NULL
+--------------+------------+--------------------+--------+----------------+
3 rows in set (0.01 sec)

For additional information and examples, see Section 21.6.11.1, “NDB Cluster Disk Data Objects”.

13.1.20 CREATE TRIGGER Statement
CREATE
 [DEFINER = user]
 TRIGGER trigger_name
 trigger_time trigger_event
 ON tbl_name FOR EACH ROW
 [trigger_order]
 trigger_body

trigger_time: { BEFORE | AFTER }

trigger_event: { INSERT | UPDATE | DELETE }

trigger_order: { FOLLOWS | PRECEDES } other_trigger_name

This statement creates a new trigger. A trigger is a named database object that is associated with a table,
and that activates when a particular event occurs for the table. The trigger becomes associated with the
table named tbl_name, which must refer to a permanent table. You cannot associate a trigger with a
TEMPORARY table or a view.

Trigger names exist in the schema namespace, meaning that all triggers must have unique names within a
schema. Triggers in different schemas can have the same name.

This section describes CREATE TRIGGER syntax. For additional discussion, see Section 23.3.1, “Trigger
Syntax and Examples”.

CREATE TRIGGER requires the TRIGGER privilege for the table associated with the trigger. If the DEFINER
clause is present, the privileges required depend on the user value, as discussed in Section 23.6, “Stored

2258

CREATE TRIGGER Statement

Object Access Control”. If binary logging is enabled, CREATE TRIGGER might require the SUPER privilege,
as discussed in Section 23.7, “Stored Program Binary Logging”.

The DEFINER clause determines the security context to be used when checking access privileges at
trigger activation time, as described later in this section.

trigger_time is the trigger action time. It can be BEFORE or AFTER to indicate that the trigger activates
before or after each row to be modified.

Basic column value checks occur prior to trigger activation, so you cannot use BEFORE triggers to convert
values inappropriate for the column type to valid values.

trigger_event indicates the kind of operation that activates the trigger. These trigger_event values
are permitted:

• INSERT: The trigger activates whenever a new row is inserted into the table (for example, through
INSERT, LOAD DATA, and REPLACE statements).

• UPDATE: The trigger activates whenever a row is modified (for example, through UPDATE statements).

• DELETE: The trigger activates whenever a row is deleted from the table (for example, through DELETE
and REPLACE statements). DROP TABLE and TRUNCATE TABLE statements on the table do not activate
this trigger, because they do not use DELETE. Dropping a partition does not activate DELETE triggers,
either.

The trigger_event does not represent a literal type of SQL statement that activates the trigger so much
as it represents a type of table operation. For example, an INSERT trigger activates not only for INSERT
statements but also LOAD DATA statements because both statements insert rows into a table.

A potentially confusing example of this is the INSERT INTO ... ON DUPLICATE KEY UPDATE ...
syntax: a BEFORE INSERT trigger activates for every row, followed by either an AFTER INSERT trigger or
both the BEFORE UPDATE and AFTER UPDATE triggers, depending on whether there was a duplicate key
for the row.

Note

Cascaded foreign key actions do not activate triggers.

It is possible to define multiple triggers for a given table that have the same trigger event and action time.
For example, you can have two BEFORE UPDATE triggers for a table. By default, triggers that have the
same trigger event and action time activate in the order they were created. To affect trigger order, specify
a trigger_order clause that indicates FOLLOWS or PRECEDES and the name of an existing trigger that
also has the same trigger event and action time. With FOLLOWS, the new trigger activates after the existing
trigger. With PRECEDES, the new trigger activates before the existing trigger.

trigger_body is the statement to execute when the trigger activates. To execute multiple statements,
use the BEGIN ... END compound statement construct. This also enables you to use the same
statements that are permitted within stored routines. See Section 13.6.1, “BEGIN ... END Compound
Statement”. Some statements are not permitted in triggers; see Section 23.8, “Restrictions on Stored
Programs”.

Within the trigger body, you can refer to columns in the subject table (the table associated with the trigger)
by using the aliases OLD and NEW. OLD.col_name refers to a column of an existing row before it is
updated or deleted. NEW.col_name refers to the column of a new row to be inserted or an existing row
after it is updated.

2259

CREATE VIEW Statement

Triggers cannot use NEW.col_name or use OLD.col_name to refer to generated columns. For
information about generated columns, see Section 13.1.18.7, “CREATE TABLE and Generated Columns”.

MySQL stores the sql_mode system variable setting in effect when a trigger is created, and always
executes the trigger body with this setting in force, regardless of the current server SQL mode when the
trigger begins executing.

The DEFINER clause specifies the MySQL account to be used when checking access privileges at trigger
activation time. If the DEFINER clause is present, the user value should be a MySQL account specified
as 'user_name'@'host_name', CURRENT_USER, or CURRENT_USER(). The permitted user values
depend on the privileges you hold, as discussed in Section 23.6, “Stored Object Access Control”. Also see
that section for additional information about trigger security.

If the DEFINER clause is omitted, the default definer is the user who executes the CREATE TRIGGER
statement. This is the same as specifying DEFINER = CURRENT_USER explicitly.

MySQL takes the DEFINER user into account when checking trigger privileges as follows:

• At CREATE TRIGGER time, the user who issues the statement must have the TRIGGER privilege.

• At trigger activation time, privileges are checked against the DEFINER user. This user must have these
privileges:

• The TRIGGER privilege for the subject table.

• The SELECT privilege for the subject table if references to table columns occur using OLD.col_name
or NEW.col_name in the trigger body.

• The UPDATE privilege for the subject table if table columns are targets of SET NEW.col_name =
value assignments in the trigger body.

• Whatever other privileges normally are required for the statements executed by the trigger.

Within a trigger body, the CURRENT_USER function returns the account used to check privileges at trigger
activation time. This is the DEFINER user, not the user whose actions caused the trigger to be activated.
For information about user auditing within triggers, see Section 6.2.18, “SQL-Based Account Activity
Auditing”.

If you use LOCK TABLES to lock a table that has triggers, the tables used within the trigger are also locked,
as described in LOCK TABLES and Triggers.

For additional discussion of trigger use, see Section 23.3.1, “Trigger Syntax and Examples”.

13.1.21 CREATE VIEW Statement
CREATE
 [OR REPLACE]
 [ALGORITHM = {UNDEFINED | MERGE | TEMPTABLE}]
 [DEFINER = user]
 [SQL SECURITY { DEFINER | INVOKER }]
 VIEW view_name [(column_list)]
 AS select_statement
 [WITH [CASCADED | LOCAL] CHECK OPTION]

The CREATE VIEW statement creates a new view, or replaces an existing view if the OR REPLACE clause
is given. If the view does not exist, CREATE OR REPLACE VIEW is the same as CREATE VIEW. If the view
does exist, CREATE OR REPLACE VIEW replaces it.

For information about restrictions on view use, see Section 23.9, “Restrictions on Views”.

2260

CREATE VIEW Statement

The select_statement is a SELECT statement that provides the definition of the view. (Selecting from
the view selects, in effect, using the SELECT statement.) The select_statement can select from base
tables or from other views.

The view definition is “frozen” at creation time and is not affected by subsequent changes to the definitions
of the underlying tables. For example, if a view is defined as SELECT * on a table, new columns added to
the table later do not become part of the view, and columns dropped from the table result in an error when
selecting from the view.

The ALGORITHM clause affects how MySQL processes the view. The DEFINER and SQL SECURITY
clauses specify the security context to be used when checking access privileges at view invocation
time. The WITH CHECK OPTION clause can be given to constrain inserts or updates to rows in tables
referenced by the view. These clauses are described later in this section.

The CREATE VIEW statement requires the CREATE VIEW privilege for the view, and some privilege for
each column selected by the SELECT statement. For columns used elsewhere in the SELECT statement,
you must have the SELECT privilege. If the OR REPLACE clause is present, you must also have the DROP
privilege for the view. If the DEFINER clause is present, the privileges required depend on the user value,
as discussed in Section 23.6, “Stored Object Access Control”.

When a view is referenced, privilege checking occurs as described later in this section.

A view belongs to a database. By default, a new view is created in the default database. To create the
view explicitly in a given database, use db_name.view_name syntax to qualify the view name with the
database name:

CREATE VIEW test.v AS SELECT * FROM t;

Unqualified table or view names in the SELECT statement are also interpreted with respect to the default
database. A view can refer to tables or views in other databases by qualifying the table or view name with
the appropriate database name.

Within a database, base tables and views share the same namespace, so a base table and a view cannot
have the same name.

Columns retrieved by the SELECT statement can be simple references to table columns, or expressions
that use functions, constant values, operators, and so forth.

A view must have unique column names with no duplicates, just like a base table. By default, the names
of the columns retrieved by the SELECT statement are used for the view column names. To define explicit
names for the view columns, specify the optional column_list clause as a list of comma-separated
identifiers. The number of names in column_list must be the same as the number of columns retrieved
by the SELECT statement.

A view can be created from many kinds of SELECT statements. It can refer to base tables or other views. It
can use joins, UNION, and subqueries. The SELECT need not even refer to any tables:

CREATE VIEW v_today (today) AS SELECT CURRENT_DATE;

The following example defines a view that selects two columns from another table as well as an expression
calculated from those columns:

mysql> CREATE TABLE t (qty INT, price INT);
mysql> INSERT INTO t VALUES(3, 50);
mysql> CREATE VIEW v AS SELECT qty, price, qty*price AS value FROM t;
mysql> SELECT * FROM v;
+------+-------+-------+
| qty | price | value |
+------+-------+-------+

2261

CREATE VIEW Statement

| 3 | 50 | 150 |
+------+-------+-------+

A view definition is subject to the following restrictions:

• The SELECT statement cannot refer to system variables or user-defined variables.

• Within a stored program, the SELECT statement cannot refer to program parameters or local variables.

• The SELECT statement cannot refer to prepared statement parameters.

• Any table or view referred to in the definition must exist. If, after the view has been created, a table or
view that the definition refers to is dropped, use of the view results in an error. To check a view definition
for problems of this kind, use the CHECK TABLE statement.

• The definition cannot refer to a TEMPORARY table, and you cannot create a TEMPORARY view.

• You cannot associate a trigger with a view.

• Aliases for column names in the SELECT statement are checked against the maximum column length of
64 characters (not the maximum alias length of 256 characters).

ORDER BY is permitted in a view definition, but it is ignored if you select from a view using a statement that
has its own ORDER BY.

For other options or clauses in the definition, they are added to the options or clauses of the statement that
references the view, but the effect is undefined. For example, if a view definition includes a LIMIT clause,
and you select from the view using a statement that has its own LIMIT clause, it is undefined which limit
applies. This same principle applies to options such as ALL, DISTINCT, or SQL_SMALL_RESULT that
follow the SELECT keyword, and to clauses such as INTO, FOR UPDATE, LOCK IN SHARE MODE, and
PROCEDURE.

The results obtained from a view may be affected if you change the query processing environment by
changing system variables:

mysql> CREATE VIEW v (mycol) AS SELECT 'abc';
Query OK, 0 rows affected (0.01 sec)

mysql> SET sql_mode = '';
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT "mycol" FROM v;
+-------+
| mycol |
+-------+
| mycol |
+-------+
1 row in set (0.01 sec)

mysql> SET sql_mode = 'ANSI_QUOTES';
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT "mycol" FROM v;
+-------+
| mycol |
+-------+
| abc |
+-------+
1 row in set (0.00 sec)

The DEFINER and SQL SECURITY clauses determine which MySQL account to use when checking
access privileges for the view when a statement is executed that references the view. The valid SQL

2262

CREATE VIEW Statement

SECURITY characteristic values are DEFINER (the default) and INVOKER. These indicate that the required
privileges must be held by the user who defined or invoked the view, respectively.

If the DEFINER clause is present, the user value should be a MySQL account specified as
'user_name'@'host_name', CURRENT_USER, or CURRENT_USER(). The permitted user values
depend on the privileges you hold, as discussed in Section 23.6, “Stored Object Access Control”. Also see
that section for additional information about view security.

If the DEFINER clause is omitted, the default definer is the user who executes the CREATE VIEW
statement. This is the same as specifying DEFINER = CURRENT_USER explicitly.

Within a view definition, the CURRENT_USER function returns the view's DEFINER value by default. For
views defined with the SQL SECURITY INVOKER characteristic, CURRENT_USER returns the account
for the view's invoker. For information about user auditing within views, see Section 6.2.18, “SQL-Based
Account Activity Auditing”.

Within a stored routine that is defined with the SQL SECURITY DEFINER characteristic, CURRENT_USER
returns the routine's DEFINER value. This also affects a view defined within such a routine, if the view
definition contains a DEFINER value of CURRENT_USER.

MySQL checks view privileges like this:

• At view definition time, the view creator must have the privileges needed to use the top-level objects
accessed by the view. For example, if the view definition refers to table columns, the creator must have
some privilege for each column in the select list of the definition, and the SELECT privilege for each
column used elsewhere in the definition. If the definition refers to a stored function, only the privileges
needed to invoke the function can be checked. The privileges required at function invocation time can be
checked only as it executes: For different invocations, different execution paths within the function might
be taken.

• The user who references a view must have appropriate privileges to access it (SELECT to select from it,
INSERT to insert into it, and so forth.)

• When a view has been referenced, privileges for objects accessed by the view are checked against the
privileges held by the view DEFINER account or invoker, depending on whether the SQL SECURITY
characteristic is DEFINER or INVOKER, respectively.

• If reference to a view causes execution of a stored function, privilege checking for statements executed
within the function depend on whether the function SQL SECURITY characteristic is DEFINER or
INVOKER. If the security characteristic is DEFINER, the function runs with the privileges of the DEFINER
account. If the characteristic is INVOKER, the function runs with the privileges determined by the view's
SQL SECURITY characteristic.

Example: A view might depend on a stored function, and that function might invoke other stored routines.
For example, the following view invokes a stored function f():

CREATE VIEW v AS SELECT * FROM t WHERE t.id = f(t.name);

Suppose that f() contains a statement such as this:

IF name IS NULL then
 CALL p1();
ELSE
 CALL p2();
END IF;

The privileges required for executing statements within f() need to be checked when f() executes. This
might mean that privileges are needed for p1() or p2(), depending on the execution path within f().

2263

CREATE VIEW Statement

Those privileges must be checked at runtime, and the user who must possess the privileges is determined
by the SQL SECURITY values of the view v and the function f().

The DEFINER and SQL SECURITY clauses for views are extensions to standard SQL. In standard SQL,
views are handled using the rules for SQL SECURITY DEFINER. The standard says that the definer of
the view, which is the same as the owner of the view's schema, gets applicable privileges on the view (for
example, SELECT) and may grant them. MySQL has no concept of a schema “owner”, so MySQL adds
a clause to identify the definer. The DEFINER clause is an extension where the intent is to have what the
standard has; that is, a permanent record of who defined the view. This is why the default DEFINER value
is the account of the view creator.

The optional ALGORITHM clause is a MySQL extension to standard SQL. It affects how MySQL processes
the view. ALGORITHM takes three values: MERGE, TEMPTABLE, or UNDEFINED. For more information, see
Section 23.5.2, “View Processing Algorithms”, as well as Section 8.2.2.4, “Optimizing Derived Tables and
View References with Merging or Materialization”.

Some views are updatable. That is, you can use them in statements such as UPDATE, DELETE, or INSERT
to update the contents of the underlying table. For a view to be updatable, there must be a one-to-one
relationship between the rows in the view and the rows in the underlying table. There are also certain other
constructs that make a view nonupdatable.

A generated column in a view is considered updatable because it is possible to assign to it. However, if
such a column is updated explicitly, the only permitted value is DEFAULT. For information about generated
columns, see Section 13.1.18.7, “CREATE TABLE and Generated Columns”.

The WITH CHECK OPTION clause can be given for an updatable view to prevent inserts or updates to
rows except those for which the WHERE clause in the select_statement is true.

In a WITH CHECK OPTION clause for an updatable view, the LOCAL and CASCADED keywords determine
the scope of check testing when the view is defined in terms of another view. The LOCAL keyword restricts
the CHECK OPTION only to the view being defined. CASCADED causes the checks for underlying views to
be evaluated as well. When neither keyword is given, the default is CASCADED.

For more information about updatable views and the WITH CHECK OPTION clause, see Section 23.5.3,
“Updatable and Insertable Views”, and Section 23.5.4, “The View WITH CHECK OPTION Clause”.

Views created before MySQL 5.7.3 containing ORDER BY integer can result in errors at view evaluation
time. Consider these view definitions, which use ORDER BY with an ordinal number:

CREATE VIEW v1 AS SELECT x, y, z FROM t ORDER BY 2;
CREATE VIEW v2 AS SELECT x, 1, z FROM t ORDER BY 2;

In the first case, ORDER BY 2 refers to a named column y. In the second case, it refers to a constant
1. For queries that select from either view fewer than 2 columns (the number named in the ORDER BY
clause), an error occurs if the server evaluates the view using the MERGE algorithm. Examples:

mysql> SELECT x FROM v1;
ERROR 1054 (42S22): Unknown column '2' in 'order clause'
mysql> SELECT x FROM v2;
ERROR 1054 (42S22): Unknown column '2' in 'order clause'

As of MySQL 5.7.3, to handle view definitions like this, the server writes them differently into the .frm file
that stores the view definition. This difference is visible with SHOW CREATE VIEW. Previously, the .frm file
contained this for the ORDER BY 2 clause:

For v1: ORDER BY 2
For v2: ORDER BY 2

As of 5.7.3, the .frm file contains this:

2264

DROP DATABASE Statement

For v1: ORDER BY `t`.`y`
For v2: ORDER BY ''

That is, for v1, 2 is replaced by a reference to the name of the column referred to. For v2, 2 is replaced by
a constant string expression (ordering by a constant has no effect, so ordering by any constant works).

If you experience view-evaluation errors such as just described, drop and recreate the view so that the
.frm file contains the updated view representation. Alternatively, for views like v2 that order by a constant
value, drop and recreate the view with no ORDER BY clause.

13.1.22 DROP DATABASE Statement
DROP {DATABASE | SCHEMA} [IF EXISTS] db_name

DROP DATABASE drops all tables in the database and deletes the database. Be very careful with this
statement! To use DROP DATABASE, you need the DROP privilege on the database. DROP SCHEMA is a
synonym for DROP DATABASE.

Important

When a database is dropped, privileges granted specifically for the database are
not automatically dropped. They must be dropped manually. See Section 13.7.1.4,
“GRANT Statement”.

IF EXISTS is used to prevent an error from occurring if the database does not exist.

If the default database is dropped, the default database is unset (the DATABASE() function returns NULL).

If you use DROP DATABASE on a symbolically linked database, both the link and the original database are
deleted.

DROP DATABASE returns the number of tables that were removed. This corresponds to the number of
.frm files removed.

The DROP DATABASE statement removes from the given database directory those files and directories that
MySQL itself may create during normal operation:

• All files with the following extensions:

• .BAK

• .DAT

• .HSH

• .MRG

• .MYD

• .MYI

• .TRG

• .TRN

• .cfg

• .db

2265

DROP EVENT Statement

• .frm

• .ibd

• .ndb

• .par

• The db.opt file, if it exists.

If other files or directories remain in the database directory after MySQL removes those just listed, the
database directory cannot be removed. In this case, you must remove any remaining files or directories
manually and issue the DROP DATABASE statement again.

Dropping a database does not remove any TEMPORARY tables that were created in that database.
TEMPORARY tables are automatically removed when the session that created them ends. See
Section 13.1.18.2, “CREATE TEMPORARY TABLE Statement”.

You can also drop databases with mysqladmin. See Section 4.5.2, “mysqladmin — A MySQL Server
Administration Program”.

13.1.23 DROP EVENT Statement
DROP EVENT [IF EXISTS] event_name

This statement drops the event named event_name. The event immediately ceases being active, and is
deleted completely from the server.

If the event does not exist, the error ERROR 1517 (HY000): Unknown event 'event_name' results.
You can override this and cause the statement to generate a warning for nonexistent events instead using
IF EXISTS.

This statement requires the EVENT privilege for the schema to which the event to be dropped belongs.

13.1.24 DROP FUNCTION Statement

The DROP FUNCTION statement is used to drop stored functions and loadable functions:

• For information about dropping stored functions, see Section 13.1.27, “DROP PROCEDURE and DROP
FUNCTION Statements”.

• For information about dropping loadable functions, see Section 13.7.3.2, “DROP FUNCTION Statement
for Loadable Functions”.

13.1.25 DROP INDEX Statement
DROP INDEX index_name ON tbl_name
 [algorithm_option | lock_option] ...

algorithm_option:
 ALGORITHM [=] {DEFAULT | INPLACE | COPY}

lock_option:
 LOCK [=] {DEFAULT | NONE | SHARED | EXCLUSIVE}

DROP INDEX drops the index named index_name from the table tbl_name. This statement is mapped to
an ALTER TABLE statement to drop the index. See Section 13.1.8, “ALTER TABLE Statement”.

2266

DROP LOGFILE GROUP Statement

To drop a primary key, the index name is always PRIMARY, which must be specified as a quoted identifier
because PRIMARY is a reserved word:

DROP INDEX `PRIMARY` ON t;

Indexes on variable-width columns of NDB tables are dropped online; that is, without any table copying.
The table is not locked against access from other NDB Cluster API nodes, although it is locked against
other operations on the same API node for the duration of the operation. This is done automatically by the
server whenever it determines that it is possible to do so; you do not have to use any special SQL syntax
or server options to cause it to happen.

ALGORITHM and LOCK clauses may be given to influence the table copying method and level of
concurrency for reading and writing the table while its indexes are being modified. They have the same
meaning as for the ALTER TABLE statement. For more information, see Section 13.1.8, “ALTER TABLE
Statement”

NDB Cluster formerly supported online DROP INDEX operations using the ONLINE and OFFLINE
keywords. These keywords are no longer supported in MySQL NDB Cluster 7.5 and later, and their use
causes a syntax error. Instead, MySQL NDB Cluster 7.5 and later support online operations using the
same ALGORITHM=INPLACE syntax used with the standard MySQL Server. See Section 21.6.12, “Online
Operations with ALTER TABLE in NDB Cluster”, for more information.

13.1.26 DROP LOGFILE GROUP Statement
DROP LOGFILE GROUP logfile_group
 ENGINE [=] engine_name

This statement drops the log file group named logfile_group. The log file group must already exist
or an error results. (For information on creating log file groups, see Section 13.1.15, “CREATE LOGFILE
GROUP Statement”.)

Important

Before dropping a log file group, you must drop all tablespaces that use that log file
group for UNDO logging.

The required ENGINE clause provides the name of the storage engine used by the log file group to be
dropped. Currently, the only permitted values for engine_name are NDB and NDBCLUSTER.

DROP LOGFILE GROUP is useful only with Disk Data storage for NDB Cluster. See Section 21.6.11, “NDB
Cluster Disk Data Tables”.

13.1.27 DROP PROCEDURE and DROP FUNCTION Statements
DROP {PROCEDURE | FUNCTION} [IF EXISTS] sp_name

These statements are used to drop a stored routine (a stored procedure or function). That is, the specified
routine is removed from the server. (DROP FUNCTION is also used to drop loadable functions; see
Section 13.7.3.2, “DROP FUNCTION Statement for Loadable Functions”.)

To drop a stored routine, you must have the ALTER ROUTINE privilege for it. (If the
automatic_sp_privileges system variable is enabled, that privilege and EXECUTE are granted
automatically to the routine creator when the routine is created and dropped from the creator when the
routine is dropped. See Section 23.2.2, “Stored Routines and MySQL Privileges”.)

The IF EXISTS clause is a MySQL extension. It prevents an error from occurring if the procedure or
function does not exist. A warning is produced that can be viewed with SHOW WARNINGS.

2267

DROP SERVER Statement

DROP FUNCTION is also used to drop loadable functions (see Section 13.7.3.2, “DROP FUNCTION
Statement for Loadable Functions”).

13.1.28 DROP SERVER Statement
DROP SERVER [IF EXISTS] server_name

Drops the server definition for the server named server_name. The corresponding row in the
mysql.servers table is deleted. This statement requires the SUPER privilege.

Dropping a server for a table does not affect any FEDERATED tables that used this connection information
when they were created. See Section 13.1.17, “CREATE SERVER Statement”.

DROP SERVER causes an implicit commit. See Section 13.3.3, “Statements That Cause an Implicit
Commit”.

DROP SERVER is not written to the binary log, regardless of the logging format that is in use.

13.1.29 DROP TABLE Statement
DROP [TEMPORARY] TABLE [IF EXISTS]
 tbl_name [, tbl_name] ...
 [RESTRICT | CASCADE]

DROP TABLE removes one or more tables. You must have the DROP privilege for each table.

Be careful with this statement! For each table, it removes the table definition and all table data. If the table
is partitioned, the statement removes the table definition, all its partitions, all data stored in those partitions,
and all partition definitions associated with the dropped table.

Dropping a table also drops any triggers for the table.

DROP TABLE causes an implicit commit, except when used with the TEMPORARY keyword. See
Section 13.3.3, “Statements That Cause an Implicit Commit”.

Important

When a table is dropped, privileges granted specifically for the table are not
automatically dropped. They must be dropped manually. See Section 13.7.1.4,
“GRANT Statement”.

If any tables named in the argument list do not exist, DROP TABLE behavior depends on whether the IF
EXISTS clause is given:

• Without IF EXISTS, the statement drops all named tables that do exist, and returns an error indicating
which nonexisting tables it was unable to drop.

• With IF EXISTS, no error occurs for nonexisting tables. The statement drops all named tables that do
exist, and generates a NOTE diagnostic for each nonexistent table. These notes can be displayed with
SHOW WARNINGS. See Section 13.7.5.40, “SHOW WARNINGS Statement”.

IF EXISTS can also be useful for dropping tables in unusual circumstances under which there is an .frm
file but no table managed by the storage engine. (For example, if an abnormal server exit occurs after
removal of the table from the storage engine but before .frm file removal.)

The TEMPORARY keyword has the following effects:

• The statement drops only TEMPORARY tables.

• The statement does not cause an implicit commit.

2268

DROP TABLESPACE Statement

• No access rights are checked. A TEMPORARY table is visible only with the session that created it, so no
check is necessary.

Including the TEMPORARY keyword is a good way to prevent accidentally dropping non-TEMPORARY tables.

The RESTRICT and CASCADE keywords do nothing. They are permitted to make porting easier from other
database systems.

DROP TABLE is not supported with all innodb_force_recovery settings. See Section 14.22.2, “Forcing
InnoDB Recovery”.

13.1.30 DROP TABLESPACE Statement
DROP TABLESPACE tablespace_name
 [ENGINE [=] engine_name]

This statement drops a tablespace that was previously created using CREATE TABLESPACE. It is
supported with all MySQL NDB Cluster 7.5 releases, and with InnoDB in the standard MySQL Server as
well.

ENGINE sets the storage engine that uses the tablespace, where engine_name is the name of
the storage engine. Currently, the values InnoDB and NDB are supported. If not set, the value of
default_storage_engine is used. If it is not the same as the storage engine used to create the
tablespace, the DROP TABLESPACE statement fails.

For an InnoDB tablespace, all tables must be dropped from the tablespace prior to a DROP TABLESPACE
operation. If the tablespace is not empty, DROP TABLESPACE returns an error.

As with the InnoDB system tablespace, truncating or dropping InnoDB tables stored in a general
tablespace creates free space in the tablespace .ibd data file, which can only be used for new InnoDB
data. Space is not released back to the operating system by such operations as it is for file-per-table
tablespaces.

An NDB tablespace to be dropped must not contain any data files; in other words, before you can drop
an NDB tablespace, you must first drop each of its data files using ALTER TABLESPACE ... DROP
DATAFILE.

Notes

• Tablespaces are not deleted automatically. A tablespace must be dropped explicitly using DROP
TABLESPACE. DROP DATABASE has no effect in this regard, even if the operation drops all tables
belonging to the tablespace.

• A DROP DATABASE operation can drop tables that belong to a general tablespace but it cannot drop the
tablespace, even if the operation drops all tables that belong to the tablespace. The tablespace must be
dropped explicitly using DROP TABLESPACE tablespace_name.

• Similar to the system tablespace, truncating or dropping tables stored in a general tablespace creates
free space internally in the general tablespace .ibd data file which can only be used for new InnoDB
data. Space is not released back to the operating system as it is for file-per-table tablespaces.

InnoDB Example

This example demonstrates how to drop an InnoDB general tablespace. The general tablespace ts1 is
created with a single table. Before dropping the tablespace, the table must be dropped.

mysql> CREATE TABLESPACE `ts1` ADD DATAFILE 'ts1.ibd' Engine=InnoDB;

mysql> CREATE TABLE t1 (c1 INT PRIMARY KEY) TABLESPACE ts1 Engine=InnoDB;

2269

DROP TRIGGER Statement

mysql> DROP TABLE t1;

mysql> DROP TABLESPACE ts1;

NDB Example

This example shows how to drop an NDB tablespace myts having a data file named mydata-1.dat
after first creating the tablespace, and assumes the existence of a log file group named mylg (see
Section 13.1.15, “CREATE LOGFILE GROUP Statement”).

mysql> CREATE TABLESPACE myts
 -> ADD DATAFILE 'mydata-1.dat'
 -> USE LOGFILE GROUP mylg
 -> ENGINE=NDB;

You must remove all data files from the tablespace using ALTER TABLESPACE, as shown here, before it
can be dropped:

mysql> ALTER TABLESPACE myts
 -> DROP DATAFILE 'mydata-1.dat'
 -> ENGINE=NDB;

mysql> DROP TABLESPACE myts;

13.1.31 DROP TRIGGER Statement
DROP TRIGGER [IF EXISTS] [schema_name.]trigger_name

This statement drops a trigger. The schema (database) name is optional. If the schema is omitted, the
trigger is dropped from the default schema. DROP TRIGGER requires the TRIGGER privilege for the table
associated with the trigger.

Use IF EXISTS to prevent an error from occurring for a trigger that does not exist. A NOTE is generated
for a nonexistent trigger when using IF EXISTS. See Section 13.7.5.40, “SHOW WARNINGS Statement”.

Triggers for a table are also dropped if you drop the table.

13.1.32 DROP VIEW Statement
DROP VIEW [IF EXISTS]
 view_name [, view_name] ...
 [RESTRICT | CASCADE]

DROP VIEW removes one or more views. You must have the DROP privilege for each view.

If any views named in the argument list do not exist, the statement returns an error indicating by name
which nonexisting views it was unable to drop, but also drops all views in the list that do exist.

Note

In MySQL 8.0, DROP VIEW fails if any views named in the argument list do not
exist. Due to the change in behavior, a partially completed DROP VIEW operation
on a MySQL 5.7 source fails when replicated to a MySQL 8.0 replica. To avoid this
failure scenario, use IF EXISTS syntax in DROP VIEW statements to prevent an
error from occurring for views that do not exist. For more information, see Atomic
Data Definition Statement Support.

The IF EXISTS clause prevents an error from occurring for views that don't exist. When this clause
is given, a NOTE is generated for each nonexistent view. See Section 13.7.5.40, “SHOW WARNINGS
Statement”.

2270

https://dev.mysql.com/doc/refman/8.0/en/atomic-ddl.html
https://dev.mysql.com/doc/refman/8.0/en/atomic-ddl.html

RENAME TABLE Statement

RESTRICT and CASCADE, if given, are parsed and ignored.

13.1.33 RENAME TABLE Statement
RENAME TABLE
 tbl_name TO new_tbl_name
 [, tbl_name2 TO new_tbl_name2] ...

RENAME TABLE renames one or more tables. You must have ALTER and DROP privileges for the original
table, and CREATE and INSERT privileges for the new table.

For example, to rename a table named old_table to new_table, use this statement:

RENAME TABLE old_table TO new_table;

That statement is equivalent to the following ALTER TABLE statement:

ALTER TABLE old_table RENAME new_table;

RENAME TABLE, unlike ALTER TABLE, can rename multiple tables within a single statement:

RENAME TABLE old_table1 TO new_table1,
 old_table2 TO new_table2,
 old_table3 TO new_table3;

Renaming operations are performed left to right. Thus, to swap two table names, do this (assuming that a
table with the intermediary name tmp_table does not already exist):

RENAME TABLE old_table TO tmp_table,
 new_table TO old_table,
 tmp_table TO new_table;

Metadata locks on tables are acquired in name order, which in some cases can make a difference in
operation outcome when multiple transactions execute concurrently. See Section 8.11.4, “Metadata
Locking”.

To execute RENAME TABLE, there must be no active transactions or tables locked with LOCK TABLES.
With the transaction table locking conditions satisfied, the rename operation is done atomically; no other
session can access any of the tables while the rename is in progress.

If any errors occur during a RENAME TABLE, the statement fails and no changes are made.

You can use RENAME TABLE to move a table from one database to another:

RENAME TABLE current_db.tbl_name TO other_db.tbl_name;

Using this method to move all tables from one database to a different one in effect renames the database
(an operation for which MySQL has no single statement), except that the original database continues to
exist, albeit with no tables.

Like RENAME TABLE, ALTER TABLE ... RENAME can also be used to move a table to a different
database. Regardless of the statement used, if the rename operation would move the table to a database
located on a different file system, the success of the outcome is platform specific and depends on the
underlying operating system calls used to move table files.

If a table has triggers, attempts to rename the table into a different database fail with a Trigger in
wrong schema (ER_TRG_IN_WRONG_SCHEMA) error.

To rename TEMPORARY tables, RENAME TABLE does not work. Use ALTER TABLE instead.

2271

https://dev.mysql.com/doc/mysql-errors/5.7/en/server-error-reference.html#error_er_trg_in_wrong_schema

TRUNCATE TABLE Statement

RENAME TABLE works for views, except that views cannot be renamed into a different database.

Any privileges granted specifically for a renamed table or view are not migrated to the new name. They
must be changed manually.

RENAME TABLE tbl_name TO new_tbl_name changes internally generated foreign key constraint
names and user-defined foreign key constraint names that begin with the string “tbl_name_ibfk_” to
reflect the new table name. InnoDB interprets foreign key constraint names that begin with the string
“tbl_name_ibfk_” as internally generated names.

Foreign key constraint names that point to the renamed table are automatically updated unless there is a
conflict, in which case the statement fails with an error. A conflict occurs if the renamed constraint name
already exists. In such cases, you must drop and re-create the foreign keys for them to function properly.

13.1.34 TRUNCATE TABLE Statement
TRUNCATE [TABLE] tbl_name

TRUNCATE TABLE empties a table completely. It requires the DROP privilege.

Logically, TRUNCATE TABLE is similar to a DELETE statement that deletes all rows, or a sequence of DROP
TABLE and CREATE TABLE statements. To achieve high performance, it bypasses the DML method of
deleting data. Thus, it cannot be rolled back, it does not cause ON DELETE triggers to fire, and it cannot be
performed for InnoDB tables with parent-child foreign key relationships.

Although TRUNCATE TABLE is similar to DELETE, it is classified as a DDL statement rather than a DML
statement. It differs from DELETE in the following ways:

• Truncate operations drop and re-create the table, which is much faster than deleting rows one by one,
particularly for large tables.

• Truncate operations cause an implicit commit, and so cannot be rolled back. See Section 13.3.3,
“Statements That Cause an Implicit Commit”.

• Truncation operations cannot be performed if the session holds an active table lock.

• TRUNCATE TABLE fails for an InnoDB table or NDB table if there are any FOREIGN KEY constraints
from other tables that reference the table. Foreign key constraints between columns of the same table
are permitted.

• Truncation operations do not return a meaningful value for the number of deleted rows. The usual result
is “0 rows affected,” which should be interpreted as “no information.”

• As long as the table format file tbl_name.frm is valid, the table can be re-created as an empty table
with TRUNCATE TABLE, even if the data or index files have become corrupted.

• Any AUTO_INCREMENT value is reset to its start value. This is true even for MyISAM and InnoDB, which
normally do not reuse sequence values.

• When used with partitioned tables, TRUNCATE TABLE preserves the partitioning; that is, the data and
index files are dropped and re-created, while the partition definitions (.par) file is unaffected.

• The TRUNCATE TABLE statement does not invoke ON DELETE triggers.

TRUNCATE TABLE is treated for purposes of binary logging and replication as DDL rather than DML, and is
always logged as a statement.

TRUNCATE TABLE for a table closes all handlers for the table that were opened with HANDLER OPEN.

2272

Data Manipulation Statements

On a system with a large InnoDB buffer pool and innodb_adaptive_hash_index enabled, TRUNCATE
TABLE operations may cause a temporary drop in system performance due to an LRU scan that occurs
when removing an InnoDB table's adaptive hash index entries. The problem was addressed for DROP
TABLE in MySQL 5.5.23 (Bug #13704145, Bug #64284) but remains a known issue for TRUNCATE TABLE
(Bug #68184).

TRUNCATE TABLE can be used with Performance Schema summary tables, but the effect is to reset
the summary columns to 0 or NULL, not to remove rows. See Section 25.12.15, “Performance Schema
Summary Tables”.

13.2 Data Manipulation Statements

13.2.1 CALL Statement
CALL sp_name([parameter[,...]])
CALL sp_name[()]

The CALL statement invokes a stored procedure that was defined previously with CREATE PROCEDURE.

Stored procedures that take no arguments can be invoked without parentheses. That is, CALL p() and
CALL p are equivalent.

CALL can pass back values to its caller using parameters that are declared as OUT or INOUT parameters.
When the procedure returns, a client program can also obtain the number of rows affected for the final
statement executed within the routine: At the SQL level, call the ROW_COUNT() function; from the C API,
call the mysql_affected_rows() function.

For information about the effect of unhandled conditions on procedure parameters, see Section 13.6.7.8,
“Condition Handling and OUT or INOUT Parameters”.

To get back a value from a procedure using an OUT or INOUT parameter, pass the parameter by means of
a user variable, and then check the value of the variable after the procedure returns. (If you are calling the
procedure from within another stored procedure or function, you can also pass a routine parameter or local
routine variable as an IN or INOUT parameter.) For an INOUT parameter, initialize its value before passing
it to the procedure. The following procedure has an OUT parameter that the procedure sets to the current
server version, and an INOUT value that the procedure increments by one from its current value:

DELIMITER //

CREATE PROCEDURE p (OUT ver_param VARCHAR(25), INOUT incr_param INT)
BEGIN
 # Set value of OUT parameter
 SELECT VERSION() INTO ver_param;
 # Increment value of INOUT parameter
 SET incr_param = incr_param + 1;
END //

DELIMITER ;

Before calling the procedure, initialize the variable to be passed as the INOUT parameter. After calling the
procedure, the values of the two variables have been set or modified:

mysql> SET @increment = 10;
mysql> CALL p(@version, @increment);
mysql> SELECT @version, @increment;
+----------+------------+
| @version | @increment |
+----------+------------+
| 5.7.44 | 11 |
+----------+------------+

2273

https://dev.mysql.com/doc/c-api/5.7/en/mysql-affected-rows.html

DELETE Statement

In prepared CALL statements used with PREPARE and EXECUTE, placeholders can be used for IN
parameters, OUT, and INOUT parameters. These types of parameters can be used as follows:

mysql> SET @increment = 10;
mysql> PREPARE s FROM 'CALL p(?, ?)';
mysql> EXECUTE s USING @version, @increment;
mysql> SELECT @version, @increment;
+----------+------------+
| @version | @increment |
+----------+------------+
| 5.7.44 | 11 |
+----------+------------+

To write C programs that use the CALL SQL statement to execute stored procedures that produce result
sets, the CLIENT_MULTI_RESULTS flag must be enabled. This is because each CALL returns a result to
indicate the call status, in addition to any result sets that might be returned by statements executed within
the procedure. CLIENT_MULTI_RESULTS must also be enabled if CALL is used to execute any stored
procedure that contains prepared statements. It cannot be determined when such a procedure is loaded
whether those statements produce result sets, so it is necessary to assume that they do so.

CLIENT_MULTI_RESULTS can be enabled when you call mysql_real_connect(), either explicitly by
passing the CLIENT_MULTI_RESULTS flag itself, or implicitly by passing CLIENT_MULTI_STATEMENTS
(which also enables CLIENT_MULTI_RESULTS). CLIENT_MULTI_RESULTS is enabled by default.

To process the result of a CALL statement executed using mysql_query() or mysql_real_query(),
use a loop that calls mysql_next_result() to determine whether there are more results. For an
example, see Multiple Statement Execution Support.

C programs can use the prepared-statement interface to execute CALL statements and access OUT and
INOUT parameters. This is done by processing the result of a CALL statement using a loop that calls
mysql_stmt_next_result() to determine whether there are more results. For an example, see
Prepared CALL Statement Support. Languages that provide a MySQL interface can use prepared CALL
statements to directly retrieve OUT and INOUT procedure parameters.

Metadata changes to objects referred to by stored programs are detected and cause automatic reparsing
of the affected statements when the program is next executed. For more information, see Section 8.10.4,
“Caching of Prepared Statements and Stored Programs”.

13.2.2 DELETE Statement

DELETE is a DML statement that removes rows from a table.

Single-Table Syntax

DELETE [LOW_PRIORITY] [QUICK] [IGNORE] FROM tbl_name
 [PARTITION (partition_name [, partition_name] ...)]
 [WHERE where_condition]
 [ORDER BY ...]
 [LIMIT row_count]

The DELETE statement deletes rows from tbl_name and returns the number of deleted rows. To check
the number of deleted rows, call the ROW_COUNT() function described in Section 12.15, “Information
Functions”.

Main Clauses

The conditions in the optional WHERE clause identify which rows to delete. With no WHERE clause, all rows
are deleted.

2274

https://dev.mysql.com/doc/c-api/5.7/en/mysql-real-connect.html
https://dev.mysql.com/doc/c-api/5.7/en/mysql-query.html
https://dev.mysql.com/doc/c-api/5.7/en/mysql-real-query.html
https://dev.mysql.com/doc/c-api/5.7/en/mysql-next-result.html
https://dev.mysql.com/doc/c-api/5.7/en/c-api-multiple-queries.html
https://dev.mysql.com/doc/c-api/5.7/en/mysql-stmt-next-result.html
https://dev.mysql.com/doc/c-api/5.7/en/c-api-prepared-call-statements.html

DELETE Statement

where_condition is an expression that evaluates to true for each row to be deleted. It is specified as
described in Section 13.2.9, “SELECT Statement”.

If the ORDER BY clause is specified, the rows are deleted in the order that is specified. The LIMIT clause
places a limit on the number of rows that can be deleted. These clauses apply to single-table deletes, but
not multi-table deletes.

Multiple-Table Syntax

DELETE [LOW_PRIORITY] [QUICK] [IGNORE]
 tbl_name[.*] [, tbl_name[.*]] ...
 FROM table_references
 [WHERE where_condition]

DELETE [LOW_PRIORITY] [QUICK] [IGNORE]
 FROM tbl_name[.*] [, tbl_name[.*]] ...
 USING table_references
 [WHERE where_condition]

Privileges

You need the DELETE privilege on a table to delete rows from it. You need only the SELECT privilege for
any columns that are only read, such as those named in the WHERE clause.

Performance

When you do not need to know the number of deleted rows, the TRUNCATE TABLE statement is a faster
way to empty a table than a DELETE statement with no WHERE clause. Unlike DELETE, TRUNCATE TABLE
cannot be used within a transaction or if you have a lock on the table. See Section 13.1.34, “TRUNCATE
TABLE Statement” and Section 13.3.5, “LOCK TABLES and UNLOCK TABLES Statements”.

The speed of delete operations may also be affected by factors discussed in Section 8.2.4.3, “Optimizing
DELETE Statements”.

To ensure that a given DELETE statement does not take too much time, the MySQL-specific LIMIT
row_count clause for DELETE specifies the maximum number of rows to be deleted. If the number of
rows to delete is larger than the limit, repeat the DELETE statement until the number of affected rows is
less than the LIMIT value.

Subqueries

You cannot delete from a table and select from the same table in a subquery.

Partitioned Table Support

DELETE supports explicit partition selection using the PARTITION clause, which takes a list of the comma-
separated names of one or more partitions or subpartitions (or both) from which to select rows to be
dropped. Partitions not included in the list are ignored. Given a partitioned table t with a partition named
p0, executing the statement DELETE FROM t PARTITION (p0) has the same effect on the table as
executing ALTER TABLE t TRUNCATE PARTITION (p0); in both cases, all rows in partition p0 are
dropped.

PARTITION can be used along with a WHERE condition, in which case the condition is tested only on rows
in the listed partitions. For example, DELETE FROM t PARTITION (p0) WHERE c < 5 deletes rows
only from partition p0 for which the condition c < 5 is true; rows in any other partitions are not checked
and thus not affected by the DELETE.

The PARTITION clause can also be used in multiple-table DELETE statements. You can use up to one
such option per table named in the FROM option.

2275

DELETE Statement

For more information and examples, see Section 22.5, “Partition Selection”.

Auto-Increment Columns

If you delete the row containing the maximum value for an AUTO_INCREMENT column, the value is not
reused for a MyISAM or InnoDB table. If you delete all rows in the table with DELETE FROM tbl_name
(without a WHERE clause) in autocommit mode, the sequence starts over for all storage engines except
InnoDB and MyISAM. There are some exceptions to this behavior for InnoDB tables, as discussed in
Section 14.6.1.6, “AUTO_INCREMENT Handling in InnoDB”.

For MyISAM tables, you can specify an AUTO_INCREMENT secondary column in a multiple-column key.
In this case, reuse of values deleted from the top of the sequence occurs even for MyISAM tables. See
Section 3.6.9, “Using AUTO_INCREMENT”.

Modifiers

The DELETE statement supports the following modifiers:

• If you specify the LOW_PRIORITY modifier, the server delays execution of the DELETE until no other
clients are reading from the table. This affects only storage engines that use only table-level locking
(such as MyISAM, MEMORY, and MERGE).

• For MyISAM tables, if you use the QUICK modifier, the storage engine does not merge index leaves
during delete, which may speed up some kinds of delete operations.

• The IGNORE modifier causes MySQL to ignore ignorable errors during the process of deleting rows.
(Errors encountered during the parsing stage are processed in the usual manner.) Errors that are
ignored due to the use of IGNORE are returned as warnings. For more information, see The Effect of
IGNORE on Statement Execution.

Order of Deletion

If the DELETE statement includes an ORDER BY clause, rows are deleted in the order specified by the
clause. This is useful primarily in conjunction with LIMIT. For example, the following statement finds rows
matching the WHERE clause, sorts them by timestamp_column, and deletes the first (oldest) one:

DELETE FROM somelog WHERE user = 'jcole'
ORDER BY timestamp_column LIMIT 1;

ORDER BY also helps to delete rows in an order required to avoid referential integrity violations.

InnoDB Tables

If you are deleting many rows from a large table, you may exceed the lock table size for an InnoDB table.
To avoid this problem, or simply to minimize the time that the table remains locked, the following strategy
(which does not use DELETE at all) might be helpful:

1. Select the rows not to be deleted into an empty table that has the same structure as the original table:

INSERT INTO t_copy SELECT * FROM t WHERE ... ;

2. Use RENAME TABLE to atomically move the original table out of the way and rename the copy to the
original name:

RENAME TABLE t TO t_old, t_copy TO t;

3. Drop the original table:

DROP TABLE t_old;

2276

DELETE Statement

No other sessions can access the tables involved while RENAME TABLE executes, so the rename
operation is not subject to concurrency problems. See Section 13.1.33, “RENAME TABLE Statement”.

MyISAM Tables

In MyISAM tables, deleted rows are maintained in a linked list and subsequent INSERT operations reuse
old row positions. To reclaim unused space and reduce file sizes, use the OPTIMIZE TABLE statement or
the myisamchk utility to reorganize tables. OPTIMIZE TABLE is easier to use, but myisamchk is faster.
See Section 13.7.2.4, “OPTIMIZE TABLE Statement”, and Section 4.6.3, “myisamchk — MyISAM Table-
Maintenance Utility”.

The QUICK modifier affects whether index leaves are merged for delete operations. DELETE QUICK is
most useful for applications where index values for deleted rows are replaced by similar index values from
rows inserted later. In this case, the holes left by deleted values are reused.

DELETE QUICK is not useful when deleted values lead to underfilled index blocks spanning a range of
index values for which new inserts occur again. In this case, use of QUICK can lead to wasted space in the
index that remains unreclaimed. Here is an example of such a scenario:

1. Create a table that contains an indexed AUTO_INCREMENT column.

2. Insert many rows into the table. Each insert results in an index value that is added to the high end of
the index.

3. Delete a block of rows at the low end of the column range using DELETE QUICK.

In this scenario, the index blocks associated with the deleted index values become underfilled but are not
merged with other index blocks due to the use of QUICK. They remain underfilled when new inserts occur,
because new rows do not have index values in the deleted range. Furthermore, they remain underfilled
even if you later use DELETE without QUICK, unless some of the deleted index values happen to lie in
index blocks within or adjacent to the underfilled blocks. To reclaim unused index space under these
circumstances, use OPTIMIZE TABLE.

If you are going to delete many rows from a table, it might be faster to use DELETE QUICK followed by
OPTIMIZE TABLE. This rebuilds the index rather than performing many index block merge operations.

Multi-Table Deletes

You can specify multiple tables in a DELETE statement to delete rows from one or more tables depending
on the condition in the WHERE clause. You cannot use ORDER BY or LIMIT in a multiple-table DELETE.
The table_references clause lists the tables involved in the join, as described in Section 13.2.9.2,
“JOIN Clause”.

For the first multiple-table syntax, only matching rows from the tables listed before the FROM clause are
deleted. For the second multiple-table syntax, only matching rows from the tables listed in the FROM clause
(before the USING clause) are deleted. The effect is that you can delete rows from many tables at the
same time and have additional tables that are used only for searching:

DELETE t1, t2 FROM t1 INNER JOIN t2 INNER JOIN t3
WHERE t1.id=t2.id AND t2.id=t3.id;

Or:

DELETE FROM t1, t2 USING t1 INNER JOIN t2 INNER JOIN t3
WHERE t1.id=t2.id AND t2.id=t3.id;

These statements use all three tables when searching for rows to delete, but delete matching rows only
from tables t1 and t2.

2277

DO Statement

The preceding examples use INNER JOIN, but multiple-table DELETE statements can use other types of
join permitted in SELECT statements, such as LEFT JOIN. For example, to delete rows that exist in t1
that have no match in t2, use a LEFT JOIN:

DELETE t1 FROM t1 LEFT JOIN t2 ON t1.id=t2.id WHERE t2.id IS NULL;

The syntax permits .* after each tbl_name for compatibility with Access.

If you use a multiple-table DELETE statement involving InnoDB tables for which there are foreign key
constraints, the MySQL optimizer might process tables in an order that differs from that of their parent/child
relationship. In this case, the statement fails and rolls back. Instead, you should delete from a single table
and rely on the ON DELETE capabilities that InnoDB provides to cause the other tables to be modified
accordingly.

Note

If you declare an alias for a table, you must use the alias when referring to the table:

DELETE t1 FROM test AS t1, test2 WHERE ...

Table aliases in a multiple-table DELETE should be declared only in the table_references part of the
statement. Elsewhere, alias references are permitted but not alias declarations.

Correct:

DELETE a1, a2 FROM t1 AS a1 INNER JOIN t2 AS a2
WHERE a1.id=a2.id;

DELETE FROM a1, a2 USING t1 AS a1 INNER JOIN t2 AS a2
WHERE a1.id=a2.id;

Incorrect:

DELETE t1 AS a1, t2 AS a2 FROM t1 INNER JOIN t2
WHERE a1.id=a2.id;

DELETE FROM t1 AS a1, t2 AS a2 USING t1 INNER JOIN t2
WHERE a1.id=a2.id;

13.2.3 DO Statement
DO expr [, expr] ...

DO executes the expressions but does not return any results. In most respects, DO is shorthand for SELECT
expr, ..., but has the advantage that it is slightly faster when you do not care about the result.

DO is useful primarily with functions that have side effects, such as RELEASE_LOCK().

Example: This SELECT statement pauses, but also produces a result set:

mysql> SELECT SLEEP(5);
+----------+
| SLEEP(5) |
+----------+
| 0 |
+----------+
1 row in set (5.02 sec)

DO, on the other hand, pauses without producing a result set.:

mysql> DO SLEEP(5);
Query OK, 0 rows affected (4.99 sec)

2278

HANDLER Statement

This could be useful, for example in a stored function or trigger, which prohibit statements that produce
result sets.

DO only executes expressions. It cannot be used in all cases where SELECT can be used. For example, DO
id FROM t1 is invalid because it references a table.

13.2.4 HANDLER Statement
HANDLER tbl_name OPEN [[AS] alias]

HANDLER tbl_name READ index_name { = | <= | >= | < | > } (value1,value2,...)
 [WHERE where_condition] [LIMIT ...]
HANDLER tbl_name READ index_name { FIRST | NEXT | PREV | LAST }
 [WHERE where_condition] [LIMIT ...]
HANDLER tbl_name READ { FIRST | NEXT }
 [WHERE where_condition] [LIMIT ...]

HANDLER tbl_name CLOSE

The HANDLER statement provides direct access to table storage engine interfaces. It is available for
InnoDB and MyISAM tables.

The HANDLER ... OPEN statement opens a table, making it accessible using subsequent HANDLER ...
READ statements. This table object is not shared by other sessions and is not closed until the session calls
HANDLER ... CLOSE or the session terminates.

If you open the table using an alias, further references to the open table with other HANDLER statements
must use the alias rather than the table name. If you do not use an alias, but open the table using a
table name qualified by the database name, further references must use the unqualified table name. For
example, for a table opened using mydb.mytable, further references must use mytable.

The first HANDLER ... READ syntax fetches a row where the index specified satisfies the given values
and the WHERE condition is met. If you have a multiple-column index, specify the index column values as a
comma-separated list. Either specify values for all the columns in the index, or specify values for a leftmost
prefix of the index columns. Suppose that an index my_idx includes three columns named col_a, col_b,
and col_c, in that order. The HANDLER statement can specify values for all three columns in the index, or
for the columns in a leftmost prefix. For example:

HANDLER ... READ my_idx = (col_a_val,col_b_val,col_c_val) ...
HANDLER ... READ my_idx = (col_a_val,col_b_val) ...
HANDLER ... READ my_idx = (col_a_val) ...

To employ the HANDLER interface to refer to a table's PRIMARY KEY, use the quoted identifier
`PRIMARY`:

HANDLER tbl_name READ `PRIMARY` ...

The second HANDLER ... READ syntax fetches a row from the table in index order that matches the
WHERE condition.

The third HANDLER ... READ syntax fetches a row from the table in natural row order that matches the
WHERE condition. It is faster than HANDLER tbl_name READ index_name when a full table scan is
desired. Natural row order is the order in which rows are stored in a MyISAM table data file. This statement
works for InnoDB tables as well, but there is no such concept because there is no separate data file.

Without a LIMIT clause, all forms of HANDLER ... READ fetch a single row if one is available. To return
a specific number of rows, include a LIMIT clause. It has the same syntax as for the SELECT statement.
See Section 13.2.9, “SELECT Statement”.

HANDLER ... CLOSE closes a table that was opened with HANDLER ... OPEN.

2279

INSERT Statement

There are several reasons to use the HANDLER interface instead of normal SELECT statements:

• HANDLER is faster than SELECT:

• A designated storage engine handler object is allocated for the HANDLER ... OPEN. The object is
reused for subsequent HANDLER statements for that table; it need not be reinitialized for each one.

• There is less parsing involved.

• There is no optimizer or query-checking overhead.

• The handler interface does not have to provide a consistent look of the data (for example, dirty reads
are permitted), so the storage engine can use optimizations that SELECT does not normally permit.

• HANDLER makes it easier to port to MySQL applications that use a low-level ISAM-like interface. (See
Section 14.21, “InnoDB memcached Plugin” for an alternative way to adapt applications that use the key-
value store paradigm.)

• HANDLER enables you to traverse a database in a manner that is difficult (or even impossible) to
accomplish with SELECT. The HANDLER interface is a more natural way to look at data when working
with applications that provide an interactive user interface to the database.

HANDLER is a somewhat low-level statement. For example, it does not provide consistency. That is,
HANDLER ... OPEN does not take a snapshot of the table, and does not lock the table. This means
that after a HANDLER ... OPEN statement is issued, table data can be modified (by the current session
or other sessions) and these modifications might be only partially visible to HANDLER ... NEXT or
HANDLER ... PREV scans.

An open handler can be closed and marked for reopen, in which case the handler loses its position in the
table. This occurs when both of the following circumstances are true:

• Any session executes FLUSH TABLES or DDL statements on the handler's table.

• The session in which the handler is open executes non-HANDLER statements that use tables.

TRUNCATE TABLE for a table closes all handlers for the table that were opened with HANDLER OPEN.

If a table is flushed with FLUSH TABLES tbl_name WITH READ LOCK was opened with HANDLER, the
handler is implicitly flushed and loses its position.

13.2.5 INSERT Statement
INSERT [LOW_PRIORITY | DELAYED | HIGH_PRIORITY] [IGNORE]
 [INTO] tbl_name
 [PARTITION (partition_name [, partition_name] ...)]
 [(col_name [, col_name] ...)]
 {VALUES | VALUE} (value_list) [, (value_list)] ...
 [ON DUPLICATE KEY UPDATE assignment_list]

INSERT [LOW_PRIORITY | DELAYED | HIGH_PRIORITY] [IGNORE]
 [INTO] tbl_name
 [PARTITION (partition_name [, partition_name] ...)]
 SET assignment_list
 [ON DUPLICATE KEY UPDATE assignment_list]

INSERT [LOW_PRIORITY | HIGH_PRIORITY] [IGNORE]
 [INTO] tbl_name
 [PARTITION (partition_name [, partition_name] ...)]
 [(col_name [, col_name] ...)]
 SELECT ...

2280

INSERT Statement

 [ON DUPLICATE KEY UPDATE assignment_list]

value:
 {expr | DEFAULT}

value_list:
 value [, value] ...

assignment:
 col_name = value

assignment_list:
 assignment [, assignment] ...

INSERT inserts new rows into an existing table. The INSERT ... VALUES and INSERT ... SET forms
of the statement insert rows based on explicitly specified values. The INSERT ... SELECT form inserts
rows selected from another table or tables. INSERT with an ON DUPLICATE KEY UPDATE clause enables
existing rows to be updated if a row to be inserted would cause a duplicate value in a UNIQUE index or
PRIMARY KEY.

For additional information about INSERT ... SELECT and INSERT ... ON DUPLICATE KEY
UPDATE, see Section 13.2.5.1, “INSERT ... SELECT Statement”, and Section 13.2.5.2, “INSERT ... ON
DUPLICATE KEY UPDATE Statement”.

In MySQL 5.7, the DELAYED keyword is accepted but ignored by the server. For the reasons for this, see
Section 13.2.5.3, “INSERT DELAYED Statement”,

Inserting into a table requires the INSERT privilege for the table. If the ON DUPLICATE KEY UPDATE
clause is used and a duplicate key causes an UPDATE to be performed instead, the statement requires the
UPDATE privilege for the columns to be updated. For columns that are read but not modified you need only
the SELECT privilege (such as for a column referenced only on the right hand side of an col_name=expr
assignment in an ON DUPLICATE KEY UPDATE clause).

When inserting into a partitioned table, you can control which partitions and subpartitions accept new
rows. The PARTITION clause takes a list of the comma-separated names of one or more partitions or
subpartitions (or both) of the table. If any of the rows to be inserted by a given INSERT statement do
not match one of the partitions listed, the INSERT statement fails with the error Found a row not
matching the given partition set. For more information and examples, see Section 22.5,
“Partition Selection”.

tbl_name is the table into which rows should be inserted. Specify the columns for which the statement
provides values as follows:

• Provide a parenthesized list of comma-separated column names following the table name. In this case, a
value for each named column must be provided by the VALUES list or the SELECT statement.

• If you do not specify a list of column names for INSERT ... VALUES or INSERT ... SELECT, values
for every column in the table must be provided by the VALUES list or the SELECT statement. If you do not
know the order of the columns in the table, use DESCRIBE tbl_name to find out.

• A SET clause indicates columns explicitly by name, together with the value to assign each one.

Column values can be given in several ways:

• If strict SQL mode is not enabled, any column not explicitly given a value is set to its default (explicit or
implicit) value. For example, if you specify a column list that does not name all the columns in the table,
unnamed columns are set to their default values. Default value assignment is described in Section 11.6,
“Data Type Default Values”. See also Section 1.6.3.3, “Constraints on Invalid Data”.

2281

INSERT Statement

If strict SQL mode is enabled, an INSERT statement generates an error if it does not specify an explicit
value for every column that has no default value. See Section 5.1.10, “Server SQL Modes”.

• If both the column list and the VALUES list are empty, INSERT creates a row with each column set to its
default value:

INSERT INTO tbl_name () VALUES();

If strict mode is not enabled, MySQL uses the implicit default value for any column that has no explicitly
defined default. If strict mode is enabled, an error occurs if any column has no default value.

• Use the keyword DEFAULT to set a column explicitly to its default value. This makes it easier to write
INSERT statements that assign values to all but a few columns, because it enables you to avoid writing
an incomplete VALUES list that does not include a value for each column in the table. Otherwise, you
must provide the list of column names corresponding to each value in the VALUES list.

• If a generated column is inserted into explicitly, the only permitted value is DEFAULT. For information
about generated columns, see Section 13.1.18.7, “CREATE TABLE and Generated Columns”.

• In expressions, you can use DEFAULT(col_name) to produce the default value for column col_name.

• Type conversion of an expression expr that provides a column value might occur if the expression data
type does not match the column data type. Conversion of a given value can result in different inserted
values depending on the column type. For example, inserting the string '1999.0e-2' into an INT,
FLOAT, DECIMAL(10,6), or YEAR column inserts the value 1999, 19.9921, 19.992100, or 1999,
respectively. The value stored in the INT and YEAR columns is 1999 because the string-to-number
conversion looks only at as much of the initial part of the string as may be considered a valid integer or
year. For the FLOAT and DECIMAL columns, the string-to-number conversion considers the entire string
a valid numeric value.

• An expression expr can refer to any column that was set earlier in a value list. For example, you can do
this because the value for col2 refers to col1, which has previously been assigned:

INSERT INTO tbl_name (col1,col2) VALUES(15,col1*2);

But the following is not legal, because the value for col1 refers to col2, which is assigned after col1:

INSERT INTO tbl_name (col1,col2) VALUES(col2*2,15);

An exception occurs for columns that contain AUTO_INCREMENT values. Because AUTO_INCREMENT
values are generated after other value assignments, any reference to an AUTO_INCREMENT column in
the assignment returns a 0.

INSERT statements that use VALUES syntax can insert multiple rows. To do this, include multiple lists
of comma-separated column values, with lists enclosed within parentheses and separated by commas.
Example:

INSERT INTO tbl_name (a,b,c) VALUES(1,2,3),(4,5,6),(7,8,9);

Each values list must contain exactly as many values as are to be inserted per row. The following
statement is invalid because it contains one list of nine values, rather than three lists of three values each:

INSERT INTO tbl_name (a,b,c) VALUES(1,2,3,4,5,6,7,8,9);

VALUE is a synonym for VALUES in this context. Neither implies anything about the number of values lists,
nor about the number of values per list. Either may be used whether there is a single values list or multiple
lists, and regardless of the number of values per list.

2282

INSERT Statement

The affected-rows value for an INSERT can be obtained using the ROW_COUNT() SQL function or
the mysql_affected_rows() C API function. See Section 12.15, “Information Functions”, and
mysql_affected_rows().

If you use an INSERT ... VALUES statement with multiple value lists or INSERT ... SELECT, the
statement returns an information string in this format:

Records: N1 Duplicates: N2 Warnings: N3

If you are using the C API, the information string can be obtained by invoking the mysql_info() function.
See mysql_info().

Records indicates the number of rows processed by the statement. (This is not necessarily the number
of rows actually inserted because Duplicates can be nonzero.) Duplicates indicates the number of
rows that could not be inserted because they would duplicate some existing unique index value. Warnings
indicates the number of attempts to insert column values that were problematic in some way. Warnings can
occur under any of the following conditions:

• Inserting NULL into a column that has been declared NOT NULL. For multiple-row INSERT statements or
INSERT INTO ... SELECT statements, the column is set to the implicit default value for the column
data type. This is 0 for numeric types, the empty string ('') for string types, and the “zero” value for date
and time types. INSERT INTO ... SELECT statements are handled the same way as multiple-row
inserts because the server does not examine the result set from the SELECT to see whether it returns
a single row. (For a single-row INSERT, no warning occurs when NULL is inserted into a NOT NULL
column. Instead, the statement fails with an error.)

• Setting a numeric column to a value that lies outside the column range. The value is clipped to the
closest endpoint of the range.

• Assigning a value such as '10.34 a' to a numeric column. The trailing nonnumeric text is stripped off
and the remaining numeric part is inserted. If the string value has no leading numeric part, the column is
set to 0.

• Inserting a string into a string column (CHAR, VARCHAR, TEXT, or BLOB) that exceeds the column
maximum length. The value is truncated to the column maximum length.

• Inserting a value into a date or time column that is illegal for the data type. The column is set to the
appropriate zero value for the type.

• For INSERT examples involving AUTO_INCREMENT column values, see Section 3.6.9, “Using
AUTO_INCREMENT”.

If INSERT inserts a row into a table that has an AUTO_INCREMENT column, you can find the value used
for that column by using the LAST_INSERT_ID() SQL function or the mysql_insert_id() C API
function.

Note

These two functions do not always behave identically. The behavior of INSERT
statements with respect to AUTO_INCREMENT columns is discussed further in
Section 12.15, “Information Functions”, and mysql_insert_id().

The INSERT statement supports the following modifiers:

• If you use the LOW_PRIORITY modifier, execution of the INSERT is delayed until no other clients are
reading from the table. This includes other clients that began reading while existing clients are reading,

2283

https://dev.mysql.com/doc/c-api/5.7/en/mysql-affected-rows.html
https://dev.mysql.com/doc/c-api/5.7/en/mysql-affected-rows.html
https://dev.mysql.com/doc/c-api/5.7/en/mysql-info.html
https://dev.mysql.com/doc/c-api/5.7/en/mysql-info.html
https://dev.mysql.com/doc/c-api/5.7/en/mysql-insert-id.html
https://dev.mysql.com/doc/c-api/5.7/en/mysql-insert-id.html

INSERT Statement

and while the INSERT LOW_PRIORITY statement is waiting. It is possible, therefore, for a client that
issues an INSERT LOW_PRIORITY statement to wait for a very long time.

LOW_PRIORITY affects only storage engines that use only table-level locking (such as MyISAM,
MEMORY, and MERGE).

Note

LOW_PRIORITY should normally not be used with MyISAM tables because doing
so disables concurrent inserts. See Section 8.11.3, “Concurrent Inserts”.

• If you specify HIGH_PRIORITY, it overrides the effect of the --low-priority-updates option if the
server was started with that option. It also causes concurrent inserts not to be used. See Section 8.11.3,
“Concurrent Inserts”.

HIGH_PRIORITY affects only storage engines that use only table-level locking (such as MyISAM,
MEMORY, and MERGE).

• If you use the IGNORE modifier, ignorable errors that occur while executing the INSERT statement are
ignored. For example, without IGNORE, a row that duplicates an existing UNIQUE index or PRIMARY
KEY value in the table causes a duplicate-key error and the statement is aborted. With IGNORE, the row
is discarded and no error occurs. Ignored errors generate warnings instead.

 IGNORE has a similar effect on inserts into partitioned tables where no partition matching a given value
is found. Without IGNORE, such INSERT statements are aborted with an error. When INSERT IGNORE
is used, the insert operation fails silently for rows containing the unmatched value, but inserts rows that
are matched. For an example, see Section 22.2.2, “LIST Partitioning”.

Data conversions that would trigger errors abort the statement if IGNORE is not specified. With IGNORE,
invalid values are adjusted to the closest values and inserted; warnings are produced but the statement
does not abort. You can determine with the mysql_info() C API function how many rows were
actually inserted into the table.

For more information, see The Effect of IGNORE on Statement Execution.

You can use REPLACE instead of INSERT to overwrite old rows. REPLACE is the counterpart to INSERT
IGNORE in the treatment of new rows that contain unique key values that duplicate old rows: The new
rows replace the old rows rather than being discarded. See Section 13.2.8, “REPLACE Statement”.

• If you specify ON DUPLICATE KEY UPDATE, and a row is inserted that would cause a duplicate value
in a UNIQUE index or PRIMARY KEY, an UPDATE of the old row occurs. The affected-rows value per row
is 1 if the row is inserted as a new row, 2 if an existing row is updated, and 0 if an existing row is set to
its current values. If you specify the CLIENT_FOUND_ROWS flag to the mysql_real_connect() C API
function when connecting to mysqld, the affected-rows value is 1 (not 0) if an existing row is set to its
current values. See Section 13.2.5.2, “INSERT ... ON DUPLICATE KEY UPDATE Statement”.

• INSERT DELAYED was deprecated in MySQL 5.6, and is scheduled for eventual removal. In MySQL
5.7, the DELAYED modifier is accepted but ignored. Use INSERT (without DELAYED) instead. See
Section 13.2.5.3, “INSERT DELAYED Statement”.

An INSERT statement affecting a partitioned table using a storage engine such as MyISAM that employs
table-level locks locks only those partitions into which rows are actually inserted. (For storage engines such
as InnoDB that employ row-level locking, no locking of partitions takes place.) For more information, see
Section 22.6.4, “Partitioning and Locking”.

13.2.5.1 INSERT ... SELECT Statement

2284

https://dev.mysql.com/doc/c-api/5.7/en/mysql-info.html
https://dev.mysql.com/doc/c-api/5.7/en/mysql-real-connect.html

INSERT Statement

INSERT [LOW_PRIORITY | HIGH_PRIORITY] [IGNORE]
 [INTO] tbl_name
 [PARTITION (partition_name [, partition_name] ...)]
 [(col_name [, col_name] ...)]
 SELECT ...
 [ON DUPLICATE KEY UPDATE assignment_list]

value:
 {expr | DEFAULT}

assignment:
 col_name = value

assignment_list:
 assignment [, assignment] ...

With INSERT ... SELECT, you can quickly insert many rows into a table from the result of a SELECT
statement, which can select from one or many tables. For example:

INSERT INTO tbl_temp2 (fld_id)
 SELECT tbl_temp1.fld_order_id
 FROM tbl_temp1 WHERE tbl_temp1.fld_order_id > 100;

The following conditions hold for INSERT ... SELECT statements:

• Specify IGNORE to ignore rows that would cause duplicate-key violations.

• The target table of the INSERT statement may appear in the FROM clause of the SELECT part of the
query. However, you cannot insert into a table and select from the same table in a subquery.

When selecting from and inserting into the same table, MySQL creates an internal temporary table
to hold the rows from the SELECT and then inserts those rows into the target table. However, you
cannot use INSERT INTO t ... SELECT ... FROM t when t is a TEMPORARY table, because
TEMPORARY tables cannot be referred to twice in the same statement. See Section 8.4.4, “Internal
Temporary Table Use in MySQL”, and Section B.3.6.2, “TEMPORARY Table Problems”.

• AUTO_INCREMENT columns work as usual.

• To ensure that the binary log can be used to re-create the original tables, MySQL does not permit
concurrent inserts for INSERT ... SELECT statements (see Section 8.11.3, “Concurrent Inserts”).

• To avoid ambiguous column reference problems when the SELECT and the INSERT refer to the same
table, provide a unique alias for each table used in the SELECT part, and qualify column names in that
part with the appropriate alias.

You can explicitly select which partitions or subpartitions (or both) of the source or target table (or both) are
to be used with a PARTITION clause following the name of the table. When PARTITION is used with the
name of the source table in the SELECT portion of the statement, rows are selected only from the partitions
or subpartitions named in its partition list. When PARTITION is used with the name of the target table
for the INSERT portion of the statement, it must be possible to insert all rows selected into the partitions
or subpartitions named in the partition list following the option. Otherwise, the INSERT ... SELECT
statement fails. For more information and examples, see Section 22.5, “Partition Selection”.

For INSERT ... SELECT statements, see Section 13.2.5.2, “INSERT ... ON DUPLICATE KEY UPDATE
Statement” for conditions under which the SELECT columns can be referred to in an ON DUPLICATE KEY
UPDATE clause.

The order in which a SELECT statement with no ORDER BY clause returns rows is nondeterministic. This
means that, when using replication, there is no guarantee that such a SELECT returns rows in the same
order on the source and the replica, which can lead to inconsistencies between them. To prevent this

2285

INSERT Statement

from occurring, always write INSERT ... SELECT statements that are to be replicated using an ORDER
BY clause that produces the same row order on the source and the replica. See also Section 16.4.1.17,
“Replication and LIMIT”.

Due to this issue, INSERT ... SELECT ON DUPLICATE KEY UPDATE and INSERT IGNORE ...
SELECT statements are flagged as unsafe for statement-based replication. Such statements produce a
warning in the error log when using statement-based mode and are written to the binary log using the row-
based format when using MIXED mode. (Bug #11758262, Bug #50439)

See also Section 16.2.1.1, “Advantages and Disadvantages of Statement-Based and Row-Based
Replication”.

An INSERT ... SELECT statement affecting partitioned tables using a storage engine such as MyISAM
that employs table-level locks locks all partitions of the target table; however, only those partitions that
are actually read from the source table are locked. (This does not occur with tables using storage engines
such as InnoDB that employ row-level locking.) For more information, see Section 22.6.4, “Partitioning and
Locking”.

13.2.5.2 INSERT ... ON DUPLICATE KEY UPDATE Statement

If you specify an ON DUPLICATE KEY UPDATE clause and a row to be inserted would cause a duplicate
value in a UNIQUE index or PRIMARY KEY, an UPDATE of the old row occurs. For example, if column a is
declared as UNIQUE and contains the value 1, the following two statements have similar effect:

INSERT INTO t1 (a,b,c) VALUES (1,2,3)
 ON DUPLICATE KEY UPDATE c=c+1;

UPDATE t1 SET c=c+1 WHERE a=1;

The effects are not quite identical: For an InnoDB table where a is an auto-increment column, the INSERT
statement increases the auto-increment value but the UPDATE does not.

If column b is also unique, the INSERT is equivalent to this UPDATE statement instead:

UPDATE t1 SET c=c+1 WHERE a=1 OR b=2 LIMIT 1;

If a=1 OR b=2 matches several rows, only one row is updated. In general, you should try to avoid using
an ON DUPLICATE KEY UPDATE clause on tables with multiple unique indexes.

With ON DUPLICATE KEY UPDATE, the affected-rows value per row is 1 if the row is inserted as a new
row, 2 if an existing row is updated, and 0 if an existing row is set to its current values. If you specify the
CLIENT_FOUND_ROWS flag to the mysql_real_connect() C API function when connecting to mysqld,
the affected-rows value is 1 (not 0) if an existing row is set to its current values.

If a table contains an AUTO_INCREMENT column and INSERT ... ON DUPLICATE KEY UPDATE inserts
or updates a row, the LAST_INSERT_ID() function returns the AUTO_INCREMENT value.

The ON DUPLICATE KEY UPDATE clause can contain multiple column assignments, separated by
commas.

It is possible to use IGNORE with ON DUPLICATE KEY UPDATE in an INSERT statement, but this may
not behave as you expect when inserting multiple rows into a table that has multiple unique keys. This
becomes apparent when an updated value is itself a duplicate key value. Consider the table t, created and
populated by the statements shown here:

mysql> CREATE TABLE t (a SERIAL, b BIGINT NOT NULL, UNIQUE KEY (b));;
Query OK, 0 rows affected (0.03 sec)

mysql> INSERT INTO t VALUES (1,1), (2,2);

2286

https://dev.mysql.com/doc/c-api/5.7/en/mysql-real-connect.html

INSERT Statement

Query OK, 2 rows affected (0.01 sec)
Records: 2 Duplicates: 0 Warnings: 0

mysql> SELECT * FROM t;
+---+---+
| a | b |
+---+---+
| 1 | 1 |
| 2 | 2 |
+---+---+
2 rows in set (0.00 sec)

Now we attempt to insert two rows, one of which contains a duplicate key value, using ON DUPLICATE
KEY UPDATE, where the UPDATE clause itself results in a duplicate key value:

mysql> INSERT INTO t VALUES (2,3), (3,3) ON DUPLICATE KEY UPDATE a=a+1, b=b-1;
ERROR 1062 (23000): Duplicate entry '1' for key 't.b'
mysql> SELECT * FROM t;
+---+---+
| a | b |
+---+---+
| 1 | 1 |
| 2 | 2 |
+---+---+
2 rows in set (0.00 sec)

The first row contains a duplicate value for one of the table's unique keys (column a), but b=b+1 in the
UPDATE clause results in a unique key violation for column b; the statement is immediately rejected with
an error, and no rows are updated. Let us repeat the statement, this time adding the IGNORE keyword, like
this:

mysql> INSERT IGNORE INTO t VALUES (2,3), (3,3)
 -> ON DUPLICATE KEY UPDATE a=a+1, b=b-1;
Query OK, 1 row affected, 1 warning (0.00 sec)
Records: 2 Duplicates: 1 Warnings: 1

This time, the previous error is demoted to a warning, as shown here:

mysql> SHOW WARNINGS;
+---------+------+-----------------------------------+
| Level | Code | Message |
+---------+------+-----------------------------------+
| Warning | 1062 | Duplicate entry '1' for key 't.b' |
+---------+------+-----------------------------------+
1 row in set (0.00 sec)

Because the statement was not rejected, execution continues. This means that the second row is inserted
into t, as we can see here:

mysql> SELECT * FROM t;
+---+---+
| a | b |
+---+---+
1	1
2	2
3	3
+---+---+
3 rows in set (0.00 sec)

In assignment value expressions in the ON DUPLICATE KEY UPDATE clause, you can use the
VALUES(col_name) function to refer to column values from the INSERT portion of the INSERT ...
ON DUPLICATE KEY UPDATE statement. In other words, VALUES(col_name) in the ON DUPLICATE
KEY UPDATE clause refers to the value of col_name that would be inserted, had no duplicate-key conflict
occurred. This function is especially useful in multiple-row inserts. The VALUES() function is meaningful

2287

INSERT Statement

only as an introducer for INSERT statement value lists, or in the ON DUPLICATE KEY UPDATE clause of
an INSERT statement, and returns NULL otherwise. For example:

INSERT INTO t1 (a,b,c) VALUES (1,2,3),(4,5,6)
 ON DUPLICATE KEY UPDATE c=VALUES(a)+VALUES(b);

That statement is identical to the following two statements:

INSERT INTO t1 (a,b,c) VALUES (1,2,3)
 ON DUPLICATE KEY UPDATE c=3;
INSERT INTO t1 (a,b,c) VALUES (4,5,6)
 ON DUPLICATE KEY UPDATE c=9;

For INSERT ... SELECT statements, these rules apply regarding acceptable forms of SELECT query
expressions that you can refer to in an ON DUPLICATE KEY UPDATE clause:

• References to columns from queries on a single table, which may be a derived table.

• References to columns from queries on a join over multiple tables.

• References to columns from DISTINCT queries.

• References to columns in other tables, as long as the SELECT does not use GROUP BY. One side effect
is that you must qualify references to nonunique column names.

References to columns from a UNION do not work reliably. To work around this restriction, rewrite the
UNION as a derived table so that its rows can be treated as a single-table result set. For example, this
statement can produce incorrect results:

INSERT INTO t1 (a, b)
 SELECT c, d FROM t2
 UNION
 SELECT e, f FROM t3
ON DUPLICATE KEY UPDATE b = b + c;

Instead, use an equivalent statement that rewrites the UNION as a derived table:

INSERT INTO t1 (a, b)
SELECT * FROM
 (SELECT c, d FROM t2
 UNION
 SELECT e, f FROM t3) AS dt
ON DUPLICATE KEY UPDATE b = b + c;

The technique of rewriting a query as a derived table also enables references to columns from GROUP BY
queries.

Because the results of INSERT ... SELECT statements depend on the ordering of rows from the
SELECT and this order cannot always be guaranteed, it is possible when logging INSERT ... SELECT
ON DUPLICATE KEY UPDATE statements for the source and the replica to diverge. Thus, INSERT ...
SELECT ON DUPLICATE KEY UPDATE statements are flagged as unsafe for statement-based replication.
Such statements produce a warning in the error log when using statement-based mode and are written to
the binary log using the row-based format when using MIXED mode. An INSERT ... ON DUPLICATE
KEY UPDATE statement against a table having more than one unique or primary key is also marked as
unsafe. (Bug #11765650, Bug #58637)

See also Section 16.2.1.1, “Advantages and Disadvantages of Statement-Based and Row-Based
Replication”.

An INSERT ... ON DUPLICATE KEY UPDATE on a partitioned table using a storage engine such as
MyISAM that employs table-level locks locks any partitions of the table in which a partitioning key column

2288

LOAD DATA Statement

is updated. (This does not occur with tables using storage engines such as InnoDB that employ row-level
locking.) For more information, see Section 22.6.4, “Partitioning and Locking”.

13.2.5.3 INSERT DELAYED Statement

INSERT DELAYED ...

The DELAYED option for the INSERT statement is a MySQL extension to standard SQL. In previous
versions of MySQL, it can be used for certain kinds of tables (such as MyISAM), such that when a client
uses INSERT DELAYED, it gets an okay from the server at once, and the row is queued to be inserted
when the table is not in use by any other thread.

DELAYED inserts and replaces were deprecated in MySQL 5.6. In MySQL 5.7, DELAYED is not supported.
The server recognizes but ignores the DELAYED keyword, handles the insert as a nondelayed insert, and
generates an ER_WARN_LEGACY_SYNTAX_CONVERTED warning: INSERT DELAYED is no longer
supported. The statement was converted to INSERT. The DELAYED keyword is scheduled for
removal in a future release.

13.2.6 LOAD DATA Statement
LOAD DATA
 [LOW_PRIORITY | CONCURRENT] [LOCAL]
 INFILE 'file_name'
 [REPLACE | IGNORE]
 INTO TABLE tbl_name
 [PARTITION (partition_name [, partition_name] ...)]
 [CHARACTER SET charset_name]
 [{FIELDS | COLUMNS}
 [TERMINATED BY 'string']
 [[OPTIONALLY] ENCLOSED BY 'char']
 [ESCAPED BY 'char']
]
 [LINES
 [STARTING BY 'string']
 [TERMINATED BY 'string']
]
 [IGNORE number {LINES | ROWS}]
 [(col_name_or_user_var
 [, col_name_or_user_var] ...)]
 [SET col_name={expr | DEFAULT}
 [, col_name={expr | DEFAULT}] ...]

The LOAD DATA statement reads rows from a text file into a table at a very high speed. The file can be
read from the server host or the client host, depending on whether the LOCAL modifier is given. LOCAL also
affects data interpretation and error handling.

LOAD DATA is the complement of SELECT ... INTO OUTFILE. (See Section 13.2.9.1, “SELECT ...
INTO Statement”.) To write data from a table to a file, use SELECT ... INTO OUTFILE. To read the
file back into a table, use LOAD DATA. The syntax of the FIELDS and LINES clauses is the same for both
statements.

The mysqlimport utility provides another way to load data files; it operates by sending a LOAD DATA
statement to the server. See Section 4.5.5, “mysqlimport — A Data Import Program”.

For information about the efficiency of INSERT versus LOAD DATA and speeding up LOAD DATA, see
Section 8.2.4.1, “Optimizing INSERT Statements”.

• Non-LOCAL Versus LOCAL Operation

• Input File Character Set

2289

LOAD DATA Statement

• Input File Location

• Security Requirements

• Duplicate-Key and Error Handling

• Index Handling

• Field and Line Handling

• Column List Specification

• Input Preprocessing

• Column Value Assignment

• Partitioned Table Support

• Concurrency Considerations

• Statement Result Information

• Replication Considerations

• Miscellaneous Topics

Non-LOCAL Versus LOCAL Operation

The LOCAL modifier affects these aspects of LOAD DATA, compared to non-LOCAL operation:

• It changes the expected location of the input file; see Input File Location.

• It changes the statement security requirements; see Security Requirements.

• Unless REPLACE is also specified, LOCAL has the same effect as the IGNORE modifier on the
interpretation of input file contents and error handling; see Duplicate-Key and Error Handling, and
Column Value Assignment.

LOCAL works only if the server and your client both have been configured to permit it. For example, if
mysqld was started with the local_infile system variable disabled, LOCAL produces an error. See
Section 6.1.6, “Security Considerations for LOAD DATA LOCAL”.

Input File Character Set

The file name must be given as a literal string. On Windows, specify backslashes in path names as forward
slashes or doubled backslashes. The server interprets the file name using the character set indicated by
the character_set_filesystem system variable.

By default, the server interprets the file contents using the character set indicated by the
character_set_database system variable. If the file contents use a character set different from this
default, it is a good idea to specify that character set by using the CHARACTER SET clause. A character set
of binary specifies “no conversion.”

SET NAMES and the setting of character_set_client do not affect interpretation of file contents.

LOAD DATA interprets all fields in the file as having the same character set, regardless of the data types of
the columns into which field values are loaded. For proper interpretation of the file, you must ensure that it
was written with the correct character set. For example, if you write a data file with mysqldump -T or by
issuing a SELECT ... INTO OUTFILE statement in mysql, be sure to use a --default-character-
set option to write output in the character set to be used when the file is loaded with LOAD DATA.

2290

LOAD DATA Statement

Note

It is not possible to load data files that use the ucs2, utf16, utf16le, or utf32
character set.

Input File Location

These rules determine the LOAD DATA input file location:

• If LOCAL is not specified, the file must be located on the server host. The server reads the file directly,
locating it as follows:

• If the file name is an absolute path name, the server uses it as given.

• If the file name is a relative path name with leading components, the server looks for the file relative to
its data directory.

• If the file name has no leading components, the server looks for the file in the database directory of the
default database.

• If LOCAL is specified, the file must be located on the client host. The client program reads the file,
locating it as follows:

• If the file name is an absolute path name, the client program uses it as given.

• If the file name is a relative path name, the client program looks for the file relative to its invocation
directory.

When LOCAL is used, the client program reads the file and sends its contents to the server. The server
creates a copy of the file in the directory where it stores temporary files. See Section B.3.3.5, “Where
MySQL Stores Temporary Files”. Lack of sufficient space for the copy in this directory can cause the
LOAD DATA LOCAL statement to fail.

The non-LOCAL rules mean that the server reads a file named as ./myfile.txt relative to its data
directory, whereas it reads a file named as myfile.txt from the database directory of the default
database. For example, if the following LOAD DATA statement is executed while db1 is the default
database, the server reads the file data.txt from the database directory for db1, even though the
statement explicitly loads the file into a table in the db2 database:

LOAD DATA INFILE 'data.txt' INTO TABLE db2.my_table;

Security Requirements

For a non-LOCAL load operation, the server reads a text file located on the server host, so these security
requirements must be satisified:

• You must have the FILE privilege. See Section 6.2.2, “Privileges Provided by MySQL”.

• The operation is subject to the secure_file_priv system variable setting:

• If the variable value is a nonempty directory name, the file must be located in that directory.

• If the variable value is empty (which is insecure), the file need only be readable by the server.

For a LOCAL load operation, the client program reads a text file located on the client host. Because the file
contents are sent over the connection by the client to the server, using LOCAL is a bit slower than when the
server accesses the file directly. On the other hand, you do not need the FILE privilege, and the file can be
located in any directory the client program can access.

2291

LOAD DATA Statement

Duplicate-Key and Error Handling

The REPLACE and IGNORE modifiers control handling of new (input) rows that duplicate existing table rows
on unique key values (PRIMARY KEY or UNIQUE index values):

• With REPLACE, new rows that have the same value as a unique key value in an existing row replace the
existing row. See Section 13.2.8, “REPLACE Statement”.

• With IGNORE, new rows that duplicate an existing row on a unique key value are discarded. For more
information, see The Effect of IGNORE on Statement Execution.

Unless REPLACE is also specified, the LOCAL modifier has the same effect as IGNORE. This occurs
because the server has no way to stop transmission of the file in the middle of the operation.

If none of REPLACE, IGNORE, or LOCAL is specified, an error occurs when a duplicate key value is found,
and the rest of the text file is ignored.

In addition to affecting duplicate-key handling as just described, IGNORE and LOCAL also affect error
handling:

• When neither IGNORE nor LOCAL is specified, data-interpretation errors terminate the operation.

• When IGNORE—or LOCAL without REPLACE—is specified, data interpretation errors become warnings
and the load operation continues, even if the SQL mode is restrictive. For examples, see Column Value
Assignment.

Index Handling

To ignore foreign key constraints during the load operation, execute a SET foreign_key_checks = 0
statement before executing LOAD DATA.

If you use LOAD DATA on an empty MyISAM table, all nonunique indexes are created in a separate batch
(as for REPAIR TABLE). Normally, this makes LOAD DATA much faster when you have many indexes. In
some extreme cases, you can create the indexes even faster by turning them off with ALTER TABLE ...
DISABLE KEYS before loading the file into the table and re-creating the indexes with ALTER TABLE ...
ENABLE KEYS after loading the file. See Section 8.2.4.1, “Optimizing INSERT Statements”.

Field and Line Handling

For both the LOAD DATA and SELECT ... INTO OUTFILE statements, the syntax of the FIELDS
and LINES clauses is the same. Both clauses are optional, but FIELDS must precede LINES if both are
specified.

If you specify a FIELDS clause, each of its subclauses (TERMINATED BY, [OPTIONALLY] ENCLOSED
BY, and ESCAPED BY) is also optional, except that you must specify at least one of them. Arguments to
these clauses are permitted to contain only ASCII characters.

If you specify no FIELDS or LINES clause, the defaults are the same as if you had written this:

FIELDS TERMINATED BY '\t' ENCLOSED BY '' ESCAPED BY '\\'
LINES TERMINATED BY '\n' STARTING BY ''

Backslash is the MySQL escape character within strings in SQL statements. Thus, to specify a literal
backslash, you must specify two backslashes for the value to be interpreted as a single backslash. The
escape sequences '\t' and '\n' specify tab and newline characters, respectively.

In other words, the defaults cause LOAD DATA to act as follows when reading input:

• Look for line boundaries at newlines.

2292

LOAD DATA Statement

• Do not skip any line prefix.

• Break lines into fields at tabs.

• Do not expect fields to be enclosed within any quoting characters.

• Interpret characters preceded by the escape character \ as escape sequences. For example, \t, \n,
and \\ signify tab, newline, and backslash, respectively. See the discussion of FIELDS ESCAPED BY
later for the full list of escape sequences.

Conversely, the defaults cause SELECT ... INTO OUTFILE to act as follows when writing output:

• Write tabs between fields.

• Do not enclose fields within any quoting characters.

• Use \ to escape instances of tab, newline, or \ that occur within field values.

• Write newlines at the ends of lines.

Note

For a text file generated on a Windows system, proper file reading might require
LINES TERMINATED BY '\r\n' because Windows programs typically use two
characters as a line terminator. Some programs, such as WordPad, might use \r
as a line terminator when writing files. To read such files, use LINES TERMINATED
BY '\r'.

If all the input lines have a common prefix that you want to ignore, you can use LINES STARTING BY
'prefix_string' to skip the prefix and anything before it. If a line does not include the prefix, the entire
line is skipped. Suppose that you issue the following statement:

LOAD DATA INFILE '/tmp/test.txt' INTO TABLE test
 FIELDS TERMINATED BY ',' LINES STARTING BY 'xxx';

If the data file looks like this:

xxx"abc",1
something xxx"def",2
"ghi",3

The resulting rows are ("abc",1) and ("def",2). The third row in the file is skipped because it does
not contain the prefix.

The IGNORE number LINES clause can be used to ignore lines at the start of the file. For example, you
can use IGNORE 1 LINES to skip an initial header line containing column names:

LOAD DATA INFILE '/tmp/test.txt' INTO TABLE test IGNORE 1 LINES;

When you use SELECT ... INTO OUTFILE in tandem with LOAD DATA to write data from a database
into a file and then read the file back into the database later, the field- and line-handling options for both
statements must match. Otherwise, LOAD DATA does not interpret the contents of the file properly.
Suppose that you use SELECT ... INTO OUTFILE to write a file with fields delimited by commas:

SELECT * INTO OUTFILE 'data.txt'
 FIELDS TERMINATED BY ','
 FROM table2;

To read the comma-delimited file, the correct statement is:

LOAD DATA INFILE 'data.txt' INTO TABLE table2
 FIELDS TERMINATED BY ',';

2293

LOAD DATA Statement

If instead you tried to read the file with the statement shown following, it would not work because it instructs
LOAD DATA to look for tabs between fields:

LOAD DATA INFILE 'data.txt' INTO TABLE table2
 FIELDS TERMINATED BY '\t';

The likely result is that each input line would be interpreted as a single field.

LOAD DATA can be used to read files obtained from external sources. For example, many programs can
export data in comma-separated values (CSV) format, such that lines have fields separated by commas
and enclosed within double quotation marks, with an initial line of column names. If the lines in such a file
are terminated by carriage return/newline pairs, the statement shown here illustrates the field- and line-
handling options you would use to load the file:

LOAD DATA INFILE 'data.txt' INTO TABLE tbl_name
 FIELDS TERMINATED BY ',' ENCLOSED BY '"'
 LINES TERMINATED BY '\r\n'
 IGNORE 1 LINES;

If the input values are not necessarily enclosed within quotation marks, use OPTIONALLY before the
ENCLOSED BY option.

Any of the field- or line-handling options can specify an empty string (''). If not empty, the FIELDS
[OPTIONALLY] ENCLOSED BY and FIELDS ESCAPED BY values must be a single character. The
FIELDS TERMINATED BY, LINES STARTING BY, and LINES TERMINATED BY values can be more
than one character. For example, to write lines that are terminated by carriage return/linefeed pairs, or to
read a file containing such lines, specify a LINES TERMINATED BY '\r\n' clause.

To read a file containing jokes that are separated by lines consisting of %%, you can do this

CREATE TABLE jokes
 (a INT NOT NULL AUTO_INCREMENT PRIMARY KEY,
 joke TEXT NOT NULL);
LOAD DATA INFILE '/tmp/jokes.txt' INTO TABLE jokes
 FIELDS TERMINATED BY ''
 LINES TERMINATED BY '\n%%\n' (joke);

FIELDS [OPTIONALLY] ENCLOSED BY controls quoting of fields. For output (SELECT ... INTO
OUTFILE), if you omit the word OPTIONALLY, all fields are enclosed by the ENCLOSED BY character. An
example of such output (using a comma as the field delimiter) is shown here:

"1","a string","100.20"
"2","a string containing a , comma","102.20"
"3","a string containing a \" quote","102.20"
"4","a string containing a \", quote and comma","102.20"

If you specify OPTIONALLY, the ENCLOSED BY character is used only to enclose values from columns that
have a string data type (such as CHAR, BINARY, TEXT, or ENUM):

1,"a string",100.20
2,"a string containing a , comma",102.20
3,"a string containing a \" quote",102.20
4,"a string containing a \", quote and comma",102.20

Occurrences of the ENCLOSED BY character within a field value are escaped by prefixing them with the
ESCAPED BY character. Also, if you specify an empty ESCAPED BY value, it is possible to inadvertently
generate output that cannot be read properly by LOAD DATA. For example, the preceding output just
shown would appear as follows if the escape character is empty. Observe that the second field in the fourth
line contains a comma following the quote, which (erroneously) appears to terminate the field:

1,"a string",100.20
2,"a string containing a , comma",102.20

2294

LOAD DATA Statement

3,"a string containing a " quote",102.20
4,"a string containing a ", quote and comma",102.20

For input, the ENCLOSED BY character, if present, is stripped from the ends of field values. (This is true
regardless of whether OPTIONALLY is specified; OPTIONALLY has no effect on input interpretation.)
Occurrences of the ENCLOSED BY character preceded by the ESCAPED BY character are interpreted as
part of the current field value.

If the field begins with the ENCLOSED BY character, instances of that character are recognized as
terminating a field value only if followed by the field or line TERMINATED BY sequence. To avoid
ambiguity, occurrences of the ENCLOSED BY character within a field value can be doubled and are
interpreted as a single instance of the character. For example, if ENCLOSED BY '"' is specified,
quotation marks are handled as shown here:

"The ""BIG"" boss" -> The "BIG" boss
The "BIG" boss -> The "BIG" boss
The ""BIG"" boss -> The ""BIG"" boss

FIELDS ESCAPED BY controls how to read or write special characters:

• For input, if the FIELDS ESCAPED BY character is not empty, occurrences of that character are stripped
and the following character is taken literally as part of a field value. Some two-character sequences that
are exceptions, where the first character is the escape character. These sequences are shown in the
following table (using \ for the escape character). The rules for NULL handling are described later in this
section.

Character Escape Sequence

\0 An ASCII NUL (X'00') character

\b A backspace character

\n A newline (linefeed) character

\r A carriage return character

\t A tab character.

\Z ASCII 26 (Control+Z)

\N NULL

For more information about \-escape syntax, see Section 9.1.1, “String Literals”.

If the FIELDS ESCAPED BY character is empty, escape-sequence interpretation does not occur.

• For output, if the FIELDS ESCAPED BY character is not empty, it is used to prefix the following
characters on output:

• The FIELDS ESCAPED BY character.

• The FIELDS [OPTIONALLY] ENCLOSED BY character.

• The first character of the FIELDS TERMINATED BY and LINES TERMINATED BY values, if the
ENCLOSED BY character is empty or unspecified.

• ASCII 0 (what is actually written following the escape character is ASCII 0, not a zero-valued byte).

If the FIELDS ESCAPED BY character is empty, no characters are escaped and NULL is output as
NULL, not \N. It is probably not a good idea to specify an empty escape character, particularly if field
values in your data contain any of the characters in the list just given.

2295

LOAD DATA Statement

In certain cases, field- and line-handling options interact:

• If LINES TERMINATED BY is an empty string and FIELDS TERMINATED BY is nonempty, lines are
also terminated with FIELDS TERMINATED BY.

• If the FIELDS TERMINATED BY and FIELDS ENCLOSED BY values are both empty (''), a fixed-row
(nondelimited) format is used. With fixed-row format, no delimiters are used between fields (but you can
still have a line terminator). Instead, column values are read and written using a field width wide enough
to hold all values in the field. For TINYINT, SMALLINT, MEDIUMINT, INT, and BIGINT, the field widths
are 4, 6, 8, 11, and 20, respectively, no matter what the declared display width is.

LINES TERMINATED BY is still used to separate lines. If a line does not contain all fields, the rest of the
columns are set to their default values. If you do not have a line terminator, you should set this to ''. In
this case, the text file must contain all fields for each row.

Fixed-row format also affects handling of NULL values, as described later.

Note

Fixed-size format does not work if you are using a multibyte character set.

Handling of NULL values varies according to the FIELDS and LINES options in use:

• For the default FIELDS and LINES values, NULL is written as a field value of \N for output, and a field
value of \N is read as NULL for input (assuming that the ESCAPED BY character is \).

• If FIELDS ENCLOSED BY is not empty, a field containing the literal word NULL as its value is read as a
NULL value. This differs from the word NULL enclosed within FIELDS ENCLOSED BY characters, which
is read as the string 'NULL'.

• If FIELDS ESCAPED BY is empty, NULL is written as the word NULL.

• With fixed-row format (which is used when FIELDS TERMINATED BY and FIELDS ENCLOSED BY are
both empty), NULL is written as an empty string. This causes both NULL values and empty strings in the
table to be indistinguishable when written to the file because both are written as empty strings. If you
need to be able to tell the two apart when reading the file back in, you should not use fixed-row format.

An attempt to load NULL into a NOT NULL column produces either a warning or an error according to the
rules described in Column Value Assignment.

Some cases are not supported by LOAD DATA:

• Fixed-size rows (FIELDS TERMINATED BY and FIELDS ENCLOSED BY both empty) and BLOB or
TEXT columns.

• If you specify one separator that is the same as or a prefix of another, LOAD DATA cannot interpret the
input properly. For example, the following FIELDS clause would cause problems:

FIELDS TERMINATED BY '"' ENCLOSED BY '"'

• If FIELDS ESCAPED BY is empty, a field value that contains an occurrence of FIELDS ENCLOSED
BY or LINES TERMINATED BY followed by the FIELDS TERMINATED BY value causes LOAD DATA
to stop reading a field or line too early. This happens because LOAD DATA cannot properly determine
where the field or line value ends.

Column List Specification

The following example loads all columns of the persondata table:

2296

LOAD DATA Statement

LOAD DATA INFILE 'persondata.txt' INTO TABLE persondata;

By default, when no column list is provided at the end of the LOAD DATA statement, input lines are
expected to contain a field for each table column. If you want to load only some of a table's columns,
specify a column list:

LOAD DATA INFILE 'persondata.txt' INTO TABLE persondata
(col_name_or_user_var [, col_name_or_user_var] ...);

You must also specify a column list if the order of the fields in the input file differs from the order of the
columns in the table. Otherwise, MySQL cannot tell how to match input fields with table columns.

Input Preprocessing

Each instance of col_name_or_user_var in LOAD DATA syntax is either a column name or a user
variable. With user variables, the SET clause enables you to perform preprocessing transformations on
their values before assigning the result to columns.

User variables in the SET clause can be used in several ways. The following example uses the first input
column directly for the value of t1.column1, and assigns the second input column to a user variable that
is subjected to a division operation before being used for the value of t1.column2:

LOAD DATA INFILE 'file.txt'
 INTO TABLE t1
 (column1, @var1)
 SET column2 = @var1/100;

The SET clause can be used to supply values not derived from the input file. The following statement sets
column3 to the current date and time:

LOAD DATA INFILE 'file.txt'
 INTO TABLE t1
 (column1, column2)
 SET column3 = CURRENT_TIMESTAMP;

You can also discard an input value by assigning it to a user variable and not assigning the variable to any
table column:

LOAD DATA INFILE 'file.txt'
 INTO TABLE t1
 (column1, @dummy, column2, @dummy, column3);

Use of the column/variable list and SET clause is subject to the following restrictions:

• Assignments in the SET clause should have only column names on the left hand side of assignment
operators.

• You can use subqueries in the right hand side of SET assignments. A subquery that returns a value to be
assigned to a column may be a scalar subquery only. Also, you cannot use a subquery to select from the
table that is being loaded.

• Lines ignored by an IGNORE number LINES clause are not processed for the column/variable list or
SET clause.

• User variables cannot be used when loading data with fixed-row format because user variables do not
have a display width.

Column Value Assignment

To process an input line, LOAD DATA splits it into fields and uses the values according to the column/
variable list and the SET clause, if they are present. Then the resulting row is inserted into the table. If there

2297

LOAD DATA Statement

are BEFORE INSERT or AFTER INSERT triggers for the table, they are activated before or after inserting
the row, respectively.

Interpretation of field values and assignment to table columns depends on these factors:

• The SQL mode (the value of the sql_mode system variable). The mode can be nonstrictive, or
restrictive in various ways. For example, strict SQL mode can be enabled, or the mode can include
values such as NO_ZERO_DATE or NO_ZERO_IN_DATE.

• Presence or absence of the IGNORE and LOCAL modifiers.

Those factors combine to produce restrictive or nonrestrictive data interpretation by LOAD DATA:

• Data interpretation is restrictive if the SQL mode is restrictive and neither the IGNORE nor the LOCAL
modifier is specified. Errors terminate the load operation.

• Data interpretation is nonrestrictive if the SQL mode is nonrestrictive or the IGNORE or LOCAL modifier
is specified. (In particular, either modifier if specified overrides a restrictive SQL mode.) Errors become
warnings and the load operation continues.

Restrictive data interpretation uses these rules:

• Too many or too few fields results an error.

• Assigning NULL (that is, \N) to a non-NULL column results in an error.

• A value that is out of range for the column data type results in an error.

• Invalid values produce errors. For example, a value such as 'x' for a numeric column results in an
error, not conversion to 0.

By contrast, nonrestrictive data interpretation uses these rules:

• If an input line has too many fields, the extra fields are ignored and the number of warnings is
incremented.

• If an input line has too few fields, the columns for which input fields are missing are assigned their
default values. Default value assignment is described in Section 11.6, “Data Type Default Values”.

• Assigning NULL (that is, \N) to a non-NULL column results in assignment of the implicit default value for
the column data type. Implicit default values are described in Section 11.6, “Data Type Default Values”.

• Invalid values produce warnings rather than errors, and are converted to the “closest” valid value for the
column data type. Examples:

• A value such as 'x' for a numeric column results in conversion to 0.

• An out-of-range numeric or temporal value is clipped to the closest endpoint of the range for the
column data type.

• An invalid value for a DATETIME, DATE, or TIME column is inserted as the implicit default value,
regardless of the SQL mode NO_ZERO_DATE setting. The implicit default is the appropriate “zero”
value for the type ('0000-00-00 00:00:00', '0000-00-00', or '00:00:00'). See Section 11.2,
“Date and Time Data Types”.

• LOAD DATA interprets an empty field value differently from a missing field:

• For string types, the column is set to the empty string.

2298

LOAD DATA Statement

• For numeric types, the column is set to 0.

• For date and time types, the column is set to the appropriate “zero” value for the type. See
Section 11.2, “Date and Time Data Types”.

These are the same values that result if you assign an empty string explicitly to a string, numeric, or date
or time type explicitly in an INSERT or UPDATE statement.

TIMESTAMP columns are set to the current date and time only if there is a NULL value for the column (that
is, \N) and the column is not declared to permit NULL values, or if the TIMESTAMP column default value is
the current timestamp and it is omitted from the field list when a field list is specified.

LOAD DATA regards all input as strings, so you cannot use numeric values for ENUM or SET columns the
way you can with INSERT statements. All ENUM and SET values must be specified as strings.

BIT values cannot be loaded directly using binary notation (for example, b'011010'). To work around
this, use the SET clause to strip off the leading b' and trailing ' and perform a base-2 to base-10
conversion so that MySQL loads the values into the BIT column properly:

$> cat /tmp/bit_test.txt
b'10'
b'1111111'
$> mysql test
mysql> LOAD DATA INFILE '/tmp/bit_test.txt'
 INTO TABLE bit_test (@var1)
 SET b = CAST(CONV(MID(@var1, 3, LENGTH(@var1)-3), 2, 10) AS UNSIGNED);
Query OK, 2 rows affected (0.00 sec)
Records: 2 Deleted: 0 Skipped: 0 Warnings: 0

mysql> SELECT BIN(b+0) FROM bit_test;
+----------+
| BIN(b+0) |
+----------+
| 10 |
| 1111111 |
+----------+
2 rows in set (0.00 sec)

For BIT values in 0b binary notation (for example, 0b011010), use this SET clause instead to strip off the
leading 0b:

SET b = CAST(CONV(MID(@var1, 3, LENGTH(@var1)-2), 2, 10) AS UNSIGNED)

Partitioned Table Support

LOAD DATA supports explicit partition selection using the PARTITION clause with a list of one or more
comma-separated names of partitions, subpartitions, or both. When this clause is used, if any rows from
the file cannot be inserted into any of the partitions or subpartitions named in the list, the statement fails
with the error Found a row not matching the given partition set. For more information and
examples, see Section 22.5, “Partition Selection”.

For partitioned tables using storage engines that employ table locks, such as MyISAM, LOAD DATA cannot
prune any partition locks. This does not apply to tables using storage engines that employ row-level
locking, such as InnoDB. For more information, see Section 22.6.4, “Partitioning and Locking”.

Concurrency Considerations

With the LOW_PRIORITY modifier, execution of the LOAD DATA statement is delayed until no other clients
are reading from the table. This affects only storage engines that use only table-level locking (such as
MyISAM, MEMORY, and MERGE).

2299

LOAD XML Statement

With the CONCURRENT modifier and a MyISAM table that satisfies the condition for concurrent inserts (that
is, it contains no free blocks in the middle), other threads can retrieve data from the table while LOAD DATA
is executing. This modifier affects the performance of LOAD DATA a bit, even if no other thread is using the
table at the same time.

Statement Result Information

When the LOAD DATA statement finishes, it returns an information string in the following format:

Records: 1 Deleted: 0 Skipped: 0 Warnings: 0

Warnings occur under the same circumstances as when values are inserted using the INSERT statement
(see Section 13.2.5, “INSERT Statement”), except that LOAD DATA also generates warnings when there
are too few or too many fields in the input row.

You can use SHOW WARNINGS to get a list of the first max_error_count warnings as information about
what went wrong. See Section 13.7.5.40, “SHOW WARNINGS Statement”.

If you are using the C API, you can get information about the statement by calling the mysql_info()
function. See mysql_info().

Replication Considerations

For information about LOAD DATA in relation to replication, see Section 16.4.1.18, “Replication and LOAD
DATA”.

Miscellaneous Topics

On Unix, if you need LOAD DATA to read from a pipe, you can use the following technique (the example
loads a listing of the / directory into the table db1.t1):

mkfifo /mysql/data/db1/ls.dat
chmod 666 /mysql/data/db1/ls.dat
find / -ls > /mysql/data/db1/ls.dat &
mysql -e "LOAD DATA INFILE 'ls.dat' INTO TABLE t1" db1

Here you must run the command that generates the data to be loaded and the mysql commands either
on separate terminals, or run the data generation process in the background (as shown in the preceding
example). If you do not do this, the pipe blocks until data is read by the mysql process.

13.2.7 LOAD XML Statement

LOAD XML
 [LOW_PRIORITY | CONCURRENT] [LOCAL]
 INFILE 'file_name'
 [REPLACE | IGNORE]
 INTO TABLE [db_name.]tbl_name
 [CHARACTER SET charset_name]
 [ROWS IDENTIFIED BY '<tagname>']
 [IGNORE number {LINES | ROWS}]
 [(field_name_or_user_var
 [, field_name_or_user_var] ...)]
 [SET col_name={expr | DEFAULT}
 [, col_name={expr | DEFAULT}] ...]

The LOAD XML statement reads data from an XML file into a table. The file_name must be given as a
literal string. The tagname in the optional ROWS IDENTIFIED BY clause must also be given as a literal
string, and must be surrounded by angle brackets (< and >).

2300

https://dev.mysql.com/doc/c-api/5.7/en/mysql-info.html
https://dev.mysql.com/doc/c-api/5.7/en/mysql-info.html

LOAD XML Statement

LOAD XML acts as the complement of running the mysql client in XML output mode (that is, starting the
client with the --xml option). To write data from a table to an XML file, you can invoke the mysql client
with the --xml and -e options from the system shell, as shown here:

$> mysql --xml -e 'SELECT * FROM mydb.mytable' > file.xml

To read the file back into a table, use LOAD XML. By default, the <row> element is considered to be the
equivalent of a database table row; this can be changed using the ROWS IDENTIFIED BY clause.

This statement supports three different XML formats:

• Column names as attributes and column values as attribute values:

<row column1="value1" column2="value2" .../>

• Column names as tags and column values as the content of these tags:

<row>
 <column1>value1</column1>
 <column2>value2</column2>
</row>

• Column names are the name attributes of <field> tags, and values are the contents of these tags:

<row>
 <field name='column1'>value1</field>
 <field name='column2'>value2</field>
</row>

This is the format used by other MySQL tools, such as mysqldump.

All three formats can be used in the same XML file; the import routine automatically detects the format for
each row and interprets it correctly. Tags are matched based on the tag or attribute name and the column
name.

In MySQL 5.7, LOAD XML does not support CDATA sections in the source XML. This limitation is removed
in MySQL 8.0. (Bug #30753708, Bug #98199)

The following clauses work essentially the same way for LOAD XML as they do for LOAD DATA:

• LOW_PRIORITY or CONCURRENT

• LOCAL

• REPLACE or IGNORE

• CHARACTER SET

• SET

See Section 13.2.6, “LOAD DATA Statement”, for more information about these clauses.

(field_name_or_user_var, ...) is a list of one or more comma-separated XML fields or user
variables. The name of a user variable used for this purpose must match the name of a field from the XML
file, prefixed with @. You can use field names to select only desired fields. User variables can be employed
to store the corresponding field values for subsequent re-use.

The IGNORE number LINES or IGNORE number ROWS clause causes the first number rows in the XML
file to be skipped. It is analogous to the LOAD DATA statement's IGNORE ... LINES clause.

2301

LOAD XML Statement

Suppose that we have a table named person, created as shown here:

USE test;

CREATE TABLE person (
 person_id INT NOT NULL PRIMARY KEY,
 fname VARCHAR(40) NULL,
 lname VARCHAR(40) NULL,
 created TIMESTAMP
);

Suppose further that this table is initially empty.

Now suppose that we have a simple XML file person.xml, whose contents are as shown here:

<list>
 <person person_id="1" fname="Kapek" lname="Sainnouine"/>
 <person person_id="2" fname="Sajon" lname="Rondela"/>
 <person person_id="3"><fname>Likame</fname><lname>Örrtmons</lname></person>
 <person person_id="4"><fname>Slar</fname><lname>Manlanth</lname></person>
 <person><field name="person_id">5</field><field name="fname">Stoma</field>
 <field name="lname">Milu</field></person>
 <person><field name="person_id">6</field><field name="fname">Nirtam</field>
 <field name="lname">Sklöd</field></person>
 <person person_id="7"><fname>Sungam</fname><lname>Dulbåd</lname></person>
 <person person_id="8" fname="Sraref" lname="Encmelt"/>
</list>

Each of the permissible XML formats discussed previously is represented in this example file.

To import the data in person.xml into the person table, you can use this statement:

mysql> LOAD XML LOCAL INFILE 'person.xml'
 -> INTO TABLE person
 -> ROWS IDENTIFIED BY '<person>';

Query OK, 8 rows affected (0.00 sec)
Records: 8 Deleted: 0 Skipped: 0 Warnings: 0

Here, we assume that person.xml is located in the MySQL data directory. If the file cannot be found, the
following error results:

ERROR 2 (HY000): File '/person.xml' not found (Errcode: 2)

The ROWS IDENTIFIED BY '<person>' clause means that each <person> element in the XML file
is considered equivalent to a row in the table into which the data is to be imported. In this case, this is the
person table in the test database.

As can be seen by the response from the server, 8 rows were imported into the test.person table. This
can be verified by a simple SELECT statement:

mysql> SELECT * FROM person;
+-----------+--------+------------+---------------------+
| person_id | fname | lname | created |
+-----------+--------+------------+---------------------+
1	Kapek	Sainnouine	2007-07-13 16:18:47
2	Sajon	Rondela	2007-07-13 16:18:47
3	Likame	Örrtmons	2007-07-13 16:18:47
4	Slar	Manlanth	2007-07-13 16:18:47
5	Stoma	Nilu	2007-07-13 16:18:47
6	Nirtam	Sklöd	2007-07-13 16:18:47
7	Sungam	Dulbåd	2007-07-13 16:18:47
8	Sreraf	Encmelt	2007-07-13 16:18:47
+-----------+--------+------------+---------------------+
8 rows in set (0.00 sec)

2302

LOAD XML Statement

This shows, as stated earlier in this section, that any or all of the 3 permitted XML formats may appear in a
single file and be read using LOAD XML.

The inverse of the import operation just shown—that is, dumping MySQL table data into an XML file—can
be accomplished using the mysql client from the system shell, as shown here:

$> mysql --xml -e "SELECT * FROM test.person" > person-dump.xml
$> cat person-dump.xml
<?xml version="1.0"?>

<resultset statement="SELECT * FROM test.person" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <row>
 <field name="person_id">1</field>
 <field name="fname">Kapek</field>
 <field name="lname">Sainnouine</field>
 </row>

 <row>
 <field name="person_id">2</field>
 <field name="fname">Sajon</field>
 <field name="lname">Rondela</field>
 </row>

 <row>
 <field name="person_id">3</field>
 <field name="fname">Likema</field>
 <field name="lname">Örrtmons</field>
 </row>

 <row>
 <field name="person_id">4</field>
 <field name="fname">Slar</field>
 <field name="lname">Manlanth</field>
 </row>

 <row>
 <field name="person_id">5</field>
 <field name="fname">Stoma</field>
 <field name="lname">Nilu</field>
 </row>

 <row>
 <field name="person_id">6</field>
 <field name="fname">Nirtam</field>
 <field name="lname">Sklöd</field>
 </row>

 <row>
 <field name="person_id">7</field>
 <field name="fname">Sungam</field>
 <field name="lname">Dulbåd</field>
 </row>

 <row>
 <field name="person_id">8</field>
 <field name="fname">Sreraf</field>
 <field name="lname">Encmelt</field>
 </row>
</resultset>

Note

The --xml option causes the mysql client to use XML formatting for its output; the
-e option causes the client to execute the SQL statement immediately following the
option. See Section 4.5.1, “mysql — The MySQL Command-Line Client”.

2303

LOAD XML Statement

You can verify that the dump is valid by creating a copy of the person table and importing the dump file
into the new table, like this:

mysql> USE test;
mysql> CREATE TABLE person2 LIKE person;
Query OK, 0 rows affected (0.00 sec)

mysql> LOAD XML LOCAL INFILE 'person-dump.xml'
 -> INTO TABLE person2;
Query OK, 8 rows affected (0.01 sec)
Records: 8 Deleted: 0 Skipped: 0 Warnings: 0

mysql> SELECT * FROM person2;
+-----------+--------+------------+---------------------+
| person_id | fname | lname | created |
+-----------+--------+------------+---------------------+
1	Kapek	Sainnouine	2007-07-13 16:18:47
2	Sajon	Rondela	2007-07-13 16:18:47
3	Likema	Örrtmons	2007-07-13 16:18:47
4	Slar	Manlanth	2007-07-13 16:18:47
5	Stoma	Nilu	2007-07-13 16:18:47
6	Nirtam	Sklöd	2007-07-13 16:18:47
7	Sungam	Dulbåd	2007-07-13 16:18:47
8	Sreraf	Encmelt	2007-07-13 16:18:47
+-----------+--------+------------+---------------------+
8 rows in set (0.00 sec)

There is no requirement that every field in the XML file be matched with a column in the corresponding
table. Fields which have no corresponding columns are skipped. You can see this by first emptying the
person2 table and dropping the created column, then using the same LOAD XML statement we just
employed previously, like this:

mysql> TRUNCATE person2;
Query OK, 8 rows affected (0.26 sec)

mysql> ALTER TABLE person2 DROP COLUMN created;
Query OK, 0 rows affected (0.52 sec)
Records: 0 Duplicates: 0 Warnings: 0

mysql> SHOW CREATE TABLE person2\G
*************************** 1. row ***************************
 Table: person2
Create Table: CREATE TABLE `person2` (
 `person_id` int(11) NOT NULL,
 `fname` varchar(40) DEFAULT NULL,
 `lname` varchar(40) DEFAULT NULL,
 PRIMARY KEY (`person_id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8
1 row in set (0.00 sec)

mysql> LOAD XML LOCAL INFILE 'person-dump.xml'
 -> INTO TABLE person2;
Query OK, 8 rows affected (0.01 sec)
Records: 8 Deleted: 0 Skipped: 0 Warnings: 0

mysql> SELECT * FROM person2;
+-----------+--------+------------+
| person_id | fname | lname |
+-----------+--------+------------+
1	Kapek	Sainnouine
2	Sajon	Rondela
3	Likema	Örrtmons
4	Slar	Manlanth
5	Stoma	Nilu
6	Nirtam	Sklöd
7	Sungam	Dulbåd

2304

LOAD XML Statement

| 8 | Sreraf | Encmelt |
+-----------+--------+------------+
8 rows in set (0.00 sec)

The order in which the fields are given within each row of the XML file does not affect the operation of
LOAD XML; the field order can vary from row to row, and is not required to be in the same order as the
corresponding columns in the table.

As mentioned previously, you can use a (field_name_or_user_var, ...) list of one or more XML
fields (to select desired fields only) or user variables (to store the corresponding field values for later
use). User variables can be especially useful when you want to insert data from an XML file into table
columns whose names do not match those of the XML fields. To see how this works, we first create a table
named individual whose structure matches that of the person table, but whose columns are named
differently:

mysql> CREATE TABLE individual (
 -> individual_id INT NOT NULL PRIMARY KEY,
 -> name1 VARCHAR(40) NULL,
 -> name2 VARCHAR(40) NULL,
 -> made TIMESTAMP
 ->);
Query OK, 0 rows affected (0.42 sec)

In this case, you cannot simply load the XML file directly into the table, because the field and column
names do not match:

mysql> LOAD XML INFILE '../bin/person-dump.xml' INTO TABLE test.individual;
ERROR 1263 (22004): Column set to default value; NULL supplied to NOT NULL column 'individual_id' at row 1

This happens because the MySQL server looks for field names matching the column names of the target
table. You can work around this problem by selecting the field values into user variables, then setting the
target table's columns equal to the values of those variables using SET. You can perform both of these
operations in a single statement, as shown here:

mysql> LOAD XML INFILE '../bin/person-dump.xml'
 -> INTO TABLE test.individual (@person_id, @fname, @lname, @created)
 -> SET individual_id=@person_id, name1=@fname, name2=@lname, made=@created;
Query OK, 8 rows affected (0.05 sec)
Records: 8 Deleted: 0 Skipped: 0 Warnings: 0

mysql> SELECT * FROM individual;
+---------------+--------+------------+---------------------+
| individual_id | name1 | name2 | made |
+---------------+--------+------------+---------------------+
1	Kapek	Sainnouine	2007-07-13 16:18:47
2	Sajon	Rondela	2007-07-13 16:18:47
3	Likema	Örrtmons	2007-07-13 16:18:47
4	Slar	Manlanth	2007-07-13 16:18:47
5	Stoma	Nilu	2007-07-13 16:18:47
6	Nirtam	Sklöd	2007-07-13 16:18:47
7	Sungam	Dulbåd	2007-07-13 16:18:47
8	Srraf	Encmelt	2007-07-13 16:18:47
+---------------+--------+------------+---------------------+
8 rows in set (0.00 sec)

The names of the user variables must match those of the corresponding fields from the XML file, with the
addition of the required @ prefix to indicate that they are variables. The user variables need not be listed or
assigned in the same order as the corresponding fields.

Using a ROWS IDENTIFIED BY '<tagname>' clause, it is possible to import data from the same XML
file into database tables with different definitions. For this example, suppose that you have a file named
address.xml which contains the following XML:

2305

LOAD XML Statement

<?xml version="1.0"?>

<list>
 <person person_id="1">
 <fname>Robert</fname>
 <lname>Jones</lname>
 <address address_id="1" street="Mill Creek Road" zip="45365" city="Sidney"/>
 <address address_id="2" street="Main Street" zip="28681" city="Taylorsville"/>
 </person>

 <person person_id="2">
 <fname>Mary</fname>
 <lname>Smith</lname>
 <address address_id="3" street="River Road" zip="80239" city="Denver"/>
 <!-- <address address_id="4" street="North Street" zip="37920" city="Knoxville"/> -->
 </person>

</list>

You can again use the test.person table as defined previously in this section, after clearing all the
existing records from the table and then showing its structure as shown here:

mysql< TRUNCATE person;
Query OK, 0 rows affected (0.04 sec)

mysql< SHOW CREATE TABLE person\G
*************************** 1. row ***************************
 Table: person
Create Table: CREATE TABLE `person` (
 `person_id` int(11) NOT NULL,
 `fname` varchar(40) DEFAULT NULL,
 `lname` varchar(40) DEFAULT NULL,
 `created` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP,
 PRIMARY KEY (`person_id`)
) ENGINE=MyISAM DEFAULT CHARSET=latin1
1 row in set (0.00 sec)

Now create an address table in the test database using the following CREATE TABLE statement:

CREATE TABLE address (
 address_id INT NOT NULL PRIMARY KEY,
 person_id INT NULL,
 street VARCHAR(40) NULL,
 zip INT NULL,
 city VARCHAR(40) NULL,
 created TIMESTAMP
);

To import the data from the XML file into the person table, execute the following LOAD XML statement,
which specifies that rows are to be specified by the <person> element, as shown here;

mysql> LOAD XML LOCAL INFILE 'address.xml'
 -> INTO TABLE person
 -> ROWS IDENTIFIED BY '<person>';
Query OK, 2 rows affected (0.00 sec)
Records: 2 Deleted: 0 Skipped: 0 Warnings: 0

You can verify that the records were imported using a SELECT statement:

mysql> SELECT * FROM person;
+-----------+--------+-------+---------------------+
| person_id | fname | lname | created |
+-----------+--------+-------+---------------------+
| 1 | Robert | Jones | 2007-07-24 17:37:06 |
| 2 | Mary | Smith | 2007-07-24 17:37:06 |

2306

LOAD XML Statement

+-----------+--------+-------+---------------------+
2 rows in set (0.00 sec)

Since the <address> elements in the XML file have no corresponding columns in the person table, they
are skipped.

To import the data from the <address> elements into the address table, use the LOAD XML statement
shown here:

mysql> LOAD XML LOCAL INFILE 'address.xml'
 -> INTO TABLE address
 -> ROWS IDENTIFIED BY '<address>';
Query OK, 3 rows affected (0.00 sec)
Records: 3 Deleted: 0 Skipped: 0 Warnings: 0

You can see that the data was imported using a SELECT statement such as this one:

mysql> SELECT * FROM address;
+------------+-----------+-----------------+-------+--------------+---------------------+
| address_id | person_id | street | zip | city | created |
+------------+-----------+-----------------+-------+--------------+---------------------+
1	1	Mill Creek Road	45365	Sidney	2007-07-24 17:37:37
2	1	Main Street	28681	Taylorsville	2007-07-24 17:37:37
3	2	River Road	80239	Denver	2007-07-24 17:37:37
+------------+-----------+-----------------+-------+--------------+---------------------+
3 rows in set (0.00 sec)

The data from the <address> element that is enclosed in XML comments is not imported. However, since
there is a person_id column in the address table, the value of the person_id attribute from the parent
<person> element for each <address> is imported into the address table.

Security Considerations. As with the LOAD DATA statement, the transfer of the XML file from the
client host to the server host is initiated by the MySQL server. In theory, a patched server could be built
that would tell the client program to transfer a file of the server's choosing rather than the file named by the
client in the LOAD XML statement. Such a server could access any file on the client host to which the client
user has read access.

In a Web environment, clients usually connect to MySQL from a Web server. A user that can run any
command against the MySQL server can use LOAD XML LOCAL to read any files to which the Web server
process has read access. In this environment, the client with respect to the MySQL server is actually the
Web server, not the remote program being run by the user who connects to the Web server.

You can disable loading of XML files from clients by starting the server with --local-infile=0 or --
local-infile=OFF. This option can also be used when starting the mysql client to disable LOAD XML
for the duration of the client session.

To prevent a client from loading XML files from the server, do not grant the FILE privilege to the
corresponding MySQL user account, or revoke this privilege if the client user account already has it.

Important

Revoking the FILE privilege (or not granting it in the first place) keeps the user only
from executing the LOAD XML statement (as well as the LOAD_FILE() function;
it does not prevent the user from executing LOAD XML LOCAL. To disallow this
statement, you must start the server or the client with --local-infile=OFF.

In other words, the FILE privilege affects only whether the client can read files on
the server; it has no bearing on whether the client can read files on the local file
system.

2307

REPLACE Statement

For partitioned tables using storage engines that employ table locks, such as MyISAM, any locks caused by
LOAD XML perform locks on all partitions of the table. This does not apply to tables using storage engines
which employ row-level locking, such as InnoDB. For more information, see Section 22.6.4, “Partitioning
and Locking”.

13.2.8 REPLACE Statement
REPLACE [LOW_PRIORITY | DELAYED]
 [INTO] tbl_name
 [PARTITION (partition_name [, partition_name] ...)]
 [(col_name [, col_name] ...)]
 {VALUES | VALUE} (value_list) [, (value_list)] ...

REPLACE [LOW_PRIORITY | DELAYED]
 [INTO] tbl_name
 [PARTITION (partition_name [, partition_name] ...)]
 SET assignment_list

REPLACE [LOW_PRIORITY | DELAYED]
 [INTO] tbl_name
 [PARTITION (partition_name [, partition_name] ...)]
 [(col_name [, col_name] ...)]
 SELECT ...

value:
 {expr | DEFAULT}

value_list:
 value [, value] ...

assignment:
 col_name = value

assignment_list:
 assignment [, assignment] ...

REPLACE works exactly like INSERT, except that if an old row in the table has the same value as a new
row for a PRIMARY KEY or a UNIQUE index, the old row is deleted before the new row is inserted. See
Section 13.2.5, “INSERT Statement”.

REPLACE is a MySQL extension to the SQL standard. It either inserts, or deletes and inserts. For another
MySQL extension to standard SQL—that either inserts or updates—see Section 13.2.5.2, “INSERT ... ON
DUPLICATE KEY UPDATE Statement”.

DELAYED inserts and replaces were deprecated in MySQL 5.6. In MySQL 5.7, DELAYED is not supported.
The server recognizes but ignores the DELAYED keyword, handles the replace as a nondelayed replace,
and generates an ER_WARN_LEGACY_SYNTAX_CONVERTED warning: REPLACE DELAYED is no
longer supported. The statement was converted to REPLACE. The DELAYED keyword is
scheduled for removal in a future release. release.

Note

REPLACE makes sense only if a table has a PRIMARY KEY or UNIQUE index.
Otherwise, it becomes equivalent to INSERT, because there is no index to be used
to determine whether a new row duplicates another.

Values for all columns are taken from the values specified in the REPLACE statement. Any missing columns
are set to their default values, just as happens for INSERT. You cannot refer to values from the current
row and use them in the new row. If you use an assignment such as SET col_name = col_name +
1, the reference to the column name on the right hand side is treated as DEFAULT(col_name), so the
assignment is equivalent to SET col_name = DEFAULT(col_name) + 1.

2308

REPLACE Statement

To use REPLACE, you must have both the INSERT and DELETE privileges for the table.

If a generated column is replaced explicitly, the only permitted value is DEFAULT. For information about
generated columns, see Section 13.1.18.7, “CREATE TABLE and Generated Columns”.

REPLACE supports explicit partition selection using the PARTITION clause with a list of comma-separated
names of partitions, subpartitions, or both. As with INSERT, if it is not possible to insert the new row
into any of these partitions or subpartitions, the REPLACE statement fails with the error Found a row
not matching the given partition set. For more information and examples, see Section 22.5,
“Partition Selection”.

The REPLACE statement returns a count to indicate the number of rows affected. This is the sum of the
rows deleted and inserted. If the count is 1 for a single-row REPLACE, a row was inserted and no rows
were deleted. If the count is greater than 1, one or more old rows were deleted before the new row was
inserted. It is possible for a single row to replace more than one old row if the table contains multiple
unique indexes and the new row duplicates values for different old rows in different unique indexes.

The affected-rows count makes it easy to determine whether REPLACE only added a row or whether it also
replaced any rows: Check whether the count is 1 (added) or greater (replaced).

If you are using the C API, the affected-rows count can be obtained using the mysql_affected_rows()
function.

You cannot replace into a table and select from the same table in a subquery.

MySQL uses the following algorithm for REPLACE (and LOAD DATA ... REPLACE):

1. Try to insert the new row into the table

2. While the insertion fails because a duplicate-key error occurs for a primary key or unique index:

a. Delete from the table the conflicting row that has the duplicate key value

b. Try again to insert the new row into the table

It is possible that in the case of a duplicate-key error, a storage engine may perform the REPLACE as an
update rather than a delete plus insert, but the semantics are the same. There are no user-visible effects
other than a possible difference in how the storage engine increments Handler_xxx status variables.

Because the results of REPLACE ... SELECT statements depend on the ordering of rows from the
SELECT and this order cannot always be guaranteed, it is possible when logging these statements for the
source and the replica to diverge. For this reason, REPLACE ... SELECT statements are flagged as
unsafe for statement-based replication. such statements produce a warning in the error log when using
statement-based mode and are written to the binary log using the row-based format when using MIXED
mode. See also Section 16.2.1.1, “Advantages and Disadvantages of Statement-Based and Row-Based
Replication”.

When modifying an existing table that is not partitioned to accommodate partitioning, or, when modifying
the partitioning of an already partitioned table, you may consider altering the table's primary key (see
Section 22.6.1, “Partitioning Keys, Primary Keys, and Unique Keys”). You should be aware that, if you do
this, the results of REPLACE statements may be affected, just as they would be if you modified the primary
key of a nonpartitioned table. Consider the table created by the following CREATE TABLE statement:

CREATE TABLE test (
 id INT UNSIGNED NOT NULL AUTO_INCREMENT,
 data VARCHAR(64) DEFAULT NULL,
 ts TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP,
 PRIMARY KEY (id)

2309

https://dev.mysql.com/doc/c-api/5.7/en/mysql-affected-rows.html

SELECT Statement

);

When we create this table and run the statements shown in the mysql client, the result is as follows:

mysql> REPLACE INTO test VALUES (1, 'Old', '2014-08-20 18:47:00');
Query OK, 1 row affected (0.04 sec)

mysql> REPLACE INTO test VALUES (1, 'New', '2014-08-20 18:47:42');
Query OK, 2 rows affected (0.04 sec)

mysql> SELECT * FROM test;
+----+------+---------------------+
| id | data | ts |
+----+------+---------------------+
| 1 | New | 2014-08-20 18:47:42 |
+----+------+---------------------+
1 row in set (0.00 sec)

Now we create a second table almost identical to the first, except that the primary key now covers 2
columns, as shown here (emphasized text):

CREATE TABLE test2 (
 id INT UNSIGNED NOT NULL AUTO_INCREMENT,
 data VARCHAR(64) DEFAULT NULL,
 ts TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP,
 PRIMARY KEY (id, ts)
);

When we run on test2 the same two REPLACE statements as we did on the original test table, we
obtain a different result:

mysql> REPLACE INTO test2 VALUES (1, 'Old', '2014-08-20 18:47:00');
Query OK, 1 row affected (0.05 sec)

mysql> REPLACE INTO test2 VALUES (1, 'New', '2014-08-20 18:47:42');
Query OK, 1 row affected (0.06 sec)

mysql> SELECT * FROM test2;
+----+------+---------------------+
| id | data | ts |
+----+------+---------------------+
| 1 | Old | 2014-08-20 18:47:00 |
| 1 | New | 2014-08-20 18:47:42 |
+----+------+---------------------+
2 rows in set (0.00 sec)

This is due to the fact that, when run on test2, both the id and ts column values must match those of an
existing row for the row to be replaced; otherwise, a row is inserted.

A REPLACE statement affecting a partitioned table using a storage engine such as MyISAM that employs
table-level locks locks only those partitions containing rows that match the REPLACE statement WHERE
clause, as long as none of the table partitioning columns are updated; otherwise the entire table is locked.
(For storage engines such as InnoDB that employ row-level locking, no locking of partitions takes place.)
For more information, see Section 22.6.4, “Partitioning and Locking”.

13.2.9 SELECT Statement
SELECT
 [ALL | DISTINCT | DISTINCTROW]
 [HIGH_PRIORITY]
 [STRAIGHT_JOIN]
 [SQL_SMALL_RESULT] [SQL_BIG_RESULT] [SQL_BUFFER_RESULT]
 [SQL_CACHE | SQL_NO_CACHE] [SQL_CALC_FOUND_ROWS]

2310

SELECT Statement

 select_expr [, select_expr] ...
 [into_option]
 [FROM table_references
 [PARTITION partition_list]]
 [WHERE where_condition]
 [GROUP BY {col_name | expr | position}
 [ASC | DESC], ... [WITH ROLLUP]]
 [HAVING where_condition]
 [ORDER BY {col_name | expr | position}
 [ASC | DESC], ...]
 [LIMIT {[offset,] row_count | row_count OFFSET offset}]
 [PROCEDURE procedure_name(argument_list)]
 [into_option]
 [FOR UPDATE | LOCK IN SHARE MODE]

into_option: {
 INTO OUTFILE 'file_name'
 [CHARACTER SET charset_name]
 export_options
 | INTO DUMPFILE 'file_name'
 | INTO var_name [, var_name] ...
}

export_options:
 [{FIELDS | COLUMNS}
 [TERMINATED BY 'string']
 [[OPTIONALLY] ENCLOSED BY 'char']
 [ESCAPED BY 'char']
]
 [LINES
 [STARTING BY 'string']
 [TERMINATED BY 'string']
]

SELECT is used to retrieve rows selected from one or more tables, and can include UNION statements and
subqueries. See Section 13.2.9.3, “UNION Clause”, and Section 13.2.10, “Subqueries”.

The most commonly used clauses of SELECT statements are these:

• Each select_expr indicates a column that you want to retrieve. There must be at least one
select_expr.

• table_references indicates the table or tables from which to retrieve rows. Its syntax is described in
Section 13.2.9.2, “JOIN Clause”.

• SELECT supports explicit partition selection using the PARTITION clause with a list of partitions or
subpartitions (or both) following the name of the table in a table_reference (see Section 13.2.9.2,
“JOIN Clause”). In this case, rows are selected only from the partitions listed, and any other partitions of
the table are ignored. For more information and examples, see Section 22.5, “Partition Selection”.

SELECT ... PARTITION from tables using storage engines such as MyISAM that perform table-level
locks (and thus partition locks) lock only the partitions or subpartitions named by the PARTITION option.

For more information, see Section 22.6.4, “Partitioning and Locking”.

• The WHERE clause, if given, indicates the condition or conditions that rows must satisfy to be selected.
where_condition is an expression that evaluates to true for each row to be selected. The statement
selects all rows if there is no WHERE clause.

In the WHERE expression, you can use any of the functions and operators that MySQL supports, except
for aggregate (group) functions. See Section 9.5, “Expressions”, and Chapter 12, Functions and
Operators.

2311

SELECT Statement

SELECT can also be used to retrieve rows computed without reference to any table.

For example:

mysql> SELECT 1 + 1;
 -> 2

 You are permitted to specify DUAL as a dummy table name in situations where no tables are referenced:

mysql> SELECT 1 + 1 FROM DUAL;
 -> 2

DUAL is purely for the convenience of people who require that all SELECT statements should have FROM
and possibly other clauses. MySQL may ignore the clauses. MySQL does not require FROM DUAL if no
tables are referenced.

In general, clauses used must be given in exactly the order shown in the syntax description. For example,
a HAVING clause must come after any GROUP BY clause and before any ORDER BY clause. The
INTO clause, if present, can appear in any position indicated by the syntax description, but within a
given statement can appear only once, not in multiple positions. For more information about INTO, see
Section 13.2.9.1, “SELECT ... INTO Statement”.

The list of select_expr terms comprises the select list that indicates which columns to retrieve. Terms
specify a column or expression or can use *-shorthand:

• A select list consisting only of a single unqualified * can be used as shorthand to select all columns from
all tables:

SELECT * FROM t1 INNER JOIN t2 ...

• tbl_name.* can be used as a qualified shorthand to select all columns from the named table:

SELECT t1.*, t2.* FROM t1 INNER JOIN t2 ...

• Use of an unqualified * with other items in the select list may produce a parse error. For example:

SELECT id, * FROM t1

To avoid this problem, use a qualified tbl_name.* reference:

SELECT id, t1.* FROM t1

Use qualified tbl_name.* references for each table in the select list:

SELECT AVG(score), t1.* FROM t1 ...

The following list provides additional information about other SELECT clauses:

• A select_expr can be given an alias using AS alias_name. The alias is used as the expression's
column name and can be used in GROUP BY, ORDER BY, or HAVING clauses. For example:

SELECT CONCAT(last_name,', ',first_name) AS full_name
 FROM mytable ORDER BY full_name;

The AS keyword is optional when aliasing a select_expr with an identifier. The preceding example
could have been written like this:

SELECT CONCAT(last_name,', ',first_name) full_name
 FROM mytable ORDER BY full_name;

2312

SELECT Statement

However, because the AS is optional, a subtle problem can occur if you forget the comma between
two select_expr expressions: MySQL interprets the second as an alias name. For example, in the
following statement, columnb is treated as an alias name:

SELECT columna columnb FROM mytable;

For this reason, it is good practice to be in the habit of using AS explicitly when specifying column
aliases.

It is not permissible to refer to a column alias in a WHERE clause, because the column value might not
yet be determined when the WHERE clause is executed. See Section B.3.4.4, “Problems with Column
Aliases”.

• The FROM table_references clause indicates the table or tables from which to retrieve rows.
If you name more than one table, you are performing a join. For information on join syntax, see
Section 13.2.9.2, “JOIN Clause”. For each table specified, you can optionally specify an alias.

tbl_name [[AS] alias] [index_hint]

The use of index hints provides the optimizer with information about how to choose indexes during query
processing. For a description of the syntax for specifying these hints, see Section 8.9.4, “Index Hints”.

You can use SET max_seeks_for_key=value as an alternative way to force MySQL to prefer key
scans instead of table scans. See Section 5.1.7, “Server System Variables”.

• You can refer to a table within the default database as tbl_name, or as db_name.tbl_name to
specify a database explicitly. You can refer to a column as col_name, tbl_name.col_name, or
db_name.tbl_name.col_name. You need not specify a tbl_name or db_name.tbl_name prefix for a
column reference unless the reference would be ambiguous. See Section 9.2.2, “Identifier Qualifiers”, for
examples of ambiguity that require the more explicit column reference forms.

• A table reference can be aliased using tbl_name AS alias_name or tbl_name alias_name.
These statements are equivalent:

SELECT t1.name, t2.salary FROM employee AS t1, info AS t2
 WHERE t1.name = t2.name;

SELECT t1.name, t2.salary FROM employee t1, info t2
 WHERE t1.name = t2.name;

• Columns selected for output can be referred to in ORDER BY and GROUP BY clauses using column
names, column aliases, or column positions. Column positions are integers and begin with 1:

SELECT college, region, seed FROM tournament
 ORDER BY region, seed;

SELECT college, region AS r, seed AS s FROM tournament
 ORDER BY r, s;

SELECT college, region, seed FROM tournament
 ORDER BY 2, 3;

To sort in reverse order, add the DESC (descending) keyword to the name of the column in the ORDER
BY clause that you are sorting by. The default is ascending order; this can be specified explicitly using
the ASC keyword.

If ORDER BY occurs within a parenthesized query expression and also is applied in the outer query, the
results are undefined and may change in a future MySQL version.

2313

SELECT Statement

Use of column positions is deprecated because the syntax has been removed from the SQL standard.

• MySQL extends the GROUP BY clause so that you can also specify ASC and DESC after columns named
in the clause. However, this syntax is deprecated. To produce a given sort order, provide an ORDER BY
clause.

• If you use GROUP BY, output rows are sorted according to the GROUP BY columns as if you had an
ORDER BY for the same columns. To avoid the overhead of sorting that GROUP BY produces, add
ORDER BY NULL:

SELECT a, COUNT(b) FROM test_table GROUP BY a ORDER BY NULL;

Relying on implicit GROUP BY sorting (that is, sorting in the absence of ASC or DESC designators) or
explicit sorting for GROUP BY (that is, by using explicit ASC or DESC designators for GROUP BY columns)
is deprecated. To produce a given sort order, provide an ORDER BY clause.

• When you use ORDER BY or GROUP BY to sort a column in a SELECT, the server sorts values using
only the initial number of bytes indicated by the max_sort_length system variable.

• MySQL extends the use of GROUP BY to permit selecting fields that are not mentioned in the GROUP BY
clause. If you are not getting the results that you expect from your query, please read the description of
GROUP BY found in Section 12.19, “Aggregate Functions”.

• GROUP BY permits a WITH ROLLUP modifier. See Section 12.19.2, “GROUP BY Modifiers”.

• The HAVING clause, like the WHERE clause, specifies selection conditions. The WHERE clause specifies
conditions on columns in the select list, but cannot refer to aggregate functions. The HAVING clause
specifies conditions on groups, typically formed by the GROUP BY clause. The query result includes only
groups satisfying the HAVING conditions. (If no GROUP BY is present, all rows implicitly form a single
aggregate group.)

The HAVING clause is applied nearly last, just before items are sent to the client, with no optimization.
(LIMIT is applied after HAVING.)

The SQL standard requires that HAVING must reference only columns in the GROUP BY clause or
columns used in aggregate functions. However, MySQL supports an extension to this behavior, and
permits HAVING to refer to columns in the SELECT list and columns in outer subqueries as well.

If the HAVING clause refers to a column that is ambiguous, a warning occurs. In the following statement,
col2 is ambiguous because it is used as both an alias and a column name:

SELECT COUNT(col1) AS col2 FROM t GROUP BY col2 HAVING col2 = 2;

Preference is given to standard SQL behavior, so if a HAVING column name is used both in GROUP BY
and as an aliased column in the select column list, preference is given to the column in the GROUP BY
column.

• Do not use HAVING for items that should be in the WHERE clause. For example, do not write the
following:

SELECT col_name FROM tbl_name HAVING col_name > 0;

Write this instead:

SELECT col_name FROM tbl_name WHERE col_name > 0;

• The HAVING clause can refer to aggregate functions, which the WHERE clause cannot:

2314

SELECT Statement

SELECT user, MAX(salary) FROM users
 GROUP BY user HAVING MAX(salary) > 10;

(This did not work in some older versions of MySQL.)

• MySQL permits duplicate column names. That is, there can be more than one select_expr with
the same name. This is an extension to standard SQL. Because MySQL also permits GROUP BY and
HAVING to refer to select_expr values, this can result in an ambiguity:

SELECT 12 AS a, a FROM t GROUP BY a;

In that statement, both columns have the name a. To ensure that the correct column is used for
grouping, use different names for each select_expr.

• MySQL resolves unqualified column or alias references in ORDER BY clauses by searching in the
select_expr values, then in the columns of the tables in the FROM clause. For GROUP BY or HAVING
clauses, it searches the FROM clause before searching in the select_expr values. (For GROUP BY and
HAVING, this differs from the pre-MySQL 5.0 behavior that used the same rules as for ORDER BY.)

• The LIMIT clause can be used to constrain the number of rows returned by the SELECT statement.
LIMIT takes one or two numeric arguments, which must both be nonnegative integer constants, with
these exceptions:

• Within prepared statements, LIMIT parameters can be specified using ? placeholder markers.

• Within stored programs, LIMIT parameters can be specified using integer-valued routine parameters
or local variables.

With two arguments, the first argument specifies the offset of the first row to return, and the second
specifies the maximum number of rows to return. The offset of the initial row is 0 (not 1):

SELECT * FROM tbl LIMIT 5,10; # Retrieve rows 6-15

To retrieve all rows from a certain offset up to the end of the result set, you can use some large number
for the second parameter. This statement retrieves all rows from the 96th row to the last:

SELECT * FROM tbl LIMIT 95,18446744073709551615;

With one argument, the value specifies the number of rows to return from the beginning of the result set:

SELECT * FROM tbl LIMIT 5; # Retrieve first 5 rows

In other words, LIMIT row_count is equivalent to LIMIT 0, row_count.

For prepared statements, you can use placeholders. The following statements return one row from the
tbl table:

SET @a=1;
PREPARE STMT FROM 'SELECT * FROM tbl LIMIT ?';
EXECUTE STMT USING @a;

The following statements return the second to sixth row from the tbl table:

SET @skip=1; SET @numrows=5;
PREPARE STMT FROM 'SELECT * FROM tbl LIMIT ?, ?';
EXECUTE STMT USING @skip, @numrows;

For compatibility with PostgreSQL, MySQL also supports the LIMIT row_count OFFSET offset
syntax.

2315

SELECT Statement

If LIMIT occurs within a parenthesized query expression and also is applied in the outer query, the
results are undefined and may change in a future MySQL version.

• A PROCEDURE clause names a procedure that should process the data in the result set. For an example,
see Section 8.4.2.4, “Using PROCEDURE ANALYSE”, which describes ANALYSE, a procedure that can
be used to obtain suggestions for optimal column data types that may help reduce table sizes.

A PROCEDURE clause is not permitted in a UNION statement.

Note

PROCEDURE syntax is deprecated as of MySQL 5.7.18, and is removed in MySQL
8.0.

• The SELECT ... INTO form of SELECT enables the query result to be written to a file or stored in
variables. For more information, see Section 13.2.9.1, “SELECT ... INTO Statement”.

• If you use FOR UPDATE with a storage engine that uses page or row locks, rows examined by the
query are write-locked until the end of the current transaction. Using LOCK IN SHARE MODE sets a
shared lock that permits other transactions to read the examined rows but not to update or delete them.
See Section 14.7.2.4, “Locking Reads”.

In addition, you cannot use FOR UPDATE as part of the SELECT in a statement such as CREATE TABLE
new_table SELECT ... FROM old_table (If you attempt to do so, the statement is rejected
with the error Can't update table 'old_table' while 'new_table' is being created.)
This is a change in behavior from MySQL 5.5 and earlier, which permitted CREATE TABLE ...
SELECT statements to make changes in tables other than the table being created.

Following the SELECT keyword, you can use a number of modifiers that affect the operation of the
statement. HIGH_PRIORITY, STRAIGHT_JOIN, and modifiers beginning with SQL_ are MySQL
extensions to standard SQL.

• The ALL and DISTINCT modifiers specify whether duplicate rows should be returned. ALL (the default)
specifies that all matching rows should be returned, including duplicates. DISTINCT specifies removal of
duplicate rows from the result set. It is an error to specify both modifiers. DISTINCTROW is a synonym for
DISTINCT.

• HIGH_PRIORITY gives the SELECT higher priority than a statement that updates a table. You should
use this only for queries that are very fast and must be done at once. A SELECT HIGH_PRIORITY
query that is issued while the table is locked for reading runs even if there is an update statement waiting
for the table to be free. This affects only storage engines that use only table-level locking (such as
MyISAM, MEMORY, and MERGE).

HIGH_PRIORITY cannot be used with SELECT statements that are part of a UNION.

• STRAIGHT_JOIN forces the optimizer to join the tables in the order in which they are listed in the
FROM clause. You can use this to speed up a query if the optimizer joins the tables in nonoptimal order.
STRAIGHT_JOIN also can be used in the table_references list. See Section 13.2.9.2, “JOIN
Clause”.

STRAIGHT_JOIN does not apply to any table that the optimizer treats as a const or system table.
Such a table produces a single row, is read during the optimization phase of query execution, and
references to its columns are replaced with the appropriate column values before query execution
proceeds. These tables appear first in the query plan displayed by EXPLAIN. See Section 8.8.1,
“Optimizing Queries with EXPLAIN”. This exception may not apply to const or system tables that are

2316

SELECT Statement

used on the NULL-complemented side of an outer join (that is, the right-side table of a LEFT JOIN or the
left-side table of a RIGHT JOIN.

• SQL_BIG_RESULT or SQL_SMALL_RESULT can be used with GROUP BY or DISTINCT to tell the
optimizer that the result set has many rows or is small, respectively. For SQL_BIG_RESULT, MySQL
directly uses disk-based temporary tables if they are created, and prefers sorting to using a temporary
table with a key on the GROUP BY elements. For SQL_SMALL_RESULT, MySQL uses in-memory
temporary tables to store the resulting table instead of using sorting. This should not normally be
needed.

• SQL_BUFFER_RESULT forces the result to be put into a temporary table. This helps MySQL free the
table locks early and helps in cases where it takes a long time to send the result set to the client. This
modifier can be used only for top-level SELECT statements, not for subqueries or following UNION.

• SQL_CALC_FOUND_ROWS tells MySQL to calculate how many rows there would be in the result
set, disregarding any LIMIT clause. The number of rows can then be retrieved with SELECT
FOUND_ROWS(). See Section 12.15, “Information Functions”.

• The SQL_CACHE and SQL_NO_CACHE modifiers affect caching of query results in the query cache (see
Section 8.10.3, “The MySQL Query Cache”). SQL_CACHE tells MySQL to store the result in the query
cache if it is cacheable and the value of the query_cache_type system variable is 2 or DEMAND. With
SQL_NO_CACHE, the server does not use the query cache. It neither checks the query cache to see
whether the result is already cached, nor does it cache the query result.

These two modifiers are mutually exclusive and an error occurs if they are both specified. Also, these
modifiers are not permitted in subqueries (including subqueries in the FROM clause), and SELECT
statements in unions other than the first SELECT.

For views, SQL_NO_CACHE applies if it appears in any SELECT in the query. For a cacheable query,
SQL_CACHE applies if it appears in the first SELECT of a view referred to by the query.

Note

The query cache is deprecated as of MySQL 5.7.20, and is removed in MySQL
8.0. Deprecation includes SQL_CACHE and SQL_NO_CACHE.

A SELECT from a partitioned table using a storage engine such as MyISAM that employs table-level locks
locks only those partitions containing rows that match the SELECT statement WHERE clause. (This does
not occur with storage engines such as InnoDB that employ row-level locking.) For more information, see
Section 22.6.4, “Partitioning and Locking”.

13.2.9.1 SELECT ... INTO Statement

The SELECT ... INTO form of SELECT enables a query result to be stored in variables or written to a
file:

• SELECT ... INTO var_list selects column values and stores them into variables.

• SELECT ... INTO OUTFILE writes the selected rows to a file. Column and line terminators can be
specified to produce a specific output format.

• SELECT ... INTO DUMPFILE writes a single row to a file without any formatting.

A given SELECT statement can contain at most one INTO clause, although as shown by the SELECT
syntax description (see Section 13.2.9, “SELECT Statement”), the INTO can appear in different positions:

• Before FROM. Example:

2317

SELECT Statement

SELECT * INTO @myvar FROM t1;

• Before a trailing locking clause. Example:

SELECT * FROM t1 INTO @myvar FOR UPDATE;

An INTO clause should not be used in a nested SELECT because such a SELECT must return its result
to the outer context. There are also constraints on the use of INTO within UNION statements; see
Section 13.2.9.3, “UNION Clause”.

For the INTO var_list variant:

• var_list names a list of one or more variables, each of which can be a user-defined variable, stored
procedure or function parameter, or stored program local variable. (Within a prepared SELECT ...
INTO var_list statement, only user-defined variables are permitted; see Section 13.6.4.2, “Local
Variable Scope and Resolution”.)

• The selected values are assigned to the variables. The number of variables must match the number of
columns. The query should return a single row. If the query returns no rows, a warning with error code
1329 occurs (No data), and the variable values remain unchanged. If the query returns multiple rows,
error 1172 occurs (Result consisted of more than one row). If it is possible that the statement
may retrieve multiple rows, you can use LIMIT 1 to limit the result set to a single row.

SELECT id, data INTO @x, @y FROM test.t1 LIMIT 1;

User variable names are not case-sensitive. See Section 9.4, “User-Defined Variables”.

The SELECT ... INTO OUTFILE 'file_name' form of SELECT writes the selected rows to a
file. The file is created on the server host, so you must have the FILE privilege to use this syntax.
file_name cannot be an existing file, which among other things prevents files such as /etc/passwd and
database tables from being modified. The character_set_filesystem system variable controls the
interpretation of the file name.

The SELECT ... INTO OUTFILE statement is intended to enable dumping a table to a text file on the
server host. To create the resulting file on some other host, SELECT ... INTO OUTFILE normally is
unsuitable because there is no way to write a path to the file relative to the server host file system, unless
the location of the file on the remote host can be accessed using a network-mapped path on the server
host file system.

Alternatively, if the MySQL client software is installed on the remote host, you can use a client command
such as mysql -e "SELECT ..." > file_name to generate the file on that host.

SELECT ... INTO OUTFILE is the complement of LOAD DATA. Column values are written converted to
the character set specified in the CHARACTER SET clause. If no such clause is present, values are dumped
using the binary character set. In effect, there is no character set conversion. If a result set contains
columns in several character sets, so does the output data file and it may not be possible to reload the file
correctly.

The syntax for the export_options part of the statement consists of the same FIELDS and LINES
clauses that are used with the LOAD DATA statement. For more detailed information about the FIELDS
and LINES clauses, including their default values and permissible values, see Section 13.2.6, “LOAD
DATA Statement”.

FIELDS ESCAPED BY controls how to write special characters. If the FIELDS ESCAPED BY character is
not empty, it is used when necessary to avoid ambiguity as a prefix that precedes following characters on
output:

2318

SELECT Statement

• The FIELDS ESCAPED BY character

• The FIELDS [OPTIONALLY] ENCLOSED BY character

• The first character of the FIELDS TERMINATED BY and LINES TERMINATED BY values

• ASCII NUL (the zero-valued byte; what is actually written following the escape character is ASCII 0, not a
zero-valued byte)

The FIELDS TERMINATED BY, ENCLOSED BY, ESCAPED BY, or LINES TERMINATED BY characters
must be escaped so that you can read the file back in reliably. ASCII NUL is escaped to make it easier to
view with some pagers.

The resulting file need not conform to SQL syntax, so nothing else need be escaped.

If the FIELDS ESCAPED BY character is empty, no characters are escaped and NULL is output as NULL,
not \N. It is probably not a good idea to specify an empty escape character, particularly if field values in
your data contain any of the characters in the list just given.

Here is an example that produces a file in the comma-separated values (CSV) format used by many
programs:

SELECT a,b,a+b INTO OUTFILE '/tmp/result.txt'
 FIELDS TERMINATED BY ',' OPTIONALLY ENCLOSED BY '"'
 LINES TERMINATED BY '\n'
 FROM test_table;

If you use INTO DUMPFILE instead of INTO OUTFILE, MySQL writes only one row into the file, without
any column or line termination and without performing any escape processing. This is useful for selecting a
BLOB value and storing it in a file.

Note

Any file created by INTO OUTFILE or INTO DUMPFILE is writable by all users
on the server host. The reason for this is that the MySQL server cannot create a
file that is owned by anyone other than the user under whose account it is running.
(You should never run mysqld as root for this and other reasons.) The file thus
must be world-writable so that you can manipulate its contents.

If the secure_file_priv system variable is set to a nonempty directory name,
the file to be written must be located in that directory.

In the context of SELECT ... INTO statements that occur as part of events executed by the Event
Scheduler, diagnostics messages (not only errors, but also warnings) are written to the error log, and, on
Windows, to the application event log. For additional information, see Section 23.4.5, “Event Scheduler
Status”.

13.2.9.2 JOIN Clause

MySQL supports the following JOIN syntax for the table_references part of SELECT statements and
multiple-table DELETE and UPDATE statements:

table_references:
 escaped_table_reference [, escaped_table_reference] ...

escaped_table_reference: {
 table_reference

2319

SELECT Statement

 | { OJ table_reference }
}

table_reference: {
 table_factor
 | joined_table
}

table_factor: {
 tbl_name [PARTITION (partition_names)]
 [[AS] alias] [index_hint_list]
 | table_subquery [AS] alias
 | (table_references)
}

joined_table: {
 table_reference [INNER | CROSS] JOIN table_factor [join_specification]
 | table_reference STRAIGHT_JOIN table_factor
 | table_reference STRAIGHT_JOIN table_factor ON search_condition
 | table_reference {LEFT|RIGHT} [OUTER] JOIN table_reference join_specification
 | table_reference NATURAL [{LEFT|RIGHT} [OUTER]] JOIN table_factor
}

join_specification: {
 ON search_condition
 | USING (join_column_list)
}

join_column_list:
 column_name[, column_name] ...

index_hint_list:
 index_hint[index_hint] ...

index_hint: {
 USE {INDEX|KEY}
 [FOR {JOIN|ORDER BY|GROUP BY}] ([index_list])
 | {IGNORE|FORCE} {INDEX|KEY}
 [FOR {JOIN|ORDER BY|GROUP BY}] (index_list)
}

index_list:
 index_name [, index_name] ...

A table reference is also known as a join expression.

A table reference (when it refers to a partitioned table) may contain a PARTITION clause, including a list of
comma-separated partitions, subpartitions, or both. This option follows the name of the table and precedes
any alias declaration. The effect of this option is that rows are selected only from the listed partitions or
subpartitions. Any partitions or subpartitions not named in the list are ignored. For more information and
examples, see Section 22.5, “Partition Selection”.

The syntax of table_factor is extended in MySQL in comparison with standard SQL. The standard
accepts only table_reference, not a list of them inside a pair of parentheses.

This is a conservative extension if each comma in a list of table_reference items is considered as
equivalent to an inner join. For example:

SELECT * FROM t1 LEFT JOIN (t2, t3, t4)
 ON (t2.a = t1.a AND t3.b = t1.b AND t4.c = t1.c)

is equivalent to:

SELECT * FROM t1 LEFT JOIN (t2 CROSS JOIN t3 CROSS JOIN t4)

2320

SELECT Statement

 ON (t2.a = t1.a AND t3.b = t1.b AND t4.c = t1.c)

In MySQL, JOIN, CROSS JOIN, and INNER JOIN are syntactic equivalents (they can replace each other).
In standard SQL, they are not equivalent. INNER JOIN is used with an ON clause, CROSS JOIN is used
otherwise.

In general, parentheses can be ignored in join expressions containing only inner join operations. MySQL
also supports nested joins. See Section 8.2.1.7, “Nested Join Optimization”.

Index hints can be specified to affect how the MySQL optimizer makes use of indexes. For more
information, see Section 8.9.4, “Index Hints”. Optimizer hints and the optimizer_switch system
variable are other ways to influence optimizer use of indexes. See Section 8.9.3, “Optimizer Hints”, and
Section 8.9.2, “Switchable Optimizations”.

The following list describes general factors to take into account when writing joins:

• A table reference can be aliased using tbl_name AS alias_name or tbl_name alias_name:

SELECT t1.name, t2.salary
 FROM employee AS t1 INNER JOIN info AS t2 ON t1.name = t2.name;

SELECT t1.name, t2.salary
 FROM employee t1 INNER JOIN info t2 ON t1.name = t2.name;

• A table_subquery is also known as a derived table or subquery in the FROM clause. See
Section 13.2.10.8, “Derived Tables”. Such subqueries must include an alias to give the subquery result a
table name. A trivial example follows:

SELECT * FROM (SELECT 1, 2, 3) AS t1;

• The maximum number of tables that can be referenced in a single join is 61. This includes a join handled
by merging derived tables and views in the FROM clause into the outer query block (see Section 8.2.2.4,
“Optimizing Derived Tables and View References with Merging or Materialization”).

• INNER JOIN and , (comma) are semantically equivalent in the absence of a join condition: both
produce a Cartesian product between the specified tables (that is, each and every row in the first table is
joined to each and every row in the second table).

However, the precedence of the comma operator is less than that of INNER JOIN, CROSS JOIN, LEFT
JOIN, and so on. If you mix comma joins with the other join types when there is a join condition, an error
of the form Unknown column 'col_name' in 'on clause' may occur. Information about dealing
with this problem is given later in this section.

• The search_condition used with ON is any conditional expression of the form that can be used in
a WHERE clause. Generally, the ON clause serves for conditions that specify how to join tables, and the
WHERE clause restricts which rows to include in the result set.

• If there is no matching row for the right table in the ON or USING part in a LEFT JOIN, a row with all
columns set to NULL is used for the right table. You can use this fact to find rows in a table that have no
counterpart in another table:

SELECT left_tbl.*
 FROM left_tbl LEFT JOIN right_tbl ON left_tbl.id = right_tbl.id
 WHERE right_tbl.id IS NULL;

This example finds all rows in left_tbl with an id value that is not present in right_tbl (that is,
all rows in left_tbl with no corresponding row in right_tbl). See Section 8.2.1.8, “Outer Join
Optimization”.

2321

SELECT Statement

• The USING(join_column_list) clause names a list of columns that must exist in both tables. If
tables a and b both contain columns c1, c2, and c3, the following join compares corresponding columns
from the two tables:

a LEFT JOIN b USING (c1, c2, c3)

• The NATURAL [LEFT] JOIN of two tables is defined to be semantically equivalent to an INNER JOIN
or a LEFT JOIN with a USING clause that names all columns that exist in both tables.

• RIGHT JOIN works analogously to LEFT JOIN. To keep code portable across databases, it is
recommended that you use LEFT JOIN instead of RIGHT JOIN.

• The { OJ ... } syntax shown in the join syntax description exists only for compatibility with ODBC.
The curly braces in the syntax should be written literally; they are not metasyntax as used elsewhere in
syntax descriptions.

SELECT left_tbl.*
 FROM { OJ left_tbl LEFT OUTER JOIN right_tbl
 ON left_tbl.id = right_tbl.id }
 WHERE right_tbl.id IS NULL;

You can use other types of joins within { OJ ... }, such as INNER JOIN or RIGHT OUTER JOIN.
This helps with compatibility with some third-party applications, but is not official ODBC syntax.

• STRAIGHT_JOIN is similar to JOIN, except that the left table is always read before the right table. This
can be used for those (few) cases for which the join optimizer processes the tables in a suboptimal
order.

Some join examples:

SELECT * FROM table1, table2;

SELECT * FROM table1 INNER JOIN table2 ON table1.id = table2.id;

SELECT * FROM table1 LEFT JOIN table2 ON table1.id = table2.id;

SELECT * FROM table1 LEFT JOIN table2 USING (id);

SELECT * FROM table1 LEFT JOIN table2 ON table1.id = table2.id
 LEFT JOIN table3 ON table2.id = table3.id;

Natural joins and joins with USING, including outer join variants, are processed according to the SQL:2003
standard:

• Redundant columns of a NATURAL join do not appear. Consider this set of statements:

CREATE TABLE t1 (i INT, j INT);
CREATE TABLE t2 (k INT, j INT);
INSERT INTO t1 VALUES(1, 1);
INSERT INTO t2 VALUES(1, 1);
SELECT * FROM t1 NATURAL JOIN t2;
SELECT * FROM t1 JOIN t2 USING (j);

In the first SELECT statement, column j appears in both tables and thus becomes a join column, so,
according to standard SQL, it should appear only once in the output, not twice. Similarly, in the second
SELECT statement, column j is named in the USING clause and should appear only once in the output,
not twice.

Thus, the statements produce this output:

+------+------+------+
| j | i | k |

2322

SELECT Statement

+------+------+------+
| 1 | 1 | 1 |
+------+------+------+
+------+------+------+
| j | i | k |
+------+------+------+
| 1 | 1 | 1 |
+------+------+------+

Redundant column elimination and column ordering occurs according to standard SQL, producing this
display order:

• First, coalesced common columns of the two joined tables, in the order in which they occur in the first
table

• Second, columns unique to the first table, in order in which they occur in that table

• Third, columns unique to the second table, in order in which they occur in that table

The single result column that replaces two common columns is defined using the coalesce operation.
That is, for two t1.a and t2.a the resulting single join column a is defined as a = COALESCE(t1.a,
t2.a), where:

COALESCE(x, y) = (CASE WHEN x IS NOT NULL THEN x ELSE y END)

If the join operation is any other join, the result columns of the join consist of the concatenation of all
columns of the joined tables.

A consequence of the definition of coalesced columns is that, for outer joins, the coalesced column
contains the value of the non-NULL column if one of the two columns is always NULL. If neither or
both columns are NULL, both common columns have the same value, so it does not matter which one
is chosen as the value of the coalesced column. A simple way to interpret this is to consider that a
coalesced column of an outer join is represented by the common column of the inner table of a JOIN.
Suppose that the tables t1(a, b) and t2(a, c) have the following contents:

t1 t2
---- ----
1 x 2 z
2 y 3 w

Then, for this join, column a contains the values of t1.a:

mysql> SELECT * FROM t1 NATURAL LEFT JOIN t2;
+------+------+------+
| a | b | c |
+------+------+------+
| 1 | x | NULL |
| 2 | y | z |
+------+------+------+

By contrast, for this join, column a contains the values of t2.a.

mysql> SELECT * FROM t1 NATURAL RIGHT JOIN t2;
+------+------+------+
| a | c | b |
+------+------+------+
| 2 | z | y |
| 3 | w | NULL |

2323

SELECT Statement

+------+------+------+

Compare those results to the otherwise equivalent queries with JOIN ... ON:

mysql> SELECT * FROM t1 LEFT JOIN t2 ON (t1.a = t2.a);
+------+------+------+------+
| a | b | a | c |
+------+------+------+------+
| 1 | x | NULL | NULL |
| 2 | y | 2 | z |
+------+------+------+------+

mysql> SELECT * FROM t1 RIGHT JOIN t2 ON (t1.a = t2.a);
+------+------+------+------+
| a | b | a | c |
+------+------+------+------+
| 2 | y | 2 | z |
| NULL | NULL | 3 | w |
+------+------+------+------+

• A USING clause can be rewritten as an ON clause that compares corresponding columns. However,
although USING and ON are similar, they are not quite the same. Consider the following two queries:

a LEFT JOIN b USING (c1, c2, c3)
a LEFT JOIN b ON a.c1 = b.c1 AND a.c2 = b.c2 AND a.c3 = b.c3

With respect to determining which rows satisfy the join condition, both joins are semantically identical.

With respect to determining which columns to display for SELECT * expansion, the two joins are not
semantically identical. The USING join selects the coalesced value of corresponding columns, whereas
the ON join selects all columns from all tables. For the USING join, SELECT * selects these values:

COALESCE(a.c1, b.c1), COALESCE(a.c2, b.c2), COALESCE(a.c3, b.c3)

For the ON join, SELECT * selects these values:

a.c1, a.c2, a.c3, b.c1, b.c2, b.c3

With an inner join, COALESCE(a.c1, b.c1) is the same as either a.c1 or b.c1 because both
columns have the same value. With an outer join (such as LEFT JOIN), one of the two columns can be
NULL. That column is omitted from the result.

• An ON clause can refer only to its operands.

Example:

CREATE TABLE t1 (i1 INT);
CREATE TABLE t2 (i2 INT);
CREATE TABLE t3 (i3 INT);
SELECT * FROM t1 JOIN t2 ON (i1 = i3) JOIN t3;

The statement fails with an Unknown column 'i3' in 'on clause' error because i3 is a
column in t3, which is not an operand of the ON clause. To enable the join to be processed, rewrite the
statement as follows:

SELECT * FROM t1 JOIN t2 JOIN t3 ON (i1 = i3);

• JOIN has higher precedence than the comma operator (,), so the join expression t1, t2 JOIN t3
is interpreted as (t1, (t2 JOIN t3)), not as ((t1, t2) JOIN t3). This affects statements that

2324

SELECT Statement

use an ON clause because that clause can refer only to columns in the operands of the join, and the
precedence affects interpretation of what those operands are.

Example:

CREATE TABLE t1 (i1 INT, j1 INT);
CREATE TABLE t2 (i2 INT, j2 INT);
CREATE TABLE t3 (i3 INT, j3 INT);
INSERT INTO t1 VALUES(1, 1);
INSERT INTO t2 VALUES(1, 1);
INSERT INTO t3 VALUES(1, 1);
SELECT * FROM t1, t2 JOIN t3 ON (t1.i1 = t3.i3);

The JOIN takes precedence over the comma operator, so the operands for the ON clause are t2 and
t3. Because t1.i1 is not a column in either of the operands, the result is an Unknown column
't1.i1' in 'on clause' error.

To enable the join to be processed, use either of these strategies:

• Group the first two tables explicitly with parentheses so that the operands for the ON clause are (t1,
t2) and t3:

SELECT * FROM (t1, t2) JOIN t3 ON (t1.i1 = t3.i3);

• Avoid the use of the comma operator and use JOIN instead:

SELECT * FROM t1 JOIN t2 JOIN t3 ON (t1.i1 = t3.i3);

The same precedence interpretation also applies to statements that mix the comma operator with INNER
JOIN, CROSS JOIN, LEFT JOIN, and RIGHT JOIN, all of which have higher precedence than the
comma operator.

• A MySQL extension compared to the SQL:2003 standard is that MySQL permits you to qualify the
common (coalesced) columns of NATURAL or USING joins, whereas the standard disallows that.

13.2.9.3 UNION Clause

SELECT ...
UNION [ALL | DISTINCT] SELECT ...
[UNION [ALL | DISTINCT] SELECT ...]

UNION combines the result from multiple SELECT statements into a single result set. Example:

mysql> SELECT 1, 2;
+---+---+
| 1 | 2 |
+---+---+
| 1 | 2 |
+---+---+
mysql> SELECT 'a', 'b';
+---+---+
| a | b |
+---+---+
| a | b |
+---+---+
mysql> SELECT 1, 2 UNION SELECT 'a', 'b';
+---+---+
| 1 | 2 |
+---+---+
| 1 | 2 |
| a | b |
+---+---+

2325

SELECT Statement

• Result Set Column Names and Data Types

• UNION DISTINCT and UNION ALL

• ORDER BY and LIMIT in Unions

• UNION Restrictions

Result Set Column Names and Data Types

The column names for a UNION result set are taken from the column names of the first SELECT statement.

Selected columns listed in corresponding positions of each SELECT statement should have the same
data type. For example, the first column selected by the first statement should have the same type as
the first column selected by the other statements. If the data types of corresponding SELECT columns
do not match, the types and lengths of the columns in the UNION result take into account the values
retrieved by all the SELECT statements. For example, consider the following, where the column length is
not constrained to the length of the value from the first SELECT:

mysql> SELECT REPEAT('a',1) UNION SELECT REPEAT('b',20);
+----------------------+
| REPEAT('a',1) |
+----------------------+
| a |
| bbbbbbbbbbbbbbbbbbbb |
+----------------------+

UNION DISTINCT and UNION ALL

By default, duplicate rows are removed from UNION results. The optional DISTINCT keyword has the
same effect but makes it explicit. With the optional ALL keyword, duplicate-row removal does not occur and
the result includes all matching rows from all the SELECT statements.

You can mix UNION ALL and UNION DISTINCT in the same query. Mixed UNION types are treated such
that a DISTINCT union overrides any ALL union to its left. A DISTINCT union can be produced explicitly
by using UNION DISTINCT or implicitly by using UNION with no following DISTINCT or ALL keyword.

ORDER BY and LIMIT in Unions

To apply an ORDER BY or LIMIT clause to an individual SELECT, parenthesize the SELECT and place the
clause inside the parentheses:

(SELECT a FROM t1 WHERE a=10 AND B=1 ORDER BY a LIMIT 10)
UNION
(SELECT a FROM t2 WHERE a=11 AND B=2 ORDER BY a LIMIT 10);

Note

Previous versions of MySQL may permit such statements without parentheses. In
MySQL 5.7, the requirement for parentheses is enforced.

Use of ORDER BY for individual SELECT statements implies nothing about the order in which the rows
appear in the final result because UNION by default produces an unordered set of rows. Therefore, ORDER
BY in this context typically is used in conjunction with LIMIT, to determine the subset of the selected rows
to retrieve for the SELECT, even though it does not necessarily affect the order of those rows in the final
UNION result. If ORDER BY appears without LIMIT in a SELECT, it is optimized away because it has no
effect.

To use an ORDER BY or LIMIT clause to sort or limit the entire UNION result, parenthesize the individual
SELECT statements and place the ORDER BY or LIMIT after the last one:

2326

Subqueries

(SELECT a FROM t1 WHERE a=10 AND B=1)
UNION
(SELECT a FROM t2 WHERE a=11 AND B=2)
ORDER BY a LIMIT 10;

A statement without parentheses is equivalent to one parenthesized as just shown.

This kind of ORDER BY cannot use column references that include a table name (that is, names in
tbl_name.col_name format). Instead, provide a column alias in the first SELECT statement and refer to
the alias in the ORDER BY. (Alternatively, refer to the column in the ORDER BY using its column position.
However, use of column positions is deprecated.)

Also, if a column to be sorted is aliased, the ORDER BY clause must refer to the alias, not the column
name. The first of the following statements is permitted, but the second fails with an Unknown column
'a' in 'order clause' error:

(SELECT a AS b FROM t) UNION (SELECT ...) ORDER BY b;
(SELECT a AS b FROM t) UNION (SELECT ...) ORDER BY a;

To cause rows in a UNION result to consist of the sets of rows retrieved by each SELECT one after the
other, select an additional column in each SELECT to use as a sort column and add an ORDER BY that
sorts on that column following the last SELECT:

(SELECT 1 AS sort_col, col1a, col1b, ... FROM t1)
UNION
(SELECT 2, col2a, col2b, ... FROM t2) ORDER BY sort_col;

To additionally maintain sort order within individual SELECT results, add a secondary column to the ORDER
BY clause:

(SELECT 1 AS sort_col, col1a, col1b, ... FROM t1)
UNION
(SELECT 2, col2a, col2b, ... FROM t2) ORDER BY sort_col, col1a;

Use of an additional column also enables you to determine which SELECT each row comes from. Extra
columns can provide other identifying information as well, such as a string that indicates a table name.

UNION queries with an aggregate function in an ORDER BY clause are rejected with an
ER_AGGREGATE_ORDER_FOR_UNION error. Example:

SELECT 1 AS foo UNION SELECT 2 ORDER BY MAX(1);

UNION Restrictions

In a UNION, the SELECT statements are normal select statements, but with the following restrictions:

• HIGH_PRIORITY in the first SELECT has no effect. HIGH_PRIORITY in any subsequent SELECT
produces a syntax error.

• Only the last SELECT statement can use an INTO clause. However, the entire UNION result is written to
the INTO output destination.

13.2.10 Subqueries

A subquery is a SELECT statement within another statement.

All subquery forms and operations that the SQL standard requires are supported, as well as a few features
that are MySQL-specific.

Here is an example of a subquery:

2327

https://dev.mysql.com/doc/mysql-errors/5.7/en/server-error-reference.html#error_er_aggregate_order_for_union

Subqueries

SELECT * FROM t1 WHERE column1 = (SELECT column1 FROM t2);

In this example, SELECT * FROM t1 ... is the outer query (or outer statement), and (SELECT
column1 FROM t2) is the subquery. We say that the subquery is nested within the outer query, and in
fact it is possible to nest subqueries within other subqueries, to a considerable depth. A subquery must
always appear within parentheses.

The main advantages of subqueries are:

• They allow queries that are structured so that it is possible to isolate each part of a statement.

• They provide alternative ways to perform operations that would otherwise require complex joins and
unions.

• Many people find subqueries more readable than complex joins or unions. Indeed, it was the innovation
of subqueries that gave people the original idea of calling the early SQL “Structured Query Language.”

Here is an example statement that shows the major points about subquery syntax as specified by the SQL
standard and supported in MySQL:

DELETE FROM t1
WHERE s11 > ANY
 (SELECT COUNT(*) /* no hint */ FROM t2
 WHERE NOT EXISTS
 (SELECT * FROM t3
 WHERE ROW(5*t2.s1,77)=
 (SELECT 50,11*s1 FROM t4 UNION SELECT 50,77 FROM
 (SELECT * FROM t5) AS t5)));

A subquery can return a scalar (a single value), a single row, a single column, or a table (one or more rows
of one or more columns). These are called scalar, column, row, and table subqueries. Subqueries that
return a particular kind of result often can be used only in certain contexts, as described in the following
sections.

There are few restrictions on the type of statements in which subqueries can be used. A subquery can
contain many of the keywords or clauses that an ordinary SELECT can contain: DISTINCT, GROUP BY,
ORDER BY, LIMIT, joins, index hints, UNION constructs, comments, functions, and so on.

A subquery's outer statement can be any one of: SELECT, INSERT, UPDATE, DELETE, SET, or DO.

In MySQL, you cannot modify a table and select from the same table in a subquery. This applies to
statements such as DELETE, INSERT, REPLACE, UPDATE, and (because subqueries can be used in the
SET clause) LOAD DATA.

For information about how the optimizer handles subqueries, see Section 8.2.2, “Optimizing Subqueries,
Derived Tables, and View References”. For a discussion of restrictions on subquery use, including
performance issues for certain forms of subquery syntax, see Section 13.2.10.12, “Restrictions on
Subqueries”.

13.2.10.1 The Subquery as Scalar Operand

In its simplest form, a subquery is a scalar subquery that returns a single value. A scalar subquery is a
simple operand, and you can use it almost anywhere a single column value or literal is legal, and you can
expect it to have those characteristics that all operands have: a data type, a length, an indication that it can
be NULL, and so on. For example:

CREATE TABLE t1 (s1 INT, s2 CHAR(5) NOT NULL);
INSERT INTO t1 VALUES(100, 'abcde');

2328

Subqueries

SELECT (SELECT s2 FROM t1);

The subquery in this SELECT returns a single value ('abcde') that has a data type of CHAR, a length of 5,
a character set and collation equal to the defaults in effect at CREATE TABLE time, and an indication that
the value in the column can be NULL. Nullability of the value selected by a scalar subquery is not copied
because if the subquery result is empty, the result is NULL. For the subquery just shown, if t1 were empty,
the result would be NULL even though s2 is NOT NULL.

There are a few contexts in which a scalar subquery cannot be used. If a statement permits only a literal
value, you cannot use a subquery. For example, LIMIT requires literal integer arguments, and LOAD
DATA requires a literal string file name. You cannot use subqueries to supply these values.

When you see examples in the following sections that contain the rather spartan construct (SELECT
column1 FROM t1), imagine that your own code contains much more diverse and complex
constructions.

Suppose that we make two tables:

CREATE TABLE t1 (s1 INT);
INSERT INTO t1 VALUES (1);
CREATE TABLE t2 (s1 INT);
INSERT INTO t2 VALUES (2);

Then perform a SELECT:

SELECT (SELECT s1 FROM t2) FROM t1;

The result is 2 because there is a row in t2 containing a column s1 that has a value of 2.

A scalar subquery can be part of an expression, but remember the parentheses, even if the subquery is an
operand that provides an argument for a function. For example:

SELECT UPPER((SELECT s1 FROM t1)) FROM t2;

13.2.10.2 Comparisons Using Subqueries

The most common use of a subquery is in the form:

non_subquery_operand comparison_operator (subquery)

Where comparison_operator is one of these operators:

= > < >= <= <> != <=>

For example:

... WHERE 'a' = (SELECT column1 FROM t1)

MySQL also permits this construct:

non_subquery_operand LIKE (subquery)

At one time the only legal place for a subquery was on the right side of a comparison, and you might still
find some old DBMSs that insist on this.

Here is an example of a common-form subquery comparison that you cannot do with a join. It finds all the
rows in table t1 for which the column1 value is equal to a maximum value in table t2:

SELECT * FROM t1
 WHERE column1 = (SELECT MAX(column2) FROM t2);

2329

Subqueries

Here is another example, which again is impossible with a join because it involves aggregating for one of
the tables. It finds all rows in table t1 containing a value that occurs twice in a given column:

SELECT * FROM t1 AS t
 WHERE 2 = (SELECT COUNT(*) FROM t1 WHERE t1.id = t.id);

For a comparison of the subquery to a scalar, the subquery must return a scalar. For a comparison of the
subquery to a row constructor, the subquery must be a row subquery that returns a row with the same
number of values as the row constructor. See Section 13.2.10.5, “Row Subqueries”.

13.2.10.3 Subqueries with ANY, IN, or SOME

Syntax:

operand comparison_operator ANY (subquery)
operand IN (subquery)
operand comparison_operator SOME (subquery)

Where comparison_operator is one of these operators:

= > < >= <= <> !=

The ANY keyword, which must follow a comparison operator, means “return TRUE if the comparison is
TRUE for ANY of the values in the column that the subquery returns.” For example:

SELECT s1 FROM t1 WHERE s1 > ANY (SELECT s1 FROM t2);

Suppose that there is a row in table t1 containing (10). The expression is TRUE if table t2 contains
(21,14,7) because there is a value 7 in t2 that is less than 10. The expression is FALSE if table t2
contains (20,10), or if table t2 is empty. The expression is unknown (that is, NULL) if table t2 contains
(NULL,NULL,NULL).

When used with a subquery, the word IN is an alias for = ANY. Thus, these two statements are the same:

SELECT s1 FROM t1 WHERE s1 = ANY (SELECT s1 FROM t2);
SELECT s1 FROM t1 WHERE s1 IN (SELECT s1 FROM t2);

IN and = ANY are not synonyms when used with an expression list. IN can take an expression list, but =
ANY cannot. See Section 12.4.2, “Comparison Functions and Operators”.

NOT IN is not an alias for <> ANY, but for <> ALL. See Section 13.2.10.4, “Subqueries with ALL”.

The word SOME is an alias for ANY. Thus, these two statements are the same:

SELECT s1 FROM t1 WHERE s1 <> ANY (SELECT s1 FROM t2);
SELECT s1 FROM t1 WHERE s1 <> SOME (SELECT s1 FROM t2);

Use of the word SOME is rare, but this example shows why it might be useful. To most people, the English
phrase “a is not equal to any b” means “there is no b which is equal to a,” but that is not what is meant by
the SQL syntax. The syntax means “there is some b to which a is not equal.” Using <> SOME instead helps
ensure that everyone understands the true meaning of the query.

13.2.10.4 Subqueries with ALL

Syntax:

operand comparison_operator ALL (subquery)

The word ALL, which must follow a comparison operator, means “return TRUE if the comparison is TRUE for
ALL of the values in the column that the subquery returns.” For example:

2330

Subqueries

SELECT s1 FROM t1 WHERE s1 > ALL (SELECT s1 FROM t2);

Suppose that there is a row in table t1 containing (10). The expression is TRUE if table t2 contains
(-5,0,+5) because 10 is greater than all three values in t2. The expression is FALSE if table t2
contains (12,6,NULL,-100) because there is a single value 12 in table t2 that is greater than 10. The
expression is unknown (that is, NULL) if table t2 contains (0,NULL,1).

Finally, the expression is TRUE if table t2 is empty. So, the following expression is TRUE when table t2 is
empty:

SELECT * FROM t1 WHERE 1 > ALL (SELECT s1 FROM t2);

But this expression is NULL when table t2 is empty:

SELECT * FROM t1 WHERE 1 > (SELECT s1 FROM t2);

In addition, the following expression is NULL when table t2 is empty:

SELECT * FROM t1 WHERE 1 > ALL (SELECT MAX(s1) FROM t2);

In general, tables containing NULL values and empty tables are “edge cases.” When writing subqueries,
always consider whether you have taken those two possibilities into account.

NOT IN is an alias for <> ALL. Thus, these two statements are the same:

SELECT s1 FROM t1 WHERE s1 <> ALL (SELECT s1 FROM t2);
SELECT s1 FROM t1 WHERE s1 NOT IN (SELECT s1 FROM t2);

13.2.10.5 Row Subqueries

Scalar or column subqueries return a single value or a column of values. A row subquery is a subquery
variant that returns a single row and can thus return more than one column value. Legal operators for row
subquery comparisons are:

= > < >= <= <> != <=>

Here are two examples:

SELECT * FROM t1
 WHERE (col1,col2) = (SELECT col3, col4 FROM t2 WHERE id = 10);
SELECT * FROM t1
 WHERE ROW(col1,col2) = (SELECT col3, col4 FROM t2 WHERE id = 10);

For both queries, if the table t2 contains a single row with id = 10, the subquery returns a single row.
If this row has col3 and col4 values equal to the col1 and col2 values of any rows in t1, the WHERE
expression is TRUE and each query returns those t1 rows. If the t2 row col3 and col4 values are not
equal the col1 and col2 values of any t1 row, the expression is FALSE and the query returns an empty
result set. The expression is unknown (that is, NULL) if the subquery produces no rows. An error occurs if
the subquery produces multiple rows because a row subquery can return at most one row.

For information about how each operator works for row comparisons, see Section 12.4.2, “Comparison
Functions and Operators”.

The expressions (1,2) and ROW(1,2) are sometimes called row constructors. The two are equivalent.
The row constructor and the row returned by the subquery must contain the same number of values.

A row constructor is used for comparisons with subqueries that return two or more columns. When a
subquery returns a single column, this is regarded as a scalar value and not as a row, so a row constructor

2331

Subqueries

cannot be used with a subquery that does not return at least two columns. Thus, the following query fails
with a syntax error:

SELECT * FROM t1 WHERE ROW(1) = (SELECT column1 FROM t2)

Row constructors are legal in other contexts. For example, the following two statements are semantically
equivalent (and are handled in the same way by the optimizer):

SELECT * FROM t1 WHERE (column1,column2) = (1,1);
SELECT * FROM t1 WHERE column1 = 1 AND column2 = 1;

The following query answers the request, “find all rows in table t1 that also exist in table t2”:

SELECT column1,column2,column3
 FROM t1
 WHERE (column1,column2,column3) IN
 (SELECT column1,column2,column3 FROM t2);

For more information about the optimizer and row constructors, see Section 8.2.1.19, “Row Constructor
Expression Optimization”

13.2.10.6 Subqueries with EXISTS or NOT EXISTS

If a subquery returns any rows at all, EXISTS subquery is TRUE, and NOT EXISTS subquery is
FALSE. For example:

SELECT column1 FROM t1 WHERE EXISTS (SELECT * FROM t2);

Traditionally, an EXISTS subquery starts with SELECT *, but it could begin with SELECT 5 or SELECT
column1 or anything at all. MySQL ignores the SELECT list in such a subquery, so it makes no difference.

For the preceding example, if t2 contains any rows, even rows with nothing but NULL values, the EXISTS
condition is TRUE. This is actually an unlikely example because a [NOT] EXISTS subquery almost always
contains correlations. Here are some more realistic examples:

• What kind of store is present in one or more cities?

SELECT DISTINCT store_type FROM stores
 WHERE EXISTS (SELECT * FROM cities_stores
 WHERE cities_stores.store_type = stores.store_type);

• What kind of store is present in no cities?

SELECT DISTINCT store_type FROM stores
 WHERE NOT EXISTS (SELECT * FROM cities_stores
 WHERE cities_stores.store_type = stores.store_type);

• What kind of store is present in all cities?

SELECT DISTINCT store_type FROM stores
 WHERE NOT EXISTS (
 SELECT * FROM cities WHERE NOT EXISTS (
 SELECT * FROM cities_stores
 WHERE cities_stores.city = cities.city
 AND cities_stores.store_type = stores.store_type));

The last example is a double-nested NOT EXISTS query. That is, it has a NOT EXISTS clause within
a NOT EXISTS clause. Formally, it answers the question “does a city exist with a store that is not in
Stores”? But it is easier to say that a nested NOT EXISTS answers the question “is x TRUE for all y?”

13.2.10.7 Correlated Subqueries

2332

Subqueries

A correlated subquery is a subquery that contains a reference to a table that also appears in the outer
query. For example:

SELECT * FROM t1
 WHERE column1 = ANY (SELECT column1 FROM t2
 WHERE t2.column2 = t1.column2);

Notice that the subquery contains a reference to a column of t1, even though the subquery's FROM clause
does not mention a table t1. So, MySQL looks outside the subquery, and finds t1 in the outer query.

Suppose that table t1 contains a row where column1 = 5 and column2 = 6; meanwhile, table t2
contains a row where column1 = 5 and column2 = 7. The simple expression ... WHERE column1
= ANY (SELECT column1 FROM t2) would be TRUE, but in this example, the WHERE clause within the
subquery is FALSE (because (5,6) is not equal to (5,7)), so the expression as a whole is FALSE.

Scoping rule: MySQL evaluates from inside to outside. For example:

SELECT column1 FROM t1 AS x
 WHERE x.column1 = (SELECT column1 FROM t2 AS x
 WHERE x.column1 = (SELECT column1 FROM t3
 WHERE x.column2 = t3.column1));

In this statement, x.column2 must be a column in table t2 because SELECT column1 FROM t2 AS
x ... renames t2. It is not a column in table t1 because SELECT column1 FROM t1 ... is an outer
query that is farther out.

For subqueries in HAVING or ORDER BY clauses, MySQL also looks for column names in the outer select
list.

For certain cases, a correlated subquery is optimized. For example:

val IN (SELECT key_val FROM tbl_name WHERE correlated_condition)

Otherwise, they are inefficient and likely to be slow. Rewriting the query as a join might improve
performance.

Aggregate functions in correlated subqueries may contain outer references, provided the function contains
nothing but outer references, and provided the function is not contained in another function or expression.

13.2.10.8 Derived Tables

A derived table is an expression that generates a table within the scope of a query FROM clause. For
example, a subquery in a SELECT statement FROM clause is a derived table:

SELECT ... FROM (subquery) [AS] tbl_name ...

The [AS] tbl_name clause is mandatory because every table in a FROM clause must have a name. Any
columns in the derived table must have unique names.

For the sake of illustration, assume that you have this table:

CREATE TABLE t1 (s1 INT, s2 CHAR(5), s3 FLOAT);

Here is how to use a subquery in the FROM clause, using the example table:

INSERT INTO t1 VALUES (1,'1',1.0);
INSERT INTO t1 VALUES (2,'2',2.0);
SELECT sb1,sb2,sb3
 FROM (SELECT s1 AS sb1, s2 AS sb2, s3*2 AS sb3 FROM t1) AS sb
 WHERE sb1 > 1;

2333

Subqueries

Result:

+------+------+------+
| sb1 | sb2 | sb3 |
+------+------+------+
| 2 | 2 | 4 |
+------+------+------+

Here is another example: Suppose that you want to know the average of a set of sums for a grouped table.
This does not work:

SELECT AVG(SUM(column1)) FROM t1 GROUP BY column1;

However, this query provides the desired information:

SELECT AVG(sum_column1)
 FROM (SELECT SUM(column1) AS sum_column1
 FROM t1 GROUP BY column1) AS t1;

Notice that the column name used within the subquery (sum_column1) is recognized in the outer query.

A derived table can return a scalar, column, row, or table.

Derived tables are subject to these restrictions:

• A derived table cannot be a correlated subquery.

• A derived table cannot contain references to other tables of the same SELECT.

• A derived table cannot contain outer references. This is a MySQL restriction, not a restriction of the SQL
standard.

The optimizer determines information about derived tables in such a way that EXPLAIN does not need to
materialize them. See Section 8.2.2.4, “Optimizing Derived Tables and View References with Merging or
Materialization”.

It is possible under certain circumstances that using EXPLAIN SELECT modifies table data. This can occur
if the outer query accesses any tables and an inner query invokes a stored function that changes one or
more rows of a table. Suppose that there are two tables t1 and t2 in database d1, and a stored function
f1 that modifies t2, created as shown here:

CREATE DATABASE d1;
USE d1;
CREATE TABLE t1 (c1 INT);
CREATE TABLE t2 (c1 INT);
CREATE FUNCTION f1(p1 INT) RETURNS INT
 BEGIN
 INSERT INTO t2 VALUES (p1);
 RETURN p1;
 END;

Referencing the function directly in an EXPLAIN SELECT has no effect on t2, as shown here:

mysql> SELECT * FROM t2;
Empty set (0.02 sec)

mysql> EXPLAIN SELECT f1(5)\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: NULL
 partitions: NULL
 type: NULL

2334

Subqueries

possible_keys: NULL
 key: NULL
 key_len: NULL
 ref: NULL
 rows: NULL
 filtered: NULL
 Extra: No tables used
1 row in set (0.01 sec)

mysql> SELECT * FROM t2;
Empty set (0.01 sec)

This is because the SELECT statement did not reference any tables, as can be seen in the table and
Extra columns of the output. This is also true of the following nested SELECT:

mysql> EXPLAIN SELECT NOW() AS a1, (SELECT f1(5)) AS a2\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: NULL
 type: NULL
possible_keys: NULL
 key: NULL
 key_len: NULL
 ref: NULL
 rows: NULL
 filtered: NULL
 Extra: No tables used
1 row in set, 1 warning (0.00 sec)

mysql> SHOW WARNINGS;
+-------+------+--+
| Level | Code | Message |
+-------+------+--+
| Note | 1249 | Select 2 was reduced during optimization |
+-------+------+--+
1 row in set (0.00 sec)

mysql> SELECT * FROM t2;
Empty set (0.00 sec)

However, if the outer SELECT references any tables, the optimizer executes the statement in the subquery
as well, with the result that t2 is modified:

mysql> EXPLAIN SELECT * FROM t1 AS a1, (SELECT f1(5)) AS a2\G
*************************** 1. row ***************************
 id: 1
 select_type: PRIMARY
 table: <derived2>
 partitions: NULL
 type: system
possible_keys: NULL
 key: NULL
 key_len: NULL
 ref: NULL
 rows: 1
 filtered: 100.00
 Extra: NULL
*************************** 2. row ***************************
 id: 1
 select_type: PRIMARY
 table: a1
 partitions: NULL
 type: ALL
possible_keys: NULL
 key: NULL

2335

Subqueries

 key_len: NULL
 ref: NULL
 rows: 1
 filtered: 100.00
 Extra: NULL
*************************** 3. row ***************************
 id: 2
 select_type: DERIVED
 table: NULL
 partitions: NULL
 type: NULL
possible_keys: NULL
 key: NULL
 key_len: NULL
 ref: NULL
 rows: NULL
 filtered: NULL
 Extra: No tables used
3 rows in set (0.00 sec)

mysql> SELECT * FROM t2;
+------+
| c1 |
+------+
| 5 |
+------+
1 row in set (0.00 sec)

13.2.10.9 Subquery Errors

There are some errors that apply only to subqueries. This section describes them.

• Unsupported subquery syntax:

ERROR 1235 (ER_NOT_SUPPORTED_YET)
SQLSTATE = 42000
Message = "This version of MySQL does not yet support
'LIMIT & IN/ALL/ANY/SOME subquery'"

This means that MySQL does not support statements of the following form:

SELECT * FROM t1 WHERE s1 IN (SELECT s2 FROM t2 ORDER BY s1 LIMIT 1)

• Incorrect number of columns from subquery:

ERROR 1241 (ER_OPERAND_COL)
SQLSTATE = 21000
Message = "Operand should contain 1 column(s)"

This error occurs in cases like this:

SELECT (SELECT column1, column2 FROM t2) FROM t1;

You may use a subquery that returns multiple columns, if the purpose is row comparison. In other
contexts, the subquery must be a scalar operand. See Section 13.2.10.5, “Row Subqueries”.

• Incorrect number of rows from subquery:

ERROR 1242 (ER_SUBSELECT_NO_1_ROW)
SQLSTATE = 21000
Message = "Subquery returns more than 1 row"

This error occurs for statements where the subquery must return at most one row but returns multiple
rows. Consider the following example:

2336

Subqueries

SELECT * FROM t1 WHERE column1 = (SELECT column1 FROM t2);

If SELECT column1 FROM t2 returns just one row, the previous query works. If the subquery returns
more than one row, error 1242 occurs. In that case, the query should be rewritten as:

SELECT * FROM t1 WHERE column1 = ANY (SELECT column1 FROM t2);

• Incorrectly used table in subquery:

Error 1093 (ER_UPDATE_TABLE_USED)
SQLSTATE = HY000
Message = "You can't specify target table 'x'
for update in FROM clause"

This error occurs in cases such as the following, which attempts to modify a table and select from the
same table in the subquery:

UPDATE t1 SET column2 = (SELECT MAX(column1) FROM t1);

You can use a subquery for assignment within an UPDATE statement because subqueries are legal in
UPDATE and DELETE statements as well as in SELECT statements. However, you cannot use the same
table (in this case, table t1) for both the subquery FROM clause and the update target.

For transactional storage engines, the failure of a subquery causes the entire statement to fail. For
nontransactional storage engines, data modifications made before the error was encountered are
preserved.

13.2.10.10 Optimizing Subqueries

Development is ongoing, so no optimization tip is reliable for the long term. The following list provides
some interesting tricks that you might want to play with. See also Section 8.2.2, “Optimizing Subqueries,
Derived Tables, and View References”.

• Use subquery clauses that affect the number or order of the rows in the subquery. For example:

SELECT * FROM t1 WHERE t1.column1 IN
 (SELECT column1 FROM t2 ORDER BY column1);
SELECT * FROM t1 WHERE t1.column1 IN
 (SELECT DISTINCT column1 FROM t2);
SELECT * FROM t1 WHERE EXISTS
 (SELECT * FROM t2 LIMIT 1);

• Replace a join with a subquery. For example, try this:

SELECT DISTINCT column1 FROM t1 WHERE t1.column1 IN (
 SELECT column1 FROM t2);

Instead of this:

SELECT DISTINCT t1.column1 FROM t1, t2
 WHERE t1.column1 = t2.column1;

• Some subqueries can be transformed to joins for compatibility with older versions of MySQL that do not
support subqueries. However, in some cases, converting a subquery to a join may improve performance.
See Section 13.2.10.11, “Rewriting Subqueries as Joins”.

• Move clauses from outside to inside the subquery. For example, use this query:

SELECT * FROM t1
 WHERE s1 IN (SELECT s1 FROM t1 UNION ALL SELECT s1 FROM t2);

2337

Subqueries

Instead of this query:

SELECT * FROM t1
 WHERE s1 IN (SELECT s1 FROM t1) OR s1 IN (SELECT s1 FROM t2);

For another example, use this query:

SELECT (SELECT column1 + 5 FROM t1) FROM t2;

Instead of this query:

SELECT (SELECT column1 FROM t1) + 5 FROM t2;

• Use a row subquery instead of a correlated subquery. For example, use this query:

SELECT * FROM t1
 WHERE (column1,column2) IN (SELECT column1,column2 FROM t2);

Instead of this query:

SELECT * FROM t1
 WHERE EXISTS (SELECT * FROM t2 WHERE t2.column1=t1.column1
 AND t2.column2=t1.column2);

• Use NOT (a = ANY (...)) rather than a <> ALL (...).

• Use x = ANY (table containing (1,2)) rather than x=1 OR x=2.

• Use = ANY rather than EXISTS.

• For uncorrelated subqueries that always return one row, IN is always slower than =. For example, use
this query:

SELECT * FROM t1
 WHERE t1.col_name = (SELECT a FROM t2 WHERE b = some_const);

Instead of this query:

SELECT * FROM t1
 WHERE t1.col_name IN (SELECT a FROM t2 WHERE b = some_const);

These tricks might cause programs to go faster or slower. Using MySQL facilities like the BENCHMARK()
function, you can get an idea about what helps in your own situation. See Section 12.15, “Information
Functions”.

Some optimizations that MySQL itself makes are:

• MySQL executes uncorrelated subqueries only once. Use EXPLAIN to make sure that a given subquery
really is uncorrelated.

• MySQL rewrites IN, ALL, ANY, and SOME subqueries in an attempt to take advantage of the possibility
that the select-list columns in the subquery are indexed.

• MySQL replaces subqueries of the following form with an index-lookup function, which EXPLAIN
describes as a special join type (unique_subquery or index_subquery):

... IN (SELECT indexed_column FROM single_table ...)

• MySQL enhances expressions of the following form with an expression involving MIN() or MAX(),
unless NULL values or empty sets are involved:

2338

Subqueries

value {ALL|ANY|SOME} {> | < | >= | <=} (uncorrelated subquery)

For example, this WHERE clause:

WHERE 5 > ALL (SELECT x FROM t)

might be treated by the optimizer like this:

WHERE 5 > (SELECT MAX(x) FROM t)

See also MySQL Internals: How MySQL Transforms Subqueries.

13.2.10.11 Rewriting Subqueries as Joins

Sometimes there are other ways to test membership in a set of values than by using a subquery. Also, on
some occasions, it is not only possible to rewrite a query without a subquery, but it can be more efficient to
make use of some of these techniques rather than to use subqueries. One of these is the IN() construct:

For example, this query:

SELECT * FROM t1 WHERE id IN (SELECT id FROM t2);

Can be rewritten as:

SELECT DISTINCT t1.* FROM t1, t2 WHERE t1.id=t2.id;

The queries:

SELECT * FROM t1 WHERE id NOT IN (SELECT id FROM t2);
SELECT * FROM t1 WHERE NOT EXISTS (SELECT id FROM t2 WHERE t1.id=t2.id);

Can be rewritten as:

SELECT table1.*
 FROM table1 LEFT JOIN table2 ON table1.id=table2.id
 WHERE table2.id IS NULL;

A LEFT [OUTER] JOIN can be faster than an equivalent subquery because the server might be able to
optimize it better—a fact that is not specific to MySQL Server alone. Prior to SQL-92, outer joins did not
exist, so subqueries were the only way to do certain things. Today, MySQL Server and many other modern
database systems offer a wide range of outer join types.

MySQL Server supports multiple-table DELETE statements that can be used to efficiently delete rows
based on information from one table or even from many tables at the same time. Multiple-table UPDATE
statements are also supported. See Section 13.2.2, “DELETE Statement”, and Section 13.2.11, “UPDATE
Statement”.

13.2.10.12 Restrictions on Subqueries

• In general, you cannot modify a table and select from the same table in a subquery. For example, this
limitation applies to statements of the following forms:

DELETE FROM t WHERE ... (SELECT ... FROM t ...);
UPDATE t ... WHERE col = (SELECT ... FROM t ...);
{INSERT|REPLACE} INTO t (SELECT ... FROM t ...);

Exception: The preceding prohibition does not apply if for the modified table you are using a derived
table and that derived table is materialized rather than merged into the outer query. (See Section 8.2.2.4,
“Optimizing Derived Tables and View References with Merging or Materialization”.) Example:

2339

https://dev.mysql.com/doc/internals/en/transformations.html

UPDATE Statement

UPDATE t ... WHERE col = (SELECT * FROM (SELECT ... FROM t...) AS dt ...);

Here the result from the derived table is materialized as a temporary table, so the relevant rows in t
have already been selected by the time the update to t takes place.

• Row comparison operations are only partially supported:

• For expr [NOT] IN subquery, expr can be an n-tuple (specified using row constructor syntax)
and the subquery can return rows of n-tuples. The permitted syntax is therefore more specifically
expressed as row_constructor [NOT] IN table_subquery

• For expr op {ALL|ANY|SOME} subquery, expr must be a scalar value and the subquery must
be a column subquery; it cannot return multiple-column rows.

In other words, for a subquery that returns rows of n-tuples, this is supported:

(expr_1, ..., expr_n) [NOT] IN table_subquery

But this is not supported:

(expr_1, ..., expr_n) op {ALL|ANY|SOME} subquery

The reason for supporting row comparisons for IN but not for the others is that IN is implemented by
rewriting it as a sequence of = comparisons and AND operations. This approach cannot be used for ALL,
ANY, or SOME.

• Subqueries in the FROM clause cannot be correlated subqueries. They are materialized in whole
(evaluated to produce a result set) during query execution, so they cannot be evaluated per row of
the outer query. The optimizer delays materialization until the result is needed, which may permit
materialization to be avoided. See Section 8.2.2.4, “Optimizing Derived Tables and View References
with Merging or Materialization”.

• MySQL does not support LIMIT in subqueries for certain subquery operators:

mysql> SELECT * FROM t1
 WHERE s1 IN (SELECT s2 FROM t2 ORDER BY s1 LIMIT 1);
ERROR 1235 (42000): This version of MySQL does not yet support
 'LIMIT & IN/ALL/ANY/SOME subquery'

• MySQL permits a subquery to refer to a stored function that has data-modifying side effects such as
inserting rows into a table. For example, if f() inserts rows, the following query can modify data:

SELECT ... WHERE x IN (SELECT f() ...);

This behavior is an extension to the SQL standard. In MySQL, it can produce nondeterministic results
because f() might be executed a different number of times for different executions of a given query
depending on how the optimizer chooses to handle it.

For statement-based or mixed-format replication, one implication of this indeterminism is that such a
query can produce different results on the source and its replicas.

13.2.11 UPDATE Statement

UPDATE is a DML statement that modifies rows in a table.

Single-table syntax:

UPDATE [LOW_PRIORITY] [IGNORE] table_reference

2340

UPDATE Statement

 SET assignment_list
 [WHERE where_condition]
 [ORDER BY ...]
 [LIMIT row_count]

value:
 {expr | DEFAULT}

assignment:
 col_name = value

assignment_list:
 assignment [, assignment] ...

Multiple-table syntax:

UPDATE [LOW_PRIORITY] [IGNORE] table_references
 SET assignment_list
 [WHERE where_condition]

For the single-table syntax, the UPDATE statement updates columns of existing rows in the named table
with new values. The SET clause indicates which columns to modify and the values they should be given.
Each value can be given as an expression, or the keyword DEFAULT to set a column explicitly to its default
value. The WHERE clause, if given, specifies the conditions that identify which rows to update. With no
WHERE clause, all rows are updated. If the ORDER BY clause is specified, the rows are updated in the order
that is specified. The LIMIT clause places a limit on the number of rows that can be updated.

For the multiple-table syntax, UPDATE updates rows in each table named in table_references that
satisfy the conditions. Each matching row is updated once, even if it matches the conditions multiple times.
For multiple-table syntax, ORDER BY and LIMIT cannot be used.

For partitioned tables, both the single-single and multiple-table forms of this statement support the use
of a PARTITION clause as part of a table reference. This option takes a list of one or more partitions or
subpartitions (or both). Only the partitions (or subpartitions) listed are checked for matches, and a row that
is not in any of these partitions or subpartitions is not updated, whether it satisfies the where_condition
or not.

Note

Unlike the case when using PARTITION with an INSERT or REPLACE statement, an
otherwise valid UPDATE ... PARTITION statement is considered successful even
if no rows in the listed partitions (or subpartitions) match the where_condition.

For more information and examples, see Section 22.5, “Partition Selection”.

where_condition is an expression that evaluates to true for each row to be updated. For expression
syntax, see Section 9.5, “Expressions”.

table_references and where_condition are specified as described in Section 13.2.9, “SELECT
Statement”.

You need the UPDATE privilege only for columns referenced in an UPDATE that are actually updated. You
need only the SELECT privilege for any columns that are read but not modified.

The UPDATE statement supports the following modifiers:

• With the LOW_PRIORITY modifier, execution of the UPDATE is delayed until no other clients are reading
from the table. This affects only storage engines that use only table-level locking (such as MyISAM,
MEMORY, and MERGE).

2341

UPDATE Statement

• With the IGNORE modifier, the update statement does not abort even if errors occur during the update.
Rows for which duplicate-key conflicts occur on a unique key value are not updated. Rows updated to
values that would cause data conversion errors are updated to the closest valid values instead. For more
information, see The Effect of IGNORE on Statement Execution.

UPDATE IGNORE statements, including those having an ORDER BY clause, are flagged as unsafe for
statement-based replication. (This is because the order in which the rows are updated determines which
rows are ignored.) Such statements produce a warning in the error log when using statement-based mode
and are written to the binary log using the row-based format when using MIXED mode. (Bug #11758262,
Bug #50439) See Section 16.2.1.3, “Determination of Safe and Unsafe Statements in Binary Logging”, for
more information.

If you access a column from the table to be updated in an expression, UPDATE uses the current value of
the column. For example, the following statement sets col1 to one more than its current value:

UPDATE t1 SET col1 = col1 + 1;

The second assignment in the following statement sets col2 to the current (updated) col1 value, not the
original col1 value. The result is that col1 and col2 have the same value. This behavior differs from
standard SQL.

UPDATE t1 SET col1 = col1 + 1, col2 = col1;

Single-table UPDATE assignments are generally evaluated from left to right. For multiple-table updates,
there is no guarantee that assignments are carried out in any particular order.

If you set a column to the value it currently has, MySQL notices this and does not update it.

If you update a column that has been declared NOT NULL by setting to NULL, an error occurs if strict SQL
mode is enabled; otherwise, the column is set to the implicit default value for the column data type and the
warning count is incremented. The implicit default value is 0 for numeric types, the empty string ('') for
string types, and the “zero” value for date and time types. See Section 11.6, “Data Type Default Values”.

If a generated column is updated explicitly, the only permitted value is DEFAULT. For information about
generated columns, see Section 13.1.18.7, “CREATE TABLE and Generated Columns”.

UPDATE returns the number of rows that were actually changed. The mysql_info() C API function
returns the number of rows that were matched and updated and the number of warnings that occurred
during the UPDATE.

You can use LIMIT row_count to restrict the scope of the UPDATE. A LIMIT clause is a rows-matched
restriction. The statement stops as soon as it has found row_count rows that satisfy the WHERE clause,
whether or not they actually were changed.

If an UPDATE statement includes an ORDER BY clause, the rows are updated in the order specified by the
clause. This can be useful in certain situations that might otherwise result in an error. Suppose that a table
t contains a column id that has a unique index. The following statement could fail with a duplicate-key
error, depending on the order in which rows are updated:

UPDATE t SET id = id + 1;

For example, if the table contains 1 and 2 in the id column and 1 is updated to 2 before 2 is updated to 3,
an error occurs. To avoid this problem, add an ORDER BY clause to cause the rows with larger id values
to be updated before those with smaller values:

UPDATE t SET id = id + 1 ORDER BY id DESC;

2342

https://dev.mysql.com/doc/c-api/5.7/en/mysql-info.html

UPDATE Statement

You can also perform UPDATE operations covering multiple tables. However, you cannot use ORDER BY or
LIMIT with a multiple-table UPDATE. The table_references clause lists the tables involved in the join.
Its syntax is described in Section 13.2.9.2, “JOIN Clause”. Here is an example:

UPDATE items,month SET items.price=month.price
WHERE items.id=month.id;

The preceding example shows an inner join that uses the comma operator, but multiple-table UPDATE
statements can use any type of join permitted in SELECT statements, such as LEFT JOIN.

If you use a multiple-table UPDATE statement involving InnoDB tables for which there are foreign key
constraints, the MySQL optimizer might process tables in an order that differs from that of their parent/child
relationship. In this case, the statement fails and rolls back. Instead, update a single table and rely on the
ON UPDATE capabilities that InnoDB provides to cause the other tables to be modified accordingly. See
Section 13.1.18.5, “FOREIGN KEY Constraints”.

You cannot update a table and select directly from the same table in a subquery. You can work around
this by using a multi-table update in which one of the tables is derived from the table that you actually wish
to update, and referring to the derived table using an alias. Suppose you wish to update a table named
items which is defined using the statement shown here:

CREATE TABLE items (
 id BIGINT NOT NULL AUTO_INCREMENT PRIMARY KEY,
 wholesale DECIMAL(6,2) NOT NULL DEFAULT 0.00,
 retail DECIMAL(6,2) NOT NULL DEFAULT 0.00,
 quantity BIGINT NOT NULL DEFAULT 0
);

To reduce the retail price of any items for which the markup is 30% or greater and of which you have fewer
than one hundred in stock, you might try to use an UPDATE statement such as the one following, which
uses a subquery in the WHERE clause. As shown here, this statement does not work:

mysql> UPDATE items
 > SET retail = retail * 0.9
 > WHERE id IN
 > (SELECT id FROM items
 > WHERE retail / wholesale >= 1.3 AND quantity > 100);
ERROR 1093 (HY000): You can't specify target table 'items' for update in FROM clause

Instead, you can employ a multi-table update in which the subquery is moved into the list of tables to be
updated, using an alias to reference it in the outermost WHERE clause, like this:

UPDATE items,
 (SELECT id FROM items
 WHERE id IN
 (SELECT id FROM items
 WHERE retail / wholesale >= 1.3 AND quantity < 100))
 AS discounted
SET items.retail = items.retail * 0.9
WHERE items.id = discounted.id;

Because the optimizer tries by default to merge the derived table discounted into the outermost query
block, this works only if you force materialization of the derived table. You can do this by setting the
derived_merge flag of the optimizer_switch system variable to off before running the update, or by
using the NO_MERGE optimizer hint, as shown here:

UPDATE /*+ NO_MERGE(discounted) */ items,
 (SELECT id FROM items
 WHERE retail / wholesale >= 1.3 AND quantity < 100)
 AS discounted
 SET items.retail = items.retail * 0.9

2343

Transactional and Locking Statements

 WHERE items.id = discounted.id;

The advantage of using the optimizer hint in such a case is that it applies only within the query block where
it is used, so that it is not necessary to change the value of optimizer_switch again after executing the
UPDATE.

Another possibility is to rewrite the subquery so that it does not use IN or EXISTS, like this:

UPDATE items,
 (SELECT id, retail / wholesale AS markup, quantity FROM items)
 AS discounted
 SET items.retail = items.retail * 0.9
 WHERE discounted.markup >= 1.3
 AND discounted.quantity < 100
 AND items.id = discounted.id;

In this case, the subquery is materialized by default rather than merged, so it is not necessary to disable
merging of the derived table.

13.3 Transactional and Locking Statements

MySQL supports local transactions (within a given client session) through statements such as SET
autocommit, START TRANSACTION, COMMIT, and ROLLBACK. See Section 13.3.1, “START
TRANSACTION, COMMIT, and ROLLBACK Statements”. XA transaction support enables MySQL to
participate in distributed transactions as well. See Section 13.3.7, “XA Transactions”.

13.3.1 START TRANSACTION, COMMIT, and ROLLBACK Statements

START TRANSACTION
 [transaction_characteristic [, transaction_characteristic] ...]

transaction_characteristic: {
 WITH CONSISTENT SNAPSHOT
 | READ WRITE
 | READ ONLY
}

BEGIN [WORK]
COMMIT [WORK] [AND [NO] CHAIN] [[NO] RELEASE]
ROLLBACK [WORK] [AND [NO] CHAIN] [[NO] RELEASE]
SET autocommit = {0 | 1}

These statements provide control over use of transactions:

• START TRANSACTION or BEGIN start a new transaction.

• COMMIT commits the current transaction, making its changes permanent.

• ROLLBACK rolls back the current transaction, canceling its changes.

• SET autocommit disables or enables the default autocommit mode for the current session.

By default, MySQL runs with autocommit mode enabled. This means that, when not otherwise inside a
transaction, each statement is atomic, as if it were surrounded by START TRANSACTION and COMMIT.
You cannot use ROLLBACK to undo the effect; however, if an error occurs during statement execution, the
statement is rolled back.

To disable autocommit mode implicitly for a single series of statements, use the START TRANSACTION
statement:

2344

START TRANSACTION, COMMIT, and ROLLBACK Statements

START TRANSACTION;
SELECT @A:=SUM(salary) FROM table1 WHERE type=1;
UPDATE table2 SET summary=@A WHERE type=1;
COMMIT;

With START TRANSACTION, autocommit remains disabled until you end the transaction with COMMIT or
ROLLBACK. The autocommit mode then reverts to its previous state.

START TRANSACTION permits several modifiers that control transaction characteristics. To specify
multiple modifiers, separate them by commas.

• The WITH CONSISTENT SNAPSHOT modifier starts a consistent read for storage engines that are
capable of it. This applies only to InnoDB. The effect is the same as issuing a START TRANSACTION
followed by a SELECT from any InnoDB table. See Section 14.7.2.3, “Consistent Nonlocking Reads”.
The WITH CONSISTENT SNAPSHOT modifier does not change the current transaction isolation level,
so it provides a consistent snapshot only if the current isolation level is one that permits a consistent
read. The only isolation level that permits a consistent read is REPEATABLE READ. For all other
isolation levels, the WITH CONSISTENT SNAPSHOT clause is ignored. As of MySQL 5.7.2, a warning is
generated when the WITH CONSISTENT SNAPSHOT clause is ignored.

• The READ WRITE and READ ONLY modifiers set the transaction access mode. They permit or prohibit
changes to tables used in the transaction. The READ ONLY restriction prevents the transaction from
modifying or locking both transactional and nontransactional tables that are visible to other transactions;
the transaction can still modify or lock temporary tables.

MySQL enables extra optimizations for queries on InnoDB tables when the transaction is known to be
read-only. Specifying READ ONLY ensures these optimizations are applied in cases where the read-
only status cannot be determined automatically. See Section 8.5.3, “Optimizing InnoDB Read-Only
Transactions” for more information.

If no access mode is specified, the default mode applies. Unless the default has been changed, it is
read/write. It is not permitted to specify both READ WRITE and READ ONLY in the same statement.

In read-only mode, it remains possible to change tables created with the TEMPORARY keyword using
DML statements. Changes made with DDL statements are not permitted, just as with permanent tables.

For additional information about transaction access mode, including ways to change the default mode,
see Section 13.3.6, “SET TRANSACTION Statement”.

If the read_only system variable is enabled, explicitly starting a transaction with START TRANSACTION
READ WRITE requires the SUPER privilege.

Important

Many APIs used for writing MySQL client applications (such as JDBC) provide
their own methods for starting transactions that can (and sometimes should) be
used instead of sending a START TRANSACTION statement from the client. See
Chapter 27, Connectors and APIs, or the documentation for your API, for more
information.

To disable autocommit mode explicitly, use the following statement:

SET autocommit=0;

After disabling autocommit mode by setting the autocommit variable to zero, changes to transaction-safe
tables (such as those for InnoDB or NDB) are not made permanent immediately. You must use COMMIT to
store your changes to disk or ROLLBACK to ignore the changes.

2345

START TRANSACTION, COMMIT, and ROLLBACK Statements

autocommit is a session variable and must be set for each session. To disable autocommit mode for
each new connection, see the description of the autocommit system variable at Section 5.1.7, “Server
System Variables”.

BEGIN and BEGIN WORK are supported as aliases of START TRANSACTION for initiating a transaction.
START TRANSACTION is standard SQL syntax, is the recommended way to start an ad-hoc transaction,
and permits modifiers that BEGIN does not.

The BEGIN statement differs from the use of the BEGIN keyword that starts a BEGIN ... END compound
statement. The latter does not begin a transaction. See Section 13.6.1, “BEGIN ... END Compound
Statement”.

Note

Within all stored programs (stored procedures and functions, triggers, and events),
the parser treats BEGIN [WORK] as the beginning of a BEGIN ... END block.
Begin a transaction in this context with START TRANSACTION instead.

The optional WORK keyword is supported for COMMIT and ROLLBACK, as are the CHAIN and RELEASE
clauses. CHAIN and RELEASE can be used for additional control over transaction completion. The value of
the completion_type system variable determines the default completion behavior. See Section 5.1.7,
“Server System Variables”.

The AND CHAIN clause causes a new transaction to begin as soon as the current one ends, and the
new transaction has the same isolation level as the just-terminated transaction. The new transaction
also uses the same access mode (READ WRITE or READ ONLY) as the just-terminated transaction. The
RELEASE clause causes the server to disconnect the current client session after terminating the current
transaction. Including the NO keyword suppresses CHAIN or RELEASE completion, which can be useful if
the completion_type system variable is set to cause chaining or release completion by default.

Beginning a transaction causes any pending transaction to be committed. See Section 13.3.3, “Statements
That Cause an Implicit Commit”, for more information.

Beginning a transaction also causes table locks acquired with LOCK TABLES to be released, as though
you had executed UNLOCK TABLES. Beginning a transaction does not release a global read lock acquired
with FLUSH TABLES WITH READ LOCK.

For best results, transactions should be performed using only tables managed by a single transaction-safe
storage engine. Otherwise, the following problems can occur:

• If you use tables from more than one transaction-safe storage engine (such as InnoDB), and the
transaction isolation level is not SERIALIZABLE, it is possible that when one transaction commits,
another ongoing transaction that uses the same tables sees only some of the changes made by
the first transaction. That is, the atomicity of transactions is not guaranteed with mixed engines
and inconsistencies can result. (If mixed-engine transactions are infrequent, you can use SET
TRANSACTION ISOLATION LEVEL to set the isolation level to SERIALIZABLE on a per-transaction
basis as necessary.)

• If you use tables that are not transaction-safe within a transaction, changes to those tables are stored at
once, regardless of the status of autocommit mode.

• If you issue a ROLLBACK statement after updating a nontransactional table within a transaction, an
ER_WARNING_NOT_COMPLETE_ROLLBACK warning occurs. Changes to transaction-safe tables are
rolled back, but not changes to nontransaction-safe tables.

Each transaction is stored in the binary log in one chunk, upon COMMIT. Transactions that are rolled back
are not logged. (Exception: Modifications to nontransactional tables cannot be rolled back. If a transaction

2346

https://dev.mysql.com/doc/mysql-errors/5.7/en/server-error-reference.html#error_er_warning_not_complete_rollback

Statements That Cannot Be Rolled Back

that is rolled back includes modifications to nontransactional tables, the entire transaction is logged with a
ROLLBACK statement at the end to ensure that modifications to the nontransactional tables are replicated.)
See Section 5.4.4, “The Binary Log”.

You can change the isolation level or access mode for transactions with the SET TRANSACTION
statement. See Section 13.3.6, “SET TRANSACTION Statement”.

Rolling back can be a slow operation that may occur implicitly without the user having explicitly asked for
it (for example, when an error occurs). Because of this, SHOW PROCESSLIST displays Rolling back in
the State column for the session, not only for explicit rollbacks performed with the ROLLBACK statement
but also for implicit rollbacks.

Note

In MySQL 5.7, BEGIN, COMMIT, and ROLLBACK are not affected by --replicate-
do-db or --replicate-ignore-db rules.

When InnoDB performs a complete rollback of a transaction, all locks set by the transaction are released.
If a single SQL statement within a transaction rolls back as a result of an error, such as a duplicate
key error, locks set by the statement are preserved while the transaction remains active. This happens
because InnoDB stores row locks in a format such that it cannot know afterward which lock was set by
which statement.

If a SELECT statement within a transaction calls a stored function, and a statement within the stored
function fails, that statement rolls back. If ROLLBACK is executed for the transaction subsequently, the
entire transaction rolls back.

13.3.2 Statements That Cannot Be Rolled Back

Some statements cannot be rolled back. In general, these include data definition language (DDL)
statements, such as those that create or drop databases, those that create, drop, or alter tables or stored
routines.

You should design your transactions not to include such statements. If you issue a statement early in
a transaction that cannot be rolled back, and then another statement later fails, the full effect of the
transaction cannot be rolled back in such cases by issuing a ROLLBACK statement.

13.3.3 Statements That Cause an Implicit Commit

The statements listed in this section (and any synonyms for them) implicitly end any transaction active in
the current session, as if you had done a COMMIT before executing the statement.

Most of these statements also cause an implicit commit after executing. The intent is to handle each such
statement in its own special transaction because it cannot be rolled back anyway. Transaction-control and
locking statements are exceptions: If an implicit commit occurs before execution, another does not occur
after.

• Data definition language (DDL) statements that define or modify database objects. ALTER
DATABASE ... UPGRADE DATA DIRECTORY NAME, ALTER EVENT, ALTER PROCEDURE, ALTER
SERVER, ALTER TABLE, ALTER TABLESPACE, ALTER VIEW, CREATE DATABASE, CREATE EVENT,
CREATE INDEX, CREATE PROCEDURE, CREATE SERVER, CREATE TABLE, CREATE TABLESPACE,
CREATE TRIGGER, CREATE VIEW, DROP DATABASE, DROP EVENT, DROP INDEX, DROP PROCEDURE,
DROP SERVER, DROP TABLE, DROP TABLESPACE, DROP TRIGGER, DROP VIEW, INSTALL PLUGIN,
RENAME TABLE, TRUNCATE TABLE, UNINSTALL PLUGIN.

2347

SAVEPOINT, ROLLBACK TO SAVEPOINT, and RELEASE SAVEPOINT Statements

ALTER FUNCTION, CREATE FUNCTION and DROP FUNCTION also cause an implicit commit when used
with stored functions, but not with loadable functions. (ALTER FUNCTION can only be used with stored
functions.)

CREATE TABLE and DROP TABLE statements do not commit a transaction if the TEMPORARY keyword
is used. (This does not apply to other operations on temporary tables such as ALTER TABLE and
CREATE INDEX, which do cause a commit.) However, although no implicit commit occurs, neither
can the statement be rolled back, which means that the use of such statements causes transactional
atomicity to be violated. For example, if you use CREATE TEMPORARY TABLE and then roll back the
transaction, the table remains in existence.

The CREATE TABLE statement in InnoDB is processed as a single transaction. This means that
a ROLLBACK from the user does not undo CREATE TABLE statements the user made during that
transaction.

CREATE TABLE ... SELECT causes an implicit commit before and after the statement is executed
when you are creating nontemporary tables. (No commit occurs for CREATE TEMPORARY TABLE ...
SELECT.)

• Statements that implicitly use or modify tables in the mysql database. ALTER USER, CREATE
USER, DROP USER, GRANT, RENAME USER, REVOKE, SET PASSWORD.

• Transaction-control and locking statements. BEGIN, LOCK TABLES, SET autocommit = 1 (if the
value is not already 1), START TRANSACTION, UNLOCK TABLES.

UNLOCK TABLES commits a transaction only if any tables currently have been locked with LOCK
TABLES to acquire nontransactional table locks. A commit does not occur for UNLOCK TABLES following
FLUSH TABLES WITH READ LOCK because the latter statement does not acquire table-level locks.

Transactions cannot be nested. This is a consequence of the implicit commit performed for any current
transaction when you issue a START TRANSACTION statement or one of its synonyms.

Statements that cause an implicit commit cannot be used in an XA transaction while the transaction is in
an ACTIVE state.

The BEGIN statement differs from the use of the BEGIN keyword that starts a BEGIN ... END
compound statement. The latter does not cause an implicit commit. See Section 13.6.1, “BEGIN ... END
Compound Statement”.

• Data loading statements. LOAD DATA. LOAD DATA causes an implicit commit only for tables using the
NDB storage engine.

• Administrative statements. ANALYZE TABLE, CACHE INDEX, CHECK TABLE, FLUSH, LOAD INDEX
INTO CACHE, OPTIMIZE TABLE, REPAIR TABLE, RESET.

• Replication control statements. START SLAVE, STOP SLAVE, RESET SLAVE, CHANGE MASTER TO.

13.3.4 SAVEPOINT, ROLLBACK TO SAVEPOINT, and RELEASE SAVEPOINT
Statements

SAVEPOINT identifier
ROLLBACK [WORK] TO [SAVEPOINT] identifier
RELEASE SAVEPOINT identifier

InnoDB supports the SQL statements SAVEPOINT, ROLLBACK TO SAVEPOINT, RELEASE SAVEPOINT
and the optional WORK keyword for ROLLBACK.

2348

LOCK TABLES and UNLOCK TABLES Statements

The SAVEPOINT statement sets a named transaction savepoint with a name of identifier. If the current
transaction has a savepoint with the same name, the old savepoint is deleted and a new one is set.

The ROLLBACK TO SAVEPOINT statement rolls back a transaction to the named savepoint without
terminating the transaction. Modifications that the current transaction made to rows after the savepoint
was set are undone in the rollback, but InnoDB does not release the row locks that were stored in memory
after the savepoint. (For a new inserted row, the lock information is carried by the transaction ID stored
in the row; the lock is not separately stored in memory. In this case, the row lock is released in the undo.)
Savepoints that were set at a later time than the named savepoint are deleted.

If the ROLLBACK TO SAVEPOINT statement returns the following error, it means that no savepoint with the
specified name exists:

ERROR 1305 (42000): SAVEPOINT identifier does not exist

The RELEASE SAVEPOINT statement removes the named savepoint from the set of savepoints of the
current transaction. No commit or rollback occurs. It is an error if the savepoint does not exist.

All savepoints of the current transaction are deleted if you execute a COMMIT, or a ROLLBACK that does not
name a savepoint.

A new savepoint level is created when a stored function is invoked or a trigger is activated. The savepoints
on previous levels become unavailable and thus do not conflict with savepoints on the new level. When the
function or trigger terminates, any savepoints it created are released and the previous savepoint level is
restored.

13.3.5 LOCK TABLES and UNLOCK TABLES Statements

LOCK {TABLE | TABLES}
 tbl_name [[AS] alias] lock_type
 [, tbl_name [[AS] alias] lock_type] ...

lock_type: {
 READ [LOCAL]
 | [LOW_PRIORITY] WRITE
}

UNLOCK {TABLE | TABLES}

MySQL enables client sessions to acquire table locks explicitly for the purpose of cooperating with other
sessions for access to tables, or to prevent other sessions from modifying tables during periods when
a session requires exclusive access to them. A session can acquire or release locks only for itself. One
session cannot acquire locks for another session or release locks held by another session.

Locks may be used to emulate transactions or to get more speed when updating tables. This is explained
in more detail in Table-Locking Restrictions and Conditions.

LOCK TABLES explicitly acquires table locks for the current client session. Table locks can be acquired
for base tables or views. You must have the LOCK TABLES privilege, and the SELECT privilege for each
object to be locked.

For view locking, LOCK TABLES adds all base tables used in the view to the set of tables to be locked and
locks them automatically. As of MySQL 5.7.32, LOCK TABLES checks that the view definer has the proper
privileges on the tables underlying the view.

If you lock a table explicitly with LOCK TABLES, any tables used in triggers are also locked implicitly, as
described in LOCK TABLES and Triggers.

2349

LOCK TABLES and UNLOCK TABLES Statements

UNLOCK TABLES explicitly releases any table locks held by the current session. LOCK TABLES implicitly
releases any table locks held by the current session before acquiring new locks.

Another use for UNLOCK TABLES is to release the global read lock acquired with the FLUSH TABLES
WITH READ LOCK statement, which enables you to lock all tables in all databases. See Section 13.7.6.3,
“FLUSH Statement”. (This is a very convenient way to get backups if you have a file system such as
Veritas that can take snapshots in time.)

LOCK TABLE is a synonym for LOCK TABLES; UNLOCK TABLE is a synonym for UNLOCK TABLES.

A table lock protects only against inappropriate reads or writes by other sessions. A session holding a
WRITE lock can perform table-level operations such as DROP TABLE or TRUNCATE TABLE. For sessions
holding a READ lock, DROP TABLE and TRUNCATE TABLE operations are not permitted.

The following discussion applies only to non-TEMPORARY tables. LOCK TABLES is permitted (but ignored)
for a TEMPORARY table. The table can be accessed freely by the session within which it was created,
regardless of what other locking may be in effect. No lock is necessary because no other session can see
the table.

• Table Lock Acquisition

• Table Lock Release

• Interaction of Table Locking and Transactions

• LOCK TABLES and Triggers

• Table-Locking Restrictions and Conditions

Table Lock Acquisition

To acquire table locks within the current session, use the LOCK TABLES statement, which acquires
metadata locks (see Section 8.11.4, “Metadata Locking”).

The following lock types are available:

READ [LOCAL] lock:

• The session that holds the lock can read the table (but not write it).

• Multiple sessions can acquire a READ lock for the table at the same time.

• Other sessions can read the table without explicitly acquiring a READ lock.

• The LOCAL modifier enables nonconflicting INSERT statements (concurrent inserts) by other sessions
to execute while the lock is held. (See Section 8.11.3, “Concurrent Inserts”.) However, READ LOCAL
cannot be used if you are going to manipulate the database using processes external to the server while
you hold the lock. For InnoDB tables, READ LOCAL is the same as READ.

[LOW_PRIORITY] WRITE lock:

• The session that holds the lock can read and write the table.

• Only the session that holds the lock can access the table. No other session can access it until the lock is
released.

• Lock requests for the table by other sessions block while the WRITE lock is held.

2350

LOCK TABLES and UNLOCK TABLES Statements

• The LOW_PRIORITY modifier has no effect. In previous versions of MySQL, it affected locking behavior,
but this is no longer true. It is now deprecated and its use produces a warning. Use WRITE without
LOW_PRIORITY instead.

WRITE locks normally have higher priority than READ locks to ensure that updates are processed as
soon as possible. This means that if one session obtains a READ lock and then another session requests
a WRITE lock, subsequent READ lock requests wait until the session that requested the WRITE lock
has obtained the lock and released it. (An exception to this policy can occur for small values of the
max_write_lock_count system variable; see Section 8.11.4, “Metadata Locking”.)

If the LOCK TABLES statement must wait due to locks held by other sessions on any of the tables, it blocks
until all locks can be acquired.

A session that requires locks must acquire all the locks that it needs in a single LOCK TABLES statement.
While the locks thus obtained are held, the session can access only the locked tables. For example, in the
following sequence of statements, an error occurs for the attempt to access t2 because it was not locked
in the LOCK TABLES statement:

mysql> LOCK TABLES t1 READ;
mysql> SELECT COUNT(*) FROM t1;
+----------+
| COUNT(*) |
+----------+
| 3 |
+----------+
mysql> SELECT COUNT(*) FROM t2;
ERROR 1100 (HY000): Table 't2' was not locked with LOCK TABLES

Tables in the INFORMATION_SCHEMA database are an exception. They can be accessed without being
locked explicitly even while a session holds table locks obtained with LOCK TABLES.

You cannot refer to a locked table multiple times in a single query using the same name. Use aliases
instead, and obtain a separate lock for the table and each alias:

mysql> LOCK TABLE t WRITE, t AS t1 READ;
mysql> INSERT INTO t SELECT * FROM t;
ERROR 1100: Table 't' was not locked with LOCK TABLES
mysql> INSERT INTO t SELECT * FROM t AS t1;

The error occurs for the first INSERT because there are two references to the same name for a locked
table. The second INSERT succeeds because the references to the table use different names.

If your statements refer to a table by means of an alias, you must lock the table using that same alias. It
does not work to lock the table without specifying the alias:

mysql> LOCK TABLE t READ;
mysql> SELECT * FROM t AS myalias;
ERROR 1100: Table 'myalias' was not locked with LOCK TABLES

Conversely, if you lock a table using an alias, you must refer to it in your statements using that alias:

mysql> LOCK TABLE t AS myalias READ;
mysql> SELECT * FROM t;
ERROR 1100: Table 't' was not locked with LOCK TABLES
mysql> SELECT * FROM t AS myalias;

Note

LOCK TABLES or UNLOCK TABLES, when applied to a partitioned table, always
locks or unlocks the entire table; these statements do not support partition lock
pruning. See Section 22.6.4, “Partitioning and Locking”.

2351

LOCK TABLES and UNLOCK TABLES Statements

Table Lock Release

When the table locks held by a session are released, they are all released at the same time. A session can
release its locks explicitly, or locks may be released implicitly under certain conditions.

• A session can release its locks explicitly with UNLOCK TABLES.

• If a session issues a LOCK TABLES statement to acquire a lock while already holding locks, its existing
locks are released implicitly before the new locks are granted.

• If a session begins a transaction (for example, with START TRANSACTION), an implicit UNLOCK
TABLES is performed, which causes existing locks to be released. (For additional information about the
interaction between table locking and transactions, see Interaction of Table Locking and Transactions.)

If the connection for a client session terminates, whether normally or abnormally, the server implicitly
releases all table locks held by the session (transactional and nontransactional). If the client reconnects,
the locks are longer in effect. In addition, if the client had an active transaction, the server rolls back the
transaction upon disconnect, and if reconnect occurs, the new session begins with autocommit enabled.
For this reason, clients may wish to disable auto-reconnect. With auto-reconnect in effect, the client is
not notified if reconnect occurs but any table locks or current transactions are lost. With auto-reconnect
disabled, if the connection drops, an error occurs for the next statement issued. The client can detect the
error and take appropriate action such as reacquiring the locks or redoing the transaction. See Automatic
Reconnection Control.

Note

If you use ALTER TABLE on a locked table, it may become unlocked. For example,
if you attempt a second ALTER TABLE operation, the result may be an error Table
'tbl_name' was not locked with LOCK TABLES. To handle this, lock the
table again prior to the second alteration. See also Section B.3.6.1, “Problems with
ALTER TABLE”.

Interaction of Table Locking and Transactions

LOCK TABLES and UNLOCK TABLES interact with the use of transactions as follows:

• LOCK TABLES is not transaction-safe and implicitly commits any active transaction before attempting to
lock the tables.

• UNLOCK TABLES implicitly commits any active transaction, but only if LOCK TABLES has been used
to acquire table locks. For example, in the following set of statements, UNLOCK TABLES releases the
global read lock but does not commit the transaction because no table locks are in effect:

FLUSH TABLES WITH READ LOCK;
START TRANSACTION;
SELECT ... ;
UNLOCK TABLES;

• Beginning a transaction (for example, with START TRANSACTION) implicitly commits any current
transaction and releases existing table locks.

• FLUSH TABLES WITH READ LOCK acquires a global read lock and not table locks, so it is not
subject to the same behavior as LOCK TABLES and UNLOCK TABLES with respect to table locking
and implicit commits. For example, START TRANSACTION does not release the global read lock. See
Section 13.7.6.3, “FLUSH Statement”.

• Other statements that implicitly cause transactions to be committed do not release existing table locks.
For a list of such statements, see Section 13.3.3, “Statements That Cause an Implicit Commit”.

2352

https://dev.mysql.com/doc/c-api/5.7/en/c-api-auto-reconnect.html
https://dev.mysql.com/doc/c-api/5.7/en/c-api-auto-reconnect.html

LOCK TABLES and UNLOCK TABLES Statements

• The correct way to use LOCK TABLES and UNLOCK TABLES with transactional tables, such as InnoDB
tables, is to begin a transaction with SET autocommit = 0 (not START TRANSACTION) followed by
LOCK TABLES, and to not call UNLOCK TABLES until you commit the transaction explicitly. For example,
if you need to write to table t1 and read from table t2, you can do this:

SET autocommit=0;
LOCK TABLES t1 WRITE, t2 READ, ...;
... do something with tables t1 and t2 here ...
COMMIT;
UNLOCK TABLES;

When you call LOCK TABLES, InnoDB internally takes its own table lock, and MySQL takes its own
table lock. InnoDB releases its internal table lock at the next commit, but for MySQL to release its table
lock, you have to call UNLOCK TABLES. You should not have autocommit = 1, because then InnoDB
releases its internal table lock immediately after the call of LOCK TABLES, and deadlocks can very
easily happen. InnoDB does not acquire the internal table lock at all if autocommit = 1, to help old
applications avoid unnecessary deadlocks.

• ROLLBACK does not release table locks.

LOCK TABLES and Triggers

If you lock a table explicitly with LOCK TABLES, any tables used in triggers are also locked implicitly:

• The locks are taken as the same time as those acquired explicitly with the LOCK TABLES statement.

• The lock on a table used in a trigger depends on whether the table is used only for reading. If so, a read
lock suffices. Otherwise, a write lock is used.

• If a table is locked explicitly for reading with LOCK TABLES, but needs to be locked for writing because it
might be modified within a trigger, a write lock is taken rather than a read lock. (That is, an implicit write
lock needed due to the table's appearance within a trigger causes an explicit read lock request for the
table to be converted to a write lock request.)

Suppose that you lock two tables, t1 and t2, using this statement:

LOCK TABLES t1 WRITE, t2 READ;

If t1 or t2 have any triggers, tables used within the triggers are also locked. Suppose that t1 has a trigger
defined like this:

CREATE TRIGGER t1_a_ins AFTER INSERT ON t1 FOR EACH ROW
BEGIN
 UPDATE t4 SET count = count+1
 WHERE id = NEW.id AND EXISTS (SELECT a FROM t3);
 INSERT INTO t2 VALUES(1, 2);
END;

The result of the LOCK TABLES statement is that t1 and t2 are locked because they appear in the
statement, and t3 and t4 are locked because they are used within the trigger:

• t1 is locked for writing per the WRITE lock request.

• t2 is locked for writing, even though the request is for a READ lock. This occurs because t2 is inserted
into within the trigger, so the READ request is converted to a WRITE request.

• t3 is locked for reading because it is only read from within the trigger.

• t4 is locked for writing because it might be updated within the trigger.

2353

LOCK TABLES and UNLOCK TABLES Statements

Table-Locking Restrictions and Conditions

You can safely use KILL to terminate a session that is waiting for a table lock. See Section 13.7.6.4, “KILL
Statement”.

LOCK TABLES and UNLOCK TABLES cannot be used within stored programs.

Tables in the performance_schema database cannot be locked with LOCK TABLES, except the
setup_xxx tables.

The scope of a lock generated by LOCK TABLES is a single MySQL server. It is not compatible with NDB
Cluster, which has no way of enforcing an SQL-level lock across multiple instances of mysqld. You can
enforce locking in an API application instead. See Section 21.2.7.10, “Limitations Relating to Multiple NDB
Cluster Nodes”, for more information.

The following statements are prohibited while a LOCK TABLES statement is in effect: CREATE TABLE,
CREATE TABLE ... LIKE, CREATE VIEW, DROP VIEW, and DDL statements on stored functions and
procedures and events.

For some operations, system tables in the mysql database must be accessed. For example, the HELP
statement requires the contents of the server-side help tables, and CONVERT_TZ() might need to read the
time zone tables. The server implicitly locks the system tables for reading as necessary so that you need
not lock them explicitly. These tables are treated as just described:

mysql.help_category
mysql.help_keyword
mysql.help_relation
mysql.help_topic
mysql.proc
mysql.time_zone
mysql.time_zone_leap_second
mysql.time_zone_name
mysql.time_zone_transition
mysql.time_zone_transition_type

If you want to explicitly place a WRITE lock on any of those tables with a LOCK TABLES statement, the
table must be the only one locked; no other table can be locked with the same statement.

Normally, you do not need to lock tables, because all single UPDATE statements are atomic; no other
session can interfere with any other currently executing SQL statement. However, there are a few cases
when locking tables may provide an advantage:

• If you are going to run many operations on a set of MyISAM tables, it is much faster to lock the tables you
are going to use. Locking MyISAM tables speeds up inserting, updating, or deleting on them because
MySQL does not flush the key cache for the locked tables until UNLOCK TABLES is called. Normally, the
key cache is flushed after each SQL statement.

The downside to locking the tables is that no session can update a READ-locked table (including the one
holding the lock) and no session can access a WRITE-locked table other than the one holding the lock.

• If you are using tables for a nontransactional storage engine, you must use LOCK TABLES if you want
to ensure that no other session modifies the tables between a SELECT and an UPDATE. The example
shown here requires LOCK TABLES to execute safely:

LOCK TABLES trans READ, customer WRITE;
SELECT SUM(value) FROM trans WHERE customer_id=some_id;
UPDATE customer
 SET total_value=sum_from_previous_statement
 WHERE customer_id=some_id;

2354

SET TRANSACTION Statement

UNLOCK TABLES;

Without LOCK TABLES, it is possible that another session might insert a new row in the trans table
between execution of the SELECT and UPDATE statements.

You can avoid using LOCK TABLES in many cases by using relative updates (UPDATE customer SET
value=value+new_value) or the LAST_INSERT_ID() function.

You can also avoid locking tables in some cases by using the user-level advisory lock functions
GET_LOCK() and RELEASE_LOCK(). These locks are saved in a hash table in the server and
implemented with pthread_mutex_lock() and pthread_mutex_unlock() for high speed. See
Section 12.14, “Locking Functions”.

See Section 8.11.1, “Internal Locking Methods”, for more information on locking policy.

13.3.6 SET TRANSACTION Statement

SET [GLOBAL | SESSION] TRANSACTION
 transaction_characteristic [, transaction_characteristic] ...

transaction_characteristic: {
 ISOLATION LEVEL level
 | access_mode
}

level: {
 REPEATABLE READ
 | READ COMMITTED
 | READ UNCOMMITTED
 | SERIALIZABLE
}

access_mode: {
 READ WRITE
 | READ ONLY
}

This statement specifies transaction characteristics. It takes a list of one or more characteristic values
separated by commas. Each characteristic value sets the transaction isolation level or access mode. The
isolation level is used for operations on InnoDB tables. The access mode specifies whether transactions
operate in read/write or read-only mode.

In addition, SET TRANSACTION can include an optional GLOBAL or SESSION keyword to indicate the
scope of the statement.

• Transaction Isolation Levels

• Transaction Access Mode

• Transaction Characteristic Scope

Transaction Isolation Levels

To set the transaction isolation level, use an ISOLATION LEVEL level clause. It is not permitted to
specify multiple ISOLATION LEVEL clauses in the same SET TRANSACTION statement.

The default isolation level is REPEATABLE READ. Other permitted values are READ COMMITTED, READ
UNCOMMITTED, and SERIALIZABLE. For information about these isolation levels, see Section 14.7.2.1,
“Transaction Isolation Levels”.

2355

SET TRANSACTION Statement

Transaction Access Mode

To set the transaction access mode, use a READ WRITE or READ ONLY clause. It is not permitted to
specify multiple access-mode clauses in the same SET TRANSACTION statement.

By default, a transaction takes place in read/write mode, with both reads and writes permitted to tables
used in the transaction. This mode may be specified explicitly using SET TRANSACTION with an access
mode of READ WRITE.

If the transaction access mode is set to READ ONLY, changes to tables are prohibited. This may enable
storage engines to make performance improvements that are possible when writes are not permitted.

In read-only mode, it remains possible to change tables created with the TEMPORARY keyword using DML
statements. Changes made with DDL statements are not permitted, just as with permanent tables.

The READ WRITE and READ ONLY access modes also may be specified for an individual transaction using
the START TRANSACTION statement.

Transaction Characteristic Scope

You can set transaction characteristics globally, for the current session, or for the next transaction only:

• With the GLOBAL keyword:

• The statement applies globally for all subsequent sessions.

• Existing sessions are unaffected.

• With the SESSION keyword:

• The statement applies to all subsequent transactions performed within the current session.

• The statement is permitted within transactions, but does not affect the current ongoing transaction.

• If executed between transactions, the statement overrides any preceding statement that sets the next-
transaction value of the named characteristics.

• Without any SESSION or GLOBAL keyword:

• The statement applies only to the next single transaction performed within the session.

• Subsequent transactions revert to using the session value of the named characteristics.

• The statement is not permitted within transactions:

mysql> START TRANSACTION;
Query OK, 0 rows affected (0.02 sec)

mysql> SET TRANSACTION ISOLATION LEVEL SERIALIZABLE;
ERROR 1568 (25001): Transaction characteristics can't be changed
while a transaction is in progress

A change to global transaction characteristics requires the SUPER privilege. Any session is free to change
its session characteristics (even in the middle of a transaction), or the characteristics for its next transaction
(prior to the start of that transaction).

To set the global isolation level at server startup, use the --transaction-isolation=level option
on the command line or in an option file. Values of level for this option use dashes rather than spaces,

2356

SET TRANSACTION Statement

so the permissible values are READ-UNCOMMITTED, READ-COMMITTED, REPEATABLE-READ, or
SERIALIZABLE.

Similarly, to set the global transaction access mode at server startup, use the --transaction-read-
only option. The default is OFF (read/write mode) but the value can be set to ON for a mode of read only.

For example, to set the isolation level to REPEATABLE READ and the access mode to READ WRITE, use
these lines in the [mysqld] section of an option file:

[mysqld]
transaction-isolation = REPEATABLE-READ
transaction-read-only = OFF

At runtime, characteristics at the global, session, and next-transaction scope levels can be set indirectly
using the SET TRANSACTION statement, as described previously. They can also be set directly using
the SET statement to assign values to the transaction_isolation and transaction_read_only
system variables:

• SET TRANSACTION permits optional GLOBAL and SESSION keywords for setting transaction
characteristics at different scope levels.

• The SET statement for assigning values to the transaction_isolation and
transaction_read_only system variables has syntaxes for setting these variables at different scope
levels.

The following tables show the characteristic scope level set by each SET TRANSACTION and variable-
assignment syntax.

Table 13.6 SET TRANSACTION Syntax for Transaction Characteristics

Syntax Affected Characteristic Scope

SET GLOBAL TRANSACTION
transaction_characteristic

Global

SET SESSION TRANSACTION
transaction_characteristic

Session

SET TRANSACTION
transaction_characteristic

Next transaction only

Table 13.7 SET Syntax for Transaction Characteristics

Syntax Affected Characteristic Scope

SET GLOBAL var_name = value Global

SET @@GLOBAL.var_name = value Global

SET SESSION var_name = value Session

SET @@SESSION.var_name = value Session

SET var_name = value Session

SET @@var_name = value Next transaction only

It is possible to check the global and session values of transaction characteristics at runtime:

SELECT @@GLOBAL.transaction_isolation, @@GLOBAL.transaction_read_only;
SELECT @@SESSION.transaction_isolation, @@SESSION.transaction_read_only;

Prior to MySQL 5.7.20, use tx_isolation and tx_read_only rather than transaction_isolation
and transaction_read_only.

2357

XA Transactions

13.3.7 XA Transactions

Support for XA transactions is available for the InnoDB storage engine. The MySQL XA implementation
is based on the X/Open CAE document Distributed Transaction Processing: The XA Specification. This
document is published by The Open Group and available at http://www.opengroup.org/public/pubs/catalog/
c193.htm. Limitations of the current XA implementation are described in Section 13.3.7.3, “Restrictions on
XA Transactions”.

On the client side, there are no special requirements. The XA interface to a MySQL server consists of SQL
statements that begin with the XA keyword. MySQL client programs must be able to send SQL statements
and to understand the semantics of the XA statement interface. They do not need be linked against a
recent client library. Older client libraries also work.

Among the MySQL Connectors, MySQL Connector/J 5.0.0 and higher supports XA directly, by means of a
class interface that handles the XA SQL statement interface for you.

XA supports distributed transactions, that is, the ability to permit multiple separate transactional resources
to participate in a global transaction. Transactional resources often are RDBMSs but may be other kinds of
resources.

A global transaction involves several actions that are transactional in themselves, but that all must
either complete successfully as a group, or all be rolled back as a group. In essence, this extends ACID
properties “up a level” so that multiple ACID transactions can be executed in concert as components of
a global operation that also has ACID properties. (As with nondistributed transactions, SERIALIZABLE
may be preferred if your applications are sensitive to read phenomena. REPEATABLE READ may not be
sufficient for distributed transactions.)

Some examples of distributed transactions:

• An application may act as an integration tool that combines a messaging service with an RDBMS.
The application makes sure that transactions dealing with message sending, retrieval, and processing
that also involve a transactional database all happen in a global transaction. You can think of this as
“transactional email.”

• An application performs actions that involve different database servers, such as a MySQL server and an
Oracle server (or multiple MySQL servers), where actions that involve multiple servers must happen as
part of a global transaction, rather than as separate transactions local to each server.

• A bank keeps account information in an RDBMS and distributes and receives money through automated
teller machines (ATMs). It is necessary to ensure that ATM actions are correctly reflected in the
accounts, but this cannot be done with the RDBMS alone. A global transaction manager integrates the
ATM and database resources to ensure overall consistency of financial transactions.

Applications that use global transactions involve one or more Resource Managers and a Transaction
Manager:

• A Resource Manager (RM) provides access to transactional resources. A database server is one kind of
resource manager. It must be possible to either commit or roll back transactions managed by the RM.

• A Transaction Manager (TM) coordinates the transactions that are part of a global transaction. It
communicates with the RMs that handle each of these transactions. The individual transactions within a
global transaction are “branches” of the global transaction. Global transactions and their branches are
identified by a naming scheme described later.

The MySQL implementation of XA enables a MySQL server to act as a Resource Manager that handles
XA transactions within a global transaction. A client program that connects to the MySQL server acts as
the Transaction Manager.

2358

http://www.opengroup.org/public/pubs/catalog/c193.htm
http://www.opengroup.org/public/pubs/catalog/c193.htm

XA Transactions

To carry out a global transaction, it is necessary to know which components are involved, and bring each
component to a point when it can be committed or rolled back. Depending on what each component
reports about its ability to succeed, they must all commit or roll back as an atomic group. That is, either
all components must commit, or all components must roll back. To manage a global transaction, it is
necessary to take into account that any component or the connecting network might fail.

The process for executing a global transaction uses two-phase commit (2PC). This takes place after the
actions performed by the branches of the global transaction have been executed.

1. In the first phase, all branches are prepared. That is, they are told by the TM to get ready to commit.
Typically, this means each RM that manages a branch records the actions for the branch in stable
storage. The branches indicate whether they are able to do this, and these results are used for the
second phase.

2. In the second phase, the TM tells the RMs whether to commit or roll back. If all branches indicated
when they were prepared that they can commit, all branches are told to commit. If any branch indicated
when it was prepared that it could not commit, all branches are told to roll back.

In some cases, a global transaction might use one-phase commit (1PC). For example, when a Transaction
Manager finds that a global transaction consists of only one transactional resource (that is, a single
branch), that resource can be told to prepare and commit at the same time.

13.3.7.1 XA Transaction SQL Statements

To perform XA transactions in MySQL, use the following statements:

XA {START|BEGIN} xid [JOIN|RESUME]

XA END xid [SUSPEND [FOR MIGRATE]]

XA PREPARE xid

XA COMMIT xid [ONE PHASE]

XA ROLLBACK xid

XA RECOVER [CONVERT XID]

For XA START, the JOIN and RESUME clauses are recognized but have no effect.

For XA END the SUSPEND [FOR MIGRATE] clause is recognized but has no effect.

Each XA statement begins with the XA keyword, and most of them require an xid value. An xid is an XA
transaction identifier. It indicates which transaction the statement applies to. xid values are supplied by
the client, or generated by the MySQL server. An xid value has from one to three parts:

xid: gtrid [, bqual [, formatID]]

gtrid is a global transaction identifier, bqual is a branch qualifier, and formatID is a number that
identifies the format used by the gtrid and bqual values. As indicated by the syntax, bqual and
formatID are optional. The default bqual value is '' if not given. The default formatID value is 1 if not
given.

gtrid and bqual must be string literals, each up to 64 bytes (not characters) long. gtrid and bqual can
be specified in several ways. You can use a quoted string ('ab'), hex string (X'6162', 0x6162), or bit
value (b'nnnn').

formatID is an unsigned integer.

2359

XA Transactions

The gtrid and bqual values are interpreted in bytes by the MySQL server's underlying XA support
routines. However, while an SQL statement containing an XA statement is being parsed, the server works
with some specific character set. To be safe, write gtrid and bqual as hex strings.

xid values typically are generated by the Transaction Manager. Values generated by one TM must be
different from values generated by other TMs. A given TM must be able to recognize its own xid values in
a list of values returned by the XA RECOVER statement.

XA START xid starts an XA transaction with the given xid value. Each XA transaction must have a
unique xid value, so the value must not currently be used by another XA transaction. Uniqueness is
assessed using the gtrid and bqual values. All following XA statements for the XA transaction must
be specified using the same xid value as that given in the XA START statement. If you use any of those
statements but specify an xid value that does not correspond to some existing XA transaction, an error
occurs.

One or more XA transactions can be part of the same global transaction. All XA transactions within a given
global transaction must use the same gtrid value in the xid value. For this reason, gtrid values must
be globally unique so that there is no ambiguity about which global transaction a given XA transaction
is part of. The bqual part of the xid value must be different for each XA transaction within a global
transaction. (The requirement that bqual values be different is a limitation of the current MySQL XA
implementation. It is not part of the XA specification.)

The XA RECOVER statement returns information for those XA transactions on the MySQL server that are in
the PREPARED state. (See Section 13.3.7.2, “XA Transaction States”.) The output includes a row for each
such XA transaction on the server, regardless of which client started it.

XA RECOVER output rows look like this (for an example xid value consisting of the parts 'abc', 'def',
and 7):

mysql> XA RECOVER;
+----------+--------------+--------------+--------+
| formatID | gtrid_length | bqual_length | data |
+----------+--------------+--------------+--------+
| 7 | 3 | 3 | abcdef |
+----------+--------------+--------------+--------+

The output columns have the following meanings:

• formatID is the formatID part of the transaction xid

• gtrid_length is the length in bytes of the gtrid part of the xid

• bqual_length is the length in bytes of the bqual part of the xid

• data is the concatenation of the gtrid and bqual parts of the xid

XID values may contain nonprintable characters. As of MySQL 5.7.5, XA RECOVER permits an optional
CONVERT XID clause so that clients can request XID values in hexadecimal.

13.3.7.2 XA Transaction States

An XA transaction progresses through the following states:

1. Use XA START to start an XA transaction and put it in the ACTIVE state.

2. For an ACTIVE XA transaction, issue the SQL statements that make up the transaction, and then issue
an XA END statement. XA END puts the transaction in the IDLE state.

2360

XA Transactions

3. For an IDLE XA transaction, you can issue either an XA PREPARE statement or an XA COMMIT ...
ONE PHASE statement:

• XA PREPARE puts the transaction in the PREPARED state. An XA RECOVER statement at this point
includes the transaction's xid value in its output, because XA RECOVER lists all XA transactions that
are in the PREPARED state.

• XA COMMIT ... ONE PHASE prepares and commits the transaction. The xid value is not listed by
XA RECOVER because the transaction terminates.

4. For a PREPARED XA transaction, you can issue an XA COMMIT statement to commit and terminate the
transaction, or XA ROLLBACK to roll back and terminate the transaction.

Here is a simple XA transaction that inserts a row into a table as part of a global transaction:

mysql> XA START 'xatest';
Query OK, 0 rows affected (0.00 sec)

mysql> INSERT INTO mytable (i) VALUES(10);
Query OK, 1 row affected (0.04 sec)

mysql> XA END 'xatest';
Query OK, 0 rows affected (0.00 sec)

mysql> XA PREPARE 'xatest';
Query OK, 0 rows affected (0.00 sec)

mysql> XA COMMIT 'xatest';
Query OK, 0 rows affected (0.00 sec)

Within the context of a given client connection, XA transactions and local (non-XA) transactions are
mutually exclusive. For example, if XA START has been issued to begin an XA transaction, a local
transaction cannot be started until the XA transaction has been committed or rolled back. Conversely, if
a local transaction has been started with START TRANSACTION, no XA statements can be used until the
transaction has been committed or rolled back.

If an XA transaction is in the ACTIVE state, you cannot issue any statements that cause an implicit commit.
That would violate the XA contract because you could not roll back the XA transaction. The following error
is raised if you try to execute such a statement:

ERROR 1399 (XAE07): XAER_RMFAIL: The command cannot be executed
when global transaction is in the ACTIVE state

Statements to which the preceding remark applies are listed at Section 13.3.3, “Statements That Cause an
Implicit Commit”.

13.3.7.3 Restrictions on XA Transactions

XA transaction support is limited to the InnoDB storage engine.

For “external XA,” a MySQL server acts as a Resource Manager and client programs act as Transaction
Managers. For “Internal XA”, storage engines within a MySQL server act as RMs, and the server itself
acts as a TM. Internal XA support is limited by the capabilities of individual storage engines. Internal XA
is required for handling XA transactions that involve more than one storage engine. The implementation
of internal XA requires that a storage engine support two-phase commit at the table handler level, and
currently this is true only for InnoDB.

For XA START, the JOIN and RESUME clauses are recognized but have no effect.

For XA END the SUSPEND [FOR MIGRATE] clause is recognized but has no effect.

2361

XA Transactions

The requirement that the bqual part of the xid value be different for each XA transaction within a global
transaction is a limitation of the current MySQL XA implementation. It is not part of the XA specification.

Prior to MySQL 5.7.7, XA transactions were not compatible with replication. This was because an
XA transaction that was in PREPARED state would be rolled back on clean server shutdown or client
disconnect. Similarly, an XA transaction that was in PREPARED state would still exist in PREPARED state
in case the server was shutdown abnormally and then started again, but the contents of the transaction
could not be written to the binary log. In both of these situations the XA transaction could not be replicated
correctly.

In MySQL 5.7.7 and later, there is a change in behavior and an XA transaction is written to the binary log
in two parts. When XA PREPARE is issued, the first part of the transaction up to XA PREPARE is written
using an initial GTID. A XA_prepare_log_event is used to identify such transactions in the binary
log. When XA COMMIT or XA ROLLBACK is issued, a second part of the transaction containing only the
XA COMMIT or XA ROLLBACK statement is written using a second GTID. Note that the initial part of the
transaction, identified by XA_prepare_log_event, is not necessarily followed by its XA COMMIT or
XA ROLLBACK, which can cause interleaved binary logging of any two XA transactions. The two parts
of the XA transaction can even appear in different binary log files. This means that an XA transaction in
PREPARED state is now persistent until an explicit XA COMMIT or XA ROLLBACK statement is issued,
ensuring that XA transactions are compatible with replication.

On a replica, immediately after the XA transaction is prepared, it is detached from the replica applier
thread, and can be committed or rolled back by any thread on the replica. This means that the same XA
transaction can appear in the events_transactions_current table with different states on different
threads. The events_transactions_current table displays the current status of the most recent
monitored transaction event on the thread, and does not update this status when the thread is idle. So the
XA transaction can still be displayed in the PREPARED state for the original applier thread, after it has been
processed by another thread. To positively identify XA transactions that are still in the PREPARED state and
need to be recovered, use the XA RECOVER statement rather than the Performance Schema transaction
tables.

The following restrictions exist for using XA transactions in MySQL 5.7.7 and later:

• XA transactions are not fully resilient to an unexpected halt with respect to the binary log. If there is
an unexpected halt while the server is in the middle of executing an XA PREPARE, XA COMMIT, XA
ROLLBACK, or XA COMMIT ... ONE PHASE statement, the server might not be able to recover to a
correct state, leaving the server and the binary log in an inconsistent state. In this situation, the binary
log might either contain extra XA transactions that are not applied, or miss XA transactions that are
applied. Also, if GTIDs are enabled, after recovery @@GLOBAL.GTID_EXECUTED might not correctly
describe the transactions that have been applied. Note that if an unexpected halt occurs before XA
PREPARE, between XA PREPARE and XA COMMIT (or XA ROLLBACK), or after XA COMMIT (or XA
ROLLBACK), the server and binary log are correctly recovered and taken to a consistent state.

• The use of replication filters or binary log filters in combination with XA transactions is not
supported. Filtering of tables could cause an XA transaction to be empty on a replica, and empty XA
transactions are not supported. Also, with the settings master_info_repository=TABLE and
relay_log_info_repository=TABLE on a replica, which became the defaults in MySQL 8.0, the
internal state of the data engine transaction is changed following a filtered XA transaction, and can
become inconsistent with the replication transaction context state.

The error ER_XA_REPLICATION_FILTERS is logged whenever an XA transaction is impacted by a
replication filter, whether or not the transaction was empty as a result. If the transaction is not empty, the
replica is able to continue running, but you should take steps to discontinue the use of replication filters
with XA transactions in order to avoid potential issues. If the transaction is empty, the replica stops.
In that event, the replica might be in an undetermined state in which the consistency of the replication

2362

https://dev.mysql.com/doc/mysql-errors/5.7/en/server-error-reference.html#error_er_xa_replication_filters

Replication Statements

process might be compromised. In particular, the gtid_executed set on a replica of the replica
might be inconsistent with that on the source. To resolve this situation, isolate the source and stop all
replication, then check GTID consistency across the replication topology. Undo the XA transaction that
generated the error message, then restart replication.

• Prior to MySQL 5.7.19, FLUSH TABLES WITH READ LOCK is not compatible with XA transactions.

• XA transactions are considered unsafe for statement-based replication. If two XA transactions
committed in parallel on the source are being prepared on the replica in the inverse order, locking
dependencies can occur that cannot be safely resolved, and it is possible for replication to fail with
deadlock on the replica. This situation can occur for a single-threaded or multithreaded replica.
When binlog_format=STATEMENT is set, a warning is issued for DML statements inside XA
transactions. When binlog_format=MIXED or binlog_format=ROW is set, DML statements inside
XA transactions are logged using row-based replication, and the potential issue is not present.

13.4 Replication Statements

Replication can be controlled through the SQL interface using the statements described in this section.
Statements are split into a group which controls replication source servers, a group which controls replica
servers, and a group which can be applied to any servers in a replication topology.

13.4.1 SQL Statements for Controlling Replication Source Servers

This section discusses statements for managing replication source servers. Section 13.4.2, “SQL
Statements for Controlling Replica Servers”, discusses statements for managing replica servers.

In addition to the statements described here, the following SHOW statements are used with source servers
in replication. For information about these statements, see Section 13.7.5, “SHOW Statements”.

• SHOW BINARY LOGS

• SHOW BINLOG EVENTS

• SHOW MASTER STATUS

• SHOW SLAVE HOSTS

13.4.1.1 PURGE BINARY LOGS Statement

PURGE { BINARY | MASTER } LOGS {
 TO 'log_name'
 | BEFORE datetime_expr
}

The binary log is a set of files that contain information about data modifications made by the MySQL
server. The log consists of a set of binary log files, plus an index file (see Section 5.4.4, “The Binary Log”).

The PURGE BINARY LOGS statement deletes all the binary log files listed in the log index file prior to the
specified log file name or date. BINARY and MASTER are synonyms. Deleted log files also are removed
from the list recorded in the index file, so that the given log file becomes the first in the list.

PURGE BINARY LOGS requires the BINLOG_ADMIN privilege. This statement has no effect if the server
was not started with the --log-bin option to enable binary logging.

Examples:

PURGE BINARY LOGS TO 'mysql-bin.010';

2363

https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_binlog-admin

SQL Statements for Controlling Replication Source Servers

PURGE BINARY LOGS BEFORE '2019-04-02 22:46:26';

The BEFORE variant's datetime_expr argument should evaluate to a DATETIME value (a value in
'YYYY-MM-DD hh:mm:ss' format).

This statement is safe to run while replicas are replicating. You need not stop them. If you have an active
replica that currently is reading one of the log files you are trying to delete, this statement does not delete
the log file that is in use or any log files later than that one, but it deletes any earlier log files. A warning
message is issued in this situation. However, if a replica is not connected and you happen to purge one of
the log files it has yet to read, the replica cannot replicate after it reconnects.

To safely purge binary log files, follow this procedure:

1. On each replica, use SHOW SLAVE STATUS to check which log file it is reading.

2. Obtain a listing of the binary log files on the replication source server with SHOW BINARY LOGS.

3. Determine the earliest log file among all the replicas. This is the target file. If all the replicas are up to
date, this is the last log file on the list.

4. Make a backup of all the log files you are about to delete. (This step is optional, but always advisable.)

5. Purge all log files up to but not including the target file.

You can also set the expire_logs_days system variable to expire binary log files automatically after
a given number of days (see Section 5.1.7, “Server System Variables”). If you are using replication, you
should set the variable no lower than the maximum number of days your replicas might lag behind the
source.

PURGE BINARY LOGS TO and PURGE BINARY LOGS BEFORE both fail with an error when binary log
files listed in the .index file had been removed from the system by some other means (such as using
rm on Linux). (Bug #18199, Bug #18453) To handle such errors, edit the .index file (which is a simple
text file) manually to ensure that it lists only the binary log files that are actually present, then run again the
PURGE BINARY LOGS statement that failed.

13.4.1.2 RESET MASTER Statement

RESET MASTER

Warning

Use this statement with caution to ensure you do not lose any wanted binary log file
data and GTID execution history.

RESET MASTER requires the RELOAD privilege.

For a server where binary logging is enabled (log_bin is ON), RESET MASTER deletes all existing binary
log files and resets the binary log index file, resetting the server to its state before binary logging was
started. A new empty binary log file is created so that binary logging can be restarted.

For a server where GTIDs are in use (gtid_mode is ON), issuing RESET MASTER resets the GTID
execution history. The value of the gtid_purged system variable is set to an empty string (''), the global
value (but not the session value) of the gtid_executed system variable is set to an empty string, and
the mysql.gtid_executed table is cleared (see mysql.gtid_executed Table). If the GTID-enabled server
has binary logging enabled, RESET MASTER also resets the binary log as described above. Note that
RESET MASTER is the method to reset the GTID execution history even if the GTID-enabled server is a

2364

SQL Statements for Controlling Replication Source Servers

replica where binary logging is disabled; RESET SLAVE has no effect on the GTID execution history. For
more information on resetting the GTID execution history, see Resetting the GTID Execution History.

Important

The effects of RESET MASTER differ from those of PURGE BINARY LOGS in 2 key
ways:

1. RESET MASTER removes all binary log files that are listed in the index file,
leaving only a single, empty binary log file with a numeric suffix of .000001,
whereas the numbering is not reset by PURGE BINARY LOGS.

2. RESET MASTER is not intended to be used while any replicas are running. The
behavior of RESET MASTER when used while replicas are running is undefined
(and thus unsupported), whereas PURGE BINARY LOGS may be safely used
while replicas are running.

See also Section 13.4.1.1, “PURGE BINARY LOGS Statement”.

RESET MASTER can prove useful when you first set up the source and the replica, so that you can verify
the setup as follows:

1. Start the source and replica, and start replication (see Section 16.1.2, “Setting Up Binary Log File
Position Based Replication”).

2. Execute a few test queries on the source.

3. Check that the queries were replicated to the replica.

4. When replication is running correctly, issue STOP SLAVE followed by RESET SLAVE on the replica,
then verify that any unwanted data no longer exists on the replica.

5. Issue RESET MASTER on the source to clean up the test queries.

After verifying the setup, resetting the source and replica and ensuring that no unwanted data or binary log
files generated by testing remain on source or replica, you can start the replica and begin replicating.

13.4.1.3 SET sql_log_bin Statement

SET sql_log_bin = {OFF|ON}

The sql_log_bin variable controls whether logging to the binary log is enabled for the current session
(assuming that the binary log itself is enabled). The default value is ON. To disable or enable binary logging
for the current session, set the session sql_log_bin variable to OFF or ON.

Set this variable to OFF for a session to temporarily disable binary logging while making changes to the
source you do not want replicated to the replica.

Setting the session value of this system variable is a restricted operation. The session user must have
privileges sufficient to set restricted session variables. See Section 5.1.8.1, “System Variable Privileges”.

It is not possible to set the session value of sql_log_bin within a transaction or subquery.

Setting this variable to OFF prevents GTIDs from being assigned to transactions in the binary log. If you are
using GTIDs for replication, this means that even when binary logging is later enabled again, the GTIDs
written into the log from this point do not account for any transactions that occurred in the meantime, so in
effect those transactions are lost.

2365

SQL Statements for Controlling Replica Servers

The global sql_log_bin variable is read only and cannot be modified. The global scope is deprecated;
expect it to be removed in a future MySQL release.

13.4.2 SQL Statements for Controlling Replica Servers

This section discusses statements for managing replica servers. Section 13.4.1, “SQL Statements for
Controlling Replication Source Servers”, discusses statements for managing source servers.

In addition to the statements described here, SHOW SLAVE STATUS and SHOW RELAYLOG EVENTS are
also used with replicas. For information about these statements, see Section 13.7.5.34, “SHOW SLAVE
STATUS Statement”, and Section 13.7.5.32, “SHOW RELAYLOG EVENTS Statement”.

13.4.2.1 CHANGE MASTER TO Statement

CHANGE MASTER TO option [, option] ... [channel_option]

option: {
 MASTER_BIND = 'interface_name'
 | MASTER_HOST = 'host_name'
 | MASTER_USER = 'user_name'
 | MASTER_PASSWORD = 'password'
 | MASTER_PORT = port_num
 | MASTER_CONNECT_RETRY = interval
 | MASTER_RETRY_COUNT = count
 | MASTER_DELAY = interval
 | MASTER_HEARTBEAT_PERIOD = interval
 | MASTER_LOG_FILE = 'source_log_name'
 | MASTER_LOG_POS = source_log_pos
 | MASTER_AUTO_POSITION = {0|1}
 | RELAY_LOG_FILE = 'relay_log_name'
 | RELAY_LOG_POS = relay_log_pos
 | MASTER_SSL = {0|1}
 | MASTER_SSL_CA = 'ca_file_name'
 | MASTER_SSL_CAPATH = 'ca_directory_name'
 | MASTER_SSL_CERT = 'cert_file_name'
 | MASTER_SSL_CRL = 'crl_file_name'
 | MASTER_SSL_CRLPATH = 'crl_directory_name'
 | MASTER_SSL_KEY = 'key_file_name'
 | MASTER_SSL_CIPHER = 'cipher_list'
 | MASTER_SSL_VERIFY_SERVER_CERT = {0|1}
 | MASTER_TLS_VERSION = 'protocol_list'
 | IGNORE_SERVER_IDS = (server_id_list)
}

channel_option:
 FOR CHANNEL channel

server_id_list:
 [server_id [, server_id] ...]

CHANGE MASTER TO changes the parameters that the replica uses for connecting to the replication
source server, for reading the source's binary log, and reading the replica's relay log. It also updates the
contents of the replication metadata repositories (see Section 16.2.4, “Relay Log and Replication Metadata
Repositories”). CHANGE MASTER TO requires the SUPER privilege.

Prior to MySQL 5.7.4, the replication threads must be stopped, using STOP SLAVE if necessary, before
issuing this statement. In MySQL 5.7.4 and later, you can issue CHANGE MASTER TO statements on a
running replica without doing this, depending on the states of the replication SQL thread and replication I/O
thread. The rules governing such use are provided later in this section.

When using a multithreaded replica (in other words slave_parallel_workers is greater than 0),
stopping the replica can cause “gaps” in the sequence of transactions that have been executed from

2366

SQL Statements for Controlling Replica Servers

the relay log, regardless of whether the replica was stopped intentionally or otherwise. When such gaps
exist, issuing CHANGE MASTER TO fails. The solution in this situation is to issue START SLAVE UNTIL
SQL_AFTER_MTS_GAPS which ensures that the gaps are closed.

The optional FOR CHANNEL channel clause enables you to name which replication channel the
statement applies to. Providing a FOR CHANNEL channel clause applies the CHANGE MASTER TO
statement to a specific replication channel, and is used to add a new channel or modify an existing
channel. For example, to add a new channel called channel2:

CHANGE MASTER TO MASTER_HOST=host1, MASTER_PORT=3002 FOR CHANNEL 'channel2'

If no clause is named and no extra channels exist, the statement applies to the default channel.

When using multiple replication channels, if a CHANGE MASTER TO statement does not name a channel
using a FOR CHANNEL channel clause, an error occurs. See Section 16.2.2, “Replication Channels” for
more information.

Options not specified retain their value, except as indicated in the following discussion. Thus, in most
cases, there is no need to specify options that do not change. For example, if the password to connect
to your replication source server has changed, issue this statement to tell the replica about the new
password:

CHANGE MASTER TO MASTER_PASSWORD='new3cret';

MASTER_HOST, MASTER_USER, MASTER_PASSWORD, and MASTER_PORT provide information to the replica
about how to connect to its replication source server:

• MASTER_HOST and MASTER_PORT are the host name (or IP address) of the master host and its TCP/IP
port.

Note

Replication cannot use Unix socket files. You must be able to connect to the
replication source server using TCP/IP.

If you specify the MASTER_HOST or MASTER_PORT option, the replica assumes that the source is
different from before (even if the option value is the same as its current value.) In this case, the old
values for the source's binary log file name and position are considered no longer applicable, so if you do
not specify MASTER_LOG_FILE and MASTER_LOG_POS in the statement, MASTER_LOG_FILE='' and
MASTER_LOG_POS=4 are silently appended to it.

Setting MASTER_HOST='' (that is, setting its value explicitly to an empty string) is not the same as
not setting MASTER_HOST at all. Beginning with MySQL 5.5, trying to set MASTER_HOST to an empty
string fails with an error. Previously, setting MASTER_HOST to an empty string caused START SLAVE
subsequently to fail. (Bug #28796)

Values used for MASTER_HOST and other CHANGE MASTER TO options are checked for linefeed (\n
or 0x0A) characters; the presence of such characters in these values causes the statement to fail with
ER_MASTER_INFO. (Bug #11758581, Bug #50801)

• MASTER_USER and MASTER_PASSWORD are the user name and password of the account to use for
connecting to the source. If you specify MASTER_PASSWORD, MASTER_USER is also required. The
password used for a replication user account in a CHANGE MASTER TO statement is limited to 32
characters in length; prior to MySQL 5.7.5, if the password was longer, the statement succeeded, but
any excess characters were silently truncated. In MySQL 5.7.5 and later, trying to use a password of
more than 32 characters causes CHANGE MASTER TO to fail. (Bug #11752299, Bug #43439)

2367

https://dev.mysql.com/doc/mysql-errors/5.7/en/server-error-reference.html#error_er_master_info

SQL Statements for Controlling Replica Servers

It is possible to set an empty user name by specifying MASTER_USER='', but the replication channel
cannot be started with an empty user name. Only set an empty MASTER_USER user name if you need to
clear previously used credentials from the replica's repositories for security purposes, and do not attempt
to use the channel afterwards.

The text of a running CHANGE MASTER TO statement, including values for MASTER_USER and
MASTER_PASSWORD, can be seen in the output of a concurrent SHOW PROCESSLIST statement. (The
complete text of a START SLAVE statement is also visible to SHOW PROCESSLIST.)

Setting MASTER_SSL=1 for a replication connection and then setting no further MASTER_SSL_xxx
options corresponds to setting --ssl-mode=REQUIRED for the client, as described in Command
Options for Encrypted Connections. With MASTER_SSL=1, the connection attempt only succeeds if an
encrypted connection can be established. A replication connection does not fall back to an unencrypted
connection, so there is no setting corresponding to the --ssl-mode=PREFERRED setting for replication. If
MASTER_SSL=0 is set, this corresponds to --ssl-mode=DISABLED.

Important

To help prevent sophisticated man-in-the-middle attacks, it is important for the
replica to verify the server’s identity. You can specify additional MASTER_SSL_xxx
options to correspond to the settings --ssl-mode=VERIFY_CA and --ssl-
mode=VERIFY_IDENTITY, which are a better choice than the default setting to
help prevent this type of attack. With these settings, the replica checks that the
server’s certificate is valid, and checks that the host name the replica is using
matches the identity in the server’s certificate. To implement one of these levels
of verification, you must first ensure that the CA certificate for the server is reliably
available to the replica, otherwise availability issues will result. For this reason, they
are not the default setting.

The MASTER_SSL_xxx options and the MASTER_TLS_VERSION option specify how the replica uses
encryption and ciphers to secure the replication connection. These options can be changed even on
replicas that are compiled without SSL support. They are saved to the source metadata repository,
but are ignored if the replica does not have SSL support enabled. The MASTER_SSL_xxx and
MASTER_TLS_VERSION options perform the same functions as the --ssl-xxx and --tls-version
client options described in Command Options for Encrypted Connections. The correspondence between
the two sets of options, and the use of the MASTER_SSL_xxx and MASTER_TLS_VERSION options to
set up a secure connection, is explained in Section 16.3.8, “Setting Up Replication to Use Encrypted
Connections”.

The MASTER_HEARTBEAT_PERIOD, MASTER_CONNECT_RETRY, and MASTER_RETRY_COUNT options
control how the replica recognizes that the connection to the source has been lost and makes attempts to
reconnect.

• The slave_net_timeout system variable specifies the number of seconds that the replica waits for
either more data or a heartbeat signal from the source, before the replica considers the connection
broken, aborts the read, and tries to reconnect. The default value is 60 seconds (one minute). Prior to
MySQL 5.7.7, the default was 3600 seconds (one hour).

• The heartbeat interval, which stops the connection timeout occurring in the absence of data if the
connection is still good, is controlled by the MASTER_HEARTBEAT_PERIOD option. A heartbeat signal is
sent to the replica after that number of seconds, and the waiting period is reset whenever the source's
binary log is updated with an event. Heartbeats are therefore sent by the source only if there are no
unsent events in the binary log file for a period longer than this. The heartbeat interval interval is a
decimal value having the range 0 to 4294967 seconds and a resolution in milliseconds; the smallest
nonzero value is 0.001. Setting interval to 0 disables heartbeats altogether. The heartbeat interval

2368

SQL Statements for Controlling Replica Servers

defaults to half the value of the slave_net_timeout system variable. It is recorded in the source
metadata repository and shown in the replication_connection_configuration Performance
Schema table.

• Prior to MySQL 5.7.4, not including MASTER_HEARTBEAT_PERIOD caused CHANGE MASTER TO to
reset the heartbeat interval to the default (half the value of the slave_net_timeout system variable),
and Slave_received_heartbeats to 0. The heartbeat interval is now not reset except by RESET
SLAVE. (Bug #18185490)

• Note that a change to the value or default setting of slave_net_timeout does not automatically
change the heartbeat interval, whether that has been set explicitly or is using a previously calculated
default. A warning is issued if you set @@GLOBAL.slave_net_timeout to a value less than that of the
current heartbeat interval. If slave_net_timeout is changed, you must also issue CHANGE MASTER
TO to adjust the heartbeat interval to an appropriate value so that the heartbeat signal occurs before the
connection timeout. If you do not do this, the heartbeat signal has no effect, and if no data is received
from the source, the replica can make repeated reconnection attempts, creating zombie dump threads.

• If the replica does need to reconnect, the first retry occurs immediately after the timeout.
MASTER_CONNECT_RETRY specifies the interval between reconnection attempts, and
MASTER_RETRY_COUNT limits the number of reconnection attempts. If both the default settings are
used, the replica waits 60 seconds between reconnection attempts (MASTER_CONNECT_RETRY=60),
and keeps attempting to reconnect at this rate for 60 days (MASTER_RETRY_COUNT=86400). A setting
of 0 for MASTER_RETRY_COUNT means that there is no limit on the number of reconnection attempts,
so the replica keeps trying to reconnect indefinitely. These values are recorded in the source metadata
repository and shown in the replication_connection_configuration Performance Schema
table. MASTER_RETRY_COUNT supersedes the --master-retry-count server startup option.

MASTER_DELAY specifies how many seconds behind the source the replica must lag. An event received
from the source is not executed until at least interval seconds later than its execution on the source.
The default is 0. An error occurs if interval is not a nonnegative integer in the range from 0 to 231−1. For
more information, see Section 16.3.10, “Delayed Replication”.

From MySQL 5.7, a CHANGE MASTER TO statement employing the MASTER_DELAY option can be
executed on a running replica when the replication SQL thread is stopped.

MASTER_BIND is for use on replicas having multiple network interfaces, and determines which of the
replica's network interfaces is chosen for connecting to the source.

The address configured with this option, if any, can be seen in the Master_Bind column of the output
from SHOW SLAVE STATUS. If you are using a table for the source metadata repository (server started
with master_info_repository=TABLE), the value can also be seen as the Master_bind column of
the mysql.slave_master_info table.

The ability to bind a replica to a specific network interface is also supported by NDB Cluster.

MASTER_LOG_FILE and MASTER_LOG_POS are the coordinates at which the replication I/O thread should
begin reading from the source the next time the thread starts. RELAY_LOG_FILE and RELAY_LOG_POS
are the coordinates at which the replication SQL thread should begin reading from the relay log the next
time the thread starts. If you specify any of these options, you cannot specify MASTER_AUTO_POSITION
= 1 (described later in this section). If neither of MASTER_LOG_FILE or MASTER_LOG_POS is specified,
the replica uses the last coordinates of the replication SQL thread before CHANGE MASTER TO was
issued. This ensures that there is no discontinuity in replication, even if the replication SQL thread was late
compared to the replication I/O thread, when you merely want to change, say, the password to use.

From MySQL 5.7, a CHANGE MASTER TO statement employing RELAY_LOG_FILE, RELAY_LOG_POS,
or both options can be executed on a running replica when the replication SQL thread is stopped. Prior

2369

SQL Statements for Controlling Replica Servers

to MySQL 5.7.4, CHANGE MASTER TO deletes all relay log files and starts a new one, unless you specify
RELAY_LOG_FILE or RELAY_LOG_POS. In that case, relay log files are kept; the relay_log_purge
global variable is set silently to 0. In MySQL 5.7.4 and later, relay logs are preserved if at least one of
the replication SQL thread and the replication I/O thread is running. If both threads are stopped, all relay
log files are deleted unless at least one of RELAY_LOG_FILE or RELAY_LOG_POS is specified. For the
Group Replication applier channel (group_replication_applier), which only has an SQL thread
and no I/O thread, this is the case if the SQL thread is stopped, but with that channel you cannot use the
RELAY_LOG_FILE and RELAY_LOG_POS options.

RELAY_LOG_FILE can use either an absolute or relative path, and uses the same base name as
MASTER_LOG_FILE. (Bug #12190)

When MASTER_AUTO_POSITION = 1 is used with CHANGE MASTER TO, the replica attempts to connect
to the source using the auto-positioning feature of GTID-based replication, rather than a binary log file
based position. From MySQL 5.7, this option can be employed by CHANGE MASTER TO only if both
the replication SQL thread and the replication I/O thread are stopped. Both the replica and the source
must have GTIDs enabled (GTID_MODE=ON, ON_PERMISSIVE, or OFF_PERMISSIVE on the replica,
and GTID_MODE=ON on the source). MASTER_LOG_FILE, MASTER_LOG_POS, RELAY_LOG_FILE, and
RELAY_LOG_POS cannot be specified together with MASTER_AUTO_POSITION = 1. If multi-source
replication is enabled on the replica, you need to set the MASTER_AUTO_POSITION = 1 option for each
applicable replication channel.

With MASTER_AUTO_POSITION = 1 set, in the initial connection handshake, the replica sends a GTID
set containing the transactions that it has already received, committed, or both. The source responds by
sending all transactions recorded in its binary log whose GTID is not included in the GTID set sent by the
replica. This exchange ensures that the source only sends the transactions with a GTID that the replica
has not already recorded or committed. If the replica receives transactions from more than one source,
as in the case of a diamond topology, the auto-skip function ensures that the transactions are not applied
twice. For details of how the GTID set sent by the replica is computed, see Section 16.1.3.3, “GTID Auto-
Positioning”.

If any of the transactions that should be sent by the source have been purged from the source's binary log,
or added to the set of GTIDs in the gtid_purged system variable by another method, the source sends
the error ER_MASTER_HAS_PURGED_REQUIRED_GTIDS to the replica, and replication does not start. Also,
if during the exchange of transactions it is found that the replica has recorded or committed transactions
with the source's UUID in the GTID, but the source itself has not committed them, the source sends the
error ER_SLAVE_HAS_MORE_GTIDS_THAN_MASTER to the replica and replication does not start. For
information on how to handle these situations, see Section 16.1.3.3, “GTID Auto-Positioning”.

IGNORE_SERVER_IDS takes a comma-separated list of 0 or more server IDs. Events originating from the
corresponding servers are ignored, with the exception of log rotation and deletion events, which are still
recorded in the relay log.

In circular replication, the originating server normally acts as the terminator of its own events, so that they
are not applied more than once. Thus, this option is useful in circular replication when one of the servers
in the circle is removed. Suppose that you have a circular replication setup with 4 servers, having server
IDs 1, 2, 3, and 4, and server 3 fails. When bridging the gap by starting replication from server 2 to server
4, you can include IGNORE_SERVER_IDS = (3) in the CHANGE MASTER TO statement that you issue on
server 4 to tell it to use server 2 as its source instead of server 3. Doing so causes it to ignore and not to
propagate any statements that originated with the server that is no longer in use.

If a CHANGE MASTER TO statement is issued without any IGNORE_SERVER_IDS option, any existing list is
preserved. To clear the list of ignored servers, it is necessary to use the option with an empty list:

CHANGE MASTER TO IGNORE_SERVER_IDS = ();

2370

https://dev.mysql.com/doc/mysql-errors/5.7/en/server-error-reference.html#error_er_master_has_purged_required_gtids
https://dev.mysql.com/doc/mysql-errors/5.7/en/server-error-reference.html#error_er_slave_has_more_gtids_than_master

SQL Statements for Controlling Replica Servers

Prior to MySQL 5.7.5, RESET SLAVE ALL has no effect on the server ID list. In MySQL 5.7.5 and later,
RESET SLAVE ALL clears IGNORE_SERVER_IDS. (Bug #18816897)

If IGNORE_SERVER_IDS contains the server's own ID and the server was started with the --replicate-
same-server-id option enabled, an error results.

The source metadata repository and the output of SHOW SLAVE STATUS provide the list of servers that
are currently ignored. For more information, see Section 16.2.4.2, “Replication Metadata Repositories”, and
Section 13.7.5.34, “SHOW SLAVE STATUS Statement”.

Invoking CHANGE MASTER TO causes the previous values for MASTER_HOST, MASTER_PORT,
MASTER_LOG_FILE, and MASTER_LOG_POS to be written to the error log, along with other information
about the replica's state prior to execution.

CHANGE MASTER TO causes an implicit commit of an ongoing transaction. See Section 13.3.3,
“Statements That Cause an Implicit Commit”.

In MySQL 5.7.4 and later, the strict requirement to execute STOP SLAVE prior to issuing any CHANGE
MASTER TO statement (and START SLAVE afterward) is removed. Instead of depending on whether the
replica is stopped, the behavior of CHANGE MASTER TO depends (in MySQL 5.7.4 and later) on the states
of the replication SQL thread and the replication I/O thread; which of these threads is stopped or running
now determines the options that can or cannot be used with a CHANGE MASTER TO statement at a given
point in time. The rules for making this determination are listed here:

• If the SQL thread is stopped, you can execute CHANGE MASTER TO using any combination that is
otherwise allowed of RELAY_LOG_FILE, RELAY_LOG_POS, and MASTER_DELAY options, even if the
replication I/O thread is running. No other options may be used with this statement when the I/O thread
is running.

• If the I/O thread is stopped, you can execute CHANGE MASTER TO using any of the options for this
statement (in any allowed combination) except RELAY_LOG_FILE, RELAY_LOG_POS, MASTER_DELAY,
or MASTER_AUTO_POSITION = 1 even when the SQL thread is running.

• Both the SQL thread and the I/O thread must be stopped before issuing a CHANGE MASTER TO
statement that employs MASTER_AUTO_POSITION = 1.

You can check the current state of the replication SQL thread and the replication I/O thread using SHOW
SLAVE STATUS. Note that the Group Replication applier channel (group_replication_applier) has
no I/O thread, only an SQL thread.

For more information, see Section 16.3.7, “Switching Sources During Failover”.

If you are using statement-based replication and temporary tables, it is possible for a CHANGE MASTER
TO statement following a STOP SLAVE statement to leave behind temporary tables on the replica. From
MySQL 5.7, a warning (ER_WARN_OPEN_TEMP_TABLES_MUST_BE_ZERO) is issued whenever this occurs.
You can avoid this in such cases by making sure that the value of the Slave_open_temp_tables
system status variable is equal to 0 prior to executing such a CHANGE MASTER TO statement.

CHANGE MASTER TO is useful for setting up a replica when you have the snapshot of the replication
source server and have recorded the source's binary log coordinates corresponding to the time of the
snapshot. After loading the snapshot into the replica to synchronize it with the source, you can run CHANGE
MASTER TO MASTER_LOG_FILE='log_name', MASTER_LOG_POS=log_pos on the replica to specify
the coordinates at which the replica should begin reading the source's binary log.

The following example changes the replication source server the replica uses and establishes the source's
binary log coordinates from which the replica begins reading. This is used when you want to set up the
replica to replicate the source:

2371

https://dev.mysql.com/doc/mysql-errors/5.7/en/server-error-reference.html#error_er_warn_open_temp_tables_must_be_zero

SQL Statements for Controlling Replica Servers

CHANGE MASTER TO
 MASTER_HOST='source2.example.com',
 MASTER_USER='replication',
 MASTER_PASSWORD='password',
 MASTER_PORT=3306,
 MASTER_LOG_FILE='source2-bin.001',
 MASTER_LOG_POS=4,
 MASTER_CONNECT_RETRY=10;

The next example shows an operation that is less frequently employed. It is used when the replica
has relay log files that you want it to execute again for some reason. To do this, the source need not
be reachable. You need only use CHANGE MASTER TO and start the SQL thread (START SLAVE
SQL_THREAD):

CHANGE MASTER TO
 RELAY_LOG_FILE='replica-relay-bin.006',
 RELAY_LOG_POS=4025;

The following table shows the maximum permissible length for the string-valued options.

Option Maximum Length

MASTER_HOST 60

MASTER_USER 96

MASTER_PASSWORD 32

MASTER_LOG_FILE 511

RELAY_LOG_FILE 511

MASTER_SSL_CA 511

MASTER_SSL_CAPATH 511

MASTER_SSL_CERT 511

MASTER_SSL_CRL 511

MASTER_SSL_CRLPATH 511

MASTER_SSL_KEY 511

MASTER_SSL_CIPHER 511

MASTER_TLS_VERSION 511

13.4.2.2 CHANGE REPLICATION FILTER Statement

CHANGE REPLICATION FILTER filter[, filter][, ...]

filter: {
 REPLICATE_DO_DB = (db_list)
 | REPLICATE_IGNORE_DB = (db_list)
 | REPLICATE_DO_TABLE = (tbl_list)
 | REPLICATE_IGNORE_TABLE = (tbl_list)
 | REPLICATE_WILD_DO_TABLE = (wild_tbl_list)
 | REPLICATE_WILD_IGNORE_TABLE = (wild_tbl_list)
 | REPLICATE_REWRITE_DB = (db_pair_list)
}

db_list:
 db_name[, db_name][, ...]

tbl_list:
 db_name.table_name[, db_table_name][, ...]
wild_tbl_list:
 'db_pattern.table_pattern'[, 'db_pattern.table_pattern'][, ...]

2372

SQL Statements for Controlling Replica Servers

db_pair_list:
 (db_pair)[, (db_pair)][, ...]

db_pair:
 from_db, to_db

CHANGE REPLICATION FILTER sets one or more replication filtering rules on the replica in the same
way as starting the replica mysqld with replication filtering options such as --replicate-do-db or --
replicate-wild-ignore-table. Filters set using this statement differ from those set using the server
options in two key respects:

1. The statement does not require restarting the server to take effect, only that the replication SQL thread
be stopped using STOP SLAVE SQL_THREAD first (and restarted with START SLAVE SQL_THREAD
afterwards).

2. The effects of the statement are not persistent; any filters set using CHANGE REPLICATION FILTER
are lost following a restart of the replica mysqld.

CHANGE REPLICATION FILTER requires the SUPER privilege.

Note

Replication filters cannot be set on a MySQL server instance that is configured for
Group Replication, because filtering transactions on some servers would make the
group unable to reach agreement on a consistent state.

The following list shows the CHANGE REPLICATION FILTER options and how they relate to --
replicate-* server options:

• REPLICATE_DO_DB: Include updates based on database name. Equivalent to --replicate-do-db.

• REPLICATE_IGNORE_DB: Exclude updates based on database name. Equivalent to --replicate-
ignore-db.

• REPLICATE_DO_TABLE: Include updates based on table name. Equivalent to --replicate-do-
table.

• REPLICATE_IGNORE_TABLE: Exclude updates based on table name. Equivalent to --replicate-
ignore-table.

• REPLICATE_WILD_DO_TABLE: Include updates based on wildcard pattern matching table name.
Equivalent to --replicate-wild-do-table.

• REPLICATE_WILD_IGNORE_TABLE: Exclude updates based on wildcard pattern matching table name.
Equivalent to --replicate-wild-ignore-table.

• REPLICATE_REWRITE_DB: Perform updates on replica after substituting new name on replica for
specified database on source. Equivalent to --replicate-rewrite-db.

The precise effects of REPLICATE_DO_DB and REPLICATE_IGNORE_DB filters are dependent on
whether statement-based or row-based replication is in effect. See Section 16.2.5, “How Servers Evaluate
Replication Filtering Rules”, for more information.

Multiple replication filtering rules can be created in a single CHANGE REPLICATION FILTER statement by
separating the rules with commas, as shown here:

CHANGE REPLICATION FILTER
 REPLICATE_DO_DB = (d1), REPLICATE_IGNORE_DB = (d2);

2373

SQL Statements for Controlling Replica Servers

Issuing the statement just shown is equivalent to starting the replica mysqld with the options --
replicate-do-db=d1 --replicate-ignore-db=d2.

If the same filtering rule is specified multiple times, only the last such rule is actually used. For example,
the two statements shown here have exactly the same effect, because the first REPLICATE_DO_DB rule in
the first statement is ignored:

CHANGE REPLICATION FILTER
 REPLICATE_DO_DB = (db1, db2), REPLICATE_DO_DB = (db3, db4);

CHANGE REPLICATION FILTER
 REPLICATE_DO_DB = (db3,db4);

Caution

This behavior differs from that of the --replicate-* filter options where
specifying the same option multiple times causes the creation of multiple filter rules.

Names of tables and database not containing any special characters need not be quoted. Values used with
REPLICATION_WILD_TABLE and REPLICATION_WILD_IGNORE_TABLE are string expressions, possibly
containing (special) wildcard characters, and so must be quoted. This is shown in the following example
statements:

CHANGE REPLICATION FILTER
 REPLICATE_WILD_DO_TABLE = ('db1.old%');

CHANGE REPLICATION FILTER
 REPLICATE_WILD_IGNORE_TABLE = ('db1.new%', 'db2.new%');

Values used with REPLICATE_REWRITE_DB represent pairs of database names; each such value must be
enclosed in parentheses. The following statement rewrites statements occurring on database db1 on the
source to database db2 on the replica:

CHANGE REPLICATION FILTER REPLICATE_REWRITE_DB = ((db1, db2));

The statement just shown contains two sets of parentheses, one enclosing the pair of database names,
and the other enclosing the entire list. This is perhaps more easily seen in the following example, which
creates two rewrite-db rules, one rewriting database dbA to dbB, and one rewriting database dbC to
dbD:

CHANGE REPLICATION FILTER
 REPLICATE_REWRITE_DB = ((dbA, dbB), (dbC, dbD));

This statement leaves any existing replication filtering rules unchanged; to unset all filters of a given
type, set the filter's value to an explicitly empty list, as shown in this example, which removes all existing
REPLICATE_DO_DB and REPLICATE_IGNORE_DB rules:

CHANGE REPLICATION FILTER
 REPLICATE_DO_DB = (), REPLICATE_IGNORE_DB = ();

Setting a filter to empty in this way removes all existing rules, does not create any new ones, and does
not restore any rules set at mysqld startup using --replicate-* options on the command line or in the
configuration file.

Values employed with REPLICATE_WILD_DO_TABLE and REPLICATE_WILD_IGNORE_TABLE must be
in the format db_name.tbl_name. Prior to MySQL 5.7.5, this was not strictly enforced, although using
nonconforming values with these options could lead to erroneous results (Bug #18095449).

For more information, see Section 16.2.5, “How Servers Evaluate Replication Filtering Rules”.

2374

SQL Statements for Controlling Replica Servers

13.4.2.3 RESET SLAVE Statement

RESET SLAVE [ALL] [channel_option]

channel_option:
 FOR CHANNEL channel

RESET SLAVE makes the replica forget its replication position in the source's binary log. This statement
is meant to be used for a clean start: It clears the replication metadata repositories, deletes all the
relay log files, and starts a new relay log file. It also resets to 0 the replication delay specified with the
MASTER_DELAY option to CHANGE MASTER TO.

Note

All relay log files are deleted, even if they have not been completely executed by
the replication SQL thread. (This is a condition likely to exist on a replica if you have
issued a STOP SLAVE statement or if the replica is highly loaded.)

For a server where GTIDs are in use (gtid_mode is ON), issuing RESET SLAVE has no effect on the GTID
execution history. The statement does not change the values of gtid_executed or gtid_purged, or
the mysql.gtid_executed table. If you need to reset the GTID execution history, use RESET MASTER,
even if the GTID-enabled server is a replica where binary logging is disabled.

RESET SLAVE requires the RELOAD privilege.

To use RESET SLAVE, the replication threads must be stopped, so on a running replica use STOP SLAVE
before issuing RESET SLAVE. To use RESET SLAVE on a Group Replication group member, the member
status must be OFFLINE, meaning that the plugin is loaded but the member does not currently belong to
any group. A group member can be taken offline by using a STOP GROUP REPLICATION statement.

The optional FOR CHANNEL channel clause enables you to name which replication channel the
statement applies to. Providing a FOR CHANNEL channel clause applies the RESET SLAVE statement to
a specific replication channel. Combining a FOR CHANNEL channel clause with the ALL option deletes
the specified channel. If no channel is named and no extra channels exist, the statement applies to the
default channel. Issuing a RESET SLAVE ALL statement without a FOR CHANNEL channel clause when
multiple replication channels exist deletes all replication channels and recreates only the default channel.
See Section 16.2.2, “Replication Channels” for more information.

RESET SLAVE does not change any replication connection parameters such as the source's host name
and port, or the replication user account name and its password.

• From MySQL 5.7.24, when master_info_repository=TABLE is set on the server, replication
connection parameters are preserved in the crash-safe InnoDB table mysql.slave_master_info as
part of the RESET SLAVE operation. They are also retained in memory. In the event of an unexpected
server exit or deliberate restart after issuing RESET SLAVE but before issuing START SLAVE, the
replication connection parameters are retrieved from the table and reused for the new connection.

• When master_info_repository=FILE is set on the server (which is the default in MySQL 5.7),
replication connection parameters are only retained in memory. If the replica mysqld is restarted
immediately after issuing RESET SLAVE due to an unexpected server exit or deliberate restart, the
connection parameters are lost. In that case, you must issue a CHANGE MASTER TO statement after the
server start to respecify the connection parameters before issuing START SLAVE.

If you want to reset the connection parameters intentionally, you need to use RESET SLAVE ALL, which
clears the connection parameters. In that case, you must issue a CHANGE MASTER TO statement after the
server start to specify the new connection parameters.

2375

SQL Statements for Controlling Replica Servers

RESET SLAVE causes an implicit commit of an ongoing transaction. See Section 13.3.3, “Statements That
Cause an Implicit Commit”.

If the replication SQL thread was in the middle of replicating temporary tables when it was stopped, and
RESET SLAVE is issued, these replicated temporary tables are deleted on the replica.

Prior to MySQL 5.7.5, RESET SLAVE also had the effect of resetting both the heartbeat period
(Slave_heartbeat_period) and SSL_VERIFY_SERVER_CERT. This issue is fixed in MySQL 5.7.5 and
later. (Bug #18777899, Bug #18778485)

Prior to MySQL 5.7.5, RESET SLAVE ALL did not clear the IGNORE_SERVER_IDS list set by CHANGE
MASTER TO. In MySQL 5.7.5 and later, the statement clears the list. (Bug #18816897)

Note

When used on an NDB Cluster replica SQL node, RESET SLAVE clears the
mysql.ndb_apply_status table. You should keep in mind when using this
statement that ndb_apply_status uses the NDB storage engine and so is shared
by all SQL nodes attached to the replica cluster.

You can override this behavior by issuing SET GLOBAL
@@ndb_clear_apply_status=OFF prior to executing RESET SLAVE, which
keeps the replica from purging the ndb_apply_status table in such cases.

13.4.2.4 SET GLOBAL sql_slave_skip_counter Syntax

SET GLOBAL sql_slave_skip_counter = N

This statement skips the next N events from the master. This is useful for recovering from replication stops
caused by a statement.

This statement is valid only when the slave threads are not running. Otherwise, it produces an error.

When using this statement, it is important to understand that the binary log is actually organized as a
sequence of groups known as event groups. Each event group consists of a sequence of events.

• For transactional tables, an event group corresponds to a transaction.

• For nontransactional tables, an event group corresponds to a single SQL statement.

Note

A single transaction can contain changes to both transactional and nontransactional
tables.

When you use SET GLOBAL sql_slave_skip_counter to skip events and the result is in the middle of
a group, the slave continues to skip events until it reaches the end of the group. Execution then starts with
the next event group.

13.4.2.5 START SLAVE Statement

START SLAVE [thread_types] [until_option] [connection_options] [channel_option]

thread_types:
 [thread_type [, thread_type] ...]

thread_type:
 IO_THREAD | SQL_THREAD

2376

SQL Statements for Controlling Replica Servers

until_option:
 UNTIL { {SQL_BEFORE_GTIDS | SQL_AFTER_GTIDS} = gtid_set
 | MASTER_LOG_FILE = 'log_name', MASTER_LOG_POS = log_pos
 | RELAY_LOG_FILE = 'log_name', RELAY_LOG_POS = log_pos
 | SQL_AFTER_MTS_GAPS }

connection_options:
 [USER='user_name'] [PASSWORD='user_pass'] [DEFAULT_AUTH='plugin_name'] [PLUGIN_DIR='plugin_dir']

channel_option:
 FOR CHANNEL channel

gtid_set:
 uuid_set [, uuid_set] ...
 | ''

uuid_set:
 uuid:interval[:interval]...

uuid:
 hhhhhhhh-hhhh-hhhh-hhhh-hhhhhhhhhhhh

h:
 [0-9,A-F]

interval:
 n[-n]

 (n >= 1)

START SLAVE starts the replication threads, either together or separately. The statement requires the
SUPER privilege. START SLAVE causes an implicit commit of an ongoing transaction (see Section 13.3.3,
“Statements That Cause an Implicit Commit”).

For the thread type options, you can specify IO_THREAD, SQL_THREAD, both of these, or neither of them.
Only the threads that are started are affected by the statement.

• START SLAVE with no thread type options starts all of the replication threads, and so does START
SLAVE with both of the thread type options.

• IO_THREAD starts the replication receiver thread, which reads events from the source server and stores
them in the relay log.

• SQL_THREAD starts the replication applier thread, which reads events from the relay log and executes
them. A multithreaded replica (with slave_parallel_workers > 0) applies transactions using a
coordinator thread and multiple applier threads, and SQL_THREAD starts all of these.

Important

START SLAVE sends an acknowledgment to the user after all the replication
threads have started. However, the replication receiver thread might not yet have
connected to the source successfully, or an applier thread might stop when applying
an event right after starting. START SLAVE does not continue to monitor the
threads after they are started, so it does not warn you if they subsequently stop
or cannot connect. You must check the replica's error log for error messages
generated by the replication threads, or check that they are running satisfactorily
with SHOW SLAVE STATUS. A successful START SLAVE statement causes SHOW
SLAVE STATUS to show Slave_SQL_Running=Yes, but it might or might not
show Slave_IO_Running=Yes, because Slave_IO_Running=Yes is only

2377

SQL Statements for Controlling Replica Servers

shown if the receiver thread is both running and connected. For more information,
see Section 16.1.7.1, “Checking Replication Status”.

The optional FOR CHANNEL channel clause enables you to name which replication channel the
statement applies to. Providing a FOR CHANNEL channel clause applies the START SLAVE statement
to a specific replication channel. If no clause is named and no extra channels exist, the statement applies
to the default channel. If a START SLAVE statement does not have a channel defined when using multiple
channels, this statement starts the specified threads for all channels. See Section 16.2.2, “Replication
Channels” for more information.

The replication channels for Group Replication (group_replication_applier and
group_replication_recovery) are managed automatically by the server instance. The only
Group Replication channel that you can interact with is the group_replication_applier channel.
This channel only has an applier thread and has no receiver thread, so it can be started by using the
SQL_THREAD option without the IO_THREAD option. START SLAVE cannot be used at all with the
group_replication_recovery channel.

START SLAVE supports pluggable user-password authentication (see Section 6.2.13, “Pluggable
Authentication”) with the USER, PASSWORD, DEFAULT_AUTH and PLUGIN_DIR options, as described in the
following list. When you use these options, you must start the receiver thread (IO_THREAD option) or all
the replication threads; you cannot start the replication applier thread (SQL_THREAD option) alone.

USER The user name for the account. You must set this if PASSWORD is used.
The option cannot be set to an empty or null string.

PASSWORD The password for the named user account.

DEFAULT_AUTH The name of the authentication plugin. The default is MySQL native
authentication.

PLUGIN_DIR The location of the authentication plugin.

Important

The password that you set using START SLAVE is masked when it is written to
MySQL Server’s logs, Performance Schema tables, and SHOW PROCESSLIST
statements. However, it is sent in plain text over the connection to the replica server
instance. To protect the password in transit, use SSL/TLS encryption, an SSH
tunnel, or another method of protecting the connection from unauthorized viewing,
for the connection between the replica server instance and the client that you use to
issue START SLAVE.

The UNTIL clause makes the replica start replication, then process transactions up to the point that
you specify in the UNTIL clause, then stop again. The UNTIL clause can be used to make a replica
proceed until just before the point where you want to skip a transaction that is unwanted, and then skip the
transaction as described in Section 16.1.7.3, “Skipping Transactions”. To identify a transaction, you can
use mysqlbinlog with the source's binary log or the replica's relay log, or use a SHOW BINLOG EVENTS
statement.

You can also use the UNTIL clause for debugging replication by processing transactions one at a time or
in sections. If you are using the UNTIL clause to do this, start the replica with the --skip-slave-start
option to prevent the SQL thread from running when the replica server starts. Remove the option after the
procedure is complete, so that it is not forgotten in the event of an unexpected server restart.

The SHOW SLAVE STATUS statement includes output fields that display the current values of the UNTIL
condition. The UNTIL condition lasts for as long as the affected threads are still running, and is removed
when they stop.

2378

SQL Statements for Controlling Replica Servers

The UNTIL clause operates on the replication applier thread (SQL_THREAD option). You can use the
SQL_THREAD option or let the replica default to starting both threads. If you use the IO_THREAD option
alone, the UNTIL clause is ignored because the applier thread is not started.

The point that you specify in the UNTIL clause can be any one (and only one) of the following options:

SOURCE_LOG_FILE and
SOURCE_LOG_POS

These options make the replication applier process transactions up to a
position in its relay log, identified by the file name and file position of the
corresponding point in the binary log on the source server. The applier
thread finds the nearest transaction boundary at or after the specified
position, finishes applying the transaction, and stops there.

RELAY_LOG_FILE and
RELAY_LOG_POS

These options make the replication applier process transactions up
to a position in the replica’s relay log, identified by the relay log file
name and a position in that file. The applier thread finds the nearest
transaction boundary at or after the specified position, finishes applying
the transaction, and stops there.

SQL_BEFORE_GTIDS This option makes the replication applier start processing transactions
and stop when it encounters any transaction that is in the specified
GTID set. The encountered transaction from the GTID set is not applied,
and nor are any of the other transactions in the GTID set. The option
takes a GTID set containing one or more global transaction identifiers
as an argument (see GTID Sets). Transactions in a GTID set do not
necessarily appear in the replication stream in the order of their GTIDs,
so the transaction before which the applier stops is not necessarily the
earliest.

SQL_AFTER_GTIDS This option makes the replication applier start processing transactions
and stop when it has processed all of the transactions in a specified
GTID set. The option takes a GTID set containing one or more global
transaction identifiers as an argument (see GTID Sets).

With SQL_AFTER_GTIDS, the replication threads stop after they
have processed all transactions in the GTID set. Transactions are
processed in the order received, so it is possible that these include
transactions which are not part of the GTID set, but which are received
(and processed) before all transactions in the set have been committed.
For example, executing START SLAVE UNTIL SQL_AFTER_GTIDS
= 3E11FA47-71CA-11E1-9E33-C80AA9429562:11-56 causes the
replica to obtain (and process) all transactions from the source until all
of the transactions having the sequence numbers 11 through 56 have
been processed, and then to stop without processing any additional
transactions after that point has been reached.

SQL_AFTER_GTIDS is not compatible with with multi-threaded
slaves. If this option is used with a multi-threaded slave, a
warning is raised, and the slave switches to single-threaded
mode. Depending on the use case, it may be possible to to
use START SLAVE UNTIL MASTER_LOG_POS or START
SLAVE UNTIL SQL_BEFORE_GTIDS instead. You can also use
WAIT_UNTIL_SQL_THREAD_AFTER_GTIDS(), which waits until the
correct position is reached, but does not stop the slave thread.

SQL_AFTER_MTS_GAPS For a multithreaded replica only (with slave_parallel_workers >
0), this option makes the replica process transactions up to the point

2379

SQL Statements for Controlling Replica Servers

where there are no more gaps in the sequence of transactions executed
from the relay log. When using a multithreaded replica, there is a
chance of gaps occurring in the following situations:

• The coordinator thread is stopped.

• An error occurs in the applier threads.

• mysqld shuts down unexpectedly.

When a replication channel has gaps, the replica’s database is in a
state that might never have existed on the source. The replica tracks
the gaps internally and disallows CHANGE MASTER TO statements that
would remove the gap information if they executed.

Issuing START SLAVE on a multithreaded replica with gaps in the
sequence of transactions executed from the relay log generates a
warning. To correct this situation, the solution is to use START SLAVE
UNTIL SQL_AFTER_MTS_GAPS. See Section 16.4.1.32, “Replication
and Transaction Inconsistencies” for more information.

If you need to change a failed multithreaded replica to single-threaded
mode, you can issue the following series of statements, in the order
shown:

START SLAVE UNTIL SQL_AFTER_MTS_GAPS;
SET @@GLOBAL.slave_parallel_workers = 0;
START SLAVE SQL_THREAD;

13.4.2.6 STOP SLAVE Statement

STOP SLAVE [thread_types] [channel_option]

thread_types:
 [thread_type [, thread_type] ...]

thread_type: IO_THREAD | SQL_THREAD

channel_option:
 FOR CHANNEL channel

Stops the replication threads. STOP SLAVE requires the SUPER privilege. Recommended best practice is
to execute STOP SLAVE on the replica before stopping the replica server (see Section 5.1.16, “The Server
Shutdown Process”, for more information).

When using the row-based logging format: You should execute STOP SLAVE or STOP SLAVE
SQL_THREAD on the replica prior to shutting down the replica server if you are replicating any tables that
use a nontransactional storage engine (see the Note later in this section).

Like START SLAVE, this statement may be used with the IO_THREAD and SQL_THREAD options
to name the thread or threads to be stopped. Note that the Group Replication applier channel
(group_replication_applier) has no replication I/O thread, only a replication SQL thread. Using the
SQL_THREAD option therefore stops this channel completely.

STOP SLAVE causes an implicit commit of an ongoing transaction. See Section 13.3.3, “Statements That
Cause an Implicit Commit”.

gtid_next must be set to AUTOMATIC before issuing this statement.

2380

SQL Statements for Controlling Group Replication

You can control how long STOP SLAVE waits before timing out by setting the
rpl_stop_slave_timeout system variable. This can be used to avoid deadlocks between STOP
SLAVE and other SQL statements using different client connections to the replica. When the timeout value
is reached, the issuing client returns an error message and stops waiting, but the STOP SLAVE instruction
remains in effect. Once the replication threads are no longer busy, the STOP SLAVE statement is executed
and the replica stops.

Some CHANGE MASTER TO statements are allowed while the replica is running, depending on the
states of the replication SQL thread and the replication I/O thread. However, using STOP SLAVE prior to
executing CHANGE MASTER TO in such cases is still supported. See Section 13.4.2.1, “CHANGE MASTER
TO Statement”, and Section 16.3.7, “Switching Sources During Failover”, for more information.

The optional FOR CHANNEL channel clause enables you to name which replication channel the
statement applies to. Providing a FOR CHANNEL channel clause applies the STOP SLAVE statement
to a specific replication channel. If no channel is named and no extra channels exist, the statement
applies to the default channel. If a STOP SLAVE statement does not name a channel when using multiple
channels, this statement stops the specified threads for all channels. This statement cannot be used with
the group_replication_recovery channel. See Section 16.2.2, “Replication Channels” for more
information.

When using statement-based replication: changing the source while it has open temporary tables is
potentially unsafe. This is one of the reasons why statement-based replication of temporary tables
is not recommended. You can find out whether there are any temporary tables on the replica by
checking the value of Slave_open_temp_tables; when using statement-based replication, this
value should be 0 before executing CHANGE MASTER TO. If there are any temporary tables open
on the replica, issuing a CHANGE MASTER TO statement after issuing a STOP SLAVE causes an
ER_WARN_OPEN_TEMP_TABLES_MUST_BE_ZERO warning.

When using a multithreaded replica (slave_parallel_workers is a nonzero value), any gaps in the
sequence of transactions executed from the relay log are closed as part of stopping the worker threads.
If the replica is stopped unexpectedly (for example due to an error in a worker thread, or another thread
issuing KILL) while a STOP SLAVE statement is executing, the sequence of executed transactions
from the relay log may become inconsistent. See Section 16.4.1.32, “Replication and Transaction
Inconsistencies”, for more information.

If the current replication event group has modified one or more nontransactional tables, STOP SLAVE
waits for up to 60 seconds for the event group to complete, unless you issue a KILL QUERY or KILL
CONNECTION statement for the replication SQL thread. If the event group remains incomplete after the
timeout, an error message is logged.

13.4.3 SQL Statements for Controlling Group Replication

This section provides information about the statements used to control servers running the MySQL Group
Replication plugin. See Chapter 17, Group Replication for more information.

13.4.3.1 START GROUP_REPLICATION Statement

START GROUP_REPLICATION

Starts Group Replication on this server instance. This statement requires the SUPER privilege. If
super_read_only=ON and the member should join as a primary, super_read_only is set to OFF once
Group Replication successfully starts.

A server that participates in a group in single-primary mode should use skip_replica_start=ON.
Otherwise, the server is not allowed to join a group as a secondary.

2381

https://dev.mysql.com/doc/mysql-errors/5.7/en/server-error-reference.html#error_er_warn_open_temp_tables_must_be_zero
https://dev.mysql.com/doc/refman/8.0/en/replication-options-replica.html#sysvar_skip_replica_start

Prepared Statements

13.4.3.2 STOP GROUP_REPLICATION Statement

STOP GROUP_REPLICATION

Stops Group Replication. This statement requires the GROUP_REPLICATION_ADMIN or SUPER privilege.
As soon as you issue STOP GROUP_REPLICATION the member is set to super_read_only=ON, which
ensures that no writes can be made to the member while Group Replication stops. Any other replication
channels running on the member are also stopped.

Warning

Use this statement with extreme caution because it removes the server instance
from the group, meaning it is no longer protected by Group Replication's
consistency guarantee mechanisms. To be completely safe, ensure that your
applications can no longer connect to the instance before issuing this statement to
avoid any chance of stale reads.

13.5 Prepared Statements
MySQL 5.7 provides support for server-side prepared statements. This support takes advantage of the
efficient client/server binary protocol. Using prepared statements with placeholders for parameter values
has the following benefits:

• Less overhead for parsing the statement each time it is executed. Typically, database applications
process large volumes of almost-identical statements, with only changes to literal or variable values in
clauses such as WHERE for queries and deletes, SET for updates, and VALUES for inserts.

• Protection against SQL injection attacks. The parameter values can contain unescaped SQL quote and
delimiter characters.

The following sections provide an overview of the characteristics of prepared statements:

• Prepared Statements in Application Programs

• Prepared Statements in SQL Scripts

• PREPARE, EXECUTE, and DEALLOCATE PREPARE Statements

• SQL Syntax Permitted in Prepared Statements

Prepared Statements in Application Programs

You can use server-side prepared statements through client programming interfaces, including the MySQL
C API client library for C programs, MySQL Connector/J for Java programs, and MySQL Connector/NET
for programs using .NET technologies. For example, the C API provides a set of function calls that make
up its prepared statement API. See C API Prepared Statement Interface. Other language interfaces can
provide support for prepared statements that use the binary protocol by linking in the C client library, one
example being the mysqli extension, available in PHP 5.0 and higher.

Prepared Statements in SQL Scripts

An alternative SQL interface to prepared statements is available. This interface is not as efficient as using
the binary protocol through a prepared statement API, but requires no programming because it is available
directly at the SQL level:

• You can use it when no programming interface is available to you.

2382

https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_group-replication-admin
https://dev.mysql.com/doc/c-api/5.7/en/
https://dev.mysql.com/doc/c-api/5.7/en/
https://dev.mysql.com/doc/connector-j/en/
https://dev.mysql.com/doc/connector-net/en/
https://dev.mysql.com/doc/c-api/5.7/en/c-api-prepared-statement-interface.html
http://php.net/mysqli

PREPARE, EXECUTE, and DEALLOCATE PREPARE Statements

• You can use it from any program that can send SQL statements to the server to be executed, such as
the mysql client program.

• You can use it even if the client is using an old version of the client library.

SQL syntax for prepared statements is intended to be used for situations such as these:

• To test how prepared statements work in your application before coding it.

• To use prepared statements when you do not have access to a programming API that supports them.

• To interactively troubleshoot application issues with prepared statements.

• To create a test case that reproduces a problem with prepared statements, so that you can file a bug
report.

PREPARE, EXECUTE, and DEALLOCATE PREPARE Statements

SQL syntax for prepared statements is based on three SQL statements:

• PREPARE prepares a statement for execution (see Section 13.5.1, “PREPARE Statement”).

• EXECUTE executes a prepared statement (see Section 13.5.2, “EXECUTE Statement”).

• DEALLOCATE PREPARE releases a prepared statement (see Section 13.5.3, “DEALLOCATE PREPARE
Statement”).

The following examples show two equivalent ways of preparing a statement that computes the hypotenuse
of a triangle given the lengths of the two sides.

The first example shows how to create a prepared statement by using a string literal to supply the text of
the statement:

mysql> PREPARE stmt1 FROM 'SELECT SQRT(POW(?,2) + POW(?,2)) AS hypotenuse';
mysql> SET @a = 3;
mysql> SET @b = 4;
mysql> EXECUTE stmt1 USING @a, @b;
+------------+
| hypotenuse |
+------------+
| 5 |
+------------+
mysql> DEALLOCATE PREPARE stmt1;

The second example is similar, but supplies the text of the statement as a user variable:

mysql> SET @s = 'SELECT SQRT(POW(?,2) + POW(?,2)) AS hypotenuse';
mysql> PREPARE stmt2 FROM @s;
mysql> SET @a = 6;
mysql> SET @b = 8;
mysql> EXECUTE stmt2 USING @a, @b;
+------------+
| hypotenuse |
+------------+
| 10 |
+------------+
mysql> DEALLOCATE PREPARE stmt2;

Here is an additional example that demonstrates how to choose the table on which to perform a query at
runtime, by storing the name of the table as a user variable:

mysql> USE test;

2383

SQL Syntax Permitted in Prepared Statements

mysql> CREATE TABLE t1 (a INT NOT NULL);
mysql> INSERT INTO t1 VALUES (4), (8), (11), (32), (80);

mysql> SET @table = 't1';
mysql> SET @s = CONCAT('SELECT * FROM ', @table);

mysql> PREPARE stmt3 FROM @s;
mysql> EXECUTE stmt3;
+----+
| a |
+----+
| 4 |
| 8 |
| 11 |
| 32 |
| 80 |
+----+

mysql> DEALLOCATE PREPARE stmt3;

A prepared statement is specific to the session in which it was created. If you terminate a session without
deallocating a previously prepared statement, the server deallocates it automatically.

A prepared statement is also global to the session. If you create a prepared statement within a stored
routine, it is not deallocated when the stored routine ends.

To guard against too many prepared statements being created simultaneously, set the
max_prepared_stmt_count system variable. To prevent the use of prepared statements, set the value
to 0.

SQL Syntax Permitted in Prepared Statements

The following SQL statements can be used as prepared statements:

ALTER TABLE
ALTER USER
ANALYZE TABLE
CACHE INDEX
CALL
CHANGE MASTER
CHECKSUM {TABLE | TABLES}
COMMIT
{CREATE | DROP} INDEX
{CREATE | RENAME | DROP} DATABASE
{CREATE | DROP} TABLE
{CREATE | RENAME | DROP} USER
{CREATE | DROP} VIEW
DELETE
DO
FLUSH {TABLE | TABLES | TABLES WITH READ LOCK | HOSTS | PRIVILEGES
 | LOGS | STATUS | MASTER | SLAVE | DES_KEY_FILE | USER_RESOURCES}
GRANT
INSERT
INSTALL PLUGIN
KILL
LOAD INDEX INTO CACHE
OPTIMIZE TABLE
RENAME TABLE
REPAIR TABLE
REPLACE
RESET {MASTER | SLAVE | QUERY CACHE}
REVOKE
SELECT
SET
SHOW BINLOG EVENTS

2384

SQL Syntax Permitted in Prepared Statements

SHOW CREATE {PROCEDURE | FUNCTION | EVENT | TABLE | VIEW}
SHOW {MASTER | BINARY} LOGS
SHOW {MASTER | SLAVE} STATUS
SLAVE {START | STOP}
TRUNCATE TABLE
UNINSTALL PLUGIN
UPDATE

Other statements are not supported.

For compliance with the SQL standard, which states that diagnostics statements are not preparable,
MySQL does not support the following as prepared statements:

• SHOW WARNINGS, SHOW COUNT(*) WARNINGS

• SHOW ERRORS, SHOW COUNT(*) ERRORS

• Statements containing any reference to the warning_count or error_count system variable.

Generally, statements not permitted in SQL prepared statements are also not permitted in stored
programs. Exceptions are noted in Section 23.8, “Restrictions on Stored Programs”.

Metadata changes to tables or views referred to by prepared statements are detected and cause automatic
repreparation of the statement when it is next executed. For more information, see Section 8.10.4,
“Caching of Prepared Statements and Stored Programs”.

Placeholders can be used for the arguments of the LIMIT clause when using prepared statements. See
Section 13.2.9, “SELECT Statement”.

In prepared CALL statements used with PREPARE and EXECUTE, placeholder support for OUT and INOUT
parameters is available beginning with MySQL 5.7. See Section 13.2.1, “CALL Statement”, for an example
and a workaround for earlier versions. Placeholders can be used for IN parameters regardless of version.

SQL syntax for prepared statements cannot be used in nested fashion. That is, a statement passed to
PREPARE cannot itself be a PREPARE, EXECUTE, or DEALLOCATE PREPARE statement.

SQL syntax for prepared statements is distinct from using prepared statement API calls. For example,
you cannot use the mysql_stmt_prepare() C API function to prepare a PREPARE, EXECUTE, or
DEALLOCATE PREPARE statement.

SQL syntax for prepared statements can be used within stored procedures, but not in stored functions or
triggers. However, a cursor cannot be used for a dynamic statement that is prepared and executed with
PREPARE and EXECUTE. The statement for a cursor is checked at cursor creation time, so the statement
cannot be dynamic.

SQL syntax for prepared statements does not support multi-statements (that is, multiple statements within
a single string separated by ; characters).

Prepared statements use the query cache under the conditions described in Section 8.10.3.1, “How the
Query Cache Operates”.

To write C programs that use the CALL SQL statement to execute stored procedures that contain prepared
statements, the CLIENT_MULTI_RESULTS flag must be enabled. This is because each CALL returns
a result to indicate the call status, in addition to any result sets that might be returned by statements
executed within the procedure.

CLIENT_MULTI_RESULTS can be enabled when you call mysql_real_connect(), either explicitly by
passing the CLIENT_MULTI_RESULTS flag itself, or implicitly by passing CLIENT_MULTI_STATEMENTS

2385

https://dev.mysql.com/doc/c-api/5.7/en/mysql-stmt-prepare.html
https://dev.mysql.com/doc/c-api/5.7/en/mysql-real-connect.html

PREPARE Statement

(which also enables CLIENT_MULTI_RESULTS). For additional information, see Section 13.2.1, “CALL
Statement”.

13.5.1 PREPARE Statement
PREPARE stmt_name FROM preparable_stmt

The PREPARE statement prepares a SQL statement and assigns it a name, stmt_name, by which to refer
to the statement later. The prepared statement is executed with EXECUTE and released with DEALLOCATE
PREPARE. For examples, see Section 13.5, “Prepared Statements”.

Statement names are not case-sensitive. preparable_stmt is either a string literal or a user variable
that contains the text of the SQL statement. The text must represent a single statement, not multiple
statements. Within the statement, ? characters can be used as parameter markers to indicate where data
values are to be bound to the query later when you execute it. The ? characters should not be enclosed
within quotation marks, even if you intend to bind them to string values. Parameter markers can be used
only where data values should appear, not for SQL keywords, identifiers, and so forth.

If a prepared statement with the given name already exists, it is deallocated implicitly before the new
statement is prepared. This means that if the new statement contains an error and cannot be prepared, an
error is returned and no statement with the given name exists.

The scope of a prepared statement is the session within which it is created, which as several implications:

• A prepared statement created in one session is not available to other sessions.

• When a session ends, whether normally or abnormally, its prepared statements no longer exist. If auto-
reconnect is enabled, the client is not notified that the connection was lost. For this reason, clients may
wish to disable auto-reconnect. See Automatic Reconnection Control.

• A prepared statement created within a stored program continues to exist after the program finishes
executing and can be executed outside the program later.

• A statement prepared in stored program context cannot refer to stored procedure or function parameters
or local variables because they go out of scope when the program ends and would be unavailable were
the statement to be executed later outside the program. As a workaround, refer instead to user-defined
variables, which also have session scope; see Section 9.4, “User-Defined Variables”.

13.5.2 EXECUTE Statement
EXECUTE stmt_name
 [USING @var_name [, @var_name] ...]

After preparing a statement with PREPARE, you execute it with an EXECUTE statement that refers to
the prepared statement name. If the prepared statement contains any parameter markers, you must
supply a USING clause that lists user variables containing the values to be bound to the parameters.
Parameter values can be supplied only by user variables, and the USING clause must name exactly as
many variables as the number of parameter markers in the statement.

You can execute a given prepared statement multiple times, passing different variables to it or setting the
variables to different values before each execution.

For examples, see Section 13.5, “Prepared Statements”.

13.5.3 DEALLOCATE PREPARE Statement
{DEALLOCATE | DROP} PREPARE stmt_name

2386

https://dev.mysql.com/doc/c-api/5.7/en/c-api-auto-reconnect.html

Compound Statements

To deallocate a prepared statement produced with PREPARE, use a DEALLOCATE PREPARE statement
that refers to the prepared statement name. Attempting to execute a prepared statement after deallocating
it results in an error. If too many prepared statements are created and not deallocated by either the
DEALLOCATE PREPARE statement or the end of the session, you might encounter the upper limit enforced
by the max_prepared_stmt_count system variable.

For examples, see Section 13.5, “Prepared Statements”.

13.6 Compound Statements

This section describes the syntax for the BEGIN ... END compound statement and other statements that
can be used in the body of stored programs: Stored procedures and functions, triggers, and events. These
objects are defined in terms of SQL code that is stored on the server for later invocation (see Chapter 23,
Stored Objects).

A compound statement is a block that can contain other blocks; declarations for variables, condition
handlers, and cursors; and flow control constructs such as loops and conditional tests.

13.6.1 BEGIN ... END Compound Statement
[begin_label:] BEGIN
 [statement_list]
END [end_label]

BEGIN ... END syntax is used for writing compound statements, which can appear within stored
programs (stored procedures and functions, triggers, and events). A compound statement can contain
multiple statements, enclosed by the BEGIN and END keywords. statement_list represents a list of one
or more statements, each terminated by a semicolon (;) statement delimiter. The statement_list itself
is optional, so the empty compound statement (BEGIN END) is legal.

BEGIN ... END blocks can be nested.

Use of multiple statements requires that a client is able to send statement strings containing the ;
statement delimiter. In the mysql command-line client, this is handled with the delimiter command.
Changing the ; end-of-statement delimiter (for example, to //) permit ; to be used in a program body. For
an example, see Section 23.1, “Defining Stored Programs”.

A BEGIN ... END block can be labeled. See Section 13.6.2, “Statement Labels”.

The optional [NOT] ATOMIC clause is not supported. This means that no transactional savepoint is set
at the start of the instruction block and the BEGIN clause used in this context has no effect on the current
transaction.

Note

Within all stored programs, the parser treats BEGIN [WORK] as the beginning
of a BEGIN ... END block. To begin a transaction in this context, use START
TRANSACTION instead.

13.6.2 Statement Labels
[begin_label:] BEGIN
 [statement_list]
END [end_label]

[begin_label:] LOOP
 statement_list

2387

DECLARE Statement

END LOOP [end_label]

[begin_label:] REPEAT
 statement_list
UNTIL search_condition
END REPEAT [end_label]

[begin_label:] WHILE search_condition DO
 statement_list
END WHILE [end_label]

Labels are permitted for BEGIN ... END blocks and for the LOOP, REPEAT, and WHILE statements. Label
use for those statements follows these rules:

• begin_label must be followed by a colon.

• begin_label can be given without end_label. If end_label is present, it must be the same as
begin_label.

• end_label cannot be given without begin_label.

• Labels at the same nesting level must be distinct.

• Labels can be up to 16 characters long.

To refer to a label within the labeled construct, use an ITERATE or LEAVE statement. The following
example uses those statements to continue iterating or terminate the loop:

CREATE PROCEDURE doiterate(p1 INT)
BEGIN
 label1: LOOP
 SET p1 = p1 + 1;
 IF p1 < 10 THEN ITERATE label1; END IF;
 LEAVE label1;
 END LOOP label1;
END;

The scope of a block label does not include the code for handlers declared within the block. For details,
see Section 13.6.7.2, “DECLARE ... HANDLER Statement”.

13.6.3 DECLARE Statement

The DECLARE statement is used to define various items local to a program:

• Local variables. See Section 13.6.4, “Variables in Stored Programs”.

• Conditions and handlers. See Section 13.6.7, “Condition Handling”.

• Cursors. See Section 13.6.6, “Cursors”.

DECLARE is permitted only inside a BEGIN ... END compound statement and must be at its start, before
any other statements.

Declarations must follow a certain order. Cursor declarations must appear before handler declarations.
Variable and condition declarations must appear before cursor or handler declarations.

13.6.4 Variables in Stored Programs

System variables and user-defined variables can be used in stored programs, just as they can be used
outside stored-program context. In addition, stored programs can use DECLARE to define local variables,

2388

Variables in Stored Programs

and stored routines (procedures and functions) can be declared to take parameters that communicate
values between the routine and its caller.

• To declare local variables, use the DECLARE statement, as described in Section 13.6.4.1, “Local Variable
DECLARE Statement”.

• Variables can be set directly with the SET statement. See Section 13.7.4.1, “SET Syntax for Variable
Assignment”.

• Results from queries can be retrieved into local variables using SELECT ... INTO var_list or by
opening a cursor and using FETCH ... INTO var_list. See Section 13.2.9.1, “SELECT ... INTO
Statement”, and Section 13.6.6, “Cursors”.

For information about the scope of local variables and how MySQL resolves ambiguous names, see
Section 13.6.4.2, “Local Variable Scope and Resolution”.

It is not permitted to assign the value DEFAULT to stored procedure or function parameters or stored
program local variables (for example with a SET var_name = DEFAULT statement). In MySQL 5.7, this
results in a syntax error.

13.6.4.1 Local Variable DECLARE Statement

DECLARE var_name [, var_name] ... type [DEFAULT value]

This statement declares local variables within stored programs. To provide a default value for a variable,
include a DEFAULT clause. The value can be specified as an expression; it need not be a constant. If the
DEFAULT clause is missing, the initial value is NULL.

Local variables are treated like stored routine parameters with respect to data type and overflow checking.
See Section 13.1.16, “CREATE PROCEDURE and CREATE FUNCTION Statements”.

Variable declarations must appear before cursor or handler declarations.

Local variable names are not case-sensitive. Permissible characters and quoting rules are the same as for
other identifiers, as described in Section 9.2, “Schema Object Names”.

The scope of a local variable is the BEGIN ... END block within which it is declared. The variable can be
referred to in blocks nested within the declaring block, except those blocks that declare a variable with the
same name.

For examples of variable declarations, see Section 13.6.4.2, “Local Variable Scope and Resolution”.

13.6.4.2 Local Variable Scope and Resolution

The scope of a local variable is the BEGIN ... END block within which it is declared. The variable can be
referred to in blocks nested within the declaring block, except those blocks that declare a variable with the
same name.

Because local variables are in scope only during stored program execution, references to them are not
permitted in prepared statements created within a stored program. Prepared statement scope is the current
session, not the stored program, so the statement could be executed after the program ends, at which
point the variables would no longer be in scope. For example, SELECT ... INTO local_var cannot be
used as a prepared statement. This restriction also applies to stored procedure and function parameters.
See Section 13.5.1, “PREPARE Statement”.

A local variable should not have the same name as a table column. If an SQL statement, such as a
SELECT ... INTO statement, contains a reference to a column and a declared local variable with the

2389

Flow Control Statements

same name, MySQL currently interprets the reference as the name of a variable. Consider the following
procedure definition:

CREATE PROCEDURE sp1 (x VARCHAR(5))
BEGIN
 DECLARE xname VARCHAR(5) DEFAULT 'bob';
 DECLARE newname VARCHAR(5);
 DECLARE xid INT;

 SELECT xname, id INTO newname, xid
 FROM table1 WHERE xname = xname;
 SELECT newname;
END;

MySQL interprets xname in the SELECT statement as a reference to the xname variable rather than the
xname column. Consequently, when the procedure sp1()is called, the newname variable returns the value
'bob' regardless of the value of the table1.xname column.

Similarly, the cursor definition in the following procedure contains a SELECT statement that refers to
xname. MySQL interprets this as a reference to the variable of that name rather than a column reference.

CREATE PROCEDURE sp2 (x VARCHAR(5))
BEGIN
 DECLARE xname VARCHAR(5) DEFAULT 'bob';
 DECLARE newname VARCHAR(5);
 DECLARE xid INT;
 DECLARE done TINYINT DEFAULT 0;
 DECLARE cur1 CURSOR FOR SELECT xname, id FROM table1;
 DECLARE CONTINUE HANDLER FOR NOT FOUND SET done = 1;

 OPEN cur1;
 read_loop: LOOP
 FETCH FROM cur1 INTO newname, xid;
 IF done THEN LEAVE read_loop; END IF;
 SELECT newname;
 END LOOP;
 CLOSE cur1;
END;

See also Section 23.8, “Restrictions on Stored Programs”.

13.6.5 Flow Control Statements

MySQL supports the IF, CASE, ITERATE, LEAVE LOOP, WHILE, and REPEAT constructs for flow control
within stored programs. It also supports RETURN within stored functions.

Many of these constructs contain other statements, as indicated by the grammar specifications in the
following sections. Such constructs may be nested. For example, an IF statement might contain a WHILE
loop, which itself contains a CASE statement.

MySQL does not support FOR loops.

13.6.5.1 CASE Statement

CASE case_value
 WHEN when_value THEN statement_list
 [WHEN when_value THEN statement_list] ...
 [ELSE statement_list]
END CASE

Or:

2390

Flow Control Statements

CASE
 WHEN search_condition THEN statement_list
 [WHEN search_condition THEN statement_list] ...
 [ELSE statement_list]
END CASE

The CASE statement for stored programs implements a complex conditional construct.

Note

There is also a CASE operator, which differs from the CASE statement described
here. See Section 12.5, “Flow Control Functions”. The CASE statement cannot have
an ELSE NULL clause, and it is terminated with END CASE instead of END.

For the first syntax, case_value is an expression. This value is compared to the when_value
expression in each WHEN clause until one of them is equal. When an equal when_value is found, the
corresponding THEN clause statement_list executes. If no when_value is equal, the ELSE clause
statement_list executes, if there is one.

This syntax cannot be used to test for equality with NULL because NULL = NULL is false. See
Section 3.3.4.6, “Working with NULL Values”.

For the second syntax, each WHEN clause search_condition expression is evaluated until one is true,
at which point its corresponding THEN clause statement_list executes. If no search_condition is
equal, the ELSE clause statement_list executes, if there is one.

If no when_value or search_condition matches the value tested and the CASE statement contains no
ELSE clause, a Case not found for CASE statement error results.

Each statement_list consists of one or more SQL statements; an empty statement_list is not
permitted.

To handle situations where no value is matched by any WHEN clause, use an ELSE containing an empty
BEGIN ... END block, as shown in this example. (The indentation used here in the ELSE clause is for
purposes of clarity only, and is not otherwise significant.)

DELIMITER |

CREATE PROCEDURE p()
 BEGIN
 DECLARE v INT DEFAULT 1;

 CASE v
 WHEN 2 THEN SELECT v;
 WHEN 3 THEN SELECT 0;
 ELSE
 BEGIN
 END;
 END CASE;
 END;
 |

13.6.5.2 IF Statement

IF search_condition THEN statement_list
 [ELSEIF search_condition THEN statement_list] ...
 [ELSE statement_list]
END IF

The IF statement for stored programs implements a basic conditional construct.

2391

Flow Control Statements

Note

There is also an IF() function, which differs from the IF statement described here.
See Section 12.5, “Flow Control Functions”. The IF statement can have THEN,
ELSE, and ELSEIF clauses, and it is terminated with END IF.

If a given search_condition evaluates to true, the corresponding THEN or ELSEIF clause
statement_list executes. If no search_condition matches, the ELSE clause statement_list
executes.

Each statement_list consists of one or more SQL statements; an empty statement_list is not
permitted.

An IF ... END IF block, like all other flow-control blocks used within stored programs, must be
terminated with a semicolon, as shown in this example:

DELIMITER //

CREATE FUNCTION SimpleCompare(n INT, m INT)
 RETURNS VARCHAR(20)

 BEGIN
 DECLARE s VARCHAR(20);

 IF n > m THEN SET s = '>';
 ELSEIF n = m THEN SET s = '=';
 ELSE SET s = '<';
 END IF;

 SET s = CONCAT(n, ' ', s, ' ', m);

 RETURN s;
 END //

DELIMITER ;

As with other flow-control constructs, IF ... END IF blocks may be nested within other flow-control
constructs, including other IF statements. Each IF must be terminated by its own END IF followed by a
semicolon. You can use indentation to make nested flow-control blocks more easily readable by humans
(although this is not required by MySQL), as shown here:

DELIMITER //

CREATE FUNCTION VerboseCompare (n INT, m INT)
 RETURNS VARCHAR(50)

 BEGIN
 DECLARE s VARCHAR(50);

 IF n = m THEN SET s = 'equals';
 ELSE
 IF n > m THEN SET s = 'greater';
 ELSE SET s = 'less';
 END IF;

 SET s = CONCAT('is ', s, ' than');
 END IF;

 SET s = CONCAT(n, ' ', s, ' ', m, '.');

 RETURN s;
 END //

DELIMITER ;

2392

Flow Control Statements

In this example, the inner IF is evaluated only if n is not equal to m.

13.6.5.3 ITERATE Statement

ITERATE label

ITERATE can appear only within LOOP, REPEAT, and WHILE statements. ITERATE means “start the loop
again.”

For an example, see Section 13.6.5.5, “LOOP Statement”.

13.6.5.4 LEAVE Statement

LEAVE label

This statement is used to exit the flow control construct that has the given label. If the label is for the
outermost stored program block, LEAVE exits the program.

LEAVE can be used within BEGIN ... END or loop constructs (LOOP, REPEAT, WHILE).

For an example, see Section 13.6.5.5, “LOOP Statement”.

13.6.5.5 LOOP Statement

[begin_label:] LOOP
 statement_list
END LOOP [end_label]

LOOP implements a simple loop construct, enabling repeated execution of the statement list, which consists
of one or more statements, each terminated by a semicolon (;) statement delimiter. The statements within
the loop are repeated until the loop is terminated. Usually, this is accomplished with a LEAVE statement.
Within a stored function, RETURN can also be used, which exits the function entirely.

Neglecting to include a loop-termination statement results in an infinite loop.

A LOOP statement can be labeled. For the rules regarding label use, see Section 13.6.2, “Statement
Labels”.

Example:

CREATE PROCEDURE doiterate(p1 INT)
BEGIN
 label1: LOOP
 SET p1 = p1 + 1;
 IF p1 < 10 THEN
 ITERATE label1;
 END IF;
 LEAVE label1;
 END LOOP label1;
 SET @x = p1;
END;

13.6.5.6 REPEAT Statement

[begin_label:] REPEAT
 statement_list
UNTIL search_condition
END REPEAT [end_label]

The statement list within a REPEAT statement is repeated until the search_condition expression is
true. Thus, a REPEAT always enters the loop at least once. statement_list consists of one or more
statements, each terminated by a semicolon (;) statement delimiter.

2393

Flow Control Statements

A REPEAT statement can be labeled. For the rules regarding label use, see Section 13.6.2, “Statement
Labels”.

Example:

mysql> delimiter //

mysql> CREATE PROCEDURE dorepeat(p1 INT)
 BEGIN
 SET @x = 0;
 REPEAT
 SET @x = @x + 1;
 UNTIL @x > p1 END REPEAT;
 END
 //
Query OK, 0 rows affected (0.00 sec)

mysql> CALL dorepeat(1000)//
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT @x//
+------+
| @x |
+------+
| 1001 |
+------+
1 row in set (0.00 sec)

13.6.5.7 RETURN Statement

RETURN expr

The RETURN statement terminates execution of a stored function and returns the value expr to the
function caller. There must be at least one RETURN statement in a stored function. There may be more than
one if the function has multiple exit points.

This statement is not used in stored procedures, triggers, or events. The LEAVE statement can be used to
exit a stored program of those types.

13.6.5.8 WHILE Statement

[begin_label:] WHILE search_condition DO
 statement_list
END WHILE [end_label]

The statement list within a WHILE statement is repeated as long as the search_condition expression
is true. statement_list consists of one or more SQL statements, each terminated by a semicolon (;)
statement delimiter.

A WHILE statement can be labeled. For the rules regarding label use, see Section 13.6.2, “Statement
Labels”.

Example:

CREATE PROCEDURE dowhile()
BEGIN
 DECLARE v1 INT DEFAULT 5;

 WHILE v1 > 0 DO
 ...
 SET v1 = v1 - 1;
 END WHILE;
END;

2394

Cursors

13.6.6 Cursors

MySQL supports cursors inside stored programs. The syntax is as in embedded SQL. Cursors have these
properties:

• Asensitive: The server may or may not make a copy of its result table

• Read only: Not updatable

• Nonscrollable: Can be traversed only in one direction and cannot skip rows

Cursor declarations must appear before handler declarations and after variable and condition declarations.

Example:

CREATE PROCEDURE curdemo()
BEGIN
 DECLARE done INT DEFAULT FALSE;
 DECLARE a CHAR(16);
 DECLARE b, c INT;
 DECLARE cur1 CURSOR FOR SELECT id,data FROM test.t1;
 DECLARE cur2 CURSOR FOR SELECT i FROM test.t2;
 DECLARE CONTINUE HANDLER FOR NOT FOUND SET done = TRUE;

 OPEN cur1;
 OPEN cur2;

 read_loop: LOOP
 FETCH cur1 INTO a, b;
 FETCH cur2 INTO c;
 IF done THEN
 LEAVE read_loop;
 END IF;
 IF b < c THEN
 INSERT INTO test.t3 VALUES (a,b);
 ELSE
 INSERT INTO test.t3 VALUES (a,c);
 END IF;
 END LOOP;

 CLOSE cur1;
 CLOSE cur2;
END;

13.6.6.1 Cursor CLOSE Statement

CLOSE cursor_name

This statement closes a previously opened cursor. For an example, see Section 13.6.6, “Cursors”.

An error occurs if the cursor is not open.

If not closed explicitly, a cursor is closed at the end of the BEGIN ... END block in which it was declared.

13.6.6.2 Cursor DECLARE Statement

DECLARE cursor_name CURSOR FOR select_statement

This statement declares a cursor and associates it with a SELECT statement that retrieves the rows to be
traversed by the cursor. To fetch the rows later, use a FETCH statement. The number of columns retrieved
by the SELECT statement must match the number of output variables specified in the FETCH statement.

2395

Cursors

The SELECT statement cannot have an INTO clause.

Cursor declarations must appear before handler declarations and after variable and condition declarations.

A stored program may contain multiple cursor declarations, but each cursor declared in a given block must
have a unique name. For an example, see Section 13.6.6, “Cursors”.

For information available through SHOW statements, it is possible in many cases to obtain equivalent
information by using a cursor with an INFORMATION_SCHEMA table.

13.6.6.3 Cursor FETCH Statement

FETCH [[NEXT] FROM] cursor_name INTO var_name [, var_name] ...

This statement fetches the next row for the SELECT statement associated with the specified cursor (which
must be open), and advances the cursor pointer. If a row exists, the fetched columns are stored in the
named variables. The number of columns retrieved by the SELECT statement must match the number of
output variables specified in the FETCH statement.

If no more rows are available, a No Data condition occurs with SQLSTATE value '02000'. To detect
this condition, you can set up a handler for it (or for a NOT FOUND condition). For an example, see
Section 13.6.6, “Cursors”.

Be aware that another operation, such as a SELECT or another FETCH, may also cause the handler to
execute by raising the same condition. If it is necessary to distinguish which operation raised the condition,
place the operation within its own BEGIN ... END block so that it can be associated with its own handler.

13.6.6.4 Cursor OPEN Statement

OPEN cursor_name

This statement opens a previously declared cursor. For an example, see Section 13.6.6, “Cursors”.

13.6.6.5 Restrictions on Server-Side Cursors

Server-side cursors are implemented in the C API using the mysql_stmt_attr_set() function. The
same implementation is used for cursors in stored routines. A server-side cursor enables a result set to be
generated on the server side, but not transferred to the client except for those rows that the client requests.
For example, if a client executes a query but is only interested in the first row, the remaining rows are not
transferred.

In MySQL, a server-side cursor is materialized into an internal temporary table. Initially, this is a
MEMORY table, but is converted to a MyISAM table when its size exceeds the minimum value of the
max_heap_table_size and tmp_table_size system variables. The same restrictions apply to internal
temporary tables created to hold the result set for a cursor as for other uses of internal temporary tables.
See Section 8.4.4, “Internal Temporary Table Use in MySQL”. One limitation of the implementation is that
for a large result set, retrieving its rows through a cursor might be slow.

Cursors are read only; you cannot use a cursor to update rows.

UPDATE WHERE CURRENT OF and DELETE WHERE CURRENT OF are not implemented, because
updatable cursors are not supported.

Cursors are nonholdable (not held open after a commit).

Cursors are asensitive.

2396

https://dev.mysql.com/doc/c-api/5.7/en/mysql-stmt-attr-set.html

Condition Handling

Cursors are nonscrollable.

Cursors are not named. The statement handler acts as the cursor ID.

You can have open only a single cursor per prepared statement. If you need several cursors, you must
prepare several statements.

You cannot use a cursor for a statement that generates a result set if the statement is not supported in
prepared mode. This includes statements such as CHECK TABLE, HANDLER READ, and SHOW BINLOG
EVENTS.

13.6.7 Condition Handling

Conditions may arise during stored program execution that require special handling, such as exiting the
current program block or continuing execution. Handlers can be defined for general conditions such as
warnings or exceptions, or for specific conditions such as a particular error code. Specific conditions can
be assigned names and referred to that way in handlers.

To name a condition, use the DECLARE ... CONDITION statement. To declare a handler, use the
DECLARE ... HANDLER statement. See Section 13.6.7.1, “DECLARE ... CONDITION Statement”, and
Section 13.6.7.2, “DECLARE ... HANDLER Statement”. For information about how the server chooses
handlers when a condition occurs, see Section 13.6.7.6, “Scope Rules for Handlers”.

To raise a condition, use the SIGNAL statement. To modify condition information within a condition handler,
use RESIGNAL. See Section 13.6.7.1, “DECLARE ... CONDITION Statement”, and Section 13.6.7.2,
“DECLARE ... HANDLER Statement”.

To retrieve information from the diagnostics area, use the GET DIAGNOSTICS statement (see
Section 13.6.7.3, “GET DIAGNOSTICS Statement”). For information about the diagnostics area, see
Section 13.6.7.7, “The MySQL Diagnostics Area”.

13.6.7.1 DECLARE ... CONDITION Statement

DECLARE condition_name CONDITION FOR condition_value

condition_value: {
 mysql_error_code
 | SQLSTATE [VALUE] sqlstate_value
}

The DECLARE ... CONDITION statement declares a named error condition, associating a name with
a condition that needs specific handling. The name can be referred to in a subsequent DECLARE ...
HANDLER statement (see Section 13.6.7.2, “DECLARE ... HANDLER Statement”).

Condition declarations must appear before cursor or handler declarations.

The condition_value for DECLARE ... CONDITION indicates the specific condition or class of
conditions to associate with the condition name. It can take the following forms:

• mysql_error_code: An integer literal indicating a MySQL error code.

Do not use MySQL error code 0 because that indicates success rather than an error condition. For a list
of MySQL error codes, see Server Error Message Reference.

• SQLSTATE [VALUE] sqlstate_value: A 5-character string literal indicating an SQLSTATE value.

Do not use SQLSTATE values that begin with '00' because those indicate success rather than an error
condition. For a list of SQLSTATE values, see Server Error Message Reference.

2397

https://dev.mysql.com/doc/mysql-errors/5.7/en/server-error-reference.html
https://dev.mysql.com/doc/mysql-errors/5.7/en/server-error-reference.html

Condition Handling

Condition names referred to in SIGNAL or use RESIGNAL statements must be associated with SQLSTATE
values, not MySQL error codes.

Using names for conditions can help make stored program code clearer. For example, this handler applies
to attempts to drop a nonexistent table, but that is apparent only if you know that 1051 is the MySQL error
code for “unknown table”:

DECLARE CONTINUE HANDLER FOR 1051
 BEGIN
 -- body of handler
 END;

By declaring a name for the condition, the purpose of the handler is more readily seen:

DECLARE no_such_table CONDITION FOR 1051;
DECLARE CONTINUE HANDLER FOR no_such_table
 BEGIN
 -- body of handler
 END;

Here is a named condition for the same condition, but based on the corresponding SQLSTATE value
rather than the MySQL error code:

DECLARE no_such_table CONDITION FOR SQLSTATE '42S02';
DECLARE CONTINUE HANDLER FOR no_such_table
 BEGIN
 -- body of handler
 END;

13.6.7.2 DECLARE ... HANDLER Statement

DECLARE handler_action HANDLER
 FOR condition_value [, condition_value] ...
 statement

handler_action: {
 CONTINUE
 | EXIT
 | UNDO
}

condition_value: {
 mysql_error_code
 | SQLSTATE [VALUE] sqlstate_value
 | condition_name
 | SQLWARNING
 | NOT FOUND
 | SQLEXCEPTION
}

The DECLARE ... HANDLER statement specifies a handler that deals with one or more conditions.
If one of these conditions occurs, the specified statement executes. statement can be a simple
statement such as SET var_name = value, or a compound statement written using BEGIN and END
(see Section 13.6.1, “BEGIN ... END Compound Statement”).

Handler declarations must appear after variable or condition declarations.

The handler_action value indicates what action the handler takes after execution of the handler
statement:

• CONTINUE: Execution of the current program continues.

2398

Condition Handling

• EXIT: Execution terminates for the BEGIN ... END compound statement in which the handler is
declared. This is true even if the condition occurs in an inner block.

• UNDO: Not supported.

The condition_value for DECLARE ... HANDLER indicates the specific condition or class of
conditions that activates the handler. It can take the following forms:

• mysql_error_code: An integer literal indicating a MySQL error code, such as 1051 to specify
“unknown table”:

DECLARE CONTINUE HANDLER FOR 1051
 BEGIN
 -- body of handler
 END;

Do not use MySQL error code 0 because that indicates success rather than an error condition. For a list
of MySQL error codes, see Server Error Message Reference.

• SQLSTATE [VALUE] sqlstate_value: A 5-character string literal indicating an SQLSTATE value,
such as '42S01' to specify “unknown table”:

DECLARE CONTINUE HANDLER FOR SQLSTATE '42S02'
 BEGIN
 -- body of handler
 END;

Do not use SQLSTATE values that begin with '00' because those indicate success rather than an error
condition. For a list of SQLSTATE values, see Server Error Message Reference.

• condition_name: A condition name previously specified with DECLARE ... CONDITION. A
condition name can be associated with a MySQL error code or SQLSTATE value. See Section 13.6.7.1,
“DECLARE ... CONDITION Statement”.

• SQLWARNING: Shorthand for the class of SQLSTATE values that begin with '01'.

DECLARE CONTINUE HANDLER FOR SQLWARNING
 BEGIN
 -- body of handler
 END;

• NOT FOUND: Shorthand for the class of SQLSTATE values that begin with '02'. This is relevant within
the context of cursors and is used to control what happens when a cursor reaches the end of a data set.
If no more rows are available, a No Data condition occurs with SQLSTATE value '02000'. To detect
this condition, you can set up a handler for it or for a NOT FOUND condition.

DECLARE CONTINUE HANDLER FOR NOT FOUND
 BEGIN
 -- body of handler
 END;

For another example, see Section 13.6.6, “Cursors”. The NOT FOUND condition also occurs for
SELECT ... INTO var_list statements that retrieve no rows.

• SQLEXCEPTION: Shorthand for the class of SQLSTATE values that do not begin with '00', '01', or
'02'.

DECLARE CONTINUE HANDLER FOR SQLEXCEPTION
 BEGIN
 -- body of handler
 END;

2399

https://dev.mysql.com/doc/mysql-errors/5.7/en/server-error-reference.html
https://dev.mysql.com/doc/mysql-errors/5.7/en/server-error-reference.html

Condition Handling

For information about how the server chooses handlers when a condition occurs, see Section 13.6.7.6,
“Scope Rules for Handlers”.

If a condition occurs for which no handler has been declared, the action taken depends on the condition
class:

• For SQLEXCEPTION conditions, the stored program terminates at the statement that raised the condition,
as if there were an EXIT handler. If the program was called by another stored program, the calling
program handles the condition using the handler selection rules applied to its own handlers.

• For SQLWARNING conditions, the program continues executing, as if there were a CONTINUE handler.

• For NOT FOUND conditions, if the condition was raised normally, the action is CONTINUE. If it was raised
by SIGNAL or RESIGNAL, the action is EXIT.

The following example uses a handler for SQLSTATE '23000', which occurs for a duplicate-key error:

mysql> CREATE TABLE test.t (s1 INT, PRIMARY KEY (s1));
Query OK, 0 rows affected (0.00 sec)

mysql> delimiter //

mysql> CREATE PROCEDURE handlerdemo ()
 BEGIN
 DECLARE CONTINUE HANDLER FOR SQLSTATE '23000' SET @x2 = 1;
 SET @x = 1;
 INSERT INTO test.t VALUES (1);
 SET @x = 2;
 INSERT INTO test.t VALUES (1);
 SET @x = 3;
 END;
 //
Query OK, 0 rows affected (0.00 sec)

mysql> CALL handlerdemo()//
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT @x//
 +------+
 | @x |
 +------+
 | 3 |
 +------+
 1 row in set (0.00 sec)

Notice that @x is 3 after the procedure executes, which shows that execution continued to the end of
the procedure after the error occurred. If the DECLARE ... HANDLER statement had not been present,
MySQL would have taken the default action (EXIT) after the second INSERT failed due to the PRIMARY
KEY constraint, and SELECT @x would have returned 2.

To ignore a condition, declare a CONTINUE handler for it and associate it with an empty block. For
example:

DECLARE CONTINUE HANDLER FOR SQLWARNING BEGIN END;

The scope of a block label does not include the code for handlers declared within the block. Therefore,
the statement associated with a handler cannot use ITERATE or LEAVE to refer to labels for blocks that
enclose the handler declaration. Consider the following example, where the REPEAT block has a label of
retry:

CREATE PROCEDURE p ()
BEGIN

2400

Condition Handling

 DECLARE i INT DEFAULT 3;
 retry:
 REPEAT
 BEGIN
 DECLARE CONTINUE HANDLER FOR SQLWARNING
 BEGIN
 ITERATE retry; # illegal
 END;
 IF i < 0 THEN
 LEAVE retry; # legal
 END IF;
 SET i = i - 1;
 END;
 UNTIL FALSE END REPEAT;
END;

The retry label is in scope for the IF statement within the block. It is not in scope for the CONTINUE
handler, so the reference there is invalid and results in an error:

ERROR 1308 (42000): LEAVE with no matching label: retry

To avoid references to outer labels in handlers, use one of these strategies:

• To leave the block, use an EXIT handler. If no block cleanup is required, the BEGIN ... END handler
body can be empty:

DECLARE EXIT HANDLER FOR SQLWARNING BEGIN END;

Otherwise, put the cleanup statements in the handler body:

DECLARE EXIT HANDLER FOR SQLWARNING
 BEGIN
 block cleanup statements
 END;

• To continue execution, set a status variable in a CONTINUE handler that can be checked in the enclosing
block to determine whether the handler was invoked. The following example uses the variable done for
this purpose:

CREATE PROCEDURE p ()
BEGIN
 DECLARE i INT DEFAULT 3;
 DECLARE done INT DEFAULT FALSE;
 retry:
 REPEAT
 BEGIN
 DECLARE CONTINUE HANDLER FOR SQLWARNING
 BEGIN
 SET done = TRUE;
 END;
 IF done OR i < 0 THEN
 LEAVE retry;
 END IF;
 SET i = i - 1;
 END;
 UNTIL FALSE END REPEAT;
END;

13.6.7.3 GET DIAGNOSTICS Statement

GET [CURRENT | STACKED] DIAGNOSTICS {
 statement_information_item
 [, statement_information_item] ...
 | CONDITION condition_number

2401

Condition Handling

 condition_information_item
 [, condition_information_item] ...
}

statement_information_item:
 target = statement_information_item_name

condition_information_item:
 target = condition_information_item_name

statement_information_item_name: {
 NUMBER
 | ROW_COUNT
}

condition_information_item_name: {
 CLASS_ORIGIN
 | SUBCLASS_ORIGIN
 | RETURNED_SQLSTATE
 | MESSAGE_TEXT
 | MYSQL_ERRNO
 | CONSTRAINT_CATALOG
 | CONSTRAINT_SCHEMA
 | CONSTRAINT_NAME
 | CATALOG_NAME
 | SCHEMA_NAME
 | TABLE_NAME
 | COLUMN_NAME
 | CURSOR_NAME
}

condition_number, target:
 (see following discussion)

SQL statements produce diagnostic information that populates the diagnostics area. The GET
DIAGNOSTICS statement enables applications to inspect this information. (You can also use SHOW
WARNINGS or SHOW ERRORS to see conditions or errors.)

No special privileges are required to execute GET DIAGNOSTICS.

The keyword CURRENT means to retrieve information from the current diagnostics area. The keyword
STACKED means to retrieve information from the second diagnostics area, which is available only if
the current context is a condition handler. If neither keyword is given, the default is to use the current
diagnostics area.

The GET DIAGNOSTICS statement is typically used in a handler within a stored program. It is a MySQL
extension that GET [CURRENT] DIAGNOSTICS is permitted outside handler context to check the
execution of any SQL statement. For example, if you invoke the mysql client program, you can enter these
statements at the prompt:

mysql> DROP TABLE test.no_such_table;
ERROR 1051 (42S02): Unknown table 'test.no_such_table'
mysql> GET DIAGNOSTICS CONDITION 1
 @p1 = RETURNED_SQLSTATE, @p2 = MESSAGE_TEXT;
mysql> SELECT @p1, @p2;
+-------+------------------------------------+
| @p1 | @p2 |
+-------+------------------------------------+
| 42S02 | Unknown table 'test.no_such_table' |
+-------+------------------------------------+

This extension applies only to the current diagnostics area. It does not apply to the second diagnostics
area because GET STACKED DIAGNOSTICS is permitted only if the current context is a condition handler.
If that is not the case, a GET STACKED DIAGNOSTICS when handler not active error occurs.

2402

Condition Handling

For a description of the diagnostics area, see Section 13.6.7.7, “The MySQL Diagnostics Area”. Briefly, it
contains two kinds of information:

• Statement information, such as the number of conditions that occurred or the affected-rows count.

• Condition information, such as the error code and message. If a statement raises multiple conditions,
this part of the diagnostics area has a condition area for each one. If a statement raises no conditions,
this part of the diagnostics area is empty.

For a statement that produces three conditions, the diagnostics area contains statement and condition
information like this:

Statement information:
 row count
 ... other statement information items ...
Condition area list:
 Condition area 1:
 error code for condition 1
 error message for condition 1
 ... other condition information items ...
 Condition area 2:
 error code for condition 2:
 error message for condition 2
 ... other condition information items ...
 Condition area 3:
 error code for condition 3
 error message for condition 3
 ... other condition information items ...

GET DIAGNOSTICS can obtain either statement or condition information, but not both in the same
statement:

• To obtain statement information, retrieve the desired statement items into target variables. This instance
of GET DIAGNOSTICS assigns the number of available conditions and the rows-affected count to the
user variables @p1 and @p2:

GET DIAGNOSTICS @p1 = NUMBER, @p2 = ROW_COUNT;

• To obtain condition information, specify the condition number and retrieve the desired condition items
into target variables. This instance of GET DIAGNOSTICS assigns the SQLSTATE value and error
message to the user variables @p3 and @p4:

GET DIAGNOSTICS CONDITION 1
 @p3 = RETURNED_SQLSTATE, @p4 = MESSAGE_TEXT;

The retrieval list specifies one or more target = item_name assignments, separated by commas.
Each assignment names a target variable and either a statement_information_item_name or
condition_information_item_name designator, depending on whether the statement retrieves
statement or condition information.

Valid target designators for storing item information can be stored procedure or function parameters,
stored program local variables declared with DECLARE, or user-defined variables.

Valid condition_number designators can be stored procedure or function parameters, stored program
local variables declared with DECLARE, user-defined variables, system variables, or literals. A character
literal may include a _charset introducer. A warning occurs if the condition number is not in the range
from 1 to the number of condition areas that have information. In this case, the warning is added to the
diagnostics area without clearing it.

When a condition occurs, MySQL does not populate all condition items recognized by GET DIAGNOSTICS.
For example:

2403

Condition Handling

mysql> GET DIAGNOSTICS CONDITION 1
 @p5 = SCHEMA_NAME, @p6 = TABLE_NAME;
mysql> SELECT @p5, @p6;
+------+------+
| @p5 | @p6 |
+------+------+
| | |
+------+------+

In standard SQL, if there are multiple conditions, the first condition relates to the SQLSTATE value returned
for the previous SQL statement. In MySQL, this is not guaranteed. To get the main error, you cannot do
this:

GET DIAGNOSTICS CONDITION 1 @errno = MYSQL_ERRNO;

Instead, retrieve the condition count first, then use it to specify which condition number to inspect:

GET DIAGNOSTICS @cno = NUMBER;
GET DIAGNOSTICS CONDITION @cno @errno = MYSQL_ERRNO;

For information about permissible statement and condition information items, and which ones are
populated when a condition occurs, see Diagnostics Area Information Items.

Here is an example that uses GET DIAGNOSTICS and an exception handler in stored procedure context
to assess the outcome of an insert operation. If the insert was successful, the procedure uses GET
DIAGNOSTICS to get the rows-affected count. This shows that you can use GET DIAGNOSTICS multiple
times to retrieve information about a statement as long as the current diagnostics area has not been
cleared.

CREATE PROCEDURE do_insert(value INT)
BEGIN
 -- Declare variables to hold diagnostics area information
 DECLARE code CHAR(5) DEFAULT '00000';
 DECLARE msg TEXT;
 DECLARE nrows INT;
 DECLARE result TEXT;
 -- Declare exception handler for failed insert
 DECLARE CONTINUE HANDLER FOR SQLEXCEPTION
 BEGIN
 GET DIAGNOSTICS CONDITION 1
 code = RETURNED_SQLSTATE, msg = MESSAGE_TEXT;
 END;

 -- Perform the insert
 INSERT INTO t1 (int_col) VALUES(value);
 -- Check whether the insert was successful
 IF code = '00000' THEN
 GET DIAGNOSTICS nrows = ROW_COUNT;
 SET result = CONCAT('insert succeeded, row count = ',nrows);
 ELSE
 SET result = CONCAT('insert failed, error = ',code,', message = ',msg);
 END IF;
 -- Say what happened
 SELECT result;
END;

Suppose that t1.int_col is an integer column that is declared as NOT NULL. The procedure produces
these results when invoked to insert non-NULL and NULL values, respectively:

mysql> CALL do_insert(1);
+---------------------------------+
| result |
+---------------------------------+
| insert succeeded, row count = 1 |

2404

Condition Handling

+---------------------------------+

mysql> CALL do_insert(NULL);
+---+
| result |
+---+
| insert failed, error = 23000, message = Column 'int_col' cannot be null |
+---+

When a condition handler activates, a push to the diagnostics area stack occurs:

• The first (current) diagnostics area becomes the second (stacked) diagnostics area and a new current
diagnostics area is created as a copy of it.

• GET [CURRENT] DIAGNOSTICS and GET STACKED DIAGNOSTICS can be used within the handler to
access the contents of the current and stacked diagnostics areas.

• Initially, both diagnostics areas return the same result, so it is possible to get information from the current
diagnostics area about the condition that activated the handler, as long as you execute no statements
within the handler that change its current diagnostics area.

• However, statements executing within the handler can modify the current diagnostics area, clearing
and setting its contents according to the normal rules (see How the Diagnostics Area is Cleared and
Populated).

A more reliable way to obtain information about the handler-activating condition is to use the
stacked diagnostics area, which cannot be modified by statements executing within the handler
except RESIGNAL. For information about when the current diagnostics area is set and cleared, see
Section 13.6.7.7, “The MySQL Diagnostics Area”.

The next example shows how GET STACKED DIAGNOSTICS can be used within a handler to obtain
information about the handled exception, even after the current diagnostics area has been modified by
handler statements.

Within a stored procedure p(), we attempt to insert two values into a table that contains a TEXT NOT
NULL column. The first value is a non-NULL string and the second is NULL. The column prohibits NULL
values, so the first insert succeeds but the second causes an exception. The procedure includes an
exception handler that maps attempts to insert NULL into inserts of the empty string:

DROP TABLE IF EXISTS t1;
CREATE TABLE t1 (c1 TEXT NOT NULL);
DROP PROCEDURE IF EXISTS p;
delimiter //
CREATE PROCEDURE p ()
BEGIN
 -- Declare variables to hold diagnostics area information
 DECLARE errcount INT;
 DECLARE errno INT;
 DECLARE msg TEXT;
 DECLARE EXIT HANDLER FOR SQLEXCEPTION
 BEGIN
 -- Here the current DA is nonempty because no prior statements
 -- executing within the handler have cleared it
 GET CURRENT DIAGNOSTICS CONDITION 1
 errno = MYSQL_ERRNO, msg = MESSAGE_TEXT;
 SELECT 'current DA before mapped insert' AS op, errno, msg;
 GET STACKED DIAGNOSTICS CONDITION 1
 errno = MYSQL_ERRNO, msg = MESSAGE_TEXT;
 SELECT 'stacked DA before mapped insert' AS op, errno, msg;

 -- Map attempted NULL insert to empty string insert
 INSERT INTO t1 (c1) VALUES('');

2405

Condition Handling

 -- Here the current DA should be empty (if the INSERT succeeded),
 -- so check whether there are conditions before attempting to
 -- obtain condition information
 GET CURRENT DIAGNOSTICS errcount = NUMBER;
 IF errcount = 0
 THEN
 SELECT 'mapped insert succeeded, current DA is empty' AS op;
 ELSE
 GET CURRENT DIAGNOSTICS CONDITION 1
 errno = MYSQL_ERRNO, msg = MESSAGE_TEXT;
 SELECT 'current DA after mapped insert' AS op, errno, msg;
 END IF ;
 GET STACKED DIAGNOSTICS CONDITION 1
 errno = MYSQL_ERRNO, msg = MESSAGE_TEXT;
 SELECT 'stacked DA after mapped insert' AS op, errno, msg;
 END;
 INSERT INTO t1 (c1) VALUES('string 1');
 INSERT INTO t1 (c1) VALUES(NULL);
END;
//
delimiter ;
CALL p();
SELECT * FROM t1;

When the handler activates, a copy of the current diagnostics area is pushed to the diagnostics area stack.
The handler first displays the contents of the current and stacked diagnostics areas, which are both the
same initially:

+---------------------------------+-------+----------------------------+
| op | errno | msg |
+---------------------------------+-------+----------------------------+
| current DA before mapped insert | 1048 | Column 'c1' cannot be null |
+---------------------------------+-------+----------------------------+

+---------------------------------+-------+----------------------------+
| op | errno | msg |
+---------------------------------+-------+----------------------------+
| stacked DA before mapped insert | 1048 | Column 'c1' cannot be null |
+---------------------------------+-------+----------------------------+

Statements executing after the GET DIAGNOSTICS statements may reset the current diagnostics area.
statements may reset the current diagnostics area. For example, the handler maps the NULL insert to an
empty-string insert and displays the result. The new insert succeeds and clears the current diagnostics
area, but the stacked diagnostics area remains unchanged and still contains information about the
condition that activated the handler:

+--+
| op |
+--+
| mapped insert succeeded, current DA is empty |
+--+

+--------------------------------+-------+----------------------------+
| op | errno | msg |
+--------------------------------+-------+----------------------------+
| stacked DA after mapped insert | 1048 | Column 'c1' cannot be null |
+--------------------------------+-------+----------------------------+

When the condition handler ends, its current diagnostics area is popped from the stack and the stacked
diagnostics area becomes the current diagnostics area in the stored procedure.

After the procedure returns, the table contains two rows. The empty row results from the attempt to insert
NULL that was mapped to an empty-string insert:

2406

Condition Handling

+----------+
| c1 |
+----------+
| string 1 |
| |
+----------+

In the preceding example, the first two GET DIAGNOSTICS statements within the condition handler that
retrieve information from the current and stacked diagnostics areas return the same values. This is not the
case if statements that reset the current diagnostics area executed earlier within the handler. Suppose that
p() is rewritten to place the DECLARE statements within the handler definition rather than preceding it:

CREATE PROCEDURE p ()
BEGIN
 DECLARE EXIT HANDLER FOR SQLEXCEPTION
 BEGIN
 -- Declare variables to hold diagnostics area information
 DECLARE errcount INT;
 DECLARE errno INT;
 DECLARE msg TEXT;
 GET CURRENT DIAGNOSTICS CONDITION 1
 errno = MYSQL_ERRNO, msg = MESSAGE_TEXT;
 SELECT 'current DA before mapped insert' AS op, errno, msg;
 GET STACKED DIAGNOSTICS CONDITION 1
 errno = MYSQL_ERRNO, msg = MESSAGE_TEXT;
 SELECT 'stacked DA before mapped insert' AS op, errno, msg;
...

In this case, the result is version dependent:

• Before MySQL 5.7.2, DECLARE does not change the current diagnostics area, so the first two GET
DIAGNOSTICS statements return the same result, just as in the original version of p().

In MySQL 5.7.2, work was done to ensure that all nondiagnostic statements populate the diagnostics
area, per the SQL standard. DECLARE is one of them, so in 5.7.2 and higher, DECLARE statements
executing at the beginning of the handler clear the current diagnostics area and the GET DIAGNOSTICS
statements produce different results:

+---------------------------------+-------+------+
| op | errno | msg |
+---------------------------------+-------+------+
| current DA before mapped insert | NULL | NULL |
+---------------------------------+-------+------+

+---------------------------------+-------+----------------------------+
| op | errno | msg |
+---------------------------------+-------+----------------------------+
| stacked DA before mapped insert | 1048 | Column 'c1' cannot be null |
+---------------------------------+-------+----------------------------+

To avoid this issue within a condition handler when seeking to obtain information about the condition that
activated the handler, be sure to access the stacked diagnostics area, not the current diagnostics area.

13.6.7.4 RESIGNAL Statement

RESIGNAL [condition_value]
 [SET signal_information_item
 [, signal_information_item] ...]

condition_value: {
 SQLSTATE [VALUE] sqlstate_value
 | condition_name
}

2407

Condition Handling

signal_information_item:
 condition_information_item_name = simple_value_specification

condition_information_item_name: {
 CLASS_ORIGIN
 | SUBCLASS_ORIGIN
 | MESSAGE_TEXT
 | MYSQL_ERRNO
 | CONSTRAINT_CATALOG
 | CONSTRAINT_SCHEMA
 | CONSTRAINT_NAME
 | CATALOG_NAME
 | SCHEMA_NAME
 | TABLE_NAME
 | COLUMN_NAME
 | CURSOR_NAME
}

condition_name, simple_value_specification:
 (see following discussion)

RESIGNAL passes on the error condition information that is available during execution of a condition
handler within a compound statement inside a stored procedure or function, trigger, or event. RESIGNAL
may change some or all information before passing it on. RESIGNAL is related to SIGNAL, but instead of
originating a condition as SIGNAL does, RESIGNAL relays existing condition information, possibly after
modifying it.

RESIGNAL makes it possible to both handle an error and return the error information. Otherwise, by
executing an SQL statement within the handler, information that caused the handler's activation is
destroyed. RESIGNAL also can make some procedures shorter if a given handler can handle part of a
situation, then pass the condition “up the line” to another handler.

No privileges are required to execute the RESIGNAL statement.

All forms of RESIGNAL require that the current context be a condition handler. Otherwise, RESIGNAL is
illegal and a RESIGNAL when handler not active error occurs.

To retrieve information from the diagnostics area, use the GET DIAGNOSTICS statement (see
Section 13.6.7.3, “GET DIAGNOSTICS Statement”). For information about the diagnostics area, see
Section 13.6.7.7, “The MySQL Diagnostics Area”.

• RESIGNAL Overview

• RESIGNAL Alone

• RESIGNAL with New Signal Information

• RESIGNAL with a Condition Value and Optional New Signal Information

• RESIGNAL Requires Condition Handler Context

RESIGNAL Overview

For condition_value and signal_information_item, the definitions and rules are the same
for RESIGNAL as for SIGNAL. For example, the condition_value can be an SQLSTATE value, and
the value can indicate errors, warnings, or “not found.” For additional information, see Section 13.6.7.5,
“SIGNAL Statement”.

The RESIGNAL statement takes condition_value and SET clauses, both of which are optional. This
leads to several possible uses:

2408

Condition Handling

• RESIGNAL alone:

RESIGNAL;

• RESIGNAL with new signal information:

RESIGNAL SET signal_information_item [, signal_information_item] ...;

• RESIGNAL with a condition value and possibly new signal information:

RESIGNAL condition_value
 [SET signal_information_item [, signal_information_item] ...];

These use cases all cause changes to the diagnostics and condition areas:

• A diagnostics area contains one or more condition areas.

• A condition area contains condition information items, such as the SQLSTATE value, MYSQL_ERRNO, or
MESSAGE_TEXT.

There is a stack of diagnostics areas. When a handler takes control, it pushes a diagnostics area to the top
of the stack, so there are two diagnostics areas during handler execution:

• The first (current) diagnostics area, which starts as a copy of the last diagnostics area, but is overwritten
by the first statement in the handler that changes the current diagnostics area.

• The last (stacked) diagnostics area, which has the condition areas that were set up before the handler
took control.

The maximum number of condition areas in a diagnostics area is determined by the value of the
max_error_count system variable. See Diagnostics Area-Related System Variables.

RESIGNAL Alone

A simple RESIGNAL alone means “pass on the error with no change.” It restores the last diagnostics area
and makes it the current diagnostics area. That is, it “pops” the diagnostics area stack.

Within a condition handler that catches a condition, one use for RESIGNAL alone is to perform some other
actions, and then pass on without change the original condition information (the information that existed
before entry into the handler).

Example:

DROP TABLE IF EXISTS xx;
delimiter //
CREATE PROCEDURE p ()
BEGIN
 DECLARE EXIT HANDLER FOR SQLEXCEPTION
 BEGIN
 SET @error_count = @error_count + 1;
 IF @a = 0 THEN RESIGNAL; END IF;
 END;
 DROP TABLE xx;
END//
delimiter ;
SET @error_count = 0;
SET @a = 0;
CALL p();

Suppose that the DROP TABLE xx statement fails. The diagnostics area stack looks like this:

DA 1. ERROR 1051 (42S02): Unknown table 'xx'

2409

Condition Handling

Then execution enters the EXIT handler. It starts by pushing a diagnostics area to the top of the stack,
which now looks like this:

DA 1. ERROR 1051 (42S02): Unknown table 'xx'
DA 2. ERROR 1051 (42S02): Unknown table 'xx'

At this point, the contents of the first (current) and second (stacked) diagnostics areas are the same. The
first diagnostics area may be modified by statements executing subsequently within the handler.

Usually a procedure statement clears the first diagnostics area. BEGIN is an exception, it does not clear,
it does nothing. SET is not an exception, it clears, performs the operation, and produces a result of
“success.” The diagnostics area stack now looks like this:

DA 1. ERROR 0000 (00000): Successful operation
DA 2. ERROR 1051 (42S02): Unknown table 'xx'

At this point, if @a = 0, RESIGNAL pops the diagnostics area stack, which now looks like this:

DA 1. ERROR 1051 (42S02): Unknown table 'xx'

And that is what the caller sees.

If @a is not 0, the handler simply ends, which means that there is no more use for the current diagnostics
area (it has been “handled”), so it can be thrown away, causing the stacked diagnostics area to become
the current diagnostics area again. The diagnostics area stack looks like this:

DA 1. ERROR 0000 (00000): Successful operation

The details make it look complex, but the end result is quite useful: Handlers can execute without
destroying information about the condition that caused activation of the handler.

RESIGNAL with New Signal Information

RESIGNAL with a SET clause provides new signal information, so the statement means “pass on the error
with changes”:

RESIGNAL SET signal_information_item [, signal_information_item] ...;

As with RESIGNAL alone, the idea is to pop the diagnostics area stack so that the original information goes
out. Unlike RESIGNAL alone, anything specified in the SET clause changes.

Example:

DROP TABLE IF EXISTS xx;
delimiter //
CREATE PROCEDURE p ()
BEGIN
 DECLARE EXIT HANDLER FOR SQLEXCEPTION
 BEGIN
 SET @error_count = @error_count + 1;
 IF @a = 0 THEN RESIGNAL SET MYSQL_ERRNO = 5; END IF;
 END;
 DROP TABLE xx;
END//
delimiter ;
SET @error_count = 0;
SET @a = 0;
CALL p();

Remember from the previous discussion that RESIGNAL alone results in a diagnostics area stack like this:

DA 1. ERROR 1051 (42S02): Unknown table 'xx'

2410

Condition Handling

The RESIGNAL SET MYSQL_ERRNO = 5 statement results in this stack instead, which is what the caller
sees:

DA 1. ERROR 5 (42S02): Unknown table 'xx'

In other words, it changes the error number, and nothing else.

The RESIGNAL statement can change any or all of the signal information items, making the first condition
area of the diagnostics area look quite different.

RESIGNAL with a Condition Value and Optional New Signal Information

RESIGNAL with a condition value means “push a condition into the current diagnostics area.” If the SET
clause is present, it also changes the error information.

RESIGNAL condition_value
 [SET signal_information_item [, signal_information_item] ...];

This form of RESIGNAL restores the last diagnostics area and makes it the current diagnostics area. That
is, it “pops” the diagnostics area stack, which is the same as what a simple RESIGNAL alone would do.
However, it also changes the diagnostics area depending on the condition value or signal information.

Example:

DROP TABLE IF EXISTS xx;
delimiter //
CREATE PROCEDURE p ()
BEGIN
 DECLARE EXIT HANDLER FOR SQLEXCEPTION
 BEGIN
 SET @error_count = @error_count + 1;
 IF @a = 0 THEN RESIGNAL SQLSTATE '45000' SET MYSQL_ERRNO=5; END IF;
 END;
 DROP TABLE xx;
END//
delimiter ;
SET @error_count = 0;
SET @a = 0;
SET @@max_error_count = 2;
CALL p();
SHOW ERRORS;

This is similar to the previous example, and the effects are the same, except that if RESIGNAL happens,
the current condition area looks different at the end. (The reason the condition adds to rather than replaces
the existing condition is the use of a condition value.)

The RESIGNAL statement includes a condition value (SQLSTATE '45000'), so it adds a new condition
area, resulting in a diagnostics area stack that looks like this:

DA 1. (condition 2) ERROR 1051 (42S02): Unknown table 'xx'
 (condition 1) ERROR 5 (45000) Unknown table 'xx'

The result of CALL p() and SHOW ERRORS for this example is:

mysql> CALL p();
ERROR 5 (45000): Unknown table 'xx'
mysql> SHOW ERRORS;
+-------+------+----------------------------------+
| Level | Code | Message |
+-------+------+----------------------------------+
| Error | 1051 | Unknown table 'xx' |
| Error | 5 | Unknown table 'xx' |
+-------+------+----------------------------------+

2411

Condition Handling

RESIGNAL Requires Condition Handler Context

All forms of RESIGNAL require that the current context be a condition handler. Otherwise, RESIGNAL is
illegal and a RESIGNAL when handler not active error occurs. For example:

mysql> CREATE PROCEDURE p () RESIGNAL;
Query OK, 0 rows affected (0.00 sec)

mysql> CALL p();
ERROR 1645 (0K000): RESIGNAL when handler not active

Here is a more difficult example:

delimiter //
CREATE FUNCTION f () RETURNS INT
BEGIN
 RESIGNAL;
 RETURN 5;
END//
CREATE PROCEDURE p ()
BEGIN
 DECLARE EXIT HANDLER FOR SQLEXCEPTION SET @a=f();
 SIGNAL SQLSTATE '55555';
END//
delimiter ;
CALL p();

RESIGNAL occurs within the stored function f(). Although f() itself is invoked within the context of the
EXIT handler, execution within f() has its own context, which is not handler context. Thus, RESIGNAL
within f() results in a “handler not active” error.

13.6.7.5 SIGNAL Statement

SIGNAL condition_value
 [SET signal_information_item
 [, signal_information_item] ...]

condition_value: {
 SQLSTATE [VALUE] sqlstate_value
 | condition_name
}

signal_information_item:
 condition_information_item_name = simple_value_specification

condition_information_item_name: {
 CLASS_ORIGIN
 | SUBCLASS_ORIGIN
 | MESSAGE_TEXT
 | MYSQL_ERRNO
 | CONSTRAINT_CATALOG
 | CONSTRAINT_SCHEMA
 | CONSTRAINT_NAME
 | CATALOG_NAME
 | SCHEMA_NAME
 | TABLE_NAME
 | COLUMN_NAME
 | CURSOR_NAME
}

condition_name, simple_value_specification:
 (see following discussion)

SIGNAL is the way to “return” an error. SIGNAL provides error information to a handler, to an outer portion
of the application, or to the client. Also, it provides control over the error's characteristics (error number,

2412

Condition Handling

SQLSTATE value, message). Without SIGNAL, it is necessary to resort to workarounds such as deliberately
referring to a nonexistent table to cause a routine to return an error.

No privileges are required to execute the SIGNAL statement.

To retrieve information from the diagnostics area, use the GET DIAGNOSTICS statement (see
Section 13.6.7.3, “GET DIAGNOSTICS Statement”). For information about the diagnostics area, see
Section 13.6.7.7, “The MySQL Diagnostics Area”.

• SIGNAL Overview

• Signal Condition Information Items

• Effect of Signals on Handlers, Cursors, and Statements

SIGNAL Overview

The condition_value in a SIGNAL statement indicates the error value to be returned. It can be an
SQLSTATE value (a 5-character string literal) or a condition_name that refers to a named condition
previously defined with DECLARE ... CONDITION (see Section 13.6.7.1, “DECLARE ... CONDITION
Statement”).

An SQLSTATE value can indicate errors, warnings, or “not found.” The first two characters of the value
indicate its error class, as discussed in Signal Condition Information Items. Some signal values cause
statement termination; see Effect of Signals on Handlers, Cursors, and Statements.

The SQLSTATE value for a SIGNAL statement should not start with '00' because such values indicate
success and are not valid for signaling an error. This is true whether the SQLSTATE value is specified
directly in the SIGNAL statement or in a named condition referred to in the statement. If the value is invalid,
a Bad SQLSTATE error occurs.

To signal a generic SQLSTATE value, use '45000', which means “unhandled user-defined exception.”

The SIGNAL statement optionally includes a SET clause that contains multiple signal items, in a list of
condition_information_item_name = simple_value_specification assignments, separated
by commas.

Each condition_information_item_name may be specified only once in the SET clause. Otherwise,
a Duplicate condition information item error occurs.

Valid simple_value_specification designators can be specified using stored procedure or function
parameters, stored program local variables declared with DECLARE, user-defined variables, system
variables, or literals. A character literal may include a _charset introducer.

For information about permissible condition_information_item_name values, see Signal Condition
Information Items.

The following procedure signals an error or warning depending on the value of pval, its input parameter:

CREATE PROCEDURE p (pval INT)
BEGIN
 DECLARE specialty CONDITION FOR SQLSTATE '45000';
 IF pval = 0 THEN
 SIGNAL SQLSTATE '01000';
 ELSEIF pval = 1 THEN
 SIGNAL SQLSTATE '45000'
 SET MESSAGE_TEXT = 'An error occurred';
 ELSEIF pval = 2 THEN
 SIGNAL specialty

2413

Condition Handling

 SET MESSAGE_TEXT = 'An error occurred';
 ELSE
 SIGNAL SQLSTATE '01000'
 SET MESSAGE_TEXT = 'A warning occurred', MYSQL_ERRNO = 1000;
 SIGNAL SQLSTATE '45000'
 SET MESSAGE_TEXT = 'An error occurred', MYSQL_ERRNO = 1001;
 END IF;
END;

If pval is 0, p() signals a warning because SQLSTATE values that begin with '01' are signals in the
warning class. The warning does not terminate the procedure, and can be seen with SHOW WARNINGS
after the procedure returns.

If pval is 1, p() signals an error and sets the MESSAGE_TEXT condition information item. The error
terminates the procedure, and the text is returned with the error information.

If pval is 2, the same error is signaled, although the SQLSTATE value is specified using a named condition
in this case.

If pval is anything else, p() first signals a warning and sets the message text and error number condition
information items. This warning does not terminate the procedure, so execution continues and p() then
signals an error. The error does terminate the procedure. The message text and error number set by the
warning are replaced by the values set by the error, which are returned with the error information.

SIGNAL is typically used within stored programs, but it is a MySQL extension that it is permitted outside
handler context. For example, if you invoke the mysql client program, you can enter any of these
statements at the prompt:

SIGNAL SQLSTATE '77777';

CREATE TRIGGER t_bi BEFORE INSERT ON t
 FOR EACH ROW SIGNAL SQLSTATE '77777';

CREATE EVENT e ON SCHEDULE EVERY 1 SECOND
 DO SIGNAL SQLSTATE '77777';

SIGNAL executes according to the following rules:

If the SIGNAL statement indicates a particular SQLSTATE value, that value is used to signal the condition
specified. Example:

CREATE PROCEDURE p (divisor INT)
BEGIN
 IF divisor = 0 THEN
 SIGNAL SQLSTATE '22012';
 END IF;
END;

If the SIGNAL statement uses a named condition, the condition must be declared in some scope that
applies to the SIGNAL statement, and must be defined using an SQLSTATE value, not a MySQL error
number. Example:

CREATE PROCEDURE p (divisor INT)
BEGIN
 DECLARE divide_by_zero CONDITION FOR SQLSTATE '22012';
 IF divisor = 0 THEN
 SIGNAL divide_by_zero;
 END IF;
END;

If the named condition does not exist in the scope of the SIGNAL statement, an Undefined CONDITION
error occurs.

2414

Condition Handling

If SIGNAL refers to a named condition that is defined with a MySQL error number rather than an
SQLSTATE value, a SIGNAL/RESIGNAL can only use a CONDITION defined with SQLSTATE
error occurs. The following statements cause that error because the named condition is associated with a
MySQL error number:

DECLARE no_such_table CONDITION FOR 1051;
SIGNAL no_such_table;

If a condition with a given name is declared multiple times in different scopes, the declaration with the most
local scope applies. Consider the following procedure:

CREATE PROCEDURE p (divisor INT)
BEGIN
 DECLARE my_error CONDITION FOR SQLSTATE '45000';
 IF divisor = 0 THEN
 BEGIN
 DECLARE my_error CONDITION FOR SQLSTATE '22012';
 SIGNAL my_error;
 END;
 END IF;
 SIGNAL my_error;
END;

If divisor is 0, the first SIGNAL statement executes. The innermost my_error condition declaration
applies, raising SQLSTATE '22012'.

If divisor is not 0, the second SIGNAL statement executes. The outermost my_error condition
declaration applies, raising SQLSTATE '45000'.

For information about how the server chooses handlers when a condition occurs, see Section 13.6.7.6,
“Scope Rules for Handlers”.

Signals can be raised within exception handlers:

CREATE PROCEDURE p ()
BEGIN
 DECLARE EXIT HANDLER FOR SQLEXCEPTION
 BEGIN
 SIGNAL SQLSTATE VALUE '99999'
 SET MESSAGE_TEXT = 'An error occurred';
 END;
 DROP TABLE no_such_table;
END;

CALL p() reaches the DROP TABLE statement. There is no table named no_such_table, so the error
handler is activated. The error handler destroys the original error (“no such table”) and makes a new error
with SQLSTATE '99999' and message An error occurred.

Signal Condition Information Items

The following table lists the names of diagnostics area condition information items that can be set in a
SIGNAL (or RESIGNAL) statement. All items are standard SQL except MYSQL_ERRNO, which is a MySQL
extension. For more information about these items see Section 13.6.7.7, “The MySQL Diagnostics Area”.

Item Name Definition
--------- ----------
CLASS_ORIGIN VARCHAR(64)
SUBCLASS_ORIGIN VARCHAR(64)
CONSTRAINT_CATALOG VARCHAR(64)
CONSTRAINT_SCHEMA VARCHAR(64)
CONSTRAINT_NAME VARCHAR(64)
CATALOG_NAME VARCHAR(64)
SCHEMA_NAME VARCHAR(64)

2415

Condition Handling

TABLE_NAME VARCHAR(64)
COLUMN_NAME VARCHAR(64)
CURSOR_NAME VARCHAR(64)
MESSAGE_TEXT VARCHAR(128)
MYSQL_ERRNO SMALLINT UNSIGNED

The character set for character items is UTF-8.

It is illegal to assign NULL to a condition information item in a SIGNAL statement.

A SIGNAL statement always specifies an SQLSTATE value, either directly, or indirectly by referring to a
named condition defined with an SQLSTATE value. The first two characters of an SQLSTATE value are its
class, and the class determines the default value for the condition information items:

• Class = '00' (success)

Illegal. SQLSTATE values that begin with '00' indicate success and are not valid for SIGNAL.

• Class = '01' (warning)

MESSAGE_TEXT = 'Unhandled user-defined warning condition';
MYSQL_ERRNO = ER_SIGNAL_WARN

• Class = '02' (not found)

MESSAGE_TEXT = 'Unhandled user-defined not found condition';
MYSQL_ERRNO = ER_SIGNAL_NOT_FOUND

• Class > '02' (exception)

MESSAGE_TEXT = 'Unhandled user-defined exception condition';
MYSQL_ERRNO = ER_SIGNAL_EXCEPTION

For legal classes, the other condition information items are set as follows:

CLASS_ORIGIN = SUBCLASS_ORIGIN = '';
CONSTRAINT_CATALOG = CONSTRAINT_SCHEMA = CONSTRAINT_NAME = '';
CATALOG_NAME = SCHEMA_NAME = TABLE_NAME = COLUMN_NAME = '';
CURSOR_NAME = '';

The error values that are accessible after SIGNAL executes are the SQLSTATE value raised by the SIGNAL
statement and the MESSAGE_TEXT and MYSQL_ERRNO items. These values are available from the C API:

• mysql_sqlstate() returns the SQLSTATE value.

• mysql_errno() returns the MYSQL_ERRNO value.

• mysql_error() returns the MESSAGE_TEXT value.

At the SQL level, the output from SHOW WARNINGS and SHOW ERRORS indicates the MYSQL_ERRNO and
MESSAGE_TEXT values in the Code and Message columns.

To retrieve information from the diagnostics area, use the GET DIAGNOSTICS statement (see
Section 13.6.7.3, “GET DIAGNOSTICS Statement”). For information about the diagnostics area, see
Section 13.6.7.7, “The MySQL Diagnostics Area”.

Effect of Signals on Handlers, Cursors, and Statements

Signals have different effects on statement execution depending on the signal class. The class determines
how severe an error is. MySQL ignores the value of the sql_mode system variable; in particular, strict
SQL mode does not matter. MySQL also ignores IGNORE: The intent of SIGNAL is to raise a user-
generated error explicitly, so a signal is never ignored.

2416

https://dev.mysql.com/doc/mysql-errors/5.7/en/server-error-reference.html#error_er_signal_warn
https://dev.mysql.com/doc/mysql-errors/5.7/en/server-error-reference.html#error_er_signal_not_found
https://dev.mysql.com/doc/mysql-errors/5.7/en/server-error-reference.html#error_er_signal_exception
https://dev.mysql.com/doc/c-api/5.7/en/mysql-sqlstate.html
https://dev.mysql.com/doc/c-api/5.7/en/mysql-errno.html
https://dev.mysql.com/doc/c-api/5.7/en/mysql-error.html

Condition Handling

In the following descriptions, “unhandled” means that no handler for the signaled SQLSTATE value has
been defined with DECLARE ... HANDLER.

• Class = '00' (success)

Illegal. SQLSTATE values that begin with '00' indicate success and are not valid for SIGNAL.

• Class = '01' (warning)

The value of the warning_count system variable goes up. SHOW WARNINGS shows the signal.
SQLWARNING handlers catch the signal.

Warnings cannot be returned from stored functions because the RETURN statement that causes the
function to return clears the diagnostic area. The statement thus clears any warnings that may have
been present there (and resets warning_count to 0).

• Class = '02' (not found)

NOT FOUND handlers catch the signal. There is no effect on cursors. If the signal is unhandled in a
stored function, statements end.

• Class > '02' (exception)

SQLEXCEPTION handlers catch the signal. If the signal is unhandled in a stored function, statements
end.

• Class = '40'

Treated as an ordinary exception.

13.6.7.6 Scope Rules for Handlers

A stored program may include handlers to be invoked when certain conditions occur within the program.
The applicability of each handler depends on its location within the program definition and on the condition
or conditions that it handles:

• A handler declared in a BEGIN ... END block is in scope only for the SQL statements following the
handler declarations in the block. If the handler itself raises a condition, it cannot handle that condition,
nor can any other handlers declared in the block. In the following example, handlers H1 and H2 are in
scope for conditions raised by statements stmt1 and stmt2. But neither H1 nor H2 are in scope for
conditions raised in the body of H1 or H2.

BEGIN -- outer block
 DECLARE EXIT HANDLER FOR ...; -- handler H1
 DECLARE EXIT HANDLER FOR ...; -- handler H2
 stmt1;
 stmt2;
END;

• A handler is in scope only for the block in which it is declared, and cannot be activated for conditions
occurring outside that block. In the following example, handler H1 is in scope for stmt1 in the inner
block, but not for stmt2 in the outer block:

BEGIN -- outer block
 BEGIN -- inner block
 DECLARE EXIT HANDLER FOR ...; -- handler H1
 stmt1;
 END;
 stmt2;
END;

2417

Condition Handling

• A handler can be specific or general. A specific handler is for a MySQL error code, SQLSTATE value,
or condition name. A general handler is for a condition in the SQLWARNING, SQLEXCEPTION, or NOT
FOUND class. Condition specificity is related to condition precedence, as described later.

Multiple handlers can be declared in different scopes and with different specificities. For example, there
might be a specific MySQL error code handler in an outer block, and a general SQLWARNING handler in
an inner block. Or there might be handlers for a specific MySQL error code and the general SQLWARNING
class in the same block.

Whether a handler is activated depends not only on its own scope and condition value, but on what other
handlers are present. When a condition occurs in a stored program, the server searches for applicable
handlers in the current scope (current BEGIN ... END block). If there are no applicable handlers, the
search continues outward with the handlers in each successive containing scope (block). When the server
finds one or more applicable handlers at a given scope, it chooses among them based on condition
precedence:

• A MySQL error code handler takes precedence over an SQLSTATE value handler.

• An SQLSTATE value handler takes precedence over general SQLWARNING, SQLEXCEPTION, or NOT
FOUND handlers.

• An SQLEXCEPTION handler takes precedence over an SQLWARNING handler.

• It is possible to have several applicable handlers with the same precedence. For example, a statement
could generate multiple warnings with different error codes, for each of which an error-specific handler
exists. In this case, the choice of which handler the server activates is nondeterministic, and may change
depending on the circumstances under which the condition occurs.

One implication of the handler selection rules is that if multiple applicable handlers occur in different
scopes, handlers with the most local scope take precedence over handlers in outer scopes, even over
those for more specific conditions.

If there is no appropriate handler when a condition occurs, the action taken depends on the class of the
condition:

• For SQLEXCEPTION conditions, the stored program terminates at the statement that raised the condition,
as if there were an EXIT handler. If the program was called by another stored program, the calling
program handles the condition using the handler selection rules applied to its own handlers.

• For SQLWARNING conditions, the program continues executing, as if there were a CONTINUE handler.

• For NOT FOUND conditions, if the condition was raised normally, the action is CONTINUE. If it was raised
by SIGNAL or RESIGNAL, the action is EXIT.

The following examples demonstrate how MySQL applies the handler selection rules.

This procedure contains two handlers, one for the specific SQLSTATE value ('42S02') that occurs for
attempts to drop a nonexistent table, and one for the general SQLEXCEPTION class:

CREATE PROCEDURE p1()
BEGIN
 DECLARE CONTINUE HANDLER FOR SQLSTATE '42S02'
 SELECT 'SQLSTATE handler was activated' AS msg;
 DECLARE CONTINUE HANDLER FOR SQLEXCEPTION
 SELECT 'SQLEXCEPTION handler was activated' AS msg;

 DROP TABLE test.t;
END;

2418

Condition Handling

Both handlers are declared in the same block and have the same scope. However, SQLSTATE handlers
take precedence over SQLEXCEPTION handlers, so if the table t is nonexistent, the DROP TABLE
statement raises a condition that activates the SQLSTATE handler:

mysql> CALL p1();
+--------------------------------+
| msg |
+--------------------------------+
| SQLSTATE handler was activated |
+--------------------------------+

This procedure contains the same two handlers. But this time, the DROP TABLE statement and
SQLEXCEPTION handler are in an inner block relative to the SQLSTATE handler:

CREATE PROCEDURE p2()
BEGIN -- outer block
 DECLARE CONTINUE HANDLER FOR SQLSTATE '42S02'
 SELECT 'SQLSTATE handler was activated' AS msg;
 BEGIN -- inner block
 DECLARE CONTINUE HANDLER FOR SQLEXCEPTION
 SELECT 'SQLEXCEPTION handler was activated' AS msg;

 DROP TABLE test.t; -- occurs within inner block
 END;
END;

In this case, the handler that is more local to where the condition occurs takes precedence. The
SQLEXCEPTION handler activates, even though it is more general than the SQLSTATE handler:

mysql> CALL p2();
+------------------------------------+
| msg |
+------------------------------------+
| SQLEXCEPTION handler was activated |
+------------------------------------+

In this procedure, one of the handlers is declared in a block inner to the scope of the DROP TABLE
statement:

CREATE PROCEDURE p3()
BEGIN -- outer block
 DECLARE CONTINUE HANDLER FOR SQLEXCEPTION
 SELECT 'SQLEXCEPTION handler was activated' AS msg;
 BEGIN -- inner block
 DECLARE CONTINUE HANDLER FOR SQLSTATE '42S02'
 SELECT 'SQLSTATE handler was activated' AS msg;
 END;

 DROP TABLE test.t; -- occurs within outer block
END;

Only the SQLEXCEPTION handler applies because the other one is not in scope for the condition raised by
the DROP TABLE:

mysql> CALL p3();
+------------------------------------+
| msg |
+------------------------------------+
| SQLEXCEPTION handler was activated |
+------------------------------------+

In this procedure, both handlers are declared in a block inner to the scope of the DROP TABLE statement:

CREATE PROCEDURE p4()
BEGIN -- outer block

2419

Condition Handling

 BEGIN -- inner block
 DECLARE CONTINUE HANDLER FOR SQLEXCEPTION
 SELECT 'SQLEXCEPTION handler was activated' AS msg;
 DECLARE CONTINUE HANDLER FOR SQLSTATE '42S02'
 SELECT 'SQLSTATE handler was activated' AS msg;
 END;

 DROP TABLE test.t; -- occurs within outer block
END;

Neither handler applies because they are not in scope for the DROP TABLE. The condition raised by the
statement goes unhandled and terminates the procedure with an error:

mysql> CALL p4();
ERROR 1051 (42S02): Unknown table 'test.t'

13.6.7.7 The MySQL Diagnostics Area

SQL statements produce diagnostic information that populates the diagnostics area. Standard SQL has
a diagnostics area stack, containing a diagnostics area for each nested execution context. Standard SQL
also supports GET STACKED DIAGNOSTICS syntax for referring to the second diagnostics area during
condition handler execution. MySQL supports the STACKED keyword as of MySQL 5.7. Before that, MySQL
does not support STACKED; there is a single diagnostics area containing information from the most recent
statement that wrote to it.

The following discussion describes the structure of the diagnostics area in MySQL, the information items
recognized by MySQL, how statements clear and set the diagnostics area, and how diagnostics areas are
pushed to and popped from the stack.

• Diagnostics Area Structure

• Diagnostics Area Information Items

• How the Diagnostics Area is Cleared and Populated

• How the Diagnostics Area Stack Works

• Diagnostics Area-Related System Variables

Diagnostics Area Structure

The diagnostics area contains two kinds of information:

• Statement information, such as the number of conditions that occurred or the affected-rows count.

• Condition information, such as the error code and message. If a statement raises multiple conditions,
this part of the diagnostics area has a condition area for each one. If a statement raises no conditions,
this part of the diagnostics area is empty.

For a statement that produces three conditions, the diagnostics area contains statement and condition
information like this:

Statement information:
 row count
 ... other statement information items ...
Condition area list:
 Condition area 1:
 error code for condition 1
 error message for condition 1
 ... other condition information items ...
 Condition area 2:

2420

Condition Handling

 error code for condition 2:
 error message for condition 2
 ... other condition information items ...
 Condition area 3:
 error code for condition 3
 error message for condition 3
 ... other condition information items ...

Diagnostics Area Information Items

The diagnostics area contains statement and condition information items. Numeric items are integers. The
character set for character items is UTF-8. No item can be NULL. If a statement or condition item is not
set by a statement that populates the diagnostics area, its value is 0 or the empty string, depending on the
item data type.

The statement information part of the diagnostics area contains these items:

• NUMBER: An integer indicating the number of condition areas that have information.

• ROW_COUNT: An integer indicating the number of rows affected by the statement. ROW_COUNT has the
same value as the ROW_COUNT() function (see Section 12.15, “Information Functions”).

The condition information part of the diagnostics area contains a condition area for each condition.
Condition areas are numbered from 1 to the value of the NUMBER statement condition item. If NUMBER is 0,
there are no condition areas.

Each condition area contains the items in the following list. All items are standard SQL except
MYSQL_ERRNO, which is a MySQL extension. The definitions apply for conditions generated other than
by a signal (that is, by a SIGNAL or RESIGNAL statement). For nonsignal conditions, MySQL populates
only those condition items not described as always empty. The effects of signals on the condition area are
described later.

• CLASS_ORIGIN: A string containing the class of the RETURNED_SQLSTATE value. If the
RETURNED_SQLSTATE value begins with a class value defined in SQL standards document ISO 9075-2
(section 24.1, SQLSTATE), CLASS_ORIGIN is 'ISO 9075'. Otherwise, CLASS_ORIGIN is 'MySQL'.

• SUBCLASS_ORIGIN: A string containing the subclass of the RETURNED_SQLSTATE value. If
CLASS_ORIGIN is 'ISO 9075' or RETURNED_SQLSTATE ends with '000', SUBCLASS_ORIGIN is
'ISO 9075'. Otherwise, SUBCLASS_ORIGIN is 'MySQL'.

• RETURNED_SQLSTATE: A string that indicates the SQLSTATE value for the condition.

• MESSAGE_TEXT: A string that indicates the error message for the condition.

• MYSQL_ERRNO: An integer that indicates the MySQL error code for the condition.

• CONSTRAINT_CATALOG, CONSTRAINT_SCHEMA, CONSTRAINT_NAME: Strings that indicate the catalog,
schema, and name for a violated constraint. They are always empty.

• CATALOG_NAME, SCHEMA_NAME, TABLE_NAME, COLUMN_NAME: Strings that indicate the catalog,
schema, table, and column related to the condition. They are always empty.

• CURSOR_NAME: A string that indicates the cursor name. This is always empty.

For the RETURNED_SQLSTATE, MESSAGE_TEXT, and MYSQL_ERRNO values for particular errors, see
Server Error Message Reference.

If a SIGNAL (or RESIGNAL) statement populates the diagnostics area, its SET clause can assign to any
condition information item except RETURNED_SQLSTATE any value that is legal for the item data type.

2421

https://dev.mysql.com/doc/mysql-errors/5.7/en/server-error-reference.html

Condition Handling

SIGNAL also sets the RETURNED_SQLSTATE value, but not directly in its SET clause. That value comes
from the SIGNAL statement SQLSTATE argument.

SIGNAL also sets statement information items. It sets NUMBER to 1. It sets ROW_COUNT to −1 for errors and
0 otherwise.

How the Diagnostics Area is Cleared and Populated

Nondiagnostic SQL statements populate the diagnostics area automatically, and its contents can be set
explicitly with the SIGNAL and RESIGNAL statements. The diagnostics area can be examined with GET
DIAGNOSTICS to extract specific items, or with SHOW WARNINGS or SHOW ERRORS to see conditions or
errors.

SQL statements clear and set the diagnostics area as follows:

• When the server starts executing a statement after parsing it, it clears the diagnostics area for
nondiagnostic statements. Diagnostic statements do not clear the diagnostics area. These statements
are diagnostic:

• GET DIAGNOSTICS

• SHOW ERRORS

• SHOW WARNINGS

• If a statement raises a condition, the diagnostics area is cleared of conditions that belong to earlier
statements. The exception is that conditions raised by GET DIAGNOSTICS and RESIGNAL are added to
the diagnostics area without clearing it.

Thus, even a statement that does not normally clear the diagnostics area when it begins executing clears it
if the statement raises a condition.

The following example shows the effect of various statements on the diagnostics area, using SHOW
WARNINGS to display information about conditions stored there.

This DROP TABLE statement clears the diagnostics area and populates it when the condition occurs:

mysql> DROP TABLE IF EXISTS test.no_such_table;
Query OK, 0 rows affected, 1 warning (0.01 sec)

mysql> SHOW WARNINGS;
+-------+------+------------------------------------+
| Level | Code | Message |
+-------+------+------------------------------------+
| Note | 1051 | Unknown table 'test.no_such_table' |
+-------+------+------------------------------------+
1 row in set (0.00 sec)

This SET statement generates an error, so it clears and populates the diagnostics area:

mysql> SET @x = @@x;
ERROR 1193 (HY000): Unknown system variable 'x'

mysql> SHOW WARNINGS;
+-------+------+-----------------------------+
| Level | Code | Message |
+-------+------+-----------------------------+
| Error | 1193 | Unknown system variable 'x' |
+-------+------+-----------------------------+
1 row in set (0.00 sec)

2422

Condition Handling

The previous SET statement produced a single condition, so 1 is the only valid condition number for GET
DIAGNOSTICS at this point. The following statement uses a condition number of 2, which produces a
warning that is added to the diagnostics area without clearing it:

mysql> GET DIAGNOSTICS CONDITION 2 @p = MESSAGE_TEXT;
Query OK, 0 rows affected, 1 warning (0.00 sec)

mysql> SHOW WARNINGS;
+-------+------+------------------------------+
| Level | Code | Message |
+-------+------+------------------------------+
| Error | 1193 | Unknown system variable 'xx' |
| Error | 1753 | Invalid condition number |
+-------+------+------------------------------+
2 rows in set (0.00 sec)

Now there are two conditions in the diagnostics area, so the same GET DIAGNOSTICS statement
succeeds:

mysql> GET DIAGNOSTICS CONDITION 2 @p = MESSAGE_TEXT;
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT @p;
+--------------------------+
| @p |
+--------------------------+
| Invalid condition number |
+--------------------------+
1 row in set (0.01 sec)

How the Diagnostics Area Stack Works

When a push to the diagnostics area stack occurs, the first (current) diagnostics area becomes the second
(stacked) diagnostics area and a new current diagnostics area is created as a copy of it. Diagnostics areas
are pushed to and popped from the stack under the following circumstances:

• Execution of a stored program

A push occurs before the program executes and a pop occurs afterward. If the stored program ends
while handlers are executing, there can be more than one diagnostics area to pop; this occurs due to an
exception for which there are no appropriate handlers or due to RETURN in the handler.

Any warning or error conditions in the popped diagnostics areas then are added to the current
diagnostics area, except that, for triggers, only errors are added. When the stored program ends, the
caller sees these conditions in its current diagonstics area.

• Execution of a condition handler within a stored program

When a push occurs as a result of condition handler activation, the stacked diagnostics area is the
area that was current within the stored program prior to the push. The new now-current diagnostics
area is the handler's current diagnostics area. GET [CURRENT] DIAGNOSTICS and GET STACKED
DIAGNOSTICS can be used within the handler to access the contents of the current (handler) and
stacked (stored program) diagnostics areas. Initially, they return the same result, but statements
executing within the handler modify the current diagnostics area, clearing and setting its contents
according to the normal rules (see How the Diagnostics Area is Cleared and Populated). The stacked
diagnostics area cannot be modified by statements executing within the handler except RESIGNAL.

If the handler executes successfully, the current (handler) diagnostics area is popped and the stacked
(stored program) diagnostics area again becomes the current diagnostics area. Conditions added to the
handler diagnostics area during handler execution are added to the current diagnostics area.

2423

Condition Handling

• Execution of RESIGNAL

The RESIGNAL statement passes on the error condition information that is available during execution of
a condition handler within a compound statement inside a stored program. RESIGNAL may change some
or all information before passing it on, modifying the diagnostics stack as described in Section 13.6.7.4,
“RESIGNAL Statement”.

Diagnostics Area-Related System Variables

Certain system variables control or are related to some aspects of the diagnostics area:

• max_error_count controls the number of condition areas in the diagnostics area. If more conditions
than this occur, MySQL silently discards information for the excess conditions. (Conditions added by
RESIGNAL are always added, with older conditions being discarded as necessary to make room.)

• warning_count indicates the number of conditions that occurred. This includes errors, warnings, and
notes. Normally, NUMBER and warning_count are the same. However, as the number of conditions
generated exceeds max_error_count, the value of warning_count continues to rise whereas
NUMBER remains capped at max_error_count because no additional conditions are stored in the
diagnostics area.

• error_count indicates the number of errors that occurred. This value includes “not found” and
exception conditions, but excludes warnings and notes. Like warning_count, its value can exceed
max_error_count.

• If the sql_notes system variable is set to 0, notes are not stored and do not increment
warning_count.

Example: If max_error_count is 10, the diagnostics area can contain a maximum of 10 condition areas.
Suppose that a statement raises 20 conditions, 12 of which are errors. In that case, the diagnostics area
contains the first 10 conditions, NUMBER is 10, warning_count is 20, and error_count is 12.

Changes to the value of max_error_count have no effect until the next attempt to modify the diagnostics
area. If the diagnostics area contains 10 condition areas and max_error_count is set to 5, that has no
immediate effect on the size or content of the diagnostics area.

13.6.7.8 Condition Handling and OUT or INOUT Parameters

If a stored procedure exits with an unhandled exception, modified values of OUT and INOUT parameters
are not propogated back to the caller.

If an exception is handled by a CONTINUE or EXIT handler that contains a RESIGNAL statement,
execution of RESIGNAL pops the Diagnostics Area stack, thus signalling the exception (that is, the
information that existed before entry into the handler). If the exception is an error, the values of OUT and
INOUT parameters are not propogated back to the caller.

13.6.7.9 Restrictions on Condition Handling

SIGNAL, RESIGNAL, and GET DIAGNOSTICS are not permissible as prepared statements. For example,
this statement is invalid:

PREPARE stmt1 FROM 'SIGNAL SQLSTATE "02000"';

SQLSTATE values in class '04' are not treated specially. They are handled the same as other exceptions.

In standard SQL, the first condition relates to the SQLSTATE value returned for the previous SQL
statement. In MySQL, this is not guaranteed, so to get the main error, you cannot do this:

GET DIAGNOSTICS CONDITION 1 @errno = MYSQL_ERRNO;

2424

Database Administration Statements

Instead, do this:

GET DIAGNOSTICS @cno = NUMBER;
GET DIAGNOSTICS CONDITION @cno @errno = MYSQL_ERRNO;

13.7 Database Administration Statements

13.7.1 Account Management Statements

MySQL account information is stored in the tables of the mysql system database. This database and the
access control system are discussed extensively in Chapter 5, MySQL Server Administration, which you
should consult for additional details.

Important

Some MySQL releases introduce changes to the grant tables to add new privileges
or features. To make sure that you can take advantage of any new capabilities,
update your grant tables to the current structure whenever you upgrade MySQL.
See Section 2.10, “Upgrading MySQL”.

When the read_only system variable is enabled, account-management statements require the SUPER
privilege, in addition to any other required privileges. This is because they modify tables in the mysql
system database.

13.7.1.1 ALTER USER Statement

ALTER USER [IF EXISTS]
 user [auth_option] [, user [auth_option]] ...
 [REQUIRE {NONE | tls_option [[AND] tls_option] ...}]
 [WITH resource_option [resource_option] ...]
 [password_option | lock_option] ...

ALTER USER [IF EXISTS]
 USER() IDENTIFIED BY 'auth_string'

user:
 (see Section 6.2.4, “Specifying Account Names”)

auth_option: {
 IDENTIFIED BY 'auth_string'
 | IDENTIFIED WITH auth_plugin
 | IDENTIFIED WITH auth_plugin BY 'auth_string'
 | IDENTIFIED WITH auth_plugin AS 'auth_string'
}

tls_option: {
 SSL
 | X509
 | CIPHER 'cipher'
 | ISSUER 'issuer'
 | SUBJECT 'subject'
}

resource_option: {
 MAX_QUERIES_PER_HOUR count
 | MAX_UPDATES_PER_HOUR count
 | MAX_CONNECTIONS_PER_HOUR count
 | MAX_USER_CONNECTIONS count
}

password_option: {
 PASSWORD EXPIRE
 | PASSWORD EXPIRE DEFAULT

2425

Account Management Statements

 | PASSWORD EXPIRE NEVER
 | PASSWORD EXPIRE INTERVAL N DAY
}

lock_option: {
 ACCOUNT LOCK
 | ACCOUNT UNLOCK
}

The ALTER USER statement modifies MySQL accounts. It enables authentication, SSL/TLS, resource-limit,
and password-management properties to be modified for existing accounts. It can also be used to lock and
unlock accounts.

To use ALTER USER, you must have the global CREATE USER privilege or the UPDATE privilege for the
mysql system database. When the read_only system variable is enabled, ALTER USER additionally
requires the SUPER privilege.

By default, an error occurs if you try to modify a user that does not exist. If the IF EXISTS clause is given,
the statement produces a warning for each named user that does not exist, rather than an error.

Important

Under some circumstances, ALTER USER may be recorded in server logs or on
the client side in a history file such as ~/.mysql_history, which means that
cleartext passwords may be read by anyone having read access to that information.
For information about the conditions under which this occurs for the server logs
and how to control it, see Section 6.1.2.3, “Passwords and Logging”. For similar
information about client-side logging, see Section 4.5.1.3, “mysql Client Logging”.

There are several aspects to the ALTER USER statement, described under the following topics:

• ALTER USER Overview

• ALTER USER Authentication Options

• ALTER USER SSL/TLS Options

• ALTER USER Resource-Limit Options

• ALTER USER Password-Management Options

• ALTER USER Account-Locking Options

ALTER USER Overview

For each affected account, ALTER USER modifies the corresponding row in the mysql.user system table
to reflect the properties specified in the statement. Unspecified properties retain their current values.

Each account name uses the format described in Section 6.2.4, “Specifying Account Names”. The host
name part of the account name, if omitted, defaults to '%'. It is also possible to specify CURRENT_USER or
CURRENT_USER() to refer to the account associated with the current session.

In one case only, the account may be specified with the USER() function:

ALTER USER USER() IDENTIFIED BY 'auth_string';

This syntax enables changing your own password without naming your account literally.

For ALTER USER syntax that permits an auth_option value to follow a user value, auth_option
indicates how the account authenticates by specifying an account authentication plugin, credentials (for

2426

Account Management Statements

example, a password), or both. Each auth_option value applies only to the account named immediately
preceding it.

Following the user specifications, the statement may include options for SSL/TLS, resource-limit,
password-management, and locking properties. All such options are global to the statement and apply to
all accounts named in the statement.

Example: Change an account's password and expire it. As a result, the user must connect with the named
password and choose a new one at the next connection:

ALTER USER 'jeffrey'@'localhost'
 IDENTIFIED BY 'new_password' PASSWORD EXPIRE;

Example: Modify an account to use the sha256_password authentication plugin and the given password.
Require that a new password be chosen every 180 days:

ALTER USER 'jeffrey'@'localhost'
 IDENTIFIED WITH sha256_password BY 'new_password'
 PASSWORD EXPIRE INTERVAL 180 DAY;

Example: Lock or unlock an account:

ALTER USER 'jeffrey'@'localhost' ACCOUNT LOCK;
ALTER USER 'jeffrey'@'localhost' ACCOUNT UNLOCK;

Example: Require an account to connect using SSL and establish a limit of 20 connections per hour:

ALTER USER 'jeffrey'@'localhost'
 REQUIRE SSL WITH MAX_CONNECTIONS_PER_HOUR 20;

Example: Alter multiple accounts, specifying some per-account properties and some global properties:

ALTER USER
 'jeffrey'@'localhost' IDENTIFIED BY 'new_password',
 'jeanne'@'localhost'
 REQUIRE SSL WITH MAX_USER_CONNECTIONS 2;

The IDENTIFIED BY value following jeffrey applies only to its immediately preceding account, so it
changes the password to 'jeffrey_new_password' only for jeffrey. For jeanne, there is no per-
account value (thus leaving the password unchanged).

The remaining properties apply globally to all accounts named in the statement, so for both accounts:

• Connections are required to use SSL.

• The account can be used for a maximum of two simultaneous connections.

In the absence of a particular type of option, the account remains unchanged in that respect. For example,
with no locking option, the locking state of the account is not changed.

ALTER USER Authentication Options

An account name may be followed by an auth_option authentication option that specifies the account
authentication plugin, credentials, or both:

• auth_plugin names an authentication plugin. The plugin name can be a quoted string literal or an
unquoted name. Plugin names are stored in the plugin column of the mysql.user system table.

For auth_option syntax that does not specify an authentication plugin, the default plugin is indicated
by the value of the default_authentication_plugin system variable. For descriptions of each
plugin, see Section 6.4.1, “Authentication Plugins”.

2427

Account Management Statements

• Credentials are stored in the mysql.user system table. An 'auth_string' value specifies
account credentials, either as a cleartext (unencrypted) string or hashed in the format expected by the
authentication plugin associated with the account, respectively:

• For syntax that uses BY 'auth_string', the string is cleartext and is passed to the authentication
plugin for possible hashing. The result returned by the plugin is stored in the mysql.user table. A
plugin may use the value as specified, in which case no hashing occurs.

• For syntax that uses AS 'auth_string', the string is assumed to be already in the format the
authentication plugin requires, and is stored as is in the mysql.user table. If a plugin requires a
hashed value, the value must be already hashed in a format appropriate for the plugin, or the value
cannot be used by the plugin and correct authentication of client connections cannot occur.

• If an authentication plugin performs no hashing of the authentication string, the BY 'auth_string'
and AS 'auth_string' clauses have the same effect: The authentication string is stored as is in the
mysql.user system table.

ALTER USER permits these auth_option syntaxes:

• IDENTIFIED BY 'auth_string'

Sets the account authentication plugin to the default plugin, passes the cleartext 'auth_string' value
to the plugin for possible hashing, and stores the result in the account row in the mysql.user system
table.

• IDENTIFIED WITH auth_plugin

Sets the account authentication plugin to auth_plugin, clears the credentials to the empty string (the
credentials are associated with the old authentication plugin, not the new one), and stores the result in
the account row in the mysql.user system table.

In addition, the password is marked expired. The user must choose a new one when next connecting.

• IDENTIFIED WITH auth_plugin BY 'auth_string'

Sets the account authentication plugin to auth_plugin, passes the cleartext 'auth_string' value
to the plugin for possible hashing, and stores the result in the account row in the mysql.user system
table.

• IDENTIFIED WITH auth_plugin AS 'auth_string'

Sets the account authentication plugin to auth_plugin and stores the 'auth_string' value as is in
the mysql.user account row. If the plugin requires a hashed string, the string is assumed to be already
hashed in the format the plugin requires.

Example: Specify the password as cleartext; the default plugin is used:

ALTER USER 'jeffrey'@'localhost'
 IDENTIFIED BY 'password';

Example: Specify the authentication plugin, along with a cleartext password value:

ALTER USER 'jeffrey'@'localhost'
 IDENTIFIED WITH mysql_native_password
 BY 'password';

Example: Specify the authentication plugin, along with a hashed password value:

ALTER USER 'jeffrey'@'localhost'
 IDENTIFIED WITH mysql_native_password

2428

Account Management Statements

 AS '*6C8989366EAF75BB670AD8EA7A7FC1176A95CEF4';

For additional information about setting passwords and authentication plugins, see Section 6.2.10,
“Assigning Account Passwords”, and Section 6.2.13, “Pluggable Authentication”.

ALTER USER SSL/TLS Options

MySQL can check X.509 certificate attributes in addition to the usual authentication that is based on
the user name and credentials. For background information on the use of SSL/TLS with MySQL, see
Section 6.3, “Using Encrypted Connections”.

To specify SSL/TLS-related options for a MySQL account, use a REQUIRE clause that specifies one or
more tls_option values.

Order of REQUIRE options does not matter, but no option can be specified twice. The AND keyword is
optional between REQUIRE options.

ALTER USER permits these tls_option values:

• NONE

Indicates that all accounts named by the statement have no SSL or X.509 requirements. Unencrypted
connections are permitted if the user name and password are valid. Encrypted connections can be used,
at the client's option, if the client has the proper certificate and key files.

ALTER USER 'jeffrey'@'localhost' REQUIRE NONE;

Clients attempt to establish a secure connection by default. For clients that have REQUIRE NONE,
the connection attempt falls back to an unencrypted connection if a secure connection cannot
be established. To require an encrypted connection, a client need specify only the --ssl-
mode=REQUIRED option; the connection attempt fails if a secure connection cannot be established.

• SSL

Tells the server to permit only encrypted connections for all accounts named by the statement.

ALTER USER 'jeffrey'@'localhost' REQUIRE SSL;

Clients attempt to establish a secure connection by default. For accounts that have REQUIRE SSL, the
connection attempt fails if a secure connection cannot be established.

• X509

For all accounts named by the statement, requires that clients present a valid certificate, but the exact
certificate, issuer, and subject do not matter. The only requirement is that it should be possible to verify
its signature with one of the CA certificates. Use of X.509 certificates always implies encryption, so the
SSL option is unnecessary in this case.

ALTER USER 'jeffrey'@'localhost' REQUIRE X509;

For accounts with REQUIRE X509, clients must specify the --ssl-key and --ssl-cert options
to connect. (It is recommended but not required that --ssl-ca also be specified so that the public
certificate provided by the server can be verified.) This is true for ISSUER and SUBJECT as well because
those REQUIRE options imply the requirements of X509.

• ISSUER 'issuer'

For all accounts named by the statement, requires that clients present a valid X.509 certificate issued by
CA 'issuer'. If a client presents a certificate that is valid but has a different issuer, the server rejects

2429

Account Management Statements

the connection. Use of X.509 certificates always implies encryption, so the SSL option is unnecessary in
this case.

ALTER USER 'jeffrey'@'localhost'
 REQUIRE ISSUER '/C=SE/ST=Stockholm/L=Stockholm/
 O=MySQL/CN=CA/emailAddress=ca@example.com';

Because ISSUER implies the requirements of X509, clients must specify the --ssl-key and --ssl-
cert options to connect. (It is recommended but not required that --ssl-ca also be specified so that
the public certificate provided by the server can be verified.)

• SUBJECT 'subject'

For all accounts named by the statement, requires that clients present a valid X.509 certificate containing
the subject subject. If a client presents a certificate that is valid but has a different subject, the
server rejects the connection. Use of X.509 certificates always implies encryption, so the SSL option is
unnecessary in this case.

ALTER USER 'jeffrey'@'localhost'
 REQUIRE SUBJECT '/C=SE/ST=Stockholm/L=Stockholm/
 O=MySQL demo client certificate/
 CN=client/emailAddress=client@example.com';

MySQL does a simple string comparison of the 'subject' value to the value in the certificate, so
lettercase and component ordering must be given exactly as present in the certificate.

Because SUBJECT implies the requirements of X509, clients must specify the --ssl-key and --ssl-
cert options to connect. (It is recommended but not required that --ssl-ca also be specified so that
the public certificate provided by the server can be verified.)

• CIPHER 'cipher'

For all accounts named by the statement, requires a specific cipher method for encrypting connections.
This option is needed to ensure that ciphers and key lengths of sufficient strength are used. Encryption
can be weak if old algorithms using short encryption keys are used.

ALTER USER 'jeffrey'@'localhost'
 REQUIRE CIPHER 'EDH-RSA-DES-CBC3-SHA';

The SUBJECT, ISSUER, and CIPHER options can be combined in the REQUIRE clause:

ALTER USER 'jeffrey'@'localhost'
 REQUIRE SUBJECT '/C=SE/ST=Stockholm/L=Stockholm/
 O=MySQL demo client certificate/
 CN=client/emailAddress=client@example.com'
 AND ISSUER '/C=SE/ST=Stockholm/L=Stockholm/
 O=MySQL/CN=CA/emailAddress=ca@example.com'
 AND CIPHER 'EDH-RSA-DES-CBC3-SHA';

ALTER USER Resource-Limit Options

It is possible to place limits on use of server resources by an account, as discussed in Section 6.2.16,
“Setting Account Resource Limits”. To do so, use a WITH clause that specifies one or more
resource_option values.

Order of WITH options does not matter, except that if a given resource limit is specified multiple times, the
last instance takes precedence.

ALTER USER permits these resource_option values:

2430

Account Management Statements

• MAX_QUERIES_PER_HOUR count, MAX_UPDATES_PER_HOUR count,
MAX_CONNECTIONS_PER_HOUR count

For all accounts named by the statement, these options restrict how many queries, updates, and
connections to the server are permitted to each account during any given one-hour period. (Queries for
which results are served from the query cache do not count against the MAX_QUERIES_PER_HOUR limit.)
If count is 0 (the default), this means that there is no limitation for the account.

• MAX_USER_CONNECTIONS count

For all accounts named by the statement, restricts the maximum number of simultaneous connections
to the server by each account. A nonzero count specifies the limit for the account explicitly. If count
is 0 (the default), the server determines the number of simultaneous connections for the account from
the global value of the max_user_connections system variable. If max_user_connections is also
zero, there is no limit for the account.

Example:

ALTER USER 'jeffrey'@'localhost'
 WITH MAX_QUERIES_PER_HOUR 500 MAX_UPDATES_PER_HOUR 100;

ALTER USER Password-Management Options

ALTER USER supports several password_option values for password expiration management, to either
expire an account password manually or establish its password expiration policy. Policy options do not
expire the password. Instead, they determine how the server applies automatic expiration to the account
based on account password age. For a given account, its password age is assessed from the date and
time of the most recent password change.

This section describes the syntax for password-management options. For information about establishing
policy for password management, see Section 6.2.11, “Password Management”.

If multiple password-management options are specified, the last one takes precedence.

These options apply only to accounts that use an authentication plugin that stores credentials internally to
MySQL. For accounts that use a plugin that performs authentication against a credentials system that is
external to MySQL, password management must be handled externally against that system as well. For
more information about internal credentials storage, see Section 6.2.11, “Password Management”.

A client session operates in restricted mode if the account password was expired manually or if the
password age is considered greater than its permitted lifetime per the automatic expiration policy. In
restricted mode, operations performed within the session result in an error until the user establishes a new
account password. For information about restricted mode, see Section 6.2.12, “Server Handling of Expired
Passwords”.

Note

Although it is possible to “reset” an expired password by setting it to its current
value, it is preferable, as a matter of good policy, to choose a different password.

ALTER USER permits these password_option values for controlling password expiration:

• PASSWORD EXPIRE

Immediately marks the password expired for all accounts named by the statement.

ALTER USER 'jeffrey'@'localhost' PASSWORD EXPIRE;

• PASSWORD EXPIRE DEFAULT

2431

Account Management Statements

Sets all accounts named by the statement so that the global expiration policy applies, as specified by the
default_password_lifetime system variable.

ALTER USER 'jeffrey'@'localhost' PASSWORD EXPIRE DEFAULT;

• PASSWORD EXPIRE NEVER

This expiration option overrides the global policy for all accounts named by the statement. For each, it
disables password expiration so that the password never expires.

ALTER USER 'jeffrey'@'localhost' PASSWORD EXPIRE NEVER;

• PASSWORD EXPIRE INTERVAL N DAY

This expiration option overrides the global policy for all accounts named by the statement. For each,
it sets the password lifetime to N days. The following statement requires the password to be changed
every 180 days:

ALTER USER 'jeffrey'@'localhost' PASSWORD EXPIRE INTERVAL 180 DAY;

ALTER USER Account-Locking Options

MySQL supports account locking and unlocking using the ACCOUNT LOCK and ACCOUNT UNLOCK options,
which specify the locking state for an account. For additional discussion, see Section 6.2.15, “Account
Locking”.

If multiple account-locking options are specified, the last one takes precedence.

13.7.1.2 CREATE USER Statement

CREATE USER [IF NOT EXISTS]
 user [auth_option] [, user [auth_option]] ...
 [REQUIRE {NONE | tls_option [[AND] tls_option] ...}]
 [WITH resource_option [resource_option] ...]
 [password_option | lock_option] ...

user:
 (see Section 6.2.4, “Specifying Account Names”)

auth_option: {
 IDENTIFIED BY 'auth_string'
 | IDENTIFIED WITH auth_plugin
 | IDENTIFIED WITH auth_plugin BY 'auth_string'
 | IDENTIFIED WITH auth_plugin AS 'auth_string'
 | IDENTIFIED BY PASSWORD 'auth_string'
}

tls_option: {
 SSL
 | X509
 | CIPHER 'cipher'
 | ISSUER 'issuer'
 | SUBJECT 'subject'
}

resource_option: {
 MAX_QUERIES_PER_HOUR count
 | MAX_UPDATES_PER_HOUR count
 | MAX_CONNECTIONS_PER_HOUR count
 | MAX_USER_CONNECTIONS count
}

2432

Account Management Statements

password_option: {
 PASSWORD EXPIRE
 | PASSWORD EXPIRE DEFAULT
 | PASSWORD EXPIRE NEVER
 | PASSWORD EXPIRE INTERVAL N DAY
}

lock_option: {
 ACCOUNT LOCK
 | ACCOUNT UNLOCK
}

The CREATE USER statement creates new MySQL accounts. It enables authentication, SSL/TLS,
resource-limit, and password-management properties to be established for new accounts, and controls
whether accounts are initially locked or unlocked.

To use CREATE USER, you must have the global CREATE USER privilege, or the INSERT privilege for the
mysql system database. When the read_only system variable is enabled, CREATE USER additionally
requires the SUPER privilege.

An error occurs if you try to create an account that already exists. If the IF NOT EXISTS clause is given,
the statement produces a warning for each named account that already exists, rather than an error.

Important

Under some circumstances, CREATE USER may be recorded in server logs or on
the client side in a history file such as ~/.mysql_history, which means that
cleartext passwords may be read by anyone having read access to that information.
For information about the conditions under which this occurs for the server logs
and how to control it, see Section 6.1.2.3, “Passwords and Logging”. For similar
information about client-side logging, see Section 4.5.1.3, “mysql Client Logging”.

There are several aspects to the CREATE USER statement, described under the following topics:

• CREATE USER Overview

• CREATE USER Authentication Options

• CREATE USER SSL/TLS Options

• CREATE USER Resource-Limit Options

• CREATE USER Password-Management Options

• CREATE USER Account-Locking Options

CREATE USER Overview

For each account, CREATE USER creates a new row in the mysql.user system table. The account row
reflects the properties specified in the statement. Unspecified properties are set to their default values:

• Authentication: The authentication plugin defined by the default_authentication_plugin system
variable, and empty credentials

• SSL/TLS: NONE

• Resource limits: Unlimited

• Password management: PASSWORD EXPIRE DEFAULT

• Account locking: ACCOUNT UNLOCK

2433

Account Management Statements

An account when first created has no privileges. To assign privileges to this account, use one or more
GRANT statements.

Each account name uses the format described in Section 6.2.4, “Specifying Account Names”. For example:

CREATE USER 'jeffrey'@'localhost' IDENTIFIED BY 'password';

The host name part of the account name, if omitted, defaults to '%'.

Each user value naming an account may be followed by an optional auth_option value that indicates
how the account authenticates. These values enable account authentication plugins and credentials (for
example, a password) to be specified. Each auth_option value applies only to the account named
immediately preceding it.

Following the user specifications, the statement may include options for SSL/TLS, resource-limit,
password-management, and locking properties. All such options are global to the statement and apply to
all accounts named in the statement.

Example: Create an account that uses the default authentication plugin and the given password. Mark the
password expired so that the user must choose a new one at the first connection to the server:

CREATE USER 'jeffrey'@'localhost'
 IDENTIFIED BY 'new_password' PASSWORD EXPIRE;

Example: Create an account that uses the sha256_password authentication plugin and the given
password. Require that a new password be chosen every 180 days:

CREATE USER 'jeffrey'@'localhost'
 IDENTIFIED WITH sha256_password BY 'new_password'
 PASSWORD EXPIRE INTERVAL 180 DAY;

Example: Create multiple accounts, specifying some per-account properties and some global properties:

CREATE USER
 'jeffrey'@'localhost' IDENTIFIED WITH mysql_native_password
 BY 'new_password1',
 'jeanne'@'localhost' IDENTIFIED WITH sha256_password
 BY 'new_password2'
 REQUIRE X509 WITH MAX_QUERIES_PER_HOUR 60
 ACCOUNT LOCK;

Each auth_option value (IDENTIFIED WITH ... BY in this case) applies only to the account named
immediately preceding it, so each account uses the immediately following authentication plugin and
password.

The remaining properties apply globally to all accounts named in the statement, so for both accounts:

• Connections must be made using a valid X.509 certificate.

• Up to 60 queries per hour are permitted.

• The account is locked initially, so effectively it is a placeholder and cannot be used until an administrator
unlocks it.

CREATE USER Authentication Options

An account name may be followed by an auth_option authentication option that specifies the account
authentication plugin, credentials, or both:

• auth_plugin names an authentication plugin. The plugin name can be a quoted string literal or an
unquoted name. Plugin names are stored in the plugin column of the mysql.user system table.

2434

Account Management Statements

For auth_option syntax that does not specify an authentication plugin, the default plugin is indicated
by the value of the default_authentication_plugin system variable. For descriptions of each
plugin, see Section 6.4.1, “Authentication Plugins”.

• Credentials are stored in the mysql.user system table. An 'auth_string' value specifies
account credentials, either as a cleartext (unencrypted) string or hashed in the format expected by the
authentication plugin associated with the account, respectively:

• For syntax that uses BY 'auth_string', the string is cleartext and is passed to the authentication
plugin for possible hashing. The result returned by the plugin is stored in the mysql.user table. A
plugin may use the value as specified, in which case no hashing occurs.

• For syntax that uses AS 'auth_string', the string is assumed to be already in the format the
authentication plugin requires, and is stored as is in the mysql.user table. If a plugin requires a
hashed value, the value must be already hashed in a format appropriate for the plugin, or the value
cannot be used by the plugin and correct authentication of client connections cannot occur.

• If an authentication plugin performs no hashing of the authentication string, the BY 'auth_string'
and AS 'auth_string' clauses have the same effect: The authentication string is stored as is in the
mysql.user system table.

CREATE USER permits these auth_option syntaxes:

• IDENTIFIED BY 'auth_string'

Sets the account authentication plugin to the default plugin, passes the cleartext 'auth_string' value
to the plugin for possible hashing, and stores the result in the account row in the mysql.user system
table.

• IDENTIFIED WITH auth_plugin

Sets the account authentication plugin to auth_plugin, clears the credentials to the empty string, and
stores the result in the account row in the mysql.user system table.

• IDENTIFIED WITH auth_plugin BY 'auth_string'

Sets the account authentication plugin to auth_plugin, passes the cleartext 'auth_string' value
to the plugin for possible hashing, and stores the result in the account row in the mysql.user system
table.

• IDENTIFIED WITH auth_plugin AS 'auth_string'

Sets the account authentication plugin to auth_plugin and stores the 'auth_string' value as is in
the mysql.user account row. If the plugin requires a hashed string, the string is assumed to be already
hashed in the format the plugin requires.

• IDENTIFIED BY PASSWORD 'auth_string'

Sets the account authentication plugin to the default plugin and stores the 'auth_string' value as
is in the mysql.user account row. If the plugin requires a hashed string, the string is assumed to be
already hashed in the format the plugin requires.

Note

IDENTIFIED BY PASSWORD syntax is deprecated; expect it to be removed in a
future MySQL release.

2435

Account Management Statements

Example: Specify the password as cleartext; the default plugin is used:

CREATE USER 'jeffrey'@'localhost'
 IDENTIFIED BY 'password';

Example: Specify the authentication plugin, along with a cleartext password value:

CREATE USER 'jeffrey'@'localhost'
 IDENTIFIED WITH mysql_native_password BY 'password';

In each case, the password value stored in the account row is the cleartext value 'password' after it has
been hashed by the authentication plugin associated with the account.

For additional information about setting passwords and authentication plugins, see Section 6.2.10,
“Assigning Account Passwords”, and Section 6.2.13, “Pluggable Authentication”.

CREATE USER SSL/TLS Options

MySQL can check X.509 certificate attributes in addition to the usual authentication that is based on
the user name and credentials. For background information on the use of SSL/TLS with MySQL, see
Section 6.3, “Using Encrypted Connections”.

To specify SSL/TLS-related options for a MySQL account, use a REQUIRE clause that specifies one or
more tls_option values.

Order of REQUIRE options does not matter, but no option can be specified twice. The AND keyword is
optional between REQUIRE options.

CREATE USER permits these tls_option values:

• NONE

Indicates that all accounts named by the statement have no SSL or X.509 requirements. Unencrypted
connections are permitted if the user name and password are valid. Encrypted connections can be used,
at the client's option, if the client has the proper certificate and key files.

CREATE USER 'jeffrey'@'localhost' REQUIRE NONE;

Clients attempt to establish a secure connection by default. For clients that have REQUIRE NONE,
the connection attempt falls back to an unencrypted connection if a secure connection cannot
be established. To require an encrypted connection, a client need specify only the --ssl-
mode=REQUIRED option; the connection attempt fails if a secure connection cannot be established.

NONE is the default if no SSL-related REQUIRE options are specified.

• SSL

Tells the server to permit only encrypted connections for all accounts named by the statement.

CREATE USER 'jeffrey'@'localhost' REQUIRE SSL;

Clients attempt to establish a secure connection by default. For accounts that have REQUIRE SSL, the
connection attempt fails if a secure connection cannot be established.

• X509

For all accounts named by the statement, requires that clients present a valid certificate, but the exact
certificate, issuer, and subject do not matter. The only requirement is that it should be possible to verify

2436

Account Management Statements

its signature with one of the CA certificates. Use of X.509 certificates always implies encryption, so the
SSL option is unnecessary in this case.

CREATE USER 'jeffrey'@'localhost' REQUIRE X509;

For accounts with REQUIRE X509, clients must specify the --ssl-key and --ssl-cert options
to connect. (It is recommended but not required that --ssl-ca also be specified so that the public
certificate provided by the server can be verified.) This is true for ISSUER and SUBJECT as well because
those REQUIRE options imply the requirements of X509.

• ISSUER 'issuer'

For all accounts named by the statement, requires that clients present a valid X.509 certificate issued by
CA 'issuer'. If a client presents a certificate that is valid but has a different issuer, the server rejects
the connection. Use of X.509 certificates always implies encryption, so the SSL option is unnecessary in
this case.

CREATE USER 'jeffrey'@'localhost'
 REQUIRE ISSUER '/C=SE/ST=Stockholm/L=Stockholm/
 O=MySQL/CN=CA/emailAddress=ca@example.com';

Because ISSUER implies the requirements of X509, clients must specify the --ssl-key and --ssl-
cert options to connect. (It is recommended but not required that --ssl-ca also be specified so that
the public certificate provided by the server can be verified.)

• SUBJECT 'subject'

For all accounts named by the statement, requires that clients present a valid X.509 certificate containing
the subject subject. If a client presents a certificate that is valid but has a different subject, the
server rejects the connection. Use of X.509 certificates always implies encryption, so the SSL option is
unnecessary in this case.

CREATE USER 'jeffrey'@'localhost'
 REQUIRE SUBJECT '/C=SE/ST=Stockholm/L=Stockholm/
 O=MySQL demo client certificate/
 CN=client/emailAddress=client@example.com';

MySQL does a simple string comparison of the 'subject' value to the value in the certificate, so
lettercase and component ordering must be given exactly as present in the certificate.

Because SUBJECT implies the requirements of X509, clients must specify the --ssl-key and --ssl-
cert options to connect. (It is recommended but not required that --ssl-ca also be specified so that
the public certificate provided by the server can be verified.)

• CIPHER 'cipher'

For all accounts named by the statement, requires a specific cipher method for encrypting connections.
This option is needed to ensure that ciphers and key lengths of sufficient strength are used. Encryption
can be weak if old algorithms using short encryption keys are used.

CREATE USER 'jeffrey'@'localhost'
 REQUIRE CIPHER 'EDH-RSA-DES-CBC3-SHA';

The SUBJECT, ISSUER, and CIPHER options can be combined in the REQUIRE clause:

CREATE USER 'jeffrey'@'localhost'
 REQUIRE SUBJECT '/C=SE/ST=Stockholm/L=Stockholm/
 O=MySQL demo client certificate/
 CN=client/emailAddress=client@example.com'
 AND ISSUER '/C=SE/ST=Stockholm/L=Stockholm/

2437

Account Management Statements

 O=MySQL/CN=CA/emailAddress=ca@example.com'
 AND CIPHER 'EDH-RSA-DES-CBC3-SHA';

CREATE USER Resource-Limit Options

It is possible to place limits on use of server resources by an account, as discussed in Section 6.2.16,
“Setting Account Resource Limits”. To do so, use a WITH clause that specifies one or more
resource_option values.

Order of WITH options does not matter, except that if a given resource limit is specified multiple times, the
last instance takes precedence.

CREATE USER permits these resource_option values:

• MAX_QUERIES_PER_HOUR count, MAX_UPDATES_PER_HOUR count,
MAX_CONNECTIONS_PER_HOUR count

For all accounts named by the statement, these options restrict how many queries, updates, and
connections to the server are permitted to each account during any given one-hour period. (Queries for
which results are served from the query cache do not count against the MAX_QUERIES_PER_HOUR limit.)
If count is 0 (the default), this means that there is no limitation for the account.

• MAX_USER_CONNECTIONS count

For all accounts named by the statement, restricts the maximum number of simultaneous connections
to the server by each account. A nonzero count specifies the limit for the account explicitly. If count
is 0 (the default), the server determines the number of simultaneous connections for the account from
the global value of the max_user_connections system variable. If max_user_connections is also
zero, there is no limit for the account.

Example:

CREATE USER 'jeffrey'@'localhost'
 WITH MAX_QUERIES_PER_HOUR 500 MAX_UPDATES_PER_HOUR 100;

CREATE USER Password-Management Options

Account passwords have an age, assessed from the date and time of the most recent password change.

CREATE USER supports several password_option values for password expiration management, to
either expire an account password manually or establish its password expiration policy. Policy options
do not expire the password. Instead, they determine how the server applies automatic expiration to the
account based on account password age. For a given account, its password age is assessed from the date
and time of the most recent password change.

This section describes the syntax for password-management options. For information about establishing
policy for password management, see Section 6.2.11, “Password Management”.

If multiple password-management options are specified, the last one takes precedence.

These options apply only to accounts that use an authentication plugin that stores credentials internally to
MySQL. For accounts that use a plugin that performs authentication against a credentials system that is
external to MySQL, password management must be handled externally against that system as well. For
more information about internal credentials storage, see Section 6.2.11, “Password Management”.

A client session operates in restricted mode if the account password was expired manually or if the
password age is considered greater than its permitted lifetime per the automatic expiration policy. In

2438

Account Management Statements

restricted mode, operations performed within the session result in an error until the user establishes a new
account password. For information about restricted mode, see Section 6.2.12, “Server Handling of Expired
Passwords”.

CREATE USER permits these password_option values for controlling password expiration:

• PASSWORD EXPIRE

Immediately marks the password expired for all accounts named by the statement.

CREATE USER 'jeffrey'@'localhost' PASSWORD EXPIRE;

• PASSWORD EXPIRE DEFAULT

Sets all accounts named by the statement so that the global expiration policy applies, as specified by the
default_password_lifetime system variable.

CREATE USER 'jeffrey'@'localhost' PASSWORD EXPIRE DEFAULT;

• PASSWORD EXPIRE NEVER

This expiration option overrides the global policy for all accounts named by the statement. For each, it
disables password expiration so that the password never expires.

CREATE USER 'jeffrey'@'localhost' PASSWORD EXPIRE NEVER;

• PASSWORD EXPIRE INTERVAL N DAY

This expiration option overrides the global policy for all accounts named by the statement. For each,
it sets the password lifetime to N days. The following statement requires the password to be changed
every 180 days:

CREATE USER 'jeffrey'@'localhost' PASSWORD EXPIRE INTERVAL 180 DAY;

CREATE USER Account-Locking Options

MySQL supports account locking and unlocking using the ACCOUNT LOCK and ACCOUNT UNLOCK options,
which specify the locking state for an account. For additional discussion, see Section 6.2.15, “Account
Locking”.

If multiple account-locking options are specified, the last one takes precedence.

13.7.1.3 DROP USER Statement

DROP USER [IF EXISTS] user [, user] ...

The DROP USER statement removes one or more MySQL accounts and their privileges. It removes
privilege rows for the account from all grant tables.

To use DROP USER, you must have the global CREATE USER privilege, or the DELETE privilege for the
mysql system database. When the read_only system variable is enabled, DROP USER additionally
requires the SUPER privilege.

An error occurs if you try to drop an account that does not exist. If the IF EXISTS clause is given, the
statement produces a warning for each named user that does not exist, rather than an error.

Each account name uses the format described in Section 6.2.4, “Specifying Account Names”. For example:

DROP USER 'jeffrey'@'localhost';

2439

Account Management Statements

The host name part of the account name, if omitted, defaults to '%'.

Important

DROP USER does not automatically close any open user sessions. Rather, in the
event that a user with an open session is dropped, the statement does not take
effect until that user's session is closed. Once the session is closed, the user is
dropped, and that user's next attempt to log in fails. This is by design.

DROP USER does not automatically drop or invalidate databases or objects within them that the old user
created. This includes stored programs or views for which the DEFINER attribute names the dropped user.
Attempts to access such objects may produce an error if they execute in definer security context. (For
information about security context, see Section 23.6, “Stored Object Access Control”.)

13.7.1.4 GRANT Statement

GRANT
 priv_type [(column_list)]
 [, priv_type [(column_list)]] ...
 ON [object_type] priv_level
 TO user [auth_option] [, user [auth_option]] ...
 [REQUIRE {NONE | tls_option [[AND] tls_option] ...}]
 [WITH {GRANT OPTION | resource_option} ...]

GRANT PROXY ON user
 TO user [, user] ...
 [WITH GRANT OPTION]

object_type: {
 TABLE
 | FUNCTION
 | PROCEDURE
}

priv_level: {
 *
 | *.*
 | db_name.*
 | db_name.tbl_name
 | tbl_name
 | db_name.routine_name
}

user:
 (see Section 6.2.4, “Specifying Account Names”)

auth_option: {
 IDENTIFIED BY 'auth_string'
 | IDENTIFIED WITH auth_plugin
 | IDENTIFIED WITH auth_plugin BY 'auth_string'
 | IDENTIFIED WITH auth_plugin AS 'auth_string'
 | IDENTIFIED BY PASSWORD 'auth_string'
}

tls_option: {
 SSL
 | X509
 | CIPHER 'cipher'
 | ISSUER 'issuer'
 | SUBJECT 'subject'
}

resource_option: {
 | MAX_QUERIES_PER_HOUR count

2440

Account Management Statements

 | MAX_UPDATES_PER_HOUR count
 | MAX_CONNECTIONS_PER_HOUR count
 | MAX_USER_CONNECTIONS count
}

The GRANT statement grants privileges to MySQL user accounts. There are several aspects to the GRANT
statement, described under the following topics:

• GRANT General Overview

• Object Quoting Guidelines

• Privileges Supported by MySQL

• Account Names and Passwords

• Global Privileges

• Database Privileges

• Table Privileges

• Column Privileges

• Stored Routine Privileges

• Proxy User Privileges

• Implicit Account Creation

• Other Account Characteristics

• MySQL and Standard SQL Versions of GRANT

GRANT General Overview

The GRANT statement grants privileges to MySQL user accounts.

To grant a privilege with GRANT, you must have the GRANT OPTION privilege, and you must have the
privileges that you are granting. (Alternatively, if you have the UPDATE privilege for the grant tables in the
mysql system database, you can grant any account any privilege.) When the read_only system variable
is enabled, GRANT additionally requires the SUPER privilege.

The REVOKE statement is related to GRANT and enables administrators to remove account privileges. See
Section 13.7.1.6, “REVOKE Statement”.

Each account name uses the format described in Section 6.2.4, “Specifying Account Names”. For example:

GRANT ALL ON db1.* TO 'jeffrey'@'localhost';

The host name part of the account, if omitted, defaults to '%'.

Normally, a database administrator first uses CREATE USER to create an account and define its
nonprivilege characteristics such as its password, whether it uses secure connections, and limits on access
to server resources, then uses GRANT to define its privileges. ALTER USER may be used to change the
nonprivilege characteristics of existing accounts. For example:

CREATE USER 'jeffrey'@'localhost' IDENTIFIED BY 'password';
GRANT ALL ON db1.* TO 'jeffrey'@'localhost';

2441

Account Management Statements

GRANT SELECT ON db2.invoice TO 'jeffrey'@'localhost';
ALTER USER 'jeffrey'@'localhost' WITH MAX_QUERIES_PER_HOUR 90;

Note

Examples shown here include no IDENTIFIED clause. It is assumed that you
establish passwords with CREATE USER at account-creation time to avoid creating
insecure accounts.

Note

If an account named in a GRANT statement does not already exist, GRANT
may create it under the conditions described later in the discussion of the
NO_AUTO_CREATE_USER SQL mode. It is also possible to use GRANT to specify
nonprivilege account characteristics such as whether it uses secure connections
and limits on access to server resources.

However, use of GRANT to create accounts or define nonprivilege characteristics
is deprecated in MySQL 5.7. Instead, perform these tasks using CREATE USER or
ALTER USER.

From the mysql program, GRANT responds with Query OK, 0 rows affected when executed
successfully. To determine what privileges result from the operation, use SHOW GRANTS. See
Section 13.7.5.21, “SHOW GRANTS Statement”.

Important

Under some circumstances, GRANT may be recorded in server logs or on the client
side in a history file such as ~/.mysql_history, which means that cleartext
passwords may be read by anyone having read access to that information. For
information about the conditions under which this occurs for the server logs and
how to control it, see Section 6.1.2.3, “Passwords and Logging”. For similar
information about client-side logging, see Section 4.5.1.3, “mysql Client Logging”.

GRANT supports host names up to 60 characters long. User names can be up to 32 characters. Database,
table, column, and routine names can be up to 64 characters.

Warning

Do not attempt to change the permissible length for user names by altering the
mysql.user system table. Doing so results in unpredictable behavior which may
even make it impossible for users to log in to the MySQL server. Never alter the
structure of tables in the mysql system database in any manner except by means
of the procedure described in Section 2.10, “Upgrading MySQL”.

Object Quoting Guidelines

Several objects within GRANT statements are subject to quoting, although quoting is optional in many
cases: Account, database, table, column, and routine names. For example, if a user_name or host_name
value in an account name is legal as an unquoted identifier, you need not quote it. However, quotation
marks are necessary to specify a user_name string containing special characters (such as -), or a
host_name string containing special characters or wildcard characters such as % (for example, 'test-
user'@'%.com'). Quote the user name and host name separately.

To specify quoted values:

• Quote database, table, column, and routine names as identifiers.

2442

Account Management Statements

• Quote user names and host names as identifiers or as strings.

• Quote passwords as strings.

For string-quoting and identifier-quoting guidelines, see Section 9.1.1, “String Literals”, and Section 9.2,
“Schema Object Names”.

The _ and % wildcards are permitted when specifying database names in GRANT statements that grant
privileges at the database level (GRANT ... ON db_name.*). This means, for example, that to use
a _ character as part of a database name, specify it using the \ escape character as _ in the GRANT
statement, to prevent the user from being able to access additional databases matching the wildcard
pattern (for example, GRANT ... ON `foo_bar`.* TO ...).

Issuing multiple GRANT statements containing wildcards may not have the expected effect on DML
statements; when resolving grants involving wildcards, MySQL takes only the first matching grant into
consideration. In other words, if a user has two database-level grants using wildcards that match the same
database, the grant which was created first is applied. Consider the database db and table t created using
the statements shown here:

mysql> CREATE DATABASE db;
Query OK, 1 row affected (0.01 sec)

mysql> CREATE TABLE db.t (c INT);
Query OK, 0 rows affected (0.01 sec)

mysql> INSERT INTO db.t VALUES ROW(1);
Query OK, 1 row affected (0.00 sec)

Next (assuming that the current account is the MySQL root account or another account having the
necessary privileges), we create a user u then issue two GRANT statements containing wildcards, like this:

mysql> CREATE USER u;
Query OK, 0 rows affected (0.01 sec)

mysql> GRANT SELECT ON `d_`.* TO u;
Query OK, 0 rows affected (0.01 sec)

mysql> GRANT INSERT ON `d%`.* TO u;
Query OK, 0 rows affected (0.00 sec)

mysql> EXIT

Bye

If we end the session and then log in again with the mysql client, this time as u, we see that this account
has only the privilege provided by the first matching grant, but not the second:

$> mysql -uu -hlocalhost

Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 10
Server version: 5.7.52-tr Source distribution

Copyright (c) 2000, 2023, Oracle and/or its affiliates.

Oracle is a registered trademark of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective
owners.

Type 'help;' or '\h' for help. Type '\c' to clear the current input
statement.

2443

Account Management Statements

mysql> TABLE db.t;
+------+
| c |
+------+
| 1 |
+------+
1 row in set (0.00 sec)

mysql> INSERT INTO db.t VALUES ROW(2);
ERROR 1142 (42000): INSERT command denied to user 'u'@'localhost' for table 't'

When a database name is not used to grant privileges at the database level, but as a qualifier for
granting privileges to some other object such as a table or routine (for example, GRANT ... ON
db_name.tbl_name), MySQL interprets wildcard characters as literal characters.

Privileges Supported by MySQL

The following table summarizes the permissible priv_type privilege types that can be specified for the
GRANT and REVOKE statements, and the levels at which each privilege can be granted. For additional
information about each privilege, see Section 6.2.2, “Privileges Provided by MySQL”.

Table 13.8 Permissible Privileges for GRANT and REVOKE

Privilege Meaning and Grantable Levels

ALL [PRIVILEGES] Grant all privileges at specified access level except
GRANT OPTION and PROXY.

ALTER Enable use of ALTER TABLE. Levels: Global,
database, table.

ALTER ROUTINE Enable stored routines to be altered or dropped.
Levels: Global, database, routine.

CREATE Enable database and table creation. Levels: Global,
database, table.

CREATE ROUTINE Enable stored routine creation. Levels: Global,
database.

CREATE TABLESPACE Enable tablespaces and log file groups to be
created, altered, or dropped. Level: Global.

CREATE TEMPORARY TABLES Enable use of CREATE TEMPORARY TABLE.
Levels: Global, database.

CREATE USER Enable use of CREATE USER, DROP USER, RENAME
USER, and REVOKE ALL PRIVILEGES. Level:
Global.

CREATE VIEW Enable views to be created or altered. Levels:
Global, database, table.

DELETE Enable use of DELETE. Level: Global, database,
table.

DROP Enable databases, tables, and views to be dropped.
Levels: Global, database, table.

EVENT Enable use of events for the Event Scheduler.
Levels: Global, database.

EXECUTE Enable the user to execute stored routines. Levels:
Global, database, routine.

2444

Account Management Statements

Privilege Meaning and Grantable Levels

FILE Enable the user to cause the server to read or write
files. Level: Global.

GRANT OPTION Enable privileges to be granted to or removed from
other accounts. Levels: Global, database, table,
routine, proxy.

INDEX Enable indexes to be created or dropped. Levels:
Global, database, table.

INSERT Enable use of INSERT. Levels: Global, database,
table, column.

LOCK TABLES Enable use of LOCK TABLES on tables for which
you have the SELECT privilege. Levels: Global,
database.

PROCESS Enable the user to see all processes with SHOW
PROCESSLIST. Level: Global.

PROXY Enable user proxying. Level: From user to user.

REFERENCES Enable foreign key creation. Levels: Global,
database, table, column.

RELOAD Enable use of FLUSH operations. Level: Global.

REPLICATION CLIENT Enable the user to ask where source or replica
servers are. Level: Global.

REPLICATION SLAVE Enable replicas to read binary log events from the
source. Level: Global.

SELECT Enable use of SELECT. Levels: Global, database,
table, column.

SHOW DATABASES Enable SHOW DATABASES to show all databases.
Level: Global.

SHOW VIEW Enable use of SHOW CREATE VIEW. Levels: Global,
database, table.

SHUTDOWN Enable use of mysqladmin shutdown. Level:
Global.

SUPER Enable use of other administrative operations such
as CHANGE MASTER TO, KILL, PURGE BINARY
LOGS, SET GLOBAL, and mysqladmin debug
command. Level: Global.

TRIGGER Enable trigger operations. Levels: Global, database,
table.

UPDATE Enable use of UPDATE. Levels: Global, database,
table, column.

USAGE Synonym for “no privileges”

A trigger is associated with a table. To create or drop a trigger, you must have the TRIGGER privilege for
the table, not the trigger.

In GRANT statements, the ALL [PRIVILEGES] or PROXY privilege must be named by itself and cannot be
specified along with other privileges. ALL [PRIVILEGES] stands for all privileges available for the level at
which privileges are to be granted except for the GRANT OPTION and PROXY privileges.

2445

Account Management Statements

USAGE can be specified to create a user that has no privileges, or to specify the REQUIRE or WITH clauses
for an account without changing its existing privileges. (However, use of GRANT to define nonprivilege
characteristics is deprecated.

MySQL account information is stored in the tables of the mysql system database. For additional details,
consult Section 6.2, “Access Control and Account Management”, which discusses the mysql system
database and the access control system extensively.

If the grant tables hold privilege rows that contain mixed-case database or table names and the
lower_case_table_names system variable is set to a nonzero value, REVOKE cannot be used to revoke
these privileges. It is necessary to manipulate the grant tables directly. (GRANT does not create such rows
when lower_case_table_names is set, but such rows might have been created prior to setting that
variable.)

Privileges can be granted at several levels, depending on the syntax used for the ON clause. For REVOKE,
the same ON syntax specifies which privileges to remove.

For the global, database, table, and routine levels, GRANT ALL assigns only the privileges that exist at
the level you are granting. For example, GRANT ALL ON db_name.* is a database-level statement, so it
does not grant any global-only privileges such as FILE. Granting ALL does not assign the GRANT OPTION
or PROXY privilege.

The object_type clause, if present, should be specified as TABLE, FUNCTION, or PROCEDURE when the
following object is a table, a stored function, or a stored procedure.

The privileges that a user holds for a database, table, column, or routine are formed additively as the
logical OR of the account privileges at each of the privilege levels, including the global level. It is not
possible to deny a privilege granted at a higher level by absence of that privilege at a lower level. For
example, this statement grants the SELECT and INSERT privileges globally:

GRANT SELECT, INSERT ON *.* TO u1;

The globally granted privileges apply to all databases, tables, and columns, even though not granted at any
of those lower levels.

Details of the privilege-checking procedure are presented in Section 6.2.6, “Access Control, Stage 2:
Request Verification”.

If you are using table, column, or routine privileges for even one user, the server examines table, column,
and routine privileges for all users and this slows down MySQL a bit. Similarly, if you limit the number of
queries, updates, or connections for any users, the server must monitor these values.

MySQL enables you to grant privileges on databases or tables that do not exist. For tables, the privileges
to be granted must include the CREATE privilege. This behavior is by design, and is intended to enable
the database administrator to prepare user accounts and privileges for databases or tables that are to be
created at a later time.

Important

MySQL does not automatically revoke any privileges when you drop a database or
table. However, if you drop a routine, any routine-level privileges granted for that
routine are revoked.

Account Names and Passwords

A user value in a GRANT statement indicates a MySQL account to which the statement applies. To
accommodate granting rights to users from arbitrary hosts, MySQL supports specifying the user value in
the form 'user_name'@'host_name'.

2446

Account Management Statements

You can specify wildcards in the host name. For example, 'user_name'@'%.example.com' applies to
user_name for any host in the example.com domain, and 'user_name'@'198.51.100.%' applies to
user_name for any host in the 198.51.100 class C subnet.

The simple form 'user_name' is a synonym for 'user_name'@'%'.

MySQL does not support wildcards in user names. To refer to an anonymous user, specify an account with
an empty user name with the GRANT statement:

GRANT ALL ON test.* TO ''@'localhost' ...;

In this case, any user who connects from the local host with the correct password for the anonymous user
is permitted access, with the privileges associated with the anonymous user account.

For additional information about user name and host name values in account names, see Section 6.2.4,
“Specifying Account Names”.

Warning

If you permit local anonymous users to connect to the MySQL server, you should
also grant privileges to all local users as 'user_name'@'localhost'. Otherwise,
the anonymous user account for localhost in the mysql.user system table is
used when named users try to log in to the MySQL server from the local machine.
For details, see Section 6.2.5, “Access Control, Stage 1: Connection Verification”.

To determine whether this issue applies to you, execute the following query, which
lists any anonymous users:

SELECT Host, User FROM mysql.user WHERE User='';

To avoid the problem just described, delete the local anonymous user account
using this statement:

DROP USER ''@'localhost';

For GRANT syntax that permits an auth_option value to follow a user value, auth_option begins with
IDENTIFIED and indicates how the account authenticates by specifying an account authentication plugin,
credentials (for example, a password), or both. Syntax of the auth_option clause is the same as for the
CREATE USER statement. For details, see Section 13.7.1.2, “CREATE USER Statement”.

Note

Use of GRANT to define account authentication characteristics is deprecated in
MySQL 5.7. Instead, establish or change authentication characteristics using
CREATE USER or ALTER USER. Expect this GRANT capability to be removed in a
future MySQL release.

When IDENTIFIED is present and you have the global grant privilege (GRANT OPTION), any password
specified becomes the new password for the account, even if the account exists and already has a
password. Without IDENTIFIED, the account password remains unchanged.

Global Privileges

Global privileges are administrative or apply to all databases on a given server. To assign global privileges,
use ON *.* syntax:

GRANT ALL ON *.* TO 'someuser'@'somehost';

2447

Account Management Statements

GRANT SELECT, INSERT ON *.* TO 'someuser'@'somehost';

The CREATE TABLESPACE, CREATE USER, FILE, PROCESS, RELOAD, REPLICATION CLIENT,
REPLICATION SLAVE, SHOW DATABASES, SHUTDOWN, and SUPER privileges are administrative and can
only be granted globally.

Other privileges can be granted globally or at more specific levels.

GRANT OPTION granted at the global level for any global privilege applies to all global privileges.

MySQL stores global privileges in the mysql.user system table.

Database Privileges

Database privileges apply to all objects in a given database. To assign database-level privileges, use ON
db_name.* syntax:

GRANT ALL ON mydb.* TO 'someuser'@'somehost';
GRANT SELECT, INSERT ON mydb.* TO 'someuser'@'somehost';

If you use ON * syntax (rather than ON *.*), privileges are assigned at the database level for the default
database. An error occurs if there is no default database.

The CREATE, DROP, EVENT, GRANT OPTION, LOCK TABLES, and REFERENCES privileges can be
specified at the database level. Table or routine privileges also can be specified at the database level, in
which case they apply to all tables or routines in the database.

MySQL stores database privileges in the mysql.db system table.

Table Privileges

Table privileges apply to all columns in a given table. To assign table-level privileges, use ON
db_name.tbl_name syntax:

GRANT ALL ON mydb.mytbl TO 'someuser'@'somehost';
GRANT SELECT, INSERT ON mydb.mytbl TO 'someuser'@'somehost';

If you specify tbl_name rather than db_name.tbl_name, the statement applies to tbl_name in the
default database. An error occurs if there is no default database.

The permissible priv_type values at the table level are ALTER, CREATE VIEW, CREATE, DELETE, DROP,
GRANT OPTION, INDEX, INSERT, REFERENCES, SELECT, SHOW VIEW, TRIGGER, and UPDATE.

Table-level privileges apply to base tables and views. They do not apply to tables created with CREATE
TEMPORARY TABLE, even if the table names match. For information about TEMPORARY table privileges,
see Section 13.1.18.2, “CREATE TEMPORARY TABLE Statement”.

MySQL stores table privileges in the mysql.tables_priv system table.

Column Privileges

Column privileges apply to single columns in a given table. Each privilege to be granted at the column level
must be followed by the column or columns, enclosed within parentheses.

GRANT SELECT (col1), INSERT (col1, col2) ON mydb.mytbl TO 'someuser'@'somehost';

The permissible priv_type values for a column (that is, when you use a column_list clause) are
INSERT, REFERENCES, SELECT, and UPDATE.

MySQL stores column privileges in the mysql.columns_priv system table.

2448

Account Management Statements

Stored Routine Privileges

The ALTER ROUTINE, CREATE ROUTINE, EXECUTE, and GRANT OPTION privileges apply to stored
routines (procedures and functions). They can be granted at the global and database levels. Except for
CREATE ROUTINE, these privileges can be granted at the routine level for individual routines.

GRANT CREATE ROUTINE ON mydb.* TO 'someuser'@'somehost';
GRANT EXECUTE ON PROCEDURE mydb.myproc TO 'someuser'@'somehost';

The permissible priv_type values at the routine level are ALTER ROUTINE, EXECUTE, and GRANT
OPTION. CREATE ROUTINE is not a routine-level privilege because you must have the privilege at the
global or database level to create a routine in the first place.

MySQL stores routine-level privileges in the mysql.procs_priv system table.

Proxy User Privileges

The PROXY privilege enables one user to be a proxy for another. The proxy user impersonates or takes the
identity of the proxied user; that is, it assumes the privileges of the proxied user.

GRANT PROXY ON 'localuser'@'localhost' TO 'externaluser'@'somehost';

When PROXY is granted, it must be the only privilege named in the GRANT statement, the REQUIRE clause
cannot be given, and the only permitted WITH option is WITH GRANT OPTION.

Proxying requires that the proxy user authenticate through a plugin that returns the name of the proxied
user to the server when the proxy user connects, and that the proxy user have the PROXY privilege for the
proxied user. For details and examples, see Section 6.2.14, “Proxy Users”.

MySQL stores proxy privileges in the mysql.proxies_priv system table.

Implicit Account Creation

If an account named in a GRANT statement does not exist, the action taken depends on the
NO_AUTO_CREATE_USER SQL mode:

• If NO_AUTO_CREATE_USER is not enabled, GRANT creates the account. This is very insecure unless you
specify a nonempty password using IDENTIFIED BY.

• If NO_AUTO_CREATE_USER is enabled, GRANT fails and does not create the account, unless you specify
a nonempty password using IDENTIFIED BY or name an authentication plugin using IDENTIFIED
WITH.

If the account already exists, IDENTIFIED WITH is prohibited because it is intended only for use when
creating new accounts.

Other Account Characteristics

MySQL can check X.509 certificate attributes in addition to the usual authentication that is based on the
user name and credentials. For background information on the use of SSL with MySQL, see Section 6.3,
“Using Encrypted Connections”.

The optional REQUIRE clause specifies SSL-related options for a MySQL account. The syntax is the same
as for the CREATE USER statement. For details, see Section 13.7.1.2, “CREATE USER Statement”.

Note

Use of GRANT to define account SSL characteristics is deprecated in MySQL 5.7.
Instead, establish or change SSL characteristics using CREATE USER or ALTER
USER. Expect this GRANT capability to be removed in a future MySQL release.

2449

Account Management Statements

The optional WITH clause is used for these purposes:

• To enable a user to grant privileges to other users

• To specify resource limits for a user

The WITH GRANT OPTION clause gives the user the ability to give to other users any privileges the user
has at the specified privilege level.

To grant the GRANT OPTION privilege to an account without otherwise changing its privileges, do this:

GRANT USAGE ON *.* TO 'someuser'@'somehost' WITH GRANT OPTION;

Be careful to whom you give the GRANT OPTION privilege because two users with different privileges may
be able to combine privileges!

You cannot grant another user a privilege which you yourself do not have; the GRANT OPTION privilege
enables you to assign only those privileges which you yourself possess.

Be aware that when you grant a user the GRANT OPTION privilege at a particular privilege level, any
privileges the user possesses (or may be given in the future) at that level can also be granted by that user
to other users. Suppose that you grant a user the INSERT privilege on a database. If you then grant the
SELECT privilege on the database and specify WITH GRANT OPTION, that user can give to other users
not only the SELECT privilege, but also INSERT. If you then grant the UPDATE privilege to the user on the
database, the user can grant INSERT, SELECT, and UPDATE.

For a nonadministrative user, you should not grant the ALTER privilege globally or for the mysql system
database. If you do that, the user can try to subvert the privilege system by renaming tables!

For additional information about security risks associated with particular privileges, see Section 6.2.2,
“Privileges Provided by MySQL”.

It is possible to place limits on use of server resources by an account, as discussed in Section 6.2.16,
“Setting Account Resource Limits”. To do so, use a WITH clause that specifies one or more
resource_option values. Limits not specified retain their current values. The syntax is the same as for
the CREATE USER statement. For details, see Section 13.7.1.2, “CREATE USER Statement”.

Note

Use of GRANT to define account resource limits is deprecated in MySQL 5.7.
Instead, establish or change resource limits using CREATE USER or ALTER USER.
Expect this GRANT capability to be removed in a future MySQL release.

MySQL and Standard SQL Versions of GRANT

The biggest differences between the MySQL and standard SQL versions of GRANT are:

• MySQL associates privileges with the combination of a host name and user name and not with only a
user name.

• Standard SQL does not have global or database-level privileges, nor does it support all the privilege
types that MySQL supports.

• MySQL does not support the standard SQL UNDER privilege.

• Standard SQL privileges are structured in a hierarchical manner. If you remove a user, all privileges
the user has been granted are revoked. This is also true in MySQL if you use DROP USER. See
Section 13.7.1.3, “DROP USER Statement”.

2450

Account Management Statements

• In standard SQL, when you drop a table, all privileges for the table are revoked. In standard SQL, when
you revoke a privilege, all privileges that were granted based on that privilege are also revoked. In
MySQL, privileges can be dropped with DROP USER or REVOKE statements.

• In MySQL, it is possible to have the INSERT privilege for only some of the columns in a table. In this
case, you can still execute INSERT statements on the table, provided that you insert values only for
those columns for which you have the INSERT privilege. The omitted columns are set to their implicit
default values if strict SQL mode is not enabled. In strict mode, the statement is rejected if any of the
omitted columns have no default value. (Standard SQL requires you to have the INSERT privilege on all
columns.) For information about strict SQL mode and implicit default values, see Section 5.1.10, “Server
SQL Modes”, and Section 11.6, “Data Type Default Values”.

13.7.1.5 RENAME USER Statement

RENAME USER old_user TO new_user
 [, old_user TO new_user] ...

The RENAME USER statement renames existing MySQL accounts. An error occurs for old accounts that do
not exist or new accounts that already exist.

To use RENAME USER, you must have the global CREATE USER privilege, or the UPDATE privilege for the
mysql system database. When the read_only system variable is enabled, RENAME USER additionally
requires the SUPER privilege.

Each account name uses the format described in Section 6.2.4, “Specifying Account Names”. For example:

RENAME USER 'jeffrey'@'localhost' TO 'jeff'@'127.0.0.1';

The host name part of the account name, if omitted, defaults to '%'.

RENAME USER causes the privileges held by the old user to be those held by the new user. However,
RENAME USER does not automatically drop or invalidate databases or objects within them that the old
user created. This includes stored programs or views for which the DEFINER attribute names the old user.
Attempts to access such objects may produce an error if they execute in definer security context. (For
information about security context, see Section 23.6, “Stored Object Access Control”.)

The privilege changes take effect as indicated in Section 6.2.9, “When Privilege Changes Take Effect”.

13.7.1.6 REVOKE Statement

REVOKE
 priv_type [(column_list)]
 [, priv_type [(column_list)]] ...
 ON [object_type] priv_level
 FROM user [, user] ...

REVOKE ALL [PRIVILEGES], GRANT OPTION
 FROM user [, user] ...

REVOKE PROXY ON user
 FROM user [, user] ...

The REVOKE statement enables system administrators to revoke privileges from MySQL accounts.

For details on the levels at which privileges exist, the permissible priv_type, priv_level, and
object_type values, and the syntax for specifying users and passwords, see Section 13.7.1.4, “GRANT
Statement”.

When the read_only system variable is enabled, REVOKE requires the SUPER privilege in addition to any
other required privileges described in the following discussion.

2451

Account Management Statements

Each account name uses the format described in Section 6.2.4, “Specifying Account Names”. For example:

REVOKE INSERT ON *.* FROM 'jeffrey'@'localhost';

The host name part of the account name, if omitted, defaults to '%'.

To use the first REVOKE syntax, you must have the GRANT OPTION privilege, and you must have the
privileges that you are revoking.

To revoke all privileges, use the second syntax, which drops all global, database, table, column, and
routine privileges for the named user or users:

REVOKE ALL PRIVILEGES, GRANT OPTION FROM user [, user] ...

To use this REVOKE syntax, you must have the global CREATE USER privilege, or the UPDATE privilege for
the mysql system database.

User accounts from which privileges are to be revoked must exist, but the privileges to be revoked need
not be currently granted to them.

REVOKE removes privileges, but does not remove rows from the mysql.user system table. To remove a
user account entirely, use DROP USER. See Section 13.7.1.3, “DROP USER Statement”.

If the grant tables hold privilege rows that contain mixed-case database or table names and the
lower_case_table_names system variable is set to a nonzero value, REVOKE cannot be used to revoke
these privileges. It is necessary to manipulate the grant tables directly. (GRANT does not create such rows
when lower_case_table_names is set, but such rows might have been created prior to setting the
variable.)

When successfully executed from the mysql program, REVOKE responds with Query OK, 0
rows affected. To determine what privileges remain after the operation, use SHOW GRANTS. See
Section 13.7.5.21, “SHOW GRANTS Statement”.

13.7.1.7 SET PASSWORD Statement

SET PASSWORD [FOR user] = password_option

password_option: {
 'auth_string'
 | PASSWORD('auth_string')
}

The SET PASSWORD statement assigns a password to a MySQL user account. 'auth_string'
represents a cleartext (unencrypted) password.

Note

• SET PASSWORD ... = PASSWORD('auth_string') syntax is deprecated in
MySQL 5.7 and is removed in MySQL 8.0.

• SET PASSWORD ... = 'auth_string' syntax is not deprecated, but ALTER
USER is the preferred statement for account alterations, including assigning
passwords. For example:

ALTER USER user IDENTIFIED BY 'auth_string';

Important

Under some circumstances, SET PASSWORD may be recorded in server logs or
on the client side in a history file such as ~/.mysql_history, which means that

2452

Account Management Statements

cleartext passwords may be read by anyone having read access to that information.
For information about the conditions under which this occurs for the server logs
and how to control it, see Section 6.1.2.3, “Passwords and Logging”. For similar
information about client-side logging, see Section 4.5.1.3, “mysql Client Logging”.

SET PASSWORD can be used with or without a FOR clause that explicitly names a user account:

• With a FOR user clause, the statement sets the password for the named account, which must exist:

SET PASSWORD FOR 'jeffrey'@'localhost' = 'auth_string';

• With no FOR user clause, the statement sets the password for the current user:

SET PASSWORD = 'auth_string';

Any client who connects to the server using a nonanonymous account can change the password for
that account. (In particular, you can change your own password.) To see which account the server
authenticated you as, invoke the CURRENT_USER() function:

SELECT CURRENT_USER();

If a FOR user clause is given, the account name uses the format described in Section 6.2.4, “Specifying
Account Names”. For example:

SET PASSWORD FOR 'bob'@'%.example.org' = 'auth_string';

The host name part of the account name, if omitted, defaults to '%'.

Setting the password for a named account (with a FOR clause) requires the UPDATE privilege for the mysql
system database. Setting the password for yourself (for a nonanonymous account with no FOR clause)
requires no special privileges. When the read_only system variable is enabled, SET PASSWORD requires
the SUPER privilege in addition to any other required privileges.

The password can be specified in these ways:

• Use a string without PASSWORD()

SET PASSWORD FOR 'jeffrey'@'localhost' = 'password';

SET PASSWORD interprets the string as a cleartext string, passes it to the authentication plugin
associated with the account, and stores the result returned by the plugin in the account row in the
mysql.user system table. (The plugin is given the opportunity to hash the value into the encryption
format it expects. The plugin may use the value as specified, in which case no hashing occurs.)

• Use the PASSWORD() function (deprecated in MySQL 5.7)

SET PASSWORD FOR 'jeffrey'@'localhost' = PASSWORD('password');

The PASSWORD() argument is the cleartext (unencrypted) password. PASSWORD() hashes the
password and returns the encrypted password string for storage in the account row in the mysql.user
system table.

The PASSWORD() function hashes the password using the hashing method determined by the value of
the old_passwords system variable value. Be sure that old_passwords has the value corresponding
to the hashing method expected by the authentication plugin associated with the account. For example,
if the account uses the mysql_native_password plugin, the old_passwords value must be 0:

SET old_passwords = 0;
SET PASSWORD FOR 'jeffrey'@'localhost' = PASSWORD('password');

2453

Table Maintenance Statements

If the old_passwords value differs from that required by the authentication plugin, the hashed
password value returned by PASSWORD() cannot be used by the plugin and correct authentication of
client connections cannot occur.

The following table shows, for each password hashing method, the permitted value of old_passwords
and which authentication plugins use the hashing method.

Password Hashing Method old_passwords Value Associated Authentication
Plugin

MySQL 4.1 native hashing 0 mysql_native_password

SHA-256 hashing 2 sha256_password

For additional information about setting passwords and authentication plugins, see Section 6.2.10,
“Assigning Account Passwords”, and Section 6.2.13, “Pluggable Authentication”.

13.7.2 Table Maintenance Statements

13.7.2.1 ANALYZE TABLE Statement

ANALYZE [NO_WRITE_TO_BINLOG | LOCAL]
 TABLE tbl_name [, tbl_name] ...

ANALYZE TABLE performs a key distribution analysis and stores the distribution for the named table or
tables. For MyISAM tables, this statement is equivalent to using myisamchk --analyze.

This statement requires SELECT and INSERT privileges for the table.

ANALYZE TABLE works with InnoDB, NDB, and MyISAM tables. It does not work with views.

ANALYZE TABLE is supported for partitioned tables, and you can use ALTER TABLE ... ANALYZE
PARTITION to analyze one or more partitions; for more information, see Section 13.1.8, “ALTER TABLE
Statement”, and Section 22.3.4, “Maintenance of Partitions”.

During the analysis, the table is locked with a read lock for InnoDB and MyISAM.

ANALYZE TABLE removes the table from the table definition cache, which requires a flush lock. If there
are long running statements or transactions still using the table, subsequent statements and transactions
must wait for those operations to finish before the flush lock is released. Because ANALYZE TABLE itself
typically finishes quickly, it may not be apparent that delayed transactions or statements involving the same
table are due to the remaining flush lock.

By default, the server writes ANALYZE TABLE statements to the binary log so that they replicate to
replicas. To suppress logging, specify the optional NO_WRITE_TO_BINLOG keyword or its alias LOCAL.

• ANALYZE TABLE Output

• Key Distribution Analysis

• Other Considerations

ANALYZE TABLE Output

ANALYZE TABLE returns a result set with the columns shown in the following table.

Column Value

Table The table name

2454

Table Maintenance Statements

Column Value

Op Always analyze

Msg_type status, error, info, note, or warning

Msg_text An informational message

Key Distribution Analysis

If the table has not changed since the last key distribution analysis, the table is not analyzed again.

MySQL uses the stored key distribution to decide the table join order for joins on something other than a
constant. In addition, key distributions can be used when deciding which indexes to use for a specific table
within a query.

To check the stored key distribution cardinality, use the SHOW INDEX statement or the
INFORMATION_SCHEMA STATISTICS table. See Section 13.7.5.22, “SHOW INDEX Statement”, and
Section 24.3.24, “The INFORMATION_SCHEMA STATISTICS Table”.

For InnoDB tables, ANALYZE TABLE determines index cardinality by performing random dives on each
of the index trees and updating index cardinality estimates accordingly. Because these are only estimates,
repeated runs of ANALYZE TABLE could produce different numbers. This makes ANALYZE TABLE fast on
InnoDB tables but not 100% accurate because it does not take all rows into account.

You can make the statistics collected by ANALYZE TABLE more precise and more stable by enabling
innodb_stats_persistent, as explained in Section 14.8.11.1, “Configuring Persistent Optimizer
Statistics Parameters”. When innodb_stats_persistent is enabled, it is important to run ANALYZE
TABLE after major changes to index column data, as statistics are not recalculated periodically (such as
after a server restart).

If innodb_stats_persistent is enabled, you can change the number of random dives by modifying
the innodb_stats_persistent_sample_pages system variable. If innodb_stats_persistent is
disabled, modify innodb_stats_transient_sample_pages instead.

For more information about key distribution analysis in InnoDB, see Section 14.8.11.1, “Configuring
Persistent Optimizer Statistics Parameters”, and Section 14.8.11.3, “Estimating ANALYZE TABLE
Complexity for InnoDB Tables”.

MySQL uses index cardinality estimates in join optimization. If a join is not optimized in the right way, try
running ANALYZE TABLE. In the few cases that ANALYZE TABLE does not produce values good enough
for your particular tables, you can use FORCE INDEX with your queries to force the use of a particular
index, or set the max_seeks_for_key system variable to ensure that MySQL prefers index lookups over
table scans. See Section B.3.5, “Optimizer-Related Issues”.

Other Considerations

ANALYZE TABLE clears table statistics from the Information Schema INNODB_SYS_TABLESTATS table
and sets the STATS_INITIALIZED column to Uninitialized. Statistics are collected again the next
time the table is accessed.

13.7.2.2 CHECK TABLE Statement

CHECK TABLE tbl_name [, tbl_name] ... [option] ...

option: {
 FOR UPGRADE
 | QUICK
 | FAST

2455

Table Maintenance Statements

 | MEDIUM
 | EXTENDED
 | CHANGED
}

CHECK TABLE checks a table or tables for errors. For MyISAM tables, the key statistics are updated as
well. CHECK TABLE can also check views for problems, such as tables that are referenced in the view
definition that no longer exist.

To check a table, you must have some privilege for it.

CHECK TABLE works for InnoDB, MyISAM, ARCHIVE, and CSV tables.

Before running CHECK TABLE on InnoDB tables, see CHECK TABLE Usage Notes for InnoDB Tables.

CHECK TABLE is supported for partitioned tables, and you can use ALTER TABLE ... CHECK
PARTITION to check one or more partitions; for more information, see Section 13.1.8, “ALTER TABLE
Statement”, and Section 22.3.4, “Maintenance of Partitions”.

CHECK TABLE ignores virtual generated columns that are not indexed.

• CHECK TABLE Output

• Checking Version Compatibility

• Checking Data Consistency

• CHECK TABLE Usage Notes for InnoDB Tables

• CHECK TABLE Usage Notes for MyISAM Tables

CHECK TABLE Output

CHECK TABLE returns a result set with the columns shown in the following table.

Column Value

Table The table name

Op Always check

Msg_type status, error, info, note, or warning

Msg_text An informational message

The statement might produce many rows of information for each checked table. The last row has a
Msg_type value of status and the Msg_text normally should be OK. For a MyISAM table, if you
don't get OK or Table is already up to date, you should normally run a repair of the table. See
Section 7.6, “MyISAM Table Maintenance and Crash Recovery”. Table is already up to date
means that the storage engine for the table indicated that there was no need to check the table.

Checking Version Compatibility

The FOR UPGRADE option checks whether the named tables are compatible with the current version of
MySQL. With FOR UPGRADE, the server checks each table to determine whether there have been any
incompatible changes in any of the table's data types or indexes since the table was created. If not, the
check succeeds. Otherwise, if there is a possible incompatibility, the server runs a full check on the table
(which might take some time). If the full check succeeds, the server marks the table's .frm file with the
current MySQL version number. Marking the .frm file ensures that further checks for the table with the
same version of the server are fast.

2456

Table Maintenance Statements

Incompatibilities might occur because the storage format for a data type has changed or because its sort
order has changed. Our aim is to avoid these changes, but occasionally they are necessary to correct
problems that would be worse than an incompatibility between releases.

FOR UPGRADE discovers these incompatibilities:

• The indexing order for end-space in TEXT columns for InnoDB and MyISAM tables changed between
MySQL 4.1 and 5.0.

• The storage method of the new DECIMAL data type changed between MySQL 5.0.3 and 5.0.5.

• If your table was created by a different version of the MySQL server than the one you are currently
running, FOR UPGRADE indicates that the table has an .frm file with an incompatible version. In this
case, the result set returned by CHECK TABLE contains a line with a Msg_type value of error and a
Msg_text value of Table upgrade required. Please do "REPAIR TABLE `tbl_name`" to
fix it!

• Changes are sometimes made to character sets or collations that require table indexes to be rebuilt.
For details about such changes, see Section 2.10.3, “Changes in MySQL 5.7”. For information about
rebuilding tables, see Section 2.10.12, “Rebuilding or Repairing Tables or Indexes”.

• The YEAR(2) data type is deprecated and support for it is removed in MySQL 5.7.5. For tables
containing YEAR(2) columns, CHECK TABLE recommends REPAIR TABLE, which converts 2-digit
YEAR(2) columns to 4-digit YEAR columns.

• As of MySQL 5.7.2, trigger creation time is maintained. If run against a table that has triggers, CHECK
TABLE ... FOR UPGRADE displays this warning for each trigger created before MySQL 5.7.2:

Trigger db_name.tbl_name.trigger_name does not have CREATED attribute.

The warning is informational only. No change is made to the trigger.

• As of MySQL 5.7.7, a table is reported as needing a rebuild if it contains old temporal columns
in pre-5.6.4 format (TIME, DATETIME, and TIMESTAMP columns without support for fractional
seconds precision) and the avoid_temporal_upgrade system variable is disabled. This helps
the MySQL upgrade procedure detect and upgrade tables containing old temporal columns. If
avoid_temporal_upgrade is enabled, FOR UPGRADE ignores the old temporal columns present in
the table; consequently, the upgrade procedure does not upgrade them.

To check for tables that contain such temporal columns and need a rebuild, disable
avoid_temporal_upgrade before executing CHECK TABLE ... FOR UPGRADE.

• Warnings are issued for tables that use nonnative partitioning because nonnative partitioning is
deprecated in MySQL 5.7 and removed in MySQL 8.0. See Chapter 22, Partitioning.

Checking Data Consistency

The following table shows the other check options that can be given. These options are passed to the
storage engine, which may use or ignore them.

Type Meaning

QUICK Do not scan the rows to check for incorrect links.
Applies to InnoDB and MyISAM tables and views.

FAST Check only tables that have not been closed
properly. Ignored for InnoDB; applies only to
MyISAM tables and views.

2457

Table Maintenance Statements

Type Meaning

CHANGED Check only tables that have been changed since
the last check or that have not been closed properly.
Ignored for InnoDB; applies only to MyISAM tables
and views.

MEDIUM Scan rows to verify that deleted links are valid. This
also calculates a key checksum for the rows and
verifies this with a calculated checksum for the keys.
Ignored for InnoDB; applies only to MyISAM tables
and views.

EXTENDED Do a full key lookup for all keys for each row. This
ensures that the table is 100% consistent, but takes
a long time. Ignored for InnoDB; applies only to
MyISAM tables and views.

If none of the options QUICK, MEDIUM, or EXTENDED are specified, the default check type for dynamic-
format MyISAM tables is MEDIUM. This has the same result as running myisamchk --medium-check
tbl_name on the table. The default check type also is MEDIUM for static-format MyISAM tables, unless
CHANGED or FAST is specified. In that case, the default is QUICK. The row scan is skipped for CHANGED
and FAST because the rows are very seldom corrupted.

You can combine check options, as in the following example that does a quick check on the table to
determine whether it was closed properly:

CHECK TABLE test_table FAST QUICK;

Note

If CHECK TABLE finds no problems with a table that is marked as “corrupted” or “not
closed properly”, CHECK TABLE may remove the mark.

If a table is corrupted, the problem is most likely in the indexes and not in the data part. All of the preceding
check types check the indexes thoroughly and should thus find most errors.

To check a table that you assume is okay, use no check options or the QUICK option. The latter should be
used when you are in a hurry and can take the very small risk that QUICK does not find an error in the data
file. (In most cases, under normal usage, MySQL should find any error in the data file. If this happens, the
table is marked as “corrupted” and cannot be used until it is repaired.)

FAST and CHANGED are mostly intended to be used from a script (for example, to be executed from cron)
to check tables periodically. In most cases, FAST is to be preferred over CHANGED. (The only case when it
is not preferred is when you suspect that you have found a bug in the MyISAM code.)

EXTENDED is to be used only after you have run a normal check but still get errors from a table when
MySQL tries to update a row or find a row by key. This is very unlikely if a normal check has succeeded.

Use of CHECK TABLE ... EXTENDED might influence execution plans generated by the query optimizer.

Some problems reported by CHECK TABLE cannot be corrected automatically:

• Found row where the auto_increment column has the value 0.

This means that you have a row in the table where the AUTO_INCREMENT index column contains the
value 0. (It is possible to create a row where the AUTO_INCREMENT column is 0 by explicitly setting the
column to 0 with an UPDATE statement.)

2458

Table Maintenance Statements

This is not an error in itself, but could cause trouble if you decide to dump the table and restore it or do
an ALTER TABLE on the table. In this case, the AUTO_INCREMENT column changes value according to
the rules of AUTO_INCREMENT columns, which could cause problems such as a duplicate-key error.

To get rid of the warning, execute an UPDATE statement to set the column to some value other than 0.

CHECK TABLE Usage Notes for InnoDB Tables

The following notes apply to InnoDB tables:

• If CHECK TABLE encounters a corrupt page, the server exits to prevent error propagation (Bug #10132).
If the corruption occurs in a secondary index but table data is readable, running CHECK TABLE can still
cause a server exit.

• If CHECK TABLE encounters a corrupted DB_TRX_ID or DB_ROLL_PTR field in a clustered index, CHECK
TABLE can cause InnoDB to access an invalid undo log record, resulting in an MVCC-related server
exit.

• If CHECK TABLE encounters errors in InnoDB tables or indexes, it reports an error, and usually marks
the index and sometimes marks the table as corrupted, preventing further use of the index or table. Such
errors include an incorrect number of entries in a secondary index or incorrect links.

• If CHECK TABLE finds an incorrect number of entries in a secondary index, it reports an error but does
not cause a server exit or prevent access to the file.

• CHECK TABLE surveys the index page structure, then surveys each key entry. It does not validate the
key pointer to a clustered record or follow the path for BLOB pointers.

• When an InnoDB table is stored in its own .ibd file, the first 3 pages of the .ibd file contain
header information rather than table or index data. The CHECK TABLE statement does not detect
inconsistencies that affect only the header data. To verify the entire contents of an InnoDB .ibd file,
use the innochecksum command.

• When running CHECK TABLE on large InnoDB tables, other threads may be blocked during CHECK
TABLE execution. To avoid timeouts, the semaphore wait threshold (600 seconds) is extended by 2
hours (7200 seconds) for CHECK TABLE operations. If InnoDB detects semaphore waits of 240 seconds
or more, it starts printing InnoDB monitor output to the error log. If a lock request extends beyond the
semaphore wait threshold, InnoDB aborts the process. To avoid the possibility of a semaphore wait
timeout entirely, run CHECK TABLE QUICK instead of CHECK TABLE.

• CHECK TABLE functionality for InnoDB SPATIAL indexes includes an R-tree validity check and a check
to ensure that the R-tree row count matches the clustered index.

• CHECK TABLE supports secondary indexes on virtual generated columns, which are supported by
InnoDB.

CHECK TABLE Usage Notes for MyISAM Tables

The following notes apply to MyISAM tables:

• CHECK TABLE updates key statistics for MyISAM tables.

• If CHECK TABLE output does not return OK or Table is already up to date, you should normally
run a repair of the table. See Section 7.6, “MyISAM Table Maintenance and Crash Recovery”.

• If none of the CHECK TABLE options QUICK, MEDIUM, or EXTENDED are specified, the default check
type for dynamic-format MyISAM tables is MEDIUM. This has the same result as running myisamchk

2459

Table Maintenance Statements

--medium-check tbl_name on the table. The default check type also is MEDIUM for static-format
MyISAM tables, unless CHANGED or FAST is specified. In that case, the default is QUICK. The row scan is
skipped for CHANGED and FAST because the rows are very seldom corrupted.

13.7.2.3 CHECKSUM TABLE Statement

CHECKSUM TABLE tbl_name [, tbl_name] ... [QUICK | EXTENDED]

CHECKSUM TABLE reports a checksum for the contents of a table. You can use this statement to verify that
the contents are the same before and after a backup, rollback, or other operation that is intended to put the
data back to a known state.

This statement requires the SELECT privilege for the table.

This statement is not supported for views. If you run CHECKSUM TABLE against a view, the Checksum
value is always NULL, and a warning is returned.

For a nonexistent table, CHECKSUM TABLE returns NULL and generates a warning.

During the checksum operation, the table is locked with a read lock for InnoDB and MyISAM.

Performance Considerations

By default, the entire table is read row by row and the checksum is calculated. For large tables, this could
take a long time, thus you would only perform this operation occasionally. This row-by-row calculation is
what you get with the EXTENDED clause, with InnoDB and all other storage engines other than MyISAM,
and with MyISAM tables not created with the CHECKSUM=1 clause.

For MyISAM tables created with the CHECKSUM=1 clause, CHECKSUM TABLE or CHECKSUM TABLE ...
QUICK returns the “live” table checksum that can be returned very fast. If the table does not meet all these
conditions, the QUICK method returns NULL. The QUICK method is not supported with InnoDB tables. See
Section 13.1.18, “CREATE TABLE Statement” for the syntax of the CHECKSUM clause.

The checksum value depends on the table row format. If the row format changes, the checksum also
changes. For example, the storage format for temporal types such as TIME, DATETIME, and TIMESTAMP
changed in MySQL 5.6 prior to MySQL 5.6.5, so if a 5.5 table is upgraded to MySQL 5.6, the checksum
value may change.

Important

If the checksums for two tables are different, then it is almost certain that the
tables are different in some way. However, because the hashing function used by
CHECKSUM TABLE is not guaranteed to be collision-free, there is a slight chance
that two tables which are not identical can produce the same checksum.

13.7.2.4 OPTIMIZE TABLE Statement

OPTIMIZE [NO_WRITE_TO_BINLOG | LOCAL]
 TABLE tbl_name [, tbl_name] ...

OPTIMIZE TABLE reorganizes the physical storage of table data and associated index data, to reduce
storage space and improve I/O efficiency when accessing the table. The exact changes made to each
table depend on the storage engine used by that table.

Use OPTIMIZE TABLE in these cases, depending on the type of table:

• After doing substantial insert, update, or delete operations on an InnoDB table that has its own .ibd file
because it was created with the innodb_file_per_table option enabled. The table and indexes are
reorganized, and disk space can be reclaimed for use by the operating system.

2460

Table Maintenance Statements

• After doing substantial insert, update, or delete operations on columns that are part of a FULLTEXT index
in an InnoDB table. Set the configuration option innodb_optimize_fulltext_only=1 first. To keep
the index maintenance period to a reasonable time, set the innodb_ft_num_word_optimize option
to specify how many words to update in the search index, and run a sequence of OPTIMIZE TABLE
statements until the search index is fully updated.

• After deleting a large part of a MyISAM or ARCHIVE table, or making many changes to a MyISAM or
ARCHIVE table with variable-length rows (tables that have VARCHAR, VARBINARY, BLOB, or TEXT
columns). Deleted rows are maintained in a linked list and subsequent INSERT operations reuse old row
positions. You can use OPTIMIZE TABLE to reclaim the unused space and to defragment the data file.
After extensive changes to a table, this statement may also improve performance of statements that use
the table, sometimes significantly.

This statement requires SELECT and INSERT privileges for the table.

OPTIMIZE TABLE works for InnoDB, MyISAM, and ARCHIVE tables. OPTIMIZE TABLE is also supported
for dynamic columns of in-memory NDB tables. It does not work for fixed-width columns of in-memory
tables, nor does it work for Disk Data tables. The performance of OPTIMIZE on NDB Cluster tables can be
tuned using --ndb-optimization-delay, which controls the length of time to wait between processing
batches of rows by OPTIMIZE TABLE. For more information, see Previous NDB Cluster Issues Resolved
in NDB Cluster 8.0.

For NDB Cluster tables, OPTIMIZE TABLE can be interrupted by (for example) killing the SQL thread
performing the OPTIMIZE operation.

By default, OPTIMIZE TABLE does not work for tables created using any other storage engine and returns
a result indicating this lack of support. You can make OPTIMIZE TABLE work for other storage engines by
starting mysqld with the --skip-new option. In this case, OPTIMIZE TABLE is just mapped to ALTER
TABLE.

This statement does not work with views.

OPTIMIZE TABLE is supported for partitioned tables. For information about using this statement with
partitioned tables and table partitions, see Section 22.3.4, “Maintenance of Partitions”.

By default, the server writes OPTIMIZE TABLE statements to the binary log so that they replicate to
replicas. To suppress logging, specify the optional NO_WRITE_TO_BINLOG keyword or its alias LOCAL.

• OPTIMIZE TABLE Output

• InnoDB Details

• MyISAM Details

• Other Considerations

OPTIMIZE TABLE Output

OPTIMIZE TABLE returns a result set with the columns shown in the following table.

Column Value

Table The table name

Op Always optimize

Msg_type status, error, info, note, or warning

2461

https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster-limitations-resolved.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster-limitations-resolved.html

Table Maintenance Statements

Column Value

Msg_text An informational message

OPTIMIZE TABLE table catches and throws any errors that occur while copying table statistics from the
old file to the newly created file. For example. if the user ID of the owner of the .frm, .MYD, or .MYI
file is different from the user ID of the mysqld process, OPTIMIZE TABLE generates a "cannot change
ownership of the file" error unless mysqld is started by the root user.

InnoDB Details

For InnoDB tables, OPTIMIZE TABLE is mapped to ALTER TABLE ... FORCE, which rebuilds the table
to update index statistics and free unused space in the clustered index. This is displayed in the output of
OPTIMIZE TABLE when you run it on an InnoDB table, as shown here:

mysql> OPTIMIZE TABLE foo;
+----------+----------+----------+---+
| Table | Op | Msg_type | Msg_text |
+----------+----------+----------+---+
| test.foo | optimize | note | Table does not support optimize, doing recreate + analyze instead |
| test.foo | optimize | status | OK |
+----------+----------+----------+---+

OPTIMIZE TABLE uses online DDL for regular and partitioned InnoDB tables, which reduces downtime
for concurrent DML operations. The table rebuild triggered by OPTIMIZE TABLE is completed in place. An
exclusive table lock is only taken briefly during the prepare phase and the commit phase of the operation.
During the prepare phase, metadata is updated and an intermediate table is created. During the commit
phase, table metadata changes are committed.

OPTIMIZE TABLE rebuilds the table using the table copy method under the following conditions:

• When the old_alter_table system variable is enabled.

• When the server is started with the --skip-new option.

OPTIMIZE TABLE using online DDL is not supported for InnoDB tables that contain FULLTEXT indexes.
The table copy method is used instead.

InnoDB stores data using a page-allocation method and does not suffer from fragmentation in the same
way that legacy storage engines (such as MyISAM) do. When considering whether or not to run OPTIMIZE
TABLE, consider the workload of transactions that your server is expected to process:

• Some level of fragmentation is expected. InnoDB fills pages only 93% full, to leave room for updates
without having to split pages.

• Delete operations might leave gaps that leave pages less filled than desired, which could make it
worthwhile to optimize the table.

• Updates to rows usually rewrite the data within the same page, depending on the data type and row
format, when sufficient space is available. See Section 14.9.1.5, “How Compression Works for InnoDB
Tables” and Section 14.11, “InnoDB Row Formats”.

• High-concurrency workloads might leave gaps in indexes over time, as InnoDB retains multiple versions
of the same data due through its MVCC mechanism. See Section 14.3, “InnoDB Multi-Versioning”.

MyISAM Details

For MyISAM tables, OPTIMIZE TABLE works as follows:

2462

Table Maintenance Statements

1. If the table has deleted or split rows, repair the table.

2. If the index pages are not sorted, sort them.

3. If the table's statistics are not up to date (and the repair could not be accomplished by sorting the
index), update them.

Other Considerations

OPTIMIZE TABLE is performed online for regular and partitioned InnoDB tables. Otherwise, MySQL locks
the table during the time OPTIMIZE TABLE is running.

OPTIMIZE TABLE does not sort R-tree indexes, such as spatial indexes on POINT columns. (Bug
#23578)

13.7.2.5 REPAIR TABLE Statement

REPAIR [NO_WRITE_TO_BINLOG | LOCAL]
 TABLE tbl_name [, tbl_name] ...
 [QUICK] [EXTENDED] [USE_FRM]

REPAIR TABLE repairs a possibly corrupted table, for certain storage engines only.

This statement requires SELECT and INSERT privileges for the table.

Although normally you should never have to run REPAIR TABLE, if disaster strikes, this statement is very
likely to get back all your data from a MyISAM table. If your tables become corrupted often, try to find the
reason for it, to eliminate the need to use REPAIR TABLE. See Section B.3.3.3, “What to Do If MySQL
Keeps Crashing”, and Section 15.2.4, “MyISAM Table Problems”.

REPAIR TABLE checks the table to see whether an upgrade is required. If so, it performs the upgrade,
following the same rules as CHECK TABLE ... FOR UPGRADE. See Section 13.7.2.2, “CHECK TABLE
Statement”, for more information.

Important

• Make a backup of a table before performing a table repair operation; under some
circumstances the operation might cause data loss. Possible causes include but
are not limited to file system errors. See Chapter 7, Backup and Recovery.

• If the server exits during a REPAIR TABLE operation, it is essential after
restarting it that you immediately execute another REPAIR TABLE statement
for the table before performing any other operations on it. In the worst case, you
might have a new clean index file without information about the data file, and then
the next operation you perform could overwrite the data file. This is an unlikely
but possible scenario that underscores the value of making a backup first.

• In the event that a table on the source becomes corrupted and you run REPAIR
TABLE on it, any resulting changes to the original table are not propagated to
replicas.

• REPAIR TABLE Storage Engine and Partitioning Support

• REPAIR TABLE Options

• REPAIR TABLE Output

2463

Table Maintenance Statements

• Table Repair Considerations

REPAIR TABLE Storage Engine and Partitioning Support

REPAIR TABLE works for MyISAM, ARCHIVE, and CSV tables. For MyISAM tables, it has the same effect
as myisamchk --recover tbl_name by default. This statement does not work with views.

REPAIR TABLE is supported for partitioned tables. However, the USE_FRM option cannot be used with this
statement on a partitioned table.

You can use ALTER TABLE ... REPAIR PARTITION to repair one or more partitions; for more
information, see Section 13.1.8, “ALTER TABLE Statement”, and Section 22.3.4, “Maintenance of
Partitions”.

REPAIR TABLE Options

• NO_WRITE_TO_BINLOG or LOCAL

By default, the server writes REPAIR TABLE statements to the binary log so that they replicate to
replicas. To suppress logging, specify the optional NO_WRITE_TO_BINLOG keyword or its alias LOCAL.

• QUICK

If you use the QUICK option, REPAIR TABLE tries to repair only the index file, and not the data file. This
type of repair is like that done by myisamchk --recover --quick.

• EXTENDED

If you use the EXTENDED option, MySQL creates the index row by row instead of creating one index at a
time with sorting. This type of repair is like that done by myisamchk --safe-recover.

• USE_FRM

The USE_FRM option is available for use if the .MYI index file is missing or if its header is corrupted.
This option tells MySQL not to trust the information in the .MYI file header and to re-create it using
information from the .frm file. This kind of repair cannot be done with myisamchk.

Caution

Use the USE_FRM option only if you cannot use regular REPAIR modes. Telling
the server to ignore the .MYI file makes important table metadata stored
in the .MYI unavailable to the repair process, which can have deleterious
consequences:

• The current AUTO_INCREMENT value is lost.

• The link to deleted records in the table is lost, which means that free space for
deleted records remain unoccupied thereafter.

• The .MYI header indicates whether the table is compressed. If the server
ignores this information, it cannot tell that a table is compressed and repair
can cause change or loss of table contents. This means that USE_FRM should
not be used with compressed tables. That should not be necessary, anyway:
Compressed tables are read only, so they should not become corrupt.

If you use USE_FRM for a table that was created by a different version of the
MySQL server than the one you are currently running, REPAIR TABLE does

2464

Plugin and Loadable Function Statements

not attempt to repair the table. In this case, the result set returned by REPAIR
TABLE contains a line with a Msg_type value of error and a Msg_text value
of Failed repairing incompatible .FRM file.

If USE_FRM is used, REPAIR TABLE does not check the table to see whether an
upgrade is required.

REPAIR TABLE Output

REPAIR TABLE returns a result set with the columns shown in the following table.

Column Value

Table The table name

Op Always repair

Msg_type status, error, info, note, or warning

Msg_text An informational message

The REPAIR TABLE statement might produce many rows of information for each repaired table. The last
row has a Msg_type value of status and Msg_test normally should be OK. For a MyISAM table, if you
do not get OK, you should try repairing it with myisamchk --safe-recover. (REPAIR TABLE does not
implement all the options of myisamchk. With myisamchk --safe-recover, you can also use options
that REPAIR TABLE does not support, such as --max-record-length.)

REPAIR TABLE table catches and throws any errors that occur while copying table statistics from the
old corrupted file to the newly created file. For example. if the user ID of the owner of the .frm, .MYD, or
.MYI file is different from the user ID of the mysqld process, REPAIR TABLE generates a "cannot change
ownership of the file" error unless mysqld is started by the root user.

Table Repair Considerations

REPAIR TABLE upgrades a table if it contains old temporal columns in pre-5.6.4 format (TIME,
DATETIME, and TIMESTAMP columns without support for fractional seconds precision) and the
avoid_temporal_upgrade system variable is disabled. If avoid_temporal_upgrade is enabled,
REPAIR TABLE ignores the old temporal columns present in the table and does not upgrade them.

To upgrade tables that contain such temporal columns, disable avoid_temporal_upgrade before
executing REPAIR TABLE.

You may be able to increase REPAIR TABLE performance by setting certain system variables. See
Section 8.6.3, “Optimizing REPAIR TABLE Statements”.

13.7.3 Plugin and Loadable Function Statements

13.7.3.1 CREATE FUNCTION Statement for Loadable Functions

CREATE [AGGREGATE] FUNCTION function_name
 RETURNS {STRING|INTEGER|REAL|DECIMAL}
 SONAME shared_library_name

This statement loads the loadable function named function_name. (CREATE FUNCTION is also used
to created stored functions; see Section 13.1.16, “CREATE PROCEDURE and CREATE FUNCTION
Statements”.)

A loadable function is a way to extend MySQL with a new function that works like a native (built-in) MySQL
function such as ABS() or CONCAT(). See Adding a Loadable Function.

2465

https://dev.mysql.com/doc/extending-mysql/5.7/en/adding-loadable-function.html

Plugin and Loadable Function Statements

function_name is the name that should be used in SQL statements to invoke the function. The RETURNS
clause indicates the type of the function's return value. DECIMAL is a legal value after RETURNS, but
currently DECIMAL functions return string values and should be written like STRING functions.

The AGGREGATE keyword, if given, signifies that the function is an aggregate (group) function. An
aggregate function works exactly like a native MySQL aggregate function such as SUM() or COUNT().

shared_library_name is the base name of the shared library file containing the code that implements
the function. The file must be located in the plugin directory. This directory is given by the value of the
plugin_dir system variable. For more information, see Section 5.6.1, “Installing and Uninstalling
Loadable Functions”.

CREATE FUNCTION requires the INSERT privilege for the mysql system database because it adds a row
to the mysql.func system table to register the function.

During the normal startup sequence, the server loads functions registered in the mysql.func table. If the
server is started with the --skip-grant-tables option, functions registered in the table are not loaded
and are unavailable.

Note

To upgrade the shared library associated with a loadable function, issue a DROP
FUNCTION statement, upgrade the shared library, and then issue a CREATE
FUNCTION statement. If you upgrade the shared library first and then use DROP
FUNCTION, the server may unexpectedly shut down.

13.7.3.2 DROP FUNCTION Statement for Loadable Functions

DROP FUNCTION [IF EXISTS] function_name

This statement drops the loadable function named function_name. (DROP FUNCTION is also used to
drop stored functions; see Section 13.1.27, “DROP PROCEDURE and DROP FUNCTION Statements”.)

DROP FUNCTION is the complement of CREATE FUNCTION. It requires the DELETE privilege for the
mysql system database because it removes the row from the mysql.func system table that registers the
function.

During the normal startup sequence, the server loads functions registered in the mysql.func table.
Because DROP FUNCTION removes the mysql.func row for the dropped function, the server does not
load the function during subsequent restarts.

Note

To upgrade the shared library associated with a loadable function, issue a DROP
FUNCTION statement, upgrade the shared library, and then issue a CREATE
FUNCTION statement. If you upgrade the shared library first and then use DROP
FUNCTION, the server may unexpectedly shut down.

13.7.3.3 INSTALL PLUGIN Statement

INSTALL PLUGIN plugin_name SONAME 'shared_library_name'

This statement installs a server plugin. It requires the INSERT privilege for the mysql.plugin system
table because it adds a row to that table to register the plugin.

plugin_name is the name of the plugin as defined in the plugin descriptor structure contained in the
library file (see Plugin Data Structures). Plugin names are not case-sensitive. For maximal compatibility,

2466

https://dev.mysql.com/doc/extending-mysql/5.7/en/plugin-data-structures.html

Plugin and Loadable Function Statements

plugin names should be limited to ASCII letters, digits, and underscore because they are used in C source
files, shell command lines, M4 and Bourne shell scripts, and SQL environments.

shared_library_name is the name of the shared library that contains the plugin code. The
name includes the file name extension (for example, libmyplugin.so, libmyplugin.dll, or
libmyplugin.dylib).

The shared library must be located in the plugin directory (the directory named by the plugin_dir system
variable). The library must be in the plugin directory itself, not in a subdirectory. By default, plugin_dir
is the plugin directory under the directory named by the pkglibdir configuration variable, but it can be
changed by setting the value of plugin_dir at server startup. For example, set its value in a my.cnf file:

[mysqld]
plugin_dir=/path/to/plugin/directory

If the value of plugin_dir is a relative path name, it is taken to be relative to the MySQL base directory
(the value of the basedir system variable).

INSTALL PLUGIN loads and initializes the plugin code to make the plugin available for use. A plugin is
initialized by executing its initialization function, which handles any setup that the plugin must perform
before it can be used. When the server shuts down, it executes the deinitialization function for each plugin
that is loaded so that the plugin has a chance to perform any final cleanup.

INSTALL PLUGIN also registers the plugin by adding a line that indicates the plugin name and library
file name to the mysql.plugin system table. During the normal startup sequence, the server loads
and initializes plugins registered in mysql.plugin. This means that a plugin is installed with INSTALL
PLUGIN only once, not every time the server starts. If the server is started with the --skip-grant-
tables option, plugins registered in the mysql.plugin table are not loaded and are unavailable.

A plugin library can contain multiple plugins. For each of them to be installed, use a separate INSTALL
PLUGIN statement. Each statement names a different plugin, but all of them specify the same library name.

INSTALL PLUGIN causes the server to read option (my.cnf) files just as during server startup. This
enables the plugin to pick up any relevant options from those files. It is possible to add plugin options to an
option file even before loading a plugin (if the loose prefix is used). It is also possible to uninstall a plugin,
edit my.cnf, and install the plugin again. Restarting the plugin this way enables it to the new option values
without a server restart.

For options that control individual plugin loading at server startup, see Section 5.5.1, “Installing and
Uninstalling Plugins”. If you need to load plugins for a single server startup when the --skip-grant-
tables option is given (which tells the server not to read system tables), use the --plugin-load option.
See Section 5.1.6, “Server Command Options”.

To remove a plugin, use the UNINSTALL PLUGIN statement.

For additional information about plugin loading, see Section 5.5.1, “Installing and Uninstalling Plugins”.

To see what plugins are installed, use the SHOW PLUGINS statement or query the INFORMATION_SCHEMA
the PLUGINS table.

If you recompile a plugin library and need to reinstall it, you can use either of the following methods:

• Use UNINSTALL PLUGIN to uninstall all plugins in the library, install the new plugin library file in the
plugin directory, and then use INSTALL PLUGIN to install all plugins in the library. This procedure has
the advantage that it can be used without stopping the server. However, if the plugin library contains
many plugins, you must issue many INSTALL PLUGIN and UNINSTALL PLUGIN statements.

2467

SET Statements

• Stop the server, install the new plugin library file in the plugin directory, and restart the server.

13.7.3.4 UNINSTALL PLUGIN Statement

UNINSTALL PLUGIN plugin_name

This statement removes an installed server plugin. UNINSTALL PLUGIN is the complement of INSTALL
PLUGIN. It requires the DELETE privilege for the mysql.plugin system table because it removes the row
from that table that registers the plugin.

plugin_name must be the name of some plugin that is listed in the mysql.plugin table. The server
executes the plugin's deinitialization function and removes the row for the plugin from the mysql.plugin
system table, so that subsequent server restarts do not load and initialize the plugin. UNINSTALL PLUGIN
does not remove the plugin's shared library file.

You cannot uninstall a plugin if any table that uses it is open.

Plugin removal has implications for the use of associated tables. For example, if a full-text parser plugin
is associated with a FULLTEXT index on the table, uninstalling the plugin makes the table unusable. Any
attempt to access the table results in an error. The table cannot even be opened, so you cannot drop an
index for which the plugin is used. This means that uninstalling a plugin is something to do with care unless
you do not care about the table contents. If you are uninstalling a plugin with no intention of reinstalling it
later and you care about the table contents, you should dump the table with mysqldump and remove the
WITH PARSER clause from the dumped CREATE TABLE statement so that you can reload the table later.
If you do not care about the table, DROP TABLE can be used even if any plugins associated with the table
are missing.

For additional information about plugin loading, see Section 5.5.1, “Installing and Uninstalling Plugins”.

13.7.4 SET Statements

The SET statement has several forms. Descriptions for those forms that are not associated with a specific
server capability appear in subsections of this section:

• SET var_name = value enables you to assign values to variables that affect the operation of the
server or clients. See Section 13.7.4.1, “SET Syntax for Variable Assignment”.

• SET CHARACTER SET and SET NAMES assign values to character set and collation variables
associated with the current connection to the server. See Section 13.7.4.2, “SET CHARACTER SET
Statement”, and Section 13.7.4.3, “SET NAMES Statement”.

Descriptions for the other forms appear elsewhere, grouped with other statements related to the capability
they help implement:

• SET PASSWORD assigns account passwords. See Section 13.7.1.7, “SET PASSWORD Statement”.

• SET TRANSACTION ISOLATION LEVEL sets the isolation level for transaction processing. See
Section 13.3.6, “SET TRANSACTION Statement”.

13.7.4.1 SET Syntax for Variable Assignment

SET variable = expr [, variable = expr] ...

variable: {
 user_var_name
 | param_name
 | local_var_name

2468

SET Statements

 | {GLOBAL | @@GLOBAL.} system_var_name
 | [SESSION | @@SESSION. | @@] system_var_name
}

SET syntax for variable assignment enables you to assign values to different types of variables that affect
the operation of the server or clients:

• User-defined variables. See Section 9.4, “User-Defined Variables”.

• Stored procedure and function parameters, and stored program local variables. See Section 13.6.4,
“Variables in Stored Programs”.

• System variables. See Section 5.1.7, “Server System Variables”. System variables also can be set at
server startup, as described in Section 5.1.8, “Using System Variables”.

A SET statement that assigns variable values is not written to the binary log, so in replication scenarios it
affects only the host on which you execute it. To affect all replication hosts, execute the statement on each
host.

The following sections describe SET syntax for setting variables. They use the = assignment operator, but
the := assignment operator is also permitted for this purpose.

• User-Defined Variable Assignment

• Parameter and Local Variable Assignment

• System Variable Assignment

• SET Error Handling

• Multiple Variable Assignment

• System Variable References in Expressions

User-Defined Variable Assignment

User-defined variables are created locally within a session and exist only within the context of that session;
see Section 9.4, “User-Defined Variables”.

A user-defined variable is written as @var_name and is assigned an expression value as follows:

SET @var_name = expr;

Examples:

SET @name = 43;
SET @total_tax = (SELECT SUM(tax) FROM taxable_transactions);

As demonstrated by those statements, expr can range from simple (a literal value) to more complex (the
value returned by a scalar subquery).

The Performance Schema user_variables_by_thread table contains information about user-defined
variables. See Section 25.12.10, “Performance Schema User-Defined Variable Tables”.

Parameter and Local Variable Assignment

SET applies to parameters and local variables in the context of the stored object within which they are
defined. The following procedure uses the increment procedure parameter and counter local variable:

2469

SET Statements

CREATE PROCEDURE p(increment INT)
BEGIN
 DECLARE counter INT DEFAULT 0;
 WHILE counter < 10 DO
 -- ... do work ...
 SET counter = counter + increment;
 END WHILE;
END;

System Variable Assignment

The MySQL server maintains system variables that configure its operation. A system variable can have a
global value that affects server operation as a whole, a session value that affects the current session, or
both. Many system variables are dynamic and can be changed at runtime using the SET statement to affect
operation of the current server instance. (To make a global system variable setting permanent so that it
applies across server restarts, you should also set it in an option file.)

If you change a session system variable, the value remains in effect within your session until you change
the variable to a different value or the session ends. The change has no effect on other sessions.

If you change a global system variable, the value is remembered and used to initialize the session value
for new sessions until you change the variable to a different value or the server exits. The change is visible
to any client that accesses the global value. However, the change affects the corresponding session value
only for clients that connect after the change. The global variable change does not affect the session value
for any current client sessions (not even the session within which the global value change occurs).

Note

Setting a global system variable value always requires special privileges. Setting
a session system variable value normally requires no special privileges and can
be done by any user, although there are exceptions. For more information, see
Section 5.1.8.1, “System Variable Privileges”.

The following discussion describes the syntax options for setting system variables:

• To assign a value to a global system variable, precede the variable name by the GLOBAL keyword or the
@@GLOBAL. qualifier:

SET GLOBAL max_connections = 1000;
SET @@GLOBAL.max_connections = 1000;

• To assign a value to a session system variable, precede the variable name by the SESSION or LOCAL
keyword, by the @@SESSION., @@LOCAL., or @@ qualifier, or by no keyword or no modifier at all:

SET SESSION sql_mode = 'TRADITIONAL';
SET LOCAL sql_mode = 'TRADITIONAL';
SET @@SESSION.sql_mode = 'TRADITIONAL';
SET @@LOCAL.sql_mode = 'TRADITIONAL';
SET @@sql_mode = 'TRADITIONAL';
SET sql_mode = 'TRADITIONAL';

A client can change its own session variables, but not those of any other client.

To set a global system variable value to the compiled-in MySQL default value or a session system variable
to the current corresponding global value, set the variable to the value DEFAULT. For example, the
following two statements are identical in setting the session value of max_join_size to the current global
value:

SET @@SESSION.max_join_size = DEFAULT;
SET @@SESSION.max_join_size = @@GLOBAL.max_join_size;

2470

SET Statements

To display system variable names and values:

• Use the SHOW VARIABLES statement; see Section 13.7.5.39, “SHOW VARIABLES Statement”.

• Several Performance Schema tables provide system variable information. See Section 25.12.13,
“Performance Schema System Variable Tables”.

SET Error Handling

If any variable assignment in a SET statement fails, the entire statement fails and no variables are
changed.

SET produces an error under the circumstances described here. Most of the examples show SET
statements that use keyword syntax (for example, GLOBAL or SESSION), but the principles are also true for
statements that use the corresponding modifiers (for example, @@GLOBAL. or @@SESSION.).

• Use of SET (any variant) to set a read-only variable:

mysql> SET GLOBAL version = 'abc';
ERROR 1238 (HY000): Variable 'version' is a read only variable

• Use of GLOBAL to set a variable that has only a session value:

mysql> SET GLOBAL sql_log_bin = ON;
ERROR 1231 (42000): Variable 'sql_log_bin' can't be
set to the value of 'ON'

• Use of SESSION to set a variable that has only a global value:

mysql> SET SESSION max_connections = 1000;
ERROR 1229 (HY000): Variable 'max_connections' is a
GLOBAL variable and should be set with SET GLOBAL

• Omission of GLOBAL to set a variable that has only a global value:

mysql> SET max_connections = 1000;
ERROR 1229 (HY000): Variable 'max_connections' is a
GLOBAL variable and should be set with SET GLOBAL

• The @@GLOBAL., @@SESSION., and @@ modifiers apply only to system variables. An error occurs for
attempts to apply them to user-defined variables, stored procedure or function parameters, or stored
program local variables.

• Not all system variables can be set to DEFAULT. In such cases, assigning DEFAULT results in an error.

• An error occurs for attempts to assign DEFAULT to user-defined variables, stored procedure or function
parameters, or stored program local variables.

Multiple Variable Assignment

A SET statement can contain multiple variable assignments, separated by commas. This statement assigns
a value to a user-defined variable and a system variable:

SET @x = 1, SESSION sql_mode = '';

If you set multiple system variables in a single statement, the most recent GLOBAL or SESSION keyword in
the statement is used for following assignments that have no keyword specified.

Examples of multiple-variable assignment:

SET GLOBAL sort_buffer_size = 1000000, SESSION sort_buffer_size = 1000000;

2471

SET Statements

SET @@GLOBAL.sort_buffer_size = 1000000, @@LOCAL.sort_buffer_size = 1000000;
SET GLOBAL max_connections = 1000, sort_buffer_size = 1000000;

The @@GLOBAL., @@SESSION., and @@ modifiers apply only to the immediately following system variable,
not any remaining system variables. This statement sets the sort_buffer_size global value to 50000
and the session value to 1000000:

SET @@GLOBAL.sort_buffer_size = 50000, sort_buffer_size = 1000000;

System Variable References in Expressions

To refer to the value of a system variable in expressions, use one of the @@-modifiers. For example, you
can retrieve system variable values in a SELECT statement like this:

SELECT @@GLOBAL.sql_mode, @@SESSION.sql_mode, @@sql_mode;

Note

A reference to a system variable in an expression as @@var_name (with @@ rather
than @@GLOBAL. or @@SESSION.) returns the session value if it exists and the
global value otherwise. This differs from SET @@var_name = expr, which always
refers to the session value.

13.7.4.2 SET CHARACTER SET Statement

SET {CHARACTER SET | CHARSET}
 {'charset_name' | DEFAULT}

This statement maps all strings sent between the server and the current client with the given mapping.
SET CHARACTER SET sets three session system variables: character_set_client and
character_set_results are set to the given character set, and character_set_connection to the
value of character_set_database. See Section 10.4, “Connection Character Sets and Collations”.

charset_name may be quoted or unquoted.

The default character set mapping can be restored by using the value DEFAULT. The default depends on
the server configuration.

Some character sets cannot be used as the client character set. Attempting to use them with SET
CHARACTER SET produces an error. See Impermissible Client Character Sets.

13.7.4.3 SET NAMES Statement

SET NAMES {'charset_name'
 [COLLATE 'collation_name'] | DEFAULT}

This statement sets the three session system variables character_set_client,
character_set_connection, and character_set_results to the given character set. Setting
character_set_connection to charset_name also sets collation_connection to the default
collation for charset_name. See Section 10.4, “Connection Character Sets and Collations”.

The optional COLLATE clause may be used to specify a collation explicitly. If given, the collation must one
of the permitted collations for charset_name.

charset_name and collation_name may be quoted or unquoted.

The default mapping can be restored by using a value of DEFAULT. The default depends on the server
configuration.

2472

SHOW Statements

Some character sets cannot be used as the client character set. Attempting to use them with SET NAMES
produces an error. See Impermissible Client Character Sets.

13.7.5 SHOW Statements

SHOW has many forms that provide information about databases, tables, columns, or status information
about the server. This section describes those following:

SHOW {BINARY | MASTER} LOGS
SHOW BINLOG EVENTS [IN 'log_name'] [FROM pos] [LIMIT [offset,] row_count]
SHOW {CHARACTER SET | CHARSET} [like_or_where]
SHOW COLLATION [like_or_where]
SHOW [FULL] COLUMNS FROM tbl_name [FROM db_name] [like_or_where]
SHOW CREATE DATABASE db_name
SHOW CREATE EVENT event_name
SHOW CREATE FUNCTION func_name
SHOW CREATE PROCEDURE proc_name
SHOW CREATE TABLE tbl_name
SHOW CREATE TRIGGER trigger_name
SHOW CREATE VIEW view_name
SHOW DATABASES [like_or_where]
SHOW ENGINE engine_name {STATUS | MUTEX}
SHOW [STORAGE] ENGINES
SHOW ERRORS [LIMIT [offset,] row_count]
SHOW EVENTS
SHOW FUNCTION CODE func_name
SHOW FUNCTION STATUS [like_or_where]
SHOW GRANTS FOR user
SHOW INDEX FROM tbl_name [FROM db_name]
SHOW MASTER STATUS
SHOW OPEN TABLES [FROM db_name] [like_or_where]
SHOW PLUGINS
SHOW PROCEDURE CODE proc_name
SHOW PROCEDURE STATUS [like_or_where]
SHOW PRIVILEGES
SHOW [FULL] PROCESSLIST
SHOW PROFILE [types] [FOR QUERY n] [OFFSET n] [LIMIT n]
SHOW PROFILES
SHOW RELAYLOG EVENTS [IN 'log_name'] [FROM pos] [LIMIT [offset,] row_count]
SHOW SLAVE HOSTS
SHOW SLAVE STATUS [FOR CHANNEL channel]
SHOW [GLOBAL | SESSION] STATUS [like_or_where]
SHOW TABLE STATUS [FROM db_name] [like_or_where]
SHOW [FULL] TABLES [FROM db_name] [like_or_where]
SHOW TRIGGERS [FROM db_name] [like_or_where]
SHOW [GLOBAL | SESSION] VARIABLES [like_or_where]
SHOW WARNINGS [LIMIT [offset,] row_count]

like_or_where: {
 LIKE 'pattern'
 | WHERE expr
}

If the syntax for a given SHOW statement includes a LIKE 'pattern' part, 'pattern' is a string that
can contain the SQL % and _ wildcard characters. The pattern is useful for restricting statement output to
matching values.

Several SHOW statements also accept a WHERE clause that provides more flexibility in specifying which
rows to display. See Section 24.8, “Extensions to SHOW Statements”.

Many MySQL APIs (such as PHP) enable you to treat the result returned from a SHOW statement as you
would a result set from a SELECT; see Chapter 27, Connectors and APIs, or your API documentation
for more information. In addition, you can work in SQL with results from queries on tables in the

2473

SHOW Statements

INFORMATION_SCHEMA database, which you cannot easily do with results from SHOW statements. See
Chapter 24, INFORMATION_SCHEMA Tables.

13.7.5.1 SHOW BINARY LOGS Statement

SHOW BINARY LOGS
SHOW MASTER LOGS

Lists the binary log files on the server. This statement is used as part of the procedure described in
Section 13.4.1.1, “PURGE BINARY LOGS Statement”, that shows how to determine which logs can be
purged. A user with the SUPER or REPLICATION CLIENT privilege may execute this statement.

mysql> SHOW BINARY LOGS;
+---------------+-----------+
| Log_name | File_size |
+---------------+-----------+
| binlog.000015 | 724935 |
| binlog.000016 | 733481 |
+---------------+-----------+

SHOW MASTER LOGS is equivalent to SHOW BINARY LOGS.

13.7.5.2 SHOW BINLOG EVENTS Statement

SHOW BINLOG EVENTS
 [IN 'log_name']
 [FROM pos]
 [LIMIT [offset,] row_count]

Shows the events in the binary log. If you do not specify 'log_name', the first binary log is displayed.
SHOW BINLOG EVENTS requires the REPLICATION SLAVE privilege.

The LIMIT clause has the same syntax as for the SELECT statement. See Section 13.2.9, “SELECT
Statement”.

Note

Issuing a SHOW BINLOG EVENTS with no LIMIT clause could start a very time-
and resource-consuming process because the server returns to the client the
complete contents of the binary log (which includes all statements executed by
the server that modify data). As an alternative to SHOW BINLOG EVENTS, use the
mysqlbinlog utility to save the binary log to a text file for later examination and
analysis. See Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”.

SHOW BINLOG EVENTS displays the following fields for each event in the binary log:

• Log_name

The name of the file that is being listed.

• Pos

The position at which the event occurs.

• Event_type

An identifier that describes the event type.

• Server_id

The server ID of the server on which the event originated.

2474

SHOW Statements

• End_log_pos

The position at which the next event begins, which is equal to Pos plus the size of the event.

• Info

More detailed information about the event type. The format of this information depends on the event
type.

Note

Some events relating to the setting of user and system variables are not included in
the output from SHOW BINLOG EVENTS. To get complete coverage of events within
a binary log, use mysqlbinlog.

Note

SHOW BINLOG EVENTS does not work with relay log files. You can use SHOW
RELAYLOG EVENTS for this purpose.

13.7.5.3 SHOW CHARACTER SET Statement

SHOW {CHARACTER SET | CHARSET}
 [LIKE 'pattern' | WHERE expr]

The SHOW CHARACTER SET statement shows all available character sets. The LIKE clause, if present,
indicates which character set names to match. The WHERE clause can be given to select rows using more
general conditions, as discussed in Section 24.8, “Extensions to SHOW Statements”. For example:

mysql> SHOW CHARACTER SET LIKE 'latin%';
+---------+-----------------------------+-------------------+--------+
| Charset | Description | Default collation | Maxlen |
+---------+-----------------------------+-------------------+--------+
latin1	cp1252 West European	latin1_swedish_ci	1
latin2	ISO 8859-2 Central European	latin2_general_ci	1
latin5	ISO 8859-9 Turkish	latin5_turkish_ci	1
latin7	ISO 8859-13 Baltic	latin7_general_ci	1
+---------+-----------------------------+-------------------+--------+

SHOW CHARACTER SET output has these columns:

• Charset

The character set name.

• Description

A description of the character set.

• Default collation

The default collation for the character set.

• Maxlen

The maximum number of bytes required to store one character.

The filename character set is for internal use only; consequently, SHOW CHARACTER SET does not
display it.

2475

SHOW Statements

Character set information is also available from the INFORMATION_SCHEMA CHARACTER_SETS table.

13.7.5.4 SHOW COLLATION Statement

SHOW COLLATION
 [LIKE 'pattern' | WHERE expr]

This statement lists collations supported by the server. By default, the output from SHOW COLLATION
includes all available collations. The LIKE clause, if present, indicates which collation names to match. The
WHERE clause can be given to select rows using more general conditions, as discussed in Section 24.8,
“Extensions to SHOW Statements”. For example:

mysql> SHOW COLLATION WHERE Charset = 'latin1';
+-------------------+---------+----+---------+----------+---------+
| Collation | Charset | Id | Default | Compiled | Sortlen |
+-------------------+---------+----+---------+----------+---------+
latin1_german1_ci	latin1	5		Yes	1
latin1_swedish_ci	latin1	8	Yes	Yes	1
latin1_danish_ci	latin1	15		Yes	1
latin1_german2_ci	latin1	31		Yes	2
latin1_bin	latin1	47		Yes	1
latin1_general_ci	latin1	48		Yes	1
latin1_general_cs	latin1	49		Yes	1
latin1_spanish_ci	latin1	94		Yes	1
+-------------------+---------+----+---------+----------+---------+

SHOW COLLATION output has these columns:

• Collation

The collation name.

• Charset

The name of the character set with which the collation is associated.

• Id

The collation ID.

• Default

Whether the collation is the default for its character set.

• Compiled

Whether the character set is compiled into the server.

• Sortlen

This is related to the amount of memory required to sort strings expressed in the character set.

To see the default collation for each character set, use the following statement. Default is a reserved
word, so to use it as an identifier, it must be quoted as such:

mysql> SHOW COLLATION WHERE `Default` = 'Yes';
+---------------------+----------+----+---------+----------+---------+
| Collation | Charset | Id | Default | Compiled | Sortlen |
+---------------------+----------+----+---------+----------+---------+
big5_chinese_ci	big5	1	Yes	Yes	1
dec8_swedish_ci	dec8	3	Yes	Yes	1
cp850_general_ci	cp850	4	Yes	Yes	1

2476

SHOW Statements

hp8_english_ci	hp8	6	Yes	Yes	1
koi8r_general_ci	koi8r	7	Yes	Yes	1
latin1_swedish_ci	latin1	8	Yes	Yes	1
...

Collation information is also available from the INFORMATION_SCHEMA COLLATIONS table. See
Section 24.3.3, “The INFORMATION_SCHEMA COLLATIONS Table”.

13.7.5.5 SHOW COLUMNS Statement

SHOW [FULL] {COLUMNS | FIELDS}
 {FROM | IN} tbl_name
 [{FROM | IN} db_name]
 [LIKE 'pattern' | WHERE expr]

SHOW COLUMNS displays information about the columns in a given table. It also works for views. SHOW
COLUMNS displays information only for those columns for which you have some privilege.

mysql> SHOW COLUMNS FROM City;
+-------------+----------+------+-----+---------+----------------+
| Field | Type | Null | Key | Default | Extra |
+-------------+----------+------+-----+---------+----------------+
ID	int(11)	NO	PRI	NULL	auto_increment
Name	char(35)	NO			
CountryCode	char(3)	NO	MUL		
District	char(20)	NO			
Population	int(11)	NO		0	
+-------------+----------+------+-----+---------+----------------+

An alternative to tbl_name FROM db_name syntax is db_name.tbl_name. These two statements are
equivalent:

SHOW COLUMNS FROM mytable FROM mydb;
SHOW COLUMNS FROM mydb.mytable;

The optional FULL keyword causes the output to include the column collation and comments, as well as
the privileges you have for each column.

The LIKE clause, if present, indicates which column names to match. The WHERE clause can be given
to select rows using more general conditions, as discussed in Section 24.8, “Extensions to SHOW
Statements”.

The data types may differ from what you expect them to be based on a CREATE TABLE statement
because MySQL sometimes changes data types when you create or alter a table. The conditions under
which this occurs are described in Section 13.1.18.6, “Silent Column Specification Changes”.

SHOW COLUMNS displays the following values for each table column:

• Field

The column name.

• Type

The column data type.

• Collation

The collation for nonbinary string columns, or NULL for other columns. This value is displayed only if you
use the FULL keyword.

• Null

2477

SHOW Statements

The column nullability. The value is YES if NULL values can be stored in the column, NO if not.

• Key

Whether the column is indexed:

• If Key is empty, the column either is not indexed or is indexed only as a secondary column in a
multiple-column, nonunique index.

• If Key is PRI, the column is a PRIMARY KEY or is one of the columns in a multiple-column PRIMARY
KEY.

• If Key is UNI, the column is the first column of a UNIQUE index. (A UNIQUE index permits multiple
NULL values, but you can tell whether the column permits NULL by checking the Null field.)

• If Key is MUL, the column is the first column of a nonunique index in which multiple occurrences of a
given value are permitted within the column.

If more than one of the Key values applies to a given column of a table, Key displays the one with the
highest priority, in the order PRI, UNI, MUL.

A UNIQUE index may be displayed as PRI if it cannot contain NULL values and there is no PRIMARY
KEY in the table. A UNIQUE index may display as MUL if several columns form a composite UNIQUE
index; although the combination of the columns is unique, each column can still hold multiple
occurrences of a given value.

• Default

The default value for the column. This is NULL if the column has an explicit default of NULL, or if the
column definition includes no DEFAULT clause.

• Extra

Any additional information that is available about a given column. The value is nonempty in these cases:

• auto_increment for columns that have the AUTO_INCREMENT attribute.

• on update CURRENT_TIMESTAMP for TIMESTAMP or DATETIME columns that have the ON UPDATE
CURRENT_TIMESTAMP attribute.

• VIRTUAL GENERATED or STORED GENERATED for generated columns.

• Privileges

The privileges you have for the column. This value is displayed only if you use the FULL keyword.

• Comment

Any comment included in the column definition. This value is displayed only if you use the FULL
keyword.

Table column information is also available from the INFORMATION_SCHEMA COLUMNS table. See
Section 24.3.5, “The INFORMATION_SCHEMA COLUMNS Table”.

You can list a table's columns with the mysqlshow db_name tbl_name command.

The DESCRIBE statement provides information similar to SHOW COLUMNS. See Section 13.8.1,
“DESCRIBE Statement”.

2478

SHOW Statements

The SHOW CREATE TABLE, SHOW TABLE STATUS, and SHOW INDEX statements also provide
information about tables. See Section 13.7.5, “SHOW Statements”.

13.7.5.6 SHOW CREATE DATABASE Statement

SHOW CREATE {DATABASE | SCHEMA} [IF NOT EXISTS] db_name

Shows the CREATE DATABASE statement that creates the named database. If the SHOW statement
includes an IF NOT EXISTS clause, the output too includes such a clause. SHOW CREATE SCHEMA is a
synonym for SHOW CREATE DATABASE.

mysql> SHOW CREATE DATABASE test\G
*************************** 1. row ***************************
 Database: test
Create Database: CREATE DATABASE `test`
 /*!40100 DEFAULT CHARACTER SET latin1 */

mysql> SHOW CREATE SCHEMA test\G
*************************** 1. row ***************************
 Database: test
Create Database: CREATE DATABASE `test`
 /*!40100 DEFAULT CHARACTER SET latin1 */

SHOW CREATE DATABASE quotes table and column names according to the value of the
sql_quote_show_create option. See Section 5.1.7, “Server System Variables”.

13.7.5.7 SHOW CREATE EVENT Statement

SHOW CREATE EVENT event_name

This statement displays the CREATE EVENT statement needed to re-create a given event. It requires the
EVENT privilege for the database from which the event is to be shown. For example (using the same event
e_daily defined and then altered in Section 13.7.5.18, “SHOW EVENTS Statement”):

mysql> SHOW CREATE EVENT myschema.e_daily\G
*************************** 1. row ***************************
 Event: e_daily
 sql_mode: ONLY_FULL_GROUP_BY,STRICT_TRANS_TABLES,
 NO_ZERO_IN_DATE,NO_ZERO_DATE,
 ERROR_FOR_DIVISION_BY_ZERO,
 NO_AUTO_CREATE_USER,NO_ENGINE_SUBSTITUTION
 time_zone: SYSTEM
 Create Event: CREATE DEFINER=`jon`@`ghidora` EVENT `e_daily`
 ON SCHEDULE EVERY 1 DAY
 STARTS CURRENT_TIMESTAMP + INTERVAL 6 HOUR
 ON COMPLETION NOT PRESERVE
 ENABLE
 COMMENT 'Saves total number of sessions then
 clears the table each day'
 DO BEGIN
 INSERT INTO site_activity.totals (time, total)
 SELECT CURRENT_TIMESTAMP, COUNT(*)
 FROM site_activity.sessions;
 DELETE FROM site_activity.sessions;
 END
character_set_client: utf8
collation_connection: utf8_general_ci
 Database Collation: latin1_swedish_ci

character_set_client is the session value of the character_set_client system variable when
the event was created. collation_connection is the session value of the collation_connection
system variable when the event was created. Database Collation is the collation of the database with
which the event is associated.

2479

SHOW Statements

The output reflects the current status of the event (ENABLE) rather than the status with which it was
created.

13.7.5.8 SHOW CREATE FUNCTION Statement

SHOW CREATE FUNCTION func_name

This statement is similar to SHOW CREATE PROCEDURE but for stored functions. See Section 13.7.5.9,
“SHOW CREATE PROCEDURE Statement”.

13.7.5.9 SHOW CREATE PROCEDURE Statement

SHOW CREATE PROCEDURE proc_name

This statement is a MySQL extension. It returns the exact string that can be used to re-create the named
stored procedure. A similar statement, SHOW CREATE FUNCTION, displays information about stored
functions (see Section 13.7.5.8, “SHOW CREATE FUNCTION Statement”).

To use either statement, you must be the user named in the routine DEFINER clause or have SELECT
access to the mysql.proc table. If you do not have privileges for the routine itself, the value displayed for
the Create Procedure or Create Function column is NULL.

mysql> SHOW CREATE PROCEDURE test.citycount\G
*************************** 1. row ***************************
 Procedure: citycount
 sql_mode: ONLY_FULL_GROUP_BY,STRICT_TRANS_TABLES,
 NO_ZERO_IN_DATE,NO_ZERO_DATE,
 ERROR_FOR_DIVISION_BY_ZERO,
 NO_AUTO_CREATE_USER,NO_ENGINE_SUBSTITUTION
 Create Procedure: CREATE DEFINER=`me`@`localhost`
 PROCEDURE `citycount`(IN country CHAR(3), OUT cities INT)
 BEGIN
 SELECT COUNT(*) INTO cities FROM world.city
 WHERE CountryCode = country;
 END
character_set_client: utf8
collation_connection: utf8_general_ci
 Database Collation: latin1_swedish_ci

mysql> SHOW CREATE FUNCTION test.hello\G
*************************** 1. row ***************************
 Function: hello
 sql_mode: ONLY_FULL_GROUP_BY,STRICT_TRANS_TABLES,
 NO_ZERO_IN_DATE,NO_ZERO_DATE,
 ERROR_FOR_DIVISION_BY_ZERO,
 NO_AUTO_CREATE_USER,NO_ENGINE_SUBSTITUTION
 Create Function: CREATE DEFINER=`me`@`localhost`
 FUNCTION `hello`(s CHAR(20))
 RETURNS char(50) CHARSET latin1
 DETERMINISTIC
 RETURN CONCAT('Hello, ',s,'!')
character_set_client: utf8
collation_connection: utf8_general_ci
 Database Collation: latin1_swedish_ci

character_set_client is the session value of the character_set_client system variable when
the routine was created. collation_connection is the session value of the collation_connection
system variable when the routine was created. Database Collation is the collation of the database
with which the routine is associated.

13.7.5.10 SHOW CREATE TABLE Statement

2480

SHOW Statements

SHOW CREATE TABLE tbl_name

Shows the CREATE TABLE statement that creates the named table. To use this statement, you must have
some privilege for the table. This statement also works with views.

mysql> SHOW CREATE TABLE t\G
*************************** 1. row ***************************
 Table: t
Create Table: CREATE TABLE `t` (
 `id` int(11) NOT NULL AUTO_INCREMENT,
 `s` char(60) DEFAULT NULL,
 PRIMARY KEY (`id`)
) ENGINE=InnoDB DEFAULT CHARSET=latin1

SHOW CREATE TABLE quotes table and column names according to the value of the
sql_quote_show_create option. See Section 5.1.7, “Server System Variables”.

When altering the storage engine of a table, table options that are not applicable to the new storage engine
are retained in the table definition to enable reverting the table with its previously defined options to the
original storage engine, if necessary. For example, when changing the storage engine from InnoDB to
MyISAM, InnoDB-specific options such as ROW_FORMAT=COMPACT are retained.

mysql> CREATE TABLE t1 (c1 INT PRIMARY KEY) ROW_FORMAT=COMPACT ENGINE=InnoDB;
mysql> ALTER TABLE t1 ENGINE=MyISAM;
mysql> SHOW CREATE TABLE t1\G
*************************** 1. row ***************************
 Table: t1
Create Table: CREATE TABLE `t1` (
 `c1` int(11) NOT NULL,
 PRIMARY KEY (`c1`)
) ENGINE=MyISAM DEFAULT CHARSET=latin1 ROW_FORMAT=COMPACT

When creating a table with strict mode disabled, the storage engine's default row format is used if the
specified row format is not supported. The actual row format of the table is reported in the Row_format
column in response to SHOW TABLE STATUS. SHOW CREATE TABLE shows the row format that was
specified in the CREATE TABLE statement.

13.7.5.11 SHOW CREATE TRIGGER Statement

SHOW CREATE TRIGGER trigger_name

This statement shows the CREATE TRIGGER statement that creates the named trigger. This statement
requires the TRIGGER privilege for the table associated with the trigger.

mysql> SHOW CREATE TRIGGER ins_sum\G
*************************** 1. row ***************************
 Trigger: ins_sum
 sql_mode: ONLY_FULL_GROUP_BY,STRICT_TRANS_TABLES,
 NO_ZERO_IN_DATE,NO_ZERO_DATE,
 ERROR_FOR_DIVISION_BY_ZERO,
 NO_AUTO_CREATE_USER,NO_ENGINE_SUBSTITUTION
SQL Original Statement: CREATE DEFINER=`me`@`localhost` TRIGGER ins_sum
 BEFORE INSERT ON account
 FOR EACH ROW SET @sum = @sum + NEW.amount
 character_set_client: utf8
 collation_connection: utf8_general_ci
 Database Collation: latin1_swedish_ci
 Created: 2018-08-08 10:10:07.90

SHOW CREATE TRIGGER output has these columns:

• Trigger: The trigger name.

2481

SHOW Statements

• sql_mode: The SQL mode in effect when the trigger executes.

• SQL Original Statement: The CREATE TRIGGER statement that defines the trigger.

• character_set_client: The session value of the character_set_client system variable when
the trigger was created.

• collation_connection: The session value of the collation_connection system variable when
the trigger was created.

• Database Collation: The collation of the database with which the trigger is associated.

• Created: The date and time when the trigger was created. This is a TIMESTAMP(2) value (with a
fractional part in hundredths of seconds) for triggers created in MySQL 5.7.2 or later, NULL for triggers
created prior to 5.7.2.

Trigger information is also available from the INFORMATION_SCHEMA TRIGGERS table. See
Section 24.3.29, “The INFORMATION_SCHEMA TRIGGERS Table”.

13.7.5.12 SHOW CREATE USER Statement

SHOW CREATE USER user

This statement shows the CREATE USER statement that creates the named user. An error occurs if the
user does not exist. The statement requires the SELECT privilege for the mysql system database, except
to display information for the current user.

To name the account, use the format described in Section 6.2.4, “Specifying Account Names”. The host
name part of the account name, if omitted, defaults to '%'. It is also possible to specify CURRENT_USER or
CURRENT_USER() to refer to the account associated with the current session.

mysql> SHOW CREATE USER 'root'@'localhost'\G
*************************** 1. row ***************************
CREATE USER for root@localhost: CREATE USER 'root'@'localhost'
IDENTIFIED WITH 'mysql_native_password'
AS '*2470C0C06DEE42FD1618BB99005ADCA2EC9D1E19'
REQUIRE NONE PASSWORD EXPIRE DEFAULT ACCOUNT UNLOCK

The output format is affected by the setting of the log_builtin_as_identified_by_password
system variable.

To display the privileges granted to an account, use the SHOW GRANTS statement. See Section 13.7.5.21,
“SHOW GRANTS Statement”.

13.7.5.13 SHOW CREATE VIEW Statement

SHOW CREATE VIEW view_name

This statement shows the CREATE VIEW statement that creates the named view.

mysql> SHOW CREATE VIEW v\G
*************************** 1. row ***************************
 View: v
 Create View: CREATE ALGORITHM=UNDEFINED
 DEFINER=`bob`@`localhost`
 SQL SECURITY DEFINER VIEW
 `v` AS select 1 AS `a`,2 AS `b`
character_set_client: utf8
collation_connection: utf8_general_ci

2482

SHOW Statements

character_set_client is the session value of the character_set_client system variable when
the view was created. collation_connection is the session value of the collation_connection
system variable when the view was created.

Use of SHOW CREATE VIEW requires the SHOW VIEW privilege, and the SELECT privilege for the view in
question.

View information is also available from the INFORMATION_SCHEMA VIEWS table. See Section 24.3.31,
“The INFORMATION_SCHEMA VIEWS Table”.

MySQL lets you use different sql_mode settings to tell the server the type of SQL syntax to support. For
example, you might use the ANSI SQL mode to ensure MySQL correctly interprets the standard SQL
concatenation operator, the double bar (||), in your queries. If you then create a view that concatenates
items, you might worry that changing the sql_mode setting to a value different from ANSI could cause
the view to become invalid. But this is not the case. No matter how you write out a view definition, MySQL
always stores it the same way, in a canonical form. Here is an example that shows how the server changes
a double bar concatenation operator to a CONCAT() function:

mysql> SET sql_mode = 'ANSI';
Query OK, 0 rows affected (0.00 sec)

mysql> CREATE VIEW test.v AS SELECT 'a' || 'b' as col1;
Query OK, 0 rows affected (0.01 sec)

mysql> SHOW CREATE VIEW test.v\G
*************************** 1. row ***************************
 View: v
 Create View: CREATE VIEW "v" AS select concat('a','b') AS "col1"
...
1 row in set (0.00 sec)

The advantage of storing a view definition in canonical form is that changes made later to the value of
sql_mode does not affect the results from the view. However an additional consequence is that comments
prior to SELECT are stripped from the definition by the server.

13.7.5.14 SHOW DATABASES Statement

SHOW {DATABASES | SCHEMAS}
 [LIKE 'pattern' | WHERE expr]

SHOW DATABASES lists the databases on the MySQL server host. SHOW SCHEMAS is a synonym for SHOW
DATABASES. The LIKE clause, if present, indicates which database names to match. The WHERE clause
can be given to select rows using more general conditions, as discussed in Section 24.8, “Extensions to
SHOW Statements”.

You see only those databases for which you have some kind of privilege, unless you have the global SHOW
DATABASES privilege. You can also get this list using the mysqlshow command.

If the server was started with the --skip-show-database option, you cannot use this statement at all
unless you have the SHOW DATABASES privilege.

MySQL implements databases as directories in the data directory, so this statement simply lists directories
in that location. However, the output may include names of directories that do not correspond to actual
databases.

Database information is also available from the INFORMATION_SCHEMA SCHEMATA table. See
Section 24.3.22, “The INFORMATION_SCHEMA SCHEMATA Table”.

2483

SHOW Statements

Caution

Because a global privilege is considered a privilege for all databases, any global
privilege enables a user to see all database names with SHOW DATABASES or by
examining the INFORMATION_SCHEMA SCHEMATA table.

13.7.5.15 SHOW ENGINE Statement

SHOW ENGINE engine_name {STATUS | MUTEX}

SHOW ENGINE displays operational information about a storage engine. It requires the PROCESS privilege.
The statement has these variants:

SHOW ENGINE INNODB STATUS
SHOW ENGINE INNODB MUTEX
SHOW ENGINE PERFORMANCE_SCHEMA STATUS

SHOW ENGINE INNODB STATUS displays extensive information from the standard InnoDB Monitor about
the state of the InnoDB storage engine. For information about the standard monitor and other InnoDB
Monitors that provide information about InnoDB processing, see Section 14.18, “InnoDB Monitors”.

SHOW ENGINE INNODB MUTEX displays InnoDB mutex and rw-lock statistics.

Note

InnoDB mutexes and rwlocks can also be monitored using Performance Schema
tables. See Section 14.17.2, “Monitoring InnoDB Mutex Waits Using Performance
Schema”.

SHOW ENGINE INNODB MUTEX output was removed in MySQL 5.7.2. It was revised and reintroduced in
MySQL 5.7.8.

In MySQL 5.7.8, mutex statistics collection is configured dynamically using the following options:

• To enable the collection of mutex statistics, run:

SET GLOBAL innodb_monitor_enable='latch';

• To reset mutex statistics, run:

SET GLOBAL innodb_monitor_reset='latch';

• To disable the collection of mutex statistics, run:

SET GLOBAL innodb_monitor_disable='latch';

Collection of mutex statistics for SHOW ENGINE INNODB MUTEX can also be enabled by setting
innodb_monitor_enable='all', or disabled by setting innodb_monitor_disable='all'.

SHOW ENGINE INNODB MUTEX output has these columns:

• Type

Always InnoDB.

• Name

Prior to MySQL 5.7.8, the Name field reports the source file where the mutex is implemented, and the
line number in the file where the mutex is created. The line number is specific to your version of MySQL.

2484

SHOW Statements

As of MySQL 5.7.8, only the mutex name is reported. File name and line number are still reported for
rwlocks.

• Status

The mutex status.

Prior to MySQL 5.7.8, the Status field displays several values if WITH_DEBUG was defined at MySQL
compilation time. If WITH_DEBUG was not defined, the statement displays only the os_waits value.
In the latter case (without WITH_DEBUG), the information on which the output is based is insufficient to
distinguish regular mutexes and mutexes that protect rwlocks (which permit multiple readers or a single
writer). Consequently, the output may appear to contain multiple rows for the same mutex. Pre-MySQL
5.7.8 Status field values include:

• count indicates how many times the mutex was requested.

• spin_waits indicates how many times the spinlock had to run.

• spin_rounds indicates the number of spinlock rounds. (spin_rounds divided by spin_waits
provides the average round count.)

• os_waits indicates the number of operating system waits. This occurs when the spinlock did not
work (the mutex was not locked during the spinlock and it was necessary to yield to the operating
system and wait).

• os_yields indicates the number of times a thread trying to lock a mutex gave up its timeslice and
yielded to the operating system (on the presumption that permitting other threads to run frees the
mutex so that it can be locked).

• os_wait_times indicates the amount of time (in ms) spent in operating system waits. In MySQL 5.7
timing is disabled and this value is always 0.

As of MySQL 5.7.8, the Status field reports the number of spins, waits, and calls. Statistics for low-level
operating system mutexes, which are implemented outside of InnoDB, are not reported.

• spins indicates the number of spins.

• waits indicates the number of mutex waits.

• calls indicates how many times the mutex was requested.

SHOW ENGINE INNODB MUTEX does not list mutexes and rw-locks for each buffer pool block, as the
amount of output would be overwhelming on systems with a large buffer pool. SHOW ENGINE INNODB
MUTEX does, however, print aggregate BUF_BLOCK_MUTEX spin, wait, and call values for buffer pool
block mutexes and rw-locks. SHOW ENGINE INNODB MUTEX also does not list any mutexes or rw-locks
that have never been waited on (os_waits=0). Thus, SHOW ENGINE INNODB MUTEX only displays
information about mutexes and rw-locks outside of the buffer pool that have caused at least one OS-level
wait.

Use SHOW ENGINE PERFORMANCE_SCHEMA STATUS to inspect the internal operation of the Performance
Schema code:

mysql> SHOW ENGINE PERFORMANCE_SCHEMA STATUS\G
...
*************************** 3. row ***************************
 Type: performance_schema
 Name: events_waits_history.size
Status: 76

2485

SHOW Statements

*************************** 4. row ***************************
 Type: performance_schema
 Name: events_waits_history.count
Status: 10000
*************************** 5. row ***************************
 Type: performance_schema
 Name: events_waits_history.memory
Status: 760000
...
*************************** 57. row ***************************
 Type: performance_schema
 Name: performance_schema.memory
Status: 26459600
...

This statement is intended to help the DBA understand the effects that different Performance Schema
options have on memory requirements.

Name values consist of two parts, which name an internal buffer and a buffer attribute, respectively.
Interpret buffer names as follows:

• An internal buffer that is not exposed as a table is named within parentheses. Examples:
(pfs_cond_class).size, (pfs_mutex_class).memory.

• An internal buffer that is exposed as a table in the performance_schema database is named after the
table, without parentheses. Examples: events_waits_history.size, mutex_instances.count.

• A value that applies to the Performance Schema as a whole begins with performance_schema.
Example: performance_schema.memory.

Buffer attributes have these meanings:

• size is the size of the internal record used by the implementation, such as the size of a row in a table.
size values cannot be changed.

• count is the number of internal records, such as the number of rows in a table. count values can be
changed using Performance Schema configuration options.

• For a table, tbl_name.memory is the product of size and count. For the Performance Schema as a
whole, performance_schema.memory is the sum of all the memory used (the sum of all other memory
values).

In some cases, there is a direct relationship between a Performance Schema configuration
parameter and a SHOW ENGINE value. For example, events_waits_history_long.count
corresponds to performance_schema_events_waits_history_long_size. In other cases,
the relationship is more complex. For example, events_waits_history.count corresponds to
performance_schema_events_waits_history_size (the number of rows per thread) multiplied by
performance_schema_max_thread_instances (the number of threads).

SHOW ENGINE NDB STATUS. If the server has the NDB storage engine enabled, SHOW ENGINE
NDB STATUS displays cluster status information such as the number of connected data nodes, the cluster
connectstring, and cluster binary log epochs, as well as counts of various Cluster API objects created by
the MySQL Server when connected to the cluster. Sample output from this statement is shown here:

mysql> SHOW ENGINE NDB STATUS;
+------------+-----------------------+--+
| Type | Name | Status |
+------------+-----------------------+--+
| ndbcluster | connection | cluster_node_id=7,
 connected_host=198.51.100.103, connected_port=1186, number_of_data_nodes=4,
 number_of_ready_data_nodes=3, connect_count=0 |

2486

SHOW Statements

ndbcluster	NdbTransaction	created=6, free=0, sizeof=212
ndbcluster	NdbOperation	created=8, free=8, sizeof=660
ndbcluster	NdbIndexScanOperation	created=1, free=1, sizeof=744
ndbcluster	NdbIndexOperation	created=0, free=0, sizeof=664
ndbcluster	NdbRecAttr	created=1285, free=1285, sizeof=60
ndbcluster	NdbApiSignal	created=16, free=16, sizeof=136
ndbcluster	NdbLabel	created=0, free=0, sizeof=196
ndbcluster	NdbBranch	created=0, free=0, sizeof=24
ndbcluster	NdbSubroutine	created=0, free=0, sizeof=68
ndbcluster	NdbCall	created=0, free=0, sizeof=16
ndbcluster	NdbBlob	created=1, free=1, sizeof=264
ndbcluster	NdbReceiver	created=4, free=0, sizeof=68
ndbcluster	binlog	latest_epoch=155467, latest_trans_epoch=148126,
 latest_received_binlog_epoch=0, latest_handled_binlog_epoch=0,
 latest_applied_binlog_epoch=0 |
+------------+-----------------------+--+

The Status column in each of these rows provides information about the MySQL server's connection to
the cluster and about the cluster binary log's status, respectively. The Status information is in the form of
comma-delimited set of name/value pairs.

The connection row's Status column contains the name/value pairs described in the following table.

Name Value

cluster_node_id The node ID of the MySQL server in the cluster

connected_host The host name or IP address of the cluster
management server to which the MySQL server is
connected

connected_port The port used by the MySQL server to connect to
the management server (connected_host)

number_of_data_nodes The number of data nodes configured for the cluster
(that is, the number of [ndbd] sections in the
cluster config.ini file)

number_of_ready_data_nodes The number of data nodes in the cluster that are
actually running

connect_count The number of times this mysqld has connected or
reconnected to cluster data nodes

The binlog row's Status column contains information relating to NDB Cluster Replication. The name/
value pairs it contains are described in the following table.

Name Value

latest_epoch The most recent epoch most recently run on this
MySQL server (that is, the sequence number of the
most recent transaction run on the server)

latest_trans_epoch The most recent epoch processed by the cluster's
data nodes

latest_received_binlog_epoch The most recent epoch received by the binary log
thread

latest_handled_binlog_epoch The most recent epoch processed by the binary log
thread (for writing to the binary log)

latest_applied_binlog_epoch The most recent epoch actually written to the binary
log

2487

SHOW Statements

See Section 21.7, “NDB Cluster Replication”, for more information.

The remaining rows from the output of SHOW ENGINE NDB STATUS which are most likely to prove useful
in monitoring the cluster are listed here by Name:

• NdbTransaction: The number and size of NdbTransaction objects that have been created. An
NdbTransaction is created each time a table schema operation (such as CREATE TABLE or ALTER
TABLE) is performed on an NDB table.

• NdbOperation: The number and size of NdbOperation objects that have been created.

• NdbIndexScanOperation: The number and size of NdbIndexScanOperation objects that have
been created.

• NdbIndexOperation: The number and size of NdbIndexOperation objects that have been created.

• NdbRecAttr: The number and size of NdbRecAttr objects that have been created. In general, one of
these is created each time a data manipulation statement is performed by an SQL node.

• NdbBlob: The number and size of NdbBlob objects that have been created. An NdbBlob is created for
each new operation involving a BLOB column in an NDB table.

• NdbReceiver: The number and size of any NdbReceiver object that have been created. The number
in the created column is the same as the number of data nodes in the cluster to which the MySQL
server has connected.

Note

SHOW ENGINE NDB STATUS returns an empty result if no operations involving
NDB tables have been performed during the current session by the MySQL client
accessing the SQL node on which this statement is run.

13.7.5.16 SHOW ENGINES Statement

SHOW [STORAGE] ENGINES

SHOW ENGINES displays status information about the server's storage engines. This is particularly useful
for checking whether a storage engine is supported, or to see what the default engine is.

For information about MySQL storage engines, see Chapter 14, The InnoDB Storage Engine, and
Chapter 15, Alternative Storage Engines.

mysql> SHOW ENGINES\G
*************************** 1. row ***************************
 Engine: InnoDB
 Support: DEFAULT
 Comment: Supports transactions, row-level locking, and foreign keys
Transactions: YES
 XA: YES
 Savepoints: YES
*************************** 2. row ***************************
 Engine: MRG_MYISAM
 Support: YES
 Comment: Collection of identical MyISAM tables
Transactions: NO
 XA: NO
 Savepoints: NO
*************************** 3. row ***************************
 Engine: MEMORY
 Support: YES

2488

SHOW Statements

 Comment: Hash based, stored in memory, useful for temporary tables
Transactions: NO
 XA: NO
 Savepoints: NO
*************************** 4. row ***************************
 Engine: BLACKHOLE
 Support: YES
 Comment: /dev/null storage engine (anything you write to it disappears)
Transactions: NO
 XA: NO
 Savepoints: NO
*************************** 5. row ***************************
 Engine: MyISAM
 Support: YES
 Comment: MyISAM storage engine
Transactions: NO
 XA: NO
 Savepoints: NO
*************************** 6. row ***************************
 Engine: CSV
 Support: YES
 Comment: CSV storage engine
Transactions: NO
 XA: NO
 Savepoints: NO
*************************** 7. row ***************************
 Engine: ARCHIVE
 Support: YES
 Comment: Archive storage engine
Transactions: NO
 XA: NO
 Savepoints: NO
*************************** 8. row ***************************
 Engine: PERFORMANCE_SCHEMA
 Support: YES
 Comment: Performance Schema
Transactions: NO
 XA: NO
 Savepoints: NO
*************************** 9. row ***************************
 Engine: FEDERATED
 Support: YES
 Comment: Federated MySQL storage engine
Transactions: NO
 XA: NO
 Savepoints: NO

The output from SHOW ENGINES may vary according to the MySQL version used and other factors.

SHOW ENGINES output has these columns:

• Engine

The name of the storage engine.

• Support

The server's level of support for the storage engine, as shown in the following table.

Value Meaning

YES The engine is supported and is active

DEFAULT Like YES, plus this is the default engine

NO The engine is not supported

2489

SHOW Statements

Value Meaning

DISABLED The engine is supported but has been disabled

A value of NO means that the server was compiled without support for the engine, so it cannot be
enabled at runtime.

A value of DISABLED occurs either because the server was started with an option that disables the
engine, or because not all options required to enable it were given. In the latter case, the error log should
contain a reason indicating why the option is disabled. See Section 5.4.2, “The Error Log”.

You might also see DISABLED for a storage engine if the server was compiled to support it, but was
started with a --skip-engine_name option. For the NDB storage engine, DISABLED means the server
was compiled with support for NDB Cluster, but was not started with the --ndbcluster option.

All MySQL servers support MyISAM tables. It is not possible to disable MyISAM.

• Comment

A brief description of the storage engine.

• Transactions

Whether the storage engine supports transactions.

• XA

Whether the storage engine supports XA transactions.

• Savepoints

Whether the storage engine supports savepoints.

Storage engine information is also available from the INFORMATION_SCHEMA ENGINES table. See
Section 24.3.7, “The INFORMATION_SCHEMA ENGINES Table”.

13.7.5.17 SHOW ERRORS Statement

SHOW ERRORS [LIMIT [offset,] row_count]
SHOW COUNT(*) ERRORS

SHOW ERRORS is a diagnostic statement that is similar to SHOW WARNINGS, except that it displays
information only for errors, rather than for errors, warnings, and notes.

The LIMIT clause has the same syntax as for the SELECT statement. See Section 13.2.9, “SELECT
Statement”.

The SHOW COUNT(*) ERRORS statement displays the number of errors. You can also retrieve this number
from the error_count variable:

SHOW COUNT(*) ERRORS;
SELECT @@error_count;

SHOW ERRORS and error_count apply only to errors, not warnings or notes. In other respects, they
are similar to SHOW WARNINGS and warning_count. In particular, SHOW ERRORS cannot display
information for more than max_error_count messages, and error_count can exceed the value of
max_error_count if the number of errors exceeds max_error_count.

For more information, see Section 13.7.5.40, “SHOW WARNINGS Statement”.

2490

SHOW Statements

13.7.5.18 SHOW EVENTS Statement

SHOW EVENTS
 [{FROM | IN} schema_name]
 [LIKE 'pattern' | WHERE expr]

This statement displays information about Event Manager events, which are discussed in Section 23.4,
“Using the Event Scheduler”. It requires the EVENT privilege for the database from which the events are to
be shown.

In its simplest form, SHOW EVENTS lists all of the events in the current schema:

mysql> SELECT CURRENT_USER(), SCHEMA();
+----------------+----------+
| CURRENT_USER() | SCHEMA() |
+----------------+----------+
| jon@ghidora | myschema |
+----------------+----------+
1 row in set (0.00 sec)

mysql> SHOW EVENTS\G
*************************** 1. row ***************************
 Db: myschema
 Name: e_daily
 Definer: jon@ghidora
 Time zone: SYSTEM
 Type: RECURRING
 Execute at: NULL
 Interval value: 1
 Interval field: DAY
 Starts: 2018-08-08 11:06:34
 Ends: NULL
 Status: ENABLED
 Originator: 1
character_set_client: utf8
collation_connection: utf8_general_ci
 Database Collation: latin1_swedish_ci

To see events for a specific schema, use the FROM clause. For example, to see events for the test
schema, use the following statement:

SHOW EVENTS FROM test;

The LIKE clause, if present, indicates which event names to match. The WHERE clause can be given
to select rows using more general conditions, as discussed in Section 24.8, “Extensions to SHOW
Statements”.

SHOW EVENTS output has these columns:

• Db

The name of the schema (database) to which the event belongs.

• Name

The name of the event.

• Definer

The account of the user who created the event, in 'user_name'@'host_name' format.

• Time zone

2491

SHOW Statements

The event time zone, which is the time zone used for scheduling the event and that is in effect within the
event as it executes. The default value is SYSTEM.

• Type

The event repetition type, either ONE TIME (transient) or RECURRING (repeating).

• Execute At

For a one-time event, this is the DATETIME value specified in the AT clause of the CREATE EVENT
statement used to create the event, or of the last ALTER EVENT statement that modified the event. The
value shown in this column reflects the addition or subtraction of any INTERVAL value included in the
event's AT clause. For example, if an event is created using ON SCHEDULE AT CURRENT_TIMESTAMP
+ '1:6' DAY_HOUR, and the event was created at 2018-02-09 14:05:30, the value shown in this
column would be '2018-02-10 20:05:30'. If the event's timing is determined by an EVERY clause
instead of an AT clause (that is, if the event is recurring), the value of this column is NULL.

• Interval Value

For a recurring event, the number of intervals to wait between event executions. For a transient event,
the value of this column is always NULL.

• Interval Field

The time units used for the interval which a recurring event waits before repeating. For a transient event,
the value of this column is always NULL.

• Starts

The start date and time for a recurring event. This is displayed as a DATETIME value, and is NULL if
no start date and time are defined for the event. For a transient event, this column is always NULL. For
a recurring event whose definition includes a STARTS clause, this column contains the corresponding
DATETIME value. As with the Execute At column, this value resolves any expressions used. If there is
no STARTS clause affecting the timing of the event, this column is NULL

• Ends

For a recurring event whose definition includes a ENDS clause, this column contains the corresponding
DATETIME value. As with the Execute At column, this value resolves any expressions used. If there is
no ENDS clause affecting the timing of the event, this column is NULL.

• Status

The event status. One of ENABLED, DISABLED, or SLAVESIDE_DISABLED. SLAVESIDE_DISABLED
indicates that the creation of the event occurred on another MySQL server acting as a replication source
and replicated to the current MySQL server which is acting as a replica, but the event is not presently
being executed on the replica. For more information, see Section 16.4.1.16, “Replication of Invoked
Features”. information.

• Originator

The server ID of the MySQL server on which the event was created; used in replication. This value may
be updated by ALTER EVENT to the server ID of the server on which that statement occurs, if executed
on a source server. The default value is 0.

• character_set_client

2492

SHOW Statements

The session value of the character_set_client system variable when the event was created.

• collation_connection

The session value of the collation_connection system variable when the event was created.

• Database Collation

The collation of the database with which the event is associated.

For more information about SLAVESIDE_DISABLED and the Originator column, see Section 16.4.1.16,
“Replication of Invoked Features”.

Times displayed by SHOW EVENTS are given in the event time zone, as discussed in Section 23.4.4, “Event
Metadata”.

Event information is also available from the INFORMATION_SCHEMA EVENTS table. See Section 24.3.8,
“The INFORMATION_SCHEMA EVENTS Table”.

The event action statement is not shown in the output of SHOW EVENTS. Use SHOW CREATE EVENT or the
INFORMATION_SCHEMA EVENTS table.

13.7.5.19 SHOW FUNCTION CODE Statement

SHOW FUNCTION CODE func_name

This statement is similar to SHOW PROCEDURE CODE but for stored functions. See Section 13.7.5.27,
“SHOW PROCEDURE CODE Statement”.

13.7.5.20 SHOW FUNCTION STATUS Statement

SHOW FUNCTION STATUS
 [LIKE 'pattern' | WHERE expr]

This statement is similar to SHOW PROCEDURE STATUS but for stored functions. See Section 13.7.5.28,
“SHOW PROCEDURE STATUS Statement”.

13.7.5.21 SHOW GRANTS Statement

SHOW GRANTS [FOR user]

This statement displays the privileges that are assigned to a MySQL user account, in the form of GRANT
statements that must be executed to duplicate the privilege assignments.

Note

To display nonprivilege information for MySQL accounts, use the SHOW CREATE
USER statement. See Section 13.7.5.12, “SHOW CREATE USER Statement”.

SHOW GRANTS requires the SELECT privilege for the mysql system database, except to display privileges
for the current user.

To name the account for SHOW GRANTS, use the same format as for the GRANT statement (for example,
'jeffrey'@'localhost'):

mysql> SHOW GRANTS FOR 'jeffrey'@'localhost';
+--+
| Grants for jeffrey@localhost |
+--+

2493

SHOW Statements

| GRANT USAGE ON *.* TO `jeffrey`@`localhost` |
| GRANT SELECT, INSERT, UPDATE ON `db1`.* TO `jeffrey`@`localhost` |
+--+

The host part, if omitted, defaults to '%'. For additional information about specifying account names, see
Section 6.2.4, “Specifying Account Names”.

To display the privileges granted to the current user (the account you are using to connect to the server),
you can use any of the following statements:

SHOW GRANTS;
SHOW GRANTS FOR CURRENT_USER;
SHOW GRANTS FOR CURRENT_USER();

If SHOW GRANTS FOR CURRENT_USER (or any equivalent syntax) is used in definer context, such as
within a stored procedure that executes with definer rather than invoker privileges, the grants displayed are
those of the definer and not the invoker.

SHOW GRANTS does not display privileges that are available to the named account but are granted to a
different account. For example, if an anonymous account exists, the named account might be able to use
its privileges, but SHOW GRANTS does not display them.

SHOW GRANTS output does not include IDENTIFIED BY PASSWORD clauses. Use the SHOW CREATE
USER statement instead. See Section 13.7.5.12, “SHOW CREATE USER Statement”.

13.7.5.22 SHOW INDEX Statement

SHOW {INDEX | INDEXES | KEYS}
 {FROM | IN} tbl_name
 [{FROM | IN} db_name]
 [WHERE expr]

SHOW INDEX returns table index information. The format resembles that of the SQLStatistics call in
ODBC. This statement requires some privilege for any column in the table.

mysql> SHOW INDEX FROM City\G
*************************** 1. row ***************************
 Table: city
 Non_unique: 0
 Key_name: PRIMARY
 Seq_in_index: 1
 Column_name: ID
 Collation: A
 Cardinality: 4188
 Sub_part: NULL
 Packed: NULL
 Null:
 Index_type: BTREE
 Comment:
Index_comment:
*************************** 2. row ***************************
 Table: city
 Non_unique: 1
 Key_name: CountryCode
 Seq_in_index: 1
 Column_name: CountryCode
 Collation: A
 Cardinality: 232
 Sub_part: NULL
 Packed: NULL
 Null:
 Index_type: BTREE
 Comment:

2494

SHOW Statements

Index_comment:

An alternative to tbl_name FROM db_name syntax is db_name.tbl_name. These two statements are
equivalent:

SHOW INDEX FROM mytable FROM mydb;
SHOW INDEX FROM mydb.mytable;

The WHERE clause can be given to select rows using more general conditions, as discussed in
Section 24.8, “Extensions to SHOW Statements”.

SHOW INDEX returns the following fields:

• Table

The name of the table.

• Non_unique

0 if the index cannot contain duplicates, 1 if it can.

• Key_name

The name of the index. If the index is the primary key, the name is always PRIMARY.

• Seq_in_index

The column sequence number in the index, starting with 1.

• Column_name

The name of the column.

• Collation

How the column is sorted in the index. This can have values A (ascending) or NULL (not sorted).

• Cardinality

An estimate of the number of unique values in the index. To update this number, run ANALYZE TABLE
or (for MyISAM tables) myisamchk -a.

Cardinality is counted based on statistics stored as integers, so the value is not necessarily exact
even for small tables. The higher the cardinality, the greater the chance that MySQL uses the index
when doing joins.

• Sub_part

The index prefix. That is, the number of indexed characters if the column is only partly indexed, NULL if
the entire column is indexed.

Note

Prefix limits are measured in bytes. However, prefix lengths for index
specifications in CREATE TABLE, ALTER TABLE, and CREATE INDEX
statements are interpreted as number of characters for nonbinary string types
(CHAR, VARCHAR, TEXT) and number of bytes for binary string types (BINARY,
VARBINARY, BLOB). Take this into account when specifying a prefix length for a
nonbinary string column that uses a multibyte character set.

2495

SHOW Statements

For additional information about index prefixes, see Section 8.3.4, “Column Indexes”, and
Section 13.1.14, “CREATE INDEX Statement”.

• Packed

Indicates how the key is packed. NULL if it is not.

• Null

Contains YES if the column may contain NULL values and '' if not.

• Index_type

The index method used (BTREE, FULLTEXT, HASH, RTREE).

• Comment

Information about the index not described in its own column, such as disabled if the index is disabled.

• Index_comment

Any comment provided for the index with a COMMENT attribute when the index was created.

Information about table indexes is also available from the INFORMATION_SCHEMA STATISTICS table. See
Section 24.3.24, “The INFORMATION_SCHEMA STATISTICS Table”.

You can list a table's indexes with the mysqlshow -k db_name tbl_name command.

13.7.5.23 SHOW MASTER STATUS Statement

SHOW MASTER STATUS

This statement provides status information about the binary log files of the source. It requires either the
SUPER or REPLICATION CLIENT privilege.

Example:

mysql> SHOW MASTER STATUS\G
*************************** 1. row ***************************
 File: source-bin.000002
 Position: 1307
 Binlog_Do_DB: test
 Binlog_Ignore_DB: manual, mysql
Executed_Gtid_Set: 3E11FA47-71CA-11E1-9E33-C80AA9429562:1-5
1 row in set (0.00 sec)

When global transaction IDs are in use, Executed_Gtid_Set shows the set of GTIDs for transactions
that have been executed on the source. This is the same as the value for the gtid_executed system
variable on this server, as well as the value for Executed_Gtid_Set in the output of SHOW SLAVE
STATUS on this server.

13.7.5.24 SHOW OPEN TABLES Statement

SHOW OPEN TABLES
 [{FROM | IN} db_name]
 [LIKE 'pattern' | WHERE expr]

SHOW OPEN TABLES lists the non-TEMPORARY tables that are currently open in the table cache. See
Section 8.4.3.1, “How MySQL Opens and Closes Tables”. The FROM clause, if present, restricts the
tables shown to those present in the db_name database. The LIKE clause, if present, indicates which

2496

SHOW Statements

table names to match. The WHERE clause can be given to select rows using more general conditions, as
discussed in Section 24.8, “Extensions to SHOW Statements”.

SHOW OPEN TABLES output has these columns:

• Database

The database containing the table.

• Table

The table name.

• In_use

The number of table locks or lock requests there are for the table. For example, if one client acquires
a lock for a table using LOCK TABLE t1 WRITE, In_use is 1. If another client issues LOCK TABLE
t1 WRITE while the table remains locked, the client blocks waiting for the lock, but the lock request
causes In_use to be 2. If the count is zero, the table is open but not currently being used. In_use is
also increased by the HANDLER ... OPEN statement and decreased by HANDLER ... CLOSE.

• Name_locked

Whether the table name is locked. Name locking is used for operations such as dropping or renaming
tables.

If you have no privileges for a table, it does not show up in the output from SHOW OPEN TABLES.

13.7.5.25 SHOW PLUGINS Statement

SHOW PLUGINS

SHOW PLUGINS displays information about server plugins.

Example of SHOW PLUGINS output:

mysql> SHOW PLUGINS\G
*************************** 1. row ***************************
 Name: binlog
 Status: ACTIVE
 Type: STORAGE ENGINE
Library: NULL
License: GPL
*************************** 2. row ***************************
 Name: CSV
 Status: ACTIVE
 Type: STORAGE ENGINE
Library: NULL
License: GPL
*************************** 3. row ***************************
 Name: MEMORY
 Status: ACTIVE
 Type: STORAGE ENGINE
Library: NULL
License: GPL
*************************** 4. row ***************************
 Name: MyISAM
 Status: ACTIVE
 Type: STORAGE ENGINE
Library: NULL
License: GPL
...

2497

SHOW Statements

SHOW PLUGINS output has these columns:

• Name

The name used to refer to the plugin in statements such as INSTALL PLUGIN and UNINSTALL
PLUGIN.

• Status

The plugin status, one of ACTIVE, INACTIVE, DISABLED, or DELETED.

• Type

The type of plugin, such as STORAGE ENGINE, INFORMATION_SCHEMA, or AUTHENTICATION.

• Library

The name of the plugin shared library file. This is the name used to refer to the plugin file in statements
such as INSTALL PLUGIN and UNINSTALL PLUGIN. This file is located in the directory named by
the plugin_dir system variable. If the library name is NULL, the plugin is compiled in and cannot be
uninstalled with UNINSTALL PLUGIN.

• License

How the plugin is licensed (for example, GPL).

For plugins installed with INSTALL PLUGIN, the Name and Library values are also registered in the
mysql.plugin system table.

For information about plugin data structures that form the basis of the information displayed by SHOW
PLUGINS, see The MySQL Plugin API.

Plugin information is also available from the INFORMATION_SCHEMA .PLUGINS table. See
Section 24.3.17, “The INFORMATION_SCHEMA PLUGINS Table”.

13.7.5.26 SHOW PRIVILEGES Statement

SHOW PRIVILEGES

SHOW PRIVILEGES shows the list of system privileges that the MySQL server supports. The exact list of
privileges depends on the version of your server.

mysql> SHOW PRIVILEGES\G
*************************** 1. row ***************************
Privilege: Alter
 Context: Tables
 Comment: To alter the table
*************************** 2. row ***************************
Privilege: Alter routine
 Context: Functions,Procedures
 Comment: To alter or drop stored functions/procedures
*************************** 3. row ***************************
Privilege: Create
 Context: Databases,Tables,Indexes
 Comment: To create new databases and tables
*************************** 4. row ***************************
Privilege: Create routine
 Context: Databases
 Comment: To use CREATE FUNCTION/PROCEDURE
*************************** 5. row ***************************
Privilege: Create temporary tables
 Context: Databases

2498

https://dev.mysql.com/doc/extending-mysql/5.7/en/plugin-api.html

SHOW Statements

 Comment: To use CREATE TEMPORARY TABLE
...

Privileges belonging to a specific user are displayed by the SHOW GRANTS statement. See
Section 13.7.5.21, “SHOW GRANTS Statement”, for more information.

13.7.5.27 SHOW PROCEDURE CODE Statement

SHOW PROCEDURE CODE proc_name

This statement is a MySQL extension that is available only for servers that have been built with
debugging support. It displays a representation of the internal implementation of the named stored
procedure. A similar statement, SHOW FUNCTION CODE, displays information about stored functions (see
Section 13.7.5.19, “SHOW FUNCTION CODE Statement”).

To use either statement, you must be the owner of the routine or have SELECT access to the mysql.proc
table.

If the named routine is available, each statement produces a result set. Each row in the result set
corresponds to one “instruction” in the routine. The first column is Pos, which is an ordinal number
beginning with 0. The second column is Instruction, which contains an SQL statement (usually
changed from the original source), or a directive which has meaning only to the stored-routine handler.

mysql> DELIMITER //
mysql> CREATE PROCEDURE p1 ()
 BEGIN
 DECLARE fanta INT DEFAULT 55;
 DROP TABLE t2;
 LOOP
 INSERT INTO t3 VALUES (fanta);
 END LOOP;
 END//
Query OK, 0 rows affected (0.01 sec)

mysql> SHOW PROCEDURE CODE p1//
+-----+--+
| Pos | Instruction |
+-----+--+
0	set fanta@0 55
1	stmt 9 "DROP TABLE t2"
2	stmt 5 "INSERT INTO t3 VALUES (fanta)"
3	jump 2
+-----+--+
4 rows in set (0.00 sec)

mysql> CREATE FUNCTION test.hello (s CHAR(20))
 RETURNS CHAR(50) DETERMINISTIC
 RETURN CONCAT('Hello, ',s,'!');
Query OK, 0 rows affected (0.00 sec)

mysql> SHOW FUNCTION CODE test.hello;
+-----+---------------------------------------+
| Pos | Instruction |
+-----+---------------------------------------+
| 0 | freturn 254 concat('Hello, ',s@0,'!') |
+-----+---------------------------------------+
1 row in set (0.00 sec)

In this example, the nonexecutable BEGIN and END statements have disappeared, and for the DECLARE
variable_name statement, only the executable part appears (the part where the default is assigned). For
each statement that is taken from source, there is a code word stmt followed by a type (9 means DROP, 5
means INSERT, and so on). The final row contains an instruction jump 2, meaning GOTO instruction
#2.

2499

SHOW Statements

13.7.5.28 SHOW PROCEDURE STATUS Statement

SHOW PROCEDURE STATUS
 [LIKE 'pattern' | WHERE expr]

This statement is a MySQL extension. It returns characteristics of a stored procedure, such as the
database, name, type, creator, creation and modification dates, and character set information. A similar
statement, SHOW FUNCTION STATUS, displays information about stored functions (see Section 13.7.5.20,
“SHOW FUNCTION STATUS Statement”).

To use either statement, you must be the owner of the routine or have SELECT access to the mysql.proc
table.

The LIKE clause, if present, indicates which procedure or function names to match. The WHERE clause can
be given to select rows using more general conditions, as discussed in Section 24.8, “Extensions to SHOW
Statements”.

mysql> SHOW PROCEDURE STATUS LIKE 'sp1'\G
*************************** 1. row ***************************
 Db: test
 Name: sp1
 Type: PROCEDURE
 Definer: testuser@localhost
 Modified: 2018-08-08 13:54:11
 Created: 2018-08-08 13:54:11
 Security_type: DEFINER
 Comment:
character_set_client: utf8
collation_connection: utf8_general_ci
 Database Collation: latin1_swedish_ci

mysql> SHOW FUNCTION STATUS LIKE 'hello'\G
*************************** 1. row ***************************
 Db: test
 Name: hello
 Type: FUNCTION
 Definer: testuser@localhost
 Modified: 2020-03-10 11:09:33
 Created: 2020-03-10 11:09:33
 Security_type: DEFINER
 Comment:
character_set_client: utf8
collation_connection: utf8_general_ci
 Database Collation: latin1_swedish_ci

character_set_client is the session value of the character_set_client system variable when
the routine was created. collation_connection is the session value of the collation_connection
system variable when the routine was created. Database Collation is the collation of the database
with which the routine is associated.

Stored routine information is also available from the INFORMATION_SCHEMA PARAMETERS and ROUTINES
tables. See Section 24.3.15, “The INFORMATION_SCHEMA PARAMETERS Table”, and Section 24.3.21,
“The INFORMATION_SCHEMA ROUTINES Table”.

13.7.5.29 SHOW PROCESSLIST Statement

SHOW [FULL] PROCESSLIST

The MySQL process list indicates the operations currently being performed by the set of threads executing
within the server. The SHOW PROCESSLIST statement is one source of process information. For a
comparison of this statement with other sources, see Sources of Process Information.

2500

SHOW Statements

If you have the PROCESS privilege, you can see all threads, even those belonging to other users. Otherwise
(without the PROCESS privilege), nonanonymous users have access to information about their own threads
but not threads for other users, and anonymous users have no access to thread information.

Without the FULL keyword, SHOW PROCESSLIST displays only the first 100 characters of each statement
in the Info field.

The SHOW PROCESSLIST statement is very useful if you get the “too many connections” error message
and want to find out what is going on. MySQL reserves one extra connection to be used by accounts that
have the SUPER privilege, to ensure that administrators should always be able to connect and check the
system (assuming that you are not giving this privilege to all your users).

Threads can be killed with the KILL statement. See Section 13.7.6.4, “KILL Statement”.

Example of SHOW PROCESSLIST output:

mysql> SHOW FULL PROCESSLIST\G
*************************** 1. row ***************************
 Id: 1
 User: system user
 Host:
 db: NULL
Command: Connect
 Time: 1030455
 State: Waiting for master to send event
 Info: NULL
*************************** 2. row ***************************
 Id: 2
 User: system user
 Host:
 db: NULL
Command: Connect
 Time: 1004
 State: Has read all relay log; waiting for the slave
 I/O thread to update it
 Info: NULL
*************************** 3. row ***************************
 Id: 3112
 User: replikator
 Host: artemis:2204
 db: NULL
Command: Binlog Dump
 Time: 2144
 State: Has sent all binlog to slave; waiting for binlog to be updated
 Info: NULL
*************************** 4. row ***************************
 Id: 3113
 User: replikator
 Host: iconnect2:45781
 db: NULL
Command: Binlog Dump
 Time: 2086
 State: Has sent all binlog to slave; waiting for binlog to be updated
 Info: NULL
*************************** 5. row ***************************
 Id: 3123
 User: stefan
 Host: localhost
 db: apollon
Command: Query
 Time: 0
 State: NULL
 Info: SHOW FULL PROCESSLIST

SHOW PROCESSLIST output has these columns:

2501

SHOW Statements

• Id

The connection identifier. This is the same value displayed in the ID column of the
INFORMATION_SCHEMA PROCESSLIST table, displayed in the PROCESSLIST_ID column of the
Performance Schema threads table, and returned by the CONNECTION_ID() function within the
thread.

• User

The MySQL user who issued the statement. A value of system user refers to a nonclient thread
spawned by the server to handle tasks internally, for example, a delayed-row handler thread or an I/O
or SQL thread used on replica hosts. For system user, there is no host specified in the Host column.
unauthenticated user refers to a thread that has become associated with a client connection but for
which authentication of the client user has not yet occurred. event_scheduler refers to the thread that
monitors scheduled events (see Section 23.4, “Using the Event Scheduler”).

• Host

The host name of the client issuing the statement (except for system user, for which there is no host).
The host name for TCP/IP connections is reported in host_name:client_port format to make it
easier to determine which client is doing what.

• db

The default database for the thread, or NULL if none has been selected.

• Command

The type of command the thread is executing on behalf of the client, or Sleep if the session is idle. For
descriptions of thread commands, see Section 8.14, “Examining Server Thread (Process) Information”.
The value of this column corresponds to the COM_xxx commands of the client/server protocol and
Com_xxx status variables. See Section 5.1.9, “Server Status Variables”.

• Time

The time in seconds that the thread has been in its current state. For a replica SQL thread, the value
is the number of seconds between the timestamp of the last replicated event and the real time of the
replica host. See Section 16.2.3, “Replication Threads”.

• State

An action, event, or state that indicates what the thread is doing. For descriptions of State values, see
Section 8.14, “Examining Server Thread (Process) Information”.

Most states correspond to very quick operations. If a thread stays in a given state for many seconds,
there might be a problem that needs to be investigated.

• Info

The statement the thread is executing, or NULL if it is executing no statement. The statement might be
the one sent to the server, or an innermost statement if the statement executes other statements. For
example, if a CALL statement executes a stored procedure that is executing a SELECT statement, the
Info value shows the SELECT statement.

13.7.5.30 SHOW PROFILE Statement

SHOW PROFILE [type [, type] ...]
 [FOR QUERY n]

2502

SHOW Statements

 [LIMIT row_count [OFFSET offset]]

type: {
 ALL
 | BLOCK IO
 | CONTEXT SWITCHES
 | CPU
 | IPC
 | MEMORY
 | PAGE FAULTS
 | SOURCE
 | SWAPS
}

The SHOW PROFILE and SHOW PROFILES statements display profiling information that indicates resource
usage for statements executed during the course of the current session.

Note

The SHOW PROFILE and SHOW PROFILES statements are deprecated; expect
them to be removed in a future MySQL release. Use the Performance Schema
instead; see Section 25.19.1, “Query Profiling Using Performance Schema”.

To control profiling, use the profiling session variable, which has a default value of 0 (OFF). Enable
profiling by setting profiling to 1 or ON:

mysql> SET profiling = 1;

SHOW PROFILES displays a list of the most recent statements sent to the server. The size of the list is
controlled by the profiling_history_size session variable, which has a default value of 15. The
maximum value is 100. Setting the value to 0 has the practical effect of disabling profiling.

All statements are profiled except SHOW PROFILE and SHOW PROFILES, so neither of those statements
appears in the profile list. Malformed statements are profiled. For example, SHOW PROFILING is an illegal
statement, and a syntax error occurs if you try to execute it, but it shows up in the profiling list.

SHOW PROFILE displays detailed information about a single statement. Without the FOR QUERY n clause,
the output pertains to the most recently executed statement. If FOR QUERY n is included, SHOW PROFILE
displays information for statement n. The values of n correspond to the Query_ID values displayed by
SHOW PROFILES.

The LIMIT row_count clause may be given to limit the output to row_count rows. If LIMIT is given,
OFFSET offset may be added to begin the output offset rows into the full set of rows.

By default, SHOW PROFILE displays Status and Duration columns. The Status values are like the
State values displayed by SHOW PROCESSLIST, although there might be some minor differences in
interpretion for the two statements for some status values (see Section 8.14, “Examining Server Thread
(Process) Information”).

Optional type values may be specified to display specific additional types of information:

• ALL displays all information

• BLOCK IO displays counts for block input and output operations

• CONTEXT SWITCHES displays counts for voluntary and involuntary context switches

• CPU displays user and system CPU usage times

• IPC displays counts for messages sent and received

2503

SHOW Statements

• MEMORY is not currently implemented

• PAGE FAULTS displays counts for major and minor page faults

• SOURCE displays the names of functions from the source code, together with the name and line number
of the file in which the function occurs

• SWAPS displays swap counts

Profiling is enabled per session. When a session ends, its profiling information is lost.

mysql> SELECT @@profiling;
+-------------+
| @@profiling |
+-------------+
| 0 |
+-------------+
1 row in set (0.00 sec)

mysql> SET profiling = 1;
Query OK, 0 rows affected (0.00 sec)

mysql> DROP TABLE IF EXISTS t1;
Query OK, 0 rows affected, 1 warning (0.00 sec)

mysql> CREATE TABLE T1 (id INT);
Query OK, 0 rows affected (0.01 sec)

mysql> SHOW PROFILES;
+----------+----------+--------------------------+
| Query_ID | Duration | Query |
+----------+----------+--------------------------+
0	0.000088	SET PROFILING = 1
1	0.000136	DROP TABLE IF EXISTS t1
2	0.011947	CREATE TABLE t1 (id INT)
+----------+----------+--------------------------+
3 rows in set (0.00 sec)

mysql> SHOW PROFILE;
+----------------------+----------+
| Status | Duration |
+----------------------+----------+
checking permissions	0.000040
creating table	0.000056
After create	0.011363
query end	0.000375
freeing items	0.000089
logging slow query	0.000019
cleaning up	0.000005
+----------------------+----------+
7 rows in set (0.00 sec)

mysql> SHOW PROFILE FOR QUERY 1;
+--------------------+----------+
| Status | Duration |
+--------------------+----------+
query end	0.000107
freeing items	0.000008
logging slow query	0.000015
cleaning up	0.000006
+--------------------+----------+
4 rows in set (0.00 sec)

mysql> SHOW PROFILE CPU FOR QUERY 2;
+----------------------+----------+----------+------------+
| Status | Duration | CPU_user | CPU_system |

2504

SHOW Statements

+----------------------+----------+----------+------------+
checking permissions	0.000040	0.000038	0.000002
creating table	0.000056	0.000028	0.000028
After create	0.011363	0.000217	0.001571
query end	0.000375	0.000013	0.000028
freeing items	0.000089	0.000010	0.000014
logging slow query	0.000019	0.000009	0.000010
cleaning up	0.000005	0.000003	0.000002
+----------------------+----------+----------+------------+
7 rows in set (0.00 sec)

Note

Profiling is only partially functional on some architectures. For values that depend
on the getrusage() system call, NULL is returned on systems such as Windows
that do not support the call. In addition, profiling is per process and not per thread.
This means that activity on threads within the server other than your own may affect
the timing information that you see.

Profiling information is also available from the INFORMATION_SCHEMA PROFILING table. See
Section 24.3.19, “The INFORMATION_SCHEMA PROFILING Table”. For example, the following queries
are equivalent:

SHOW PROFILE FOR QUERY 2;

SELECT STATE, FORMAT(DURATION, 6) AS DURATION
FROM INFORMATION_SCHEMA.PROFILING
WHERE QUERY_ID = 2 ORDER BY SEQ;

13.7.5.31 SHOW PROFILES Statement

SHOW PROFILES

The SHOW PROFILES statement, together with SHOW PROFILE, displays profiling information that
indicates resource usage for statements executed during the course of the current session. For more
information, see Section 13.7.5.30, “SHOW PROFILE Statement”.

Note

The SHOW PROFILE and SHOW PROFILES statements are deprecated; expect
them to be removed in a future MySQL release. Use the Performance Schema
instead; see Section 25.19.1, “Query Profiling Using Performance Schema”.

13.7.5.32 SHOW RELAYLOG EVENTS Statement

SHOW RELAYLOG EVENTS
 [IN 'log_name']
 [FROM pos]
 [LIMIT [offset,] row_count]
 [channel_option]

channel_option:
 FOR CHANNEL channel

Shows the events in the relay log of a replica. If you do not specify 'log_name', the first relay log
is displayed. This statement has no effect on the source. SHOW RELAYLOG EVENTS requires the
REPLICATION SLAVE privilege.

The LIMIT clause has the same syntax as for the SELECT statement. See Section 13.2.9, “SELECT
Statement”.

2505

SHOW Statements

Note

Issuing a SHOW RELAYLOG EVENTS with no LIMIT clause could start a very
time- and resource-consuming process because the server returns to the client the
complete contents of the relay log (including all statements modifying data that have
been received by the replica).

The optional FOR CHANNEL channel clause enables you to name which replication channel the
statement applies to. Providing a FOR CHANNEL channel clause applies the statement to a specific
replication channel. If no channel is named and no extra channels exist, the statement applies to the
default channel.

When using multiple replication channels, if a SHOW RELAYLOG EVENTS statement does not have a
channel defined using a FOR CHANNEL channel clause an error is generated. See Section 16.2.2,
“Replication Channels” for more information.

SHOW RELAYLOG EVENTS displays the following fields for each event in the relay log:

• Log_name

The name of the file that is being listed.

• Pos

The position at which the event occurs.

• Event_type

An identifier that describes the event type.

• Server_id

The server ID of the server on which the event originated.

• End_log_pos

The value of End_log_pos for this event in the source's binary log.

• Info

More detailed information about the event type. The format of this information depends on the event
type.

Note

Some events relating to the setting of user and system variables are not included
in the output from SHOW RELAYLOG EVENTS. To get complete coverage of events
within a relay log, use mysqlbinlog.

13.7.5.33 SHOW SLAVE HOSTS Statement

SHOW SLAVE HOSTS

Displays a list of replicas currently registered with the source.

SHOW SLAVE HOSTS should be executed on a server that acts as a replication source. SHOW SLAVE
HOSTS requires the REPLICATION SLAVE privilege. The statement displays information about servers that

2506

SHOW Statements

are or have been connected as replicas, with each row of the result corresponding to one replica server, as
shown here:

mysql> SHOW SLAVE HOSTS;
+------------+-----------+------+-----------+--------------------------------------+
| Server_id | Host | Port | Master_id | Slave_UUID |
+------------+-----------+------+-----------+--------------------------------------+
| 192168010 | iconnect2 | 3306 | 192168011 | 14cb6624-7f93-11e0-b2c0-c80aa9429562 |
| 1921680101 | athena | 3306 | 192168011 | 07af4990-f41f-11df-a566-7ac56fdaf645 |
+------------+-----------+------+-----------+--------------------------------------+

• Server_id: The unique server ID of the replica server, as configured in the replica server's option file,
or on the command line with --server-id=value.

• Host: The host name of the replica server as specified on the replica with the --report-host option.
This can differ from the machine name as configured in the operating system.

• User: The replica server user name as, specified on the replica with the --report-user option.
Statement output includes this column only if the source server is started with the --show-slave-
auth-info option.

• Password: The replica server password as, specified on the replica with the --report-password
option. Statement output includes this column only if the source server is started with the --show-
slave-auth-info option.

• Port: The port on the source to which the replica server is listening, as specified on the replica with the
--report-port option.

A zero in this column means that the replica port (--report-port) was not set.

• Master_id: The unique server ID of the source server that the replica server is replicating from. This is
the server ID of the server on which SHOW SLAVE HOSTS is executed, so this same value is listed for
each row in the result.

• Slave_UUID: The globally unique ID of this replica, as generated on the replica and found in the
replica's auto.cnf file.

13.7.5.34 SHOW SLAVE STATUS Statement

SHOW SLAVE STATUS [FOR CHANNEL channel]

This statement provides status information on essential parameters of the replica threads. It requires either
the SUPER or REPLICATION CLIENT privilege.

If you issue this statement using the mysql client, you can use a \G statement terminator rather than a
semicolon to obtain a more readable vertical layout:

mysql> SHOW SLAVE STATUS\G
*************************** 1. row ***************************
 Slave_IO_State: Waiting for master to send event
 Master_Host: localhost
 Master_User: repl
 Master_Port: 13000
 Connect_Retry: 60
 Master_Log_File: source-bin.000002
 Read_Master_Log_Pos: 1307
 Relay_Log_File: replica-relay-bin.000003
 Relay_Log_Pos: 1508
 Relay_Master_Log_File: source-bin.000002
 Slave_IO_Running: Yes
 Slave_SQL_Running: Yes
 Replicate_Do_DB:

2507

SHOW Statements

 Replicate_Ignore_DB:
 Replicate_Do_Table:
 Replicate_Ignore_Table:
 Replicate_Wild_Do_Table:
 Replicate_Wild_Ignore_Table:
 Last_Errno: 0
 Last_Error:
 Skip_Counter: 0
 Exec_Master_Log_Pos: 1307
 Relay_Log_Space: 1858
 Until_Condition: None
 Until_Log_File:
 Until_Log_Pos: 0
 Master_SSL_Allowed: No
 Master_SSL_CA_File:
 Master_SSL_CA_Path:
 Master_SSL_Cert:
 Master_SSL_Cipher:
 Master_SSL_Key:
 Seconds_Behind_Master: 0
Master_SSL_Verify_Server_Cert: No
 Last_IO_Errno: 0
 Last_IO_Error:
 Last_SQL_Errno: 0
 Last_SQL_Error:
 Replicate_Ignore_Server_Ids:
 Master_Server_Id: 1
 Master_UUID: 3e11fa47-71ca-11e1-9e33-c80aa9429562
 Master_Info_File: /var/mysqld.2/data/master.info
 SQL_Delay: 0
 SQL_Remaining_Delay: NULL
 Slave_SQL_Running_State: Reading event from the relay log
 Master_Retry_Count: 10
 Master_Bind:
 Last_IO_Error_Timestamp:
 Last_SQL_Error_Timestamp:
 Master_SSL_Crl:
 Master_SSL_Crlpath:
 Retrieved_Gtid_Set: 3e11fa47-71ca-11e1-9e33-c80aa9429562:1-5
 Executed_Gtid_Set: 3e11fa47-71ca-11e1-9e33-c80aa9429562:1-5
 Auto_Position: 1
 Replicate_Rewrite_DB:
 Channel_name:
 Master_TLS_Version: TLSv1.2

The Performance Schema provides tables that expose replication information. This is similar to the
information available from the SHOW SLAVE STATUS statement, but represented in table form. For details,
see Section 25.12.11, “Performance Schema Replication Tables”.

The following list describes the fields returned by SHOW SLAVE STATUS. For additional information about
interpreting their meanings, see Section 16.1.7.1, “Checking Replication Status”.

• Slave_IO_State

A copy of the State field of the SHOW PROCESSLIST output for the replica I/O thread. This tells
you what the thread is doing: trying to connect to the source, waiting for events from the source,
reconnecting to the source, and so on. For a listing of possible states, see Section 8.14.6, “Replication
Replica I/O Thread States”.

• Master_Host

The source host that the replica is connected to.

• Master_User

2508

SHOW Statements

The user name of the account used to connect to the source.

• Master_Port

The port used to connect to the source.

• Connect_Retry

The number of seconds between connect retries (default 60). This can be set with the CHANGE MASTER
TO statement.

• Master_Log_File

The name of the source binary log file from which the I/O thread is currently reading.

• Read_Master_Log_Pos

The position in the current source binary log file up to which the I/O thread has read.

• Relay_Log_File

The name of the relay log file from which the SQL thread is currently reading and executing.

• Relay_Log_Pos

The position in the current relay log file up to which the SQL thread has read and executed.

• Relay_Master_Log_File

The name of the source binary log file containing the most recent event executed by the SQL thread.

• Slave_IO_Running

Whether the I/O thread is started and has connected successfully to the source. Internally, the state of
this thread is represented by one of the following three values:

• MYSQL_SLAVE_NOT_RUN. The replica I/O thread is not running. For this state,
Slave_IO_Running is No.

• MYSQL_SLAVE_RUN_NOT_CONNECT. The replica I/O thread is running, but is not connected to
a replication source. For this state, Slave_IO_Running is Connecting.

• MYSQL_SLAVE_RUN_CONNECT. The replica I/O thread is running, and is connected to a
replication source. For this state, Slave_IO_Running is Yes.

The value of the Slave_running system status variable corresponds with this value.

• Slave_SQL_Running

Whether the SQL thread is started.

• Replicate_Do_DB, Replicate_Ignore_DB

The lists of databases that were specified with the --replicate-do-db and --replicate-ignore-
db options, if any.

• Replicate_Do_Table, Replicate_Ignore_Table, Replicate_Wild_Do_Table,
Replicate_Wild_Ignore_Table

2509

SHOW Statements

The lists of tables that were specified with the --replicate-do-table, --replicate-ignore-
table, --replicate-wild-do-table, and --replicate-wild-ignore-table options, if any.

• Last_Errno, Last_Error

These columns are aliases for Last_SQL_Errno and Last_SQL_Error.

Issuing RESET MASTER or RESET SLAVE resets the values shown in these columns.

Note

When the replica SQL thread receives an error, it reports the error first, then
stops the SQL thread. This means that there is a small window of time during
which SHOW SLAVE STATUS shows a nonzero value for Last_SQL_Errno even
though Slave_SQL_Running still displays Yes.

• Skip_Counter

The current value of the sql_slave_skip_counter system variable. See Section 13.4.2.4, “SET
GLOBAL sql_slave_skip_counter Syntax”.

• Exec_Master_Log_Pos

The position in the current source binary log file to which the SQL thread has read and executed,
marking the start of the next transaction or event to be processed. You can use this value with
the CHANGE MASTER TO statement's MASTER_LOG_POS option when starting a new replica
from an existing replica, so that the new replica reads from this point. The coordinates given by
(Relay_Master_Log_File, Exec_Master_Log_Pos) in the source's binary log correspond to the
coordinates given by (Relay_Log_File, Relay_Log_Pos) in the relay log.

Inconsistencies in the sequence of transactions from the relay log which have been executed can cause
this value to be a “low-water mark”. In other words, transactions appearing before the position are
guaranteed to have committed, but transactions after the position may have committed or not. If these
gaps need to be corrected, use START SLAVE UNTIL SQL_AFTER_MTS_GAPS. See Section 16.4.1.32,
“Replication and Transaction Inconsistencies” for more information.

• Relay_Log_Space

The total combined size of all existing relay log files.

• Until_Condition, Until_Log_File, Until_Log_Pos

The values specified in the UNTIL clause of the START SLAVE statement.

Until_Condition has these values:

• None if no UNTIL clause was specified

• Master if the replica is reading until a given position in the source's binary log

• Relay if the replica is reading until a given position in its relay log

• SQL_BEFORE_GTIDS if the replica SQL thread is processing transactions until it has reached the first
transaction whose GTID is listed in the gtid_set.

• SQL_AFTER_GTIDS if the replica threads are processing all transactions until the last transaction in
the gtid_set has been processed by both threads.

2510

SHOW Statements

• SQL_AFTER_MTS_GAPS if a multithreaded replica's SQL threads are running until no more gaps are
found in the relay log.

Until_Log_File and Until_Log_Pos indicate the log file name and position that define the
coordinates at which the SQL thread stops executing.

For more information on UNTIL clauses, see Section 13.4.2.5, “START SLAVE Statement”.

• Master_SSL_Allowed, Master_SSL_CA_File, Master_SSL_CA_Path, Master_SSL_Cert,
Master_SSL_Cipher, Master_SSL_CRL_File, Master_SSL_CRL_Path, Master_SSL_Key,
Master_SSL_Verify_Server_Cert

These fields show the SSL parameters used by the replica to connect to the source, if any.

Master_SSL_Allowed has these values:

• Yes if an SSL connection to the source is permitted

• No if an SSL connection to the source is not permitted

• Ignored if an SSL connection is permitted but the replica server does not have SSL support enabled

The values of the other SSL-related fields correspond to the values of the MASTER_SSL_CA,
MASTER_SSL_CAPATH, MASTER_SSL_CERT, MASTER_SSL_CIPHER, MASTER_SSL_CRL,
MASTER_SSL_CRLPATH, MASTER_SSL_KEY, and MASTER_SSL_VERIFY_SERVER_CERT options to the
CHANGE MASTER TO statement. See Section 13.4.2.1, “CHANGE MASTER TO Statement”.

• Seconds_Behind_Master

This field is an indication of how “late” the replica is:

• When the replica is actively processing updates, this field shows the difference between the current
timestamp on the replica and the original timestamp logged on the source for the event currently being
processed on the replica.

• When no event is currently being processed on the replica, this value is 0.

In essence, this field measures the time difference in seconds between the replica SQL thread and the
replica I/O thread. If the network connection between source and replica is fast, the replica I/O thread
is very close to the source, so this field is a good approximation of how late the replica SQL thread is
compared to the source. If the network is slow, this is not a good approximation; the replica SQL thread
may quite often be caught up with the slow-reading replica I/O thread, so Seconds_Behind_Master
often shows a value of 0, even if the I/O thread is late compared to the source. In other words, this
column is useful only for fast networks.

This time difference computation works even if the source and replica do not have identical clock
times, provided that the difference, computed when the replica I/O thread starts, remains constant from
then on. Any changes—including NTP updates—can lead to clock skews that can make calculation of
Seconds_Behind_Master less reliable.

In MySQL 5.7, this field is NULL (undefined or unknown) if the replica SQL thread is not running, or if
the SQL thread has consumed all of the relay log and the replica I/O thread is not running. (In older
versions of MySQL, this field was NULL if the replica SQL thread or the replica I/O thread was not

2511

SHOW Statements

running or was not connected to the source.) If the I/O thread is running but the relay log is exhausted,
Seconds_Behind_Master is set to 0.

The value of Seconds_Behind_Master is based on the timestamps stored in events, which are
preserved through replication. This means that if a source M1 is itself a replica of M0, any event from
M1's binary log that originates from M0's binary log has M0's timestamp for that event. This enables
MySQL to replicate TIMESTAMP successfully. However, the problem for Seconds_Behind_Master
is that if M1 also receives direct updates from clients, the Seconds_Behind_Master value randomly
fluctuates because sometimes the last event from M1 originates from M0 and sometimes is the result of
a direct update on M1.

When using a multithreaded replica, you should keep in mind that this value is based on
Exec_Master_Log_Pos, and so may not reflect the position of the most recently committed
transaction.

• Last_IO_Errno, Last_IO_Error

The error number and error message of the most recent error that caused the I/O thread to stop. An
error number of 0 and message of the empty string mean “no error.” If the Last_IO_Error value is not
empty, the error values also appear in the replica's error log.

I/O error information includes a timestamp showing when the most recent I/O thread error occurred. This
timestamp uses the format YYMMDD hh:mm:ss, and appears in the Last_IO_Error_Timestamp
column.

Issuing RESET MASTER or RESET SLAVE resets the values shown in these columns.

• Last_SQL_Errno, Last_SQL_Error

The error number and error message of the most recent error that caused the SQL thread to stop. An
error number of 0 and message of the empty string mean “no error.” If the Last_SQL_Error value is
not empty, the error values also appear in the replica's error log.

If the replica is multithreaded, the SQL thread is the coordinator for worker threads. In this case,
the Last_SQL_Error field shows exactly what the Last_Error_Message column in the
Performance Schema replication_applier_status_by_coordinator table shows. The
field value is modified to suggest that there may be more failures in the other worker threads
which can be seen in the replication_applier_status_by_worker table that shows each
worker thread's status. If that table is not available, the replica error log can be used. The log or the
replication_applier_status_by_worker table should also be used to learn more about the
failure shown by SHOW SLAVE STATUS or the coordinator table.

SQL error information includes a timestamp showing when the most recent SQL thread
error occurred. This timestamp uses the format YYMMDD hh:mm:ss, and appears in the
Last_SQL_Error_Timestamp column.

Issuing RESET MASTER or RESET SLAVE resets the values shown in these columns.

In MySQL 5.7, all error codes and messages displayed in the Last_SQL_Errno and Last_SQL_Error
columns correspond to error values listed in Server Error Message Reference. This was not always true
in previous versions. (Bug #11760365, Bug #52768)

• Replicate_Ignore_Server_Ids

In MySQL 5.7, you set a replica to ignore events from 0 or more sources using the
IGNORE_SERVER_IDS option of the CHANGE MASTER TO statement. By default this is blank, and is

2512

https://dev.mysql.com/doc/mysql-errors/5.7/en/server-error-reference.html

SHOW Statements

usually modified only when using a circular or other multi-source replication setup. The message shown
for Replicate_Ignore_Server_Ids when not blank consists of a comma-delimited list of one or
more numbers, indicating the server IDs to be ignored. For example:

 Replicate_Ignore_Server_Ids: 2, 6, 9

Note

Ignored_server_ids also shows the server IDs to be ignored, but is a
space-delimited list, which is preceded by the total number of server IDs to
be ignored. For example, if a CHANGE MASTER TO statement containing the
IGNORE_SERVER_IDS = (2,6,9) option has been issued to tell a replica to
ignore sources having the server ID 2, 6, or 9, that information appears as shown
here:

 Ignored_server_ids: 3, 2, 6, 9

The first number (in this case 3) shows the number of server IDs being ignored.

Replicate_Ignore_Server_Ids filtering is performed by the I/O thread, rather than by the SQL
thread, which means that events which are filtered out are not written to the relay log. This differs from
the filtering actions taken by server options such --replicate-do-table, which apply to the SQL
thread.

• Master_Server_Id

The server_id value from the source.

• Master_UUID

The server_uuid value from the source.

• Master_Info_File

The location of the master.info file.

• SQL_Delay

The number of seconds that the replica must lag the source.

• SQL_Remaining_Delay

When Slave_SQL_Running_State is Waiting until MASTER_DELAY seconds after master
executed event, this field contains the number of delay seconds remaining. At other times, this field is
NULL.

• Slave_SQL_Running_State

The state of the SQL thread (analogous to Slave_IO_State). The value is identical to the State
value of the SQL thread as displayed by SHOW PROCESSLIST. Section 8.14.7, “Replication Replica SQL
Thread States”, provides a listing of possible states

• Master_Retry_Count

The number of times the replica can attempt to reconnect to the source in the event of a lost connection.
This value can be set using the MASTER_RETRY_COUNT option of the CHANGE MASTER TO statement
(preferred) or the older --master-retry-count server option (still supported for backward
compatibility).

2513

SHOW Statements

• Master_Bind

The network interface that the replica is bound to, if any. This is set using the MASTER_BIND option for
the CHANGE MASTER TO statement.

• Last_IO_Error_Timestamp

A timestamp in YYMMDD hh:mm:ss format that shows when the most recent I/O error took place.

• Last_SQL_Error_Timestamp

A timestamp in YYMMDD hh:mm:ss format that shows when the most recent SQL error occurred.

• Retrieved_Gtid_Set

The set of global transaction IDs corresponding to all transactions received by this replica. Empty if
GTIDs are not in use. See GTID Sets for more information.

This is the set of all GTIDs that exist or have existed in the relay logs. Each GTID is added as soon as
the Gtid_log_event is received. This can cause partially transmitted transactions to have their GTIDs
included in the set.

When all relay logs are lost due to executing RESET SLAVE or CHANGE MASTER TO, or due to the
effects of the --relay-log-recovery option, the set is cleared. When relay_log_purge = 1, the
newest relay log is always kept, and the set is not cleared.

• Executed_Gtid_Set

The set of global transaction IDs written in the binary log. This is the same as the value for the global
gtid_executed system variable on this server, as well as the value for Executed_Gtid_Set in the
output of SHOW MASTER STATUS on this server. Empty if GTIDs are not in use. See GTID Sets for more
information.

• Auto_Position

1 if autopositioning is in use; otherwise 0.

• Replicate_Rewrite_DB

The Replicate_Rewrite_DB value displays any replication filtering rules that were specified. For
example, if the following replication filter rule was set:

CHANGE REPLICATION FILTER REPLICATE_REWRITE_DB=((db1,db2), (db3,db4));

the Replicate_Rewrite_DB value displays:

Replicate_Rewrite_DB: (db1,db2),(db3,db4)

For more information, see Section 13.4.2.2, “CHANGE REPLICATION FILTER Statement”.

• Channel_name

The replication channel which is being displayed. There is always a default replication channel,
and more replication channels can be added. See Section 16.2.2, “Replication Channels” for more
information.

2514

SHOW Statements

• Master_TLS_Version

The TLS version used on the source. For TLS version information, see Section 6.3.2, “Encrypted
Connection TLS Protocols and Ciphers”. This column was added in MySQL 5.7.10.

13.7.5.35 SHOW STATUS Statement

SHOW [GLOBAL | SESSION] STATUS
 [LIKE 'pattern' | WHERE expr]

Note

The value of the show_compatibility_56 system variable affects the
information available from and privileges required for the statement described here.
For details, see the description of that variable in Section 5.1.7, “Server System
Variables”.

SHOW STATUS provides server status information (see Section 5.1.9, “Server Status Variables”). This
statement does not require any privilege. It requires only the ability to connect to the server.

Status variable information is also available from these sources:

• Performance Schema tables. See Section 25.12.14, “Performance Schema Status Variable Tables”.

• The GLOBAL_STATUS and SESSION_STATUS tables. See Section 24.3.10, “The
INFORMATION_SCHEMA GLOBAL_STATUS and SESSION_STATUS Tables”.

• The mysqladmin extended-status command. See Section 4.5.2, “mysqladmin — A MySQL Server
Administration Program”.

For SHOW STATUS, a LIKE clause, if present, indicates which variable names to match. A WHERE clause
can be given to select rows using more general conditions, as discussed in Section 24.8, “Extensions to
SHOW Statements”.

SHOW STATUS accepts an optional GLOBAL or SESSION variable scope modifier:

• With a GLOBAL modifier, the statement displays the global status values. A global status variable
may represent status for some aspect of the server itself (for example, Aborted_connects), or the
aggregated status over all connections to MySQL (for example, Bytes_received and Bytes_sent). If
a variable has no global value, the session value is displayed.

• With a SESSION modifier, the statement displays the status variable values for the current connection. If
a variable has no session value, the global value is displayed. LOCAL is a synonym for SESSION.

• If no modifier is present, the default is SESSION.

The scope for each status variable is listed at Section 5.1.9, “Server Status Variables”.

Each invocation of the SHOW STATUS statement uses an internal temporary table and increments the
global Created_tmp_tables value.

Partial output is shown here. The list of names and values may differ for your server. The meaning of each
variable is given in Section 5.1.9, “Server Status Variables”.

mysql> SHOW STATUS;
+--------------------------+------------+
| Variable_name | Value |
+--------------------------+------------+
| Aborted_clients | 0 |

2515

SHOW Statements

Aborted_connects	0
Bytes_received	155372598
Bytes_sent	1176560426
Connections	30023
Created_tmp_disk_tables	0
Created_tmp_tables	8340
Created_tmp_files	60
...	
Open_tables	1
Open_files	2
Open_streams	0
Opened_tables	44600
Questions	2026873
...	
Table_locks_immediate	1920382
Table_locks_waited	0
Threads_cached	0
Threads_created	30022
Threads_connected	1
Threads_running	1
Uptime	80380
+--------------------------+------------+

With a LIKE clause, the statement displays only rows for those variables with names that match the
pattern:

mysql> SHOW STATUS LIKE 'Key%';
+--------------------+----------+
| Variable_name | Value |
+--------------------+----------+
Key_blocks_used	14955
Key_read_requests	96854827
Key_reads	162040
Key_write_requests	7589728
Key_writes	3813196
+--------------------+----------+

13.7.5.36 SHOW TABLE STATUS Statement

SHOW TABLE STATUS
 [{FROM | IN} db_name]
 [LIKE 'pattern' | WHERE expr]

SHOW TABLE STATUS works likes SHOW TABLES, but provides a lot of information about each
non-TEMPORARY table. You can also get this list using the mysqlshow --status db_name command.
The LIKE clause, if present, indicates which table names to match. The WHERE clause can be given
to select rows using more general conditions, as discussed in Section 24.8, “Extensions to SHOW
Statements”.

This statement also displays information about views.

SHOW TABLE STATUS output has these columns:

• Name

The name of the table.

• Engine

The storage engine for the table. See Chapter 14, The InnoDB Storage Engine, and Chapter 15,
Alternative Storage Engines.

For partitioned tables, Engine shows the name of the storage engine used by all partitions.

2516

SHOW Statements

• Version

The version number of the table's .frm file.

• Row_format

The row-storage format (Fixed, Dynamic, Compressed, Redundant, Compact). For MyISAM tables,
Dynamic corresponds to what myisamchk -dvv reports as Packed. InnoDB table format is either
Redundant or Compact when using the Antelope file format, or Compressed or Dynamic when
using the Barracuda file format.

• Rows

The number of rows. Some storage engines, such as MyISAM, store the exact count. For other storage
engines, such as InnoDB, this value is an approximation, and may vary from the actual value by as
much as 40% to 50%. In such cases, use SELECT COUNT(*) to obtain an accurate count.

The Rows value is NULL for INFORMATION_SCHEMA tables.

For InnoDB tables, the row count is only a rough estimate used in SQL optimization. (This is also true if
the InnoDB table is partitioned.)

• Avg_row_length

The average row length.

Refer to the notes at the end of this section for related information.

• Data_length

For MyISAM, Data_length is the length of the data file, in bytes.

For InnoDB, Data_length is the approximate amount of space allocated for the clustered index, in
bytes. Specifically, it is the clustered index size, in pages, multiplied by the InnoDB page size.

Refer to the notes at the end of this section for information regarding other storage engines.

• Max_data_length

For MyISAM, Max_data_length is maximum length of the data file. This is the total number of bytes of
data that can be stored in the table, given the data pointer size used.

Unused for InnoDB.

Refer to the notes at the end of this section for information regarding other storage engines.

• Index_length

For MyISAM, Index_length is the length of the index file, in bytes.

For InnoDB, Index_length is the approximate amount of space allocated for non-clustered indexes,
in bytes. Specifically, it is the sum of non-clustered index sizes, in pages, multiplied by the InnoDB page
size.

Refer to the notes at the end of this section for information regarding other storage engines.

• Data_free

The number of allocated but unused bytes.

2517

SHOW Statements

InnoDB tables report the free space of the tablespace to which the table belongs. For a table located
in the shared tablespace, this is the free space of the shared tablespace. If you are using multiple
tablespaces and the table has its own tablespace, the free space is for only that table. Free space
means the number of bytes in completely free extents minus a safety margin. Even if free space displays
as 0, it may be possible to insert rows as long as new extents need not be allocated.

For NDB Cluster, Data_free shows the space allocated on disk for, but not used by, a Disk Data table
or fragment on disk. (In-memory data resource usage is reported by the Data_length column.)

For partitioned tables, this value is only an estimate and may not be absolutely correct. A more accurate
method of obtaining this information in such cases is to query the INFORMATION_SCHEMA PARTITIONS
table, as shown in this example:

SELECT SUM(DATA_FREE)
 FROM INFORMATION_SCHEMA.PARTITIONS
 WHERE TABLE_SCHEMA = 'mydb'
 AND TABLE_NAME = 'mytable';

For more information, see Section 24.3.16, “The INFORMATION_SCHEMA PARTITIONS Table”.

• Auto_increment

The next AUTO_INCREMENT value.

• Create_time

When the table was created.

• Update_time

When the data file was last updated. For some storage engines, this value is NULL. For example,
InnoDB stores multiple tables in its system tablespace and the data file timestamp does not apply. Even
with file-per-table mode with each InnoDB table in a separate .ibd file, change buffering can delay the
write to the data file, so the file modification time is different from the time of the last insert, update, or
delete. For MyISAM, the data file timestamp is used; however, on Windows the timestamp is not updated
by updates, so the value is inaccurate.

Update_time displays a timestamp value for the last UPDATE, INSERT, or DELETE performed on
InnoDB tables that are not partitioned. For MVCC, the timestamp value reflects the COMMIT time, which
is considered the last update time. Timestamps are not persisted when the server is restarted or when
the table is evicted from the InnoDB data dictionary cache.

The Update_time column also shows this information for partitioned InnoDB tables.

• Check_time

When the table was last checked. Not all storage engines update this time, in which case, the value is
always NULL.

For partitioned InnoDB tables, Check_time is always NULL.

• Collation

The table default collation. The output does not explicitly list the table default character set, but the
collation name begins with the character set name.

• Checksum

2518

SHOW Statements

The live checksum value, if any.

• Create_options

Extra options used with CREATE TABLE.

Create_options shows partitioned for a partitioned table.

Create_options shows the ENCRYPTION option specified when creating or altering a file-per-table
tablespace.

When creating a table with strict mode disabled, the storage engine's default row format is used if the
specified row format is not supported. The actual row format of the table is reported in the Row_format
column. Create_options shows the row format that was specified in the CREATE TABLE statement.

When altering the storage engine of a table, table options that are not applicable to the new storage
engine are retained in the table definition to enable reverting the table with its previously defined options
to the original storage engine, if necessary. Create_options may show retained options.

• Comment

The comment used when creating the table (or information as to why MySQL could not access the table
information).

Notes

• For InnoDB tables, SHOW TABLE STATUS does not give accurate statistics except for the physical size
reserved by the table. The row count is only a rough estimate used in SQL optimization.

• For NDB tables, the output of this statement shows appropriate values for the Avg_row_length and
Data_length columns, with the exception that BLOB columns are not taken into account.

• For NDB tables, Data_length includes data stored in main memory only; the Max_data_length and
Data_free columns apply to Disk Data.

• For NDB Cluster Disk Data tables, Max_data_length shows the space allocated for the disk part of a
Disk Data table or fragment. (In-memory data resource usage is reported by the Data_length column.)

• For MEMORY tables, the Data_length, Max_data_length, and Index_length values approximate
the actual amount of allocated memory. The allocation algorithm reserves memory in large amounts to
reduce the number of allocation operations.

• For views, all columns displayed by SHOW TABLE STATUS are NULL except that Name indicates the
view name and Comment says VIEW.

Table information is also available from the INFORMATION_SCHEMA TABLES table. See Section 24.3.25,
“The INFORMATION_SCHEMA TABLES Table”.

13.7.5.37 SHOW TABLES Statement

SHOW [FULL] TABLES
 [{FROM | IN} db_name]
 [LIKE 'pattern' | WHERE expr]

SHOW TABLES lists the non-TEMPORARY tables in a given database. You can also get this list using the
mysqlshow db_name command. The LIKE clause, if present, indicates which table names to match. The
WHERE clause can be given to select rows using more general conditions, as discussed in Section 24.8,
“Extensions to SHOW Statements”.

2519

SHOW Statements

Matching performed by the LIKE clause is dependent on the setting of the lower_case_table_names
system variable.

This statement also lists any views in the database. The optional FULL modifier causes SHOW TABLES to
display a second output column with values of BASE TABLE for a table, VIEW for a view, or SYSTEM VIEW
for an INFORMATION_SCHEMA table.

If you have no privileges for a base table or view, it does not show up in the output from SHOW TABLES or
mysqlshow db_name.

Table information is also available from the INFORMATION_SCHEMA TABLES table. See Section 24.3.25,
“The INFORMATION_SCHEMA TABLES Table”.

13.7.5.38 SHOW TRIGGERS Statement

SHOW TRIGGERS
 [{FROM | IN} db_name]
 [LIKE 'pattern' | WHERE expr]

SHOW TRIGGERS lists the triggers currently defined for tables in a database (the default database unless a
FROM clause is given). This statement returns results only for databases and tables for which you have the
TRIGGER privilege. The LIKE clause, if present, indicates which table names (not trigger names) to match
and causes the statement to display triggers for those tables. The WHERE clause can be given to select
rows using more general conditions, as discussed in Section 24.8, “Extensions to SHOW Statements”.

For the ins_sum trigger defined in Section 23.3, “Using Triggers”, the output of SHOW TRIGGERS is as
shown here:

mysql> SHOW TRIGGERS LIKE 'acc%'\G
*************************** 1. row ***************************
 Trigger: ins_sum
 Event: INSERT
 Table: account
 Statement: SET @sum = @sum + NEW.amount
 Timing: BEFORE
 Created: 2018-08-08 10:10:12.61
 sql_mode: ONLY_FULL_GROUP_BY,STRICT_TRANS_TABLES,
 NO_ZERO_IN_DATE,NO_ZERO_DATE,
 ERROR_FOR_DIVISION_BY_ZERO,
 NO_AUTO_CREATE_USER,NO_ENGINE_SUBSTITUTION
 Definer: me@localhost
character_set_client: utf8
collation_connection: utf8_general_ci
 Database Collation: latin1_swedish_ci

SHOW TRIGGERS output has these columns:

• Trigger

The name of the trigger.

• Event

The trigger event. This is the type of operation on the associated table for which the trigger activates.
The value is INSERT (a row was inserted), DELETE (a row was deleted), or UPDATE (a row was
modified).

• Table

The table for which the trigger is defined.

• Statement

2520

SHOW Statements

The trigger body; that is, the statement executed when the trigger activates.

• Timing

Whether the trigger activates before or after the triggering event. The value is BEFORE or AFTER.

• Created

The date and time when the trigger was created. This is a TIMESTAMP(2) value (with a fractional part
in hundredths of seconds) for triggers created in MySQL 5.7.2 or later, NULL for triggers created prior to
5.7.2.

• sql_mode

The SQL mode in effect when the trigger was created, and under which the trigger executes. For the
permitted values, see Section 5.1.10, “Server SQL Modes”.

• Definer

The account of the user who created the trigger, in 'user_name'@'host_name' format.

• character_set_client

The session value of the character_set_client system variable when the trigger was created.

• collation_connection

The session value of the collation_connection system variable when the trigger was created.

• Database Collation

The collation of the database with which the trigger is associated.

Trigger information is also available from the INFORMATION_SCHEMA TRIGGERS table. See
Section 24.3.29, “The INFORMATION_SCHEMA TRIGGERS Table”.

13.7.5.39 SHOW VARIABLES Statement

SHOW [GLOBAL | SESSION] VARIABLES
 [LIKE 'pattern' | WHERE expr]

Note

The value of the show_compatibility_56 system variable affects the
information available from and privileges required for the statement described here.
For details, see the description of that variable in Section 5.1.7, “Server System
Variables”.

SHOW VARIABLES shows the values of MySQL system variables (see Section 5.1.7, “Server System
Variables”). This statement does not require any privilege. It requires only the ability to connect to the
server.

System variable information is also available from these sources:

• Performance Schema tables. See Section 25.12.13, “Performance Schema System Variable Tables”.

• The GLOBAL_VARIABLES and SESSION_VARIABLES tables. See Section 24.3.11, “The
INFORMATION_SCHEMA GLOBAL_VARIABLES and SESSION_VARIABLES Tables”.

2521

SHOW Statements

• The mysqladmin variables command. See Section 4.5.2, “mysqladmin — A MySQL Server
Administration Program”.

For SHOW VARIABLES, a LIKE clause, if present, indicates which variable names to match. A WHERE
clause can be given to select rows using more general conditions, as discussed in Section 24.8,
“Extensions to SHOW Statements”.

SHOW VARIABLES accepts an optional GLOBAL or SESSION variable scope modifier:

• With a GLOBAL modifier, the statement displays global system variable values. These are the values
used to initialize the corresponding session variables for new connections to MySQL. If a variable has no
global value, no value is displayed.

• With a SESSION modifier, the statement displays the system variable values that are in effect for the
current connection. If a variable has no session value, the global value is displayed. LOCAL is a synonym
for SESSION.

• If no modifier is present, the default is SESSION.

The scope for each system variable is listed at Section 5.1.7, “Server System Variables”.

SHOW VARIABLES is subject to a version-dependent display-width limit. For variables with very long values
that are not completely displayed, use SELECT as a workaround. For example:

SELECT @@GLOBAL.innodb_data_file_path;

Most system variables can be set at server startup (read-only variables such as version_comment are
exceptions). Many can be changed at runtime with the SET statement. See Section 5.1.8, “Using System
Variables”, and Section 13.7.4.1, “SET Syntax for Variable Assignment”.

Partial output is shown here. The list of names and values may differ for your server. Section 5.1.7, “Server
System Variables”, describes the meaning of each variable, and Section 5.1.1, “Configuring the Server”,
provides information about tuning them.

mysql> SHOW VARIABLES;
+---+---------------------------+
| Variable_name | Value |
+---+---------------------------+
auto_increment_increment	1
auto_increment_offset	1
autocommit	ON
automatic_sp_privileges	ON
back_log	50
basedir	/home/jon/bin/mysql-5.5
big_tables	OFF
binlog_cache_size	32768
binlog_direct_non_transactional_updates	OFF
binlog_format	STATEMENT
binlog_stmt_cache_size	32768
bulk_insert_buffer_size	8388608
...	
max_allowed_packet	4194304
max_binlog_cache_size	18446744073709547520
max_binlog_size	1073741824
max_binlog_stmt_cache_size	18446744073709547520
max_connect_errors	100
max_connections	151
max_delayed_threads	20
max_error_count	64
max_heap_table_size	16777216
max_insert_delayed_threads	20
max_join_size	18446744073709551615
...

2522

SHOW Statements

thread_handling	one-thread-per-connection
thread_stack	262144
time_format	%H:%i:%s
time_zone	SYSTEM
timestamp	1316689732
tmp_table_size	16777216
tmpdir	/tmp
transaction_alloc_block_size	8192
transaction_isolation	REPEATABLE-READ
transaction_prealloc_size	4096
transaction_read_only	OFF
tx_isolation	REPEATABLE-READ
tx_read_only	OFF
unique_checks	ON
updatable_views_with_limit	YES
version	5.7.44
version_comment	Source distribution
version_compile_machine	x86_64
version_compile_os	Linux
wait_timeout	28800
warning_count	0
+---+---------------------------+

With a LIKE clause, the statement displays only rows for those variables with names that match the
pattern. To obtain the row for a specific variable, use a LIKE clause as shown:

SHOW VARIABLES LIKE 'max_join_size';
SHOW SESSION VARIABLES LIKE 'max_join_size';

To get a list of variables whose name match a pattern, use the % wildcard character in a LIKE clause:

SHOW VARIABLES LIKE '%size%';
SHOW GLOBAL VARIABLES LIKE '%size%';

Wildcard characters can be used in any position within the pattern to be matched. Strictly speaking,
because _ is a wildcard that matches any single character, you should escape it as _ to match it literally.
In practice, this is rarely necessary.

13.7.5.40 SHOW WARNINGS Statement

SHOW WARNINGS [LIMIT [offset,] row_count]
SHOW COUNT(*) WARNINGS

SHOW WARNINGS is a diagnostic statement that displays information about the conditions (errors,
warnings, and notes) resulting from executing a statement in the current session. Warnings are generated
for DML statements such as INSERT, UPDATE, and LOAD DATA as well as DDL statements such as
CREATE TABLE and ALTER TABLE.

The LIMIT clause has the same syntax as for the SELECT statement. See Section 13.2.9, “SELECT
Statement”.

SHOW WARNINGS is also used following EXPLAIN, to display the extended information generated by
EXPLAIN. See Section 8.8.3, “Extended EXPLAIN Output Format”.

SHOW WARNINGS displays information about the conditions resulting from execution of the most recent
nondiagnostic statement in the current session. If the most recent statement resulted in an error during
parsing, SHOW WARNINGS shows the resulting conditions, regardless of statement type (diagnostic or
nondiagnostic).

The SHOW COUNT(*) WARNINGS diagnostic statement displays the total number of errors, warnings, and
notes. You can also retrieve this number from the warning_count system variable:

2523

SHOW Statements

SHOW COUNT(*) WARNINGS;
SELECT @@warning_count;

A difference in these statements is that the first is a diagnostic statement that does not clear the message
list. The second, because it is a SELECT statement is considered nondiagnostic and does clear the
message list.

A related diagnostic statement, SHOW ERRORS, shows only error conditions (it excludes warnings
and notes), and SHOW COUNT(*) ERRORS statement displays the total number of errors. See
Section 13.7.5.17, “SHOW ERRORS Statement”. GET DIAGNOSTICS can be used to examine information
for individual conditions. See Section 13.6.7.3, “GET DIAGNOSTICS Statement”.

Here is a simple example that shows data-conversion warnings for INSERT. The example assumes that
strict SQL mode is disabled. With strict mode enabled, the warnings would become errors and terminate
the INSERT.

mysql> CREATE TABLE t1 (a TINYINT NOT NULL, b CHAR(4));
Query OK, 0 rows affected (0.05 sec)

mysql> INSERT INTO t1 VALUES(10,'mysql'), (NULL,'test'), (300,'xyz');
Query OK, 3 rows affected, 3 warnings (0.00 sec)
Records: 3 Duplicates: 0 Warnings: 3

mysql> SHOW WARNINGS\G
*************************** 1. row ***************************
 Level: Warning
 Code: 1265
Message: Data truncated for column 'b' at row 1
*************************** 2. row ***************************
 Level: Warning
 Code: 1048
Message: Column 'a' cannot be null
*************************** 3. row ***************************
 Level: Warning
 Code: 1264
Message: Out of range value for column 'a' at row 3
3 rows in set (0.00 sec)

The max_error_count system variable controls the maximum number of error, warning, and note
messages for which the server stores information, and thus the number of messages that SHOW
WARNINGS displays. To change the number of messages the server can store, change the value of
max_error_count. The default is 64.

max_error_count controls only how many messages are stored, not how many are counted. The
value of warning_count is not limited by max_error_count, even if the number of messages
generated exceeds max_error_count. The following example demonstrates this. The ALTER TABLE
statement produces three warning messages (strict SQL mode is disabled for the example to prevent
an error from occuring after a single conversion issue). Only one message is stored and displayed
because max_error_count has been set to 1, but all three are counted (as shown by the value of
warning_count):

mysql> SHOW VARIABLES LIKE 'max_error_count';
+-----------------+-------+
| Variable_name | Value |
+-----------------+-------+
| max_error_count | 64 |
+-----------------+-------+
1 row in set (0.00 sec)

mysql> SET max_error_count=1, sql_mode = '';
Query OK, 0 rows affected (0.00 sec)

2524

SHOW Statements

mysql> ALTER TABLE t1 MODIFY b CHAR;
Query OK, 3 rows affected, 3 warnings (0.00 sec)
Records: 3 Duplicates: 0 Warnings: 3

mysql> SHOW WARNINGS;
+---------+------+--+
| Level | Code | Message |
+---------+------+--+
| Warning | 1263 | Data truncated for column 'b' at row 1 |
+---------+------+--+
1 row in set (0.00 sec)

mysql> SELECT @@warning_count;
+-----------------+
| @@warning_count |
+-----------------+
| 3 |
+-----------------+
1 row in set (0.01 sec)

To disable message storage, set max_error_count to 0. In this case, warning_count still indicates
how many warnings occurred, but messages are not stored and cannot be displayed.

The sql_notes system variable controls whether note messages increment warning_count and
whether the server stores them. By default, sql_notes is 1, but if set to 0, notes do not increment
warning_count and the server does not store them:

mysql> SET sql_notes = 1;
mysql> DROP TABLE IF EXISTS test.no_such_table;
Query OK, 0 rows affected, 1 warning (0.00 sec)
mysql> SHOW WARNINGS;
+-------+------+------------------------------------+
| Level | Code | Message |
+-------+------+------------------------------------+
| Note | 1051 | Unknown table 'test.no_such_table' |
+-------+------+------------------------------------+
1 row in set (0.00 sec)

mysql> SET sql_notes = 0;
mysql> DROP TABLE IF EXISTS test.no_such_table;
Query OK, 0 rows affected (0.00 sec)
mysql> SHOW WARNINGS;
Empty set (0.00 sec)

The MySQL server sends to each client a count indicating the total number of errors, warnings, and
notes resulting from the most recent statement executed by that client. From the C API, this value can be
obtained by calling mysql_warning_count(). See mysql_warning_count().

In the mysql client, you can enable and disable automatic warnings display using the warnings and
nowarning commands, respectively, or their shortcuts, \W and \w (see Section 4.5.1.2, “mysql Client
Commands”). For example:

mysql> \W
Show warnings enabled.
mysql> SELECT 1/0;
+------+
| 1/0 |
+------+
| NULL |
+------+
1 row in set, 1 warning (0.03 sec)

Warning (Code 1365): Division by 0
mysql> \w
Show warnings disabled.

2525

https://dev.mysql.com/doc/c-api/5.7/en/mysql-warning-count.html
https://dev.mysql.com/doc/c-api/5.7/en/mysql-warning-count.html

Other Administrative Statements

13.7.6 Other Administrative Statements

13.7.6.1 BINLOG Statement

BINLOG 'str'

BINLOG is an internal-use statement. It is generated by the mysqlbinlog program as the printable
representation of certain events in binary log files. (See Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”.) The 'str' value is a base 64-encoded string the that server decodes to determine the
data change indicated by the corresponding event. This statement requires the SUPER privilege.

This statement can execute only format description events and row events.

13.7.6.2 CACHE INDEX Statement

CACHE INDEX {
 tbl_index_list [, tbl_index_list] ...
 | tbl_name PARTITION (partition_list)
 }
 IN key_cache_name

tbl_index_list:
 tbl_name [{INDEX|KEY} (index_name[, index_name] ...)]

partition_list: {
 partition_name[, partition_name] ...
 | ALL
}

The CACHE INDEX statement assigns table indexes to a specific key cache. It applies only to MyISAM
tables, including partitioned MyISAM tables. After the indexes have been assigned, they can be preloaded
into the cache if desired with LOAD INDEX INTO CACHE.

The following statement assigns indexes from the tables t1, t2, and t3 to the key cache named
hot_cache:

mysql> CACHE INDEX t1, t2, t3 IN hot_cache;
+---------+--------------------+----------+----------+
| Table | Op | Msg_type | Msg_text |
+---------+--------------------+----------+----------+
test.t1	assign_to_keycache	status	OK
test.t2	assign_to_keycache	status	OK
test.t3	assign_to_keycache	status	OK
+---------+--------------------+----------+----------+

The syntax of CACHE INDEX enables you to specify that only particular indexes from a table should be
assigned to the cache. However, the implementation assigns all the table's indexes to the cache, so there
is no reason to specify anything other than the table name.

The key cache referred to in a CACHE INDEX statement can be created by setting its size with a parameter
setting statement or in the server parameter settings. For example:

SET GLOBAL keycache1.key_buffer_size=128*1024;

Key cache parameters are accessed as members of a structured system variable. See Section 5.1.8.3,
“Structured System Variables”.

A key cache must exist before you assign indexes to it, or an error occurs:

mysql> CACHE INDEX t1 IN non_existent_cache;
ERROR 1284 (HY000): Unknown key cache 'non_existent_cache'

2526

Other Administrative Statements

By default, table indexes are assigned to the main (default) key cache created at the server startup. When
a key cache is destroyed, all indexes assigned to it are reassigned to the default key cache.

Index assignment affects the server globally: If one client assigns an index to a given cache, this cache is
used for all queries involving the index, no matter which client issues the queries.

CACHE INDEX is supported for partitioned MyISAM tables. You can assign one or more indexes for one,
several, or all partitions to a given key cache. For example, you can do the following:

CREATE TABLE pt (c1 INT, c2 VARCHAR(50), INDEX i(c1))
 ENGINE=MyISAM
 PARTITION BY HASH(c1)
 PARTITIONS 4;

SET GLOBAL kc_fast.key_buffer_size = 128 * 1024;
SET GLOBAL kc_slow.key_buffer_size = 128 * 1024;

CACHE INDEX pt PARTITION (p0) IN kc_fast;
CACHE INDEX pt PARTITION (p1, p3) IN kc_slow;

The previous set of statements performs the following actions:

• Creates a partitioned table with 4 partitions; these partitions are automatically named p0, ..., p3; this
table has an index named i on column c1.

• Creates 2 key caches named kc_fast and kc_slow

• Assigns the index for partition p0 to the kc_fast key cache and the index for partitions p1 and p3 to the
kc_slow key cache; the index for the remaining partition (p2) uses the server's default key cache.

If you wish instead to assign the indexes for all partitions in table pt to a single key cache named kc_all,
you can use either of the following two statements:

CACHE INDEX pt PARTITION (ALL) IN kc_all;

CACHE INDEX pt IN kc_all;

The two statements just shown are equivalent, and issuing either one has exactly the same effect. In other
words, if you wish to assign indexes for all partitions of a partitioned table to the same key cache, the
PARTITION (ALL) clause is optional.

When assigning indexes for multiple partitions to a key cache, the partitions need not be contiguous, and
you need not list their names in any particular order. Indexes for any partitions not explicitly assigned to a
key cache automatically use the server default key cache.

Index preloading is also supported for partitioned MyISAM tables. For more information, see
Section 13.7.6.5, “LOAD INDEX INTO CACHE Statement”.

13.7.6.3 FLUSH Statement

FLUSH [NO_WRITE_TO_BINLOG | LOCAL] {
 flush_option [, flush_option] ...
 | tables_option
}

flush_option: {
 BINARY LOGS
 | DES_KEY_FILE
 | ENGINE LOGS
 | ERROR LOGS
 | GENERAL LOGS
 | HOSTS
 | LOGS

2527

Other Administrative Statements

 | PRIVILEGES
 | OPTIMIZER_COSTS
 | QUERY CACHE
 | RELAY LOGS [FOR CHANNEL channel]
 | SLOW LOGS
 | STATUS
 | USER_RESOURCES
}

tables_option: {
 table_synonym
 | table_synonym tbl_name [, tbl_name] ...
 | table_synonym WITH READ LOCK
 | table_synonym tbl_name [, tbl_name] ... WITH READ LOCK
 | table_synonym tbl_name [, tbl_name] ... FOR EXPORT
}

table_synonym: {
 TABLE
 | TABLES
}

The FLUSH statement has several variant forms that clear or reload various internal caches, flush tables, or
acquire locks. To execute FLUSH, you must have the RELOAD privilege. Specific flush options might require
additional privileges, as indicated in the option descriptions.

Note

It is not possible to issue FLUSH statements within stored functions or triggers.
However, you may use FLUSH in stored procedures, so long as these are not
called from stored functions or triggers. See Section 23.8, “Restrictions on Stored
Programs”.

By default, the server writes FLUSH statements to the binary log so that they replicate to replicas. To
suppress logging, specify the optional NO_WRITE_TO_BINLOG keyword or its alias LOCAL.

Note

FLUSH LOGS, FLUSH BINARY LOGS, FLUSH TABLES WITH READ LOCK (with
or without a table list), and FLUSH TABLES tbl_name ... FOR EXPORT are
not written to the binary log in any case because they would cause problems if
replicated to a replica.

The FLUSH statement causes an implicit commit. See Section 13.3.3, “Statements That Cause an Implicit
Commit”.

The mysqladmin utility provides a command-line interface to some flush operations, using commands
such as flush-hosts, flush-logs, flush-privileges, flush-status, and flush-tables. See
Section 4.5.2, “mysqladmin — A MySQL Server Administration Program”.

Sending a SIGHUP signal to the server causes several flush operations to occur that are similar to various
forms of the FLUSH statement. Signals can be sent by the root system account or the system account
that owns the server process. This enables the flush operations to be performed without having to connect
to the server, which requires a MySQL account that has privileges sufficient for those operations. See
Section 4.10, “Unix Signal Handling in MySQL”.

The RESET statement is similar to FLUSH. See Section 13.7.6.6, “RESET Statement”, for information about
using RESET with replication.

The following list describes the permitted FLUSH statement flush_option values. For descriptions of the
permitted tables_option values, see FLUSH TABLES Syntax.

2528

Other Administrative Statements

• FLUSH BINARY LOGS

Closes and reopens any binary log file to which the server is writing. If binary logging is enabled, the
sequence number of the binary log file is incremented by one relative to the previous file.

This operation has no effect on tables used for the binary and relay logs (as controlled by the
master_info_repository and relay_log_info_repository system variables).

• FLUSH DES_KEY_FILE

Reloads the DES keys from the file that was specified with the --des-key-file option at server
startup time.

Note

The DES_ENCRYPT() and DES_DECRYPT() functions are deprecated in MySQL
5.7, are removed in MySQL 8.0, and should no longer be used. Consequently, --
des-key-file and DES_KEY_FILE also are deprecated and are removed in
MySQL 8.0.

• FLUSH ENGINE LOGS

Closes and reopens any flushable logs for installed storage engines. This causes InnoDB to flush its
logs to disk.

• FLUSH ERROR LOGS

Closes and reopens any error log file to which the server is writing.

• FLUSH GENERAL LOGS

Closes and reopens any general query log file to which the server is writing.

This operation has no effect on tables used for the general query log (see Section 5.4.1, “Selecting
General Query Log and Slow Query Log Output Destinations”).

• FLUSH HOSTS

Empties the host cache and the Performance Schema host_cache table that exposes the cache
contents, and unblocks any blocked hosts.

For information about why host cache flushing might be advisable or desirable, see Section 5.1.11.2,
“DNS Lookups and the Host Cache”.

Note

The statement TRUNCATE TABLE performance_schema.host_cache,
unlike FLUSH HOSTS, is not written to the binary log. To obtain the same
behavior from the latter, specify NO_WRITE_TO_BINLOG or LOCAL as part of the
FLUSH HOSTS statement.

• FLUSH LOGS

Closes and reopens any log file to which the server is writing.

The effect of this operation is equivalent to the combined effects of these operations:

FLUSH BINARY LOGS

2529

Other Administrative Statements

FLUSH ENGINE LOGS
FLUSH ERROR LOGS
FLUSH GENERAL LOGS
FLUSH RELAY LOGS
FLUSH SLOW LOGS

• FLUSH OPTIMIZER_COSTS

Re-reads the cost model tables so that the optimizer starts using the current cost estimates stored in
them.

The server writes a warning to the error log for any unrecognized cost model table entries. For
information about these tables, see Section 8.9.5, “The Optimizer Cost Model”. This operation affects
only sessions that begin subsequent to the flush. Existing sessions continue to use the cost estimates
that were current when they began.

• FLUSH PRIVILEGES

Re-reads the privileges from the grant tables in the mysql system database.

Reloading the grant tables is necessary to enable updates to MySQL privileges and users only if you
make such changes directly to the grant tables; it is not needed for account management statements
such as GRANT or REVOKE, which take effect immediately. See Section 6.2.9, “When Privilege Changes
Take Effect”, for more information.

If the --skip-grant-tables option was specified at server startup to disable the MySQL privilege
system, FLUSH PRIVILEGES provides a way to enable the privilege system at runtime.

Frees memory cached by the server as a result of GRANT, CREATE USER, CREATE SERVER, and
INSTALL PLUGIN statements. This memory is not released by the corresponding REVOKE, DROP
USER, DROP SERVER, and UNINSTALL PLUGIN statements, so for a server that executes many
instances of the statements that cause caching, cached memory use increases unless it is freed with
FLUSH PRIVILEGES.

• FLUSH QUERY CACHE

Defragment the query cache to better utilize its memory. FLUSH QUERY CACHE does not remove any
queries from the cache, unlike FLUSH TABLES or RESET QUERY CACHE.

Note

The query cache is deprecated as of MySQL 5.7.20, and is removed in MySQL
8.0. Deprecation includes FLUSH QUERY CACHE.

• FLUSH RELAY LOGS [FOR CHANNEL channel]

Closes and reopens any relay log file to which the server is writing. If relay logging is enabled, the
sequence number of the relay log file is incremented by one relative to the previous file.

The FOR CHANNEL channel clause enables you to name which replication channel the operation
applies to. Execute FLUSH RELAY LOGS FOR CHANNEL channel to flush the relay log for a specific
replication channel. If no channel is named and no extra replication channels exist, the operation applies
to the default channel. If no channel is named and multiple replication channels exist, the operation
applies to all replication channels, with the exception of the group_replication_applier channel.
For more information, see Section 16.2.2, “Replication Channels”.

This operation has no effect on tables used for the binary and relay logs (as controlled by the
master_info_repository and relay_log_info_repository system variables).

2530

Other Administrative Statements

• FLUSH SLOW LOGS

Closes and reopens any slow query log file to which the server is writing.

This operation has no effect on tables used for the slow query log (see Section 5.4.1, “Selecting General
Query Log and Slow Query Log Output Destinations”).

• FLUSH STATUS

Flushes status indicators.

This operation adds the current thread's session status variable values to the global values and resets
the session values to zero. Some global variables may be reset to zero as well. It also resets the
counters for key caches (default and named) to zero and sets Max_used_connections to the current
number of open connections. This information may be of use when debugging a query. See Section 1.5,
“How to Report Bugs or Problems”.

FLUSH STATUS is unaffected by read_only or super_read_only, and is always written to the binary
log.

Note

The value of the show_compatibility_56 system variable affects the
operation of this FLUSH option. For details, see the description of that variable in
Section 5.1.7, “Server System Variables”.

• FLUSH USER_RESOURCES

Resets all per-hour user resource indicators to zero.

Resetting resource indicators enables clients that have reached their hourly connection, query, or update
limits to resume activity immediately. FLUSH USER_RESOURCES does not apply to the limit on maximum
simultaneous connections that is controlled by the max_user_connections system variable. See
Section 6.2.16, “Setting Account Resource Limits”.

FLUSH TABLES Syntax

FLUSH TABLES flushes tables, and, depending on the variant used, acquires locks. Any TABLES variant
used in a FLUSH statement must be the only option used. FLUSH TABLE is a synonym for FLUSH
TABLES.

Note

The descriptions here that indicate tables are flushed by closing them apply
differently for InnoDB, which flushes table contents to disk but leaves them open.
This still permits table files to be copied while the tables are open, as long as other
activity does not modify them.

• FLUSH TABLES

Closes all open tables, forces all tables in use to be closed, and flushes the query cache and prepared
statement cache. FLUSH TABLES also removes all query results from the query cache, like the RESET
QUERY CACHE statement. For information about query caching and prepared statement caching, see
Section 8.10.3, “The MySQL Query Cache”. and Section 8.10.4, “Caching of Prepared Statements and
Stored Programs”.

2531

Other Administrative Statements

FLUSH TABLES is not permitted when there is an active LOCK TABLES ... READ. To flush and lock
tables, use FLUSH TABLES tbl_name ... WITH READ LOCK instead.

• FLUSH TABLES tbl_name [, tbl_name] ...

With a list of one or more comma-separated table names, this operation is like FLUSH TABLES with no
names except that the server flushes only the named tables. If a named table does not exist, no error
occurs.

• FLUSH TABLES WITH READ LOCK

Closes all open tables and locks all tables for all databases with a global read lock.

This operation is a very convenient way to get backups if you have a file system such as Veritas or ZFS
that can take snapshots in time. Use UNLOCK TABLES to release the lock.

FLUSH TABLES WITH READ LOCK acquires a global read lock rather than table locks, so it is not
subject to the same behavior as LOCK TABLES and UNLOCK TABLES with respect to table locking and
implicit commits:

• UNLOCK TABLES implicitly commits any active transaction only if any tables currently have been
locked with LOCK TABLES. The commit does not occur for UNLOCK TABLES following FLUSH
TABLES WITH READ LOCK because the latter statement does not acquire table locks.

• Beginning a transaction causes table locks acquired with LOCK TABLES to be released, as though you
had executed UNLOCK TABLES. Beginning a transaction does not release a global read lock acquired
with FLUSH TABLES WITH READ LOCK.

Prior to MySQL 5.7.19, FLUSH TABLES WITH READ LOCK is not compatible with XA transactions.

FLUSH TABLES WITH READ LOCK does not prevent the server from inserting rows into the log tables
(see Section 5.4.1, “Selecting General Query Log and Slow Query Log Output Destinations”).

• FLUSH TABLES tbl_name [, tbl_name] ... WITH READ LOCK

Flushes and acquires read locks for the named tables.

Because this operation acquires table locks, it requires the LOCK TABLES privilege for each table, in
addition to the RELOAD privilege.

The operation first acquires exclusive metadata locks for the tables, so it waits for transactions that have
those tables open to complete. Then the operation flushes the tables from the table cache, reopens
the tables, acquires table locks (like LOCK TABLES ... READ), and downgrades the metadata locks
from exclusive to shared. After the operation acquires locks and downgrades the metadata locks, other
sessions can read but not modify the tables.

This operation applies only to existing base (non-TEMPORARY) tables. If a name refers to a base
table, that table is used. If it refers to a TEMPORARY table, it is ignored. If a name applies to a view, an
ER_WRONG_OBJECT error occurs. Otherwise, an ER_NO_SUCH_TABLE error occurs.

Use UNLOCK TABLES to release the locks, LOCK TABLES to release the locks and acquire other locks,
or START TRANSACTION to release the locks and begin a new transaction.

This FLUSH TABLES variant enables tables to be flushed and locked in a single operation. It provides
a workaround for the restriction that FLUSH TABLES is not permitted when there is an active LOCK
TABLES ... READ.

2532

https://dev.mysql.com/doc/mysql-errors/5.7/en/server-error-reference.html#error_er_wrong_object
https://dev.mysql.com/doc/mysql-errors/5.7/en/server-error-reference.html#error_er_no_such_table

Other Administrative Statements

This operation does not perform an implicit UNLOCK TABLES, so an error results if you perform the
operation while there is any active LOCK TABLES or use it a second time without first releasing the locks
acquired.

If a flushed table was opened with HANDLER, the handler is implicitly flushed and loses its position.

• FLUSH TABLES tbl_name [, tbl_name] ... FOR EXPORT

This FLUSH TABLES variant applies to InnoDB tables. It ensures that changes to the named tables
have been flushed to disk so that binary table copies can be made while the server is running.

Because the FLUSH TABLES ... FOR EXPORT operation acquires locks on tables in preparation for
exporting them, it requires the LOCK TABLES and SELECT privileges for each table, in addition to the
RELOAD privilege.

The operation works like this:

1. It acquires shared metadata locks for the named tables. The operation blocks as long as other
sessions have active transactions that have modified those tables or hold table locks for them. When
the locks have been acquired, the operation blocks transactions that attempt to update the tables,
while permitting read-only operations to continue.

2. It checks whether all storage engines for the tables support FOR EXPORT. If any do not, an
ER_ILLEGAL_HA error occurs and the operation fails.

3. The operation notifies the storage engine for each table to make the table ready for export. The
storage engine must ensure that any pending changes are written to disk.

4. The operation puts the session in lock-tables mode so that the metadata locks acquired earlier are
not released when the FOR EXPORT operation completes.

This operation applies only to existing base (non-TEMPORARY) tables. If a name refers to a base
table, that table is used. If it refers to a TEMPORARY table, it is ignored. If a name applies to a view, an
ER_WRONG_OBJECT error occurs. Otherwise, an ER_NO_SUCH_TABLE error occurs.

InnoDB supports FOR EXPORT for tables that have their own .ibd file file (that is, tables created with
the innodb_file_per_table setting enabled). InnoDB ensures when notified by the FOR EXPORT
operation that any changes have been flushed to disk. This permits a binary copy of table contents to be
made while the FOR EXPORT operation is in effect because the .ibd file is transaction consistent and
can be copied while the server is running. FOR EXPORT does not apply to InnoDB system tablespace
files, or to InnoDB tables that have FULLTEXT indexes.

FLUSH TABLES ...FOR EXPORT is supported for partitioned InnoDB tables.

When notified by FOR EXPORT, InnoDB writes to disk certain kinds of data that is normally held in
memory or in separate disk buffers outside the tablespace files. For each table, InnoDB also produces
a file named table_name.cfg in the same database directory as the table. The .cfg file contains
metadata needed to reimport the tablespace files later, into the same or different server.

When the FOR EXPORT operation completes, InnoDB has flushed all dirty pages to the table data files.
Any change buffer entries are merged prior to flushing. At this point, the tables are locked and quiescent:

2533

https://dev.mysql.com/doc/mysql-errors/5.7/en/server-error-reference.html#error_er_illegal_ha
https://dev.mysql.com/doc/mysql-errors/5.7/en/server-error-reference.html#error_er_wrong_object
https://dev.mysql.com/doc/mysql-errors/5.7/en/server-error-reference.html#error_er_no_such_table

Other Administrative Statements

The tables are in a transactionally consistent state on disk and you can copy the .ibd tablespace files
along with the corresponding .cfg files to get a consistent snapshot of those tables.

For the procedure to reimport the copied table data into a MySQL instance, see Section 14.6.1.3,
“Importing InnoDB Tables”.

After you are done with the tables, use UNLOCK TABLES to release the locks, LOCK TABLES to release
the locks and acquire other locks, or START TRANSACTION to release the locks and begin a new
transaction.

While any of these statements is in effect within the session, attempts to use FLUSH TABLES ... FOR
EXPORT produce an error:

FLUSH TABLES ... WITH READ LOCK
FLUSH TABLES ... FOR EXPORT
LOCK TABLES ... READ
LOCK TABLES ... WRITE

While FLUSH TABLES ... FOR EXPORT is in effect within the session, attempts to use any of these
statements produce an error:

FLUSH TABLES WITH READ LOCK
FLUSH TABLES ... WITH READ LOCK
FLUSH TABLES ... FOR EXPORT

13.7.6.4 KILL Statement

KILL [CONNECTION | QUERY] processlist_id

Each connection to mysqld runs in a separate thread. You can kill a thread with the KILL
processlist_id statement.

Thread processlist identifiers can be determined from the ID column of the INFORMATION_SCHEMA
PROCESSLIST table, the Id column of SHOW PROCESSLIST output, and the PROCESSLIST_ID
column of the Performance Schema threads table. The value for the current thread is returned by the
CONNECTION_ID() function.

KILL permits an optional CONNECTION or QUERY modifier:

• KILL CONNECTION is the same as KILL with no modifier: It terminates the connection associated with
the given processlist_id, after terminating any statement the connection is executing.

• KILL QUERY terminates the statement the connection is currently executing, but leaves the connection
itself intact.

The ability to see which threads are available to be killed depends on the PROCESS privilege:

• Without PROCESS, you can see only your own threads.

• With PROCESS, you can see all threads.

The ability to kill threads and statements depends on the SUPER privilege:

• Without SUPER, you can kill only your own threads and statements.

• With SUPER, you can kill all threads and statements.

You can also use the mysqladmin processlist and mysqladmin kill commands to examine and
kill threads.

2534

Other Administrative Statements

Note

You cannot use KILL with the Embedded MySQL Server library because the
embedded server merely runs inside the threads of the host application. It does not
create any connection threads of its own.

When you use KILL, a thread-specific kill flag is set for the thread. In most cases, it might take some time
for the thread to die because the kill flag is checked only at specific intervals:

• During SELECT operations, for ORDER BY and GROUP BY loops, the flag is checked after reading a
block of rows. If the kill flag is set, the statement is aborted.

• ALTER TABLE operations that make a table copy check the kill flag periodically for each few copied rows
read from the original table. If the kill flag was set, the statement is aborted and the temporary table is
deleted.

The KILL statement returns without waiting for confirmation, but the kill flag check aborts the operation
within a reasonably small amount of time. Aborting the operation to perform any necessary cleanup also
takes some time.

• During UPDATE or DELETE operations, the kill flag is checked after each block read and after each
updated or deleted row. If the kill flag is set, the statement is aborted. If you are not using transactions,
the changes are not rolled back.

• GET_LOCK() aborts and returns NULL.

• If the thread is in the table lock handler (state: Locked), the table lock is quickly aborted.

• If the thread is waiting for free disk space in a write call, the write is aborted with a “disk full” error
message.

Warning

Killing a REPAIR TABLE or OPTIMIZE TABLE operation on a MyISAM table results
in a table that is corrupted and unusable. Any reads or writes to such a table fail
until you optimize or repair it again (without interruption).

13.7.6.5 LOAD INDEX INTO CACHE Statement

LOAD INDEX INTO CACHE
 tbl_index_list [, tbl_index_list] ...

tbl_index_list:
 tbl_name
 [PARTITION (partition_list)]
 [{INDEX|KEY} (index_name[, index_name] ...)]
 [IGNORE LEAVES]

partition_list: {
 partition_name[, partition_name] ...
 | ALL
}

The LOAD INDEX INTO CACHE statement preloads a table index into the key cache to which it has been
assigned by an explicit CACHE INDEX statement, or into the default key cache otherwise.

LOAD INDEX INTO CACHE applies only to MyISAM tables, including partitioned MyISAM tables. In
addition, indexes on partitioned tables can be preloaded for one, several, or all partitions.

The IGNORE LEAVES modifier causes only blocks for the nonleaf nodes of the index to be preloaded.

2535

Other Administrative Statements

IGNORE LEAVES is also supported for partitioned MyISAM tables.

The following statement preloads nodes (index blocks) of indexes for the tables t1 and t2:

mysql> LOAD INDEX INTO CACHE t1, t2 IGNORE LEAVES;
+---------+--------------+----------+----------+
| Table | Op | Msg_type | Msg_text |
+---------+--------------+----------+----------+
| test.t1 | preload_keys | status | OK |
| test.t2 | preload_keys | status | OK |
+---------+--------------+----------+----------+

This statement preloads all index blocks from t1. It preloads only blocks for the nonleaf nodes from t2.

The syntax of LOAD INDEX INTO CACHE enables you to specify that only particular indexes from a table
should be preloaded. However, the implementation preloads all the table's indexes into the cache, so there
is no reason to specify anything other than the table name.

It is possible to preload indexes on specific partitions of partitioned MyISAM tables. For example, of the
following 2 statements, the first preloads indexes for partition p0 of a partitioned table pt, while the second
preloads the indexes for partitions p1 and p3 of the same table:

LOAD INDEX INTO CACHE pt PARTITION (p0);
LOAD INDEX INTO CACHE pt PARTITION (p1, p3);

To preload the indexes for all partitions in table pt, you can use either of the following two statements:

LOAD INDEX INTO CACHE pt PARTITION (ALL);

LOAD INDEX INTO CACHE pt;

The two statements just shown are equivalent, and issuing either one has exactly the same effect. In other
words, if you wish to preload indexes for all partitions of a partitioned table, the PARTITION (ALL) clause
is optional.

When preloading indexes for multiple partitions, the partitions need not be contiguous, and you need not
list their names in any particular order.

LOAD INDEX INTO CACHE ... IGNORE LEAVES fails unless all indexes in a table have the same
block size. To determine index block sizes for a table, use myisamchk -dv and check the Blocksize
column.

13.7.6.6 RESET Statement

RESET reset_option [, reset_option] ...

reset_option: {
 MASTER
 | QUERY CACHE
 | SLAVE
}

The RESET statement is used to clear the state of various server operations. You must have the RELOAD
privilege to execute RESET.

RESET acts as a stronger version of the FLUSH statement. See Section 13.7.6.3, “FLUSH Statement”.

The RESET statement causes an implicit commit. See Section 13.3.3, “Statements That Cause an Implicit
Commit”.

The following list describes the permitted RESET statement reset_option values:

2536

Utility Statements

• RESET MASTER

Deletes all binary logs listed in the index file, resets the binary log index file to be empty, and creates a
new binary log file.

• RESET QUERY CACHE

Removes all query results from the query cache.

Note

The query cache is deprecated as of MySQL 5.7.20, and is removed in MySQL
8.0. Deprecation includes RESET QUERY CACHE.

• RESET SLAVE

Makes the replica forget its replication position in the source binary logs. Also resets the relay log by
deleting any existing relay log files and beginning a new one.

13.7.6.7 SHUTDOWN Statement

SHUTDOWN

This statement stops the MySQL server. It requires the SHUTDOWN privilege.

SHUTDOWN provides an SQL-level interface to the same functionality available using the mysqladmin
shutdown command or the mysql_shutdown() C API function. A successful SHUTDOWN sequence
consists of checking the privileges, validating the arguments, and sending an OK packet to the client. Then
the server is shut down.

The Com_shutdown status variable tracks the number of SHUTDOWN statements. Because status variables
are initialized for each server startup and do not persist across restarts, Com_shutdown normally has a
value of zero, but can be nonzero if SHUTDOWN statements were executed but failed.

Another way to stop the server is to send it a SIGTERM signal, which can be done by root or the account
that owns the server process. SIGTERM enables server shutdown to be performed without having to
connect to the server. See Section 4.10, “Unix Signal Handling in MySQL”.

13.8 Utility Statements

13.8.1 DESCRIBE Statement

The DESCRIBE and EXPLAIN statements are synonyms, used either to obtain information about table
structure or query execution plans. For more information, see Section 13.7.5.5, “SHOW COLUMNS
Statement”, and Section 13.8.2, “EXPLAIN Statement”.

13.8.2 EXPLAIN Statement
{EXPLAIN | DESCRIBE | DESC}
 tbl_name [col_name | wild]

{EXPLAIN | DESCRIBE | DESC}
 [explain_type]
 {explainable_stmt | FOR CONNECTION connection_id}

explain_type: {
 EXTENDED
 | PARTITIONS

2537

https://dev.mysql.com/doc/c-api/5.7/en/mysql-shutdown.html

EXPLAIN Statement

 | FORMAT = format_name
}

format_name: {
 TRADITIONAL
 | JSON
}

explainable_stmt: {
 SELECT statement
 | DELETE statement
 | INSERT statement
 | REPLACE statement
 | UPDATE statement
}

The DESCRIBE and EXPLAIN statements are synonyms. In practice, the DESCRIBE keyword is more often
used to obtain information about table structure, whereas EXPLAIN is used to obtain a query execution
plan (that is, an explanation of how MySQL would execute a query).

The following discussion uses the DESCRIBE and EXPLAIN keywords in accordance with those uses, but
the MySQL parser treats them as completely synonymous.

• Obtaining Table Structure Information

• Obtaining Execution Plan Information

Obtaining Table Structure Information

DESCRIBE provides information about the columns in a table:

mysql> DESCRIBE City;
+------------+----------+------+-----+---------+----------------+
| Field | Type | Null | Key | Default | Extra |
+------------+----------+------+-----+---------+----------------+
Id	int(11)	NO	PRI	NULL	auto_increment
Name	char(35)	NO			
Country	char(3)	NO	UNI		
District	char(20)	YES	MUL		
Population	int(11)	NO		0	
+------------+----------+------+-----+---------+----------------+

DESCRIBE is a shortcut for SHOW COLUMNS. These statements also display information for views. The
description for SHOW COLUMNS provides more information about the output columns. See Section 13.7.5.5,
“SHOW COLUMNS Statement”.

By default, DESCRIBE displays information about all columns in the table. col_name, if given, is the name
of a column in the table. In this case, the statement displays information only for the named column. wild,
if given, is a pattern string. It can contain the SQL % and _ wildcard characters. In this case, the statement
displays output only for the columns with names matching the string. There is no need to enclose the string
within quotation marks unless it contains spaces or other special characters.

The DESCRIBE statement is provided for compatibility with Oracle.

The SHOW CREATE TABLE, SHOW TABLE STATUS, and SHOW INDEX statements also provide
information about tables. See Section 13.7.5, “SHOW Statements”.

Obtaining Execution Plan Information

The EXPLAIN statement provides information about how MySQL executes statements:

• EXPLAIN works with SELECT, DELETE, INSERT, REPLACE, and UPDATE statements.

2538

EXPLAIN Statement

• When EXPLAIN is used with an explainable statement, MySQL displays information from the optimizer
about the statement execution plan. That is, MySQL explains how it would process the statement,
including information about how tables are joined and in which order. For information about using
EXPLAIN to obtain execution plan information, see Section 8.8.2, “EXPLAIN Output Format”.

• When EXPLAIN is used with FOR CONNECTION connection_id rather than an explainable
statement, it displays the execution plan for the statement executing in the named connection. See
Section 8.8.4, “Obtaining Execution Plan Information for a Named Connection”.

• For SELECT statements, EXPLAIN produces additional execution plan information that can be displayed
using SHOW WARNINGS. See Section 8.8.3, “Extended EXPLAIN Output Format”.

Note

In older MySQL releases, extended information was produced using EXPLAIN
EXTENDED. That syntax is still recognized for backward compatibility but
extended output is now enabled by default, so the EXTENDED keyword is
superfluous and deprecated. Its use results in a warning, and it is removed from
EXPLAIN syntax in MySQL 8.0.

• EXPLAIN is useful for examining queries involving partitioned tables. See Section 22.3.5, “Obtaining
Information About Partitions”.

Note

In older MySQL releases, partition information was produced using EXPLAIN
PARTITIONS. That syntax is still recognized for backward compatibility but
partition output is now enabled by default, so the PARTITIONS keyword is
superfluous and deprecated. Its use results in a warning, and it is removed from
EXPLAIN syntax in MySQL 8.0.

• The FORMAT option can be used to select the output format. TRADITIONAL presents the output in
tabular format. This is the default if no FORMAT option is present. JSON format displays the information in
JSON format.

For complex statements, the JSON output can be quite large; in particular, it can be difficult when
reading it to pair the closing bracket and opening brackets; to cause the JSON structure's key, if it has
one, to be repeated near the closing bracket, set end_markers_in_json=ON. You should be aware
that while this makes the output easier to read, it also renders the JSON invalid, causing JSON functions
to raise an error.

EXPLAIN requires the same privileges required to execute the explained statement. Additionally, EXPLAIN
also requires the SHOW VIEW privilege for any explained view.

With the help of EXPLAIN, you can see where you should add indexes to tables so that the statement
executes faster by using indexes to find rows. You can also use EXPLAIN to check whether the optimizer
joins the tables in an optimal order. To give a hint to the optimizer to use a join order corresponding
to the order in which the tables are named in a SELECT statement, begin the statement with SELECT
STRAIGHT_JOIN rather than just SELECT. (See Section 13.2.9, “SELECT Statement”.)

The optimizer trace may sometimes provide information complementary to that of EXPLAIN. However, the
optimizer trace format and content are subject to change between versions. For details, see Section 8.15,
“Tracing the Optimizer”.

If you have a problem with indexes not being used when you believe that they should be, run ANALYZE
TABLE to update table statistics, such as cardinality of keys, that can affect the choices the optimizer
makes. See Section 13.7.2.1, “ANALYZE TABLE Statement”.

2539

HELP Statement

Note

MySQL Workbench has a Visual Explain capability that provides a visual
representation of EXPLAIN output. See Tutorial: Using Explain to Improve Query
Performance.

13.8.3 HELP Statement

HELP 'search_string'

The HELP statement returns online information from the MySQL Reference Manual. Its proper operation
requires that the help tables in the mysql database be initialized with help topic information (see
Section 5.1.14, “Server-Side Help Support”).

The HELP statement searches the help tables for the given search string and displays the result of the
search. The search string is not case-sensitive.

The search string can contain the wildcard characters % and _. These have the same meaning as for
pattern-matching operations performed with the LIKE operator. For example, HELP 'rep%' returns a list
of topics that begin with rep.

The HELP statement does not require a terminator such as ; or \G.

The HELP statement understands several types of search strings:

• At the most general level, use contents to retrieve a list of the top-level help categories:

HELP 'contents'

• For a list of topics in a given help category, such as Data Types, use the category name:

HELP 'data types'

• For help on a specific help topic, such as the ASCII() function or the CREATE TABLE statement, use
the associated keyword or keywords:

HELP 'ascii'
HELP 'create table'

In other words, the search string matches a category, many topics, or a single topic. The following
descriptions indicate the forms that the result set can take.

• Empty result

No match could be found for the search string.

Example: HELP 'fake'

Yields:

Nothing found
Please try to run 'help contents' for a list of all accessible topics

• Result set containing a single row

This means that the search string yielded a hit for the help topic. The result includes the following items:

• name: The topic name.

2540

https://dev.mysql.com/doc/workbench/en/wb-tutorial-visual-explain-dbt3.html
https://dev.mysql.com/doc/workbench/en/wb-tutorial-visual-explain-dbt3.html

HELP Statement

• description: Descriptive help text for the topic.

• example: One or more usage examples. (May be empty.)

Example: HELP 'log'

Yields:

Name: 'LOG'
Description:
Syntax:
LOG(X), LOG(B,X)

If called with one parameter, this function returns the natural
logarithm of X. If X is less than or equal to 0.0E0, the function
returns NULL and a warning "Invalid argument for logarithm" is
reported. Returns NULL if X or B is NULL.

The inverse of this function (when called with a single argument) is
the EXP() function.

URL: https://dev.mysql.com/doc/refman/8.0/en/mathematical-functions.html

Examples:
mysql> SELECT LOG(2);
 -> 0.69314718055995
mysql> SELECT LOG(-2);
 -> NULL

• List of topics.

This means that the search string matched multiple help topics.

Example: HELP 'status'

Yields:

Many help items for your request exist.
To make a more specific request, please type 'help <item>',
where <item> is one of the following topics:
 FLUSH
 SHOW
 SHOW ENGINE
 SHOW FUNCTION STATUS
 SHOW MASTER STATUS
 SHOW PROCEDURE STATUS
 SHOW SLAVE STATUS
 SHOW STATUS
 SHOW TABLE STATUS

• List of topics.

A list is also displayed if the search string matches a category.

Example: HELP 'functions'

Yields:

You asked for help about help category: "Functions"
For more information, type 'help <item>', where <item> is one of the following
categories:
 Aggregate Functions and Modifiers
 Bit Functions

2541

USE Statement

 Cast Functions and Operators
 Comparison Operators
 Date and Time Functions
 Encryption Functions
 Enterprise Encryption Functions
 Flow Control Functions
 GROUP BY Functions and Modifiers
 GTID
 Information Functions
 Locking Functions
 Logical Operators
 Miscellaneous Functions
 Numeric Functions
 Spatial Functions
 String Functions
 XML

13.8.4 USE Statement
USE db_name

The USE statement tells MySQL to use the named database as the default (current) database for
subsequent statements. This statement requires some privilege for the database or some object within it.

The named database remains the default until the end of the session or another USE statement is issued:

USE db1;
SELECT COUNT(*) FROM mytable; # selects from db1.mytable
USE db2;
SELECT COUNT(*) FROM mytable; # selects from db2.mytable

The database name must be specified on a single line. Newlines in database names are not supported.

Making a particular database the default by means of the USE statement does not preclude accessing
tables in other databases. The following example accesses the author table from the db1 database and
the editor table from the db2 database:

USE db1;
SELECT author_name,editor_name FROM author,db2.editor
 WHERE author.editor_id = db2.editor.editor_id;

2542

Chapter 14 The InnoDB Storage Engine

Table of Contents
14.1 Introduction to InnoDB ... 2545

14.1.1 Benefits of Using InnoDB Tables .. 2546
14.1.2 Best Practices for InnoDB Tables ... 2547
14.1.3 Verifying that InnoDB is the Default Storage Engine ... 2548
14.1.4 Testing and Benchmarking with InnoDB .. 2548
14.1.5 Turning Off InnoDB .. 2549

14.2 InnoDB and the ACID Model ... 2549
14.3 InnoDB Multi-Versioning .. 2550
14.4 InnoDB Architecture .. 2552
14.5 InnoDB In-Memory Structures .. 2552

14.5.1 Buffer Pool ... 2552
14.5.2 Change Buffer .. 2557
14.5.3 Adaptive Hash Index .. 2561
14.5.4 Log Buffer .. 2562

14.6 InnoDB On-Disk Structures .. 2562
14.6.1 Tables ... 2562
14.6.2 Indexes .. 2586
14.6.3 Tablespaces ... 2594
14.6.4 InnoDB Data Dictionary .. 2609
14.6.5 Doublewrite Buffer .. 2609
14.6.6 Redo Log ... 2609
14.6.7 Undo Logs ... 2610

14.7 InnoDB Locking and Transaction Model ... 2612
14.7.1 InnoDB Locking .. 2612
14.7.2 InnoDB Transaction Model .. 2616
14.7.3 Locks Set by Different SQL Statements in InnoDB ... 2624
14.7.4 Phantom Rows ... 2628
14.7.5 Deadlocks in InnoDB .. 2629

14.8 InnoDB Configuration .. 2632
14.8.1 InnoDB Startup Configuration .. 2632
14.8.2 Configuring InnoDB for Read-Only Operation ... 2638
14.8.3 InnoDB Buffer Pool Configuration .. 2639
14.8.4 Configuring the Memory Allocator for InnoDB .. 2652
14.8.5 Configuring Thread Concurrency for InnoDB .. 2652
14.8.6 Configuring the Number of Background InnoDB I/O Threads .. 2653
14.8.7 Using Asynchronous I/O on Linux ... 2654
14.8.8 Configuring InnoDB I/O Capacity .. 2655
14.8.9 Configuring Spin Lock Polling ... 2656
14.8.10 Purge Configuration .. 2657
14.8.11 Configuring Optimizer Statistics for InnoDB .. 2658
14.8.12 Configuring the Merge Threshold for Index Pages .. 2670

14.9 InnoDB Table and Page Compression ... 2672
14.9.1 InnoDB Table Compression .. 2672
14.9.2 InnoDB Page Compression ... 2687

14.10 InnoDB File-Format Management ... 2691
14.10.1 Enabling File Formats ... 2692
14.10.2 Verifying File Format Compatibility .. 2692

2543

14.10.3 Identifying the File Format in Use .. 2695
14.10.4 Modifying the File Format ... 2696

14.11 InnoDB Row Formats .. 2697
14.12 InnoDB Disk I/O and File Space Management .. 2703

14.12.1 InnoDB Disk I/O ... 2704
14.12.2 File Space Management ... 2705
14.12.3 InnoDB Checkpoints ... 2706
14.12.4 Defragmenting a Table ... 2706
14.12.5 Reclaiming Disk Space with TRUNCATE TABLE ... 2707

14.13 InnoDB and Online DDL .. 2707
14.13.1 Online DDL Operations ... 2708
14.13.2 Online DDL Performance and Concurrency ... 2720
14.13.3 Online DDL Space Requirements .. 2724
14.13.4 Simplifying DDL Statements with Online DDL .. 2724
14.13.5 Online DDL Failure Conditions .. 2725
14.13.6 Online DDL Limitations ... 2725

14.14 InnoDB Data-at-Rest Encryption .. 2726
14.15 InnoDB Startup Options and System Variables ... 2731
14.16 InnoDB INFORMATION_SCHEMA Tables .. 2815

14.16.1 InnoDB INFORMATION_SCHEMA Tables about Compression 2815
14.16.2 InnoDB INFORMATION_SCHEMA Transaction and Locking Information 2817
14.16.3 InnoDB INFORMATION_SCHEMA System Tables ... 2824
14.16.4 InnoDB INFORMATION_SCHEMA FULLTEXT Index Tables 2830
14.16.5 InnoDB INFORMATION_SCHEMA Buffer Pool Tables ... 2833
14.16.6 InnoDB INFORMATION_SCHEMA Metrics Table ... 2837
14.16.7 InnoDB INFORMATION_SCHEMA Temporary Table Info Table 2846
14.16.8 Retrieving InnoDB Tablespace Metadata from INFORMATION_SCHEMA.FILES 2847

14.17 InnoDB Integration with MySQL Performance Schema .. 2849
14.17.1 Monitoring ALTER TABLE Progress for InnoDB Tables Using Performance Schema 2851
14.17.2 Monitoring InnoDB Mutex Waits Using Performance Schema 2853

14.18 InnoDB Monitors ... 2856
14.18.1 InnoDB Monitor Types .. 2857
14.18.2 Enabling InnoDB Monitors .. 2857
14.18.3 InnoDB Standard Monitor and Lock Monitor Output .. 2859

14.19 InnoDB Backup and Recovery ... 2864
14.19.1 InnoDB Backup .. 2864
14.19.2 InnoDB Recovery ... 2865

14.20 InnoDB and MySQL Replication ... 2868
14.21 InnoDB memcached Plugin .. 2870

14.21.1 Benefits of the InnoDB memcached Plugin .. 2870
14.21.2 InnoDB memcached Architecture .. 2871
14.21.3 Setting Up the InnoDB memcached Plugin .. 2873
14.21.4 Security Considerations for the InnoDB memcached Plugin .. 2879
14.21.5 Writing Applications for the InnoDB memcached Plugin .. 2880
14.21.6 The InnoDB memcached Plugin and Replication .. 2893
14.21.7 InnoDB memcached Plugin Internals ... 2897
14.21.8 Troubleshooting the InnoDB memcached Plugin .. 2901

14.22 InnoDB Troubleshooting .. 2903
14.22.1 Troubleshooting InnoDB I/O Problems ... 2904
14.22.2 Forcing InnoDB Recovery ... 2905
14.22.3 Troubleshooting InnoDB Data Dictionary Operations .. 2906
14.22.4 InnoDB Error Handling .. 2911

14.23 InnoDB Limits ... 2911
14.24 InnoDB Restrictions and Limitations ... 2913

2544

Introduction to InnoDB

14.1 Introduction to InnoDB

InnoDB is a general-purpose storage engine that balances high reliability and high performance. In
MySQL 5.7, InnoDB is the default MySQL storage engine. Unless you have configured a different default
storage engine, issuing a CREATE TABLE statement without an ENGINE clause creates an InnoDB table.

Key Advantages of InnoDB

• Its DML operations follow the ACID model, with transactions featuring commit, rollback, and crash-
recovery capabilities to protect user data. See Section 14.2, “InnoDB and the ACID Model”.

• Row-level locking and Oracle-style consistent reads increase multi-user concurrency and performance.
See Section 14.7, “InnoDB Locking and Transaction Model”.

• InnoDB tables arrange your data on disk to optimize queries based on primary keys. Each InnoDB table
has a primary key index called the clustered index that organizes the data to minimize I/O for primary
key lookups. See Section 14.6.2.1, “Clustered and Secondary Indexes”.

• To maintain data integrity, InnoDB supports FOREIGN KEY constraints. With foreign keys, inserts,
updates, and deletes are checked to ensure they do not result in inconsistencies across related tables.
See Section 13.1.18.5, “FOREIGN KEY Constraints”.

Table 14.1 InnoDB Storage Engine Features

Feature Support

B-tree indexes Yes

Backup/point-in-time recovery (Implemented in
the server, rather than in the storage engine.)

Yes

Cluster database support No

Clustered indexes Yes

Compressed data Yes

Data caches Yes

Encrypted data Yes (Implemented in the server via encryption
functions; In MySQL 5.7 and later, data-at-rest
encryption is supported.)

Foreign key support Yes

Full-text search indexes Yes (Support for FULLTEXT indexes is available in
MySQL 5.6 and later.)

Geospatial data type support Yes

Geospatial indexing support Yes (Support for geospatial indexing is available in
MySQL 5.7 and later.)

Hash indexes No (InnoDB utilizes hash indexes internally for its
Adaptive Hash Index feature.)

Index caches Yes

Locking granularity Row

MVCC Yes

Replication support (Implemented in the server,
rather than in the storage engine.)

Yes

2545

InnoDB Enhancements and New Features

Feature Support

Storage limits 64TB

T-tree indexes No

Transactions Yes

Update statistics for data dictionary Yes

To compare the features of InnoDB with other storage engines provided with MySQL, see the Storage
Engine Features table in Chapter 15, Alternative Storage Engines.

InnoDB Enhancements and New Features

For information about InnoDB enhancements and new features, refer to:

• The InnoDB enhancements list in Section 1.3, “What Is New in MySQL 5.7”.

• The Release Notes.

Additional InnoDB Information and Resources

• For InnoDB-related terms and definitions, see the MySQL Glossary.

• For a forum dedicated to the InnoDB storage engine, see MySQL Forums::InnoDB.

• InnoDB is published under the same GNU GPL License Version 2 (of June 1991) as MySQL. For more
information on MySQL licensing, see http://www.mysql.com/company/legal/licensing/.

14.1.1 Benefits of Using InnoDB Tables

InnoDB tables have the following benefits:

• If the server unexpectedly exits because of a hardware or software issue, regardless of what was
happening in the database at the time, you don't need to do anything special after restarting the
database. InnoDB crash recovery automatically finalizes changes that were committed before the time
of the crash, and undoes changes that were in process but not committed, permitting you to restart and
continue from where you left off. See Section 14.19.2, “InnoDB Recovery”.

• The InnoDB storage engine maintains its own buffer pool that caches table and index data in main
memory as data is accessed. Frequently used data is processed directly from memory. This cache
applies to many types of information and speeds up processing. On dedicated database servers, up to
80% of physical memory is often assigned to the buffer pool. See Section 14.5.1, “Buffer Pool”.

• If you split up related data into different tables, you can set up foreign keys that enforce referential
integrity. See Section 13.1.18.5, “FOREIGN KEY Constraints”.

• If data becomes corrupted on disk or in memory, a checksum mechanism alerts you to the bogus data
before you use it. The innodb_checksum_algorithm variable defines the checksum algorithm used
by InnoDB.

• When you design a database with appropriate primary key columns for each table, operations involving
those columns are automatically optimized. It is very fast to reference the primary key columns in WHERE
clauses, ORDER BY clauses, GROUP BY clauses, and join operations. See Section 14.6.2.1, “Clustered
and Secondary Indexes”.

• Inserts, updates, and deletes are optimized by an automatic mechanism called change buffering.
InnoDB not only allows concurrent read and write access to the same table, it caches changed data to
streamline disk I/O. See Section 14.5.2, “Change Buffer”.

2546

https://dev.mysql.com/doc/relnotes/mysql/5.7/en/
http://forums.mysql.com/list.php?22
http://www.mysql.com/company/legal/licensing/

Best Practices for InnoDB Tables

• Performance benefits are not limited to large tables with long-running queries. When the same rows are
accessed over and over from a table, the Adaptive Hash Index takes over to make these lookups even
faster, as if they came out of a hash table. See Section 14.5.3, “Adaptive Hash Index”.

• You can compress tables and associated indexes. See Section 14.9, “InnoDB Table and Page
Compression”.

• You can encrypt your data. See Section 14.14, “InnoDB Data-at-Rest Encryption”.

• You can create and drop indexes and perform other DDL operations with much less impact on
performance and availability. See Section 14.13.1, “Online DDL Operations”.

• Truncating a file-per-table tablespace is very fast and can free up disk space for the operating system to
reuse rather than only InnoDB. See Section 14.6.3.2, “File-Per-Table Tablespaces”.

• The storage layout for table data is more efficient for BLOB and long text fields, with the DYNAMIC row
format. See Section 14.11, “InnoDB Row Formats”.

• You can monitor the internal workings of the storage engine by querying INFORMATION_SCHEMA tables.
See Section 14.16, “InnoDB INFORMATION_SCHEMA Tables”.

• You can monitor the performance details of the storage engine by querying Performance Schema tables.
See Section 14.17, “InnoDB Integration with MySQL Performance Schema”.

• You can mix InnoDB tables with tables from other MySQL storage engines, even within the same
statement. For example, you can use a join operation to combine data from InnoDB and MEMORY tables
in a single query.

• InnoDB has been designed for CPU efficiency and maximum performance when processing large data
volumes.

• InnoDB tables can handle large quantities of data, even on operating systems where file size is limited
to 2GB.

For InnoDB-specific tuning techniques you can apply to your MySQL server and application code, see
Section 8.5, “Optimizing for InnoDB Tables”.

14.1.2 Best Practices for InnoDB Tables

This section describes best practices when using InnoDB tables.

• Specify a primary key for every table using the most frequently queried column or columns, or an auto-
increment value if there is no obvious primary key.

• Use joins wherever data is pulled from multiple tables based on identical ID values from those tables.
For fast join performance, define foreign keys on the join columns, and declare those columns with the
same data type in each table. Adding foreign keys ensures that referenced columns are indexed, which
can improve performance. Foreign keys also propagate deletes and updates to all affected tables, and
prevent insertion of data in a child table if the corresponding IDs are not present in the parent table.

• Turn off autocommit. Committing hundreds of times a second puts a cap on performance (limited by the
write speed of your storage device).

• Group sets of related DML operations into transactions by bracketing them with START TRANSACTION
and COMMIT statements. While you don't want to commit too often, you also don't want to issue huge
batches of INSERT, UPDATE, or DELETE statements that run for hours without committing.

2547

Verifying that InnoDB is the Default Storage Engine

• Do not use LOCK TABLES statements. InnoDB can handle multiple sessions all reading and writing to
the same table at once without sacrificing reliability or high performance. To get exclusive write access to
a set of rows, use the SELECT ... FOR UPDATE syntax to lock just the rows you intend to update.

• Enable the innodb_file_per_table variable or use general tablespaces to put the data and indexes
for tables into separate files instead of the system tablespace. The innodb_file_per_table variable
is enabled by default.

• Evaluate whether your data and access patterns benefit from the InnoDB table or page compression
features. You can compress InnoDB tables without sacrificing read/write capability.

• Run the server with the --sql_mode=NO_ENGINE_SUBSTITUTION option to prevent tables from being
created with storage engines that you do not want to use.

14.1.3 Verifying that InnoDB is the Default Storage Engine

Issue the SHOW ENGINES statement to view the available MySQL storage engines. Look for DEFAULT in
the SUPPORT column.

mysql> SHOW ENGINES;

Alternatively, query the Information Schema ENGINES table.

mysql> SELECT * FROM INFORMATION_SCHEMA.ENGINES;

14.1.4 Testing and Benchmarking with InnoDB

If InnoDB is not the default storage engine, you can determine if your database server and applications
work correctly with InnoDB by restarting the server with --default-storage-engine=InnoDB on
the command line or with default-storage-engine=innodb defined in the [mysqld] section of the
MySQL server option file.

Since changing the default storage engine only affects newly created tables, run your application
installation and setup steps to confirm that everything installs properly, then exercise the application
features to make sure the data loading, editing, and querying features work. If a table relies on
a feature that is specific to another storage engine, you receive an error. In this case, add the
ENGINE=other_engine_name clause to the CREATE TABLE statement to avoid the error.

If you did not make a deliberate decision about the storage engine, and you want to preview how
certain tables work when created using InnoDB, issue the command ALTER TABLE table_name
ENGINE=InnoDB; for each table. Alternatively, to run test queries and other statements without disturbing
the original table, make a copy:

CREATE TABLE ... ENGINE=InnoDB AS SELECT * FROM other_engine_table;

To assess performance with a full application under a realistic workload, install the latest MySQL server
and run benchmarks.

Test the full application lifecycle, from installation, through heavy usage, and server restart. Kill the server
process while the database is busy to simulate a power failure, and verify that the data is recovered
successfully when you restart the server.

Test any replication configurations, especially if you use different MySQL versions and options on the
source server and replicas.

2548

Turning Off InnoDB

14.1.5 Turning Off InnoDB

Oracle recommends InnoDB as the preferred storage engine for typical database applications, from single-
user wikis and blogs running on a local system, to high-end applications pushing the limits of performance.
In MySQL 5.7, InnoDB is the default storage engine for new tables.

Important

InnoDB cannot be disabled. The --skip-innodb option is deprecated and has no
effect, and its use results in a warning. Expect it to be removed in a future MySQL
release. This also applies to its synonyms (--innodb=OFF, --disable-innodb,
and so forth).

14.2 InnoDB and the ACID Model

The ACID model is a set of database design principles that emphasize aspects of reliability that are
important for business data and mission-critical applications. MySQL includes components such as the
InnoDB storage engine that adhere closely to the ACID model so that data is not corrupted and results are
not distorted by exceptional conditions such as software crashes and hardware malfunctions. When you
rely on ACID-compliant features, you do not need to reinvent the wheel of consistency checking and crash
recovery mechanisms. In cases where you have additional software safeguards, ultra-reliable hardware,
or an application that can tolerate a small amount of data loss or inconsistency, you can adjust MySQL
settings to trade some of the ACID reliability for greater performance or throughput.

The following sections discuss how MySQL features, in particular the InnoDB storage engine, interact with
the categories of the ACID model:

• A: atomicity.

• C: consistency.

• I:: isolation.

• D: durability.

Atomicity

The atomicity aspect of the ACID model mainly involves InnoDB transactions. Related MySQL features
include:

• The autocommit setting.

• The COMMIT statement.

• The ROLLBACK statement.

Consistency

The consistency aspect of the ACID model mainly involves internal InnoDB processing to protect data
from crashes. Related MySQL features include:

• The InnoDB doublewrite buffer. See Section 14.6.5, “Doublewrite Buffer”.

• InnoDB crash recovery. See InnoDB Crash Recovery.

2549

Isolation

Isolation

The isolation aspect of the ACID model mainly involves InnoDB transactions, in particular the isolation
level that applies to each transaction. Related MySQL features include:

• The autocommit setting.

• Transaction isolation levels and the SET TRANSACTION statement. See Section 14.7.2.1, “Transaction
Isolation Levels”.

• The low-level details of InnoDB locking. Details can be viewed in the INFORMATION_SCHEMA tables.
See Section 14.16.2, “InnoDB INFORMATION_SCHEMA Transaction and Locking Information”.

Durability

The durability aspect of the ACID model involves MySQL software features interacting with your particular
hardware configuration. Because of the many possibilities depending on the capabilities of your CPU,
network, and storage devices, this aspect is the most complicated to provide concrete guidelines for. (And
those guidelines might take the form of “buy new hardware”.) Related MySQL features include:

• The InnoDB doublewrite buffer. See Section 14.6.5, “Doublewrite Buffer”.

• The innodb_flush_log_at_trx_commit variable.

• The sync_binlog variable.

• The innodb_file_per_table variable.

• The write buffer in a storage device, such as a disk drive, SSD, or RAID array.

• A battery-backed cache in a storage device.

• The operating system used to run MySQL, in particular its support for the fsync() system call.

• An uninterruptible power supply (UPS) protecting the electrical power to all computer servers and
storage devices that run MySQL servers and store MySQL data.

• Your backup strategy, such as frequency and types of backups, and backup retention periods.

• For distributed or hosted data applications, the particular characteristics of the data centers where the
hardware for the MySQL servers is located, and network connections between the data centers.

14.3 InnoDB Multi-Versioning

InnoDB is a multi-version storage engine. It keeps information about old versions of changed rows to
support transactional features such as concurrency and rollback. This information is stored in the system
tablespace or undo tablespaces in a data structure called a rollback segment. See Section 14.6.3.4,
“Undo Tablespaces”. InnoDB uses the information in the rollback segment to perform the undo operations
needed in a transaction rollback. It also uses the information to build earlier versions of a row for a
consistent read. See Section 14.7.2.3, “Consistent Nonlocking Reads”.

Internally, InnoDB adds three fields to each row stored in the database:

• A 6-byte DB_TRX_ID field indicates the transaction identifier for the last transaction that inserted or
updated the row. Also, a deletion is treated internally as an update where a special bit in the row is set to
mark it as deleted.

2550

Multi-Versioning and Secondary Indexes

• A 7-byte DB_ROLL_PTR field called the roll pointer. The roll pointer points to an undo log record written
to the rollback segment. If the row was updated, the undo log record contains the information necessary
to rebuild the content of the row before it was updated.

• A 6-byte DB_ROW_ID field contains a row ID that increases monotonically as new rows are inserted. If
InnoDB generates a clustered index automatically, the index contains row ID values. Otherwise, the
DB_ROW_ID column does not appear in any index.

Undo logs in the rollback segment are divided into insert and update undo logs. Insert undo logs are
needed only in transaction rollback and can be discarded as soon as the transaction commits. Update
undo logs are used also in consistent reads, but they can be discarded only after there is no transaction
present for which InnoDB has assigned a snapshot that in a consistent read could require the information
in the update undo log to build an earlier version of a database row. For additional information about undo
logs, see Section 14.6.7, “Undo Logs”.

It is recommend that you commit transactions regularly, including transactions that issue only consistent
reads. Otherwise, InnoDB cannot discard data from the update undo logs, and the rollback segment
may grow too big, filling up the tablespace in which it resides. For information about managing undo
tablespaces, see Section 14.6.3.4, “Undo Tablespaces”.

The physical size of an undo log record in the rollback segment is typically smaller than the corresponding
inserted or updated row. You can use this information to calculate the space needed for your rollback
segment.

In the InnoDB multi-versioning scheme, a row is not physically removed from the database immediately
when you delete it with an SQL statement. InnoDB only physically removes the corresponding row and its
index records when it discards the update undo log record written for the deletion. This removal operation
is called a purge, and it is quite fast, usually taking the same order of time as the SQL statement that did
the deletion.

If you insert and delete rows in smallish batches at about the same rate in the table, the purge thread
can start to lag behind and the table can grow bigger and bigger because of all the “dead” rows, making
everything disk-bound and very slow. In such cases, throttle new row operations, and allocate more
resources to the purge thread by tuning the innodb_max_purge_lag system variable. For more
information, see Section 14.8.10, “Purge Configuration”.

Multi-Versioning and Secondary Indexes

InnoDB multiversion concurrency control (MVCC) treats secondary indexes differently than clustered
indexes. Records in a clustered index are updated in-place, and their hidden system columns point undo
log entries from which earlier versions of records can be reconstructed. Unlike clustered index records,
secondary index records do not contain hidden system columns nor are they updated in-place.

When a secondary index column is updated, old secondary index records are delete-marked, new records
are inserted, and delete-marked records are eventually purged. When a secondary index record is delete-
marked or the secondary index page is updated by a newer transaction, InnoDB looks up the database
record in the clustered index. In the clustered index, the record's DB_TRX_ID is checked, and the correct
version of the record is retrieved from the undo log if the record was modified after the reading transaction
was initiated.

If a secondary index record is marked for deletion or the secondary index page is updated by a newer
transaction, the covering index technique is not used. Instead of returning values from the index structure,
InnoDB looks up the record in the clustered index.

However, if the index condition pushdown (ICP) optimization is enabled, and parts of the WHERE condition
can be evaluated using only fields from the index, the MySQL server still pushes this part of the WHERE

2551

InnoDB Architecture

condition down to the storage engine where it is evaluated using the index. If no matching records are
found, the clustered index lookup is avoided. If matching records are found, even among delete-marked
records, InnoDB looks up the record in the clustered index.

14.4 InnoDB Architecture

The following diagram shows in-memory and on-disk structures that comprise the InnoDB storage engine
architecture. For information about each structure, see Section 14.5, “InnoDB In-Memory Structures”, and
Section 14.6, “InnoDB On-Disk Structures”.

Figure 14.1 InnoDB Architecture

14.5 InnoDB In-Memory Structures

This section describes InnoDB in-memory structures and related topics.

14.5.1 Buffer Pool

The buffer pool is an area in main memory where InnoDB caches table and index data as it is accessed.
The buffer pool permits frequently used data to be accessed directly from memory, which speeds up
processing. On dedicated servers, up to 80% of physical memory is often assigned to the buffer pool.

2552

Buffer Pool

For efficiency of high-volume read operations, the buffer pool is divided into pages that can potentially
hold multiple rows. For efficiency of cache management, the buffer pool is implemented as a linked list of
pages; data that is rarely used is aged out of the cache using a variation of the least recently used (LRU)
algorithm.

Knowing how to take advantage of the buffer pool to keep frequently accessed data in memory is an
important aspect of MySQL tuning.

Buffer Pool LRU Algorithm

The buffer pool is managed as a list using a variation of the LRU algorithm. When room is needed to add a
new page to the buffer pool, the least recently used page is evicted and a new page is added to the middle
of the list. This midpoint insertion strategy treats the list as two sublists:

• At the head, a sublist of new (“young”) pages that were accessed recently

• At the tail, a sublist of old pages that were accessed less recently

Figure 14.2 Buffer Pool List

The algorithm keeps frequently used pages in the new sublist. The old sublist contains less frequently used
pages; these pages are candidates for eviction.

By default, the algorithm operates as follows:

2553

Buffer Pool

• 3/8 of the buffer pool is devoted to the old sublist.

• The midpoint of the list is the boundary where the tail of the new sublist meets the head of the old sublist.

• When InnoDB reads a page into the buffer pool, it initially inserts it at the midpoint (the head of the old
sublist). A page can be read because it is required for a user-initiated operation such as an SQL query,
or as part of a read-ahead operation performed automatically by InnoDB.

• Accessing a page in the old sublist makes it “young”, moving it to the head of the new sublist. If the page
was read because it was required by a user-initiated operation, the first access occurs immediately and
the page is made young. If the page was read due to a read-ahead operation, the first access does not
occur immediately and might not occur at all before the page is evicted.

• As the database operates, pages in the buffer pool that are not accessed “age” by moving toward the tail
of the list. Pages in both the new and old sublists age as other pages are made new. Pages in the old
sublist also age as pages are inserted at the midpoint. Eventually, a page that remains unused reaches
the tail of the old sublist and is evicted.

By default, pages read by queries are immediately moved into the new sublist, meaning they stay in the
buffer pool longer. A table scan, performed for a mysqldump operation or a SELECT statement with no
WHERE clause, for example, can bring a large amount of data into the buffer pool and evict an equivalent
amount of older data, even if the new data is never used again. Similarly, pages that are loaded by the
read-ahead background thread and accessed only once are moved to the head of the new list. These
situations can push frequently used pages to the old sublist where they become subject to eviction. For
information about optimizing this behavior, see Section 14.8.3.3, “Making the Buffer Pool Scan Resistant”,
and Section 14.8.3.4, “Configuring InnoDB Buffer Pool Prefetching (Read-Ahead)”.

InnoDB Standard Monitor output contains several fields in the BUFFER POOL AND MEMORY section
regarding operation of the buffer pool LRU algorithm. For details, see Monitoring the Buffer Pool Using the
InnoDB Standard Monitor.

Buffer Pool Configuration

You can configure the various aspects of the buffer pool to improve performance.

• Ideally, you set the size of the buffer pool to as large a value as practical, leaving enough memory for
other processes on the server to run without excessive paging. The larger the buffer pool, the more
InnoDB acts like an in-memory database, reading data from disk once and then accessing the data from
memory during subsequent reads. See Section 14.8.3.1, “Configuring InnoDB Buffer Pool Size”.

• On 64-bit systems with sufficient memory, you can split the buffer pool into multiple parts to minimize
contention for memory structures among concurrent operations. For details, see Section 14.8.3.2,
“Configuring Multiple Buffer Pool Instances”.

• You can keep frequently accessed data in memory regardless of sudden spikes of activity from
operations that would bring large amounts of infrequently accessed data into the buffer pool. For details,
see Section 14.8.3.3, “Making the Buffer Pool Scan Resistant”.

• You can control how and when to perform read-ahead requests to prefetch pages into the buffer pool
asynchronously in anticipation that the pages are needed soon. For details, see Section 14.8.3.4,
“Configuring InnoDB Buffer Pool Prefetching (Read-Ahead)”.

• You can control when background flushing occurs and whether or not the rate of flushing is dynamically
adjusted based on workload. For details, see Section 14.8.3.5, “Configuring Buffer Pool Flushing”.

• You can configure how InnoDB preserves the current buffer pool state to avoid a lengthy warmup period
after a server restart. For details, see Section 14.8.3.6, “Saving and Restoring the Buffer Pool State”.

2554

Buffer Pool

Monitoring the Buffer Pool Using the InnoDB Standard Monitor

InnoDB Standard Monitor output, which can be accessed using SHOW ENGINE INNODB STATUS,
provides metrics regarding operation of the buffer pool. Buffer pool metrics are located in the BUFFER
POOL AND MEMORY section of InnoDB Standard Monitor output:

BUFFER POOL AND MEMORY

Total large memory allocated 2198863872
Dictionary memory allocated 776332
Buffer pool size 131072
Free buffers 124908
Database pages 5720
Old database pages 2071
Modified db pages 910
Pending reads 0
Pending writes: LRU 0, flush list 0, single page 0
Pages made young 4, not young 0
0.10 youngs/s, 0.00 non-youngs/s
Pages read 197, created 5523, written 5060
0.00 reads/s, 190.89 creates/s, 244.94 writes/s
Buffer pool hit rate 1000 / 1000, young-making rate 0 / 1000 not
0 / 1000
Pages read ahead 0.00/s, evicted without access 0.00/s, Random read
ahead 0.00/s
LRU len: 5720, unzip_LRU len: 0
I/O sum[0]:cur[0], unzip sum[0]:cur[0]

The following table describes buffer pool metrics reported by the InnoDB Standard Monitor.

Per second averages provided in InnoDB Standard Monitor output are based on the elapsed time since
InnoDB Standard Monitor output was last printed.

Table 14.2 InnoDB Buffer Pool Metrics

Name Description

Total memory allocated The total memory allocated for the buffer pool in
bytes.

Dictionary memory allocated The total memory allocated for the InnoDB data
dictionary in bytes.

Buffer pool size The total size in pages allocated to the buffer pool.

Free buffers The total size in pages of the buffer pool free list.

Database pages The total size in pages of the buffer pool LRU list.

Old database pages The total size in pages of the buffer pool old LRU
sublist.

Modified db pages The current number of pages modified in the buffer
pool.

Pending reads The number of buffer pool pages waiting to be read
into the buffer pool.

Pending writes LRU The number of old dirty pages within the buffer pool
to be written from the bottom of the LRU list.

Pending writes flush list The number of buffer pool pages to be flushed
during checkpointing.

Pending writes single page The number of pending independent page writes
within the buffer pool.

2555

Buffer Pool

Name Description

Pages made young The total number of pages made young in the buffer
pool LRU list (moved to the head of sublist of “new”
pages).

Pages made not young The total number of pages not made young in the
buffer pool LRU list (pages that have remained in
the “old” sublist without being made young).

youngs/s The per second average of accesses to old pages in
the buffer pool LRU list that have resulted in making
pages young. See the notes that follow this table for
more information.

non-youngs/s The per second average of accesses to old pages
in the buffer pool LRU list that have resulted in not
making pages young. See the notes that follow this
table for more information.

Pages read The total number of pages read from the buffer pool.

Pages created The total number of pages created within the buffer
pool.

Pages written The total number of pages written from the buffer
pool.

reads/s The per second average number of buffer pool page
reads per second.

creates/s The average number of buffer pool pages created
per second.

writes/s The average number of buffer pool page writes per
second.

Buffer pool hit rate The buffer pool page hit rate for pages read from the
buffer pool vs from disk storage.

young-making rate The average hit rate at which page accesses have
resulted in making pages young. See the notes that
follow this table for more information.

not (young-making rate) The average hit rate at which page accesses have
not resulted in making pages young. See the notes
that follow this table for more information.

Pages read ahead The per second average of read ahead operations.

Pages evicted without access The per second average of the pages evicted
without being accessed from the buffer pool.

Random read ahead The per second average of random read ahead
operations.

LRU len The total size in pages of the buffer pool LRU list.

unzip_LRU len The length (in pages) of the buffer pool unzip_LRU
list.

I/O sum The total number of buffer pool LRU list pages
accessed.

I/O cur The total number of buffer pool LRU list pages
accessed in the current interval.

2556

Change Buffer

Name Description

I/O unzip sum The total number of buffer pool unzip_LRU list
pages decompressed.

I/O unzip cur The total number of buffer pool unzip_LRU list
pages decompressed in the current interval.

Notes:

• The youngs/s metric is applicable only to old pages. It is based on the number of page accesses.
There can be multiple accesses for a given page, all of which are counted. If you see very low youngs/
s values when there are no large scans occurring, consider reducing the delay time or increasing the
percentage of the buffer pool used for the old sublist. Increasing the percentage makes the old sublist
larger so that it takes longer for pages in that sublist to move to the tail, which increases the likelihood
that those pages are accessed again and made young. See Section 14.8.3.3, “Making the Buffer Pool
Scan Resistant”.

• The non-youngs/s metric is applicable only to old pages. It is based on the number of page accesses.
There can be multiple accesses for a given page, all of which are counted. If you do not see a higher
non-youngs/s value when performing large table scans (and a higher youngs/s value), increase the
delay value. See Section 14.8.3.3, “Making the Buffer Pool Scan Resistant”.

• The young-making rate accounts for all buffer pool page accesses, not just accesses for pages in the
old sublist. The young-making rate and not rate do not normally add up to the overall buffer pool hit
rate. Page hits in the old sublist cause pages to move to the new sublist, but page hits in the new sublist
cause pages to move to the head of the list only if they are a certain distance from the head.

• not (young-making rate) is the average hit rate at which page accesses have not resulted in
making pages young due to the delay defined by innodb_old_blocks_time not being met, or due to
page hits in the new sublist that did not result in pages being moved to the head. This rate accounts for
all buffer pool page accesses, not just accesses for pages in the old sublist.

Buffer pool server status variables and the INNODB_BUFFER_POOL_STATS table provide many of
the same buffer pool metrics found in InnoDB Standard Monitor output. For more information, see
Example 14.10, “Querying the INNODB_BUFFER_POOL_STATS Table”.

14.5.2 Change Buffer

The change buffer is a special data structure that caches changes to secondary index pages when those
pages are not in the buffer pool. The buffered changes, which may result from INSERT, UPDATE, or
DELETE operations (DML), are merged later when the pages are loaded into the buffer pool by other read
operations.

2557

Change Buffer

Figure 14.3 Change Buffer

Unlike clustered indexes, secondary indexes are usually nonunique, and inserts into secondary indexes
happen in a relatively random order. Similarly, deletes and updates may affect secondary index pages
that are not adjacently located in an index tree. Merging cached changes at a later time, when affected
pages are read into the buffer pool by other operations, avoids substantial random access I/O that would
be required to read secondary index pages into the buffer pool from disk.

Periodically, the purge operation that runs when the system is mostly idle, or during a slow shutdown,
writes the updated index pages to disk. The purge operation can write disk blocks for a series of index
values more efficiently than if each value were written to disk immediately.

Change buffer merging may take several hours when there are many affected rows and numerous
secondary indexes to update. During this time, disk I/O is increased, which can cause a significant
slowdown for disk-bound queries. Change buffer merging may also continue to occur after a transaction is
committed, and even after a server shutdown and restart (see Section 14.22.2, “Forcing InnoDB Recovery”
for more information).

In memory, the change buffer occupies part of the buffer pool. On disk, the change buffer is part of the
system tablespace, where index changes are buffered when the database server is shut down.

The type of data cached in the change buffer is governed by the innodb_change_buffering variable.
For more information, see Configuring Change Buffering. You can also configure the maximum change
buffer size. For more information, see Configuring the Change Buffer Maximum Size.

Change buffering is not supported for a secondary index if the index contains a descending index column
or if the primary key includes a descending index column.

For answers to frequently asked questions about the change buffer, see Section A.16, “MySQL 5.7 FAQ:
InnoDB Change Buffer”.

Configuring Change Buffering

When INSERT, UPDATE, and DELETE operations are performed on a table, the values of indexed columns
(particularly the values of secondary keys) are often in an unsorted order, requiring substantial I/O to bring

2558

Change Buffer

secondary indexes up to date. The change buffer caches changes to secondary index entries when the
relevant page is not in the buffer pool, thus avoiding expensive I/O operations by not immediately reading
in the page from disk. The buffered changes are merged when the page is loaded into the buffer pool, and
the updated page is later flushed to disk. The InnoDB main thread merges buffered changes when the
server is nearly idle, and during a slow shutdown.

Because it can result in fewer disk reads and writes, change buffering is most valuable for workloads that
are I/O-bound; for example, applications with a high volume of DML operations such as bulk inserts benefit
from change buffering.

However, the change buffer occupies a part of the buffer pool, reducing the memory available to cache
data pages. If the working set almost fits in the buffer pool, or if your tables have relatively few secondary
indexes, it may be useful to disable change buffering. If the working data set fits entirely within the buffer
pool, change buffering does not impose extra overhead, because it only applies to pages that are not in the
buffer pool.

The innodb_change_buffering variable controls the extent to which InnoDB performs change
buffering. You can enable or disable buffering for inserts, delete operations (when index records are
initially marked for deletion) and purge operations (when index records are physically deleted). An update
operation is a combination of an insert and a delete. The default innodb_change_buffering value is
all.

Permitted innodb_change_buffering values include:

• all

The default value: buffer inserts, delete-marking operations, and purges.

• none

Do not buffer any operations.

• inserts

Buffer insert operations.

• deletes

Buffer delete-marking operations.

• changes

Buffer both inserts and delete-marking operations.

• purges

Buffer physical deletion operations that happen in the background.

You can set the innodb_change_buffering variable in the MySQL option file (my.cnf or my.ini) or
change it dynamically with the SET GLOBAL statement, which requires privileges sufficient to set global
system variables. See Section 5.1.8.1, “System Variable Privileges”. Changing the setting affects the
buffering of new operations; the merging of existing buffered entries is not affected.

Configuring the Change Buffer Maximum Size

The innodb_change_buffer_max_size variable permits configuring the maximum
size of the change buffer as a percentage of the total size of the buffer pool. By default,
innodb_change_buffer_max_size is set to 25. The maximum setting is 50.

2559

Change Buffer

Consider increasing innodb_change_buffer_max_size on a MySQL server with heavy insert, update,
and delete activity, where change buffer merging does not keep pace with new change buffer entries,
causing the change buffer to reach its maximum size limit.

Consider decreasing innodb_change_buffer_max_size on a MySQL server with static data used for
reporting, or if the change buffer consumes too much of the memory space shared with the buffer pool,
causing pages to age out of the buffer pool sooner than desired.

Test different settings with a representative workload to determine an optimal configuration. The
innodb_change_buffer_max_size variable is dynamic, which permits modifying the setting without
restarting the server.

Monitoring the Change Buffer

The following options are available for change buffer monitoring:

• InnoDB Standard Monitor output includes change buffer status information. To view monitor data, issue
the SHOW ENGINE INNODB STATUS statement.

mysql> SHOW ENGINE INNODB STATUS\G

Change buffer status information is located under the INSERT BUFFER AND ADAPTIVE HASH INDEX
heading and appears similar to the following:

INSERT BUFFER AND ADAPTIVE HASH INDEX

Ibuf: size 1, free list len 0, seg size 2, 0 merges
merged operations:
 insert 0, delete mark 0, delete 0
discarded operations:
 insert 0, delete mark 0, delete 0
Hash table size 4425293, used cells 32, node heap has 1 buffer(s)
13577.57 hash searches/s, 202.47 non-hash searches/s

For more information, see Section 14.18.3, “InnoDB Standard Monitor and Lock Monitor Output”.

• The Information Schema INNODB_METRICS table provides most of the data points found in InnoDB
Standard Monitor output plus other data points. To view change buffer metrics and a description of each,
issue the following query:

mysql> SELECT NAME, COMMENT FROM INFORMATION_SCHEMA.INNODB_METRICS WHERE NAME LIKE '%ibuf%'\G

For INNODB_METRICS table usage information, see Section 14.16.6, “InnoDB
INFORMATION_SCHEMA Metrics Table”.

• The Information Schema INNODB_BUFFER_PAGE table provides metadata about each page in the buffer
pool, including change buffer index and change buffer bitmap pages. Change buffer pages are identified
by PAGE_TYPE. IBUF_INDEX is the page type for change buffer index pages, and IBUF_BITMAP is the
page type for change buffer bitmap pages.

Warning

Querying the INNODB_BUFFER_PAGE table can introduce significant performance
overhead. To avoid impacting performance, reproduce the issue you want to
investigate on a test instance and run your queries on the test instance.

For example, you can query the INNODB_BUFFER_PAGE table to determine the approximate number of
IBUF_INDEX and IBUF_BITMAP pages as a percentage of total buffer pool pages.

2560

Adaptive Hash Index

mysql> SELECT (SELECT COUNT(*) FROM INFORMATION_SCHEMA.INNODB_BUFFER_PAGE
 WHERE PAGE_TYPE LIKE 'IBUF%') AS change_buffer_pages,
 (SELECT COUNT(*) FROM INFORMATION_SCHEMA.INNODB_BUFFER_PAGE) AS total_pages,
 (SELECT ((change_buffer_pages/total_pages)*100))
 AS change_buffer_page_percentage;
+---------------------+-------------+-------------------------------+
| change_buffer_pages | total_pages | change_buffer_page_percentage |
+---------------------+-------------+-------------------------------+
| 25 | 8192 | 0.3052 |
+---------------------+-------------+-------------------------------+

For information about other data provided by the INNODB_BUFFER_PAGE table, see Section 24.4.2,
“The INFORMATION_SCHEMA INNODB_BUFFER_PAGE Table”. For related usage information, see
Section 14.16.5, “InnoDB INFORMATION_SCHEMA Buffer Pool Tables”.

• Performance Schema provides change buffer mutex wait instrumentation for advanced performance
monitoring. To view change buffer instrumentation, issue the following query:

mysql> SELECT * FROM performance_schema.setup_instruments
 WHERE NAME LIKE '%wait/synch/mutex/innodb/ibuf%';
+---+---------+-------+
| NAME | ENABLED | TIMED |
+---+---------+-------+
wait/synch/mutex/innodb/ibuf_bitmap_mutex	YES	YES
wait/synch/mutex/innodb/ibuf_mutex	YES	YES
wait/synch/mutex/innodb/ibuf_pessimistic_insert_mutex	YES	YES
+---+---------+-------+

For information about monitoring InnoDB mutex waits, see Section 14.17.2, “Monitoring InnoDB Mutex
Waits Using Performance Schema”.

14.5.3 Adaptive Hash Index

The adaptive hash index enables InnoDB to perform more like an in-memory database on
systems with appropriate combinations of workload and sufficient memory for the buffer pool
without sacrificing transactional features or reliability. The adaptive hash index is enabled by the
innodb_adaptive_hash_index variable, or turned off at server startup by --skip-innodb-
adaptive-hash-index.

Based on the observed pattern of searches, a hash index is built using a prefix of the index key. The
prefix can be any length, and it may be that only some values in the B-tree appear in the hash index. Hash
indexes are built on demand for the pages of the index that are accessed often.

If a table fits almost entirely in main memory, a hash index speeds up queries by enabling direct lookup of
any element, turning the index value into a sort of pointer. InnoDB has a mechanism that monitors index
searches. If InnoDB notices that queries could benefit from building a hash index, it does so automatically.

With some workloads, the speedup from hash index lookups greatly outweighs the extra work to monitor
index lookups and maintain the hash index structure. Access to the adaptive hash index can sometimes
become a source of contention under heavy workloads, such as multiple concurrent joins. Queries with
LIKE operators and % wildcards also tend not to benefit. For workloads that do not benefit from the
adaptive hash index, turning it off reduces unnecessary performance overhead. Because it is difficult to
predict in advance whether the adaptive hash index feature is appropriate for a particular system and
workload, consider running benchmarks with it enabled and disabled.

In MySQL 5.7, the adaptive hash index feature is partitioned. Each index is bound to a specific
partition, and each partition is protected by a separate latch. Partitioning is controlled by the
innodb_adaptive_hash_index_parts variable. In earlier releases, the adaptive hash index feature

2561

Log Buffer

was protected by a single latch which could become a point of contention under heavy workloads. The
innodb_adaptive_hash_index_parts variable is set to 8 by default. The maximum setting is 512.

You can monitor adaptive hash index use and contention in the SEMAPHORES section of SHOW ENGINE
INNODB STATUS output. If there are numerous threads waiting on rw-latches created in btr0sea.c,
consider increasing the number of adaptive hash index partitions or disabling the adaptive hash index.

For information about the performance characteristics of hash indexes, see Section 8.3.8, “Comparison of
B-Tree and Hash Indexes”.

14.5.4 Log Buffer

The log buffer is the memory area that holds data to be written to the log files on disk. Log buffer size is
defined by the innodb_log_buffer_size variable. The default size is 16MB. The contents of the log
buffer are periodically flushed to disk. A large log buffer enables large transactions to run without the need
to write redo log data to disk before the transactions commit. Thus, if you have transactions that update,
insert, or delete many rows, increasing the size of the log buffer saves disk I/O.

The innodb_flush_log_at_trx_commit variable controls how the contents of the log buffer are
written and flushed to disk. The innodb_flush_log_at_timeout variable controls log flushing
frequency.

For related information, see Memory Configuration, and Section 8.5.4, “Optimizing InnoDB Redo Logging”.

14.6 InnoDB On-Disk Structures

This section describes InnoDB on-disk structures and related topics.

14.6.1 Tables

This section covers topics related to InnoDB tables.

14.6.1.1 Creating InnoDB Tables

InnoDB tables are created using the CREATE TABLE statement; for example:

CREATE TABLE t1 (a INT, b CHAR (20), PRIMARY KEY (a)) ENGINE=InnoDB;

The ENGINE=InnoDB clause is not required when InnoDB is defined as the default storage engine, which
it is by default. However, the ENGINE clause is useful if the CREATE TABLE statement is to be replayed on
a different MySQL Server instance where the default storage engine is not InnoDB or is unknown. You can
determine the default storage engine on a MySQL Server instance by issuing the following statement:

mysql> SELECT @@default_storage_engine;
+--------------------------+
| @@default_storage_engine |
+--------------------------+
| InnoDB |
+--------------------------+

InnoDB tables are created in file-per-table tablespaces by default. To create an InnoDB table in the
InnoDB system tablespace, disable the innodb_file_per_table variable before creating the table.
To create an InnoDB table in a general tablespace, use CREATE TABLE ... TABLESPACE syntax. For
more information, see Section 14.6.3, “Tablespaces”.

.frm Files

2562

Tables

MySQL stores data dictionary information for tables in .frm files in database directories. Unlike other
MySQL storage engines, InnoDB also encodes information about the table in its own internal data
dictionary inside the system tablespace. When MySQL drops a table or a database, it deletes one or
more .frm files as well as the corresponding entries inside the InnoDB data dictionary. You cannot move
InnoDB tables between databases simply by moving the .frm files. For information about moving InnoDB
tables, see Section 14.6.1.4, “Moving or Copying InnoDB Tables”.

Row Formats

The row format of an InnoDB table determines how its rows are physically stored on disk. InnoDB
supports four row formats, each with different storage characteristics. Supported row formats include
REDUNDANT, COMPACT, DYNAMIC, and COMPRESSED. The DYNAMIC row format is the default. For
information about row format characteristics, see Section 14.11, “InnoDB Row Formats”.

The innodb_default_row_format variable defines the default row format. The row format of a table
can also be defined explicitly using the ROW_FORMAT table option in a CREATE TABLE or ALTER TABLE
statement. See Defining the Row Format of a Table.

Primary Keys

It is recommended that you define a primary key for each table that you create. When selecting primary
key columns, choose columns with the following characteristics:

• Columns that are referenced by the most important queries.

• Columns that are never left blank.

• Columns that never have duplicate values.

• Columns that rarely if ever change value once inserted.

For example, in a table containing information about people, you would not create a primary key on
(firstname, lastname) because more than one person can have the same name, a name column
may be left blank, and sometimes people change their names. With so many constraints, often there is not
an obvious set of columns to use as a primary key, so you create a new column with a numeric ID to serve
as all or part of the primary key. You can declare an auto-increment column so that ascending values are
filled in automatically as rows are inserted:

The value of ID can act like a pointer between related items in different tables.
CREATE TABLE t5 (id INT AUTO_INCREMENT, b CHAR (20), PRIMARY KEY (id));

The primary key can consist of more than one column. Any autoinc column must come first.
CREATE TABLE t6 (id INT AUTO_INCREMENT, a INT, b CHAR (20), PRIMARY KEY (id,a));

For more information about auto-increment columns, see Section 14.6.1.6, “AUTO_INCREMENT Handling
in InnoDB”.

Although a table works correctly without defining a primary key, the primary key is involved with many
aspects of performance and is a crucial design aspect for any large or frequently used table. It is
recommended that you always specify a primary key in the CREATE TABLE statement. If you create the
table, load data, and then run ALTER TABLE to add a primary key later, that operation is much slower
than defining the primary key when creating the table. For more information about primary keys, see
Section 14.6.2.1, “Clustered and Secondary Indexes”.

Viewing InnoDB Table Properties

To view the properties of an InnoDB table, issue a SHOW TABLE STATUS statement:

mysql> SHOW TABLE STATUS FROM test LIKE 't%' \G;

2563

Tables

*************************** 1. row ***************************
 Name: t1
 Engine: InnoDB
 Version: 10
 Row_format: Dynamic
 Rows: 0
 Avg_row_length: 0
 Data_length: 16384
Max_data_length: 0
 Index_length: 0
 Data_free: 0
 Auto_increment: NULL
 Create_time: 2021-02-18 12:18:28
 Update_time: NULL
 Check_time: NULL
 Collation: utf8mb4_0900_ai_ci
 Checksum: NULL
 Create_options:
 Comment:

For information about SHOW TABLE STATUS output, see Section 13.7.5.36, “SHOW TABLE STATUS
Statement”.

You can also access InnoDB table properties by querying the InnoDB Information Schema system tables:

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_SYS_TABLES WHERE NAME='test/t1' \G
*************************** 1. row ***************************
 TABLE_ID: 45
 NAME: test/t1
 FLAG: 1
 N_COLS: 5
 SPACE: 35
 FILE_FORMAT: Barracuda
 ROW_FORMAT: Dynamic
ZIP_PAGE_SIZE: 0
 SPACE_TYPE: Single

For more information, see Section 14.16.3, “InnoDB INFORMATION_SCHEMA System Tables”.

14.6.1.2 Creating Tables Externally

There are different reasons for creating InnoDB tables externally; that is, creating tables outside of the
data directory. Those reasons might include space management, I/O optimization, or placing tables on a
storage device with particular performance or capacity characteristics, for example.

InnoDB supports the following methods for creating tables externally:

• Using the DATA DIRECTORY Clause

• Using CREATE TABLE ... TABLESPACE Syntax

• Creating a Table in an External General Tablespace

Using the DATA DIRECTORY Clause

You can create an InnoDB table in an external directory by specifying a DATA DIRECTORY clause in the
CREATE TABLE statement.

CREATE TABLE t1 (c1 INT PRIMARY KEY) DATA DIRECTORY = '/external/directory';

The DATA DIRECTORY clause is supported for tables created in file-per-table tablespaces. Tables are
implicitly created in file-per-table tablespaces when the innodb_file_per_table variable is enabled,
which it is by default.

2564

Tables

mysql> SELECT @@innodb_file_per_table;
+-------------------------+
| @@innodb_file_per_table |
+-------------------------+
| 1 |
+-------------------------+

For more information about file-per-table tablespaces, see Section 14.6.3.2, “File-Per-Table Tablespaces”.

Be sure of the directory location you choose, as the DATA DIRECTORY clause cannot be used with ALTER
TABLE to change the location later.

When you specify a DATA DIRECTORY clause in a CREATE TABLE statement, the table's data file
(table_name.ibd) is created in a schema directory under the specified directory, and an .isl file
(table_name.isl) that contains the data file path is created in the schema directory under the MySQL
data directory. An .isl file is similar in function to a symbolic link. (Actual symbolic links are not supported
for use with InnoDB data files.)

The following example demonstrates creating a table in an external directory using the DATA DIRECTORY
clause. It is assumed that the innodb_file_per_table variable is enabled.

mysql> USE test;
Database changed

mysql> CREATE TABLE t1 (c1 INT PRIMARY KEY) DATA DIRECTORY = '/external/directory';

MySQL creates the table's data file in a schema directory
under the external directory

$> cd /external/directory/test
$> ls
t1.ibd

An .isl file that contains the data file path is created
in the schema directory under the MySQL data directory

$> cd /path/to/mysql/data/test
$> ls
db.opt t1.frm t1.isl

Usage Notes:

• MySQL initially holds the tablespace data file open, preventing you from dismounting the device, but
might eventually close the file if the server is busy. Be careful not to accidentally dismount an external
device while MySQL is running, or start MySQL while the device is disconnected. Attempting to access a
table when the associated data file is missing causes a serious error that requires a server restart.

A server restart might fail if the data file is not found at the expected path. In this case, manually remove
the .isl file from the schema directory. After restarting, drop the table to remove the .frm file and the
information about the table from the data dictionary.

• Before placing a table on an NFS-mounted volume, review potential issues outlined in Using NFS with
MySQL.

• If using an LVM snapshot, file copy, or other file-based mechanism to back up the table's data file,
always use the FLUSH TABLES ... FOR EXPORT statement first to ensure that all changes buffered in
memory are flushed to disk before the backup occurs.

• Using the DATA DIRECTORY clause to create a table in an external directory is an alternative to using
symbolic links, which InnoDB does not support.

2565

Tables

• The DATA DIRECTORY clause is not supported in a replication environment where the source and
replica reside on the same host. The DATA DIRECTORY clause requires a full directory path. Replicating
the path in this case would cause the source and replica to create the table in same location.

Using CREATE TABLE ... TABLESPACE Syntax

CREATE TABLE ... TABLESPACE syntax can be used in combination with the DATA DIRECTORY clause
to create a table in an external directory. To do so, specify innodb_file_per_table as the tablespace
name.

mysql> CREATE TABLE t2 (c1 INT PRIMARY KEY) TABLESPACE = innodb_file_per_table
 DATA DIRECTORY = '/external/directory';

This method is supported only for tables created in file-per-table tablespaces, but does not require the
innodb_file_per_table variable to be enabled. In all other respects, this method is equivalent to the
CREATE TABLE ... DATA DIRECTORY method described above. The same usage notes apply.

Creating a Table in an External General Tablespace

You can create a table in a general tablespace that resides in an external directory.

• For information about creating a general tablespace in an external directory, see Creating a General
Tablespace.

• For information about creating a table in a general tablespace, see Adding Tables to a General
Tablespace.

14.6.1.3 Importing InnoDB Tables

This section describes how to import tables using the Transportable Tablespaces feature, which permits
importing tables, partitioned tables, or individual table partitions that reside in file-per-table tablespaces.
There are many reasons why you might want to import tables:

• To run reports on a non-production MySQL server instance to avoid placing extra load on a production
server.

• To copy data to a new replica server.

• To restore a table from a backed-up tablespace file.

• As a faster way of moving data than importing a dump file, which requires reinserting data and rebuilding
indexes.

• To move a data to a server with storage media that is better suited to your storage requirements. For
example, you might move busy tables to an SSD device, or move large tables to a high-capacity HDD
device.

The Transportable Tablespaces feature is described under the following topics in this section:

• Prerequisites

• Importing Tables

• Importing Partitioned Tables

• Importing Table Partitions

• Limitations

• Usage Notes

2566

Tables

• Internals

Prerequisites

• The innodb_file_per_table variable must be enabled, which it is by default.

• The page size of the tablespace must match the page size of the destination MySQL server instance.
InnoDB page size is defined by the innodb_page_size variable, which is configured when initializing
a MySQL server instance.

• If the table has a foreign key relationship, foreign_key_checks must be disabled before executing
DISCARD TABLESPACE. Also, you should export all foreign key related tables at the same logical point
in time, as ALTER TABLE ... IMPORT TABLESPACE does not enforce foreign key constraints on
imported data. To do so, stop updating the related tables, commit all transactions, acquire shared locks
on the tables, and perform the export operations.

• When importing a table from another MySQL server instance, both MySQL server instances must have
General Availability (GA) status and must be the same version. Otherwise, the table must be created on
the same MySQL server instance into which it is being imported.

• If the table was created in an external directory by specifying the DATA DIRECTORY clause in the
CREATE TABLE statement, the table that you replace on the destination instance must be defined with
the same DATA DIRECTORY clause. A schema mismatch error is reported if the clauses do not match.
To determine if the source table was defined with a DATA DIRECTORY clause, use SHOW CREATE
TABLE to view the table definition. For information about using the DATA DIRECTORY clause, see
Section 14.6.1.2, “Creating Tables Externally”.

• If a ROW_FORMAT option is not defined explicitly in the table definition or ROW_FORMAT=DEFAULT is
used, the innodb_default_row_format setting must be the same on the source and destination
instances. Otherwise, a schema mismatch error is reported when you attempt the import operation.
Use SHOW CREATE TABLE to check the table definition. Use SHOW VARIABLES to check the
innodb_default_row_format setting. For related information, see Defining the Row Format of a
Table.

Importing Tables

This example demonstrates how to import a regular non-partitioned table that resides in a file-per-table
tablespace.

1. On the destination instance, create a table with the same definition as the table you intend to import.
(You can obtain the table definition using SHOW CREATE TABLE syntax.) If the table definition does not
match, a schema mismatch error is reported when you attempt the import operation.

mysql> USE test;
mysql> CREATE TABLE t1 (c1 INT) ENGINE=INNODB;

2. On the destination instance, discard the tablespace of the table that you just created. (Before importing,
you must discard the tablespace of the receiving table.)

mysql> ALTER TABLE t1 DISCARD TABLESPACE;

3. On the source instance, run FLUSH TABLES ... FOR EXPORT to quiesce the table you intend to
import. When a table is quiesced, only read-only transactions are permitted on the table.

mysql> USE test;
mysql> FLUSH TABLES t1 FOR EXPORT;

FLUSH TABLES ... FOR EXPORT ensures that changes to the named table are flushed to disk so
that a binary table copy can be made while the server is running. When FLUSH TABLES ... FOR

2567

Tables

EXPORT is run, InnoDB generates a .cfg metadata file in the schema directory of the table. The .cfg
file contains metadata that is used for schema verification during the import operation.

Note

The connection executing FLUSH TABLES ... FOR EXPORT must remain
open while the operation is running; otherwise, the .cfg file is removed as
locks are released upon connection closure.

4. Copy the .ibd file and .cfg metadata file from the source instance to the destination instance. For
example:

$> scp /path/to/datadir/test/t1.{ibd,cfg} destination-server:/path/to/datadir/test

The .ibd file and .cfg file must be copied before releasing the shared locks, as described in the next
step.

Note

If you are importing a table from an encrypted tablespace, InnoDB generates
a .cfp file in addition to a .cfg metadata file. The .cfp file must be copied
to the destination instance together with the .cfg file. The .cfp file contains
a transfer key and an encrypted tablespace key. On import, InnoDB uses
the transfer key to decrypt the tablespace key. For related information, see
Section 14.14, “InnoDB Data-at-Rest Encryption”.

5. On the source instance, use UNLOCK TABLES to release the locks acquired by the FLUSH
TABLES ... FOR EXPORT statement:

mysql> USE test;
mysql> UNLOCK TABLES;

The UNLOCK TABLES operation also removes the .cfg file.

6. On the destination instance, import the tablespace:

mysql> USE test;
mysql> ALTER TABLE t1 IMPORT TABLESPACE;

Importing Partitioned Tables

This example demonstrates how to import a partitioned table, where each table partition resides in a file-
per-table tablespace.

1. On the destination instance, create a partitioned table with the same definition as the partitioned table
that you want to import. (You can obtain the table definition using SHOW CREATE TABLE syntax.) If
the table definition does not match, a schema mismatch error is reported when you attempt the import
operation.

mysql> USE test;
mysql> CREATE TABLE t1 (i int) ENGINE = InnoDB PARTITION BY KEY (i) PARTITIONS 3;

In the /datadir/test directory, there is a tablespace .ibd file for each of the three partitions.

mysql> \! ls /path/to/datadir/test/
db.opt t1.frm t1#P#p0.ibd t1#P#p1.ibd t1#P#p2.ibd

2. On the destination instance, discard the tablespace for the partitioned table. (Before the import
operation, you must discard the tablespace of the receiving table.)

2568

Tables

mysql> ALTER TABLE t1 DISCARD TABLESPACE;

The three tablespace .ibd files of the partitioned table are discarded from the /datadir/test
directory, leaving the following files:

mysql> \! ls /path/to/datadir/test/
db.opt t1.frm

3. On the source instance, run FLUSH TABLES ... FOR EXPORT to quiesce the partitioned table that
you intend to import. When a table is quiesced, only read-only transactions are permitted on the table.

mysql> USE test;
mysql> FLUSH TABLES t1 FOR EXPORT;

FLUSH TABLES ... FOR EXPORT ensures that changes to the named table are flushed to disk
so that binary table copy can be made while the server is running. When FLUSH TABLES ... FOR
EXPORT is run, InnoDB generates .cfg metadata files in the schema directory of the table for each of
the table's tablespace files.

mysql> \! ls /path/to/datadir/test/
db.opt t1#P#p0.ibd t1#P#p1.ibd t1#P#p2.ibd
t1.frm t1#P#p0.cfg t1#P#p1.cfg t1#P#p2.cfg

The .cfg files contain metadata that is used for schema verification when importing the tablespace.
FLUSH TABLES ... FOR EXPORT can only be run on the table, not on individual table partitions.

4. Copy the .ibd and .cfg files from the source instance schema directory to the destination instance
schema directory. For example:

$>scp /path/to/datadir/test/t1*.{ibd,cfg} destination-server:/path/to/datadir/test

The .ibd and .cfg files must be copied before releasing the shared locks, as described in the next
step.

Note

If you are importing a table from an encrypted tablespace, InnoDB generates a
.cfp files in addition to a .cfg metadata files. The .cfp files must be copied
to the destination instance together with the .cfg files. The .cfp files contain
a transfer key and an encrypted tablespace key. On import, InnoDB uses
the transfer key to decrypt the tablespace key. For related information, see
Section 14.14, “InnoDB Data-at-Rest Encryption”.

5. On the source instance, use UNLOCK TABLES to release the locks acquired by FLUSH TABLES ...
FOR EXPORT:

mysql> USE test;
mysql> UNLOCK TABLES;

6. On the destination instance, import the tablespace of the partitioned table:

mysql> USE test;
mysql> ALTER TABLE t1 IMPORT TABLESPACE;

Importing Table Partitions

This example demonstrates how to import individual table partitions, where each partition resides in a file-
per-table tablespace file.

In the following example, two partitions (p2 and p3) of a four-partition table are imported.

2569

Tables

1. On the destination instance, create a partitioned table with the same definition as the partitioned
table that you want to import partitions from. (You can obtain the table definition using SHOW CREATE
TABLE syntax.) If the table definition does not match, a schema mismatch error is reported when you
attempt the import operation.

mysql> USE test;
mysql> CREATE TABLE t1 (i int) ENGINE = InnoDB PARTITION BY KEY (i) PARTITIONS 4;

In the /datadir/test directory, there is a tablespace .ibd file for each of the four partitions.

mysql> \! ls /path/to/datadir/test/
db.opt t1.frm t1#P#p0.ibd t1#P#p1.ibd t1#P#p2.ibd t1#P#p3.ibd

2. On the destination instance, discard the partitions that you intend to import from the source instance.
(Before importing partitions, you must discard the corresponding partitions from the receiving
partitioned table.)

mysql> ALTER TABLE t1 DISCARD PARTITION p2, p3 TABLESPACE;

The tablespace .ibd files for the two discarded partitions are removed from the /datadir/test
directory on the destination instance, leaving the following files:

mysql> \! ls /path/to/datadir/test/
db.opt t1.frm t1#P#p0.ibd t1#P#p1.ibd

Note

When ALTER TABLE ... DISCARD PARTITION ... TABLESPACE is
run on subpartitioned tables, both partition and subpartition table names are
permitted. When a partition name is specified, subpartitions of that partition are
included in the operation.

3. On the source instance, run FLUSH TABLES ... FOR EXPORT to quiesce the partitioned table.
When a table is quiesced, only read-only transactions are permitted on the table.

mysql> USE test;
mysql> FLUSH TABLES t1 FOR EXPORT;

FLUSH TABLES ... FOR EXPORT ensures that changes to the named table are flushed to disk so
that binary table copy can be made while the instance is running. When FLUSH TABLES ... FOR
EXPORT is run, InnoDB generates a .cfg metadata file for each of the table's tablespace files in the
schema directory of the table.

mysql> \! ls /path/to/datadir/test/
db.opt t1#P#p0.ibd t1#P#p1.ibd t1#P#p2.ibd t1#P#p3.ibd
t1.frm t1#P#p0.cfg t1#P#p1.cfg t1#P#p2.cfg t1#P#p3.cfg

The .cfg files contain metadata that used for schema verification during the import operation. FLUSH
TABLES ... FOR EXPORT can only be run on the table, not on individual table partitions.

2570

Tables

4. Copy the .ibd and .cfg files for partition p2 and partition p3 from the source instance schema
directory to the destination instance schema directory.

$> scp t1#P#p2.ibd t1#P#p2.cfg t1#P#p3.ibd t1#P#p3.cfg destination-server:/path/to/datadir/test

The .ibd and .cfg files must be copied before releasing the shared locks, as described in the next
step.

Note

If you are importing partitions from an encrypted tablespace, InnoDB generates
a .cfp files in addition to a .cfg metadata files. The .cfp files must be copied
to the destination instance together with the .cfg files. The .cfp files contain
a transfer key and an encrypted tablespace key. On import, InnoDB uses
the transfer key to decrypt the tablespace key. For related information, see
Section 14.14, “InnoDB Data-at-Rest Encryption”.

5. On the source instance, use UNLOCK TABLES to release the locks acquired by FLUSH TABLES ...
FOR EXPORT:

mysql> USE test;
mysql> UNLOCK TABLES;

6. On the destination instance, import table partitions p2 and p3:

mysql> USE test;
mysql> ALTER TABLE t1 IMPORT PARTITION p2, p3 TABLESPACE;

Note

When ALTER TABLE ... IMPORT PARTITION ... TABLESPACE is run on
subpartitioned tables, both partition and subpartition table names are permitted.
When a partition name is specified, subpartitions of that partition are included in
the operation.

Limitations

• The Transportable Tablespaces feature is only supported for tables that reside in file-per-table
tablespaces. It is not supported for the tables that reside in the system tablespace or general
tablespaces. Tables in shared tablespaces cannot be quiesced.

• FLUSH TABLES ... FOR EXPORT is not supported on tables with a FULLTEXT index, as full-text
search auxiliary tables cannot be flushed. After importing a table with a FULLTEXT index, run OPTIMIZE
TABLE to rebuild the FULLTEXT indexes. Alternatively, drop FULLTEXT indexes before the export
operation and recreate the indexes after importing the table on the destination instance.

• Due to a .cfg metadata file limitation, schema mismatches are not reported for partition type or partition
definition differences when importing a partitioned table. Column differences are reported.

Usage Notes

• ALTER TABLE ... IMPORT TABLESPACE does not require a .cfg metadata file to import a table.
However, metadata checks are not performed when importing without a .cfg file, and a warning similar
to the following is issued:

Message: InnoDB: IO Read error: (2, No such file or directory) Error opening '.\
test\t.cfg', will attempt to import without schema verification
1 row in set (0.00 sec)

2571

Tables

Importing a table without a .cfg metadata file should only be considered if no schema mismatches are
expected. The ability to import without a .cfg file could be useful in crash recovery scenarios where
metadata is not accessible.

• On Windows, InnoDB stores database, tablespace, and table names internally in lowercase. To avoid
import problems on case-sensitive operating systems such as Linux and Unix, create all databases,
tablespaces, and tables using lowercase names. A convenient way to accomplish this is to add
lower_case_table_names=1 to the [mysqld] section of your my.cnf or my.ini file before
creating databases, tablespaces, or tables:

[mysqld]
lower_case_table_names=1

• When running ALTER TABLE ... DISCARD PARTITION ... TABLESPACE and ALTER
TABLE ... IMPORT PARTITION ... TABLESPACE on subpartitioned tables, both partition and
subpartition table names are permitted. When a partition name is specified, subpartitions of that partition
are included in the operation.

Internals

The following information describes internals and messages written to the error log during a table import
procedure.

When ALTER TABLE ... DISCARD TABLESPACE is run on the destination instance:

• The table is locked in X mode.

• The tablespace is detached from the table.

When FLUSH TABLES ... FOR EXPORT is run on the source instance:

• The table being flushed for export is locked in shared mode.

• The purge coordinator thread is stopped.

• Dirty pages are synchronized to disk.

• Table metadata is written to the binary .cfg file.

Expected error log messages for this operation:

[Note] InnoDB: Sync to disk of '"test"."t1"' started.
[Note] InnoDB: Stopping purge
[Note] InnoDB: Writing table metadata to './test/t1.cfg'
[Note] InnoDB: Table '"test"."t1"' flushed to disk

When UNLOCK TABLES is run on the source instance:

• The binary .cfg file is deleted.

• The shared lock on the table or tables being imported is released and the purge coordinator thread is
restarted.

Expected error log messages for this operation:

[Note] InnoDB: Deleting the meta-data file './test/t1.cfg'
[Note] InnoDB: Resuming purge

When ALTER TABLE ... IMPORT TABLESPACE is run on the destination instance, the import algorithm
performs the following operations for each tablespace being imported:

2572

Tables

• Each tablespace page is checked for corruption.

• The space ID and log sequence numbers (LSNs) on each page are updated.

• Flags are validated and LSN updated for the header page.

• Btree pages are updated.

• The page state is set to dirty so that it is written to disk.

Expected error log messages for this operation:

[Note] InnoDB: Importing tablespace for table 'test/t1' that was exported
from host 'host_name'
[Note] InnoDB: Phase I - Update all pages
[Note] InnoDB: Sync to disk
[Note] InnoDB: Sync to disk - done!
[Note] InnoDB: Phase III - Flush changes to disk
[Note] InnoDB: Phase IV - Flush complete

Note

You may also receive a warning that a tablespace is discarded (if you discarded the
tablespace for the destination table) and a message stating that statistics could not
be calculated due to a missing .ibd file:

[Warning] InnoDB: Table "test"."t1" tablespace is set as discarded.
7f34d9a37700 InnoDB: cannot calculate statistics for table
"test"."t1" because the .ibd file is missing. For help, please refer to
http://dev.mysql.com/doc/refman/5.7/en/innodb-troubleshooting.html

14.6.1.4 Moving or Copying InnoDB Tables

This section describes techniques for moving or copying some or all InnoDB tables to a different server
or instance. For example, you might move an entire MySQL instance to a larger, faster server; you might
clone an entire MySQL instance to a new replica server; you might copy individual tables to another
instance to develop and test an application, or to a data warehouse server to produce reports.

On Windows, InnoDB always stores database and table names internally in lowercase. To move
databases in a binary format from Unix to Windows or from Windows to Unix, create all databases and
tables using lowercase names. A convenient way to accomplish this is to add the following line to the
[mysqld] section of your my.cnf or my.ini file before creating any databases or tables:

[mysqld]
lower_case_table_names=1

Techniques for moving or copying InnoDB tables include:

• Importing Tables

• MySQL Enterprise Backup

• Copying Data Files (Cold Backup Method)

• Restoring from a Logical Backup

Importing Tables

A table that resides in a file-per-table tablespace can be imported from another MySQL server instance
or from a backup using the Transportable Tablespace feature. See Section 14.6.1.3, “Importing InnoDB
Tables”.

2573

Tables

MySQL Enterprise Backup

The MySQL Enterprise Backup product lets you back up a running MySQL database with minimal
disruption to operations while producing a consistent snapshot of the database. When MySQL Enterprise
Backup is copying tables, reads and writes can continue. In addition, MySQL Enterprise Backup can create
compressed backup files, and back up subsets of tables. In conjunction with the MySQL binary log, you
can perform point-in-time recovery. MySQL Enterprise Backup is included as part of the MySQL Enterprise
subscription.

For more details about MySQL Enterprise Backup, see Section 28.1, “MySQL Enterprise Backup
Overview”.

Copying Data Files (Cold Backup Method)

You can move an InnoDB database simply by copying all the relevant files listed under "Cold Backups" in
Section 14.19.1, “InnoDB Backup”.

InnoDB data and log files are binary-compatible on all platforms having the same floating-point number
format. If the floating-point formats differ but you have not used FLOAT or DOUBLE data types in your
tables, then the procedure is the same: simply copy the relevant files.

When you move or copy file-per-table .ibd files, the database directory name must be the same on the
source and destination systems. The table definition stored in the InnoDB shared tablespace includes the
database name. The transaction IDs and log sequence numbers stored in the tablespace files also differ
between databases.

To move an .ibd file and the associated table from one database to another, use a RENAME TABLE
statement:

RENAME TABLE db1.tbl_name TO db2.tbl_name;

If you have a “clean” backup of an .ibd file, you can restore it to the MySQL installation from which it
originated as follows:

1. The table must not have been dropped or truncated since you copied the .ibd file, because doing so
changes the table ID stored inside the tablespace.

2. Issue this ALTER TABLE statement to delete the current .ibd file:

ALTER TABLE tbl_name DISCARD TABLESPACE;

3. Copy the backup .ibd file to the proper database directory.

4. Issue this ALTER TABLE statement to tell InnoDB to use the new .ibd file for the table:

ALTER TABLE tbl_name IMPORT TABLESPACE;

Note

The ALTER TABLE ... IMPORT TABLESPACE feature does not enforce
foreign key constraints on imported data.

In this context, a “clean” .ibd file backup is one for which the following requirements are satisfied:

• There are no uncommitted modifications by transactions in the .ibd file.

• There are no unmerged insert buffer entries in the .ibd file.

• Purge has removed all delete-marked index records from the .ibd file.

2574

Tables

• mysqld has flushed all modified pages of the .ibd file from the buffer pool to the file.

You can make a clean backup .ibd file using the following method:

1. Stop all activity from the mysqld server and commit all transactions.

2. Wait until SHOW ENGINE INNODB STATUS shows that there are no active transactions in the
database, and the main thread status of InnoDB is Waiting for server activity. Then you can
make a copy of the .ibd file.

Another method for making a clean copy of an .ibd file is to use the MySQL Enterprise Backup product:

1. Use MySQL Enterprise Backup to back up the InnoDB installation.

2. Start a second mysqld server on the backup and let it clean up the .ibd files in the backup.

Restoring from a Logical Backup

You can use a utility such as mysqldump to perform a logical backup, which produces a set of SQL
statements that can be executed to reproduce the original database object definitions and table data for
transfer to another SQL server. Using this method, it does not matter whether the formats differ or if your
tables contain floating-point data.

To improve the performance of this method, disable autocommit when importing data. Perform a commit
only after importing an entire table or segment of a table.

14.6.1.5 Converting Tables from MyISAM to InnoDB

If you have MyISAM tables that you want to convert to InnoDB for better reliability and scalability, review
the following guidelines and tips before converting.

• Adjusting Memory Usage for MyISAM and InnoDB

• Handling Too-Long Or Too-Short Transactions

• Handling Deadlocks

• Storage Layout

• Converting an Existing Table

• Cloning the Structure of a Table

• Transferring Data

• Storage Requirements

• Defining Primary Keys

• Application Performance Considerations

• Understanding Files Associated with InnoDB Tables

Adjusting Memory Usage for MyISAM and InnoDB

As you transition away from MyISAM tables, lower the value of the key_buffer_size
configuration option to free memory no longer needed for caching results. Increase the value of the
innodb_buffer_pool_size configuration option, which performs a similar role of allocating cache
memory for InnoDB tables. The InnoDB buffer pool caches both table data and index data, speeding up
lookups for queries and keeping query results in memory for reuse. For guidance regarding buffer pool size
configuration, see Section 8.12.4.1, “How MySQL Uses Memory”.

2575

Tables

On a busy server, run benchmarks with the query cache turned off. The InnoDB buffer pool provides
similar benefits, so the query cache might be tying up memory unnecessarily. For information about the
query cache, see Section 8.10.3, “The MySQL Query Cache”.

Handling Too-Long Or Too-Short Transactions

Because MyISAM tables do not support transactions, you might not have paid much attention to the
autocommit configuration option and the COMMIT and ROLLBACK statements. These keywords are
important to allow multiple sessions to read and write InnoDB tables concurrently, providing substantial
scalability benefits in write-heavy workloads.

While a transaction is open, the system keeps a snapshot of the data as seen at the beginning of the
transaction, which can cause substantial overhead if the system inserts, updates, and deletes millions of
rows while a stray transaction keeps running. Thus, take care to avoid transactions that run for too long:

• If you are using a mysql session for interactive experiments, always COMMIT (to finalize the changes) or
ROLLBACK (to undo the changes) when finished. Close down interactive sessions rather than leave them
open for long periods, to avoid keeping transactions open for long periods by accident.

• Make sure that any error handlers in your application also ROLLBACK incomplete changes or COMMIT
completed changes.

• ROLLBACK is a relatively expensive operation, because INSERT, UPDATE, and DELETE operations are
written to InnoDB tables prior to the COMMIT, with the expectation that most changes are committed
successfully and rollbacks are rare. When experimenting with large volumes of data, avoid making
changes to large numbers of rows and then rolling back those changes.

• When loading large volumes of data with a sequence of INSERT statements, periodically COMMIT the
results to avoid having transactions that last for hours. In typical load operations for data warehousing,
if something goes wrong, you truncate the table (using TRUNCATE TABLE) and start over from the
beginning rather than doing a ROLLBACK.

The preceding tips save memory and disk space that can be wasted during too-long transactions. When
transactions are shorter than they should be, the problem is excessive I/O. With each COMMIT, MySQL
makes sure each change is safely recorded to disk, which involves some I/O.

• For most operations on InnoDB tables, you should use the setting autocommit=0. From an efficiency
perspective, this avoids unnecessary I/O when you issue large numbers of consecutive INSERT,
UPDATE, or DELETE statements. From a safety perspective, this allows you to issue a ROLLBACK
statement to recover lost or garbled data if you make a mistake on the mysql command line, or in an
exception handler in your application.

• autocommit=1 is suitable for InnoDB tables when running a sequence of queries for generating
reports or analyzing statistics. In this situation, there is no I/O penalty related to COMMIT or ROLLBACK,
and InnoDB can automatically optimize the read-only workload.

• If you make a series of related changes, finalize all the changes at once with a single COMMIT at the
end. For example, if you insert related pieces of information into several tables, do a single COMMIT
after making all the changes. Or if you run many consecutive INSERT statements, do a single COMMIT
after all the data is loaded; if you are doing millions of INSERT statements, perhaps split up the huge
transaction by issuing a COMMIT every ten thousand or hundred thousand records, so the transaction
does not grow too large.

• Remember that even a SELECT statement opens a transaction, so after running some report or
debugging queries in an interactive mysql session, either issue a COMMIT or close the mysql session.

For related information, see Section 14.7.2.2, “autocommit, Commit, and Rollback”.

2576

Tables

Handling Deadlocks

You might see warning messages referring to “deadlocks” in the MySQL error log, or the output of SHOW
ENGINE INNODB STATUS. A deadlock is not a serious issue for InnoDB tables, and often does not
require any corrective action. When two transactions start modifying multiple tables, accessing the
tables in a different order, they can reach a state where each transaction is waiting for the other and
neither can proceed. When deadlock detection is enabled (the default), MySQL immediately detects this
condition and cancels (rolls back) the “smaller” transaction, allowing the other to proceed. If deadlock
detection is disabled using the innodb_deadlock_detect configuration option, InnoDB relies on the
innodb_lock_wait_timeout setting to roll back transactions in case of a deadlock.

Either way, your applications need error-handling logic to restart a transaction that is forcibly cancelled due
to a deadlock. When you re-issue the same SQL statements as before, the original timing issue no longer
applies. Either the other transaction has already finished and yours can proceed, or the other transaction is
still in progress and your transaction waits until it finishes.

If deadlock warnings occur constantly, you might review the application code to reorder the
SQL operations in a consistent way, or to shorten the transactions. You can test with the
innodb_print_all_deadlocks option enabled to see all deadlock warnings in the MySQL error log,
rather than only the last warning in the SHOW ENGINE INNODB STATUS output.

For more information, see Section 14.7.5, “Deadlocks in InnoDB”.

Storage Layout

To get the best performance from InnoDB tables, you can adjust a number of parameters related to
storage layout.

When you convert MyISAM tables that are large, frequently accessed, and hold vital data, investigate and
consider the innodb_file_per_table, innodb_file_format, and innodb_page_size variables,
and the ROW_FORMAT and KEY_BLOCK_SIZE clauses of the CREATE TABLE statement.

During your initial experiments, the most important setting is innodb_file_per_table. When this
setting is enabled, which is the default as of MySQL 5.6.6, new InnoDB tables are implicitly created in file-
per-table tablespaces. In contrast with the InnoDB system tablespace, file-per-table tablespaces allow
disk space to be reclaimed by the operating system when a table is truncated or dropped. File-per-table
tablespaces also support the Barracuda file format and associated features such as table compression,
efficient off-page storage for long variable-length columns, and large index prefixes. For more information,
see Section 14.6.3.2, “File-Per-Table Tablespaces”.

You can also store InnoDB tables in a shared general tablespace. General tablespaces support the
Barracuda file format and can contain multiple tables. For more information, see Section 14.6.3.3, “General
Tablespaces”.

Converting an Existing Table

To convert a non-InnoDB table to use InnoDB use ALTER TABLE:

ALTER TABLE table_name ENGINE=InnoDB;

Warning

Do not convert MySQL system tables in the mysql database from MyISAM to
InnoDB tables. This is an unsupported operation. If you do this, MySQL does not
restart until you restore the old system tables from a backup or regenerate them by
reinitializing the data directory (see Section 2.9.1, “Initializing the Data Directory”).

2577

Tables

Cloning the Structure of a Table

You might make an InnoDB table that is a clone of a MyISAM table, rather than using ALTER TABLE to
perform conversion, to test the old and new table side-by-side before switching.

Create an empty InnoDB table with identical column and index definitions. Use SHOW CREATE TABLE
table_name\G to see the full CREATE TABLE statement to use. Change the ENGINE clause to
ENGINE=INNODB.

Transferring Data

To transfer a large volume of data into an empty InnoDB table created as shown in the previous section,
insert the rows with INSERT INTO innodb_table SELECT * FROM myisam_table ORDER BY
primary_key_columns.

You can also create the indexes for the InnoDB table after inserting the data. Historically, creating new
secondary indexes was a slow operation for InnoDB, but now you can create the indexes after the data is
loaded with relatively little overhead from the index creation step.

If you have UNIQUE constraints on secondary keys, you can speed up a table import by turning off the
uniqueness checks temporarily during the import operation:

SET unique_checks=0;
... import operation ...
SET unique_checks=1;

For big tables, this saves disk I/O because InnoDB can use its change buffer to write secondary index
records as a batch. Be certain that the data contains no duplicate keys. unique_checks permits but does
not require storage engines to ignore duplicate keys.

For better control over the insertion process, you can insert big tables in pieces:

INSERT INTO newtable SELECT * FROM oldtable
 WHERE yourkey > something AND yourkey <= somethingelse;

After all records are inserted, you can rename the tables.

During the conversion of big tables, increase the size of the InnoDB buffer pool to reduce disk I/O.
Typically, the recommended buffer pool size is 50 to 75 percent of system memory. You can also increase
the size of InnoDB log files.

Storage Requirements

If you intend to make several temporary copies of your data in InnoDB tables during the conversion
process, it is recommended that you create the tables in file-per-table tablespaces so that you can reclaim
the disk space when you drop the tables. When the innodb_file_per_table configuration option is
enabled (the default), newly created InnoDB tables are implicitly created in file-per-table tablespaces.

Whether you convert the MyISAM table directly or create a cloned InnoDB table, make sure that you have
sufficient disk space to hold both the old and new tables during the process. InnoDB tables require more
disk space than MyISAM tables. If an ALTER TABLE operation runs out of space, it starts a rollback, and
that can take hours if it is disk-bound. For inserts, InnoDB uses the insert buffer to merge secondary index
records to indexes in batches. That saves a lot of disk I/O. For rollback, no such mechanism is used, and
the rollback can take 30 times longer than the insertion.

In the case of a runaway rollback, if you do not have valuable data in your database, it may be advisable to
kill the database process rather than wait for millions of disk I/O operations to complete. For the complete
procedure, see Section 14.22.2, “Forcing InnoDB Recovery”.

2578

Tables

Defining Primary Keys

The PRIMARY KEY clause is a critical factor affecting the performance of MySQL queries and the space
usage for tables and indexes. The primary key uniquely identifies a row in a table. Every row in the table
should have a primary key value, and no two rows can have the same primary key value.

These are guidelines for the primary key, followed by more detailed explanations.

• Declare a PRIMARY KEY for each table. Typically, it is the most important column that you refer to in
WHERE clauses when looking up a single row.

• Declare the PRIMARY KEY clause in the original CREATE TABLE statement, rather than adding it later
through an ALTER TABLE statement.

• Choose the column and its data type carefully. Prefer numeric columns over character or string ones.

• Consider using an auto-increment column if there is not another stable, unique, non-null, numeric
column to use.

• An auto-increment column is also a good choice if there is any doubt whether the value of the primary
key column could ever change. Changing the value of a primary key column is an expensive operation,
possibly involving rearranging data within the table and within each secondary index.

Consider adding a primary key to any table that does not already have one. Use the smallest practical
numeric type based on the maximum projected size of the table. This can make each row slightly more
compact, which can yield substantial space savings for large tables. The space savings are multiplied if
the table has any secondary indexes, because the primary key value is repeated in each secondary index
entry. In addition to reducing data size on disk, a small primary key also lets more data fit into the buffer
pool, speeding up all kinds of operations and improving concurrency.

If the table already has a primary key on some longer column, such as a VARCHAR, consider adding a
new unsigned AUTO_INCREMENT column and switching the primary key to that, even if that column is
not referenced in queries. This design change can produce substantial space savings in the secondary
indexes. You can designate the former primary key columns as UNIQUE NOT NULL to enforce the same
constraints as the PRIMARY KEY clause, that is, to prevent duplicate or null values across all those
columns.

If you spread related information across multiple tables, typically each table uses the same column for its
primary key. For example, a personnel database might have several tables, each with a primary key of
employee number. A sales database might have some tables with a primary key of customer number, and
other tables with a primary key of order number. Because lookups using the primary key are very fast, you
can construct efficient join queries for such tables.

If you leave the PRIMARY KEY clause out entirely, MySQL creates an invisible one for you. It is a 6-byte
value that might be longer than you need, thus wasting space. Because it is hidden, you cannot refer to it
in queries.

Application Performance Considerations

The reliability and scalability features of InnoDB require more disk storage than equivalent MyISAM tables.
You might change the column and index definitions slightly, for better space utilization, reduced I/O and
memory consumption when processing result sets, and better query optimization plans making efficient
use of index lookups.

If you set up a numeric ID column for the primary key, use that value to cross-reference with related values
in any other tables, particularly for join queries. For example, rather than accepting a country name as
input and doing queries searching for the same name, do one lookup to determine the country ID, then

2579

Tables

do other queries (or a single join query) to look up relevant information across several tables. Rather than
storing a customer or catalog item number as a string of digits, potentially using up several bytes, convert it
to a numeric ID for storing and querying. A 4-byte unsigned INT column can index over 4 billion items (with
the US meaning of billion: 1000 million). For the ranges of the different integer types, see Section 11.1.2,
“Integer Types (Exact Value) - INTEGER, INT, SMALLINT, TINYINT, MEDIUMINT, BIGINT”.

Understanding Files Associated with InnoDB Tables

InnoDB files require more care and planning than MyISAM files do.

• You must not delete the ibdata files that represent the InnoDB system tablespace.

• Methods of moving or copying InnoDB tables to a different server are described in Section 14.6.1.4,
“Moving or Copying InnoDB Tables”.

14.6.1.6 AUTO_INCREMENT Handling in InnoDB

InnoDB provides a configurable locking mechanism that can significantly improve scalability and
performance of SQL statements that add rows to tables with AUTO_INCREMENT columns. To use the
AUTO_INCREMENT mechanism with an InnoDB table, an AUTO_INCREMENT column must be defined
as the first or only column of some index such that it is possible to perform the equivalent of an indexed
SELECT MAX(ai_col) lookup on the table to obtain the maximum column value. The index is not
required to be a PRIMARY KEY or UNIQUE, but to avoid duplicate values in the AUTO_INCREMENT column,
those index types are recommended.

This section describes the AUTO_INCREMENT lock modes, usage implications of different
AUTO_INCREMENT lock mode settings, and how InnoDB initializes the AUTO_INCREMENT counter.

• InnoDB AUTO_INCREMENT Lock Modes

• InnoDB AUTO_INCREMENT Lock Mode Usage Implications

• InnoDB AUTO_INCREMENT Counter Initialization

• Notes

InnoDB AUTO_INCREMENT Lock Modes

This section describes the AUTO_INCREMENT lock modes used to generate auto-increment values, and
how each lock mode affects replication. The auto-increment lock mode is configured at startup using the
innodb_autoinc_lock_mode variable.

The following terms are used in describing innodb_autoinc_lock_mode settings:

• “INSERT-like” statements

All statements that generate new rows in a table, including INSERT, INSERT ... SELECT, REPLACE,
REPLACE ... SELECT, and LOAD DATA. Includes “simple-inserts”, “bulk-inserts”, and “mixed-mode”
inserts.

• “Simple inserts”

Statements for which the number of rows to be inserted can be determined in advance (when the
statement is initially processed). This includes single-row and multiple-row INSERT and REPLACE
statements that do not have a nested subquery, but not INSERT ... ON DUPLICATE KEY UPDATE.

• “Bulk inserts”

2580

Tables

Statements for which the number of rows to be inserted (and the number of required auto-increment
values) is not known in advance. This includes INSERT ... SELECT, REPLACE ... SELECT, and
LOAD DATA statements, but not plain INSERT. InnoDB assigns new values for the AUTO_INCREMENT
column one at a time as each row is processed.

• “Mixed-mode inserts”

These are “simple insert” statements that specify the auto-increment value for some (but not all) of the
new rows. An example follows, where c1 is an AUTO_INCREMENT column of table t1:

INSERT INTO t1 (c1,c2) VALUES (1,'a'), (NULL,'b'), (5,'c'), (NULL,'d');

Another type of “mixed-mode insert” is INSERT ... ON DUPLICATE KEY UPDATE, which in the worst
case is in effect an INSERT followed by a UPDATE, where the allocated value for the AUTO_INCREMENT
column may or may not be used during the update phase.

There are three possible settings for the innodb_autoinc_lock_mode variable. The settings are 0, 1, or
2, for “traditional”, “consecutive”, or “interleaved” lock mode, respectively.

• innodb_autoinc_lock_mode = 0 (“traditional” lock mode)

The traditional lock mode provides the same behavior that existed before the
innodb_autoinc_lock_mode variable was introduced. The traditional lock mode option is provided
for backward compatibility, performance testing, and working around issues with “mixed-mode inserts”,
due to possible differences in semantics.

In this lock mode, all “INSERT-like” statements obtain a special table-level AUTO-INC lock for inserts
into tables with AUTO_INCREMENT columns. This lock is normally held to the end of the statement (not
to the end of the transaction) to ensure that auto-increment values are assigned in a predictable and
repeatable order for a given sequence of INSERT statements, and to ensure that auto-increment values
assigned by any given statement are consecutive.

In the case of statement-based replication, this means that when an SQL statement is replicated on
a replica server, the same values are used for the auto-increment column as on the source server.
The result of execution of multiple INSERT statements is deterministic, and the replica reproduces the
same data as on the source. If auto-increment values generated by multiple INSERT statements were
interleaved, the result of two concurrent INSERT statements would be nondeterministic, and could not
reliably be propagated to a replica server using statement-based replication.

To make this clear, consider an example that uses this table:

CREATE TABLE t1 (
 c1 INT(11) NOT NULL AUTO_INCREMENT,
 c2 VARCHAR(10) DEFAULT NULL,
 PRIMARY KEY (c1)
) ENGINE=InnoDB;

Suppose that there are two transactions running, each inserting rows into a table with an
AUTO_INCREMENT column. One transaction is using an INSERT ... SELECT statement that inserts
1000 rows, and another is using a simple INSERT statement that inserts one row:

Tx1: INSERT INTO t1 (c2) SELECT 1000 rows from another table ...
Tx2: INSERT INTO t1 (c2) VALUES ('xxx');

InnoDB cannot tell in advance how many rows are retrieved from the SELECT in the INSERT statement
in Tx1, and it assigns the auto-increment values one at a time as the statement proceeds. With a table-
level lock, held to the end of the statement, only one INSERT statement referring to table t1 can execute

2581

Tables

at a time, and the generation of auto-increment numbers by different statements is not interleaved. The
auto-increment values generated by the Tx1 INSERT ... SELECT statement are consecutive, and the
(single) auto-increment value used by the INSERT statement in Tx2 is either smaller or larger than all
those used for Tx1, depending on which statement executes first.

As long as the SQL statements execute in the same order when replayed from the binary log (when
using statement-based replication, or in recovery scenarios), the results are the same as they were when
Tx1 and Tx2 first ran. Thus, table-level locks held until the end of a statement make INSERT statements
using auto-increment safe for use with statement-based replication. However, those table-level locks
limit concurrency and scalability when multiple transactions are executing insert statements at the same
time.

In the preceding example, if there were no table-level lock, the value of the auto-increment column
used for the INSERT in Tx2 depends on precisely when the statement executes. If the INSERT of Tx2
executes while the INSERT of Tx1 is running (rather than before it starts or after it completes), the
specific auto-increment values assigned by the two INSERT statements are nondeterministic, and may
vary from run to run.

Under the consecutive lock mode, InnoDB can avoid using table-level AUTO-INC locks for “simple
insert” statements where the number of rows is known in advance, and still preserve deterministic
execution and safety for statement-based replication.

If you are not using the binary log to replay SQL statements as part of recovery or replication, the
interleaved lock mode can be used to eliminate all use of table-level AUTO-INC locks for even greater
concurrency and performance, at the cost of permitting gaps in auto-increment numbers assigned
by a statement and potentially having the numbers assigned by concurrently executing statements
interleaved.

• innodb_autoinc_lock_mode = 1 (“consecutive” lock mode)

This is the default lock mode. In this mode, “bulk inserts” use the special AUTO-INC table-level lock and
hold it until the end of the statement. This applies to all INSERT ... SELECT, REPLACE ... SELECT,
and LOAD DATA statements. Only one statement holding the AUTO-INC lock can execute at a time.
If the source table of the bulk insert operation is different from the target table, the AUTO-INC lock on
the target table is taken after a shared lock is taken on the first row selected from the source table. If
the source and target of the bulk insert operation are the same table, the AUTO-INC lock is taken after
shared locks are taken on all selected rows.

“Simple inserts” (for which the number of rows to be inserted is known in advance) avoid table-level
AUTO-INC locks by obtaining the required number of auto-increment values under the control of a
mutex (a light-weight lock) that is only held for the duration of the allocation process, not until the
statement completes. No table-level AUTO-INC lock is used unless an AUTO-INC lock is held by another
transaction. If another transaction holds an AUTO-INC lock, a “simple insert” waits for the AUTO-INC
lock, as if it were a “bulk insert”.

This lock mode ensures that, in the presence of INSERT statements where the number of rows is not
known in advance (and where auto-increment numbers are assigned as the statement progresses), all
auto-increment values assigned by any “INSERT-like” statement are consecutive, and operations are
safe for statement-based replication.

Simply put, this lock mode significantly improves scalability while being safe for use with statement-
based replication. Further, as with “traditional” lock mode, auto-increment numbers assigned by any

2582

Tables

given statement are consecutive. There is no change in semantics compared to “traditional” mode for
any statement that uses auto-increment, with one important exception.

The exception is for “mixed-mode inserts”, where the user provides explicit values for an
AUTO_INCREMENT column for some, but not all, rows in a multiple-row “simple insert”. For such inserts,
InnoDB allocates more auto-increment values than the number of rows to be inserted. However, all
values automatically assigned are consecutively generated (and thus higher than) the auto-increment
value generated by the most recently executed previous statement. “Excess” numbers are lost.

• innodb_autoinc_lock_mode = 2 (“interleaved” lock mode)

In this lock mode, no “INSERT-like” statements use the table-level AUTO-INC lock, and multiple
statements can execute at the same time. This is the fastest and most scalable lock mode, but it is not
safe when using statement-based replication or recovery scenarios when SQL statements are replayed
from the binary log.

In this lock mode, auto-increment values are guaranteed to be unique and monotonically increasing
across all concurrently executing “INSERT-like” statements. However, because multiple statements
can be generating numbers at the same time (that is, allocation of numbers is interleaved across
statements), the values generated for the rows inserted by any given statement may not be consecutive.

If the only statements executing are “simple inserts” where the number of rows to be inserted is known
ahead of time, there are no gaps in the numbers generated for a single statement, except for “mixed-
mode inserts”. However, when “bulk inserts” are executed, there may be gaps in the auto-increment
values assigned by any given statement.

InnoDB AUTO_INCREMENT Lock Mode Usage Implications

• Using auto-increment with replication

If you are using statement-based replication, set innodb_autoinc_lock_mode to 0 or 1 and use the
same value on the source and its replicas. Auto-increment values are not ensured to be the same on the
replicas as on the source if you use innodb_autoinc_lock_mode = 2 (“interleaved”) or configurations
where the source and replicas do not use the same lock mode.

If you are using row-based or mixed-format replication, all of the auto-increment lock modes are safe,
since row-based replication is not sensitive to the order of execution of the SQL statements (and the
mixed format uses row-based replication for any statements that are unsafe for statement-based
replication).

• “Lost” auto-increment values and sequence gaps

In all lock modes (0, 1, and 2), if a transaction that generated auto-increment values rolls back, those
auto-increment values are “lost”. Once a value is generated for an auto-increment column, it cannot be
rolled back, whether or not the “INSERT-like” statement is completed, and whether or not the containing
transaction is rolled back. Such lost values are not reused. Thus, there may be gaps in the values stored
in an AUTO_INCREMENT column of a table.

• Specifying NULL or 0 for the AUTO_INCREMENT column

In all lock modes (0, 1, and 2), if a user specifies NULL or 0 for the AUTO_INCREMENT column in an
INSERT, InnoDB treats the row as if the value was not specified and generates a new value for it.

• Assigning a negative value to the AUTO_INCREMENT column

In all lock modes (0, 1, and 2), the behavior of the auto-increment mechanism is undefined if you assign
a negative value to the AUTO_INCREMENT column.

2583

Tables

• If the AUTO_INCREMENT value becomes larger than the maximum integer for the specified integer type

In all lock modes (0, 1, and 2), the behavior of the auto-increment mechanism is undefined if the value
becomes larger than the maximum integer that can be stored in the specified integer type.

• Gaps in auto-increment values for “bulk inserts”

With innodb_autoinc_lock_mode set to 0 (“traditional”) or 1 (“consecutive”), the auto-increment
values generated by any given statement are consecutive, without gaps, because the table-level AUTO-
INC lock is held until the end of the statement, and only one such statement can execute at a time.

With innodb_autoinc_lock_mode set to 2 (“interleaved”), there may be gaps in the auto-increment
values generated by “bulk inserts,” but only if there are concurrently executing “INSERT-like” statements.

For lock modes 1 or 2, gaps may occur between successive statements because for bulk inserts
the exact number of auto-increment values required by each statement may not be known and
overestimation is possible.

• Auto-increment values assigned by “mixed-mode inserts”

Consider a “mixed-mode insert,” where a “simple insert” specifies the auto-increment value for some
(but not all) resulting rows. Such a statement behaves differently in lock modes 0, 1, and 2. For example,
assume c1 is an AUTO_INCREMENT column of table t1, and that the most recent automatically
generated sequence number is 100.

mysql> CREATE TABLE t1 (
 -> c1 INT UNSIGNED NOT NULL AUTO_INCREMENT PRIMARY KEY,
 -> c2 CHAR(1)
 ->) ENGINE = INNODB;

Now, consider the following “mixed-mode insert” statement:

mysql> INSERT INTO t1 (c1,c2) VALUES (1,'a'), (NULL,'b'), (5,'c'), (NULL,'d');

With innodb_autoinc_lock_mode set to 0 (“traditional”), the four new rows are:

mysql> SELECT c1, c2 FROM t1 ORDER BY c2;
+-----+------+
| c1 | c2 |
+-----+------+
1	a
101	b
5	c
102	d
+-----+------+

The next available auto-increment value is 103 because the auto-increment values are allocated one at
a time, not all at once at the beginning of statement execution. This result is true whether or not there are
concurrently executing “INSERT-like” statements (of any type).

With innodb_autoinc_lock_mode set to 1 (“consecutive”), the four new rows are also:

mysql> SELECT c1, c2 FROM t1 ORDER BY c2;
+-----+------+
| c1 | c2 |
+-----+------+
1	a
101	b
5	c
102	d

2584

Tables

+-----+------+

However, in this case, the next available auto-increment value is 105, not 103 because four auto-
increment values are allocated at the time the statement is processed, but only two are used. This result
is true whether or not there are concurrently executing “INSERT-like” statements (of any type).

With innodb_autoinc_lock_mode set to 2 (“interleaved”), the four new rows are:

mysql> SELECT c1, c2 FROM t1 ORDER BY c2;
+-----+------+
| c1 | c2 |
+-----+------+
1	a
x	b
5	c
y	d
+-----+------+

The values of x and y are unique and larger than any previously generated rows. However, the specific
values of x and y depend on the number of auto-increment values generated by concurrently executing
statements.

Finally, consider the following statement, issued when the most-recently generated sequence number is
100:

mysql> INSERT INTO t1 (c1,c2) VALUES (1,'a'), (NULL,'b'), (101,'c'), (NULL,'d');

With any innodb_autoinc_lock_mode setting, this statement generates a duplicate-key error 23000
(Can't write; duplicate key in table) because 101 is allocated for the row (NULL, 'b')
and insertion of the row (101, 'c') fails.

• Modifying AUTO_INCREMENT column values in the middle of a sequence of INSERT statements

In all lock modes (0, 1, and 2), modifying an AUTO_INCREMENT column value in the middle of a
sequence of INSERT statements could lead to “Duplicate entry” errors. For example, if you perform an
UPDATE operation that changes an AUTO_INCREMENT column value to a value larger than the current
maximum auto-increment value, subsequent INSERT operations that do not specify an unused auto-
increment value could encounter “Duplicate entry” errors. This behavior is demonstrated in the following
example.

mysql> CREATE TABLE t1 (
 -> c1 INT NOT NULL AUTO_INCREMENT,
 -> PRIMARY KEY (c1)
 ->) ENGINE = InnoDB;

mysql> INSERT INTO t1 VALUES(0), (0), (3);

mysql> SELECT c1 FROM t1;
+----+
| c1 |
+----+
| 1 |
| 2 |
| 3 |
+----+

mysql> UPDATE t1 SET c1 = 4 WHERE c1 = 1;

mysql> SELECT c1 FROM t1;
+----+
| c1 |
+----+

2585

Indexes

| 2 |
| 3 |
| 4 |
+----+

mysql> INSERT INTO t1 VALUES(0);
ERROR 1062 (23000): Duplicate entry '4' for key 'PRIMARY'

InnoDB AUTO_INCREMENT Counter Initialization

This section describes how InnoDB initializes AUTO_INCREMENT counters.

If you specify an AUTO_INCREMENT column for an InnoDB table, the table handle in the InnoDB data
dictionary contains a special counter called the auto-increment counter that is used in assigning new
values for the column. This counter is stored only in main memory, not on disk.

To initialize an auto-increment counter after a server restart, InnoDB executes the equivalent of the
following statement on the first insert into a table containing an AUTO_INCREMENT column.

SELECT MAX(ai_col) FROM table_name FOR UPDATE;

InnoDB increments the value retrieved by the statement and assigns it to the column and to the auto-
increment counter for the table. By default, the value is incremented by 1. This default can be overridden
by the auto_increment_increment configuration setting.

If the table is empty, InnoDB uses the value 1. This default can be overridden by the
auto_increment_offset configuration setting.

If a SHOW TABLE STATUS statement examines the table before the auto-increment counter is initialized,
InnoDB initializes but does not increment the value. The value is stored for use by later inserts. This
initialization uses a normal exclusive-locking read on the table and the lock lasts to the end of the
transaction. InnoDB follows the same procedure for initializing the auto-increment counter for a newly
created table.

After the auto-increment counter has been initialized, if you do not explicitly specify a value for an
AUTO_INCREMENT column, InnoDB increments the counter and assigns the new value to the column. If
you insert a row that explicitly specifies the column value, and the value is greater than the current counter
value, the counter is set to the specified column value.

InnoDB uses the in-memory auto-increment counter as long as the server runs. When the server is
stopped and restarted, InnoDB reinitializes the counter for each table for the first INSERT to the table, as
described earlier.

A server restart also cancels the effect of the AUTO_INCREMENT = N table option in CREATE TABLE and
ALTER TABLE statements, which you can use with InnoDB tables to set the initial counter value or alter
the current counter value.

Notes

• When an AUTO_INCREMENT integer column runs out of values, a subsequent INSERT operation returns
a duplicate-key error. This is general MySQL behavior.

• When you restart the MySQL server, InnoDB may reuse an old value that was generated for an
AUTO_INCREMENT column but never stored (that is, a value that was generated during an old
transaction that was rolled back).

14.6.2 Indexes

This section covers topics related to InnoDB indexes.

2586

Indexes

14.6.2.1 Clustered and Secondary Indexes

Each InnoDB table has a special index called the clustered index that stores row data. Typically, the
clustered index is synonymous with the primary key. To get the best performance from queries, inserts,
and other database operations, it is important to understand how InnoDB uses the clustered index to
optimize the common lookup and DML operations.

• When you define a PRIMARY KEY on a table, InnoDB uses it as the clustered index. A primary key
should be defined for each table. If there is no logical unique and non-null column or set of columns to
use a the primary key, add an auto-increment column. Auto-increment column values are unique and are
added automatically as new rows are inserted.

• If you do not define a PRIMARY KEY for a table, InnoDB uses the first UNIQUE index with all key
columns defined as NOT NULL as the clustered index.

• If a table has no PRIMARY KEY or suitable UNIQUE index, InnoDB generates a hidden clustered index
named GEN_CLUST_INDEX on a synthetic column that contains row ID values. The rows are ordered by
the row ID that InnoDB assigns. The row ID is a 6-byte field that increases monotonically as new rows
are inserted. Thus, the rows ordered by the row ID are physically in order of insertion.

How the Clustered Index Speeds Up Queries

Accessing a row through the clustered index is fast because the index search leads directly to the page
that contains the row data. If a table is large, the clustered index architecture often saves a disk I/O
operation when compared to storage organizations that store row data using a different page from the
index record.

How Secondary Indexes Relate to the Clustered Index

Indexes other than the clustered index are known as secondary indexes. In InnoDB, each record in a
secondary index contains the primary key columns for the row, as well as the columns specified for the
secondary index. InnoDB uses this primary key value to search for the row in the clustered index.

If the primary key is long, the secondary indexes use more space, so it is advantageous to have a short
primary key.

For guidelines to take advantage of InnoDB clustered and secondary indexes, see Section 8.3,
“Optimization and Indexes”.

14.6.2.2 The Physical Structure of an InnoDB Index

With the exception of spatial indexes, InnoDB indexes are B-tree data structures. Spatial indexes use R-
trees, which are specialized data structures for indexing multi-dimensional data. Index records are stored
in the leaf pages of their B-tree or R-tree data structure. The default size of an index page is 16KB. The
page size is determined by the innodb_page_size setting when the MySQL instance is initialized. See
Section 14.8.1, “InnoDB Startup Configuration”.

When new records are inserted into an InnoDB clustered index, InnoDB tries to leave 1/16 of the page
free for future insertions and updates of the index records. If index records are inserted in a sequential
order (ascending or descending), the resulting index pages are about 15/16 full. If records are inserted in a
random order, the pages are from 1/2 to 15/16 full.

InnoDB performs a bulk load when creating or rebuilding B-tree indexes. This method of index creation
is known as a sorted index build. The innodb_fill_factor variable defines the percentage of space
on each B-tree page that is filled during a sorted index build, with the remaining space reserved for
future index growth. Sorted index builds are not supported for spatial indexes. For more information, see
Section 14.6.2.3, “Sorted Index Builds”. An innodb_fill_factor setting of 100 leaves 1/16 of the space
in clustered index pages free for future index growth.

2587

Indexes

If the fill factor of an InnoDB index page drops below the MERGE_THRESHOLD, which is 50% by default
if not specified, InnoDB tries to contract the index tree to free the page. The MERGE_THRESHOLD setting
applies to both B-tree and R-tree indexes. For more information, see Section 14.8.12, “Configuring the
Merge Threshold for Index Pages”.

14.6.2.3 Sorted Index Builds

InnoDB performs a bulk load instead of inserting one index record at a time when creating or rebuilding
indexes. This method of index creation is also known as a sorted index build. Sorted index builds are not
supported for spatial indexes.

There are three phases to an index build. In the first phase, the clustered index is scanned, and index
entries are generated and added to the sort buffer. When the sort buffer becomes full, entries are sorted
and written out to a temporary intermediate file. This process is also known as a “run”. In the second
phase, with one or more runs written to the temporary intermediate file, a merge sort is performed on all
entries in the file. In the third and final phase, the sorted entries are inserted into the B-tree.

Prior to the introduction of sorted index builds, index entries were inserted into the B-tree one record at a
time using insert APIs. This method involved opening a B-tree cursor to find the insert position and then
inserting entries into a B-tree page using an optimistic insert. If an insert failed due to a page being full, a
pessimistic insert would be performed, which involves opening a B-tree cursor and splitting and merging B-
tree nodes as necessary to find space for the entry. The drawbacks of this “top-down” method of building
an index are the cost of searching for an insert position and the constant splitting and merging of B-tree
nodes.

Sorted index builds use a “bottom-up” approach to building an index. With this approach, a reference to
the right-most leaf page is held at all levels of the B-tree. The right-most leaf page at the necessary B-tree
depth is allocated and entries are inserted according to their sorted order. Once a leaf page is full, a node
pointer is appended to the parent page and a sibling leaf page is allocated for the next insert. This process
continues until all entries are inserted, which may result in inserts up to the root level. When a sibling page
is allocated, the reference to the previously pinned leaf page is released, and the newly allocated leaf page
becomes the right-most leaf page and new default insert location.

Reserving B-tree Page Space for Future Index Growth

To set aside space for future index growth, you can use the innodb_fill_factor variable to reserve a
percentage of B-tree page space. For example, setting innodb_fill_factor to 80 reserves 20 percent
of the space in B-tree pages during a sorted index build. This setting applies to both B-tree leaf and non-
leaf pages. It does not apply to external pages used for TEXT or BLOB entries. The amount of space that
is reserved may not be exactly as configured, as the innodb_fill_factor value is interpreted as a hint
rather than a hard limit.

Sorted Index Builds and Full-Text Index Support

Sorted index builds are supported for fulltext indexes. Previously, SQL was used to insert entries into a
fulltext index.

Sorted Index Builds and Compressed Tables

For compressed tables, the previous index creation method appended entries to both compressed and
uncompressed pages. When the modification log (representing free space on the compressed page)
became full, the compressed page would be recompressed. If compression failed due to a lack of space,
the page would be split. With sorted index builds, entries are only appended to uncompressed pages.
When an uncompressed page becomes full, it is compressed. Adaptive padding is used to ensure that
compression succeeds in most cases, but if compression fails, the page is split and compression is
attempted again. This process continues until compression is successful. For more information about
compression of B-Tree pages, see Section 14.9.1.5, “How Compression Works for InnoDB Tables”.

2588

Indexes

Sorted Index Builds and Redo Logging

Redo logging is disabled during a sorted index build. Instead, there is a checkpoint to ensure that the index
build can withstand an unexpected exit or failure. The checkpoint forces a write of all dirty pages to disk.
During a sorted index build, the page cleaner thread is signaled periodically to flush dirty pages to ensure
that the checkpoint operation can be processed quickly. Normally, the page cleaner thread flushes dirty
pages when the number of clean pages falls below a set threshold. For sorted index builds, dirty pages are
flushed promptly to reduce checkpoint overhead and to parallelize I/O and CPU activity.

Sorted Index Builds and Optimizer Statistics

Sorted index builds may result in optimizer statistics that differ from those generated by the previous
method of index creation. The difference in statistics, which is not expected to affect workload
performance, is due to the different algorithm used to populate the index.

14.6.2.4 InnoDB Full-Text Indexes

Full-text indexes are created on text-based columns (CHAR, VARCHAR, or TEXT columns) to speed up
queries and DML operations on data contained within those columns.

A full-text index is defined as part of a CREATE TABLE statement or added to an existing table using
ALTER TABLE or CREATE INDEX.

Full-text search is performed using MATCH() ... AGAINST syntax. For usage information, see
Section 12.9, “Full-Text Search Functions”.

InnoDB full-text indexes are described under the following topics in this section:

• InnoDB Full-Text Index Design

• InnoDB Full-Text Index Tables

• InnoDB Full-Text Index Cache

• InnoDB Full-Text Index DOC_ID and FTS_DOC_ID Column

• InnoDB Full-Text Index Deletion Handling

• InnoDB Full-Text Index Transaction Handling

• Monitoring InnoDB Full-Text Indexes

InnoDB Full-Text Index Design

InnoDB full-text indexes have an inverted index design. Inverted indexes store a list of words, and for each
word, a list of documents that the word appears in. To support proximity search, position information for
each word is also stored, as a byte offset.

InnoDB Full-Text Index Tables

When an InnoDB full-text index is created, a set of index tables is created, as shown in the following
example:

mysql> CREATE TABLE opening_lines (
 id INT UNSIGNED AUTO_INCREMENT NOT NULL PRIMARY KEY,
 opening_line TEXT(500),
 author VARCHAR(200),
 title VARCHAR(200),
 FULLTEXT idx (opening_line)

2589

Indexes

) ENGINE=InnoDB;

mysql> SELECT table_id, name, space from INFORMATION_SCHEMA.INNODB_SYS_TABLES
 WHERE name LIKE 'test/%';
+----------+--+-------+
| table_id | name | space |
+----------+--+-------+
333	test/FTS_0000000000000147_00000000000001c9_INDEX_1	289
334	test/FTS_0000000000000147_00000000000001c9_INDEX_2	290
335	test/FTS_0000000000000147_00000000000001c9_INDEX_3	291
336	test/FTS_0000000000000147_00000000000001c9_INDEX_4	292
337	test/FTS_0000000000000147_00000000000001c9_INDEX_5	293
338	test/FTS_0000000000000147_00000000000001c9_INDEX_6	294
330	test/FTS_0000000000000147_BEING_DELETED	286
331	test/FTS_0000000000000147_BEING_DELETED_CACHE	287
332	test/FTS_0000000000000147_CONFIG	288
328	test/FTS_0000000000000147_DELETED	284
329	test/FTS_0000000000000147_DELETED_CACHE	285
327	test/opening_lines	283
+----------+--+-------+

The first six index tables comprise the inverted index and are referred to as auxiliary index tables. When
incoming documents are tokenized, the individual words (also referred to as “tokens”) are inserted into the
index tables along with position information and an associated DOC_ID. The words are fully sorted and
partitioned among the six index tables based on the character set sort weight of the word's first character.

The inverted index is partitioned into six auxiliary index tables to support parallel index creation. By default,
two threads tokenize, sort, and insert words and associated data into the index tables. The number
of threads that perform this work is configurable using the innodb_ft_sort_pll_degree variable.
Consider increasing the number of threads when creating full-text indexes on large tables.

Auxiliary index table names are prefixed with fts_ and postfixed with index_#. Each auxiliary index table
is associated with the indexed table by a hex value in the auxiliary index table name that matches the
table_id of the indexed table. For example, the table_id of the test/opening_lines table is 327,
for which the hex value is 0x147. As shown in the preceding example, the “147” hex value appears in the
names of auxiliary index tables that are associated with the test/opening_lines table.

A hex value representing the index_id of the full-text index also appears in
auxiliary index table names. For example, in the auxiliary table name test/
FTS_0000000000000147_00000000000001c9_INDEX_1, the hex value 1c9 has a decimal value of
457. The index defined on the opening_lines table (idx) can be identified by querying the Information
Schema INNODB_SYS_INDEXES table for this value (457).

mysql> SELECT index_id, name, table_id, space from INFORMATION_SCHEMA.INNODB_SYS_INDEXES
 WHERE index_id=457;
+----------+------+----------+-------+
| index_id | name | table_id | space |
+----------+------+----------+-------+
| 457 | idx | 327 | 283 |
+----------+------+----------+-------+

Index tables are stored in their own tablespace if the primary table is created in a file-per-table tablespace.
Otherwise, index tables are stored in the tablespace where the indexed table resides.

The other index tables shown in the preceding example are referred to as common index tables and are
used for deletion handling and storing the internal state of full-text indexes. Unlike the inverted index
tables, which are created for each full-text index, this set of tables is common to all full-text indexes created
on a particular table.

Common index tables are retained even if full-text indexes are dropped. When a full-text index is dropped,
the FTS_DOC_ID column that was created for the index is retained, as removing the FTS_DOC_ID column

2590

Indexes

would require rebuilding the previously indexed table. Common index tables are required to manage the
FTS_DOC_ID column.

• FTS_*_DELETED and FTS_*_DELETED_CACHE

Contain the document IDs (DOC_ID) for documents that are deleted but whose data is not yet removed
from the full-text index. The FTS_*_DELETED_CACHE is the in-memory version of the FTS_*_DELETED
table.

• FTS_*_BEING_DELETED and FTS_*_BEING_DELETED_CACHE

Contain the document IDs (DOC_ID) for documents that are deleted and whose data is currently in the
process of being removed from the full-text index. The FTS_*_BEING_DELETED_CACHE table is the in-
memory version of the FTS_*_BEING_DELETED table.

• FTS_*_CONFIG

Stores information about the internal state of the full-text index. Most importantly, it stores the
FTS_SYNCED_DOC_ID, which identifies documents that have been parsed and flushed to disk. In case
of crash recovery, FTS_SYNCED_DOC_ID values are used to identify documents that have not been
flushed to disk so that the documents can be re-parsed and added back to the full-text index cache. To
view the data in this table, query the Information Schema INNODB_FT_CONFIG table.

InnoDB Full-Text Index Cache

When a document is inserted, it is tokenized, and the individual words and associated data are inserted
into the full-text index. This process, even for small documents, can result in numerous small insertions
into the auxiliary index tables, making concurrent access to these tables a point of contention. To
avoid this problem, InnoDB uses a full-text index cache to temporarily cache index table insertions
for recently inserted rows. This in-memory cache structure holds insertions until the cache is full and
then batch flushes them to disk (to the auxiliary index tables). You can query the Information Schema
INNODB_FT_INDEX_CACHE table to view tokenized data for recently inserted rows.

The caching and batch flushing behavior avoids frequent updates to auxiliary index tables, which could
result in concurrent access issues during busy insert and update times. The batching technique also
avoids multiple insertions for the same word, and minimizes duplicate entries. Instead of flushing each
word individually, insertions for the same word are merged and flushed to disk as a single entry, improving
insertion efficiency while keeping auxiliary index tables as small as possible.

The innodb_ft_cache_size variable is used to configure the full-text index cache size (on a per-
table basis), which affects how often the full-text index cache is flushed. You can also define a global full-
text index cache size limit for all tables in a given instance using the innodb_ft_total_cache_size
variable.

The full-text index cache stores the same information as auxiliary index tables. However, the full-text index
cache only caches tokenized data for recently inserted rows. The data that is already flushed to disk (to the
auxiliary index tables) is not brought back into the full-text index cache when queried. The data in auxiliary
index tables is queried directly, and results from the auxiliary index tables are merged with results from the
full-text index cache before being returned.

InnoDB Full-Text Index DOC_ID and FTS_DOC_ID Column

InnoDB uses a unique document identifier referred to as the DOC_ID to map words in the full-text index to
document records where the word appears. The mapping requires an FTS_DOC_ID column on the indexed
table. If an FTS_DOC_ID column is not defined, InnoDB automatically adds a hidden FTS_DOC_ID column
when the full-text index is created. The following example demonstrates this behavior.

2591

Indexes

The following table definition does not include an FTS_DOC_ID column:

mysql> CREATE TABLE opening_lines (
 id INT UNSIGNED AUTO_INCREMENT NOT NULL PRIMARY KEY,
 opening_line TEXT(500),
 author VARCHAR(200),
 title VARCHAR(200)
) ENGINE=InnoDB;

When you create a full-text index on the table using CREATE FULLTEXT INDEX syntax, a warning is
returned which reports that InnoDB is rebuilding the table to add the FTS_DOC_ID column.

mysql> CREATE FULLTEXT INDEX idx ON opening_lines(opening_line);
Query OK, 0 rows affected, 1 warning (0.19 sec)
Records: 0 Duplicates: 0 Warnings: 1

mysql> SHOW WARNINGS;
+---------+------+--+
| Level | Code | Message |
+---------+------+--+
| Warning | 124 | InnoDB rebuilding table to add column FTS_DOC_ID |
+---------+------+--+

The same warning is returned when using ALTER TABLE to add a full-text index to a table that does not
have an FTS_DOC_ID column. If you create a full-text index at CREATE TABLE time and do not specify an
FTS_DOC_ID column, InnoDB adds a hidden FTS_DOC_ID column, without warning.

Defining an FTS_DOC_ID column at CREATE TABLE time is less expensive than creating a full-text
index on a table that is already loaded with data. If an FTS_DOC_ID column is defined on a table prior
to loading data, the table and its indexes do not have to be rebuilt to add the new column. If you are not
concerned with CREATE FULLTEXT INDEX performance, leave out the FTS_DOC_ID column to have
InnoDB create it for you. InnoDB creates a hidden FTS_DOC_ID column along with a unique index
(FTS_DOC_ID_INDEX) on the FTS_DOC_ID column. If you want to create your own FTS_DOC_ID column,
the column must be defined as BIGINT UNSIGNED NOT NULL and named FTS_DOC_ID (all uppercase),
as in the following example:

Note

The FTS_DOC_ID column does not need to be defined as an AUTO_INCREMENT
column, but doing so could make loading data easier.

mysql> CREATE TABLE opening_lines (
 FTS_DOC_ID BIGINT UNSIGNED AUTO_INCREMENT NOT NULL PRIMARY KEY,
 opening_line TEXT(500),
 author VARCHAR(200),
 title VARCHAR(200)
) ENGINE=InnoDB;

If you choose to define the FTS_DOC_ID column yourself, you are responsible for managing the column
to avoid empty or duplicate values. FTS_DOC_ID values cannot be reused, which means FTS_DOC_ID
values must be ever increasing.

Optionally, you can create the required unique FTS_DOC_ID_INDEX (all uppercase) on the FTS_DOC_ID
column.

mysql> CREATE UNIQUE INDEX FTS_DOC_ID_INDEX on opening_lines(FTS_DOC_ID);

If you do not create the FTS_DOC_ID_INDEX, InnoDB creates it automatically.

Before MySQL 5.7.13, the permitted gap between the largest used FTS_DOC_ID value and new
FTS_DOC_ID value is 10000. In MySQL 5.7.13 and later, the permitted gap is 65535.

2592

Indexes

To avoid rebuilding the table, the FTS_DOC_ID column is retained when dropping a full-text index.

InnoDB Full-Text Index Deletion Handling

Deleting a record that has a full-text index column could result in numerous small deletions in the auxiliary
index tables, making concurrent access to these tables a point of contention. To avoid this problem, the
DOC_ID of a deleted document is logged in a special FTS_*_DELETED table whenever a record is deleted
from an indexed table, and the indexed record remains in the full-text index. Before returning query results,
information in the FTS_*_DELETED table is used to filter out deleted DOC_IDs. The benefit of this design
is that deletions are fast and inexpensive. The drawback is that the size of the index is not immediately
reduced after deleting records. To remove full-text index entries for deleted records, run OPTIMIZE TABLE
on the indexed table with innodb_optimize_fulltext_only=ON to rebuild the full-text index. For more
information, see Optimizing InnoDB Full-Text Indexes.

InnoDB Full-Text Index Transaction Handling

InnoDB full-text indexes have special transaction handling characteristics due its caching and batch
processing behavior. Specifically, updates and insertions on a full-text index are processed at transaction
commit time, which means that a full-text search can only see committed data. The following example
demonstrates this behavior. The full-text search only returns a result after the inserted lines are committed.

mysql> CREATE TABLE opening_lines (
 id INT UNSIGNED AUTO_INCREMENT NOT NULL PRIMARY KEY,
 opening_line TEXT(500),
 author VARCHAR(200),
 title VARCHAR(200),
 FULLTEXT idx (opening_line)
) ENGINE=InnoDB;

mysql> BEGIN;

mysql> INSERT INTO opening_lines(opening_line,author,title) VALUES
 ('Call me Ishmael.','Herman Melville','Moby-Dick'),
 ('A screaming comes across the sky.','Thomas Pynchon','Gravity\'s Rainbow'),
 ('I am an invisible man.','Ralph Ellison','Invisible Man'),
 ('Where now? Who now? When now?','Samuel Beckett','The Unnamable'),
 ('It was love at first sight.','Joseph Heller','Catch-22'),
 ('All this happened, more or less.','Kurt Vonnegut','Slaughterhouse-Five'),
 ('Mrs. Dalloway said she would buy the flowers herself.','Virginia Woolf','Mrs. Dalloway'),
 ('It was a pleasure to burn.','Ray Bradbury','Fahrenheit 451');

mysql> SELECT COUNT(*) FROM opening_lines WHERE MATCH(opening_line) AGAINST('Ishmael');
+----------+
| COUNT(*) |
+----------+
| 0 |
+----------+

mysql> COMMIT;

mysql> SELECT COUNT(*) FROM opening_lines WHERE MATCH(opening_line) AGAINST('Ishmael');
+----------+
| COUNT(*) |
+----------+
| 1 |
+----------+

Monitoring InnoDB Full-Text Indexes

You can monitor and examine the special text-processing aspects of InnoDB full-text indexes by querying
the following INFORMATION_SCHEMA tables:

• INNODB_FT_CONFIG

2593

Tablespaces

• INNODB_FT_INDEX_TABLE

• INNODB_FT_INDEX_CACHE

• INNODB_FT_DEFAULT_STOPWORD

• INNODB_FT_DELETED

• INNODB_FT_BEING_DELETED

You can also view basic information for full-text indexes and tables by querying INNODB_SYS_INDEXES
and INNODB_SYS_TABLES.

For more information, see Section 14.16.4, “InnoDB INFORMATION_SCHEMA FULLTEXT Index Tables”.

14.6.3 Tablespaces

This section covers topics related to InnoDB tablespaces.

14.6.3.1 The System Tablespace

The system tablespace is the storage area for the InnoDB data dictionary, the doublewrite buffer, the
change buffer, and undo logs. It may also contain table and index data if tables are created in the system
tablespace rather than file-per-table or general tablespaces.

The system tablespace can have one or more data files. By default, a single system tablespace data file,
named ibdata1, is created in the data directory. The size and number of system tablespace data files
is defined by the innodb_data_file_path startup option. For configuration information, see System
Tablespace Data File Configuration.

Additional information about the system tablespace is provided under the following topics in the section:

• Resizing the System Tablespace

• Using Raw Disk Partitions for the System Tablespace

Resizing the System Tablespace

This section describes how to increase or decrease the size of the system tablespace.

Increasing the Size of the System Tablespace

The easiest way to increase the size of the system tablespace is to configure it to be auto-extending. To do
so, specify the autoextend attribute for the last data file in the innodb_data_file_path setting, and
restart the server. For example:

innodb_data_file_path=ibdata1:10M:autoextend

When the autoextend attribute is specified, the data file automatically increases in size by 8MB
increments as space is required. The innodb_autoextend_increment variable controls the increment
size.

You can also increase system tablespace size by adding another data file. To do so:

1. Stop the MySQL server.

2. If the last data file in the innodb_data_file_path setting is defined with the autoextend attribute,
remove it, and modify the size attribute to reflect the current data file size. To determine the appropriate
data file size to specify, check your file system for the file size, and round that value down to the closest
MB value, where a MB is equal to 1024 x 1024 bytes.

2594

Tablespaces

3. Append a new data file to the innodb_data_file_path setting, optionally specifying the
autoextend attribute. The autoextend attribute can be specified only for the last data file in the
innodb_data_file_path setting.

4. Start the MySQL server.

For example, this tablespace has one auto-extending data file:

innodb_data_home_dir =
innodb_data_file_path = /ibdata/ibdata1:10M:autoextend

Suppose that the data file has grown to 988MB over time. This is the innodb_data_file_path setting
after modifying the size attribute to reflect the current data file size, and after specifying a new 50MB auto-
extending data file:

innodb_data_home_dir =
innodb_data_file_path = /ibdata/ibdata1:988M;/disk2/ibdata2:50M:autoextend

When adding a new data file, do not specify an existing file name. InnoDB creates and initializes the new
data file when you start the server.

Note

You cannot increase the size of an existing system tablespace data file by changing
its size attribute. For example, changing the innodb_data_file_path setting
from ibdata1:10M:autoextend to ibdata1:12M:autoextend produces the
following error when starting the server:

[ERROR] [MY-012263] [InnoDB] The Auto-extending innodb_system
data file './ibdata1' is of a different size 640 pages (rounded down to MB) than
specified in the .cnf file: initial 768 pages, max 0 (relevant if non-zero) pages!

The error indicates that the existing data file size (expressed in InnoDB pages) is
different from the data file size specified in the configuration file. If you encounter
this error, restore the previous innodb_data_file_path setting, and refer to the
system tablespace resizing instructions.

Decreasing the Size of the InnoDB System Tablespace

You cannot remove a data file from the system tablespace. To decrease the system tablespace size, use
this procedure:

1. Use mysqldump to dump all of your InnoDB tables, including InnoDB tables located in the mysql
schema. Identify InnoDB tables in the mysql schema using the following query:

mysql> SELECT TABLE_NAME from INFORMATION_SCHEMA.TABLES WHERE TABLE_SCHEMA='mysql' and ENGINE='InnoDB';
+---------------------------+
| TABLE_NAME |
+---------------------------+
| engine_cost |
| gtid_executed |
| help_category |
| help_keyword |
| help_relation |
| help_topic |
| innodb_index_stats |
| innodb_table_stats |
| plugin |
| server_cost |
| servers |
| slave_master_info |
| slave_relay_log_info |

2595

Tablespaces

| slave_worker_info |
| time_zone |
| time_zone_leap_second |
| time_zone_name |
| time_zone_transition |
| time_zone_transition_type |
+---------------------------+

2. Stop the server.

3. Remove all of the existing tablespace files (*.ibd), including the ibdata and ib_log files. Do not
forget to remove *.ibd files for tables located in the mysql schema.

4. Remove any .frm files for InnoDB tables.

5. Configure the data files for the new system tablespace. See System Tablespace Data File
Configuration.

6. Restart the server.

7. Import the dump files.

Note

If your databases only use the InnoDB engine, it may be simpler to dump all
databases, stop the server, remove all databases and InnoDB log files, restart the
server, and import the dump files.

To avoid a large system tablespace, consider using file-per-table tablespaces or general tablespaces
for your data. File-per-table tablespaces are the default tablespace type and are used implicitly when
creating an InnoDB table. Unlike the system tablespace, file-per-table tablespaces return disk space to the
operating system when they are truncated or dropped. For more information, see Section 14.6.3.2, “File-
Per-Table Tablespaces”. General tablespaces are multi-table tablespaces that can also be used as an
alternative to the system tablespace. See Section 14.6.3.3, “General Tablespaces”.

Using Raw Disk Partitions for the System Tablespace

Raw disk partitions can be used as system tablespace data files. This technique enables nonbuffered I/
O on Windows and some Linux and Unix systems without file system overhead. Perform tests with and
without raw partitions to verify whether they improve performance on your system.

When using a raw disk partition, ensure that the user ID that runs the MySQL server has read and write
privileges for that partition. For example, if running the server as the mysql user, the partition must be
readable and writeable by mysql. If running the server with the --memlock option, the server must be run
as root, so the partition must be readable and writeable by root.

The procedures described below involve option file modification. For additional information, see
Section 4.2.2.2, “Using Option Files”.

Allocating a Raw Disk Partition on Linux and Unix Systems

1. To use a raw device for a new server instance, first prepare the configuration file by setting
innodb_data_file_path with the raw keyword. For example:

[mysqld]
innodb_data_home_dir=
innodb_data_file_path=/dev/hdd1:3Graw;/dev/hdd2:2Graw

The partition must be at least as large as the size that you specify. Note that 1MB in InnoDB is 1024 ×
1024 bytes, whereas 1MB in disk specifications usually means 1,000,000 bytes.

2596

Tablespaces

2. Then initialize the server for the first time by using --initialize or --initialize-insecure.
InnoDB notices the raw keyword and initializes the new partition, and then it stops the server.

3. Now restart the server. InnoDB now permits changes to be made.

Allocating a Raw Disk Partition on Windows

On Windows systems, the same steps and accompanying guidelines described for Linux and Unix systems
apply except that the innodb_data_file_path setting differs slightly on Windows. For example:

[mysqld]
innodb_data_home_dir=
innodb_data_file_path=//./D::10Graw

The //./ corresponds to the Windows syntax of \\.\ for accessing physical drives. In the example
above, D: is the drive letter of the partition.

14.6.3.2 File-Per-Table Tablespaces

A file-per-table tablespace contains data and indexes for a single InnoDB table, and is stored on the file
system in a single data file.

File-per-table tablespace characteristics are described under the following topics in this section:

• File-Per-Table Tablespace Configuration

• File-Per-Table Tablespace Data Files

• File-Per-Table Tablespace Advantages

• File-Per-Table Tablespace Disadvantages

File-Per-Table Tablespace Configuration

InnoDB creates tables in file-per-table tablespaces by default. This behavior is controlled by the
innodb_file_per_table variable. Disabling innodb_file_per_table causes InnoDB to create
tables in the system tablespace.

An innodb_file_per_table setting can be specified in an option file or configured at runtime using a
SET GLOBAL statement. Changing the setting at runtime requires privileges sufficient to set global system
variables. See Section 5.1.8.1, “System Variable Privileges”.

Option file:

[mysqld]
innodb_file_per_table=ON

Using SET GLOBAL at runtime:

mysql> SET GLOBAL innodb_file_per_table=ON;

innodb_file_per_table is enabled by default in MySQL 5.6 and higher. You might consider disabling
it if backward compatibility with earlier versions of MySQL is a concern.

Warning

Disabling innodb_file_per_table prevents table-copying ALTER TABLE
operations from implicitly moving a table that resides in the system tablespace to
a file-per-table tablespace. A table-copying ALTER TABLE operation recreates the
table using the current innodb_file_per_table setting. This behavior does
not apply when adding or dropping secondary indexes, nor does it apply to ALTER

2597

Tablespaces

TABLE operations that use the INPLACE algorithm, or to tables added to the system
tablespace using CREATE TABLE ... TABLESPACE or ALTER TABLE ...
TABLESPACE syntax.

File-Per-Table Tablespace Data Files

A file-per-table tablespace is created in an .ibd data file in a schema directory under the MySQL data
directory. The .ibd file is named for the table (table_name.ibd). For example, the data file for table
test.t1 is created in the test directory under the MySQL data directory:

mysql> USE test;

mysql> CREATE TABLE t1 (
 id INT PRIMARY KEY AUTO_INCREMENT,
 name VARCHAR(100)
) ENGINE = InnoDB;

$> cd /path/to/mysql/data/test
$> ls
t1.ibd

You can use the DATA DIRECTORY clause of the CREATE TABLE statement to implicitly create a file-
per-table tablespace data file outside of the data directory. For more information, see Section 14.6.1.2,
“Creating Tables Externally”.

File-Per-Table Tablespace Advantages

File-per-table tablespaces have the following advantages over shared tablespaces such as the system
tablespace or general tablespaces.

• Disk space is returned to the operating system after truncating or dropping a table created in a file-
per-table tablespace. Truncating or dropping a table stored in a shared tablespace creates free space
within the shared tablespace data file, which can only be used for InnoDB data. In other words, a shared
tablespace data file does not shrink in size after a table is truncated or dropped.

• A table-copying ALTER TABLE operation on a table that resides in a shared tablespace can increase
the amount of disk space occupied by the tablespace. Such operations may require as much additional
space as the data in the table plus indexes. This space is not released back to the operating system as it
is for file-per-table tablespaces.

• TRUNCATE TABLE performance is better when executed on tables that reside in file-per-table
tablespaces.

• File-per-table tablespace data files can be created on separate storage devices for I/O optimization,
space management, or backup purposes. See Section 14.6.1.2, “Creating Tables Externally”.

• You can import a table that resides in a file-per-table tablespace from another MySQL instance. See
Section 14.6.1.3, “Importing InnoDB Tables”.

• Tables created in file-per-table tablespaces use the Barracuda file format. See Section 14.10, “InnoDB
File-Format Management”. The Barracuda file format enables features associated with DYNAMIC and
COMPRESSED row formats. See Section 14.11, “InnoDB Row Formats”.

• Tables stored in individual tablespace data files can save time and improve chances for a successful
recovery when data corruption occurs, when backups or binary logs are unavailable, or when the MySQL
server instance cannot be restarted.

• You can backup or restore tables created in file-per-table tablespaces quickly using MySQL Enterprise
Backup, without interrupting the use of other InnoDB tables. This is beneficial for tables on varying
backup schedules or that require backup less frequently. See Making a Partial Backup for details.

2598

https://dev.mysql.com/doc/mysql-enterprise-backup/4.1/en/partial.html

Tablespaces

• File-per-table tablespaces permit monitoring table size on the file system by monitoring the size of the
tablespace data file.

• Common Linux file systems do not permit concurrent writes to a single file such as a shared tablespace
data file when innodb_flush_method is set to O_DIRECT. As a result, there are possible performance
improvements when using file-per-table tablespaces in conjunction with this setting.

• Tables in a shared tablespace are limited in size by the 64TB tablespace size limit. By comparison, each
file-per-table tablespace has a 64TB size limit, which provides plenty of room for individual tables to grow
in size.

File-Per-Table Tablespace Disadvantages

File-per-table tablespaces have the following disadvantages compared to shared tablespaces such as the
system tablespace or general tablespaces.

• With file-per-table tablespaces, each table may have unused space that can only be utilized by rows of
the same table, which can lead to wasted space if not properly managed.

• fsync operations are performed on multiple file-per-table data files instead of a single shared
tablespace data file. Because fsync operations are per file, write operations for multiple tables cannot
be combined, which can result in a higher total number of fsync operations.

• mysqld must keep an open file handle for each file-per-table tablespace, which may impact
performance if you have numerous tables in file-per-table tablespaces.

• More file descriptors are required when each table has its own data file.

• There is potential for more fragmentation, which can impede DROP TABLE and table scan performance.
However, if fragmentation is managed, file-per-table tablespaces can improve performance for these
operations.

• The buffer pool is scanned when dropping a table that resides in a file-per-table tablespace, which can
take several seconds for large buffer pools. The scan is performed with a broad internal lock, which may
delay other operations.

• The innodb_autoextend_increment variable, which defines the increment size for extending
the size of an auto-extending shared tablespace file when it becomes full, does not apply to file-per-
table tablespace files, which are auto-extending regardless of the innodb_autoextend_increment
setting. Initial file-per-table tablespace extensions are by small amounts, after which extensions occur in
increments of 4MB.

14.6.3.3 General Tablespaces

A general tablespace is a shared InnoDB tablespace that is created using CREATE TABLESPACE syntax.
General tablespace capabilities and features are described under the following topics in this section:

• General Tablespace Capabilities

• Creating a General Tablespace

• Adding Tables to a General Tablespace

• General Tablespace Row Format Support

• Moving Tables Between Tablespaces Using ALTER TABLE

• Dropping a General Tablespace

• General Tablespace Limitations

2599

Tablespaces

General Tablespace Capabilities

General tablespaces provide the following capabilities:

• Similar to the system tablespace, general tablespaces are shared tablespaces capable of storing data
for multiple tables.

• General tablespaces have a potential memory advantage over file-per-table tablespaces. The server
keeps tablespace metadata in memory for the lifetime of a tablespace. Multiple tables in fewer general
tablespaces consume less memory for tablespace metadata than the same number of tables in separate
file-per-table tablespaces.

• General tablespace data files can be placed in a directory relative to or independent of the MySQL data
directory, which provides you with many of the data file and storage management capabilities of file-per-
table tablespaces. As with file-per-table tablespaces, the ability to place data files outside of the MySQL
data directory allows you to manage performance of critical tables separately, setup RAID or DRBD for
specific tables, or bind tables to particular disks, for example.

• General tablespaces support both Antelope and Barracuda file formats, and therefore support all table
row formats and associated features. With support for both file formats, general tablespaces have no
dependence on innodb_file_format or innodb_file_per_table settings, nor do these variables
have any effect on general tablespaces.

• The TABLESPACE option can be used with CREATE TABLE to create tables in a general tablespaces,
file-per-table tablespace, or in the system tablespace.

• The TABLESPACE option can be used with ALTER TABLE to move tables between general tablespaces,
file-per-table tablespaces, and the system tablespace.

Creating a General Tablespace

General tablespaces are created using CREATE TABLESPACE syntax.

CREATE TABLESPACE tablespace_name
 ADD DATAFILE 'file_name'
 [FILE_BLOCK_SIZE = value]
 [ENGINE [=] engine_name]

A general tablespace can be created in the data directory or outside of it. To avoid conflicts with implicitly
created file-per-table tablespaces, creating a general tablespace in a subdirectory under the data directory
is not supported. When creating a general tablespace outside of the data directory, the directory must exist
prior to creating the tablespace.

An .isl file is created in the MySQL data directory when a general tablespace is created outside of the
MySQL data directory.

Examples:

Creating a general tablespace in the data directory:

mysql> CREATE TABLESPACE `ts1` ADD DATAFILE 'ts1.ibd' Engine=InnoDB;

Creating a general tablespace in a directory outside of the data directory:

mysql> CREATE TABLESPACE `ts1` ADD DATAFILE '/my/tablespace/directory/ts1.ibd' Engine=InnoDB;

You can specify a path that is relative to the data directory as long as the tablespace directory is not
under the data directory. In this example, the my_tablespace directory is at the same level as the data
directory:

mysql> CREATE TABLESPACE `ts1` ADD DATAFILE '../my_tablespace/ts1.ibd' Engine=InnoDB;

2600

Tablespaces

Note

The ENGINE = InnoDB clause must be defined as part of the CREATE
TABLESPACE statement, or InnoDB must be defined as the default storage engine
(default_storage_engine=InnoDB).

Adding Tables to a General Tablespace

After creating a general tablespace, CREATE TABLE tbl_name ... TABLESPACE [=]
tablespace_name or ALTER TABLE tbl_name TABLESPACE [=] tablespace_name statements
can be used to add tables to the tablespace, as shown in the following examples:

CREATE TABLE:

mysql> CREATE TABLE t1 (c1 INT PRIMARY KEY) TABLESPACE ts1;

ALTER TABLE:

mysql> ALTER TABLE t2 TABLESPACE ts1;

Note

Support for adding table partitions to shared tablespaces was deprecated in MySQL
5.7.24; expect it to be removed in a future version of MySQL. Shared tablespaces
include the InnoDB system tablespace and general tablespaces.

For detailed syntax information, see CREATE TABLE and ALTER TABLE.

General Tablespace Row Format Support

General tablespaces support all table row formats (REDUNDANT, COMPACT, DYNAMIC, COMPRESSED) with
the caveat that compressed and uncompressed tables cannot coexist in the same general tablespace due
to different physical page sizes.

For a general tablespace to contain compressed tables (ROW_FORMAT=COMPRESSED), the
FILE_BLOCK_SIZE option must be specified, and the FILE_BLOCK_SIZE value must be a valid
compressed page size in relation to the innodb_page_size value. Also, the physical page size of the
compressed table (KEY_BLOCK_SIZE) must be equal to FILE_BLOCK_SIZE/1024. For example, if
innodb_page_size=16KB and FILE_BLOCK_SIZE=8K, the KEY_BLOCK_SIZE of the table must be 8.

The following table shows permitted innodb_page_size, FILE_BLOCK_SIZE, and KEY_BLOCK_SIZE
combinations. FILE_BLOCK_SIZE values may also be specified in bytes. To determine a valid
KEY_BLOCK_SIZE value for a given FILE_BLOCK_SIZE, divide the FILE_BLOCK_SIZE value by 1024.
Table compression is not support for 32K and 64K InnoDB page sizes. For more information about
KEY_BLOCK_SIZE, see CREATE TABLE, and Section 14.9.1.2, “Creating Compressed Tables”.

Table 14.3 Permitted Page Size, FILE_BLOCK_SIZE, and KEY_BLOCK_SIZE Combinations for
Compressed Tables

InnoDB Page Size
(innodb_page_size)

Permitted FILE_BLOCK_SIZE
Value

Permitted KEY_BLOCK_SIZE
Value

64KB 64K (65536) Compression is not supported

32KB 32K (32768) Compression is not supported

16KB 16K (16384) None. If innodb_page_size
is equal to FILE_BLOCK_SIZE,
the tablespace cannot contain a
compressed table.

2601

Tablespaces

InnoDB Page Size
(innodb_page_size)

Permitted FILE_BLOCK_SIZE
Value

Permitted KEY_BLOCK_SIZE
Value

16KB 8K (8192) 8

16KB 4K (4096) 4

16KB 2K (2048) 2

16KB 1K (1024) 1

8KB 8K (8192) None. If innodb_page_size
is equal to FILE_BLOCK_SIZE,
the tablespace cannot contain a
compressed table.

8KB 4K (4096) 4

8KB 2K (2048) 2

8KB 1K (1024) 1

4KB 4K (4096) None. If innodb_page_size
is equal to FILE_BLOCK_SIZE,
the tablespace cannot contain a
compressed table.

4K 2K (2048) 2

4KB 1K (1024) 1

This example demonstrates creating a general tablespace and adding a compressed table. The example
assumes a default innodb_page_size of 16KB. The FILE_BLOCK_SIZE of 8192 requires that the
compressed table have a KEY_BLOCK_SIZE of 8.

mysql> CREATE TABLESPACE `ts2` ADD DATAFILE 'ts2.ibd' FILE_BLOCK_SIZE = 8192 Engine=InnoDB;

mysql> CREATE TABLE t4 (c1 INT PRIMARY KEY) TABLESPACE ts2 ROW_FORMAT=COMPRESSED KEY_BLOCK_SIZE=8;

If you do not specify FILE_BLOCK_SIZE when creating a general tablespace, FILE_BLOCK_SIZE
defaults to innodb_page_size. When FILE_BLOCK_SIZE is equal to innodb_page_size, the
tablespace may only contain tables with an uncompressed row format (COMPACT, REDUNDANT, and
DYNAMIC row formats).

Moving Tables Between Tablespaces Using ALTER TABLE

ALTER TABLE with the TABLESPACE option can be used to move a table to an existing general
tablespace, to a new file-per-table tablespace, or to the system tablespace.

Note

Support for placing table partitions in shared tablespaces was deprecated in
MySQL 5.7.24; expect it to be removed in a future version of MySQL. Shared
tablespaces include the InnoDB system tablespace and general tablespaces.

To move a table from a file-per-table tablespace or from the system tablespace to a general tablespace,
specify the name of the general tablespace. The general tablespace must exist. See ALTER TABLESPACE
for more information.

ALTER TABLE tbl_name TABLESPACE [=] tablespace_name;

To move a table from a general tablespace or file-per-table tablespace to the system tablespace, specify
innodb_system as the tablespace name.

2602

Tablespaces

ALTER TABLE tbl_name TABLESPACE [=] innodb_system;

To move a table from the system tablespace or a general tablespace to a file-per-table tablespace, specify
innodb_file_per_table as the tablespace name.

ALTER TABLE tbl_name TABLESPACE [=] innodb_file_per_table;

ALTER TABLE ... TABLESPACE operations cause a full table rebuild, even if the TABLESPACE attribute
has not changed from its previous value.

ALTER TABLE ... TABLESPACE syntax does not support moving a table from a temporary tablespace to
a persistent tablespace.

The DATA DIRECTORY clause is permitted with CREATE TABLE ...
TABLESPACE=innodb_file_per_table but is otherwise not supported for use in combination with the
TABLESPACE option.

Restrictions apply when moving tables from encrypted tablespaces. See Encryption Limitations.

Dropping a General Tablespace

The DROP TABLESPACE statement is used to drop an InnoDB general tablespace.

All tables must be dropped from the tablespace prior to a DROP TABLESPACE operation. If the tablespace
is not empty, DROP TABLESPACE returns an error.

Use a query similar to the following to identify tables in a general tablespace.

mysql> SELECT a.NAME AS space_name, b.NAME AS table_name FROM INFORMATION_SCHEMA.INNODB_TABLESPACES a,
 INFORMATION_SCHEMA.INNODB_TABLES b WHERE a.SPACE=b.SPACE AND a.NAME LIKE 'ts1';
+------------+------------+
| space_name | table_name |
+------------+------------+
ts1	test/t1
ts1	test/t2
ts1	test/t3
+------------+------------+

If a DROP TABLESPACE operation on an empty general tablespace returns an error, the tablespace may
contain an orphan temporary or intermediate table that was left by an ALTER TABLE operation that was
interrupted by a server exit. For more information, see Section 14.22.3, “Troubleshooting InnoDB Data
Dictionary Operations”.

A general InnoDB tablespace is not deleted automatically when the last table in the tablespace is dropped.
The tablespace must be dropped explicitly using DROP TABLESPACE tablespace_name.

A general tablespace does not belong to any particular database. A DROP DATABASE operation can drop
tables that belong to a general tablespace but it cannot drop the tablespace, even if the DROP DATABASE
operation drops all tables that belong to the tablespace.

Similar to the system tablespace, truncating or dropping tables stored in a general tablespace creates
free space internally in the general tablespace .ibd data file which can only be used for new InnoDB data.
Space is not released back to the operating system as it is when a file-per-table tablespace is deleted
during a DROP TABLE operation.

This example demonstrates how to drop an InnoDB general tablespace. The general tablespace ts1 is
created with a single table. The table must be dropped before dropping the tablespace.

mysql> CREATE TABLESPACE `ts1` ADD DATAFILE 'ts1.ibd' Engine=InnoDB;

mysql> CREATE TABLE t1 (c1 INT PRIMARY KEY) TABLESPACE ts1 Engine=InnoDB;

2603

Tablespaces

mysql> DROP TABLE t1;

mysql> DROP TABLESPACE ts1;

Note

tablespace_name is a case-sensitive identifier in MySQL.

General Tablespace Limitations

• A generated or existing tablespace cannot be changed to a general tablespace.

• Creation of temporary general tablespaces is not supported.

• General tablespaces do not support temporary tables.

• Tables stored in a general tablespace may only be opened in MySQL releases that support general
tablespaces.

• Similar to the system tablespace, truncating or dropping tables stored in a general tablespace creates
free space internally in the general tablespace .ibd data file which can only be used for new InnoDB
data. Space is not released back to the operating system as it is for file-per-table tablespaces.

Additionally, a table-copying ALTER TABLE operation on table that resides in a shared tablespace (a
general tablespace or the system tablespace) can increase the amount of space used by the tablespace.
Such operations require as much additional space as the data in the table plus indexes. The additional
space required for the table-copying ALTER TABLE operation is not released back to the operating
system as it is for file-per-table tablespaces.

• ALTER TABLE ... DISCARD TABLESPACE and ALTER TABLE ...IMPORT TABLESPACE are not
supported for tables that belong to a general tablespace.

• Support for placing table partitions in general tablespaces was deprecated in MySQL 5.7.24; expect it to
be removed in a future version of MySQL.

• The ADD DATAFILE clause is not supported in a replication environment where the source and replica
reside on the same host, as it would cause the source and replica to create a tablespace of the same
name in the same location.

14.6.3.4 Undo Tablespaces

Undo tablespaces contain undo logs, which are collections of records containing information about how to
undo the latest change by a transaction to a clustered index record.

Undo logs are stored in the system tablespace by default but can be stored in one or more undo
tablespaces instead. Using undo tablespaces can reducing the amount of space required for undo logs in
any one tablespace. The I/O patterns for undo logs also make undo tablespaces good candidates for SSD
storage.

The number of undo tablespaces used by InnoDB is controlled by the innodb_undo_tablespaces
option. This option can only be configured when initializing the MySQL instance. It cannot be changed
afterward.

Note

The innodb_undo_tablespaces option is deprecated; expect it to be removed in
a future release.

2604

Tablespaces

Undo tablespaces and individual segments inside those tablespaces cannot be dropped. However,
undo logs stored in undo tablespaces can be truncated. For more information, see Truncating Undo
Tablespaces.

Configuring Undo Tablespaces

This procedure describes how to configure undo tablespaces. When undo tablespaces are configured,
undo logs are stored in the undo tablespaces instead of the system tablespace.

The number of undo tablespaces can only be configured when initializing a MySQL instance and is
fixed for the life of the instance, so it is recommended that you perform the following procedure on a test
instance with a representative workload before deploying the configuration to a production system.

To configure undo tablespaces:

1. Specify a directory location for undo tablespaces using the innodb_undo_directory variable. If a
directory location is not specified, undo tablespaces are created in the data directory.

2. Define the number of rollback segments using the innodb_rollback_segments variable. Start with
a relatively low value and increase it incrementally over time to examine the effect on performance. The
default setting for innodb_rollback_segments is 128, which is also the maximum value.

One rollback segment is always assigned to the system tablespace, and 32 rollback segments are
reserved for the temporary tablespace (ibtmp1). Therefore, to allocate rollback segments to undo
tablespaces, set innodb_rollback_segments to a value greater than 33. For example, if you have
two undo tablespaces, set innodb_rollback_segments to 35 to assign one rollback segment to
each of the two undo tablespaces. Rollback segments are distributed among undo tablespaces in a
circular fashion.

When you add undo tablespaces, the rollback segment in the system tablespace is rendered inactive.

3. Define the number of undo tablespaces using the innodb_undo_tablespaces option. The specified
number of undo tablespaces is fixed for the life of the MySQL instance, so if you are uncertain about an
optimal value, estimate on the high side.

4. Create a new MySQL test instance using the configuration settings you have chosen.

5. Use a realistic workload on your test instance with data volume similar to your production servers to
test the configuration.

6. Benchmark the performance of I/O intensive workloads.

7. Periodically increase the value of innodb_rollback_segments and rerun performance tests until
there are no further improvements in I/O performance.

Truncating Undo Tablespaces

Truncating undo tablespaces requires that the MySQL instance have a minimum of two active undo
tablespaces, which ensures that one undo tablespace remains active while the other is taken offline to be
truncated. The number of undo tablespaces is defined by the innodb_undo_tablespaces variable. The
default value is 0. Use this statement to check the value of innodb_undo_tablespaces:

mysql> SELECT @@innodb_undo_tablespaces;
+---------------------------+
| @@innodb_undo_tablespaces |
+---------------------------+
| 2 |
+---------------------------+

2605

Tablespaces

To have undo tablespaces truncated, enable the innodb_undo_log_truncate variable. For example:

mysql> SET GLOBAL innodb_undo_log_truncate=ON;

When the innodb_undo_log_truncate variable is enabled, undo tablespaces that exceed the
size limit defined by the innodb_max_undo_log_size variable are subject to truncation. The
innodb_max_undo_log_size variable is dynamic and has a default value of 1073741824 bytes (1024
MiB).

mysql> SELECT @@innodb_max_undo_log_size;
+----------------------------+
| @@innodb_max_undo_log_size |
+----------------------------+
| 1073741824 |
+----------------------------+

When the innodb_undo_log_truncate variable is enabled:

1. Undo tablespaces that exceed the innodb_max_undo_log_size setting are marked for truncation.
Selection of an undo tablespace for truncation is performed in a circular fashion to avoid truncating the
same undo tablespace each time.

2. Rollback segments residing in the selected undo tablespace are made inactive so that they are not
assigned to new transactions. Existing transactions that are currently using rollback segments are
permitted to finish.

3. The purge system empties rollback segments by freeing undo logs that are no longer in use.

4. After all rollback segments in the undo tablespace are freed, the truncate operation runs and
truncates the undo tablespace to its initial size. The initial size of an undo tablespace depends on the
innodb_page_size value. For the default 16KB page size, the initial undo tablespace file size is
10MiB. For 4KB, 8KB, 32KB, and 64KB page sizes, the initial undo tablespace files sizes are 7MiB,
8MiB, 20MiB, and 40MiB, respectively.

The size of an undo tablespace after a truncate operation may be larger than the initial size due to
immediate use following the completion of the operation.

The innodb_undo_directory variable defines the location of undo tablespace files. If the
innodb_undo_directory variable is undefined, undo tablespaces reside in the data directory.

5. Rollback segments are reactivated so that they can be assigned to new transactions.

Expediting Truncation of Undo Tablespaces

The purge thread is responsible for emptying and truncating undo tablespaces. By default, the purge
thread looks for undo tablespaces to truncate once every 128 times that purge is invoked. The
frequency with which the purge thread looks for undo tablespaces to truncate is controlled by the
innodb_purge_rseg_truncate_frequency variable, which has a default setting of 128.

mysql> SELECT @@innodb_purge_rseg_truncate_frequency;
+--+
| @@innodb_purge_rseg_truncate_frequency |
+--+
| 128 |
+--+

To increase the frequency, decrease the innodb_purge_rseg_truncate_frequency setting. For
example, to have the purge thread look for undo tabespaces once every 32 timees that purge is invoked,
set innodb_purge_rseg_truncate_frequency to 32.

2606

Tablespaces

mysql> SET GLOBAL innodb_purge_rseg_truncate_frequency=32;

When the purge thread finds an undo tablespace that requires truncation, the purge thread returns with
increased frequency to quickly empty and truncate the undo tablespace.

Performance Impact of Truncating Undo Tablespace Files

When an undo tablespace is truncated, the rollback segments in the undo tablespace are deactivated. The
active rollback segments in other undo tablespaces assume responsibility for the entire system load, which
may result in a slight performance degradation. The extent to which performance is affected depends on a
number of factors:

• Number of undo tablespaces

• Number of undo logs

• Undo tablespace size

• Speed of the I/O susbsystem

• Existing long running transactions

• System load

The easiest way to avoid the potential performance impact is to increase the number of undo tablespaces.

Also, two checkpoint operations are performed during an undo tablespace truncate operation. The first
checkpoint operation removes the old undo tablespace pages from the buffer pool. The second checkpoint
flushes the initial pages of the new undo tablespace to disk. On a busy system, the first checkpoint in
particular can temporarily affect system performance if there is a large number of pages to remove.

Undo Tablespace Truncation Recovery

An undo tablespace truncate operation creates a temporary undo_space_number_trunc.log file in the
server log directory. That log directory is defined by innodb_log_group_home_dir. If a system failure
occurs during the truncate operation, the temporary log file permits the startup process to identify undo
tablespaces that were being truncated and to continue the operation.

14.6.3.5 The Temporary Tablespace

Non-compressed, user-created temporary tables and on-disk internal temporary tables are created
in a shared temporary tablespace. The innodb_temp_data_file_path variable defines the
relative path, name, size, and attributes for temporary tablespace data files. If no value is specified for
innodb_temp_data_file_path, the default behavior is to create an auto-extending data file named
ibtmp1 in the innodb_data_home_dir directory that is slightly larger than 12MB.

Note

In MySQL 5.6, non-compressed temporary tables are created in individual file-
per-table tablespaces in the temporary file directory, or in the InnoDB system
tablespace in the data directory if innodb_file_per_table is disabled. The
introduction of a shared temporary tablespace in MySQL 5.7 removes performance
costs associated with creating and removing a file-per-table tablespace for each
temporary table. A dedicated temporary tablespace also means that it is no longer
necessary to save temporary table metadata to the InnoDB system tables.

Compressed temporary tables, which are temporary tables created using the ROW_FORMAT=COMPRESSED
attribute, are created in file-per-table tablespaces in the temporary file directory.

2607

Tablespaces

The temporary tablespace is removed on normal shutdown or on an aborted initialization, and is recreated
each time the server is started. The temporary tablespace receives a dynamically generated space ID
when it is created. Startup is refused if the temporary tablespace cannot be created. The temporary
tablespace is not removed if the server halts unexpectedly. In this case, a database administrator can
remove the temporary tablespace manually or restart the server, which removes and recreates the
temporary tablespace automatically.

The temporary tablespace cannot reside on a raw device.

The Information Schema FILES table provides metadata about the InnoDB temporary tablespace. Issue a
query similar to this one to view temporary tablespace metadata:

mysql> SELECT * FROM INFORMATION_SCHEMA.FILES WHERE TABLESPACE_NAME='innodb_temporary'\G

The Information Schema INNODB_TEMP_TABLE_INFO table provides metadata about user-created
temporary tables that are currently active within an InnoDB instance.

Managing Temporary Tablespace Data File Size

By default, the temporary tablespace data file is autoextending and increases in size as necessary to
accommodate on-disk temporary tables. For example, if an operation creates a temporary table that is
20MB in size, the temporary tablespace data file, which is 12MB in size by default when created, extends
in size to accommodate it. When temporary tables are dropped, freed space can be reused for new
temporary tables, but the data file remains at the extended size.

An autoextending temporary tablespace data file can become large in environments that use large
temporary tables or that use temporary tables extensively. A large data file can also result from long
running queries that use temporary tables.

To determine if a temporary tablespace data file is autoextending, check the
innodb_temp_data_file_path setting:

mysql> SELECT @@innodb_temp_data_file_path;
+------------------------------+
| @@innodb_temp_data_file_path |
+------------------------------+
| ibtmp1:12M:autoextend |
+------------------------------+

To check the size of temporary tablespace data files, query the Information Schema FILES table using a
query similar to this:

mysql> SELECT FILE_NAME, TABLESPACE_NAME, ENGINE, INITIAL_SIZE, TOTAL_EXTENTS*EXTENT_SIZE
 AS TotalSizeBytes, DATA_FREE, MAXIMUM_SIZE FROM INFORMATION_SCHEMA.FILES
 WHERE TABLESPACE_NAME = 'innodb_temporary'\G
*************************** 1. row ***************************
 FILE_NAME: ./ibtmp1
TABLESPACE_NAME: innodb_temporary
 ENGINE: InnoDB
 INITIAL_SIZE: 12582912
 TotalSizeBytes: 12582912
 DATA_FREE: 6291456
 MAXIMUM_SIZE: NULL

The TotalSizeBytes value reports the current size of the temporary tablespace data file. For information
about other field values, see Section 24.3.9, “The INFORMATION_SCHEMA FILES Table”.

Alternatively, check the temporary tablespace data file size on your operating system. By default, the
temporary tablespace data file is located in the directory defined by the innodb_temp_data_file_path
configuration option. If a value was not specified for this option explicitly, a temporary tablespace data file

2608

InnoDB Data Dictionary

named ibtmp1 is created in innodb_data_home_dir, which defaults to the MySQL data directory if
unspecified.

To reclaim disk space occupied by a temporary tablespace data file, restart the MySQL server. Restarting
the server removes and recreates the temporary tablespace data file according to the attributes defined by
innodb_temp_data_file_path.

To prevent the temporary data file from becoming too large, you can configure the
innodb_temp_data_file_path variable to specify a maximum file size. For example:

[mysqld]
innodb_temp_data_file_path=ibtmp1:12M:autoextend:max:500M

When the data file reaches the maximum size, queries fail with an error indicating that the table is full.
Configuring innodb_temp_data_file_path requires restarting the server.

Alternatively, configure the default_tmp_storage_engine and
internal_tmp_disk_storage_engine variables, which define the storage engine to use for user-
created and on-disk internal temporary tables, respectively. Both variables are set to InnoDB by default.
The MyISAM storage engine uses an individual file for each temporary table, which is removed when the
temporary table is dropped.

14.6.4 InnoDB Data Dictionary

The InnoDB data dictionary is comprised of internal system tables that contain metadata used to keep
track of objects such as tables, indexes, and table columns. The metadata is physically located in the
InnoDB system tablespace. For historical reasons, data dictionary metadata overlaps to some degree with
information stored in InnoDB table metadata files (.frm files).

14.6.5 Doublewrite Buffer

The doublewrite buffer is a storage area where InnoDB writes pages flushed from the buffer pool before
writing the pages to their proper positions in the InnoDB data files. If there is an operating system, storage
subsystem, or unexpected mysqld process exit in the middle of a page write, InnoDB can find a good
copy of the page from the doublewrite buffer during crash recovery.

Although data is written twice, the doublewrite buffer does not require twice as much I/O overhead or
twice as many I/O operations. Data is written to the doublewrite buffer in a large sequential chunk, with a
single fsync() call to the operating system (except in the case that innodb_flush_method is set to
O_DIRECT_NO_FSYNC).

The doublewrite buffer is enabled by default in most cases. To disable the doublewrite buffer, set
innodb_doublewrite to 0.

If system tablespace files (“ibdata files”) are located on Fusion-io devices that support atomic writes,
doublewrite buffering is automatically disabled and Fusion-io atomic writes are used for all data files.
Because the doublewrite buffer setting is global, doublewrite buffering is also disabled for data files
residing on non-Fusion-io hardware. This feature is only supported on Fusion-io hardware and is only
enabled for Fusion-io NVMFS on Linux. To take full advantage of this feature, an innodb_flush_method
setting of O_DIRECT is recommended.

14.6.6 Redo Log

The redo log is a disk-based data structure used during crash recovery to correct data written by
incomplete transactions. During normal operations, the redo log encodes requests to change table
data that result from SQL statements or low-level API calls. Modifications that did not finish updating
the data files before an unexpected shutdown are replayed automatically during initialization, and

2609

Undo Logs

before connections are accepted. For information about the role of the redo log in crash recovery, see
Section 14.19.2, “InnoDB Recovery”.

By default, the redo log is physically represented on disk by two files named ib_logfile0 and
ib_logfile1. MySQL writes to the redo log files in a circular fashion. Data in the redo log is encoded in
terms of records affected; this data is collectively referred to as redo. The passage of data through the redo
log is represented by an ever-increasing LSN value.

Information and procedures related to redo logs are described under the following topics in the section:

• Changing the Number or Size of InnoDB Redo Log Files

• Related Topics

Changing the Number or Size of InnoDB Redo Log Files

To change the number or the size of your InnoDB redo log files, perform the following steps:

1. Stop the MySQL server and make sure that it shuts down without errors.

2. Edit my.cnf to change the log file configuration. To change the log file size,
configure innodb_log_file_size. To increase the number of log files, configure
innodb_log_files_in_group.

3. Start the MySQL server again.

If InnoDB detects that the innodb_log_file_size differs from the redo log file size, it writes a log
checkpoint, closes and removes the old log files, creates new log files at the requested size, and opens the
new log files.

Related Topics

• Redo Log File Configuration

• Section 8.5.4, “Optimizing InnoDB Redo Logging”

14.6.7 Undo Logs

An undo log is a collection of undo log records associated with a single read-write transaction. An undo
log record contains information about how to undo the latest change by a transaction to a clustered index
record. If another transaction needs to see the original data as part of a consistent read operation, the
unmodified data is retrieved from undo log records. Undo logs exist within undo log segments, which
are contained within rollback segments. Rollback segments reside in the system tablespace, in undo
tablespaces, and in the temporary tablespace.

Undo logs that reside in the temporary tablespace are used for transactions that modify data in user-
defined temporary tables. These undo logs are not redo-logged, as they are not required for crash
recovery. They are used only for rollback while the server is running. This type of undo log benefits
performance by avoiding redo logging I/O.

InnoDB supports a maximum of 128 rollback segments, 32 of which are allocated to the temporary
tablespace. This leaves 96 rollback segments that can be assigned to transactions that modify data in
regular tables. The innodb_rollback_segments variable defines the number of rollback segments
used by InnoDB.

The number of transactions that a rollback segment supports depends on the number of undo slots in the
rollback segment and the number of undo logs required by each transaction. The number of undo slots in a
rollback segment differs according to InnoDB page size.

2610

Undo Logs

InnoDB Page Size Number of Undo Slots in a Rollback Segment
(InnoDB Page Size / 16)

4096 (4KB) 256

8192 (8KB) 512

16384 (16KB) 1024

32768 (32KB) 2048

65536 (64KB) 4096

A transaction is assigned up to four undo logs, one for each of the following operation types:

1. INSERT operations on user-defined tables

2. UPDATE and DELETE operations on user-defined tables

3. INSERT operations on user-defined temporary tables

4. UPDATE and DELETE operations on user-defined temporary tables

Undo logs are assigned as needed. For example, a transaction that performs INSERT, UPDATE, and
DELETE operations on regular and temporary tables requires a full assignment of four undo logs. A
transaction that performs only INSERT operations on regular tables requires a single undo log.

A transaction that performs operations on regular tables is assigned undo logs from an assigned system
tablespace or undo tablespace rollback segment. A transaction that performs operations on temporary
tables is assigned undo logs from an assigned temporary tablespace rollback segment.

An undo log assigned to a transaction remains attached to the transaction for its duration. For example,
an undo log assigned to a transaction for an INSERT operation on a regular table is used for all INSERT
operations on regular tables performed by that transaction.

Given the factors described above, the following formulas can be used to estimate the number of
concurrent read-write transactions that InnoDB is capable of supporting.

Note

It is possible to encounter a concurrent transaction limit error before reaching the
number of concurrent read-write transactions that InnoDB is capable of supporting.
This occurs when the rollback segment assigned to a transaction runs out of undo
slots. In such cases, try rerunning the transaction.

When transactions perform operations on temporary tables, the number of
concurrent read-write transactions that InnoDB is capable of supporting is
constrained by the number of rollback segments allocated to the temporary
tablespace, which is 32.

• If each transaction performs either an INSERT or an UPDATE or DELETE operation, the number of
concurrent read-write transactions that InnoDB is capable of supporting is:

(innodb_page_size / 16) * (innodb_rollback_segments - 32)

• If each transaction performs an INSERT and an UPDATE or DELETE operation, the number of concurrent
read-write transactions that InnoDB is capable of supporting is:

(innodb_page_size / 16 / 2) * (innodb_rollback_segments - 32)

2611

InnoDB Locking and Transaction Model

• If each transaction performs an INSERT operation on a temporary table, the number of concurrent read-
write transactions that InnoDB is capable of supporting is:

(innodb_page_size / 16) * 32

• If each transaction performs an INSERT and an UPDATE or DELETE operation on a temporary table, the
number of concurrent read-write transactions that InnoDB is capable of supporting is:

(innodb_page_size / 16 / 2) * 32

14.7 InnoDB Locking and Transaction Model
To implement a large-scale, busy, or highly reliable database application, to port substantial code from a
different database system, or to tune MySQL performance, it is important to understand InnoDB locking
and the InnoDB transaction model.

This section discusses several topics related to InnoDB locking and the InnoDB transaction model with
which you should be familiar.

• Section 14.7.1, “InnoDB Locking” describes lock types used by InnoDB.

• Section 14.7.2, “InnoDB Transaction Model” describes transaction isolation levels and the locking
strategies used by each. It also discusses the use of autocommit, consistent non-locking reads, and
locking reads.

• Section 14.7.3, “Locks Set by Different SQL Statements in InnoDB” discusses specific types of locks set
in InnoDB for various statements.

• Section 14.7.4, “Phantom Rows” describes how InnoDB uses next-key locking to avoid phantom rows.

• Section 14.7.5, “Deadlocks in InnoDB” provides a deadlock example, discusses deadlock detection, and
provides tips for minimizing and handling deadlocks in InnoDB.

14.7.1 InnoDB Locking

This section describes lock types used by InnoDB.

• Shared and Exclusive Locks

• Intention Locks

• Record Locks

• Gap Locks

• Next-Key Locks

• Insert Intention Locks

• AUTO-INC Locks

• Predicate Locks for Spatial Indexes

Shared and Exclusive Locks

InnoDB implements standard row-level locking where there are two types of locks, shared (S) locks and
exclusive (X) locks.

• A shared (S) lock permits the transaction that holds the lock to read a row.

2612

InnoDB Locking

• An exclusive (X) lock permits the transaction that holds the lock to update or delete a row.

If transaction T1 holds a shared (S) lock on row r, then requests from some distinct transaction T2 for a
lock on row r are handled as follows:

• A request by T2 for an S lock can be granted immediately. As a result, both T1 and T2 hold an S lock on
r.

• A request by T2 for an X lock cannot be granted immediately.

If a transaction T1 holds an exclusive (X) lock on row r, a request from some distinct transaction T2 for a
lock of either type on r cannot be granted immediately. Instead, transaction T2 has to wait for transaction
T1 to release its lock on row r.

Intention Locks

InnoDB supports multiple granularity locking which permits coexistence of row locks and table locks.
For example, a statement such as LOCK TABLES ... WRITE takes an exclusive lock (an X lock) on
the specified table. To make locking at multiple granularity levels practical, InnoDB uses intention locks.
Intention locks are table-level locks that indicate which type of lock (shared or exclusive) a transaction
requires later for a row in a table. There are two types of intention locks:

• An intention shared lock (IS) indicates that a transaction intends to set a shared lock on individual rows
in a table.

• An intention exclusive lock (IX) indicates that a transaction intends to set an exclusive lock on individual
rows in a table.

For example, SELECT ... LOCK IN SHARE MODE sets an IS lock, and SELECT ... FOR UPDATE
sets an IX lock.

The intention locking protocol is as follows:

• Before a transaction can acquire a shared lock on a row in a table, it must first acquire an IS lock or
stronger on the table.

• Before a transaction can acquire an exclusive lock on a row in a table, it must first acquire an IX lock on
the table.

Table-level lock type compatibility is summarized in the following matrix.

X IX S IS

X Conflict Conflict Conflict Conflict

IX Conflict Compatible Conflict Compatible

S Conflict Conflict Compatible Compatible

IS Conflict Compatible Compatible Compatible

A lock is granted to a requesting transaction if it is compatible with existing locks, but not if it conflicts with
existing locks. A transaction waits until the conflicting existing lock is released. If a lock request conflicts
with an existing lock and cannot be granted because it would cause deadlock, an error occurs.

Intention locks do not block anything except full table requests (for example, LOCK TABLES ... WRITE).
The main purpose of intention locks is to show that someone is locking a row, or going to lock a row in the
table.

Transaction data for an intention lock appears similar to the following in SHOW ENGINE INNODB STATUS
and InnoDB monitor output:

2613

InnoDB Locking

TABLE LOCK table `test`.`t` trx id 10080 lock mode IX

Record Locks

A record lock is a lock on an index record. For example, SELECT c1 FROM t WHERE c1 = 10 FOR
UPDATE; prevents any other transaction from inserting, updating, or deleting rows where the value of t.c1
is 10.

Record locks always lock index records, even if a table is defined with no indexes. For such cases,
InnoDB creates a hidden clustered index and uses this index for record locking. See Section 14.6.2.1,
“Clustered and Secondary Indexes”.

Transaction data for a record lock appears similar to the following in SHOW ENGINE INNODB STATUS and
InnoDB monitor output:

RECORD LOCKS space id 58 page no 3 n bits 72 index `PRIMARY` of table `test`.`t`
trx id 10078 lock_mode X locks rec but not gap
Record lock, heap no 2 PHYSICAL RECORD: n_fields 3; compact format; info bits 0
 0: len 4; hex 8000000a; asc ;;
 1: len 6; hex 00000000274f; asc 'O;;
 2: len 7; hex b60000019d0110; asc ;;

Gap Locks

A gap lock is a lock on a gap between index records, or a lock on the gap before the first or after the last
index record. For example, SELECT c1 FROM t WHERE c1 BETWEEN 10 and 20 FOR UPDATE;
prevents other transactions from inserting a value of 15 into column t.c1, whether or not there was
already any such value in the column, because the gaps between all existing values in the range are
locked.

A gap might span a single index value, multiple index values, or even be empty.

Gap locks are part of the tradeoff between performance and concurrency, and are used in some
transaction isolation levels and not others.

Gap locking is not needed for statements that lock rows using a unique index to search for a unique row.
(This does not include the case that the search condition includes only some columns of a multiple-column
unique index; in that case, gap locking does occur.) For example, if the id column has a unique index, the
following statement uses only an index-record lock for the row having id value 100 and it does not matter
whether other sessions insert rows in the preceding gap:

SELECT * FROM child WHERE id = 100;

If id is not indexed or has a nonunique index, the statement does lock the preceding gap.

It is also worth noting here that conflicting locks can be held on a gap by different transactions. For
example, transaction A can hold a shared gap lock (gap S-lock) on a gap while transaction B holds an
exclusive gap lock (gap X-lock) on the same gap. The reason conflicting gap locks are allowed is that if a
record is purged from an index, the gap locks held on the record by different transactions must be merged.

Gap locks in InnoDB are “purely inhibitive”, which means that their only purpose is to prevent other
transactions from inserting to the gap. Gap locks can co-exist. A gap lock taken by one transaction does
not prevent another transaction from taking a gap lock on the same gap. There is no difference between
shared and exclusive gap locks. They do not conflict with each other, and they perform the same function.

Gap locking can be disabled explicitly. This occurs if you change the transaction isolation level to READ
COMMITTED or enable the innodb_locks_unsafe_for_binlog system variable (which is now
deprecated). In this case, gap locking is disabled for searches and index scans and is used only for
foreign-key constraint checking and duplicate-key checking.

2614

InnoDB Locking

There are also other effects of using the READ COMMITTED isolation level or enabling
innodb_locks_unsafe_for_binlog. Record locks for nonmatching rows are released after MySQL
has evaluated the WHERE condition. For UPDATE statements, InnoDB does a “semi-consistent” read,
such that it returns the latest committed version to MySQL so that MySQL can determine whether the row
matches the WHERE condition of the UPDATE.

Next-Key Locks

A next-key lock is a combination of a record lock on the index record and a gap lock on the gap before the
index record.

InnoDB performs row-level locking in such a way that when it searches or scans a table index, it sets
shared or exclusive locks on the index records it encounters. Thus, the row-level locks are actually index-
record locks. A next-key lock on an index record also affects the “gap” before that index record. That is, a
next-key lock is an index-record lock plus a gap lock on the gap preceding the index record. If one session
has a shared or exclusive lock on record R in an index, another session cannot insert a new index record in
the gap immediately before R in the index order.

Suppose that an index contains the values 10, 11, 13, and 20. The possible next-key locks for this index
cover the following intervals, where a round bracket denotes exclusion of the interval endpoint and a
square bracket denotes inclusion of the endpoint:

(negative infinity, 10]
(10, 11]
(11, 13]
(13, 20]
(20, positive infinity)

For the last interval, the next-key lock locks the gap above the largest value in the index and the
“supremum” pseudo-record having a value higher than any value actually in the index. The supremum is
not a real index record, so, in effect, this next-key lock locks only the gap following the largest index value.

By default, InnoDB operates in REPEATABLE READ transaction isolation level. In this case, InnoDB uses
next-key locks for searches and index scans, which prevents phantom rows (see Section 14.7.4, “Phantom
Rows”).

Transaction data for a next-key lock appears similar to the following in SHOW ENGINE INNODB STATUS
and InnoDB monitor output:

RECORD LOCKS space id 58 page no 3 n bits 72 index `PRIMARY` of table `test`.`t`
trx id 10080 lock_mode X
Record lock, heap no 1 PHYSICAL RECORD: n_fields 1; compact format; info bits 0
 0: len 8; hex 73757072656d756d; asc supremum;;

Record lock, heap no 2 PHYSICAL RECORD: n_fields 3; compact format; info bits 0
 0: len 4; hex 8000000a; asc ;;
 1: len 6; hex 00000000274f; asc 'O;;
 2: len 7; hex b60000019d0110; asc ;;

Insert Intention Locks

An insert intention lock is a type of gap lock set by INSERT operations prior to row insertion. This lock
signals the intent to insert in such a way that multiple transactions inserting into the same index gap need
not wait for each other if they are not inserting at the same position within the gap. Suppose that there
are index records with values of 4 and 7. Separate transactions that attempt to insert values of 5 and 6,
respectively, each lock the gap between 4 and 7 with insert intention locks prior to obtaining the exclusive
lock on the inserted row, but do not block each other because the rows are nonconflicting.

The following example demonstrates a transaction taking an insert intention lock prior to obtaining an
exclusive lock on the inserted record. The example involves two clients, A and B.

2615

InnoDB Transaction Model

Client A creates a table containing two index records (90 and 102) and then starts a transaction that places
an exclusive lock on index records with an ID greater than 100. The exclusive lock includes a gap lock
before record 102:

mysql> CREATE TABLE child (id int(11) NOT NULL, PRIMARY KEY(id)) ENGINE=InnoDB;
mysql> INSERT INTO child (id) values (90),(102);

mysql> START TRANSACTION;
mysql> SELECT * FROM child WHERE id > 100 FOR UPDATE;
+-----+
| id |
+-----+
| 102 |
+-----+

Client B begins a transaction to insert a record into the gap. The transaction takes an insert intention lock
while it waits to obtain an exclusive lock.

mysql> START TRANSACTION;
mysql> INSERT INTO child (id) VALUES (101);

Transaction data for an insert intention lock appears similar to the following in SHOW ENGINE INNODB
STATUS and InnoDB monitor output:

RECORD LOCKS space id 31 page no 3 n bits 72 index `PRIMARY` of table `test`.`child`
trx id 8731 lock_mode X locks gap before rec insert intention waiting
Record lock, heap no 3 PHYSICAL RECORD: n_fields 3; compact format; info bits 0
 0: len 4; hex 80000066; asc f;;
 1: len 6; hex 000000002215; asc " ;;
 2: len 7; hex 9000000172011c; asc r ;;...

AUTO-INC Locks

An AUTO-INC lock is a special table-level lock taken by transactions inserting into tables with
AUTO_INCREMENT columns. In the simplest case, if one transaction is inserting values into the table,
any other transactions must wait to do their own inserts into that table, so that rows inserted by the first
transaction receive consecutive primary key values.

The innodb_autoinc_lock_mode variable controls the algorithm used for auto-increment locking.
It allows you to choose how to trade off between predictable sequences of auto-increment values and
maximum concurrency for insert operations.

For more information, see Section 14.6.1.6, “AUTO_INCREMENT Handling in InnoDB”.

Predicate Locks for Spatial Indexes

InnoDB supports SPATIAL indexing of columns containing spatial data (see Section 11.4.8, “Optimizing
Spatial Analysis”).

To handle locking for operations involving SPATIAL indexes, next-key locking does not work well to
support REPEATABLE READ or SERIALIZABLE transaction isolation levels. There is no absolute ordering
concept in multidimensional data, so it is not clear which is the “next” key.

To enable support of isolation levels for tables with SPATIAL indexes, InnoDB uses predicate locks. A
SPATIAL index contains minimum bounding rectangle (MBR) values, so InnoDB enforces consistent read
on the index by setting a predicate lock on the MBR value used for a query. Other transactions cannot
insert or modify a row that would match the query condition.

14.7.2 InnoDB Transaction Model

2616

InnoDB Transaction Model

The InnoDB transaction model aims combine the best properties of a multi-versioning database with
traditional two-phase locking. InnoDB performs locking at the row level and runs queries as nonlocking
consistent reads by default, in the style of Oracle. The lock information in InnoDB is stored space-
efficiently so that lock escalation is not needed. Typically, several users are permitted to lock every row in
InnoDB tables, or any random subset of the rows, without causing InnoDB memory exhaustion.

14.7.2.1 Transaction Isolation Levels

Transaction isolation is one of the foundations of database processing. Isolation is the I in the acronym
ACID; the isolation level is the setting that fine-tunes the balance between performance and reliability,
consistency, and reproducibility of results when multiple transactions are making changes and performing
queries at the same time.

InnoDB offers all four transaction isolation levels described by the SQL:1992 standard: READ
UNCOMMITTED, READ COMMITTED, REPEATABLE READ, and SERIALIZABLE. The default isolation level
for InnoDB is REPEATABLE READ.

A user can change the isolation level for a single session or for all subsequent connections with the
SET TRANSACTION statement. To set the server's default isolation level for all connections, use the --
transaction-isolation option on the command line or in an option file. For detailed information about
isolation levels and level-setting syntax, see Section 13.3.6, “SET TRANSACTION Statement”.

InnoDB supports each of the transaction isolation levels described here using different locking strategies.
You can enforce a high degree of consistency with the default REPEATABLE READ level, for operations
on crucial data where ACID compliance is important. Or you can relax the consistency rules with
READ COMMITTED or even READ UNCOMMITTED, in situations such as bulk reporting where precise
consistency and repeatable results are less important than minimizing the amount of overhead for locking.
SERIALIZABLE enforces even stricter rules than REPEATABLE READ, and is used mainly in specialized
situations, such as with XA transactions and for troubleshooting issues with concurrency and deadlocks.

The following list describes how MySQL supports the different transaction levels. The list goes from the
most commonly used level to the least used.

• REPEATABLE READ

This is the default isolation level for InnoDB. Consistent reads within the same transaction read the
snapshot established by the first read. This means that if you issue several plain (nonlocking) SELECT
statements within the same transaction, these SELECT statements are consistent also with respect to
each other. See Section 14.7.2.3, “Consistent Nonlocking Reads”.

For locking reads (SELECT with FOR UPDATE or LOCK IN SHARE MODE), UPDATE, and DELETE
statements, locking depends on whether the statement uses a unique index with a unique search
condition or a range-type search condition.

• For a unique index with a unique search condition, InnoDB locks only the index record found, not the
gap before it.

• For other search conditions, InnoDB locks the index range scanned, using gap locks or next-key locks
to block insertions by other sessions into the gaps covered by the range. For information about gap
locks and next-key locks, see Section 14.7.1, “InnoDB Locking”.

It is not recommended to mix locking statements (UPDATE, INSERT, DELETE, or SELECT ...
FOR ...) with non-locking SELECT statements in a single REPEATABLE READ transaction, because
typically in such cases you want SERIALIZABLE instead. This is because a non-locking SELECT
statement presents the state of the database from a read-view which consists of transactions committed
before the read-view was created and before the current transaction's own writes, while the locking

2617

InnoDB Transaction Model

statements see and modify the most recent state of the database to use locking. In general, these two
different table states are inconsistent with each other and difficult to parse.

• READ COMMITTED

Each consistent read, even within the same transaction, sets and reads its own fresh snapshot. For
information about consistent reads, see Section 14.7.2.3, “Consistent Nonlocking Reads”.

For locking reads (SELECT with FOR UPDATE or LOCK IN SHARE MODE), UPDATE statements, and
DELETE statements, InnoDB locks only index records, not the gaps before them, and thus permits the
free insertion of new records next to locked records. Gap locking is only used for foreign-key constraint
checking and duplicate-key checking.

Because gap locking is disabled, phantom row problems may occur, as other sessions can insert new
rows into the gaps. For information about phantom rows, see Section 14.7.4, “Phantom Rows”.

Only row-based binary logging is supported with the READ COMMITTED isolation level. If you use READ
COMMITTED with binlog_format=MIXED, the server automatically uses row-based logging.

Using READ COMMITTED has additional effects:

• For UPDATE or DELETE statements, InnoDB holds locks only for rows that it updates or deletes.
Record locks for nonmatching rows are released after MySQL has evaluated the WHERE condition.
This greatly reduces the probability of deadlocks, but they can still happen.

• For UPDATE statements, if a row is already locked, InnoDB performs a “semi-consistent” read,
returning the latest committed version to MySQL so that MySQL can determine whether the row
matches the WHERE condition of the UPDATE. If the row matches (must be updated), MySQL reads the
row again and this time InnoDB either locks it or waits for a lock on it.

Consider the following example, beginning with this table:

CREATE TABLE t (a INT NOT NULL, b INT) ENGINE = InnoDB;
INSERT INTO t VALUES (1,2),(2,3),(3,2),(4,3),(5,2);
COMMIT;

In this case, the table has no indexes, so searches and index scans use the hidden clustered index for
record locking (see Section 14.6.2.1, “Clustered and Secondary Indexes”) rather than indexed columns.

Suppose that one session performs an UPDATE using these statements:

Session A
START TRANSACTION;
UPDATE t SET b = 5 WHERE b = 3;

Suppose also that a second session performs an UPDATE by executing this statement following those of
the first session:

Session B
UPDATE t SET b = 4 WHERE b = 2;

As InnoDB executes each UPDATE, it first acquires an exclusive lock for each row that it reads, and
then determines whether to modify it. If InnoDB does not modify the row, it releases the lock. Otherwise,
InnoDB retains the lock until the end of the transaction. This affects transaction processing as follows.

When using the default REPEATABLE READ isolation level, the first UPDATE acquires an x-lock on each
row that it reads and does not release any of them:

x-lock(1,2); retain x-lock

2618

InnoDB Transaction Model

x-lock(2,3); update(2,3) to (2,5); retain x-lock
x-lock(3,2); retain x-lock
x-lock(4,3); update(4,3) to (4,5); retain x-lock
x-lock(5,2); retain x-lock

The second UPDATE blocks as soon as it tries to acquire any locks (because first update has retained
locks on all rows), and does not proceed until the first UPDATE commits or rolls back:

x-lock(1,2); block and wait for first UPDATE to commit or roll back

If READ COMMITTED is used instead, the first UPDATE acquires an x-lock on each row that it reads and
releases those for rows that it does not modify:

x-lock(1,2); unlock(1,2)
x-lock(2,3); update(2,3) to (2,5); retain x-lock
x-lock(3,2); unlock(3,2)
x-lock(4,3); update(4,3) to (4,5); retain x-lock
x-lock(5,2); unlock(5,2)

For the second UPDATE, InnoDB does a “semi-consistent” read, returning the latest committed version
of each row that it reads to MySQL so that MySQL can determine whether the row matches the WHERE
condition of the UPDATE:

x-lock(1,2); update(1,2) to (1,4); retain x-lock
x-lock(2,3); unlock(2,3)
x-lock(3,2); update(3,2) to (3,4); retain x-lock
x-lock(4,3); unlock(4,3)
x-lock(5,2); update(5,2) to (5,4); retain x-lock

However, if the WHERE condition includes an indexed column, and InnoDB uses the index, only the
indexed column is considered when taking and retaining record locks. In the following example, the first
UPDATE takes and retains an x-lock on each row where b = 2. The second UPDATE blocks when it tries
to acquire x-locks on the same records, as it also uses the index defined on column b.

CREATE TABLE t (a INT NOT NULL, b INT, c INT, INDEX (b)) ENGINE = InnoDB;
INSERT INTO t VALUES (1,2,3),(2,2,4);
COMMIT;

Session A
START TRANSACTION;
UPDATE t SET b = 3 WHERE b = 2 AND c = 3;

Session B
UPDATE t SET b = 4 WHERE b = 2 AND c = 4;

The effects of using the READ COMMITTED isolation level are the same as enabling the deprecated
innodb_locks_unsafe_for_binlog variable, with these exceptions:

• Enabling innodb_locks_unsafe_for_binlog is a global setting and affects all sessions, whereas
the isolation level can be set globally for all sessions, or individually per session.

• innodb_locks_unsafe_for_binlog can be set only at server startup, whereas the isolation level
can be set at startup or changed at runtime.

READ COMMITTED therefore offers finer and more flexible control than
innodb_locks_unsafe_for_binlog.

2619

InnoDB Transaction Model

• READ UNCOMMITTED

SELECT statements are performed in a nonlocking fashion, but a possible earlier version of a row might
be used. Thus, using this isolation level, such reads are not consistent. This is also called a dirty read.
Otherwise, this isolation level works like READ COMMITTED.

• SERIALIZABLE

This level is like REPEATABLE READ, but InnoDB implicitly converts all plain SELECT statements to
SELECT ... LOCK IN SHARE MODE if autocommit is disabled. If autocommit is enabled, the
SELECT is its own transaction. It therefore is known to be read only and can be serialized if performed
as a consistent (nonlocking) read and need not block for other transactions. (To force a plain SELECT to
block if other transactions have modified the selected rows, disable autocommit.)

14.7.2.2 autocommit, Commit, and Rollback

In InnoDB, all user activity occurs inside a transaction. If autocommit mode is enabled, each SQL
statement forms a single transaction on its own. By default, MySQL starts the session for each new
connection with autocommit enabled, so MySQL does a commit after each SQL statement if that
statement did not return an error. If a statement returns an error, the commit or rollback behavior depends
on the error. See Section 14.22.4, “InnoDB Error Handling”.

A session that has autocommit enabled can perform a multiple-statement transaction by starting it
with an explicit START TRANSACTION or BEGIN statement and ending it with a COMMIT or ROLLBACK
statement. See Section 13.3.1, “START TRANSACTION, COMMIT, and ROLLBACK Statements”.

If autocommit mode is disabled within a session with SET autocommit = 0, the session always has a
transaction open. A COMMIT or ROLLBACK statement ends the current transaction and a new one starts.

If a session that has autocommit disabled ends without explicitly committing the final transaction, MySQL
rolls back that transaction.

Some statements implicitly end a transaction, as if you had done a COMMIT before executing the
statement. For details, see Section 13.3.3, “Statements That Cause an Implicit Commit”.

A COMMIT means that the changes made in the current transaction are made permanent and become
visible to other sessions. A ROLLBACK statement, on the other hand, cancels all modifications made by the
current transaction. Both COMMIT and ROLLBACK release all InnoDB locks that were set during the current
transaction.

Grouping DML Operations with Transactions

By default, connection to the MySQL server begins with autocommit mode enabled, which automatically
commits every SQL statement as you execute it. This mode of operation might be unfamiliar if you have
experience with other database systems, where it is standard practice to issue a sequence of DML
statements and commit them or roll them back all together.

To use multiple-statement transactions, switch autocommit off with the SQL statement SET autocommit
= 0 and end each transaction with COMMIT or ROLLBACK as appropriate. To leave autocommit on, begin
each transaction with START TRANSACTION and end it with COMMIT or ROLLBACK. The following example
shows two transactions. The first is committed; the second is rolled back.

$> mysql test

mysql> CREATE TABLE customer (a INT, b CHAR (20), INDEX (a));
Query OK, 0 rows affected (0.00 sec)
mysql> -- Do a transaction with autocommit turned on.
mysql> START TRANSACTION;

2620

InnoDB Transaction Model

Query OK, 0 rows affected (0.00 sec)
mysql> INSERT INTO customer VALUES (10, 'Heikki');
Query OK, 1 row affected (0.00 sec)
mysql> COMMIT;
Query OK, 0 rows affected (0.00 sec)
mysql> -- Do another transaction with autocommit turned off.
mysql> SET autocommit=0;
Query OK, 0 rows affected (0.00 sec)
mysql> INSERT INTO customer VALUES (15, 'John');
Query OK, 1 row affected (0.00 sec)
mysql> INSERT INTO customer VALUES (20, 'Paul');
Query OK, 1 row affected (0.00 sec)
mysql> DELETE FROM customer WHERE b = 'Heikki';
Query OK, 1 row affected (0.00 sec)
mysql> -- Now we undo those last 2 inserts and the delete.
mysql> ROLLBACK;
Query OK, 0 rows affected (0.00 sec)
mysql> SELECT * FROM customer;
+------+--------+
| a | b |
+------+--------+
| 10 | Heikki |
+------+--------+
1 row in set (0.00 sec)
mysql>

Transactions in Client-Side Languages

In APIs such as PHP, Perl DBI, JDBC, ODBC, or the standard C call interface of MySQL, you can send
transaction control statements such as COMMIT to the MySQL server as strings just like any other SQL
statements such as SELECT or INSERT. Some APIs also offer separate special transaction commit and
rollback functions or methods.

14.7.2.3 Consistent Nonlocking Reads

A consistent read means that InnoDB uses multi-versioning to present to a query a snapshot of the
database at a point in time. The query sees the changes made by transactions that committed before that
point in time, and no changes made by later or uncommitted transactions. The exception to this rule is
that the query sees the changes made by earlier statements within the same transaction. This exception
causes the following anomaly: If you update some rows in a table, a SELECT sees the latest version of the
updated rows, but it might also see older versions of any rows. If other sessions simultaneously update the
same table, the anomaly means that you might see the table in a state that never existed in the database.

If the transaction isolation level is REPEATABLE READ (the default level), all consistent reads within the
same transaction read the snapshot established by the first such read in that transaction. You can get a
fresher snapshot for your queries by committing the current transaction and after that issuing new queries.

With READ COMMITTED isolation level, each consistent read within a transaction sets and reads its own
fresh snapshot.

Consistent read is the default mode in which InnoDB processes SELECT statements in READ COMMITTED
and REPEATABLE READ isolation levels. A consistent read does not set any locks on the tables it
accesses, and therefore other sessions are free to modify those tables at the same time a consistent read
is being performed on the table.

Suppose that you are running in the default REPEATABLE READ isolation level. When you issue a
consistent read (that is, an ordinary SELECT statement), InnoDB gives your transaction a timepoint
according to which your query sees the database. If another transaction deletes a row and commits after
your timepoint was assigned, you do not see the row as having been deleted. Inserts and updates are
treated similarly.

2621

InnoDB Transaction Model

Note

The snapshot of the database state applies to SELECT statements within a
transaction, not necessarily to DML statements. If you insert or modify some
rows and then commit that transaction, a DELETE or UPDATE statement issued
from another concurrent REPEATABLE READ transaction could affect those just-
committed rows, even though the session could not query them. If a transaction
does update or delete rows committed by a different transaction, those changes
do become visible to the current transaction. For example, you might encounter a
situation like the following:

SELECT COUNT(c1) FROM t1 WHERE c1 = 'xyz';
-- Returns 0: no rows match.
DELETE FROM t1 WHERE c1 = 'xyz';
-- Deletes several rows recently committed by other transaction.

SELECT COUNT(c2) FROM t1 WHERE c2 = 'abc';
-- Returns 0: no rows match.
UPDATE t1 SET c2 = 'cba' WHERE c2 = 'abc';
-- Affects 10 rows: another txn just committed 10 rows with 'abc' values.
SELECT COUNT(c2) FROM t1 WHERE c2 = 'cba';
-- Returns 10: this txn can now see the rows it just updated.

You can advance your timepoint by committing your transaction and then doing another SELECT or START
TRANSACTION WITH CONSISTENT SNAPSHOT.

This is called multi-versioned concurrency control.

In the following example, session A sees the row inserted by B only when B has committed the insert and
A has committed as well, so that the timepoint is advanced past the commit of B.

 Session A Session B

 SET autocommit=0; SET autocommit=0;
time
| SELECT * FROM t;
| empty set
| INSERT INTO t VALUES (1, 2);
|
v SELECT * FROM t;
 empty set
 COMMIT;

 SELECT * FROM t;
 empty set

 COMMIT;

 SELECT * FROM t;

 | 1 | 2 |

If you want to see the “freshest” state of the database, use either the READ COMMITTED isolation level or a
locking read:

SELECT * FROM t LOCK IN SHARE MODE;

With READ COMMITTED isolation level, each consistent read within a transaction sets and reads its own
fresh snapshot. With LOCK IN SHARE MODE, a locking read occurs instead: A SELECT blocks until the
transaction containing the freshest rows ends (see Section 14.7.2.4, “Locking Reads”).

Consistent read does not work over certain DDL statements:

2622

InnoDB Transaction Model

• Consistent read does not work over DROP TABLE, because MySQL cannot use a table that has been
dropped and InnoDB destroys the table.

• Consistent read does not work over ALTER TABLE operations that make a temporary copy of the
original table and delete the original table when the temporary copy is built. When you reissue a
consistent read within a transaction, rows in the new table are not visible because those rows did
not exist when the transaction's snapshot was taken. In this case, the transaction returns an error:
ER_TABLE_DEF_CHANGED, “Table definition has changed, please retry transaction”.

The type of read varies for selects in clauses like INSERT INTO ... SELECT, UPDATE ... (SELECT),
and CREATE TABLE ... SELECT that do not specify FOR UPDATE or LOCK IN SHARE MODE:

• By default, InnoDB uses stronger locks in those statements and the SELECT part acts like READ
COMMITTED, where each consistent read, even within the same transaction, sets and reads its own fresh
snapshot.

• To perform a nonlocking read in such cases, enable the innodb_locks_unsafe_for_binlog
option and set the isolation level of the transaction to READ UNCOMMITTED, READ COMMITTED, or
REPEATABLE READ to avoid setting locks on rows read from the selected table.

14.7.2.4 Locking Reads

If you query data and then insert or update related data within the same transaction, the regular SELECT
statement does not give enough protection. Other transactions can update or delete the same rows you
just queried. InnoDB supports two types of locking reads that offer extra safety:

• SELECT ... LOCK IN SHARE MODE

Sets a shared mode lock on any rows that are read. Other sessions can read the rows, but cannot
modify them until your transaction commits. If any of these rows were changed by another transaction
that has not yet committed, your query waits until that transaction ends and then uses the latest values.

• SELECT ... FOR UPDATE

For index records the search encounters, locks the rows and any associated index entries, the same as
if you issued an UPDATE statement for those rows. Other transactions are blocked from updating those
rows, from doing SELECT ... LOCK IN SHARE MODE, or from reading the data in certain transaction
isolation levels. Consistent reads ignore any locks set on the records that exist in the read view. (Old
versions of a record cannot be locked; they are reconstructed by applying undo logs on an in-memory
copy of the record.)

These clauses are primarily useful when dealing with tree-structured or graph-structured data, either in a
single table or split across multiple tables. You traverse edges or tree branches from one place to another,
while reserving the right to come back and change any of these “pointer” values.

All locks set by LOCK IN SHARE MODE and FOR UPDATE queries are released when the transaction is
committed or rolled back.

Note

Locking reads are only possible when autocommit is disabled (either by beginning
transaction with START TRANSACTION or by setting autocommit to 0.

A locking read clause in an outer statement does not lock the rows of a table in a nested subquery unless
a locking read clause is also specified in the subquery. For example, the following statement does not lock
rows in table t2.

SELECT * FROM t1 WHERE c1 = (SELECT c1 FROM t2) FOR UPDATE;

2623

https://dev.mysql.com/doc/mysql-errors/5.7/en/server-error-reference.html#error_er_table_def_changed

Locks Set by Different SQL Statements in InnoDB

To lock rows in table t2, add a locking read clause to the subquery:

SELECT * FROM t1 WHERE c1 = (SELECT c1 FROM t2 FOR UPDATE) FOR UPDATE;

Locking Read Examples

Suppose that you want to insert a new row into a table child, and make sure that the child row has
a parent row in table parent. Your application code can ensure referential integrity throughout this
sequence of operations.

First, use a consistent read to query the table PARENT and verify that the parent row exists. Can you safely
insert the child row to table CHILD? No, because some other session could delete the parent row in the
moment between your SELECT and your INSERT, without you being aware of it.

To avoid this potential issue, perform the SELECT using LOCK IN SHARE MODE:

SELECT * FROM parent WHERE NAME = 'Jones' LOCK IN SHARE MODE;

After the LOCK IN SHARE MODE query returns the parent 'Jones', you can safely add the child record
to the CHILD table and commit the transaction. Any transaction that tries to acquire an exclusive lock in
the applicable row in the PARENT table waits until you are finished, that is, until the data in all tables is in a
consistent state.

For another example, consider an integer counter field in a table CHILD_CODES, used to assign a unique
identifier to each child added to table CHILD. Do not use either consistent read or a shared mode read to
read the present value of the counter, because two users of the database could see the same value for the
counter, and a duplicate-key error occurs if two transactions attempt to add rows with the same identifier to
the CHILD table.

Here, LOCK IN SHARE MODE is not a good solution because if two users read the counter at the same
time, at least one of them ends up in deadlock when it attempts to update the counter.

To implement reading and incrementing the counter, first perform a locking read of the counter using FOR
UPDATE, and then increment the counter. For example:

SELECT counter_field FROM child_codes FOR UPDATE;
UPDATE child_codes SET counter_field = counter_field + 1;

A SELECT ... FOR UPDATE reads the latest available data, setting exclusive locks on each row it reads.
Thus, it sets the same locks a searched SQL UPDATE would set on the rows.

The preceding description is merely an example of how SELECT ... FOR UPDATE works. In MySQL, the
specific task of generating a unique identifier actually can be accomplished using only a single access to
the table:

UPDATE child_codes SET counter_field = LAST_INSERT_ID(counter_field + 1);
SELECT LAST_INSERT_ID();

The SELECT statement merely retrieves the identifier information (specific to the current connection). It
does not access any table.

14.7.3 Locks Set by Different SQL Statements in InnoDB

A locking read, an UPDATE, or a DELETE generally set record locks on every index record that is scanned
in the processing of an SQL statement. It does not matter whether there are WHERE conditions in the
statement that would exclude the row. InnoDB does not remember the exact WHERE condition, but only
knows which index ranges were scanned. The locks are normally next-key locks that also block inserts
into the “gap” immediately before the record. However, gap locking can be disabled explicitly, which
causes next-key locking not to be used. For more information, see Section 14.7.1, “InnoDB Locking”. The

2624

Locks Set by Different SQL Statements in InnoDB

transaction isolation level can also affect which locks are set; see Section 14.7.2.1, “Transaction Isolation
Levels”.

If a secondary index is used in a search and the index record locks to be set are exclusive, InnoDB also
retrieves the corresponding clustered index records and sets locks on them.

If you have no indexes suitable for your statement and MySQL must scan the entire table to process the
statement, every row of the table becomes locked, which in turn blocks all inserts by other users to the
table. It is important to create good indexes so that your queries do not scan more rows than necessary.

InnoDB sets specific types of locks as follows.

• SELECT ... FROM is a consistent read, reading a snapshot of the database and setting no locks
unless the transaction isolation level is set to SERIALIZABLE. For SERIALIZABLE level, the search
sets shared next-key locks on the index records it encounters. However, only an index record lock is
required for statements that lock rows using a unique index to search for a unique row.

• For SELECT ... FOR UPDATE or SELECT ... LOCK IN SHARE MODE, locks are acquired for
scanned rows, and expected to be released for rows that do not qualify for inclusion in the result set
(for example, if they do not meet the criteria given in the WHERE clause). However, in some cases,
rows might not be unlocked immediately because the relationship between a result row and its original
source is lost during query execution. For example, in a UNION, scanned (and locked) rows from a table
might be inserted into a temporary table before evaluating whether they qualify for the result set. In this
circumstance, the relationship of the rows in the temporary table to the rows in the original table is lost
and the latter rows are not unlocked until the end of query execution.

• SELECT ... LOCK IN SHARE MODE sets shared next-key locks on all index records the search
encounters. However, only an index record lock is required for statements that lock rows using a unique
index to search for a unique row.

• SELECT ... FOR UPDATE sets an exclusive next-key lock on every record the search encounters.
However, only an index record lock is required for statements that lock rows using a unique index to
search for a unique row.

For index records the search encounters, SELECT ... FOR UPDATE blocks other sessions from doing
SELECT ... LOCK IN SHARE MODE or from reading in certain transaction isolation levels. Consistent
reads ignore any locks set on the records that exist in the read view.

• UPDATE ... WHERE ... sets an exclusive next-key lock on every record the search encounters.
However, only an index record lock is required for statements that lock rows using a unique index to
search for a unique row.

• When UPDATE modifies a clustered index record, implicit locks are taken on affected secondary index
records. The UPDATE operation also takes shared locks on affected secondary index records when
performing duplicate check scans prior to inserting new secondary index records, and when inserting
new secondary index records.

• DELETE FROM ... WHERE ... sets an exclusive next-key lock on every record the search
encounters. However, only an index record lock is required for statements that lock rows using a unique
index to search for a unique row.

• INSERT sets an exclusive lock on the inserted row. This lock is an index-record lock, not a next-key lock
(that is, there is no gap lock) and does not prevent other sessions from inserting into the gap before the
inserted row.

Prior to inserting the row, a type of gap lock called an insert intention gap lock is set. This lock signals
the intent to insert in such a way that multiple transactions inserting into the same index gap need not
wait for each other if they are not inserting at the same position within the gap. Suppose that there are

2625

Locks Set by Different SQL Statements in InnoDB

index records with values of 4 and 7. Separate transactions that attempt to insert values of 5 and 6
each lock the gap between 4 and 7 with insert intention locks prior to obtaining the exclusive lock on the
inserted row, but do not block each other because the rows are nonconflicting.

If a duplicate-key error occurs, a shared lock on the duplicate index record is set. This use of a shared
lock can result in deadlock should there be multiple sessions trying to insert the same row if another
session already has an exclusive lock. This can occur if another session deletes the row. Suppose that
an InnoDB table t1 has the following structure:

CREATE TABLE t1 (i INT, PRIMARY KEY (i)) ENGINE = InnoDB;

Now suppose that three sessions perform the following operations in order:

Session 1:

START TRANSACTION;
INSERT INTO t1 VALUES(1);

Session 2:

START TRANSACTION;
INSERT INTO t1 VALUES(1);

Session 3:

START TRANSACTION;
INSERT INTO t1 VALUES(1);

Session 1:

ROLLBACK;

The first operation by session 1 acquires an exclusive lock for the row. The operations by sessions 2 and
3 both result in a duplicate-key error and they both request a shared lock for the row. When session 1
rolls back, it releases its exclusive lock on the row and the queued shared lock requests for sessions 2
and 3 are granted. At this point, sessions 2 and 3 deadlock: Neither can acquire an exclusive lock for the
row because of the shared lock held by the other.

A similar situation occurs if the table already contains a row with key value 1 and three sessions perform
the following operations in order:

Session 1:

START TRANSACTION;
DELETE FROM t1 WHERE i = 1;

Session 2:

START TRANSACTION;
INSERT INTO t1 VALUES(1);

Session 3:

START TRANSACTION;

2626

Locks Set by Different SQL Statements in InnoDB

INSERT INTO t1 VALUES(1);

Session 1:

COMMIT;

The first operation by session 1 acquires an exclusive lock for the row. The operations by sessions 2 and
3 both result in a duplicate-key error and they both request a shared lock for the row. When session 1
commits, it releases its exclusive lock on the row and the queued shared lock requests for sessions 2
and 3 are granted. At this point, sessions 2 and 3 deadlock: Neither can acquire an exclusive lock for the
row because of the shared lock held by the other.

• INSERT ... ON DUPLICATE KEY UPDATE differs from a simple INSERT in that an exclusive lock
rather than a shared lock is placed on the row to be updated when a duplicate-key error occurs. An
exclusive index-record lock is taken for a duplicate primary key value. An exclusive next-key lock is
taken for a duplicate unique key value.

• REPLACE is done like an INSERT if there is no collision on a unique key. Otherwise, an exclusive next-
key lock is placed on the row to be replaced.

• INSERT INTO T SELECT ... FROM S WHERE ... sets an exclusive index record lock (without
a gap lock) on each row inserted into T. If the transaction isolation level is READ COMMITTED,
or innodb_locks_unsafe_for_binlog is enabled and the transaction isolation level is not
SERIALIZABLE, InnoDB does the search on S as a consistent read (no locks). Otherwise, InnoDB sets
shared next-key locks on rows from S. InnoDB has to set locks in the latter case: During roll-forward
recovery using a statement-based binary log, every SQL statement must be executed in exactly the
same way it was done originally.

CREATE TABLE ... SELECT ... performs the SELECT with shared next-key locks or as a consistent
read, as for INSERT ... SELECT.

When a SELECT is used in the constructs REPLACE INTO t SELECT ... FROM s WHERE ... or
UPDATE t ... WHERE col IN (SELECT ... FROM s ...), InnoDB sets shared next-key locks
on rows from table s.

• InnoDB sets an exclusive lock on the end of the index associated with the AUTO_INCREMENT column
while initializing a previously specified AUTO_INCREMENT column on a table.

With innodb_autoinc_lock_mode=0, InnoDB uses a special AUTO-INC table lock mode
where the lock is obtained and held to the end of the current SQL statement (not to the end
of the entire transaction) while accessing the auto-increment counter. Other clients cannot
insert into the table while the AUTO-INC table lock is held. The same behavior occurs for “bulk
inserts” with innodb_autoinc_lock_mode=1. Table-level AUTO-INC locks are not used with
innodb_autoinc_lock_mode=2. For more information, See Section 14.6.1.6, “AUTO_INCREMENT
Handling in InnoDB”.

InnoDB fetches the value of a previously initialized AUTO_INCREMENT column without setting any locks.

• If a FOREIGN KEY constraint is defined on a table, any insert, update, or delete that requires the
constraint condition to be checked sets shared record-level locks on the records that it looks at to check
the constraint. InnoDB also sets these locks in the case where the constraint fails.

2627

Phantom Rows

• LOCK TABLES sets table locks, but it is the higher MySQL layer above the InnoDB layer that sets these
locks. InnoDB is aware of table locks if innodb_table_locks = 1 (the default) and autocommit =
0, and the MySQL layer above InnoDB knows about row-level locks.

Otherwise, InnoDB's automatic deadlock detection cannot detect deadlocks where such table locks are
involved. Also, because in this case the higher MySQL layer does not know about row-level locks, it is
possible to get a table lock on a table where another session currently has row-level locks. However, this
does not endanger transaction integrity, as discussed in Section 14.7.5.2, “Deadlock Detection”.

• LOCK TABLES acquires two locks on each table if innodb_table_locks=1 (the default). In addition to
a table lock on the MySQL layer, it also acquires an InnoDB table lock. To avoid acquiring InnoDB table
locks, set innodb_table_locks=0. If no InnoDB table lock is acquired, LOCK TABLES completes
even if some records of the tables are being locked by other transactions.

In MySQL 5.7, innodb_table_locks=0 has no effect for tables locked explicitly with LOCK
TABLES ... WRITE. It does have an effect for tables locked for read or write by LOCK TABLES ...
WRITE implicitly (for example, through triggers) or by LOCK TABLES ... READ.

• All InnoDB locks held by a transaction are released when the transaction is committed or aborted. Thus,
it does not make much sense to invoke LOCK TABLES on InnoDB tables in autocommit=1 mode
because the acquired InnoDB table locks would be released immediately.

• You cannot lock additional tables in the middle of a transaction because LOCK TABLES performs an
implicit COMMIT and UNLOCK TABLES.

14.7.4 Phantom Rows

The so-called phantom problem occurs within a transaction when the same query produces different sets
of rows at different times. For example, if a SELECT is executed twice, but returns a row the second time
that was not returned the first time, the row is a “phantom” row.

Suppose that there is an index on the id column of the child table and that you want to read and lock all
rows from the table having an identifier value larger than 100, with the intention of updating some column
in the selected rows later:

SELECT * FROM child WHERE id > 100 FOR UPDATE;

The query scans the index starting from the first record where id is bigger than 100. Let the table contain
rows having id values of 90 and 102. If the locks set on the index records in the scanned range do not
lock out inserts made in the gaps (in this case, the gap between 90 and 102), another session can insert
a new row into the table with an id of 101. If you were to execute the same SELECT within the same
transaction, you would see a new row with an id of 101 (a “phantom”) in the result set returned by the
query. If we regard a set of rows as a data item, the new phantom child would violate the isolation principle
of transactions that a transaction should be able to run so that the data it has read does not change during
the transaction.

To prevent phantoms, InnoDB uses an algorithm called next-key locking that combines index-row locking
with gap locking. InnoDB performs row-level locking in such a way that when it searches or scans a table
index, it sets shared or exclusive locks on the index records it encounters. Thus, the row-level locks are
actually index-record locks. In addition, a next-key lock on an index record also affects the “gap” before
the index record. That is, a next-key lock is an index-record lock plus a gap lock on the gap preceding the
index record. If one session has a shared or exclusive lock on record R in an index, another session cannot
insert a new index record in the gap immediately before R in the index order.

When InnoDB scans an index, it can also lock the gap after the last record in the index. Just that happens
in the preceding example: To prevent any insert into the table where id would be bigger than 100, the
locks set by InnoDB include a lock on the gap following id value 102.

2628

Deadlocks in InnoDB

You can use next-key locking to implement a uniqueness check in your application: If you read your data
in share mode and do not see a duplicate for a row you are going to insert, then you can safely insert
your row and know that the next-key lock set on the successor of your row during the read prevents
anyone meanwhile inserting a duplicate for your row. Thus, the next-key locking enables you to “lock” the
nonexistence of something in your table.

Gap locking can be disabled as discussed in Section 14.7.1, “InnoDB Locking”. This may cause phantom
problems because other sessions can insert new rows into the gaps when gap locking is disabled.

14.7.5 Deadlocks in InnoDB

A deadlock is a situation in which multiple transactions are unable to proceed because each transaction
holds a lock that is needed by another one. Because all transactions involved are waiting for the same
resource to become available, none of them ever releases the lock it holds.

A deadlock can occur when transactions lock rows in multiple tables (through statements such as
UPDATE or SELECT ... FOR UPDATE), but in the opposite order. A deadlock can also occur when
such statements lock ranges of index records and gaps, with each transaction acquiring some locks but
not others due to a timing issue. For a deadlock example, see Section 14.7.5.1, “An InnoDB Deadlock
Example”.

To reduce the possibility of deadlocks, use transactions rather than LOCK TABLES statements; keep
transactions that insert or update data small enough that they do not stay open for long periods of
time; when different transactions update multiple tables or large ranges of rows, use the same order of
operations (such as SELECT ... FOR UPDATE) in each transaction; create indexes on the columns used
in SELECT ... FOR UPDATE and UPDATE ... WHERE statements. The possibility of deadlocks is not
affected by the isolation level, because the isolation level changes the behavior of read operations, while
deadlocks occur because of write operations. For more information about avoiding and recovering from
deadlock conditions, see Section 14.7.5.3, “How to Minimize and Handle Deadlocks”.

When deadlock detection is enabled (the default) and a deadlock does occur, InnoDB detects the
condition and rolls back one of the transactions (the victim). If deadlock detection is disabled using the
innodb_deadlock_detect variable, InnoDB relies on the innodb_lock_wait_timeout setting
to roll back transactions in case of a deadlock. Thus, even if your application logic is correct, you must
still handle the case where a transaction must be retried. To view the last deadlock in an InnoDB user
transaction, use SHOW ENGINE INNODB STATUS. If frequent deadlocks highlight a problem with
transaction structure or application error handling, enable innodb_print_all_deadlocks to print
information about all deadlocks to the mysqld error log. For more information about how deadlocks are
automatically detected and handled, see Section 14.7.5.2, “Deadlock Detection”.

14.7.5.1 An InnoDB Deadlock Example

The following example illustrates how an error can occur when a lock request causes a deadlock. The
example involves two clients, A and B.

First, client A creates a table containing one row, and then begins a transaction. Within the transaction, A
obtains an S lock on the row by selecting it in share mode:

mysql> CREATE TABLE t (i INT) ENGINE = InnoDB;
Query OK, 0 rows affected (1.07 sec)

mysql> INSERT INTO t (i) VALUES(1);
Query OK, 1 row affected (0.09 sec)

mysql> START TRANSACTION;
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT * FROM t WHERE i = 1 LOCK IN SHARE MODE;

2629

Deadlocks in InnoDB

+------+
| i |
+------+
| 1 |
+------+

Next, client B begins a transaction and attempts to delete the row from the table:

mysql> START TRANSACTION;
Query OK, 0 rows affected (0.00 sec)

mysql> DELETE FROM t WHERE i = 1;

The delete operation requires an X lock. The lock cannot be granted because it is incompatible with the S
lock that client A holds, so the request goes on the queue of lock requests for the row and client B blocks.

Finally, client A also attempts to delete the row from the table:

mysql> DELETE FROM t WHERE i = 1;

Deadlock occurs here because client A needs an X lock to delete the row. However, that lock request
cannot be granted because client B already has a request for an X lock and is waiting for client A to release
its S lock. Nor can the S lock held by A be upgraded to an X lock because of the prior request by B for an X
lock. As a result, InnoDB generates an error for one of the clients and releases its locks. The client returns
this error:

ERROR 1213 (40001): Deadlock found when trying to get lock;
try restarting transaction

At that point, the lock request for the other client can be granted and it deletes the row from the table.

14.7.5.2 Deadlock Detection

When deadlock detection is enabled (the default), InnoDB automatically detects transaction deadlocks and
rolls back a transaction or transactions to break the deadlock. InnoDB tries to pick small transactions to roll
back, where the size of a transaction is determined by the number of rows inserted, updated, or deleted.

InnoDB is aware of table locks if innodb_table_locks = 1 (the default) and autocommit = 0, and
the MySQL layer above it knows about row-level locks. Otherwise, InnoDB cannot detect deadlocks where
a table lock set by a MySQL LOCK TABLES statement or a lock set by a storage engine other than InnoDB
is involved. Resolve these situations by setting the value of the innodb_lock_wait_timeout system
variable.

If the LATEST DETECTED DEADLOCK section of InnoDB Monitor output includes a message stating,
“TOO DEEP OR LONG SEARCH IN THE LOCK TABLE WAITS-FOR GRAPH, WE WILL ROLL BACK
FOLLOWING TRANSACTION,” this indicates that the number of transactions on the wait-for list has reached
a limit of 200. A wait-for list that exceeds 200 transactions is treated as a deadlock and the transaction
attempting to check the wait-for list is rolled back. The same error may also occur if the locking thread must
look at more than 1,000,000 locks owned by transactions on the wait-for list.

For techniques to organize database operations to avoid deadlocks, see Section 14.7.5, “Deadlocks in
InnoDB”.

Disabling Deadlock Detection

On high concurrency systems, deadlock detection can cause a slowdown when numerous threads
wait for the same lock. At times, it may be more efficient to disable deadlock detection and rely on the
innodb_lock_wait_timeout setting for transaction rollback when a deadlock occurs. Deadlock
detection can be disabled using the innodb_deadlock_detect variable.

2630

Deadlocks in InnoDB

14.7.5.3 How to Minimize and Handle Deadlocks

This section builds on the conceptual information about deadlocks in Section 14.7.5.2, “Deadlock
Detection”. It explains how to organize database operations to minimize deadlocks and the subsequent
error handling required in applications.

Deadlocks are a classic problem in transactional databases, but they are not dangerous unless they are so
frequent that you cannot run certain transactions at all. Normally, you must write your applications so that
they are always prepared to re-issue a transaction if it gets rolled back because of a deadlock.

InnoDB uses automatic row-level locking. You can get deadlocks even in the case of transactions that just
insert or delete a single row. That is because these operations are not really “atomic”; they automatically
set locks on the (possibly several) index records of the row inserted or deleted.

You can cope with deadlocks and reduce the likelihood of their occurrence with the following techniques:

• At any time, issue SHOW ENGINE INNODB STATUS to determine the cause of the most recent
deadlock. That can help you to tune your application to avoid deadlocks.

• If frequent deadlock warnings cause concern, collect more extensive debugging information by enabling
the innodb_print_all_deadlocks variable. Information about each deadlock, not just the latest
one, is recorded in the MySQL error log. Disable this option when you are finished debugging.

• Always be prepared to re-issue a transaction if it fails due to deadlock. Deadlocks are not dangerous.
Just try again.

• Keep transactions small and short in duration to make them less prone to collision.

• Commit transactions immediately after making a set of related changes to make them less prone
to collision. In particular, do not leave an interactive mysql session open for a long time with an
uncommitted transaction.

• If you use locking reads (SELECT ... FOR UPDATE or SELECT ... LOCK IN SHARE MODE), try
using a lower isolation level such as READ COMMITTED.

• When modifying multiple tables within a transaction, or different sets of rows in the same table, do
those operations in a consistent order each time. Then transactions form well-defined queues and do
not deadlock. For example, organize database operations into functions within your application, or
call stored routines, rather than coding multiple similar sequences of INSERT, UPDATE, and DELETE
statements in different places.

• Add well-chosen indexes to your tables so that your queries scan fewer index records and set fewer
locks. Use EXPLAIN SELECT to determine which indexes the MySQL server regards as the most
appropriate for your queries.

• Use less locking. If you can afford to permit a SELECT to return data from an old snapshot, do not add
a FOR UPDATE or LOCK IN SHARE MODE clause to it. Using the READ COMMITTED isolation level is
good here, because each consistent read within the same transaction reads from its own fresh snapshot.

• If nothing else helps, serialize your transactions with table-level locks. The correct way to use
LOCK TABLES with transactional tables, such as InnoDB tables, is to begin a transaction with SET
autocommit = 0 (not START TRANSACTION) followed by LOCK TABLES, and to not call UNLOCK
TABLES until you commit the transaction explicitly. For example, if you need to write to table t1 and read
from table t2, you can do this:

SET autocommit=0;
LOCK TABLES t1 WRITE, t2 READ, ...;
... do something with tables t1 and t2 here ...

2631

InnoDB Configuration

COMMIT;
UNLOCK TABLES;

Table-level locks prevent concurrent updates to the table, avoiding deadlocks at the expense of less
responsiveness for a busy system.

• Another way to serialize transactions is to create an auxiliary “semaphore” table that contains just
a single row. Have each transaction update that row before accessing other tables. In that way, all
transactions happen in a serial fashion. Note that the InnoDB instant deadlock detection algorithm also
works in this case, because the serializing lock is a row-level lock. With MySQL table-level locks, the
timeout method must be used to resolve deadlocks.

14.8 InnoDB Configuration
This section provides configuration information and procedures for InnoDB initialization, startup, and
various components and features of the InnoDB storage engine. For information about optimizing
database operations for InnoDB tables, see Section 8.5, “Optimizing for InnoDB Tables”.

14.8.1 InnoDB Startup Configuration

The first decisions to make about InnoDB configuration involve the configuration of data files, log files,
page size, and memory buffers, which should be configured before initializing InnoDB. Modifying the
configuration after InnoDB is initialized may involve non-trivial procedures.

This section provides information about specifying InnoDB settings in a configuration file, viewing InnoDB
initialization information, and important storage considerations.

• Specifying Options in a MySQL Configuration File

• Viewing InnoDB Initialization Information

• Important Storage Considerations

• System Tablespace Data File Configuration

• Redo Log File Configuration

• Undo Tablespace Configuration

• Temporary Tablespace Configuration

• Page Size Configuration

• Memory Configuration

Specifying Options in a MySQL Configuration File

Because MySQL uses data file, log file, and page size settings to initialize InnoDB, it is recommended
that you define these settings in an option file that MySQL reads at startup, prior to initializing InnoDB.
Normally, InnoDB is initialized when the MySQL server is started for the first time.

You can place InnoDB settings in the [mysqld] group of any option file that your server reads when it
starts. The locations of MySQL option files are described in Section 4.2.2.2, “Using Option Files”.

To make sure that mysqld reads options only from a specific file, use the --defaults-file option as
the first option on the command line when starting the server:

mysqld --defaults-file=path_to_option_file

2632

InnoDB Startup Configuration

Viewing InnoDB Initialization Information

To view InnoDB initialization information during startup, start mysqld from a command prompt, which
prints initialization information to the console.

For example, on Windows, if mysqld is located in C:\Program Files\MySQL\MySQL Server
5.7\bin, start the MySQL server like this:

C:\> "C:\Program Files\MySQL\MySQL Server 5.7\bin\mysqld" --console

On Unix-like systems, mysqld is located in the bin directory of your MySQL installation:

$> bin/mysqld --user=mysql &

If you do not send server output to the console, check the error log after startup to see the initialization
information InnoDB printed during the startup process.

For information about starting MySQL using other methods, see Section 2.9.5, “Starting and Stopping
MySQL Automatically”.

Note

InnoDB does not open all user tables and associated data files at startup. However,
InnoDB does check for the existence of tablespace files referenced in the data
dictionary. If a tablespace file is not found, InnoDB logs an error and continues
the startup sequence. Tablespace files referenced in the redo log may be opened
during crash recovery for redo application.

Important Storage Considerations

Review the following storage-related considerations before proceeding with your startup configuration.

• In some cases, you can improve database performance by placing data and log files on separate
physical disks. You can also use raw disk partitions (raw devices) for InnoDB data files, which may
speed up I/O. See Using Raw Disk Partitions for the System Tablespace.

• InnoDB is a transaction-safe (ACID compliant) storage engine with commit, rollback, and crash-
recovery capabilities to protect user data. However, it cannot do so if the underlying operating system
or hardware does not work as advertised. Many operating systems or disk subsystems may delay
or reorder write operations to improve performance. On some operating systems, the very fsync()
system call that should wait until all unwritten data for a file has been flushed might actually return before
the data has been flushed to stable storage. Because of this, an operating system crash or a power
outage may destroy recently committed data, or in the worst case, even corrupt the database because
write operation have been reordered. If data integrity is important to you, perform “pull-the-plug” tests
before using anything in production. On macOS, InnoDB uses a special fcntl() file flush method.
Under Linux, it is advisable to disable the write-back cache.

On ATA/SATA disk drives, a command such hdparm -W0 /dev/hda may work to disable the write-
back cache. Beware that some drives or disk controllers may be unable to disable the write-back
cache.

• With regard to InnoDB recovery capabilities that protect user data, InnoDB uses a file flush
technique involving a structure called the doublewrite buffer, which is enabled by default
(innodb_doublewrite=ON). The doublewrite buffer adds safety to recovery following an unexpected
exit or power outage, and improves performance on most varieties of Unix by reducing the need for
fsync() operations. It is recommended that the innodb_doublewrite option remains enabled if you
are concerned with data integrity or possible failures. For information about the doublewrite buffer, see
Section 14.12.1, “InnoDB Disk I/O”.

2633

InnoDB Startup Configuration

• Before using NFS with InnoDB, review potential issues outlined in Using NFS with MySQL.

• Running MySQL server on a 4K sector hard drive on Windows is not supported with
innodb_flush_method=async_unbuffered, which is the default setting. The workaround is to use
innodb_flush_method=normal.

System Tablespace Data File Configuration

The innodb_data_file_path option defines the name, size, and attributes of InnoDB system
tablespace data files. If you do not configure this option prior to initializing the MySQL server, the default
behavior is to create a single auto-extending data file, slightly larger than 12MB, named ibdata1:

mysql> SHOW VARIABLES LIKE 'innodb_data_file_path';
+-----------------------+------------------------+
| Variable_name | Value |
+-----------------------+------------------------+
| innodb_data_file_path | ibdata1:12M:autoextend |
+-----------------------+------------------------+

The full data file specification syntax includes the file name, file size, autoextend attribute, and max
attribute:

file_name:file_size[:autoextend[:max:max_file_size]]

File sizes are specified in kilobytes, megabytes, or gigabytes by appending K, M or G to the size value. If
specifying the data file size in kilobytes, do so in multiples of 1024. Otherwise, kilobyte values are rounded
to nearest megabyte (MB) boundary. The sum of file sizes must be, at a minimum, slightly larger than
12MB.

You can specify more than one data file using a semicolon-separated list. For example:

[mysqld]
innodb_data_file_path=ibdata1:50M;ibdata2:50M:autoextend

The autoextend and max attributes can be used only for the data file that is specified last.

When the autoextend attribute is specified, the data file automatically increases in size by 64MB
increments as space is required. The innodb_autoextend_increment variable controls the increment
size.

To specify a maximum size for an auto-extending data file, use the max attribute following the
autoextend attribute. Use the max attribute only in cases where constraining disk usage is of critical
importance. The following configuration permits ibdata1 to grow to a limit of 500MB:

[mysqld]
innodb_data_file_path=ibdata1:12M:autoextend:max:500M

A minimum file size is enforced for the first system tablespace data file to ensure that there is enough
space for doublewrite buffer pages. The following table shows minimum file sizes for each InnoDB page
size. The default InnoDB page size is 16384 (16KB).

Page Size (innodb_page_size) Minimum File Size

16384 (16KB) or less 3MB

32768 (32KB) 6MB

65536 (64KB) 12MB

If your disk becomes full, you can add a data file on another disk. For instructions, see Resizing the
System Tablespace.

2634

InnoDB Startup Configuration

The size limit for individual files is determined by your operating system. You can set the file size to more
than 4GB on operating systems that support large files. You can also use raw disk partitions as data files.
See Using Raw Disk Partitions for the System Tablespace.

InnoDB is not aware of the file system maximum file size, so be cautious on file systems where the
maximum file size is a small value such as 2GB.

System tablespace files are created in the data directory by default (datadir). To specify an alternate
location, use the innodb_data_home_dir option. For example, to create a system tablespace data file in
a directory named myibdata, use this configuration:

[mysqld]
innodb_data_home_dir = /myibdata/
innodb_data_file_path=ibdata1:50M:autoextend

A trailing slash is required when specifying a value for innodb_data_home_dir. InnoDB does not create
directories, so ensure that the specified directory exists before you start the server. Also, ensure sure that
the MySQL server has the proper access rights to create files in the directory.

InnoDB forms the directory path for each data file by textually concatenating the value of
innodb_data_home_dir to the data file name. If innodb_data_home_dir is not defined, the default
value is “./”, which is the data directory. (The MySQL server changes its current working directory to the
data directory when it begins executing.)

If you specify innodb_data_home_dir as an empty string, you can specify absolute paths for data files
listed in the innodb_data_file_path value. The following configuration is equivalent to the preceding
one:

[mysqld]
innodb_data_home_dir =
innodb_data_file_path=/myibdata/ibdata1:50M:autoextend

Redo Log File Configuration

InnoDB creates two 5MB redo log files named ib_logfile0 and ib_logfile1 in the data directory by
default.

The following options can be used to modify the default configuration:

• innodb_log_group_home_dir defines directory path to the InnoDB log files. If this option is not
configured, InnoDB log files are created in the MySQL data directory (datadir).

You might use this option to place InnoDB log files in a different physical storage location than InnoDB
data files to avoid potential I/O resource conflicts. For example:

[mysqld]
innodb_log_group_home_dir = /dr3/iblogs

Note

InnoDB does not create directories, so make sure that the log directory exists
before you start the server. Use the Unix or DOS mkdir command to create any
necessary directories.

Make sure that the MySQL server has the proper access rights to create files
in the log directory. More generally, the server must have access rights in any
directory where it needs to create log files.

• innodb_log_files_in_group defines the number of log files in the log group. The default and
recommended value is 2.

2635

InnoDB Startup Configuration

• innodb_log_file_size defines the size in bytes of each log file in the log group. The combined log
file size (innodb_log_file_size * innodb_log_files_in_group) cannot exceed the maximum
value, which is slightly less than 512GB. A pair of 255 GB log files, for example, approaches the limit
but does not exceed it. The default log file size is 48MB. Generally, the combined size of the log files
should be large enough that the server can smooth out peaks and troughs in workload activity, which
often means that there is enough redo log space to handle more than an hour of write activity. A larger
log file size means less checkpoint flush activity in the buffer pool, which reduces disk I/O. For additional
information, see Section 8.5.4, “Optimizing InnoDB Redo Logging”.

Undo Tablespace Configuration

Undo logs are part of the system tablespace by default. However, you can choose to store undo logs in
one or more separate undo tablespaces, typically on a different storage device.

The innodb_undo_directory configuration option defines the path where InnoDB creates
separate tablespaces for the undo logs. This option is typically used in conjunction with the
innodb_rollback_segments and innodb_undo_tablespaces options, which determine the disk
layout of the undo logs outside the system tablespace.

Note

innodb_undo_tablespaces is deprecated; expect it to be removed in a future
release.

For more information, see Section 14.6.3.4, “Undo Tablespaces”.

Temporary Tablespace Configuration

A single auto-extending temporary tablespace data file named ibtmp1 is created in the
innodb_data_home_dir directory by default. The initial file size is slightly larger than 12MB.
The default temporary tablespace data file configuration can be modified at startup using the
innodb_temp_data_file_path configuration option.

The innodb_temp_data_file_path option specifies the path, file name, and file size for temporary
tablespace data files. The full directory path is formed by concatenating innodb_data_home_dir to the
path specified by innodb_temp_data_file_path. File size is specified in KB, MB, or GB (1024MB)
by appending K, M, or G to the size value. The file size or combined file size must be slightly larger than
12MB.

The innodb_data_home_dir default value is the MySQL data directory (datadir).

An autoextending temporary tablespace data file can become large in environments that use large
temporary tables or that use temporary tables extensively. A large data file can also result from long
running queries that use temporary tables. To prevent the temporary data file from becoming too large,
configure the innodb_temp_data_file_path option to specify a maximum data file size. For more
information see Managing Temporary Tablespace Data File Size.

Page Size Configuration

The innodb_page_size option specifies the page size for all InnoDB tablespaces in a MySQL instance.
This value is set when the instance is created and remains constant afterward. Valid values are 64KB,
32KB, 16KB (the default), 8KB, and 4KB. Alternatively, you can specify page size in bytes (65536, 32768,
16384, 8192, 4096).

The default 16KB page size is appropriate for a wide range of workloads, particularly for queries involving
table scans and DML operations involving bulk updates. Smaller page sizes might be more efficient for

2636

InnoDB Startup Configuration

OLTP workloads involving many small writes, where contention can be an issue when a single page
contains many rows. Smaller pages can also be more efficient for SSD storage devices, which typically
use small block sizes. Keeping the InnoDB page size close to the storage device block size minimizes the
amount of unchanged data that is rewritten to disk.

Important

innodb_page_size can be set only when initializing the data directory. See the
description of this variable for more information.

Memory Configuration

MySQL allocates memory to various caches and buffers to improve performance of database operations.
When allocating memory for InnoDB, always consider memory required by the operating system, memory
allocated to other applications, and memory allocated for other MySQL buffers and caches. For example, if
you use MyISAM tables, consider the amount of memory allocated for the key buffer (key_buffer_size).
For an overview of MySQL buffers and caches, see Section 8.12.4.1, “How MySQL Uses Memory”.

Buffers specific to InnoDB are configured using the following parameters:

• innodb_buffer_pool_size defines size of the buffer pool, which is the memory area that holds
cached data for InnoDB tables, indexes, and other auxiliary buffers. The size of the buffer pool is
important for system performance, and it is typically recommended that innodb_buffer_pool_size
is configured to 50 to 75 percent of system memory. The default buffer pool size is 128MB. For
additional guidance, see Section 8.12.4.1, “How MySQL Uses Memory”. For information about how to
configure InnoDB buffer pool size, see Section 14.8.3.1, “Configuring InnoDB Buffer Pool Size”. Buffer
pool size can be configured at startup or dynamically.

On systems with a large amount of memory, you can improve concurrency by dividing the buffer
pool into multiple buffer pool instances. The number of buffer pool instances is controlled by the by
innodb_buffer_pool_instances option. By default, InnoDB creates one buffer pool instance.
The number of buffer pool instances can be configured at startup. For more information, see
Section 14.8.3.2, “Configuring Multiple Buffer Pool Instances”.

• innodb_log_buffer_size defines the size of the buffer that InnoDB uses to write to the log files on
disk. The default size is 16MB. A large log buffer enables large transactions to run without writing the log
to disk before the transactions commit. If you have transactions that update, insert, or delete many rows,
you might consider increasing the size of the log buffer to save disk I/O. innodb_log_buffer_size
can be configured at startup. For related information, see Section 8.5.4, “Optimizing InnoDB Redo
Logging”.

Warning

On 32-bit GNU/Linux x86, if memory usage is set too high, glibc may permit the
process heap to grow over the thread stacks, causing a server failure. It is a risk if
the memory allocated to the mysqld process for global and per-thread buffers and
caches is close to or exceeds 2GB.

A formula similar to the following that calculates global and per-thread memory
allocation for MySQL can be used to estimate MySQL memory usage. You may
need to modify the formula to account for buffers and caches in your MySQL
version and configuration. For an overview of MySQL buffers and caches, see
Section 8.12.4.1, “How MySQL Uses Memory”.

innodb_buffer_pool_size
+ key_buffer_size
+ max_connections*(sort_buffer_size+read_buffer_size+binlog_cache_size)

2637

Configuring InnoDB for Read-Only Operation

+ max_connections*2MB

Each thread uses a stack (often 2MB, but only 256KB in MySQL binaries provided
by Oracle Corporation.) and in the worst case also uses sort_buffer_size +
read_buffer_size additional memory.

On Linux, if the kernel is enabled for large page support, InnoDB can use large pages to allocate memory
for its buffer pool. See Section 8.12.4.3, “Enabling Large Page Support”.

14.8.2 Configuring InnoDB for Read-Only Operation

You can query InnoDB tables where the MySQL data directory is on read-only media by enabling the --
innodb-read-only configuration option at server startup.

How to Enable

To prepare an instance for read-only operation, make sure all the necessary information is flushed to
the data files before storing it on the read-only medium. Run the server with change buffering disabled
(innodb_change_buffering=0) and do a slow shutdown.

To enable read-only mode for an entire MySQL instance, specify the following configuration options at
server startup:

• --innodb-read-only=1

• If the instance is on read-only media such as a DVD or CD, or the /var directory is not writeable by all:
--pid-file=path_on_writeable_media and --event-scheduler=disabled

• --innodb-temp-data-file-path. This option specifies the path, file name, and file size for InnoDB
temporary tablespace data files. The default setting is ibtmp1:12M:autoextend, which creates
the ibtmp1 temporary tablespace data file in the data directory. To prepare an instance for read-only
operation, set innodb_temp_data_file_path to a location outside of the data directory. The path
must be relative to the data directory. For example:

--innodb-temp-data-file-path=../../../tmp/ibtmp1:12M:autoextend

Usage Scenarios

This mode of operation is appropriate in situations such as:

• Distributing a MySQL application, or a set of MySQL data, on a read-only storage medium such as a
DVD or CD.

• Multiple MySQL instances querying the same data directory simultaneously, typically in a data
warehousing configuration. You might use this technique to avoid bottlenecks that can occur with
a heavily loaded MySQL instance, or you might use different configuration options for the various
instances to tune each one for particular kinds of queries.

• Querying data that has been put into a read-only state for security or data integrity reasons, such as
archived backup data.

Note

This feature is mainly intended for flexibility in distribution and deployment,
rather than raw performance based on the read-only aspect. See Section 8.5.3,
“Optimizing InnoDB Read-Only Transactions” for ways to tune the performance of
read-only queries, which do not require making the entire server read-only.

2638

InnoDB Buffer Pool Configuration

How It Works

When the server is run in read-only mode through the --innodb-read-only option, certain InnoDB
features and components are reduced or turned off entirely:

• No change buffering is done, in particular no merges from the change buffer. To make sure the change
buffer is empty when you prepare the instance for read-only operation, disable change buffering
(innodb_change_buffering=0) and do a slow shutdown first.

• There is no crash recovery phase at startup. The instance must have performed a slow shutdown before
being put into the read-only state.

• Because the redo log is not used in read-only operation, you can set innodb_log_file_size to the
smallest size possible (1 MB) before making the instance read-only.

• Most background threads are turned off. I/O read threads remain, as well as I/O write threads and a
page cleaner thread for writes to temporary files, which are permitted in read-only mode.

• Information about deadlocks, monitor output, and so on is not written to temporary files. As a
consequence, SHOW ENGINE INNODB STATUS does not produce any output.

• If the MySQL server is started with --innodb-read-only but the data directory is still on writeable
media, the root user can still perform DCL operations such as GRANT and REVOKE.

• Changes to configuration option settings that would normally change the behavior of write operations,
have no effect when the server is in read-only mode.

• The MVCC processing to enforce isolation levels is turned off. All queries read the latest version of a
record, because update and deletes are not possible.

• The undo log is not used. Disable any settings for the innodb_undo_tablespaces and
innodb_undo_directory configuration options.

14.8.3 InnoDB Buffer Pool Configuration

This section provides configuration and tuning information for the InnoDB buffer pool.

14.8.3.1 Configuring InnoDB Buffer Pool Size

You can configure InnoDB buffer pool size offline or while the server is running. Behavior described in this
section applies to both methods. For additional information about configuring buffer pool size online, see
Configuring InnoDB Buffer Pool Size Online.

When increasing or decreasing innodb_buffer_pool_size, the operation is performed in chunks.
Chunk size is defined by the innodb_buffer_pool_chunk_size configuration option, which has a
default of 128M. For more information, see Configuring InnoDB Buffer Pool Chunk Size.

Buffer pool size must always be equal to or a multiple of innodb_buffer_pool_chunk_size
* innodb_buffer_pool_instances. If you configure innodb_buffer_pool_size
to a value that is not equal to or a multiple of innodb_buffer_pool_chunk_size *
innodb_buffer_pool_instances, buffer pool size is automatically adjusted to a value that is equal to
or a multiple of innodb_buffer_pool_chunk_size * innodb_buffer_pool_instances.

In the following example, innodb_buffer_pool_size is set to 8G, and
innodb_buffer_pool_instances is set to 16. innodb_buffer_pool_chunk_size is 128M, which
is the default value.

8G is a valid innodb_buffer_pool_size value because 8G is a multiple of
innodb_buffer_pool_instances=16 * innodb_buffer_pool_chunk_size=128M, which is 2G.

2639

InnoDB Buffer Pool Configuration

$> mysqld --innodb-buffer-pool-size=8G --innodb-buffer-pool-instances=16

mysql> SELECT @@innodb_buffer_pool_size/1024/1024/1024;
+--+
| @@innodb_buffer_pool_size/1024/1024/1024 |
+--+
| 8.000000000000 |
+--+

In this example, innodb_buffer_pool_size is set to 9G, and innodb_buffer_pool_instances
is set to 16. innodb_buffer_pool_chunk_size is 128M, which is the default
value. In this case, 9G is not a multiple of innodb_buffer_pool_instances=16 *
innodb_buffer_pool_chunk_size=128M, so innodb_buffer_pool_size is adjusted to 10G,
which is a multiple of innodb_buffer_pool_chunk_size * innodb_buffer_pool_instances.

$> mysqld --innodb-buffer-pool-size=9G --innodb-buffer-pool-instances=16

mysql> SELECT @@innodb_buffer_pool_size/1024/1024/1024;
+--+
| @@innodb_buffer_pool_size/1024/1024/1024 |
+--+
| 10.000000000000 |
+--+

Configuring InnoDB Buffer Pool Chunk Size

innodb_buffer_pool_chunk_size can be increased or decreased in 1MB (1048576 byte) units but
can only be modified at startup, in a command line string or in a MySQL configuration file.

Command line:

$> mysqld --innodb-buffer-pool-chunk-size=134217728

Configuration file:

[mysqld]
innodb_buffer_pool_chunk_size=134217728

The following conditions apply when altering innodb_buffer_pool_chunk_size:

• If the new innodb_buffer_pool_chunk_size value * innodb_buffer_pool_instances
is larger than the current buffer pool size when the buffer pool is initialized,
innodb_buffer_pool_chunk_size is truncated to innodb_buffer_pool_size /
innodb_buffer_pool_instances.

For example, if the buffer pool is initialized with a size of 2GB (2147483648 bytes), 4 buffer pool
instances, and a chunk size of 1GB (1073741824 bytes), chunk size is truncated to a value equal to
innodb_buffer_pool_size / innodb_buffer_pool_instances, as shown below:

$> mysqld --innodb-buffer-pool-size=2147483648 --innodb-buffer-pool-instances=4
--innodb-buffer-pool-chunk-size=1073741824;

mysql> SELECT @@innodb_buffer_pool_size;
+---------------------------+
| @@innodb_buffer_pool_size |
+---------------------------+
| 2147483648 |
+---------------------------+

mysql> SELECT @@innodb_buffer_pool_instances;
+--------------------------------+
| @@innodb_buffer_pool_instances |
+--------------------------------+
| 4 |

2640

InnoDB Buffer Pool Configuration

+--------------------------------+

Chunk size was set to 1GB (1073741824 bytes) on startup but was
truncated to innodb_buffer_pool_size / innodb_buffer_pool_instances

mysql> SELECT @@innodb_buffer_pool_chunk_size;
+---------------------------------+
| @@innodb_buffer_pool_chunk_size |
+---------------------------------+
| 536870912 |
+---------------------------------+

• Buffer pool size must always be equal to or a multiple of innodb_buffer_pool_chunk_size
* innodb_buffer_pool_instances. If you alter innodb_buffer_pool_chunk_size,
innodb_buffer_pool_size is automatically adjusted to a value that is equal to or a multiple of
innodb_buffer_pool_chunk_size * innodb_buffer_pool_instances. The adjustment occurs
when the buffer pool is initialized. This behavior is demonstrated in the following example:

The buffer pool has a default size of 128MB (134217728 bytes)

mysql> SELECT @@innodb_buffer_pool_size;
+---------------------------+
| @@innodb_buffer_pool_size |
+---------------------------+
| 134217728 |
+---------------------------+

The chunk size is also 128MB (134217728 bytes)

mysql> SELECT @@innodb_buffer_pool_chunk_size;
+---------------------------------+
| @@innodb_buffer_pool_chunk_size |
+---------------------------------+
| 134217728 |
+---------------------------------+

There is a single buffer pool instance

mysql> SELECT @@innodb_buffer_pool_instances;
+--------------------------------+
| @@innodb_buffer_pool_instances |
+--------------------------------+
| 1 |
+--------------------------------+

Chunk size is decreased by 1MB (1048576 bytes) at startup
(134217728 - 1048576 = 133169152):

$> mysqld --innodb-buffer-pool-chunk-size=133169152

mysql> SELECT @@innodb_buffer_pool_chunk_size;
+---------------------------------+
| @@innodb_buffer_pool_chunk_size |
+---------------------------------+
| 133169152 |
+---------------------------------+

Buffer pool size increases from 134217728 to 266338304
Buffer pool size is automatically adjusted to a value that is equal to
or a multiple of innodb_buffer_pool_chunk_size * innodb_buffer_pool_instances

mysql> SELECT @@innodb_buffer_pool_size;
+---------------------------+
| @@innodb_buffer_pool_size |
+---------------------------+
| 266338304 |

2641

InnoDB Buffer Pool Configuration

+---------------------------+

This example demonstrates the same behavior but with multiple buffer pool instances:

The buffer pool has a default size of 2GB (2147483648 bytes)

mysql> SELECT @@innodb_buffer_pool_size;
+---------------------------+
| @@innodb_buffer_pool_size |
+---------------------------+
| 2147483648 |
+---------------------------+

The chunk size is .5 GB (536870912 bytes)

mysql> SELECT @@innodb_buffer_pool_chunk_size;
+---------------------------------+
| @@innodb_buffer_pool_chunk_size |
+---------------------------------+
| 536870912 |
+---------------------------------+

There are 4 buffer pool instances

mysql> SELECT @@innodb_buffer_pool_instances;
+--------------------------------+
| @@innodb_buffer_pool_instances |
+--------------------------------+
| 4 |
+--------------------------------+

Chunk size is decreased by 1MB (1048576 bytes) at startup
(536870912 - 1048576 = 535822336):

$> mysqld --innodb-buffer-pool-chunk-size=535822336

mysql> SELECT @@innodb_buffer_pool_chunk_size;
+---------------------------------+
| @@innodb_buffer_pool_chunk_size |
+---------------------------------+
| 535822336 |
+---------------------------------+

Buffer pool size increases from 2147483648 to 4286578688
Buffer pool size is automatically adjusted to a value that is equal to
or a multiple of innodb_buffer_pool_chunk_size * innodb_buffer_pool_instances

mysql> SELECT @@innodb_buffer_pool_size;
+---------------------------+
| @@innodb_buffer_pool_size |
+---------------------------+
| 4286578688 |
+---------------------------+

Care should be taken when changing innodb_buffer_pool_chunk_size, as changing this
value can increase the size of the buffer pool, as shown in the examples above. Before you change
innodb_buffer_pool_chunk_size, calculate the effect on innodb_buffer_pool_size to ensure
that the resulting buffer pool size is acceptable.

Note

To avoid potential performance issues, the number of chunks
(innodb_buffer_pool_size / innodb_buffer_pool_chunk_size) should
not exceed 1000.

2642

InnoDB Buffer Pool Configuration

Configuring InnoDB Buffer Pool Size Online

The innodb_buffer_pool_size configuration option can be set dynamically using a SET statement,
allowing you to resize the buffer pool without restarting the server. For example:

mysql> SET GLOBAL innodb_buffer_pool_size=402653184;

Note

The buffer pool size must be equal to or a multiple of
innodb_buffer_pool_chunk_size * innodb_buffer_pool_instances.
Changing those variable settings requires restarting the server.

Active transactions and operations performed through InnoDB APIs should be completed before resizing
the buffer pool. When initiating a resizing operation, the operation does not start until all active transactions
are completed. Once the resizing operation is in progress, new transactions and operations that require
access to the buffer pool must wait until the resizing operation finishes. The exception to the rule is that
concurrent access to the buffer pool is permitted while the buffer pool is defragmented and pages are
withdrawn when buffer pool size is decreased. A drawback of allowing concurrent access is that it could
result in a temporary shortage of available pages while pages are being withdrawn.

Note

Nested transactions could fail if initiated after the buffer pool resizing operation
begins.

Monitoring Online Buffer Pool Resizing Progress

The Innodb_buffer_pool_resize_status reports buffer pool resizing progress. For example:

mysql> SHOW STATUS WHERE Variable_name='InnoDB_buffer_pool_resize_status';
+----------------------------------+----------------------------------+
| Variable_name | Value |
+----------------------------------+----------------------------------+
| Innodb_buffer_pool_resize_status | Resizing also other hash tables. |
+----------------------------------+----------------------------------+

Buffer pool resizing progress is also logged in the server error log. This example shows notes that are
logged when increasing the size of the buffer pool:

[Note] InnoDB: Resizing buffer pool from 134217728 to 4294967296. (unit=134217728)
[Note] InnoDB: disabled adaptive hash index.
[Note] InnoDB: buffer pool 0 : 31 chunks (253952 blocks) was added.
[Note] InnoDB: buffer pool 0 : hash tables were resized.
[Note] InnoDB: Resized hash tables at lock_sys, adaptive hash index, dictionary.
[Note] InnoDB: completed to resize buffer pool from 134217728 to 4294967296.
[Note] InnoDB: re-enabled adaptive hash index.

This example shows notes that are logged when decreasing the size of the buffer pool:

[Note] InnoDB: Resizing buffer pool from 4294967296 to 134217728. (unit=134217728)
[Note] InnoDB: disabled adaptive hash index.
[Note] InnoDB: buffer pool 0 : start to withdraw the last 253952 blocks.
[Note] InnoDB: buffer pool 0 : withdrew 253952 blocks from free list. tried to relocate 0 pages.
(253952/253952)
[Note] InnoDB: buffer pool 0 : withdrawn target 253952 blocks.
[Note] InnoDB: buffer pool 0 : 31 chunks (253952 blocks) was freed.
[Note] InnoDB: buffer pool 0 : hash tables were resized.
[Note] InnoDB: Resized hash tables at lock_sys, adaptive hash index, dictionary.
[Note] InnoDB: completed to resize buffer pool from 4294967296 to 134217728.
[Note] InnoDB: re-enabled adaptive hash index.

2643

InnoDB Buffer Pool Configuration

Online Buffer Pool Resizing Internals

The resizing operation is performed by a background thread. When increasing the size of the buffer pool,
the resizing operation:

• Adds pages in chunks (chunk size is defined by innodb_buffer_pool_chunk_size)

• Converts hash tables, lists, and pointers to use new addresses in memory

• Adds new pages to the free list

While these operations are in progress, other threads are blocked from accessing the buffer pool.

When decreasing the size of the buffer pool, the resizing operation:

• Defragments the buffer pool and withdraws (frees) pages

• Removes pages in chunks (chunk size is defined by innodb_buffer_pool_chunk_size)

• Converts hash tables, lists, and pointers to use new addresses in memory

Of these operations, only defragmenting the buffer pool and withdrawing pages allow other threads to
access to the buffer pool concurrently.

14.8.3.2 Configuring Multiple Buffer Pool Instances

For systems with buffer pools in the multi-gigabyte range, dividing the buffer pool into separate instances
can improve concurrency, by reducing contention as different threads read and write to cached pages. This
feature is typically intended for systems with a buffer pool size in the multi-gigabyte range. Multiple buffer
pool instances are configured using the innodb_buffer_pool_instances configuration option, and
you might also adjust the innodb_buffer_pool_size value.

When the InnoDB buffer pool is large, many data requests can be satisfied by retrieving from memory.
You might encounter bottlenecks from multiple threads trying to access the buffer pool at once. You can
enable multiple buffer pools to minimize this contention. Each page that is stored in or read from the buffer
pool is assigned to one of the buffer pools randomly, using a hashing function. Each buffer pool manages
its own free lists, flush lists, LRUs, and all other data structures connected to a buffer pool, and is protected
by its own buffer pool mutex.

To enable multiple buffer pool instances, set the innodb_buffer_pool_instances configuration option
to a value greater than 1 (the default) up to 64 (the maximum). This option takes effect only when you set
innodb_buffer_pool_size to a size of 1GB or more. The total size you specify is divided among all
the buffer pools. For best efficiency, specify a combination of innodb_buffer_pool_instances and
innodb_buffer_pool_size so that each buffer pool instance is at least 1GB.

For information about modifying InnoDB buffer pool size, see Section 14.8.3.1, “Configuring InnoDB Buffer
Pool Size”.

14.8.3.3 Making the Buffer Pool Scan Resistant

Rather than using a strict LRU algorithm, InnoDB uses a technique to minimize the amount of data that is
brought into the buffer pool and never accessed again. The goal is to make sure that frequently accessed
(“hot”) pages remain in the buffer pool, even as read-ahead and full table scans bring in new blocks that
might or might not be accessed afterward.

Newly read blocks are inserted into the middle of the LRU list. All newly read pages are inserted at a
location that by default is 3/8 from the tail of the LRU list. The pages are moved to the front of the list (the

2644

InnoDB Buffer Pool Configuration

most-recently used end) when they are accessed in the buffer pool for the first time. Thus, pages that are
never accessed never make it to the front portion of the LRU list, and “age out” sooner than with a strict
LRU approach. This arrangement divides the LRU list into two segments, where the pages downstream of
the insertion point are considered “old” and are desirable victims for LRU eviction.

For an explanation of the inner workings of the InnoDB buffer pool and specifics about the LRU algorithm,
see Section 14.5.1, “Buffer Pool”.

You can control the insertion point in the LRU list and choose whether InnoDB applies the same
optimization to blocks brought into the buffer pool by table or index scans. The configuration parameter
innodb_old_blocks_pct controls the percentage of “old” blocks in the LRU list. The default value of
innodb_old_blocks_pct is 37, corresponding to the original fixed ratio of 3/8. The value range is 5
(new pages in the buffer pool age out very quickly) to 95 (only 5% of the buffer pool is reserved for hot
pages, making the algorithm close to the familiar LRU strategy).

The optimization that keeps the buffer pool from being churned by read-ahead can avoid similar problems
due to table or index scans. In these scans, a data page is typically accessed a few times in quick
succession and is never touched again. The configuration parameter innodb_old_blocks_time
specifies the time window (in milliseconds) after the first access to a page during which it can be
accessed without being moved to the front (most-recently used end) of the LRU list. The default value of
innodb_old_blocks_time is 1000. Increasing this value makes more and more blocks likely to age out
faster from the buffer pool.

Both innodb_old_blocks_pct and innodb_old_blocks_time can be specified in the MySQL option
file (my.cnf or my.ini) or changed at runtime with the SET GLOBAL statement. Changing the value at
runtime requires privileges sufficient to set global system variables. See Section 5.1.8.1, “System Variable
Privileges”.

To help you gauge the effect of setting these parameters, the SHOW ENGINE INNODB STATUS command
reports buffer pool statistics. For details, see Monitoring the Buffer Pool Using the InnoDB Standard
Monitor.

Because the effects of these parameters can vary widely based on your hardware configuration, your data,
and the details of your workload, always benchmark to verify the effectiveness before changing these
settings in any performance-critical or production environment.

In mixed workloads where most of the activity is OLTP type with periodic batch reporting queries which
result in large scans, setting the value of innodb_old_blocks_time during the batch runs can help
keep the working set of the normal workload in the buffer pool.

When scanning large tables that cannot fit entirely in the buffer pool, setting innodb_old_blocks_pct to
a small value keeps the data that is only read once from consuming a significant portion of the buffer pool.
For example, setting innodb_old_blocks_pct=5 restricts this data that is only read once to 5% of the
buffer pool.

When scanning small tables that do fit into memory, there is less overhead for moving pages around within
the buffer pool, so you can leave innodb_old_blocks_pct at its default value, or even higher, such as
innodb_old_blocks_pct=50.

The effect of the innodb_old_blocks_time parameter is harder to predict than the
innodb_old_blocks_pct parameter, is relatively small, and varies more with the workload. To arrive
at an optimal value, conduct your own benchmarks if the performance improvement from adjusting
innodb_old_blocks_pct is not sufficient.

14.8.3.4 Configuring InnoDB Buffer Pool Prefetching (Read-Ahead)

2645

InnoDB Buffer Pool Configuration

A read-ahead request is an I/O request to prefetch multiple pages in the buffer pool asynchronously, in
anticipation that these pages are needed soon. The requests bring in all the pages in one extent. InnoDB
uses two read-ahead algorithms to improve I/O performance:

Linear read-ahead is a technique that predicts what pages might be needed soon based on pages in the
buffer pool being accessed sequentially. You control when InnoDB performs a read-ahead operation
by adjusting the number of sequential page accesses required to trigger an asynchronous read request,
using the configuration parameter innodb_read_ahead_threshold. Before this parameter was added,
InnoDB would only calculate whether to issue an asynchronous prefetch request for the entire next extent
when it read the last page of the current extent.

The configuration parameter innodb_read_ahead_threshold controls how sensitive InnoDB is in
detecting patterns of sequential page access. If the number of pages read sequentially from an extent is
greater than or equal to innodb_read_ahead_threshold, InnoDB initiates an asynchronous read-
ahead operation of the entire following extent. innodb_read_ahead_threshold can be set to any value
from 0-64. The default value is 56. The higher the value, the more strict the access pattern check. For
example, if you set the value to 48, InnoDB triggers a linear read-ahead request only when 48 pages in
the current extent have been accessed sequentially. If the value is 8, InnoDB triggers an asynchronous
read-ahead even if as few as 8 pages in the extent are accessed sequentially. You can set the value of
this parameter in the MySQL configuration file, or change it dynamically with the SET GLOBAL statement,
which requires privileges sufficient to set global system variables. See Section 5.1.8.1, “System Variable
Privileges”.

Random read-ahead is a technique that predicts when pages might be needed soon based on pages
already in the buffer pool, regardless of the order in which those pages were read. If 13 consecutive
pages from the same extent are found in the buffer pool, InnoDB asynchronously issues a request
to prefetch the remaining pages of the extent. To enable this feature, set the configuration variable
innodb_random_read_ahead to ON.

The SHOW ENGINE INNODB STATUS command displays statistics to help you evaluate the effectiveness
of the read-ahead algorithm. Statistics include counter information for the following global status variables:

• Innodb_buffer_pool_read_ahead

• Innodb_buffer_pool_read_ahead_evicted

• Innodb_buffer_pool_read_ahead_rnd

This information can be useful when fine-tuning the innodb_random_read_ahead setting.

For more information about I/O performance, see Section 8.5.8, “Optimizing InnoDB Disk I/O” and
Section 8.12.2, “Optimizing Disk I/O”.

14.8.3.5 Configuring Buffer Pool Flushing

InnoDB performs certain tasks in the background, including flushing of dirty pages from the buffer pool.
Dirty pages are those that have been modified but are not yet written to the data files on disk.

In MySQL 5.7, buffer pool flushing is performed by page cleaner threads. The number of
page cleaner threads is controlled by the innodb_page_cleaners variable, which has a
default value of 4. However, if the number of page cleaner threads exceeds the number of
buffer pool instances, innodb_page_cleaners is automatically set to the same value as
innodb_buffer_pool_instances.

Buffer pool flushing is initiated when the percentage of dirty pages reaches the low water mark value
defined by the innodb_max_dirty_pages_pct_lwm variable. The default low water mark is 0, which
disables this early flushing behaviour.

2646

InnoDB Buffer Pool Configuration

The purpose of the innodb_max_dirty_pages_pct_lwm threshold is to control the percentage
dirty pages in the buffer pool and to prevent the amount of dirty pages from reaching the threshold
defined by the innodb_max_dirty_pages_pct variable, which has a default value of 75. InnoDB
aggressively flushes buffer pool pages if the percentage of dirty pages in the buffer pool reaches the
innodb_max_dirty_pages_pct threshold.

When configuring innodb_max_dirty_pages_pct_lwm, the value should always be lower than the
innodb_max_dirty_pages_pct value.

Additional variables permit fine-tuning of buffer pool flushing behavior:

• The innodb_flush_neighbors variable defines whether flushing a page from the buffer pool also
flushes other dirty pages in the same extent.

• A setting of 0 disables innodb_flush_neighbors. Dirty pages in the same extent are not flushed.

• The default setting of 1 flushes contiguous dirty pages in the same extent.

• A setting of 2 flushes dirty pages in the same extent.

When table data is stored on a traditional HDD storage device, flushing neighbor pages in one operation
reduces I/O overhead (primarily for disk seek operations) compared to flushing individual pages at
different times. For table data stored on SSD, seek time is not a significant factor and you can disable
this setting to spread out write operations.

• The innodb_lru_scan_depth variable specifies, per buffer pool instance, how far down the buffer
pool LRU list the page cleaner thread scans looking for dirty pages to flush. This is a background
operation performed by a page cleaner thread once per second.

A setting smaller than the default is generally suitable for most workloads. A value that is significantly
higher than necessary may impact performance. Only consider increasing the value if you have spare
I/O capacity under a typical workload. Conversely, if a write-intensive workload saturates your I/O
capacity, decrease the value, especially in the case of a large buffer pool.

When tuning innodb_lru_scan_depth, start with a low value and configure the setting upward
with the goal of rarely seeing zero free pages. Also, consider adjusting innodb_lru_scan_depth
when changing the number of buffer pool instances, since innodb_lru_scan_depth *
innodb_buffer_pool_instances defines the amount of work performed by the page cleaner thread
each second.

The innodb_flush_neighbors and innodb_lru_scan_depth variables are primarily intended for
write-intensive workloads. With heavy DML activity, flushing can fall behind if it is not aggressive enough,
or disk writes can saturate I/O capacity if flushing is too aggressive. The ideal settings depend on your
workload, data access patterns, and storage configuration (for example, whether data is stored on HDD or
SSD devices).

Adaptive Flushing

InnoDB uses an adaptive flushing algorithm to dynamically adjust the rate of flushing based on the speed
of redo log generation and the current rate of flushing. The intent is to smooth overall performance by
ensuring that flushing activity keeps pace with the current workload. Automatically adjusting the flushing
rate helps avoid sudden dips in throughput that can occur when bursts of I/O activity due to buffer pool
flushing affects the I/O capacity available for ordinary read and write activity.

Sharp checkpoints, which are typically associated with write-intensive workloads that generate a lot of redo
entries, can cause a sudden change in throughput, for example. A sharp checkpoint occurs when InnoDB

2647

InnoDB Buffer Pool Configuration

wants to reuse a portion of a log file. Before doing so, all dirty pages with redo entries in that portion of the
log file must be flushed. If log files become full, a sharp checkpoint occurs, causing a temporary reduction
in throughput. This scenario can occur even if innodb_max_dirty_pages_pct threshold is not reached.

The adaptive flushing algorithm helps avoid such scenarios by tracking the number of dirty pages in
the buffer pool and the rate at which redo log records are being generated. Based on this information,
it decides how many dirty pages to flush from the buffer pool each second, which permits it to manage
sudden changes in workload.

The innodb_adaptive_flushing_lwm variable defines a low water mark for redo log capacity. When
that threshold is crossed, adaptive flushing is enabled, even if the innodb_adaptive_flushing variable
is disabled.

Internal benchmarking has shown that the algorithm not only maintains throughput over time, but can
also improve overall throughput significantly. However, adaptive flushing can affect the I/O pattern of a
workload significantly and may not be appropriate in all cases. It gives the most benefit when the redo
log is in danger of filling up. If adaptive flushing is not appropriate to the characteristics of your workload,
you can disable it. Adaptive flushing controlled by the innodb_adaptive_flushing variable, which is
enabled by default.

innodb_flushing_avg_loops defines the number of iterations that InnoDB keeps the previously
calculated snapshot of the flushing state, controlling how quickly adaptive flushing responds to foreground
workload changes. A high innodb_flushing_avg_loops value means that InnoDB keeps the
previously calculated snapshot longer, so adaptive flushing responds more slowly. When setting a high
value it is important to ensure that redo log utilization does not reach 75% (the hardcoded limit at which
asynchronous flushing starts), and that the innodb_max_dirty_pages_pct threshold keeps the number
of dirty pages to a level that is appropriate for the workload.

Systems with consistent workloads, a large log file size (innodb_log_file_size), and small spikes that
do not reach 75% log space utilization should use a high innodb_flushing_avg_loops value to keep
flushing as smooth as possible. For systems with extreme load spikes or log files that do not provide a lot
of space, a smaller value allows flushing to closely track workload changes, and helps to avoid reaching
75% log space utilization.

Be aware that if flushing falls behind, the rate of buffer pool flushing can exceed the I/O capacity available
to InnoDB, as defined by innodb_io_capacity setting. The innodb_io_capacity_max value
defines an upper limit on I/O capacity in such situations, so that a spike in I/O activity does not consume
the entire I/O capacity of the server.

The innodb_io_capacity setting is applicable to all buffer pool instances. When dirty pages are
flushed, I/O capacity is divided equally among buffer pool instances.

14.8.3.6 Saving and Restoring the Buffer Pool State

To reduce the warmup period after restarting the server, InnoDB saves a percentage of the most recently
used pages for each buffer pool at server shutdown and restores these pages at server startup. The
percentage of recently used pages that is stored is defined by the innodb_buffer_pool_dump_pct
configuration option.

After restarting a busy server, there is typically a warmup period with steadily increasing throughput,
as disk pages that were in the buffer pool are brought back into memory (as the same data is queried,
updated, and so on). The ability to restore the buffer pool at startup shortens the warmup period by
reloading disk pages that were in the buffer pool before the restart rather than waiting for DML operations
to access corresponding rows. Also, I/O requests can be performed in large batches, making the overall I/
O faster. Page loading happens in the background, and does not delay database startup.

2648

InnoDB Buffer Pool Configuration

In addition to saving the buffer pool state at shutdown and restoring it at startup, you can save and restore
the buffer pool state at any time, while the server is running. For example, you can save the state of the
buffer pool after reaching a stable throughput under a steady workload. You could also restore the previous
buffer pool state after running reports or maintenance jobs that bring data pages into the buffer pool that
are only requited for those operations, or after running some other non-typical workload.

Even though a buffer pool can be many gigabytes in size, the buffer pool data that InnoDB saves to disk
is tiny by comparison. Only tablespace IDs and page IDs necessary to locate the appropriate pages are
saved to disk. This information is derived from the INNODB_BUFFER_PAGE_LRU INFORMATION_SCHEMA
table. By default, tablespace ID and page ID data is saved in a file named ib_buffer_pool,
which is saved to the InnoDB data directory. The file name and location can be modified using the
innodb_buffer_pool_filename configuration parameter.

Because data is cached in and aged out of the buffer pool as it is with regular database operations, there
is no problem if the disk pages are recently updated, or if a DML operation involves data that has not yet
been loaded. The loading mechanism skips requested pages that no longer exist.

The underlying mechanism involves a background thread that is dispatched to perform the dump and load
operations.

Disk pages from compressed tables are loaded into the buffer pool in their compressed form. Pages
are uncompressed as usual when page contents are accessed during DML operations. Because
uncompressing pages is a CPU-intensive process, it is more efficient for concurrency to perform the
operation in a connection thread rather than in the single thread that performs the buffer pool restore
operation.

Operations related to saving and restoring the buffer pool state are described in the following topics:

• Configuring the Dump Percentage for Buffer Pool Pages

• Saving the Buffer Pool State at Shutdown and Restoring it at Startup

• Saving and Restoring the Buffer Pool State Online

• Displaying Buffer Pool Dump Progress

• Displaying Buffer Pool Load Progress

• Aborting a Buffer Pool Load Operation

• Monitoring Buffer Pool Load Progress Using Performance Schema

Configuring the Dump Percentage for Buffer Pool Pages

Before dumping pages from the buffer pool, you can configure the percentage of most-recently-used buffer
pool pages that you want to dump by setting the innodb_buffer_pool_dump_pct option. If you plan to
dump buffer pool pages while the server is running, you can configure the option dynamically:

SET GLOBAL innodb_buffer_pool_dump_pct=40;

If you plan to dump buffer pool pages at server shutdown, set innodb_buffer_pool_dump_pct in your
configuration file.

[mysqld]
innodb_buffer_pool_dump_pct=40

The innodb_buffer_pool_dump_pct default value was changed from 100
(dump all pages) to 25 (dump 25% of most-recently-used pages) in MySQL 5.7 when

2649

InnoDB Buffer Pool Configuration

innodb_buffer_pool_dump_at_shutdown and innodb_buffer_pool_load_at_startup were
enabled by default.

Saving the Buffer Pool State at Shutdown and Restoring it at Startup

To save the state of the buffer pool at server shutdown, issue the following statement prior to shutting
down the server:

SET GLOBAL innodb_buffer_pool_dump_at_shutdown=ON;

innodb_buffer_pool_dump_at_shutdown is enabled by default.

To restore the buffer pool state at server startup, specify the --innodb-buffer-pool-load-at-
startup option when starting the server:

mysqld --innodb-buffer-pool-load-at-startup=ON;

innodb_buffer_pool_load_at_startup is enabled by default.

Saving and Restoring the Buffer Pool State Online

To save the state of the buffer pool while MySQL server is running, issue the following statement:

SET GLOBAL innodb_buffer_pool_dump_now=ON;

To restore the buffer pool state while MySQL is running, issue the following statement:

SET GLOBAL innodb_buffer_pool_load_now=ON;

Displaying Buffer Pool Dump Progress

To display progress when saving the buffer pool state to disk, issue the following statement:

SHOW STATUS LIKE 'Innodb_buffer_pool_dump_status';

If the operation has not yet started, “not started” is returned. If the operation is complete, the completion
time is printed (e.g. Finished at 110505 12:18:02). If the operation is in progress, status information is
provided (e.g. Dumping buffer pool 5/7, page 237/2873).

Displaying Buffer Pool Load Progress

To display progress when loading the buffer pool, issue the following statement:

SHOW STATUS LIKE 'Innodb_buffer_pool_load_status';

If the operation has not yet started, “not started” is returned. If the operation is complete, the completion
time is printed (e.g. Finished at 110505 12:23:24). If the operation is in progress, status information is
provided (e.g. Loaded 123/22301 pages).

Aborting a Buffer Pool Load Operation

To abort a buffer pool load operation, issue the following statement:

SET GLOBAL innodb_buffer_pool_load_abort=ON;

Monitoring Buffer Pool Load Progress Using Performance Schema

You can monitor buffer pool load progress using Performance Schema.

2650

InnoDB Buffer Pool Configuration

The following example demonstrates how to enable the stage/innodb/buffer pool load stage
event instrument and related consumer tables to monitor buffer pool load progress.

For information about buffer pool dump and load procedures used in this example, see Section 14.8.3.6,
“Saving and Restoring the Buffer Pool State”. For information about Performance Schema stage event
instruments and related consumers, see Section 25.12.5, “Performance Schema Stage Event Tables”.

1. Enable the stage/innodb/buffer pool load instrument:

mysql> UPDATE performance_schema.setup_instruments SET ENABLED = 'YES'
 WHERE NAME LIKE 'stage/innodb/buffer%';

2. Enable the stage event consumer tables, which include events_stages_current,
events_stages_history, and events_stages_history_long.

mysql> UPDATE performance_schema.setup_consumers SET ENABLED = 'YES'
 WHERE NAME LIKE '%stages%';

3. Dump the current buffer pool state by enabling innodb_buffer_pool_dump_now.

mysql> SET GLOBAL innodb_buffer_pool_dump_now=ON;

4. Check the buffer pool dump status to ensure that the operation has completed.

mysql> SHOW STATUS LIKE 'Innodb_buffer_pool_dump_status'\G
*************************** 1. row ***************************
Variable_name: Innodb_buffer_pool_dump_status
 Value: Buffer pool(s) dump completed at 150202 16:38:58

5. Load the buffer pool by enabling innodb_buffer_pool_load_now:

mysql> SET GLOBAL innodb_buffer_pool_load_now=ON;

6. Check the current status of the buffer pool load operation by querying the Performance Schema
events_stages_current table. The WORK_COMPLETED column shows the number of buffer pool
pages loaded. The WORK_ESTIMATED column provides an estimate of the remaining work, in pages.

mysql> SELECT EVENT_NAME, WORK_COMPLETED, WORK_ESTIMATED
 FROM performance_schema.events_stages_current;
+-------------------------------+----------------+----------------+
| EVENT_NAME | WORK_COMPLETED | WORK_ESTIMATED |
+-------------------------------+----------------+----------------+
| stage/innodb/buffer pool load | 5353 | 7167 |
+-------------------------------+----------------+----------------+

The events_stages_current table returns an empty set if the buffer pool load operation has
completed. In this case, you can check the events_stages_history table to view data for the
completed event. For example:

mysql> SELECT EVENT_NAME, WORK_COMPLETED, WORK_ESTIMATED
 FROM performance_schema.events_stages_history;
+-------------------------------+----------------+----------------+
| EVENT_NAME | WORK_COMPLETED | WORK_ESTIMATED |
+-------------------------------+----------------+----------------+
| stage/innodb/buffer pool load | 7167 | 7167 |
+-------------------------------+----------------+----------------+

Note

You can also monitor buffer pool load progress using Performance
Schema when loading the buffer pool at startup using
innodb_buffer_pool_load_at_startup. In this case, the stage/innodb/

2651

Configuring the Memory Allocator for InnoDB

buffer pool load instrument and related consumers must be enabled at
startup. For more information, see Section 25.3, “Performance Schema Startup
Configuration”.

14.8.4 Configuring the Memory Allocator for InnoDB

When InnoDB was developed, the memory allocators supplied with operating systems and run-time
libraries were often lacking in performance and scalability. At that time, there were no memory allocator
libraries tuned for multi-core CPUs. Therefore, InnoDB implemented its own memory allocator in the mem
subsystem. This allocator is guarded by a single mutex, which may become a bottleneck. InnoDB also
implements a wrapper interface around the system allocator (malloc and free) that is likewise guarded
by a single mutex.

Today, as multi-core systems have become more widely available, and as operating systems have
matured, significant improvements have been made in the memory allocators provided with operating
systems. These new memory allocators perform better and are more scalable than they were in the past.
Most workloads, especially those where memory is frequently allocated and released (such as multi-
table joins), benefit from using a more highly tuned memory allocator as opposed to the internal, InnoDB-
specific memory allocator.

You can control whether InnoDB uses its own memory allocator or an allocator of the operating system,
by setting the value of the system configuration parameter innodb_use_sys_malloc in the MySQL
option file (my.cnf or my.ini). If set to ON or 1 (the default), InnoDB uses the malloc and free
functions of the underlying system rather than manage memory pools itself. This parameter is not dynamic,
and takes effect only when the system is started. To continue to use the InnoDB memory allocator, set
innodb_use_sys_malloc to 0.

When the InnoDB memory allocator is disabled, InnoDB ignores the value of the parameter
innodb_additional_mem_pool_size. The InnoDB memory allocator uses an additional memory
pool for satisfying allocation requests without having to fall back to the system memory allocator. When
the InnoDB memory allocator is disabled, all such allocation requests are fulfilled by the system memory
allocator.

On Unix-like systems that use dynamic linking, replacing the memory allocator may be as easy as making
the environment variable LD_PRELOAD or LD_LIBRARY_PATH point to the dynamic library that implements
the allocator. On other systems, some relinking may be necessary. Please refer to the documentation of
the memory allocator library of your choice.

Since InnoDB cannot track all memory use when the system memory allocator is used
(innodb_use_sys_malloc is ON), the section “BUFFER POOL AND MEMORY” in the output of the
SHOW ENGINE INNODB STATUS command only includes the buffer pool statistics in the “Total memory
allocated”. Any memory allocated using the mem subsystem or using ut_malloc is excluded.

Note

innodb_use_sys_malloc and innodb_additional_mem_pool_size were
deprecated in MySQL 5.6 and removed in MySQL 5.7.

For more information about the performance implications of InnoDB memory usage, see Section 8.10,
“Buffering and Caching”.

14.8.5 Configuring Thread Concurrency for InnoDB

InnoDB uses operating system threads to process requests from user transactions. (Transactions may
issue many requests to InnoDB before they commit or roll back.) On modern operating systems and
servers with multi-core processors, where context switching is efficient, most workloads run well without

2652

Configuring the Number of Background InnoDB I/O Threads

any limit on the number of concurrent threads. Scalability improvements in MySQL 5.5 and up reduce the
need to limit the number of concurrently executing threads inside InnoDB.

In situations where it is helpful to minimize context switching between threads, InnoDB can use a number
of techniques to limit the number of concurrently executing operating system threads (and thus the
number of requests that are processed at any one time). When InnoDB receives a new request from a
user session, if the number of threads concurrently executing is at a pre-defined limit, the new request
sleeps for a short time before it tries again. Threads waiting for locks are not counted in the number of
concurrently executing threads.

You can limit the number of concurrent threads by setting the configuration parameter
innodb_thread_concurrency. Once the number of executing threads reaches this limit,
additional threads sleep for a number of microseconds, set by the configuration parameter
innodb_thread_sleep_delay, before being placed into the queue.

Previously, it required experimentation to find the optimal value for innodb_thread_sleep_delay, and
the optimal value could change depending on the workload. In MySQL 5.6.3 and higher, you can set the
configuration option innodb_adaptive_max_sleep_delay to the highest value you would allow for
innodb_thread_sleep_delay, and InnoDB automatically adjusts innodb_thread_sleep_delay
up or down depending on the current thread-scheduling activity. This dynamic adjustment helps the thread
scheduling mechanism to work smoothly during times when the system is lightly loaded and when it is
operating near full capacity.

The default value for innodb_thread_concurrency and the implied default limit on the number of
concurrent threads has been changed in various releases of MySQL and InnoDB. The default value of
innodb_thread_concurrency is 0, so that by default there is no limit on the number of concurrently
executing threads.

InnoDB causes threads to sleep only when the number of concurrent threads is limited. When
there is no limit on the number of threads, all contend equally to be scheduled. That is, if
innodb_thread_concurrency is 0, the value of innodb_thread_sleep_delay is ignored.

When there is a limit on the number of threads (when innodb_thread_concurrency is > 0), InnoDB
reduces context switching overhead by permitting multiple requests made during the execution of a single
SQL statement to enter InnoDB without observing the limit set by innodb_thread_concurrency. Since
an SQL statement (such as a join) may comprise multiple row operations within InnoDB, InnoDB assigns
a specified number of “tickets” that allow a thread to be scheduled repeatedly with minimal overhead.

When a new SQL statement starts, a thread has no tickets, and it must observe
innodb_thread_concurrency. Once the thread is entitled to enter InnoDB, it is assigned a number
of tickets that it can use for subsequently entering InnoDB to perform row operations. If the tickets run
out, the thread is evicted, and innodb_thread_concurrency is observed again which may place the
thread back into the first-in/first-out queue of waiting threads. When the thread is once again entitled to
enter InnoDB, tickets are assigned again. The number of tickets assigned is specified by the global option
innodb_concurrency_tickets, which is 5000 by default. A thread that is waiting for a lock is given
one ticket once the lock becomes available.

The correct values of these variables depend on your environment and workload. Try a range of different
values to determine what value works for your applications. Before limiting the number of concurrently
executing threads, review configuration options that may improve the performance of InnoDB on multi-core
and multi-processor computers, such as innodb_adaptive_hash_index.

For general performance information about MySQL thread handling, see Section 5.1.11.1, “Connection
Interfaces”.

14.8.6 Configuring the Number of Background InnoDB I/O Threads

2653

Using Asynchronous I/O on Linux

InnoDB uses background threads to service various types of I/O requests. You can configure
the number of background threads that service read and write I/O on data pages using the
innodb_read_io_threads and innodb_write_io_threads configuration parameters. These
parameters signify the number of background threads used for read and write requests, respectively. They
are effective on all supported platforms. You can set values for these parameters in the MySQL option file
(my.cnf or my.ini); you cannot change values dynamically. The default value for these parameters is 4
and permissible values range from 1-64.

The purpose of these configuration options to make InnoDB more scalable on high end systems. Each
background thread can handle up to 256 pending I/O requests. A major source of background I/O is
read-ahead requests. InnoDB tries to balance the load of incoming requests in such way that most
background threads share work equally. InnoDB also attempts to allocate read requests from the same
extent to the same thread, to increase the chances of coalescing the requests. If you have a high end
I/O subsystem and you see more than 64 × innodb_read_io_threads pending read requests in
SHOW ENGINE INNODB STATUS output, you might improve performance by increasing the value of
innodb_read_io_threads.

On Linux systems, InnoDB uses the asynchronous I/O subsystem by default to perform read-ahead and
write requests for data file pages, which changes the way that InnoDB background threads service these
types of I/O requests. For more information, see Section 14.8.7, “Using Asynchronous I/O on Linux”.

For more information about InnoDB I/O performance, see Section 8.5.8, “Optimizing InnoDB Disk I/O”.

14.8.7 Using Asynchronous I/O on Linux

InnoDB uses the asynchronous I/O subsystem (native AIO) on Linux to perform read-ahead and write
requests for data file pages. This behavior is controlled by the innodb_use_native_aio configuration
option, which applies to Linux systems only and is enabled by default. On other Unix-like systems, InnoDB
uses synchronous I/O only. Historically, InnoDB only used asynchronous I/O on Windows systems. Using
the asynchronous I/O subsystem on Linux requires the libaio library.

With synchronous I/O, query threads queue I/O requests, and InnoDB background threads retrieve the
queued requests one at a time, issuing a synchronous I/O call for each. When an I/O request is completed
and the I/O call returns, the InnoDB background thread that is handling the request calls an I/O completion
routine and returns to process the next request. The number of requests that can be processed in parallel
is n, where n is the number of InnoDB background threads. The number of InnoDB background threads
is controlled by innodb_read_io_threads and innodb_write_io_threads. See Section 14.8.6,
“Configuring the Number of Background InnoDB I/O Threads”.

With native AIO, query threads dispatch I/O requests directly to the operating system, thereby removing
the limit imposed by the number of background threads. InnoDB background threads wait for I/O events
to signal completed requests. When a request is completed, a background thread calls an I/O completion
routine and resumes waiting for I/O events.

The advantage of native AIO is scalability for heavily I/O-bound systems that typically show many pending
reads/writes in SHOW ENGINE INNODB STATUS\G output. The increase in parallel processing when using
native AIO means that the type of I/O scheduler or properties of the disk array controller have a greater
influence on I/O performance.

A potential disadvantage of native AIO for heavily I/O-bound systems is lack of control over the number of
I/O write requests dispatched to the operating system at once. Too many I/O write requests dispatched to
the operating system for parallel processing could, in some cases, result in I/O read starvation, depending
on the amount of I/O activity and system capabilities.

If a problem with the asynchronous I/O subsystem in the OS prevents InnoDB from starting, you can start
the server with innodb_use_native_aio=0. This option may also be disabled automatically during

2654

Configuring InnoDB I/O Capacity

startup if InnoDB detects a potential problem such as a combination of tmpdir location, tmpfs file
system, and Linux kernel that does not support asynchronous I/O on tmpfs.

14.8.8 Configuring InnoDB I/O Capacity

The InnoDB master thread and other threads perform various tasks in the background, most of which are
I/O related, such as flushing dirty pages from the buffer pool and writing changes from the change buffer
to the appropriate secondary indexes. InnoDB attempts to perform these tasks in a way that does not
adversely affect the normal working of the server. It tries to estimate the available I/O bandwidth and tune
its activities to take advantage of available capacity.

The innodb_io_capacity variable defines the overall I/O capacity available to InnoDB. It should be
set to approximately the number of I/O operations that the system can perform per second (IOPS). When
innodb_io_capacity is set, InnoDB estimates the I/O bandwidth available for background tasks based
on the set value.

You can set innodb_io_capacity to a value of 100 or greater. The default value is 200. Typically,
values around 100 are appropriate for consumer-level storage devices, such as hard drives up to 7200
RPMs. Faster hard drives, RAID configurations, and solid state drives (SSDs) benefit from higher values.

Ideally, keep the setting as low as practical, but not so low that background activities fall behind. If the
value is too high, data is removed from the buffer pool and change buffer too quickly for caching to provide
a significant benefit. For busy systems capable of higher I/O rates, you can set a higher value to help the
server handle the background maintenance work associated with a high rate of row changes. Generally,
you can increase the value as a function of the number of drives used for InnoDB I/O. For example, you
can increase the value on systems that use multiple disks or SSDs.

The default setting of 200 is generally sufficient for a lower-end SSD. For a higher-end, bus-attached SSD,
consider a higher setting such as 1000, for example. For systems with individual 5400 RPM or 7200 RPM
drives, you might lower the value to 100, which represents an estimated proportion of the I/O operations
per second (IOPS) available to older-generation disk drives that can perform about 100 IOPS.

Although you can specify a high value such as a million, in practice such large values have little benefit.
Generally, a value higher than 20000 is not recommended unless you are certain that lower values are
insufficient for your workload.

Consider write workload when tuning innodb_io_capacity. Systems with large write workloads are
likely to benefit from a higher setting. A lower setting may be sufficient for systems with a small write
workload.

The innodb_io_capacity setting is not a per buffer pool instance setting. Available I/O capacity is
distributed equally among buffer pool instances for flushing activities.

You can set the innodb_io_capacity value in the MySQL option file (my.cnf or my.ini) or modify
it at runtime using a SET GLOBAL statement, which requires privileges sufficient to set global system
variables. See Section 5.1.8.1, “System Variable Privileges”.

Ignoring I/O Capacity at Checkpoints

The innodb_flush_sync variable, which is enabled by default, causes the innodb_io_capacity
setting to be ignored during bursts of I/O activity that occur at checkpoints. To adhere to the I/O rate
defined by the innodb_io_capacity setting, disable innodb_flush_sync.

You can set the innodb_flush_sync value in the MySQL option file (my.cnf or my.ini) or modify it at
runtime using a SET GLOBAL statement, which requires privileges sufficient to set global system variables.
See Section 5.1.8.1, “System Variable Privileges”.

2655

Configuring Spin Lock Polling

Configuring an I/O Capacity Maximum

If flushing activity falls behind, InnoDB can flush more aggressively, at a higher rate of I/O operations per
second (IOPS) than defined by the innodb_io_capacity variable. The innodb_io_capacity_max
variable defines a maximum number of IOPS performed by InnoDB background tasks in such situations.

If you specify an innodb_io_capacity setting at startup but do not specify a value for
innodb_io_capacity_max, innodb_io_capacity_max defaults to twice the value of
innodb_io_capacity or 2000, whichever value is greater.

When configuring innodb_io_capacity_max, twice the innodb_io_capacity is often a good starting
point. The default value of 2000 is intended for workloads that use an SSD or more than one regular
disk drive. A setting of 2000 is likely too high for workloads that do not use SSDs or multiple disk drives,
and could allow too much flushing. For a single regular disk drive, a setting between 200 and 400 is
recommended. For a high-end, bus-attached SSD, consider a higher setting such as 2500. As with the
innodb_io_capacity setting, keep the setting as low as practical, but not so low that InnoDB cannot
sufficiently extend rate of IOPS beyond the innodb_io_capacity setting.

Consider write workload when tuning innodb_io_capacity_max. Systems with large write workloads
may benefit from a higher setting. A lower setting may be sufficient for systems with a small write workload.

innodb_io_capacity_max cannot be set to a value lower than the innodb_io_capacity value.

Setting innodb_io_capacity_max to DEFAULT using a SET statement (SET GLOBAL
innodb_io_capacity_max=DEFAULT) sets innodb_io_capacity_max to the maximum value.

The innodb_io_capacity_max limit applies to all buffer pool instances. It is not a per buffer pool
instance setting.

14.8.9 Configuring Spin Lock Polling

InnoDB mutexes and rw-locks are typically reserved for short intervals. On a multi-core system, it can be
more efficient for a thread to continuously check if it can acquire a mutex or rw-lock for a period of time
before it sleeps. If the mutex or rw-lock becomes available during this period, the thread can continue
immediately, in the same time slice. However, too-frequent polling of a shared object such as a mutex
or rw-lock by multiple threads can cause “cache ping pong”, which results in processors invalidating
portions of each other's cache. InnoDB minimizes this issue by forcing a random delay between polls to
desychronize polling activity. The random delay is implemented as a spin-wait loop.

The duration of a spin-wait loop is determined by the number of PAUSE instructions that occur in the loop.
That number is generated by randomly selecting an integer ranging from 0 up to but not including the
innodb_spin_wait_delay value, and multiplying that value by 50. For example, an integer is randomly
selected from the following range for an innodb_spin_wait_delay setting of 6:

{0,1,2,3,4,5}

The selected integer is multiplied by 50, resulting in one of six possible PAUSE instruction values:

{0,50,100,150,200,250}

For that set of values, 250 is the maximum number of PAUSE instructions that can occur in a spin-
wait loop. An innodb_spin_wait_delay setting of 5 results in a set of five possible values
{0,50,100,150,200}, where 200 is the maximum number of PAUSE instructions, and so on. In this
way, the innodb_spin_wait_delay setting controls the maximum delay between spin lock polls.

The duration of the delay loop depends on the C compiler and the target processor. In the 100MHz
Pentium era, an innodb_spin_wait_delay unit was calibrated to be equivalent to one microsecond.

2656

Purge Configuration

That time equivalence did not hold, but PAUSE instruction duration has remained fairly constant in terms of
processor cycles relative to other CPU instructions on most processor architectures.

On a system where all processor cores share a fast cache memory, you might reduce the maximum
delay or disable the busy loop altogether by setting innodb_spin_wait_delay=0. On a system with
multiple processor chips, the effect of cache invalidation can be more significant and you might increase
the maximum delay.

The innodb_spin_wait_delay variable is dynamic. It can be specified in a MySQL option file or
modified at runtime using a SET GLOBAL statement. Runtime modification requires privileges sufficient to
set global system variables. See Section 5.1.8.1, “System Variable Privileges”.

14.8.10 Purge Configuration

InnoDB does not physically remove a row from the database immediately when you delete it with an SQL
statement. A row and its index records are only physically removed when InnoDB discards the undo log
record written for the deletion. This removal operation, which only occurs after the row is no longer required
for multi-version concurrency control (MVCC) or rollback, is called a purge.

Purge runs on a periodic schedule. It parses and processes undo log pages from the history list, which is
a list of undo log pages for committed transactions that is maintained by the InnoDB transaction system.
Purge frees the undo log pages from the history list after processing them.

Configuring Purge Threads

Purge operations are performed in the background by one or more purge threads. The number of purge
threads is controlled by the innodb_purge_threads variable. The default value is 4. If DML action is
concentrated on a single table, purge operations for the table are performed by a single purge thread. If
DML action is concentrated on a few tables, keep the innodb_purge_threads setting low so that the
threads do not contend with each other for access to the busy tables. If DML operations are spread across
many tables, consider a higher innodb_purge_threads setting. The maximum number of purge threads
is 32.

The innodb_purge_threads setting is the maximum number of purge threads permitted. The purge
system automatically adjusts the number of purge threads that are used.

Configuring Purge Batch Size

The innodb_purge_batch_size variable defines the number of undo log pages that purge
parses and processes in one batch from the history list. The default value is 300. In a multithreaded
purge configuration, the coordinator purge thread divides innodb_purge_batch_size by
innodb_purge_threads and assigns that number of pages to each purge thread.

The purge system also frees the undo log pages that are no longer required. It does so every 128 iterations
through the undo logs. In addition to defining the number of undo log pages parsed and processed in a
batch, the innodb_purge_batch_size variable defines the number of undo log pages that purge frees
every 128 iterations through the undo logs.

The innodb_purge_batch_size variable is intended for advanced performance tuning and
experimentation. Most users need not change innodb_purge_batch_size from its default value.

Configuring the Maximum Purge Lag

The innodb_max_purge_lag variable defines the desired maximum purge lag. When the purge lag
exceeds the innodb_max_purge_lag threshold, a delay is imposed on INSERT, UPDATE, and DELETE

2657

Configuring Optimizer Statistics for InnoDB

operations to allow time for purge operations to catch up. The default value is 0, which means there is no
maximum purge lag and no delay.

The InnoDB transaction system maintains a list of transactions that have index records delete-marked by
UPDATE or DELETE operations. The length of the list is the purge lag. The purge lag delay is calculated by
the following formula, which results in a minimum delay of 5000 microseconds:

(purge lag/innodb_max_purge_lag - 0.5) * 10000

The delay is calculated at the beginning of a purge batch

A typical innodb_max_purge_lag setting for a problematic workload might be 1000000 (1 million),
assuming that transactions are small, only 100 bytes in size, and it is permissible to have 100MB of
unpurged table rows.

The purge lag is presented as the History list length value in the TRANSACTIONS section of SHOW
ENGINE INNODB STATUS output.

mysql> SHOW ENGINE INNODB STATUS;
...

TRANSACTIONS

Trx id counter 0 290328385
Purge done for trx's n:o < 0 290315608 undo n:o < 0 17
History list length 20

The History list length is typically a low value, usually less than a few thousand, but a write-
heavy workload or long running transactions can cause it to increase, even for transactions that are read
only. The reason that a long running transaction can cause the History list length to increase is
that under a consistent read transaction isolation level such as REPEATABLE READ, a transaction must
return the same result as when the read view for that transaction was created. Consequently, the InnoDB
multi-version concurrency control (MVCC) system must keep a copy of the data in the undo log until
all transactions that depend on that data have completed. The following are examples of long running
transactions that could cause the History list length to increase:

• A mysqldump operation that uses the --single-transaction option while there is a significant
amount of concurrent DML.

• Running a SELECT query after disabling autocommit, and forgetting to issue an explicit COMMIT or
ROLLBACK.

To prevent excessive delays in extreme situations where the purge lag becomes huge, you can limit the
delay by setting the innodb_max_purge_lag_delay variable. The innodb_max_purge_lag_delay
variable specifies the maximum delay in microseconds for the delay imposed when the
innodb_max_purge_lag threshold is exceeded. The specified innodb_max_purge_lag_delay value
is an upper limit on the delay period calculated by the innodb_max_purge_lag formula.

Purge and Undo Tablespace Truncation

The purge system is also responsible for truncating undo tablespaces. You can configure the
innodb_purge_rseg_truncate_frequency variable to control the frequency with which the purge
system looks for undo tablespaces to truncate. For more information, see Truncating Undo Tablespaces.

14.8.11 Configuring Optimizer Statistics for InnoDB

This section describes how to configure persistent and non-persistent optimizer statistics for InnoDB
tables.

2658

Configuring Optimizer Statistics for InnoDB

Persistent optimizer statistics are persisted across server restarts, allowing for greater plan stability and
more consistent query performance. Persistent optimizer statistics also provide control and flexibility with
these additional benefits:

• You can use the innodb_stats_auto_recalc configuration option to control whether statistics are
updated automatically after substantial changes to a table.

• You can use the STATS_PERSISTENT, STATS_AUTO_RECALC, and STATS_SAMPLE_PAGES clauses
with CREATE TABLE and ALTER TABLE statements to configure optimizer statistics for individual tables.

• You can query optimizer statistics data in the mysql.innodb_table_stats and
mysql.innodb_index_stats tables.

• You can view the last_update column of the mysql.innodb_table_stats and
mysql.innodb_index_stats tables to see when statistics were last updated.

• You can manually modify the mysql.innodb_table_stats and mysql.innodb_index_stats
tables to force a specific query optimization plan or to test alternative plans without modifying the
database.

The persistent optimizer statistics feature is enabled by default (innodb_stats_persistent=ON).

Non-persistent optimizer statistics are cleared on each server restart and after some other operations, and
recomputed on the next table access. As a result, different estimates could be produced when recomputing
statistics, leading to different choices in execution plans and variations in query performance.

This section also provides information about estimating ANALYZE TABLE complexity, which may be useful
when attempting to achieve a balance between accurate statistics and ANALYZE TABLE execution time.

14.8.11.1 Configuring Persistent Optimizer Statistics Parameters

The persistent optimizer statistics feature improves plan stability by storing statistics to disk and making
them persistent across server restarts so that the optimizer is more likely to make consistent choices each
time for a given query.

Optimizer statistics are persisted to disk when innodb_stats_persistent=ON or when individual tables
are defined with STATS_PERSISTENT=1. innodb_stats_persistent is enabled by default.

Formerly, optimizer statistics were cleared when restarting the server and after some other types of
operations, and recomputed on the next table access. Consequently, different estimates could be
produced when recalculating statistics leading to different choices in query execution plans and variation in
query performance.

Persistent statistics are stored in the mysql.innodb_table_stats and mysql.innodb_index_stats
tables. See InnoDB Persistent Statistics Tables.

If you prefer not to persist optimizer statistics to disk, see Section 14.8.11.2, “Configuring Non-Persistent
Optimizer Statistics Parameters”

Configuring Automatic Statistics Calculation for Persistent Optimizer Statistics

The innodb_stats_auto_recalc variable, which is enabled by default, controls whether statistics are
calculated automatically when a table undergoes changes to more than 10% of its rows. You can also
configure automatic statistics recalculation for individual tables by specifying the STATS_AUTO_RECALC
clause when creating or altering a table.

Because of the asynchronous nature of automatic statistics recalculation, which occurs in the background,
statistics may not be recalculated instantly after running a DML operation that affects more than 10% of

2659

Configuring Optimizer Statistics for InnoDB

a table, even when innodb_stats_auto_recalc is enabled. Statistics recalculation can be delayed
by few seconds in some cases. If up-to-date statistics are required immediately, run ANALYZE TABLE to
initiate a synchronous (foreground) recalculation of statistics.

If innodb_stats_auto_recalc is disabled, you can ensure the accuracy of optimizer statistics by
executing the ANALYZE TABLE statement after making substantial changes to indexed columns. You
might also consider adding ANALYZE TABLE to setup scripts that you run after loading data, and running
ANALYZE TABLE on a schedule at times of low activity.

When an index is added to an existing table, or when a column is added or dropped, index
statistics are calculated and added to the innodb_index_stats table regardless of the value of
innodb_stats_auto_recalc.

Configuring Optimizer Statistics Parameters for Individual Tables

innodb_stats_persistent, innodb_stats_auto_recalc, and
innodb_stats_persistent_sample_pages are global variables. To override these system-
wide settings and configure optimizer statistics parameters for individual tables, you can define
STATS_PERSISTENT, STATS_AUTO_RECALC, and STATS_SAMPLE_PAGES clauses in CREATE TABLE or
ALTER TABLE statements.

• STATS_PERSISTENT specifies whether to enable persistent statistics for an InnoDB table. The
value DEFAULT causes the persistent statistics setting for the table to be determined by the
innodb_stats_persistent setting. A value of 1 enables persistent statistics for the table, while a
value of 0 disables the feature. After enabling persistent statistics for an individual table, use ANALYZE
TABLE to calculate statistics after table data is loaded.

• STATS_AUTO_RECALC specifies whether to automatically recalculate persistent statistics. The
value DEFAULT causes the persistent statistics setting for the table to be determined by the
innodb_stats_auto_recalc setting. A value of 1 causes statistics to be recalculated when 10% of
table data has changed. A value 0 prevents automatic recalculation for the table. When using a value of
0, use ANALYZE TABLE to recalculate statistics after making substantial changes to the table.

• STATS_SAMPLE_PAGES specifies the number of index pages to sample when cardinality and other
statistics are calculated for an indexed column, by an ANALYZE TABLE operation, for example.

All three clauses are specified in the following CREATE TABLE example:

CREATE TABLE `t1` (
`id` int(8) NOT NULL auto_increment,
`data` varchar(255),
`date` datetime,
PRIMARY KEY (`id`),
INDEX `DATE_IX` (`date`)
) ENGINE=InnoDB,
 STATS_PERSISTENT=1,
 STATS_AUTO_RECALC=1,
 STATS_SAMPLE_PAGES=25;

Configuring the Number of Sampled Pages for InnoDB Optimizer Statistics

The optimizer uses estimated statistics about key distributions to choose the indexes for an execution
plan, based on the relative selectivity of the index. Operations such as ANALYZE TABLE cause InnoDB
to sample random pages from each index on a table to estimate the cardinality of the index. This sampling
technique is known as a random dive.

The innodb_stats_persistent_sample_pages controls the number of sampled pages. You can
adjust the setting at runtime to manage the quality of statistics estimates used by the optimizer. The default
value is 20. Consider modifying the setting when encountering the following issues:

2660

Configuring Optimizer Statistics for InnoDB

1. Statistics are not accurate enough and the optimizer chooses suboptimal plans, as shown in
EXPLAIN output. You can check the accuracy of statistics by comparing the actual cardinality of an
index (determined by running SELECT DISTINCT on the index columns) with the estimates in the
mysql.innodb_index_stats table.

If it is determined that statistics are not accurate enough, the value of
innodb_stats_persistent_sample_pages should be increased until the statistics estimates are
sufficiently accurate. Increasing innodb_stats_persistent_sample_pages too much, however,
could cause ANALYZE TABLE to run slowly.

2. ANALYZE TABLE is too slow. In this case innodb_stats_persistent_sample_pages should
be decreased until ANALYZE TABLE execution time is acceptable. Decreasing the value too much,
however, could lead to the first problem of inaccurate statistics and suboptimal query execution plans.

If a balance cannot be achieved between accurate statistics and ANALYZE TABLE execution time,
consider decreasing the number of indexed columns in the table or limiting the number of partitions
to reduce ANALYZE TABLE complexity. The number of columns in the table's primary key is also
important to consider, as primary key columns are appended to each nonunique index.

For related information, see Section 14.8.11.3, “Estimating ANALYZE TABLE Complexity for InnoDB
Tables”.

Including Delete-marked Records in Persistent Statistics Calculations

By default, InnoDB reads uncommitted data when calculating statistics. In the case of an uncommitted
transaction that deletes rows from a table, delete-marked records are excluded when calculating row
estimates and index statistics, which can lead to non-optimal execution plans for other transactions that are
operating on the table concurrently using a transaction isolation level other than READ UNCOMMITTED. To
avoid this scenario, innodb_stats_include_delete_marked can be enabled to ensure that delete-
marked records are included when calculating persistent optimizer statistics.

When innodb_stats_include_delete_marked is enabled, ANALYZE TABLE considers delete-
marked records when recalculating statistics.

innodb_stats_include_delete_marked is a global setting that affects all InnoDB tables, and it is
only applicable to persistent optimizer statistics.

innodb_stats_include_delete_marked was introduced in MySQL 5.7.16.

InnoDB Persistent Statistics Tables

The persistent statistics feature relies on the internally managed tables in the mysql database, named
innodb_table_stats and innodb_index_stats. These tables are set up automatically in all install,
upgrade, and build-from-source procedures.

Table 14.4 Columns of innodb_table_stats

Column name Description

database_name Database name

table_name Table name, partition name, or subpartition name

last_update A timestamp indicating the last time the row was
updated

n_rows The number of rows in the table

clustered_index_size The size of the primary index, in pages

2661

Configuring Optimizer Statistics for InnoDB

Column name Description

sum_of_other_index_sizes The total size of other (non-primary) indexes, in
pages

Table 14.5 Columns of innodb_index_stats

Column name Description

database_name Database name

table_name Table name, partition name, or subpartition name

index_name Index name

last_update A timestamp indicating the last time that InnoDB
updated this row

stat_name The name of the statistic, whose value is reported in
the stat_value column

stat_value The value of the statistic that is named in
stat_name column

sample_size The number of pages sampled for the estimate
provided in the stat_value column

stat_description Description of the statistic that is named in the
stat_name column

The innodb_table_stats and innodb_index_stats tables include a last_update column that
shows when index statistics were last updated:

mysql> SELECT * FROM innodb_table_stats \G
*************************** 1. row ***************************
 database_name: sakila
 table_name: actor
 last_update: 2014-05-28 16:16:44
 n_rows: 200
 clustered_index_size: 1
sum_of_other_index_sizes: 1
...

mysql> SELECT * FROM innodb_index_stats \G
*************************** 1. row ***************************
 database_name: sakila
 table_name: actor
 index_name: PRIMARY
 last_update: 2014-05-28 16:16:44
 stat_name: n_diff_pfx01
 stat_value: 200
 sample_size: 1
 ...

The innodb_table_stats and innodb_index_stats tables can be updated manually, which makes it
possible to force a specific query optimization plan or test alternative plans without modifying the database.
If you manually update statistics, use the FLUSH TABLE tbl_name statement to load the updated
statistics.

Persistent statistics are considered local information, because they relate to the server instance. The
innodb_table_stats and innodb_index_stats tables are therefore not replicated when automatic
statistics recalculation takes place. If you run ANALYZE TABLE to initiate a synchronous recalculation of
statistics, this statement is replicated (unless you suppressed logging for it), and recalculation takes place
on the replicas.

2662

Configuring Optimizer Statistics for InnoDB

InnoDB Persistent Statistics Tables Example

The innodb_table_stats table contains one row for each table. The following example demonstrates
the type of data collected.

Table t1 contains a primary index (columns a, b) secondary index (columns c, d), and unique index
(columns e, f):

CREATE TABLE t1 (
a INT, b INT, c INT, d INT, e INT, f INT,
PRIMARY KEY (a, b), KEY i1 (c, d), UNIQUE KEY i2uniq (e, f)
) ENGINE=INNODB;

After inserting five rows of sample data, table t1 appears as follows:

mysql> SELECT * FROM t1;
+---+---+------+------+------+------+
| a | b | c | d | e | f |
+---+---+------+------+------+------+
1	1	10	11	100	101
1	2	10	11	200	102
1	3	10	11	100	103
1	4	10	12	200	104
1	5	10	12	100	105
+---+---+------+------+------+------+

To immediately update statistics, run ANALYZE TABLE (if innodb_stats_auto_recalc is enabled,
statistics are updated automatically within a few seconds assuming that the 10% threshold for changed
table rows is reached):

mysql> ANALYZE TABLE t1;
+---------+---------+----------+----------+
| Table | Op | Msg_type | Msg_text |
+---------+---------+----------+----------+
| test.t1 | analyze | status | OK |
+---------+---------+----------+----------+

Table statistics for table t1 show the last time InnoDB updated the table statistics (2014-03-14
14:36:34), the number of rows in the table (5), the clustered index size (1 page), and the combined size
of the other indexes (2 pages).

mysql> SELECT * FROM mysql.innodb_table_stats WHERE table_name like 't1'\G
*************************** 1. row ***************************
 database_name: test
 table_name: t1
 last_update: 2014-03-14 14:36:34
 n_rows: 5
 clustered_index_size: 1
sum_of_other_index_sizes: 2

The innodb_index_stats table contains multiple rows for each index. Each row in the
innodb_index_stats table provides data related to a particular index statistic which is named in the
stat_name column and described in the stat_description column. For example:

mysql> SELECT index_name, stat_name, stat_value, stat_description
 FROM mysql.innodb_index_stats WHERE table_name like 't1';
+------------+--------------+------------+-----------------------------------+
| index_name | stat_name | stat_value | stat_description |
+------------+--------------+------------+-----------------------------------+
PRIMARY	n_diff_pfx01	1	a
PRIMARY	n_diff_pfx02	5	a,b
PRIMARY	n_leaf_pages	1	Number of leaf pages in the index
PRIMARY	size	1	Number of pages in the index
i1	n_diff_pfx01	1	c

2663

Configuring Optimizer Statistics for InnoDB

i1	n_diff_pfx02	2	c,d
i1	n_diff_pfx03	2	c,d,a
i1	n_diff_pfx04	5	c,d,a,b
i1	n_leaf_pages	1	Number of leaf pages in the index
i1	size	1	Number of pages in the index
i2uniq	n_diff_pfx01	2	e
i2uniq	n_diff_pfx02	5	e,f
i2uniq	n_leaf_pages	1	Number of leaf pages in the index
i2uniq	size	1	Number of pages in the index
+------------+--------------+------------+-----------------------------------+

The stat_name column shows the following types of statistics:

• size: Where stat_name=size, the stat_value column displays the total number of pages in the
index.

• n_leaf_pages: Where stat_name=n_leaf_pages, the stat_value column displays the number of
leaf pages in the index.

• n_diff_pfxNN: Where stat_name=n_diff_pfx01, the stat_value column displays the number
of distinct values in the first column of the index. Where stat_name=n_diff_pfx02, the stat_value
column displays the number of distinct values in the first two columns of the index, and so on. Where
stat_name=n_diff_pfxNN, the stat_description column shows a comma separated list of the
index columns that are counted.

To further illustrate the n_diff_pfxNN statistic, which provides cardinality data, consider once again the
t1 table example that was introduced previously. As shown below, the t1 table is created with a primary
index (columns a, b), a secondary index (columns c, d), and a unique index (columns e, f):

CREATE TABLE t1 (
 a INT, b INT, c INT, d INT, e INT, f INT,
 PRIMARY KEY (a, b), KEY i1 (c, d), UNIQUE KEY i2uniq (e, f)
) ENGINE=INNODB;

After inserting five rows of sample data, table t1 appears as follows:

mysql> SELECT * FROM t1;
+---+---+------+------+------+------+
| a | b | c | d | e | f |
+---+---+------+------+------+------+
1	1	10	11	100	101
1	2	10	11	200	102
1	3	10	11	100	103
1	4	10	12	200	104
1	5	10	12	100	105
+---+---+------+------+------+------+

When you query the index_name, stat_name, stat_value, and stat_description, where
stat_name LIKE 'n_diff%', the following result set is returned:

mysql> SELECT index_name, stat_name, stat_value, stat_description
 FROM mysql.innodb_index_stats
 WHERE table_name like 't1' AND stat_name LIKE 'n_diff%';
+------------+--------------+------------+------------------+
| index_name | stat_name | stat_value | stat_description |
+------------+--------------+------------+------------------+
PRIMARY	n_diff_pfx01	1	a
PRIMARY	n_diff_pfx02	5	a,b
i1	n_diff_pfx01	1	c
i1	n_diff_pfx02	2	c,d
i1	n_diff_pfx03	2	c,d,a
i1	n_diff_pfx04	5	c,d,a,b
i2uniq	n_diff_pfx01	2	e

2664

Configuring Optimizer Statistics for InnoDB

| i2uniq | n_diff_pfx02 | 5 | e,f |
+------------+--------------+------------+------------------+

For the PRIMARY index, there are two n_diff% rows. The number of rows is equal to the number of
columns in the index.

Note

For nonunique indexes, InnoDB appends the columns of the primary key.

• Where index_name=PRIMARY and stat_name=n_diff_pfx01, the stat_value is 1, which
indicates that there is a single distinct value in the first column of the index (column a). The number of
distinct values in column a is confirmed by viewing the data in column a in table t1, in which there is a
single distinct value (1). The counted column (a) is shown in the stat_description column of the
result set.

• Where index_name=PRIMARY and stat_name=n_diff_pfx02, the stat_value is 5, which
indicates that there are five distinct values in the two columns of the index (a,b). The number of distinct
values in columns a and b is confirmed by viewing the data in columns a and b in table t1, in which
there are five distinct values: (1,1), (1,2), (1,3), (1,4) and (1,5). The counted columns (a,b) are
shown in the stat_description column of the result set.

For the secondary index (i1), there are four n_diff% rows. Only two columns are defined for the
secondary index (c,d) but there are four n_diff% rows for the secondary index because InnoDB suffixes
all nonunique indexes with the primary key. As a result, there are four n_diff% rows instead of two to
account for the both the secondary index columns (c,d) and the primary key columns (a,b).

• Where index_name=i1 and stat_name=n_diff_pfx01, the stat_value is 1, which indicates that
there is a single distinct value in the first column of the index (column c). The number of distinct values
in column c is confirmed by viewing the data in column c in table t1, in which there is a single distinct
value: (10). The counted column (c) is shown in the stat_description column of the result set.

• Where index_name=i1 and stat_name=n_diff_pfx02, the stat_value is 2, which indicates
that there are two distinct values in the first two columns of the index (c,d). The number of distinct
values in columns c an d is confirmed by viewing the data in columns c and d in table t1, in which
there are two distinct values: (10,11) and (10,12). The counted columns (c,d) are shown in the
stat_description column of the result set.

• Where index_name=i1 and stat_name=n_diff_pfx03, the stat_value is 2, which indicates
that there are two distinct values in the first three columns of the index (c,d,a). The number of distinct
values in columns c, d, and a is confirmed by viewing the data in column c, d, and a in table t1, in
which there are two distinct values: (10,11,1) and (10,12,1). The counted columns (c,d,a) are
shown in the stat_description column of the result set.

• Where index_name=i1 and stat_name=n_diff_pfx04, the stat_value is 5, which indicates
that there are five distinct values in the four columns of the index (c,d,a,b). The number of distinct
values in columns c, d, a and b is confirmed by viewing the data in columns c, d, a, and b in table t1,
in which there are five distinct values: (10,11,1,1), (10,11,1,2), (10,11,1,3), (10,12,1,4), and
(10,12,1,5). The counted columns (c,d,a,b) are shown in the stat_description column of the
result set.

For the unique index (i2uniq), there are two n_diff% rows.

• Where index_name=i2uniq and stat_name=n_diff_pfx01, the stat_value is 2, which indicates
that there are two distinct values in the first column of the index (column e). The number of distinct
values in column e is confirmed by viewing the data in column e in table t1, in which there are two

2665

Configuring Optimizer Statistics for InnoDB

distinct values: (100) and (200). The counted column (e) is shown in the stat_description column
of the result set.

• Where index_name=i2uniq and stat_name=n_diff_pfx02, the stat_value is 5, which indicates
that there are five distinct values in the two columns of the index (e,f). The number of distinct values in
columns e and f is confirmed by viewing the data in columns e and f in table t1, in which there are five
distinct values: (100,101), (200,102), (100,103), (200,104), and (100,105). The counted columns
(e,f) are shown in the stat_description column of the result set.

Retrieving Index Size Using the innodb_index_stats Table

You can retrieve the index size for tables, partitions, or subpartitions can using the innodb_index_stats
table. In the following example, index sizes are retrieved for table t1. For a definition of table t1 and
corresponding index statistics, see InnoDB Persistent Statistics Tables Example.

mysql> SELECT SUM(stat_value) pages, index_name,
 SUM(stat_value)*@@innodb_page_size size
 FROM mysql.innodb_index_stats WHERE table_name='t1'
 AND stat_name = 'size' GROUP BY index_name;
+-------+------------+-------+
| pages | index_name | size |
+-------+------------+-------+
1	PRIMARY	16384
1	i1	16384
1	i2uniq	16384
+-------+------------+-------+

For partitions or subpartitions, you can use the same query with a modified WHERE clause to retrieve index
sizes. For example, the following query retrieves index sizes for partitions of table t1:

mysql> SELECT SUM(stat_value) pages, index_name,
 SUM(stat_value)*@@innodb_page_size size
 FROM mysql.innodb_index_stats WHERE table_name like 't1#P%'
 AND stat_name = 'size' GROUP BY index_name;

14.8.11.2 Configuring Non-Persistent Optimizer Statistics Parameters

This section describes how to configure non-persistent optimizer statistics. Optimizer statistics are not
persisted to disk when innodb_stats_persistent=OFF or when individual tables are created or
altered with STATS_PERSISTENT=0. Instead, statistics are stored in memory, and are lost when the server
is shut down. Statistics are also updated periodically by certain operations and under certain conditions.

As of MySQL 5.6.6, optimizer statistics are persisted to disk by default, enabled by the
innodb_stats_persistent configuration option. For information about persistent optimizer statistics,
see Section 14.8.11.1, “Configuring Persistent Optimizer Statistics Parameters”.

Optimizer Statistics Updates

Non-persistent optimizer statistics are updated when:

• Running ANALYZE TABLE.

• Running SHOW TABLE STATUS, SHOW INDEX, or querying the Information Schema TABLES or
STATISTICS tables with the innodb_stats_on_metadata option enabled.

The default setting for innodb_stats_on_metadata was changed to OFF when persistent optimizer
statistics were enabled by default in MySQL 5.6.6. Enabling innodb_stats_on_metadata may
reduce access speed for schemas that have a large number of tables or indexes, and reduce stability of
execution plans for queries that involve InnoDB tables. innodb_stats_on_metadata is configured
globally using a SET statement.

2666

Configuring Optimizer Statistics for InnoDB

SET GLOBAL innodb_stats_on_metadata=ON

Note

innodb_stats_on_metadata only applies when optimizer statistics are
configured to be non-persistent (when innodb_stats_persistent is
disabled).

• Starting a mysql client with the --auto-rehash option enabled, which is the default. The auto-
rehash option causes all InnoDB tables to be opened, and the open table operations cause statistics to
be recalculated.

To improve the start up time of the mysql client and to updating statistics, you can turn off auto-
rehash using the --disable-auto-rehash option. The auto-rehash feature enables automatic
name completion of database, table, and column names for interactive users.

• A table is first opened.

• InnoDB detects that 1 / 16 of table has been modified since the last time statistics were updated.

Configuring the Number of Sampled Pages

The MySQL query optimizer uses estimated statistics about key distributions to choose the indexes for an
execution plan, based on the relative selectivity of the index. When InnoDB updates optimizer statistics, it
samples random pages from each index on a table to estimate the cardinality of the index. (This technique
is known as random dives.)

To give you control over the quality of the statistics estimate (and thus better information for
the query optimizer), you can change the number of sampled pages using the parameter
innodb_stats_transient_sample_pages. The default number of sampled pages is 8, which could
be insufficient to produce an accurate estimate, leading to poor index choices by the query optimizer. This
technique is especially important for large tables and tables used in joins. Unnecessary full table scans for
such tables can be a substantial performance issue. See Section 8.2.1.20, “Avoiding Full Table Scans” for
tips on tuning such queries. innodb_stats_transient_sample_pages is a global parameter that can
be set at runtime.

The value of innodb_stats_transient_sample_pages affects the index sampling for all InnoDB
tables and indexes when innodb_stats_persistent=0. Be aware of the following potentially
significant impacts when you change the index sample size:

• Small values like 1 or 2 can result in inaccurate estimates of cardinality.

• Increasing the innodb_stats_transient_sample_pages value might require more disk reads.
Values much larger than 8 (say, 100), can cause a significant slowdown in the time it takes to open a
table or execute SHOW TABLE STATUS.

• The optimizer might choose very different query plans based on different estimates of index selectivity.

Whatever value of innodb_stats_transient_sample_pages works best for a system, set the option
and leave it at that value. Choose a value that results in reasonably accurate estimates for all tables in your
database without requiring excessive I/O. Because the statistics are automatically recalculated at various
times other than on execution of ANALYZE TABLE, it does not make sense to increase the index sample
size, run ANALYZE TABLE, then decrease sample size again.

Smaller tables generally require fewer index samples than larger tables. If your database has many large
tables, consider using a higher value for innodb_stats_transient_sample_pages than if you have
mostly smaller tables.

2667

Configuring Optimizer Statistics for InnoDB

14.8.11.3 Estimating ANALYZE TABLE Complexity for InnoDB Tables

ANALYZE TABLE complexity for InnoDB tables is dependent on:

• The number of pages sampled, as defined by innodb_stats_persistent_sample_pages.

• The number of indexed columns in a table

• The number of partitions. If a table has no partitions, the number of partitions is considered to be 1.

Using these parameters, an approximate formula for estimating ANALYZE TABLE complexity would be:

The value of innodb_stats_persistent_sample_pages * number of indexed columns in a table * the
number of partitions

Typically, the greater the resulting value, the greater the execution time for ANALYZE TABLE.

Note

innodb_stats_persistent_sample_pages defines the number of pages
sampled at a global level. To set the number of pages sampled for an individual
table, use the STATS_SAMPLE_PAGES option with CREATE TABLE or ALTER
TABLE. For more information, see Section 14.8.11.1, “Configuring Persistent
Optimizer Statistics Parameters”.

If innodb_stats_persistent=OFF, the number of pages sampled is defined
by innodb_stats_transient_sample_pages. See Section 14.8.11.2,
“Configuring Non-Persistent Optimizer Statistics Parameters” for additional
information.

For a more in-depth approach to estimating ANALYZE TABLE complexity, consider the following example.

In Big O notation, ANALYZE TABLE complexity is described as:

O(n_sample
 * (n_cols_in_uniq_i
 + n_cols_in_non_uniq_i
 + n_cols_in_pk * (1 + n_non_uniq_i))
 * n_part)

where:

• n_sample is the number of pages sampled (defined by
innodb_stats_persistent_sample_pages)

• n_cols_in_uniq_i is total number of all columns in all unique indexes (not counting the primary key
columns)

• n_cols_in_non_uniq_i is the total number of all columns in all nonunique indexes

• n_cols_in_pk is the number of columns in the primary key (if a primary key is not defined, InnoDB
creates a single column primary key internally)

• n_non_uniq_i is the number of nonunique indexes in the table

• n_part is the number of partitions. If no partitions are defined, the table is considered to be a single
partition.

2668

http://en.wikipedia.org/wiki/Big_O_notation

Configuring Optimizer Statistics for InnoDB

Now, consider the following table (table t), which has a primary key (2 columns), a unique index (2
columns), and two nonunique indexes (two columns each):

CREATE TABLE t (
 a INT,
 b INT,
 c INT,
 d INT,
 e INT,
 f INT,
 g INT,
 h INT,
 PRIMARY KEY (a, b),
 UNIQUE KEY i1uniq (c, d),
 KEY i2nonuniq (e, f),
 KEY i3nonuniq (g, h)
);

For the column and index data required by the algorithm described above, query the
mysql.innodb_index_stats persistent index statistics table for table t. The n_diff_pfx% statistics
show the columns that are counted for each index. For example, columns a and b are counted for the
primary key index. For the nonunique indexes, the primary key columns (a,b) are counted in addition to the
user defined columns.

Note

For additional information about the InnoDB persistent statistics tables, see
Section 14.8.11.1, “Configuring Persistent Optimizer Statistics Parameters”

mysql> SELECT index_name, stat_name, stat_description
 FROM mysql.innodb_index_stats WHERE
 database_name='test' AND
 table_name='t' AND
 stat_name like 'n_diff_pfx%';
 +------------+--------------+------------------+
 | index_name | stat_name | stat_description |
 +------------+--------------+------------------+
PRIMARY	n_diff_pfx01	a
PRIMARY	n_diff_pfx02	a,b
i1uniq	n_diff_pfx01	c
i1uniq	n_diff_pfx02	c,d
i2nonuniq	n_diff_pfx01	e
i2nonuniq	n_diff_pfx02	e,f
i2nonuniq	n_diff_pfx03	e,f,a
i2nonuniq	n_diff_pfx04	e,f,a,b
i3nonuniq	n_diff_pfx01	g
i3nonuniq	n_diff_pfx02	g,h
i3nonuniq	n_diff_pfx03	g,h,a
i3nonuniq	n_diff_pfx04	g,h,a,b
 +------------+--------------+------------------+

Based on the index statistics data shown above and the table definition, the following values can be
determined:

• n_cols_in_uniq_i, the total number of all columns in all unique indexes not counting the primary key
columns, is 2 (c and d)

• n_cols_in_non_uniq_i, the total number of all columns in all nonunique indexes, is 4 (e, f, g and h)

• n_cols_in_pk, the number of columns in the primary key, is 2 (a and b)

• n_non_uniq_i, the number of nonunique indexes in the table, is 2 (i2nonuniq and i3nonuniq))

• n_part, the number of partitions, is 1.

2669

Configuring the Merge Threshold for Index Pages

You can now calculate innodb_stats_persistent_sample_pages * (2 +
4 + 2 * (1 + 2)) * 1 to determine the number of leaf pages that are scanned. With
innodb_stats_persistent_sample_pages set to the default value of 20, and with a default page
size of 16 KiB (innodb_page_size=16384), you can then estimate that 20 * 12 * 16384 bytes are read
for table t, or about 4 MiB.

Note

All 4 MiB may not be read from disk, as some leaf pages may already be cached in
the buffer pool.

14.8.12 Configuring the Merge Threshold for Index Pages

You can configure the MERGE_THRESHOLD value for index pages. If the “page-full” percentage for an
index page falls below the MERGE_THRESHOLD value when a row is deleted or when a row is shortened
by an UPDATE operation, InnoDB attempts to merge the index page with a neighboring index page.
The default MERGE_THRESHOLD value is 50, which is the previously hardcoded value. The minimum
MERGE_THRESHOLD value is 1 and the maximum value is 50.

When the “page-full” percentage for an index page falls below 50%, which is the default
MERGE_THRESHOLD setting, InnoDB attempts to merge the index page with a neighboring page. If both
pages are close to 50% full, a page split can occur soon after the pages are merged. If this merge-split
behavior occurs frequently, it can have an adverse affect on performance. To avoid frequent merge-splits,
you can lower the MERGE_THRESHOLD value so that InnoDB attempts page merges at a lower “page-full”
percentage. Merging pages at a lower page-full percentage leaves more room in index pages and helps
reduce merge-split behavior.

The MERGE_THRESHOLD for index pages can be defined for a table or for individual indexes. A
MERGE_THRESHOLD value defined for an individual index takes priority over a MERGE_THRESHOLD value
defined for the table. If undefined, the MERGE_THRESHOLD value defaults to 50.

Setting MERGE_THRESHOLD for a Table

You can set the MERGE_THRESHOLD value for a table using the table_option COMMENT clause of the
CREATE TABLE statement. For example:

CREATE TABLE t1 (
 id INT,
 KEY id_index (id)
) COMMENT='MERGE_THRESHOLD=45';

You can also set the MERGE_THRESHOLD value for an existing table using the table_option COMMENT
clause with ALTER TABLE:

CREATE TABLE t1 (
 id INT,
 KEY id_index (id)
);

ALTER TABLE t1 COMMENT='MERGE_THRESHOLD=40';

Setting MERGE_THRESHOLD for Individual Indexes

To set the MERGE_THRESHOLD value for an individual index, you can use the index_option COMMENT
clause with CREATE TABLE, ALTER TABLE, or CREATE INDEX, as shown in the following examples:

• Setting MERGE_THRESHOLD for an individual index using CREATE TABLE:

CREATE TABLE t1 (

2670

Configuring the Merge Threshold for Index Pages

 id INT,
 KEY id_index (id) COMMENT 'MERGE_THRESHOLD=40'
);

• Setting MERGE_THRESHOLD for an individual index using ALTER TABLE:

CREATE TABLE t1 (
 id INT,
 KEY id_index (id)
);

ALTER TABLE t1 DROP KEY id_index;
ALTER TABLE t1 ADD KEY id_index (id) COMMENT 'MERGE_THRESHOLD=40';

• Setting MERGE_THRESHOLD for an individual index using CREATE INDEX:

CREATE TABLE t1 (id INT);
CREATE INDEX id_index ON t1 (id) COMMENT 'MERGE_THRESHOLD=40';

Note

You cannot modify the MERGE_THRESHOLD value at the index level for
GEN_CLUST_INDEX, which is the clustered index created by InnoDB when an
InnoDB table is created without a primary key or unique key index. You can
only modify the MERGE_THRESHOLD value for GEN_CLUST_INDEX by setting
MERGE_THRESHOLD for the table.

Querying the MERGE_THRESHOLD Value for an Index

The current MERGE_THRESHOLD value for an index can be obtained by querying the
INNODB_SYS_INDEXES table. For example:

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_SYS_INDEXES WHERE NAME='id_index' \G
*************************** 1. row ***************************
 INDEX_ID: 91
 NAME: id_index
 TABLE_ID: 68
 TYPE: 0
 N_FIELDS: 1
 PAGE_NO: 4
 SPACE: 57
MERGE_THRESHOLD: 40

You can use SHOW CREATE TABLE to view the MERGE_THRESHOLD value for a table, if explicitly defined
using the table_option COMMENT clause:

mysql> SHOW CREATE TABLE t2 \G
*************************** 1. row ***************************
 Table: t2
Create Table: CREATE TABLE `t2` (
 `id` int(11) DEFAULT NULL,
 KEY `id_index` (`id`) COMMENT 'MERGE_THRESHOLD=40'
) ENGINE=InnoDB DEFAULT CHARSET=latin1

Note

A MERGE_THRESHOLD value defined at the index level takes priority over a
MERGE_THRESHOLD value defined for the table. If undefined, MERGE_THRESHOLD
defaults to 50% (MERGE_THRESHOLD=50, which is the previously hardcoded value.

Likewise, you can use SHOW INDEX to view the MERGE_THRESHOLD value for an index, if explicitly defined
using the index_option COMMENT clause:

2671

InnoDB Table and Page Compression

mysql> SHOW INDEX FROM t2 \G
*************************** 1. row ***************************
 Table: t2
 Non_unique: 1
 Key_name: id_index
 Seq_in_index: 1
 Column_name: id
 Collation: A
 Cardinality: 0
 Sub_part: NULL
 Packed: NULL
 Null: YES
 Index_type: BTREE
 Comment:
Index_comment: MERGE_THRESHOLD=40

Measuring the Effect of MERGE_THRESHOLD Settings

The INNODB_METRICS table provides two counters that can be used to measure the effect of a
MERGE_THRESHOLD setting on index page merges.

mysql> SELECT NAME, COMMENT FROM INFORMATION_SCHEMA.INNODB_METRICS
 WHERE NAME like '%index_page_merge%';
+-----------------------------+--+
| NAME | COMMENT |
+-----------------------------+--+
| index_page_merge_attempts | Number of index page merge attempts |
| index_page_merge_successful | Number of successful index page merges |
+-----------------------------+--+

When lowering the MERGE_THRESHOLD value, the objectives are:

• A smaller number of page merge attempts and successful page merges

• A similar number of page merge attempts and successful page merges

A MERGE_THRESHOLD setting that is too small could result in large data files due to an excessive amount
of empty page space.

For information about using INNODB_METRICS counters, see Section 14.16.6, “InnoDB
INFORMATION_SCHEMA Metrics Table”.

14.9 InnoDB Table and Page Compression

This section provides information about the InnoDB table compression and InnoDB page compression
features. The page compression feature is referred to as transparent page compression.

Using the compression features of InnoDB, you can create tables where the data is stored in compressed
form. Compression can help to improve both raw performance and scalability. The compression means
less data is transferred between disk and memory, and takes up less space on disk and in memory.
The benefits are amplified for tables with secondary indexes, because index data is compressed also.
Compression can be especially important for SSD storage devices, because they tend to have lower
capacity than HDD devices.

14.9.1 InnoDB Table Compression

This section describes InnoDB table compression, which is supported with InnoDB tables that
reside in file_per_table tablespaces or general tablespaces. Table compression is enabled using the
ROW_FORMAT=COMPRESSED attribute with CREATE TABLE or ALTER TABLE.

2672

InnoDB Table Compression

14.9.1.1 Overview of Table Compression

Because processors and cache memories have increased in speed more than disk storage devices, many
workloads are disk-bound. Data compression enables smaller database size, reduced I/O, and improved
throughput, at the small cost of increased CPU utilization. Compression is especially valuable for read-
intensive applications, on systems with enough RAM to keep frequently used data in memory.

An InnoDB table created with ROW_FORMAT=COMPRESSED can use a smaller page size on disk than the
configured innodb_page_size value. Smaller pages require less I/O to read from and write to disk,
which is especially valuable for SSD devices.

The compressed page size is specified through the CREATE TABLE or ALTER TABLE KEY_BLOCK_SIZE
parameter. The different page size requires that the table be placed in a file-per-table tablespace
or general tablespace rather than in the system tablespace, as the system tablespace cannot store
compressed tables. For more information, see Section 14.6.3.2, “File-Per-Table Tablespaces”, and
Section 14.6.3.3, “General Tablespaces”.

The level of compression is the same regardless of the KEY_BLOCK_SIZE value. As you specify
smaller values for KEY_BLOCK_SIZE, you get the I/O benefits of increasingly smaller pages. But if you
specify a value that is too small, there is additional overhead to reorganize the pages when data values
cannot be compressed enough to fit multiple rows in each page. There is a hard limit on how small
KEY_BLOCK_SIZE can be for a table, based on the lengths of the key columns for each of its indexes.
Specify a value that is too small, and the CREATE TABLE or ALTER TABLE statement fails.

In the buffer pool, the compressed data is held in small pages, with a page size based on the
KEY_BLOCK_SIZE value. For extracting or updating the column values, MySQL also creates an
uncompressed page in the buffer pool with the uncompressed data. Within the buffer pool, any updates to
the uncompressed page are also re-written back to the equivalent compressed page. You might need to
size your buffer pool to accommodate the additional data of both compressed and uncompressed pages,
although the uncompressed pages are evicted from the buffer pool when space is needed, and then
uncompressed again on the next access.

14.9.1.2 Creating Compressed Tables

Compressed tables can be created in file-per-table tablespaces or in general tablespaces. Table
compression is not available for the InnoDB system tablespace. The system tablespace (space 0, the
.ibdata files) can contain user-created tables, but it also contains internal system data, which is never
compressed. Thus, compression applies only to tables (and indexes) stored in file-per-table or general
tablespaces.

Creating a Compressed Table in File-Per-Table Tablespace

To create a compressed table in a file-per-table tablespace, innodb_file_per_table must be enabled
(the default in MySQL 5.6.6) and innodb_file_format must be set to Barracuda. You can set these
parameters in the MySQL configuration file (my.cnf or my.ini) or dynamically, using a SET statement.

After the innodb_file_per_table and innodb_file_format options are configured, specify the
ROW_FORMAT=COMPRESSED clause or KEY_BLOCK_SIZE clause, or both, in a CREATE TABLE or ALTER
TABLE statement to create a compressed table in a file-per-table tablespace.

For example, you might use the following statements:

SET GLOBAL innodb_file_per_table=1;
SET GLOBAL innodb_file_format=Barracuda;
CREATE TABLE t1

2673

InnoDB Table Compression

 (c1 INT PRIMARY KEY)
 ROW_FORMAT=COMPRESSED
 KEY_BLOCK_SIZE=8;

Creating a Compressed Table in a General Tablespace

To create a compressed table in a general tablespace, FILE_BLOCK_SIZE must be defined for the
general tablespace, which is specified when the tablespace is created. The FILE_BLOCK_SIZE value
must be a valid compressed page size in relation to the innodb_page_size value, and the page
size of the compressed table, defined by the CREATE TABLE or ALTER TABLE KEY_BLOCK_SIZE
clause, must be equal to FILE_BLOCK_SIZE/1024. For example, if innodb_page_size=16384 and
FILE_BLOCK_SIZE=8192, the KEY_BLOCK_SIZE of the table must be 8. For more information, see
Section 14.6.3.3, “General Tablespaces”.

The following example demonstrates creating a general tablespace and adding a compressed table. The
example assumes a default innodb_page_size of 16K. The FILE_BLOCK_SIZE of 8192 requires that
the compressed table have a KEY_BLOCK_SIZE of 8.

mysql> CREATE TABLESPACE `ts2` ADD DATAFILE 'ts2.ibd' FILE_BLOCK_SIZE = 8192 Engine=InnoDB;

mysql> CREATE TABLE t4 (c1 INT PRIMARY KEY) TABLESPACE ts2 ROW_FORMAT=COMPRESSED KEY_BLOCK_SIZE=8;

Notes

• If you specify ROW_FORMAT=COMPRESSED, you can omit KEY_BLOCK_SIZE; the KEY_BLOCK_SIZE
setting defaults to half the innodb_page_size value.

• If you specify a valid KEY_BLOCK_SIZE value, you can omit ROW_FORMAT=COMPRESSED; compression
is enabled automatically.

• To determine the best value for KEY_BLOCK_SIZE, typically you create several copies of the same
table with different values for this clause, then measure the size of the resulting .ibd files and see how
well each performs with a realistic workload. For general tablespaces, keep in mind that dropping a
table does not reduce the size of the general tablespace .ibd file, nor does it return disk space to the
operating system. For more information, see Section 14.6.3.3, “General Tablespaces”.

• The KEY_BLOCK_SIZE value is treated as a hint; a different size could be used by InnoDB if
necessary. For file-per-table tablespaces, the KEY_BLOCK_SIZE can only be less than or equal
to the innodb_page_size value. If you specify a value greater than the innodb_page_size
value, the specified value is ignored, a warning is issued, and KEY_BLOCK_SIZE is set to half of the
innodb_page_size value. If innodb_strict_mode=ON, specifying an invalid KEY_BLOCK_SIZE
value returns an error. For general tablespaces, valid KEY_BLOCK_SIZE values depend on the
FILE_BLOCK_SIZE setting of the tablespace. For more information, see Section 14.6.3.3, “General
Tablespaces”.

• 32KB and 64KB page sizes do not support compression. For more information, refer to the
innodb_page_size documentation.

• The default uncompressed size of InnoDB data pages is 16KB. Depending on the combination of
option values, MySQL uses a page size of 1KB, 2KB, 4KB, 8KB, or 16KB for the tablespace data file
(.ibd file). The actual compression algorithm is not affected by the KEY_BLOCK_SIZE value; the value
determines how large each compressed chunk is, which in turn affects how many rows can be packed
into each compressed page.

• When creating a compressed table in a file-per-table tablespace, setting KEY_BLOCK_SIZE equal
to the InnoDB page size does not typically result in much compression. For example, setting
KEY_BLOCK_SIZE=16 typically would not result in much compression, since the normal InnoDB page

2674

InnoDB Table Compression

size is 16KB. This setting may still be useful for tables with many long BLOB, VARCHAR or TEXT columns,
because such values often do compress well, and might therefore require fewer overflow pages as
described in Section 14.9.1.5, “How Compression Works for InnoDB Tables”. For general tablespaces,
a KEY_BLOCK_SIZE value equal to the InnoDB page size is not permitted. For more information, see
Section 14.6.3.3, “General Tablespaces”.

• All indexes of a table (including the clustered index) are compressed using the same page size, as
specified in the CREATE TABLE or ALTER TABLE statement. Table attributes such as ROW_FORMAT and
KEY_BLOCK_SIZE are not part of the CREATE INDEX syntax for InnoDB tables, and are ignored if they
are specified (although, if specified, they appear in the output of the SHOW CREATE TABLE statement).

• For performance-related configuration options, see Section 14.9.1.3, “Tuning Compression for InnoDB
Tables”.

Restrictions on Compressed Tables

• MySQL versions prior to 5.1 cannot process compressed tables.

• Compressed tables cannot be stored in the InnoDB system tablespace.

• General tablespaces can contain multiple tables, but compressed and uncompressed tables cannot
coexist within the same general tablespace.

• Compression applies to an entire table and all its associated indexes, not to individual rows, despite the
clause name ROW_FORMAT.

14.9.1.3 Tuning Compression for InnoDB Tables

Most often, the internal optimizations described in InnoDB Data Storage and Compression ensure that the
system runs well with compressed data. However, because the efficiency of compression depends on the
nature of your data, you can make decisions that affect the performance of compressed tables:

• Which tables to compress.

• What compressed page size to use.

• Whether to adjust the size of the buffer pool based on run-time performance characteristics, such as the
amount of time the system spends compressing and uncompressing data. Whether the workload is more
like a data warehouse (primarily queries) or an OLTP system (mix of queries and DML).

• If the system performs DML operations on compressed tables, and the way the data is distributed
leads to expensive compression failures at runtime, you might adjust additional advanced configuration
options.

Use the guidelines in this section to help make those architectural and configuration choices. When you
are ready to conduct long-term testing and put compressed tables into production, see Section 14.9.1.4,
“Monitoring InnoDB Table Compression at Runtime” for ways to verify the effectiveness of those choices
under real-world conditions.

When to Use Compression

In general, compression works best on tables that include a reasonable number of character string
columns and where the data is read far more often than it is written. Because there are no guaranteed
ways to predict whether or not compression benefits a particular situation, always test with a specific
workload and data set running on a representative configuration. Consider the following factors when
deciding which tables to compress.

2675

InnoDB Table Compression

Data Characteristics and Compression

A key determinant of the efficiency of compression in reducing the size of data files is the nature of
the data itself. Recall that compression works by identifying repeated strings of bytes in a block of
data. Completely randomized data is the worst case. Typical data often has repeated values, and so
compresses effectively. Character strings often compress well, whether defined in CHAR, VARCHAR, TEXT
or BLOB columns. On the other hand, tables containing mostly binary data (integers or floating point
numbers) or data that is previously compressed (for example JPEG or PNG images) may not generally
compress well, significantly or at all.

You choose whether to turn on compression for each InnoDB table. A table and all of its indexes use
the same (compressed) page size. It might be that the primary key (clustered) index, which contains the
data for all columns of a table, compresses more effectively than the secondary indexes. For those cases
where there are long rows, the use of compression might result in long column values being stored “off-
page”, as discussed in DYNAMIC Row Format. Those overflow pages may compress well. Given these
considerations, for many applications, some tables compress more effectively than others, and you might
find that your workload performs best only with a subset of tables compressed.

To determine whether or not to compress a particular table, conduct experiments. You can get a
rough estimate of how efficiently your data can be compressed by using a utility that implements LZ77
compression (such as gzip or WinZip) on a copy of the .ibd file for an uncompressed table. You can
expect less compression from a MySQL compressed table than from file-based compression tools,
because MySQL compresses data in chunks based on the page size, 16KB by default. In addition to user
data, the page format includes some internal system data that is not compressed. File-based compression
utilities can examine much larger chunks of data, and so might find more repeated strings in a huge file
than MySQL can find in an individual page.

Another way to test compression on a specific table is to copy some data from your uncompressed table to
a similar, compressed table (having all the same indexes) in a file-per-table tablespace and look at the size
of the resulting .ibd file. For example:

USE test;
SET GLOBAL innodb_file_per_table=1;
SET GLOBAL innodb_file_format=Barracuda;
SET GLOBAL autocommit=0;

-- Create an uncompressed table with a million or two rows.
CREATE TABLE big_table AS SELECT * FROM information_schema.columns;
INSERT INTO big_table SELECT * FROM big_table;
INSERT INTO big_table SELECT * FROM big_table;
INSERT INTO big_table SELECT * FROM big_table;
INSERT INTO big_table SELECT * FROM big_table;
INSERT INTO big_table SELECT * FROM big_table;
INSERT INTO big_table SELECT * FROM big_table;
INSERT INTO big_table SELECT * FROM big_table;
INSERT INTO big_table SELECT * FROM big_table;
INSERT INTO big_table SELECT * FROM big_table;
INSERT INTO big_table SELECT * FROM big_table;
COMMIT;
ALTER TABLE big_table ADD id int unsigned NOT NULL PRIMARY KEY auto_increment;

SHOW CREATE TABLE big_table\G

select count(id) from big_table;

-- Check how much space is needed for the uncompressed table.
\! ls -l data/test/big_table.ibd

CREATE TABLE key_block_size_4 LIKE big_table;
ALTER TABLE key_block_size_4 key_block_size=4 row_format=compressed;

2676

InnoDB Table Compression

INSERT INTO key_block_size_4 SELECT * FROM big_table;
commit;

-- Check how much space is needed for a compressed table
-- with particular compression settings.
\! ls -l data/test/key_block_size_4.ibd

This experiment produced the following numbers, which of course could vary considerably depending on
your table structure and data:

-rw-rw---- 1 cirrus staff 310378496 Jan 9 13:44 data/test/big_table.ibd
-rw-rw---- 1 cirrus staff 83886080 Jan 9 15:10 data/test/key_block_size_4.ibd

To see whether compression is efficient for your particular workload:

• For simple tests, use a MySQL instance with no other compressed tables and run queries against the
Information Schema INNODB_CMP table.

• For more elaborate tests involving workloads with multiple compressed tables, run queries
against the Information Schema INNODB_CMP_PER_INDEX table. Because the statistics in the
INNODB_CMP_PER_INDEX table are expensive to collect, you must enable the configuration option
innodb_cmp_per_index_enabled before querying that table, and you might restrict such testing to a
development server or a non-critical replica server.

• Run some typical SQL statements against the compressed table you are testing.

• Examine the ratio of successful compression operations to overall compression operations by
querying the Information Schema INNODB_CMP or INNODB_CMP_PER_INDEX table, and comparing
COMPRESS_OPS to COMPRESS_OPS_OK.

• If a high percentage of compression operations complete successfully, the table might be a good
candidate for compression.

• If you get a high proportion of compression failures, you can adjust innodb_compression_level,
innodb_compression_failure_threshold_pct, and innodb_compression_pad_pct_max
options as described in Section 14.9.1.6, “Compression for OLTP Workloads”, and try further tests.

Database Compression versus Application Compression

Decide whether to compress data in your application or in the table; do not use both types of compression
for the same data. When you compress the data in the application and store the results in a compressed
table, extra space savings are extremely unlikely, and the double compression just wastes CPU cycles.

Compressing in the Database

When enabled, MySQL table compression is automatic and applies to all columns and index values.
The columns can still be tested with operators such as LIKE, and sort operations can still use indexes
even when the index values are compressed. Because indexes are often a significant fraction of the total
size of a database, compression could result in significant savings in storage, I/O or processor time. The
compression and decompression operations happen on the database server, which likely is a powerful
system that is sized to handle the expected load.

Compressing in the Application

If you compress data such as text in your application, before it is inserted into the database, You might
save overhead for data that does not compress well by compressing some columns and not others. This
approach uses CPU cycles for compression and uncompression on the client machine rather than the

2677

InnoDB Table Compression

database server, which might be appropriate for a distributed application with many clients, or where the
client machine has spare CPU cycles.

Hybrid Approach

Of course, it is possible to combine these approaches. For some applications, it may be appropriate to use
some compressed tables and some uncompressed tables. It may be best to externally compress some
data (and store it in uncompressed tables) and allow MySQL to compress (some of) the other tables in the
application. As always, up-front design and real-life testing are valuable in reaching the right decision.

Workload Characteristics and Compression

In addition to choosing which tables to compress (and the page size), the workload is another key
determinant of performance. If the application is dominated by reads, rather than updates, fewer pages
need to be reorganized and recompressed after the index page runs out of room for the per-page
“modification log” that MySQL maintains for compressed data. If the updates predominantly change
non-indexed columns or those containing BLOBs or large strings that happen to be stored “off-page”,
the overhead of compression may be acceptable. If the only changes to a table are INSERTs that use
a monotonically increasing primary key, and there are few secondary indexes, there is little need to
reorganize and recompress index pages. Since MySQL can “delete-mark” and delete rows on compressed
pages “in place” by modifying uncompressed data, DELETE operations on a table are relatively efficient.

For some environments, the time it takes to load data can be as important as run-time retrieval. Especially
in data warehouse environments, many tables may be read-only or read-mostly. In those cases, it might
or might not be acceptable to pay the price of compression in terms of increased load time, unless the
resulting savings in fewer disk reads or in storage cost is significant.

Fundamentally, compression works best when the CPU time is available for compressing and
uncompressing data. Thus, if your workload is I/O bound, rather than CPU-bound, you might find that
compression can improve overall performance. When you test your application performance with different
compression configurations, test on a platform similar to the planned configuration of the production
system.

Configuration Characteristics and Compression

Reading and writing database pages from and to disk is the slowest aspect of system performance.
Compression attempts to reduce I/O by using CPU time to compress and uncompress data, and is most
effective when I/O is a relatively scarce resource compared to processor cycles.

This is often especially the case when running in a multi-user environment with fast, multi-core CPUs.
When a page of a compressed table is in memory, MySQL often uses additional memory, typically 16KB,
in the buffer pool for an uncompressed copy of the page. The adaptive LRU algorithm attempts to balance
the use of memory between compressed and uncompressed pages to take into account whether the
workload is running in an I/O-bound or CPU-bound manner. Still, a configuration with more memory
dedicated to the buffer pool tends to run better when using compressed tables than a configuration where
memory is highly constrained.

Choosing the Compressed Page Size

The optimal setting of the compressed page size depends on the type and distribution of data that the table
and its indexes contain. The compressed page size should always be bigger than the maximum record
size, or operations may fail as noted in Compression of B-Tree Pages.

Setting the compressed page size too large wastes some space, but the pages do not have to be
compressed as often. If the compressed page size is set too small, inserts or updates may require time-

2678

InnoDB Table Compression

consuming recompression, and the B-tree nodes may have to be split more frequently, leading to bigger
data files and less efficient indexing.

Typically, you set the compressed page size to 8K or 4K bytes. Given that the maximum row size for an
InnoDB table is around 8K, KEY_BLOCK_SIZE=8 is usually a safe choice.

14.9.1.4 Monitoring InnoDB Table Compression at Runtime

Overall application performance, CPU and I/O utilization and the size of disk files are good indicators of
how effective compression is for your application. This section builds on the performance tuning advice
from Section 14.9.1.3, “Tuning Compression for InnoDB Tables”, and shows how to find problems that
might not turn up during initial testing.

To dig deeper into performance considerations for compressed tables, you can monitor compression
performance at runtime using the Information Schema tables described in Example 14.1, “Using the
Compression Information Schema Tables”. These tables reflect the internal use of memory and the rates of
compression used overall.

The INNODB_CMP table reports information about compression activity for each compressed page
size (KEY_BLOCK_SIZE) in use. The information in these tables is system-wide: it summarizes the
compression statistics across all compressed tables in your database. You can use this data to help decide
whether or not to compress a table by examining these tables when no other compressed tables are
being accessed. It involves relatively low overhead on the server, so you might query it periodically on a
production server to check the overall efficiency of the compression feature.

The INNODB_CMP_PER_INDEX table reports information about compression activity for individual tables
and indexes. This information is more targeted and more useful for evaluating compression efficiency
and diagnosing performance issues one table or index at a time. (Because that each InnoDB table is
represented as a clustered index, MySQL does not make a big distinction between tables and indexes
in this context.) The INNODB_CMP_PER_INDEX table does involve substantial overhead, so it is more
suitable for development servers, where you can compare the effects of different workloads, data, and
compression settings in isolation. To guard against imposing this monitoring overhead by accident, you
must enable the innodb_cmp_per_index_enabled configuration option before you can query the
INNODB_CMP_PER_INDEX table.

The key statistics to consider are the number of, and amount of time spent performing, compression
and uncompression operations. Since MySQL splits B-tree nodes when they are too full to contain
the compressed data following a modification, compare the number of “successful” compression
operations with the number of such operations overall. Based on the information in the INNODB_CMP and
INNODB_CMP_PER_INDEX tables and overall application performance and hardware resource utilization,
you might make changes in your hardware configuration, adjust the size of the buffer pool, choose a
different page size, or select a different set of tables to compress.

If the amount of CPU time required for compressing and uncompressing is high, changing to faster or
multi-core CPUs can help improve performance with the same data, application workload and set of
compressed tables. Increasing the size of the buffer pool might also help performance, so that more
uncompressed pages can stay in memory, reducing the need to uncompress pages that exist in memory
only in compressed form.

A large number of compression operations overall (compared to the number of INSERT, UPDATE and
DELETE operations in your application and the size of the database) could indicate that some of your
compressed tables are being updated too heavily for effective compression. If so, choose a larger page
size, or be more selective about which tables you compress.

If the number of “successful” compression operations (COMPRESS_OPS_OK) is a high percentage of the
total number of compression operations (COMPRESS_OPS), then the system is likely performing well. If

2679

InnoDB Table Compression

the ratio is low, then MySQL is reorganizing, recompressing, and splitting B-tree nodes more often than
is desirable. In this case, avoid compressing some tables, or increase KEY_BLOCK_SIZE for some of the
compressed tables. You might turn off compression for tables that cause the number of “compression
failures” in your application to be more than 1% or 2% of the total. (Such a failure ratio might be acceptable
during a temporary operation such as a data load).

14.9.1.5 How Compression Works for InnoDB Tables

This section describes some internal implementation details about compression for InnoDB tables. The
information presented here may be helpful in tuning for performance, but is not necessary to know for basic
use of compression.

Compression Algorithms

Some operating systems implement compression at the file system level. Files are typically divided into
fixed-size blocks that are compressed into variable-size blocks, which easily leads into fragmentation.
Every time something inside a block is modified, the whole block is recompressed before it is written
to disk. These properties make this compression technique unsuitable for use in an update-intensive
database system.

MySQL implements compression with the help of the well-known zlib library, which implements the LZ77
compression algorithm. This compression algorithm is mature, robust, and efficient in both CPU utilization
and in reduction of data size. The algorithm is “lossless”, so that the original uncompressed data can
always be reconstructed from the compressed form. LZ77 compression works by finding sequences of
data that are repeated within the data to be compressed. The patterns of values in your data determine
how well it compresses, but typical user data often compresses by 50% or more.

Note

Prior to MySQL 5.7.24, InnoDB supports the zlib library up to version 1.2.3. In
MySQL 5.7.24 and later, InnoDB supports the zlib library up to version 1.2.11.

Unlike compression performed by an application, or compression features of some other database
management systems, InnoDB compression applies both to user data and to indexes. In many cases,
indexes can constitute 40-50% or more of the total database size, so this difference is significant. When
compression is working well for a data set, the size of the InnoDB data files (the file-per-table tablespace
or general tablespace .ibd files) is 25% to 50% of the uncompressed size or possibly smaller. Depending
on the workload, this smaller database can in turn lead to a reduction in I/O, and an increase in throughput,
at a modest cost in terms of increased CPU utilization. You can adjust the balance between compression
level and CPU overhead by modifying the innodb_compression_level configuration option.

InnoDB Data Storage and Compression

All user data in InnoDB tables is stored in pages comprising a B-tree index (the clustered index). In some
other database systems, this type of index is called an “index-organized table”. Each row in the index node
contains the values of the (user-specified or system-generated) primary key and all the other columns of
the table.

Secondary indexes in InnoDB tables are also B-trees, containing pairs of values: the index key and a
pointer to a row in the clustered index. The pointer is in fact the value of the primary key of the table, which
is used to access the clustered index if columns other than the index key and primary key are required.
Secondary index records must always fit on a single B-tree page.

The compression of B-tree nodes (of both clustered and secondary indexes) is handled differently from
compression of overflow pages used to store long VARCHAR, BLOB, or TEXT columns, as explained in the
following sections.

2680

http://www.zlib.net/

InnoDB Table Compression

Compression of B-Tree Pages

Because they are frequently updated, B-tree pages require special treatment. It is important to minimize
the number of times B-tree nodes are split, as well as to minimize the need to uncompress and recompress
their content.

One technique MySQL uses is to maintain some system information in the B-tree node in uncompressed
form, thus facilitating certain in-place updates. For example, this allows rows to be delete-marked and
deleted without any compression operation.

In addition, MySQL attempts to avoid unnecessary uncompression and recompression of index pages
when they are changed. Within each B-tree page, the system keeps an uncompressed “modification log” to
record changes made to the page. Updates and inserts of small records may be written to this modification
log without requiring the entire page to be completely reconstructed.

When the space for the modification log runs out, InnoDB uncompresses the page, applies the changes
and recompresses the page. If recompression fails (a situation known as a compression failure), the B-tree
nodes are split and the process is repeated until the update or insert succeeds.

To avoid frequent compression failures in write-intensive workloads, such as for OLTP applications,
MySQL sometimes reserves some empty space (padding) in the page, so that the modification log
fills up sooner and the page is recompressed while there is still enough room to avoid splitting it.
The amount of padding space left in each page varies as the system keeps track of the frequency
of page splits. On a busy server doing frequent writes to compressed tables, you can adjust the
innodb_compression_failure_threshold_pct, and innodb_compression_pad_pct_max
configuration options to fine-tune this mechanism.

Generally, MySQL requires that each B-tree page in an InnoDB table can accommodate at least two
records. For compressed tables, this requirement has been relaxed. Leaf pages of B-tree nodes (whether
of the primary key or secondary indexes) only need to accommodate one record, but that record must fit, in
uncompressed form, in the per-page modification log. If innodb_strict_mode is ON, MySQL checks the
maximum row size during CREATE TABLE or CREATE INDEX. If the row does not fit, the following error
message is issued: ERROR HY000: Too big row.

If you create a table when innodb_strict_mode is OFF, and a subsequent INSERT or UPDATE
statement attempts to create an index entry that does not fit in the size of the compressed page, the
operation fails with ERROR 42000: Row size too large. (This error message does not name the
index for which the record is too large, or mention the length of the index record or the maximum record
size on that particular index page.) To solve this problem, rebuild the table with ALTER TABLE and select
a larger compressed page size (KEY_BLOCK_SIZE), shorten any column prefix indexes, or disable
compression entirely with ROW_FORMAT=DYNAMIC or ROW_FORMAT=COMPACT.

innodb_strict_mode is not applicable to general tablespaces, which also support compressed
tables. Tablespace management rules for general tablespaces are strictly enforced independently of
innodb_strict_mode. For more information, see Section 13.1.19, “CREATE TABLESPACE Statement”.

Compressing BLOB, VARCHAR, and TEXT Columns

In an InnoDB table, BLOB, VARCHAR, and TEXT columns that are not part of the primary key may be stored
on separately allocated overflow pages. We refer to these columns as off-page columns. Their values are
stored on singly-linked lists of overflow pages.

For tables created in ROW_FORMAT=DYNAMIC or ROW_FORMAT=COMPRESSED, the values of BLOB, TEXT,
or VARCHAR columns may be stored fully off-page, depending on their length and the length of the entire
row. For columns that are stored off-page, the clustered index record only contains 20-byte pointers to

2681

InnoDB Table Compression

the overflow pages, one per column. Whether any columns are stored off-page depends on the page size
and the total size of the row. When the row is too long to fit entirely within the page of the clustered index,
MySQL chooses the longest columns for off-page storage until the row fits on the clustered index page. As
noted above, if a row does not fit by itself on a compressed page, an error occurs.

Note

For tables created in ROW_FORMAT=DYNAMIC or ROW_FORMAT=COMPRESSED,
TEXT and BLOB columns that are less than or equal to 40 bytes are always stored
in-line.

Tables created in older versions of MySQL use the Antelope file format, which supports only
ROW_FORMAT=REDUNDANT and ROW_FORMAT=COMPACT. In these formats, MySQL stores the first 768
bytes of BLOB, VARCHAR, and TEXT columns in the clustered index record along with the primary key. The
768-byte prefix is followed by a 20-byte pointer to the overflow pages that contain the rest of the column
value.

When a table is in COMPRESSED format, all data written to overflow pages is compressed “as is”; that is,
MySQL applies the zlib compression algorithm to the entire data item. Other than the data, compressed
overflow pages contain an uncompressed header and trailer comprising a page checksum and a link to the
next overflow page, among other things. Therefore, very significant storage savings can be obtained for
longer BLOB, TEXT, or VARCHAR columns if the data is highly compressible, as is often the case with text
data. Image data, such as JPEG, is typically already compressed and so does not benefit much from being
stored in a compressed table; the double compression can waste CPU cycles for little or no space savings.

The overflow pages are of the same size as other pages. A row containing ten columns stored off-page
occupies ten overflow pages, even if the total length of the columns is only 8K bytes. In an uncompressed
table, ten uncompressed overflow pages occupy 160K bytes. In a compressed table with an 8K page size,
they occupy only 80K bytes. Thus, it is often more efficient to use compressed table format for tables with
long column values.

For file-per-table tablespaces, using a 16K compressed page size can reduce storage and I/O
costs for BLOB, VARCHAR, or TEXT columns, because such data often compress well, and might
therefore require fewer overflow pages, even though the B-tree nodes themselves take as many pages
as in the uncompressed form. General tablespaces do not support a 16K compressed page size
(KEY_BLOCK_SIZE). For more information, see Section 14.6.3.3, “General Tablespaces”.

Compression and the InnoDB Buffer Pool

In a compressed InnoDB table, every compressed page (whether 1K, 2K, 4K or 8K) corresponds to
an uncompressed page of 16K bytes (or a smaller size if innodb_page_size is set). To access the
data in a page, MySQL reads the compressed page from disk if it is not already in the buffer pool, then
uncompresses the page to its original form. This section describes how InnoDB manages the buffer pool
with respect to pages of compressed tables.

To minimize I/O and to reduce the need to uncompress a page, at times the buffer pool contains both
the compressed and uncompressed form of a database page. To make room for other required database
pages, MySQL can evict from the buffer pool an uncompressed page, while leaving the compressed page
in memory. Or, if a page has not been accessed in a while, the compressed form of the page might be
written to disk, to free space for other data. Thus, at any given time, the buffer pool might contain both the
compressed and uncompressed forms of the page, or only the compressed form of the page, or neither.

MySQL keeps track of which pages to keep in memory and which to evict using a least-recently-used
(LRU) list, so that hot (frequently accessed) data tends to stay in memory. When compressed tables are
accessed, MySQL uses an adaptive LRU algorithm to achieve an appropriate balance of compressed
and uncompressed pages in memory. This adaptive algorithm is sensitive to whether the system is

2682

InnoDB Table Compression

running in an I/O-bound or CPU-bound manner. The goal is to avoid spending too much processing time
uncompressing pages when the CPU is busy, and to avoid doing excess I/O when the CPU has spare
cycles that can be used for uncompressing compressed pages (that may already be in memory). When
the system is I/O-bound, the algorithm prefers to evict the uncompressed copy of a page rather than both
copies, to make more room for other disk pages to become memory resident. When the system is CPU-
bound, MySQL prefers to evict both the compressed and uncompressed page, so that more memory can
be used for “hot” pages and reducing the need to uncompress data in memory only in compressed form.

Compression and the InnoDB Redo Log Files

Before a compressed page is written to a data file, MySQL writes a copy of the page to the redo log (if
it has been recompressed since the last time it was written to the database). This is done to ensure that
redo logs are usable for crash recovery, even in the unlikely case that the zlib library is upgraded and
that change introduces a compatibility problem with the compressed data. Therefore, some increase in
the size of log files, or a need for more frequent checkpoints, can be expected when using compression.
The amount of increase in the log file size or checkpoint frequency depends on the number of times
compressed pages are modified in a way that requires reorganization and recompression.

Compressed tables require the Barracuda file format. To create a compressed table in a file-per-table
tablespace, innodb_file_per_table must be enabled and innodb_file_format must be set to
Barracuda. There is no dependence on the innodb_file_format setting when creating a compressed
table in a general tablespace. For more information, see Section 14.6.3.3, “General Tablespaces”. The
MySQL Enterprise Backup product supports the Barracuda file format.

14.9.1.6 Compression for OLTP Workloads

Traditionally, the InnoDB compression feature was recommended primarily for read-only or read-mostly
workloads, such as in a data warehouse configuration. The rise of SSD storage devices, which are fast
but relatively small and expensive, makes compression attractive also for OLTP workloads: high-traffic,
interactive websites can reduce their storage requirements and their I/O operations per second (IOPS) by
using compressed tables with applications that do frequent INSERT, UPDATE, and DELETE operations.

Configuration options introduced in MySQL 5.6 let you adjust the way compression works for a particular
MySQL instance, with an emphasis on performance and scalability for write-intensive operations:

• innodb_compression_level lets you turn the degree of compression up or down. A higher value lets
you fit more data onto a storage device, at the expense of more CPU overhead during compression. A
lower value lets you reduce CPU overhead when storage space is not critical, or you expect the data is
not especially compressible.

• innodb_compression_failure_threshold_pct specifies a cutoff point for compression failures
during updates to a compressed table. When this threshold is passed, MySQL begins to leave additional
free space within each new compressed page, dynamically adjusting the amount of free space up to the
percentage of page size specified by innodb_compression_pad_pct_max

• innodb_compression_pad_pct_max lets you adjust the maximum amount of space reserved within
each page to record changes to compressed rows, without needing to compress the entire page again.
The higher the value, the more changes can be recorded without recompressing the page. MySQL uses
a variable amount of free space for the pages within each compressed table, only when a designated
percentage of compression operations “fail” at runtime, requiring an expensive operation to split the
compressed page.

• innodb_log_compressed_pages lets you disable writing of images of re-compressed pages to
the redo log. Re-compression may occur when changes are made to compressed data. This option is
enabled by default to prevent corruption that could occur if a different version of the zlib compression

2683

InnoDB Table Compression

algorithm is used during recovery. If you are certain that the zlib version is not likely to change,
disable innodb_log_compressed_pages to reduce redo log generation for workloads that modify
compressed data.

Because working with compressed data sometimes involves keeping both compressed and uncompressed
versions of a page in memory at the same time, when using compression with an OLTP-style workload, be
prepared to increase the value of the innodb_buffer_pool_size configuration option.

14.9.1.7 SQL Compression Syntax Warnings and Errors

This section describes syntax warnings and errors that you may encounter when using the table
compression feature with file-per-table tablespaces and general tablespaces.

SQL Compression Syntax Warnings and Errors for File-Per-Table Tablespaces

When innodb_strict_mode is enabled (the default), specifying ROW_FORMAT=COMPRESSED or
KEY_BLOCK_SIZE in CREATE TABLE or ALTER TABLE statements produces the following error if
innodb_file_per_table is disabled or if innodb_file_format is set to Antelope rather than
Barracuda.

ERROR 1031 (HY000): Table storage engine for 't1' does not have this option

Note

The table is not created if the current configuration does not permit using
compressed tables.

When innodb_strict_mode is disabled, specifying ROW_FORMAT=COMPRESSED or
KEY_BLOCK_SIZE in CREATE TABLE or ALTER TABLE statements produces the following warnings if
innodb_file_per_table is disabled.

mysql> SHOW WARNINGS;
+---------+------+---+
| Level | Code | Message |
+---------+------+---+
Warning	1478	InnoDB: KEY_BLOCK_SIZE requires innodb_file_per_table.
Warning	1478	InnoDB: ignoring KEY_BLOCK_SIZE=4.
Warning	1478	InnoDB: ROW_FORMAT=COMPRESSED requires innodb_file_per_table.
Warning	1478	InnoDB: assuming ROW_FORMAT=DYNAMIC.
+---------+------+---+

Similar warnings are issued if innodb_file_format is set to Antelope rather than Barracuda.

Note

These messages are only warnings, not errors, and the table is created without
compression, as if the options were not specified.

The “non-strict” behavior lets you import a mysqldump file into a database that does not support
compressed tables, even if the source database contained compressed tables. In that case, MySQL
creates the table in ROW_FORMAT=COMPACT instead of preventing the operation.

To import the dump file into a new database, and have the tables re-created as they exist in the
original database, ensure the server has the proper settings for the configuration parameters
innodb_file_format and innodb_file_per_table.

The attribute KEY_BLOCK_SIZE is permitted only when ROW_FORMAT is specified as COMPRESSED or is
omitted. Specifying a KEY_BLOCK_SIZE with any other ROW_FORMAT generates a warning that you can

2684

InnoDB Table Compression

view with SHOW WARNINGS. However, the table is non-compressed; the specified KEY_BLOCK_SIZE is
ignored).

Level Code Message

Warning 1478 InnoDB: ignoring
KEY_BLOCK_SIZE=n unless
ROW_FORMAT=COMPRESSED.

If you are running with innodb_strict_mode enabled, the combination of a KEY_BLOCK_SIZE with any
ROW_FORMAT other than COMPRESSED generates an error, not a warning, and the table is not created.

Table 14.6, “ROW_FORMAT and KEY_BLOCK_SIZE Options” provides an overview the ROW_FORMAT
and KEY_BLOCK_SIZE options that are used with CREATE TABLE or ALTER TABLE.

Table 14.6 ROW_FORMAT and KEY_BLOCK_SIZE Options

Option Usage Notes Description

ROW_FORMAT=REDUNDANT Storage format used prior to
MySQL 5.0.3

Less efficient than
ROW_FORMAT=COMPACT; for
backward compatibility

ROW_FORMAT=COMPACT Default storage format since
MySQL 5.0.3

Stores a prefix of 768 bytes
of long column values in the
clustered index page, with the
remaining bytes stored in an
overflow page

ROW_FORMAT=DYNAMIC File-per-table tablespaces
require innodb_file
_format=Barracuda

Store values within the clustered
index page if they fit; if not, stores
only a 20-byte pointer to an
overflow page (no prefix)

ROW_FORMAT=COMPRESSED File-per-table tablespaces
require innodb_file
_format=Barracuda

Compresses the table and
indexes using zlib

KEY_BLOCK_SIZE=n File-per-table tablespaces
require innodb_file
_format=Barracuda

Specifies compressed
page size of 1, 2, 4, 8
or 16 kilobytes; implies
ROW_FORMAT=COMPRESSED.
For general tablespaces, a
KEY_BLOCK_SIZE value equal
to the InnoDB page size is not
permitted.

Table 14.7, “CREATE/ALTER TABLE Warnings and Errors when InnoDB Strict Mode is OFF” summarizes
error conditions that occur with certain combinations of configuration parameters and options on the
CREATE TABLE or ALTER TABLE statements, and how the options appear in the output of SHOW TABLE
STATUS.

When innodb_strict_mode is OFF, MySQL creates or alters the table, but ignores certain settings as
shown below. You can see the warning messages in the MySQL error log. When innodb_strict_mode
is ON, these specified combinations of options generate errors, and the table is not created or altered. To
see the full description of the error condition, issue the SHOW ERRORS statement: example:

mysql> CREATE TABLE x (id INT PRIMARY KEY, c INT)

2685

InnoDB Table Compression

-> ENGINE=INNODB KEY_BLOCK_SIZE=33333;

ERROR 1005 (HY000): Can't create table 'test.x' (errno: 1478)

mysql> SHOW ERRORS;
+-------+------+---+
| Level | Code | Message |
+-------+------+---+
| Error | 1478 | InnoDB: invalid KEY_BLOCK_SIZE=33333. |
| Error | 1005 | Can't create table 'test.x' (errno: 1478) |
+-------+------+---+

Table 14.7 CREATE/ALTER TABLE Warnings and Errors when InnoDB Strict Mode is OFF

Syntax Warning or Error Condition Resulting ROW_FORMAT, as
shown in SHOW TABLE STATUS

ROW_FORMAT=REDUNDANT None REDUNDANT

ROW_FORMAT=COMPACT None COMPACT

ROW_FORMAT=COMPRESSED
or ROW_FORMAT=DYNAMIC or
KEY_BLOCK_SIZE is specified

Ignored for file-per-table
tablespaces unless both
innodb_file_format=Barracuda
and innodb_file_per_table
are enabled. General tablespaces
support all row formats (with
some restrictions) regardless
of innodb_file_format and
innodb_file_per_table
settings. See Section 14.6.3.3,
“General Tablespaces”.

the default row format
for file-per-table
tablespaces; the
specified row format for
general tablespaces

Invalid KEY_BLOCK_SIZE is
specified (not 1, 2, 4, 8 or 16)

KEY_BLOCK_SIZE is ignored the specified row format, or the
default row format

ROW_FORMAT=COMPRESSED
and valid KEY_BLOCK_SIZE are
specified

None; KEY_BLOCK_SIZE
specified is used

COMPRESSED

KEY_BLOCK_SIZE is specified
with REDUNDANT, COMPACT or
DYNAMIC row format

KEY_BLOCK_SIZE is ignored REDUNDANT, COMPACT or
DYNAMIC

ROW_FORMAT is not one of
REDUNDANT, COMPACT, DYNAMIC
or COMPRESSED

Ignored if recognized by the
MySQL parser. Otherwise, an
error is issued.

the default row format or N/A

When innodb_strict_mode is ON, MySQL rejects invalid ROW_FORMAT or KEY_BLOCK_SIZE
parameters and issues errors. When innodb_strict_mode is OFF, MySQL issues warnings instead of
errors for ignored invalid parameters. innodb_strict_mode is ON by default.

When innodb_strict_mode is ON, MySQL rejects invalid ROW_FORMAT or KEY_BLOCK_SIZE
parameters. For compatibility with earlier versions of MySQL, strict mode is not enabled by default; instead,
MySQL issues warnings (not errors) for ignored invalid parameters.

It is not possible to see the chosen KEY_BLOCK_SIZE using SHOW TABLE STATUS. The statement SHOW
CREATE TABLE displays the KEY_BLOCK_SIZE (even if it was ignored when creating the table). The real
compressed page size of the table cannot be displayed by MySQL.

2686

InnoDB Page Compression

SQL Compression Syntax Warnings and Errors for General Tablespaces

• If FILE_BLOCK_SIZE was not defined for the general tablespace when the tablespace was created,
the tablespace cannot contain compressed tables. If you attempt to add a compressed table, an error is
returned, as shown in the following example:

mysql> CREATE TABLESPACE `ts1` ADD DATAFILE 'ts1.ibd' Engine=InnoDB;

mysql> CREATE TABLE t1 (c1 INT PRIMARY KEY) TABLESPACE ts1 ROW_FORMAT=COMPRESSED
 KEY_BLOCK_SIZE=8;
ERROR 1478 (HY000): InnoDB: Tablespace `ts1` cannot contain a COMPRESSED table

• Attempting to add a table with an invalid KEY_BLOCK_SIZE to a general tablespace returns an error, as
shown in the following example:

mysql> CREATE TABLESPACE `ts2` ADD DATAFILE 'ts2.ibd' FILE_BLOCK_SIZE = 8192 Engine=InnoDB;

mysql> CREATE TABLE t2 (c1 INT PRIMARY KEY) TABLESPACE ts2 ROW_FORMAT=COMPRESSED
 KEY_BLOCK_SIZE=4;
ERROR 1478 (HY000): InnoDB: Tablespace `ts2` uses block size 8192 and cannot
contain a table with physical page size 4096

For general tablespaces, the KEY_BLOCK_SIZE of the table must be equal to the FILE_BLOCK_SIZE of
the tablespace divided by 1024. For example, if the FILE_BLOCK_SIZE of the tablespace is 8192, the
KEY_BLOCK_SIZE of the table must be 8.

• Attempting to add a table with an uncompressed row format to a general tablespace configured to store
compressed tables returns an error, as shown in the following example:

mysql> CREATE TABLESPACE `ts3` ADD DATAFILE 'ts3.ibd' FILE_BLOCK_SIZE = 8192 Engine=InnoDB;

mysql> CREATE TABLE t3 (c1 INT PRIMARY KEY) TABLESPACE ts3 ROW_FORMAT=COMPACT;
ERROR 1478 (HY000): InnoDB: Tablespace `ts3` uses block size 8192 and cannot
contain a table with physical page size 16384

innodb_strict_mode is not applicable to general tablespaces. Tablespace management rules for
general tablespaces are strictly enforced independently of innodb_strict_mode. For more information,
see Section 13.1.19, “CREATE TABLESPACE Statement”.

For more information about using compressed tables with general tablespaces, see Section 14.6.3.3,
“General Tablespaces”.

14.9.2 InnoDB Page Compression

InnoDB supports page-level compression for tables that reside in file-per-table tablespaces. This
feature is referred to as Transparent Page Compression. Page compression is enabled by specifying
the COMPRESSION attribute with CREATE TABLE or ALTER TABLE. Supported compression algorithms
include Zlib and LZ4.

Supported Platforms

Page compression requires sparse file and hole punching support. Page compression is supported on
Windows with NTFS, and on the following subset of MySQL-supported Linux platforms where the kernel
level provides hole punching support:

• RHEL 7 and derived distributions that use kernel version 3.10.0-123 or higher

• OEL 5.10 (UEK2) kernel version 2.6.39 or higher

• OEL 6.5 (UEK3) kernel version 3.8.13 or higher

2687

InnoDB Page Compression

• OEL 7.0 kernel version 3.8.13 or higher

• SLE11 kernel version 3.0-x

• SLE12 kernel version 3.12-x

• OES11 kernel version 3.0-x

• Ubuntu 14.0.4 LTS kernel version 3.13 or higher

• Ubuntu 12.0.4 LTS kernel version 3.2 or higher

• Debian 7 kernel version 3.2 or higher

Note

All of the available file systems for a given Linux distribution may not support hole
punching.

How Page Compression Works

When a page is written, it is compressed using the specified compression algorithm. The compressed data
is written to disk, where the hole punching mechanism releases empty blocks from the end of the page. If
compression fails, data is written out as-is.

Hole Punch Size on Linux

On Linux systems, the file system block size is the unit size used for hole punching. Therefore, page
compression only works if page data can be compressed to a size that is less than or equal to the InnoDB
page size minus the file system block size. For example, if innodb_page_size=16K and the file system
block size is 4K, page data must compress to less than or equal to 12K to make hole punching possible.

Hole Punch Size on Windows

On Windows systems, the underlying infrastructure for sparse files is based on NTFS compression. Hole
punching size is the NTFS compression unit, which is 16 times the NTFS cluster size. Cluster sizes and
their compression units are shown in the following table:

Table 14.8 Windows NTFS Cluster Size and Compression Units

Cluster Size Compression Unit

512 Bytes 8 KB

1 KB 16 KB

2 KB 32 KB

4 KB 64 KB

Page compression on Windows systems only works if page data can be compressed to a size that is less
than or equal to the InnoDB page size minus the compression unit size.

The default NTFS cluster size is 4KB, for which the compression unit size is 64KB. This means that
page compression has no benefit for an out-of-the box Windows NTFS configuration, as the maximum
innodb_page_size is also 64KB.

For page compression to work on Windows, the file system must be created with a cluster size smaller
than 4K, and the innodb_page_size must be at least twice the size of the compression unit. For

2688

InnoDB Page Compression

example, for page compression to work on Windows, you could build the file system with a cluster size
of 512 Bytes (which has a compression unit of 8KB) and initialize InnoDB with an innodb_page_size
value of 16K or greater.

Enabling Page Compression

To enable page compression, specify the COMPRESSION attribute in the CREATE TABLE statement. For
example:

CREATE TABLE t1 (c1 INT) COMPRESSION="zlib";

You can also enable page compression in an ALTER TABLE statement. However, ALTER TABLE ...
COMPRESSION only updates the tablespace compression attribute. Writes to the tablespace that occur after
setting the new compression algorithm use the new setting, but to apply the new compression algorithm to
existing pages, you must rebuild the table using OPTIMIZE TABLE.

ALTER TABLE t1 COMPRESSION="zlib";
OPTIMIZE TABLE t1;

Disabling Page Compression

To disable page compression, set COMPRESSION=None using ALTER TABLE. Writes to the tablespace
that occur after setting COMPRESSION=None no longer use page compression. To uncompress existing
pages, you must rebuild the table using OPTIMIZE TABLE after setting COMPRESSION=None.

ALTER TABLE t1 COMPRESSION="None";
OPTIMIZE TABLE t1;

Page Compression Metadata

Page compression metadata is found in the Information Schema INNODB_SYS_TABLESPACES table, in the
following columns:

• FS_BLOCK_SIZE: The file system block size, which is the unit size used for hole punching.

• FILE_SIZE: The apparent size of the file, which represents the maximum size of the file,
uncompressed.

• ALLOCATED_SIZE: The actual size of the file, which is the amount of space allocated on disk.

Note

On Unix-like systems, ls -l tablespace_name.ibd shows the apparent file
size (equivalent to FILE_SIZE) in bytes. To view the actual amount of space
allocated on disk (equivalent to ALLOCATED_SIZE), use du --block-size=1
tablespace_name.ibd. The --block-size=1 option prints the allocated space
in bytes instead of blocks, so that it can be compared to ls -l output.

Use SHOW CREATE TABLE to view the current page compression setting (Zlib,
Lz4, or None). A table may contain a mix of pages with different compression
settings.

In the following example, page compression metadata for the employees table is retrieved from the
Information Schema INNODB_SYS_TABLESPACES table.

Create the employees table with Zlib page compression

2689

InnoDB Page Compression

CREATE TABLE employees (
 emp_no INT NOT NULL,
 birth_date DATE NOT NULL,
 first_name VARCHAR(14) NOT NULL,
 last_name VARCHAR(16) NOT NULL,
 gender ENUM ('M','F') NOT NULL,
 hire_date DATE NOT NULL,
 PRIMARY KEY (emp_no)
) COMPRESSION="zlib";

Insert data (not shown)

Query page compression metadata in INFORMATION_SCHEMA.INNODB_SYS_TABLESPACES

mysql> SELECT SPACE, NAME, FS_BLOCK_SIZE, FILE_SIZE, ALLOCATED_SIZE FROM
 INFORMATION_SCHEMA.INNODB_SYS_TABLESPACES WHERE NAME='employees/employees'\G
*************************** 1. row ***************************
SPACE: 45
NAME: employees/employees
FS_BLOCK_SIZE: 4096
FILE_SIZE: 23068672
ALLOCATED_SIZE: 19415040

Page compression metadata for the employees table shows that the apparent file size is 23068672 bytes
while the actual file size (with page compression) is 19415040 bytes. The file system block size is 4096
bytes, which is the block size used for hole punching.

Identifying Tables Using Page Compression

To identify tables for which page compression is enabled, you can query the Information Schema TABLES
table's CREATE_OPTIONS column for tables defined with the COMPRESSION attribute:

mysql> SELECT TABLE_NAME, TABLE_SCHEMA, CREATE_OPTIONS FROM INFORMATION_SCHEMA.TABLES
 WHERE CREATE_OPTIONS LIKE '%COMPRESSION=%';
+------------+--------------+--------------------+
| TABLE_NAME | TABLE_SCHEMA | CREATE_OPTIONS |
+------------+--------------+--------------------+
| employees | test | COMPRESSION="zlib" |
+------------+--------------+--------------------+

SHOW CREATE TABLE also shows the COMPRESSION attribute, if used.

Page Compression Limitations and Usage Notes

• Page compression is disabled if the file system block size (or compression unit size on Windows) * 2 >
innodb_page_size.

• Page compression is not supported for tables that reside in shared tablespaces, which include the
system tablespace, the temporary tablespace, and general tablespaces.

• Page compression is not supported for undo log tablespaces.

• Page compression is not supported for redo log pages.

• R-tree pages, which are used for spatial indexes, are not compressed.

• Pages that belong to compressed tables (ROW_FORMAT=COMPRESSED) are left as-is.

• During recovery, updated pages are written out in an uncompressed form.

• Loading a page-compressed tablespace on a server that does not support the compression algorithm
that was used causes an I/O error.

2690

InnoDB File-Format Management

• Before downgrading to an earlier version of MySQL that does not support page compression,
uncompress the tables that use the page compression feature. To uncompress a table, run ALTER
TABLE ... COMPRESSION=None and OPTIMIZE TABLE.

• Page-compressed tablespaces can be copied between Linux and Windows servers if the compression
algorithm that was used is available on both servers.

• Preserving page compression when moving a page-compressed tablespace file from one host to another
requires a utility that preserves sparse files.

• Better page compression may be achieved on Fusion-io hardware with NVMFS than on other platforms,
as NVMFS is designed to take advantage of punch hole functionality.

• Using the page compression feature with a large InnoDB page size and relatively small file system
block size could result in write amplification. For example, a maximum InnoDB page size of 64KB with a
4KB file system block size may improve compression but may also increase demand on the buffer pool,
leading to increased I/O and potential write amplification.

14.10 InnoDB File-Format Management

As InnoDB evolves, data file formats that are not compatible with prior versions of InnoDB are sometimes
required to support new features. To help manage compatibility in upgrade and downgrade situations, and
systems that run different versions of MySQL, InnoDB uses named file formats. InnoDB currently supports
two named file formats, Antelope and Barracuda.

• Antelope is the original InnoDB file format, which previously did not have a name. It supports the
COMPACT and REDUNDANT row formats for InnoDB tables.

• Barracuda is the newest file format. It supports all InnoDB row formats including the newer
COMPRESSED and DYNAMIC row formats. The features associated with COMPRESSED and
DYNAMIC row formats include compressed tables, efficient storage of off-page columns, and index key
prefixes up to 3072 bytes (innodb_large_prefix). See Section 14.11, “InnoDB Row Formats”.

This section discusses enabling InnoDB file formats for new InnoDB tables, verifying compatibility of
different file formats between MySQL releases, and identifying the file format in use.

InnoDB file format settings do not apply to tables stored in general tablespaces. General tablespaces
provide support for all row formats and associated features. For more information, see Section 14.6.3.3,
“General Tablespaces”.

Note

The following file format configuration parameters have new default values:

• The innodb_file_format default value was changed to Barracuda. The
previous default value was Antelope.

• The innodb_large_prefix default value was changed to ON. The previous
default was OFF.

The following file format configuration parameters are deprecated in and may be
removed in a future release:

• innodb_file_format

• innodb_file_format_check

2691

Enabling File Formats

• innodb_file_format_max

• innodb_large_prefix

The file format configuration parameters were provided for creating tables
compatible with earlier versions of InnoDB in MySQL 5.1. Now that MySQL 5.1 has
reached the end of its product lifecycle, the parameters are no longer required.

14.10.1 Enabling File Formats

The innodb_file_format configuration option enables an InnoDB file format for file-per-table
tablespaces.

Barracuda is the default innodb_file_format setting. In earlier releases, the default file format was
Antelope.

Note

The innodb_file_format configuration option is deprecated and may be
removed in a future release. For more information, see Section 14.10, “InnoDB File-
Format Management”.

You can set the value of innodb_file_format on the command line when you start mysqld, or in
the option file (my.cnf on Unix, my.ini on Windows). You can also change it dynamically with a SET
GLOBAL statement.

SET GLOBAL innodb_file_format=Barracuda;

Usage notes

• InnoDB file format settings do not apply to tables stored in general tablespaces. General tablespaces
provide support for all row formats and associated features. For more information, see Section 14.6.3.3,
“General Tablespaces”.

• The innodb_file_format setting is not applicable when using the TABLESPACE [=]
innodb_system table option with CREATE TABLE or ALTER TABLE to store a DYNAMIC table in the
system tablespace.

• The innodb_file_format setting is ignored when creating tables that use the DYNAMIC row format.
For more information, see DYNAMIC Row Format.

14.10.2 Verifying File Format Compatibility

InnoDB incorporates several checks to guard against the possible crashes and data corruptions that might
occur if you run an old release of the MySQL server on InnoDB data files that use a newer file format.
These checks take place when the server is started, and when you first access a table. This section
describes these checks, how you can control them, and error and warning conditions that might arise.

Backward Compatibility

You only need to consider backward file format compatibility when using a recent version of InnoDB
(MySQL 5.5 and higher with InnoDB) alongside an older version (MySQL 5.1 or earlier, with the built-
in InnoDB rather than the InnoDB Plugin). To minimize the chance of compatibility issues, you can
standardize on the InnoDB Plugin for all your MySQL 5.1 and earlier database servers.

2692

Verifying File Format Compatibility

In general, a newer version of InnoDB may create a table or index that cannot safely be read or written with
an older version of InnoDB without risk of crashes, hangs, wrong results or corruptions. InnoDB includes a
mechanism to guard against these conditions, and to help preserve compatibility among database files and
versions of InnoDB. This mechanism lets you take advantage of some new features of an InnoDB release
(such as performance improvements and bug fixes), and still preserve the option of using your database
with an old version of InnoDB, by preventing accidental use of new features that create downward-
incompatible disk files.

If a version of InnoDB supports a particular file format (whether or not that format is the default), you can
query and update any table that requires that format or an earlier format. Only the creation of new tables
using new features is limited based on the particular file format enabled. Conversely, if a tablespace
contains a table or index that uses a file format that is not supported, it cannot be accessed at all, even for
read access.

The only way to “downgrade” an InnoDB tablespace to the earlier Antelope file format is to copy the data to
a new table, in a tablespace that uses the earlier format.

The easiest way to determine the file format of an existing InnoDB tablespace is to examine the
properties of the table it contains, using the SHOW TABLE STATUS command or querying the table
INFORMATION_SCHEMA.TABLES. If the Row_format of the table is reported as 'Compressed' or
'Dynamic', the tablespace containing the table supports the Barracuda format.

Internal Details

Every InnoDB file-per-table tablespace (represented by a *.ibd file) file is labeled with a file format
identifier. The system tablespace (represented by the ibdata files) is tagged with the “highest” file format
in use in a group of InnoDB database files, and this tag is checked when the files are opened.

Creating a compressed table, or a table with ROW_FORMAT=DYNAMIC, updates the file header of the
corresponding file-per-table .ibd file and the table type in the InnoDB data dictionary with the identifier
for the Barracuda file format. From that point forward, the table cannot be used with a version of InnoDB
that does not support the Barracuda file format. To protect against anomalous behavior, InnoDB performs
a compatibility check when the table is opened. (In many cases, the ALTER TABLE statement recreates a
table and thus changes its properties. The special case of adding or dropping indexes without rebuilding
the table is described in Section 14.13.1, “Online DDL Operations”.)

General tablespaces, which are also represented by a *.ibd file, support both Antelope and
Barracuda file formats. For more information about general tablespaces, see Section 14.6.3.3, “General
Tablespaces”.

Definition of ib-file set

To avoid confusion, for the purposes of this discussion we define the term “ib-file set” to mean the set of
operating system files that InnoDB manages as a unit. The ib-file set includes the following files:

• The system tablespace (one or more ibdata files) that contain internal system information (including
internal catalogs and undo information) and may include user data and indexes.

• Zero or more single-table tablespaces (also called “file per table” files, named *.ibd files).

• InnoDB log files; usually two, ib_logfile0 and ib_logfile1. Used for crash recovery and in
backups.

An “ib-file set” does not include the corresponding .frm files that contain metadata about InnoDB tables.
The .frm files are created and managed by MySQL, and can sometimes get out of sync with the internal
metadata in InnoDB.

2693

Verifying File Format Compatibility

Multiple tables, even from more than one database, can be stored in a single “ib-file set”. (In MySQL, a
“database” is a logical collection of tables, what other systems refer to as a “schema” or “catalog”.)

14.10.2.1 Compatibility Check When InnoDB Is Started

To prevent possible crashes or data corruptions when InnoDB opens an ib-file set, it checks that it can fully
support the file formats in use within the ib-file set. If the system is restarted following a crash, or a “fast
shutdown” (i.e., innodb_fast_shutdown is greater than zero), there may be on-disk data structures
(such as redo or undo entries, or doublewrite pages) that are in a “too-new” format for the current software.
During the recovery process, serious damage can be done to your data files if these data structures
are accessed. The startup check of the file format occurs before any recovery process begins, thereby
preventing consistency issues with the new tables or startup problems for the MySQL server.

Beginning with version InnoDB 1.0.1, the system tablespace records an identifier or tag for the “highest”
file format used by any table in any of the tablespaces that is part of the ib-file set. Checks against this file
format tag are controlled by the configuration parameter innodb_file_format_check, which is ON by
default.

If the file format tag in the system tablespace is newer or higher than the highest version supported by the
particular currently executing software and if innodb_file_format_check is ON, the following error is
issued when the server is started:

InnoDB: Error: the system tablespace is in a
file format that this version doesn't support

You can also set innodb_file_format to a file format name. Doing so prevents InnoDB from starting
if the current software does not support the file format specified. It also sets the “high water mark” to the
value you specify. The ability to set innodb_file_format_check is useful (with future releases) if you
manually “downgrade” all of the tables in an ib-file set. You can then rely on the file format check at startup
if you subsequently use an older version of InnoDB to access the ib-file set.

In some limited circumstances, you might want to start the server and use an ib-file set that is in a new
file format that is not supported by the software you are using. If you set the configuration parameter
innodb_file_format_check to OFF, InnoDB opens the database, but issues this warning message in
the error log:

InnoDB: Warning: the system tablespace is in a
file format that this version doesn't support

Note

This is a dangerous setting, as it permits the recovery process to run, possibly
corrupting your database if the previous shutdown was an unexpected exit or “fast
shutdown”. You should only set innodb_file_format_check to OFF if you are
sure that the previous shutdown was done with innodb_fast_shutdown=0, so
that essentially no recovery process occurs.

The parameter innodb_file_format_check affects only what happens when a database is opened,
not subsequently. Conversely, the parameter innodb_file_format (which enables a specific format)
only determines whether or not a new table can be created in the enabled format and has no effect on
whether or not a database can be opened.

The file format tag is a “high water mark”, and as such it is increased after the server is started, if a table
in a “higher” format is created or an existing table is accessed for read or write (assuming its format
is supported). If you access an existing table in a format higher than the format the running software

2694

Identifying the File Format in Use

supports, the system tablespace tag is not updated, but table-level compatibility checking applies (and
an error is issued), as described in Section 14.10.2.2, “Compatibility Check When a Table Is Opened”.
Any time the high water mark is updated, the value of innodb_file_format_check is updated as
well, so the command SELECT @@innodb_file_format_check; displays the name of the latest file
format known to be used by tables in the currently open ib-file set and supported by the currently executing
software.

14.10.2.2 Compatibility Check When a Table Is Opened

When a table is first accessed, InnoDB (including some releases prior to InnoDB 1.0) checks that the file
format of the tablespace in which the table is stored is fully supported. This check prevents crashes or
corruptions that would otherwise occur when tables using a “too new” data structure are encountered.

All tables using any file format supported by a release can be read or written (assuming the user has
sufficient privileges). The setting of the system configuration parameter innodb_file_format can
prevent creating a new table that uses a specific file format, even if the file format is supported by a
given release. Such a setting might be used to preserve backward compatibility, but it does not prevent
accessing any table that uses a supported format.

Versions of MySQL older than 5.0.21 cannot reliably use database files created by newer versions if a
new file format was used when a table was created. To prevent various error conditions or corruptions,
InnoDB checks file format compatibility when it opens a file (for example, upon first access to a table). If
the currently running version of InnoDB does not support the file format identified by the table type in the
InnoDB data dictionary, MySQL reports the following error:

ERROR 1146 (42S02): Table 'test.t1' doesn't exist

InnoDB also writes a message to the error log:

InnoDB: table test/t1: unknown table type 33

The table type should be equal to the tablespace flags, which contains the file format version as discussed
in Section 14.10.3, “Identifying the File Format in Use”.

Versions of InnoDB prior to MySQL 4.1 did not include table format identifiers in the database files, and
versions prior to MySQL 5.0.21 did not include a table format compatibility check. Therefore, there is no
way to ensure proper operations if a table in a newer file format is used with versions of InnoDB prior to
5.0.21.

The file format management capability in InnoDB 1.0 and higher (tablespace tagging and run-time checks)
allows InnoDB to verify as soon as possible that the running version of software can properly process the
tables existing in the database.

If you permit InnoDB to open a database containing files in a format it does not support (by setting the
parameter innodb_file_format_check to OFF), the table-level checking described in this section still
applies.

Users are strongly urged not to use database files that contain Barracuda file format tables with releases of
InnoDB older than the MySQL 5.1 with the InnoDB Plugin. It may be possible to rebuild such tables to use
the Antelope format.

14.10.3 Identifying the File Format in Use

If you enable a different file format using the innodb_file_format configuration option, the change
only applies to newly created tables. Also, when you create a new table, the tablespace containing the

2695

Modifying the File Format

table is tagged with the “earliest” or “simplest” file format that is required to support the table's features. For
example, if you enable the Barracuda file format, and create a new table that does not use the Dynamic
or Compressed row format, the new tablespace that contains the table is tagged as using the Antelope
file format .

It is easy to identify the file format used by a given table. The table uses the Antelope file format if the
row format reported by SHOW TABLE STATUS is either Compact or Redundant. The table uses the
Barracuda file format if the row format reported by SHOW TABLE STATUS is either Compressed or
Dynamic.

mysql> SHOW TABLE STATUS\G
*************************** 1. row ***************************
 Name: t1
 Engine: InnoDB
 Version: 10
 Row_format: Compact
 Rows: 0
 Avg_row_length: 0
 Data_length: 16384
Max_data_length: 0
 Index_length: 16384
 Data_free: 0
 Auto_increment: 1
 Create_time: 2014-11-03 13:32:10
 Update_time: NULL
 Check_time: NULL
 Collation: latin1_swedish_ci
 Checksum: NULL
 Create_options:
 Comment:

You can also identify the file format used by a given table or tablespace using InnoDB
INFORMATION_SCHEMA tables. For example:

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_SYS_TABLES WHERE NAME='test/t1'\G
*************************** 1. row ***************************
 TABLE_ID: 44
 NAME: test/t1
 FLAG: 1
 N_COLS: 6
 SPACE: 30
 FILE_FORMAT: Antelope
 ROW_FORMAT: Compact
ZIP_PAGE_SIZE: 0

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_SYS_TABLESPACES WHERE NAME='test/t1'\G
*************************** 1. row ***************************
 SPACE: 30
 NAME: test/t1
 FLAG: 0
 FILE_FORMAT: Antelope
 ROW_FORMAT: Compact or Redundant
 PAGE_SIZE: 16384
ZIP_PAGE_SIZE: 0

14.10.4 Modifying the File Format

Each InnoDB tablespace file (with a name matching *.ibd) is tagged with the file format used to create its
table and indexes. The way to modify the file format is to re-create the table and its indexes. The easiest
way to recreate a table and its indexes is to use the following command on each table that you want to
modify:

ALTER TABLE t ROW_FORMAT=format_name;

2696

InnoDB Row Formats

If you are modifying the file format to downgrade to an older MySQL version, there may be incompatibilities
in table storage formats that require additional steps. For information about downgrading to a previous
MySQL version, see Section 2.11, “Downgrading MySQL”.

14.11 InnoDB Row Formats

The row format of a table determines how its rows are physically stored, which in turn can affect the
performance of queries and DML operations. As more rows fit into a single disk page, queries and index
lookups can work faster, less cache memory is required in the buffer pool, and less I/O is required to write
out updated values.

The data in each table is divided into pages. The pages that make up each table are arranged in a tree
data structure called a B-tree index. Table data and secondary indexes both use this type of structure. The
B-tree index that represents an entire table is known as the clustered index, which is organized according
to the primary key columns. The nodes of a clustered index data structure contain the values of all columns
in the row. The nodes of a secondary index structure contain the values of index columns and primary key
columns.

Variable-length columns are an exception to the rule that column values are stored in B-tree index nodes.
Variable-length columns that are too long to fit on a B-tree page are stored on separately allocated disk
pages called overflow pages. Such columns are referred to as off-page columns. The values of off-page
columns are stored in singly-linked lists of overflow pages, with each such column having its own list of one
or more overflow pages. Depending on column length, all or a prefix of variable-length column values are
stored in the B-tree to avoid wasting storage and having to read a separate page.

The InnoDB storage engine supports four row formats: REDUNDANT, COMPACT, DYNAMIC, and
COMPRESSED.

Table 14.9 InnoDB Row Format Overview

Row Format Compact
Storage
Characteristics

Enhanced
Variable-
Length
Column
Storage

Large Index
Key Prefix
Support

Compression
Support

Supported
Tablespace
Types

Required
File Format

REDUNDANT No No No No system, file-
per-table,
general

Antelope or
Barracuda

COMPACT Yes No No No system, file-
per-table,
general

Antelope or
Barracuda

DYNAMIC Yes Yes Yes No system, file-
per-table,
general

Barracuda

COMPRESSED Yes Yes Yes Yes file-per-table,
general

Barracuda

The topics that follow describe row format storage characteristics and how to define and determine the row
format of a table.

• REDUNDANT Row Format

• COMPACT Row Format

2697

REDUNDANT Row Format

• DYNAMIC Row Format

• COMPRESSED Row Format

• Defining the Row Format of a Table

• Determining the Row Format of a Table

REDUNDANT Row Format

The REDUNDANT format provides compatibility with older versions of MySQL.

The REDUNDANT row format is supported by both InnoDB file formats (Antelope and Barracuda). For
more information, see Section 14.10, “InnoDB File-Format Management”.

Tables that use the REDUNDANT row format store the first 768 bytes of variable-length column values
(VARCHAR, VARBINARY, and BLOB and TEXT types) in the index record within the B-tree node, with the
remainder stored on overflow pages. Fixed-length columns greater than or equal to 768 bytes are encoded
as variable-length columns, which can be stored off-page. For example, a CHAR(255) column can exceed
768 bytes if the maximum byte length of the character set is greater than 3, as it is with utf8mb4.

If the value of a column is 768 bytes or less, an overflow page is not used, and some savings in I/O may
result, since the value is stored entirely in the B-tree node. This works well for relatively short BLOB column
values, but may cause B-tree nodes to fill with data rather than key values, reducing their efficiency. Tables
with many BLOB columns could cause B-tree nodes to become too full, and contain too few rows, making
the entire index less efficient than if rows were shorter or column values were stored off-page.

REDUNDANT Row Format Storage Characteristics

The REDUNDANT row format has the following storage characteristics:

• Each index record contains a 6-byte header. The header is used to link together consecutive records,
and for row-level locking.

• Records in the clustered index contain fields for all user-defined columns. In addition, there is a 6-byte
transaction ID field and a 7-byte roll pointer field.

• If no primary key is defined for a table, each clustered index record also contains a 6-byte row ID field.

• Each secondary index record contains all the primary key columns defined for the clustered index key
that are not in the secondary index.

• A record contains a pointer to each field of the record. If the total length of the fields in a record is less
than 128 bytes, the pointer is one byte; otherwise, two bytes. The array of pointers is called the record
directory. The area where the pointers point is the data part of the record.

• Internally, fixed-length character columns such as CHAR(10) are stored in fixed-length format. Trailing
spaces are not truncated from VARCHAR columns.

• Fixed-length columns greater than or equal to 768 bytes are encoded as variable-length columns, which
can be stored off-page. For example, a CHAR(255) column can exceed 768 bytes if the maximum byte
length of the character set is greater than 3, as it is with utf8mb4.

• An SQL NULL value reserves one or two bytes in the record directory. An SQL NULL value reserves
zero bytes in the data part of the record if stored in a variable-length column. For a fixed-length column,
the fixed length of the column is reserved in the data part of the record. Reserving fixed space for NULL

2698

COMPACT Row Format

values permits columns to be updated in place from NULL to non-NULL values without causing index
page fragmentation.

COMPACT Row Format

The COMPACT row format reduces row storage space by about 20% compared to the REDUNDANT row
format, at the cost of increasing CPU use for some operations. If your workload is a typical one that is
limited by cache hit rates and disk speed, COMPACT format is likely to be faster. If the workload is limited by
CPU speed, compact format might be slower.

The COMPACT row format is supported by both InnoDB file formats (Antelope and Barracuda). For
more information, see Section 14.10, “InnoDB File-Format Management”.

Tables that use the COMPACT row format store the first 768 bytes of variable-length column values
(VARCHAR, VARBINARY, and BLOB and TEXT types) in the index record within the B-tree node, with the
remainder stored on overflow pages. Fixed-length columns greater than or equal to 768 bytes are encoded
as variable-length columns, which can be stored off-page. For example, a CHAR(255) column can exceed
768 bytes if the maximum byte length of the character set is greater than 3, as it is with utf8mb4.

If the value of a column is 768 bytes or less, an overflow page is not used, and some savings in I/O may
result, since the value is stored entirely in the B-tree node. This works well for relatively short BLOB column
values, but may cause B-tree nodes to fill with data rather than key values, reducing their efficiency. Tables
with many BLOB columns could cause B-tree nodes to become too full, and contain too few rows, making
the entire index less efficient than if rows were shorter or column values were stored off-page.

COMPACT Row Format Storage Characteristics

The COMPACT row format has the following storage characteristics:

• Each index record contains a 5-byte header that may be preceded by a variable-length header. The
header is used to link together consecutive records, and for row-level locking.

• The variable-length part of the record header contains a bit vector for indicating NULL columns. If the
number of columns in the index that can be NULL is N, the bit vector occupies CEILING(N/8) bytes.
(For example, if there are anywhere from 9 to 16 columns that can be NULL, the bit vector uses two
bytes.) Columns that are NULL do not occupy space other than the bit in this vector. The variable-length
part of the header also contains the lengths of variable-length columns. Each length takes one or two
bytes, depending on the maximum length of the column. If all columns in the index are NOT NULL and
have a fixed length, the record header has no variable-length part.

• For each non-NULL variable-length field, the record header contains the length of the column in one or
two bytes. Two bytes are only needed if part of the column is stored externally in overflow pages or the
maximum length exceeds 255 bytes and the actual length exceeds 127 bytes. For an externally stored
column, the 2-byte length indicates the length of the internally stored part plus the 20-byte pointer to the
externally stored part. The internal part is 768 bytes, so the length is 768+20. The 20-byte pointer stores
the true length of the column.

• The record header is followed by the data contents of non-NULL columns.

• Records in the clustered index contain fields for all user-defined columns. In addition, there is a 6-byte
transaction ID field and a 7-byte roll pointer field.

• If no primary key is defined for a table, each clustered index record also contains a 6-byte row ID field.

• Each secondary index record contains all the primary key columns defined for the clustered index key
that are not in the secondary index. If any of the primary key columns are variable length, the record

2699

DYNAMIC Row Format

header for each secondary index has a variable-length part to record their lengths, even if the secondary
index is defined on fixed-length columns.

• Internally, for nonvariable-length character sets, fixed-length character columns such as CHAR(10) are
stored in a fixed-length format.

Trailing spaces are not truncated from VARCHAR columns.

• Internally, for variable-length character sets such as utf8mb3 and utf8mb4, InnoDB attempts to store
CHAR(N) in N bytes by trimming trailing spaces. If the byte length of a CHAR(N) column value exceeds N
bytes, trailing spaces are trimmed to a minimum of the column value byte length. The maximum length of
a CHAR(N) column is the maximum character byte length × N.

A minimum of N bytes is reserved for CHAR(N). Reserving the minimum space N in many cases
enables column updates to be done in place without causing index page fragmentation. By comparison,
CHAR(N) columns occupy the maximum character byte length × N when using the REDUNDANT row
format.

Fixed-length columns greater than or equal to 768 bytes are encoded as variable-length fields, which
can be stored off-page. For example, a CHAR(255) column can exceed 768 bytes if the maximum byte
length of the character set is greater than 3, as it is with utf8mb4.

DYNAMIC Row Format

The DYNAMIC row format offers the same storage characteristics as the COMPACT row format but adds
enhanced storage capabilities for long variable-length columns and supports large index key prefixes.

The Barracuda file format supports the DYNAMIC row format. See Section 14.10, “InnoDB File-Format
Management”.

When a table is created with ROW_FORMAT=DYNAMIC, InnoDB can store long variable-length column
values (for VARCHAR, VARBINARY, and BLOB and TEXT types) fully off-page, with the clustered index
record containing only a 20-byte pointer to the overflow page. Fixed-length fields greater than or equal to
768 bytes are encoded as variable-length fields. For example, a CHAR(255) column can exceed 768 bytes
if the maximum byte length of the character set is greater than 3, as it is with utf8mb4.

Whether columns are stored off-page depends on the page size and the total size of the row. When a row
is too long, the longest columns are chosen for off-page storage until the clustered index record fits on the
B-tree page. TEXT and BLOB columns that are less than or equal to 40 bytes are stored in line.

The DYNAMIC row format maintains the efficiency of storing the entire row in the index node if it fits (as do
the COMPACT and REDUNDANT formats), but the DYNAMIC row format avoids the problem of filling B-tree
nodes with a large number of data bytes of long columns. The DYNAMIC row format is based on the idea
that if a portion of a long data value is stored off-page, it is usually most efficient to store the entire value
off-page. With DYNAMIC format, shorter columns are likely to remain in the B-tree node, minimizing the
number of overflow pages required for a given row.

The DYNAMIC row format supports index key prefixes up to 3072 bytes. This feature is controlled by the
innodb_large_prefix variable, which is enabled by default. See the innodb_large_prefix variable
description for more information.

Tables that use the DYNAMIC row format can be stored in the system tablespace, file-per-table
tablespaces, and general tablespaces. To store DYNAMIC tables in the system tablespace, either
disable innodb_file_per_table and use a regular CREATE TABLE or ALTER TABLE statement,
or use the TABLESPACE [=] innodb_system table option with CREATE TABLE or ALTER TABLE.
The innodb_file_per_table and innodb_file_format variables are not applicable to general

2700

COMPRESSED Row Format

tablespaces, nor are they applicable when using the TABLESPACE [=] innodb_system table option to
store DYNAMIC tables in the system tablespace.

DYNAMIC Row Format Storage Characteristics

The DYNAMIC row format is a variation of the COMPACT row format. For storage characteristics, see
COMPACT Row Format Storage Characteristics.

COMPRESSED Row Format

The COMPRESSED row format offers the same storage characteristics and capabilities as the DYNAMIC row
format but adds support for table and index data compression.

The Barracuda file format supports the COMPRESSED row format. See Section 14.10, “InnoDB File-Format
Management”.

The COMPRESSED row format uses similar internal details for off-page storage as the DYNAMIC row format,
with additional storage and performance considerations from the table and index data being compressed
and using smaller page sizes. With the COMPRESSED row format, the KEY_BLOCK_SIZE option controls
how much column data is stored in the clustered index, and how much is placed on overflow pages.
For more information about the COMPRESSED row format, see Section 14.9, “InnoDB Table and Page
Compression”.

The COMPRESSED row format supports index key prefixes up to 3072 bytes. This feature is controlled by
the innodb_large_prefix variable, which is enabled by default. See the innodb_large_prefix
variable description for more information.

Tables that use the COMPRESSED row format can be created in file-per-table tablespaces or general
tablespaces. The system tablespace does not support the COMPRESSED row format. To store a
COMPRESSED table in a file-per-table tablespace, the innodb_file_per_table variable must be
enabled and innodb_file_format must be set to Barracuda. The innodb_file_per_table and
innodb_file_format variables are not applicable to general tablespaces. General tablespaces support
all row formats with the caveat that compressed and uncompressed tables cannot coexist in the same
general tablespace due to different physical page sizes. For more information about, see Section 14.6.3.3,
“General Tablespaces”.

Compressed Row Format Storage Characteristics

The COMPRESSED row format is a variation of the COMPACT row format. For storage characteristics, see
COMPACT Row Format Storage Characteristics.

Defining the Row Format of a Table

The default row format for InnoDB tables is defined by innodb_default_row_format variable, which
has a default value of DYNAMIC. The default row format is used when the ROW_FORMAT table option is not
defined explicitly or when ROW_FORMAT=DEFAULT is specified.

The row format of a table can be defined explicitly using the ROW_FORMAT table option in a CREATE
TABLE or ALTER TABLE statement. For example:

CREATE TABLE t1 (c1 INT) ROW_FORMAT=DYNAMIC;

An explicitly defined ROW_FORMAT setting overrides the default row format. Specifying
ROW_FORMAT=DEFAULT is equivalent to using the implicit default.

The innodb_default_row_format variable can be set dynamically:

2701

Defining the Row Format of a Table

mysql> SET GLOBAL innodb_default_row_format=DYNAMIC;

Valid innodb_default_row_format options include DYNAMIC, COMPACT, and REDUNDANT. The
COMPRESSED row format, which is not supported for use in the system tablespace, cannot be defined as
the default. It can only be specified explicitly in a CREATE TABLE or ALTER TABLE statement. Attempting
to set the innodb_default_row_format variable to COMPRESSED returns an error:

mysql> SET GLOBAL innodb_default_row_format=COMPRESSED;
ERROR 1231 (42000): Variable 'innodb_default_row_format'
can't be set to the value of 'COMPRESSED'

Newly created tables use the row format defined by the innodb_default_row_format variable when a
ROW_FORMAT option is not specified explicitly, or when ROW_FORMAT=DEFAULT is used. For example, the
following CREATE TABLE statements use the row format defined by the innodb_default_row_format
variable.

CREATE TABLE t1 (c1 INT);

CREATE TABLE t2 (c1 INT) ROW_FORMAT=DEFAULT;

When a ROW_FORMAT option is not specified explicitly, or when ROW_FORMAT=DEFAULT is used, an
operation that rebuilds a table silently changes the row format of the table to the format defined by the
innodb_default_row_format variable.

Table-rebuilding operations include ALTER TABLE operations that use ALGORITHM=COPY or
ALGORITHM=INPLACE where table rebuilding is required. See Section 14.13.1, “Online DDL Operations”
for more information. OPTIMIZE TABLE is also a table-rebuilding operation.

The following example demonstrates a table-rebuilding operation that silently changes the row format of a
table created without an explicitly defined row format.

mysql> SELECT @@innodb_default_row_format;
+-----------------------------+
| @@innodb_default_row_format |
+-----------------------------+
| dynamic |
+-----------------------------+

mysql> CREATE TABLE t1 (c1 INT);

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_SYS_TABLES WHERE NAME LIKE 'test/t1' \G
*************************** 1. row ***************************
 TABLE_ID: 54
 NAME: test/t1
 FLAG: 33
 N_COLS: 4
 SPACE: 35
 FILE_FORMAT: Barracuda
 ROW_FORMAT: Dynamic
ZIP_PAGE_SIZE: 0
 SPACE_TYPE: Single

mysql> SET GLOBAL innodb_default_row_format=COMPACT;

mysql> ALTER TABLE t1 ADD COLUMN (c2 INT);

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_SYS_TABLES WHERE NAME LIKE 'test/t1' \G
*************************** 1. row ***************************
 TABLE_ID: 55
 NAME: test/t1
 FLAG: 1
 N_COLS: 5
 SPACE: 36

2702

Determining the Row Format of a Table

 FILE_FORMAT: Antelope
 ROW_FORMAT: Compact
ZIP_PAGE_SIZE: 0
 SPACE_TYPE: Single

Consider the following potential issues before changing the row format of existing tables from REDUNDANT
or COMPACT to DYNAMIC.

• The REDUNDANT and COMPACT row formats support a maximum index key prefix length of 767 bytes
whereas DYNAMIC and COMPRESSED row formats support an index key prefix length of 3072 bytes. In
a replication environment, if the innodb_default_row_format variable is set to DYNAMIC on the
source, and set to COMPACT on the replica, the following DDL statement, which does not explicitly define
a row format, succeeds on the source but fails on the replica:

CREATE TABLE t1 (c1 INT PRIMARY KEY, c2 VARCHAR(5000), KEY i1(c2(3070)));

For related information, see Section 14.23, “InnoDB Limits”.

• Importing a table that does not explicitly define a row format results in a schema mismatch error if the
innodb_default_row_format setting on the source server differs from the setting on the destination
server. For more information, Section 14.6.1.3, “Importing InnoDB Tables”.

Determining the Row Format of a Table

To determine the row format of a table, use SHOW TABLE STATUS:

mysql> SHOW TABLE STATUS IN test1\G
*************************** 1. row ***************************
 Name: t1
 Engine: InnoDB
 Version: 10
 Row_format: Dynamic
 Rows: 0
 Avg_row_length: 0
 Data_length: 16384
Max_data_length: 0
 Index_length: 16384
 Data_free: 0
 Auto_increment: 1
 Create_time: 2016-09-14 16:29:38
 Update_time: NULL
 Check_time: NULL
 Collation: latin1_swedish_ci
 Checksum: NULL
 Create_options:
 Comment:

Alternatively, query the Information Schema INNODB_SYS_TABLES table:

mysql> SELECT NAME, ROW_FORMAT FROM INFORMATION_SCHEMA.INNODB_SYS_TABLES WHERE NAME='test1/t1';
+----------+------------+
| NAME | ROW_FORMAT |
+----------+------------+
| test1/t1 | Dynamic |
+----------+------------+

14.12 InnoDB Disk I/O and File Space Management
As a DBA, you must manage disk I/O to keep the I/O subsystem from becoming saturated, and manage
disk space to avoid filling up storage devices. The ACID design model requires a certain amount of I/
O that might seem redundant, but helps to ensure data reliability. Within these constraints, InnoDB
tries to optimize the database work and the organization of disk files to minimize the amount of disk I/O.

2703

InnoDB Disk I/O

Sometimes, I/O is postponed until the database is not busy, or until everything needs to be brought to a
consistent state, such as during a database restart after a fast shutdown.

This section discusses the main considerations for I/O and disk space with the default kind of MySQL
tables (also known as InnoDB tables):

• Controlling the amount of background I/O used to improve query performance.

• Enabling or disabling features that provide extra durability at the expense of additional I/O.

• Organizing tables into many small files, a few larger files, or a combination of both.

• Balancing the size of redo log files against the I/O activity that occurs when the log files become full.

• How to reorganize a table for optimal query performance.

14.12.1 InnoDB Disk I/O

InnoDB uses asynchronous disk I/O where possible, by creating a number of threads to handle I/O
operations, while permitting other database operations to proceed while the I/O is still in progress. On
Linux and Windows platforms, InnoDB uses the available OS and library functions to perform “native”
asynchronous I/O. On other platforms, InnoDB still uses I/O threads, but the threads may actually wait for
I/O requests to complete; this technique is known as “simulated” asynchronous I/O.

Read-Ahead

If InnoDB can determine there is a high probability that data might be needed soon, it performs read-
ahead operations to bring that data into the buffer pool so that it is available in memory. Making a few large
read requests for contiguous data can be more efficient than making several small, spread-out requests.
There are two read-ahead heuristics in InnoDB:

• In sequential read-ahead, if InnoDB notices that the access pattern to a segment in the tablespace is
sequential, it posts in advance a batch of reads of database pages to the I/O system.

• In random read-ahead, if InnoDB notices that some area in a tablespace seems to be in the process of
being fully read into the buffer pool, it posts the remaining reads to the I/O system.

For information about configuring read-ahead heuristics, see Section 14.8.3.4, “Configuring InnoDB Buffer
Pool Prefetching (Read-Ahead)”.

Doublewrite Buffer

InnoDB uses a novel file flush technique involving a structure called the doublewrite buffer, which is
enabled by default in most cases (innodb_doublewrite=ON). It adds safety to recovery following an
unexpected exit or power outage, and improves performance on most varieties of Unix by reducing the
need for fsync() operations.

Before writing pages to a data file, InnoDB first writes them to a contiguous tablespace area called the
doublewrite buffer. Only after the write and the flush to the doublewrite buffer has completed does InnoDB
write the pages to their proper positions in the data file. If there is an operating system, storage subsystem,
or unexpected mysqld process exit in the middle of a page write (causing a torn page condition), InnoDB
can later find a good copy of the page from the doublewrite buffer during recovery.

If system tablespace files (“ibdata files”) are located on Fusion-io devices that support atomic writes,
doublewrite buffering is automatically disabled and Fusion-io atomic writes are used for all data files.
Because the doublewrite buffer setting is global, doublewrite buffering is also disabled for data files
residing on non-Fusion-io hardware. This feature is only supported on Fusion-io hardware and is only

2704

File Space Management

enabled for Fusion-io NVMFS on Linux. To take full advantage of this feature, an innodb_flush_method
setting of O_DIRECT is recommended.

14.12.2 File Space Management

The data files that you define in the configuration file using the innodb_data_file_path configuration
option form the InnoDB system tablespace. The files are logically concatenated to form the system
tablespace. There is no striping in use. You cannot define where within the system tablespace your tables
are allocated. In a newly created system tablespace, InnoDB allocates space starting from the first data
file.

To avoid the issues that come with storing all tables and indexes inside the system tablespace, you
can enable the innodb_file_per_table configuration option (the default), which stores each newly
created table in a separate tablespace file (with extension .ibd). For tables stored this way, there is less
fragmentation within the disk file, and when the table is truncated, the space is returned to the operating
system rather than still being reserved by InnoDB within the system tablespace. For more information, see
Section 14.6.3.2, “File-Per-Table Tablespaces”.

You can also store tables in general tablespaces. General tablespaces are shared tablespaces created
using CREATE TABLESPACE syntax. They can be created outside of the MySQL data directory, are
capable of holding multiple tables, and support tables of all row formats. For more information, see
Section 14.6.3.3, “General Tablespaces”.

Pages, Extents, Segments, and Tablespaces

Each tablespace consists of database pages. Every tablespace in a MySQL instance has the same page
size. By default, all tablespaces have a page size of 16KB; you can reduce the page size to 8KB or 4KB by
specifying the innodb_page_size option when you create the MySQL instance. You can also increase
the page size to 32KB or 64KB. For more information, refer to the innodb_page_size documentation.

The pages are grouped into extents of size 1MB for pages up to 16KB in size (64 consecutive 16KB pages,
or 128 8KB pages, or 256 4KB pages). For a page size of 32KB, extent size is 2MB. For page size of
64KB, extent size is 4MB. The “files” inside a tablespace are called segments in InnoDB. (These segments
are different from the rollback segment, which actually contains many tablespace segments.)

When a segment grows inside the tablespace, InnoDB allocates the first 32 pages to it one at a time. After
that, InnoDB starts to allocate whole extents to the segment. InnoDB can add up to 4 extents at a time to
a large segment to ensure good sequentiality of data.

Two segments are allocated for each index in InnoDB. One is for nonleaf nodes of the B-tree, the other
is for the leaf nodes. Keeping the leaf nodes contiguous on disk enables better sequential I/O operations,
because these leaf nodes contain the actual table data.

Some pages in the tablespace contain bitmaps of other pages, and therefore a few extents in an InnoDB
tablespace cannot be allocated to segments as a whole, but only as individual pages.

When you ask for available free space in the tablespace by issuing a SHOW TABLE STATUS statement,
InnoDB reports the extents that are definitely free in the tablespace. InnoDB always reserves some
extents for cleanup and other internal purposes; these reserved extents are not included in the free space.

When you delete data from a table, InnoDB contracts the corresponding B-tree indexes. Whether the freed
space becomes available for other users depends on whether the pattern of deletes frees individual pages
or extents to the tablespace. Dropping a table or deleting all rows from it is guaranteed to release the
space to other users, but remember that deleted rows are physically removed only by the purge operation,
which happens automatically some time after they are no longer needed for transaction rollbacks or
consistent reads. (See Section 14.3, “InnoDB Multi-Versioning”.)

2705

InnoDB Checkpoints

How Pages Relate to Table Rows

The maximum row length is slightly less than half a database page for 4KB, 8KB, 16KB, and 32KB
innodb_page_size settings. For example, the maximum row length is slightly less than 8KB for the
default 16KB InnoDB page size. For 64KB pages, the maximum row length is slightly less than 16KB.

If a row does not exceed the maximum row length, all of it is stored locally within the page. If a row
exceeds the maximum row length, variable-length columns are chosen for external off-page storage until
the row fits within the maximum row length limit. External off-page storage for variable-length columns
differs by row format:

• COMPACT and REDUNDANT Row Formats

When a variable-length column is chosen for external off-page storage, InnoDB stores the first 768
bytes locally in the row, and the rest externally into overflow pages. Each such column has its own list of
overflow pages. The 768-byte prefix is accompanied by a 20-byte value that stores the true length of the
column and points into the overflow list where the rest of the value is stored. See Section 14.11, “InnoDB
Row Formats”.

• DYNAMIC and COMPRESSED Row Formats

When a variable-length column is chosen for external off-page storage, InnoDB stores a 20-byte
pointer locally in the row, and the rest externally into overflow pages. See Section 14.11, “InnoDB Row
Formats”.

LONGBLOB and LONGTEXT columns must be less than 4GB, and the total row length, including BLOB and
TEXT columns, must be less than 4GB.

14.12.3 InnoDB Checkpoints

Making your log files very large may reduce disk I/O during checkpointing. It often makes sense to set
the total size of the log files as large as the buffer pool or even larger. Although in the past large log files
could make crash recovery take excessive time, starting with MySQL 5.5, performance enhancements to
crash recovery make it possible to use large log files with fast startup after a crash. (Strictly speaking, this
performance improvement is available for MySQL 5.1 with the InnoDB Plugin 1.0.7 and higher. It is with
MySQL 5.5 that this improvement is available in the default InnoDB storage engine.)

How Checkpoint Processing Works

InnoDB implements a checkpoint mechanism known as fuzzy checkpointing. InnoDB flushes modified
database pages from the buffer pool in small batches. There is no need to flush the buffer pool in one
single batch, which would disrupt processing of user SQL statements during the checkpointing process.

During crash recovery, InnoDB looks for a checkpoint label written to the log files. It knows that all
modifications to the database before the label are present in the disk image of the database. Then InnoDB
scans the log files forward from the checkpoint, applying the logged modifications to the database.

14.12.4 Defragmenting a Table

Random insertions into or deletions from a secondary index can cause the index to become fragmented.
Fragmentation means that the physical ordering of the index pages on the disk is not close to the index
ordering of the records on the pages, or that there are many unused pages in the 64-page blocks that were
allocated to the index.

One symptom of fragmentation is that a table takes more space than it “should” take. How much that is
exactly, is difficult to determine. All InnoDB data and indexes are stored in B-trees, and their fill factor may

2706

Reclaiming Disk Space with TRUNCATE TABLE

vary from 50% to 100%. Another symptom of fragmentation is that a table scan such as this takes more
time than it “should” take:

SELECT COUNT(*) FROM t WHERE non_indexed_column <> 12345;

The preceding query requires MySQL to perform a full table scan, the slowest type of query for a large
table.

To speed up index scans, you can periodically perform a “null” ALTER TABLE operation, which causes
MySQL to rebuild the table:

ALTER TABLE tbl_name ENGINE=INNODB

You can also use ALTER TABLE tbl_name FORCE to perform a “null” alter operation that rebuilds the
table.

Both ALTER TABLE tbl_name ENGINE=INNODB and ALTER TABLE tbl_name FORCE use online
DDL. For more information, see Section 14.13, “InnoDB and Online DDL”.

Another way to perform a defragmentation operation is to use mysqldump to dump the table to a text file,
drop the table, and reload it from the dump file.

If the insertions into an index are always ascending and records are deleted only from the end, the InnoDB
filespace management algorithm guarantees that fragmentation in the index does not occur.

14.12.5 Reclaiming Disk Space with TRUNCATE TABLE

To reclaim operating system disk space when truncating an InnoDB table, the table must be stored in
its own .ibd file. For a table to be stored in its own .ibd file, innodb_file_per_table must enabled
when the table is created. Additionally, there cannot be a foreign key constraint between the table being
truncated and other tables, otherwise the TRUNCATE TABLE operation fails. A foreign key constraint
between two columns in the same table, however, is permitted.

When a table is truncated, it is dropped and re-created in a new .ibd file, and the freed space is returned
to the operating system. This is in contrast to truncating InnoDB tables that are stored within the InnoDB
system tablespace (tables created when innodb_file_per_table=OFF) and tables stored in shared
general tablespaces, where only InnoDB can use the freed space after the table is truncated.

The ability to truncate tables and return disk space to the operating system also means that physical
backups can be smaller. Truncating tables that are stored in the system tablespace (tables created when
innodb_file_per_table=OFF) or in a general tablespace leaves blocks of unused space in the
tablespace.

14.13 InnoDB and Online DDL
The online DDL feature provides support for in-place table alterations and concurrent DML. Benefits of this
feature include:

• Improved responsiveness and availability in busy production environments, where making a table
unavailable for minutes or hours is not practical.

• The ability to adjust the balance between performance and concurrency during DDL operations using the
LOCK clause. See The LOCK clause.

• Less disk space usage and I/O overhead than the table-copy method.

Typically, you do not need to do anything special to enable online DDL. By default, MySQL performs the
operation in place, as permitted, with as little locking as possible.

2707

Online DDL Operations

You can control aspects of a DDL operation using the ALGORITHM and LOCK clauses of the ALTER TABLE
statement. These clauses are placed at the end of the statement, separated from the table and column
specifications by commas. For example:

ALTER TABLE tbl_name ADD PRIMARY KEY (column), ALGORITHM=INPLACE, LOCK=NONE;

The LOCK clause is useful for fine-tuning the degree of concurrent access to the table. The ALGORITHM
clause is primarily intended for performance comparisons and as a fallback to the older table-copying
behavior in case you encounter any issues. For example:

• To avoid accidentally making the table unavailable for reads, writes, or both, specify a clause on the
ALTER TABLE statement such as LOCK=NONE (permit reads and writes) or LOCK=SHARED (permit
reads). The operation halts immediately if the requested level of concurrency is not available.

• To compare performance between algorithms, run a statement with ALGORITHM=INPLACE and
ALGORITHM=COPY. Alternatively, run a statement with the old_alter_table configuration option
disabled and enabled.

• To avoid tying up the server with an ALTER TABLE operation that copies the table, include
ALGORITHM=INPLACE. The statement halts immediately if it cannot use the in-place mechanism.

14.13.1 Online DDL Operations

Online support details, syntax examples, and usage notes for DDL operations are provided under the
following topics in this section.

• Index Operations

• Primary Key Operations

• Column Operations

• Generated Column Operations

• Foreign Key Operations

• Table Operations

• Tablespace Operations

• Partitioning Operations

Index Operations

The following table provides an overview of online DDL support for index operations. An asterisk indicates
additional information, an exception, or a dependency. For details, see Syntax and Usage Notes.

Table 14.10 Online DDL Support for Index Operations

Operation In Place Rebuilds Table Permits
Concurrent DML

Only Modifies
Metadata

Creating or adding
a secondary index

Yes No Yes No

Dropping an index Yes No Yes Yes

Renaming an index Yes No Yes Yes

Adding a FULLTEXT
index

Yes* No* No No

2708

Online DDL Operations

Operation In Place Rebuilds Table Permits
Concurrent DML

Only Modifies
Metadata

Adding a SPATIAL
index

Yes No No No

Changing the index
type

Yes No Yes Yes

Syntax and Usage Notes

• Creating or adding a secondary index

CREATE INDEX name ON table (col_list);

ALTER TABLE tbl_name ADD INDEX name (col_list);

The table remains available for read and write operations while the index is being created. The CREATE
INDEX statement only finishes after all transactions that are accessing the table are completed, so that
the initial state of the index reflects the most recent contents of the table.

Online DDL support for adding secondary indexes means that you can generally speed the overall
process of creating and loading a table and associated indexes by creating the table without secondary
indexes, then adding secondary indexes after the data is loaded.

A newly created secondary index contains only the committed data in the table at the time the CREATE
INDEX or ALTER TABLE statement finishes executing. It does not contain any uncommitted values, old
versions of values, or values marked for deletion but not yet removed from the old index.

If the server exits while creating a secondary index, upon recovery, MySQL drops any partially created
indexes. You must re-run the ALTER TABLE or CREATE INDEX statement.

Some factors affect the performance, space usage, and semantics of this operation. For details, see
Section 14.13.6, “Online DDL Limitations”.

• Dropping an index

DROP INDEX name ON table;

ALTER TABLE tbl_name DROP INDEX name;

The table remains available for read and write operations while the index is being dropped. The DROP
INDEX statement only finishes after all transactions that are accessing the table are completed, so that
the initial state of the index reflects the most recent contents of the table.

• Renaming an index

ALTER TABLE tbl_name RENAME INDEX old_index_name TO new_index_name, ALGORITHM=INPLACE, LOCK=NONE;

• Adding a FULLTEXT index

CREATE FULLTEXT INDEX name ON table(column);

Adding the first FULLTEXT index rebuilds the table if there is no user-defined FTS_DOC_ID column.
Additional FULLTEXT indexes may be added without rebuilding the table.

• Adding a SPATIAL index

CREATE TABLE geom (g GEOMETRY NOT NULL);
ALTER TABLE geom ADD SPATIAL INDEX(g), ALGORITHM=INPLACE, LOCK=SHARED;

2709

Online DDL Operations

• Changing the index type (USING {BTREE | HASH})

ALTER TABLE tbl_name DROP INDEX i1, ADD INDEX i1(key_part,...) USING BTREE, ALGORITHM=INPLACE;

Primary Key Operations

The following table provides an overview of online DDL support for primary key operations. An asterisk
indicates additional information, an exception, or a dependency. See Syntax and Usage Notes.

Table 14.11 Online DDL Support for Primary Key Operations

Operation In Place Rebuilds Table Permits
Concurrent DML

Only Modifies
Metadata

Adding a primary
key

Yes* Yes* Yes No

Dropping a primary
key

No Yes No No

Dropping a primary
key and adding
another

Yes Yes Yes No

Syntax and Usage Notes

• Adding a primary key

ALTER TABLE tbl_name ADD PRIMARY KEY (column), ALGORITHM=INPLACE, LOCK=NONE;

Rebuilds the table in place. Data is reorganized substantially, making it an expensive operation.
ALGORITHM=INPLACE is not permitted under certain conditions if columns have to be converted to NOT
NULL.

Restructuring the clustered index always requires copying of table data. Thus, it is best to define the
primary key when you create a table, rather than issuing ALTER TABLE ... ADD PRIMARY KEY later.

When you create a UNIQUE or PRIMARY KEY index, MySQL must do some extra work. For UNIQUE
indexes, MySQL checks that the table contains no duplicate values for the key. For a PRIMARY KEY
index, MySQL also checks that none of the PRIMARY KEY columns contains a NULL.

When you add a primary key using the ALGORITHM=COPY clause, MySQL converts NULL values in
the associated columns to default values: 0 for numbers, an empty string for character-based columns
and BLOBs, and 0000-00-00 00:00:00 for DATETIME. This is a non-standard behavior that Oracle
recommends you not rely on. Adding a primary key using ALGORITHM=INPLACE is only permitted when
the SQL_MODE setting includes the strict_trans_tables or strict_all_tables flags; when
the SQL_MODE setting is strict, ALGORITHM=INPLACE is permitted, but the statement can still fail if the
requested primary key columns contain NULL values. The ALGORITHM=INPLACE behavior is more
standard-compliant.

If you create a table without a primary key, InnoDB chooses one for you, which can be the first UNIQUE
key defined on NOT NULL columns, or a system-generated key. To avoid uncertainty and the potential
space requirement for an extra hidden column, specify the PRIMARY KEY clause as part of the CREATE
TABLE statement.

MySQL creates a new clustered index by copying the existing data from the original table to a temporary
table that has the desired index structure. Once the data is completely copied to the temporary table, the
original table is renamed with a different temporary table name. The temporary table comprising the new

2710

Online DDL Operations

clustered index is renamed with the name of the original table, and the original table is dropped from the
database.

The online performance enhancements that apply to operations on secondary indexes do not apply to
the primary key index. The rows of an InnoDB table are stored in a clustered index organized based
on the primary key, forming what some database systems call an “index-organized table”. Because the
table structure is closely tied to the primary key, redefining the primary key still requires copying the data.

When an operation on the primary key uses ALGORITHM=INPLACE, even though the data is still copied,
it is more efficient than using ALGORITHM=COPY because:

• No undo logging or associated redo logging is required for ALGORITHM=INPLACE. These operations
add overhead to DDL statements that use ALGORITHM=COPY.

• The secondary index entries are pre-sorted, and so can be loaded in order.

• The change buffer is not used, because there are no random-access inserts into the secondary
indexes.

If the server exits while creating a new clustered index, no data is lost, but you must complete the
recovery process using the temporary tables that exist during the process. Since it is rare to re-create
a clustered index or re-define primary keys on large tables, or to encounter a system crash during this
operation, this manual does not provide information on recovering from this scenario.

• Dropping a primary key

ALTER TABLE tbl_name DROP PRIMARY KEY, ALGORITHM=COPY;

Only ALGORITHM=COPY supports dropping a primary key without adding a new one in the same ALTER
TABLE statement.

• Dropping a primary key and adding another

ALTER TABLE tbl_name DROP PRIMARY KEY, ADD PRIMARY KEY (column), ALGORITHM=INPLACE, LOCK=NONE;

Data is reorganized substantially, making it an expensive operation.

Column Operations

The following table provides an overview of online DDL support for column operations. An asterisk
indicates additional information, an exception, or a dependency. For details, see Syntax and Usage Notes.

Table 14.12 Online DDL Support for Column Operations

Operation In Place Rebuilds Table Permits
Concurrent DML

Only Modifies
Metadata

Adding a column Yes Yes Yes* No

Dropping a column Yes Yes Yes No

Renaming a column Yes No Yes* Yes

Reordering columns Yes Yes Yes No

Setting a column
default value

Yes No Yes Yes

Changing the
column data type

No Yes No No

2711

Online DDL Operations

Operation In Place Rebuilds Table Permits
Concurrent DML

Only Modifies
Metadata

Extending VARCHAR
column size

Yes No Yes Yes

Dropping the
column default
value

Yes No Yes Yes

Changing the auto-
increment value

Yes No Yes No*

Making a column
NULL

Yes Yes* Yes No

Making a column
NOT NULL

Yes* Yes* Yes No

Modifying the
definition of an
ENUM or SET
column

Yes No Yes Yes

Syntax and Usage Notes

• Adding a column

ALTER TABLE tbl_name ADD COLUMN column_name column_definition, ALGORITHM=INPLACE, LOCK=NONE;

Concurrent DML is not permitted when adding an auto-increment column. Data is reorganized
substantially, making it an expensive operation. At a minimum, ALGORITHM=INPLACE, LOCK=SHARED
is required.

• Dropping a column

ALTER TABLE tbl_name DROP COLUMN column_name, ALGORITHM=INPLACE, LOCK=NONE;

Data is reorganized substantially, making it an expensive operation.

• Renaming a column

ALTER TABLE tbl CHANGE old_col_name new_col_name data_type, ALGORITHM=INPLACE, LOCK=NONE;

To permit concurrent DML, keep the same data type and only change the column name.

When you keep the same data type and [NOT] NULL attribute, only changing the column name, the
operation can always be performed online.

You can also rename a column that is part of a foreign key constraint. The foreign key definition is
automatically updated to use the new column name. Renaming a column participating in a foreign
key only works with ALGORITHM=INPLACE. If you use the ALGORITHM=COPY clause, or some other
condition causes the operation to use ALGORITHM=COPY, the ALTER TABLE statement fails.

ALGORITHM=INPLACE is not supported for renaming a generated column.

• Reordering columns

To reorder columns, use FIRST or AFTER in CHANGE or MODIFY operations.

ALTER TABLE tbl_name MODIFY COLUMN col_name column_definition FIRST, ALGORITHM=INPLACE, LOCK=NONE;

2712

Online DDL Operations

Data is reorganized substantially, making it an expensive operation.

• Changing the column data type

ALTER TABLE tbl_name CHANGE c1 c1 BIGINT, ALGORITHM=COPY;

Changing the column data type is only supported with ALGORITHM=COPY.

• Extending VARCHAR column size

ALTER TABLE tbl_name CHANGE COLUMN c1 c1 VARCHAR(255), ALGORITHM=INPLACE, LOCK=NONE;

The number of length bytes required by a VARCHAR column must remain the same. For VARCHAR
columns of 0 to 255 bytes in size, one length byte is required to encode the value. For VARCHAR columns
of 256 bytes in size or more, two length bytes are required. As a result, in-place ALTER TABLE only
supports increasing VARCHAR column size from 0 to 255 bytes, or from 256 bytes to a greater size.
In-place ALTER TABLE does not support increasing the size of a VARCHAR column from less than
256 bytes to a size equal to or greater than 256 bytes. In this case, the number of required length
bytes changes from 1 to 2, which is only supported by a table copy (ALGORITHM=COPY). For example,
attempting to change VARCHAR column size for a single byte character set from VARCHAR(255) to
VARCHAR(256) using in-place ALTER TABLE returns this error:

ALTER TABLE tbl_name ALGORITHM=INPLACE, CHANGE COLUMN c1 c1 VARCHAR(256);
ERROR 0A000: ALGORITHM=INPLACE is not supported. Reason: Cannot change
column type INPLACE. Try ALGORITHM=COPY.

Note

The byte length of a VARCHAR column is dependant on the byte length of the
character set.

Decreasing VARCHAR size using in-place ALTER TABLE is not supported. Decreasing VARCHAR size
requires a table copy (ALGORITHM=COPY).

• Setting a column default value

ALTER TABLE tbl_name ALTER COLUMN col SET DEFAULT literal, ALGORITHM=INPLACE, LOCK=NONE;

Only modifies table metadata. Default column values are stored in the .frm file for the table, not the
InnoDB data dictionary.

• Dropping a column default value

ALTER TABLE tbl ALTER COLUMN col DROP DEFAULT, ALGORITHM=INPLACE, LOCK=NONE;

• Changing the auto-increment value

ALTER TABLE table AUTO_INCREMENT=next_value, ALGORITHM=INPLACE, LOCK=NONE;

Modifies a value stored in memory, not the data file.

In a distributed system using replication or sharding, you sometimes reset the auto-increment counter
for a table to a specific value. The next row inserted into the table uses the specified value for its auto-
increment column. You might also use this technique in a data warehousing environment where you
periodically empty all the tables and reload them, and restart the auto-increment sequence from 1.

• Making a column NULL

ALTER TABLE tbl_name MODIFY COLUMN column_name data_type NULL, ALGORITHM=INPLACE, LOCK=NONE;

2713

Online DDL Operations

Rebuilds the table in place. Data is reorganized substantially, making it an expensive operation.

• Making a column NOT NULL

ALTER TABLE tbl_name MODIFY COLUMN column_name data_type NOT NULL, ALGORITHM=INPLACE, LOCK=NONE;

Rebuilds the table in place. STRICT_ALL_TABLES or STRICT_TRANS_TABLES SQL_MODE is required
for the operation to succeed. The operation fails if the column contains NULL values. The server
prohibits changes to foreign key columns that have the potential to cause loss of referential integrity. See
Section 13.1.8, “ALTER TABLE Statement”. Data is reorganized substantially, making it an expensive
operation.

• Modifying the definition of an ENUM or SET column

CREATE TABLE t1 (c1 ENUM('a', 'b', 'c'));
ALTER TABLE t1 MODIFY COLUMN c1 ENUM('a', 'b', 'c', 'd'), ALGORITHM=INPLACE, LOCK=NONE;

Modifying the definition of an ENUM or SET column by adding new enumeration or set members to the
end of the list of valid member values may be performed in place, as long as the storage size of the data
type does not change. For example, adding a member to a SET column that has 8 members changes
the required storage per value from 1 byte to 2 bytes; this requires a table copy. Adding members in the
middle of the list causes renumbering of existing members, which requires a table copy.

Generated Column Operations

The following table provides an overview of online DDL support for generated column operations. For
details, see Syntax and Usage Notes.

Table 14.13 Online DDL Support for Generated Column Operations

Operation In Place Rebuilds Table Permits
Concurrent DML

Only Modifies
Metadata

Adding a STORED
column

No Yes No No

Modifying STORED
column order

No Yes No No

Dropping a STORED
column

Yes Yes Yes No

Adding a VIRTUAL
column

Yes No Yes Yes

Modifying VIRTUAL
column order

No Yes No No

Dropping a
VIRTUAL column

Yes No Yes Yes

Syntax and Usage Notes

• Adding a STORED column

ALTER TABLE t1 ADD COLUMN (c2 INT GENERATED ALWAYS AS (c1 + 1) STORED), ALGORITHM=COPY;

ADD COLUMN is not an in-place operation for stored columns (done without using a temporary table)
because the expression must be evaluated by the server.

2714

Online DDL Operations

• Modifying STORED column order

ALTER TABLE t1 MODIFY COLUMN c2 INT GENERATED ALWAYS AS (c1 + 1) STORED FIRST, ALGORITHM=COPY;

Rebuilds the table in place.

• Dropping a STORED column

ALTER TABLE t1 DROP COLUMN c2, ALGORITHM=INPLACE, LOCK=NONE;

Rebuilds the table in place.

• Adding a VIRTUAL column

ALTER TABLE t1 ADD COLUMN (c2 INT GENERATED ALWAYS AS (c1 + 1) VIRTUAL), ALGORITHM=INPLACE, LOCK=NONE;

Adding a virtual column is an in-place operation for non-partitioned tables. However, adding a virtual
column cannot be combined with other ALTER TABLE actions.

Adding a VIRTUAL is not an in-place operation for partitioned tables.

• Modifying VIRTUAL column order

ALTER TABLE t1 MODIFY COLUMN c2 INT GENERATED ALWAYS AS (c1 + 1) VIRTUAL FIRST, ALGORITHM=COPY;

• Dropping a VIRTUAL column

ALTER TABLE t1 DROP COLUMN c2, ALGORITHM=INPLACE, LOCK=NONE;

Dropping a VIRTUAL column is an in-place operation for non-partitioned tables. However, dropping a
virtual column cannot be combined with other ALTER TABLE actions.

Dropping a VIRTUAL is not an in-place operation for partitioned tables.

Foreign Key Operations

The following table provides an overview of online DDL support for foreign key operations. An asterisk
indicates additional information, an exception, or a dependency. For details, see Syntax and Usage Notes.

Table 14.14 Online DDL Support for Foreign Key Operations

Operation In Place Rebuilds Table Permits
Concurrent DML

Only Modifies
Metadata

Adding a foreign
key constraint

Yes* No Yes Yes

Dropping a foreign
key constraint

Yes No Yes Yes

Syntax and Usage Notes

• Adding a foreign key constraint

The INPLACE algorithm is supported when foreign_key_checks is disabled. Otherwise, only the
COPY algorithm is supported.

ALTER TABLE tbl1 ADD CONSTRAINT fk_name FOREIGN KEY index (col1)
 REFERENCES tbl2(col2) referential_actions;

• Dropping a foreign key constraint

2715

Online DDL Operations

ALTER TABLE tbl DROP FOREIGN KEY fk_name;

Dropping a foreign key can be performed online with the foreign_key_checks option enabled or
disabled.

If you do not know the names of the foreign key constraints on a particular table, issue the following
statement and find the constraint name in the CONSTRAINT clause for each foreign key:

SHOW CREATE TABLE table\G

Or, query the Information Schema TABLE_CONSTRAINTS table and use the CONSTRAINT_NAME and
CONSTRAINT_TYPE columns to identify the foreign key names.

You can also drop a foreign key and its associated index in a single statement:

ALTER TABLE table DROP FOREIGN KEY constraint, DROP INDEX index;

Note

If foreign keys are already present in the table being altered (that is, it is a child
table containing a FOREIGN KEY ... REFERENCE clause), additional restrictions
apply to online DDL operations, even those not directly involving the foreign key
columns:

• An ALTER TABLE on the child table could wait for another transaction to commit,
if a change to the parent table causes associated changes in the child table
through an ON UPDATE or ON DELETE clause using the CASCADE or SET NULL
parameters.

• In the same way, if a table is the parent table in a foreign key relationship, even
though it does not contain any FOREIGN KEY clauses, it could wait for the ALTER
TABLE to complete if an INSERT, UPDATE, or DELETE statement causes an ON
UPDATE or ON DELETE action in the child table.

Table Operations

The following table provides an overview of online DDL support for table operations. An asterisk indicates
additional information, an exception, or a dependency. For details, see Syntax and Usage Notes.

Table 14.15 Online DDL Support for Table Operations

Operation In Place Rebuilds Table Permits
Concurrent DML

Only Modifies
Metadata

Changing the
ROW_FORMAT

Yes Yes Yes No

Changing the
KEY_BLOCK_SIZE

Yes Yes Yes No

Setting persistent
table statistics

Yes No Yes Yes

Specifying a
character set

Yes Yes* Yes No

Converting a
character set

No Yes* No No

2716

Online DDL Operations

Operation In Place Rebuilds Table Permits
Concurrent DML

Only Modifies
Metadata

Optimizing a table Yes* Yes Yes No

Rebuilding with the
FORCE option

Yes* Yes Yes No

Performing a null
rebuild

Yes* Yes Yes No

Renaming a table Yes No Yes Yes

Syntax and Usage Notes

• Changing the ROW_FORMAT

ALTER TABLE tbl_name ROW_FORMAT = row_format, ALGORITHM=INPLACE, LOCK=NONE;

Data is reorganized substantially, making it an expensive operation.

For additional information about the ROW_FORMAT option, see Table Options.

• Changing the KEY_BLOCK_SIZE

ALTER TABLE tbl_name KEY_BLOCK_SIZE = value, ALGORITHM=INPLACE, LOCK=NONE;

Data is reorganized substantially, making it an expensive operation.

For additional information about the KEY_BLOCK_SIZE option, see Table Options.

• Setting persistent table statistics options

ALTER TABLE tbl_name STATS_PERSISTENT=0, STATS_SAMPLE_PAGES=20, STATS_AUTO_RECALC=1, ALGORITHM=INPLACE, LOCK=NONE;

Only modifies table metadata.

Persistent statistics include STATS_PERSISTENT, STATS_AUTO_RECALC, and STATS_SAMPLE_PAGES.
For more information, see Section 14.8.11.1, “Configuring Persistent Optimizer Statistics Parameters”.

• Specifying a character set

ALTER TABLE tbl_name CHARACTER SET = charset_name, ALGORITHM=INPLACE, LOCK=NONE;

Rebuilds the table if the new character encoding is different.

• Converting a character set

ALTER TABLE tbl_name CONVERT TO CHARACTER SET charset_name, ALGORITHM=COPY;

Rebuilds the table if the new character encoding is different.

• Optimizing a table

OPTIMIZE TABLE tbl_name;

In-place operation is not supported for tables with FULLTEXT indexes. The operation uses the INPLACE
algorithm, but ALGORITHM and LOCK syntax is not permitted.

• Rebuilding a table with the FORCE option

ALTER TABLE tbl_name FORCE, ALGORITHM=INPLACE, LOCK=NONE;

2717

Online DDL Operations

Uses ALGORITHM=INPLACE as of MySQL 5.6.17. ALGORITHM=INPLACE is not supported for tables
with FULLTEXT indexes.

• Performing a "null" rebuild

ALTER TABLE tbl_name ENGINE=InnoDB, ALGORITHM=INPLACE, LOCK=NONE;

Uses ALGORITHM=INPLACE as of MySQL 5.6.17. ALGORITHM=INPLACE is not supported for tables
with FULLTEXT indexes.

• Renaming a table

ALTER TABLE old_tbl_name RENAME TO new_tbl_name, ALGORITHM=INPLACE, LOCK=NONE;

MySQL renames files that correspond to the table tbl_name without making a copy. (You can also use
the RENAME TABLE statement to rename tables. See Section 13.1.33, “RENAME TABLE Statement”.)
Privileges granted specifically for the renamed table are not migrated to the new name. They must be
changed manually.

Tablespace Operations

The following table provides an overview of online DDL support for tablespace operations. For details, see
Syntax and Usage Notes.

Table 14.16 Online DDL Support for Tablespace Operations

Operation In Place Rebuilds Table Permits
Concurrent DML

Only Modifies
Metadata

Enabling or
disabling file-per-
table tablespace
encryption

No Yes No No

Syntax and Usage Notes

Enabling or disabling file-per-table tablespace encryption

ALTER TABLE tbl_name ENCRYPTION='Y', ALGORITHM=COPY;

Encryption is only supported for file-per-table tablespaces. For related information, see Section 14.14,
“InnoDB Data-at-Rest Encryption”.

Partitioning Operations

With the exception of most ALTER TABLE partitioning clauses, online DDL operations for partitioned
InnoDB tables follow the same rules that apply to regular InnoDB tables.

Most ALTER TABLE partitioning clauses do not go through the same internal online DDL API as regular
non-partitioned InnoDB tables. As a result, online support for ALTER TABLE partitioning clauses varies.

The following table shows the online status for each ALTER TABLE partitioning statement. Regardless of
the online DDL API that is used, MySQL attempts to minimize data copying and locking where possible.

ALTER TABLE partitioning options that use ALGORITHM=COPY or that only permit
“ALGORITHM=DEFAULT, LOCK=DEFAULT”, repartition the table using the COPY algorithm. In other words,

2718

Online DDL Operations

a new partitioned table is created with the new partitioning scheme. The newly created table includes any
changes applied by the ALTER TABLE statement, and table data is copied into the new table structure.

Table 14.17 Online DDL Support for Partitioning Operations

Partitioning Clause In Place Permits DML Notes

PARTITION BY No No Permits
ALGORITHM=COPY,
LOCK={DEFAULT|
SHARED|EXCLUSIVE}

ADD PARTITION No No Only permits
ALGORITHM=DEFAULT,
LOCK=DEFAULT. Does
not copy existing data
for tables partitioned
by RANGE or LIST.
Concurrent queries are
permitted for tables
partitioned by HASH or
LIST. MySQL copies
the data while holding a
shared lock.

DROP PARTITION No No Only permits
ALGORITHM=DEFAULT,
LOCK=DEFAULT. Does
not copy existing data
for tables partitioned by
RANGE or LIST.

DISCARD PARTITION No No Only permits
ALGORITHM=DEFAULT,
LOCK=DEFAULT

IMPORT PARTITION No No Only permits
ALGORITHM=DEFAULT,
LOCK=DEFAULT

TRUNCATE PARTITION Yes Yes Does not copy existing
data. It merely deletes
rows; it does not alter
the definition of the table
itself, or of any of its
partitions.

COALESCE PARTITION No No Only permits
ALGORITHM=DEFAULT,
LOCK=DEFAULT.
Concurrent queries are
permitted for tables
partitioned by HASH or
LIST, as MySQL copies
the data while holding a
shared lock.

REORGANIZE
PARTITION

No No Only permits
ALGORITHM=DEFAULT,

2719

Online DDL Performance and Concurrency

Partitioning Clause In Place Permits DML Notes
LOCK=DEFAULT.
Concurrent queries are
permitted for tables
partitioned by LINEAR
HASH or LIST. MySQL
copies data from affected
partitions while holding a
shared metadata lock.

EXCHANGE PARTITION Yes Yes

ANALYZE PARTITION Yes Yes

CHECK PARTITION Yes Yes

OPTIMIZE PARTITION No No ALGORITHM and LOCK
clauses are ignored.
Rebuilds the entire table.
See Section 22.3.4,
“Maintenance of
Partitions”.

REBUILD PARTITION No No Only permits
ALGORITHM=DEFAULT,
LOCK=DEFAULT.
Concurrent queries are
permitted for tables
partitioned by LINEAR
HASH or LIST. MySQL
copies data from affected
partitions while holding a
shared metadata lock.

REPAIR PARTITION Yes Yes

REMOVE PARTITIONING No No Permits
ALGORITHM=COPY,
LOCK={DEFAULT|
SHARED|EXCLUSIVE}

Non-partitioning online ALTER TABLE operations on partitioned tables follow the same rules that apply to
regular tables. However, ALTER TABLE performs online operations on each table partition, which causes
increased demand on system resources due to operations being performed on multiple partitions.

For additional information about ALTER TABLE partitioning clauses, see Partitioning Options, and
Section 13.1.8.1, “ALTER TABLE Partition Operations”. For information about partitioning in general, see
Chapter 22, Partitioning.

14.13.2 Online DDL Performance and Concurrency

Online DDL improves several aspects of MySQL operation:

• Applications that access the table are more responsive because queries and DML operations on the
table can proceed while the DDL operation is in progress. Reduced locking and waiting for MySQL
server resources leads to greater scalability, even for operations that are not involved in the DDL
operation.

2720

Online DDL Performance and Concurrency

• In-place operations avoid the disk I/O and CPU cycles associated with the table-copy method, which
minimizes overall load on the database. Minimizing load helps maintain good performance and high
throughput during the DDL operation.

• In-place operations read less data into the buffer pool than the table-copy operations, which reduces
purging of frequently accessed data from memory. Purging of frequently accessed data can cause a
temporary performance dip after a DDL operation.

The LOCK clause

By default, MySQL uses as little locking as possible during a DDL operation. The LOCK clause can be
specified to enforce more restrictive locking, if required. If the LOCK clause specifies a less restrictive level
of locking than is permitted for a particular DDL operation, the statement fails with an error. LOCK clauses
are described below, in order of least to most restrictive:

• LOCK=NONE:

Permits concurrent queries and DML.

For example, use this clause for tables involving customer signups or purchases, to avoid making the
tables unavailable during lengthy DDL operations.

• LOCK=SHARED:

Permits concurrent queries but blocks DML.

For example, use this clause on data warehouse tables, where you can delay data load operations until
the DDL operation is finished, but queries cannot be delayed for long periods.

• LOCK=DEFAULT:

Permits as much concurrency as possible (concurrent queries, DML, or both). Omitting the LOCK clause
is the same as specifying LOCK=DEFAULT.

Use this clause when you know that the default locking level of the DDL statement does not cause
availability problems for the table.

• LOCK=EXCLUSIVE:

Blocks concurrent queries and DML.

Use this clause if the primary concern is finishing the DDL operation in the shortest amount of time
possible, and concurrent query and DML access is not necessary. You might also use this clause if the
server is supposed to be idle, to avoid unexpected table accesses.

Online DDL and Metadata Locks

Online DDL operations can be viewed as having three phases:

• Phase 1: Initialization

In the initialization phase, the server determines how much concurrency is permitted during the
operation, taking into account storage engine capabilities, operations specified in the statement, and
user-specified ALGORITHM and LOCK options. During this phase, a shared upgradeable metadata lock is
taken to protect the current table definition.

• Phase 2: Execution

2721

Online DDL Performance and Concurrency

In this phase, the statement is prepared and executed. Whether the metadata lock is upgraded to
exclusive depends on the factors assessed in the initialization phase. If an exclusive metadata lock is
required, it is only taken briefly during statement preparation.

• Phase 3: Commit Table Definition

In the commit table definition phase, the metadata lock is upgraded to exclusive to evict the old table
definition and commit the new one. Once granted, the duration of the exclusive metadata lock is brief.

Due to the exclusive metadata lock requirements outlined above, an online DDL operation may have to
wait for concurrent transactions that hold metadata locks on the table to commit or rollback. Transactions
started before or during the DDL operation can hold metadata locks on the table being altered. In the case
of a long running or inactive transaction, an online DDL operation can time out waiting for an exclusive
metadata lock. Additionally, a pending exclusive metadata lock requested by an online DDL operation
blocks subsequent transactions on the table.

The following example demonstrates an online DDL operation waiting for an exclusive metadata lock, and
how a pending metadata lock blocks subsequent transactions on the table.

Session 1:

mysql> CREATE TABLE t1 (c1 INT) ENGINE=InnoDB;
mysql> START TRANSACTION;
mysql> SELECT * FROM t1;

The session 1 SELECT statement takes a shared metadata lock on table t1.

Session 2:

mysql> ALTER TABLE t1 ADD COLUMN x INT, ALGORITHM=INPLACE, LOCK=NONE;

The online DDL operation in session 2, which requires an exclusive metadata lock on table t1 to commit
table definition changes, must wait for the session 1 transaction to commit or roll back.

Session 3:

mysql> SELECT * FROM t1;

The SELECT statement issued in session 3 is blocked waiting for the exclusive metadata lock requested by
the ALTER TABLE operation in session 2 to be granted.

You can use SHOW FULL PROCESSLIST to determine if transactions are waiting for a metadata lock.

mysql> SHOW FULL PROCESSLIST\G
...
*************************** 2. row ***************************
 Id: 5
 User: root
 Host: localhost
 db: test
Command: Query
 Time: 44
 State: Waiting for table metadata lock
 Info: ALTER TABLE t1 ADD COLUMN x INT, ALGORITHM=INPLACE, LOCK=NONE
...
*************************** 4. row ***************************
 Id: 7
 User: root
 Host: localhost
 db: test
Command: Query
 Time: 5

2722

Online DDL Performance and Concurrency

 State: Waiting for table metadata lock
 Info: SELECT * FROM t1
4 rows in set (0.00 sec)

Metadata lock information is also exposed through the Performance Schema metadata_locks table,
which provides information about metadata lock dependencies between sessions, the metadata lock a
session is waiting for, and the session that currently holds the metadata lock. For more information, see
Section 25.12.12.1, “The metadata_locks Table”.

Online DDL Performance

The performance of a DDL operation is largely determined by whether the operation is performed in place
and whether it rebuilds the table.

To assess the relative performance of a DDL operation, you can compare results using
ALGORITHM=INPLACE with results using ALGORITHM=COPY. Alternatively, you can compare results with
old_alter_table disabled and enabled.

For DDL operations that modify table data, you can determine whether a DDL operation performs changes
in place or performs a table copy by looking at the “rows affected” value displayed after the command
finishes. For example:

• Changing the default value of a column (fast, does not affect the table data):

Query OK, 0 rows affected (0.07 sec)

• Adding an index (takes time, but 0 rows affected shows that the table is not copied):

Query OK, 0 rows affected (21.42 sec)

• Changing the data type of a column (takes substantial time and requires rebuilding all the rows of the
table):

Query OK, 1671168 rows affected (1 min 35.54 sec)

Before running a DDL operation on a large table, check whether the operation is fast or slow as follows:

1. Clone the table structure.

2. Populate the cloned table with a small amount of data.

3. Run the DDL operation on the cloned table.

4. Check whether the “rows affected” value is zero or not. A nonzero value means the operation copies
table data, which might require special planning. For example, you might do the DDL operation during a
period of scheduled downtime, or on each replica server one at a time.

Note

For a greater understanding of the MySQL processing associated with a DDL
operation, examine Performance Schema and INFORMATION_SCHEMA tables
related to InnoDB before and after DDL operations to see the number of physical
reads, writes, memory allocations, and so on.

Performance Schema stage events can be used to monitor ALTER TABLE
progress. See Section 14.17.1, “Monitoring ALTER TABLE Progress for InnoDB
Tables Using Performance Schema”.

Because there is some processing work involved with recording the changes made by concurrent DML
operations, then applying those changes at the end, an online DDL operation could take longer overall than

2723

Online DDL Space Requirements

the table-copy mechanism that blocks table access from other sessions. The reduction in raw performance
is balanced against better responsiveness for applications that use the table. When evaluating the
techniques for changing table structure, consider end-user perception of performance, based on factors
such as load times for web pages.

14.13.3 Online DDL Space Requirements

Online DDL operations have the following space requirements:

• Temporary log files:

A temporary log file records concurrent DML when an online DDL operation creates an index or alters
a table. The temporary log file is extended as required by the value of innodb_sort_buffer_size
up to a maximum specified by innodb_online_alter_log_max_size. If the operation takes
a long time and concurrent DML modifies the table so much that the size of the temporary log file
exceeds the value of innodb_online_alter_log_max_size, the online DDL operation fails with a
DB_ONLINE_LOG_TOO_BIG error and uncommitted concurrent DML operations are rolled back. A large
innodb_online_alter_log_max_size setting permits more DML during an online DDL operation,
but it also extends the period of time at the end of the DDL operation when the table is locked to apply
logged DML.

The innodb_sort_buffer_size variable also defines the size of the temporary log file read buffer
and write buffer.

• Temporary sort files:

Online DDL operations that rebuild the table write temporary sort files to the MySQL temporary directory
($TMPDIR on Unix, %TEMP% on Windows, or the directory specified by --tmpdir) during index creation.
Temporary sort files are not created in the directory that contains the original table. Each temporary sort
file is large enough to hold one column of data, and each sort file is removed when its data is merged
into the final table or index. Operations involving temporary sort files may require temporary space equal
to the amount of data in the table plus indexes. An error is reported if online DDL operation uses all of
the available disk space on the file system where the data directory resides.

If the MySQL temporary directory is not large enough to hold the sort files, set tmpdir to a different
directory. Alternatively, define a separate temporary directory for online DDL operations using
innodb_tmpdir. This option was introduced in MySQL 5.7.11 to help avoid temporary directory
overflows that could occur as a result of large temporary sort files.

• Intermediate table files:

Some online DDL operations that rebuild the table create a temporary intermediate table file in the
same directory as the original table. An intermediate table file may require space equal to the size of the
original table. Intermediate table file names begin with #sql-ib prefix and only appear briefly during the
online DDL operation.

The innodb_tmpdir option is not applicable to intermediate table files.

14.13.4 Simplifying DDL Statements with Online DDL

Before the introduction of online DDL, it was common practice to combine many DDL operations into a
single ALTER TABLE statement. Because each ALTER TABLE statement involved copying and rebuilding
the table, it was more efficient to make several changes to the same table at once, since those changes
could all be done with a single rebuild operation for the table. The downside was that SQL code involving
DDL operations was harder to maintain and to reuse in different scripts. If the specific changes were

2724

Online DDL Failure Conditions

different each time, you might have to construct a new complex ALTER TABLE for each slightly different
scenario.

For DDL operations that can be done in place, you can separate them into individual ALTER TABLE
statements for easier scripting and maintenance, without sacrificing efficiency. For example, you might take
a complicated statement such as:

ALTER TABLE t1 ADD INDEX i1(c1), ADD UNIQUE INDEX i2(c2),
 CHANGE c4_old_name c4_new_name INTEGER UNSIGNED;

and break it down into simpler parts that can be tested and performed independently, such as:

ALTER TABLE t1 ADD INDEX i1(c1);
ALTER TABLE t1 ADD UNIQUE INDEX i2(c2);
ALTER TABLE t1 CHANGE c4_old_name c4_new_name INTEGER UNSIGNED NOT NULL;

You might still use multi-part ALTER TABLE statements for:

• Operations that must be performed in a specific sequence, such as creating an index followed by a
foreign key constraint that uses that index.

• Operations all using the same specific LOCK clause, that you want to either succeed or fail as a group.

• Operations that cannot be performed in place, that is, that still use the table-copy method.

• Operations for which you specify ALGORITHM=COPY or old_alter_table=1, to force the table-
copying behavior if needed for precise backward-compatibility in specialized scenarios.

14.13.5 Online DDL Failure Conditions

The failure of an online DDL operation is typically due to one of the following conditions:

• An ALGORITHM clause specifies an algorithm that is not compatible with the particular type of DDL
operation or storage engine.

• A LOCK clause specifies a low degree of locking (SHARED or NONE) that is not compatible with the
particular type of DDL operation.

• A timeout occurs while waiting for an exclusive lock on the table, which may be needed briefly during the
initial and final phases of the DDL operation.

• The tmpdir or innodb_tmpdir file system runs out of disk space, while MySQL writes temporary
sort files on disk during index creation. For more information, see Section 14.13.3, “Online DDL Space
Requirements”.

• The operation takes a long time and concurrent DML modifies the table so much that the size of the
temporary online log exceeds the value of the innodb_online_alter_log_max_size configuration
option. This condition causes a DB_ONLINE_LOG_TOO_BIG error.

• Concurrent DML makes changes to the table that are allowed with the original table definition, but not
with the new one. The operation only fails at the very end, when MySQL tries to apply all the changes
from concurrent DML statements. For example, you might insert duplicate values into a column while a
unique index is being created, or you might insert NULL values into a column while creating a primary
key index on that column. The changes made by the concurrent DML take precedence, and the ALTER
TABLE operation is effectively rolled back.

14.13.6 Online DDL Limitations

The following limitations apply to online DDL operations:

2725

InnoDB Data-at-Rest Encryption

• The table is copied when creating an index on a TEMPORARY TABLE.

• The ALTER TABLE clause LOCK=NONE is not permitted if there are ON...CASCADE or ON...SET NULL
constraints on the table.

• Before an online DDL operation can finish, it must wait for transactions that hold metadata locks on the
table to commit or roll back. An online DDL operation may briefly require an exclusive metadata lock on
the table during its execution phase, and always requires one in the final phase of the operation when
updating the table definition. Consequently, transactions holding metadata locks on the table can cause
an online DDL operation to block. The transactions that hold metadata locks on the table may have been
started before or during the online DDL operation. A long running or inactive transaction that holds a
metadata lock on the table can cause an online DDL operation to timeout.

• An online DDL operation on a table in a foreign key relationship does not wait for a transaction executing
on the other table in the foreign key relationship to commit or rollback. The transaction holds an
exclusive metadata lock on the table it is updating and shared metadata lock on the foreign-key-related
table (required for foreign key checking). The shared metadata lock permits the online DDL operation
to proceed but blocks the operation in its final phase, when an exclusive metadata lock is required to
update the table definition. This scenario can result in deadlocks as other transactions wait for the online
DDL operation to finish.

• When running an online DDL operation, the thread that runs the ALTER TABLE statement applies
an online log of DML operations that were run concurrently on the same table from other connection
threads. When the DML operations are applied, it is possible to encounter a duplicate key entry error
(ERROR 1062 (23000): Duplicate entry), even if the duplicate entry is only temporary and would
be reverted by a later entry in the online log. This is similar to the idea of a foreign key constraint check
in InnoDB in which constraints must hold during a transaction.

• OPTIMIZE TABLE for an InnoDB table is mapped to an ALTER TABLE operation to rebuild the table
and update index statistics and free unused space in the clustered index. Secondary indexes are
not created as efficiently because keys are inserted in the order they appeared in the primary key.
OPTIMIZE TABLE is supported with the addition of online DDL support for rebuilding regular and
partitioned InnoDB tables.

• Tables created before MySQL 5.6 that include temporal columns (DATE, DATETIME or TIMESTAMP) and
have not been rebuilt using ALGORITHM=COPY do not support ALGORITHM=INPLACE. In this case, an
ALTER TABLE ... ALGORITHM=INPLACE operation returns the following error:

ERROR 1846 (0A000): ALGORITHM=INPLACE is not supported.
Reason: Cannot change column type INPLACE. Try ALGORITHM=COPY.

• The following limitations are generally applicable to online DDL operations on large tables that involve
rebuilding the table:

• There is no mechanism to pause an online DDL operation or to throttle I/O or CPU usage for an online
DDL operation.

• Rollback of an online DDL operation can be expensive should the operation fail.

• Long running online DDL operations can cause replication lag. An online DDL operation must finish
running on the source before it is run on the replica. Also, DML that was processed concurrently on
the source is only processed on the replica after the DDL operation on the replica is completed.

For additional information related to running online DDL operations on large tables, see Section 14.13.2,
“Online DDL Performance and Concurrency”.

14.14 InnoDB Data-at-Rest Encryption

2726

About Data-at-Rest Encryption

InnoDB supports data-at-rest encryption for file-per-table tablespaces.

• About Data-at-Rest Encryption

• Encryption Prerequisites

• Enabling File-Per-Table Tablespace Encryption

• Master Key Rotation

• Encryption and Recovery

• Exporting Encrypted Tablespaces

• Encryption and Replication

• Identifying Encrypted Tablespaces

• Encryption Usage Notes

• Encryption Limitations

About Data-at-Rest Encryption

InnoDB uses a two tier encryption key architecture, consisting of a master encryption key and tablespace
keys. When a tablespace is encrypted, a tablespace key is encrypted and stored in the tablespace
header. When an application or authenticated user wants to access encrypted data, InnoDB uses a
master encryption key to decrypt the tablespace key. The decrypted version of a tablespace key never
changes, but the master encryption key can be changed as required. This action is referred to as master
key rotation.

The data-at-rest encryption feature relies on a keyring plugin for master encryption key management.

All MySQL editions provide a keyring_file plugin, which stores keyring data in a file local to the server
host.

MySQL Enterprise Edition offers additional keyring plugins:

• keyring_encrypted_file: Stores keyring data in an encrypted, password-protected file local to the
server host.

• keyring_okv: A KMIP 1.1 plugin for use with KMIP-compatible back end keyring storage products.
Supported KMIP-compatible products include centralized key management solutions such as Oracle Key
Vault, Gemalto KeySecure, Thales Vormetric key management server, and Fornetix Key Orchestration.

• keyring_aws: Communicates with the Amazon Web Services Key Management Service (AWS KMS)
as a back end for key generation and uses a local file for key storage.

Warning

For encryption key management, the keyring_file and
keyring_encrypted_file plugins are not intended as a regulatory compliance
solution. Security standards such as PCI, FIPS, and others require use of key
management systems to secure, manage, and protect encryption keys in key vaults
or hardware security modules (HSMs).

A secure and robust encryption key management solution is critical for security and for compliance with
various security standards. When the data-at-rest encryption feature uses a centralized key management
solution, the feature is referred to as “MySQL Enterprise Transparent Data Encryption (TDE)”.

2727

Encryption Prerequisites

The data-at-rest encryption feature supports the Advanced Encryption Standard (AES) block-based
encryption algorithm. It uses Electronic Codebook (ECB) block encryption mode for tablespace key
encryption and Cipher Block Chaining (CBC) block encryption mode for data encryption.

For frequently asked questions about the data-at-rest encryption feature, see Section A.17, “MySQL 5.7
FAQ: InnoDB Data-at-Rest Encryption”.

Encryption Prerequisites

• A keyring plugin must be installed and configured. Keyring plugin installation is performed at startup
using the early-plugin-load option. Early loading ensures that the plugin is available prior to
initialization of the InnoDB storage engine. For keyring plugin installation and configuration instructions,
see Section 6.4.4, “The MySQL Keyring”.

Only one keyring plugin should be enabled at a time. Enabling multiple keyring plugins is unsupported
and results may not be as anticipated.

Important

Once encrypted tablespaces are created in a MySQL instance, the keyring plugin
that was loaded when creating the encrypted tablespace must continue to be
loaded at startup using the early-plugin-load option. Failing to do so results
in errors when starting the server and during InnoDB recovery.

To verify that a keyring plugin is active, use the SHOW PLUGINS statement or query the Information
Schema PLUGINS table. For example:

mysql> SELECT PLUGIN_NAME, PLUGIN_STATUS
 FROM INFORMATION_SCHEMA.PLUGINS
 WHERE PLUGIN_NAME LIKE 'keyring%';
+--------------+---------------+
| PLUGIN_NAME | PLUGIN_STATUS |
+--------------+---------------+
| keyring_file | ACTIVE |
+--------------+---------------+

• When encrypting production data, ensure that you take steps to prevent loss of the master encryption
key. If the master encryption key is lost, data stored in encrypted tablespace files is unrecoverable. If you
use the keyring_file or keyring_encrypted_file plugin, create a backup of the keyring data file
immediately after creating the first encrypted tablespace, before master key rotation, and after master
key rotation. The keyring_file_data configuration option defines the keyring data file location for
the keyring_file plugin. The keyring_encrypted_file_data configuration option defines the
keyring data file location for the keyring_encrypted_file plugin. If you use the keyring_okv or
keyring_aws plugin, ensure that you have performed the necessary configuration. For instructions, see
Section 6.4.4, “The MySQL Keyring”.

Enabling File-Per-Table Tablespace Encryption

To enable encryption for a new file-per-table tablespace, specify the ENCRYPTION option in a CREATE
TABLE statement. The following example assumes that innodb_file_per_table is enabled.

mysql> CREATE TABLE t1 (c1 INT) ENCRYPTION='Y';

To enable encryption for an existing file-per-table tablespace, specify the ENCRYPTION option in an ALTER
TABLE statement.

mysql> ALTER TABLE t1 ENCRYPTION='Y';

To disable encryption for file-per-table tablespace, set ENCRYPTION='N' using ALTER TABLE.

2728

Master Key Rotation

mysql> ALTER TABLE t1 ENCRYPTION='N';

Master Key Rotation

The master encryption key should be rotated periodically and whenever you suspect that the key has been
compromised.

Master key rotation is an atomic, instance-level operation. Each time the master encryption key is rotated,
all tablespace keys in the MySQL instance are re-encrypted and saved back to their respective tablespace
headers. As an atomic operation, re-encryption must succeed for all tablespace keys once a rotation
operation is initiated. If master key rotation is interrupted by a server failure, InnoDB rolls the operation
forward on server restart. For more information, see Encryption and Recovery.

Rotating the master encryption key only changes the master encryption key and re-encrypts tablespace
keys. It does not decrypt or re-encrypt associated tablespace data.

Rotating the master encryption key requires the SUPER privilege.

To rotate the master encryption key, run:

mysql> ALTER INSTANCE ROTATE INNODB MASTER KEY;

ALTER INSTANCE ROTATE INNODB MASTER KEY supports concurrent DML. However, it cannot be run
concurrently with tablespace encryption operations, and locks are taken to prevent conflicts that could arise
from concurrent execution. If an ALTER INSTANCE ROTATE INNODB MASTER KEY operation is running,
it must finish before a tablespace encryption operation can proceed, and vice versa.

Encryption and Recovery

If a server failure occurs during an encryption operation, the operation is rolled forward when the server is
restarted.

If a server failure occurs during master key rotation, InnoDB continues the operation on server restart.

The keyring plugin must be loaded prior to storage engine initialization so that the information necessary to
decrypt tablespace data pages can be retrieved from tablespace headers before InnoDB initialization and
recovery activities access tablespace data. (See Encryption Prerequisites.)

When InnoDB initialization and recovery begin, the master key rotation operation resumes. Due to
the server failure, some tablespace keys may already be encrypted using the new master encryption
key. InnoDB reads the encryption data from each tablespace header, and if the data indicates that the
tablespace key is encrypted using the old master encryption key, InnoDB retrieves the old key from the
keyring and uses it to decrypt the tablespace key. InnoDB then re-encrypts the tablespace key using the
new master encryption key and saves the re-encrypted tablespace key back to the tablespace header.

Exporting Encrypted Tablespaces

When an encrypted tablespace is exported, InnoDB generates a transfer key that is used to encrypt the
tablespace key. The encrypted tablespace key and transfer key are stored in a tablespace_name.cfp
file. This file together with the encrypted tablespace file is required to perform an import operation. On
import, InnoDB uses the transfer key to decrypt the tablespace key in the tablespace_name.cfp file.
For related information, see Section 14.6.1.3, “Importing InnoDB Tables”.

Encryption and Replication

• The ALTER INSTANCE ROTATE INNODB MASTER KEY statement is only supported in replication
environments where the source and replicas run a version of MySQL that supports at-rest data
encryption.

2729

Identifying Encrypted Tablespaces

• Successful ALTER INSTANCE ROTATE INNODB MASTER KEY statements are written to the binary log
for replication on replicas.

• If an ALTER INSTANCE ROTATE INNODB MASTER KEY statement fails, it is not logged to the binary
log and is not replicated on replicas.

• Replication of an ALTER INSTANCE ROTATE INNODB MASTER KEY operation fails if the keyring
plugin is installed on the source but not on the replica.

• If the keyring_file or keyring_encrypted_file plugin is installed on both the source and a
replica but the replica does not have a keyring data file, the replicated ALTER INSTANCE ROTATE
INNODB MASTER KEY statement creates the keyring data file on the replica, assuming the keyring file
data is not cached in memory. ALTER INSTANCE ROTATE INNODB MASTER KEY uses keyring file
data that is cached in memory, if available.

Identifying Encrypted Tablespaces

When the ENCRYPTION option is specified in a CREATE TABLE or ALTER TABLE statement, it is recorded
in the CREATE_OPTIONS column of the Information Schema TABLES table. This column can be queried to
identify tables that reside in encrypted file-per-table tablespaces.

mysql> SELECT TABLE_SCHEMA, TABLE_NAME, CREATE_OPTIONS FROM INFORMATION_SCHEMA.TABLES
 WHERE CREATE_OPTIONS LIKE '%ENCRYPTION%';
+--------------+------------+----------------+
| TABLE_SCHEMA | TABLE_NAME | CREATE_OPTIONS |
+--------------+------------+----------------+
| test | t1 | ENCRYPTION="Y" |
+--------------+------------+----------------+

Query INFORMATION_SCHEMA.INNODB_SYS_TABLESPACES to retrieve information about the tablespace
associated with a particular schema and table.

mysql> SELECT SPACE, NAME, SPACE_TYPE FROM INFORMATION_SCHEMA.INNODB_SYS_TABLESPACES WHERE NAME='test/t1';
+-------+---------+------------+
| SPACE | NAME | SPACE_TYPE |
+-------+---------+------------+
| 3 | test/t1 | Single |
+-------+---------+------------+

Encryption Usage Notes

• Plan appropriately when altering an existing tablespace with the ENCRYPTION option. The table is rebuilt
using the COPY algorithm. The INPLACE algorithm is not supported.

• If the server exits or is stopped during normal operation, it is recommended to restart the server using
the same encryption settings that were configured previously.

• The first master encryption key is generated when the first new or existing tablespace is encrypted.

• Master key rotation re-encrypts tablespaces keys but does not change the tablespace key itself. To
change a tablespace key, you must disable and re-enable encryption, which is an ALGORITHM=COPY
operation that rebuilds the table.

• If a table is created with both the COMPRESSION and ENCRYPTION options, compression is performed
before tablespace data is encrypted.

• If a keyring data file (the file named by keyring_file_data or keyring_encrypted_file_data)
is empty or missing, the first execution of ALTER INSTANCE ROTATE INNODB MASTER KEY creates a
master encryption key.

2730

Encryption Limitations

• Uninstalling the keyring_file or keyring_encrypted_file plugin does not remove an existing
keyring data file.

• It is recommended that you not place a keyring data file under the same directory as tablespace data
files.

• Modifying the keyring_file_data or keyring_encrypted_file_data setting at runtime or when
restarting the server can cause previously encrypted tablespaces to become inaccessible, resulting in
lost data.

Encryption Limitations

• Advanced Encryption Standard (AES) is the only supported encryption algorithm. InnoDB data-at-rest
encryption uses Electronic Codebook (ECB) block encryption mode for tablespace key encryption and
Cipher Block Chaining (CBC) block encryption mode for data encryption. Padding is not used with CBC
block encryption mode. Instead, InnoDB ensures that the text to be encrypted is a multiple of the block
size.

• Altering the ENCRYPTION attribute of a table is performed using the COPY algorithm. The INPLACE
algorithm is not supported.

• Encryption is only supported for file-per-table tablespaces. Encryption is not supported for other
tablespace types including general tablespaces and the system tablespace.

• You cannot move or copy a table from an encrypted file-per-table tablespace to a tablespace type that
does not support encryption.

• Encryption only applies to data in the tablespace. Data is not encrypted in the redo log, undo log, or
binary log.

• It is not permitted to change the storage engine of a table that resides in, or previously resided in, an
encrypted tablespace.

• Encryption is not supported for the InnoDB FULLTEXT index tables that are created implicitly when
adding a FULLTEXT index. For related information, see InnoDB Full-Text Index Tables.

14.15 InnoDB Startup Options and System Variables
• System variables that are true or false can be enabled at server startup by naming them, or disabled

by using a --skip- prefix. For example, to enable or disable the InnoDB adaptive hash index, you
can use --innodb-adaptive-hash-index or --skip-innodb-adaptive-hash-index on the
command line, or innodb_adaptive_hash_index or skip_innodb_adaptive_hash_index in an
option file.

• System variables that take a numeric value can be specified as --var_name=value on the command
line or as var_name=value in option files.

• Many system variables can be changed at runtime (see Section 5.1.8.2, “Dynamic System Variables”).

• For information about GLOBAL and SESSION variable scope modifiers, refer to the SET statement
documentation.

• Certain options control the locations and layout of the InnoDB data files. Section 14.8.1, “InnoDB
Startup Configuration” explains how to use these options.

• Some options, which you might not use initially, help tune InnoDB performance characteristics based on
machine capacity and your database workload.

2731

InnoDB Startup Options and System Variables

• For more information on specifying options and system variables, see Section 4.2.2, “Specifying
Program Options”.

Table 14.18 InnoDB Option and Variable Reference

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

daemon_memcached_enable_binlogYes Yes Yes Global No

daemon_memcached_engine_lib_nameYes Yes Yes Global No

daemon_memcached_engine_lib_pathYes Yes Yes Global No

daemon_memcached_optionYes Yes Yes Global No

daemon_memcached_r_batch_sizeYes Yes Yes Global No

daemon_memcached_w_batch_sizeYes Yes Yes Global No

foreign_key_checks Yes Both Yes

ignore_builtin_innodbYes Yes Yes Global No

innodb Yes Yes

innodb_adaptive_flushingYes Yes Yes Global Yes

innodb_adaptive_flushing_lwmYes Yes Yes Global Yes

innodb_adaptive_hash_indexYes Yes Yes Global Yes

innodb_adaptive_hash_index_partsYes Yes Yes Global No

innodb_adaptive_max_sleep_delayYes Yes Yes Global Yes

innodb_api_bk_commit_intervalYes Yes Yes Global Yes

innodb_api_disable_rowlockYes Yes Yes Global No

innodb_api_enable_binlogYes Yes Yes Global No

innodb_api_enable_mdlYes Yes Yes Global No

innodb_api_trx_levelYes Yes Yes Global Yes

innodb_autoextend_incrementYes Yes Yes Global Yes

innodb_autoinc_lock_modeYes Yes Yes Global No

Innodb_available_undo_logs Yes Global No

innodb_background_drop_list_emptyYes Yes Yes Global Yes

Innodb_buffer_pool_bytes_data Yes Global No

Innodb_buffer_pool_bytes_dirty Yes Global No

innodb_buffer_pool_chunk_sizeYes Yes Yes Global No

innodb_buffer_pool_dump_at_shutdownYes Yes Yes Global Yes

innodb_buffer_pool_dump_nowYes Yes Yes Global Yes

innodb_buffer_pool_dump_pctYes Yes Yes Global Yes

Innodb_buffer_pool_dump_status Yes Global No

innodb_buffer_pool_filenameYes Yes Yes Global Yes

innodb_buffer_pool_instancesYes Yes Yes Global No

innodb_buffer_pool_load_abortYes Yes Yes Global Yes

innodb_buffer_pool_load_at_startupYes Yes Yes Global No

innodb_buffer_pool_load_nowYes Yes Yes Global Yes

2732

InnoDB Startup Options and System Variables

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

Innodb_buffer_pool_load_status Yes Global No

Innodb_buffer_pool_pages_data Yes Global No

Innodb_buffer_pool_pages_dirty Yes Global No

Innodb_buffer_pool_pages_flushed Yes Global No

Innodb_buffer_pool_pages_free Yes Global No

Innodb_buffer_pool_pages_latched Yes Global No

Innodb_buffer_pool_pages_misc Yes Global No

Innodb_buffer_pool_pages_total Yes Global No

Innodb_buffer_pool_read_ahead Yes Global No

Innodb_buffer_pool_read_ahead_evicted Yes Global No

Innodb_buffer_pool_read_ahead_rnd Yes Global No

Innodb_buffer_pool_read_requests Yes Global No

Innodb_buffer_pool_reads Yes Global No

Innodb_buffer_pool_resize_status Yes Global No

innodb_buffer_pool_sizeYes Yes Yes Global Varies

Innodb_buffer_pool_wait_free Yes Global No

Innodb_buffer_pool_write_requests Yes Global No

innodb_change_buffer_max_sizeYes Yes Yes Global Yes

innodb_change_bufferingYes Yes Yes Global Yes

innodb_change_buffering_debugYes Yes Yes Global Yes

innodb_checksum_algorithmYes Yes Yes Global Yes

innodb_checksumsYes Yes Yes Global No

innodb_cmp_per_index_enabledYes Yes Yes Global Yes

innodb_commit_concurrencyYes Yes Yes Global Yes

innodb_compress_debugYes Yes Yes Global Yes

innodb_compression_failure_threshold_pctYes Yes Yes Global Yes

innodb_compression_levelYes Yes Yes Global Yes

innodb_compression_pad_pct_maxYes Yes Yes Global Yes

innodb_concurrency_ticketsYes Yes Yes Global Yes

innodb_data_file_pathYes Yes Yes Global No

Innodb_data_fsyncs Yes Global No

innodb_data_home_dirYes Yes Yes Global No

Innodb_data_pending_fsyncs Yes Global No

Innodb_data_pending_reads Yes Global No

Innodb_data_pending_writes Yes Global No

Innodb_data_read Yes Global No

Innodb_data_reads Yes Global No

Innodb_data_writes Yes Global No

2733

InnoDB Startup Options and System Variables

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

Innodb_data_written Yes Global No

Innodb_dblwr_pages_written Yes Global No

Innodb_dblwr_writes Yes Global No

innodb_deadlock_detectYes Yes Yes Global Yes

innodb_default_row_formatYes Yes Yes Global Yes

innodb_disable_resize_buffer_pool_debugYes Yes Yes Global Yes

innodb_disable_sort_file_cacheYes Yes Yes Global Yes

innodb_doublewriteYes Yes Yes Global No

innodb_fast_shutdownYes Yes Yes Global Yes

innodb_fil_make_page_dirty_debugYes Yes Yes Global Yes

innodb_file_formatYes Yes Yes Global Yes

innodb_file_format_checkYes Yes Yes Global No

innodb_file_format_maxYes Yes Yes Global Yes

innodb_file_per_tableYes Yes Yes Global Yes

innodb_fill_factorYes Yes Yes Global Yes

innodb_flush_log_at_timeoutYes Yes Yes Global Yes

innodb_flush_log_at_trx_commitYes Yes Yes Global Yes

innodb_flush_methodYes Yes Yes Global No

innodb_flush_neighborsYes Yes Yes Global Yes

innodb_flush_syncYes Yes Yes Global Yes

innodb_flushing_avg_loopsYes Yes Yes Global Yes

innodb_force_load_corruptedYes Yes Yes Global No

innodb_force_recoveryYes Yes Yes Global No

innodb_ft_aux_table Yes Global Yes

innodb_ft_cache_sizeYes Yes Yes Global No

innodb_ft_enable_diag_printYes Yes Yes Global Yes

innodb_ft_enable_stopwordYes Yes Yes Both Yes

innodb_ft_max_token_sizeYes Yes Yes Global No

innodb_ft_min_token_sizeYes Yes Yes Global No

innodb_ft_num_word_optimizeYes Yes Yes Global Yes

innodb_ft_result_cache_limitYes Yes Yes Global Yes

innodb_ft_server_stopword_tableYes Yes Yes Global Yes

innodb_ft_sort_pll_degreeYes Yes Yes Global No

innodb_ft_total_cache_sizeYes Yes Yes Global No

innodb_ft_user_stopword_tableYes Yes Yes Both Yes

Innodb_have_atomic_builtins Yes Global No

innodb_io_capacityYes Yes Yes Global Yes

innodb_io_capacity_maxYes Yes Yes Global Yes

2734

InnoDB Startup Options and System Variables

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

innodb_large_prefixYes Yes Yes Global Yes

innodb_limit_optimistic_insert_debugYes Yes Yes Global Yes

innodb_lock_wait_timeoutYes Yes Yes Both Yes

innodb_locks_unsafe_for_binlogYes Yes Yes Global No

innodb_log_buffer_sizeYes Yes Yes Global No

innodb_log_checkpoint_nowYes Yes Yes Global Yes

innodb_log_checksumsYes Yes Yes Global Yes

innodb_log_compressed_pagesYes Yes Yes Global Yes

innodb_log_file_sizeYes Yes Yes Global No

innodb_log_files_in_groupYes Yes Yes Global No

innodb_log_group_home_dirYes Yes Yes Global No

Innodb_log_waits Yes Global No

innodb_log_write_ahead_sizeYes Yes Yes Global Yes

Innodb_log_write_requests Yes Global No

Innodb_log_writes Yes Global No

innodb_lru_scan_depthYes Yes Yes Global Yes

innodb_max_dirty_pages_pctYes Yes Yes Global Yes

innodb_max_dirty_pages_pct_lwmYes Yes Yes Global Yes

innodb_max_purge_lagYes Yes Yes Global Yes

innodb_max_purge_lag_delayYes Yes Yes Global Yes

innodb_max_undo_log_sizeYes Yes Yes Global Yes

innodb_merge_threshold_set_all_debugYes Yes Yes Global Yes

innodb_monitor_disableYes Yes Yes Global Yes

innodb_monitor_enableYes Yes Yes Global Yes

innodb_monitor_resetYes Yes Yes Global Yes

innodb_monitor_reset_allYes Yes Yes Global Yes

Innodb_num_open_files Yes Global No

innodb_numa_interleaveYes Yes Yes Global No

innodb_old_blocks_pctYes Yes Yes Global Yes

innodb_old_blocks_timeYes Yes Yes Global Yes

innodb_online_alter_log_max_sizeYes Yes Yes Global Yes

innodb_open_filesYes Yes Yes Global No

innodb_optimize_fulltext_onlyYes Yes Yes Global Yes

Innodb_os_log_fsyncs Yes Global No

Innodb_os_log_pending_fsyncs Yes Global No

Innodb_os_log_pending_writes Yes Global No

Innodb_os_log_written Yes Global No

innodb_page_cleanersYes Yes Yes Global No

2735

InnoDB Startup Options and System Variables

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

Innodb_page_size Yes Global No

innodb_page_sizeYes Yes Yes Global No

Innodb_pages_created Yes Global No

Innodb_pages_read Yes Global No

Innodb_pages_written Yes Global No

innodb_print_all_deadlocksYes Yes Yes Global Yes

innodb_purge_batch_sizeYes Yes Yes Global Yes

innodb_purge_rseg_truncate_frequencyYes Yes Yes Global Yes

innodb_purge_threadsYes Yes Yes Global No

innodb_random_read_aheadYes Yes Yes Global Yes

innodb_read_ahead_thresholdYes Yes Yes Global Yes

innodb_read_io_threadsYes Yes Yes Global No

innodb_read_onlyYes Yes Yes Global No

innodb_replication_delayYes Yes Yes Global Yes

innodb_rollback_on_timeoutYes Yes Yes Global No

innodb_rollback_segmentsYes Yes Yes Global Yes

Innodb_row_lock_current_waits Yes Global No

Innodb_row_lock_time Yes Global No

Innodb_row_lock_time_avg Yes Global No

Innodb_row_lock_time_max Yes Global No

Innodb_row_lock_waits Yes Global No

Innodb_rows_deleted Yes Global No

Innodb_rows_inserted Yes Global No

Innodb_rows_read Yes Global No

Innodb_rows_updated Yes Global No

innodb_saved_page_number_debugYes Yes Yes Global Yes

innodb_sort_buffer_sizeYes Yes Yes Global No

innodb_spin_wait_delayYes Yes Yes Global Yes

innodb_stats_auto_recalcYes Yes Yes Global Yes

innodb_stats_include_delete_markedYes Yes Yes Global Yes

innodb_stats_methodYes Yes Yes Global Yes

innodb_stats_on_metadataYes Yes Yes Global Yes

innodb_stats_persistentYes Yes Yes Global Yes

innodb_stats_persistent_sample_pagesYes Yes Yes Global Yes

innodb_stats_sample_pagesYes Yes Yes Global Yes

innodb_stats_transient_sample_pagesYes Yes Yes Global Yes

innodb-
status-file

Yes Yes

2736

InnoDB Command Options

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

innodb_status_outputYes Yes Yes Global Yes

innodb_status_output_locksYes Yes Yes Global Yes

innodb_strict_modeYes Yes Yes Both Yes

innodb_support_xaYes Yes Yes Both Yes

innodb_sync_array_sizeYes Yes Yes Global No

innodb_sync_debugYes Yes Yes Global No

innodb_sync_spin_loopsYes Yes Yes Global Yes

innodb_table_locksYes Yes Yes Both Yes

innodb_temp_data_file_pathYes Yes Yes Global No

innodb_thread_concurrencyYes Yes Yes Global Yes

innodb_thread_sleep_delayYes Yes Yes Global Yes

innodb_tmpdir Yes Yes Yes Both Yes

Innodb_truncated_status_writes Yes Global No

innodb_trx_purge_view_update_only_debugYes Yes Yes Global Yes

innodb_trx_rseg_n_slots_debugYes Yes Yes Global Yes

innodb_undo_directoryYes Yes Yes Global No

innodb_undo_log_truncateYes Yes Yes Global Yes

innodb_undo_logsYes Yes Yes Global Yes

innodb_undo_tablespacesYes Yes Yes Global No

innodb_use_native_aioYes Yes Yes Global No

innodb_version Yes Global No

innodb_write_io_threadsYes Yes Yes Global No

unique_checks Yes Both Yes

InnoDB Command Options

• --innodb[=value]

Command-Line Format --innodb[=value]

Deprecated Yes

Type Enumeration

Default Value ON

Valid Values OFF

ON

FORCE

Controls loading of the InnoDB storage engine, if the server was compiled with InnoDB support. This
option has a tristate format, with possible values of OFF, ON, or FORCE. See Section 5.5.1, “Installing and
Uninstalling Plugins”.

2737

InnoDB System Variables

To disable InnoDB, use --innodb=OFF or --skip-innodb. In this case, because the default storage
engine is InnoDB, the server does not start unless you also use --default-storage-engine and
--default-tmp-storage-engine to set the default to some other engine for both permanent and
TEMPORARY tables.

The InnoDB storage engine can no longer be disabled, and the --innodb=OFF and --skip-innodb
options are deprecated and have no effect. Their use results in a warning. You should expect these
options to be removed in a future MySQL release.

• --innodb-status-file

Command-Line Format --innodb-status-file[={OFF|ON}]

Type Boolean

Default Value OFF

The --innodb-status-file startup option controls whether InnoDB creates a file named
innodb_status.pid in the data directory and writes SHOW ENGINE INNODB STATUS output to it
every 15 seconds, approximately.

The innodb_status.pid file is not created by default. To create it, start mysqld with the --innodb-
status-file option. InnoDB removes the file when the server is shut down normally. If an abnormal
shutdown occurs, the status file may have to be removed manually.

The --innodb-status-file option is intended for temporary use, as SHOW ENGINE INNODB
STATUS output generation can affect performance, and the innodb_status.pid file can become quite
large over time.

For related information, see Section 14.18.2, “Enabling InnoDB Monitors”.

• --skip-innodb

Disable the InnoDB storage engine. See the description of --innodb.

InnoDB System Variables

• daemon_memcached_enable_binlog

Command-Line Format --daemon-memcached-enable-
binlog[={OFF|ON}]

System Variable daemon_memcached_enable_binlog

Scope Global

Dynamic No

Type Boolean

Default Value OFF

Enable this option on the source server to use the InnoDB memcached plugin (daemon_memcached)
with the MySQL binary log. This option can only be set at server startup. You must also enable the
MySQL binary log on the source server using the --log-bin option.

For more information, see Section 14.21.6, “The InnoDB memcached Plugin and Replication”.

• daemon_memcached_engine_lib_name

2738

InnoDB System Variables

Command-Line Format --daemon-memcached-engine-lib-
name=file_name

System Variable daemon_memcached_engine_lib_name

Scope Global

Dynamic No

Type File name

Default Value innodb_engine.so

Specifies the shared library that implements the InnoDB memcached plugin.

For more information, see Section 14.21.3, “Setting Up the InnoDB memcached Plugin”.

• daemon_memcached_engine_lib_path

Command-Line Format --daemon-memcached-engine-lib-
path=dir_name

System Variable daemon_memcached_engine_lib_path

Scope Global

Dynamic No

Type Directory name

Default Value NULL

The path of the directory containing the shared library that implements the InnoDB memcached plugin.
The default value is NULL, representing the MySQL plugin directory. You should not need to modify this
parameter unless specifying a memcached plugin for a different storage engine that is located outside of
the MySQL plugin directory.

For more information, see Section 14.21.3, “Setting Up the InnoDB memcached Plugin”.

• daemon_memcached_option

Command-Line Format --daemon-memcached-option=options

System Variable daemon_memcached_option

Scope Global

Dynamic No

Type String

Default Value

Used to pass space-separated memcached options to the underlying memcached memory object
caching daemon on startup. For example, you might change the port that memcached listens on, reduce
the maximum number of simultaneous connections, change the maximum memory size for a key-value
pair, or enable debugging messages for the error log.

See Section 14.21.3, “Setting Up the InnoDB memcached Plugin” for usage details. For information
about memcached options, refer to the memcached man page.

2739

InnoDB System Variables

• daemon_memcached_r_batch_size

Command-Line Format --daemon-memcached-r-batch-size=#

System Variable daemon_memcached_r_batch_size

Scope Global

Dynamic No

Type Integer

Default Value 1

Minimum Value 1

Maximum Value 1073741824

Specifies how many memcached read operations (get operations) to perform before doing a COMMIT to
start a new transaction. Counterpart of daemon_memcached_w_batch_size.

This value is set to 1 by default, so that any changes made to the table through SQL statements
are immediately visible to memcached operations. You might increase it to reduce the overhead
from frequent commits on a system where the underlying table is only being accessed through the
memcached interface. If you set the value too large, the amount of undo or redo data could impose some
storage overhead, as with any long-running transaction.

For more information, see Section 14.21.3, “Setting Up the InnoDB memcached Plugin”.

• daemon_memcached_w_batch_size

Command-Line Format --daemon-memcached-w-batch-size=#

System Variable daemon_memcached_w_batch_size

Scope Global

Dynamic No

Type Integer

Default Value 1

Minimum Value 1

Maximum Value 1048576

Specifies how many memcached write operations, such as add, set, and incr, to perform before doing
a COMMIT to start a new transaction. Counterpart of daemon_memcached_r_batch_size.

This value is set to 1 by default, on the assumption that data being stored is important to preserve in
case of an outage and should immediately be committed. When storing non-critical data, you might
increase this value to reduce the overhead from frequent commits; but then the last N-1 uncommitted
write operations could be lost if an unexpected exit occurs.

For more information, see Section 14.21.3, “Setting Up the InnoDB memcached Plugin”.

• ignore_builtin_innodb

Command-Line Format --ignore-builtin-innodb[={OFF|ON}]

Deprecated Yes

System Variable ignore_builtin_innodb2740

InnoDB System Variables

Scope Global

Dynamic No

Type Boolean

In earlier versions of MySQL, enabling this variable caused the server to behave as if the built-in InnoDB
were not present, which enabled the InnoDB Plugin to be used instead. In MySQL 5.7, InnoDB is the
default storage engine and InnoDB Plugin is not used, so this variable is ignored.

• innodb_adaptive_flushing

Command-Line Format --innodb-adaptive-flushing[={OFF|ON}]

System Variable innodb_adaptive_flushing

Scope Global

Dynamic Yes

Type Boolean

Default Value ON

Specifies whether to dynamically adjust the rate of flushing dirty pages in the InnoDB buffer pool
based on the workload. Adjusting the flush rate dynamically is intended to avoid bursts of I/O activity.
This setting is enabled by default. See Section 14.8.3.5, “Configuring Buffer Pool Flushing” for more
information. For general I/O tuning advice, see Section 8.5.8, “Optimizing InnoDB Disk I/O”.

• innodb_adaptive_flushing_lwm

Command-Line Format --innodb-adaptive-flushing-lwm=#

System Variable innodb_adaptive_flushing_lwm

Scope Global

Dynamic Yes

Type Integer

Default Value 10

Minimum Value 0

Maximum Value 70

Defines the low water mark representing percentage of redo log capacity at which adaptive flushing is
enabled. For more information, see Section 14.8.3.5, “Configuring Buffer Pool Flushing”.

• innodb_adaptive_hash_index

Command-Line Format --innodb-adaptive-hash-index[={OFF|
ON}]

System Variable innodb_adaptive_hash_index

Scope Global

Dynamic Yes

Type Boolean

2741

InnoDB System Variables

Default Value ON

Whether the InnoDB adaptive hash index is enabled or disabled. It may be desirable, depending on
your workload, to dynamically enable or disable adaptive hash indexing to improve query performance.
Because the adaptive hash index may not be useful for all workloads, conduct benchmarks with it both
enabled and disabled, using realistic workloads. See Section 14.5.3, “Adaptive Hash Index” for details.

This variable is enabled by default. You can modify this parameter using the SET GLOBAL statement,
without restarting the server. Changing the setting at runtime requires privileges sufficient to set global
system variables. See Section 5.1.8.1, “System Variable Privileges”. You can also use --skip-
innodb-adaptive-hash-index at server startup to disable it.

Disabling the adaptive hash index empties the hash table immediately. Normal operations can continue
while the hash table is emptied, and executing queries that were using the hash table access the index
B-trees directly instead. When the adaptive hash index is re-enabled, the hash table is populated again
during normal operation.

• innodb_adaptive_hash_index_parts

Command-Line Format --innodb-adaptive-hash-index-parts=#

System Variable innodb_adaptive_hash_index_parts

Scope Global

Dynamic No

Type Numeric

Default Value 8

Minimum Value 1

Maximum Value 512

Partitions the adaptive hash index search system. Each index is bound to a specific partition, with each
partition protected by a separate latch.

In earlier releases, the adaptive hash index search system was protected by a single latch
(btr_search_latch) which could become a point of contention. With the introduction of the
innodb_adaptive_hash_index_parts option, the search system is partitioned into 8 parts by
default. The maximum setting is 512.

For related information, see Section 14.5.3, “Adaptive Hash Index”.

• innodb_adaptive_max_sleep_delay

Command-Line Format --innodb-adaptive-max-sleep-delay=#

System Variable innodb_adaptive_max_sleep_delay

Scope Global

Dynamic Yes

Type Integer

Default Value 150000

Minimum Value 0

Maximum Value 1000000

Unit microseconds

2742

InnoDB System Variables

Permits InnoDB to automatically adjust the value of innodb_thread_sleep_delay up
or down according to the current workload. Any nonzero value enables automated, dynamic
adjustment of the innodb_thread_sleep_delay value, up to the maximum value specified in the
innodb_adaptive_max_sleep_delay option. The value represents the number of microseconds.
This option can be useful in busy systems, with greater than 16 InnoDB threads. (In practice, it is most
valuable for MySQL systems with hundreds or thousands of simultaneous connections.)

For more information, see Section 14.8.5, “Configuring Thread Concurrency for InnoDB”.

• innodb_api_bk_commit_interval

Command-Line Format --innodb-api-bk-commit-interval=#

System Variable innodb_api_bk_commit_interval

Scope Global

Dynamic Yes

Type Integer

Default Value 5

Minimum Value 1

Maximum Value 1073741824

Unit seconds

How often to auto-commit idle connections that use the InnoDB memcached interface, in seconds. For
more information, see Section 14.21.5.4, “Controlling Transactional Behavior of the InnoDB memcached
Plugin”.

• innodb_api_disable_rowlock

Command-Line Format --innodb-api-disable-rowlock[={OFF|
ON}]

System Variable innodb_api_disable_rowlock

Scope Global

Dynamic No

Type Boolean

Default Value OFF

Use this option to disable row locks when InnoDB memcached performs DML operations. By default,
innodb_api_disable_rowlock is disabled, which means that memcached requests row locks for
get and set operations. When innodb_api_disable_rowlock is enabled, memcached requests a
table lock instead of row locks.

innodb_api_disable_rowlock is not dynamic. It must be specified on the mysqld command line
or entered in the MySQL configuration file. Configuration takes effect when the plugin is installed, which
occurs when the MySQL server is started.

For more information, see Section 14.21.5.4, “Controlling Transactional Behavior of the InnoDB
memcached Plugin”.

2743

InnoDB System Variables

• innodb_api_enable_binlog

Command-Line Format --innodb-api-enable-binlog[={OFF|ON}]

System Variable innodb_api_enable_binlog

Scope Global

Dynamic No

Type Boolean

Default Value OFF

Lets you use the InnoDB memcached plugin with the MySQL binary log. For more information, see
Enabling the InnoDB memcached Binary Log.

• innodb_api_enable_mdl

Command-Line Format --innodb-api-enable-mdl[={OFF|ON}]

System Variable innodb_api_enable_mdl

Scope Global

Dynamic No

Type Boolean

Default Value OFF

Locks the table used by the InnoDB memcached plugin, so that it cannot be dropped or altered by
DDL through the SQL interface. For more information, see Section 14.21.5.4, “Controlling Transactional
Behavior of the InnoDB memcached Plugin”.

• innodb_api_trx_level

Command-Line Format --innodb-api-trx-level=#

System Variable innodb_api_trx_level

Scope Global

Dynamic Yes

Type Integer

Default Value 0

Minimum Value 0

Maximum Value 3

Controls the transaction isolation level on queries processed by the memcached interface. The constants
corresponding to the familiar names are:

• 0 = READ UNCOMMITTED

• 1 = READ COMMITTED

• 2 = REPEATABLE READ

• 3 = SERIALIZABLE

For more information, see Section 14.21.5.4, “Controlling Transactional Behavior of the InnoDB
memcached Plugin”.

2744

InnoDB System Variables

• innodb_autoextend_increment

Command-Line Format --innodb-autoextend-increment=#

System Variable innodb_autoextend_increment

Scope Global

Dynamic Yes

Type Integer

Default Value 64

Minimum Value 1

Maximum Value 1000

Unit megabytes

The increment size (in megabytes) for extending the size of an auto-extending InnoDB system
tablespace file when it becomes full. The default value is 64. For related information, see System
Tablespace Data File Configuration, and Resizing the System Tablespace.

The innodb_autoextend_increment setting does not affect file-per-table tablespace files or general
tablespace files. These files are auto-extending regardless of the innodb_autoextend_increment
setting. The initial extensions are by small amounts, after which extensions occur in increments of 4MB.

• innodb_autoinc_lock_mode

Command-Line Format --innodb-autoinc-lock-mode=#

System Variable innodb_autoinc_lock_mode

Scope Global

Dynamic No

Type Integer

Default Value 1

Valid Values 0

1

2

The lock mode to use for generating auto-increment values. Permissible values are 0, 1, or 2, for
traditional, consecutive, or interleaved, respectively. The default setting is 1 (consecutive). For the
characteristics of each lock mode, see InnoDB AUTO_INCREMENT Lock Modes.

• innodb_background_drop_list_empty

Command-Line Format --innodb-background-drop-list-
empty[={OFF|ON}]

Introduced 5.7.10

System Variable innodb_background_drop_list_empty

Scope Global

Dynamic Yes

Type Boolean
2745

InnoDB System Variables

Default Value OFF

Enabling the innodb_background_drop_list_empty debug option helps avoid test case failures by
delaying table creation until the background drop list is empty. For example, if test case A places table
t1 on the background drop list, test case B waits until the background drop list is empty before creating
table t1.

• innodb_buffer_pool_chunk_size

Command-Line Format --innodb-buffer-pool-chunk-size=#

System Variable innodb_buffer_pool_chunk_size

Scope Global

Dynamic No

Type Integer

Default Value 134217728

Minimum Value 1048576

Maximum Value innodb_buffer_pool_size /
innodb_buffer_pool_instances

Unit bytes

innodb_buffer_pool_chunk_size defines the chunk size for InnoDB buffer pool resizing
operations.

To avoid copying all buffer pool pages during resizing operations, the operation is performed
in “chunks”. By default, innodb_buffer_pool_chunk_size is 128MB (134217728 bytes).
The number of pages contained in a chunk depends on the value of innodb_page_size.
innodb_buffer_pool_chunk_size can be increased or decreased in units of 1MB (1048576 bytes).

The following conditions apply when altering the innodb_buffer_pool_chunk_size value:

• If innodb_buffer_pool_chunk_size * innodb_buffer_pool_instances is larger than the
current buffer pool size when the buffer pool is initialized, innodb_buffer_pool_chunk_size is
truncated to innodb_buffer_pool_size / innodb_buffer_pool_instances.

• Buffer pool size must always be equal to or a multiple of innodb_buffer_pool_chunk_size
* innodb_buffer_pool_instances. If you alter innodb_buffer_pool_chunk_size,
innodb_buffer_pool_size is automatically rounded to a value that is equal to or a multiple of
innodb_buffer_pool_chunk_size * innodb_buffer_pool_instances. The adjustment
occurs when the buffer pool is initialized.

Important

Care should be taken when changing innodb_buffer_pool_chunk_size, as
changing this value can automatically increase the size of the buffer pool. Before
changing innodb_buffer_pool_chunk_size, calculate the effect it has on

2746

InnoDB System Variables

innodb_buffer_pool_size to ensure that the resulting buffer pool size is
acceptable.

To avoid potential performance issues, the number of chunks (innodb_buffer_pool_size /
innodb_buffer_pool_chunk_size) should not exceed 1000.

The innodb_buffer_pool_size variable is dynamic, which permits resizing the buffer
pool while the server is online. However, the buffer pool size must be equal to or a multiple of
innodb_buffer_pool_chunk_size * innodb_buffer_pool_instances, and changing either of
those variable settings requires restarting the server.

See Section 14.8.3.1, “Configuring InnoDB Buffer Pool Size” for more information.

• innodb_buffer_pool_dump_at_shutdown

Command-Line Format --innodb-buffer-pool-dump-at-
shutdown[={OFF|ON}]

System Variable innodb_buffer_pool_dump_at_shutdown

Scope Global

Dynamic Yes

Type Boolean

Default Value ON

Specifies whether to record the pages cached in the InnoDB buffer pool when the MySQL server
is shut down, to shorten the warmup process at the next restart. Typically used in combination with
innodb_buffer_pool_load_at_startup. The innodb_buffer_pool_dump_pct option defines
the percentage of most recently used buffer pool pages to dump.

Both innodb_buffer_pool_dump_at_shutdown and innodb_buffer_pool_load_at_startup
are enabled by default.

For more information, see Section 14.8.3.6, “Saving and Restoring the Buffer Pool State”.

• innodb_buffer_pool_dump_now

Command-Line Format --innodb-buffer-pool-dump-now[={OFF|
ON}]

System Variable innodb_buffer_pool_dump_now

Scope Global

Dynamic Yes

Type Boolean

Default Value OFF

Immediately makes a record of pages cached in the InnoDB buffer pool. Typically used in combination
with innodb_buffer_pool_load_now.

Enabling innodb_buffer_pool_dump_now triggers the recording action but does not alter the
variable setting, which always remains OFF or 0. To view buffer pool dump status after triggering a
dump, query the Innodb_buffer_pool_dump_status variable.

For more information, see Section 14.8.3.6, “Saving and Restoring the Buffer Pool State”.
2747

InnoDB System Variables

• innodb_buffer_pool_dump_pct

Command-Line Format --innodb-buffer-pool-dump-pct=#

System Variable innodb_buffer_pool_dump_pct

Scope Global

Dynamic Yes

Type Integer

Default Value 25

Minimum Value 1

Maximum Value 100

Specifies the percentage of the most recently used pages for each buffer pool to read out and dump.
The range is 1 to 100. The default value is 25. For example, if there are 4 buffer pools with 100 pages
each, and innodb_buffer_pool_dump_pct is set to 25, the 25 most recently used pages from each
buffer pool are dumped.

The change to the innodb_buffer_pool_dump_pct default value coincides
with default value changes for innodb_buffer_pool_dump_at_shutdown and
innodb_buffer_pool_load_at_startup, which are both enabled by default in MySQL 5.7.

• innodb_buffer_pool_filename

Command-Line Format --innodb-buffer-pool-
filename=file_name

System Variable innodb_buffer_pool_filename

Scope Global

Dynamic Yes

Type File name

Default Value ib_buffer_pool

Specifies the name of the file that holds the list of tablespace IDs and page IDs produced by
innodb_buffer_pool_dump_at_shutdown or innodb_buffer_pool_dump_now. Tablespace
IDs and page IDs are saved in the following format: space, page_id. By default, the file is named
ib_buffer_pool and is located in the InnoDB data directory. A non-default location must be specified
relative to the data directory.

A file name can be specified at runtime, using a SET statement:

SET GLOBAL innodb_buffer_pool_filename='file_name';

You can also specify a file name at startup, in a startup string or MySQL configuration file. When
specifying a file name at startup, the file must exist or InnoDB returns a startup error indicating that there
is no such file or directory.

For more information, see Section 14.8.3.6, “Saving and Restoring the Buffer Pool State”.

• innodb_buffer_pool_instances

Command-Line Format --innodb-buffer-pool-instances=#

System Variable innodb_buffer_pool_instances2748

InnoDB System Variables

Scope Global

Dynamic No

Type Integer

Default Value (Windows, 32-bit platforms) see description

Default Value (Other) 8 (or 1 if innodb_buffer_pool_size <
1GB)

Minimum Value 1

Maximum Value 64

The number of regions that the InnoDB buffer pool is divided into. For systems with buffer pools in
the multi-gigabyte range, dividing the buffer pool into separate instances can improve concurrency, by
reducing contention as different threads read and write to cached pages. Each page that is stored in
or read from the buffer pool is assigned to one of the buffer pool instances randomly, using a hashing
function. Each buffer pool instance manages its own free lists, flush lists, LRUs, and all other data
structures connected to a buffer pool, and is protected by its own buffer pool mutex.

This option only takes effect when setting innodb_buffer_pool_size to 1GB or more. The total
buffer pool size is divided among all the buffer pools. For best efficiency, specify a combination of
innodb_buffer_pool_instances and innodb_buffer_pool_size so that each buffer pool
instance is at least 1GB.

The default value on 32-bit Windows systems depends on the value of innodb_buffer_pool_size,
as described below:

• If innodb_buffer_pool_size is greater than 1.3GB, the default for
innodb_buffer_pool_instances is innodb_buffer_pool_size/128MB, with individual
memory allocation requests for each chunk. 1.3GB was chosen as the boundary at which there is
significant risk for 32-bit Windows to be unable to allocate the contiguous address space needed for a
single buffer pool.

• Otherwise, the default is 1.

On all other platforms, the default value is 8 when innodb_buffer_pool_size is greater than or
equal to 1GB. Otherwise, the default is 1.

For related information, see Section 14.8.3.1, “Configuring InnoDB Buffer Pool Size”.

• innodb_buffer_pool_load_abort

Command-Line Format --innodb-buffer-pool-load-
abort[={OFF|ON}]

System Variable innodb_buffer_pool_load_abort

Scope Global

Dynamic Yes

Type Boolean

2749

InnoDB System Variables

Default Value OFF

Interrupts the process of restoring InnoDB buffer pool contents triggered by
innodb_buffer_pool_load_at_startup or innodb_buffer_pool_load_now.

Enabling innodb_buffer_pool_load_abort triggers the abort action but does not alter the variable
setting, which always remains OFF or 0. To view buffer pool load status after triggering an abort action,
query the Innodb_buffer_pool_load_status variable.

For more information, see Section 14.8.3.6, “Saving and Restoring the Buffer Pool State”.

• innodb_buffer_pool_load_at_startup

Command-Line Format --innodb-buffer-pool-load-at-
startup[={OFF|ON}]

System Variable innodb_buffer_pool_load_at_startup

Scope Global

Dynamic No

Type Boolean

Default Value ON

Specifies that, on MySQL server startup, the InnoDB buffer pool is automatically warmed
up by loading the same pages it held at an earlier time. Typically used in combination with
innodb_buffer_pool_dump_at_shutdown.

Both innodb_buffer_pool_dump_at_shutdown and innodb_buffer_pool_load_at_startup
are enabled by default.

For more information, see Section 14.8.3.6, “Saving and Restoring the Buffer Pool State”.

• innodb_buffer_pool_load_now

Command-Line Format --innodb-buffer-pool-load-now[={OFF|
ON}]

System Variable innodb_buffer_pool_load_now

Scope Global

Dynamic Yes

Type Boolean

Default Value OFF

Immediately warms up the InnoDB buffer pool by loading data pages without waiting for a server restart.
Can be useful to bring cache memory back to a known state during benchmarking or to ready the
MySQL server to resume its normal workload after running queries for reports or maintenance.

Enabling innodb_buffer_pool_load_now triggers the load action but does not alter the variable
setting, which always remains OFF or 0. To view buffer pool load progress after triggering a load, query
the Innodb_buffer_pool_load_status variable.

For more information, see Section 14.8.3.6, “Saving and Restoring the Buffer Pool State”.

2750

InnoDB System Variables

• innodb_buffer_pool_size

Command-Line Format --innodb-buffer-pool-size=#

System Variable innodb_buffer_pool_size

Scope Global

Dynamic Yes

Type Integer

Default Value 134217728

Minimum Value 5242880

Maximum Value (64-bit platforms) 2**64-1

Maximum Value (32-bit platforms) 2**32-1

Unit bytes

The size in bytes of the buffer pool, the memory area where InnoDB caches table and index data. The
default value is 134217728 bytes (128MB). The maximum value depends on the CPU architecture;
the maximum is 4294967295 (232-1) on 32-bit systems and 18446744073709551615 (264-1) on 64-bit
systems. On 32-bit systems, the CPU architecture and operating system may impose a lower practical
maximum size than the stated maximum. When the size of the buffer pool is greater than 1GB, setting
innodb_buffer_pool_instances to a value greater than 1 can improve the scalability on a busy
server.

A larger buffer pool requires less disk I/O to access the same table data more than once. On a dedicated
database server, you might set the buffer pool size to 80% of the machine's physical memory size. Be
aware of the following potential issues when configuring buffer pool size, and be prepared to scale back
the size of the buffer pool if necessary.

• Competition for physical memory can cause paging in the operating system.

• InnoDB reserves additional memory for buffers and control structures, so that the total allocated
space is approximately 10% greater than the specified buffer pool size.

• Address space for the buffer pool must be contiguous, which can be an issue on Windows systems
with DLLs that load at specific addresses.

• The time to initialize the buffer pool is roughly proportional to its size. On instances with large buffer
pools, initialization time might be significant. To reduce the initialization period, you can save the
buffer pool state at server shutdown and restore it at server startup. See Section 14.8.3.6, “Saving and
Restoring the Buffer Pool State”.

When you increase or decrease buffer pool size, the operation is performed in chunks. Chunk size is
defined by the innodb_buffer_pool_chunk_size variable, which has a default of 128 MB.

Buffer pool size must always be equal to or a multiple of innodb_buffer_pool_chunk_size *
innodb_buffer_pool_instances. If you alter the buffer pool size to a value that is not equal
to or a multiple of innodb_buffer_pool_chunk_size * innodb_buffer_pool_instances,
buffer pool size is automatically adjusted to a value that is equal to or a multiple of
innodb_buffer_pool_chunk_size * innodb_buffer_pool_instances.

innodb_buffer_pool_size can be set dynamically, which allows you to resize the buffer pool
without restarting the server. The Innodb_buffer_pool_resize_status status variable reports the

2751

InnoDB System Variables

status of online buffer pool resizing operations. See Section 14.8.3.1, “Configuring InnoDB Buffer Pool
Size” for more information.

• innodb_change_buffer_max_size

Command-Line Format --innodb-change-buffer-max-size=#

System Variable innodb_change_buffer_max_size

Scope Global

Dynamic Yes

Type Integer

Default Value 25

Minimum Value 0

Maximum Value 50

Maximum size for the InnoDB change buffer, as a percentage of the total size of the buffer pool. You
might increase this value for a MySQL server with heavy insert, update, and delete activity, or decrease
it for a MySQL server with unchanging data used for reporting. For more information, see Section 14.5.2,
“Change Buffer”. For general I/O tuning advice, see Section 8.5.8, “Optimizing InnoDB Disk I/O”.

• innodb_change_buffering

Command-Line Format --innodb-change-buffering=value

System Variable innodb_change_buffering

Scope Global

Dynamic Yes

Type Enumeration

Default Value all

Valid Values none

inserts

deletes

changes

purges

all

Whether InnoDB performs change buffering, an optimization that delays write operations to secondary
indexes so that the I/O operations can be performed sequentially. Permitted values are described in the
following table.

Table 14.19 Permitted Values for innodb_change_buffering

Value Description

none Do not buffer any operations.

inserts Buffer insert operations.

2752

InnoDB System Variables

Value Description

deletes Buffer delete marking operations; strictly speaking,
the writes that mark index records for later deletion
during a purge operation.

changes Buffer inserts and delete-marking operations.

purges Buffer the physical deletion operations that happen
in the background.

all The default. Buffer inserts, delete-marking
operations, and purges.

For more information, see Section 14.5.2, “Change Buffer”. For general I/O tuning advice, see
Section 8.5.8, “Optimizing InnoDB Disk I/O”.

• innodb_change_buffering_debug

Command-Line Format --innodb-change-buffering-debug=#

System Variable innodb_change_buffering_debug

Scope Global

Dynamic Yes

Type Integer

Default Value 0

Minimum Value 0

Maximum Value 2

Sets a debug flag for InnoDB change buffering. A value of 1 forces all changes to the change buffer. A
value of 2 causes an unexpected exit at merge. A default value of 0 indicates that the change buffering
debug flag is not set. This option is only available when debugging support is compiled in using the
WITH_DEBUG CMake option.

• innodb_checksum_algorithm

Command-Line Format --innodb-checksum-algorithm=value

System Variable innodb_checksum_algorithm

Scope Global

Dynamic Yes

Type Enumeration

Default Value crc32

Valid Values crc32

strict_crc32

innodb

strict_innodb

none

2753

InnoDB System Variables

strict_none

Specifies how to generate and verify the checksum stored in the disk blocks of InnoDB tablespaces.
crc32 is the default value as of MySQL 5.7.7.

innodb_checksum_algorithm replaces the innodb_checksums option. The following values were
provided for compatibility, up to and including MySQL 5.7.6:

• innodb_checksums=ON is the same as innodb_checksum_algorithm=innodb.

• innodb_checksums=OFF is the same as innodb_checksum_algorithm=none.

As of MySQL 5.7.7, with a default innodb_checksum_algorithm value of crc32,
innodb_checksums=ON is now the same as innodb_checksum_algorithm=crc32.
innodb_checksums=OFF is still the same as innodb_checksum_algorithm=none.

To avoid conflicts, remove references to innodb_checksums from MySQL configuration files and
startup scripts.

The value innodb is backward-compatible with earlier versions of MySQL. The value crc32 uses an
algorithm that is faster to compute the checksum for every modified block, and to check the checksums
for each disk read. It scans blocks 64 bits at a time, which is faster than the innodb checksum
algorithm, which scans blocks 8 bits at a time. The value none writes a constant value in the checksum
field rather than computing a value based on the block data. The blocks in a tablespace can use a mix
of old, new, and no checksum values, being updated gradually as the data is modified; once blocks in
a tablespace are modified to use the crc32 algorithm, the associated tables cannot be read by earlier
versions of MySQL.

The strict form of a checksum algorithm reports an error if it encounters a valid but non-matching
checksum value in a tablespace. It is recommended that you only use strict settings in a new instance,
to set up tablespaces for the first time. Strict settings are somewhat faster, because they do not need to
compute all checksum values during disk reads.

Note

Prior to MySQL 5.7.8, a strict mode setting for innodb_checksum_algorithm
caused InnoDB to halt when encountering a valid but non-matching checksum.
In MySQL 5.7.8 and later, only an error message is printed, and the page is
accepted as valid if it has a valid innodb, crc32 or none checksum.

The following table shows the difference between the none, innodb, and crc32 option values, and
their strict counterparts. none, innodb, and crc32 write the specified type of checksum value into each
data block, but for compatibility accept other checksum values when verifying a block during a read
operation. Strict settings also accept valid checksum values but print an error message when a valid
non-matching checksum value is encountered. Using the strict form can make verification faster if all
InnoDB data files in an instance are created under an identical innodb_checksum_algorithm value.

Table 14.20 Permitted innodb_checksum_algorithm Values

Value Generated checksum (when
writing)

Permitted checksums (when
reading)

none A constant number. Any of the checksums generated
by none, innodb, or crc32.

2754

InnoDB System Variables

Value Generated checksum (when
writing)

Permitted checksums (when
reading)

innodb A checksum calculated in
software, using the original
algorithm from InnoDB.

Any of the checksums generated
by none, innodb, or crc32.

crc32 A checksum calculated using the
crc32 algorithm, possibly done
with a hardware assist.

Any of the checksums generated
by none, innodb, or crc32.

strict_none A constant number Any of the checksums generated
by none, innodb, or crc32.
InnoDB prints an error message
if a valid but non-matching
checksum is encountered.

strict_innodb A checksum calculated in
software, using the original
algorithm from InnoDB.

Any of the checksums generated
by none, innodb, or crc32.
InnoDB prints an error message
if a valid but non-matching
checksum is encountered.

strict_crc32 A checksum calculated using the
crc32 algorithm, possibly done
with a hardware assist.

Any of the checksums generated
by none, innodb, or crc32.
InnoDB prints an error message
if a valid but non-matching
checksum is encountered.

Versions of MySQL Enterprise Backup up to 3.8.0 do not support backing up tablespaces that use
CRC32 checksums. MySQL Enterprise Backup adds CRC32 checksum support in 3.8.1, with some
limitations. Refer to the MySQL Enterprise Backup 3.8.1 Change History for more information.

• innodb_checksums

Command-Line Format --innodb-checksums[={OFF|ON}]

Deprecated Yes

System Variable innodb_checksums

Scope Global

Dynamic No

Type Boolean

Default Value ON

InnoDB can use checksum validation on all tablespace pages read from disk to ensure extra fault
tolerance against hardware faults or corrupted data files. This validation is enabled by default. Under
specialized circumstances (such as when running benchmarks) this safety feature can be disabled with
--skip-innodb-checksums. You can specify the method of calculating the checksum using the
innodb_checksum_algorithm option.

innodb_checksums is deprecated, replaced by innodb_checksum_algorithm.

Prior to MySQL 5.7.7, innodb_checksums=ON is the same as
innodb_checksum_algorithm=innodb. As of MySQL 5.7.7, the innodb_checksum_algorithm
default value is crc32, and innodb_checksums=ON is the same as

2755

InnoDB System Variables

innodb_checksum_algorithm=crc32. innodb_checksums=OFF is the same as
innodb_checksum_algorithm=none.

Remove any innodb_checksums options from your configuration files and startup scripts to avoid
conflicts with innodb_checksum_algorithm. innodb_checksums=OFF automatically sets
innodb_checksum_algorithm=none. innodb_checksums=ON is ignored and overridden by any
other setting for innodb_checksum_algorithm.

• innodb_cmp_per_index_enabled

Command-Line Format --innodb-cmp-per-index-enabled[={OFF|
ON}]

System Variable innodb_cmp_per_index_enabled

Scope Global

Dynamic Yes

Type Boolean

Default Value OFF

Enables per-index compression-related statistics in the Information Schema INNODB_CMP_PER_INDEX
table. Because these statistics can be expensive to gather, only enable this option on development, test,
or replica instances during performance tuning related to InnoDB compressed tables.

For more information, see Section 24.4.7, “The INFORMATION_SCHEMA INNODB_CMP_PER_INDEX
and INNODB_CMP_PER_INDEX_RESET Tables”, and Section 14.9.1.4, “Monitoring InnoDB Table
Compression at Runtime”.

• innodb_commit_concurrency

Command-Line Format --innodb-commit-concurrency=#

System Variable innodb_commit_concurrency

Scope Global

Dynamic Yes

Type Integer

Default Value 0

Minimum Value 0

Maximum Value 1000

The number of threads that can commit at the same time. A value of 0 (the default) permits any number
of transactions to commit simultaneously.

The value of innodb_commit_concurrency cannot be changed at runtime from zero to nonzero or
vice versa. The value can be changed from one nonzero value to another.

• innodb_compress_debug

Command-Line Format --innodb-compress-debug=value

System Variable innodb_compress_debug

Scope Global

Dynamic Yes2756

InnoDB System Variables

Type Enumeration

Default Value none

Valid Values none

zlib

lz4

lz4hc

Compresses all tables using a specified compression algorithm without having to define a COMPRESSION
attribute for each table. This option is only available if debugging support is compiled in using the
WITH_DEBUG CMake option.

For related information, see Section 14.9.2, “InnoDB Page Compression”.

• innodb_compression_failure_threshold_pct

Command-Line Format --innodb-compression-failure-
threshold-pct=#

System Variable innodb_compression_failure_threshold_pct

Scope Global

Dynamic Yes

Type Integer

Default Value 5

Minimum Value 0

Maximum Value 100

Defines the compression failure rate threshold for a table, as a percentage, at which point MySQL
begins adding padding within compressed pages to avoid expensive compression failures. When
this threshold is passed, MySQL begins to leave additional free space within each new compressed
page, dynamically adjusting the amount of free space up to the percentage of page size specified
by innodb_compression_pad_pct_max. A value of zero disables the mechanism that monitors
compression efficiency and dynamically adjusts the padding amount.

For more information, see Section 14.9.1.6, “Compression for OLTP Workloads”.

• innodb_compression_level

Command-Line Format --innodb-compression-level=#

System Variable innodb_compression_level

Scope Global

Dynamic Yes

Type Integer

Default Value 6

Minimum Value 0

2757

InnoDB System Variables

Maximum Value 9

Specifies the level of zlib compression to use for InnoDB compressed tables and indexes. A higher
value lets you fit more data onto a storage device, at the expense of more CPU overhead during
compression. A lower value lets you reduce CPU overhead when storage space is not critical, or you
expect the data is not especially compressible.

For more information, see Section 14.9.1.6, “Compression for OLTP Workloads”.

• innodb_compression_pad_pct_max

Command-Line Format --innodb-compression-pad-pct-max=#

System Variable innodb_compression_pad_pct_max

Scope Global

Dynamic Yes

Type Integer

Default Value 50

Minimum Value 0

Maximum Value 75

Specifies the maximum percentage that can be reserved as free space within each compressed
page, allowing room to reorganize the data and modification log within the page when a
compressed table or index is updated and the data might be recompressed. Only applies when
innodb_compression_failure_threshold_pct is set to a nonzero value, and the rate of
compression failures passes the cutoff point.

For more information, see Section 14.9.1.6, “Compression for OLTP Workloads”.

• innodb_concurrency_tickets

Command-Line Format --innodb-concurrency-tickets=#

System Variable innodb_concurrency_tickets

Scope Global

Dynamic Yes

Type Integer

Default Value 5000

Minimum Value 1

Maximum Value 4294967295

Determines the number of threads that can enter InnoDB concurrently. A thread is placed in a queue
when it tries to enter InnoDB if the number of threads has already reached the concurrency limit.
When a thread is permitted to enter InnoDB, it is given a number of “ tickets” equal to the value of
innodb_concurrency_tickets, and the thread can enter and leave InnoDB freely until it has used
up its tickets. After that point, the thread again becomes subject to the concurrency check (and possible
queuing) the next time it tries to enter InnoDB. The default value is 5000.

With a small innodb_concurrency_tickets value, small transactions that only need to process a
few rows compete fairly with larger transactions that process many rows. The disadvantage of a small

2758

InnoDB System Variables

innodb_concurrency_tickets value is that large transactions must loop through the queue many
times before they can complete, which extends the amount of time required to complete their task.

With a large innodb_concurrency_tickets value, large transactions spend less time waiting for
a position at the end of the queue (controlled by innodb_thread_concurrency) and more time
retrieving rows. Large transactions also require fewer trips through the queue to complete their task. The
disadvantage of a large innodb_concurrency_tickets value is that too many large transactions
running at the same time can starve smaller transactions by making them wait a longer time before
executing.

With a nonzero innodb_thread_concurrency value, you may need to adjust the
innodb_concurrency_tickets value up or down to find the optimal balance between larger
and smaller transactions. The SHOW ENGINE INNODB STATUS report shows the number of tickets
remaining for an executing transaction in its current pass through the queue. This data may also be
obtained from the TRX_CONCURRENCY_TICKETS column of the Information Schema INNODB_TRX table.

For more information, see Section 14.8.5, “Configuring Thread Concurrency for InnoDB”.

• innodb_data_file_path

Command-Line Format --innodb-data-file-path=file_name

System Variable innodb_data_file_path

Scope Global

Dynamic No

Type String

Default Value ibdata1:12M:autoextend

Defines the name, size, and attributes of InnoDB system tablespace data files.. If you do not specify a
value for innodb_data_file_path, the default behavior is to create a single auto-extending data file,
slightly larger than 12MB, named ibdata1.

The full syntax for a data file specification includes the file name, file size, autoextend attribute, and
max attribute:

file_name:file_size[:autoextend[:max:max_file_size]]

File sizes are specified in kilobytes, megabytes, or gigabytes by appending K, M or G to the size value.
If specifying the data file size in kilobytes, do so in multiples of 1024. Otherwise, KB values are rounded
to nearest megabyte (MB) boundary. The sum of file sizes must be, at a minimum, slightly larger than
12MB.

For additional configuration information, see System Tablespace Data File Configuration. For resizing
instructions, see Resizing the System Tablespace.

• innodb_data_home_dir

Command-Line Format --innodb-data-home-dir=dir_name

System Variable innodb_data_home_dir

Scope Global

Dynamic No

2759

InnoDB System Variables

Type Directory name

The common part of the directory path for InnoDB system tablespace data files. The default value is the
MySQL data directory. The setting is concatenated with the innodb_data_file_path setting. If you
specify the value as an empty string, you can specify an absolute path for innodb_data_file_path.

A trailing slash is required when specifying a value for innodb_data_home_dir. For example:

[mysqld]
innodb_data_home_dir = /path/to/myibdata/

This setting does not affect the location of file-per-table tablespaces.

For related information, see Section 14.8.1, “InnoDB Startup Configuration”.

• innodb_deadlock_detect

Command-Line Format --innodb-deadlock-detect[={OFF|ON}]

Introduced 5.7.15

System Variable innodb_deadlock_detect

Scope Global

Dynamic Yes

Type Boolean

Default Value ON

This option is used to disable deadlock detection. On high concurrency systems, deadlock detection can
cause a slowdown when numerous threads wait for the same lock. At times, it may be more efficient
to disable deadlock detection and rely on the innodb_lock_wait_timeout setting for transaction
rollback when a deadlock occurs.

For related information, see Section 14.7.5.2, “Deadlock Detection”.

• innodb_default_row_format

Command-Line Format --innodb-default-row-format=value

System Variable innodb_default_row_format

Scope Global

Dynamic Yes

Type Enumeration

Default Value DYNAMIC

Valid Values REDUNDANT

COMPACT

DYNAMIC

The innodb_default_row_format option defines the default row format for InnoDB tables and user-
created temporary tables. The default setting is DYNAMIC. Other permitted values are COMPACT and

2760

InnoDB System Variables

REDUNDANT. The COMPRESSED row format, which is not supported for use in the system tablespace,
cannot be defined as the default.

Newly created tables use the row format defined by innodb_default_row_format when a
ROW_FORMAT option is not specified explicitly or when ROW_FORMAT=DEFAULT is used.

When a ROW_FORMAT option is not specified explicitly or when ROW_FORMAT=DEFAULT is used, any
operation that rebuilds a table also silently changes the row format of the table to the format defined by
innodb_default_row_format. For more information, see Defining the Row Format of a Table.

Internal InnoDB temporary tables created by the server to process queries use the DYNAMIC row format,
regardless of the innodb_default_row_format setting.

• innodb_disable_sort_file_cache

Command-Line Format --innodb-disable-sort-file-
cache[={OFF|ON}]

System Variable innodb_disable_sort_file_cache

Scope Global

Dynamic Yes

Type Boolean

Default Value OFF

Disables the operating system file system cache for merge-sort temporary files. The effect is to open
such files with the equivalent of O_DIRECT.

• innodb_disable_resize_buffer_pool_debug

Command-Line Format --innodb-disable-resize-buffer-pool-
debug[={OFF|ON}]

System Variable innodb_disable_resize_buffer_pool_debug

Scope Global

Dynamic Yes

Type Boolean

Default Value ON

Disables resizing of the InnoDB buffer pool. This option is only available if debugging support is
compiled in using the WITH_DEBUG CMake option.

• innodb_doublewrite

Command-Line Format --innodb-doublewrite[={OFF|ON}]

System Variable innodb_doublewrite

Scope Global

Dynamic No

Type Boolean

2761

InnoDB System Variables

Default Value ON

When enabled (the default), InnoDB stores all data twice, first to the doublewrite buffer, then to the
actual data files. This variable can be turned off with --skip-innodb-doublewrite for benchmarks
or cases when top performance is needed rather than concern for data integrity or possible failures.

If system tablespace data files (ibdata* files) are located on Fusion-io devices that support atomic
writes, doublewrite buffering is automatically disabled and Fusion-io atomic writes are used for all
data files. Because the doublewrite buffer setting is global, doublewrite buffering is also disabled
for data files residing on non-Fusion-io hardware. This feature is only supported on Fusion-io
hardware and only enabled for Fusion-io NVMFS on Linux. To take full advantage of this feature, an
innodb_flush_method setting of O_DIRECT is recommended.

For related information, see Section 14.6.5, “Doublewrite Buffer”.

• innodb_fast_shutdown

Command-Line Format --innodb-fast-shutdown=#

System Variable innodb_fast_shutdown

Scope Global

Dynamic Yes

Type Integer

Default Value 1

Valid Values 0

1

2

The InnoDB shutdown mode. If the value is 0, InnoDB does a slow shutdown, a full purge and a change
buffer merge before shutting down. If the value is 1 (the default), InnoDB skips these operations at
shutdown, a process known as a fast shutdown. If the value is 2, InnoDB flushes its logs and shuts
down cold, as if MySQL had crashed; no committed transactions are lost, but the crash recovery
operation makes the next startup take longer.

The slow shutdown can take minutes, or even hours in extreme cases where substantial amounts of
data are still buffered. Use the slow shutdown technique before upgrading or downgrading between
MySQL major releases, so that all data files are fully prepared in case the upgrade process updates the
file format.

Use innodb_fast_shutdown=2 in emergency or troubleshooting situations, to get the absolute fastest
shutdown if data is at risk of corruption.

• innodb_fil_make_page_dirty_debug

Command-Line Format --innodb-fil-make-page-dirty-debug=#

System Variable innodb_fil_make_page_dirty_debug

Scope Global

Dynamic Yes

Type Integer

Default Value 0

2762

InnoDB System Variables

Minimum Value 0

Maximum Value 2**32-1

By default, setting innodb_fil_make_page_dirty_debug to the ID of a tablespace immediately
dirties the first page of the tablespace. If innodb_saved_page_number_debug is set to a non-
default value, setting innodb_fil_make_page_dirty_debug dirties the specified page. The
innodb_fil_make_page_dirty_debug option is only available if debugging support is compiled in
using the WITH_DEBUG CMake option.

• innodb_file_format

Command-Line Format --innodb-file-format=value

Deprecated Yes

System Variable innodb_file_format

Scope Global

Dynamic Yes

Type String

Default Value Barracuda

Valid Values Antelope

Barracuda

Enables an InnoDB file format for file-per-table tablespaces. Supported file formats are Antelope and
Barracuda. Antelope is the original InnoDB file format, which supports REDUNDANT and COMPACT
row formats. Barracuda is the newer file format, which supports COMPRESSED and DYNAMIC row
formats.

COMPRESSED and DYNAMIC row formats enable important storage features for InnoDB tables. See
Section 14.11, “InnoDB Row Formats”.

Changing the innodb_file_format setting does not affect the file format of existing InnoDB
tablespace files.

The innodb_file_format setting does not apply to general tablespaces, which support tables of all
row formats. See Section 14.6.3.3, “General Tablespaces”.

The innodb_file_format default value was changed to Barracuda in MySQL 5.7.

The innodb_file_format setting is ignored when creating tables that use the DYNAMIC row format.
A table created using the DYNAMIC row format always uses the Barracuda file format, regardless of the
innodb_file_format setting. To use the COMPRESSED row format, innodb_file_format must be
set to Barracuda.

The innodb_file_format option is deprecated; expect it to be removed in a future release. The
purpose of the innodb_file_format option was to allow users to downgrade to the built-in version of
InnoDB in earlier versions of MySQL. Now that those versions of MySQL have reached the end of their
product lifecycles, downgrade support provided by this option is no longer necessary.

For more information, see Section 14.10, “InnoDB File-Format Management”.

2763

InnoDB System Variables

• innodb_file_format_check

Command-Line Format --innodb-file-format-check[={OFF|ON}]

Deprecated Yes

System Variable innodb_file_format_check

Scope Global

Dynamic No

Type Boolean

Default Value ON

This variable can be set to 1 or 0 at server startup to enable or disable whether InnoDB checks the file
format tag in the system tablespace (for example, Antelope or Barracuda). If the tag is checked and
is higher than that supported by the current version of InnoDB, an error occurs and InnoDB does not
start. If the tag is not higher, InnoDB sets the value of innodb_file_format_max to the file format
tag.

Note

Despite the default value sometimes being displayed as ON or OFF, always use
the numeric values 1 or 0 to turn this option on or off in your configuration file or
command line string.

For more information, see Section 14.10.2.1, “Compatibility Check When InnoDB Is Started”.

The innodb_file_format_check option is deprecated together with the innodb_file_format
option. You should expect both options to be removed in a future release.

• innodb_file_format_max

Command-Line Format --innodb-file-format-max=value

Deprecated Yes

System Variable innodb_file_format_max

Scope Global

Dynamic Yes

Type String

Default Value Barracuda

Valid Values Antelope

Barracuda

At server startup, InnoDB sets the value of this variable to the file format tag in the system tablespace
(for example, Antelope or Barracuda). If the server creates or opens a table with a “higher” file
format, it sets the value of innodb_file_format_max to that format.

For related information, see Section 14.10, “InnoDB File-Format Management”.

The innodb_file_format_max option is deprecated together with the innodb_file_format
option. You should expect both options to be removed in a future release.

2764

InnoDB System Variables

• innodb_file_per_table

Command-Line Format --innodb-file-per-table[={OFF|ON}]

System Variable innodb_file_per_table

Scope Global

Dynamic Yes

Type Boolean

Default Value ON

When innodb_file_per_table is enabled, tables are created in file-per-table tablespaces by default.
When disabled, tables are created in the system tablespace by default. For information about file-
per-table tablespaces, see Section 14.6.3.2, “File-Per-Table Tablespaces”. For information about the
InnoDB system tablespace, see Section 14.6.3.1, “The System Tablespace”.

The innodb_file_per_table variable can be configured at runtime using a SET GLOBAL statement,
specified on the command line at startup, or specified in an option file. Configuration at runtime requires
privileges sufficient to set global system variables (see Section 5.1.8.1, “System Variable Privileges”)
and immediately affects the operation of all connections.

When a table that resides in a file-per-table tablespace is truncated or dropped, the freed space is
returned to the operating system. Truncating or dropping a table that resides in the system tablespace
only frees space in the system tablespace. Freed space in the system tablespace can be used again for
InnoDB data but is not returned to the operating system, as system tablespace data files never shrink.

When innodb_file_per_table is enabled, a table-copying ALTER TABLE operation on a table that
resides in the system tablespace implicitly re-creates the table in a file-per-table tablespace. To prevent
this from occurring, disable innodb_file_per_table before executing table-copying ALTER TABLE
operations on tables that reside in the system tablespace.

The innodb_file_per-table setting does not affect the creation of temporary tables. Temporary
tables are created in the temporary tablespace. See Section 14.6.3.5, “The Temporary Tablespace”.

• innodb_fill_factor

Command-Line Format --innodb-fill-factor=#

System Variable innodb_fill_factor

Scope Global

Dynamic Yes

Type Integer

Default Value 100

Minimum Value 10

Maximum Value 100

InnoDB performs a bulk load when creating or rebuilding indexes. This method of index creation is
known as a “sorted index build”.

innodb_fill_factor defines the percentage of space on each B-tree page that is filled during a
sorted index build, with the remaining space reserved for future index growth. For example, setting
innodb_fill_factor to 80 reserves 20 percent of the space on each B-tree page for future index

2765

InnoDB System Variables

growth. Actual percentages may vary. The innodb_fill_factor setting is interpreted as a hint rather
than a hard limit.

An innodb_fill_factor setting of 100 leaves 1/16 of the space in clustered index pages free for
future index growth.

innodb_fill_factor applies to both B-tree leaf and non-leaf pages. It does not apply to external
pages used for TEXT or BLOB entries.

For more information, see Section 14.6.2.3, “Sorted Index Builds”.

• innodb_flush_log_at_timeout

Command-Line Format --innodb-flush-log-at-timeout=#

System Variable innodb_flush_log_at_timeout

Scope Global

Dynamic Yes

Type Integer

Default Value 1

Minimum Value 1

Maximum Value 2700

Unit seconds

Write and flush the logs every N seconds. innodb_flush_log_at_timeout allows the timeout period
between flushes to be increased in order to reduce flushing and avoid impacting performance of binary
log group commit. The default setting for innodb_flush_log_at_timeout is once per second.

• innodb_flush_log_at_trx_commit

Command-Line Format --innodb-flush-log-at-trx-commit=#

System Variable innodb_flush_log_at_trx_commit

Scope Global

Dynamic Yes

Type Enumeration

Default Value 1

Valid Values 0

1

2

Controls the balance between strict ACID compliance for commit operations and higher performance that
is possible when commit-related I/O operations are rearranged and done in batches. You can achieve
better performance by changing the default value but then you can lose transactions in a crash.

• The default setting of 1 is required for full ACID compliance. Logs are written and flushed to disk at
each transaction commit.

• With a setting of 0, logs are written and flushed to disk once per second. Transactions for which logs
have not been flushed can be lost in a crash.

2766

InnoDB System Variables

• With a setting of 2, logs are written after each transaction commit and flushed to disk once per second.
Transactions for which logs have not been flushed can be lost in a crash.

• For settings 0 and 2, once-per-second flushing is not 100% guaranteed. Flushing may occur more
frequently due to DDL changes and other internal InnoDB activities that cause logs to be flushed
independently of the innodb_flush_log_at_trx_commit setting, and sometimes less frequently
due to scheduling issues. If logs are flushed once per second, up to one second of transactions can
be lost in a crash. If logs are flushed more or less frequently than once per second, the amount of
transactions that can be lost varies accordingly.

• Log flushing frequency is controlled by innodb_flush_log_at_timeout, which allows you to set
log flushing frequency to N seconds (where N is 1 ... 2700, with a default value of 1). However, any
unexpected mysqld process exit can erase up to N seconds of transactions.

• DDL changes and other internal InnoDB activities flush the log independently of the
innodb_flush_log_at_trx_commit setting.

• InnoDB crash recovery works regardless of the innodb_flush_log_at_trx_commit setting.
Transactions are either applied entirely or erased entirely.

For durability and consistency in a replication setup that uses InnoDB with transactions:

• If binary logging is enabled, set sync_binlog=1.

• Always set innodb_flush_log_at_trx_commit=1.

For information on the combination of settings on a replica that is most resilient to unexpected halts, see
Section 16.3.2, “Handling an Unexpected Halt of a Replica”.

Caution

Many operating systems and some disk hardware fool the flush-to-disk operation.
They may tell mysqld that the flush has taken place, even though it has not.
In this case, the durability of transactions is not guaranteed even with the
recommended settings, and in the worst case, a power outage can corrupt
InnoDB data. Using a battery-backed disk cache in the SCSI disk controller or in
the disk itself speeds up file flushes, and makes the operation safer. You can also
try to disable the caching of disk writes in hardware caches.

• innodb_flush_method

Command-Line Format --innodb-flush-method=value

System Variable innodb_flush_method

Scope Global

Dynamic No

Type String

Default Value NULL

Valid Values (Unix) fsync

O_DSYNC

littlesync

2767

InnoDB System Variables

nosync

O_DIRECT

O_DIRECT_NO_FSYNC

Valid Values (Windows) async_unbuffered

normal

unbuffered

Defines the method used to flush data to InnoDB data files and log files, which can affect I/O
throughput.

If innodb_flush_method is set to NULL on a Unix-like system, the fsync option is used by default.
If innodb_flush_method is set to NULL on Windows, the async_unbuffered option is used by
default.

The innodb_flush_method options for Unix-like systems include:

• fsync: InnoDB uses the fsync() system call to flush both the data and log files. fsync is the
default setting.

• O_DSYNC: InnoDB uses O_SYNC to open and flush the log files, and fsync() to flush the data files.
InnoDB does not use O_DSYNC directly because there have been problems with it on many varieties
of Unix.

• littlesync: This option is used for internal performance testing and is currently unsupported. Use at
your own risk.

• nosync: This option is used for internal performance testing and is currently unsupported. Use at your
own risk.

• O_DIRECT: InnoDB uses O_DIRECT (or directio() on Solaris) to open the data files, and uses
fsync() to flush both the data and log files. This option is available on some GNU/Linux versions,
FreeBSD, and Solaris.

• O_DIRECT_NO_FSYNC: InnoDB uses O_DIRECT during flushing I/O, but skips the fsync() system
call after each write operation.

Prior to MySQL 5.7.25, this setting is not suitable for file systems such as XFS and EXT4, which
require an fsync() system call to synchronize file system metadata changes. If you are not sure
whether your file system requires an fsync() system call to synchronize file system metadata
changes, use O_DIRECT instead.

As of MySQL 5.7.25, fsync() is called after creating a new file, after increasing file size, and after
closing a file, to ensure that file system metadata changes are synchronized. The fsync() system
call is still skipped after each write operation.

Data loss is possible if redo log files and data files reside on different storage devices, and an
unexpected exit occurs before data file writes are flushed from a device cache that is not battery-

2768

InnoDB System Variables

backed. If you use or intend to use different storage devices for redo log files and data files, and your
data files reside on a device with a cache that is not battery-backed, use O_DIRECT instead.

The innodb_flush_method options for Windows systems include:

• async_unbuffered: InnoDB uses Windows asynchronous I/O and non-buffered I/O.
async_unbuffered is the default setting on Windows systems.

Running MySQL server on a 4K sector hard drive on Windows is not supported with
async_unbuffered. The workaround is to use innodb_flush_method=normal.

• normal: InnoDB uses simulated asynchronous I/O and buffered I/O.

• unbuffered: InnoDB uses simulated asynchronous I/O and non-buffered I/O.

How each setting affects performance depends on hardware configuration and workload. Benchmark
your particular configuration to decide which setting to use, or whether to keep the default setting.
Examine the Innodb_data_fsyncs status variable to see the overall number of fsync() calls for
each setting. The mix of read and write operations in your workload can affect how a setting performs.
For example, on a system with a hardware RAID controller and battery-backed write cache, O_DIRECT
can help to avoid double buffering between the InnoDB buffer pool and the operating system file system
cache. On some systems where InnoDB data and log files are located on a SAN, the default value or
O_DSYNC might be faster for a read-heavy workload with mostly SELECT statements. Always test this
parameter with hardware and workload that reflect your production environment. For general I/O tuning
advice, see Section 8.5.8, “Optimizing InnoDB Disk I/O”.

• innodb_flush_neighbors

Command-Line Format --innodb-flush-neighbors=#

System Variable innodb_flush_neighbors

Scope Global

Dynamic Yes

Type Enumeration

Default Value 1

Valid Values 0

1

2

Specifies whether flushing a page from the InnoDB buffer pool also flushes other dirty pages in the
same extent.

• A setting of 0 disables innodb_flush_neighbors. Dirty pages in the same extent are not flushed.

• The default setting of 1 flushes contiguous dirty pages in the same extent.

• A setting of 2 flushes dirty pages in the same extent.

When the table data is stored on a traditional HDD storage device, flushing such neighbor pages in
one operation reduces I/O overhead (primarily for disk seek operations) compared to flushing individual
pages at different times. For table data stored on SSD, seek time is not a significant factor and you
can turn this setting off to spread out write operations. For related information, see Section 14.8.3.5,
“Configuring Buffer Pool Flushing”.

2769

InnoDB System Variables

• innodb_flush_sync

Command-Line Format --innodb-flush-sync[={OFF|ON}]

System Variable innodb_flush_sync

Scope Global

Dynamic Yes

Type Boolean

Default Value ON

The innodb_flush_sync variable, which is enabled by default, causes the innodb_io_capacity
setting to be ignored during bursts of I/O activity that occur at checkpoints. To adhere to the I/O rate
defined by the innodb_io_capacity setting, disable innodb_flush_sync.

For information about configuring the innodb_flush_sync variable, see Section 14.8.8, “Configuring
InnoDB I/O Capacity”.

• innodb_flushing_avg_loops

Command-Line Format --innodb-flushing-avg-loops=#

System Variable innodb_flushing_avg_loops

Scope Global

Dynamic Yes

Type Integer

Default Value 30

Minimum Value 1

Maximum Value 1000

Number of iterations for which InnoDB keeps the previously calculated snapshot of the flushing state,
controlling how quickly adaptive flushing responds to changing workloads. Increasing the value makes
the rate of flush operations change smoothly and gradually as the workload changes. Decreasing the
value makes adaptive flushing adjust quickly to workload changes, which can cause spikes in flushing
activity if the workload increases and decreases suddenly.

For related information, see Section 14.8.3.5, “Configuring Buffer Pool Flushing”.

• innodb_force_load_corrupted

Command-Line Format --innodb-force-load-corrupted[={OFF|
ON}]

System Variable innodb_force_load_corrupted

Scope Global

Dynamic No

Type Boolean

Default Value OFF

Permits InnoDB to load tables at startup that are marked as corrupted. Use only during troubleshooting,
to recover data that is otherwise inaccessible. When troubleshooting is complete, disable this setting and
restart the server.2770

InnoDB System Variables

• innodb_force_recovery

Command-Line Format --innodb-force-recovery=#

System Variable innodb_force_recovery

Scope Global

Dynamic No

Type Integer

Default Value 0

Minimum Value 0

Maximum Value 6

The crash recovery mode, typically only changed in serious troubleshooting situations. Possible
values are from 0 to 6. For the meanings of these values and important information about
innodb_force_recovery, see Section 14.22.2, “Forcing InnoDB Recovery”.

Warning

Only set this variable to a value greater than 0 in an emergency situation
so that you can start InnoDB and dump your tables. As a safety measure,
InnoDB prevents INSERT, UPDATE, or DELETE operations when
innodb_force_recovery is greater than 0. An innodb_force_recovery
setting of 4 or greater places InnoDB into read-only mode.

These restrictions may cause replication administration
commands to fail with an error because replication settings
such as relay_log_info_repository=TABLE and
master_info_repository=TABLE store information in InnoDB tables.

• innodb_ft_aux_table

System Variable innodb_ft_aux_table

Scope Global

Dynamic Yes

Type String

Specifies the qualified name of an InnoDB table containing a FULLTEXT index. This variable is intended
for diagnostic purposes and can only be set at runtime. For example:

SET GLOBAL innodb_ft_aux_table = 'test/t1';

After you set this variable to a name in the format db_name/table_name, the INFORMATION_SCHEMA
tables INNODB_FT_INDEX_TABLE, INNODB_FT_INDEX_CACHE, INNODB_FT_CONFIG,
INNODB_FT_DELETED, and INNODB_FT_BEING_DELETED show information about the search index for
the specified table.

For more information, see Section 14.16.4, “InnoDB INFORMATION_SCHEMA FULLTEXT Index
Tables”.

• innodb_ft_cache_size

Command-Line Format --innodb-ft-cache-size=# 2771

InnoDB System Variables

System Variable innodb_ft_cache_size

Scope Global

Dynamic No

Type Integer

Default Value 8000000

Minimum Value 1600000

Maximum Value 80000000

Unit bytes

The memory allocated, in bytes, for the InnoDB FULLTEXT search index cache, which holds
a parsed document in memory while creating an InnoDB FULLTEXT index. Index inserts and
updates are only committed to disk when the innodb_ft_cache_size size limit is reached.
innodb_ft_cache_size defines the cache size on a per table basis. To set a global limit for all tables,
see innodb_ft_total_cache_size.

For more information, see InnoDB Full-Text Index Cache.

• innodb_ft_enable_diag_print

Command-Line Format --innodb-ft-enable-diag-print[={OFF|
ON}]

System Variable innodb_ft_enable_diag_print

Scope Global

Dynamic Yes

Type Boolean

Default Value OFF

Whether to enable additional full-text search (FTS) diagnostic output. This option is primarily intended
for advanced FTS debugging and is not of interest to most users. Output is printed to the error log and
includes information such as:

• FTS index sync progress (when the FTS cache limit is reached). For example:

FTS SYNC for table test, deleted count: 100 size: 10000 bytes
SYNC words: 100

• FTS optimize progress. For example:

FTS start optimize test
FTS_OPTIMIZE: optimize "mysql"
FTS_OPTIMIZE: processed "mysql"

• FTS index build progress. For example:

Number of doc processed: 1000

• For FTS queries, the query parsing tree, word weight, query processing time, and memory usage are
printed. For example:

FTS Search Processing time: 1 secs: 100 millisec: row(s) 10000
Full Search Memory: 245666 (bytes), Row: 10000

• innodb_ft_enable_stopword

2772

InnoDB System Variables

Command-Line Format --innodb-ft-enable-stopword[={OFF|
ON}]

System Variable innodb_ft_enable_stopword

Scope Global, Session

Dynamic Yes

Type Boolean

Default Value ON

Specifies that a set of stopwords is associated with an InnoDB FULLTEXT index at the time the index is
created. If the innodb_ft_user_stopword_table option is set, the stopwords are taken from that
table. Else, if the innodb_ft_server_stopword_table option is set, the stopwords are taken from
that table. Otherwise, a built-in set of default stopwords is used.

For more information, see Section 12.9.4, “Full-Text Stopwords”.

• innodb_ft_max_token_size

Command-Line Format --innodb-ft-max-token-size=#

System Variable innodb_ft_max_token_size

Scope Global

Dynamic No

Type Integer

Default Value 84

Minimum Value 10

Maximum Value 84

Maximum character length of words that are stored in an InnoDB FULLTEXT index. Setting a limit on
this value reduces the size of the index, thus speeding up queries, by omitting long keywords or arbitrary
collections of letters that are not real words and are not likely to be search terms.

For more information, see Section 12.9.6, “Fine-Tuning MySQL Full-Text Search”.

• innodb_ft_min_token_size

Command-Line Format --innodb-ft-min-token-size=#

System Variable innodb_ft_min_token_size

Scope Global

Dynamic No

Type Integer

Default Value 3

Minimum Value 0

Maximum Value 16

Minimum length of words that are stored in an InnoDB FULLTEXT index. Increasing this value reduces
the size of the index, thus speeding up queries, by omitting common words that are unlikely to be

2773

InnoDB System Variables

significant in a search context, such as the English words “a” and “to”. For content using a CJK (Chinese,
Japanese, Korean) character set, specify a value of 1.

For more information, see Section 12.9.6, “Fine-Tuning MySQL Full-Text Search”.

• innodb_ft_num_word_optimize

Command-Line Format --innodb-ft-num-word-optimize=#

System Variable innodb_ft_num_word_optimize

Scope Global

Dynamic Yes

Type Integer

Default Value 2000

Minimum Value 1000

Maximum Value 10000

Number of words to process during each OPTIMIZE TABLE operation on an InnoDB FULLTEXT index.
Because a bulk insert or update operation to a table containing a full-text search index could require
substantial index maintenance to incorporate all changes, you might do a series of OPTIMIZE TABLE
statements, each picking up where the last left off.

For more information, see Section 12.9.6, “Fine-Tuning MySQL Full-Text Search”.

• innodb_ft_result_cache_limit

Command-Line Format --innodb-ft-result-cache-limit=#

System Variable innodb_ft_result_cache_limit

Scope Global

Dynamic Yes

Type Integer

Default Value 2000000000

Minimum Value 1000000

Maximum Value 2**32-1

Unit bytes

The InnoDB full-text search query result cache limit (defined in bytes) per full-text search query or
per thread. Intermediate and final InnoDB full-text search query results are handled in memory. Use
innodb_ft_result_cache_limit to place a size limit on the full-text search query result cache
to avoid excessive memory consumption in case of very large InnoDB full-text search query results
(millions or hundreds of millions of rows, for example). Memory is allocated as required when a full-text
search query is processed. If the result cache size limit is reached, an error is returned indicating that the
query exceeds the maximum allowed memory.

The maximum value of innodb_ft_result_cache_limit for all platform types and bit sizes is
2**32-1.

2774

InnoDB System Variables

• innodb_ft_server_stopword_table

Command-Line Format --innodb-ft-server-stopword-
table=db_name/table_name

System Variable innodb_ft_server_stopword_table

Scope Global

Dynamic Yes

Type String

Default Value NULL

This option is used to specify your own InnoDB FULLTEXT index stopword list for all
InnoDB tables. To configure your own stopword list for a specific InnoDB table, use
innodb_ft_user_stopword_table.

Set innodb_ft_server_stopword_table to the name of the table containing a list of stopwords, in
the format db_name/table_name.

The stopword table must exist before you configure innodb_ft_server_stopword_table.
innodb_ft_enable_stopword must be enabled and innodb_ft_server_stopword_table
option must be configured before you create the FULLTEXT index.

The stopword table must be an InnoDB table, containing a single VARCHAR column named value.

For more information, see Section 12.9.4, “Full-Text Stopwords”.

• innodb_ft_sort_pll_degree

Command-Line Format --innodb-ft-sort-pll-degree=#

System Variable innodb_ft_sort_pll_degree

Scope Global

Dynamic No

Type Integer

Default Value 2

Minimum Value 1

Maximum Value 16

Number of threads used in parallel to index and tokenize text in an InnoDB FULLTEXT index when
building a search index.

For related information, see Section 14.6.2.4, “InnoDB Full-Text Indexes”, and
innodb_sort_buffer_size.

• innodb_ft_total_cache_size

Command-Line Format --innodb-ft-total-cache-size=#

System Variable innodb_ft_total_cache_size

Scope Global

Dynamic No

Type Integer

2775

InnoDB System Variables

Default Value 640000000

Minimum Value 32000000

Maximum Value 1600000000

Unit bytes

The total memory allocated, in bytes, for the InnoDB full-text search index cache for all tables. Creating
numerous tables, each with a FULLTEXT search index, could consume a significant portion of available
memory. innodb_ft_total_cache_size defines a global memory limit for all full-text search indexes
to help avoid excessive memory consumption. If the global limit is reached by an index operation, a
forced sync is triggered.

For more information, see InnoDB Full-Text Index Cache.

• innodb_ft_user_stopword_table

Command-Line Format --innodb-ft-user-stopword-
table=db_name/table_name

System Variable innodb_ft_user_stopword_table

Scope Global, Session

Dynamic Yes

Type String

Default Value NULL

This option is used to specify your own InnoDB FULLTEXT index stopword list on a specific table. To
configure your own stopword list for all InnoDB tables, use innodb_ft_server_stopword_table.

Set innodb_ft_user_stopword_table to the name of the table containing a list of stopwords, in the
format db_name/table_name.

The stopword table must exist before you configure innodb_ft_user_stopword_table.
innodb_ft_enable_stopword must be enabled and innodb_ft_user_stopword_table must be
configured before you create the FULLTEXT index.

The stopword table must be an InnoDB table, containing a single VARCHAR column named value.

For more information, see Section 12.9.4, “Full-Text Stopwords”.

• innodb_io_capacity

Command-Line Format --innodb-io-capacity=#

System Variable innodb_io_capacity

Scope Global

Dynamic Yes

Type Integer

Default Value 200

Minimum Value 100

Maximum Value (64-bit platforms) 2**64-1

2776

InnoDB System Variables

Maximum Value 2**32-1

The innodb_io_capacity variable defines the number of I/O operations per second (IOPS) available
to InnoDB background tasks, such as flushing pages from the buffer pool and merging data from the
change buffer.

For information about configuring the innodb_io_capacity variable, see Section 14.8.8, “Configuring
InnoDB I/O Capacity”.

• innodb_io_capacity_max

Command-Line Format --innodb-io-capacity-max=#

System Variable innodb_io_capacity_max

Scope Global

Dynamic Yes

Type Integer

Default Value 2 * innodb_io_capacity, min of 2000

Minimum Value 100

Maximum Value (Unix, 64-bit platforms) 2**64-1

Maximum Value (Other) 2**32-1

If flushing activity falls behind, InnoDB can flush more aggressively, at a higher rate of I/
O operations per second (IOPS) than defined by the innodb_io_capacity variable. The
innodb_io_capacity_max variable defines a maximum number of IOPS performed by InnoDB
background tasks in such situations.

For information about configuring the innodb_io_capacity_max variable, see Section 14.8.8,
“Configuring InnoDB I/O Capacity”.

• innodb_large_prefix

Command-Line Format --innodb-large-prefix[={OFF|ON}]

Deprecated Yes

System Variable innodb_large_prefix

Scope Global

Dynamic Yes

Type Boolean

Default Value ON

When this option is enabled, index key prefixes longer than 767 bytes (up to 3072 bytes) are allowed for
InnoDB tables that use DYNAMIC or COMPRESSED row format. See Section 14.23, “InnoDB Limits” for
maximums associated with index key prefixes under various settings.

For tables that use REDUNDANT or COMPACT row format, this option does not affect the permitted index
key prefix length.

innodb_large_prefix is enabled by default in MySQL 5.7. This change coincides with the default
value change for innodb_file_format, which is set to Barracuda by default in MySQL 5.7.
Together, these default value changes allow larger index key prefixes to be created when using

2777

InnoDB System Variables

DYNAMIC or COMPRESSED row format. If either option is set to a non-default value, index key prefixes
larger than 767 bytes are silently truncated.

innodb_large_prefix is deprecated; expect it to be removed in a future release.
innodb_large_prefix was introduced to disable large index key prefixes for compatibility with earlier
versions of InnoDB that do not support large index key prefixes.

• innodb_limit_optimistic_insert_debug

Command-Line Format --innodb-limit-optimistic-insert-
debug=#

System Variable innodb_limit_optimistic_insert_debug

Scope Global

Dynamic Yes

Type Integer

Default Value 0

Minimum Value 0

Maximum Value 2**32-1

Limits the number of records per B-tree page. A default value of 0 means that no limit is imposed. This
option is only available if debugging support is compiled in using the WITH_DEBUG CMake option.

• innodb_lock_wait_timeout

Command-Line Format --innodb-lock-wait-timeout=#

System Variable innodb_lock_wait_timeout

Scope Global, Session

Dynamic Yes

Type Integer

Default Value 50

Minimum Value 1

Maximum Value 1073741824

Unit seconds

The length of time in seconds an InnoDB transaction waits for a row lock before giving up. The
default value is 50 seconds. A transaction that tries to access a row that is locked by another InnoDB
transaction waits at most this many seconds for write access to the row before issuing the following
error:

ERROR 1205 (HY000): Lock wait timeout exceeded; try restarting transaction

When a lock wait timeout occurs, the current statement is rolled back (not the entire transaction). To
have the entire transaction roll back, start the server with the --innodb-rollback-on-timeout
option. See also Section 14.22.4, “InnoDB Error Handling”.

You might decrease this value for highly interactive applications or OLTP systems, to display user
feedback quickly or put the update into a queue for processing later. You might increase this value for

2778

InnoDB System Variables

long-running back-end operations, such as a transform step in a data warehouse that waits for other
large insert or update operations to finish.

innodb_lock_wait_timeout applies to InnoDB row locks only. A MySQL table lock does not
happen inside InnoDB and this timeout does not apply to waits for table locks.

The lock wait timeout value does not apply to deadlocks when innodb_deadlock_detect
is enabled (the default) because InnoDB detects deadlocks immediately and rolls back one of
the deadlocked transactions. When innodb_deadlock_detect is disabled, InnoDB relies on
innodb_lock_wait_timeout for transaction rollback when a deadlock occurs. See Section 14.7.5.2,
“Deadlock Detection”.

innodb_lock_wait_timeout can be set at runtime with the SET GLOBAL or SET SESSION
statement. Changing the GLOBAL setting requires privileges sufficient to set global system variables (see
Section 5.1.8.1, “System Variable Privileges”) and affects the operation of all clients that subsequently
connect. Any client can change the SESSION setting for innodb_lock_wait_timeout, which affects
only that client.

• innodb_locks_unsafe_for_binlog

Command-Line Format --innodb-locks-unsafe-for-
binlog[={OFF|ON}]

Deprecated Yes

System Variable innodb_locks_unsafe_for_binlog

Scope Global

Dynamic No

Type Boolean

Default Value OFF

This variable affects how InnoDB uses gap locking for searches and index scans.
innodb_locks_unsafe_for_binlog is deprecated; expect it to be removed in a future MySQL
release.

Normally, InnoDB uses an algorithm called next-key locking that combines index-row locking with
gap locking. InnoDB performs row-level locking in such a way that when it searches or scans a table
index, it sets shared or exclusive locks on the index records it encounters. Thus, row-level locks are
actually index-record locks. In addition, a next-key lock on an index record also affects the gap before
the index record. That is, a next-key lock is an index-record lock plus a gap lock on the gap preceding
the index record. If one session has a shared or exclusive lock on record R in an index, another session
cannot insert a new index record in the gap immediately before R in the index order. See Section 14.7.1,
“InnoDB Locking”.

By default, the value of innodb_locks_unsafe_for_binlog is 0 (disabled), which means that gap
locking is enabled: InnoDB uses next-key locks for searches and index scans. To enable the variable,

2779

InnoDB System Variables

set it to 1. This causes gap locking to be disabled: InnoDB uses only index-record locks for searches
and index scans.

Enabling innodb_locks_unsafe_for_binlog does not disable the use of gap locking for foreign-
key constraint checking or duplicate-key checking.

The effects of enabling innodb_locks_unsafe_for_binlog are the same as setting the transaction
isolation level to READ COMMITTED, with these exceptions:

• Enabling innodb_locks_unsafe_for_binlog is a global setting and affects all sessions, whereas
the isolation level can be set globally for all sessions, or individually per session.

• innodb_locks_unsafe_for_binlog can be set only at server startup, whereas the isolation level
can be set at startup or changed at runtime.

READ COMMITTED therefore offers finer and more flexible control than
innodb_locks_unsafe_for_binlog. For more information about the effect of isolation level on gap
locking, see Section 14.7.2.1, “Transaction Isolation Levels”.

Enabling innodb_locks_unsafe_for_binlog may cause phantom problems because other
sessions can insert new rows into the gaps when gap locking is disabled. Suppose that there is an index
on the id column of the child table and that you want to read and lock all rows from the table having
an identifier value larger than 100, with the intention of updating some column in the selected rows later:

SELECT * FROM child WHERE id > 100 FOR UPDATE;

The query scans the index starting from the first record where the id is greater than 100. If the locks
set on the index records in that range do not lock out inserts made in the gaps, another session can
insert a new row into the table. Consequently, if you were to execute the same SELECT again within the
same transaction, you would see a new row in the result set returned by the query. This also means
that if new items are added to the database, InnoDB does not guarantee serializability. Therefore, if
innodb_locks_unsafe_for_binlog is enabled, InnoDB guarantees at most an isolation level of
READ COMMITTED. (Conflict serializability is still guaranteed.) For more information about phantoms,
see Section 14.7.4, “Phantom Rows”.

Enabling innodb_locks_unsafe_for_binlog has additional effects:

• For UPDATE or DELETE statements, InnoDB holds locks only for rows that it updates or deletes.
Record locks for nonmatching rows are released after MySQL has evaluated the WHERE condition.
This greatly reduces the probability of deadlocks, but they can still happen.

• For UPDATE statements, if a row is already locked, InnoDB performs a “semi-consistent” read,
returning the latest committed version to MySQL so that MySQL can determine whether the row
matches the WHERE condition of the UPDATE. If the row matches (must be updated), MySQL reads the
row again and this time InnoDB either locks it or waits for a lock on it.

Consider the following example, beginning with this table:

CREATE TABLE t (a INT NOT NULL, b INT) ENGINE = InnoDB;
INSERT INTO t VALUES (1,2),(2,3),(3,2),(4,3),(5,2);

2780

InnoDB System Variables

COMMIT;

In this case, table has no indexes, so searches and index scans use the hidden clustered index for
record locking (see Section 14.6.2.1, “Clustered and Secondary Indexes”).

Suppose that one client performs an UPDATE using these statements:

SET autocommit = 0;
UPDATE t SET b = 5 WHERE b = 3;

Suppose also that a second client performs an UPDATE by executing these statements following those of
the first client:

SET autocommit = 0;
UPDATE t SET b = 4 WHERE b = 2;

As InnoDB executes each UPDATE, it first acquires an exclusive lock for each row, and then determines
whether to modify it. If InnoDB does not modify the row and innodb_locks_unsafe_for_binlog
is enabled, it releases the lock. Otherwise, InnoDB retains the lock until the end of the transaction. This
affects transaction processing as follows.

If innodb_locks_unsafe_for_binlog is disabled, the first UPDATE acquires x-locks and does not
release any of them:

x-lock(1,2); retain x-lock
x-lock(2,3); update(2,3) to (2,5); retain x-lock
x-lock(3,2); retain x-lock
x-lock(4,3); update(4,3) to (4,5); retain x-lock
x-lock(5,2); retain x-lock

The second UPDATE blocks as soon as it tries to acquire any locks (because the first update has
retained locks on all rows), and does not proceed until the first UPDATE commits or rolls back:

x-lock(1,2); block and wait for first UPDATE to commit or roll back

If innodb_locks_unsafe_for_binlog is enabled, the first UPDATE acquires x-locks and releases
those for rows that it does not modify:

x-lock(1,2); unlock(1,2)
x-lock(2,3); update(2,3) to (2,5); retain x-lock
x-lock(3,2); unlock(3,2)
x-lock(4,3); update(4,3) to (4,5); retain x-lock
x-lock(5,2); unlock(5,2)

For the second UPDATE, InnoDB does a “semi-consistent” read, returning the latest committed version
of each row to MySQL so that MySQL can determine whether the row matches the WHERE condition of
the UPDATE:

x-lock(1,2); update(1,2) to (1,4); retain x-lock
x-lock(2,3); unlock(2,3)
x-lock(3,2); update(3,2) to (3,4); retain x-lock
x-lock(4,3); unlock(4,3)
x-lock(5,2); update(5,2) to (5,4); retain x-lock

• innodb_log_buffer_size

Command-Line Format --innodb-log-buffer-size=#

System Variable innodb_log_buffer_size

Scope Global
2781

InnoDB System Variables

Dynamic No

Type Integer

Default Value 16777216

Minimum Value 1048576

Maximum Value 4294967295

The size in bytes of the buffer that InnoDB uses to write to the log files on disk. The default value
changed from 8MB to 16MB with the introduction of 32KB and 64KB innodb_page_size values. A
large log buffer enables large transactions to run without the need to write the log to disk before the
transactions commit. Thus, if you have transactions that update, insert, or delete many rows, making the
log buffer larger saves disk I/O. For related information, see Memory Configuration, and Section 8.5.4,
“Optimizing InnoDB Redo Logging”. For general I/O tuning advice, see Section 8.5.8, “Optimizing
InnoDB Disk I/O”.

• innodb_log_checkpoint_now

Command-Line Format --innodb-log-checkpoint-now[={OFF|
ON}]

System Variable innodb_log_checkpoint_now

Scope Global

Dynamic Yes

Type Boolean

Default Value OFF

Enable this debug option to force InnoDB to write a checkpoint. This option is only available if debugging
support is compiled in using the WITH_DEBUG CMake option.

• innodb_log_checksums

Command-Line Format --innodb-log-checksums[={OFF|ON}]

System Variable innodb_log_checksums

Scope Global

Dynamic Yes

Type Boolean

Default Value ON

Enables or disables checksums for redo log pages.

innodb_log_checksums=ON enables the CRC-32C checksum algorithm for redo log pages. When
innodb_log_checksums is disabled, the contents of the redo log page checksum field are ignored.

Checksums on the redo log header page and redo log checkpoint pages are never disabled.

• innodb_log_compressed_pages

Command-Line Format --innodb-log-compressed-pages[={OFF|
ON}]

System Variable innodb_log_compressed_pages
2782

InnoDB System Variables

Scope Global

Dynamic Yes

Type Boolean

Default Value ON

Specifies whether images of re-compressed pages are written to the redo log. Re-compression may
occur when changes are made to compressed data.

innodb_log_compressed_pages is enabled by default to prevent corruption that could occur if a
different version of the zlib compression algorithm is used during recovery. If you are certain that the
zlib version is not subject to change, you can disable innodb_log_compressed_pages to reduce
redo log generation for workloads that modify compressed data.

To measure the effect of enabling or disabling innodb_log_compressed_pages, compare redo log
generation for both settings under the same workload. Options for measuring redo log generation include
observing the Log sequence number (LSN) in the LOG section of SHOW ENGINE INNODB STATUS
output, or monitoring Innodb_os_log_written status for the number of bytes written to the redo log
files.

For related information, see Section 14.9.1.6, “Compression for OLTP Workloads”.

• innodb_log_file_size

Command-Line Format --innodb-log-file-size=#

System Variable innodb_log_file_size

Scope Global

Dynamic No

Type Integer

Default Value 50331648

Minimum Value (≥ 5.7.11) 4194304

Minimum Value (≤ 5.7.10) 1048576

Maximum Value 512GB / innodb_log_files_in_group

Unit bytes

The size in bytes of each log file in a log group. The combined size of log files
(innodb_log_file_size * innodb_log_files_in_group) cannot exceed a maximum value that
is slightly less than 512GB. A pair of 255 GB log files, for example, approaches the limit but does not
exceed it. The default value is 48MB.

Generally, the combined size of the log files should be large enough that the server can smooth out
peaks and troughs in workload activity, which often means that there is enough redo log space to handle
more than an hour of write activity. The larger the value, the less checkpoint flush activity is required in
the buffer pool, saving disk I/O. Larger log files also make crash recovery slower.

The minimum innodb_log_file_size value was increased from 1MB to 4MB in MySQL 5.7.11.

For related information, see Redo Log File Configuration. For general I/O tuning advice, see
Section 8.5.8, “Optimizing InnoDB Disk I/O”.

2783

InnoDB System Variables

• innodb_log_files_in_group

Command-Line Format --innodb-log-files-in-group=#

System Variable innodb_log_files_in_group

Scope Global

Dynamic No

Type Integer

Default Value 2

Minimum Value 2

Maximum Value 100

The number of log files in the log group. InnoDB writes to the files in a circular fashion. The default (and
recommended) value is 2. The location of the files is specified by innodb_log_group_home_dir. The
combined size of log files (innodb_log_file_size * innodb_log_files_in_group) can be up to
512GB.

For related information, see Redo Log File Configuration.

• innodb_log_group_home_dir

Command-Line Format --innodb-log-group-home-dir=dir_name

System Variable innodb_log_group_home_dir

Scope Global

Dynamic No

Type Directory name

The directory path to the InnoDB redo log files, whose number is specified by
innodb_log_files_in_group. If you do not specify any InnoDB log variables, the default is to
create two files named ib_logfile0 and ib_logfile1 in the MySQL data directory. Log file size is
given by the innodb_log_file_size system variable.

For related information, see Redo Log File Configuration.

• innodb_log_write_ahead_size

Command-Line Format --innodb-log-write-ahead-size=#

System Variable innodb_log_write_ahead_size

Scope Global

Dynamic Yes

Type Integer

Default Value 8192

Minimum Value 512 (log file block size)

Maximum Value Equal to innodb_page_size

Unit bytes

Defines the write-ahead block size for the redo log, in bytes. To avoid “read-on-write”, set
innodb_log_write_ahead_size to match the operating system or file system cache block size. The2784

InnoDB System Variables

default setting is 8192 bytes. Read-on-write occurs when redo log blocks are not entirely cached to the
operating system or file system due to a mismatch between write-ahead block size for the redo log and
operating system or file system cache block size.

Valid values for innodb_log_write_ahead_size are multiples of the InnoDB log file block size
(2n). The minimum value is the InnoDB log file block size (512). Write-ahead does not occur when the
minimum value is specified. The maximum value is equal to the innodb_page_size value. If you
specify a value for innodb_log_write_ahead_size that is larger than the innodb_page_size
value, the innodb_log_write_ahead_size setting is truncated to the innodb_page_size value.

Setting the innodb_log_write_ahead_size value too low in relation to the operating system or file
system cache block size results in “read-on-write”. Setting the value too high may have a slight impact
on fsync performance for log file writes due to several blocks being written at once.

For related information, see Section 8.5.4, “Optimizing InnoDB Redo Logging”.

• innodb_lru_scan_depth

Command-Line Format --innodb-lru-scan-depth=#

System Variable innodb_lru_scan_depth

Scope Global

Dynamic Yes

Type Integer

Default Value 1024

Minimum Value 100

Maximum Value (64-bit platforms) 2**64-1

Maximum Value 2**32-1

A parameter that influences the algorithms and heuristics for the flush operation for the InnoDB buffer
pool. Primarily of interest to performance experts tuning I/O-intensive workloads. It specifies, per buffer
pool instance, how far down the buffer pool LRU page list the page cleaner thread scans looking for dirty
pages to flush. This is a background operation performed once per second.

A setting smaller than the default is generally suitable for most workloads. A value that is much higher
than necessary may impact performance. Only consider increasing the value if you have spare I/O
capacity under a typical workload. Conversely, if a write-intensive workload saturates your I/O capacity,
decrease the value, especially in the case of a large buffer pool.

When tuning innodb_lru_scan_depth, start with a low value and configure the setting upward
with the goal of rarely seeing zero free pages. Also, consider adjusting innodb_lru_scan_depth
when changing the number of buffer pool instances, since innodb_lru_scan_depth *
innodb_buffer_pool_instances defines the amount of work performed by the page cleaner thread
each second.

For related information, see Section 14.8.3.5, “Configuring Buffer Pool Flushing”. For general I/O tuning
advice, see Section 8.5.8, “Optimizing InnoDB Disk I/O”.

• innodb_max_dirty_pages_pct

Command-Line Format --innodb-max-dirty-pages-pct=#

System Variable innodb_max_dirty_pages_pct
2785

InnoDB System Variables

Scope Global

Dynamic Yes

Type Numeric

Default Value 75

Minimum Value 0

Maximum Value 99.999

InnoDB tries to flush data from the buffer pool so that the percentage of dirty pages does not exceed
this value. The default value is 75.

The innodb_max_dirty_pages_pct setting establishes a target for flushing activity. It does not
affect the rate of flushing. For information about managing the rate of flushing, see Section 14.8.3.5,
“Configuring Buffer Pool Flushing”.

For related information, see Section 14.8.3.5, “Configuring Buffer Pool Flushing”. For general I/O tuning
advice, see Section 8.5.8, “Optimizing InnoDB Disk I/O”.

• innodb_max_dirty_pages_pct_lwm

Command-Line Format --innodb-max-dirty-pages-pct-lwm=#

System Variable innodb_max_dirty_pages_pct_lwm

Scope Global

Dynamic Yes

Type Numeric

Default Value 0

Minimum Value 0

Maximum Value 99.999

Defines a low water mark representing the percentage of dirty pages at which preflushing is enabled to
control the dirty page ratio. The default of 0 disables the pre-flushing behavior entirely. The configured
value should always be lower than the innodb_max_dirty_pages_pct value. For more information,
see Section 14.8.3.5, “Configuring Buffer Pool Flushing”.

• innodb_max_purge_lag

Command-Line Format --innodb-max-purge-lag=#

System Variable innodb_max_purge_lag

Scope Global

Dynamic Yes

Type Integer

Default Value 0

Minimum Value 0

2786

InnoDB System Variables

Maximum Value 4294967295

Defines the desired maximum purge lag. If this value is exceeded, a delay is imposed on INSERT,
UPDATE, and DELETE operations to allow time for purge to catch up. The default value is 0, which means
there is no maximum purge lag and no delay.

For more information, see Section 14.8.10, “Purge Configuration”.

• innodb_max_purge_lag_delay

Command-Line Format --innodb-max-purge-lag-delay=#

System Variable innodb_max_purge_lag_delay

Scope Global

Dynamic Yes

Type Integer

Default Value 0

Minimum Value 0

Maximum Value 10000000

Unit microseconds

Specifies the maximum delay in microseconds for the delay imposed when the
innodb_max_purge_lag threshold is exceeded. The specified innodb_max_purge_lag_delay
value is an upper limit on the delay period calculated by the innodb_max_purge_lag formula.

For more information, see Section 14.8.10, “Purge Configuration”.

• innodb_max_undo_log_size

Command-Line Format --innodb-max-undo-log-size=#

System Variable innodb_max_undo_log_size

Scope Global

Dynamic Yes

Type Integer

Default Value 1073741824

Minimum Value 10485760

Maximum Value 2**64-1

Unit bytes

Defines a threshold size for undo tablespaces. If an undo tablespace exceeds the threshold, it can
be marked for truncation when innodb_undo_log_truncate is enabled. The default value is
1073741824 bytes (1024 MiB).

For more information, see Truncating Undo Tablespaces.

• innodb_merge_threshold_set_all_debug

Command-Line Format --innodb-merge-threshold-set-all-
debug=# 2787

InnoDB System Variables

System Variable innodb_merge_threshold_set_all_debug

Scope Global

Dynamic Yes

Type Integer

Default Value 50

Minimum Value 1

Maximum Value 50

Defines a page-full percentage value for index pages that overrides the current MERGE_THRESHOLD
setting for all indexes that are currently in the dictionary cache. This option is only available if
debugging support is compiled in using the WITH_DEBUG CMake option. For related information, see
Section 14.8.12, “Configuring the Merge Threshold for Index Pages”.

• innodb_monitor_disable

Command-Line Format --innodb-monitor-disable={counter|
module|pattern|all}

System Variable innodb_monitor_disable

Scope Global

Dynamic Yes

Type String

This variable acts as a switch, disabling InnoDB metrics counters. Counter data may be queried using
the Information Schema INNODB_METRICS table. For usage information, see Section 14.16.6, “InnoDB
INFORMATION_SCHEMA Metrics Table”.

innodb_monitor_disable='latch' disables statistics collection for SHOW ENGINE INNODB
MUTEX. For more information, see Section 13.7.5.15, “SHOW ENGINE Statement”.

• innodb_monitor_enable

Command-Line Format --innodb-monitor-enable={counter|
module|pattern|all}

System Variable innodb_monitor_enable

Scope Global

Dynamic Yes

Type String

This variable acts as a switch, enabling InnoDB metrics counters. Counter data may be queried using
the Information Schema INNODB_METRICS table. For usage information, see Section 14.16.6, “InnoDB
INFORMATION_SCHEMA Metrics Table”.

innodb_monitor_enable='latch' enables statistics collection for SHOW ENGINE INNODB MUTEX.
For more information, see Section 13.7.5.15, “SHOW ENGINE Statement”.

• innodb_monitor_reset

Command-Line Format --innodb-monitor-reset={counter|
module|pattern|all}2788

InnoDB System Variables

System Variable innodb_monitor_reset

Scope Global

Dynamic Yes

Type Enumeration

Default Value NULL

Valid Values counter

module

pattern

all

This variable acts as a switch, resetting the count value for InnoDB metrics counters to zero. Counter
data may be queried using the Information Schema INNODB_METRICS table. For usage information, see
Section 14.16.6, “InnoDB INFORMATION_SCHEMA Metrics Table”.

innodb_monitor_reset='latch' resets statistics reported by SHOW ENGINE INNODB MUTEX. For
more information, see Section 13.7.5.15, “SHOW ENGINE Statement”.

• innodb_monitor_reset_all

Command-Line Format --innodb-monitor-reset-all={counter|
module|pattern|all}

System Variable innodb_monitor_reset_all

Scope Global

Dynamic Yes

Type Enumeration

Default Value NULL

Valid Values counter

module

pattern

all

This variable acts as a switch, resetting all values (minimum, maximum, and so on) for InnoDB metrics
counters. Counter data may be queried using the Information Schema INNODB_METRICS table. For
usage information, see Section 14.16.6, “InnoDB INFORMATION_SCHEMA Metrics Table”.

• innodb_numa_interleave

Command-Line Format --innodb-numa-interleave[={OFF|ON}]

System Variable innodb_numa_interleave

Scope Global

Dynamic No

Type Boolean

2789

InnoDB System Variables

Default Value OFF

Enables the NUMA interleave memory policy for allocation of the InnoDB buffer pool. When
innodb_numa_interleave is enabled, the NUMA memory policy is set to MPOL_INTERLEAVE for
the mysqld process. After the InnoDB buffer pool is allocated, the NUMA memory policy is set back to
MPOL_DEFAULT. For the innodb_numa_interleave option to be available, MySQL must be compiled
on a NUMA-enabled Linux system.

As of MySQL 5.7.17, CMake sets the default WITH_NUMA value based on whether the current platform
has NUMA support. For more information, see Section 2.8.7, “MySQL Source-Configuration Options”.

• innodb_old_blocks_pct

Command-Line Format --innodb-old-blocks-pct=#

System Variable innodb_old_blocks_pct

Scope Global

Dynamic Yes

Type Integer

Default Value 37

Minimum Value 5

Maximum Value 95

Specifies the approximate percentage of the InnoDB buffer pool used for the old block sublist. The
range of values is 5 to 95. The default value is 37 (that is, 3/8 of the pool). Often used in combination
with innodb_old_blocks_time.

For more information, see Section 14.8.3.3, “Making the Buffer Pool Scan Resistant”. For information
about buffer pool management, the LRU algorithm, and eviction policies, see Section 14.5.1, “Buffer
Pool”.

• innodb_old_blocks_time

Command-Line Format --innodb-old-blocks-time=#

System Variable innodb_old_blocks_time

Scope Global

Dynamic Yes

Type Integer

Default Value 1000

Minimum Value 0

Maximum Value 2**32-1

Unit milliseconds

Non-zero values protect against the buffer pool being filled by data that is referenced only for a brief
period, such as during a full table scan. Increasing this value offers more protection against full table
scans interfering with data cached in the buffer pool.

Specifies how long in milliseconds a block inserted into the old sublist must stay there after its first
access before it can be moved to the new sublist. If the value is 0, a block inserted into the old sublist
moves immediately to the new sublist the first time it is accessed, no matter how soon after insertion the

2790

InnoDB System Variables

access occurs. If the value is greater than 0, blocks remain in the old sublist until an access occurs at
least that many milliseconds after the first access. For example, a value of 1000 causes blocks to stay in
the old sublist for 1 second after the first access before they become eligible to move to the new sublist.

The default value is 1000.

This variable is often used in combination with innodb_old_blocks_pct. For more information,
see Section 14.8.3.3, “Making the Buffer Pool Scan Resistant”. For information about buffer pool
management, the LRU algorithm, and eviction policies, see Section 14.5.1, “Buffer Pool”.

• innodb_online_alter_log_max_size

Command-Line Format --innodb-online-alter-log-max-size=#

System Variable innodb_online_alter_log_max_size

Scope Global

Dynamic Yes

Type Integer

Default Value 134217728

Minimum Value 65536

Maximum Value 2**64-1

Unit bytes

Specifies an upper limit in bytes on the size of the temporary log files used during online DDL operations
for InnoDB tables. There is one such log file for each index being created or table being altered. This log
file stores data inserted, updated, or deleted in the table during the DDL operation. The temporary log file
is extended when needed by the value of innodb_sort_buffer_size, up to the maximum specified
by innodb_online_alter_log_max_size. If a temporary log file exceeds the upper size limit, the
ALTER TABLE operation fails and all uncommitted concurrent DML operations are rolled back. Thus, a
large value for this option allows more DML to happen during an online DDL operation, but also extends
the period of time at the end of the DDL operation when the table is locked to apply the data from the
log.

• innodb_open_files

Command-Line Format --innodb-open-files=#

System Variable innodb_open_files

Scope Global

Dynamic No

Type Integer

Default Value -1 (signifies autosizing; do not assign this literal
value)

Minimum Value 10

Maximum Value 2147483647

Specifies the maximum number of files that InnoDB can have open at one time. The minimum value is
10. If innodb_file_per_table is disabled, the default value is 300; otherwise, the default value is
300 or the table_open_cache setting, whichever is higher.

2791

InnoDB System Variables

• innodb_optimize_fulltext_only

Command-Line Format --innodb-optimize-fulltext-
only[={OFF|ON}]

System Variable innodb_optimize_fulltext_only

Scope Global

Dynamic Yes

Type Boolean

Default Value OFF

Changes the way OPTIMIZE TABLE operates on InnoDB tables. Intended to be enabled temporarily,
during maintenance operations for InnoDB tables with FULLTEXT indexes.

By default, OPTIMIZE TABLE reorganizes data in the clustered index of the table. When this option is
enabled, OPTIMIZE TABLE skips the reorganization of table data, and instead processes newly added,
deleted, and updated token data for InnoDB FULLTEXT indexes. For more information, see Optimizing
InnoDB Full-Text Indexes.

• innodb_page_cleaners

Command-Line Format --innodb-page-cleaners=#

System Variable innodb_page_cleaners

Scope Global

Dynamic No

Type Integer

Default Value 4

Minimum Value 1

Maximum Value 64

The number of page cleaner threads that flush dirty pages from buffer pool instances. Page cleaner
threads perform flush list and LRU flushing. A single page cleaner thread was introduced in MySQL 5.6
to offload buffer pool flushing work from the InnoDB master thread. In MySQL 5.7, InnoDB provides
support for multiple page cleaner threads. A value of 1 maintains the pre-MySQL 5.7 configuration
in which there is a single page cleaner thread. When there are multiple page cleaner threads, buffer
pool flushing tasks for each buffer pool instance are dispatched to idle page cleaner threads. The
innodb_page_cleaners default value was changed from 1 to 4 in MySQL 5.7. If the number of
page cleaner threads exceeds the number of buffer pool instances, innodb_page_cleaners is
automatically set to the same value as innodb_buffer_pool_instances.

If your workload is write-IO bound when flushing dirty pages from buffer pool instances to data files, and
if your system hardware has available capacity, increasing the number of page cleaner threads may help
improve write-IO throughput.

Multithreaded page cleaner support is extended to shutdown and recovery phases in MySQL 5.7.

The setpriority() system call is used on Linux platforms where it is supported, and where the
mysqld execution user is authorized to give page_cleaner threads priority over other MySQL and

2792

InnoDB System Variables

InnoDB threads to help page flushing keep pace with the current workload. setpriority() support is
indicated by this InnoDB startup message:

[Note] InnoDB: If the mysqld execution user is authorized, page cleaner
thread priority can be changed. See the man page of setpriority().

For systems where server startup and shutdown is not managed by systemd, mysqld execution user
authorization can be configured in /etc/security/limits.conf. For example, if mysqld is run
under the mysql user, you can authorize the mysql user by adding these lines to /etc/security/
limits.conf:

mysql hard nice -20
mysql soft nice -20

For systemd managed systems, the same can be achieved by specifying LimitNICE=-20 in a localized
systemd configuration file. For example, create a file named override.conf in /etc/systemd/
system/mysqld.service.d/override.conf and add this entry:

[Service]
LimitNICE=-20

After creating or changing override.conf, reload the systemd configuration, then tell systemd to
restart the MySQL service:

systemctl daemon-reload
systemctl restart mysqld # RPM platforms
systemctl restart mysql # Debian platforms

For more information about using a localized systemd configuration file, see Configuring systemd for
MySQL.

After authorizing the mysqld execution user, use the cat command to verify the configured Nice limits
for the mysqld process:

$> cat /proc/mysqld_pid/limits | grep nice
Max nice priority 18446744073709551596 18446744073709551596

• innodb_page_size

Command-Line Format --innodb-page-size=#

System Variable innodb_page_size

Scope Global

Dynamic No

Type Enumeration

Default Value 16384

Valid Values 4096

8192

16384

32768

2793

InnoDB System Variables

65536

Specifies the page size for InnoDB tablespaces. Values can be specified in bytes or kilobytes. For
example, a 16 kilobyte page size value can be specified as 16384, 16KB, or 16k.

innodb_page_size can only be configured prior to initializing the MySQL instance and cannot be
changed afterward. If no value is specified, the instance is initialized using the default page size. See
Section 14.8.1, “InnoDB Startup Configuration”.

Support for 32KB and 64KB page sizes was added in MySQL 5.7. For both 32KB and 64KB page sizes,
the maximum row length is approximately 16000 bytes. ROW_FORMAT=COMPRESSED is not supported
when innodb_page_size is set to 32KB or 64KB. For innodb_page_size=32k, extent size is 2MB.
For innodb_page_size=64KB, extent size is 4MB. innodb_log_buffer_size should be set to at
least 16M (the default) when using 32KB or 64KB page sizes.

The default 16KB page size or larger is appropriate for a wide range of workloads, particularly for queries
involving table scans and DML operations involving bulk updates. Smaller page sizes might be more
efficient for OLTP workloads involving many small writes, where contention can be an issue when
single pages contain many rows. Smaller pages might also be efficient with SSD storage devices, which
typically use small block sizes. Keeping the InnoDB page size close to the storage device block size
minimizes the amount of unchanged data that is rewritten to disk.

The minimum file size for the first system tablespace data file (ibdata1) differs depending on
the innodb_page_size value. See the innodb_data_file_path option description for more
information.

A MySQL instance using a particular InnoDB page size cannot use data files or log files from an
instance that uses a different page size.

For general I/O tuning advice, see Section 8.5.8, “Optimizing InnoDB Disk I/O”.

• innodb_print_all_deadlocks

Command-Line Format --innodb-print-all-deadlocks[={OFF|
ON}]

System Variable innodb_print_all_deadlocks

Scope Global

Dynamic Yes

Type Boolean

Default Value OFF

When this option is enabled, information about all deadlocks in InnoDB user transactions is recorded
in the mysqld error log. Otherwise, you see information about only the last deadlock, using the SHOW
ENGINE INNODB STATUS command. An occasional InnoDB deadlock is not necessarily an issue,
because InnoDB detects the condition immediately and rolls back one of the transactions automatically.
You might use this option to troubleshoot why deadlocks are occurring if an application does not
have appropriate error-handling logic to detect the rollback and retry its operation. A large number of
deadlocks might indicate the need to restructure transactions that issue DML or SELECT ... FOR

2794

InnoDB System Variables

UPDATE statements for multiple tables, so that each transaction accesses the tables in the same order,
thus avoiding the deadlock condition.

For related information, see Section 14.7.5, “Deadlocks in InnoDB”.

• innodb_purge_batch_size

Command-Line Format --innodb-purge-batch-size=#

System Variable innodb_purge_batch_size

Scope Global

Dynamic Yes

Type Integer

Default Value 300

Minimum Value 1

Maximum Value 5000

Defines the number of undo log pages that purge parses and processes in one batch from
the history list. In a multithreaded purge configuration, the coordinator purge thread divides
innodb_purge_batch_size by innodb_purge_threads and assigns that number of pages to each
purge thread. The innodb_purge_batch_size variable also defines the number of undo log pages
that purge frees after every 128 iterations through the undo logs.

The innodb_purge_batch_size option is intended for advanced performance tuning in combination
with the innodb_purge_threads setting. Most users need not change innodb_purge_batch_size
from its default value.

For related information, see Section 14.8.10, “Purge Configuration”.

• innodb_purge_threads

Command-Line Format --innodb-purge-threads=#

System Variable innodb_purge_threads

Scope Global

Dynamic No

Type Integer

Default Value 4

Minimum Value 1

Maximum Value 32

The number of background threads devoted to the InnoDB purge operation. Increasing the value
creates additional purge threads, which can improve efficiency on systems where DML operations are
performed on multiple tables.

For related information, see Section 14.8.10, “Purge Configuration”.

• innodb_purge_rseg_truncate_frequency

Command-Line Format --innodb-purge-rseg-truncate-
frequency=# 2795

InnoDB System Variables

System Variable innodb_purge_rseg_truncate_frequency

Scope Global

Dynamic Yes

Type Integer

Default Value 128

Minimum Value 1

Maximum Value 128

Defines the frequency with which the purge system frees rollback segments in terms of the number of
times that purge is invoked. An undo tablespace cannot be truncated until its rollback segments are
freed. Normally, the purge system frees rollback segments once every 128 times that purge is invoked.
The default value is 128. Reducing this value increases the frequency with which the purge thread frees
rollback segments.

innodb_purge_rseg_truncate_frequency is intended for use with
innodb_undo_log_truncate. For more information, see Truncating Undo Tablespaces.

• innodb_random_read_ahead

Command-Line Format --innodb-random-read-ahead[={OFF|ON}]

System Variable innodb_random_read_ahead

Scope Global

Dynamic Yes

Type Boolean

Default Value OFF

Enables the random read-ahead technique for optimizing InnoDB I/O.

For details about performance considerations for different types of read-ahead requests, see
Section 14.8.3.4, “Configuring InnoDB Buffer Pool Prefetching (Read-Ahead)”. For general I/O tuning
advice, see Section 8.5.8, “Optimizing InnoDB Disk I/O”.

• innodb_read_ahead_threshold

Command-Line Format --innodb-read-ahead-threshold=#

System Variable innodb_read_ahead_threshold

Scope Global

Dynamic Yes

Type Integer

Default Value 56

Minimum Value 0

Maximum Value 64

Controls the sensitivity of linear read-ahead that InnoDB uses to prefetch pages into the buffer pool.
If InnoDB reads at least innodb_read_ahead_threshold pages sequentially from an extent (64
pages), it initiates an asynchronous read for the entire following extent. The permissible range of values

2796

InnoDB System Variables

is 0 to 64. A value of 0 disables read-ahead. For the default of 56, InnoDB must read at least 56 pages
sequentially from an extent to initiate an asynchronous read for the following extent.

Knowing how many pages are read through the read-ahead mechanism, and how many of
these pages are evicted from the buffer pool without ever being accessed, can be useful when
fine-tuning the innodb_read_ahead_threshold setting. SHOW ENGINE INNODB STATUS
output displays counter information from the Innodb_buffer_pool_read_ahead and
Innodb_buffer_pool_read_ahead_evicted global status variables, which report the number of
pages brought into the buffer pool by read-ahead requests, and the number of such pages evicted from
the buffer pool without ever being accessed, respectively. The status variables report global values since
the last server restart.

SHOW ENGINE INNODB STATUS also shows the rate at which the read-ahead pages are read and the
rate at which such pages are evicted without being accessed. The per-second averages are based on
the statistics collected since the last invocation of SHOW ENGINE INNODB STATUS and are displayed in
the BUFFER POOL AND MEMORY section of the SHOW ENGINE INNODB STATUS output.

For more information, see Section 14.8.3.4, “Configuring InnoDB Buffer Pool Prefetching (Read-Ahead)”.
For general I/O tuning advice, see Section 8.5.8, “Optimizing InnoDB Disk I/O”.

• innodb_read_io_threads

Command-Line Format --innodb-read-io-threads=#

System Variable innodb_read_io_threads

Scope Global

Dynamic No

Type Integer

Default Value 4

Minimum Value 1

Maximum Value 64

The number of I/O threads for read operations in InnoDB. Its counterpart for write threads is
innodb_write_io_threads. For more information, see Section 14.8.6, “Configuring the Number of
Background InnoDB I/O Threads”. For general I/O tuning advice, see Section 8.5.8, “Optimizing InnoDB
Disk I/O”.

Note

On Linux systems, running multiple MySQL servers (typically more
than 12) with default settings for innodb_read_io_threads,
innodb_write_io_threads, and the Linux aio-max-nr setting can exceed
system limits. Ideally, increase the aio-max-nr setting; as a workaround, you
might reduce the settings for one or both of the MySQL variables.

• innodb_read_only

Command-Line Format --innodb-read-only[={OFF|ON}]

System Variable innodb_read_only

Scope Global

Dynamic No

Type Boolean

2797

InnoDB System Variables

Default Value OFF

Starts InnoDB in read-only mode. For distributing database applications or data sets on read-only
media. Can also be used in data warehouses to share the same data directory between multiple
instances. For more information, see Section 14.8.2, “Configuring InnoDB for Read-Only Operation”.

• innodb_replication_delay

Command-Line Format --innodb-replication-delay=#

System Variable innodb_replication_delay

Scope Global

Dynamic Yes

Type Integer

Default Value 0

Minimum Value 0

Maximum Value 4294967295

Unit milliseconds

The replication thread delay in milliseconds on a replica server if innodb_thread_concurrency is
reached.

• innodb_rollback_on_timeout

Command-Line Format --innodb-rollback-on-timeout[={OFF|
ON}]

System Variable innodb_rollback_on_timeout

Scope Global

Dynamic No

Type Boolean

Default Value OFF

InnoDB rolls back only the last statement on a transaction timeout by default. If --innodb-rollback-
on-timeout is specified, a transaction timeout causes InnoDB to abort and roll back the entire
transaction.

For more information, see Section 14.22.4, “InnoDB Error Handling”.

• innodb_rollback_segments

Command-Line Format --innodb-rollback-segments=#

System Variable innodb_rollback_segments

Scope Global

Dynamic Yes

Type Integer

Default Value 128

Minimum Value 1

Maximum Value 128

2798

InnoDB System Variables

Defines the number of rollback segments used by InnoDB for transactions that generate undo records.
The number of transactions that each rollback segment supports depends on the InnoDB page size and
the number of undo logs assigned to each transaction. For more information, see Section 14.6.7, “Undo
Logs”.

One rollback segment is always assigned to the system tablespace, and 32 rollback segments are
reserved for use by temporary tables and reside in the temporary tablespace (ibtmp1). To allocate
additional rollback segment, innodb_rollback_segments must be set to a value greater than 33. If
you configure separate undo tablespaces, the rollback segment in the system tablespace is rendered
inactive.

When innodb_rollback_segments is set to 32 or less, InnoDB assigns one rollback segment to the
system tablespace and 32 to the temporary tablespace.

When innodb_rollback_segments is set to a value greater than 32, InnoDB assigns one rollback
segment to the system tablespace, 32 to the temporary tablespace, and additional rollback segments
to undo tablespaces, if present. If undo tablespaces are not present, additional rollback segments are
assigned to the system tablespace.

Although you can increase or decrease the number of rollback segments used by InnoDB, the number
of rollback segments physically present in the system never decreases. Thus, you might start with a
low value and gradually increase it to avoid allocating rollback segments that are not required. The
innodb_rollback_segments default and maximum value is 128.

For related information, see Section 14.3, “InnoDB Multi-Versioning”. For information about configuring
separate undo tablespaces, see Section 14.6.3.4, “Undo Tablespaces”.

• innodb_saved_page_number_debug

Command-Line Format --innodb-saved-page-number-debug=#

System Variable innodb_saved_page_number_debug

Scope Global

Dynamic Yes

Type Integer

Default Value 0

Minimum Value 0

Maximum Value 2**32-1

Saves a page number. Setting the innodb_fil_make_page_dirty_debug option dirties the page
defined by innodb_saved_page_number_debug. The innodb_saved_page_number_debug
option is only available if debugging support is compiled in using the WITH_DEBUG CMake option.

• innodb_sort_buffer_size

Command-Line Format --innodb-sort-buffer-size=#

System Variable innodb_sort_buffer_size

Scope Global

Dynamic No

Type Integer

2799

InnoDB System Variables

Default Value 1048576

Minimum Value 65536

Maximum Value 67108864

Unit bytes

This variable defines:

• The sort buffer size for online DDL operations that create or rebuild secondary indexes.

• The amount by which the temporary log file is extended when recording concurrent DML during an
online DDL operation, and the size of the temporary log file read buffer and write buffer.

For related information, see Section 14.13.3, “Online DDL Space Requirements”.

• innodb_spin_wait_delay

Command-Line Format --innodb-spin-wait-delay=#

System Variable innodb_spin_wait_delay

Scope Global

Dynamic Yes

Type Integer

Default Value 6

Minimum Value 0

Maximum Value (64-bit platforms) 2**64-1

Maximum Value (32-bit platforms) 2**32-1

The maximum delay between polls for a spin lock. The low-level implementation of this mechanism
varies depending on the combination of hardware and operating system, so the delay does not
correspond to a fixed time interval. For more information, see Section 14.8.9, “Configuring Spin Lock
Polling”.

• innodb_stats_auto_recalc

Command-Line Format --innodb-stats-auto-recalc[={OFF|ON}]

System Variable innodb_stats_auto_recalc

Scope Global

Dynamic Yes

Type Boolean

Default Value ON

Causes InnoDB to automatically recalculate persistent statistics after the data in a table is changed
substantially. The threshold value is 10% of the rows in the table. This setting applies to tables
created when the innodb_stats_persistent option is enabled. Automatic statistics recalculation
may also be configured by specifying STATS_AUTO_RECALC=1 in a CREATE TABLE or ALTER
TABLE statement. The amount of data sampled to produce the statistics is controlled by the
innodb_stats_persistent_sample_pages variable.

For more information, see Section 14.8.11.1, “Configuring Persistent Optimizer Statistics Parameters”.

2800

InnoDB System Variables

• innodb_stats_include_delete_marked

Command-Line Format --innodb-stats-include-delete-
marked[={OFF|ON}]

Introduced 5.7.17

System Variable innodb_stats_include_delete_marked

Scope Global

Dynamic Yes

Type Boolean

Default Value OFF

By default, InnoDB reads uncommitted data when calculating statistics. In the case of an uncommitted
transaction that deletes rows from a table, InnoDB excludes records that are delete-marked when
calculating row estimates and index statistics, which can lead to non-optimal execution plans for other
transactions that are operating on the table concurrently using a transaction isolation level other than
READ UNCOMMITTED. To avoid this scenario, innodb_stats_include_delete_marked can be
enabled to ensure that InnoDB includes delete-marked records when calculating persistent optimizer
statistics.

When innodb_stats_include_delete_marked is enabled, ANALYZE TABLE considers delete-
marked records when recalculating statistics.

innodb_stats_include_delete_marked is a global setting that affects all InnoDB tables. It is only
applicable to persistent optimizer statistics.

For related information, see Section 14.8.11.1, “Configuring Persistent Optimizer Statistics Parameters”.

• innodb_stats_method

Command-Line Format --innodb-stats-method=value

System Variable innodb_stats_method

Scope Global

Dynamic Yes

Type Enumeration

Default Value nulls_equal

Valid Values nulls_equal

nulls_unequal

nulls_ignored

How the server treats NULL values when collecting statistics about the distribution of index values for
InnoDB tables. Permitted values are nulls_equal, nulls_unequal, and nulls_ignored. For
nulls_equal, all NULL index values are considered equal and form a single value group with a size
equal to the number of NULL values. For nulls_unequal, NULL values are considered unequal, and
each NULL forms a distinct value group of size 1. For nulls_ignored, NULL values are ignored.

The method used to generate table statistics influences how the optimizer chooses indexes for query
execution, as described in Section 8.3.7, “InnoDB and MyISAM Index Statistics Collection”.

• innodb_stats_on_metadata

2801

InnoDB System Variables

Command-Line Format --innodb-stats-on-metadata[={OFF|ON}]

System Variable innodb_stats_on_metadata

Scope Global

Dynamic Yes

Type Boolean

Default Value OFF

This option only applies when optimizer statistics are configured to be non-persistent. Optimizer statistics
are not persisted to disk when innodb_stats_persistent is disabled or when individual tables
are created or altered with STATS_PERSISTENT=0. For more information, see Section 14.8.11.2,
“Configuring Non-Persistent Optimizer Statistics Parameters”.

When innodb_stats_on_metadata is enabled, InnoDB updates non-persistent statistics when
metadata statements such as SHOW TABLE STATUS or when accessing the Information Schema
TABLES or STATISTICS tables. (These updates are similar to what happens for ANALYZE TABLE.)
When disabled, InnoDB does not update statistics during these operations. Leaving the setting disabled
can improve access speed for schemas that have a large number of tables or indexes. It can also
improve the stability of execution plans for queries that involve InnoDB tables.

To change the setting, issue the statement SET GLOBAL innodb_stats_on_metadata=mode,
where mode is either ON or OFF (or 1 or 0). Changing the setting requires privileges sufficient to set
global system variables (see Section 5.1.8.1, “System Variable Privileges”) and immediately affects the
operation of all connections.

• innodb_stats_persistent

Command-Line Format --innodb-stats-persistent[={OFF|ON}]

System Variable innodb_stats_persistent

Scope Global

Dynamic Yes

Type Boolean

Default Value ON

Specifies whether InnoDB index statistics are persisted to disk. Otherwise, statistics may be
recalculated frequently which can lead to variations in query execution plans. This setting is stored with
each table when the table is created. You can set innodb_stats_persistent at the global level
before creating a table, or use the STATS_PERSISTENT clause of the CREATE TABLE and ALTER
TABLE statements to override the system-wide setting and configure persistent statistics for individual
tables.

For more information, see Section 14.8.11.1, “Configuring Persistent Optimizer Statistics Parameters”.

• innodb_stats_persistent_sample_pages

Command-Line Format --innodb-stats-persistent-sample-
pages=#

System Variable innodb_stats_persistent_sample_pages

Scope Global

Dynamic Yes

2802

InnoDB System Variables

Type Integer

Default Value 20

Minimum Value 1

Maximum Value 18446744073709551615

The number of index pages to sample when estimating cardinality and other statistics for an indexed
column, such as those calculated by ANALYZE TABLE. Increasing the value improves the accuracy of
index statistics, which can improve the query execution plan, at the expense of increased I/O during
the execution of ANALYZE TABLE for an InnoDB table. For more information, see Section 14.8.11.1,
“Configuring Persistent Optimizer Statistics Parameters”.

Note

Setting a high value for innodb_stats_persistent_sample_pages could
result in lengthy ANALYZE TABLE execution time. To estimate the number
of database pages accessed by ANALYZE TABLE, see Section 14.8.11.3,
“Estimating ANALYZE TABLE Complexity for InnoDB Tables”.

innodb_stats_persistent_sample_pages only applies when innodb_stats_persistent
is enabled for a table; when innodb_stats_persistent is disabled,
innodb_stats_transient_sample_pages applies instead.

• innodb_stats_sample_pages

Command-Line Format --innodb-stats-sample-pages=#

Deprecated Yes

System Variable innodb_stats_sample_pages

Scope Global

Dynamic Yes

Type Integer

Default Value 8

Minimum Value 1

Maximum Value 2**64-1

Deprecated. Use innodb_stats_transient_sample_pages instead.

• innodb_stats_transient_sample_pages

Command-Line Format --innodb-stats-transient-sample-
pages=#

System Variable innodb_stats_transient_sample_pages

Scope Global

Dynamic Yes

Type Integer

Default Value 8

Minimum Value 1

2803

InnoDB System Variables

Maximum Value 18446744073709551615

The number of index pages to sample when estimating cardinality and other statistics for an indexed
column, such as those calculated by ANALYZE TABLE. The default value is 8. Increasing the value
improves the accuracy of index statistics, which can improve the query execution plan, at the expense
of increased I/O when opening an InnoDB table or recalculating statistics. For more information, see
Section 14.8.11.2, “Configuring Non-Persistent Optimizer Statistics Parameters”.

Note

Setting a high value for innodb_stats_transient_sample_pages could
result in lengthy ANALYZE TABLE execution time. To estimate the number
of database pages accessed by ANALYZE TABLE, see Section 14.8.11.3,
“Estimating ANALYZE TABLE Complexity for InnoDB Tables”.

innodb_stats_transient_sample_pages only applies when innodb_stats_persistent
is disabled for a table; when innodb_stats_persistent is enabled,
innodb_stats_persistent_sample_pages applies instead. Takes the place of
innodb_stats_sample_pages. For more information, see Section 14.8.11.2, “Configuring Non-
Persistent Optimizer Statistics Parameters”.

• innodb_status_output

Command-Line Format --innodb-status-output[={OFF|ON}]

System Variable innodb_status_output

Scope Global

Dynamic Yes

Type Boolean

Default Value OFF

Enables or disables periodic output for the standard InnoDB Monitor. Also used in combination with
innodb_status_output_locks to enable or disable periodic output for the InnoDB Lock Monitor.
For more information, see Section 14.18.2, “Enabling InnoDB Monitors”.

• innodb_status_output_locks

Command-Line Format --innodb-status-output-locks[={OFF|
ON}]

System Variable innodb_status_output_locks

Scope Global

Dynamic Yes

Type Boolean

Default Value OFF

Enables or disables the InnoDB Lock Monitor. When enabled, the InnoDB Lock Monitor prints additional
information about locks in SHOW ENGINE INNODB STATUS output and in periodic output printed to the
MySQL error log. Periodic output for the InnoDB Lock Monitor is printed as part of the standard InnoDB
Monitor output. The standard InnoDB Monitor must therefore be enabled for the InnoDB Lock Monitor
to print data to the MySQL error log periodically. For more information, see Section 14.18.2, “Enabling
InnoDB Monitors”.

2804

InnoDB System Variables

• innodb_strict_mode

Command-Line Format --innodb-strict-mode[={OFF|ON}]

System Variable innodb_strict_mode

Scope Global, Session

Dynamic Yes

Type Boolean

Default Value ON

When innodb_strict_mode is enabled, InnoDB returns errors rather than warnings when checking
for invalid or incompatible table options.

It checks that KEY_BLOCK_SIZE, ROW_FORMAT, DATA DIRECTORY, TEMPORARY, and TABLESPACE
options are compatible with each other and other settings.

innodb_strict_mode=ON also enables a row size check when creating or altering a table, to prevent
INSERT or UPDATE from failing due to the record being too large for the selected page size.

You can enable or disable innodb_strict_mode on the command line when starting mysqld, or in
a MySQL configuration file. You can also enable or disable innodb_strict_mode at runtime with
the statement SET [GLOBAL|SESSION] innodb_strict_mode=mode, where mode is either ON
or OFF. Changing the GLOBAL setting requires privileges sufficient to set global system variables (see
Section 5.1.8.1, “System Variable Privileges”) and affects the operation of all clients that subsequently
connect. Any client can change the SESSION setting for innodb_strict_mode, and the setting affects
only that client.

• innodb_support_xa

Command-Line Format --innodb-support-xa[={OFF|ON}]

Deprecated 5.7.10

System Variable innodb_support_xa

Scope Global, Session

Dynamic Yes

Type Boolean

Default Value ON

Enables InnoDB support for two-phase commit in XA transactions, causing an extra disk flush for
transaction preparation. The XA mechanism is used internally and is essential for any server that has
its binary log turned on and is accepting changes to its data from more than one thread. If you disable
innodb_support_xa, transactions can be written to the binary log in a different order than the live
database is committing them, which can produce different data when the binary log is replayed in
disaster recovery or on a replica. Do not disable innodb_support_xa on a replication source server
unless you have an unusual setup where only one thread is able to change data.

innodb_support_xa is deprecated; expect it to be removed in a future MySQL release. InnoDB
support for two-phase commit in XA transactions is always enabled as of MySQL 5.7.10. Disabling
innodb_support_xa is no longer permitted as it makes replication unsafe and prevents performance
gains associated with binary log group commit.

2805

InnoDB System Variables

• innodb_sync_array_size

Command-Line Format --innodb-sync-array-size=#

System Variable innodb_sync_array_size

Scope Global

Dynamic No

Type Integer

Default Value 1

Minimum Value 1

Maximum Value 1024

Defines the size of the mutex/lock wait array. Increasing the value splits the internal data structure used
to coordinate threads, for higher concurrency in workloads with large numbers of waiting threads. This
setting must be configured when the MySQL instance is starting up, and cannot be changed afterward.
Increasing the value is recommended for workloads that frequently produce a large number of waiting
threads, typically greater than 768.

• innodb_sync_spin_loops

Command-Line Format --innodb-sync-spin-loops=#

System Variable innodb_sync_spin_loops

Scope Global

Dynamic Yes

Type Integer

Default Value 30

Minimum Value 0

Maximum Value 4294967295

The number of times a thread waits for an InnoDB mutex to be freed before the thread is suspended.

• innodb_sync_debug

Command-Line Format --innodb-sync-debug[={OFF|ON}]

System Variable innodb_sync_debug

Scope Global

Dynamic No

Type Boolean

Default Value OFF

Enables sync debug checking for the InnoDB storage engine. This option is available only if debugging
support is compiled in using the WITH_DEBUG CMake option.

Previously, enabling InnoDB sync debug checking required that the Debug Sync facility be enabled
using the ENABLE_DEBUG_SYNC CMake option, which has since been removed. This requirement was
removed in MySQL 5.7 with the introduction of this variable.

2806

InnoDB System Variables

• innodb_table_locks

Command-Line Format --innodb-table-locks[={OFF|ON}]

System Variable innodb_table_locks

Scope Global, Session

Dynamic Yes

Type Boolean

Default Value ON

If autocommit = 0, InnoDB honors LOCK TABLES; MySQL does not return from LOCK TABLES ...
WRITE until all other threads have released all their locks to the table. The default value of
innodb_table_locks is 1, which means that LOCK TABLES causes InnoDB to lock a table internally
if autocommit = 0.

innodb_table_locks = 0 has no effect for tables locked explicitly with LOCK TABLES ... WRITE.
It does have an effect for tables locked for read or write by LOCK TABLES ... WRITE implicitly (for
example, through triggers) or by LOCK TABLES ... READ.

For related information, see Section 14.7, “InnoDB Locking and Transaction Model”.

• innodb_temp_data_file_path

Command-Line Format --innodb-temp-data-file-
path=file_name

System Variable innodb_temp_data_file_path

Scope Global

Dynamic No

Type String

Default Value ibtmp1:12M:autoextend

Defines the relative path, name, size, and attributes of InnoDB temporary tablespace data files. If you
do not specify a value for innodb_temp_data_file_path, the default behavior is to create a single,
auto-extending data file named ibtmp1 in the MySQL data directory. The initial file size is slightly larger
than 12MB.

The full syntax for a temporary tablespace data file specification includes the file name, file size, and
autoextend and max attributes:

file_name:file_size[:autoextend[:max:max_file_size]]

The temporary tablespace data file cannot have the same name as another InnoDB data file. Any
inability or error creating a temporary tablespace data file is treated as fatal and server startup is refused.

2807

InnoDB System Variables

The temporary tablespace has a dynamically generated space ID, which can change on each server
restart.

File sizes are specified KB, MB or GB (1024MB) by appending K, M or G to the size value. The sum of
the sizes of the files must be slightly larger than 12MB.

The size limit of individual files is determined by your operating system. You can set the file size to
more than 4GB on operating systems that support large files. Use of raw disk partitions for temporary
tablespace data files is not supported.

The autoextend and max attributes can be used only for the data file that is specified last in the
innodb_temp_data_file_path setting. For example:

[mysqld]
innodb_temp_data_file_path=ibtmp1:50M;ibtmp2:12M:autoextend:max:500M

If you specify the autoextend option, InnoDB extends the data file if it runs out of free
space. The autoextend increment is 64MB by default. To modify the increment, change the
innodb_autoextend_increment system variable.

The full directory path for temporary tablespace data files is formed by concatenating the paths defined
by innodb_data_home_dir and innodb_temp_data_file_path.

The temporary tablespace is shared by all non-compressed InnoDB temporary tables. Compressed
temporary tables reside in file-per-table tablespace files created in the temporary file directory, which is
defined by the tmpdir configuration option.

Before running InnoDB in read-only mode, set innodb_temp_data_file_path to a location outside
of the data directory. The path must be relative to the data directory. For example:

--innodb-temp-data-file-path=../../../tmp/ibtmp1:12M:autoextend

Metadata about active InnoDB temporary tables is located in the Information Schema
INNODB_TEMP_TABLE_INFO table.

For related information, see Section 14.6.3.5, “The Temporary Tablespace”.

• innodb_thread_concurrency

Command-Line Format --innodb-thread-concurrency=#

System Variable innodb_thread_concurrency

Scope Global

Dynamic Yes

Type Integer

Default Value 0

Minimum Value 0

2808

InnoDB System Variables

Maximum Value 1000

Defines the maximum number of threads permitted inside of InnoDB. A value of 0 (the default) is
interpreted as infinite concurrency (no limit). This variable is intended for performance tuning on high
concurrency systems.

InnoDB tries to keep the number of threads inside InnoDB less than or equal to the
innodb_thread_concurrency limit. Threads waiting for locks are not counted in the number of
concurrently executing threads.

The correct setting depends on workload and computing environment. Consider setting this variable
if your MySQL instance shares CPU resources with other applications or if your workload or number
of concurrent users is growing. Test a range of values to determine the setting that provides the best
performance. innodb_thread_concurrency is a dynamic variable, which permits experimenting
with different settings on a live test system. If a particular setting performs poorly, you can quickly set
innodb_thread_concurrency back to 0.

Use the following guidelines to help find and maintain an appropriate setting:

• If the number of concurrent user threads for a workload is consistently small and does not affect
performance, set innodb_thread_concurrency=0 (no limit).

• If your workload is consistently heavy or occasionally spikes, set an innodb_thread_concurrency
value and adjust it until you find the number of threads that provides the best performance. For
example, suppose that your system typically has 40 to 50 users, but periodically the number increases
to 60, 70, or more. Through testing, you find that performance remains largely stable with a limit of 80
concurrent users. In this case, set innodb_thread_concurrency to 80.

• If you do not want InnoDB to use more than a certain number of virtual CPUs for user threads (20
virtual CPUs, for example), set innodb_thread_concurrency to this number (or possibly lower,
depending on performance testing). If your goal is to isolate MySQL from other applications, consider
binding the mysqld process exclusively to the virtual CPUs. Be aware, however, that exclusive
binding can result in non-optimal hardware usage if the mysqld process is not consistently busy. In
this case, you can bind the mysqld process to the virtual CPUs but allow other applications to use
some or all of the virtual CPUs.

Note

From an operating system perspective, using a resource management solution
to manage how CPU time is shared among applications may be preferable to
binding the mysqld process. For example, you could assign 90% of virtual
CPU time to a given application while other critical processes are not running,
and scale that value back to 40% when other critical processes are running.

• In some cases, the optimal innodb_thread_concurrency setting can be smaller than the number
of virtual CPUs.

• An innodb_thread_concurrency value that is too high can cause performance regression due to
increased contention on system internals and resources.

2809

InnoDB System Variables

• Monitor and analyze your system regularly. Changes to workload, number of users, or computing
environment may require that you adjust the innodb_thread_concurrency setting.

A value of 0 disables the queries inside InnoDB and queries in queue counters in the ROW
OPERATIONS section of SHOW ENGINE INNODB STATUS output.

For related information, see Section 14.8.5, “Configuring Thread Concurrency for InnoDB”.

• innodb_thread_sleep_delay

Command-Line Format --innodb-thread-sleep-delay=#

System Variable innodb_thread_sleep_delay

Scope Global

Dynamic Yes

Type Integer

Default Value 10000

Minimum Value 0

Maximum Value 1000000

Unit microseconds

Defines how long InnoDB threads sleep before joining the InnoDB queue, in microseconds. The default
value is 10000. A value of 0 disables sleep. You can set innodb_adaptive_max_sleep_delay to the
highest value you would allow for innodb_thread_sleep_delay, and InnoDB automatically adjusts
innodb_thread_sleep_delay up or down depending on current thread-scheduling activity. This
dynamic adjustment helps the thread scheduling mechanism to work smoothly during times when the
system is lightly loaded or when it is operating near full capacity.

For more information, see Section 14.8.5, “Configuring Thread Concurrency for InnoDB”.

• innodb_tmpdir

Command-Line Format --innodb-tmpdir=dir_name

Introduced 5.7.11

System Variable innodb_tmpdir

Scope Global, Session

Dynamic Yes

Type Directory name

Default Value NULL

Used to define an alternate directory for temporary sort files created during online ALTER TABLE
operations that rebuild the table.

Online ALTER TABLE operations that rebuild the table also create an intermediate table file in the same
directory as the original table. The innodb_tmpdir option is not applicable to intermediate table files.

A valid value is any directory path other than the MySQL data directory path. If the value is NULL
(the default), temporary files are created MySQL temporary directory ($TMPDIR on Unix, %TEMP% on
Windows, or the directory specified by the --tmpdir configuration option). If a directory is specified,
existence of the directory and permissions are only checked when innodb_tmpdir is configured using

2810

InnoDB System Variables

a SET statement. If a symlink is provided in a directory string, the symlink is resolved and stored as an
absolute path. The path should not exceed 512 bytes. An online ALTER TABLE operation reports an
error if innodb_tmpdir is set to an invalid directory. innodb_tmpdir overrides the MySQL tmpdir
setting but only for online ALTER TABLE operations.

The FILE privilege is required to configure innodb_tmpdir.

The innodb_tmpdir option was introduced to help avoid overflowing a temporary file directory located
on a tmpfs file system. Such overflows could occur as a result of large temporary sort files created
during online ALTER TABLE operations that rebuild the table.

In replication environments, only consider replicating the innodb_tmpdir setting if all servers have the
same operating system environment. Otherwise, replicating the innodb_tmpdir setting could result
in a replication failure when running online ALTER TABLE operations that rebuild the table. If server
operating environments differ, it is recommended that you configure innodb_tmpdir on each server
individually.

For more information, see Section 14.13.3, “Online DDL Space Requirements”. For information about
online ALTER TABLE operations, see Section 14.13, “InnoDB and Online DDL”.

• innodb_trx_purge_view_update_only_debug

Command-Line Format --innodb-trx-purge-view-update-only-
debug[={OFF|ON}]

System Variable innodb_trx_purge_view_update_only_debug

Scope Global

Dynamic Yes

Type Boolean

Default Value OFF

Pauses purging of delete-marked records while allowing the purge view to be updated. This option
artificially creates a situation in which the purge view is updated but purges have not yet been
performed. This option is only available if debugging support is compiled in using the WITH_DEBUG
CMake option.

• innodb_trx_rseg_n_slots_debug

Command-Line Format --innodb-trx-rseg-n-slots-debug=#

System Variable innodb_trx_rseg_n_slots_debug

Scope Global

Dynamic Yes

Type Integer

Default Value 0

Minimum Value 0

Maximum Value 1024

Sets a debug flag that limits TRX_RSEG_N_SLOTS to a given value for the
trx_rsegf_undo_find_free function that looks for free slots for undo log segments. This option is
only available if debugging support is compiled in using the WITH_DEBUG CMake option.

• innodb_undo_directory

2811

InnoDB System Variables

Command-Line Format --innodb-undo-directory=dir_name

System Variable innodb_undo_directory

Scope Global

Dynamic No

Type Directory name

The path where InnoDB creates undo tablespaces. Typically used to place undo logs on
a different storage device. Used in conjunction with innodb_rollback_segments and
innodb_undo_tablespaces.

There is no default value (it is NULL). If a path is not specified, undo tablespaces are created in the
MySQL data directory, as defined by datadir.

For more information, see Section 14.6.3.4, “Undo Tablespaces”.

• innodb_undo_log_truncate

Command-Line Format --innodb-undo-log-truncate[={OFF|ON}]

System Variable innodb_undo_log_truncate

Scope Global

Dynamic Yes

Type Boolean

Default Value OFF

When enabled, undo tablespaces that exceed the threshold value defined by
innodb_max_undo_log_size are marked for truncation. Only undo tablespaces can be truncated.
Truncating undo logs that reside in the system tablespace is not supported. For truncation to occur,
there must be at least two undo tablespaces and two redo-enabled undo logs configured to use undo
tablespaces. This means that innodb_undo_tablespaces must be set to a value equal to or greater
than 2, and innodb_rollback_segments must set to a value equal to or greater than 35.

The innodb_purge_rseg_truncate_frequency variable can be used to expedite truncation of
undo tablespaces.

For more information, see Truncating Undo Tablespaces.

• innodb_undo_logs

Command-Line Format --innodb-undo-logs=#

Deprecated 5.7.19

System Variable innodb_undo_logs

Scope Global

Dynamic Yes

Type Integer

Default Value 128

Minimum Value 1

2812

InnoDB System Variables

Maximum Value 128

Note

innodb_undo_logs is deprecated; expect it to be removed in a future MySQL
release.

Defines the number of rollback segments used by InnoDB. The innodb_undo_logs option
is an alias for innodb_rollback_segments. For more information, see the description of
innodb_rollback_segments.

• innodb_undo_tablespaces

Command-Line Format --innodb-undo-tablespaces=#

Deprecated 5.7.21

System Variable innodb_undo_tablespaces

Scope Global

Dynamic No

Type Integer

Default Value 0

Minimum Value 0

Maximum Value 95

The number of undo tablespaces used by InnoDB. The default value is 0.

Note

innodb_undo_tablespaces is deprecated; expect it to be removed in a future
MySQL release.

Because undo logs can become large during long-running transactions, having undo logs in multiple
tablespaces reduces the maximum size of any one tablespace. The undo tablespace files are created
in the location defined by innodb_undo_directory, with names in the form of undoN, where N is a
sequential series of integers (including leading zeros) representing the space ID.

The initial size of an undo tablespace file depends on the innodb_page_size value. For the default
16KB InnoDB page size, the initial undo tablespace file size is 10MiB. For 4KB, 8KB, 32KB, and 64KB
page sizes, the initial undo tablespace files sizes are 7MiB, 8MiB, 20MiB, and 40MiB, respectively.

A minimum of two undo tablespaces is required to enable truncation of undo logs. See Truncating Undo
Tablespaces.

Important

innodb_undo_tablespaces can only be configured prior to initializing the
MySQL instance and cannot be changed afterward. If no value is specified,
the instance is initialized using the default setting of 0. Attempting to restart
InnoDB with a greater number of undo tablespaces than specified when the

2813

InnoDB System Variables

MySQL instance was initialized results in a startup failure and an error stating that
InnoDB did not find the expected number of undo tablespaces.

32 of 128 rollback segments are reserved for temporary tables, as described in Section 14.6.7, “Undo
Logs”. One rollback segment is always assigned to the system tablespace, which leaves 95 rollback
segments available for undo tablespaces. This means the innodb_undo_tablespaces maximum limit
is 95.

For more information, see Section 14.6.3.4, “Undo Tablespaces”.

• innodb_use_native_aio

Command-Line Format --innodb-use-native-aio[={OFF|ON}]

System Variable innodb_use_native_aio

Scope Global

Dynamic No

Type Boolean

Default Value ON

Specifies whether to use the Linux asynchronous I/O subsystem. This variable applies to Linux systems
only, and cannot be changed while the server is running. Normally, you do not need to configure this
option, because it is enabled by default.

The asynchronous I/O capability that InnoDB has on Windows systems is available on Linux systems.
(Other Unix-like systems continue to use synchronous I/O calls.) This feature improves the scalability of
heavily I/O-bound systems, which typically show many pending reads/writes in SHOW ENGINE INNODB
STATUS\G output.

Running with a large number of InnoDB I/O threads, and especially running multiple such instances on
the same server machine, can exceed capacity limits on Linux systems. In this case, you may receive
the following error:

EAGAIN: The specified maxevents exceeds the user's limit of available events.

You can typically address this error by writing a higher limit to /proc/sys/fs/aio-max-nr.

However, if a problem with the asynchronous I/O subsystem in the OS prevents InnoDB from starting,
you can start the server with innodb_use_native_aio=0. This option may also be disabled
automatically during startup if InnoDB detects a potential problem such as a combination of tmpdir
location, tmpfs file system, and Linux kernel that does not support AIO on tmpfs.

For more information, see Section 14.8.7, “Using Asynchronous I/O on Linux”.

• innodb_version

The InnoDB version number. In MySQL 5.7, separate version numbering for InnoDB does not apply
and this value is the same the version number of the server.

• innodb_write_io_threads

Command-Line Format --innodb-write-io-threads=#

System Variable innodb_write_io_threads

Scope Global2814

InnoDB INFORMATION_SCHEMA Tables

Dynamic No

Type Integer

Default Value 4

Minimum Value 1

Maximum Value 64

The number of I/O threads for write operations in InnoDB. The default value is 4. Its counterpart for
read threads is innodb_read_io_threads. For more information, see Section 14.8.6, “Configuring
the Number of Background InnoDB I/O Threads”. For general I/O tuning advice, see Section 8.5.8,
“Optimizing InnoDB Disk I/O”.

Note

On Linux systems, running multiple MySQL servers (typically more
than 12) with default settings for innodb_read_io_threads,
innodb_write_io_threads, and the Linux aio-max-nr setting can exceed
system limits. Ideally, increase the aio-max-nr setting; as a workaround, you
might reduce the settings for one or both of the MySQL variables.

Also take into consideration the value of sync_binlog, which controls synchronization of the binary log
to disk.

For general I/O tuning advice, see Section 8.5.8, “Optimizing InnoDB Disk I/O”.

14.16 InnoDB INFORMATION_SCHEMA Tables

This section provides information and usage examples for InnoDB INFORMATION_SCHEMA tables.

InnoDB INFORMATION_SCHEMA tables provide metadata, status information, and statistics about various
aspects of the InnoDB storage engine. You can view a list of InnoDB INFORMATION_SCHEMA tables by
issuing a SHOW TABLES statement on the INFORMATION_SCHEMA database:

mysql> SHOW TABLES FROM INFORMATION_SCHEMA LIKE 'INNODB%';

For table definitions, see Section 24.4, “INFORMATION_SCHEMA InnoDB Tables”. For
general information regarding the MySQL INFORMATION_SCHEMA database, see Chapter 24,
INFORMATION_SCHEMA Tables.

14.16.1 InnoDB INFORMATION_SCHEMA Tables about Compression

There are two pairs of InnoDB INFORMATION_SCHEMA tables about compression that can provide insight
into how well compression is working overall:

• INNODB_CMP and INNODB_CMP_RESET provide information about the number of compression
operations and the amount of time spent performing compression.

• INNODB_CMPMEM and INNODB_CMPMEM_RESET provide information about the way memory is allocated
for compression.

14.16.1.1 INNODB_CMP and INNODB_CMP_RESET

The INNODB_CMP and INNODB_CMP_RESET tables provide status information about operations related
to compressed tables, which are described in Section 14.9, “InnoDB Table and Page Compression”. The
PAGE_SIZE column reports the compressed page size.

2815

InnoDB INFORMATION_SCHEMA Tables about Compression

These two tables have identical contents, but reading from INNODB_CMP_RESET resets the
statistics on compression and uncompression operations. For example, if you archive the output of
INNODB_CMP_RESET every 60 minutes, you see the statistics for each hourly period. If you monitor
the output of INNODB_CMP (making sure never to read INNODB_CMP_RESET), you see the cumulative
statistics since InnoDB was started.

For the table definition, see Section 24.4.5, “The INFORMATION_SCHEMA INNODB_CMP and
INNODB_CMP_RESET Tables”.

14.16.1.2 INNODB_CMPMEM and INNODB_CMPMEM_RESET

The INNODB_CMPMEM and INNODB_CMPMEM_RESET tables provide status information about compressed
pages that reside in the buffer pool. Please consult Section 14.9, “InnoDB Table and Page Compression”
for further information on compressed tables and the use of the buffer pool. The INNODB_CMP and
INNODB_CMP_RESET tables should provide more useful statistics on compression.

Internal Details

InnoDB uses a buddy allocator system to manage memory allocated to pages of various sizes, from 1KB
to 16KB. Each row of the two tables described here corresponds to a single page size.

The INNODB_CMPMEM and INNODB_CMPMEM_RESET tables have identical contents, but reading from
INNODB_CMPMEM_RESET resets the statistics on relocation operations. For example, if every 60 minutes
you archived the output of INNODB_CMPMEM_RESET, it would show the hourly statistics. If you never
read INNODB_CMPMEM_RESET and monitored the output of INNODB_CMPMEM instead, it would show the
cumulative statistics since InnoDB was started.

For the table definition, see Section 24.4.6, “The INFORMATION_SCHEMA INNODB_CMPMEM and
INNODB_CMPMEM_RESET Tables”.

14.16.1.3 Using the Compression Information Schema Tables

Example 14.1 Using the Compression Information Schema Tables

The following is sample output from a database that contains compressed tables (see Section 14.9,
“InnoDB Table and Page Compression”, INNODB_CMP, INNODB_CMP_PER_INDEX, and
INNODB_CMPMEM).

The following table shows the contents of the Information Schema INNODB_CMP table under a
light workload. The only compressed page size that the buffer pool contains is 8K. Compressing or
uncompressing pages has consumed less than a second since the time the statistics were reset, because
the columns COMPRESS_TIME and UNCOMPRESS_TIME are zero.

page size compress ops compress ops
ok

compress time uncompress
ops

uncompress
time

1024 0 0 0 0 0

2048 0 0 0 0 0

4096 0 0 0 0 0

8192 1048 921 0 61 0

16384 0 0 0 0 0

According to INNODB_CMPMEM, there are 6169 compressed 8KB pages in the buffer pool. The only
other allocated block size is 64 bytes. The smallest PAGE_SIZE in INNODB_CMPMEM is used for block

2816

InnoDB INFORMATION_SCHEMA Transaction and Locking Information

descriptors of those compressed pages for which no uncompressed page exists in the buffer pool. We see
that there are 5910 such pages. Indirectly, we see that 259 (6169-5910) compressed pages also exist in
the buffer pool in uncompressed form.

The following table shows the contents of the Information Schema INNODB_CMPMEM table under
a light workload. Some memory is unusable due to fragmentation of the memory allocator for
compressed pages: SUM(PAGE_SIZE*PAGES_FREE)=6784. This is because small memory
allocation requests are fulfilled by splitting bigger blocks, starting from the 16K blocks that are
allocated from the main buffer pool, using the buddy allocation system. The fragmentation is this low
because some allocated blocks have been relocated (copied) to form bigger adjacent free blocks.
This copying of SUM(PAGE_SIZE*RELOCATION_OPS) bytes has consumed less than a second
(SUM(RELOCATION_TIME)=0).

page size pages used pages free relocation ops relocation time

64 5910 0 2436 0

128 0 1 0 0

256 0 0 0 0

512 0 1 0 0

1024 0 0 0 0

2048 0 1 0 0

4096 0 1 0 0

8192 6169 0 5 0

16384 0 0 0 0

14.16.2 InnoDB INFORMATION_SCHEMA Transaction and Locking Information

Three InnoDB INFORMATION_SCHEMA tables enable you to monitor transactions and diagnose potential
locking problems:

• INNODB_TRX: Provides information about every transaction currently executing inside InnoDB, including
the transaction state (for example, whether it is running or waiting for a lock), when the transaction
started, and the particular SQL statement the transaction is executing.

• INNODB_LOCKS: Each transaction in InnoDB that is waiting for another transaction to release a lock
(INNODB_TRX.TRX_STATE is LOCK WAIT) is blocked by exactly one blocking lock request. That
blocking lock request is for a row or table lock held by another transaction in an incompatible mode.
A lock that blocks a transaction is always held in a mode incompatible with the mode of requested
lock (read vs. write, shared vs. exclusive). The blocked transaction cannot proceed until the other
transaction commits or rolls back, thereby releasing the requested lock. For every blocked transaction,
INNODB_LOCKS contains one row that describes each lock the transaction has requested, and for which
it is waiting. INNODB_LOCKS also contains one row for each lock that is blocking another transaction,
whatever the state of the transaction that holds the lock (INNODB_TRX.TRX_STATE is RUNNING, LOCK
WAIT, ROLLING BACK or COMMITTING).

• INNODB_LOCK_WAITS: This table indicates which transactions are waiting for a given lock, or for
which lock a given transaction is waiting. This table contains one or more rows for each blocked
transaction, indicating the lock it has requested and any locks that are blocking that request. The
REQUESTED_LOCK_ID value refers to the lock requested by a transaction, and the BLOCKING_LOCK_ID
value refers to the lock (held by another transaction) that prevents the first transaction from proceeding.
For any given blocked transaction, all rows in INNODB_LOCK_WAITS have the same value for
REQUESTED_LOCK_ID and different values for BLOCKING_LOCK_ID.

2817

InnoDB INFORMATION_SCHEMA Transaction and Locking Information

For more information about the preceding tables, see Section 24.4.28, “The INFORMATION_SCHEMA
INNODB_TRX Table”, Section 24.4.14, “The INFORMATION_SCHEMA INNODB_LOCKS Table”, and
Section 24.4.15, “The INFORMATION_SCHEMA INNODB_LOCK_WAITS Table”.

14.16.2.1 Using InnoDB Transaction and Locking Information

Identifying Blocking Transactions

It is sometimes helpful to identify which transaction blocks another. The tables that contain information
about InnoDB transactions and data locks enable you to determine which transaction is waiting for
another, and which resource is being requested. (For descriptions of these tables, see Section 14.16.2,
“InnoDB INFORMATION_SCHEMA Transaction and Locking Information”.)

Suppose that three sessions are running concurrently. Each session corresponds to a MySQL thread, and
executes one transaction after another. Consider the state of the system when these sessions have issued
the following statements, but none has yet committed its transaction:

• Session A:

BEGIN;
SELECT a FROM t FOR UPDATE;
SELECT SLEEP(100);

• Session B:

SELECT b FROM t FOR UPDATE;

• Session C:

SELECT c FROM t FOR UPDATE;

In this scenario, use the following query to see which transactions are waiting and which transactions are
blocking them:

SELECT
 r.trx_id waiting_trx_id,
 r.trx_mysql_thread_id waiting_thread,
 r.trx_query waiting_query,
 b.trx_id blocking_trx_id,
 b.trx_mysql_thread_id blocking_thread,
 b.trx_query blocking_query
FROM information_schema.innodb_lock_waits w
INNER JOIN information_schema.innodb_trx b
 ON b.trx_id = w.blocking_trx_id
INNER JOIN information_schema.innodb_trx r
 ON r.trx_id = w.requesting_trx_id;

Or, more simply, use the sys schema innodb_lock_waits view:

SELECT
 waiting_trx_id,
 waiting_pid,
 waiting_query,
 blocking_trx_id,
 blocking_pid,
 blocking_query
FROM sys.innodb_lock_waits;

If a NULL value is reported for the blocking query, see Identifying a Blocking Query After the Issuing
Session Becomes Idle.

2818

InnoDB INFORMATION_SCHEMA Transaction and Locking Information

waiting trx id waiting thread waiting query blocking trx id blocking thread blocking query

A4 6 SELECT b
FROM t FOR
UPDATE

A3 5 SELECT
SLEEP(100)

A5 7 SELECT c
FROM t FOR
UPDATE

A3 5 SELECT
SLEEP(100)

A5 7 SELECT c
FROM t FOR
UPDATE

A4 6 SELECT b
FROM t FOR
UPDATE

In the preceding table, you can identify sessions by the “waiting query” or “blocking query” columns. As you
can see:

• Session B (trx id A4, thread 6) and Session C (trx id A5, thread 7) are both waiting for Session A (trx id
A3, thread 5).

• Session C is waiting for Session B as well as Session A.

You can see the underlying data in the tables INNODB_TRX, INNODB_LOCKS, and INNODB_LOCK_WAITS.

The following table shows some sample contents of the Information Schema INNODB_TRX table.

trx id trx state trx started trx
requested
lock id

trx wait
started

trx weight trx mysql
thread id

trx query

A3 RUNNING 2008-01-15
16:44:54

NULL NULL 2 5 SELECT
SLEEP(100)

A4 LOCK WAIT 2008-01-15
16:45:09

A4:1:3:2 2008-01-15
16:45:09

2 6 SELECT
b FROM
t FOR
UPDATE

A5 LOCK WAIT 2008-01-15
16:45:14

A5:1:3:2 2008-01-15
16:45:14

2 7 SELECT
c FROM
t FOR
UPDATE

The following table shows some sample contents of the Information Schema INNODB_LOCKS table.

lock id lock trx id lock mode lock type lock table lock index lock data

A3:1:3:2 A3 X RECORD test.t PRIMARY 0x0200

A4:1:3:2 A4 X RECORD test.t PRIMARY 0x0200

A5:1:3:2 A5 X RECORD test.t PRIMARY 0x0200

The following table shows some sample contents of the Information Schema INNODB_LOCK_WAITS table.

requesting trx id requested lock id blocking trx id blocking lock id

A4 A4:1:3:2 A3 A3:1:3:2

A5 A5:1:3:2 A3 A3:1:3:2

A5 A5:1:3:2 A4 A4:1:3:2

2819

InnoDB INFORMATION_SCHEMA Transaction and Locking Information

Identifying a Blocking Query After the Issuing Session Becomes Idle

When identifying blocking transactions, a NULL value is reported for the blocking query if the session that
issued the query has become idle. In this case, use the following steps to determine the blocking query:

1. Identify the processlist ID of the blocking transaction. In the sys.innodb_lock_waits table, the
processlist ID of the blocking transaction is the blocking_pid value.

2. Using the blocking_pid, query the MySQL Performance Schema threads table to determine the
THREAD_ID of the blocking transaction. For example, if the blocking_pid is 6, issue this query:

SELECT THREAD_ID FROM performance_schema.threads WHERE PROCESSLIST_ID = 6;

3. Using the THREAD_ID, query the Performance Schema events_statements_current table to
determine the last query executed by the thread. For example, if the THREAD_ID is 28, issue this
query:

SELECT THREAD_ID, SQL_TEXT FROM performance_schema.events_statements_current
WHERE THREAD_ID = 28\G

4. If the last query executed by the thread is not enough information to determine why a lock is held,
you can query the Performance Schema events_statements_history table to view the last 10
statements executed by the thread.

SELECT THREAD_ID, SQL_TEXT FROM performance_schema.events_statements_history
WHERE THREAD_ID = 28 ORDER BY EVENT_ID;

Correlating InnoDB Transactions with MySQL Sessions

Sometimes it is useful to correlate internal InnoDB locking information with the session-level information
maintained by MySQL. For example, you might like to know, for a given InnoDB transaction ID, the
corresponding MySQL session ID and name of the session that may be holding a lock, and thus blocking
other transactions.

The following output from the INFORMATION_SCHEMA tables is taken from a somewhat loaded system. As
can be seen, there are several transactions running.

The following INNODB_LOCKS and INNODB_LOCK_WAITS tables show that:

• Transaction 77F (executing an INSERT) is waiting for transactions 77E, 77D, and 77B to commit.

• Transaction 77E (executing an INSERT) is waiting for transactions 77D and 77B to commit.

• Transaction 77D (executing an INSERT) is waiting for transaction 77B to commit.

• Transaction 77B (executing an INSERT) is waiting for transaction 77A to commit.

• Transaction 77A is running, currently executing SELECT.

• Transaction E56 (executing an INSERT) is waiting for transaction E55 to commit.

• Transaction E55 (executing an INSERT) is waiting for transaction 19C to commit.

• Transaction 19C is running, currently executing an INSERT.

Note

There may be inconsistencies between queries shown in the
INFORMATION_SCHEMA PROCESSLIST and INNODB_TRX tables. For an

2820

InnoDB INFORMATION_SCHEMA Transaction and Locking Information

explanation, see Section 14.16.2.3, “Persistence and Consistency of InnoDB
Transaction and Locking Information”.

The following table shows the contents of the Information Schema PROCESSLIST table for a system
running a heavy workload.

ID USER HOST DB COMMAND TIME STATE INFO

384 root localhost test Query 10 update INSERT
INTO t2
VALUES …

257 root localhost test Query 3 update INSERT
INTO t2
VALUES …

130 root localhost test Query 0 update INSERT
INTO t2
VALUES …

61 root localhost test Query 1 update INSERT
INTO t2
VALUES …

8 root localhost test Query 1 update INSERT
INTO t2
VALUES …

4 root localhost test Query 0 preparing SELECT
* FROM
PROCESSLIST

2 root localhost test Sleep 566 NULL

The following table shows the contents of the Information Schema INNODB_TRX table for a system running
a heavy workload.

trx id trx state trx started trx
requested
lock id

trx wait
started

trx weight trx mysql
thread id

trx query

77F LOCK WAIT 2008-01-15
13:10:16

77F 2008-01-15
13:10:16

1 876 INSERT
INTO t09
(D, B, C)
VALUES …

77E LOCK WAIT 2008-01-15
13:10:16

77E 2008-01-15
13:10:16

1 875 INSERT
INTO t09
(D, B, C)
VALUES …

77D LOCK WAIT 2008-01-15
13:10:16

77D 2008-01-15
13:10:16

1 874 INSERT
INTO t09
(D, B, C)
VALUES …

77B LOCK WAIT 2008-01-15
13:10:16

77B:733:12:12008-01-15
13:10:16

4 873 INSERT
INTO t09
(D, B, C)
VALUES …

2821

InnoDB INFORMATION_SCHEMA Transaction and Locking Information

trx id trx state trx started trx
requested
lock id

trx wait
started

trx weight trx mysql
thread id

trx query

77A RUNNING 2008-01-15
13:10:16

NULL NULL 4 872 SELECT
b, c FROM
t09 WHERE
…

E56 LOCK WAIT 2008-01-15
13:10:06

E56:743:6:22008-01-15
13:10:06

5 384 INSERT
INTO t2
VALUES …

E55 LOCK WAIT 2008-01-15
13:10:06

E55:743:38:22008-01-15
13:10:13

965 257 INSERT
INTO t2
VALUES …

19C RUNNING 2008-01-15
13:09:10

NULL NULL 2900 130 INSERT
INTO t2
VALUES …

E15 RUNNING 2008-01-15
13:08:59

NULL NULL 5395 61 INSERT
INTO t2
VALUES …

51D RUNNING 2008-01-15
13:08:47

NULL NULL 9807 8 INSERT
INTO t2
VALUES …

The following table shows the contents of the Information Schema INNODB_LOCK_WAITS table for a
system running a heavy workload.

requesting trx id requested lock id blocking trx id blocking lock id

77F 77F:806 77E 77E:806

77F 77F:806 77D 77D:806

77F 77F:806 77B 77B:806

77E 77E:806 77D 77D:806

77E 77E:806 77B 77B:806

77D 77D:806 77B 77B:806

77B 77B:733:12:1 77A 77A:733:12:1

E56 E56:743:6:2 E55 E55:743:6:2

E55 E55:743:38:2 19C 19C:743:38:2

The following table shows the contents of the Information Schema INNODB_LOCKS table for a system
running a heavy workload.

lock id lock trx id lock mode lock type lock table lock index lock data

77F:806 77F AUTO_INC TABLE test.t09 NULL NULL

77E:806 77E AUTO_INC TABLE test.t09 NULL NULL

77D:806 77D AUTO_INC TABLE test.t09 NULL NULL

77B:806 77B AUTO_INC TABLE test.t09 NULL NULL

2822

InnoDB INFORMATION_SCHEMA Transaction and Locking Information

lock id lock trx id lock mode lock type lock table lock index lock data

77B:733:12:177B X RECORD test.t09 PRIMARY supremum
pseudo-
record

77A:733:12:177A X RECORD test.t09 PRIMARY supremum
pseudo-
record

E56:743:6:2E56 S RECORD test.t2 PRIMARY 0, 0

E55:743:6:2E55 X RECORD test.t2 PRIMARY 0, 0

E55:743:38:2E55 S RECORD test.t2 PRIMARY 1922, 1922

19C:743:38:219C X RECORD test.t2 PRIMARY 1922, 1922

14.16.2.2 InnoDB Lock and Lock-Wait Information

When a transaction updates a row in a table, or locks it with SELECT FOR UPDATE, InnoDB establishes a
list or queue of locks on that row. Similarly, InnoDB maintains a list of locks on a table for table-level locks.
If a second transaction wants to update a row or lock a table already locked by a prior transaction in an
incompatible mode, InnoDB adds a lock request for the row to the corresponding queue. For a lock to be
acquired by a transaction, all incompatible lock requests previously entered into the lock queue for that row
or table must be removed (which occurs when the transactions holding or requesting those locks either
commit or roll back).

A transaction may have any number of lock requests for different rows or tables. At any given time, a
transaction may request a lock that is held by another transaction, in which case it is blocked by that other
transaction. The requesting transaction must wait for the transaction that holds the blocking lock to commit
or roll back. If a transaction is not waiting for a lock, it is in a RUNNING state. If a transaction is waiting for
a lock, it is in a LOCK WAIT state. (The INFORMATION_SCHEMA INNODB_TRX table indicates transaction
state values.)

The INNODB_LOCKS table holds one or more rows for each LOCK WAIT transaction, indicating any lock
requests that prevent its progress. This table also contains one row describing each lock in a queue of
locks pending for a given row or table. The INNODB_LOCK_WAITS table shows which locks already held by
a transaction are blocking locks requested by other transactions.

14.16.2.3 Persistence and Consistency of InnoDB Transaction and Locking Information

The data exposed by the transaction and locking tables (INNODB_TRX, INNODB_LOCKS, and
INNODB_LOCK_WAITS) represents a glimpse into fast-changing data. This is not like user tables, where
the data changes only when application-initiated updates occur. The underlying data is internal system-
managed data, and can change very quickly.

For performance reasons, and to minimize the chance of misleading joins between the transaction and
locking tables, InnoDB collects the required transaction and locking information into an intermediate buffer
whenever a SELECT on any of the tables is issued. This buffer is refreshed only if more than 0.1 seconds
has elapsed since the last time the buffer was read. The data needed to fill the three tables is fetched
atomically and consistently and is saved in this global internal buffer, forming a point-in-time “snapshot”. If
multiple table accesses occur within 0.1 seconds (as they almost certainly do when MySQL processes a
join among these tables), then the same snapshot is used to satisfy the query.

A correct result is returned when you join any of these tables together in a single query, because the data
for the three tables comes from the same snapshot. Because the buffer is not refreshed with every query
of any of these tables, if you issue separate queries against these tables within a tenth of a second, the

2823

InnoDB INFORMATION_SCHEMA System Tables

results are the same from query to query. On the other hand, two separate queries of the same or different
tables issued more than a tenth of a second apart may see different results, since the data come from
different snapshots.

Because InnoDB must temporarily stall while the transaction and locking data is collected, too frequent
queries of these tables can negatively impact performance as seen by other users.

As these tables contain sensitive information (at least INNODB_LOCKS.LOCK_DATA and
INNODB_TRX.TRX_QUERY), for security reasons, only the users with the PROCESS privilege are allowed to
SELECT from them.

As described previously, the data that fills the transaction and locking tables (INNODB_TRX,
INNODB_LOCKS and INNODB_LOCK_WAITS) is fetched automatically and saved to an intermediate buffer
that provides a “point-in-time” snapshot. The data across all three tables is consistent when queried
from the same snapshot. However, the underlying data changes so fast that similar glimpses at other,
similarly fast-changing data, may not be in synchrony. Thus, you should be careful when comparing data
in the InnoDB transaction and locking tables with data in the PROCESSLIST table. The data from the
PROCESSLIST table does not come from the same snapshot as the data about locking and transactions.
Even if you issue a single SELECT (joining INNODB_TRX and PROCESSLIST, for example), the content
of those tables is generally not consistent. INNODB_TRX may reference rows that are not present in
PROCESSLIST or the currently executing SQL query of a transaction shown in INNODB_TRX.TRX_QUERY
may differ from the one in PROCESSLIST.INFO.

14.16.3 InnoDB INFORMATION_SCHEMA System Tables

You can extract metadata about schema objects managed by InnoDB using InnoDB
INFORMATION_SCHEMA system tables. This information comes from the InnoDB internal system tables
(also referred to as the InnoDB data dictionary), which cannot be queried directly like regular InnoDB
tables. Traditionally, you would get this type of information using the techniques from Section 14.18,
“InnoDB Monitors”, setting up InnoDB monitors and parsing the output from the SHOW ENGINE INNODB
STATUS statement. The InnoDB INFORMATION_SCHEMA table interface allows you to query this data
using SQL.

With the exception of INNODB_SYS_TABLESTATS, for which there is no corresponding internal system
table, InnoDB INFORMATION_SCHEMA system tables are populated with data read directly from internal
InnoDB system tables rather than from metadata that is cached in memory.

InnoDB INFORMATION_SCHEMA system tables include the tables listed below.

mysql> SHOW TABLES FROM INFORMATION_SCHEMA LIKE 'INNODB_SYS%';
+--+
| Tables_in_information_schema (INNODB_SYS%) |
+--+
| INNODB_SYS_DATAFILES |
| INNODB_SYS_TABLESTATS |
| INNODB_SYS_FOREIGN |
| INNODB_SYS_COLUMNS |
| INNODB_SYS_INDEXES |
| INNODB_SYS_FIELDS |
| INNODB_SYS_TABLESPACES |
| INNODB_SYS_FOREIGN_COLS |
| INNODB_SYS_TABLES |
+--+

The table names are indicative of the type of data provided:

• INNODB_SYS_TABLES provides metadata about InnoDB tables, equivalent to the information in the
SYS_TABLES table in the InnoDB data dictionary.

2824

InnoDB INFORMATION_SCHEMA System Tables

• INNODB_SYS_COLUMNS provides metadata about InnoDB table columns, equivalent to the information
in the SYS_COLUMNS table in the InnoDB data dictionary.

• INNODB_SYS_INDEXES provides metadata about InnoDB indexes, equivalent to the information in the
SYS_INDEXES table in the InnoDB data dictionary.

• INNODB_SYS_FIELDS provides metadata about the key columns (fields) of InnoDB indexes, equivalent
to the information in the SYS_FIELDS table in the InnoDB data dictionary.

• INNODB_SYS_TABLESTATS provides a view of low-level status information about InnoDB tables that is
derived from in-memory data structures. There is no corresponding internal InnoDB system table.

• INNODB_SYS_DATAFILES provides data file path information for InnoDB file-per-table and general
tablespaces, equivalent to information in the SYS_DATAFILES table in the InnoDB data dictionary.

• INNODB_SYS_TABLESPACES provides metadata about InnoDB file-per-table and general tablespaces,
equivalent to the information in the SYS_TABLESPACES table in the InnoDB data dictionary.

• INNODB_SYS_FOREIGN provides metadata about foreign keys defined on InnoDB tables, equivalent to
the information in the SYS_FOREIGN table in the InnoDB data dictionary.

• INNODB_SYS_FOREIGN_COLS provides metadata about the columns of foreign keys that are defined
on InnoDB tables, equivalent to the information in the SYS_FOREIGN_COLS table in the InnoDB data
dictionary.

InnoDB INFORMATION_SCHEMA system tables can be joined together through fields such as TABLE_ID,
INDEX_ID, and SPACE, allowing you to easily retrieve all available data for an object you want to study or
monitor.

Refer to the InnoDB INFORMATION_SCHEMA documentation for information about the columns of each
table.

Example 14.2 InnoDB INFORMATION_SCHEMA System Tables

This example uses a simple table (t1) with a single index (i1) to demonstrate the type of metadata found
in the InnoDB INFORMATION_SCHEMA system tables.

1. Create a test database and table t1:

mysql> CREATE DATABASE test;

mysql> USE test;

mysql> CREATE TABLE t1 (
 col1 INT,
 col2 CHAR(10),
 col3 VARCHAR(10))
 ENGINE = InnoDB;

mysql> CREATE INDEX i1 ON t1(col1);

2. After creating the table t1, query INNODB_SYS_TABLES to locate the metadata for test/t1:

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_SYS_TABLES WHERE NAME='test/t1' \G
*************************** 1. row ***************************
 TABLE_ID: 71
 NAME: test/t1
 FLAG: 1
 N_COLS: 6
 SPACE: 57

2825

InnoDB INFORMATION_SCHEMA System Tables

 FILE_FORMAT: Antelope
 ROW_FORMAT: Compact
ZIP_PAGE_SIZE: 0
...

Table t1 has a TABLE_ID of 71. The FLAG field provides bit level information about table format and
storage characteristics. There are six columns, three of which are hidden columns created by InnoDB
(DB_ROW_ID, DB_TRX_ID, and DB_ROLL_PTR). The ID of the table's SPACE is 57 (a value of 0 would
indicate that the table resides in the system tablespace). The FILE_FORMAT is Antelope, and the
ROW_FORMAT is Compact. ZIP_PAGE_SIZE only applies to tables with a Compressed row format.

3. Using the TABLE_ID information from INNODB_SYS_TABLES, query the INNODB_SYS_COLUMNS table
for information about the table's columns.

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_SYS_COLUMNS where TABLE_ID = 71 \G
*************************** 1. row ***************************
TABLE_ID: 71
 NAME: col1
 POS: 0
 MTYPE: 6
 PRTYPE: 1027
 LEN: 4
*************************** 2. row ***************************
TABLE_ID: 71
 NAME: col2
 POS: 1
 MTYPE: 2
 PRTYPE: 524542
 LEN: 10
*************************** 3. row ***************************
TABLE_ID: 71
 NAME: col3
 POS: 2
 MTYPE: 1
 PRTYPE: 524303
 LEN: 10

In addition to the TABLE_ID and column NAME, INNODB_SYS_COLUMNS provides the ordinal position
(POS) of each column (starting from 0 and incrementing sequentially), the column MTYPE or “main
type” (6 = INT, 2 = CHAR, 1 = VARCHAR), the PRTYPE or “precise type” (a binary value with bits that
represent the MySQL data type, character set code, and nullability), and the column length (LEN).

4. Using the TABLE_ID information from INNODB_SYS_TABLES once again, query
INNODB_SYS_INDEXES for information about the indexes associated with table t1.

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_SYS_INDEXES WHERE TABLE_ID = 71 \G
*************************** 1. row ***************************
 INDEX_ID: 111
 NAME: GEN_CLUST_INDEX
 TABLE_ID: 71
 TYPE: 1
 N_FIELDS: 0
 PAGE_NO: 3
 SPACE: 57
MERGE_THRESHOLD: 50
*************************** 2. row ***************************
 INDEX_ID: 112
 NAME: i1
 TABLE_ID: 71
 TYPE: 0
 N_FIELDS: 1
 PAGE_NO: 4
 SPACE: 57
MERGE_THRESHOLD: 50

2826

InnoDB INFORMATION_SCHEMA System Tables

INNODB_SYS_INDEXES returns data for two indexes. The first index is GEN_CLUST_INDEX, which is
a clustered index created by InnoDB if the table does not have a user-defined clustered index. The
second index (i1) is the user-defined secondary index.

The INDEX_ID is an identifier for the index that is unique across all databases in an instance. The
TABLE_ID identifies the table that the index is associated with. The index TYPE value indicates the
type of index (1 = Clustered Index, 0 = Secondary index). The N_FILEDS value is the number of fields
that comprise the index. PAGE_NO is the root page number of the index B-tree, and SPACE is the ID of
the tablespace where the index resides. A nonzero value indicates that the index does not reside in the
system tablespace. MERGE_THRESHOLD defines a percentage threshold value for the amount of data
in an index page. If the amount of data in an index page falls below the this value (the default is 50%)
when a row is deleted or when a row is shortened by an update operation, InnoDB attempts to merge
the index page with a neighboring index page.

5. Using the INDEX_ID information from INNODB_SYS_INDEXES, query INNODB_SYS_FIELDS for
information about the fields of index i1.

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_SYS_FIELDS where INDEX_ID = 112 \G
*************************** 1. row ***************************
INDEX_ID: 112
 NAME: col1
 POS: 0

INNODB_SYS_FIELDS provides the NAME of the indexed field and its ordinal position within the index.
If the index (i1) had been defined on multiple fields, INNODB_SYS_FIELDS would provide metadata for
each of the indexed fields.

6. Using the SPACE information from INNODB_SYS_TABLES, query INNODB_SYS_TABLESPACES table
for information about the table's tablespace.

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_SYS_TABLESPACES WHERE SPACE = 57 \G
*************************** 1. row ***************************
 SPACE: 57
 NAME: test/t1
 FLAG: 0
 FILE_FORMAT: Antelope
 ROW_FORMAT: Compact or Redundant
 PAGE_SIZE: 16384
ZIP_PAGE_SIZE: 0

In addition to the SPACE ID of the tablespace and the NAME of the associated table,
INNODB_SYS_TABLESPACES provides tablespace FLAG data, which is bit level information about
tablespace format and storage characteristics. Also provided are tablespace FILE_FORMAT,
ROW_FORMAT, PAGE_SIZE, and several other tablespace metadata items.

7. Using the SPACE information from INNODB_SYS_TABLES once again, query
INNODB_SYS_DATAFILES for the location of the tablespace data file.

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_SYS_DATAFILES WHERE SPACE = 57 \G
*************************** 1. row ***************************
SPACE: 57
 PATH: ./test/t1.ibd

The datafile is located in the test directory under MySQL's data directory. If a file-per-table
tablespace were created in a location outside the MySQL data directory using the DATA DIRECTORY
clause of the CREATE TABLE statement, the tablespace PATH would be a fully qualified directory path.

8. As a final step, insert a row into table t1 (TABLE_ID = 71) and view the data in the
INNODB_SYS_TABLESTATS table. The data in this table is used by the MySQL optimizer to calculate

2827

InnoDB INFORMATION_SCHEMA System Tables

which index to use when querying an InnoDB table. This information is derived from in-memory data
structures. There is no corresponding internal InnoDB system table.

mysql> INSERT INTO t1 VALUES(5, 'abc', 'def');
Query OK, 1 row affected (0.06 sec)

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_SYS_TABLESTATS where TABLE_ID = 71 \G
*************************** 1. row ***************************
 TABLE_ID: 71
 NAME: test/t1
STATS_INITIALIZED: Initialized
 NUM_ROWS: 1
 CLUST_INDEX_SIZE: 1
 OTHER_INDEX_SIZE: 0
 MODIFIED_COUNTER: 1
 AUTOINC: 0
 REF_COUNT: 1

The STATS_INITIALIZED field indicates whether or not statistics have been collected for the table.
NUM_ROWS is the current estimated number of rows in the table. The CLUST_INDEX_SIZE and
OTHER_INDEX_SIZE fields report the number of pages on disk that store clustered and secondary
indexes for the table, respectively. The MODIFIED_COUNTER value shows the number of rows modified
by DML operations and cascade operations from foreign keys. The AUTOINC value is the next number
to be issued for any autoincrement-based operation. There are no autoincrement columns defined on
table t1, so the value is 0. The REF_COUNT value is a counter. When the counter reaches 0, it signifies
that the table metadata can be evicted from the table cache.

Example 14.3 Foreign Key INFORMATION_SCHEMA System Tables

The INNODB_SYS_FOREIGN and INNODB_SYS_FOREIGN_COLS tables provide data about foreign
key relationships. This example uses a parent table and child table with a foreign key relationship to
demonstrate the data found in the INNODB_SYS_FOREIGN and INNODB_SYS_FOREIGN_COLS tables.

1. Create the test database with parent and child tables:

mysql> CREATE DATABASE test;

mysql> USE test;

mysql> CREATE TABLE parent (id INT NOT NULL,
 PRIMARY KEY (id)) ENGINE=INNODB;

mysql> CREATE TABLE child (id INT, parent_id INT,
 INDEX par_ind (parent_id),
 CONSTRAINT fk1
 FOREIGN KEY (parent_id) REFERENCES parent(id)
 ON DELETE CASCADE) ENGINE=INNODB;

2. After the parent and child tables are created, query INNODB_SYS_FOREIGN and locate the foreign key
data for the test/child and test/parent foreign key relationship:

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_SYS_FOREIGN \G
*************************** 1. row ***************************
 ID: test/fk1
FOR_NAME: test/child
REF_NAME: test/parent
 N_COLS: 1
 TYPE: 1

Metadata includes the foreign key ID (fk1), which is named for the CONSTRAINT that was defined
on the child table. The FOR_NAME is the name of the child table where the foreign key is defined.
REF_NAME is the name of the parent table (the “referenced” table). N_COLS is the number of columns

2828

InnoDB INFORMATION_SCHEMA System Tables

in the foreign key index. TYPE is a numerical value representing bit flags that provide additional
information about the foreign key column. In this case, the TYPE value is 1, which indicates that the
ON DELETE CASCADE option was specified for the foreign key. See the INNODB_SYS_FOREIGN table
definition for more information about TYPE values.

3. Using the foreign key ID, query INNODB_SYS_FOREIGN_COLS to view data about the columns of the
foreign key.

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_SYS_FOREIGN_COLS WHERE ID = 'test/fk1' \G
*************************** 1. row ***************************
 ID: test/fk1
FOR_COL_NAME: parent_id
REF_COL_NAME: id
 POS: 0

FOR_COL_NAME is the name of the foreign key column in the child table, and REF_COL_NAME is the
name of the referenced column in the parent table. The POS value is the ordinal position of the key field
within the foreign key index, starting at zero.

Example 14.4 Joining InnoDB INFORMATION_SCHEMA System Tables

This example demonstrates joining three InnoDB INFORMATION_SCHEMA system tables
(INNODB_SYS_TABLES, INNODB_SYS_TABLESPACES, and INNODB_SYS_TABLESTATS) to gather file
format, row format, page size, and index size information about tables in the employees sample database.

The following table name aliases are used to shorten the query string:

• INFORMATION_SCHEMA.INNODB_SYS_TABLES: a

• INFORMATION_SCHEMA.INNODB_SYS_TABLESPACES: b

• INFORMATION_SCHEMA.INNODB_SYS_TABLESTATS: c

An IF() control flow function is used to account for compressed tables. If a table is compressed, the
index size is calculated using ZIP_PAGE_SIZE rather than PAGE_SIZE. CLUST_INDEX_SIZE and
OTHER_INDEX_SIZE, which are reported in bytes, are divided by 1024*1024 to provide index sizes in
megabytes (MBs). MB values are rounded to zero decimal spaces using the ROUND() function.

mysql> SELECT a.NAME, a.FILE_FORMAT, a.ROW_FORMAT,
 @page_size :=
 IF(a.ROW_FORMAT='Compressed',
 b.ZIP_PAGE_SIZE, b.PAGE_SIZE)
 AS page_size,
 ROUND((@page_size * c.CLUST_INDEX_SIZE)
 /(1024*1024)) AS pk_mb,
 ROUND((@page_size * c.OTHER_INDEX_SIZE)
 /(1024*1024)) AS secidx_mb
 FROM INFORMATION_SCHEMA.INNODB_SYS_TABLES a
 INNER JOIN INFORMATION_SCHEMA.INNODB_SYS_TABLESPACES b on a.NAME = b.NAME
 INNER JOIN INFORMATION_SCHEMA.INNODB_SYS_TABLESTATS c on b.NAME = c.NAME
 WHERE a.NAME LIKE 'employees/%'
 ORDER BY a.NAME DESC;
+------------------------+-------------+------------+-----------+-------+-----------+
| NAME | FILE_FORMAT | ROW_FORMAT | page_size | pk_mb | secidx_mb |
+------------------------+-------------+------------+-----------+-------+-----------+
employees/titles	Antelope	Compact	16384	20	11
employees/salaries	Antelope	Compact	16384	91	33
employees/employees	Antelope	Compact	16384	15	0
employees/dept_manager	Antelope	Compact	16384	0	0
employees/dept_emp	Antelope	Compact	16384	12	10
employees/departments	Antelope	Compact	16384	0	0

2829

InnoDB INFORMATION_SCHEMA FULLTEXT Index Tables

+------------------------+-------------+------------+-----------+-------+-----------+

14.16.4 InnoDB INFORMATION_SCHEMA FULLTEXT Index Tables

The following tables provide metadata for FULLTEXT indexes:

mysql> SHOW TABLES FROM INFORMATION_SCHEMA LIKE 'INNODB_FT%';
+---+
| Tables_in_INFORMATION_SCHEMA (INNODB_FT%) |
+---+
| INNODB_FT_CONFIG |
| INNODB_FT_BEING_DELETED |
| INNODB_FT_DELETED |
| INNODB_FT_DEFAULT_STOPWORD |
| INNODB_FT_INDEX_TABLE |
| INNODB_FT_INDEX_CACHE |
+---+

Table Overview

• INNODB_FT_CONFIG: Provides metadata about the FULLTEXT index and associated processing for an
InnoDB table.

• INNODB_FT_BEING_DELETED: Provides a snapshot of the INNODB_FT_DELETED table; it is
used only during an OPTIMIZE TABLE maintenance operation. When OPTIMIZE TABLE is run,
the INNODB_FT_BEING_DELETED table is emptied, and DOC_ID values are removed from the
INNODB_FT_DELETED table. Because the contents of INNODB_FT_BEING_DELETED typically have
a short lifetime, this table has limited utility for monitoring or debugging. For information about running
OPTIMIZE TABLE on tables with FULLTEXT indexes, see Section 12.9.6, “Fine-Tuning MySQL Full-
Text Search”.

• INNODB_FT_DELETED: Stores rows that are deleted from the FULLTEXT index for an InnoDB table.
To avoid expensive index reorganization during DML operations for an InnoDB FULLTEXT index, the
information about newly deleted words is stored separately, filtered out of search results when you do
a text search, and removed from the main search index only when you issue an OPTIMIZE TABLE
statement for the InnoDB table.

• INNODB_FT_DEFAULT_STOPWORD: Holds a list of stopwords that are used by default when creating a
FULLTEXT index on InnoDB tables.

For information about the INNODB_FT_DEFAULT_STOPWORD table, see Section 12.9.4, “Full-Text
Stopwords”.

• INNODB_FT_INDEX_TABLE: Provides information about the inverted index used to process text
searches against the FULLTEXT index of an InnoDB table.

• INNODB_FT_INDEX_CACHE: Provides token information about newly inserted rows in a FULLTEXT
index. To avoid expensive index reorganization during DML operations, the information about newly
indexed words is stored separately, and combined with the main search index only when OPTIMIZE
TABLE is run, when the server is shut down, or when the cache size exceeds a limit defined by the
innodb_ft_cache_size or innodb_ft_total_cache_size system variable.

Note

With the exception of the INNODB_FT_DEFAULT_STOPWORD table, these
tables are empty initially. Before querying any of them, set the value of the
innodb_ft_aux_table system variable to the name (including the database
name) of the table that contains the FULLTEXT index (for example, test/
articles).

2830

InnoDB INFORMATION_SCHEMA FULLTEXT Index Tables

Example 14.5 InnoDB FULLTEXT Index INFORMATION_SCHEMA Tables

This example uses a table with a FULLTEXT index to demonstrate the data contained in the FULLTEXT
index INFORMATION_SCHEMA tables.

1. Create a table with a FULLTEXT index and insert some data:

mysql> CREATE TABLE articles (
 id INT UNSIGNED AUTO_INCREMENT NOT NULL PRIMARY KEY,
 title VARCHAR(200),
 body TEXT,
 FULLTEXT (title,body)
) ENGINE=InnoDB;

mysql> INSERT INTO articles (title,body) VALUES
 ('MySQL Tutorial','DBMS stands for DataBase ...'),
 ('How To Use MySQL Well','After you went through a ...'),
 ('Optimizing MySQL','In this tutorial we show ...'),
 ('1001 MySQL Tricks','1. Never run mysqld as root. 2. ...'),
 ('MySQL vs. YourSQL','In the following database comparison ...'),
 ('MySQL Security','When configured properly, MySQL ...');

2. Set the innodb_ft_aux_table variable to the name of the table with the FULLTEXT index. If
this variable is not set, the InnoDB FULLTEXT INFORMATION_SCHEMA tables are empty, with the
exception of INNODB_FT_DEFAULT_STOPWORD.

SET GLOBAL innodb_ft_aux_table = 'test/articles';

3. Query the INNODB_FT_INDEX_CACHE table, which shows information about newly inserted rows in
a FULLTEXT index. To avoid expensive index reorganization during DML operations, data for newly
inserted rows remains in the FULLTEXT index cache until OPTIMIZE TABLE is run (or until the server
is shut down or cache limits are exceeded).

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_FT_INDEX_CACHE LIMIT 5;
+------------+--------------+-------------+-----------+--------+----------+
| WORD | FIRST_DOC_ID | LAST_DOC_ID | DOC_COUNT | DOC_ID | POSITION |
+------------+--------------+-------------+-----------+--------+----------+
1001	5	5	1	5	0
after	3	3	1	3	22
comparison	6	6	1	6	44
configured	7	7	1	7	20
database	2	6	2	2	31
+------------+--------------+-------------+-----------+--------+----------+

4. Enable the innodb_optimize_fulltext_only system variable and run OPTIMIZE TABLE on the
table that contains the FULLTEXT index. This operation flushes the contents of the FULLTEXT index
cache to the main FULLTEXT index. innodb_optimize_fulltext_only changes the way the
OPTIMIZE TABLE statement operates on InnoDB tables, and is intended to be enabled temporarily,
during maintenance operations on InnoDB tables with FULLTEXT indexes.

mysql> SET GLOBAL innodb_optimize_fulltext_only=ON;

mysql> OPTIMIZE TABLE articles;
+---------------+----------+----------+----------+
| Table | Op | Msg_type | Msg_text |
+---------------+----------+----------+----------+
| test.articles | optimize | status | OK |
+---------------+----------+----------+----------+

5. Query the INNODB_FT_INDEX_TABLE table to view information about data in the main FULLTEXT
index, including information about the data that was just flushed from the FULLTEXT index cache.

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_FT_INDEX_TABLE LIMIT 5;

2831

InnoDB INFORMATION_SCHEMA FULLTEXT Index Tables

+------------+--------------+-------------+-----------+--------+----------+
| WORD | FIRST_DOC_ID | LAST_DOC_ID | DOC_COUNT | DOC_ID | POSITION |
+------------+--------------+-------------+-----------+--------+----------+
1001	5	5	1	5	0
after	3	3	1	3	22
comparison	6	6	1	6	44
configured	7	7	1	7	20
database	2	6	2	2	31
+------------+--------------+-------------+-----------+--------+----------+

The INNODB_FT_INDEX_CACHE table is now empty since the OPTIMIZE TABLE operation flushed the
FULLTEXT index cache.

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_FT_INDEX_CACHE LIMIT 5;
Empty set (0.00 sec)

6. Delete some records from the test/articles table.

mysql> DELETE FROM test.articles WHERE id < 4;

7. Query the INNODB_FT_DELETED table. This table records rows that are deleted from the FULLTEXT
index. To avoid expensive index reorganization during DML operations, information about newly
deleted records is stored separately, filtered out of search results when you do a text search, and
removed from the main search index when you run OPTIMIZE TABLE.

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_FT_DELETED;
+--------+
| DOC_ID |
+--------+
| 2 |
| 3 |
| 4 |
+--------+

8. Run OPTIMIZE TABLE to remove the deleted records.

mysql> OPTIMIZE TABLE articles;
+---------------+----------+----------+----------+
| Table | Op | Msg_type | Msg_text |
+---------------+----------+----------+----------+
| test.articles | optimize | status | OK |
+---------------+----------+----------+----------+

The INNODB_FT_DELETED table should now be empty.

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_FT_DELETED;
Empty set (0.00 sec)

9. Query the INNODB_FT_CONFIG table. This table contains metadata about the FULLTEXT index and
related processing:

• optimize_checkpoint_limit: The number of seconds after which an OPTIMIZE TABLE run
stops.

• synced_doc_id: The next DOC_ID to be issued.

• stopword_table_name: The database/table name for a user-defined stopword table. The
VALUE column is empty if there is no user-defined stopword table.

• use_stopword: Indicates whether a stopword table is used, which is defined when the FULLTEXT
index is created.

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_FT_CONFIG;

2832

InnoDB INFORMATION_SCHEMA Buffer Pool Tables

+---------------------------+-------+
| KEY | VALUE |
+---------------------------+-------+
optimize_checkpoint_limit	180
synced_doc_id	8
stopword_table_name	
use_stopword	1
+---------------------------+-------+

10. Disable innodb_optimize_fulltext_only, since it is intended to be enabled only temporarily:

mysql> SET GLOBAL innodb_optimize_fulltext_only=OFF;

14.16.5 InnoDB INFORMATION_SCHEMA Buffer Pool Tables

The InnoDB INFORMATION_SCHEMA buffer pool tables provide buffer pool status information and
metadata about the pages within the InnoDB buffer pool.

The InnoDB INFORMATION_SCHEMA buffer pool tables include those listed below:

mysql> SHOW TABLES FROM INFORMATION_SCHEMA LIKE 'INNODB_BUFFER%';
+---+
| Tables_in_INFORMATION_SCHEMA (INNODB_BUFFER%) |
+---+
| INNODB_BUFFER_PAGE_LRU |
| INNODB_BUFFER_PAGE |
| INNODB_BUFFER_POOL_STATS |
+---+

Table Overview

• INNODB_BUFFER_PAGE: Holds information about each page in the InnoDB buffer pool.

• INNODB_BUFFER_PAGE_LRU: Holds information about the pages in the InnoDB buffer pool,
in particular how they are ordered in the LRU list that determines which pages to evict from the
buffer pool when it becomes full. The INNODB_BUFFER_PAGE_LRU table has the same columns
as the INNODB_BUFFER_PAGE table, except that the INNODB_BUFFER_PAGE_LRU table has an
LRU_POSITION column instead of a BLOCK_ID column.

• INNODB_BUFFER_POOL_STATS: Provides buffer pool status information. Much of the same information
is provided by SHOW ENGINE INNODB STATUS output, or may be obtained using InnoDB buffer pool
server status variables.

Warning

Querying the INNODB_BUFFER_PAGE or INNODB_BUFFER_PAGE_LRU table can
affect performance. Do not query these tables on a production system unless you
are aware of the performance impact and have determined it to be acceptable. To
avoid impacting performance on a production system, reproduce the issue you want
to investigate and query buffer pool statistics on a test instance.

Example 14.6 Querying System Data in the INNODB_BUFFER_PAGE Table

This query provides an approximate count of pages that contain system data by excluding pages where the
TABLE_NAME value is either NULL or includes a slash / or period . in the table name, which indicates a
user-defined table.

mysql> SELECT COUNT(*) FROM INFORMATION_SCHEMA.INNODB_BUFFER_PAGE
 WHERE TABLE_NAME IS NULL OR (INSTR(TABLE_NAME, '/') = 0 AND INSTR(TABLE_NAME, '.') = 0);

2833

InnoDB INFORMATION_SCHEMA Buffer Pool Tables

+----------+
| COUNT(*) |
+----------+
| 1516 |
+----------+

This query returns the approximate number of pages that contain system data, the total number of buffer
pool pages, and an approximate percentage of pages that contain system data.

mysql> SELECT
 (SELECT COUNT(*) FROM INFORMATION_SCHEMA.INNODB_BUFFER_PAGE
 WHERE TABLE_NAME IS NULL OR (INSTR(TABLE_NAME, '/') = 0 AND INSTR(TABLE_NAME, '.') = 0)
) AS system_pages,
 (
 SELECT COUNT(*)
 FROM INFORMATION_SCHEMA.INNODB_BUFFER_PAGE
) AS total_pages,
 (
 SELECT ROUND((system_pages/total_pages) * 100)
) AS system_page_percentage;
+--------------+-------------+------------------------+
| system_pages | total_pages | system_page_percentage |
+--------------+-------------+------------------------+
| 295 | 8192 | 4 |
+--------------+-------------+------------------------+

The type of system data in the buffer pool can be determined by querying the PAGE_TYPE value. For
example, the following query returns eight distinct PAGE_TYPE values among the pages that contain
system data:

mysql> SELECT DISTINCT PAGE_TYPE FROM INFORMATION_SCHEMA.INNODB_BUFFER_PAGE
 WHERE TABLE_NAME IS NULL OR (INSTR(TABLE_NAME, '/') = 0 AND INSTR(TABLE_NAME, '.') = 0);
+-------------------+
| PAGE_TYPE |
+-------------------+
| SYSTEM |
| IBUF_BITMAP |
| UNKNOWN |
| FILE_SPACE_HEADER |
| INODE |
| UNDO_LOG |
| ALLOCATED |
+-------------------+

Example 14.7 Querying User Data in the INNODB_BUFFER_PAGE Table

This query provides an approximate count of pages containing user data by counting pages where the
TABLE_NAME value is NOT NULL and NOT LIKE '%INNODB_SYS_TABLES%'.

mysql> SELECT COUNT(*) FROM INFORMATION_SCHEMA.INNODB_BUFFER_PAGE
 WHERE TABLE_NAME IS NOT NULL AND TABLE_NAME NOT LIKE '%INNODB_SYS_TABLES%';
+----------+
| COUNT(*) |
+----------+
| 7897 |
+----------+

This query returns the approximate number of pages that contain user data, the total number of buffer pool
pages, and an approximate percentage of pages that contain user data.

mysql> SELECT
 (SELECT COUNT(*) FROM INFORMATION_SCHEMA.INNODB_BUFFER_PAGE
 WHERE TABLE_NAME IS NOT NULL AND (INSTR(TABLE_NAME, '/') > 0 OR INSTR(TABLE_NAME, '.') > 0)

2834

InnoDB INFORMATION_SCHEMA Buffer Pool Tables

) AS user_pages,
 (
 SELECT COUNT(*)
 FROM INFORMATION_SCHEMA.INNODB_BUFFER_PAGE
) AS total_pages,
 (
 SELECT ROUND((user_pages/total_pages) * 100)
) AS user_page_percentage;
+------------+-------------+----------------------+
| user_pages | total_pages | user_page_percentage |
+------------+-------------+----------------------+
| 7897 | 8192 | 96 |
+------------+-------------+----------------------+

This query identifies user-defined tables with pages in the buffer pool:

mysql> SELECT DISTINCT TABLE_NAME FROM INFORMATION_SCHEMA.INNODB_BUFFER_PAGE
 WHERE TABLE_NAME IS NOT NULL AND (INSTR(TABLE_NAME, '/') > 0 OR INSTR(TABLE_NAME, '.') > 0)
 AND TABLE_NAME NOT LIKE '`mysql`.`innodb_%';
+-------------------------+
| TABLE_NAME |
+-------------------------+
| `employees`.`salaries` |
| `employees`.`employees` |
+-------------------------+

Example 14.8 Querying Index Data in the INNODB_BUFFER_PAGE Table

For information about index pages, query the INDEX_NAME column using the name of the index. For
example, the following query returns the number of pages and total data size of pages for the emp_no
index that is defined on the employees.salaries table:

mysql> SELECT INDEX_NAME, COUNT(*) AS Pages,
 ROUND(SUM(IF(COMPRESSED_SIZE = 0, @@GLOBAL.innodb_page_size, COMPRESSED_SIZE))/1024/1024)
 AS 'Total Data (MB)'
 FROM INFORMATION_SCHEMA.INNODB_BUFFER_PAGE
 WHERE INDEX_NAME='emp_no' AND TABLE_NAME = '`employees`.`salaries`';
+------------+-------+-----------------+
| INDEX_NAME | Pages | Total Data (MB) |
+------------+-------+-----------------+
| emp_no | 1609 | 25 |
+------------+-------+-----------------+

This query returns the number of pages and total data size of pages for all indexes defined on the
employees.salaries table:

mysql> SELECT INDEX_NAME, COUNT(*) AS Pages,
 ROUND(SUM(IF(COMPRESSED_SIZE = 0, @@GLOBAL.innodb_page_size, COMPRESSED_SIZE))/1024/1024)
 AS 'Total Data (MB)'
 FROM INFORMATION_SCHEMA.INNODB_BUFFER_PAGE
 WHERE TABLE_NAME = '`employees`.`salaries`'
 GROUP BY INDEX_NAME;
+------------+-------+-----------------+
| INDEX_NAME | Pages | Total Data (MB) |
+------------+-------+-----------------+
| emp_no | 1608 | 25 |
| PRIMARY | 6086 | 95 |
+------------+-------+-----------------+

Example 14.9 Querying LRU_POSITION Data in the INNODB_BUFFER_PAGE_LRU Table

The INNODB_BUFFER_PAGE_LRU table holds information about the pages in the InnoDB buffer pool, in
particular how they are ordered that determines which pages to evict from the buffer pool when it becomes

2835

InnoDB INFORMATION_SCHEMA Buffer Pool Tables

full. The definition for this page is the same as for INNODB_BUFFER_PAGE, except this table has an
LRU_POSITION column instead of a BLOCK_ID column.

This query counts the number of positions at a specific location in the LRU list occupied by pages of the
employees.employees table.

mysql> SELECT COUNT(LRU_POSITION) FROM INFORMATION_SCHEMA.INNODB_BUFFER_PAGE_LRU
 WHERE TABLE_NAME='`employees`.`employees`' AND LRU_POSITION < 3072;
+---------------------+
| COUNT(LRU_POSITION) |
+---------------------+
| 548 |
+---------------------+

Example 14.10 Querying the INNODB_BUFFER_POOL_STATS Table

The INNODB_BUFFER_POOL_STATS table provides information similar to SHOW ENGINE INNODB
STATUS and InnoDB buffer pool status variables.

mysql> SELECT * FROM information_schema.INNODB_BUFFER_POOL_STATS \G
*************************** 1. row ***************************
 POOL_ID: 0
 POOL_SIZE: 8192
 FREE_BUFFERS: 1
 DATABASE_PAGES: 8173
 OLD_DATABASE_PAGES: 3014
 MODIFIED_DATABASE_PAGES: 0
 PENDING_DECOMPRESS: 0
 PENDING_READS: 0
 PENDING_FLUSH_LRU: 0
 PENDING_FLUSH_LIST: 0
 PAGES_MADE_YOUNG: 15907
 PAGES_NOT_MADE_YOUNG: 3803101
 PAGES_MADE_YOUNG_RATE: 0
 PAGES_MADE_NOT_YOUNG_RATE: 0
 NUMBER_PAGES_READ: 3270
 NUMBER_PAGES_CREATED: 13176
 NUMBER_PAGES_WRITTEN: 15109
 PAGES_READ_RATE: 0
 PAGES_CREATE_RATE: 0
 PAGES_WRITTEN_RATE: 0
 NUMBER_PAGES_GET: 33069332
 HIT_RATE: 0
 YOUNG_MAKE_PER_THOUSAND_GETS: 0
NOT_YOUNG_MAKE_PER_THOUSAND_GETS: 0
 NUMBER_PAGES_READ_AHEAD: 2713
 NUMBER_READ_AHEAD_EVICTED: 0
 READ_AHEAD_RATE: 0
 READ_AHEAD_EVICTED_RATE: 0
 LRU_IO_TOTAL: 0
 LRU_IO_CURRENT: 0
 UNCOMPRESS_TOTAL: 0
 UNCOMPRESS_CURRENT: 0

For comparison, SHOW ENGINE INNODB STATUS output and InnoDB buffer pool status variable output is
shown below, based on the same data set.

For more information about SHOW ENGINE INNODB STATUS output, see Section 14.18.3, “InnoDB
Standard Monitor and Lock Monitor Output”.

mysql> SHOW ENGINE INNODB STATUS \G
...

BUFFER POOL AND MEMORY

2836

InnoDB INFORMATION_SCHEMA Metrics Table

Total large memory allocated 137428992
Dictionary memory allocated 579084
Buffer pool size 8192
Free buffers 1
Database pages 8173
Old database pages 3014
Modified db pages 0
Pending reads 0
Pending writes: LRU 0, flush list 0, single page 0
Pages made young 15907, not young 3803101
0.00 youngs/s, 0.00 non-youngs/s
Pages read 3270, created 13176, written 15109
0.00 reads/s, 0.00 creates/s, 0.00 writes/s
No buffer pool page gets since the last printout
Pages read ahead 0.00/s, evicted without access 0.00/s, Random read ahead 0.00/s
LRU len: 8173, unzip_LRU len: 0
I/O sum[0]:cur[0], unzip sum[0]:cur[0]
...

For status variable descriptions, see Section 5.1.9, “Server Status Variables”.

mysql> SHOW STATUS LIKE 'Innodb_buffer%';
+---------------------------------------+-------------+
| Variable_name | Value |
+---------------------------------------+-------------+
Innodb_buffer_pool_dump_status	not started
Innodb_buffer_pool_load_status	not started
Innodb_buffer_pool_resize_status	not started
Innodb_buffer_pool_pages_data	8173
Innodb_buffer_pool_bytes_data	133906432
Innodb_buffer_pool_pages_dirty	0
Innodb_buffer_pool_bytes_dirty	0
Innodb_buffer_pool_pages_flushed	15109
Innodb_buffer_pool_pages_free	1
Innodb_buffer_pool_pages_misc	18
Innodb_buffer_pool_pages_total	8192
Innodb_buffer_pool_read_ahead_rnd	0
Innodb_buffer_pool_read_ahead	2713
Innodb_buffer_pool_read_ahead_evicted	0
Innodb_buffer_pool_read_requests	33069332
Innodb_buffer_pool_reads	558
Innodb_buffer_pool_wait_free	0
Innodb_buffer_pool_write_requests	11985961
+---------------------------------------+-------------+

14.16.6 InnoDB INFORMATION_SCHEMA Metrics Table

The INNODB_METRICS table provides information about InnoDB performance and resource-related
counters.

INNODB_METRICS table columns are shown below. For column descriptions, see Section 24.4.16, “The
INFORMATION_SCHEMA INNODB_METRICS Table”.

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_METRICS WHERE NAME="dml_inserts" \G
*************************** 1. row ***************************
 NAME: dml_inserts
 SUBSYSTEM: dml
 COUNT: 46273
 MAX_COUNT: 46273
 MIN_COUNT: NULL
 AVG_COUNT: 492.2659574468085
 COUNT_RESET: 46273
MAX_COUNT_RESET: 46273
MIN_COUNT_RESET: NULL

2837

InnoDB INFORMATION_SCHEMA Metrics Table

AVG_COUNT_RESET: NULL
 TIME_ENABLED: 2014-11-28 16:07:53
 TIME_DISABLED: NULL
 TIME_ELAPSED: 94
 TIME_RESET: NULL
 STATUS: enabled
 TYPE: status_counter
 COMMENT: Number of rows inserted

Enabling, Disabling, and Resetting Counters

You can enable, disable, and reset counters using the following variables:

• innodb_monitor_enable: Enables counters.

SET GLOBAL innodb_monitor_enable = [counter-name|module_name|pattern|all];

• innodb_monitor_disable: Disables counters.

SET GLOBAL innodb_monitor_disable = [counter-name|module_name|pattern|all];

• innodb_monitor_reset: Resets counter values to zero.

SET GLOBAL innodb_monitor_reset = [counter-name|module_name|pattern|all];

• innodb_monitor_reset_all: Resets all counter values. A counter must be disabled before using
innodb_monitor_reset_all.

SET GLOBAL innodb_monitor_reset_all = [counter-name|module_name|pattern|all];

Counters and counter modules can also be enabled at startup using the MySQL server configuration
file. For example, to enable the log module, metadata_table_handles_opened and
metadata_table_handles_closed counters, enter the following line in the [mysqld] section of the
MySQL server configuration file..

[mysqld]
innodb_monitor_enable = module_recovery,metadata_table_handles_opened,metadata_table_handles_closed

When enabling multiple counters or modules in a configuration file, specify the innodb_monitor_enable
variable followed by counter and module names separated by a comma, as shown above. Only the
innodb_monitor_enable variable can be used in a configuration file. The innodb_monitor_disable
and innodb_monitor_reset variables are supported on the command line only.

Note

Because each counter adds a degree of runtime overhead, use counters
conservatively on production servers to diagnose specific issues or monitor specific
functionality. A test or development server is recommended for more extensive use
of counters.

Counters

The list of available counters is subject to change. Query the Information Schema INNODB_METRICS table
for counters available in your MySQL server version.

The counters enabled by default correspond to those shown in SHOW ENGINE INNODB STATUS output.
Counters shown in SHOW ENGINE INNODB STATUS output are always enabled at a system level but can
be disable for the INNODB_METRICS table. Counter status is not persistent. Unless configured otherwise,
counters revert to their default enabled or disabled status when the server is restarted.

2838

InnoDB INFORMATION_SCHEMA Metrics Table

If you run programs that would be affected by the addition or removal of counters, it is recommended that
you review the releases notes and query the INNODB_METRICS table to identify those changes as part of
your upgrade process.

mysql> SELECT name, subsystem, status FROM INFORMATION_SCHEMA.INNODB_METRICS ORDER BY NAME;
+--+---------------------+----------+
| name | subsystem | status |
+--+---------------------+----------+
adaptive_hash_pages_added	adaptive_hash_index	disabled
adaptive_hash_pages_removed	adaptive_hash_index	disabled
adaptive_hash_rows_added	adaptive_hash_index	disabled
adaptive_hash_rows_deleted_no_hash_entry	adaptive_hash_index	disabled
adaptive_hash_rows_removed	adaptive_hash_index	disabled
adaptive_hash_rows_updated	adaptive_hash_index	disabled
adaptive_hash_searches	adaptive_hash_index	enabled
adaptive_hash_searches_btree	adaptive_hash_index	enabled
buffer_data_reads	buffer	enabled
buffer_data_written	buffer	enabled
buffer_flush_adaptive	buffer	disabled
buffer_flush_adaptive_avg_pass	buffer	disabled
buffer_flush_adaptive_avg_time_est	buffer	disabled
buffer_flush_adaptive_avg_time_slot	buffer	disabled
buffer_flush_adaptive_avg_time_thread	buffer	disabled
buffer_flush_adaptive_pages	buffer	disabled
buffer_flush_adaptive_total_pages	buffer	disabled
buffer_flush_avg_page_rate	buffer	disabled
buffer_flush_avg_pass	buffer	disabled
buffer_flush_avg_time	buffer	disabled
buffer_flush_background	buffer	disabled
buffer_flush_background_pages	buffer	disabled
buffer_flush_background_total_pages	buffer	disabled
buffer_flush_batches	buffer	disabled
buffer_flush_batch_num_scan	buffer	disabled
buffer_flush_batch_pages	buffer	disabled
buffer_flush_batch_scanned	buffer	disabled
buffer_flush_batch_scanned_per_call	buffer	disabled
buffer_flush_batch_total_pages	buffer	disabled
buffer_flush_lsn_avg_rate	buffer	disabled
buffer_flush_neighbor	buffer	disabled
buffer_flush_neighbor_pages	buffer	disabled
buffer_flush_neighbor_total_pages	buffer	disabled
buffer_flush_n_to_flush_by_age	buffer	disabled
buffer_flush_n_to_flush_requested	buffer	disabled
buffer_flush_pct_for_dirty	buffer	disabled
buffer_flush_pct_for_lsn	buffer	disabled
buffer_flush_sync	buffer	disabled
buffer_flush_sync_pages	buffer	disabled
buffer_flush_sync_total_pages	buffer	disabled
buffer_flush_sync_waits	buffer	disabled
buffer_LRU_batches_evict	buffer	disabled
buffer_LRU_batches_flush	buffer	disabled
buffer_LRU_batch_evict_pages	buffer	disabled
buffer_LRU_batch_evict_total_pages	buffer	disabled
buffer_LRU_batch_flush_avg_pass	buffer	disabled
buffer_LRU_batch_flush_avg_time_est	buffer	disabled
buffer_LRU_batch_flush_avg_time_slot	buffer	disabled
buffer_LRU_batch_flush_avg_time_thread	buffer	disabled
buffer_LRU_batch_flush_pages	buffer	disabled
buffer_LRU_batch_flush_total_pages	buffer	disabled
buffer_LRU_batch_num_scan	buffer	disabled
buffer_LRU_batch_scanned	buffer	disabled
buffer_LRU_batch_scanned_per_call	buffer	disabled
buffer_LRU_get_free_loops	buffer	disabled
buffer_LRU_get_free_search	Buffer	disabled
buffer_LRU_get_free_waits	buffer	disabled
buffer_LRU_search_num_scan	buffer	disabled

2839

InnoDB INFORMATION_SCHEMA Metrics Table

buffer_LRU_search_scanned	buffer	disabled
buffer_LRU_search_scanned_per_call	buffer	disabled
buffer_LRU_single_flush_failure_count	Buffer	disabled
buffer_LRU_single_flush_num_scan	buffer	disabled
buffer_LRU_single_flush_scanned	buffer	disabled
buffer_LRU_single_flush_scanned_per_call	buffer	disabled
buffer_LRU_unzip_search_num_scan	buffer	disabled
buffer_LRU_unzip_search_scanned	buffer	disabled
buffer_LRU_unzip_search_scanned_per_call	buffer	disabled
buffer_pages_created	buffer	enabled
buffer_pages_read	buffer	enabled
buffer_pages_written	buffer	enabled
buffer_page_read_blob	buffer_page_io	disabled
buffer_page_read_fsp_hdr	buffer_page_io	disabled
buffer_page_read_ibuf_bitmap	buffer_page_io	disabled
buffer_page_read_ibuf_free_list	buffer_page_io	disabled
buffer_page_read_index_ibuf_leaf	buffer_page_io	disabled
buffer_page_read_index_ibuf_non_leaf	buffer_page_io	disabled
buffer_page_read_index_inode	buffer_page_io	disabled
buffer_page_read_index_leaf	buffer_page_io	disabled
buffer_page_read_index_non_leaf	buffer_page_io	disabled
buffer_page_read_other	buffer_page_io	disabled
buffer_page_read_system_page	buffer_page_io	disabled
buffer_page_read_trx_system	buffer_page_io	disabled
buffer_page_read_undo_log	buffer_page_io	disabled
buffer_page_read_xdes	buffer_page_io	disabled
buffer_page_read_zblob	buffer_page_io	disabled
buffer_page_read_zblob2	buffer_page_io	disabled
buffer_page_written_blob	buffer_page_io	disabled
buffer_page_written_fsp_hdr	buffer_page_io	disabled
buffer_page_written_ibuf_bitmap	buffer_page_io	disabled
buffer_page_written_ibuf_free_list	buffer_page_io	disabled
buffer_page_written_index_ibuf_leaf	buffer_page_io	disabled
buffer_page_written_index_ibuf_non_leaf	buffer_page_io	disabled
buffer_page_written_index_inode	buffer_page_io	disabled
buffer_page_written_index_leaf	buffer_page_io	disabled
buffer_page_written_index_non_leaf	buffer_page_io	disabled
buffer_page_written_other	buffer_page_io	disabled
buffer_page_written_system_page	buffer_page_io	disabled
buffer_page_written_trx_system	buffer_page_io	disabled
buffer_page_written_undo_log	buffer_page_io	disabled
buffer_page_written_xdes	buffer_page_io	disabled
buffer_page_written_zblob	buffer_page_io	disabled
buffer_page_written_zblob2	buffer_page_io	disabled
buffer_pool_bytes_data	buffer	enabled
buffer_pool_bytes_dirty	buffer	enabled
buffer_pool_pages_data	buffer	enabled
buffer_pool_pages_dirty	buffer	enabled
buffer_pool_pages_free	buffer	enabled
buffer_pool_pages_misc	buffer	enabled
buffer_pool_pages_total	buffer	enabled
buffer_pool_reads	buffer	enabled
buffer_pool_read_ahead	buffer	enabled
buffer_pool_read_ahead_evicted	buffer	enabled
buffer_pool_read_requests	buffer	enabled
buffer_pool_size	server	enabled
buffer_pool_wait_free	buffer	enabled
buffer_pool_write_requests	buffer	enabled
compression_pad_decrements	compression	disabled
compression_pad_increments	compression	disabled
compress_pages_compressed	compression	disabled
compress_pages_decompressed	compression	disabled
ddl_background_drop_indexes	ddl	disabled
ddl_background_drop_tables	ddl	disabled
ddl_log_file_alter_table	ddl	disabled
ddl_online_create_index	ddl	disabled
ddl_pending_alter_table	ddl	disabled

2840

InnoDB INFORMATION_SCHEMA Metrics Table

ddl_sort_file_alter_table	ddl	disabled
dml_deletes	dml	enabled
dml_inserts	dml	enabled
dml_reads	dml	disabled
dml_updates	dml	enabled
file_num_open_files	file_system	enabled
ibuf_merges	change_buffer	enabled
ibuf_merges_delete	change_buffer	enabled
ibuf_merges_delete_mark	change_buffer	enabled
ibuf_merges_discard_delete	change_buffer	enabled
ibuf_merges_discard_delete_mark	change_buffer	enabled
ibuf_merges_discard_insert	change_buffer	enabled
ibuf_merges_insert	change_buffer	enabled
ibuf_size	change_buffer	enabled
icp_attempts	icp	disabled
icp_match	icp	disabled
icp_no_match	icp	disabled
icp_out_of_range	icp	disabled
index_page_discards	index	disabled
index_page_merge_attempts	index	disabled
index_page_merge_successful	index	disabled
index_page_reorg_attempts	index	disabled
index_page_reorg_successful	index	disabled
index_page_splits	index	disabled
innodb_activity_count	server	enabled
innodb_background_drop_table_usec	server	disabled
innodb_checkpoint_usec	server	disabled
innodb_dblwr_pages_written	server	enabled
innodb_dblwr_writes	server	enabled
innodb_dict_lru_count	server	disabled
innodb_dict_lru_usec	server	disabled
innodb_ibuf_merge_usec	server	disabled
innodb_log_flush_usec	server	disabled
innodb_master_active_loops	server	disabled
innodb_master_idle_loops	server	disabled
innodb_master_purge_usec	server	disabled
innodb_master_thread_sleeps	server	disabled
innodb_mem_validate_usec	server	disabled
innodb_page_size	server	enabled
innodb_rwlock_sx_os_waits	server	enabled
innodb_rwlock_sx_spin_rounds	server	enabled
innodb_rwlock_sx_spin_waits	server	enabled
innodb_rwlock_s_os_waits	server	enabled
innodb_rwlock_s_spin_rounds	server	enabled
innodb_rwlock_s_spin_waits	server	enabled
innodb_rwlock_x_os_waits	server	enabled
innodb_rwlock_x_spin_rounds	server	enabled
innodb_rwlock_x_spin_waits	server	enabled
lock_deadlocks	lock	enabled
lock_rec_locks	lock	disabled
lock_rec_lock_created	lock	disabled
lock_rec_lock_removed	lock	disabled
lock_rec_lock_requests	lock	disabled
lock_rec_lock_waits	lock	disabled
lock_row_lock_current_waits	lock	enabled
lock_row_lock_time	lock	enabled
lock_row_lock_time_avg	lock	enabled
lock_row_lock_time_max	lock	enabled
lock_row_lock_waits	lock	enabled
lock_table_locks	lock	disabled
lock_table_lock_created	lock	disabled
lock_table_lock_removed	lock	disabled
lock_table_lock_waits	lock	disabled
lock_timeouts	lock	enabled
log_checkpoints	recovery	disabled
log_lsn_buf_pool_oldest	recovery	disabled
log_lsn_checkpoint_age	recovery	disabled

2841

InnoDB INFORMATION_SCHEMA Metrics Table

log_lsn_current	recovery	disabled
log_lsn_last_checkpoint	recovery	disabled
log_lsn_last_flush	recovery	disabled
log_max_modified_age_async	recovery	disabled
log_max_modified_age_sync	recovery	disabled
log_num_log_io	recovery	disabled
log_padded	recovery	enabled
log_pending_checkpoint_writes	recovery	disabled
log_pending_log_flushes	recovery	disabled
log_waits	recovery	enabled
log_writes	recovery	enabled
log_write_requests	recovery	enabled
metadata_table_handles_closed	metadata	disabled
metadata_table_handles_opened	metadata	disabled
metadata_table_reference_count	metadata	disabled
os_data_fsyncs	os	enabled
os_data_reads	os	enabled
os_data_writes	os	enabled
os_log_bytes_written	os	enabled
os_log_fsyncs	os	enabled
os_log_pending_fsyncs	os	enabled
os_log_pending_writes	os	enabled
os_pending_reads	os	disabled
os_pending_writes	os	disabled
purge_del_mark_records	purge	disabled
purge_dml_delay_usec	purge	disabled
purge_invoked	purge	disabled
purge_resume_count	purge	disabled
purge_stop_count	purge	disabled
purge_undo_log_pages	purge	disabled
purge_upd_exist_or_extern_records	purge	disabled
trx_active_transactions	transaction	disabled
trx_commits_insert_update	transaction	disabled
trx_nl_ro_commits	transaction	disabled
trx_rollbacks	transaction	disabled
trx_rollbacks_savepoint	transaction	disabled
trx_rollback_active	transaction	disabled
trx_ro_commits	transaction	disabled
trx_rseg_current_size	transaction	disabled
trx_rseg_history_len	transaction	enabled
trx_rw_commits	transaction	disabled
trx_undo_slots_cached	transaction	disabled
trx_undo_slots_used	transaction	disabled
+--+---------------------+----------+
235 rows in set (0.01 sec)

Counter Modules

Each counter is associated with a particular module. Module names can be used to enable, disable,
or reset all counters for a particular subsystem. For example, use module_dml to enable all counters
associated with the dml subsystem.

mysql> SET GLOBAL innodb_monitor_enable = module_dml;

mysql> SELECT name, subsystem, status FROM INFORMATION_SCHEMA.INNODB_METRICS
 WHERE subsystem ='dml';
+-------------+-----------+---------+
| name | subsystem | status |
+-------------+-----------+---------+
dml_reads	dml	enabled
dml_inserts	dml	enabled
dml_deletes	dml	enabled
dml_updates	dml	enabled
+-------------+-----------+---------+

Module names can be used with innodb_monitor_enable and related variables.

2842

InnoDB INFORMATION_SCHEMA Metrics Table

Module names and corresponding SUBSYSTEM names are listed below.

• module_adaptive_hash (subsystem = adaptive_hash_index)

• module_buffer (subsystem = buffer)

• module_buffer_page (subsystem = buffer_page_io)

• module_compress (subsystem = compression)

• module_ddl (subsystem = ddl)

• module_dml (subsystem = dml)

• module_file (subsystem = file_system)

• module_ibuf_system (subsystem = change_buffer)

• module_icp (subsystem = icp)

• module_index (subsystem = index)

• module_innodb (subsystem = innodb)

• module_lock (subsystem = lock)

• module_log (subsystem = recovery)

• module_metadata (subsystem = metadata)

• module_os (subsystem = os)

• module_purge (subsystem = purge)

• module_trx (subsystem = transaction)

Example 14.11 Working with INNODB_METRICS Table Counters

This example demonstrates enabling, disabling, and resetting a counter, and querying counter data in the
INNODB_METRICS table.

1. Create a simple InnoDB table:

mysql> USE test;
Database changed

mysql> CREATE TABLE t1 (c1 INT) ENGINE=INNODB;
Query OK, 0 rows affected (0.02 sec)

2. Enable the dml_inserts counter.

mysql> SET GLOBAL innodb_monitor_enable = dml_inserts;
Query OK, 0 rows affected (0.01 sec)

A description of the dml_inserts counter can be found in the COMMENT column of the
INNODB_METRICS table:

mysql> SELECT NAME, COMMENT FROM INFORMATION_SCHEMA.INNODB_METRICS WHERE NAME="dml_inserts";
+-------------+-------------------------+
| NAME | COMMENT |
+-------------+-------------------------+

2843

InnoDB INFORMATION_SCHEMA Metrics Table

| dml_inserts | Number of rows inserted |
+-------------+-------------------------+

3. Query the INNODB_METRICS table for the dml_inserts counter data. Because no DML operations
have been performed, the counter values are zero or NULL. The TIME_ENABLED and TIME_ELAPSED
values indicate when the counter was last enabled and how many seconds have elapsed since that
time.

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_METRICS WHERE NAME="dml_inserts" \G
*************************** 1. row ***************************
 NAME: dml_inserts
 SUBSYSTEM: dml
 COUNT: 0
 MAX_COUNT: 0
 MIN_COUNT: NULL
 AVG_COUNT: 0
 COUNT_RESET: 0
MAX_COUNT_RESET: 0
MIN_COUNT_RESET: NULL
AVG_COUNT_RESET: NULL
 TIME_ENABLED: 2014-12-04 14:18:28
 TIME_DISABLED: NULL
 TIME_ELAPSED: 28
 TIME_RESET: NULL
 STATUS: enabled
 TYPE: status_counter
 COMMENT: Number of rows inserted

4. Insert three rows of data into the table.

mysql> INSERT INTO t1 values(1);
Query OK, 1 row affected (0.00 sec)

mysql> INSERT INTO t1 values(2);
Query OK, 1 row affected (0.00 sec)

mysql> INSERT INTO t1 values(3);
Query OK, 1 row affected (0.00 sec)

5. Query the INNODB_METRICS table again for the dml_inserts counter data. A number of counter
values have now incremented including COUNT, MAX_COUNT, AVG_COUNT, and COUNT_RESET. Refer
to the INNODB_METRICS table definition for descriptions of these values.

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_METRICS WHERE NAME="dml_inserts"\G
*************************** 1. row ***************************
 NAME: dml_inserts
 SUBSYSTEM: dml
 COUNT: 3
 MAX_COUNT: 3
 MIN_COUNT: NULL
 AVG_COUNT: 0.046153846153846156
 COUNT_RESET: 3
MAX_COUNT_RESET: 3
MIN_COUNT_RESET: NULL
AVG_COUNT_RESET: NULL
 TIME_ENABLED: 2014-12-04 14:18:28
 TIME_DISABLED: NULL
 TIME_ELAPSED: 65
 TIME_RESET: NULL
 STATUS: enabled
 TYPE: status_counter
 COMMENT: Number of rows inserted

6. Reset the dml_inserts counter and query the INNODB_METRICS table again for the dml_inserts
counter data. The %_RESET values that were reported previously, such as COUNT_RESET and

2844

InnoDB INFORMATION_SCHEMA Metrics Table

MAX_RESET, are set back to zero. Values such as COUNT, MAX_COUNT, and AVG_COUNT, which
cumulatively collect data from the time the counter is enabled, are unaffected by the reset.

mysql> SET GLOBAL innodb_monitor_reset = dml_inserts;
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_METRICS WHERE NAME="dml_inserts"\G
*************************** 1. row ***************************
 NAME: dml_inserts
 SUBSYSTEM: dml
 COUNT: 3
 MAX_COUNT: 3
 MIN_COUNT: NULL
 AVG_COUNT: 0.03529411764705882
 COUNT_RESET: 0
MAX_COUNT_RESET: 0
MIN_COUNT_RESET: NULL
AVG_COUNT_RESET: 0
 TIME_ENABLED: 2014-12-04 14:18:28
 TIME_DISABLED: NULL
 TIME_ELAPSED: 85
 TIME_RESET: 2014-12-04 14:19:44
 STATUS: enabled
 TYPE: status_counter
 COMMENT: Number of rows inserted

7. To reset all counter values, you must first disable the counter. Disabling the counter sets the STATUS
value to disabled.

mysql> SET GLOBAL innodb_monitor_disable = dml_inserts;
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_METRICS WHERE NAME="dml_inserts"\G
*************************** 1. row ***************************
 NAME: dml_inserts
 SUBSYSTEM: dml
 COUNT: 3
 MAX_COUNT: 3
 MIN_COUNT: NULL
 AVG_COUNT: 0.030612244897959183
 COUNT_RESET: 0
MAX_COUNT_RESET: 0
MIN_COUNT_RESET: NULL
AVG_COUNT_RESET: 0
 TIME_ENABLED: 2014-12-04 14:18:28
 TIME_DISABLED: 2014-12-04 14:20:06
 TIME_ELAPSED: 98
 TIME_RESET: NULL
 STATUS: disabled
 TYPE: status_counter
 COMMENT: Number of rows inserted

Note

Wildcard match is supported for counter and module names. For example,
instead of specifying the full dml_inserts counter name, you can specify
dml_i%. You can also enable, disable, or reset multiple counters or modules at
once using a wildcard match. For example, specify dml_% to enable, disable, or
reset all counters that begin with dml_.

8. After the counter is disabled, you can reset all counter values using the
innodb_monitor_reset_all option. All values are set to zero or NULL.

mysql> SET GLOBAL innodb_monitor_reset_all = dml_inserts;

2845

InnoDB INFORMATION_SCHEMA Temporary Table Info Table

Query OK, 0 rows affected (0.00 sec)

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_METRICS WHERE NAME="dml_inserts"\G
*************************** 1. row ***************************
 NAME: dml_inserts
 SUBSYSTEM: dml
 COUNT: 0
 MAX_COUNT: NULL
 MIN_COUNT: NULL
 AVG_COUNT: NULL
 COUNT_RESET: 0
MAX_COUNT_RESET: NULL
MIN_COUNT_RESET: NULL
AVG_COUNT_RESET: NULL
 TIME_ENABLED: NULL
 TIME_DISABLED: NULL
 TIME_ELAPSED: NULL
 TIME_RESET: NULL
 STATUS: disabled
 TYPE: status_counter
 COMMENT: Number of rows inserted

14.16.7 InnoDB INFORMATION_SCHEMA Temporary Table Info Table

INNODB_TEMP_TABLE_INFO provides information about user-created InnoDB temporary tables that are
active in the InnoDB instance. It does not provide information about internal InnoDB temporary tables
used by the optimizer.

mysql> SHOW TABLES FROM INFORMATION_SCHEMA LIKE 'INNODB_TEMP%';
+---+
| Tables_in_INFORMATION_SCHEMA (INNODB_TEMP%) |
+---+
| INNODB_TEMP_TABLE_INFO |
+---+

For the table definition, see Section 24.4.27, “The INFORMATION_SCHEMA
INNODB_TEMP_TABLE_INFO Table”.

Example 14.12 INNODB_TEMP_TABLE_INFO

This example demonstrates characteristics of the INNODB_TEMP_TABLE_INFO table.

1. Create a simple InnoDB temporary table:

mysql> CREATE TEMPORARY TABLE t1 (c1 INT PRIMARY KEY) ENGINE=INNODB;

2. Query INNODB_TEMP_TABLE_INFO to view the temporary table metadata.

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_TEMP_TABLE_INFO\G
*************************** 1. row ***************************
 TABLE_ID: 194
 NAME: #sql7a79_1_0
 N_COLS: 4
 SPACE: 182
PER_TABLE_TABLESPACE: FALSE
 IS_COMPRESSED: FALSE

The TABLE_ID is a unique identifier for the temporary table. The NAME column displays the system-
generated name for the temporary table, which is prefixed with “#sql”. The number of columns
(N_COLS) is 4 rather than 1 because InnoDB always creates three hidden table columns (DB_ROW_ID,
DB_TRX_ID, and DB_ROLL_PTR). PER_TABLE_TABLESPACE and IS_COMPRESSED report TRUE for
compressed temporary tables. Otherwise, these fields report FALSE.

2846

Retrieving InnoDB Tablespace Metadata from INFORMATION_SCHEMA.FILES

3. Create a compressed temporary table.

mysql> CREATE TEMPORARY TABLE t2 (c1 INT) ROW_FORMAT=COMPRESSED ENGINE=INNODB;

4. Query INNODB_TEMP_TABLE_INFO again.

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_TEMP_TABLE_INFO\G
*************************** 1. row ***************************
 TABLE_ID: 195
 NAME: #sql7a79_1_1
 N_COLS: 4
 SPACE: 183
PER_TABLE_TABLESPACE: TRUE
 IS_COMPRESSED: TRUE
*************************** 2. row ***************************
 TABLE_ID: 194
 NAME: #sql7a79_1_0
 N_COLS: 4
 SPACE: 182
PER_TABLE_TABLESPACE: FALSE
 IS_COMPRESSED: FALSE

PER_TABLE_TABLESPACE and IS_COMPRESSED report TRUE for the compressed temporary table.
The SPACE ID for the compressed temporary table is different because compressed temporary tables
are created in separate file-per-table tablespaces. Non-compressed temporary tables are created in the
shared temporary tablespace (ibtmp1) and report the same SPACE ID.

5. Restart MySQL and query INNODB_TEMP_TABLE_INFO.

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_TEMP_TABLE_INFO\G
Empty set (0.00 sec)

An empty set is returned because INNODB_TEMP_TABLE_INFO and its data are not persisted to disk
when the server is shut down.

6. Create a new temporary table.

mysql> CREATE TEMPORARY TABLE t1 (c1 INT PRIMARY KEY) ENGINE=INNODB;

7. Query INNODB_TEMP_TABLE_INFO to view the temporary table metadata.

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_TEMP_TABLE_INFO\G
*************************** 1. row ***************************
 TABLE_ID: 196
 NAME: #sql7b0e_1_0
 N_COLS: 4
 SPACE: 184
PER_TABLE_TABLESPACE: FALSE
 IS_COMPRESSED: FALSE

The SPACE ID may be different because it is dynamically generated when the server is started.

14.16.8 Retrieving InnoDB Tablespace Metadata from
INFORMATION_SCHEMA.FILES

The Information Schema FILES table provides metadata about all InnoDB tablespace types including
file-per-table tablespaces, general tablespaces, the system tablespace, temporary table tablespaces, and
undo tablespaces (if present).

This section provides InnoDB-specific usage examples. For more information, see Section 24.3.9, “The
INFORMATION_SCHEMA FILES Table”.

2847

Retrieving InnoDB Tablespace Metadata from INFORMATION_SCHEMA.FILES

Note

The INNODB_SYS_TABLESPACES and INNODB_SYS_DATAFILES tables also
provide metadata about InnoDB tablespaces, but data is limited to file-per-table
and general tablespaces.

This query retrieves metadata about the InnoDB system tablespace from columns of the Information
Schema FILES table that are pertinent to InnoDB tablespaces. FILES columns that are not relevant to
InnoDB always return NULL, and are excluded from the query.

mysql> SELECT FILE_ID, FILE_NAME, FILE_TYPE, TABLESPACE_NAME, FREE_EXTENTS,
 TOTAL_EXTENTS, EXTENT_SIZE, INITIAL_SIZE, MAXIMUM_SIZE, AUTOEXTEND_SIZE, DATA_FREE, STATUS ENGINE
 FROM INFORMATION_SCHEMA.FILES WHERE TABLESPACE_NAME LIKE 'innodb_system' \G
*************************** 1. row ***************************
 FILE_ID: 0
 FILE_NAME: ./ibdata1
 FILE_TYPE: TABLESPACE
TABLESPACE_NAME: innodb_system
 FREE_EXTENTS: 0
 TOTAL_EXTENTS: 12
 EXTENT_SIZE: 1048576
 INITIAL_SIZE: 12582912
 MAXIMUM_SIZE: NULL
AUTOEXTEND_SIZE: 67108864
 DATA_FREE: 4194304
 ENGINE: NORMAL

This query retrieves the FILE_ID (equivalent to the space ID) and the FILE_NAME (which includes path
information) for InnoDB file-per-table and general tablespaces. File-per-table and general tablespaces
have a .ibd file extension.

mysql> SELECT FILE_ID, FILE_NAME FROM INFORMATION_SCHEMA.FILES
 WHERE FILE_NAME LIKE '%.ibd%' ORDER BY FILE_ID;
 +---------+---------------------------------------+
 | FILE_ID | FILE_NAME |
 +---------+---------------------------------------+
 | 2 | ./mysql/plugin.ibd |
 | 3 | ./mysql/servers.ibd |
 | 4 | ./mysql/help_topic.ibd |
 | 5 | ./mysql/help_category.ibd |
 | 6 | ./mysql/help_relation.ibd |
 | 7 | ./mysql/help_keyword.ibd |
 | 8 | ./mysql/time_zone_name.ibd |
 | 9 | ./mysql/time_zone.ibd |
 | 10 | ./mysql/time_zone_transition.ibd |
 | 11 | ./mysql/time_zone_transition_type.ibd |
 | 12 | ./mysql/time_zone_leap_second.ibd |
 | 13 | ./mysql/innodb_table_stats.ibd |
 | 14 | ./mysql/innodb_index_stats.ibd |
 | 15 | ./mysql/slave_relay_log_info.ibd |
 | 16 | ./mysql/slave_master_info.ibd |
 | 17 | ./mysql/slave_worker_info.ibd |
 | 18 | ./mysql/gtid_executed.ibd |
 | 19 | ./mysql/server_cost.ibd |
 | 20 | ./mysql/engine_cost.ibd |
 | 21 | ./sys/sys_config.ibd |
 | 23 | ./test/t1.ibd |
 | 26 | /home/user/test/test/t2.ibd |
 +---------+---------------------------------------+

This query retrieves the FILE_ID and FILE_NAME for InnoDB temporary tablespaces. Temporary
tablespace file names are prefixed by ibtmp.

mysql> SELECT FILE_ID, FILE_NAME FROM INFORMATION_SCHEMA.FILES
 WHERE FILE_NAME LIKE '%ibtmp%';

2848

InnoDB Integration with MySQL Performance Schema

+---------+-----------+
| FILE_ID | FILE_NAME |
+---------+-----------+
| 22 | ./ibtmp1 |
+---------+-----------+

Similarly, InnoDB undo tablespace file names are prefixed by undo. The following query returns the
FILE_ID and FILE_NAME for InnoDB undo tablespaces, if separate undo tablespaces are configured.

mysql> SELECT FILE_ID, FILE_NAME FROM INFORMATION_SCHEMA.FILES
 WHERE FILE_NAME LIKE '%undo%';

14.17 InnoDB Integration with MySQL Performance Schema
This section provides a brief introduction to InnoDB integration with Performance Schema. For
comprehensive Performance Schema documentation, see Chapter 25, MySQL Performance Schema.

You can profile certain internal InnoDB operations using the MySQL Performance Schema feature. This
type of tuning is primarily for expert users who evaluate optimization strategies to overcome performance
bottlenecks. DBAs can also use this feature for capacity planning, to see whether their typical workload
encounters any performance bottlenecks with a particular combination of CPU, RAM, and disk storage;
and if so, to judge whether performance can be improved by increasing the capacity of some part of the
system.

To use this feature to examine InnoDB performance:

• You must be generally familiar with how to use the Performance Schema feature. For example, you
should know how enable instruments and consumers, and how to query performance_schema tables
to retrieve data. For an introductory overview, see Section 25.1, “Performance Schema Quick Start”.

• You should be familiar with Performance Schema instruments that are available for InnoDB. To view
InnoDB-related instruments, you can query the setup_instruments table for instrument names that
contain 'innodb'.

mysql> SELECT *
 FROM performance_schema.setup_instruments
 WHERE NAME LIKE '%innodb%';
+---+---------+-------+
| NAME | ENABLED | TIMED |
+---+---------+-------+
wait/synch/mutex/innodb/commit_cond_mutex	NO	NO
wait/synch/mutex/innodb/innobase_share_mutex	NO	NO
wait/synch/mutex/innodb/autoinc_mutex	NO	NO
wait/synch/mutex/innodb/buf_pool_mutex	NO	NO
wait/synch/mutex/innodb/buf_pool_zip_mutex	NO	NO
wait/synch/mutex/innodb/cache_last_read_mutex	NO	NO
wait/synch/mutex/innodb/dict_foreign_err_mutex	NO	NO
wait/synch/mutex/innodb/dict_sys_mutex	NO	NO
wait/synch/mutex/innodb/recalc_pool_mutex	NO	NO
wait/synch/mutex/innodb/file_format_max_mutex	NO	NO
...		
wait/io/file/innodb/innodb_data_file	YES	YES
wait/io/file/innodb/innodb_log_file	YES	YES
wait/io/file/innodb/innodb_temp_file	YES	YES
stage/innodb/alter table (end)	YES	YES
stage/innodb/alter table (flush)	YES	YES
stage/innodb/alter table (insert)	YES	YES
stage/innodb/alter table (log apply index)	YES	YES
stage/innodb/alter table (log apply table)	YES	YES
stage/innodb/alter table (merge sort)	YES	YES
stage/innodb/alter table (read PK and internal sort)	YES	YES
stage/innodb/buffer pool load	YES	YES
memory/innodb/buf_buf_pool	NO	NO

2849

InnoDB Integration with MySQL Performance Schema

memory/innodb/dict_stats_bg_recalc_pool_t	NO	NO
memory/innodb/dict_stats_index_map_t	NO	NO
memory/innodb/dict_stats_n_diff_on_level	NO	NO
memory/innodb/other	NO	NO
memory/innodb/row_log_buf	NO	NO
memory/innodb/row_merge_sort	NO	NO
memory/innodb/std	NO	NO
memory/innodb/sync_debug_latches	NO	NO
memory/innodb/trx_sys_t::rw_trx_ids	NO	NO
...
+---+---------+-------+
155 rows in set (0.00 sec)

For additional information about the instrumented InnoDB objects, you can query Performance Schema
instances tables, which provide additional information about instrumented objects. Instance tables
relevant to InnoDB include:

• The mutex_instances table

• The rwlock_instances table

• The cond_instances table

• The file_instances table

Note

Mutexes and RW-locks related to the InnoDB buffer pool are not included in this
coverage; the same applies to the output of the SHOW ENGINE INNODB MUTEX
command.

For example, to view information about instrumented InnoDB file objects seen by the Performance
Schema when executing file I/O instrumentation, you might issue the following query:

mysql> SELECT *
 FROM performance_schema.file_instances
 WHERE EVENT_NAME LIKE '%innodb%'\G
*************************** 1. row ***************************
 FILE_NAME: /path/to/mysql-5.7/data/ibdata1
EVENT_NAME: wait/io/file/innodb/innodb_data_file
OPEN_COUNT: 3
*************************** 2. row ***************************
 FILE_NAME: /path/to/mysql-5.7/data/ib_logfile0
EVENT_NAME: wait/io/file/innodb/innodb_log_file
OPEN_COUNT: 2
*************************** 3. row ***************************
 FILE_NAME: /path/to/mysql-5.7/data/ib_logfile1
EVENT_NAME: wait/io/file/innodb/innodb_log_file
OPEN_COUNT: 2
*************************** 4. row ***************************
 FILE_NAME: /path/to/mysql-5.7/data/mysql/engine_cost.ibd
EVENT_NAME: wait/io/file/innodb/innodb_data_file
OPEN_COUNT: 3
...

2850

Monitoring ALTER TABLE Progress for InnoDB Tables Using Performance Schema

• You should be familiar with performance_schema tables that store InnoDB event data. Tables
relevant to InnoDB-related events include:

• The Wait Event tables, which store wait events.

• The Summary tables, which provide aggregated information for terminated events over time. Summary
tables include file I/O summary tables, which aggregate information about I/O operations.

• Stage Event tables, which store event data for InnoDB ALTER TABLE and buffer pool load
operations. For more information, see Section 14.17.1, “Monitoring ALTER TABLE Progress for
InnoDB Tables Using Performance Schema”, and Monitoring Buffer Pool Load Progress Using
Performance Schema.

If you are only interested in InnoDB-related objects, use the clause WHERE EVENT_NAME LIKE
'%innodb%' or WHERE NAME LIKE '%innodb%' (as required) when querying these tables.

14.17.1 Monitoring ALTER TABLE Progress for InnoDB Tables Using
Performance Schema

You can monitor ALTER TABLE progress for InnoDB tables using Performance Schema.

There are seven stage events that represent different phases of ALTER TABLE. Each stage event reports
a running total of WORK_COMPLETED and WORK_ESTIMATED for the overall ALTER TABLE operation as
it progresses through its different phases. WORK_ESTIMATED is calculated using a formula that takes
into account all of the work that ALTER TABLE performs, and may be revised during ALTER TABLE
processing. WORK_COMPLETED and WORK_ESTIMATED values are an abstract representation of all of the
work performed by ALTER TABLE.

In order of occurrence, ALTER TABLE stage events include:

• stage/innodb/alter table (read PK and internal sort): This stage is active
when ALTER TABLE is in the reading-primary-key phase. It starts with WORK_COMPLETED=0 and
WORK_ESTIMATED set to the estimated number of pages in the primary key. When the stage is
completed, WORK_ESTIMATED is updated to the actual number of pages in the primary key.

• stage/innodb/alter table (merge sort): This stage is repeated for each index added by the
ALTER TABLE operation.

• stage/innodb/alter table (insert): This stage is repeated for each index added by the ALTER
TABLE operation.

• stage/innodb/alter table (log apply index): This stage includes the application of DML log
generated while ALTER TABLE was running.

• stage/innodb/alter table (flush): Before this stage begins, WORK_ESTIMATED is updated with
a more accurate estimate, based on the length of the flush list.

• stage/innodb/alter table (log apply table): This stage includes the application of
concurrent DML log generated while ALTER TABLE was running. The duration of this phase depends on
the extent of table changes. This phase is instant if no concurrent DML was run on the table.

• stage/innodb/alter table (end): Includes any remaining work that appeared after the flush
phase, such as reapplying DML that was executed on the table while ALTER TABLE was running.

Note

InnoDB ALTER TABLE stage events do not currently account for the addition of
spatial indexes.

2851

Monitoring ALTER TABLE Progress for InnoDB Tables Using Performance Schema

ALTER TABLE Monitoring Example Using Performance Schema

The following example demonstrates how to enable the stage/innodb/alter table% stage event
instruments and related consumer tables to monitor ALTER TABLE progress. For information about
Performance Schema stage event instruments and related consumers, see Section 25.12.5, “Performance
Schema Stage Event Tables”.

1. Enable the stage/innodb/alter% instruments:

mysql> UPDATE performance_schema.setup_instruments
 SET ENABLED = 'YES'
 WHERE NAME LIKE 'stage/innodb/alter%';
Query OK, 7 rows affected (0.00 sec)
Rows matched: 7 Changed: 7 Warnings: 0

2. Enable the stage event consumer tables, which include events_stages_current,
events_stages_history, and events_stages_history_long.

mysql> UPDATE performance_schema.setup_consumers
 SET ENABLED = 'YES'
 WHERE NAME LIKE '%stages%';
Query OK, 3 rows affected (0.00 sec)
Rows matched: 3 Changed: 3 Warnings: 0

3. Run an ALTER TABLE operation. In this example, a middle_name column is added to the employees
table of the employees sample database.

mysql> ALTER TABLE employees.employees ADD COLUMN middle_name varchar(14) AFTER first_name;
Query OK, 0 rows affected (9.27 sec)
Records: 0 Duplicates: 0 Warnings: 0

4. Check the progress of the ALTER TABLE operation by querying the Performance Schema
events_stages_current table. The stage event shown differs depending on which ALTER TABLE
phase is currently in progress. The WORK_COMPLETED column shows the work completed. The
WORK_ESTIMATED column provides an estimate of the remaining work.

mysql> SELECT EVENT_NAME, WORK_COMPLETED, WORK_ESTIMATED
 FROM performance_schema.events_stages_current;
+--+----------------+----------------+
| EVENT_NAME | WORK_COMPLETED | WORK_ESTIMATED |
+--+----------------+----------------+
| stage/innodb/alter table (read PK and internal sort) | 280 | 1245 |
+--+----------------+----------------+
1 row in set (0.01 sec)

The events_stages_current table returns an empty set if the ALTER TABLE operation has
completed. In this case, you can check the events_stages_history table to view event data for the
completed operation. For example:

mysql> SELECT EVENT_NAME, WORK_COMPLETED, WORK_ESTIMATED
 FROM performance_schema.events_stages_history;
+--+----------------+----------------+
| EVENT_NAME | WORK_COMPLETED | WORK_ESTIMATED |
+--+----------------+----------------+
stage/innodb/alter table (read PK and internal sort)	886	1213
stage/innodb/alter table (flush)	1213	1213
stage/innodb/alter table (log apply table)	1597	1597
stage/innodb/alter table (end)	1597	1597
stage/innodb/alter table (log apply table)	1981	1981
+--+----------------+----------------+
5 rows in set (0.00 sec)

2852

Monitoring InnoDB Mutex Waits Using Performance Schema

As shown above, the WORK_ESTIMATED value was revised during ALTER TABLE processing.
The estimated work after completion of the initial stage is 1213. When ALTER TABLE processing
completed, WORK_ESTIMATED was set to the actual value, which is 1981.

14.17.2 Monitoring InnoDB Mutex Waits Using Performance Schema

A mutex is a synchronization mechanism used in the code to enforce that only one thread at a given time
can have access to a common resource. When two or more threads executing in the server need to access
the same resource, the threads compete against each other. The first thread to obtain a lock on the mutex
causes the other threads to wait until the lock is released.

For InnoDB mutexes that are instrumented, mutex waits can be monitored using Performance Schema.
Wait event data collected in Performance Schema tables can help identify mutexes with the most waits or
the greatest total wait time, for example.

The following example demonstrates how to enable InnoDB mutex wait instruments, how to enable
associated consumers, and how to query wait event data.

1. To view available InnoDB mutex wait instruments, query the Performance Schema
setup_instruments table, as shown below. All InnoDB mutex wait instruments are disabled by
default.

mysql> SELECT *
 FROM performance_schema.setup_instruments
 WHERE NAME LIKE '%wait/synch/mutex/innodb%';
+---+---------+-------+
| NAME | ENABLED | TIMED |
+---+---------+-------+
wait/synch/mutex/innodb/commit_cond_mutex	NO	NO
wait/synch/mutex/innodb/innobase_share_mutex	NO	NO
wait/synch/mutex/innodb/autoinc_mutex	NO	NO
wait/synch/mutex/innodb/buf_pool_mutex	NO	NO
wait/synch/mutex/innodb/buf_pool_zip_mutex	NO	NO
wait/synch/mutex/innodb/cache_last_read_mutex	NO	NO
wait/synch/mutex/innodb/dict_foreign_err_mutex	NO	NO
wait/synch/mutex/innodb/dict_sys_mutex	NO	NO
wait/synch/mutex/innodb/recalc_pool_mutex	NO	NO
wait/synch/mutex/innodb/file_format_max_mutex	NO	NO
wait/synch/mutex/innodb/fil_system_mutex	NO	NO
wait/synch/mutex/innodb/flush_list_mutex	NO	NO
wait/synch/mutex/innodb/fts_bg_threads_mutex	NO	NO
wait/synch/mutex/innodb/fts_delete_mutex	NO	NO
wait/synch/mutex/innodb/fts_optimize_mutex	NO	NO
wait/synch/mutex/innodb/fts_doc_id_mutex	NO	NO
wait/synch/mutex/innodb/log_flush_order_mutex	NO	NO
wait/synch/mutex/innodb/hash_table_mutex	NO	NO
wait/synch/mutex/innodb/ibuf_bitmap_mutex	NO	NO
wait/synch/mutex/innodb/ibuf_mutex	NO	NO
wait/synch/mutex/innodb/ibuf_pessimistic_insert_mutex	NO	NO
wait/synch/mutex/innodb/log_sys_mutex	NO	NO
wait/synch/mutex/innodb/page_zip_stat_per_index_mutex	NO	NO
wait/synch/mutex/innodb/purge_sys_pq_mutex	NO	NO
wait/synch/mutex/innodb/recv_sys_mutex	NO	NO
wait/synch/mutex/innodb/recv_writer_mutex	NO	NO
wait/synch/mutex/innodb/redo_rseg_mutex	NO	NO
wait/synch/mutex/innodb/noredo_rseg_mutex	NO	NO
wait/synch/mutex/innodb/rw_lock_list_mutex	NO	NO
wait/synch/mutex/innodb/rw_lock_mutex	NO	NO
wait/synch/mutex/innodb/srv_dict_tmpfile_mutex	NO	NO
wait/synch/mutex/innodb/srv_innodb_monitor_mutex	NO	NO
wait/synch/mutex/innodb/srv_misc_tmpfile_mutex	NO	NO
wait/synch/mutex/innodb/srv_monitor_file_mutex	NO	NO

2853

Monitoring InnoDB Mutex Waits Using Performance Schema

wait/synch/mutex/innodb/buf_dblwr_mutex	NO	NO
wait/synch/mutex/innodb/trx_undo_mutex	NO	NO
wait/synch/mutex/innodb/trx_pool_mutex	NO	NO
wait/synch/mutex/innodb/trx_pool_manager_mutex	NO	NO
wait/synch/mutex/innodb/srv_sys_mutex	NO	NO
wait/synch/mutex/innodb/lock_mutex	NO	NO
wait/synch/mutex/innodb/lock_wait_mutex	NO	NO
wait/synch/mutex/innodb/trx_mutex	NO	NO
wait/synch/mutex/innodb/srv_threads_mutex	NO	NO
wait/synch/mutex/innodb/rtr_active_mutex	NO	NO
wait/synch/mutex/innodb/rtr_match_mutex	NO	NO
wait/synch/mutex/innodb/rtr_path_mutex	NO	NO
wait/synch/mutex/innodb/rtr_ssn_mutex	NO	NO
wait/synch/mutex/innodb/trx_sys_mutex	NO	NO
wait/synch/mutex/innodb/zip_pad_mutex	NO	NO
+---+---------+-------+
49 rows in set (0.02 sec)

2. Some InnoDB mutex instances are created at server startup and are only instrumented if the
associated instrument is also enabled at server startup. To ensure that all InnoDB mutex instances
are instrumented and enabled, add the following performance-schema-instrument rule to your
MySQL configuration file:

performance-schema-instrument='wait/synch/mutex/innodb/%=ON'

If you do not require wait event data for all InnoDB mutexes, you can disable specific instruments by
adding additional performance-schema-instrument rules to your MySQL configuration file. For
example, to disable InnoDB mutex wait event instruments related to full-text search, add the following
rule:

performance-schema-instrument='wait/synch/mutex/innodb/fts%=OFF'

Note

Rules with a longer prefix such as wait/synch/mutex/innodb/fts% take
precedence over rules with shorter prefixes such as wait/synch/mutex/
innodb/%.

After adding the performance-schema-instrument rules to your configuration file, restart the
server. All the InnoDB mutexes except for those related to full text search are enabled. To verify,
query the setup_instruments table. The ENABLED and TIMED columns should be set to YES for the
instruments that you enabled.

mysql> SELECT *
 FROM performance_schema.setup_instruments
 WHERE NAME LIKE '%wait/synch/mutex/innodb%';
+---+---------+-------+
| NAME | ENABLED | TIMED |
+---+---------+-------+
wait/synch/mutex/innodb/commit_cond_mutex	YES	YES
wait/synch/mutex/innodb/innobase_share_mutex	YES	YES
wait/synch/mutex/innodb/autoinc_mutex	YES	YES
...		
wait/synch/mutex/innodb/zip_pad_mutex	YES	YES
+---+---------+-------+
49 rows in set (0.00 sec)

3. Enable wait event consumers by updating the setup_consumers table. Wait event consumers are
disabled by default.

mysql> UPDATE performance_schema.setup_consumers
 SET enabled = 'YES'
 WHERE name like 'events_waits%';

2854

Monitoring InnoDB Mutex Waits Using Performance Schema

Query OK, 3 rows affected (0.00 sec)
Rows matched: 3 Changed: 3 Warnings: 0

You can verify that wait event consumers are enabled by querying the setup_consumers table.
The events_waits_current, events_waits_history, and events_waits_history_long
consumers should be enabled.

mysql> SELECT * FROM performance_schema.setup_consumers;
+----------------------------------+---------+
| NAME | ENABLED |
+----------------------------------+---------+
events_stages_current	NO
events_stages_history	NO
events_stages_history_long	NO
events_statements_current	YES
events_statements_history	YES
events_statements_history_long	NO
events_transactions_current	YES
events_transactions_history	YES
events_transactions_history_long	NO
events_waits_current	YES
events_waits_history	YES
events_waits_history_long	YES
global_instrumentation	YES
thread_instrumentation	YES
statements_digest	YES
+----------------------------------+---------+
15 rows in set (0.00 sec)

4. Once instruments and consumers are enabled, run the workload that you want to monitor. In this
example, the mysqlslap load emulation client is used to simulate a workload.

$> ./mysqlslap --auto-generate-sql --concurrency=100 --iterations=10
 --number-of-queries=1000 --number-char-cols=6 --number-int-cols=6;

5. Query the wait event data. In this example, wait event data is queried from the
events_waits_summary_global_by_event_name table which aggregates data found in the
events_waits_current, events_waits_history, and events_waits_history_long tables.
Data is summarized by event name (EVENT_NAME), which is the name of the instrument that produced
the event. Summarized data includes:

• COUNT_STAR

The number of summarized wait events.

• SUM_TIMER_WAIT

The total wait time of the summarized timed wait events.

• MIN_TIMER_WAIT

The minimum wait time of the summarized timed wait events.

• AVG_TIMER_WAIT

The average wait time of the summarized timed wait events.

2855

InnoDB Monitors

• MAX_TIMER_WAIT

The maximum wait time of the summarized timed wait events.

The following query returns the instrument name (EVENT_NAME), the number of wait events
(COUNT_STAR), and the total wait time for the events for that instrument (SUM_TIMER_WAIT).
Because waits are timed in picoseconds (trillionths of a second) by default, wait times are divided by
1000000000 to show wait times in milliseconds. Data is presented in descending order, by the number
of summarized wait events (COUNT_STAR). You can adjust the ORDER BY clause to order the data by
total wait time.

mysql> SELECT EVENT_NAME, COUNT_STAR, SUM_TIMER_WAIT/1000000000 SUM_TIMER_WAIT_MS
 FROM performance_schema.events_waits_summary_global_by_event_name
 WHERE SUM_TIMER_WAIT > 0 AND EVENT_NAME LIKE 'wait/synch/mutex/innodb/%'
 ORDER BY COUNT_STAR DESC;
+--+------------+-------------------+
| EVENT_NAME | COUNT_STAR | SUM_TIMER_WAIT_MS |
+--+------------+-------------------+
wait/synch/mutex/innodb/os_mutex	78831	10.3283
wait/synch/mutex/innodb/log_sys_mutex	41488	6510.3233
wait/synch/mutex/innodb/trx_sys_mutex	29770	1107.9687
wait/synch/mutex/innodb/lock_mutex	24212	104.0724
wait/synch/mutex/innodb/trx_mutex	22756	1.9421
wait/synch/mutex/innodb/rseg_mutex	20333	3.6220
wait/synch/mutex/innodb/dict_sys_mutex	13422	2.2284
wait/synch/mutex/innodb/mutex_list_mutex	12694	344.1164
wait/synch/mutex/innodb/fil_system_mutex	9208	0.9542
wait/synch/mutex/innodb/rw_lock_list_mutex	8304	0.1794
wait/synch/mutex/innodb/trx_undo_mutex	6190	0.6801
wait/synch/mutex/innodb/buf_pool_mutex	2869	29.4623
wait/synch/mutex/innodb/innobase_share_mutex	2005	0.1349
wait/synch/mutex/innodb/flush_list_mutex	1274	0.1300
wait/synch/mutex/innodb/file_format_max_mutex	1016	0.0469
wait/synch/mutex/innodb/purge_sys_bh_mutex	1004	0.0326
wait/synch/mutex/innodb/buf_dblwr_mutex	640	0.0437
wait/synch/mutex/innodb/log_flush_order_mutex	437	0.0510
wait/synch/mutex/innodb/recv_sys_mutex	394	0.0202
wait/synch/mutex/innodb/srv_sys_mutex	169	0.5259
wait/synch/mutex/innodb/lock_wait_mutex	154	0.1172
wait/synch/mutex/innodb/ibuf_mutex	9	0.0027
wait/synch/mutex/innodb/srv_innodb_monitor_mutex	2	0.0009
wait/synch/mutex/innodb/ut_list_mutex	1	0.0001
wait/synch/mutex/innodb/recv_writer_mutex	1	0.0005
+--+------------+-------------------+
25 rows in set (0.01 sec)

Note

The preceding result set includes wait event data produced during
the startup process. To exclude this data, you can truncate the
events_waits_summary_global_by_event_name table immediately after
startup and before running your workload. However, the truncate operation itself
may produce a negligible amount wait event data.

mysql> TRUNCATE performance_schema.events_waits_summary_global_by_event_name;

14.18 InnoDB Monitors

InnoDB monitors provide information about the InnoDB internal state. This information is useful for
performance tuning.

2856

InnoDB Monitor Types

14.18.1 InnoDB Monitor Types

There are two types of InnoDB monitor:

• The standard InnoDB Monitor displays the following types of information:

• Work done by the main background thread

• Semaphore waits

• Data about the most recent foreign key and deadlock errors

• Lock waits for transactions

• Table and record locks held by active transactions

• Pending I/O operations and related statistics

• Insert buffer and adaptive hash index statistics

• Redo log data

• Buffer pool statistics

• Row operation data

• The InnoDB Lock Monitor prints additional lock information as part of the standard InnoDB Monitor
output.

14.18.2 Enabling InnoDB Monitors

When InnoDB monitors are enabled for periodic output, InnoDB writes the output to mysqld server
standard error output (stderr) every 15 seconds, approximately.

InnoDB sends the monitor output to stderr rather than to stdout or fixed-size memory buffers to avoid
potential buffer overflows.

On Windows, stderr is directed to the default log file unless configured otherwise. If you want to direct
the output to the console window rather than to the error log, start the server from a command prompt in a
console window with the --console option. For more information, see Section 5.4.2.1, “Error Logging on
Windows”.

On Unix and Unix-like systems, stderr is typically directed to the terminal unless configured otherwise.
For more information, see Section 5.4.2.2, “Error Logging on Unix and Unix-Like Systems”.

InnoDB monitors should only be enabled when you actually want to see monitor information because
output generation causes some performance decrement. Also, if monitor output is directed to the error log,
the log may become quite large if you forget to disable the monitor later.

Note

To assist with troubleshooting, InnoDB temporarily enables standard InnoDB
Monitor output under certain conditions. For more information, see Section 14.22,
“InnoDB Troubleshooting”.

InnoDB monitor output begins with a header containing a timestamp and the monitor name. For example:

=====================================
2014-10-16 18:37:29 0x7fc2a95c1700 INNODB MONITOR OUTPUT

2857

Enabling InnoDB Monitors

=====================================

The header for the standard InnoDB Monitor (INNODB MONITOR OUTPUT) is also used for the Lock
Monitor because the latter produces the same output with the addition of extra lock information.

The innodb_status_output and innodb_status_output_locks system variables are used to
enable the standard InnoDB Monitor and InnoDB Lock Monitor.

The PROCESS privilege is required to enable or disable InnoDB Monitors.

Enabling the Standard InnoDB Monitor

Enable the standard InnoDB Monitor by setting the innodb_status_output system variable to ON.

SET GLOBAL innodb_status_output=ON;

To disable the standard InnoDB Monitor, set innodb_status_output to OFF.

When you shut down the server, the innodb_status_output variable is set to the default OFF value.

Enabling the InnoDB Lock Monitor

InnoDB Lock Monitor data is printed with the InnoDB Standard Monitor output. Both the InnoDB Standard
Monitor and InnoDB Lock Monitor must be enabled to have InnoDB Lock Monitor data printed periodically.

To enable the InnoDB Lock Monitor, set the innodb_status_output_locks system variable to ON.
Both the InnoDB standard Monitor and InnoDB Lock Monitor must be enabled to have InnoDB Lock
Monitor data printed periodically:

SET GLOBAL innodb_status_output=ON;
SET GLOBAL innodb_status_output_locks=ON;

To disable the InnoDB Lock Monitor, set innodb_status_output_locks to OFF. Set
innodb_status_output to OFF to also disable the InnoDB Standard Monitor.

When you shut down the server, the innodb_status_output and innodb_status_output_locks
variables are set to the default OFF value.

Note

To enable the InnoDB Lock Monitor for SHOW ENGINE INNODB STATUS output,
you are only required to enable innodb_status_output_locks.

Obtaining Standard InnoDB Monitor Output On Demand

As an alternative to enabling the standard InnoDB Monitor for periodic output, you can obtain standard
InnoDB Monitor output on demand using the SHOW ENGINE INNODB STATUS SQL statement, which
fetches the output to your client program. If you are using the mysql interactive client, the output is more
readable if you replace the usual semicolon statement terminator with \G:

mysql> SHOW ENGINE INNODB STATUS\G

SHOW ENGINE INNODB STATUS output also includes InnoDB Lock Monitor data if the InnoDB Lock
Monitor is enabled.

Directing Standard InnoDB Monitor Output to a Status File

Standard InnoDB Monitor output can be enabled and directed to a status file by specifying the --
innodb-status-file option at startup. When this option is used, InnoDB creates a file named
innodb_status.pid in the data directory and writes output to it every 15 seconds, approximately.

2858

InnoDB Standard Monitor and Lock Monitor Output

InnoDB removes the status file when the server is shut down normally. If an abnormal shutdown occurs,
the status file may have to be removed manually.

The --innodb-status-file option is intended for temporary use, as output generation can affect
performance, and the innodb_status.pid file can become quite large over time.

14.18.3 InnoDB Standard Monitor and Lock Monitor Output

The Lock Monitor is the same as the Standard Monitor except that it includes additional lock information.
Enabling either monitor for periodic output turns on the same output stream, but the stream includes extra
information if the Lock Monitor is enabled. For example, if you enable the Standard Monitor and Lock
Monitor, that turns on a single output stream. The stream includes extra lock information until you disable
the Lock Monitor.

Standard Monitor output is limited to 1MB when produced using the SHOW ENGINE INNODB STATUS
statement. This limit does not apply to output written to tserver standard error output (stderr).

Example Standard Monitor output:

mysql> SHOW ENGINE INNODB STATUS\G
*************************** 1. row ***************************
 Type: InnoDB
 Name:
Status:
=====================================
2014-10-16 18:37:29 0x7fc2a95c1700 INNODB MONITOR OUTPUT
=====================================
Per second averages calculated from the last 20 seconds

BACKGROUND THREAD

srv_master_thread loops: 38 srv_active, 0 srv_shutdown, 252 srv_idle
srv_master_thread log flush and writes: 290

SEMAPHORES

OS WAIT ARRAY INFO: reservation count 119
OS WAIT ARRAY INFO: signal count 103
Mutex spin waits 0, rounds 0, OS waits 0
RW-shared spins 38, rounds 76, OS waits 38
RW-excl spins 2, rounds 9383715, OS waits 3
RW-sx spins 0, rounds 0, OS waits 0
Spin rounds per wait: 0.00 mutex, 2.00 RW-shared, 4691857.50 RW-excl,
0.00 RW-sx

LATEST FOREIGN KEY ERROR

2014-10-16 18:35:18 0x7fc2a95c1700 Transaction:
TRANSACTION 1814, ACTIVE 0 sec inserting
mysql tables in use 1, locked 1
4 lock struct(s), heap size 1136, 3 row lock(s), undo log entries 3
MySQL thread id 2, OS thread handle 140474041767680, query id 74 localhost
root update
INSERT INTO child VALUES
 (NULL, 1)
 , (NULL, 2)
 , (NULL, 3)
 , (NULL, 4)
 , (NULL, 5)
 , (NULL, 6)
Foreign key constraint fails for table `mysql`.`child`:
,
 CONSTRAINT `child_ibfk_1` FOREIGN KEY (`parent_id`) REFERENCES `parent`
 (`id`) ON DELETE CASCADE ON UPDATE CASCADE

2859

InnoDB Standard Monitor and Lock Monitor Output

Trying to add in child table, in index par_ind tuple:
DATA TUPLE: 2 fields;
 0: len 4; hex 80000003; asc ;;
 1: len 4; hex 80000003; asc ;;

But in parent table `mysql`.`parent`, in index PRIMARY,
the closest match we can find is record:
PHYSICAL RECORD: n_fields 3; compact format; info bits 0
 0: len 4; hex 80000004; asc ;;
 1: len 6; hex 00000000070a; asc ;;
 2: len 7; hex aa0000011d0134; asc 4;;

LATEST DETECTED DEADLOCK

2014-10-16 18:36:30 0x7fc2a95c1700
*** (1) TRANSACTION:
TRANSACTION 1824, ACTIVE 9 sec starting index read
mysql tables in use 1, locked 1
LOCK WAIT 2 lock struct(s), heap size 1136, 1 row lock(s)
MySQL thread id 3, OS thread handle 140474041501440, query id 80 localhost
root updating
DELETE FROM t WHERE i = 1
*** (1) WAITING FOR THIS LOCK TO BE GRANTED:
RECORD LOCKS space id 35 page no 3 n bits 72 index GEN_CLUST_INDEX of table
`mysql`.`t` trx id 1824 lock_mode X waiting
Record lock, heap no 2 PHYSICAL RECORD: n_fields 4; compact format; info
bits 0
 0: len 6; hex 000000000200; asc ;;
 1: len 6; hex 00000000071f; asc ;;
 2: len 7; hex b80000012b0110; asc + ;;
 3: len 4; hex 80000001; asc ;;

*** (2) TRANSACTION:
TRANSACTION 1825, ACTIVE 29 sec starting index read
mysql tables in use 1, locked 1
4 lock struct(s), heap size 1136, 3 row lock(s)
MySQL thread id 2, OS thread handle 140474041767680, query id 81 localhost
root updating
DELETE FROM t WHERE i = 1
*** (2) HOLDS THE LOCK(S):
RECORD LOCKS space id 35 page no 3 n bits 72 index GEN_CLUST_INDEX of table
`mysql`.`t` trx id 1825 lock mode S
Record lock, heap no 1 PHYSICAL RECORD: n_fields 1; compact format; info
bits 0
 0: len 8; hex 73757072656d756d; asc supremum;;

Record lock, heap no 2 PHYSICAL RECORD: n_fields 4; compact format; info bits 0
 0: len 6; hex 000000000200; asc ;;
 1: len 6; hex 00000000071f; asc ;;
 2: len 7; hex b80000012b0110; asc + ;;
 3: len 4; hex 80000001; asc ;;

*** (2) WAITING FOR THIS LOCK TO BE GRANTED:
RECORD LOCKS space id 35 page no 3 n bits 72 index GEN_CLUST_INDEX of table
`mysql`.`t` trx id 1825 lock_mode X waiting
Record lock, heap no 2 PHYSICAL RECORD: n_fields 4; compact format; info
bits 0
 0: len 6; hex 000000000200; asc ;;
 1: len 6; hex 00000000071f; asc ;;
 2: len 7; hex b80000012b0110; asc + ;;
 3: len 4; hex 80000001; asc ;;

*** WE ROLL BACK TRANSACTION (1)

TRANSACTIONS

2860

InnoDB Standard Monitor and Lock Monitor Output

Trx id counter 1950
Purge done for trx's n:o < 1933 undo n:o < 0 state: running but idle
History list length 23
LIST OF TRANSACTIONS FOR EACH SESSION:
---TRANSACTION 421949033065200, not started
0 lock struct(s), heap size 1136, 0 row lock(s)
---TRANSACTION 421949033064280, not started
0 lock struct(s), heap size 1136, 0 row lock(s)
---TRANSACTION 1949, ACTIVE 0 sec inserting
mysql tables in use 1, locked 1
8 lock struct(s), heap size 1136, 1850 row lock(s), undo log entries 17415
MySQL thread id 4, OS thread handle 140474041235200, query id 176 localhost
root update
INSERT INTO `salaries` VALUES (55723,39746,'1997-02-25','1998-02-25'),
(55723,40758,'1998-02-25','1999-02-25'),(55723,44559,'1999-02-25','2000-02-25'),
(55723,44081,'2000-02-25','2001-02-24'),(55723,44112,'2001-02-24','2001-08-16'),
(55724,46461,'1996-12-06','1997-12-06'),(55724,48916,'1997-12-06','1998-12-06'),
(55724,51269,'1998-12-06','1999-12-06'),(55724,51932,'1999-12-06','2000-12-05'),
(55724,52617,'2000-12-05','2001-12-05'),(55724,56658,'2001-12-05','9999-01-01'),
(55725,40000,'1993-01-30','1994-01-30'),(55725,41472,'1994-01-30','1995-01-30'),
(55725,45293,'1995-01-30','1996-01-30'),(55725,473

FILE I/O

I/O thread 0 state: waiting for completed aio requests (insert buffer thread)
I/O thread 1 state: waiting for completed aio requests (log thread)
I/O thread 2 state: waiting for completed aio requests (read thread)
I/O thread 3 state: waiting for completed aio requests (read thread)
I/O thread 4 state: waiting for completed aio requests (read thread)
I/O thread 5 state: waiting for completed aio requests (read thread)
I/O thread 6 state: waiting for completed aio requests (write thread)
I/O thread 7 state: waiting for completed aio requests (write thread)
I/O thread 8 state: waiting for completed aio requests (write thread)
I/O thread 9 state: waiting for completed aio requests (write thread)
Pending normal aio reads: 0 [0, 0, 0, 0] , aio writes: 0 [0, 0, 0, 0] ,
 ibuf aio reads: 0, log i/o's: 0, sync i/o's: 0
Pending flushes (fsync) log: 0; buffer pool: 0
224 OS file reads, 5770 OS file writes, 803 OS fsyncs
0.00 reads/s, 0 avg bytes/read, 264.84 writes/s, 23.05 fsyncs/s

INSERT BUFFER AND ADAPTIVE HASH INDEX

Ibuf: size 1, free list len 0, seg size 2, 0 merges
merged operations:
 insert 0, delete mark 0, delete 0
discarded operations:
 insert 0, delete mark 0, delete 0
Hash table size 4425293, node heap has 444 buffer(s)
68015.25 hash searches/s, 106259.24 non-hash searches/s

LOG

Log sequence number 165913808
Log flushed up to 164814979
Pages flushed up to 141544038
Last checkpoint at 130503656
0 pending log flushes, 0 pending chkp writes
258 log i/o's done, 6.65 log i/o's/second

BUFFER POOL AND MEMORY

Total large memory allocated 2198863872
Dictionary memory allocated 776332
Buffer pool size 131072
Free buffers 124908
Database pages 5720
Old database pages 2071

2861

InnoDB Standard Monitor and Lock Monitor Output

Modified db pages 910
Pending reads 0
Pending writes: LRU 0, flush list 0, single page 0
Pages made young 4, not young 0
0.10 youngs/s, 0.00 non-youngs/s
Pages read 197, created 5523, written 5060
0.00 reads/s, 190.89 creates/s, 244.94 writes/s
Buffer pool hit rate 1000 / 1000, young-making rate 0 / 1000 not
0 / 1000
Pages read ahead 0.00/s, evicted without access 0.00/s, Random read
ahead 0.00/s
LRU len: 5720, unzip_LRU len: 0
I/O sum[0]:cur[0], unzip sum[0]:cur[0]

INDIVIDUAL BUFFER POOL INFO

---BUFFER POOL 0
Buffer pool size 65536
Free buffers 62412
Database pages 2899
Old database pages 1050
Modified db pages 449
Pending reads 0
Pending writes: LRU 0, flush list 0, single page 0
Pages made young 3, not young 0
0.05 youngs/s, 0.00 non-youngs/s
Pages read 107, created 2792, written 2586
0.00 reads/s, 92.65 creates/s, 122.89 writes/s
Buffer pool hit rate 1000 / 1000, young-making rate 0 / 1000 not 0 / 1000
Pages read ahead 0.00/s, evicted without access 0.00/s, Random read ahead
0.00/s
LRU len: 2899, unzip_LRU len: 0
I/O sum[0]:cur[0], unzip sum[0]:cur[0]
---BUFFER POOL 1
Buffer pool size 65536
Free buffers 62496
Database pages 2821
Old database pages 1021
Modified db pages 461
Pending reads 0
Pending writes: LRU 0, flush list 0, single page 0
Pages made young 1, not young 0
0.05 youngs/s, 0.00 non-youngs/s
Pages read 90, created 2731, written 2474
0.00 reads/s, 98.25 creates/s, 122.04 writes/s
Buffer pool hit rate 1000 / 1000, young-making rate 0 / 1000 not 0 / 1000
Pages read ahead 0.00/s, evicted without access 0.00/s, Random read ahead
0.00/s
LRU len: 2821, unzip_LRU len: 0
I/O sum[0]:cur[0], unzip sum[0]:cur[0]

ROW OPERATIONS

0 queries inside InnoDB, 0 queries in queue
0 read views open inside InnoDB
Process ID=35909, Main thread ID=140471692396288, state: sleeping
Number of rows inserted 1526363, updated 0, deleted 3, read 11
52671.72 inserts/s, 0.00 updates/s, 0.00 deletes/s, 0.00 reads/s

END OF INNODB MONITOR OUTPUT
============================

Standard Monitor Output Sections

For a description of each metric reported by the Standard Monitor, refer to the Metrics chapter in the
Oracle Enterprise Manager for MySQL Database User's Guide.

2862

http://dev.mysql.com/doc/mysql-em-plugin/en/myoem-metrics.html
http://dev.mysql.com/doc/mysql-em-plugin/en/

InnoDB Standard Monitor and Lock Monitor Output

• Status

This section shows the timestamp, the monitor name, and the number of seconds that per-second
averages are based on. The number of seconds is the elapsed time between the current time and the
last time InnoDB Monitor output was printed.

• BACKGROUND THREAD

The srv_master_thread lines shows work done by the main background thread.

• SEMAPHORES

This section reports threads waiting for a semaphore and statistics on how many times threads have
needed a spin or a wait on a mutex or a rw-lock semaphore. A large number of threads waiting for
semaphores may be a result of disk I/O, or contention problems inside InnoDB. Contention can be
due to heavy parallelism of queries or problems in operating system thread scheduling. Setting the
innodb_thread_concurrency system variable smaller than the default value might help in such
situations. The Spin rounds per wait line shows the number of spinlock rounds per OS wait for a
mutex.

Mutex metrics are reported by SHOW ENGINE INNODB MUTEX.

• LATEST FOREIGN KEY ERROR

This section provides information about the most recent foreign key constraint error. It is not present if no
such error has occurred. The contents include the statement that failed as well as information about the
constraint that failed and the referenced and referencing tables.

• LATEST DETECTED DEADLOCK

This section provides information about the most recent deadlock. It is not present if no deadlock has
occurred. The contents show which transactions are involved, the statement each was attempting to
execute, the locks they have and need, and which transaction InnoDB decided to roll back to break the
deadlock. The lock modes reported in this section are explained in Section 14.7.1, “InnoDB Locking”.

• TRANSACTIONS

If this section reports lock waits, your applications might have lock contention. The output can also help
to trace the reasons for transaction deadlocks.

• FILE I/O

This section provides information about threads that InnoDB uses to perform various types of I/O. The
first few of these are dedicated to general InnoDB processing. The contents also display information for
pending I/O operations and statistics for I/O performance.

The number of these threads are controlled by the innodb_read_io_threads and
innodb_write_io_threads parameters. See Section 14.15, “InnoDB Startup Options and System
Variables”.

• INSERT BUFFER AND ADAPTIVE HASH INDEX

This section shows the status of the InnoDB insert buffer (also referred to as the change buffer) and the
adaptive hash index.

For related information, see Section 14.5.2, “Change Buffer”, and Section 14.5.3, “Adaptive Hash Index”.

• LOG

2863

InnoDB Backup and Recovery

This section displays information about the InnoDB log. The contents include the current log sequence
number, how far the log has been flushed to disk, and the position at which InnoDB last took a
checkpoint. (See Section 14.12.3, “InnoDB Checkpoints”.) The section also displays information about
pending writes and write performance statistics.

• BUFFER POOL AND MEMORY

This section gives you statistics on pages read and written. You can calculate from these numbers how
many data file I/O operations your queries currently are doing.

For buffer pool statistics descriptions, see Monitoring the Buffer Pool Using the InnoDB Standard
Monitor. For additional information about the operation of the buffer pool, see Section 14.5.1, “Buffer
Pool”.

• ROW OPERATIONS

This section shows what the main thread is doing, including the number and performance rate for each
type of row operation.

14.19 InnoDB Backup and Recovery

This section covers topics related to InnoDB backup and recovery.

• For information about backup techniques applicable to InnoDB, see Section 14.19.1, “InnoDB Backup”.

• For information about point-in-time recovery, recovery from disk failure or corruption, and how InnoDB
performs crash recovery, see Section 14.19.2, “InnoDB Recovery”.

14.19.1 InnoDB Backup

The key to safe database management is making regular backups. Depending on your data volume,
number of MySQL servers, and database workload, you can use these backup techniques, alone or in
combination: hot backup with MySQL Enterprise Backup; cold backup by copying files while the MySQL
server is shut down; logical backup with mysqldump for smaller data volumes or to record the structure of
schema objects. Hot and cold backups are physical backups that copy actual data files, which can be used
directly by the mysqld server for faster restore.

Using MySQL Enterprise Backup is the recommended method for backing up InnoDB data.

Note

InnoDB does not support databases that are restored using third-party backup
tools.

Hot Backups

The mysqlbackup command, part of the MySQL Enterprise Backup component, lets you back up a
running MySQL instance, including InnoDB tables, with minimal disruption to operations while producing
a consistent snapshot of the database. When mysqlbackup is copying InnoDB tables, reads and writes
to InnoDB tables can continue. MySQL Enterprise Backup can also create compressed backup files, and
back up subsets of tables and databases. In conjunction with the MySQL binary log, users can perform
point-in-time recovery. MySQL Enterprise Backup is part of the MySQL Enterprise subscription. For more
details, see Section 28.1, “MySQL Enterprise Backup Overview”.

2864

InnoDB Recovery

Cold Backups

If you can shut down the MySQL server, you can make a physical backup that consists of all files used by
InnoDB to manage its tables. Use the following procedure:

1. Perform a slow shutdown of the MySQL server and make sure that it stops without errors.

2. Copy all InnoDB data files (ibdata files and .ibd files) into a safe place.

3. Copy all the .frm files for InnoDB tables to a safe place.

4. Copy all InnoDB log files (ib_logfile files) to a safe place.

5. Copy your my.cnf configuration file or files to a safe place.

Logical Backups Using mysqldump

In addition to physical backups, it is recommended that you regularly create logical backups by dumping
your tables using mysqldump. A binary file might be corrupted without you noticing it. Dumped tables are
stored into text files that are human-readable, so spotting table corruption becomes easier. Also, because
the format is simpler, the chance for serious data corruption is smaller. mysqldump also has a --single-
transaction option for making a consistent snapshot without locking out other clients. See Section 7.3.1,
“Establishing a Backup Policy”.

Replication works with InnoDB tables, so you can use MySQL replication capabilities to keep a copy
of your database at database sites requiring high availability. See Section 14.20, “InnoDB and MySQL
Replication”.

14.19.2 InnoDB Recovery

This section describes InnoDB recovery. Topics include:

• Point-in-Time Recovery

• Recovery from Data Corruption or Disk Failure

• InnoDB Crash Recovery

• Tablespace Discovery During Crash Recovery

Point-in-Time Recovery

To recover an InnoDB database to the present from the time at which the physical backup was made, you
must run MySQL server with binary logging enabled, even before taking the backup. To achieve point-in-
time recovery after restoring a backup, you can apply changes from the binary log that occurred after the
backup was made. See Section 7.5, “Point-in-Time (Incremental) Recovery”.

Recovery from Data Corruption or Disk Failure

If your database becomes corrupted or disk failure occurs, you must perform the recovery using a backup.
In the case of corruption, first find a backup that is not corrupted. After restoring the base backup, do a
point-in-time recovery from the binary log files using mysqlbinlog and mysql to restore the changes that
occurred after the backup was made.

In some cases of database corruption, it is enough to dump, drop, and re-create one or a few corrupt
tables. You can use the CHECK TABLE statement to check whether a table is corrupt, although CHECK
TABLE naturally cannot detect every possible kind of corruption.

2865

InnoDB Recovery

In some cases, apparent database page corruption is actually due to the operating system corrupting its
own file cache, and the data on disk may be okay. It is best to try restarting the computer first. Doing so
may eliminate errors that appeared to be database page corruption. If MySQL still has trouble starting
because of InnoDB consistency problems, see Section 14.22.2, “Forcing InnoDB Recovery” for steps to
start the instance in recovery mode, which permits you to dump the data.

InnoDB Crash Recovery

To recover from an unexpected MySQL server exit, the only requirement is to restart the MySQL server.
InnoDB automatically checks the logs and performs a roll-forward of the database to the present. InnoDB
automatically rolls back uncommitted transactions that were present at the time of the crash. During
recovery, mysqld displays output similar to this:

InnoDB: Log scan progressed past the checkpoint lsn 369163704
InnoDB: Doing recovery: scanned up to log sequence number 374340608
InnoDB: Doing recovery: scanned up to log sequence number 379583488
InnoDB: Doing recovery: scanned up to log sequence number 384826368
InnoDB: Doing recovery: scanned up to log sequence number 390069248
InnoDB: Doing recovery: scanned up to log sequence number 395312128
InnoDB: Doing recovery: scanned up to log sequence number 400555008
InnoDB: Doing recovery: scanned up to log sequence number 405797888
InnoDB: Doing recovery: scanned up to log sequence number 411040768
InnoDB: Doing recovery: scanned up to log sequence number 414724794
InnoDB: Database was not shutdown normally!
InnoDB: Starting crash recovery.
InnoDB: 1 transaction(s) which must be rolled back or cleaned up in
total 518425 row operations to undo
InnoDB: Trx id counter is 1792
InnoDB: Starting an apply batch of log records to the database...
InnoDB: Progress in percent: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
InnoDB: Apply batch completed
...
InnoDB: Starting in background the rollback of uncommitted transactions
InnoDB: Rolling back trx with id 1511, 518425 rows to undo
...
InnoDB: Waiting for purge to start
InnoDB: 5.7.18 started; log sequence number 414724794
...
./mysqld: ready for connections.

InnoDB crash recovery consists of several steps:

• Tablespace discovery

Tablespace discovery is the process that InnoDB uses to identify tablespaces that require redo log
application. See Tablespace Discovery During Crash Recovery.

• Redo log application

Redo log application is performed during initialization, before accepting any connections. If all changes
are flushed from the buffer pool to the tablespaces (ibdata* and *.ibd files) at the time of the
shutdown or crash, redo log application is skipped. InnoDB also skips redo log application if redo log
files are missing at startup.

Removing redo logs to speed up recovery is not recommended, even if some data loss is acceptable.
Removing redo logs should only be considered after a clean shutdown, with innodb_fast_shutdown
set to 0 or 1.

2866

InnoDB Recovery

For information about the process that InnoDB uses to identify tablespaces that require redo log
application, see Tablespace Discovery During Crash Recovery.

• Roll back of incomplete transactions

Incomplete transactions are any transactions that were active at the time of unexpected exit or fast
shutdown. The time it takes to roll back an incomplete transaction can be three or four times the amount
of time a transaction is active before it is interrupted, depending on server load.

You cannot cancel transactions that are being rolled back. In extreme cases, when rolling back
transactions is expected to take an exceptionally long time, it may be faster to start InnoDB with an
innodb_force_recovery setting of 3 or greater. See Section 14.22.2, “Forcing InnoDB Recovery”.

• Change buffer merge

Applying changes from the change buffer (part of the system tablespace) to leaf pages of secondary
indexes, as the index pages are read to the buffer pool.

• Purge

Deleting delete-marked records that are no longer visible to active transactions.

The steps that follow redo log application do not depend on the redo log (other than for logging the writes)
and are performed in parallel with normal processing. Of these, only rollback of incomplete transactions is
special to crash recovery. The insert buffer merge and the purge are performed during normal processing.

After redo log application, InnoDB attempts to accept connections as early as possible, to reduce
downtime. As part of crash recovery, InnoDB rolls back transactions that were not committed or in XA
PREPARE state when the server exited. The rollback is performed by a background thread, executed in
parallel with transactions from new connections. Until the rollback operation is completed, new connections
may encounter locking conflicts with recovered transactions.

In most situations, even if the MySQL server was killed unexpectedly in the middle of heavy activity,
the recovery process happens automatically and no action is required of the DBA. If a hardware
failure or severe system error corrupted InnoDB data, MySQL might refuse to start. In this case, see
Section 14.22.2, “Forcing InnoDB Recovery”.

For information about the binary log and InnoDB crash recovery, see Section 5.4.4, “The Binary Log”.

Tablespace Discovery During Crash Recovery

If, during recovery, InnoDB encounters redo logs written since the last checkpoint, the redo logs must
be applied to affected tablespaces. The process that identifies affected tablespaces during recovery is
referred to as tablespace discovery.

Tablespace discovery is performed by scanning redo logs from the last checkpoint to the end of the log for
MLOG_FILE_NAME records that are written when a tablespace page is modified. An MLOG_FILE_NAME
record contains the tablespace space ID and file name.

On startup, InnoDB opens the system tablespace and redo log. If there are redo log records written since
the last checkpoint, affected tablespace files are opened based on MLOG_FILE_NAME records.

MLOG_FILE_NAME records are written for all persistent tablespace types including file-per-table
tablespaces, general tablespaces, the system tablespace, and undo log tablespaces.

Redo-log-based discovery has the following characteristics:

• Only tablespace *.ibd files modified since the last checkpoint are accessed.

2867

InnoDB and MySQL Replication

• Tablespace *.ibd files that are not attached to the InnoDB instance are ignored when redo logs are
applied.

• If MLOG_FILE_NAME records for the system tablespace do not match the server configuration affecting
system tablespace data file names, recovery fails with an error before redo logs are applied.

• If tablespace files referenced in the scanned portion of the log are missing, startup is refused.

• Redo logs for missing tablespace *.ibd files are only disregarded if there is a file-delete redo log
record (MLOG_FILE_DELETE) in the log. For example, a table rename failure could result in a “missing”
*.ibd file without an MLOG_FILE_DELETE record. In this case, you could manually rename the
tablespace file and restart crash recovery, or you could restart the server in recovery mode using the
innodb_force_recovery option. Missing *.ibd files are ignored when the server is started in
recovery mode.

Redo-log-based discovery, introduced in MySQL 5.7, replaces directory scans that were used in earlier
MySQL releases to construct a “space ID-to-tablespace file name” map that was required to apply redo
logs.

14.20 InnoDB and MySQL Replication
It is possible to use replication in a way where the storage engine on the replica is not the same as the
storage engine on the source. For example, you can replicate modifications to an InnoDB table on the
source to a MyISAM table on the replica. For more information see, Section 16.3.3, “Using Replication with
Different Source and Replica Storage Engines”.

For information about setting up a replica, see Section 16.1.2.5, “Setting Up Replicas”, and
Section 16.1.2.4, “Choosing a Method for Data Snapshots”. To make a new replica without taking down the
source or an existing replica, use the MySQL Enterprise Backup product.

Transactions that fail on the source do not affect replication. MySQL replication is based on the binary log
where MySQL writes SQL statements that modify data. A transaction that fails (for example, because of a
foreign key violation, or because it is rolled back) is not written to the binary log, so it is not sent to replicas.
See Section 13.3.1, “START TRANSACTION, COMMIT, and ROLLBACK Statements”.

Replication and CASCADE. Cascading actions for InnoDB tables on the source are executed on the
replica only if the tables sharing the foreign key relation use InnoDB on both the source and replica. This
is true whether you are using statement-based or row-based replication. Suppose that you have started
replication, and then create two tables on the source, where InnoDB is defined as the default storage
engine, using the following CREATE TABLE statements:

CREATE TABLE fc1 (
 i INT PRIMARY KEY,
 j INT
);

CREATE TABLE fc2 (
 m INT PRIMARY KEY,
 n INT,
 FOREIGN KEY ni (n) REFERENCES fc1 (i)
 ON DELETE CASCADE
);

If the replica has MyISAM defined as the default storage engine, the same tables are created on the
replica, but they use the MyISAM storage engine, and the FOREIGN KEY option is ignored. Now we insert
some rows into the tables on the source:

source> INSERT INTO fc1 VALUES (1, 1), (2, 2);
Query OK, 2 rows affected (0.09 sec)

2868

InnoDB and MySQL Replication

Records: 2 Duplicates: 0 Warnings: 0

source> INSERT INTO fc2 VALUES (1, 1), (2, 2), (3, 1);
Query OK, 3 rows affected (0.19 sec)
Records: 3 Duplicates: 0 Warnings: 0

At this point, on both the source and the replica, table fc1 contains 2 rows, and table fc2 contains 3 rows,
as shown here:

source> SELECT * FROM fc1;
+---+------+
| i | j |
+---+------+
| 1 | 1 |
| 2 | 2 |
+---+------+
2 rows in set (0.00 sec)

source> SELECT * FROM fc2;
+---+------+
| m | n |
+---+------+
1	1
2	2
3	1
+---+------+
3 rows in set (0.00 sec)

replica> SELECT * FROM fc1;
+---+------+
| i | j |
+---+------+
| 1 | 1 |
| 2 | 2 |
+---+------+
2 rows in set (0.00 sec)

replica> SELECT * FROM fc2;
+---+------+
| m | n |
+---+------+
1	1
2	2
3	1
+---+------+
3 rows in set (0.00 sec)

Now suppose that you perform the following DELETE statement on the source:

source> DELETE FROM fc1 WHERE i=1;
Query OK, 1 row affected (0.09 sec)

Due to the cascade, table fc2 on the source now contains only 1 row:

source> SELECT * FROM fc2;
+---+---+
| m | n |
+---+---+
| 2 | 2 |
+---+---+
1 row in set (0.00 sec)

However, the cascade does not propagate on the replica because on the replica the DELETE for fc1
deletes no rows from fc2. The replica's copy of fc2 still contains all of the rows that were originally
inserted:

2869

InnoDB memcached Plugin

replica> SELECT * FROM fc2;
+---+---+
| m | n |
+---+---+
1	1
3	1
2	2
+---+---+
3 rows in set (0.00 sec)

This difference is due to the fact that the cascading deletes are handled internally by the InnoDB storage
engine, which means that none of the changes are logged.

14.21 InnoDB memcached Plugin

The InnoDB memcached plugin (daemon_memcached) provides an integrated memcached daemon that
automatically stores and retrieves data from InnoDB tables, turning the MySQL server into a fast “key-
value store”. Instead of formulating queries in SQL, you can use simple get, set, and incr operations
that avoid the performance overhead associated with SQL parsing and constructing a query optimization
plan. You can also access the same InnoDB tables through SQL for convenience, complex queries, bulk
operations, and other strengths of traditional database software.

This “NoSQL-style” interface uses the memcached API to speed up database operations, letting InnoDB
handle memory caching using its buffer pool mechanism. Data modified through memcached operations
such as add, set, and incr are stored to disk, in InnoDB tables. The combination of memcached
simplicity and InnoDB reliability and consistency provides users with the best of both worlds, as explained
in Section 14.21.1, “Benefits of the InnoDB memcached Plugin”. For an architectural overview, see
Section 14.21.2, “InnoDB memcached Architecture”.

14.21.1 Benefits of the InnoDB memcached Plugin

This section outlines advantages the daemon_memcached plugin. The combination of InnoDB tables and
memcached offers advantages over using either by themselves.

• Direct access to the InnoDB storage engine avoids the parsing and planning overhead of SQL.

• Running memcached in the same process space as the MySQL server avoids the network overhead of
passing requests back and forth.

• Data written using the memcached protocol is transparently written to an InnoDB table, without going
through the MySQL SQL layer. You can control frequency of writes to achieve higher raw performance
when updating non-critical data.

• Data requested through the memcached protocol is transparently queried from an InnoDB table, without
going through the MySQL SQL layer.

• Subsequent requests for the same data is served from the InnoDB buffer pool. The buffer pool
handles the in-memory caching. You can tune performance of data-intensive operations using InnoDB
configuration options.

• Data can be unstructured or structured, depending on the type of application. You can create a new
table for data, or use existing tables.

• InnoDB can handle composing and decomposing multiple column values into a single memcached
item value, reducing the amount of string parsing and concatenation required in your application. For
example, you can store the string value 2|4|6|8 in the memcached cache, and have InnoDB split the
value based on a separator character, then store the result in four numeric columns.

2870

InnoDB memcached Architecture

• The transfer between memory and disk is handled automatically, simplifying application logic.

• Data is stored in a MySQL database to protect against crashes, outages, and corruption.

• You can access the underlying InnoDB table through SQL for reporting, analysis, ad hoc queries, bulk
loading, multi-step transactional computations, set operations such as union and intersection, and other
operations suited to the expressiveness and flexibility of SQL.

• You can ensure high availability by using the daemon_memcached plugin on a source server in
combination with MySQL replication.

• The integration of memcached with MySQL provides a way to make in-memory data persistent, so you
can use it for more significant kinds of data. You can use more add, incr, and similar write operations
in your application without concern that data could be lost. You can stop and start the memcached
server without losing updates made to cached data. To guard against unexpected outages, you can take
advantage of InnoDB crash recovery, replication, and backup capabilities.

• The way InnoDB does fast primary key lookups is a natural fit for memcached single-item queries. The
direct, low-level database access path used by the daemon_memcached plugin is much more efficient
for key-value lookups than equivalent SQL queries.

• The serialization features of memcached, which can turn complex data structures, binary files, or even
code blocks into storeable strings, offer a simple way to get such objects into a database.

• Because you can access the underlying data through SQL, you can produce reports, search or update
across multiple keys, and call functions such as AVG() and MAX() on memcached data. All of these
operations are expensive or complicated using memcached by itself.

• You do not need to manually load data into memcached at startup. As particular keys are requested by
an application, values are retrieved from the database automatically, and cached in memory using the
InnoDB buffer pool.

• Because memcached consumes relatively little CPU, and its memory footprint is easy to control, it can
run comfortably alongside a MySQL instance on the same system.

• Because data consistency is enforced by mechanisms used for regular InnoDB tables, you do not have
to worry about stale memcached data or fallback logic to query the database in the case of a missing
key.

14.21.2 InnoDB memcached Architecture

The InnoDB memcached plugin implements memcached as a MySQL plugin daemon that accesses the
InnoDB storage engine directly, bypassing the MySQL SQL layer.

The following diagram illustrates how an application accesses data through the daemon_memcached
plugin, compared with SQL.

2871

InnoDB memcached Architecture

Figure 14.4 MySQL Server with Integrated memcached Server

Features of the daemon_memcached plugin:

• memcached as a daemon plugin of mysqld. Both mysqld and memcached run in the same process
space, with very low latency access to data.

• Direct access to InnoDB tables, bypassing the SQL parser, the optimizer, and even the Handler API
layer.

• Standard memcached protocols, including the text-based protocol and the binary protocol. The
daemon_memcached plugin passes all 55 compatibility tests of the memcapable command.

• Multi-column support. You can map multiple columns into the “value” part of the key-value store, with
column values delimited by a user-specified separator character.

• By default, the memcached protocol is used to read and write data directly to InnoDB, letting MySQL
manage in-memory caching using the InnoDB buffer pool. The default settings represent a combination
of high reliability and the fewest surprises for database applications. For example, default settings avoid
uncommitted data on the database side, or stale data returned for memcached get requests.

• Advanced users can configure the system as a traditional memcached server, with all data cached only
in the memcached engine (memory caching), or use a combination of the “memcached engine” (memory
caching) and the InnoDB memcached engine (InnoDB as back-end persistent storage).

• Control over how often data is passed back and forth between InnoDB and memcached operations
through the innodb_api_bk_commit_interval, daemon_memcached_r_batch_size, and
daemon_memcached_w_batch_size configuration options. Batch size options default to a value of 1
for maximum reliability.

2872

Setting Up the InnoDB memcached Plugin

• The ability to specify memcached options through the daemon_memcached_option configuration
parameter. For example, you can change the port that memcached listens on, reduce the maximum
number of simultaneous connections, change the maximum memory size for a key-value pair, or enable
debugging messages for the error log.

• The innodb_api_trx_level configuration option controls the transaction isolation level on queries
processed by memcached. Although memcached has no concept of transactions, you can use this
option to control how soon memcached sees changes caused by SQL statements issued on the
table used by the daemon_memcached plugin. By default, innodb_api_trx_level is set to READ
UNCOMMITTED.

• The innodb_api_enable_mdl option can be used to lock the table at the MySQL level, so that the
mapped table cannot be dropped or altered by DDL through the SQL interface. Without the lock, the
table can be dropped from the MySQL layer, but kept in InnoDB storage until memcached or some other
user stops using it. “MDL” stands for “metadata locking”.

14.21.3 Setting Up the InnoDB memcached Plugin

This section describes how to set up the daemon_memcached plugin on a MySQL server. Because the
memcached daemon is tightly integrated with the MySQL server to avoid network traffic and minimize
latency, you perform this process on each MySQL instance that uses this feature.

Note

Before setting up the daemon_memcached plugin, consult Section 14.21.4,
“Security Considerations for the InnoDB memcached Plugin” to understand the
security procedures required to prevent unauthorized access.

Prerequisites

• The daemon_memcached plugin is only supported on Linux, Solaris, and macOS platforms. Other
operating systems are not supported.

• When building MySQL from source, you must build with -DWITH_INNODB_MEMCACHED=ON. This build
option generates two shared libraries in the MySQL plugin directory (plugin_dir) that are required to
run the daemon_memcached plugin:

• libmemcached.so: the memcached daemon plugin to MySQL.

• innodb_engine.so: an InnoDB API plugin to memcached.

• libevent must be installed.

• If you did not build MySQL from source, the libevent library is not included in your installation. Use
the installation method for your operating system to install libevent 1.4.12 or later. For example,
depending on the operating system, you might use apt-get, yum, or port install. For example,
on Ubuntu Linux, use:

sudo apt-get install libevent-dev

• If you installed MySQL from a source code release, libevent 1.4.12 is bundled with the package
and is located at the top level of the MySQL source code directory. If you use the bundled version of
libevent, no action is required. If you want to use a local system version of libevent, you must
build MySQL with the -DWITH_LIBEVENT build option set to system or yes.

Installing and Configuring the InnoDB memcached Plugin

2873

Setting Up the InnoDB memcached Plugin

1. Configure the daemon_memcached plugin so it can interact with InnoDB tables by running the
innodb_memcached_config.sql configuration script, which is located in MYSQL_HOME/share.
This script installs the innodb_memcache database with three required tables (cache_policies,
config_options, and containers). It also installs the demo_test sample table in the test
database.

mysql> source MYSQL_HOME/share/innodb_memcached_config.sql

Running the innodb_memcached_config.sql script is a one-time operation. The tables remain in
place if you later uninstall and re-install the daemon_memcached plugin.

mysql> USE innodb_memcache;
mysql> SHOW TABLES;
+---------------------------+
| Tables_in_innodb_memcache |
+---------------------------+
| cache_policies |
| config_options |
| containers |
+---------------------------+

mysql> USE test;
mysql> SHOW TABLES;
+----------------+
| Tables_in_test |
+----------------+
| demo_test |
+----------------+

Of these tables, the innodb_memcache.containers table is the most important. Entries in the
containers table provide a mapping to InnoDB table columns. Each InnoDB table used with the
daemon_memcached plugin requires an entry in the containers table.

The innodb_memcached_config.sql script inserts a single entry in the containers table that
provides a mapping for the demo_test table. It also inserts a single row of data into the demo_test
table. This data allows you to immediately verify the installation after the setup is completed.

mysql> SELECT * FROM innodb_memcache.containers\G
*************************** 1. row ***************************
 name: aaa
 db_schema: test
 db_table: demo_test
 key_columns: c1
 value_columns: c2
 flags: c3
 cas_column: c4
 expire_time_column: c5
unique_idx_name_on_key: PRIMARY

mysql> SELECT * FROM test.demo_test;
+----+------------------+------+------+------+
| c1 | c2 | c3 | c4 | c5 |
+----+------------------+------+------+------+
| AA | HELLO, HELLO | 8 | 0 | 0 |
+----+------------------+------+------+------+

For more information about innodb_memcache tables and the demo_test sample table, see
Section 14.21.7, “InnoDB memcached Plugin Internals”.

2874

Setting Up the InnoDB memcached Plugin

2. Activate the daemon_memcached plugin by running the INSTALL PLUGIN statement:

mysql> INSTALL PLUGIN daemon_memcached soname "libmemcached.so";

Once the plugin is installed, it is automatically activated each time the MySQL server is restarted.

Verifying the InnoDB and memcached Setup

To verify the daemon_memcached plugin setup, use a telnet session to issue memcached commands.
By default, the memcached daemon listens on port 11211.

1. Retrieve data from the test.demo_test table. The single row of data in the demo_test table has a
key value of AA.

telnet localhost 11211
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.
get AA
VALUE AA 8 12
HELLO, HELLO
END

2. Insert data using a set command.

set BB 10 0 16
GOODBYE, GOODBYE
STORED

where:

• set is the command to store a value

• BB is the key

• 10 is a flag for the operation; ignored by memcached but may be used by the client to indicate any
type of information; specify 0 if unused

• 0 is the expiration time (TTL); specify 0 if unused

• 16 is the length of the supplied value block in bytes

• GOODBYE, GOODBYE is the value that is stored

3. Verify that the data inserted is stored in MySQL by connecting to the MySQL server and querying the
test.demo_test table.

mysql> SELECT * FROM test.demo_test;
+----+------------------+------+------+------+
| c1 | c2 | c3 | c4 | c5 |
+----+------------------+------+------+------+
| AA | HELLO, HELLO | 8 | 0 | 0 |
| BB | GOODBYE, GOODBYE | 10 | 1 | 0 |
+----+------------------+------+------+------+

4. Return to the telnet session and retrieve the data that you inserted earlier using key BB.

get BB
VALUE BB 10 16
GOODBYE, GOODBYE
END
quit

2875

Setting Up the InnoDB memcached Plugin

If you shut down the MySQL server, which also shuts off the integrated memcached server, further
attempts to access the memcached data fail with a connection error. Normally, the memcached data also
disappears at this point, and you would require application logic to load the data back into memory when
memcached is restarted. However, the InnoDB memcached plugin automates this process for you.

When you restart MySQL, get operations once again return the key-value pairs you stored in the earlier
memcached session. When a key is requested and the associated value is not already in the memory
cache, the value is automatically queried from the MySQL test.demo_test table.

Creating a New Table and Column Mapping

This example shows how to setup your own InnoDB table with the daemon_memcached plugin.

1. Create an InnoDB table. The table must have a key column with a unique index. The key column of
the city table is city_id, which is defined as the primary key. The table must also include columns for
flags, cas, and expiry values. There may be one or more value columns. The city table has three
value columns (name, state, country).

Note

There is no special requirement with respect to column names as along as a
valid mapping is added to the innodb_memcache.containers table.

mysql> CREATE TABLE city (
 city_id VARCHAR(32),
 name VARCHAR(1024),
 state VARCHAR(1024),
 country VARCHAR(1024),
 flags INT,
 cas BIGINT UNSIGNED,
 expiry INT,
 primary key(city_id)
) ENGINE=InnoDB;

2. Add an entry to the innodb_memcache.containers table so that the daemon_memcached plugin
knows how to access the InnoDB table. The entry must satisfy the innodb_memcache.containers
table definition. For a description of each field, see Section 14.21.7, “InnoDB memcached Plugin
Internals”.

mysql> DESCRIBE innodb_memcache.containers;
+------------------------+--------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+------------------------+--------------+------+-----+---------+-------+
name	varchar(50)	NO	PRI	NULL	
db_schema	varchar(250)	NO		NULL	
db_table	varchar(250)	NO		NULL	
key_columns	varchar(250)	NO		NULL	
value_columns	varchar(250)	YES		NULL	
flags	varchar(250)	NO		0	
cas_column	varchar(250)	YES		NULL	
expire_time_column	varchar(250)	YES		NULL	
unique_idx_name_on_key	varchar(250)	NO		NULL	
+------------------------+--------------+------+-----+---------+-------+

The innodb_memcache.containers table entry for the city table is defined as:

mysql> INSERT INTO `innodb_memcache`.`containers` (
 `name`, `db_schema`, `db_table`, `key_columns`, `value_columns`,
 `flags`, `cas_column`, `expire_time_column`, `unique_idx_name_on_key`)
 VALUES ('default', 'test', 'city', 'city_id', 'name|state|country',
 'flags','cas','expiry','PRIMARY');

2876

Setting Up the InnoDB memcached Plugin

• default is specified for the containers.name column to configure the city table as the default
InnoDB table to be used with the daemon_memcached plugin.

• Multiple InnoDB table columns (name, state, country) are mapped to
containers.value_columns using a “|” delimiter.

• The flags, cas_column, and expire_time_column fields of the
innodb_memcache.containers table are typically not significant in applications using the
daemon_memcached plugin. However, a designated InnoDB table column is required for each.
When inserting data, specify 0 for these columns if they are unused.

3. After updating the innodb_memcache.containers table, restart the daemon_memcache plugin to
apply the changes.

mysql> UNINSTALL PLUGIN daemon_memcached;

mysql> INSTALL PLUGIN daemon_memcached soname "libmemcached.so";

4. Using telnet, insert data into the city table using a memcached set command.

telnet localhost 11211
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.
set B 0 0 22
BANGALORE|BANGALORE|IN
STORED

5. Using MySQL, query the test.city table to verify that the data you inserted was stored.

mysql> SELECT * FROM test.city;
+---------+-----------+-----------+---------+-------+------+--------+
| city_id | name | state | country | flags | cas | expiry |
+---------+-----------+-----------+---------+-------+------+--------+
| B | BANGALORE | BANGALORE | IN | 0 | 3 | 0 |
+---------+-----------+-----------+---------+-------+------+--------+

6. Using MySQL, insert additional data into the test.city table.

mysql> INSERT INTO city VALUES ('C','CHENNAI','TAMIL NADU','IN', 0, 0 ,0);
mysql> INSERT INTO city VALUES ('D','DELHI','DELHI','IN', 0, 0, 0);
mysql> INSERT INTO city VALUES ('H','HYDERABAD','TELANGANA','IN', 0, 0, 0);
mysql> INSERT INTO city VALUES ('M','MUMBAI','MAHARASHTRA','IN', 0, 0, 0);

Note

It is recommended that you specify a value of 0 for the flags, cas_column,
and expire_time_column fields if they are unused.

7. Using telnet, issue a memcached get command to retrieve data you inserted using MySQL.

get H
VALUE H 0 22
HYDERABAD|TELANGANA|IN
END

Configuring the InnoDB memcached Plugin

Traditional memcached configuration options may be specified in a MySQL configuration file or a mysqld
startup string, encoded in the argument of the daemon_memcached_option configuration parameter.

2877

Setting Up the InnoDB memcached Plugin

memcached configuration options take effect when the plugin is loaded, which occurs each time the
MySQL server is started.

For example, to make memcached listen on port 11222 instead of the default port 11211, specify -p11222
as an argument of the daemon_memcached_option configuration option:

mysqld --daemon_memcached_option="-p11222"

Other memcached options can be encoded in the daemon_memcached_option string. For example, you
can specify options to reduce the maximum number of simultaneous connections, change the maximum
memory size for a key-value pair, or enable debugging messages for the error log, and so on.

There are also configuration options specific to the daemon_memcached plugin. These include:

• daemon_memcached_engine_lib_name: Specifies the shared library that implements the InnoDB
memcached plugin. The default setting is innodb_engine.so.

• daemon_memcached_engine_lib_path: The path of the directory containing the shared library that
implements the InnoDB memcached plugin. The default is NULL, representing the plugin directory.

• daemon_memcached_r_batch_size: Defines the batch commit size for read operations
(get). It specifies the number of memcached read operations after which a commit occurs.
daemon_memcached_r_batch_size is set to 1 by default so that every get request accesses the
most recently committed data in the InnoDB table, whether the data was updated through memcached
or by SQL. When the value is greater than 1, the counter for read operations is incremented with each
get call. A flush_all call resets both read and write counters.

• daemon_memcached_w_batch_size: Defines the batch commit size for write operations (set,
replace, append, prepend, incr, decr, and so on). daemon_memcached_w_batch_size is set
to 1 by default so that no uncommitted data is lost in case of an outage, and so that SQL queries on the
underlying table access the most recent data. When the value is greater than 1, the counter for write
operations is incremented for each add, set, incr, decr, and delete call. A flush_all call resets
both read and write counters.

By default, you do not need to modify daemon_memcached_engine_lib_name or
daemon_memcached_engine_lib_path. You might configure these options if, for example, you want to
use a different storage engine for memcached (such as the NDB memcached engine).

daemon_memcached plugin configuration parameters may be specified in the MySQL configuration file or
in a mysqld startup string. They take effect when you load the daemon_memcached plugin.

When making changes to daemon_memcached plugin configuration, reload the plugin to apply the
changes. To do so, issue the following statements:

mysql> UNINSTALL PLUGIN daemon_memcached;

mysql> INSTALL PLUGIN daemon_memcached soname "libmemcached.so";

Configuration settings, required tables, and data are preserved when the plugin is restarted.

For additional information about enabling and disabling plugins, see Section 5.5.1, “Installing and
Uninstalling Plugins”.

2878

Security Considerations for the InnoDB memcached Plugin

14.21.4 Security Considerations for the InnoDB memcached Plugin

Caution

Consult this section before deploying the daemon_memcached plugin on a
production server, or even on a test server if the MySQL instance contains sensitive
data.

Because memcached does not use an authentication mechanism by default, and the optional SASL
authentication is not as strong as traditional DBMS security measures, only keep non-sensitive data in
the MySQL instance that uses the daemon_memcached plugin, and wall off any servers that use this
configuration from potential intruders. Do not allow memcached access to these servers from the Internet;
only allow access from within a firewalled intranet, ideally from a subnet whose membership you can
restrict.

Password-Protecting memcached Using SASL

SASL support provides the capability to protect your MySQL database from unauthenticated access
through memcached clients. This section explains how to enable SASL with the daemon_memcached
plugin. The steps are almost identical to those performed to enabled SASL for a traditional memcached
server.

SASL stands for “Simple Authentication and Security Layer”, a standard for adding authentication support
to connection-based protocols. memcached added SASL support in version 1.4.3.

SASL authentication is only supported with the binary protocol.

memcached clients are only able to access InnoDB tables that are registered in the
innodb_memcache.containers table. Even though a DBA can place access restrictions on such
tables, access through memcached applications cannot be controlled. For this reason, SASL support is
provided to control access to InnoDB tables associated with the daemon_memcached plugin.

The following section shows how to build, enable, and test an SASL-enabled daemon_memcached plugin.

Building and Enabling SASL with the InnoDB memcached Plugin

By default, an SASL-enabled daemon_memcached plugin is not included in MySQL release packages,
since an SASL-enabled daemon_memcached plugin requires building memcached with SASL libraries.
To enable SASL support, download the MySQL source and rebuild the daemon_memcached plugin after
downloading the SASL libraries:

1. Install the SASL development and utility libraries. For example, on Ubuntu, use apt-get to obtain the
libraries:

sudo apt-get -f install libsasl2-2 sasl2-bin libsasl2-2 libsasl2-dev libsasl2-modules

2. Build the daemon_memcached plugin shared libraries with SASL capability by adding
ENABLE_MEMCACHED_SASL=1 to your cmake options. memcached also provides simple cleartext
password support, which facilitates testing. To enable simple cleartext password support, specify the
ENABLE_MEMCACHED_SASL_PWDB=1 cmake option.

In summary, add following three cmake options:

cmake ... -DWITH_INNODB_MEMCACHED=1 -DENABLE_MEMCACHED_SASL=1 -DENABLE_MEMCACHED_SASL_PWDB=1

3. Install the daemon_memcached plugin, as described in Section 14.21.3, “Setting Up the InnoDB
memcached Plugin”.

2879

Writing Applications for the InnoDB memcached Plugin

4. Configure a user name and password file. (This example uses memcached simple cleartext password
support.)

a. In a file, create a user named testname and define the password as testpasswd:

echo "testname:testpasswd:::::::" >/home/jy/memcached-sasl-db

b. Configure the MEMCACHED_SASL_PWDB environment variable to inform memcached of the user
name and password file:

export MEMCACHED_SASL_PWDB=/home/jy/memcached-sasl-db

c. Inform memcached that a cleartext password is used:

echo "mech_list: plain" > /home/jy/work2/msasl/clients/memcached.conf
export SASL_CONF_PATH=/home/jy/work2/msasl/clients

5. Enable SASL by restarting the MySQL server with the memcached -S option encoded in the
daemon_memcached_option configuration parameter:

mysqld ... --daemon_memcached_option="-S"

6. To test the setup, use an SASL-enabled client such as SASL-enabled libmemcached.

memcp --servers=localhost:11211 --binary --username=testname
 --password=password myfile.txt

memcat --servers=localhost:11211 --binary --username=testname
 --password=password myfile.txt

If you specify an incorrect user name or password, the operation is rejected with a memcache error
AUTHENTICATION FAILURE message. In this case, examine the cleartext password set in the
memcached-sasl-db file to verify that the credentials you supplied are correct.

There are other methods to test SASL authentication with memcached, but the method described above is
the most straightforward.

14.21.5 Writing Applications for the InnoDB memcached Plugin

Typically, writing an application for the InnoDB memcached plugin involves some degree of rewriting or
adapting existing code that uses MySQL or the memcached API.

• With the daemon_memcached plugin, instead of many traditional memcached servers running on low-
powered machines, you have the same number of memcached servers as MySQL servers, running on
relatively high-powered machines with substantial disk storage and memory. You might reuse some
existing code that works with the memcached API, but adaptation is likely required due to the different
server configuration.

• The data stored through the daemon_memcached plugin goes into VARCHAR, TEXT, or BLOB columns,
and must be converted to do numeric operations. You can perform the conversion on the application
side, or by using the CAST() function in queries.

• Coming from a database background, you might be used to general-purpose SQL tables with many
columns. The tables accessed by memcached code likely have only a few or even a single column
holding data values.

2880

https://code.launchpad.net/~trond-norbye/libmemcached/sasl

Writing Applications for the InnoDB memcached Plugin

• You might adapt parts of your application that perform single-row queries, inserts, updates, or deletes,
to improve performance in critical sections of code. Both queries (read) and DML (write) operations can
be substantially faster when performed through the InnoDB memcached interface. The performance
improvement for writes is typically greater than the performance improvement for reads, so you might
focus on adapting code that performs logging or records interactive choices on a website.

The following sections explore these points in more detail.

14.21.5.1 Adapting an Existing MySQL Schema for the InnoDB memcached Plugin

Consider these aspects of memcached applications when adapting an existing MySQL schema or
application to use the daemon_memcached plugin:

• memcached keys cannot contain spaces or newlines, because these characters are used as separators
in the ASCII protocol. If you are using lookup values that contain spaces, transform or hash them into
values without spaces before using them as keys in calls to add(), set(), get(), and so on. Although
theoretically these characters are allowed in keys in programs that use the binary protocol, you should
restrict the characters used in keys to ensure compatibility with a broad range of clients.

• If there is a short numeric primary key column in an InnoDB table, use it as the unique lookup key for
memcached by converting the integer to a string value. If the memcached server is used for multiple
applications, or with more than one InnoDB table, consider modifying the name to ensure that it is
unique. For example, prepend the table name, or the database name and the table name, before the
numeric value.

Note

The daemon_memcached plugin supports inserts and reads on mapped InnoDB
tables that have an INTEGER defined as the primary key.

• You cannot use a partitioned table for data queried or stored using memcached.

• The memcached protocol passes numeric values around as strings. To store numeric values in the
underlying InnoDB table, to implement counters that can be used in SQL functions such as SUM() or
AVG(), for example:

• Use VARCHAR columns with enough characters to hold all the digits of the largest expected number
(and additional characters if appropriate for the negative sign, decimal point, or both).

• In any query that performs arithmetic using column values, use the CAST() function to convert the
values from string to integer, or to some other numeric type. For example:

Alphabetic entries are returned as zero.

SELECT CAST(c2 as unsigned integer) FROM demo_test;

Since there could be numeric values of 0, can't disqualify them.
Test the string values to find the ones that are integers, and average only those.

SELECT AVG(cast(c2 as unsigned integer)) FROM demo_test
 WHERE c2 BETWEEN '0' and '9999999999';

Views let you hide the complexity of queries. The results are already converted;
no need to repeat conversion functions and WHERE clauses each time.

CREATE VIEW numbers AS SELECT c1 KEY, CAST(c2 AS UNSIGNED INTEGER) val
 FROM demo_test WHERE c2 BETWEEN '0' and '9999999999';
SELECT SUM(val) FROM numbers;

2881

Writing Applications for the InnoDB memcached Plugin

Note

Any alphabetic values in the result set are converted into 0 by the call to
CAST(). When using functions such as AVG(), which depend on the number
of rows in the result set, include WHERE clauses to filter out non-numeric values.

• If the InnoDB column used as a key could have values longer than 250 bytes, hash the value to less
than 250 bytes.

• To use an existing table with the daemon_memcached plugin, define an entry for it in the
innodb_memcache.containers table. To make that table the default for all memcached requests,
specify a value of default in the name column, then restart the MySQL server to make the change
take effect. If you use multiple tables for different classes of memcached data, set up multiple entries in
the innodb_memcache.containers table with name values of your choice, then issue a memcached
request in the form of get @@name or set @@name within the application to specify the table to be used
for subsequent memcached requests.

For an example of using a table other than the predefined test.demo_test table, see Example 14.13,
“Using Your Own Table with an InnoDB memcached Application”. For the required table layout, see
Section 14.21.7, “InnoDB memcached Plugin Internals”.

• To use multiple InnoDB table column values with memcached key-value pairs, specify column names
separated by comma, semicolon, space, or pipe characters in the value_columns field of the
innodb_memcache.containers entry for the InnoDB table. For example, specify col1,col2,col3
or col1|col2|col3 in the value_columns field.

Concatenate the column values into a single string using the pipe character as a separator before
passing the string to memcached add or set calls. The string is unpacked automatically into the correct
column. Each get call returns a single string containing the column values that is also delimited by the
pipe character. You can unpack the values using the appropriate application language syntax.

Example 14.13 Using Your Own Table with an InnoDB memcached Application

This example shows how to use your own table with a sample Python application that uses memcached for
data manipulation.

The example assumes that the daemon_memcached plugin is installed as described in Section 14.21.3,
“Setting Up the InnoDB memcached Plugin”. It also assumes that your system is configured to run a
Python script that uses the python-memcache module.

1. Create the multicol table which stores country information including population, area, and driver side
data ('R' for right and 'L' for left).

mysql> USE test;

mysql> CREATE TABLE `multicol` (
 `country` varchar(128) NOT NULL DEFAULT '',
 `population` varchar(10) DEFAULT NULL,
 `area_sq_km` varchar(9) DEFAULT NULL,
 `drive_side` varchar(1) DEFAULT NULL,
 `c3` int(11) DEFAULT NULL,
 `c4` bigint(20) unsigned DEFAULT NULL,
 `c5` int(11) DEFAULT NULL,
 PRIMARY KEY (`country`)
) ENGINE=InnoDB DEFAULT CHARSET=latin1;

2. Insert a record into the innodb_memcache.containers table so that the daemon_memcached
plugin can access the multicol table.

2882

Writing Applications for the InnoDB memcached Plugin

mysql> INSERT INTO innodb_memcache.containers
 (name,db_schema,db_table,key_columns,value_columns,flags,cas_column,
 expire_time_column,unique_idx_name_on_key)
 VALUES
 ('bbb','test','multicol','country','population,area_sq_km,drive_side',
 'c3','c4','c5','PRIMARY');

mysql> COMMIT;

• The innodb_memcache.containers record for the multicol table specifies a name value of
'bbb', which is the table identifier.

Note

If a single InnoDB table is used for all memcached applications, the name
value can be set to default to avoid using @@ notation to switch tables.

• The db_schema column is set to test, which is the name of the database where the multicol
table resides.

• The db_table column is set to multicol, which is the name of the InnoDB table.

• key_columns is set to the unique country column. The country column is defined as the primary
key in the multicol table definition.

• Rather than a single InnoDB table column to hold a composite data value, data is divided among
three table columns (population, area_sq_km, and drive_side). To accommodate multiple
value columns, a comma-separated list of columns is specified in the value_columns field. The
columns defined in the value_columns field are the columns used when storing or retrieving
values.

• Values for the flags, expire_time, and cas_column fields are based on values used in the
demo.test sample table. These fields are typically not significant in applications that use the
daemon_memcached plugin because MySQL keeps data synchronized, and there is no need to
worry about data expiring or becoming stale.

• The unique_idx_name_on_key field is set to PRIMARY, which refers to the primary index defined
on the unique country column in the multicol table.

3. Copy the sample Python application into a file. In this example, the sample script is copied to a file
named multicol.py.

The sample Python application inserts data into the multicol table and retrieves data for all keys,
demonstrating how to access an InnoDB table through the daemon_memcached plugin.

import sys, os
import memcache

def connect_to_memcached():
 memc = memcache.Client(['127.0.0.1:11211'], debug=0);
 print "Connected to memcached."
 return memc

def banner(message):
 print
 print "=" * len(message)
 print message
 print "=" * len(message)

country_data = [

2883

Writing Applications for the InnoDB memcached Plugin

("Canada","34820000","9984670","R"),
("USA","314242000","9826675","R"),
("Ireland","6399152","84421","L"),
("UK","62262000","243610","L"),
("Mexico","113910608","1972550","R"),
("Denmark","5543453","43094","R"),
("Norway","5002942","385252","R"),
("UAE","8264070","83600","R"),
("India","1210193422","3287263","L"),
("China","1347350000","9640821","R"),
]

def switch_table(memc,table):
 key = "@@" + table
 print "Switching default table to '" + table + "' by issuing GET for '" + key + "'."
 result = memc.get(key)

def insert_country_data(memc):
 banner("Inserting initial data via memcached interface")
 for item in country_data:
 country = item[0]
 population = item[1]
 area = item[2]
 drive_side = item[3]

 key = country
 value = "|".join([population,area,drive_side])
 print "Key = " + key
 print "Value = " + value

 if memc.add(key,value):
 print "Added new key, value pair."
 else:
 print "Updating value for existing key."
 memc.set(key,value)

def query_country_data(memc):
 banner("Retrieving data for all keys (country names)")
 for item in country_data:
 key = item[0]
 result = memc.get(key)
 print "Here is the result retrieved from the database for key " + key + ":"
 print result
 (m_population, m_area, m_drive_side) = result.split("|")
 print "Unpacked population value: " + m_population
 print "Unpacked area value : " + m_area
 print "Unpacked drive side value: " + m_drive_side

if __name__ == '__main__':

 memc = connect_to_memcached()
 switch_table(memc,"bbb")
 insert_country_data(memc)
 query_country_data(memc)

 sys.exit(0)

Sample Python application notes:

• No database authorization is required to run the application, since data manipulation is performed
through the memcached interface. The only required information is the port number on the local
system where the memcached daemon listens.

• To make sure the application uses the multicol table, the switch_table() function is called,
which performs a dummy get or set request using @@ notation. The name value in the request is

2884

Writing Applications for the InnoDB memcached Plugin

bbb, which is the multicol table identifier defined in the innodb_memcache.containers.name
field.

A more descriptive name value might be used in a real-world application. This example simply
illustrates that a table identifier is specified rather than the table name in get @@... requests.

• The utility functions used to insert and query data demonstrate how to turn a Python data structure
into pipe-separated values for sending data to MySQL with add or set requests, and how to unpack
the pipe-separated values returned by get requests. This extra processing is only required when
mapping a single memcached value to multiple MySQL table columns.

4. Run the sample Python application.

$> python multicol.py

If successful, the sample application returns this output:

Connected to memcached.
Switching default table to 'bbb' by issuing GET for '@@bbb'.

==
Inserting initial data via memcached interface
==
Key = Canada
Value = 34820000|9984670|R
Added new key, value pair.
Key = USA
Value = 314242000|9826675|R
Added new key, value pair.
Key = Ireland
Value = 6399152|84421|L
Added new key, value pair.
Key = UK
Value = 62262000|243610|L
Added new key, value pair.
Key = Mexico
Value = 113910608|1972550|R
Added new key, value pair.
Key = Denmark
Value = 5543453|43094|R
Added new key, value pair.
Key = Norway
Value = 5002942|385252|R
Added new key, value pair.
Key = UAE
Value = 8264070|83600|R
Added new key, value pair.
Key = India
Value = 1210193422|3287263|L
Added new key, value pair.
Key = China
Value = 1347350000|9640821|R
Added new key, value pair.

==
Retrieving data for all keys (country names)
==
Here is the result retrieved from the database for key Canada:
34820000|9984670|R
Unpacked population value: 34820000
Unpacked area value : 9984670
Unpacked drive side value: R
Here is the result retrieved from the database for key USA:
314242000|9826675|R
Unpacked population value: 314242000

2885

Writing Applications for the InnoDB memcached Plugin

Unpacked area value : 9826675
Unpacked drive side value: R
Here is the result retrieved from the database for key Ireland:
6399152|84421|L
Unpacked population value: 6399152
Unpacked area value : 84421
Unpacked drive side value: L
Here is the result retrieved from the database for key UK:
62262000|243610|L
Unpacked population value: 62262000
Unpacked area value : 243610
Unpacked drive side value: L
Here is the result retrieved from the database for key Mexico:
113910608|1972550|R
Unpacked population value: 113910608
Unpacked area value : 1972550
Unpacked drive side value: R
Here is the result retrieved from the database for key Denmark:
5543453|43094|R
Unpacked population value: 5543453
Unpacked area value : 43094
Unpacked drive side value: R
Here is the result retrieved from the database for key Norway:
5002942|385252|R
Unpacked population value: 5002942
Unpacked area value : 385252
Unpacked drive side value: R
Here is the result retrieved from the database for key UAE:
8264070|83600|R
Unpacked population value: 8264070
Unpacked area value : 83600
Unpacked drive side value: R
Here is the result retrieved from the database for key India:
1210193422|3287263|L
Unpacked population value: 1210193422
Unpacked area value : 3287263
Unpacked drive side value: L
Here is the result retrieved from the database for key China:
1347350000|9640821|R
Unpacked population value: 1347350000
Unpacked area value : 9640821
Unpacked drive side value: R

5. Query the innodb_memcache.containers table to view the record you inserted earlier for the
multicol table. The first record is the sample entry for the demo_test table that is created during
the initial daemon_memcached plugin setup. The second record is the entry you inserted for the
multicol table.

mysql> SELECT * FROM innodb_memcache.containers\G
*************************** 1. row ***************************
 name: aaa
 db_schema: test
 db_table: demo_test
 key_columns: c1
 value_columns: c2
 flags: c3
 cas_column: c4
 expire_time_column: c5
unique_idx_name_on_key: PRIMARY
*************************** 2. row ***************************
 name: bbb
 db_schema: test
 db_table: multicol
 key_columns: country
 value_columns: population,area_sq_km,drive_side
 flags: c3

2886

Writing Applications for the InnoDB memcached Plugin

 cas_column: c4
 expire_time_column: c5
unique_idx_name_on_key: PRIMARY

6. Query the multicol table to view data inserted by the sample Python application. The data is
available for MySQL queries, which demonstrates how the same data can be accessed using SQL or
through applications (using the appropriate MySQL Connector or API).

mysql> SELECT * FROM test.multicol;
+---------+------------+------------+------------+------+------+------+
| country | population | area_sq_km | drive_side | c3 | c4 | c5 |
+---------+------------+------------+------------+------+------+------+
Canada	34820000	9984670	R	0	11	0
China	1347350000	9640821	R	0	20	0
Denmark	5543453	43094	R	0	16	0
India	1210193422	3287263	L	0	19	0
Ireland	6399152	84421	L	0	13	0
Mexico	113910608	1972550	R	0	15	0
Norway	5002942	385252	R	0	17	0
UAE	8264070	83600	R	0	18	0
UK	62262000	243610	L	0	14	0
USA	314242000	9826675	R	0	12	0
+---------+------------+------------+------------+------+------+------+

Note

Always allow sufficient size to hold necessary digits, decimal points, sign
characters, leading zeros, and so on when defining the length for columns that
are treated as numbers. Too-long values in a string column such as a VARCHAR
are truncated by removing some characters, which could produce nonsensical
numeric values.

7. Optionally, run report-type queries on the InnoDB table that stores the memcached data.

You can produce reports through SQL queries, performing calculations and tests across any columns,
not just the country key column. (Because the following examples use data from only a few countries,
the numbers are for illustration purposes only.) The following queries return the average population of
countries where people drive on the right, and the average size of countries whose names start with
“U”:

mysql> SELECT AVG(population) FROM multicol WHERE drive_side = 'R';
+-------------------+
| avg(population) |
+-------------------+
| 261304724.7142857 |
+-------------------+

mysql> SELECT SUM(area_sq_km) FROM multicol WHERE country LIKE 'U%';
+-----------------+
| sum(area_sq_km) |
+-----------------+
| 10153885 |
+-----------------+

Because the population and area_sq_km columns store character data rather than strongly typed
numeric data, functions such as AVG() and SUM() work by converting each value to a number first.
This approach does not work for operators such as < or >, for example, when comparing character-
based values, 9 > 1000, which is not expected from a clause such as ORDER BY population
DESC. For the most accurate type treatment, perform queries against views that cast numeric columns
to the appropriate types. This technique lets you issue simple SELECT * queries from database
applications, while ensuring that casting, filtering, and ordering is correct. The following example shows

2887

Writing Applications for the InnoDB memcached Plugin

a view that can be queried to find the top three countries in descending order of population, with the
results reflecting the latest data in the multicol table, and with population and area figures treated as
numbers:

mysql> CREATE VIEW populous_countries AS
 SELECT
 country,
 cast(population as unsigned integer) population,
 cast(area_sq_km as unsigned integer) area_sq_km,
 drive_side FROM multicol
 ORDER BY CAST(population as unsigned integer) DESC
 LIMIT 3;

mysql> SELECT * FROM populous_countries;
+---------+------------+------------+------------+
| country | population | area_sq_km | drive_side |
+---------+------------+------------+------------+
China	1347350000	9640821	R
India	1210193422	3287263	L
USA	314242000	9826675	R
+---------+------------+------------+------------+

mysql> DESC populous_countries;
+------------+---------------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+------------+---------------------+------+-----+---------+-------+
country	varchar(128)	NO			
population	bigint(10) unsigned	YES		NULL	
area_sq_km	int(9) unsigned	YES		NULL	
drive_side	varchar(1)	YES		NULL	
+------------+---------------------+------+-----+---------+-------+

14.21.5.2 Adapting a memcached Application for the InnoDB memcached Plugin

Consider these aspects of MySQL and InnoDB tables when adapting existing memcached applications to
use the daemon_memcached plugin:

• If there are key values longer than a few bytes, it may be more efficient to use a numeric auto-increment
column as the primary key of the InnoDB table, and to create a unique secondary index on the column
that contains the memcached key values. This is because InnoDB performs best for large-scale
insertions if primary key values are added in sorted order (as they are with auto-increment values).
Primary key values are included in secondary indexes, which takes up unnecessary space if the primary
key is a long string value.

• If you store several different classes of information using memcached, consider setting
up a separate InnoDB table for each type of data. Define additional table identifiers in the
innodb_memcache.containers table, and use the @@table_id.key notation to store and retrieve
items from different tables. Physically dividing different types of information allows you tune the
characteristics of each table for optimum space utilization, performance, and reliability. For example,
you might enable compression for a table that holds blog posts, but not for a table that holds thumbnail
images. You might back up one table more frequently than another because it holds critical data. You
might create additional secondary indexes on tables that are frequently used to generate reports using
SQL.

• Preferably, configure a stable set of table definitions for use with the daemon_memcached plugin, and
leave the tables in place permanently. Changes to the innodb_memcache.containers table take
effect the next time the innodb_memcache.containers table is queried. Entries in the containers
table are processed at startup, and are consulted whenever an unrecognized table identifier (as defined
by containers.name) is requested using @@ notation. Thus, new entries are visible as soon as you
use the associated table identifier, but changes to existing entries require a server restart before they
take effect.

2888

Writing Applications for the InnoDB memcached Plugin

• When you use the default innodb_only caching policy, calls to add(), set(), incr(), and so
on can succeed but still trigger debugging messages such as while expecting 'STORED',
got unexpected response 'NOT_STORED. Debug messages occur because new and updated
values are sent directly to the InnoDB table without being saved in the memory cache, due to the
innodb_only caching policy.

14.21.5.3 Tuning InnoDB memcached Plugin Performance

Because using InnoDB in combination with memcached involves writing all data to disk, whether
immediately or sometime later, raw performance is expected to be somewhat slower than using
memcached by itself. When using the InnoDB memcached plugin, focus tuning goals for memcached
operations on achieving better performance than equivalent SQL operations.

Benchmarks suggest that queries and DML operations (inserts, updates, and deletes) that use the
memcached interface are faster than traditional SQL. DML operations typically see a larger improvements.
Therefore, consider adapting write-intensive applications to use the memcached interface first. Also
consider prioritizing adaptation of write-intensive applications that use fast, lightweight mechanisms that
lack reliability.

Adapting SQL Queries

The types of queries that are most suited to simple GET requests are those with a single clause or a set of
AND conditions in the WHERE clause:

SQL:
SELECT col FROM tbl WHERE key = 'key_value';

memcached:
get key_value

SQL:
SELECT col FROM tbl WHERE col1 = val1 and col2 = val2 and col3 = val3;

memcached:
Since you must always know these 3 values to look up the key,
combine them into a unique string and use that as the key
for all ADD, SET, and GET operations.
key_value = val1 + ":" + val2 + ":" + val3
get key_value

SQL:
SELECT 'key exists!' FROM tbl
 WHERE EXISTS (SELECT col1 FROM tbl WHERE KEY = 'key_value') LIMIT 1;

memcached:
Test for existence of key by asking for its value and checking if the call succeeds,
ignoring the value itself. For existence checking, you typically only store a very
short value such as "1".
get key_value

Using System Memory

For best performance, deploy the daemon_memcached plugin on machines that are configured as typical
database servers, where the majority of system RAM is devoted to the InnoDB buffer pool, through the
innodb_buffer_pool_size configuration option. For systems with multi-gigabyte buffer pools, consider
raising the value of innodb_buffer_pool_instances for maximum throughput when most operations
involve data that is already cached in memory.

2889

Writing Applications for the InnoDB memcached Plugin

Reducing Redundant I/O

InnoDB has a number of settings that let you choose the balance between high reliability, in case of a
crash, and the amount of I/O overhead during high write workloads. For example, consider setting the
innodb_doublewrite to 0 and innodb_flush_log_at_trx_commit to 2. Measure performance with
different innodb_flush_method settings.

Note

innodb_support_xa is deprecated; expect it to be removed in a future release.
As of MySQL 5.7.10, InnoDB support for two-phase commit in XA transactions is
always enabled and disabling innodb_support_xa is no longer permitted.

For other ways to reduce or tune I/O for table operations, see Section 8.5.8, “Optimizing InnoDB Disk I/O”.

Reducing Transactional Overhead

A default value of 1 for daemon_memcached_r_batch_size and daemon_memcached_w_batch_size
is intended for maximum reliability of results and safety of stored or updated data.

Depending on the type of application, you might increase one or both of these settings to
reduce the overhead of frequent commit operations. On a busy system, you might increase
daemon_memcached_r_batch_size, knowing that changes to data made through SQL may not become
visible to memcached immediately (that is, until N more get operations are processed). When processing
data where every write operation must be reliably stored, leave daemon_memcached_w_batch_size set
to 1. Increase the setting when processing large numbers of updates intended only for statistical analysis,
where losing the last N updates in an unexpected exit is an acceptable risk.

For example, imagine a system that monitors traffic crossing a busy bridge, recording data for
approximately 100,000 vehicles each day. If the application counts different types of vehicles to analyze
traffic patterns, changing daemon_memcached_w_batch_size from 1 to 100 reduces I/O overhead for
commit operations by 99%. In case of an outage, a maximum of 100 records are lost, which may be an
acceptable margin of error. If instead the application performed automated toll collection for each car, you
would set daemon_memcached_w_batch_size to 1 to ensure that each toll record is immediately saved
to disk.

Because of the way InnoDB organizes memcached key values on disk, if you have a large number of keys
to create, it may be faster to sort the data items by key value in the application and add them in sorted
order, rather than create keys in arbitrary order.

The memslap command, which is part of the regular memcached distribution but not included with the
daemon_memcached plugin, can be useful for benchmarking different configurations. It can also be used
to generate sample key-value pairs to use in your own benchmarks.

14.21.5.4 Controlling Transactional Behavior of the InnoDB memcached Plugin

Unlike traditional memcached, the daemon_memcached plugin allows you to control durability of data
values produced through calls to add, set, incr, and so on. By default, data written through the
memcached interface is stored to disk, and calls to get return the most recent value from disk. Although
the default behavior does not offer the best possible raw performance, it is still fast compared to the SQL
interface for InnoDB tables.

As you gain experience using the daemon_memcached plugin, you can consider relaxing durability
settings for non-critical classes of data, at the risk of losing some updated values in the event of an outage,
or returning data that is slightly out-of-date.

2890

Writing Applications for the InnoDB memcached Plugin

Frequency of Commits

One tradeoff between durability and raw performance is how frequently new and changed data is
committed. If data is critical, is should be committed immediately so that it is safe in case of an unexpected
exit or outage. If data is less critical, such as counters that are reset after an unexpected exit or logging
data that you can afford to lose, you might prefer higher raw throughput that is available with less frequent
commits.

When a memcached operation inserts, updates, or deletes data in the underlying InnoDB table, the
change might be committed to the InnoDB table instantly (if daemon_memcached_w_batch_size=1) or
some time later (if the daemon_memcached_w_batch_size value is greater than 1). In either case, the
change cannot be rolled back. If you increase the value of daemon_memcached_w_batch_size to avoid
high I/O overhead during busy times, commits could become infrequent when the workload decreases. As
a safety measure, a background thread automatically commits changes made through the memcached API
at regular intervals. The interval is controlled by the innodb_api_bk_commit_interval configuration
option, which has a default setting of 5 seconds.

When a memcached operation inserts or updates data in the underlying InnoDB table, the changed data
is immediately visible to other memcached requests because the new value remains in the memory cache,
even if it is not yet committed on the MySQL side.

Transaction Isolation

When a memcached operation such as get or incr causes a query or DML operation on the
underlying InnoDB table, you can control whether the operation sees the very latest data written to
the table, only data that has been committed, or other variations of transaction isolation level. Use the
innodb_api_trx_level configuration option to control this feature. The numeric values specified
for this option correspond to isolation levels such as REPEATABLE READ. See the description of the
innodb_api_trx_level option for information about other settings.

A strict isolation level ensures that data you retrieve is not rolled back or changed suddenly causing
subsequent queries to return different values. However, strict isolation levels require greater locking
overhead, which can cause waits. For a NoSQL-style application that does not use long-running
transactions, you can typically use the default isolation level or switch to a less strict isolation level.

Disabling Row Locks for memcached DML Operations

The innodb_api_disable_rowlock option can be used to disable row locks when
memcached requests through the daemon_memcached plugin cause DML operations. By default,
innodb_api_disable_rowlock is set to OFF which means that memcached requests row locks for get
and set operations. When innodb_api_disable_rowlock is set to ON, memcached requests a table
lock instead of row locks.

The innodb_api_disable_rowlock option is not dynamic. It must be specified at startup on the
mysqld command line or entered in a MySQL configuration file.

Allowing or Disallowing DDL

By default, you can perform DDL operations such as ALTER TABLE on tables used by the
daemon_memcached plugin. To avoid potential slowdowns when these tables are used for high-throughput
applications, disable DDL operations on these tables by enabling innodb_api_enable_mdl at startup.
This option is less appropriate when accessing the same tables through both memcached and SQL,
because it blocks CREATE INDEX statements on the tables, which could be important for running reporting
queries.

2891

Writing Applications for the InnoDB memcached Plugin

Storing Data on Disk, in Memory, or Both

The innodb_memcache.cache_policies table specifies whether to store data written through the
memcached interface to disk (innodb_only, the default); in memory only, as with traditional memcached
(cache_only); or both (caching).

With the caching setting, if memcached cannot find a key in memory, it searches for the value in an
InnoDB table. Values returned from get calls under the caching setting could be out-of-date if the values
were updated on disk in the InnoDB table but are not yet expired from the memory cache.

The caching policy can be set independently for get, set (including incr and decr), delete, and
flush operations.

For example, you might allow get and set operations to query or update a table and the memcached
memory cache at the same time (using the caching setting), while making delete, flush, or both
operate only on the in-memory copy (using the cache_only setting). That way, deleting or flushing an
item only expires the item from the cache, and the latest value is returned from the InnoDB table the next
time the item is requested.

mysql> SELECT * FROM innodb_memcache.cache_policies;
+--------------+-------------+-------------+---------------+--------------+
| policy_name | get_policy | set_policy | delete_policy | flush_policy |
+--------------+-------------+-------------+---------------+--------------+
| cache_policy | innodb_only | innodb_only | innodb_only | innodb_only |
+--------------+-------------+-------------+---------------+--------------+

mysql> UPDATE innodb_memcache.cache_policies SET set_policy = 'caching'
 WHERE policy_name = 'cache_policy';

innodb_memcache.cache_policies values are only read at startup. After changing values in this
table, uninstall and reinstall the daemon_memcached plugin to ensure that changes take effect.

mysql> UNINSTALL PLUGIN daemon_memcached;

mysql> INSTALL PLUGIN daemon_memcached soname "libmemcached.so";

14.21.5.5 Adapting DML Statements to memcached Operations

Benchmarks suggest that the daemon_memcached plugin speeds up DML operations (inserts, updates,
and deletes) more than it speeds up queries. Therefore, consider focussing initial development efforts
on write-intensive applications that are I/O-bound, and look for opportunities to use MySQL with the
daemon_memcached plugin for new write-intensive applications.

Single-row DML statements are the easiest types of statements to turn into memcached operations.
INSERT becomes add, UPDATE becomes set, incr or decr, and DELETE becomes delete. These
operations are guaranteed to only affect one row when issued through the memcached interface, because
the key is unique within the table.

In the following SQL examples, t1 refers to the table used for memcached operations, based on the
configuration in the innodb_memcache.containers table. key refers to the column listed under
key_columns, and val refers to the column listed under value_columns.

INSERT INTO t1 (key,val) VALUES (some_key,some_value);
SELECT val FROM t1 WHERE key = some_key;
UPDATE t1 SET val = new_value WHERE key = some_key;
UPDATE t1 SET val = val + x WHERE key = some_key;
DELETE FROM t1 WHERE key = some_key;

The following TRUNCATE TABLE and DELETE statements, which remove all rows from the table,
correspond to the flush_all operation, where t1 is configured as the table for memcached operations,
as in the previous example.

2892

The InnoDB memcached Plugin and Replication

TRUNCATE TABLE t1;
DELETE FROM t1;

14.21.5.6 Performing DML and DDL Statements on the Underlying InnoDB Table

You can access the underlying InnoDB table (which is test.demo_test by default) through standard
SQL interfaces. However, there are some restrictions:

• When querying a table that is also accessed through the memcached interface, remember that
memcached operations can be configured to be committed periodically rather than after every write
operation. This behavior is controlled by the daemon_memcached_w_batch_size option. If this option
is set to a value greater than 1, use READ UNCOMMITTED queries to find rows that were just inserted.

mysql> SET SESSSION TRANSACTION ISOLATION LEVEL READ UNCOMMITTED;

mysql> SELECT * FROM demo_test;
+------+------+------+------+-----------+------+------+------+------+------+------+
| cx | cy | c1 | cz | c2 | ca | CB | c3 | cu | c4 | C5 |
+------+------+------+------+-----------+------+------+------+------+------+------+
| NULL | NULL | a11 | NULL | 123456789 | NULL | NULL | 10 | NULL | 3 | NULL |
+------+------+------+------+-----------+------+------+------+------+------+------+

• When modifying a table using SQL that is also accessed through the memcached interface, you can
configure memcached operations to start a new transaction periodically rather than for every read
operation. This behavior is controlled by the daemon_memcached_r_batch_size option. If this option
is set to a value greater than 1, changes made to the table using SQL are not immediately visible to
memcached operations.

• The InnoDB table is either IS (intention shared) or IX (intention exclusive) locked for all
operations in a transaction. If you increase daemon_memcached_r_batch_size and
daemon_memcached_w_batch_size substantially from their default value of 1, the table is most likely
locked between each operation, preventing DDL statements on the table.

14.21.6 The InnoDB memcached Plugin and Replication

Because the daemon_memcached plugin supports the MySQL binary log, updates made on a source
server through the memcached interface can be replicated for backup, balancing intensive read workloads,
and high availability. All memcached commands are supported with binary logging.

You do not need to set up the daemon_memcached plugin on replica servers. The primary advantage of
this configuration is increased write throughput on the source. The speed of the replication mechanism is
not affected.

The following sections show how to use the binary log capability when using the daemon_memcached
plugin with MySQL replication. It is assumed that you have completed the setup described in
Section 14.21.3, “Setting Up the InnoDB memcached Plugin”.

Enabling the InnoDB memcached Binary Log

1. To use the daemon_memcached plugin with the MySQL binary log, enable the
innodb_api_enable_binlog configuration option on the source server. This option can only be set
at server startup. You must also enable the MySQL binary log on the source server using the --log-
bin option. You can add these options to the MySQL configuration file, or on the mysqld command
line.

mysqld ... --log-bin -–innodb_api_enable_binlog=1

2. Configure the source and replica server, as described in Section 16.1.2, “Setting Up Binary Log File
Position Based Replication”.

2893

The InnoDB memcached Plugin and Replication

3. Use mysqldump to create a source data snapshot, and sync the snapshot to the replica server.

source $> mysqldump --all-databases --lock-all-tables > dbdump.db
replica $> mysql < dbdump.db

4. On the source server, issue SHOW MASTER STATUS to obtain the source binary log coordinates.

mysql> SHOW MASTER STATUS;

5. On the replica server, use a CHANGE MASTER TO statement to set up a replica server using the source
binary log coordinates.

mysql> CHANGE MASTER TO
 MASTER_HOST='localhost',
 MASTER_USER='root',
 MASTER_PASSWORD='',
 MASTER_PORT = 13000,
 MASTER_LOG_FILE='0.000001,
 MASTER_LOG_POS=114;

6. Start the replica.

mysql> START SLAVE;

If the error log prints output similar to the following, the replica is ready for replication.

2013-09-24T13:04:38.639684Z 49 [Note] Slave I/O thread: connected to
master 'root@localhost:13000', replication started in log '0.000001'
at position 114

Testing the InnoDB memcached Replication Configuration

This example demonstrates how to test the InnoDB memcached replication configuration using the
memcached and telnet to insert, update, and delete data. A MySQL client is used to verify results on the
source and replica servers.

The example uses the demo_test table, which was created by the innodb_memcached_config.sql
configuration script during the initial setup of the daemon_memcached plugin. The demo_test table
contains a single example record.

1. Use the set command to insert a record with a key of test1, a flag value of 10, an expiration value of
0, a cas value of 1, and a value of t1.

telnet 127.0.0.1 11211
Trying 127.0.0.1...
Connected to 127.0.0.1.
Escape character is '^]'.
set test1 10 0 1
t1
STORED

2. On the source server, check that the record was inserted into the demo_test table. Assuming the
demo_test table was not previously modified, there should be two records. The example record with
a key of AA, and the record you just inserted, with a key of test1. The c1 column maps to the key, the
c2 column to the value, the c3 column to the flag value, the c4 column to the cas value, and the c5
column to the expiration time. The expiration time was set to 0, since it is unused.

mysql> SELECT * FROM test.demo_test;
+-------+--------------+------+------+------+
| c1 | c2 | c3 | c4 | c5 |
+-------+--------------+------+------+------+
| AA | HELLO, HELLO | 8 | 0 | 0 |

2894

The InnoDB memcached Plugin and Replication

| test1 | t1 | 10 | 1 | 0 |
+-------+--------------+------+------+------+

3. Check to verify that the same record was replicated to the replica server.

mysql> SELECT * FROM test.demo_test;
+-------+--------------+------+------+------+
| c1 | c2 | c3 | c4 | c5 |
+-------+--------------+------+------+------+
| AA | HELLO, HELLO | 8 | 0 | 0 |
| test1 | t1 | 10 | 1 | 0 |
+-------+--------------+------+------+------+

4. Use the set command to update the key to a value of new.

telnet 127.0.0.1 11211
Trying 127.0.0.1...
Connected to 127.0.0.1.
Escape character is '^]'.
set test1 10 0 2
new
STORED

The update is replicated to the replica server (notice that the cas value is also updated).

mysql> SELECT * FROM test.demo_test;
+-------+--------------+------+------+------+
| c1 | c2 | c3 | c4 | c5 |
+-------+--------------+------+------+------+
| AA | HELLO, HELLO | 8 | 0 | 0 |
| test1 | new | 10 | 2 | 0 |
+-------+--------------+------+------+------+

5. Delete the test1 record using a delete command.

telnet 127.0.0.1 11211
Trying 127.0.0.1...
Connected to 127.0.0.1.
Escape character is '^]'.
delete test1
DELETED

When the delete operation is replicated to the replica, the test1 record on the replica is also deleted.

mysql> SELECT * FROM test.demo_test;
+----+--------------+------+------+------+
| c1 | c2 | c3 | c4 | c5 |
+----+--------------+------+------+------+
| AA | HELLO, HELLO | 8 | 0 | 0 |
+----+--------------+------+------+------+

6. Remove all rows from the table using the flush_all command.

telnet 127.0.0.1 11211
Trying 127.0.0.1...
Connected to 127.0.0.1.
Escape character is '^]'.
flush_all
OK

mysql> SELECT * FROM test.demo_test;
Empty set (0.00 sec)

7. Telnet to the source server and enter two new records.

telnet 127.0.0.1 11211

2895

The InnoDB memcached Plugin and Replication

Trying 127.0.0.1...
Connected to 127.0.0.1.
Escape character is '^]'
set test2 10 0 4
again
STORED
set test3 10 0 5
again1
STORED

8. Confirm that the two records were replicated to the replica server.

mysql> SELECT * FROM test.demo_test;
+-------+--------------+------+------+------+
| c1 | c2 | c3 | c4 | c5 |
+-------+--------------+------+------+------+
| test2 | again | 10 | 4 | 0 |
| test3 | again1 | 10 | 5 | 0 |
+-------+--------------+------+------+------+

9. Remove all rows from the table using the flush_all command.

telnet 127.0.0.1 11211
Trying 127.0.0.1...
Connected to 127.0.0.1.
Escape character is '^]'.
flush_all
OK

10. Check to ensure that the flush_all operation was replicated on the replica server.

mysql> SELECT * FROM test.demo_test;
Empty set (0.00 sec)

InnoDB memcached Binary Log Notes

Binary Log Format:

• Most memcached operations are mapped to DML statements (analogous to insert, delete, update).
Since there is no actual SQL statement being processed by the MySQL server, all memcached
commands (except for flush_all) use Row-Based Replication (RBR) logging, which is independent of
any server binlog_format setting.

• The memcached flush_all command is mapped to the TRUNCATE TABLE command. Since DDL
commands can only use statement-based logging, the flush_all command is replicated by sending a
TRUNCATE TABLE statement.

Transactions:

• The concept of transactions has not typically been part of memcached applications. For performance
considerations, daemon_memcached_r_batch_size and daemon_memcached_w_batch_size are
used to control the batch size for read and write transactions. These settings do not affect replication.
Each SQL operation on the underlying InnoDB table is replicated after successful completion.

• The default value of daemon_memcached_w_batch_size is 1, which means that each
memcached write operation is committed immediately. This default setting incurs a certain amount
of performance overhead to avoid inconsistencies in the data that is visible on the source and replica
servers. The replicated records are always available immediately on the replica server. If you set
daemon_memcached_w_batch_size to a value greater than 1, records inserted or updated through
memcached are not immediately visible on the source server; to view the records on the source server
before they are committed, issue SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED.

2896

InnoDB memcached Plugin Internals

14.21.7 InnoDB memcached Plugin Internals

InnoDB API for the InnoDB memcached Plugin

The InnoDB memcached engine accesses InnoDB through InnoDB APIs, most of which are directly
adopted from embedded InnoDB. InnoDB API functions are passed to the InnoDB memcached engine
as callback functions. InnoDB API functions access the InnoDB tables directly, and are mostly DML
operations with the exception of TRUNCATE TABLE.

memcached commands are implemented through the InnoDB memcached API. The following table
outlines how memcached commands are mapped to DML or DDL operations.

Table 14.21 memcached Commands and Associated DML or DDL Operations

memcached Command DML or DDL Operations

get a read/fetch command

set a search followed by an INSERT or UPDATE
(depending on whether or not a key exists)

add a search followed by an INSERT or UPDATE

replace a search followed by an UPDATE

append a search followed by an UPDATE (appends data to
the result before UPDATE)

prepend a search followed by an UPDATE (prepends data to
the result before UPDATE)

incr a search followed by an UPDATE

decr a search followed by an UPDATE

delete a search followed by a DELETE

flush_all TRUNCATE TABLE (DDL)

InnoDB memcached Plugin Configuration Tables

This section describes configuration tables used by the daemon_memcached plugin. The
cache_policies table, config_options table, and containers table are created by the
innodb_memcached_config.sql configuration script in the innodb_memcache database.

mysql> USE innodb_memcache;
Database changed
mysql> SHOW TABLES;
+---------------------------+
| Tables_in_innodb_memcache |
+---------------------------+
| cache_policies |
| config_options |
| containers |
+---------------------------+

cache_policies Table

The cache_policies table defines a cache policy for the InnoDB memcached installation. You can
specify individual policies for get, set, delete, and flush operations, within a single cache policy. The
default setting for all operations is innodb_only.

• innodb_only: Use InnoDB as the data store.

2897

InnoDB memcached Plugin Internals

• cache_only: Use the memcached engine as the data store.

• caching: Use both InnoDB and the memcached engine as data stores. In this case, if memcached
cannot find a key in memory, it searches for the value in an InnoDB table.

• disable: Disable caching.

Table 14.22 cache_policies Columns

Column Description

policy_name Name of the cache policy. The default cache policy
name is cache_policy.

get_policy The cache policy for get operations. Valid values
are innodb_only, cache_only, caching, or
disabled. The default setting is innodb_only.

set_policy The cache policy for set operations. Valid values
are innodb_only, cache_only, caching, or
disabled. The default setting is innodb_only.

delete_policy The cache policy for delete operations. Valid values
are innodb_only, cache_only, caching, or
disabled. The default setting is innodb_only.

flush_policy The cache policy for flush operations. Valid values
are innodb_only, cache_only, caching, or
disabled. The default setting is innodb_only.

config_options Table

The config_options table stores memcached-related settings that can be changed at runtime using
SQL. Supported configuration options are separator and table_map_delimiter.

Table 14.23 config_options Columns

Column Description

Name Name of the memcached-related configuration
option. The following configuration options are
supported by the config_options table:

• separator: Used to separate values of a
long string into separate values when there are
multiple value_columns defined. By default,
the separator is a | character. For example, if
you define col1, col2 as value columns, and
you define | as the separator, you can issue the
following memcached command to insert values
into col1 and col2, respectively:

set keyx 10 0 19
valuecolx|valuecoly

valuecol1x is stored in col1 and valuecoly
is stored in col2.

• table_map_delimiter: The character
separating the schema name and the table name

2898

InnoDB memcached Plugin Internals

Column Description
when you use the @@ notation in a key name to
access a key in a specific table. For example,
@@t1.some_key and @@t2.some_key have the
same key value, but are stored in different tables.

Value The value assigned to the memcached-related
configuration option.

containers Table

The containers table is the most important of the three configuration tables. Each InnoDB table that
is used to store memcached values must have an entry in the containers table. The entry provides a
mapping between InnoDB table columns and container table columns, which is required for memcached to
work with InnoDB tables.

The containers table contains a default entry for the test.demo_test table, which is created by the
innodb_memcached_config.sql configuration script. To use the daemon_memcached plugin with your
own InnoDB table, you must create an entry in the containers table.

Table 14.24 containers Columns

Column Description

name The name given to the container. If an InnoDB
table is not requested by name using @@ notation,
the daemon_memcached plugin uses the InnoDB
table with a containers.name value of default.
If there is no such entry, the first entry in the
containers table, ordered alphabetically by name
(ascending), determines the default InnoDB table.

db_schema The name of the database where the InnoDB table
resides. This is a required value.

db_table The name of the InnoDB table that stores
memcached values. This is a required value.

key_columns The column in the InnoDB table that contains
lookup key values for memcached operations. This
is a required value.

value_columns The InnoDB table columns (one or more) that
store memcached data. Multiple columns can be
specified using the separator character specified in
the innodb_memcached.config_options table.
By default, the separator is a pipe character (“|”). To
specify multiple columns, separate them with the
defined separator character. For example: col1|
col2|col3. This is a required value.

flags The InnoDB table columns that are used as flags
(a user-defined numeric value that is stored and
retrieved along with the main value) for memcached.
A flag value can be used as a column specifier for
some operations (such as incr, prepend) if a
memcached value is mapped to multiple columns,
so that an operation is performed on a specified

2899

InnoDB memcached Plugin Internals

Column Description
column. For example, if you have mapped a
value_columns to three InnoDB table columns,
and only want the increment operation performed on
one columns, use the flags column to specify the
column. If you do not use the flags column, set a
value of 0 to indicate that it is unused.

cas_column The InnoDB table column that stores compare-
and-swap (cas) values. The cas_column value
is related to the way memcached hashes requests
to different servers and caches data in memory.
Because the InnoDB memcached plugin is tightly
integrated with a single memcached daemon, and
the in-memory caching mechanism is handled by
MySQL and the InnoDB buffer pool, this column is
rarely needed. If you do not use this column, set a
value of 0 to indicate that it is unused.

expire_time_column The InnoDB table column that stores expiration
values. The expire_time_column value is related
to the way memcached hashes requests to different
servers and caches data in memory. Because the
InnoDB memcached plugin is tightly integrated
with a single memcached daemon, and the in-
memory caching mechanism is handled by MySQL
and the InnoDB buffer pool, this column is rarely
needed. If you do not use this column, set a value
of 0 to indicate that the column is unused. The
maximum expire time is defined as INT_MAX32 or
2147483647 seconds (approximately 68 years).

unique_idx_name_on_key The name of the index on the key column. It must
be a unique index. It can be the primary key or
a secondary index. Preferably, use the primary
key of the InnoDB table. Using the primary key
avoids a lookup that is performed when using a
secondary index. You cannot make a covering index
for memcached lookups; InnoDB returns an error if
you try to define a composite secondary index over
both the key and value columns.

containers Table Column Constraints

• You must supply a value for db_schema, db_name, key_columns, value_columns and
unique_idx_name_on_key. Specify 0 for flags, cas_column, and expire_time_column if they
are unused. Failing to do so could cause your setup to fail.

• key_columns: The maximum limit for a memcached key is 250 characters, which is enforced by
memcached. The mapped key must be a non-Null CHAR or VARCHAR type.

• value_columns: Must be mapped to a CHAR, VARCHAR, or BLOB column. There is no length restriction
and the value can be NULL.

• cas_column: The cas value is a 64 bit integer. It must be mapped to a BIGINT of at least 8 bytes. If
you do not use this column, set a value of 0 to indicate that it is unused.

2900

Troubleshooting the InnoDB memcached Plugin

• expiration_time_column: Must mapped to an INTEGER of at least 4 bytes. Expiration time is
defined as a 32-bit integer for Unix time (the number of seconds since January 1, 1970, as a 32-bit
value), or the number of seconds starting from the current time. For the latter, the number of seconds
may not exceed 60*60*24*30 (the number of seconds in 30 days). If the number sent by a client is
larger, the server considers it to be a real Unix time value rather than an offset from the current time. If
you do not use this column, set a value of 0 to indicate that it is unused.

• flags: Must be mapped to an INTEGER of at least 32-bits and can be NULL. If you do not use this
column, set a value of 0 to indicate that it is unused.

A pre-check is performed at plugin load time to enforce column constraints. If mismatches are found, the
plugin is not loaded.

Multiple Value Column Mapping

• During plugin initialization, when InnoDB memcached is configured with information defined in the
containers table, each mapped column defined in containers.value_columns is verified against
the mapped InnoDB table. If multiple InnoDB table columns are mapped, there is a check to ensure that
each column exists and is the right type.

• At run-time, for memcached insert operations, if there are more delimited values than the number of
mapped columns, only the number of mapped values are taken. For example, if there are six mapped
columns, and seven delimited values are provided, only the first six delimited values are taken. The
seventh delimited value is ignored.

• If there are fewer delimited values than mapped columns, unfilled columns are set to NULL. If an unfilled
column cannot be set to NULL, insert operations fail.

• If a table has more columns than mapped values, the extra columns do not affect results.

The demo_test Example Table

The innodb_memcached_config.sql configuration script creates a demo_test table in the test
database, which can be used to verify InnoDB memcached plugin installation immediately after setup.

The innodb_memcached_config.sql configuration script also creates an entry for the demo_test
table in the innodb_memcache.containers table.

mysql> SELECT * FROM innodb_memcache.containers\G
*************************** 1. row ***************************
 name: aaa
 db_schema: test
 db_table: demo_test
 key_columns: c1
 value_columns: c2
 flags: c3
 cas_column: c4
 expire_time_column: c5
unique_idx_name_on_key: PRIMARY

mysql> SELECT * FROM test.demo_test;
+----+------------------+------+------+------+
| c1 | c2 | c3 | c4 | c5 |
+----+------------------+------+------+------+
| AA | HELLO, HELLO | 8 | 0 | 0 |
+----+------------------+------+------+------+

14.21.8 Troubleshooting the InnoDB memcached Plugin

This section describes issues that you may encounter when using the InnoDB memcached plugin.

2901

Troubleshooting the InnoDB memcached Plugin

• If you encounter the following error in the MySQL error log, the server might fail to start:

failed to set rlimit for open files. Try running as root or requesting
smaller maxconns value.

The error message is from the memcached daemon. One solution is to raise the OS limit for the number
of open files. The commands for checking and increasing the open file limit varies by operating system.
This example shows commands for Linux and macOS:

Linux
$> ulimit -n
1024
$> ulimit -n 4096
$> ulimit -n
4096

macOS
$> ulimit -n
256
$> ulimit -n 4096
$> ulimit -n
4096

The other solution is to reduce the number of concurrent connections permitted for the memcached
daemon. To do so, encode the -c memcached option in the daemon_memcached_option
configuration parameter in the MySQL configuration file. The -c option has a default value of 1024.

[mysqld]
...
loose-daemon_memcached_option='-c 64'

• To troubleshoot problems where the memcached daemon is unable to store or retrieve InnoDB
table data, encode the -vvv memcached option in the daemon_memcached_option configuration
parameter in the MySQL configuration file. Examine the MySQL error log for debug output related to
memcached operations.

[mysqld]
...
loose-daemon_memcached_option='-vvv'

• If columns specified to hold memcached values are the wrong data type, such as a numeric type instead
of a string type, attempts to store key-value pairs fail with no specific error code or message.

• If the daemon_memcached plugin causes MySQL server startup issues, you can temporarily disable the
daemon_memcached plugin while troubleshooting by adding this line under the [mysqld] group in the
MySQL configuration file:

daemon_memcached=OFF

For example, if you run the INSTALL PLUGIN statement before running the
innodb_memcached_config.sql configuration script to set up the necessary database and tables,
the server might unexpectedly exit and fail to start. The server could also fail to start if you incorrectly
configure an entry in the innodb_memcache.containers table.

To uninstall the memcached plugin for a MySQL instance, issue the following statement:

mysql> UNINSTALL PLUGIN daemon_memcached;

• If you run more than one instance of MySQL on the same machine with the daemon_memcached plugin
enabled in each instance, use the daemon_memcached_option configuration parameter to specify a
unique memcached port for each daemon_memcached plugin.

2902

InnoDB Troubleshooting

• If an SQL statement cannot find the InnoDB table or finds no data in the table, but memcached
API calls retrieve the expected data, you may be missing an entry for the InnoDB table in the
innodb_memcache.containers table, or you may have not switched to the correct InnoDB table
by issuing a get or set request using @@table_id notation. This problem could also occur if you
change an existing entry in the innodb_memcache.containers table without restarting the MySQL
server afterward. The free-form storage mechanism is flexible enough that your requests to store or
retrieve a multi-column value such as col1|col2|col3 may still work, even if the daemon is using the
test.demo_test table which stores values in a single column.

• When defining your own InnoDB table for use with the daemon_memcached plugin, and columns
in the table are defined as NOT NULL, ensure that values are supplied for the NOT NULL columns
when inserting a record for the table into the innodb_memcache.containers table. If the INSERT
statement for the innodb_memcache.containers record contains fewer delimited values than
there are mapped columns, unfilled columns are set to NULL. Attempting to insert a NULL value into a
NOT NULL column causes the INSERT to fail, which may only become evident after you reinitialize the
daemon_memcached plugin to apply changes to the innodb_memcache.containers table.

• If cas_column and expire_time_column fields of the innodb_memcached.containers table are
set to NULL, the following error is returned when attempting to load the memcached plugin:

InnoDB_Memcached: column 6 in the entry for config table 'containers' in
database 'innodb_memcache' has an invalid NULL value.

The memcached plugin rejects usage of NULL in the cas_column and expire_time_column
columns. Set the value of these columns to 0 when the columns are unused.

• As the length of the memcached key and values increase, you might encounter size and length limits.

• When the key exceeds 250 bytes, memcached operations return an error. This is currently a fixed limit
within memcached.

• InnoDB table limits may be encountered if values exceed 768 bytes in size, 3072 bytes in size, or half
of the innodb_page_size value. These limits primarily apply if you intend to create an index on a
value column to run report-generating queries on that column using SQL. See Section 14.23, “InnoDB
Limits” for details.

• The maximum size for the key-value combination is 1 MB.

• If you share configuration files across MySQL servers of different versions, using the latest configuration
options for the daemon_memcached plugin could cause startup errors on older MySQL versions. To
avoid compatibility problems, use the loose prefix with option names. For example, use loose-
daemon_memcached_option='-c 64' instead of daemon_memcached_option='-c 64'.

• There is no restriction or check in place to validate character set settings. memcached stores and
retrieves keys and values in bytes and is therefore not character set-sensitive. However, you must
ensure that the memcached client and the MySQL table use the same character set.

• memcached connections are blocked from accessing tables that contain an indexed virtual column.
Accessing an indexed virtual column requires a callback to the server, but a memcached connection
does not have access to the server code.

14.22 InnoDB Troubleshooting

The following general guidelines apply to troubleshooting InnoDB problems:

2903

Troubleshooting InnoDB I/O Problems

• When an operation fails or you suspect a bug, look at the MySQL server error log (see Section 5.4.2,
“The Error Log”). Server Error Message Reference provides troubleshooting information for some of the
common InnoDB-specific errors that you may encounter.

• If the failure is related to a deadlock, run with the innodb_print_all_deadlocks option enabled
so that details about each deadlock are printed to the MySQL server error log. For information about
deadlocks, see Section 14.7.5, “Deadlocks in InnoDB”.

• Issues relating to the InnoDB data dictionary include failed CREATE TABLE statements (orphan table
files), inability to open InnoDB files, and system cannot find the path specified errors. For
information about these sorts of problems and errors, see Section 14.22.3, “Troubleshooting InnoDB
Data Dictionary Operations”.

• When troubleshooting, it is usually best to run the MySQL server from the command prompt, rather than
through mysqld_safe or as a Windows service. You can then see what mysqld prints to the console,
and so have a better grasp of what is going on. On Windows, start mysqld with the --console option
to direct the output to the console window.

• Enable the InnoDB Monitors to obtain information about a problem (see Section 14.18, “InnoDB
Monitors”). If the problem is performance-related, or your server appears to be hung, you should enable
the standard Monitor to print information about the internal state of InnoDB. If the problem is with locks,
enable the Lock Monitor. If the problem is with table creation, tablespaces, or data dictionary operations,
refer to the InnoDB Information Schema system tables to examine contents of the InnoDB internal data
dictionary.

InnoDB temporarily enables standard InnoDB Monitor output under the following conditions:

• A long semaphore wait

• InnoDB cannot find free blocks in the buffer pool

• Over 67% of the buffer pool is occupied by lock heaps or the adaptive hash index

• If you suspect that a table is corrupt, run CHECK TABLE on that table.

14.22.1 Troubleshooting InnoDB I/O Problems

The troubleshooting steps for InnoDB I/O problems depend on when the problem occurs: during startup of
the MySQL server, or during normal operations when a DML or DDL statement fails due to problems at the
file system level.

Initialization Problems

If something goes wrong when InnoDB attempts to initialize its tablespace or its log files, delete all files
created by InnoDB: all ibdata files and all ib_logfile files. If you already created some InnoDB
tables, also delete the corresponding .frm files for these tables, and any .ibd files if you are using
multiple tablespaces, from the MySQL database directories. Then try the InnoDB database creation again.
For easiest troubleshooting, start the MySQL server from a command prompt so that you see what is
happening.

Runtime Problems

If InnoDB prints an operating system error during a file operation, usually the problem has one of the
following solutions:

• Make sure the InnoDB data file directory and the InnoDB log directory exist.

2904

https://dev.mysql.com/doc/mysql-errors/5.7/en/server-error-reference.html

Forcing InnoDB Recovery

• Make sure mysqld has access rights to create files in those directories.

• Make sure mysqld can read the proper my.cnf or my.ini option file, so that it starts with the options
that you specified.

• Make sure the disk is not full and you are not exceeding any disk quota.

• Make sure that the names you specify for subdirectories and data files do not clash.

• Doublecheck the syntax of the innodb_data_home_dir and innodb_data_file_path values. In
particular, any MAX value in the innodb_data_file_path option is a hard limit, and exceeding that
limit causes a fatal error.

14.22.2 Forcing InnoDB Recovery

To investigate database page corruption, you might dump your tables from the database with SELECT ...
INTO OUTFILE. Usually, most of the data obtained in this way is intact. Serious corruption might
cause SELECT * FROM tbl_name statements or InnoDB background operations to unexpectedly
exit or assert, or even cause InnoDB roll-forward recovery to crash. In such cases, you can use the
innodb_force_recovery option to force the InnoDB storage engine to start up while preventing
background operations from running, so that you can dump your tables. For example, you can add the
following line to the [mysqld] section of your option file before restarting the server:

[mysqld]
innodb_force_recovery = 1

For information about using option files, see Section 4.2.2.2, “Using Option Files”.

Warning

Only set innodb_force_recovery to a value greater than 0 in an emergency
situation, so that you can start InnoDB and dump your tables. Before doing
so, ensure that you have a backup copy of your database in case you need to
recreate it. Values of 4 or greater can permanently corrupt data files. Only use
an innodb_force_recovery setting of 4 or greater on a production server
instance after you have successfully tested the setting on a separate physical
copy of your database. When forcing InnoDB recovery, you should always start
with innodb_force_recovery=1 and only increase the value incrementally, as
necessary.

innodb_force_recovery is 0 by default (normal startup without forced recovery). The permissible
nonzero values for innodb_force_recovery are 1 to 6. A larger value includes the functionality of
lesser values. For example, a value of 3 includes all of the functionality of values 1 and 2.

If you are able to dump your tables with an innodb_force_recovery value of 3 or less, then you are
relatively safe that only some data on corrupt individual pages is lost. A value of 4 or greater is considered
dangerous because data files can be permanently corrupted. A value of 6 is considered drastic because
database pages are left in an obsolete state, which in turn may introduce more corruption into B-trees and
other database structures.

As a safety measure, InnoDB prevents INSERT, UPDATE, or DELETE operations when
innodb_force_recovery is greater than 0. An innodb_force_recovery setting of 4 or greater
places InnoDB in read-only mode.

• 1 (SRV_FORCE_IGNORE_CORRUPT)

Lets the server run even if it detects a corrupt page. Tries to make SELECT * FROM tbl_name jump
over corrupt index records and pages, which helps in dumping tables.

2905

Troubleshooting InnoDB Data Dictionary Operations

• 2 (SRV_FORCE_NO_BACKGROUND)

Prevents the master thread and any purge threads from running. If an unexpected exit would occur
during the purge operation, this recovery value prevents it.

• 3 (SRV_FORCE_NO_TRX_UNDO)

Does not run transaction rollbacks after crash recovery.

• 4 (SRV_FORCE_NO_IBUF_MERGE)

Prevents insert buffer merge operations. If they would cause a crash, does not do them. Does not
calculate table statistics. This value can permanently corrupt data files. After using this value, be
prepared to drop and recreate all secondary indexes. Sets InnoDB to read-only.

• 5 (SRV_FORCE_NO_UNDO_LOG_SCAN)

Does not look at undo logs when starting the database: InnoDB treats even incomplete transactions as
committed. This value can permanently corrupt data files. Sets InnoDB to read-only.

• 6 (SRV_FORCE_NO_LOG_REDO)

Does not do the redo log roll-forward in connection with recovery. This value can permanently corrupt
data files. Leaves database pages in an obsolete state, which in turn may introduce more corruption into
B-trees and other database structures. Sets InnoDB to read-only.

You can SELECT from tables to dump them. With an innodb_force_recovery value of 3 or less
you can DROP or CREATE tables. DROP TABLE is also supported with an innodb_force_recovery
value greater than 3, up to MySQL 5.7.17. As of MySQL 5.7.18, DROP TABLE is not permitted with an
innodb_force_recovery value greater than 4.

If you know that a given table is causing an unexpected exit on rollback, you can drop it. If you encounter a
runaway rollback caused by a failing mass import or ALTER TABLE, you can kill the mysqld process and
set innodb_force_recovery to 3 to bring the database up without the rollback, and then DROP the table
that is causing the runaway rollback.

If corruption within the table data prevents you from dumping the entire table contents, a query with an
ORDER BY primary_key DESC clause might be able to dump the portion of the table after the corrupted
part.

If a high innodb_force_recovery value is required to start InnoDB, there may be corrupted data
structures that could cause complex queries (queries containing WHERE, ORDER BY, or other clauses) to
fail. In this case, you may only be able to run basic SELECT * FROM t queries.

14.22.3 Troubleshooting InnoDB Data Dictionary Operations

Information about table definitions is stored both in the .frm files, and in the InnoDB data dictionary. If you
move .frm files around, or if the server crashes in the middle of a data dictionary operation, these sources
of information can become inconsistent.

If a data dictionary corruption or consistency issue prevents you from starting InnoDB, see
Section 14.22.2, “Forcing InnoDB Recovery” for information about manual recovery.

CREATE TABLE Failure Due to Orphan Table

A symptom of an out-of-sync data dictionary is that a CREATE TABLE statement fails. If this occurs, look in
the server's error log. If the log says that the table already exists inside the InnoDB internal data dictionary,

2906

Troubleshooting InnoDB Data Dictionary Operations

you have an orphan table inside the InnoDB tablespace files that has no corresponding .frm file. The
error message looks like this:

InnoDB: Error: table test/parent already exists in InnoDB internal
InnoDB: data dictionary. Have you deleted the .frm file
InnoDB: and not used DROP TABLE? Have you used DROP DATABASE
InnoDB: for InnoDB tables in MySQL version <= 3.23.43?
InnoDB: See the Restrictions section of the InnoDB manual.
InnoDB: You can drop the orphaned table inside InnoDB by
InnoDB: creating an InnoDB table with the same name in another
InnoDB: database and moving the .frm file to the current database.
InnoDB: Then MySQL thinks the table exists, and DROP TABLE will
InnoDB: succeed.

You can drop the orphan table by following the instructions given in the error message. If you are still
unable to use DROP TABLE successfully, the problem may be due to name completion in the mysql client.
To work around this problem, start the mysql client with the --skip-auto-rehash option and try DROP
TABLE again. (With name completion on, mysql tries to construct a list of table names, which fails when a
problem such as just described exists.)

Cannot Open Datafile

With innodb_file_per_table enabled (the default), the following messages may appear at startup if a
file-per-table tablespace file (.ibd file) is missing:

[ERROR] InnoDB: Operating system error number 2 in a file operation.
[ERROR] InnoDB: The error means the system cannot find the path specified.
[ERROR] InnoDB: Cannot open datafile for read-only: './test/t1.ibd' OS error: 71
[Warning] InnoDB: Ignoring tablespace `test/t1` because it could not be opened.

To address these messages, issue DROP TABLE statement to remove data about the missing table from
the data dictionary.

Cannot Open File Error

Another symptom of an out-of-sync data dictionary is that MySQL prints an error that it cannot open an
InnoDB file:

ERROR 1016: Can't open file: 'child2.ibd'. (errno: 1)

In the error log you can find a message like this:

InnoDB: Cannot find table test/child2 from the internal data dictionary
InnoDB: of InnoDB though the .frm file for the table exists. Maybe you
InnoDB: have deleted and recreated InnoDB data files but have forgotten
InnoDB: to delete the corresponding .frm files of InnoDB tables?

This means that there is an orphan .frm file without a corresponding table inside InnoDB. You can drop
the orphan .frm file by deleting it manually.

Orphan Intermediate Tables

If MySQL exits in the middle of an in-place ALTER TABLE operation (ALGORITHM=INPLACE), you may be
left with an orphan intermediate table that takes up space on your system. Also, an orphan intermediate
table in an otherwise empty general tablespace prevents you from dropping the general tablespace. This
section describes how to identify and remove orphan intermediate tables.

Intermediate table names begin with an #sql-ib prefix (e.g., #sql-ib87-856498050). The
accompanying .frm file has an #sql-* prefix and is named differently (e.g., #sql-36ab_2.frm).

To identify orphan intermediate tables on your system, you can query the Information Schema
INNODB_SYS_TABLES table. Look for table names that begin with #sql. If the original table resides in

2907

Troubleshooting InnoDB Data Dictionary Operations

a file-per-table tablespace, the tablespace file (the #sql-*.ibd file) for the orphan intermediate table
should be visible in the database directory.

SELECT * FROM INFORMATION_SCHEMA.INNODB_SYS_TABLES WHERE NAME LIKE '%#sql%';

To remove an orphan intermediate table, perform the following steps:

1. In the database directory, rename the #sql-*.frm file to match the base name of the orphan
intermediate table:

$> mv #sql-36ab_2.frm #sql-ib87-856498050.frm

Note

If there is no .frm file, you can recreate it. The .frm file must have the same
table schema as the orphan intermediate table (it must have the same columns
and indexes) and must be placed in the database directory of the orphan
intermediate table.

2. Drop the orphan intermediate table by issuing a DROP TABLE statement, prefixing the name of the
table with #mysql50# and enclosing the table name in backticks. For example:

mysql> DROP TABLE `#mysql50##sql-ib87-856498050`;

The #mysql50# prefix tells MySQL to ignore file name safe encoding introduced in MySQL
5.1. Enclosing the table name in backticks is required to perform SQL statements on table names with
special characters such as “#”.

Note

If an unexpected exit occurs during an in-place ALTER TABLE operation that was
moving a table to a different tablespace, the recovery process restores the table
to its original location but leaves an orphan intermediate table in the destination
tablespace.

Note

If MySQL exits in the middle of an in-place ALTER TABLE operation on a
partitioned table, you may be left with multiple orphan intermediate tables, one
per partition. In this case, use the following procedure to remove the orphan
intermediate tables:

1. In a separate instance of the same MySQL version, create a non-partitioned
table with the same schema name and columns as the partitioned table.

2. Copy the .frm file of the non-partitioned table to the database directory with the
orphan intermediate tables.

3. Make a copy of the .frm file for each table, and rename the .frm files to match
names of the orphan intermediate tables (as described above).

4. Perform a DROP TABLE operation (as described above) for each table.

Orphan Temporary Tables

If MySQL exits in the middle of a table-copying ALTER TABLE operation (ALGORITHM=COPY), you may be
left with an orphan temporary table that takes up space on your system. Also, an orphan temporary table

2908

Troubleshooting InnoDB Data Dictionary Operations

in an otherwise empty general tablespace prevents you from dropping the general tablespace. This section
describes how to identify and remove orphan temporary tables.

Orphan temporary table names begin with an #sql- prefix (e.g., #sql-540_3). The accompanying .frm
file has the same base name as the orphan temporary table.

Note

If there is no .frm file, you can recreate it. The .frm file must have the same
table schema as the orphan temporary table (it must have the same columns and
indexes) and must be placed in the database directory of the orphan temporary
table.

To identify orphan temporary tables on your system, you can query the Information Schema
INNODB_SYS_TABLES table. Look for table names that begin with #sql. If the original table resides in a
file-per-table tablespace, the tablespace file (the #sql-*.ibd file) for the orphan temporary table should
be visible in the database directory.

SELECT * FROM INFORMATION_SCHEMA.INNODB_SYS_TABLES WHERE NAME LIKE '%#sql%';

To remove an orphan temporary table, drop the table by issuing a DROP TABLE statement, prefixing the
name of the table with #mysql50# and enclosing the table name in backticks. For example:

mysql> DROP TABLE `#mysql50##sql-540_3`;

The #mysql50# prefix tells MySQL to ignore file name safe encoding introduced in MySQL 5.1.
Enclosing the table name in backticks is required to perform SQL statements on table names with special
characters such as “#”.

Note

If MySQL exits in the middle of an table-copying ALTER TABLE operation on a
partitioned table, you may be left with multiple orphan temporary tables, one per
partition. In this case, use the following procedure to remove the orphan temporary
tables:

1. In a separate instance of the same MySQL version, create a non-partitioned
table with the same schema name and columns as the partitioned table.

2. Copy the .frm file of the non-partitioned table to the database directory with the
orphan temporary tables.

3. Make a copy of the .frm file for each table, and rename the .frm files to match
the names of the orphan temporary tables (as described above).

4. Perform a DROP TABLE operation (as described above) for each table.

Tablespace Does Not Exist

With innodb_file_per_table enabled, the following message might occur if the .frm or .ibd files (or
both) are missing:

InnoDB: in InnoDB data dictionary has tablespace id N,
InnoDB: but tablespace with that id or name does not exist. Have
InnoDB: you deleted or moved .ibd files?
InnoDB: This may also be a table created with CREATE TEMPORARY TABLE
InnoDB: whose .ibd and .frm files MySQL automatically removed, but the
InnoDB: table still exists in the InnoDB internal data dictionary.

2909

Troubleshooting InnoDB Data Dictionary Operations

If this occurs, try the following procedure to resolve the problem:

1. Create a matching .frm file in some other database directory and copy it to the database directory
where the orphan table is located.

2. Issue DROP TABLE for the original table. That should successfully drop the table and InnoDB should
print a warning to the error log that the .ibd file was missing.

Restoring Orphan File-Per-Table ibd Files

This procedure describes how to restore orphan file-per-table .ibd files to another MySQL instance. You
might use this procedure if the system tablespace is lost or unrecoverable and you want to restore .ibd
file backups on a new MySQL instance.

The procedure is not supported for general tablespace .ibd files.

The procedure assumes that you only have .ibd file backups, you are recovering to the same version
of MySQL that initially created the orphan .ibd files, and that .ibd file backups are clean. See
Section 14.6.1.4, “Moving or Copying InnoDB Tables” for information about creating clean backups.

Table import limitations outlined in Section 14.6.1.3, “Importing InnoDB Tables” are applicable to this
procedure.

1. On the new MySQL instance, recreate the table in a database of the same name.

mysql> CREATE DATABASE sakila;

mysql> USE sakila;

mysql> CREATE TABLE actor (
 actor_id SMALLINT UNSIGNED NOT NULL AUTO_INCREMENT,
 first_name VARCHAR(45) NOT NULL,
 last_name VARCHAR(45) NOT NULL,
 last_update TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP,
 PRIMARY KEY (actor_id),
 KEY idx_actor_last_name (last_name)
)ENGINE=InnoDB DEFAULT CHARSET=utf8;

2. Discard the tablespace of the newly created table.

mysql> ALTER TABLE sakila.actor DISCARD TABLESPACE;

3. Copy the orphan .ibd file from your backup directory to the new database directory.

$> cp /backup_directory/actor.ibd path/to/mysql-5.7/data/sakila/

4. Ensure that the .ibd file has the necessary file permissions.

5. Import the orphan .ibd file. A warning is issued indicating that InnoDB tries to import the file without
schema verification.

mysql> ALTER TABLE sakila.actor IMPORT TABLESPACE; SHOW WARNINGS;
Query OK, 0 rows affected, 1 warning (0.15 sec)

Warning | 1810 | InnoDB: IO Read error: (2, No such file or directory)
Error opening './sakila/actor.cfg', will attempt to import
without schema verification

6. Query the table to verify that the .ibd file was successfully restored.

mysql> SELECT COUNT(*) FROM sakila.actor;

2910

InnoDB Error Handling

+----------+
| count(*) |
+----------+
| 200 |
+----------+

14.22.4 InnoDB Error Handling

The following items describe how InnoDB performs error handling. InnoDB sometimes rolls back only the
statement that failed, other times it rolls back the entire transaction.

• If you run out of file space in a tablespace, a MySQL Table is full error occurs and InnoDB rolls
back the SQL statement.

• A transaction deadlock causes InnoDB to roll back the entire transaction. Retry the entire transaction
when this happens.

A lock wait timeout causes InnoDB to roll back the current statement (the statement that was waiting
for the lock and encountered the timeout). To have the entire transaction roll back, start the server with
--innodb-rollback-on-timeout enabled. Retry the statement if using the default behavior, or the
entire transaction if --innodb-rollback-on-timeout is enabled.

Both deadlocks and lock wait timeouts are normal on busy servers and it is necessary for applications to
be aware that they may happen and handle them by retrying. You can make them less likely by doing as
little work as possible between the first change to data during a transaction and the commit, so the locks
are held for the shortest possible time and for the smallest possible number of rows. Sometimes splitting
work between different transactions may be practical and helpful.

• A duplicate-key error rolls back the SQL statement, if you have not specified the IGNORE option in your
statement.

• A row too long error rolls back the SQL statement.

• Other errors are mostly detected by the MySQL layer of code (above the InnoDB storage engine level),
and they roll back the corresponding SQL statement. Locks are not released in a rollback of a single
SQL statement.

During implicit rollbacks, as well as during the execution of an explicit ROLLBACK SQL statement, SHOW
PROCESSLIST displays Rolling back in the State column for the relevant connection.

14.23 InnoDB Limits
This section describes limits for InnoDB tables, indexes, tablespaces, and other aspects of the InnoDB
storage engine.

• A table can contain a maximum of 1017 columns (raised in MySQL 5.6.9 from the earlier limit of 1000).
Virtual generated columns are included in this limit.

• A table can contain a maximum of 64 secondary indexes.

• If innodb_large_prefix is enabled (the default), the index key prefix limit is 3072 bytes for InnoDB
tables that use the DYNAMIC or COMPRESSED row format. If innodb_large_prefix is disabled, the
index key prefix limit is 767 bytes for tables of any row format.

innodb_large_prefix is deprecated; expect it to be removed in a future MySQL release.
innodb_large_prefix was introduced in MySQL 5.5 to disable large index key prefixes for
compatibility with earlier versions of InnoDB that do not support large index key prefixes.

2911

InnoDB Limits

The index key prefix length limit is 767 bytes for InnoDB tables that use the REDUNDANT or COMPACT
row format. For example, you might hit this limit with a column prefix index of more than 255 characters
on a TEXT or VARCHAR column, assuming a utf8mb3 character set and the maximum of 3 bytes for
each character.

Attempting to use an index key prefix length that exceeds the limit returns an error. To avoid such errors
in replication configurations, avoid enabling innodb_large_prefix on the source if it cannot also be
enabled on replicas.

If you reduce the InnoDB page size to 8KB or 4KB by specifying the innodb_page_size option when
creating the MySQL instance, the maximum length of the index key is lowered proportionally, based on
the limit of 3072 bytes for a 16KB page size. That is, the maximum index key length is 1536 bytes when
the page size is 8KB, and 768 bytes when the page size is 4KB.

The limits that apply to index key prefixes also apply to full-column index keys.

• A maximum of 16 columns is permitted for multicolumn indexes. Exceeding the limit returns an error.

ERROR 1070 (42000): Too many key parts specified; max 16 parts allowed

• The maximum row size, excluding any variable-length columns that are stored off-page, is slightly less
than half of a page for 4KB, 8KB, 16KB, and 32KB page sizes. For example, the maximum row size for
the default innodb_page_size of 16KB is about 8000 bytes. However, for an InnoDB page size of
64KB, the maximum row size is approximately 16000 bytes. LONGBLOB and LONGTEXT columns must be
less than 4GB, and the total row size, including BLOB and TEXT columns, must be less than 4GB.

If a row is less than half a page long, all of it is stored locally within the page. If it exceeds half a page,
variable-length columns are chosen for external off-page storage until the row fits within half a page, as
described in Section 14.12.2, “File Space Management”.

• Although InnoDB supports row sizes larger than 65,535 bytes internally, MySQL itself imposes a row-
size limit of 65,535 for the combined size of all columns. See Section 8.4.7, “Limits on Table Column
Count and Row Size”.

• On some older operating systems, files must be less than 2GB. This is not an InnoDB limitation. If you
require a large system tablespace, configure it using several smaller data files rather than one large data
file, or distribute table data across file-per-table and general tablespace data files.

• The combined maximum size for InnoDB log files is 512GB.

• The minimum tablespace size is slightly larger than 10MB. The maximum tablespace size depends on
the InnoDB page size.

Table 14.25 InnoDB Maximum Tablespace Size

InnoDB Page Size Maximum Tablespace Size

4KB 16TB

8KB 32TB

16KB 64TB

32KB 128TB

64KB 256TB

The maximum tablespace size is also the maximum size for a table.

• Tablespace files cannot exceed 4GB on Windows 32-bit systems (Bug #80149).

2912

InnoDB Restrictions and Limitations

• An InnoDB instance supports up to 2^32 (4294967296) tablespaces, with a small number of those
tablespaces reserved for undo and temporary tables.

• Shared tablespaces support up to 2^32 (4294967296) tables.

• The path of a tablespace file, including the file name, cannot exceed the MAX_PATH limit on Windows.
Prior to Windows 10, the MAX_PATH limit is 260 characters. As of Windows 10, version 1607, MAX_PATH
limitations are removed from common Win32 file and directory functions, but you must enable the new
behavior.

• ROW_FORMAT=COMPRESSED in the Barracuda file format assumes that the page size is at most 16KB
and uses 14-bit pointers.

• For limits associated with concurrent read-write transactions, see Section 14.6.7, “Undo Logs”.

14.24 InnoDB Restrictions and Limitations

This section describes restrictions and limitations of the InnoDB storage engine.

• You cannot create a table with a column name that matches the name of an internal InnoDB column
(including DB_ROW_ID, DB_TRX_ID, and DB_ROLL_PTR. This restriction applies to use of the names in
any lettercase.

mysql> CREATE TABLE t1 (c1 INT, db_row_id INT) ENGINE=INNODB;
ERROR 1166 (42000): Incorrect column name 'db_row_id'

• SHOW TABLE STATUS does not provide accurate statistics for InnoDB tables except for the physical
size reserved by the table. The row count is only a rough estimate used in SQL optimization.

• InnoDB does not keep an internal count of rows in a table because concurrent transactions might “see”
different numbers of rows at the same time. Consequently, SELECT COUNT(*) statements only count
rows visible to the current transaction.

For information about how InnoDB processes SELECT COUNT(*) statements, refer to the COUNT()
description in Section 12.19.1, “Aggregate Function Descriptions”.

• ROW_FORMAT=COMPRESSED is unsupported for page sizes greater than 16KB.

• A MySQL instance using a particular InnoDB page size (innodb_page_size) cannot use data files or
log files from an instance that uses a different page size.

• For limitations associated with importing tables using the Transportable Tablespaces feature, see Table
Import Limitations.

• For limitations associated with online DDL, see Section 14.13.6, “Online DDL Limitations”.

• For limitations associated with general tablespaces, see General Tablespace Limitations.

• For limitations associated with data-at-rest encryption, see Encryption Limitations.

2913

2914

Chapter 15 Alternative Storage Engines

Table of Contents
15.1 Setting the Storage Engine .. 2918
15.2 The MyISAM Storage Engine .. 2919

15.2.1 MyISAM Startup Options .. 2922
15.2.2 Space Needed for Keys ... 2923
15.2.3 MyISAM Table Storage Formats ... 2924
15.2.4 MyISAM Table Problems .. 2926

15.3 The MEMORY Storage Engine .. 2928
15.4 The CSV Storage Engine .. 2933

15.4.1 Repairing and Checking CSV Tables .. 2933
15.4.2 CSV Limitations ... 2934

15.5 The ARCHIVE Storage Engine .. 2934
15.6 The BLACKHOLE Storage Engine ... 2936
15.7 The MERGE Storage Engine ... 2938

15.7.1 MERGE Table Advantages and Disadvantages ... 2941
15.7.2 MERGE Table Problems .. 2942

15.8 The FEDERATED Storage Engine ... 2943
15.8.1 FEDERATED Storage Engine Overview .. 2944
15.8.2 How to Create FEDERATED Tables ... 2945
15.8.3 FEDERATED Storage Engine Notes and Tips ... 2948
15.8.4 FEDERATED Storage Engine Resources .. 2949

15.9 The EXAMPLE Storage Engine ... 2949
15.10 Other Storage Engines .. 2950
15.11 Overview of MySQL Storage Engine Architecture ... 2950

15.11.1 Pluggable Storage Engine Architecture .. 2950
15.11.2 The Common Database Server Layer ... 2951

Storage engines are MySQL components that handle the SQL operations for different table types. InnoDB
is the default and most general-purpose storage engine, and Oracle recommends using it for tables except
for specialized use cases. (The CREATE TABLE statement in MySQL 5.7 creates InnoDB tables by
default.)

MySQL Server uses a pluggable storage engine architecture that enables storage engines to be loaded
into and unloaded from a running MySQL server.

To determine which storage engines your server supports, use the SHOW ENGINES statement. The
value in the Support column indicates whether an engine can be used. A value of YES, NO, or DEFAULT
indicates that an engine is available, not available, or available and currently set as the default storage
engine.

mysql> SHOW ENGINES\G
*************************** 1. row ***************************
 Engine: PERFORMANCE_SCHEMA
 Support: YES
 Comment: Performance Schema
Transactions: NO
 XA: NO
 Savepoints: NO
*************************** 2. row ***************************
 Engine: InnoDB
 Support: DEFAULT

2915

MySQL 5.7 Supported Storage Engines

 Comment: Supports transactions, row-level locking, and foreign keys
Transactions: YES
 XA: YES
 Savepoints: YES
*************************** 3. row ***************************
 Engine: MRG_MYISAM
 Support: YES
 Comment: Collection of identical MyISAM tables
Transactions: NO
 XA: NO
 Savepoints: NO
*************************** 4. row ***************************
 Engine: BLACKHOLE
 Support: YES
 Comment: /dev/null storage engine (anything you write to it disappears)
Transactions: NO
 XA: NO
 Savepoints: NO
*************************** 5. row ***************************
 Engine: MyISAM
 Support: YES
 Comment: MyISAM storage engine
Transactions: NO
 XA: NO
 Savepoints: NO
...

This chapter covers use cases for special-purpose MySQL storage engines. It does not cover the default
InnoDB storage engine or the NDB storage engine which are covered in Chapter 14, The InnoDB Storage
Engine, and Chapter 21, MySQL NDB Cluster 7.5 and NDB Cluster 7.6. For advanced users, this chapter
also contains a description of the pluggable storage engine architecture (see Section 15.11, “Overview of
MySQL Storage Engine Architecture”).

For information about features offered in commercial MySQL Server binaries, see MySQL Editions, on the
MySQL website. The storage engines available might depend on which edition of MySQL you are using.

For answers to commonly asked questions about MySQL storage engines, see Section A.2, “MySQL 5.7
FAQ: Storage Engines”.

MySQL 5.7 Supported Storage Engines

• InnoDB: The default storage engine in MySQL 5.7. InnoDB is a transaction-safe (ACID compliant)
storage engine for MySQL that has commit, rollback, and crash-recovery capabilities to protect user
data. InnoDB row-level locking (without escalation to coarser granularity locks) and Oracle-style
consistent nonlocking reads increase multi-user concurrency and performance. InnoDB stores user
data in clustered indexes to reduce I/O for common queries based on primary keys. To maintain data
integrity, InnoDB also supports FOREIGN KEY referential-integrity constraints. For more information
about InnoDB, see Chapter 14, The InnoDB Storage Engine.

• MyISAM: These tables have a small footprint. Table-level locking limits the performance in read/write
workloads, so it is often used in read-only or read-mostly workloads in Web and data warehousing
configurations.

• Memory: Stores all data in RAM, for fast access in environments that require quick lookups of non-critical
data. This engine was formerly known as the HEAP engine. Its use cases are decreasing; InnoDB with
its buffer pool memory area provides a general-purpose and durable way to keep most or all data in
memory, and NDBCLUSTER provides fast key-value lookups for huge distributed data sets.

• CSV: Its tables are really text files with comma-separated values. CSV tables let you import or dump
data in CSV format, to exchange data with scripts and applications that read and write that same format.

2916

https://www.mysql.com/products/

MySQL 5.7 Supported Storage Engines

Because CSV tables are not indexed, you typically keep the data in InnoDB tables during normal
operation, and only use CSV tables during the import or export stage.

• Archive: These compact, unindexed tables are intended for storing and retrieving large amounts of
seldom-referenced historical, archived, or security audit information.

• Blackhole: The Blackhole storage engine accepts but does not store data, similar to the Unix /dev/
null device. Queries always return an empty set. These tables can be used in replication configurations
where DML statements are sent to replica servers, but the source server does not keep its own copy of
the data.

• NDB (also known as NDBCLUSTER): This clustered database engine is particularly suited for applications
that require the highest possible degree of uptime and availability.

• Merge: Enables a MySQL DBA or developer to logically group a series of identical MyISAM tables and
reference them as one object. Good for VLDB environments such as data warehousing.

• Federated: Offers the ability to link separate MySQL servers to create one logical database from many
physical servers. Very good for distributed or data mart environments.

• Example: This engine serves as an example in the MySQL source code that illustrates how to begin
writing new storage engines. It is primarily of interest to developers. The storage engine is a “stub” that
does nothing. You can create tables with this engine, but no data can be stored in them or retrieved from
them.

You are not restricted to using the same storage engine for an entire server or schema. You can specify
the storage engine for any table. For example, an application might use mostly InnoDB tables, with one
CSV table for exporting data to a spreadsheet and a few MEMORY tables for temporary workspaces.

Choosing a Storage Engine

The various storage engines provided with MySQL are designed with different use cases in mind. The
following table provides an overview of some storage engines provided with MySQL, with clarifying notes
following the table.

Table 15.1 Storage Engines Feature Summary

Feature MyISAM Memory InnoDB Archive NDB

B-tree indexes Yes Yes Yes No No

Backup/point-
in-time recovery
(note 1)

Yes Yes Yes Yes Yes

Cluster
database
support

No No No No Yes

Clustered
indexes

No No Yes No No

Compressed
data

Yes (note 2) No Yes Yes No

Data caches No N/A Yes No Yes

Encrypted data Yes (note 3) Yes (note 3) Yes (note 4) Yes (note 3) Yes (note 5)

Foreign key
support

No No Yes No Yes

2917

Setting the Storage Engine

Feature MyISAM Memory InnoDB Archive NDB

Full-text search
indexes

Yes No Yes (note 6) No No

Geospatial data
type support

Yes No Yes Yes Yes

Geospatial
indexing support

Yes No Yes (note 7) No No

Hash indexes No Yes No (note 8) No Yes

Index caches Yes N/A Yes No Yes

Locking
granularity

Table Table Row Row Row

MVCC No No Yes No No

Replication
support (note 1)

Yes Limited (note 9) Yes Yes Yes

Storage limits 256TB RAM 64TB None 384EB

T-tree indexes No No No No Yes

Transactions No No Yes No Yes

Update statistics
for data
dictionary

Yes Yes Yes Yes Yes

Notes:

1. Implemented in the server, rather than in the storage engine.

2. Compressed MyISAM tables are supported only when using the compressed row format. Tables using
the compressed row format with MyISAM are read only.

3. Implemented in the server via encryption functions.

4. Implemented in the server via encryption functions; In MySQL 5.7 and later, data-at-rest encryption is
supported.

5. Implemented in the server via encryption functions; encrypted NDB backups as of NDB 8.0.22;
transparent NDB file system encryption supported in NDB 8.0.29 and later.

6. Support for FULLTEXT indexes is available in MySQL 5.6 and later.

7. Support for geospatial indexing is available in MySQL 5.7 and later.

8. InnoDB utilizes hash indexes internally for its Adaptive Hash Index feature.

9. See the discussion later in this section.

15.1 Setting the Storage Engine
When you create a new table, you can specify which storage engine to use by adding an ENGINE table
option to the CREATE TABLE statement:

-- ENGINE=INNODB not needed unless you have set a different
-- default storage engine.
CREATE TABLE t1 (i INT) ENGINE = INNODB;
-- Simple table definitions can be switched from one to another.

2918

The MyISAM Storage Engine

CREATE TABLE t2 (i INT) ENGINE = CSV;
CREATE TABLE t3 (i INT) ENGINE = MEMORY;

When you omit the ENGINE option, the default storage engine is used. The default engine is InnoDB
in MySQL 5.7. You can specify the default engine by using the --default-storage-engine server
startup option, or by setting the default-storage-engine option in the my.cnf configuration file.

You can set the default storage engine for the current session by setting the default_storage_engine
variable:

SET default_storage_engine=NDBCLUSTER;

The storage engine for TEMPORARY tables created with CREATE TEMPORARY TABLE can be set
separately from the engine for permanent tables by setting the default_tmp_storage_engine, either
at startup or at runtime.

To convert a table from one storage engine to another, use an ALTER TABLE statement that indicates the
new engine:

ALTER TABLE t ENGINE = InnoDB;

See Section 13.1.18, “CREATE TABLE Statement”, and Section 13.1.8, “ALTER TABLE Statement”.

If you try to use a storage engine that is not compiled in or that is compiled in but deactivated, MySQL
instead creates a table using the default storage engine. For example, in a replication setup, perhaps your
source server uses InnoDB tables for maximum safety, but the replica servers use other storage engines
for speed at the expense of durability or concurrency.

By default, a warning is generated whenever CREATE TABLE or ALTER TABLE cannot use the default
storage engine. To prevent confusing, unintended behavior if the desired engine is unavailable, enable
the NO_ENGINE_SUBSTITUTION SQL mode. If the desired engine is unavailable, this setting produces
an error instead of a warning, and the table is not created or altered. See Section 5.1.10, “Server SQL
Modes”.

For new tables, MySQL always creates an .frm file to hold the table and column definitions. The table's
index and data may be stored in one or more other files, depending on the storage engine. The server
creates the .frm file above the storage engine level. Individual storage engines create any additional
files required for the tables that they manage. If a table name contains special characters, the names for
the table files contain encoded versions of those characters as described in Section 9.2.4, “Mapping of
Identifiers to File Names”.

15.2 The MyISAM Storage Engine
MyISAM is based on the older (and no longer available) ISAM storage engine but has many useful
extensions.

Table 15.2 MyISAM Storage Engine Features

Feature Support

B-tree indexes Yes

Backup/point-in-time recovery (Implemented in
the server, rather than in the storage engine.)

Yes

Cluster database support No

Clustered indexes No

Compressed data Yes (Compressed MyISAM tables are supported
only when using the compressed row format. Tables

2919

The MyISAM Storage Engine

Feature Support
using the compressed row format with MyISAM are
read only.)

Data caches No

Encrypted data Yes (Implemented in the server via encryption
functions.)

Foreign key support No

Full-text search indexes Yes

Geospatial data type support Yes

Geospatial indexing support Yes

Hash indexes No

Index caches Yes

Locking granularity Table

MVCC No

Replication support (Implemented in the server,
rather than in the storage engine.)

Yes

Storage limits 256TB

T-tree indexes No

Transactions No

Update statistics for data dictionary Yes

Each MyISAM table is stored on disk in three files. The files have names that begin with the table name and
have an extension to indicate the file type. An .frm file stores the table format. The data file has an .MYD
(MYData) extension. The index file has an .MYI (MYIndex) extension.

To specify explicitly that you want a MyISAM table, indicate that with an ENGINE table option:

CREATE TABLE t (i INT) ENGINE = MYISAM;

In MySQL 5.7, it is normally necessary to use ENGINE to specify the MyISAM storage engine because
InnoDB is the default engine.

You can check or repair MyISAM tables with the mysqlcheck client or myisamchk utility. You can also
compress MyISAM tables with myisampack to take up much less space. See Section 4.5.3, “mysqlcheck
— A Table Maintenance Program”, Section 4.6.3, “myisamchk — MyISAM Table-Maintenance Utility”, and
Section 4.6.5, “myisampack — Generate Compressed, Read-Only MyISAM Tables”.

MyISAM tables have the following characteristics:

• All data values are stored with the low byte first. This makes the data machine and operating system
independent. The only requirements for binary portability are that the machine uses two's-complement
signed integers and IEEE floating-point format. These requirements are widely used among mainstream
machines. Binary compatibility might not be applicable to embedded systems, which sometimes have
peculiar processors.

There is no significant speed penalty for storing data low byte first; the bytes in a table row normally are
unaligned and it takes little more processing to read an unaligned byte in order than in reverse order.
Also, the code in the server that fetches column values is not time critical compared to other code.

• All numeric key values are stored with the high byte first to permit better index compression.

2920

The MyISAM Storage Engine

• Large files (up to 63-bit file length) are supported on file systems and operating systems that support
large files.

• There is a limit of (232)2 (1.844E+19) rows in a MyISAM table.

• The maximum number of indexes per MyISAM table is 64.

The maximum number of columns per index is 16.

• The maximum key length is 1000 bytes. This can also be changed by changing the source and
recompiling. For the case of a key longer than 250 bytes, a larger key block size than the default of 1024
bytes is used.

• When rows are inserted in sorted order (as when you are using an AUTO_INCREMENT column), the
index tree is split so that the high node only contains one key. This improves space utilization in the
index tree.

• Internal handling of one AUTO_INCREMENT column per table is supported. MyISAM automatically
updates this column for INSERT and UPDATE operations. This makes AUTO_INCREMENT columns
faster (at least 10%). Values at the top of the sequence are not reused after being deleted. (When an
AUTO_INCREMENT column is defined as the last column of a multiple-column index, reuse of values
deleted from the top of a sequence does occur.) The AUTO_INCREMENT value can be reset with ALTER
TABLE or myisamchk.

• Dynamic-sized rows are much less fragmented when mixing deletes with updates and inserts. This is
done by automatically combining adjacent deleted blocks and by extending blocks if the next block is
deleted.

• MyISAM supports concurrent inserts: If a table has no free blocks in the middle of the data file, you can
INSERT new rows into it at the same time that other threads are reading from the table. A free block
can occur as a result of deleting rows or an update of a dynamic length row with more data than its
current contents. When all free blocks are used up (filled in), future inserts become concurrent again.
See Section 8.11.3, “Concurrent Inserts”.

• You can put the data file and index file in different directories on different physical devices to get more
speed with the DATA DIRECTORY and INDEX DIRECTORY table options to CREATE TABLE. See
Section 13.1.18, “CREATE TABLE Statement”.

• BLOB and TEXT columns can be indexed.

• NULL values are permitted in indexed columns. This takes 0 to 1 bytes per key.

• Each character column can have a different character set. See Chapter 10, Character Sets, Collations,
Unicode.

• There is a flag in the MyISAM index file that indicates whether the table was closed correctly. If mysqld
is started with the myisam_recover_options system variable set, MyISAM tables are automatically
checked when opened, and are repaired if the table wasn't closed properly.

• myisamchk marks tables as checked if you run it with the --update-state option. myisamchk --
fast checks only those tables that don't have this mark.

• myisamchk --analyze stores statistics for portions of keys, as well as for entire keys.

• myisampack can pack BLOB and VARCHAR columns.

MyISAM also supports the following features:

• Support for a true VARCHAR type; a VARCHAR column starts with a length stored in one or two bytes.

2921

Additional Resources

• Tables with VARCHAR columns may have fixed or dynamic row length.

• The sum of the lengths of the VARCHAR and CHAR columns in a table may be up to 64KB.

• Arbitrary length UNIQUE constraints.

Additional Resources

• A forum dedicated to the MyISAM storage engine is available at https://forums.mysql.com/list.php?21.

15.2.1 MyISAM Startup Options

The following options to mysqld can be used to change the behavior of MyISAM tables. For additional
information, see Section 5.1.6, “Server Command Options”.

Table 15.3 MyISAM Option and Variable Reference

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

bulk_insert_buffer_sizeYes Yes Yes Both Yes

concurrent_insertYes Yes Yes Global Yes

delay_key_writeYes Yes Yes Global Yes

have_rtree_keys Yes Global No

key_buffer_sizeYes Yes Yes Global Yes

log-isam Yes Yes

myisam-
block-size

Yes Yes

myisam_data_pointer_sizeYes Yes Yes Global Yes

myisam_max_sort_file_sizeYes Yes Yes Global Yes

myisam_mmap_sizeYes Yes Yes Global No

myisam_recover_optionsYes Yes Yes Global No

myisam_repair_threadsYes Yes Yes Both Yes

myisam_sort_buffer_sizeYes Yes Yes Both Yes

myisam_stats_methodYes Yes Yes Both Yes

myisam_use_mmapYes Yes Yes Global Yes

tmp_table_sizeYes Yes Yes Both Yes

The following system variables affect the behavior of MyISAM tables. For additional information, see
Section 5.1.7, “Server System Variables”.

• bulk_insert_buffer_size

The size of the tree cache used in bulk insert optimization.

Note

This is a limit per thread!

• delay_key_write=ALL

Don't flush key buffers between writes for any MyISAM table.

2922

https://forums.mysql.com/list.php?21

Space Needed for Keys

Note

If you do this, you should not access MyISAM tables from another program (such
as from another MySQL server or with myisamchk) when the tables are in
use. Doing so risks index corruption. Using --external-locking does not
eliminate this risk.

• myisam_max_sort_file_size

The maximum size of the temporary file that MySQL is permitted to use while re-creating a MyISAM
index (during REPAIR TABLE, ALTER TABLE, or LOAD DATA). If the file size would be larger than this
value, the index is created using the key cache instead, which is slower. The value is given in bytes.

• myisam_recover_options=mode

Set the mode for automatic recovery of crashed MyISAM tables.

• myisam_sort_buffer_size

Set the size of the buffer used when recovering tables.

Automatic recovery is activated if you start mysqld with the myisam_recover_options system variable
set. In this case, when the server opens a MyISAM table, it checks whether the table is marked as crashed
or whether the open count variable for the table is not 0 and you are running the server with external
locking disabled. If either of these conditions is true, the following happens:

• The server checks the table for errors.

• If the server finds an error, it tries to do a fast table repair (with sorting and without re-creating the data
file).

• If the repair fails because of an error in the data file (for example, a duplicate-key error), the server tries
again, this time re-creating the data file.

• If the repair still fails, the server tries once more with the old repair option method (write row by row
without sorting). This method should be able to repair any type of error and has low disk space
requirements.

If the recovery wouldn't be able to recover all rows from previously completed statements and you didn't
specify FORCE in the value of the myisam_recover_options system variable, automatic repair aborts
with an error message in the error log:

Error: Couldn't repair table: test.g00pages

If you specify FORCE, a warning like this is written instead:

Warning: Found 344 of 354 rows when repairing ./test/g00pages

If the automatic recovery value includes BACKUP, the recovery process creates files with names of the form
tbl_name-datetime.BAK. You should have a cron script that automatically moves these files from the
database directories to backup media.

15.2.2 Space Needed for Keys

MyISAM tables use B-tree indexes. You can roughly calculate the size for the index file as (key_length
+4)/0.67, summed over all keys. This is for the worst case when all keys are inserted in sorted order and
the table does not have any compressed keys.

2923

MyISAM Table Storage Formats

String indexes are space compressed. If the first index part is a string, it is also prefix compressed. Space
compression makes the index file smaller than the worst-case figure if a string column has a lot of trailing
space or is a VARCHAR column that is not always used to the full length. Prefix compression is used on
keys that start with a string. Prefix compression helps if there are many strings with an identical prefix.

In MyISAM tables, you can also prefix compress numbers by specifying the PACK_KEYS=1 table option
when you create the table. Numbers are stored with the high byte first, so this helps when you have many
integer keys that have an identical prefix.

15.2.3 MyISAM Table Storage Formats

MyISAM supports three different storage formats. Two of them, fixed and dynamic format, are chosen
automatically depending on the type of columns you are using. The third, compressed format, can be
created only with the myisampack utility (see Section 4.6.5, “myisampack — Generate Compressed,
Read-Only MyISAM Tables”).

When you use CREATE TABLE or ALTER TABLE for a table that has no BLOB or TEXT columns, you can
force the table format to FIXED or DYNAMIC with the ROW_FORMAT table option.

See Section 13.1.18, “CREATE TABLE Statement”, for information about ROW_FORMAT.

You can decompress (unpack) compressed MyISAM tables using myisamchk --unpack; see
Section 4.6.3, “myisamchk — MyISAM Table-Maintenance Utility”, for more information.

15.2.3.1 Static (Fixed-Length) Table Characteristics

Static format is the default for MyISAM tables. It is used when the table contains no variable-length columns
(VARCHAR, VARBINARY, BLOB, or TEXT). Each row is stored using a fixed number of bytes.

Of the three MyISAM storage formats, static format is the simplest and most secure (least subject to
corruption). It is also the fastest of the on-disk formats due to the ease with which rows in the data file can
be found on disk: To look up a row based on a row number in the index, multiply the row number by the
row length to calculate the row position. Also, when scanning a table, it is very easy to read a constant
number of rows with each disk read operation.

The security is evidenced if your computer crashes while the MySQL server is writing to a fixed-format
MyISAM file. In this case, myisamchk can easily determine where each row starts and ends, so it can
usually reclaim all rows except the partially written one. MyISAM table indexes can always be reconstructed
based on the data rows.

Note

Fixed-length row format is only available for tables without BLOB or TEXT columns.
Creating a table with these columns with an explicit ROW_FORMAT clause does not
raise an error or warning; the format specification is ignored.

Static-format tables have these characteristics:

• CHAR and VARCHAR columns are space-padded to the specified column width, although the column type
is not altered. BINARY and VARBINARY columns are padded with 0x00 bytes to the column width.

• NULL columns require additional space in the row to record whether their values are NULL. Each NULL
column takes one bit extra, rounded up to the nearest byte.

• Very quick.

• Easy to cache.

2924

MyISAM Table Storage Formats

• Easy to reconstruct after a crash, because rows are located in fixed positions.

• Reorganization is unnecessary unless you delete a huge number of rows and want to return free disk
space to the operating system. To do this, use OPTIMIZE TABLE or myisamchk -r.

• Usually require more disk space than dynamic-format tables.

• The expected row length in bytes for static-sized rows is calculated using the following expression:

row length = 1
 + (sum of column lengths)
 + (number of NULL columns + delete_flag + 7)/8
 + (number of variable-length columns)

delete_flag is 1 for tables with static row format. Static tables use a bit in the row record for a flag that
indicates whether the row has been deleted. delete_flag is 0 for dynamic tables because the flag is
stored in the dynamic row header.

15.2.3.2 Dynamic Table Characteristics

Dynamic storage format is used if a MyISAM table contains any variable-length columns (VARCHAR,
VARBINARY, BLOB, or TEXT), or if the table was created with the ROW_FORMAT=DYNAMIC table option.

Dynamic format is a little more complex than static format because each row has a header that indicates
how long it is. A row can become fragmented (stored in noncontiguous pieces) when it is made longer as a
result of an update.

You can use OPTIMIZE TABLE or myisamchk -r to defragment a table. If you have fixed-length
columns that you access or change frequently in a table that also contains some variable-length columns, it
might be a good idea to move the variable-length columns to other tables just to avoid fragmentation.

Dynamic-format tables have these characteristics:

• All string columns are dynamic except those with a length less than four.

• Each row is preceded by a bitmap that indicates which columns contain the empty string (for string
columns) or zero (for numeric columns). This does not include columns that contain NULL values. If a
string column has a length of zero after trailing space removal, or a numeric column has a value of zero,
it is marked in the bitmap and not saved to disk. Nonempty strings are saved as a length byte plus the
string contents.

• NULL columns require additional space in the row to record whether their values are NULL. Each NULL
column takes one bit extra, rounded up to the nearest byte.

• Much less disk space usually is required than for fixed-length tables.

• Each row uses only as much space as is required. However, if a row becomes larger, it is split into as
many pieces as are required, resulting in row fragmentation. For example, if you update a row with
information that extends the row length, the row becomes fragmented. In this case, you may have to run
OPTIMIZE TABLE or myisamchk -r from time to time to improve performance. Use myisamchk -ei
to obtain table statistics.

• More difficult than static-format tables to reconstruct after a crash, because rows may be fragmented into
many pieces and links (fragments) may be missing.

• The expected row length for dynamic-sized rows is calculated using the following expression:

3
+ (number of columns + 7) / 8

2925

MyISAM Table Problems

+ (number of char columns)
+ (packed size of numeric columns)
+ (length of strings)
+ (number of NULL columns + 7) / 8

There is a penalty of 6 bytes for each link. A dynamic row is linked whenever an update causes an
enlargement of the row. Each new link is at least 20 bytes, so the next enlargement probably goes in the
same link. If not, another link is created. You can find the number of links using myisamchk -ed. All
links may be removed with OPTIMIZE TABLE or myisamchk -r.

15.2.3.3 Compressed Table Characteristics

Compressed storage format is a read-only format that is generated with the myisampack tool.
Compressed tables can be uncompressed with myisamchk.

Compressed tables have the following characteristics:

• Compressed tables take very little disk space. This minimizes disk usage, which is helpful when using
slow disks (such as CD-ROMs).

• Each row is compressed separately, so there is very little access overhead. The header for a row takes
up one to three bytes depending on the biggest row in the table. Each column is compressed differently.
There is usually a different Huffman tree for each column. Some of the compression types are:

• Suffix space compression.

• Prefix space compression.

• Numbers with a value of zero are stored using one bit.

• If values in an integer column have a small range, the column is stored using the smallest possible
type. For example, a BIGINT column (eight bytes) can be stored as a TINYINT column (one byte) if
all its values are in the range from -128 to 127.

• If a column has only a small set of possible values, the data type is converted to ENUM.

• A column may use any combination of the preceding compression types.

• Can be used for fixed-length or dynamic-length rows.

Note

While a compressed table is read only, and you cannot therefore update or add
rows in the table, DDL (Data Definition Language) operations are still valid. For
example, you may still use DROP to drop the table, and TRUNCATE TABLE to empty
the table.

15.2.4 MyISAM Table Problems

The file format that MySQL uses to store data has been extensively tested, but there are always
circumstances that may cause database tables to become corrupted. The following discussion describes
how this can happen and how to handle it.

15.2.4.1 Corrupted MyISAM Tables

Even though the MyISAM table format is very reliable (all changes to a table made by an SQL statement
are written before the statement returns), you can still get corrupted tables if any of the following events
occur:

2926

MyISAM Table Problems

• The mysqld process is killed in the middle of a write.

• An unexpected computer shutdown occurs (for example, the computer is turned off).

• Hardware failures.

• You are using an external program (such as myisamchk) to modify a table that is being modified by the
server at the same time.

• A software bug in the MySQL or MyISAM code.

Typical symptoms of a corrupt table are:

• You get the following error while selecting data from the table:

Incorrect key file for table: '...'. Try to repair it

• Queries don't find rows in the table or return incomplete results.

You can check the health of a MyISAM table using the CHECK TABLE statement, and repair a corrupted
MyISAM table with REPAIR TABLE. When mysqld is not running, you can also check or repair a table with
the myisamchk command. See Section 13.7.2.2, “CHECK TABLE Statement”, Section 13.7.2.5, “REPAIR
TABLE Statement”, and Section 4.6.3, “myisamchk — MyISAM Table-Maintenance Utility”.

If your tables become corrupted frequently, you should try to determine why this is happening. The most
important thing to know is whether the table became corrupted as a result of an unexpected server exit.
You can verify this easily by looking for a recent restarted mysqld message in the error log. If there is
such a message, it is likely that table corruption is a result of the server dying. Otherwise, corruption may
have occurred during normal operation. This is a bug. You should try to create a reproducible test case that
demonstrates the problem. See Section B.3.3.3, “What to Do If MySQL Keeps Crashing”, and Section 5.8,
“Debugging MySQL”.

15.2.4.2 Problems from Tables Not Being Closed Properly

Each MyISAM index file (.MYI file) has a counter in the header that can be used to check whether a table
has been closed properly. If you get the following warning from CHECK TABLE or myisamchk, it means
that this counter has gone out of sync:

clients are using or haven't closed the table properly

This warning does not necessarily mean that the table is corrupted, but you should at least check the table.

The counter works as follows:

• The first time a table is updated in MySQL, a counter in the header of the index files is incremented.

• The counter is not changed during further updates.

• When the last instance of a table is closed (because a FLUSH TABLES operation was performed or
because there is no room in the table cache), the counter is decremented if the table has been updated
at any point.

• When you repair the table or check the table and it is found to be okay, the counter is reset to zero.

• To avoid problems with interaction with other processes that might check the table, the counter is not
decremented on close if it was zero.

In other words, the counter can become incorrect only under these conditions:

2927

The MEMORY Storage Engine

• A MyISAM table is copied without first issuing LOCK TABLES and FLUSH TABLES.

• MySQL has crashed between an update and the final close. (The table may still be okay because
MySQL always issues writes for everything between each statement.)

• A table was modified by myisamchk --recover or myisamchk --update-state at the same time
that it was in use by mysqld.

• Multiple mysqld servers are using the table and one server performed a REPAIR TABLE or CHECK
TABLE on the table while it was in use by another server. In this setup, it is safe to use CHECK TABLE,
although you might get the warning from other servers. However, REPAIR TABLE should be avoided
because when one server replaces the data file with a new one, this is not known to the other servers.

In general, it is a bad idea to share a data directory among multiple servers. See Section 5.7, “Running
Multiple MySQL Instances on One Machine”, for additional discussion.

15.3 The MEMORY Storage Engine

The MEMORY storage engine (formerly known as HEAP) creates special-purpose tables with contents that
are stored in memory. Because the data is vulnerable to crashes, hardware issues, or power outages, only
use these tables as temporary work areas or read-only caches for data pulled from other tables.

Table 15.4 MEMORY Storage Engine Features

Feature Support

B-tree indexes Yes

Backup/point-in-time recovery (Implemented in
the server, rather than in the storage engine.)

Yes

Cluster database support No

Clustered indexes No

Compressed data No

Data caches N/A

Encrypted data Yes (Implemented in the server via encryption
functions.)

Foreign key support No

Full-text search indexes No

Geospatial data type support No

Geospatial indexing support No

Hash indexes Yes

Index caches N/A

Locking granularity Table

MVCC No

Replication support (Implemented in the server,
rather than in the storage engine.)

Limited (See the discussion later in this section.)

Storage limits RAM

T-tree indexes No

Transactions No

2928

When to Use MEMORY or NDB Cluster

Feature Support

Update statistics for data dictionary Yes

• When to Use MEMORY or NDB Cluster

• Performance Characteristics

• Characteristics of MEMORY Tables

• DDL Operations for MEMORY Tables

• Indexes

• User-Created and Temporary Tables

• Loading Data

• MEMORY Tables and Replication

• Managing Memory Use

• Additional Resources

When to Use MEMORY or NDB Cluster

Developers looking to deploy applications that use the MEMORY storage engine for important, highly
available, or frequently updated data should consider whether NDB Cluster is a better choice. A typical use
case for the MEMORY engine involves these characteristics:

• Operations involving transient, non-critical data such as session management or caching. When the
MySQL server halts or restarts, the data in MEMORY tables is lost.

• In-memory storage for fast access and low latency. Data volume can fit entirely in memory without
causing the operating system to swap out virtual memory pages.

• A read-only or read-mostly data access pattern (limited updates).

NDB Cluster offers the same features as the MEMORY engine with higher performance levels, and provides
additional features not available with MEMORY:

• Row-level locking and multiple-thread operation for low contention between clients.

• Scalability even with statement mixes that include writes.

• Optional disk-backed operation for data durability.

• Shared-nothing architecture and multiple-host operation with no single point of failure, enabling 99.999%
availability.

• Automatic data distribution across nodes; application developers need not craft custom sharding or
partitioning solutions.

• Support for variable-length data types (including BLOB and TEXT) not supported by MEMORY.

Performance Characteristics

MEMORY performance is constrained by contention resulting from single-thread execution and table lock
overhead when processing updates. This limits scalability when load increases, particularly for statement
mixes that include writes.

2929

Characteristics of MEMORY Tables

Despite the in-memory processing for MEMORY tables, they are not necessarily faster than InnoDB tables
on a busy server, for general-purpose queries, or under a read/write workload. In particular, the table
locking involved with performing updates can slow down concurrent usage of MEMORY tables from multiple
sessions.

Depending on the kinds of queries performed on a MEMORY table, you might create indexes as either the
default hash data structure (for looking up single values based on a unique key), or a general-purpose B-
tree data structure (for all kinds of queries involving equality, inequality, or range operators such as less
than or greater than). The following sections illustrate the syntax for creating both kinds of indexes. A
common performance issue is using the default hash indexes in workloads where B-tree indexes are more
efficient.

Characteristics of MEMORY Tables

The MEMORY storage engine associates each table with one disk file, which stores the table definition (not
the data). The file name begins with the table name and has an extension of .frm.

MEMORY tables have the following characteristics:

• Space for MEMORY tables is allocated in small blocks. Tables use 100% dynamic hashing for inserts. No
overflow area or extra key space is needed. No extra space is needed for free lists. Deleted rows are put
in a linked list and are reused when you insert new data into the table. MEMORY tables also have none of
the problems commonly associated with deletes plus inserts in hashed tables.

• MEMORY tables use a fixed-length row-storage format. Variable-length types such as VARCHAR are stored
using a fixed length.

• MEMORY tables cannot contain BLOB or TEXT columns.

• MEMORY includes support for AUTO_INCREMENT columns.

• Non-TEMPORARY MEMORY tables are shared among all clients, just like any other non-TEMPORARY table.

DDL Operations for MEMORY Tables

To create a MEMORY table, specify the clause ENGINE=MEMORY on the CREATE TABLE statement.

CREATE TABLE t (i INT) ENGINE = MEMORY;

As indicated by the engine name, MEMORY tables are stored in memory. They use hash indexes by default,
which makes them very fast for single-value lookups, and very useful for creating temporary tables.
However, when the server shuts down, all rows stored in MEMORY tables are lost. The tables themselves
continue to exist because their definitions are stored in .frm files on disk, but they are empty when the
server restarts.

This example shows how you might create, use, and remove a MEMORY table:

mysql> CREATE TABLE test ENGINE=MEMORY
 SELECT ip,SUM(downloads) AS down
 FROM log_table GROUP BY ip;
mysql> SELECT COUNT(ip),AVG(down) FROM test;
mysql> DROP TABLE test;

The maximum size of MEMORY tables is limited by the max_heap_table_size system variable, which
has a default value of 16MB. To enforce different size limits for MEMORY tables, change the value of this
variable. The value in effect for CREATE TABLE, or a subsequent ALTER TABLE or TRUNCATE TABLE,

2930

Indexes

is the value used for the life of the table. A server restart also sets the maximum size of existing MEMORY
tables to the global max_heap_table_size value. You can set the size for individual tables as described
later in this section.

Indexes

The MEMORY storage engine supports both HASH and BTREE indexes. You can specify one or the other for
a given index by adding a USING clause as shown here:

CREATE TABLE lookup
 (id INT, INDEX USING HASH (id))
 ENGINE = MEMORY;
CREATE TABLE lookup
 (id INT, INDEX USING BTREE (id))
 ENGINE = MEMORY;

For general characteristics of B-tree and hash indexes, see Section 8.3.1, “How MySQL Uses Indexes”.

MEMORY tables can have up to 64 indexes per table, 16 columns per index and a maximum key length of
3072 bytes.

If a MEMORY table hash index has a high degree of key duplication (many index entries containing the
same value), updates to the table that affect key values and all deletes are significantly slower. The
degree of this slowdown is proportional to the degree of duplication (or, inversely proportional to the index
cardinality). You can use a BTREE index to avoid this problem.

MEMORY tables can have nonunique keys. (This is an uncommon feature for implementations of hash
indexes.)

Columns that are indexed can contain NULL values.

User-Created and Temporary Tables

MEMORY table contents are stored in memory, which is a property that MEMORY tables share with internal
temporary tables that the server creates on the fly while processing queries. However, the two types of
tables differ in that MEMORY tables are not subject to storage conversion, whereas internal temporary tables
are:

• If an internal temporary table becomes too large, the server automatically converts it to on-disk storage,
as described in Section 8.4.4, “Internal Temporary Table Use in MySQL”.

• User-created MEMORY tables are never converted to disk tables.

Loading Data

To populate a MEMORY table when the MySQL server starts, you can use the init_file system variable.
For example, you can put statements such as INSERT INTO ... SELECT or LOAD DATA into a file to
load the table from a persistent data source, and use init_file to name the file. See Section 5.1.7,
“Server System Variables”, and Section 13.2.6, “LOAD DATA Statement”.

MEMORY Tables and Replication

When a replication source server shuts down and restarts, its MEMORY tables become empty. To replicate
this effect to replicas, the first time that the source uses a given MEMORY table after startup, it logs an
event that notifies replicas that the table must be emptied by writing a DELETE or (from MySQL 5.7.32)

2931

Managing Memory Use

TRUNCATE TABLE statement for that table to the binary log. When a replica server shuts down and
restarts, its MEMORY tables also become empty, and it writes a DELETE or (from MySQL 5.7.32) TRUNCATE
TABLE statement to its own binary log, which is passed on to any downstream replicas.

When you use MEMORY tables in a replication topology, in some situations, the table on the source and the
table on the replica may differ. For information on handling each of these situations to prevent stale reads
or errors, see Section 16.4.1.20, “Replication and MEMORY Tables”.

Managing Memory Use

The server needs sufficient memory to maintain all MEMORY tables that are in use at the same time.

Memory is not reclaimed if you delete individual rows from a MEMORY table. Memory is reclaimed only
when the entire table is deleted. Memory that was previously used for deleted rows is re-used for new
rows within the same table. To free all the memory used by a MEMORY table when you no longer require
its contents, execute DELETE or TRUNCATE TABLE to remove all rows, or remove the table altogether
using DROP TABLE. To free up the memory used by deleted rows, use ALTER TABLE ENGINE=MEMORY
to force a table rebuild.

The memory needed for one row in a MEMORY table is calculated using the following expression:

SUM_OVER_ALL_BTREE_KEYS(max_length_of_key + sizeof(char*) * 4)
+ SUM_OVER_ALL_HASH_KEYS(sizeof(char*) * 2)
+ ALIGN(length_of_row+1, sizeof(char*))

ALIGN() represents a round-up factor to cause the row length to be an exact multiple of the char pointer
size. sizeof(char*) is 4 on 32-bit machines and 8 on 64-bit machines.

As mentioned earlier, the max_heap_table_size system variable sets the limit on the maximum size
of MEMORY tables. To control the maximum size for individual tables, set the session value of this variable
before creating each table. (Do not change the global max_heap_table_size value unless you intend
the value to be used for MEMORY tables created by all clients.) The following example creates two MEMORY
tables, with a maximum size of 1MB and 2MB, respectively:

mysql> SET max_heap_table_size = 1024*1024;
Query OK, 0 rows affected (0.00 sec)

mysql> CREATE TABLE t1 (id INT, UNIQUE(id)) ENGINE = MEMORY;
Query OK, 0 rows affected (0.01 sec)

mysql> SET max_heap_table_size = 1024*1024*2;
Query OK, 0 rows affected (0.00 sec)

mysql> CREATE TABLE t2 (id INT, UNIQUE(id)) ENGINE = MEMORY;
Query OK, 0 rows affected (0.00 sec)

Both tables revert to the server's global max_heap_table_size value if the server restarts.

You can also specify a MAX_ROWS table option in CREATE TABLE statements for MEMORY tables to provide
a hint about the number of rows you plan to store in them. This does not enable the table to grow beyond
the max_heap_table_size value, which still acts as a constraint on maximum table size. For maximum
flexibility in being able to use MAX_ROWS, set max_heap_table_size at least as high as the value to
which you want each MEMORY table to be able to grow.

Additional Resources

A forum dedicated to the MEMORY storage engine is available at https://forums.mysql.com/list.php?92.

2932

https://forums.mysql.com/list.php?92

The CSV Storage Engine

15.4 The CSV Storage Engine

The CSV storage engine stores data in text files using comma-separated values format.

The CSV storage engine is always compiled into the MySQL server.

To examine the source for the CSV engine, look in the storage/csv directory of a MySQL source
distribution.

When you create a CSV table, the server creates a table format file in the database directory. The file
begins with the table name and has an .frm extension. The storage engine also creates plain text data file
having a name that begins with the table name and has a .CSV extension. When you store data into the
table, the storage engine saves it into the data file in comma-separated values format.

mysql> CREATE TABLE test (i INT NOT NULL, c CHAR(10) NOT NULL)
 ENGINE = CSV;
Query OK, 0 rows affected (0.06 sec)

mysql> INSERT INTO test VALUES(1,'record one'),(2,'record two');
Query OK, 2 rows affected (0.05 sec)
Records: 2 Duplicates: 0 Warnings: 0

mysql> SELECT * FROM test;
+---+------------+
| i | c |
+---+------------+
| 1 | record one |
| 2 | record two |
+---+------------+
2 rows in set (0.00 sec)

Creating a CSV table also creates a corresponding metafile that stores the state of the table and the
number of rows that exist in the table. The name of this file is the same as the name of the table with the
extension CSM.

If you examine the test.CSV file in the database directory created by executing the preceding statements,
its contents should look like this:

"1","record one"
"2","record two"

This format can be read, and even written, by spreadsheet applications such as Microsoft Excel.

15.4.1 Repairing and Checking CSV Tables

The CSV storage engine supports the CHECK TABLE and REPAIR TABLE statements to verify and, if
possible, repair a damaged CSV table.

When running the CHECK TABLE statement, the CSV file is checked for validity by looking for the correct
field separators, escaped fields (matching or missing quotation marks), the correct number of fields
compared to the table definition and the existence of a corresponding CSV metafile. The first invalid row
discovered reports an error. Checking a valid table produces output like that shown below:

mysql> CHECK TABLE csvtest;
+--------------+-------+----------+----------+
| Table | Op | Msg_type | Msg_text |
+--------------+-------+----------+----------+
| test.csvtest | check | status | OK |
+--------------+-------+----------+----------+

2933

CSV Limitations

A check on a corrupted table returns a fault such as

mysql> CHECK TABLE csvtest;
+--------------+-------+----------+----------+
| Table | Op | Msg_type | Msg_text |
+--------------+-------+----------+----------+
| test.csvtest | check | error | Corrupt |
+--------------+-------+----------+----------+

To repair a table, use REPAIR TABLE, which copies as many valid rows from the existing CSV data as
possible, and then replaces the existing CSV file with the recovered rows. Any rows beyond the corrupted
data are lost.

mysql> REPAIR TABLE csvtest;
+--------------+--------+----------+----------+
| Table | Op | Msg_type | Msg_text |
+--------------+--------+----------+----------+
| test.csvtest | repair | status | OK |
+--------------+--------+----------+----------+

Warning

During repair, only the rows from the CSV file up to the first damaged row are copied
to the new table. All other rows from the first damaged row to the end of the table
are removed, even valid rows.

15.4.2 CSV Limitations

The CSV storage engine does not support indexing.

Partitioning is not supported for tables using the CSV storage engine.

All tables that you create using the CSV storage engine must have the NOT NULL attribute on all columns.

15.5 The ARCHIVE Storage Engine

The ARCHIVE storage engine produces special-purpose tables that store large amounts of unindexed data
in a very small footprint.

Table 15.5 ARCHIVE Storage Engine Features

Feature Support

B-tree indexes No

Backup/point-in-time recovery (Implemented in
the server, rather than in the storage engine.)

Yes

Cluster database support No

Clustered indexes No

Compressed data Yes

Data caches No

Encrypted data Yes (Implemented in the server via encryption
functions.)

Foreign key support No

Full-text search indexes No

2934

The ARCHIVE Storage Engine

Feature Support

Geospatial data type support Yes

Geospatial indexing support No

Hash indexes No

Index caches No

Locking granularity Row

MVCC No

Replication support (Implemented in the server,
rather than in the storage engine.)

Yes

Storage limits None

T-tree indexes No

Transactions No

Update statistics for data dictionary Yes

The ARCHIVE storage engine is included in MySQL binary distributions. To enable this storage engine if
you build MySQL from source, invoke CMake with the -DWITH_ARCHIVE_STORAGE_ENGINE option.

To examine the source for the ARCHIVE engine, look in the storage/archive directory of a MySQL
source distribution.

You can check whether the ARCHIVE storage engine is available with the SHOW ENGINES statement.

When you create an ARCHIVE table, the server creates a table format file in the database directory. The
file begins with the table name and has an .frm extension. The storage engine creates other files, all
having names beginning with the table name. The data file has an extension of .ARZ. An .ARN file may
appear during optimization operations.

The ARCHIVE engine supports INSERT, REPLACE, and SELECT, but not DELETE or UPDATE. It does
support ORDER BY operations, BLOB columns, and basically all data types including spatial data types
(see Section 11.4.1, “Spatial Data Types”). Geographic spatial reference systems are not supported. The
ARCHIVE engine uses row-level locking.

The ARCHIVE engine supports the AUTO_INCREMENT column attribute. The AUTO_INCREMENT column
can have either a unique or nonunique index. Attempting to create an index on any other column results
in an error. The ARCHIVE engine also supports the AUTO_INCREMENT table option in CREATE TABLE
statements to specify the initial sequence value for a new table or reset the sequence value for an existing
table, respectively.

ARCHIVE does not support inserting a value into an AUTO_INCREMENT column less than the current
maximum column value. Attempts to do so result in an ER_DUP_KEY error.

The ARCHIVE engine ignores BLOB columns if they are not requested and scans past them while reading.

Storage: Rows are compressed as they are inserted. The ARCHIVE engine uses zlib lossless data
compression (see http://www.zlib.net/). You can use OPTIMIZE TABLE to analyze the table and pack it
into a smaller format (for a reason to use OPTIMIZE TABLE, see later in this section). The engine also
supports CHECK TABLE. There are several types of insertions that are used:

• An INSERT statement just pushes rows into a compression buffer, and that buffer flushes as necessary.
The insertion into the buffer is protected by a lock. A SELECT forces a flush to occur.

2935

https://dev.mysql.com/doc/mysql-errors/5.7/en/server-error-reference.html#error_er_dup_key
http://www.zlib.net/

Additional Resources

• A bulk insert is visible only after it completes, unless other inserts occur at the same time, in which case
it can be seen partially. A SELECT never causes a flush of a bulk insert unless a normal insert occurs
while it is loading.

Retrieval: On retrieval, rows are uncompressed on demand; there is no row cache. A SELECT operation
performs a complete table scan: When a SELECT occurs, it finds out how many rows are currently
available and reads that number of rows. SELECT is performed as a consistent read. Note that lots of
SELECT statements during insertion can deteriorate the compression, unless only bulk or delayed inserts
are used. To achieve better compression, you can use OPTIMIZE TABLE or REPAIR TABLE. The number
of rows in ARCHIVE tables reported by SHOW TABLE STATUS is always accurate. See Section 13.7.2.4,
“OPTIMIZE TABLE Statement”, Section 13.7.2.5, “REPAIR TABLE Statement”, and Section 13.7.5.36,
“SHOW TABLE STATUS Statement”.

Additional Resources

• A forum dedicated to the ARCHIVE storage engine is available at https://forums.mysql.com/list.php?112.

15.6 The BLACKHOLE Storage Engine

The BLACKHOLE storage engine acts as a “black hole” that accepts data but throws it away and does not
store it. Retrievals always return an empty result:

mysql> CREATE TABLE test(i INT, c CHAR(10)) ENGINE = BLACKHOLE;
Query OK, 0 rows affected (0.03 sec)

mysql> INSERT INTO test VALUES(1,'record one'),(2,'record two');
Query OK, 2 rows affected (0.00 sec)
Records: 2 Duplicates: 0 Warnings: 0

mysql> SELECT * FROM test;
Empty set (0.00 sec)

To enable the BLACKHOLE storage engine if you build MySQL from source, invoke CMake with the -
DWITH_BLACKHOLE_STORAGE_ENGINE option.

To examine the source for the BLACKHOLE engine, look in the sql directory of a MySQL source
distribution.

When you create a BLACKHOLE table, the server creates a table format file in the database directory. The
file begins with the table name and has an .frm extension. There are no other files associated with the
table.

The BLACKHOLE storage engine supports all kinds of indexes. That is, you can include index declarations
in the table definition.

The maximum key length is 1000 bytes.

You can check whether the BLACKHOLE storage engine is available with the SHOW ENGINES statement.

Inserts into a BLACKHOLE table do not store any data, but if statement based binary logging is enabled,
the SQL statements are logged and replicated to replica servers. This can be useful as a repeater or filter
mechanism.

Suppose that your application requires replica-side filtering rules, but transferring all binary log data to the
replica first results in too much traffic. In such a case, it is possible to set up on the source host a “dummy”
replica process whose default storage engine is BLACKHOLE, depicted as follows:

2936

https://forums.mysql.com/list.php?112

The BLACKHOLE Storage Engine

Figure 15.1 Replication using BLACKHOLE for Filtering

The source writes to its binary log. The “dummy” mysqld process acts as a replica, applying the desired
combination of replicate-do-* and replicate-ignore-* rules, and writes a new, filtered binary log
of its own. (See Section 16.1.6, “Replication and Binary Logging Options and Variables”.) This filtered log
is provided to the replica.

The dummy process does not actually store any data, so there is little processing overhead incurred by
running the additional mysqld process on the replication source host. This type of setup can be repeated
with additional replication replicas.

INSERT triggers for BLACKHOLE tables work as expected. However, because the BLACKHOLE table does
not actually store any data, UPDATE and DELETE triggers are not activated: The FOR EACH ROW clause in
the trigger definition does not apply because there are no rows.

Other possible uses for the BLACKHOLE storage engine include:

• Verification of dump file syntax.

• Measurement of the overhead from binary logging, by comparing performance using BLACKHOLE with
and without binary logging enabled.

• BLACKHOLE is essentially a “no-op” storage engine, so it could be used for finding performance
bottlenecks not related to the storage engine itself.

The BLACKHOLE engine is transaction-aware, in the sense that committed transactions are written to the
binary log and rolled-back transactions are not.

Blackhole Engine and Auto Increment Columns

The Blackhole engine is a no-op engine. Any operations performed on a table using BLACKHOLE have
no effect. This should be borne in mind when considering the behavior of primary key columns that auto
increment. The engine does not automatically increment field values, and does not retain auto increment
column state. This has important implications in replication.

2937

The MERGE Storage Engine

Consider the following replication scenario where all three of the following conditions apply:

1. On a source server there is a blackhole table with an auto increment field that is a primary key.

2. On a replica the same table exists but using the MyISAM engine.

3. Inserts are performed into the source's table without explicitly setting the auto increment value in the
INSERT statement itself or through using a SET INSERT_ID statement.

In this scenario, replication fails with a duplicate entry error on the primary key column.

In statement based replication, the value of INSERT_ID in the context event is always the same.
Replication therefore fails due to trying insert a row with a duplicate value for a primary key column.

In row based replication, the value that the engine returns for the row always be the same for each insert.
This results in the replica attempting to replay two insert log entries using the same value for the primary
key column, and so replication fails.

Column Filtering

When using row-based replication, (binlog_format=ROW), a replica where the last columns are missing
from a table is supported, as described in the section Section 16.4.1.10, “Replication with Differing Table
Definitions on Source and Replica”.

This filtering works on the replica side, that is, the columns are copied to the replica before they are filtered
out. There are at least two cases where it is not desirable to copy the columns to the replica:

1. If the data is confidential, so the replica server should not have access to it.

2. If the source has many replicas, filtering before sending to the replicas may reduce network traffic.

Source column filtering can be achieved using the BLACKHOLE engine. This is carried out in a way similar
to how source table filtering is achieved - by using the BLACKHOLE engine and the --replicate-do-
table or --replicate-ignore-table option.

The setup for the source is:

CREATE TABLE t1 (public_col_1, ..., public_col_N,
 secret_col_1, ..., secret_col_M) ENGINE=MyISAM;

The setup for the trusted replica is:

CREATE TABLE t1 (public_col_1, ..., public_col_N) ENGINE=BLACKHOLE;

The setup for the untrusted replica is:

CREATE TABLE t1 (public_col_1, ..., public_col_N) ENGINE=MyISAM;

15.7 The MERGE Storage Engine

The MERGE storage engine, also known as the MRG_MyISAM engine, is a collection of identical MyISAM
tables that can be used as one. “Identical” means that all tables have identical column data types and
index information. You cannot merge MyISAM tables in which the columns are listed in a different order,
do not have exactly the same data types in corresponding columns, or have the indexes in different order.
However, any or all of the MyISAM tables can be compressed with myisampack. See Section 4.6.5,
“myisampack — Generate Compressed, Read-Only MyISAM Tables”. Differences between tables such as
these do not matter:

2938

The MERGE Storage Engine

• Names of corresponding columns and indexes can differ.

• Comments for tables, columns, and indexes can differ.

• Table options such as AVG_ROW_LENGTH, MAX_ROWS, or PACK_KEYS can differ.

An alternative to a MERGE table is a partitioned table, which stores partitions of a single table in separate
files. Partitioning enables some operations to be performed more efficiently and is not limited to the
MyISAM storage engine. For more information, see Chapter 22, Partitioning.

When you create a MERGE table, MySQL creates two files on disk. The files have names that begin with
the table name and have an extension to indicate the file type. An .frm file stores the table format, and an
.MRG file contains the names of the underlying MyISAM tables that should be used as one. The tables do
not have to be in the same database as the MERGE table.

You can use SELECT, DELETE, UPDATE, and INSERT on MERGE tables. You must have SELECT, DELETE,
and UPDATE privileges on the MyISAM tables that you map to a MERGE table.

Note

The use of MERGE tables entails the following security issue: If a user has access to
MyISAM table t, that user can create a MERGE table m that accesses t. However,
if the user's privileges on t are subsequently revoked, the user can continue to
access t by doing so through m.

Use of DROP TABLE with a MERGE table drops only the MERGE specification. The underlying tables are not
affected.

To create a MERGE table, you must specify a UNION=(list-of-tables) option that indicates which
MyISAM tables to use. You can optionally specify an INSERT_METHOD option to control how inserts into
the MERGE table take place. Use a value of FIRST or LAST to cause inserts to be made in the first or last
underlying table, respectively. If you specify no INSERT_METHOD option or if you specify it with a value of
NO, inserts into the MERGE table are not permitted and attempts to do so result in an error.

The following example shows how to create a MERGE table:

mysql> CREATE TABLE t1 (
 -> a INT NOT NULL AUTO_INCREMENT PRIMARY KEY,
 -> message CHAR(20)) ENGINE=MyISAM;
mysql> CREATE TABLE t2 (
 -> a INT NOT NULL AUTO_INCREMENT PRIMARY KEY,
 -> message CHAR(20)) ENGINE=MyISAM;
mysql> INSERT INTO t1 (message) VALUES ('Testing'),('table'),('t1');
mysql> INSERT INTO t2 (message) VALUES ('Testing'),('table'),('t2');
mysql> CREATE TABLE total (
 -> a INT NOT NULL AUTO_INCREMENT,
 -> message CHAR(20), INDEX(a))
 -> ENGINE=MERGE UNION=(t1,t2) INSERT_METHOD=LAST;

Column a is indexed as a PRIMARY KEY in the underlying MyISAM tables, but not in the MERGE table.
There it is indexed but not as a PRIMARY KEY because a MERGE table cannot enforce uniqueness over
the set of underlying tables. (Similarly, a column with a UNIQUE index in the underlying tables should be
indexed in the MERGE table but not as a UNIQUE index.)

After creating the MERGE table, you can use it to issue queries that operate on the group of tables as a
whole:

mysql> SELECT * FROM total;

2939

The MERGE Storage Engine

+---+---------+
| a | message |
+---+---------+
1	Testing
2	table
3	t1
1	Testing
2	table
3	t2
+---+---------+

To remap a MERGE table to a different collection of MyISAM tables, you can use one of the following
methods:

• DROP the MERGE table and re-create it.

• Use ALTER TABLE tbl_name UNION=(...) to change the list of underlying tables.

It is also possible to use ALTER TABLE ... UNION=() (that is, with an empty UNION clause) to
remove all of the underlying tables. However, in this case, the table is effectively empty and inserts fail
because there is no underlying table to take new rows. Such a table might be useful as a template for
creating new MERGE tables with CREATE TABLE ... LIKE.

The underlying table definitions and indexes must conform closely to the definition of the MERGE table.
Conformance is checked when a table that is part of a MERGE table is opened, not when the MERGE table
is created. If any table fails the conformance checks, the operation that triggered the opening of the table
fails. This means that changes to the definitions of tables within a MERGE may cause a failure when the
MERGE table is accessed. The conformance checks applied to each table are:

• The underlying table and the MERGE table must have the same number of columns.

• The column order in the underlying table and the MERGE table must match.

• Additionally, the specification for each corresponding column in the parent MERGE table and the
underlying tables are compared and must satisfy these checks:

• The column type in the underlying table and the MERGE table must be equal.

• The column length in the underlying table and the MERGE table must be equal.

• The column of the underlying table and the MERGE table can be NULL.

• The underlying table must have at least as many indexes as the MERGE table. The underlying table may
have more indexes than the MERGE table, but cannot have fewer.

Note

A known issue exists where indexes on the same columns must be in identical
order, in both the MERGE table and the underlying MyISAM table. See Bug
#33653.

Each index must satisfy these checks:

• The index type of the underlying table and the MERGE table must be the same.

• The number of index parts (that is, multiple columns within a compound index) in the index definition
for the underlying table and the MERGE table must be the same.

• For each index part:

2940

Additional Resources

• Index part lengths must be equal.

• Index part types must be equal.

• Index part languages must be equal.

• Check whether index parts can be NULL.

If a MERGE table cannot be opened or used because of a problem with an underlying table, CHECK TABLE
displays information about which table caused the problem.

Additional Resources

• A forum dedicated to the MERGE storage engine is available at https://forums.mysql.com/list.php?93.

15.7.1 MERGE Table Advantages and Disadvantages

MERGE tables can help you solve the following problems:

• Easily manage a set of log tables. For example, you can put data from different months into separate
tables, compress some of them with myisampack, and then create a MERGE table to use them as one.

• Obtain more speed. You can split a large read-only table based on some criteria, and then put individual
tables on different disks. A MERGE table structured this way could be much faster than using a single
large table.

• Perform more efficient searches. If you know exactly what you are looking for, you can search in just one
of the underlying tables for some queries and use a MERGE table for others. You can even have many
different MERGE tables that use overlapping sets of tables.

• Perform more efficient repairs. It is easier to repair individual smaller tables that are mapped to a MERGE
table than to repair a single large table.

• Instantly map many tables as one. A MERGE table need not maintain an index of its own because it uses
the indexes of the individual tables. As a result, MERGE table collections are very fast to create or remap.
(You must still specify the index definitions when you create a MERGE table, even though no indexes are
created.)

• If you have a set of tables from which you create a large table on demand, you can instead create a
MERGE table from them on demand. This is much faster and saves a lot of disk space.

• Exceed the file size limit for the operating system. Each MyISAM table is bound by this limit, but a
collection of MyISAM tables is not.

• You can create an alias or synonym for a MyISAM table by defining a MERGE table that maps to that
single table. There should be no really notable performance impact from doing this (only a couple of
indirect calls and memcpy() calls for each read).

The disadvantages of MERGE tables are:

• You can use only identical MyISAM tables for a MERGE table.

• Some MyISAM features are unavailable in MERGE tables. For example, you cannot create FULLTEXT
indexes on MERGE tables. (You can create FULLTEXT indexes on the underlying MyISAM tables, but you
cannot search the MERGE table with a full-text search.)

2941

https://forums.mysql.com/list.php?93

MERGE Table Problems

• If the MERGE table is nontemporary, all underlying MyISAM tables must be nontemporary. If the MERGE
table is temporary, the MyISAM tables can be any mix of temporary and nontemporary.

• MERGE tables use more file descriptors than MyISAM tables. If 10 clients are using a MERGE table that
maps to 10 tables, the server uses (10 × 10) + 10 file descriptors. (10 data file descriptors for each of the
10 clients, and 10 index file descriptors shared among the clients.)

• Index reads are slower. When you read an index, the MERGE storage engine needs to issue a read on all
underlying tables to check which one most closely matches a given index value. To read the next index
value, the MERGE storage engine needs to search the read buffers to find the next value. Only when one
index buffer is used up does the storage engine need to read the next index block. This makes MERGE
indexes much slower on eq_ref searches, but not much slower on ref searches. For more information
about eq_ref and ref, see Section 13.8.2, “EXPLAIN Statement”.

15.7.2 MERGE Table Problems

The following are known problems with MERGE tables:

• MERGE child tables are locked through the parent table. If the parent is a temporary table, it is not locked,
and thus the child tables are also not locked; this means that parallel use of the underlying MyISAM
tables corrupts them.

• If you use ALTER TABLE to change a MERGE table to another storage engine, the mapping to the
underlying tables is lost. Instead, the rows from the underlying MyISAM tables are copied into the altered
table, which then uses the specified storage engine.

• The INSERT_METHOD table option for a MERGE table indicates which underlying MyISAM table to use for
inserts into the MERGE table. However, use of the AUTO_INCREMENT table option for that MyISAM table
has no effect for inserts into the MERGE table until at least one row has been inserted directly into the
MyISAM table.

• A MERGE table cannot maintain uniqueness constraints over the entire table. When you perform an
INSERT, the data goes into the first or last MyISAM table (as determined by the INSERT_METHOD
option). MySQL ensures that unique key values remain unique within that MyISAM table, but not over all
the underlying tables in the collection.

• Because the MERGE engine cannot enforce uniqueness over the set of underlying tables, REPLACE does
not work as expected. The two key facts are:

• REPLACE can detect unique key violations only in the underlying table to which it is going to write
(which is determined by the INSERT_METHOD option). This differs from violations in the MERGE table
itself.

• If REPLACE detects a unique key violation, it changes only the corresponding row in the underlying
table it is writing to; that is, the first or last table, as determined by the INSERT_METHOD option.

Similar considerations apply for INSERT ... ON DUPLICATE KEY UPDATE.

• MERGE tables do not support partitioning. That is, you cannot partition a MERGE table, nor can any of a
MERGE table's underlying MyISAM tables be partitioned.

• You should not use ANALYZE TABLE, REPAIR TABLE, OPTIMIZE TABLE, ALTER TABLE, DROP
TABLE, DELETE without a WHERE clause, or TRUNCATE TABLE on any of the tables that are mapped
into an open MERGE table. If you do so, the MERGE table may still refer to the original table and yield
unexpected results. To work around this problem, ensure that no MERGE tables remain open by issuing a
FLUSH TABLES statement prior to performing any of the named operations.

2942

The FEDERATED Storage Engine

The unexpected results include the possibility that the operation on the MERGE table reports table
corruption. If this occurs after one of the named operations on the underlying MyISAM tables, the
corruption message is spurious. To deal with this, issue a FLUSH TABLES statement after modifying the
MyISAM tables.

• DROP TABLE on a table that is in use by a MERGE table does not work on Windows because the MERGE
storage engine's table mapping is hidden from the upper layer of MySQL. Windows does not permit open
files to be deleted, so you first must flush all MERGE tables (with FLUSH TABLES) or drop the MERGE
table before dropping the table.

• The definition of the MyISAM tables and the MERGE table are checked when the tables are accessed (for
example, as part of a SELECT or INSERT statement). The checks ensure that the definitions of the tables
and the parent MERGE table definition match by comparing column order, types, sizes and associated
indexes. If there is a difference between the tables, an error is returned and the statement fails. Because
these checks take place when the tables are opened, any changes to the definition of a single table,
including column changes, column ordering, and engine alterations causes the statement to fail.

• The order of indexes in the MERGE table and its underlying tables should be the same. If you use ALTER
TABLE to add a UNIQUE index to a table used in a MERGE table, and then use ALTER TABLE to add a
nonunique index on the MERGE table, the index ordering is different for the tables if there was already a
nonunique index in the underlying table. (This happens because ALTER TABLE puts UNIQUE indexes
before nonunique indexes to facilitate rapid detection of duplicate keys.) Consequently, queries on tables
with such indexes may return unexpected results.

• If you encounter an error message similar to ERROR 1017 (HY000): Can't find file:
'tbl_name.MRG' (errno: 2), it generally indicates that some of the underlying tables do not use
the MyISAM storage engine. Confirm that all of these tables are MyISAM.

• The maximum number of rows in a MERGE table is 264 (~1.844E+19; the same as for a MyISAM table). It
is not possible to merge multiple MyISAM tables into a single MERGE table that would have more than this
number of rows.

• Use of underlying MyISAM tables of differing row formats with a parent MERGE table is currently known to
fail. See Bug #32364.

• You cannot change the union list of a nontemporary MERGE table when LOCK TABLES is in effect. The
following does not work:

CREATE TABLE m1 ... ENGINE=MRG_MYISAM ...;
LOCK TABLES t1 WRITE, t2 WRITE, m1 WRITE;
ALTER TABLE m1 ... UNION=(t1,t2) ...;

However, you can do this with a temporary MERGE table.

• You cannot create a MERGE table with CREATE ... SELECT, neither as a temporary MERGE table, nor
as a nontemporary MERGE table. For example:

CREATE TABLE m1 ... ENGINE=MRG_MYISAM ... SELECT ...;

Attempts to do this result in an error: tbl_name is not BASE TABLE.

• In some cases, differing PACK_KEYS table option values among the MERGE and underlying tables cause
unexpected results if the underlying tables contain CHAR or BINARY columns. As a workaround, use
ALTER TABLE to ensure that all involved tables have the same PACK_KEYS value. (Bug #50646)

15.8 The FEDERATED Storage Engine

2943

FEDERATED Storage Engine Overview

The FEDERATED storage engine lets you access data from a remote MySQL database without using
replication or cluster technology. Querying a local FEDERATED table automatically pulls the data from the
remote (federated) tables. No data is stored on the local tables.

To include the FEDERATED storage engine if you build MySQL from source, invoke CMake with the -
DWITH_FEDERATED_STORAGE_ENGINE option.

The FEDERATED storage engine is not enabled by default in the running server; to enable FEDERATED, you
must start the MySQL server binary using the --federated option.

To examine the source for the FEDERATED engine, look in the storage/federated directory of a
MySQL source distribution.

15.8.1 FEDERATED Storage Engine Overview

When you create a table using one of the standard storage engines (such as MyISAM, CSV or InnoDB),
the table consists of the table definition and the associated data. When you create a FEDERATED table, the
table definition is the same, but the physical storage of the data is handled on a remote server.

A FEDERATED table consists of two elements:

• A remote server with a database table, which in turn consists of the table definition (stored in the .frm
file) and the associated table. The table type of the remote table may be any type supported by the
remote mysqld server, including MyISAM or InnoDB.

• A local server with a database table, where the table definition matches that of the corresponding table
on the remote server. The table definition is stored within the .frm file. However, there is no data file on
the local server. Instead, the table definition includes a connection string that points to the remote table.

When executing queries and statements on a FEDERATED table on the local server, the operations that
would normally insert, update or delete information from a local data file are instead sent to the remote
server for execution, where they update the data file on the remote server or return matching rows from the
remote server.

The basic structure of a FEDERATED table setup is shown in Figure 15.2, “FEDERATED Table Structure”.

Figure 15.2 FEDERATED Table Structure

2944

How to Create FEDERATED Tables

When a client issues an SQL statement that refers to a FEDERATED table, the flow of information between
the local server (where the SQL statement is executed) and the remote server (where the data is physically
stored) is as follows:

1. The storage engine looks through each column that the FEDERATED table has and constructs an
appropriate SQL statement that refers to the remote table.

2. The statement is sent to the remote server using the MySQL client API.

3. The remote server processes the statement and the local server retrieves any result that the statement
produces (an affected-rows count or a result set).

4. If the statement produces a result set, each column is converted to internal storage engine format that
the FEDERATED engine expects and can use to display the result to the client that issued the original
statement.

The local server communicates with the remote server using MySQL client C API functions. It invokes
mysql_real_query() to send the statement. To read a result set, it uses mysql_store_result()
and fetches rows one at a time using mysql_fetch_row().

15.8.2 How to Create FEDERATED Tables

To create a FEDERATED table you should follow these steps:

1. Create the table on the remote server. Alternatively, make a note of the table definition of an existing
table, perhaps using the SHOW CREATE TABLE statement.

2. Create the table on the local server with an identical table definition, but adding the connection
information that links the local table to the remote table.

For example, you could create the following table on the remote server:

CREATE TABLE test_table (
 id INT(20) NOT NULL AUTO_INCREMENT,
 name VARCHAR(32) NOT NULL DEFAULT '',
 other INT(20) NOT NULL DEFAULT '0',
 PRIMARY KEY (id),
 INDEX name (name),
 INDEX other_key (other)
)
ENGINE=MyISAM
DEFAULT CHARSET=latin1;

For creating the local table to be federated to the remote table, there are two options available. You can
either create the local table and specify the connection string (containing the server name, login, password)
to be used to connect to the remote table using the CONNECTION, or you can use an existing connection
that you have previously created using the CREATE SERVER statement.

Important

When you create the local table it must have an identical field definition to the
remote table.

Note

You can improve the performance of a FEDERATED table by adding indexes to the
table on the host. The optimization occurs because the query sent to the remote
server includes the contents of the WHERE clause, and is sent to the remote server

2945

https://dev.mysql.com/doc/c-api/5.7/en/mysql-real-query.html
https://dev.mysql.com/doc/c-api/5.7/en/mysql-store-result.html
https://dev.mysql.com/doc/c-api/5.7/en/mysql-fetch-row.html

How to Create FEDERATED Tables

and subsequently executed locally. This reduces the network traffic that would
otherwise request the entire table from the server for local processing.

15.8.2.1 Creating a FEDERATED Table Using CONNECTION

To use the first method, you must specify the CONNECTION string after the engine type in a CREATE
TABLE statement. For example:

CREATE TABLE federated_table (
 id INT(20) NOT NULL AUTO_INCREMENT,
 name VARCHAR(32) NOT NULL DEFAULT '',
 other INT(20) NOT NULL DEFAULT '0',
 PRIMARY KEY (id),
 INDEX name (name),
 INDEX other_key (other)
)
ENGINE=FEDERATED
DEFAULT CHARSET=latin1
CONNECTION='mysql://fed_user@remote_host:9306/federated/test_table';

Note

CONNECTION replaces the COMMENT used in some previous versions of MySQL.

The CONNECTION string contains the information required to connect to the remote server containing
the table used for physical storage of the data. The connection string specifies the server name, login
credentials, port number and database/table information. In the example, the remote table is on the server
remote_host, using port 9306. The name and port number should match the host name (or IP address)
and port number of the remote MySQL server instance you want to use as your remote table.

The format of the connection string is as follows:

scheme://user_name[:password]@host_name[:port_num]/db_name/tbl_name

Where:

• scheme: A recognized connection protocol. Only mysql is supported as the scheme value at this point.

• user_name: The user name for the connection. This user must have been created on the remote server,
and must have suitable privileges to perform the required actions (SELECT, INSERT, UPDATE, and so
forth) on the remote table.

• password: (Optional) The corresponding password for user_name.

• host_name: The host name or IP address of the remote server.

• port_num: (Optional) The port number for the remote server. The default is 3306.

• db_name: The name of the database holding the remote table.

• tbl_name: The name of the remote table. The name of the local and the remote table do not have to
match.

Sample connection strings:

CONNECTION='mysql://username:password@hostname:port/database/tablename'
CONNECTION='mysql://username@hostname/database/tablename'
CONNECTION='mysql://username:password@hostname/database/tablename'

2946

How to Create FEDERATED Tables

15.8.2.2 Creating a FEDERATED Table Using CREATE SERVER

If you are creating a number of FEDERATED tables on the same server, or if you want to simplify the
process of creating FEDERATED tables, you can use the CREATE SERVER statement to define the server
connection parameters, just as you would with the CONNECTION string.

The format of the CREATE SERVER statement is:

CREATE SERVER
server_name
FOREIGN DATA WRAPPER wrapper_name
OPTIONS (option [, option] ...)

The server_name is used in the connection string when creating a new FEDERATED table.

For example, to create a server connection identical to the CONNECTION string:

CONNECTION='mysql://fed_user@remote_host:9306/federated/test_table';

You would use the following statement:

CREATE SERVER fedlink
FOREIGN DATA WRAPPER mysql
OPTIONS (USER 'fed_user', HOST 'remote_host', PORT 9306, DATABASE 'federated');

To create a FEDERATED table that uses this connection, you still use the CONNECTION keyword, but
specify the name you used in the CREATE SERVER statement.

CREATE TABLE test_table (
 id INT(20) NOT NULL AUTO_INCREMENT,
 name VARCHAR(32) NOT NULL DEFAULT '',
 other INT(20) NOT NULL DEFAULT '0',
 PRIMARY KEY (id),
 INDEX name (name),
 INDEX other_key (other)
)
ENGINE=FEDERATED
DEFAULT CHARSET=latin1
CONNECTION='fedlink/test_table';

The connection name in this example contains the name of the connection (fedlink) and the name of
the table (test_table) to link to, separated by a slash. If you specify only the connection name without a
table name, the table name of the local table is used instead.

For more information on CREATE SERVER, see Section 13.1.17, “CREATE SERVER Statement”.

The CREATE SERVER statement accepts the same arguments as the CONNECTION string. The CREATE
SERVER statement updates the rows in the mysql.servers table. See the following table for information
on the correspondence between parameters in a connection string, options in the CREATE SERVER
statement, and the columns in the mysql.servers table. For reference, the format of the CONNECTION
string is as follows:

scheme://user_name[:password]@host_name[:port_num]/db_name/tbl_name

Description CONNECTION string CREATE SERVER option mysql.servers
column

Connection scheme scheme wrapper_name Wrapper

Remote user user_name USER Username

2947

FEDERATED Storage Engine Notes and Tips

Description CONNECTION string CREATE SERVER option mysql.servers
column

Remote password password PASSWORD Password

Remote host host_name HOST Host

Remote port port_num PORT Port

Remote database db_name DATABASE Db

15.8.3 FEDERATED Storage Engine Notes and Tips

You should be aware of the following points when using the FEDERATED storage engine:

• FEDERATED tables may be replicated to other replicas, but you must ensure that the replica servers are
able to use the user/password combination that is defined in the CONNECTION string (or the row in the
mysql.servers table) to connect to the remote server.

The following items indicate features that the FEDERATED storage engine does and does not support:

• The remote server must be a MySQL server.

• The remote table that a FEDERATED table points to must exist before you try to access the table through
the FEDERATED table.

• It is possible for one FEDERATED table to point to another, but you must be careful not to create a loop.

• A FEDERATED table does not support indexes in the usual sense; because access to the table data is
handled remotely, it is actually the remote table that makes use of indexes. This means that, for a query
that cannot use any indexes and so requires a full table scan, the server fetches all rows from the remote
table and filters them locally. This occurs regardless of any WHERE or LIMIT used with this SELECT
statement; these clauses are applied locally to the returned rows.

Queries that fail to use indexes can thus cause poor performance and network overload. In addition,
since returned rows must be stored in memory, such a query can also lead to the local server swapping,
or even hanging.

• Care should be taken when creating a FEDERATED table since the index definition from an equivalent
MyISAM or other table may not be supported. For example, creating a FEDERATED table with an index
prefix fails for VARCHAR, TEXT or BLOB columns. The following definition in MyISAM is valid:

CREATE TABLE `T1`(`A` VARCHAR(100),UNIQUE KEY(`A`(30))) ENGINE=MYISAM;

The key prefix in this example is incompatible with the FEDERATED engine, and the equivalent statement
fails:

CREATE TABLE `T1`(`A` VARCHAR(100),UNIQUE KEY(`A`(30))) ENGINE=FEDERATED
 CONNECTION='MYSQL://127.0.0.1:3306/TEST/T1';

If possible, you should try to separate the column and index definition when creating tables on both the
remote server and the local server to avoid these index issues.

• Internally, the implementation uses SELECT, INSERT, UPDATE, and DELETE, but not HANDLER.

• The FEDERATED storage engine supports SELECT, INSERT, UPDATE, DELETE, TRUNCATE TABLE, and
indexes. It does not support ALTER TABLE, or any Data Definition Language statements that directly
affect the structure of the table, other than DROP TABLE. The current implementation does not use
prepared statements.

2948

FEDERATED Storage Engine Resources

• FEDERATED accepts INSERT ... ON DUPLICATE KEY UPDATE statements, but if a duplicate-key
violation occurs, the statement fails with an error.

• Transactions are not supported.

• FEDERATED performs bulk-insert handling such that multiple rows are sent to the remote table in a
batch, which improves performance. Also, if the remote table is transactional, it enables the remote
storage engine to perform statement rollback properly should an error occur. This capability has the
following limitations:

• The size of the insert cannot exceed the maximum packet size between servers. If the insert exceeds
this size, it is broken into multiple packets and the rollback problem can occur.

• Bulk-insert handling does not occur for INSERT ... ON DUPLICATE KEY UPDATE.

• There is no way for the FEDERATED engine to know if the remote table has changed. The reason for
this is that this table must work like a data file that would never be written to by anything other than the
database system. The integrity of the data in the local table could be breached if there was any change
to the remote database.

• When using a CONNECTION string, you cannot use an '@' character in the password. You can get round
this limitation by using the CREATE SERVER statement to create a server connection.

• The insert_id and timestamp options are not propagated to the data provider.

• Any DROP TABLE statement issued against a FEDERATED table drops only the local table, not the
remote table.

• FEDERATED tables do not work with the query cache.

• User-defined partitioning is not supported for FEDERATED tables.

15.8.4 FEDERATED Storage Engine Resources

The following additional resources are available for the FEDERATED storage engine:

• A forum dedicated to the FEDERATED storage engine is available at https://forums.mysql.com/list.php?
105.

15.9 The EXAMPLE Storage Engine
The EXAMPLE storage engine is a stub engine that does nothing. Its purpose is to serve as an example in
the MySQL source code that illustrates how to begin writing new storage engines. As such, it is primarily of
interest to developers.

To enable the EXAMPLE storage engine if you build MySQL from source, invoke CMake with the -
DWITH_EXAMPLE_STORAGE_ENGINE option.

To examine the source for the EXAMPLE engine, look in the storage/example directory of a MySQL
source distribution.

When you create an EXAMPLE table, the server creates a table format file in the database directory. The
file begins with the table name and has an .frm extension. No other files are created. No data can be
stored into the table. Retrievals return an empty result.

mysql> CREATE TABLE test (i INT) ENGINE = EXAMPLE;
Query OK, 0 rows affected (0.78 sec)

2949

https://forums.mysql.com/list.php?105
https://forums.mysql.com/list.php?105

Other Storage Engines

mysql> INSERT INTO test VALUES(1),(2),(3);
ERROR 1031 (HY000): Table storage engine for 'test' doesn't »
 have this option

mysql> SELECT * FROM test;
Empty set (0.31 sec)

The EXAMPLE storage engine does not support indexing.

15.10 Other Storage Engines
Other storage engines may be available from third parties and community members that have used the
Custom Storage Engine interface.

Third party engines are not supported by MySQL. For further information, documentation, installation
guides, bug reporting or for any help or assistance with these engines, please contact the developer of the
engine directly.

For more information on developing a customer storage engine that can be used with the Pluggable
Storage Engine Architecture, see MySQL Internals: Writing a Custom Storage Engine.

15.11 Overview of MySQL Storage Engine Architecture
The MySQL pluggable storage engine architecture enables a database professional to select a specialized
storage engine for a particular application need while being completely shielded from the need to manage
any specific application coding requirements. The MySQL server architecture isolates the application
programmer and DBA from all of the low-level implementation details at the storage level, providing a
consistent and easy application model and API. Thus, although there are different capabilities across
different storage engines, the application is shielded from these differences.

The pluggable storage engine architecture provides a standard set of management and support services
that are common among all underlying storage engines. The storage engines themselves are the
components of the database server that actually perform actions on the underlying data that is maintained
at the physical server level.

This efficient and modular architecture provides huge benefits for those wishing to specifically target
a particular application need—such as data warehousing, transaction processing, or high availability
situations—while enjoying the advantage of utilizing a set of interfaces and services that are independent
of any one storage engine.

The application programmer and DBA interact with the MySQL database through Connector APIs and
service layers that are above the storage engines. If application changes bring about requirements that
demand the underlying storage engine change, or that one or more storage engines be added to support
new needs, no significant coding or process changes are required to make things work. The MySQL server
architecture shields the application from the underlying complexity of the storage engine by presenting a
consistent and easy-to-use API that applies across storage engines.

15.11.1 Pluggable Storage Engine Architecture

MySQL Server uses a pluggable storage engine architecture that enables storage engines to be loaded
into and unloaded from a running MySQL server.

Plugging in a Storage Engine

Before a storage engine can be used, the storage engine plugin shared library must be loaded into MySQL
using the INSTALL PLUGIN statement. For example, if the EXAMPLE engine plugin is named example
and the shared library is named ha_example.so, you load it with the following statement:

2950

https://dev.mysql.com/doc/internals/en/custom-engine.html

The Common Database Server Layer

INSTALL PLUGIN example SONAME 'ha_example.so';

To install a pluggable storage engine, the plugin file must be located in the MySQL plugin directory, and
the user issuing the INSTALL PLUGIN statement must have INSERT privilege for the mysql.plugin
table.

The shared library must be located in the MySQL server plugin directory, the location of which is given by
the plugin_dir system variable.

Unplugging a Storage Engine

To unplug a storage engine, use the UNINSTALL PLUGIN statement:

UNINSTALL PLUGIN example;

If you unplug a storage engine that is needed by existing tables, those tables become inaccessible, but are
still present on disk (where applicable). Ensure that there are no tables using a storage engine before you
unplug the storage engine.

15.11.2 The Common Database Server Layer

A MySQL pluggable storage engine is the component in the MySQL database server that is responsible for
performing the actual data I/O operations for a database as well as enabling and enforcing certain feature
sets that target a specific application need. A major benefit of using specific storage engines is that you
are only delivered the features needed for a particular application, and therefore you have less system
overhead in the database, with the end result being more efficient and higher database performance. This
is one of the reasons that MySQL has always been known to have such high performance, matching or
beating proprietary monolithic databases in industry standard benchmarks.

From a technical perspective, what are some of the unique supporting infrastructure components that are
in a storage engine? Some of the key feature differentiations include:

• Concurrency: Some applications have more granular lock requirements (such as row-level locks)
than others. Choosing the right locking strategy can reduce overhead and therefore improve overall
performance. This area also includes support for capabilities such as multi-version concurrency control
or “snapshot” read.

• Transaction Support: Not every application needs transactions, but for those that do, there are very well
defined requirements such as ACID compliance and more.

• Referential Integrity: The need to have the server enforce relational database referential integrity through
DDL defined foreign keys.

• Physical Storage: This involves everything from the overall page size for tables and indexes as well as
the format used for storing data to physical disk.

• Index Support: Different application scenarios tend to benefit from different index strategies. Each
storage engine generally has its own indexing methods, although some (such as B-tree indexes) are
common to nearly all engines.

• Memory Caches: Different applications respond better to some memory caching strategies than others,
so although some memory caches are common to all storage engines (such as those used for user
connections or MySQL's high-speed Query Cache), others are uniquely defined only when a particular
storage engine is put in play.

• Performance Aids: This includes multiple I/O threads for parallel operations, thread concurrency,
database checkpointing, bulk insert handling, and more.

2951

The Common Database Server Layer

• Miscellaneous Target Features: This may include support for geospatial operations, security restrictions
for certain data manipulation operations, and other similar features.

Each set of the pluggable storage engine infrastructure components are designed to offer a selective set
of benefits for a particular application. Conversely, avoiding a set of component features helps reduce
unnecessary overhead. It stands to reason that understanding a particular application's set of requirements
and selecting the proper MySQL storage engine can have a dramatic impact on overall system efficiency
and performance.

2952

Chapter 16 Replication

Table of Contents
16.1 Configuring Replication .. 2955

16.1.1 Binary Log File Position Based Replication Configuration Overview 2955
16.1.2 Setting Up Binary Log File Position Based Replication ... 2956
16.1.3 Replication with Global Transaction Identifiers ... 2965
16.1.4 Changing Replication Modes on Online Servers ... 2987
16.1.5 MySQL Multi-Source Replication ... 2993
16.1.6 Replication and Binary Logging Options and Variables ... 2998
16.1.7 Common Replication Administration Tasks .. 3078

16.2 Replication Implementation .. 3084
16.2.1 Replication Formats .. 3084
16.2.2 Replication Channels .. 3091
16.2.3 Replication Threads .. 3095
16.2.4 Relay Log and Replication Metadata Repositories .. 3098
16.2.5 How Servers Evaluate Replication Filtering Rules .. 3104

16.3 Replication Solutions ... 3110
16.3.1 Using Replication for Backups .. 3111
16.3.2 Handling an Unexpected Halt of a Replica .. 3114
16.3.3 Using Replication with Different Source and Replica Storage Engines 3116
16.3.4 Using Replication for Scale-Out .. 3118
16.3.5 Replicating Different Databases to Different Replicas ... 3119
16.3.6 Improving Replication Performance ... 3120
16.3.7 Switching Sources During Failover .. 3121
16.3.8 Setting Up Replication to Use Encrypted Connections .. 3124
16.3.9 Semisynchronous Replication ... 3125
16.3.10 Delayed Replication .. 3131

16.4 Replication Notes and Tips .. 3132
16.4.1 Replication Features and Issues ... 3132
16.4.2 Replication Compatibility Between MySQL Versions ... 3158
16.4.3 Upgrading a Replication Topology ... 3159
16.4.4 Troubleshooting Replication .. 3161
16.4.5 How to Report Replication Bugs or Problems .. 3163

Replication enables data from one MySQL database server (the source) to be copied to one or more
MySQL database servers (the replicas). Replication is asynchronous by default; replicas do not need to
be connected permanently to receive updates from the source. Depending on the configuration, you can
replicate all databases, selected databases, or even selected tables within a database.

Advantages of replication in MySQL include:

• Scale-out solutions - spreading the load among multiple replicas to improve performance. In this
environment, all writes and updates must take place on the replication source server. Reads, however,
may take place on one or more replicas. This model can improve the performance of writes (since the
source is dedicated to updates), while dramatically increasing read speed across an increasing number
of replicas.

• Data security - because data is replicated to the replica, and the replica can pause the replication
process, it is possible to run backup services on the replica without corrupting the corresponding source
data.

2953

• Analytics - live data can be created on the source, while the analysis of the information can take place on
the replica without affecting the performance of the source.

• Long-distance data distribution - you can use replication to create a local copy of data for a remote site
to use, without permanent access to the source.

For information on how to use replication in such scenarios, see Section 16.3, “Replication Solutions”.

MySQL 5.7 supports different methods of replication. The traditional method is based on replicating events
from the source's binary log, and requires the log files and positions in them to be synchronized between
source and replica. The newer method based on global transaction identifiers (GTIDs) is transactional
and therefore does not require working with log files or positions within these files, which greatly simplifies
many common replication tasks. Replication using GTIDs guarantees consistency between source and
replica as long as all transactions committed on the source have also been applied on the replica. For
more information about GTIDs and GTID-based replication in MySQL, see Section 16.1.3, “Replication
with Global Transaction Identifiers”. For information on using binary log file position based replication, see
Section 16.1, “Configuring Replication”.

Replication in MySQL supports different types of synchronization. The original type of synchronization
is one-way, asynchronous replication, in which one server acts as the source, while one or more other
servers act as replicas. This is in contrast to the synchronous replication which is a characteristic of NDB
Cluster (see Chapter 21, MySQL NDB Cluster 7.5 and NDB Cluster 7.6). In MySQL 5.7, semisynchronous
replication is supported in addition to the built-in asynchronous replication. With semisynchronous
replication, a commit performed on the source blocks before returning to the session that performed
the transaction until at least one replica acknowledges that it has received and logged the events for
the transaction; see Section 16.3.9, “Semisynchronous Replication”. MySQL 5.7 also supports delayed
replication such that a replica deliberately lags behind the source by at least a specified amount of time;
see Section 16.3.10, “Delayed Replication”. For scenarios where synchronous replication is required, use
NDB Cluster (see Chapter 21, MySQL NDB Cluster 7.5 and NDB Cluster 7.6).

There are a number of solutions available for setting up replication between servers, and the best method
to use depends on the presence of data and the engine types you are using. For more information on the
available options, see Section 16.1.2, “Setting Up Binary Log File Position Based Replication”.

There are two core types of replication format, Statement Based Replication (SBR), which replicates entire
SQL statements, and Row Based Replication (RBR), which replicates only the changed rows. You can
also use a third variety, Mixed Based Replication (MBR). For more information on the different replication
formats, see Section 16.2.1, “Replication Formats”.

Replication is controlled through a number of different options and variables. For more information, see
Section 16.1.6, “Replication and Binary Logging Options and Variables”.

You can use replication to solve a number of different problems, including performance, supporting the
backup of different databases, and as part of a larger solution to alleviate system failures. For information
on how to address these issues, see Section 16.3, “Replication Solutions”.

For notes and tips on how different data types and statements are treated during replication, including
details of replication features, version compatibility, upgrades, and potential problems and their resolution,
see Section 16.4, “Replication Notes and Tips”. For answers to some questions often asked by those who
are new to MySQL Replication, see Section A.14, “MySQL 5.7 FAQ: Replication”.

For detailed information on the implementation of replication, how replication works, the process and
contents of the binary log, background threads and the rules used to decide how statements are recorded
and replicated, see Section 16.2, “Replication Implementation”.

2954

Configuring Replication

16.1 Configuring Replication
This section describes how to configure the different types of replication available in MySQL and includes
the setup and configuration required for a replication environment, including step-by-step instructions for
creating a new replication environment. The major components of this section are:

• For a guide to setting up two or more servers for replication using binary log file positions,
Section 16.1.2, “Setting Up Binary Log File Position Based Replication”, deals with the configuration of
the servers and provides methods for copying data between the source and replicas.

• For a guide to setting up two or more servers for replication using GTID transactions, Section 16.1.3,
“Replication with Global Transaction Identifiers”, deals with the configuration of the servers.

• Events in the binary log are recorded using a number of formats. These are referred to as statement-
based replication (SBR) or row-based replication (RBR). A third type, mixed-format replication (MIXED),
uses SBR or RBR replication automatically to take advantage of the benefits of both SBR and RBR
formats when appropriate. The different formats are discussed in Section 16.2.1, “Replication Formats”.

• Detailed information on the different configuration options and variables that apply to replication is
provided in Section 16.1.6, “Replication and Binary Logging Options and Variables”.

• Once started, the replication process should require little administration or monitoring. However, for
advice on common tasks that you may want to execute, see Section 16.1.7, “Common Replication
Administration Tasks”.

16.1.1 Binary Log File Position Based Replication Configuration Overview

This section describes replication between MySQL servers based on the binary log file position method,
where the MySQL instance operating as the source (where the database changes originate) writes updates
and changes as “events” to the binary log. The information in the binary log is stored in different logging
formats according to the database changes being recorded. Replicas are configured to read the binary log
from the source and to execute the events in the binary log on the replica's local database.

Each replica receives a copy of the entire contents of the binary log. It is the responsibility of the replica to
decide which statements in the binary log should be executed. Unless you specify otherwise, all events in
the source's binary log are executed on the replica. If required, you can configure the replica to process
only events that apply to particular databases or tables.

Important

You cannot configure the source to log only certain events.

Each replica keeps a record of the binary log coordinates: the file name and position within the file that it
has read and processed from the source. This means that multiple replicas can be connected to the source
and executing different parts of the same binary log. Because the replicas control this process, individual
replicas can be connected and disconnected from the server without affecting the source's operation. Also,
because each replica records the current position within the binary log, it is possible for replicas to be
disconnected, reconnect and then resume processing.

The source and each replica must be configured with a unique ID (using the server_id system variable).
In addition, each replica must be configured with information about the source's host name, log file name,
and position within that file. These details can be controlled from within a MySQL session using the
CHANGE MASTER TO statement on the replica. The details are stored within the replica's connection
metadata repository, which can be either a file or a table (see Section 16.2.4, “Relay Log and Replication
Metadata Repositories”).

2955

Setting Up Binary Log File Position Based Replication

16.1.2 Setting Up Binary Log File Position Based Replication

This section describes how to set up a MySQL server to use binary log file position based replication.
There are a number of different methods for setting up replication, and the exact method to use depends
on how you are setting up replication, and whether you already have data in the database on the source.

There are some generic tasks that are common to all setups:

• On the source, you must enable binary logging and configure a unique server ID. This might require a
server restart. See Section 16.1.2.1, “Setting the Replication Source Configuration”.

• On each replica that you want to connect to the source, you must configure a unique server ID. This
might require a server restart. See Setting the Replica Configuration.

• Optionally, create a separate user for your replicas to use during authentication with the source when
reading the binary log for replication. See Section 16.1.2.2, “Creating a User for Replication”.

• Before creating a data snapshot or starting the replication process, on the source you should record
the current position in the binary log. You need this information when configuring the replica so that the
replica knows where in the binary log to start executing events. See Section 16.1.2.3, “Obtaining the
Replication Source's Binary Log Coordinates”.

• If you already have data on the source and want to use it to synchronize the replica, you need to create
a data snapshot to copy the data to the replica. The storage engine you are using has an impact on how
you create the snapshot. When you are using MyISAM, you must stop processing statements on the
source to obtain a read-lock, then obtain its current binary log coordinates and dump its data, before
permitting the source to continue executing statements. If you do not stop the execution of statements,
the data dump and the source's status information do not match, resulting in inconsistent or corrupted
databases on the replicas. For more information on replicating a MyISAM source, see Section 16.1.2.3,
“Obtaining the Replication Source's Binary Log Coordinates”. If you are using InnoDB, you do not need
a read-lock and a transaction that is long enough to transfer the data snapshot is sufficient. For more
information, see Section 14.20, “InnoDB and MySQL Replication”.

• Configure the replica with settings for connecting to the source, such as the host name, login credentials,
and binary log file name and position. See Setting the Source Configuration on the Replica.

Note

Certain steps within the setup process require the SUPER privilege. If you do not
have this privilege, it might not be possible to enable replication.

After configuring the basic options, select your scenario:

• To set up replication for a fresh installation of a source and replicas that contain no data, see Setting Up
Replication between a New Source and Replicas.

• To set up replication of a new source using the data from an existing MySQL server, see Setting Up
Replication with Existing Data.

• To add replicas to an existing replication environment, see Section 16.1.2.6, “Adding Replicas to a
Replication Topology”.

Before administering MySQL replication servers, read this entire chapter and try all statements mentioned
in Section 13.4.1, “SQL Statements for Controlling Replication Source Servers”, and Section 13.4.2, “SQL
Statements for Controlling Replica Servers”. Also familiarize yourself with the replication startup options
described in Section 16.1.6, “Replication and Binary Logging Options and Variables”.

2956

Setting Up Binary Log File Position Based Replication

16.1.2.1 Setting the Replication Source Configuration

To configure a source to use binary log file position based replication, you must ensure that binary logging
is enabled, and establish a unique server ID.

Each server within a replication topology must be configured with a unique server ID, which you can
specify using the server_id system variable. This server ID is used to identify individual servers within
the replication topology, and must be a positive integer between 1 and (232)−1. You can change the
server_id value dynamically by issuing a statement like this:

SET GLOBAL server_id = 2;

With the default server ID of 0, a source refuses any connections from replicas, and a replica refuses
to connect to a source, so this value cannot be used in a replication topology. Other than that, how
you organize and select the server IDs is your choice, so long as each server ID is different from every
other server ID in use by any other server in the replication topology. Note that if a value of 0 was set
previously for the server ID, you must restart the server to initialize the source with your new nonzero
server ID. Otherwise, a server restart is not needed, unless you need to enable binary logging or make
other configuration changes that require a restart.

Binary logging must be enabled on the source because the binary log is the basis for replicating changes
from the source to its replicas. If binary logging is not enabled on the source using the log-bin option,
replication is not possible. To enable binary logging on a server where it is not already enabled, you must
restart the server. In this case, shut down the MySQL server and edit the my.cnf or my.ini file. Within
the [mysqld] section of the configuration file, add the log-bin and server-id options. If these options
already exist, but are commented out, uncomment the options and alter them according to your needs. For
example, to enable binary logging using a log file name prefix of mysql-bin, and configure a server ID of
1, use these lines:

[mysqld]
log-bin=mysql-bin
server-id=1

After making the changes, restart the server.

Note

The following options have an impact on this procedure:

• For the greatest possible durability and consistency in a
replication setup using InnoDB with transactions, you should use
innodb_flush_log_at_trx_commit=1 and sync_binlog=1 in the source's
my.cnf file.

• Ensure that the skip_networking system variable is not enabled on your
source. If networking has been disabled, the replica cannot communicate with the
source and replication fails.

16.1.2.2 Creating a User for Replication

Each replica connects to the source using a MySQL user name and password, so there must be a
user account on the source that the replica can use to connect. The user name is specified by the
MASTER_USER option on the CHANGE MASTER TO command when you set up a replica. Any account can
be used for this operation, providing it has been granted the REPLICATION SLAVE privilege. You can
choose to create a different account for each replica, or connect to the source using the same account for
each replica.

2957

Setting Up Binary Log File Position Based Replication

Although you do not have to create an account specifically for replication, you should be aware that the
replication user name and password are stored in plain text in the replication metadata repositories (see
Section 16.2.4.2, “Replication Metadata Repositories”). Therefore, you may want to create a separate
account that has privileges only for the replication process, to minimize the possibility of compromise to
other accounts.

To create a new account, use CREATE USER. To grant this account the privileges required for replication,
use the GRANT statement. If you create an account solely for the purposes of replication, that account
needs only the REPLICATION SLAVE privilege. For example, to set up a new user, repl, that can
connect for replication from any host within the example.com domain, issue these statements on the
source:

mysql> CREATE USER 'repl'@'%.example.com' IDENTIFIED BY 'password';
mysql> GRANT REPLICATION SLAVE ON *.* TO 'repl'@'%.example.com';

See Section 13.7.1, “Account Management Statements”, for more information on statements for
manipulation of user accounts.

16.1.2.3 Obtaining the Replication Source's Binary Log Coordinates

To configure the replica to start the replication process at the correct point, you need to note the source's
current coordinates within its binary log.

Warning

This procedure uses FLUSH TABLES WITH READ LOCK, which blocks COMMIT
operations for InnoDB tables.

If you are planning to shut down the source to create a data snapshot, you can optionally skip this
procedure and instead store a copy of the binary log index file along with the data snapshot. In that
situation, the source creates a new binary log file on restart. The source's binary log coordinates where the
replica must start the replication process are therefore the start of that new file, which is the next binary log
file on the source following after the files that are listed in the copied binary log index file.

To obtain the source's binary log coordinates, follow these steps:

1. Start a session on the source by connecting to it with the command-line client, and flush all tables and
block write statements by executing the FLUSH TABLES WITH READ LOCK statement:

mysql> FLUSH TABLES WITH READ LOCK;

Warning

Leave the client from which you issued the FLUSH TABLES statement running
so that the read lock remains in effect. If you exit the client, the lock is released.

2. In a different session on the source, use the SHOW MASTER STATUS statement to determine the
current binary log file name and position:

mysql> SHOW MASTER STATUS\G
*************************** 1. row ***************************
 File: mysql-bin.000003
 Position: 73
 Binlog_Do_DB: test
 Binlog_Ignore_DB: manual, mysql
Executed_Gtid_Set: 3E11FA47-71CA-11E1-9E33-C80AA9429562:1-5
1 row in set (0.00 sec)

The File column shows the name of the log file and the Position column shows the position within
the file. In this example, the binary log file is mysql-bin.000003 and the position is 73. Record

2958

Setting Up Binary Log File Position Based Replication

these values. You need them later when you are setting up the replica. They represent the replication
coordinates at which the replica should begin processing new updates from the source.

If the source has been running previously without binary logging enabled, the log file name and position
values displayed by SHOW MASTER STATUS or mysqldump --master-data are empty. In that case,
the values that you need to use later when specifying the source's log file and position are the empty
string ('') and 4.

You now have the information you need to enable the replica to start reading from the binary log in the
correct place to start replication.

The next step depends on whether you have existing data on the source. Choose one of the following
options:

• If you have existing data that needs be to synchronized with the replica before you start replication,
leave the client running so that the lock remains in place. This prevents any further changes being
made, so that the data copied to the replica is in synchrony with the source. Proceed to Section 16.1.2.4,
“Choosing a Method for Data Snapshots”.

• If you are setting up a new replication topology, you can exit the first session to release the read lock.
See Setting Up Replication between a New Source and Replicas for how to proceed.

16.1.2.4 Choosing a Method for Data Snapshots

If the database on the source contains existing data it is necessary to copy this data to each replica. There
are different ways to dump the data from the source. The following sections describe possible options.

To select the appropriate method of dumping the database, choose between these options:

• Use the mysqldump tool to create a dump of all the databases you want to replicate. This is the
recommended method, especially when using InnoDB.

• If your database is stored in binary portable files, you can copy the raw data files to a replica. This can
be more efficient than using mysqldump and importing the file on each replica, because it skips the
overhead of updating indexes as the INSERT statements are replayed. With storage engines such as
InnoDB this is not recommended.

Creating a Data Snapshot Using mysqldump

To create a snapshot of the data in an existing source, use the mysqldump tool. Once the data dump has
been completed, import this data into the replica before starting the replication process.

The following example dumps all databases to a file named dbdump.db, and includes the --master-
data option which automatically appends the CHANGE MASTER TO statement required on the replica to
start the replication process:

$> mysqldump --all-databases --master-data > dbdump.db

Note

If you do not use --master-data, then it is necessary to lock all tables in a
separate session manually. See Section 16.1.2.3, “Obtaining the Replication
Source's Binary Log Coordinates”.

It is possible to exclude certain databases from the dump using the mysqldump tool. If you want to choose
which databases to include in the dump, do not use --all-databases. Choose one of these options:

• Exclude all the tables in the database using --ignore-table option.

2959

Setting Up Binary Log File Position Based Replication

• Name only those databases which you want dumped using the --databases option.

For more information, see Section 4.5.4, “mysqldump — A Database Backup Program”.

To import the data, either copy the dump file to the replica, or access the file from the source when
connecting remotely to the replica.

Creating a Data Snapshot Using Raw Data Files

This section describes how to create a data snapshot using the raw files which make up the database.
Employing this method with a table using a storage engine that has complex caching or logging algorithms
requires extra steps to produce a perfect “point in time” snapshot: the initial copy command could leave
out cache information and logging updates, even if you have acquired a global read lock. How the storage
engine responds to this depends on its crash recovery abilities.

If you use InnoDB tables, you can use the mysqlbackup command from the MySQL Enterprise
Backup component to produce a consistent snapshot. This command records the log name and offset
corresponding to the snapshot to be used on the replica. MySQL Enterprise Backup is a commercial
product that is included as part of a MySQL Enterprise subscription. See Section 28.1, “MySQL Enterprise
Backup Overview” for detailed information.

This method also does not work reliably if the source and replica have different values for
ft_stopword_file, ft_min_word_len, or ft_max_word_len and you are copying tables having full-
text indexes.

Assuming the above exceptions do not apply to your database, use the cold backup technique to obtain a
reliable binary snapshot of InnoDB tables: do a slow shutdown of the MySQL Server, then copy the data
files manually.

To create a raw data snapshot of MyISAM tables when your MySQL data files exist on a single file system,
you can use standard file copy tools such as cp or copy, a remote copy tool such as scp or rsync, an
archiving tool such as zip or tar, or a file system snapshot tool such as dump. If you are replicating only
certain databases, copy only those files that relate to those tables. For InnoDB, all tables in all databases
are stored in the system tablespace files, unless you have the innodb_file_per_table option enabled.

The following files are not required for replication:

• Files relating to the mysql database.

• The replica's connection metadata repository file, if used (see Section 16.2.4, “Relay Log and Replication
Metadata Repositories”).

• The source's binary log files, with the exception of the binary log index file if you are going to use this to
locate the source's binary log coordinates for the replica.

• Any relay log files.

Depending on whether you are using InnoDB tables or not, choose one of the following:

If you are using InnoDB tables, and also to get the most consistent results with a raw data snapshot, shut
down the source server during the process, as follows:

1. Acquire a read lock and get the source's status. See Section 16.1.2.3, “Obtaining the Replication
Source's Binary Log Coordinates”.

2. In a separate session, shut down the source server:

$> mysqladmin shutdown

2960

Setting Up Binary Log File Position Based Replication

3. Make a copy of the MySQL data files. The following examples show common ways to do this. You need
to choose only one of them:

$> tar cf /tmp/db.tar ./data
$> zip -r /tmp/db.zip ./data
$> rsync --recursive ./data /tmp/dbdata

4. Restart the source server.

If you are not using InnoDB tables, you can get a snapshot of the system from a source without shutting
down the server as described in the following steps:

1. Acquire a read lock and get the source's status. See Section 16.1.2.3, “Obtaining the Replication
Source's Binary Log Coordinates”.

2. Make a copy of the MySQL data files. The following examples show common ways to do this. You need
to choose only one of them:

$> tar cf /tmp/db.tar ./data
$> zip -r /tmp/db.zip ./data
$> rsync --recursive ./data /tmp/dbdata

3. In the client where you acquired the read lock, release the lock:

mysql> UNLOCK TABLES;

Once you have created the archive or copy of the database, copy the files to each replica before starting
the replication process.

16.1.2.5 Setting Up Replicas

The following sections describe how to set up replicas. Before you proceed, ensure that you have:

• Configured the source with the necessary configuration properties. See Section 16.1.2.1, “Setting the
Replication Source Configuration”.

• Obtained the source's status information, or a copy of the source's binary log index file made during a
shutdown for the data snapshot. See Section 16.1.2.3, “Obtaining the Replication Source's Binary Log
Coordinates”.

• On the source, released the read lock:

mysql> UNLOCK TABLES;

Setting the Replica Configuration

Each replica must have a unique server ID, as specified by the server_id system variable. If you are
setting up multiple replicas, each one must have a unique server_id value that differs from that of the
source and from any of the other replicas. If the replica's server ID is not already set, or the current value
conflicts with the value that you have chosen for the source server or another replica, you must change it.
With the default server_id value of 0, a replica refuses to connect to a source.

You can change the server_id value dynamically by issuing a statement like this:

SET GLOBAL server_id = 21;

If the default server_id value of 0 was set previously, you must restart the server to initialize the replica
with your new nonzero server ID. Otherwise, a server restart is not needed when you change the server ID,
unless you make other configuration changes that require it. For example, if binary logging was disabled on
the server and you want it enabled for your replica, a server restart is required to enable this.

2961

Setting Up Binary Log File Position Based Replication

If you are shutting down the replica server, you can edit the [mysqld] section of the configuration file to
specify a unique server ID. For example:

[mysqld]
server-id=21

A replica is not required to have binary logging enabled for replication to take place. However, binary
logging on a replica means that the replica's binary log can be used for data backups and crash recovery.
Replicas that have binary logging enabled can also be used as part of a more complex replication
topology. If you want to enable binary logging on a replica, use the log-bin option in the [mysqld]
section of the configuration file. A server restart is required to start binary logging on a server that did not
previously use it.

Setting the Source Configuration on the Replica

To set up the replica to communicate with the source for replication, configure the replica with the
necessary connection information. To do this, execute the following statement on the replica, replacing the
option values with the actual values relevant to your system:

mysql> CHANGE MASTER TO
 -> MASTER_HOST='source_host_name',
 -> MASTER_USER='replication_user_name',
 -> MASTER_PASSWORD='replication_password',
 -> MASTER_LOG_FILE='recorded_log_file_name',
 -> MASTER_LOG_POS=recorded_log_position;

Note

Replication cannot use Unix socket files. You must be able to connect to the source
MySQL server using TCP/IP.

The CHANGE MASTER TO statement has other options as well. For example, it is possible to set up secure
replication using SSL. For a full list of options, and information about the maximum permissible length for
the string-valued options, see Section 13.4.2.1, “CHANGE MASTER TO Statement”.

The next steps depend on whether you have existing data to import to the replica or not. See
Section 16.1.2.4, “Choosing a Method for Data Snapshots” for more information. Choose one of the
following:

• If you do not have a snapshot of a database to import, see Setting Up Replication between a New
Source and Replicas.

• If you have a snapshot of a database to import, see Setting Up Replication with Existing Data.

Setting Up Replication between a New Source and Replicas

When there is no snapshot of a previous database to import, configure the replica to start replication from
the new source.

To set up replication between a source and a new replica:

1. Start up the replica and connect to it.

2. Execute a CHANGE MASTER TO statement to set the source configuration. See Setting the Source
Configuration on the Replica.

Perform these setup steps on each replica.

This method can also be used if you are setting up new servers but have an existing dump of the
databases from a different server that you want to load into your replication configuration. By loading the
data into a new source, the data is automatically replicated to the replicas.

2962

Setting Up Binary Log File Position Based Replication

If you are setting up a new replication environment using the data from a different existing database server
to create a new source, run the dump file generated from that server on the new source. The database
updates are automatically propagated to the replicas:

$> mysql -h master < fulldb.dump

Setting Up Replication with Existing Data

When setting up replication with existing data, transfer the snapshot from the source to the replica before
starting replication. The process for importing data to the replica depends on how you created the snapshot
of data on the source.

Follow this procedure to set up replication with existing data:

1. Import the data to the replica using one of the following methods:

a. If you used mysqldump, start the replica server, ensuring that replication does not start by using the
--skip-slave-start option. Then import the dump file:

$> mysql < fulldb.dump

b. If you created a snapshot using the raw data files, extract the data files into your replica's data
directory. For example:

$> tar xvf dbdump.tar

You may need to set permissions and ownership on the files so that the replica server can access
and modify them. Then start the replica server, ensuring that replication does not start by using the
--skip-slave-start option.

2. Configure the replica with the replication coordinates from the source. This tells the replica the binary
log file and position within the file where replication needs to start. Also, configure the replica with the
login credentials and host name of the source. For more information on the CHANGE MASTER TO
statement required, see Setting the Source Configuration on the Replica.

3. Start the replication threads:

mysql> START SLAVE;

After you have performed this procedure, the replica connects to the source and replicates any updates
that have occurred on the source since the snapshot was taken.

If the server_id system variable for the source is not correctly set, replicas cannot connect to it.
Similarly, if you have not set server_id correctly for the replica, you get the following error in the replica's
error log:

Warning: You should set server-id to a non-0 value if master_host
is set; we will force server id to 2, but this MySQL server will
not act as a slave.

You also find error messages in the replica's error log if it is not able to replicate for any other reason.

The replica stores information about the source you have configured in its connection metadata
repository. The connection metadata repository can be in the form of files or a table, as determined
by the value set for the master_info_repository system variable. When a replica runs with
master_info_repository=FILE, two files are stored in the data directory, named master.info
and relay-log.info. If master_info_repository=TABLE instead, this information is saved in the
master_slave_info table in the mysql database. In either case, do not remove or edit the files or table.
Always use the CHANGE MASTER TO statement to change replication parameters. The replica can use the

2963

Setting Up Binary Log File Position Based Replication

values specified in the statement to update the status files automatically. See Section 16.2.4, “Relay Log
and Replication Metadata Repositories”, for more information.

Note

The contents of the connection metadata repository override some of the server
options specified on the command line or in my.cnf. See Section 16.1.6,
“Replication and Binary Logging Options and Variables”, for more details.

A single snapshot of the source suffices for multiple replicas. To set up additional replicas, use the same
source snapshot and follow the replica portion of the procedure just described.

16.1.2.6 Adding Replicas to a Replication Topology

You can add another replica to an existing replication configuration without stopping the source server. To
do this, you can set up the new replica by copying the data directory of an existing replica, and giving the
new replica a different server ID (which is user-specified) and server UUID (which is generated at startup).

To duplicate an existing replica:

1. Stop the existing replica and record the replica status information, particularly the source's binary log
file and relay log file positions. You can view the replica status either in the Performance Schema
replication tables (see Section 25.12.11, “Performance Schema Replication Tables”), or by issuing
SHOW SLAVE STATUS as follows:

mysql> STOP SLAVE;
mysql> SHOW SLAVE STATUS\G

2. Shut down the existing replica:

$> mysqladmin shutdown

3. Copy the data directory from the existing replica to the new replica, including the log files and relay log
files. You can do this by creating an archive using tar or WinZip, or by performing a direct copy using
a tool such as cp or rsync.

Important

• Before copying, verify that all the files relating to the existing replica actually
are stored in the data directory. For example, the InnoDB system tablespace,
undo tablespace, and redo log might be stored in an alternative location.
InnoDB tablespace files and file-per-table tablespaces might have been
created in other directories. The binary logs and relay logs for the replica
might be in their own directories outside the data directory. Check through
the system variables that are set for the existing replica and look for any
alternative paths that have been specified. If you find any, copy these
directories over as well.

• During copying, if files have been used for the replication metadata
repositories (see Section 16.2.4, “Relay Log and Replication Metadata
Repositories”), which is the default in MySQL 5.7, ensure that you also copy
these files from the existing replica to the new replica. If tables have been
used for the repositories, the tables are in the data directory.

• After copying, delete the auto.cnf file from the copy of the data directory on
the new replica, so that the new replica is started with a different generated
server UUID. The server UUID must be unique.

2964

Replication with Global Transaction Identifiers

A common problem that is encountered when adding new replicas is that the new replica fails with a
series of warning and error messages like these:

071118 16:44:10 [Warning] Neither --relay-log nor --relay-log-index were used; so
replication may break when this MySQL server acts as a slave and has his hostname
changed!! Please use '--relay-log=new_replica_hostname-relay-bin' to avoid this problem.
071118 16:44:10 [ERROR] Failed to open the relay log './old_replica_hostname-relay-bin.003525'
(relay_log_pos 22940879)
071118 16:44:10 [ERROR] Could not find target log during relay log initialization
071118 16:44:10 [ERROR] Failed to initialize the master info structure

This situation can occur if the relay_log system variable is not specified, as the relay log files
contain the host name as part of their file names. This is also true of the relay log index file if the
relay_log_index system variable is not used. For more information about these variables, see
Section 16.1.6, “Replication and Binary Logging Options and Variables”.

To avoid this problem, use the same value for relay_log on the new replica that was
used on the existing replica. If this option was not set explicitly on the existing replica, use
existing_replica_hostname-relay-bin. If this is not possible, copy the existing replica's relay
log index file to the new replica and set the relay_log_index system variable on the new replica to
match what was used on the existing replica. If this option was not set explicitly on the existing replica,
use existing_replica_hostname-relay-bin.index. Alternatively, if you have already tried to
start the new replica after following the remaining steps in this section and have encountered errors like
those described previously, then perform the following steps:

a. If you have not already done so, issue STOP SLAVE on the new replica.

If you have already started the existing replica again, issue STOP SLAVE on the existing replica as
well.

b. Copy the contents of the existing replica's relay log index file into the new replica's relay log index
file, making sure to overwrite any content already in the file.

c. Proceed with the remaining steps in this section.

4. When copying is complete, restart the existing replica.

5. On the new replica, edit the configuration and give the new replica a unique server ID (using the
server_id system variable) that is not used by the source or any of the existing replicas.

6. Start the new replica server, specifying the --skip-slave-start option so that replication does not
start yet. Use the Performance Schema replication tables or issue SHOW SLAVE STATUS to confirm
that the new replica has the correct settings when compared with the existing replica. Also display the
server ID and server UUID and verify that these are correct and unique for the new replica.

7. Start the replication threads by issuing a START SLAVE statement:

mysql> START SLAVE;

The new replica now uses the information in its connection metadata repository to start the replication
process.

16.1.3 Replication with Global Transaction Identifiers

This section explains transaction-based replication using global transaction identifiers (GTIDs). When
using GTIDs, each transaction can be identified and tracked as it is committed on the originating server
and applied by any replicas; this means that it is not necessary when using GTIDs to refer to log files

2965

Replication with Global Transaction Identifiers

or positions within those files when starting a new replica or failing over to a new source, which greatly
simplifies these tasks. Because GTID-based replication is completely transaction-based, it is simple
to determine whether sources and replicas are consistent; as long as all transactions committed on
a source are also committed on a replica, consistency between the two is guaranteed. You can use
either statement-based or row-based replication with GTIDs (see Section 16.2.1, “Replication Formats”);
however, for best results, we recommend that you use the row-based format.

GTIDs are always preserved between source and replica. This means that you can always determine
the source for any transaction applied on any replica by examining its binary log. In addition, once a
transaction with a given GTID is committed on a given server, any subsequent transaction having the same
GTID is ignored by that server. Thus, a transaction committed on the source can be applied no more than
once on the replica, which helps to guarantee consistency.

This section discusses the following topics:

• How GTIDs are defined and created, and how they are represented in a MySQL server (see
Section 16.1.3.1, “GTID Format and Storage”).

• The life cycle of a GTID (see Section 16.1.3.2, “GTID Life Cycle”).

• The auto-positioning function for synchronizing a replica and source that use GTIDs (see
Section 16.1.3.3, “GTID Auto-Positioning”).

• A general procedure for setting up and starting GTID-based replication (see Section 16.1.3.4, “Setting
Up Replication Using GTIDs”).

• Suggested methods for provisioning new replication servers when using GTIDs (see Section 16.1.3.5,
“Using GTIDs for Failover and Scaleout”).

• Restrictions and limitations that you should be aware of when using GTID-based replication (see
Section 16.1.3.6, “Restrictions on Replication with GTIDs”).

• Stored functions that you can use to work with GTIDs (see Section 16.1.3.7, “Stored Function Examples
to Manipulate GTIDs”).

For information about MySQL Server options and variables relating to GTID-based replication, see
Section 16.1.6.5, “Global Transaction ID System Variables”. See also Section 12.18, “Functions Used with
Global Transaction Identifiers (GTIDs)”, which describes SQL functions supported by MySQL 5.7 for use
with GTIDs.

16.1.3.1 GTID Format and Storage

A global transaction identifier (GTID) is a unique identifier created and associated with each transaction
committed on the server of origin (the source). This identifier is unique not only to the server on which it
originated, but is unique across all servers in a given replication topology.

GTID assignment distinguishes between client transactions, which are committed on the source, and
replicated transactions, which are reproduced on a replica. When a client transaction is committed on
the source, it is assigned a new GTID, provided that the transaction was written to the binary log. Client
transactions are guaranteed to have monotonically increasing GTIDs without gaps between the generated
numbers. If a client transaction is not written to the binary log (for example, because the transaction was
filtered out, or the transaction was read-only), it is not assigned a GTID on the server of origin.

Replicated transactions retain the same GTID that was assigned to the transaction on the server of
origin. The GTID is present before the replicated transaction begins to execute, and is persisted even
if the replicated transaction is not written to the binary log on the replica, or is filtered out on the replica.

2966

Replication with Global Transaction Identifiers

The MySQL system table mysql.gtid_executed is used to preserve the assigned GTIDs of all the
transactions applied on a MySQL server, except those that are stored in a currently active binary log file.

The auto-skip function for GTIDs means that a transaction committed on the source can be applied no
more than once on the replica, which helps to guarantee consistency. Once a transaction with a given
GTID has been committed on a given server, any attempt to execute a subsequent transaction with the
same GTID is ignored by that server. No error is raised, and no statement in the transaction is executed.

If a transaction with a given GTID has started to execute on a server, but has not yet committed or rolled
back, any attempt to start a concurrent transaction on the server with the same GTID blocks. The server
neither begins to execute the concurrent transaction nor returns control to the client. Once the first attempt
at the transaction commits or rolls back, concurrent sessions that were blocking on the same GTID may
proceed. If the first attempt rolled back, one concurrent session proceeds to attempt the transaction,
and any other concurrent sessions that were blocking on the same GTID remain blocked. If the first
attempt committed, all the concurrent sessions stop being blocked, and auto-skip all the statements of the
transaction.

A GTID is represented as a pair of coordinates, separated by a colon character (:), as shown here:

GTID = source_id:transaction_id

The source_id identifies the originating server. Normally, the source's server_uuid is used for
this purpose. The transaction_id is a sequence number determined by the order in which the
transaction was committed on the source. For example, the first transaction to be committed has 1 as its
transaction_id, and the tenth transaction to be committed on the same originating server is assigned
a transaction_id of 10. It is not possible for a transaction to have 0 as a sequence number in a
GTID. For example, the twenty-third transaction to be committed originally on the server with the UUID
3E11FA47-71CA-11E1-9E33-C80AA9429562 has this GTID:

3E11FA47-71CA-11E1-9E33-C80AA9429562:23

The upper limit for sequence numbers for GTIDs on a server instance is the number of non-negative
values for a signed 64-bit integer (2 to the power of 63 minus 1, or 9,223,372,036,854,775,807). If the
server runs out of GTIDs, it takes the action specified by binlog_error_action.

The GTID for a transaction is shown in the output from mysqlbinlog, and it is used to identify
an individual transaction in the Performance Schema replication status tables, for example,
replication_applier_status_by_worker. The value stored by the gtid_next system variable
(@@GLOBAL.gtid_next) is a single GTID.

GTID Sets

A GTID set is a set comprising one or more single GTIDs or ranges of GTIDs. GTID sets are used
in a MySQL server in several ways. For example, the values stored by the gtid_executed and
gtid_purged system variables are GTID sets. The START SLAVE clauses UNTIL SQL_BEFORE_GTIDS
and UNTIL SQL_AFTER_GTIDS can be used to make a replica process transactions only up to the first
GTID in a GTID set, or stop after the last GTID in a GTID set. The built-in functions GTID_SUBSET() and
GTID_SUBTRACT() require GTID sets as input.

A range of GTIDs originating from the same server can be collapsed into a single expression, as shown
here:

3E11FA47-71CA-11E1-9E33-C80AA9429562:1-5

The above example represents the first through fifth transactions originating on the MySQL server whose
server_uuid is 3E11FA47-71CA-11E1-9E33-C80AA9429562. Multiple single GTIDs or ranges of
GTIDs originating from the same server can also be included in a single expression, with the GTIDs or
ranges separated by colons, as in the following example:

2967

Replication with Global Transaction Identifiers

3E11FA47-71CA-11E1-9E33-C80AA9429562:1-3:11:47-49

A GTID set can include any combination of single GTIDs and ranges of GTIDs, and it can include GTIDs
originating from different servers. This example shows the GTID set stored in the gtid_executed system
variable (@@GLOBAL.gtid_executed) of a replica that has applied transactions from more than one
source:

2174B383-5441-11E8-B90A-C80AA9429562:1-3, 24DA167-0C0C-11E8-8442-00059A3C7B00:1-19

When GTID sets are returned from server variables, UUIDs are in alphabetical order, and numeric intervals
are merged and in ascending order.

The syntax for a GTID set is as follows:

gtid_set:
 uuid_set [, uuid_set] ...
 | ''

uuid_set:
 uuid:interval[:interval]...

uuid:
 hhhhhhhh-hhhh-hhhh-hhhh-hhhhhhhhhhhh

h:
 [0-9|A-F]

interval:
 n[-n]

 (n >= 1)

mysql.gtid_executed Table

GTIDs are stored in a table named gtid_executed, in the mysql database. A row in this table contains,
for each GTID or set of GTIDs that it represents, the UUID of the originating server, and the starting and
ending transaction IDs of the set; for a row referencing only a single GTID, these last two values are the
same.

The mysql.gtid_executed table is created (if it does not already exist) when MySQL Server is installed
or upgraded, using a CREATE TABLE statement similar to that shown here:

CREATE TABLE gtid_executed (
 source_uuid CHAR(36) NOT NULL,
 interval_start BIGINT(20) NOT NULL,
 interval_end BIGINT(20) NOT NULL,
 PRIMARY KEY (source_uuid, interval_start)
)

Warning

As with other MySQL system tables, do not attempt to create or modify this table
yourself.

The mysql.gtid_executed table is provided for internal use by the MySQL server. It enables a replica
to use GTIDs when binary logging is disabled on the replica, and it enables retention of the GTID state
when the binary logs have been lost. Note that the mysql.gtid_executed table is cleared if you issue
RESET MASTER.

GTIDs are stored in the mysql.gtid_executed table only when gtid_mode is ON or ON_PERMISSIVE.
The point at which GTIDs are stored depends on whether binary logging is enabled or disabled:

2968

Replication with Global Transaction Identifiers

• If binary logging is disabled (log_bin is OFF), or if log_slave_updates is disabled, the server stores
the GTID belonging to each transaction together with the transaction in the buffer when the transaction
is committed, and the background thread adds the contents of the buffer periodically as one or more
entries to the mysql.gtid_executed table. In addition, the table is compressed periodically at a user-
configurable rate; see mysql.gtid_executed Table Compression, for more information. This situation can
only apply on a replica where binary logging or replica update logging is disabled. It does not apply on a
replication source server, because on the source, binary logging must be enabled for replication to take
place.

• If binary logging is enabled (log_bin is ON), whenever the binary log is rotated or the server is shut
down, the server writes GTIDs for all transactions that were written into the previous binary log into the
mysql.gtid_executed table. This situation applies on a replication source server, or a replica where
binary logging is enabled.

In the event of the server stopping unexpectedly, the set of GTIDs from the current binary log file is not
saved in the mysql.gtid_executed table. These GTIDs are added to the table from the binary log file
during recovery. The exception to this is if binary logging is not enabled when the server is restarted. In
this situation, the server cannot access the binary log file to recover the GTIDs, so replication cannot be
started.

When binary logging is enabled, the mysql.gtid_executed table does not hold a complete
record of the GTIDs for all executed transactions. That information is provided by the global value
of the gtid_executed system variable. Always use @@GLOBAL.gtid_executed, which is
updated after every commit, to represent the GTID state for the MySQL server, and do not query the
mysql.gtid_executed table.

mysql.gtid_executed Table Compression

Over the course of time, the mysql.gtid_executed table can become filled with many rows referring to
individual GTIDs that originate on the same server, and whose transaction IDs make up a range, similar to
what is shown here:

+--------------------------------------+----------------+--------------+
| source_uuid | interval_start | interval_end |
|--------------------------------------+----------------+--------------|
3E11FA47-71CA-11E1-9E33-C80AA9429562	37	37
3E11FA47-71CA-11E1-9E33-C80AA9429562	38	38
3E11FA47-71CA-11E1-9E33-C80AA9429562	39	39
3E11FA47-71CA-11E1-9E33-C80AA9429562	40	40
3E11FA47-71CA-11E1-9E33-C80AA9429562	41	41
3E11FA47-71CA-11E1-9E33-C80AA9429562	42	42
3E11FA47-71CA-11E1-9E33-C80AA9429562	43	43
...

To save space, the MySQL server compresses the mysql.gtid_executed table periodically by
replacing each such set of rows with a single row that spans the entire interval of transaction identifiers,
like this:

+--------------------------------------+----------------+--------------+
| source_uuid | interval_start | interval_end |
|--------------------------------------+----------------+--------------|
| 3E11FA47-71CA-11E1-9E33-C80AA9429562 | 37 | 43 |
...

You can control the number of transactions that are allowed to elapse before the table is compressed, and
thus the compression rate, by setting the gtid_executed_compression_period system variable. This
variable's default value is 1000, meaning that by default, compression of the table is performed after each
1000 transactions. Setting gtid_executed_compression_period to 0 prevents the compression from

2969

Replication with Global Transaction Identifiers

being performed at all, and you should be prepared for a potentially large increase in the amount of disk
space that may be required by the gtid_executed table if you do this.

Note

When binary logging is enabled, the value of
gtid_executed_compression_period is not used and the
mysql.gtid_executed table is compressed on each binary log rotation.

Compression of the mysql.gtid_executed table is performed by a dedicated foreground thread named
thread/sql/compress_gtid_table. This thread is not listed in the output of SHOW PROCESSLIST,
but it can be viewed as a row in the threads table, as shown here:

mysql> SELECT * FROM performance_schema.threads WHERE NAME LIKE '%gtid%'\G
*************************** 1. row ***************************
 THREAD_ID: 26
 NAME: thread/sql/compress_gtid_table
 TYPE: FOREGROUND
 PROCESSLIST_ID: 1
 PROCESSLIST_USER: NULL
 PROCESSLIST_HOST: NULL
 PROCESSLIST_DB: NULL
PROCESSLIST_COMMAND: Daemon
 PROCESSLIST_TIME: 1509
 PROCESSLIST_STATE: Suspending
 PROCESSLIST_INFO: NULL
 PARENT_THREAD_ID: 1
 ROLE: NULL
 INSTRUMENTED: YES
 HISTORY: YES
 CONNECTION_TYPE: NULL
 THREAD_OS_ID: 18677

The thread/sql/compress_gtid_table thread normally sleeps until
gtid_executed_compression_period transactions have been executed, then wakes up to perform
compression of the mysql.gtid_executed table as described previously. It then sleeps until another
gtid_executed_compression_period transactions have taken place, then wakes up to perform the
compression again, repeating this loop indefinitely. Setting this value to 0 when binary logging is disabled
means that the thread always sleeps and never wakes up, meaning that this explicit compression method
is not used. Instead, compression occurs implicitly as required.

16.1.3.2 GTID Life Cycle

The life cycle of a GTID consists of the following steps:

1. A transaction is executed and committed on the replication source server. This client transaction is
assigned a GTID composed of the source's UUID and the smallest nonzero transaction sequence
number not yet used on this server. The GTID is written to the source's binary log (immediately
preceding the transaction itself in the log). If a client transaction is not written to the binary log (for
example, because the transaction was filtered out, or the transaction was read-only), it is not assigned
a GTID.

2. If a GTID was assigned for the transaction, the GTID is persisted atomically at commit time by writing it
to the binary log at the beginning of the transaction (as a Gtid_log_event). Whenever the binary log
is rotated or the server is shut down, the server writes GTIDs for all transactions that were written into
the previous binary log file into the mysql.gtid_executed table.

3. If a GTID was assigned for the transaction, the GTID is externalized non-atomically (very shortly after
the transaction is committed) by adding it to the set of GTIDs in the gtid_executed system variable
(@@GLOBAL.gtid_executed). This GTID set contains a representation of the set of all committed

2970

Replication with Global Transaction Identifiers

GTID transactions, and it is used in replication as a token that represents the server state. With binary
logging enabled (as required for the source), the set of GTIDs in the gtid_executed system variable
is a complete record of the transactions applied, but the mysql.gtid_executed table is not, because
the most recent history is still in the current binary log file.

4. After the binary log data is transmitted to the replica and stored in the replica's relay log (using
established mechanisms for this process, see Section 16.2, “Replication Implementation”, for details),
the replica reads the GTID and sets the value of its gtid_next system variable as this GTID. This
tells the replica that the next transaction must be logged using this GTID. It is important to note that the
replica sets gtid_next in a session context.

5. The replica verifies that no thread has yet taken ownership of the GTID in gtid_next in order to
process the transaction. By reading and checking the replicated transaction's GTID first, before
processing the transaction itself, the replica guarantees not only that no previous transaction having
this GTID has been applied on the replica, but also that no other session has already read this GTID
but has not yet committed the associated transaction. So if multiple clients attempt to apply the same
transaction concurrently, the server resolves this by letting only one of them execute. The gtid_owned
system variable (@@GLOBAL.gtid_owned) for the replica shows each GTID that is currently in use
and the ID of the thread that owns it. If the GTID has already been used, no error is raised, and the
auto-skip function is used to ignore the transaction.

6. If the GTID has not been used, the replica applies the replicated transaction. Because gtid_next is
set to the GTID already assigned by the source, the replica does not attempt to generate a new GTID
for this transaction, but instead uses the GTID stored in gtid_next.

7. If binary logging is enabled on the replica, the GTID is persisted atomically at commit time by writing it
to the binary log at the beginning of the transaction (as a Gtid_log_event). Whenever the binary log
is rotated or the server is shut down, the server writes GTIDs for all transactions that were written into
the previous binary log file into the mysql.gtid_executed table.

8. If binary logging is disabled on the replica, the GTID is persisted atomically by writing it directly into the
mysql.gtid_executed table. MySQL appends a statement to the transaction to insert the GTID into
the table. In this situation, the mysql.gtid_executed table is a complete record of the transactions
applied on the replica. Note that in MySQL 5.7, the operation to insert the GTID into the table is atomic
for DML statements, but not for DDL statements, so if the server exits unexpectedly after a transaction
involving DDL statements, the GTID state might become inconsistent. From MySQL 8.0, the operation
is atomic for DDL statements as well as for DML statements.

9. Very shortly after the replicated transaction is committed on the replica, the GTID is externalized
non-atomically by adding it to the set of GTIDs in the gtid_executed system variable
(@@GLOBAL.gtid_executed) for the replica. As for the source, this GTID set contains a
representation of the set of all committed GTID transactions. If binary logging is disabled on the replica,
the mysql.gtid_executed table is also a complete record of the transactions applied on the replica.
If binary logging is enabled on the replica, meaning that some GTIDs are only recorded in the binary
log, the set of GTIDs in the gtid_executed system variable is the only complete record.

Client transactions that are completely filtered out on the source are not assigned a GTID, therefore
they are not added to the set of transactions in the gtid_executed system variable, or added to the
mysql.gtid_executed table. However, the GTIDs of replicated transactions that are completely filtered
out on the replica are persisted. If binary logging is enabled on the replica, the filtered-out transaction is
written to the binary log as a Gtid_log_event followed by an empty transaction containing only BEGIN
and COMMIT statements. If binary logging is disabled, the GTID of the filtered-out transaction is written
to the mysql.gtid_executed table. Preserving the GTIDs for filtered-out transactions ensures that
the mysql.gtid_executed table and the set of GTIDs in the gtid_executed system variable can
be compressed. It also ensures that the filtered-out transactions are not retrieved again if the replica
reconnects to the source, as explained in Section 16.1.3.3, “GTID Auto-Positioning”.

2971

Replication with Global Transaction Identifiers

On a multithreaded replica (with slave_parallel_workers > 0), transactions can be applied in
parallel, so replicated transactions can commit out of order (unless slave_preserve_commit_order=1
is set). When that happens, the set of GTIDs in the gtid_executed system variable contains multiple
GTID ranges with gaps between them. (On a source or a single-threaded replica, there are monotonically
increasing GTIDs without gaps between the numbers.) Gaps on multithreaded replicas only occur among
the most recently applied transactions, and are filled in as replication progresses. When replication threads
are stopped cleanly using the STOP SLAVE statement, ongoing transactions are applied so that the gaps
are filled in. In the event of a shutdown such as a server failure or the use of the KILL statement to stop
replication threads, the gaps might remain.

What changes are assigned a GTID?

The typical scenario is that the server generates a new GTID for a committed transaction. However, GTIDs
can also be assigned to other changes besides transactions, and in some cases a single transaction can
be assigned multiple GTIDs.

Every database change (DDL or DML) that is written to the binary log is assigned a GTID. This includes
changes that are autocommitted, and changes that are committed using BEGIN and COMMIT or START
TRANSACTION statements. A GTID is also assigned to the creation, alteration, or deletion of a database,
and of a non-table database object such as a procedure, function, trigger, event, view, user, role, or grant.

Non-transactional updates as well as transactional updates are assigned GTIDs. In addition, for a non-
transactional update, if a disk write failure occurs while attempting to write to the binary log cache and a
gap is therefore created in the binary log, the resulting incident log event is assigned a GTID.

When a table is automatically dropped by a generated statement in the binary log, a GTID is assigned
to the statement. Temporary tables are dropped automatically when a replica begins to apply
events from a source that has just been started, and when statement-based replication is in use
(binlog_format=STATEMENT) and a user session that has open temporary tables disconnects. Tables
that use the MEMORY storage engine are deleted automatically the first time they are accessed after the
server is started, because rows might have been lost during the shutdown.

When a transaction is not written to the binary log on the server of origin, the server does not assign
a GTID to it. This includes transactions that are rolled back and transactions that are executed while
binary logging is disabled on the server of origin, either globally (with --skip-log-bin specified in the
server's configuration) or for the session (SET @@SESSION.sql_log_bin = 0). This also includes no-
op transactions when row-based replication is in use (binlog_format=ROW).

XA transactions are assigned separate GTIDs for the XA PREPARE phase of the transaction and the XA
COMMIT or XA ROLLBACK phase of the transaction. XA transactions are persistently prepared so that
users can commit them or roll them back in the case of a failure (which in a replication topology might
include a failover to another server). The two parts of the transaction are therefore replicated separately,
so they must have their own GTIDs, even though a non-XA transaction that is rolled back would not have a
GTID.

In the following special cases, a single statement can generate multiple transactions, and therefore be
assigned multiple GTIDs:

• A stored procedure is invoked that commits multiple transactions. One GTID is generated for each
transaction that the procedure commits.

• A multi-table DROP TABLE statement drops tables of different types.

• A CREATE TABLE ... SELECT statement is issued when row-based replication is in use
(binlog_format=ROW). One GTID is generated for the CREATE TABLE action and one GTID is
generated for the row-insert actions.

2972

Replication with Global Transaction Identifiers

The gtid_next System Variable

By default, for new transactions committed in user sessions, the server automatically generates and
assigns a new GTID. When the transaction is applied on a replica, the GTID from the server of origin is
preserved. You can change this behavior by setting the session value of the gtid_next system variable:

• When gtid_next is set to AUTOMATIC, which is the default, and a transaction is committed and written
to the binary log, the server automatically generates and assigns a new GTID. If a transaction is rolled
back or not written to the binary log for another reason, the server does not generate and assign a GTID.

• If you set gtid_next to a valid GTID (consisting of a UUID and a transaction sequence number,
separated by a colon), the server assigns that GTID to your transaction. This GTID is assigned and
added to gtid_executed even when the transaction is not written to the binary log, or when the
transaction is empty.

Note that after you set gtid_next to a specific GTID, and the transaction has been committed or rolled
back, an explicit SET @@SESSION.gtid_next statement must be issued before any other statement.
You can use this to set the GTID value back to AUTOMATIC if you do not want to assign any more GTIDs
explicitly.

When replication applier threads apply replicated transactions, they use this technique, setting
@@SESSION.gtid_next explicitly to the GTID of the replicated transaction as assigned on the server of
origin. This means the GTID from the server of origin is retained, rather than a new GTID being generated
and assigned by the replica. It also means the GTID is added to gtid_executed on the replica even
when binary logging or replica update logging is disabled on the replica, or when the transaction is a no-op
or is filtered out on the replica.

It is possible for a client to simulate a replicated transaction by setting @@SESSION.gtid_next to a
specific GTID before executing the transaction. This technique is used by mysqlbinlog to generate a
dump of the binary log that the client can replay to preserve GTIDs. A simulated replicated transaction
committed through a client is completely equivalent to a replicated transaction committed through a
replication applier thread, and they cannot be distinguished after the fact.

The gtid_purged System Variable

The set of GTIDs in the gtid_purged system variable (@@GLOBAL.gtid_purged) contains the GTIDs
of all the transactions that have been committed on the server, but do not exist in any binary log file on
the server. gtid_purged is a subset of gtid_executed. The following categories of GTIDs are in
gtid_purged:

• GTIDs of replicated transactions that were committed with binary logging disabled on the replica.

• GTIDs of transactions that were written to a binary log file that has now been purged.

• GTIDs that were added explicitly to the set by the statement SET @@GLOBAL.gtid_purged.

You can change the value of gtid_purged in order to record on the server that the transactions in a
certain GTID set have been applied, although they do not exist in any binary log on the server. When you
add GTIDs to gtid_purged, they are also added to gtid_executed. An example use case for this
action is when you are restoring a backup of one or more databases on a server, but you do not have the
relevant binary logs containing the transactions on the server. In MySQL 5.7, you can only change the
value of gtid_purged when gtid_executed (and therefore gtid_purged) is empty. For details of how
to do this, see the description for gtid_purged.

The sets of GTIDs in the gtid_executed and gtid_purged system variables are initialized when
the server starts. Every binary log file begins with the event Previous_gtids_log_event, which
contains the set of GTIDs in all previous binary log files (composed from the GTIDs in the preceding file's
Previous_gtids_log_event, and the GTIDs of every Gtid_log_event in the preceding file itself).

2973

Replication with Global Transaction Identifiers

The contents of Previous_gtids_log_event in the oldest and most recent binary log files are used to
compute the gtid_executed and gtid_purged sets at server startup:

• gtid_executed is computed as the union of the GTIDs in Previous_gtids_log_event in the
most recent binary log file, the GTIDs of transactions in that binary log file, and the GTIDs stored in the
mysql.gtid_executed table. This GTID set contains all the GTIDs that have been used (or added
explicitly to gtid_purged) on the server, whether or not they are currently in a binary log file on the
server. It does not include the GTIDs for transactions that are currently being processed on the server
(@@GLOBAL.gtid_owned).

• gtid_purged is computed by first adding the GTIDs in Previous_gtids_log_event in the most
recent binary log file and the GTIDs of transactions in that binary log file. This step gives the set of
GTIDs that are currently, or were once, recorded in a binary log on the server (gtids_in_binlog).
Next, the GTIDs in Previous_gtids_log_event in the oldest binary log file are subtracted from
gtids_in_binlog. This step gives the set of GTIDs that are currently recorded in a binary log on the
server (gtids_in_binlog_not_purged). Finally, gtids_in_binlog_not_purged is subtracted
from gtid_executed. The result is the set of GTIDs that have been used on the server, but are not
currently recorded in a binary log file on the server, and this result is used to initialize gtid_purged.

If binary logs from MySQL 5.7.7 or older are involved in these computations, it is possible for incorrect
GTID sets to be computed for gtid_executed and gtid_purged, and they remain incorrect even if
the server is later restarted. For details, see the description for the binlog_gtid_simple_recovery
system variable, which controls how the binary logs are iterated to compute the GTID sets. If one of the
situations described there applies on a server, set binlog_gtid_simple_recovery=FALSE in the
server's configuration file before starting it. That setting makes the server iterate all the binary log files (not
just the newest and oldest) to find where GTID events start to appear. This process could take a long time
if the server has a large number of binary log files without GTID events.

Resetting the GTID Execution History

If you need to reset the GTID execution history on a server, use the RESET MASTER statement. For
example, you might need to do this after carrying out test queries to verify a replication setup on new
GTID-enabled servers, or when you want to join a new server to a replication group but it contains some
unwanted local transactions that are not accepted by Group Replication.

Warning

Use RESET MASTER with caution to avoid losing any wanted GTID execution
history and binary log files.

Before issuing RESET MASTER, ensure that you have backups of the server's binary log files and binary
log index file, if any, and obtain and save the GTID set held in the global value of the gtid_executed
system variable (for example, by issuing a SELECT @@GLOBAL.gtid_executed statement and saving
the results). If you are removing unwanted transactions from that GTID set, use mysqlbinlog to examine
the contents of the transactions to ensure that they have no value, contain no data that must be saved or
replicated, and did not result in data changes on the server.

When you issue RESET MASTER, the following reset operations are carried out:

• The value of the gtid_purged system variable is set to an empty string ('').

• The global value (but not the session value) of the gtid_executed system variable is set to an empty
string.

• The mysql.gtid_executed table is cleared (see mysql.gtid_executed Table).

• If the server has binary logging enabled, the existing binary log files are deleted and the binary log index
file is cleared.

2974

Replication with Global Transaction Identifiers

Note that RESET MASTER is the method to reset the GTID execution history even if the server is a replica
where binary logging is disabled. RESET SLAVE has no effect on the GTID execution history.

16.1.3.3 GTID Auto-Positioning

GTIDs replace the file-offset pairs previously required to determine points for starting, stopping, or
resuming the flow of data between source and replica. When GTIDs are in use, all the information that the
replica needs for synchronizing with the source is obtained directly from the replication data stream.

To start a replica using GTID-based replication, you do not include MASTER_LOG_FILE or
MASTER_LOG_POS options in the CHANGE MASTER TO statement used to direct the replica to replicate
from a given source. These options specify the name of the log file and the starting position within
the file, but with GTIDs the replica does not need this nonlocal data. Instead, you need to enable the
MASTER_AUTO_POSITION option. For full instructions to configure and start sources and replicas using
GTID-based replication, see Section 16.1.3.4, “Setting Up Replication Using GTIDs”.

The MASTER_AUTO_POSITION option is disabled by default. If multi-source replication is enabled
on the replica, you need to set this option for each applicable replication channel. Disabling the
MASTER_AUTO_POSITION option again causes the replica to revert to position-based replication.

When a replica has GTIDs enabled (GTID_MODE=ON, ON_PERMISSIVE, or OFF_PERMISSIVE
) and the MASTER_AUTO_POSITION option enabled, auto-positioning is activated for connection
to the source. The source must have GTID_MODE=ON set in order for the connection to succeed.
In the initial handshake, the replica sends a GTID set containing the transactions that it has
already received, committed, or both. This GTID set is equal to the union of the set of GTIDs
in the gtid_executed system variable (@@GLOBAL.gtid_executed), and the set of GTIDs
recorded in the Performance Schema replication_connection_status table as received
transactions (the result of the statement SELECT RECEIVED_TRANSACTION_SET FROM
PERFORMANCE_SCHEMA.replication_connection_status).

The source responds by sending all transactions recorded in its binary log whose GTID is not included
in the GTID set sent by the replica. To do this, the source first identifies the appropriate binary log file to
begin working with, by checking the Previous_gtids_log_event in the header of each of its binary
log files, starting with the most recent. When the source finds the first Previous_gtids_log_event
which contains no transactions that the replica is missing, it begins with that binary log file. This method is
efficient and only takes a significant amount of time if the replica is behind the source by a large number of
binary log files. The source then reads the transactions in that binary log file and subsequent files up to the
current one, sending the transactions with GTIDs that the replica is missing, and skipping the transactions
that were in the GTID set sent by the replica. The elapsed time until the replica receives the first missing
transaction depends on its offset in the binary log file. This exchange ensures that the source only sends
the transactions with a GTID that the replica has not already received or committed. If the replica receives
transactions from more than one source, as in the case of a diamond topology, the auto-skip function
ensures that the transactions are not applied twice.

If any of the transactions that should be sent by the source have been purged from the source's binary log,
or added to the set of GTIDs in the gtid_purged system variable by another method, the source sends
the error ER_MASTER_HAS_PURGED_REQUIRED_GTIDS to the replica, and replication does not start. The
GTIDs of the missing purged transactions are identified and listed in the source's error log in the warning
message ER_FOUND_MISSING_GTIDS. The replica cannot recover automatically from this error because
parts of the transaction history that are needed to catch up with the source have been purged. Attempting
to reconnect without the MASTER_AUTO_POSITION option enabled only results in the loss of the purged
transactions on the replica. The correct approach to recover from this situation is for the replica to replicate
the missing transactions listed in the ER_FOUND_MISSING_GTIDS message from another source, or
for the replica to be replaced by a new replica created from a more recent backup. Consider revising the
binary log expiration period on the source to ensure that the situation does not occur again.

2975

https://dev.mysql.com/doc/mysql-errors/5.7/en/server-error-reference.html#error_er_master_has_purged_required_gtids
https://dev.mysql.com/doc/mysql-errors/5.7/en/server-error-reference.html#error_er_found_missing_gtids
https://dev.mysql.com/doc/mysql-errors/5.7/en/server-error-reference.html#error_er_found_missing_gtids

Replication with Global Transaction Identifiers

If during the exchange of transactions it is found that the replica has received or committed transactions
with the source's UUID in the GTID, but the source itself does not have a record of them, the source sends
the error ER_SLAVE_HAS_MORE_GTIDS_THAN_MASTER to the replica and replication does not start. This
situation can occur if a source that does not have sync_binlog=1 set experiences a power failure or
operating system crash, and loses committed transactions that have not yet been synchronized to the
binary log file, but have been received by the replica. The source and replica can diverge if any clients
commit transactions on the source after it is restarted, which can lead to the situation where the source
and replica are using the same GTID for different transactions. The correct approach to recover from
this situation is to check manually whether the source and replica have diverged. If the same GTID is
now in use for different transactions, you either need to perform manual conflict resolution for individual
transactions as required, or remove either the source or the replica from the replication topology. If the
issue is only missing transactions on the source, you can make the source into a replica instead, allow it to
catch up with the other servers in the replication topology, and then make it a source again if needed.

16.1.3.4 Setting Up Replication Using GTIDs

This section describes a process for configuring and starting GTID-based replication in MySQL 5.7. This is
a “cold start” procedure that assumes either that you are starting the replication source server for the first
time, or that it is possible to stop it; for information about provisioning replicas using GTIDs from a running
source, see Section 16.1.3.5, “Using GTIDs for Failover and Scaleout”. For information about changing
GTID mode on servers online, see Section 16.1.4, “Changing Replication Modes on Online Servers”.

The key steps in this startup process for the simplest possible GTID replication topology, consisting of one
source and one replica, are as follows:

1. If replication is already running, synchronize both servers by making them read-only.

2. Stop both servers.

3. Restart both servers with GTIDs enabled and the correct options configured.

The mysqld options necessary to start the servers as described are discussed in the example that
follows later in this section.

4. Instruct the replica to use the source as the replication data source and to use auto-positioning. The
SQL statements needed to accomplish this step are described in the example that follows later in this
section.

5. Take a new backup. Binary logs containing transactions without GTIDs cannot be used on servers
where GTIDs are enabled, so backups taken before this point cannot be used with your new
configuration.

6. Start the replica, then disable read-only mode on both servers, so that they can accept updates.

In the following example, two servers are already running as source and replica, using MySQL's binary
log position-based replication protocol. If you are starting with new servers, see Section 16.1.2.2,
“Creating a User for Replication” for information about adding a specific user for replication connections
and Section 16.1.2.1, “Setting the Replication Source Configuration” for information about setting the
server_id variable. The following examples show how to store mysqld startup options in server's
option file, see Section 4.2.2.2, “Using Option Files” for more information. Alternatively you can use startup
options when running mysqld.

Most of the steps that follow require the use of the MySQL root account or another MySQL user
account that has the SUPER privilege. mysqladmin shutdown requires either the SUPER privilege or the
SHUTDOWN privilege.

2976

https://dev.mysql.com/doc/mysql-errors/5.7/en/server-error-reference.html#error_er_slave_has_more_gtids_than_master

Replication with Global Transaction Identifiers

Step 1: Synchronize the servers. This step is only required when working with servers which are
already replicating without using GTIDs. For new servers proceed to Step 3. Make the servers read-only by
setting the read_only system variable to ON on each server by issuing the following:

mysql> SET @@GLOBAL.read_only = ON;

Wait for all ongoing transactions to commit or roll back. Then, allow the replica to catch up with the source.
It is extremely important that you make sure the replica has processed all updates before continuing.

If you use binary logs for anything other than replication, for example to do point in time backup and
restore, wait until you do not need the old binary logs containing transactions without GTIDs. Ideally, wait
for the server to purge all binary logs, and wait for any existing backup to expire.

Important

It is important to understand that logs containing transactions without GTIDs cannot
be used on servers where GTIDs are enabled. Before proceeding, you must be
sure that transactions without GTIDs do not exist anywhere in the topology.

Step 2: Stop both servers. Stop each server using mysqladmin as shown here, where username is
the user name for a MySQL user having sufficient privileges to shut down the server:

$> mysqladmin -uusername -p shutdown

Then supply this user's password at the prompt.

Step 3: Start both servers with GTIDs enabled. To enable GTID-based replication, each server
must be started with GTID mode enabled by setting the gtid_mode variable to ON, and with the
enforce_gtid_consistency variable enabled to ensure that only statements which are safe for GTID-
based replication are logged. For example:

gtid_mode=ON
enforce-gtid-consistency=ON

In addition, you should start replicas with the --skip-slave-start option before configuring the replica
settings. For more information on GTID related options and variables, see Section 16.1.6.5, “Global
Transaction ID System Variables”.

It is not mandatory to have binary logging enabled in order to use GTIDs when using the
mysql.gtid_executed Table. Replication source server must always have binary logging enabled in order
to be able to replicate. However, replica servers can use GTIDs but without binary logging. If you need
to disable binary logging on a replica, you can do this by specifying the --skip-log-bin and --log-
slave-updates=OFF options for the replica.

Step 4: Configure the replica to use GTID-based auto-positioning. Tell the replica to use the source
with GTID based transactions as the replication data source, and to use GTID-based auto-positioning
rather than file-based positioning. Issue a CHANGE MASTER TO statement on the replica, including the
MASTER_AUTO_POSITION option in the statement to tell the replica that the source's transactions are
identified by GTIDs.

You may also need to supply appropriate values for the source's host name and port number as well as
the user name and password for a replication user account which can be used by the replica to connect
to the source; if these have already been set prior to Step 1 and no further changes need to be made, the
corresponding options can safely be omitted from the statement shown here.

mysql> CHANGE MASTER TO
 > MASTER_HOST = host,
 > MASTER_PORT = port,
 > MASTER_USER = user,

2977

Replication with Global Transaction Identifiers

 > MASTER_PASSWORD = password,
 > MASTER_AUTO_POSITION = 1;

Neither the MASTER_LOG_FILE option nor the MASTER_LOG_POS option may be used with
MASTER_AUTO_POSITION set equal to 1. Attempting to do so causes the CHANGE MASTER TO statement
to fail with an error.

Step 5: Take a new backup. Existing backups that were made before you enabled GTIDs can no
longer be used on these servers now that you have enabled GTIDs. Take a new backup at this point, so
that you are not left without a usable backup.

For instance, you can execute FLUSH LOGS on the server where you are taking backups. Then either
explicitly take a backup or wait for the next iteration of any periodic backup routine you may have set up.

Step 6: Start the replica and disable read-only mode. Start the replica like this:

mysql> START SLAVE;

The following step is only necessary if you configured a server to be read-only in Step 1. To allow the
server to begin accepting updates again, issue the following statement:

mysql> SET @@GLOBAL.read_only = OFF;

GTID-based replication should now be running, and you can begin (or resume) activity on the source as
before. Section 16.1.3.5, “Using GTIDs for Failover and Scaleout”, discusses creation of new replicas when
using GTIDs.

16.1.3.5 Using GTIDs for Failover and Scaleout

There are a number of techniques when using MySQL Replication with Global Transaction Identifiers
(GTIDs) for provisioning a new replica which can then be used for scaleout, being promoted to source as
necessary for failover. This section describes the following techniques:

• Simple replication

• Copying data and transactions to the replica

• Injecting empty transactions

• Excluding transactions with gtid_purged

• Restoring GTID mode replicas

Global transaction identifiers were added to MySQL Replication for the purpose of simplifying in general
management of the replication data flow and of failover activities in particular. Each identifier uniquely
identifies a set of binary log events that together make up a transaction. GTIDs play a key role in applying
changes to the database: the server automatically skips any transaction having an identifier which the
server recognizes as one that it has processed before. This behavior is critical for automatic replication
positioning and correct failover.

The mapping between identifiers and sets of events comprising a given transaction is captured in the
binary log. This poses some challenges when provisioning a new server with data from another existing
server. To reproduce the identifier set on the new server, it is necessary to copy the identifiers from the old
server to the new one, and to preserve the relationship between the identifiers and the actual events. This
is necessary for restoring a replica that is immediately available as a candidate to become a new source on
failover or switchover.

Simple replication. The easiest way to reproduce all identifiers and transactions on a new server is to
make the new server into the replica of a source that has the entire execution history, and enable global

2978

Replication with Global Transaction Identifiers

transaction identifiers on both servers. See Section 16.1.3.4, “Setting Up Replication Using GTIDs”, for
more information.

Once replication is started, the new server copies the entire binary log from the source and thus obtains all
information about all GTIDs.

This method is simple and effective, but requires the replica to read the binary log from the source; it can
sometimes take a comparatively long time for the new replica to catch up with the source, so this method is
not suitable for fast failover or restoring from backup. This section explains how to avoid fetching all of the
execution history from the source by copying binary log files to the new server.

Copying data and transactions to the replica. Executing the entire transaction history can be time-
consuming when the source server has processed a large number of transactions previously, and this can
represent a major bottleneck when setting up a new replica. To eliminate this requirement, a snapshot
of the data set, the binary logs and the global transaction information the source server contains can be
imported to the new replica. The source server can be either the source or the replica, but you must ensure
that the source has processed all required transactions before copying the data.

There are several variants of this method, the difference being in the manner in which data dumps and
transactions from binary logs are transfered to the replica, as outlined here:

Data Set 1. Create a dump file using mysqldump on the source server. Set the
mysqldump option --master-data (with the default value of 1)
to include a CHANGE MASTER TO statement with binary logging
information. Set the --set-gtid-purged option to AUTO (the
default) or ON, to include information about executed transactions in
the dump. Then use the mysql client to import the dump file on the
target server.

2. Alternatively, create a data snapshot of the source server using
raw data files, then copy these files to the target server, following
the instructions in Section 16.1.2.4, “Choosing a Method for
Data Snapshots”. If you use InnoDB tables, you can use the
mysqlbackup command from the MySQL Enterprise Backup
component to produce a consistent snapshot. This command
records the log name and offset corresponding to the snapshot to
be used on the replica. MySQL Enterprise Backup is a commercial
product that is included as part of a MySQL Enterprise subscription.
See Section 28.1, “MySQL Enterprise Backup Overview” for detailed
information.

3. Alternatively, stop both the source and target servers, copy the
contents of the source's data directory to the new replica's data
directory, then restart the replica. If you use this method, the replica
must be configured for GTID-based replication, in other words with
gtid_mode=ON. For instructions and important information for this
method, see Section 16.1.2.6, “Adding Replicas to a Replication
Topology”.

Transaction History If the source server has a complete transaction history in its binary logs
(that is, the GTID set @@GLOBAL.gtid_purged is empty), you can use
these methods.

1. Import the binary logs from the source server to the new replica
using mysqlbinlog, with the --read-from-remote-server
and --read-from-remote-master options.

2979

Replication with Global Transaction Identifiers

2. Alternatively, copy the source server's binary log files to the replica.
You can make copies from the replica using mysqlbinlog with the
--read-from-remote-server and --raw options. These can be
read into the replica by using mysqlbinlog > file (without the --
raw option) to export the binary log files to SQL files, then passing
these files to the mysql client for processing. Ensure that all of the
binary log files are processed using a single mysql process, rather
than multiple connections. For example:

$> mysqlbinlog copied-binlog.000001 copied-binlog.000002 | mysql -u root -p

For more information, see Section 4.6.7.3, “Using mysqlbinlog to
Back Up Binary Log Files”.

This method has the advantage that a new server is available almost immediately; only those transactions
that were committed while the snapshot or dump file was being replayed still need to be obtained from the
existing source. This means that the replica's availability is not instantanteous, but only a relatively short
amount of time should be required for the replica to catch up with these few remaining transactions.

Copying over binary logs to the target server in advance is usually faster than reading the entire
transaction execution history from the source in real time. However, it may not always be feasible to move
these files to the target when required, due to size or other considerations. The two remaining methods
for provisioning a new replica discussed in this section use other means to transfer information about
transactions to the new replica.

Injecting empty transactions. The source's global gtid_executed variable contains the set of all
transactions executed on the source. Rather than copy the binary logs when taking a snapshot to provision
a new server, you can instead note the content of gtid_executed on the server from which the snapshot
was taken. Before adding the new server to the replication chain, simply commit an empty transaction on
the new server for each transaction identifier contained in the source's gtid_executed, like this:

SET GTID_NEXT='aaa-bbb-ccc-ddd:N';

BEGIN;
COMMIT;

SET GTID_NEXT='AUTOMATIC';

Once all transaction identifiers have been reinstated in this way using empty transactions, you must flush
and purge the replica's binary logs, as shown here, where N is the nonzero suffix of the current binary log
file name:

FLUSH LOGS;
PURGE BINARY LOGS TO 'source-bin.00000N';

You should do this to prevent this server from flooding the replication stream with false transactions in the
event that it is later promoted to source. (The FLUSH LOGS statement forces the creation of a new binary
log file; PURGE BINARY LOGS purges the empty transactions, but retains their identifiers.)

This method creates a server that is essentially a snapshot, but in time is able to become a source as its
binary log history converges with that of the replication stream (that is, as it catches up with the source or
sources). This outcome is similar in effect to that obtained using the remaining provisioning method, which
we discuss in the next few paragraphs.

Excluding transactions with gtid_purged. The source's global gtid_purged variable contains the
set of all transactions that have been purged from the source's binary log. As with the method discussed
previously (see Injecting empty transactions), you can record the value of gtid_executed on the server

2980

Replication with Global Transaction Identifiers

from which the snapshot was taken (in place of copying the binary logs to the new server). Unlike the
previous method, there is no need to commit empty transactions (or to issue PURGE BINARY LOGS);
instead, you can set gtid_purged on the replica directly, based on the value of gtid_executed on the
server from which the backup or snapshot was taken.

As with the method using empty transactions, this method creates a server that is functionally a snapshot,
but in time is able to become a source as its binary log history converges with that of the replication source
server or the group.

Restoring GTID mode replicas. When restoring a replica in a GTID based replication setup that has
encountered an error, injecting an empty transaction may not solve the problem because an event does
not have a GTID.

Use mysqlbinlog to find the next transaction, which is probably the first transaction in the next log file
after the event. Copy everything up to the COMMIT for that transaction, being sure to include the SET
@@SESSION.GTID_NEXT. Even if you are not using row-based replication, you can still run binary log row
events in the command line client.

Stop the replica and run the transaction you copied. The mysqlbinlog output sets the delimiter to /*!
*/;, so set it back:

mysql> DELIMITER ;

Restart replication from the correct position automatically:

mysql> SET GTID_NEXT=automatic;
mysql> RESET SLAVE;
mysql> START SLAVE;

16.1.3.6 Restrictions on Replication with GTIDs

Because GTID-based replication is dependent on transactions, some features otherwise available in
MySQL are not supported when using it. This section provides information about restrictions on and
limitations of replication with GTIDs.

Updates involving nontransactional storage engines. When using GTIDs, updates to tables using
nontransactional storage engines such as MyISAM cannot be made in the same statement or transaction
as updates to tables using transactional storage engines such as InnoDB.

This restriction is due to the fact that updates to tables that use a nontransactional storage engine mixed
with updates to tables that use a transactional storage engine within the same transaction can result in
multiple GTIDs being assigned to the same transaction.

Such problems can also occur when the source and the replica use different storage engines for their
respective versions of the same table, where one storage engine is transactional and the other is not. Also
be aware that triggers that are defined to operate on nontransactional tables can be the cause of these
problems.

In any of the cases just mentioned, the one-to-one correspondence between transactions and GTIDs is
broken, with the result that GTID-based replication cannot function correctly.

CREATE TABLE ... SELECT statements. CREATE TABLE ... SELECT statements are not
allowed when using GTID-based replication. When binlog_format is set to STATEMENT, a CREATE
TABLE ... SELECT statement is recorded in the binary log as one transaction with one GTID, but
if ROW format is used, the statement is recorded as two transactions with two GTIDs. If a source
used STATEMENT format and a replica used ROW format, the replica would be unable to handle the
transaction correctly, therefore the CREATE TABLE ... SELECT statement is disallowed with GTIDs to
prevent this scenario.

2981

Replication with Global Transaction Identifiers

Temporary tables. CREATE TEMPORARY TABLE and DROP TEMPORARY TABLE statements are not
supported inside transactions, procedures, functions, and triggers when using GTIDs (that is, when the
enforce_gtid_consistency system variable is set to ON). It is possible to use these statements with
GTIDs enabled, but only outside of any transaction, and only with autocommit=1.

Preventing execution of unsupported statements. To prevent execution of statements that
would cause GTID-based replication to fail, all servers must be started with the --enforce-gtid-
consistency option when enabling GTIDs. This causes statements of any of the types discussed
previously in this section to fail with an error.

Note that --enforce-gtid-consistency only takes effect if binary logging takes place for a statement.
If binary logging is disabled on the server, or if statements are not written to the binary log because they
are removed by a filter, GTID consistency is not checked or enforced for the statements that are not
logged.

For information about other required startup options when enabling GTIDs, see Section 16.1.3.4, “Setting
Up Replication Using GTIDs”.

Skipping transactions. sql_slave_skip_counter is not supported when using GTIDs. If you need
to skip transactions, use the value of the source's gtid_executed variable instead. For instructions, see
Section 16.1.7.3, “Skipping Transactions”.

Ignoring servers. The IGNORE_SERVER_IDS option of the CHANGE MASTER TO statement is
deprecated when using GTIDs, because transactions that have already been applied are automatically
ignored. Before starting GTID-based replication, check for and clear all ignored server ID lists that
have previously been set on the servers involved. The SHOW SLAVE STATUS statement, which can be
issued for individual channels, displays the list of ignored server IDs if there is one. If there is no list, the
Replicate_Ignore_Server_Ids field is blank.

GTID mode and mysqldump. It is possible to import a dump made using mysqldump into a MySQL
server running with GTID mode enabled, provided that there are no GTIDs in the target server's binary log.

GTID mode and mysql_upgrade. When the server is running with global transaction identifiers
(GTIDs) enabled (gtid_mode=ON), do not enable binary logging by mysql_upgrade (the --write-
binlog option).

16.1.3.7 Stored Function Examples to Manipulate GTIDs

This section provides examples of stored functions (see Chapter 23, Stored Objects) which you can create
using some of the built-in functions provided by MySQL for use with GTID-based replication, listed here:

• GTID_SUBSET(): Shows whether one GTID set is a subset of another.

• GTID_SUBTRACT(): Returns the GTIDs from one GTID set that are not in another.

• WAIT_FOR_EXECUTED_GTID_SET(): Waits until all transactions in a given GTID set have been
executed.

See Section 12.18, “Functions Used with Global Transaction Identifiers (GTIDs)”, more more information
about the functions just listed.

Note that in these stored functions, the delimiter command has been used to change the MySQL statement
delimiter to a vertical bar, like this:

mysql> delimiter |

All of the stored functions shown in this section take string representations of GTID sets as arguments, so
GTID sets must always be quoted when used with them.

2982

Replication with Global Transaction Identifiers

This function returns nonzero (true) if two GTID sets are the same set, even if they are not formatted in the
same way:

CREATE FUNCTION GTID_IS_EQUAL(gs1 LONGTEXT, gs2 LONGTEXT)
 RETURNS INT
 RETURN GTID_SUBSET(gs1, gs2) AND GTID_SUBSET(gs2, gs1)
|

This function returns nonzero (true) if two GTID sets are disjoint:

CREATE FUNCTION GTID_IS_DISJOINT(gs1 LONGTEXT, gs2 LONGTEXT)
RETURNS INT
 RETURN GTID_SUBSET(gs1, GTID_SUBTRACT(gs1, gs2))
|

This function returns nonzero (true) if two GTID sets are disjoint and sum is their union:

CREATE FUNCTION GTID_IS_DISJOINT_UNION(gs1 LONGTEXT, gs2 LONGTEXT, sum LONGTEXT)
RETURNS INT
 RETURN GTID_IS_EQUAL(GTID_SUBTRACT(sum, gs1), gs2) AND
 GTID_IS_EQUAL(GTID_SUBTRACT(sum, gs2), gs1)
|

This function returns a normalized form of the GTID set, in all uppercase, with no whitespace and no
duplicates, with UUIDs in alphabetic order and intervals in numeric order:

CREATE FUNCTION GTID_NORMALIZE(gs LONGTEXT)
RETURNS LONGTEXT
 RETURN GTID_SUBTRACT(gs, '')
|

This function returns the union of two GTID sets:

CREATE FUNCTION GTID_UNION(gs1 LONGTEXT, gs2 LONGTEXT)
RETURNS LONGTEXT
 RETURN GTID_NORMALIZE(CONCAT(gs1, ',', gs2))
|

This function returns the intersection of two GTID sets.

CREATE FUNCTION GTID_INTERSECTION(gs1 LONGTEXT, gs2 LONGTEXT)
RETURNS LONGTEXT
 RETURN GTID_SUBTRACT(gs1, GTID_SUBTRACT(gs1, gs2))
|

This function returns the symmetric difference between two GTID sets, that is, the GTIDs that exist in gs1
but not in gs2, as well as the GTIDs that exist in gs2 but not in gs1.

CREATE FUNCTION GTID_SYMMETRIC_DIFFERENCE(gs1 LONGTEXT, gs2 LONGTEXT)
RETURNS LONGTEXT
 RETURN GTID_SUBTRACT(CONCAT(gs1, ',', gs2), GTID_INTERSECTION(gs1, gs2))
|

This function removes from a GTID set all the GTIDs with the specified origin, and returns the remaining
GTIDs, if any. The UUID is the identifier used by the server where the transaction originated, which is
normally the value of server_uuid.

CREATE FUNCTION GTID_SUBTRACT_UUID(gs LONGTEXT, uuid TEXT)
RETURNS LONGTEXT
 RETURN GTID_SUBTRACT(gs, CONCAT(UUID, ':1-', (1 << 63) - 2))
|

This function acts as the reverse of the previous one; it returns only those GTIDs from the GTID set that
originate from the server with the specified identifier (UUID).

2983

Replication with Global Transaction Identifiers

CREATE FUNCTION GTID_INTERSECTION_WITH_UUID(gs LONGTEXT, uuid TEXT)
RETURNS LONGTEXT
 RETURN GTID_SUBTRACT(gs, GTID_SUBTRACT_UUID(gs, uuid))
|

Example 16.1 Verifying that a replica is up to date

The built-in functions GTID_SUBSET() and GTID_SUBTRACT() can be used to check that a replica has
applied at least every transaction that a source has applied.

To perform this check with GTID_SUBSET(), execute the following statement on the replica:

SELECT GTID_SUBSET(source_gtid_executed, replica_gtid_executed);

If the returns value is 0 (false), this means that some GTIDs in source_gtid_executed are not present
in replica_gtid_executed, and that the replica has not yet applied transactions that were applied on
the source, which means that the replica is not up to date.

To perform the same check with GTID_SUBTRACT(), execute the following statement on the replica:

SELECT GTID_SUBTRACT(source_gtid_executed, replica_gtid_executed);

This statement returns any GTIDs that are in source_gtid_executed but not in
replica_gtid_executed. If any GTIDs are returned, the source has applied some transactions that the
replica has not applied, and the replica is therefore not up to date.

Example 16.2 Backup and restore scenario

The stored functions GTID_IS_EQUAL(), GTID_IS_DISJOINT(), and GTID_IS_DISJOINT_UNION()
can be used to verify backup and restore operations involving multiple databases and servers. In this
example scenario, server1 contains database db1, and server2 contains database db2. The goal is
to copy database db2 to server1, and the result on server1 should be the union of the two databases.
The procedure used is to back up server2 using mysqldump, then to restore this backup on server1.

Provided that mysqldump was run with --set-gtid-purged set to ON or AUTO (the default), the output
contains a SET @@GLOBAL.gtid_purged statement which adds the gtid_executed set from server2
to the gtid_purged set on server1. gtid_purged contains the GTIDs of all the transactions that
have been committed on a given server but which do not exist in any binary log file on the server. When
database db2 is copied to server1, the GTIDs of the transactions committed on server2, which are
not in the binary log files on server1, must be added to gtid_purged for server1 to make the set
complete.

The stored functions can be used to assist with the following steps in this scenario:

• Use GTID_IS_EQUAL() to verify that the backup operation computed the correct GTID set for the SET
@@GLOBAL.gtid_purged statement. On server2, extract that statement from the mysqldump output,
and store the GTID set into a local variable, such as $gtid_purged_set. Then execute the following
statement:

server2> SELECT GTID_IS_EQUAL($gtid_purged_set, @@GLOBAL.gtid_executed);

If the result is 1, the two GTID sets are equal, and the set has been computed correctly.

• Use GTID_IS_DISJOINT() to verify that the GTID set in the mysqldump output does not overlap with
the gtid_executed set on server1. Having identical GTIDs present on both servers causes errors
when copying database db2 to server1. To check, on server1, extract and store gtid_purged from
the output into a local variable as done previously, then execute the following statement:

server1> SELECT GTID_IS_DISJOINT($gtid_purged_set, @@GLOBAL.gtid_executed);

2984

Replication with Global Transaction Identifiers

If the result is 1, there is no overlap between the two GTID sets, so no duplicate GTIDs are present.

• Use GTID_IS_DISJOINT_UNION() to verify that the restore operation resulted in the correct GTID
state on server1. Before restoring the backup, on server1, obtain the existing gtid_executed set
by executing the following statement:

server1> SELECT @@GLOBAL.gtid_executed;

Store the result in a local variable $original_gtid_executed, as well as the set from gtid_purged
in another local variable as described previously. When the backup from server2 has been restored
onto server1, execute the following statement to verify the GTID state:

server1> SELECT
 -> GTID_IS_DISJOINT_UNION($original_gtid_executed,
 -> $gtid_purged_set,
 -> @@GLOBAL.gtid_executed);

If the result is 1, the stored function has verified that the original gtid_executed set from server1
($original_gtid_executed) and the gtid_purged set that was added from server2
($gtid_purged_set) have no overlap, and that the updated gtid_executed set on server1 now
consists of the previous gtid_executed set from server1 plus the gtid_purged set from server2,
which is the desired result. Ensure that this check is carried out before any further transactions take
place on server1, otherwise the new transactions in gtid_executed cause it to fail.

Example 16.3 Selecting the most up-to-date replica for manual failover

The stored function GTID_UNION() can be used to identify the most up-to-date replica from a set of
replicas, in order to perform a manual failover operation after a source server has stopped unexpectedly.
If some of the replicas are experiencing replication lag, this stored function can be used to compute
the most up-to-date replica without waiting for all the replicas to apply their existing relay logs, and
therefore to minimize the failover time. The function can return the union of gtid_executed on each
replica with the set of transactions received by the replica, which is recorded in the Performance Schema
replication_connection_status table. You can compare these results to find which replica's record
of transactions is the most up to date, even if not all of the transactions have been committed yet.

On each replica, compute the complete record of transactions by issuing the following statement:

SELECT GTID_UNION(RECEIVED_TRANSACTION_SET, @@GLOBAL.gtid_executed)
 FROM performance_schema.replication_connection_status
 WHERE channel_name = 'name';

You can then compare the results from each replica to see which one has the most up-to-date record of
transactions, and use this replica as the new source.

Example 16.4 Checking for extraneous transactions on a replica

The stored function GTID_SUBTRACT_UUID() can be used to check whether a replica has received
transactions that did not originate from its designated source or sources. If it has, there might be an issue
with your replication setup, or with a proxy, router, or load balancer. This function works by removing from
a GTID set all the GTIDs from a specified originating server, and returning the remaining GTIDs, if any.

For a replica with a single source, issue the following statement, giving the identifier of the originating
source, which is normally the same as server_uuid:

SELECT GTID_SUBTRACT_UUID(@@GLOBAL.gtid_executed, server_uuid_of_source);

If the result is not empty, the transactions returned are extra transactions that did not originate from the
designated source.

2985

Replication with Global Transaction Identifiers

For a replica in a multisource topology, include the server UUID of each source in the function call, like this:

SELECT
 GTID_SUBTRACT_UUID(GTID_SUBTRACT_UUID(@@GLOBAL.gtid_executed,
 server_uuid_of_source_1),
 server_uuid_of_source_2);

If the result is not empty, the transactions returned are extra transactions that did not originate from any of
the designated sources.

Example 16.5 Verifying that a server in a replication topology is read-only

The stored function GTID_INTERSECTION_WITH_UUID() can be used to verify that a server has
not originated any GTIDs and is in a read-only state. The function returns only those GTIDs from the
GTID set that originate from the server with the specified identifier. If any of the transactions listed in
gtid_executed from this server use the server's own identifier, the server itself originated those
transactions. You can issue the following statement on the server to check:

SELECT GTID_INTERSECTION_WITH_UUID(@@GLOBAL.gtid_executed, my_server_uuid);

Example 16.6 Validating an additional replica in multisource replication

The stored function GTID_INTERSECTION_WITH_UUID() can be used to find out if a replica attached
to a multisource replication setup has applied all the transactions originating from one particular source.
In this scenario, source1 and source2 are both sources and replicas and replicate to each other.
source2 also has its own replica. The replica also receives and applies transactions from source1
if source2 is configured with log_replica_updates=ON, but it does not do so if source2 uses
log_replica_updates=OFF. Whichever the case, we currently want only to find out if the replica
is up to date with source2. In this situation, GTID_INTERSECTION_WITH_UUID() can be used to
identify the transactions that source2 originated, discarding the transactions that source2 has replicated
from source1. The built-in function GTID_SUBSET() can then be used to compare the result with the
gtid_executed set on the replica. If the replica is up to date with source2, the gtid_executed set
on the replica contains all the transactions in the intersection set (the transactions that originated from
source2).

To carry out this check, store the values of gtid_executed and the server UUID from source2 and the
value of gtid_executed from the replica into user variables as follows:

source2> SELECT @@GLOBAL.gtid_executed INTO @source2_gtid_executed;

source2> SELECT @@GLOBAL.server_uuid INTO @source2_server_uuid;

replica> SELECT @@GLOBAL.gtid_executed INTO @replica_gtid_executed;

Then use GTID_INTERSECTION_WITH_UUID() and GTID_SUBSET() with these variables as input, as
follows:

SELECT
 GTID_SUBSET(
 GTID_INTERSECTION_WITH_UUID(@source2_gtid_executed,
 @source2_server_uuid),
 @replica_gtid_executed);

The server identifier from source2 (@source2_server_uuid) is used with
GTID_INTERSECTION_WITH_UUID() to identify and return only those GTIDs from the set of GTIDs
that originated on source2, omitting those that originated on source1. The resulting GTID set is then
compared with the set of all executed GTIDs on the replica, using GTID_SUBSET(). If this statement
returns nonzero (true), all the identified GTIDs from source2 (the first set input) are also found in
gtid_executed from the replica, meaning that the replica has received and executed all the transactions
that originated from source2.

2986

https://dev.mysql.com/doc/refman/8.0/en/replication-options-binary-log.html#sysvar_log_replica_updates

Changing Replication Modes on Online Servers

16.1.4 Changing Replication Modes on Online Servers

This section describes how to change the mode of replication being used without having to take the server
offline.

16.1.4.1 Replication Mode Concepts

To be able to safely configure the replication mode of an online server it is important to understand
some key concepts of replication. This section explains these concepts and is essential reading before
attempting to modify the replication mode of an online server.

The modes of replication available in MySQL rely on different techniques for identifying transactions which
are logged. The types of transactions used by replication are as follows:

• GTID transactions are identified by a global transaction identifier (GTID) in the form UUID:NUMBER.
Every GTID transaction in a log is always preceded by a Gtid_log_event. GTID transactions can be
addressed using either the GTID or using the file name and position.

• Anonymous transactions do not have a GTID assigned, and MySQL ensures that every anonymous
transaction in a log is preceded by an Anonymous_gtid_log_event. In previous versions,
anonymous transactions were not preceded by any particular event. Anonymous transactions can only
be addressed using file name and position.

When using GTIDs you can take advantage of auto-positioning and automatic fail-over, as well as use
WAIT_FOR_EXECUTED_GTID_SET(), session_track_gtids, and monitor replicated transactions
using Performance Schema tables. With GTIDs enabled you cannot use sql_slave_skip_counter,
instead use empty transactions.

Transactions in a relay log that was received from a source running a previous version of MySQL may not
be preceded by any particular event at all, but after being replayed and logged in the replica's binary log,
they are preceded with an Anonymous_gtid_log_event.

The ability to configure the replication mode online means that the gtid_mode and
enforce_gtid_consistency variables are now both dynamic and can be set from a top-level
statement by an account that has privileges sufficient to set global system variables. See Section 5.1.8.1,
“System Variable Privileges”. In previous versions, both of these variables could only be configured using
the appropriate option at server start, meaning that changes to the replication mode required a server
restart. In all versions gtid_mode could be set to ON or OFF, which corresponded to whether GTIDs
were used to identify transactions or not. When gtid_mode=ON it is not possible to replicate anonymous
transactions, and when gtid_mode=OFF only anonymous transactions can be replicated. As of MySQL
5.7.6, the gtid_mode variable has two additional states, OFF_PERMISSIVE and ON_PERMISSIVE.
When gtid_mode=OFF_PERMISSIVE then new transactions are anonymous while permitting replicated
transactions to be either GTID or anonymous transactions. When gtid_mode=ON_PERMISSIVE then
new transactions use GTIDs while permitting replicated transactions to be either GTID or anonymous
transactions. This means it is possible to have a replication topology that has servers using both
anonymous and GTID transactions. For example a source with gtid_mode=ON could be replicating to
a replica with gtid_mode=ON_PERMISSIVE. The valid values for gtid_mode are as follows and in this
order:

• OFF

• OFF_PERMISSIVE

• ON_PERMISSIVE

• ON

2987

Changing Replication Modes on Online Servers

It is important to note that the state of gtid_mode can only be changed by one step at a time based on
the above order. For example, if gtid_mode is currently set to OFF_PERMISSIVE, it is possible to change
to OFF or ON_PERMISSIVE but not to ON. This is to ensure that the process of changing from anonymous
transactions to GTID transactions online is correctly handled by the server. When you switch between
gtid_mode=ON and gtid_mode=OFF, the GTID state (in other words the value of gtid_executed)
is persistent. This ensures that the GTID set that has been applied by the server is always retained,
regardless of changes between types of gtid_mode.

As part of the changes introduced by MySQL 5.7.6, the fields related to GTIDs have been modified so that
they display the correct information regardless of the currently selected gtid_mode. This means that fields
which display GTID sets, such as gtid_executed, gtid_purged, RECEIVED_TRANSACTION_SET
in the replication_connection_status Performance Schema table, and the GTID related
results of SHOW SLAVE STATUS, now return the empty string when there are no GTIDs present.
Fields that display a single GTID, such as CURRENT_TRANSACTION in the Performance Schema
replication_applier_status_by_worker table, now display ANONYMOUS when GTID transactions
are not being used.

Replication from a source using gtid_mode=ON provides the ability to use auto-positioning, configured
using the CHANGE MASTER TO MASTER_AUTO_POSITION = 1; statement. The replication topology
being used impacts on whether it is possible to enable auto-positioning or not, as this feature relies on
GTIDs and is not compatible with anonymous transactions. An error is generated if auto-positioning is
enabled and an anonymous transaction is encountered. It is strongly recommended to ensure there are no
anonymous transactions remaining in the topology before enabling auto-positioning, see Section 16.1.4.2,
“Enabling GTID Transactions Online”. The valid combinations of gtid_mode and auto-positioning on
source and replica are shown in the following table, where the source's gtid_mode is shown on the
horizontal and the replica's gtid_mode is on the vertical:

Table 16.1 Valid Combinations of Source and Replica gtid_mode

gtid_mode Source OFF Source OFF_PERMISSIVE Source ON_PERMISSIVE Source ON

Replica OFF Y Y N N

Replica OFF_PERMISSIVE Y Y Y Y*

Replica ON_PERMISSIVE Y Y Y Y*

Replica ON N N Y Y*

In the above table, the entries are:

• Y: the gtid_mode of source and replica is compatible

• N: the gtid_mode of source and replica is not compatible

• *: auto-positioning can be used

The currently selected gtid_mode also impacts on the gtid_next variable. The following table shows
the behavior of the server for the different values of gtid_mode and gtid_next.

Table 16.2 Valid Combinations of gtid_mode and gtid_next

gtid_next AUTOMATIC

binary log on

AUTOMATIC

binary log off

ANONYMOUS UUID:NUMBER

>OFF ANONYMOUS ANONYMOUS ANONYMOUS Error

>OFF_PERMISSIVE ANONYMOUS ANONYMOUS ANONYMOUS UUID:NUMBER

>ON_PERMISSIVE New GTID ANONYMOUS ANONYMOUS UUID:NUMBER

2988

Changing Replication Modes on Online Servers

gtid_next AUTOMATIC

binary log on

AUTOMATIC

binary log off

ANONYMOUS UUID:NUMBER

>ON New GTID ANONYMOUS Error UUID:NUMBER

In the above table, the entries are:

• ANONYMOUS: generate an anonymous transaction.

• Error: generate an error and fail to execute SET GTID_NEXT.

• UUID:NUMBER: generate a GTID with the specified UUID:NUMBER.

• New GTID: generate a GTID with an automatically generated number.

When the binary log is off and gtid_next is set to AUTOMATIC, then no GTID is generated. This is
consistent with the behavior of previous versions.

16.1.4.2 Enabling GTID Transactions Online

This section describes how to enable GTID transactions, and optionally auto-positioning, on servers that
are already online and using anonymous transactions. This procedure does not require taking the server
offline and is suited to use in production. However, if you have the possibility to take the servers offline
when enabling GTID transactions that process is easier.

Before you start, ensure that the servers meet the following pre-conditions:

• All servers in your topology must use MySQL 5.7.6 or later. You cannot enable GTID transactions online
on any single server unless all servers which are in the topology are using this version.

• All servers have gtid_mode set to the default value OFF.

The following procedure can be paused at any time and later resumed where it was, or reversed by
jumping to the corresponding step of Section 16.1.4.3, “Disabling GTID Transactions Online”, the online
procedure to disable GTIDs. This makes the procedure fault-tolerant because any unrelated issues that
may appear in the middle of the procedure can be handled as usual, and then the procedure continued
where it was left off.

Note

It is crucial that you complete every step before continuing to the next step.

To enable GTID transactions:

1. On each server, execute:

SET @@GLOBAL.ENFORCE_GTID_CONSISTENCY = WARN;

Let the server run for a while with your normal workload and monitor the logs. If this step causes any
warnings in the log, adjust your application so that it only uses GTID-compatible features and does not
generate any warnings.

Important

This is the first important step. You must ensure that no warnings are being
generated in the error logs before going to the next step.

2. On each server, execute:

2989

Changing Replication Modes on Online Servers

SET @@GLOBAL.ENFORCE_GTID_CONSISTENCY = ON;

3. On each server, execute:

SET @@GLOBAL.GTID_MODE = OFF_PERMISSIVE;

It does not matter which server executes this statement first, but it is important that all servers complete
this step before any server begins the next step.

4. On each server, execute:

SET @@GLOBAL.GTID_MODE = ON_PERMISSIVE;

It does not matter which server executes this statement first.

5. On each server, wait until the status variable ONGOING_ANONYMOUS_TRANSACTION_COUNT is zero.
This can be checked using:

SHOW STATUS LIKE 'ONGOING_ANONYMOUS_TRANSACTION_COUNT';

Note

On a replica, it is theoretically possible that this shows zero and then nonzero
again. This is not a problem, it suffices that it shows zero once.

6. Wait for all transactions generated up to step 5 to replicate to all servers. You can do this without
stopping updates: the only important thing is that all anonymous transactions get replicated.

See Section 16.1.4.4, “Verifying Replication of Anonymous Transactions” for one method of checking
that all anonymous transactions have replicated to all servers.

7. If you use binary logs for anything other than replication, for example point in time backup and restore,
wait until you do not need the old binary logs having transactions without GTIDs.

For instance, after step 6 has completed, you can execute FLUSH LOGS on the server where you are
taking backups. Then either explicitly take a backup or wait for the next iteration of any periodic backup
routine you may have set up.

Ideally, wait for the server to purge all binary logs that existed when step 6 was completed. Also wait for
any backup taken before step 6 to expire.

Important

This is the second important point. It is vital to understand that binary logs
containing anonymous transactions, without GTIDs cannot be used after the
next step. After this step, you must be sure that transactions without GTIDs do
not exist anywhere in the topology.

8. On each server, execute:

SET @@GLOBAL.GTID_MODE = ON;

9. On each server, add gtid_mode=ON and enforce_gtid_consistency=ON to my.cnf.

You are now guaranteed that all transactions have a GTID (except transactions generated in step 5
or earlier, which have already been processed). To start using the GTID protocol so that you can later
perform automatic fail-over, execute the following on each replica. Optionally, if you use multi-source
replication, do this for each channel and include the FOR CHANNEL channel clause:

2990

Changing Replication Modes on Online Servers

STOP SLAVE [FOR CHANNEL 'channel'];
CHANGE MASTER TO MASTER_AUTO_POSITION = 1 [FOR CHANNEL 'channel'];
START SLAVE [FOR CHANNEL 'channel'];

16.1.4.3 Disabling GTID Transactions Online

This section describes how to disable GTID transactions on servers that are already online. This procedure
does not require taking the server offline and is suited to use in production. However, if you have the
possibility to take the servers offline when disabling GTIDs mode that process is easier.

The process is similar to enabling GTID transactions while the server is online, but reversing the steps. The
only thing that differs is the point at which you wait for logged transactions to replicate.

Before you start, ensure that the servers meet the following pre-conditions:

• All servers in your topology must use MySQL 5.7.6 or later. You cannot disable GTID transactions online
on any single server unless all servers which are in the topology are using this version.

• All servers have gtid_mode set to ON.

1. Execute the following on each replica, and if you using multi-source replication, do it for each channel
and include the FOR CHANNEL channel clause:

STOP SLAVE [FOR CHANNEL 'channel'];
CHANGE MASTER TO MASTER_AUTO_POSITION = 0, MASTER_LOG_FILE = file, \
MASTER_LOG_POS = position [FOR CHANNEL 'channel'];
START SLAVE [FOR CHANNEL 'channel'];

2. On each server, execute:

SET @@GLOBAL.GTID_MODE = ON_PERMISSIVE;

3. On each server, execute:

SET @@GLOBAL.GTID_MODE = OFF_PERMISSIVE;

4. On each server, wait until the variable @@GLOBAL.GTID_OWNED is equal to the empty string. This
can be checked using:

SELECT @@GLOBAL.GTID_OWNED;

On a replica, it is theoretically possible that this is empty and then nonempty again. This is not a
problem, it suffices that it is empty once.

5. Wait for all transactions that currently exist in any binary log to replicate to all replicas. See
Section 16.1.4.4, “Verifying Replication of Anonymous Transactions” for one method of checking that all
anonymous transactions have replicated to all servers.

6. If you use binary logs for anything else than replication, for example to do point in time backup or
restore: wait until you do not need the old binary logs having GTID transactions.

For instance, after step 5 has completed, you can execute FLUSH LOGS on the server where you are
taking the backup. Then either explicitly take a backup or wait for the next iteration of any periodic
backup routine you may have set up.

Ideally, wait for the server to purge all binary logs that existed when step 5 was completed. Also wait for
any backup taken before step 5 to expire.

2991

Changing Replication Modes on Online Servers

Important

This is the one important point during this procedure. It is important to
understand that logs containing GTID transactions cannot be used after the next
step. Before proceeding you must be sure that GTID transactions do not exist
anywhere in the topology.

7. On each server, execute:

SET @@GLOBAL.GTID_MODE = OFF;

8. On each server, set gtid_mode=OFF in my.cnf.

If you want to set enforce_gtid_consistency=OFF, you can do so now. After setting it, you should
add enforce_gtid_consistency=OFF to your configuration file.

If you want to downgrade to an earlier version of MySQL, you can do so now, using the normal downgrade
procedure.

16.1.4.4 Verifying Replication of Anonymous Transactions

This section explains how to monitor a replication topology and verify that all anonymous transactions have
been replicated. This is helpful when changing the replication mode online as you can verify that it is safe
to change to GTID transactions.

There are several possible ways to wait for transactions to replicate:

The simplest method, which works regardless of your topology but relies on timing is as follows: if you are
sure that the replica never lags more than N seconds, just wait for a bit more than N seconds. Or wait for a
day, or whatever time period you consider safe for your deployment.

A safer method in the sense that it does not depend on timing: if you only have a source with one or more
replicas, do the following:

1. On the source, execute:

SHOW MASTER STATUS;

Note down the values in the File and Position column.

2. On every replica, use the file and position information from the source to execute:

SELECT MASTER_POS_WAIT(file, position);

If you have a source and multiple levels of replicas, or in other words you have replicas of replicas, repeat
step 2 on each level, starting from the source, then all the direct replicas, then all the replicas of replicas,
and so on.

If you use a circular replication topology where multiple servers may have write clients, perform step 2 for
each source-replica connection, until you have completed the full circle. Repeat the whole process so that
you do the full circle twice.

For example, suppose you have three servers A, B, and C, replicating in a circle so that A -> B -> C -> A.
The procedure is then:

• Do step 1 on A and step 2 on B.

• Do step 1 on B and step 2 on C.

2992

MySQL Multi-Source Replication

• Do step 1 on C and step 2 on A.

• Do step 1 on A and step 2 on B.

• Do step 1 on B and step 2 on C.

• Do step 1 on C and step 2 on A.

16.1.5 MySQL Multi-Source Replication

MySQL multi-source replication enables a replica to receive transactions from multiple immediate sources
in parallel. In a multi-source replication topology, a replica creates a replication channel for each source
that it should receive transactions from. For more information on how replication channels function, see
Section 16.2.2, “Replication Channels”.

You might choose to implement multi-source replication to achieve goals like these:

• Backing up multiple servers to a single server.

• Merging table shards.

• Consolidating data from multiple servers to a single server.

Multi-source replication does not implement any conflict detection or resolution when applying transactions,
and those tasks are left to the application if required.

Note

Each channel on a multi-source replica must replicate from a different source. You
cannot set up multiple replication channels from a single replica to a single source.
This is because the server IDs of replicas must be unique in a replication topology.
The source distinguishes replicas only by their server IDs, not by the names of the
replication channels, so it cannot recognize different replication channels from the
same replica.

A multi-source replica can also be set up as a multi-threaded replica, by setting the
slave_parallel_workers system variable to a value greater than 0. When you do this on a multi-
source replica, each channel on the replica has the specified number of applier threads, plus a coordinator
thread to manage them. You cannot configure the number of applier threads for individual channels.

This section provides tutorials on how to configure sources and replicas for multi-source replication, how to
start, stop and reset multi-source replicas, and how to monitor multi-source replication.

16.1.5.1 Configuring Multi-Source Replication

A multi-source replication topology requires at least two sources and one replica configured. In these
tutorials, we assume you have two sources source1 and source2, and a replica replicahost. The
replica replicates one database from each of the sources, db1 from source1 and db2 from source2.

Sources in a multi-source replication topology can be configured to use either GTID-based replication, or
binary log position-based replication. See Section 16.1.3.4, “Setting Up Replication Using GTIDs” for how
to configure a source using GTID-based replication. See Section 16.1.2.1, “Setting the Replication Source
Configuration” for how to configure a source using file position based replication.

Replicas in a multi-source replication topology require TABLE repositories for the connection metadata
repository and applier metadata repository, as specified by the master_info_repository and
relay_log_info_repository system variables. Multi-source replication is not compatible with FILE
repositories.

2993

MySQL Multi-Source Replication

To modify an existing replica that is using FILE repositories for the replication metadata repositories to
use TABLE repositories, you can convert the existing repositories dynamically by using the mysql client to
issue the following statements on the replica:

mysql> STOP SLAVE;
mysql> SET GLOBAL master_info_repository = 'TABLE';
mysql> SET GLOBAL relay_log_info_repository = 'TABLE';

Create a suitable user account on all the replication source servers that the replica can use to connect.
You can use the same account on all the sources, or a different account on each. If you create an account
solely for the purposes of replication, that account needs only the REPLICATION SLAVE privilege. For
example, to set up a new user, ted, that can connect from the replica replicahost, use the mysql client
to issue these statements on each of the sources:

mysql> CREATE USER 'ted'@'replicahost' IDENTIFIED BY 'password';
mysql> GRANT REPLICATION SLAVE ON *.* TO 'ted'@'replicahost';

For more details, see Section 16.1.2.2, “Creating a User for Replication”.

16.1.5.2 Provisioning a Multi-Source Replica for GTID-Based Replication

If the sources in the multi-source replication topology have existing data, it can save time to provision the
replica with the relevant data before starting replication. In a multi-source replication topology, copying
the data directory cannot be used to provision the replica with data from all of the sources, and you might
also want to replicate only specific databases from each source. The best strategy for provisioning such
a replica is therefore to use mysqldump to create an appropriate dump file on each source, then use the
mysql client to import the dump file on the replica.

If you are using GTID-based replication, you need to pay attention to the SET @@GLOBAL.gtid_purged
statement that mysqldump places in the dump output. This statement transfers the GTIDs for the
transactions executed on the source to the replica, and the replica requires this information. However, for
any case more complex than provisioning one new, empty replica from one source, you need to check
what effect the statement has in the replica's version of MySQL, and handle the statement accordingly. The
following guidance summarizes suitable actions, but for more details, see the mysqldump documentation.

In MySQL 5.6 and 5.7, the SET @@GLOBAL.gtid_purged statement written by mysqldump replaces
the value of gtid_purged on the replica. Also in those releases that value can only be changed when
the replica's record of transactions with GTIDs (the gtid_executed set) is empty. In a multi-source
replication topology, you must therefore remove the SET @@GLOBAL.gtid_purged statement from the
dump output before replaying the dump files, because you cannot apply a second or subsequent dump
file including this statement. As an alternative to removing the SET @@GLOBAL.gtid_purged statement,
if you are provisioning the replica with two partial dumps from the same source, and the GTID set in
the second dump is the same as the first (so no new transactions have been executed on the source in
between the dumps), you can set mysqldump's --set-gtid-purged option to OFF when you output the
second dump file, to omit the statement.

For MySQL 5.6 and 5.7, these limitations mean all the dump files from the sources must be applied in a
single operation on a replica with an empty gtid_executed set. You can clear a replica's GTID execution
history by issuing RESET MASTER on the replica, but if you have other, wanted transactions with GTIDs on
the replica, choose an alternative method of provisioning from those described in Section 16.1.3.5, “Using
GTIDs for Failover and Scaleout”.

In the following provisioning example, we assume that the SET @@GLOBAL.gtid_purged statement
needs to be removed from the files and handled manually. We also assume that there are no wanted
transactions with GTIDs on the replica before provisioning starts.

1. To create dump files for a database named db1 on source1 and a database named db2 on source2,
run mysqldump for source1 as follows:

2994

MySQL Multi-Source Replication

mysqldump -u<user> -p<password> --single-transaction --triggers --routines --set-gtid-purged=ON --databases db1 > dumpM1.sql

Then run mysqldump for source2 as follows:

mysqldump -u<user> -p<password> --single-transaction --triggers --routines --set-gtid-purged=ON --databases db2 > dumpM2.sql

2. Record the gtid_purged value that mysqldump added to each of the dump files. For example, for
dump files created on MySQL 5.6 or 5.7, you can extract the value like this:

cat dumpM1.sql | grep GTID_PURGED | cut -f2 -d'=' | cut -f2 -d$'\''
cat dumpM2.sql | grep GTID_PURGED | cut -f2 -d'=' | cut -f2 -d$'\''

The result in each case should be a GTID set, for example:

source1: 2174B383-5441-11E8-B90A-C80AA9429562:1-1029
source2: 224DA167-0C0C-11E8-8442-00059A3C7B00:1-2695

3. Remove the line from each dump file that contains the SET @@GLOBAL.gtid_purged statement. For
example:

sed '/GTID_PURGED/d' dumpM1.sql > dumpM1_nopurge.sql
sed '/GTID_PURGED/d' dumpM2.sql > dumpM2_nopurge.sql

4. Use the mysql client to import each edited dump file into the replica. For example:

mysql -u<user> -p<password> < dumpM1_nopurge.sql
mysql -u<user> -p<password> < dumpM2_nopurge.sql

5. On the replica, issue RESET MASTER to clear the GTID execution history (assuming, as explained
above, that all the dump files have been imported and that there are no wanted transactions
with GTIDs on the replica). Then issue a SET @@GLOBAL.gtid_purged statement to set the
gtid_purged value to the union of all the GTID sets from all the dump files, as you recorded in Step
2. For example:

mysql> RESET MASTER;
mysql> SET @@GLOBAL.gtid_purged = "2174B383-5441-11E8-B90A-C80AA9429562:1-1029, 224DA167-0C0C-11E8-8442-00059A3C7B00:1-2695";

If there are, or might be, overlapping transactions between the GTID sets in the dump files, you can use
the stored functions described in Section 16.1.3.7, “Stored Function Examples to Manipulate GTIDs” to
check this beforehand and to calculate the union of all the GTID sets.

16.1.5.3 Adding GTID-Based Sources to a Multi-Source Replica

These steps assume you have enabled GTIDs for transactions on the replication source servers using
gtid_mode=ON, created a replication user, ensured that the replica is using TABLE based replication
metadata repositories, and provisioned the replica with data from the sources if appropriate.

Use the CHANGE MASTER TO statement to configure a replication channel for each source on the
replica (see Section 16.2.2, “Replication Channels”). The FOR CHANNEL clause is used to specify the
channel. For GTID-based replication, GTID auto-positioning is used to synchronize with the source (see
Section 16.1.3.3, “GTID Auto-Positioning”). The MASTER_AUTO_POSITION option is set to specify the use
of auto-positioning.

For example, to add source1 and source2 as sources to the replica, use the mysql client to issue the
CHANGE MASTER TO statement twice on the replica, like this:

mysql> CHANGE MASTER TO MASTER_HOST="source1", MASTER_USER="ted", \
MASTER_PASSWORD="password", MASTER_AUTO_POSITION=1 FOR CHANNEL "source_1";
mysql> CHANGE MASTER TO MASTER_HOST="source2", MASTER_USER="ted", \
MASTER_PASSWORD="password", MASTER_AUTO_POSITION=1 FOR CHANNEL "source_2";

2995

MySQL Multi-Source Replication

For the full syntax of the CHANGE MASTER TO statement and other available options, see Section 13.4.2.1,
“CHANGE MASTER TO Statement”.

16.1.5.4 Adding a Binary Log Based Source to a Multi-Source Replica

These steps assume that you have enabled binary logging on the replication source server using
--log-bin, the replica is using TABLE based replication metadata repositories, and that you have
enabled a replication user and noted the current binary log position. You need to know the current
MASTER_LOG_FILE and MASTER_LOG_POSITION.

Use the CHANGE MASTER TO statement to configure a replication channel for each source on the replica
(see Section 16.2.2, “Replication Channels”). The FOR CHANNEL clause is used to specify the channel.
For example, to add source1 and source2 as sources to the replica, use the mysql client to issue the
CHANGE MASTER TO statement twice on the replica, like this:

mysql> CHANGE MASTER TO MASTER_HOST="source1", MASTER_USER="ted", MASTER_PASSWORD="password", \
MASTER_LOG_FILE='source1-bin.000006', MASTER_LOG_POS=628 FOR CHANNEL "source_1";
mysql> CHANGE MASTER TO MASTER_HOST="source2", MASTER_USER="ted", MASTER_PASSWORD="password", \
MASTER_LOG_FILE='source2-bin.000018', MASTER_LOG_POS=104 FOR CHANNEL "source_2";

For the full syntax of the CHANGE MASTER TO statement and other available options, see Section 13.4.2.1,
“CHANGE MASTER TO Statement”.

16.1.5.5 Starting Multi-Source Replicas

Once you have added channels for all of the sources, issue a START SLAVE statement to start replication.
When you have enabled multiple channels on a replica, you can choose to either start all channels, or
select a specific channel to start. For example, to start the two channels separately, use the mysql client
to issue the following statements:

mysql> START SLAVE FOR CHANNEL "source_1";
mysql> START SLAVE FOR CHANNEL "source_2";

For the full syntax of the START SLAVE command and other available options, see Section 13.4.2.5,
“START SLAVE Statement”.

To verify that both channels have started and are operating correctly, you can issue SHOW SLAVE STATUS
statements on the replica, for example:

mysql> SHOW SLAVE STATUS FOR CHANNEL "source_1"\G
mysql> SHOW SLAVE STATUS FOR CHANNEL "source_2"\G

16.1.5.6 Stopping Multi-Source Replicas

The STOP SLAVE statement can be used to stop a multi-source replica. By default, if you use the STOP
SLAVE statement on a multi-source replica all channels are stopped. Optionally, use the FOR CHANNEL
channel clause to stop only a specific channel.

• To stop all currently configured replication channels:

STOP SLAVE;

• To stop only a named channel, use a FOR CHANNEL channel clause:

STOP SLAVE FOR CHANNEL "source_1";

For the full syntax of the STOP SLAVE command and other available options, see Section 13.4.2.6, “STOP
SLAVE Statement”.

16.1.5.7 Resetting Multi-Source Replicas

2996

MySQL Multi-Source Replication

The RESET SLAVE statement can be used to reset a multi-source replica. By default, if you use the RESET
SLAVE statement on a multi-source replica all channels are reset. Optionally, use the FOR CHANNEL
channel clause to reset only a specific channel.

• To reset all currently configured replication channels:

RESET SLAVE;

• To reset only a named channel, use a FOR CHANNEL channel clause:

RESET SLAVE FOR CHANNEL "source_1";

For GTID-based replication, note that RESET SLAVE has no effect on the replica's GTID execution history.
If you want to clear this, issue RESET MASTER on the replica.

RESET SLAVE makes the replica forget its replication position, and clears the relay log, but it does not
change any replication connection parameters, such as the source's host name. If you want to remove
these for a channel, issue RESET SLAVE ALL.

For the full syntax of the RESET SLAVE command and other available options, see Section 13.4.2.3,
“RESET SLAVE Statement”.

16.1.5.8 Multi-Source Replication Monitoring

To monitor the status of replication channels the following options exist:

• Using the replication Performance Schema tables. The first column of these tables is Channel_Name.
This enables you to write complex queries based on Channel_Name as a key. See Section 25.12.11,
“Performance Schema Replication Tables”.

• Using SHOW SLAVE STATUS FOR CHANNEL channel. By default, if the FOR CHANNEL channel
clause is not used, this statement shows the replica status for all channels with one row per channel.
The identifier Channel_name is added as a column in the result set. If a FOR CHANNEL channel
clause is provided, the results show the status of only the named replication channel.

Note

The SHOW VARIABLES statement does not work with multiple replication channels.
The information that was available through these variables has been migrated
to the replication performance tables. Using a SHOW VARIABLES statement in a
topology with multiple channels shows the status of only the default channel.

Monitoring Channels Using Performance Schema Tables

This section explains how to use the replication Performance Schema tables to monitor channels. You can
choose to monitor all channels, or a subset of the existing channels.

To monitor the connection status of all channels:

mysql> SELECT * FROM replication_connection_status\G;
*************************** 1. row ***************************
CHANNEL_NAME: source_1
GROUP_NAME:
SOURCE_UUID: 046e41f8-a223-11e4-a975-0811960cc264
THREAD_ID: 24
SERVICE_STATE: ON
COUNT_RECEIVED_HEARTBEATS: 0
LAST_HEARTBEAT_TIMESTAMP: 0000-00-00 00:00:00
RECEIVED_TRANSACTION_SET: 046e41f8-a223-11e4-a975-0811960cc264:4-37
LAST_ERROR_NUMBER: 0

2997

Replication and Binary Logging Options and Variables

LAST_ERROR_MESSAGE:
LAST_ERROR_TIMESTAMP: 0000-00-00 00:00:00
*************************** 2. row ***************************
CHANNEL_NAME: source_2
GROUP_NAME:
SOURCE_UUID: 7475e474-a223-11e4-a978-0811960cc264
THREAD_ID: 26
SERVICE_STATE: ON
COUNT_RECEIVED_HEARTBEATS: 0
LAST_HEARTBEAT_TIMESTAMP: 0000-00-00 00:00:00
RECEIVED_TRANSACTION_SET: 7475e474-a223-11e4-a978-0811960cc264:4-6
LAST_ERROR_NUMBER: 0
LAST_ERROR_MESSAGE:
LAST_ERROR_TIMESTAMP: 0000-00-00 00:00:00
2 rows in set (0.00 sec)

In the above output there are two channels enabled, and as shown by the CHANNEL_NAME field they are
called source_1 and source_2.

The addition of the CHANNEL_NAME field enables you to query the Performance Schema tables
for a specific channel. To monitor the connection status of a named channel, use a WHERE
CHANNEL_NAME=channel clause:

mysql> SELECT * FROM replication_connection_status WHERE CHANNEL_NAME='source_1'\G
*************************** 1. row ***************************
CHANNEL_NAME: source_1
GROUP_NAME:
SOURCE_UUID: 046e41f8-a223-11e4-a975-0811960cc264
THREAD_ID: 24
SERVICE_STATE: ON
COUNT_RECEIVED_HEARTBEATS: 0
LAST_HEARTBEAT_TIMESTAMP: 0000-00-00 00:00:00
RECEIVED_TRANSACTION_SET: 046e41f8-a223-11e4-a975-0811960cc264:4-37
LAST_ERROR_NUMBER: 0
LAST_ERROR_MESSAGE:
LAST_ERROR_TIMESTAMP: 0000-00-00 00:00:00
1 row in set (0.00 sec)

Similarly, the WHERE CHANNEL_NAME=channel clause can be used to monitor the other replication
Performance Schema tables for a specific channel. For more information, see Section 25.12.11,
“Performance Schema Replication Tables”.

16.1.6 Replication and Binary Logging Options and Variables

The following sections contain information about mysqld options and server variables that are used in
replication and for controlling the binary log. Options and variables for use on sources and replicas are
covered separately, as are options and variables relating to binary logging and global transaction identifiers
(GTIDs). A set of quick-reference tables providing basic information about these options and variables is
also included.

Of particular importance is the server_id system variable.

Command-Line Format --server-id=#

System Variable server_id

Scope Global

Dynamic Yes

Type Integer

Default Value 0

2998

Replication and Binary Logging Options and Variables

Minimum Value 0

Maximum Value 4294967295

This variable specifies the server ID. In MySQL 5.7, server_id must be specified if binary logging is
enabled, otherwise the server is not allowed to start.

server_id is set to 0 by default. On a replication source server and each replica, you must specify
server_id to establish a unique replication ID in the range from 1 to 232 − 1. “Unique”, means that
each ID must be different from every other ID in use by any other source or replica in the replication
topology. For additional information, see Section 16.1.6.2, “Replication Source Options and Variables”, and
Section 16.1.6.3, “Replica Server Options and Variables”.

If the server ID is set to 0, binary logging takes place, but a source with a server ID of 0 refuses any
connections from replicas, and a replica with a server ID of 0 refuses to connect to a source. Note
that although you can change the server ID dynamically to a nonzero value, doing so does not enable
replication to start immediately. You must change the server ID and then restart the server to initialize the
replica.

For more information, see Setting the Replica Configuration.

server_uuid

In MySQL 5.7, the server generates a true UUID in addition to the server_id value supplied by the user.
This is available as the global, read-only server_uuid system variable.

Note

The presence of the server_uuid system variable in MySQL 5.7 does not change
the requirement for setting a unique server_id value for each MySQL server
as part of preparing and running MySQL replication, as described earlier in this
section.

System Variable server_uuid

Scope Global

Dynamic No

Type String

When starting, the MySQL server automatically obtains a UUID as follows:

1. Attempt to read and use the UUID written in the file data_dir/auto.cnf (where data_dir is the
server's data directory).

2. If data_dir/auto.cnf is not found, generate a new UUID and save it to this file, creating the file if
necessary.

The auto.cnf file has a format similar to that used for my.cnf or my.ini files. In MySQL 5.7, auto.cnf
has only a single [auto] section containing a single server_uuid setting and value; the file's contents
appear similar to what is shown here:

[auto]
server_uuid=8a94f357-aab4-11df-86ab-c80aa9429562

Important

The auto.cnf file is automatically generated; do not attempt to write or modify this
file.

2999

Replication and Binary Logging Options and Variables

When using MySQL replication, sources and replicas know each other's UUIDs. The value of a replica's
UUID can be seen in the output of SHOW SLAVE HOSTS. Once START SLAVE has been executed, the
value of the source's UUID is available on the replica in the output of SHOW SLAVE STATUS.

Note

Issuing a STOP SLAVE or RESET SLAVE statement does not reset the source's
UUID as used on the replica.

A server's server_uuid is also used in GTIDs for transactions originating on that server. For more
information, see Section 16.1.3, “Replication with Global Transaction Identifiers”.

When starting, the replication I/O thread generates an error and aborts if its source's UUID is equal to its
own unless the --replicate-same-server-id option has been set. In addition, the replication I/O
thread generates a warning if either of the following is true:

• No source having the expected server_uuid exists.

• The source's server_uuid has changed, although no CHANGE MASTER TO statement has ever been
executed.

16.1.6.1 Replication and Binary Logging Option and Variable Reference

The following two sections provide basic information about the MySQL command-line options and system
variables applicable to replication and the binary log.

Replication Options and Variables

The command-line options and system variables in the following list relate to replication source servers and
replicas. Section 16.1.6.2, “Replication Source Options and Variables” provides more detailed information
about options and variables relating to replication source servers. For more information about options and
variables relating to replicas, see Section 16.1.6.3, “Replica Server Options and Variables”.

• abort-slave-event-count: Option used by mysql-test for debugging and testing of replication.

• auto_increment_increment: AUTO_INCREMENT columns are incremented by this value.

• auto_increment_offset: Offset added to AUTO_INCREMENT columns.

• Com_change_master: Count of CHANGE REPLICATION SOURCE TO and CHANGE MASTER TO
statements.

• Com_show_master_status: Count of SHOW MASTER STATUS statements.

• Com_show_slave_hosts: Count of SHOW REPLICAS and SHOW SLAVE HOSTS statements.

• Com_show_slave_status: Count of SHOW REPLICA STATUS and SHOW SLAVE STATUS
statements.

• Com_slave_start: Count of START REPLICA and START SLAVE statements.

• Com_slave_stop: Count of STOP REPLICA and STOP SLAVE statements.

• disconnect-slave-event-count: Option used by mysql-test for debugging and testing of
replication.

• enforce_gtid_consistency: Prevents execution of statements that cannot be logged in
transactionally safe manner.

3000

Replication and Binary Logging Options and Variables

• expire_logs_days: Purge binary logs after this many days.

• gtid_executed: Global: All GTIDs in binary log (global) or current transaction (session). Read-only.

• gtid_executed_compression_period: Compress gtid_executed table each time this many
transactions have occurred. 0 means never compress this table. Applies only when binary logging is
disabled.

• gtid_mode: Controls whether GTID based logging is enabled and what type of transactions logs can
contain.

• gtid_next: Specifies GTID for subsequent transaction or transactions; see documentation for details.

• gtid_owned: Set of GTIDs owned by this client (session), or by all clients, together with thread ID of
owner (global). Read-only.

• gtid_purged: Set of all GTIDs that have been purged from binary log.

• init_slave: Statements that are executed when replica connects to source.

• log_bin_trust_function_creators: If equal to 0 (default), then when --log-bin is used, stored
function creation is allowed only to users having SUPER privilege and only if function created does not
break binary logging.

• log_builtin_as_identified_by_password: Whether to log CREATE/ALTER USER, GRANT in
backward-compatible fashion.

• log_statements_unsafe_for_binlog: Disables error 1592 warnings being written to error log.

• master-info-file: Location and name of file that remembers source and where I/O replication thread
is in source's binary log.

• master-retry-count: Number of tries replica makes to connect to source before giving up.

• master_info_repository: Whether to write connection metadata repository, containing source
information and replication I/O thread location in source's binary log, to file or table.

• max_relay_log_size: If nonzero, relay log is rotated automatically when its size exceeds this value. If
zero, size at which rotation occurs is determined by value of max_binlog_size.

• relay_log: Location and base name to use for relay logs.

• relay_log_basename: Complete path to relay log, including file name.

• relay_log_index: Location and name to use for file that keeps list of last relay logs.

• relay_log_info_file: File name for applier metadata repository in which replica records information
about relay logs.

• relay_log_info_repository: Whether to write location of replication SQL thread in relay logs to file
or table.

• relay_log_purge: Determines whether relay logs are purged.

• relay_log_recovery: Whether automatic recovery of relay log files from source at startup is enabled;
must be enabled for crash-safe replica.

• relay_log_space_limit: Maximum space to use for all relay logs.

• replicate-do-db: Tells replication SQL thread to restrict replication to specified database.

3001

Replication and Binary Logging Options and Variables

• replicate-do-table: Tells replication SQL thread to restrict replication to specified table.

• replicate-ignore-db: Tells replication SQL thread not to replicate to specified database.

• replicate-ignore-table: Tells replication SQL thread not to replicate to specified table.

• replicate-rewrite-db: Updates to database with different name from original.

• replicate-same-server-id: In replication, if enabled, do not skip events having our server id.

• replicate-wild-do-table: Tells replication SQL thread to restrict replication to tables that match
specified wildcard pattern.

• replicate-wild-ignore-table: Tells replication SQL thread not to replicate to tables that match
given wildcard pattern.

• replication_optimize_for_static_plugin_config: Shared locks for semisynchronous
replication.

• replication_sender_observe_commit_only: Limited callbacks for semisynchronous replication.

• report_host: Host name or IP of replica to be reported to source during replica registration.

• report_password: Arbitrary password which replica server should report to source; not same as
password for replication user account.

• report_port: Port for connecting to replica reported to source during replica registration.

• report_user: Arbitrary user name which replica server should report to source; not same as name
used for replication user account.

• Rpl_semi_sync_master_clients: Number of semisynchronous replicas.

• rpl_semi_sync_master_enabled: Whether semisynchronous replication is enabled on source.

• Rpl_semi_sync_master_net_avg_wait_time: Average time source has waited for replies from
replica.

• Rpl_semi_sync_master_net_wait_time: Total time source has waited for replies from replica.

• Rpl_semi_sync_master_net_waits: Total number of times source waited for replies from replica.

• Rpl_semi_sync_master_no_times: Number of times source turned off semisynchronous replication.

• Rpl_semi_sync_master_no_tx: Number of commits not acknowledged successfully.

• Rpl_semi_sync_master_status: Whether semisynchronous replication is operational on source.

• Rpl_semi_sync_master_timefunc_failures: Number of times source failed when calling time
functions.

• rpl_semi_sync_master_timeout: Number of milliseconds to wait for replica acknowledgment.

• rpl_semi_sync_master_trace_level: Semisynchronous replication debug trace level on source.

• Rpl_semi_sync_master_tx_avg_wait_time: Average time source waited for each transaction.

• Rpl_semi_sync_master_tx_wait_time: Total time source waited for transactions.

• Rpl_semi_sync_master_tx_waits: Total number of times source waited for transactions.

3002

Replication and Binary Logging Options and Variables

• rpl_semi_sync_master_wait_for_slave_count: Number of replica acknowledgments source
must receive per transaction before proceeding.

• rpl_semi_sync_master_wait_no_slave: Whether source waits for timeout even with no replicas.

• rpl_semi_sync_master_wait_point: Wait point for replica transaction receipt acknowledgment.

• Rpl_semi_sync_master_wait_pos_backtraverse: Total number of times source has waited for
event with binary coordinates lower than events waited for previously.

• Rpl_semi_sync_master_wait_sessions: Number of sessions currently waiting for replica replies.

• Rpl_semi_sync_master_yes_tx: Number of commits acknowledged successfully.

• rpl_semi_sync_slave_enabled: Whether semisynchronous replication is enabled on replica.

• Rpl_semi_sync_slave_status: Whether semisynchronous replication is operational on replica.

• rpl_semi_sync_slave_trace_level: Semisynchronous replication debug trace level on replica.

• rpl_stop_slave_timeout: Number of seconds that STOP REPLICA or STOP SLAVE waits before
timing out.

• server_uuid: Server's globally unique ID, automatically (re)generated at server start.

• show-slave-auth-info: Show user name and password in SHOW REPLICAS and SHOW SLAVE
HOSTS on this source.

• skip-slave-start: If set, replication is not autostarted when replica server starts.

• slave-skip-errors: Tells replication thread to continue replication when query returns error from
provided list.

• slave_checkpoint_group: Maximum number of transactions processed by multithreaded replica
before checkpoint operation is called to update progress status. Not supported by NDB Cluster.

• slave_checkpoint_period: Update progress status of multithreaded replica and flush relay log info
to disk after this number of milliseconds. Not supported by NDB Cluster.

• slave_compressed_protocol: Use compression of source/replica protocol.

• slave_exec_mode: Allows for switching replication thread between IDEMPOTENT mode (key and
some other errors suppressed) and STRICT mode; STRICT mode is default, except for NDB Cluster,
where IDEMPOTENT is always used.

• Slave_heartbeat_period: Replica's replication heartbeat interval, in seconds.

• Slave_last_heartbeat: Shows when latest heartbeat signal was received, in TIMESTAMP format.

• slave_load_tmpdir: Location where replica should put its temporary files when replicating LOAD
DATA statements.

• slave_max_allowed_packet: Maximum size, in bytes, of packet that can be sent from replication
source server to replica; overrides max_allowed_packet.

• slave_net_timeout: Number of seconds to wait for more data from source/replica connection before
aborting read.

• Slave_open_temp_tables: Number of temporary tables that replication SQL thread currently has
open.

3003

Replication and Binary Logging Options and Variables

• slave_parallel_type: Tells replica to use timestamp information (LOGICAL_CLOCK) or database
partioning (DATABASE) to parallelize transactions.

• slave_parallel_workers: Number of applier threads for executing replication transactions in
parallel; 0 or 1 disables replica multithreading. NDB Cluster: see documentation.

• slave_pending_jobs_size_max: Maximum size of replica worker queues holding events not yet
applied.

• slave_preserve_commit_order: Ensures that all commits by replica workers happen in same order
as on source to maintain consistency when using parallel applier threads.

• Slave_received_heartbeats: Number of heartbeats received by replica since previous reset.

• Slave_retried_transactions: Total number of times since startup that replication SQL thread has
retried transactions.

• Slave_rows_last_search_algorithm_used: Search algorithm most recently used by this replica
to locate rows for row-based replication (index, table, or hash scan).

• slave_rows_search_algorithms: Determines search algorithms used for replica update batching.
Any 2 or 3 from this list: INDEX_SEARCH, TABLE_SCAN, HASH_SCAN.

• Slave_running: State of this server as replica (replication I/O thread status).

• slave_transaction_retries: Number of times replication SQL thread retries transaction in case it
failed with deadlock or elapsed lock wait timeout, before giving up and stopping.

• slave_type_conversions: Controls type conversion mode on replica. Value is list of zero or
more elements from this list: ALL_LOSSY, ALL_NON_LOSSY. Set to empty string to disallow type
conversions between source and replica.

• sql_log_bin: Controls binary logging for current session.

• sql_slave_skip_counter: Number of events from source that replica should skip. Not compatible
with GTID replication.

• sync_master_info: Synchronize source information after every #th event.

• sync_relay_log: Synchronize relay log to disk after every #th event.

• sync_relay_log_info: Synchronize relay.info file to disk after every #th event.

• transaction_write_set_extraction: Defines algorithm used to hash writes extracted during
transaction.

For a listing of all command-line options, system variables, and status variables used with mysqld, see
Section 5.1.3, “Server Option, System Variable, and Status Variable Reference”.

Binary Logging Options and Variables

The command-line options and system variables in the following list relate to the binary log.
Section 16.1.6.4, “Binary Logging Options and Variables”, provides more detailed information about
options and variables relating to binary logging. For additional general information about the binary log, see
Section 5.4.4, “The Binary Log”.

• binlog-checksum: Enable or disable binary log checksums.

• binlog-do-db: Limits binary logging to specific databases.

3004

Replication and Binary Logging Options and Variables

• binlog-ignore-db: Tells source that updates to given database should not be written to binary log.

• binlog-row-event-max-size: Binary log max event size.

• Binlog_cache_disk_use: Number of transactions which used temporary file instead of binary log
cache.

• binlog_cache_size: Size of cache to hold SQL statements for binary log during transaction.

• Binlog_cache_use: Number of transactions that used temporary binary log cache.

• binlog_checksum: Enable or disable binary log checksums.

• binlog_direct_non_transactional_updates: Causes updates using statement format to
nontransactional engines to be written directly to binary log. See documentation before using.

• binlog_error_action: Controls what happens when server cannot write to binary log.

• binlog_format: Specifies format of binary log.

• binlog_group_commit_sync_delay: Sets number of microseconds to wait before synchronizing
transactions to disk.

• binlog_group_commit_sync_no_delay_count: Sets maximum number of transactions to wait for
before aborting current delay specified by binlog_group_commit_sync_delay.

• binlog_gtid_simple_recovery: Controls how binary logs are iterated during GTID recovery.

• binlog_max_flush_queue_time: How long to read transactions before flushing to binary log.

• binlog_order_commits: Whether to commit in same order as writes to binary log.

• binlog_row_image: Use full or minimal images when logging row changes.

• binlog_rows_query_log_events: When enabled, enables logging of rows query log events when
using row-based logging. Disabled by default..

• Binlog_stmt_cache_disk_use: Number of nontransactional statements that used temporary file
instead of binary log statement cache.

• binlog_stmt_cache_size: Size of cache to hold nontransactional statements for binary log during
transaction.

• Binlog_stmt_cache_use: Number of statements that used temporary binary log statement cache.

• binlog_transaction_dependency_history_size: Number of row hashes kept for looking up
transaction that last updated some row.

• binlog_transaction_dependency_tracking: Source of dependency information (commit
timestamps or transaction write sets) from which to assess which transactions can be executed in
parallel by replica's multithreaded applier.

• Com_show_binlog_events: Count of SHOW BINLOG EVENTS statements.

• Com_show_binlogs: Count of SHOW BINLOGS statements.

• log-bin: Base name for binary log files.

• log-bin-index: Name of binary log index file.

• log_bin: Whether binary log is enabled.

3005

Replication and Binary Logging Options and Variables

• log_bin_basename: Path and base name for binary log files.

• log_bin_use_v1_row_events: Whether server is using version 1 binary log row events.

• log_slave_updates: Whether replica should log updates performed by its replication SQL thread to
its own binary log.

• master_verify_checksum: Cause source to examine checksums when reading from binary log.

• max-binlog-dump-events: Option used by mysql-test for debugging and testing of replication.

• max_binlog_cache_size: Can be used to restrict total size in bytes used to cache multi-statement
transactions.

• max_binlog_size: Binary log is rotated automatically when size exceeds this value.

• max_binlog_stmt_cache_size: Can be used to restrict total size used to cache all nontransactional
statements during transaction.

• slave-sql-verify-checksum: Cause replica to examine checksums when reading from relay log.

• slave_sql_verify_checksum: Cause replica to examine checksums when reading from relay log.

• sporadic-binlog-dump-fail: Option used by mysql-test for debugging and testing of replication.

• sync_binlog: Synchronously flush binary log to disk after every #th event.

For a listing of all command-line options, system and status variables used with mysqld, see
Section 5.1.3, “Server Option, System Variable, and Status Variable Reference”.

16.1.6.2 Replication Source Options and Variables

This section describes the server options and system variables that you can use on replication source
servers. You can specify the options either on the command line or in an option file. You can specify
system variable values using SET.

On the source and each replica, you must set the server_id system variable to establish a unique
replication ID. For each server, you should pick a unique positive integer in the range from 1 to 232 − 1,
and each ID must be different from every other ID in use by any other source or replica in the replication
topology. Example: server-id=3.

For options used on the source for controlling binary logging, see Section 16.1.6.4, “Binary Logging
Options and Variables”.

Startup Options for Replication Source Servers

The following list describes startup options for controlling replication source servers. Replication-related
system variables are discussed later in this section.

• --show-slave-auth-info

Command-Line Format --show-slave-auth-info[={OFF|ON}]

Type Boolean

Default Value OFF

Display replica user names and passwords in the output of SHOW SLAVE HOSTS on the source server
for replicas started with the --report-user and --report-password options.

3006

Replication and Binary Logging Options and Variables

System Variables Used on Replication Source Servers

The following system variables are used to control sources:

• auto_increment_increment

Command-Line Format --auto-increment-increment=#

System Variable auto_increment_increment

Scope Global, Session

Dynamic Yes

Type Integer

Default Value 1

Minimum Value 1

Maximum Value 65535

auto_increment_increment and auto_increment_offset are intended for use with source-
to-source replication, and can be used to control the operation of AUTO_INCREMENT columns. Both
variables have global and session values, and each can assume an integer value between 1 and
65,535 inclusive. Setting the value of either of these two variables to 0 causes its value to be set
to 1 instead. Attempting to set the value of either of these two variables to an integer greater than
65,535 or less than 0 causes its value to be set to 65,535 instead. Attempting to set the value of
auto_increment_increment or auto_increment_offset to a noninteger value produces an
error, and the actual value of the variable remains unchanged.

Note

auto_increment_increment is also supported for use with NDB tables.

When Group Replication is started on a server, the value of auto_increment_increment is changed
to the value of group_replication_auto_increment_increment, which defaults to 7, and the
value of auto_increment_offset is changed to the server ID. The changes are reverted when Group
Replication is stopped. These changes are only made and reverted if auto_increment_increment
and auto_increment_offset each have their default value of 1. If their values have already been
modified from the default, Group Replication does not alter them.

auto_increment_increment and auto_increment_offset affect AUTO_INCREMENT column
behavior as follows:

• auto_increment_increment controls the interval between successive column values. For
example:

mysql> SHOW VARIABLES LIKE 'auto_inc%';
+--------------------------+-------+
| Variable_name | Value |
+--------------------------+-------+
| auto_increment_increment | 1 |
| auto_increment_offset | 1 |
+--------------------------+-------+
2 rows in set (0.00 sec)

mysql> CREATE TABLE autoinc1
 -> (col INT NOT NULL AUTO_INCREMENT PRIMARY KEY);
 Query OK, 0 rows affected (0.04 sec)

mysql> SET @@auto_increment_increment=10;

3007

Replication and Binary Logging Options and Variables

Query OK, 0 rows affected (0.00 sec)

mysql> SHOW VARIABLES LIKE 'auto_inc%';
+--------------------------+-------+
| Variable_name | Value |
+--------------------------+-------+
| auto_increment_increment | 10 |
| auto_increment_offset | 1 |
+--------------------------+-------+
2 rows in set (0.01 sec)

mysql> INSERT INTO autoinc1 VALUES (NULL), (NULL), (NULL), (NULL);
Query OK, 4 rows affected (0.00 sec)
Records: 4 Duplicates: 0 Warnings: 0

mysql> SELECT col FROM autoinc1;
+-----+
| col |
+-----+
| 1 |
| 11 |
| 21 |
| 31 |
+-----+
4 rows in set (0.00 sec)

• auto_increment_offset determines the starting point for the AUTO_INCREMENT column value.
Consider the following, assuming that these statements are executed during the same session as the
example given in the description for auto_increment_increment:

mysql> SET @@auto_increment_offset=5;
Query OK, 0 rows affected (0.00 sec)

mysql> SHOW VARIABLES LIKE 'auto_inc%';
+--------------------------+-------+
| Variable_name | Value |
+--------------------------+-------+
| auto_increment_increment | 10 |
| auto_increment_offset | 5 |
+--------------------------+-------+
2 rows in set (0.00 sec)

mysql> CREATE TABLE autoinc2
 -> (col INT NOT NULL AUTO_INCREMENT PRIMARY KEY);
Query OK, 0 rows affected (0.06 sec)

mysql> INSERT INTO autoinc2 VALUES (NULL), (NULL), (NULL), (NULL);
Query OK, 4 rows affected (0.00 sec)
Records: 4 Duplicates: 0 Warnings: 0

mysql> SELECT col FROM autoinc2;
+-----+
| col |
+-----+
| 5 |
| 15 |
| 25 |
| 35 |
+-----+

3008

Replication and Binary Logging Options and Variables

4 rows in set (0.02 sec)

When the value of auto_increment_offset is greater than that of
auto_increment_increment, the value of auto_increment_offset is ignored.

If either of these variables is changed, and then new rows inserted into a table containing
an AUTO_INCREMENT column, the results may seem counterintuitive because the series of
AUTO_INCREMENT values is calculated without regard to any values already present in the column, and
the next value inserted is the least value in the series that is greater than the maximum existing value in
the AUTO_INCREMENT column. The series is calculated like this:

auto_increment_offset + N × auto_increment_increment

where N is a positive integer value in the series [1, 2, 3, ...]. For example:

mysql> SHOW VARIABLES LIKE 'auto_inc%';
+--------------------------+-------+
| Variable_name | Value |
+--------------------------+-------+
| auto_increment_increment | 10 |
| auto_increment_offset | 5 |
+--------------------------+-------+
2 rows in set (0.00 sec)

mysql> SELECT col FROM autoinc1;
+-----+
| col |
+-----+
| 1 |
| 11 |
| 21 |
| 31 |
+-----+
4 rows in set (0.00 sec)

mysql> INSERT INTO autoinc1 VALUES (NULL), (NULL), (NULL), (NULL);
Query OK, 4 rows affected (0.00 sec)
Records: 4 Duplicates: 0 Warnings: 0

mysql> SELECT col FROM autoinc1;
+-----+
| col |
+-----+
| 1 |
| 11 |
| 21 |
| 31 |
| 35 |
| 45 |
| 55 |
| 65 |
+-----+
8 rows in set (0.00 sec)

The values shown for auto_increment_increment and auto_increment_offset generate the
series 5 + N × 10, that is, [5, 15, 25, 35, 45, ...]. The highest value present in the col column prior to the
INSERT is 31, and the next available value in the AUTO_INCREMENT series is 35, so the inserted values
for col begin at that point and the results are as shown for the SELECT query.

It is not possible to restrict the effects of these two variables to a single table; these variables control the
behavior of all AUTO_INCREMENT columns in all tables on the MySQL server. If the global value of either
variable is set, its effects persist until the global value is changed or overridden by setting the session

3009

Replication and Binary Logging Options and Variables

value, or until mysqld is restarted. If the local value is set, the new value affects AUTO_INCREMENT
columns for all tables into which new rows are inserted by the current user for the duration of the
session, unless the values are changed during that session.

The default value of auto_increment_increment is 1. See Section 16.4.1.1, “Replication and
AUTO_INCREMENT”.

• auto_increment_offset

Command-Line Format --auto-increment-offset=#

System Variable auto_increment_offset

Scope Global, Session

Dynamic Yes

Type Integer

Default Value 1

Minimum Value 1

Maximum Value 65535

This variable has a default value of 1. If it is left with its default value, and Group Replication is
started on the server, it is changed to the server ID. For more information, see the description for
auto_increment_increment.

Note

auto_increment_offset is also supported for use with NDB tables.

• rpl_semi_sync_master_enabled

Command-Line Format --rpl-semi-sync-master-enabled[={OFF|
ON}]

System Variable rpl_semi_sync_master_enabled

Scope Global

Dynamic Yes

Type Boolean

Default Value OFF

Controls whether semisynchronous replication is enabled on the source. To enable or disable the plugin,
set this variable to ON or OFF (or 1 or 0), respectively. The default is OFF.

This variable is available only if the source-side semisynchronous replication plugin is installed.

• rpl_semi_sync_master_timeout

Command-Line Format --rpl-semi-sync-master-timeout=#

System Variable rpl_semi_sync_master_timeout

Scope Global

Dynamic Yes

Type Integer3010

Replication and Binary Logging Options and Variables

Default Value 10000

Minimum Value 0

Maximum Value 4294967295

Unit milliseconds

A value in milliseconds that controls how long the source waits on a commit for acknowledgment from
a replica before timing out and reverting to asynchronous replication. The default value is 10000 (10
seconds).

This variable is available only if the source-side semisynchronous replication plugin is installed.

• rpl_semi_sync_master_trace_level

Command-Line Format --rpl-semi-sync-master-trace-level=#

System Variable rpl_semi_sync_master_trace_level

Scope Global

Dynamic Yes

Type Integer

Default Value 32

Minimum Value 0

Maximum Value 4294967295

The semisynchronous replication debug trace level on the source. Four levels are defined:

• 1 = general level (for example, time function failures)

• 16 = detail level (more verbose information)

• 32 = net wait level (more information about network waits)

• 64 = function level (information about function entry and exit)

This variable is available only if the source-side semisynchronous replication plugin is installed.

• rpl_semi_sync_master_wait_for_slave_count

Command-Line Format --rpl-semi-sync-master-wait-for-
slave-count=#

System Variable rpl_semi_sync_master_wait_for_slave_count

Scope Global

Dynamic Yes

Type Integer

Default Value 1

Minimum Value 1

Maximum Value 65535

The number of replica acknowledgments the source must receive per transaction before proceeding.
By default rpl_semi_sync_master_wait_for_slave_count is 1, meaning that semisynchronous

3011

Replication and Binary Logging Options and Variables

replication proceeds after receiving a single replica acknowledgment. Performance is best for small
values of this variable.

For example, if rpl_semi_sync_master_wait_for_slave_count is 2, then 2 replicas
must acknowledge receipt of the transaction before the timeout period configured by
rpl_semi_sync_master_timeout for semisynchronous replication to proceed. If fewer replicas
acknowledge receipt of the transaction during the timeout period, the source reverts to normal
replication.

Note

This behavior also depends on rpl_semi_sync_master_wait_no_slave

This variable is available only if the source-side semisynchronous replication plugin is installed.

• rpl_semi_sync_master_wait_no_slave

Command-Line Format --rpl-semi-sync-master-wait-no-
slave[={OFF|ON}]

System Variable rpl_semi_sync_master_wait_no_slave

Scope Global

Dynamic Yes

Type Boolean

Default Value ON

Controls whether the source waits for the timeout period configured by
rpl_semi_sync_master_timeout to expire, even if the replica count drops to less than the number
of replicas configured by rpl_semi_sync_master_wait_for_slave_count during the timeout
period.

When the value of rpl_semi_sync_master_wait_no_slave is ON (the default), it is permissible
for the replica count to drop to less than rpl_semi_sync_master_wait_for_slave_count during
the timeout period. As long as enough replicas acknowledge the transaction before the timeout period
expires, semisynchronous replication continues.

When the value of rpl_semi_sync_master_wait_no_slave is OFF, if the replica count drops to
less than the number configured in rpl_semi_sync_master_wait_for_slave_count at any time
during the timeout period configured by rpl_semi_sync_master_timeout, the source reverts to
normal replication.

This variable is available only if the source-side semisynchronous replication plugin is installed.

• rpl_semi_sync_master_wait_point

Command-Line Format --rpl-semi-sync-master-wait-
point=value

System Variable rpl_semi_sync_master_wait_point

Scope Global

Dynamic Yes

Type Enumeration

Default Value AFTER_SYNC

3012

Replication and Binary Logging Options and Variables

Valid Values AFTER_SYNC

AFTER_COMMIT

This variable controls the point at which a semisynchronous source waits for replica acknowledgment of
transaction receipt before returning a status to the client that committed the transaction. These values
are permitted:

• AFTER_SYNC (the default): The source writes each transaction to its binary log and the replica, and
syncs the binary log to disk. The source waits for replica acknowledgment of transaction receipt after
the sync. Upon receiving acknowledgment, the source commits the transaction to the storage engine
and returns a result to the client, which then can proceed.

• AFTER_COMMIT: The source writes each transaction to its binary log and the replica, syncs the binary
log, and commits the transaction to the storage engine. The source waits for replica acknowledgment
of transaction receipt after the commit. Upon receiving acknowledgment, the source returns a result to
the client, which then can proceed.

The replication characteristics of these settings differ as follows:

• With AFTER_SYNC, all clients see the committed transaction at the same time: After it has been
acknowledged by the replica and committed to the storage engine on the source. Thus, all clients see
the same data on the source.

In the event of source failure, all transactions committed on the source have been replicated to the
replica (saved to its relay log). An unexpected exit of the source and failover to the replica is lossless
because the replica is up to date. Note, however, that the source cannot be restarted in this scenario
and must be discarded, because its binary log might contain uncommitted transactions that would
cause a conflict with the replica when externalized after binary log recovery.

• With AFTER_COMMIT, the client issuing the transaction gets a return status only after the server
commits to the storage engine and receives replica acknowledgment. After the commit and before
replica acknowledgment, other clients can see the committed transaction before the committing client.

If something goes wrong such that the replica does not process the transaction, then in the event of
an unexpected source exit and failover to the replica, it is possible for such clients to see a loss of data
relative to what they saw on the source.

This variable is available only if the source-side semisynchronous replication plugin is installed.

rpl_semi_sync_master_wait_point was added in MySQL 5.7.2. For older versions,
semisynchronous source behavior is equivalent to a setting of AFTER_COMMIT.

This change introduces a version compatibility constraint because it increments the semisynchronous
interface version: Servers for MySQL 5.7.2 and up do not work with semisynchronous replication plugins
from older versions, nor do servers from older versions work with semisynchronous replication plugins
for MySQL 5.7.2 and up.

16.1.6.3 Replica Server Options and Variables

This section explains the server options and system variables that apply to replicas and contains the
following:

• Startup Options for Replicas

• Options for Logging Replica Status to Tables

3013

Replication and Binary Logging Options and Variables

• System Variables Used on Replicas

Specify the options either on the command line or in an option file. Many of the options can be set while the
server is running by using the CHANGE MASTER TO statement. Specify system variable values using SET.

Server ID. On the source and each replica, you must set the server_id system variable to establish
a unique replication ID in the range from 1 to 232 − 1. “Unique” means that each ID must be different from
every other ID in use by any other source or replica in the replication topology. Example my.cnf file:

[mysqld]
server-id=3

Startup Options for Replicas

This section explains startup options for controlling replica servers. Many of these options can be set while
the server is running by using the CHANGE MASTER TO statement. Others, such as the --replicate-*
options, can be set only when the replica server starts. Replication-related system variables are discussed
later in this section.

• --log-warnings[=level]

Command-Line Format --log-warnings[=#]

Deprecated Yes

System Variable log_warnings

Scope Global

Dynamic Yes

Type Integer

Default Value 2

Minimum Value 0

Maximum Value (64-bit platforms) 18446744073709551615

Maximum Value (32-bit platforms) 4294967295

Note

The log_error_verbosity system variable is preferred over, and should
be used instead of, the --log-warnings option or log_warnings system
variable. For more information, see the descriptions of log_error_verbosity
and log_warnings. The --log-warnings command-line option and
log_warnings system variable are deprecated; expect them to be removed in a
future MySQL release.

Causes the server to record more messages to the error log about what it is doing. With respect
to replication, the server generates warnings that it succeeded in reconnecting after a network or
connection failure, and provides information about how each replication thread started. This variable
is set to 2 by default. To disable it, set it to 0. The server logs messages about statements that are
unsafe for statement-based logging if the value is greater than 0. Aborted connections and access-
denied errors for new connection attempts are logged if the value is greater than 1. See Section B.3.2.9,
“Communication Errors and Aborted Connections”.

Note

The effects of this option are not limited to replication. It affects diagnostic
messages across a spectrum of server activities.

3014

Replication and Binary Logging Options and Variables

• --master-info-file=file_name

Command-Line Format --master-info-file=file_name

Type File name

Default Value master.info

The name to use for the file in which the replica records information about the source. The default name
is master.info in the data directory. For information about the format of this file, see Section 16.2.4.2,
“Replication Metadata Repositories”.

• --master-retry-count=count

Command-Line Format --master-retry-count=#

Deprecated Yes

Type Integer

Default Value 86400

Minimum Value 0

Maximum Value (64-bit platforms) 18446744073709551615

Maximum Value (32-bit platforms) 4294967295

The number of times that the replica tries to reconnect to the source before giving up. The default
value is 86400 times. A value of 0 means “infinite”, and the replica attempts to connect forever.
Reconnection attempts are triggered when the replica reaches its connection timeout (specified by the
slave_net_timeout system variable) without receiving data or a heartbeat signal from the source.
Reconnection is attempted at intervals set by the MASTER_CONNECT_RETRY option of the CHANGE
MASTER TO statement (which defaults to every 60 seconds).

This option is deprecated; expect it to be removed in a future MySQL release. Use the
MASTER_RETRY_COUNT option of the CHANGE MASTER TO statement instead.

• --max-relay-log-size=size

Command-Line Format --max-relay-log-size=#

System Variable max_relay_log_size

Scope Global

Dynamic Yes

Type Integer

Default Value 0

Minimum Value 0

Maximum Value 1073741824

Unit bytes

Block Size 4096

The size at which the server rotates relay log files automatically. If this value is nonzero, the relay log is
rotated automatically when its size exceeds this value. If this value is zero (the default), the size at which
relay log rotation occurs is determined by the value of max_binlog_size. For more information, see
Section 16.2.4.1, “The Relay Log”.

3015

Replication and Binary Logging Options and Variables

• --relay-log-purge={0|1}

Command-Line Format --relay-log-purge[={OFF|ON}]

System Variable relay_log_purge

Scope Global

Dynamic Yes

Type Boolean

Default Value ON

Disable or enable automatic purging of relay logs as soon as they are no longer needed. The default
value is 1 (enabled). This is a global variable that can be changed dynamically with SET GLOBAL
relay_log_purge = N. Disabling purging of relay logs when enabling the --relay-log-recovery
option puts data consistency at risk.

• --relay-log-space-limit=size

Command-Line Format --relay-log-space-limit=#

System Variable relay_log_space_limit

Scope Global

Dynamic No

Type Integer

Default Value 0

Minimum Value 0

Maximum Value 18446744073709551615

Unit bytes

This option places an upper limit on the total size in bytes of all relay logs on the replica. A value of 0
means “no limit”. This is useful for a replica server host that has limited disk space. When the limit is
reached, the replication I/O thread stops reading binary log events from the source until the replication
SQL thread has caught up and deleted some unused relay logs. Note that this limit is not absolute:
There are cases where the SQL thread needs more events before it can delete relay logs. In that case,
the I/O thread exceeds the limit until it becomes possible for the SQL thread to delete some relay logs
because not doing so would cause a deadlock. You should not set --relay-log-space-limit to
less than twice the value of --max-relay-log-size (or --max-binlog-size if --max-relay-
log-size is 0). In that case, there is a chance that the I/O thread waits for free space because --
relay-log-space-limit is exceeded, but the SQL thread has no relay log to purge and is unable to
satisfy the I/O thread. This forces the I/O thread to ignore --relay-log-space-limit temporarily.

• --replicate-do-db=db_name

Command-Line Format --replicate-do-db=name

3016

Replication and Binary Logging Options and Variables

Type String

Creates a replication filter using the name of a database. Such filters can also be created using CHANGE
REPLICATION FILTER REPLICATE_DO_DB. The precise effect of this filtering depends on whether
statement-based or row-based replication is in use, and are described in the next several paragraphs.

Important

Replication filters cannot be used on a MySQL server instance that is configured
for Group Replication, because filtering transactions on some servers would
make the group unable to reach agreement on a consistent state.

Statement-based replication. Tell the replication SQL thread to restrict replication to statements
where the default database (that is, the one selected by USE) is db_name. To specify more than one
database, use this option multiple times, once for each database; however, doing so does not replicate
cross-database statements such as UPDATE some_db.some_table SET foo='bar' while a
different database (or no database) is selected.

Warning

To specify multiple databases you must use multiple instances of this option.
Because database names can contain commas, if you supply a comma
separated list then the list is treated as the name of a single database.

An example of what does not work as you might expect when using statement-based replication: If the
replica is started with --replicate-do-db=sales and you issue the following statements on the
source, the UPDATE statement is not replicated:

USE prices;
UPDATE sales.january SET amount=amount+1000;

The main reason for this “check just the default database” behavior is that it is difficult from the statement
alone to know whether it should be replicated (for example, if you are using multiple-table DELETE
statements or multiple-table UPDATE statements that act across multiple databases). It is also faster to
check only the default database rather than all databases if there is no need.

Row-based replication. Tells the replication SQL thread to restrict replication to database db_name.
Only tables belonging to db_name are changed; the current database has no effect on this. Suppose
that the replica is started with --replicate-do-db=sales and row-based replication is in effect, and
then the following statements are run on the source:

USE prices;
UPDATE sales.february SET amount=amount+100;

The february table in the sales database on the replica is changed in accordance with the UPDATE
statement; this occurs whether or not the USE statement was issued. However, issuing the following
statements on the source has no effect on the replica when using row-based replication and --
replicate-do-db=sales:

USE prices;
UPDATE prices.march SET amount=amount-25;

Even if the statement USE prices were changed to USE sales, the UPDATE statement's effects would
still not be replicated.

Another important difference in how --replicate-do-db is handled in statement-based replication
as opposed to row-based replication occurs with regard to statements that refer to multiple databases.

3017

Replication and Binary Logging Options and Variables

Suppose that the replica is started with --replicate-do-db=db1, and the following statements are
executed on the source:

USE db1;
UPDATE db1.table1, db2.table2 SET db1.table1.col1 = 10, db2.table2.col2 = 20;

If you are using statement-based replication, then both tables are updated on the replica. However,
when using row-based replication, only table1 is affected on the replica; since table2 is in a different
database, table2 on the replica is not changed by the UPDATE. Now suppose that, instead of the USE
db1 statement, a USE db4 statement had been used:

USE db4;
UPDATE db1.table1, db2.table2 SET db1.table1.col1 = 10, db2.table2.col2 = 20;

In this case, the UPDATE statement would have no effect on the replica when using statement-based
replication. However, if you are using row-based replication, the UPDATE would change table1 on the
replica, but not table2—in other words, only tables in the database named by --replicate-do-db
are changed, and the choice of default database has no effect on this behavior.

If you need cross-database updates to work, use --replicate-wild-do-table=db_name.%
instead. See Section 16.2.5, “How Servers Evaluate Replication Filtering Rules”.

Note

This option affects replication in the same manner that --binlog-do-db affects
binary logging, and the effects of the replication format on how --replicate-
do-db affects replication behavior are the same as those of the logging format on
the behavior of --binlog-do-db.

This option has no effect on BEGIN, COMMIT, or ROLLBACK statements.

• --replicate-ignore-db=db_name

Command-Line Format --replicate-ignore-db=name

Type String

Creates a replication filter using the name of a database. Such filters can also be created using CHANGE
REPLICATION FILTER REPLICATE_IGNORE_DB. As with --replicate-do-db, the precise effect of

3018

Replication and Binary Logging Options and Variables

this filtering depends on whether statement-based or row-based replication is in use, and are described
in the next several paragraphs.

Important

Replication filters cannot be used on a MySQL server instance that is configured
for Group Replication, because filtering transactions on some servers would
make the group unable to reach agreement on a consistent state.

Statement-based replication. Tells the replication SQL thread not to replicate any statement where
the default database (that is, the one selected by USE) is db_name.

Row-based replication. Tells the replication SQL thread not to update any tables in the database
db_name. The default database has no effect.

When using statement-based replication, the following example does not work as you might expect.
Suppose that the replica is started with --replicate-ignore-db=sales and you issue the following
statements on the source:

USE prices;
UPDATE sales.january SET amount=amount+1000;

The UPDATE statement is replicated in such a case because --replicate-ignore-db applies
only to the default database (determined by the USE statement). Because the sales database was
specified explicitly in the statement, the statement has not been filtered. However, when using row-
based replication, the UPDATE statement's effects are not propagated to the replica, and the replica's
copy of the sales.january table is unchanged; in this instance, --replicate-ignore-db=sales
causes all changes made to tables in the source's copy of the sales database to be ignored by the
replica.

To specify more than one database to ignore, use this option multiple times, once for each database.
Because database names can contain commas, if you supply a comma separated list then the list is
treated as the name of a single database.

You should not use this option if you are using cross-database updates and you do not want these
updates to be replicated. See Section 16.2.5, “How Servers Evaluate Replication Filtering Rules”.

If you need cross-database updates to work, use --replicate-wild-ignore-table=db_name.%
instead. See Section 16.2.5, “How Servers Evaluate Replication Filtering Rules”.

Note

This option affects replication in the same manner that --binlog-ignore-
db affects binary logging, and the effects of the replication format on how --
replicate-ignore-db affects replication behavior are the same as those of
the logging format on the behavior of --binlog-ignore-db.

This option has no effect on BEGIN, COMMIT, or ROLLBACK statements.

• --replicate-do-table=db_name.tbl_name

Command-Line Format --replicate-do-table=name

Type String

Creates a replication filter by telling the replication SQL thread to restrict replication to a given table.
To specify more than one table, use this option multiple times, once for each table. This works for both3019

Replication and Binary Logging Options and Variables

cross-database updates and default database updates, in contrast to --replicate-do-db. See
Section 16.2.5, “How Servers Evaluate Replication Filtering Rules”. You can also create such a filter by
issuing a CHANGE REPLICATION FILTER REPLICATE_DO_TABLE statement.

Important

Replication filters cannot be used on a MySQL server instance that is configured
for Group Replication, because filtering transactions on some servers would
make the group unable to reach agreement on a consistent state.

This option affects only statements that apply to tables. It does not affect statements that apply only to
other database objects, such as stored routines. To filter statements operating on stored routines, use
one or more of the --replicate-*-db options.

• --replicate-ignore-table=db_name.tbl_name

Command-Line Format --replicate-ignore-table=name

Type String

Creates a replication filter by telling the replication SQL thread not to replicate any statement that
updates the specified table, even if any other tables might be updated by the same statement. To
specify more than one table to ignore, use this option multiple times, once for each table. This works
for cross-database updates, in contrast to --replicate-ignore-db. See Section 16.2.5, “How
Servers Evaluate Replication Filtering Rules”. You can also create such a filter by issuing a CHANGE
REPLICATION FILTER REPLICATE_IGNORE_TABLE statement.

Note

Replication filters cannot be used on a MySQL server instance that is configured
for Group Replication, because filtering transactions on some servers would
make the group unable to reach agreement on a consistent state.

This option affects only statements that apply to tables. It does not affect statements that apply only to
other database objects, such as stored routines. To filter statements operating on stored routines, use
one or more of the --replicate-*-db options.

• --replicate-rewrite-db=from_name->to_name

Command-Line Format --replicate-rewrite-db=old_name-
>new_name

Type String

Tells the replica to create a replication filter that translates the specified database to to_name if it was
from_name on the source. Only statements involving tables are affected, not statements such as
CREATE DATABASE, DROP DATABASE, and ALTER DATABASE.

To specify multiple rewrites, use this option multiple times. The server uses the first one with a
from_name value that matches. The database name translation is done before the --replicate-

3020

Replication and Binary Logging Options and Variables

* rules are tested. You can also create such a filter by issuing a CHANGE REPLICATION FILTER
REPLICATE_REWRITE_DB statement.

If you use the --replicate-rewrite-db option on the command line and the > character is special
to your command interpreter, quote the option value. For example:

$> mysqld --replicate-rewrite-db="olddb->newdb"

The effect of the --replicate-rewrite-db option differs depending on whether statement-based or
row-based binary logging format is used for the query. With statement-based format, DML statements
are translated based on the current database, as specified by the USE statement. With row-based
format, DML statements are translated based on the database where the modified table exists. DDL
statements are always filtered based on the current database, as specified by the USE statement,
regardless of the binary logging format.

To ensure that rewriting produces the expected results, particularly in combination with other replication
filtering options, follow these recommendations when you use the --replicate-rewrite-db option:

• Create the from_name and to_name databases manually on the source and the replica with different
names.

• If you use statement-based or mixed binary logging format, do not use cross-database queries, and do
not specify database names in queries. For both DDL and DML statements, rely on the USE statement
to specify the current database, and use only the table name in queries.

• If you use row-based binary logging format exclusively, for DDL statements, rely on the USE statement
to specify the current database, and use only the table name in queries. For DML statements, you can
use a fully qualified table name (db.table) if you want.

If these recommendations are followed, it is safe to use the --replicate-rewrite-db option in
combination with table-level replication filtering options such as --replicate-do-table.

Note

Global replication filters cannot be used on a MySQL server instance that is
configured for Group Replication, because filtering transactions on some servers
would make the group unable to reach agreement on a consistent state.

• --replicate-same-server-id

Command-Line Format --replicate-same-server-id[={OFF|ON}]

Type Boolean

Default Value OFF

To be used on replica servers. Usually you should use the default setting of 0, to prevent infinite loops
caused by circular replication. If set to 1, the replica does not skip events having its own server ID.
Normally, this is useful only in rare configurations. Cannot be set to 1 if log_slave_updates is
enabled. By default, the replication I/O thread does not write binary log events to the relay log if they
have the replica's server ID (this optimization helps save disk usage). If you want to use --replicate-
same-server-id, be sure to start the replica with this option before you make the replica read its own
events that you want the replication SQL thread to execute.

• --replicate-wild-do-table=db_name.tbl_name

Command-Line Format --replicate-wild-do-table=name 3021

Replication and Binary Logging Options and Variables

Type String

Creates a replication filter by telling the replication SQL thread to restrict replication to statements
where any of the updated tables match the specified database and table name patterns. Patterns
can contain the % and _ wildcard characters, which have the same meaning as for the LIKE pattern-
matching operator. To specify more than one table, use this option multiple times, once for each
table. This works for cross-database updates. See Section 16.2.5, “How Servers Evaluate Replication
Filtering Rules”. You can also create such a filter by issuing a CHANGE REPLICATION FILTER
REPLICATE_WILD_DO_TABLE statement.

Note

Replication filters cannot be used on a MySQL server instance that is configured
for Group Replication, because filtering transactions on some servers would
make the group unable to reach agreement on a consistent state.

This option applies to tables, views, and triggers. It does not apply to stored procedures and functions, or
events. To filter statements operating on the latter objects, use one or more of the --replicate-*-db
options.

As an example, --replicate-wild-do-table=foo%.bar% replicates only updates that use a table
where the database name starts with foo and the table name starts with bar.

If the table name pattern is %, it matches any table name and the option also applies to database-level
statements (CREATE DATABASE, DROP DATABASE, and ALTER DATABASE). For example, if you use
--replicate-wild-do-table=foo%.%, database-level statements are replicated if the database
name matches the pattern foo%.

Important

Table-level replication filters are only applied to tables that are explicitly
mentioned and operated on in the query. They do not apply to tables that are
implicitly updated by the query. For example, a GRANT statement, which updates
the mysql.user system table but does not mention that table, is not affected by
a filter that specifies mysql.% as the wildcard pattern.

To include literal wildcard characters in the database or table name patterns, escape them with a
backslash. For example, to replicate all tables of a database that is named my_own%db, but not replicate
tables from the my1ownAABCdb database, you should escape the _ and % characters like this: --
replicate-wild-do-table=my_own\%db. If you use the option on the command line, you might
need to double the backslashes or quote the option value, depending on your command interpreter. For
example, with the bash shell, you would need to type --replicate-wild-do-table=my_own\\
%db.

• --replicate-wild-ignore-table=db_name.tbl_name

Command-Line Format --replicate-wild-ignore-table=name

Type String

Creates a replication filter which keeps the replication SQL thread from replicating a statement in which
any table matches the given wildcard pattern. To specify more than one table to ignore, use this option
multiple times, once for each table. This works for cross-database updates. See Section 16.2.5, “How

3022

Replication and Binary Logging Options and Variables

Servers Evaluate Replication Filtering Rules”. You can also create such a filter by issuing a CHANGE
REPLICATION FILTER REPLICATE_WILD_IGNORE_TABLE statement.

Important

Replication filters cannot be used on a MySQL server instance that is configured
for Group Replication, because filtering transactions on some servers would
make the group unable to reach agreement on a consistent state.

As an example, --replicate-wild-ignore-table=foo%.bar% does not replicate updates that
use a table where the database name starts with foo and the table name starts with bar.

For information about how matching works, see the description of the --replicate-wild-do-table
option. The rules for including literal wildcard characters in the option value are the same as for --
replicate-wild-ignore-table as well.

Important

Table-level replication filters are only applied to tables that are explicitly
mentioned and operated on in the query. They do not apply to tables that are
implicitly updated by the query. For example, a GRANT statement, which updates
the mysql.user system table but does not mention that table, is not affected by
a filter that specifies mysql.% as the wildcard pattern.

If you need to filter out GRANT statements or other administrative statements, a possible workaround is
to use the --replicate-ignore-db filter. This filter operates on the default database that is currently
in effect, as determined by the USE statement. You can therefore create a filter to ignore statements for
a database that is not replicated, then issue the USE statement to switch the default database to that one
immediately before issuing any administrative statements that you want to ignore. In the administrative
statement, name the actual database where the statement is applied.

For example, if --replicate-ignore-db=nonreplicated is configured on the replica server,
the following sequence of statements causes the GRANT statement to be ignored, because the default
database nonreplicated is in effect:

USE nonreplicated;
GRANT SELECT, INSERT ON replicated.t1 TO 'someuser'@'somehost';

• --skip-slave-start

Command-Line Format --skip-slave-start[={OFF|ON}]

System Variable skip_slave_start

Scope Global

Dynamic No

Type Boolean

Default Value OFF

Tells the replica server not to start the replication threads when the server starts. To start the threads
later, use a START SLAVE statement.

• --slave-skip-errors=[err_code1,err_code2,...|all|ddl_exist_errors]

Command-Line Format --slave-skip-errors=name

System Variable slave_skip_errors

3023

Replication and Binary Logging Options and Variables

Scope Global

Dynamic No

Type String

Default Value OFF

Valid Values OFF

[list of error codes]

all

ddl_exist_errors

Normally, replication stops when an error occurs on the replica, which gives you the opportunity to
resolve the inconsistency in the data manually. This option causes the replication SQL thread to continue
replication when a statement returns any of the errors listed in the option value.

Do not use this option unless you fully understand why you are getting errors. If there are no bugs in
your replication setup and client programs, and no bugs in MySQL itself, an error that stops replication
should never occur. Indiscriminate use of this option results in replicas becoming hopelessly out of
synchrony with the source, with you having no idea why this has occurred.

For error codes, you should use the numbers provided by the error message in the replica's error log
and in the output of SHOW SLAVE STATUS. Appendix B, Error Messages and Common Problems, lists
server error codes.

The shorthand value ddl_exist_errors is equivalent to the error code list
1007,1008,1050,1051,1054,1060,1061,1068,1091,1146.

You can also (but should not) use the very nonrecommended value of all to cause the replica to ignore
all error messages and keeps going regardless of what happens. Needless to say, if you use all, there
are no guarantees regarding the integrity of your data. Please do not complain (or file bug reports) in this
case if the replica's data is not anywhere close to what it is on the source. You have been warned.

This option does not work in the same way when replicating between NDB Clusters, due to the internal
NDB mechanism for checking epoch sequence numbers; as soon as NDB detects an epoch number that
is missing or otherwise out of sequence, it immediately stops the replica applier thread.

Examples:

--slave-skip-errors=1062,1053
--slave-skip-errors=all
--slave-skip-errors=ddl_exist_errors

• --slave-sql-verify-checksum={0|1}

Command-Line Format --slave-sql-verify-checksum[={OFF|
ON}]

Type Boolean

Default Value ON

When this option is enabled, the replica examines checksums read from the relay log,. In the event of a
mismatch, the replica stops with an error.

3024

Replication and Binary Logging Options and Variables

The following options are used internally by the MySQL test suite for replication testing and debugging.
They are not intended for use in a production setting.

• --abort-slave-event-count

Command-Line Format --abort-slave-event-count=#

Type Integer

Default Value 0

Minimum Value 0

When this option is set to some positive integer value other than 0 (the default) it affects replication
behavior as follows: After the replication SQL thread has started, value log events are permitted to be
executed; after that, the replication SQL thread does not receive any more events, just as if the network
connection from the source were cut. The replication SQL thread continues to run, and the output from
SHOW SLAVE STATUS displays Yes in both the Slave_IO_Running and the Slave_SQL_Running
columns, but no further events are read from the relay log.

This option is used internally by the MySQL test suite for replication testing and debugging. It is not
intended for use in a production setting.

• --disconnect-slave-event-count

Command-Line Format --disconnect-slave-event-count=#

Type Integer

Default Value 0

This option is used internally by the MySQL test suite for replication testing and debugging. It is not
intended for use in a production setting.

Options for Logging Replica Status to Tables

MySQL 5.7 supports logging of replication metadata to tables rather than files. Writing of the replica's
connection metadata repository and applier metadata repository can be configured separately using these
two system variables:

• master_info_repository

• relay_log_info_repository

For information about these variables, see Section 16.1.6.3, “Replica Server Options and Variables”.

These variables can be used to make a replica resilient to unexpected halts. See Section 16.3.2, “Handling
an Unexpected Halt of a Replica”, for more information.

The info log tables and their contents are considered local to a given MySQL Server. They are not
replicated, and changes to them are not written to the binary log.

For more information, see Section 16.2.4, “Relay Log and Replication Metadata Repositories”.

System Variables Used on Replicas

The following list describes system variables for controlling replica servers. They can be set at server
startup and some of them can be changed at runtime using SET. Server options used with replicas are
listed earlier in this section.

• init_slave

3025

Replication and Binary Logging Options and Variables

Command-Line Format --init-slave=name

System Variable init_slave

Scope Global

Dynamic Yes

Type String

This variable is similar to init_connect, but is a string to be executed by a replica server each
time the replication SQL thread starts. The format of the string is the same as for the init_connect
variable. The setting of this variable takes effect for subsequent START SLAVE statements.

Note

The replication SQL thread sends an acknowledgment to the client before it
executes init_slave. Therefore, it is not guaranteed that init_slave has
been executed when START SLAVE returns. See Section 13.4.2.5, “START
SLAVE Statement”, for more information.

• log_slow_slave_statements

Command-Line Format --log-slow-slave-statements[={OFF|
ON}]

System Variable log_slow_slave_statements

Scope Global

Dynamic Yes

Type Boolean

Default Value OFF

When the slow query log is enabled, this variable enables logging for queries that have taken more
than long_query_time seconds to execute on the replica. Note that if row-based replication is in use
(binlog_format=ROW), log_slow_slave_statements has no effect. Queries are only added to
the replica's slow query log when they are logged in statement format in the binary log, that is, when
binlog_format=STATEMENT is set, or when binlog_format=MIXED is set and the statement is
logged in statement format. Slow queries that are logged in row format when binlog_format=MIXED
is set, or that are logged when binlog_format=ROW is set, are not added to the replica's slow query
log, even if log_slow_slave_statements is enabled.

Setting log_slow_slave_statements has no immediate effect. The state of the variable applies
on all subsequent START SLAVE statements. Also note that the global setting for long_query_time
applies for the lifetime of the SQL thread. If you change that setting, you must stop and restart the
replication SQL thread to implement the change there (for example, by issuing STOP SLAVE and START
SLAVE statements with the SQL_THREAD option).

• master_info_repository

Command-Line Format --master-info-repository={FILE|TABLE}

System Variable master_info_repository

Scope Global

Dynamic Yes

Type String

3026

Replication and Binary Logging Options and Variables

Default Value FILE

Valid Values FILE

TABLE

The setting of this variable determines whether the replica records metadata about the source,
consisting of status and connection information, to an InnoDB table in the mysql system database,
or as a file in the data directory. For more information on the connection metadata repository, see
Section 16.2.4, “Relay Log and Replication Metadata Repositories”.

The default setting is FILE. As a file, the replica's connection metadata repository is named
master.info by default. You can change this name using the --master-info-file option.

The alternative setting is TABLE. As an InnoDB table, the replica's connection metadata repository is
named mysql.slave_master_info. The TABLE setting is required when multiple replication channels
are configured.

This variable must be set to TABLE before configuring multiple replication channels. If you are using
multiple replication channels, you cannot set the value back to FILE.

The setting for the location of the connection metadata repository has a direct influence on the effect had
by the setting of the sync_master_info system variable. You can change the setting only when no
replication threads are executing.

• max_relay_log_size

Command-Line Format --max-relay-log-size=#

System Variable max_relay_log_size

Scope Global

Dynamic Yes

Type Integer

Default Value 0

Minimum Value 0

Maximum Value 1073741824

Unit bytes

Block Size 4096

If a write by a replica to its relay log causes the current log file size to exceed the value of this
variable, the replica rotates the relay logs (closes the current file and opens the next one). If
max_relay_log_size is 0, the server uses max_binlog_size for both the binary log and the relay
log. If max_relay_log_size is greater than 0, it constrains the size of the relay log, which enables you
to have different sizes for the two logs. You must set max_relay_log_size to between 4096 bytes
and 1GB (inclusive), or to 0. The default value is 0. See Section 16.2.3, “Replication Threads”.

• relay_log

Command-Line Format --relay-log=file_name

System Variable relay_log

Scope Global

Dynamic No

3027

Replication and Binary Logging Options and Variables

Type File name

The base name for relay log files. For the default replication channel, the default base name for relay
logs is host_name-relay-bin. For non-default replication channels, the default base name for relay
logs is host_name-relay-bin-channel, where channel is the name of the replication channel
recorded in this relay log.

The server writes the file in the data directory unless the base name is given with a leading absolute path
name to specify a different directory. The server creates relay log files in sequence by adding a numeric
suffix to the base name.

Due to the manner in which MySQL parses server options, if you specify this variable at server startup,
you must supply a value; the default base name is used only if the option is not actually specified. If
you specify the relay_log system variable at server startup without specifying a value, unexpected
behavior is likely to result; this behavior depends on the other options used, the order in which they are
specified, and whether they are specified on the command line or in an option file. For more information
about how MySQL handles server options, see Section 4.2.2, “Specifying Program Options”.

If you specify this variable, the value specified is also used as the base name for the relay log index
file. You can override this behavior by specifying a different relay log index file base name using the
relay_log_index system variable.

When the server reads an entry from the index file, it checks whether the entry contains a relative path. If
it does, the relative part of the path is replaced with the absolute path set using the relay_log system
variable. An absolute path remains unchanged; in such a case, the index must be edited manually to
enable the new path or paths to be used.

You may find the relay_log system variable useful in performing the following tasks:

• Creating relay logs whose names are independent of host names.

• If you need to put the relay logs in some area other than the data directory because your relay logs
tend to be very large and you do not want to decrease max_relay_log_size.

• To increase speed by using load-balancing between disks.

You can obtain the relay log file name (and path) from the relay_log_basename system variable.

• relay_log_basename

System Variable relay_log_basename

Scope Global

Dynamic No

Type File name

Default Value datadir + '/' + hostname + '-relay-
bin'

Holds the base name and complete path to the relay log file. The maximum variable length is 256. This
variable is set by the server and is read only.

• relay_log_index

Command-Line Format --relay-log-index=file_name
3028

Replication and Binary Logging Options and Variables

System Variable relay_log_index

Scope Global

Dynamic No

Type File name

Default Value *host_name*-relay-bin.index

The name for the relay log index file. The maximum variable length is 256. For the default replication
channel, the default name is host_name-relay-bin.index. For non-default replication channels,
the default name is host_name-relay-bin-channel.index, where channel is the name of the
replication channel recorded in this relay log index.

The server writes the file in the data directory unless the name is given with a leading absolute path
name to specify a different directory. name.

Due to the manner in which MySQL parses server options, if you specify this variable at server startup,
you must supply a value; the default base name is used only if the option is not actually specified. If you
specify the relay_log_index system variable at server startup without specifying a value, unexpected
behavior is likely to result; this behavior depends on the other options used, the order in which they are
specified, and whether they are specified on the command line or in an option file. For more information
about how MySQL handles server options, see Section 4.2.2, “Specifying Program Options”.

• relay_log_info_file

Command-Line Format --relay-log-info-file=file_name

System Variable relay_log_info_file

Scope Global

Dynamic No

Type File name

Default Value relay-log.info

The name of the file in which the replica records information about the relay logs, when
relay_log_info_repository=FILE. If relay_log_info_repository=TABLE, it is the
file name that would be used in case the repository was changed to FILE). The default name is
relay-log.info in the data directory. For information about the applier metadata repository, see
Section 16.2.4.2, “Replication Metadata Repositories”.

• relay_log_info_repository

Command-Line Format --relay-log-info-repository=value

System Variable relay_log_info_repository

Scope Global

Dynamic Yes

Type String

Default Value FILE

Valid Values FILE

3029

Replication and Binary Logging Options and Variables

TABLE

The setting of this variable determines whether the replica server stores its applier metadata repository
as an InnoDB table in the mysql system database, or as a file in the data directory. For more
information on the applier metadata repository, see Section 16.2.4, “Relay Log and Replication Metadata
Repositories”.

The default setting is FILE. As a file, the replica's applier metadata repository is named relay-
log.info by default, and you can change this name using the relay_log_info_file system
variable.

With the setting TABLE, as an InnoDB table, the replica's applier metadata repository is named
mysql.slave_relay_log_info. The TABLE setting is required when multiple replication channels
are configured. The TABLE setting for the replica's applier metadata repository is also required to make
replication resilient to unexpected halts. See Section 16.3.2, “Handling an Unexpected Halt of a Replica”
for more information.

This variable must be set to TABLE before configuring multiple replication channels. If you are using
multiple replication channels then you cannot set the value back to FILE.

The setting for the location of the applier metadata repository has a direct influence on the effect had by
the setting of the sync_relay_log_info system variable. You can change the setting only when no
replication threads are executing.

• relay_log_purge

Command-Line Format --relay-log-purge[={OFF|ON}]

System Variable relay_log_purge

Scope Global

Dynamic Yes

Type Boolean

Default Value ON

Disables or enables automatic purging of relay log files as soon as they are not needed any more. The
default value is 1 (ON).

• relay_log_recovery

Command-Line Format --relay-log-recovery[={OFF|ON}]

System Variable relay_log_recovery

Scope Global

Dynamic No

Type Boolean

Default Value OFF

If enabled, this variable enables automatic relay log recovery immediately following server startup. The
recovery process creates a new relay log file, initializes the SQL thread position to this new relay log,

3030

Replication and Binary Logging Options and Variables

and initializes the I/O thread to the SQL thread position. Reading of the relay log from the source then
continues.

This global variable is read-only at runtime. Its value can be set with the --relay-log-recovery
option at replica server startup, which should be used following an unexpected halt of a replica to ensure
that no possibly corrupted relay logs are processed, and must be used in order to guarantee a crash-
safe replica. The default value is 0 (disabled). For information on the combination of settings on a
replica that is most resilient to unexpected halts, see Section 16.3.2, “Handling an Unexpected Halt of a
Replica”.

This variable also interacts with the relay_log_purge variable, which controls purging of logs when
they are no longer needed. Enabling relay_log_recovery when relay_log_purge is disabled
risks reading the relay log from files that were not purged, leading to data inconsistency.

For a multithreaded replica (where slave_parallel_workers is greater than 0), from MySQL
5.7.13, setting relay_log_recovery = ON automatically handles any inconsistencies and gaps
in the sequence of transactions that have been executed from the relay log. These gaps can occur
when file position based replication is in use. (For more details, see Section 16.4.1.32, “Replication and
Transaction Inconsistencies”.) The relay log recovery process deals with gaps using the same method
as the START SLAVE UNTIL SQL_AFTER_MTS_GAPS statement would. When the replica reaches a
consistent gap-free state, the relay log recovery process goes on to fetch further transactions from the
source beginning at the replication SQL thread position. In MySQL versions prior to MySQL 5.7.13, this
process was not automatic and required starting the server with relay_log_recovery=0, starting the
replica with START SLAVE UNTIL SQL_AFTER_MTS_GAPS to fix any transaction inconsistencies, and
then restarting the replica with relay_log_recovery=1. When GTID-based replication is in use, from
MySQL 5.7.28 a multithreaded replica checks first whether MASTER_AUTO_POSITION is set to ON, and
if it is, omits the step of calculating the transactions that should be skipped or not skipped, so that the old
relay logs are not required for the recovery process.

Note

This variable does not affect the following Group Replication channels:

• group_replication_applier

• group_replication_recovery

Any other channels running on a group are affected, such as a channel which is
replicating from an outside source or another group.

• relay_log_space_limit

Command-Line Format --relay-log-space-limit=#

System Variable relay_log_space_limit

Scope Global

Dynamic No

Type Integer

Default Value 0

Minimum Value 0

Maximum Value 18446744073709551615

3031

Replication and Binary Logging Options and Variables

Unit bytes

The maximum amount of space to use for all relay logs.

• replication_optimize_for_static_plugin_config

Command-Line Format --replication-optimize-for-static-
plugin-config[={OFF|ON}]

Introduced 5.7.33

System Variable replication_optimize_for_static_plugin_config

Scope Global

Dynamic Yes

Type Boolean

Default Value OFF

Use shared locks, and avoid unnecessary lock acquisitions, to improve performance for
semisynchronous replication. While this system variable is enabled, the semisynchronous replication
plugin cannot be uninstalled, so you must disable the system variable before the uninstall can complete.

This system variable can be enabled before or after installing the semisynchronous replication plugin,
and can be enabled while replication is running. Semisynchronous replication source servers can
also get performance benefits from enabling this system variable, because they use the same locking
mechanisms as the replicas.

replication_optimize_for_static_plugin_config can be enabled when Group Replication is
in use on a server. In that scenario, it might benefit performance when there is contention for locks due
to high workloads.

• replication_sender_observe_commit_only

Command-Line Format --replication-sender-observe-commit-
only[={OFF|ON}]

Introduced 5.7.33

System Variable replication_sender_observe_commit_only

Scope Global

Dynamic Yes

Type Boolean

Default Value OFF

Limit callbacks to improve performance for semisynchronous replication. This system variable can be
enabled before or after installing the semisynchronous replication plugin, and can be enabled while
replication is running. Semisynchronous replication source servers can also get performance benefits
from enabling this system variable, because they use the same locking mechanisms as the replicas.

• report_host

Command-Line Format --report-host=host_name

System Variable report_host

Scope Global3032

Replication and Binary Logging Options and Variables

Dynamic No

Type String

The host name or IP address of the replica to be reported to the source during replica registration. This
value appears in the output of SHOW SLAVE HOSTS on the source server. Leave the value unset if you
do not want the replica to register itself with the source.

Note

It is not sufficient for the source to simply read the IP address of the replica from
the TCP/IP socket after the replica connects. Due to NAT and other routing
issues, that IP may not be valid for connecting to the replica from the source or
other hosts.

• report_password

Command-Line Format --report-password=name

System Variable report_password

Scope Global

Dynamic No

Type String

The replication user account password of the replica to be reported to the source during replica
registration. This value appears in the output of SHOW SLAVE HOSTS on the source server if the source
was started with --show-slave-auth-info.

Although the name of this variable might imply otherwise, report_password is not connected to the
MySQL user privilege system and so is not necessarily (or even likely to be) the same as the password
for the MySQL replication user account.

• report_port

Command-Line Format --report-port=port_num

System Variable report_port

Scope Global

Dynamic No

Type Integer

Default Value [slave_port]

Minimum Value 0

Maximum Value 65535

The TCP/IP port number for connecting to the replica, to be reported to the source during replica
registration. Set this only if the replica is listening on a nondefault port or if you have a special tunnel
from the source or other clients to the replica. If you are not sure, do not use this option.

The default value for this option is the port number actually used by the replica. This is also the default
value displayed by SHOW SLAVE HOSTS.

3033

Replication and Binary Logging Options and Variables

• report_user

Command-Line Format --report-user=name

System Variable report_user

Scope Global

Dynamic No

Type String

The account user name of the replica to be reported to the source during replica registration. This value
appears in the output of SHOW SLAVE HOSTS on the source server if the source was started with --
show-slave-auth-info.

Although the name of this variable might imply otherwise, report_user is not connected to the MySQL
user privilege system and so is not necessarily (or even likely to be) the same as the name of the
MySQL replication user account.

• rpl_semi_sync_slave_enabled

Command-Line Format --rpl-semi-sync-slave-enabled[={OFF|
ON}]

System Variable rpl_semi_sync_slave_enabled

Scope Global

Dynamic Yes

Type Boolean

Default Value OFF

Controls whether semisynchronous replication is enabled on the replica. To enable or disable the plugin,
set this variable to ON or OFF (or 1 or 0), respectively. The default is OFF.

This variable is available only if the replica-side semisynchronous replication plugin is installed.

• rpl_semi_sync_slave_trace_level

Command-Line Format --rpl-semi-sync-slave-trace-level=#

System Variable rpl_semi_sync_slave_trace_level

Scope Global

Dynamic Yes

Type Integer

Default Value 32

Minimum Value 0

Maximum Value 4294967295

The semisynchronous replication debug trace level on the replica. See
rpl_semi_sync_master_trace_level for the permissible values.

This variable is available only if the replica-side semisynchronous replication plugin is installed.

3034

Replication and Binary Logging Options and Variables

• rpl_stop_slave_timeout

Command-Line Format --rpl-stop-slave-timeout=#

System Variable rpl_stop_slave_timeout

Scope Global

Dynamic Yes

Type Integer

Default Value 31536000

Minimum Value 2

Maximum Value 31536000

Unit seconds

You can control the length of time (in seconds) that STOP SLAVE waits before timing out by setting this
variable. This can be used to avoid deadlocks between STOP SLAVE and other SQL statements using
different client connections to the replica.

The maximum and default value of rpl_stop_slave_timeout is 31536000 seconds (1 year). The
minimum is 2 seconds. Changes to this variable take effect for subsequent STOP SLAVE statements.

This variable affects only the client that issues a STOP SLAVE statement. When the timeout is reached,
the issuing client returns an error message stating that the command execution is incomplete. The client
then stops waiting for the replication threads to stop, but the replication threads continue to try to stop,
and the STOP SLAVE instruction remains in effect. Once the replication threads are no longer busy, the
STOP SLAVE statement is executed and the replica stops.

• slave_checkpoint_group

Command-Line Format --slave-checkpoint-group=#

System Variable slave_checkpoint_group

Scope Global

Dynamic Yes

Type Integer

Default Value 512

Minimum Value 32

Maximum Value 524280

Block Size 8

Sets the maximum number of transactions that can be processed by a multithreaded replica before
a checkpoint operation is called to update its status as shown by SHOW SLAVE STATUS. Setting this

3035

Replication and Binary Logging Options and Variables

variable has no effect on replicas for which multithreading is not enabled. Setting this variable has no
immediate effect. The state of the variable applies on all subsequent START SLAVE commands.

Note

Multithreaded replicas are not currently supported by NDB Cluster, which silently
ignores the setting for this variable. See Section 21.7.3, “Known Issues in NDB
Cluster Replication”, for more information.

This variable works in combination with the slave_checkpoint_period system variable in such a
way that, when either limit is exceeded, the checkpoint is executed and the counters tracking both the
number of transactions and the time elapsed since the last checkpoint are reset.

The minimum allowed value for this variable is 32, unless the server was built using -DWITH_DEBUG, in
which case the minimum value is 1. The effective value is always a multiple of 8; you can set it to a value
that is not such a multiple, but the server rounds it down to the next lower multiple of 8 before storing the
value. (Exception: No such rounding is performed by the debug server.) Regardless of how the server
was built, the default value is 512, and the maximum allowed value is 524280.

• slave_checkpoint_period

Command-Line Format --slave-checkpoint-period=#

System Variable slave_checkpoint_period

Scope Global

Dynamic Yes

Type Integer

Default Value 300

Minimum Value 1

Maximum Value 4294967295

Unit milliseconds

Sets the maximum time (in milliseconds) that is allowed to pass before a checkpoint operation is called
to update the status of a multithreaded replica as shown by SHOW SLAVE STATUS. Setting this variable
has no effect on replicas for which multithreading is not enabled. Setting this variable takes effect for all
replication channels immediately, including running channels.

Note

Multithreaded replicas are not currently supported by NDB Cluster, which silently
ignores the setting for this variable. See Section 21.7.3, “Known Issues in NDB
Cluster Replication”, for more information.

This variable works in combination with the slave_checkpoint_group system variable in such a
way that, when either limit is exceeded, the checkpoint is executed and the counters tracking both the
number of transactions and the time elapsed since the last checkpoint are reset.

The minimum allowed value for this variable is 1, unless the server was built using -DWITH_DEBUG,
in which case the minimum value is 0. Regardless of how the server was built, the default value is 300
milliseconds, and the maximum possible value is 4294967295 milliseconds (approximately 49.7 days).

3036

Replication and Binary Logging Options and Variables

• slave_compressed_protocol

Command-Line Format --slave-compressed-protocol[={OFF|
ON}]

System Variable slave_compressed_protocol

Scope Global

Dynamic Yes

Type Boolean

Default Value OFF

Whether to use compression of the source/replica protocol if both source and replica support it. If
this variable is disabled (the default), connections are uncompressed. Changes to this variable take
effect on subsequent connection attempts; this includes after issuing a START SLAVE statement,
as well as reconnections made by a running replication I/O thread (for example, after setting the
MASTER_RETRY_COUNT option for the CHANGE MASTER TO statement). See also Section 4.2.6,
“Connection Compression Control”.

• slave_exec_mode

Command-Line Format --slave-exec-mode=mode

System Variable slave_exec_mode

Scope Global

Dynamic Yes

Type Enumeration

Default Value IDEMPOTENT (NDB)

STRICT (Other)

Valid Values STRICT

IDEMPOTENT

Controls how a replication thread resolves conflicts and errors during replication. IDEMPOTENT mode
causes suppression of duplicate-key and no-key-found errors; STRICT means no such suppression
takes place.

IDEMPOTENT mode is intended for use in multi-source replication, circular replication, and some
other special replication scenarios for NDB Cluster Replication. (See Section 21.7.10, “NDB
Cluster Replication: Bidirectional and Circular Replication”, and Section 21.7.11, “NDB Cluster
Replication Conflict Resolution”, for more information.) NDB Cluster ignores any value explicitly set for
slave_exec_mode, and always treats it as IDEMPOTENT.

In MySQL Server 5.7, STRICT mode is the default value.

For storage engines other than NDB, IDEMPOTENT mode should be used only when you are absolutely
sure that duplicate-key errors and key-not-found errors can safely be ignored. It is meant to be used in
fail-over scenarios for NDB Cluster where multi-source replication or circular replication is employed, and
is not recommended for use in other cases.

• slave_load_tmpdir

Command-Line Format --slave-load-tmpdir=dir_name

3037

Replication and Binary Logging Options and Variables

System Variable slave_load_tmpdir

Scope Global

Dynamic No

Type Directory name

Default Value Value of --tmpdir

The name of the directory where the replica creates temporary files. Setting this variable takes effect for
all replication channels immediately, including running channels. The variable value is by default equal
to the value of the tmpdir system variable, or the default that applies when that system variable is not
specified.

When the replication SQL thread replicates a LOAD DATA statement, it extracts the file to be loaded
from the relay log into temporary files, and then loads these into the table. If the file loaded on the
source is huge, the temporary files on the replica are huge, too. Therefore, it might be advisable to use
this option to tell the replica to put temporary files in a directory located in some file system that has a
lot of available space. In that case, the relay logs are huge as well, so you might also want to set the
relay_log system variable to place the relay logs in that file system.

The directory specified by this option should be located in a disk-based file system (not a memory-based
file system) so that the temporary files used to replicate LOAD DATA statements can survive machine
restarts. The directory also should not be one that is cleared by the operating system during the system
startup process. However, replication can now continue after a restart if the temporary files have been
removed.

• slave_max_allowed_packet

Command-Line Format --slave-max-allowed-packet=#

System Variable slave_max_allowed_packet

Scope Global

Dynamic Yes

Type Integer

Default Value 1073741824

Minimum Value 1024

Maximum Value 1073741824

Unit bytes

Block Size 1024

This variable sets the maximum packet size for the replication SQL and I/O threads, so that large
updates using row-based replication do not cause replication to fail because an update exceeded
max_allowed_packet. Setting this variable takes effect for all replication channels immediately,
including running channels.

This global variable always has a value that is a positive integer multiple of 1024; if you set it to some
value that is not, the value is rounded down to the next highest multiple of 1024 for it is stored or used;
setting slave_max_allowed_packet to 0 causes 1024 to be used. (A truncation warning is issued in
all such cases.) The default and maximum value is 1073741824 (1 GB); the minimum is 1024.

3038

Replication and Binary Logging Options and Variables

• slave_net_timeout

Command-Line Format --slave-net-timeout=#

System Variable slave_net_timeout

Scope Global

Dynamic Yes

Type Integer

Default Value 60

Minimum Value 1

Maximum Value 31536000

Unit seconds

The number of seconds to wait for more data or a heartbeat signal from the source before the replica
considers the connection broken, aborts the read, and tries to reconnect. Setting this variable has no
immediate effect. The state of the variable applies on all subsequent START SLAVE commands.

The first retry occurs immediately after the timeout. The interval between retries is controlled by
the MASTER_CONNECT_RETRY option for the CHANGE MASTER TO statement, and the number of
reconnection attempts is limited by the MASTER_RETRY_COUNT option for the CHANGE MASTER TO
statement.

The heartbeat interval, which stops the connection timeout occurring in the absence of data
if the connection is still good, is controlled by the MASTER_HEARTBEAT_PERIOD option
for the CHANGE MASTER TO statement. The heartbeat interval defaults to half the value of
slave_net_timeout, and it is recorded in the replica's connection metadata repository and shown in
the replication_connection_configuration Performance Schema table. Note that a change
to the value or default setting of slave_net_timeout does not automatically change the heartbeat
interval, whether that has been set explicitly or is using a previously calculated default. If the connection
timeout is changed, you must also issue CHANGE MASTER TO to adjust the heartbeat interval to an
appropriate value so that it occurs before the connection timeout.

• slave_parallel_type

Command-Line Format --slave-parallel-type=value

System Variable slave_parallel_type

Scope Global

Dynamic Yes

Type Enumeration

Default Value DATABASE

Valid Values DATABASE

LOGICAL_CLOCK

When using a multithreaded replica (slave_parallel_workers is greater than 0), this variable
specifies the policy used to decide which transactions are allowed to execute in parallel on the replica.
The variable has no effect on replicas for which multithreading is not enabled. The possible values are:

• LOGICAL_CLOCK: Transactions that are part of the same binary log group commit on a source
are applied in parallel on a replica. The dependencies between transactions are tracked based on

3039

Replication and Binary Logging Options and Variables

their timestamps to provide additional parallelization where possible. When this value is set, the
binlog_transaction_dependency_tracking system variable can be used on the source to
specify that write sets are used for parallelization in place of timestamps, if a write set is available for
the transaction and gives improved results compared to timestamps.

• DATABASE: Transactions that update different databases are applied in parallel. This value is only
appropriate if data is partitioned into multiple databases which are being updated independently and
concurrently on the source. There must be no cross-database constraints, as such constraints may be
violated on the replica.

When slave_preserve_commit_order is 1, slave_parallel_type must be LOGICAL_CLOCK.

All replication applier threads must be stopped prior to setting slave_parallel_type.

When your replication topology uses multiple levels of replicas, LOGICAL_CLOCK may achieve less
parallelization for each level the replica is away from the source. You can reduce this effect by using
binlog_transaction_dependency_tracking on the source to specify that write sets are used
instead of timestamps for parallelization where possible.

• slave_parallel_workers

Command-Line Format --slave-parallel-workers=#

System Variable slave_parallel_workers

Scope Global

Dynamic Yes

Type Integer

Default Value 0

Minimum Value 0

Maximum Value 1024

Sets the number of applier threads for executing replication transactions in parallel. Setting this
variable to a number greater than 0 creates a multithreaded replica with this number of applier threads.
When set to 0 (the default) parallel execution is disabled and the replica uses a single applier thread.
Setting slave_parallel_workers has no immediate effect. The state of the variable applies on all
subsequent START SLAVE statements.

Note

Multithreaded replicas are not currently supported by NDB Cluster, which silently
ignores the setting for this variable. See Section 21.7.3, “Known Issues in NDB
Cluster Replication”, for more information.

A multithreaded replica provides parallel execution by using a coordinator thread and the number of
applier threads configured by this variable. The way which transactions are distributed among applier
threads is configured by slave_parallel_type. The transactions that the replica applies in parallel
may commit out of order, unless slave_preserve_commit_order=1. Therefore, checking for
the most recently executed transaction does not guarantee that all previous transactions from the
source have been executed on the replica. This has implications for logging and recovery when using a

3040

Replication and Binary Logging Options and Variables

multithreaded replica. For example, on a multithreaded replica the START SLAVE UNTIL statement only
supports using SQL_AFTER_MTS_GAPS.

In MySQL 5.7, retrying of transactions is supported when multithreading is enabled on a replica.
In previous versions, slave_transaction_retries was treated as equal to 0 when using
multithreaded replicas.

Multithreaded replicas are not currently supported by NDB Cluster. See Section 21.7.3, “Known Issues in
NDB Cluster Replication”, for more information about how NDB handles settings for this variable.

• slave_pending_jobs_size_max

Command-Line Format --slave-pending-jobs-size-max=#

System Variable slave_pending_jobs_size_max

Scope Global

Dynamic Yes

Type Integer

Default Value 16M

Minimum Value 1024

Maximum Value 16EiB

Unit bytes

Block Size 1024

For multithreaded replicas, this variable sets the maximum amount of memory (in bytes) available to
worker queues holding events not yet applied. Setting this variable has no effect on replicas for which
multithreading is not enabled. Setting this variable has no immediate effect. The state of the variable
applies on all subsequent START SLAVE commands.

The minimum possible value for this variable is 1024; the default is 16MB. The maximum possible value
is 18446744073709551615 (16 exabytes). Values that are not exact multiples of 1024 are rounded down
to the next-highest multiple of 1024 prior to being stored.

The value of this variable is a soft limit and can be set to match the normal workload. If an unusually
large event exceeds this size, the transaction is held until all the worker threads have empty queues, and
then processed. All subsequent transactions are held until the large transaction has been completed.

• slave_preserve_commit_order

Command-Line Format --slave-preserve-commit-order[={OFF|
ON}]

System Variable slave_preserve_commit_order

Scope Global

Dynamic Yes

Type Boolean

Default Value OFF

For multithreaded replicas, the setting 1 for this variable ensures that transactions are externalized on
the replica in the same order as they appear in the replica's relay log, and prevents gaps in the sequence
of transactions that have been executed from the relay log. This variable has no effect on replicas for
which multithreading is not enabled. Note that slave_preserve_commit_order=1 does not preserve

3041

Replication and Binary Logging Options and Variables

the order of non-transactional DML updates, so these might commit before transactions that precede
them in the relay log, which might result in gaps.

slave_preserve_commit_order=1 requires that --log-bin and --log-slave-updates are
enabled on the replica, and slave_parallel_type is set to LOGICAL_CLOCK. Before changing this
variable, all replication applier threads (for all replication channels if you are using multiple replication
channels) must be stopped.

With slave_preserve_commit_order enabled, the executing thread waits until all previous
transactions are committed before committing. While the thread is waiting for other workers to commit
their transactions it reports its status as Waiting for preceding transaction to commit.
(Prior to MySQL 5.7.8, this was shown as Waiting for its turn to commit.) Enabling this mode
on a multithreaded replica ensures that it never enters a state that the source was not in. This supports
the use of replication for read scale-out. See Section 16.3.4, “Using Replication for Scale-Out”.

If slave_preserve_commit_order is 0, the transactions that the replica applies in parallel may
commit out of order. Therefore, checking for the most recently executed transaction does not guarantee
that all previous transactions from the source have been executed on the replica. There is a chance
of gaps in the sequence of transactions that have been executed from the replica's relay log. This
has implications for logging and recovery when using a multithreaded replica. Note that the setting
slave_preserve_commit_order=1 prevents gaps, but does not prevent source binary log position
lag (where Exec_master_log_pos is behind the position up to which transactions have been
executed). See Section 16.4.1.32, “Replication and Transaction Inconsistencies” for more information.

• slave_rows_search_algorithms

Command-Line Format --slave-rows-search-algorithms=value

System Variable slave_rows_search_algorithms

Scope Global

Dynamic Yes

Type Set

Default Value TABLE_SCAN,INDEX_SCAN

Valid Values TABLE_SCAN,INDEX_SCAN

INDEX_SCAN,HASH_SCAN

TABLE_SCAN,HASH_SCAN

TABLE_SCAN,INDEX_SCAN,HASH_SCAN
(equivalent to INDEX_SCAN,HASH_SCAN)

When preparing batches of rows for row-based logging and replication, this variable controls how the
rows are searched for matches, in particular whether hash scans are used. Setting this variable takes
effect for all replication channels immediately, including running channels.

Specify a comma-separated list of the following combinations of 2 values from the list INDEX_SCAN,
TABLE_SCAN, HASH_SCAN. The value is expected as a string, so if set at runtime rather than at
server startup, the value must be quoted. In addition, the value must not contain any spaces. The
recommended combinations (lists) and their effects are shown in the following table:

Index used / option value INDEX_SCAN,HASH_SCAN INDEX_SCAN,TABLE_SCAN

Primary key or unique key Index scan Index scan
3042

Replication and Binary Logging Options and Variables

Index used / option value INDEX_SCAN,HASH_SCAN INDEX_SCAN,TABLE_SCAN

(Other) Key Hash scan over index Index scan

No index Hash scan Table scan

• The default value is INDEX_SCAN,TABLE_SCAN, which means that all searches that can use indexes
do use them, and searches without any indexes use table scans.

• To use hashing for any searches that do not use a primary or unique key, set
INDEX_SCAN,HASH_SCAN. Specifying INDEX_SCAN,HASH_SCAN has the same effect as specifying
INDEX_SCAN,TABLE_SCAN,HASH_SCAN, which is allowed.

• Do not use the combination TABLE_SCAN,HASH_SCAN. This setting forces hashing for all searches.
It has no advantage over INDEX_SCAN,HASH_SCAN, and it can lead to “record not found” errors or
duplicate key errors in the case of a single event containing multiple updates to the same row, or
updates that are order-dependent.

The order in which the algorithms are specified in the list makes no difference to the order in which they
are displayed by a SELECT or SHOW VARIABLES statement.

It is possible to specify a single value, but this is not optimal, because setting a single value limits
searches to using only that algorithm. In particular, setting INDEX_SCAN alone is not recommended, as
in that case searches are unable to find rows at all if no index is present.

• slave_skip_errors

Command-Line Format --slave-skip-errors=name

System Variable slave_skip_errors

Scope Global

Dynamic No

Type String

Default Value OFF

Valid Values OFF

[list of error codes]

all

ddl_exist_errors

Normally, replication stops when an error occurs on the replica, which gives you the opportunity to
resolve the inconsistency in the data manually. This variable causes the replication SQL thread to
continue replication when a statement returns any of the errors listed in the variable value.

• slave_sql_verify_checksum

Command-Line Format --slave-sql-verify-checksum[={OFF|
ON}]

System Variable slave_sql_verify_checksum

Scope Global

Dynamic Yes

3043

Replication and Binary Logging Options and Variables

Type Boolean

Default Value ON

Cause the replication SQL thread to verify data using the checksums read from the relay log. In the
event of a mismatch, the replica stops with an error. Setting this variable takes effect for all replication
channels immediately, including running channels.

Note

The replication I/O thread always reads checksums if possible when accepting
events from over the network.

• slave_transaction_retries

Command-Line Format --slave-transaction-retries=#

System Variable slave_transaction_retries

Scope Global

Dynamic Yes

Type Integer

Default Value 10

Minimum Value 0

Maximum Value (64-bit platforms) 18446744073709551615

Maximum Value (32-bit platforms) 4294967295

If a replication SQL thread fails to execute a transaction because of an InnoDB deadlock or because
the transaction's execution time exceeded InnoDB's innodb_lock_wait_timeout or NDB's
TransactionDeadlockDetectionTimeout or TransactionInactiveTimeout, it automatically
retries slave_transaction_retries times before stopping with an error. Transactions with a non-
temporary error are not retried.

The default value for slave_transaction_retries is 10. Setting the variable to 0 disables
automatic retrying of transactions. Setting the variable takes effect for all replication channels
immediately, including running channels.

As of MySQL 5.7.5, retrying of transactions is supported when multithreading is enabled on a replica.
In previous versions, slave_transaction_retries was treated as equal to 0 when using
multithreaded replicas.

The Performance Schema table replication_applier_status shows the number of retries that
took place on each replication channel, in the COUNT_TRANSACTIONS_RETRIES column.

• slave_type_conversions

Command-Line Format --slave-type-conversions=set

System Variable slave_type_conversions

Scope Global

Dynamic Yes

Type Set

Default Value
3044

Replication and Binary Logging Options and Variables

Valid Values ALL_LOSSY

ALL_NON_LOSSY

ALL_SIGNED

ALL_UNSIGNED

Controls the type conversion mode in effect on the replica when using row-based replication. In MySQL
5.7.2 and higher, its value is a comma-delimited set of zero or more elements from the list: ALL_LOSSY,
ALL_NON_LOSSY, ALL_SIGNED, ALL_UNSIGNED. Set this variable to an empty string to disallow type
conversions between the source and the replica. Setting this variable takes effect for all replication
channels immediately, including running channels.

ALL_SIGNED and ALL_UNSIGNED were added in MySQL 5.7.2 (Bug#15831300). For additional
information on type conversion modes applicable to attribute promotion and demotion in row-based
replication, see Row-based replication: attribute promotion and demotion.

• sql_slave_skip_counter

System Variable sql_slave_skip_counter

Scope Global

Dynamic Yes

Type Integer

Default Value 0

Minimum Value 0

Maximum Value 4294967295

The number of events from the source that a replica should skip. Setting the option has no immediate
effect. The variable applies to the next START SLAVE statement; the next START SLAVE statement
also changes the value back to 0. When this variable is set to a nonzero value and there are multiple
replication channels configured, the START SLAVE statement can only be used with the FOR CHANNEL
channel clause.

This option is incompatible with GTID-based replication, and must not be set to a nonzero value when
gtid_mode=ON. If you need to skip transactions when employing GTIDs, use gtid_executed from
the source instead. See Section 16.1.7.3, “Skipping Transactions”.

Important

If skipping the number of events specified by setting this variable would cause the
replica to begin in the middle of an event group, the replica continues to skip until
it finds the beginning of the next event group and begins from that point. For more
information, see Section 16.1.7.3, “Skipping Transactions”.

• sync_master_info

Command-Line Format --sync-master-info=#

System Variable sync_master_info

Scope Global

Dynamic Yes

3045

Replication and Binary Logging Options and Variables

Type Integer

Default Value 10000

Minimum Value 0

Maximum Value 4294967295

The effects of this variable on a replica depend on whether the replica's master_info_repository is
set to FILE or TABLE, as explained in the following paragraphs.

master_info_repository = FILE. If the value of sync_master_info is greater than 0, the replica
synchronizes its master.info file to disk (using fdatasync()) after every sync_master_info
events. If it is 0, the MySQL server performs no synchronization of the master.info file to disk;
instead, the server relies on the operating system to flush its contents periodically as with any other file.

master_info_repository = TABLE. If the value of sync_master_info is greater than 0, the replica
updates its connection metadata repository table after every sync_master_info events. If it is 0, the
table is never updated.

The default value for sync_master_info is 10000. Setting this variable takes effect for all replication
channels immediately, including running channels.

• sync_relay_log

Command-Line Format --sync-relay-log=#

System Variable sync_relay_log

Scope Global

Dynamic Yes

Type Integer

Default Value 10000

Minimum Value 0

Maximum Value 4294967295

If the value of this variable is greater than 0, the MySQL server synchronizes its relay log to disk (using
fdatasync()) after every sync_relay_log events are written to the relay log. Setting this variable
takes effect for all replication channels immediately, including running channels.

Setting sync_relay_log to 0 causes no synchronization to be done to disk; in this case, the server
relies on the operating system to flush the relay log's contents from time to time as for any other file.

A value of 1 is the safest choice because in the event of an unexpected halt you lose at most one event
from the relay log. However, it is also the slowest choice (unless the disk has a battery-backed cache,
which makes synchronization very fast). For information on the combination of settings on a replica that
is most resilient to unexpected halts, see Section 16.3.2, “Handling an Unexpected Halt of a Replica”.

• sync_relay_log_info

Command-Line Format --sync-relay-log-info=#

System Variable sync_relay_log_info

Scope Global

Dynamic Yes

3046

Replication and Binary Logging Options and Variables

Type Integer

Default Value 10000

Minimum Value 0

Maximum Value 4294967295

The default value for sync_relay_log_info is 10000. Setting this variable takes effect for all
replication channels immediately, including running channels.

The effects of this variable on the replica depend on the server's relay_log_info_repository
setting (FILE or TABLE). If the setting is TABLE, the effects of the variable also depend on whether the
storage engine used by the relay log info table is transactional (such as InnoDB) or not transactional
(MyISAM). The effects of these factors on the behavior of the server for sync_relay_log_info values
of zero and greater than zero are as follows:

sync_relay_log_info = 0 • If relay_log_info_repository is set to FILE, the MySQL
server performs no synchronization of the relay-log.info file to
disk; instead, the server relies on the operating system to flush its
contents periodically as with any other file.

• If relay_log_info_repository is set to TABLE, and the
storage engine for that table is transactional, the table is updated
after each transaction. (The sync_relay_log_info setting is
effectively ignored in this case.)

• If relay_log_info_repository is set to TABLE, and the
storage engine for that table is not transactional, the table is never
updated.

sync_relay_log_info = N
> 0

• If relay_log_info_repository is set to FILE, the
replica synchronizes its relay-log.info file to disk (using
fdatasync()) after every N transactions.

• If relay_log_info_repository is set to TABLE, and the
storage engine for that table is transactional, the table is updated
after each transaction. (The sync_relay_log_info setting is
effectively ignored in this case.)

• If relay_log_info_repository is set to TABLE, and the
storage engine for that table is not transactional, the table is
updated after every N events.

16.1.6.4 Binary Logging Options and Variables

• Startup Options Used with Binary Logging

• System Variables Used with Binary Logging

You can use the mysqld options and system variables that are described in this section to affect the
operation of the binary log as well as to control which statements are written to the binary log. For
additional information about the binary log, see Section 5.4.4, “The Binary Log”. For additional information
about using MySQL server options and system variables, see Section 5.1.6, “Server Command Options”,
and Section 5.1.7, “Server System Variables”.

3047

Replication and Binary Logging Options and Variables

Startup Options Used with Binary Logging

The following list describes startup options for enabling and configuring the binary log. System variables
used with binary logging are discussed later in this section.

• --binlog-row-event-max-size=N

Command-Line Format --binlog-row-event-max-size=#

Type Integer

Default Value 8192

Minimum Value 256

Maximum Value (64-bit platforms) 18446744073709551615

Maximum Value (32-bit platforms) 4294967295

Unit bytes

Specify the maximum size of a row-based binary log event, in bytes. Rows are grouped into events
smaller than this size if possible. The value should be a multiple of 256. The default is 8192. See
Section 16.2.1, “Replication Formats”.

• --log-bin[=base_name]

Command-Line Format --log-bin=file_name

Type File name

Enables binary logging. With binary logging enabled, the server logs all statements that change data
to the binary log, which is used for backup and replication. The binary log is a sequence of files with a
base name and numeric extension. For information on the format and management of the binary log, see
Section 5.4.4, “The Binary Log”.

If you supply a value for the --log-bin option, the value is used as the base name for the log
sequence. The server creates binary log files in sequence by adding a numeric suffix to the base name.
In MySQL 5.7, the base name defaults to host_name-bin, using the name of the host machine. It is
recommended that you specify a base name, so that you can continue to use the same binary log file
names regardless of changes to the default name.

The default location for binary log files is the data directory. You can use the --log-bin option to
specify an alternative location, by adding a leading absolute path name to the base name to specify a
different directory. When the server reads an entry from the binary log index file, which tracks the binary
log files that have been used, it checks whether the entry contains a relative path. If it does, the relative
part of the path is replaced with the absolute path set using the --log-bin option. An absolute path
recorded in the binary log index file remains unchanged; in such a case, the index file must be edited
manually to enable a new path or paths to be used. (In older versions of MySQL, manual intervention
was required whenever relocating the binary log or relay log files.) (Bug #11745230, Bug #12133)

Setting this option causes the log_bin system variable to be set to ON (or 1), and not to the base name.
The binary log file base name and any specified path are available as the log_bin_basename system
variable.

If you specify the --log-bin option without also specifying the server_id system variable, the server
is not allowed to start. (Bug #11763963, Bug #56739)

When GTIDs are in use on the server, if binary logging is not enabled when restarting the server after an
abnormal shutdown, some GTIDs are likely to be lost, causing replication to fail. In a normal shutdown,

3048

Replication and Binary Logging Options and Variables

the set of GTIDs from the current binary log file is saved in the mysql.gtid_executed table. Following
an abnormal shutdown where this did not happen, during recovery the GTIDs are added to the table
from the binary log file, provided that binary logging is still enabled. If binary logging is disabled for the
server restart, the server cannot access the binary log file to recover the GTIDs, so replication cannot be
started. Binary logging can be disabled safely after a normal shutdown.

If you want to disable binary logging for a server start but keep the --log-bin setting intact, you can
specify the --skip-log-bin or --disable-log-bin option at startup. Specify the option after the
--log-bin option, so that it takes precedence. When binary logging is disabled, the log_bin system
variable is set to OFF.

• --log-bin-index[=file_name]

Command-Line Format --log-bin-index=file_name

System Variable log_bin_index

Scope Global

Dynamic No

Type File name

The name for the binary log index file, which contains the names of the binary log files. By default, it has
the same location and base name as the value specified for the binary log files using the --log-bin
option, plus the extension .index. If you do not specify --log-bin, the default binary log index file
name is binlog.index. If you omit the file name and do not specify one with --log-bin, the default
binary log index file name is host_name-bin.index, using the name of the host machine.

For information on the format and management of the binary log, see Section 5.4.4, “The Binary Log”.

Statement selection options. The options in the following list affect which statements are written to
the binary log, and thus sent by a replication source server to its replicas. There are also options for replica
servers that control which statements received from the source should be executed or ignored. For details,
see Section 16.1.6.3, “Replica Server Options and Variables”.

• --binlog-do-db=db_name

Command-Line Format --binlog-do-db=name

Type String

This option affects binary logging in a manner similar to the way that --replicate-do-db affects
replication.

The effects of this option depend on whether the statement-based or row-based logging format is in
use, in the same way that the effects of --replicate-do-db depend on whether statement-based or
row-based replication is in use. You should keep in mind that the format used to log a given statement
may not necessarily be the same as that indicated by the value of binlog_format. For example, DDL
statements such as CREATE TABLE and ALTER TABLE are always logged as statements, without
regard to the logging format in effect, so the following statement-based rules for --binlog-do-db
always apply in determining whether or not the statement is logged.

Statement-based logging. Only those statements are written to the binary log where the default
database (that is, the one selected by USE) is db_name. To specify more than one database, use this
option multiple times, once for each database; however, doing so does not cause cross-database
statements such as UPDATE some_db.some_table SET foo='bar' to be logged while a different
database (or no database) is selected. 3049

Replication and Binary Logging Options and Variables

Warning

To specify multiple databases you must use multiple instances of this option.
Because database names can contain commas, the list is treated as the name of
a single database if you supply a comma-separated list.

An example of what does not work as you might expect when using statement-based logging: If the
server is started with --binlog-do-db=sales and you issue the following statements, the UPDATE
statement is not logged:

USE prices;
UPDATE sales.january SET amount=amount+1000;

The main reason for this “just check the default database” behavior is that it is difficult from the statement
alone to know whether it should be replicated (for example, if you are using multiple-table DELETE
statements or multiple-table UPDATE statements that act across multiple databases). It is also faster to
check only the default database rather than all databases if there is no need.

Another case which may not be self-evident occurs when a given database is replicated even though it
was not specified when setting the option. If the server is started with --binlog-do-db=sales, the
following UPDATE statement is logged even though prices was not included when setting --binlog-
do-db:

USE sales;
UPDATE prices.discounts SET percentage = percentage + 10;

Because sales is the default database when the UPDATE statement is issued, the UPDATE is logged.

Row-based logging. Logging is restricted to database db_name. Only changes to tables belonging
to db_name are logged; the default database has no effect on this. Suppose that the server is started
with --binlog-do-db=sales and row-based logging is in effect, and then the following statements
are executed:

USE prices;
UPDATE sales.february SET amount=amount+100;

The changes to the february table in the sales database are logged in accordance with the UPDATE
statement; this occurs whether or not the USE statement was issued. However, when using the row-
based logging format and --binlog-do-db=sales, changes made by the following UPDATE are not
logged:

USE prices;
UPDATE prices.march SET amount=amount-25;

Even if the USE prices statement were changed to USE sales, the UPDATE statement's effects would
still not be written to the binary log.

Another important difference in --binlog-do-db handling for statement-based logging as opposed to
the row-based logging occurs with regard to statements that refer to multiple databases. Suppose that
the server is started with --binlog-do-db=db1, and the following statements are executed:

USE db1;
UPDATE db1.table1, db2.table2 SET db1.table1.col1 = 10, db2.table2.col2 = 20;

If you are using statement-based logging, the updates to both tables are written to the binary log.
However, when using the row-based format, only the changes to table1 are logged; table2 is in a

3050

Replication and Binary Logging Options and Variables

different database, so it is not changed by the UPDATE. Now suppose that, instead of the USE db1
statement, a USE db4 statement had been used:

USE db4;
UPDATE db1.table1, db2.table2 SET db1.table1.col1 = 10, db2.table2.col2 = 20;

In this case, the UPDATE statement is not written to the binary log when using statement-based logging.
However, when using row-based logging, the change to table1 is logged, but not that to table2—in
other words, only changes to tables in the database named by --binlog-do-db are logged, and the
choice of default database has no effect on this behavior.

• --binlog-ignore-db=db_name

Command-Line Format --binlog-ignore-db=name

Type String

This option affects binary logging in a manner similar to the way that --replicate-ignore-db affects
replication.

The effects of this option depend on whether the statement-based or row-based logging format is in use,
in the same way that the effects of --replicate-ignore-db depend on whether statement-based or
row-based replication is in use. You should keep in mind that the format used to log a given statement
may not necessarily be the same as that indicated by the value of binlog_format. For example, DDL
statements such as CREATE TABLE and ALTER TABLE are always logged as statements, without
regard to the logging format in effect, so the following statement-based rules for --binlog-ignore-db
always apply in determining whether or not the statement is logged.

Statement-based logging. Tells the server to not log any statement where the default database (that
is, the one selected by USE) is db_name.

Prior to MySQL 5.7.2, this option caused any statements containing fully qualified table names not to be
logged if there was no default database specified (that is, when SELECT DATABASE() returned NULL).
In MySQL 5.7.2 and higher, when there is no default database, no --binlog-ignore-db options are
applied, and such statements are always logged. (Bug #11829838, Bug #60188)

Row-based format. Tells the server not to log updates to any tables in the database db_name. The
current database has no effect.

When using statement-based logging, the following example does not work as you might expect.
Suppose that the server is started with --binlog-ignore-db=sales and you issue the following
statements:

USE prices;
UPDATE sales.january SET amount=amount+1000;

The UPDATE statement is logged in such a case because --binlog-ignore-db applies only to the
default database (determined by the USE statement). Because the sales database was specified
explicitly in the statement, the statement has not been filtered. However, when using row-based logging,
the UPDATE statement's effects are not written to the binary log, which means that no changes to the

3051

Replication and Binary Logging Options and Variables

sales.january table are logged; in this instance, --binlog-ignore-db=sales causes all changes
made to tables in the source's copy of the sales database to be ignored for purposes of binary logging.

To specify more than one database to ignore, use this option multiple times, once for each database.
Because database names can contain commas, the list is treated as the name of a single database if
you supply a comma-separated list.

You should not use this option if you are using cross-database updates and you do not want these
updates to be logged.

Checksum options. MySQL supports reading and writing of binary log checksums. These are enabled
using the two options listed here:

• --binlog-checksum={NONE|CRC32}

Command-Line Format --binlog-checksum=type

Type String

Default Value CRC32

Valid Values NONE

CRC32

Enabling this option causes the source to write checksums for events written to the binary log. Set to
NONE to disable, or the name of the algorithm to be used for generating checksums; currently, only
CRC32 checksums are supported, and CRC32 is the default. You cannot change the setting for this
option within a transaction.

To control reading of checksums by the replica (from the relay log), use the --slave-sql-verify-
checksum option.

Testing and debugging options. The following binary log options are used in replication testing and
debugging. They are not intended for use in normal operations.

• --max-binlog-dump-events=N

Command-Line Format --max-binlog-dump-events=#

Type Integer

Default Value 0

This option is used internally by the MySQL test suite for replication testing and debugging.

• --sporadic-binlog-dump-fail

Command-Line Format --sporadic-binlog-dump-fail[={OFF|
ON}]

Type Boolean

Default Value OFF

This option is used internally by the MySQL test suite for replication testing and debugging.

3052

Replication and Binary Logging Options and Variables

System Variables Used with Binary Logging

The following list describes system variables for controlling binary logging. They can be set at server
startup and some of them can be changed at runtime using SET. Server options used to control binary
logging are listed earlier in this section.

• binlog_cache_size

Command-Line Format --binlog-cache-size=#

System Variable binlog_cache_size

Scope Global

Dynamic Yes

Type Integer

Default Value 32768

Minimum Value 4096

Maximum Value (64-bit platforms) 18446744073709547520

Maximum Value (32-bit platforms) 4294963200

Unit bytes

Block Size 4096

The size of the cache to hold changes to the binary log during a transaction.

A binary log cache is allocated for each client if the server supports any transactional storage
engines and if the server has the binary log enabled (--log-bin option). If you often use large
transactions, you can increase this cache size to get better performance. The Binlog_cache_use
and Binlog_cache_disk_use status variables can be useful for tuning the size of this variable. See
Section 5.4.4, “The Binary Log”.

binlog_cache_size sets the size for the transaction cache only; the size of the statement cache is
governed by the binlog_stmt_cache_size system variable.

• binlog_checksum

Command-Line Format --binlog-checksum=type

System Variable binlog_checksum

Scope Global

Dynamic Yes

Type String

Default Value CRC32

Valid Values NONE

CRC32

When enabled, this variable causes the source to write a checksum for each event in the binary log.
binlog_checksum supports the values NONE (disabled) and CRC32. The default is CRC32. You cannot
change the value of binlog_checksum within a transaction.

3053

Replication and Binary Logging Options and Variables

When binlog_checksum is disabled (value NONE), the server verifies that it is writing only complete
events to the binary log by writing and checking the event length (rather than a checksum) for each
event.

Changing the value of this variable causes the binary log to be rotated; checksums are always written to
an entire binary log file, and never to only part of one.

Setting this variable on the source to a value unrecognized by the replica causes the replica to set
its own binlog_checksum value to NONE, and to stop replication with an error. (Bug #13553750,
Bug #61096) If backward compatibility with older replicas is a concern, you may want to set the value
explicitly to NONE.

• binlog_direct_non_transactional_updates

Command-Line Format --binlog-direct-non-transactional-
updates[={OFF|ON}]

System Variable binlog_direct_non_transactional_updates

Scope Global, Session

Dynamic Yes

Type Boolean

Default Value OFF

Due to concurrency issues, a replica can become inconsistent when a transaction contains updates
to both transactional and nontransactional tables. MySQL tries to preserve causality among these
statements by writing nontransactional statements to the transaction cache, which is flushed upon
commit. However, problems arise when modifications done to nontransactional tables on behalf of a
transaction become immediately visible to other connections because these changes may not be written
immediately into the binary log.

The binlog_direct_non_transactional_updates variable offers one possible workaround to this
issue. By default, this variable is disabled. Enabling binlog_direct_non_transactional_updates
causes updates to nontransactional tables to be written directly to the binary log, rather than to the
transaction cache.

binlog_direct_non_transactional_updates works only for statements that are replicated using
the statement-based binary logging format; that is, it works only when the value of binlog_format
is STATEMENT, or when binlog_format is MIXED and a given statement is being replicated using
the statement-based format. This variable has no effect when the binary log format is ROW, or when
binlog_format is set to MIXED and a given statement is replicated using the row-based format.

Important

Before enabling this variable, you must make certain that there are no
dependencies between transactional and nontransactional tables; an example
of such a dependency would be the statement INSERT INTO myisam_table
SELECT * FROM innodb_table. Otherwise, such statements are likely to
cause the replica to diverge from the source.

This variable has no effect when the binary log format is ROW or MIXED.

3054

Replication and Binary Logging Options and Variables

• binlog_error_action

Command-Line Format --binlog-error-action[=value]

System Variable binlog_error_action

Scope Global

Dynamic Yes

Type Enumeration

Default Value ABORT_SERVER

Valid Values IGNORE_ERROR

ABORT_SERVER

Controls what happens when the server encounters an error such as not being able to write to, flush or
synchronize the binary log, which can cause the source's binary log to become inconsistent and replicas
to lose synchronization.

In MySQL 5.7.7 and higher, this variable defaults to ABORT_SERVER, which makes the server halt
logging and shut down whenever it encounters such an error with the binary log. On restart, recovery
proceeds as in the case of an unexpected server halt (see Section 16.3.2, “Handling an Unexpected Halt
of a Replica”).

When binlog_error_action is set to IGNORE_ERROR, if the server encounters such an error it
continues the ongoing transaction, logs the error then halts logging, and continues performing updates.
To resume binary logging log_bin must be enabled again, which requires a server restart. This setting
provides backward compatibility with older versions of MySQL.

In previous releases this variable was named binlogging_impossible_mode.

• binlog_format

Command-Line Format --binlog-format=format

System Variable binlog_format

Scope Global, Session

Dynamic Yes

Type Enumeration

Default Value ROW

Valid Values MIXED

STATEMENT

ROW

This system variable sets the binary logging format, and can be any one of STATEMENT, ROW, or MIXED.
See Section 16.2.1, “Replication Formats”. The setting takes effect when binary logging is enabled on

3055

Replication and Binary Logging Options and Variables

the server, which is the case when the log_bin system variable is set to ON. In MySQL 5.7, binary
logging is not enabled by default, and you enable it using the --log-bin option.

binlog_format can be set at startup or at runtime, except that under some conditions, changing this
variable at runtime is not possible or causes replication to fail, as described later.

Prior to MySQL 5.7.7, the default format was STATEMENT. In MySQL 5.7.7 and higher, the default is
ROW. Exception: In NDB Cluster, the default is MIXED; statement-based replication is not supported for
NDB Cluster.

Setting the session value of this system variable is a restricted operation. The session user must have
privileges sufficient to set restricted session variables. See Section 5.1.8.1, “System Variable Privileges”.

The rules governing when changes to this variable take effect and how long the effect lasts are the same
as for other MySQL server system variables. For more information, see Section 13.7.4.1, “SET Syntax
for Variable Assignment”.

When MIXED is specified, statement-based replication is used, except for cases where only row-based
replication is guaranteed to lead to proper results. For example, this happens when statements contain
loadable functions or the UUID() function.

For details of how stored programs (stored procedures and functions, triggers, and events) are handled
when each binary logging format is set, see Section 23.7, “Stored Program Binary Logging”.

There are exceptions when you cannot switch the replication format at runtime:

• From within a stored function or a trigger.

• If the session is currently in row-based replication mode and has open temporary tables.

• From within a transaction.

Trying to switch the format in those cases results in an error.

Changing the logging format on a replication source server does not cause a replica to change its
logging format to match. Switching the replication format while replication is ongoing can cause issues
if a replica has binary logging enabled, and the change results in the replica using STATEMENT format
logging while the source is using ROW or MIXED format logging. A replica is not able to convert binary
log entries received in ROW logging format to STATEMENT format for use in its own binary log, so this
situation can cause replication to fail. For more information, see Section 5.4.4.2, “Setting The Binary Log
Format”.

The binary log format affects the behavior of the following server options:

• --replicate-do-db

• --replicate-ignore-db

• --binlog-do-db

• --binlog-ignore-db

These effects are discussed in detail in the descriptions of the individual options.

• binlog_group_commit_sync_delay

Command-Line Format --binlog-group-commit-sync-delay=#

3056

Replication and Binary Logging Options and Variables

System Variable binlog_group_commit_sync_delay

Scope Global

Dynamic Yes

Type Integer

Default Value 0

Minimum Value 0

Maximum Value 1000000

Unit microseconds

Controls how many microseconds the binary log commit waits before synchronizing the binary log file
to disk. By default binlog_group_commit_sync_delay is set to 0, meaning that there is no delay.
Setting binlog_group_commit_sync_delay to a microsecond delay enables more transactions to
be synchronized together to disk at once, reducing the overall time to commit a group of transactions
because the larger groups require fewer time units per group.

When sync_binlog=0 or sync_binlog=1 is set, the delay specified by
binlog_group_commit_sync_delay is applied for every binary log commit group before
synchronization (or in the case of sync_binlog=0, before proceeding). When sync_binlog is set to a
value n greater than 1, the delay is applied after every n binary log commit groups.

Setting binlog_group_commit_sync_delay can increase the number of parallel committing
transactions on any server that has (or might have after a failover) a replica, and therefore can
increase parallel execution on the replicas. To benefit from this effect, the replica servers must
have slave_parallel_type=LOGICAL_CLOCK set, and the effect is more significant when
binlog_transaction_dependency_tracking=COMMIT_ORDER is also set. It is important to take
into account both the source's throughput and the replicas' throughput when you are tuning the setting
for binlog_group_commit_sync_delay.

Setting binlog_group_commit_sync_delay can also reduce the number of fsync() calls to the
binary log on any server (source or replica) that has a binary log.

Note that setting binlog_group_commit_sync_delay increases the latency of transactions on the
server, which might affect client applications. Also, on highly concurrent workloads, it is possible for the
delay to increase contention and therefore reduce throughput. Typically, the benefits of setting a delay
outweigh the drawbacks, but tuning should always be carried out to determine the optimal setting.

• binlog_group_commit_sync_no_delay_count

Command-Line Format --binlog-group-commit-sync-no-delay-
count=#

System Variable binlog_group_commit_sync_no_delay_count

Scope Global

Dynamic Yes

Type Integer

Default Value 0

Minimum Value 0

3057

Replication and Binary Logging Options and Variables

Maximum Value 100000

The maximum number of transactions to wait for before aborting the current delay as specified by
binlog_group_commit_sync_delay. If binlog_group_commit_sync_delay is set to 0, then this
option has no effect.

• binlog_max_flush_queue_time

Command-Line Format --binlog-max-flush-queue-time=#

Deprecated Yes

System Variable binlog_max_flush_queue_time

Scope Global

Dynamic Yes

Type Integer

Default Value 0

Minimum Value 0

Maximum Value 100000

Unit microseconds

Formerly, this controlled the time in microseconds to continue reading transactions from the flush queue
before proceeding with group commit. In MySQL 5.7, this variable no longer has any effect.

binlog_max_flush_queue_time is deprecated as of MySQL 5.7.9, and is marked for eventual
removal in a future MySQL release.

• binlog_order_commits

Command-Line Format --binlog-order-commits[={OFF|ON}]

System Variable binlog_order_commits

Scope Global

Dynamic Yes

Type Boolean

Default Value ON

When this variable is enabled on a replication source server (which is the default), transaction commit
instructions issued to storage engines are serialized on a single thread, so that transactions are always
committed in the same order as they are written to the binary log. Disabling this variable permits
transaction commit instructions to be issued using multiple threads. Used in combination with binary log
group commit, this prevents the commit rate of a single transaction being a bottleneck to throughput, and
might therefore produce a performance improvement.

Transactions are written to the binary log at the point when all the storage engines involved have
confirmed that the transaction is prepared to commit. The binary log group commit logic then commits
a group of transactions after their binary log write has taken place. When binlog_order_commits is
disabled, because multiple threads are used for this process, transactions in a commit group might be
committed in a different order from their order in the binary log. (Transactions from a single client always
commit in chronological order.) In many cases this does not matter, as operations carried out in separate

3058

Replication and Binary Logging Options and Variables

transactions should produce consistent results, and if that is not the case, a single transaction ought to
be used instead.

If you want to ensure that the transaction history on the source and on a multithreaded replica remains
identical, set slave_preserve_commit_order=1 on the replica.

• binlog_row_image

Command-Line Format --binlog-row-image=image_type

System Variable binlog_row_image

Scope Global, Session

Dynamic Yes

Type Enumeration

Default Value full

Valid Values full (Log all columns)

minimal (Log only changed columns, and
columns needed to identify rows)

noblob (Log all columns, except for unneeded
BLOB and TEXT columns)

For MySQL row-based replication, this variable determines how row images are written to the binary log.

In MySQL row-based replication, each row change event contains two images, a “before” image whose
columns are matched against when searching for the row to be updated, and an “after” image containing
the changes. Normally, MySQL logs full rows (that is, all columns) for both the before and after images.
However, it is not strictly necessary to include every column in both images, and we can often save disk,
memory, and network usage by logging only those columns which are actually required.

Note

When deleting a row, only the before image is logged, since there are no
changed values to propagate following the deletion. When inserting a row, only
the after image is logged, since there is no existing row to be matched. Only
when updating a row are both the before and after images required, and both
written to the binary log.

For the before image, it is necessary only that the minimum set of columns required to uniquely identify
rows is logged. If the table containing the row has a primary key, then only the primary key column or
columns are written to the binary log. Otherwise, if the table has a unique key all of whose columns are
NOT NULL, then only the columns in the unique key need be logged. (If the table has neither a primary
key nor a unique key without any NULL columns, then all columns must be used in the before image, and
logged.) In the after image, it is necessary to log only the columns which have actually changed.

You can cause the server to log full or minimal rows using the binlog_row_image system variable.
This variable actually takes one of three possible values, as shown in the following list:

• full: Log all columns in both the before image and the after image.

• minimal: Log only those columns in the before image that are required to identify the row to
be changed; log only those columns in the after image where a value was specified by the SQL
statement, or generated by auto-increment.

3059

Replication and Binary Logging Options and Variables

• noblob: Log all columns (same as full), except for BLOB and TEXT columns that are not required to
identify rows, or that have not changed.

Note

This variable is not supported by NDB Cluster; setting it has no effect on the
logging of NDB tables.

The default value is full.

When using minimal or noblob, deletes and updates are guaranteed to work correctly for a given table
if and only if the following conditions are true for both the source and destination tables:

• All columns must be present and in the same order; each column must use the same data type as its
counterpart in the other table.

• The tables must have identical primary key definitions.

(In other words, the tables must be identical with the possible exception of indexes that are not part of
the tables' primary keys.)

If these conditions are not met, it is possible that the primary key column values in the destination table
may prove insufficient to provide a unique match for a delete or update. In this event, no warning or error
is issued; the source and replica silently diverge, thus breaking consistency.

Setting this variable has no effect when the binary logging format is STATEMENT. When
binlog_format is MIXED, the setting for binlog_row_image is applied to changes that are logged
using row-based format, but this setting has no effect on changes logged as statements.

Setting binlog_row_image on either the global or session level does not cause an implicit commit;
this means that this variable can be changed while a transaction is in progress without affecting the
transaction.

• binlog_rows_query_log_events

Command-Line Format --binlog-rows-query-log-events[={OFF|
ON}]

System Variable binlog_rows_query_log_events

Scope Global, Session

Dynamic Yes

Type Boolean

Default Value OFF

This system variable affects row-based logging only. When enabled, it causes the server to write
informational log events such as row query log events into its binary log. This information can be used
for debugging and related purposes, such as obtaining the original query issued on the source when it
cannot be reconstructed from the row updates.

These informational events are normally ignored by MySQL programs reading the binary log and so
cause no issues when replicating or restoring from backup. To view them, increase the verbosity level by
using mysqlbinlog's --verbose option twice, either as -vv or --verbose --verbose.

3060

Replication and Binary Logging Options and Variables

• binlog_stmt_cache_size

Command-Line Format --binlog-stmt-cache-size=#

System Variable binlog_stmt_cache_size

Scope Global

Dynamic Yes

Type Integer

Default Value 32768

Minimum Value 4096

Maximum Value (64-bit platforms) 18446744073709547520

Maximum Value (32-bit platforms) 4294963200

Unit bytes

Block Size 4096

This variable determines the size of the cache for the binary log to hold nontransactional statements
issued during a transaction.

Separate binary log transaction and statement caches are allocated for each client if the server supports
any transactional storage engines and if the server has the binary log enabled (--log-bin option). If
you often use large nontransactional statements during transactions, you can increase this cache size to
get better performance. The Binlog_stmt_cache_use and Binlog_stmt_cache_disk_use status
variables can be useful for tuning the size of this variable. See Section 5.4.4, “The Binary Log”.

The binlog_cache_size system variable sets the size for the transaction cache.

• binlog_transaction_dependency_tracking

Command-Line Format --binlog-transaction-dependency-
tracking=value

Introduced 5.7.22

System Variable binlog_transaction_dependency_tracking

Scope Global

Dynamic Yes

Type Enumeration

Default Value COMMIT_ORDER

Valid Values COMMIT_ORDER

WRITESET

WRITESET_SESSION

The source of dependency information that the source uses to determine which transactions can be
executed in parallel by the replica's multithreaded applier. This variable can take one of the three values
described in the following list:

• COMMIT_ORDER: Dependency information is generated from the source's commit timestamps. This is
the default.

3061

Replication and Binary Logging Options and Variables

• WRITESET: Dependency information is generated from the source's write set, and any transactions
which write different tuples can be parallelized.

• WRITESET_SESSION: Dependency information is generated from the source's write set, and any
transactions that write different tuples can be parallelized, with the exception that no two updates from
the same session can be reordered.

In WRITESET or WRITESET_SESSION mode, transactions can commit out of order unless you also set
slave_preserve_commit_order=1.

For some transactions, the WRITESET and WRITESET_SESSION modes cannot improve on the
results that would have been returned in COMMIT_ORDER mode. This is the case for transactions that
have empty or partial write sets, transactions that update tables without primary or unique keys, and
transactions that update parent tables in a foreign key relationship. In these situations, the source uses
COMMIT_ORDER mode to generate the dependency information instead.

The value of this variable cannot be set to anything other than COMMIT_ORDER if
transaction_write_set_extraction is OFF. You should also note that the value
of transaction_write_set_extraction cannot be changed if the current value of
binlog_transaction_dependency_tracking is WRITESET or WRITESET_SESSION. If you
change the value, the new value does not take effect on replicas until after the replica has been stopped
and restarted with STOP SLAVE and START SLAVE statements.

The number of row hashes to be kept and checked for the latest transaction to have changed a given
row is determined by the value of binlog_transaction_dependency_history_size.

• binlog_transaction_dependency_history_size

Command-Line Format --binlog-transaction-dependency-
history-size=#

Introduced 5.7.22

System Variable binlog_transaction_dependency_history_size

Scope Global

Dynamic Yes

Type Integer

Default Value 25000

Minimum Value 1

Maximum Value 1000000

Sets an upper limit on the number of row hashes which are kept in memory and used for looking up the
transaction that last modified a given row. Once this number of hashes has been reached, the history is
purged.

• expire_logs_days

Command-Line Format --expire-logs-days=#

System Variable expire_logs_days

Scope Global

Dynamic Yes

3062

Replication and Binary Logging Options and Variables

Type Integer

Default Value 0

Minimum Value 0

Maximum Value 99

Unit days

The number of days for automatic binary log file removal. The default is 0, which means “no automatic
removal.” Possible removals happen at startup and when the binary log is flushed. Log flushing occurs
as indicated in Section 5.4, “MySQL Server Logs”.

To remove binary log files manually, use the PURGE BINARY LOGS statement. See Section 13.4.1.1,
“PURGE BINARY LOGS Statement”.

• log_bin

System Variable log_bin

Scope Global

Dynamic No

Type Boolean

Whether the binary log is enabled. If the --log-bin option is used, then the value of this variable is
ON; otherwise it is OFF. This variable reports only on the status of binary logging (enabled or disabled); it
does not actually report the value to which --log-bin is set.

See Section 5.4.4, “The Binary Log”.

• log_bin_basename

System Variable log_bin_basename

Scope Global

Dynamic No

Type File name

Holds the base name and path for the binary log files, which can be set with the --log-bin server
option. The maximum variable length is 256. In MySQL 5.7, the default base name is the name of the
host machine with the suffix -bin. The default location is the data directory.

• log_bin_index

Command-Line Format --log-bin-index=file_name

System Variable log_bin_index

Scope Global

Dynamic No

Type File name

Holds the base name and path for the binary log index file, which can be set with the --log-bin-
index server option. The maximum variable length is 256.

3063

Replication and Binary Logging Options and Variables

• log_bin_trust_function_creators

Command-Line Format --log-bin-trust-function-
creators[={OFF|ON}]

System Variable log_bin_trust_function_creators

Scope Global

Dynamic Yes

Type Boolean

Default Value OFF

This variable applies when binary logging is enabled. It controls whether stored function creators can be
trusted not to create stored functions that causes unsafe events to be written to the binary log. If set to
0 (the default), users are not permitted to create or alter stored functions unless they have the SUPER
privilege in addition to the CREATE ROUTINE or ALTER ROUTINE privilege. A setting of 0 also enforces
the restriction that a function must be declared with the DETERMINISTIC characteristic, or with the
READS SQL DATA or NO SQL characteristic. If the variable is set to 1, MySQL does not enforce these
restrictions on stored function creation. This variable also applies to trigger creation. See Section 23.7,
“Stored Program Binary Logging”.

• log_bin_use_v1_row_events

Command-Line Format --log-bin-use-v1-row-events[={OFF|
ON}]

System Variable log_bin_use_v1_row_events

Scope Global

Dynamic Yes

Type Boolean

Default Value OFF

Whether Version 2 binary logging is in use. If this variable is 0 (disabled, the default), Version 2 binary
log events are in use. If this variable is 1 (enabled), the server writes the binary log using Version 1
logging events (the only version of binary log events used in previous releases), and thus produces a
binary log that can be read by older replicas.

MySQL 5.7 uses Version 2 binary log row events by default. However, Version 2 events cannot be read
by MySQL Server releases prior to MySQL 5.6.6. Enabling log_bin_use_v1_row_events causes
mysqld to write the binary log using Version 1 logging events.

This variable is read-only at runtime. To switch between Version 1 and Version 2 binary event binary
logging, it is necessary to set log_bin_use_v1_row_events at server startup.

Other than when performing upgrades of NDB Cluster Replication, log_bin_use_v1_row_events
is chiefly of interest when setting up replication conflict detection and resolution using NDB

3064

Replication and Binary Logging Options and Variables

$EPOCH_TRANS() as the conflict detection function, which requires Version 2 binary log row events.
Thus, this variable and --ndb-log-transaction-id are not compatible.

Note

MySQL NDB Cluster 7.5 uses Version 2 binary log row events by default. You
should keep this mind when planning upgrades or downgrades, and for setups
using NDB Cluster Replication.

For more information, see Section 21.7.11, “NDB Cluster Replication Conflict Resolution”.

• log_builtin_as_identified_by_password

Command-Line Format --log-builtin-as-identified-by-
password[={OFF|ON}]

System Variable log_builtin_as_identified_by_password

Scope Global

Dynamic Yes

Type Boolean

Default Value OFF

This variable affects binary logging of user-management statements. When enabled, the variable has the
following effects:

• Binary logging for CREATE USER statements involving built-in authentication plugins rewrites the
statements to include an IDENTIFIED BY PASSWORD clause.

• SET PASSWORD statements are logged as SET PASSWORD statements, rather than being rewritten to
ALTER USER statements.

• SET PASSWORD statements are changed to log the hash of the password instead of the supplied
cleartext (unencrypted) password.

Enabling this variable ensures better compatibility for cross-version replication with 5.6 and pre-5.7.6
replicas, and for applications that expect this syntax in the binary log.

• log_slave_updates

Command-Line Format --log-slave-updates[={OFF|ON}]

System Variable log_slave_updates

Scope Global

Dynamic No

Type Boolean

Default Value OFF

Whether updates received by a replica server from a source server should be logged to the replica's own
binary log.

Normally, a replica does not log to its own binary log any updates that are received from a source server.
Enabling this variable causes the replica to write the updates performed by its replication SQL thread to
its own binary log. For this option to have any effect, the replica must also be started with the --log-

3065

Replication and Binary Logging Options and Variables

bin option to enable binary logging. See Section 16.1.6, “Replication and Binary Logging Options and
Variables”.

log_slave_updates is enabled when you want to chain replication servers. For example, you might
want to set up replication servers using this arrangement:

A -> B -> C

Here, A serves as the source for the replica B, and B serves as the source for the replica C. For this to
work, B must be both a source and a replica. You must start both A and B with --log-bin to enable
binary logging, and B with log_slave_updates enabled so that updates received from A are logged by
B to its binary log.

• log_statements_unsafe_for_binlog

Command-Line Format --log-statements-unsafe-for-
binlog[={OFF|ON}]

Introduced 5.7.11

System Variable log_statements_unsafe_for_binlog

Scope Global

Dynamic Yes

Type Boolean

Default Value ON

If error 1592 is encountered, controls whether the generated warnings are added to the error log or not.

• master_verify_checksum

Command-Line Format --master-verify-checksum[={OFF|ON}]

System Variable master_verify_checksum

Scope Global

Dynamic Yes

Type Boolean

Default Value OFF

Enabling this variable causes the source to verify events read from the binary log by examining
checksums, and to stop with an error in the event of a mismatch. master_verify_checksum is
disabled by default; in this case, the source uses the event length from the binary log to verify events, so
that only complete events are read from the binary log.

• max_binlog_cache_size

Command-Line Format --max-binlog-cache-size=#

System Variable max_binlog_cache_size

Scope Global

Dynamic Yes

Type Integer

Default Value (64-bit platforms) 18446744073709547520

Default Value (32-bit platforms) 4294967295

3066

Replication and Binary Logging Options and Variables

Minimum Value 4096

Maximum Value (64-bit platforms) 18446744073709547520

Maximum Value (32-bit platforms) 4294967295

Unit bytes

Block Size 4096

If a transaction requires more than this many bytes, the server generates a Multi-statement
transaction required more than 'max_binlog_cache_size' bytes of storage error.
When gtid_mode is not ON, the maximum recommended value is 4GB, due to the fact that, in this case,
MySQL cannot work with binary log positions greater than 4GB; when gtid_mode is ON, this limitation
does not apply, and the server can work with binary log positions of arbitrary size.

If, because gtid_mode is not ON, or for some other reason, you need to guarantee that the binary log
does not exceed a given size maxsize, you should set this variable according to the formula shown
here:

max_binlog_cache_size <
 (((maxsize - max_binlog_size) / max_connections) - 1000) / 1.2

This calculation takes into account the following conditions:

• The server writes to the binary log as long as the size before it begins to write is less than
max_binlog_size.

• The server does not write single transactions, but rather groups of transactions. The maximum
possible number of transactions in a group is equal to max_connections.

• The server writes data that is not included in the cache. This includes a 4-byte checksum for each
event; while this adds less than 20% to the transaction size, this amount is non-negible. In addition,
the server writes a Gtid_log_event for each transaction; each of these events can add another 1
KB to what is written to the binary log.

max_binlog_cache_size sets the size for the transaction cache only; the upper limit for the statement
cache is governed by the max_binlog_stmt_cache_size system variable.

The visibility to sessions of max_binlog_cache_size matches that of the binlog_cache_size
system variable; in other words, changing its value affects only new sessions that are started after the
value is changed.

• max_binlog_size

Command-Line Format --max-binlog-size=#

System Variable max_binlog_size

Scope Global

Dynamic Yes

Type Integer

Default Value 1073741824

Minimum Value 4096

Maximum Value 1073741824

Unit bytes

3067

Replication and Binary Logging Options and Variables

Block Size 4096

If a write to the binary log causes the current log file size to exceed the value of this variable, the server
rotates the binary logs (closes the current file and opens the next one). The minimum value is 4096
bytes. The maximum and default value is 1GB.

A transaction is written in one chunk to the binary log, so it is never split between several binary logs.
Therefore, if you have big transactions, you might see binary log files larger than max_binlog_size.

If max_relay_log_size is 0, the value of max_binlog_size applies to relay logs as well.

• max_binlog_stmt_cache_size

Command-Line Format --max-binlog-stmt-cache-size=#

System Variable max_binlog_stmt_cache_size

Scope Global

Dynamic Yes

Type Integer

Default Value 18446744073709547520

Minimum Value 4096

Maximum Value 18446744073709547520

Unit bytes

Block Size 4096

If nontransactional statements within a transaction require more than this many bytes of memory, the
server generates an error. The minimum value is 4096. The maximum and default values are 4GB on
32-bit platforms and 16EB (exabytes) on 64-bit platforms.

max_binlog_stmt_cache_size sets the size for the statement cache only; the upper limit for the
transaction cache is governed exclusively by the max_binlog_cache_size system variable.

• sql_log_bin

System Variable sql_log_bin

Scope Session

Dynamic Yes

Type Boolean

3068

Replication and Binary Logging Options and Variables

Default Value ON

This variable controls whether logging to the binary log is enabled for the current session (assuming
that the binary log itself is enabled). The default value is ON. To disable or enable binary logging for the
current session, set the session sql_log_bin variable to OFF or ON.

Set this variable to OFF for a session to temporarily disable binary logging while making changes to the
source you do not want replicated to the replica.

Setting the session value of this system variable is a restricted operation. The session user must have
privileges sufficient to set restricted session variables. See Section 5.1.8.1, “System Variable Privileges”.

It is not possible to set the session value of sql_log_bin within a transaction or subquery.

Setting this variable to OFF prevents GTIDs from being assigned to transactions in the binary log. If
you are using GTIDs for replication, this means that even when binary logging is later enabled again,
the GTIDs written into the log from this point do not account for any transactions that occurred in the
meantime, so in effect those transactions are lost.

The global sql_log_bin variable is read only and cannot be modified. The global scope is deprecated;
expect it to be removed in a future MySQL release.

• sync_binlog

Command-Line Format --sync-binlog=#

System Variable sync_binlog

Scope Global

Dynamic Yes

Type Integer

Default Value 1

Minimum Value 0

Maximum Value 4294967295

Controls how often the MySQL server synchronizes the binary log to disk.

• sync_binlog=0: Disables synchronization of the binary log to disk by the MySQL server. Instead,
the MySQL server relies on the operating system to flush the binary log to disk from time to time as it
does for any other file. This setting provides the best performance, but in the event of a power failure
or operating system crash, it is possible that the server has committed transactions that have not been
synchronized to the binary log.

• sync_binlog=1: Enables synchronization of the binary log to disk before transactions are
committed. This is the safest setting but can have a negative impact on performance due to
the increased number of disk writes. In the event of a power failure or operating system crash,
transactions that are missing from the binary log are only in a prepared state. This permits the
automatic recovery routine to roll back the transactions, which guarantees that no transaction is lost
from the binary log.

• sync_binlog=N, where N is a value other than 0 or 1: The binary log is synchronized to disk after
N binary log commit groups have been collected. In the event of a power failure or operating system
crash, it is possible that the server has committed transactions that have not been flushed to the

3069

Replication and Binary Logging Options and Variables

binary log. This setting can have a negative impact on performance due to the increased number of
disk writes. A higher value improves performance, but with an increased risk of data loss.

For the greatest possible durability and consistency in a replication setup that uses InnoDB with
transactions, use these settings:

• sync_binlog=1.

• innodb_flush_log_at_trx_commit=1.

Caution

Many operating systems and some disk hardware fool the flush-to-disk operation.
They may tell mysqld that the flush has taken place, even though it has not.
In this case, the durability of transactions is not guaranteed even with the
recommended settings, and in the worst case, a power outage can corrupt
InnoDB data. Using a battery-backed disk cache in the SCSI disk controller or in
the disk itself speeds up file flushes, and makes the operation safer. You can also
try to disable the caching of disk writes in hardware caches.

• transaction_write_set_extraction

Command-Line Format --transaction-write-set-
extraction[=value]

System Variable transaction_write_set_extraction

Scope Global, Session

Dynamic Yes

Type Enumeration

Default Value OFF

Valid Values (≥ 5.7.14) OFF

MURMUR32

XXHASH64

Valid Values (≤ 5.7.13) OFF

MURMUR32

Defines the algorithm used to generate a hash identifying the writes associated with a transaction. If you
are using Group Replication, the hash value is used for distributed conflict detection and handling. On
64-bit systems running Group Replication, we recommend setting this to XXHASH64 in order to avoid
unnecessary hash collisions which result in certification failures and the roll back of user transactions.
See Section 17.3.1, “Group Replication Requirements”. binlog_format must be set to ROW to change
the value of this variable. If you change the value, the new value does not take effect on replicas until
after the replica has been stopped and restarted with STOP SLAVE and START SLAVE statements.

Note

When WRITESET or WRITESET_SESSION is set as the value
for binlog_transaction_dependency_tracking,
transaction_write_set_extraction must be set to
specify an algorithm (not set to OFF). While the current value of
binlog_transaction_dependency_tracking is WRITESET

3070

Replication and Binary Logging Options and Variables

or WRITESET_SESSION, you cannot change the value of
transaction_write_set_extraction.

16.1.6.5 Global Transaction ID System Variables

The MySQL Server system variables described in this section are used to monitor and control Global
Transaction Identifiers (GTIDs). For additional information, see Section 16.1.3, “Replication with Global
Transaction Identifiers”.

• binlog_gtid_simple_recovery

Command-Line Format --binlog-gtid-simple-recovery[={OFF|
ON}]

System Variable binlog_gtid_simple_recovery

Scope Global

Dynamic No

Type Boolean

Default Value ON

This variable controls how binary log files are iterated during the search for GTIDs when MySQL starts or
restarts.

When binlog_gtid_simple_recovery=TRUE, which is the default, the values of gtid_executed
and gtid_purged are computed at startup based on the values of Previous_gtids_log_event in
the most recent and oldest binary log files. For a description of the computation, see The gtid_purged
System Variable. This setting accesses only two binary log files during server restart. If all binary logs
on the server were generated using MySQL 5.7.8 or later and you are using MySQL 5.7.8 or later,
binlog_gtid_simple_recovery=TRUE can always safely be used.

With binlog_gtid_simple_recovery=TRUE, gtid_executed and gtid_purged might be
initialized incorrectly in the following two situations:

• The newest binary log was generated by MySQL 5.7.5 or earlier, and gtid_mode was ON for some
binary logs but OFF for the newest binary log.

• A SET @@GLOBAL.gtid_purged statement was issued on MySQL 5.7.7 or earlier, and the binary
log that was active at the time of the SET @@GLOBAL.gtid_purged statement has not yet been
purged.

If an incorrect GTID set is computed in either situation, it remains incorrect even if the server is
later restarted with binlog_gtid_simple_recovery=FALSE. If either of these situations applies
on the server, set binlog_gtid_simple_recovery=FALSE before starting or restarting the
server. To check for the second situation, if you are using MySQL 5.7.7 or earlier, after issuing a SET
@@GLOBAL.gtid_purged statement note down the current binary log file name, which can be checked
using SHOW MASTER STATUS. If the server is restarted before this file has been purged, then you
should set binlog_gtid_simple_recovery=FALSE.

When binlog_gtid_simple_recovery=FALSE is set, the method of computing gtid_executed
and gtid_purged as described in The gtid_purged System Variable is changed to iterate the binary
log files as follows:

• Instead of using the value of Previous_gtids_log_event and GTID log events from the newest
binary log file, the computation for gtid_executed iterates from the newest binary log file, and uses
the value of Previous_gtids_log_event and any GTID log events from the first binary log file

3071

Replication and Binary Logging Options and Variables

where it finds a Previous_gtids_log_event value. If the server's most recent binary log files do
not have GTID log events, for example if gtid_mode=ON was used but the server was later changed
to gtid_mode=OFF, this process can take a long time.

• Instead of using the value of Previous_gtids_log_event from the oldest binary log file,
the computation for gtid_purged iterates from the oldest binary log file, and uses the value
of Previous_gtids_log_event from the first binary log file where it finds either a nonempty
Previous_gtids_log_event value, or at least one GTID log event (indicating that the use of
GTIDs starts at that point). If the server's older binary log files do not have GTID log events, for
example if gtid_mode=ON was only set recently on the server, this process can take a long time.

In MySQL version 5.7.5, this variable was added as simplified_binlog_gtid_recovery and in
MySQL version 5.7.6 it was renamed to binlog_gtid_simple_recovery.

• enforce_gtid_consistency

Command-Line Format --enforce-gtid-consistency[=value]

System Variable enforce_gtid_consistency

Scope Global

Dynamic Yes

Type Enumeration

Default Value OFF

Valid Values OFF

ON

WARN

Depending on the value of this variable, the server enforces GTID consistency by allowing execution of
only statements that can be safely logged using a GTID. You must set this variable to ON before enabling
GTID based replication.

The values that enforce_gtid_consistency can be configured to are:

• OFF: all transactions are allowed to violate GTID consistency.

• ON: no transaction is allowed to violate GTID consistency.

• WARN: all transactions are allowed to violate GTID consistency, but a warning is generated in this case.
WARN was added in MySQL 5.7.6.

Only statements that can be logged using GTID safe statements can be logged when
enforce_gtid_consistency is set to ON, so the operations listed here cannot be used with this
option:

• CREATE TABLE ... SELECT statements

• CREATE TEMPORARY TABLE or DROP TEMPORARY TABLE statements inside transactions

3072

Replication and Binary Logging Options and Variables

• Transactions or statements that update both transactional and nontransactional tables. There is an
exception that nontransactional DML is allowed in the same transaction or in the same statement as
transactional DML, if all nontransactional tables are temporary.

--enforce-gtid-consistency only takes effect if binary logging takes place for a statement. If
binary logging is disabled on the server, or if statements are not written to the binary log because they
are removed by a filter, GTID consistency is not checked or enforced for the statements that are not
logged.

For more information, see Section 16.1.3.6, “Restrictions on Replication with GTIDs”.

Prior to MySQL 5.7.6, the boolean enforce_gtid_consistency defaulted to OFF. To maintain
compatibility with previous releases, in MySQL 5.7.6 the enumeration defaults to OFF, and setting
--enforce-gtid-consistency without a value is interpreted as setting the value to ON. The
variable also has multiple textual aliases for the values: 0=OFF=FALSE, 1=ON=TRUE,2=WARN.
This differs from other enumeration types but maintains compatibility with the boolean type used
in previous versions. These changes impact on what is returned by the variable. Using SELECT
@@ENFORCE_GTID_CONSISTENCY, SHOW VARIABLES LIKE 'ENFORCE_GTID_CONSISTENCY',
and SELECT * FROM INFORMATION_SCHEMA.VARIABLES WHERE 'VARIABLE_NAME' =
'ENFORCE_GTID_CONSISTENCY', all return the textual form, not the numeric form. This is an
incompatible change, since @@ENFORCE_GTID_CONSISTENCY returns the numeric form for booleans
but returns the textual form for SHOW and the Information Schema.

• gtid_executed

System Variable gtid_executed

Scope Global

Dynamic No

Type String

Unit set of GTIDs

When used with global scope, this variable contains a representation of the set of all transactions
executed on the server and GTIDs that have been set by a SET gtid_purged statement. This is the
same as the value of the Executed_Gtid_Set column in the output of SHOW MASTER STATUS and
SHOW SLAVE STATUS. The value of this variable is a GTID set, see GTID Sets for more information.

When the server starts, @@GLOBAL.gtid_executed is initialized. See
binlog_gtid_simple_recovery for more information on how binary logs are iterated to populate
gtid_executed. GTIDs are then added to the set as transactions are executed, or if any SET
gtid_purged statement is executed.

The set of transactions that can be found in the binary logs at any given time is equal to
GTID_SUBTRACT(@@GLOBAL.gtid_executed, @@GLOBAL.gtid_purged); that is, to all
transactions in the binary log that have not yet been purged.

Issuing RESET MASTER causes the global value (but not the session value) of this variable to be reset to
an empty string. GTIDs are not otherwise removed from this set other than when the set is cleared due
to RESET MASTER.

Prior to MySQL 5.7.7, this variable could also be used with session scope, where it contained a
representation of the set of transactions that are written to the cache in the current session. The session
scope was deprecated in MySQL 5.7.7.

3073

Replication and Binary Logging Options and Variables

• gtid_executed_compression_period

Command-Line Format --gtid-executed-compression-period=#

System Variable gtid_executed_compression_period

Scope Global

Dynamic Yes

Type Integer

Default Value 1000

Minimum Value 0

Maximum Value 4294967295

Compress the mysql.gtid_executed table each time this many transactions have been processed.
When binary logging is enabled on the server, this compression method is not used, and instead the
mysql.gtid_executed table is compressed on each binary log rotation. When binary logging is
disabled on the server, the compression thread sleeps until the specified number of transactions have
been executed, then wakes up to perform compression of the mysql.gtid_executed table. Setting
the value of this system variable to 0 means that the thread never wakes up, so this explicit compression
method is not used. Instead, compression occurs implicitly as required.

See mysql.gtid_executed Table Compression for more information.

This variable was added in MySQL version 5.7.5 as executed_gtids_compression_period and
renamed in MySQL version 5.7.6 to gtid_executed_compression_period.

• gtid_mode

Command-Line Format --gtid-mode=MODE

System Variable gtid_mode

Scope Global

Dynamic Yes

Type Enumeration

Default Value OFF

Valid Values OFF

OFF_PERMISSIVE

ON_PERMISSIVE

ON

Controls whether GTID based logging is enabled and what type of transactions the logs can contain.
Prior to MySQL 5.7.6, this variable was read-only and was set using --gtid-mode at server startup
only. Prior to MySQL 5.7.5, starting the server with --gtid-mode=ON required that the server also be
started with the --log-bin and --log-slave-updates options. As of MySQL 5.7.5, this is no longer
a requirement. See mysql.gtid_executed Table.

MySQL 5.7.6 enables this variable to be set dynamically. You must have privileges
sufficient to set global system variables. See Section 5.1.8.1, “System Variable Privileges”.

3074

Replication and Binary Logging Options and Variables

enforce_gtid_consistency must be set to ON before you can set gtid_mode=ON. Before
modifying this variable, see Section 16.1.4, “Changing Replication Modes on Online Servers”.

Transactions logged in MySQL 5.7.6 and higher can be either anonymous or use GTIDs. Anonymous
transactions rely on binary log file and position to identify specific transactions. GTID transactions have
a unique identifier that is used to refer to transactions. The OFF_PERMISSIVE and ON_PERMISSIVE
modes added in MySQL 5.7.6 permit a mix of these transaction types in the topology. The different
modes are now:

• OFF: Both new and replicated transactions must be anonymous.

• OFF_PERMISSIVE: New transactions are anonymous. Replicated transactions can be either
anonymous or GTID transactions.

• ON_PERMISSIVE: New transactions are GTID transactions. Replicated transactions can be either
anonymous or GTID transactions.

• ON: Both new and replicated transactions must be GTID transactions.

Changes from one value to another can only be one step at a time. For example, if gtid_mode is
currently set to OFF_PERMISSIVE, it is possible to change to OFF or ON_PERMISSIVE but not to ON.

In MySQL 5.7.6 and higher, the values of gtid_purged and gtid_executed are persistent
regardless of the value of gtid_mode. Therefore even after changing the value of gtid_mode, these
variables contain the correct values. In MySQL 5.7.5 and earlier, the values of gtid_purged and
gtid_executed are not persistent while gtid_mode=OFF. Therefore, after changing gtid_mode to
OFF, once all binary logs containing GTIDs are purged, the values of these variables are lost.

• gtid_next

System Variable gtid_next

Scope Session

Dynamic Yes

Type Enumeration

Default Value AUTOMATIC

Valid Values AUTOMATIC

ANONYMOUS

<UUID>:<NUMBER>

This variable is used to specify whether and how the next GTID is obtained.

Setting the session value of this system variable is a restricted operation. The session user must have
privileges sufficient to set restricted session variables. See Section 5.1.8.1, “System Variable Privileges”.

gtid_next can take any of the following values:

• AUTOMATIC: Use the next automatically-generated global transaction ID.

• ANONYMOUS: Transactions do not have global identifiers, and are identified by file and position only.

3075

Replication and Binary Logging Options and Variables

• A global transaction ID in UUID:NUMBER format.

Exactly which of the above options are valid depends on the setting of gtid_mode, see
Section 16.1.4.1, “Replication Mode Concepts” for more information. Setting this variable has no effect if
gtid_mode is OFF.

After this variable has been set to UUID:NUMBER, and a transaction has been committed or rolled back,
an explicit SET GTID_NEXT statement must again be issued before any other statement.

In MySQL 5.7.5 and higher, DROP TABLE or DROP TEMPORARY TABLE fails with an explicit error when
used on a combination of nontemporary tables with temporary tables, or of temporary tables using
transactional storage engines with temporary tables using nontransactional storage engines. Prior to
MySQL 5.7.5, when GTIDs were enabled but gtid_next was not AUTOMATIC, DROP TABLE did not
work correctly when used with either of these combinations of tables. (Bug #17620053)

In MySQL 5.7.1, you cannot execute any of the statements CHANGE MASTER TO, START SLAVE, STOP
SLAVE, REPAIR TABLE, OPTIMIZE TABLE, ANALYZE TABLE, CHECK TABLE, CREATE SERVER,
ALTER SERVER, DROP SERVER, CACHE INDEX, LOAD INDEX INTO CACHE, FLUSH, or RESET when
gtid_next is set to any value other than AUTOMATIC; in such cases, the statement fails with an error.
Such statements are not disallowed in MySQL 5.7.2 and later. (Bug #16062608, Bug #16715809, Bug
#69045) (Bug #16062608)

• gtid_owned

System Variable gtid_owned

Scope Global, Session

Dynamic No

Type String

Unit set of GTIDs

This read-only variable is primarily for internal use. Its contents depend on its scope.

• When used with global scope, gtid_owned holds a list of all the GTIDs that are currently in use
on the server, with the IDs of the threads that own them. This variable is mainly useful for a multi-
threaded replica to check whether a transaction is already being applied on another thread. An
applier thread takes ownership of a transaction's GTID all the time it is processing the transaction,
so @@global.gtid_owned shows the GTID and owner for the duration of processing. When a
transaction has been committed (or rolled back), the applier thread releases ownership of the GTID.

• When used with session scope, gtid_owned holds a single GTID that is currently in use by and
owned by this session. This variable is mainly useful for testing and debugging the use of GTIDs
when the client has explicitly assigned a GTID for the transaction by setting gtid_next. In this case,
@@session.gtid_owned displays the GTID all the time the client is processing the transaction,
until the transaction has been committed (or rolled back). When the client has finished processing the
transaction, the variable is cleared. If gtid_next=AUTOMATIC is used for the session, gtid_owned
is only populated briefly during the execution of the commit statement for the transaction, so it cannot
be observed from the session concerned, although it is listed if @@global.gtid_owned is read at the
right point. If you have a requirement to track the GTIDs that are handled by a client in a session, you
can enable the session state tracker controlled by the session_track_gtids system variable.

• gtid_purged

System Variable gtid_purged

3076

Replication and Binary Logging Options and Variables

Scope Global

Dynamic Yes

Type String

Unit set of GTIDs

The global value of the gtid_purged system variable (@@GLOBAL.gtid_purged) is a GTID set
consisting of the GTIDs of all the transactions that have been committed on the server, but do not
exist in any binary log file on the server. gtid_purged is a subset of gtid_executed. The following
categories of GTIDs are in gtid_purged:

• GTIDs of replicated transactions that were committed with binary logging disabled on the replica.

• GTIDs of transactions that were written to a binary log file that has now been purged.

• GTIDs that were added explicitly to the set by the statement SET @@GLOBAL.gtid_purged.

When the server starts or restarts, the global value of gtid_purged is initialized to a set of
GTIDs. For information on how this GTID set is computed, see The gtid_purged System
Variable. If binary logs from MySQL 5.7.7 or older are present on the server, you might need to set
binlog_gtid_simple_recovery=FALSE in the server's configuration file to produce the correct
computation. See the description for binlog_gtid_simple_recovery for details of the situations in
which this setting is needed.

Issuing RESET MASTER causes the value of gtid_purged to be reset to an empty string.

You can set the value of gtid_purged in order to record on the server that the transactions in a certain
GTID set have been applied, although they do not exist in any binary log on the server. An example use
case for this action is when you are restoring a backup of one or more databases on a server, but you do
not have the relevant binary logs containing the transactions on the server.

Important

GTIDs are only available on a server instance up to the number of non-negative
values for a signed 64-bit integer (2 to the power of 63, minus 1). If you set the
value of gtid_purged to a number that approaches this limit, subsequent
commits can cause the server to run out of GTIDs and take the action specified
by binlog_error_action.

In MySQL 5.7, it is possible to update the value of gtid_purged only when gtid_executed is the
empty string, and therefore gtid_purged is the empty string. This is the case either when replication
has not been started previously, or when replication did not previously use GTIDs. Prior to MySQL
5.7.6, gtid_purged was also settable only when gtid_mode=ON. In MySQL 5.7.6 and higher,
gtid_purged is settable regardless of the value of gtid_mode.

To replace the value of gtid_purged with your specified GTID set, use the following statement:

SET @@GLOBAL.gtid_purged = 'gtid_set'

Note

If you are using MySQL 5.7.7 or earlier, after issuing a SET
@@GLOBAL.gtid_purged statement, you might need to set
binlog_gtid_simple_recovery=FALSE in the server's configuration
file before restarting the server, otherwise gtid_purged can be computed
incorrectly. See the description for binlog_gtid_simple_recovery for

3077

Common Replication Administration Tasks

details of the situations in which this setting is needed. If all binary logs on the
server were generated using MySQL 5.7.8 or later and you are using MySQL
5.7.8 or later, binlog_gtid_simple_recovery=TRUE (which is the default
setting from MySQL 5.7.7) can always safely be used.

16.1.7 Common Replication Administration Tasks

Once replication has been started it executes without requiring much regular administration. This section
describes how to check the status of replication and how to pause a replica.

16.1.7.1 Checking Replication Status

The most common task when managing a replication process is to ensure that replication is taking place
and that there have been no errors between the replica and the source.

The SHOW SLAVE STATUS statement, which you must execute on each replica, provides information
about the configuration and status of the connection between the replica server and the source server.
From MySQL 5.7, the Performance Schema has replication tables that provide this information in a more
accessible form. See Section 25.12.11, “Performance Schema Replication Tables”.

The SHOW STATUS statement also provided some information relating specifically to replicas. As of MySQL
version 5.7.5, the following status variables previously monitored using SHOW STATUS were deprecated
and moved to the Performance Schema replication tables:

• Slave_retried_transactions

• Slave_last_heartbeat

• Slave_received_heartbeats

• Slave_heartbeat_period

• Slave_running

The replication heartbeat information shown in the Performance Schema replication tables lets you check
that the replication connection is active even if the source has not sent events to the replica recently.
The source sends a heartbeat signal to a replica if there are no updates to, and no unsent events in, the
binary log for a longer period than the heartbeat interval. The MASTER_HEARTBEAT_PERIOD setting
on the source (set by the CHANGE MASTER TO statement) specifies the frequency of the heartbeat,
which defaults to half of the connection timeout interval for the replica (slave_net_timeout). The
replication_connection_status Performance Schema table shows when the most recent heartbeat
signal was received by a replica, and how many heartbeat signals it has received.

If you are using the SHOW SLAVE STATUS statement to check on the status of an individual replica, the
statement provides the following information:

mysql> SHOW SLAVE STATUS\G
*************************** 1. row ***************************
 Slave_IO_State: Waiting for master to send event
 Master_Host: source1
 Master_User: root
 Master_Port: 3306
 Connect_Retry: 60
 Master_Log_File: mysql-bin.000004
 Read_Master_Log_Pos: 931
 Relay_Log_File: replica1-relay-bin.000056
 Relay_Log_Pos: 950
 Relay_Master_Log_File: mysql-bin.000004

3078

Common Replication Administration Tasks

 Slave_IO_Running: Yes
 Slave_SQL_Running: Yes
 Replicate_Do_DB:
 Replicate_Ignore_DB:
 Replicate_Do_Table:
 Replicate_Ignore_Table:
 Replicate_Wild_Do_Table:
 Replicate_Wild_Ignore_Table:
 Last_Errno: 0
 Last_Error:
 Skip_Counter: 0
 Exec_Master_Log_Pos: 931
 Relay_Log_Space: 1365
 Until_Condition: None
 Until_Log_File:
 Until_Log_Pos: 0
 Master_SSL_Allowed: No
 Master_SSL_CA_File:
 Master_SSL_CA_Path:
 Master_SSL_Cert:
 Master_SSL_Cipher:
 Master_SSL_Key:
 Seconds_Behind_Master: 0
Master_SSL_Verify_Server_Cert: No
 Last_IO_Errno: 0
 Last_IO_Error:
 Last_SQL_Errno: 0
 Last_SQL_Error:
 Replicate_Ignore_Server_Ids: 0

The key fields from the status report to examine are:

• Slave_IO_State: The current status of the replica. See Section 8.14.6, “Replication Replica I/O
Thread States”, and Section 8.14.7, “Replication Replica SQL Thread States”, for more information.

• Slave_IO_Running: Whether the I/O thread for reading the source's binary log is running. Normally,
you want this to be Yes unless you have not yet started replication or have explicitly stopped it with STOP
SLAVE.

• Slave_SQL_Running: Whether the SQL thread for executing events in the relay log is running. As with
the I/O thread, this should normally be Yes.

• Last_IO_Error, Last_SQL_Error: The last errors registered by the I/O and SQL threads when
processing the relay log. Ideally these should be blank, indicating no errors.

• Seconds_Behind_Master: The number of seconds that the replication SQL thread is behind
processing the source's binary log. A high number (or an increasing one) can indicate that the replica is
unable to handle events from the source in a timely fashion.

A value of 0 for Seconds_Behind_Master can usually be interpreted as meaning that the replica has
caught up with the source, but there are some cases where this is not strictly true. For example, this can
occur if the network connection between source and replica is broken but the replication I/O thread has
not yet noticed this—that is, slave_net_timeout has not yet elapsed.

It is also possible that transient values for Seconds_Behind_Master may not reflect the situation
accurately. When the replication SQL thread has caught up on I/O, Seconds_Behind_Master displays
0; but when the replication I/O thread is still queuing up a new event, Seconds_Behind_Master may
show a large value until the SQL thread finishes executing the new event. This is especially likely when
the events have old timestamps; in such cases, if you execute SHOW SLAVE STATUS several times
in a relatively short period, you may see this value change back and forth repeatedly between 0 and a
relatively large value.

3079

Common Replication Administration Tasks

Several pairs of fields provide information about the progress of the replica in reading events from the
source's binary log and processing them in the relay log:

• (Master_Log_file, Read_Master_Log_Pos): Coordinates in the source's binary log indicating how
far the replication I/O thread has read events from that log.

• (Relay_Master_Log_File, Exec_Master_Log_Pos): Coordinates in the source's binary log
indicating how far the replication SQL thread has executed events received from that log.

• (Relay_Log_File, Relay_Log_Pos): Coordinates in the replica's relay log indicating how far the
replication SQL thread has executed the relay log. These correspond to the preceding coordinates, but
are expressed in the replica's relay log coordinates rather than the source's binary log coordinates.

On the source, you can check the status of connected replicas using SHOW PROCESSLIST to examine the
list of running processes. Replica connections have Binlog Dump in the Command field:

mysql> SHOW PROCESSLIST \G;
*************************** 4. row ***************************
 Id: 10
 User: root
 Host: replica1:58371
 db: NULL
Command: Binlog Dump
 Time: 777
 State: Has sent all binlog to slave; waiting for binlog to be updated
 Info: NULL

Because it is the replica that drives the replication process, very little information is available in this report.

For replicas that were started with the --report-host option and are connected to the source, the SHOW
SLAVE HOSTS statement on the source shows basic information about the replicas. The output includes
the ID of the replica server, the value of the --report-host option, the connecting port, and source ID:

mysql> SHOW SLAVE HOSTS;
+-----------+----------+------+-------------------+-----------+
| Server_id | Host | Port | Rpl_recovery_rank | Master_id |
+-----------+----------+------+-------------------+-----------+
| 10 | replica1 | 3306 | 0 | 1 |
+-----------+----------+------+-------------------+-----------+
1 row in set (0.00 sec)

16.1.7.2 Pausing Replication on the Replica

You can stop and start replication on the replica using the STOP SLAVE and START SLAVE statements.

To stop processing of the binary log from the source, use STOP SLAVE:

mysql> STOP SLAVE;

When replication is stopped, the replication I/O thread stops reading events from the source's binary log
and writing them to the relay log, and the replication SQL thread stops reading events from the relay log
and executing them. You can pause the replication I/O and SQL threads individually by specifying the
thread type:

mysql> STOP SLAVE IO_THREAD;
mysql> STOP SLAVE SQL_THREAD;

To start execution again, use the START SLAVE statement:

mysql> START SLAVE;

3080

Common Replication Administration Tasks

To start a particular thread, specify the thread type:

mysql> START SLAVE IO_THREAD;
mysql> START SLAVE SQL_THREAD;

For a replica that performs updates only by processing events from the source, stopping only the
replication SQL thread can be useful if you want to perform a backup or other task. The replication I/O
thread continues to read events from the source but they are not executed. This makes it easier for the
replica to catch up when you restart the replication SQL thread.

Stopping only the replication I/O thread enables the events in the relay log to be executed by the
replication SQL thread up to the point where the relay log ends. This can be useful when you want to
pause execution to catch up with events already received from the source, when you want to perform
administration on the replica but also ensure that it has processed all updates to a specific point. This
method can also be used to pause event receipt on the replica while you conduct administration on the
source. Stopping the I/O thread but permitting the SQL thread to run helps ensure that there is not a
massive backlog of events to be executed when replication is started again.

16.1.7.3 Skipping Transactions

If replication stops due to an issue with an event in a replicated transaction, you can resume replication by
skipping the failed transaction on the replica. Before skipping a transaction, ensure that the replication I/O
thread is stopped as well as the replication SQL thread.

First you need to identify the replicated event that caused the error. Details of the error and
the last successfully applied transaction are recorded in the Performance Schema table
replication_applier_status_by_worker. You can use mysqlbinlog to retrieve and display the
events that were logged around the time of the error. For instructions to do this, see Section 7.5, “Point-
in-Time (Incremental) Recovery”. Alternatively, you can issue SHOW RELAYLOG EVENTS on the replica or
SHOW BINLOG EVENTS on the source.

Before skipping the transaction and restarting the replica, check these points:

• Is the transaction that stopped replication from an unknown or untrusted source? If so, investigate the
cause in case there are any security considerations that indicate the replica should not be restarted.

• Does the transaction that stopped replication need to be applied on the replica? If so, either make the
appropriate corrections and reapply the transaction, or manually reconcile the data on the replica.

• Did the transaction that stopped replication need to be applied on the source? If not, undo the
transaction manually on the server where it originally took place.

To skip the transaction, choose one of the following methods as appropriate:

• When GTIDs are in use (gtid_mode is ON), see Skipping Transactions With GTIDs .

• When GTIDs are not in use or are being phased in (gtid_mode is OFF, OFF_PERMISSIVE, or
ON_PERMISSIVE), see Skipping Transactions Without GTIDs.

To restart replication after skipping the transaction, issue START SLAVE, with the FOR CHANNEL clause if
the replica is a multi-source replica.

Skipping Transactions With GTIDs

When GTIDs are in use (gtid_mode is ON), the GTID for a committed transaction is persisted on the
replica even if the content of the transaction is filtered out. This feature prevents a replica from retrieving

3081

Common Replication Administration Tasks

previously filtered transactions when it reconnects to the source using GTID auto-positioning. It can also
be used to skip a transaction on the replica, by committing an empty transaction in place of the failing
transaction.

If the failing transaction generated an error in a worker thread, you can obtain its GTID
directly from the APPLYING_TRANSACTION field in the Performance Schema table
replication_applier_status_by_worker. To see what the transaction is, issue SHOW RELAYLOG
EVENTS on the replica or SHOW BINLOG EVENTS on the source, and search the output for a transaction
preceded by that GTID.

When you have assessed the failing transaction for any other appropriate actions as described previously
(such as security considerations), to skip it, commit an empty transaction on the replica that has the same
GTID as the failing transaction. For example:

SET GTID_NEXT='aaa-bbb-ccc-ddd:N';
BEGIN;
COMMIT;
SET GTID_NEXT='AUTOMATIC';

The presence of this empty transaction on the replica means that when you issue a START SLAVE
statement to restart replication, the replica uses the auto-skip function to ignore the failing transaction,
because it sees a transaction with that GTID has already been applied. If the replica is a multi-source
replica, you do not need to specify the channel name when you commit the empty transaction, but you do
need to specify the channel name when you issue START SLAVE.

Note that if binary logging is in use on this replica, the empty transaction enters the replication stream if
the replica becomes a source or primary in the future. If you need to avoid this possibility, consider flushing
and purging the replica's binary logs, as in this example:

FLUSH LOGS;
PURGE BINARY LOGS TO 'binlog.000146';

The GTID of the empty transaction is persisted, but the transaction itself is removed by purging the binary
log files.

Skipping Transactions Without GTIDs

To skip failing transactions when GTIDs are not in use or are being phased in (gtid_mode is OFF,
OFF_PERMISSIVE, or ON_PERMISSIVE), you can skip a specified number of events by issuing a SET
GLOBAL sql_slave_skip_counter statement. Alternatively, you can skip past an event or events by
issuing a CHANGE MASTER TO statement to move the source's binary log position forward.

When you use these methods, it is important to understand that you are not necessarily skipping a
complete transaction, as is always the case with the GTID-based method described previously. These non-
GTID-based methods are not aware of transactions as such, but instead operate on events. The binary
log is organized as a sequence of groups known as event groups, and each event group consists of a
sequence of events.

• For transactional tables, an event group corresponds to a transaction.

• For nontransactional tables, an event group corresponds to a single SQL statement.

A single transaction can contain changes to both transactional and nontransactional tables.

When you use a SET GLOBAL sql_slave_skip_counter statement to skip events and the resulting
position is in the middle of an event group, the replica continues to skip events until it reaches the end
of the group. Execution then starts with the next event group. The CHANGE MASTER TO statement does

3082

Common Replication Administration Tasks

not have this function, so you must be careful to identify the correct location to restart replication at the
beginning of an event group. However, using CHANGE MASTER TO means you do not have to count the
events that need to be skipped, as you do with a SET GLOBAL sql_slave_skip_counter, and instead
you can just specify the location to restart.

Skipping Transactions With SET GLOBAL sql_slave_skip_counter

When you have assessed the failing transaction for any other appropriate actions as described previously
(such as security considerations), count the number of events that you need to skip. One event normally
corresponds to one SQL statement in the binary log, but note that statements that use AUTO_INCREMENT
or LAST_INSERT_ID() count as two events in the binary log.

If you want to skip the complete transaction, you can count the events to the end of the transaction, or you
can just skip the relevant event group. Remember that with SET GLOBAL sql_slave_skip_counter,
the replica continues to skip to the end of an event group. Make sure you do not skip too far forward and
go into the next event group or transaction, as this then causes it to be skipped as well.

Issue the SET statement as follows, where N is the number of events from the source to skip:

SET GLOBAL sql_slave_skip_counter = N

This statement cannot be issued if gtid_mode=ON is set, or if the replica threads are running.

The SET GLOBAL sql_slave_skip_counter statement has no immediate effect. When you issue
the START SLAVE statement for the next time following this SET statement, the new value for the system
variable sql_slave_skip_counter is applied, and the events are skipped. That START SLAVE
statement also automatically sets the value of the system variable back to 0. If the replica is a multi-source
replica, when you issue that START SLAVE statement, the FOR CHANNEL clause is required. Make sure
that you name the correct channel, otherwise events are skipped on the wrong channel.

Skipping Transactions With CHANGE MASTER TO

When you have assessed the failing transaction for any other appropriate actions as described previously
(such as security considerations), identify the coordinates (file and position) in the source's binary log that
represent a suitable position to restart replication. This can be the start of the event group following the
event that caused the issue, or the start of the next transaction. The replication I/O thread begins reading
from the source at these coordinates the next time the thread starts, skipping the failing event. Make sure
that you have identified the position accurately, because this statement does not take event groups into
account.

Issue the CHANGE MASTER TO statement as follows, where source_log_name is the binary log file that
contains the restart position, and source_log_pos is the number representing the restart position as
stated in the binary log file:

CHANGE MASTER TO MASTER_LOG_FILE='source_log_name', MASTER_LOG_POS=source_log_pos;

If the replica is a multi-source replica, you must use the FOR CHANNEL clause to name the appropriate
channel on the CHANGE MASTER TO statement.

This statement cannot be issued if MASTER_AUTO_POSITION=1 is set, or if the replication threads are
running. If you need to use this method of skipping a transaction when MASTER_AUTO_POSITION=1 is
normally set, you can change the setting to MASTER_AUTO_POSITION=0 while issuing the statement, then
change it back again afterwards. For example:

CHANGE MASTER TO MASTER_AUTO_POSITION=0, MASTER_LOG_FILE='binlog.000145', MASTER_LOG_POS=235;
CHANGE MASTER TO MASTER_AUTO_POSITION=1;

3083

Replication Implementation

16.2 Replication Implementation
Replication is based on the replication source server keeping track of all changes to its databases
(updates, deletes, and so on) in its binary log. The binary log serves as a written record of all events that
modify database structure or content (data) from the moment the server was started. Typically, SELECT
statements are not recorded because they modify neither database structure nor content.

Each replica that connects to the source requests a copy of the binary log. That is, it pulls the data from the
source, rather than the source pushing the data to the replica. The replica also executes the events from
the binary log that it receives. This has the effect of repeating the original changes just as they were made
on the source. Tables are created or their structure modified, and data is inserted, deleted, and updated
according to the changes that were originally made on the source.

Because each replica is independent, the replaying of the changes from the source's binary log occurs
independently on each replica that is connected to the source. In addition, because each replica receives a
copy of the binary log only by requesting it from the source, the replica is able to read and update the copy
of the database at its own pace and can start and stop the replication process at will without affecting the
ability to update to the latest database status on either the source or replica side.

For more information on the specifics of the replication implementation, see Section 16.2.3, “Replication
Threads”.

Sources and replicas report their status in respect of the replication process regularly so that you can
monitor them. See Section 8.14, “Examining Server Thread (Process) Information”, for descriptions of all
replicated-related states.

The source's binary log is written to a local relay log on the replica before it is processed. The replica also
records information about the current position with the source's binary log and the replica's relay log. See
Section 16.2.4, “Relay Log and Replication Metadata Repositories”.

Database changes are filtered on the replica according to a set of rules that are applied according to the
various configuration options and variables that control event evaluation. For details on how these rules are
applied, see Section 16.2.5, “How Servers Evaluate Replication Filtering Rules”.

16.2.1 Replication Formats

Replication works because events written to the binary log are read from the source and then processed
on the replica. The events are recorded within the binary log in different formats according to the type of
event. The different replication formats used correspond to the binary logging format used when the events
were recorded in the source's binary log. The correlation between binary logging formats and the terms
used during replication are:

• When using statement-based binary logging, the source writes SQL statements to the binary log.
Replication of the source to the replica works by executing the SQL statements on the replica. This
is called statement-based replication (which can be abbreviated as SBR), which corresponds to the
MySQL statement-based binary logging format.

• When using row-based logging, the source writes events to the binary log that indicate how individual
table rows are changed. Replication of the source to the replica works by copying the events
representing the changes to the table rows to the replica. This is called row-based replication (which can
be abbreviated as RBR).

• You can also configure MySQL to use a mix of both statement-based and row-based logging, depending
on which is most appropriate for the change to be logged. This is called mixed-format logging. When
using mixed-format logging, a statement-based log is used by default. Depending on certain statements,
and also the storage engine being used, the log is automatically switched to row-based in particular

3084

Replication Formats

cases. Replication using the mixed format is referred to as mixed-based replication or mixed-format
replication. For more information, see Section 5.4.4.3, “Mixed Binary Logging Format”.

Prior to MySQL 5.7.7, statement-based format was the default. In MySQL 5.7.7 and later, row-based
format is the default.

NDB Cluster. The default binary logging format in MySQL NDB Cluster 7.5 is MIXED. You should
note that NDB Cluster Replication always uses row-based replication, and that the NDB storage engine
is incompatible with statement-based replication. See Section 21.7.2, “General Requirements for NDB
Cluster Replication”, for more information.

When using MIXED format, the binary logging format is determined in part by the storage engine being
used and the statement being executed. For more information on mixed-format logging and the rules
governing the support of different logging formats, see Section 5.4.4.3, “Mixed Binary Logging Format”.

The logging format in a running MySQL server is controlled by setting the binlog_format server system
variable. This variable can be set with session or global scope. The rules governing when and how the
new setting takes effect are the same as for other MySQL server system variables. Setting the variable for
the current session lasts only until the end of that session, and the change is not visible to other sessions.
Setting the variable globally takes effect for clients that connect after the change, but not for any current
client sessions, including the session where the variable setting was changed. To make the global system
variable setting permanent so that it applies across server restarts, you must set it in an option file. For
more information, see Section 13.7.4.1, “SET Syntax for Variable Assignment”.

There are conditions under which you cannot change the binary logging format at runtime or doing so
causes replication to fail. See Section 5.4.4.2, “Setting The Binary Log Format”.

Changing the global binlog_format value requires privileges sufficient to set global system variables.
Changing the session binlog_format value requires privileges sufficient to set restricted session system
variables. See Section 5.1.8.1, “System Variable Privileges”.

The statement-based and row-based replication formats have different issues and limitations. For a
comparison of their relative advantages and disadvantages, see Section 16.2.1.1, “Advantages and
Disadvantages of Statement-Based and Row-Based Replication”.

With statement-based replication, you may encounter issues with replicating stored routines or
triggers. You can avoid these issues by using row-based replication instead. For more information, see
Section 23.7, “Stored Program Binary Logging”.

16.2.1.1 Advantages and Disadvantages of Statement-Based and Row-Based Replication

Each binary logging format has advantages and disadvantages. For most users, the mixed replication
format should provide the best combination of data integrity and performance. If, however, you want to
take advantage of the features specific to the statement-based or row-based replication format when
performing certain tasks, you can use the information in this section, which provides a summary of their
relative advantages and disadvantages, to determine which is best for your needs.

• Advantages of statement-based replication

• Disadvantages of statement-based replication

• Advantages of row-based replication

• Disadvantages of row-based replication

Advantages of statement-based replication

• Proven technology.

3085

Replication Formats

• Less data written to log files. When updates or deletes affect many rows, this results in much less
storage space required for log files. This also means that taking and restoring from backups can be
accomplished more quickly.

• Log files contain all statements that made any changes, so they can be used to audit the database.

Disadvantages of statement-based replication

• Statements that are unsafe for SBR.
Not all statements which modify data (such as INSERT DELETE, UPDATE, and REPLACE statements)
can be replicated using statement-based replication. Any nondeterministic behavior is difficult to
replicate when using statement-based replication. Examples of such Data Modification Language (DML)
statements include the following:

• A statement that depends on a loadable function or stored program that is nondeterministic, since the
value returned by such a function or stored program depends on factors other than the parameters
supplied to it. (Row-based replication, however, simply replicates the value returned by the function or
stored program, so its effect on table rows and data is the same on both the source and replica.) See
Section 16.4.1.16, “Replication of Invoked Features”, for more information.

• DELETE and UPDATE statements that use a LIMIT clause without an ORDER BY are nondeterministic.
See Section 16.4.1.17, “Replication and LIMIT”.

• Deterministic loadable functions must be applied on the replicas.

• Statements using any of the following functions cannot be replicated properly using statement-based
replication:

• LOAD_FILE()

• UUID(), UUID_SHORT()

• USER()

• FOUND_ROWS()

• SYSDATE() (unless both the source and the replica are started with the --sysdate-is-now
option)

• GET_LOCK()

• IS_FREE_LOCK()

• IS_USED_LOCK()

• MASTER_POS_WAIT()

• RAND()

• RELEASE_LOCK()

• SLEEP()

• VERSION()

However, all other functions are replicated correctly using statement-based replication, including
NOW() and so forth.

3086

Replication Formats

For more information, see Section 16.4.1.15, “Replication and System Functions”.

Statements that cannot be replicated correctly using statement-based replication are logged with a
warning like the one shown here:

[Warning] Statement is not safe to log in statement format.

A similar warning is also issued to the client in such cases. The client can display it using SHOW
WARNINGS.

• INSERT ... SELECT requires a greater number of row-level locks than with row-based replication.

• UPDATE statements that require a table scan (because no index is used in the WHERE clause) must lock
a greater number of rows than with row-based replication.

• For InnoDB: An INSERT statement that uses AUTO_INCREMENT blocks other nonconflicting INSERT
statements.

• For complex statements, the statement must be evaluated and executed on the replica before the rows
are updated or inserted. With row-based replication, the replica only has to modify the affected rows, not
execute the full statement.

• If there is an error in evaluation on the replica, particularly when executing complex statements,
statement-based replication may slowly increase the margin of error across the affected rows over time.
See Section 16.4.1.27, “Replica Errors During Replication”.

• Stored functions execute with the same NOW() value as the calling statement. However, this is not true
of stored procedures.

• Table definitions must be (nearly) identical on source and replica. See Section 16.4.1.10, “Replication
with Differing Table Definitions on Source and Replica”, for more information.

Advantages of row-based replication

• All changes can be replicated. This is the safest form of replication.

Note

Statements that update the information in the mysql system database, such
as GRANT, REVOKE and the manipulation of triggers, stored routines (including
stored procedures), and views, are all replicated to replicas using statement-
based replication.

For statements such as CREATE TABLE ... SELECT, a CREATE statement is
generated from the table definition and replicated using statement-based format,
while the row insertions are replicated using row-based format.

• Fewer row locks are required on the source, which thus achieves higher concurrency, for the following
types of statements:

• INSERT ... SELECT

• INSERT statements with AUTO_INCREMENT

• UPDATE or DELETE statements with WHERE clauses that do not use keys or do not change most of the
examined rows.

• Fewer row locks are required on the replica for any INSERT, UPDATE, or DELETE statement.

3087

Replication Formats

Disadvantages of row-based replication

• RBR can generate more data that must be logged. To replicate a DML statement (such as an UPDATE or
DELETE statement), statement-based replication writes only the statement to the binary log. By contrast,
row-based replication writes each changed row to the binary log. If the statement changes many rows,
row-based replication may write significantly more data to the binary log; this is true even for statements
that are rolled back. This also means that making and restoring a backup can require more time. In
addition, the binary log is locked for a longer time to write the data, which may cause concurrency
problems. Use binlog_row_image=minimal to reduce the disadvantage considerably.

• Deterministic loadable functions that generate large BLOB values take longer to replicate with row-based
replication than with statement-based replication. This is because the BLOB column value is logged,
rather than the statement generating the data.

• You cannot see on the replica what statements were received from the source and executed.
However, you can see what data was changed using mysqlbinlog with the options --base64-
output=DECODE-ROWS and --verbose.

Alternatively, use the binlog_rows_query_log_events variable, which if enabled adds a
Rows_query event with the statement to mysqlbinlog output when the -vv option is used.

• For tables using the MyISAM storage engine, a stronger lock is required on the replica for INSERT
statements when applying them as row-based events to the binary log than when applying them as
statements. This means that concurrent inserts on MyISAM tables are not supported when using row-
based replication.

16.2.1.2 Usage of Row-Based Logging and Replication

MySQL uses statement-based logging (SBL), row-based logging (RBL) or mixed-format logging. The type
of binary log used impacts the size and efficiency of logging. Therefore the choice between row-based
replication (RBR) or statement-based replication (SBR) depends on your application and environment. This
section describes known issues when using a row-based format log, and describes some best practices
using it in replication.

For additional information, see Section 16.2.1, “Replication Formats”, and Section 16.2.1.1, “Advantages
and Disadvantages of Statement-Based and Row-Based Replication”.

For information about issues specific to NDB Cluster Replication (which depends on row-based
replication), see Section 21.7.3, “Known Issues in NDB Cluster Replication”.

• Row-based logging of temporary tables. As noted in Section 16.4.1.29, “Replication and
Temporary Tables”, temporary tables are not replicated when using row-based format. When using
mixed format logging, “safe” statements involving temporary tables are logged using statement-based
format. For more information, see Section 16.2.1.1, “Advantages and Disadvantages of Statement-
Based and Row-Based Replication”.

Temporary tables are not replicated when using row-based format because there is no need. In addition,
because temporary tables can be read only from the thread which created them, there is seldom if ever
any benefit obtained from replicating them, even when using statement-based format.

You can switch from statement-based to row-based binary logging format at runtime even when
temporary tables have been created. From MySQL 5.7.25, the MySQL server tracks the logging mode
that was in effect when each temporary table was created. When a given client session ends, the server
logs a DROP TEMPORARY TABLE IF EXISTS statement for each temporary table that still exists and
was created when statement-based binary logging was in use. If row-based or mixed format binary
logging was in use when the table was created, the DROP TEMPORARY TABLE IF EXISTS statement

3088

Replication Formats

is not logged. In previous releases, the DROP TEMPORARY TABLE IF EXISTS statement was logged
regardless of the logging mode that was in effect.

Nontransactional DML statements involving temporary tables are allowed when using
binlog_format=ROW, as long as any nontransactional tables affected by the statements are temporary
tables (Bug #14272672).

• RBL and synchronization of nontransactional tables. When many rows are affected, the set of
changes is split into several events; when the statement commits, all of these events are written to the
binary log. When executing on the replica, a table lock is taken on all tables involved, and then the rows
are applied in batch mode. Depending on the engine used for the replica's copy of the table, this may or
may not be effective.

• Latency and binary log size. RBL writes changes for each row to the binary log and so its size can
increase quite rapidly. This can significantly increase the time required to make changes on the replica
that match those on the source. You should be aware of the potential for this delay in your applications.

• Reading the binary log. mysqlbinlog displays row-based events in the binary log using the
BINLOG statement (see Section 13.7.6.1, “BINLOG Statement”). This statement displays an event as
a base 64-encoded string, the meaning of which is not evident. When invoked with the --base64-
output=DECODE-ROWS and --verbose options, mysqlbinlog formats the contents of the binary log
to be human readable. When binary log events were written in row-based format and you want to read or
recover from a replication or database failure you can use this command to read contents of the binary
log. For more information, see Section 4.6.7.2, “mysqlbinlog Row Event Display”.

• Binary log execution errors and replica execution mode. Using
slave_exec_mode=IDEMPOTENT is generally only useful with MySQL NDB Cluster replication, for
which IDEMPOTENT is the default value. (See Section 21.7.10, “NDB Cluster Replication: Bidirectional
and Circular Replication”). When slave_exec_mode is IDEMPOTENT, a failure to apply changes
from RBL because the original row cannot be found does not trigger an error or cause replication to
fail. This means that it is possible that updates are not applied on the replica, so that the source and
replica are no longer synchronized. Latency issues and use of nontransactional tables with RBR when
slave_exec_mode is IDEMPOTENT can cause the source and replica to diverge even further. For more
information about slave_exec_mode, see Section 5.1.7, “Server System Variables”.

For other scenarios, setting slave_exec_mode to STRICT is normally sufficient; this is the default value
for storage engines other than NDB.

• Filtering based on server ID not supported. You can filter based on server ID by using the
IGNORE_SERVER_IDS option for the CHANGE MASTER TO statement. This option works with statement-
based and row-based logging formats. Another method to filter out changes on some replicas is to use a
WHERE clause that includes the relation @@server_id <> id_value clause with UPDATE and DELETE
statements. For example, WHERE @@server_id <> 1. However, this does not work correctly with
row-based logging. To use the server_id system variable for statement filtering, use statement-based
logging.

• RBL, nontransactional tables, and stopped replicas. When using row-based logging, if the replica
server is stopped while a replication thread is updating a nontransactional table, the replica database
can reach an inconsistent state. For this reason, it is recommended that you use a transactional storage
engine such as InnoDB for all tables replicated using the row-based format. Use of STOP SLAVE
or STOP SLAVE SQL_THREAD prior to shutting down the replica server helps prevent issues from
occurring, and is always recommended regardless of the logging format or storage engine you use.

16.2.1.3 Determination of Safe and Unsafe Statements in Binary Logging

3089

Replication Formats

The “safeness” of a statement in MySQL Replication, refers to whether the statement and its effects can be
replicated correctly using statement-based format. If this is true of the statement, we refer to the statement
as safe; otherwise, we refer to it as unsafe.

In general, a statement is safe if it deterministic, and unsafe if it is not. However, certain nondeterministic
functions are not considered unsafe (see Nondeterministic functions not considered unsafe, later in this
section). In addition, statements using results from floating-point math functions—which are hardware-
dependent—are always considered unsafe (see Section 16.4.1.12, “Replication and Floating-Point
Values”).

Handling of safe and unsafe statements. A statement is treated differently depending on whether the
statement is considered safe, and with respect to the binary logging format (that is, the current value of
binlog_format).

• When using row-based logging, no distinction is made in the treatment of safe and unsafe statements.

• When using mixed-format logging, statements flagged as unsafe are logged using the row-based format;
statements regarded as safe are logged using the statement-based format.

• When using statement-based logging, statements flagged as being unsafe generate a warning to this
effect. Safe statements are logged normally.

Each statement flagged as unsafe generates a warning. Formerly, if a large number of such statements
were executed on the source, this could lead to excessively large error log files. To prevent this, MySQL
5.7 provides a warning suppression mechanism, which behaves as follows: Whenever the 50 most recent
ER_BINLOG_UNSAFE_STATEMENT warnings have been generated more than 50 times in any 50-second
period, warning suppression is enabled. When activated, this causes such warnings not to be written to
the error log; instead, for each 50 warnings of this type, a note The last warning was repeated N
times in last S seconds is written to the error log. This continues as long as the 50 most recent
such warnings were issued in 50 seconds or less; once the rate has decreased below this threshold,
the warnings are once again logged normally. Warning suppression has no effect on how the safety of
statements for statement-based logging is determined, nor on how warnings are sent to the client. MySQL
clients still receive one warning for each such statement.

For more information, see Section 16.2.1, “Replication Formats”.

Statements considered unsafe.
Statements with the following characteristics are considered unsafe:

• Statements containing system functions that may return a different value on a replica.
These functions include FOUND_ROWS(), GET_LOCK(), IS_FREE_LOCK(), IS_USED_LOCK(),
LOAD_FILE(), MASTER_POS_WAIT(), PASSWORD(), RAND(), RELEASE_LOCK(), ROW_COUNT(),
SESSION_USER(), SLEEP(), SYSDATE(), SYSTEM_USER(), USER(), UUID(), and UUID_SHORT().

Nondeterministic functions not considered unsafe. Although these functions are not deterministic,
they are treated as safe for purposes of logging and replication: CONNECTION_ID(), CURDATE(),
CURRENT_DATE(), CURRENT_TIME(), CURRENT_TIMESTAMP(), CURTIME(), LAST_INSERT_ID(),
LOCALTIME(), LOCALTIMESTAMP(), NOW(), UNIX_TIMESTAMP(), UTC_DATE(), UTC_TIME(), and
UTC_TIMESTAMP().

For more information, see Section 16.4.1.15, “Replication and System Functions”.

• References to system variables. Most system variables are not replicated correctly using the
statement-based format. See Section 16.4.1.37, “Replication and Variables”. For exceptions, see
Section 5.4.4.3, “Mixed Binary Logging Format”.

• Loadable Functions. Since we have no control over what a loadable function does, we must assume
that it is executing unsafe statements.

3090

https://dev.mysql.com/doc/mysql-errors/5.7/en/server-error-reference.html#error_er_binlog_unsafe_statement

Replication Channels

• Fulltext plugin. This plugin may behave differently on different MySQL servers; therefore, statements
depending on it could have different results. For this reason, all statements relying on the fulltext plugin
are treated as unsafe (Bug #11756280, Bug #48183).

• Trigger or stored program updates a table having an AUTO_INCREMENT column. This is unsafe
because the order in which the rows are updated may differ on the source and the replica.

In addition, an INSERT into a table that has a composite primary key containing an AUTO_INCREMENT
column that is not the first column of this composite key is unsafe.

For more information, see Section 16.4.1.1, “Replication and AUTO_INCREMENT”.

• INSERT ... ON DUPLICATE KEY UPDATE statements on tables with multiple primary or unique
keys. When executed against a table that contains more than one primary or unique key, this
statement is considered unsafe, being sensitive to the order in which the storage engine checks
the keys, which is not deterministic, and on which the choice of rows updated by the MySQL Server
depends.

An INSERT ... ON DUPLICATE KEY UPDATE statement against a table having more than one
unique or primary key is marked as unsafe for statement-based replication. (Bug #11765650, Bug
#58637)

• Updates using LIMIT. The order in which rows are retrieved is not specified, and is therefore
considered unsafe. See Section 16.4.1.17, “Replication and LIMIT”.

• Accesses or references log tables. The contents of the system log table may differ between source
and replica.

• Nontransactional operations after transactional operations. Within a transaction, allowing any
nontransactional reads or writes to execute after any transactional reads or writes is considered unsafe.

For more information, see Section 16.4.1.33, “Replication and Transactions”.

• Accesses or references self-logging tables. All reads and writes to self-logging tables are
considered unsafe. Within a transaction, any statement following a read or write to self-logging tables is
also considered unsafe.

• LOAD DATA statements. LOAD DATA is treated as unsafe and when binlog_format=mixed the
statement is logged in row-based format. When binlog_format=statement LOAD DATA does not
generate a warning, unlike other unsafe statements.

• XA transactions. If two XA transactions committed in parallel on the source are being prepared on
the replica in the inverse order, locking dependencies can occur with statement-based replication that
cannot be safely resolved, and it is possible for replication to fail with deadlock on the replica. When
binlog_format=STATEMENT is set, DML statements inside XA transactions are flagged as being
unsafe and generate a warning. When binlog_format=MIXED or binlog_format=ROW is set, DML
statements inside XA transactions are logged using row-based replication, and the potential issue is not
present.

For additional information, see Section 16.4.1, “Replication Features and Issues”.

16.2.2 Replication Channels

In MySQL multi-source replication, a replica opens multiple replication channels, one for each replication
source server. The replication channels represent the path of transactions flowing from a source to the
replica. Each replication channel has its own receiver (I/O) thread, one or more applier (SQL) threads, and

3091

Replication Channels

relay log. When transactions from a source are received by a channel's receiver thread, they are added to
the channel's relay log file and passed through to the channel's applier threads. This enables each channel
to function independently.

This section describes how channels can be used in a replication topology, and the impact they have on
single-source replication. For instructions to configure sources and replicas for multi-source replication,
to start, stop and reset multi-source replicas, and to monitor multi-source replication, see Section 16.1.5,
“MySQL Multi-Source Replication”.

The maximum number of channels that can be created on one replica in a multi-source replication topology
is 256. Each replication channel must have a unique (nonempty) name, as explained in Section 16.2.2.4,
“Replication Channel Naming Conventions”. The error codes and messages that are issued when multi-
source replication is enabled specify the channel that generated the error.

Note

Each channel on a multi-source replica must replicate from a different source. You
cannot set up multiple replication channels from a single replica to a single source.
This is because the server IDs of replicas must be unique in a replication topology.
The source distinguishes replicas only by their server IDs, not by the names of the
replication channels, so it cannot recognize different replication channels from the
same replica.

A multi-source replica can also be set up as a multi-threaded replica, by setting the
slave_parallel_workers system variable to a value greater than 0. When you do this on a multi-
source replica, each channel on the replica has the specified number of applier threads, plus a coordinator
thread to manage them. You cannot configure the number of applier threads for individual channels.

To provide compatibility with previous versions, the MySQL server automatically creates on startup a
default channel whose name is the empty string (""). This channel is always present; it cannot be created
or destroyed by the user. If no other channels (having nonempty names) have been created, replication
statements act on the default channel only, so that all replication statements from older replicas function as
expected (see Section 16.2.2.2, “Compatibility with Previous Replication Statements”. Statements applying
to replication channels as described in this section can be used only when there is at least one named
channel.

16.2.2.1 Commands for Operations on a Single Channel

To enable MySQL replication operations to act on individual replication channels, use the FOR CHANNEL
channel clause with the following replication statements:

• CHANGE MASTER TO

• START SLAVE

• STOP SLAVE

• SHOW RELAYLOG EVENTS

• FLUSH RELAY LOGS

• SHOW SLAVE STATUS

• RESET SLAVE

Similarly, an additional channel parameter is introduced for the following functions:

3092

Replication Channels

• MASTER_POS_WAIT()

• WAIT_UNTIL_SQL_THREAD_AFTER_GTIDS()

The following statements are disallowed for the group_replication_recovery channel:

• START SLAVE

• STOP SLAVE

The following statements are disallowed for the group_replication_applier channel:

• START SLAVE

• STOP SLAVE

• SHOW SLAVE STATUS

• FLUSH RELAY LOGS

16.2.2.2 Compatibility with Previous Replication Statements

When a replica has multiple channels and a FOR CHANNEL channel option is not specified, a valid
statement generally acts on all available channels, with some specific exceptions.

For example, the following statements behave as expected for all except certain Group Replication
channels:

• START SLAVE starts replication threads for all channels, except the group_replication_recovery
and group_replication_applier channels.

• STOP SLAVE stops replication threads for all channels, except the group_replication_recovery
and group_replication_applier channels.

• SHOW SLAVE STATUS reports the status for all channels, except the group_replication_applier
channel.

• FLUSH RELAY LOGS flushes the relay logs for all channels, except the
group_replication_applier channel.

• RESET SLAVE resets all channels.

Warning

Use RESET SLAVE with caution as this statement deletes all existing channels,
purges their relay log files, and recreates only the default channel.

Some replication statements cannot operate on all channels. In this case, error 1964 Multiple
channels exist on the slave. Please provide channel name as an argument. is
generated. The following statements and functions generate this error when used in a multi-source
replication topology and a FOR CHANNEL channel option is not used to specify which channel to act on:

• SHOW RELAYLOG EVENTS

• CHANGE MASTER TO

• MASTER_POS_WAIT()

• WAIT_UNTIL_SQL_THREAD_AFTER_GTIDS()

3093

Replication Channels

Note that a default channel always exists in a single source replication topology, where statements and
functions behave as in previous versions of MySQL.

16.2.2.3 Startup Options and Replication Channels

This section describes startup options which are impacted by the addition of replication channels.

The following startup settings must be configured correctly to use multi-source replication.

• relay_log_info_repository.

This must be set to TABLE. If this variable is set to FILE, attempting to add more sources to a replica
fails with ER_SLAVE_NEW_CHANNEL_WRONG_REPOSITORY.

• master_info_repository

This must be set to TABLE. If this variable is set to FILE, attempting to add more sources to a replica
fails with ER_SLAVE_NEW_CHANNEL_WRONG_REPOSITORY.

The following startup options now affect all channels in a replication topology.

• --log-slave-updates

All transactions received by the replica (even from multiple sources) are written in the binary log.

• --relay-log-purge

When set, each channel purges its own relay log automatically.

• --slave_transaction_retries

Applier threads of all channels retry transactions.

• --skip-slave-start

No replication threads start on any channels.

• --slave-skip-errors

Execution continues and errors are skipped for all channels.

The values set for the following startup options apply on each channel; since these are mysqld startup
options, they are applied on every channel.

• --max-relay-log-size=size

Maximum size of the individual relay log file for each channel; after reaching this limit, the file is rotated.

• --relay-log-space-limit=size

Upper limit for the total size of all relay logs combined, for each individual channel. For N channels, the
combined size of these logs is limited to relay_log_space_limit * N.

• --slave-parallel-workers=value

Number of worker threads per channel.

• slave_checkpoint_group

Waiting time by an I/O thread for each source.

3094

https://dev.mysql.com/doc/mysql-errors/5.7/en/server-error-reference.html#error_er_slave_new_channel_wrong_repository
https://dev.mysql.com/doc/mysql-errors/5.7/en/server-error-reference.html#error_er_slave_new_channel_wrong_repository

Replication Threads

• --relay-log-index=filename

Base name for each channel's relay log index file. See Section 16.2.2.4, “Replication Channel Naming
Conventions”.

• --relay-log=filename

Denotes the base name of each channel's relay log file. See Section 16.2.2.4, “Replication Channel
Naming Conventions”.

• --slave_net-timeout=N

This value is set per channel, so that each channel waits for N seconds to check for a broken connection.

• --slave-skip-counter=N

This value is set per channel, so that each channel skips N events from its source.

16.2.2.4 Replication Channel Naming Conventions

This section describes how naming conventions are impacted by replication channels.

Each replication channel has a unique name which is a string with a maximum length of 64 characters and
is case-insensitive. Because channel names are used in replication metadata repositories, the character
set used for these is always UTF-8. Although you are generally free to use any name for channels, the
following names are reserved:

• group_replication_applier

• group_replication_recovery

The name you choose for a replication channel also influences the file names used by
a multi-source replica. The relay log files and index files for each channel are named
relay_log_basename-channel.xxxxxx, where relay_log_basename is a base name specified
using the relay_log system variable, and channel is the name of the channel logged to this file. If you
do not specify the relay_log system variable, a default file name is used that also includes the name of
the channel.

16.2.3 Replication Threads

MySQL replication capabilities are implemented using three main threads, one on the source server and
two on the replica:

• Binary log dump thread. The source creates a thread to send the binary log contents to a replica
when the replica connects. This thread can be identified in the output of SHOW PROCESSLIST on the
source as the Binlog Dump thread.

The binary log dump thread acquires a lock on the source's binary log for reading each event that is to
be sent to the replica. As soon as the event has been read, the lock is released, even before the event is
sent to the replica.

• Replication I/O thread. When a START SLAVE statement is issued on a replica server, the replica
creates an I/O thread, which connects to the source and asks it to send the updates recorded in its
binary logs.

The replication I/O thread reads the updates that the source's Binlog Dump thread sends (see previous
item) and copies them to local files that comprise the replica's relay log.

3095

Replication Threads

The state of this thread is shown as Slave_IO_running in the output of SHOW SLAVE STATUS.

• Replication SQL thread. The replica creates an SQL thread to read the relay log that is written by
the replication I/O thread and execute the transactions contained in it.

There are three main threads for each source/replica connection. A source that has multiple replicas
creates one binary log dump thread for each currently connected replica, and each replica has its own
replication I/O and SQL threads.

A replica uses two threads to separate reading updates from the source and executing them into
independent tasks. Thus, the task of reading transactions is not slowed down if the process of applying
them is slow. For example, if the replica server has not been running for a while, its I/O thread can quickly
fetch all the binary log contents from the source when the replica starts, even if the SQL thread lags far
behind. If the replica stops before the SQL thread has executed all the fetched statements, the I/O thread
has at least fetched everything so that a safe copy of the transactions is stored locally in the replica's relay
logs, ready for execution the next time that the replica starts.

You can enable further parallelization for tasks on a replica by setting the slave_parallel_workers
system variable to a value greater than 0 (the default). When this system variable is set, the replica creates
the specified number of worker threads to apply transactions, plus a coordinator thread to manage them.
If you are using multiple replication channels, each channel has this number of threads. A replica with
slave_parallel_workers set to a value greater than 0 is called a multithreaded replica. With this
setup, transactions that fail can be retried.

Note

Multithreaded replicas are not currently supported by NDB Cluster, which silently
ignores the setting for this variable. See Section 21.7.3, “Known Issues in NDB
Cluster Replication” for more information.

16.2.3.1 Monitoring Replication Main Threads

The SHOW PROCESSLIST statement provides information that tells you what is happening on the source
and on the replica regarding replication. For information on source states, see Section 8.14.5, “Replication
Source Thread States”. For replica states, see Section 8.14.6, “Replication Replica I/O Thread States”, and
Section 8.14.7, “Replication Replica SQL Thread States”.

The following example illustrates how the three main replication threads, the binary log dump thread,
replicatin I/O thread, and replication SQL thread, show up in the output from SHOW PROCESSLIST.

On the source server, the output from SHOW PROCESSLIST looks like this:

mysql> SHOW PROCESSLIST\G
*************************** 1. row ***************************
 Id: 2
 User: root
 Host: localhost:32931
 db: NULL
Command: Binlog Dump
 Time: 94
 State: Has sent all binlog to slave; waiting for binlog to
 be updated
 Info: NULL

Here, thread 2 is a Binlog Dump thread that services a connected replica. The State information
indicates that all outstanding updates have been sent to the replica and that the source is waiting for more

3096

Replication Threads

updates to occur. If you see no Binlog Dump threads on a source server, this means that replication is
not running; that is, no replicas are currently connected.

On a replica server, the output from SHOW PROCESSLIST looks like this:

mysql> SHOW PROCESSLIST\G
*************************** 1. row ***************************
 Id: 10
 User: system user
 Host:
 db: NULL
Command: Connect
 Time: 11
 State: Waiting for master to send event
 Info: NULL
*************************** 2. row ***************************
 Id: 11
 User: system user
 Host:
 db: NULL
Command: Connect
 Time: 11
 State: Has read all relay log; waiting for the slave I/O
 thread to update it
 Info: NULL

The State information indicates that thread 10 is the replication I/O thread that is communicating with
the source server, and thread 11 is the replication SQL thread that is processing the updates stored in
the relay logs. At the time that SHOW PROCESSLIST was run, both threads were idle, waiting for further
updates.

The value in the Time column can show how late the replica is compared to the source. See Section A.14,
“MySQL 5.7 FAQ: Replication”. If sufficient time elapses on the source side without activity on the Binlog
Dump thread, the source determines that the replica is no longer connected. As for any other client
connection, the timeouts for this depend on the values of net_write_timeout and net_retry_count;
for more information about these, see Section 5.1.7, “Server System Variables”.

The SHOW SLAVE STATUS statement provides additional information about replication processing on a
replica server. See Section 16.1.7.1, “Checking Replication Status”.

16.2.3.2 Monitoring Replication Applier Worker Threads

On a multithreaded replica, the Performance Schema tables
replication_applier_status_by_coordinator and
replication_applier_status_by_worker show status information for the replica's coordinator
thread and applier worker threads respectively. For a replica with multiple channels, the threads for each
channel are identified.

A multithreaded replica's coordinator thread also prints statistics to the replica's error log on a regular basis
if the verbosity setting is set to display informational messages. The statistics are printed depending on
the volume of events that the coordinator thread has assigned to applier worker threads, with a maximum
frequency of once every 120 seconds. The message lists the following statistics for the relevant replication
channel, or the default replication channel (which is not named):

Seconds elapsed The difference in seconds between the current time and the last time
this information was printed to the error log.

Events assigned The total number of events that the coordinator thread has queued to all
applier worker threads since the coordinator thread was started.

3097

Relay Log and Replication Metadata Repositories

Worker queues filled over
overrun level

The current number of events that are queued to any of the applier
worker threads in excess of the overrun level, which is set at 90% of the
maximum queue length of 16384 events. If this value is zero, no applier
worker threads are operating at the upper limit of their capacity.

Waited due to worker queue full The number of times that the coordinator thread had to wait to schedule
an event because an applier worker thread's queue was full. If this value
is zero, no applier worker threads exhausted their capacity.

Waited due to the total size The number of times that the coordinator thread had to wait to schedule
an event because the slave_pending_jobs_size_max limit had
been reached. This system variable sets the maximum amount of
memory (in bytes) available to applier worker thread queues holding
events not yet applied. If an unusually large event exceeds this size,
the transaction is held until all the applier worker threads have empty
queues, and then processed. All subsequent transactions are held until
the large transaction has been completed.

Waited at clock conflicts The number of nanoseconds that the coordinator thread had to wait
to schedule an event because a transaction that the event depended
on had not yet been committed. If slave_parallel_type is set to
DATABASE (rather than LOGICAL_CLOCK), this value is always zero.

Waited (count) when workers
occupied

The number of times that the coordinator thread slept for a short
period, which it might do in two situations. The first situation is where
the coordinator thread assigns an event and finds the applier worker
thread's queue is filled beyond the underrun level of 10% of the
maximum queue length, in which case it sleeps for a maximum of 1
millisecond. The second situation is where slave_parallel_type is
set to LOGICAL_CLOCK and the coordinator thread needs to assign the
first event of a transaction to an applier worker thread's queue, it only
does this to a worker with an empty queue, so if no queues are empty,
the coordinator thread sleeps until one becomes empty.

Waited when workers occupied The number of nanoseconds that the coordinator thread slept while
waiting for an empty applier worker thread queue (that is, in the second
situation described above, where slave_parallel_type is set
to LOGICAL_CLOCK and the first event of a transaction needs to be
assigned).

16.2.4 Relay Log and Replication Metadata Repositories

A replica server creates several repositories of information to use for the replication process:

• The relay log, which is written by the replication I/O thread, contains the transactions read from the
replication source server's binary log. The transactions in the relay log are applied on the replica by the
replication SQL thread. For information about the relay log, see Section 16.2.4.1, “The Relay Log”.

• The replica's connection metadata repository contains information that the replication I/O thread needs
to connect to the replication source server and retrieve transactions from the source's binary log. The
connection metadata repository is written to the mysql.slave_master_info table or to a file.

• The replica's applier metadata repository contains information that the replication SQL thread needs to
read and apply transactions from the replica's relay log. The applier metadata repository is written to the
mysql.slave_relay_log_info table or to a file.

3098

Relay Log and Replication Metadata Repositories

The connection metadata repository and applier metadata repository are collectively known as the
replication metadata repositories. For information about these, see Section 16.2.4.2, “Replication Metadata
Repositories”.

Making replication resilient to unexpected halts. The mysql.slave_master_info and
mysql.slave_relay_log_info tables are created using the transactional storage engine InnoDB.
Updates to the replica's applier metadata repository table are committed together with the transactions,
meaning that the replica's progress information recorded in that repository is always consistent with what
has been applied to the database, even in the event of an unexpected server halt. For information on
the combination of settings on the replica that is most resilient to unexpected halts, see Section 16.3.2,
“Handling an Unexpected Halt of a Replica”.

16.2.4.1 The Relay Log

The relay log, like the binary log, consists of a set of numbered files containing events that describe
database changes, and an index file that contains the names of all used relay log files.

The term “relay log file” generally denotes an individual numbered file containing database events. The
term “relay log” collectively denotes the set of numbered relay log files plus the index file.

Relay log files have the same format as binary log files and can be read using mysqlbinlog (see
Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”).

By default, relay log file names have the form host_name-relay-bin.nnnnnn in the data directory,
where host_name is the name of the replica server host and nnnnnn is a sequence number. Successive
relay log files are created using successive sequence numbers, beginning with 000001. The replica
uses an index file to track the relay log files currently in use. The default relay log index file name is
host_name-relay-bin.index in the data directory.

The default relay log file and relay log index file names can be overridden with, respectively, the
relay_log and relay_log_index system variables (see Section 16.1.6, “Replication and Binary
Logging Options and Variables”).

If a replica uses the default host-based relay log file names, changing a replica's host name after
replication has been set up can cause replication to fail with the errors Failed to open the relay
log and Could not find target log during relay log initialization. This is a known
issue (see Bug #2122). If you anticipate that a replica's host name might change in the future (for example,
if networking is set up on the replica such that its host name can be modified using DHCP), you can avoid
this issue entirely by using the relay_log and relay_log_index system variables to specify relay log
file names explicitly when you initially set up the replica. This makes the names independent of server host
name changes.

If you encounter the issue after replication has already begun, one way to work around it is to stop the
replica server, prepend the contents of the old relay log index file to the new one, and then restart the
replica. On a Unix system, this can be done as shown here:

$> cat new_relay_log_name.index >> old_relay_log_name.index
$> mv old_relay_log_name.index new_relay_log_name.index

A replica server creates a new relay log file under the following conditions:

• Each time the replication I/O thread starts.

• When the logs are flushed (for example, with FLUSH LOGS or mysqladmin flush-logs).

• When the size of the current relay log file becomes too large, determined as follows:

• If the value of max_relay_log_size is greater than 0, that is the maximum relay log file size.

3099

Relay Log and Replication Metadata Repositories

• If the value of max_relay_log_size is 0, max_binlog_size determines the maximum relay log
file size.

The replication SQL thread automatically deletes each relay log file after it has executed all events in the
file and no longer needs it. There is no explicit mechanism for deleting relay logs because the replication
SQL thread takes care of doing so. However, FLUSH LOGS rotates relay logs, which influences when the
replication SQL thread deletes them.

16.2.4.2 Replication Metadata Repositories

A replica server creates two replication metadata repositories, the connection metadata repository and the
applier metadata repository. The replication metadata repositories survive a replica server's shutdown. If
binary log file position based replication is in use, when the replica restarts, it reads the two repositories
to determine how far it previously proceeded in reading the binary log from the source and in processing
its own relay log. If GTID-based replication is in use, the replica does not use the replication metadata
repositories for that purpose, but does need them for the other metadata that they contain.

• The replica's connection metadata repository contains information that the replication I/O thread needs
to connect to the replication source server and retrieve transactions from the source's binary log. The
metadata in this repository includes the connection configuration, the replication user account details,
the SSL settings for the connection, and the file name and position where the replication I/O thread is
currently reading from the source's binary log.

• The replica's applier metadata repository contains information that the replication SQL thread needs to
read and apply transactions from the replica's relay log. The metadata in this repository includes the file
name and position up to which the replication SQL thread has executed the transactions in the relay
log, and the equivalent position in the source's binary log. It also includes metadata for the process of
applying transactions, such as the number of worker threads.

By default, the replication metadata repositories are created as files in the data directory named
master.info and relay-log.info, or with alternative names and locations specified by the
--master-info-file option and relay_log_info_file system variable. To create the
replication metadata repositories as tables, specify master_info_repository=TABLE and
relay_log_info_repository=TABLE at server startup. In that case, the replica's connection metadata
repository is written to the slave_master_info table in the mysql system schema, and the replica's
applier metadata repository is written to the slave_relay_log_info table in the mysql system schema.
A warning message is issued if mysqld is unable to initialize the tables for the replication metadata
repositories, but the replica is allowed to continue starting. This situation is most likely to occur when
upgrading from a version of MySQL that does not support the use of tables for the repositories to one in
which they are supported.

Important

1. Do not attempt to update or insert rows in the mysql.slave_master_info
or mysql.slave_relay_log_info tables manually. Doing so can cause
undefined behavior, and is not supported. Execution of any statement
requiring a write lock on either or both of the slave_master_info and
slave_relay_log_info tables is disallowed while replication is ongoing
(although statements that perform only reads are permitted at any time).

2. Access to the replica's connection metadata repository file or table should be
restricted to the database administrator, because it contains the replication
user account name and password for connecting to the source. Use a restricted
access mode to protect database backups that include this repository.

3100

Relay Log and Replication Metadata Repositories

RESET SLAVE clears the data in the replication metadata repositories, with the exception of the replication
connection parameters (depending on the MySQL Server release and repository type). For details, see the
description for RESET SLAVE.

If you set master_info_repository and relay_log_info_repository to TABLE, the
mysql.slave_master_info and mysql.slave_relay_log_info tables are created using the
InnoDB transactional storage engine. Updates to the replica's applier metadata repository table are
committed together with the transactions, meaning that the replica's progress information recorded in
that repository is always consistent with what has been applied to the database, even in the event of
an unexpected server halt. The --relay-log-recovery option must be enabled on the replica to
guarantee resilience. For more details, see Section 16.3.2, “Handling an Unexpected Halt of a Replica”.

When you back up the replica's data or transfer a snapshot of its data to create a new replica, ensure that
you include the mysql.slave_master_info and mysql.slave_relay_log_info tables containing
the replication metadata repositories, or the equivalent files (master.info and relay-log.info in the
data directory, unless you specified alternative names and locations). When binary log file position based
replication is in use, the replication metadata repositories are needed to resume replication after restarting
the restored or copied replica. If you do not have the relay log files, but still have the replica's applier
metadata repository, you can check it to determine how far the replication SQL thread has executed in the
source's binary log. Then you can use a CHANGE MASTER TO statement with the MASTER_LOG_FILE
and MASTER_LOG_POS options to tell the replica to re-read the binary logs from the source from that point
(provided that the required binary logs still exist on the source).

One additional repository, the applier worker metadata repository, is created primarily for internal use, and
holds status information about worker threads on a multithreaded replica. The applier worker metadata
repository includes the names and positions for the relay log file and the source's binary log file for each
worker thread. If the replica's applier metadata repository is created as a table, which is the default,
the applier worker metadata repository is written to the mysql.slave_worker_info table. If the
applier metadata repository is written to a file, the applier worker metadata repository is written to the
worker-relay-log.info file. For external use, status information for worker threads is presented in the
Performance Schema replication_applier_status_by_worker table.

The replication metadata repositories originally contained information similar to that shown in the output
of the SHOW SLAVE STATUS statement, which is discussed in Section 13.4.2, “SQL Statements for
Controlling Replica Servers”. Further information has since been added to the replication metadata
repositories which is not displayed by the SHOW SLAVE STATUS statement.

For the connection metadata repository, the following table shows the correspondence between the
columns in the mysql.slave_master_info table, the columns displayed by SHOW SLAVE STATUS,
and the lines in the master.info file.

master.info File Line slave_master_info
Table Column

SHOW SLAVE STATUS
Column

Description

1 Number_of_lines [None] Number of lines in the
file, or columns in the
table

2 Master_log_name Master_Log_File The name of the binary
log currently being read
from the source

3 Master_log_pos Read_Master_Log_Pos The current position
within the binary log that
has been read from the
source

3101

Relay Log and Replication Metadata Repositories

master.info File Line slave_master_info
Table Column

SHOW SLAVE STATUS
Column

Description

4 Host Master_Host The host name of the
source server

5 User_name Master_User The replication user
name used to connect to
the source

6 User_password Password (not shown by
SHOW SLAVE STATUS)

The password used to
connect to the source

7 Port Master_Port The network port used to
connect to the source

8 Connect_retry Connect_Retry The period (in seconds)
that the replica waits
before trying to reconnect
to the source

9 Enabled_ssl Master_SSL_Allowed Indicates whether the
server supports SSL
connections

10 Ssl_ca Master_SSL_CA_File The file used for the
Certificate Authority (CA)
certificate

11 Ssl_capath Master_SSL_CA_Path The path to the
Certificate Authority (CA)
certificates

12 Ssl_cert Master_SSL_Cert The name of the SSL
certificate file

13 Ssl_cipher Master_SSL_Cipher The list of possible
ciphers used in the
handshake for the SSL
connection

14 Ssl_key Master_SSL_Key The name of the SSL key
file

15 Ssl_verify_server_certMaster_SSL_Verify_Server_CertWhether to verify the
server certificate

16 Heartbeat [None] Interval between
replication heartbeats, in
seconds

17 Bind Master_Bind Which of the replica's
network interfaces should
be used for connecting to
the source

18 Ignored_server_ids Replicate_Ignore_Server_IdsThe list of server IDs to
be ignored. Note that for
Ignored_server_ids
the list of server IDs is
preceded by the total
number of server IDs to
ignore.

3102

Relay Log and Replication Metadata Repositories

master.info File Line slave_master_info
Table Column

SHOW SLAVE STATUS
Column

Description

19 Uuid Master_UUID The source's unique ID

20 Retry_count Master_Retry_Count Maximum number of
reconnection attempts
permitted

21 Ssl_crl [None] Path to an SSL certificate
revocation-list file

22 Ssl_crlpath [None] Path to a directory
containing SSL certificate
revocation-list files

23 Enabled_auto_positionAuto_position If autopositioning is in
use or not

24 Channel_name Channel_name The name of the
replication channel

25 Tls_version Master_TLS_Version TLS version on source

For the applier metadata repository, the following table shows the correspondence between the columns
in the mysql.slave_relay_log_info table, the columns displayed by SHOW SLAVE STATUS, and the
lines in the relay-log.info file.

Line in relay-
log.info

slave_relay_log_info
Table Column

SHOW SLAVE STATUS
Column

Description

1 Number_of_lines [None] Number of lines in the file
or columns in the table

2 Relay_log_name Relay_Log_File The name of the current
relay log file

3 Relay_log_pos Relay_Log_Pos The current position
within the relay log file;
events up to this position
have been executed on
the replica database

4 Master_log_name Relay_Master_Log_FileThe name of the source's
binary log file from which
the events in the relay log
file were read

5 Master_log_pos Exec_Master_Log_Pos The equivalent position
within the source's
binary log file of events
that have already been
executed

6 Sql_delay SQL_Delay The number of seconds
that the replica must lag
the source

7 Number_of_workers [None] The number of worker
threads on the replica
for executing replication

3103

How Servers Evaluate Replication Filtering Rules

Line in relay-
log.info

slave_relay_log_info
Table Column

SHOW SLAVE STATUS
Column

Description

events (transactions) in
parallel

8 Id [None] ID used for internal
purposes; currently this is
always 1

9 Channel_name Channel_name The name of the
replication channel

In versions of MySQL prior to MySQL 5.6, the relay-log.info file does not include a line count or a
delay value (and the slave_relay_log_info table is not available).

Line Status Column Description

1 Relay_Log_File The name of the current relay log
file

2 Relay_Log_Pos The current position within the
relay log file; events up to this
position have been executed on
the replica database

3 Relay_Master_Log_File The name of the source's binary
log file from which the events in
the relay log file were read

4 Exec_Master_Log_Pos The equivalent position within the
source's binary log file of events
that have already been executed

Note

If you downgrade a replica server to a version older than MySQL 5.6, the older
server does not read the relay-log.info file correctly. To address this, modify
the file in a text editor by deleting the initial line containing the number of lines.

The contents of the relay-log.info file and the states shown by the SHOW SLAVE STATUS
statement might not match if the relay-log.info file has not been flushed to disk. Ideally, you
should only view relay-log.info on a replica that is offline (that is, mysqld is not running). For a
running system, you can use SHOW SLAVE STATUS, or query the mysql.slave_master_info and
mysql.slave_relay_log_info tables if you are writing the replication metadata repositories to tables.

16.2.5 How Servers Evaluate Replication Filtering Rules

If a replication source server does not write a statement to its binary log, the statement is not replicated.
If the server does log the statement, the statement is sent to all replicas and each replica determines
whether to execute it or ignore it.

On the source, you can control which databases to log changes for by using the --binlog-do-db and
--binlog-ignore-db options to control binary logging. For a description of the rules that servers use
in evaluating these options, see Section 16.2.5.1, “Evaluation of Database-Level Replication and Binary
Logging Options”. You should not use these options to control which databases and tables are replicated.
Instead, use filtering on the replica to control the events that are executed on the replica.

On the replica side, decisions about whether to execute or ignore statements received from the source are
made according to the --replicate-* options that the replica was started with. (See Section 16.1.6,

3104

How Servers Evaluate Replication Filtering Rules

“Replication and Binary Logging Options and Variables”.) The filters governed by these options can also be
set dynamically using the CHANGE REPLICATION FILTER statement. The rules governing such filters are
the same whether they are created on startup using --replicate-* options or while the replica server
is running by CHANGE REPLICATION FILTER. Note that replication filters cannot be used on a MySQL
server instance that is configured for Group Replication, because filtering transactions on some servers
would make the group unable to reach agreement on a consistent state.

In the simplest case, when there are no --replicate-* options, the replica executes all statements that
it receives from the source. Otherwise, the result depends on the particular options given.

Database-level options (--replicate-do-db, --replicate-ignore-db) are checked first; see
Section 16.2.5.1, “Evaluation of Database-Level Replication and Binary Logging Options”, for a description
of this process. If no database-level options are used, option checking proceeds to any table-level options
that may be in use (see Section 16.2.5.2, “Evaluation of Table-Level Replication Options”, for a discussion
of these). If one or more database-level options are used but none are matched, the statement is not
replicated.

For statements affecting databases only (that is, CREATE DATABASE, DROP DATABASE, and ALTER
DATABASE), database-level options always take precedence over any --replicate-wild-do-table
options. In other words, for such statements, --replicate-wild-do-table options are checked if
and only if there are no database-level options that apply. This is a change in behavior from previous
versions of MySQL, where the statement CREATE DATABASE dbx was not replicated if the replica had
been started with --replicate-do-db=dbx --replicate-wild-do-table=db%.t1. (Bug #46110)

To make it easier to determine what effect an option set has, it is recommended that you avoid mixing “do”
and “ignore” options, or wildcard and nonwildcard options.

If any --replicate-rewrite-db options were specified, they are applied before the --replicate-*
filtering rules are tested.

Note

All replication filtering options follow the same rules for case sensitivity that apply
to names of databases and tables elsewhere in the MySQL server, including the
effects of the lower_case_table_names system variable.

16.2.5.1 Evaluation of Database-Level Replication and Binary Logging Options

When evaluating replication options, the replica begins by checking to see whether there are any --
replicate-do-db or --replicate-ignore-db options that apply. When using --binlog-do-db or
--binlog-ignore-db, the process is similar, but the options are checked on the source.

The database that is checked for a match depends on the binary log format of the statement that is being
handled. If the statement has been logged using the row format, the database where data is to be changed
is the database that is checked. If the statement has been logged using the statement format, the default
database (specified with a USE statement) is the database that is checked.

Note

Only DML statements can be logged using the row format. DDL statements
are always logged as statements, even when binlog_format=ROW. All DDL
statements are therefore always filtered according to the rules for statement-based
replication. This means that you must select the default database explicitly with a
USE statement in order for a DDL statement to be applied.

For replication, the steps involved are listed here:

1. Which logging format is used?

3105

How Servers Evaluate Replication Filtering Rules

• STATEMENT. Test the default database.

• ROW. Test the database affected by the changes.

2. Are there any --replicate-do-db options?

• Yes. Does the database match any of them?

• Yes. Continue to Step 4.

• No. Ignore the update and exit.

• No. Continue to step 3.

3. Are there any --replicate-ignore-db options?

• Yes. Does the database match any of them?

• Yes. Ignore the update and exit.

• No. Continue to step 4.

• No. Continue to step 4.

4. Proceed to checking the table-level replication options, if there are any. For a description of how these
options are checked, see Section 16.2.5.2, “Evaluation of Table-Level Replication Options”.

Important

A statement that is still permitted at this stage is not yet actually executed. The
statement is not executed until all table-level options (if any) have also been
checked, and the outcome of that process permits execution of the statement.

For binary logging, the steps involved are listed here:

1. Are there any --binlog-do-db or --binlog-ignore-db options?

• Yes. Continue to step 2.

• No. Log the statement and exit.

2. Is there a default database (has any database been selected by USE)?

• Yes. Continue to step 3.

• No. Ignore the statement and exit.

3. There is a default database. Are there any --binlog-do-db options?

• Yes. Do any of them match the database?

• Yes. Log the statement and exit.

• No. Ignore the statement and exit.

• No. Continue to step 4.

4. Do any of the --binlog-ignore-db options match the database?

3106

How Servers Evaluate Replication Filtering Rules

• Yes. Ignore the statement and exit.

• No. Log the statement and exit.

Important

For statement-based logging, an exception is made in the rules just given for the
CREATE DATABASE, ALTER DATABASE, and DROP DATABASE statements. In
those cases, the database being created, altered, or dropped replaces the default
database when determining whether to log or ignore updates.

--binlog-do-db can sometimes mean “ignore other databases”. For example, when using statement-
based logging, a server running with only --binlog-do-db=sales does not write to the binary log
statements for which the default database differs from sales. When using row-based logging with the
same option, the server logs only those updates that change data in sales.

16.2.5.2 Evaluation of Table-Level Replication Options

The replica checks for and evaluates table options only if either of the following two conditions is true:

• No matching database options were found.

• One or more database options were found, and were evaluated to arrive at an “execute” condition
according to the rules described in the previous section (see Section 16.2.5.1, “Evaluation of Database-
Level Replication and Binary Logging Options”).

First, as a preliminary condition, the replica checks whether statement-based replication is enabled. If so,
and the statement occurs within a stored function, the replica executes the statement and exits. If row-
based replication is enabled, the replica does not know whether a statement occurred within a stored
function on the source, so this condition does not apply.

Note

For statement-based replication, replication events represent statements (all
changes making up a given event are associated with a single SQL statement); for
row-based replication, each event represents a change in a single table row (thus
a single statement such as UPDATE mytable SET mycol = 1 may yield many
row-based events). When viewed in terms of events, the process of checking table
options is the same for both row-based and statement-based replication.

Having reached this point, if there are no table options, the replica simply executes all events. If there are
any --replicate-do-table or --replicate-wild-do-table options, the event must match one of
these if it is to be executed; otherwise, it is ignored. If there are any --replicate-ignore-table or --
replicate-wild-ignore-table options, all events are executed except those that match any of these
options.

Important

Table-level replication filters are only applied to tables that are explicitly mentioned
and operated on in the query. They do not apply to tables that are implicitly updated
by the query. For example, a GRANT statement, which updates the mysql.user
system table but does not mention that table, is not affected by a filter that specifies
mysql.% as the wildcard pattern.

The following steps describe this evaluation in more detail. The starting point is the end of the evaluation
of the database-level options, as described in Section 16.2.5.1, “Evaluation of Database-Level Replication
and Binary Logging Options”.

3107

How Servers Evaluate Replication Filtering Rules

1. Are there any table replication options?

• Yes. Continue to step 2.

• No. Execute the update and exit.

2. Which logging format is used?

• STATEMENT. Carry out the remaining steps for each statement that performs an update.

• ROW. Carry out the remaining steps for each update of a table row.

3. Are there any --replicate-do-table options?

• Yes. Does the table match any of them?

• Yes. Execute the update and exit.

• No. Continue to step 4.

• No. Continue to step 4.

4. Are there any --replicate-ignore-table options?

• Yes. Does the table match any of them?

• Yes. Ignore the update and exit.

• No. Continue to step 5.

• No. Continue to step 5.

5. Are there any --replicate-wild-do-table options?

• Yes. Does the table match any of them?

• Yes. Execute the update and exit.

• No. Continue to step 6.

• No. Continue to step 6.

6. Are there any --replicate-wild-ignore-table options?

• Yes. Does the table match any of them?

• Yes. Ignore the update and exit.

• No. Continue to step 7.

• No. Continue to step 7.

7. Is there another table to be tested?

• Yes. Go back to step 3.

• No. Continue to step 8.

8. Are there any --replicate-do-table or --replicate-wild-do-table options?

3108

How Servers Evaluate Replication Filtering Rules

• Yes. Ignore the update and exit.

• No. Execute the update and exit.

Note

Statement-based replication stops if a single SQL statement operates on both a
table that is included by a --replicate-do-table or --replicate-wild-
do-table option, and another table that is ignored by a --replicate-ignore-
table or --replicate-wild-ignore-table option. The replica must either
execute or ignore the complete statement (which forms a replication event), and
it cannot logically do this. This also applies to row-based replication for DDL
statements, because DDL statements are always logged as statements, without
regard to the logging format in effect. The only type of statement that can update
both an included and an ignored table and still be replicated successfully is a DML
statement that has been logged with binlog_format=ROW.

16.2.5.3 Interactions Between Replication Filtering Options

If you use a combination of database-level and table-level replication filtering options, the replica first
accepts or ignores events using the database options, then it evaluates all events permitted by those
options according to the table options. This can sometimes lead to results that seem counterintuitive. It is
also important to note that the results vary depending on whether the operation is logged using statement-
based or row-based binary logging format. If you want to be sure that your replication filters always operate
in the same way independently of the binary logging format, which is particularly important if you are using
mixed binary logging format, follow the guidance in this topic.

The effect of the replication filtering options differs between binary logging formats because of the way
the database name is identified. With statement-based format, DML statements are handled based on the
current database, as specified by the USE statement. With row-based format, DML statements are handled
based on the database where the modified table exists. DDL statements are always filtered based on the
current database, as specified by the USE statement, regardless of the binary logging format.

An operation that involves multiple tables can also be affected differently by replication filtering options
depending on the binary logging format. Operations to watch out for include transactions involving multi-
table UPDATE statements, triggers, cascading foreign keys, stored functions that update multiple tables,
and DML statements that invoke stored functions that update one or more tables. If these operations
update both filtered-in and filtered-out tables, the results can vary with the binary logging format.

If you need to guarantee that your replication filters operate consistently regardless of the binary logging
format, particularly if you are using mixed binary logging format (binlog_format=MIXED), use only table-
level replication filtering options, and do not use database-level replication filtering options. Also, do not
use multi-table DML statements that update both filtered-in and filtered-out tables.

If you need to use a combination of database-level and table-level replication filters, and want these to
operate as consistently as possible, choose one of the following strategies:

1. If you use row-based binary logging format (binlog_format=ROW), for DDL statements, rely on
the USE statement to set the database and do not specify the database name. You can consider
changing to row-based binary logging format for improved consistency with replication filtering. See
Section 5.4.4.2, “Setting The Binary Log Format” for the conditions that apply to changing the binary
logging format.

2. If you use statement-based or mixed binary logging format (binlog_format=STATEMENT or MIXED),
for both DML and DDL statements, rely on the USE statement and do not use the database name. Also,
do not use multi-table DML statements that update both filtered-in and filtered-out tables.

3109

Replication Solutions

Example 16.7 A --replicate-ignore-db option and a --replicate-do-table option

On the source, the following statements are issued:

USE db1;
CREATE TABLE t2 LIKE t1;
INSERT INTO db2.t3 VALUES (1);

The replica has the following replication filtering options set:

replicate-ignore-db = db1
replicate-do-table = db2.t3

The DDL statement CREATE TABLE creates the table in db1, as specified by the preceding USE
statement. The replica filters out this statement according to its --replicate-ignore-db = db1
option, because db1 is the current database. This result is the same whatever the binary logging format
is on the source. However, the result of the DML INSERT statement is different depending on the binary
logging format:

• If row-based binary logging format is in use on the source (binlog_format=ROW), the replica evaluates
the INSERT operation using the database where the table exists, which is named as db2. The database-
level option --replicate-ignore-db = db1, which is evaluated first, therefore does not apply. The
table-level option --replicate-do-table = db2.t3 does apply, so the replica applies the change
to table t3.

• If statement-based binary logging format is in use on the source (binlog_format=STATEMENT), the
replica evaluates the INSERT operation using the default database, which was set by the USE statement
to db1 and has not been changed. According to its database-level --replicate-ignore-db = db1
option, it therefore ignores the operation and does not apply the change to table t3. The table-level
option --replicate-do-table = db2.t3 is not checked, because the statement already matched a
database-level option and was ignored.

If the --replicate-ignore-db = db1 option on the replica is necessary, and the use of statement-
based (or mixed) binary logging format on the source is also necessary, the results can be made
consistent by omitting the database name from the INSERT statement and relying on a USE statement
instead, as follows:

USE db1;
CREATE TABLE t2 LIKE t1;
USE db2;
INSERT INTO t3 VALUES (1);

In this case, the replica always evaluates the INSERT statement based on the database db2. Whether the
operation is logged in statement-based or row-based binary format, the results remain the same.

16.3 Replication Solutions

Replication can be used in many different environments for a range of purposes. This section provides
general notes and advice on using replication for specific solution types.

For information on using replication in a backup environment, including notes on the setup, backup
procedure, and files to back up, see Section 16.3.1, “Using Replication for Backups”.

For advice and tips on using different storage engines on the source and replicas, see Section 16.3.3,
“Using Replication with Different Source and Replica Storage Engines”.

Using replication as a scale-out solution requires some changes in the logic and operation of applications
that use the solution. See Section 16.3.4, “Using Replication for Scale-Out”.

3110

Using Replication for Backups

For performance or data distribution reasons, you may want to replicate different databases to different
replicas. See Section 16.3.5, “Replicating Different Databases to Different Replicas”

As the number of replicas increases, the load on the source can increase and lead to reduced performance
(because of the need to replicate the binary log to each replica). For tips on improving your replication
performance, including using a single secondary server as a replication source server, see Section 16.3.6,
“Improving Replication Performance”.

For guidance on switching sources, or converting replicas into sources as part of an emergency failover
solution, see Section 16.3.7, “Switching Sources During Failover”.

To secure your replication communication, you can encrypt the communication channel. For step-by-step
instructions, see Section 16.3.8, “Setting Up Replication to Use Encrypted Connections”.

16.3.1 Using Replication for Backups

To use replication as a backup solution, replicate data from the source to a replica, and then back up the
replica. The replica can be paused and shut down without affecting the running operation of the source,
so you can produce an effective snapshot of “live” data that would otherwise require the source to be shut
down.

How you back up a database depends on its size and whether you are backing up only the data, or the
data and the replica state so that you can rebuild the replica in the event of failure. There are therefore two
choices:

• If you are using replication as a solution to enable you to back up the data on the source, and the size of
your database is not too large, the mysqldump tool may be suitable. See Section 16.3.1.1, “Backing Up
a Replica Using mysqldump”.

• For larger databases, where mysqldump would be impractical or inefficient, you can back up the raw
data files instead. Using the raw data files option also means that you can back up the binary and relay
logs that enable you to re-create the replica in the event of a replica failure. For more information, see
Section 16.3.1.2, “Backing Up Raw Data from a Replica”.

Another backup strategy, which can be used for either source or replica servers, is to put the server in a
read-only state. The backup is performed against the read-only server, which then is changed back to its
usual read/write operational status. See Section 16.3.1.3, “Backing Up a Source or Replica by Making It
Read Only”.

16.3.1.1 Backing Up a Replica Using mysqldump

Using mysqldump to create a copy of a database enables you to capture all of the data in the database
in a format that enables the information to be imported into another instance of MySQL Server (see
Section 4.5.4, “mysqldump — A Database Backup Program”). Because the format of the information is
SQL statements, the file can easily be distributed and applied to running servers in the event that you need
access to the data in an emergency. However, if the size of your data set is very large, mysqldump may
be impractical.

When using mysqldump, you should stop replication on the replica before starting the dump process to
ensure that the dump contains a consistent set of data:

1. Stop the replica from processing requests. You can stop replication completely on the replica using
mysqladmin:

$> mysqladmin stop-slave

Alternatively, you can stop only the replication SQL thread to pause event execution:

3111

Using Replication for Backups

$> mysql -e 'STOP SLAVE SQL_THREAD;'

This enables the replica to continue to receive data change events from the source's binary log and
store them in the relay logs using the I/O thread, but prevents the replica from executing these events
and changing its data. Within busy replication environments, permitting the I/O thread to run during
backup may speed up the catch-up process when you restart the replication SQL thread.

2. Run mysqldump to dump your databases. You may either dump all databases or select databases to
be dumped. For example, to dump all databases:

$> mysqldump --all-databases > fulldb.dump

3. Once the dump has completed, start replica operations again:

$> mysqladmin start-slave

In the preceding example, you may want to add login credentials (user name, password) to the commands,
and bundle the process up into a script that you can run automatically each day.

If you use this approach, make sure you monitor the replication process to ensure that the time taken
to run the backup does not affect the replica's ability to keep up with events from the source. See
Section 16.1.7.1, “Checking Replication Status”. If the replica is unable to keep up, you may want to add
another replica and distribute the backup process. For an example of how to configure this scenario, see
Section 16.3.5, “Replicating Different Databases to Different Replicas”.

16.3.1.2 Backing Up Raw Data from a Replica

To guarantee the integrity of the files that are copied, backing up the raw data files on your MySQL replica
should take place while your replica server is shut down. If the MySQL server is still running, background
tasks may still be updating the database files, particularly those involving storage engines with background
processes such as InnoDB. With InnoDB, these problems should be resolved during crash recovery, but
since the replica server can be shut down during the backup process without affecting the execution of the
source it makes sense to take advantage of this capability.

To shut down the server and back up the files:

1. Shut down the replica MySQL server:

$> mysqladmin shutdown

2. Copy the data files. You can use any suitable copying or archive utility, including cp, tar or WinZip.
For example, assuming that the data directory is located under the current directory, you can archive
the entire directory as follows:

$> tar cf /tmp/dbbackup.tar ./data

3. Start the MySQL server again. Under Unix:

$> mysqld_safe &

Under Windows:

C:\> "C:\Program Files\MySQL\MySQL Server 5.7\bin\mysqld"

Normally you should back up the entire data directory for the replica MySQL server. If you want to be
able to restore the data and operate as a replica (for example, in the event of failure of the replica), then
in addition to the replica's data, you should also back up the replica status files, the replication metadata
repositories, and the relay log files. These files are needed to resume replication after you restore the
replica's data.

3112

Using Replication for Backups

If you lose the relay logs but still have the relay-log.info file, you can check it to determine how far the
replication SQL thread has executed in the source's binary logs. Then you can use CHANGE MASTER TO
with the MASTER_LOG_FILE and MASTER_LOG_POS options to tell the replica to re-read the binary logs
from that point. This requires that the binary logs still exist on the source server.

If your replica is replicating LOAD DATA statements, you should also back up any SQL_LOAD-* files
that exist in the directory that the replica uses for this purpose. The replica needs these files to resume
replication of any interrupted LOAD DATA operations. The location of this directory is the value of the
slave_load_tmpdir system variable. If the server was not started with that variable set, the directory
location is the value of the tmpdir system variable.

16.3.1.3 Backing Up a Source or Replica by Making It Read Only

It is possible to back up either source or replica servers in a replication setup by acquiring a global read
lock and manipulating the read_only system variable to change the read-only state of the server to be
backed up:

1. Make the server read-only, so that it processes only retrievals and blocks updates.

2. Perform the backup.

3. Change the server back to its normal read/write state.

Note

The instructions in this section place the server to be backed up in a state that is
safe for backup methods that get the data from the server, such as mysqldump
(see Section 4.5.4, “mysqldump — A Database Backup Program”). You should not
attempt to use these instructions to make a binary backup by copying files directly
because the server may still have modified data cached in memory and not flushed
to disk.

The following instructions describe how to do this for a source server and for a replica server. For both
scenarios discussed here, suppose that you have the following replication setup:

• A source server S1

• A replica server R1 that has S1 as its source

• A client C1 connected to S1

• A client C2 connected to R1

In either scenario, the statements to acquire the global read lock and manipulate the read_only variable
are performed on the server to be backed up and do not propagate to any replicas of that server.

Scenario 1: Backup with a Read-Only Source

Put the source S1 in a read-only state by executing these statements on it:

mysql> FLUSH TABLES WITH READ LOCK;
mysql> SET GLOBAL read_only = ON;

While S1 is in a read-only state, the following properties are true:

• Requests for updates sent by C1 to S1 block because the server is in read-only mode.

• Requests for query results sent by C1 to S1 succeed.

• Making a backup on S1 is safe.

3113

Handling an Unexpected Halt of a Replica

• Making a backup on R1 is not safe. This server is still running, and might be processing the binary log or
update requests coming from client C2

While S1 is read only, perform the backup. For example, you can use mysqldump.

After the backup operation on S1 completes, restore S1 to its normal operational state by executing these
statements:

mysql> SET GLOBAL read_only = OFF;
mysql> UNLOCK TABLES;

Although performing the backup on S1 is safe (as far as the backup is concerned), it is not optimal for
performance because clients of S1 are blocked from executing updates.

This strategy applies to backing up a source server in a replication setup, but can also be used for a single
server in a nonreplication setting.

Scenario 2: Backup with a Read-Only Replica

Put the replica R1 in a read-only state by executing these statements on it:

mysql> FLUSH TABLES WITH READ LOCK;
mysql> SET GLOBAL read_only = ON;

While R1 is in a read-only state, the following properties are true:

• The source S1 continues to operate, so making a backup on the source is not safe.

• The replica R1 is stopped, so making a backup on the replica R1 is safe.

These properties provide the basis for a popular backup scenario: Having one replica busy performing
a backup for a while is not a problem because it does not affect the entire network, and the system is
still running during the backup. In particular, clients can still perform updates on the source server, which
remains unaffected by backup activity on the replica.

While R1 is read only, perform the backup. For example, you can use mysqldump.

After the backup operation on R1 completes, restore R1 to its normal operational state by executing these
statements:

mysql> SET GLOBAL read_only = OFF;
mysql> UNLOCK TABLES;

After the replica is restored to normal operation, it again synchronizes to the source by catching up with
any outstanding updates from the binary log of the source.

16.3.2 Handling an Unexpected Halt of a Replica

In order for replication to be resilient to unexpected halts of the server (sometimes described as crash-
safe) it must be possible for the replica to recover its state before halting. This section describes the impact
of an unexpected halt of a replica during replication, and how to configure a replica for the best chance of
recovery to continue replication.

After an unexpected halt of a replica, upon restart the replication SQL thread must recover information
about which transactions have been executed already. The information required for recovery is stored in
the replica's applier metadata repository. In older MySQL Server versions, this repository could only be
created as a file in the data directory that was updated after the transaction had been applied. In MySQL
5.7 you can instead use an InnoDB table named mysql.slave_relay_log_info to store the applier
metadata repository. As a table, updates to the applier metadata repository are committed together with

3114

Handling an Unexpected Halt of a Replica

the transactions, meaning that the replica's progress information recorded in that repository is always
consistent with what has been applied to the database, even in the event of an unexpected server halt. To
configure MySQL 5.7 to store the applier metadata repository as an InnoDB table, set the system variable
relay_log_info_repository to TABLE. For more information on the applier metadata repository, see
Section 16.2.4, “Relay Log and Replication Metadata Repositories”.

The recovery process by which a replica recovers from an unexpected halt varies depending on the
configuration of the replica. The details of the recovery process are influenced by the chosen method of
replication, whether the replica is single-threaded or multithreaded, and the setting of relevant system
variables. The overall aim of the recovery process is to identify what transactions had already been applied
on the replica's database before the unexpected halt occurred, and retrieve and apply the transactions that
the replica missed following the unexpected halt.

• For GTID-based replication, the recovery process needs the GTIDs of the transactions that were
already received or committed by the replica. The missing transactions can be retrieved from the source
using GTID auto-positioning, which automatically compares the source's transactions to the replica's
transactions and identifies the missing transactions.

• For file position based replication, the recovery process needs an accurate replication SQL thread
(applier) position showing the last transaction that was applied on the replica. Based on that position, the
replication I/O thread (receiver) retrieves from the source's binary log all of the transactions that should
be applied on the replica from that point on.

Using GTID-based replication makes it easiest to configure replication to be resilient to unexpected halts.
GTID auto-positioning means the replica can reliably identify and retrieve missing transactions, even if
there are gaps in the sequence of applied transactions.

The following information provides combinations of settings that are appropriate for different types of
replica to guarantee recovery as far as this is under the control of replication.

Important

Some factors outside the control of replication can have an impact on the replication
recovery process and the overall state of replication after the recovery process. In
particular, the settings that influence the recovery process for individual storage
engines might result in transactions being lost in the event of an unexpected halt
of a replica, and therefore unavailable to the replication recovery process. The
innodb_flush_log_at_trx_commit=1 setting mentioned in the list below is
a key setting for a replication setup that uses InnoDB with transactions. However,
other settings specific to InnoDB or to other storage engines, especially those
relating to flushing or synchronization, can also have an impact. Always check for
and apply recommendations made by your chosen storage engines about crash-
safe settings.

The following combination of settings on a replica is the most resilient to unexpected halts:

• When GTID-based replication is in use (gtid_mode=ON), set MASTER_AUTO_POSITION=1, which
activates GTID auto-positioning for the connection to the source to automatically identify and retrieve
missing transactions. This option is set using a CHANGE MASTER TO statement. If the replica has
multiple replication channels, you need to set this option for each channel individually. For details of how
GTID auto-positioning works, see Section 16.1.3.3, “GTID Auto-Positioning”. When file position based
replication is in use, MASTER_AUTO_POSITION=1 is not used, and instead the binary log position or
relay log position is used to control where replication starts.

• Set sync_relay_log=1, which instructs the replication I/O thread to synchronize the relay log to disk
after each received transaction is written to it. This means the replica's record of the current position

3115

Using Replication with Different Source and Replica Storage Engines

read from the source's binary log (in the source metadata repository) is never ahead of the record of
transactions saved in the relay log. Note that although this setting is the safest, it is also the slowest due
to the number of disk writes involved. With sync_relay_log > 1, or sync_relay_log=0 (where
synchronization is handled by the operating system), in the event of an unexpected halt of a replica there
might be committed transactions that have not been synchronized to disk. Such transactions can cause
the recovery process to fail if the recovering replica, based on the information it has in the relay log as
last synchronized to disk, tries to retrieve and apply the transactions again instead of skipping them.
Setting sync_relay_log=1 is particularly important for a multi-threaded replica, where the recovery
process fails if gaps in the sequence of transactions cannot be filled using the information in the relay
log. For a single-threaded replica, the recovery process only needs to use the relay log if the relevant
information is not available in the applier metadata repository.

• Set innodb_flush_log_at_trx_commit=1, which synchronizes the InnoDB logs to disk before
each transaction is committed. This setting, which is the default, ensures that InnoDB tables and the
InnoDB logs are saved on disk so that there is no longer a requirement for the information in the relay
log regarding the transaction. Combined with the setting sync_relay_log=1, this setting further
ensures that the content of the InnoDB tables and the InnoDB logs is consistent with the content of
the relay log at all times, so that purging the relay log files cannot cause unfillable gaps in the replica's
history of transactions in the event of an unexpected halt.

• Set relay_log_info_repository = TABLE, which stores the replication SQL thread position in the
InnoDB table mysql.slave_relay_log_info, and updates it together with the transaction commit
to ensure a record that is always accurate. This setting is not the default in MySQL 5.7. If the default
FILE setting is used, the information is stored in a file in the data directory that is updated after the
transaction has been applied. This creates a risk of losing synchrony with the source depending at which
stage of processing a transaction the replica halts at, or even corruption of the file itself. With the setting
relay_log_info_repository = FILE, recovery is not guaranteed.

• Set relay_log_recovery = ON, which enables automatic relay log recovery immediately following
server startup. This global variable defaults to OFF and is read-only at runtime, but you can set it to ON
with the --relay-log-recovery option at replica startup following an unexpected halt of a replica.
Note that this setting ignores the existing relay log files, in case they are corrupted or inconsistent. The
relay log recovery process starts a new relay log file and fetches transactions from the source beginning
at the replication SQL thread position recorded in the applier metadata repository. The previous relay log
files are removed over time by the replica's normal purge mechanism.

For a multithreaded replica, from MySQL 5.7.13, setting relay_log_recovery = ON automatically
handles any inconsistencies and gaps in the sequence of transactions that have been executed from
the relay log. These gaps can occur when file position based replication is in use. (For more details, see
Section 16.4.1.32, “Replication and Transaction Inconsistencies”.) The relay log recovery process deals
with gaps using the same method as the START SLAVE UNTIL SQL_AFTER_MTS_GAPS statement
would. When the replica reaches a consistent gap-free state, the relay log recovery process goes on to
fetch further transactions from the source beginning at the replication SQL thread position. In MySQL
versions prior to MySQL 5.7.13, this process was not automatic and required starting the server with
relay_log_recovery = OFF, starting the replica with START SLAVE UNTIL SQL_AFTER_MTS_GAPS
to fix any transaction inconsistencies, and then restarting the replica with relay_log_recovery = ON.
When GTID-based replication is in use, from MySQL 5.7.28 a multithreaded replica checks first whether
MASTER_AUTO_POSITION is set to ON, and if it is, omits the step of calculating the transactions that should
be skipped or not skipped, so that the old relay logs are not required for the recovery process.

16.3.3 Using Replication with Different Source and Replica Storage Engines

It does not matter for the replication process whether the source table on the source and the replicated
table on the replica use different engine types. In fact, the default_storage_engine system variable is
not replicated.

3116

Using Replication with Different Source and Replica Storage Engines

This provides a number of benefits in the replication process in that you can take advantage of different
engine types for different replication scenarios. For example, in a typical scale-out scenario (see
Section 16.3.4, “Using Replication for Scale-Out”), you want to use InnoDB tables on the source to take
advantage of the transactional functionality, but use MyISAM on the replicas where transaction support is
not required because the data is only read. When using replication in a data-logging environment you may
want to use the Archive storage engine on the replica.

Configuring different engines on the source and replica depends on how you set up the initial replication
process:

• If you used mysqldump to create the database snapshot on your source, you could edit the dump file
text to change the engine type used on each table.

Another alternative for mysqldump is to disable engine types that you do not want to use on the
replica before using the dump to build the data on the replica. For example, you can add the --skip-
federated option on your replica to disable the FEDERATED engine. If a specific engine does not exist
for a table to be created, MySQL uses the default engine type, usually MyISAM. (This requires that the
NO_ENGINE_SUBSTITUTION SQL mode is not enabled.) If you want to disable additional engines in this
way, you may want to consider building a special binary to be used on the replica that supports only the
engines you want.

• If you are using raw data files (a binary backup) to set up the replica, you cannot change the initial table
format. Instead, use ALTER TABLE to change the table types after the replica has been started.

• For new source/replica replication setups where there are currently no tables on the source, avoid
specifying the engine type when creating new tables.

If you are already running a replication solution and want to convert your existing tables to another engine
type, follow these steps:

1. Stop the replica from running replication updates:

mysql> STOP SLAVE;

This enables you to change engine types without interruptions.

2. Execute an ALTER TABLE ... ENGINE='engine_type' for each table to be changed.

3. Start the replication process again:

mysql> START SLAVE;

Although the default_storage_engine variable is not replicated, be aware that CREATE TABLE and
ALTER TABLE statements that include the engine specification are correctly replicated to the replica. For
example, if you have a CSV table and you execute:

mysql> ALTER TABLE csvtable Engine='MyISAM';

The previous statement is replicated to the replica and the engine type on the replica is converted to
MyISAM, even if you have previously changed the table type on the replica to an engine other than
CSV. If you want to retain engine differences on the source and replica, you should be careful to use the
default_storage_engine variable on the source when creating a new table. For example, instead of:

mysql> CREATE TABLE tablea (columna int) Engine=MyISAM;

Use this format:

mysql> SET default_storage_engine=MyISAM;
mysql> CREATE TABLE tablea (columna int);

3117

Using Replication for Scale-Out

When replicated, the default_storage_engine variable will be ignored, and the CREATE TABLE
statement executes on the replica using the replica's default engine.

16.3.4 Using Replication for Scale-Out

You can use replication as a scale-out solution; that is, where you want to split up the load of database
queries across multiple database servers, within some reasonable limitations.

Because replication works from the distribution of one source to one or more replicas, using replication
for scale-out works best in an environment where you have a high number of reads and low number of
writes/updates. Most websites fit into this category, where users are browsing the website, reading articles,
posts, or viewing products. Updates only occur during session management, or when making a purchase
or adding a comment/message to a forum.

Replication in this situation enables you to distribute the reads over the replicas, while still enabling your
web servers to communicate with the source when a write is required. You can see a sample replication
layout for this scenario in Figure 16.1, “Using Replication to Improve Performance During Scale-Out”.

Figure 16.1 Using Replication to Improve Performance During Scale-Out

3118

Replicating Different Databases to Different Replicas

If the part of your code that is responsible for database access has been properly abstracted/modularized,
converting it to run with a replicated setup should be very smooth and easy. Change the implementation of
your database access to send all writes to the source, and to send reads to either the source or a replica. If
your code does not have this level of abstraction, setting up a replicated system gives you the opportunity
and motivation to clean it up. Start by creating a wrapper library or module that implements the following
functions:

• safe_writer_connect()

• safe_reader_connect()

• safe_reader_statement()

• safe_writer_statement()

safe_ in each function name means that the function takes care of handling all error conditions. You can
use different names for the functions. The important thing is to have a unified interface for connecting for
reads, connecting for writes, doing a read, and doing a write.

Then convert your client code to use the wrapper library. This may be a painful and scary process at
first, but it pays off in the long run. All applications that use the approach just described are able to take
advantage of a source/replica configuration, even one involving multiple replicas. The code is much easier
to maintain, and adding troubleshooting options is trivial. You need modify only one or two functions (for
example, to log how long each statement took, or which statement among those issued gave you an error).

If you have written a lot of code, you may want to automate the conversion task by using the replace
utility that comes with standard MySQL distributions, or write your own conversion script. Ideally, your code
uses consistent programming style conventions. If not, then you are probably better off rewriting it anyway,
or at least going through and manually regularizing it to use a consistent style.

16.3.5 Replicating Different Databases to Different Replicas

There may be situations where you have a single source and want to replicate different databases to
different replicas. For example, you may want to distribute different sales data to different departments to
help spread the load during data analysis. A sample of this layout is shown in Figure 16.2, “Replicating
Databases to Separate Replicas”.

Figure 16.2 Replicating Databases to Separate Replicas

You can achieve this separation by configuring the source and replicas as normal, and then limiting
the binary log statements that each replica processes by using the --replicate-wild-do-table
configuration option on each replica.

3119

Improving Replication Performance

Important

You should not use --replicate-do-db for this purpose when using statement-
based replication, since statement-based replication causes this option's effects
to vary according to the database that is currently selected. This applies to mixed-
format replication as well, since this enables some updates to be replicated using
the statement-based format.

However, it should be safe to use --replicate-do-db for this purpose if you are
using row-based replication only, since in this case the currently selected database
has no effect on the option's operation.

For example, to support the separation as shown in Figure 16.2, “Replicating Databases to Separate
Replicas”, you should configure each replica as follows, before executing START SLAVE:

• Replica 1 should use --replicate-wild-do-table=databaseA.%.

• Replica 2 should use --replicate-wild-do-table=databaseB.%.

• Replica 3 should use --replicate-wild-do-table=databaseC.%.

Each replica in this configuration receives the entire binary log from the source, but executes only those
events from the binary log that apply to the databases and tables included by the --replicate-wild-
do-table option in effect on that replica.

If you have data that must be synchronized to the replicas before replication starts, you have a number of
choices:

• Synchronize all the data to each replica, and delete the databases, tables, or both that you do not want
to keep.

• Use mysqldump to create a separate dump file for each database and load the appropriate dump file on
each replica.

• Use a raw data file dump and include only the specific files and databases that you need for each
replica.

Note

This does not work with InnoDB databases unless you use
innodb_file_per_table.

16.3.6 Improving Replication Performance

As the number of replicas connecting to a source increases, the load, although minimal, also increases, as
each replica uses a client connection to the source. Also, as each replica must receive a full copy of the
source's binary log, the network load on the source may also increase and create a bottleneck.

If you are using a large number of replicas connected to one source, and that source is also busy
processing requests (for example, as part of a scale-out solution), then you may want to improve the
performance of the replication process.

One way to improve the performance of the replication process is to create a deeper replication structure
that enables the source to replicate to only one replica, and for the remaining replicas to connect to
this primary replica for their individual replication requirements. A sample of this structure is shown in
Figure 16.3, “Using an Additional Replication Source to Improve Performance”.

3120

Switching Sources During Failover

Figure 16.3 Using an Additional Replication Source to Improve Performance

For this to work, you must configure the MySQL instances as follows:

• Source 1 is the primary source where all changes and updates are written to the database. Binary
logging should be enabled on this machine.

• Source 2 is the replica of Source 1 that provides the replication functionality to the remainder of the
replicas in the replication structure. Source 2 is the only machine permitted to connect to Source 1.
Source 2 also has binary logging enabled, and the log_slave_updates system variable enabled so
that replication instructions from Source 1 are also written to Source 2's binary log so that they can then
be replicated to the true replicas.

• Replica 1, Replica 2, and Replica 3 act as replicas to Source 2, and replicate the information from
Source 2, which actually consists of the upgrades logged on Source 1.

The above solution reduces the client load and the network interface load on the primary source, which
should improve the overall performance of the primary source when used as a direct database solution.

If your replicas are having trouble keeping up with the replication process on the source, there are a
number of options available:

• If possible, put the relay logs and the data files on different physical drives. To do this, set the
relay_log system variable to specify the location of the relay log.

• If the replicas are significantly slower than the source, you may want to divide up the responsibility for
replicating different databases to different replicas. See Section 16.3.5, “Replicating Different Databases
to Different Replicas”.

• If your source makes use of transactions and you are not concerned about transaction support on your
replicas, use MyISAM or another nontransactional engine on the replicas. See Section 16.3.3, “Using
Replication with Different Source and Replica Storage Engines”.

• If your replicas are not acting as sources, and you have a potential solution in place to ensure that you
can bring up a source in the event of failure, then you can disable the log_slave_updates system
variable on the replicas. This prevents “dumb” replicas from also logging events they have executed into
their own binary log.

16.3.7 Switching Sources During Failover

You can tell a replica to change to a new source using the CHANGE MASTER TO statement. The replica
does not check whether the databases on the source are compatible with those on the replica; it simply
begins reading and executing events from the specified coordinates in the new source's binary log. In a
failover situation, all the servers in the group are typically executing the same events from the same binary

3121

Switching Sources During Failover

log file, so changing the source of the events should not affect the structure or integrity of the database,
provided that you exercise care in making the change.

Replicas should be run with binary logging enabled (the --log-bin option), which is the default. If you are
not using GTIDs for replication, then the replicas should also be run with --log-slave-updates=OFF
(logging replica updates is the default). In this way, the replica is ready to become a source without
restarting the replica mysqld. Assume that you have the structure shown in Figure 16.4, “Redundancy
Using Replication, Initial Structure”.

Figure 16.4 Redundancy Using Replication, Initial Structure

In this diagram, the Source holds the source database, the Replica* hosts are replicas, and the Web
Client machines are issuing database reads and writes. Web clients that issue only reads (and would
normally be connected to the replicas) are not shown, as they do not need to switch to a new server
in the event of failure. For a more detailed example of a read/write scale-out replication structure, see
Section 16.3.4, “Using Replication for Scale-Out”.

Each MySQL replica (Replica 1, Replica 2, and Replica 3) is a replica running with binary logging
enabled, and with --log-slave-updates=OFF. Because updates received by a replica from the source
are not written to the binary log when --log-slave-updates=OFF is specified, the binary log on each
replica is initially empty. If for some reason Source becomes unavailable, you can pick one of the replicas
to become the new source. For example, if you pick Replica 1, all Web Clients should be redirected
to Replica 1, which writes the updates to its binary log. Replica 2 and Replica 3 should then
replicate from Replica 1.

The reason for running the replica with --log-slave-updates=OFF is to prevent replicas from receiving
updates twice in case you cause one of the replicas to become the new source. If Replica 1 has --
log-slave-updates enabled, which is the default, it writes any updates that it receives from Source in
its own binary log. This means that, when Replica 2 changes from Source to Replica 1 as its source,
it may receive updates from Replica 1 that it has already received from Source.

Make sure that all replicas have processed any statements in their relay log. On each replica, issue STOP
SLAVE IO_THREAD, then check the output of SHOW PROCESSLIST until you see Has read all relay
log. When this is true for all replicas, they can be reconfigured to the new setup. On the replica Replica
1 being promoted to become the source, issue STOP SLAVE and RESET MASTER.

3122

Switching Sources During Failover

On the other replicas Replica 2 and Replica 3, use STOP SLAVE and CHANGE MASTER TO
MASTER_HOST='Replica1' (where 'Replica1' represents the real host name of Replica 1). To
use CHANGE MASTER TO, add all information about how to connect to Replica 1 from Replica 2 or
Replica 3 (user, password, port). When issuing the statement in this scenario, there is no need to
specify the name of the Replica 1 binary log file or log position to read from, since the first binary log file
and position 4 are the defaults. Finally, execute START SLAVE on Replica 2 and Replica 3.

Once the new replication setup is in place, you need to tell each Web Client to direct its statements
to Replica 1. From that point on, all updates sent by Web Client to Replica 1 are written to the
binary log of Replica 1, which then contains every update sent to Replica 1 since Source became
unavailable.

The resulting server structure is shown in Figure 16.5, “Redundancy Using Replication, After Source
Failure”.

Figure 16.5 Redundancy Using Replication, After Source Failure

When Source becomes available again, you should make it a replica of Replica 1. To do this, issue
on Source the same CHANGE MASTER TO statement as that issued on Replica 2 and Replica 3
previously. Source then becomes a replica of Replica 1 and picks up the Web Client writes that it
missed while it was offline.

To make Source a source again, use the preceding procedure as if Replica 1 were unavailable and
Source were to be the new source. During this procedure, do not forget to run RESET MASTER on
Source before making Replica 1, Replica 2, and Replica 3 replicas of Source. If you fail to do
this, the replicas may pick up stale writes from the Web Client applications dating from before the point
at which Source became unavailable.

You should be aware that there is no synchronization between replicas, even when they share the same
source, and thus some replicas might be considerably ahead of others. This means that in some cases the
procedure outlined in the previous example might not work as expected. In practice, however, relay logs on
all replicas should be relatively close together.

One way to keep applications informed about the location of the source is to have a dynamic DNS entry for
the source host. With BIND, you can use nsupdate to update the DNS dynamically.

3123

Setting Up Replication to Use Encrypted Connections

16.3.8 Setting Up Replication to Use Encrypted Connections

To use an encrypted connection for the transfer of the binary log required during replication, both the
source and the replica servers must support encrypted network connections. If either server does not
support encrypted connections (because it has not been compiled or configured for them), replication
through an encrypted connection is not possible.

Setting up encrypted connections for replication is similar to doing so for client/server connections.
You must obtain (or create) a suitable security certificate that you can use on the source, and a similar
certificate (from the same certificate authority) on each replica. You must also obtain suitable key files.

For more information on setting up a server and client for encrypted connections, see Section 6.3.1,
“Configuring MySQL to Use Encrypted Connections”.

To enable encrypted connections on the source, you must create or obtain suitable certificate and key files,
and then add the following configuration parameters to the source's configuration within the [mysqld]
section of the source's my.cnf file, changing the file names as necessary:

[mysqld]
ssl_ca=cacert.pem
ssl_cert=server-cert.pem
ssl_key=server-key.pem

The paths to the files may be relative or absolute; we recommend that you always use complete paths for
this purpose.

The configuration parameters are as follows:

• ssl_ca: The path name of the Certificate Authority (CA) certificate file. (--ssl-capath is similar but
specifies the path name of a directory of CA certificate files.)

• ssl_cert: The path name of the server public key certificate file. This certificate can be sent to the
client and authenticated against the CA certificate that it has.

• ssl_key: The path name of the server private key file.

To enable encrypted connections on the replica, use the CHANGE MASTER TO statement.

• To name the replica's certificate and SSL private key files using CHANGE MASTER TO, add the
appropriate MASTER_SSL_xxx options, like this:

 -> MASTER_SSL_CA = 'ca_file_name',
 -> MASTER_SSL_CAPATH = 'ca_directory_name',
 -> MASTER_SSL_CERT = 'cert_file_name',
 -> MASTER_SSL_KEY = 'key_file_name',

These options correspond to the --ssl-xxx options with the same names, as described in Command
Options for Encrypted Connections. For these options to take effect, MASTER_SSL=1 must also be set.
For a replication connection, specifying a value for either of MASTER_SSL_CA or MASTER_SSL_CAPATH
corresponds to setting --ssl-mode=VERIFY_CA. The connection attempt succeeds only if a valid
matching Certificate Authority (CA) certificate is found using the specified information.

• To activate host name identity verification, add the MASTER_SSL_VERIFY_SERVER_CERT option:

 -> MASTER_SSL_VERIFY_SERVER_CERT=1,

This option corresponds to the --ssl-verify-server-cert option, which is deprecated
as of MySQL 5.7.11 and removed in MySQL 8.0. For a replication connection, specifying
MASTER_SSL_VERIFY_SERVER_CERT=1 corresponds to setting --ssl-mode=VERIFY_IDENTITY,

3124

Semisynchronous Replication

as described in Command Options for Encrypted Connections. For this option to take effect,
MASTER_SSL=1 must also be set. Host name identity verification does not work with self-signed
certificates.

• To activate certificate revocation list (CRL) checks, add the MASTER_SSL_CRL or
MASTER_SSL_CRLPATH option, as shown here:

 -> MASTER_SSL_CRL = 'crl_file_name',
 -> MASTER_SSL_CRLPATH = 'crl_directory_name',

These options correspond to the --ssl-xxx options with the same names, as described in Command
Options for Encrypted Connections. If they are not specified, no CRL checking takes place.

• To specify lists of ciphers and encryption protocols permitted by the replica for the replication connection,
add the MASTER_SSL_CIPHER and MASTER_TLS_VERSION options, like this:

 -> MASTER_SSL_CIPHER = 'cipher_list',
 -> MASTER_TLS_VERSION = 'protocol_list',
 -> SOURCE_TLS_CIPHERSUITES = 'ciphersuite_list',

The MASTER_SSL_CIPHER option specifies the list of ciphers permitted by the replica for the replication
connection, with one or more cipher names separated by colons. The MASTER_TLS_VERSION option
specifies the encryption protocols permitted by the replica for the replication connection. The format is
like that for the tls_version system variable, with one or more comma-separated protocol versions.
The protocols and ciphers that you can use in these lists depend on the SSL library used to compile
MySQL. For information about the formats and permitted values, see Section 6.3.2, “Encrypted
Connection TLS Protocols and Ciphers”.

• After the source information has been updated, start the replication process on the replica, like this:

mysql> START SLAVE;

You can use the SHOW SLAVE STATUS statement to confirm that an encrypted connection was
established successfully.

• Requiring encrypted connections on the replica does not ensure that the source requires encrypted
connections from replicas. If you want to ensure that the source only accepts replicas that connect using
encrypted connections, create a replication user account on the source using the REQUIRE SSL option,
then grant that user the REPLICATION SLAVE privilege. For example:

mysql> CREATE USER 'repl'@'%.example.com' IDENTIFIED BY 'password'
 -> REQUIRE SSL;
mysql> GRANT REPLICATION SLAVE ON *.*
 -> TO 'repl'@'%.example.com';

If you have an existing replication user account on the source, you can add REQUIRE SSL to it with this
statement:

mysql> ALTER USER 'repl'@'%.example.com' REQUIRE SSL;

16.3.9 Semisynchronous Replication

In addition to the built-in asynchronous replication, MySQL 5.7 supports an interface to semisynchronous
replication that is implemented by plugins. This section discusses what semisynchronous replication is and
how it works. The following sections cover the administrative interface to semisynchronous replication and
how to install, configure, and monitor it.

MySQL replication by default is asynchronous. The source writes events to its binary log and replicas
request them when they are ready. The source does not know whether or when a replica has retrieved

3125

Semisynchronous Replication

and processed the transactions, and there is no guarantee that any event ever reaches any replica. With
asynchronous replication, if the source crashes, transactions that it has committed might not have been
transmitted to any replica. Failover from source to replica in this case might result in failover to a server
that is missing transactions relative to the source.

With fully synchronous replication, when a source commits a transaction, all replicas must also have
committed the transaction before the source returns to the session that performed the transaction.
Fully synchronous replication means failover from the source to any replica is possible at any time. The
drawback of fully synchronous replication is that there might be a lot of delay to complete a transaction.

Semisynchronous replication falls between asynchronous and fully synchronous replication. The source
waits until at least one replica has received and logged the events (the required number of replicas is
configurable), and then commits the transaction. The source does not wait for all replicas to acknowledge
receipt, and it requires only an acknowledgement from the replicas, not that the events have been fully
executed and committed on the replica side. Semisynchronous replication therefore guarantees that if the
source crashes, all the transactions that it has committed have been transmitted to at least one replica.

Compared to asynchronous replication, semisynchronous replication provides improved data integrity,
because when a commit returns successfully, it is known that the data exists in at least two places. Until a
semisynchronous source receives acknowledgment from the required number of replicas, the transaction is
on hold and not committed.

Compared to fully synchronous replication, semisynchronous replication is faster, because it can be
configured to balance your requirements for data integrity (the number of replicas acknowledging receipt of
the transaction) with the speed of commits, which are slower due to the need to wait for replicas.

Important

With semisynchronous replication, if the source crashes and a failover to a replica is
carried out, the failed source should not be reused as the replication source server,
and should be discarded. It could have transactions that were not acknowledged by
any replica, which were therefore not committed before the failover.

If your goal is to implement a fault-tolerant replication topology where all the servers
receive the same transactions in the same order, and a server that crashes can
rejoin the group and be brought up to date automatically, you can use Group
Replication to achieve this. For information, see Chapter 17, Group Replication.

The performance impact of semisynchronous replication compared to asynchronous replication is the
tradeoff for increased data integrity. The amount of slowdown is at least the TCP/IP roundtrip time to
send the commit to the replica and wait for the acknowledgment of receipt by the replica. This means that
semisynchronous replication works best for close servers communicating over fast networks, and worst for
distant servers communicating over slow networks. Semisynchronous replication also places a rate limit
on busy sessions by constraining the speed at which binary log events can be sent from source to replica.
When one user is too busy, this slows it down, which can be useful in some deployment situations.

Semisynchronous replication between a source and its replicas operates as follows:

• A replica indicates whether it is semisynchronous-capable when it connects to the source.

• If semisynchronous replication is enabled on the source side and there is at least one semisynchronous
replica, a thread that performs a transaction commit on the source blocks and waits until at least one
semisynchronous replica acknowledges that it has received all events for the transaction, or until a
timeout occurs.

• The replica acknowledges receipt of a transaction's events only after the events have been written to its
relay log and flushed to disk.

3126

Semisynchronous Replication

• If a timeout occurs without any replica having acknowledged the transaction, the source reverts to
asynchronous replication. When at least one semisynchronous replica catches up, the source returns to
semisynchronous replication.

• Semisynchronous replication must be enabled on both the source and replica sides. If semisynchronous
replication is disabled on the source, or enabled on the source but on no replicas, the source uses
asynchronous replication.

While the source is blocking (waiting for acknowledgment from a replica), it does not return to the session
that performed the transaction. When the block ends, the source returns to the session, which then
can proceed to execute other statements. At this point, the transaction has committed on the source
side, and receipt of its events has been acknowledged by at least one replica. The number of replica
acknowledgments the source must receive per transaction before returning to the session is configurable
using the rpl_semi_sync_master_wait_for_slave_count system variable, for which the default
value is 1.

Blocking also occurs after rollbacks that are written to the binary log, which occurs when a transaction that
modifies nontransactional tables is rolled back. The rolled-back transaction is logged even though it has
no effect for transactional tables because the modifications to the nontransactional tables cannot be rolled
back and must be sent to replicas.

For statements that do not occur in transactional context (that is, when no transaction has been started
with START TRANSACTION or SET autocommit = 0), autocommit is enabled and each statement
commits implicitly. With semisynchronous replication, the source blocks for each such statement, just as it
does for explicit transaction commits.

The rpl_semi_sync_master_wait_point system variable controls the point at which a
semisynchronous replication source waits for replica acknowledgment of transaction receipt before
returning a status to the client that committed the transaction. These values are permitted:

• AFTER_SYNC (the default): The source writes each transaction to its binary log and the replica, and
syncs the binary log to disk. The source waits for replica acknowledgment of transaction receipt after the
sync. Upon receiving acknowledgment, the source commits the transaction to the storage engine and
returns a result to the client, which then can proceed.

• AFTER_COMMIT: The source writes each transaction to its binary log and the replica, syncs the binary
log, and commits the transaction to the storage engine. The source waits for replica acknowledgment of
transaction receipt after the commit. Upon receiving acknowledgment, the source returns a result to the
client, which then can proceed.

The replication characteristics of these settings differ as follows:

• With AFTER_SYNC, all clients see the committed transaction at the same time, which is after it has been
acknowledged by the replica and committed to the storage engine on the source. Thus, all clients see
the same data on the source.

In the event of source failure, all transactions committed on the source have been replicated to the
replica (saved to its relay log). An unexpected exit of the source and failover to the replica is lossless
because the replica is up to date. As noted above, the source should not be reused after the failover.

• With AFTER_COMMIT, the client issuing the transaction gets a return status only after the server commits
to the storage engine and receives replica acknowledgment. After the commit and before replica
acknowledgment, other clients can see the committed transaction before the committing client.

If something goes wrong such that the replica does not process the transaction, then in the event of
an unexpected source exit and failover to the replica, it is possible that such clients see a loss of data
relative to what they saw on the source.

3127

Semisynchronous Replication

16.3.9.1 Semisynchronous Replication Administrative Interface

The administrative interface to semisynchronous replication has several components:

• Two plugins implement semisynchronous capability. There is one plugin for the source side and one for
the replica side.

• System variables control plugin behavior. Some examples:

• rpl_semi_sync_master_enabled

Controls whether semisynchronous replication is enabled on the source. To enable or disable the
plugin, set this variable to 1 or 0, respectively. The default is 0 (off).

• rpl_semi_sync_master_timeout

A value in milliseconds that controls how long the source waits on a commit for acknowledgment from
a replica before timing out and reverting to asynchronous replication. The default value is 10000 (10
seconds).

• rpl_semi_sync_slave_enabled

Similar to rpl_semi_sync_master_enabled, but controls the replica plugin.

All rpl_semi_sync_xxx system variables are described at Section 16.1.6.2, “Replication Source
Options and Variables” and Section 16.1.6.3, “Replica Server Options and Variables”.

• From MySQL 5.7.33, you can improve the performance of semisynchronous replication by enabling
the system variables replication_sender_observe_commit_only, which limits callbacks, and
replication_optimize_for_static_plugin_config, which adds shared locks and avoids
unnecessary lock acquisitions. These settings help as the number of replicas increases, because
contention for locks can slow down performance. Semisynchronous replication source servers can also
get performance benefits from enabling these system variables, because they use the same locking
mechanisms as the replicas.

• Status variables enable semisynchronous replication monitoring. Some examples:

• Rpl_semi_sync_master_clients

The number of semisynchronous replicas.

• Rpl_semi_sync_master_status

Whether semisynchronous replication currently is operational on the source. The value is 1 if the
plugin has been enabled and a commit acknowledgment has not occurred. It is 0 if the plugin is not
enabled or the source has fallen back to asynchronous replication due to commit acknowledgment
timeout.

• Rpl_semi_sync_master_no_tx

The number of commits that were not acknowledged successfully by a replica.

• Rpl_semi_sync_master_yes_tx

The number of commits that were acknowledged successfully by a replica.

• Rpl_semi_sync_slave_status

3128

Semisynchronous Replication

Whether semisynchronous replication currently is operational on the replica. This is 1 if the plugin has
been enabled and the replication I/O thread is running, 0 otherwise.

All Rpl_semi_sync_xxx status variables are described at Section 5.1.9, “Server Status Variables”.

The system and status variables are available only if the appropriate source or replica plugin has been
installed with INSTALL PLUGIN.

16.3.9.2 Semisynchronous Replication Installation and Configuration

Semisynchronous replication is implemented using plugins, so the plugins must be installed into the server
to make them available. After a plugin has been installed, you control it by means of the system variables
associated with it. These system variables are unavailable until the associated plugin has been installed.

This section describes how to install the semisynchronous replication plugins. For general information
about installing plugins, see Section 5.5.1, “Installing and Uninstalling Plugins”.

To use semisynchronous replication, the following requirements must be satisfied:

• The capability of installing plugins requires a MySQL server that supports dynamic loading. To verify
this, check that the value of the have_dynamic_loading system variable is YES. Binary distributions
should support dynamic loading.

• Replication must already be working, see Section 16.1, “Configuring Replication”.

• There must not be multiple replication channels configured. Semisynchronous replication is only
compatible with the default replication channel. See Section 16.2.2, “Replication Channels”.

To set up semisynchronous replication, use the following instructions. The INSTALL PLUGIN, SET
GLOBAL, STOP SLAVE, and START SLAVE statements mentioned here require the SUPER privilege.

MySQL distributions include semisynchronous replication plugin files for the source side and the replica
side.

To be usable by a source or replica server, the appropriate plugin library file must be located in the MySQL
plugin directory (the directory named by the plugin_dir system variable). If necessary, configure the
plugin directory location by setting the value of plugin_dir at server startup.

The plugin library file base names are semisync_master and semisync_slave. The file name suffix
differs per platform (for example, .so for Unix and Unix-like systems, .dll for Windows).

The source plugin library file must be present in the plugin directory of the source server. The replica plugin
library file must be present in the plugin directory of each replica server.

To load the plugins, use the INSTALL PLUGIN statement on the source and on each replica that is to be
semisynchronous, adjusting the .so suffix for your platform as necessary.

On the source:

INSTALL PLUGIN rpl_semi_sync_master SONAME 'semisync_master.so';

On each replica:

INSTALL PLUGIN rpl_semi_sync_slave SONAME 'semisync_slave.so';

If an attempt to install a plugin results in an error on Linux similar to that shown here, you must install
libimf:

3129

Semisynchronous Replication

mysql> INSTALL PLUGIN rpl_semi_sync_master SONAME 'semisync_master.so';
ERROR 1126 (HY000): Can't open shared library
'/usr/local/mysql/lib/plugin/semisync_master.so'
(errno: 22 libimf.so: cannot open shared object file:
No such file or directory)

You can obtain libimf from https://dev.mysql.com/downloads/os-linux.html.

To see which plugins are installed, use the SHOW PLUGINS statement, or query the Information Schema
PLUGINS table.

To verify plugin installation, examine the Information Schema PLUGINS table or use the SHOW PLUGINS
statement (see Section 5.5.2, “Obtaining Server Plugin Information”). For example:

mysql> SELECT PLUGIN_NAME, PLUGIN_STATUS
 FROM INFORMATION_SCHEMA.PLUGINS
 WHERE PLUGIN_NAME LIKE '%semi%';
+----------------------+---------------+
| PLUGIN_NAME | PLUGIN_STATUS |
+----------------------+---------------+
| rpl_semi_sync_master | ACTIVE |
+----------------------+---------------+

If the plugin fails to initialize, check the server error log for diagnostic messages.

After a semisynchronous replication plugin has been installed, it is disabled by default. The plugins must
be enabled both on the source side and the replica side to enable semisynchronous replication. If only one
side is enabled, replication is asynchronous.

To control whether an installed plugin is enabled, set the appropriate system variables. You can set these
variables at runtime using SET GLOBAL, or at server startup on the command line or in an option file.

At runtime, these source-side system variables are available:

SET GLOBAL rpl_semi_sync_master_enabled = {0|1};
SET GLOBAL rpl_semi_sync_master_timeout = N;

On the replica side, this system variable is available:

SET GLOBAL rpl_semi_sync_slave_enabled = {0|1};

For rpl_semi_sync_master_enabled or rpl_semi_sync_slave_enabled, the value should be 1 to
enable semisynchronous replication or 0 to disable it. By default, these variables are set to 0.

For rpl_semi_sync_master_timeout, the value N is given in milliseconds. The default value is 10000
(10 seconds).

If you enable semisynchronous replication on a replica at runtime, you must also start the replication I/O
thread (stopping it first if it is already running) to cause the replica to connect to the source and register as
a semisynchronous replica:

STOP SLAVE IO_THREAD;
START SLAVE IO_THREAD;

If the replication I/O thread is already running and you do not restart it, the replica continues to use
asynchronous replication.

At server startup, the variables that control semisynchronous replication can be set as command-line
options or in an option file. A setting listed in an option file takes effect each time the server starts. For
example, you can set the variables in my.cnf files on the source and replica sides as follows.

3130

https://dev.mysql.com/downloads/os-linux.html

Delayed Replication

On the source:

[mysqld]
rpl_semi_sync_master_enabled=1
rpl_semi_sync_master_timeout=1000 # 1 second

On each replica:

[mysqld]
rpl_semi_sync_slave_enabled=1

16.3.9.3 Semisynchronous Replication Monitoring

The plugins for the semisynchronous replication capability expose several system and status variables that
you can examine to determine its configuration and operational state.

The system variable reflect how semisynchronous replication is configured. To check their values, use
SHOW VARIABLES:

mysql> SHOW VARIABLES LIKE 'rpl_semi_sync%';

The status variables enable you to monitor the operation of semisynchronous replication. To check their
values, use SHOW STATUS:

mysql> SHOW STATUS LIKE 'Rpl_semi_sync%';

When the source switches between asynchronous or semisynchronous replication due to commit-blocking
timeout or a replica catching up, it sets the value of the Rpl_semi_sync_master_status status variable
appropriately. Automatic fallback from semisynchronous to asynchronous replication on the source means
that it is possible for the rpl_semi_sync_master_enabled system variable to have a value of 1 on
the source side even when semisynchronous replication is in fact not operational at the moment. You can
monitor the Rpl_semi_sync_master_status status variable to determine whether the source currently
is using asynchronous or semisynchronous replication.

To see how many semisynchronous replicas are connected, check Rpl_semi_sync_master_clients.

The number of commits that have been acknowledged successfully or unsuccessfully by replicas are
indicated by the Rpl_semi_sync_master_yes_tx and Rpl_semi_sync_master_no_tx variables.

On the replica side, Rpl_semi_sync_slave_status indicates whether semisynchronous replication
currently is operational.

16.3.10 Delayed Replication

MySQL 5.7 supports delayed replication such that a replica server deliberately lags behind the source by
at least a specified amount of time. The default delay is 0 seconds. Use the MASTER_DELAY option for
CHANGE MASTER TO to set the delay to N seconds:

CHANGE MASTER TO MASTER_DELAY = N;

An event received from the source is not executed until at least N seconds later than its execution on the
source. The exceptions are that there is no delay for format description events or log file rotation events,
which affect only the internal state of the SQL thread.

Delayed replication can be used for several purposes:

• To protect against user mistakes on the source. A DBA can roll back a delayed replica to the time just
before the disaster.

3131

Replication Notes and Tips

• To test how the system behaves when there is a lag. For example, in an application, a lag might be
caused by a heavy load on the replica. However, it can be difficult to generate this load level. Delayed
replication can simulate the lag without having to simulate the load. It can also be used to debug
conditions related to a lagging replica.

• To inspect what the database looked like long ago, without having to reload a backup. For example, if
the delay is one week and the DBA needs to see what the database looked like before the last few days'
worth of development, the delayed replica can be inspected.

START SLAVE and STOP SLAVE take effect immediately and ignore any delay. RESET SLAVE resets the
delay to 0.

SHOW SLAVE STATUS has three fields that provide information about the delay:

• SQL_Delay: A nonnegative integer indicating the number of seconds that the replica must lag the
source.

• SQL_Remaining_Delay: When Slave_SQL_Running_State is Waiting until MASTER_DELAY
seconds after master executed event, this field contains an integer indicating the number of
seconds left of the delay. At other times, this field is NULL.

• Slave_SQL_Running_State: A string indicating the state of the SQL thread (analogous to
Slave_IO_State). The value is identical to the State value of the SQL thread as displayed by SHOW
PROCESSLIST.

When the replication SQL thread is waiting for the delay to elapse before executing an event, SHOW
PROCESSLIST displays its State value as Waiting until MASTER_DELAY seconds after
master executed event.

16.4 Replication Notes and Tips

16.4.1 Replication Features and Issues

The following sections provide information about what is supported and what is not in MySQL replication,
and about specific issues and situations that may occur when replicating certain statements.

Statement-based replication depends on compatibility at the SQL level between the source and replica.
In other words, successful statement-based replication requires that any SQL features used be supported
by both the source and the replica servers. If you use a feature on the source server that is available only
in the current version of MySQL, you cannot replicate to a replica that uses an earlier version of MySQL.
Such incompatibilities can also occur within a release series as well as between versions.

If you are planning to use statement-based replication between MySQL 5.7 and a previous MySQL release
series, it is a good idea to consult the edition of the MySQL Reference Manual corresponding to the earlier
release series for information regarding the replication characteristics of that series.

With MySQL's statement-based replication, there may be issues with replicating stored routines or triggers.
You can avoid these issues by using MySQL's row-based replication instead. For a detailed list of issues,
see Section 23.7, “Stored Program Binary Logging”. For more information about row-based logging and
row-based replication, see Section 5.4.4.1, “Binary Logging Formats”, and Section 16.2.1, “Replication
Formats”.

For additional information specific to replication and InnoDB, see Section 14.20, “InnoDB and MySQL
Replication”. For information relating to replication with NDB Cluster, see Section 21.7, “NDB Cluster
Replication”.

3132

Replication Features and Issues

16.4.1.1 Replication and AUTO_INCREMENT

Statement-based replication of AUTO_INCREMENT, LAST_INSERT_ID(), and TIMESTAMP values is done
correctly, subject to the following exceptions:

• When using statement-based replication prior to MySQL 5.7.1, AUTO_INCREMENT columns in tables on
the replica must match the same columns on the source; that is, AUTO_INCREMENT columns must be
replicated to AUTO_INCREMENT columns.

• A statement invoking a trigger or function that causes an update to an AUTO_INCREMENT column is not
replicated correctly using statement-based replication. These statements are marked as unsafe. (Bug
#45677)

• An INSERT into a table that has a composite primary key that includes an AUTO_INCREMENT column
that is not the first column of this composite key is not safe for statement-based logging or replication.
These statements are marked as unsafe. (Bug #11754117, Bug #45670)

This issue does not affect tables using the InnoDB storage engine, since an InnoDB table with an
AUTO_INCREMENT column requires at least one key where the auto-increment column is the only or
leftmost column.

• Adding an AUTO_INCREMENT column to a table with ALTER TABLE might not produce the same
ordering of the rows on the replica and the source. This occurs because the order in which the rows
are numbered depends on the specific storage engine used for the table and the order in which the
rows were inserted. If it is important to have the same order on the source and replica, the rows
must be ordered before assigning an AUTO_INCREMENT number. Assuming that you want to add an
AUTO_INCREMENT column to a table t1 that has columns col1 and col2, the following statements
produce a new table t2 identical to t1 but with an AUTO_INCREMENT column:

CREATE TABLE t2 LIKE t1;
ALTER TABLE t2 ADD id INT AUTO_INCREMENT PRIMARY KEY;
INSERT INTO t2 SELECT * FROM t1 ORDER BY col1, col2;

Important

To guarantee the same ordering on both source and replica, the ORDER BY
clause must name all columns of t1.

The instructions just given are subject to the limitations of CREATE TABLE ... LIKE: Foreign key
definitions are ignored, as are the DATA DIRECTORY and INDEX DIRECTORY table options. If a table
definition includes any of those characteristics, create t2 using a CREATE TABLE statement that is
identical to the one used to create t1, but with the addition of the AUTO_INCREMENT column.

Regardless of the method used to create and populate the copy having the AUTO_INCREMENT column,
the final step is to drop the original table and then rename the copy:

DROP t1;
ALTER TABLE t2 RENAME t1;

See also Section B.3.6.1, “Problems with ALTER TABLE”.

16.4.1.2 Replication and BLACKHOLE Tables

The BLACKHOLE storage engine accepts data but discards it and does not store it. When performing binary
logging, all inserts to such tables are always logged, regardless of the logging format in use. Updates and
deletes are handled differently depending on whether statement based or row based logging is in use.
With the statement based logging format, all statements affecting BLACKHOLE tables are logged, but their

3133

Replication Features and Issues

effects ignored. When using row-based logging, updates and deletes to such tables are simply skipped—
they are not written to the binary log. A warning is logged whenever this occurs (Bug #13004581).

For this reason we recommend when you replicate to tables using the BLACKHOLE storage engine that you
have the binlog_format server variable set to STATEMENT, and not to either ROW or MIXED.

16.4.1.3 Replication and Character Sets

The following applies to replication between MySQL servers that use different character sets:

• If the source has databases with a character set different from the global character_set_server
value, you should design your CREATE TABLE statements so that they do not implicitly rely on the
database default character set. A good workaround is to state the character set and collation explicitly in
CREATE TABLE statements.

16.4.1.4 Replication and CHECKSUM TABLE

CHECKSUM TABLE returns a checksum that is calculated row by row, using a method that depends on
the table row storage format. The storage format is not guaranteed to remain the same between MySQL
versions, so the checksum value might change following an upgrade.

16.4.1.5 Replication of CREATE ... IF NOT EXISTS Statements

MySQL applies these rules when various CREATE ... IF NOT EXISTS statements are replicated:

• Every CREATE DATABASE IF NOT EXISTS statement is replicated, whether or not the database
already exists on the source.

• Similarly, every CREATE TABLE IF NOT EXISTS statement without a SELECT is replicated, whether or
not the table already exists on the source. This includes CREATE TABLE IF NOT EXISTS ... LIKE.
Replication of CREATE TABLE IF NOT EXISTS ... SELECT follows somewhat different rules; see
Section 16.4.1.6, “Replication of CREATE TABLE ... SELECT Statements”, for more information.

• CREATE EVENT IF NOT EXISTS is always replicated, whether or not the event named in the
statement already exists on the source.

16.4.1.6 Replication of CREATE TABLE ... SELECT Statements

This section discusses how MySQL replicates CREATE TABLE ... SELECT statements.

MySQL 5.7 does not allow a CREATE TABLE ... SELECT statement to make any changes in tables
other than the table that is created by the statement. Some older versions of MySQL permitted these
statements to do so; this means that, when using replication between a MySQL 5.6 or later replica and
a source running a previous version of MySQL, a CREATE TABLE ... SELECT statement causing
changes in other tables on the source fails on the replica, causing replication to stop. To prevent this from
happening, you should use row-based replication, rewrite the offending statement before running it on the
source, or upgrade the source to MySQL 5.7. (If you choose to upgrade the source, keep in mind that such
a CREATE TABLE ... SELECT statement fails following the upgrade unless it is rewritten to remove any
side effects on other tables.)

These behaviors are not dependent on MySQL version:

• CREATE TABLE ... SELECT always performs an implicit commit (Section 13.3.3, “Statements That
Cause an Implicit Commit”).

• If destination table does not exist, logging occurs as follows. It does not matter whether IF NOT
EXISTS is present.

3134

Replication Features and Issues

• STATEMENT or MIXED format: The statement is logged as written.

• ROW format: The statement is logged as a CREATE TABLE statement followed by a series of insert-row
events.

• If the statement fails, nothing is logged. This includes the case that the destination table exists and IF
NOT EXISTS is not given.

When the destination table exists and IF NOT EXISTS is given, MySQL 5.7 ignores the statement
completely; nothing is inserted or logged.

16.4.1.7 Replication of CREATE SERVER, ALTER SERVER, and DROP SERVER

The statements CREATE SERVER, ALTER SERVER, and DROP SERVER are not written to the binary log,
regardless of the binary logging format that is in use.

16.4.1.8 Replication of CURRENT_USER()

The following statements support use of the CURRENT_USER() function to take the place of the name of,
and possibly the host for, an affected user or a definer:

• DROP USER

• RENAME USER

• GRANT

• REVOKE

• CREATE FUNCTION

• CREATE PROCEDURE

• CREATE TRIGGER

• CREATE EVENT

• CREATE VIEW

• ALTER EVENT

• ALTER VIEW

• SET PASSWORD

When binary logging is enabled and CURRENT_USER() or CURRENT_USER is used as the definer in any
of these statements, MySQL Server ensures that the statement is applied to the same user on both the
source and the replica when the statement is replicated. In some cases, such as statements that change
passwords, the function reference is expanded before it is written to the binary log, so that the statement
includes the user name. For all other cases, the name of the current user on the source is replicated to
the replica as metadata, and the replica applies the statement to the current user named in the metadata,
rather than to the current user on the replica.

16.4.1.9 Replication of DROP ... IF EXISTS Statements

The DROP DATABASE IF EXISTS, DROP TABLE IF EXISTS, and DROP VIEW IF EXISTS
statements are always replicated, even if the database, table, or view to be dropped does not exist on the

3135

Replication Features and Issues

source. This is to ensure that the object to be dropped no longer exists on either the source or the replica,
once the replica has caught up with the source.

DROP ... IF EXISTS statements for stored programs (stored procedures and functions, triggers, and
events) are also replicated, even if the stored program to be dropped does not exist on the source.

16.4.1.10 Replication with Differing Table Definitions on Source and Replica

Source and target tables for replication do not have to be identical. A table on the source can have more or
fewer columns than the replica's copy of the table. In addition, corresponding table columns on the source
and the replica can use different data types, subject to certain conditions.

Note

Replication between tables which are partitioned differently from one another is not
supported. See Section 16.4.1.23, “Replication and Partitioning”.

In all cases where the source and target tables do not have identical definitions, the database and table
names must be the same on both the source and the replica. Additional conditions are discussed, with
examples, in the following two sections.

Replication with More Columns on Source or Replica

You can replicate a table from the source to the replica such that the source and replica copies of the table
have differing numbers of columns, subject to the following conditions:

• Columns common to both versions of the table must be defined in the same order on the source and the
replica.

(This is true even if both tables have the same number of columns.)

• Columns common to both versions of the table must be defined before any additional columns.

This means that executing an ALTER TABLE statement on the replica where a new column is inserted
into the table within the range of columns common to both tables causes replication to fail, as shown in
the following example:

Suppose that a table t, existing on the source and the replica, is defined by the following CREATE
TABLE statement:

CREATE TABLE t (
 c1 INT,
 c2 INT,
 c3 INT
);

Suppose that the ALTER TABLE statement shown here is executed on the replica:

ALTER TABLE t ADD COLUMN cnew1 INT AFTER c3;

The previous ALTER TABLE is permitted on the replica because the columns c1, c2, and c3 that are
common to both versions of table t remain grouped together in both versions of the table, before any
columns that differ.

However, the following ALTER TABLE statement cannot be executed on the replica without causing
replication to break:

ALTER TABLE t ADD COLUMN cnew2 INT AFTER c2;

3136

Replication Features and Issues

Replication fails after execution on the replica of the ALTER TABLE statement just shown, because the
new column cnew2 comes between columns common to both versions of t.

• Each “extra” column in the version of the table having more columns must have a default value.

A column's default value is determined by a number of factors, including its type, whether it is defined
with a DEFAULT option, whether it is declared as NULL, and the server SQL mode in effect at the time of
its creation; for more information, see Section 11.6, “Data Type Default Values”).

In addition, when the replica's copy of the table has more columns than the source's copy, each column
common to the tables must use the same data type in both tables.

Examples. The following examples illustrate some valid and invalid table definitions:

More columns on the source. The following table definitions are valid and replicate correctly:

source> CREATE TABLE t1 (c1 INT, c2 INT, c3 INT);
replica> CREATE TABLE t1 (c1 INT, c2 INT);

The following table definitions would raise an error because the definitions of the columns common to both
versions of the table are in a different order on the replica than they are on the source:

source> CREATE TABLE t1 (c1 INT, c2 INT, c3 INT);
replica> CREATE TABLE t1 (c2 INT, c1 INT);

The following table definitions would also raise an error because the definition of the extra column on the
source appears before the definitions of the columns common to both versions of the table:

source> CREATE TABLE t1 (c3 INT, c1 INT, c2 INT);
replica> CREATE TABLE t1 (c1 INT, c2 INT);

More columns on the replica. The following table definitions are valid and replicate correctly:

source> CREATE TABLE t1 (c1 INT, c2 INT);
replica> CREATE TABLE t1 (c1 INT, c2 INT, c3 INT);

The following definitions raise an error because the columns common to both versions of the table are not
defined in the same order on both the source and the replica:

source> CREATE TABLE t1 (c1 INT, c2 INT);
replica> CREATE TABLE t1 (c2 INT, c1 INT, c3 INT);

The following table definitions also raise an error because the definition for the extra column in the replica's
version of the table appears before the definitions for the columns which are common to both versions of
the table:

source> CREATE TABLE t1 (c1 INT, c2 INT);
replica> CREATE TABLE t1 (c3 INT, c1 INT, c2 INT);

The following table definitions fail because the replica's version of the table has additional columns
compared to the source's version, and the two versions of the table use different data types for the
common column c2:

source> CREATE TABLE t1 (c1 INT, c2 BIGINT);
replica> CREATE TABLE t1 (c1 INT, c2 INT, c3 INT);

Replication of Columns Having Different Data Types

3137

Replication Features and Issues

Corresponding columns on the source's and the replica's copies of the same table ideally should have the
same data type. However, this is not always strictly enforced, as long as certain conditions are met.

It is usually possible to replicate from a column of a given data type to another column of the same type
and same size or width, where applicable, or larger. For example, you can replicate from a CHAR(10)
column to another CHAR(10), or from a CHAR(10) column to a CHAR(25) column without any problems.
In certain cases, it also possible to replicate from a column having one data type (on the source) to a
column having a different data type (on the replica); when the data type of the source's version of the
column is promoted to a type that is the same size or larger on the replica, this is known as attribute
promotion.

Attribute promotion can be used with both statement-based and row-based replication, and is not
dependent on the storage engine used by either the source or the replica. However, the choice of logging
format does have an effect on the type conversions that are permitted; the particulars are discussed later in
this section.

Important

Whether you use statement-based or row-based replication, the replica's copy of
the table cannot contain more columns than the source's copy if you wish to employ
attribute promotion.

Statement-based replication. When using statement-based replication, a simple rule of thumb to
follow is, “If the statement run on the source would also execute successfully on the replica, it should also
replicate successfully”. In other words, if the statement uses a value that is compatible with the type of a
given column on the replica, the statement can be replicated. For example, you can insert any value that
fits in a TINYINT column into a BIGINT column as well; it follows that, even if you change the type of a
TINYINT column in the replica's copy of a table to BIGINT, any insert into that column on the source that
succeeds should also succeed on the replica, since it is impossible to have a legal TINYINT value that is
large enough to exceed a BIGINT column.

Prior to MySQL 5.7.1, when using statement-based replication, AUTO_INCREMENT columns were required
to be the same on both the source and the replica; otherwise, updates could be applied to the wrong table
on the replica. (Bug #12669186)

Row-based replication: attribute promotion and demotion. Row-based replication supports attribute
promotion and demotion between smaller data types and larger types. It is also possible to specify whether
or not to permit lossy (truncated) or non-lossy conversions of demoted column values, as explained later in
this section.

Lossy and non-lossy conversions. In the event that the target type cannot represent the value being
inserted, a decision must be made on how to handle the conversion. If we permit the conversion but
truncate (or otherwise modify) the source value to achieve a “fit” in the target column, we make what is
known as a lossy conversion. A conversion which does not require truncation or similar modifications to fit
the source column value in the target column is a non-lossy conversion.

Type conversion modes (slave_type_conversions variable). The setting of the
slave_type_conversions global server variable controls the type conversion mode used on the
replica. This variable takes a set of values from the following table, which shows the effects of each mode
on the replica's type-conversion behavior:

Mode Effect

ALL_LOSSY In this mode, type conversions that would mean loss
of information are permitted.

3138

Replication Features and Issues

Mode Effect
This does not imply that non-lossy conversions
are permitted, merely that only cases requiring
either lossy conversions or no conversion at all are
permitted; for example, enabling only this mode
permits an INT column to be converted to TINYINT
(a lossy conversion), but not a TINYINT column to
an INT column (non-lossy). Attempting the latter
conversion in this case would cause replication to
stop with an error on the replica.

ALL_NON_LOSSY This mode permits conversions that do not require
truncation or other special handling of the source
value; that is, it permits conversions where the
target type has a wider range than the source type.

Setting this mode has no bearing on whether lossy
conversions are permitted; this is controlled with the
ALL_LOSSY mode. If only ALL_NON_LOSSY is set,
but not ALL_LOSSY, then attempting a conversion
that would result in the loss of data (such as INT to
TINYINT, or CHAR(25) to VARCHAR(20)) causes
the replica to stop with an error.

ALL_LOSSY,ALL_NON_LOSSY When this mode is set, all supported type
conversions are permitted, whether or not they are
lossy conversions.

ALL_SIGNED Treat promoted integer types as signed values (the
default behavior).

ALL_UNSIGNED Treat promoted integer types as unsigned values.

ALL_SIGNED,ALL_UNSIGNED Treat promoted integer types as signed if possible,
otherwise as unsigned.

[empty] When slave_type_conversions is not set, no
attribute promotion or demotion is permitted; this
means that all columns in the source and target
tables must be of the same types.

This mode is the default.

When an integer type is promoted, its signedness is not preserved. By default, the replica treats all
such values as signed. Beginning with MySQL 5.7.2, you can control this behavior using ALL_SIGNED,
ALL_UNSIGNED, or both. (Bug#15831300) ALL_SIGNED tells the replica to treat all promoted integer types
as signed; ALL_UNSIGNED instructs it to treat these as unsigned. Specifying both causes the replica to
treat the value as signed if possible, otherwise to treat it as unsigned; the order in which they are listed is
not significant. Neither ALL_SIGNED nor ALL_UNSIGNED has any effect if at least one of ALL_LOSSY or
ALL_NONLOSSY is not also used.

Changing the type conversion mode requires restarting the replica with the new
slave_type_conversions setting.

Supported conversions. Supported conversions between different but similar data types are shown in
the following list:

• Between any of the integer types TINYINT, SMALLINT, MEDIUMINT, INT, and BIGINT.

3139

Replication Features and Issues

This includes conversions between the signed and unsigned versions of these types.

Lossy conversions are made by truncating the source value to the maximum (or minimum) permitted
by the target column. For ensuring non-lossy conversions when going from unsigned to signed types,
the target column must be large enough to accommodate the range of values in the source column. For
example, you can demote TINYINT UNSIGNED non-lossily to SMALLINT, but not to TINYINT.

• Between any of the decimal types DECIMAL, FLOAT, DOUBLE, and NUMERIC.

FLOAT to DOUBLE is a non-lossy conversion; DOUBLE to FLOAT can only be handled lossily. A
conversion from DECIMAL(M,D) to DECIMAL(M',D') where D' >= D and (M'-D') >= (M-D) is
non-lossy; for any case where M' < M, D' < D, or both, only a lossy conversion can be made.

For any of the decimal types, if a value to be stored cannot be fit in the target type, the value is rounded
down according to the rounding rules defined for the server elsewhere in the documentation. See
Section 12.21.4, “Rounding Behavior”, for information about how this is done for decimal types.

• Between any of the string types CHAR, VARCHAR, and TEXT, including conversions between different
widths.

Conversion of a CHAR, VARCHAR, or TEXT to a CHAR, VARCHAR, or TEXT column the same size or larger
is never lossy. Lossy conversion is handled by inserting only the first N characters of the string on the
replica, where N is the width of the target column.

Important

Replication between columns using different character sets is not supported.

• Between any of the binary data types BINARY, VARBINARY, and BLOB, including conversions between
different widths.

Conversion of a BINARY, VARBINARY, or BLOB to a BINARY, VARBINARY, or BLOB column the same
size or larger is never lossy. Lossy conversion is handled by inserting only the first N bytes of the string
on the replica, where N is the width of the target column.

• Between any 2 BIT columns of any 2 sizes.

When inserting a value from a BIT(M) column into a BIT(M') column, where M' > M, the most
significant bits of the BIT(M') columns are cleared (set to zero) and the M bits of the BIT(M) value are
set as the least significant bits of the BIT(M') column.

When inserting a value from a source BIT(M) column into a target BIT(M') column, where M' < M,
the maximum possible value for the BIT(M') column is assigned; in other words, an “all-set” value is
assigned to the target column.

Conversions between types not in the previous list are not permitted.

16.4.1.11 Replication and DIRECTORY Table Options

If a DATA DIRECTORY or INDEX DIRECTORY table option is used in a CREATE TABLE statement on the
source server, the table option is also used on the replica. This can cause problems if no corresponding
directory exists in the replica host's file system or if it exists but is not accessible to the replica server. This
can be overridden by using the NO_DIR_IN_CREATE server SQL mode on the replica, which causes the
replica to ignore the DATA DIRECTORY and INDEX DIRECTORY table options when replicating CREATE
TABLE statements. The result is that MyISAM data and index files are created in the table's database
directory.

3140

Replication Features and Issues

For more information, see Section 5.1.10, “Server SQL Modes”.

16.4.1.12 Replication and Floating-Point Values

With statement-based replication, values are converted from decimal to binary. Because conversions
between decimal and binary representations of them may be approximate, comparisons involving floating-
point values are inexact. This is true for operations that use floating-point values explicitly, or that use
values that are converted to floating-point implicitly. Comparisons of floating-point values might yield
different results on source and replica servers due to differences in computer architecture, the compiler
used to build MySQL, and so forth. See Section 12.3, “Type Conversion in Expression Evaluation”, and
Section B.3.4.8, “Problems with Floating-Point Values”.

16.4.1.13 Replication and Fractional Seconds Support

MySQL 5.7 permits fractional seconds for TIME, DATETIME, and TIMESTAMP values, with up to
microseconds (6 digits) precision. See Section 11.2.7, “Fractional Seconds in Time Values”.

There may be problems replicating from a source server that understands fractional seconds to an older
replica (MySQL 5.6.3 and earlier) that does not:

• For CREATE TABLE statements containing columns that have an fsp (fractional seconds precision)
value greater than 0, replication fails due to parser errors.

• Statements that use temporal data types with an fsp value of 0 work with statement-based logging but
not row-based logging. In the latter case, the data types have binary formats and type codes on the
source that differ from those on the replica.

• Some expression results differ on source and replica. Examples: On the source, the timestamp
system variable returns a value that includes a microseconds fractional part; on the replica, it returns an
integer. On the source, functions that return a result that includes the current time (such as CURTIME(),
SYSDATE(), or UTC_TIMESTAMP()) interpret an argument as an fsp value and the return value
includes a fractional seconds part of that many digits. On the replica, these functions permit an argument
but ignore it.

16.4.1.14 Replication and FLUSH

Some forms of the FLUSH statement are not logged because they could cause problems if replicated
to a replica: FLUSH LOGS and FLUSH TABLES WITH READ LOCK. For a syntax example, see
Section 13.7.6.3, “FLUSH Statement”. The FLUSH TABLES, ANALYZE TABLE, OPTIMIZE TABLE,
and REPAIR TABLE statements are written to the binary log and thus replicated to replicas. This is not
normally a problem because these statements do not modify table data.

However, this behavior can cause difficulties under certain circumstances. If you replicate the privilege
tables in the mysql database and update those tables directly without using GRANT, you must issue
a FLUSH PRIVILEGES on the replicas to put the new privileges into effect. In addition, if you use
FLUSH TABLES when renaming a MyISAM table that is part of a MERGE table, you must issue FLUSH
TABLES manually on the replicas. These statements are written to the binary log unless you specify
NO_WRITE_TO_BINLOG or its alias LOCAL.

16.4.1.15 Replication and System Functions

Certain functions do not replicate well under some conditions:

• The USER(), CURRENT_USER() (or CURRENT_USER), UUID(), VERSION(), and LOAD_FILE()
functions are replicated without change and thus do not work reliably on the replica unless row-based
replication is enabled. (See Section 16.2.1, “Replication Formats”.)

3141

Replication Features and Issues

USER() and CURRENT_USER() are automatically replicated using row-based replication when using
MIXED mode, and generate a warning in STATEMENT mode. (See also Section 16.4.1.8, “Replication of
CURRENT_USER()”.) This is also true for VERSION() and RAND().

• For NOW(), the binary log includes the timestamp. This means that the value as returned by the call
to this function on the source is replicated to the replica. To avoid unexpected results when replicating
between MySQL servers in different time zones, set the time zone on both source and replica. For more
information, see Section 16.4.1.31, “Replication and Time Zones”.

To explain the potential problems when replicating between servers which are in different time zones,
suppose that the source is located in New York, the replica is located in Stockholm, and both servers are
using local time. Suppose further that, on the source, you create a table mytable, perform an INSERT
statement on this table, and then select from the table, as shown here:

mysql> CREATE TABLE mytable (mycol TEXT);
Query OK, 0 rows affected (0.06 sec)

mysql> INSERT INTO mytable VALUES (NOW());
Query OK, 1 row affected (0.00 sec)

mysql> SELECT * FROM mytable;
+---------------------+
| mycol |
+---------------------+
| 2009-09-01 12:00:00 |
+---------------------+
1 row in set (0.00 sec)

Local time in Stockholm is 6 hours later than in New York; so, if you issue SELECT NOW() on the replica
at that exact same instant, the value 2009-09-01 18:00:00 is returned. For this reason, if you select
from the replica's copy of mytable after the CREATE TABLE and INSERT statements just shown have
been replicated, you might expect mycol to contain the value 2009-09-01 18:00:00. However, this
is not the case; when you select from the replica's copy of mytable, you obtain exactly the same result
as on the source:

mysql> SELECT * FROM mytable;
+---------------------+
| mycol |
+---------------------+
| 2009-09-01 12:00:00 |
+---------------------+
1 row in set (0.00 sec)

Unlike NOW(), the SYSDATE() function is not replication-safe because it is not affected by SET
TIMESTAMP statements in the binary log and is nondeterministic if statement-based logging is used. This
is not a problem if row-based logging is used.

An alternative is to use the --sysdate-is-now option to cause SYSDATE() to be an alias for NOW().
This must be done on the source and the replica to work correctly. In such cases, a warning is still
issued by this function, but can safely be ignored as long as --sysdate-is-now is used on both the
source and the replica.

SYSDATE() is automatically replicated using row-based replication when using MIXED mode, and
generates a warning in STATEMENT mode.

See also Section 16.4.1.31, “Replication and Time Zones”.

• The following restriction applies to statement-based replication only, not to row-based replication. The
GET_LOCK(), RELEASE_LOCK(), IS_FREE_LOCK(), and IS_USED_LOCK() functions that handle

3142

Replication Features and Issues

user-level locks are replicated without the replica knowing the concurrency context on the source.
Therefore, these functions should not be used to insert into a source table because the content on
the replica would differ. For example, do not issue a statement such as INSERT INTO mytable
VALUES(GET_LOCK(...)).

These functions are automatically replicated using row-based replication when using MIXED mode, and
generate a warning in STATEMENT mode.

As a workaround for the preceding limitations when statement-based replication is in effect, you can use
the strategy of saving the problematic function result in a user variable and referring to the variable in a
later statement. For example, the following single-row INSERT is problematic due to the reference to the
UUID() function:

INSERT INTO t VALUES(UUID());

To work around the problem, do this instead:

SET @my_uuid = UUID();
INSERT INTO t VALUES(@my_uuid);

That sequence of statements replicates because the value of @my_uuid is stored in the binary log as a
user-variable event prior to the INSERT statement and is available for use in the INSERT.

The same idea applies to multiple-row inserts, but is more cumbersome to use. For a two-row insert, you
can do this:

SET @my_uuid1 = UUID(); @my_uuid2 = UUID();
INSERT INTO t VALUES(@my_uuid1),(@my_uuid2);

However, if the number of rows is large or unknown, the workaround is difficult or impracticable. For
example, you cannot convert the following statement to one in which a given individual user variable is
associated with each row:

INSERT INTO t2 SELECT UUID(), * FROM t1;

Within a stored function, RAND() replicates correctly as long as it is invoked only once during the execution
of the function. (You can consider the function execution timestamp and random number seed as implicit
inputs that are identical on the source and replica.)

The FOUND_ROWS() and ROW_COUNT() functions are not replicated reliably using statement-based
replication. A workaround is to store the result of the function call in a user variable, and then use that in
the INSERT statement. For example, if you wish to store the result in a table named mytable, you might
normally do so like this:

SELECT SQL_CALC_FOUND_ROWS FROM mytable LIMIT 1;
INSERT INTO mytable VALUES(FOUND_ROWS());

However, if you are replicating mytable, you should use SELECT ... INTO, and then store the variable
in the table, like this:

SELECT SQL_CALC_FOUND_ROWS INTO @found_rows FROM mytable LIMIT 1;
INSERT INTO mytable VALUES(@found_rows);

In this way, the user variable is replicated as part of the context, and applied on the replica correctly.

These functions are automatically replicated using row-based replication when using MIXED mode, and
generate a warning in STATEMENT mode. (Bug #12092, Bug #30244)

Prior to MySQL 5.7.3, the value of LAST_INSERT_ID() was not replicated correctly if any filtering options
such as --replicate-ignore-db and --replicate-do-table were enabled on the replica. (Bug
#17234370, BUG# 69861)

3143

Replication Features and Issues

16.4.1.16 Replication of Invoked Features

Replication of invoked features such as loadable functions and stored programs (stored procedures and
functions, triggers, and events) provides the following characteristics:

• The effects of the feature are always replicated.

• The following statements are replicated using statement-based replication:

• CREATE EVENT

• ALTER EVENT

• DROP EVENT

• CREATE PROCEDURE

• DROP PROCEDURE

• CREATE FUNCTION

• DROP FUNCTION

• CREATE TRIGGER

• DROP TRIGGER

However, the effects of features created, modified, or dropped using these statements are replicated
using row-based replication.

Note

Attempting to replicate invoked features using statement-based replication
produces the warning Statement is not safe to log in statement
format. For example, trying to replicate a loadable function with statement-
based replication generates this warning because it currently cannot be
determined by the MySQL server whether the function is deterministic. If you are
absolutely certain that the invoked feature's effects are deterministic, you can
safely disregard such warnings.

• In the case of CREATE EVENT and ALTER EVENT:

• The status of the event is set to SLAVESIDE_DISABLED on the replica regardless of the state
specified (this does not apply to DROP EVENT).

• The source on which the event was created is identified on the replica by its server ID. The
ORIGINATOR column in the Information Schema EVENTS table and the originator column in
mysql.event store this information. See Section 24.3.8, “The INFORMATION_SCHEMA EVENTS
Table”, and Section 13.7.5.18, “SHOW EVENTS Statement”, for more information.

• The feature implementation resides on the replica in a renewable state so that if the source fails, the
replica can be used as the source without loss of event processing.

To determine whether there are any scheduled events on a MySQL server that were created on a different
server (that was acting as a replication source server), query the Information Schema EVENTS table in a
manner similar to what is shown here:

SELECT EVENT_SCHEMA, EVENT_NAME

3144

Replication Features and Issues

 FROM INFORMATION_SCHEMA.EVENTS
 WHERE STATUS = 'SLAVESIDE_DISABLED';

Alternatively, you can use the SHOW EVENTS statement, like this:

SHOW EVENTS
 WHERE STATUS = 'SLAVESIDE_DISABLED';

When promoting a replica having such events to a replication source server, you must enable each event
using ALTER EVENT event_name ENABLE, where event_name is the name of the event.

If more than one source was involved in creating events on this replica, and you wish to identify events that
were created only on a given source having the server ID source_id, modify the previous query on the
EVENTS table to include the ORIGINATOR column, as shown here:

SELECT EVENT_SCHEMA, EVENT_NAME, ORIGINATOR
 FROM INFORMATION_SCHEMA.EVENTS
 WHERE STATUS = 'SLAVESIDE_DISABLED'
 AND ORIGINATOR = 'source_id'

You can employ ORIGINATOR with the SHOW EVENTS statement in a similar fashion:

SHOW EVENTS
 WHERE STATUS = 'SLAVESIDE_DISABLED'
 AND ORIGINATOR = 'source_id'

Before enabling events that were replicated from the source, you should disable the MySQL Event
Scheduler on the replica (using a statement such as SET GLOBAL event_scheduler = OFF;), run any
necessary ALTER EVENT statements, restart the server, then re-enable the Event Scheduler on the replica
afterward (using a statement such as SET GLOBAL event_scheduler = ON;)-

If you later demote the new source back to being a replica, you must disable manually all events enabled
by the ALTER EVENT statements. You can do this by storing in a separate table the event names from
the SELECT statement shown previously, or using ALTER EVENT statements to rename the events with a
common prefix such as replicated_ to identify them.

If you rename the events, then when demoting this server back to being a replica, you can identify the
events by querying the EVENTS table, as shown here:

SELECT CONCAT(EVENT_SCHEMA, '.', EVENT_NAME) AS 'Db.Event'
 FROM INFORMATION_SCHEMA.EVENTS
 WHERE INSTR(EVENT_NAME, 'replicated_') = 1;

16.4.1.17 Replication and LIMIT

Statement-based replication of LIMIT clauses in DELETE, UPDATE, and INSERT ... SELECT
statements is unsafe since the order of the rows affected is not defined. (Such statements can be
replicated correctly with statement-based replication only if they also contain an ORDER BY clause.) When
such a statement is encountered:

• When using STATEMENT mode, a warning that the statement is not safe for statement-based replication
is now issued.

When using STATEMENT mode, warnings are issued for DML statements containing LIMIT even when
they also have an ORDER BY clause (and so are made deterministic). This is a known issue. (Bug
#42851)

• When using MIXED mode, the statement is now automatically replicated using row-based mode.

3145

Replication Features and Issues

16.4.1.18 Replication and LOAD DATA

LOAD DATA is considered unsafe for statement-based logging (see Section 16.2.1.3, “Determination of
Safe and Unsafe Statements in Binary Logging”). When binlog_format=MIXED is set, the statement is
logged in row-based format. When binlog_format=STATEMENT is set, note that LOAD DATA does not
generate a warning, unlike other unsafe statements.

When mysqlbinlog reads log events for LOAD DATA statements logged in statement-based format,
a generated local file is created in a temporary directory. These temporary files are not automatically
removed by mysqlbinlog or any other MySQL program. If you do use LOAD DATA statements with
statement-based binary logging, you should delete the temporary files yourself after you no longer need
the statement log. For more information, see Section 4.6.7, “mysqlbinlog — Utility for Processing Binary
Log Files”.

16.4.1.19 Replication and max_allowed_packet

max_allowed_packet sets an upper limit on the size of any single message between the MySQL server
and clients, including replicas. If you are replicating large column values (such as might be found in TEXT
or BLOB columns) and max_allowed_packet is too small on the source, the source fails with an error,
and the replica shuts down the replication I/O thread. If max_allowed_packet is too small on the replica,
this also causes the replica to stop the replication I/O thread.

Row-based replication sends all columns and column values for updated rows from the source to the
replica, including values of columns that were not actually changed by the update. This means that,
when you are replicating large column values using row-based replication, you must take care to set
max_allowed_packet large enough to accommodate the largest row in any table to be replicated, even
if you are replicating updates only, or you are inserting only relatively small values.

On a multi-threaded replica (slave_parallel_workers > 0), ensure that the system
variable slave_pending_jobs_size_max is set to a value equal to or greater than the
setting for the max_allowed_packet system variable on the source. The default setting for
slave_pending_jobs_size_max, 128M, is twice the default setting for max_allowed_packet,
which is 64M. max_allowed_packet limits the packet size that the source can send, but the addition
of an event header can produce a binary log event exceeding this size. Also, in row-based replication,
a single event can be significantly larger than the max_allowed_packet size, because the value of
max_allowed_packet only limits each column of the table.

The replica actually accepts packets up to the limit set by its slave_max_allowed_packet setting,
which default to the maximum setting of 1GB, to prevent a replication failure due to a large packet.
However, the value of slave_pending_jobs_size_max controls the memory that is made available on
the replica to hold incoming packets. The specified memory is shared among all the replica worker queues.

The value of slave_pending_jobs_size_max is a soft limit, and if an unusually large event (consisting
of one or multiple packets) exceeds this size, the transaction is held until all the replica workers have
empty queues, and then processed. All subsequent transactions are held until the large transaction
has been completed. So although unusual events larger than slave_pending_jobs_size_max
can be processed, the delay to clear the queues of all the replica workers and the wait to queue
subsequent transactions can cause lag on the replica and decreased concurrency of the replica workers.
slave_pending_jobs_size_max should therefore be set high enough to accommodate most expected
event sizes.

16.4.1.20 Replication and MEMORY Tables

When a replication source server shuts down and restarts, its MEMORY tables become empty. To replicate
this effect to replicas, the first time that the source uses a given MEMORY table after startup, it logs an

3146

Replication Features and Issues

event that notifies replicas that the table must be emptied by writing a DELETE or (from MySQL 5.7.32)
TRUNCATE TABLE statement for that table to the binary log. This generated event is identifiable by a
comment in the binary log, and if GTIDs are in use on the server, it has a GTID assigned. The statement is
always logged in statement format, even if the binary logging format is set to ROW, and it is written even if
read_only or super_read_only mode is set on the server. Note that the replica still has outdated data
in a MEMORY table during the interval between the source's restart and its first use of the table. To avoid
this interval when a direct query to the replica could return stale data, you can set the init_file system
variable to name a file containing statements that populate the MEMORY table on the source at startup.

When a replica server shuts down and restarts, its MEMORY tables become empty. This causes the replica
to be out of synchrony with the source and may lead to other failures or cause the replica to stop:

• Row-format updates and deletes received from the source may fail with Can't find record in
'memory_table'.

• Statements such as INSERT INTO ... SELECT FROM memory_table may insert a different set of
rows on the source and replica.

The replica also writes a DELETE or (from MySQL 5.7.32) TRUNCATE TABLE statement to its own binary
log, which is passed on to any downstream replicas, causing them to empty their own MEMORY tables.

The safe way to restart a replica that is replicating MEMORY tables is to first drop or delete all rows from the
MEMORY tables on the source and wait until those changes have replicated to the replica. Then it is safe to
restart the replica.

An alternative restart method may apply in some cases. When binlog_format=ROW, you can prevent
the replica from stopping if you set slave_exec_mode=IDEMPOTENT before you start the replica again.
This allows the replica to continue to replicate, but its MEMORY tables still differ from those on the source.
This is acceptable if the application logic is such that the contents of MEMORY tables can be safely lost (for
example, if the MEMORY tables are used for caching). slave_exec_mode=IDEMPOTENT applies globally to
all tables, so it may hide other replication errors in non-MEMORY tables.

(The method just described is not applicable in NDB Cluster, where slave_exec_mode is always
IDEMPOTENT, and cannot be changed.)

The size of MEMORY tables is limited by the value of the max_heap_table_size system variable, which is
not replicated (see Section 16.4.1.37, “Replication and Variables”). A change in max_heap_table_size
takes effect for MEMORY tables that are created or updated using ALTER TABLE ... ENGINE = MEMORY
or TRUNCATE TABLE following the change, or for all MEMORY tables following a server restart. If you
increase the value of this variable on the source without doing so on the replica, it becomes possible for
a table on the source to grow larger than its counterpart on the replica, leading to inserts that succeed on
the source but fail on the replica with Table is full errors. This is a known issue (Bug #48666). In
such cases, you must set the global value of max_heap_table_size on the replica as well as on the
source, then restart replication. It is also recommended that you restart both the source and replica MySQL
servers, to insure that the new value takes complete (global) effect on each of them.

See Section 15.3, “The MEMORY Storage Engine”, for more information about MEMORY tables.

16.4.1.21 Replication of the mysql System Database

Data modification statements made to tables in the mysql database are replicated according to the value
of binlog_format; if this value is MIXED, these statements are replicated using row-based format.
However, statements that would normally update this information indirectly—such GRANT, REVOKE, and
statements manipulating triggers, stored routines, and views—are replicated to replicas using statement-
based replication.

3147

Replication Features and Issues

16.4.1.22 Replication and the Query Optimizer

It is possible for the data on the source and replica to become different if a statement is written in such a
way that the data modification is nondeterministic; that is, left up the query optimizer. (In general, this is not
a good practice, even outside of replication.) Examples of nondeterministic statements include DELETE or
UPDATE statements that use LIMIT with no ORDER BY clause; see Section 16.4.1.17, “Replication and
LIMIT”, for a detailed discussion of these.

16.4.1.23 Replication and Partitioning

Replication is supported between partitioned tables as long as they use the same partitioning scheme
and otherwise have the same structure except where an exception is specifically allowed (see
Section 16.4.1.10, “Replication with Differing Table Definitions on Source and Replica”).

Replication between tables having different partitioning is generally not supported. This because
statements (such as ALTER TABLE ... DROP PARTITION) acting directly on partitions in such cases
may produce different results on source and replica. In the case where a table is partitioned on the source
but not on the replica, any statements operating on partitions on the source's copy of the replica fail on the
replica. When the replica's copy of the table is partitioned but the source's copy is not, statements acting
on partitions cannot be run on the source without causing errors there.

Due to these dangers of causing replication to fail entirely (on account of failed statements) and of
inconsistencies (when the result of a partition-level SQL statement produces different results on source
and replica), we recommend that insure that the partitioning of any tables to be replicated from the source
is matched by the replica's versions of these tables.

16.4.1.24 Replication and REPAIR TABLE

When used on a corrupted or otherwise damaged table, it is possible for the REPAIR TABLE statement
to delete rows that cannot be recovered. However, any such modifications of table data performed by this
statement are not replicated, which can cause source and replica to lose synchronization. For this reason,
in the event that a table on the source becomes damaged and you use REPAIR TABLE to repair it, you
should first stop replication (if it is still running) before using REPAIR TABLE, then afterward compare the
source's and replica's copies of the table and be prepared to correct any discrepancies manually, before
restarting replication.

16.4.1.25 Replication and Reserved Words

You can encounter problems when you attempt to replicate from an older source to a newer replica and
you make use of identifiers on the source that are reserved words in the newer MySQL version running on
the replica. An example of this is using a table column named virtual on a 5.6 source that is replicating
to a 5.7 or higher replica because VIRTUAL is a reserved word beginning in MySQL 5.7. Replication can
fail in such cases with Error 1064 You have an error in your SQL syntax..., even if a database
or table named using the reserved word or a table having a column named using the reserved word is
excluded from replication. This is due to the fact that each SQL event must be parsed by the replica prior
to execution, so that the replica knows which database object or objects would be affected; only after the
event is parsed can the replica apply any filtering rules defined by --replicate-do-db, --replicate-
do-table, --replicate-ignore-db, and --replicate-ignore-table.

To work around the problem of database, table, or column names on the source which would be regarded
as reserved words by the replica, do one of the following:

• Use one or more ALTER TABLE statements on the source to change the names of any database
objects where these names would be considered reserved words on the replica, and change any SQL
statements that use the old names to use the new names instead.

3148

Replication Features and Issues

• In any SQL statements using these database object names, write the names as quoted identifiers using
backtick characters (`).

For listings of reserved words by MySQL version, see Keywords and Reserved Words in MySQL 5.7, in the
MySQL Server Version Reference. For identifier quoting rules, see Section 9.2, “Schema Object Names”.

16.4.1.26 Replication and Source or Replica Shutdowns

It is safe to shut down a source server and restart it later. When a replica loses its connection to the
source, the replica tries to reconnect immediately and retries periodically if that fails. The default is to retry
every 60 seconds. This may be changed with the CHANGE MASTER TO statement. A replica also is able
to deal with network connectivity outages. However, the replica notices the network outage only after
receiving no data from the source for slave_net_timeout seconds. If your outages are short, you may
want to decrease slave_net_timeout. See Section 16.3.2, “Handling an Unexpected Halt of a Replica”.

An unclean shutdown (for example, a crash) on the source side can result in the source's binary
log having a final position less than the most recent position read by the replica, due to the source's
binary log file not being flushed. This can cause the replica not to be able to replicate when the
source comes back up. Setting sync_binlog=1 in the source's my.cnf file helps to minimize this
problem because it causes the source to flush its binary log more frequently. For the greatest possible
durability and consistency in a replication setup using InnoDB with transactions, you should also set
innodb_flush_log_at_trx_commit=1. With this setting, the contents of the InnoDB redo log buffer
are written out to the log file at each transaction commit and the log file is flushed to disk. Note that
the durability of transactions is still not guaranteed with this setting, because operating systems or disk
hardware may tell mysqld that the flush-to-disk operation has taken place, even though it has not.

Shutting down a replica cleanly is safe because it keeps track of where it left off. However, be careful that
the replica does not have temporary tables open; see Section 16.4.1.29, “Replication and Temporary
Tables”. Unclean shutdowns might produce problems, especially if the disk cache was not flushed to disk
before the problem occurred:

• For transactions, the replica commits and then updates relay-log.info. If an unexpected exit
occurs between these two operations, relay log processing proceeds further than the information file
indicates and the replica re-executes the events from the last transaction in the relay log after it has been
restarted.

• A similar problem can occur if the replica updates relay-log.info but the server host
crashes before the write has been flushed to disk. To minimize the chance of this occurring, set
sync_relay_log_info=1 in the replica my.cnf file. Setting sync_relay_log_info to 0 causes no
writes to be forced to disk and the server relies on the operating system to flush the file from time to time.

The fault tolerance of your system for these types of problems is greatly increased if you have a good
uninterruptible power supply.

16.4.1.27 Replica Errors During Replication

If a statement produces the same error (identical error code) on both the source and the replica, the error
is logged, but replication continues.

If a statement produces different errors on the source and the replica, the replication SQL thread
terminates, and the replica writes a message to its error log and waits for the database administrator to
decide what to do about the error. This includes the case that a statement produces an error on the source
or the replica, but not both. To address the issue, connect to the replica manually and determine the cause
of the problem. SHOW SLAVE STATUS is useful for this. Then fix the problem and run START SLAVE. For
example, you might need to create a nonexistent table before you can start the replica again.

3149

https://dev.mysql.com/doc/mysqld-version-reference/en/keywords-5-7.html

Replication Features and Issues

Note

If a temporary error is recorded in the replica's error log, you do not necessarily
have to take any action suggested in the quoted error message. Temporary
errors should be handled by the client retrying the transaction. For example, if the
replication SQL thread records a temporary error relating to a deadlock, you do not
need to restart the transaction manually on the replica, unless the replication SQL
thread subsequently terminates with a nontemporary error message.

If this error code validation behavior is not desirable, some or all errors can be masked out (ignored) with
the --slave-skip-errors option.

For nontransactional storage engines such as MyISAM, it is possible to have a statement that only partially
updates a table and returns an error code. This can happen, for example, on a multiple-row insert that has
one row violating a key constraint, or if a long update statement is killed after updating some of the rows.
If that happens on the source, the replica expects execution of the statement to result in the same error
code. If it does not, the replication SQL thread stops as described previously.

If you are replicating between tables that use different storage engines on the source and replica, keep in
mind that the same statement might produce a different error when run against one version of the table,
but not the other, or might cause an error for one version of the table, but not the other. For example, since
MyISAM ignores foreign key constraints, an INSERT or UPDATE statement accessing an InnoDB table on
the source might cause a foreign key violation but the same statement performed on a MyISAM version of
the same table on the replica would produce no such error, causing replication to stop.

16.4.1.28 Replication and Server SQL Mode

Using different server SQL mode settings on the source and the replica may cause the same INSERT
statements to be handled differently on the source and the replica, leading the source and replica to
diverge. For best results, you should always use the same server SQL mode on the source and on the
replica. This advice applies whether you are using statement-based or row-based replication.

If you are replicating partitioned tables, using different SQL modes on the source and the replica is likely to
cause issues. At a minimum, this is likely to cause the distribution of data among partitions to be different
in the source's and replica's copies of a given table. It may also cause inserts into partitioned tables that
succeed on the source to fail on the replica.

For more information, see Section 5.1.10, “Server SQL Modes”. In particular, see SQL Mode Changes in
MySQL 5.7, which describes changes in MySQL 5.7, so that you can assess whether your applications are
affected.

16.4.1.29 Replication and Temporary Tables

The discussion in the following paragraphs does not apply when binlog_format=ROW because, in that
case, temporary tables are not replicated; this means that there are never any temporary tables on the
replica to be lost in the event of an unplanned shutdown by the replica. The remainder of this section
applies only when using statement-based or mixed-format replication. Loss of replicated temporary tables
on the replica can be an issue, whenever binlog_format is STATEMENT or MIXED, for statements
involving temporary tables that can be logged safely using statement-based format. For more information
about row-based replication and temporary tables, see Row-based logging of temporary tables.

Safe replica shutdown when using temporary tables. Temporary tables are replicated except in the
case where you stop the replica server (not just the replication threads) and you have replicated temporary
tables that are open for use in updates that have not yet been executed on the replica. If you stop the
replica server, the temporary tables needed by those updates are no longer available when the replica is

3150

Replication Features and Issues

restarted. To avoid this problem, do not shut down the replica while it has temporary tables open. Instead,
use the following procedure:

1. Issue a STOP SLAVE SQL_THREAD statement.

2. Use SHOW STATUS to check the value of the Slave_open_temp_tables variable.

3. If the value is not 0, restart the replication SQL thread with START SLAVE SQL_THREAD and repeat
the procedure later.

4. When the value is 0, issue a mysqladmin shutdown command to stop the replica.

Temporary tables and replication options. By default, all temporary tables are replicated; this
happens whether or not there are any matching --replicate-do-db, --replicate-do-table, or
--replicate-wild-do-table options in effect. However, the --replicate-ignore-table and
--replicate-wild-ignore-table options are honored for temporary tables. The exception is that
to enable correct removal of temporary tables at the end of a session, a replica always replicates a DROP
TEMPORARY TABLE IF EXISTS statement, regardless of any exclusion rules that would normally apply
for the specified table.

A recommended practice when using statement-based or mixed-format replication is to designate a
prefix for exclusive use in naming temporary tables that you do not want replicated, then employ a --
replicate-wild-ignore-table option to match that prefix. For example, you might give all such
tables names beginning with norep (such as norepmytable, norepyourtable, and so on), then use
--replicate-wild-ignore-table=norep% to prevent them from being replicated.

16.4.1.30 Replication Retries and Timeouts

The global system variable slave_transaction_retries affects replication as follows:
If the replication SQL thread fails to execute a transaction because of an InnoDB deadlock
or because it exceeded the InnoDB innodb_lock_wait_timeout value, or the NDB
TransactionDeadlockDetectionTimeout or TransactionInactiveTimeout value, the replica
automatically retries the transaction slave_transaction_retries times before stopping with an
error. The default value is 10. The total retry count can be seen in the output of SHOW STATUS; see
Section 5.1.9, “Server Status Variables”.

16.4.1.31 Replication and Time Zones

By default, source and replica servers assume that they are in the same time zone. If you are replicating
between servers in different time zones, the time zone must be set on both source and replica. Otherwise,
statements depending on the local time on the source are not replicated properly, such as statements that
use the NOW() or FROM_UNIXTIME() functions.

Verify that your combination of settings for the system time zone (system_time_zone), server current
time zone (the global value of time_zone), and per-session time zones (the session value of time_zone)
on the source and replica is producing the correct results. In particular, if the time_zone system variable
is set to the value SYSTEM, indicating that the server time zone is the same as the system time zone, this
can cause the source and replica to apply different time zones. For example, a source could write the
following statement in the binary log:

SET @@session.time_zone='SYSTEM';

If this source and its replica have a different setting for their system time zones, this statement can produce
unexpected results on the replica, even if the replica's global time_zone value has been set to match
the source's. For an explanation of MySQL Server's time zone settings, and how to change them, see
Section 5.1.13, “MySQL Server Time Zone Support”.

3151

Replication Features and Issues

See also Section 16.4.1.15, “Replication and System Functions”.

16.4.1.32 Replication and Transaction Inconsistencies

Inconsistencies in the sequence of transactions that have been executed from the relay log can occur
depending on your replication configuration. This section explains how to avoid inconsistencies and solve
any problems they cause.

The following types of inconsistencies can exist:

• Half-applied transactions. A transaction which updates non-transactional tables has applied some but
not all of its changes.

• Gaps. A gap is a transaction that has not been fully applied, even though some transaction
later in the sequence has been applied. Gaps can only appear when using a multithreaded
replica. To avoid gaps occurring, set slave_preserve_commit_order=1, which requires
slave_parallel_type=LOGICAL_CLOCK, and that log-bin and log-slave-updates are
also enabled. Note that slave_preserve_commit_order=1 does not preserve the order of non-
transactional DML updates, so these might commit before transactions that precede them in the relay
log, which might result in gaps.

• Source binary log position lag. Even in the absence of gaps, it is possible that transactions after
Exec_master_log_pos have been applied. That is, all transactions up to point N have been applied,
and no transactions after N have been applied, but Exec_master_log_pos has a value smaller than
N. In this situation, Exec_master_log_pos is a “low-water mark” of the transactions applied, and lags
behind the position of the most recently applied transaction. This can only happen on multithreaded
replicas. Enabling slave_preserve_commit_order does not prevent source binary log position lag.

The following scenarios are relevant to the existence of half-applied transactions, gaps, and source binary
log position lag:

1. While replication threads are running, there may be gaps and half-applied transactions.

2. mysqld shuts down. Both clean and unclean shutdown abort ongoing transactions and may leave gaps
and half-applied transactions.

3. KILL of replication threads (the SQL thread when using a single-threaded replica, the coordinator
thread when using a multithreaded replica). This aborts ongoing transactions and may leave gaps and
half-applied transactions.

4. Error in applier threads. This may leave gaps. If the error is in a mixed transaction, that transaction is
half-applied. When using a multithreaded replica, workers which have not received an error complete
their queues, so it may take time to stop all threads.

5. STOP SLAVE when using a multithreaded replica. After issuing STOP SLAVE, the replica waits for
any gaps to be filled and then updates Exec_master_log_pos. This ensures it never leaves gaps
or source binary log position lag, unless any of the cases above applies, in other words, before STOP
SLAVE completes, either an error happens, or another thread issues KILL, or the server restarts. In
these cases, STOP SLAVE returns successfully.

6. If the last transaction in the relay log is only half-received and the multithreaded replica coordinator
has started to schedule the transaction to a worker, then STOP SLAVE waits up to 60 seconds for the
transaction to be received. After this timeout, the coordinator gives up and aborts the transaction. If the
transaction is mixed, it may be left half-completed.

7. STOP SLAVE when the ongoing transaction updates transactional tables only, in which case it is rolled
back and STOP SLAVE stops immediately. If the ongoing transaction is mixed, STOP SLAVE waits up

3152

Replication Features and Issues

to 60 seconds for the transaction to complete. After this timeout, it aborts the transaction, so it may be
left half-completed.

The global variable rpl_stop_slave_timeout is unrelated to the process of stopping the replication
threads. It only makes the client that issues STOP SLAVE return to the client, but the replication threads
continue to try to stop.

If a replication channel has gaps, it has the following consequences:

1. The replica database is in a state that may never have existed on the source.

2. The field Exec_master_log_pos in SHOW SLAVE STATUS is only a “low-water mark”. In other
words, transactions appearing before the position are guaranteed to have committed, but transactions
after the position may have committed or not.

3. CHANGE MASTER TO statements for that channel fail with an error, unless the applier threads are
running and the CHANGE MASTER TO statement only sets receiver options.

4. If mysqld is started with --relay-log-recovery, no recovery is done for that channel, and a
warning is printed.

5. If mysqldump is used with --dump-slave, it does not record the existence of gaps; thus
it prints CHANGE MASTER TO with RELAY_LOG_POS set to the “low-water mark” position in
Exec_master_log_pos.

After applying the dump on another server, and starting the replication threads, transactions appearing
after the position are replicated again. Note that this is harmless if GTIDs are enabled (however, in that
case it is not recommended to use --dump-slave).

If a replication channel has source binary log position lag but no gaps, cases 2 to 5 above apply, but case
1 does not.

The source binary log position information is persisted in binary format in the internal table
mysql.slave_worker_info. START SLAVE [SQL_THREAD] always consults this information so
that it applies only the correct transactions. This remains true even if slave_parallel_workers has
been changed to 0 before START SLAVE, and even if START SLAVE is used with UNTIL clauses. START
SLAVE UNTIL SQL_AFTER_MTS_GAPS only applies as many transactions as needed in order to fill in the
gaps. If START SLAVE is used with UNTIL clauses that tell it to stop before it has consumed all the gaps,
then it leaves remaining gaps.

Warning

RESET SLAVE removes the relay logs and resets the replication position. Thus
issuing RESET SLAVE on a replica with gaps means the replica loses any
information about the gaps, without correcting the gaps.

When GTID-based replication is in use, from MySQL 5.7.28 a multithreaded replica
checks first whether MASTER_AUTO_POSITION is set to ON, and if it is, omits the
step of calculating the transactions that should be skipped or not skipped. In that
situation, the old relay logs are not required for the recovery process.

16.4.1.33 Replication and Transactions

Mixing transactional and nontransactional statements within the same transaction. In general,
you should avoid transactions that update both transactional and nontransactional tables in a replication
environment. You should also avoid using any statement that accesses both transactional (or temporary)
and nontransactional tables and writes to any of them.

3153

Replication Features and Issues

The server uses these rules for binary logging:

• If the initial statements in a transaction are nontransactional, they are written to the binary log
immediately. The remaining statements in the transaction are cached and not written to the binary log
until the transaction is committed. (If the transaction is rolled back, the cached statements are written to
the binary log only if they make nontransactional changes that cannot be rolled back. Otherwise, they
are discarded.)

• For statement-based logging, logging of nontransactional statements is affected by the
binlog_direct_non_transactional_updates system variable. When this variable is OFF
(the default), logging is as just described. When this variable is ON, logging occurs immediately for
nontransactional statements occurring anywhere in the transaction (not just initial nontransactional
statements). Other statements are kept in the transaction cache and logged when the transaction
commits. binlog_direct_non_transactional_updates has no effect for row-format or mixed-
format binary logging.

Transactional, nontransactional, and mixed statements.
To apply those rules, the server considers a statement nontransactional if it changes only nontransactional
tables, and transactional if it changes only transactional tables. A statement that references both
nontransactional and transactional tables and updates any of the tables involved, is considered a “mixed”
statement. (In some past MySQL versions, only a statement that updated both nontransactional and
transactional tables was considered mixed.) Mixed statements, like transactional statements, are cached
and logged when the transaction commits.

A mixed statement that updates a transactional table is considered unsafe if the statement also performs
either of the following actions:

• Updates or reads a temporary table

• Reads a nontransactional table and the transaction isolation level is less than REPEATABLE_READ

A mixed statement following the update of a transactional table within a transaction is considered unsafe if
it performs either of the following actions:

• Updates any table and reads from any temporary table

• Updates a nontransactional table and binlog_direct_non_transactional_updates is OFF

For more information, see Section 16.2.1.3, “Determination of Safe and Unsafe Statements in Binary
Logging”.

Note

A mixed statement is unrelated to mixed binary logging format.

In situations where transactions mix updates to transactional and nontransactional tables, the order of
statements in the binary log is correct, and all needed statements are written to the binary log even in
case of a ROLLBACK. However, when a second connection updates the nontransactional table before
the first connection transaction is complete, statements can be logged out of order because the second
connection update is written immediately after it is performed, regardless of the state of the transaction
being performed by the first connection.

Using different storage engines on source and replica. It is possible to replicate transactional tables
on the source using nontransactional tables on the replica. For example, you can replicate an InnoDB
source table as a MyISAM replica table. However, if you do this, there are problems if the replica is stopped
in the middle of a BEGIN ... COMMIT block because the replica restarts at the beginning of the BEGIN block.

3154

Replication Features and Issues

It is also safe to replicate transactions from MyISAM tables on the source to transactional tables, such as
tables that use the InnoDB storage engine, on the replica. In such cases, an AUTOCOMMIT=1 statement
issued on the source is replicated, thus enforcing AUTOCOMMIT mode on the replica.

When the storage engine type of the replica is nontransactional, transactions on the source that mix
updates of transactional and nontransactional tables should be avoided because they can cause
inconsistency of the data between the source transactional table and the replica nontransactional table.
That is, such transactions can lead to source storage engine-specific behavior with the possible effect of
replication going out of synchrony. MySQL does not issue a warning about this currently, so extra care
should be taken when replicating transactional tables from the source to nontransactional tables on the
replicas.

Changing the binary logging format within transactions. The binlog_format and
binlog_checksum system variables are read-only as long as a transaction is in progress.

Every transaction (including autocommit transactions) is recorded in the binary log as though it starts
with a BEGIN statement, and ends with either a COMMIT or a ROLLBACK statement. This is even true for
statements affecting tables that use a nontransactional storage engine (such as MyISAM).

Note

For restrictions that apply specifically to XA transactions, see Section 13.3.7.3,
“Restrictions on XA Transactions”.

16.4.1.34 Replication and Triggers

With statement-based replication, triggers executed on the source also execute on the replica. With row-
based replication, triggers executed on the source do not execute on the replica. Instead, the row changes
on the source resulting from trigger execution are replicated and applied on the replica.

This behavior is by design. If under row-based replication the replica applied the triggers as well as the row
changes caused by them, the changes would in effect be applied twice on the replica, leading to different
data on the source and the replica.

If you want triggers to execute on both the source and the replica, perhaps because you have different
triggers on the source and replica, you must use statement-based replication. However, to enable replica-
side triggers, it is not necessary to use statement-based replication exclusively. It is sufficient to switch to
statement-based replication only for those statements where you want this effect, and to use row-based
replication the rest of the time.

A statement invoking a trigger (or function) that causes an update to an AUTO_INCREMENT column is not
replicated correctly using statement-based replication. MySQL 5.7 marks such statements as unsafe. (Bug
#45677)

A trigger can have triggers for different combinations of trigger event (INSERT, UPDATE, DELETE) and
action time (BEFORE, AFTER), but before MySQL 5.7.2 cannot have multiple triggers that have the same
trigger event and action time. MySQL 5.7.2 lifts this limitation and multiple triggers are permitted. This
change has replication implications for upgrades and downgrades.

For brevity, “multiple triggers” here is shorthand for “multiple triggers that have the same trigger event and
action time.”

Upgrades. Suppose that you upgrade an old server that does not support multiple triggers to MySQL 5.7.2
or higher. If the new server is a replication source server and has old replicas that do not support multiple
triggers, an error occurs on those replicas if a trigger is created on the source for a table that already has a

3155

Replication Features and Issues

trigger with the same trigger event and action time. To avoid this problem, upgrade the replicas first, then
upgrade the source.

Downgrades. If you downgrade a server that supports multiple triggers to an older version that does not,
the downgrade has these effects:

• For each table that has triggers, all trigger definitions remain in the .TRG file for the table. However, if
there are multiple triggers with the same trigger event and action time, the server executes only one of
them when the trigger event occurs. For information about .TRG files, see the Table Trigger Storage
section of the MySQL Server Doxygen documentation, available at https://dev.mysql.com/doc/index-
other.html.

• If triggers for the table are added or dropped subsequent to the downgrade, the server rewrites the
table's .TRG file. The rewritten file retains only one trigger per combination of trigger event and action
time; the others are lost.

To avoid these problems, modify your triggers before downgrading. For each table that has multiple
triggers per combination of trigger event and action time, convert each such set of triggers to a single
trigger as follows:

1. For each trigger, create a stored routine that contains all the code in the trigger. Values accessed using
NEW and OLD can be passed to the routine using parameters. If the trigger needs a single result value
from the code, you can put the code in a stored function and have the function return the value. If the
trigger needs multiple result values from the code, you can put the code in a stored procedure and
return the values using OUT parameters.

2. Drop all triggers for the table.

3. Create one new trigger for the table that invokes the stored routines just created. The effect for this
trigger is thus the same as the multiple triggers it replaces.

16.4.1.35 Replication and TRUNCATE TABLE

TRUNCATE TABLE is normally regarded as a DML statement, and so would be expected to be logged
and replicated using row-based format when the binary logging mode is ROW or MIXED. However this
caused issues when logging or replicating, in STATEMENT or MIXED mode, tables that used transactional
storage engines such as InnoDB when the transaction isolation level was READ COMMITTED or READ
UNCOMMITTED, which precludes statement-based logging.

TRUNCATE TABLE is treated for purposes of logging and replication as DDL rather than DML so that it can
be logged and replicated as a statement. However, the effects of the statement as applicable to InnoDB
and other transactional tables on replicas still follow the rules described in Section 13.1.34, “TRUNCATE
TABLE Statement” governing such tables. (Bug #36763)

16.4.1.36 Replication and User Name Length

The maximum length of MySQL user names was increased from 16 characters to 32 characters in MySQL
5.7.8. Replication of user names longer than 16 characters to a replica that supports only shorter user
names fails. However, this should occur only when replicating from a newer source to an older replica,
which is not a recommended configuration.

16.4.1.37 Replication and Variables

System variables are not replicated correctly when using STATEMENT mode, except for the following
variables when they are used with session scope:

3156

https://dev.mysql.com/doc/index-other.html
https://dev.mysql.com/doc/index-other.html

Replication Features and Issues

• auto_increment_increment

• auto_increment_offset

• character_set_client

• character_set_connection

• character_set_database

• character_set_server

• collation_connection

• collation_database

• collation_server

• foreign_key_checks

• identity

• last_insert_id

• lc_time_names

• pseudo_thread_id

• sql_auto_is_null

• time_zone

• timestamp

• unique_checks

When MIXED mode is used, the variables in the preceding list, when used with session scope, cause a
switch from statement-based to row-based logging. See Section 5.4.4.3, “Mixed Binary Logging Format”.

sql_mode is also replicated except for the NO_DIR_IN_CREATE mode; the replica always preserves
its own value for NO_DIR_IN_CREATE, regardless of changes to it on the source. This is true for all
replication formats.

However, when mysqlbinlog parses a SET @@sql_mode = mode statement, the full mode value,
including NO_DIR_IN_CREATE, is passed to the receiving server. For this reason, replication of such a
statement may not be safe when STATEMENT mode is in use.

The default_storage_engine system variable is not replicated, regardless of the logging mode; this is
intended to facilitate replication between different storage engines.

The read_only system variable is not replicated. In addition, the enabling this variable has different
effects with regard to temporary tables, table locking, and the SET PASSWORD statement in different
MySQL versions.

The max_heap_table_size system variable is not replicated. Increasing the value of this variable on
the source without doing so on the replica can lead eventually to Table is full errors on the replica
when trying to execute INSERT statements on a MEMORY table on the source that is thus permitted to grow
larger than its counterpart on the replica. For more information, see Section 16.4.1.20, “Replication and
MEMORY Tables”.

3157

Replication Compatibility Between MySQL Versions

In statement-based replication, session variables are not replicated properly when used in statements
that update tables. For example, the following sequence of statements do not insert the same data on the
source and the replica:

SET max_join_size=1000;
INSERT INTO mytable VALUES(@@max_join_size);

This does not apply to the common sequence:

SET time_zone=...;
INSERT INTO mytable VALUES(CONVERT_TZ(..., ..., @@time_zone));

Replication of session variables is not a problem when row-based replication is being used, in which case,
session variables are always replicated safely. See Section 16.2.1, “Replication Formats”.

The following session variables are written to the binary log and honored by the replica when parsing the
binary log, regardless of the logging format:

• sql_mode

• foreign_key_checks

• unique_checks

• character_set_client

• collation_connection

• collation_database

• collation_server

• sql_auto_is_null

Important

Even though session variables relating to character sets and collations are written
to the binary log, replication between different character sets is not supported.

To help reduce possible confusion, we recommend that you always use the same setting for the
lower_case_table_names system variable on both source and replica, especially when you are running
MySQL on platforms with case-sensitive file systems.

16.4.1.38 Replication and Views

Views are always replicated to replicas. Views are filtered by their own name, not by the tables they refer
to. This means that a view can be replicated to the replica even if the view contains a table that would
normally be filtered out by replication-ignore-table rules. Care should therefore be taken to ensure
that views do not replicate table data that would normally be filtered for security reasons.

Replication from a table to a same-named view is supported using statement-based logging, but not
when using row-based logging. Trying to do so when row-based logging is in effect causes an error. (Bug
#11752707, Bug #43975)

16.4.2 Replication Compatibility Between MySQL Versions

MySQL supports replication from one release series to the next higher release series. For example, you
can replicate from a source running MySQL 5.6 to a replica running MySQL 5.7, from a source running
MySQL 5.7 to a replica running MySQL 8.0, and so on. However, you may encounter difficulties when

3158

Upgrading a Replication Topology

replicating from an older source to a newer replica if the source uses statements or relies on behavior no
longer supported in the version of MySQL used on the replica. For example, foreign key names longer than
64 characters are no longer supported from MySQL 8.0.

The use of more than two MySQL Server versions is not supported in replication setups involving multiple
sources, regardless of the number of source or replica MySQL servers. This restriction applies not only
to release series, but to version numbers within the same release series as well. For example, if you are
using a chained or circular replication setup, you cannot use MySQL 5.7.22, MySQL 5.7.23, and MySQL
5.7.24 concurrently, although you could use any two of these releases together.

Important

It is strongly recommended to use the most recent release available within a given
MySQL release series because replication (and other) capabilities are continually
being improved. It is also recommended to upgrade sources and replicas that use
early releases of a release series of MySQL to GA (production) releases when the
latter become available for that release series.

Replication from newer sources to older replicas may be possible, but is generally not supported. This is
due to a number of factors:

• Binary log format changes. The binary log format can change between major releases. While we
attempt to maintain backward compatibility, this is not always possible.

This also has significant implications for upgrading replication servers; see Section 16.4.3, “Upgrading a
Replication Topology”, for more information.

• For more information about row-based replication, see Section 16.2.1, “Replication Formats”.

• SQL incompatibilities. You cannot replicate from a newer source to an older replica using
statement-based replication if the statements to be replicated use SQL features available on the source
but not on the replica.

However, if both the source and the replica support row-based replication, and there are no data
definition statements to be replicated that depend on SQL features found on the source but not on the
replica, you can use row-based replication to replicate the effects of data modification statements even if
the DDL run on the source is not supported on the replica.

For more information on potential replication issues, see Section 16.4.1, “Replication Features and Issues”.

16.4.3 Upgrading a Replication Topology

When you upgrade servers that participate in a replication topology, you need to take into account each
server's role in the topology and look out for issues specific to replication. For general information and
instructions for upgrading a MySQL Server instance, see Section 2.10, “Upgrading MySQL”.

As explained in Section 16.4.2, “Replication Compatibility Between MySQL Versions”, MySQL supports
replication from a source running one release series to a replica running the next higher release series, but
does not support replication from a source running a later release to a replica running an earlier release.
A replica at an earlier release might not have the required capability to process transactions that can be
handled by the source at a later release. You must therefore upgrade all of the replicas in a replication
topology to the target MySQL Server release, before you upgrade the source server to the target release.
In this way you will never be in the situation where a replica still at the earlier release is attempting to
handle transactions from a source at the later release.

In a replication topology where there are multiple sources (multi-source replication), the use of more
than two MySQL Server versions is not supported, regardless of the number of source or replica MySQL

3159

Upgrading a Replication Topology

servers. This restriction applies not only to release series, but to version numbers within the same
release series as well. For example, you cannot use MySQL 5.7.22, MySQL 5.7.24, and MySQL 5.7.28
concurrently in such a setup, although you could use any two of these releases together.

If you need to downgrade the servers in a replication topology, the source must be downgraded before the
replicas are downgraded. On the replicas, you must ensure that the binary log and relay log have been
fully processed, and remove them before proceeding with the downgrade.

Behavior Changes Between Releases

Although this upgrade sequence is correct, it is possible to still encounter replication difficulties when
replicating from a source at an earlier release that has not yet been upgraded, to a replica at a later release
that has been upgraded. This can happen if the source uses statements or relies on behavior that is
no longer supported in the later release installed on the replica. You can use MySQL Shell's upgrade
checker utility util.checkForServerUpgrade() to check MySQL 5.7 server instances or MySQL 8.0
server instances for upgrade to a GA MySQL 8.0 release. The utility identifies anything that needs to be
fixed for that server instance so that it does not cause an issue after the upgrade, including features and
behaviors that are no longer available in the later release. See Upgrade Checker Utility for information on
the upgrade checker utility.

If you are upgrading an existing replication setup from a version of MySQL that does not support global
transaction identifiers (GTIDs) to a version that does, only enable GTIDs on the source and the replicas
when you have made sure that the setup meets all the requirements for GTID-based replication. See
Section 16.1.3.4, “Setting Up Replication Using GTIDs” for information about converting binary log file
position based replication setups to use GTID-based replication.

Changes affecting operations in strict SQL mode (STRICT_TRANS_TABLES or STRICT_ALL_TABLES)
may result in replication failure on an upgraded replica. If you use statement-based logging
(binlog_format=STATEMENT), if a replica is upgraded before the source, the source executes
statements which succeed there but which may fail on the replica and so cause replication to stop. To
deal with this, stop all new statements on the source and wait until the replicas catch up, then upgrade the
replicas. Alternatively, if you cannot stop new statements, temporarily change to row-based logging on the
source (binlog_format=ROW) and wait until all replicas have processed all binary logs produced up to
the point of this change, then upgrade the replicas.

The default character set has changed from latin1 to utf8mb4 in MySQL 8.0. In a replicated setting,
when upgrading from MySQL 5.7 to 8.0, it is advisable to change the default character set back to the
character set used in MySQL 5.7 before upgrading. After the upgrade is completed, the default character
set can be changed to utf8mb4. Assuming that the previous defaults were used, one way to preserve
them is to start the server with these lines in the my.cnf file:

[mysqld]
character_set_server=latin1
collation_server=latin1_swedish_ci

Standard Upgrade Procedure

To upgrade a replication topology, follow the instructions in Section 2.10, “Upgrading MySQL” for each
individual MySQL Server instance, using this overall procedure:

1. Upgrade the replicas first. On each replica instance:

• Carry out the preliminary checks and steps described in Preparing Your Installation for Upgrade.

• Shut down MySQL Server.

• Upgrade the MySQL Server binaries or packages.

3160

https://dev.mysql.com/doc/mysql-shell/8.0/en/mysql-shell-utilities-upgrade.html
https://dev.mysql.com/doc/refman/8.0/en/upgrade-prerequisites.html

Troubleshooting Replication

• Restart MySQL Server.

• If you have upgraded to a release earlier than MySQL 8.0.16, invoke mysql_upgrade manually
to upgrade the system tables and schemas. When the server is running with global transaction
identifiers (GTIDs) enabled (gtid_mode=ON), do not enable binary logging by mysql_upgrade (so
do not use the --write-binlog option). Then shut down and restart the server.

• If you have upgraded to MySQL 8.0.16 or later, do not invoke mysql_upgrade. From that release,
MySQL Server performs the entire MySQL upgrade procedure, disabling binary logging during the
upgrade.

• Restart replication using a START REPLICA or START SLAVE statement.

2. When all the replicas have been upgraded, follow the same steps to upgrade and restart the source
server, with the exception of the START REPLICA or START SLAVE statement. If you made a
temporary change to row-based logging or to the default character set, you can revert the change now.

Upgrade Procedure With Table Repair Or Rebuild

Some upgrades may require that you drop and re-create database objects when you move from one
MySQL series to the next. For example, collation changes might require that table indexes be rebuilt. Such
operations, if necessary, are detailed at Section 2.10.3, “Changes in MySQL 5.7”. It is safest to perform
these operations separately on the replicas and the source, and to disable replication of these operations
from the source to the replica. To achieve this, use the following procedure:

1. Stop all the replicas and upgrade the binaries or packages. Restart them with the --skip-slave-
start option, or from MySQL 8.0.24, the skip_slave_start system variable, so that they do not
connect to the source. Perform any table repair or rebuilding operations needed to re-create database
objects, such as use of REPAIR TABLE or ALTER TABLE, or dumping and reloading tables or triggers.

2. Disable the binary log on the source. To do this without restarting the source, execute a SET
sql_log_bin = OFF statement. Alternatively, stop the source and restart it with the --skip-log-
bin option. If you restart the source, you might also want to disallow client connections. For example, if
all clients connect using TCP/IP, enable the skip_networking system variable when you restart the
source.

3. With the binary log disabled, perform any table repair or rebuilding operations needed to re-create
database objects. The binary log must be disabled during this step to prevent these operations from
being logged and sent to the replicas later.

4. Re-enable the binary log on the source. If you set sql_log_bin to OFF earlier, execute a SET
sql_log_bin = ON statement. If you restarted the source to disable the binary log, restart it without
--skip-log-bin, and without enabling the skip_networking system variable so that clients and
replicas can connect.

5. Restart the replicas, this time without the --skip-slave-start option or skip_slave_start
system variable.

16.4.4 Troubleshooting Replication

If you have followed the instructions but your replication setup is not working, the first thing to do is check
the error log for messages. Many users have lost time by not doing this soon enough after encountering
problems.

If you cannot tell from the error log what the problem was, try the following techniques:

3161

https://dev.mysql.com/doc/refman/8.0/en/start-replica.html
https://dev.mysql.com/doc/refman/8.0/en/start-replica.html
https://dev.mysql.com/doc/refman/8.0/en/replication-options-replica.html#sysvar_skip_slave_start
https://dev.mysql.com/doc/refman/8.0/en/replication-options-replica.html#sysvar_skip_slave_start

Troubleshooting Replication

• Verify that the source has binary logging enabled by issuing a SHOW MASTER STATUS statement. If
logging is enabled, Position is nonzero. If binary logging is not enabled, verify that you are running the
source server with the --log-bin option.

• Verify that the server_id system variable was set at startup on both the source and replica and that
the ID value is unique on each server.

• Verify that the replica is running. Use SHOW SLAVE STATUS to check whether the Slave_IO_Running
and Slave_SQL_Running values are both Yes. If not, verify the options that were used when starting
the replica server. For example, --skip-slave-start prevents the replica threads from starting until
you issue a START SLAVE statement.

• If the replica is running, check whether it established a connection to the source. Use SHOW
PROCESSLIST, find the I/O and SQL threads and check their State column to see what they display.
See Section 16.2.3, “Replication Threads”. If the replication I/O thread state says Connecting to
master, check the following:

• Verify the privileges for the user being used for replication on the source.

• Check that the host name of the source is correct and that you are using the correct port to connect
to the source. The port used for replication is the same as used for client network communication (the
default is 3306). For the host name, ensure that the name resolves to the correct IP address.

• Check the configuration file to see whether the skip_networking system variable has been enabled
on the source or replica to disable networking. If so, comment the setting or remove it.

• If the source has a firewall or IP filtering configuration, ensure that the network port being used for
MySQL is not being filtered.

• Check that you can reach the source by using ping or traceroute/tracert to reach the host.

• If the replica was running previously but has stopped, the reason usually is that some statement
that succeeded on the source failed on the replica. This should never happen if you have taken a
proper snapshot of the source, and never modified the data on the replica outside of the replication
threads. If the replica stops unexpectedly, it is a bug or you have encountered one of the known
replication limitations described in Section 16.4.1, “Replication Features and Issues”. If it is a bug, see
Section 16.4.5, “How to Report Replication Bugs or Problems”, for instructions on how to report it.

• If a statement that succeeded on the source refuses to run on the replica, try the following procedure if it
is not feasible to do a full database resynchronization by deleting the replica's databases and copying a
new snapshot from the source:

1. Determine whether the affected table on the replica is different from the table on the source. Try
to understand how this happened. Then make the replica's table identical to the source's and run
START SLAVE.

2. If the preceding step does not work or does not apply, try to understand whether it would be safe to
make the update manually (if needed) and then ignore the next statement from the source.

3. If you decide that the replica can skip the next statement from the source, issue the following
statements:

mysql> SET GLOBAL sql_slave_skip_counter = N;
mysql> START SLAVE;

The value of N should be 1 if the next statement from the source does not use AUTO_INCREMENT
or LAST_INSERT_ID(). Otherwise, the value should be 2. The reason for using a value of 2 for

3162

How to Report Replication Bugs or Problems

statements that use AUTO_INCREMENT or LAST_INSERT_ID() is that they take two events in the
binary log of the source.

See also Section 13.4.2.4, “SET GLOBAL sql_slave_skip_counter Syntax”.

4. If you are sure that the replica started out perfectly synchronized with the source, and that no one
has updated the tables involved outside of the replication threads, then presumably the discrepancy
is the result of a bug. If you are running the most recent version of MySQL, please report the
problem. If you are running an older version, try upgrading to the latest production release to
determine whether the problem persists.

16.4.5 How to Report Replication Bugs or Problems

When you have determined that there is no user error involved, and replication still either does not work
at all or is unstable, it is time to send us a bug report. We need to obtain as much information as possible
from you to be able to track down the bug. Please spend some time and effort in preparing a good bug
report.

If you have a repeatable test case that demonstrates the bug, please enter it into our bugs database using
the instructions given in Section 1.5, “How to Report Bugs or Problems”. If you have a “phantom” problem
(one that you cannot duplicate at will), use the following procedure:

1. Verify that no user error is involved. For example, if you update the replica outside of the replication
thread, the data goes out of synchrony, and you can have unique key violations on updates. In this
case, the replication SQL thread stops and waits for you to clean up the tables manually to bring
them into synchrony. This is not a replication problem. It is a problem of outside interference causing
replication to fail.

2. Run the replica with the --log-slave-updates and --log-bin options. These options cause the
replica to log the updates that it receives from the source into its own binary logs.

3. Save all evidence before resetting the replication state. If we have no information or only sketchy
information, it becomes difficult or impossible for us to track down the problem. The evidence you
should collect is:

• All binary log files from the source

• All binary log files from the replica

• The output of SHOW MASTER STATUS from the source at the time you discovered the problem

• The output of SHOW SLAVE STATUS from the replica at the time you discovered the problem

• Error logs from the source and the replica

4. Use mysqlbinlog to examine the binary logs. The following should be helpful to find the problem
statement. log_file and log_pos are the Master_Log_File and Read_Master_Log_Pos values
from SHOW SLAVE STATUS.

$> mysqlbinlog --start-position=log_pos log_file | head

After you have collected the evidence for the problem, try to isolate it as a separate test case first. Then
enter the problem with as much information as possible into our bugs database using the instructions at
Section 1.5, “How to Report Bugs or Problems”.

3163

3164

Chapter 17 Group Replication

Table of Contents
17.1 Group Replication Background .. 3166

17.1.1 Replication Technologies .. 3167
17.1.2 Group Replication Use Cases ... 3169
17.1.3 Group Replication Details ... 3170

17.2 Getting Started .. 3172
17.2.1 Deploying Group Replication in Single-Primary Mode ... 3172
17.2.2 Deploying Group Replication Locally ... 3183

17.3 Requirements and Limitations .. 3184
17.3.1 Group Replication Requirements ... 3184
17.3.2 Group Replication Limitations .. 3186

17.4 Monitoring Group Replication ... 3188
17.4.1 Group Replication Server States ... 3189
17.4.2 The replication_group_members Table .. 3190
17.4.3 The replication_group_member_stats Table ... 3190

17.5 Group Replication Operations .. 3191
17.5.1 Deploying in Multi-Primary or Single-Primary Mode .. 3191
17.5.2 Tuning Recovery .. 3193
17.5.3 Network Partitioning ... 3194
17.5.4 Restarting a Group ... 3199
17.5.5 Using MySQL Enterprise Backup with Group Replication .. 3201

17.6 Group Replication Security .. 3206
17.6.1 Group Replication IP Address Allowlisting ... 3206
17.6.2 Group Replication Secure Socket Layer (SSL) Support .. 3208
17.6.3 Group Replication and Virtual Private Networks (VPNs) ... 3210

17.7 Group Replication Variables .. 3210
17.7.1 Group Replication System Variables ... 3211
17.7.2 Group Replication Status Variables ... 3232

17.8 Frequently Asked Questions .. 3232
17.9 Group Replication Technical Details ... 3236

17.9.1 Group Replication Plugin Architecture ... 3236
17.9.2 The Group ... 3237
17.9.3 Data Manipulation Statements .. 3237
17.9.4 Data Definition Statements ... 3238
17.9.5 Distributed Recovery .. 3238
17.9.6 Observability .. 3245
17.9.7 Group Replication Performance .. 3245

This chapter explains MySQL Group Replication and how to install, configure and monitor groups. MySQL
Group Replication is a MySQL Server plugin that enables you to create elastic, highly-available, fault-
tolerant replication topologies.

Groups can operate in a single-primary mode with automatic primary election, where only one server
accepts updates at a time. Alternatively, for more advanced users, groups can be deployed in multi-primary
mode, where all servers can accept updates, even if they are issued concurrently.

There is a built-in group membership service that keeps the view of the group consistent and available
for all servers at any given point in time. Servers can leave and join the group and the view is updated

3165

Group Replication Background

accordingly. Sometimes servers can leave the group unexpectedly, in which case the failure detection
mechanism detects this and notifies the group that the view has changed. This is all automatic.

The chapter is structured as follows:

• Section 17.1, “Group Replication Background” provides an introduction to groups and how Group
Replication works.

• Section 17.2, “Getting Started” explains how to configure multiple MySQL Server instances to create a
group.

• Section 17.3, “Requirements and Limitations” explains architecture and setup requirements and
limitations for Group Replication.

• Section 17.4, “Monitoring Group Replication” explains how to monitor a group.

• Section 17.5, “Group Replication Operations” explains how to work with a group.

• Section 17.6, “Group Replication Security” explains how to secure a group.

• Upgrading Group Replication explains how to upgrade a group.

• Section 17.7, “Group Replication Variables” is a reference for the system variables specific to Group
Replication.

• Section 17.8, “Frequently Asked Questions” provides answers to some technical questions about
deploying and operating Group Replication.

• Section 17.9, “Group Replication Technical Details” provides in-depth information about how Group
Replication works.

17.1 Group Replication Background

This section provides background information on MySQL Group Replication.

The most common way to create a fault-tolerant system is to resort to making components redundant, in
other words the component can be removed and the system should continue to operate as expected. This
creates a set of challenges that raise complexity of such systems to a whole different level. Specifically,
replicated databases have to deal with the fact that they require maintenance and administration of several
servers instead of just one. Moreover, as servers are cooperating together to create the group several
other classic distributed systems problems have to be dealt with, such as network partitioning or split brain
scenarios.

Therefore, the ultimate challenge is to fuse the logic of the database and data replication with the logic of
having several servers coordinated in a consistent and simple way. In other words, to have multiple servers
agreeing on the state of the system and the data on each and every change that the system goes through.
This can be summarized as having servers reaching agreement on each database state transition, so that
they all progress as one single database or alternatively that they eventually converge to the same state.
Meaning that they need to operate as a (distributed) state machine.

MySQL Group Replication provides distributed state machine replication with strong coordination between
servers. Servers coordinate themselves automatically when they are part of the same group. The group
can operate in a single-primary mode with automatic primary election, where only one server accepts
updates at a time. Alternatively, for more advanced users the group can be deployed in multi-primary
mode, where all servers can accept updates, even if they are issued concurrently. This power comes at the
expense of applications having to work around the limitations imposed by such deployments.

3166

https://dev.mysql.com/doc/refman/8.0/en/group-replication-upgrade.html

Replication Technologies

There is a built-in group membership service that keeps the view of the group consistent and available
for all servers at any given point in time. Servers can leave and join the group and the view is updated
accordingly. Sometimes servers can leave the group unexpectedly, in which case the failure detection
mechanism detects this and notifies the group that the view has changed. This is all automatic.

For a transaction to commit, the majority of the group have to agree on the order of a given transaction
in the global sequence of transactions. Deciding to commit or abort a transaction is done by each server
individually, but all servers make the same decision. If there is a network partition, resulting in a split where
members are unable to reach agreement, then the system does not progress until this issue is resolved.
Hence there is also a built-in, automatic, split-brain protection mechanism.

All of this is powered by the provided Group Communication System (GCS) protocols. These provide a
failure detection mechanism, a group membership service, and safe and completely ordered message
delivery. All these properties are key to creating a system which ensures that data is consistently replicated
across the group of servers. At the very core of this technology lies an implementation of the Paxos
algorithm. It acts as the group communication engine.

17.1.1 Replication Technologies

Before getting into the details of MySQL Group Replication, this section introduces some background
concepts and an overview of how things work. This provides some context to help understand what
is required for Group Replication and what the differences are between classic asynchronous MySQL
Replication and Group Replication.

17.1.1.1 Primary-Secondary Replication

Traditional MySQL Replication provides a simple Primary-Secondary approach to replication. There is a
primary (source) and there are one or more secondaries (replicas). The primary executes transactions,
commits them and then they are later (thus asynchronously) sent to the secondaries to be either re-
executed (in statement-based replication) or applied (in row-based replication). It is a shared-nothing
system, where all servers have a full copy of the data by default.

Figure 17.1 MySQL Asynchronous Replication

There is also semisynchronous replication, which adds one synchronization step to the protocol. This
means that the Primary waits, at commit time, for the secondary to acknowledge that it has received the
transaction. Only then does the Primary resume the commit operation.

3167

Replication Technologies

Figure 17.2 MySQL Semisynchronous Replication

In the two pictures above, you can see a diagram of the classic asynchronous MySQL Replication protocol
(and its semisynchronous variant as well). The arrows between the different instances represent messages
exchanged between servers or messages exchanged between servers and the client application.

17.1.1.2 Group Replication

Group Replication is a technique that can be used to implement fault-tolerant systems. The replication
group is a set of servers that each have their own entire copy of the data (a shared-nothing replication
scheme), and interact with each other through message passing. The communication layer provides a
set of guarantees such as atomic message and total order message delivery. These are very powerful
properties that translate into very useful abstractions that one can resort to build more advanced database
replication solutions.

MySQL Group Replication builds on top of such properties and abstractions and implements a multi-source
update everywhere replication protocol. A replication group is formed by multiple servers and each server
in the group may execute transactions independently at any time. However, all read-write transactions
commit only after they have been approved by the group. In other words, for any read-write transaction
the group needs to decide whether it commits or not, so the commit operation is not a unilateral decision
from the originating server. Read-only transactions need no coordination within the group and commit
immediately.

When a read-write transaction is ready to commit at the originating server, the server atomically broadcasts
the write values (the rows that were changed) and the corresponding write set (the unique identifiers of the
rows that were updated). Because the transaction is sent through an atomic broadcast, either all servers
in the group receive the transaction or none do. If they receive it, then they all receive it in the same order
with respect to other transactions that were sent before. All servers therefore receive the same set of
transactions in the same order, and a global total order is established for the transactions.

However, there may be conflicts between transactions that execute concurrently on different servers.
Such conflicts are detected by inspecting and comparing the write sets of two different and concurrent

3168

Group Replication Use Cases

transactions, in a process called certification. During certification, conflict detection is carried out at row
level: if two concurrent transactions, that executed on different servers, update the same row, then there is
a conflict. The conflict resolution procedure states that the transaction that was ordered first commits on all
servers, and the transaction ordered second aborts, and is therefore rolled back on the originating server
and dropped by the other servers in the group. For example, if t1 and t2 execute concurrently at different
sites, both changing the same row, and t2 is ordered before t1, then t2 wins the conflict and t1 is rolled
back. This is in fact a distributed first commit wins rule. Note that if two transactions are bound to conflict
more often than not, then it is a good practice to start them on the same server, where they have a chance
to synchronize on the local lock manager instead of being rolled back as a result of certification.

For applying and externalizing the certified transactions, Group Replication permits servers to deviate from
the agreed order of the transactions if this does not break consistency and validity. Group Replication is an
eventual consistency system, meaning that as soon as the incoming traffic slows down or stops, all group
members have the same data content. While traffic is flowing, transactions can be externalized in a slightly
different order, or externalized on some members before the others. For example, in multi-primary mode,
a local transaction might be externalized immediately following certification, although a remote transaction
that is earlier in the global order has not yet been applied. This is permitted when the certification process
has established that there is no conflict between the transactions. In single-primary mode, on the primary
server, there is a small chance that concurrent, non-conflicting local transactions might be committed and
externalized in a different order from the global order agreed by Group Replication. On the secondaries,
which do not accept writes from clients, transactions are always committed and externalized in the agreed
order.

The following figure depicts the MySQL Group Replication protocol and by comparing it to MySQL
Replication (or even MySQL semisynchronous replication) you can see some differences. Note that some
underlying consensus and Paxos related messages are missing from this picture for the sake of clarity.

Figure 17.3 MySQL Group Replication Protocol

17.1.2 Group Replication Use Cases

Group Replication enables you to create fault-tolerant systems with redundancy by replicating the system
state to a set of servers. Even if some of the servers subsequently fail, as long it is not all or a majority, the
system is still available. Depending on the number of servers which fail the group might have degraded
performance or scalability, but it is still available. Server failures are isolated and independent. They are

3169

Group Replication Details

tracked by a group membership service which relies on a distributed failure detector that is able to signal
when any servers leave the group, either voluntarily or due to an unexpected halt. There is a distributed
recovery procedure to ensure that when servers join the group they are brought up to date automatically.
There is no need for server fail-over, and the multi-source update everywhere nature ensures that even
updates are not blocked in the event of a single server failure. To summarize, MySQL Group Replication
guarantees that the database service is continuously available.

It is important to understand that although the database service is available, in the event of an unexpected
server exit, those clients connected to it must be redirected, or failed over, to a different server. This is
not something Group Replication attempts to resolve. A connector, load balancer, router, or some form of
middleware are more suitable to deal with this issue. For example see MySQL Router 8.0.

To summarize, MySQL Group Replication provides a highly available, highly elastic, dependable MySQL
service.

17.1.2.1 Examples of Use Case Scenarios

The following examples are typical use cases for Group Replication.

• Elastic Replication - Environments that require a very fluid replication infrastructure, where the number
of servers has to grow or shrink dynamically and with as few side-effects as possible. For instance,
database services for the cloud.

• Highly Available Shards - Sharding is a popular approach to achieve write scale-out. Use MySQL Group
Replication to implement highly available shards, where each shard maps to a replication group.

• Alternative to Source-Replica replication - In certain situations, using a single source server makes
it a single point of contention. Writing to an entire group may prove more scalable under certain
circumstances.

• Autonomic Systems - Additionally, you can deploy MySQL Group Replication purely for the automation
that is built into the replication protocol (described already in this and previous chapters).

17.1.3 Group Replication Details

This section presents details about some of the services that Group Replication builds on.

17.1.3.1 Group Membership

In MySQL Group Replication, a set of servers forms a replication group. A group has a name, which takes
the form of a UUID. The group is dynamic and servers can leave (either voluntarily or involuntarily) and join
it at any time. The group adjusts itself whenever servers join or leave.

If a server joins the group, it automatically brings itself up to date by fetching the missing state from an
existing server. If a server leaves the group, for instance it was taken down for maintenance, the remaining
servers notice that it has left and reconfigure the group automatically.

Group Replication has a group membership service that defines which servers are online and participating
in the group. The list of online servers is referred to as a view. Every server in the group has a consistent
view of which servers are the members participating actively in the group at a given moment in time.

Group members must agree not only on transaction commits, but also on which is the current view. If
existing members agree that a new server should become part of the group, the group is reconfigured to
integrate that server in it, which triggers a view change. If a server leaves the group, either voluntarily or
not, the group dynamically rearranges its configuration and a view change is triggered.

3170

https://dev.mysql.com/doc/mysql-router/8.0/en/

Group Replication Details

In the case where a member leaves the group voluntarily, it first initiates a dynamic group reconfiguration,
during which all members have to agree on a new view without the leaving server. However, if a member
leaves the group involuntarily, for example because it has stopped unexpectedly or the network connection
is down, it cannot initiate the reconfiguration. In this situation, Group Replication's failure detection
mechanism recognizes after a short period of time that the member has left, and a reconfiguration of the
group without the failed member is proposed. As with a member that leaves voluntarily, the reconfiguration
requires agreement from the majority of servers in the group. However, if the group is not able to reach
agreement, for example because it partitioned in such a way that there is no majority of servers online, the
system is not able to dynamically change the configuration, and blocks to prevent a split-brain situation.
This situation requires intervention from an administrator.

It is possible for a member to go offline for a short time, then attempt to rejoin the group again before
the failure detection mechanism has detected its failure, and before the group has been reconfigured to
remove the member. In this situation, the rejoining member forgets its previous state, but if other members
send it messages that are intended for its pre-crash state, this can cause issues including possible data
inconsistency. If a member in this situation participates in XCom's consensus protocol, it could potentially
cause XCom to deliver different values for the same consensus round, by making a different decision
before and after failure.

To counter this possibility, from MySQL 5.7.22, servers are given a unique identifier when they join a
group. This enables Group Replication to be aware of the situation where a new incarnation of the same
server (with the same address but a new identifier) is trying to join the group while its old incarnation is still
listed as a member. The new incarnation is blocked from joining the group until the old incarnation can be
removed by a reconfiguration. If Group Replication is stopped and restarted on the server, the member
becomes a new incarnation and cannot rejoin until the suspicion times out.

17.1.3.2 Failure Detection

Group Replication’s failure detection mechanism is a distributed service which is able to identify that
a server in the group is not communicating with the others, and is therefore suspected of being out of
service. If the group’s consensus is that the suspicion is probably true, the group takes a coordinated
decision to expel the member. Expelling a member that is not communicating is necessary because
the group needs a majority of its members to agree on a transaction or view change. If a member is not
participating in these decisions, the group must remove it to increase the chance that the group contains a
majority of correctly working members, and can therefore continue to process transactions.

In a replication group, each member has a point-to-point communication channel to each other member,
creating a fully connected graph. These connections are managed by the group communication engine
(XCom, a Paxos variant) and use TCP/IP sockets. One channel is used to send messages to the member
and the other channel is used to receive messages from the member. If a member does not receive
messages from another member for 5 seconds, it suspects that the member has failed, and lists the status
of that member as UNREACHABLE in its own Performance Schema table replication_group_members.
Usually, two members will suspect each other of having failed because they are each not communicating
with the other. It is possible, though less likely, that member A suspects member B of having failed but
member B does not suspect member A of having failed - perhaps due to a routing or firewall issue. A
member can also create a suspicion of itself. A member that is isolated from the rest of the group suspects
that all the others have failed.

If a suspicion lasts for more than 10 seconds, the suspecting member tries to propagate its view that the
suspect member is faulty to the other members of the group. A suspecting member only does this if it is
a notifier, as calculated from its internal XCom node number. If a member is actually isolated from the
rest of the group, it might attempt to propagate its view, but that will have no consequences as it cannot
secure a quorum of the other members to agree on it. A suspicion only has consequences if a member is
a notifier, and its suspicion lasts long enough to be propagated to the other members of the group, and the

3171

Getting Started

other members agree on it. In that case, the suspect member is marked for expulsion from the group in a
coordinated decision, and is expelled after the expelling mechanism detects and implements the expulsion.

For information on the Group Replication system variables that you can configure to specify the responses
of working group members to failure situations, and the actions taken by group members that are
suspected of having failed, see Responses to Failure Detection and Network Partitioning.

17.1.3.3 Fault-tolerance

MySQL Group Replication builds on an implementation of the Paxos distributed algorithm to provide
distributed coordination between servers. As such, it requires a majority of servers to be active to reach
quorum and thus make a decision. This has direct impact on the number of failures the system can tolerate
without compromising itself and its overall functionality. The number of servers (n) needed to tolerate f
failures is then n = 2 x f + 1.

In practice this means that to tolerate one failure the group must have three servers in it. As such if one
server fails, there are still two servers to form a majority (two out of three) and allow the system to continue
to make decisions automatically and progress. However, if a second server fails involuntarily, then the
group (with one server left) blocks, because there is no majority to reach a decision.

The following is a small table illustrating the formula above.

Group Size Majority Instant Failures Tolerated

1 1 0

2 2 0

3 2 1

4 3 1

5 3 2

6 4 2

7 4 3

The next Chapter covers technical aspects of Group Replication.

17.2 Getting Started
MySQL Group Replication is provided as a plugin for the MySQL server; each server in a group requires
configuration and installation of the plugin. This section provides a detailed tutorial with the steps required
to create a replication group with at least three members.

Tip

An alternative way to deploy multiple instances of MySQL is by using InnoDB
Cluster, which uses Group Replication and wraps it in a programmatic environment
that enables you to easily work with groups of MySQL server instances in the
MySQL Shell 8.0. In addition, InnoDB Cluster interfaces seamlessly with MySQL
Router and simplifies deploying MySQL with high availability. See MySQL
AdminAPI.

17.2.1 Deploying Group Replication in Single-Primary Mode

Each of the MySQL server instances in a group can run on an independent physical host machine, which
is the recommended way to deploy Group Replication. This section explains how to create a replication
group with three MySQL Server instances, each running on a different host machine. See Section 17.2.2,

3172

https://dev.mysql.com/doc/refman/8.0/en/group-replication-responses-failure.html
https://dev.mysql.com/doc/mysql-shell/8.0/en/
https://dev.mysql.com/doc/mysql-shell/8.0/en/admin-api-userguide.html
https://dev.mysql.com/doc/mysql-shell/8.0/en/admin-api-userguide.html

Deploying Group Replication in Single-Primary Mode

“Deploying Group Replication Locally” for information about deploying multiple MySQL server instances
running Group Replication on the same host machine, for example for testing purposes.

Figure 17.4 Group Architecture

This tutorial explains how to get and deploy MySQL Server with the Group Replication plugin, how to
configure each server instance before creating a group, and how to use Performance Schema monitoring
to verify that everything is working correctly.

17.2.1.1 Deploying Instances for Group Replication

The first step is to deploy at least three instances of MySQL Server, this procedure demonstrates using
multiple hosts for the instances, named s1, s2, and s3. It is assumed that MySQL Server is installed on
each host (see Chapter 2, Installing and Upgrading MySQL). The Group Replication plugin is provided with
MySQL Server 5.7.17 and later; no additional software is required, although the plugin must be installed
in the running MySQL server. See Section 17.2.1.1, “Deploying Instances for Group Replication”; for
additional information, see Section 5.5, “MySQL Server Plugins”.

In this example, three instances are used for the group, which is the minimum number of instances to
create a group. Adding more instances increases the fault tolerance of the group. For example if the

3173

Deploying Group Replication in Single-Primary Mode

group consists of three members, in event of failure of one instance the group can continue. But in the
event of another failure the group can no longer continue processing write transactions. By adding more
instances, the number of servers which can fail while the group continues to process transactions also
increases. The maximum number of instances which can be used in a group is nine. For more information
see Section 17.1.3.2, “Failure Detection”.

17.2.1.2 Configuring an Instance for Group Replication

This section explains the configuration settings required for MySQL Server instances that you want to use
for Group Replication. For background information, see Section 17.3, “Requirements and Limitations”.

• Storage Engines

• Replication Framework

• Group Replication Settings

Storage Engines

For Group Replication, data must be stored in the InnoDB transactional storage engine (for details
of why, see Section 17.3.1, “Group Replication Requirements”). The use of other storage engines,
including the temporary MEMORY storage engine, might cause errors in Group Replication. Set the
disabled_storage_engines system variable as follows to prevent their use:

disabled_storage_engines="MyISAM,BLACKHOLE,FEDERATED,ARCHIVE,MEMORY"

Note that with the MyISAM storage engine disabled, when you are upgrading a MySQL instance to a
release where mysql_upgrade is still used (before MySQL 8.0.16), mysql_upgrade might fail with an
error. To handle this, you can re-enable that storage engine while you run mysql_upgrade, then disable it
again when you restart the server. For more information, see Section 4.4.7, “mysql_upgrade — Check and
Upgrade MySQL Tables”.

Replication Framework

The following settings configure replication according to the MySQL Group Replication requirements.

server_id=1
gtid_mode=ON
enforce_gtid_consistency=ON
master_info_repository=TABLE
relay_log_info_repository=TABLE
binlog_checksum=NONE
log_slave_updates=ON
log_bin=binlog
binlog_format=ROW

These settings configure the server to use the unique identifier number 1, to enable global transaction
identifiers and to store replication metadata in system tables instead of files. Additionally, it instructs the
server to turn on binary logging, use row-based format and disable binary log event checksums. For more
details see Section 17.3.1, “Group Replication Requirements”.

Group Replication Settings

At this point the option file ensures that the server is configured and is instructed to instantiate the
replication infrastructure under a given configuration. The following section configures the Group
Replication settings for the server.

plugin_load_add='group_replication.so'
transaction_write_set_extraction=XXHASH64
group_replication_group_name="aaaaaaaa-aaaa-aaaa-aaaa-aaaaaaaaaaaa"

3174

Deploying Group Replication in Single-Primary Mode

group_replication_start_on_boot=off
group_replication_local_address= "s1:33061"
group_replication_group_seeds= "s1:33061,s2:33061,s3:33061"
group_replication_bootstrap_group=off

• plugin-load-add adds the Group Replication plugin to the list of plugins which the server loads at
startup. This is preferable in a production deployment to installing the plugin manually.

• Configuring group_replication_group_name tells the plugin that the group that it is joining, or
creating, is named "aaaaaaaa-aaaa-aaaa-aaaa-aaaaaaaaaaaa".

The value of group_replication_group_name must be a valid UUID. This UUID is used internally
when setting GTIDs for Group Replication events in the binary log. You can use SELECT UUID() to
generate a UUID.

• Configuring the group_replication_start_on_boot variable to off instructs the plugin to not start
operations automatically when the server starts. This is important when setting up Group Replication
as it ensures you can configure the server before manually starting the plugin. Once the member is
configured you can set group_replication_start_on_boot to on so that Group Replication starts
automatically upon server boot.

• Configuring group_replication_local_address sets the network address and port which the
member uses for internal communication with other members in the group. Group Replication uses
this address for internal member-to-member connections involving remote instances of the group
communication engine (XCom, a Paxos variant).

Important

This address must be different to the hostname and port used for SQL
and it must not be used for client applications. It must be only be used for
internal communication between the members of the group while running Group
Replication.

The network address configured by group_replication_local_address must be resolvable by
all group members. For example, if each server instance is on a different machine with a fixed network
address, you could use the IP address of the machine, such as 10.0.0.1. If you use a host name, you
must use a fully qualified name, and ensure it is resolvable through DNS, correctly configured /etc/
hosts files, or other name resolution processes. From MySQL 8.0.14, IPv6 addresses (or host names
that resolve to them) can be used as well as IPv4 addresses. A group can contain a mix of members
using IPv6 and members using IPv4. For more information on Group Replication support for IPv6
networks and on mixed IPv4 and IPv6 groups, see Support For IPv6 And For Mixed IPv6 And IPv4
Groups.

The recommended port for group_replication_local_address is 33061.
group_replication_local_address is used by Group Replication as the unique identifier for a
group member within the replication group. You can use the same port for all members of a replication
group as long as the host names or IP addresses are all different, as demonstrated in this tutorial.
Alternatively you can use the same host name or IP address for all members as long as the ports are all
different, for example as shown in Section 17.2.2, “Deploying Group Replication Locally”.

• Configuring group_replication_group_seeds sets the hostname and port of the group
members which are used by the new member to establish its connection to the group. These
members are called the seed members. Once the connection is established, the group membership
information is listed at performance_schema.replication_group_members. Usually the
group_replication_group_seeds list contains the hostname:port of each of the group
member's group_replication_local_address, but this is not obligatory and a subset of the group
members can be chosen as seeds.

3175

https://dev.mysql.com/doc/refman/8.0/en/group-replication-ipv6.html
https://dev.mysql.com/doc/refman/8.0/en/group-replication-ipv6.html

Deploying Group Replication in Single-Primary Mode

Important

The hostname:port listed in group_replication_group_seeds
is the seed member's internal network address, configured by
group_replication_local_address and not the SQL
hostname:port used for client connections, and shown for example in
performance_schema.replication_group_members table.

The server that starts the group does not make use of this option, since it is the initial server and as
such, it is in charge of bootstrapping the group. In other words, any existing data which is on the server
bootstrapping the group is what is used as the data for the next joining member. The second server
joining asks the one and only member in the group to join, any missing data on the second server is
replicated from the donor data on the bootstrapping member, and then the group expands. The third
server joining can ask any of these two to join, data is synchronized to the new member, and then the
group expands again. Subsequent servers repeat this procedure when joining.

Warning

When joining multiple servers at the same time, make sure that they point to seed
members that are already in the group. Do not use members that are also joining
the group as seeds, because they might not yet be in the group when contacted.

It is good practice to start the bootstrap member first, and let it create the group.
Then make it the seed member for the rest of the members that are joining. This
ensures that there is a group formed when joining the rest of the members.

Creating a group and joining multiple members at the same time is not supported.
It might work, but chances are that the operations race and then the act of joining
the group ends up in an error or a time out.

• Configuring group_replication_bootstrap_group instructs the plugin whether to bootstrap the
group or not. In this case, even though s1 is the first member of the group we set this variable to off in
the option file. Instead we configure group_replication_bootstrap_group when the instance is
running, to ensure that only one member actually bootstraps the group.

Important

The group_replication_bootstrap_group variable must only be enabled
on one server instance belonging to a group at any time, usually the first time
you bootstrap the group (or in case the entire group is brought down and back
up again). If you bootstrap the group multiple times, for example when multiple
server instances have this option set, then they could create an artificial split
brain scenario, in which two distinct groups with the same name exist. Always set
group_replication_bootstrap_group=off after the first server instance
comes online.

Configuration for all servers in the group is quite similar. You need to change the specifics about each
server (for example server_id, datadir, group_replication_local_address). This is illustrated
later in this tutorial.

17.2.1.3 User Credentials

Group Replication uses the asynchronous replication protocol to achieve Section 17.9.5, “Distributed
Recovery”, synchronizing group members before joining them to the group. The distributed recovery
process relies on a replication channel named group_replication_recovery which is used to

3176

Deploying Group Replication in Single-Primary Mode

transfer transactions from donor members to members that join the group. Therefore you need to set up
a replication user with the correct permissions so that Group Replication can establish direct member-to-
member recovery replication channels.

Start the MySQL server instance and then connect a client to it. Create a MySQL user with the
REPLICATION SLAVE privilege. This process can be captured in the binary log and then you can rely
on distributed recovery to replicate the statements used to create the user. Alternatively, you can disable
binary logging using SET SQL_LOG_BIN=0; and then create the user manually on each member, for
example if you want to avoid the changes being propagated to other server instances. If you do decide to
disable binary logging, ensure you renable it once you have configured the user.

In the following example the user rpl_user with the password password is shown. When configuring
your servers use a suitable user name and password.

mysql> CREATE USER rpl_user@'%' IDENTIFIED BY 'password';
mysql> GRANT REPLICATION SLAVE ON *.* TO rpl_user@'%';
mysql> FLUSH PRIVILEGES;

If binary logging was disabled, enable it again once the user has been created using SET
SQL_LOG_BIN=1;.

Once the user has been configured, use the CHANGE MASTER TO statement to configure the server to use
the given credentials for the group_replication_recovery replication channel the next time it needs
to recover its state from another member. Issue the following, replacing rpl_user and password with the
values used when creating the user.

mysql> CHANGE MASTER TO MASTER_USER='rpl_user', MASTER_PASSWORD='password' \\
 FOR CHANNEL 'group_replication_recovery';

Distributed recovery is the first step taken by a server that joins the group and does not have the
same set of transactions as the group members. If these credentials are not set correctly for the
group_replication_recovery replication channel and the rpl_user as shown, the server cannot
connect to the donor members and run the distributed recovery process to gain synchrony with the other
group members, and hence ultimately cannot join the group. See Section 17.9.5, “Distributed Recovery”.

Similarly, if the server cannot correctly identify the other members via the server's hostname the recovery
process can fail. It is recommended that operating systems running MySQL have a properly configured
unique hostname, either using DNS or local settings. This hostname can be verified in the Member_host
column of the performance_schema.replication_group_members table. If multiple group members
externalize a default hostname set by the operating system, there is a chance of the member not resolving
to the correct member address and not being able to join the group. In such a situation use report_host
to configure a unique hostname to be externalized by each of the servers.

17.2.1.4 Launching Group Replication

It is first necessary to ensure that the Group Replication plugin is installed on server s1. If you used
plugin_load_add='group_replication.so' in the option file then the Group Replication plugin is
already installed, and you can proceed to the next step. Otherwise, you must install the plugin manually; to
do this, connect to the server using the mysql client, and issue the SQL statement shown here:

mysql> INSTALL PLUGIN group_replication SONAME 'group_replication.so';

Important

The mysql.session user must exist before you can load Group Replication.
mysql.session was added in MySQL version 5.7.19. If your data dictionary
was initialized using an earlier version you must perform the MySQL upgrade

3177

Deploying Group Replication in Single-Primary Mode

procedure (see Section 2.10, “Upgrading MySQL”). If the upgrade is not
run, Group Replication fails to start with the error message There was
an error when trying to access the server with user:
mysql.session@localhost. Make sure the user is present in the
server and that mysql_upgrade was ran after a server update.

To check that the plugin was installed successfully, issue SHOW PLUGINS; and check the output. It should
show something like this:

mysql> SHOW PLUGINS;
+----------------------------+----------+--------------------+----------------------+-------------+
| Name | Status | Type | Library | License |
+----------------------------+----------+--------------------+----------------------+-------------+
| binlog | ACTIVE | STORAGE ENGINE | NULL | PROPRIETARY |

(...)

| group_replication | ACTIVE | GROUP REPLICATION | group_replication.so | PROPRIETARY |
+----------------------------+----------+--------------------+----------------------+-------------+

17.2.1.5 Bootstrapping the Group

The process of starting a group for the first time is called bootstrapping. You use the
group_replication_bootstrap_group system variable to bootstrap a group. The bootstrap should
only be done by a single server, the one that starts the group and only once. This is why the value of the
group_replication_bootstrap_group option was not stored in the instance's option file. If it is saved
in the option file, upon restart the server automatically bootstraps a second group with the same name.
This would result in two distinct groups with the same name. The same reasoning applies to stopping and
restarting the plugin with this option set to ON. Therefore to safely bootstrap the group, connect to s1 and
issue:

mysql> SET GLOBAL group_replication_bootstrap_group=ON;
mysql> START GROUP_REPLICATION;
mysql> SET GLOBAL group_replication_bootstrap_group=OFF;

Once the START GROUP_REPLICATION statement returns, the group has been started. You can check
that the group is now created and that there is one member in it:

mysql> SELECT * FROM performance_schema.replication_group_members;
+---------------------------+--------------------------------------+-------------+-------------+---------------+
| CHANNEL_NAME | MEMBER_ID | MEMBER_HOST | MEMBER_PORT | MEMBER_STATE |
+---------------------------+--------------------------------------+-------------+-------------+---------------+
| group_replication_applier | ce9be252-2b71-11e6-b8f4-00212844f856 | s1 | 3306 | ONLINE |
+---------------------------+--------------------------------------+-------------+-------------+---------------+

The information in this table confirms that there is a member in the group with the unique identifier
ce9be252-2b71-11e6-b8f4-00212844f856, that it is ONLINE and is at s1 listening for client
connections on port 3306.

For the purpose of demonstrating that the server is indeed in a group and that it is able to handle load,
create a table and add some content to it.

mysql> CREATE DATABASE test;
mysql> USE test;
mysql> CREATE TABLE t1 (c1 INT PRIMARY KEY, c2 TEXT NOT NULL);
mysql> INSERT INTO t1 VALUES (1, 'Luis');

Check the content of table t1 and the binary log.

mysql> SELECT * FROM t1;
+----+------+
| c1 | c2 |

3178

Deploying Group Replication in Single-Primary Mode

+----+------+
| 1 | Luis |
+----+------+

mysql> SHOW BINLOG EVENTS;
+---------------+-----+----------------+-----------+-------------+--+
| Log_name | Pos | Event_type | Server_id | End_log_pos | Info |
+---------------+-----+----------------+-----------+-------------+--+
binlog.000001	4	Format_desc	1	123	Server ver: 5.7.44-log, Binlog ver: 4
binlog.000001	123	Previous_gtids	1	150	
binlog.000001	150	Gtid	1	211	SET @@SESSION.GTID_NEXT= 'aaaaaaaa-aaaa-aaaa-aaaa-aaaaaaaaaaaa:1'
binlog.000001	211	Query	1	270	BEGIN
binlog.000001	270	View_change	1	369	view_id=14724817264259180:1
binlog.000001	369	Query	1	434	COMMIT
binlog.000001	434	Gtid	1	495	SET @@SESSION.GTID_NEXT= 'aaaaaaaa-aaaa-aaaa-aaaa-aaaaaaaaaaaa:2'
binlog.000001	495	Query	1	585	CREATE DATABASE test
binlog.000001	585	Gtid	1	646	SET @@SESSION.GTID_NEXT= 'aaaaaaaa-aaaa-aaaa-aaaa-aaaaaaaaaaaa:3'
binlog.000001	646	Query	1	770	use `test`; CREATE TABLE t1 (c1 INT PRIMARY KEY, c2 TEXT NOT NULL)
binlog.000001	770	Gtid	1	831	SET @@SESSION.GTID_NEXT= 'aaaaaaaa-aaaa-aaaa-aaaa-aaaaaaaaaaaa:4'
binlog.000001	831	Query	1	899	BEGIN
binlog.000001	899	Table_map	1	942	table_id: 108 (test.t1)
binlog.000001	942	Write_rows	1	984	table_id: 108 flags: STMT_END_F
binlog.000001	984	Xid	1	1011	COMMIT /* xid=38 */
+---------------+-----+----------------+-----------+-------------+--+

As seen above, the database and the table objects were created and their corresponding DDL statements
were written to the binary log. Also, the data was inserted into the table and written to the binary log.
The importance of the binary log entries is illustrated in the following section when the group grows and
distributed recovery is executed as new members try to catch up and become online.

17.2.1.6 Adding Instances to the Group

At this point, the group has one member in it, server s1, which has some data in it. It is now time to expand
the group by adding the other two servers configured previously.

Adding a Second Instance

In order to add a second instance, server s2, first create the configuration file for it. The configuration is
similar to the one used for server s1, except for things such as the server_id.

[mysqld]

#
Disable other storage engines
#
disabled_storage_engines="MyISAM,BLACKHOLE,FEDERATED,ARCHIVE,MEMORY"

#
Replication configuration parameters
#
server_id=2
gtid_mode=ON
enforce_gtid_consistency=ON
master_info_repository=TABLE
relay_log_info_repository=TABLE
binlog_checksum=NONE
log_slave_updates=ON
log_bin=binlog
binlog_format=ROW

#
Group Replication configuration
#
transaction_write_set_extraction=XXHASH64

3179

Deploying Group Replication in Single-Primary Mode

group_replication_group_name="aaaaaaaa-aaaa-aaaa-aaaa-aaaaaaaaaaaa"
group_replication_start_on_boot=off
group_replication_local_address= "s2:33061"
group_replication_group_seeds= "s1:33061,s2:33061,s3:33061"
group_replication_bootstrap_group= off

Similar to the procedure for server s1, with the option file in place you launch the server. Then configure
the recovery credentials as follows. The commands are the same as used when setting up server s1 as
the user is shared within the group. This member needs to have the same replication user configured in
Section 17.2.1.3, “User Credentials”. If you are relying on distributed recovery to configure the user on all
members, when s2 connects to the seed s1 the replication user is relicated to s1. If you did not have binary
logging enabled when you configured the user credentials on s1, you must create the replication user on
s2. In this case, connect to s2 and issue:

SET SQL_LOG_BIN=0;
CREATE USER rpl_user@'%' IDENTIFIED BY 'password';
GRANT REPLICATION SLAVE ON *.* TO rpl_user@'%';
SET SQL_LOG_BIN=1;
CHANGE MASTER TO MASTER_USER='rpl_user', MASTER_PASSWORD='password' \\
 FOR CHANNEL 'group_replication_recovery';

If necessary, install the Group Replication plugin, see Section 17.2.1.4, “Launching Group Replication”.

Start Group Replication and s2 starts the process of joining the group.

mysql> START GROUP_REPLICATION;

Unlike the previous steps that were the same as those executed on s1, here there is a difference
in that you do not need to boostrap the group because the group already exiists. In other words on
s2 group_replication_bootstrap_group is set to off, and you do not issue SET GLOBAL
group_replication_bootstrap_group=ON; before starting Group Replication, because the group
has already been created and bootstrapped by server s1. At this point server s2 only needs to be added to
the already existing group.

Tip

When Group Replication starts successfully and the server joins the group it checks
the super_read_only variable. By setting super_read_only to ON in the
member's configuration file, you can ensure that servers which fail when starting
Group Replication for any reason do not accept transactions. If the server should
join the group as read-write instance, for example as the primary in a single-primary
group or as a member of a multi-primary group, when the super_read_only
variable is set to ON then it is set to OFF upon joining the group.

Checking the performance_schema.replication_group_members table again shows that there are
now two ONLINE servers in the group.

mysql> SELECT * FROM performance_schema.replication_group_members;
+---------------------------+--------------------------------------+-------------+-------------+---------------+
| CHANNEL_NAME | MEMBER_ID | MEMBER_HOST | MEMBER_PORT | MEMBER_STATE |
+---------------------------+--------------------------------------+-------------+-------------+---------------+
| group_replication_applier | 395409e1-6dfa-11e6-970b-00212844f856 | s1 | 3306 | ONLINE |
| group_replication_applier | ac39f1e6-6dfa-11e6-a69d-00212844f856 | s2 | 3306 | ONLINE |
+---------------------------+--------------------------------------+-------------+-------------+---------------+

When s2 attempted to join the group, Section 17.9.5, “Distributed Recovery” ensured that s2 applied
the same transactions which s1 had applied. Once this process completed, s2 could join the group as a
member, and at this point it is marked as ONLINE. In other words it must have already caught up with
server s1 automatically. Once s2 is ONLINE, it then begins to process transactions with the group. Verify
that s2 has indeed synchronized with server s1 as follows.

3180

Deploying Group Replication in Single-Primary Mode

mysql> SHOW DATABASES LIKE 'test';
+-----------------+
| Database (test) |
+-----------------+
| test |
+-----------------+

mysql> SELECT * FROM test.t1;
+----+------+
| c1 | c2 |
+----+------+
| 1 | Luis |
+----+------+

mysql> SHOW BINLOG EVENTS;
+---------------+------+----------------+-----------+-------------+--+
| Log_name | Pos | Event_type | Server_id | End_log_pos | Info |
+---------------+------+----------------+-----------+-------------+--+
binlog.000001	4	Format_desc	2	123	Server ver: 5.7.44-log, Binlog ver: 4
binlog.000001	123	Previous_gtids	2	150	
binlog.000001	150	Gtid	1	211	SET @@SESSION.GTID_NEXT= 'aaaaaaaa-aaaa-aaaa-aaaa-aaaaaaaaaaaa:1'
binlog.000001	211	Query	1	270	BEGIN
binlog.000001	270	View_change	1	369	view_id=14724832985483517:1
binlog.000001	369	Query	1	434	COMMIT
binlog.000001	434	Gtid	1	495	SET @@SESSION.GTID_NEXT= 'aaaaaaaa-aaaa-aaaa-aaaa-aaaaaaaaaaaa:2'
binlog.000001	495	Query	1	585	CREATE DATABASE test
binlog.000001	585	Gtid	1	646	SET @@SESSION.GTID_NEXT= 'aaaaaaaa-aaaa-aaaa-aaaa-aaaaaaaaaaaa:3'
binlog.000001	646	Query	1	770	use `test`; CREATE TABLE t1 (c1 INT PRIMARY KEY, c2 TEXT NOT NULL)
binlog.000001	770	Gtid	1	831	SET @@SESSION.GTID_NEXT= 'aaaaaaaa-aaaa-aaaa-aaaa-aaaaaaaaaaaa:4'
binlog.000001	831	Query	1	890	BEGIN
binlog.000001	890	Table_map	1	933	table_id: 108 (test.t1)
binlog.000001	933	Write_rows	1	975	table_id: 108 flags: STMT_END_F
binlog.000001	975	Xid	1	1002	COMMIT /* xid=30 */
binlog.000001	1002	Gtid	1	1063	SET @@SESSION.GTID_NEXT= 'aaaaaaaa-aaaa-aaaa-aaaa-aaaaaaaaaaaa:5'
binlog.000001	1063	Query	1	1122	BEGIN
binlog.000001	1122	View_change	1	1261	view_id=14724832985483517:2
binlog.000001	1261	Query	1	1326	COMMIT
+---------------+------+----------------+-----------+-------------+--+

As seen above, the second server has been added to the group and it has replicated the changes from
server s1 automatically using distributed recovery. In other words, the transactions applied on s1 up to the
point in time that s2 joined the group have been replicated to s2.

Adding Additional Instances

Adding additional instances to the group is essentially the same sequence of steps as adding the second
server, except that the configuration has to be changed as it had to be for server s2. To summarise the
required commands:

1. Create the configuration file

[mysqld]

#
Disable other storage engines
#
disabled_storage_engines="MyISAM,BLACKHOLE,FEDERATED,ARCHIVE,MEMORY"

#
Replication configuration parameters
#
server_id=3
gtid_mode=ON
enforce_gtid_consistency=ON
master_info_repository=TABLE

3181

Deploying Group Replication in Single-Primary Mode

relay_log_info_repository=TABLE
binlog_checksum=NONE
log_slave_updates=ON
log_bin=binlog
binlog_format=ROW

#
Group Replication configuration
#
group_replication_group_name="aaaaaaaa-aaaa-aaaa-aaaa-aaaaaaaaaaaa"
group_replication_start_on_boot=off
group_replication_local_address= "s3:33061"
group_replication_group_seeds= "s1:33061,s2:33061,s3:33061"
group_replication_bootstrap_group= off

2. Start the server and connect to it. Configure the recovery credentials for the group_replication_recovery
channel.

SET SQL_LOG_BIN=0;
CREATE USER rpl_user@'%' IDENTIFIED BY 'password';
GRANT REPLICATION SLAVE ON *.* TO rpl_user@'%';
FLUSH PRIVILEGES;
SET SQL_LOG_BIN=1;
CHANGE MASTER TO MASTER_USER='rpl_user', MASTER_PASSWORD='password' \\
FOR CHANNEL 'group_replication_recovery';

4. Install the Group Replication plugin and start it.

INSTALL PLUGIN group_replication SONAME 'group_replication.so';
START GROUP_REPLICATION;

At this point server s3 is booted and running, has joined the group and caught up with the other servers in
the group. Consulting the performance_schema.replication_group_members table again confirms
this is the case.

mysql> SELECT * FROM performance_schema.replication_group_members;
+---------------------------+--------------------------------------+-------------+-------------+---------------+
| CHANNEL_NAME | MEMBER_ID | MEMBER_HOST | MEMBER_PORT | MEMBER_STATE |
+---------------------------+--------------------------------------+-------------+-------------+---------------+
group_replication_applier	395409e1-6dfa-11e6-970b-00212844f856	s1	3306	ONLINE
group_replication_applier	7eb217ff-6df3-11e6-966c-00212844f856	s3	3306	ONLINE
group_replication_applier	ac39f1e6-6dfa-11e6-a69d-00212844f856	s2	3306	ONLINE
+---------------------------+--------------------------------------+-------------+-------------+---------------+

Issuing this same query on server s2 or server s1 yields the same result. Also, you can verify that server s3
has caught up:

mysql> SHOW DATABASES LIKE 'test';
+-----------------+
| Database (test) |
+-----------------+
| test |
+-----------------+

mysql> SELECT * FROM test.t1;
+----+------+
| c1 | c2 |
+----+------+
| 1 | Luis |
+----+------+

mysql> SHOW BINLOG EVENTS;
+---------------+------+----------------+-----------+-------------+--+
| Log_name | Pos | Event_type | Server_id | End_log_pos | Info |
+---------------+------+----------------+-----------+-------------+--+

3182

Deploying Group Replication Locally

binlog.000001	4	Format_desc	3	123	Server ver: 5.7.44-log, Binlog ver: 4
binlog.000001	123	Previous_gtids	3	150	
binlog.000001	150	Gtid	1	211	SET @@SESSION.GTID_NEXT= 'aaaaaaaa-aaaa-aaaa-aaaa-aaaaaaaaaaaa:1'
binlog.000001	211	Query	1	270	BEGIN
binlog.000001	270	View_change	1	369	view_id=14724832985483517:1
binlog.000001	369	Query	1	434	COMMIT
binlog.000001	434	Gtid	1	495	SET @@SESSION.GTID_NEXT= 'aaaaaaaa-aaaa-aaaa-aaaa-aaaaaaaaaaaa:2'
binlog.000001	495	Query	1	585	CREATE DATABASE test
binlog.000001	585	Gtid	1	646	SET @@SESSION.GTID_NEXT= 'aaaaaaaa-aaaa-aaaa-aaaa-aaaaaaaaaaaa:3'
binlog.000001	646	Query	1	770	use `test`; CREATE TABLE t1 (c1 INT PRIMARY KEY, c2 TEXT NOT NULL)
binlog.000001	770	Gtid	1	831	SET @@SESSION.GTID_NEXT= 'aaaaaaaa-aaaa-aaaa-aaaa-aaaaaaaaaaaa:4'
binlog.000001	831	Query	1	890	BEGIN
binlog.000001	890	Table_map	1	933	table_id: 108 (test.t1)
binlog.000001	933	Write_rows	1	975	table_id: 108 flags: STMT_END_F
binlog.000001	975	Xid	1	1002	COMMIT /* xid=29 */
binlog.000001	1002	Gtid	1	1063	SET @@SESSION.GTID_NEXT= 'aaaaaaaa-aaaa-aaaa-aaaa-aaaaaaaaaaaa:5'
binlog.000001	1063	Query	1	1122	BEGIN
binlog.000001	1122	View_change	1	1261	view_id=14724832985483517:2
binlog.000001	1261	Query	1	1326	COMMIT
binlog.000001	1326	Gtid	1	1387	SET @@SESSION.GTID_NEXT= 'aaaaaaaa-aaaa-aaaa-aaaa-aaaaaaaaaaaa:6'
binlog.000001	1387	Query	1	1446	BEGIN
binlog.000001	1446	View_change	1	1585	view_id=14724832985483517:3
binlog.000001	1585	Query	1	1650	COMMIT
+---------------+------+----------------+-----------+-------------+--+

17.2.2 Deploying Group Replication Locally

The most common way to deploy Group Replication is using multiple server instances, to provide high
availability. It is also possible to deploy Group Replication locally, for example for testing purposes. This
section explains how you can deploy Group Replication locally.

Important

Group Replication is usually deployed on multiple hosts because this ensures that
high-availability is provided. The instructions in this section are not suitable for
production deployments because all MySQL server instances are running on the
same single host. In the event of failure of this host, the whole group fails. Therefore
this information should be used for testing purposes and it should not be used in a
production environments.

This section explains how to create a replication group with three MySQL Server instances on one physical
machine. This means that three data directories are needed, one per server instance, and that you need
to configure each instance independently. This - procedure assumes that MySQL Server was downloaded
and unpacked - into the directory named mysql-5.7. Each MySQL server instance requires a specific
data directory. Create a directory named data, then in that directory create a subdirectory for each server
instance, for example s1, s2 and s3, and initialize each one.

mysql-5.7/bin/mysqld --initialize-insecure --basedir=$PWD/mysql-5.7 --datadir=$PWD/data/s1
mysql-5.7/bin/mysqld --initialize-insecure --basedir=$PWD/mysql-5.7 --datadir=$PWD/data/s2
mysql-5.7/bin/mysqld --initialize-insecure --basedir=$PWD/mysql-5.7 --datadir=$PWD/data/s3

Inside data/s1, data/s2, data/s3 is an initialized data directory, containing the mysql system database
and related tables and much more. To learn more about the initialization procedure, see Section 2.9.1,
“Initializing the Data Directory”.

Warning

Do not use -initialize-insecure in production environments, it is only
used here to simplify the tutorial. For more information on security settings, see
Section 17.6, “Group Replication Security”.

3183

Requirements and Limitations

Configuration of Local Group Replication Members

When you are following Section 17.2.1.2, “Configuring an Instance for Group Replication”, you need to add
configuration for the data directories added in the previous section. For example:

[mysqld]

server configuration
datadir=<full_path_to_data>/data/s1
basedir=<full_path_to_bin>/mysql-8.0/

port=24801
socket=<full_path_to_sock_dir>/s1.sock

These settings configure MySQL server to use the data directory created earlier and which port the server
should open and start listening for incoming connections.

Note

The non-default port of 24801 is used because in this tutorial the three server
instances use the same hostname. In a setup with three different machines this
would not be required.

Group Replication requires a network connection between the members, which means that each member
must be able to resolve the network address of all of the other members. For example in this tutorial all
three instances run on one machine, so to ensure that the members can contact each other you could add
a line to the option file such as report_host=127.0.0.1.

Then each member needs to be able to connect to the other members on their
group_replication_local_address. For example in the option file of member s1 add:

group_replication_local_address= "127.0.0.1:24901"
group_replication_group_seeds= "127.0.0.1:24901,127.0.0.1:24902,127.0.0.1:24903"

This configures s1 to use port 24901 for internal group communication with seed members. For each
server instance you want to add to the group, make these changes in the option file of the member.
For each member you must ensure a unique address is specified, so use a unique port per instance for
group_replication_local_address. Usually you want all members to be able to serve as seeds for
members that are joining the group and have not got the transactions processed by the group. In this case,
add all of the ports to group_replication_group_seeds as shown above.

The remaining steps of Section 17.2.1, “Deploying Group Replication in Single-Primary Mode” apply
equally to a group which you have deployed locally in this way.

17.3 Requirements and Limitations

This section lists and explains the requirements and limitations of Group Replication.

17.3.1 Group Replication Requirements

Server instances that you want to use for Group Replication must satisfy the following requirements.

Infrastructure

• InnoDB Storage Engine. Data must be stored in the InnoDB transactional storage engine.
Transactions are executed optimistically and then, at commit time, are checked for conflicts. If there
are conflicts, in order to maintain consistency across the group, some transactions are rolled back. This

3184

Group Replication Requirements

means that a transactional storage engine is required. Moreover, InnoDB provides some additional
functionality that enables better management and handling of conflicts when operating together with
Group Replication. The use of other storage engines, including the temporary MEMORY storage engine,
might cause errors in Group Replication. Convert any tables in other storage engines to use InnoDB
before using the instance with Group Replication. You can prevent the use of other storage engines by
setting the disabled_storage_engines system variable on group members, for example:

disabled_storage_engines="MyISAM,BLACKHOLE,FEDERATED,ARCHIVE,MEMORY"

• Primary Keys. Every table that is to be replicated by the group must have a defined primary key,
or primary key equivalent where the equivalent is a non-null unique key. Such keys are required as
a unique identifier for every row within a table, enabling the system to determine which transactions
conflict by identifying exactly which rows each transaction has modified.

• IPv4 Network. The group communication engine used by MySQL Group Replication only supports
IPv4. Therefore, Group Replication requires an IPv4 network infrastructure.

• Network Performance. MySQL Group Replication is designed to be deployed in a cluster
environment where server instances are very close to each other. The performance and stabiity of a
group can be impacted by both network latency and network bandwidth. Bi-directional communication
must be maintained at all times between all group members. If either inbound or outbound
communication is blocked for a server instance (for example, by a firewall, or by connectivity issues), the
member cannot function in the group, and the group members (including the member with issues) might
not be able to report the correct member status for the affected server instance.

Server Instance Configuration

The following options must be configured on server instances that are members of a group.

• Unique Server Identifier. Use the server_id system variable to configure the server with a unique
server ID, as required for all servers in replication topologies. With the default server ID of 0, servers in
a replication topology cannot connect to each other. The server ID must be a positive integer between
1 and (232)−1, and it must be different from every other server ID in use by any other server in the
replication topology.

• Binary Log Active. Set --log-bin[=log_file_name]. MySQL Group Replication replicates
binary log contents, therefore the binary log needs to be on for it to operate. This option is enabled by
default. See Section 5.4.4, “The Binary Log”.

• Replica Updates Logged. Set --log-slave-updates. Servers need to log binary logs that are
applied through the replication applier. Servers in the group need to log all transactions that they receive
and apply from the group. This is required because recovery is conducted by relying on binary logs form
participants in the group. Therefore, copies of each transaction need to exist on every server, even for
those transactions that were not initiated on the server itself.

• Binary Log Row Format. Set --binlog-format=row. Group Replication relies on row-based
replication format to propagate changes consistently among the servers in the group. It relies on
row-based infrastructure to be able to extract the necessary information to detect conflicts among
transactions that execute concurrently in different servers in the group. See Section 16.2.1, “Replication
Formats”.

• Binary Log Checksums Off. Set --binlog-checksum=NONE. Due to a design limitation of
replication event checksums, Group Replication cannot make use of them, and they must be disabled.

• Global Transaction Identifiers On. Set gtid_mode=ON and enforce_gtid_consistency=ON.
Group Replication uses global transaction identifiers to track exactly which transactions have been

3185

Group Replication Limitations

committed on every server instance and thus be able to infer which servers have executed transactions
that could conflict with already committed transactions elsewhere. In other words, explicit transaction
identifiers are a fundamental part of the framework to be able to determine which transactions may
conflict. See Section 16.1.3, “Replication with Global Transaction Identifiers”.

In addition, if you need to set the value of gtid_purged, you must do so while Group Replication is not
running.

• Replication Information Repositories. Set master_info_repository=TABLE and
relay_log_info_repository=TABLE. The replication applier needs to have the source and replica
metadata written to the mysql.slave_master_info and mysql.slave_relay_log_info system
tables. This ensures the Group Replication plugin has consistent recoverability and transactional
management of the replication metadata. See Section 16.2.4.2, “Replication Metadata Repositories”.

• Transaction Write Set Extraction. Set --transaction-write-set-extraction=XXHASH64 so
that while collecting rows to log them to the binary log, the server collects the write set as well. The write
set is based on the primary keys of each row and is a simplified and compact view of a tag that uniquely
identifies the row that was changed. This tag is then used for detecting conflicts.

• Lower Case Table Names. Set --lower-case-table-names to the same value on all group
members. A setting of 1 is correct for the use of the InnoDB storage engine, which is required for Group
Replication. Note that this setting is not the default on all platforms.

• Multithreaded Appliers. Group Replication members can be configured as multithreaded replicas,
enabling transactions to be applied in parallel. A nonzero value for slave_parallel_workers
enables the multithreaded applier on the member, and up to 1024 parallel applier threads can be
specified. If you do this, the following settings are also required:

slave_preserve_commit_order=1This setting is required to ensure that the final commit of parallel
transactions is in the same order as the original transactions. Group
Replication relies on consistency mechanisms built around the
guarantee that all participating members receive and apply committed
transactions in the same order.

slave_parallel_type=LOGICAL_CLOCKThis setting is required with slave_preserve_commit_order=1. It
specifies the policy used to decide which transactions are allowed to
execute in parallel on the replica.

Setting slave_parallel_workers=0 disables parallel execution and gives the replica a single
applier thread and no coordinator thread. With that setting, the slave_parallel_type and
slave_preserve_commit_order options have no effect and are ignored.

17.3.2 Group Replication Limitations

The following known limitations exist for Group Replication. Note that the limitations and issues described
for multi-primary mode groups can also apply in single-primary mode clusters during a failover event, while
the newly elected primary flushes out its applier queue from the old primary.

Tip

Group Replication is built on GTID based replication, therefore you should also be
aware of Section 16.1.3.6, “Restrictions on Replication with GTIDs”.

• Gap Locks. Group Replication's certification process for concurrent transactions does not take into
account gap locks, as information about gap locks is not available outside of InnoDB. See Gap Locks for
more information.

3186

Group Replication Limitations

Note

For a group in multi-primary mode, unless you rely on REPEATABLE READ
semantics in your applications, we recommend using the READ COMMITTED
isolation level with Group Replication. InnoDB does not use gap locks in READ
COMMITTED, which aligns the local conflict detection within InnoDB with the
distributed conflict detection performed by Group Replication. For a group in
single-primary mode, only the primary accepts writes, so the READ COMMITTED
isolation level is not important to Group Replication.

• Table Locks and Named Locks. The certification process does not take into account table locks
(see Section 13.3.5, “LOCK TABLES and UNLOCK TABLES Statements”) or named locks (see
GET_LOCK()).

• Replication Event Checksums. Due to a design limitation of replication event checksums, Group
Replication cannot currently make use of them. Therefore set --binlog-checksum=NONE.

• SERIALIZABLE Isolation Level. SERIALIZABLE isolation level is not supported in multi-primary
groups by default. Setting a transaction isolation level to SERIALIZABLE configures Group Replication
to refuse to commit the transaction.

• Concurrent DDL versus DML Operations. Concurrent data definition statements and data
manipulation statements executing against the same object but on different servers is not supported
when using multi-primary mode. During execution of Data Definition Language (DDL) statements on an
object, executing concurrent Data Manipulation Language (DML) on the same object but on a different
server instance has the risk of conflicting DDL executing on different instances not being detected.

• Foreign Keys with Cascading Constraints. Multi-primary mode groups (members all
configured with group_replication_single_primary_mode=OFF) do not support tables
with multi-level foreign key dependencies, specifically tables that have defined CASCADING
foreign key constraints. This is because foreign key constraints that result in cascading
operations executed by a multi-primary mode group can result in undetected conflicts and
lead to inconsistent data across the members of the group. Therefore we recommend setting
group_replication_enforce_update_everywhere_checks=ON on server instances used in
multi-primary mode groups to avoid undetected conflicts.

In single-primary mode this is not a problem as it does not allow concurrent writes to multiple members
of the group and thus there is no risk of undetected conflicts.

• MySQL Enterprise Audit and MySQL Enterprise Firewall. Prior to version 5.7.21 MySQL
Enterprise Audit and MySQL Enterprise Firewall use MyISAM tables in the mysql system database.
Group Replication does not support MyISAM tables.

• Multi-primary Mode Deadlock. When a group is operating in multi-primary mode, SELECT .. FOR
UPDATE statements can result in a deadlock. This is because the lock is not shared across the members
of the group, therefore the expectation for such a statement might not be reached.

• Replication Filters. Replication filters cannot be used on a MySQL server instance that is configured
for Group Replication, because filtering transactions on some servers would make the group unable to
reach agreement on a consistent state.

Limit on Group Size

The maximum number of MySQL servers that can be members of a single replication group is 9. If further
members attempt to join the group, their request is refused. This limit has been identified from testing and
benchmarking as a safe boundary where the group performs reliably on a stable local area network.

3187

Monitoring Group Replication

Limits on Transaction Size

If an individual transaction results in message contents which are large enough that the message cannot
be copied between group members over the network within a 5-second window, members can be
suspected of having failed, and then expelled, just because they are busy processing the transaction.
Large transactions can also cause the system to slow due to problems with memory allocation. To avoid
these issues use the following mitigations:

• Where possible, try and limit the size of your transactions. For example, split up files used with LOAD
DATA into smaller chunks.

• Use the system variable group_replication_transaction_size_limit to specify the maximum
transaction size that the group accepts. In releases up to and including MySQL 5.7.37, this system
variable defaults to zero, but from MySQL 5.7.38, and in MySQL 8.0, it defaults to a maximum
transaction size of 150000000 bytes (approximately 143 MB). Transactions above this limit are rolled
back and are not sent to Group Replication's Group Communication System (GCS) for distribution to
the group. Adjust the value of this variable depending on the maximum message size that you need the
group to tolerate, bearing in mind that the time taken to process a transaction is proportional to its size.

Note

When you upgrade from MySQL 5.7.37 or earlier to MySQL 5.7.38
or later, if your Group Replication servers previously accepted
transactions larger than the new default limit, and you were allowing
group_replication_transaction_size_limit to default to the old zero
limit, those transactions will start to fail after the upgrade to the new default. You
must either specify an appropriate size limit that allows the maximum message
size you need the group to tolerate (which is the recommended solution), or
specify a zero setting to restore the previous behavior.

• Use the system variable group_replication_compression_threshold to specify a
message size above which compression is applied. This system variable defaults to 1000000
bytes (1 MB), so large messages are automatically compressed. Compression is carried out by
Group Replication's Group Communication System (GCS) when it receives a message that was
permitted by the group_replication_transaction_size_limit setting but exceeds the
group_replication_compression_threshold setting. If you set the system variable value to
zero, compression is deactivated. For more information, see Section 17.9.7.2, “Message Compression”.

If you have deactivated message compression and do not specify a maximum transaction size, the upper
size limit for a message that can be handled by the applier thread on a member of a replication group
is the value of the member's slave_max_allowed_packet system variable, which has a default and
maximum value of 1073741824 bytes (1 GB). A message that exceeds this limit fails when the receiving
member attempts to handle it. The upper size limit for a message that a group member can originate and
attempt to transmit to the group is 4294967295 bytes (approximately 4 GB). This is a hard limit on the
packet size that is accepted by the group communication engine for Group Replication (XCom, a Paxos
variant), which receives messages after GCS has handled them. A message that exceeds this limit fails
when the originating member attempts to broadcast it.

17.4 Monitoring Group Replication

You can use the MySQL Performance Schema to monitor Group Replication. These Performance Schema
tables display information specific to Group Replication:

• replication_group_member_stats: See Section 17.4.3, “The replication_group_member_stats
Table”.

3188

Group Replication Server States

• replication_group_members: See Section 17.4.2, “The replication_group_members Table”.

These Performance Schema replication tables also show information relating to Group Replication:

• replication_connection_status shows information regarding Group Replication, such as
transactions received from the group and queued in the applier queue (relay log).

• replication_applier_status shows the states of channels and threads relating to Group
Replication. These can also be used to monitor what individual worker threads are doing.

Replication channels created by the Group Replication plugin are listed here:

• group_replication_recovery: Used for replication changes related to distributed recovery.

• group_replication_applier: Used for the incoming changes from the group, to apply transactions
coming directly from the group.

For information about system variables affecting Group Replication, see Section 17.7.1, “Group Replication
System Variables”. See Section 17.7.2, “Group Replication Status Variables”, for status variables providing
information about Group Replication.

Note

If you are monitoring one or more secondary instances using mysqladmin, you
should be aware that a FLUSH STATUS statement executed by this utility creates a
GTID event on the local instance which may impact future group operations.

17.4.1 Group Replication Server States

There are various states that a server instance can be in. If servers are communicating properly, all report
the same states for all servers. However, if there is a network partition, or a server leaves the group,
then different information could be reported, depending on which server is queried. If the server has left
the group then it cannot report updated information about the other servers' states. If there is a partition,
such that quorum is lost, servers are not able to coordinate between themselves. As a consequence, they
cannot guess what the status of different servers is. Therefore, instead of guessing their state they report
that some servers are unreachable.

Table 17.1 Server State

Field Description Group Synchronized

ONLINE The member is ready to serve as
a fully functional group member,
meaning that the client can
connect and start executing
transactions.

Yes

RECOVERING The member is in the process of
becoming an active member of
the group and is currently going
through the recovery process,
receiving state information from a
donor.

No

OFFLINE The plugin is loaded but the
member does not belong to any
group.

No

3189

The replication_group_members Table

Field Description Group Synchronized

ERROR The state of the member.
Whenever there is an error on the
recovery phase or while applying
changes, the server enters this
state.

No

UNREACHABLE Whenever the local failure
detector suspects that a given
server is not reachable, because
for example it was disconnected
involuntarily, it shows that server's
state as UNREACHABLE.

No

Important

Once an instance enters ERROR state, the super_read_only option is set to
ON. To leave the ERROR state you must manually configure the instance with
super_read_only=OFF.

Note that Group Replication is not synchronous, but eventually synchronous. More precisely, transactions
are delivered to all group members in the same order, but their execution is not synchronized, meaning
that after a transaction is accepted to be committed, each member commits at its own pace.

17.4.2 The replication_group_members Table

The performance_schema.replication_group_members table is used for monitoring the status
of the different server instances that are members of the group. The information in the table is updated
whenever there is a view change, for example when the configuration of the group is dynamically changed
when a new member joins. At that point, servers exchange some of their metadata to synchronize
themselves and continue to cooperate together. The information is shared between all the server instances
that are members of the replication group, so information on all the group members can be queried from
any member. This table can be used to get a high level view of the state of a replication group, for example
by issuing:

SELECT * FROM performance_schema.replication_group_members;
+---------------------------+--------------------------------------+--------------+-------------+--------------+
| CHANNEL_NAME | MEMBER_ID | MEMBER_HOST | MEMBER_PORT | MEMBER_STATE |
+---------------------------+--------------------------------------+--------------+-------------+--------------+
group_replication_applier	041f26d8-f3f3-11e8-adff-080027337932	example1	3306	ONLINE
group_replication_applier	f60a3e10-f3f2-11e8-8258-080027337932	example2	3306	ONLINE
group_replication_applier	fc890014-f3f2-11e8-a9fd-080027337932	example3	3306	ONLINE
+---------------------------+--------------------------------------+--------------+-------------+--------------+

Based on this result we can see that the group consists of three members, each member's host and
port number which clients use to connect to the member, and the server_uuid of the member. The
MEMBER_STATE column shows one of the Section 17.4.1, “Group Replication Server States”, in this case
it shows that all three members in this group are ONLINE, and the MEMBER_ROLE column shows that
there are two secondaries, and a single primary. Therefore this group must be running in single-primary
mode. The MEMBER_VERSION column can be useful when you are upgrading a group and are combining
members running different MySQL versions. See Section 17.4.1, “Group Replication Server States” for
more information.

For more information about the Member_host value and its impact on the distributed recovery process,
see Section 17.2.1.3, “User Credentials”.

17.4.3 The replication_group_member_stats Table

3190

Group Replication Operations

Each member in a replication group certifies and applies transactions received by the group. Statistics
regarding the certifier and applier procedures are useful to understand how the applier queue is growing,
how many conflicts have been found, how many transactions were checked, which transactions are
committed everywhere, and so on.

The performance_schema.replication_group_member_stats table provides group-level
information related to the certification process, and also statistics for the transactions received and
originated by each individual member of the replication group. The information is shared between all the
server instances that are members of the replication group, so information on all the group members can
be queried from any member. Note that refreshing of statistics for remote members is controlled by the
message period specified in the group_replication_flow_control_period option, so these can
differ slightly from the locally collected statistics for the member where the query is made. To use this table
to monitor a Group Replication member, issue the following statement:

mysql> SELECT * FROM performance_schema.replication_group_member_stats\G

These columns are important for monitoring the performance of the members connected in the group.
Suppose that one of the group's members always reports a large number of transactions in its queue
compared to other members. This means that the member is delayed and is not able to keep up to date
with the other members of the group. Based on this information, you could decide to either remove the
member from the group, or delay the processing of transactions on the other members of the group in
order to reduce the number of queued transactions. This information can also help you to decide how to
adjust the flow control of the Group Replication plugin, see Section 17.9.7.3, “Flow Control”.

17.5 Group Replication Operations
This section describes the different modes of deploying Group Replication, explains common operations
for managing groups and provides information about how to tune your groups. .

17.5.1 Deploying in Multi-Primary or Single-Primary Mode

Group Replication operates in the following different modes:

• single-primary mode

• multi-primary mode

The default mode is single-primary. It is not possible to have members of the group deployed in different
modes, for example one configured in multi-primary mode while another one is in single-primary mode.
To switch between modes, the group and not the server, needs to be restarted with a different operating
configuration. Regardless of the deployed mode, Group Replication does not handle client-side fail-over,
that must be handled by the application itself, a connector or a middleware framework such as a proxy or
MySQL Router 8.0.

When deployed in multi-primary mode, statements are checked to ensure they are compatible with the
mode. The following checks are made when Group Replication is deployed in multi-primary mode:

• If a transaction is executed under the SERIALIZABLE isolation level, then its commit fails when
synchronizing itself with the group.

• If a transaction executes against a table that has foreign keys with cascading constraints, then the
transaction fails to commit when synchronizing itself with the group.

These checks can be deactivated by setting the option
group_replication_enforce_update_everywhere_checks to FALSE. When deploying in single-
primary mode, this option must be set to FALSE.

3191

https://dev.mysql.com/doc/refman/8.0/en/group-replication-system-variables.html#sysvar_group_replication_flow_control_period
https://dev.mysql.com/doc/mysql-router/8.0/en/

Deploying in Multi-Primary or Single-Primary Mode

17.5.1.1 Single-Primary Mode

In this mode the group has a single-primary server that is set to read-write mode. All the other members
in the group are set to read-only mode (with super-read-only=ON). This happens automatically. The
primary is typically the first server to bootstrap the group, all other servers that join automatically learn
about the primary server and are set to read only.

Figure 17.5 New Primary Election

When in single-primary mode, some of the checks deployed in multi-primary mode are disabled,
because the system enforces that only a single server writes to the group. For example, changes to
tables that have cascading foreign keys are allowed, whereas in multi-primary mode they are not.
Upon primary member failure, an automatic primary election mechanism chooses the new primary
member. The election process is performed by looking at the new view, and ordering the potential new
primaries based on the value of group_replication_member_weight. Assuming the group is
operating with all members running the same MySQL version, then the member with the highest value for
group_replication_member_weight is elected as the new primary. In the event that multiple servers
have the same group_replication_member_weight, the servers are then prioritized based on their
server_uuid in lexicographical order and by picking the first one. Once a new primary is elected, it is
automatically set to read-write and the other secondaries remain as secondaries, and as such, read-only.

When a new primary is elected, it is only writable once it has processed all of the transactions that came
from the old primary. This avoids possible concurrency issues between old transactions from the old
primary and the new ones being executed on this member. It is a good practice to wait for the new primary
to apply its replication related relay-log before re-routing client applications to it.

If the group is operating with members that are running different versions of MySQL then
the election process can be impacted. For example, if any member does not support
group_replication_member_weight, then the primary is chosen based on server_uuid order
from the members of the lower major version. Alternatively, if all members running different MySQL
versions do support group_replication_member_weight, the primary is chosen based on
group_replication_member_weight from the members of the lower major version.

17.5.1.2 Multi-Primary Mode

In multi-primary mode, there is no notion of a single primary. There is no need to engage an election
procedure because there is no server playing any special role.

3192

Tuning Recovery

Figure 17.6 Client Failover

All servers are set to read-write mode when joining the group.

17.5.1.3 Finding the Primary

The following example shows how to find out which server is currently the primary when deployed in
single-primary mode.

mysql> SHOW STATUS LIKE 'group_replication_primary_member';

17.5.2 Tuning Recovery

Whenever a new member joins a replication group, it connects to a suitable donor and fetches the data
that it has missed up until the point it is declared online. This critical component in Group Replication is
fault tolerant and configurable. The following section explains how recovery works and how to tune the
settings

Donor Selection

A random donor is selected from the existing online members in the group. This way there is a good
chance that the same server is not selected more than once when multiple members enter the group.

If the connection to the selected donor fails, a new connection is automatically attempted to a new
candidate donor. Once the connection retry limit is reached the recovery procedure terminates with an
error.

Note

A donor is picked randomly from the list of online members in the current view.

Enhanced Automatic Donor Switchover

The other main point of concern in recovery as a whole is to make sure that it copes with failures. Hence,
Group Replication provides robust error detection mechanisms. In earlier versions of Group Replication,
when reaching out to a donor, recovery could only detect connection errors due to authentication issues or
some other problem. The reaction to such problematic scenarios was to switch over to a new donor thus a
new connection attempt was made to a different member.

3193

Network Partitioning

This behavior was extended to also cover other failure scenarios:

• Purged data scenarios - If the selected donor contains some purged data that is needed for the recovery
process then an error occurs. Recovery detects this error and a new donor is selected.

• Duplicated data - If a server joining the group already contains some data that conflicts with the data
coming from the selected donor during recovery then an error occurs. This could be caused by some
errant transactions present in the server joining the group.

One could argue that recovery should fail instead of switching over to another donor, but in
heterogeneous groups there is chance that other members share the conflicting transactions and others
do not. For that reason, upon error, recovery selects another donor from the group.

• Other errors - If any of the recovery threads fail (receiver or applier threads fail) then an error occurs and
recovery switches over to a new donor.

Note

In case of some persistent failures or even transient failures recovery automatically
retries connecting to the same or a new donor.

Donor Connection Retries

The recovery data transfer relies on the binary log and existing MySQL replication framework, therefore it
is possible that some transient errors could cause errors in the receiver or applier threads. In such cases,
the donor switch over process has retry functionality, similar to that found in regular replication.

Number of Attempts

The number of attempts a server joining the group makes when trying to connect to a donor from the pool
of donors is 10. This is configured through the group_replication_recovery_retry_count plugin
variable . The following command sets the maximum number of attempts to connect to a donor to 10.

mysql> SET GLOBAL group_replication_recovery_retry_count= 10;

Note that this accounts for the global number of attempts that the server joining the group makes
connecting to each one of the suitable donors.

Sleep Routines

The group_replication_recovery_reconnect_interval plugin variable defines how much time
the recovery process should sleep between donor connection attempts. This variable has its default set to
60 seconds and you can change this value dynamically. The following command sets the recovery donor
connection retry interval to 120 seconds.

mysql> SET GLOBAL group_replication_recovery_reconnect_interval= 120;

Note, however, that recovery does not sleep after every donor connection attempt. As the server joining
the group is connecting to different servers and not to the same one over and over again, it can assume
that the problem that affects server A does not affect server B. As such, recovery suspends only when it
has gone through all the possible donors. Once the server joining the group has tried to connect to all the
suitable donors in the group and none remains, the recovery process sleeps for the number of seconds
configured by the group_replication_recovery_reconnect_interval variable.

17.5.3 Network Partitioning

3194

Network Partitioning

The group needs to achieve consensus whenever a change that needs to be replicated happens. This is
the case for regular transactions but is also required for group membership changes and some internal
messaging that keeps the group consistent. Consensus requires a majority of group members to agree on
a given decision. When a majority of group members is lost, the group is unable to progress and blocks
because it cannot secure majority or quorum.

Quorum may be lost when there are multiple involuntary failures, causing a majority of servers to be
removed abruptly from the group. For example, in a group of 5 servers, if 3 of them become silent at once,
the majority is compromised and thus no quorum can be achieved. In fact, the remaining two are not able
to tell if the other 3 servers have crashed or whether a network partition has isolated these 2 alone and
therefore the group cannot be reconfigured automatically.

On the other hand, if servers exit the group voluntarily, they instruct the group that it should reconfigure
itself. In practice, this means that a server that is leaving tells others that it is going away. This means that
other members can reconfigure the group properly, the consistency of the membership is maintained and
the majority is recalculated. For example, in the above scenario of 5 servers where 3 leave at once, if the
3 leaving servers warn the group that they are leaving, one by one, then the membership is able to adjust
itself from 5 to 2, and at the same time, securing quorum while that happens.

Note

Loss of quorum is by itself a side-effect of bad planning. Plan the group size for the
number of expected failures (regardless whether they are consecutive, happen all
at once or are sporadic).

The following sections explain what to do if the system partitions in such a way that no quorum is
automatically achieved by the servers in the group.

Tip

A primary that has been excluded from a group after a majority loss followed by
a reconfiguration can contain extra transactions that are not included in the new
group. If this happens, the attempt to add back the excluded member from the
group results in an error with the message This member has more executed
transactions than those present in the group.

Detecting Partitions

The replication_group_members performance schema table presents the status of each server in
the current view from the perspective of this server. The majority of the time the system does not run into
partitioning, and therefore the table shows information that is consistent across all servers in the group. In
other words, the status of each server on this table is agreed by all in the current view. However, if there is
network partitioning, and quorum is lost, then the table shows the status UNREACHABLE for those servers
that it cannot contact. This information is exported by the local failure detector built into Group Replication.

3195

Network Partitioning

Figure 17.7 Losing Quorum

To understand this type of network partition the following section describes a scenario where there are
initially 5 servers working together correctly, and the changes that then happen to the group once only 2
servers are online. The scenario is depicted in the figure.

As such, lets assume that there is a group with these 5 servers in it:

• Server s1 with member identifier 199b2df7-4aaf-11e6-bb16-28b2bd168d07

• Server s2 with member identifier 199bb88e-4aaf-11e6-babe-28b2bd168d07

• Server s3 with member identifier 1999b9fb-4aaf-11e6-bb54-28b2bd168d07

• Server s4 with member identifier 19ab72fc-4aaf-11e6-bb51-28b2bd168d07

3196

Network Partitioning

• Server s5 with member identifier 19b33846-4aaf-11e6-ba81-28b2bd168d07

Initially the group is running fine and the servers are happily communicating with each other. You can verify
this by logging into s1 and looking at its replication_group_members performance schema table. For
example:

mysql> SELECT MEMBER_ID,MEMBER_STATE, MEMBER_ROLE FROM performance_schema.replication_group_members;
+--------------------------------------+--------------+-------------+
| MEMBER_ID | MEMBER_STATE |-MEMBER_ROLE |
+--------------------------------------+--------------+-------------+
1999b9fb-4aaf-11e6-bb54-28b2bd168d07	ONLINE	SECONDARY
199b2df7-4aaf-11e6-bb16-28b2bd168d07	ONLINE	PRIMARY
199bb88e-4aaf-11e6-babe-28b2bd168d07	ONLINE	SECONDARY
19ab72fc-4aaf-11e6-bb51-28b2bd168d07	ONLINE	SECONDARY
19b33846-4aaf-11e6-ba81-28b2bd168d07	ONLINE	SECONDARY
+--------------------------------------+--------------+-------------+

However, moments later there is a catastrophic failure and servers s3, s4 and s5 stop unexpectedly. A few
seconds after this, looking again at the replication_group_members table on s1 shows that it is still
online, but several others members are not. In fact, as seen below they are marked as UNREACHABLE.
Moreover, the system could not reconfigure itself to change the membership, because the majority has
been lost.

mysql> SELECT MEMBER_ID,MEMBER_STATE FROM performance_schema.replication_group_members;
+--------------------------------------+--------------+
| MEMBER_ID | MEMBER_STATE |
+--------------------------------------+--------------+
1999b9fb-4aaf-11e6-bb54-28b2bd168d07	UNREACHABLE
199b2df7-4aaf-11e6-bb16-28b2bd168d07	ONLINE
199bb88e-4aaf-11e6-babe-28b2bd168d07	ONLINE
19ab72fc-4aaf-11e6-bb51-28b2bd168d07	UNREACHABLE
19b33846-4aaf-11e6-ba81-28b2bd168d07	UNREACHABLE
+--------------------------------------+--------------+

The table shows that s1 is now in a group that has no means of progressing without external intervention,
because a majority of the servers are unreachable. In this particular case, the group membership list needs
to be reset to allow the system to proceed, which is explained in this section. Alternatively, you could also
choose to stop Group Replication on s1 and s2 (or stop completely s1 and s2), figure out what happened
with s3, s4 and s5 and then restart Group Replication (or the servers).

Unblocking a Partition

Group replication enables you to reset the group membership list by forcing a specific configuration.
For instance in the case above, where s1 and s2 are the only servers online, you could chose to force a
membership configuration consisting of only s1 and s2. This requires checking some information about s1
and s2 and then using the group_replication_force_members variable.

3197

Network Partitioning

Figure 17.8 Forcing a New Membership

Suppose that you are back in the situation where s1 and s2 are the only servers left in the group. Servers
s3, s4 and s5 have left the group unexpectedly. To make servers s1 and s2 continue, you want to force a
membership configuration that contains only s1 and s2.

Warning

This procedure uses group_replication_force_members and should be
considered a last resort remedy. It must be used with extreme care and only for
overriding loss of quorum. If misused, it could create an artificial split-brain scenario
or block the entire system altogether.

3198

Restarting a Group

Recall that the system is blocked and the current configuration is the following (as perceived by the local
failure detector on s1):

mysql> SELECT MEMBER_ID,MEMBER_STATE FROM performance_schema.replication_group_members;
+--------------------------------------+--------------+
| MEMBER_ID | MEMBER_STATE |
+--------------------------------------+--------------+
1999b9fb-4aaf-11e6-bb54-28b2bd168d07	UNREACHABLE
199b2df7-4aaf-11e6-bb16-28b2bd168d07	ONLINE
199bb88e-4aaf-11e6-babe-28b2bd168d07	ONLINE
19ab72fc-4aaf-11e6-bb51-28b2bd168d07	UNREACHABLE
19b33846-4aaf-11e6-ba81-28b2bd168d07	UNREACHABLE
+--------------------------------------+--------------+

The first thing to do is to check what is the local address (group communication identifier) for s1 and s2.
Log in to s1 and s2 and get that information as follows.

mysql> SELECT @@group_replication_local_address;

Once you know the group communication addresses of s1 (127.0.0.1:10000) and s2
(127.0.0.1:10001), you can use that on one of the two servers to inject a new membership
configuration, thus overriding the existing one that has lost quorum. To do that on s1:

mysql> SET GLOBAL group_replication_force_members="127.0.0.1:10000,127.0.0.1:10001";

This unblocks the group by forcing a different configuration. Check replication_group_members on
both s1 and s2 to verify the group membership after this change. First on s1.

mysql> SELECT MEMBER_ID,MEMBER_STATE FROM performance_schema.replication_group_members;
+--------------------------------------+--------------+
| MEMBER_ID | MEMBER_STATE |
+--------------------------------------+--------------+
| b5ffe505-4ab6-11e6-b04b-28b2bd168d07 | ONLINE |
| b60907e7-4ab6-11e6-afb7-28b2bd168d07 | ONLINE |
+--------------------------------------+--------------+

And then on s2.

mysql> SELECT * FROM performance_schema.replication_group_members;
+--------------------------------------+--------------+
| MEMBER_ID | MEMBER_STATE |
+--------------------------------------+--------------+
| b5ffe505-4ab6-11e6-b04b-28b2bd168d07 | ONLINE |
| b60907e7-4ab6-11e6-afb7-28b2bd168d07 | ONLINE |
+--------------------------------------+--------------+

When forcing a new membership configuration, make sure that any servers are going to be forced out of
the group are indeed stopped. In the scenario depicted above, if s3, s4 and s5 are not really unreachable
but instead are online, they may have formed their own functional partition (they are 3 out of 5, hence they
have the majority). In that case, forcing a group membership list with s1 and s2 could create an artificial
split-brain situation. Therefore it is important before forcing a new membership configuration to ensure that
the servers to be excluded are indeed shutdown and if they are not, shut them down before proceeding.

After you have used the group_replication_force_members system variable to successfully
force a new group membership and unblock the group, ensure that you clear the system
variable. group_replication_force_members must be empty in order to issue a START
GROUP_REPLICATION statement.

17.5.4 Restarting a Group

Group Replication is designed to ensure that the database service is continuously available, even if some
of the servers that form the group are currently unable to participate in it due to planned maintenance or

3199

Restarting a Group

unplanned issues. As long as the remaining members are a majority of the group they can elect a new
primary and continue to function as a group. However, if every member of a replication group leaves the
group, and Group Replication is stopped on every member by a STOP GROUP_REPLICATION statement
or system shutdown, the group now only exists in theory, as a configuration on the members. In that
situation, to re-create the group, it must be started by bootstrapping as if it was being started for the first
time.

The difference between bootstrapping a group for the first time and doing it for the second or subsequent
times is that in the latter situation, the members of a group that was shut down might have different
transaction sets from each other, depending on the order in which they were stopped or failed. A member
cannot join a group if it has transactions that are not present on the other group members. For Group
Replication, this includes both transactions that have been committed and applied, which are in the
gtid_executed GTID set, and transactions that have been certified but not yet applied, which are in
the group_replication_applier channel. A Group Replication group member never removes a
transaction that has been certified, which is a declaration of the member’s intent to commit the transaction.

The replication group must therefore be restarted beginning with the most up to date member, that is, the
member that has the most transactions executed and certified. The members with fewer transactions can
then join and catch up with the transactions they are missing through distributed recovery. It is not correct
to assume that the last known primary member of the group is the most up to date member of the group,
because a member that was shut down later than the primary might have more transactions. You must
therefore restart each member to check the transactions, compare all the transaction sets, and identify the
most up to date member. This member can then be used to bootstrap the group.

Follow this procedure to restart a replication group safely after every member shuts down.

1. For each group member in turn, in any order:

a. Connect a client to the group member. If Group Replication is not already stopped, issue a STOP
GROUP_REPLICATION statement and wait for Group Replication to stop.

b. Edit the MySQL Server configuration file (typically named my.cnf on Linux and
Unix systems, or my.ini on Windows systems) and set the system variable
group_replication_start_on_boot=OFF. This setting prevents Group Replication from
starting when MySQL Server is started, which is the default.

If you cannot change that setting on the system, you can just allow the server to
attempt to start Group Replication, which will fail because the group has been
fully shut down and not yet bootstrapped. If you take that approach, do not set
group_replication_bootstrap_group=ON on any server at this stage.

c. Start the MySQL Server instance, and verify that Group Replication has not been started (or has
failed to start). Do not start Group Replication at this stage.

d. Collect the following information from the group member:

• The contents of the gtid_executed GTID set. You can get this by issuing the following
statement:

mysql> SELECT @@GLOBAL.GTID_EXECUTED

• The set of certified transactions on the group_replication_applier channel. You can get
this by issuing the following statement:

mysql> SELECT received_transaction_set FROM \
 performance_schema.replication_connection_status WHERE \
 channel_name="group_replication_applier";

3200

Using MySQL Enterprise Backup with Group Replication

2. When you have collected the transaction sets from all the group members, compare them to find
which member has the biggest transaction set overall, including both the executed transactions
(gtid_executed) and the certified transactions (on the group_replication_applier channel).
You can do this manually by looking at the GTIDs, or you can compare the GTID sets using stored
functions, as described in Section 16.1.3.7, “Stored Function Examples to Manipulate GTIDs”.

3. Use the member that has the biggest transaction set to bootstrap the group, by connecting a client to
the group member and issuing the following statements:

mysql> SET GLOBAL group_replication_bootstrap_group=ON;
mysql> START GROUP_REPLICATION;
mysql> SET GLOBAL group_replication_bootstrap_group=OFF;

It is important not to store the setting group_replication_bootstrap_group=ON in the
configuration file, otherwise when the server is restarted again, a second group with the same name is
set up.

4. To verify that the group now exists with this founder member in it, issue this statement on the member
that bootstrapped it:

mysql> SELECT * FROM performance_schema.replication_group_members;

5. Add each of the other members back into the group, in any order, by issuing a START
GROUP_REPLICATION statement on each of them:

mysql> START GROUP_REPLICATION;

6. To verify that each member has joined the group, issue this statement on any member:

mysql> SELECT * FROM performance_schema.replication_group_members;

7. When the members have rejoined the group, if you edited their configuration files to set
group_replication_start_on_boot=OFF, you can edit them again to set ON (or remove the
system variable, since ON is the default).

17.5.5 Using MySQL Enterprise Backup with Group Replication

MySQL Enterprise Backup is a commercially-licensed backup utility for MySQL Server, available with
MySQL Enterprise Edition. This section explains how to back up and subsequently restore a Group
Replication member using MySQL Enterprise Backup. The same technique can be used to quickly add a
new member to a group.

Backing up a Group Replication Member Using MySQL Enterprise Backup

Backing up a Group Replication member is similar to backing up a stand-alone MySQL instance. The
following instructions assume that you are already familiar with how to use MySQL Enterprise Backup
to perform a backup; if that is not the case, please review the MySQL Enterprise Backup 4.1 User's
Guide, especially Backing Up a Database Server. Also note the requirements described in Grant MySQL
Privileges to Backup Administrator and Using MySQL Enterprise Backup with Group Replication.

Consider the following group with three members, s1, s2, and s3, running on hosts with the same names:

mysql> SELECT member_host, member_port, member_state FROM performance_schema.replication_group_members;
+-------------+-------------+--------------+
| member_host | member_port | member_state |
+-------------+-------------+--------------+
s1	3306	ONLINE
s2	3306	ONLINE
s3	3306	ONLINE
+-------------+-------------+--------------+

3201

https://dev.mysql.com/doc/mysql-enterprise-backup/4.1/en/
https://www.mysql.com/products/enterprise/
https://dev.mysql.com/doc/mysql-enterprise-backup/4.1/en/
https://dev.mysql.com/doc/mysql-enterprise-backup/4.1/en/
https://dev.mysql.com/doc/mysql-enterprise-backup/4.1/en/backing-up.html
https://dev.mysql.com/doc/mysql-enterprise-backup/4.1/en/mysqlbackup.privileges.html
https://dev.mysql.com/doc/mysql-enterprise-backup/4.1/en/mysqlbackup.privileges.html
https://dev.mysql.com/doc/mysql-enterprise-backup/4.1/en/meb-group-replication.html

Using MySQL Enterprise Backup with Group Replication

Using MySQL Enterprise Backup, create a backup of s2 by issuing on its host, for example, the following
command:

s2> mysqlbackup --defaults-file=/etc/my.cnf --backup-image=/backups/my.mbi_`date +%d%m_%H%M` \
 --backup-dir=/backups/backup_`date +%d%m_%H%M` --user=root -p \
 --host=127.0.0.1 backup-to-image

Note

• When backing up a secondary member, as MySQL Enterprise Backup cannot
write backup status and metadata to a read-only server instance, it might issue
warnings similar to the following one during the backup operation:

181113 21:31:08 MAIN WARNING: This backup operation cannot write to backup
progress. The MySQL server is running with the --super-read-only option.

You can avoid the warning by using the --no-history-logging option with
your backup command.

Restoring a Failed Member

Assume one of the members (s3 in the following example) is irreconcilably corrupted. The most recent
backup of group member s2 can be used to restore s3. Here are the steps for performing the restore:

1. Copy the backup of s2 onto the host for s3. The exact way to copy the backup depends on the
operating system and tools available to you. In this example, we assume the hosts are both Linux
servers and use SCP to copy the files between them:

s2/backups> scp my.mbi_2206_1429 s3:/backups

2. Restore the backup. Connect to the target host (the host for s3 in this case), and restore the backup
using MySQL Enterprise Backup. Here are the steps:

a. Stop the corrupted server, if it is still running. For example, on Linux distributions that use systemd:

s3> systemctl stop mysqld

b. Preserve the configuration file auto.cnf, located in the corrupted server's data directory, by
copying it to a safe location outside of the data directory. This is for preserving the server's UUID,
which is needed later.

c. Delete all contents in the data directory of s3. For example:

s3> rm -rf /var/lib/mysql/*

If the system variables innodb_data_home_dir, innodb_log_group_home_dir, and
innodb_undo_directory point to any directories other than the data directory, they should also
be made empty; otherwise, the restore operation fails.

d. Restore backup of s2 onto the host for s3:

s3> mysqlbackup --defaults-file=/etc/my.cnf \
 --datadir=/var/lib/mysql \
 --backup-image=/backups/my.mbi_2206_1429 \
 --backup-dir=/tmp/restore_`date +%d%m_%H%M` copy-back-and-apply-log

Note

The command above assumes that the binary logs and relay logs on s2
and s3 have the same base name and are at the same location on the two

3202

Using MySQL Enterprise Backup with Group Replication

servers. If these conditions are not met, for MySQL Enterprise Backup 4.1.2
and later, you should use the --log-bin and --relay-log options to
restore the binary log and relay log to their original file paths on s3. For
example, if you know that on s3 the binary log's base name is s3-bin and
the relay-log's base name is s3-relay-bin, your restore command should
look like:

mysqlbackup --defaults-file=/etc/my.cnf \
 --datadir=/var/lib/mysql \
 --backup-image=/backups/my.mbi_2206_1429 \
 --log-bin=s3-bin --relay-log=s3-relay-bin \
 --backup-dir=/tmp/restore_`date +%d%m_%H%M` copy-back-and-apply-log

Being able to restore the binary log and relay log to the right file paths
makes the restore process easier; if that is impossible for some reason, see
Rebuild the Failed Member to Rejoin as a New Member.

3. Restore the auto.cnf file for s3. To rejoin the replication group, the restored member must have
the same server_uuid it used to join the group before. Supply the old server UUID by copying the
auto.cnf file preserved in step 2 above into the data directory of the restored member.

Note

If you cannot supply the failed member's original server_uuid to the restored
member by restoring its old auto.cnf file, you must let the restored member
join the group as a new member; see instructions in Rebuild the Failed Member
to Rejoin as a New Member below on how to do that.

4. Start the restored server. For example, on Linux distributions that use systemd:

systemctl start mysqld

Note

If the server you are restoring is a primary member, perform the steps described
in Restoring a Primary Member before starting the restored server.

5. Restart Group Replication. Connect to the restarted s3 using, for example, a mysql client, and issue
the following command:

mysql> START GROUP_REPLICATION;

Before the restored instance can become an online member of the group, it needs to apply any
transactions that have happened to the group after the backup was taken; this is achieved using
Group Replication's distributed recovery mechanism, and the process starts after the START
GROUP_REPLICATION statement has been issued. To check the member status of the restored
instance, issue:

mysql> SELECT member_host, member_port, member_state FROM performance_schema.replication_group_members;
+-------------+-------------+--------------+
| member_host | member_port | member_state |
+-------------+-------------+--------------+
s1	3306	ONLINE
s2	3306	ONLINE
s3	3306	RECOVERING

3203

https://dev.mysql.com/doc/mysql-enterprise-backup/4.1/en/server-repository-options.html#option_meb_log-bin
https://dev.mysql.com/doc/mysql-enterprise-backup/4.1/en/server-repository-options.html#option_meb_relay-log

Using MySQL Enterprise Backup with Group Replication

+-------------+-------------+--------------+

This shows that s3 is applying transactions to catch up with the group. Once it has caught up with the
rest of the group, its member_state changes to ONLINE:

mysql> SELECT member_host, member_port, member_state FROM performance_schema.replication_group_members;
+-------------+-------------+--------------+
| member_host | member_port | member_state |
+-------------+-------------+--------------+
s1	3306	ONLINE
s2	3306	ONLINE
s3	3306	ONLINE
+-------------+-------------+--------------+

Note

If the server you are restoring is a primary member, once it has gained
synchrony with the group and become ONLINE, perform the steps described at
the end of Restoring a Primary Member to revert the configuration changes you
had made to the server before you started it.

The member has now been fully restored from the backup and functions as a regular member of the group.

Rebuild the Failed Member to Rejoin as a New Member

Sometimes, the steps outlined above in Restoring a Failed Member cannot be carried out because, for
example, the binary log or relay log is corrupted, or it is just missing from the backup. In such a situation,
use the backup to rebuild the member, and then add it to the group as a new member. In the steps below,
we assume the rebuilt member is named s3, like the failed member, and it is run on the same host as s3
was:

1. Copy the backup of s2 onto the host for s3 . The exact way to copy the backup depends on the
operating system and tools available to you. In this example we assume the hosts are both Linux
servers and use SCP to copy the files between them:

s2/backups> scp my.mbi_2206_1429 s3:/backups

2. Restore the backup. Connect to the target host (the host for s3 in this case), and restore the backup
using MySQL Enterprise Backup. Here are the steps:

a. Stop the corrupted server, if it is still running. For example, on Linux distributions that use systemd:

s3> systemctl stop mysqld

b. Delete all contents in the data directory of s3. For example:

s3> rm -rf /var/lib/mysql/*

If the system variables innodb_data_home_dir, innodb_log_group_home_dir, and
innodb_undo_directory point to any directories other than the data directory, they should also
be made empty; otherwise, the restore operation fails.

c. Restore the backup of s2 onto the host of s3. With this approach, we are rebuilding s3 as a
new member, for which we do not need or do not want to use the old binary and relay logs in the
backup; therefore, if these logs have been included in your backup, exclude them using the --
skip-binlog and --skip-relaylog options:

s3> mysqlbackup --defaults-file=/etc/my.cnf \
 --datadir=/var/lib/mysql \
 --backup-image=/backups/my.mbi_2206_1429 \

3204

https://dev.mysql.com/doc/mysql-enterprise-backup/4.1/en/backup-capacity-options.html#option_meb_skip-binlog
https://dev.mysql.com/doc/mysql-enterprise-backup/4.1/en/backup-capacity-options.html#option_meb_skip-binlog
https://dev.mysql.com/doc/mysql-enterprise-backup/4.1/en/backup-capacity-options.html#option_meb_skip-relaylog

Using MySQL Enterprise Backup with Group Replication

 --backup-dir=/tmp/restore_`date +%d%m_%H%M` \
 --skip-binlog --skip-relaylog \
 copy-back-and-apply-log

Notes

• If you have healthy binary log and relay logs in the backup that you can
transfer onto the target host with no issues, you are recommended to
follow the easier procedure as described in Restoring a Failed Member
above.

• Do NOT restore manually the corrupted server's auto.cnf file to the data
directory of the new member—when the rebuilt s3 joins the group as a
new member, it is going to be assigned a new server UUID.

3. Start the restored server. For example, on Linux distributions that use systemd:

systemctl start mysqld

Note

If the server you are restoring is a primary member, perform the steps described
in Restoring a Primary Member before starting the restored server.

4. Reconfigure the restored member to join Group Replication. Connect to the restored server with a
mysql client and reset the source and replica information with the following commands:

mysql> RESET MASTER;

mysql> RESET SLAVE ALL;

For the restored server to be able to recover automatically using Group Replication's built-in
mechanism for distributed recovery, configure the server's gtid_executed variable. To do this, use
the backup_gtid_executed.sql file included in the backup of s2, which is usually restored under
the restored member's data directory. Disable binary logging, use the backup_gtid_executed.sql
file to configure gtid_executed, and then re-enable binary logging by issuing the following
statements with your mysql client:

mysql> SET SQL_LOG_BIN=OFF;
mysql> SOURCE datadir/backup_gtid_executed.sql
mysql> SET SQL_LOG_BIN=ON;

Then, configure the Group Replication user credentials on the member:

mysql> CHANGE MASTER TO MASTER_USER='rpl_user', MASTER_PASSWORD='password' /
 FOR CHANNEL 'group_replication_recovery';

5. Restart Group Replication. Issue the following command to the restored server with your mysql client:

mysql> START GROUP_REPLICATION;

Before the restored instance can become an online member of the group, it needs to apply any
transactions that have happened to the group after the backup was taken; this is achieved using
Group Replication's distributed recovery mechanism, and the process starts after the START
GROUP_REPLICATION statement has been issued. To check the member status of the restored
instance, issue:

mysql> SELECT member_host, member_port, member_state FROM performance_schema.replication_group_members;
+-------------+-------------+--------------+
| member_host | member_port | member_state |

3205

Group Replication Security

+-------------+-------------+--------------+
s3	3306	RECOVERING
s2	3306	ONLINE
s1	3306	ONLINE
+-------------+-------------+--------------+

This shows that s3 is applying transactions to catch up with the group. Once it has caught up with the
rest of the group, its member_state changes to ONLINE:

mysql> SELECT member_host, member_port, member_state FROM performance_schema.replication_group_members;
+-------------+-------------+--------------+
| member_host | member_port | member_state |
+-------------+-------------+--------------+
s3	3306	ONLINE
s2	3306	ONLINE
s1	3306	ONLINE
+-------------+-------------+--------------+

Note

If the server you are restoring is a primary member, once it has gained
synchrony with the group and become ONLINE, perform the steps described at
the end of Restoring a Primary Member to revert the configuration changes you
had made to the server before you started it.

The member has now been restored to the group as a new member.

Restoring a Primary Member. If the restored member is a primary in the group, care must be taken to
prevent writes to the restored database during the Group Replication recovery phase: Depending on how
the group is accessed by clients, there is a possibility of DML statements being executed on the restored
member once it becomes accessible on the network, prior to the member finishing its catch-up on the
activities it has missed while off the group. To avoid this, before starting the restored server, configure the
following system variables in the server option file:

group_replication_start_on_boot=OFF
super_read_only=ON
event_scheduler=OFF

These settings ensure that the member becomes read-only at startup and that the event scheduler is
turned off while the member is catching up with the group during the recovery phase. Adequate error
handling must also be configured on the clients, as they are prevented temporarily from performing DML
operations during this period on the restored member. Once the restore process is fully completed and the
restored member is in-sync with the rest of the group, revert those changes; restart the event scheduler:

mysql> SET global event_scheduler=ON;

Edit the following system variables in the member's option file, so things are correctly configured for the
next startup:

group_replication_start_on_boot=ON
super_read_only=OFF
event_scheduler=ON

17.6 Group Replication Security

This section explains how to secure a group, securing the connections between members of a group, or by
establishing a security perimeter using IP address allowlisting.

17.6.1 Group Replication IP Address Allowlisting

3206

Group Replication IP Address Allowlisting

The Group Replication plugin has a configuration option to determine from which hosts an
incoming Group Communication System connection can be accepted. This option is called
group_replication_ip_whitelist. If you set this option on a server s1, then when server s2 is
establishing a connection to s1 for the purpose of engaging group communication, s1 first checks the
allowlist before accepting the connection from s2. If s2 is in the allowlist, then s1 accepts the connection,
otherwise s1 rejects the connection attempt by s2.

If you do not specify an allowlist explicitly, the group communication engine (XCom) automatically scans
active interfaces on the host, and identifies those with addresses on private subnetworks. These addresses
and the localhost IP address for IPv4 are used to create an automatic Group Replication allowlist. The
automatic allowlist therefore includes any IP addresses found for the host in the following ranges:

10/8 prefix (10.0.0.0 - 10.255.255.255) - Class A
172.16/12 prefix (172.16.0.0 - 172.31.255.255) - Class B
192.168/16 prefix (192.168.0.0 - 192.168.255.255) - Class C
127.0.0.1 - localhost for IPv4

An entry is added to the error log stating the addresses that have been allowlisted automatically for the
host.

The automatic allowlist of private addresses cannot be used for connections from servers outside the
private network, so a server, even if it has interfaces on public IPs, does not by default allow Group
Replication connections from external hosts. For Group Replication connections between server instances
that are on different machines, you must provide public IP addresses and specify these as an explicit
allowlist. If you specify any entries for the allowlist, the private and localhost addresses are not added
automatically, so if you use any of these, you must specify them explicitly.

To specify an allowlist manually, use the group_replication_ip_whitelist option. You cannot
change the allowlist on a server while it is an active member of a replication group. If the member is active,
you must issue a STOP GROUP_REPLICATION statement before changing the allowlist, and a START
GROUP_REPLICATION statement afterwards.

In the allowlist, you can specify any combination of the following:

• IPv4 addresses (for example, 198.51.100.44)

• IPv4 addresses with CIDR notation (for example, 192.0.2.21/24)

• Host names, from MySQL 5.7.21 (for example, example.org)

• Host names with CIDR notation, from MySQL 5.7.21 (for example, www.example.com/24)

IPv6 addresses, and host names that resolve to IPv6 addresses, are not supported in MySQL 5.7. You can
use CIDR notation in combination with host names or IP addresses to allowlist a block of IP addresses with
a particular network prefix, but do ensure that all the IP addresses in the specified subnet are under your
control.

You must stop and restart Group Replication on a member in order to change its allowlist. A comma must
separate each entry in the allowlist. For example:

mysql> STOP GROUP_REPLICATION;
mysql> SET GLOBAL group_replication_ip_whitelist="192.0.2.21/24,198.51.100.44,203.0.113.0/24,example.org,www.example.com/24";
mysql> START GROUP_REPLICATION;

The allowlist must contain the IP address or host name that is specified in each member's
group_replication_local_address system variable. This address is not the same as the MySQL

3207

Group Replication Secure Socket Layer (SSL) Support

server SQL protocol host and port, and is not specified in the bind_address system variable for the
server instance.

When a replication group is reconfigured (for example, when a new primary is elected or a member joins
or leaves), the group members re-establish connections between themselves. If a group member is only
allowlisted by servers that are no longer part of the replication group after the reconfiguration, it is unable
to reconnect to the remaining servers in the replication group that do not allowlist it. To avoid this scenario
entirely, specify the same allowlist for all servers that are members of the replication group.

Note

It is possible to configure different allowlists on different group members according
to your security requirements, for example, in order to keep different subnets
separate. If you need to configure different allowlists to meet your security
requirements, ensure that there is sufficient overlap between the allowlists in the
replication group to maximize the possibility of servers being able to reconnect in
the absence of their original seed member.

For host names, name resolution takes place only when a connection request is made by another server.
A host name that cannot be resolved is not considered for allowlist validation, and a warning message is
written to the error log. Forward-confirmed reverse DNS (FCrDNS) verification is carried out for resolved
host names.

Warning

Host names are inherently less secure than IP addresses in an allowlist. FCrDNS
verification provides a good level of protection, but can be compromised by certain
types of attack. Specify host names in your allowlist only when strictly necessary,
and ensure that all components used for name resolution, such as DNS servers,
are maintained under your control. You can also implement name resolution locally
using the hosts file, to avoid the use of external components.

17.6.2 Group Replication Secure Socket Layer (SSL) Support

Group communication connections as well as recovery connections, are secured using SSL. The following
sections explain how to configure connections.

Configuring SSL for Group Replication Recovery

Recovery is performed through a regular asynchronous replication connection. Once the donor is selected,
the server joining the group establishes an asynchronous replication connection. This is all automatic.

However, a user that requires an SSL connection must have been created before the server joining the
group connects to the donor. Typically, this is set up at the time one is provisioning a server to join the
group.

donor> SET SQL_LOG_BIN=0;
donor> CREATE USER 'rec_ssl_user'@'%' REQUIRE SSL;
donor> GRANT replication slave ON *.* TO 'rec_ssl_user'@'%';
donor> SET SQL_LOG_BIN=1;

Assuming that all servers already in the group have a replication user set up to use SSL, you configure the
server joining the group to use those credentials when connecting to the donor. That is done according to
the values of the SSL options provided for the Group Replication plugin.

new_member> SET GLOBAL group_replication_recovery_use_ssl=1;

3208

Group Replication Secure Socket Layer (SSL) Support

new_member> SET GLOBAL group_replication_recovery_ssl_ca= '.../cacert.pem';
new_member> SET GLOBAL group_replication_recovery_ssl_cert= '.../client-cert.pem';
new_member> SET GLOBAL group_replication_recovery_ssl_key= '.../client-key.pem';

And by configuring the recovery channel to use the credentials of the user that requires an SSL
connection.

new_member> CHANGE MASTER TO MASTER_USER="rec_ssl_user" FOR CHANNEL "group_replication_recovery";
new_member> START GROUP_REPLICATION;

Configuring SSL for Group Communication

Secure sockets can be used to establish communication between members in a group. The configuration
for this depends on the server's SSL configuration. As such, if the server has SSL configured, the Group
Replication plugin also has SSL configured. For more information on the options for configuring the server
SSL, see Command Options for Encrypted Connections. The options which configure Group Replication
are shown in the following table.

Table 17.2 SSL Options

Server Configuration Plugin Configuration Description

ssl_key Path of key file. To be used as client and server
certificate.

ssl_cert Path of certificate file. To be used as client and
server certificate.

ssl_ca Path of file with SSL Certificate Authorities that are
trusted.

ssl_capath Path of directory containing certificates for SSL
Certificate Authorities that are trusted.

ssl_crl Path of file containing the certificate revocation lists.

ssl_crlpath Path of directory containing revoked certificate lists.

ssl_cipher Permitted ciphers to use while encrypting data over
the connection.

tls_version Secure communication uses this version and its
protocols.

These options are MySQL Server configuration options which Group Replication relies on for its
configuration. In addition there is the following Group Replication specific option to configure SSL on the
plugin itself.

• group_replication_ssl_mode - specifies the security state of the connection between Group
Replication members.

Table 17.3 group_replication_ssl_mode configuration values

Value Description

DISABLED Establish an unencrypted connection (default).

REQUIRED Establish a secure connection if the server supports
secure connections.

VERIFY_CA Like REQUIRED, but additionally verify the server
TLS certificate against the configured Certificate
Authority (CA) certificates.

3209

Group Replication and Virtual Private Networks (VPNs)

Value Description

VERIFY_IDENTITY Like VERIFY_CA, but additionally verify that the
server certificate matches the host to which the
connection is attempted.

The following example shows an example my.cnf file section used to configure SSL on a server and how
activate it for Group Replication.

[mysqld]
ssl_ca = "cacert.pem"
ssl_capath = "/.../ca_directory"
ssl_cert = "server-cert.pem"
ssl_cipher = "DHE-RSA-AEs256-SHA"
ssl_crl = "crl-server-revoked.crl"
ssl_crlpath = "/.../crl_directory"
ssl_key = "server-key.pem"
group_replication_ssl_mode= REQUIRED

The only plugin specific configuration option that is listed is group_replication_ssl_mode. This option
activates the SSL communication between members of the group, by configuring the SSL framework with
the ssl_* parameters that are provided to the server.

17.6.3 Group Replication and Virtual Private Networks (VPNs)

There is nothing preventing Group Replication from operating over a virtual private network. At its core,
it just relies on an IPv4 socket to establish connections between servers for the purpose of propagating
messages between them.

17.7 Group Replication Variables

The next two sections contain information about MySQL server system and server status variables which
are specific to the Group Replication plugin.

Table 17.4 Group Replication Variable and Option Summary

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

group_replication_allow_local_disjoint_gtids_joinYes Yes Yes Global Yes

group_replication_allow_local_lower_version_joinYes Yes Yes Global Yes

group_replication_auto_increment_incrementYes Yes Yes Global Yes

group_replication_bootstrap_groupYes Yes Yes Global Yes

group_replication_components_stop_timeoutYes Yes Yes Global Yes

group_replication_compression_thresholdYes Yes Yes Global Yes

group_replication_enforce_update_everywhere_checksYes Yes Yes Global Yes

group_replication_exit_state_actionYes Yes Yes Global Yes

group_replication_flow_control_applier_thresholdYes Yes Yes Global Yes

group_replication_flow_control_certifier_thresholdYes Yes Yes Global Yes

group_replication_flow_control_modeYes Yes Yes Global Yes

group_replication_force_membersYes Yes Yes Global Yes

group_replication_group_nameYes Yes Yes Global Yes

3210

Group Replication System Variables

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

group_replication_group_seedsYes Yes Yes Global Yes

group_replication_gtid_assignment_block_sizeYes Yes Yes Global Yes

group_replication_ip_whitelistYes Yes Yes Global Yes

group_replication_local_addressYes Yes Yes Global Yes

group_replication_member_weightYes Yes Yes Global Yes

group_replication_poll_spin_loopsYes Yes Yes Global Yes

group_replication_primary_member Yes Global No

group_replication_recovery_complete_atYes Yes Yes Global Yes

group_replication_recovery_reconnect_intervalYes Yes Yes Global Yes

group_replication_recovery_retry_countYes Yes Yes Global Yes

group_replication_recovery_ssl_caYes Yes Yes Global Yes

group_replication_recovery_ssl_capathYes Yes Yes Global Yes

group_replication_recovery_ssl_certYes Yes Yes Global Yes

group_replication_recovery_ssl_cipherYes Yes Yes Global Yes

group_replication_recovery_ssl_crlYes Yes Yes Global Yes

group_replication_recovery_ssl_crlpathYes Yes Yes Global Yes

group_replication_recovery_ssl_keyYes Yes Yes Global Yes

group_replication_recovery_ssl_verify_server_certYes Yes Yes Global Yes

group_replication_recovery_use_sslYes Yes Yes Global Yes

group_replication_single_primary_modeYes Yes Yes Global Yes

group_replication_ssl_modeYes Yes Yes Global Yes

group_replication_start_on_bootYes Yes Yes Global Yes

group_replication_transaction_size_limitYes Yes Yes Global Yes

group_replication_unreachable_majority_timeoutYes Yes Yes Global Yes

17.7.1 Group Replication System Variables

This section lists the system variables that are specific to the Group Replication plugin.

The name of each Group Replication system variable is prefixed with group_replication_.

Most system variables for Group Replication are described as dynamic, and their values can be changed
while the server is running. However, in most cases, the change only takes effect after you stop and restart
Group Replication on the group member using a STOP GROUP_REPLICATION statement followed by a
START GROUP_REPLICATION statement. Changes to the following system variables take effect without
stopping and restarting Group Replication:

• group_replication_exit_state_action

• group_replication_flow_control_applier_threshold

• group_replication_flow_control_certifier_threshold

• group_replication_flow_control_hold_percent

3211

Group Replication System Variables

• group_replication_flow_control_max_quota

• group_replication_flow_control_member_quota_percent

• group_replication_flow_control_min_quota

• group_replication_flow_control_min_recovery_quota

• group_replication_flow_control_mode

• group_replication_force_members

• group_replication_member_weight

• group_replication_transaction_size_limit

• group_replication_unreachable_majority_timeout

Most system variables for Group Replication can have different values on different group members. For the
following system variables, it is advisable to set the same value on all members of a group in order to avoid
unnecessary rollback of transactions, failure of message delivery, or failure of message recovery:

• group_replication_auto_increment_increment

• group_replication_compression_threshold

• group_replication_transaction_size_limit

Some system variables on a Group Replication group member, including some Group Replication-
specific system variables and some general system variables, are group-wide configuration settings.
These system variables must have the same value on all group members, cannot be changed while
Group Replication is running, and require a full reboot of the group (a bootstrap by a server with
group_replication_bootstrap_group=ON) in order for the value change to take effect. These
conditions apply to the following system variables:

• group_replication_single_primary_mode

• group_replication_enforce_update_everywhere_checks

• group_replication_gtid_assignment_block_size

• default_table_encryption

• lower_case_table_names

• transaction_write_set_extraction

Important

• A number of system variables for Group Replication are not completely validated
during server startup if they are passed as command line arguments to the
server. These system variables include group_replication_group_name,
group_replication_single_primary_mode,
group_replication_force_members, the SSL variables, and the flow
control system variables. They are only fully validated after the server has
started.

• System variables for Group Replication that specify IP addresses or host names
for group members are not validated until a START GROUP_REPLICATION

3212

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_default_table_encryption

Group Replication System Variables

statement is issued. Group Replication's Group Communication System (GCS) is
not available to validate the values until that point.

The system variables that are specific to the Group Replication plugin are as follows:

• group_replication_allow_local_disjoint_gtids_join

Command-Line Format --group-replication-allow-local-
disjoint-gtids-join[={OFF|ON}]

Introduced 5.7.17

Deprecated 5.7.21

System Variable group_replication_allow_local_disjoint_gtids_join

Scope Global

Dynamic Yes

Type Boolean

Default Value OFF

Deprecated in version 5.7.21 and scheduled for removal in a future version. Allows the server to join the
group even if it has local transactions that are not present in the group.

Warning

Use caution when enabling this option as incorrect usage can lead to conflicts in
the group and rollback of transactions. The option should only be enabled as a
last resort method to allow a server that has local transactions to join an existing
group, and then only if the local transactions do not affect the data that is handled
by the group (for example, an administrative action that was written to the binary
log). The option should not be left enabled on all group members.

• group_replication_allow_local_lower_version_join

Command-Line Format --group-replication-allow-local-
lower-version-join[={OFF|ON}]

Introduced 5.7.17

System Variable group_replication_allow_local_lower_version_join

Scope Global

Dynamic Yes

Type Boolean

Default Value OFF

Allows the current server to join the group even if it has a lower major version than the group.
With the default setting OFF, servers are not permitted to join a replication group if they
have a lower major version than the existing group members. For example, a MySQL 5.7
server cannot join a group that consists of MySQL 8.0 servers. This standard policy ensures
that all members of a group are able to exchange messages and apply transactions. Set
group_replication_allow_local_lower_version_join to ON only in the following scenarios:

• A server must be added to the group in an emergency in order to improve the group's fault tolerance,
and only older versions are available.

3213

Group Replication System Variables

• You want to carry out a downgrade of the replication group members without shutting down the whole
group and bootstrapping it again.

Warning

Setting this option to ON does not make the new member compatible with the
group, and allows it to join the group without any safeguards against incompatible
behaviors by the existing members. To ensure the new member's correct
operation, take both of the following precautions:

1. Before the server with the lower major version joins the group, stop all writes
on that server.

2. From the point where the server with the lower major version joins the group,
stop all writes on the other servers in the group.

Without these precautions, the server with the lower major version is likely to
experience difficulties and terminate with an error.

• group_replication_auto_increment_increment

Command-Line Format --group-replication-auto-increment-
increment=#

Introduced 5.7.17

System Variable group_replication_auto_increment_increment

Scope Global

Dynamic Yes

Type Integer

Default Value 7

Minimum Value 1

Maximum Value 65535

Determines the interval between successive column values for transactions that execute on
this server instance. This system variable should have the same value on all group members.
When Group Replication is started on a server, the value of the server system variable
auto_increment_increment is changed to this value, and the value of the server system variable
auto_increment_offset is changed to the server ID. These settings avoid the selection of duplicate
auto-increment values for writes on group members, which causes rollback of transactions. The
changes are reverted when Group Replication is stopped. These changes are only made and reverted if
auto_increment_increment and auto_increment_offset each have their default value of 1. If
their values have already been modified from the default, Group Replication does not alter them.

The default value of 7 represents a balance between the number of usable values and the permitted
maximum size of a replication group (9 members). If your group has more or fewer members, you can
set this system variable to match the expected number of group members before Group Replication is
started. You cannot change the setting while Group Replication is running.

Important

Setting group_replication_auto_increment_increment has no effect
when group_replication_single_primary_mode is ON.

3214

Group Replication System Variables

• group_replication_bootstrap_group

Command-Line Format --group-replication-bootstrap-
group[={OFF|ON}]

Introduced 5.7.17

System Variable group_replication_bootstrap_group

Scope Global

Dynamic Yes

Type Boolean

Default Value OFF

Configure this server to bootstrap the group. This option must only be set on one server and only when
starting the group for the first time or restarting the entire group. After the group has been bootstrapped,
set this option to OFF. It should be set to OFF both dynamically and in the configuration files. Starting two
servers or restarting one server with this option set while the group is running may lead to an artificial
split brain situation, where two independent groups with the same name are bootstrapped.

• group_replication_components_stop_timeout

Command-Line Format --group-replication-components-stop-
timeout=#

Introduced 5.7.17

System Variable group_replication_components_stop_timeout

Scope Global

Dynamic Yes

Type Integer

Default Value 31536000

Minimum Value 2

Maximum Value 31536000

Unit seconds

Timeout, in seconds, that Group Replication waits for each of the components when shutting down.

• group_replication_compression_threshold

Command-Line Format --group-replication-compression-
threshold=#

Introduced 5.7.17

System Variable group_replication_compression_threshold

Scope Global

Dynamic Yes

Type Integer

Default Value 1000000

Minimum Value 0

Maximum Value 4294967295
3215

Group Replication System Variables

Unit bytes

The threshold value in bytes above which compression is applied to messages sent between
group members. If this system variable is set to zero, compression is disabled. The value of
group_replication_compression_threshold should be the same on all group members.

Group Replication uses the LZ4 compression algorithm to compress messages sent
in the group. Note that the maximum supported input size for the LZ4 compression
algorithm is 2113929216 bytes. This limit is lower than the maximum possible value for the
group_replication_compression_threshold system variable, which is matched to the maximum
message size accepted by XCom. With the LZ4 compression algorithm, do not set a value greater than
2113929216 bytes for group_replication_compression_threshold, because transactions above
this size cannot be committed when message compression is enabled.

For more information, see Section 17.9.7.2, “Message Compression”.

• group_replication_enforce_update_everywhere_checks

Command-Line Format --group-replication-enforce-update-
everywhere-checks[={OFF|ON}]

Introduced 5.7.17

System Variable group_replication_enforce_update_everywhere_checks

Scope Global

Dynamic Yes

Type Boolean

Default Value OFF

Enable or disable strict consistency checks for multi-primary update everywhere. The default is that
checks are disabled. In single-primary mode, this option must be disabled on all group members. In
multi-primary mode, when this option is enabled, statements are checked as follows to ensure they are
compatible with multi-primary mode:

• If a transaction is executed under the SERIALIZABLE isolation level, then its commit fails when
synchronizing itself with the group.

• If a transaction executes against a table that has foreign keys with cascading constraints, then the
transaction fails to commit when synchronizing itself with the group.

This system variable is a group-wide configuration setting. It must have the same value on all group
members, cannot be changed while Group Replication is running, and requires a full reboot of the group
(a bootstrap by a server with group_replication_bootstrap_group=ON) in order for the value
change to take effect.

• group_replication_exit_state_action

Command-Line Format --group-replication-exit-state-
action=value

Introduced 5.7.24

System Variable group_replication_exit_state_action

Scope Global

Dynamic Yes

3216

Group Replication System Variables

Type Enumeration

Default Value READ_ONLY

Valid Values ABORT_SERVER

READ_ONLY

Configures how Group Replication behaves when a server instance leaves the group
unintentionally, for example after encountering an applier error, or in the case of a loss of
majority, or when another member of the group expels it due to a suspicion timing out. The
timeout period for a member to leave the group in the case of a loss of majority is set by the
group_replication_unreachable_majority_timeout system variable. Note that an expelled
group member does not know that it was expelled until it reconnects to the group, so the specified action
is only taken if the member manages to reconnect, or if the member raises a suspicion on itself and
expels itself.

When group_replication_exit_state_action is set to ABORT_SERVER, if the member exits the
group unintentionally, the instance shuts down MySQL.

When group_replication_exit_state_action is set to READ_ONLY, if the member exits the
group unintentionally, the instance switches MySQL to super read only mode (by setting the system
variable super_read_only to ON). This setting is the default in MySQL 5.7.

Important

If a failure occurs before the member has successfully joined the group, the
specified exit action is not taken. This is the case if there is a failure during
the local configuration check, or a mismatch between the configuration of
the joining member and the configuration of the group. In these situations,
the super_read_only system variable is left with its original value, and the
server does not shut down MySQL. To ensure that the server cannot accept
updates when Group Replication did not start, we therefore recommend
that super_read_only=ON is set in the server's configuration file at
startup, which Group Replication changes to OFF on primary members after
it has been started successfully. This safeguard is particularly important
when the server is configured to start Group Replication on server boot
(group_replication_start_on_boot=ON), but it is also useful when Group
Replication is started manually using a START GROUP_REPLICATION command.

If a failure occurs after the member has successfully joined the group, the
specified exit action is taken. This is the case if there is an applier error, if the
member is expelled from the group, or if the member is set to time out in the
event of an unreachable majority. In these situations, if READ_ONLY is the exit
action, the super_read_only system variable is set to ON, or if ABORT_SERVER
is the exit action, the server shuts down MySQL.

Table 17.5 Exit actions in Group Replication failure situations

Failure situation Group Replication started with
START GROUP_REPLICATION

Group Replication started with
group_replication_start_on_boot
=ON

Member fails local configuration
check

OR

super_read_only unchanged

MySQL continues running

super_read_only unchanged

MySQL continues running

3217

Group Replication System Variables

Failure situation Group Replication started with
START GROUP_REPLICATION

Group Replication started with
group_replication_start_on_boot
=ON

Mismatch between joining
member and group configuration

Set super_read_only=ON at
startup to prevent updates

Set super_read_only=ON
at startup to prevent updates
(Important)

Applier error on member

OR

Member expelled from group

OR

Unreachable majority timeout

super_read_only set to ON

OR

MySQL shuts down

super_read_only set to ON

OR

MySQL shuts down

• group_replication_flow_control_applier_threshold

Command-Line Format --group-replication-flow-control-
applier-threshold=#

Introduced 5.7.17

System Variable group_replication_flow_control_applier_threshold

Scope Global

Dynamic Yes

Type Integer

Default Value 25000

Minimum Value 0

Maximum Value 2147483647

Unit transactions

Specifies the number of waiting transactions in the applier queue that trigger flow control. This variable
can be changed without resetting Group Replication.

• group_replication_flow_control_certifier_threshold

Command-Line Format --group-replication-flow-control-
certifier-threshold=#

Introduced 5.7.17

System Variable group_replication_flow_control_certifier_threshold

Scope Global

Dynamic Yes

Type Integer

Default Value 25000

Minimum Value 0

Maximum Value 2147483647

3218

Group Replication System Variables

Unit transactions

Specifies the number of waiting transactions in the certifier queue that trigger flow control. This variable
can be changed without resetting Group Replication.

• group_replication_flow_control_hold_percent

Command-Line Format --group-replication-flow-control-
hold-percent=#

System Variable group_replication_flow_control_hold_percent

Scope Global

Dynamic Yes

Type Integer

Default Value 10

Minimum Value 0

Maximum Value 100

Unit percentage

Defines what percentage of the group quota remains unused to allow a cluster under flow control to
catch up on backlog. A value of 0 implies that no part of the quota is reserved for catching up on the
work backlog.

• group_replication_flow_control_max_quota

Command-Line Format --group-replication-flow-control-max-
quota=#

System Variable group_replication_flow_control_max_quota

Scope Global

Dynamic Yes

Type Integer

Default Value 0

Minimum Value 0

Maximum Value 2147483647

Defines the maximum flow control quota of the group, or the maximum available quota for
any period while flow control is enabled. A value of 0 implies that there is no maximum quota
set. Cannot be smaller than group_replication_flow_control_min_quota and
group_replication_flow_control_min_recovery_quota.

• group_replication_flow_control_member_quota_percent

Command-Line Format --group-replication-flow-control-
member-quota-percent=#

System Variable group_replication_flow_control_member_quota_percent

Scope Global

Dynamic Yes

Type Integer

3219

Group Replication System Variables

Default Value 0

Minimum Value 0

Maximum Value 100

Unit percentage

Defines the percentage of the quota that a member should assume is available for itself when calculating
the quotas. A value of 0 implies that the quota should be split equally between members that were
writers in the last period.

• group_replication_flow_control_min_quota

Command-Line Format --group-replication-flow-control-min-
quota=#

System Variable group_replication_flow_control_min_quota

Scope Global

Dynamic Yes

Type Integer

Default Value 0

Minimum Value 0

Maximum Value 2147483647

Controls the lowest flow control quota that can be assigned to a member, independently of the calculated
minimum quota executed in the last period. A value of 0 implies that there is no minimum quota. Cannot
be larger than group_replication_flow_control_max_quota.

• group_replication_flow_control_min_recovery_quota

Command-Line Format --group-replication-flow-control-min-
recovery-quota=#

System Variable group_replication_flow_control_min_recovery_quota

Scope Global

Dynamic Yes

Type Integer

Default Value 0

Minimum Value 0

Maximum Value 2147483647

Controls the lowest quota that can be assigned to a member because of another recovering
member in the group, independently of the calculated minimum quota executed in the
last period. A value of 0 implies that there is no minimum quota. Cannot be larger than
group_replication_flow_control_max_quota.

• group_replication_flow_control_mode

Command-Line Format --group-replication-flow-control-
mode=value

Introduced 5.7.173220

Group Replication System Variables

System Variable group_replication_flow_control_mode

Scope Global

Dynamic Yes

Type Enumeration

Default Value QUOTA

Valid Values DISABLED

QUOTA

Specifies the mode used for flow control. This variable can be changed without resetting Group
Replication.

• group_replication_force_members

Command-Line Format --group-replication-force-
members=value

Introduced 5.7.17

System Variable group_replication_force_members

Scope Global

Dynamic Yes

Type String

A list of peer addresses as a comma separated list such as host1:port1,host2:port2. This option is
used to force a new group membership, in which the excluded members do not receive a new view and
are blocked. (You need to manually kill the excluded servers.) Any invalid host names in the list could
cause this action to fail because they could block group membership. For a description of the procedure
to follow, see Section 17.5.3, “Network Partitioning”.

You must specify the address or host name and port as they are given in the
group_replication_local_address option for each member. For example:

"198.51.100.44:33061,example.org:33061"

After you have used the group_replication_force_members system variable to successfully
force a new group membership and unblock the group, ensure that you clear the system
variable. group_replication_force_members must be empty in order to issue a START
GROUP_REPLICATION statement.

• group_replication_group_name

Command-Line Format --group-replication-group-name=value

Introduced 5.7.17

System Variable group_replication_group_name

Scope Global

Dynamic Yes

3221

Group Replication System Variables

Type String

The name of the group which this server instance belongs to. Must be a valid UUID. This UUID is used
internally when setting GTIDs for Group Replication events in the binary log.

Important

A unique UUID must be used.

• group_replication_group_seeds

Command-Line Format --group-replication-group-seeds=value

Introduced 5.7.17

System Variable group_replication_group_seeds

Scope Global

Dynamic Yes

Type String

A list of group members to which a joining member can connect to obtain details of all the current group
members. The joining member uses these details to select and connect to a group member to obtain the
data needed for synchrony with the group. The list consists of the seed member's network addresses
specified as a comma separated list, such as host1:port1,host2:port2.

Important

These addresses must not be the member's SQL hostname and port.

Note that the value you specify for this variable is not validated until a START GROUP_REPLICATION
statement is issued and the Group Communication System (GCS) is available.

Usually this list consists of all members of the group, but you can choose a subset of the group members
to be seeds. The list must contain at least one valid member address. Each address is validated
when starting Group Replication. If the list does not contain any valid host names, issuing START
GROUP_REPLICATION fails.

• group_replication_gtid_assignment_block_size

Command-Line Format --group-replication-gtid-assignment-
block-size=#

Introduced 5.7.17

System Variable group_replication_gtid_assignment_block_size

Scope Global

Dynamic Yes

Type Integer

Default Value 1000000

Minimum Value 1

Maximum Value (64-bit platforms) 9223372036854775807

3222

Group Replication System Variables

Maximum Value (32-bit platforms) 4294967295

The number of consecutive GTIDs that are reserved for each member. Each member consumes its
blocks and reserves more when needed.

This system variable is a group-wide configuration setting. It must have the same value on all group
members, cannot be changed while Group Replication is running, and requires a full reboot of the group
(a bootstrap by a server with group_replication_bootstrap_group=ON) in order for the value
change to take effect.

• group_replication_ip_whitelist

Command-Line Format --group-replication-ip-
whitelist=value

Introduced 5.7.17

System Variable group_replication_ip_whitelist

Scope Global

Dynamic Yes

Type String

Default Value AUTOMATIC

Specifies the allowlist of hosts that are permitted to connect to the group. The address that you specify
for each group member in group_replication_local_address must be allowlisted on the other
servers in the replication group. Note that the value you specify for this variable is not validated until a
START GROUP_REPLICATION statement is issued and the Group Communication System (GCS) is
available.

By default, this system variable is set to AUTOMATIC, which permits connections from private
subnetworks active on the host. The group communication engine (XCom) automatically scans active
interfaces on the host, and identifies those with addresses on private subnetworks. These addresses
and the localhost IP address for IPv4 are used to create the Group Replication allowlist. For a list of
the ranges from which addresses are automatically allowlisted, see Section 17.6.1, “Group Replication
IP Address Allowlisting”.

The automatic allowlist of private addresses cannot be used for connections from servers outside the
private network. For Group Replication connections between server instances that are on different
machines, you must provide public IP addresses and specify these as an explicit allowlist. If you specify
any entries for the allowlist, the private addresses are not added automatically, so if you use any of
these, you must specify them explicitly. The localhost IP address is added automatically.

As the value of the group_replication_ip_whitelist option, you can specify any combination of
the following:

• IPv4 addresses (for example, 198.51.100.44)

• IPv4 addresses with CIDR notation (for example, 192.0.2.21/24)

• Host names, from MySQL 5.7.21 (for example, example.org)

• Host names with CIDR notation, from MySQL 5.7.21 (for example, www.example.com/24)

IPv6 addresses, and host names that resolve to IPv6 addresses, are not supported in MySQL 5.7.
You can use CIDR notation in combination with host names or IP addresses to allowlist a block of IP

3223

Group Replication System Variables

addresses with a particular network prefix, but do ensure that all the IP addresses in the specified subnet
are under your control.

A comma must separate each entry in the allowlist. For example:

192.0.2.22,198.51.100.0/24,example.org,www.example.com/24

It is possible to configure different allowlists on different group members according to your security
requirements, for example, in order to keep different subnets separate. However, this can cause issues
when a group is reconfigured. If you do not have a specific security requirement to do otherwise, use the
same allowlist on all members of a group. For more details, see Section 17.6.1, “Group Replication IP
Address Allowlisting”.

For host names, name resolution takes place only when a connection request is made by another
server. A host name that cannot be resolved is not considered for allowlist validation, and a warning
message is written to the error log. Forward-confirmed reverse DNS (FCrDNS) verification is carried out
for resolved host names.

Warning

Host names are inherently less secure than IP addresses in an allowlist. FCrDNS
verification provides a good level of protection, but can be compromised by
certain types of attack. Specify host names in your allowlist only when strictly
necessary, and ensure that all components used for name resolution, such as
DNS servers, are maintained under your control. You can also implement name
resolution locally using the hosts file, to avoid the use of external components.

• group_replication_local_address

Command-Line Format --group-replication-local-
address=value

Introduced 5.7.17

System Variable group_replication_local_address

Scope Global

Dynamic Yes

Type String

The network address which the member provides for connections from other members, specified as a
host:port formatted string. This address must be reachable by all members of the group because
it is used by the group communication engine for Group Replication (XCom, a Paxos variant) for TCP
communication between remote XCom instances. Communication with the local instance is over an input
channel using shared memory.

Warning

Do not use this address for communication with the member.

Other Group Replication members contact this member through this host:port for all internal group
communication. This is not the MySQL server SQL protocol host and port.

The address or host name that you specify in group_replication_local_address is used by
Group Replication as the unique identifier for a group member within the replication group. You can use
the same port for all members of a replication group as long as the host names or IP addresses are all

3224

Group Replication System Variables

different, and you can use the same host name or IP address for all members as long as the ports are all
different. The recommended port for group_replication_local_address is 33061. Note that the
value you specify for this variable is not validated until the START GROUP_REPLICATION statement is
issued and the Group Communication System (GCS) is available.

• group_replication_member_weight

Command-Line Format --group-replication-member-weight=#

Introduced 5.7.20

System Variable group_replication_member_weight

Scope Global

Dynamic Yes

Type Integer

Default Value 50

Minimum Value 0

Maximum Value 100

Unit percentage

A percentage weight that can be assigned to members to influence the chance of the member being
elected as primary in the event of failover, for example when the existing primary leaves a single-primary
group. Assign numeric weights to members to ensure that specific members are elected, for example
during scheduled maintenance of the primary or to ensure certain hardware is prioritized in the event of
failover.

For a group with members configured as follows:

• member-1: group_replication_member_weight=30, server_uuid=aaaa

• member-2: group_replication_member_weight=40, server_uuid=bbbb

• member-3: group_replication_member_weight=40, server_uuid=cccc

• member-4: group_replication_member_weight=40, server_uuid=dddd

during election of a new primary the members above would be sorted as member-2, member-3,
member-4, and member-1. This results in member-2 being chosen as the new primary in the event of
failover. For more information, see Section 17.5.1.1, “Single-Primary Mode”.

• group_replication_poll_spin_loops

Command-Line Format --group-replication-poll-spin-loops=#

Introduced 5.7.17

System Variable group_replication_poll_spin_loops

Scope Global

Dynamic Yes

Type Integer

Default Value 0

Minimum Value 0

Maximum Value (64-bit platforms) 18446744073709551615

3225

Group Replication System Variables

Maximum Value (32-bit platforms) 4294967295

The number of times the group communication thread waits for the communication engine mutex to be
released before the thread waits for more incoming network messages.

• group_replication_recovery_complete_at

Command-Line Format --group-replication-recovery-
complete-at=value

Introduced 5.7.17

System Variable group_replication_recovery_complete_at

Scope Global

Dynamic Yes

Type Enumeration

Default Value TRANSACTIONS_APPLIED

Valid Values TRANSACTIONS_CERTIFIED

TRANSACTIONS_APPLIED

Recovery policies when handling cached transactions after state transfer. This option specifies whether
a member is marked online after it has received all transactions that it missed before it joined the group
(TRANSACTIONS_CERTIFIED) or after it has received and applied them (TRANSACTIONS_APPLIED).

• group_replication_recovery_retry_count

Command-Line Format --group-replication-recovery-retry-
count=#

Introduced 5.7.17

System Variable group_replication_recovery_retry_count

Scope Global

Dynamic Yes

Type Integer

Default Value 10

Minimum Value 0

Maximum Value 31536000

The number of times that the member that is joining tries to connect to the available donors before giving
up.

• group_replication_recovery_reconnect_interval

Command-Line Format --group-replication-recovery-
reconnect-interval=#

Introduced 5.7.17

System Variable group_replication_recovery_reconnect_interval

Scope Global

Dynamic Yes3226

Group Replication System Variables

Type Integer

Default Value 60

Minimum Value 0

Maximum Value 31536000

Unit seconds

The sleep time, in seconds, between reconnection attempts when no donor was found in the group.

• group_replication_recovery_ssl_ca

Command-Line Format --group-replication-recovery-ssl-
ca=value

Introduced 5.7.17

System Variable group_replication_recovery_ssl_ca

Scope Global

Dynamic Yes

Type String

The path to a file that contains a list of trusted SSL certificate authorities.

• group_replication_recovery_ssl_capath

Command-Line Format --group-replication-recovery-ssl-
capath=value

Introduced 5.7.17

System Variable group_replication_recovery_ssl_capath

Scope Global

Dynamic Yes

Type String

The path to a directory that contains trusted SSL certificate authority certificates.

• group_replication_recovery_ssl_cert

Command-Line Format --group-replication-recovery-ssl-
cert=value

Introduced 5.7.17

System Variable group_replication_recovery_ssl_cert

Scope Global

Dynamic Yes

Type String

The name of the SSL certificate file to use for establishing a secure connection.

3227

Group Replication System Variables

• group_replication_recovery_ssl_key

Command-Line Format --group-replication-recovery-ssl-
key=value

Introduced 5.7.17

System Variable group_replication_recovery_ssl_key

Scope Global

Dynamic Yes

Type String

The name of the SSL key file to use for establishing a secure connection.

• group_replication_recovery_ssl_cipher

Command-Line Format --group-replication-recovery-ssl-
cipher=value

Introduced 5.7.17

System Variable group_replication_recovery_ssl_cipher

Scope Global

Dynamic Yes

Type String

The list of permissible ciphers for SSL encryption.

• group_replication_recovery_ssl_crl

Command-Line Format --group-replication-recovery-ssl-
crl=value

Introduced 5.7.17

System Variable group_replication_recovery_ssl_crl

Scope Global

Dynamic Yes

Type File name

The path to a directory that contains files containing certificate revocation lists.

• group_replication_recovery_ssl_crlpath

Command-Line Format --group-replication-recovery-ssl-
crlpath=value

Introduced 5.7.17

System Variable group_replication_recovery_ssl_crlpath

Scope Global

Dynamic Yes

Type Directory name

The path to a directory that contains files containing certificate revocation lists.

3228

Group Replication System Variables

• group_replication_recovery_ssl_verify_server_cert

Command-Line Format --group-replication-recovery-ssl-
verify-server-cert[={OFF|ON}]

Introduced 5.7.17

System Variable group_replication_recovery_ssl_verify_server_cert

Scope Global

Dynamic Yes

Type Boolean

Default Value OFF

Make the recovery process check the server's Common Name value in the donor sent certificate.

• group_replication_recovery_use_ssl

Command-Line Format --group-replication-recovery-use-
ssl[={OFF|ON}]

Introduced 5.7.17

System Variable group_replication_recovery_use_ssl

Scope Global

Dynamic Yes

Type Boolean

Default Value OFF

Whether Group Replication recovery connection should use SSL or not.

• group_replication_single_primary_mode

Command-Line Format --group-replication-single-primary-
mode[={OFF|ON}]

Introduced 5.7.17

System Variable group_replication_single_primary_mode

Scope Global

Dynamic Yes

Type Boolean

Default Value ON

Note

This system variable is a group-wide configuration setting, and a full reboot of the
replication group is required for a change to take effect.

group_replication_single_primary_mode instructs the group to pick a single server
automatically to be the one that handles read/write workload. This server is the primary and all others
are secondaries.

This system variable is a group-wide configuration setting. It must have the same value on all group
members, cannot be changed while Group Replication is running, and requires a full reboot of the

3229

Group Replication System Variables

group (a bootstrap by a server with group_replication_bootstrap_group=ON) in order for the
value change to take effect. For instructions to safely bootstrap a group where transactions have been
executed and certified, see Section 17.5.4, “Restarting a Group”.

If the group has a value set for this system variable, and a joining member has a different value set for
the system variable, the joining member cannot join the group until the value is changed to match. If the
group members have a value set for this system variable, and the joining member does not support the
system variable, it cannot join the group.

Setting this variable ON causes any setting for group_replication_auto_increment_increment
to be ignored.

• group_replication_ssl_mode

Command-Line Format --group-replication-ssl-mode=value

Introduced 5.7.17

System Variable group_replication_ssl_mode

Scope Global

Dynamic Yes

Type Enumeration

Default Value DISABLED

Valid Values DISABLED

REQUIRED

VERIFY_CA

VERIFY_IDENTITY

Specifies the security state of the connection between Group Replication members.

• group_replication_start_on_boot

Command-Line Format --group-replication-start-on-
boot[={OFF|ON}]

Introduced 5.7.17

System Variable group_replication_start_on_boot

Scope Global

Dynamic Yes

Type Boolean

Default Value ON

Whether the server should start Group Replication or not during server start.

• group_replication_transaction_size_limit

Command-Line Format --group-replication-transaction-size-
limit=#

Introduced 5.7.19
3230

Group Replication System Variables

System Variable group_replication_transaction_size_limit

Scope Global

Dynamic Yes

Type Integer

Default Value (≥ 5.7.38) 150000000

Default Value (≥ 5.7.19, ≤ 5.7.37) 0

Minimum Value 0

Maximum Value 2147483647

Unit bytes

Configures the maximum transaction size in bytes which the replication group accepts. Transactions
larger than this size are rolled back by the receiving member and are not broadcast to the group. Large
transactions can cause problems for a replication group in terms of memory allocation, which can cause
the system to slow down, or in terms of network bandwidth consumption, which can cause a member to
be suspected of having failed because it is busy processing the large transaction.

When this system variable is set to 0, there is no limit to the size of transactions the group accepts.
In releases up to and including MySQL 5.7.37, the default setting for this system variable is 0. From
MySQL 5.7.38, and in MySQL 8.0, the default setting is 150000000 bytes (approximately 143 MB).
Adjust the value of this system variable depending on the maximum message size that you need the
group to tolerate, bearing in mind that the time taken to process a transaction is proportional to its size.
The value of group_replication_transaction_size_limit should be the same on all group
members. For further mitigation strategies for large transactions, see Section 17.3.2, “Group Replication
Limitations”.

• group_replication_unreachable_majority_timeout

Command-Line Format --group-replication-unreachable-
majority-timeout=#

Introduced 5.7.19

System Variable group_replication_unreachable_majority_timeout

Scope Global

Dynamic Yes

Type Integer

Default Value 0

Minimum Value 0

Maximum Value 31536000

Unit seconds

Configures how long members that suffer a network partition and cannot connect to the majority wait
before leaving the group.

In a group of 5 servers (S1,S2,S3,S4,S5), if there is a disconnection between (S1,S2) and (S3,S4,S5)
there is a network partition. The first group (S1,S2) is now in a minority because it cannot contact more
than half of the group. While the majority group (S3,S4,S5) remains running, the minority group waits
for the specified time for a network reconnection. Any transactions processed by the minority group are
blocked until Group Replication is stopped using STOP GROUP REPLICATION on the members of the

3231

Group Replication Status Variables

minority. Note that group_replication_unreachable_majority_timeout has no effect if it is set
on the servers in the minority group after the loss of majority has been detected.

By default, this system variable is set to 0, which means that members that find themselves in a
minority due to a network partition wait forever to leave the group. If configured to a number of seconds,
members wait for this amount of time after losing contact with the majority of members before leaving the
group. When the specified time elapses, all pending transactions processed by the minority are rolled
back, and the servers in the minority partition move to the ERROR state. These servers then follow the
action specified by the system variable group_replication_exit_state_action, which can be to
set themselves to super read only mode or shut down MySQL.

Warning

When you have a symmetric group, with just two members for example (S0,S2),
if there is a network partition and there is no majority, after the configured timeout
all members enter ERROR state.

17.7.2 Group Replication Status Variables

MySQL 5.7 supports one status variable providing information about Group Replication. This variable is
described here:

• group_replication_primary_member

Shows the primary member's UUID when the group is operating in single-primary mode. If the group is
operating in multi-primary mode, shows an empty string. See Section 17.5.1.3, “Finding the Primary”.

17.8 Frequently Asked Questions
This section provides answers to frequently asked questions.

What is the maximum number of MySQL servers in a group?

A group can consist of maximum 9 servers. Attempting to add another server to a group with 9 members
causes the request to join to be refused. This limit has been identified from testing and benchmarking as a
safe boundary where the group performs reliably on a stable local area network.

How are servers in a group connected?

Servers in a group connect to the other servers in the group by opening a peer-to-peer TCP connection.
These connections are only used for internal communication and message passing between servers in the
group. This address is configured by the group_replication_local_address variable.

What is the group_replication_bootstrap_group option used for?

The bootstrap flag instructs a member to create a group and act as the initial seed server. The second
member joining the group needs to ask the member that bootstrapped the group to dynamically change the
configuration in order for it to be added to the group.

A member needs to bootstrap the group in two scenarios. When the group is originally created, or when
shutting down and restarting the entire group.

How do I set credentials for the recovery procedure?

You pre-configure the Group Replication recovery channel credentials using the CHANGE MASTER TO
statement.

3232

Can I scale-out my write-load using Group Replication?

Can I scale-out my write-load using Group Replication?

Not directly, but MySQL Group replication is a shared nothing full replication solution, where all servers
in the group replicate the same amount of data. Therefore if one member in the group writes N bytes to
storage as the result of a transaction commit operation, then roughly N bytes are written to storage on
other members as well, because the transaction is replicated everywhere.

However, given that other members do not have to do the same amount of processing that the original
member had to do when it originally executed the transaction, they apply the changes faster. Transactions
are replicated in a format that is used to apply row transformations only, without having to re-execute
transactions again (row-based format).

Furthermore, given that changes are propagated and applied in row-based format, this means that they
are received in an optimized and compact format, and likely reducing the number of IO operations required
when compared to the originating member.

To summarize, you can scale-out processing, by spreading conflict free transactions throughout different
members in the group. And you can likely scale-out a small fraction of your IO operations, since remote
servers receive only the necessary changes to read-modify-write changes to stable storage.

Does Group Replication require more network bandwidth and CPU, when
compared to simple replication and under the same workload?

Some additional load is expected because servers need to be constantly interacting with each other for
synchronization purposes. It is difficult to quantify how much more data. It also depends on the size of the
group (three servers puts less stress on the bandwidth requirements than nine servers in the group).

Also the memory and CPU footprint are larger, because more complex work is done for the server
synchronization part and for the group messaging.

Can I deploy Group Replication across wide-area networks?

Yes, but the network connection between each member must be reliable and have suitable perfomance.
Low latency, high bandwidth network connections are a requirement for optimal performance.

If network bandwidth alone is an issue, then Section 17.9.7.2, “Message Compression” can be used to
lower the bandwidth required. However, if the network drops packets, leading to re-transmissions and
higher end-to-end latency, throughput and latency are both negatively affected.

Warning

When the network round-trip time (RTT) between any group members is 5 seconds
or more you could encounter problems as the built-in failure detection mechanism
could be incorrectly triggered.

Do members automatically rejoin a group in case of temporary connectivity
problems?

This depends on the reason for the connectivity problem. If the connectivity problem is transient and
the reconnection is quick enough that the failure detector is not aware of it, then the server may not be
removed from the group. If it is a "long" connectivity problem, then the failure detector eventually suspects
a problem and the server is removed from the group.

Once a server is removed from the group, you need to join it back again. In other words, after a server is
removed explicitly from the group you need to rejoin it manually (or have a script doing it automatically).

3233

When is a member excluded from a group?

When is a member excluded from a group?

If the member becomes silent, the other members remove it from the group configuration. In practice this
may happen when the member has crashed or there is a network disconnection.

The failure is detected after a given timeout elapses for a given member and a new configuration without
the silent member in it is created.

What happens when one node is significantly lagging behind?

There is no method for defining policies for when to expel members automatically from the group. You
need to find out why a member is lagging behind and fix that or remove the member from the group.
Otherwise, if the server is so slow that it triggers the flow control, then the entire group slows down as well.
The flow control can be configured according to the your needs.

Upon suspicion of a problem in the group, is there a special member
responsible for triggering a reconfiguration?

No, there is no special member in the group in charge of triggering a reconfiguration.

Any member can suspect that there is a problem. All members need to (automatically) agree that a given
member has failed. One member is in charge of expelling it from the group, by triggering a reconfiguration.
Which member is responsible for expelling the member is not something you can control or set.

Can I use Group Replication for sharding?

Group Replication is designed to provide highly available replica sets; data and writes are duplicated
on each member in the group. For scaling beyond what a single system can provide, you need an
orchestration and sharding framework built around a number of Group Replication sets, where each replica
set maintains and manages a given shard or partition of your total dataset. This type of setup, often called
a “sharded cluster”, allows you to scale reads and writes linearly and without limit.

How do I use Group Replication with SELinux?

If SELinux is enabled, which you can verify using sestatus -v, then you need to enable the use of the
Group Replication communication port. See Setting the TCP Port Context for Group Replication.

How do I use Group Replication with iptables?

If iptables is enabled, then you need to open up the Group Replication port for communication between
the machines. To see the current rules in place on each machine, issue iptables -L. Assuming the port
configured is 33061, enable communication over the necessary port by issuing iptables -A INPUT -p
tcp --dport 33061 -j ACCEPT.

How do I recover the relay log for a replication channel used by a group
member?

The replication channels used by Group Replication behave in the same way as replication channels
used in source to replica replication, and as such rely on the relay log. In the event of a change of the
relay_log variable, or when the option is not set and the host name changes, there is a chance of errors.
See Section 16.2.4.1, “The Relay Log” for a recovery procedure in this situation. Alternatively, another way
of fixing the issue specifically in Group Replication is to issue a STOP GROUP_REPLICATION statement
and then a START GROUP_REPLICATION statement to restart the instance. The Group Replication plugin
creates the group_replication_applier channel again.

3234

Why does Group Replication use two bind addresses?

Why does Group Replication use two bind addresses?

Group Replication uses two bind addresses in order to split network traffic between the SQL address,
used by clients to communicate with the member, and the group_replication_local_address,
used internally by the group members to communicate. For example, assume a server with two
network interfaces assigned to the network addresses 203.0.113.1 and 198.51.100.179. In such
a situation you could use 203.0.113.1:33061 for the internal group network address by setting
group_replication_local_address=203.0.113.1:33061. Then you could use 198.51.100.179
for hostname and 3306 for the port. Client SQL applications would then connect to the member
at 198.51.100.179:3306. This enables you to configure different rules on the different networks.
Similarly, the internal group communication can be separated from the network connection used for client
applications, for increased security.

How does Group Replication use network addresses and hostnames?

Group Replication uses network connections between members and therefore its functionality is directly
impacted by how you configure hostnames and ports. For example, the Group Replication recovery
procedure is based on asynchronous replication which uses the server's hostname and port. When
a member joins a group it receives the group membership information, using the network address
information that is listed at performance_schema.replication_group_members. One of the
members listed in that table is selected as the donor of the missing data from the group to the new
member.

This means that any value you configure using a hostname, such as the SQL network address or the group
seeds address, must be a fully qualified name and resolvable by each member of the group. You can
ensure this for example through DNS, or correctly configured /etc/hosts files, or other local processes.
If a you want to configure the MEMBER_HOST value on a server, specify it using the --report-host
option on the server before joining it to the group.

Important

The assigned value is used directly and is not affected by the
skip_name_resolve system variable.

To configure MEMBER_PORT on a server, specify it using the report_port system variable.

Why did the auto increment setting on the server change?

When Group Replication is started on a server, the value of auto_increment_increment is changed
to the value of group_replication_auto_increment_increment, which defaults to 7, and the
value of auto_increment_offset is changed to the server ID. The changes are reverted when Group
Replication is stopped. These settings avoid the selection of duplicate auto-increment values for writes on
group members, which causes rollback of transactions. The default auto increment value of 7 for Group
Replication represents a balance between the number of usable values and the permitted maximum size of
a replication group (9 members).

The changes are only made and reverted if auto_increment_increment and
auto_increment_offset each have their default value of 1. If their values have already been modified
from the default, Group Replication does not alter them.

How do I find the primary?

If the group is operating in single-primary mode, it can be useful to find out which member is the primary.
See Section 17.5.1.3, “Finding the Primary”

3235

Group Replication Technical Details

17.9 Group Replication Technical Details

This section provides more technical details about MySQL Group Replication.

17.9.1 Group Replication Plugin Architecture

MySQL Group Replication is a MySQL plugin and it builds on the existing MySQL replication infrastructure,
taking advantage of features such as the binary log, row-based logging, and global transaction identifiers.
It integrates with current MySQL frameworks, such as the performance schema or plugin and service
infrastructures. The following figure presents a block diagram depicting the overall architecture of MySQL
Group Replication.

Figure 17.9 Group Replication Plugin Block Diagram

3236

The Group

The MySQL Group Replication plugin includes a set of APIs for capture, apply, and lifecycle, which control
how the plugin interacts with MySQL Server. There are interfaces to make information flow from the server
to the plugin and vice versa. These interfaces isolate the MySQL Server core from the Group Replication
plugin, and are mostly hooks placed in the transaction execution pipeline. In one direction, from server
to the plugin, there are notifications for events such as the server starting, the server recovering, the
server being ready to accept connections, and the server being about to commit a transaction. In the
other direction, the plugin instructs the server to perform actions such as committing or aborting ongoing
transactions, or queuing transactions in the relay log.

The next layer of the Group Replication plugin architecture is a set of components that react when a
notification is routed to them. The capture component is responsible for keeping track of context related to
transactions that are executing. The applier component is responsible for executing remote transactions
on the database. The recovery component manages distributed recovery, and is responsible for getting a
server that is joining the group up to date by selecting the donor, orchestrating the catch up procedure and
reacting to donor failures.

Continuing down the stack, the replication protocol module contains the specific logic of the replication
protocol. It handles conflict detection, and receives and propagates transactions to the group.

The final two layers of the Group Replication plugin architecture are the Group Communication System
(GCS) API, and an implementation of a Paxos-based group communication engine (XCom). The
GCS API is a high level API that abstracts the properties required to build a replicated state machine
(see Section 17.1, “Group Replication Background”). It therefore decouples the implementation of the
messaging layer from the remaining upper layers of the plugin. The group communication engine handles
communications with the members of the replication group.

17.9.2 The Group

In MySQL Group Replication, a set of servers forms a replication group. A group has a name, which takes
the form of a UUID. The group is dynamic and servers can leave (either voluntarily or involuntarily) and join
it at any time. The group adjusts itself whenever servers join or leave.

If a server joins the group, it automatically brings itself up to date by fetching the missing state from an
existing server. This state is transferred by means of Asynchronous MySQL replication. If a server leaves
the group, for instance it was taken down for maintenance, the remaining servers notice that it has left and
reconfigure the group automatically. The group membership service described at Section 17.1.3.1, “Group
Membership” powers all of this.

17.9.3 Data Manipulation Statements

As there are no primary servers (sources) for any particular data set, every server in the group is allowed
to execute transactions at any time, even transactions that change state (RW transactions).

Any server may execute a transaction without any a priori coordination. But, at commit time, it coordinates
with the rest of the servers in the group to reach a decision on the fate of that transaction. This coordination
serves two purposes: (i) check whether the transaction should commit or not; (ii) and propagate the
changes so that other servers can apply the transaction as well.

As a transaction is sent through an atomic broadcast, either all servers in the group receive the transaction
or none do. If they receive it, then they all receive it in the same order with respect to other transactions
that were sent before. Conflict detection is carried out by inspecting and comparing write sets of
transactions. Thus, they are detected at the row level. Conflict resolution follows the first committer wins
rule. If t1 and t2 execute concurrently at different sites, because t2 is ordered before t1, and both changed
the same row, then t2 wins the conflict and t1 aborts. In other words, t1 was trying to change data that had
been rendered stale by t2.

3237

Data Definition Statements

Note

If two transactions are bound to conflict more often than not, then it is a good
practice to start them on the same server. They then have a chance to synchronize
on the local lock manager instead of aborting later in the replication protocol.

17.9.4 Data Definition Statements

In a Group Replication topology, care needs to be taken when executing data definition statements
also commonly known as data definition language (DDL). Given that MySQL does not support atomic
or transactional DDL, one cannot optimistically execute DDL statements and later roll back if needs be.
Consequently, the lack of atomicity does not fit directly into the optimistic replication paradigm that Group
Replication is based on.

Therefore, more care needs to be taken when replicating data definition statements. Schema changes
and changes to the data that the object contains need to be handled through the same server while the
schema operation has not yet completed and replicated everywhere. Failure to do so can result in data
inconsistency.

Note

If the group is deployed in single-primary mode, then this is not a problem, because
all changes are performed through the same server, the primary.

Warning

MySQL DDL execution is not atomic or transactional. The server executes and
commits without securing group agreement first. As such, you must route DDL and
DML for the same object through the same server, while the DDL is executing and
has not replicated everywhere yet.

17.9.5 Distributed Recovery

This section describes the process through which a member joining a group catches up with the remaining
servers in the group, called distributed recovery. Distributed recovery can be summarized as the process
through which a server gets missing transactions from the group so that it can then join the group having
processed the same set of transactions as the other group members.

17.9.5.1 Distributed Recovery Basics

Whenever a member joins a replication group, it connects to an existing member to carry out state transfer.
The server joining the group transfers all the transactions that took place in the group before it joined,
which are provided by the existing member (called the donor). Next, the server joining the group applies
the transactions that took place in the group while this state transfer was in progress. When the server
joining the group has caught up with the remaining servers in the group, it begins to participate normally in
the group. This process is called distributed recovery.

Phase 1

In the first phase, the server joining the group selects one of the online servers on the group to be the
donor of the state that it is missing. The donor is responsible for providing the server joining the group all
the data it is missing up to the moment it has joined the group. This is achieved by relying on a standard
asynchronous replication channel, established between the donor and the server joining the group, see
Section 16.2.2, “Replication Channels”. Through this replication channel, the donor's binary logs are
replicated until the point that the view change happened when the server joining the group became part of
the group. The server joining the group applies the donor's binary logs as it receives them.

3238

Distributed Recovery

While the binary log is being replicated, the server joining the group also caches every transaction that is
exchanged within the group. In other words it is listening for transactions that are happening after it joined
the group and while it is applying the missing state from the donor. When the first phase ends and the
replication channel to the donor is closed, the server joining the group then starts phase two: the catch up.

Phase 2

In this phase, the server joining the group proceeds to the execution of the cached transactions. When the
number of transactions queued for execution finally reaches zero, the member is declared online.

Resilience

The recovery procedure withstands donor failures while the server joining the group is fetching binary
logs from it. In such cases, whenever a donor fails during phase 1, the server joining the group fails over
to a new donor and resumes from that one. When that happens the server joining the group closes the
connection to the failed server joining the group explicitly and opens a connection to a new donor. This
happens automatically.

17.9.5.2 Recovering From a Point-in-time

To synchronize the server joining the group with the donor up to a specific point in time, the server joining
the group and donor make use of the MySQL Global Transaction Identifiers (GTIDs) mechanism. See
Section 16.1.3, “Replication with Global Transaction Identifiers”. However, GTIDS only provide a means
to realize which transactions the server joining the group is missing, they do not help marking a specific
point in time to which the server joining the group must catch up, nor do they help conveying certification
information. This is the job of binary log view markers, which mark view changes in the binary log stream,
and also contain additional metadata information, provisioning the server joining the group with missing
certification related data.

View and View Changes

To explain the concept of view change markers, it is important to understand what a view and a view
change are.

A view corresponds to a group of members participating actively in the current configuration, in other words
at a specific point in time. They are correct and online in the system.

A view change occurs when a modification to the group configuration happens, such as a member joining
or leaving. Any group membership change results in an independent view change communicated to all
members at the same logical point in time.

A view identifier uniquely identifies a view. It is generated whenever a view change happens

At the group communication layer, view changes with their associated view ids are then boundaries
between the data exchanged before and after a member joins. This concept is implemented through a new
binary log event: the"view change log event". The view id thus becomes a marker as well for transactions
transmitted before and after changes happen in the group membership.

The view identifier itself is built from two parts: (i) one that is randomly generated and (ii) a monotonically
increasing integer. The first part is generated when the group is created, and remains unchanged while
there is at least one member in the group. The second part is incremented every time a view change
happens.

The reason for this heterogeneous pair that makes up the view id is the need to unambiguously mark
group changes whenever a member joins or leaves but also whenever all members leave the group and no
information remains of what view the group was in. In fact, the sole use of monotonic increasing identifiers

3239

Distributed Recovery

could lead to the reuse of the same id after full group shutdowns, destroying the uniqueness of the binary
log data markers that recovery depends on. To summarize, the first part identifies whenever the group was
started from the beginning and the incremental part when the group changed from that point on.

17.9.5.3 View Changes

This section explains the process which controls how the view change identifier is incorporated into a
binary log event and written to the log, The following steps are taken:

Begin: Stable Group

All servers are online and processing incoming transactions from the group. Some servers may be a little
behind in terms of transactions replicated, but eventually they converge. The group acts as one distributed
and replicated database.

Figure 17.10 Stable Group

View Change: a Member Joins

Whenever a new member joins the group and therefore a view change is performed, every online server
queues a view change log event for execution. This is queued because before the view change, several
transactions can be queued on the server to be applied and as such, these belong to the old view. Queuing
the view change event after them guarantees a correct marking of when this happened.

3240

Distributed Recovery

Meanwhile, the server joining the group selects the donor from the list of online servers as stated by the
membership service through the view abstraction. A member joins on view 4 and the online members write
a View change event to the binary log.

Figure 17.11 A Member Joins

State Transfer: Catching Up

Once the server joining the group has chosen which server in the group is to be the donor, a new
asynchronous replication connection is established between the two and the state transfer begins (phase
1). This interaction with the donor continues until the server joining the group's applier thread processes
the view change log event that corresponds to the view change triggered when the server joining the group
came into the group. In other words, the server joining the group replicates from the donor, until it gets to
the marker with the view identifier which matches the view marker it is already in.

3241

Distributed Recovery

Figure 17.12 State Transfer: Catching Up

As view identifiers are transmitted to all members in the group at the same logical time, the server
joining the group knows at which view identifier it should stop replicating. This avoids complex GTID set
calculations because the view id clearly marks which data belongs to each group view.

While the server joining the group is replicating from the donor, it is also caching incoming transactions
from the group. Eventually, it stops replicating from the donor and switches to applying those that are
cached.

3242

Distributed Recovery

Figure 17.13 Queued Transactions

Finish: Caught Up

When the server joining the group recognizes a view change log event with the expected view identifier,
the connection to the donor is terminated and it starts applying the cached transactions. An important point
to understand is the final recovery procedure. Although it acts as a marker in the binary log, delimiting
view changes, the view change log event also plays another role. It conveys the certification information
as perceived by all servers when the server joining the group entered the group, in other words the last
view change. Without it, the server joining the group would not have the necessary information to be able
to certify (detect conflicts) subsequent transactions.

3243

Distributed Recovery

The duration of the catch up (phase 2) is not deterministic, because it depends on the workload and
the rate of incoming transactions to the group. This process is completely online and the server joining
the group does not block any other server in the group while it is catching up. Therefore the number of
transactions the server joining the group is behind when it moves to phase 2 can, for this reason, vary and
thus increase or decrease according to the workload.

When the server joining the group reaches zero queued transactions and its stored data is equal to the
other members, its public state changes to online.

Figure 17.14 Instance Online

17.9.5.4 Usage Advice and Limitations of Distributed Recovery

Distributed recovery does have some limitations. It is based on classic asynchronous replication and as
such it may be slow if the server joining the group is not provisioned at all or is provisioned with a very
old backup image. This means that if the data to transfer is too big at phase 1, the server may take a very
long time to recover. As such, the recommendation is that before adding a server to the group, one should
provision it with a fairly recent snapshot of a server already in the group. This minimizes the length of
phase 1 and reduces the impact on the donor server, since it has to save and transfer less binary logs.

Warning

It is recommended that a server is provisioned before it is added to a group. That
way, one minimizes the time spent on the recovery step.

3244

Observability

17.9.6 Observability

There is a lot of automation built into the Group Replication plugin. Nonetheless, you might sometimes
need to understand what is happening behind the scenes. This is where the instrumentation of Group
Replication and Performance Schema becomes important. The entire state of the system (including the
view, conflict statistics and service states) can be queried through performance_schema tables. The
distributed nature of the replication protocol and the fact that server instances agree and thus synchronize
on transactions and metadata makes it simpler to inspect the state of the group. For example, you can
connect to a single server in the group and obtain both local and global information by issuing select
statements on the Group Replication related Performance Schema tables. For more information, see
Section 17.4, “Monitoring Group Replication”.

17.9.7 Group Replication Performance

This section explains how to use the available configuration options to gain the best performance from your
group.

17.9.7.1 Fine Tuning the Group Communication Thread

The group communication thread (GCT) runs in a loop while the Group Replication plugin is loaded. The
GCT receives messages from the group and from the plugin, handles quorum and failure detection related
tasks, sends out some keep alive messages and also handles the incoming and outgoing transactions
from/to the server/group. The GCT waits for incoming messages in a queue. When there are no messages,
the GCT waits. By configuring this wait to be a little longer (doing an active wait) before actually going to
sleep can prove to be beneficial in some cases. This is because the alternative is for the operating system
to switch out the GCT from the processor and do a context switch.

To force the GCT do an active wait, use the group_replication_poll_spin_loops option, which
makes the GCT loop, doing nothing relevant for the configured number of loops, before actually polling the
queue for the next message.

For example:

mysql> SET GLOBAL group_replication_poll_spin_loops= 10000;

17.9.7.2 Message Compression

For messages sent between online group members, Group Replication enables message compression
by default. Whether a specific message is compressed depends on the threshold that you configure using
the group_replication_compression_threshold system variable. Messages that have a payload
larger than the specified number of bytes are compressed.

The default compression threshold is 1000000 bytes. You could use the following statements to increase
the compression threshold to 2MB, for example:

STOP GROUP_REPLICATION;
SET GLOBAL group_replication_compression_threshold = 2097152;
START GROUP_REPLICATION;

If you set group_replication_compression_threshold to zero, message compression is disabled.

Group Replication uses the LZ4 compression algorithm to compress messages sent in the group. Note
that the maximum supported input size for the LZ4 compression algorithm is 2113929216 bytes. This limit
is lower than the maximum possible value for the group_replication_compression_threshold

3245

Group Replication Performance

system variable, which is matched to the maximum message size accepted by XCom. The LZ4 maximum
input size is therefore a practical limit for message compression, and transactions above this size cannot
be committed when message compression is enabled. With the LZ4 compression algorithm, do not set a
value greater than 2113929216 bytes for group_replication_compression_threshold.

The value of group_replication_compression_threshold is not required by Group Replication to
be the same on all group members. However, it is advisable to set the same value on all group members
in order to avoid unnecessary rollback of transactions, failure of message delivery, or failure of message
recovery.

Compression for messages sent in the group happens at the group communication engine level,
before the data is handed over to the group communication thread, so it takes place within the
context of the mysql user session thread. If the message payload size exceeds the threshold set by
group_replication_compression_threshold, the transaction payload is compressed before
being sent out to the group, and decompressed when it is received. Upon receiving a message, the
member checks the message envelope to verify whether it is compressed or not. If needed, then the
member decompresses the transaction, before delivering it to the upper layer. This process is shown in the
following figure.

3246

Group Replication Performance

Figure 17.15 Compression Support

When network bandwidth is a bottleneck, message compression can provide up to 30-40% throughput
improvement at the group communication level. This is especially important within the context of large
groups of servers under load. The TCP peer-to-peer nature of the interconnections between N participants
in the group makes the sender send the same amount of data N times. Furthermore, binary logs are likely
to exhibit a high compression ratio. This makes compression a compelling feature for Group Replication
workloads that contain large transactions.

17.9.7.3 Flow Control

Group Replication ensures that a transaction only commits after a majority of the members in a group have
received it and agreed on the relative order between all transactions that were sent concurrently.

3247

Group Replication Performance

This approach works well if the total number of writes to the group does not exceed the write capacity of
any member in the group. If it does and some of the members have less write throughput than others,
particularly less than the writer members, those members can start lagging behind of the writers.

Having some members lagging behind the group brings some problematic consequences, particularly, the
reads on such members may externalize very old data. Depending on why the member is lagging behind,
other members in the group may have to save more or less replication context to be able to fulfil potential
data transfer requests from the slow member.

There is however a mechanism in the replication protocol to avoid having too much distance, in terms of
transactions applied, between fast and slow members. This is known as the flow control mechanism. It
tries to address several goals:

1. to keep the members close enough to make buffering and de-synchronization between members a
small problem;

2. to adapt quickly to changing conditions like different workloads or more writers in the group;

3. to give each member a fair share of the available write capacity;

4. to not reduce throughput more than strictly necessary to avoid wasting resources.

Given the design of Group Replication, the decision whether to throttle or not may be decided taking into
account two work queues: (i) the certification queue; (ii) and on the binary log applier queue. Whenever
the size of one of these queues exceeds the user-defined threshold, the throttling mechanism is triggered.
Only configure: (i) whether to do flow control at the certifier or at the applier level, or both; and (ii) what is
the threshold for each queue.

The flow control depends on two basic mechanisms:

1. the monitoring of members to collect some statistics on throughput and queue sizes of all group
members to make educated guesses on what is the maximum write pressure each member should be
subjected to;

2. the throttling of members that are trying to write beyond their fair-share of the available capacity at each
moment in time.

Probes and Statistics

The monitoring mechanism works by having each member deploying a set of probes to collect information
about its work queues and throughput. It then propagates that information to the group periodically to share
that data with the other members.

Such probes are scattered throughout the plugin stack and allow one to establish metrics, such as:

• the certifier queue size;

• the replication applier queue size;

• the total number of transactions certified;

• the total number of remote transactions applied in the member;

• the total number of local transactions.

Once a member receives a message with statistics from another member, it calculates additional metrics
regarding how many transactions were certified, applied and locally executed in the last monitoring period.

3248

Group Replication Performance

Monitoring data is shared with others in the group periodically. The monitoring period must be high enough
to allow the other members to decide on the current write requests, but low enough that it has minimal
impact on group bandwidth. The information is shared every second, and this period is sufficient to address
both concerns.

Group Replication Throttling

Based on the metrics gathered across all servers in the group, a throttling mechanism kicks in and decides
whether to limit the rate a member is able to execute/commit new transactions.

Therefore, metrics acquired from all members are the basis for calculating the capacity of each member:
if a member has a large queue (for certification or the applier thread), then the capacity to execute new
transactions should be close to ones certified or applied in the last period.

The lowest capacity of all the members in the group determines the real capacity of the group, while the
number of local transactions determines how many members are writing to it, and, consequently, how
many members should that available capacity be shared with.

This means that every member has an established write quota based on the available capacity, in other
words a number of transactions it can safely issue for the next period. The writer quota is enforced by
the throttling mechanism if the queue size of the certifier or the binary log applier exceeds a user defined
threshold.

The quota is reduced by the number of transactions that were delayed in the last period, and then also
further reduced by 10% to allow the queue that triggered the problem to reduce its size. In order to avoid
large jumps in throughput once the queue size goes beyond the threshold, the throughput is only allowed
to grow by the same 10% per period after that.

The current throttling mechanism does not penalize transactions below quota, but delays finishing those
transactions that exceed it until the end of the monitoring period. As a consequence, if the quota is very
small for the write requests issued some transactions may have latencies close to the monitoring period.

3249

3250

Chapter 18 MySQL Shell
MySQL Shell is an advanced client and code editor for MySQL Server. In addition to the provided SQL
functionality, similar to mysql, MySQL Shell provides scripting capabilities for JavaScript and Python and
includes APIs for working with MySQL. MySQL Shell is a component that you can install separately.

The following discussion briefly describes MySQL Shell's capabilities. For more information, see the
MySQL Shell manual, available at https://dev.mysql.com/doc/mysql-shell/en/.

MySQL Shell includes the following APIs implemented in JavaScript and Python which you can use to
develop code that interacts with MySQL.

• The X DevAPI enables developers to work with both relational and document data when MySQL Shell
is connected to a MySQL server using the X Protocol. This enables you to use MySQL as a Document
Store, sometimes referred to as “using NoSQL”. For more information, see Chapter 19, Using MySQL as
a Document Store. For documentation on the concepts and usage of X DevAPI, which is implemented in
MySQL Shell, see X DevAPI User Guide.

• The AdminAPI enables database administrators to work with InnoDB Cluster, which provides an
integrated solution for high availability and scalability using InnoDB based MySQL databases, without
requiring advanced MySQL expertise. The AdminAPI also includes support for InnoDB ReplicaSet,
which enables you to administer a set of MySQL instances running asynchronous GTID-based
replication in a similar way to InnoDB Cluster. Additionally, the AdminAPI makes administration of
MySQL Router easier, including integration with both InnoDB Cluster and InnoDB ReplicaSet. See
MySQL AdminAPI.

MySQL Shell is available in two editions, the Community Edition and the Commercial Edition. The
Community Edition is available free of charge. The Commercial Edition provides additional Enterprise
features at low cost.

3251

https://dev.mysql.com/doc/mysql-shell/en/
https://dev.mysql.com/doc/x-devapi-userguide/en/
https://dev.mysql.com/doc/mysql-shell/8.0/en/admin-api-userguide.html

3252

Chapter 19 Using MySQL as a Document Store

Table of Contents
19.1 Key Concepts ... 3254
19.2 Setting Up MySQL as a Document Store ... 3255

19.2.1 Installing MySQL Shell ... 3257
19.2.2 Starting MySQL Shell ... 3261

19.3 Quick-Start Guide: MySQL for Visual Studio ... 3261
19.4 X Plugin ... 3263

19.4.1 Using Encrypted Connections with X Plugin ... 3263
19.4.2 X Plugin Options and Variables .. 3264
19.4.3 Monitoring X Plugin .. 3277

This chapter introduces an alternative way of working with MySQL as a document store, sometimes
referred to as “using NoSQL”. If your intention is to use MySQL in a traditional (SQL) way, this chapter is
probably not relevant to you.

Important

MySQL Shell 8.0 is the most recent version and is highly recommended for use
with MySQL Server 5.7. Please upgrade to MySQL Shell 8.0. If you have not yet
installed MySQL Shell, download it from the download site. See the MySQL Shell
8.0 documentation for the latest documentation. This chapter covers configuring
MySQL 5.7 server as a document store and is compatible with version 8.0 clients
such as MySQL Shell and MySQL Connectors.

Relational databases such as MySQL usually required a document schema to be defined before
documents can be stored. The features described in this section enable you to use MySQL as a document
store, which is a schema-less, and therefore schema-flexible, storage system for documents. When using
MySQL as a document store, to create documents describing products you do not need to know and
define all possible attributes of any products before storing them and operating with them. This differs from
working with a relational database and storing products in a table, when all columns of the table must be
known and defined before adding any products to the database. The features described in this chapter
enable you to choose how you configure MySQL, using only the document store model, or combining the
flexibility of the document store model with the power of the relational model.

These sections cover the usage of MySQL as a document store:

• The Section 19.1, “Key Concepts” section covers concepts like Document, Collection, Session, and
Schema to help you understand how to use MySQL as a document store.

• The Section 19.2, “Setting Up MySQL as a Document Store” section explains how to configure X Plugin
on a MySQL Server, so it can function as a document store, and how to install MySQL Shell to use as a
client.

• MySQL Shell 8.0 provides more detailed information about using MySQL Shell.

• X DevAPI User guide.

Clients that communicate with a MySQL Server using the X Protocol can use the X DevAPI to develop
applications. For example MySQL Shell and MySQL Connectors provide this ability by implementing the

3253

https://dev.mysql.com/downloads/shell
https://dev.mysql.com/doc/mysql-shell/8.0/en/
https://dev.mysql.com/doc/mysql-shell/8.0/en/
https://dev.mysql.com/doc/mysql-shell/8.0/en/

Key Concepts

X DevAPI. X DevAPI offers a modern programming interface with a simple yet powerful design which
provides support for established industry standard concepts. See X DevAPI User Guide for in-depth
tutorials on using X DevAPI.

• The following MySQL products support the X Protocol and enable you to use X DevAPI in your chosen
language to develop applications that communicate with a MySQL Server functioning as a document
store.

• MySQL Shell provides implementations of X DevAPI in JavaScript and Python.

• Connector/C++

• Connector/J

• Connector/Node.js

• Connector/NET

• Connector/Python

19.1 Key Concepts

This section explains the concepts introduced as part of using MySQL as a document store.

Document

A Document is a set of key and value pairs, as represented by a JSON object. A Document is represented
internally using the MySQL binary JSON object, through the JSON MySQL datatype. The values of fields
can contain other documents, arrays, and lists of documents.

{
 "GNP": 4834,
 "_id": "00005de917d80000000000000023",
 "Code": "BWA",
 "Name": "Botswana",
 "IndepYear": 1966,
 "geography": {
 "Region": "Southern Africa",
 "Continent": "Africa",
 "SurfaceArea": 581730
 },
 "government": {
 "HeadOfState": "Festus G. Mogae",
 "GovernmentForm": "Republic"
 },
 "demographics": {
 "Population": 1622000,
 "LifeExpectancy": 39.29999923706055
 }
}

Collection

A Collection is a container that may be used to store Documents in a MySQL database.

CRUD Operations

Create, Read, Update and Delete (CRUD) operations are the four basic operations that can be performed
on a database Collection or Table. In terms of MySQL this means:

3254

https://dev.mysql.com/doc/x-devapi-userguide/en/

X Plugin

• Create a new entry (insertion or addition)

• Read entries (queries)

• Update entries

• Delete entries

X Plugin

The MySQL Server plugin which enables communication using X Protocol. Supports clients that implement
X DevAPI and enables you to use MySQL as a document store.

X Protocol

A protocol to communicate with a MySQL Server running X Plugin. X Protocol supports both CRUD and
SQL operations, authentication via SASL, allows streaming (pipelining) of commands and is extensible on
the protocol and the message layer.

19.2 Setting Up MySQL as a Document Store

To use MySQL 5.7 as a document store, the X Plugin needs to be installed. Then you can use X Protocol
to communicate with the server. Without the X Plugin running, X Protocol clients cannot connect to the
server. The X Plugin is supplied with MySQL (5.7.12 or higher) — installing it does not involve a separate
download. This section describes how to install X Plugin.

Follow the steps outlined here:

1. Install or upgrade to MySQL 5.7.12 or higher.

When the installation or upgrade is done, start the server. For server startup instructions, see
Section 2.9.2, “Starting the Server”.

Note

MySQL Installer enables you to perform this and the next step (Install the X
Plugin) at the same time for new installations on Microsoft Windows. In the
Plugin and Extensions screen, check mark the Enable X Protocol/MySQL as
a Document Store check box. After the installation, verify that the X Plugin has
been installed.

2. Install the X Plugin. A non-root account can be used to install the plugin as long as the account has
INSERT privilege for the mysql.plugin table.

Always save your existing configuration settings before reconfiguring the server.

To install the built-in X Plugin, do one of the following:

• Using MySQL Installer for Windows:

a. Launch MySQL Installer for Windows. MySQL Installer dashboard opens.

b. Click the Reconfigure quick action for MySQL Server. Use Next and Back to configure the
following items:

• In Accounts and Roles, confirm the current root account password.

3255

Setting Up MySQL as a Document Store

• In Plugin and Extensions, check mark the Enable X Protocol/MySQL as a Document Store
check box. MySQL Installer provides a default port number and opens the firewall port for
network access.

• In Apply Server Configuration, click Execute.

• Click Finish to close MySQL Installer.

c. Install MySQL Shell.

• Using MySQL Shell:

a. Install MySQL Shell.

b. Open a terminal window (command prompt on Windows) and navigate to the MySQL binaries
location (for example, /usr/bin/ on Linux).

c. Run the following command:

mysqlsh -u user -h localhost --classic --dba enableXProtocol

• Using the MySQL Client program:

a. Open a terminal window (command prompt on Windows) and navigate to the MySQL binaries
location (for example, /usr/bin/ on Linux).

b. Invoke the mysql command-line client:

mysql -u user -p

c. Issue the following statement:

mysql> INSTALL PLUGIN mysqlx SONAME 'mysqlx.so';

Replace mysqlx.so with mysqlx.dll for Windows.

Important

The mysql.session user must exist before you can load X Plugin.
mysql.session was added in MySQL version 5.7.19. If your data
dictionary was initialized using an earlier version you must run the
mysql_upgrade procedure. If the upgrade is not run, X Plugin fails to
start with the error message There was an error when trying to
access the server with user: mysql.session@localhost.
Make sure the user is present in the server and that
mysql_upgrade was ran after a server update..

d. Install MySQL Shell.

3256

mysqlxsys@localhost User Account

3. Verify that the X Plugin has been installed.

When the X Plugin is installed properly, it shows up in the list when you query for active plugins on the
server with one of the following commands:

• MySQL Shell command:

mysqlsh -u user --sqlc -e "show plugins"

• MySQL Client program command:

mysql -u user -p -e "show plugins"

If you encounter problems with the X Plugin installation, or if you want to learn about alternative ways
of installing, configuring, or uninstalling server plugins, see Section 5.5.1, “Installing and Uninstalling
Plugins”.

mysqlxsys@localhost User Account

Installing the X Plugin creates a mysqlxsys@localhost user account. If, for some reason,
creating the user account fails, the X Plugin installation fails, too. Here is an explanation on what the
mysqlxsys@localhost user account is for and what to do when its creation fails.

The X Plugin installation process uses the MySQL root user to create an internal account for the
mysqlxsys@localhost user. The mysqlxsys@localhost account is used by the X Plugin for
authentication of external users against the MySQL account system and for killing sessions when
requested by a privileged user. The mysqlxsys@localhost account is created as locked, so it cannot be
used to log in by external users. If for some reason the MySQL root account is not available, before you
start the X Plugin installation you must manually create the mysqlxsys@localhost user by issuing the
following statements in the mysql command-line client:

CREATE USER IF NOT EXISTS mysqlxsys@localhost IDENTIFIED WITH
mysql_native_password AS 'password' ACCOUNT LOCK;
GRANT SELECT ON mysql.user TO mysqlxsys@localhost;
GRANT SUPER ON *.* TO mysqlxsys@localhost;

Uninstalling the X Plugin

If you ever want to uninstall (deactivate) the X Plugin, issue the following statement in the mysql
command-line client:

UNINSTALL PLUGIN mysqlx;

Do not use MySQL Shell to issue the previous statement. It works from MySQL Shell, but you get an error
(code 1130). Also, uninstalling the plugin removes the mysqlxsys user.

19.2.1 Installing MySQL Shell

This section describes how to download, install, and start MySQL Shell, which is an interactive JavaScript,
Python, or SQL interface supporting development and administration for the MySQL Server. MySQL Shell
is a component that you can install separately.

Requirements

MySQL Shell is available on Microsoft Windows, Linux, and macOS for 64-bit platforms. MySQL Shell
requires that the built-in X Plugin be active. You can install the server plugin before or after you install
MySQL Shell. For instructions, see Installing the X Plugin.

3257

Installing MySQL Shell

19.2.1.1 Installing MySQL Shell on Microsoft Windows

Important

The Community version of MySQL Shell requires the Visual C++ Redistributable for
Visual Studio 2013 (available at the Microsoft Download Center) to work; make sure
that is installed on your Windows system before installing MySQL Shell.

Note

MySQL Shell is currently not supplied with an MSI Installer. See Installing MySQL
Shell Binaries for the manual install procedure.

To install MySQL Shell on Microsoft Windows using the MSI Installer, do the following:

1. Download the Windows (x86, 64-bit), MSI Installer package from http://dev.mysql.com/downloads/
shell/.

2. When prompted, click Run.

3. Follow the steps in the Setup Wizard.

Figure 19.1 Installation of MySQL Shell on Windows

If you have installed MySQL without enabling the X Plugin, then later on decide you want to install the X
Plugin, or if you are installing MySQL without using MySQL Installer, see Installing the X Plugin.

Installing MySQL Shell Binaries

To install MySQL Shell binaries:

1. Unzip the content of the Zip file to the MySQL products directory, for example C:\Program Files
\MySQL\.

2. To be able to start MySQL Shell from a command prompt add the bin directory C:\Program Files
\MySQL\mysql-shell-1.0.8-rc-windows-x86-64bit\bin to the PATH system variable.

3258

http://www.microsoft.com/en-us/download/default.aspx
http://dev.mysql.com/downloads/shell/
http://dev.mysql.com/downloads/shell/

Installing MySQL Shell

19.2.1.2 Installing MySQL Shell on Linux

Note

Installation packages for MySQL Shell are available only for a limited number of
Linux distributions, and only for 64-bit systems.

For supported Linux distributions, the easiest way to install MySQL Shell on Linux is to use the MySQL
APT repository or MySQL Yum repository. For systems not using the MySQL repositories, MySQL Shell
can also be downloaded and installed directly.

Installing MySQL Shell with the MySQL APT Repository

For Linux distributions supported by the MySQL APT repository, follow one of the paths below:

• If you do not yet have the MySQL APT repository as a software repository on your system, do the
following:

• Follow the steps given in Adding the MySQL APT Repository, paying special attention to the following:

• During the installation of the configuration package, when asked in the dialogue box to configure the
repository, make sure you choose MySQL 5.7 (which is the default option) as the release series you
want, and enable the MySQL Preview Packages component.

• Make sure you do not skip the step for updating package information for the MySQL APT repository:

sudo apt-get update

• Install MySQL Shell with this command:

sudo apt-get install mysql-shell

• If you already have the MySQL APT repository as a software repository on your system, do the following:

• Update package information for the MySQL APT repository:

sudo apt-get update

• Update the MySQL APT repository configuration package with the following command:

sudo apt-get install mysql-apt-config

When asked in the dialogue box to configure the repository, make sure you choose MySQL 5.7 (which
is the default option) as the release series you want, and enable the MySQL Preview Packages
component.

• Install MySQL Shell with this command:

sudo apt-get install mysql-shell

Installing MySQL Shell with the MySQL Yum Repository

For Linux distributions supported by the MySQL Yum repository, follow these steps to install MySQL Shell:

• Do one of the following:

• If you already have the MySQL Yum repository as a software repository on your system and the
repository was configured with the new release package mysql57-community-release, skip to the
next step (“Enable the MySQL Tools Preview subrepository...”).

3259

https://dev.mysql.com/downloads/repo/apt/
https://dev.mysql.com/downloads/repo/apt/
https://dev.mysql.com/downloads/repo/yum/
https://dev.mysql.com/downloads/repo/apt/
https://dev.mysql.com/downloads/repo/apt/
https://dev.mysql.com/doc/mysql-apt-repo-quick-guide/en/#apt-repo-setup
https://dev.mysql.com/downloads/repo/apt/
https://dev.mysql.com/downloads/repo/yum/
https://dev.mysql.com/downloads/repo/yum/

Installing MySQL Shell

• If you already have the MySQL Yum repository as a software repository on your system but have
configured the repository with the old release package mysql-community-release, it is easiest
to install MySQL Shell by first reconfiguring the MySQL Yum repository with the new mysql57-
community-release package. To do so, you need to remove your old release package first, with
the following command :

sudo yum remove mysql-community-release

For dnf-enabled systems, do this instead:

sudo dnf erase mysql-community-release

Then, follow the steps given in Adding the MySQL Yum Repository to install the new release package,
mysql57-community-release.

• If you do not yet have the MySQL Yum repository as a software repository on your system, follow the
steps given in Adding the MySQL Yum Repository.

• Enable the MySQL Tools Preview subrepository. You can do that by editing manually the /etc/
yum.repos.d/mysql-community.repo file. This is an example of the subrepository's default entry in
the file (the baseurl entry in your file might look different, depending on your Linux distribution):

[mysql-tools-preview]
name=MySQL Tools Preview
baseurl=http://repo.mysql.com/yum/mysql-tools-preview/el/6/$basearch/
enabled=0
gpgcheck=1
gpgkey=file:///etc/pki/rpm-gpg/RPM-GPG-KEY-mysql

Change the entry enabled=0 to enabled=1 to enable the subrepository.

• Install MySQL Shell with this command:

sudo yum install mysql-shell

For dnf-enabled systems, do this instead:

sudo dnf install mysql-shell

Installing MySQL Shell from Direct Downloads from the MySQL Developer Zone

RPM, Debian, and source packages for installing MySQL Shell are also available for download at
Download MySQL Shell.

19.2.1.3 Installing MySQL Shell on macOS

To install MySQL Shell on macOS, do the following:

1. Download the package from http://dev.mysql.com/downloads/shell/.

2. Double-click the downloaded DMG to mount it. Finder opens.

3. Double-click the .pkg file shown in the Finder window.

4. Follow the steps in the installation wizard.

3260

https://dev.mysql.com/downloads/repo/yum/
https://dev.mysql.com/doc/mysql-yum-repo-quick-guide/en/#repo-qg-yum-repo-setup
https://dev.mysql.com/downloads/repo/yum/
https://dev.mysql.com/doc/mysql-yum-repo-quick-guide/en/#repo-qg-yum-repo-setup
https://dev.mysql.com/downloads/shell/
http://dev.mysql.com/downloads/shell/

Starting MySQL Shell

Figure 19.2 Installation of MySQL Shell on macOS

5. When the installer finishes, eject the DMG. (It can be deleted.)

19.2.2 Starting MySQL Shell

You need an account name and password to establish a session using MySQL Shell. Replace user with
your account name.

On the same system where the server instance is running, open a terminal window (command prompt on
Windows) and start MySQL Shell with the following command:

mysqlsh --uri user@localhost

You are prompted to input your password and then this establishes an X Session.

For instructions to get you started using MySQL as a document store, see the following quick-start guides:

• Quick-Start Guide: MySQL Shell for JavaScript

• Quick-Start Guide: MySQL Shell for Python

19.3 Quick-Start Guide: MySQL for Visual Studio
This section explains how to use MySQL Shell to script a server using MySQL for Visual Studio.

Introduction

MySQL for Visual Studio provides access to MySQL objects and data without forcing developers to leave
Visual Studio. Designed and developed as a Visual Studio package, MySQL for Visual Studio integrates
directly into Server Explorer providing a seamless experience for setting up new connections and working
with database objects.

The following MySQL for Visual Studio features are available as of version 2.0.2:

• JavaScript and Python code editors, where scripts in those languages can be executed to query data
from a MySQL database.

3261

https://dev.mysql.com/doc/refman/8.0/en/mysql-shell-tutorial-javascript.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-shell-tutorial-python.html

Getting Started

• Better integration with the Server Explorer to open MySQL, JavaScript, and Python code editors directly
from a connected MySQL instance.

• A newer user interface for displaying query results, where different views are presented from result sets
returned by a MySQL Server like:

• Multiple tabs for each result set returned by an executed query.

• Results view, where the information can be seen in grid, tree, or text representation for JSON results.

• Field types view, where information about the columns of a result set is shown, such as names, data
types, character sets, and more.

• Query statistics view, displaying information about the executed query such as execution times,
processed rows, index and temporary tables usage, and more.

• Execution plan view, displaying an explanation of the query execution done internally by the MySQL
Server.

Getting Started

The requirements are MySQL for Visual Studio 2.0.2 or higher, and Visual Studio 2010 or higher. X
DevAPI support requires MySQL Server 5.7.12 or higher with the X plugin enabled.

Opening a Code Editor

Before opening a code editor that can execute queries against a MySQL server, a connection needs to be
established:

1. Open the Server Explorer pane through the View menu, or with Control + W, K.

2. Right-click on the Data Connections node, select Add Connection....

3. In the Add Connection dialog, make sure the MySQL Data Provider is being used and fill in all the
information.

Note

To enter the port number, click Advanced... and set the Port among the list of
connection properties.

4. Click Test Connection to ensure you have a valid connection, then click OK.

5. Right-click your newly created connection, select New MySQL Script and then the language for the
code editor you want to open.

For existing MySQL connections, to create a new editor you need only to do the last step.

Using the Code Editor

The MySQL script editors have a toolbar at the start where information about the session is displayed,
along with the actions that can be executed.

Note

Note the first two buttons in the toolbar represent a way to connect or disconnect
from a MySQL server. If the editor was opened from the Server Explorer, the
connection should be already established for the new editor window.

3262

X Plugin

The third button is the Run button, the script contained in the editor window is executed by clicking it and
results from the script execution are displayed below the script window.

Note

Some commands in the MySQL Shell can be executed without appending
execute() while in interactive mode. In MySQL for Visual Studio, these
commands do require execute(). In other words, append ".execute()" to execute
commands.

19.4 X Plugin
This section explains how to configure and monitor the X Plugin.

19.4.1 Using Encrypted Connections with X Plugin

This section explains how to configure X Plugin to use encrypted connections. For more background
information, see Section 6.3, “Using Encrypted Connections”.

To enable configuring support for encrypted connections, X Plugin has mysqlx_ssl_xxx system
variables, which can have different values from the ssl_xxx system variables used with MySQL Server.
For example, X Plugin can have SSL key, certificate, and certificate authority files that differ from those
used for MySQL Server. These variables are described at Section 19.4.2.2, “X Plugin Options and System
Variables”. Similarly, X Plugin has its own Mysqlx_ssl_xxx status variables that correspond to the
MySQL Server encrypted-connection Ssl_xxx status variables. See Section 19.4.2.3, “X Plugin Status
Variables”.

At initialization, X Plugin determines its configuration for encrypted connections as follows:

• If all mysqlx_ssl_xxx system variables have their default values, X Plugin configures encrypted
connections using the values of the MySQL Server ssl_xxx system variables.

• If any mysqlx_ssl_xxx variable has a nondefault value, X Plugin configures encrypted connections
using the values of its own system variables. (This is the case if any mysqlx_ssl_xxx system variable
is set to a value different from its default.)

This means that, on a server with X Plugin enabled, you can choose to have MySQL Protocol and X
Protocol connections share the same encryption configuration by setting only the ssl_xxx variables, or
have separate encryption configurations for MySQL Protocol and X Protocol connections by configuring the
ssl_xxx and mysqlx_ssl_xxx variables separately.

To have MySQL Protocol and X Protocol connections use the same encryption configuration, set only the
ssl_xxx system variables in my.cnf:

[mysqld]
ssl_ca=ca.pem
ssl_cert=server-cert.pem
ssl_key=server-key.pem

To configure encryption separately for MySQL Protocol and X Protocol connections, set both the ssl_xxx
and mysqlx_ssl_xxx system variables in my.cnf:

[mysqld]
ssl_ca=ca1.pem
ssl_cert=server-cert1.pem
ssl_key=server-key1.pem

mysqlx_ssl_ca=ca2.pem
mysqlx_ssl_cert=server-cert2.pem
mysqlx_ssl_key=server-key2.pem

3263

X Plugin Options and Variables

For general information about configuring connection-encryption support, see Section 6.3.1, “Configuring
MySQL to Use Encrypted Connections”. That discussion is written for MySQL Server, but the parameter
names are similar for X Plugin. (The X Plugin mysqlx_ssl_xxx system variable names correspond to the
MySQL Server ssl_xxx system variable names.)

The tls_version system variable that determines the permitted TLS versions for MySQL Protocol
connections also applies to X Protocol connections. The permitted TLS versions for both types of
connections are therefore the same.

Encryption per connection is optional, but a specific user can be required to use encryption for X
Protocol and MySQL Protocol connections by including an appropriate REQUIRE clause in the CREATE
USER statement that creates the user. For details, see Section 13.7.1.2, “CREATE USER Statement”.
Alternatively, to require all users to use encryption for X Protocol and MySQL Protocol connections,
enable the require_secure_transport system variable. For additional information, see Configuring
Encrypted Connections as Mandatory.

19.4.2 X Plugin Options and Variables

This section describes the command options and system variables that configure X Plugin, as well as the
status variables available for monitoring purposes. If configuration values specified at startup time are
incorrect, X Plugin could fail to initialize properly and the server does not load it. In this case, the server
could also produce error messages for other X Plugin settings because it cannot recognize them.

19.4.2.1 X Plugin Option and Variable Reference

This table provides an overview of the command options, system variables, and status variables provided
by X Plugin.

Table 19.1 X Plugin Option and Variable Reference

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

mysqlx Yes Yes

Mysqlx_address Yes Global No

mysqlx_bind_addressYes Yes Yes Global No

Mysqlx_bytes_received Yes Both No

Mysqlx_bytes_sent Yes Both No

mysqlx_connect_timeoutYes Yes Yes Global Yes

Mysqlx_connection_accept_errors Yes Both No

Mysqlx_connection_errors Yes Both No

Mysqlx_connections_accepted Yes Global No

Mysqlx_connections_closed Yes Global No

Mysqlx_connections_rejected Yes Global No

Mysqlx_crud_create_view Yes Both No

Mysqlx_crud_delete Yes Both No

Mysqlx_crud_drop_view Yes Both No

Mysqlx_crud_find Yes Both No

Mysqlx_crud_insert Yes Both No

Mysqlx_crud_modify_view Yes Both No

Mysqlx_crud_update Yes Both No

3264

X Plugin Options and Variables

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

Mysqlx_errors_sent Yes Both No

Mysqlx_errors_unknown_message_type Yes Both No

Mysqlx_expect_close Yes Both No

Mysqlx_expect_open Yes Both No

mysqlx_idle_worker_thread_timeoutYes Yes Yes Global Yes

Mysqlx_init_error Yes Both No

mysqlx_max_allowed_packetYes Yes Yes Global Yes

mysqlx_max_connectionsYes Yes Yes Global Yes

mysqlx_min_worker_threadsYes Yes Yes Global Yes

Mysqlx_notice_other_sent Yes Both No

Mysqlx_notice_warning_sent Yes Both No

Mysqlx_port Yes Global No

mysqlx_port Yes Yes Yes Global No

mysqlx_port_open_timeoutYes Yes Yes Global No

Mysqlx_rows_sent Yes Both No

Mysqlx_sessions Yes Global No

Mysqlx_sessions_accepted Yes Global No

Mysqlx_sessions_closed Yes Global No

Mysqlx_sessions_fatal_error Yes Global No

Mysqlx_sessions_killed Yes Global No

Mysqlx_sessions_rejected Yes Global No

Mysqlx_socket Yes Global No

mysqlx_socket Yes Yes Yes Global No

Mysqlx_ssl_accept_renegotiates Yes Global No

Mysqlx_ssl_accepts Yes Global No

Mysqlx_ssl_active Yes Both No

mysqlx_ssl_ca Yes Yes Yes Global No

mysqlx_ssl_capathYes Yes Yes Global No

mysqlx_ssl_certYes Yes Yes Global No

Mysqlx_ssl_cipher Yes Both No

mysqlx_ssl_cipherYes Yes Yes Global No

Mysqlx_ssl_cipher_list Yes Both No

mysqlx_ssl_crl Yes Yes Yes Global No

mysqlx_ssl_crlpathYes Yes Yes Global No

Mysqlx_ssl_ctx_verify_depth Yes Both No

Mysqlx_ssl_ctx_verify_mode Yes Both No

Mysqlx_ssl_finished_accepts Yes Global No

mysqlx_ssl_keyYes Yes Yes Global No

3265

X Plugin Options and Variables

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

Mysqlx_ssl_server_not_after Yes Global No

Mysqlx_ssl_server_not_before Yes Global No

Mysqlx_ssl_verify_depth Yes Global No

Mysqlx_ssl_verify_mode Yes Global No

Mysqlx_ssl_version Yes Both No

Mysqlx_stmt_create_collection Yes Both No

Mysqlx_stmt_create_collection_index Yes Both No

Mysqlx_stmt_disable_notices Yes Both No

Mysqlx_stmt_drop_collection Yes Both No

Mysqlx_stmt_drop_collection_index Yes Both No

Mysqlx_stmt_enable_notices Yes Both No

Mysqlx_stmt_ensure_collection Yes Both No

Mysqlx_stmt_execute_mysqlx Yes Both No

Mysqlx_stmt_execute_sql Yes Both No

Mysqlx_stmt_execute_xplugin Yes Both No

Mysqlx_stmt_kill_client Yes Both No

Mysqlx_stmt_list_clients Yes Both No

Mysqlx_stmt_list_notices Yes Both No

Mysqlx_stmt_list_objects Yes Both No

Mysqlx_stmt_ping Yes Both No

Mysqlx_worker_threads Yes Global No

Mysqlx_worker_threads_active Yes Global No

19.4.2.2 X Plugin Options and System Variables

To control activation of X Plugin, use this option:

• --mysqlx[=value]

Command-Line Format --mysqlx[=value]

Introduced 5.7.12

Type Enumeration

Default Value ON

Valid Values ON

OFF

FORCE

FORCE_PLUS_PERMANENT

This option controls how the server loads X Plugin at startup. It is available only if the plugin has been
previously registered with INSTALL PLUGIN or is loaded with --plugin-load or --plugin-load-
add.

3266

X Plugin Options and Variables

The option value should be one of those available for plugin-loading options, as described in
Section 5.5.1, “Installing and Uninstalling Plugins”. For example, --mysqlx=FORCE_PLUS_PERMANENT
tells the server to load the plugin and prevent it from being removed while the server is running.

If X Plugin is enabled, it exposes several system variables that permit control over its operation:

• mysqlx_bind_address

Command-Line Format --mysqlx-bind-address=addr

Introduced 5.7.17

System Variable mysqlx_bind_address

Scope Global

Dynamic No

Type String

Default Value *

The network address on which X Plugin listens for TCP/IP connections. This variable is not dynamic and
can be configured only at startup. This is the X Plugin equivalent of the bind_address system variable;
see that variable description for more information.

mysqlx_bind_address accepts a single address value, which may specify a single non-wildcard IP
address or host name, or one of the wildcard address formats that permit listening on multiple network
interfaces (*, 0.0.0.0, or ::).

An IP address can be specified as an IPv4 or IPv6 address. If the value is a host name, X Plugin
resolves the name to an IP address and binds to that address. If a host name resolves to multiple IP
addresses, X Plugin uses the first IPv4 address if there are any, or the first IPv6 address otherwise.

X Plugin treats different types of addresses as follows:

• If the address is *, X Plugin accepts TCP/IP connections on all server host IPv4 interfaces, and, if
the server host supports IPv6, on all IPv6 interfaces. Use this address to permit both IPv4 and IPv6
connections for X Plugin. This value is the default.

• If the address is 0.0.0.0, X Plugin accepts TCP/IP connections on all server host IPv4 interfaces.

• If the address is ::, X Plugin accepts TCP/IP connections on all server host IPv4 and IPv6 interfaces.

• If the address is an IPv4-mapped address, X Plugin accepts TCP/IP connections for that address, in
either IPv4 or IPv6 format. For example, if X Plugin is bound to ::ffff:127.0.0.1, a client such as
MySQL Shell can connect using --host=127.0.0.1 or --host=::ffff:127.0.0.1.

• If the address is a “regular” IPv4 or IPv6 address (such as 127.0.0.1 or ::1), X Plugin accepts TCP/
IP connections only for that IPv4 or IPv6 address.

If binding to the address fails, X Plugin produces an error and the server does not load it.

• mysqlx_connect_timeout

Command-Line Format --mysqlx-connect-timeout=#

Introduced 5.7.12

System Variable mysqlx_connect_timeout

3267

X Plugin Options and Variables

Scope Global

Dynamic Yes

Type Integer

Default Value 30

Minimum Value 1

Maximum Value 1000000000

Unit seconds

The number of seconds X Plugin waits for the first packet to be received from newly connected clients.
This is the X Plugin equivalent of connect_timeout; see that variable description for more information.

• mysqlx_idle_worker_thread_timeout

Command-Line Format --mysqlx-idle-worker-thread-timeout=#

Introduced 5.7.12

System Variable mysqlx_idle_worker_thread_timeout

Scope Global

Dynamic Yes

Type Integer

Default Value 60

Minimum Value 0

Maximum Value 3600

Unit seconds

The number of seconds after which idle worker threads are terminated.

• mysqlx_max_allowed_packet

Command-Line Format --mysqlx-max-allowed-packet=#

Introduced 5.7.12

System Variable mysqlx_max_allowed_packet

Scope Global

Dynamic Yes

Type Integer

Default Value 67108864

Minimum Value 512

Maximum Value 1073741824

Unit bytes

The maximum size of network packets that can be received by X Plugin. This is the X Plugin equivalent
of max_allowed_packet; see that variable description for more information.

• mysqlx_max_connections

Command-Line Format --mysqlx-max-connections=#

3268

X Plugin Options and Variables

Introduced 5.7.12

System Variable mysqlx_max_connections

Scope Global

Dynamic Yes

Type Integer

Default Value 100

Minimum Value 1

Maximum Value 65535

The maximum number of concurrent client connections X Plugin can accept. This is the X Plugin
equivalent of max_connections; see that variable description for more information.

For modifications to this variable, if the new value is smaller than the current number of connections, the
new limit is taken into account only for new connections.

• mysqlx_min_worker_threads

Command-Line Format --mysqlx-min-worker-threads=#

Introduced 5.7.12

System Variable mysqlx_min_worker_threads

Scope Global

Dynamic Yes

Type Integer

Default Value 2

Minimum Value 1

Maximum Value 100

The minimum number of worker threads used by X Plugin for handling client requests.

• mysqlx_port

Command-Line Format --mysqlx-port=port_num

Introduced 5.7.12

System Variable mysqlx_port

Scope Global

Dynamic No

Type Integer

Default Value 33060

Minimum Value 1

Maximum Value 65535

The network port on which X Plugin listens for TCP/IP connections. This is the X Plugin equivalent of
port; see that variable description for more information.

3269

X Plugin Options and Variables

• mysqlx_port_open_timeout

Command-Line Format --mysqlx-port-open-timeout=#

Introduced 5.7.17

System Variable mysqlx_port_open_timeout

Scope Global

Dynamic No

Type Integer

Default Value 0

Minimum Value 0

Maximum Value 120

Unit seconds

The number of seconds X Plugin waits for a TCP/IP port to become free.

• mysqlx_socket

Command-Line Format --mysqlx-socket=file_name

Introduced 5.7.15

System Variable mysqlx_socket

Scope Global

Dynamic No

Type String

Default Value /tmp/mysqlx.sock

The path to a Unix socket file which X Plugin uses for connections. This setting is only used by MySQL
Server when running on Unix operating systems. Clients can use this socket to connect to MySQL
Server using X Plugin.

The default mysqlx_socket path and file name is based on the default path and file name for the main
socket file for MySQL Server, with the addition of an x appended to the file name. The default path and
file name for the main socket file is /tmp/mysql.sock, therefore the default path and file name for the
X Plugin socket file is /tmp/mysqlx.sock.

If you specify an alternative path and file name for the main socket file at server startup using the
socket system variable, this does not affect the default for the X Plugin socket file. In this situation, if
you want to store both sockets at a single path, you must set the mysqlx_socket system variable as
well. For example in a configuration file:

socket=/home/sockets/mysqld/mysql.sock
mysqlx_socket=/home/sockets/xplugin/xplugin.sock

If you change the default path and file name for the main socket file at compile time using the
MYSQL_UNIX_ADDR compile option, this does affect the default for the X Plugin socket file, which is

3270

X Plugin Options and Variables

formed by appending an x to the MYSQL_UNIX_ADDR file name. If you want to set a different default for
the X Plugin socket file at compile time, use the MYSQLX_UNIX_ADDR compile option.

The MYSQLX_UNIX_PORT environment variable can also be used to set a default for the X Plugin socket
file at server startup (see Section 4.9, “Environment Variables”). If you set this environment variable, it
overrides the compiled MYSQLX_UNIX_ADDR value, but is overridden by the mysqlx_socket value.

• mysqlx_ssl_ca

Command-Line Format --mysqlx-ssl-ca=file_name

Introduced 5.7.12

System Variable mysqlx_ssl_ca

Scope Global

Dynamic No

Type File name

Default Value NULL

The mysqlx_ssl_ca system variable is like ssl_ca, except that it applies to X Plugin rather than the
MySQL Server main connection interface. For information about configuring encryption support for X
Plugin, see Section 19.4.1, “Using Encrypted Connections with X Plugin”.

• mysqlx_ssl_capath

Command-Line Format --mysqlx-ssl-capath=dir_name

Introduced 5.7.12

System Variable mysqlx_ssl_capath

Scope Global

Dynamic No

Type Directory name

Default Value NULL

The mysqlx_ssl_capath system variable is like ssl_capath, except that it applies to X Plugin rather
than the MySQL Server main connection interface. For information about configuring encryption support
for X Plugin, see Section 19.4.1, “Using Encrypted Connections with X Plugin”.

• mysqlx_ssl_cert

Command-Line Format --mysqlx-ssl-cert=file_name

Introduced 5.7.12

System Variable mysqlx_ssl_cert

Scope Global

Dynamic No

Type File name

Default Value NULL

The mysqlx_ssl_cert system variable is like ssl_cert, except that it applies to X Plugin rather than
the MySQL Server main connection interface. For information about configuring encryption support for X
Plugin, see Section 19.4.1, “Using Encrypted Connections with X Plugin”.

3271

X Plugin Options and Variables

• mysqlx_ssl_cipher

Command-Line Format --mysqlx-ssl-cipher=name

Introduced 5.7.12

System Variable mysqlx_ssl_cipher

Scope Global

Dynamic No

Type String

Default Value NULL

The mysqlx_ssl_cipher system variable is like ssl_cipher, except that it applies to X Plugin rather
than the MySQL Server main connection interface. For information about configuring encryption support
for X Plugin, see Section 19.4.1, “Using Encrypted Connections with X Plugin”.

• mysqlx_ssl_crl

Command-Line Format --mysqlx-ssl-crl=file_name

Introduced 5.7.12

System Variable mysqlx_ssl_crl

Scope Global

Dynamic No

Type File name

Default Value NULL

The mysqlx_ssl_crl system variable is like ssl_crl, except that it applies to X Plugin rather than
the MySQL Server main connection interface. For information about configuring encryption support for X
Plugin, see Section 19.4.1, “Using Encrypted Connections with X Plugin”.

• mysqlx_ssl_crlpath

Command-Line Format --mysqlx-ssl-crlpath=dir_name

Introduced 5.7.12

System Variable mysqlx_ssl_crlpath

Scope Global

Dynamic No

Type Directory name

Default Value NULL

The mysqlx_ssl_crlpath system variable is like ssl_crlpath, except that it applies to X Plugin
rather than the MySQL Server main connection interface. For information about configuring encryption
support for X Plugin, see Section 19.4.1, “Using Encrypted Connections with X Plugin”.

• mysqlx_ssl_key

Command-Line Format --mysqlx-ssl-key=file_name

Introduced 5.7.12

System Variable mysqlx_ssl_key

3272

X Plugin Options and Variables

Scope Global

Dynamic No

Type File name

Default Value NULL

The mysqlx_ssl_key system variable is like ssl_key, except that it applies to X Plugin rather than
the MySQL Server main connection interface. For information about configuring encryption support for X
Plugin, see Section 19.4.1, “Using Encrypted Connections with X Plugin”.

19.4.2.3 X Plugin Status Variables

The X Plugin status variables have the following meanings.

• Mysqlx_address

The network address which X Plugin is bound to. If the bind has failed, or if the skip_networking
option has been used, the value shows UNDEFINED.

• Mysqlx_bytes_received

The number of bytes received through the network.

• Mysqlx_bytes_sent

The number of bytes sent through the network.

• Mysqlx_connection_accept_errors

The number of connections which have caused accept errors.

• Mysqlx_connection_errors

The number of connections which have caused errors.

• Mysqlx_connections_accepted

The number of connections which have been accepted.

• Mysqlx_connections_closed

The number of connections which have been closed.

• Mysqlx_connections_rejected

The number of connections which have been rejected.

• Mysqlx_crud_create_view

The number of create view requests received.

• Mysqlx_crud_delete

The number of delete requests received.

• Mysqlx_crud_drop_view

The number of drop view requests received.

3273

X Plugin Options and Variables

• Mysqlx_crud_find

The number of find requests received.

• Mysqlx_crud_insert

The number of insert requests received.

• Mysqlx_crud_modify_view

The number of modify view requests received.

• Mysqlx_crud_update

The number of update requests received.

• Mysqlx_errors_sent

The number of errors sent to clients.

• Mysqlx_errors_unknown_message_type

The number of unknown message types that have been received.

• Mysqlx_expect_close

The number of expectation blocks closed.

• Mysqlx_expect_open

The number of expectation blocks opened.

• Mysqlx_init_error

The number of errors during initialisation.

• Mysqlx_notice_other_sent

The number of other types of notices sent back to clients.

• Mysqlx_notice_warning_sent

The number of warning notices sent back to clients.

• Mysqlx_port

The TCP port which X Plugin is listening to. If a network bind has failed, or if the skip_networking
system variable is enabled, the value shows UNDEFINED.

• Mysqlx_rows_sent

The number of rows sent back to clients.

• Mysqlx_sessions

The number of sessions that have been opened.

• Mysqlx_sessions_accepted

The number of session attempts which have been accepted.

3274

X Plugin Options and Variables

• Mysqlx_sessions_closed

The number of sessions that have been closed.

• Mysqlx_sessions_fatal_error

The number of sessions that have closed with a fatal error.

• Mysqlx_sessions_killed

The number of sessions which have been killed.

• Mysqlx_sessions_rejected

The number of session attempts which have been rejected.

• Mysqlx_socket

The Unix socket which X Plugin is listening to.

• Mysqlx_ssl_accept_renegotiates

The number of negotiations needed to establish the connection.

• Mysqlx_ssl_accepts

The number of accepted SSL connections.

• Mysqlx_ssl_active

If SSL is active.

• Mysqlx_ssl_cipher

The current SSL cipher (empty for non-SSL connections).

• Mysqlx_ssl_cipher_list

A list of possible SSL ciphers (empty for non-SSL connections).

• Mysqlx_ssl_ctx_verify_depth

The certificate verification depth limit currently set in ctx.

• Mysqlx_ssl_ctx_verify_mode

The certificate verification mode currently set in ctx.

• Mysqlx_ssl_finished_accepts

The number of successful SSL connections to the server.

• Mysqlx_ssl_server_not_after

The last date for which the SSL certificate is valid.

• Mysqlx_ssl_server_not_before

The first date for which the SSL certificate is valid.

3275

X Plugin Options and Variables

• Mysqlx_ssl_verify_depth

The certificate verification depth for SSL connections.

• Mysqlx_ssl_verify_mode

The certificate verification mode for SSL connections.

• Mysqlx_ssl_version

The name of the protocol used for SSL connections.

• Mysqlx_stmt_create_collection

The number of create collection statements received.

• Mysqlx_stmt_create_collection_index

The number of create collection index statements received.

• Mysqlx_stmt_disable_notices

The number of disable notice statements received.

• Mysqlx_stmt_drop_collection

The number of drop collection statements received.

• Mysqlx_stmt_drop_collection_index

The number of drop collection index statements received.

• Mysqlx_stmt_enable_notices

The number of enable notice statements received.

• Mysqlx_stmt_ensure_collection

The number of ensure collection statements received.

• Mysqlx_stmt_execute_mysqlx

The number of StmtExecute messages received with namespace set to mysqlx.

• Mysqlx_stmt_execute_sql

The number of StmtExecute requests received for the SQL namespace.

• Mysqlx_stmt_execute_xplugin

The number of StmtExecute requests received for the X Plugin namespace.

• Mysqlx_stmt_kill_client

The number of kill client statements received.

• Mysqlx_stmt_list_clients

The number of list client statements received.

3276

Monitoring X Plugin

• Mysqlx_stmt_list_notices

The number of list notice statements received.

• Mysqlx_stmt_list_objects

The number of list object statements received.

• Mysqlx_stmt_ping

The number of ping statements received.

• Mysqlx_worker_threads

The number of worker threads available.

• Mysqlx_worker_threads_active

The number of worker threads currently used.

19.4.3 Monitoring X Plugin

To monitor X Plugin, use the status variables that it exposes. See Section 19.4.2.3, “X Plugin Status
Variables”.

3277

3278

Chapter 20 InnoDB Cluster
This chapter introduces MySQL InnoDB Cluster, which combines MySQL technologies to enable you to
deploy and administer a complete integrated high availability solution for MySQL. This content is a high-
level overview of InnoDB Cluster, for full documentation, see MySQL InnoDB Cluster.

Important

InnoDB Cluster does not provide support for MySQL NDB Cluster. For more
information about MySQL NDB Cluster, see Chapter 21, MySQL NDB Cluster 7.5
and NDB Cluster 7.6 and Section 21.2.6, “MySQL Server Using InnoDB Compared
with NDB Cluster”.

An InnoDB Cluster consists of at least three MySQL Server instances, and it provides high-availability and
scaling features. InnoDB Cluster uses the following MySQL technologies:

• MySQL Shell, which is an advanced client and code editor for MySQL.

• MySQL Server, and Group Replication, which enables a set of MySQL instances to provide high-
availability. InnoDB Cluster provides an alternative, easy to use programmatic way to work with Group
Replication.

• MySQL Router, a lightweight middleware that provides transparent routing between your application and
InnoDB Cluster.

The following diagram shows an overview of how these technologies work together:

Figure 20.1 InnoDB Cluster overview

Being built on MySQL Group Replication, provides features such as automatic membership management,
fault tolerance, automatic failover, and so on. An InnoDB Cluster usually runs in a single-primary mode,

3279

https://dev.mysql.com/doc/mysql-shell/8.0/en/mysql-innodb-cluster.html
https://dev.mysql.com/doc/mysql-shell/8.0/en/
https://dev.mysql.com/doc/mysql-router/8.0/en/

with one primary instance (read-write) and multiple secondary instances (read-only). Advanced users can
also take advantage of a multi-primary mode, where all instances are primaries.

You work with InnoDB Cluster using the AdminAPI, provided as part of MySQL Shell. AdminAPI is
available in JavaScript and Python, and is well suited to scripting and automation of deployments of
MySQL to achieve high-availability and scalability. By using MySQL Shell's AdminAPI, you can avoid the
need to configure many instances manually. Instead, AdminAPI provides an effective modern interface to
sets of MySQL instances and enables you to provision, administer, and monitor your deployment from one
central tool.

To get started with InnoDB Cluster you need to download and install MySQL Shell. You need some hosts
with MySQL Server instances installed, and you can also install MySQL Router.

InnoDB Cluster supports MySQL Clone, which enables you to provision instances simply. In the past,
to provision a new instance before it joins a set of MySQL instances you would need to somehow
manually transfer the transactions to the joining instance. This could involve making file copies, manually
copying them, and so on. Using InnoDB Cluster, you can simply add an instance to the cluster and it is
automatically provisioned.

Similarly, InnoDB Cluster is tightly integrated with MySQL Router, and you can use AdminAPI to work with
them together. MySQL Router can automatically configure itself based on an InnoDB Cluster, in a process
called bootstrapping, which removes the need for you to configure routing manually. MySQL Router then
transparently connects client applications to the InnoDB Cluster, providing routing and load-balancing
for client connections. This integration also enables you to administer some aspects of a MySQL Router
bootstrapped against an InnoDB Cluster using AdminAPI. InnoDB Cluster status information includes
details about MySQL Routers bootstrapped against the cluster. Operations enable you to create MySQL
Router users at the cluster level, to work with the MySQL Routers bootstrapped against the cluster, and so
on.

AdminAPI is compatible with instances running MySQL 5.7, but with a reduced feature set. For more
information, see Using Instances Running MySQL 5.7. For the best experience using AdminAPI and
InnoDB Cluster upgrade to MySQL 8.0.

For more information on these technologies, see the user documentation linked in the descriptions. In
addition to this user documentation, there is developer documentation for all AdminAPI methods in the
MySQL Shell JavaScript API Reference or MySQL Shell Python API Reference, available from Connectors
and APIs.

3280

https://dev.mysql.com/doc/mysql-shell/8.0/en/admin-api-overview.html
https://dev.mysql.com/downloads/shell/
https://dev.mysql.com/doc/mysql-shell/8.0/en/mysql-shell-install.html
https://dev.mysql.com/doc/mysql-router/8.0/en/mysql-router-installation.html
https://dev.mysql.com/doc/refman/8.0/en/clone-plugin.html
https://dev.mysql.com/doc/mysql-shell/8.0/en/add-instances-cluster.html
https://dev.mysql.com/doc/mysql-router/8.0/en/
https://dev.mysql.com/doc/mysql-shell/8.0/en/registered-routers.html
https://dev.mysql.com/doc/mysql-shell/8.0/en/admin-api-bootstrapping-router.html
https://dev.mysql.com/doc/mysql-shell/8.0/en/configuring-router-user.html
https://dev.mysql.com/doc/mysql-shell/8.0/en/configuring-router-user.html
https://dev.mysql.com/doc/mysql-shell/8.0/en/using-version-5-7.html
https://dev.mysql.com/doc/index-connectors.html
https://dev.mysql.com/doc/index-connectors.html

Chapter 21 MySQL NDB Cluster 7.5 and NDB Cluster 7.6

Table of Contents
21.1 General Information ... 3283
21.2 NDB Cluster Overview .. 3285

21.2.1 NDB Cluster Core Concepts ... 3287
21.2.2 NDB Cluster Nodes, Node Groups, Fragment Replicas, and Partitions 3290
21.2.3 NDB Cluster Hardware, Software, and Networking Requirements 3293
21.2.4 What is New in MySQL NDB Cluster .. 3294
21.2.5 NDB: Added, Deprecated, and Removed Options, Variables, and Parameters 3311
21.2.6 MySQL Server Using InnoDB Compared with NDB Cluster ... 3315
21.2.7 Known Limitations of NDB Cluster .. 3318

21.3 NDB Cluster Installation .. 3331
21.3.1 Installation of NDB Cluster on Linux .. 3333
21.3.2 Installing NDB Cluster on Windows ... 3341
21.3.3 Initial Configuration of NDB Cluster ... 3350
21.3.4 Initial Startup of NDB Cluster .. 3352
21.3.5 NDB Cluster Example with Tables and Data .. 3353
21.3.6 Safe Shutdown and Restart of NDB Cluster .. 3356
21.3.7 Upgrading and Downgrading NDB Cluster ... 3357
21.3.8 The NDB Cluster Auto-Installer (NDB 7.5) (NO LONGER SUPPORTED) 3361
21.3.9 The NDB Cluster Auto-Installer (NO LONGER SUPPORTED) 3361

21.4 Configuration of NDB Cluster .. 3361
21.4.1 Quick Test Setup of NDB Cluster .. 3362
21.4.2 Overview of NDB Cluster Configuration Parameters, Options, and Variables 3364
21.4.3 NDB Cluster Configuration Files .. 3383
21.4.4 Using High-Speed Interconnects with NDB Cluster ... 3570

21.5 NDB Cluster Programs .. 3570
21.5.1 ndbd — The NDB Cluster Data Node Daemon .. 3570
21.5.2 ndbinfo_select_all — Select From ndbinfo Tables .. 3581
21.5.3 ndbmtd — The NDB Cluster Data Node Daemon (Multi-Threaded) 3587
21.5.4 ndb_mgmd — The NDB Cluster Management Server Daemon 3588
21.5.5 ndb_mgm — The NDB Cluster Management Client .. 3600
21.5.6 ndb_blob_tool — Check and Repair BLOB and TEXT columns of NDB Cluster Tables 3606
21.5.7 ndb_config — Extract NDB Cluster Configuration Information 3612
21.5.8 ndb_cpcd — Automate Testing for NDB Development .. 3624
21.5.9 ndb_delete_all — Delete All Rows from an NDB Table ... 3624
21.5.10 ndb_desc — Describe NDB Tables ... 3629
21.5.11 ndb_drop_index — Drop Index from an NDB Table .. 3639
21.5.12 ndb_drop_table — Drop an NDB Table ... 3644
21.5.13 ndb_error_reporter — NDB Error-Reporting Utility .. 3648
21.5.14 ndb_import — Import CSV Data Into NDB ... 3650
21.5.15 ndb_index_stat — NDB Index Statistics Utility .. 3669
21.5.16 ndb_move_data — NDB Data Copy Utility ... 3677
21.5.17 ndb_perror — Obtain NDB Error Message Information ... 3683
21.5.18 ndb_print_backup_file — Print NDB Backup File Contents .. 3685
21.5.19 ndb_print_file — Print NDB Disk Data File Contents ... 3685
21.5.20 ndb_print_frag_file — Print NDB Fragment List File Contents 3686
21.5.21 ndb_print_schema_file — Print NDB Schema File Contents .. 3687
21.5.22 ndb_print_sys_file — Print NDB System File Contents ... 3687

3281

21.5.23 ndb_redo_log_reader — Check and Print Content of Cluster Redo Log 3687
21.5.24 ndb_restore — Restore an NDB Cluster Backup .. 3690
21.5.25 ndb_select_all — Print Rows from an NDB Table ... 3721
21.5.26 ndb_select_count — Print Row Counts for NDB Tables .. 3728
21.5.27 ndb_show_tables — Display List of NDB Tables .. 3732
21.5.28 ndb_size.pl — NDBCLUSTER Size Requirement Estimator .. 3737
21.5.29 ndb_top — View CPU usage information for NDB threads .. 3740
21.5.30 ndb_waiter — Wait for NDB Cluster to Reach a Given Status 3747

21.6 Management of NDB Cluster ... 3754
21.6.1 Commands in the NDB Cluster Management Client ... 3755
21.6.2 NDB Cluster Log Messages .. 3761
21.6.3 Event Reports Generated in NDB Cluster .. 3780
21.6.4 Summary of NDB Cluster Start Phases ... 3792
21.6.5 Performing a Rolling Restart of an NDB Cluster ... 3794
21.6.6 NDB Cluster Single User Mode ... 3796
21.6.7 Adding NDB Cluster Data Nodes Online .. 3797
21.6.8 Online Backup of NDB Cluster .. 3808
21.6.9 Importing Data Into MySQL Cluster ... 3813
21.6.10 MySQL Server Usage for NDB Cluster .. 3814
21.6.11 NDB Cluster Disk Data Tables .. 3816
21.6.12 Online Operations with ALTER TABLE in NDB Cluster ... 3822
21.6.13 Distributed Privileges Using Shared Grant Tables .. 3826
21.6.14 NDB API Statistics Counters and Variables ... 3829
21.6.15 ndbinfo: The NDB Cluster Information Database .. 3840
21.6.16 INFORMATION_SCHEMA Tables for NDB Cluster ... 3914
21.6.17 Quick Reference: NDB Cluster SQL Statements .. 3914
21.6.18 NDB Cluster Security Issues ... 3923

21.7 NDB Cluster Replication .. 3930
21.7.1 NDB Cluster Replication: Abbreviations and Symbols ... 3932
21.7.2 General Requirements for NDB Cluster Replication .. 3932
21.7.3 Known Issues in NDB Cluster Replication ... 3933
21.7.4 NDB Cluster Replication Schema and Tables .. 3940
21.7.5 Preparing the NDB Cluster for Replication ... 3947
21.7.6 Starting NDB Cluster Replication (Single Replication Channel) 3949
21.7.7 Using Two Replication Channels for NDB Cluster Replication 3951
21.7.8 Implementing Failover with NDB Cluster Replication .. 3952
21.7.9 NDB Cluster Backups With NDB Cluster Replication .. 3954
21.7.10 NDB Cluster Replication: Bidirectional and Circular Replication 3960
21.7.11 NDB Cluster Replication Conflict Resolution .. 3965

21.8 NDB Cluster Release Notes .. 3978

This chapter provides information about MySQL NDB Cluster, a high-availability, high-redundancy version
of MySQL adapted for the distributed computing environment which enables running several computers
with MySQL servers and other software in a cluster. This chapter also provides information specific to
NDB Cluster 7.5 releases through 5.7.44-ndb-7.5.36 and NDB Cluster 7.6 releases through 5.7.44-
ndb-7.6.36, both of which are previous General Availability (GA) releases still supported in production.
The latest available releases of these are 5.7.44-ndb-7.5.36 and 5.7.44-ndb-7.6.35, respectively. A more
recent NDB Cluster stable release series uses version 8.0 of the NDB storage engine (also known as
NDBCLUSTER). NDB Cluster 8.0, now available as a General Availability (GA) release beginning with
version 8.0.19, incorporates version 8.0 of the NDB storage engine; see MySQL NDB Cluster 8.0, for
more information about NDB 8.0. NDB Cluster 8.4 (NDB 8.4.7), based on version 8.4 of the NDB storage
engine, is also available as an LTS release. See What is New in MySQL NDB Cluster 8.4, for information
about differences in NDB 8.4 as compared to earlier releases. Previous GA releases NDB Cluster 7.4 and

3282

https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.4/en/mysql-cluster-what-is-new.html

General Information

NDB Cluster 7.3 incorporated NDB versions 7.4 and 7.3, respectively. NDB 7.4 and older release series
are no longer supported or maintained. Both NDB 8.0 and NDB 8.1 are supported in production, and are
recommended for new deployments.

21.1 General Information

MySQL NDB Cluster uses the MySQL server with the NDB storage engine. Support for the NDB storage
engine is not included in standard MySQL Server 5.7 binaries built by Oracle. Instead, users of NDB
Cluster binaries from Oracle should upgrade to the most recent binary release of NDB Cluster for
supported platforms—these include RPMs that should work with most Linux distributions. NDB Cluster
users who build from source should use the sources provided for NDB Cluster. (Locations where the
sources can be obtained are listed later in this section.)

Important

MySQL NDB Cluster does not support InnoDB Cluster, which must be deployed
using MySQL Server 5.7 with the InnoDB storage engine as well as additional
applications that are not included in the NDB Cluster distribution. MySQL Server
5.7 binaries cannot be used with MySQL NDB Cluster. For more information about
deploying and using InnoDB Cluster, see MySQL AdminAPI. Section 21.2.6,
“MySQL Server Using InnoDB Compared with NDB Cluster”, discusses differences
between the NDB and InnoDB storage engines.

Supported Platforms. NDB Cluster is currently available and supported on a number of platforms.
For exact levels of support available for on specific combinations of operating system versions,
operating system distributions, and hardware platforms, please refer to https://www.mysql.com/support/
supportedplatforms/cluster.html.

Availability. NDB Cluster binary and source packages are available for supported platforms from
https://dev.mysql.com/downloads/cluster/.

NDB Cluster release numbers. NDB Cluster follows a somewhat different release pattern from the
mainline MySQL Server 5.7 series of releases. In this Manual and other MySQL documentation, we identify
these and later NDB Cluster releases employing a version number that begins with “NDB”. This version
number is that of the NDBCLUSTER storage engine used in the release, and not of the MySQL server
version on which the NDB Cluster release is based.

Version strings used in NDB Cluster software. The version string displayed by NDB Cluster
programs uses this format:

mysql-mysql_server_version-ndb-ndb_engine_version

mysql_server_version represents the version of the MySQL Server on which the NDB Cluster release
is based. For all NDB Cluster 7.5 and NDB Cluster 7.6 releases, this is “5.7”. ndb_engine_version is
the version of the NDB storage engine used by this release of the NDB Cluster software. You can see this
format used in the mysql client, as shown here:

$> mysql
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 2
Server version: 5.7.44-ndb-7.5.36 Source distribution

Type 'help;' or '\h' for help. Type '\c' to clear the buffer.

mysql> SELECT VERSION()\G

3283

https://dev.mysql.com/doc/mysql-shell/8.0/en/admin-api-userguide.html
https://www.mysql.com/support/supportedplatforms/cluster.html
https://www.mysql.com/support/supportedplatforms/cluster.html
https://dev.mysql.com/downloads/cluster/

General Information

*************************** 1. row ***************************
VERSION(): 5.7.44-ndb-7.5.36
1 row in set (0.00 sec)

This version string is also displayed in the output of the SHOW command in the ndb_mgm client:

ndb_mgm> SHOW
Connected to Management Server at: localhost:1186
Cluster Configuration

[ndbd(NDB)] 2 node(s)
id=1 @10.0.10.6 (5.7.44-ndb-7.5.36, Nodegroup: 0, *)
id=2 @10.0.10.8 (5.7.44-ndb-7.5.36, Nodegroup: 0)

[ndb_mgmd(MGM)] 1 node(s)
id=3 @10.0.10.2 (5.7.44-ndb-7.5.36)

[mysqld(API)] 2 node(s)
id=4 @10.0.10.10 (5.7.44-ndb-7.5.36)
id=5 (not connected, accepting connect from any host)

The version string identifies the mainline MySQL version from which the NDB Cluster release was
branched and the version of the NDB storage engine used. For example, the full version string for NDB
7.5.4 (the first NDB 7.5 GA release) was mysql-5.7.16-ndb-7.5.4. From this we can determine the
following:

• Since the portion of the version string preceding -ndb- is the base MySQL Server version, this means
that NDB 7.5.4 derived from MySQL 5.7.16, and contained all feature enhancements and bug fixes from
MySQL 5.7 up to and including MySQL 5.7.16.

• Since the portion of the version string following -ndb- represents the version number of the NDB (or
NDBCLUSTER) storage engine, NDB 7.5.4 used version 7.5.4 of the NDBCLUSTER storage engine.

New NDB Cluster releases are numbered according to updates in the NDB storage engine, and do not
necessarily correspond in a one-to-one fashion with mainline MySQL Server releases. For example, NDB
7.5.4 (as previously noted) was based on MySQL 5.7.16, while NDB 7.5.3 was based on MySQL 5.7.13
(version string: mysql-5.7.13-ndb-7.5.3).

Compatibility with standard MySQL 5.7 releases. While many standard MySQL schemas and
applications can work using NDB Cluster, it is also true that unmodified applications and database
schemas may be slightly incompatible or have suboptimal performance when run using NDB Cluster (see
Section 21.2.7, “Known Limitations of NDB Cluster”). Most of these issues can be overcome, but this also
means that you are very unlikely to be able to switch an existing application datastore—that currently
uses, for example, MyISAM or InnoDB—to use the NDB storage engine without allowing for the possibility
of changes in schemas, queries, and applications. In addition, the MySQL Server and NDB Cluster
codebases diverge considerably, so that the standard mysqld cannot function as a drop-in replacement for
the version of mysqld supplied with NDB Cluster.

NDB Cluster development source trees. NDB Cluster development trees can also be accessed from
https://github.com/mysql/mysql-server.

The NDB Cluster development sources maintained at https://github.com/mysql/mysql-server are licensed
under the GPL. For information about obtaining MySQL sources using Git and building them yourself, see
Section 2.8.5, “Installing MySQL Using a Development Source Tree”.

Note

NDB Cluster 7.6 releases are built using CMake.

3284

https://github.com/mysql/mysql-server
https://github.com/mysql/mysql-server

NDB Cluster Overview

NDB Cluster 8.0 (GA) and NDB Cluster 8.4 (LTS), are recommended for new deployments; see What
is New in MySQL NDB Cluster 8.0, and What is New in MySQL NDB Cluster 8.4, respectively, for more
information about these release series. NDB Cluster 9.3 is also available as an Innovation release (see
What is New in MySQL NDB Cluster 9.4). NDB Cluster 7.6 is a previous GA release still supported in
production. NDB Cluster 7.5 and earlier are previous GA releases which are no longer maintained. We
recommend that new deployments for production use MySQL NDB Cluster 8.0.

The contents of this chapter are subject to revision as NDB Cluster continues to evolve. Additional
information regarding NDB Cluster can be found on the MySQL website at http://www.mysql.com/products/
cluster/.

Additional Resources. More information about NDB Cluster can be found in the following places:

• For answers to some commonly asked questions about NDB Cluster, see Section A.10, “MySQL 5.7
FAQ: NDB Cluster”.

• The NDB Cluster Forum: https://forums.mysql.com/list.php?25.

• Many NDB Cluster users and developers blog about their experiences with NDB Cluster, and make
feeds of these available through PlanetMySQL.

21.2 NDB Cluster Overview

NDB Cluster is a technology that enables clustering of in-memory databases in a shared-nothing system.
The shared-nothing architecture enables the system to work with very inexpensive hardware, and with a
minimum of specific requirements for hardware or software.

NDB Cluster is designed not to have any single point of failure. In a shared-nothing system, each
component is expected to have its own memory and disk, and the use of shared storage mechanisms such
as network shares, network file systems, and SANs is not recommended or supported.

NDB Cluster integrates the standard MySQL server with an in-memory clustered storage engine called NDB
(which stands for “Network DataBase”). In our documentation, the term NDB refers to the part of the setup
that is specific to the storage engine, whereas “MySQL NDB Cluster” refers to the combination of one or
more MySQL servers with the NDB storage engine.

An NDB Cluster consists of a set of computers, known as hosts, each running one or more processes.
These processes, known as nodes, may include MySQL servers (for access to NDB data), data nodes
(for storage of the data), one or more management servers, and possibly other specialized data access
programs. The relationship of these components in an NDB Cluster is shown here:

3285

https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster-what-is-new.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster-what-is-new.html
https://dev.mysql.com/doc/refman/8.4/en/mysql-cluster-what-is-new.html
https://dev.mysql.com/doc/refman/9.4/en/mysql-cluster-what-is-new.html
http://www.mysql.com/products/cluster/
http://www.mysql.com/products/cluster/
https://forums.mysql.com/list.php?25
http://www.planetmysql.org/

NDB Cluster Overview

Figure 21.1 NDB Cluster Components

All these programs work together to form an NDB Cluster (see Section 21.5, “NDB Cluster Programs”.
When data is stored by the NDB storage engine, the tables (and table data) are stored in the data nodes.
Such tables are directly accessible from all other MySQL servers (SQL nodes) in the cluster. Thus, in a
payroll application storing data in a cluster, if one application updates the salary of an employee, all other
MySQL servers that query this data can see this change immediately.

Although an NDB Cluster SQL node uses the mysqld server daemon, it differs in a number of critical
respects from the mysqld binary supplied with the MySQL 5.7 distributions, and the two versions of
mysqld are not interchangeable.

In addition, a MySQL server that is not connected to an NDB Cluster cannot use the NDB storage engine
and cannot access any NDB Cluster data.

The data stored in the data nodes for NDB Cluster can be mirrored; the cluster can handle failures of
individual data nodes with no other impact than that a small number of transactions are aborted due to
losing the transaction state. Because transactional applications are expected to handle transaction failure,
this should not be a source of problems.

Individual nodes can be stopped and restarted, and can then rejoin the system (cluster). Rolling restarts
(in which all nodes are restarted in turn) are used in making configuration changes and software upgrades
(see Section 21.6.5, “Performing a Rolling Restart of an NDB Cluster”). Rolling restarts are also used as
part of the process of adding new data nodes online (see Section 21.6.7, “Adding NDB Cluster Data Nodes
Online”). For more information about data nodes, how they are organized in an NDB Cluster, and how they

3286

NDB Cluster Core Concepts

handle and store NDB Cluster data, see Section 21.2.2, “NDB Cluster Nodes, Node Groups, Fragment
Replicas, and Partitions”.

Backing up and restoring NDB Cluster databases can be done using the NDB-native functionality
found in the NDB Cluster management client and the ndb_restore program included in the NDB
Cluster distribution. For more information, see Section 21.6.8, “Online Backup of NDB Cluster”, and
Section 21.5.24, “ndb_restore — Restore an NDB Cluster Backup”. You can also use the standard
MySQL functionality provided for this purpose in mysqldump and the MySQL server. See Section 4.5.4,
“mysqldump — A Database Backup Program”, for more information.

NDB Cluster nodes can employ different transport mechanisms for inter-node communications; TCP/IP
over standard 100 Mbps or faster Ethernet hardware is used in most real-world deployments.

21.2.1 NDB Cluster Core Concepts

NDBCLUSTER (also known as NDB) is an in-memory storage engine offering high-availability and data-
persistence features.

The NDBCLUSTER storage engine can be configured with a range of failover and load-balancing options,
but it is easiest to start with the storage engine at the cluster level. NDB Cluster's NDB storage engine
contains a complete set of data, dependent only on other data within the cluster itself.

The “Cluster” portion of NDB Cluster is configured independently of the MySQL servers. In an NDB
Cluster, each part of the cluster is considered to be a node.

Note

In many contexts, the term “node” is used to indicate a computer, but when
discussing NDB Cluster it means a process. It is possible to run multiple nodes on a
single computer; for a computer on which one or more cluster nodes are being run
we use the term cluster host.

There are three types of cluster nodes, and in a minimal NDB Cluster configuration, there must be at least
three nodes, one of each of these types:

• Management node: The role of this type of node is to manage the other nodes within the NDB Cluster,
performing such functions as providing configuration data, starting and stopping nodes, and running
backups. Because this node type manages the configuration of the other nodes, a node of this type
should be started first, before any other node. A management node is started with the command
ndb_mgmd.

• Data node: This type of node stores cluster data. There are as many data nodes as there are
fragment replicas, times the number of fragments (see Section 21.2.2, “NDB Cluster Nodes, Node
Groups, Fragment Replicas, and Partitions”). For example, with two fragment replicas, each having
two fragments, you need four data nodes. One fragment replica is sufficient for data storage, but
provides no redundancy; therefore, it is recommended to have two (or more) fragment replicas to
provide redundancy, and thus high availability. A data node is started with the command ndbd (see
Section 21.5.1, “ndbd — The NDB Cluster Data Node Daemon”) or ndbmtd (see Section 21.5.3,
“ndbmtd — The NDB Cluster Data Node Daemon (Multi-Threaded)”).

NDB Cluster tables are normally stored completely in memory rather than on disk (this is why we refer to
NDB Cluster as an in-memory database). However, some NDB Cluster data can be stored on disk; see
Section 21.6.11, “NDB Cluster Disk Data Tables”, for more information.

• SQL node: This is a node that accesses the cluster data. In the case of NDB Cluster, an SQL node is a
traditional MySQL server that uses the NDBCLUSTER storage engine. An SQL node is a mysqld process

3287

NDB Cluster Core Concepts

started with the --ndbcluster and --ndb-connectstring options, which are explained elsewhere
in this chapter, possibly with additional MySQL server options as well.

An SQL node is actually just a specialized type of API node, which designates any application which
accesses NDB Cluster data. Another example of an API node is the ndb_restore utility that is used
to restore a cluster backup. It is possible to write such applications using the NDB API. For basic
information about the NDB API, see Getting Started with the NDB API.

Important

It is not realistic to expect to employ a three-node setup in a production
environment. Such a configuration provides no redundancy; to benefit from NDB
Cluster's high-availability features, you must use multiple data and SQL nodes. The
use of multiple management nodes is also highly recommended.

For a brief introduction to the relationships between nodes, node groups, fragment replicas, and partitions
in NDB Cluster, see Section 21.2.2, “NDB Cluster Nodes, Node Groups, Fragment Replicas, and
Partitions”.

Configuration of a cluster involves configuring each individual node in the cluster and setting up individual
communication links between nodes. NDB Cluster is currently designed with the intention that data nodes
are homogeneous in terms of processor power, memory space, and bandwidth. In addition, to provide a
single point of configuration, all configuration data for the cluster as a whole is located in one configuration
file.

The management server manages the cluster configuration file and the cluster log. Each node in the
cluster retrieves the configuration data from the management server, and so requires a way to determine
where the management server resides. When interesting events occur in the data nodes, the nodes
transfer information about these events to the management server, which then writes the information to the
cluster log.

In addition, there can be any number of cluster client processes or applications. These include standard
MySQL clients, NDB-specific API programs, and management clients. These are described in the next few
paragraphs.

Standard MySQL clients. NDB Cluster can be used with existing MySQL applications written in PHP,
Perl, C, C++, Java, Python, and so on. Such client applications send SQL statements to and receive
responses from MySQL servers acting as NDB Cluster SQL nodes in much the same way that they interact
with standalone MySQL servers.

MySQL clients using an NDB Cluster as a data source can be modified to take advantage of the ability
to connect with multiple MySQL servers to achieve load balancing and failover. For example, Java
clients using Connector/J 5.0.6 and later can use jdbc:mysql:loadbalance:// URLs (improved in
Connector/J 5.1.7) to achieve load balancing transparently; for more information about using Connector/J
with NDB Cluster, see Using Connector/J with NDB Cluster.

NDB client programs. Client programs can be written that access NDB Cluster data directly from the
NDBCLUSTER storage engine, bypassing any MySQL Servers that may be connected to the cluster, using
the NDB API, a high-level C++ API. Such applications may be useful for specialized purposes where an
SQL interface to the data is not needed. For more information, see The NDB API.

NDB-specific Java applications can also be written for NDB Cluster using the NDB Cluster Connector for
Java. This NDB Cluster Connector includes ClusterJ, a high-level database API similar to object-relational
mapping persistence frameworks such as Hibernate and JPA that connect directly to NDBCLUSTER, and so
does not require access to a MySQL Server. See Java and NDB Cluster, and The ClusterJ API and Data
Object Model, for more information.

3288

https://dev.mysql.com/doc/ndbapi/en/ndb-getting-started.html
https://dev.mysql.com/doc/ndbapi/en/mccj-using-connectorj.html
https://dev.mysql.com/doc/ndbapi/en/ndbapi.html
https://dev.mysql.com/doc/ndbapi/en/mccj-overview-java.html
https://dev.mysql.com/doc/ndbapi/en/mccj-overview-clusterj-object-models.html
https://dev.mysql.com/doc/ndbapi/en/mccj-overview-clusterj-object-models.html

NDB Cluster Core Concepts

Management clients. These clients connect to the management server and provide commands for
starting and stopping nodes gracefully, starting and stopping message tracing (debug versions only),
showing node versions and status, starting and stopping backups, and so on. An example of this type of
program is the ndb_mgm management client supplied with NDB Cluster (see Section 21.5.5, “ndb_mgm
— The NDB Cluster Management Client”). Such applications can be written using the MGM API, a C-
language API that communicates directly with one or more NDB Cluster management servers. For more
information, see The MGM API.

Oracle also makes available MySQL Cluster Manager, which provides an advanced command-line
interface simplifying many complex NDB Cluster management tasks, such restarting an NDB Cluster with
a large number of nodes. The MySQL Cluster Manager client also supports commands for getting and
setting the values of most node configuration parameters as well as mysqld server options and variables
relating to NDB Cluster. See MySQL Cluster Manager 1.4.8 User Manual, for more information.

Event logs. NDB Cluster logs events by category (startup, shutdown, errors, checkpoints, and so on),
priority, and severity. A complete listing of all reportable events may be found in Section 21.6.3, “Event
Reports Generated in NDB Cluster”. Event logs are of the two types listed here:

• Cluster log: Keeps a record of all desired reportable events for the cluster as a whole.

• Node log: A separate log which is also kept for each individual node.

Note

Under normal circumstances, it is necessary and sufficient to keep and examine
only the cluster log. The node logs need be consulted only for application
development and debugging purposes.

Checkpoint. Generally speaking, when data is saved to disk, it is said that a checkpoint has been
reached. More specific to NDB Cluster, a checkpoint is a point in time where all committed transactions
are stored on disk. With regard to the NDB storage engine, there are two types of checkpoints which work
together to ensure that a consistent view of the cluster's data is maintained. These are shown in the
following list:

• Local Checkpoint (LCP): This is a checkpoint that is specific to a single node; however, LCPs take place
for all nodes in the cluster more or less concurrently. An LCP usually occurs every few minutes; the
precise interval varies, and depends upon the amount of data stored by the node, the level of cluster
activity, and other factors.

Previously, an LCP involved saving all of a node's data to disk. NDB 7.6 introduces support
for partial LCPs, which can significantly improve recovery time under some conditions. See
Section 21.2.4.2, “What is New in NDB Cluster 7.6”, for more information, as well as the descriptions of
the EnablePartialLcp and RecoveryWork configuration parameters which enable partial LCPs and
control the amount of storage they use.

• Global Checkpoint (GCP): A GCP occurs every few seconds, when transactions for all nodes are
synchronized and the redo-log is flushed to disk.

For more information about the files and directories created by local checkpoints and global checkpoints,
see NDB Cluster Data Node File System Directory.

Transporter. We use the term transporter for the data transport mechanism employed between data
nodes. MySQL NDB Cluster 7.5 and 7.6 support three of these, which are listed here:

• TCP/IP over Ethernet. See Section 21.4.3.10, “NDB Cluster TCP/IP Connections”.

• Direct TCP/IP. Uses machine-to-machine connections. See Section 21.4.3.11, “NDB Cluster TCP/IP
Connections Using Direct Connections”.

3289

https://dev.mysql.com/doc/ndbapi/en/mgm-api.html
https://dev.mysql.com/doc/mysql-cluster-manager/1.4/en/
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-ndbd-filesystemdir-files.html

NDB Cluster Nodes, Node Groups, Fragment Replicas, and Partitions

Although this transporter uses the same TCP/IP protocol as mentioned in the previous item, it requires
setting up the hardware differently and is configured differently as well. For this reason, it is considered a
separate transport mechanism for NDB Cluster.

• Shared memory (SHM). See Section 21.4.3.12, “NDB Cluster Shared Memory Connections”.

Because it is ubiquitous, most users employ TCP/IP over Ethernet for NDB Cluster.

Regardless of the transporter used, NDB attempts to make sure that communication between data node
processes is performed using chunks that are as large as possible since this benefits all types of data
transmission.

21.2.2 NDB Cluster Nodes, Node Groups, Fragment Replicas, and Partitions

This section discusses the manner in which NDB Cluster divides and duplicates data for storage.

A number of concepts central to an understanding of this topic are discussed in the next few paragraphs.

Data node. An ndbd or ndbmtd process, which stores one or more fragment replicas—that is, copies of
the partitions (discussed later in this section) assigned to the node group of which the node is a member.

Each data node should be located on a separate computer. While it is also possible to host multiple data
node processes on a single computer, such a configuration is not usually recommended.

It is common for the terms “node” and “data node” to be used interchangeably when referring to an ndbd or
ndbmtd process; where mentioned, management nodes (ndb_mgmd processes) and SQL nodes (mysqld
processes) are specified as such in this discussion.

Node group. A node group consists of one or more nodes, and stores partitions, or sets of fragment
replicas (see next item).

The number of node groups in an NDB Cluster is not directly configurable; it is a function of the number of
data nodes and of the number of fragment replicas (NoOfReplicas configuration parameter), as shown
here:

[# of node groups] = [# of data nodes] / NoOfReplicas

Thus, an NDB Cluster with 4 data nodes has 4 node groups if NoOfReplicas is set to 1 in the
config.ini file, 2 node groups if NoOfReplicas is set to 2, and 1 node group if NoOfReplicas is set
to 4. Fragment replicas are discussed later in this section; for more information about NoOfReplicas, see
Section 21.4.3.6, “Defining NDB Cluster Data Nodes”.

Note

All node groups in an NDB Cluster must have the same number of data nodes.

You can add new node groups (and thus new data nodes) online, to a running NDB Cluster; see
Section 21.6.7, “Adding NDB Cluster Data Nodes Online”, for more information.

Partition. This is a portion of the data stored by the cluster. Each node is responsible for keeping at
least one copy of any partitions assigned to it (that is, at least one fragment replica) available to the cluster.

The number of partitions used by default by NDB Cluster depends on the number of data nodes and the
number of LDM threads in use by the data nodes, as shown here:

3290

NDB Cluster Nodes, Node Groups, Fragment Replicas, and Partitions

[# of partitions] = [# of data nodes] * [# of LDM threads]

When using data nodes running ndbmtd, the number of LDM threads is controlled by the setting for
MaxNoOfExecutionThreads. When using ndbd there is a single LDM thread, which means that there
are as many cluster partitions as nodes participating in the cluster. This is also the case when using
ndbmtd with MaxNoOfExecutionThreads set to 3 or less. (You should be aware that the number of
LDM threads increases with the value of this parameter, but not in a strictly linear fashion, and that there
are additional constraints on setting it; see the description of MaxNoOfExecutionThreads for more
information.)

NDB and user-defined partitioning. NDB Cluster normally partitions NDBCLUSTER tables
automatically. However, it is also possible to employ user-defined partitioning with NDBCLUSTER tables.
This is subject to the following limitations:

1. Only the KEY and LINEAR KEY partitioning schemes are supported in production with NDB tables.

2. The maximum number of partitions that may be defined explicitly for any NDB table is 8 * [number
of LDM threads] * [number of node groups], the number of node groups in an NDB Cluster
being determined as discussed previously in this section. When running ndbd for data node processes,
setting the number of LDM threads has no effect (since ThreadConfig applies only to ndbmtd);
in such cases, this value can be treated as though it were equal to 1 for purposes of performing this
calculation.

See Section 21.5.3, “ndbmtd — The NDB Cluster Data Node Daemon (Multi-Threaded)”, for more
information.

For more information relating to NDB Cluster and user-defined partitioning, see Section 21.2.7, “Known
Limitations of NDB Cluster”, and Section 22.6.2, “Partitioning Limitations Relating to Storage Engines”.

Fragment replica. This is a copy of a cluster partition. Each node in a node group stores a fragment
replica. Also sometimes known as a partition replica. The number of fragment replicas is equal to the
number of nodes per node group.

A fragment replica belongs entirely to a single node; a node can (and usually does) store several fragment
replicas.

The following diagram illustrates an NDB Cluster with four data nodes running ndbd, arranged in two node
groups of two nodes each; nodes 1 and 2 belong to node group 0, and nodes 3 and 4 belong to node
group 1.

Note

Only data nodes are shown here; although a working NDB Cluster requires an
ndb_mgmd process for cluster management and at least one SQL node to access
the data stored by the cluster, these have been omitted from the figure for clarity.

3291

NDB Cluster Nodes, Node Groups, Fragment Replicas, and Partitions

Figure 21.2 NDB Cluster with Two Node Groups

The data stored by the cluster is divided into four partitions, numbered 0, 1, 2, and 3. Each partition is
stored—in multiple copies—on the same node group. Partitions are stored on alternate node groups as
follows:

• Partition 0 is stored on node group 0; a primary fragment replica (primary copy) is stored on node 1, and
a backup fragment replica (backup copy of the partition) is stored on node 2.

• Partition 1 is stored on the other node group (node group 1); this partition's primary fragment replica is
on node 3, and its backup fragment replica is on node 4.

• Partition 2 is stored on node group 0. However, the placing of its two fragment replicas is reversed from
that of Partition 0; for Partition 2, the primary fragment replica is stored on node 2, and the backup on
node 1.

• Partition 3 is stored on node group 1, and the placement of its two fragment replicas are reversed from
those of partition 1. That is, its primary fragment replica is located on node 4, with the backup on node 3.

What this means regarding the continued operation of an NDB Cluster is this: so long as each node group
participating in the cluster has at least one node operating, the cluster has a complete copy of all data and
remains viable. This is illustrated in the next diagram.

3292

NDB Cluster Hardware, Software, and Networking Requirements

Figure 21.3 Nodes Required for a 2x2 NDB Cluster

In this example, the cluster consists of two node groups each consisting of two data nodes. Each data
node is running an instance of ndbd. Any combination of at least one node from node group 0 and at least
one node from node group 1 is sufficient to keep the cluster “alive”. However, if both nodes from a single
node group fail, the combination consisting of the remaining two nodes in the other node group is not
sufficient. In this situation, the cluster has lost an entire partition and so can no longer provide access to a
complete set of all NDB Cluster data.

In NDB 7.5.4 and later, the maximum number of node groups supported for a single NDB Cluster instance
is 48 (Bug#80845, Bug #22996305).

21.2.3 NDB Cluster Hardware, Software, and Networking Requirements

One of the strengths of NDB Cluster is that it can be run on commodity hardware and has no unusual
requirements in this regard, other than for large amounts of RAM, due to the fact that all live data storage
is done in memory. (It is possible to reduce this requirement using Disk Data tables—see Section 21.6.11,
“NDB Cluster Disk Data Tables”, for more information about these.) Naturally, multiple and faster CPUs
can enhance performance. Memory requirements for other NDB Cluster processes are relatively small.

The software requirements for NDB Cluster are also modest. Host operating systems do not require any
unusual modules, services, applications, or configuration to support NDB Cluster. For supported operating
systems, a standard installation should be sufficient. The MySQL software requirements are simple: all that
is needed is a production release of NDB Cluster. It is not strictly necessary to compile MySQL yourself
merely to be able to use NDB Cluster. We assume that you are using the binaries appropriate to your
platform, available from the NDB Cluster software downloads page at https://dev.mysql.com/downloads/
cluster/.

For communication between nodes, NDB Cluster supports TCP/IP networking in any standard topology,
and the minimum expected for each host is a standard 100 Mbps Ethernet card, plus a switch, hub, or
router to provide network connectivity for the cluster as a whole. We strongly recommend that an NDB
Cluster be run on its own subnet which is not shared with machines not forming part of the cluster for the
following reasons:

• Security. Communications between NDB Cluster nodes are not encrypted or shielded in any way.
The only means of protecting transmissions within an NDB Cluster is to run your NDB Cluster on a
protected network. If you intend to use NDB Cluster for Web applications, the cluster should definitely
reside behind your firewall and not in your network's De-Militarized Zone (DMZ) or elsewhere.

3293

https://dev.mysql.com/downloads/cluster/
https://dev.mysql.com/downloads/cluster/
http://compnetworking.about.com/cs/networksecurity/g/bldef_dmz.htm

What is New in MySQL NDB Cluster

See Section 21.6.18.1, “NDB Cluster Security and Networking Issues”, for more information.

• Efficiency. Setting up an NDB Cluster on a private or protected network enables the cluster to make
exclusive use of bandwidth between cluster hosts. Using a separate switch for your NDB Cluster not only
helps protect against unauthorized access to NDB Cluster data, it also ensures that NDB Cluster nodes
are shielded from interference caused by transmissions between other computers on the network. For
enhanced reliability, you can use dual switches and dual cards to remove the network as a single point
of failure; many device drivers support failover for such communication links.

Network communication and latency. NDB Cluster requires communication between data nodes
and API nodes (including SQL nodes), as well as between data nodes and other data nodes, to execute
queries and updates. Communication latency between these processes can directly affect the observed
performance and latency of user queries. In addition, to maintain consistency and service despite the
silent failure of nodes, NDB Cluster uses heartbeating and timeout mechanisms which treat an extended
loss of communication from a node as node failure. This can lead to reduced redundancy. Recall that, to
maintain data consistency, an NDB Cluster shuts down when the last node in a node group fails. Thus, to
avoid increasing the risk of a forced shutdown, breaks in communication between nodes should be avoided
wherever possible.

The failure of a data or API node results in the abort of all uncommitted transactions involving the failed
node. Data node recovery requires synchronization of the failed node's data from a surviving data node,
and re-establishment of disk-based redo and checkpoint logs, before the data node returns to service. This
recovery can take some time, during which the Cluster operates with reduced redundancy.

Heartbeating relies on timely generation of heartbeat signals by all nodes. This may not be possible if the
node is overloaded, has insufficient machine CPU due to sharing with other programs, or is experiencing
delays due to swapping. If heartbeat generation is sufficiently delayed, other nodes treat the node that is
slow to respond as failed.

This treatment of a slow node as a failed one may or may not be desirable in some circumstances,
depending on the impact of the node's slowed operation on the rest of the cluster. When setting timeout
values such as HeartbeatIntervalDbDb and HeartbeatIntervalDbApi for NDB Cluster, care
must be taken care to achieve quick detection, failover, and return to service, while avoiding potentially
expensive false positives.

Where communication latencies between data nodes are expected to be higher than would be expected
in a LAN environment (on the order of 100 µs), timeout parameters must be increased to ensure that any
allowed periods of latency periods are well within configured timeouts. Increasing timeouts in this way has
a corresponding effect on the worst-case time to detect failure and therefore time to service recovery.

LAN environments can typically be configured with stable low latency, and such that they can provide
redundancy with fast failover. Individual link failures can be recovered from with minimal and controlled
latency visible at the TCP level (where NDB Cluster normally operates). WAN environments may offer a
range of latencies, as well as redundancy with slower failover times. Individual link failures may require
route changes to propagate before end-to-end connectivity is restored. At the TCP level this can appear as
large latencies on individual channels. The worst-case observed TCP latency in these scenarios is related
to the worst-case time for the IP layer to reroute around the failures.

21.2.4 What is New in MySQL NDB Cluster

The following sections describe changes in the implementation of MySQL NDB Cluster in NDB Cluster 7.6
through 5.7.44-ndb-7.6.36 and NDB Cluster 7.5 through 5.7.44-ndb-7.5.36 as compared to earlier release
series. NDB Cluster 8.0 is available as a General Availability (GA) release, beginning with NDB 8.0.19; see
What is New in MySQL NDB Cluster 8.0, for more information about new features and other changes in
NDB 8.0. NDB Cluster 7.6 and 7.5 are previous GA releases still supported in production; for information

3294

https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster-what-is-new.html

What is New in MySQL NDB Cluster

about NDB Cluster 7.6, see Section 21.2.4.2, “What is New in NDB Cluster 7.6”. For information about
NDB Cluster 7.5, see Section 21.2.4.1, “What is New in NDB Cluster 7.5”. NDB Cluster 7.4 and 7.3
were previous GA releases which have reached their end of life, and which are no longer supported or
maintained. We recommend that new deployments for production use MySQL NDB Cluster 8.0.

21.2.4.1 What is New in NDB Cluster 7.5

Major changes and new features in NDB Cluster 7.5 which are likely to be of interest are shown in the
following list:

• ndbinfo Enhancements. A number of changes are made in the ndbinfo database, chief of which is
that it now provides detailed information about NDB Cluster node configuration parameters.

The config_params table has been made read-only, and has been enhanced with additional columns
providing information about each configuration parameter, including the parameter's type, default value,
maximum and minimum values (where applicable), a brief description of the parameter, and whether the
parameter is required. This table also provides each parameter with a unique param_number.

A row in the config_values table shows the current value of a given parameter on the node having a
specified ID. The parameter is identified by the value of the config_param column, which maps to the
config_params table's param_number.

Using this relationship you can write a join on these two tables to obtain the default, maximum, minimum,
and current values for one or more NDB Cluster configuration parameters by name. An example SQL
statement using such a join is shown here:

SELECT p.param_name AS Name,
 v.node_id AS Node,
 p.param_type AS Type,
 p.param_default AS 'Default',
 p.param_min AS Minimum,
 p.param_max AS Maximum,
 CASE p.param_mandatory WHEN 1 THEN 'Y' ELSE 'N' END AS 'Required',
 v.config_value AS Current
FROM config_params p
JOIN config_values v
ON p.param_number = v.config_param
WHERE p. param_name IN ('NodeId', 'HostName','DataMemory', 'IndexMemory');

For more information about these changes, see Section 21.6.15.8, “The ndbinfo config_params Table”.
See Section 21.6.15.9, “The ndbinfo config_values Table”, for further information and examples.

In addition, the ndbinfo database no longer depends on the MyISAM storage engine. All ndbinfo
tables and views now use NDB (shown as NDBINFO).

Several new ndbinfo tables were introduced in NDB 7.5.4. These tables are listed here, with brief
descriptions:

• dict_obj_info provides the names and types of database objects in NDB, as well as information
about parent obejcts where applicable

• table_distribution_status provides NDB table distribution status information

• table_fragments provides information about the distribution of NDB table fragments

• table_info provides information about logging, checkpointing, storage, and other options in force
for each NDB table

• table_replicas provides information about fragment replicas

3295

What is New in MySQL NDB Cluster

See the descriptions of the individual tables for more information.

• Default row and column format changes. Starting with NDB 7.5.1, the default value for both the
ROW_FORMAT option and the COLUMN_FORMAT option for CREATE TABLE can be set to DYNAMIC
rather than FIXED, using a new MySQL server variable ndb_default_column_format is added
as part of this change; set this to FIXED or DYNAMIC (or start mysqld with the equivalent option --
ndb-default-column-format=FIXED) to force this value to be used for COLUMN_FORMAT and
ROW_FORMAT. Prior to NDB 7.5.4, the default for this variable was DYNAMIC; in this and later versions,
the default is FIXED, which provides backwards compatibility with prior releases (Bug #24487363).

The row format and column format used by existing table columns are unaffected by this change.
New columns added to such tables use the new defaults for these (possibly overridden by
ndb_default_column_format), and existing columns are changed to use these as well, provided
that the ALTER TABLE statement performing this operation specifies ALGORITHM=COPY.

Note

A copying ALTER TABLE cannot be done implicitly if mysqld is run with --ndb-
allow-copying-alter-table=FALSE.

• ndb_binlog_index no longer dependent on MyISAM. As of NDB 7.5.2, the ndb_binlog_index
table employed in NDB Cluster Replication now uses the InnoDB storage engine instead of MyISAM.
When upgrading, you can run mysql_upgrade with --force --upgrade-system-tables to cause
it to execute ALTER TABLE ... ENGINE=INNODB on this table. Use of MyISAM for this table remains
supported for backward compatibility.

A benefit of this change is that it makes it possible to depend on transactional behavior and lock-
free reads for this table, which can help alleviate concurrency issues during purge operations and log
rotation, and improve the availability of this table.

• ALTER TABLE changes. NDB Cluster formerly supported an alternative syntax for online ALTER
TABLE. This is no longer supported in NDB Cluster 7.5, which makes exclusive use of ALGORITHM =
DEFAULT|COPY|INPLACE for table DDL, as in the standard MySQL Server.

Another change affecting the use of this statement is that ALTER TABLE ... ALGORITHM=INPLACE
RENAME may now contain DDL operations in addition to the renaming.

• ExecuteOnComputer parameter deprecated. The ExecuteOnComputer configuration parameter
for management nodes, data nodes, and API nodes has been deprecated and is now subject to removal
in a future release of NDB Cluster. You should use the equivalent HostName parameter for all three
types of nodes.

• records-per-key optimization. The NDB handler now uses the records-per-key interface for index
statistics implemented for the optimizer in MySQL 5.7.5. Some of the benefits from this change include
those listed here:

• The optimizer now chooses better execution plans in many cases where a less optimal join index or
table join order would previously have been chosen

• Row estimates shown by EXPLAIN are more accurate

• Cardinality estimates shown by SHOW INDEX are improved

• Connection pool node IDs. NDB 7.5.0 adds the mysqld --ndb-cluster-connection-pool-
nodeids option, which allows a set of node IDs to be set for the connection pool. This setting overrides

3296

What is New in MySQL NDB Cluster

--ndb-nodeid, which means that it also overrides both the --ndb-connectstring option and the
NDB_CONNECTSTRING environment variable.

Note

You can set the size for the connection pool using the --ndb-cluster-
connection-pool option for mysqld.

• create_old_temporals removed. The create_old_temporals system variable was deprecated in
NDB Cluster 7.4, and has now been removed.

• ndb_mgm Client PROMPT command. NDB Cluster 7.5 adds a new command for setting the client's
command-line prompt. The following example illustrates the use of the PROMPT command:

ndb_mgm> PROMPT mgm#1:
mgm#1: SHOW
Cluster Configuration

[ndbd(NDB)] 4 node(s)
id=5 @10.100.1.1 (mysql-5.7.44-ndb-7.5.36, Nodegroup: 0, *)
id=6 @10.100.1.3 (mysql-5.7.44-ndb-7.5.36, Nodegroup: 0)
id=7 @10.100.1.9 (mysql-5.7.44-ndb-7.5.36, Nodegroup: 1)
id=8 @10.100.1.11 (mysql-5.7.44-ndb-7.5.36, Nodegroup: 1)

[ndb_mgmd(MGM)] 1 node(s)
id=50 @10.100.1.8 (mysql-5.7.44-ndb-7.5.36)

[mysqld(API)] 2 node(s)
id=100 @10.100.1.8 (5.7.44-ndb-7.5.36)
id=101 @10.100.1.10 (5.7.44-ndb-7.5.36)

mgm#1: PROMPT
ndb_mgm> EXIT
jon@valhaj:/usr/local/mysql/bin>

For additional information and examples, see Section 21.6.1, “Commands in the NDB Cluster
Management Client”.

• Increased FIXED column storage per fragment. NDB Cluster 7.5 and later supports a maximum
of 128 TB per fragment of data in FIXED columns. In NDB Cluster 7.4 and earlier, this was 16 GB per
fragment.

• Deprecated parameters removed. The following NDB Cluster data node configuration parameters
were deprecated in previous releases of NDB Cluster, and were removed in NDB 7.5.0:

• Id: deprecated in NDB 7.1.9; replaced by NodeId.

• NoOfDiskPagesToDiskDuringRestartTUP, NoOfDiskPagesToDiskDuringRestartACC: both
deprecated, had no effect; replaced in MySQL 5.1.6 by DiskCheckpointSpeedInRestart, which
itself was later deprecated (in NDB 7.4.1) and is now also removed.

• NoOfDiskPagesToDiskAfterRestartACC, NoOfDiskPagesToDiskAfterRestartTUP: both
deprecated, and had no effect; replaced in MySQL 5.1.6 by DiskCheckpointSpeed, which itself was
later deprecated (in NDB 7.4.1) and is now also removed.

• ReservedSendBufferMemory: Deprecated; no longer had any effect.

• MaxNoOfIndexes: archaic (pre-MySQL 4.1), had no effect; long since replaced by
MaxNoOfOrderedIndexes or MaxNoOfUniqueHashIndexes.

• Discless: archaic (pre-MySQL 4.1) synonym for and long since replaced by Diskless.

3297

What is New in MySQL NDB Cluster

The archaic and unused (and for this reason also previously undocumented) ByteOrder computer
configuration parameter was also removed in NDB 7.5.0.

The parameters just described are not supported in NDB 7.5. Attempting to use any of these parameters
in an NDB Cluster configuration file now results in an error.

• DBTC scan enhancements. Scans have been improved by reducing the number of signals used for
communication between the DBTC and DBDIH kernel blocks in NDB, enabling higher scalability of data
nodes when used for scan operations by decreasing the use of CPU resources for scan operations, in
some cases by an estimated five percent.

Also as result of these changes response times should be greatly improved, which could help prevent
issues with overload of the main threads. In addition, scans made in the BACKUP kernel block have also
been improved and made more efficient than in previous releases.

• JSON column support. NDB 7.5.2 and later supports the JSON column type for NDB tables and the
JSON functions found in the MySQL Server, subject to the limitation that an NDB table can have at most
3 JSON columns.

• Read from any fragment replica; specify number of hashmap partition fragments. Previously,
all reads were directed towards the primary fragment replica except for simple reads. (A simple read
is a read that locks the row while reading it.) Beginning with NDB 7.5.2, it is possible to enable reads
from any fragment replica. This is disabled by default but can be enabled for a given SQL node using the
ndb_read_backup system variable added in this release.

Previously, it was possible to define tables with only one type of partition mapping, with one primary
partition on each LDM in each node, but in NDB 7.5.2 it becomes possible to be more flexible about the
assignment of partitions by setting a partition balance (fragment count type). Possible balance schemes
are one per node, one per node group, one per LDM per node, and one per LDM per node group.

This setting can be controlled for individual tables by means of a PARTITION_BALANCE option
(renamed from FRAGMENT_COUNT_TYPE in NDB 7.5.4) embedded in NDB_TABLE comments in CREATE
TABLE or ALTER TABLE statements. Settings for table-level READ_BACKUP are also supported using
this syntax. For more information and examples, see Section 13.1.18.9, “Setting NDB Comment
Options”.

In NDB API applications, a table's partition balance can also be get and set using methods supplied
for this purpose; see Table::getPartitionBalance(), and Table::setPartitionBalance(), as well as
Object::PartitionBalance, for more information about these.

As part of this work, NDB 7.5.2 also introduces the ndb_data_node_neighbour system variable. This
is intended for use, in transaction hinting, to provide a “nearby” data node to this SQL node.

In addition, when restoring table schemas, ndb_restore --restore-meta now uses the target
cluster's default partitioning, rather than using the same number of partitions as the original cluster from
which the backup was taken. See Restoring to More Nodes Than the Original, for more information and
an example.

NDB 7.5.3 adds a further enhancement to READ_BACKUP: In this and later versions, it is possible to set
READ_BACKUP for a given table online as part of ALTER TABLE ... ALGORITHM=INPLACE

3298

https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbtc.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbdih.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-backup.html
https://dev.mysql.com/doc/ndbapi/en/ndb-table.html#ndb-table-getpartitionbalance
https://dev.mysql.com/doc/ndbapi/en/ndb-table.html#ndb-table-setpartitionbalance
https://dev.mysql.com/doc/ndbapi/en/ndb-object.html#ndb-object-partitionbalance

What is New in MySQL NDB Cluster

• ThreadConfig improvements. A number of enhancements and feature additions are implemented in
NDB 7.5.2 for the ThreadConfig multithreaded data node (ndbmtd) configuration parameter, including
support for an increased number of platforms. These changes are described in the next few paragraphs.

Non-exclusive CPU locking is now supported on FreeBSD and Windows, using cpubind and cpuset.
Exclusive CPU locking is now supported on Solaris (only) using the cpubind_exclusive and
cpuset_exclusive parameters which are introduced in this release.

Thread prioritzation is now available, controlled by the new thread_prio parameter. thread_prio
is supported on Linux, FreeBSD, Windows, and Solaris, and varies somewhat by platform. For more
information, see the description of ThreadConfig.

The realtime parameter is now supported on Windows platforms.

• Partitions larger than 16 GB. Due to an improvement in the hash index implementation used by
NDB Cluster data nodes, partitions of NDB tables may now contain more than 16 GB of data for fixed
columns, and the maximum partition size for fixed columns is now raised to 128 TB. The previous
limitation was due to the fact that the DBACC block in the NDB kernel used only 32-bit references to the
fixed-size part of a row in the DBTUP block, although 45-bit references to this data are used in DBTUP
itself and elsewhere in the kernel outside DBACC; all such references in to the data handled in the DBACC
block now use 45 bits instead.

• Print SQL statements from ndb_restore. NDB 7.5.4 adds the --print-sql-log option for the
ndb_restore utility provided with the NDB Cluster distribution. This option enables SQL logging to
stdout. Important: Every table to be restored using this option must have an explicitly defined primary
key.

See Section 21.5.24, “ndb_restore — Restore an NDB Cluster Backup”, for more information.

• Organization of RPM packages. Beginning with NDB 7.5.4, the naming and organization of RPM
packages provided for NDB Cluster align more closely with those released for the MySQL server. The
names of all NDB Cluster RPMs are now prefixed with mysql-cluster. Data nodes are now installed
using the data-node package; management nodes are now installed from the management-server
package; and SQL nodes require the server and common packages. MySQL and NDB client programs,
including the mysql client and the ndb_mgm management client, are now included in the client RPM.

For a detailed listing of NDB Cluster RPMs and other information, see Section 21.3.1.2, “Installing NDB
Cluster from RPM”.

• ndbinfo processes and config_nodes tables. NDB 7.5.7 adds two tables to the ndbinfo
information database to provide information about cluster nodes; these tables are listed here:

• config_nodes: This table provides the node ID, process type, and host name for each node listed in
an NDB cluster's configuration file.

• The processes shows information about nodes currently connected to the cluster; this information
includes the process name and system process ID; for each data node and SQL node, it
also shows the process ID of the node's angel process. In addition, the table shows a service
address for each connected node; this address can be set in NDB API applications using the
Ndb_cluster_connection::set_service_uri() method, which is also added in NDB 7.5.7.

• System name. The system name of an NDB cluster can be used to identify a
specific cluster. Beginning with NDB 7.5.7, the MySQL Server shows this name as the

3299

https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbacc.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbtup.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbtup.html
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb-cluster-connection.html#ndb-ndb-cluster-connection-set-service-uri

What is New in MySQL NDB Cluster

value of the Ndb_system_name status variable; NDB API applications can use the
Ndb_cluster_connection::get_system_name() method which is added in the same release.

A system name based on the time the management server was started is generated automatically; you
can override this value by adding a [system] section to the cluster's configuration file and setting the
Name parameter to a value of your choice in this section, prior to starting the management server.

• ndb_restore options. Beginning with NDB 7.5.13, the --nodeid and --backupid options are both
required when invoking ndb_restore.

• ndb_blob_tool enhancements. Beginning with NDB 7.5.18, the ndb_blob_tool utility can detect
missing blob parts for which inline parts exist and replace these with placeholder blob parts (consisting
of space characters) of the correct length. To check whether there are missing blob parts, use the --
check-missing option with this program. To replace any missing blob parts with placeholders, use the
--add-missing option.

For more information, see Section 21.5.6, “ndb_blob_tool — Check and Repair BLOB and TEXT
columns of NDB Cluster Tables”.

• --ndb-log-fail-terminate option. Beginning with NDB 7.5.18, you can cause the SQL node to
terminate whenever it is unable to log all row events fully. This can be done by starting mysqld with the
--ndb-log-fail-terminate option.

• NDB programs—NDBT dependency removal. The dependency of a number of NDB utility programs
on the NDBT library has been removed. This library is used internally for development, and is not
required for normal use; its inclusion in these programs could lead to unwanted issues when testing.

Affected programs are listed here, along with the NDB versions in which the dependency was removed:

• ndb_restore, in NDB 7.5.15

• ndb_show_tables, in NDB 7.5.18

• ndb_waiter, in NDB 7.5.18

The principal effect of this change for users is that these programs no longer print NDBT_ProgramExit
- status following completion of a run. Applications that depend upon such behavior should be
updated to reflect the change when upgrading to the indicated versions.

• Auto-Installer deprecation and removal. The MySQL NDB Cluster Auto-Installer web-based
installation tool (ndb_setup.py) is deprecated in NDB 7.5.20, and is removed in NDB 7.5.21 and later.
It is no longer supported.

• ndbmemcache deprecation and removal. ndbmemcache is no longer supported. ndbmemcache
was deprecated in NDB 7.5.20, and removed in NDB 7.5.21.

• Node.js support removed. Beginning with the NDB Cluster 7.5.20 release, support for Node.js by
NDB 7.5 has been removed.

Support for Node.js by NDB Cluster is maintained in NDB 8.0 only.

3300

https://dev.mysql.com/doc/ndbapi/en/ndb-ndb-cluster-connection.html#ndb-ndb-cluster-connection-get-system-name

What is New in MySQL NDB Cluster

• Conversion between NULL and NOT NULL during restore operations. Beginning with NDB
7.5.23, ndb_restore can support restoring of NULL columns as NOT NULL and the reverse, using the
options listed here:

• To restore a NULL column as NOT NULL, use the --lossy-conversions option.

The column originally declared as NULL must not contain any NULL rows; if it does, ndb_restore
exits with an error.

• To restore a NOT NULL column as NULL, use the --promote-attributes option.

For more information, see the descriptions of the indicated ndb_restore options.

• OpenSSL 3.0 support. Beginning with NDB 7.5.31, all MySQL server and client binaries included in
the NDB distribution are compiled with support for Open SSL 3.0

ClusterJPA is no longer supported beginning with NDB 7.5.7; its source code and binary have been
removed from the NDB Cluster distribution.

NDB Cluster 7.5 is also supported by MySQL Cluster Manager, which provides an advanced command-
line interface that can simplify many complex NDB Cluster management tasks. See MySQL Cluster
Manager 1.4.8 User Manual, for more information.

21.2.4.2 What is New in NDB Cluster 7.6

New features and other important changes in NDB Cluster 7.6 which are likely to be of interest are shown
in the following list:

• New Disk Data table file format. A new file format is used in NDB 7.6 for NDB Disk Data tables,
which makes it possible for each Disk Data table to be uniquely identified without reusing any table IDs.
This should help resolve issues with page and extent handling that were visible to the user as problems
with rapid creating and dropping of Disk Data tables, and for which the old format did not provide a ready
means to fix.

The new format is now used whenever new undo log file groups and tablespace data files are created.
Files relating to existing Disk Data tables continue to use the old format until their tablespaces and undo
log file groups are re-created.

Important

The old and new formats are not compatible; different data files or undo log files
that are used by the same Disk Data table or tablespace cannot use a mix of
formats.

To avoid problems relating to the changes in format, you should re-create any existing tablespaces and
undo log file groups when upgrading to NDB 7.6. You can do this by performing an initial restart of each
data node (that is, using the --initial option) as part of the upgrade process. You can expect this
step to be made mandatory as part of upgrading from NDB 7.5 or an earlier release series to NDB 7.6 or
later.

If you are using Disk Data tables, a downgrade from any NDB 7.6 release—without regard to release
status—to any NDB 7.5 or earlier release requires that you restart all data nodes with --initial as
part of the downgrade process. This is because NDB 7.5 and earlier release series are not able to read
the new Disk Data file format.

For more information, see Section 21.3.7, “Upgrading and Downgrading NDB Cluster”.

3301

https://dev.mysql.com/doc/mysql-cluster-manager/1.4/en/
https://dev.mysql.com/doc/mysql-cluster-manager/1.4/en/

What is New in MySQL NDB Cluster

• Data memory pooling and dynamic index memory. Memory required for indexes on NDB table
columns is now allocated dynamically from that allocated for DataMemory. For this reason, the
IndexMemory configuration parameter is now deprecated, and subject to removal in a future release
series.

Important

In NDB 7.6, if IndexMemory is set in the config.ini file, the management
server issues the warning IndexMemory is deprecated, use Number
bytes on each ndbd(DB) node allocated for storing indexes
instead on startup, and any memory assigned to this parameter is automatically
added to DataMemory.

In addition, the default value for DataMemory has been increased to 98M; the
default for IndexMemory has been decreased to 0.

The pooling together of index memory with data memory simplifies the configuration of NDB; a further
benefit of these changes is that scaling up by increasing the number of LDM threads is no longer
limited by having set an insufficiently large value for IndexMemory.This is because index memory
is no longer a static quantity which is allocated only once (when the cluster starts), but can now be
allocated and deallocated as required. Previously, it was sometimes the case that increasing the number
of LDM threads could lead to index memory exhaustion while large amounts of DataMemory remained
available.

As part of this work, a number of instances of DataMemory usage not directly related to storage of table
data now use transaction memory instead.

For this reason, it may be necessary on some systems to increase SharedGlobalMemory to allow
transaction memory to increase when needed, such as when using NDB Cluster Replication, which
requires a great deal of buffering on the data nodes. On systems performing initial bulk loads of data, it
may be necessary to break up very large transactions into smaller parts.

In addition, data nodes now generate MemoryUsage events (see Section 21.6.3.2, “NDB Cluster Log
Events”) and write appropriate messages in the cluster log when resource usage reaches 99%, as well
as when it reaches 80%, 90%, or 100%, as before.

Other related changes are listed here:

• IndexMemory is no longer one of the values displayed in the ndbinfo.memoryusage table's
memory_type column; is also no longer displayed in the output of ndb_config.

• REPORT MEMORYUSAGE and other commands which expose memory consumption now shows index
memory consumption using 32K pages (previously these were 8K pages).

• The ndbinfo.resources table now shows the DISK_OPERATIONS resource as
TRANSACTION_MEMORY, and the RESERVED resource has been removed.

• ndbinfo processes and config_nodes tables. NDB 7.6 adds two tables to the ndbinfo information
database to provide information about cluster nodes; these tables are listed here:

• config_nodes: This table the node ID, process type, and host name for each node listed in an NDB
cluster's configuration file.

• The processes shows information about nodes currently connected to the cluster; this information
includes the process name and system process ID; for each data node and SQL node, it
also shows the process ID of the node's angel process. In addition, the table shows a service

3302

What is New in MySQL NDB Cluster

address for each connected node; this address can be set in NDB API applications using the
Ndb_cluster_connection::set_service_uri() method, which is also added in NDB 7.6.

• System name. The system name of an NDB cluster can be used to identify a specific cluster. In NDB
7.6, the MySQL Server shows this name as the value of the Ndb_system_name status variable; NDB
API applications can use the Ndb_cluster_connection::get_system_name() method which is
added in the same release.

A system name based on the time the management server was started is generated automatically>; you
can override this value by adding a [system] section to the cluster's configuration file and setting the
Name parameter to a value of your choice in this section, prior to starting the management server.

• ndb_import CSV import tool. ndb_import, added in NDB Cluster 7.6, loads CSV-formatted data
directly into an NDB table using the NDB API (a MySQL server is needed only to create the table and
database in which it is located). ndb_import can be regarded as an analog of mysqlimport or the
LOAD DATA SQL statement, and supports many of the same or similar options for formatting of the data.

Assuming that the database and target NDB table exist, ndb_import needs only a connection to the
cluster's management server (ndb_mgmd) to perform the importation; for this reason, there must be an
[api] slot available to the tool in the cluster's config.ini file purpose.

See Section 21.5.14, “ndb_import — Import CSV Data Into NDB”, for more information.

• ndb_top monitoring tool. Added the ndb_top utility, which shows CPU load and usage information
for an NDB data node in real time. This information can be displayed in text format, as an ASCII graph, or
both. The graph can be shown in color, or using grayscale.

ndb_top connects to an NDB Cluster SQL node (that is, a MySQL Server). For this reason, the program
must be able to connect as a MySQL user having the SELECT privilege on tables in the ndbinfo
database.

ndb_top is available for Linux, Solaris, and macOS platforms, but is not currently available for Windows
platforms.

For more information, see Section 21.5.29, “ndb_top — View CPU usage information for NDB threads”.

• Code cleanup. A significant number of debugging statements and printouts not necessary for normal
operations have been moved into code used only when testing or debugging NDB, or dispensed with
altogether. This removal of overhead should result in a noticeable improvement in the performance of
LDM and TC threads on the order of 10% in many cases.

• LDM thread and LCP improvements. Previously, when a local data management thread
experienced I/O lag, it wrote to local checkpoints more slowly. This could happen, for example, during
a disk overload condition. Problems could occur because other LDM threads did not always observe
this state, or do likewise. NDB now tracks I/O lag mode globally, so that this state is reported as soon as
at least one thread is writing in I/O lag mode; it then makes sure that the reduced write speed for this
LCP is enforced for all LDM threads for the duration of the slowdown condition. Because the reduction
in write speed is now observed by other LDM instances, overall capacity is increased; this enables the
disk overload (or other condition inducing I/O lag) to be overcome more quickly in such cases than it was
previously.

• NDB error identification. Error messages and information can be obtained using the mysql client
in NDB 7.6 from a new error_messages table in the ndbinfo information database. In addition, NDB
7.6 introduces a new command-line client ndb_perror for obtaining information from NDB error codes;
this replaces using perror with --ndb, which is now deprecated and subject to removal in a future
release.

3303

https://dev.mysql.com/doc/ndbapi/en/ndb-ndb-cluster-connection.html#ndb-ndb-cluster-connection-set-service-uri
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb-cluster-connection.html#ndb-ndb-cluster-connection-get-system-name

What is New in MySQL NDB Cluster

For more information, see Section 21.6.15.21, “The ndbinfo error_messages Table”, and
Section 21.5.17, “ndb_perror — Obtain NDB Error Message Information”.

• SPJ improvements. When executing a scan as a pushed join (that is, the root of the query is a
scan), the DBTC block sends an SPJ request to a DBSPJ instance on the same node as the fragment
to be scanned. Formerly, one such request was sent for each of the node's fragments. As the number
of DBTC and DBSPJ instances is normally set less than the number of LDM instances, this means that
all SPJ instances were involved in the execution of a single query, and, in fact, some SPJ instances
could (and did) receive multiple requests from the same query. NDB 7.6 makes it possible for a
single SPJ request to handle a set of root fragments to be scanned, so that only a single SPJ request
(SCAN_FRAGREQ) needs to be sent to any given SPJ instance (DBSPJ block) on each node.

Since DBSPJ consumes a relatively small amount of the total CPU used when evaluating a pushed join,
unlike the LDM block (which is repsonsible for the majority of the CPU usage), introducing multiple SPJ
blocks adds some parallelism, but the additional overhead also increases. By enabling a single SPJ
request to handle a set of root fragments to be scanned, such that only a single SPJ request is sent to
each DBSPJ instance on each node and batch sizes are allocated per fragment, the multi-fragment scan
can obtain a larger total batch size, allowing for some scheduling optimizations to be done within the
SPJ block, which can scan a single fragment at a time (giving it the total batch size allocation), scan all
fragments in parallel using smaller sub-batches, or some combination of the two.

This work is expected to increase performance of pushed-down joins for the following reasons:

• Since multiple root fragments can be scanned for each SPJ request, it is necessary to request fewer
SPJ instances when executing a pushed join

• Increased available batch size allocation, and for each fragment, should also in most cases result in
fewer requests being needed to complete a join

• Improved O_DIRECT handling for redo logs. NDB 7.6 provides a new data node configuration
parameter ODirectSyncFlag which causes completed redo log writes using O_DIRECT to be handled
as fsync calls. ODirectSyncFlag is disabled by default; to enable it, set it to true.

You should bear in mind that the setting for this parameter is ignored when at least one of the following
conditions is true:

• ODirect is not enabled.

• InitFragmentLogFiles is set to SPARSE.

• Locking of CPUs to offline index build threads. In NDB 7.6, offline index builds by default use
all cores available to ndbmtd, instead of being limited to the single core reserved for the I/O thread. It
also becomes possible to specify a desired set of cores to be used for I/O threads performing offline
multithreaded builds of ordered indexes. This can improve restart and restore times and performance, as
well as availability.

Note

“Offline” as used here refers to an ordered index build that takes place while
a given table is not being written to. Such index builds occur during a node or
system restart, or when restoring a cluster from backup using ndb_restore --
rebuild-indexes.

This improvement involves several related changes. The first of these is to change the
default value for the BuildIndexThreads configuration parameter (from 0 to 128), means

3304

https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbtc.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbspj.html

What is New in MySQL NDB Cluster

that offline ordered index builds are now multithreaded by default. The default value for the
TwoPassInitialNodeRestartCopy is also changed (from false to true), so that an initial node
restart first copies all data without any creation of indexes from a “live” node to the node which is being
started, builds the ordered indexes offline after the data has been copied, then again synchronizes with
the live node; this can significantly reduce the time required for building indexes. In addition, to facilitate
explicit locking of offline index build threads to specific CPUs, a new thread type (idxbld) is defined for
the ThreadConfig configuration parameter.

As part of this work, NDB can now distinguish between execution thread types and other types of
threads, and between types of threads which are permanently assigned to specific tasks, and those
whose assignments are merely temporary.

NDB 7.6 also introduces the nosend parameter for ThreadCOnfig. By setting this to 1, you can keep
a main, ldm, rep, or tc thread from assisting the send threads. This parameter is 0 by default, and
cannot be used with I/O threads, send threads, index build threads, or watchdog threads.

For additonal information, see the descriptions of the parameters.

• Variable batch sizes for DDL bulk data operations. As part of work ongoing to optimize bulk DDL
performance by ndbmtd, it is now possible to obtain performance improvements by increasing the
batch size for the bulk data parts of DDL operations processing data using scans. Batch sizes are now
made configurable for unique index builds, foreign key builds, and online reorganization, by setting the
respective data node configuration parameters listed here:

• MaxUIBuildBatchSize: Maximum scan batch size used for building unique keys.

• MaxFKBuildBatchSize: Maximum scan batch size used for building foreign keys.

• MaxReorgBuildBatchSize: Maximum scan batch size used for reorganization of table partitions.

For each of the parameters just listed, the default value is 64, the minimum is 16, and the maximum is
512.

Increasing the appropriate batch size or sizes can help amortize inter-thread and inter-node latencies
and make use of more parallel resources (local and remote) to help scale DDL performance. In each
case there can be a tradeoff with ongoing traffic.

• Partial LCPs. NDB 7.6 implements partial local checkpoints. Formerly, an LCP always made a copy
of the entire database. When working with terabytes of data this process could require a great deal of
time, with an adverse impact on node and cluster restarts especially, as well as more space for the redo
logs. It is now no longer strictly necessary for LCPs to do this—instead, an LCP now by default saves
only a number of records that is based on the quantity of data changed since the previous LCP. This
can vary between a full checkpoint and a checkpoint that changes nothing at all. In the event that the
checkpoint reflects any changes, the minimum is to write one part of the 2048 making up a local LCP.

As part of this change, two new data node configuration parameters are inroduced in this release:
EnablePartialLcp (default true, or enabled) enables partial LCPs. RecoveryWork controls the
percentage of space given over to LCPs; it increases with the amount of work which must be performed
on LCPs during restarts as opposed to that performed during normal operations. Raising this value
causes LCPs during normal operations to require writing fewer records and so decreases the usual
workload. Raising this value also means that restarts can take longer.

You must disable partial LCPs explicitly by setting EnablePartialLcp=false. This uses
the least amount of disk, but also tends to maximize the write load for LCPs. To optimize for
the lowest workload on LCPs during normal operation, use EnablePartialLcp=true and
RecoveryWork=100. To use the least disk space for partial LCPs, but with bounded writes, use

3305

What is New in MySQL NDB Cluster

EnablePartialLcp=true and RecoveryWork=25, which is the minimum for RecoveryWork.
The default is EnablePartialLcp=true with RecoveryWork=50, which means LCP files require
approximately 1.5 times DataMemory; using CompressedLcp=1, this can be further reduced by half.
Recovery times using the default settings should also be much faster than when EnablePartialLcp is
set to false.

Note

The default value for RecoveryWork was increased from 50 to 60.

In addition the data node configuration parameters BackupDataBufferSize, BackupWriteSize,
and BackupMaxWriteSize are all now deprecated, and subject to removal in a future release of
MySQL NDB Cluster.

As part of this enhancement, work has been done to correct several issues with node restarts wherein it
was possible to run out of undo log in various situations, most often when restoring a node that had been
down for a long time during a period of intensive write activity.

Additional work was done to improve data node survival of long periods of synchronization without timing
out, by updating the LCP watchdog during this process, and keeping better track of the progress of disk
data synchronization. Previously, there was the possibility of spurious warnings or even node failures if
synchronization took longer than the LCP watchdog timeout.

Important

When upgrading an NDB Cluster that uses disk data tables to NDB 7.6 or
downgrading it from NDB 7.6, it is necessary to restart all data nodes with --
initial.

• Parallel undo log record processing. Formerly, the data node LGMAN kernel block processed undo
log records serially; now this is done in parallel. The rep thread, which hands off undo records to LDM
threads, waited for an LDM to finish applying a record before fetching the next one; now the rep thread
no longer waits, but proceeds immediately to the next record and LDM.

A count of the number of outstanding log records for each LDM in LGMAN is kept, and decremented
whenever an LDM has completed the execution of a record. All the records belonging to a page are sent
to the same LDM thread but are not guaranteed to be processed in order, so a hash map of pages that
have outstanding records maintains a queue for each of these pages. When the page is available in the
page cache, all records pending in the queue are applied in order.

A few types of records continue to be processed serially: UNDO_LCP, UNDO_LCP_FIRST,
UNDO_LOCAL_LCP, UNDO_LOCAL_LCP_FIRST, UNDO_DROP, and UNDO_END.

There are no user-visible changes in functionality directly associated with this performance
enhancement; it is part of work done to improve undo long handling in support of partial local
checkpoints in NDB Cluster 7.6.

• Reading table and fragment IDs from extent for undo log applier. When applying an undo log,
it is necessary to obtain the table ID and fragment ID from the page ID. This was done previously by
reading the page from the PGMAN kernel block using an extra PGMAN worker thread, but when applying
the undo log it was necessary to read the page again.

when using O_DIRECT this was very inefficient since the page was not cached in the OS kernel. To
correct this issue, mapping from page ID to table ID and fragment ID is now done using information from
the extent header the table IDs and fragment IDs for the pages used within a given extent. The extent

3306

https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-lgman.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-pgman.html

What is New in MySQL NDB Cluster

pages are always present in the page cache, so no extra reads from disk are required for performing
the mapping. In addition, the information can already be read, using existing TSMAN kernel block data
structures.

See the description of the ODirect data node configuration parameter, for more information.

• Shared memory transporter. User-defined shared memory (SHM) connections between a data
node and an API node on the same host computer are fully supported in NDB 7.6, and are no longer
considered experimental. You can enable an explicit shared memory connection by setting the UseShm
configuration parameter to 1 for the relevant data node. When explicitly defining shared memory as
the connection method, it is also necessary that both the data node and the API node are identified by
HostName.

Performance of SHM connections can be enhanced through setting parameters such as ShmSize,
ShmSpintime, and SendBufferMemory in an [shm] or [shm default] section of the cluster
configuration file (config.ini). Configuration of SHM is otherwise similar to that of the TCP
transporter.

The SigNum parameter is not used in the new SHM implementation, and any settings made for it are
now ignored. Section 21.4.3.12, “NDB Cluster Shared Memory Connections”, provides more information
about these parameters. In addition, as part of this work, NDB code relating to the old SCI transporter has
been removed.

For more information, see Section 21.4.3.12, “NDB Cluster Shared Memory Connections”.

• SPJ block inner join optimization. In NDB 7.6, the SPJ kernel block can take into account when
it is evaluating a join request in which at least some of the tables are INNER-joined. This means that it
can eliminate requests for row, ranges, or both as soon as it becomes known that one or more of the
preceding requests did not return any results for a parent row. This saves both the data nodes and the
SPJ block from having to handle requests and result rows which never take part in an INNER-joined
result row.

Consider this join query, where pk is the primary key on tables t2, t3, and t4, and columns x, y, and z are
nonindexed columns:

SELECT * FROM t1
 JOIN t2 ON t2.pk = t1.x
 JOIN t3 ON t3.pk = t1.y
 JOIN t4 ON t4.pk = t1.z;

Previously, this resulted in an SPJ request including a scan on table t1, and lookups on each of the
tables t2, t3, and t4; these were evaluated for every row returned from t1. For these, SPJ created
LQHKEYREQ requests for tables t2, t3, and t4. Now SPJ takes into consideration the requirement that,
to produce any result rows, an inner join must find a match in all tables joined; as soon as no matches
are found for one of the tables, any further requests to tables having the same parent or tables are now
skipped.

Note

This optimization cannot be applied until all of the data nodes and all of the API
nodes in the cluster have been upgraded to NDB 7.6.

• NDB wakeup thread. NDB uses a poll receiver to read from sockets, to execute messages from
the sockets, and to wake up other threads. When making only intermittent use of a receive thread,
poll ownership is given up before starting to wake up other threads, which provides some degree of
parallelism in the receive thread, but, when making constant use of the receive thread, the thread can be
overburdened by tasks including wakeup of other threads.

3307

https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-tsman.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbspj.html

What is New in MySQL NDB Cluster

NDB 7.6 supports offloading by the receiver thread of the task of waking up other threads to a new
thread that wakes up other threads on request (and otherwise simply sleeps), making it possible to
improve the capacity of a single cluster connection by roughly ten to twenty percent.

• Adaptive LCP control. NDB 7.6.7 implements an adaptive LCP control mechanism which acts in
response to changes in redo log space usage. By controlling LCP disk write speed, you can help protect
against a number of resource-related issues, including the following:

• Insufficient CPU resources for traffic applications

• Disk overload

• Insufficient redo log buffer

• GCP Stop conditions

• Insufficient redo log space

• Insufficient undo log space

This work includes the following changes relating to NDB configuration parameters:

• The default value of the RecoveryWork data node parameter is increased from 50 to 60; that is, NDB
now uses 1.6 times the size of the data for storage of LCPs.

• A new data node configuration parameter InsertRecoveryWork provides additional tuning
capabilities through controlling the percentage of RecoveryWork that is reserved for insert
operations. The default value is 40 (that is, 40% of the storage space already reserved by
RecoveryWork); the minimum and maximum are 0 and 70, respectively. Increasing this value allows
for more writes to be performed during an LCP, while limiting the total size of the LCP. Decreasing
InsertRecoveryWork limits the number of writes used during an LCP, but results in more space
being used for the LCP, which means that recovery takes longer.

This work implements control of LCP speed chiefly to minimize the risk of running out of redo log. This is
done in adapative fashion, based on the amount of redo log space used, using the alert levels, with the
responses taken when these levels are attained, shown here:

• Low: Redo log space usage is greater than 25%, or estimated usage shows insufficient redo log
space at a very high transaction rate. In response, use of LCP data buffers is increased during LCP
scans, priority of LCP scans is increased, and the amount of data that can be written per real-time
break in an LCP scan is also increased.

• High: Redo log space usage is greater than 40%, or estimate to run out of redo log space at a high
transaction rate. When this level of usage is reached, MaxDiskWriteSpeed is increased to the value
of MaxDiskWriteSpeedOtherNodeRestart. In addition, the minimum speed is doubled, and
priority of LCP scans and what can be written per real-time break are both increased further.

• Critical: Redo log space usage is greater than 60%, or estimated usage shows insufficient redo log
space at a normal transaction rate. At this level, MaxDiskWriteSpeed is increased to the value of
MaxDiskWriteSpeedOwnRestart; MinDiskWriteSpeed is also set to this value. Priority of LCP
scans and the amount of data that can be written per real-time break are increased further, and the
LCP data buffer is completely available during the LCP scan.

Raising the level also has the effect of increasing the calculated target checkpoint speed.

LCP control has the following benefits for NDB installations:

3308

What is New in MySQL NDB Cluster

• Clusters should now survive very heavy loads using default configurations much better than
previously.

• It should now be possible for NDB to run reliably on systems where the available disk space is (at a
rough minimum) 2.1 times the amount of memory allocated to it (DataMemory). You should note that
this figure does not include any disk space used for Disk Data tables.

• ndb_restore options. Beginning with NDB 7.6.9, the --nodeid and --backupid options are both
required when invoking ndb_restore.

• Restoring by slices. Beginning with NDB 7.6.13, it is possible to divide a backup into roughly
equal portions (slices) and to restore these slices in parallel using two new options implemented for
ndb_restore:

• --num-slices determines the number of slices into which the backup should be divided.

• --slice-id provides the ID of the slice to be restored by the current instance of ndb_restore.

This makes it possible to employ multiple instances of ndb_restore to restore subsets of the backup in
parallel, potentially reducing the amount of time required to perform the restore operation.

For more information, see the description of the ndb_restore --num-slices option.

• ndb_restore: primary key schema changes. NDB 7.6.14 (and later) supports different primary key
definitions for source and target tables when restoring an NDB native backup with ndb_restore when
it is run with the --allow-pk-changes option. Both increasing and decreasing the number of columns
making up the original primary key are supported.

When the primary key is extended with an additional column or columns, any columns added must
be defined as NOT NULL, and no values in any such columns may be changed during the time that
the backup is being taken. Because some applications set all column values in a row when updating
it, whether or not all values are actually changed, this can cause a restore operation to fail even if no
values in the column to be added to the primary key have changed. You can override this behavior
using the --ignore-extended-pk-updates option also added in NDB 7.6.14; in this case, you must
ensure that no such values are changed.

A column can be removed from the table's primary key whether or not this column remains part of the
table.

For more information, see the description of the --allow-pk-changes option for ndb_restore.

• ndb_blob_tool enhancements. Beginning with NDB 7.6.14, the ndb_blob_tool utility can detect
missing blob parts for which inline parts exist and replace these with placeholder blob parts (consisting
of space characters) of the correct length. To check whether there are missing blob parts, use the --
check-missing option with this program. To replace any missing blob parts with placeholders, use the
--add-missing option.

For more information, see Section 21.5.6, “ndb_blob_tool — Check and Repair BLOB and TEXT
columns of NDB Cluster Tables”.

• Merging backups with ndb_restore. In some cases, it may be desirable to consolidate data
originally stored in different instances of NDB Cluster (all using the same schema) into a single
target NDB Cluster. This is now supported when using backups created in the ndb_mgm client (see
Section 21.6.8.2, “Using The NDB Cluster Management Client to Create a Backup”) and restoring them
with ndb_restore, using the --remap-column option added in NDB 7.6.14 along with --restore-

3309

What is New in MySQL NDB Cluster

data (and possibly additional compatible options as needed or desired). --remap-column can be
employed to handle cases in which primary and unique key values are overlapping between source
clusters, and it is necessary that they do not overlap in the target cluster, as well as to preserve other
relationships between tables such as foreign keys.

--remap-column takes as its argument a string having the format db.tbl.col:fn:args, where
db, tbl, and col are, respectively, the names of the database, table, and column, fn is the name
of a remapping function, and args is one or more arguments to fn. There is no default value. Only
offset is supported as the function name, with args as the integer offset to be applied to the value of
the column when inserting it into the target table from the backup. This column must be one of INT or
BIGINT; the allowed range of the offset value is the same as the signed version of that type (this allows
the offset to be negative if desired).

The new option can be used multiple times in the same invocation of ndb_restore, so that you can
remap to new values multiple columns of the same table, different tables, or both. The offset value does
not have to be the same for all instances of the option.

In addition, two new options are provided for ndb_desc, also beginning in NDB 7.6.14:

• --auto-inc (short form -a): Includes the next auto-increment value in the output, if the table has an
AUTO_INCREMENT column.

• --context (short form -x): Provides extra information about the table, including the schema,
database name, table name, and internal ID.

For more information and examples, see the description of the --remap-column option.

• --ndb-log-fail-terminate option. Beginning with NDB 7.6.14, you can cause the SQL node to
terminate whenever it is unable to log all row events fully. This can be done by starting mysqld with the
--ndb-log-fail-terminate option.

• NDB programs—NDBT dependency removal. The dependency of a number of NDB utility programs
on the NDBT library has been removed. This library is used internally for development, and is not
required for normal use; its inclusion in these programs could lead to unwanted issues when testing.

Affected programs are listed here, along with the NDB versions in which the dependency was removed:

• ndb_restore, in NDB 7.6.11

• ndb_show_tables, in NDB 7.6.14

• ndb_waiter, in NDB 7.6.14

The principal effect of this change for users is that these programs no longer print NDBT_ProgramExit
- status following completion of a run. Applications that depend upon such behavior should be
updated to reflect the change when upgrading to the indicated versions.

• Auto-Installer deprecation and removal. The MySQL NDB Cluster Auto-Installer web-based
installation tool (ndb_setup.py) is deprecated in NDB 7.6.16, and is removed in NDB 7.6.17 and later.
It is no longer supported.

• ndbmemcache deprecation and removal. ndbmemcache is no longer supported. ndbmemcache
was deprecated in NDB 7.6.16, and removed in NDB 7.6.17.

3310

NDB: Added, Deprecated, and Removed Options, Variables, and Parameters

• Node.js support removed. Beginning with the NDB Cluster 7.6.16 release, support for Node.js by
NDB 7.6 has been removed.

Support for Node.js by NDB Cluster is maintained in NDB 8.0 only.

• Conversion between NULL and NOT NULL during restore operations. Beginning with NDB
7.6.19, ndb_restore can support restoring of NULL columns as NOT NULL and the reverse, using the
options listed here:

• To restore a NULL column as NOT NULL, use the --lossy-conversions option.

The column originally declared as NULL must not contain any NULL rows; if it does, ndb_restore
exits with an error.

• To restore a NOT NULL column as NULL, use the --promote-attributes option.

For more information, see the descriptions of the indicated ndb_restore options.

• OpenSSL 3.0 support. Beginning with NDB 7.6.27, all MySQL server and client binaries included in
the NDB distribution are compiled with support for Open SSL 3.0

• mysql client --commands option. The mysql client --commands option, added in NDB 7.6.35,
enables or disables most mysql client commands.

This option is enabled by default. To disable it, start the mysql client with --commands=OFF or --
skip-commands.

For more information, see Section 4.5.1.1, “mysql Client Options”.

21.2.5 NDB: Added, Deprecated, and Removed Options, Variables, and
Parameters

21.2.5.1 Options, Variables, and Parameters Added, Deprecated or Removed in NDB 7.5

• Parameters Introduced in NDB 7.5

• Parameters Deprecated in NDB 7.5

• Parameters Removed in NDB 7.5

• Options and Variables Introduced in NDB 7.5

• Options and Variables Deprecated in NDB 7.5

• Options and Variables Removed in NDB 7.5

The next few sections contain information about NDB node configuration parameters and NDB-specific
mysqld options and variables that have been added to, deprecated in, or removed from NDB 7.5.

Parameters Introduced in NDB 7.5

The following node configuration parameters have been added in NDB 7.5.

• ApiVerbose: Enable NDB API debugging; for NDB development. Added in NDB 7.5.2.

Parameters Deprecated in NDB 7.5

The following node configuration parameters have been deprecated in NDB 7.5.

3311

NDB: Added, Deprecated, and Removed Options, Variables, and Parameters

• ExecuteOnComputer: String referencing earlier defined COMPUTER. Deprecated in NDB 7.5.0.

• ExecuteOnComputer: String referencing earlier defined COMPUTER. Deprecated in NDB 7.5.0.

• ExecuteOnComputer: String referencing earlier defined COMPUTER. Deprecated in NDB 7.5.0.

Parameters Removed in NDB 7.5

The following node configuration parameters have been removed in NDB 7.5.

• DiskCheckpointSpeed: Bytes allowed to be written by checkpoint, per second. Removed in NDB
7.5.0.

• DiskCheckpointSpeedInRestart: Bytes allowed to be written by checkpoint during restart, per
second. Removed in NDB 7.5.0.

• Id: Number identifying data node. Now deprecated; use NodeId instead. Removed in NDB 7.5.0.

• MaxNoOfSavedEvents: Not used. Removed in NDB 7.5.0.

• PortNumber: Port used for SCI transporter. Removed in NDB 7.5.1.

• PortNumber: Port used for SHM transporter. Removed in NDB 7.5.1.

• PortNumber: Port used for TCP transporter. Removed in NDB 7.5.1.

• ReservedSendBufferMemory: This parameter is present in NDB code but is not enabled. Removed in
NDB 7.5.2.

Options and Variables Introduced in NDB 7.5

The following system variables, status variables, and server options have been added in NDB 7.5.

• Ndb_system_name: Configured cluster system name; empty if server not connected to NDB. Added in
NDB 5.7.18-ndb-7.5.7.

• ndb-allow-copying-alter-table: Set to OFF to keep ALTER TABLE from using copying
operations on NDB tables. Added in NDB 5.7.10-ndb-7.5.0.

• ndb-cluster-connection-pool-nodeids: Comma-separated list of node IDs for connections to
cluster used by MySQL; number of nodes in list must match value set for --ndb-cluster-connection-pool.
Added in NDB 5.7.10-ndb-7.5.0.

• ndb-default-column-format: Use this value (FIXED or DYNAMIC) by default for
COLUMN_FORMAT and ROW_FORMAT options when creating or adding table columns. Added in NDB
5.7.11-ndb-7.5.1.

• ndb-log-fail-terminate: Terminate mysqld process if complete logging of all found row events is
not possible. Added in NDB 5.7.29-ndb-7.5.18.

• ndb-log-update-minimal: Log updates in minimal format. Added in NDB 5.7.18-ndb-7.5.7.

• ndb_data_node_neighbour: Specifies cluster data node "closest" to this MySQL Server, for
transaction hinting and fully replicated tables. Added in NDB 5.7.12-ndb-7.5.2.

• ndb_default_column_format: Sets default row format and column format (FIXED or DYNAMIC)
used for new NDB tables. Added in NDB 5.7.11-ndb-7.5.1.

3312

NDB: Added, Deprecated, and Removed Options, Variables, and Parameters

• ndb_fully_replicated: Whether new NDB tables are fully replicated. Added in NDB 5.7.12-
ndb-7.5.2.

• ndb_read_backup: Enable read from any replica for all NDB tables; use
NDB_TABLE=READ_BACKUP={0|1} with CREATE TABLE or ALTER TABLE to enable or disable for
individual NDB tables. Added in NDB 5.7.12-ndb-7.5.2.

Options and Variables Deprecated in NDB 7.5

No system variables, status variables, or server options have been deprecated in NDB 7.5.

Options and Variables Removed in NDB 7.5

No system variables, status variables, or options have been removed in NDB 7.5.

21.2.5.2 Options, Variables, and Parameters Added, Deprecated or Removed in NDB 7.6

• Parameters Introduced in NDB 7.6

• Parameters Deprecated in NDB 7.6

• Parameters Removed in NDB 7.6

• Options and Variables Introduced in NDB 7.6

• Options and Variables Deprecated in NDB 7.6

• Options and Variables Removed in NDB 7.6

The next few sections contain information about NDB node configuration parameters and NDB-specific
mysqld options and variables that have been added to, deprecated in, or removed from NDB 7.6.

Parameters Introduced in NDB 7.6

The following node configuration parameters have been added in NDB 7.6.

• ApiFailureHandlingTimeout: Maximum time for API node failure handling before escalating. 0
means no time limit; minimum usable value is 10. Added in NDB 7.6.34.

• EnablePartialLcp: Enable partial LCP (true); if this is disabled (false), all LCPs write full checkpoints.
Added in NDB 7.6.4.

• EnableRedoControl: Enable adaptive checkpointing speed for controlling redo log usage. Added in
NDB 7.6.7.

• InsertRecoveryWork: Percentage of RecoveryWork used for inserted rows; has no effect unless
partial local checkpoints are in use. Added in NDB 7.6.5.

• LocationDomainId: Assign this API node to specific availability domain or zone. 0 (default) leaves this
unset. Added in NDB 7.6.4.

• LocationDomainId: Assign this management node to specific availability domain or zone. 0 (default)
leaves this unset. Added in NDB 7.6.4.

• LocationDomainId: Assign this data node to specific availability domain or zone. 0 (default) leaves
this unset. Added in NDB 7.6.4.

• MaxFKBuildBatchSize: Maximum scan batch size to use for building foreign keys. Increasing this
value may speed up builds of foreign keys but impacts ongoing traffic as well. Added in NDB 7.6.4.

3313

NDB: Added, Deprecated, and Removed Options, Variables, and Parameters

• MaxReorgBuildBatchSize: Maximum scan batch size to use for reorganization of table partitions.
Increasing this value may speed up table partition reorganization but impacts ongoing traffic as well.
Added in NDB 7.6.4.

• MaxUIBuildBatchSize: Maximum scan batch size to use for building unique keys. Increasing this
value may speed up builds of unique keys but impacts ongoing traffic as well. Added in NDB 7.6.4.

• ODirectSyncFlag: O_DIRECT writes are treated as synchronized writes; ignored when ODirect is not
enabled, InitFragmentLogFiles is set to SPARSE, or both. Added in NDB 7.6.4.

• PreSendChecksum: If this parameter and Checksum are both enabled, perform pre-send checksum
checks, and check all SHM signals between nodes for errors. Added in NDB 7.6.6.

• PreSendChecksum: If this parameter and Checksum are both enabled, perform pre-send checksum
checks, and check all TCP signals between nodes for errors. Added in NDB 7.6.6.

• RecoveryWork: Percentage of storage overhead for LCP files: greater value means less work in normal
operations, more work during recovery. Added in NDB 7.6.4.

• SendBufferMemory: Bytes in shared memory buffer for signals sent from this node. Added in NDB
7.6.6.

• ShmSpinTime: When receiving, number of microseconds to spin before sleeping. Added in NDB 7.6.6.

• UseShm: Use shared memory connections between this data node and API node also running on this
host. Added in NDB 7.6.6.

• WatchDogImmediateKill: When true, threads are immediately killed whenever watchdog issues
occur; used for testing and debugging. Added in NDB 7.6.7.

Parameters Deprecated in NDB 7.6

The following node configuration parameters have been deprecated in NDB 7.6.

• BackupDataBufferSize: Default size of databuffer for backup (in bytes). Deprecated in NDB 7.6.4.

• BackupMaxWriteSize: Maximum size of file system writes made by backup (in bytes). Deprecated in
NDB 7.6.4.

• BackupWriteSize: Default size of file system writes made by backup (in bytes). Deprecated in NDB
7.6.4.

• IndexMemory: Number of bytes on each data node allocated for storing indexes; subject to available
system RAM and size of DataMemory. Deprecated in NDB 7.6.2.

• Signum: Signal number to be used for signalling. Deprecated in NDB 7.6.6.

Parameters Removed in NDB 7.6

No node configuration parameters have been removed in NDB 7.6.

Options and Variables Introduced in NDB 7.6

The following system variables, status variables, and server options have been added in NDB 7.6.

• Ndb_system_name: Configured cluster system name; empty if server not connected to NDB. Added in
NDB 5.7.18-ndb-7.6.2.

3314

MySQL Server Using InnoDB Compared with NDB Cluster

• ndb-log-fail-terminate: Terminate mysqld process if complete logging of all found row events is
not possible. Added in NDB 5.7.29-ndb-7.6.14.

• ndb-log-update-minimal: Log updates in minimal format. Added in NDB 5.7.18-ndb-7.6.3.

• ndb_row_checksum: When enabled, set row checksums; enabled by default. Added in NDB 5.7.23-
ndb-7.6.8.

Options and Variables Deprecated in NDB 7.6

No system variables, status variables, or server options have been deprecated in NDB 7.6.

Options and Variables Removed in NDB 7.6

No system variables, status variables, or options have been removed in NDB 7.6.

21.2.6 MySQL Server Using InnoDB Compared with NDB Cluster

MySQL Server offers a number of choices in storage engines. Since both NDB and InnoDB can serve
as transactional MySQL storage engines, users of MySQL Server sometimes become interested in NDB
Cluster. They see NDB as a possible alternative or upgrade to the default InnoDB storage engine in
MySQL 5.7. While NDB and InnoDB share common characteristics, there are differences in architecture
and implementation, so that some existing MySQL Server applications and usage scenarios can be a good
fit for NDB Cluster, but not all of them.

In this section, we discuss and compare some characteristics of the NDB storage engine used by NDB
7.5 with InnoDB used in MySQL 5.7. The next few sections provide a technical comparison. In many
instances, decisions about when and where to use NDB Cluster must be made on a case-by-case basis,
taking all factors into consideration. While it is beyond the scope of this documentation to provide specifics
for every conceivable usage scenario, we also attempt to offer some very general guidance on the relative
suitability of some common types of applications for NDB as opposed to InnoDB back ends.

NDB Cluster 7.5 uses a mysqld based on MySQL 5.7, including support for InnoDB 1.1. While it is
possible to use InnoDB tables with NDB Cluster, such tables are not clustered. It is also not possible to
use programs or libraries from an NDB Cluster 7.5 distribution with MySQL Server 5.7, or the reverse.

While it is also true that some types of common business applications can be run either on NDB Cluster or
on MySQL Server (most likely using the InnoDB storage engine), there are some important architectural
and implementation differences. Section 21.2.6.1, “Differences Between the NDB and InnoDB Storage
Engines”, provides a summary of the these differences. Due to the differences, some usage scenarios
are clearly more suitable for one engine or the other; see Section 21.2.6.2, “NDB and InnoDB Workloads”.
This in turn has an impact on the types of applications that better suited for use with NDB or InnoDB. See
Section 21.2.6.3, “NDB and InnoDB Feature Usage Summary”, for a comparison of the relative suitability of
each for use in common types of database applications.

For information about the relative characteristics of the NDB and MEMORY storage engines, see When to
Use MEMORY or NDB Cluster.

See Chapter 15, Alternative Storage Engines, for additional information about MySQL storage engines.

21.2.6.1 Differences Between the NDB and InnoDB Storage Engines

The NDB storage engine is implemented using a distributed, shared-nothing architecture, which causes
it to behave differently from InnoDB in a number of ways. For those unaccustomed to working with NDB,

3315

MySQL Server Using InnoDB Compared with NDB Cluster

unexpected behaviors can arise due to its distributed nature with regard to transactions, foreign keys, table
limits, and other characteristics. These are shown in the following table:

Table 21.1 Differences between InnoDB and NDB storage engines

Feature InnoDB (MySQL 5.7) NDB 7.5/7.6

MySQL Server Version 5.7 5.7

InnoDB Version InnoDB 5.7.44 InnoDB 5.7.44

NDB Cluster Version N/A NDB 7.5.36/7.6.36

Storage Limits 64TB 128TB (as of NDB 7.5.2)

Foreign Keys Yes Yes

Transactions All standard types READ COMMITTED

MVCC Yes No

Data Compression Yes No (NDB checkpoint and backup
files can be compressed)

Large Row Support (> 14K) Supported for VARBINARY,
VARCHAR, BLOB, and TEXT
columns

Supported for BLOB and TEXT
columns only (Using these types
to store very large amounts of
data can lower NDB performance)

Replication Support Asynchronous and
semisynchronous replication
using MySQL Replication; MySQL
Group Replication

Automatic synchronous
replication within an NDB Cluster;
asynchronous replication between
NDB Clusters, using MySQL
Replication (Semisynchronous
replication is not supported)

Scaleout for Read Operations Yes (MySQL Replication) Yes (Automatic partitioning
in NDB Cluster; NDB Cluster
Replication)

Scaleout for Write Operations Requires application-level
partitioning (sharding)

Yes (Automatic partitioning in
NDB Cluster is transparent to
applications)

High Availability (HA) Built-in, from InnoDB cluster Yes (Designed for 99.999%
uptime)

Node Failure Recovery and
Failover

From MySQL Group Replication Automatic (Key element in NDB
architecture)

Time for Node Failure Recovery 30 seconds or longer Typically < 1 second

Real-Time Performance No Yes

In-Memory Tables No Yes (Some data can optionally be
stored on disk; both in-memory
and disk data storage are durable)

NoSQL Access to Storage Engine Yes Yes (Multiple APIs, including
Memcached, Node.js/JavaScript,
Java, JPA, C++, and HTTP/REST)

Concurrent and Parallel Writes Yes Up to 48 writers, optimized for
concurrent writes

Conflict Detection and Resolution
(Multiple Replication Surces)

Yes (MySQL Group Replication) Yes

3316

MySQL Server Using InnoDB Compared with NDB Cluster

Feature InnoDB (MySQL 5.7) NDB 7.5/7.6

Hash Indexes No Yes

Online Addition of Nodes Read/write replicas using MySQL
Group Replication

Yes (all node types)

Online Upgrades Yes (using replication) Yes

Online Schema Modifications Yes, as part of MySQL 5.7 Yes

21.2.6.2 NDB and InnoDB Workloads

NDB Cluster has a range of unique attributes that make it ideal to serve applications requiring high
availability, fast failover, high throughput, and low latency. Due to its distributed architecture and multi-node
implementation, NDB Cluster also has specific constraints that may keep some workloads from performing
well. A number of major differences in behavior between the NDB and InnoDB storage engines with regard
to some common types of database-driven application workloads are shown in the following table::

Table 21.2 Differences between InnoDB and NDB storage engines, common types of data-driven
application workloads.

Workload InnoDB NDB Cluster (NDB)

High-Volume OLTP Applications Yes Yes

DSS Applications (data marts,
analytics)

Yes Limited (Join operations across
OLTP datasets not exceeding 3TB
in size)

Custom Applications Yes Yes

Packaged Applications Yes Limited (should be mostly primary
key access); NDB Cluster 7.5
supports foreign keys

In-Network Telecoms Applications
(HLR, HSS, SDP)

No Yes

Session Management and
Caching

Yes Yes

E-Commerce Applications Yes Yes

User Profile Management, AAA
Protocol

Yes Yes

21.2.6.3 NDB and InnoDB Feature Usage Summary

When comparing application feature requirements to the capabilities of InnoDB with NDB, some are clearly
more compatible with one storage engine than the other.

The following table lists supported application features according to the storage engine to which each
feature is typically better suited.

Table 21.3 Supported application features according to the storage engine to which each feature is
typically better suited

Preferred application requirements for InnoDB Preferred application requirements for NDB

• Foreign keys • Write scaling

• 99.999% uptime

3317

Known Limitations of NDB Cluster

Preferred application requirements for InnoDB Preferred application requirements for NDB
Note

NDB Cluster 7.5 supports
foreign keys

• Full table scans

• Very large databases, rows, or transactions

• Transactions other than READ COMMITTED

• Online addition of nodes and online schema
operations

• Multiple SQL and NoSQL APIs (see NDB Cluster
APIs: Overview and Concepts)

• Real-time performance

• Limited use of BLOB columns

• Foreign keys are supported, although their use
may have an impact on performance at high
throughput

21.2.7 Known Limitations of NDB Cluster

In the sections that follow, we discuss known limitations in current releases of NDB Cluster as compared
with the features available when using the MyISAM and InnoDB storage engines. If you check the “Cluster”
category in the MySQL bugs database at http://bugs.mysql.com, you can find known bugs in the following
categories under “MySQL Server:” in the MySQL bugs database at http://bugs.mysql.com, which we intend
to correct in upcoming releases of NDB Cluster:

• NDB Cluster

• Cluster Direct API (NDBAPI)

• Cluster Disk Data

• Cluster Replication

• ClusterJ

This information is intended to be complete with respect to the conditions just set forth. You can report any
discrepancies that you encounter to the MySQL bugs database using the instructions given in Section 1.5,
“How to Report Bugs or Problems”. Any problem which we do not plan to fix in NDB Cluster 7.5 is added to
the list.

See Previous NDB Cluster Issues Resolved in NDB Cluster 8.0 for a list of issues in earlier releases that
have been resolved in NDB Cluster 7.5.

Note

Limitations and other issues specific to NDB Cluster Replication are described in
Section 21.7.3, “Known Issues in NDB Cluster Replication”.

21.2.7.1 Noncompliance with SQL Syntax in NDB Cluster

Some SQL statements relating to certain MySQL features produce errors when used with NDB tables, as
described in the following list:

• Temporary tables. Temporary tables are not supported. Trying either to create a temporary table that
uses the NDB storage engine or to alter an existing temporary table to use NDB fails with the error Table
storage engine 'ndbcluster' does not support the create option 'TEMPORARY'.

• Indexes and keys in NDB tables. Keys and indexes on NDB Cluster tables are subject to the
following limitations:

3318

https://dev.mysql.com/doc/ndbapi/en/mysql-cluster-api-overview.html
https://dev.mysql.com/doc/ndbapi/en/mysql-cluster-api-overview.html
http://bugs.mysql.com
http://bugs.mysql.com
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster-limitations-resolved.html

Known Limitations of NDB Cluster

• Column width. Attempting to create an index on an NDB table column whose width is greater than
3072 bytes is rejected with ER_TOO_LONG_KEY: Specified key was too long; max key
length is 3072 bytes.

Attempting to create an index on an NDB table column whose width is greater than 3056 bytes
succeeds with a warning. In such cases, statistical information is not generated, which means a
nonoptimal execution plan may be selected. For this reason, you should consider making the index
length shorter than 3056 bytes if possible.

• TEXT and BLOB columns. You cannot create indexes on NDB table columns that use any of the
TEXT or BLOB data types.

• FULLTEXT indexes. The NDB storage engine does not support FULLTEXT indexes, which are
possible for MyISAM and InnoDB tables only.

However, you can create indexes on VARCHAR columns of NDB tables.

• USING HASH keys and NULL. Using nullable columns in unique keys and primary keys means
that queries using these columns are handled as full table scans. To work around this issue, make the
column NOT NULL, or re-create the index without the USING HASH option.

• Prefixes. There are no prefix indexes; only entire columns can be indexed. (The size of an NDB
column index is always the same as the width of the column in bytes, up to and including 3072 bytes,
as described earlier in this section. Also see Section 21.2.7.6, “Unsupported or Missing Features in
NDB Cluster”, for additional information.)

• BIT columns. A BIT column cannot be a primary key, unique key, or index, nor can it be part of a
composite primary key, unique key, or index.

• AUTO_INCREMENT columns. Like other MySQL storage engines, the NDB storage engine can
handle a maximum of one AUTO_INCREMENT column per table, and this column must be indexed.
However, in the case of an NDB table with no explicit primary key, an AUTO_INCREMENT column is
automatically defined and used as a “hidden” primary key. For this reason, you cannot create an NDB
table having an AUTO_INCREMENT column and no explicit primary key.

The following CREATE TABLE statements do not work, as shown here:

No index on AUTO_INCREMENT column; table has no primary key
Raises ER_WRONG_AUTO_KEY
mysql> CREATE TABLE n (
 -> a INT,
 -> b INT AUTO_INCREMENT
 ->)
 -> ENGINE=NDB;
ERROR 1075 (42000): Incorrect table definition; there can be only one auto
column and it must be defined as a key

Index on AUTO_INCREMENT column; table has no primary key
Raises NDB error 4335
mysql> CREATE TABLE n (
 -> a INT,
 -> b INT AUTO_INCREMENT,
 -> KEY k (b)
 ->)
 -> ENGINE=NDB;
ERROR 1296 (HY000): Got error 4335 'Only one autoincrement column allowed per

3319

https://dev.mysql.com/doc/mysql-errors/5.7/en/server-error-reference.html#error_er_too_long_key
https://dev.mysql.com/doc/mysql-errors/5.7/en/server-error-reference.html#error_er_wrong_auto_key
https://dev.mysql.com/doc/ndbapi/en/ndb-error-codes-application-error.html#ndberrno-4335

Known Limitations of NDB Cluster

table. Having a table without primary key uses an autoincr' from NDBCLUSTER

The following statement creates a table with a primary key, an AUTO_INCREMENT column, and an
index on this column, and succeeds:

Index on AUTO_INCREMENT column; table has a primary key
mysql> CREATE TABLE n (
 -> a INT PRIMARY KEY,
 -> b INT AUTO_INCREMENT,
 -> KEY k (b)
 ->)
 -> ENGINE=NDB;
Query OK, 0 rows affected (0.38 sec)

• Restrictions on foreign keys. Support for foreign key constraints in NDB 7.5 is comparable to that
provided by InnoDB, subject to the following restrictions:

• Every column referenced as a foreign key requires an explicit unique key, if it is not the table's primary
key.

• ON UPDATE CASCADE is not supported when the reference is to the parent table's primary key.

This is because an update of a primary key is implemented as a delete of the old row (containing
the old primary key) plus an insert of the new row (with a new primary key). This is not visible to the
NDB kernel, which views these two rows as being the same, and thus has no way of knowing that this
update should be cascaded.

• As of NDB 7.5.14 and NDB 7.6.10: ON DELETE CASCADE is not supported where the child table
contains one or more columns of any of the TEXT or BLOB types. (Bug #89511, Bug #27484882)

• SET DEFAULT is not supported. (Also not supported by InnoDB.)

• The NO ACTION keywords are accepted but treated as RESTRICT. (Also the same as with InnoDB.)

• In earlier versions of NDB Cluster, when creating a table with foreign key referencing an index in
another table, it sometimes appeared possible to create the foreign key even if the order of the
columns in the indexes did not match, due to the fact that an appropriate error was not always
returned internally. A partial fix for this issue improved the error used internally to work in most cases;
however, it remains possible for this situation to occur in the event that the parent index is a unique
index. (Bug #18094360)

• Prior to NDB 7.5.6, when adding or dropping a foreign key using ALTER TABLE, the parent table's
metadata is not updated, which makes it possible subsequently to execute ALTER TABLE statements
on the parent that should be invalid. To work around this issue, execute SHOW CREATE TABLE on the
parent table immediately after adding or dropping the foreign key; this forces the parent's metadata to
be reloaded.

This issue is fixed in NDB 7.5.6. (Bug #82989, Bug #24666177)

For more information, see Section 13.1.18.5, “FOREIGN KEY Constraints”, and Section 1.6.3.2,
“FOREIGN KEY Constraints”.

• NDB Cluster and geometry data types.
Geometry data types (WKT and WKB) are supported for NDB tables. However, spatial indexes are not
supported.

• Character sets and binary log files. Currently, the ndb_apply_status and ndb_binlog_index
tables are created using the latin1 (ASCII) character set. Because names of binary logs are recorded

3320

Known Limitations of NDB Cluster

in this table, binary log files named using non-Latin characters are not referenced correctly in these
tables. This is a known issue, which we are working to fix. (Bug #50226)

To work around this problem, use only Latin-1 characters when naming binary log files or setting any the
--basedir, --log-bin, or --log-bin-index options.

• Creating NDB tables with user-defined partitioning. Support for user-defined partitioning in NDB
Cluster is restricted to [LINEAR] KEY partitioning. Using any other partitioning type with ENGINE=NDB or
ENGINE=NDBCLUSTER in a CREATE TABLE statement results in an error.

It is possible to override this restriction, but doing so is not supported for use in production settings. For
details, see User-defined partitioning and the NDB storage engine (NDB Cluster).

Default partitioning scheme. All NDB Cluster tables are by default partitioned by KEY using the
table's primary key as the partitioning key. If no primary key is explicitly set for the table, the “hidden”
primary key automatically created by the NDB storage engine is used instead. For additional discussion
of these and related issues, see Section 22.2.5, “KEY Partitioning”.

CREATE TABLE and ALTER TABLE statements that would cause a user-partitioned NDBCLUSTER table
not to meet either or both of the following two requirements are not permitted, and fail with an error:

1. The table must have an explicit primary key.

2. All columns listed in the table's partitioning expression must be part of the primary key.

Exception. If a user-partitioned NDBCLUSTER table is created using an empty column-list (that is,
using PARTITION BY [LINEAR] KEY()), then no explicit primary key is required.

Maximum number of partitions for NDBCLUSTER tables. The maximum number of partitions that
can defined for a NDBCLUSTER table when employing user-defined partitioning is 8 per node group.
(See Section 21.2.2, “NDB Cluster Nodes, Node Groups, Fragment Replicas, and Partitions”, for more
information about NDB Cluster node groups.

DROP PARTITION not supported. It is not possible to drop partitions from NDB tables using
ALTER TABLE ... DROP PARTITION. The other partitioning extensions to ALTER TABLE—ADD
PARTITION, REORGANIZE PARTITION, and COALESCE PARTITION—are supported for NDB tables,
but use copying and so are not optimized. See Section 22.3.1, “Management of RANGE and LIST
Partitions” and Section 13.1.8, “ALTER TABLE Statement”.

Partition selection. Partition selection is not supported for NDB tables. See Section 22.5, “Partition
Selection”, for more information.

• JSON data type. The MySQL JSON data type is supported for NDB tables in the mysqld supplied
with NDB 7.5.2 and later.

An NDB table can have a maximum of 3 JSON columns.

The NDB API has no special provision for working with JSON data, which it views simply as BLOB data.
Handling data as JSON must be performed by the application.

• CPU and thread info ndbinfo tables. NDB 7.5.2 adds several new tables to the ndbinfo
information database providing information about CPU and thread activity by node, thread ID, and thread
type. The tables are listed here:

• cpustat: Provides per-second, per-thread CPU statistics

• cpustat_50ms: Raw per-thread CPU statistics data, gathered every 50ms

3321

Known Limitations of NDB Cluster

• cpustat_1sec: Raw per-thread CPU statistics data, gathered each second

• cpustat_20sec: Raw per-thread CPU statistics data, gathered every 20 seconds

• threads: Names and descriptions of thread types

For more information about these tables, see Section 21.6.15, “ndbinfo: The NDB Cluster Information
Database”.

• Lock info ndbinfo tables. NDB 7.5.3 adds new tables to the ndbinfo information database
providing information about locks and lock attempts in a running NDB Cluster. These tables are listed
here:

• cluster_locks: Current lock requests which are waiting for or holding locks; this information can be
useful when investigating stalls and deadlocks. Analogous to cluster_operations.

• locks_per_fragment: Counts of lock claim requests, and their outcomes per fragment,
as well as total time spent waiting for locks successfully and unsuccessfully. Analogous to
operations_per_fragment and memory_per_fragment.

• server_locks: Subset of cluster transactions—those running on the local mysqld, showing a
connection id per transaction. Analogous to server_operations.

21.2.7.2 Limits and Differences of NDB Cluster from Standard MySQL Limits

In this section, we list limits found in NDB Cluster that either differ from limits found in, or that are not found
in, standard MySQL.

Memory usage and recovery. Memory consumed when data is inserted into an NDB table is not
automatically recovered when deleted, as it is with other storage engines. Instead, the following rules hold
true:

• A DELETE statement on an NDB table makes the memory formerly used by the deleted rows available for
re-use by inserts on the same table only. However, this memory can be made available for general re-
use by performing OPTIMIZE TABLE.

A rolling restart of the cluster also frees any memory used by deleted rows. See Section 21.6.5,
“Performing a Rolling Restart of an NDB Cluster”.

• A DROP TABLE or TRUNCATE TABLE operation on an NDB table frees the memory that was used by this
table for re-use by any NDB table, either by the same table or by another NDB table.

Note

Recall that TRUNCATE TABLE drops and re-creates the table. See
Section 13.1.34, “TRUNCATE TABLE Statement”.

• Limits imposed by the cluster's configuration.
A number of hard limits exist which are configurable, but available main memory in the cluster sets limits.
See the complete list of configuration parameters in Section 21.4.3, “NDB Cluster Configuration Files”.
Most configuration parameters can be upgraded online. These hard limits include:

• Database memory size and index memory size (DataMemory and IndexMemory, respectively).

DataMemory is allocated as 32KB pages. As each DataMemory page is used, it is assigned to a
specific table; once allocated, this memory cannot be freed except by dropping the table.

3322

Known Limitations of NDB Cluster

See Section 21.4.3.6, “Defining NDB Cluster Data Nodes”, for more information.

• The maximum number of operations that can be performed per transaction is set using the
configuration parameters MaxNoOfConcurrentOperations and MaxNoOfLocalOperations.

Note

Bulk loading, TRUNCATE TABLE, and ALTER TABLE are handled as special
cases by running multiple transactions, and so are not subject to this limitation.

• Different limits related to tables and indexes. For example, the maximum number of ordered indexes
in the cluster is determined by MaxNoOfOrderedIndexes, and the maximum number of ordered
indexes per table is 16.

• Node and data object maximums. The following limits apply to numbers of cluster nodes and
metadata objects:

• The maximum number of data nodes is 48.

A data node must have a node ID in the range of 1 to 48, inclusive. (Management and API nodes may
use node IDs in the range 1 to 255, inclusive.)

• The total maximum number of nodes in an NDB Cluster is 255. This number includes all SQL nodes
(MySQL Servers), API nodes (applications accessing the cluster other than MySQL servers), data
nodes, and management servers.

• The maximum number of metadata objects in current versions of NDB Cluster is 20320. This limit is
hard-coded.

See Previous NDB Cluster Issues Resolved in NDB Cluster 8.0, for more information.

21.2.7.3 Limits Relating to Transaction Handling in NDB Cluster

A number of limitations exist in NDB Cluster with regard to the handling of transactions. These include the
following:

• Transaction isolation level. The NDBCLUSTER storage engine supports only the READ
COMMITTED transaction isolation level. (InnoDB, for example, supports READ COMMITTED, READ
UNCOMMITTED, REPEATABLE READ, and SERIALIZABLE.) You should keep in mind that NDB
implements READ COMMITTED on a per-row basis; when a read request arrives at the data node storing
the row, what is returned is the last committed version of the row at that time.

Uncommitted data is never returned, but when a transaction modifying a number of rows commits
concurrently with a transaction reading the same rows, the transaction performing the read can observe
“before” values, “after” values, or both, for different rows among these, due to the fact that a given row
read request can be processed either before or after the commit of the other transaction.

To ensure that a given transaction reads only before or after values, you can impose row locks using
SELECT ... LOCK IN SHARE MODE. In such cases, the lock is held until the owning transaction is
committed. Using row locks can also cause the following issues:

• Increased frequency of lock wait timeout errors, and reduced concurrency

• Increased transaction processing overhead due to reads requiring a commit phase

3323

https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster-limitations-resolved.html

Known Limitations of NDB Cluster

• Possibility of exhausting the available number of concurrent locks, which is limited by
MaxNoOfConcurrentOperations

NDB uses READ COMMITTED for all reads unless a modifier such as LOCK IN SHARE MODE or FOR
UPDATE is used. LOCK IN SHARE MODE causes shared row locks to be used; FOR UPDATE causes
exclusive row locks to be used. Unique key reads have their locks upgraded automatically by NDB to
ensure a self-consistent read; BLOB reads also employ extra locking for consistency.

See Section 21.6.8.4, “NDB Cluster Backup Troubleshooting”, for information on how NDB Cluster's
implementation of transaction isolation level can affect backup and restoration of NDB databases.

• Transactions and BLOB or TEXT columns. NDBCLUSTER stores only part of a column value that
uses any of MySQL's BLOB or TEXT data types in the table visible to MySQL; the remainder of the BLOB
or TEXT is stored in a separate internal table that is not accessible to MySQL. This gives rise to two
related issues of which you should be aware whenever executing SELECT statements on tables that
contain columns of these types:

1. For any SELECT from an NDB Cluster table: If the SELECT includes a BLOB or TEXT column, the
READ COMMITTED transaction isolation level is converted to a read with read lock. This is done to
guarantee consistency.

2. For any SELECT which uses a unique key lookup to retrieve any columns that use any of the BLOB or
TEXT data types and that is executed within a transaction, a shared read lock is held on the table for
the duration of the transaction—that is, until the transaction is either committed or aborted.

This issue does not occur for queries that use index or table scans, even against NDB tables having
BLOB or TEXT columns.

For example, consider the table t defined by the following CREATE TABLE statement:

CREATE TABLE t (
 a INT NOT NULL AUTO_INCREMENT PRIMARY KEY,
 b INT NOT NULL,
 c INT NOT NULL,
 d TEXT,
 INDEX i(b),
 UNIQUE KEY u(c)
) ENGINE = NDB,

The following query on t causes a shared read lock, because it uses a unique key lookup:

SELECT * FROM t WHERE c = 1;

However, none of the four queries shown here causes a shared read lock:

SELECT * FROM t WHERE b = 1;

SELECT * FROM t WHERE d = '1';

SELECT * FROM t;

3324

Known Limitations of NDB Cluster

SELECT b,c WHERE a = 1;

This is because, of these four queries, the first uses an index scan, the second and third use table
scans, and the fourth, while using a primary key lookup, does not retrieve the value of any BLOB or
TEXT columns.

You can help minimize issues with shared read locks by avoiding queries that use unique key
lookups that retrieve BLOB or TEXT columns, or, in cases where such queries are not avoidable, by
committing transactions as soon as possible afterward.

• Unique key lookups and transaction isolation. Unique indexes are implemented in NDB using a
hidden index table which is maintained internally. When a user-created NDB table is accessed using
a unique index, the hidden index table is first read to find the primary key that is then used to read the
user-created table. To avoid modification of the index during this double-read operation, the row found
in the hidden index table is locked. When a row referenced by a unique index in the user-created NDB
table is updated, the hidden index table is subject to an exclusive lock by the transaction in which the
update is performed. This means that any read operation on the same (user-created) NDB table must
wait for the update to complete. This is true even when the transaction level of the read operation is
READ COMMITTED.

One workaround which can be used to bypass potentially blocking reads is to force the SQL node to
ignore the unique index when performing the read. This can be done by using the IGNORE INDEX
index hint as part of the SELECT statement reading the table (see Section 8.9.4, “Index Hints”). Because
the MySQL server creates a shadowing ordered index for every unique index created in NDB, this lets
the ordered index be read instead, and avoids unique index access locking. The resulting read is as
consistent as a committed read by primary key, returning the last committed value at the time the row is
read.

Reading via an ordered index makes less efficient use of resources in the cluster, and may have higher
latency.

It is also possible to avoid using the unique index for access by querying for ranges rather than for
unique values.

• Rollbacks. There are no partial transactions, and no partial rollbacks of transactions. A duplicate key
or similar error causes the entire transaction to be rolled back.

This behavior differs from that of other transactional storage engines such as InnoDB that may roll back
individual statements.

• Transactions and memory usage.
As noted elsewhere in this chapter, NDB Cluster does not handle large transactions well; it is better
to perform a number of small transactions with a few operations each than to attempt a single large
transaction containing a great many operations. Among other considerations, large transactions require
very large amounts of memory. Because of this, the transactional behavior of a number of MySQL
statements is affected as described in the following list:

• TRUNCATE TABLE is not transactional when used on NDB tables. If a TRUNCATE TABLE fails to empty
the table, then it must be re-run until it is successful.

• DELETE FROM (even with no WHERE clause) is transactional. For tables containing a great many
rows, you may find that performance is improved by using several DELETE FROM ... LIMIT ...

3325

Known Limitations of NDB Cluster

statements to “chunk” the delete operation. If your objective is to empty the table, then you may wish
to use TRUNCATE TABLE instead.

• LOAD DATA statements. LOAD DATA is not transactional when used on NDB tables.

Important

When executing a LOAD DATA statement, the NDB engine performs commits at
irregular intervals that enable better utilization of the communication network. It
is not possible to know ahead of time when such commits take place.

• ALTER TABLE and transactions. When copying an NDB table as part of an ALTER TABLE, the
creation of the copy is nontransactional. (In any case, this operation is rolled back when the copy is
deleted.)

• Transactions and the COUNT() function. When using NDB Cluster Replication, it is not possible to
guarantee the transactional consistency of the COUNT() function on the replica. In other words, when
performing on the source a series of statements (INSERT, DELETE, or both) that changes the number of
rows in a table within a single transaction, executing SELECT COUNT(*) FROM table queries on the
replica may yield intermediate results. This is due to the fact that SELECT COUNT(...) may perform
dirty reads, and is not a bug in the NDB storage engine. (See Bug #31321 for more information.)

21.2.7.4 NDB Cluster Error Handling

Starting, stopping, or restarting a node may give rise to temporary errors causing some transactions to fail.
These include the following cases:

• Temporary errors. When first starting a node, it is possible that you may see Error 1204 Temporary
failure, distribution changed and similar temporary errors.

• Errors due to node failure. The stopping or failure of any data node can result in a number of
different node failure errors. (However, there should be no aborted transactions when performing a
planned shutdown of the cluster.)

In either of these cases, any errors that are generated must be handled within the application. This should
be done by retrying the transaction.

See also Section 21.2.7.2, “Limits and Differences of NDB Cluster from Standard MySQL Limits”.

21.2.7.5 Limits Associated with Database Objects in NDB Cluster

Some database objects such as tables and indexes have different limitations when using the NDBCLUSTER
storage engine:

• Database and table names. When using the NDB storage engine, the maximum allowed length both
for database names and for table names is 63 characters. A statement using a database name or table
name longer than this limit fails with an appropriate error.

• Number of database objects. The maximum number of all NDB database objects in a single NDB
Cluster—including databases, tables, and indexes—is limited to 20320.

• Attributes per table. The maximum number of attributes (that is, columns and indexes) that can
belong to a given table is 512.

• Attributes per key. The maximum number of attributes per key is 32.

• Row size. The maximum permitted size of any one row is 14000 bytes.

3326

Known Limitations of NDB Cluster

Each BLOB or TEXT column contributes 256 + 8 = 264 bytes to this total; this includes JSON columns.
See String Type Storage Requirements, as well as JSON Storage Requirements, for more information
relating to these types.

In addition, the maximum offset for a fixed-width column of an NDB table is 8188 bytes; attempting to
create a table that violates this limitation fails with NDB error 851 Maximum offset for fixed-
size columns exceeded. For memory-based columns, you can work around this limitation by using
a variable-width column type such as VARCHAR or defining the column as COLUMN_FORMAT=DYNAMIC;
this does not work with columns stored on disk. For disk-based columns, you may be able to do so
by reordering one or more of the table's disk-based columns such that the combined width of all but
the disk-based column defined last in the CREATE TABLE statement used to create the table does
not exceed 8188 bytes, less any possible rounding performed for some data types such as CHAR or
VARCHAR; otherwise it is necessary to use memory-based storage for one or more of the offending
column or columns instead.

• BIT column storage per table. The maximum combined width for all BIT columns used in a given
NDB table is 4096.

• FIXED column storage. NDB Cluster 7.5 and later supports a maximum of 128 TB per fragment of
data in FIXED columns. (Previously, this was 16 GB.)

21.2.7.6 Unsupported or Missing Features in NDB Cluster

A number of features supported by other storage engines are not supported for NDB tables. Trying to use
any of these features in NDB Cluster does not cause errors in or of itself; however, errors may occur in
applications that expects the features to be supported or enforced. Statements referencing such features,
even if effectively ignored by NDB, must be syntactically and otherwise valid.

• Index prefixes. Prefixes on indexes are not supported for NDB tables. If a prefix is used as part of
an index specification in a statement such as CREATE TABLE, ALTER TABLE, or CREATE INDEX, the
prefix is not created by NDB.

A statement containing an index prefix, and creating or modifying an NDB table, must still be syntactically
valid. For example, the following statement always fails with Error 1089 Incorrect prefix key;
the used key part isn't a string, the used length is longer than the key
part, or the storage engine does not support unique prefix keys, regardless of
storage engine:

CREATE TABLE t1 (
 c1 INT NOT NULL,
 c2 VARCHAR(100),
 INDEX i1 (c2(500))
);

This happens on account of the SQL syntax rule that no index may have a prefix larger than itself.

• Savepoints and rollbacks. Savepoints and rollbacks to savepoints are ignored as in MyISAM.

• Durability of commits. There are no durable commits on disk. Commits are replicated, but there is
no guarantee that logs are flushed to disk on commit.

• Replication. Statement-based replication is not supported. Use --binlog-format=ROW (or
--binlog-format=MIXED) when setting up cluster replication. See Section 21.7, “NDB Cluster
Replication”, for more information.

3327

Known Limitations of NDB Cluster

Replication using global transaction identifiers (GTIDs) is not compatible with NDB Cluster, and is not
supported in NDB Cluster 7.5 or NDB CLuster 7.6. Do not enable GTIDs when using the NDB storage
engine, as this is very likely to cause problems up to and including failure of NDB Cluster Replication.

Semisynchronous replication is not supported in NDB Cluster.

When replicating between clusters, it is possible to use IPv6 addresses between SQL nodes in different
clusters, but all connections within a given cluster must use IPv4 addressing. For more information, see
NDB Cluster Replication and IPv6.

• Generated columns. The NDB storage engine does not support indexes on virtual generated
columns.

As with other storage engines, you can create an index on a stored generated column, but you should
bear in mind that NDB uses DataMemory for storage of the generated column as well as IndexMemory
for the index. See JSON columns and indirect indexing in NDB Cluster, for an example.

NDB Cluster writes changes in stored generated columns to the binary log, but does log not those made
to virtual columns. This should not effect NDB Cluster Replication or replication between NDB and other
MySQL storage engines.

Note

See Section 21.2.7.3, “Limits Relating to Transaction Handling in NDB Cluster”, for
more information relating to limitations on transaction handling in NDB.

21.2.7.7 Limitations Relating to Performance in NDB Cluster

The following performance issues are specific to or especially pronounced in NDB Cluster:

• Range scans. There are query performance issues due to sequential access to the NDB storage
engine; it is also relatively more expensive to do many range scans than it is with either MyISAM or
InnoDB.

• Reliability of Records in range. The Records in range statistic is available but is not completely
tested or officially supported. This may result in nonoptimal query plans in some cases. If necessary, you
can employ USE INDEX or FORCE INDEX to alter the execution plan. See Section 8.9.4, “Index Hints”,
for more information on how to do this.

• Unique hash indexes. Unique hash indexes created with USING HASH cannot be used for
accessing a table if NULL is given as part of the key.

21.2.7.8 Issues Exclusive to NDB Cluster

The following are limitations specific to the NDB storage engine:

• Machine architecture. All machines used in the cluster must have the same architecture. That is, all
machines hosting nodes must be either big-endian or little-endian, and you cannot use a mixture of both.
For example, you cannot have a management node running on a PowerPC which directs a data node
that is running on an x86 machine. This restriction does not apply to machines simply running mysql or
other clients that may be accessing the cluster's SQL nodes.

• Binary logging.
NDB Cluster has the following limitations or restrictions with regard to binary logging:

• NDB Cluster cannot produce a binary log for tables having BLOB columns but no primary key.

3328

Known Limitations of NDB Cluster

• Only the following schema operations are logged in a cluster binary log which is not on the mysqld
executing the statement:

• CREATE TABLE

• ALTER TABLE

• DROP TABLE

• CREATE DATABASE / CREATE SCHEMA

• DROP DATABASE / DROP SCHEMA

• CREATE TABLESPACE

• ALTER TABLESPACE

• DROP TABLESPACE

• CREATE LOGFILE GROUP

• ALTER LOGFILE GROUP

• DROP LOGFILE GROUP

• Schema operations. Schema operations (DDL statements) are rejected while any data node
restarts. Schema operations are also not supported while performing an online upgrade or downgrade.

• Number of fragment replicas. The number of fragment replicas, as determined by the
NoOfReplicas data node configuration parameter, is the number of copies of all data stored by NDB
Cluster. Setting this parameter to 1 means there is only a single copy; in this case, no redundancy
is provided, and the loss of a data node entails loss of data. To guarantee redundancy, and thus
preservation of data even if a data node fails, set this parameter to 2, which is the default and
recommended value in production.

Setting NoOfReplicas to a value greater than 2 is possible (to a maximum of 4) but unnecessary to
guard against loss of data. In addition, values greater than 2 for this parameter are not supported in
production.

See also Section 21.2.7.10, “Limitations Relating to Multiple NDB Cluster Nodes”.

21.2.7.9 Limitations Relating to NDB Cluster Disk Data Storage

Disk Data object maximums and minimums. Disk data objects are subject to the following maximums
and minimums:

• Maximum number of tablespaces: 232 (4294967296)

• Maximum number of data files per tablespace: 216 (65536)

• The minimum and maximum possible sizes of extents for tablespace data files are 32K and 2G,
respectively. See Section 13.1.19, “CREATE TABLESPACE Statement”, for more information.

In addition, when working with NDB Disk Data tables, you should be aware of the following issues
regarding data files and extents:

• Data files use DataMemory. Usage is the same as for in-memory data.

3329

Known Limitations of NDB Cluster

• Data files use file descriptors. It is important to keep in mind that data files are always open, which
means the file descriptors are always in use and cannot be re-used for other system tasks.

• Extents require sufficient DiskPageBufferMemory; you must reserve enough for this parameter to
account for all memory used by all extents (number of extents times size of extents).

Disk Data tables and diskless mode. Use of Disk Data tables is not supported when running the
cluster in diskless mode.

21.2.7.10 Limitations Relating to Multiple NDB Cluster Nodes

Multiple SQL nodes.
The following are issues relating to the use of multiple MySQL servers as NDB Cluster SQL nodes, and are
specific to the NDBCLUSTER storage engine:

• Stored programs not distributed. Stored procedures, stored functions, triggers, and scheduled
events are all supported by tables using the NDB storage engine, but these do not propagate
automatically between MySQL Servers acting as Cluster SQL nodes, and must be re-created separately
on each SQL node. See Stored Programs in NDB Cluster.

• No distributed table locks. A LOCK TABLES statement or GET_LOCK() call works only for the SQL
node on which the lock is issued; no other SQL node in the cluster “sees” this lock. This is true for a lock
issued by any statement that locks tables as part of its operations. (See next item for an example.)

Implementing table locks in NDBCLUSTER can be done in an API application, and ensuring that all
applications start by setting LockMode to LM_Read or LM_Exclusive. For more information about how
to do this, see the description of NdbOperation::getLockHandle() in the NDB Cluster API Guide.

• ALTER TABLE operations. ALTER TABLE is not fully locking when running multiple MySQL servers
(SQL nodes). (As discussed in the previous item, NDB Cluster does not support distributed table locks.)

Multiple management nodes.
When using multiple management servers:

• If any of the management servers are running on the same host, you must give nodes explicit IDs in
connection strings because automatic allocation of node IDs does not work across multiple management
servers on the same host. This is not required if every management server resides on a different host.

• When a management server starts, it first checks for any other management server in the same NDB
Cluster, and upon successful connection to the other management server uses its configuration data.
This means that the management server --reload and --initial startup options are ignored unless
the management server is the only one running. It also means that, when performing a rolling restart of
an NDB Cluster with multiple management nodes, the management server reads its own configuration
file if (and only if) it is the only management server running in this NDB Cluster. See Section 21.6.5,
“Performing a Rolling Restart of an NDB Cluster”, for more information.

Multiple network addresses. Multiple network addresses per data node are not supported. Use of
these is liable to cause problems: In the event of a data node failure, an SQL node waits for confirmation
that the data node went down but never receives it because another route to that data node remains open.
This can effectively make the cluster inoperable.

Note

It is possible to use multiple network hardware interfaces (such as Ethernet cards)
for a single data node, but these must be bound to the same address. This also
means that it not possible to use more than one [tcp] section per connection in

3330

https://dev.mysql.com/doc/ndbapi/en/ndb-ndboperation.html#ndb-ndboperation-lockmode
https://dev.mysql.com/doc/ndbapi/en/ndb-ndboperation.html#ndb-ndboperation-getlockhandle

NDB Cluster Installation

the config.ini file. See Section 21.4.3.10, “NDB Cluster TCP/IP Connections”,
for more information.

21.3 NDB Cluster Installation

This section describes the basics for planning, installing, configuring, and running an NDB Cluster.
Whereas the examples in Section 21.4, “Configuration of NDB Cluster” provide more in-depth information
on a variety of clustering options and configuration, the result of following the guidelines and procedures
outlined here should be a usable NDB Cluster which meets the minimum requirements for availability and
safeguarding of data.

For information about upgrading or downgrading an NDB Cluster between release versions, see
Section 21.3.7, “Upgrading and Downgrading NDB Cluster”.

This section covers hardware and software requirements; networking issues; installation of NDB Cluster;
basic configuration issues; starting, stopping, and restarting the cluster; loading of a sample database; and
performing queries.

Assumptions. The following sections make a number of assumptions regarding the cluster's physical
and network configuration. These assumptions are discussed in the next few paragraphs.

Cluster nodes and host computers. The cluster consists of four nodes, each on a separate host
computer, and each with a fixed network address on a typical Ethernet network as shown here:

Table 21.4 Network addresses of nodes in example cluster

Node IP Address

Management node (mgmd) 198.51.100.10

SQL node (mysqld) 198.51.100.20

Data node "A" (ndbd) 198.51.100.30

Data node "B" (ndbd) 198.51.100.40

This setup is also shown in the following diagram:

3331

NDB Cluster Installation

Figure 21.4 NDB Cluster Multi-Computer Setup

Network addressing. In the interest of simplicity (and reliability), this How-To uses only numeric
IP addresses. However, if DNS resolution is available on your network, it is possible to use host names
in lieu of IP addresses in configuring Cluster. Alternatively, you can use the hosts file (typically /etc/
hosts for Linux and other Unix-like operating systems, C:\WINDOWS\system32\drivers\etc\hosts
on Windows, or your operating system's equivalent) for providing a means to do host lookup if such is
available.

Potential hosts file issues. A common problem when trying to use host names for Cluster nodes
arises because of the way in which some operating systems (including some Linux distributions) set up
the system's own host name in the /etc/hosts during installation. Consider two machines with the host
names ndb1 and ndb2, both in the cluster network domain. Red Hat Linux (including some derivatives
such as CentOS and Fedora) places the following entries in these machines' /etc/hosts files:

ndb1 /etc/hosts:
127.0.0.1 ndb1.cluster ndb1 localhost.localdomain localhost

ndb2 /etc/hosts:
127.0.0.1 ndb2.cluster ndb2 localhost.localdomain localhost

SUSE Linux (including OpenSUSE) places these entries in the machines' /etc/hosts files:

ndb1 /etc/hosts:
127.0.0.1 localhost
127.0.0.2 ndb1.cluster ndb1

ndb2 /etc/hosts:
127.0.0.1 localhost
127.0.0.2 ndb2.cluster ndb2

In both instances, ndb1 routes ndb1.cluster to a loopback IP address, but gets a public IP address
from DNS for ndb2.cluster, while ndb2 routes ndb2.cluster to a loopback address and obtains a

3332

Installation of NDB Cluster on Linux

public address for ndb1.cluster. The result is that each data node connects to the management server,
but cannot tell when any other data nodes have connected, and so the data nodes appear to hang while
starting.

Caution

You cannot mix localhost and other host names or IP addresses in
config.ini. For these reasons, the solution in such cases (other than to use IP
addresses for all config.ini HostName entries) is to remove the fully qualified
host names from /etc/hosts and use these in config.ini for all cluster hosts.

Host computer type. Each host computer in our installation scenario is an Intel-based desktop
PC running a supported operating system installed to disk in a standard configuration, and running no
unnecessary services. The core operating system with standard TCP/IP networking capabilities should
be sufficient. Also for the sake of simplicity, we also assume that the file systems on all hosts are set up
identically. In the event that they are not, you should adapt these instructions accordingly.

Network hardware. Standard 100 Mbps or 1 gigabit Ethernet cards are installed on each machine,
along with the proper drivers for the cards, and that all four hosts are connected through a standard-issue
Ethernet networking appliance such as a switch. (All machines should use network cards with the same
throughput. That is, all four machines in the cluster should have 100 Mbps cards or all four machines
should have 1 Gbps cards.) NDB Cluster works in a 100 Mbps network; however, gigabit Ethernet provides
better performance.

Important

NDB Cluster is not intended for use in a network for which throughput is less than
100 Mbps or which experiences a high degree of latency. For this reason (among
others), attempting to run an NDB Cluster over a wide area network such as the
Internet is not likely to be successful, and is not supported in production.

Sample data. We use the world database which is available for download from the MySQL website
(see https://dev.mysql.com/doc/index-other.html). We assume that each machine has sufficient memory
for running the operating system, required NDB Cluster processes, and (on the data nodes) storing the
database.

For general information about installing MySQL, see Chapter 2, Installing and Upgrading MySQL.
For information about installation of NDB Cluster on Linux and other Unix-like operating systems, see
Section 21.3.1, “Installation of NDB Cluster on Linux”. For information about installation of NDB Cluster on
Windows operating systems, see Section 21.3.2, “Installing NDB Cluster on Windows”.

For general information about NDB Cluster hardware, software, and networking requirements, see
Section 21.2.3, “NDB Cluster Hardware, Software, and Networking Requirements”.

21.3.1 Installation of NDB Cluster on Linux

This section covers installation methods for NDB Cluster on Linux and other Unix-like operating systems.
While the next few sections refer to a Linux operating system, the instructions and procedures given
there should be easily adaptable to other supported Unix-like platforms. For manual installation and setup
instructions specific to Windows systems, see Section 21.3.2, “Installing NDB Cluster on Windows”.

Each NDB Cluster host computer must have the correct executable programs installed. A host running
an SQL node must have installed on it a MySQL Server binary (mysqld). Management nodes require the
management server daemon (ndb_mgmd); data nodes require the data node daemon (ndbd or ndbmtd). It
is not necessary to install the MySQL Server binary on management node hosts and data node hosts. It is
recommended that you also install the management client (ndb_mgm) on the management server host.

3333

https://dev.mysql.com/doc/index-other.html

Installation of NDB Cluster on Linux

Installation of NDB Cluster on Linux can be done using precompiled binaries from Oracle (downloaded as
a .tar.gz archive), with RPM packages (also available from Oracle), or from source code. All three of these
installation methods are described in the section that follow.

Regardless of the method used, it is still necessary following installation of the NDB Cluster binaries to
create configuration files for all cluster nodes, before you can start the cluster. See Section 21.3.3, “Initial
Configuration of NDB Cluster”.

21.3.1.1 Installing an NDB Cluster Binary Release on Linux

This section covers the steps necessary to install the correct executables for each type of Cluster node
from precompiled binaries supplied by Oracle.

For setting up a cluster using precompiled binaries, the first step in the installation process for each cluster
host is to download the binary archive from the NDB Cluster downloads page. (For the most recent 64-bit
NDB 7.6 release, this is mysql-cluster-gpl-7.6.35-linux-glibc2.12-x86_64.tar.gz.) We
assume that you have placed this file in each machine's /var/tmp directory.

If you require a custom binary, see Section 2.8.5, “Installing MySQL Using a Development Source Tree”.

Note

After completing the installation, do not yet start any of the binaries. We show you
how to do so following the configuration of the nodes (see Section 21.3.3, “Initial
Configuration of NDB Cluster”).

SQL nodes. On each of the machines designated to host SQL nodes, perform the following steps as
the system root user:

1. Check your /etc/passwd and /etc/group files (or use whatever tools are provided by your
operating system for managing users and groups) to see whether there is already a mysql group
and mysql user on the system. Some OS distributions create these as part of the operating system
installation process. If they are not already present, create a new mysql user group, and then add a
mysql user to this group:

$> groupadd mysql
$> useradd -g mysql -s /bin/false mysql

The syntax for useradd and groupadd may differ slightly on different versions of Unix, or they may
have different names such as adduser and addgroup.

2. Change location to the directory containing the downloaded file, unpack the archive, and create a
symbolic link named mysql to the mysql directory.

Note

The actual file and directory names vary according to the NDB Cluster version
number.

$> cd /var/tmp
$> tar -C /usr/local -xzvf mysql-cluster-gpl-7.6.35-linux-glibc2.12-x86_64.tar.gz
$> ln -s /usr/local/mysql-cluster-gpl-7.6.35-linux-glibc2.12-x86_64 /usr/local/mysql

3. Change location to the mysql directory and set up the system databases using mysqld --
initialize as shown here:

$> cd mysql
$> mysqld --initialize

3334

https://dev.mysql.com/downloads/cluster/

Installation of NDB Cluster on Linux

This generates a random password for the MySQL root account. If you do not want the random
password to be generated, you can substitute the --initialize-insecure option for --
initialize. In either case, you should review Section 2.9.1, “Initializing the Data Directory”, for
additional information before performing this step. See also Section 4.4.4, “mysql_secure_installation
— Improve MySQL Installation Security”.

4. Set the necessary permissions for the MySQL server and data directories:

$> chown -R root .
$> chown -R mysql data
$> chgrp -R mysql .

5. Copy the MySQL startup script to the appropriate directory, make it executable, and set it to start when
the operating system is booted up:

$> cp support-files/mysql.server /etc/rc.d/init.d/
$> chmod +x /etc/rc.d/init.d/mysql.server
$> chkconfig --add mysql.server

(The startup scripts directory may vary depending on your operating system and version—for example,
in some Linux distributions, it is /etc/init.d.)

Here we use Red Hat's chkconfig for creating links to the startup scripts; use whatever means is
appropriate for this purpose on your platform, such as update-rc.d on Debian.

Remember that the preceding steps must be repeated on each machine where an SQL node is to reside.

Data nodes. Installation of the data nodes does not require the mysqld binary. Only the NDB Cluster
data node executable ndbd (single-threaded) or ndbmtd (multithreaded) is required. These binaries can
also be found in the .tar.gz archive. Again, we assume that you have placed this archive in /var/tmp.

As system root (that is, after using sudo, su root, or your system's equivalent for temporarily assuming
the system administrator account's privileges), perform the following steps to install the data node binaries
on the data node hosts:

1. Change location to the /var/tmp directory, and extract the ndbd and ndbmtd binaries from the
archive into a suitable directory such as /usr/local/bin:

$> cd /var/tmp
$> tar -zxvf mysql-cluster-gpl-7.6.35-linux-glibc2.12-x86_64.tar.gz
$> cd mysql-cluster-gpl-7.6.35-linux-glibc2.12-x86_64
$> cp bin/ndbd /usr/local/bin/ndbd
$> cp bin/ndbmtd /usr/local/bin/ndbmtd

(You can safely delete the directory created by unpacking the downloaded archive, and the files
it contains, from /var/tmp once ndb_mgm and ndb_mgmd have been copied to the executables
directory.)

2. Change location to the directory into which you copied the files, and then make both of them
executable:

$> cd /usr/local/bin
$> chmod +x ndb*

The preceding steps should be repeated on each data node host.

Although only one of the data node executables is required to run an NDB Cluster data node, we have
shown you how to install both ndbd and ndbmtd in the preceding instructions. We recommend that you do

3335

Installation of NDB Cluster on Linux

this when installing or upgrading NDB Cluster, even if you plan to use only one of them, since this should
save time and trouble in the event that you later decide to change from one to the other.

Note

The data directory on each machine hosting a data node is /usr/local/mysql/
data. This piece of information is essential when configuring the management
node. (See Section 21.3.3, “Initial Configuration of NDB Cluster”.)

Management nodes. Installation of the management node does not require the mysqld binary.
Only the NDB Cluster management server (ndb_mgmd) is required; you most likely want to install the
management client (ndb_mgm) as well. Both of these binaries also be found in the .tar.gz archive.
Again, we assume that you have placed this archive in /var/tmp.

As system root, perform the following steps to install ndb_mgmd and ndb_mgm on the management node
host:

1. Change location to the /var/tmp directory, and extract the ndb_mgm and ndb_mgmd from the archive
into a suitable directory such as /usr/local/bin:

$> cd /var/tmp
$> tar -zxvf mysql-cluster-gpl-7.6.35-linux-glibc2.12-x86_64.tar.gz
$> cd mysql-cluster-gpl-7.6.35-linux-glibc2.12-x86_64
$> cp bin/ndb_mgm* /usr/local/bin

(You can safely delete the directory created by unpacking the downloaded archive, and the files
it contains, from /var/tmp once ndb_mgm and ndb_mgmd have been copied to the executables
directory.)

2. Change location to the directory into which you copied the files, and then make both of them
executable:

$> cd /usr/local/bin
$> chmod +x ndb_mgm*

In Section 21.3.3, “Initial Configuration of NDB Cluster”, we create configuration files for all of the nodes in
our example NDB Cluster.

21.3.1.2 Installing NDB Cluster from RPM

This section covers the steps necessary to install the correct executables for each type of NDB Cluster
node using RPM packages supplied by Oracle.

As an alternative to the method described in this section, Oracle provides MySQL Repositories for NDB
Cluster 7.5.6 and later that are compatible with many common Linux distributions. Two repostories, listed
here, are available for RPM-based distributions:

• For distributions using yum or dnf, you can use the MySQL Yum Repository for NDB Cluster. See
Installing MySQL NDB Cluster Using the Yum Repository, for instructions and additional information.

• For SLES, you can use the MySQL SLES Repository for NDB Cluster. See Installing MySQL NDB
Cluster Using the SLES Repository, for instructions and additional information.

RPMs are available for both 32-bit and 64-bit Linux platforms. The filenames for these RPMs use the
following pattern:

mysql-cluster-community-data-node-7.5.8-1.el7.x86_64.rpm

3336

https://dev.mysql.com/doc/mysql-yum-repo-quick-guide/en/#repo-qg-yum-fresh-cluster-install
https://dev.mysql.com/doc/mysql-sles-repo-quick-guide/en/#repo-qg-sles-fresh-cluster-install
https://dev.mysql.com/doc/mysql-sles-repo-quick-guide/en/#repo-qg-sles-fresh-cluster-install

Installation of NDB Cluster on Linux

mysql-cluster-license-component-ver-rev.distro.arch.rpm

 license:= {commercial | community}

 component: {management-server | data-node | server | client | other—see text}

 ver: major.minor.release

 rev: major[.minor]

 distro: {el6 | el7 | sles12}

 arch: {i686 | x86_64}

license indicates whether the RPM is part of a Commercial or Community release of NDB Cluster. In the
remainder of this section, we assume for the examples that you are installing a Community release.

Possible values for component, with descriptions, can be found in the following table:

Table 21.5 Components of the NDB Cluster RPM distribution

Component Description

auto-installer NDB Cluster Auto Installer program
(DEPRECATED); see Section 21.3.8, “The NDB
Cluster Auto-Installer (NDB 7.5) (NO LONGER
SUPPORTED)”, for usage

client MySQL and NDB client programs; includes mysql
client, ndb_mgm client, and other client tools

common Character set and error message information
needed by the MySQL server

data-node ndbd and ndbmtd data node binaries

devel Headers and library files needed for MySQL client
development

embedded Embedded MySQL server

embedded-compat Backwards-compatible embedded MySQL server

embedded-devel Header and library files for developing applications
for embedded MySQL

java JAR files needed for support of ClusterJ applications

libs MySQL client libraries

libs-compat Backwards-compatible MySQL client libraries

management-server The NDB Cluster management server (ndb_mgmd)

memcached Files needed to support ndbmemcache

minimal-debuginfo Debug information for package server-minimal;
useful when developing applications that use this
package or when debugging this package

ndbclient NDB client library for running NDB API and MGM
API applications (libndbclient)

ndbclient-devel Header and other files needed for developing NDB
API and MGM API applications

nodejs Files needed to set up Node.JS support for NDB
Cluster

3337

Installation of NDB Cluster on Linux

Component Description

server The MySQL server (mysqld) with NDB storage
engine support included, and associated MySQL
server programs

server-minimal Minimal installation of the MySQL server for NDB
and related tools

test mysqltest, other MySQL test programs, and
support files

A single bundle (.tar file) of all NDB Cluster RPMs for a given platform and architecture is also available.
The name of this file follows the pattern shown here:

mysql-cluster-license-ver-rev.distro.arch.rpm-bundle.tar

You can extract the individual RPM files from this file using tar or your preferred tool for extracting
archives.

The components required to install the three major types of NDB Cluster nodes are given in the following
list:

• Management node: management-server

• Data node: data-node

• SQL node: server and common

In addition, the client RPM should be installed to provide the ndb_mgm management client on at least
one management node. You may also wish to install it on SQL nodes, to have mysql and other MySQL
client programs available on these. We discuss installation of nodes by type later in this section.

ver represents the three-part NDB storage engine version number in 7.6.x format, shown as 7.6.35 in the
examples. rev provides the RPM revision number in major.minor format. In the examples shown in this
section, we use 1.1 for this value.

The distro (Linux distribution) is one of rhel5 (Oracle Linux 5, Red Hat Enterprise Linux 4 and 5), el6
(Oracle Linux 6, Red Hat Enterprise Linux 6), el7 (Oracle Linux 7, Red Hat Enterprise Linux 7), or sles12
(SUSE Enterprise Linux 12). For the examples in this section, we assume that the host runs Oracle Linux
7, Red Hat Enterprise Linux 7, or the equivalent (el7).

arch is i686 for 32-bit RPMs and x86_64 for 64-bit versions. In the examples shown here, we assume a
64-bit platform.

The NDB Cluster version number in the RPM file names (shown here as 7.6.35) can vary according to
the version which you are actually using. It is very important that all of the Cluster RPMs to be installed
have the same version number. The architecture should also be appropriate to the machine on which the
RPM is to be installed; in particular, you should keep in mind that 64-bit RPMs (x86_64) cannot be used
with 32-bit operating systems (use i686 for the latter).

Data nodes. On a computer that is to host an NDB Cluster data node it is necessary to install only
the data-node RPM. To do so, copy this RPM to the data node host, and run the following command
as the system root user, replacing the name shown for the RPM as necessary to match that of the RPM
downloaded from the MySQL website:

$> rpm -Uhv mysql-cluster-community-data-node-7.6.35-1.el7.x86_64.rpm

3338

Installation of NDB Cluster on Linux

This installs the ndbd and ndbmtd data node binaries in /usr/sbin. Either of these can be used to run a
data node process on this host.

SQL nodes. Copy the server and common RPMs to each machine to be used for hosting an NDB
Cluster SQL node (server requires common). Install the server RPM by executing the following
command as the system root user, replacing the name shown for the RPM as necessary to match the
name of the RPM downloaded from the MySQL website:

$> rpm -Uhv mysql-cluster-community-server-7.6.35-1.el7.x86_64.rpm

This installs the MySQL server binary (mysqld), with NDB storage engine support, in the /usr/sbin
directory. It also installs all needed MySQL Server support files and useful MySQL server programs,
including the mysql.server and mysqld_safe startup scripts (in /usr/share/mysql and /usr/bin,
respectively). The RPM installer should take care of general configuration issues (such as creating the
mysql user and group, if needed) automatically.

Important

You must use the versions of these RPMs released for NDB Cluster; those released
for the standard MySQL server do not provide support for the NDB storage engine.

To administer the SQL node (MySQL server), you should also install the client RPM, as shown here:

$> rpm -Uhv mysql-cluster-community-client-7.6.35-1.el7.x86_64.rpm

This installs the mysql client and other MySQL client programs, such as mysqladmin and mysqldump, to
/usr/bin.

Management nodes. To install the NDB Cluster management server, it is necessary only to use the
management-server RPM. Copy this RPM to the computer intended to host the management node,
and then install it by running the following command as the system root user (replace the name shown
for the RPM as necessary to match that of the management-server RPM downloaded from the MySQL
website):

$> rpm -Uhv mysql-cluster-community-management-server-7.6.35-1.el7.x86_64.rpm

This RPM installs the management server binary ndb_mgmd in the /usr/sbin directory. While this is the
only program actually required for running a management node, it is also a good idea to have the ndb_mgm
NDB Cluster management client available as well. You can obtain this program, as well as other NDB client
programs such as ndb_desc and ndb_config, by installing the client RPM as described previously.

Note

Previously, ndb_mgm was installed by the same RPM used to install the
management server. In NDB 7.5 (and later), all NDB client programs are obtained
from the same client RPM that installs mysql and other MySQL clients.

See Section 2.5.5, “Installing MySQL on Linux Using RPM Packages from Oracle”, for general information
about installing MySQL using RPMs supplied by Oracle.

After installing from RPM, you still need to configure the cluster; see Section 21.3.3, “Initial Configuration of
NDB Cluster”, for the relevant information.

See Section 2.5.5, “Installing MySQL on Linux Using RPM Packages from Oracle”, for general information
about installing MySQL using RPMs supplied by Oracle. See Section 21.3.3, “Initial Configuration of NDB
Cluster”, for information about required post-installation configuration.

21.3.1.3 Installing NDB Cluster Using .deb Files

3339

Installation of NDB Cluster on Linux

The section provides information about installing NDB Cluster on Debian and related Linux distributions
such Ubuntu using the .deb files supplied by Oracle for this purpose.

For NDB Cluster 7.5.6 and later, Oracle also provides an APT repository for Debian and other distributions.
See Installing MySQL NDB Cluster Using the APT Repository, for instructions and additional information.

Oracle provides .deb installer files for NDB Cluster 7.5 and later for 32-bit and 64-bit platforms. For a
Debian-based system, only a single installer file is necessary. This file is named using the pattern shown
here, according to the applicable NDB Cluster version, Debian version, and architecture:

mysql-cluster-gpl-ndbver-debiandebianver-arch.deb

Here, ndbver is the 3-part NDB engine version number, debianver is the major version of Debian (8
or 9), and arch is one of i686 or x86_64. In the examples that follow, we assume you wish to install
NDB 7.6.35 on a 64-bit Debian 9 system; in this case, the installer file is named mysql-cluster-
gpl-7.6.35-debian9-x86_64.deb-bundle.tar.

Once you have downloaded the appropriate .deb file, you can untar it, and then install it from the
command line using dpkg, like this:

$> dpkg -i mysql-cluster-gpl-7.6.35-debian9-i686.deb

You can also remove it using dpkg as shown here:

$> dpkg -r mysql

The installer file should also be compatible with most graphical package managers that work with .deb
files, such as GDebi for the Gnome desktop.

The .deb file installs NDB Cluster under /opt/mysql/server-version/, where version is the 2-
part release series version for the included MySQL server. For NDB 7.5 and later, this is always 5.7.
The directory layout is the same as that for the generic Linux binary distribution (see Table 2.3, “MySQL
Installation Layout for Generic Unix/Linux Binary Package”), with the exception that startup scripts and
configuration files are found in support-files instead of share. All NDB Cluster executables, such as
ndb_mgm, ndbd, and ndb_mgmd, are placed in the bin directory.

21.3.1.4 Building NDB Cluster from Source on Linux

This section provides information about compiling NDB Cluster on Linux and other Unix-like platforms.
Building NDB Cluster from source is similar to building the standard MySQL Server, although it differs
in a few key respects discussed here. For general information about building MySQL from source, see
Section 2.8, “Installing MySQL from Source”. For information about compiling NDB Cluster on Windows
platforms, see Section 21.3.2.2, “Compiling and Installing NDB Cluster from Source on Windows”.

Building NDB Cluster requires using the NDB Cluster sources. These are available from the NDB Cluster
downloads page at https://dev.mysql.com/downloads/cluster/. The archived source file should have a
name similar to mysql-cluster-gpl-7.6.35.tar.gz. You can also obtain NDB Cluster sources from
GitHub at https://github.com/mysql/mysql-server/tree/cluster-7.5 (NDB 7.5) and https://github.com/mysql/
mysql-server/tree/cluster-7.6 (NDB 7.6). Building NDB Cluster 7.5 or 7.6 from standard MySQL Server 5.7
sources is not supported.

The WITH_NDBCLUSTER_STORAGE_ENGINE option for CMake causes the binaries for the management
nodes, data nodes, and other NDB Cluster programs to be built; it also causes mysqld to be compiled with
NDB storage engine support. This option (or its alias WITH_NDBCLUSTER) is required when building NDB
Cluster.

3340

https://dev.mysql.com/doc/mysql-apt-repo-quick-guide/en/#repo-qg-apt-cluster-install
https://dev.mysql.com/downloads/cluster/
https://github.com/mysql/mysql-server/tree/cluster-7.5
https://github.com/mysql/mysql-server/tree/cluster-7.6
https://github.com/mysql/mysql-server/tree/cluster-7.6

Installing NDB Cluster on Windows

Important

The WITH_NDB_JAVA option is enabled by default. This means that, by default, if
CMake cannot find the location of Java on your system, the configuration process
fails; if you do not wish to enable Java and ClusterJ support, you must indicate
this explicitly by configuring the build using -DWITH_NDB_JAVA=OFF. Use
WITH_CLASSPATH to provide the Java classpath if needed.

For more information about CMake options specific to building NDB Cluster, see CMake Options for
Compiling NDB Cluster.

After you have run make && make install (or your system's equivalent), the result is similar to what is
obtained by unpacking a precompiled binary to the same location.

Management nodes. When building from source and running the default make install, the
management server and management client binaries (ndb_mgmd and ndb_mgm) can be found in /usr/
local/mysql/bin. Only ndb_mgmd is required to be present on a management node host; however,
it is also a good idea to have ndb_mgm present on the same host machine. Neither of these executables
requires a specific location on the host machine's file system.

Data nodes. The only executable required on a data node host is the data node binary ndbd or
ndbmtd. (mysqld, for example, does not have to be present on the host machine.) By default, when
building from source, this file is placed in the directory /usr/local/mysql/bin. For installing on multiple
data node hosts, only ndbd or ndbmtd need be copied to the other host machine or machines. (This
assumes that all data node hosts use the same architecture and operating system; otherwise you may
need to compile separately for each different platform.) The data node binary need not be in any particular
location on the host's file system, as long as the location is known.

When compiling NDB Cluster from source, no special options are required for building multithreaded
data node binaries. Configuring the build with NDB storage engine support causes ndbmtd to be built
automatically; make install places the ndbmtd binary in the installation bin directory along with
mysqld, ndbd, and ndb_mgm.

SQL nodes. If you compile MySQL with clustering support, and perform the default installation (using
make install as the system root user), mysqld is placed in /usr/local/mysql/bin. Follow the
steps given in Section 2.8, “Installing MySQL from Source” to make mysqld ready for use. If you want to
run multiple SQL nodes, you can use a copy of the same mysqld executable and its associated support
files on several machines. The easiest way to do this is to copy the entire /usr/local/mysql directory
and all directories and files contained within it to the other SQL node host or hosts, then repeat the steps
from Section 2.8, “Installing MySQL from Source” on each machine. If you configure the build with a
nondefault PREFIX option, you must adjust the directory accordingly.

In Section 21.3.3, “Initial Configuration of NDB Cluster”, we create configuration files for all of the nodes in
our example NDB Cluster.

21.3.2 Installing NDB Cluster on Windows

This section describes installation procedures for NDB Cluster on Windows hosts. NDB Cluster 7.5 and
7.6 binaries for Windows can be obtained from https://dev.mysql.com/downloads/cluster/. For information
about installing NDB Cluster on Windows from a binary release provided by Oracle, see Section 21.3.2.1,
“Installing NDB Cluster on Windows from a Binary Release”.

It is also possible to compile and install NDB Cluster from source on Windows using Microsoft Visual
Studio. For more information, see Section 21.3.2.2, “Compiling and Installing NDB Cluster from Source on
Windows”.

3341

https://dev.mysql.com/downloads/cluster/

Installing NDB Cluster on Windows

21.3.2.1 Installing NDB Cluster on Windows from a Binary Release

This section describes a basic installation of NDB Cluster on Windows using a binary “no-install” NDB
Cluster release provided by Oracle, using the same 4-node setup outlined in the beginning of this section
(see Section 21.3, “NDB Cluster Installation”), as shown in the following table:

Table 21.6 Network addresses of nodes in example cluster

Node IP Address

Management node (mgmd) 198.51.100.10

SQL node (mysqld) 198.51.100.20

Data node "A" (ndbd) 198.51.100.30

Data node "B" (ndbd) 198.51.100.40

As on other platforms, the NDB Cluster host computer running an SQL node must have installed on it a
MySQL Server binary (mysqld.exe). You should also have the MySQL client (mysql.exe) on this host.
For management nodes and data nodes, it is not necessary to install the MySQL Server binary; however,
each management node requires the management server daemon (ndb_mgmd.exe); each data node
requires the data node daemon (ndbd.exe or ndbmtd.exe). For this example, we refer to ndbd.exe
as the data node executable, but you can install ndbmtd.exe, the multithreaded version of this program,
instead, in exactly the same way. You should also install the management client (ndb_mgm.exe) on the
management server host. This section covers the steps necessary to install the correct Windows binaries
for each type of NDB Cluster node.

Note

As with other Windows programs, NDB Cluster executables are named with the
.exe file extension. However, it is not necessary to include the .exe extension
when invoking these programs from the command line. Therefore, we often simply
refer to these programs in this documentation as mysqld, mysql, ndb_mgmd, and
so on. You should understand that, whether we refer (for example) to mysqld or
mysqld.exe, either name means the same thing (the MySQL Server program).

For setting up an NDB Cluster using Oracles's no-install binaries, the first step in the installation
process is to download the latest NDB Cluster Windows ZIP binary archive from https://dev.mysql.com/
downloads/cluster/. This archive has a filename of the mysql-cluster-gpl-ver-winarch.zip,
where ver is the NDB storage engine version (such as 7.6.35), and arch is the architecture (32 for 32-
bit binaries, and 64 for 64-bit binaries). For example, the NDB Cluster 7.6.35 archive for 64-bit Windows
systems is named mysql-cluster-gpl-7.6.35-win64.zip.

You can run 32-bit NDB Cluster binaries on both 32-bit and 64-bit versions of Windows; however, 64-bit
NDB Cluster binaries can be used only on 64-bit versions of Windows. If you are using a 32-bit version of
Windows on a computer that has a 64-bit CPU, then you must use the 32-bit NDB Cluster binaries.

To minimize the number of files that need to be downloaded from the Internet or copied between
machines, we start with the computer where you intend to run the SQL node.

SQL node. We assume that you have placed a copy of the archive in the directory C:\Documents
and Settings\username\My Documents\Downloads on the computer having the IP address
198.51.100.20, where username is the name of the current user. (You can obtain this name using ECHO
%USERNAME% on the command line.) To install and run NDB Cluster executables as Windows services, this
user should be a member of the Administrators group.

Extract all the files from the archive. The Extraction Wizard integrated with Windows Explorer is adequate
for this task. (If you use a different archive program, be sure that it extracts all files and directories from

3342

https://dev.mysql.com/downloads/cluster/
https://dev.mysql.com/downloads/cluster/

Installing NDB Cluster on Windows

the archive, and that it preserves the archive's directory structure.) When you are asked for a destination
directory, enter C:\, which causes the Extraction Wizard to extract the archive to the directory C:\mysql-
cluster-gpl-ver-winarch. Rename this directory to C:\mysql.

It is possible to install the NDB Cluster binaries to directories other than C:\mysql\bin; however, if you
do so, you must modify the paths shown in this procedure accordingly. In particular, if the MySQL Server
(SQL node) binary is installed to a location other than C:\mysql or C:\Program Files\MySQL\MySQL
Server 5.7, or if the SQL node's data directory is in a location other than C:\mysql\data or C:
\Program Files\MySQL\MySQL Server 5.7\data, extra configuration options must be used on the
command line or added to the my.ini or my.cnf file when starting the SQL node. For more information
about configuring a MySQL Server to run in a nonstandard location, see Section 2.3.4, “Installing MySQL
on Microsoft Windows Using a noinstall ZIP Archive”.

For a MySQL Server with NDB Cluster support to run as part of an NDB Cluster, it must be started with
the options --ndbcluster and --ndb-connectstring. While you can specify these options on the
command line, it is usually more convenient to place them in an option file. To do this, create a new text file
in Notepad or another text editor. Enter the following configuration information into this file:

[mysqld]
Options for mysqld process:
ndbcluster # run NDB storage engine
ndb-connectstring=198.51.100.10 # location of management server

You can add other options used by this MySQL Server if desired (see Section 2.3.4.2, “Creating an Option
File”), but the file must contain the options shown, at a minimum. Save this file as C:\mysql\my.ini.
This completes the installation and setup for the SQL node.

Data nodes. An NDB Cluster data node on a Windows host requires only a single executable, one of
either ndbd.exe or ndbmtd.exe. For this example, we assume that you are using ndbd.exe, but the
same instructions apply when using ndbmtd.exe. On each computer where you wish to run a data node
(the computers having the IP addresses 198.51.100.30 and 198.51.100.40), create the directories C:
\mysql, C:\mysql\bin, and C:\mysql\cluster-data; then, on the computer where you downloaded
and extracted the no-install archive, locate ndbd.exe in the C:\mysql\bin directory. Copy this file
to the C:\mysql\bin directory on each of the two data node hosts.

To function as part of an NDB Cluster, each data node must be given the address or hostname of
the management server. You can supply this information on the command line using the --ndb-
connectstring or -c option when starting each data node process. However, it is usually preferable to
put this information in an option file. To do this, create a new text file in Notepad or another text editor and
enter the following text:

[mysql_cluster]
Options for data node process:
ndb-connectstring=198.51.100.10 # location of management server

Save this file as C:\mysql\my.ini on the data node host. Create another text file containing the same
information and save it on as C:mysql\my.ini on the other data node host, or copy the my.ini file from
the first data node host to the second one, making sure to place the copy in the second data node's C:
\mysql directory. Both data node hosts are now ready to be used in the NDB Cluster, which leaves only
the management node to be installed and configured.

Management node. The only executable program required on a computer used for hosting an NDB
Cluster management node is the management server program ndb_mgmd.exe. However, in order to
administer the NDB Cluster once it has been started, you should also install the NDB Cluster management
client program ndb_mgm.exe on the same machine as the management server. Locate these two
programs on the machine where you downloaded and extracted the no-install archive; this should be

3343

Installing NDB Cluster on Windows

the directory C:\mysql\bin on the SQL node host. Create the directory C:\mysql\bin on the computer
having the IP address 198.51.100.10, then copy both programs to this directory.

You should now create two configuration files for use by ndb_mgmd.exe:

1. A local configuration file to supply configuration data specific to the management node itself. Typically,
this file needs only to supply the location of the NDB Cluster global configuration file (see item 2).

To create this file, start a new text file in Notepad or another text editor, and enter the following
information:

[mysql_cluster]
Options for management node process
config-file=C:/mysql/bin/config.ini

Save this file as the text file C:\mysql\bin\my.ini.

2. A global configuration file from which the management node can obtain configuration information
governing the NDB Cluster as a whole. At a minimum, this file must contain a section for each node
in the NDB Cluster, and the IP addresses or hostnames for the management node and all data nodes
(HostName configuration parameter). It is also advisable to include the following additional information:

• The IP address or hostname of any SQL nodes

• The data memory and index memory allocated to each data node (DataMemory and IndexMemory
configuration parameters)

• The number of fragment replicas, using the NoOfReplicas configuration parameter (see
Section 21.2.2, “NDB Cluster Nodes, Node Groups, Fragment Replicas, and Partitions”)

• The directory where each data node stores it data and log file, and the directory where the
management node keeps its log files (in both cases, the DataDir configuration parameter)

Create a new text file using a text editor such as Notepad, and input the following information:

[ndbd default]
Options affecting ndbd processes on all data nodes:
NoOfReplicas=2 # Number of fragment replicas
DataDir=C:/mysql/cluster-data # Directory for each data node's data files
 # Forward slashes used in directory path,
 # rather than backslashes. This is correct;
 # see Important note in text
DataMemory=80M # Memory allocated to data storage
IndexMemory=18M # Memory allocated to index storage
 # For DataMemory and IndexMemory, we have used the
 # default values. Since the "world" database takes up
 # only about 500KB, this should be more than enough for
 # this example Cluster setup.

[ndb_mgmd]
Management process options:
HostName=198.51.100.10 # Hostname or IP address of management node
DataDir=C:/mysql/bin/cluster-logs # Directory for management node log files

[ndbd]
Options for data node "A":
 # (one [ndbd] section per data node)
HostName=198.51.100.30 # Hostname or IP address

[ndbd]
Options for data node "B":
HostName=198.51.100.40 # Hostname or IP address

3344

Installing NDB Cluster on Windows

[mysqld]
SQL node options:
HostName=198.51.100.20 # Hostname or IP address

Save this file as the text file C:\mysql\bin\config.ini.

Important

A single backslash character (\) cannot be used when specifying directory paths in
program options or configuration files used by NDB Cluster on Windows. Instead,
you must either escape each backslash character with a second backslash (\\), or
replace the backslash with a forward slash character (/). For example, the following
line from the [ndb_mgmd] section of an NDB Cluster config.ini file does not
work:

DataDir=C:\mysql\bin\cluster-logs

Instead, you may use either of the following:

DataDir=C:\\mysql\\bin\\cluster-logs # Escaped backslashes

DataDir=C:/mysql/bin/cluster-logs # Forward slashes

For reasons of brevity and legibility, we recommend that you use forward slashes
in directory paths used in NDB Cluster program options and configuration files on
Windows.

21.3.2.2 Compiling and Installing NDB Cluster from Source on Windows

Oracle provides precompiled NDB Cluster binaries for Windows which should be adequate for most users.
However, if you wish, it is also possible to compile NDB Cluster for Windows from source code. The
procedure for doing this is almost identical to the procedure used to compile the standard MySQL Server
binaries for Windows, and uses the same tools. However, there are two major differences:

• Building NDB Cluster requires using the NDB Cluster sources. These are available from the NDB Cluster
downloads page at https://dev.mysql.com/downloads/cluster/. The archived source file should have a
name similar to mysql-cluster-gpl-7.6.35.tar.gz. You can also obtain NDB Cluster sources
from GitHub at https://github.com/mysql/mysql-server/tree/cluster-7.5 (NDB 7.5) and https://github.com/
mysql/mysql-server/tree/cluster-7.6 (NDB 7.6). Building NDB Cluster 7.5 or 7.6 from standard MySQL
Server 5.7 sources is not supported.

• You must configure the build using the WITH_NDBCLUSTER option in addition to any other build options
you wish to use with CMake. (WITH_NDBCLUSTER_STORAGE_ENGINE is supported as an alias.)

Important

The WITH_NDB_JAVA option is enabled by default. This means that, by default, if
CMake cannot find the location of Java on your system, the configuration process
fails; if you do not wish to enable Java and ClusterJ support, you must indicate this
explicitly by configuring the build using -DWITH_NDB_JAVA=OFF. (Bug #12379735)
Use WITH_CLASSPATH to provide the Java classpath if needed.

For more information about CMake options specific to building NDB Cluster, see CMake Options for
Compiling NDB Cluster.

Once the build process is complete, you can create a Zip archive containing the compiled binaries;
Section 2.8.4, “Installing MySQL Using a Standard Source Distribution” provides the commands needed
to perform this task on Windows systems. The NDB Cluster binaries can be found in the bin directory

3345

https://dev.mysql.com/downloads/cluster/
https://github.com/mysql/mysql-server/tree/cluster-7.5
https://github.com/mysql/mysql-server/tree/cluster-7.6
https://github.com/mysql/mysql-server/tree/cluster-7.6

Installing NDB Cluster on Windows

of the resulting archive, which is equivalent to the no-install archive, and which can be installed and
configured in the same manner. For more information, see Section 21.3.2.1, “Installing NDB Cluster on
Windows from a Binary Release”.

21.3.2.3 Initial Startup of NDB Cluster on Windows

Once the NDB Cluster executables and needed configuration files are in place, performing an initial
start of the cluster is simply a matter of starting the NDB Cluster executables for all nodes in the cluster.
Each cluster node process must be started separately, and on the host computer where it resides. The
management node should be started first, followed by the data nodes, and then finally by any SQL nodes.

1. On the management node host, issue the following command from the command line to start the
management node process. The output should appear similar to what is shown here:

C:\mysql\bin> ndb_mgmd
2010-06-23 07:53:34 [MgmtSrvr] INFO -- NDB Cluster Management Server. mysql-5.7.44-ndb-7.6.36
2010-06-23 07:53:34 [MgmtSrvr] INFO -- Reading cluster configuration from 'config.ini'

The management node process continues to print logging output to the console. This is normal,
because the management node is not running as a Windows service. (If you have used NDB Cluster on
a Unix-like platform such as Linux, you may notice that the management node's default behavior in this
regard on Windows is effectively the opposite of its behavior on Unix systems, where it runs by default
as a Unix daemon process. This behavior is also true of NDB Cluster data node processes running on
Windows.) For this reason, do not close the window in which ndb_mgmd.exe is running; doing so kills
the management node process. (See Section 21.3.2.4, “Installing NDB Cluster Processes as Windows
Services”, where we show how to install and run NDB Cluster processes as Windows services.)

The required -f option tells the management node where to find the global configuration file
(config.ini). The long form of this option is --config-file.

Important

An NDB Cluster management node caches the configuration data that it reads
from config.ini; once it has created a configuration cache, it ignores the
config.ini file on subsequent starts unless forced to do otherwise. This
means that, if the management node fails to start due to an error in this file,
you must make the management node re-read config.ini after you have
corrected any errors in it. You can do this by starting ndb_mgmd.exe with the
--reload or --initial option on the command line. Either of these options
works to refresh the configuration cache.

It is not necessary or advisable to use either of these options in the
management node's my.ini file.

2. On each of the data node hosts, run the command shown here to start the data node processes:

C:\mysql\bin> ndbd
2010-06-23 07:53:46 [ndbd] INFO -- Configuration fetched from 'localhost:1186', generation: 1

In each case, the first line of output from the data node process should resemble what is shown in the
preceding example, and is followed by additional lines of logging output. As with the management node
process, this is normal, because the data node is not running as a Windows service. For this reason, do
not close the console window in which the data node process is running; doing so kills ndbd.exe. (For
more information, see Section 21.3.2.4, “Installing NDB Cluster Processes as Windows Services”.)

3. Do not start the SQL node yet; it cannot connect to the cluster until the data nodes have finished
starting, which may take some time. Instead, in a new console window on the management node host,

3346

Installing NDB Cluster on Windows

start the NDB Cluster management client ndb_mgm.exe, which should be in C:\mysql\bin on the
management node host. (Do not try to re-use the console window where ndb_mgmd.exe is running by
typing CTRL+C, as this kills the management node.) The resulting output should look like this:

C:\mysql\bin> ndb_mgm
-- NDB Cluster -- Management Client --
ndb_mgm>

When the prompt ndb_mgm> appears, this indicates that the management client is ready to receive
NDB Cluster management commands. You can observe the status of the data nodes as they start by
entering ALL STATUS at the management client prompt. This command causes a running report of the
data nodes's startup sequence, which should look something like this:

ndb_mgm> ALL STATUS
Connected to Management Server at: localhost:1186
Node 2: starting (Last completed phase 3) (mysql-5.7.44-ndb-7.6.36)
Node 3: starting (Last completed phase 3) (mysql-5.7.44-ndb-7.6.36)

Node 2: starting (Last completed phase 4) (mysql-5.7.44-ndb-7.6.36)
Node 3: starting (Last completed phase 4) (mysql-5.7.44-ndb-7.6.36)

Node 2: Started (version 7.6.36)
Node 3: Started (version 7.6.36)

ndb_mgm>

Note

Commands issued in the management client are not case-sensitive; we use
uppercase as the canonical form of these commands, but you are not required
to observe this convention when inputting them into the ndb_mgm client.
For more information, see Section 21.6.1, “Commands in the NDB Cluster
Management Client”.

The output produced by ALL STATUS is likely to vary from what is shown here, according to the speed
at which the data nodes are able to start, the release version number of the NDB Cluster software
you are using, and other factors. What is significant is that, when you see that both data nodes have
started, you are ready to start the SQL node.

You can leave ndb_mgm.exe running; it has no negative impact on the performance of the NDB
Cluster, and we use it in the next step to verify that the SQL node is connected to the cluster after you
have started it.

4. On the computer designated as the SQL node host, open a console window and navigate to the
directory where you unpacked the NDB Cluster binaries (if you are following our example, this is C:
\mysql\bin).

Start the SQL node by invoking mysqld.exe from the command line, as shown here:

C:\mysql\bin> mysqld --console

The --console option causes logging information to be written to the console, which can be helpful in
the event of problems. (Once you are satisfied that the SQL node is running in a satisfactory manner,
you can stop it and restart it out without the --console option, so that logging is performed normally.)

In the console window where the management client (ndb_mgm.exe) is running on the management
node host, enter the SHOW command, which should produce output similar to what is shown here:

ndb_mgm> SHOW
Connected to Management Server at: localhost:1186

3347

Installing NDB Cluster on Windows

Cluster Configuration

[ndbd(NDB)] 2 node(s)
id=2 @198.51.100.30 (Version: 5.7.44-ndb-7.6.36, Nodegroup: 0, *)
id=3 @198.51.100.40 (Version: 5.7.44-ndb-7.6.36, Nodegroup: 0)

[ndb_mgmd(MGM)] 1 node(s)
id=1 @198.51.100.10 (Version: 5.7.44-ndb-7.6.36)

[mysqld(API)] 1 node(s)
id=4 @198.51.100.20 (Version: 5.7.44-ndb-7.6.36)

You can also verify that the SQL node is connected to the NDB Cluster in the mysql client
(mysql.exe) using the SHOW ENGINE NDB STATUS statement.

You should now be ready to work with database objects and data using NDB Cluster 's NDBCLUSTER
storage engine. See Section 21.3.5, “NDB Cluster Example with Tables and Data”, for more information
and examples.

You can also install ndb_mgmd.exe, ndbd.exe, and ndbmtd.exe as Windows services. For information
on how to do this, see Section 21.3.2.4, “Installing NDB Cluster Processes as Windows Services”).

21.3.2.4 Installing NDB Cluster Processes as Windows Services

Once you are satisfied that NDB Cluster is running as desired, you can install the management nodes and
data nodes as Windows services, so that these processes are started and stopped automatically whenever
Windows is started or stopped. This also makes it possible to control these processes from the command
line with the appropriate SC START and SC STOP commands, or using the Windows graphical Services
utility. NET START and NET STOP commands can also be used.

Installing programs as Windows services usually must be done using an account that has Administrator
rights on the system.

To install the management node as a service on Windows, invoke ndb_mgmd.exe from the command line
on the machine hosting the management node, using the --install option, as shown here:

C:\> C:\mysql\bin\ndb_mgmd.exe --install
Installing service 'NDB Cluster Management Server'
 as '"C:\mysql\bin\ndbd.exe" "--service=ndb_mgmd"'
Service successfully installed.

Important

When installing an NDB Cluster program as a Windows service, you should always
specify the complete path; otherwise the service installation may fail with the error
The system cannot find the file specified.

The --install option must be used first, ahead of any other options that might be specified for
ndb_mgmd.exe. However, it is preferable to specify such options in an options file instead. If your options
file is not in one of the default locations as shown in the output of ndb_mgmd.exe --help, you can
specify the location using the --config-file option.

Now you should be able to start and stop the management server like this:

C:\> SC START ndb_mgmd

C:\> SC STOP ndb_mgmd

3348

Installing NDB Cluster on Windows

Note

If using NET commands, you can also start or stop the management server as a
Windows service using the descriptive name, as shown here:

C:\> NET START 'NDB Cluster Management Server'
The NDB Cluster Management Server service is starting.
The NDB Cluster Management Server service was started successfully.

C:\> NET STOP 'NDB Cluster Management Server'
The NDB Cluster Management Server service is stopping..
The NDB Cluster Management Server service was stopped successfully.

It is usually simpler to specify a short service name or to permit the default service name to be used when
installing the service, and then reference that name when starting or stopping the service. To specify a
service name other than ndb_mgmd, append it to the --install option, as shown in this example:

C:\> C:\mysql\bin\ndb_mgmd.exe --install=mgmd1
Installing service 'NDB Cluster Management Server'
 as '"C:\mysql\bin\ndb_mgmd.exe" "--service=mgmd1"'
Service successfully installed.

Now you should be able to start or stop the service using the name you have specified, like this:

C:\> SC START mgmd1

C:\> SC STOP mgmd1

To remove the management node service, use SC DELETE service_name:

C:\> SC DELETE mgmd1

Alternatively, invoke ndb_mgmd.exe with the --remove option, as shown here:

C:\> C:\mysql\bin\ndb_mgmd.exe --remove
Removing service 'NDB Cluster Management Server'
Service successfully removed.

If you installed the service using a service name other than the default, pass the service name as the value
of the ndb_mgmd.exe --remove option, like this:

C:\> C:\mysql\bin\ndb_mgmd.exe --remove=mgmd1
Removing service 'mgmd1'
Service successfully removed.

Installation of an NDB Cluster data node process as a Windows service can be done in a similar fashion,
using the --install option for ndbd.exe (or ndbmtd.exe), as shown here:

C:\> C:\mysql\bin\ndbd.exe --install
Installing service 'NDB Cluster Data Node Daemon' as '"C:\mysql\bin\ndbd.exe" "--service=ndbd"'
Service successfully installed.

Now you can start or stop the data node as shown in the following example:

C:\> SC START ndbd

C:\> SC STOP ndbd

To remove the data node service, use SC DELETE service_name:

C:\> SC DELETE ndbd

3349

Initial Configuration of NDB Cluster

Alternatively, invoke ndbd.exe with the --remove option, as shown here:

C:\> C:\mysql\bin\ndbd.exe --remove
Removing service 'NDB Cluster Data Node Daemon'
Service successfully removed.

As with ndb_mgmd.exe (and mysqld.exe), when installing ndbd.exe as a Windows service, you can
also specify a name for the service as the value of --install, and then use it when starting or stopping
the service, like this:

C:\> C:\mysql\bin\ndbd.exe --install=dnode1
Installing service 'dnode1' as '"C:\mysql\bin\ndbd.exe" "--service=dnode1"'
Service successfully installed.

C:\> SC START dnode1

C:\> SC STOP dnode1

If you specified a service name when installing the data node service, you can use this name when
removing it as well, as shown here:

C:\> SC DELETE dnode1

Alternatively, you can pass the service name as the value of the ndbd.exe --remove option, as shown
here:

C:\> C:\mysql\bin\ndbd.exe --remove=dnode1
Removing service 'dnode1'
Service successfully removed.

Installation of the SQL node as a Windows service, starting the service, stopping the service, and removing
the service are done in a similar fashion, using mysqld --install, SC START, SC STOP, and SC
DELETE (or mysqld --remove). NET commands can also be used to start or stop a service. For additional
information, see Section 2.3.4.8, “Starting MySQL as a Windows Service”.

21.3.3 Initial Configuration of NDB Cluster

In this section, we discuss manual configuration of an installed NDB Cluster by creating and editing
configuration files.

For our four-node, four-host NDB Cluster (see Cluster nodes and host computers), it is necessary to write
four configuration files, one per node host.

• Each data node or SQL node requires a my.cnf file that provides two pieces of information: a
connection string that tells the node where to find the management node, and a line telling the MySQL
server on this host (the machine hosting the data node) to enable the NDBCLUSTER storage engine.

For more information on connection strings, see Section 21.4.3.3, “NDB Cluster Connection Strings”.

• The management node needs a config.ini file telling it how many fragment replicas to maintain, how
much memory to allocate for data and indexes on each data node, where to find the data nodes, where
to save data to disk on each data node, and where to find any SQL nodes.

Configuring the data nodes and SQL nodes. The my.cnf file needed for the data nodes is fairly
simple. The configuration file should be located in the /etc directory and can be edited using any text
editor. (Create the file if it does not exist.) For example:

$> vi /etc/my.cnf

3350

Initial Configuration of NDB Cluster

Note

We show vi being used here to create the file, but any text editor should work just
as well.

For each data node and SQL node in our example setup, my.cnf should look like this:

[mysqld]
Options for mysqld process:
ndbcluster # run NDB storage engine

[mysql_cluster]
Options for NDB Cluster processes:
ndb-connectstring=198.51.100.10 # location of management server

After entering the preceding information, save this file and exit the text editor. Do this for the machines
hosting data node “A”, data node “B”, and the SQL node.

Important

Once you have started a mysqld process with the ndbcluster and ndb-
connectstring parameters in the [mysqld] and [mysql_cluster] sections
of the my.cnf file as shown previously, you cannot execute any CREATE TABLE
or ALTER TABLE statements without having actually started the cluster. Otherwise,
these statements fail with an error. This is by design.

Configuring the management node. The first step in configuring the management node is to create
the directory in which the configuration file can be found and then to create the file itself. For example
(running as root):

$> mkdir /var/lib/mysql-cluster
$> cd /var/lib/mysql-cluster
$> vi config.ini

For our representative setup, the config.ini file should read as follows:

[ndbd default]
Options affecting ndbd processes on all data nodes:
NoOfReplicas=2 # Number of fragment replicas
DataMemory=80M # How much memory to allocate for data storage
IndexMemory=18M # How much memory to allocate for index storage
 # For DataMemory and IndexMemory, we have used the
 # default values. Since the "world" database takes up
 # only about 500KB, this should be more than enough for
 # this example NDB Cluster setup.
 # NOTE: IndexMemory is deprecated in NDB 7.6 and later; in
 # these versions, resources for all data and indexes are
 # allocated by DataMemory and any that are set for IndexMemory
 # are added to the DataMemory resource pool

[ndb_mgmd]
Management process options:
HostName=198.51.100.10 # Hostname or IP address of management node
DataDir=/var/lib/mysql-cluster # Directory for management node log files

[ndbd]
Options for data node "A":
 # (one [ndbd] section per data node)
HostName=198.51.100.30 # Hostname or IP address
NodeId=2 # Node ID for this data node
DataDir=/usr/local/mysql/data # Directory for this data node's data files

[ndbd]

3351

Initial Startup of NDB Cluster

Options for data node "B":
HostName=198.51.100.40 # Hostname or IP address
NodeId=3 # Node ID for this data node
DataDir=/usr/local/mysql/data # Directory for this data node's data files

[mysqld]
SQL node options:
HostName=198.51.100.20 # Hostname or IP address
 # (additional mysqld connections can be
 # specified for this node for various
 # purposes such as running ndb_restore)

Note

The world database can be downloaded from https://dev.mysql.com/doc/index-
other.html.

After all the configuration files have been created and these minimal options have been specified, you are
ready to proceed with starting the cluster and verifying that all processes are running. We discuss how this
is done in Section 21.3.4, “Initial Startup of NDB Cluster”.

For more detailed information about the available NDB Cluster configuration parameters and their uses,
see Section 21.4.3, “NDB Cluster Configuration Files”, and Section 21.4, “Configuration of NDB Cluster”.
For configuration of NDB Cluster as relates to making backups, see Section 21.6.8.3, “Configuration for
NDB Cluster Backups”.

The default port for Cluster management nodes is 1186. For data nodes, the cluster can automatically
allocate ports from those that are already free.

21.3.4 Initial Startup of NDB Cluster

Starting the cluster is not very difficult after it has been configured. Each cluster node process must
be started separately, and on the host where it resides. The management node should be started first,
followed by the data nodes, and then finally by any SQL nodes:

1. On the management host, issue the following command from the system shell to start the management
node process:

$> ndb_mgmd --initial -f /var/lib/mysql-cluster/config.ini

The first time that it is started, ndb_mgmd must be told where to find its configuration file, using the -f
or --config-file option. This option requires that --initial or --reload also be specified; see
Section 21.5.4, “ndb_mgmd — The NDB Cluster Management Server Daemon”, for details.

2. On each of the data node hosts, run this command to start the ndbd process:

$> ndbd

3. If you used RPM files to install MySQL on the cluster host where the SQL node is to reside, you can
(and should) use the supplied startup script to start the MySQL server process on the SQL node.

If all has gone well, and the cluster has been set up correctly, the cluster should now be operational. You
can test this by invoking the ndb_mgm management node client. The output should look like that shown
here, although you might see some slight differences in the output depending upon the exact version of
MySQL that you are using:

$> ndb_mgm
-- NDB Cluster -- Management Client --
ndb_mgm> SHOW

3352

https://dev.mysql.com/doc/index-other.html
https://dev.mysql.com/doc/index-other.html

NDB Cluster Example with Tables and Data

Connected to Management Server at: localhost:1186
Cluster Configuration

[ndbd(NDB)] 2 node(s)
id=2 @198.51.100.30 (Version: 5.7.44-ndb-7.6.36, Nodegroup: 0, *)
id=3 @198.51.100.40 (Version: 5.7.44-ndb-7.6.36, Nodegroup: 0)

[ndb_mgmd(MGM)] 1 node(s)
id=1 @198.51.100.10 (Version: 5.7.44-ndb-7.6.36)

[mysqld(API)] 1 node(s)
id=4 @198.51.100.20 (Version: 5.7.44-ndb-7.6.36)

The SQL node is referenced here as [mysqld(API)], which reflects the fact that the mysqld process is
acting as an NDB Cluster API node.

Note

The IP address shown for a given NDB Cluster SQL or other API node in the output
of SHOW is the address used by the SQL or API node to connect to the cluster data
nodes, and not to any management node.

You should now be ready to work with databases, tables, and data in NDB Cluster. See Section 21.3.5,
“NDB Cluster Example with Tables and Data”, for a brief discussion.

21.3.5 NDB Cluster Example with Tables and Data

Note

The information in this section applies to NDB Cluster running on both Unix and
Windows platforms.

Working with database tables and data in NDB Cluster is not much different from doing so in standard
MySQL. There are two key points to keep in mind:

• For a table to be replicated in the cluster, it must use the NDBCLUSTER storage engine. To specify this,
use the ENGINE=NDBCLUSTER or ENGINE=NDB option when creating the table:

CREATE TABLE tbl_name (col_name column_definitions) ENGINE=NDBCLUSTER;

Alternatively, for an existing table that uses a different storage engine, use ALTER TABLE to change the
table to use NDBCLUSTER:

ALTER TABLE tbl_name ENGINE=NDBCLUSTER;

• Every NDBCLUSTER table has a primary key. If no primary key is defined by the user when a table is
created, the NDBCLUSTER storage engine automatically generates a hidden one. Such a key takes up
space just as does any other table index. (It is not uncommon to encounter problems due to insufficient
memory for accommodating these automatically created indexes.)

If you are importing tables from an existing database using the output of mysqldump, you can open the
SQL script in a text editor and add the ENGINE option to any table creation statements, or replace any
existing ENGINE options. Suppose that you have the world sample database on another MySQL server
that does not support NDB Cluster, and you want to export the City table:

$> mysqldump --add-drop-table world City > city_table.sql

The resulting city_table.sql file contains this table creation statement (and the INSERT statements
necessary to import the table data):

3353

NDB Cluster Example with Tables and Data

DROP TABLE IF EXISTS `City`;
CREATE TABLE `City` (
 `ID` int(11) NOT NULL auto_increment,
 `Name` char(35) NOT NULL default '',
 `CountryCode` char(3) NOT NULL default '',
 `District` char(20) NOT NULL default '',
 `Population` int(11) NOT NULL default '0',
 PRIMARY KEY (`ID`)
) ENGINE=MyISAM DEFAULT CHARSET=latin1;

INSERT INTO `City` VALUES (1,'Kabul','AFG','Kabol',1780000);
INSERT INTO `City` VALUES (2,'Qandahar','AFG','Qandahar',237500);
INSERT INTO `City` VALUES (3,'Herat','AFG','Herat',186800);
(remaining INSERT statements omitted)

You need to make sure that MySQL uses the NDBCLUSTER storage engine for this table. There are two
ways that this can be accomplished. One of these is to modify the table definition before importing it into
the Cluster database. Using the City table as an example, modify the ENGINE option of the definition as
follows:

DROP TABLE IF EXISTS `City`;
CREATE TABLE `City` (
 `ID` int(11) NOT NULL auto_increment,
 `Name` char(35) NOT NULL default '',
 `CountryCode` char(3) NOT NULL default '',
 `District` char(20) NOT NULL default '',
 `Population` int(11) NOT NULL default '0',
 PRIMARY KEY (`ID`)
) ENGINE=NDBCLUSTER DEFAULT CHARSET=latin1;

INSERT INTO `City` VALUES (1,'Kabul','AFG','Kabol',1780000);
INSERT INTO `City` VALUES (2,'Qandahar','AFG','Qandahar',237500);
INSERT INTO `City` VALUES (3,'Herat','AFG','Herat',186800);
(remaining INSERT statements omitted)

This must be done for the definition of each table that is to be part of the clustered database. The easiest
way to accomplish this is to do a search-and-replace on the file that contains the definitions and replace all
instances of TYPE=engine_name or ENGINE=engine_name with ENGINE=NDBCLUSTER. If you do not
want to modify the file, you can use the unmodified file to create the tables, and then use ALTER TABLE to
change their storage engine. The particulars are given later in this section.

Assuming that you have already created a database named world on the SQL node of the cluster, you
can then use the mysql command-line client to read city_table.sql, and create and populate the
corresponding table in the usual manner:

$> mysql world < city_table.sql

It is very important to keep in mind that the preceding command must be executed on the host where the
SQL node is running (in this case, on the machine with the IP address 198.51.100.20).

To create a copy of the entire world database on the SQL node, use mysqldump on the noncluster server
to export the database to a file named world.sql (for example, in the /tmp directory). Then modify the
table definitions as just described and import the file into the SQL node of the cluster like this:

$> mysql world < /tmp/world.sql

If you save the file to a different location, adjust the preceding instructions accordingly.

Running SELECT queries on the SQL node is no different from running them on any other instance of a
MySQL server. To run queries from the command line, you first need to log in to the MySQL Monitor in the
usual way (specify the root password at the Enter password: prompt):

3354

NDB Cluster Example with Tables and Data

$> mysql -u root -p
Enter password:
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 1 to server version: 5.7.44-ndb-7.6.36

Type 'help;' or '\h' for help. Type '\c' to clear the buffer.

mysql>

We simply use the MySQL server's root account and assume that you have followed the standard
security precautions for installing a MySQL server, including setting a strong root password. For more
information, see Section 2.9.4, “Securing the Initial MySQL Account”.

It is worth taking into account that Cluster nodes do not make use of the MySQL privilege system when
accessing one another. Setting or changing MySQL user accounts (including the root account) effects
only applications that access the SQL node, not interaction between nodes. See Section 21.6.18.2, “NDB
Cluster and MySQL Privileges”, for more information.

If you did not modify the ENGINE clauses in the table definitions prior to importing the SQL script, you
should run the following statements at this point:

mysql> USE world;
mysql> ALTER TABLE City ENGINE=NDBCLUSTER;
mysql> ALTER TABLE Country ENGINE=NDBCLUSTER;
mysql> ALTER TABLE CountryLanguage ENGINE=NDBCLUSTER;

Selecting a database and running a SELECT query against a table in that database is also accomplished in
the usual manner, as is exiting the MySQL Monitor:

mysql> USE world;
mysql> SELECT Name, Population FROM City ORDER BY Population DESC LIMIT 5;
+-----------+------------+
| Name | Population |
+-----------+------------+
Bombay	10500000
Seoul	9981619
São Paulo	9968485
Shanghai	9696300
Jakarta	9604900
+-----------+------------+
5 rows in set (0.34 sec)

mysql> \q
Bye

$>

Applications that use MySQL can employ standard APIs to access NDB tables. It is important to remember
that your application must access the SQL node, and not the management or data nodes. This brief
example shows how we might execute the SELECT statement just shown by using the PHP 5.X mysqli
extension running on a Web server elsewhere on the network:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
 "http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
 <meta http-equiv="Content-Type"
 content="text/html; charset=iso-8859-1">
 <title>SIMPLE mysqli SELECT</title>
</head>
<body>
<?php
 # connect to SQL node:

3355

Safe Shutdown and Restart of NDB Cluster

 $link = new mysqli('198.51.100.20', 'root', 'root_password', 'world');
 # parameters for mysqli constructor are:
 # host, user, password, database

 if(mysqli_connect_errno())
 die("Connect failed: " . mysqli_connect_error());

 $query = "SELECT Name, Population
 FROM City
 ORDER BY Population DESC
 LIMIT 5";

 # if no errors...
 if($result = $link->query($query))
 {
?>
<table border="1" width="40%" cellpadding="4" cellspacing ="1">
 <tbody>
 <tr>
 <th width="10%">City</th>
 <th>Population</th>
 </tr>
<?
 # then display the results...
 while($row = $result->fetch_object())
 printf("<tr>\n <td align=\"center\">%s</td><td>%d</td>\n</tr>\n",
 $row->Name, $row->Population);
?>
 </tbody
</table>
<?
 # ...and verify the number of rows that were retrieved
 printf("<p>Affected rows: %d</p>\n", $link->affected_rows);
 }
 else
 # otherwise, tell us what went wrong
 echo mysqli_error();

 # free the result set and the mysqli connection object
 $result->close();
 $link->close();
?>
</body>
</html>

We assume that the process running on the Web server can reach the IP address of the SQL node.

In a similar fashion, you can use the MySQL C API, Perl-DBI, Python-mysql, or MySQL Connectors to
perform the tasks of data definition and manipulation just as you would normally with MySQL.

21.3.6 Safe Shutdown and Restart of NDB Cluster

To shut down the cluster, enter the following command in a shell on the machine hosting the management
node:

$> ndb_mgm -e shutdown

The -e option here is used to pass a command to the ndb_mgm client from the shell. The command
causes the ndb_mgm, ndb_mgmd, and any ndbd or ndbmtd processes to terminate gracefully.
Any SQL nodes can be terminated using mysqladmin shutdown and other means. On Windows
platforms, assuming that you have installed the SQL node as a Windows service, you can use SC STOP
service_name or NET STOP service_name.

To restart the cluster on Unix platforms, run these commands:

3356

Upgrading and Downgrading NDB Cluster

• On the management host (198.51.100.10 in our example setup):

$> ndb_mgmd -f /var/lib/mysql-cluster/config.ini

• On each of the data node hosts (198.51.100.30 and 198.51.100.40):

$> ndbd

• Use the ndb_mgm client to verify that both data nodes have started successfully.

• On the SQL host (198.51.100.20):

$> mysqld_safe &

On Windows platforms, assuming that you have installed all NDB Cluster processes as Windows services
using the default service names (see Section 21.3.2.4, “Installing NDB Cluster Processes as Windows
Services”), you can restart the cluster as follows:

• On the management host (198.51.100.10 in our example setup), execute the following command:

C:\> SC START ndb_mgmd

• On each of the data node hosts (198.51.100.30 and 198.51.100.40), execute the following
command:

C:\> SC START ndbd

• On the management node host, use the ndb_mgm client to verify that the management node and
both data nodes have started successfully (see Section 21.3.2.3, “Initial Startup of NDB Cluster on
Windows”).

• On the SQL node host (198.51.100.20), execute the following command:

C:\> SC START mysql

In a production setting, it is usually not desirable to shut down the cluster completely. In many cases, even
when making configuration changes, or performing upgrades to the cluster hardware or software (or both),
which require shutting down individual host machines, it is possible to do so without shutting down the
cluster as a whole by performing a rolling restart of the cluster. For more information about doing this, see
Section 21.6.5, “Performing a Rolling Restart of an NDB Cluster”.

21.3.7 Upgrading and Downgrading NDB Cluster

The following sections provide information about upgrading and downgrading NDB Cluster 7.5 and 7.6.

Schema operations, including SQL DDL statements, cannot be performed while any data nodes are
restarting, and thus during an online upgrade or downgrade of the cluster. For other information regarding
the rolling restart procedure used to perform an online upgrade, see Section 21.6.5, “Performing a Rolling
Restart of an NDB Cluster”.

Important

Compatibility between release versions is taken into account only with regard to
NDBCLUSTER in this section, and there are additional issues to be considered. See
Section 2.10, “Upgrading MySQL”.

As with any other MySQL software upgrade or downgrade, you are strongly
encouraged to review the relevant portions of the MySQL Manual for the MySQL

3357

Upgrading and Downgrading NDB Cluster

versions from which and to which you intend to migrate, before attempting an
upgrade or downgrade of the NDB Cluster software.

21.3.7.1 Upgrading and Downgrading NDB 7.5

This section provides information about compatibility between different NDB Cluster 7.5 releases with
regard to performing upgrades and downgrades as well as compatibility matrices and notes. Additional
information can also be found here regarding downgrades from NDB 7.5 to previous NDB release series.
You should already be familiar with installing and configuring NDB Cluster prior to attempting an upgrade
or downgrade. See Section 21.4, “Configuration of NDB Cluster”.

The table shown here provides information on NDB Cluster upgrade and downgrade compatibility among
different releases of NDB 7.5. Additional notes about upgrades and downgrades to, from, or within the
NDB Cluster 7.5 release series can be found following the table.

Figure 21.5 NDB Cluster Upgrade and Downgrade Compatibility, MySQL NDB Cluster 7.5

Version support. The following versions of NDB Cluster are supported for upgrades to GA releases of
NDB Cluster 7.5 (7.5.4 and later):

3358

Upgrading and Downgrading NDB Cluster

• NDB Cluster 7.4 GA releases (7.4.4 and later)

• NDB Cluster 7.3 GA releases (7.3.2 and later)

Known Issues When Upgrading or Downgrading NDB Cluster 7.5. The following issues are known
to occur when upgrading to or between NDB 7.5 releases:

• When run with --initialize, the server does not require NDB support; having NDB enabled at this
time can cause problems with ndbinfo tables. To keep this from happening, the --initialize option
now causes mysqld to ignore the --ndbcluster option if the latter is also specified.

A workaround for an upgrade that has failed for these reasons can be accomplished as follows:

1. Perform a rolling restart of the entire cluster

2. Delete all .frm files in the data/ndbinfo directory

3. Run mysql_upgrade.

(Bug #81689, Bug #82724, Bug #24521927, Bug #23518923)

• During an online upgrade from an NDB Cluster 7.3 release to an NDB 7.4 (or later) release, the
failures of several data nodes running the lower version during local checkpoints (LCPs), and just
prior to upgrading these nodes, led to additional node failures following the upgrade. This was due to
lingering elements of the EMPTY_LCP protocol initiated by the older nodes as part of an LCP-plus-restart
sequence, and which is no longer used in NDB 7.4 and later due to LCP optimizations implemented in
those versions. This issue was fixed in NDB 7.5.4. (Bug #23129433)

• In NDB 7.5 (and later), the ndb_binlog_index table uses the InnoDB storage engine. Use of the
MyISAM storage engine for this table continues to be supported for backward compatibility.

When upgrading a previous release to NDB 7.5 (or later), you can use the --force --upgrade-
system-tables options with mysql_upgrade so that it performs ALTER TABLE ...
ENGINE=INNODB on the ndb_binlog_index table.

For more information, see Section 21.7.4, “NDB Cluster Replication Schema and Tables”.

21.3.7.2 Upgrading and Downgrading NDB 7.6

This section provides information about compatibility between different NDB Cluster 7.6 releases with
regard to performing upgrades and downgrades as well as compatibility matrices and notes. Additional
information can also be found here regarding downgrades from NDB 7.6 to previous NDB release series.
You should already be familiar with installation and configuration of NDB Cluster prior to attempting an
upgrade or downgrade. See Section 21.4, “Configuration of NDB Cluster”.

The table shown here provides information on NDB Cluster upgrade and downgrade compatibility among
different releases of NDB 7.6. Additional notes about upgrades and downgrades to, from, or within the
NDB Cluster 7.6 release series can be found following the table.

3359

Upgrading and Downgrading NDB Cluster

Figure 21.6 NDB Cluster Upgrade and Downgrade Compatibility, MySQL NDB Cluster 7.6

Version support. The following versions of NDB Cluster are supported for upgrades to GA releases of
NDB Cluster 7.6 (7.6.6 and later):

• NDB Cluster 7.5 GA releases (7.5.4 and later)

• NDB Cluster 7.4 GA releases (7.4.4 and later)

• NDB Cluster 7.3 GA releases (7.3.2 and later)

Known Issues When Upgrading or Downgrading NDB Cluster 7.6. The following issues are known
to occur when upgrading to, downgrading from, or between NDB 7.6 releases:

Changes in Disk Data file format. Due to changes in disk format, upgrading to or downgrading from
either of the versions listed here requires an initial node restart of each data node:

• NDB 7.6.2

• NDB 7.6.4

To avoid problems relating to the old format, you should re-create any existing tablespaces and undo log
file groups when upgrading. You can do this by performing an initial restart of each data node (that is,
using the --initial option) as part of the upgrade process.

If you are using Disk Data tables, a downgrade from any NDB 7.6 release to any NDB 7.5 or earlier
release requires that you restart all data nodes with --initial as part of the downgrade process. This is
because NDB 7.5 and earlier release series are not able to read the new Disk Data file format.

3360

The NDB Cluster Auto-Installer (NDB 7.5) (NO LONGER SUPPORTED)

IndexMemory changes. If you are downgrading from NDB 7.6 to NDB 7.5 (or earlier), you must set an
explicit value for IndexMemory in the cluster configuration file if none is already present. This is because
NDB 7.6 does not use this parameter and sets it to 0 by default, whereas it is required in NDB 7.5 and
earlier releases, in which the cluster refuses to start with Invalid configuration received from
Management Server... if IndexMemory is not set to a nonzero value.

Important

Upgrading to NDB 7.6 from an earlier release, or downgrading from NDB 7.6 to an
earlier release, requires purging then re-creating the NDB data node file system,
which means that each data node must be restarted using the --initial option
as part of the rolling restart or system restart normally required. (Starting a data
node with no file system is already equivalent to an initial restart; in such cases, --
initial is implied and not required. This is unchanged from previous releases of
NDB Cluster.)

When such a restart is performed as part of an upgrade to NDB 7.6, any existing
LCP files are checked for the presence of the LCP Sysfile, indicating that the
existing data node file system was written using NDB 7.6. If such a node file system
exists, but does not contain the Sysfile, and if any data nodes are restarted
without the --initial option, NDB causes the restart to fail with an appropriate
error message.

You should also be aware that no such protection is possible when downgrading
from NDB 7.6 to a release previous to NDB 7.6.

21.3.8 The NDB Cluster Auto-Installer (NDB 7.5) (NO LONGER SUPPORTED)

Note

This feature has been removed from NDB Cluster, and is no longer supported. See
Section 21.2.4, “What is New in MySQL NDB Cluster”, for more information.

The web-based graphical configuration installer (Auto-Installer) was removed in NDB 7.5.21, and is no
longer included as part of the NDB Cluster distribution.

21.3.9 The NDB Cluster Auto-Installer (NO LONGER SUPPORTED)

Note

This feature has been removed from NDB Cluster, and is no longer supported. See
Section 21.2.4, “What is New in MySQL NDB Cluster”, for more information.

The web-based graphical configuration installer (Auto-Installer) was removed in NDB 7.6.17, and is no
longer included as part of the NDB Cluster distribution.

21.4 Configuration of NDB Cluster

A MySQL server that is part of an NDB Cluster differs in one chief respect from a normal (nonclustered)
MySQL server, in that it employs the NDB storage engine. This engine is also referred to sometimes as
NDBCLUSTER, although NDB is preferred.

To avoid unnecessary allocation of resources, the server is configured by default with the NDB storage
engine disabled. To enable NDB, you must modify the server's my.cnf configuration file, or start the server
with the --ndbcluster option.

3361

Quick Test Setup of NDB Cluster

This MySQL server is a part of the cluster, so it also must know how to access a management node
to obtain the cluster configuration data. The default behavior is to look for the management node on
localhost. However, should you need to specify that its location is elsewhere, this can be done in
my.cnf, or with the mysql client. Before the NDB storage engine can be used, at least one management
node must be operational, as well as any desired data nodes.

For more information about --ndbcluster and other mysqld options specific to NDB Cluster, see
MySQL Server Options for NDB Cluster.

For general information about installing NDB Cluster, see Section 21.3, “NDB Cluster Installation”.

21.4.1 Quick Test Setup of NDB Cluster

To familiarize you with the basics, we describe the simplest possible configuration for a functional NDB
Cluster. After this, you should be able to design your desired setup from the information provided in the
other relevant sections of this chapter.

First, you need to create a configuration directory such as /var/lib/mysql-cluster, by executing the
following command as the system root user:

$> mkdir /var/lib/mysql-cluster

In this directory, create a file named config.ini that contains the following information. Substitute
appropriate values for HostName and DataDir as necessary for your system.

file "config.ini" - showing minimal setup consisting of 1 data node,
1 management server, and 3 MySQL servers.
The empty default sections are not required, and are shown only for
the sake of completeness.
Data nodes must provide a hostname but MySQL Servers are not required
to do so.
If you do not know the hostname for your machine, use localhost.
The DataDir parameter also has a default value, but it is recommended to
set it explicitly.
[api] and [mgm] are aliases for [mysqld] and [ndb_mgmd], respectively.

[ndbd default]
NoOfReplicas= 1

[mysqld default]
[ndb_mgmd default]
[tcp default]

[ndb_mgmd]
HostName= myhost.example.com

[ndbd]
HostName= myhost.example.com
DataDir= /var/lib/mysql-cluster

[mysqld]
[mysqld]
[mysqld]

You can now start the ndb_mgmd management server. By default, it attempts to read the config.ini
file in its current working directory, so change location into the directory where the file is located and then
invoke ndb_mgmd:

$> cd /var/lib/mysql-cluster
$> ndb_mgmd

Then start a single data node by running ndbd:

3362

Quick Test Setup of NDB Cluster

$> ndbd

By default, ndbd looks for the management server at localhost on port 1186.

Note

If you have installed MySQL from a binary tarball, you must specify the path of the
ndb_mgmd and ndbd servers explicitly. (Normally, these can be found in /usr/
local/mysql/bin.)

Finally, change location to the MySQL data directory (usually /var/lib/mysql or /usr/local/mysql/
data), and make sure that the my.cnf file contains the option necessary to enable the NDB storage
engine:

[mysqld]
ndbcluster

You can now start the MySQL server as usual:

$> mysqld_safe --user=mysql &

Wait a moment to make sure the MySQL server is running properly. If you see the notice mysql ended,
check the server's .err file to find out what went wrong.

If all has gone well so far, you now can start using the cluster. Connect to the server and verify that the
NDBCLUSTER storage engine is enabled:

$> mysql
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 1 to server version: 5.7.44

Type 'help;' or '\h' for help. Type '\c' to clear the buffer.

mysql> SHOW ENGINES\G
...
*************************** 12. row ***************************
Engine: NDBCLUSTER
Support: YES
Comment: Clustered, fault-tolerant, memory-based tables
*************************** 13. row ***************************
Engine: NDB
Support: YES
Comment: Alias for NDBCLUSTER
...

The row numbers shown in the preceding example output may be different from those shown on your
system, depending upon how your server is configured.

Try to create an NDBCLUSTER table:

$> mysql
mysql> USE test;
Database changed

mysql> CREATE TABLE ctest (i INT) ENGINE=NDBCLUSTER;
Query OK, 0 rows affected (0.09 sec)

mysql> SHOW CREATE TABLE ctest \G
*************************** 1. row ***************************
 Table: ctest
Create Table: CREATE TABLE `ctest` (
 `i` int(11) default NULL
) ENGINE=ndbcluster DEFAULT CHARSET=latin1
1 row in set (0.00 sec)

3363

Overview of NDB Cluster Configuration Parameters, Options, and Variables

To check that your nodes were set up properly, start the management client:

$> ndb_mgm

Use the SHOW command from within the management client to obtain a report on the cluster's status:

ndb_mgm> SHOW
Cluster Configuration

[ndbd(NDB)] 1 node(s)
id=2 @127.0.0.1 (Version: 5.7.44-ndb-7.5.36, Nodegroup: 0, *)

[ndb_mgmd(MGM)] 1 node(s)
id=1 @127.0.0.1 (Version: 5.7.44-ndb-7.5.36)

[mysqld(API)] 3 node(s)
id=3 @127.0.0.1 (Version: 5.7.44-ndb-7.5.36)
id=4 (not connected, accepting connect from any host)
id=5 (not connected, accepting connect from any host)

At this point, you have successfully set up a working NDB Cluster . You can now store data in the cluster
by using any table created with ENGINE=NDBCLUSTER or its alias ENGINE=NDB.

21.4.2 Overview of NDB Cluster Configuration Parameters, Options, and
Variables

The next several sections provide summary tables of NDB Cluster node configuration parameters used in
the config.ini file to govern various aspects of node behavior, as well as of options and variables read
by mysqld from a my.cnf file or from the command line when run as an NDB Cluster process. Each of
the node parameter tables lists the parameters for a given type (ndbd, ndb_mgmd, mysqld, computer,
tcp, or shm). All tables include the data type for the parameter, option, or variable, as well as its default,
mimimum, and maximum values as applicable.

Considerations when restarting nodes. For node parameters, these tables also indicate what type
of restart is required (node restart or system restart)—and whether the restart must be done with --
initial—to change the value of a given configuration parameter. When performing a node restart or
an initial node restart, all of the cluster's data nodes must be restarted in turn (also referred to as a rolling
restart). It is possible to update cluster configuration parameters marked as node online—that is, without
shutting down the cluster—in this fashion. An initial node restart requires restarting each ndbd process
with the --initial option.

A system restart requires a complete shutdown and restart of the entire cluster. An initial system restart
requires taking a backup of the cluster, wiping the cluster file system after shutdown, and then restoring
from the backup following the restart.

In any cluster restart, all of the cluster's management servers must be restarted for them to read the
updated configuration parameter values.

Important

Values for numeric cluster parameters can generally be increased without any
problems, although it is advisable to do so progressively, making such adjustments
in relatively small increments. Many of these can be increased online, using a
rolling restart.

However, decreasing the values of such parameters—whether this is done using
a node restart, node initial restart, or even a complete system restart of the
cluster—is not to be undertaken lightly; it is recommended that you do so only

3364

Overview of NDB Cluster Configuration Parameters, Options, and Variables

after careful planning and testing. This is especially true with regard to those
parameters that relate to memory usage and disk space, such as MaxNoOfTables,
MaxNoOfOrderedIndexes, and MaxNoOfUniqueHashIndexes. In addition, it
is the generally the case that configuration parameters relating to memory and disk
usage can be raised using a simple node restart, but they require an initial node
restart to be lowered.

Because some of these parameters can be used for configuring more than one type of cluster node, they
may appear in more than one of the tables.

Note

4294967039 often appears as a maximum value in these tables. This value
is defined in the NDBCLUSTER sources as MAX_INT_RNIL and is equal to
0xFFFFFEFF, or 232 − 28 − 1.

21.4.2.1 NDB Cluster Data Node Configuration Parameters

The listings in this section provide information about parameters used in the [ndbd] or [ndbd default]
sections of a config.ini file for configuring NDB Cluster data nodes. For detailed descriptions and other
additional information about each of these parameters, see Section 21.4.3.6, “Defining NDB Cluster Data
Nodes”.

These parameters also apply to ndbmtd, the multithreaded version of ndbd. A separate listing of
parameters specific to ndbmtd follows.

• ApiFailureHandlingTimeout: Maximum time for API node failure handling before escalating. 0
means no time limit; minimum usable value is 10.

• Arbitration: How arbitration should be performed to avoid split-brain issues in event of node failure.

• ArbitrationTimeout: Maximum time (milliseconds) database partition waits for arbitration signal.

• BackupDataBufferSize: Default size of databuffer for backup (in bytes).

• BackupDataDir: Path to where to store backups. Note that string '/BACKUP' is always appended to
this setting, so that *effective* default is FileSystemPath/BACKUP.

• BackupDiskWriteSpeedPct: Sets percentage of data node's allocated maximum write speed
(MaxDiskWriteSpeed) to reserve for LCPs when starting backup.

• BackupLogBufferSize: Default size of log buffer for backup (in bytes).

• BackupMaxWriteSize: Maximum size of file system writes made by backup (in bytes).

• BackupMemory: Total memory allocated for backups per node (in bytes).

• BackupReportFrequency: Frequency of backup status reports during backup in seconds.

• BackupWriteSize: Default size of file system writes made by backup (in bytes).

• BatchSizePerLocalScan: Used to calculate number of lock records for scan with hold lock.

• BuildIndexThreads: Number of threads to use for building ordered indexes during system or node
restart. Also applies when running ndb_restore --rebuild-indexes. Setting this parameter to 0 disables
multithreaded building of ordered indexes.

• CompressedBackup: Use zlib to compress backups as they are written.

3365

Overview of NDB Cluster Configuration Parameters, Options, and Variables

• CompressedLCP: Write compressed LCPs using zlib.

• ConnectCheckIntervalDelay: Time between data node connectivity check stages. Data node is
considered suspect after 1 interval and dead after 2 intervals with no response.

• CrashOnCorruptedTuple: When enabled, forces node to shut down whenever it detects corrupted
tuple.

• DataDir: Data directory for this node.

• DataMemory: Number of bytes on each data node allocated for storing data; subject to available system
RAM and size of IndexMemory.

• DefaultHashMapSize: Set size (in buckets) to use for table hash maps. Three values are supported:
0, 240, and 3840.

• DictTrace: Enable DBDICT debugging; for NDB development.

• DiskIOThreadPool: Number of unbound threads for file access, applies to disk data only.

• Diskless: Run without using disk.

• DiskPageBufferEntries: Memory to allocate in DiskPageBufferMemory; very large disk transactions
may require increasing this value.

• DiskPageBufferMemory: Number of bytes on each data node allocated for disk page buffer cache.

• DiskSyncSize: Amount of data written to file before synch is forced.

• EnablePartialLcp: Enable partial LCP (true); if this is disabled (false), all LCPs write full checkpoints.

• EnableRedoControl: Enable adaptive checkpointing speed for controlling redo log usage.

• EventLogBufferSize: Size of circular buffer for NDB log events within data nodes.

• ExecuteOnComputer: String referencing earlier defined COMPUTER.

• ExtraSendBufferMemory: Memory to use for send buffers in addition to any allocated by
TotalSendBufferMemory or SendBufferMemory. Default (0) allows up to 16MB.

• FileSystemPath: Path to directory where data node stores its data (directory must exist).

• FileSystemPathDataFiles: Path to directory where data node stores its Disk Data files. Default
value is FilesystemPathDD, if set; otherwise, FilesystemPath is used if it is set; otherwise, value of
DataDir is used.

• FileSystemPathDD: Path to directory where data node stores its Disk Data and undo files. Default
value is FileSystemPath, if set; otherwise, value of DataDir is used.

• FileSystemPathUndoFiles: Path to directory where data node stores its undo files for Disk Data.
Default value is FilesystemPathDD, if set; otherwise, FilesystemPath is used if it is set; otherwise, value
of DataDir is used.

• FragmentLogFileSize: Size of each redo log file.

• HeartbeatIntervalDbApi: Time between API node-data node heartbeats. (API connection closed
after 3 missed heartbeats).

• HeartbeatIntervalDbDb: Time between data node-to-data node heartbeats; data node considered
dead after 3 missed heartbeats.

3366

Overview of NDB Cluster Configuration Parameters, Options, and Variables

• HeartbeatOrder: Sets order in which data nodes check each others' heartbeats for determining
whether given node is still active and connected to cluster. Must be zero for all data nodes or distinct
nonzero values for all data nodes; see documentation for further guidance.

• HostName: Host name or IP address for this data node.

• IndexMemory: Number of bytes on each data node allocated for storing indexes; subject to available
system RAM and size of DataMemory.

• IndexStatAutoCreate: Enable/disable automatic statistics collection when indexes are created.

• IndexStatAutoUpdate: Monitor indexes for changes and trigger automatic statistics updates.

• IndexStatSaveScale: Scaling factor used in determining size of stored index statistics.

• IndexStatSaveSize: Maximum size in bytes for saved statistics per index.

• IndexStatTriggerPct: Threshold percent change in DML operations for index statistics updates.
Value is scaled down by IndexStatTriggerScale.

• IndexStatTriggerScale: Scale down IndexStatTriggerPct by this amount, multiplied by base 2
logarithm of index size, for large index. Set to 0 to disable scaling.

• IndexStatUpdateDelay: Minimum delay between automatic index statistics updates for given index.
0 means no delay.

• InitFragmentLogFiles: Initialize fragment log files, using sparse or full format.

• InitialLogFileGroup: Describes log file group that is created during initial start. See documentation
for format.

• InitialNoOfOpenFiles: Initial number of files open per data node. (One thread is created per file).

• InitialTablespace: Describes tablespace that is created during initial start. See documentation for
format.

• InsertRecoveryWork: Percentage of RecoveryWork used for inserted rows; has no effect unless
partial local checkpoints are in use.

• LateAlloc: Allocate memory after connection to management server has been established.

• LcpScanProgressTimeout: Maximum time that local checkpoint fragment scan can be stalled before
node is shut down to ensure systemwide LCP progress. Use 0 to disable.

• LocationDomainId: Assign this data node to specific availability domain or zone. 0 (default) leaves
this unset.

• LockExecuteThreadToCPU: Comma-delimited list of CPU IDs.

• LockMaintThreadsToCPU: CPU ID indicating which CPU runs maintenance threads.

• LockPagesInMainMemory: 0=disable locking, 1=lock after memory allocation, 2=lock before memory
allocation.

• LogLevelCheckpoint: Log level of local and global checkpoint information printed to stdout.

• LogLevelCongestion: Level of congestion information printed to stdout.

• LogLevelConnection: Level of node connect/disconnect information printed to stdout.

• LogLevelError: Transporter, heartbeat errors printed to stdout.

3367

Overview of NDB Cluster Configuration Parameters, Options, and Variables

• LogLevelInfo: Heartbeat and log information printed to stdout.

• LogLevelNodeRestart: Level of node restart and node failure information printed to stdout.

• LogLevelShutdown: Level of node shutdown information printed to stdout.

• LogLevelStartup: Level of node startup information printed to stdout.

• LogLevelStatistic: Level of transaction, operation, and transporter information printed to stdout.

• LongMessageBuffer: Number of bytes allocated on each data node for internal long messages.

• MaxAllocate: No longer used; has no effect.

• MaxBufferedEpochs: Allowed numbered of epochs that subscribing node can lag behind
(unprocessed epochs). Exceeding causes lagging subscribers to be disconnected.

• MaxBufferedEpochBytes: Total number of bytes allocated for buffering epochs.

• MaxDiskWriteSpeed: Maximum number of bytes per second that can be written by LCP and backup
when no restarts are ongoing.

• MaxDiskWriteSpeedOtherNodeRestart: Maximum number of bytes per second that can be written
by LCP and backup when another node is restarting.

• MaxDiskWriteSpeedOwnRestart: Maximum number of bytes per second that can be written by LCP
and backup when this node is restarting.

• MaxFKBuildBatchSize: Maximum scan batch size to use for building foreign keys. Increasing this
value may speed up builds of foreign keys but impacts ongoing traffic as well.

• MaxDMLOperationsPerTransaction: Limit size of transaction; aborts transaction if it requires more
than this many DML operations.

• MaxLCPStartDelay: Time in seconds that LCP polls for checkpoint mutex (to allow other data nodes to
complete metadata synchronization), before putting itself in lock queue for parallel recovery of table data.

• MaxNoOfAttributes: Suggests total number of attributes stored in database (sum over all tables).

• MaxNoOfConcurrentIndexOperations: Total number of index operations that can execute
simultaneously on one data node.

• MaxNoOfConcurrentOperations: Maximum number of operation records in transaction coordinator.

• MaxNoOfConcurrentScans: Maximum number of scans executing concurrently on data node.

• MaxNoOfConcurrentSubOperations: Maximum number of concurrent subscriber operations.

• MaxNoOfConcurrentTransactions: Maximum number of transactions executing concurrently on this
data node, total number of transactions that can be executed concurrently is this value times number of
data nodes in cluster.

• MaxNoOfFiredTriggers: Total number of triggers that can fire simultaneously on one data node.

• MaxNoOfLocalOperations: Maximum number of operation records defined on this data node.

• MaxNoOfLocalScans: Maximum number of fragment scans in parallel on this data node.

• MaxNoOfOpenFiles: Maximum number of files open per data node.(One thread is created per file).

• MaxNoOfOrderedIndexes: Total number of ordered indexes that can be defined in system.

3368

Overview of NDB Cluster Configuration Parameters, Options, and Variables

• MaxNoOfSavedMessages: Maximum number of error messages to write in error log and maximum
number of trace files to retain.

• MaxNoOfSubscribers: Maximum number of subscribers.

• MaxNoOfSubscriptions: Maximum number of subscriptions (default 0 = MaxNoOfTables).

• MaxNoOfTables: Suggests total number of NDB tables stored in database.

• MaxNoOfTriggers: Total number of triggers that can be defined in system.

• MaxNoOfUniqueHashIndexes: Total number of unique hash indexes that can be defined in system.

• MaxParallelCopyInstances: Number of parallel copies during node restarts. Default is 0, which
uses number of LDMs on both nodes, to maximum of 16.

• MaxParallelScansPerFragment: Maximum number of parallel scans per fragment. Once this limit is
reached, scans are serialized.

• MaxReorgBuildBatchSize: Maximum scan batch size to use for reorganization of table partitions.
Increasing this value may speed up table partition reorganization but impacts ongoing traffic as well.

• MaxStartFailRetries: Maximum retries when data node fails on startup, requires StopOnError = 0.
Setting to 0 causes start attempts to continue indefinitely.

• MaxUIBuildBatchSize: Maximum scan batch size to use for building unique keys. Increasing this
value may speed up builds of unique keys but impacts ongoing traffic as well.

• MemReportFrequency: Frequency of memory reports in seconds; 0 = report only when exceeding
percentage limits.

• MinDiskWriteSpeed: Minimum number of bytes per second that can be written by LCP and backup.

• MinFreePct: Percentage of memory resources to keep in reserve for restarts.

• NodeGroup: Node group to which data node belongs; used only during initial start of cluster.

• NodeId: Number uniquely identifying data node among all nodes in cluster.

• NoOfFragmentLogFiles: Number of 16 MB redo log files in each of 4 file sets belonging to data node.

• NoOfReplicas: Number of copies of all data in database.

• Numa: (Linux only; requires libnuma) Controls NUMA support. Setting to 0 permits system to determine
use of interleaving by data node process; 1 means that it is determined by data node.

• ODirect: Use O_DIRECT file reads and writes when possible.

• ODirectSyncFlag: O_DIRECT writes are treated as synchronized writes; ignored when ODirect is not
enabled, InitFragmentLogFiles is set to SPARSE, or both.

• RealtimeScheduler: When true, data node threads are scheduled as real-time threads. Default is
false.

• RecoveryWork: Percentage of storage overhead for LCP files: greater value means less work in normal
operations, more work during recovery.

• RedoBuffer: Number of bytes on each data node allocated for writing redo logs.

• RedoOverCommitCounter: When RedoOverCommitLimit has been exceeded this
many times, transactions are aborted, and operations are handled as specified by
DefaultOperationRedoProblemAction.

3369

Overview of NDB Cluster Configuration Parameters, Options, and Variables

• RedoOverCommitLimit: Each time that flushing current redo buffer takes longer than this many
seconds, number of times that this has happened is compared to RedoOverCommitCounter.

• ReservedSendBufferMemory: This parameter is present in NDB code but is not enabled.

• RestartOnErrorInsert: Control type of restart caused by inserting error (when StopOnError is
enabled).

• RestartSubscriberConnectTimeout: Amount of time for data node to wait for subscribing API
nodes to connect. Set to 0 to disable timeout, which is always resolved to nearest full second.

• SchedulerExecutionTimer: Number of microseconds to execute in scheduler before sending.

• SchedulerResponsiveness: Set NDB scheduler response optimization 0-10; higher values provide
better response time but lower throughput.

• SchedulerSpinTimer: Number of microseconds to execute in scheduler before sleeping.

• ServerPort: Port used to set up transporter for incoming connections from API nodes.

• SharedGlobalMemory: Total number of bytes on each data node allocated for any use.

• StartFailRetryDelay: Delay in seconds after start failure prior to retry; requires StopOnError = 0.

• StartFailureTimeout: Milliseconds to wait before terminating. (0=Wait forever).

• StartNoNodeGroupTimeout: Time to wait for nodes without nodegroup before trying to start
(0=forever).

• StartPartialTimeout: Milliseconds to wait before trying to start without all nodes. (0=Wait forever).

• StartPartitionedTimeout: Milliseconds to wait before trying to start partitioned. (0=Wait forever).

• StartupStatusReportFrequency: Frequency of status reports during startup.

• StopOnError: When set to 0, data node automatically restarts and recovers following node failures.

• StringMemory: Default size of string memory (0 to 100 = % of maximum, 101+ = actual bytes).

• TcpBind_INADDR_ANY: Bind IP_ADDR_ANY so that connections can be made from anywhere (for
autogenerated connections).

• TimeBetweenEpochs: Time between epochs (synchronization used for replication).

• TimeBetweenEpochsTimeout: Timeout for time between epochs. Exceeding causes node shutdown.

• TimeBetweenGlobalCheckpoints: Time between group commits of transactions to disk.

• TimeBetweenGlobalCheckpointsTimeout: Minimum timeout for group commit of transactions to
disk.

• TimeBetweenInactiveTransactionAbortCheck: Time between checks for inactive transactions.

• TimeBetweenLocalCheckpoints: Time between taking snapshots of database (expressed in base-2
logarithm of bytes).

• TimeBetweenWatchDogCheck: Time between execution checks inside data node.

• TimeBetweenWatchDogCheckInitial: Time between execution checks inside data node (early start
phases when memory is allocated).

• TotalSendBufferMemory: Total memory to use for all transporter send buffers..

3370

Overview of NDB Cluster Configuration Parameters, Options, and Variables

• TransactionBufferMemory: Dynamic buffer space (in bytes) for key and attribute data allocated for
each data node.

• TransactionDeadlockDetectionTimeout: Time transaction can spend executing within data node.
This is time that transaction coordinator waits for each data node participating in transaction to execute
request. If data node takes more than this amount of time, transaction is aborted.

• TransactionInactiveTimeout: Milliseconds that application waits before executing another part
of transaction. This is time transaction coordinator waits for application to execute or send another part
(query, statement) of transaction. If application takes too much time, then transaction is aborted. Timeout
= 0 means that application never times out.

• TwoPassInitialNodeRestartCopy: Copy data in 2 passes during initial node restart, which enables
multithreaded building of ordered indexes for such restarts.

• UndoDataBuffer: Unused; has no effect.

• UndoIndexBuffer: Unused; has no effect.

• UseShm: Use shared memory connections between this data node and API node also running on this
host.

• WatchDogImmediateKill: When true, threads are immediately killed whenever watchdog issues
occur; used for testing and debugging.

The following parameters are specific to ndbmtd:

• MaxNoOfExecutionThreads: For ndbmtd only, specify maximum number of execution threads.

• MaxSendDelay: Maximum number of microseconds to delay sending by ndbmtd.

• NoOfFragmentLogParts: Number of redo log file groups belonging to this data node.

• ThreadConfig: Used for configuration of multithreaded data nodes (ndbmtd). Default is empty string;
see documentation for syntax and other information.

21.4.2.2 NDB Cluster Management Node Configuration Parameters

The listing in this section provides information about parameters used in the [ndb_mgmd] or [mgm]
section of a config.ini file for configuring NDB Cluster management nodes. For detailed descriptions
and other additional information about each of these parameters, see Section 21.4.3.5, “Defining an NDB
Cluster Management Server”.

• ArbitrationDelay: When asked to arbitrate, arbitrator waits this long before voting (milliseconds).

• ArbitrationRank: If 0, then management node is not arbitrator. Kernel selects arbitrators in order 1,
2.

• DataDir: Data directory for this node.

• ExecuteOnComputer: String referencing earlier defined COMPUTER.

• ExtraSendBufferMemory: Memory to use for send buffers in addition to any allocated by
TotalSendBufferMemory or SendBufferMemory. Default (0) allows up to 16MB.

• HeartbeatIntervalMgmdMgmd: Time between management-node-to-management-node heartbeats;
connection between management nodes is considered lost after 3 missed heartbeats.

• HeartbeatThreadPriority: Set heartbeat thread policy and priority for management nodes; see
manual for allowed values.

3371

Overview of NDB Cluster Configuration Parameters, Options, and Variables

• HostName: Host name or IP address for this management node.

• Id: Number identifying management node. Now deprecated; use NodeId instead.

• LocationDomainId: Assign this management node to specific availability domain or zone. 0 (default)
leaves this unset.

• LogDestination: Where to send log messages: console, system log, or specified log file.

• NodeId: Number uniquely identifying management node among all nodes in cluster.

• PortNumber: Port number to send commands to and fetch configuration from management server.

• PortNumberStats: Port number used to get statistical information from management server.

• TotalSendBufferMemory: Total memory to use for all transporter send buffers.

• wan: Use WAN TCP setting as default.

Note

After making changes in a management node's configuration, it is necessary to
perform a rolling restart of the cluster for the new configuration to take effect.
See Section 21.4.3.5, “Defining an NDB Cluster Management Server”, for more
information.

To add new management servers to a running NDB Cluster, it is also necessary
perform a rolling restart of all cluster nodes after modifying any existing
config.ini files. For more information about issues arising when using multiple
management nodes, see Section 21.2.7.10, “Limitations Relating to Multiple NDB
Cluster Nodes”.

21.4.2.3 NDB Cluster SQL Node and API Node Configuration Parameters

The listing in this section provides information about parameters used in the [mysqld] and [api]
sections of a config.ini file for configuring NDB Cluster SQL nodes and API nodes. For detailed
descriptions and other additional information about each of these parameters, see Section 21.4.3.7,
“Defining SQL and Other API Nodes in an NDB Cluster”.

• ApiVerbose: Enable NDB API debugging; for NDB development.

• ArbitrationDelay: When asked to arbitrate, arbitrator waits this many milliseconds before voting.

• ArbitrationRank: If 0, then API node is not arbitrator. Kernel selects arbitrators in order 1, 2.

• AutoReconnect: Specifies whether an API node should reconnect fully when disconnected from
cluster.

• BatchByteSize: Default batch size in bytes.

• BatchSize: Default batch size in number of records.

• ConnectBackoffMaxTime: Specifies longest time in milliseconds (~100ms resolution) to allow
between connection attempts to any given data node by this API node. Excludes time elapsed while
connection attempts are ongoing, which in worst case can take several seconds. Disable by setting to 0.
If no data nodes are currently connected to this API node, StartConnectBackoffMaxTime is used instead.

• ConnectionMap: Specifies which data nodes to connect.

3372

Overview of NDB Cluster Configuration Parameters, Options, and Variables

• DefaultHashMapSize: Set size (in buckets) to use for table hash maps. Three values are supported:
0, 240, and 3840.

• DefaultOperationRedoProblemAction: How operations are handled in event that
RedoOverCommitCounter is exceeded.

• ExecuteOnComputer: String referencing earlier defined COMPUTER.

• ExtraSendBufferMemory: Memory to use for send buffers in addition to any allocated by
TotalSendBufferMemory or SendBufferMemory. Default (0) allows up to 16MB.

• HeartbeatThreadPriority: Set heartbeat thread policy and priority for API nodes; see manual for
allowed values.

• HostName: Host name or IP address for this SQL or API node.

• Id: Number identifying MySQL server or API node (Id). Now deprecated; use NodeId instead.

• LocationDomainId: Assign this API node to specific availability domain or zone. 0 (default) leaves this
unset.

• MaxScanBatchSize: Maximum collective batch size for one scan.

• NodeId: Number uniquely identifying SQL node or API node among all nodes in cluster.

• StartConnectBackoffMaxTime: Same as ConnectBackoffMaxTime except that this parameter is
used in its place if no data nodes are connected to this API node.

• TotalSendBufferMemory: Total memory to use for all transporter send buffers.

• wan: Use WAN TCP setting as default.

For a discussion of MySQL server options for NDB Cluster, see MySQL Server Options for NDB Cluster.
For information about MySQL server system variables relating to NDB Cluster, see NDB Cluster System
Variables.

Note

To add new SQL or API nodes to the configuration of a running NDB Cluster,
it is necessary to perform a rolling restart of all cluster nodes after adding new
[mysqld] or [api] sections to the config.ini file (or files, if you are using
more than one management server). This must be done before the new SQL or API
nodes can connect to the cluster.

It is not necessary to perform any restart of the cluster if new SQL or API nodes can
employ previously unused API slots in the cluster configuration to connect to the
cluster.

21.4.2.4 Other NDB Cluster Configuration Parameters

The listings in this section provide information about parameters used in the [computer], [tcp], and
[shm] sections of a config.ini file for configuring NDB Cluster. For detailed descriptions and additional
information about individual parameters, see Section 21.4.3.10, “NDB Cluster TCP/IP Connections”, or
Section 21.4.3.12, “NDB Cluster Shared Memory Connections”, as appropriate.

The following parameters apply to the config.ini file's [computer] section:

• HostName: Host name or IP address of this computer.

• Id: Unique identifier for this computer.

3373

Overview of NDB Cluster Configuration Parameters, Options, and Variables

The following parameters apply to the config.ini file's [tcp] section:

• Checksum: If checksum is enabled, all signals between nodes are checked for errors.

• Group: Used for group proximity; smaller value is interpreted as being closer.

• HostName1: Name or IP address of first of two computers joined by TCP connection.

• HostName2: Name or IP address of second of two computers joined by TCP connection.

• NodeId1: ID of node (data node, API node, or management node) on one side of connection.

• NodeId2: ID of node (data node, API node, or management node) on one side of connection.

• NodeIdServer: Set server side of TCP connection.

• OverloadLimit: When more than this many unsent bytes are in send buffer, connection is considered
overloaded.

• PortNumber: Port used for TCP transporter.

• PreSendChecksum: If this parameter and Checksum are both enabled, perform pre-send checksum
checks, and check all TCP signals between nodes for errors.

• Proxy:

• ReceiveBufferMemory: Bytes of buffer for signals received by this node.

• SendBufferMemory: Bytes of TCP buffer for signals sent from this node.

• SendSignalId: Sends ID in each signal. Used in trace files. Defaults to true in debug builds.

• TCP_MAXSEG_SIZE: Value used for TCP_MAXSEG.

• TCP_RCV_BUF_SIZE: Value used for SO_RCVBUF.

• TCP_SND_BUF_SIZE: Value used for SO_SNDBUF.

• TcpBind_INADDR_ANY: Bind InAddrAny instead of host name for server part of connection.

The following parameters apply to the config.ini file's [shm] section:

• Checksum: If checksum is enabled, all signals between nodes are checked for errors.

• Group: Used for group proximity; smaller value is interpreted as being closer.

• HostName1: Name or IP address of first of two computers joined by SHM connection.

• HostName2: Name or IP address of second of two computers joined by SHM connection.

• NodeId1: ID of node (data node, API node, or management node) on one side of connection.

• NodeId2: ID of node (data node, API node, or management node) on one side of connection.

• NodeIdServer: Set server side of SHM connection.

• OverloadLimit: When more than this many unsent bytes are in send buffer, connection is considered
overloaded.

• PortNumber: Port used for SHM transporter.

• PreSendChecksum: If this parameter and Checksum are both enabled, perform pre-send checksum
checks, and check all SHM signals between nodes for errors.

3374

Overview of NDB Cluster Configuration Parameters, Options, and Variables

• SendBufferMemory: Bytes in shared memory buffer for signals sent from this node.

• SendSignalId: Sends ID in each signal. Used in trace files.

• ShmKey: Shared memory key; when set to 1, this is calculated by NDB.

• ShmSpinTime: When receiving, number of microseconds to spin before sleeping.

• ShmSize: Size of shared memory segment.

• Signum: Signal number to be used for signalling.

21.4.2.5 NDB Cluster mysqld Option and Variable Reference

The following list includes command-line options, system variables, and status variables applicable within
mysqld when it is running as an SQL node in an NDB Cluster. For a reference to all command-line
options, system variables, and status variables used with or relating to mysqld, see Section 5.1.3, “Server
Option, System Variable, and Status Variable Reference”.

• Com_show_ndb_status: Count of SHOW NDB STATUS statements.

• Handler_discover: Number of times that tables have been discovered.

• ndb-batch-size: Size (in bytes) to use for NDB transaction batches.

• ndb-blob-read-batch-bytes: Specifies size in bytes that large BLOB reads should be batched into.
0 = no limit.

• ndb-blob-write-batch-bytes: Specifies size in bytes that large BLOB writes should be batched
into. 0 = no limit.

• ndb-cluster-connection-pool: Number of connections to cluster used by MySQL.

• ndb-cluster-connection-pool-nodeids: Comma-separated list of node IDs for connections to
cluster used by MySQL; number of nodes in list must match value set for --ndb-cluster-connection-pool.

• ndb-connectstring: Address of NDB management server distributing configuration information for
this cluster.

• ndb-default-column-format: Use this value (FIXED or DYNAMIC) by default for
COLUMN_FORMAT and ROW_FORMAT options when creating or adding table columns.

• ndb-deferred-constraints: Specifies that constraint checks on unique indexes (where these are
supported) should be deferred until commit time. Not normally needed or used; for testing purposes only.

• ndb-distribution: Default distribution for new tables in NDBCLUSTER (KEYHASH or LINHASH,
default is KEYHASH).

• ndb-log-apply-status: Cause MySQL server acting as replica to log mysql.ndb_apply_status
updates received from its immediate source in its own binary log, using its own server ID. Effective only if
server is started with --ndbcluster option.

• ndb-log-empty-epochs: When enabled, causes epochs in which there were no changes to be written
to ndb_apply_status and ndb_binlog_index tables, even when --log-slave-updates is enabled.

• ndb-log-empty-update: When enabled, causes updates that produced no changes to be written to
ndb_apply_status and ndb_binlog_index tables, even when --log-slave-updates is enabled.

• ndb-log-exclusive-reads: Log primary key reads with exclusive locks; allow conflict resolution
based on read conflicts.

3375

Overview of NDB Cluster Configuration Parameters, Options, and Variables

• ndb-log-fail-terminate: Terminate mysqld process if complete logging of all found row events is
not possible.

• ndb-log-orig: Log originating server id and epoch in mysql.ndb_binlog_index table.

• ndb-log-transaction-id: Write NDB transaction IDs in binary log. Requires --log-bin-v1-
events=OFF.

• ndb-log-update-minimal: Log updates in minimal format.

• ndb-log-updated-only: Log updates only (ON) or complete rows (OFF).

• ndb-log-update-as-write: Toggles logging of updates on source between updates (OFF) and
writes (ON).

• ndb-mgmd-host: Set host (and port, if desired) for connecting to management server.

• ndb-nodeid: NDB Cluster node ID for this MySQL server.

• ndb-optimized-node-selection: Enable optimizations for selection of nodes for transactions.
Enabled by default; use --skip-ndb-optimized-node-selection to disable.

• ndb-transid-mysql-connection-map: Enable or disable ndb_transid_mysql_connection_map
plugin; that is, enable or disable INFORMATION_SCHEMA table having that name.

• ndb-wait-connected: Time (in seconds) for MySQL server to wait for connection to cluster
management and data nodes before accepting MySQL client connections.

• ndb-wait-setup: Time (in seconds) for MySQL server to wait for NDB engine setup to complete.

• ndb-allow-copying-alter-table: Set to OFF to keep ALTER TABLE from using copying
operations on NDB tables.

• Ndb_api_adaptive_send_deferred_count: Number of adaptive send calls not actually sent by this
MySQL Server (SQL node).

• Ndb_api_adaptive_send_deferred_count_session: Number of adaptive send calls not actually
sent in this client session.

• Ndb_api_adaptive_send_deferred_count_slave: Number of adaptive send calls not actually
sent by this replica.

• Ndb_api_adaptive_send_forced_count: Number of adaptive sends with forced-send set sent by
this MySQL Server (SQL node).

• Ndb_api_adaptive_send_forced_count_session: Number of adaptive sends with forced-send
set in this client session.

• Ndb_api_adaptive_send_forced_count_slave: Number of adaptive sends with forced-send set
sent by this replica.

• Ndb_api_adaptive_send_unforced_count: Number of adaptive sends without forced-send sent by
this MySQL Server (SQL node).

• Ndb_api_adaptive_send_unforced_count_session: Number of adaptive sends without forced-
send in this client session.

• Ndb_api_adaptive_send_unforced_count_slave: Number of adaptive sends without forced-
send sent by this replica.

3376

Overview of NDB Cluster Configuration Parameters, Options, and Variables

• Ndb_api_bytes_received_count: Quantity of data (in bytes) received from data nodes by this
MySQL Server (SQL node).

• Ndb_api_bytes_received_count_session: Quantity of data (in bytes) received from data nodes in
this client session.

• Ndb_api_bytes_received_count_slave: Quantity of data (in bytes) received from data nodes by
this replica.

• Ndb_api_bytes_sent_count: Quantity of data (in bytes) sent to data nodes by this MySQL Server
(SQL node).

• Ndb_api_bytes_sent_count_session: Quantity of data (in bytes) sent to data nodes in this client
session.

• Ndb_api_bytes_sent_count_slave: Qunatity of data (in bytes) sent to data nodes by this replica.

• Ndb_api_event_bytes_count: Number of bytes of events received by this MySQL Server (SQL
node).

• Ndb_api_event_bytes_count_injector: Number of bytes of event data received by NDB binary
log injector thread.

• Ndb_api_event_data_count: Number of row change events received by this MySQL Server (SQL
node).

• Ndb_api_event_data_count_injector: Number of row change events received by NDB binary log
injector thread.

• Ndb_api_event_nondata_count: Number of events received, other than row change events, by this
MySQL Server (SQL node).

• Ndb_api_event_nondata_count_injector: Number of events received, other than row change
events, by NDB binary log injector thread.

• Ndb_api_pk_op_count: Number of operations based on or using primary keys by this MySQL Server
(SQL node).

• Ndb_api_pk_op_count_session: Number of operations based on or using primary keys in this client
session.

• Ndb_api_pk_op_count_slave: Number of operations based on or using primary keys by this replica.

• Ndb_api_pruned_scan_count: Number of scans that have been pruned to one partition by this
MySQL Server (SQL node).

• Ndb_api_pruned_scan_count_session: Number of scans that have been pruned to one partition in
this client session.

• Ndb_api_pruned_scan_count_slave: Number of scans that have been pruned to one partition by
this replica.

• Ndb_api_range_scan_count: Number of range scans that have been started by this MySQL Server
(SQL node).

• Ndb_api_range_scan_count_session: Number of range scans that have been started in this client
session.

• Ndb_api_range_scan_count_slave: Number of range scans that have been started by this replica.

3377

Overview of NDB Cluster Configuration Parameters, Options, and Variables

• Ndb_api_read_row_count: Total number of rows that have been read by this MySQL Server (SQL
node).

• Ndb_api_read_row_count_session: Total number of rows that have been read in this client
session.

• Ndb_api_read_row_count_slave: Total number of rows that have been read by this replica.

• Ndb_api_scan_batch_count: Number of batches of rows received by this MySQL Server (SQL
node).

• Ndb_api_scan_batch_count_session: Number of batches of rows received in this client session.

• Ndb_api_scan_batch_count_slave: Number of batches of rows received by this replica.

• Ndb_api_table_scan_count: Number of table scans that have been started, including scans of
internal tables, by this MySQL Server (SQL node).

• Ndb_api_table_scan_count_session: Number of table scans that have been started, including
scans of internal tables, in this client session.

• Ndb_api_table_scan_count_slave: Number of table scans that have been started, including scans
of internal tables, by this replica.

• Ndb_api_trans_abort_count: Number of transactions aborted by this MySQL Server (SQL node).

• Ndb_api_trans_abort_count_session: Number of transactions aborted in this client session.

• Ndb_api_trans_abort_count_slave: Number of transactions aborted by this replica.

• Ndb_api_trans_close_count: Number of transactions closed by this MySQL Server (SQL node);
may be greater than sum of TransCommitCount and TransAbortCount.

• Ndb_api_trans_close_count_session: Number of transactions aborted (may be greater than sum
of TransCommitCount and TransAbortCount) in this client session.

• Ndb_api_trans_close_count_slave: Number of transactions aborted (may be greater than sum of
TransCommitCount and TransAbortCount) by this replica.

• Ndb_api_trans_commit_count: Number of transactions committed by this MySQL Server (SQL
node).

• Ndb_api_trans_commit_count_session: Number of transactions committed in this client session.

• Ndb_api_trans_commit_count_slave: Number of transactions committed by this replica.

• Ndb_api_trans_local_read_row_count: Total number of rows that have been read by this MySQL
Server (SQL node).

• Ndb_api_trans_local_read_row_count_session: Total number of rows that have been read in
this client session.

• Ndb_api_trans_local_read_row_count_slave: Total number of rows that have been read by this
replica.

• Ndb_api_trans_start_count: Number of transactions started by this MySQL Server (SQL node).

• Ndb_api_trans_start_count_session: Number of transactions started in this client session.

• Ndb_api_trans_start_count_slave: Number of transactions started by this replica.

3378

Overview of NDB Cluster Configuration Parameters, Options, and Variables

• Ndb_api_uk_op_count: Number of operations based on or using unique keys by this MySQL Server
(SQL node).

• Ndb_api_uk_op_count_session: Number of operations based on or using unique keys in this client
session.

• Ndb_api_uk_op_count_slave: Number of operations based on or using unique keys by this replica.

• Ndb_api_wait_exec_complete_count: Number of times thread has been blocked while waiting for
operation execution to complete by this MySQL Server (SQL node).

• Ndb_api_wait_exec_complete_count_session: Number of times thread has been blocked while
waiting for operation execution to complete in this client session.

• Ndb_api_wait_exec_complete_count_slave: Number of times thread has been blocked while
waiting for operation execution to complete by this replica.

• Ndb_api_wait_meta_request_count: Number of times thread has been blocked waiting for
metadata-based signal by this MySQL Server (SQL node).

• Ndb_api_wait_meta_request_count_session: Number of times thread has been blocked waiting
for metadata-based signal in this client session.

• Ndb_api_wait_meta_request_count_slave: Number of times thread has been blocked waiting for
metadata-based signal by this replica.

• Ndb_api_wait_nanos_count: Total time (in nanoseconds) spent waiting for some type of signal from
data nodes by this MySQL Server (SQL node).

• Ndb_api_wait_nanos_count_session: Total time (in nanoseconds) spent waiting for some type of
signal from data nodes in this client session.

• Ndb_api_wait_nanos_count_slave: Total time (in nanoseconds) spent waiting for some type of
signal from data nodes by this replica.

• Ndb_api_wait_scan_result_count: Number of times thread has been blocked while waiting for
scan-based signal by this MySQL Server (SQL node).

• Ndb_api_wait_scan_result_count_session: Number of times thread has been blocked while
waiting for scan-based signal in this client session.

• Ndb_api_wait_scan_result_count_slave: Number of times thread has been blocked while
waiting for scan-based signal by this replica.

• ndb_autoincrement_prefetch_sz: NDB auto-increment prefetch size.

• ndb_cache_check_time: Number of milliseconds between checks of cluster SQL nodes made by
MySQL query cache.

• ndb_clear_apply_status: Causes RESET SLAVE/RESET REPLICA to clear all rows from
ndb_apply_status table; ON by default.

• Ndb_cluster_node_id: Node ID of this server when acting as NDB Cluster SQL node.

• Ndb_config_from_host: NDB Cluster management server host name or IP address.

• Ndb_config_from_port: Port for connecting to NDB Cluster management server.

• Ndb_conflict_fn_epoch: Number of rows that have been found in conflict by NDB$EPOCH() NDB
replication conflict detection function.

3379

Overview of NDB Cluster Configuration Parameters, Options, and Variables

• Ndb_conflict_fn_epoch2: Number of rows that have been found in conflict by NDB replication NDB
$EPOCH2() conflict detection function.

• Ndb_conflict_fn_epoch2_trans: Number of rows that have been found in conflict by NDB
replication NDB$EPOCH2_TRANS() conflict detection function.

• Ndb_conflict_fn_epoch_trans: Number of rows that have been found in conflict by NDB
$EPOCH_TRANS() conflict detection function.

• Ndb_conflict_fn_max: Number of times that NDB replication conflict resolution based on "greater
timestamp wins" has been applied to update and delete operations.

• Ndb_conflict_fn_max_del_win: Number of times that NDB replication conflict resolution based on
outcome of NDB$MAX_DELETE_WIN() has been applied to update and delete operations.

• Ndb_conflict_fn_old: Number of times that NDB replication "same timestamp wins" conflict
resolution has been applied.

• Ndb_conflict_last_conflict_epoch: Most recent NDB epoch on this replica in which some
conflict was detected.

• Ndb_conflict_last_stable_epoch: Most recent epoch containing no conflicts.

• Ndb_conflict_reflected_op_discard_count: Number of reflected operations that were not
applied due error during execution.

• Ndb_conflict_reflected_op_prepare_count: Number of reflected operations received that have
been prepared for execution.

• Ndb_conflict_refresh_op_count: Number of refresh operations that have been prepared.

• Ndb_conflict_trans_conflict_commit_count: Number of epoch transactions committed after
requiring transactional conflict handling.

• Ndb_conflict_trans_detect_iter_count: Number of internal iterations required to commit epoch
transaction. Should be (slightly) greater than or equal to Ndb_conflict_trans_conflict_commit_count.

• Ndb_conflict_trans_reject_count: Number of transactions rejected after being found in conflict
by transactional conflict function.

• Ndb_conflict_trans_row_conflict_count: Number of rows found in conflict by transactional
conflict function. Includes any rows included in or dependent on conflicting transactions.

• Ndb_conflict_trans_row_reject_count: Total number of rows realigned after being found in
conflict by transactional conflict function. Includes Ndb_conflict_trans_row_conflict_count and any rows
included in or dependent on conflicting transactions.

• ndb_data_node_neighbour: Specifies cluster data node "closest" to this MySQL Server, for
transaction hinting and fully replicated tables.

• ndb_default_column_format: Sets default row format and column format (FIXED or DYNAMIC)
used for new NDB tables.

• ndb_deferred_constraints: Specifies that constraint checks should be deferred (where these are
supported). Not normally needed or used; for testing purposes only.

• ndb_distribution: Default distribution for new tables in NDBCLUSTER (KEYHASH or LINHASH,
default is KEYHASH).

3380

Overview of NDB Cluster Configuration Parameters, Options, and Variables

• Ndb_epoch_delete_delete_count: Number of delete-delete conflicts detected (delete operation is
applied, but row does not exist).

• ndb_eventbuffer_free_percent: Percentage of free memory that should be available in event
buffer before resumption of buffering, after reaching limit set by ndb_eventbuffer_max_alloc.

• ndb_eventbuffer_max_alloc: Maximum memory that can be allocated for buffering events by NDB
API. Defaults to 0 (no limit).

• Ndb_execute_count: Number of round trips to NDB kernel made by operations.

• ndb_extra_logging: Controls logging of NDB Cluster schema, connection, and data distribution
events in MySQL error log.

• ndb_force_send: Forces sending of buffers to NDB immediately, without waiting for other threads.

• ndb_fully_replicated: Whether new NDB tables are fully replicated.

• ndb_index_stat_enable: Use NDB index statistics in query optimization.

• ndb_index_stat_option: Comma-separated list of tunable options for NDB index statistics; list
should contain no spaces.

• ndb_join_pushdown: Enables pushing down of joins to data nodes.

• Ndb_last_commit_epoch_server: Epoch most recently committed by NDB.

• Ndb_last_commit_epoch_session: Epoch most recently committed by this NDB client.

• ndb_log_apply_status: Whether or not MySQL server acting as replica logs
mysql.ndb_apply_status updates received from its immediate source in its own binary log, using its own
server ID.

• ndb_log_bin: Write updates to NDB tables in binary log. Effective only if binary logging is enabled with
--log-bin.

• ndb_log_binlog_index: Insert mapping between epochs and binary log positions into
ndb_binlog_index table. Defaults to ON. Effective only if binary logging is enabled.

• ndb_log_empty_epochs: When enabled, epochs in which there were no changes are written to
ndb_apply_status and ndb_binlog_index tables, even when log_replica_updates or log_slave_updates is
enabled.

• ndb_log_empty_update: When enabled, updates which produce no changes are written to
ndb_apply_status and ndb_binlog_index tables, even when log_replica_updates or log_slave_updates is
enabled.

• ndb_log_exclusive_reads: Log primary key reads with exclusive locks; allow conflict resolution
based on read conflicts.

• ndb_log_orig: Whether id and epoch of originating server are recorded in mysql.ndb_binlog_index
table. Set using --ndb-log-orig option when starting mysqld.

• ndb_log_transaction_id: Whether NDB transaction IDs are written into binary log (Read-only).

• Ndb_number_of_data_nodes: Number of data nodes in this NDB cluster; set only if server
participates in cluster.

• ndb-optimization-delay: Number of milliseconds to wait between processing sets of rows by
OPTIMIZE TABLE on NDB tables.

3381

Overview of NDB Cluster Configuration Parameters, Options, and Variables

• ndb_optimized_node_selection: Determines how SQL node chooses cluster data node to use as
transaction coordinator.

• Ndb_pruned_scan_count: Number of scans executed by NDB since cluster was last started where
partition pruning could be used.

• Ndb_pushed_queries_defined: Number of joins that API nodes have attempted to push down to
data nodes.

• Ndb_pushed_queries_dropped: Number of joins that API nodes have tried to push down, but failed.

• Ndb_pushed_queries_executed: Number of joins successfully pushed down and executed on data
nodes.

• Ndb_pushed_reads: Number of reads executed on data nodes by pushed-down joins.

• ndb_read_backup: Enable read from any replica for all NDB tables; use
NDB_TABLE=READ_BACKUP={0|1} with CREATE TABLE or ALTER TABLE to enable or disable for
individual NDB tables.

• ndb_recv_thread_activation_threshold: Activation threshold when receive thread takes over
polling of cluster connection (measured in concurrently active threads).

• ndb_recv_thread_cpu_mask: CPU mask for locking receiver threads to specific CPUs; specified as
hexadecimal. See documentation for details.

• ndb_report_thresh_binlog_epoch_slip: NDB 7.5 and later: Threshold for number of epochs
completely buffered, but not yet consumed by binlog injector thread which when exceeded generates
BUFFERED_EPOCHS_OVER_THRESHOLD event buffer status message; prior to NDB 7.5: Threshold
for number of epochs to lag behind before reporting binary log status.

• ndb_report_thresh_binlog_mem_usage: Threshold for percentage of free memory remaining
before reporting binary log status.

• ndb_row_checksum: When enabled, set row checksums; enabled by default.

• Ndb_scan_count: Total number of scans executed by NDB since cluster was last started.

• ndb_show_foreign_key_mock_tables: Show mock tables used to support foreign_key_checks=0.

• ndb_slave_conflict_role: Role for replica to play in conflict detection and resolution. Value is one
of PRIMARY, SECONDARY, PASS, or NONE (default). Can be changed only when replication SQL
thread is stopped. See documentation for further information.

• Ndb_slave_max_replicated_epoch: Most recently committed NDB epoch on this replica. When this
value is greater than or equal to Ndb_conflict_last_conflict_epoch, no conflicts have yet been detected.

• Ndb_system_name: Configured cluster system name; empty if server not connected to NDB.

• ndb_table_no_logging: NDB tables created when this setting is enabled are not checkpointed to
disk (although table schema files are created). Setting in effect when table is created with or altered to
use NDBCLUSTER persists for table's lifetime.

• ndb_table_temporary: NDB tables are not persistent on disk: no schema files are created and tables
are not logged.

• ndb_use_copying_alter_table: Use copying ALTER TABLE operations in NDB Cluster.

• ndb_use_exact_count: Forces NDB to use a count of records during SELECT COUNT(*) query
planning to speed up this type of query.

3382

NDB Cluster Configuration Files

• ndb_use_transactions: Set to OFF, to disable transaction support by NDB. Not recommended
except in certain special cases; see documentation for details.

• ndb_version: Shows build and NDB engine version as an integer.

• ndb_version_string: Shows build information including NDB engine version in ndb-x.y.z format.

• ndbcluster: Enable NDB Cluster (if this version of MySQL supports it). Disabled by --skip-
ndbcluster.

• ndbinfo_database: Name used for NDB information database; read only.

• ndbinfo_max_bytes: Used for debugging only.

• ndbinfo_max_rows: Used for debugging only.

• ndbinfo_offline: Put ndbinfo database into offline mode, in which no rows are returned from tables
or views.

• ndbinfo_show_hidden: Whether to show ndbinfo internal base tables in mysql client; default is OFF.

• ndbinfo_table_prefix: Prefix to use for naming ndbinfo internal base tables; read only.

• ndbinfo_version: ndbinfo engine version; read only.

• server_id_bits: Number of least significant bits in server_id actually used for identifying server,
permitting NDB API applications to store application data in most significant bits. server_id must be less
than 2 to power of this value.

• skip-ndbcluster: Disable NDB Cluster storage engine.

• slave_allow_batching: Turns update batching on and off for replica.

• transaction_allow_batching: Allows batching of statements within one transaction. Disable
AUTOCOMMIT to use.

21.4.3 NDB Cluster Configuration Files

Configuring NDB Cluster requires working with two files:

• my.cnf: Specifies options for all NDB Cluster executables. This file, with which you should be familiar
with from previous work with MySQL, must be accessible by each executable running in the cluster.

• config.ini: This file, sometimes known as the global configuration file, is read only by the NDB
Cluster management server, which then distributes the information contained therein to all processes
participating in the cluster. config.ini contains a description of each node involved in the cluster. This
includes configuration parameters for data nodes and configuration parameters for connections between
all nodes in the cluster. For a quick reference to the sections that can appear in this file, and what sorts
of configuration parameters may be placed in each section, see Sections of the config.ini File.

Caching of configuration data. NDB uses stateful configuration. Rather than reading the global
configuration file every time the management server is restarted, the management server caches the
configuration the first time it is started, and thereafter, the global configuration file is read only when one of
the following conditions is true:

• The management server is started using the --initial option. When --initial is used, the global
configuration file is re-read, any existing cache files are deleted, and the management server creates a
new configuration cache.

3383

NDB Cluster Configuration Files

• The management server is started using the --reload option. The --reload option causes
the management server to compare its cache with the global configuration file. If they differ, the
management server creates a new configuration cache; any existing configuration cache is preserved,
but not used. If the management server's cache and the global configuration file contain the same
configuration data, then the existing cache is used, and no new cache is created.

• The management server is started using --config-cache=FALSE. This disables --config-
cache (enabled by default), and can be used to force the management server to bypass configuration
caching altogether. In this case, the management server ignores any configuration files that may be
present, always reading its configuration data from the config.ini file instead.

• No configuration cache is found. In this case, the management server reads the global
configuration file and creates a cache containing the same configuration data as found in the file.

Configuration cache files. The management server by default creates configuration cache files in
a directory named mysql-cluster in the MySQL installation directory. (If you build NDB Cluster from
source on a Unix system, the default location is /usr/local/mysql-cluster.) This can be overridden
at runtime by starting the management server with the --configdir option. Configuration cache files are
binary files named according to the pattern ndb_node_id_config.bin.seq_id, where node_id is the
management server's node ID in the cluster, and seq_id is a cache idenitifer. Cache files are numbered
sequentially using seq_id, in the order in which they are created. The management server uses the latest
cache file as determined by the seq_id.

Note

It is possible to roll back to a previous configuration by deleting later configuration
cache files, or by renaming an earlier cache file so that it has a higher seq_id.
However, since configuration cache files are written in a binary format, you should
not attempt to edit their contents by hand.

For more information about the --configdir, --config-cache, --initial, and --reload
options for the NDB Cluster management server, see Section 21.5.4, “ndb_mgmd — The NDB Cluster
Management Server Daemon”.

We are continuously making improvements in Cluster configuration and attempting to simplify this process.
Although we strive to maintain backward compatibility, there may be times when introduce an incompatible
change. In such cases we try to let NDB Cluster users know in advance if a change is not backward
compatible. If you find such a change and we have not documented it, please report it in the MySQL bugs
database using the instructions given in Section 1.5, “How to Report Bugs or Problems”.

21.4.3.1 NDB Cluster Configuration: Basic Example

To support NDB Cluster, you must to update my.cnf as shown in the following example. You may also
specify these parameters on the command line when invoking the executables.

Note

The options shown here should not be confused with those that are used in
config.ini global configuration files. Global configuration options are discussed
later in this section.

my.cnf
example additions to my.cnf for NDB Cluster
(valid in MySQL 5.7)

enable ndbcluster storage engine, and provide connection string for
management server host (default port is 1186)

3384

NDB Cluster Configuration Files

[mysqld]
ndbcluster
ndb-connectstring=ndb_mgmd.mysql.com

provide connection string for management server host (default port: 1186)
[ndbd]
connect-string=ndb_mgmd.mysql.com

provide connection string for management server host (default port: 1186)
[ndb_mgm]
connect-string=ndb_mgmd.mysql.com

provide location of cluster configuration file
IMPORTANT: When starting the management server with this option in the
configuration file, the use of --initial or --reload on the command line when
invoking ndb_mgmd is also required.
[ndb_mgmd]
config-file=/etc/config.ini

(For more information on connection strings, see Section 21.4.3.3, “NDB Cluster Connection Strings”.)

my.cnf
example additions to my.cnf for NDB Cluster
(works on all versions)

enable ndbcluster storage engine, and provide connection string for management
server host to the default port 1186
[mysqld]
ndbcluster
ndb-connectstring=ndb_mgmd.mysql.com:1186

Important

Once you have started a mysqld process with the NDBCLUSTER and ndb-
connectstring parameters in the [mysqld] in the my.cnf file as shown
previously, you cannot execute any CREATE TABLE or ALTER TABLE statements
without having actually started the cluster. Otherwise, these statements fail with an
error. This is by design.

You may also use a separate [mysql_cluster] section in the cluster my.cnf file for settings to be read
and used by all executables:

cluster-specific settings
[mysql_cluster]
ndb-connectstring=ndb_mgmd.mysql.com:1186

For additional NDB variables that can be set in the my.cnf file, see NDB Cluster System Variables.

The NDB Cluster global configuration file is by convention named config.ini (but this is not required).
If needed, it is read by ndb_mgmd at startup and can be placed in any location that can be read by it. The
location and name of the configuration are specified using --config-file=path_name with ndb_mgmd
on the command line. This option has no default value, and is ignored if ndb_mgmd uses the configuration
cache.

The global configuration file for NDB Cluster uses INI format, which consists of sections preceded by
section headings (surrounded by square brackets), followed by the appropriate parameter names and
values. One deviation from the standard INI format is that the parameter name and value can be separated
by a colon (:) as well as the equal sign (=); however, the equal sign is preferred. Another deviation is that
sections are not uniquely identified by section name. Instead, unique sections (such as two different nodes
of the same type) are identified by a unique ID specified as a parameter within the section.

3385

NDB Cluster Configuration Files

Default values are defined for most parameters, and can also be specified in config.ini. To create a
default value section, simply add the word default to the section name. For example, an [ndbd] section
contains parameters that apply to a particular data node, whereas an [ndbd default] section contains
parameters that apply to all data nodes. Suppose that all data nodes should use the same data memory
size. To configure them all, create an [ndbd default] section that contains a DataMemory line to
specify the data memory size.

If used, the [ndbd default] section must precede any [ndbd] sections in the configuration file. This is
also true for default sections of any other type.

Note

In some older releases of NDB Cluster, there was no default value for
NoOfReplicas, which always had to be specified explicitly in the [ndbd
default] section. Although this parameter now has a default value of 2, which is
the recommended setting in most common usage scenarios, it is still recommended
practice to set this parameter explicitly.

The global configuration file must define the computers and nodes involved in the cluster and on which
computers these nodes are located. An example of a simple configuration file for a cluster consisting of
one management server, two data nodes and two MySQL servers is shown here:

file "config.ini" - 2 data nodes and 2 SQL nodes
This file is placed in the startup directory of ndb_mgmd (the
management server)
The first MySQL Server can be started from any host. The second
can be started only on the host mysqld_5.mysql.com

[ndbd default]
NoOfReplicas= 2
DataDir= /var/lib/mysql-cluster

[ndb_mgmd]
Hostname= ndb_mgmd.mysql.com
DataDir= /var/lib/mysql-cluster

[ndbd]
HostName= ndbd_2.mysql.com

[ndbd]
HostName= ndbd_3.mysql.com

[mysqld]
[mysqld]
HostName= mysqld_5.mysql.com

Note

The preceding example is intended as a minimal starting configuration for purposes
of familiarization with NDB Cluster , and is almost certain not to be sufficient for
production settings. See Section 21.4.3.2, “Recommended Starting Configuration
for NDB Cluster”, which provides a more complete example starting configuration.

Each node has its own section in the config.ini file. For example, this cluster has two data nodes, so
the preceding configuration file contains two [ndbd] sections defining these nodes.

Note

Do not place comments on the same line as a section heading in the config.ini
file; this causes the management server not to start because it cannot parse the
configuration file in such cases.

3386

NDB Cluster Configuration Files

Sections of the config.ini File

There are six different sections that you can use in the config.ini configuration file, as described in the
following list:

• [computer]: Defines cluster hosts. This is not required to configure a viable NDB Cluster, but be may
used as a convenience when setting up a large cluster. See Section 21.4.3.4, “Defining Computers in an
NDB Cluster”, for more information.

• [ndbd]: Defines a cluster data node (ndbd process). See Section 21.4.3.6, “Defining NDB Cluster Data
Nodes”, for details.

• [mysqld]: Defines the cluster's MySQL server nodes (also called SQL or API nodes). For a discussion
of SQL node configuration, see Section 21.4.3.7, “Defining SQL and Other API Nodes in an NDB
Cluster”.

• [mgm] or [ndb_mgmd]: Defines a cluster management server (MGM) node. For information concerning
the configuration of management nodes, see Section 21.4.3.5, “Defining an NDB Cluster Management
Server”.

• [tcp]: Defines a TCP/IP connection between cluster nodes, with TCP/IP being the default transport
protocol. Normally, [tcp] or [tcp default] sections are not required to set up an NDB Cluster,
as the cluster handles this automatically; however, it may be necessary in some situations to override
the defaults provided by the cluster. See Section 21.4.3.10, “NDB Cluster TCP/IP Connections”, for
information about available TCP/IP configuration parameters and how to use them. (You may also find
Section 21.4.3.11, “NDB Cluster TCP/IP Connections Using Direct Connections” to be of interest in
some cases.)

• [shm]: Defines shared-memory connections between nodes. In MySQL 5.7, it is enabled by default, but
should still be considered experimental. For a discussion of SHM interconnects, see Section 21.4.3.12,
“NDB Cluster Shared Memory Connections”.

• [sci]: Defines Scalable Coherent Interface connections between cluster data nodes. Not supported in
NDB 7.5 or 7.6.

You can define default values for each section. If used, a default section should come before any
other sections of that type. For example, an [ndbd default] section should appear in the configuration
file before any [ndbd] sections.

NDB Cluster parameter names are case-insensitive, unless specified in MySQL Server my.cnf or my.ini
files.

21.4.3.2 Recommended Starting Configuration for NDB Cluster

Achieving the best performance from an NDB Cluster depends on a number of factors including the
following:

• NDB Cluster software version

• Numbers of data nodes and SQL nodes

• Hardware

• Operating system

• Amount of data to be stored

• Size and type of load under which the cluster is to operate

3387

NDB Cluster Configuration Files

Therefore, obtaining an optimum configuration is likely to be an iterative process, the outcome of which can
vary widely with the specifics of each NDB Cluster deployment. Changes in configuration are also likely to
be indicated when changes are made in the platform on which the cluster is run, or in applications that use
the NDB Cluster 's data. For these reasons, it is not possible to offer a single configuration that is ideal for
all usage scenarios. However, in this section, we provide a recommended base configuration.

Starting config.ini file. The following config.ini file is a recommended starting point for configuring
a cluster running NDB Cluster 7.5:

TCP PARAMETERS

[tcp default]
SendBufferMemory=2M
ReceiveBufferMemory=2M

Increasing the sizes of these 2 buffers beyond the default values
helps prevent bottlenecks due to slow disk I/O.

MANAGEMENT NODE PARAMETERS

[ndb_mgmd default]
DataDir=path/to/management/server/data/directory

It is possible to use a different data directory for each management
server, but for ease of administration it is preferable to be
consistent.

[ndb_mgmd]
HostName=management-server-A-hostname
NodeId=management-server-A-nodeid

[ndb_mgmd]
HostName=management-server-B-hostname
NodeId=management-server-B-nodeid

Using 2 management servers helps guarantee that there is always an
arbitrator in the event of network partitioning, and so is
recommended for high availability. Each management server must be
identified by a HostName. You may for the sake of convenience specify
a NodeId for any management server, although one is allocated
for it automatically; if you do so, it must be in the range 1-255
inclusive and must be unique among all IDs specified for cluster
nodes.

DATA NODE PARAMETERS

[ndbd default]
NoOfReplicas=2

Using two fragment replicas is recommended to guarantee availability of data;
using only one fragment replica does not provide any redundancy, which means
that the failure of a single data node causes the entire cluster to
shut down. We do not recommend using more than two fragment replicas, since
two are sufficient to provide high availability, and we do not currently test
with greater values for this parameter.

LockPagesInMainMemory=1

On Linux and Solaris systems, setting this parameter locks data node
processes into memory. Doing so prevents them from swapping to disk,
which can severely degrade cluster performance.

DataMemory=3072M
IndexMemory=384M

The values provided for DataMemory and IndexMemory assume 4 GB RAM

3388

NDB Cluster Configuration Files

per data node. However, for best results, you should first calculate
the memory that would be used based on the data you actually plan to
store (you may find the ndb_size.pl utility helpful in estimating
this), then allow an extra 20% over the calculated values. Naturally,
you should ensure that each data node host has at least as much
physical memory as the sum of these two values.
NOTE: IndexMemory is deprecated in NDB 7.6 and later.

ODirect=1

Enabling this parameter causes NDBCLUSTER to try using O_DIRECT
writes for local checkpoints and redo logs; this can reduce load on
CPUs. We recommend doing so when using NDB Cluster on systems running
Linux kernel 2.6 or later.

NoOfFragmentLogFiles=300
DataDir=path/to/data/node/data/directory
MaxNoOfConcurrentOperations=100000

SchedulerSpinTimer=400
SchedulerExecutionTimer=100
RealTimeScheduler=1
Setting these parameters allows you to take advantage of real-time scheduling
of NDB threads to achieve increased throughput when using ndbd. They
are not needed when using ndbmtd; in particular, you should not set
RealTimeScheduler for ndbmtd data nodes.

TimeBetweenGlobalCheckpoints=1000
TimeBetweenEpochs=200
RedoBuffer=32M

CompressedLCP=1
CompressedBackup=1
Enabling CompressedLCP and CompressedBackup causes, respectively, local
checkpoint files and backup files to be compressed, which can result in a space
savings of up to 50% over noncompressed LCPs and backups.

MaxNoOfLocalScans=64
MaxNoOfTables=1024
MaxNoOfOrderedIndexes=256

[ndbd]
HostName=data-node-A-hostname
NodeId=data-node-A-nodeid

LockExecuteThreadToCPU=1
LockMaintThreadsToCPU=0
On systems with multiple CPUs, these parameters can be used to lock NDBCLUSTER
threads to specific CPUs

[ndbd]
HostName=data-node-B-hostname
NodeId=data-node-B-nodeid

LockExecuteThreadToCPU=1
LockMaintThreadsToCPU=0

You must have an [ndbd] section for every data node in the cluster;
each of these sections must include a HostName. Each section may
optionally include a NodeId for convenience, but in most cases, it is
sufficient to allow the cluster to allocate node IDs dynamically. If
you do specify the node ID for a data node, it must be in the range 1
to 48 inclusive and must be unique among all IDs specified for
cluster nodes.

SQL NODE / API NODE PARAMETERS

3389

NDB Cluster Configuration Files

[mysqld]
HostName=sql-node-A-hostname
NodeId=sql-node-A-nodeid

[mysqld]

[mysqld]

Each API or SQL node that connects to the cluster requires a [mysqld]
or [api] section of its own. Each such section defines a connection
“slot”; you should have at least as many of these sections in the
config.ini file as the total number of API nodes and SQL nodes that
you wish to have connected to the cluster at any given time. There is
no performance or other penalty for having extra slots available in
case you find later that you want or need more API or SQL nodes to
connect to the cluster at the same time.
If no HostName is specified for a given [mysqld] or [api] section,
then any API or SQL node may use that slot to connect to the
cluster. You may wish to use an explicit HostName for one connection slot
to guarantee that an API or SQL node from that host can always
connect to the cluster. If you wish to prevent API or SQL nodes from
connecting from other than a desired host or hosts, then use a
HostName for every [mysqld] or [api] section in the config.ini file.
You can if you wish define a node ID (NodeId parameter) for any API or
SQL node, but this is not necessary; if you do so, it must be in the
range 1 to 255 inclusive and must be unique among all IDs specified
for cluster nodes.

Required my.cnf options for SQL nodes. MySQL servers acting as NDB Cluster SQL nodes must
always be started with the --ndbcluster and --ndb-connectstring options, either on the command
line or in my.cnf.

21.4.3.3 NDB Cluster Connection Strings

With the exception of the NDB Cluster management server (ndb_mgmd), each node that is part of an NDB
Cluster requires a connection string that points to the management server's location. This connection
string is used in establishing a connection to the management server as well as in performing other tasks
depending on the node's role in the cluster. The syntax for a connection string is as follows:

[nodeid=node_id,]host-definition[, host-definition[, ...]]

host-definition:
 host_name[:port_number]

node_id is an integer greater than or equal to 1 which identifies a node in config.ini. host_name is
a string representing a valid Internet host name or IP address. port_number is an integer referring to a
TCP/IP port number.

example 1 (long): "nodeid=2,myhost1:1100,myhost2:1100,198.51.100.3:1200"
example 2 (short): "myhost1"

localhost:1186 is used as the default connection string value if none is provided. If port_num is
omitted from the connection string, the default port is 1186. This port should always be available on the
network because it has been assigned by IANA for this purpose (see http://www.iana.org/assignments/
port-numbers for details).

By listing multiple host definitions, it is possible to designate several redundant management servers. An
NDB Cluster data or API node attempts to contact successive management servers on each host in the
order specified, until a successful connection has been established.

It is also possible to specify in a connection string one or more bind addresses to be used by nodes having
multiple network interfaces for connecting to management servers. A bind address consists of a hostname

3390

http://www.iana.org/assignments/port-numbers
http://www.iana.org/assignments/port-numbers

NDB Cluster Configuration Files

or network address and an optional port number. This enhanced syntax for connection strings is shown
here:

[nodeid=node_id,]
 [bind-address=host-definition,]
 host-definition[; bind-address=host-definition]
 host-definition[; bind-address=host-definition]
 [, ...]]

host-definition:
 host_name[:port_number]

If a single bind address is used in the connection string prior to specifying any management hosts,
then this address is used as the default for connecting to any of them (unless overridden for a given
management server; see later in this section for an example). For example, the following connection string
causes the node to use 198.51.100.242 regardless of the management server to which it connects:

bind-address=198.51.100.242, poseidon:1186, perch:1186

If a bind address is specified following a management host definition, then it is used only for connecting to
that management node. Consider the following connection string:

poseidon:1186;bind-address=localhost, perch:1186;bind-address=198.51.100.242

In this case, the node uses localhost to connect to the management server running on the host named
poseidon and 198.51.100.242 to connect to the management server running on the host named
perch.

You can specify a default bind address and then override this default for one or more specific management
hosts. In the following example, localhost is used for connecting to the management server running on
host poseidon; since 198.51.100.242 is specified first (before any management server definitions), it
is the default bind address and so is used for connecting to the management servers on hosts perch and
orca:

bind-address=198.51.100.242,poseidon:1186;bind-address=localhost,perch:1186,orca:2200

There are a number of different ways to specify the connection string:

• Each executable has its own command-line option which enables specifying the management server at
startup. (See the documentation for the respective executable.)

• It is also possible to set the connection string for all nodes in the cluster at once by placing it in a
[mysql_cluster] section in the management server's my.cnf file.

• For backward compatibility, two other options are available, using the same syntax:

1. Set the NDB_CONNECTSTRING environment variable to contain the connection string.

2. Write the connection string for each executable into a text file named Ndb.cfg and place this file in
the executable's startup directory.

These should be considered deprecated, and not used for new installations.

The recommended method for specifying the connection string is to set it on the command line or in the
my.cnf file for each executable.

21.4.3.4 Defining Computers in an NDB Cluster

The [computer] section has no real significance other than serving as a way to avoid the need of
defining host names for each node in the system. All parameters mentioned here are required.

3391

NDB Cluster Configuration Files

• Id

Version (or later) NDB 7.5.0

Type or units string

Default [...]

Range ...

Restart Type Initial System
Restart:
Requires a
complete
shutdown of the
cluster, wiping
and restoring
the cluster file
system from a
backup, and
then restarting
the cluster. (NDB
7.5.0)

This is a unique identifier, used to refer to the host computer elsewhere in the configuration file.

Important

The computer ID is not the same as the node ID used for a management, API, or
data node. Unlike the case with node IDs, you cannot use NodeId in place of Id
in the [computer] section of the config.ini file.

• HostName

Version (or later) NDB 7.5.0

Type or units name or IP
address

Default [...]

Range ...

Restart Type Node Restart:
Requires a
rolling restart of
the cluster. (NDB
7.5.0)

This is the computer's hostname or IP address.

Restart types. Information about the restart types used by the parameter descriptions in this section is
shown in the following table:

Table 21.7 NDB Cluster restart types

Symbol Restart Type Description

N Node The parameter can be updated
using a rolling restart (see
Section 21.6.5, “Performing

3392

NDB Cluster Configuration Files

Symbol Restart Type Description
a Rolling Restart of an NDB
Cluster”)

S System All cluster nodes must be
shut down completely, then
restarted, to effect a change in this
parameter

I Initial Data nodes must be restarted
using the --initial option

21.4.3.5 Defining an NDB Cluster Management Server

The [ndb_mgmd] section is used to configure the behavior of the management server. If multiple
management servers are employed, you can specify parameters common to all of them in an [ndb_mgmd
default] section. [mgm] and [mgm default] are older aliases for these, supported for backward
compatibility.

All parameters in the following list are optional and assume their default values if omitted.

Note

If neither the ExecuteOnComputer nor the HostName parameter is present, the
default value localhost is assumed for both.

• Id

Version (or later) NDB 7.5.0

Type or units unsigned

Default [...]

Range 1 - 255

Restart Type Initial System
Restart:
Requires a
complete
shutdown of the
cluster, wiping
and restoring
the cluster file
system from a
backup, and
then restarting
the cluster. (NDB
7.5.0)

Each node in the cluster has a unique identity. For a management node, this is represented by an
integer value in the range 1 to 255, inclusive. This ID is used by all internal cluster messages for
addressing the node, and so must be unique for each NDB Cluster node, regardless of the type of node.

Note

Data node IDs must be less than 49. If you plan to deploy a large number of data
nodes, it is a good idea to limit the node IDs for management nodes (and API
nodes) to values greater than 48.

3393

NDB Cluster Configuration Files

The use of the Id parameter for identifying management nodes is deprecated in favor of NodeId.
Although Id continues to be supported for backward compatibility, it now generates a warning and is
subject to removal in a future version of NDB Cluster.

• NodeId

Version (or later) NDB 7.5.0

Type or units unsigned

Default [...]

Range 1 - 255

Restart Type Initial System
Restart:
Requires a
complete
shutdown of the
cluster, wiping
and restoring
the cluster file
system from a
backup, and
then restarting
the cluster. (NDB
7.5.0)

Each node in the cluster has a unique identity. For a management node, this is represented by an
integer value in the range 1 to 255 inclusive. This ID is used by all internal cluster messages for
addressing the node, and so must be unique for each NDB Cluster node, regardless of the type of node.

Note

Data node IDs must be less than 49. If you plan to deploy a large number of data
nodes, it is a good idea to limit the node IDs for management nodes (and API
nodes) to values greater than 48.

NodeId is the preferred parameter name to use when identifying management nodes. Although the
older Id continues to be supported for backward compatibility, it is now deprecated and generates a
warning when used; it is also subject to removal in a future NDB Cluster release.

• ExecuteOnComputer

Version (or later) NDB 7.5.0

Type or units name

Default [...]

Range ...

Deprecated NDB 7.5.0

Restart Type System Restart:
Requires a
complete
shutdown and
restart of the

3394

NDB Cluster Configuration Files

cluster. (NDB
7.5.0)

This refers to the Id set for one of the computers defined in a [computer] section of the config.ini
file.

Important

This parameter is deprecated as of NDB 7.5.0, and is subject to removal in a
future release. Use the HostName parameter instead.

• PortNumber

Version (or later) NDB 7.5.0

Type or units unsigned

Default 1186

Range 0 - 64K

Restart Type System Restart:
Requires a
complete
shutdown and
restart of the
cluster. (NDB
7.5.0)

This is the port number on which the management server listens for configuration requests and
management commands.

• HostName

Version (or later) NDB 7.5.0

Type or units name or IP
address

Default [...]

Range ...

Restart Type Node Restart:
Requires a
rolling restart of
the cluster. (NDB
7.5.0)

Specifying this parameter defines the hostname of the computer on which the management node is to
reside. Use HostName to specify a host name other than localhost.

• LocationDomainId

Version (or later) NDB 7.6.4

Type or units integer

Default 0

Range 0 - 16 3395

NDB Cluster Configuration Files

Added NDB 7.6.4

Restart Type System Restart:
Requires a
complete
shutdown and
restart of the
cluster. (NDB
7.5.0)

Assigns a management node to a specific availability domain (also known as an availability zone) within
a cloud. By informing NDB which nodes are in which availability domains, performance can be improved
in a cloud environment in the following ways:

• If requested data is not found on the same node, reads can be directed to another node in the same
availability domain.

• Communication between nodes in different availability domains are guaranteed to use NDB
transporters' WAN support without any further manual intervention.

• The transporter's group number can be based on which availability domain is used, such that also
SQL and other API nodes communicate with local data nodes in the same availability domain
whenever possible.

• The arbitrator can be selected from an availability domain in which no data nodes are present, or, if no
such availability domain can be found, from a third availability domain.

LocationDomainId takes an integer value between 0 and 16 inclusive, with 0 being the default; using
0 is the same as leaving the parameter unset.

• LogDestination

Version (or later) NDB 7.5.0

Type or units {CONSOLE|
SYSLOG|FILE}

Default FILE:
filename=ndb_nodeid_cluster.log,
maxsize=1000000,
maxfiles=6

Range ...

Restart Type Node Restart:
Requires a
rolling restart of
the cluster. (NDB
7.5.0)

This parameter specifies where to send cluster logging information. There are three options in this
regard—CONSOLE, SYSLOG, and FILE—with FILE being the default:

• CONSOLE outputs the log to stdout:

CONSOLE

3396

https://docs.us-phoenix-1.oraclecloud.com/Content/General/Concepts/regions.htm

NDB Cluster Configuration Files

• SYSLOG sends the log to a syslog facility, possible values being one of auth, authpriv, cron,
daemon, ftp, kern, lpr, mail, news, syslog, user, uucp, local0, local1, local2, local3,
local4, local5, local6, or local7.

Note

Not every facility is necessarily supported by every operating system.

SYSLOG:facility=syslog

• FILE pipes the cluster log output to a regular file on the same machine. The following values can be
specified:

• filename: The name of the log file.

The default log file name used in such cases is ndb_nodeid_cluster.log.

• maxsize: The maximum size (in bytes) to which the file can grow before logging rolls over to a new
file. When this occurs, the old log file is renamed by appending .N to the file name, where N is the
next number not yet used with this name.

• maxfiles: The maximum number of log files.

FILE:filename=cluster.log,maxsize=1000000,maxfiles=6

The default value for the FILE parameter is
FILE:filename=ndb_node_id_cluster.log,maxsize=1000000,maxfiles=6, where
node_id is the ID of the node.

It is possible to specify multiple log destinations separated by semicolons as shown here:

CONSOLE;SYSLOG:facility=local0;FILE:filename=/var/log/mgmd

• ArbitrationRank

Version (or later) NDB 7.5.0

Type or units 0-2

Default 1

Range 0 - 2

Restart Type Node Restart:
Requires a
rolling restart of
the cluster. (NDB
7.5.0)

This parameter is used to define which nodes can act as arbitrators. Only management nodes and SQL
nodes can be arbitrators. ArbitrationRank can take one of the following values:

• 0: The node is never used as an arbitrator.

• 1: The node has high priority; that is, it is preferred as an arbitrator over low-priority nodes.

3397

NDB Cluster Configuration Files

• 2: Indicates a low-priority node which is used as an arbitrator only if a node with a higher priority is not
available for that purpose.

Normally, the management server should be configured as an arbitrator by setting its
ArbitrationRank to 1 (the default for management nodes) and those for all SQL nodes to 0 (the
default for SQL nodes).

You can disable arbitration completely either by setting ArbitrationRank to 0 on all management
and SQL nodes, or by setting the Arbitration parameter in the [ndbd default] section
of the config.ini global configuration file. Setting Arbitration causes any settings for
ArbitrationRank to be disregarded.

• ArbitrationDelay

Version (or later) NDB 7.5.0

Type or units milliseconds

Default 0

Range 0 - 4294967039
(0xFFFFFEFF)

Restart Type Node Restart:
Requires a
rolling restart of
the cluster. (NDB
7.5.0)

An integer value which causes the management server's responses to arbitration requests to be delayed
by that number of milliseconds. By default, this value is 0; it is normally not necessary to change it.

• DataDir

Version (or later) NDB 7.5.0

Type or units path

Default .

Range ...

Restart Type Node Restart:
Requires a
rolling restart of
the cluster. (NDB
7.5.0)

This specifies the directory where output files from the management server are placed. These files
include cluster log files, process output files, and the daemon's process ID (PID) file. (For log files,
this location can be overridden by setting the FILE parameter for LogDestination as discussed
previously in this section.)

The default value for this parameter is the directory in which ndb_mgmd is located.

• PortNumberStats

Version (or later) NDB 7.5.0

Type or units unsigned

3398

NDB Cluster Configuration Files

Default [...]

Range 0 - 64K

Restart Type Node Restart:
Requires a
rolling restart of
the cluster. (NDB
7.5.0)

This parameter specifies the port number used to obtain statistical information from an NDB Cluster
management server. It has no default value.

• Wan

Version (or later) NDB 7.5.0

Type or units boolean

Default false

Range true, false

Restart Type Node Restart:
Requires a
rolling restart of
the cluster. (NDB
7.5.0)

Use WAN TCP setting as default.

• HeartbeatThreadPriority

Version (or later) NDB 7.5.0

Type or units string

Default [...]

Range ...

Restart Type Node Restart:
Requires a
rolling restart of
the cluster. (NDB
7.5.0)

Set the scheduling policy and priority of heartbeat threads for management and API nodes.

The syntax for setting this parameter is shown here:

HeartbeatThreadPriority = policy[, priority]

policy:
 {FIFO | RR}

When setting this parameter, you must specify a policy. This is one of FIFO (first in, first out) or RR
(round robin). The policy value is followed optionally by the priority (an integer).

• ExtraSendBufferMemory

Version (or later) NDB 7.5.0

3399

NDB Cluster Configuration Files

Type or units bytes

Default 0

Range 0 - 32G

Restart Type Node Restart:
Requires a
rolling restart of
the cluster. (NDB
7.5.0)

This parameter specifies the amount of transporter send buffer memory to allocate in addition to any that
has been set using TotalSendBufferMemory, SendBufferMemory, or both.

• TotalSendBufferMemory

Version (or later) NDB 7.5.0

Type or units bytes

Default 0

Range 256K -
4294967039
(0xFFFFFEFF)

Restart Type Node Restart:
Requires a
rolling restart of
the cluster. (NDB
7.5.0)

This parameter is used to determine the total amount of memory to allocate on this node for shared send
buffer memory among all configured transporters.

If this parameter is set, its minimum permitted value is 256KB; 0 indicates that the parameter has not
been set. For more detailed information, see Section 21.4.3.13, “Configuring NDB Cluster Send Buffer
Parameters”.

• HeartbeatIntervalMgmdMgmd

Version (or later) NDB 7.5.0

Type or units milliseconds

Default 1500

Range 100 -
4294967039
(0xFFFFFEFF)

Restart Type Node Restart:
Requires a
rolling restart of
the cluster. (NDB
7.5.0)

Specify the interval between heartbeat messages used to determine whether another management
node is on contact with this one. The management node waits after 3 of these intervals to declare the

3400

NDB Cluster Configuration Files

connection dead; thus, the default setting of 1500 milliseconds causes the management node to wait for
approximately 1600 ms before timing out.

Note

After making changes in a management node's configuration, it is necessary to
perform a rolling restart of the cluster for the new configuration to take effect.

To add new management servers to a running NDB Cluster, it is also necessary
to perform a rolling restart of all cluster nodes after modifying any existing
config.ini files. For more information about issues arising when using multiple
management nodes, see Section 21.2.7.10, “Limitations Relating to Multiple NDB
Cluster Nodes”.

Restart types. Information about the restart types used by the parameter descriptions in this section is
shown in the following table:

Table 21.8 NDB Cluster restart types

Symbol Restart Type Description

N Node The parameter can be updated
using a rolling restart (see
Section 21.6.5, “Performing
a Rolling Restart of an NDB
Cluster”)

S System All cluster nodes must be
shut down completely, then
restarted, to effect a change in this
parameter

I Initial Data nodes must be restarted
using the --initial option

21.4.3.6 Defining NDB Cluster Data Nodes

The [ndbd] and [ndbd default] sections are used to configure the behavior of the cluster's data
nodes.

[ndbd] and [ndbd default] are always used as the section names whether you are using ndbd or
ndbmtd binaries for the data node processes.

There are many parameters which control buffer sizes, pool sizes, timeouts, and so forth. The only
mandatory parameter is HostName; this must be defined in the local [ndbd] section.

The parameter NoOfReplicas should be defined in the [ndbd default] section, as it is common to
all Cluster data nodes. It is not strictly necessary to set NoOfReplicas, but it is good practice to set it
explicitly.

Most data node parameters are set in the [ndbd default] section. Only those parameters explicitly
stated as being able to set local values are permitted to be changed in the [ndbd] section. Where
present, HostName and NodeId must be defined in the local [ndbd] section, and not in any other section
of config.ini. In other words, settings for these parameters are specific to one data node.

For those parameters affecting memory usage or buffer sizes, it is possible to use K, M, or G as a suffix
to indicate units of 1024, 1024×1024, or 1024×1024×1024. (For example, 100K means 100 × 1024 =
102400.)

3401

NDB Cluster Configuration Files

Parameter names and values are case-insensitive, unless used in a MySQL Server my.cnf or my.ini
file, in which case they are case-sensitive.

Information about configuration parameters specific to NDB Cluster Disk Data tables can be found later in
this section (see Disk Data Configuration Parameters).

All of these parameters also apply to ndbmtd (the multithreaded version of ndbd). Three additional
data node configuration parameters—MaxNoOfExecutionThreads, ThreadConfig, and
NoOfFragmentLogParts—apply to ndbmtd only; these have no effect when used with ndbd. For more
information, see Multi-Threading Configuration Parameters (ndbmtd). See also Section 21.5.3, “ndbmtd —
The NDB Cluster Data Node Daemon (Multi-Threaded)”.

Identifying data nodes. The NodeId or Id value (that is, the data node identifier) can be allocated on
the command line when the node is started or in the configuration file.

• NodeId

Version (or later) NDB 7.5.0

Type or units unsigned

Default [...]

Range 1 - 48

Restart Type Initial System
Restart:
Requires a
complete
shutdown of the
cluster, wiping
and restoring
the cluster file
system from a
backup, and
then restarting
the cluster. (NDB
7.5.0)

A unique node ID is used as the node's address for all cluster internal messages. For data nodes, this is
an integer in the range 1 to 48 inclusive. Each node in the cluster must have a unique identifier.

NodeId is the only supported parameter name to use when identifying data nodes. (Id was removed in
NDB 7.5.0.)

• ExecuteOnComputer

Version (or later) NDB 7.5.0

Type or units name

Default [...]

Range ...

Deprecated NDB 7.5.0

Restart Type System Restart:
Requires a
complete
shutdown and

3402

NDB Cluster Configuration Files

restart of the
cluster. (NDB
7.5.0)

This refers to the Id set for one of the computers defined in a [computer] section.

Important

This parameter is deprecated as of NDB 7.5.0, and is subject to removal in a
future release. Use the HostName parameter instead.

• HostName

Version (or later) NDB 7.5.0

Type or units name or IP
address

Default localhost

Range ...

Restart Type Node Restart:
Requires a
rolling restart of
the cluster. (NDB
7.5.0)

Specifying this parameter defines the hostname of the computer on which the data node is to reside.
Use HostName to specify a host name other than localhost.

• ServerPort

Version (or later) NDB 7.5.0

Type or units unsigned

Default [...]

Range 1 - 64K

Restart Type System Restart:
Requires a
complete
shutdown and
restart of the
cluster. (NDB
7.5.0)

Each node in the cluster uses a port to connect to other nodes. By default, this port is allocated
dynamically in such a way as to ensure that no two nodes on the same host computer receive the same
port number, so it should normally not be necessary to specify a value for this parameter.

However, if you need to be able to open specific ports in a firewall to permit communication between
data nodes and API nodes (including SQL nodes), you can set this parameter to the number of
the desired port in an [ndbd] section or (if you need to do this for multiple data nodes) the [ndbd

3403

NDB Cluster Configuration Files

default] section of the config.ini file, and then open the port having that number for incoming
connections from SQL nodes, API nodes, or both.

Note

Connections from data nodes to management nodes is done using the
ndb_mgmd management port (the management server's PortNumber) so
outgoing connections to that port from any data nodes should always be
permitted.

• TcpBind_INADDR_ANY

Setting this parameter to TRUE or 1 binds IP_ADDR_ANY so that connections can be made from
anywhere (for autogenerated connections). The default is FALSE (0).

• NodeGroup

Version (or later) NDB 7.5.0

Type or units unsigned

Default [...]

Range 0 - 65536

Restart Type Initial System
Restart:
Requires a
complete
shutdown of the
cluster, wiping
and restoring
the cluster file
system from a
backup, and
then restarting
the cluster. (NDB
7.5.0)

This parameter can be used to assign a data node to a specific node group. It is read only when the
cluster is started for the first time, and cannot be used to reassign a data node to a different node
group online. It is generally not desirable to use this parameter in the [ndbd default] section of the
config.ini file, and care must be taken not to assign nodes to node groups in such a way that an
invalid numbers of nodes are assigned to any node groups.

The NodeGroup parameter is chiefly intended for use in adding a new node group to a running NDB
Cluster without having to perform a rolling restart. For this purpose, you should set it to 65536 (the
maximum value). You are not required to set a NodeGroup value for all cluster data nodes, only for
those nodes which are to be started and added to the cluster as a new node group at a later time. For
more information, see Section 21.6.7.3, “Adding NDB Cluster Data Nodes Online: Detailed Example”.

• LocationDomainId

Version (or later) NDB 7.6.4

Type or units integer

Default 0

3404

NDB Cluster Configuration Files

Range 0 - 16

Added NDB 7.6.4

Restart Type System Restart:
Requires a
complete
shutdown and
restart of the
cluster. (NDB
7.5.0)

Assigns a data node to a specific availability domain (also known as an availability zone) within a cloud.
By informing NDB which nodes are in which availability domains, performance can be improved in a
cloud environment in the following ways:

• If requested data is not found on the same node, reads can be directed to another node in the same
availability domain.

• Communication between nodes in different availability domains are guaranteed to use NDB
transporters' WAN support without any further manual intervention.

• The transporter's group number can be based on which availability domain is used, such that also
SQL and other API nodes communicate with local data nodes in the same availability domain
whenever possible.

• The arbitrator can be selected from an availability domain in which no data nodes are present, or, if no
such availability domain can be found, from a third availability domain.

LocationDomainId takes an integer value between 0 and 16 inclusive, with 0 being the default; using
0 is the same as leaving the parameter unset.

• NoOfReplicas

Version (or later) NDB 7.5.0

Type or units integer

Default 2

Range 1 - 2

Restart Type Initial System
Restart:
Requires a
complete
shutdown of the
cluster, wiping
and restoring
the cluster file
system from a
backup, and
then restarting

3405

https://docs.us-phoenix-1.oraclecloud.com/Content/General/Concepts/regions.htm

NDB Cluster Configuration Files

the cluster. (NDB
7.5.0)

This global parameter can be set only in the [ndbd default] section, and defines the number of
fragment replicas for each table stored in the cluster. This parameter also specifies the size of node
groups. A node group is a set of nodes all storing the same information.

Node groups are formed implicitly. The first node group is formed by the set of data nodes with the
lowest node IDs, the next node group by the set of the next lowest node identities, and so on. By way of
example, assume that we have 4 data nodes and that NoOfReplicas is set to 2. The four data nodes
have node IDs 2, 3, 4 and 5. Then the first node group is formed from nodes 2 and 3, and the second
node group by nodes 4 and 5. It is important to configure the cluster in such a manner that nodes in the
same node groups are not placed on the same computer because a single hardware failure would cause
the entire cluster to fail.

If no node IDs are provided, the order of the data nodes is the determining factor for the node group.
Whether or not explicit assignments are made, they can be viewed in the output of the management
client's SHOW command.

The default and recommended maximum value for NoOfReplicas is 2. This is the recommended value
for most production environments.

Important

While it is theoretically possible for the value of this parameter to be 3 or 4, NDB
Cluster 7.5 and NDB Cluster 7.6 do not support setting NoOfReplicas to a
value greater than 2 in production.

Warning

Setting NoOfReplicas to 1 means that there is only a single copy of all Cluster
data; in this case, the loss of a single data node causes the cluster to fail because
there are no additional copies of the data stored by that node.

The number of data nodes in the cluster must be evenly divisible by the value of this parameter. For
example, if there are two data nodes, then NoOfReplicas must be equal to either 1 or 2, since 2/3 and
2/4 both yield fractional values; if there are four data nodes, then NoOfReplicas must be equal to 1, 2,
or 4.

• DataDir

Version (or later) NDB 7.5.0

Type or units path

Default .

Range ...

Restart Type Initial Node
Restart:
Requires a
rolling restart of
the cluster; each
data node must
be restarted with

3406

NDB Cluster Configuration Files

--initial.
(NDB 7.5.0)

This parameter specifies the directory where trace files, log files, pid files and error logs are placed.

The default is the data node process working directory.

• FileSystemPath

Version (or later) NDB 7.5.0

Type or units path

Default DataDir

Range ...

Restart Type Initial Node
Restart:
Requires a
rolling restart of
the cluster; each
data node must
be restarted with
--initial.
(NDB 7.5.0)

This parameter specifies the directory where all files created for metadata, REDO logs, UNDO logs (for
Disk Data tables), and data files are placed. The default is the directory specified by DataDir.

Note

This directory must exist before the ndbd process is initiated.

The recommended directory hierarchy for NDB Cluster includes /var/lib/mysql-cluster, under
which a directory for the node's file system is created. The name of this subdirectory contains the node
ID. For example, if the node ID is 2, this subdirectory is named ndb_2_fs.

• BackupDataDir

Version (or later) NDB 7.5.0

Type or units path

Default FileSystemPath

Range ...

Restart Type Initial Node
Restart:
Requires a
rolling restart of
the cluster; each
data node must
be restarted with

3407

NDB Cluster Configuration Files

--initial.
(NDB 7.5.0)

This parameter specifies the directory in which backups are placed.

Important

The string '/BACKUP' is always appended to this value. For example, if you set
the value of BackupDataDir to /var/lib/cluster-data, then all backups
are stored under /var/lib/cluster-data/BACKUP. This also means that
the effective default backup location is the directory named BACKUP under the
location specified by the FileSystemPath parameter.

Data Memory, Index Memory, and String Memory

DataMemory and IndexMemory are [ndbd] parameters specifying the size of memory segments used
to store the actual records and their indexes. In setting values for these, it is important to understand how
DataMemory and IndexMemory are used, as they usually need to be updated to reflect actual usage by
the cluster.

Note

IndexMemory is deprecated in NDB 7.6, and subject to removal in a future version
of NDB Cluster. See the descriptions that follow for further information.

• DataMemory

Version (or later) NDB 7.5.0

Type or units bytes

Default 80M

Range 1M - 1T

Version (or later) NDB 7.6.2

Type or units bytes

Default 98M

Range 1M - 1T

Restart Type Node Restart:
Requires a
rolling restart of
the cluster. (NDB
7.5.0)

This parameter defines the amount of space (in bytes) available for storing database records. The entire
amount specified by this value is allocated in memory, so it is extremely important that the machine has
sufficient physical memory to accommodate it.

The memory allocated by DataMemory is used to store both the actual records and indexes. There is a
16-byte overhead on each record; an additional amount for each record is incurred because it is stored
in a 32KB page with 128 byte page overhead (see below). There is also a small amount wasted per
page due to the fact that each record is stored in only one page.

For variable-size table attributes, the data is stored on separate data pages, allocated from
DataMemory. Variable-length records use a fixed-size part with an extra overhead of 4 bytes to
reference the variable-size part. The variable-size part has 2 bytes overhead plus 2 bytes per attribute.

3408

NDB Cluster Configuration Files

The maximum record size is 14000 bytes.

In NDB 7.5 (and earlier), the memory space defined by DataMemory is also used to store ordered
indexes, which use about 10 bytes per record. Each table row is represented in the ordered index.
A common error among users is to assume that all indexes are stored in the memory allocated by
IndexMemory, but this is not the case: Only primary key and unique hash indexes use this memory;
ordered indexes use the memory allocated by DataMemory. However, creating a primary key or unique
hash index also creates an ordered index on the same keys, unless you specify USING HASH in the
index creation statement. This can be verified by running ndb_desc -d db_name table_name.

In NDB 7.6, resources assigned to DataMemory are used for storing all data and indexes; any memory
configured as IndexMemory is automatically added to that used by DataMemory to form a common
resource pool.

The memory space allocated by DataMemory consists of 32KB pages, which are allocated to table
fragments. Each table is normally partitioned into the same number of fragments as there are data
nodes in the cluster. Thus, for each node, there are the same number of fragments as are set in
NoOfReplicas.

Once a page has been allocated, it is currently not possible to return it to the pool of free pages, except
by deleting the table. (This also means that DataMemory pages, once allocated to a given table, cannot
be used by other tables.) Performing a data node recovery also compresses the partition because all
records are inserted into empty partitions from other live nodes.

The DataMemory memory space also contains UNDO information: For each update, a copy of the
unaltered record is allocated in the DataMemory. There is also a reference to each copy in the ordered
table indexes. Unique hash indexes are updated only when the unique index columns are updated, in
which case a new entry in the index table is inserted and the old entry is deleted upon commit. For this
reason, it is also necessary to allocate enough memory to handle the largest transactions performed by
applications using the cluster. In any case, performing a few large transactions holds no advantage over
using many smaller ones, for the following reasons:

• Large transactions are not any faster than smaller ones

• Large transactions increase the number of operations that are lost and must be repeated in event of
transaction failure

• Large transactions use more memory

In NDB 7.5 (and earlier), the default value for DataMemory is 80MB; in NDB 7.6, this is 98MB. The
minimum value is 1MB. There is no maximum size, but in reality the maximum size has to be adapted
so that the process does not start swapping when the limit is reached. This limit is determined by the
amount of physical RAM available on the machine and by the amount of memory that the operating
system may commit to any one process. 32-bit operating systems are generally limited to 2−4GB per
process; 64-bit operating systems can use more. For large databases, it may be preferable to use a 64-
bit operating system for this reason.

• IndexMemory

Version (or later) NDB 7.5.0

Type or units bytes

Default 18M

Range 1M - 1T

3409

NDB Cluster Configuration Files

Version (or later) NDB 7.6.2

Type or units bytes

Default 0

Range 1M - 1T

Deprecated NDB 7.6.2

Restart Type Node Restart:
Requires a
rolling restart of
the cluster. (NDB
7.5.0)

In NDB 7.5 and earlier, this parameter controls the amount of storage used for hash indexes in NDB
Cluster. Hash indexes are always used for primary key indexes, unique indexes, and unique constraints.
When defining a primary key or a unique index, two indexes are created, one of which is a hash
index used for all tuple accesses as well as lock handling. This index is also used to enforce unique
constraints.

In NDB 7.6.2, the IndexMemory parameter is deprecated (and subject to future removal); any any
memory assigned to IndexMemory is allocated instead to the same pool as DataMemory, which
becomes solely responsible for all resources needed for storing data and indexes in memory. In NDB
7.6, the use of IndexMemory in the cluster configuration file triggers a warning from the management
server.

You can estimate the size of a hash index using this formula:

 size = ((fragments * 32K) + (rows * 18))
 * fragment_replicas

fragments is the number of fragments, fragment_replicas is the number of fragment replicas
(normally two), and rows is the number of rows. If a table has one million rows, eight fragments, and two
fragment replicas, the expected index memory usage is calculated as shown here:

 ((8 * 32K) + (1000000 * 18)) * 2 = ((8 * 32768) + (1000000 * 18)) * 2
 = (262144 + 18000000) * 2
 = 18262144 * 2 = 36524288 bytes = ~35MB

Index statistics for ordered indexes (when these are enabled) are stored in the
mysql.ndb_index_stat_sample table. Since this table has a hash index, this adds to index memory
usage. An upper bound to the number of rows for a given ordered index can be calculated as follows:

 sample_size= key_size + ((key_attributes + 1) * 4)

 sample_rows = IndexStatSaveSize
 * ((0.01 * IndexStatSaveScale * log2(rows * sample_size)) + 1)
 / sample_size

In the preceding formula, key_size is the size of the ordered index key in bytes, key_attributes is
the number ot attributes in the ordered index key, and rows is the number of rows in the base table.

Assume that table t1 has 1 million rows and an ordered index named ix1 on two four-byte integers.
Assume in addition that IndexStatSaveSize and IndexStatSaveScale are set to their default
values (32K and 100, respectively). Using the previous 2 formulas, we can calculate as follows:

 sample_size = 8 + ((1 + 2) * 4) = 20 bytes

3410

NDB Cluster Configuration Files

 sample_rows = 32K
 * ((0.01 * 100 * log2(1000000*20)) + 1)
 / 20
 = 32768 * ((1 * ~16.811) +1) / 20
 = 32768 * ~17.811 / 20
 = ~29182 rows

The expected index memory usage is thus 2 * 18 * 29182 = ~1050550 bytes.

Prior to NDB 7.6, the default value for IndexMemory is 18MB and the minimum is 1 MB; in NDB 7.6, the
minimum and default vaue for this parameter is 0 (zero). This has implications for downgrades from NDB
7.6 to earlier versions of NDB Cluster; see Section 21.3.7, “Upgrading and Downgrading NDB Cluster”,
for more information.

• StringMemory

Version (or later) NDB 7.5.0

Type or units % or bytes

Default 25

Range 0 - 4294967039
(0xFFFFFEFF)

Restart Type System Restart:
Requires a
complete
shutdown and
restart of the
cluster. (NDB
7.5.0)

This parameter determines how much memory is allocated for strings such as table names, and is
specified in an [ndbd] or [ndbd default] section of the config.ini file. A value between 0 and
100 inclusive is interpreted as a percent of the maximum default value, which is calculated based on
a number of factors including the number of tables, maximum table name size, maximum size of .FRM
files, MaxNoOfTriggers, maximum column name size, and maximum default column value.

A value greater than 100 is interpreted as a number of bytes.

The default value is 25—that is, 25 percent of the default maximum.

Under most circumstances, the default value should be sufficient, but when you have a great many NDB
tables (1000 or more), it is possible to get Error 773 Out of string memory, please modify
StringMemory config parameter: Permanent error: Schema error, in which case you
should increase this value. 25 (25 percent) is not excessive, and should prevent this error from recurring
in all but the most extreme conditions.

The following example illustrates how memory is used for a table. Consider this table definition:

CREATE TABLE example (
 a INT NOT NULL,
 b INT NOT NULL,
 c INT NOT NULL,
 PRIMARY KEY(a),
 UNIQUE(b)
) ENGINE=NDBCLUSTER;

3411

NDB Cluster Configuration Files

For each record, there are 12 bytes of data plus 12 bytes overhead. Having no nullable columns saves 4
bytes of overhead. In addition, we have two ordered indexes on columns a and b consuming roughly 10
bytes each per record. There is a primary key hash index on the base table using roughly 29 bytes per
record. The unique constraint is implemented by a separate table with b as primary key and a as a column.
This other table consumes an additional 29 bytes of index memory per record in the example table as well
8 bytes of record data plus 12 bytes of overhead.

Thus, for one million records, we need 58MB for index memory to handle the hash indexes for the primary
key and the unique constraint. We also need 64MB for the records of the base table and the unique index
table, plus the two ordered index tables.

You can see that hash indexes takes up a fair amount of memory space; however, they provide very fast
access to the data in return. They are also used in NDB Cluster to handle uniqueness constraints.

Currently, the only partitioning algorithm is hashing and ordered indexes are local to each node. Thus,
ordered indexes cannot be used to handle uniqueness constraints in the general case.

An important point for both IndexMemory and DataMemory is that the total database size is the sum of
all data memory and all index memory for each node group. Each node group is used to store replicated
information, so if there are four nodes with two fragment replicas, there are two node groups. Thus, the
total data memory available is 2 × DataMemory for each data node.

It is highly recommended that DataMemory and IndexMemory be set to the same values for all nodes.
Data distribution is even over all nodes in the cluster, so the maximum amount of space available for any
node can be no greater than that of the smallest node in the cluster.

DataMemory (and in NDB 7.5 and earlier IndexMemory) can be changed, but decreasing it can be
risky; doing so can easily lead to a node or even an entire NDB Cluster that is unable to restart due to
there being insufficient memory space. Increases should be acceptable, but it is recommended that such
upgrades are performed in the same manner as a software upgrade, beginning with an update of the
configuration file, and then restarting the management server followed by restarting each data node in turn.

MinFreePct. A proportion (5% by default) of data node resources including DataMemory (and in NDB
7.5 and earlier, IndexMemory) is kept in reserve to insure that the data node does not exhaust its memory
when performing a restart. This can be adjusted using the MinFreePct data node configuration parameter
(default 5).

Version (or later) NDB 7.5.0

Type or units unsigned

Default 5

Range 0 - 100

Restart Type Node Restart:
Requires a rolling
restart of the
cluster. (NDB
7.5.0)

Updates do not increase the amount of index memory used. Inserts take effect immediately; however, rows
are not actually deleted until the transaction is committed.

Transaction parameters. The next few [ndbd] parameters that we discuss are important because
they affect the number of parallel transactions and the sizes of transactions that can be handled by the
system. MaxNoOfConcurrentTransactions sets the number of parallel transactions possible in a
node. MaxNoOfConcurrentOperations sets the number of records that can be in update phase or
locked simultaneously.

3412

NDB Cluster Configuration Files

Both of these parameters (especially MaxNoOfConcurrentOperations) are likely targets for users
setting specific values and not using the default value. The default value is set for systems using small
transactions, to ensure that these do not use excessive memory.

MaxDMLOperationsPerTransaction sets the maximum number of DML operations that can be
performed in a given transaction.

• MaxNoOfConcurrentTransactions

Version (or later) NDB 7.5.0

Type or units integer

Default 4096

Range 32 - 4294967039
(0xFFFFFEFF)

Deprecated Yes (in NDB 8.0)

Restart Type Node Restart:
Requires a
rolling restart of
the cluster. (NDB
7.5.0)

Each cluster data node requires a transaction record for each active transaction in the cluster. The task
of coordinating transactions is distributed among all of the data nodes. The total number of transaction
records in the cluster is the number of transactions in any given node times the number of nodes in the
cluster.

Transaction records are allocated to individual MySQL servers. Each connection to a MySQL server
requires at least one transaction record, plus an additional transaction object per table accessed by that
connection. This means that a reasonable minimum for the total number of transactions in the cluster
can be expressed as

TotalNoOfConcurrentTransactions =
 (maximum number of tables accessed in any single transaction + 1)
 * number of SQL nodes

Suppose that there are 10 SQL nodes using the cluster. A single join involving 10 tables requires 11
transaction records; if there are 10 such joins in a transaction, then 10 * 11 = 110 transaction records
are required for this transaction, per MySQL server, or 110 * 10 = 1100 transaction records total. Each
data node can be expected to handle TotalNoOfConcurrentTransactions / number of data nodes. For
an NDB Cluster having 4 data nodes, this would mean setting MaxNoOfConcurrentTransactions
on each data node to 1100 / 4 = 275. In addition, you should provide for failure recovery by ensuring
that a single node group can accommodate all concurrent transactions; in other words, that each
data node's MaxNoOfConcurrentTransactions is sufficient to cover a number of transactions equal to
TotalNoOfConcurrentTransactions / number of node groups. If this cluster has a single node group,
then MaxNoOfConcurrentTransactions should be set to 1100 (the same as the total number of
concurrent transactions for the entire cluster).

In addition, each transaction involves at least one operation; for this reason, the value set
for MaxNoOfConcurrentTransactions should always be no more than the value of
MaxNoOfConcurrentOperations.

This parameter must be set to the same value for all cluster data nodes. This is due to the fact that,
when a data node fails, the oldest surviving node re-creates the transaction state of all transactions that
were ongoing in the failed node.

3413

NDB Cluster Configuration Files

It is possible to change this value using a rolling restart, but the amount of traffic on the cluster must be
such that no more transactions occur than the lower of the old and new levels while this is taking place.

The default value is 4096.

• MaxNoOfConcurrentOperations

Version (or later) NDB 7.5.0

Type or units integer

Default 32K

Range 32 - 4294967039
(0xFFFFFEFF)

Restart Type Node Restart:
Requires a
rolling restart of
the cluster. (NDB
7.5.0)

It is a good idea to adjust the value of this parameter according to the size and number of transactions.
When performing transactions which involve only a few operations and records, the default value for this
parameter is usually sufficient. Performing large transactions involving many records usually requires
that you increase its value.

Records are kept for each transaction updating cluster data, both in the transaction coordinator and in
the nodes where the actual updates are performed. These records contain state information needed to
find UNDO records for rollback, lock queues, and other purposes.

This parameter should be set at a minimum to the number of records to be updated simultaneously in
transactions, divided by the number of cluster data nodes. For example, in a cluster which has four data
nodes and which is expected to handle one million concurrent updates using transactions, you should
set this value to 1000000 / 4 = 250000. To help provide resiliency against failures, it is suggested that
you set this parameter to a value that is high enough to permit an individual data node to handle the load
for its node group. In other words, you should set the value equal to total number of concurrent

3414

NDB Cluster Configuration Files

operations / number of node groups. (In the case where there is a single node group, this is
the same as the total number of concurrent operations for the entire cluster.)

Because each transaction always involves at least one operation, the value of
MaxNoOfConcurrentOperations should always be greater than or equal to the value of
MaxNoOfConcurrentTransactions.

Read queries which set locks also cause operation records to be created. Some extra space is allocated
within individual nodes to accommodate cases where the distribution is not perfect over the nodes.

When queries make use of the unique hash index, there are actually two operation records used per
record in the transaction. The first record represents the read in the index table and the second handles
the operation on the base table.

The default value is 32768.

This parameter actually handles two values that can be configured separately. The first of these
specifies how many operation records are to be placed with the transaction coordinator. The second part
specifies how many operation records are to be local to the database.

A very large transaction performed on an eight-node cluster requires as many operation records in the
transaction coordinator as there are reads, updates, and deletes involved in the transaction. However,
the operation records of the are spread over all eight nodes. Thus, if it is necessary to configure
the system for one very large transaction, it is a good idea to configure the two parts separately.
MaxNoOfConcurrentOperations is always used to calculate the number of operation records in the
transaction coordinator portion of the node.

It is also important to have an idea of the memory requirements for operation records. These consume
about 1KB per record.

• MaxNoOfLocalOperations

Version (or later) NDB 7.5.0

Type or units integer

Default UNDEFINED

Range 32 - 4294967039
(0xFFFFFEFF)

Deprecated Yes (in NDB 8.0)

Restart Type Node Restart:
Requires a
rolling restart of
the cluster. (NDB
7.5.0)

By default, this parameter is calculated as 1.1 × MaxNoOfConcurrentOperations. This fits systems
with many simultaneous transactions, none of them being very large. If there is a need to handle one
very large transaction at a time and there are many nodes, it is a good idea to override the default value
by explicitly specifying this parameter.

• MaxDMLOperationsPerTransaction

Version (or later) NDB 7.5.0

3415

NDB Cluster Configuration Files

Type or units operations
(DML)

Default 4294967295

Range 32 - 4294967295

Restart Type Node Restart:
Requires a
rolling restart of
the cluster. (NDB
7.5.0)

This parameter limits the size of a transaction. The transaction is aborted if it requires more than this
many DML operations.

Transaction temporary storage. The next set of [ndbd] parameters is used to determine temporary
storage when executing a statement that is part of a Cluster transaction. All records are released when the
statement is completed and the cluster is waiting for the commit or rollback.

The default values for these parameters are adequate for most situations. However, users with a need to
support transactions involving large numbers of rows or operations may need to increase these values
to enable better parallelism in the system, whereas users whose applications require relatively small
transactions can decrease the values to save memory.

• MaxNoOfConcurrentIndexOperations

Version (or later) NDB 7.5.0

Type or units integer

Default 8K

Range 0 - 4294967039
(0xFFFFFEFF)

Deprecated Yes (in NDB 8.0)

Restart Type Node Restart:
Requires a
rolling restart of
the cluster. (NDB
7.5.0)

For queries using a unique hash index, another temporary set of operation records is used during
a query's execution phase. This parameter sets the size of that pool of records. Thus, this record is
allocated only while executing a part of a query. As soon as this part has been executed, the record is
released. The state needed to handle aborts and commits is handled by the normal operation records,
where the pool size is set by the parameter MaxNoOfConcurrentOperations.

The default value of this parameter is 8192. Only in rare cases of extremely high parallelism using
unique hash indexes should it be necessary to increase this value. Using a smaller value is possible and
can save memory if the DBA is certain that a high degree of parallelism is not required for the cluster.

• MaxNoOfFiredTriggers

Version (or later) NDB 7.5.0

Type or units integer

Default 4000

3416

NDB Cluster Configuration Files

Range 0 - 4294967039
(0xFFFFFEFF)

Deprecated Yes (in NDB 8.0)

Restart Type Node Restart:
Requires a
rolling restart of
the cluster. (NDB
7.5.0)

The default value of MaxNoOfFiredTriggers is 4000, which is sufficient for most situations. In some
cases it can even be decreased if the DBA feels certain the need for parallelism in the cluster is not high.

A record is created when an operation is performed that affects a unique hash index. Inserting or
deleting a record in a table with unique hash indexes or updating a column that is part of a unique hash
index fires an insert or a delete in the index table. The resulting record is used to represent this index
table operation while waiting for the original operation that fired it to complete. This operation is short-
lived but can still require a large number of records in its pool for situations with many parallel write
operations on a base table containing a set of unique hash indexes.

• TransactionBufferMemory

Version (or later) NDB 7.5.0

Type or units bytes

Default 1M

Range 1K -
4294967039
(0xFFFFFEFF)

Restart Type Node Restart:
Requires a
rolling restart of
the cluster. (NDB
7.5.0)

The memory affected by this parameter is used for tracking operations fired when updating index tables
and reading unique indexes. This memory is used to store the key and column information for these
operations. It is only very rarely that the value for this parameter needs to be altered from the default.

The default value for TransactionBufferMemory is 1MB.

Normal read and write operations use a similar buffer, whose usage is even more short-lived. The
compile-time parameter ZATTRBUF_FILESIZE (found in ndb/src/kernel/blocks/Dbtc/
Dbtc.hpp) set to 4000 × 128 bytes (500KB). A similar buffer for key information, ZDATABUF_FILESIZE
(also in Dbtc.hpp) contains 4000 × 16 = 62.5KB of buffer space. Dbtc is the module that handles
transaction coordination.

Scans and buffering. There are additional [ndbd] parameters in the Dblqh module (in
ndb/src/kernel/blocks/Dblqh/Dblqh.hpp) that affect reads and updates. These include
ZATTRINBUF_FILESIZE, set by default to 10000 × 128 bytes (1250KB) and ZDATABUF_FILE_SIZE,
set by default to 10000*16 bytes (roughly 156KB) of buffer space. To date, there have been neither any
reports from users nor any results from our own extensive tests suggesting that either of these compile-
time limits should be increased.

• BatchSizePerLocalScan

3417

NDB Cluster Configuration Files

Version (or later) NDB 7.5.0

Type or units integer

Default 256

Range 1 - 992

Deprecated Yes (in NDB 8.0)

Restart Type Node Restart:
Requires a
rolling restart of
the cluster. (NDB
7.5.0)

This parameter is used to calculate the number of lock records used to handle concurrent scan
operations.

BatchSizePerLocalScan has a strong connection to the BatchSize defined in the SQL nodes.

• LongMessageBuffer

Version (or later) NDB 7.5.0

Type or units bytes

Default 64M

Range 512K -
4294967039
(0xFFFFFEFF)

Restart Type Node Restart:
Requires a
rolling restart of
the cluster. (NDB
7.5.0)

This is an internal buffer used for passing messages within individual nodes and between nodes. The
default is 64MB.

This parameter seldom needs to be changed from the default.

• MaxFKBuildBatchSize

Version (or later) NDB 7.6.4

Type or units integer

Default 64

Range 16 - 512

Added NDB 7.6.4

Restart Type Node Restart:
Requires a
rolling restart of

3418

NDB Cluster Configuration Files

the cluster. (NDB
7.5.0)

Maximum scan batch size used for building foreign keys. Increasing the value set for this parameter may
speed up building of foreign key builds at the expense of greater impact to ongoing traffic.

• MaxNoOfConcurrentScans

Version (or later) NDB 7.5.0

Type or units integer

Default 256

Range 2 - 500

Restart Type Node Restart:
Requires a
rolling restart of
the cluster. (NDB
7.5.0)

This parameter is used to control the number of parallel scans that can be performed in the cluster.
Each transaction coordinator can handle the number of parallel scans defined for this parameter. Each
scan query is performed by scanning all partitions in parallel. Each partition scan uses a scan record
in the node where the partition is located, the number of records being the value of this parameter
times the number of nodes. The cluster should be able to sustain MaxNoOfConcurrentScans scans
concurrently from all nodes in the cluster.

Scans are actually performed in two cases. The first of these cases occurs when no hash or ordered
indexes exists to handle the query, in which case the query is executed by performing a full table scan.
The second case is encountered when there is no hash index to support the query but there is an
ordered index. Using the ordered index means executing a parallel range scan. The order is kept on the
local partitions only, so it is necessary to perform the index scan on all partitions.

The default value of MaxNoOfConcurrentScans is 256. The maximum value is 500.

• MaxNoOfLocalScans

Version (or later) NDB 7.5.0

Type or units integer

Default 4 *
MaxNoOfConcurrentScans
* [# of data
nodes] + 2

Range 32 - 4294967039
(0xFFFFFEFF)

Deprecated Yes (in NDB 8.0)

Restart Type Node Restart:
Requires a
rolling restart of

3419

NDB Cluster Configuration Files

the cluster. (NDB
7.5.0)

Specifies the number of local scan records if many scans are not fully parallelized. When the number of
local scan records is not provided, it is calculated as shown here:

4 * MaxNoOfConcurrentScans * [# data nodes] + 2

The minimum value is 32.

• MaxParallelCopyInstances

Version (or later) NDB 7.5.0

Type or units integer

Default 0

Range 0 - 64

Restart Type Node Restart:
Requires a
rolling restart of
the cluster. (NDB
7.5.0)

This parameter sets the parallelization used in the copy phase of a node restart or system restart, when
a node that is currently just starting is synchronised with a node that already has current data by copying
over any changed records from the node that is up to date. Because full parallelism in such cases can
lead to overload situations, MaxParallelCopyInstances provides a means to decrease it. This
parameter's default value 0. This value means that the effective parallelism is equal to the number of
LDM instances in the node just starting as well as the node updating it.

• MaxParallelScansPerFragment

Version (or later) NDB 7.5.0

Type or units bytes

Default 256

Range 1 - 4294967039
(0xFFFFFEFF)

Restart Type Node Restart:
Requires a
rolling restart of
the cluster. (NDB
7.5.0)

It is possible to configure the maximum number of parallel scans (TUP scans and TUX scans) allowed
before they begin queuing for serial handling. You can increase this to take advantage of any unused
CPU when performing large number of scans in parallel and improve their performance.

• MaxReorgBuildBatchSize

Version (or later) NDB 7.6.4

Type or units integer

Default 64

3420

https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbtup.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbtux.html

NDB Cluster Configuration Files

Range 16 - 512

Added NDB 7.6.4

Restart Type Node Restart:
Requires a
rolling restart of
the cluster. (NDB
7.5.0)

Maximum scan batch size used for reorganization of table partitions. Increasing the value set for this
parameter may speed up reorganization at the expense of greater impact to ongoing traffic.

• MaxUIBuildBatchSize

Version (or later) NDB 7.6.4

Type or units integer

Default 64

Range 16 - 512

Added NDB 7.6.4

Restart Type Node Restart:
Requires a
rolling restart of
the cluster. (NDB
7.5.0)

Maximum scan batch size used for building unique keys. Increasing the value set for this parameter may
speed up such builds at the expense of greater impact to ongoing traffic.

Memory Allocation

MaxAllocate

Version (or later) NDB 7.5.0

Type or units unsigned

Default 32M

Range 1M - 1G

Deprecated Yes (in NDB 8.0)

Restart Type Node Restart:
Requires a rolling
restart of the
cluster. (NDB
7.5.0)

This parameter was used in older versions of NDB Cluster, but has no effect in NDB 7.5 or NDB 7.6.

Hash Map Size

DefaultHashMapSize

Version (or later) NDB 7.5.0

Type or units LDM threads

3421

NDB Cluster Configuration Files

Default 240

Range 0 - 3840

Restart Type Node Restart:
Requires a rolling
restart of the
cluster. (NDB
7.5.0)

The size of the table hash maps used by NDB is configurable using this parameter.
DefaultHashMapSize can take any of three possible values (0, 240, 3840).

The original intended use for this parameter was to facilitate upgrades and especially downgrades to and
from very old releases with differing default hash map sizes. This is not an issue when upgrading from
NDB Cluster 7.3 (or later) to later versions.

Decreasing this parameter online after any tables have been created or modified with
DefaultHashMapSize equal to 3840 is not supported.

Logging and checkpointing. The following [ndbd] parameters control log and checkpoint behavior.

• FragmentLogFileSize

Version (or later) NDB 7.5.0

Type or units bytes

Default 16M

Range 4M - 1G

Restart Type Initial Node
Restart:
Requires a
rolling restart of
the cluster; each
data node must
be restarted with
--initial.
(NDB 7.5.0)

Setting this parameter enables you to control directly the size of redo log files. This can be useful in
situations when NDB Cluster is operating under a high load and it is unable to close fragment log files
quickly enough before attempting to open new ones (only 2 fragment log files can be open at one time);
increasing the size of the fragment log files gives the cluster more time before having to open each new
fragment log file. The default value for this parameter is 16M.

For more information about fragment log files, see the description for NoOfFragmentLogFiles.

• InitialNoOfOpenFiles

Version (or later) NDB 7.5.0

Type or units files

Default 27

Range 20 - 4294967039
(0xFFFFFEFF)

3422

NDB Cluster Configuration Files

Restart Type Node Restart:
Requires a
rolling restart of
the cluster. (NDB
7.5.0)

This parameter sets the initial number of internal threads to allocate for open files.

The default value is 27.

• InitFragmentLogFiles

Version (or later) NDB 7.5.0

Type or units [see values]

Default SPARSE

Range SPARSE, FULL

Restart Type Initial Node
Restart:
Requires a
rolling restart of
the cluster; each
data node must
be restarted with
--initial.
(NDB 7.5.0)

By default, fragment log files are created sparsely when performing an initial start of a data node—that
is, depending on the operating system and file system in use, not all bytes are necessarily written to
disk. However, it is possible to override this behavior and force all bytes to be written, regardless of the
platform and file system type being used, by means of this parameter. InitFragmentLogFiles takes
either of two values:

• SPARSE. Fragment log files are created sparsely. This is the default value.

• FULL. Force all bytes of the fragment log file to be written to disk.

Depending on your operating system and file system, setting InitFragmentLogFiles=FULL may
help eliminate I/O errors on writes to the REDO log.

• EnablePartialLcp

Version (or later) NDB 7.6.4

Type or units boolean

Default true

Range ...

Added NDB 7.6.4

Restart Type Node Restart:
Requires a
rolling restart of

3423

NDB Cluster Configuration Files

the cluster. (NDB
7.5.0)

When true, enable partial local checkpoints: This means that each LCP records only part of the full
database, plus any records containing rows changed since the last LCP; if no rows have changed, the
LCP updates only the LCP control file and does not update any data files.

If EnablePartialLcp is disabled (false), each LCP uses only a single file and writes a full
checkpoint; this requires the least amount of disk space for LCPs, but increases the write load for
each LCP. The default value is enabled (true). The proportion of space used by partial LCPS can be
modified by the setting for the RecoveryWork configuration parameter.

For more information about files and directories used for full and partial LCPs, see NDB Cluster Data
Node File System Directory.

In NDB 7.6.7 and later, setting this parameter to false also disables the calculation of disk write speed
used by the adaptive LCP control mechanism.

• LcpScanProgressTimeout

Version (or later) NDB 7.5.0

Type or units second

Default 60

Range 0 - 4294967039
(0xFFFFFEFF)

Restart Type Node Restart:
Requires a
rolling restart of
the cluster. (NDB
7.5.0)

A local checkpoint fragment scan watchdog checks periodically for no progress in each fragment scan
performed as part of a local checkpoint, and shuts down the node if there is no progress after a given
amount of time has elapsed. This interval can be set using the LcpScanProgressTimeout data node
configuration parameter, which sets the maximum time for which the local checkpoint can be stalled
before the LCP fragment scan watchdog shuts down the node.

The default value is 60 seconds (providing compatibility with previous releases). Setting this parameter
to 0 disables the LCP fragment scan watchdog altogether.

• MaxNoOfOpenFiles

Version (or later) NDB 7.5.0

Type or units unsigned

Default 0

Range 20 - 4294967039
(0xFFFFFEFF)

Restart Type Node Restart:
Requires a
rolling restart of
the cluster. (NDB
7.5.0)

3424

https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-ndbd-filesystemdir-files.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-ndbd-filesystemdir-files.html

NDB Cluster Configuration Files

This parameter sets a ceiling on how many internal threads to allocate for open files. Any situation
requiring a change in this parameter should be reported as a bug.

The default value is 0. However, the minimum value to which this parameter can be set is 20.

• MaxNoOfSavedMessages

Version (or later) NDB 7.5.0

Type or units integer

Default 25

Range 0 - 4294967039
(0xFFFFFEFF)

Restart Type Node Restart:
Requires a
rolling restart of
the cluster. (NDB
7.5.0)

This parameter sets the maximum number of errors written in the error log as well as the maximum
number of trace files that are kept before overwriting the existing ones. Trace files are generated when,
for whatever reason, the node crashes.

The default is 25, which sets these maximums to 25 error messages and 25 trace files.

• MaxLCPStartDelay

Version (or later) NDB 7.5.0

Type or units seconds

Default 0

Range 0 - 600

Restart Type Node Restart:
Requires a
rolling restart of
the cluster. (NDB
7.5.0)

In parallel data node recovery, only table data is actually copied and synchronized in parallel;
synchronization of metadata such as dictionary and checkpoint information is done in a serial fashion.
In addition, recovery of dictionary and checkpoint information cannot be executed in parallel with
performing of local checkpoints. This means that, when starting or restarting many data nodes
concurrently, data nodes may be forced to wait while a local checkpoint is performed, which can result in
longer node recovery times.

It is possible to force a delay in the local checkpoint to permit more (and possibly all) data nodes to
complete metadata synchronization; once each data node's metadata synchronization is complete, all
of the data nodes can recover table data in parallel, even while the local checkpoint is being executed.
To force such a delay, set MaxLCPStartDelay, which determines the number of seconds the cluster
can wait to begin a local checkpoint while data nodes continue to synchronize metadata. This parameter
should be set in the [ndbd default] section of the config.ini file, so that it is the same for all data
nodes. The maximum value is 600; the default is 0.

3425

NDB Cluster Configuration Files

• NoOfFragmentLogFiles

Version (or later) NDB 7.5.0

Type or units integer

Default 16

Range 3 - 4294967039
(0xFFFFFEFF)

Restart Type Initial Node
Restart:
Requires a
rolling restart of
the cluster; each
data node must
be restarted with
--initial.
(NDB 7.5.0)

This parameter sets the number of REDO log files for the node, and thus the amount of space allocated
to REDO logging. Because the REDO log files are organized in a ring, it is extremely important that the
first and last log files in the set (sometimes referred to as the “head” and “tail” log files, respectively)
do not meet. When these approach one another too closely, the node begins aborting all transactions
encompassing updates due to a lack of room for new log records.

A REDO log record is not removed until both required local checkpoints have been completed since
that log record was inserted. Checkpointing frequency is determined by its own set of configuration
parameters discussed elsewhere in this chapter.

The default parameter value is 16, which by default means 16 sets of 4 16MB files for a total of 1024MB.
The size of the individual log files is configurable using the FragmentLogFileSize parameter. In
scenarios requiring a great many updates, the value for NoOfFragmentLogFiles may need to be set
as high as 300 or even higher to provide sufficient space for REDO logs.

If the checkpointing is slow and there are so many writes to the database that the log files are full and
the log tail cannot be cut without jeopardizing recovery, all updating transactions are aborted with
internal error code 410 (Out of log file space temporarily). This condition prevails until a
checkpoint has completed and the log tail can be moved forward.

Important

This parameter cannot be changed “on the fly”; you must restart the node using
--initial. If you wish to change this value for all data nodes in a running
cluster, you can do so using a rolling node restart (using --initial when
starting each data node).

• RecoveryWork

Version (or later) NDB 7.6.4

Type or units integer

Default 50

Range 25 - 100

Version (or later) NDB 7.6.5

3426

NDB Cluster Configuration Files

Type or units integer

Default 60

Range 25 - 100

Added NDB 7.6.4

Restart Type Node Restart:
Requires a
rolling restart of
the cluster. (NDB
7.5.0)

Percentage of storage overhead for LCP files. This parameter has an effect only when
EnablePartialLcp is true, that is, only when partial local checkpoints are enabled. A higher value
means:

• Fewer records are written for each LCP, LCPs use more space

• More work is needed during restarts

A lower value for RecoveryWork means:

• More records are written during each LCP, but LCPs require less space on disk.

• Less work during restart and thus faster restarts, at the expense of more work during normal
operations

For example, setting RecoveryWork to 60 means that the total size of an LCP is roughly 1 + 0.6 =
1.6 times the size of the data to be checkpointed. This means that 60% more work is required during
the restore phase of a restart compared to the work done during a restart that uses full checkpoints.
(This is more than compensated for during other phases of the restart such that the restart as a whole
is still faster when using partial LCPs than when using full LCPs.) In order not to fill up the redo log, it
is necessary to write at 1 + (1 / RecoveryWork) times the rate of data changes during checkpoints—
thus, when RecoveryWork = 60, it is necessary to write at approximately 1 + (1 / 0.6) = 2.67 times the
change rate. In other words, if changes are being written at 10 MByte per second, the checkpoint needs
to be written at roughly 26.7 MByte per second.

Setting RecoveryWork = 40 means that only 1.4 times the total LCP size is needed (and thus the
restore phase takes 10 to 15 percent less time. In this case, the checkpoint write rate is 3.5 times the
rate of change.

The NDB source distribution includes a test program for simulating LCPs. lcp_simulator.cc can be
found in storage/ndb/src/kernel/blocks/backup/. To compile and run it on Unix platforms,
execute the commands shown here:

$> gcc lcp_simulator.cc
$> ./a.out

This program has no dependencies other than stdio.h, and does not require a connection to an NDB
cluster or a MySQL server. By default, it simulates 300 LCPs (three sets of 100 LCPs, each consisting
of inserts, updates, and deletes, in turn), reporting the size of the LCP after each one. You can alter
the simulation by changing the values of recovery_work, insert_work, and delete_work in the
source and recompiling. For more information, see the source of the program.

3427

NDB Cluster Configuration Files

• InsertRecoveryWork

Version (or later) NDB 7.6.5

Type or units integer

Default 40

Range 0 - 70

Added NDB 7.6.5

Restart Type Node Restart:
Requires a
rolling restart of
the cluster. (NDB
7.5.0)

Percentage of RecoveryWork used for inserted rows. A higher value increases the number of writes
during a local checkpoint, and decreases the total size of the LCP. A lower value decreases the number
of writes during an LCP, but results in more space being used for the LCP, which means that recovery
takes longer. This parameter has an effect only when EnablePartialLcp is true, that is, only when
partial local checkpoints are enabled.

• EnableRedoControl

Version (or later) NDB 7.6.7

Type or units boolean

Default false

Range ...

Added NDB 7.6.7

Restart Type Node Restart:
Requires a
rolling restart of
the cluster. (NDB
7.5.0)

Enable adaptive checkpointing speed for controlling redo log usage. Set to false to disable (the
default). Setting EnablePartialLcp to false also disables the adaptive calculation.

When enabled, EnableRedoControl allows the data nodes greater flexibility with regard to the rate at
which they write LCPs to disk. More specifically, enabling this parameter means that higher write rates
can be employed, so that LCPs can complete and Redo logs be trimmed more quickly, thereby reducing
recovery time and disk space requirements. This functionality allows data nodes to make better use
of the higher rate of I/O and greater bandwidth available from modern solid-state storage devices and
protocols, such as solid-state drives (SSDs) using Non-Volatile Memory Express (NVMe).

The parameter currently defaults to false (disabled) due to the fact that NDB is still deployed widely on
systems whose I/O or bandwidth is constrained relative to those employing solid-state technology, such
as those using conventional hard disks (HDDs). In settings such as these, the EnableRedoControl
mechanism can easily cause the I/O subsystem to become saturated, increasing wait times for data
node input and output. In particular, this can cause issues with NDB Disk Data tables which have
tablespaces or log file groups sharing a constrained IO subsystem with data node LCP and redo log
files; such problems potentially include node or cluster failure due to GCP stop errors.

3428

NDB Cluster Configuration Files

Metadata objects. The next set of [ndbd] parameters defines pool sizes for metadata objects, used
to define the maximum number of attributes, tables, indexes, and trigger objects used by indexes, events,
and replication between clusters.

Note

These act merely as “suggestions” to the cluster, and any that are not specified
revert to the default values shown.

• MaxNoOfAttributes

Version (or later) NDB 7.5.0

Type or units integer

Default 1000

Range 32 - 4294967039
(0xFFFFFEFF)

Restart Type Node Restart:
Requires a
rolling restart of
the cluster. (NDB
7.5.0)

This parameter sets a suggested maximum number of attributes that can be defined in the cluster; like
MaxNoOfTables, it is not intended to function as a hard upper limit.

(In older NDB Cluster releases, this parameter was sometimes treated as a hard limit for certain
operations. This caused problems with NDB Cluster Replication, when it was possible to create more
tables than could be replicated, and sometimes led to confusion when it was possible [or not possible,
depending on the circumstances] to create more than MaxNoOfAttributes attributes.)

The default value is 1000, with the minimum possible value being 32. The maximum is 4294967039.
Each attribute consumes around 200 bytes of storage per node due to the fact that all metadata is fully
replicated on the servers.

When setting MaxNoOfAttributes, it is important to prepare in advance for any ALTER
TABLE statements that you might want to perform in the future. This is due to the fact, during the
execution of ALTER TABLE on a Cluster table, 3 times the number of attributes as in the original
table are used, and a good practice is to permit double this amount. For example, if the NDB
Cluster table having the greatest number of attributes (greatest_number_of_attributes)
has 100 attributes, a good starting point for the value of MaxNoOfAttributes would be 6 *
greatest_number_of_attributes = 600.

You should also estimate the average number of attributes per table and multiply this by
MaxNoOfTables. If this value is larger than the value obtained in the previous paragraph, you should
use the larger value instead.

Assuming that you can create all desired tables without any problems, you should also verify that this
number is sufficient by trying an actual ALTER TABLE after configuring the parameter. If this is not
successful, increase MaxNoOfAttributes by another multiple of MaxNoOfTables and test it again.

• MaxNoOfTables

Version (or later) NDB 7.5.0
3429

NDB Cluster Configuration Files

Type or units integer

Default 128

Range 8 - 20320

Restart Type Node Restart:
Requires a
rolling restart of
the cluster. (NDB
7.5.0)

A table object is allocated for each table and for each unique hash index in the cluster. This
parameter sets a suggested maximum number of table objects for the cluster as a whole; like
MaxNoOfAttributes, it is not intended to function as a hard upper limit.

(In older NDB Cluster releases, this parameter was sometimes treated as a hard limit for certain
operations. This caused problems with NDB Cluster Replication, when it was possible to create more
tables than could be replicated, and sometimes led to confusion when it was possible [or not possible,
depending on the circumstances] to create more than MaxNoOfTables tables.)

For each attribute that has a BLOB data type an extra table is used to store most of the BLOB data.
These tables also must be taken into account when defining the total number of tables.

The default value of this parameter is 128. The minimum is 8 and the maximum is 20320. Each table
object consumes approximately 20KB per node.

Note

The sum of MaxNoOfTables, MaxNoOfOrderedIndexes, and
MaxNoOfUniqueHashIndexes must not exceed 232 − 2 (4294967294).

• MaxNoOfOrderedIndexes

Version (or later) NDB 7.5.0

Type or units integer

Default 128

Range 0 - 4294967039
(0xFFFFFEFF)

Restart Type Node Restart:
Requires a
rolling restart of
the cluster. (NDB
7.5.0)

For each ordered index in the cluster, an object is allocated describing what is being indexed and its
storage segments. By default, each index so defined also defines an ordered index. Each unique index

3430

NDB Cluster Configuration Files

and primary key has both an ordered index and a hash index. MaxNoOfOrderedIndexes sets the total
number of ordered indexes that can be in use in the system at any one time.

The default value of this parameter is 128. Each index object consumes approximately 10KB of data per
node.

Note

The sum of MaxNoOfTables, MaxNoOfOrderedIndexes, and
MaxNoOfUniqueHashIndexes must not exceed 232 − 2 (4294967294).

• MaxNoOfUniqueHashIndexes

Version (or later) NDB 7.5.0

Type or units integer

Default 64

Range 0 - 4294967039
(0xFFFFFEFF)

Restart Type Node Restart:
Requires a
rolling restart of
the cluster. (NDB
7.5.0)

For each unique index that is not a primary key, a special table is allocated that maps the unique key to
the primary key of the indexed table. By default, an ordered index is also defined for each unique index.
To prevent this, you must specify the USING HASH option when defining the unique index.

The default value is 64. Each index consumes approximately 15KB per node.

Note

The sum of MaxNoOfTables, MaxNoOfOrderedIndexes, and
MaxNoOfUniqueHashIndexes must not exceed 232 − 2 (4294967294).

• MaxNoOfTriggers

Version (or later) NDB 7.5.0

Type or units integer

Default 768

Range 0 - 4294967039
(0xFFFFFEFF)

Restart Type Node Restart:
Requires a
rolling restart of

3431

NDB Cluster Configuration Files

the cluster. (NDB
7.5.0)

Internal update, insert, and delete triggers are allocated for each unique hash index. (This means that
three triggers are created for each unique hash index.) However, an ordered index requires only a single
trigger object. Backups also use three trigger objects for each normal table in the cluster.

Replication between clusters also makes use of internal triggers.

This parameter sets the maximum number of trigger objects in the cluster.

The default value is 768.

• MaxNoOfSubscriptions

Version (or later) NDB 7.5.0

Type or units unsigned

Default 0

Range 0 - 4294967039
(0xFFFFFEFF)

Restart Type Node Restart:
Requires a
rolling restart of
the cluster. (NDB
7.5.0)

Each NDB table in an NDB Cluster requires a subscription in the NDB kernel. For some NDB API
applications, it may be necessary or desirable to change this parameter. However, for normal usage with
MySQL servers acting as SQL nodes, there is not any need to do so.

The default value for MaxNoOfSubscriptions is 0, which is treated as equal to MaxNoOfTables.
Each subscription consumes 108 bytes.

• MaxNoOfSubscribers

Version (or later) NDB 7.5.0

Type or units unsigned

Default 0

Range 0 - 4294967039
(0xFFFFFEFF)

Restart Type Node Restart:
Requires a
rolling restart of
the cluster. (NDB
7.5.0)

This parameter is of interest only when using NDB Cluster Replication. The default value is 0, which is
treated as 2 * MaxNoOfTables; that is, there is one subscription per NDB table for each of two MySQL

3432

NDB Cluster Configuration Files

servers (one acting as the replication source and the other as the replica). Each subscriber uses 16
bytes of memory.

When using circular replication, multi-source replication, and other replication setups involving more than
2 MySQL servers, you should increase this parameter to the number of mysqld processes included in
replication (this is often, but not always, the same as the number of clusters). For example, if you have a
circular replication setup using three NDB Cluster s, with one mysqld attached to each cluster, and each
of these mysqld processes acts as a source and as a replica, you should set MaxNoOfSubscribers
equal to 3 * MaxNoOfTables.

For more information, see Section 21.7, “NDB Cluster Replication”.

• MaxNoOfConcurrentSubOperations

Version (or later) NDB 7.5.0

Type or units unsigned

Default 256

Range 0 - 4294967039
(0xFFFFFEFF)

Restart Type Node Restart:
Requires a
rolling restart of
the cluster. (NDB
7.5.0)

This parameter sets a ceiling on the number of operations that can be performed by all API nodes in
the cluster at one time. The default value (256) is sufficient for normal operations, and might need to be
adjusted only in scenarios where there are a great many API nodes each performing a high volume of
operations concurrently.

Boolean parameters. The behavior of data nodes is also affected by a set of [ndbd] parameters
taking on boolean values. These parameters can each be specified as TRUE by setting them equal to 1 or
Y, and as FALSE by setting them equal to 0 or N.

• CompressedLCP

Version (or later) NDB 7.5.0

Type or units boolean

Default false

Range true, false

Restart Type Node Restart:
Requires a
rolling restart of
the cluster. (NDB
7.5.0)

Setting this parameter to 1 causes local checkpoint files to be compressed. The compression used is
equivalent to gzip --fast, and can save 50% or more of the space required on the data node to store
uncompressed checkpoint files. Compressed LCPs can be enabled for individual data nodes, or for all
data nodes (by setting this parameter in the [ndbd default] section of the config.ini file).

3433

NDB Cluster Configuration Files

Important

You cannot restore a compressed local checkpoint to a cluster running a MySQL
version that does not support this feature.

The default value is 0 (disabled).

On Windows platforms, this parameter has no effect in NDB 7.5 or NDB 7.6.

• CrashOnCorruptedTuple

Version (or later) NDB 7.5.0

Type or units boolean

Default true

Range true, false

Restart Type Node Restart:
Requires a
rolling restart of
the cluster. (NDB
7.5.0)

When this parameter is enabled, it forces a data node to shut down whenever it encounters a corrupted
tuple. In NDB 7.5, it is enabled by default.

• Diskless

Version (or later) NDB 7.5.0

Type or units true|false (1|0)

Default false

Range true, false

Restart Type Initial System
Restart:
Requires a
complete
shutdown of the
cluster, wiping
and restoring
the cluster file
system from a
backup, and
then restarting
the cluster. (NDB
7.5.0)

It is possible to specify NDB Cluster tables as diskless, meaning that tables are not checkpointed to disk
and that no logging occurs. Such tables exist only in main memory. A consequence of using diskless

3434

NDB Cluster Configuration Files

tables is that neither the tables nor the records in those tables survive a crash. However, when operating
in diskless mode, it is possible to run ndbd on a diskless computer.

Important

This feature causes the entire cluster to operate in diskless mode.

When this feature is enabled, Cluster online backup is disabled. In addition, a partial start of the cluster is
not possible.

Diskless is disabled by default.

• LateAlloc

Version (or later) NDB 7.5.0

Type or units numeric

Default 1

Range 0 - 1

Restart Type Node Restart:
Requires a
rolling restart of
the cluster. (NDB
7.5.0)

Allocate memory for this data node after a connection to the management server has been established.
Enabled by default.

• LockPagesInMainMemory

Version (or later) NDB 7.5.0

Type or units numeric

Default 0

Range 0 - 2

Restart Type Node Restart:
Requires a
rolling restart of
the cluster. (NDB
7.5.0)

For a number of operating systems, including Solaris and Linux, it is possible to lock a process into
memory and so avoid any swapping to disk. This can be used to help guarantee the cluster's real-time
characteristics.

This parameter takes one of the integer values 0, 1, or 2, which act as shown in the following list:

• 0: Disables locking. This is the default value.

• 1: Performs the lock after allocating memory for the process.

3435

NDB Cluster Configuration Files

• 2: Performs the lock before memory for the process is allocated.

If the operating system is not configured to permit unprivileged users to lock pages, then the data node
process making use of this parameter may have to be run as system root. (LockPagesInMainMemory
uses the mlockall function. From Linux kernel 2.6.9, unprivileged users can lock memory as limited by
max locked memory. For more information, see ulimit -l and http://linux.die.net/man/2/mlock).

Note

In older NDB Cluster releases, this parameter was a Boolean. 0 or false
was the default setting, and disabled locking. 1 or true enabled locking of the
process after its memory was allocated. NDB Cluster 7.5 treats true or false
for the value of this parameter as an error.

Important

Beginning with glibc 2.10, glibc uses per-thread arenas to reduce lock
contention on a shared pool, which consumes real memory. In general, a data
node process does not need per-thread arenas, since it does not perform any
memory allocation after startup. (This difference in allocators does not appear to
affect performance significantly.)

The glibc behavior is intended to be configurable via the MALLOC_ARENA_MAX
environment variable, but a bug in this mechanism prior to glibc 2.16 meant
that this variable could not be set to less than 8, so that the wasted memory
could not be reclaimed. (Bug #15907219; see also http://sourceware.org/bugzilla/
show_bug.cgi?id=13137 for more information concerning this issue.)

One possible workaround for this problem is to use the LD_PRELOAD
environment variable to preload a jemalloc memory allocation library to take
the place of that supplied with glibc.

• ODirect

Version (or later) NDB 7.5.0

Type or units boolean

Default false

Range true, false

Restart Type Node Restart:
Requires a
rolling restart of
the cluster. (NDB
7.5.0)

Enabling this parameter causes NDB to attempt using O_DIRECT writes for LCP, backups, and redo logs,
often lowering kswapd and CPU usage. When using NDB Cluster on Linux, enable ODirect if you are
using a 2.6 or later kernel.

ODirect is disabled by default.

• ODirectSyncFlag

Version (or later) NDB 7.6.4
3436

http://linux.die.net/man/2/mlock
http://sourceware.org/bugzilla/show_bug.cgi?id=13137
http://sourceware.org/bugzilla/show_bug.cgi?id=13137

NDB Cluster Configuration Files

Type or units boolean

Default false

Range true, false

Added NDB 7.6.4

Restart Type Node Restart:
Requires a
rolling restart of
the cluster. (NDB
7.5.0)

When this parameter is enabled, redo log writes are performed such that each completed file system
write is handled as a call to fsync. The setting for this parameter is ignored if at least one of the
following conditions is true:

• ODirect is not enabled.

• InitFragmentLogFiles is set to SPARSE.

Disabled by default.

• RestartOnErrorInsert

Version (or later) NDB 7.5.0

Type or units error code

Default 2

Range 0 - 4

Restart Type Node Restart:
Requires a
rolling restart of
the cluster. (NDB
7.5.0)

This feature is accessible only when building the debug version where it is possible to insert errors in the
execution of individual blocks of code as part of testing.

This feature is disabled by default.

• StopOnError

Version (or later) NDB 7.5.0

Type or units boolean

Default 1

Range 0, 1

Restart Type Node Restart:
Requires a
rolling restart of

3437

NDB Cluster Configuration Files

the cluster. (NDB
7.5.0)

This parameter specifies whether a data node process should exit or perform an automatic restart when
an error condition is encountered.

This parameter's default value is 1; this means that, by default, an error causes the data node process to
halt.

When an error is encountered and StopOnError is 0, the data node process is restarted.

Prior to NDB Cluster 7.5.5, if the data node process exits in an uncontrolled fashion (due, for example,
to performing kill -9 on the data node process while performing a query, or to a segmentation fault),
and StopOnError is set to 0, the angel process attempts to restart it in exactly the same way as it was
started previously—that is, using the same startup options that were employed the last time the node
was started. Thus, if the data node process was originally started using the --initial option, it is also
restarted with --initial. This means that, in such cases, if the failure occurs on a sufficient number of
data nodes in a very short interval, the effect is the same as if you had performed an initial restart of the
entire cluster, leading to loss of all data. This issue is resolved in NDB Cluster 7.5.5 and later NDB 7.5
releases (Bug #83510, Bug #24945638).

Users of MySQL Cluster Manager should note that, when StopOnError equals 1, this prevents the
MySQL Cluster Manager agent from restarting any data nodes after it has performed its own restart and
recovery. See Starting and Stopping the Agent on Linux, for more information.

• UseShm

Version (or later) NDB 7.6.6

Type or units boolean

Default false

Range true, false

Added NDB 7.6.6

Restart Type Node Restart:
Requires a
rolling restart of
the cluster. (NDB
7.5.0)

Use shared memory connections between this data node and the API node also running on this host.
Set to 1 to enable.

See Section 21.4.3.12, “NDB Cluster Shared Memory Connections”, for more information.

Controlling Timeouts, Intervals, and Disk Paging

There are a number of [ndbd] parameters specifying timeouts and intervals between various actions in
Cluster data nodes. Most of the timeout values are specified in milliseconds. Any exceptions to this are
mentioned where applicable.

• TimeBetweenWatchDogCheck

Version (or later) NDB 7.5.0

Type or units milliseconds

3438

https://dev.mysql.com/doc/mysql-cluster-manager/1.4/en/mcm-using-start-stop-agent-linux.html

NDB Cluster Configuration Files

Default 6000

Range 70 - 4294967039
(0xFFFFFEFF)

Restart Type Node Restart:
Requires a
rolling restart of
the cluster. (NDB
7.5.0)

To prevent the main thread from getting stuck in an endless loop at some point, a “watchdog” thread
checks the main thread. This parameter specifies the number of milliseconds between checks. If the
process remains in the same state after three checks, the watchdog thread terminates it.

This parameter can easily be changed for purposes of experimentation or to adapt to local conditions. It
can be specified on a per-node basis although there seems to be little reason for doing so.

The default timeout is 6000 milliseconds (6 seconds).

• TimeBetweenWatchDogCheckInitial

Version (or later) NDB 7.5.0

Type or units milliseconds

Default 6000

Range 70 - 4294967039
(0xFFFFFEFF)

Restart Type Node Restart:
Requires a
rolling restart of
the cluster. (NDB
7.5.0)

This is similar to the TimeBetweenWatchDogCheck parameter, except that
TimeBetweenWatchDogCheckInitial controls the amount of time that passes between execution
checks inside a storage node in the early start phases during which memory is allocated.

The default timeout is 6000 milliseconds (6 seconds).

• StartPartialTimeout

Version (or later) NDB 7.5.0

Type or units milliseconds

Default 30000

Range 0 - 4294967039
(0xFFFFFEFF)

Restart Type Node Restart:
Requires a
rolling restart of

3439

NDB Cluster Configuration Files

the cluster. (NDB
7.5.0)

This parameter specifies how long the Cluster waits for all data nodes to come up before the cluster
initialization routine is invoked. This timeout is used to avoid a partial Cluster startup whenever possible.

This parameter is overridden when performing an initial start or initial restart of the cluster.

The default value is 30000 milliseconds (30 seconds). 0 disables the timeout, in which case the cluster
may start only if all nodes are available.

• StartPartitionedTimeout

Version (or later) NDB 7.5.0

Type or units milliseconds

Default 60000

Range 0 - 4294967039
(0xFFFFFEFF)

Version (or later) NDB 7.6.4

Type or units milliseconds

Default 0

Range 0 - 4294967039
(0xFFFFFEFF)

Restart Type Node Restart:
Requires a
rolling restart of
the cluster. (NDB
7.5.0)

If the cluster is ready to start after waiting for StartPartialTimeout milliseconds but
is still possibly in a partitioned state, the cluster waits until this timeout has also passed. If
StartPartitionedTimeout is set to 0, the cluster waits indefinitely (232−1 ms, or approximately
49.71 days).

This parameter is overridden when performing an initial start or initial restart of the cluster.

The default value in NDB 7.6 is 0; previously it was 60000 (60 seconds).

• StartFailureTimeout

Version (or later) NDB 7.5.0

Type or units milliseconds

Default 0

Range 0 - 4294967039
(0xFFFFFEFF)

Restart Type Node Restart:
Requires a
rolling restart of

3440

NDB Cluster Configuration Files

the cluster. (NDB
7.5.0)

If a data node has not completed its startup sequence within the time specified by this parameter, the
node startup fails. Setting this parameter to 0 (the default value) means that no data node timeout is
applied.

For nonzero values, this parameter is measured in milliseconds. For data nodes containing extremely
large amounts of data, this parameter should be increased. For example, in the case of a data node
containing several gigabytes of data, a period as long as 10−15 minutes (that is, 600000 to 1000000
milliseconds) might be required to perform a node restart.

• StartNoNodeGroupTimeout

Version (or later) NDB 7.5.0

Type or units milliseconds

Default 15000

Range 0 - 4294967039
(0xFFFFFEFF)

Restart Type Node Restart:
Requires a
rolling restart of
the cluster. (NDB
7.5.0)

When a data node is configured with Nodegroup = 65536, is regarded as not being assigned to any
node group. When that is done, the cluster waits StartNoNodegroupTimeout milliseconds, then
treats such nodes as though they had been added to the list passed to the --nowait-nodes option,
and starts. The default value is 15000 (that is, the management server waits 15 seconds). Setting this
parameter equal to 0 means that the cluster waits indefinitely.

StartNoNodegroupTimeout must be the same for all data nodes in the cluster; for this reason, you
should always set it in the [ndbd default] section of the config.ini file, rather than for individual
data nodes.

See Section 21.6.7, “Adding NDB Cluster Data Nodes Online”, for more information.

• HeartbeatIntervalDbDb

Version (or later) NDB 7.5.0

Type or units milliseconds

Default 5000

Range 10 - 4294967039
(0xFFFFFEFF)

Restart Type Node Restart:
Requires a
rolling restart of

3441

NDB Cluster Configuration Files

the cluster. (NDB
7.5.0)

One of the primary methods of discovering failed nodes is by the use of heartbeats. This parameter
states how often heartbeat signals are sent and how often to expect to receive them. Heartbeats cannot
be disabled.

After missing four heartbeat intervals in a row, the node is declared dead. Thus, the maximum time for
discovering a failure through the heartbeat mechanism is five times the heartbeat interval.

The default heartbeat interval is 5000 milliseconds (5 seconds). This parameter must not be changed
drastically and should not vary widely between nodes. If one node uses 5000 milliseconds and the node
watching it uses 1000 milliseconds, obviously the node is declared dead very quickly. This parameter
can be changed during an online software upgrade, but only in small increments.

See also Network communication and latency, as well as the description of the
ConnectCheckIntervalDelay configuration parameter.

• HeartbeatIntervalDbApi

Version (or later) NDB 7.5.0

Type or units milliseconds

Default 1500

Range 100 -
4294967039
(0xFFFFFEFF)

Restart Type Node Restart:
Requires a
rolling restart of
the cluster. (NDB
7.5.0)

Each data node sends heartbeat signals to each MySQL server (SQL node) to ensure that it remains
in contact. If a MySQL server fails to send a heartbeat in time it is declared “dead,” in which case all
ongoing transactions are completed and all resources released. The SQL node cannot reconnect until all
activities initiated by the previous MySQL instance have been completed. The three-heartbeat criteria for
this determination are the same as described for HeartbeatIntervalDbDb.

The default interval is 1500 milliseconds (1.5 seconds). This interval can vary between individual data
nodes because each data node watches the MySQL servers connected to it, independently of all other
data nodes.

For more information, see Network communication and latency.

• HeartbeatOrder

Version (or later) NDB 7.5.0

Type or units numeric

Default 0

Range 0 - 65535

Restart Type System Restart:
Requires a3442

NDB Cluster Configuration Files

complete
shutdown and
restart of the
cluster. (NDB
7.5.0)

Data nodes send heartbeats to one another in a circular fashion whereby each data node monitors the
previous one. If a heartbeat is not detected by a given data node, this node declares the previous data
node in the circle “dead” (that is, no longer accessible by the cluster). The determination that a data node
is dead is done globally; in other words; once a data node is declared dead, it is regarded as such by all
nodes in the cluster.

It is possible for heartbeats between data nodes residing on different hosts to be too slow compared to
heartbeats between other pairs of nodes (for example, due to a very low heartbeat interval or temporary
connection problem), such that a data node is declared dead, even though the node can still function as
part of the cluster. .

In this type of situation, it may be that the order in which heartbeats are transmitted between data nodes
makes a difference as to whether or not a particular data node is declared dead. If this declaration
occurs unnecessarily, this can in turn lead to the unnecessary loss of a node group and as thus to a
failure of the cluster.

Consider a setup where there are 4 data nodes A, B, C, and D running on 2 host computers host1 and
host2, and that these data nodes make up 2 node groups, as shown in the following table:

Table 21.9 Four data nodes A, B, C, D running on two host computers host1, host2; each data
node belongs to one of two node groups.

Node Group Nodes Running on host1 Nodes Running on host2

Node Group 0: Node A Node B

Node Group 1: Node C Node D

Suppose the heartbeats are transmitted in the order A->B->C->D->A. In this case, the loss of the
heartbeat between the hosts causes node B to declare node A dead and node C to declare node B
dead. This results in loss of Node Group 0, and so the cluster fails. On the other hand, if the order of
transmission is A->B->D->C->A (and all other conditions remain as previously stated), the loss of the
heartbeat causes nodes A and D to be declared dead; in this case, each node group has one surviving
node, and the cluster survives.

The HeartbeatOrder configuration parameter makes the order of heartbeat transmission user-
configurable. The default value for HeartbeatOrder is zero; allowing the default value to be used on
all data nodes causes the order of heartbeat transmission to be determined by NDB. If this parameter
is used, it must be set to a nonzero value (maximum 65535) for every data node in the cluster, and
this value must be unique for each data node; this causes the heartbeat transmission to proceed from
data node to data node in the order of their HeartbeatOrder values from lowest to highest (and
then directly from the data node having the highest HeartbeatOrder to the data node having the
lowest value, to complete the circle). The values need not be consecutive. For example, to force the
heartbeat transmission order A->B->D->C->A in the scenario outlined previously, you could set the
HeartbeatOrder values as shown here:

Table 21.10 HeartbeatOrder values to force a heartbeat transition order of A->B->D->C->A.

Node HeartbeatOrder Value

A 10 3443

NDB Cluster Configuration Files

Node HeartbeatOrder Value

B 20

C 30

D 25

To use this parameter to change the heartbeat transmission order in a running NDB Cluster, you must
first set HeartbeatOrder for each data node in the cluster in the global configuration (config.ini)
file (or files). To cause the change to take effect, you must perform either of the following:

• A complete shutdown and restart of the entire cluster.

• 2 rolling restarts of the cluster in succession. All nodes must be restarted in the same order in both
rolling restarts.

You can use DUMP 908 to observe the effect of this parameter in the data node logs.

• ConnectCheckIntervalDelay

Version (or later) NDB 7.5.0

Type or units milliseconds

Default 0

Range 0 - 4294967039
(0xFFFFFEFF)

Restart Type Node Restart:
Requires a
rolling restart of
the cluster. (NDB
7.5.0)

This parameter enables connection checking between data nodes after one of them has failed heartbeat
checks for 5 intervals of up to HeartbeatIntervalDbDb milliseconds.

Such a data node that further fails to respond within an interval of ConnectCheckIntervalDelay
milliseconds is considered suspect, and is considered dead after two such intervals. This can be useful
in setups with known latency issues.

The default value for this parameter is 0 (disabled).

• TimeBetweenLocalCheckpoints

Version (or later) NDB 7.5.0

Type or units number of 4-byte
words, as base-2
logarithm

Default 20

Range 0 - 31

Restart Type Node Restart:
Requires a
rolling restart of

3444

https://dev.mysql.com/doc/ndb-internals/en/dump-command-908.html

NDB Cluster Configuration Files

the cluster. (NDB
7.5.0)

This parameter is an exception in that it does not specify a time to wait before starting a new local
checkpoint; rather, it is used to ensure that local checkpoints are not performed in a cluster where
relatively few updates are taking place. In most clusters with high update rates, it is likely that a new local
checkpoint is started immediately after the previous one has been completed.

The size of all write operations executed since the start of the previous local checkpoints is added.
This parameter is also exceptional in that it is specified as the base-2 logarithm of the number of 4-byte
words, so that the default value 20 means 4MB (4 × 220) of write operations, 21 would mean 8MB, and
so on up to a maximum value of 31, which equates to 8GB of write operations.

All the write operations in the cluster are added together. Setting TimeBetweenLocalCheckpoints
to 6 or less means that local checkpoints are executed continuously without pause, independent of the
cluster's workload.

• TimeBetweenGlobalCheckpoints

Version (or later) NDB 7.5.0

Type or units milliseconds

Default 2000

Range 20 - 32000

Restart Type Node Restart:
Requires a
rolling restart of
the cluster. (NDB
7.5.0)

When a transaction is committed, it is committed in main memory in all nodes on which the data is
mirrored. However, transaction log records are not flushed to disk as part of the commit. The reasoning
behind this behavior is that having the transaction safely committed on at least two autonomous host
machines should meet reasonable standards for durability.

It is also important to ensure that even the worst of cases—a complete crash of the cluster—is handled
properly. To guarantee that this happens, all transactions taking place within a given interval are put into
a global checkpoint, which can be thought of as a set of committed transactions that has been flushed to
disk. In other words, as part of the commit process, a transaction is placed in a global checkpoint group.
Later, this group's log records are flushed to disk, and then the entire group of transactions is safely
committed to disk on all computers in the cluster.

This parameter defines the interval between global checkpoints. The default is 2000 milliseconds.

• TimeBetweenGlobalCheckpointsTimeout

Version (or later) NDB 7.5.0

Type or units milliseconds

Default 120000

Range 10 - 4294967039
(0xFFFFFEFF)

Restart Type Node Restart:
Requires a

3445

NDB Cluster Configuration Files

rolling restart of
the cluster. (NDB
7.5.0)

This parameter defines the minimum timeout between global checkpoints. The default is 120000
milliseconds.

• TimeBetweenEpochs

Version (or later) NDB 7.5.0

Type or units milliseconds

Default 100

Range 0 - 32000

Restart Type Node Restart:
Requires a
rolling restart of
the cluster. (NDB
7.5.0)

This parameter defines the interval between synchronization epochs for NDB Cluster Replication. The
default value is 100 milliseconds.

TimeBetweenEpochs is part of the implementation of “micro-GCPs”, which can be used to improve the
performance of NDB Cluster Replication.

• TimeBetweenEpochsTimeout

Version (or later) NDB 7.5.0

Type or units milliseconds

Default 0

Range 0 - 256000

Restart Type Node Restart:
Requires a
rolling restart of
the cluster. (NDB
7.5.0)

This parameter defines a timeout for synchronization epochs for NDB Cluster Replication. If a node fails
to participate in a global checkpoint within the time determined by this parameter, the node is shut down.
The default value is 0; in other words, the timeout is disabled.

TimeBetweenEpochsTimeout is part of the implementation of “micro-GCPs”, which can be used to
improve the performance of NDB Cluster Replication.

The current value of this parameter and a warning are written to the cluster log whenever a GCP save
takes longer than 1 minute or a GCP commit takes longer than 10 seconds.

Setting this parameter to zero has the effect of disabling GCP stops caused by save timeouts, commit
timeouts, or both. The maximum possible value for this parameter is 256000 milliseconds.

3446

NDB Cluster Configuration Files

• MaxBufferedEpochs

Version (or later) NDB 7.5.0

Type or units epochs

Default 100

Range 0 - 100000

Restart Type Node Restart:
Requires a
rolling restart of
the cluster. (NDB
7.5.0)

The number of unprocessed epochs by which a subscribing node can lag behind. Exceeding this number
causes a lagging subscriber to be disconnected.

The default value of 100 is sufficient for most normal operations. If a subscribing node does lag enough
to cause disconnections, it is usually due to network or scheduling issues with regard to processes or
threads. (In rare circumstances, the problem may be due to a bug in the NDB client.) It may be desirable
to set the value lower than the default when epochs are longer.

Disconnection prevents client issues from affecting the data node service, running out of memory to
buffer data, and eventually shutting down. Instead, only the client is affected as a result of the disconnect
(by, for example gap events in the binary log), forcing the client to reconnect or restart the process.

• MaxBufferedEpochBytes

Version (or later) NDB 7.5.0

Type or units bytes

Default 26214400

Range 26214400
(0x01900000)
- 4294967039
(0xFFFFFEFF)

Restart Type Node Restart:
Requires a
rolling restart of
the cluster. (NDB
7.5.0)

The total number of bytes allocated for buffering epochs by this node.

• TimeBetweenInactiveTransactionAbortCheck

Version (or later) NDB 7.5.0

Type or units milliseconds

Default 1000

Range 1000 -
4294967039
(0xFFFFFEFF)

3447

NDB Cluster Configuration Files

Restart Type Node Restart:
Requires a
rolling restart of
the cluster. (NDB
7.5.0)

Timeout handling is performed by checking a timer on each transaction once for every interval specified
by this parameter. Thus, if this parameter is set to 1000 milliseconds, every transaction is checked for
timing out once per second.

The default value is 1000 milliseconds (1 second).

• TransactionInactiveTimeout

Version (or later) NDB 7.5.0

Type or units milliseconds

Default 4294967039
(0xFFFFFEFF)

Range 0 - 4294967039
(0xFFFFFEFF)

Restart Type Node Restart:
Requires a
rolling restart of
the cluster. (NDB
7.5.0)

This parameter states the maximum time that is permitted to lapse between operations in the same
transaction before the transaction is aborted.

The default for this parameter is 4G (also the maximum). For a real-time database that needs to ensure
that no transaction keeps locks for too long, this parameter should be set to a relatively small value.
Setting it to 0 means that the application never times out. The unit is milliseconds.

• TransactionDeadlockDetectionTimeout

Version (or later) NDB 7.5.0

Type or units milliseconds

Default 1200

Range 50 - 4294967039
(0xFFFFFEFF)

Restart Type Node Restart:
Requires a
rolling restart of
the cluster. (NDB
7.5.0)

When a node executes a query involving a transaction, the node waits for the other nodes in the cluster
to respond before continuing. This parameter sets the amount of time that the transaction can spend

3448

NDB Cluster Configuration Files

executing within a data node, that is, the time that the transaction coordinator waits for each data node
participating in the transaction to execute a request.

A failure to respond can occur for any of the following reasons:

• The node is “dead”

• The operation has entered a lock queue

• The node requested to perform the action could be heavily overloaded.

This timeout parameter states how long the transaction coordinator waits for query execution by another
node before aborting the transaction, and is important for both node failure handling and deadlock
detection.

The default timeout value is 1200 milliseconds (1.2 seconds).

The minimum for this parameter is 50 milliseconds.

• DiskSyncSize

Version (or later) NDB 7.5.0

Type or units bytes

Default 4M

Range 32K -
4294967039
(0xFFFFFEFF)

Restart Type Node Restart:
Requires a
rolling restart of
the cluster. (NDB
7.5.0)

This is the maximum number of bytes to store before flushing data to a local checkpoint file. This is done
to prevent write buffering, which can impede performance significantly. This parameter is not intended to
take the place of TimeBetweenLocalCheckpoints.

Note

When ODirect is enabled, it is not necessary to set DiskSyncSize; in fact, in
such cases its value is simply ignored.

The default value is 4M (4 megabytes).

• MaxDiskWriteSpeed

Version (or later) NDB 7.5.0

Type or units numeric

Default 20M

Range 1M - 1024G

Restart Type System Restart:
Requires a
complete

3449

NDB Cluster Configuration Files

shutdown and
restart of the
cluster. (NDB
7.5.0)

Set the maximum rate for writing to disk, in bytes per second, by local checkpoints and backup
operations when no restarts (by this data node or any other data node) are taking place in this NDB
Cluster.

For setting the maximum rate of disk writes allowed while this data node is restarting, use
MaxDiskWriteSpeedOwnRestart. For setting the maximum rate of disk writes allowed while other
data nodes are restarting, use MaxDiskWriteSpeedOtherNodeRestart. The minimum speed for
disk writes by all LCPs and backup operations can be adjusted by setting MinDiskWriteSpeed.

• MaxDiskWriteSpeedOtherNodeRestart

Version (or later) NDB 7.5.0

Type or units numeric

Default 50M

Range 1M - 1024G

Restart Type System Restart:
Requires a
complete
shutdown and
restart of the
cluster. (NDB
7.5.0)

Set the maximum rate for writing to disk, in bytes per second, by local checkpoints and backup
operations when one or more data nodes in this NDB Cluster are restarting, other than this node.

For setting the maximum rate of disk writes allowed while this data node is restarting, use
MaxDiskWriteSpeedOwnRestart. For setting the maximum rate of disk writes allowed when no data
nodes are restarting anywhere in the cluster, use MaxDiskWriteSpeed. The minimum speed for disk
writes by all LCPs and backup operations can be adjusted by setting MinDiskWriteSpeed.

• MaxDiskWriteSpeedOwnRestart

Version (or later) NDB 7.5.0

Type or units numeric

Default 200M

Range 1M - 1024G

Restart Type System Restart:
Requires a
complete
shutdown and
restart of the

3450

NDB Cluster Configuration Files

cluster. (NDB
7.5.0)

Set the maximum rate for writing to disk, in bytes per second, by local checkpoints and backup
operations while this data node is restarting.

For setting the maximum rate of disk writes allowed while other data nodes are restarting, use
MaxDiskWriteSpeedOtherNodeRestart. For setting the maximum rate of disk writes allowed when
no data nodes are restarting anywhere in the cluster, use MaxDiskWriteSpeed. The minimum speed
for disk writes by all LCPs and backup operations can be adjusted by setting MinDiskWriteSpeed.

• MinDiskWriteSpeed

Version (or later) NDB 7.5.0

Type or units numeric

Default 10M

Range 1M - 1024G

Restart Type System Restart:
Requires a
complete
shutdown and
restart of the
cluster. (NDB
7.5.0)

Set the minimum rate for writing to disk, in bytes per second, by local checkpoints and backup
operations.

The maximum rates of disk writes allowed for LCPs and backups under various conditions are
adjustable using the parameters MaxDiskWriteSpeed, MaxDiskWriteSpeedOwnRestart, and
MaxDiskWriteSpeedOtherNodeRestart. See the descriptions of these parameters for more
information.

• ApiFailureHandlingTimeout

Version (or later) NDB 7.6.34

Type or units seconds

Default 600

Range 0 - 4294967039
(0xFFFFFEFF)

Added NDB 7.6.34

Restart Type

Specifies the maximum time (in seconds) that the data node waits for API node failure handling to
complete before escalating it to data node failure handling.

Added in NDB 7.6.34.

• ArbitrationTimeout

Version (or later) NDB 7.5.0 3451

NDB Cluster Configuration Files

Type or units milliseconds

Default 7500

Range 10 - 4294967039
(0xFFFFFEFF)

Restart Type Node Restart:
Requires a
rolling restart of
the cluster. (NDB
7.5.0)

This parameter specifies how long data nodes wait for a response from the arbitrator to an arbitration
message. If this is exceeded, the network is assumed to have split.

The default value is 7500 milliseconds (7.5 seconds).

• Arbitration

Version (or later) NDB 7.5.0

Type or units enumeration

Default Default

Range Default,
Disabled,
WaitExternal

Restart Type Node Restart:
Requires a
rolling restart of
the cluster. (NDB
7.5.0)

The Arbitration parameter enables a choice of arbitration schemes, corresponding to one of 3
possible values for this parameter:

• Default. This enables arbitration to proceed normally, as determined by the ArbitrationRank
settings for the management and API nodes. This is the default value.

• Disabled. Setting Arbitration = Disabled in the [ndbd default] section of the
config.ini file to accomplishes the same task as setting ArbitrationRank to 0 on all
management and API nodes. When Arbitration is set in this way, any ArbitrationRank
settings are ignored.

• WaitExternal. The Arbitration parameter also makes it possible to configure arbitration in such
a way that the cluster waits until after the time determined by ArbitrationTimeout has passed for
an external cluster manager application to perform arbitration instead of handling arbitration internally.
This can be done by setting Arbitration = WaitExternal in the [ndbd default] section
of the config.ini file. For best results with the WaitExternal setting, it is recommended that

3452

NDB Cluster Configuration Files

ArbitrationTimeout be 2 times as long as the interval required by the external cluster manager to
perform arbitration.

Important

This parameter should be used only in the [ndbd default] section of the
cluster configuration file. The behavior of the cluster is unspecified when
Arbitration is set to different values for individual data nodes.

• RestartSubscriberConnectTimeout

Version (or later) NDB 7.5.0

Type or units ms

Default 12000

Range 0 - 4294967039
(0xFFFFFEFF)

Restart Type Node Restart:
Requires a
rolling restart of
the cluster. (NDB
7.5.0)

This parameter determines the time that a data node waits for subscribing API nodes to connect. Once
this timeout expires, any “missing” API nodes are disconnected from the cluster. To disable this timeout,
set RestartSubscriberConnectTimeout to 0.

While this parameter is specified in milliseconds, the timeout itself is resolved to the next-greatest whole
second.

The heartbeat interval between management nodes and data nodes is always 100 milliseconds, and is not
configurable.

Buffering and logging. Several [ndbd] configuration parameters enable the advanced user to have
more control over the resources used by node processes and to adjust various buffer sizes at need.

These buffers are used as front ends to the file system when writing log records to disk. If the node is
running in diskless mode, these parameters can be set to their minimum values without penalty due to the
fact that disk writes are “faked” by the NDB storage engine's file system abstraction layer.

• UndoIndexBuffer

Version (or later) NDB 7.5.0

Type or units unsigned

Default 2M

Range 1M -
4294967039
(0xFFFFFEFF)

Deprecated Yes (in NDB 8.0)

Restart Type Node Restart:
Requires a
rolling restart of

3453

NDB Cluster Configuration Files

the cluster. (NDB
7.5.0)

This parameter formerly set the size of the undo index buffer, but has no effect in current versions of
NDB Cluster.

• UndoDataBuffer

Version (or later) NDB 7.5.0

Type or units unsigned

Default 16M

Range 1M -
4294967039
(0xFFFFFEFF)

Deprecated Yes (in NDB 8.0)

Restart Type Node Restart:
Requires a
rolling restart of
the cluster. (NDB
7.5.0)

This parameter formerly set the size of the undo data buffer, but has no effect in current versions of NDB
Cluster.

• RedoBuffer

Version (or later) NDB 7.5.0

Type or units bytes

Default 32M

Range 1M -
4294967039
(0xFFFFFEFF)

Restart Type Node Restart:
Requires a
rolling restart of
the cluster. (NDB
7.5.0)

All update activities also need to be logged. The REDO log makes it possible to replay these updates
whenever the system is restarted. The NDB recovery algorithm uses a “fuzzy” checkpoint of the

3454

NDB Cluster Configuration Files

data together with the UNDO log, and then applies the REDO log to play back all changes up to the
restoration point.

RedoBuffer sets the size of the buffer in which the REDO log is written. The default value is 32MB; the
minimum value is 1MB.

If this buffer is too small, the NDB storage engine issues error code 1221 (REDO log buffers
overloaded). For this reason, you should exercise care if you attempt to decrease the value of
RedoBuffer as part of an online change in the cluster's configuration.

ndbmtd allocates a separate buffer for each LDM thread (see ThreadConfig). For example, with 4
LDM threads, an ndbmtd data node actually has 4 buffers and allocates RedoBuffer bytes to each
one, for a total of 4 * RedoBuffer bytes.

• EventLogBufferSize

Version (or later) NDB 7.5.0

Type or units bytes

Default 8192

Range 0 - 64K

Restart Type System Restart:
Requires a
complete
shutdown and
restart of the
cluster. (NDB
7.5.0)

Controls the size of the circular buffer used for NDB log events within data nodes.

Controlling log messages. In managing the cluster, it is very important to be able to control the
number of log messages sent for various event types to stdout. For each event category, there are 16
possible event levels (numbered 0 through 15). Setting event reporting for a given event category to level
15 means all event reports in that category are sent to stdout; setting it to 0 means that there are no
event reports made in that category.

By default, only the startup message is sent to stdout, with the remaining event reporting level defaults
being set to 0. The reason for this is that these messages are also sent to the management server's cluster
log.

An analogous set of levels can be set for the management client to determine which event levels to record
in the cluster log.

• LogLevelStartup

Version (or later) NDB 7.5.0

Type or units integer

Default 1

Range 0 - 15

Restart Type Node Restart:
Requires a
rolling restart of

3455

NDB Cluster Configuration Files

the cluster. (NDB
7.5.0)

The reporting level for events generated during startup of the process.

The default level is 1.

• LogLevelShutdown

Version (or later) NDB 7.5.0

Type or units integer

Default 0

Range 0 - 15

Restart Type Node Restart:
Requires a
rolling restart of
the cluster. (NDB
7.5.0)

The reporting level for events generated as part of graceful shutdown of a node.

The default level is 0.

• LogLevelStatistic

Version (or later) NDB 7.5.0

Type or units integer

Default 0

Range 0 - 15

Restart Type Node Restart:
Requires a
rolling restart of
the cluster. (NDB
7.5.0)

The reporting level for statistical events such as number of primary key reads, number of updates,
number of inserts, information relating to buffer usage, and so on.

The default level is 0.

• LogLevelCheckpoint

Version (or later) NDB 7.5.0

Type or units log level

Default 0

Range 0 - 15

Restart Type Node Restart:
Requires a
rolling restart of

3456

NDB Cluster Configuration Files

the cluster. (NDB
7.5.0)

The reporting level for events generated by local and global checkpoints.

The default level is 0.

• LogLevelNodeRestart

Version (or later) NDB 7.5.0

Type or units integer

Default 0

Range 0 - 15

Restart Type Node Restart:
Requires a
rolling restart of
the cluster. (NDB
7.5.0)

The reporting level for events generated during node restart.

The default level is 0.

• LogLevelConnection

Version (or later) NDB 7.5.0

Type or units integer

Default 0

Range 0 - 15

Restart Type Node Restart:
Requires a
rolling restart of
the cluster. (NDB
7.5.0)

The reporting level for events generated by connections between cluster nodes.

The default level is 0.

• LogLevelError

Version (or later) NDB 7.5.0

Type or units integer

Default 0

Range 0 - 15

Restart Type Node Restart:
Requires a
rolling restart of

3457

NDB Cluster Configuration Files

the cluster. (NDB
7.5.0)

The reporting level for events generated by errors and warnings by the cluster as a whole. These errors
do not cause any node failure but are still considered worth reporting.

The default level is 0.

• LogLevelCongestion

Version (or later) NDB 7.5.0

Type or units level

Default 0

Range 0 - 15

Restart Type Node Restart:
Requires a
rolling restart of
the cluster. (NDB
7.5.0)

The reporting level for events generated by congestion. These errors do not cause node failure but are
still considered worth reporting.

The default level is 0.

• LogLevelInfo

Version (or later) NDB 7.5.0

Type or units integer

Default 0

Range 0 - 15

Restart Type Node Restart:
Requires a
rolling restart of
the cluster. (NDB
7.5.0)

The reporting level for events generated for information about the general state of the cluster.

The default level is 0.

• MemReportFrequency

Version (or later) NDB 7.5.0

Type or units unsigned

Default 0

Range 0 - 4294967039
(0xFFFFFEFF)

Restart Type Node Restart:
Requires a3458

NDB Cluster Configuration Files

rolling restart of
the cluster. (NDB
7.5.0)

This parameter controls how often data node memory usage reports are recorded in the cluster log; it is
an integer value representing the number of seconds between reports.

Each data node's data memory and index memory usage is logged as both a percentage and a number
of 32 KB pages of the DataMemory and (NDB 7.5 and earlier) IndexMemory, respectively, set in the
config.ini file. For example, if DataMemory is equal to 100 MB, and a given data node is using 50
MB for data memory storage, the corresponding line in the cluster log might look like this:

2006-12-24 01:18:16 [MgmSrvr] INFO -- Node 2: Data usage is 50%(1280 32K pages of total 2560)

MemReportFrequency is not a required parameter. If used, it can be set for all cluster data nodes in
the [ndbd default] section of config.ini, and can also be set or overridden for individual data
nodes in the corresponding [ndbd] sections of the configuration file. The minimum value—which is also
the default value—is 0, in which case memory reports are logged only when memory usage reaches
certain percentages (80%, 90%, and 100%), as mentioned in the discussion of statistics events in
Section 21.6.3.2, “NDB Cluster Log Events”.

• StartupStatusReportFrequency

Version (or later) NDB 7.5.0

Type or units seconds

Default 0

Range 0 - 4294967039
(0xFFFFFEFF)

Restart Type Node Restart:
Requires a
rolling restart of
the cluster. (NDB
7.5.0)

When a data node is started with the --initial, it initializes the redo log file during Start Phase
4 (see Section 21.6.4, “Summary of NDB Cluster Start Phases”). When very large values are set
for NoOfFragmentLogFiles, FragmentLogFileSize, or both, this initialization can take a long
time.You can force reports on the progress of this process to be logged periodically, by means of the
StartupStatusReportFrequency configuration parameter. In this case, progress is reported in the
cluster log, in terms of both the number of files and the amount of space that have been initialized, as
shown here:

2009-06-20 16:39:23 [MgmSrvr] INFO -- Node 1: Local redo log file initialization status:
#Total files: 80, Completed: 60
#Total MBytes: 20480, Completed: 15557
2009-06-20 16:39:23 [MgmSrvr] INFO -- Node 2: Local redo log file initialization status:
#Total files: 80, Completed: 60
#Total MBytes: 20480, Completed: 15570

These reports are logged each StartupStatusReportFrequency seconds during Start Phase 4. If
StartupStatusReportFrequency is 0 (the default), then reports are written to the cluster log only
when at the beginning and at the completion of the redo log file initialization process.

3459

NDB Cluster Configuration Files

Data Node Debugging Parameters

The following parameters are intended for use during testing or debugging of data nodes, and not for use
in production.

• DictTrace

Version (or later) NDB 7.5.0

Type or units bytes

Default undefined

Range 0 - 100

Restart Type Node Restart:
Requires a
rolling restart of
the cluster. (NDB
7.5.0)

It is possible to cause logging of traces for events generated by creating and dropping tables using
DictTrace. This parameter is useful only in debugging NDB kernel code. DictTrace takes an integer
value. 0 disables logging; 1 enables it; setting this parameter to 2 enables logging of additional DBDICT
debugging output (Bug #20368450).

• WatchDogImmediateKill

Version (or later) NDB 7.6.7

Type or units boolean

Default false

Range true, false

Added NDB 7.6.7

Restart Type Node Restart:
Requires a
rolling restart of
the cluster. (NDB
7.5.0)

In NDB 7.6.7 and later, you can cause threads to be killed immediately whenever watchdog issues
occur by enabling the WatchDogImmediateKill data node configuration parameter. This parameter
should be used only when debugging or troubleshooting, to obtain trace files reporting exactly what was
occurring the instant that execution ceased.

Backup parameters. The [ndbd] parameters discussed in this section define memory buffers set
aside for execution of online backups.

• BackupDataBufferSize

Version (or later) NDB 7.5.0

Type or units bytes

Default 16M

3460

https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbdict.html

NDB Cluster Configuration Files

Range 2M -
4294967039
(0xFFFFFEFF)

Version (or later) NDB 7.5.1

Type or units bytes

Default 16M

Range 512K -
4294967039
(0xFFFFFEFF)

Deprecated NDB 7.6.4

Restart Type Node Restart:
Requires a
rolling restart of
the cluster. (NDB
7.5.0)

In creating a backup, there are two buffers used for sending data to the disk. The backup data buffer
is used to fill in data recorded by scanning a node's tables. Once this buffer has been filled to the level
specified as BackupWriteSize, the pages are sent to disk. While flushing data to disk, the backup
process can continue filling this buffer until it runs out of space. When this happens, the backup process
pauses the scan and waits until some disk writes have completed freeing up memory so that scanning
may continue.

• BackupDiskWriteSpeedPct

Version (or later) NDB 7.5.0

Type or units percent

Default 50

Range 0 - 90

Restart Type Node Restart:
Requires a
rolling restart of
the cluster. (NDB
7.5.0)

During normal operation, data nodes attempt to maximize the disk write speed used for local
checkpoints and backups while remaining within the bounds set by MinDiskWriteSpeed and
MaxDiskWriteSpeed. Disk write throttling gives each LDM thread an equal share of the total budget.
This allows parallel LCPs to take place without exceeding the disk I/O budget. Because a backup is
executed by only one LDM thread, this effectively caused a budget cut, resulting in longer backup
completion times, and—if the rate of change is sufficiently high—in failure to complete the backup when
the backup log buffer fill rate is higher than the achievable write rate.

This problem can be addressed by using the BackupDiskWriteSpeedPct configuration parameter,
which takes a value in the range 0-90 (inclusive) which is interpreted as the percentage of the node's
maximum write rate budget that is reserved prior to sharing out the remainder of the budget among
LDM threads for LCPs. The LDM thread running the backup receives the whole write rate budget for the

3461

NDB Cluster Configuration Files

backup, plus its (reduced) share of the write rate budget for local checkpoints. (This makes the disk write
rate budget behave similarly to how it was handled in NDB Cluster 7.3 and earlier.)

The default value for this parameter is 50 (interpreted as 50%).

• BackupLogBufferSize

Version (or later) NDB 7.5.0

Type or units bytes

Default 16M

Range 2M -
4294967039
(0xFFFFFEFF)

Restart Type Node Restart:
Requires a
rolling restart of
the cluster. (NDB
7.5.0)

The backup log buffer fulfills a role similar to that played by the backup data buffer, except that it is
used for generating a log of all table writes made during execution of the backup. The same principles
apply for writing these pages as with the backup data buffer, except that when there is no more space
in the backup log buffer, the backup fails. For that reason, the size of the backup log buffer must
be large enough to handle the load caused by write activities while the backup is being made. See
Section 21.6.8.3, “Configuration for NDB Cluster Backups”.

The default value for this parameter should be sufficient for most applications. In fact, it is more likely
for a backup failure to be caused by insufficient disk write speed than it is for the backup log buffer to
become full. If the disk subsystem is not configured for the write load caused by applications, the cluster
is unlikely to be able to perform the desired operations.

It is preferable to configure cluster nodes in such a manner that the processor becomes the bottleneck
rather than the disks or the network connections.

The default value for this parameter is 16MB.

• BackupMemory

Version (or later) NDB 7.5.0

Type or units bytes

Default 32M

Range 0 - 4294967039
(0xFFFFFEFF)

Deprecated Yes (in NDB 7.4)

Restart Type Node Restart:
Requires a
rolling restart of

3462

NDB Cluster Configuration Files

the cluster. (NDB
7.5.0)

This parameter is deprecated, and subject to removal in a future version of NDB Cluster. Any setting
made for it is ignored.

• BackupReportFrequency

Version (or later) NDB 7.5.0

Type or units seconds

Default 0

Range 0 - 4294967039
(0xFFFFFEFF)

Restart Type Node Restart:
Requires a
rolling restart of
the cluster. (NDB
7.5.0)

This parameter controls how often backup status reports are issued in the management client during a
backup, as well as how often such reports are written to the cluster log (provided cluster event logging
is configured to permit it—see Logging and checkpointing). BackupReportFrequency represents the
time in seconds between backup status reports.

The default value is 0.

• BackupWriteSize

Version (or later) NDB 7.5.0

Type or units bytes

Default 256K

Range 32K -
4294967039
(0xFFFFFEFF)

Deprecated NDB 7.6.4

Restart Type Node Restart:
Requires a
rolling restart of
the cluster. (NDB
7.5.0)

This parameter specifies the default size of messages written to disk by the backup log and backup data
buffers.

The default value for this parameter is 256KB.

• BackupMaxWriteSize

Version (or later) NDB 7.5.0

Type or units bytes
3463

NDB Cluster Configuration Files

Default 1M

Range 256K -
4294967039
(0xFFFFFEFF)

Deprecated NDB 7.6.4

Restart Type Node Restart:
Requires a
rolling restart of
the cluster. (NDB
7.5.0)

This parameter specifies the maximum size of messages written to disk by the backup log and backup
data buffers.

The default value for this parameter is 1MB.

• CompressedBackup

Version (or later) NDB 7.5.0

Type or units boolean

Default false

Range true, false

Restart Type Node Restart:
Requires a
rolling restart of
the cluster. (NDB
7.5.0)

Enabling this parameter causes backup files to be compressed. The compression used is equivalent
to gzip --fast, and can save 50% or more of the space required on the data node to store
uncompressed backup files. Compressed backups can be enabled for individual data nodes, or for all
data nodes (by setting this parameter in the [ndbd default] section of the config.ini file).

Important

You cannot restore a compressed backup to a cluster running a MySQL version
that does not support this feature.

The default value is 0 (disabled).

Note

The location of the backup files is determined by the BackupDataDir data node
configuration parameter.

Additional requirements. When specifying these parameters, the following relationships must hold
true. Otherwise, the data node cannot start.

• BackupDataBufferSize >= BackupWriteSize + 188KB

• BackupLogBufferSize >= BackupWriteSize + 16KB

• BackupMaxWriteSize >= BackupWriteSize

3464

NDB Cluster Configuration Files

NDB Cluster Realtime Performance Parameters

The [ndbd] parameters discussed in this section are used in scheduling and locking of threads to specific
CPUs on multiprocessor data node hosts.

Note

To make use of these parameters, the data node process must be run as system
root.

• BuildIndexThreads

Version (or later) NDB 7.5.0

Type or units numeric

Default 0

Range 0 - 128

Version (or later) NDB 7.6.4

Type or units numeric

Default 128

Range 0 - 128

Restart Type Node Restart:
Requires a
rolling restart of
the cluster. (NDB
7.5.0)

This parameter determines the number of threads to create when rebuilding ordered indexes
during a system or node start, as well as when running ndb_restore --rebuild-indexes. It is
supported only when there is more than one fragment for the table per data node (for example, when
COMMENT="NDB_TABLE=PARTITION_BALANCE=FOR_RA_BY_LDM_X_2" is used with CREATE
TABLE).

Setting this parameter to 0 (the default) disables multithreaded building of ordered indexes.

This parameter is supported when using ndbd or ndbmtd.

You can enable multithreaded builds during data node initial restarts by setting the
TwoPassInitialNodeRestartCopy data node configuration parameter to TRUE.

• LockExecuteThreadToCPU

Version (or later) NDB 7.5.0

Type or units set of CPU IDs

Default 0

Range ...

Restart Type Node Restart:
Requires a
rolling restart of
the cluster. (NDB
7.5.0)

3465

NDB Cluster Configuration Files

When used with ndbd, this parameter (now a string) specifies the ID of the CPU assigned to handle
the NDBCLUSTER execution thread. When used with ndbmtd, the value of this parameter is a comma-
separated list of CPU IDs assigned to handle execution threads. Each CPU ID in the list should be an
integer in the range 0 to 65535 (inclusive).

The number of IDs specified should match the number of execution threads determined by
MaxNoOfExecutionThreads. However, there is no guarantee that threads are assigned to CPUs in
any given order when using this parameter. You can obtain more finely-grained control of this type using
ThreadConfig.

LockExecuteThreadToCPU has no default value.

• LockMaintThreadsToCPU

Version (or later) NDB 7.5.0

Type or units CPU ID

Default 0

Range 0 - 64K

Restart Type Node Restart:
Requires a
rolling restart of
the cluster. (NDB
7.5.0)

This parameter specifies the ID of the CPU assigned to handle NDBCLUSTER maintenance threads.

The value of this parameter is an integer in the range 0 to 65535 (inclusive). There is no default value.

• Numa

Version (or later) NDB 7.5.0

Type or units numeric

Default 1

Range ...

Restart Type Node Restart:
Requires a
rolling restart of
the cluster. (NDB
7.5.0)

This parameter determines whether Non-Uniform Memory Access (NUMA) is controlled by the operating
system or by the data node process, whether the data node uses ndbd or ndbmtd. By default, NDB
attempts to use an interleaved NUMA memory allocation policy on any data node where the host
operating system provides NUMA support.

Setting Numa = 0 means that the datanode process does not itself attempt to set a policy for memory
allocation, and permits this behavior to be determined by the operating system, which may be further
guided by the separate numactl tool. That is, Numa = 0 yields the system default behavior, which can
be customised by numactl. For many Linux systems, the system default behavior is to allocate socket-
local memory to any given process at allocation time. This can be problematic when using ndbmtd; this

3466

NDB Cluster Configuration Files

is because nbdmtd allocates all memory at startup, leading to an imbalance, giving different access
speeds for different sockets, especially when locking pages in main memory.

Setting Numa = 1 means that the data node process uses libnuma to request interleaved memory
allocation. (This can also be accomplished manually, on the operating system level, using numactl.)
Using interleaved allocation in effect tells the data node process to ignore non-uniform memory access
but does not attempt to take any advantage of fast local memory; instead, the data node process tries to
avoid imbalances due to slow remote memory. If interleaved allocation is not desired, set Numa to 0 so
that the desired behavior can be determined on the operating system level.

The Numa configuration parameter is supported only on Linux systems where libnuma.so is available.

• RealtimeScheduler

Version (or later) NDB 7.5.0

Type or units boolean

Default false

Range true, false

Restart Type Node Restart:
Requires a
rolling restart of
the cluster. (NDB
7.5.0)

Setting this parameter to 1 enables real-time scheduling of data node threads.

The default is 0 (scheduling disabled).

• SchedulerExecutionTimer

Version (or later) NDB 7.5.0

Type or units µs

Default 50

Range 0 - 11000

Restart Type Node Restart:
Requires a
rolling restart of
the cluster. (NDB
7.5.0)

This parameter specifies the time in microseconds for threads to be executed in the scheduler before
being sent. Setting it to 0 minimizes the response time; to achieve higher throughput, you can increase
the value at the expense of longer response times.

The default is 50 μsec, which our testing shows to increase throughput slightly in high-load cases without
materially delaying requests.

• SchedulerResponsiveness

Version (or later) NDB 7.5.0

Type or units integer 3467

NDB Cluster Configuration Files

Default 5

Range 0 - 10

Restart Type Node Restart:
Requires a
rolling restart of
the cluster. (NDB
7.5.0)

Set the balance in the NDB scheduler between speed and throughput. This parameter takes an integer
whose value is in the range 0-10 inclusive, with 5 as the default. Higher values provide better response
times relative to throughput. Lower values provide increased throughput at the expense of longer
response times.

• SchedulerSpinTimer

Version (or later) NDB 7.5.0

Type or units µs

Default 0

Range 0 - 500

Restart Type Node Restart:
Requires a
rolling restart of
the cluster. (NDB
7.5.0)

This parameter specifies the time in microseconds for threads to be executed in the scheduler before
sleeping.

The default value is 0.

• TwoPassInitialNodeRestartCopy

Version (or later) NDB 7.5.0

Type or units boolean

Default false

Range true, false

Version (or later) NDB 7.6.4

Type or units boolean

Default true

Range true, false

Restart Type Node Restart:
Requires a
rolling restart of
the cluster. (NDB
7.5.0)

Multithreaded building of ordered indexes can be enabled for initial restarts of data nodes by setting this
configuration parameter to true, which enables two-pass copying of data during initial node restarts. In
NDB 7.6, this is the default value (Bug #26704312, Bug #27109117).

3468

NDB Cluster Configuration Files

You must also set BuildIndexThreads to a nonzero value.

Multi-Threading Configuration Parameters (ndbmtd). ndbmtd runs by default as a single-threaded
process and must be configured to use multiple threads, using either of two methods, both of which require
setting configuration parameters in the config.ini file. The first method is simply to set an appropriate
value for the MaxNoOfExecutionThreads configuration parameter. A second method makes it possible
to set up more complex rules for ndbmtd multithreading using ThreadConfig. The next few paragraphs
provide information about these parameters and their use with multithreaded data nodes.

• MaxNoOfExecutionThreads

Version (or later) NDB 7.5.0

Type or units integer

Default 2

Range 2 - 72

Restart Type Initial System
Restart:
Requires a
complete
shutdown of the
cluster, wiping
and restoring
the cluster file
system from a
backup, and
then restarting
the cluster. (NDB
7.5.0)

System Restart:
Requires a
complete
shutdown and
restart of the
cluster. (NDB
7.6.1)

This parameter directly controls the number of execution threads used by ndbmtd, up to a maximum of
72. Although this parameter is set in [ndbd] or [ndbd default] sections of the config.ini file, it is
exclusive to ndbmtd and does not apply to ndbd.

Setting MaxNoOfExecutionThreads sets the number of threads for each type as determined by a
matrix in the file storage/ndb/src/kernel/vm/mt_thr_config.cpp. This table shows these
numbers of threads for possible values of MaxNoOfExecutionThreads.

Table 21.11 MaxNoOfExecutionThreads values and the corresponding number of threads by
thread type (LQH, TC, Send, Receive).

MaxNoOfExecutionThreads
Value

LDM Threads TC Threads Send Threads Receive Threads

0 .. 3 1 0 0 1

4 .. 6 2 0 0 1

3469

NDB Cluster Configuration Files

MaxNoOfExecutionThreads
Value

LDM Threads TC Threads Send Threads Receive Threads

7 .. 8 4 0 0 1

9 4 2 0 1

10 4 2 1 1

11 4 3 1 1

12 6 2 1 1

13 6 3 1 1

14 6 3 1 2

15 6 3 2 2

16 8 3 1 2

17 8 4 1 2

18 8 4 2 2

19 8 5 2 2

20 10 4 2 2

21 10 5 2 2

22 10 5 2 3

23 10 6 2 3

24 12 5 2 3

25 12 6 2 3

26 12 6 3 3

27 12 7 3 3

28 12 7 3 4

29 12 8 3 4

30 12 8 4 4

31 12 9 4 4

32 16 8 3 3

33 16 8 3 4

34 16 8 4 4

35 16 9 4 4

36 16 10 4 4

37 16 10 4 5

38 16 11 4 5

39 16 11 5 5

40 20 10 4 4

41 20 10 4 5

42 20 11 4 5

43 20 11 5 5

44 20 12 5 5

3470

NDB Cluster Configuration Files

MaxNoOfExecutionThreads
Value

LDM Threads TC Threads Send Threads Receive Threads

45 20 12 5 6

46 20 13 5 6

47 20 13 6 6

48 24 12 5 5

49 24 12 5 6

50 24 13 5 6

51 24 13 6 6

52 24 14 6 6

53 24 14 6 7

54 24 15 6 7

55 24 15 7 7

56 24 16 7 7

57 24 16 7 8

58 24 17 7 8

59 24 17 8 8

60 24 18 8 8

61 24 18 8 9

62 24 19 8 9

63 24 19 9 9

64 32 16 7 7

65 32 16 7 8

66 32 17 7 8

67 32 17 8 8

68 32 18 8 8

69 32 18 8 9

70 32 19 8 9

71 32 20 8 9

72 32 20 8 10

There is always one SUMA (replication) thread.

NoOfFragmentLogParts should be set equal to the number of LDM threads used by ndbmtd, as
determined by the setting for this parameter. This ratio should not be any greater than 4:1; beginning
with NDB 7.5.7, a configuration in which this is the case is specifically disallowed. (Bug #25333414)

The number of LDM threads also determines the number of partitions used by an NDB table that is not
explicitly partitioned; this is the number of LDM threads times the number of data nodes in the cluster.
(If ndbd is used on the data nodes rather than ndbmtd, then there is always a single LDM thread; in
this case, the number of partitions created automatically is simply equal to the number of data nodes.

3471

NDB Cluster Configuration Files

See Section 21.2.2, “NDB Cluster Nodes, Node Groups, Fragment Replicas, and Partitions”, for more
information.

Adding large tablespaces for Disk Data tables when using more than the default number of LDM threads
may cause issues with resource and CPU usage if the disk page buffer is insufficiently large; see the
description of the DiskPageBufferMemory configuration parameter, for more information.

The thread types are described later in this section (see ThreadConfig).

Setting this parameter outside the permitted range of values causes the management server to abort
on startup with the error Error line number: Illegal value value for parameter
MaxNoOfExecutionThreads.

For MaxNoOfExecutionThreads, a value of 0 or 1 is rounded up internally by NDB to 2, so that 2 is
considered this parameter's default and minimum value.

MaxNoOfExecutionThreads is generally intended to be set equal to the number of CPU threads
available, and to allocate a number of threads of each type suitable to typical workloads. It does not
assign particular threads to specified CPUs. For cases where it is desirable to vary from the settings
provided, or to bind threads to CPUs, you should use ThreadConfig instead, which allows you to
allocate each thread directly to a desired type, CPU, or both.

The multithreaded data node process always spawns, at a minimum, the threads listed here:

• 1 local query handler (LDM) thread

• 1 receive thread

• 1 subscription manager (SUMA or replication) thread

For a MaxNoOfExecutionThreads value of 8 or less, no TC threads are created, and TC handling is
instead performed by the main thread.

Prior to NDB 7.6, changing the number of LDM threads always requires a system restart, whether it is
changed using this parameter or ThreadConfig. In NDB 7.6 and later it is possible to effect the change
using a node initial restart (NI) provided the following conditions are met:

• If, following the change, the number of LDM threads remains the same as before, nothing more than a
simple node restart (rolling restart, or N) is required to implement the change.

• Otherwise (that is, if the number of LDM threads changes), it is still possible to effect the change using
a node initial restart (NI) provided the following two conditions are met:

a. Each LDM thread handles a maximum of 8 fragments, and

b. The total number of table fragments is an integer multiple of the number of LDM threads.

Prior to NDB 7.6, if the cluster's IndexMemory usage is greater than 50%, changing this requires an
initial restart of the cluster. (A maximum of 30-35% IndexMemory usage is recommended in such
cases.) Otherwise, resource usage and LDM thread allocation cannot be balanced between nodes,
which can result in underutilized and overutilized LDM threads, and ultimately data node failures. In NDB
7.6 and later, an initial restart is not required to effect a change in this parameter.

• MaxSendDelay

Version (or later) NDB 7.5.0

3472

NDB Cluster Configuration Files

Type or units microseconds

Default 0

Range 0 - 11000

Restart Type Node Restart:
Requires a
rolling restart of
the cluster. (NDB
7.5.0)

This parameter can be used to cause data nodes to wait momentarily before sending data to API nodes;
in some circumstances, described in the following paragraphs, this can result in more efficient sending of
larger volumes of data and higher overall throughput.

MaxSendDelay can be useful when there are a great many API nodes at saturation point or close to it,
which can result in waves of increasing and decreasing performance. This occurs when the data nodes
are able to send results back to the API nodes relatively quickly, with many small packets to process,
which can take longer to process per byte compared to large packets, thus slowing down the API nodes;
later, the data nodes start sending larger packets again.

To handle this type of scenario, you can set MaxSendDelay to a nonzero value, which helps to ensure
that responses are not sent back to the API nodes so quickly. When this is done, responses are sent
immediately when there is no other competing traffic, but when there is, setting MaxSendDelay causes
the data nodes to wait long enough to ensure that they send larger packets. In effect, this introduces an
artificial bottleneck into the send process, which can actually improve throughput significantly.

• NoOfFragmentLogParts

Version (or later) NDB 7.5.0

Type or units numeric

Default 4

Range 4, 6, 8, 10, 12,
16, 20, 24, 32

Restart Type Initial Node
Restart:
Requires a
rolling restart of
the cluster; each
data node must
be restarted with
--initial.
(NDB 7.5.0)

Set the number of log file groups for redo logs belonging to this ndbmtd. The value of this parameter
should be set equal to the number of LDM threads used by ndbmtd as determined by the setting for
MaxNoOfExecutionThreads. Beginning with NDB 7.5.7, a configuration using more than 4 redo log
parts per LDM is disallowed. (Bug #25333414)

See the description of MaxNoOfExecutionThreads for more information.

• ThreadConfig

Version (or later) NDB 7.5.0

3473

NDB Cluster Configuration Files

Type or units string

Default ''

Range ...

Restart Type Initial System
Restart:
Requires a
complete
shutdown of the
cluster, wiping
and restoring
the cluster file
system from a
backup, and
then restarting
the cluster. (NDB
7.5.0)

System Restart:
Requires a
complete
shutdown and
restart of the
cluster. (NDB
7.6.1)

This parameter is used with ndbmtd to assign threads of different types to different CPUs. Its value is a
string whose format has the following syntax:

ThreadConfig := entry[,entry[,...]]

entry := type={param[,param[,...]]}

type := ldm | main | recv | send | rep | io | tc | watchdog | idxbld

param := count=number
 | cpubind=cpu_list
 | cpuset=cpu_list
 | spintime=number
 | realtime={0|1}
 | nosend={0|1}
 | thread_prio={0..10}
 | cpubind_exclusive=cpu_list
 | cpuset_exclusive=cpu_list

The curly braces ({...}) surrounding the list of parameters are required, even if there is only one
parameter in the list.

A param (parameter) specifies any or all of the following information:

• The number of threads of the given type (count).

• The set of CPUs to which the threads of the given type are to be nonexclusively bound. This is
determined by either one of cpubind or cpuset). cpubind causes each thread to be bound

3474

NDB Cluster Configuration Files

(nonexclusively) to a CPU in the set; cpuset means that each thread is bound (nonexclusively) to the
set of CPUs specified.

On Solaris, you can instead specify a set of CPUs to which the threads of the given type are to be
bound exclusively. cpubind_exclusive causes each thread to be bound exclusively to a CPU in the
set; cpuset_exclsuive means that each thread is bound exclusively to the set of CPUs specified.

Only one of cpubind, cpuset, cpubind_exclusive, or cpuset_exclusive can be provided in a
single configuration.

• spintime determines the wait time in microseconds the thread spins before going to sleep.

The default value for spintime is the value of the SchedulerSpinTimer data node configuration
parameter.

spintime does not apply to I/O threads, watchdog, or offline index build threads, and so cannot be
set for these thread types.

• realtime can be set to 0 or 1. If it is set to 1, the threads run with real-time priority. This also means
that thread_prio cannot be set.

The realtime parameter is set by default to the value of the RealtimeScheduler data node
configuration parameter.

realtime cannot be set for offline index build threads.

• By setting nosend to 1, you can prevent a main, ldm, rep, or tc thread from assisting the send
threads. This parameter is 0 by default, and cannot be used with other types of threads.

• thread_prio is a thread priority level that can be set from 0 to 10, with 10 representing the greatest
priority. The default is 5. The precise effects of this parameter are platform-specific, and are described
later in this section.

The thread priority level cannot be set for offline index build threads.

thread_prio settings and effects by platform. The implementation of thread_prio differs
between Linux/FreeBSD, Solaris, and Windows. In the following list, we discuss its effects on each of
these platforms in turn:

• Linux and FreeBSD: We map thread_prio to a value to be supplied to the nice system call. Since
a lower niceness value for a process indicates a higher process priority, increasing thread_prio has
the effect of lowering the nice value.

Table 21.12 Mapping of thread_prio to nice values on Linux and FreeBSD

thread_prio value nice value

0 19

1 16

2 12

3 8

4 4

5 0

6 -4

3475

NDB Cluster Configuration Files

thread_prio value nice value

7 -8

8 -12

9 -16

10 -20

Some operating systems may provide for a maximum process niceness level of 20, but this is not
supported by all targeted versions; for this reason, we choose 19 as the maximum nice value that
can be set.

• Solaris: Setting thread_prio on Solaris sets the Solaris FX priority, with mappings as shown in the
following table:

Table 21.13 Mapping of thread_prio to FX priority on Solaris

thread_prio value Solaris FX priority

0 15

1 20

2 25

3 30

4 35

5 40

6 45

7 50

8 55

9 59

10 60

A thread_prio setting of 9 is mapped on Solaris to the special FX priority value 59, which means
that the operating system also attempts to force the thread to run alone on its own CPU core.

• Windows: We map thread_prio to a Windows thread priority value passed to the Windows API
SetThreadPriority() function. This mapping is shown in the following table:

Table 21.14 Mapping of thread_prio to Windows thread priority

thread_prio value Windows thread priority

0 - 1 THREAD_PRIORITY_LOWEST

2 - 3 THREAD_PRIORITY_BELOW_NORMAL

4 - 5 THREAD_PRIORITY_NORMAL

6 - 7 THREAD_PRIORITY_ABOVE_NORMAL

3476

NDB Cluster Configuration Files

thread_prio value Windows thread priority

8 - 10 THREAD_PRIORITY_HIGHEST

The type attribute represents an NDB thread type. The thread types supported, and the range of
permitted count values for each, are provided in the following list:

• ldm: Local query handler (DBLQH kernel block) that handles data. The more LDM threads that are
used, the more highly partitioned the data becomes. Each LDM thread maintains its own sets of data
and index partitions, as well as its own redo log. The value set for ldm must be one of the values 1, 2,
4, 6, 8, 12, 16, 24, or 32.

Changing the number of LDM threads normally requires an initial system restart to be effective and
safe for cluster operations. This requirement is relaxed in NDB 7.6, as explained later in this section.
(This is also true when this is done using MaxNoOfExecutionThreads.) NDB 7.5 and earlier: If
IndexMemory usage is in excess of 50%, an initial restart of the cluster is required; a maximum of
30-35% IndexMemory usage is recommended in such cases. Otherwise, allocation of memory and
LDM threads cannot be balanced between nodes, which can ultimately lead to data node failures.

Adding large tablespaces (hundreds of gigabytes or more) for Disk Data tables when using
more than the default number of LDMs may cause issues with resource and CPU usage if
DiskPageBufferMemory is not sufficiently large.

• tc: Transaction coordinator thread (DBTC kernel block) containing the state of an ongoing transaction.
The maximum number of TC threads is 32.

Optimally, every new transaction can be assigned to a new TC thread. In most cases 1 TC thread per
2 LDM threads is sufficient to guarantee that this can happen. In cases where the number of writes
is relatively small when compared to the number of reads, it is possible that only 1 TC thread per 4
LQH threads is required to maintain transaction states. Conversely, in applications that perform a
great many updates, it may be necessary for the ratio of TC threads to LDM threads to approach 1 (for
example, 3 TC threads to 4 LDM threads).

Setting tc to 0 causes TC handling to be done by the main thread. In most cases, this is effectively
the same as setting it to 1.

Range: 0 - 32

• main: Data dictionary and transaction coordinator (DBDIH and DBTC kernel blocks), providing schema
management. This is always handled by a single dedicated thread.

Range: 1 only.

• recv: Receive thread (CMVMI kernel block). Each receive thread handles one or more sockets for
communicating with other nodes in an NDB Cluster, with one socket per node. NDB Cluster supports
multiple receive threads; the maximum is 16 such threads.

Range: 1 - 16

• send: Send thread (CMVMI kernel block). To increase throughput, it is possible to perform sends from
one or more separate, dedicated threads (maximum 8).

Previously, all threads handled their own sending directly; this can still be made to happen by setting
the number of send threads to 0 (this also happens when MaxNoOfExecutionThreads is set less

3477

https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dblqh.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbtc.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbdih.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbtc.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-cmvmi.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-cmvmi.html

NDB Cluster Configuration Files

than 10). While doing so can have an adeverse impact on throughput, it can also in some cases
provide decreased latency.

Range: 0 - 16

• rep: Replication thread (SUMA kernel block). Asynchronous replication operations are always handled
by a single, dedicated thread.

Range: 1 only.

• io: File system and other miscellaneous operations. These are not demanding tasks, and are always
handled as a group by a single, dedicated I/O thread.

Range: 1 only.

• watchdog: Parameters settings associated with this type are actually applied to several threads, each
having a specific use. These threads include the SocketServer thread, which receives connection
setups from other nodes; the SocketClient thread, which attempts to set up connections to other
nodes; and the thread watchdog thread that checks that threads are progressing.

Range: 1 only.

• idxbld: Offline index build threads. Unlike the other thread types listed previously, which are
permanent, these are temporary threads which are created and used only during node or system
restarts, or when running ndb_restore --rebuild-indexes. They may be bound to CPU sets
which overlap with CPU sets bound to permanent thread types.

thread_prio, realtime, and spintime values cannot be set for offline index build threads. In
addition, count is ignored for this type of thread.

If idxbld is not specified, the default behavior is as follows:

• Offline index build threads are not bound if the I/O thread is also not bound, and these threads use
any available cores.

• If the I/O thread is bound, then the offline index build threads are bound to the entire set of bound
threads, due to the fact that there should be no other tasks for these threads to perform.

Range: 0 - 1.

This thread type was added in NDB 7.6. (Bug #25835748, Bug #26928111)

Prior to NDB 7.6, changing ThreadCOnfig requires a system initial restart. In NDB 7.6 (and later), this
requirement can be relaxed under certain circumstances:

• If, following the change, the number of LDM threads remains the same as before, nothing more than a
simple node restart (rolling restart, or N) is required to implement the change.

3478

https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-suma.html

NDB Cluster Configuration Files

• Otherwise (that is, if the number of LDM threads changes), it is still possible to effect the change using
a node initial restart (NI) provided the following two conditions are met:

a. Each LDM thread handles a maximum of 8 fragments, and

b. The total number of table fragments is an integer multiple of the number of LDM threads.

In any other case, a system initial restart is needed to change this parameter.

NDB 7.6 can distinguish between thread types by both of the following criteria:

• Whether the thread is an execution thread. Threads of type main, ldm, recv, rep, tc, and send are
execution threads; io, watchdog, and idxbld threads are not considered execution threads.

• Whether the allocation of threads to a given task is permanent or temporary. Currently all thread types
except idxbld are considered permanent; idxbld threads are regarded as temporary threads.

Simple examples:

Example 1.

ThreadConfig=ldm={count=2,cpubind=1,2},main={cpubind=12},rep={cpubind=11}

Example 2.

Threadconfig=main={cpubind=0},ldm={count=4,cpubind=1,2,5,6},io={cpubind=3}

It is usually desirable when configuring thread usage for a data node host to reserve one or more
number of CPUs for operating system and other tasks. Thus, for a host machine with 24 CPUs, you
might want to use 20 CPU threads (leaving 4 for other uses), with 8 LDM threads, 4 TC threads
(half the number of LDM threads), 3 send threads, 3 receive threads, and 1 thread each for schema
management, asynchronous replication, and I/O operations. (This is almost the same distribution of
threads used when MaxNoOfExecutionThreads is set equal to 20.) The following ThreadConfig
setting performs these assignments, additionally binding all of these threads to specific CPUs:

ThreadConfig=ldm{count=8,cpubind=1,2,3,4,5,6,7,8},main={cpubind=9},io={cpubind=9}, \
rep={cpubind=10},tc{count=4,cpubind=11,12,13,14},recv={count=3,cpubind=15,16,17}, \
send{count=3,cpubind=18,19,20}

It should be possible in most cases to bind the main (schema management) thread and the I/O thread to
the same CPU, as we have done in the example just shown.

The following example incorporates groups of CPUs defined using both cpuset and cpubind, as well
as use of thread prioritization.

ThreadConfig=ldm={count=4,cpuset=0-3,thread_prio=8,spintime=200}, \
ldm={count=4,cpubind=4-7,thread_prio=8,spintime=200}, \
tc={count=4,cpuset=8-9,thread_prio=6},send={count=2,thread_prio=10,cpubind=10-11}, \
main={count=1,cpubind=10},rep={count=1,cpubind=11}

In this case we create two LDM groups; the first uses cpubind and the second uses cpuset.
thread_prio and spintime are set to the same values for each group. This means there are eight
LDM threads in total. (You should ensure that NoOfFragmentLogParts is also set to 8.) The four TC
threads use only two CPUs; it is possible when using cpuset to specify fewer CPUs than threads in the

3479

NDB Cluster Configuration Files

group. (This is not true for cpubind.) The send threads use two threads using cpubind to bind these
threads to CPUs 10 and 11. The main and rep threads can reuse these CPUs.

This example shows how ThreadConfig and NoOfFragmentLogParts might be set up for a 24-CPU
host with hyperthreading, leaving CPUs 10, 11, 22, and 23 available for operating system functions and
interrupts:

NoOfFragmentLogParts=10
ThreadConfig=ldm={count=10,cpubind=0-4,12-16,thread_prio=9,spintime=200}, \
tc={count=4,cpuset=6-7,18-19,thread_prio=8},send={count=1,cpuset=8}, \
recv={count=1,cpuset=20},main={count=1,cpuset=9,21},rep={count=1,cpuset=9,21}, \
io={count=1,cpuset=9,21,thread_prio=8},watchdog={count=1,cpuset=9,21,thread_prio=9}

The next few examples include settings for idxbld. The first two of these demonstrate how a CPU
set defined for idxbld can overlap those specified for other (permanent) thread types, the first using
cpuset and the second using cpubind:

ThreadConfig=main,ldm={count=4,cpuset=1-4},tc={count=4,cpuset=5,6,7}, \
io={cpubind=8},idxbld={cpuset=1-8}

ThreadConfig=main,ldm={count=1,cpubind=1},idxbld={count=1,cpubind=1}

The next example specifies a CPU for the I/O thread, but not for the index build threads:

ThreadConfig=main,ldm={count=4,cpuset=1-4},tc={count=4,cpuset=5,6,7}, \
io={cpubind=8}

Since the ThreadConfig setting just shown locks threads to eight cores numbered 1 through 8, it is
equivalent to the setting shown here:

ThreadConfig=main,ldm={count=4,cpuset=1-4},tc={count=4,cpuset=5,6,7}, \
io={cpubind=8},idxbld={cpuset=1,2,3,4,5,6,7,8}

In order to take advantage of the enhanced stability that the use of ThreadConfig offers, it is
necessary to insure that CPUs are isolated, and that they not subject to interrupts, or to being
scheduled for other tasks by the operating system. On many Linux systems, you can do this by setting
IRQBALANCE_BANNED_CPUS in /etc/sysconfig/irqbalance to 0xFFFFF0, and by using the
isolcpus boot option in grub.conf. For specific information, see your operating system or platform
documentation.

Disk Data Configuration Parameters. Configuration parameters affecting Disk Data behavior include
the following:

• DiskPageBufferEntries

Version (or later) NDB 7.5.0

Type or units 32K pages

Default 10

Range 1 - 1000

Restart Type Node Restart:
Requires a
rolling restart of
the cluster. (NDB
7.5.0)

This is the number of page entries (page references) to allocate. It is specified as a number of 32K
pages in DiskPageBufferMemory. The default is sufficient for most cases but you may need to

3480

NDB Cluster Configuration Files

increase the value of this parameter if you encounter problems with very large transactions on Disk Data
tables. Each page entry requires approximately 100 bytes.

• DiskPageBufferMemory

Version (or later) NDB 7.5.0

Type or units bytes

Default 64M

Range 4M - 1T

Restart Type Node Restart:
Requires a
rolling restart of
the cluster. (NDB
7.5.0)

This determines the amount of space used for caching pages on disk, and is set in the [ndbd] or
[ndbd default] section of the config.ini file. It is measured in bytes. Each page takes up 32
KB. This means that NDB Cluster Disk Data storage always uses N * 32 KB memory where N is some
nonnegative integer.

The default value for this parameter is 64M (2000 pages of 32 KB each).

If the value for DiskPageBufferMemory is set too low in conjunction with using more than the default
number of LDM threads in ThreadConfig (for example {ldm=6...}), problems can arise when
trying to add a large (for example 500G) data file to a disk-based NDB table, wherein the process takes
indefinitely long while occupying one of the CPU cores.

This is due to the fact that, as part of adding a data file to a tablespace, extent pages are locked into
memory in an extra PGMAN worker thread, for quick metadata access. When adding a large file,
this worker has insufficient memory for all of the data file metadata. In such cases, you should either
increase DiskPageBufferMemory, or add smaller tablespace files. You may also need to adjust
DiskPageBufferEntries.

You can query the ndbinfo.diskpagebuffer table to help determine whether the value for this
parameter should be increased to minimize unnecessary disk seeks. See Section 21.6.15.20, “The
ndbinfo diskpagebuffer Table”, for more information.

• SharedGlobalMemory

Version (or later) NDB 7.5.0

Type or units bytes

Default 128M

Range 0 - 64T

Restart Type Node Restart:
Requires a
rolling restart of
the cluster. (NDB
7.5.0)

This parameter determines the amount of memory that is used for log buffers, disk operations (such
as page requests and wait queues), and metadata for tablespaces, log file groups, UNDO files, and
data files. The shared global memory pool also provides memory used for satisfying the memory

3481

NDB Cluster Configuration Files

requirements of the UNDO_BUFFER_SIZE option used with CREATE LOGFILE GROUP and ALTER
LOGFILE GROUP statements, including any default value implied for this options by the setting of the
InitialLogFileGroup data node configuration parameter. SharedGlobalMemory can be set in the
[ndbd] or [ndbd default] section of the config.ini configuration file, and is measured in bytes.

The default value is 128M.

• DiskIOThreadPool

Version (or later) NDB 7.5.0

Type or units threads

Default 2

Range 0 - 4294967039
(0xFFFFFEFF)

Restart Type Node Restart:
Requires a
rolling restart of
the cluster. (NDB
7.5.0)

This parameter determines the number of unbound threads used for Disk Data file access. Before
DiskIOThreadPool was introduced, exactly one thread was spawned for each Disk Data
file, which could lead to performance issues, particularly when using very large data files. With
DiskIOThreadPool, you can—for example—access a single large data file using several threads
working in parallel.

This parameter applies to Disk Data I/O threads only.

The optimum value for this parameter depends on your hardware and configuration, and includes these
factors:

• Physical distribution of Disk Data files. You can obtain better performance by placing data files,
undo log files, and the data node file system on separate physical disks. If you do this with some or
all of these sets of files, then you can set DiskIOThreadPool higher to enable separate threads to
handle the files on each disk.

• Disk performance and types. The number of threads that can be accommodated for Disk
Data file handling is also dependent on the speed and throughput of the disks. Faster disks and
higher throughput allow for more disk I/O threads. Our test results indicate that solid-state disk
drives can handle many more disk I/O threads than conventional disks, and thus higher values for
DiskIOThreadPool.

The default value for this parameter is 2.

• Disk Data file system parameters. The parameters in the following list make it possible to place
NDB Cluster Disk Data files in specific directories without the need for using symbolic links.

• FileSystemPathDD

Version (or later) NDB 7.5.0

Type or units filename

Default FileSystemPath

3482

NDB Cluster Configuration Files

Range ...

Restart Type Initial Node
Restart:
Requires a
rolling restart of
the cluster; each
data node must
be restarted with
--initial.
(NDB 7.5.0)

If this parameter is specified, then NDB Cluster Disk Data data files and undo log files are placed
in the indicated directory. This can be overridden for data files, undo log files, or both, by specifying
values for FileSystemPathDataFiles, FileSystemPathUndoFiles, or both, as explained for
these parameters. It can also be overridden for data files by specifying a path in the ADD DATAFILE
clause of a CREATE TABLESPACE or ALTER TABLESPACE statement, and for undo log files by
specifying a path in the ADD UNDOFILE clause of a CREATE LOGFILE GROUP or ALTER LOGFILE
GROUP statement. If FileSystemPathDD is not specified, then FileSystemPath is used.

If a FileSystemPathDD directory is specified for a given data node (including the case where the
parameter is specified in the [ndbd default] section of the config.ini file), then starting that
data node with --initial causes all files in the directory to be deleted.

• FileSystemPathDataFiles

Version (or later) NDB 7.5.0

Type or units filename

Default FileSystemPathDD

Range ...

Restart Type Initial Node
Restart:
Requires a
rolling restart of
the cluster; each
data node must
be restarted with
--initial.
(NDB 7.5.0)

If this parameter is specified, then NDB Cluster Disk Data data files are placed in the indicated
directory. This overrides any value set for FileSystemPathDD. This parameter can be overridden
for a given data file by specifying a path in the ADD DATAFILE clause of a CREATE TABLESPACE or
ALTER TABLESPACE statement used to create that data file. If FileSystemPathDataFiles is not
specified, then FileSystemPathDD is used (or FileSystemPath, if FileSystemPathDD has also
not been set).

If a FileSystemPathDataFiles directory is specified for a given data node (including the case
where the parameter is specified in the [ndbd default] section of the config.ini file), then
starting that data node with --initial causes all files in the directory to be deleted.

3483

NDB Cluster Configuration Files

• FileSystemPathUndoFiles

Version (or later) NDB 7.5.0

Type or units filename

Default FileSystemPathDD

Range ...

Restart Type Initial Node
Restart:
Requires a
rolling restart of
the cluster; each
data node must
be restarted with
--initial.
(NDB 7.5.0)

If this parameter is specified, then NDB Cluster Disk Data undo log files are placed in the indicated
directory. This overrides any value set for FileSystemPathDD. This parameter can be overridden
for a given data file by specifying a path in the ADD UNDO clause of a CREATE LOGFILE GROUP or
ALTER LOGFILE GROUP statement used to create that data file. If FileSystemPathUndoFiles is
not specified, then FileSystemPathDD is used (or FileSystemPath, if FileSystemPathDD has
also not been set).

If a FileSystemPathUndoFiles directory is specified for a given data node (including the case
where the parameter is specified in the [ndbd default] section of the config.ini file), then
starting that data node with --initial causes all files in the directory to be deleted.

For more information, see Section 21.6.11.1, “NDB Cluster Disk Data Objects”.

• Disk Data object creation parameters. The next two parameters enable you—when starting the
cluster for the first time—to cause a Disk Data log file group, tablespace, or both, to be created without
the use of SQL statements.

• InitialLogFileGroup

Version (or later) NDB 7.5.0

Type or units string

Default [see
documentation]

Range ...

Restart Type System
Restart:
Requires a
complete
shutdown and
restart of the

3484

NDB Cluster Configuration Files

cluster. (NDB
7.5.0)

This parameter can be used to specify a log file group that is created when performing an initial start of
the cluster. InitialLogFileGroup is specified as shown here:

InitialLogFileGroup = [name=name;] [undo_buffer_size=size;] file-specification-list

file-specification-list:
 file-specification[; file-specification[; ...]]

file-specification:
 filename:size

The name of the log file group is optional and defaults to DEFAULT-LG. The undo_buffer_size
is also optional; if omitted, it defaults to 64M. Each file-specification corresponds to an undo
log file, and at least one must be specified in the file-specification-list. Undo log files are
placed according to any values that have been set for FileSystemPath, FileSystemPathDD, and
FileSystemPathUndoFiles, just as if they had been created as the result of a CREATE LOGFILE
GROUP or ALTER LOGFILE GROUP statement.

Consider the following:

InitialLogFileGroup = name=LG1; undo_buffer_size=128M; undo1.log:250M; undo2.log:150M

This is equivalent to the following SQL statements:

CREATE LOGFILE GROUP LG1
 ADD UNDOFILE 'undo1.log'
 INITIAL_SIZE 250M
 UNDO_BUFFER_SIZE 128M
 ENGINE NDBCLUSTER;

ALTER LOGFILE GROUP LG1
 ADD UNDOFILE 'undo2.log'
 INITIAL_SIZE 150M
 ENGINE NDBCLUSTER;

This logfile group is created when the data nodes are started with --initial.

Resources for the initial log file group are added to the global memory pool along with those indicated
by the value of SharedGlobalMemory.

This parameter, if used, should always be set in the [ndbd default] section of the config.ini
file. The behavior of an NDB Cluster when different values are set on different data nodes is not
defined.

• InitialTablespace

Version (or later) NDB 7.5.0

Type or units string

Default [see
documentation]

Range ...

Restart Type System
Restart:
Requires a

3485

NDB Cluster Configuration Files

complete
shutdown and
restart of the
cluster. (NDB
7.5.0)

This parameter can be used to specify an NDB Cluster Disk Data tablespace that is created when
performing an initial start of the cluster. InitialTablespace is specified as shown here:

InitialTablespace = [name=name;] [extent_size=size;] file-specification-list

The name of the tablespace is optional and defaults to DEFAULT-TS. The extent_size is also
optional; it defaults to 1M. The file-specification-list uses the same syntax as shown with
the InitialLogfileGroup parameter, the only difference being that each file-specification
used with InitialTablespace corresponds to a data file. At least one must be specified in the
file-specification-list. Data files are placed according to any values that have been set for
FileSystemPath, FileSystemPathDD, and FileSystemPathDataFiles, just as if they had
been created as the result of a CREATE TABLESPACE or ALTER TABLESPACE statement.

For example, consider the following line specifying InitialTablespace in the [ndbd default]
section of the config.ini file (as with InitialLogfileGroup, this parameter should always be
set in the [ndbd default] section, as the behavior of an NDB Cluster when different values are set
on different data nodes is not defined):

InitialTablespace = name=TS1; extent_size=8M; data1.dat:2G; data2.dat:4G

This is equivalent to the following SQL statements:

CREATE TABLESPACE TS1
 ADD DATAFILE 'data1.dat'
 EXTENT_SIZE 8M
 INITIAL_SIZE 2G
 ENGINE NDBCLUSTER;

ALTER TABLESPACE TS1
 ADD DATAFILE 'data2.dat'
 INITIAL_SIZE 4G
 ENGINE NDBCLUSTER;

This tablespace is created when the data nodes are started with --initial, and can be used
whenever creating NDB Cluster Disk Data tables thereafter.

Disk Data and GCP Stop errors. Errors encountered when using Disk Data tables such as Node
nodeid killed this node because GCP stop was detected (error 2303) are often referred
to as “GCP stop errors”. Such errors occur when the redo log is not flushed to disk quickly enough; this is
usually due to slow disks and insufficient disk throughput.

You can help prevent these errors from occurring by using faster disks, and by placing Disk Data files on a
separate disk from the data node file system. Reducing the value of TimeBetweenGlobalCheckpoints
tends to decrease the amount of data to be written for each global checkpoint, and so may provide some
protection against redo log buffer overflows when trying to write a global checkpoint; however, reducing
this value also permits less time in which to write the GCP, so this must be done with caution.

In addition to the considerations given for DiskPageBufferMemory as explained previously, it is
also very important that the DiskIOThreadPool configuration parameter be set correctly; having
DiskIOThreadPool set too high is very likely to cause GCP stop errors (Bug #37227).

3486

NDB Cluster Configuration Files

GCP stops can be caused by save or commit timeouts; the TimeBetweenEpochsTimeout data node
configuration parameter determines the timeout for commits. However, it is possible to disable both types
of timeouts by setting this parameter to 0.

Parameters for configuring send buffer memory allocation. Send buffer memory is allocated
dynamically from a memory pool shared between all transporters, which means that the size of the send
buffer can be adjusted as necessary. (Previously, the NDB kernel used a fixed-size send buffer for every
node in the cluster, which was allocated when the node started and could not be changed while the
node was running.) The TotalSendBufferMemory and OverLoadLimit data node configuration
parameters permit the setting of limits on this memory allocation. For more information about the use of
these parameters (as well as SendBufferMemory), see Section 21.4.3.13, “Configuring NDB Cluster
Send Buffer Parameters”.

• ExtraSendBufferMemory

This parameter specifies the amount of transporter send buffer memory to allocate in addition to any set
using TotalSendBufferMemory, SendBufferMemory, or both.

• TotalSendBufferMemory

This parameter is used to determine the total amount of memory to allocate on this node for shared send
buffer memory among all configured transporters.

If this parameter is set, its minimum permitted value is 256KB; 0 indicates that the parameter has not
been set. For more detailed information, see Section 21.4.3.13, “Configuring NDB Cluster Send Buffer
Parameters”.

See also Section 21.6.7, “Adding NDB Cluster Data Nodes Online”.

Redo log over-commit handling. It is possible to control a data node's handling of operations when
too much time is taken flushing redo logs to disk. This occurs when a given redo log flush takes longer
than RedoOverCommitLimit seconds, more than RedoOverCommitCounter times, causing any
pending transactions to be aborted. When this happens, the API node that sent the transaction can handle
the operations that should have been committed either by queuing the operations and re-trying them,
or by aborting them, as determined by DefaultOperationRedoProblemAction. The data node
configuration parameters for setting the timeout and number of times it may be exceeded before the API
node takes this action are described in the following list:

• RedoOverCommitCounter

Version (or later) NDB 7.5.0

Type or units numeric

Default 3

Range 0 - 4294967039
(0xFFFFFEFF)

Version (or later) NDB 7.5.17

Type or units numeric

Default 3

Range 1 - 4294967039
(0xFFFFFEFF)

Version (or later) NDB 7.6.13

Type or units numeric

3487

NDB Cluster Configuration Files

Default 3

Range 1 - 4294967039
(0xFFFFFEFF)

Restart Type Node Restart:
Requires a
rolling restart of
the cluster. (NDB
7.5.0)

When RedoOverCommitLimit is exceeded when trying to write a given redo log to disk this many
times or more, any transactions that were not committed as a result are aborted, and an API node where
any of these transactions originated handles the operations making up those transactions according to
its value for DefaultOperationRedoProblemAction (by either queuing the operations to be re-tried,
or aborting them).

• RedoOverCommitLimit

Version (or later) NDB 7.5.0

Type or units seconds

Default 20

Range 0 - 4294967039
(0xFFFFFEFF)

Version (or later) NDB 7.5.17

Type or units seconds

Default 20

Range 1 - 4294967039
(0xFFFFFEFF)

Version (or later) NDB 7.6.13

Type or units seconds

Default 20

Range 1 - 4294967039
(0xFFFFFEFF)

Restart Type Node Restart:
Requires a
rolling restart of
the cluster. (NDB
7.5.0)

This parameter sets an upper limit in seconds for trying to write a given redo log to disk before
timing out. The number of times the data node tries to flush this redo log, but takes longer than
RedoOverCommitLimit, is kept and compared with RedoOverCommitCounter, and when
flushing takes too long more times than the value of that parameter, any transactions that were not
committed as a result of the flush timeout are aborted. When this occurs, the API node where any of
these transactions originated handles the operations making up those transactions according to its
DefaultOperationRedoProblemAction setting (it either queues the operations to be re-tried, or
aborts them).

3488

NDB Cluster Configuration Files

Controlling restart attempts. It is possible to exercise finely-grained control over restart attempts by
data nodes when they fail to start using the MaxStartFailRetries and StartFailRetryDelay data
node configuration parameters.

MaxStartFailRetries limits the total number of retries made before giving up on starting the data
node, StartFailRetryDelay sets the number of seconds between retry attempts. These parameters
are listed here:

• StartFailRetryDelay

Version (or later) NDB 7.5.0

Type or units unsigned

Default 0

Range 0 - 4294967039
(0xFFFFFEFF)

Restart Type Node Restart:
Requires a
rolling restart of
the cluster. (NDB
7.5.0)

Use this parameter to set the number of seconds between restart attempts by the data node in the event
on failure on startup. The default is 0 (no delay).

Both this parameter and MaxStartFailRetries are ignored unless StopOnError is equal to 0.

• MaxStartFailRetries

Version (or later) NDB 7.5.0

Type or units unsigned

Default 3

Range 0 - 4294967039
(0xFFFFFEFF)

Restart Type Node Restart:
Requires a
rolling restart of
the cluster. (NDB
7.5.0)

Use this parameter to limit the number restart attempts made by the data node in the event that it fails on
startup. The default is 3 attempts.

Both this parameter and StartFailRetryDelay are ignored unless StopOnError is equal to 0.

NDB index statistics parameters. The parameters in the following list relate to NDB index statistics
generation.

• IndexStatAutoCreate

Version (or later) NDB 7.5.0

Type or units integer 3489

NDB Cluster Configuration Files

Default 0

Range 0, 1

Restart Type Node Restart:
Requires a
rolling restart of
the cluster. (NDB
7.5.0)

Enable (set equal to 1) or disable (set equal to 0) automatic statistics collection when indexes are
created.

• IndexStatAutoUpdate

Version (or later) NDB 7.5.0

Type or units integer

Default 0

Range 0, 1

Restart Type Node Restart:
Requires a
rolling restart of
the cluster. (NDB
7.5.0)

Enable (set equal to 1) or disable (set equal to 0) monitoring of indexes for changes, and
trigger automatic statistics updates when these are detected. The degree of change needed
to trigger the updates are determined by the settings for the IndexStatTriggerPct and
IndexStatTriggerScale options.

• IndexStatSaveSize

Version (or later) NDB 7.5.0

Type or units bytes

Default 32768

Range 0 - 4294967039
(0xFFFFFEFF)

Restart Type Initial Node
Restart:
Requires a
rolling restart of
the cluster; each
data node must
be restarted with

3490

NDB Cluster Configuration Files

--initial.
(NDB 7.5.0)

Maximum space in bytes allowed for the saved statistics of any given index in the NDB system tables and
in the mysqld memory cache. In NDB 7.5 and earlier, this consumes IndexMemory.

At least one sample is always produced, regardless of any size limit. This size is scaled by
IndexStatSaveScale.

The size specified by IndexStatSaveSize is scaled by the value of IndexStatTriggerPct for a
large index, times 0.01. This is further multiplied by the logarithm to the base 2 of the index size. Setting
IndexStatTriggerPct equal to 0 disables the scaling effect.

• IndexStatSaveScale

Version (or later) NDB 7.5.0

Type or units percentage

Default 100

Range 0 - 4294967039
(0xFFFFFEFF)

Restart Type Initial Node
Restart:
Requires a
rolling restart of
the cluster; each
data node must
be restarted with
--initial.
(NDB 7.5.0)

The size specified by IndexStatSaveSize is scaled by the value of IndexStatTriggerPct for a
large index, times 0.01. This is further multiplied by the logarithm to the base 2 of the index size. Setting
IndexStatTriggerPct equal to 0 disables the scaling effect.

• IndexStatTriggerPct

Version (or later) NDB 7.5.0

Type or units percentage

Default 100

Range 0 - 4294967039
(0xFFFFFEFF)

Restart Type Initial Node
Restart:
Requires a
rolling restart of
the cluster; each
data node must
be restarted with

3491

NDB Cluster Configuration Files

--initial.
(NDB 7.5.0)

Percentage change in updates that triggers an index statistics update. The value is scaled by
IndexStatTriggerScale. You can disable this trigger altogether by setting IndexStatTriggerPct
to 0.

• IndexStatTriggerScale

Version (or later) NDB 7.5.0

Type or units percentage

Default 100

Range 0 - 4294967039
(0xFFFFFEFF)

Restart Type Initial Node
Restart:
Requires a
rolling restart of
the cluster; each
data node must
be restarted with
--initial.
(NDB 7.5.0)

Scale IndexStatTriggerPct by this amount times 0.01 for a large index. A value of 0 disables
scaling.

• IndexStatUpdateDelay

Version (or later) NDB 7.5.0

Type or units seconds

Default 60

Range 0 - 4294967039
(0xFFFFFEFF)

Restart Type Initial Node
Restart:
Requires a
rolling restart of
the cluster; each
data node must
be restarted with
--initial.
(NDB 7.5.0)

Minimum delay in seconds between automatic index statistics updates for a given index. Setting this
variable to 0 disables any delay. The default is 60 seconds.

Restart types. Information about the restart types used by the parameter descriptions in this section is
shown in the following table:

3492

NDB Cluster Configuration Files

Table 21.15 NDB Cluster restart types

Symbol Restart Type Description

N Node The parameter can be updated
using a rolling restart (see
Section 21.6.5, “Performing
a Rolling Restart of an NDB
Cluster”)

S System All cluster nodes must be
shut down completely, then
restarted, to effect a change in this
parameter

I Initial Data nodes must be restarted
using the --initial option

21.4.3.7 Defining SQL and Other API Nodes in an NDB Cluster

The [mysqld] and [api] sections in the config.ini file define the behavior of the MySQL servers
(SQL nodes) and other applications (API nodes) used to access cluster data. None of the parameters
shown is required. If no computer or host name is provided, any host can use this SQL or API node.

Generally speaking, a [mysqld] section is used to indicate a MySQL server providing an SQL interface to
the cluster, and an [api] section is used for applications other than mysqld processes accessing cluster
data, but the two designations are actually synonymous; you can, for instance, list parameters for a MySQL
server acting as an SQL node in an [api] section.

Note

For a discussion of MySQL server options for NDB Cluster, see MySQL Server
Options for NDB Cluster. For information about MySQL server system variables
relating to NDB Cluster, see NDB Cluster System Variables.

• Id

Version (or later) NDB 7.5.0

Type or units unsigned

Default [...]

Range 1 - 255

Restart Type Initial System
Restart:
Requires a
complete
shutdown of the
cluster, wiping
and restoring
the cluster file
system from a
backup, and
then restarting
the cluster. (NDB
7.5.0)

3493

NDB Cluster Configuration Files

The Id is an integer value used to identify the node in all cluster internal messages. The permitted range
of values is 1 to 255 inclusive. This value must be unique for each node in the cluster, regardless of the
type of node.

Note

Data node IDs must be less than 49, regardless of the NDB Cluster version used.
If you plan to deploy a large number of data nodes, it is a good idea to limit the
node IDs for API nodes (and management nodes) to values greater than 48.

NodeId is the preferred parameter name to use when identifying API nodes. (Id continues to be
supported for backward compatibility, but is now deprecated and generates a warning when used. It is
also subject to future removal.)

• ConnectionMap

Version (or later) NDB 7.5.0

Type or units string

Default [...]

Range ...

Restart Type Node Restart:
Requires a
rolling restart of
the cluster. (NDB
7.5.0)

Specifies which data nodes to connect.

• NodeId

Version (or later) NDB 7.5.0

Type or units unsigned

Default [...]

Range 1 - 255

Restart Type Initial System
Restart:
Requires a
complete
shutdown of the
cluster, wiping
and restoring
the cluster file
system from a
backup, and
then restarting
the cluster. (NDB
7.5.0)

The NodeId is an integer value used to identify the node in all cluster internal messages. The permitted
range of values is 1 to 255 inclusive. This value must be unique for each node in the cluster, regardless
of the type of node.

3494

NDB Cluster Configuration Files

Note

Data node IDs must be less than 49, regardless of the NDB Cluster version used.
If you plan to deploy a large number of data nodes, it is a good idea to limit the
node IDs for API nodes (and management nodes) to values greater than 48.

NodeId is the preferred parameter name to use when identifying management nodes. An alias, Id, was
used for this purpose in very old versions of NDB Cluster, and continues to be supported for backward
compatibility; it is now deprecated and generates a warning when used, and is subject to removal in a
future release of NDB Cluster.

• ExecuteOnComputer

Version (or later) NDB 7.5.0

Type or units name

Default [...]

Range ...

Deprecated NDB 7.5.0

Restart Type System Restart:
Requires a
complete
shutdown and
restart of the
cluster. (NDB
7.5.0)

This refers to the Id set for one of the computers (hosts) defined in a [computer] section of the
configuration file.

Important

This parameter is deprecated as of NDB 7.5.0, and is subject to removal in a
future release. Use the HostName parameter instead.

• HostName

Version (or later) NDB 7.5.0

Type or units name or IP
address

Default [...]

Range ...

Restart Type Node Restart:
Requires a
rolling restart of

3495

NDB Cluster Configuration Files

the cluster. (NDB
7.5.0)

Specifying this parameter defines the host name of the computer on which the SQL node (API node) is
to reside.

If no HostName is specified in a given [mysql] or [api] section of the config.ini file, then an SQL
or API node may connect using the corresponding “slot” from any host which can establish a network
connection to the management server host machine. This differs from the default behavior for data
nodes, where localhost is assumed for HostName unless otherwise specified.

• LocationDomainId

Version (or later) NDB 7.6.4

Type or units integer

Default 0

Range 0 - 16

Added NDB 7.6.4

Restart Type System Restart:
Requires a
complete
shutdown and
restart of the
cluster. (NDB
7.5.0)

Assigns an SQL or other API node to a specific availability domain (also known as an availability zone)
within a cloud. By informing NDB which nodes are in which availability domains, performance can be
improved in a cloud environment in the following ways:

• If requested data is not found on the same node, reads can be directed to another node in the same
availability domain.

• Communication between nodes in different availability domains are guaranteed to use NDB
transporters' WAN support without any further manual intervention.

• The transporter's group number can be based on which availability domain is used, such that also
SQL and other API nodes communicate with local data nodes in the same availability domain
whenever possible.

• The arbitrator can be selected from an availability domain in which no data nodes are present, or, if no
such availability domain can be found, from a third availability domain.

LocationDomainId takes an integer value between 0 and 16 inclusive, with 0 being the default; using
0 is the same as leaving the parameter unset.

• ArbitrationRank

Version (or later) NDB 7.5.0

Type or units 0-2

Default 0

Range 0 - 2
3496

https://docs.us-phoenix-1.oraclecloud.com/Content/General/Concepts/regions.htm

NDB Cluster Configuration Files

Restart Type Node Restart:
Requires a
rolling restart of
the cluster. (NDB
7.5.0)

This parameter defines which nodes can act as arbitrators. Both management nodes and SQL
nodes can be arbitrators. A value of 0 means that the given node is never used as an arbitrator, a
value of 1 gives the node high priority as an arbitrator, and a value of 2 gives it low priority. A normal
configuration uses the management server as arbitrator, setting its ArbitrationRank to 1 (the default
for management nodes) and those for all SQL nodes to 0 (the default for SQL nodes).

By setting ArbitrationRank to 0 on all management and SQL nodes, you can disable arbitration
completely. You can also control arbitration by overriding this parameter; to do so, set the Arbitration
parameter in the [ndbd default] section of the config.ini global configuration file.

• ArbitrationDelay

Version (or later) NDB 7.5.0

Type or units milliseconds

Default 0

Range 0 - 4294967039
(0xFFFFFEFF)

Restart Type Node Restart:
Requires a
rolling restart of
the cluster. (NDB
7.5.0)

Setting this parameter to any other value than 0 (the default) means that responses by the arbitrator
to arbitration requests are delayed by the stated number of milliseconds. It is usually not necessary to
change this value.

• BatchByteSize

Version (or later) NDB 7.5.0

Type or units bytes

Default 16K

Range 1K - 1M

Restart Type Node Restart:
Requires a
rolling restart of
the cluster. (NDB
7.5.0)

For queries that are translated into full table scans or range scans on indexes, it is important for best
performance to fetch records in properly sized batches. It is possible to set the proper size both in terms

3497

NDB Cluster Configuration Files

of number of records (BatchSize) and in terms of bytes (BatchByteSize). The actual batch size is
limited by both parameters.

The speed at which queries are performed can vary by more than 40% depending upon how this
parameter is set.

This parameter is measured in bytes. The default value is 16K.

• BatchSize

Version (or later) NDB 7.5.0

Type or units records

Default 256

Range 1 - 992

Restart Type Node Restart:
Requires a
rolling restart of
the cluster. (NDB
7.5.0)

This parameter is measured in number of records and is by default set to 256. The maximum size is 992.

• ExtraSendBufferMemory

Version (or later) NDB 7.5.0

Type or units bytes

Default 0

Range 0 - 4294967039
(0xFFFFFEFF)

Restart Type Node Restart:
Requires a
rolling restart of
the cluster. (NDB
7.5.0)

This parameter specifies the amount of transporter send buffer memory to allocate in addition to any that
has been set using TotalSendBufferMemory, SendBufferMemory, or both.

• HeartbeatThreadPriority

Version (or later) NDB 7.5.0

Type or units string

Default [...]

Range ...

Restart Type Node Restart:
Requires a
rolling restart of

3498

NDB Cluster Configuration Files

the cluster. (NDB
7.5.0)

Use this parameter to set the scheduling policy and priority of heartbeat threads for management and
API nodes. The syntax for setting this parameter is shown here:

HeartbeatThreadPriority = policy[, priority]

policy:
 {FIFO | RR}

When setting this parameter, you must specify a policy. This is one of FIFO (first in, first in) or RR (round
robin). This followed optionally by the priority (an integer).

• MaxScanBatchSize

Version (or later) NDB 7.5.0

Type or units bytes

Default 256K

Range 32K - 16M

Restart Type Node Restart:
Requires a
rolling restart of
the cluster. (NDB
7.5.0)

The batch size is the size of each batch sent from each data node. Most scans are performed in parallel
to protect the MySQL Server from receiving too much data from many nodes in parallel; this parameter
sets a limit to the total batch size over all nodes.

The default value of this parameter is set to 256KB. Its maximum size is 16MB.

• TotalSendBufferMemory

Version (or later) NDB 7.5.0

Type or units bytes

Default 0

Range 256K -
4294967039
(0xFFFFFEFF)

Restart Type Node Restart:
Requires a
rolling restart of
the cluster. (NDB
7.5.0)

This parameter is used to determine the total amount of memory to allocate on this node for shared send
buffer memory among all configured transporters.

If this parameter is set, its minimum permitted value is 256KB; 0 indicates that the parameter has not
been set. For more detailed information, see Section 21.4.3.13, “Configuring NDB Cluster Send Buffer
Parameters”.

3499

NDB Cluster Configuration Files

• AutoReconnect

Version (or later) NDB 7.5.0

Type or units boolean

Default false

Range true, false

Restart Type Node Restart:
Requires a
rolling restart of
the cluster. (NDB
7.5.0)

This parameter is false by default. This forces disconnected API nodes (including MySQL Servers
acting as SQL nodes) to use a new connection to the cluster rather than attempting to re-use an existing
one, as re-use of connections can cause problems when using dynamically-allocated node IDs. (Bug
#45921)

Note

This parameter can be overridden using the NDB API. For more
information, see Ndb_cluster_connection::set_auto_reconnect(), and
Ndb_cluster_connection::get_auto_reconnect().

• DefaultOperationRedoProblemAction

Version (or later) NDB 7.5.0

Type or units enumeration

Default QUEUE

Range ABORT, QUEUE

Restart Type Node Restart:
Requires a
rolling restart of
the cluster. (NDB
7.5.0)

This parameter (along with RedoOverCommitLimit and RedoOverCommitCounter) controls
the data node's handling of operations when too much time is taken flushing redo logs to disk. This
occurs when a given redo log flush takes longer than RedoOverCommitLimit seconds, more than
RedoOverCommitCounter times, causing any pending transactions to be aborted.

When this happens, the node can respond in either of two ways, according to the value of
DefaultOperationRedoProblemAction, listed here:

• ABORT: Any pending operations from aborted transactions are also aborted.

• QUEUE: Pending operations from transactions that were aborted are queued up to be re-tried. This
the default. Pending operations are still aborted when the redo log runs out of space—that is, when
P_TAIL_PROBLEM errors occur.

• DefaultHashMapSize

Version (or later) NDB 7.5.0

3500

https://dev.mysql.com/doc/ndbapi/en/ndb-ndb-cluster-connection.html#ndb-ndb-cluster-connection-set-auto-reconnect
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb-cluster-connection.html#ndb-ndb-cluster-connection-get-auto-reconnect

NDB Cluster Configuration Files

Type or units buckets

Default 3840

Range 0 - 3840

Restart Type Node Restart:
Requires a
rolling restart of
the cluster. (NDB
7.5.0)

The size of the table hash maps used by NDB is configurable using this parameter.
DefaultHashMapSize can take any of three possible values (0, 240, 3840).

The original intended use for this parameter was to facilitate upgrades and especially downgrades to and
from very old releases with differing default hash map sizes. This is not an issue when upgrading from
NDB Cluster 7.3 (or later) to later versions.

Decreasing this parameter online after any tables have been created or modified with
DefaultHashMapSize equal to 3840 is not currently supported.

• Wan

Version (or later) NDB 7.5.0

Type or units boolean

Default false

Range true, false

Restart Type Node Restart:
Requires a
rolling restart of
the cluster. (NDB
7.5.0)

Use WAN TCP setting as default.

• ConnectBackoffMaxTime

Version (or later) NDB 7.5.0

Type or units integer

Default 0

Range 0 - 4294967039
(0xFFFFFEFF)

Restart Type Node Restart:
Requires a
rolling restart of
the cluster. (NDB
7.5.0)

In an NDB Cluster with many unstarted data nodes, the value of this parameter can be raised to
circumvent connection attempts to data nodes which have not yet begun to function in the cluster, as
well as moderate high traffic to management nodes. As long as the API node is not connected to any
new data nodes, the value of the StartConnectBackoffMaxTime parameter is applied; otherwise,

3501

NDB Cluster Configuration Files

ConnectBackoffMaxTime is used to determine the length of time in milliseconds to wait between
connection attempts.

Time elapsed during node connection attempts is not taken into account when calculating elapsed
time for this parameter. The timeout is applied with approximately 100 ms resolution, starting with
a 100 ms delay; for each subsequent attempt, the length of this period is doubled until it reaches
ConnectBackoffMaxTime milliseconds, up to a maximum of 100000 ms (100s).

Once the API node is connected to a data node and that node reports (in a heartbeat message) that it
has connected to other data nodes, connection attempts to those data nodes are no longer affected by
this parameter, and are made every 100 ms thereafter until connected. Once a data node has started, it
can take up HeartbeatIntervalDbApi for the API node to be notified that this has occurred.

• StartConnectBackoffMaxTime

Version (or later) NDB 7.5.0

Type or units integer

Default 0

Range 0 - 4294967039
(0xFFFFFEFF)

Restart Type Node Restart:
Requires a
rolling restart of
the cluster. (NDB
7.5.0)

In an NDB Cluster with many unstarted data nodes, the value of this parameter can be raised to
circumvent connection attempts to data nodes which have not yet begun to function in the cluster, as
well as moderate high traffic to management nodes. As long as the API node is not connected to any
new data nodes, the value of the StartConnectBackoffMaxTime parameter is applied; otherwise,
ConnectBackoffMaxTime is used to determine the length of time in milliseconds to wait between
connection attempts.

Time elapsed during node connection attempts is not taken into account when calculating elapsed
time for this parameter. The timeout is applied with approximately 100 ms resolution, starting with
a 100 ms delay; for each subsequent attempt, the length of this period is doubled until it reaches
StartConnectBackoffMaxTime milliseconds, up to a maximum of 100000 ms (100s).

Once the API node is connected to a data node and that node reports (in a heartbeat message) that it
has connected to other data nodes, connection attempts to those data nodes are no longer affected by
this parameter, and are made every 100 ms thereafter until connected. Once a data node has started, it
can take up HeartbeatIntervalDbApi for the API node to be notified that this has occurred.

API Node Debugging Parameters. You can use the ApiVerbose configuration parameter to enable
debugging output from a given API node. This parameter takes an integer value. 0 is the default, and
disables such debugging; 1 enables debugging output to the cluster log; 2 adds DBDICT debugging output
as well. (Bug #20638450) See also DUMP 1229.

You can also obtain information from a MySQL server running as an NDB Cluster SQL node using SHOW
STATUS in the mysql client, as shown here:

mysql> SHOW STATUS LIKE 'ndb%';
+-----------------------------+----------------+
| Variable_name | Value |
+-----------------------------+----------------+

3502

https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbdict.html
https://dev.mysql.com/doc/ndb-internals/en/dump-command-1229.html

NDB Cluster Configuration Files

Ndb_cluster_node_id	5
Ndb_config_from_host	198.51.100.112
Ndb_config_from_port	1186
Ndb_number_of_storage_nodes	4
+-----------------------------+----------------+
4 rows in set (0.02 sec)

For information about the status variables appearing in the output from this statement, see NDB Cluster
Status Variables.

Note

To add new SQL or API nodes to the configuration of a running NDB Cluster,
it is necessary to perform a rolling restart of all cluster nodes after adding new
[mysqld] or [api] sections to the config.ini file (or files, if you are using
more than one management server). This must be done before the new SQL or API
nodes can connect to the cluster.

It is not necessary to perform any restart of the cluster if new SQL or API nodes can
employ previously unused API slots in the cluster configuration to connect to the
cluster.

Restart types. Information about the restart types used by the parameter descriptions in this section is
shown in the following table:

Table 21.16 NDB Cluster restart types

Symbol Restart Type Description

N Node The parameter can be updated
using a rolling restart (see
Section 21.6.5, “Performing
a Rolling Restart of an NDB
Cluster”)

S System All cluster nodes must be
shut down completely, then
restarted, to effect a change in this
parameter

I Initial Data nodes must be restarted
using the --initial option

21.4.3.8 Defining the System

The [system] section is used for parameters applying to the cluster as a whole. The Name system
parameter is used with MySQL Enterprise Monitor; ConfigGenerationNumber and PrimaryMGMNode
are not used in production environments. Except when using NDB Cluster with MySQL Enterprise Monitor,
is not necessary to have a [system] section in the config.ini file.

More information about these parameters can be found in the following list:

• ConfigGenerationNumber

Version (or later) NDB 7.5.0

Type or units unsigned

Default 0

Range 0 - 4294967039
(0xFFFFFEFF)

3503

NDB Cluster Configuration Files

Restart Type Node Restart:
Requires a
rolling restart of
the cluster. (NDB
7.5.0)

Configuration generation number. This parameter is currently unused.

• Name

Version (or later) NDB 7.5.0

Type or units string

Default [...]

Range ...

Restart Type Node Restart:
Requires a
rolling restart of
the cluster. (NDB
7.5.0)

Set a name for the cluster. This parameter is required for deployments with MySQL Enterprise Monitor; it
is otherwise unused.

You can obtain the value of this parameter by checking the Ndb_system_name status variable. In NDB
API applications, you can also retrieve it using get_system_name().

• PrimaryMGMNode

Version (or later) NDB 7.5.0

Type or units unsigned

Default 0

Range 0 - 4294967039
(0xFFFFFEFF)

Restart Type Node Restart:
Requires a
rolling restart of
the cluster. (NDB
7.5.0)

Node ID of the primary management node. This parameter is currently unused.

Restart types. Information about the restart types used by the parameter descriptions in this section is
shown in the following table:

Table 21.17 NDB Cluster restart types

Symbol Restart Type Description

N Node The parameter can be updated
using a rolling restart (see
Section 21.6.5, “Performing
a Rolling Restart of an NDB
Cluster”)

3504

https://dev.mysql.com/doc/ndbapi/en/ndb-ndb-cluster-connection.html#ndb-ndb-cluster-connection-get-system-name

NDB Cluster Configuration Files

Symbol Restart Type Description

S System All cluster nodes must be
shut down completely, then
restarted, to effect a change in this
parameter

I Initial Data nodes must be restarted
using the --initial option

21.4.3.9 MySQL Server Options and Variables for NDB Cluster

This section provides information about MySQL server options, server and status variables that are specific
to NDB Cluster. For general information on using these, and for other options and variables not specific to
NDB Cluster, see Section 5.1, “The MySQL Server”.

For NDB Cluster configuration parameters used in the cluster configuration file (usually named
config.ini), see Section 21.4, “Configuration of NDB Cluster”.

MySQL Server Options for NDB Cluster

This section provides descriptions of mysqld server options relating to NDB Cluster. For information about
mysqld options not specific to NDB Cluster, and for general information about the use of options with
mysqld, see Section 5.1.6, “Server Command Options”.

For information about command-line options used with other NDB Cluster processes, see Section 21.5,
“NDB Cluster Programs”.

• --ndbcluster

Command-Line Format --ndbcluster[=value]

Disabled by skip-ndbcluster

Type Boolean

Default Value OFF

The NDBCLUSTER storage engine is necessary for using NDB Cluster. If a mysqld binary includes
support for the NDBCLUSTER storage engine, the engine is disabled by default. Use the --ndbcluster
option to enable it. Use --skip-ndbcluster to explicitly disable the engine.

It is not necessary or desirable to use this option together with --initialize. Beginning with NDB
7.5.4, --ndbcluster is ignored (and the NDB storage engine is not enabled) if --initialize is also
used. (Bug #81689, Bug #23518923)

• --ndb-allow-copying-alter-table=[ON|OFF]

Command-Line Format --ndb-allow-copying-alter-
table[={OFF|ON}]

Introduced 5.7.10-ndb-7.5.0

System Variable ndb_allow_copying_alter_table

Scope Global, Session

Dynamic Yes

Type Boolean

3505

NDB Cluster Configuration Files

Default Value ON

Let ALTER TABLE and other DDL statements use copying operations on NDB tables. Set to OFF to keep
this from happening; doing so may improve performance of critical applications.

• --ndb-batch-size=#

Command-Line Format --ndb-batch-size

System Variable ndb_batch_size

Scope Global, Session

Dynamic Yes

Type Integer

Default Value 32768

Minimum Value 0

Maximum Value (≥ 5.7.37-ndb-7.6.22) 2147483648

Maximum Value (≥ 5.7.37-ndb-7.5.26) 2147483648

Maximum Value (≤ 5.7.37-ndb-7.5.25) 31536000

Maximum Value (≤ 5.7.37-ndb-7.6.21) 31536000

Maximum Value 31536000

Unit bytes

This sets the size in bytes that is used for NDB transaction batches.

• --ndb-cluster-connection-pool=#

Command-Line Format --ndb-cluster-connection-pool

System Variable ndb_cluster_connection_pool

System Variable ndb_cluster_connection_pool

Scope Global

Scope Global

Dynamic No

Dynamic No

Type Integer

Default Value 1

Minimum Value 1

Maximum Value 63

By setting this option to a value greater than 1 (the default), a mysqld process can use multiple
connections to the cluster, effectively mimicking several SQL nodes. Each connection requires its own
[api] or [mysqld] section in the cluster configuration (config.ini) file, and counts against the
maximum number of API connections supported by the cluster.

Suppose that you have 2 cluster host computers, each running an SQL node whose mysqld process
was started with --ndb-cluster-connection-pool=4; this means that the cluster must have 8 API
slots available for these connections (instead of 2). All of these connections are set up when the SQL
node connects to the cluster, and are allocated to threads in a round-robin fashion.

3506

NDB Cluster Configuration Files

This option is useful only when running mysqld on host machines having multiple CPUs, multiple cores,
or both. For best results, the value should be smaller than the total number of cores available on the host
machine. Setting it to a value greater than this is likely to degrade performance severely.

Important

Because each SQL node using connection pooling occupies multiple API node
slots—each slot having its own node ID in the cluster—you must not use a node
ID as part of the cluster connection string when starting any mysqld process that
employs connection pooling.

Setting a node ID in the connection string when using the --ndb-cluster-
connection-pool option causes node ID allocation errors when the SQL node
attempts to connect to the cluster.

• --ndb-cluster-connection-pool-nodeids=list

Command-Line Format --ndb-cluster-connection-pool-nodeids

Introduced 5.7.10-ndb-7.5.0

System Variable (≥ 5.7.10-ndb-7.5.0) ndb_cluster_connection_pool_nodeids

Scope (≥ 5.7.10-ndb-7.5.0) Global

Dynamic (≥ 5.7.10-ndb-7.5.0) No

Type Set

Default Value

Specifies a comma-separated list of node IDs for connections to the cluster used by an SQL node. The
number of nodes in this list must be the same as the value set for the --ndb-cluster-connection-
pool option.

--ndb-cluster-connection-pool-nodeids was added in NDB 7.5.0.

• --ndb-blob-read-batch-bytes=bytes

Command-Line Format --ndb-blob-read-batch-bytes

System Variable ndb_blob_read_batch_bytes

Scope Global, Session

Dynamic Yes

Type Integer

Default Value 65536

Minimum Value 0

3507

NDB Cluster Configuration Files

Maximum Value 4294967295

This option can be used to set the size (in bytes) for batching of BLOB data reads in NDB Cluster
applications. When this batch size is exceeded by the amount of BLOB data to be read within the current
transaction, any pending BLOB read operations are immediately executed.

The maximum value for this option is 4294967295; the default is 65536. Setting it to 0 has the effect of
disabling BLOB read batching.

Note

In NDB API applications, you can control BLOB write batching with the
setMaxPendingBlobReadBytes() and getMaxPendingBlobReadBytes()
methods.

• --ndb-blob-write-batch-bytes=bytes

Command-Line Format --ndb-blob-write-batch-bytes

System Variable ndb_blob_write_batch_bytes

Scope Global, Session

Dynamic Yes

Type Integer

Default Value 65536

Minimum Value 0

Maximum Value 4294967295

Unit bytes

This option can be used to set the size (in bytes) for batching of BLOB data writes in NDB Cluster
applications. When this batch size is exceeded by the amount of BLOB data to be written within the
current transaction, any pending BLOB write operations are immediately executed.

The maximum value for this option is 4294967295; the default is 65536. Setting it to 0 has the effect of
disabling BLOB write batching.

Note

In NDB API applications, you can control BLOB write
batching with the setMaxPendingBlobWriteBytes() and
getMaxPendingBlobWriteBytes() methods.

• --ndb-connectstring=connection_string

Command-Line Format --ndb-connectstring

Type String

When using the NDBCLUSTER storage engine, this option specifies the management server that
distributes cluster configuration data. See Section 21.4.3.3, “NDB Cluster Connection Strings”, for
syntax.

3508

https://dev.mysql.com/doc/ndbapi/en/ndb-ndbtransaction.html#ndb-ndbtransaction-setmaxpendingblobreadbytes
https://dev.mysql.com/doc/ndbapi/en/ndb-ndbtransaction.html#ndb-ndbtransaction-getmaxpendingblobreadbytes
https://dev.mysql.com/doc/ndbapi/en/ndb-ndbtransaction.html#ndb-ndbtransaction-setmaxpendingblobwritebytes
https://dev.mysql.com/doc/ndbapi/en/ndb-ndbtransaction.html#ndb-ndbtransaction-getmaxpendingblobwritebytes

NDB Cluster Configuration Files

• --ndb-default-column-format=[FIXED|DYNAMIC]

Command-Line Format --ndb-default-column-format={FIXED|
DYNAMIC}

Introduced 5.7.11-ndb-7.5.1

System Variable ndb_default_column_format

Scope Global

Dynamic Yes

Type Enumeration

Default Value (≥ 5.7.16-ndb-7.5.4) FIXED

Default Value (≥ 5.7.11-ndb-7.5.1, ≤ 5.7.13-
ndb-7.5.3)

DYNAMIC

Valid Values FIXED

DYNAMIC

In NDB 7.5.1 and later, sets the default COLUMN_FORMAT and ROW_FORMAT for new tables (see
Section 13.1.18, “CREATE TABLE Statement”).

In NDB 7.5.1, the default for this option was DYNAMIC; in NDB 7.5.4, the default was changed to FIXED
to maintain backwards compatibility with older release series (Bug #24487363).

• --ndb-deferred-constraints=[0|1]

Command-Line Format --ndb-deferred-constraints

System Variable ndb_deferred_constraints

Scope Global, Session

Dynamic Yes

Type Integer

Default Value 0

Minimum Value 0

Maximum Value 1

Controls whether or not constraint checks on unique indexes are deferred until commit time, where such
checks are supported. 0 is the default.

This option is not normally needed for operation of NDB Cluster or NDB Cluster Replication, and is
intended primarily for use in testing.

• --ndb-distribution=[KEYHASH|LINHASH]

Command-Line Format --ndb-distribution={KEYHASH|LINHASH}

System Variable ndb_distribution

Scope Global

Dynamic Yes

Type Enumeration

Default Value KEYHASH 3509

NDB Cluster Configuration Files

Valid Values LINHASH

KEYHASH

Controls the default distribution method for NDB tables. Can be set to either of KEYHASH (key hashing) or
LINHASH (linear hashing). KEYHASH is the default.

• --ndb-log-apply-status

Command-Line Format --ndb-log-apply-status[={OFF|ON}]

System Variable ndb_log_apply_status

Scope Global

Dynamic No

Type Boolean

Default Value OFF

Causes a replica mysqld to log any updates received from its immediate source to the
mysql.ndb_apply_status table in its own binary log using its own server ID rather than the server
ID of the source. In a circular or chain replication setting, this allows such updates to propagate to
the mysql.ndb_apply_status tables of any MySQL servers configured as replicas of the current
mysqld.

In a chain replication setup, using this option allows downstream (replica) clusters to be aware of their
positions relative to all of their upstream contributors (sources).

In a circular replication setup, this option causes changes to ndb_apply_status tables to complete
the entire circuit, eventually propagating back to the originating NDB Cluster. This also allows a cluster
acting as a source to see when its changes (epochs) have been applied to the other clusters in the
circle.

This option has no effect unless the MySQL server is started with the --ndbcluster option.

• --ndb-log-empty-epochs=[ON|OFF]

Command-Line Format --ndb-log-empty-epochs[={OFF|ON}]

System Variable ndb_log_empty_epochs

Scope Global

Dynamic Yes

Type Boolean

Default Value OFF

Causes epochs during which there were no changes to be written to the ndb_apply_status and
ndb_binlog_index tables, even when log_slave_updates is enabled.

By default this option is disabled. Disabling --ndb-log-empty-epochs causes epoch transactions
with no changes not to be written to the binary log, although a row is still written even for an empty epoch
in ndb_binlog_index.

Because --ndb-log-empty-epochs=1 causes the size of the ndb_binlog_index table to increase
independently of the size of the binary log, users should be prepared to manage the growth of this table,
even if they expect the cluster to be idle a large part of the time.3510

NDB Cluster Configuration Files

• --ndb-log-empty-update=[ON|OFF]

Command-Line Format --ndb-log-empty-update[={OFF|ON}]

System Variable ndb_log_empty_update

Scope Global

Dynamic Yes

Type Boolean

Default Value OFF

Causes updates that produced no changes to be written to the ndb_apply_status and
ndb_binlog_index tables, when when log_slave_updates is enabled.

By default this option is disabled (OFF). Disabling --ndb-log-empty-update causes updates with no
changes not to be written to the binary log.

• --ndb-log-exclusive-reads=[0|1]

Command-Line Format --ndb-log-exclusive-reads[={OFF|ON}]

System Variable ndb_log_exclusive_reads

Scope Global, Session

Dynamic Yes

Type Boolean

Default Value 0

Starting the server with this option causes primary key reads to be logged with exclusive locks, which
allows for NDB Cluster Replication conflict detection and resolution based on read conflicts. You can
also enable and disable these locks at runtime by setting the value of the ndb_log_exclusive_reads
system variable to 1 or 0, respectively. 0 (disable locking) is the default.

For more information, see Read conflict detection and resolution.

• --ndb-log-fail-terminate

Command-Line Format --ndb-log-fail-terminate

Introduced 5.7.29-ndb-7.6.14

System Variable ndb_log_fail_terminate

Scope Global

Dynamic No

Type Boolean

Default Value FALSE

When this option is specified, and complete logging of all found row events is not possible, the mysqld
process is terminated.

• --ndb-log-orig

Command-Line Format --ndb-log-orig[={OFF|ON}]

System Variable ndb_log_orig
3511

NDB Cluster Configuration Files

Scope Global

Dynamic No

Type Boolean

Default Value OFF

Log the originating server ID and epoch in the ndb_binlog_index table.

Note

This makes it possible for a given epoch to have multiple rows in
ndb_binlog_index, one for each originating epoch.

For more information, see Section 21.7.4, “NDB Cluster Replication Schema and Tables”.

• --ndb-log-transaction-id

Command-Line Format --ndb-log-transaction-id[={OFF|ON}]

System Variable ndb_log_transaction_id

Scope Global

Dynamic No

Type Boolean

Default Value OFF

Causes a replica mysqld to write the NDB transaction ID in each row of the binary log.
Such logging requires the use of the Version 2 event format for the binary log; thus, the
log_bin_use_v1_row_events system variable must be disabled to use this option.

--ndb-log-transaction-id is required to enable NDB Cluster Replication conflict detection and
resolution using the NDB$EPOCH_TRANS() function (see NDB$EPOCH_TRANS()).

For more information, see Section 21.7.11, “NDB Cluster Replication Conflict Resolution”.

• --ndb-log-update-as-write

Command-Line Format --ndb-log-update-as-write[={OFF|ON}]

System Variable ndb_log_update_as_write

Scope Global

Dynamic Yes

Type Boolean

3512

NDB Cluster Configuration Files

Default Value ON

Whether updates on the source are written to the binary log as updates (OFF) or writes (ON). When this
option is enabled, and both --ndb-log-updated-only and --ndb-log-update-minimal are
disabled, operations of different types are loǵged as described in the following list:

• INSERT: Logged as a WRITE_ROW event with no before image; the after image is logged with all
columns.

UPDATE: Logged as a WRITE_ROW event with no before image; the after image is logged with all
columns.

DELETE: Logged as a DELETE_ROW event with all columns logged in the before image; the after image
is not logged.

This option can be used for NDB Replication conflict resolution in combination with the other two NDB
logging options mentioned previously; see ndb_replication Table, for more information.

• --ndb-log-updated-only

Command-Line Format --ndb-log-updated-only[={OFF|ON}]

System Variable ndb_log_updated_only

Scope Global

Dynamic Yes

Type Boolean

Default Value ON

Whether mysqld writes updates only (ON) or complete rows (OFF) to the binary log. When this option is
enabled, and both --ndb-log-update-as-write and --ndb-log-update-minimal are disabled,
operations of different types are loǵged as described in the following list

• INSERT: Logged as a WRITE_ROW event with no before image; the after image is logged with all
columns.

• UPDATE: Logged as an UPDATE_ROW event with primary key columns and updated columns present in
both the before and after images.

• DELETE: Logged as a DELETE_ROW event with primary key columns incuded in the before image; the
after image is not logged.

This option can be used for NDB Replication conflict resolution in combination with the other two NDB
logging options mentioned previously; see ndb_replication Table, for more information about how these
options interact with one another.

• --ndb-log-update-minimal

Command-Line Format --ndb-log-update-minimal[={OFF|ON}]

Introduced 5.7.18-ndb-7.6.3

System Variable ndb_log_update_minimal

Scope Global

Dynamic Yes

3513

NDB Cluster Configuration Files

Type Boolean

Default Value OFF

Log updates in a minimal fashion, by writing only the primary key values in the before image, and only
the changed columns in the after image. This may cause compatibility problems if replicating to storage
engines other than NDB. When this option is enabled, and both --ndb-log-updated-only and --
ndb-log-update-as-write are disabled, operations of different types are loǵged as described in the
following list:

• INSERT: Logged as a WRITE_ROW event with no before image; the after image is logged with all
columns.

• UPDATE: Logged as an UPDATE_ROW event with primary key columns in the before image; all columns
except primary key columns are logged in the after image.

• DELETE: Logged as a DELETE_ROW event with all columns in the before image; the after image is not
logged.

This option can be used for NDB Replication conflict resolution in combination with the other two NDB
logging options mentioned previously; see ndb_replication Table, for more information.

• --ndb-mgmd-host=host[:port]

Command-Line Format --ndb-mgmd-host=host_name[:port_num]

Type String

Default Value localhost:1186

Can be used to set the host and port number of a single management server for the program to connect
to. If the program requires node IDs or references to multiple management servers (or both) in its
connection information, use the --ndb-connectstring option instead.

• --ndb-nodeid=#

Command-Line Format --ndb-nodeid=#

Status Variable Ndb_cluster_node_id

Scope Global

Dynamic No

Type Integer

Default Value N/A

Minimum Value 1

Maximum Value 255

Maximum Value 63

Set this MySQL server's node ID in an NDB Cluster.

The --ndb-nodeid option overrides any node ID set with --ndb-connectstring, regardless of the
order in which the two options are used.

In addition, if --ndb-nodeid is used, then either a matching node ID must be found in a [mysqld] or
[api] section of config.ini, or there must be an “open” [mysqld] or [api] section in the file (that

3514

NDB Cluster Configuration Files

is, a section without a NodeId or Id parameter specified). This is also true if the node ID is specified as
part of the connection string.

Regardless of how the node ID is determined, its is shown as the value of the global status variable
Ndb_cluster_node_id in the output of SHOW STATUS, and as cluster_node_id in the
connection row of the output of SHOW ENGINE NDBCLUSTER STATUS.

For more information about node IDs for NDB Cluster SQL nodes, see Section 21.4.3.7, “Defining SQL
and Other API Nodes in an NDB Cluster”.

• --ndb-optimization-delay=milliseconds

Command-Line Format --ndb-optimization-delay=#

System Variable ndb_optimization_delay

Scope Global

Dynamic Yes

Type Integer

Default Value 10

Minimum Value 0

Maximum Value 100000

Unit milliseconds

Set the number of milliseconds to wait between sets of rows by OPTIMIZE TABLE statements on NDB
tables. The default is 10.

• --ndb-optimized-node-selection

Command-Line Format --ndb-optimized-node-selection

System Variable ndb_optimized_node_selection

Scope Global

Dynamic Yes

Type Integer

Default Value 3

Minimum Value 0

Maximum Value 3

Enable optimizations for selection of nodes for transactions. Enabled by default; use --skip-ndb-
optimized-node-selection to disable.

• --ndb-transid-mysql-connection-map=state

Command-Line Format --ndb-transid-mysql-connection-
map[=state]

Type Enumeration

Default Value ON

Valid Values ON

OFF 3515

NDB Cluster Configuration Files

FORCE

Enables or disables the plugin that handles the ndb_transid_mysql_connection_map table in
the INFORMATION_SCHEMA database. Takes one of the values ON, OFF, or FORCE. ON (the default)
enables the plugin. OFF disables the plugin, which makes ndb_transid_mysql_connection_map
inaccessible. FORCE keeps the MySQL Server from starting if the plugin fails to load and start.

You can see whether the ndb_transid_mysql_connection_map table plugin is running by checking
the output of SHOW PLUGINS.

• --ndb-wait-connected=seconds

Command-Line Format --ndb-wait-connected=#

System Variable ndb_wait_connected

Scope Global

Dynamic No

Type Integer

Default Value 30

Minimum Value 0

Maximum Value 31536000

Unit seconds

This option sets the period of time that the MySQL server waits for connections to NDB Cluster
management and data nodes to be established before accepting MySQL client connections. The time is
specified in seconds. The default value is 30.

• --ndb-wait-setup=seconds

Command-Line Format --ndb-wait-setup=#

System Variable ndb_wait_setup

Scope Global

Dynamic No

Type Integer

Default Value 30

Default Value 30

Default Value 15

Default Value 15

Minimum Value 0

Maximum Value 31536000

Unit seconds

This variable shows the period of time that the MySQL server waits for the NDB storage engine to
complete setup before timing out and treating NDB as unavailable. The time is specified in seconds. The
default value is 30.

3516

NDB Cluster Configuration Files

• --skip-ndbcluster

Command-Line Format --skip-ndbcluster

Disable the NDBCLUSTER storage engine. This is the default for binaries that were built with
NDBCLUSTER storage engine support; the server allocates memory and other resources for this storage
engine only if the --ndbcluster option is given explicitly. See Section 21.4.1, “Quick Test Setup of
NDB Cluster”, for an example.

NDB Cluster System Variables

This section provides detailed information about MySQL server system variables that are specific to NDB
Cluster and the NDB storage engine. For system variables not specific to NDB Cluster, see Section 5.1.7,
“Server System Variables”. For general information on using system variables, see Section 5.1.8, “Using
System Variables”.

• ndb_autoincrement_prefetch_sz

Command-Line Format --ndb-autoincrement-prefetch-sz=#

System Variable ndb_autoincrement_prefetch_sz

Scope Global, Session

Dynamic Yes

Type Integer

Default Value 1

Minimum Value 1

Maximum Value 65536

Determines the probability of gaps in an autoincremented column. Set it to 1 to minimize this. Setting
it to a high value for optimization makes inserts faster, but decreases the likelihood that consecutive
autoincrement numbers are used in a batch of inserts.

This variable affects only the number of AUTO_INCREMENT IDs that are fetched between statements;
within a given statement, at least 32 IDs are obtained at a time.

Important

This variable does not affect inserts performed using INSERT ... SELECT.

• ndb_cache_check_time

Command-Line Format --ndb-cache-check-time=#

Deprecated 5.7.20

System Variable ndb_cache_check_time

Scope Global

Dynamic Yes

Type Integer

Default Value 0

Minimum Value 0

Maximum Value 31536000

3517

NDB Cluster Configuration Files

Unit milliseconds

The number of milliseconds that elapse between checks of NDB Cluster SQL nodes by the MySQL
query cache. Setting this to 0 (the default and minimum value) means that the query cache checks for
validation on every query.

The recommended maximum value for this variable is 1000, which means that the check is performed
once per second. A larger value means that the check is performed and possibly invalidated due to
updates on different SQL nodes less often. It is generally not desirable to set this to a value greater than
2000.

Note

The query cache is deprecated as of MySQL 5.7.20, and is removed in MySQL
8.0. Deprecation includes ndb_cache_check_time.

• ndb_clear_apply_status

Command-Line Format --ndb-clear-apply-status[={OFF|ON}]

System Variable ndb_clear_apply_status

Scope Global

Dynamic Yes

Type Boolean

Default Value ON

By the default, executing RESET SLAVE causes an NDB Cluster replica to purge all rows from its
ndb_apply_status table. You can disable this by setting ndb_clear_apply_status=OFF.

• ndb_data_node_neighbour

Command-Line Format --ndb-data-node-neighbour=#

Introduced 5.7.12-ndb-7.5.2

System Variable ndb_data_node_neighbour

Scope Global

Dynamic Yes

Type Integer

Default Value 0

Minimum Value 0

Maximum Value 255

Sets the ID of a “nearest” data node—that is, a preferred nonlocal data node is chosen to execute the
transaction, rather than one running on the same host as the SQL or API node. This used to ensure that

3518

NDB Cluster Configuration Files

when a fully replicated table is accessed, we access it on this data node, to ensure that the local copy of
the table is always used whenever possible. This can also be used for providing hints for transactions.

This can improve data access times in the case of a node that is physically closer than and thus has
higher network throughput than others on the same host.

See Section 13.1.18.9, “Setting NDB Comment Options”, for further information.

Added in NDB 7.5.2.

Note

An equivalent method set_data_node_neighbour() is provided for use in
NDB API applications.

• ndb_default_column_format

Command-Line Format --ndb-default-column-format={FIXED|
DYNAMIC}

Introduced 5.7.11-ndb-7.5.1

System Variable ndb_default_column_format

Scope Global

Dynamic Yes

Type Enumeration

Default Value (≥ 5.7.16-ndb-7.5.4) FIXED

Default Value (≥ 5.7.11-ndb-7.5.1, ≤ 5.7.13-
ndb-7.5.3)

DYNAMIC

Valid Values FIXED

DYNAMIC

In NDB 7.5.1 and later, sets the default COLUMN_FORMAT and ROW_FORMAT for new tables (see
Section 13.1.18, “CREATE TABLE Statement”).

In NDB 7.5.1, the default for this variable was DYNAMIC; in NDB 7.5.4, the default was changed to
FIXED to maintain backwards compatibility with older release series (Bug #24487363).

• ndb_deferred_constraints

Command-Line Format --ndb-deferred-constraints=#

System Variable ndb_deferred_constraints

Scope Global, Session

Dynamic Yes

Type Integer

Default Value 0

Minimum Value 0

3519

https://dev.mysql.com/doc/ndbapi/en/ndb-ndb-cluster-connection.html#ndb-ndb-cluster-connection-set-data-node-neighbour

NDB Cluster Configuration Files

Maximum Value 1

Controls whether or not constraint checks are deferred, where these are supported. 0 is the default.

This variable is not normally needed for operation of NDB Cluster or NDB Cluster Replication, and is
intended primarily for use in testing.

• ndb_distribution

Command-Line Format --ndb-distribution={KEYHASH|LINHASH}

System Variable ndb_distribution

Scope Global

Dynamic Yes

Type Enumeration

Default Value KEYHASH

Valid Values LINHASH

KEYHASH

Controls the default distribution method for NDB tables. Can be set to either of KEYHASH (key hashing) or
LINHASH (linear hashing). KEYHASH is the default.

• ndb_eventbuffer_free_percent

Command-Line Format --ndb-eventbuffer-free-percent=#

System Variable ndb_eventbuffer_free_percent

Scope Global

Dynamic Yes

Type Integer

Default Value 20

Minimum Value 1

Maximum Value 99

Sets the percentage of the maximum memory allocated to the event buffer (ndb_eventbuffer_max_alloc)
that should be available in event buffer after reaching the maximum, before starting to buffer again.

• ndb_eventbuffer_max_alloc

Command-Line Format --ndb-eventbuffer-max-alloc=#

System Variable ndb_eventbuffer_max_alloc

Scope Global

Dynamic Yes

Type Integer

Default Value 0

Minimum Value 0

Maximum Value (≥ 5.7.35-ndb-7.6.19) 9223372036854775807
3520

NDB Cluster Configuration Files

Maximum Value (≥ 5.7.35-ndb-7.5.23) 9223372036854775807

Maximum Value (≤ 5.7.34-ndb-7.5.22) 4294967295

Maximum Value (≤ 5.7.34-ndb-7.6.18) 4294967295

Maximum Value 4294967295

Sets the maximum amount memory (in bytes) that can be allocated for buffering events by the NDB API.
0 means that no limit is imposed, and is the default.

• ndb_extra_logging

Command-Line Format ndb_extra_logging=#

System Variable ndb_extra_logging

Scope Global

Dynamic Yes

Type Integer

Default Value 1

Minimum Value 0

Maximum Value 1

This variable enables recording in the MySQL error log of information specific to the NDB storage engine.

When this variable is set to 0, the only information specific to NDB that is written to the MySQL error log
relates to transaction handling. If it set to a value greater than 0 but less than 10, NDB table schema and
connection events are also logged, as well as whether or not conflict resolution is in use, and other NDB
errors and information. If the value is set to 10 or more, information about NDB internals, such as the
progress of data distribution among cluster nodes, is also written to the MySQL error log. The default is
1.

• ndb_force_send

Command-Line Format --ndb-force-send[={OFF|ON}]

System Variable ndb_force_send

Scope Global, Session

Dynamic Yes

Type Boolean

Default Value ON

Forces sending of buffers to NDB immediately, without waiting for other threads. Defaults to ON.

• ndb_fully_replicated

Command-Line Format --ndb-fully-replicated[={OFF|ON}]

Introduced 5.7.12-ndb-7.5.2

System Variable ndb_fully_replicated

Scope Global, Session

Dynamic Yes

Type Boolean

3521

NDB Cluster Configuration Files

Default Value OFF

Determines whether new NDB tables are fully replicated. This setting can be overridden for an individual
table using COMMENT="NDB_TABLE=FULLY_REPLICATED=..." in a CREATE TABLE or ALTER
TABLE statement; see Section 13.1.18.9, “Setting NDB Comment Options”, for syntax and other
information.

Added in NDB 7.5.2.

• ndb_index_stat_enable

Command-Line Format --ndb-index-stat-enable[={OFF|ON}]

System Variable ndb_index_stat_enable

Scope Global, Session

Dynamic Yes

Type Boolean

Default Value ON

Use NDB index statistics in query optimization. The default is ON.

• ndb_index_stat_option

Command-Line Format --ndb-index-stat-option=value

System Variable ndb_index_stat_option

Scope Global, Session

Dynamic Yes

Type String

Default Value loop_checkon=1000ms,loop_idle=1000ms,loop_busy=100ms,
update_batch=1,read_batch=4,idle_batch=32,check_batch=32,
check_delay=1m,delete_batch=8,clean_delay=0,error_batch=4,

3522

NDB Cluster Configuration Files

error_delay=1m,evict_batch=8,evict_delay=1m,cache_limit=32M,
cache_lowpct=90

This variable is used for providing tuning options for NDB index statistics generation. The list consist
of comma-separated name-value pairs of option names and values, and this list must not contain any
space characters.

Options not used when setting ndb_index_stat_option are not changed from
their default values. For example, you can set ndb_index_stat_option =
'loop_idle=1000ms,cache_limit=32M'.

Time values can be optionally suffixed with h (hours), m (minutes), or s (seconds). Millisecond values
can optionally be specified using ms; millisecond values cannot be specified using h, m, or s.) Integer
values can be suffixed with K, M, or G.

The names of the options that can be set using this variable are shown in the table that follows. The
table also provides brief descriptions of the options, their default values, and (where applicable) their
minimum and maximum values.

Table 21.18 ndb_index_stat_option options and values

Name Description Default/Units Minimum/Maximum

loop_enable 1000 ms 0/4G

loop_idle Time to sleep when idle 1000 ms 0/4G

loop_busy Time to sleep when
more work is waiting

100 ms 0/4G

update_batch 1 0/4G

read_batch 4 1/4G

idle_batch 32 1/4G

check_batch 8 1/4G

check_delay How often to check for
new statistics

10 m 1/4G

delete_batch 8 0/4G

clean_delay 1 m 0/4G

error_batch 4 1/4G

error_delay 1 m 1/4G

evict_batch 8 1/4G

evict_delay Clean LRU cache, from
read time

1 m 0/4G

cache_limit Maximum amount
of memory in bytes
used for cached
index statistics by this
mysqld; clean up the
cache when this is
exceeded.

32 M 0/4G

cache_lowpct 90 0/100

3523

NDB Cluster Configuration Files

Name Description Default/Units Minimum/Maximum

zero_total Setting this to 1 resets
all accumulating
counters in
ndb_index_stat_status
to 0. This option value is
also reset to 0 when this
is done.

0 0/1

• ndb_join_pushdown

System Variable ndb_join_pushdown

Scope Global, Session

Dynamic Yes

Type Boolean

Default Value ON

This variable controls whether joins on NDB tables are pushed down to the NDB kernel (data nodes).
Previously, a join was handled using multiple accesses of NDB by the SQL node; however, when
ndb_join_pushdown is enabled, a pushable join is sent in its entirety to the data nodes, where it
can be distributed among the data nodes and executed in parallel on multiple copies of the data, with
a single, merged result being returned to mysqld. This can reduce greatly the number of round trips
between an SQL node and the data nodes required to handle such a join.

By default, ndb_join_pushdown is enabled.

Conditions for NDB pushdown joins. In order for a join to be pushable, it must meet the following
conditions:

1. Only columns can be compared, and all columns to be joined must use exactly the same data type.

This means that expressions such as t1.a = t2.a + constant cannot be pushed down, and
that (for example) a join on an INT column and a BIGINT column also cannot be pushed down.

2. Queries referencing BLOB or TEXT columns are not supported.

3. Explicit locking is not supported; however, the NDB storage engine's characteristic implicit row-based
locking is enforced.

This means that a join using FOR UPDATE cannot be pushed down.

4. In order for a join to be pushed down, child tables in the join must be accessed using one of the ref,
eq_ref, or const access methods, or some combination of these methods.

Outer joined child tables can only be pushed using eq_ref.

If the root of the pushed join is an eq_ref or const, only child tables joined by eq_ref can be
appended. (A table joined by ref is likely to become the root of another pushed join.)

If the query optimizer decides on Using join cache for a candidate child table, that table cannot
be pushed as a child. However, it may be the root of another set of pushed tables.

5. Joins referencing tables explicitly partitioned by [LINEAR] HASH, LIST, or RANGE currently cannot
be pushed down.

3524

NDB Cluster Configuration Files

You can see whether a given join can be pushed down by checking it with EXPLAIN; when the join can
be pushed down, you can see references to the pushed join in the Extra column of the output, as
shown in this example:

mysql> EXPLAIN
 -> SELECT e.first_name, e.last_name, t.title, d.dept_name
 -> FROM employees e
 -> JOIN dept_emp de ON e.emp_no=de.emp_no
 -> JOIN departments d ON d.dept_no=de.dept_no
 -> JOIN titles t ON e.emp_no=t.emp_no\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: d
 type: ALL
possible_keys: PRIMARY
 key: NULL
 key_len: NULL
 ref: NULL
 rows: 9
 Extra: Parent of 4 pushed join@1
*************************** 2. row ***************************
 id: 1
 select_type: SIMPLE
 table: de
 type: ref
possible_keys: PRIMARY,emp_no,dept_no
 key: dept_no
 key_len: 4
 ref: employees.d.dept_no
 rows: 5305
 Extra: Child of 'd' in pushed join@1
*************************** 3. row ***************************
 id: 1
 select_type: SIMPLE
 table: e
 type: eq_ref
possible_keys: PRIMARY
 key: PRIMARY
 key_len: 4
 ref: employees.de.emp_no
 rows: 1
 Extra: Child of 'de' in pushed join@1
*************************** 4. row ***************************
 id: 1
 select_type: SIMPLE
 table: t
 type: ref
possible_keys: PRIMARY,emp_no
 key: emp_no
 key_len: 4
 ref: employees.de.emp_no
 rows: 19
 Extra: Child of 'e' in pushed join@1

3525

NDB Cluster Configuration Files

4 rows in set (0.00 sec)

Note

If inner joined child tables are joined by ref, and the result is ordered or grouped
by a sorted index, this index cannot provide sorted rows, which forces writing to a
sorted tempfile.

Two additional sources of information about pushed join performance are available:

1. The status variables Ndb_pushed_queries_defined, Ndb_pushed_queries_dropped,
Ndb_pushed_queries_executed, and Ndb_pushed_reads.

2. The counters in the ndbinfo.counters table that belong to the DBSPJ kernel block.

• ndb_log_apply_status

Command-Line Format --ndb-log-apply-status[={OFF|ON}]

System Variable ndb_log_apply_status

Scope Global

Dynamic No

Type Boolean

Default Value OFF

A read-only variable which shows whether the server was started with the --ndb-log-apply-status
option.

• ndb_log_bin

Command-Line Format --ndb-log-bin[={OFF|ON}]

System Variable ndb_log_bin

Scope Global, Session

Dynamic No

Type Boolean

Default Value ON

Causes updates to NDB tables to be written to the binary log. Setting this variable has no effect if
binary logging is not already enabled for the server using log_bin. ndb_log_bin defaults to 1 (ON);
normally, there is never any need to change this value in a production environment.

• ndb_log_binlog_index

Command-Line Format --ndb-log-binlog-index[={OFF|ON}]

System Variable ndb_log_binlog_index

Scope Global

Dynamic Yes

Type Boolean

3526

https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbspj.html

NDB Cluster Configuration Files

Default Value ON

Causes a mapping of epochs to positions in the binary log to be inserted into the ndb_binlog_index
table. Setting this variable has no effect if binary logging is not already enabled for the server using
log_bin. (In addition, ndb_log_bin must not be disabled.) ndb_log_binlog_index defaults to 1
(ON); normally, there is never any need to change this value in a production environment.

• ndb_log_empty_epochs

Command-Line Format --ndb-log-empty-epochs[={OFF|ON}]

System Variable ndb_log_empty_epochs

Scope Global

Dynamic Yes

Type Boolean

Default Value OFF

When this variable is set to 0, epoch transactions with no changes are not written to the binary log,
although a row is still written even for an empty epoch in ndb_binlog_index.

• ndb_log_empty_update

Command-Line Format --ndb-log-empty-update[={OFF|ON}]

System Variable ndb_log_empty_update

Scope Global

Dynamic Yes

Type Boolean

Default Value OFF

When this variable is set to ON (1), update transactions with no changes are written to the binary log,
even when log_slave_updates is enabled.

• ndb_log_exclusive_reads

Command-Line Format --ndb-log-exclusive-reads[={OFF|ON}]

System Variable ndb_log_exclusive_reads

Scope Global, Session

Dynamic Yes

Type Boolean

Default Value 0

This variable determines whether primary key reads are logged with exclusive locks, which allows for
NDB Cluster Replication conflict detection and resolution based on read conflicts. To enable these locks,
set the value of ndb_log_exclusive_reads to 1. 0, which disables such locking, is the default.

For more information, see Read conflict detection and resolution.

• ndb_log_orig

Command-Line Format --ndb-log-orig[={OFF|ON}]

3527

NDB Cluster Configuration Files

System Variable ndb_log_orig

Scope Global

Dynamic No

Type Boolean

Default Value OFF

Shows whether the originating server ID and epoch are logged in the ndb_binlog_index table. Set
using the --ndb-log-orig server option.

• ndb_log_transaction_id

System Variable ndb_log_transaction_id

Scope Global

Dynamic No

Type Boolean

Default Value OFF

This read-only, Boolean system variable shows whether a replica mysqld writes NDB transaction IDs
in the binary log (required to use “active-active” NDB Cluster Replication with NDB$EPOCH_TRANS()
conflict detection). To change the setting, use the --ndb-log-transaction-id option.

ndb_log_transaction_id is not supported in mainline MySQL Server 5.7.

For more information, see Section 21.7.11, “NDB Cluster Replication Conflict Resolution”.

• ndb_optimized_node_selection

Command-Line Format --ndb-optimized-node-selection=#

System Variable ndb_optimized_node_selection

Scope Global

Dynamic No

Type Integer

Default Value 3

Minimum Value 0

Maximum Value 3

There are two forms of optimized node selection, described here:

1. The SQL node uses promixity to determine the transaction coordinator; that is, the “closest” data
node to the SQL node is chosen as the transaction coordinator. For this purpose, a data node having
a shared memory connection with the SQL node is considered to be “closest” to the SQL node; the
next closest (in order of decreasing proximity) are: TCP connection to localhost, followed by TCP
connection from a host other than localhost.

2. The SQL thread uses distribution awareness to select the data node. That is, the data node housing
the cluster partition accessed by the first statement of a given transaction is used as the transaction

3528

NDB Cluster Configuration Files

coordinator for the entire transaction. (This is effective only if the first statement of the transaction
accesses no more than one cluster partition.)

This option takes one of the integer values 0, 1, 2, or 3. 3 is the default. These values affect node
selection as follows:

• 0: Node selection is not optimized. Each data node is employed as the transaction coordinator 8 times
before the SQL thread proceeds to the next data node.

• 1: Proximity to the SQL node is used to determine the transaction coordinator.

• 2: Distribution awareness is used to select the transaction coordinator. However, if the first statement
of the transaction accesses more than one cluster partition, the SQL node reverts to the round-robin
behavior seen when this option is set to 0.

• 3: If distribution awareness can be employed to determine the transaction coordinator, then it is used;
otherwise proximity is used to select the transaction coordinator. (This is the default behavior.)

Proximity is determined as follows:

1. Start with the value set for the Group parameter (default 55).

2. For an API node sharing the same host with other API nodes, decrement the value by 1. Assuming
the default value for Group, the effective value for data nodes on same host as the API node is 54,
and for remote data nodes 55.

3. (NDB 7.5.2 and later:) Setting ndb_data_node_neighbour further decreases the effective Group
value by 50, causing this node to be regarded as the nearest node. This is needed only when all data
nodes are on hosts other than that hosts the API node and it is desirable to dedicate one of them to
the API node. In normal cases, the default adjustment described previously is sufficient.

Frequent changes in ndb_data_node_neighbour are not advisable, since this changes the state
of the cluster connection and thus may disrupt the selection algorithm for new transactions from each
thread until it stablilizes.

• ndb_read_backup

Command-Line Format --ndb-read-backup[={OFF|ON}]

Introduced 5.7.12-ndb-7.5.2

System Variable ndb_read_backup

Scope Global

Dynamic Yes

Type Boolean

Default Value OFF

Enable read from any fragment replica for any NDB table subsequently created; doing so greatly
improves the table read performance at a relatively small cost to writes.

If the SQL node and the data node use the same host name or IP address, this fact is detected
automatically, so that the preference is to send reads to the same host. If these nodes are on the same

3529

NDB Cluster Configuration Files

host but use different IP addresses, you can tell the SQL node to use the correct data node by setting
the value of ndb_data_node_neighbour on the SQL node to the node ID of the data node.

To enable or disable read from any fragment replica for an individual table, you can set the NDB_TABLE
option READ_BACKUP for the table accordingly, in a CREATE TABLE or ALTER TABLE statement; see
Section 13.1.18.9, “Setting NDB Comment Options”, for more information.

Added in NDB 7.5.2.

• ndb_recv_thread_activation_threshold

Command-Line Format --ndb-recv-thread-activation-
threshold=#

System Variable ndb_recv_thread_activation_threshold

Scope Global

Dynamic Yes

Type Integer

Default Value 8

Minimum Value 0 (MIN_ACTIVATION_THRESHOLD)

Maximum Value 16 (MAX_ACTIVATION_THRESHOLD)

When this number of concurrently active threads is reached, the receive thread takes over polling of the
cluster connection.

This variable is global in scope. It can also be set at startup.

• ndb_recv_thread_cpu_mask

Command-Line Format --ndb-recv-thread-cpu-mask=mask

System Variable ndb_recv_thread_cpu_mask

Scope Global

Dynamic Yes

Type Bitmap

Default Value [empty]

CPU mask for locking receiver threads to specific CPUs. This is specified as a hexadecimal bitmask. For
example, 0x33 means that one CPU is used per receiver thread. An empty string is the default; setting
ndb_recv_thread_cpu_mask to this value removes any receiver thread locks previously set.

This variable is global in scope. It can also be set at startup.

• ndb_report_thresh_binlog_epoch_slip

Command-Line Format --ndb-report-thresh-binlog-epoch-
slip=#

System Variable ndb_report_thresh_binlog_epoch_slip

Scope Global

Dynamic Yes

Type Integer

3530

NDB Cluster Configuration Files

Default Value (≥ 5.7.16-ndb-7.5.4) 10

Default Value (≤ 5.7.13-ndb-7.5.3) 3

Minimum Value 0

Maximum Value 256

In NDB 7.5.4 and later, this represents the threshold for the number of epochs completely buffered in
the event buffer, but not yet consumed by the binlog injector thread. When this degree of slippage (lag)
is exceeded, an event buffer status message is reported, with BUFFERED_EPOCHS_OVER_THRESHOLD
supplied as the reason (see Section 21.6.2.3, “Event Buffer Reporting in the Cluster Log”). Slip is
increased when an epoch is received from data nodes and buffered completely in the event buffer; it
is decreased when an epoch is consumed by the binlog injector thread, it is reduced. Empty epochs
are buffered and queued, and so included in this calculation only when this is enabled using the
Ndb::setEventBufferQueueEmptyEpoch() method from the NDB API.

Prior to NDB 7.5.4, the value of this vairable served as a threshold for the number of epochs to be
behind before reporting binary log status. In these previous releases, a value of 3—the default—means
that if the difference between which epoch has been received from the storage nodes and which epoch
has been applied to the binary log is 3 or more, a status message is then sent to the cluster log.

• ndb_report_thresh_binlog_mem_usage

Command-Line Format --ndb-report-thresh-binlog-mem-
usage=#

System Variable ndb_report_thresh_binlog_mem_usage

Scope Global

Dynamic Yes

Type Integer

Default Value 10

Minimum Value 0

Maximum Value 10

This is a threshold on the percentage of free memory remaining before reporting binary log status. For
example, a value of 10 (the default) means that if the amount of available memory for receiving binary
log data from the data nodes falls below 10%, a status message is sent to the cluster log.

• ndb_row_checksum

Introduced 5.7.23-ndb-7.6.8

System Variable ndb_row_checksum

Scope Global, Session

Dynamic Yes

Type Integer

Default Value 1

Minimum Value 0

Maximum Value 1

Traditionally, NDB has created tables with row checksums, which checks for hardware issues at the
expense of performance. Setting ndb_row_checksum to 0 means that row checksums are not used

3531

https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html#ndb-ndb-seteventbufferqueueemptyepoch

NDB Cluster Configuration Files

for new or altered tables, which has a significant impact on performance for all types of queries. This
variable is set to 1 by default, to provide backward-compatible behavior.

• ndb_show_foreign_key_mock_tables

Command-Line Format --ndb-show-foreign-key-mock-
tables[={OFF|ON}]

System Variable ndb_show_foreign_key_mock_tables

Scope Global

Dynamic Yes

Type Boolean

Default Value OFF

Show the mock tables used by NDB to support foreign_key_checks=0. When this is enabled, extra
warnings are shown when creating and dropping the tables. The real (internal) name of the table can be
seen in the output of SHOW CREATE TABLE.

• ndb_slave_conflict_role

Command-Line Format --ndb-slave-conflict-role=value

System Variable ndb_slave_conflict_role

Scope Global

Dynamic Yes

Type Enumeration

Default Value NONE

Valid Values NONE

PRIMARY

SECONDARY

PASS

Determine the role of this SQL node (and NDB Cluster) in a circular (“active-active”) replication
setup. ndb_slave_conflict_role can take any one of the values PRIMARY, SECONDARY,
PASS, or NULL (the default). The replica SQL thread must be stopped before you can change
ndb_slave_conflict_role. In addition, it is not possible to change directly between PASS and either
of PRIMARY or SECONDARY directly; in such cases, you must ensure that the SQL thread is stopped,
then execute SET @@GLOBAL.ndb_slave_conflict_role = 'NONE' first.

For more information, see Section 21.7.11, “NDB Cluster Replication Conflict Resolution”.

• ndb_table_no_logging

System Variable ndb_table_no_logging

Scope Session

Dynamic Yes

Type Boolean

3532

NDB Cluster Configuration Files

Default Value OFF

When this variable is set to ON or 1, it causes all tables created or altered using ENGINE NDB to be
nonlogging; that is, no data changes for this table are written to the redo log or checkpointed to disk, just
as if the table had been created or altered using the NOLOGGING option for CREATE TABLE or ALTER
TABLE.

For more information about nonlogging NDB tables, see NDB_TABLE Options.

ndb_table_no_logging has no effect on the creation of NDB table schema files; to suppress these,
use ndb_table_temporary instead.

• ndb_table_temporary

System Variable ndb_table_temporary

Scope Session

Dynamic Yes

Type Boolean

Default Value OFF

When set to ON or 1, this variable causes NDB tables not to be written to disk: This means that no table
schema files are created, and that the tables are not logged.

Note

Setting this variable currently has no effect. This is a known issue; see Bug
#34036.

• ndb_use_copying_alter_table

System Variable ndb_use_copying_alter_table

Scope Global, Session

Dynamic No

Forces NDB to use copying of tables in the event of problems with online ALTER TABLE operations. The
default value is OFF.

• ndb_use_exact_count

System Variable ndb_use_exact_count

Scope Global, Session

Dynamic Yes

Type Boolean

Default Value OFF

Forces NDB to use a count of records during SELECT COUNT(*) query planning to speed up this type of
query. The default value is OFF, which allows for faster queries overall.

• ndb_use_transactions

Command-Line Format --ndb-use-transactions[={OFF|ON}]

3533

NDB Cluster Configuration Files

System Variable ndb_use_transactions

Scope Global, Session

Dynamic Yes

Type Boolean

Default Value ON

You can disable NDB transaction support by setting this variable's value to OFF. This is generally not
recommended, although it may be useful to disable transaction support within a given client session
when that session is used to import one or more dump files with large transactions; this allows a multi-
row insert to be executed in parts, rather than as a single transaction. In such cases, once the import has
been completed, you should either reset the variable value for this session to ON, or simply terminate the
session.

• ndb_version

System Variable ndb_version

Scope Global

Dynamic No

Type String

Default Value

NDB engine version, as a composite integer.

• ndb_version_string

System Variable ndb_version_string

Scope Global

Dynamic No

Type String

Default Value

NDB engine version in ndb-x.y.z format.

• server_id_bits

Command-Line Format --server-id-bits=#

System Variable server_id_bits

Scope Global

Dynamic No

Type Integer

Default Value 32

Minimum Value 7

Maximum Value 32

This variable indicates the number of least significant bits within the 32-bit server_id which actually
identify the server. Indicating that the server is actually identified by fewer than 32 bits makes it possible
for some of the remaining bits to be used for other purposes, such as storing user data generated by3534

NDB Cluster Configuration Files

applications using the NDB API's Event API within the AnyValue of an OperationOptions structure
(NDB Cluster uses the AnyValue to store the server ID).

When extracting the effective server ID from server_id for purposes such as detection of replication
loops, the server ignores the remaining bits. The server_id_bits variable is used to mask out any
irrelevant bits of server_id in the I/O and SQL threads when deciding whether an event should be
ignored based on the server ID.

This data can be read from the binary log by mysqlbinlog, provided that it is run with its own
server_id_bits variable set to 32 (the default).

If the value of server_id greater than or equal to 2 to the power of server_id_bits; otherwise,
mysqld refuses to start.

This system variable is supported only by NDB Cluster. It is not supported in the standard MySQL 5.7
Server.

• slave_allow_batching

Command-Line Format --slave-allow-batching[={OFF|ON}]

System Variable slave_allow_batching

Scope Global

Dynamic Yes

Type Boolean

Default Value OFF

Whether or not batched updates are enabled on NDB Cluster replicas.

Allowing batched updates on the replica greatly improves performance, particularly when replicating
TEXT, BLOB, and JSON columns. For this reason, you should always enable slave_allow_batching
when using NDB replication. Beginning with NDB 7.6.23, a warning is issued whenever this variable is
set to OFF.

Setting this variable has an effect only when using replication with the NDB storage engine; in MySQL
Server 5.7, it is present but does nothing. For more information, see Section 21.7.6, “Starting NDB
Cluster Replication (Single Replication Channel)”.

• transaction_allow_batching

System Variable transaction_allow_batching

Scope Session

Dynamic Yes

Type Boolean

3535

https://dev.mysql.com/doc/ndbapi/en/ndb-ndboperation.html#ndb-ndboperation-operationoptions

NDB Cluster Configuration Files

Default Value OFF

When set to 1 or ON, this variable enables batching of statements within the same transaction. To
use this variable, autocommit must first be disabled by setting it to 0 or OFF; otherwise, setting
transaction_allow_batching has no effect.

It is safe to use this variable with transactions that performs writes only, as having it enabled can lead to
reads from the “before” image. You should ensure that any pending transactions are committed (using
an explicit COMMIT if desired) before issuing a SELECT.

Important

transaction_allow_batching should not be used whenever there is the
possibility that the effects of a given statement depend on the outcome of a
previous statement within the same transaction.

This variable is currently supported for NDB Cluster only.

The system variables in the following list all relate to the ndbinfo information database.

• ndbinfo_database

System Variable ndbinfo_database

Scope Global

Dynamic No

Type String

Default Value ndbinfo

Shows the name used for the NDB information database; the default is ndbinfo. This is a read-only
variable whose value is determined at compile time.

• ndbinfo_max_bytes

Command-Line Format --ndbinfo-max-bytes=#

System Variable ndbinfo_max_bytes

Scope Global, Session

Dynamic Yes

Type Integer

Default Value 0

Minimum Value 0

Maximum Value 65535

Used in testing and debugging only.

• ndbinfo_max_rows

Command-Line Format --ndbinfo-max-rows=#

System Variable ndbinfo_max_rows

Scope Global, Session

Dynamic Yes

3536

NDB Cluster Configuration Files

Type Integer

Default Value 10

Minimum Value 1

Maximum Value 256

Used in testing and debugging only.

• ndbinfo_offline

System Variable ndbinfo_offline

Scope Global

Dynamic Yes

Type Boolean

Default Value OFF

Place the ndbinfo database into offline mode, in which tables and views can be opened even when
they do not actually exist, or when they exist but have different definitions in NDB. No rows are returned
from such tables (or views).

• ndbinfo_show_hidden

Command-Line Format --ndbinfo-show-hidden[={OFF|ON}]

System Variable ndbinfo_show_hidden

Scope Global, Session

Dynamic Yes

Type Boolean

Default Value OFF

Valid Values ON

OFF

Whether or not the ndbinfo database's underlying internal tables are shown in the mysql client. The
default is OFF.

Note

When ndbinfo_show_hidden is enabled, the internal tables are shown
in the ndbinfo database only; they are not visible in TABLES or other
INFORMATION_SCHEMA tables, regardless of the variable's setting.

• ndbinfo_table_prefix

System Variable ndbinfo_table_prefix

Scope Global

Dynamic No

Type String

3537

NDB Cluster Configuration Files

Default Value ndb$

The prefix used in naming the ndbinfo database's base tables (normally hidden, unless exposed by
setting ndbinfo_show_hidden). This is a read-only variable whose default value is ndb$; the prefix
itself is determined at compile time.

• ndbinfo_version

System Variable ndbinfo_version

Scope Global

Dynamic No

Type String

Default Value

Shows the version of the ndbinfo engine in use; read-only.

NDB Cluster Status Variables

This section provides detailed information about MySQL server status variables that relate to NDB Cluster
and the NDB storage engine. For status variables not specific to NDB Cluster, and for general information
on using status variables, see Section 5.1.9, “Server Status Variables”.

• Handler_discover

The MySQL server can ask the NDBCLUSTER storage engine if it knows about a table with a given name.
This is called discovery. Handler_discover indicates the number of times that tables have been
discovered using this mechanism.

• Ndb_api_adaptive_send_deferred_count

Number of adaptive send calls that were not actually sent.

For more information, see Section 21.6.14, “NDB API Statistics Counters and Variables”.

• Ndb_api_adaptive_send_deferred_count_session

Number of adaptive send calls that were not actually sent.

For more information, see Section 21.6.14, “NDB API Statistics Counters and Variables”.

• Ndb_api_adaptive_send_deferred_count_slave

Number of adaptive send calls that were not actually sent by this replica.

For more information, see Section 21.6.14, “NDB API Statistics Counters and Variables”.

• Ndb_api_adaptive_send_forced_count

Number of adaptive send calls using forced-send sent by this MySQL Server (SQL node).

For more information, see Section 21.6.14, “NDB API Statistics Counters and Variables”.

• Ndb_api_adaptive_send_forced_count_session

Number of adaptive send calls using forced-send sent in this client session.3538

NDB Cluster Configuration Files

For more information, see Section 21.6.14, “NDB API Statistics Counters and Variables”.

• Ndb_api_adaptive_send_forced_count_slave

Number of adaptive send calls using forced-send sent by this replica.

For more information, see Section 21.6.14, “NDB API Statistics Counters and Variables”.

• Ndb_api_adaptive_send_unforced_count

Number of adaptive send calls without forced-send sent by this MySQL server (SQL node).

For more information, see Section 21.6.14, “NDB API Statistics Counters and Variables”.

• Ndb_api_adaptive_send_unforced_count_session

Number of adaptive send calls without forced-send sent in this client session.

For more information, see Section 21.6.14, “NDB API Statistics Counters and Variables”.

• Ndb_api_adaptive_send_unforced_count_slave

Number of adaptive send calls without forced-send sent by this replica.

For more information, see Section 21.6.14, “NDB API Statistics Counters and Variables”.

• Ndb_api_bytes_sent_count_session

Amount of data (in bytes) sent to the data nodes in this client session.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION STATUS, it
relates to the current session only, and is not affected by any other clients of this mysqld.

For more information, see Section 21.6.14, “NDB API Statistics Counters and Variables”.

• Ndb_api_bytes_sent_count_slave

Amount of data (in bytes) sent to the data nodes by this replica.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION STATUS, it
is effectively global in scope. If this MySQL server does not act as a replica, or does not use NDB tables,
this value is always 0.

For more information, see Section 21.6.14, “NDB API Statistics Counters and Variables”.

• Ndb_api_bytes_sent_count

Amount of data (in bytes) sent to the data nodes by this MySQL Server (SQL node).

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION STATUS, it
is effectively global in scope.

For more information, see Section 21.6.14, “NDB API Statistics Counters and Variables”.

3539

NDB Cluster Configuration Files

• Ndb_api_bytes_received_count_session

Amount of data (in bytes) received from the data nodes in this client session.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION STATUS, it
relates to the current session only, and is not affected by any other clients of this mysqld.

For more information, see Section 21.6.14, “NDB API Statistics Counters and Variables”.

• Ndb_api_bytes_received_count_slave

Amount of data (in bytes) received from the data nodes by this replica.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION STATUS, it
is effectively global in scope. If this MySQL server does not act as a replica, or does not use NDB tables,
this value is always 0.

For more information, see Section 21.6.14, “NDB API Statistics Counters and Variables”.

• Ndb_api_bytes_received_count

Amount of data (in bytes) received from the data nodes by this MySQL Server (SQL node).

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION STATUS, it
is effectively global in scope.

For more information, see Section 21.6.14, “NDB API Statistics Counters and Variables”.

• Ndb_api_event_data_count_injector

The number of row change events received by the NDB binlog injector thread.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION STATUS, it
is effectively global in scope.

For more information, see Section 21.6.14, “NDB API Statistics Counters and Variables”.

• Ndb_api_event_data_count

The number of row change events received by this MySQL Server (SQL node).

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION STATUS, it
is effectively global in scope.

For more information, see Section 21.6.14, “NDB API Statistics Counters and Variables”.

• Ndb_api_event_nondata_count_injector

The number of events received, other than row change events, by the NDB binary log injector thread.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION STATUS, it
is effectively global in scope.

For more information, see Section 21.6.14, “NDB API Statistics Counters and Variables”.

3540

NDB Cluster Configuration Files

• Ndb_api_event_nondata_count

The number of events received, other than row change events, by this MySQL Server (SQL node).

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION STATUS, it
is effectively global in scope.

For more information, see Section 21.6.14, “NDB API Statistics Counters and Variables”.

• Ndb_api_event_bytes_count_injector

The number of bytes of events received by the NDB binlog injector thread.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION STATUS, it
is effectively global in scope.

For more information, see Section 21.6.14, “NDB API Statistics Counters and Variables”.

• Ndb_api_event_bytes_count

The number of bytes of events received by this MySQL Server (SQL node).

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION STATUS, it
is effectively global in scope.

For more information, see Section 21.6.14, “NDB API Statistics Counters and Variables”.

• Ndb_api_pk_op_count_session

The number of operations in this client session based on or using primary keys. This includes operations
on blob tables, implicit unlock operations, and auto-increment operations, as well as user-visible primary
key operations.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION STATUS, it
relates to the current session only, and is not affected by any other clients of this mysqld.

For more information, see Section 21.6.14, “NDB API Statistics Counters and Variables”.

• Ndb_api_pk_op_count_slave

The number of operations by this replica based on or using primary keys. This includes operations on
blob tables, implicit unlock operations, and auto-increment operations, as well as user-visible primary
key operations.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION STATUS, it
is effectively global in scope. If this MySQL server does not act as a replica, or does not use NDB tables,
this value is always 0.

For more information, see Section 21.6.14, “NDB API Statistics Counters and Variables”.

• Ndb_api_pk_op_count

The number of operations by this MySQL Server (SQL node) based on or using primary keys. This
includes operations on blob tables, implicit unlock operations, and auto-increment operations, as well as
user-visible primary key operations.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION STATUS, it
is effectively global in scope.

3541

NDB Cluster Configuration Files

For more information, see Section 21.6.14, “NDB API Statistics Counters and Variables”.

• Ndb_api_pruned_scan_count_session

The number of scans in this client session that have been pruned to a single partition.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION STATUS, it
relates to the current session only, and is not affected by any other clients of this mysqld.

For more information, see Section 21.6.14, “NDB API Statistics Counters and Variables”.

• Ndb_api_pruned_scan_count_slave

The number of scans by this replica that have been pruned to a single partition.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION STATUS, it
is effectively global in scope. If this MySQL server does not act as a replica, or does not use NDB tables,
this value is always 0.

For more information, see Section 21.6.14, “NDB API Statistics Counters and Variables”.

• Ndb_api_pruned_scan_count

The number of scans by this MySQL Server (SQL node) that have been pruned to a single partition.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION STATUS, it
is effectively global in scope.

For more information, see Section 21.6.14, “NDB API Statistics Counters and Variables”.

• Ndb_api_range_scan_count_session

The number of range scans that have been started in this client session.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION STATUS, it
relates to the current session only, and is not affected by any other clients of this mysqld.

For more information, see Section 21.6.14, “NDB API Statistics Counters and Variables”.

• Ndb_api_range_scan_count_slave

The number of range scans that have been started by this replica.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION STATUS, it
is effectively global in scope. If this MySQL server does not act as a replica, or does not use NDB tables,
this value is always 0.

For more information, see Section 21.6.14, “NDB API Statistics Counters and Variables”.

• Ndb_api_range_scan_count

The number of range scans that have been started by this MySQL Server (SQL node).

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION STATUS, it
is effectively global in scope.

For more information, see Section 21.6.14, “NDB API Statistics Counters and Variables”.
3542

NDB Cluster Configuration Files

• Ndb_api_read_row_count_session

The total number of rows that have been read in this client session. This includes all rows read by any
primary key, unique key, or scan operation made in this client session.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION STATUS, it
relates to the current session only, and is not affected by any other clients of this mysqld.

For more information, see Section 21.6.14, “NDB API Statistics Counters and Variables”.

• Ndb_api_read_row_count_slave

The total number of rows that have been read by this replica. This includes all rows read by any primary
key, unique key, or scan operation made by this replica.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION STATUS, it
is effectively global in scope. If this MySQL server does not act as a replica, or does not use NDB tables,
this value is always 0.

For more information, see Section 21.6.14, “NDB API Statistics Counters and Variables”.

• Ndb_api_read_row_count

The total number of rows that have been read by this MySQL Server (SQL node). This includes all rows
read by any primary key, unique key, or scan operation made by this MySQL Server (SQL node).

You should be aware that this value may not be completely accurate with regard to rows read by
SELECT COUNT(*) queries, due to the fact that, in this case, the MySQL server actually reads
pseudo-rows in the form [table fragment ID]:[number of rows in fragment] and
sums the rows per fragment for all fragments in the table to derive an estimated count for all rows.
Ndb_api_read_row_count uses this estimate and not the actual number of rows in the table.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION STATUS, it
is effectively global in scope.

For more information, see Section 21.6.14, “NDB API Statistics Counters and Variables”.

• Ndb_api_scan_batch_count_session

The number of batches of rows received in this client session. 1 batch is defined as 1 set of scan results
from a single fragment.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION STATUS, it
relates to the current session only, and is not affected by any other clients of this mysqld.

For more information, see Section 21.6.14, “NDB API Statistics Counters and Variables”.

• Ndb_api_scan_batch_count_slave

The number of batches of rows received by this replica. 1 batch is defined as 1 set of scan results from a
single fragment.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION STATUS, it
is effectively global in scope. If this MySQL server does not act as a replica, or does not use NDB tables,
this value is always 0.

For more information, see Section 21.6.14, “NDB API Statistics Counters and Variables”.
3543

NDB Cluster Configuration Files

• Ndb_api_scan_batch_count

The number of batches of rows received by this MySQL Server (SQL node). 1 batch is defined as 1 set
of scan results from a single fragment.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION STATUS, it
is effectively global in scope.

For more information, see Section 21.6.14, “NDB API Statistics Counters and Variables”.

• Ndb_api_table_scan_count_session

The number of table scans that have been started in this client session, including scans of internal
tables,.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION STATUS, it
relates to the current session only, and is not affected by any other clients of this mysqld.

For more information, see Section 21.6.14, “NDB API Statistics Counters and Variables”.

• Ndb_api_table_scan_count_slave

The number of table scans that have been started by this replica, including scans of internal tables,.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION STATUS, it
is effectively global in scope. If this MySQL server does not act as a replica, or does not use NDB tables,
this value is always 0.

For more information, see Section 21.6.14, “NDB API Statistics Counters and Variables”.

• Ndb_api_table_scan_count

The number of table scans that have been started by this MySQL Server (SQL node), including scans of
internal tables,.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION STATUS, it
is effectively global in scope.

For more information, see Section 21.6.14, “NDB API Statistics Counters and Variables”.

• Ndb_api_trans_abort_count_session

The number of transactions aborted in this client session.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION STATUS, it
relates to the current session only, and is not affected by any other clients of this mysqld.

For more information, see Section 21.6.14, “NDB API Statistics Counters and Variables”.

• Ndb_api_trans_abort_count_slave

The number of transactions aborted by this replica.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION STATUS, it
is effectively global in scope. If this MySQL server does not act as a replica, or does not use NDB tables,
this value is always 0.

For more information, see Section 21.6.14, “NDB API Statistics Counters and Variables”.

3544

NDB Cluster Configuration Files

• Ndb_api_trans_abort_count

The number of transactions aborted by this MySQL Server (SQL node).

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION STATUS, it
is effectively global in scope.

For more information, see Section 21.6.14, “NDB API Statistics Counters and Variables”.

• Ndb_api_trans_close_count_session

The number of transactions closed in this client session. This value may be greater than the sum of
Ndb_api_trans_commit_count_session and Ndb_api_trans_abort_count_session, since
some transactions may have been rolled back.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION STATUS, it
relates to the current session only, and is not affected by any other clients of this mysqld.

For more information, see Section 21.6.14, “NDB API Statistics Counters and Variables”.

• Ndb_api_trans_close_count_slave

The number of transactions closed by this replica. This value may be greater than the sum of
Ndb_api_trans_commit_count_slave and Ndb_api_trans_abort_count_slave, since some
transactions may have been rolled back.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION STATUS, it
is effectively global in scope. If this MySQL server does not act as a replica, or does not use NDB tables,
this value is always 0.

For more information, see Section 21.6.14, “NDB API Statistics Counters and Variables”.

• Ndb_api_trans_close_count

The number of transactions closed by this MySQL Server (SQL node). This value may be greater than
the sum of Ndb_api_trans_commit_count and Ndb_api_trans_abort_count, since some
transactions may have been rolled back.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION STATUS, it
is effectively global in scope.

For more information, see Section 21.6.14, “NDB API Statistics Counters and Variables”.

• Ndb_api_trans_commit_count_session

The number of transactions committed in this client session.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION STATUS, it
relates to the current session only, and is not affected by any other clients of this mysqld.

For more information, see Section 21.6.14, “NDB API Statistics Counters and Variables”.

3545

NDB Cluster Configuration Files

• Ndb_api_trans_commit_count_slave

The number of transactions committed by this replica.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION STATUS, it
is effectively global in scope. If this MySQL server does not act as a replica, or does not use NDB tables,
this value is always 0.

For more information, see Section 21.6.14, “NDB API Statistics Counters and Variables”.

• Ndb_api_trans_commit_count

The number of transactions committed by this MySQL Server (SQL node).

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION STATUS, it
is effectively global in scope.

For more information, see Section 21.6.14, “NDB API Statistics Counters and Variables”.

• Ndb_api_trans_local_read_row_count_session

The total number of rows that have been read in this client session. This includes all rows read by any
primary key, unique key, or scan operation made in this client session.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION STATUS, it
relates to the current session only, and is not affected by any other clients of this mysqld.

For more information, see Section 21.6.14, “NDB API Statistics Counters and Variables”.

• Ndb_api_trans_local_read_row_count_slave

The total number of rows that have been read by this replica. This includes all rows read by any primary
key, unique key, or scan operation made by this replica.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION STATUS, it
is effectively global in scope. If this MySQL server does not act as a replica, or does not use NDB tables,
this value is always 0.

For more information, see Section 21.6.14, “NDB API Statistics Counters and Variables”.

• Ndb_api_trans_local_read_row_count

The total number of rows that have been read by this MySQL Server (SQL node). This includes all rows
read by any primary key, unique key, or scan operation made by this MySQL Server (SQL node).

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION STATUS, it
is effectively global in scope.

For more information, see Section 21.6.14, “NDB API Statistics Counters and Variables”.

• Ndb_api_trans_start_count_session

The number of transactions started in this client session.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION STATUS, it
relates to the current session only, and is not affected by any other clients of this mysqld.

For more information, see Section 21.6.14, “NDB API Statistics Counters and Variables”.

3546

NDB Cluster Configuration Files

• Ndb_api_trans_start_count_slave

The number of transactions started by this replica.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION STATUS, it
is effectively global in scope. If this MySQL server does not act as a replica, or does not use NDB tables,
this value is always 0.

For more information, see Section 21.6.14, “NDB API Statistics Counters and Variables”.

• Ndb_api_trans_start_count

The number of transactions started by this MySQL Server (SQL node).

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION STATUS, it
is effectively global in scope.

For more information, see Section 21.6.14, “NDB API Statistics Counters and Variables”.

• Ndb_api_uk_op_count_session

The number of operations in this client session based on or using unique keys.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION STATUS, it
relates to the current session only, and is not affected by any other clients of this mysqld.

For more information, see Section 21.6.14, “NDB API Statistics Counters and Variables”.

• Ndb_api_uk_op_count_slave

The number of operations by this replica based on or using unique keys.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION STATUS, it
is effectively global in scope. If this MySQL server does not act as a replica, or does not use NDB tables,
this value is always 0.

For more information, see Section 21.6.14, “NDB API Statistics Counters and Variables”.

• Ndb_api_uk_op_count

The number of operations by this MySQL Server (SQL node) based on or using unique keys.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION STATUS, it
is effectively global in scope.

For more information, see Section 21.6.14, “NDB API Statistics Counters and Variables”.

• Ndb_api_wait_exec_complete_count_session

The number of times a thread has been blocked in this client session while waiting for execution of an
operation to complete. This includes all execute() calls as well as implicit executes for blob and auto-
increment operations not visible to clients.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION STATUS, it
relates to the current session only, and is not affected by any other clients of this mysqld.

For more information, see Section 21.6.14, “NDB API Statistics Counters and Variables”.

• Ndb_api_wait_exec_complete_count_slave

3547

https://dev.mysql.com/doc/ndbapi/en/ndb-ndbtransaction.html#ndb-ndbtransaction-execute

NDB Cluster Configuration Files

The number of times a thread has been blocked by this replica while waiting for execution of an
operation to complete. This includes all execute() calls as well as implicit executes for blob and auto-
increment operations not visible to clients.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION STATUS, it
is effectively global in scope. If this MySQL server does not act as a replica, or does not use NDB tables,
this value is always 0.

For more information, see Section 21.6.14, “NDB API Statistics Counters and Variables”.

• Ndb_api_wait_exec_complete_count

The number of times a thread has been blocked by this MySQL Server (SQL node) while waiting for
execution of an operation to complete. This includes all execute() calls as well as implicit executes for
blob and auto-increment operations not visible to clients.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION STATUS, it
is effectively global in scope.

For more information, see Section 21.6.14, “NDB API Statistics Counters and Variables”.

• Ndb_api_wait_meta_request_count_session

The number of times a thread has been blocked in this client session waiting for a metadata-based
signal, such as is expected for DDL requests, new epochs, and seizure of transaction records.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION STATUS, it
relates to the current session only, and is not affected by any other clients of this mysqld.

For more information, see Section 21.6.14, “NDB API Statistics Counters and Variables”.

• Ndb_api_wait_meta_request_count_slave

The number of times a thread has been blocked by this replica waiting for a metadata-based signal, such
as is expected for DDL requests, new epochs, and seizure of transaction records.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION STATUS, it
is effectively global in scope. If this MySQL server does not act as a replica, or does not use NDB tables,
this value is always 0.

For more information, see Section 21.6.14, “NDB API Statistics Counters and Variables”.

• Ndb_api_wait_meta_request_count

The number of times a thread has been blocked by this MySQL Server (SQL node) waiting for a
metadata-based signal, such as is expected for DDL requests, new epochs, and seizure of transaction
records.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION STATUS, it
is effectively global in scope.

For more information, see Section 21.6.14, “NDB API Statistics Counters and Variables”.

• Ndb_api_wait_nanos_count_session

Total time (in nanoseconds) spent in this client session waiting for any type of signal from the data
nodes.

3548

https://dev.mysql.com/doc/ndbapi/en/ndb-ndbtransaction.html#ndb-ndbtransaction-execute
https://dev.mysql.com/doc/ndbapi/en/ndb-ndbtransaction.html#ndb-ndbtransaction-execute

NDB Cluster Configuration Files

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION STATUS, it
relates to the current session only, and is not affected by any other clients of this mysqld.

For more information, see Section 21.6.14, “NDB API Statistics Counters and Variables”.

• Ndb_api_wait_nanos_count_slave

Total time (in nanoseconds) spent by this replica waiting for any type of signal from the data nodes.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION STATUS, it
is effectively global in scope. If this MySQL server does not act as a replica, or does not use NDB tables,
this value is always 0.

For more information, see Section 21.6.14, “NDB API Statistics Counters and Variables”.

• Ndb_api_wait_nanos_count

Total time (in nanoseconds) spent by this MySQL Server (SQL node) waiting for any type of signal from
the data nodes.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION STATUS, it
is effectively global in scope.

For more information, see Section 21.6.14, “NDB API Statistics Counters and Variables”.

• Ndb_api_wait_scan_result_count_session

The number of times a thread has been blocked in this client session while waiting for a scan-based
signal, such as when waiting for more results from a scan, or when waiting for a scan to close.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION STATUS, it
relates to the current session only, and is not affected by any other clients of this mysqld.

For more information, see Section 21.6.14, “NDB API Statistics Counters and Variables”.

• Ndb_api_wait_scan_result_count_slave

The number of times a thread has been blocked by this replica while waiting for a scan-based signal,
such as when waiting for more results from a scan, or when waiting for a scan to close.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION STATUS, it
is effectively global in scope. If this MySQL server does not act as a replica, or does not use NDB tables,
this value is always 0.

For more information, see Section 21.6.14, “NDB API Statistics Counters and Variables”.

• Ndb_api_wait_scan_result_count

The number of times a thread has been blocked by this MySQL Server (SQL node) while waiting for a
scan-based signal, such as when waiting for more results from a scan, or when waiting for a scan to
close.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION STATUS, it
is effectively global in scope.

For more information, see Section 21.6.14, “NDB API Statistics Counters and Variables”.

3549

NDB Cluster Configuration Files

• Ndb_cluster_node_id

If the server is acting as an NDB Cluster node, then the value of this variable its node ID in the cluster.

If the server is not part of an NDB Cluster, then the value of this variable is 0.

• Ndb_config_from_host

If the server is part of an NDB Cluster, the value of this variable is the host name or IP address of the
Cluster management server from which it gets its configuration data.

If the server is not part of an NDB Cluster, then the value of this variable is an empty string.

• Ndb_config_from_port

If the server is part of an NDB Cluster, the value of this variable is the number of the port through which it
is connected to the Cluster management server from which it gets its configuration data.

If the server is not part of an NDB Cluster, then the value of this variable is 0.

• Ndb_conflict_fn_epoch

Used in NDB Cluster Replication conflict resolution, this variable shows the number of rows found to be
in conflict using NDB$EPOCH() conflict resolution on a given mysqld since the last time it was restarted.

For more information, see Section 21.7.11, “NDB Cluster Replication Conflict Resolution”.

• Ndb_conflict_fn_epoch_trans

Used in NDB Cluster Replication conflict resolution, this variable shows the number of rows found to be
in conflict using NDB$EPOCH_TRANS() conflict resolution on a given mysqld since the last time it was
restarted.

For more information, see Section 21.7.11, “NDB Cluster Replication Conflict Resolution”.

• Ndb_conflict_fn_epoch2

Shows the number of rows found to be in conflict in NDB Cluster Replication conflict resolution, when
using NDB$EPOCH2(), on the source designated as the primary since the last time it was restarted.

For more information, see NDB$EPOCH2().

• Ndb_conflict_fn_epoch2_trans

Used in NDB Cluster Replication conflict resolution, this variable shows the number of rows found to be
in conflict using NDB$EPOCH_TRANS2() conflict resolution on a given mysqld since the last time it was
restarted.

For more information, see NDB$EPOCH2_TRANS().

• Ndb_conflict_fn_max

Used in NDB Cluster Replication conflict resolution, this variable shows the number of times that a row
was not applied on the current SQL node due to “greatest timestamp wins” conflict resolution since the
last time that this mysqld was started.

For more information, see Section 21.7.11, “NDB Cluster Replication Conflict Resolution”.

• Ndb_conflict_fn_max_del_win

3550

NDB Cluster Configuration Files

Shows the number of times that a row was rejected on the current SQL node due to NDB Cluster
Replication conflict resolution using NDB$MAX_DELETE_WIN(), since the last time that this mysqld was
started.

For more information, see Section 21.7.11, “NDB Cluster Replication Conflict Resolution”.

• Ndb_conflict_fn_old

Used in NDB Cluster Replication conflict resolution, this variable shows the number of times that a row
was not applied as the result of “same timestamp wins” conflict resolution on a given mysqld since the
last time it was restarted.

For more information, see Section 21.7.11, “NDB Cluster Replication Conflict Resolution”.

• Ndb_conflict_last_conflict_epoch

The most recent epoch in which a conflict was detected on this replica. You can compare this value with
Ndb_slave_max_replicated_epoch; if Ndb_slave_max_replicated_epoch is greater than
Ndb_conflict_last_conflict_epoch, no conflicts have yet been detected.

See Section 21.7.11, “NDB Cluster Replication Conflict Resolution”, for more information.

• Ndb_conflict_reflected_op_discard_count

When using NDB Cluster Replication conflict resolution, this is the number of reflected operations that
were not applied on the secondary, due to encountering an error during execution.

See Section 21.7.11, “NDB Cluster Replication Conflict Resolution”, for more information.

• Ndb_conflict_reflected_op_prepare_count

When using conflict resolution with NDB Cluster Replication, this status variable contains the number of
reflected operations that have been defined (that is, prepared for execution on the secondary).

See Section 21.7.11, “NDB Cluster Replication Conflict Resolution”.

• Ndb_conflict_refresh_op_count

When using conflict resolution with NDB Cluster Replication, this gives the number of refresh operations
that have been prepared for execution on the secondary.

See Section 21.7.11, “NDB Cluster Replication Conflict Resolution”, for more information.

• Ndb_conflict_last_stable_epoch

Number of rows found to be in conflict by a transactional conflict function

See Section 21.7.11, “NDB Cluster Replication Conflict Resolution”, for more information.

• Ndb_conflict_trans_row_conflict_count

Used in NDB Cluster Replication conflict resolution, this status variable shows the number of rows found
to be directly in-conflict by a transactional conflict function on a given mysqld since the last time it was
restarted.

Currently, the only transactional conflict detection function supported by NDB
Cluster is NDB$EPOCH_TRANS(), so this status variable is effectively the same as
Ndb_conflict_fn_epoch_trans.

3551

NDB Cluster Configuration Files

For more information, see Section 21.7.11, “NDB Cluster Replication Conflict Resolution”.

• Ndb_conflict_trans_row_reject_count

Used in NDB Cluster Replication conflict resolution, this status variable shows the total number of rows
realigned due to being determined as conflicting by a transactional conflict detection function. This
includes not only Ndb_conflict_trans_row_conflict_count, but any rows in or dependent on
conflicting transactions.

For more information, see Section 21.7.11, “NDB Cluster Replication Conflict Resolution”.

• Ndb_conflict_trans_reject_count

Used in NDB Cluster Replication conflict resolution, this status variable shows the number of
transactions found to be in conflict by a transactional conflict detection function.

For more information, see Section 21.7.11, “NDB Cluster Replication Conflict Resolution”.

• Ndb_conflict_trans_detect_iter_count

Used in NDB Cluster Replication conflict resolution, this shows the number of internal
iterations required to commit an epoch transaction. Should be (slightly) greater than or equal to
Ndb_conflict_trans_conflict_commit_count.

For more information, see Section 21.7.11, “NDB Cluster Replication Conflict Resolution”.

• Ndb_conflict_trans_conflict_commit_count

Used in NDB Cluster Replication conflict resolution, this shows the number of epoch transactions
committed after they required transactional conflict handling.

For more information, see Section 21.7.11, “NDB Cluster Replication Conflict Resolution”.

• Ndb_epoch_delete_delete_count

When using delete-delete conflict detection, this is the number of delete-delete conflicts detected, where
a delete operation is applied, but the indicated row does not exist.

• Ndb_execute_count

Provides the number of round trips to the NDB kernel made by operations.

• Ndb_last_commit_epoch_server

The epoch most recently committed by NDB.

• Ndb_last_commit_epoch_session

The epoch most recently committed by this NDB client.

• Ndb_number_of_data_nodes

If the server is part of an NDB Cluster, the value of this variable is the number of data nodes in the
cluster.

If the server is not part of an NDB Cluster, then the value of this variable is 0.

• Ndb_pushed_queries_defined

3552

NDB Cluster Configuration Files

The total number of joins pushed down to the NDB kernel for distributed handling on the data nodes.

Note

Joins tested using EXPLAIN that can be pushed down contribute to this number.

• Ndb_pushed_queries_dropped

The number of joins that were pushed down to the NDB kernel but that could not be handled there.

• Ndb_pushed_queries_executed

The number of joins successfully pushed down to NDB and executed there.

• Ndb_pushed_reads

The number of rows returned to mysqld from the NDB kernel by joins that were pushed down.

Note

Executing EXPLAIN on joins that can be pushed down to NDB does not add to
this number.

• Ndb_pruned_scan_count

This variable holds a count of the number of scans executed by NDBCLUSTER since the NDB Cluster
was last started where NDBCLUSTER was able to use partition pruning.

Using this variable together with Ndb_scan_count can be helpful in schema design to maximize the
ability of the server to prune scans to a single table partition, thereby involving only a single data node.

• Ndb_scan_count

This variable holds a count of the total number of scans executed by NDBCLUSTER since the NDB
Cluster was last started.

• Ndb_slave_max_replicated_epoch

The most recently committed epoch on this replica. You can compare this value with
Ndb_conflict_last_conflict_epoch; if Ndb_slave_max_replicated_epoch is the greater of
the two, no conflicts have yet been detected.

For more information, see Section 21.7.11, “NDB Cluster Replication Conflict Resolution”.

• Ndb_system_name

If this MySQL Server is connected to an NDB cluster, this read-only variable shows the cluster system
name. Otherwise, the value is an empty string.

21.4.3.10 NDB Cluster TCP/IP Connections

TCP/IP is the default transport mechanism for all connections between nodes in an NDB Cluster. Normally
it is not necessary to define TCP/IP connections; NDB Cluster automatically sets up such connections for
all data nodes, management nodes, and SQL or API nodes.

3553

NDB Cluster Configuration Files

Note

For an exception to this rule, see Section 21.4.3.11, “NDB Cluster TCP/IP
Connections Using Direct Connections”.

To override the default connection parameters, it is necessary to define a connection using one or more
[tcp] sections in the config.ini file. Each [tcp] section explicitly defines a TCP/IP connection
between two NDB Cluster nodes, and must contain at a minimum the parameters NodeId1 and NodeId2,
as well as any connection parameters to override.

It is also possible to change the default values for these parameters by setting them in the [tcp
default] section.

Important

Any [tcp] sections in the config.ini file should be listed last, following all other
sections in the file. However, this is not required for a [tcp default] section.
This requirement is a known issue with the way in which the config.ini file is
read by the NDB Cluster management server.

Connection parameters which can be set in [tcp] and [tcp default] sections of the config.ini file
are listed here:

• Checksum

Version (or later) NDB 7.5.0

Type or units boolean

Default false

Range true, false

Restart Type Node Restart:
Requires a
rolling restart of
the cluster. (NDB
7.5.0)

This parameter is a boolean parameter (enabled by setting it to Y or 1, disabled by setting it to N or 0). It
is disabled by default. When it is enabled, checksums for all messages are calculated before they placed
in the send buffer. This feature ensures that messages are not corrupted while waiting in the send buffer,
or by the transport mechanism.

• Group

When ndb_optimized_node_selection is enabled, node proximity is used in some cases to select
which node to connect to. This parameter can be used to influence proximity by setting it to a lower
value, which is interpreted as “closer”. See the description of the system variable for more information.

• HostName1

Version (or later) NDB 7.5.0

Type or units name or IP
address

Default [...]

Range ...

3554

NDB Cluster Configuration Files

Restart Type Node Restart:
Requires a
rolling restart of
the cluster. (NDB
7.5.0)

The HostName1 and HostName2 parameters can be used to specify specific network interfaces to be
used for a given TCP connection between two nodes. The values used for these parameters can be host
names or IP addresses.

• HostName2

Version (or later) NDB 7.5.0

Type or units name or IP
address

Default [...]

Range ...

Restart Type Node Restart:
Requires a
rolling restart of
the cluster. (NDB
7.5.0)

The HostName1 and HostName2 parameters can be used to specify specific network interfaces to be
used for a given TCP connection between two nodes. The values used for these parameters can be host
names or IP addresses.

• NodeId1

Version (or later) NDB 7.5.0

Type or units numeric

Default [none]

Range 1 - 255

Restart Type Node Restart:
Requires a
rolling restart of
the cluster. (NDB
7.5.0)

To identify a connection between two nodes it is necessary to provide their node IDs in the [tcp]
section of the configuration file as the values of NodeId1 and NodeId2. These are the same unique Id
values for each of these nodes as described in Section 21.4.3.7, “Defining SQL and Other API Nodes in
an NDB Cluster”.

• NodeId2

Version (or later) NDB 7.5.0

Type or units numeric

Default [none]

Range 1 - 255

3555

NDB Cluster Configuration Files

Restart Type Node Restart:
Requires a
rolling restart of
the cluster. (NDB
7.5.0)

To identify a connection between two nodes it is necessary to provide their node IDs in the [tcp]
section of the configuration file as the values of NodeId1 and NodeId2. These are the same unique Id
values for each of these nodes as described in Section 21.4.3.7, “Defining SQL and Other API Nodes in
an NDB Cluster”.

• NodeIdServer

Version (or later) NDB 7.5.0

Type or units numeric

Default [none]

Range 1 - 63

Restart Type Node Restart:
Requires a
rolling restart of
the cluster. (NDB
7.5.0)

Set the server side of a TCP connection.

• OverloadLimit

Version (or later) NDB 7.5.0

Type or units bytes

Default 0

Range 0 - 4294967039
(0xFFFFFEFF)

Restart Type Node Restart:
Requires a
rolling restart of
the cluster. (NDB
7.5.0)

When more than this many unsent bytes are in the send buffer, the connection is considered overloaded.

This parameter can be used to determine the amount of unsent data that must be present in the send
buffer before the connection is considered overloaded. See Section 21.4.3.13, “Configuring NDB Cluster
Send Buffer Parameters”, for more information.

• PortNumber (OBSOLETE)

This parameter formerly specified the port number to be used for listening for connections from other
nodes. It is now deprecated (and removed in NDB Cluster 7.5); use the ServerPort data node
configuration parameter for this purpose instead (Bug #77405, Bug #21280456).

3556

NDB Cluster Configuration Files

• PreSendChecksum

Version (or later) NDB 7.6.6

Type or units boolean

Default false

Range true, false

Added NDB 7.6.6

Restart Type Node Restart:
Requires a
rolling restart of
the cluster. (NDB
7.5.0)

If this parameter and Checksum are both enabled, perform pre-send checksum checks, and check all
TCP signals between nodes for errors. Has no effect if Checksum is not also enabled.

• Proxy

Version (or later) NDB 7.5.0

Type or units string

Default [...]

Range ...

Restart Type Node Restart:
Requires a
rolling restart of
the cluster. (NDB
7.5.0)

Set a proxy for the TCP connection.

• ReceiveBufferMemory

Version (or later) NDB 7.5.0

Type or units bytes

Default 2M

Range 16K -
4294967039
(0xFFFFFEFF)

Restart Type Node Restart:
Requires a
rolling restart of
the cluster. (NDB
7.5.0)

Specifies the size of the buffer used when receiving data from the TCP/IP socket.

The default value of this parameter is 2MB. The minimum possible value is 16KB; the theoretical
maximum is 4GB.

• SendBufferMemory

3557

NDB Cluster Configuration Files

Version (or later) NDB 7.5.0

Type or units unsigned

Default 2M

Range 256K -
4294967039
(0xFFFFFEFF)

Restart Type Node Restart:
Requires a
rolling restart of
the cluster. (NDB
7.5.0)

TCP transporters use a buffer to store all messages before performing the send call to the operating
system. When this buffer reaches 64KB its contents are sent; these are also sent when a round of
messages have been executed. To handle temporary overload situations it is also possible to define a
bigger send buffer.

If this parameter is set explicitly, then the memory is not dedicated to each transporter; instead, the
value used denotes the hard limit for how much memory (out of the total available memory—that is,
TotalSendBufferMemory) that may be used by a single transporter. For more information about
configuring dynamic transporter send buffer memory allocation in NDB Cluster, see Section 21.4.3.13,
“Configuring NDB Cluster Send Buffer Parameters”.

The default size of the send buffer is 2MB, which is the size recommended in most situations. The
minimum size is 64 KB; the theoretical maximum is 4 GB.

• SendSignalId

Version (or later) NDB 7.5.0

Type or units boolean

Default false (debug
builds: true)

Range true, false

Restart Type Node Restart:
Requires a
rolling restart of
the cluster. (NDB
7.5.0)

To be able to retrace a distributed message datagram, it is necessary to identify each message. When
this parameter is set to Y, message IDs are transported over the network. This feature is disabled by
default in production builds, and enabled in -debug builds.

• TcpBind_INADDR_ANY

Setting this parameter to TRUE or 1 binds IP_ADDR_ANY so that connections can be made from
anywhere (for autogenerated connections). The default is FALSE (0).

• TCP_MAXSEG_SIZE

Version (or later) NDB 7.5.0

3558

NDB Cluster Configuration Files

Type or units unsigned

Default 0

Range 0 - 2G

Restart Type Node Restart:
Requires a
rolling restart of
the cluster. (NDB
7.5.0)

Determines the size of the memory set during TCP transporter initialization. The default is recommended
for most common usage cases.

• TCP_RCV_BUF_SIZE

Version (or later) NDB 7.5.0

Type or units unsigned

Default 0

Range 0 - 2G

Restart Type Node Restart:
Requires a
rolling restart of
the cluster. (NDB
7.5.0)

Determines the size of the receive buffer set during TCP transporter initialization. The default and
minimum value is 0, which allows the operating system or platform to set this value. The default is
recommended for most common usage cases.

• TCP_SND_BUF_SIZE

Version (or later) NDB 7.5.0

Type or units unsigned

Default 0

Range 0 - 2G

Restart Type Node Restart:
Requires a
rolling restart of
the cluster. (NDB
7.5.0)

Determines the size of the send buffer set during TCP transporter initialization. The default and minimum
value is 0, which allows the operating system or platform to set this value. The default is recommended
for most common usage cases.

Restart types. Information about the restart types used by the parameter descriptions in this section is
shown in the following table:

3559

NDB Cluster Configuration Files

Table 21.19 NDB Cluster restart types

Symbol Restart Type Description

N Node The parameter can be updated
using a rolling restart (see
Section 21.6.5, “Performing
a Rolling Restart of an NDB
Cluster”)

S System All cluster nodes must be
shut down completely, then
restarted, to effect a change in this
parameter

I Initial Data nodes must be restarted
using the --initial option

21.4.3.11 NDB Cluster TCP/IP Connections Using Direct Connections

Setting up a cluster using direct connections between data nodes requires specifying explicitly the
crossover IP addresses of the data nodes so connected in the [tcp] section of the cluster config.ini
file.

In the following example, we envision a cluster with at least four hosts, one each for a management server,
an SQL node, and two data nodes. The cluster as a whole resides on the 172.23.72.* subnet of a LAN.
In addition to the usual network connections, the two data nodes are connected directly using a standard
crossover cable, and communicate with one another directly using IP addresses in the 1.1.0.* address
range as shown:

Management Server
[ndb_mgmd]
Id=1
HostName=172.23.72.20

SQL Node
[mysqld]
Id=2
HostName=172.23.72.21

Data Nodes
[ndbd]
Id=3
HostName=172.23.72.22

[ndbd]
Id=4
HostName=172.23.72.23

TCP/IP Connections
[tcp]
NodeId1=3
NodeId2=4
HostName1=1.1.0.1
HostName2=1.1.0.2

The HostName1 and HostName2 parameters are used only when specifying direct connections.

The use of direct TCP connections between data nodes can improve the cluster's overall efficiency by
enabling the data nodes to bypass an Ethernet device such as a switch, hub, or router, thus cutting down
on the cluster's latency.

3560

NDB Cluster Configuration Files

Note

To take the best advantage of direct connections in this fashion with more than two
data nodes, you must have a direct connection between each data node and every
other data node in the same node group.

21.4.3.12 NDB Cluster Shared Memory Connections

Communications between NDB cluster nodes are normally handled using TCP/IP. The shared memory
(SHM) transporter is distinguished by the fact that signals are transmitted by writing in memory rather than
on a socket. The shared-memory transporter (SHM) can improve performance by negating up to 20% of
the overhead required by a TCP connection when running an API node (usually an SQL node) and a data
node together on the same host. You can enable a shared memory connection in either of the two ways
listed here:

• By setting the UseShm data node configuration parameter to 1, and setting HostName for the data node
and HostName for the API node to the same value.

• By using [shm] sections in the cluster configuration file, each containing settings for NodeId1 and
NodeId2. This method is described in more detail later in this section.

Suppose a cluster is running a data node which has node ID 1 and an SQL node having node ID 51 on
the same host computer at 10.0.0.1. To enable an SHM connection between these two nodes, all that is
necessary is to insure that the following entries are included in the cluster configuration file:

[ndbd]
NodeId=1
HostName=10.0.0.1
UseShm=1

[mysqld]
NodeId=51
HostName=10.0.0.1

Important

The two entries just shown are in addition to any other entries and parameter
settings needed by the cluster. A more complete example is shown later in this
section.

Before starting data nodes that use SHM connections, it is also necessary to make sure that the operating
system on each computer hosting such a data node has sufficient memory allocated to shared memory
segments. See the documentation for your operating platform for information regarding this. In setups
where multiple hosts are each running a data node and an API node, it is possible to enable shared
memory on all such hosts by setting UseShm in the [ndbd default] section of the configuration file.
This is shown in the example later in this section.

While not strictly required, tuning for all SHM connections in the cluster can be done by setting one or more
of the following parameters in the [shm default] section of the cluster configuration (config.ini) file:

• ShmSize: Shared memory size

• ShmSpinTime: Time in µs to spin before sleeping

• SendBufferMemory: Size of buffer for signals sent from this node, in bytes.

• SendSignalId: Indicates that a signal ID is included in each signal sent through the transporter.

• Checksum: Indicates that a checksum is included in each signal sent through the transporter.

3561

NDB Cluster Configuration Files

• PreSendChecksum: Checks of the checksum are made prior to sending the signal; Checksum must
also be enabled for this to work

This example shows a simple setup with SHM connections definied on multiple hosts, in an NDB Cluster
using 3 computers listed here by host name, hosting the node types shown:

1. 10.0.0.0: The management server

2. 10.0.0.1: A data node and an SQL node

3. 10.0.0.2: A data node and an SQL node

In this scenario, each data node communicates with both the management server and the other data
node using TCP transporters; each SQL node uses a shared memory transporter to communicate with the
data nodes that is local to it, and a TCP transporter to communicate with the remote data node. A basic
configuration reflecting this setup is enabled by the config.ini file whose contents are shown here:

[ndbd default]
DataDir=/path/to/datadir
UseShm=1

[shm default]
ShmSize=8M
ShmSpintime=200
SendBufferMemory=4M

[tcp default]
SendBufferMemory=8M

[ndb_mgmd]
NodeId=49
Hostname=10.0.0.0
DataDir=/path/to/datadir

[ndbd]
NodeId=1
Hostname=10.0.0.1
DataDir=/path/to/datadir

[ndbd]
NodeId=2
Hostname=10.0.0.2
DataDir=/path/to/datadir

[mysqld]
NodeId=51
Hostname=10.0.0.1

[mysqld]
NodeId=52
Hostname=10.0.0.2

[api]
[api]

Parameters affecting all shared memory transporters are set in the [shm default] section; these can
be overridden on a per-connection basis in one or more [shm] sections. Each such section must be
associated with a given SHM connection using NodeId1 and NodeId2; the values required for these
parameters are the node IDs of the two nodes connected by the transporter. You can also identify the
nodes by host name using HostName1 and HostName2, but these parameters are not required.

The API nodes for which no host names are set use the TCP transporter to communicate with data nodes
independent of the hosts on which they are started; the parameters and values set in the [tcp default]
section of the configuration file apply to all TCP transporters in the cluster.

3562

NDB Cluster Configuration Files

For optimum performance, you can define a spin time for the SHM transporter (ShmSpinTime parameter);
this affects both the data node receiver thread and the poll owner (receive thread or user thread) in NDB.

• Checksum

Version (or later) NDB 7.5.0

Type or units boolean

Default true

Range true, false

Restart Type Node Restart:
Requires a
rolling restart of
the cluster. (NDB
7.5.0)

This parameter is a boolean (Y/N) parameter which is disabled by default. When it is enabled,
checksums for all messages are calculated before being placed in the send buffer.

This feature prevents messages from being corrupted while waiting in the send buffer. It also serves as a
check against data being corrupted during transport.

• Group

Version (or later) NDB 7.5.0

Type or units unsigned

Default 35

Range 0 - 200

Restart Type Node Restart:
Requires a
rolling restart of
the cluster. (NDB
7.5.0)

Determines the group proximity; a smaller value is interpreted as being closer. The default value is
sufficient for most conditions.

• HostName1

Version (or later) NDB 7.5.0

Type or units name or IP
address

Default [...]

Range ...

Restart Type Node Restart:
Requires a
rolling restart of

3563

NDB Cluster Configuration Files

the cluster. (NDB
7.5.0)

The HostName1 and HostName2 parameters can be used to specify specific network interfaces to be
used for a given SHM connection between two nodes. The values used for these parameters can be
host names or IP addresses.

• HostName2

Version (or later) NDB 7.5.0

Type or units name or IP
address

Default [...]

Range ...

Restart Type Node Restart:
Requires a
rolling restart of
the cluster. (NDB
7.5.0)

The HostName1 and HostName2 parameters can be used to specify specific network interfaces to be
used for a given SHM connection between two nodes. The values used for these parameters can be
host names or IP addresses.

• NodeId1

Version (or later) NDB 7.5.0

Type or units numeric

Default [none]

Range 1 - 255

Restart Type Node Restart:
Requires a
rolling restart of
the cluster. (NDB
7.5.0)

To identify a connection between two nodes it is necessary to provide node identifiers for each of them,
as NodeId1 and NodeId2.

• NodeId2

Version (or later) NDB 7.5.0

Type or units numeric

Default [none]

Range 1 - 255

Restart Type Node Restart:
Requires a
rolling restart of
the cluster. (NDB
7.5.0)

3564

NDB Cluster Configuration Files

To identify a connection between two nodes it is necessary to provide node identifiers for each of them,
as NodeId1 and NodeId2.

• NodeIdServer

Version (or later) NDB 7.5.0

Type or units numeric

Default [none]

Range 1 - 63

Restart Type Node Restart:
Requires a
rolling restart of
the cluster. (NDB
7.5.0)

Identify the server end of a shared memory connection. By default, this is the node ID of the data node.

• OverloadLimit

Version (or later) NDB 7.5.0

Type or units bytes

Default 0

Range 0 - 4294967039
(0xFFFFFEFF)

Restart Type Node Restart:
Requires a
rolling restart of
the cluster. (NDB
7.5.0)

When more than this many unsent bytes are in the send buffer, the connection is considered overloaded.

This parameter can be used to determine the amount of unsent data that must be present in the send
buffer before the connection is considered overloaded. See Section 21.4.3.13, “Configuring NDB
Cluster Send Buffer Parameters”, and Section 21.6.15.44, “The ndbinfo transporters Table”, for more
information.

• PortNumber

Version (or later) NDB 7.5.0

Type or units unsigned

Default [...]

Range 0 - 64K

Removed NDB 7.5.1

Restart Type System Restart:
Requires a
complete
shutdown and
restart of the

3565

NDB Cluster Configuration Files

cluster. (NDB
7.5.0)

Set the port to be used by the SHM transporter.

• PreSendChecksum

Version (or later) NDB 7.6.6

Type or units boolean

Default false

Range true, false

Added NDB 7.6.6

Restart Type Node Restart:
Requires a
rolling restart of
the cluster. (NDB
7.5.0)

If this parameter and Checksum are both enabled, perform pre-send checksum checks, and check all
SHM signals between nodes for errors. Has no effect if Checksum is not also enabled.

• SendBufferMemory

Version (or later) NDB 7.6.6

Type or units integer

Default 2M

Range 256K -
4294967039
(0xFFFFFEFF)

Added NDB 7.6.6

Restart Type Node Restart:
Requires a
rolling restart of
the cluster. (NDB
7.5.0)

Size (in bytes) of the shared memory buffer for signals sent from this node using a shared memory
connection.

• SendSignalId

Version (or later) NDB 7.5.0

Type or units boolean

Default false

Range true, false

Restart Type Node Restart:
Requires a
rolling restart of

3566

NDB Cluster Configuration Files

the cluster. (NDB
7.5.0)

To retrace the path of a distributed message, it is necessary to provide each message with a unique
identifier. Setting this parameter to Y causes these message IDs to be transported over the network as
well. This feature is disabled by default in production builds, and enabled in -debug builds.

• ShmKey

Version (or later) NDB 7.5.0

Type or units unsigned

Default 0

Range 0 - 4294967039
(0xFFFFFEFF)

Restart Type Node Restart:
Requires a
rolling restart of
the cluster. (NDB
7.5.0)

When setting up shared memory segments, a node ID, expressed as an integer, is used to identify
uniquely the shared memory segment to use for the communication. There is no default value. If UseShm
is enabled, the shared memory key is calculated automatically by NDB.

• ShmSize

Version (or later) NDB 7.5.0

Type or units bytes

Default 1M

Range 64K -
4294967039
(0xFFFFFEFF)

Version (or later) NDB 7.6.6

Type or units bytes

Default 4M

Range 64K -
4294967039
(0xFFFFFEFF)

Restart Type Node Restart:
Requires a
rolling restart of
the cluster. (NDB
7.5.0)

Each SHM connection has a shared memory segment where messages between nodes are placed by
the sender and read by the reader. The size of this segment is defined by ShmSize. The default value in
NDB 7.6 is 4MB.

3567

NDB Cluster Configuration Files

• ShmSpinTime

Version (or later) NDB 7.6.6

Type or units integer

Default 0

Range 0 - 2000

Added NDB 7.6.6

Restart Type Node Restart:
Requires a
rolling restart of
the cluster. (NDB
7.5.0)

When receiving, the time to wait before sleeping, in microseconds.

• SigNum

Version (or later) NDB 7.5.0

Type or units unsigned

Default [...]

Range 0 - 4294967039
(0xFFFFFEFF)

Deprecated NDB 7.6.6

Restart Type Node Restart:
Requires a
rolling restart of
the cluster. (NDB
7.5.0)

This parameter is no longer used in NDB 7.6, in which any setting for it is ignored.

The following applies only in NDB 7.5 (and earlier):

When using the shared memory transporter, a process sends an operating system signal to the other
process when there is new data available in the shared memory. Should that signal conflict with an
existing signal, this parameter can be used to change it. This is a possibility when using SHM due to the
fact that different operating systems use different signal numbers.

The default value of SigNum is 0; therefore, it must be set to avoid errors in the cluster log when using
the shared memory transporter. Typically, this parameter is set to 10 in the [shm default] section of
the config.ini file.

Restart types. Information about the restart types used by the parameter descriptions in this section is
shown in the following table:

Table 21.20 NDB Cluster restart types

Symbol Restart Type Description

N Node The parameter can be updated
using a rolling restart (see
Section 21.6.5, “Performing

3568

NDB Cluster Configuration Files

Symbol Restart Type Description
a Rolling Restart of an NDB
Cluster”)

S System All cluster nodes must be
shut down completely, then
restarted, to effect a change in this
parameter

I Initial Data nodes must be restarted
using the --initial option

21.4.3.13 Configuring NDB Cluster Send Buffer Parameters

The NDB kernel employs a unified send buffer whose memory is allocated dynamically from a pool
shared by all transporters. This means that the size of the send buffer can be adjusted as necessary.
Configuration of the unified send buffer can accomplished by setting the following parameters:

• TotalSendBufferMemory. This parameter can be set for all types of NDB Cluster nodes—that
is, it can be set in the [ndbd], [mgm], and [api] (or [mysql]) sections of the config.ini file. It
represents the total amount of memory (in bytes) to be allocated by each node for which it is set for use
among all configured transporters. If set, its minimum is 256KB; the maximum is 4294967039.

To be backward-compatible with existing configurations, this parameter takes as its default value the
sum of the maximum send buffer sizes of all configured transporters, plus an additional 32KB (one page)
per transporter. The maximum depends on the type of transporter, as shown in the following table:

Table 21.21 Transporter types with maximum send buffer sizes

Transporter Maximum Send Buffer Size (bytes)

TCP SendBufferMemory (default = 2M)

SHM 20K

This enables existing configurations to function in close to the same way as they did with NDB Cluster
6.3 and earlier, with the same amount of memory and send buffer space available to each transporter.
However, memory that is unused by one transporter is not available to other transporters.

• OverloadLimit. This parameter is used in the config.ini file [tcp] section, and denotes the
amount of unsent data (in bytes) that must be present in the send buffer before the connection is
considered overloaded. When such an overload condition occurs, transactions that affect the overloaded
connection fail with NDB API Error 1218 (Send Buffers overloaded in NDB kernel) until the
overload status passes. The default value is 0, in which case the effective overload limit is calculated as
SendBufferMemory * 0.8 for a given connection. The maximum value for this parameter is 4G.

• SendBufferMemory. This value denotes a hard limit for the amount of memory that may
be used by a single transporter out of the entire pool specified by TotalSendBufferMemory.
However, the sum of SendBufferMemory for all configured transporters may be greater than the
TotalSendBufferMemory that is set for a given node. This is a way to save memory when many
nodes are in use, as long as the maximum amount of memory is never required by all transporters at the
same time.

• ReservedSendBufferMemory. Removed prior to NDB 7.5 GA.

Version (or later) NDB 7.5.0

Type or units bytes

3569

Using High-Speed Interconnects with NDB Cluster

Default 256K

Range 0 - 4294967039
(0xFFFFFEFF)

Removed NDB 7.5.2

Restart Type Node Restart:
Requires a
rolling restart of
the cluster. (NDB
7.5.0)

Previously, this data node parameter was present, but not actually used (Bug #77404, Bug #21280428).

You can use the ndbinfo.transporters table to monitor send buffer memory usage, and to detect
slowdown and overload conditions that can adversely affect performance.

21.4.4 Using High-Speed Interconnects with NDB Cluster

Even before design of NDBCLUSTER began in 1996, it was evident that one of the major problems to be
encountered in building parallel databases would be communication between the nodes in the network. For
this reason, NDBCLUSTER was designed from the very beginning to permit the use of a number of different
data transport mechanisms, or transporters.

NDB Cluster 7.5 and 7.6 support three of these (see Section 21.2.1, “NDB Cluster Core Concepts”). A
fourth transporter, Scalable Coherent Interface (SCI), was also supported in very old versions of NDB. This
required specialized hardware, software, and MySQL binaries that are no longer available.

21.5 NDB Cluster Programs
Using and managing an NDB Cluster requires several specialized programs, which we describe in this
chapter. We discuss the purposes of these programs in an NDB Cluster, how to use the programs, and
what startup options are available for each of them.

These programs include the NDB Cluster data, management, and SQL node processes (ndbd, ndbmtd,
ndb_mgmd, and mysqld) and the management client (ndb_mgm).

For information about using mysqld as an NDB Cluster process, see Section 21.6.10, “MySQL Server
Usage for NDB Cluster”.

Other NDB utility, diagnostic, and example programs are included with the NDB Cluster distribution. These
include ndb_restore, ndb_show_tables, and ndb_config. These programs are also covered in this
section.

The final portion of this section contains tables of options that are common to all the various NDB Cluster
programs.

21.5.1 ndbd — The NDB Cluster Data Node Daemon

The ndbd binary provides the single-threaded version of the process that is used to handle all the data
in tables employing the NDBCLUSTER storage engine. This data node process enables a data node to
accomplish distributed transaction handling, node recovery, checkpointing to disk, online backup, and
related tasks. In NDB 7.6.31 and later, when started, ndbd logs a warning similar to that shown here:

2024-05-28 13:32:16 [ndbd] WARNING -- Running ndbd with a single thread of
signal execution. For multi-threaded signal execution run the ndbmtd binary.

ndbmtd is the multi-threaded version of this binary.

3570

ndbd — The NDB Cluster Data Node Daemon

In an NDB Cluster, a set of ndbd processes cooperate in handling data. These processes can execute
on the same computer (host) or on different computers. The correspondences between data nodes and
Cluster hosts is completely configurable.

Options that can be used with ndbd are shown in the following table. Additional descriptions follow the
table.

Table 21.22 Command-line options used with the program ndbd

Format Description Added, Deprecated, or
Removed

--bind-address=name Local bind address (Supported in all NDB releases
based on MySQL 5.7)

--character-sets-dir=path Directory containing character
sets

(Supported in all NDB releases
based on MySQL 5.7)

--connect-delay=# Obsolete synonym for --connect-
retry-delay, which should be used
instead of this option

REMOVED: NDB 7.5.25, NDB
7.6.21

--connect-retries=# Set the number of times to retry
a connection before giving up;
0 means 1 attempt only (and
no retries); -1 means continue
retrying indefinitely

(Supported in all NDB releases
based on MySQL 5.7)

--connect-retry-delay=# Time to wait between attempts
to contact a management server,
in seconds; 0 means do not wait
between attempts

(Supported in all NDB releases
based on MySQL 5.7)

--connect-
string=connection_string,

-c connection_string

Same as --ndb-connectstring (Supported in all NDB releases
based on MySQL 5.7)

--core-file Write core file on error; used in
debugging

(Supported in all NDB releases
based on MySQL 5.7)

--daemon,

-d

Start ndbd as daemon (default);
override with --nodaemon

(Supported in all NDB releases
based on MySQL 5.7)

--defaults-extra-
file=path

Read given file after global files
are read

(Supported in all NDB releases
based on MySQL 5.7)

--defaults-file=path Read default options from given
file only

(Supported in all NDB releases
based on MySQL 5.7)

--defaults-group-
suffix=string

Also read groups with
concat(group, suffix)

(Supported in all NDB releases
based on MySQL 5.7)

--foreground Run ndbd in foreground, provided
for debugging purposes (implies --
nodaemon)

(Supported in all NDB releases
based on MySQL 5.7)

--help,

-?

Display help text and exit (Supported in all NDB releases
based on MySQL 5.7)

--initial Perform initial start of ndbd,
including file system cleanup;

(Supported in all NDB releases
based on MySQL 5.7)

3571

ndbd — The NDB Cluster Data Node Daemon

Format Description Added, Deprecated, or
Removed

consult documentation before
using this option

--initial-start Perform partial initial start
(requires --nowait-nodes)

(Supported in all NDB releases
based on MySQL 5.7)

--install[=name] Used to install data node process
as Windows service; does not
apply on other platforms

(Supported in all NDB releases
based on MySQL 5.7)

--logbuffer-size=# Control size of log buffer; for
use when debugging with many
log messages being generated;
default is sufficient for normal
operations

ADDED: NDB 7.6.6

--login-path=path Read given path from login file (Supported in all NDB releases
based on MySQL 5.7)

--ndb-
connectstring=connection_string,

-c connection_string

Set connect string for
connecting to ndb_mgmd.
Syntax: "[nodeid=id;]
[host=]hostname[:port]".
Overrides entries in
NDB_CONNECTSTRING and
my.cnf

(Supported in all NDB releases
based on MySQL 5.7)

--ndb-mgmd-
host=connection_string,

-c connection_string

Same as --ndb-connectstring (Supported in all NDB releases
based on MySQL 5.7)

--ndb-nodeid=# Set node ID for this node,
overriding any ID set by --ndb-
connectstring

(Supported in all NDB releases
based on MySQL 5.7)

--nodaemon Do not start ndbd as daemon;
provided for testing purposes

(Supported in all NDB releases
based on MySQL 5.7)

--no-defaults Do not read default options from
any option file other than login file

(Supported in all NDB releases
based on MySQL 5.7)

--nostart,

-n

Do not start ndbd immediately;
ndbd waits for command to start
from ndb_mgm

(Supported in all NDB releases
based on MySQL 5.7)

--nowait-nodes=list Do not wait for these data nodes
to start (takes comma-separated
list of node IDs); requires --ndb-
nodeid

(Supported in all NDB releases
based on MySQL 5.7)

--ndb-optimized-node-
selection

Enable optimizations for selection
of nodes for transactions. Enabled
by default; use --skip-ndb-
optimized-node-selection to
disable

(Supported in all NDB releases
based on MySQL 5.7)

--print-defaults Print program argument list and
exit

(Supported in all NDB releases
based on MySQL 5.7)

3572

ndbd — The NDB Cluster Data Node Daemon

Format Description Added, Deprecated, or
Removed

--remove[=name] Used to remove data node
process that was previously
installed as Windows service;
does not apply on other platforms

(Supported in all NDB releases
based on MySQL 5.7)

--usage,

-?

Display help text and exit; same
as --help

(Supported in all NDB releases
based on MySQL 5.7)

--verbose,

-v

Write extra debugging information
to node log

(Supported in all NDB releases
based on MySQL 5.7)

--version,

-V

Display version information and
exit

(Supported in all NDB releases
based on MySQL 5.7)

Note

All of these options also apply to the multithreaded version of this program
(ndbmtd) and you may substitute “ndbmtd” for “ndbd” wherever the latter occurs in
this section.

• --bind-address

Command-Line Format --bind-address=name

Type String

Default Value

Causes ndbd to bind to a specific network interface (host name or IP address). This option has no
default value.

• --character-sets-dir

Command-Line Format --character-sets-dir=path

Directory containing character sets.

• --connect-delay=#

Command-Line Format --connect-delay=#

Deprecated Yes (removed in 5.7.36-ndb-7.6.21)

Type Numeric

Default Value 5

Minimum Value 0

Maximum Value 3600

Determines the time to wait between attempts to contact a management server when starting (the
number of attempts is controlled by the --connect-retries option). The default is 5 seconds.

This option is deprecated, and is subject to removal in a future release of NDB Cluster. Use --
connect-retry-delay instead.

3573

ndbd — The NDB Cluster Data Node Daemon

• --connect-retries=#

Command-Line Format --connect-retries=#

Type Numeric

Default Value 12

Minimum Value (≥ 5.7.36-ndb-7.6.21) -1

Minimum Value (≥ 5.7.36-ndb-7.5.25) -1

Minimum Value (≤ 5.7.36-ndb-7.5.24) 0

Minimum Value (≤ 5.7.36-ndb-7.6.20) 0

Minimum Value 0

Maximum Value 65535

Set the number of times to retry a connection before giving up; 0 means 1 attempt only (and no retries).
The default is 12 attempts. The time to wait between attempts is controlled by the --connect-retry-
delay option.

Beginning with NDB 7.5.25 and NDB 7.6.21, you can set this option to -1, in which case, the data node
process continues indefinitely to try to connect.

• --connect-retry-delay=#

Command-Line Format --connect-retry-delay=#

Type Numeric

Default Value 5

Minimum Value 0

Maximum Value 4294967295

Determines the time to wait between attempts to contact a management server when starting (the time
between attempts is controlled by the --connect-retries option). The default is 5 seconds.

This option takes the place of the --connect-delay option, which is now deprecated and subject to
removal in a future release of NDB Cluster.

The short form -r for this option is deprecated as of NDB 7.5.25 and NDB 7.6.21, and subject to
removal in a future release of NDB Cluster. Use the long form instead.

• --connect-string

Command-Line Format --connect-string=connection_string

Type String

Default Value [none]

Same as --ndb-connectstring.

• --core-file

Command-Line Format --core-file

Write core file on error; used in debugging.
3574

ndbd — The NDB Cluster Data Node Daemon

• --daemon, -d

Command-Line Format --daemon

Instructs ndbd or ndbmtd to execute as a daemon process. This is the default behavior. --nodaemon
can be used to prevent the process from running as a daemon.

This option has no effect when running ndbd or ndbmtd on Windows platforms.

• --defaults-extra-file

Command-Line Format --defaults-extra-file=path

Type String

Default Value [none]

Read given file after global files are read.

• --defaults-file

Command-Line Format --defaults-file=path

Type String

Default Value [none]

Read default options from given file only.

• --defaults-group-suffix

Command-Line Format --defaults-group-suffix=string

Type String

Default Value [none]

Also read groups with concat(group, suffix).

• --foreground

Command-Line Format --foreground

Causes ndbd or ndbmtd to execute as a foreground process, primarily for debugging purposes. This
option implies the --nodaemon option.

This option has no effect when running ndbd or ndbmtd on Windows platforms.

• --help

Command-Line Format --help

Display help text and exit.

3575

ndbd — The NDB Cluster Data Node Daemon

• --initial

Command-Line Format --initial

Instructs ndbd to perform an initial start. An initial start erases any files created for recovery purposes by
earlier instances of ndbd. It also re-creates recovery log files. On some operating systems, this process
can take a substantial amount of time.

An --initial start is to be used only when starting the ndbd process under very special
circumstances; this is because this option causes all files to be removed from the NDB Cluster file
system and all redo log files to be re-created. These circumstances are listed here:

• When performing a software upgrade which has changed the contents of any files.

• When restarting the node with a new version of ndbd.

• As a measure of last resort when for some reason the node restart or system restart repeatedly fails.
In this case, be aware that this node can no longer be used to restore data due to the destruction of
the data files.

Warning

To avoid the possibility of eventual data loss, it is recommended that you not
use the --initial option together with StopOnError = 0. Instead, set
StopOnError to 0 in config.ini only after the cluster has been started, then
restart the data nodes normally—that is, without the --initial option. See
the description of the StopOnError parameter for a detailed explanation of this
issue. (Bug #24945638)

Use of this option prevents the StartPartialTimeout and StartPartitionedTimeout
configuration parameters from having any effect.

Important

This option does not affect either of the following types of files:

• Backup files that have already been created by the affected node

• NDB Cluster Disk Data files (see Section 21.6.11, “NDB Cluster Disk Data
Tables”).

This option also has no effect on recovery of data by a data node that is just
starting (or restarting) from data nodes that are already running. This recovery of
data occurs automatically, and requires no user intervention in an NDB Cluster
that is running normally.

It is permissible to use this option when starting the cluster for the very first time (that is, before any data
node files have been created); however, it is not necessary to do so.

3576

ndbd — The NDB Cluster Data Node Daemon

• --initial-start

Command-Line Format --initial-start

This option is used when performing a partial initial start of the cluster. Each node should be started with
this option, as well as --nowait-nodes.

Suppose that you have a 4-node cluster whose data nodes have the IDs 2, 3, 4, and 5, and you wish to
perform a partial initial start using only nodes 2, 4, and 5—that is, omitting node 3:

$> ndbd --ndb-nodeid=2 --nowait-nodes=3 --initial-start
$> ndbd --ndb-nodeid=4 --nowait-nodes=3 --initial-start
$> ndbd --ndb-nodeid=5 --nowait-nodes=3 --initial-start

When using this option, you must also specify the node ID for the data node being started with the --
ndb-nodeid option.

Important

Do not confuse this option with the --nowait-nodes option for ndb_mgmd,
which can be used to enable a cluster configured with multiple management
servers to be started without all management servers being online.

• --install[=name]

Command-Line Format --install[=name]

Platform Specific Windows

Type String

Default Value ndbd

Causes ndbd to be installed as a Windows service. Optionally, you can specify a name for the service;
if not set, the service name defaults to ndbd. Although it is preferable to specify other ndbd program
options in a my.ini or my.cnf configuration file, it is possible to use together with --install.
However, in such cases, the --install option must be specified first, before any other options are
given, for the Windows service installation to succeed.

It is generally not advisable to use this option together with the --initial option, since this causes
the data node file system to be wiped and rebuilt every time the service is stopped and started. Extreme
care should also be taken if you intend to use any of the other ndbd options that affect the starting of
data nodes—including --initial-start, --nostart, and --nowait-nodes—together with --
install, and you should make absolutely certain you fully understand and allow for any possible
consequences of doing so.

The --install option has no effect on non-Windows platforms.

• --logbuffer-size=#

Command-Line Format --logbuffer-size=#

Introduced 5.7.22-ndb-7.6.6

Type Integer

Default Value 32768

Minimum Value 2048

Maximum Value 4294967295

3577

ndbd — The NDB Cluster Data Node Daemon

Sets the size of the data node log buffer. When debugging with high amounts of extra logging, it is
possible for the log buffer to run out of space if there are too many log messages, in which case some
log messages can be lost. This should not occur during normal operations.

• --login-path

Command-Line Format --login-path=path

Type String

Default Value [none]

Read given path from login file.

• --ndb-connectstring

Command-Line Format --ndb-connectstring=connection_string

Type String

Default Value [none]

Set connect string for connecting to ndb_mgmd. Syntax: "[nodeid=id;][host=]hostname[:port]". Overrides
entries in NDB_CONNECTSTRING and my.cnf.

• --ndb-mgmd-host

Command-Line Format --ndb-mgmd-host=connection_string

Type String

Default Value [none]

Same as --ndb-connectstring.

• --ndb-nodeid

Command-Line Format --ndb-nodeid=#

Type Integer

Default Value [none]

Set node ID for this node, overriding any ID set by --ndb-connectstring.

• --ndb-optimized-node-selection

Command-Line Format --ndb-optimized-node-selection

Enable optimizations for selection of nodes for transactions. Enabled by default; use --skip-ndb-
optimized-node-selection to disable.

3578

ndbd — The NDB Cluster Data Node Daemon

• --nodaemon

Command-Line Format --nodaemon

Prevents ndbd or ndbmtd from executing as a daemon process. This option overrides the --daemon
option. This is useful for redirecting output to the screen when debugging the binary.

The default behavior for ndbd and ndbmtd on Windows is to run in the foreground, making this option
unnecessary on Windows platforms, where it has no effect.

• --no-defaults

Command-Line Format --no-defaults

Do not read default options from any option file other than login file.

• --nostart, -n

Command-Line Format --nostart

Instructs ndbd not to start automatically. When this option is used, ndbd connects to the management
server, obtains configuration data from it, and initializes communication objects. However, it does not
actually start the execution engine until specifically requested to do so by the management server.
This can be accomplished by issuing the proper START command in the management client (see
Section 21.6.1, “Commands in the NDB Cluster Management Client”).

• --nowait-nodes=node_id_1[, node_id_2[, ...]]

Command-Line Format --nowait-nodes=list

Type String

Default Value

This option takes a list of data nodes which for which the cluster does not wait for before starting.

This can be used to start the cluster in a partitioned state. For example, to start the cluster with only half
of the data nodes (nodes 2, 3, 4, and 5) running in a 4-node cluster, you can start each ndbd process
with --nowait-nodes=3,5. In this case, the cluster starts as soon as nodes 2 and 4 connect, and
does not wait StartPartitionedTimeout milliseconds for nodes 3 and 5 to connect as it would
otherwise.

If you wanted to start up the same cluster as in the previous example without one ndbd (say, for
example, that the host machine for node 3 has suffered a hardware failure) then start nodes 2, 4, and 5
with --nowait-nodes=3. Then the cluster starts as soon as nodes 2, 4, and 5 connect and does not
wait for node 3 to start.

• --print-defaults

Command-Line Format --print-defaults

Print program argument list and exit.

• --remove[=name]

Command-Line Format --remove[=name]

3579

ndbd — The NDB Cluster Data Node Daemon

Platform Specific Windows

Type String

Default Value ndbd

Causes an ndbd process that was previously installed as a Windows service to be removed. Optionally,
you can specify a name for the service to be uninstalled; if not set, the service name defaults to ndbd.

The --remove option has no effect on non-Windows platforms.

• --usage

Command-Line Format --usage

Display help text and exit; same as --help.

• --verbose, -v

Causes extra debug output to be written to the node log.

In NDB 7.6, you can also use NODELOG DEBUG ON and NODELOG DEBUG OFF to enable and disable
this extra logging while the data node is running.

• --version

Command-Line Format --version

Display version information and exit.

ndbd generates a set of log files which are placed in the directory specified by DataDir in the
config.ini configuration file.

These log files are listed below. node_id is and represents the node's unique identifier. For example,
ndb_2_error.log is the error log generated by the data node whose node ID is 2.

• ndb_node_id_error.log is a file containing records of all crashes which the referenced ndbd
process has encountered. Each record in this file contains a brief error string and a reference to a trace
file for this crash. A typical entry in this file might appear as shown here:

Date/Time: Saturday 30 July 2004 - 00:20:01
Type of error: error
Message: Internal program error (failed ndbrequire)
Fault ID: 2341
Problem data: DbtupFixAlloc.cpp
Object of reference: DBTUP (Line: 173)
ProgramName: NDB Kernel
ProcessID: 14909
TraceFile: ndb_2_trace.log.2
EOM

Listings of possible ndbd exit codes and messages generated when a data node process shuts down
prematurely can be found in Data Node Error Messages.

Important

The last entry in the error log file is not necessarily the newest one (nor is
it likely to be). Entries in the error log are not listed in chronological order;

3580

https://dev.mysql.com/doc/ndb-internals/en/ndb-node-error-messages.html

ndbinfo_select_all — Select From ndbinfo Tables

rather, they correspond to the order of the trace files as determined in the
ndb_node_id_trace.log.next file (see below). Error log entries are thus
overwritten in a cyclical and not sequential fashion.

• ndb_node_id_trace.log.trace_id is a trace file describing exactly what happened just before
the error occurred. This information is useful for analysis by the NDB Cluster development team.

It is possible to configure the number of these trace files that are created before old files are overwritten.
trace_id is a number which is incremented for each successive trace file.

• ndb_node_id_trace.log.next is the file that keeps track of the next trace file number to be
assigned.

• ndb_node_id_out.log is a file containing any data output by the ndbd process. This file is created
only if ndbd is started as a daemon, which is the default behavior.

• ndb_node_id.pid is a file containing the process ID of the ndbd process when started as a daemon. It
also functions as a lock file to avoid the starting of nodes with the same identifier.

• ndb_node_id_signal.log is a file used only in debug versions of ndbd, where it is possible to trace
all incoming, outgoing, and internal messages with their data in the ndbd process.

It is recommended not to use a directory mounted through NFS because in some environments this can
cause problems whereby the lock on the .pid file remains in effect even after the process has terminated.

To start ndbd, it may also be necessary to specify the host name of the management server and the port
on which it is listening. Optionally, one may also specify the node ID that the process is to use.

$> ndbd --connect-string="nodeid=2;host=ndb_mgmd.mysql.com:1186"

See Section 21.4.3.3, “NDB Cluster Connection Strings”, for additional information about this issue. For
more information about data node configuration parameters, see Section 21.4.3.6, “Defining NDB Cluster
Data Nodes”.

When ndbd starts, it actually initiates two processes. The first of these is called the “angel process”; its
only job is to discover when the execution process has been completed, and then to restart the ndbd
process if it is configured to do so. Thus, if you attempt to kill ndbd using the Unix kill command, it is
necessary to kill both processes, beginning with the angel process. The preferred method of terminating an
ndbd process is to use the management client and stop the process from there.

The execution process uses one thread for reading, writing, and scanning data, as well as all other
activities. This thread is implemented asynchronously so that it can easily handle thousands of concurrent
actions. In addition, a watch-dog thread supervises the execution thread to make sure that it does not
hang in an endless loop. A pool of threads handles file I/O, with each thread able to handle one open file.
Threads can also be used for transporter connections by the transporters in the ndbd process. In a multi-
processor system performing a large number of operations (including updates), the ndbd process can
consume up to 2 CPUs if permitted to do so.

For a machine with many CPUs it is possible to use several ndbd processes which belong to different
node groups; however, such a configuration is still considered experimental and is not supported for
MySQL 5.7 in a production setting. See Section 21.2.7, “Known Limitations of NDB Cluster”.

21.5.2 ndbinfo_select_all — Select From ndbinfo Tables

ndbinfo_select_all is a client program that selects all rows and columns from one or more tables in
the ndbinfo database

3581

ndbinfo_select_all — Select From ndbinfo Tables

Not all ndbinfo tables available in the mysql client can be read by this program (see later in this section).
In addition, ndbinfo_select_all can show information about some tables internal to ndbinfo which
cannot be accessed using SQL, including the tables and columns metadata tables.

To select from one or more ndbinfo tables using ndbinfo_select_all, it is necessary to supply the
names of the tables when invoking the program as shown here:

$> ndbinfo_select_all table_name1 [table_name2] [...]

For example:

$> ndbinfo_select_all logbuffers logspaces
== logbuffers ==
node_id log_type log_id log_part total used high
5 0 0 0 33554432 262144 0
6 0 0 0 33554432 262144 0
7 0 0 0 33554432 262144 0
8 0 0 0 33554432 262144 0
== logspaces ==
node_id log_type log_id log_part total used high
5 0 0 0 268435456 0 0
5 0 0 1 268435456 0 0
5 0 0 2 268435456 0 0
5 0 0 3 268435456 0 0
6 0 0 0 268435456 0 0
6 0 0 1 268435456 0 0
6 0 0 2 268435456 0 0
6 0 0 3 268435456 0 0
7 0 0 0 268435456 0 0
7 0 0 1 268435456 0 0
7 0 0 2 268435456 0 0
7 0 0 3 268435456 0 0
8 0 0 0 268435456 0 0
8 0 0 1 268435456 0 0
8 0 0 2 268435456 0 0
8 0 0 3 268435456 0 0
$>

Options that can be used with ndbinfo_select_all are shown in the following table. Additional
descriptions follow the table.

Table 21.23 Command-line options used with the program ndbinfo_select_all

Format Description Added, Deprecated, or
Removed

--character-sets-dir=path Directory containing character
sets

(Supported in all NDB releases
based on MySQL 5.7)

--connect-retries=# Number of times to retry
connection before giving up

(Supported in all NDB releases
based on MySQL 5.7)

--connect-retry-delay=# Number of seconds to wait
between attempts to contact
management server

(Supported in all NDB releases
based on MySQL 5.7)

--connect-
string=connection-string,

-c connection_string

Same as --ndb-connectstring (Supported in all NDB releases
based on MySQL 5.7)

--core-file Write core file on error; used in
debugging

(Supported in all NDB releases
based on MySQL 5.7)

3582

ndbinfo_select_all — Select From ndbinfo Tables

Format Description Added, Deprecated, or
Removed

--database=db_name,

-d

Name of database where table is
located

(Supported in all NDB releases
based on MySQL 5.7)

--defaults-extra-
file=path

Read given file after global files
are read

(Supported in all NDB releases
based on MySQL 5.7)

--defaults-file=path Read default options from given
file only

(Supported in all NDB releases
based on MySQL 5.7)

--defaults-group-
suffix=string

Also read groups with
concat(group, suffix)

(Supported in all NDB releases
based on MySQL 5.7)

--delay=# Set delay in seconds between
loops

(Supported in all NDB releases
based on MySQL 5.7)

--help,

-?

Display help text and exit (Supported in all NDB releases
based on MySQL 5.7)

--login-path=path Read given path from login file (Supported in all NDB releases
based on MySQL 5.7)

--loops=#,

-l

Set number of times to perform
select

(Supported in all NDB releases
based on MySQL 5.7)

--ndb-
connectstring=connection-
string,

-c

Set connect string for
connecting to ndb_mgmd.
Syntax: "[nodeid=id;]
[host=]hostname[:port]".
Overrides entries in
NDB_CONNECTSTRING and
my.cnf

(Supported in all NDB releases
based on MySQL 5.7)

--ndb-mgmd-
host=connection-string,

-c

Same as --ndb-connectstring (Supported in all NDB releases
based on MySQL 5.7)

--ndb-nodeid=# Set node ID for this node,
overriding any ID set by --ndb-
connectstring

(Supported in all NDB releases
based on MySQL 5.7)

--no-defaults Do not read default options from
any option file other than login file

(Supported in all NDB releases
based on MySQL 5.7)

--ndb-optimized-node-
selection

Enable optimizations for selection
of nodes for transactions. Enabled
by default; use --skip-ndb-
optimized-node-selection to
disable

(Supported in all NDB releases
based on MySQL 5.7)

--parallelism=#,

-p

Set degree of parallelism (Supported in all NDB releases
based on MySQL 5.7)

--print-defaults Print program argument list and
exit

(Supported in all NDB releases
based on MySQL 5.7)

--usage, Display help text and exit; same
as --help

(Supported in all NDB releases
based on MySQL 5.7)

3583

ndbinfo_select_all — Select From ndbinfo Tables

Format Description Added, Deprecated, or
Removed

-?

--version,

-V

Display version information and
exit

(Supported in all NDB releases
based on MySQL 5.7)

• --character-sets-dir

Command-Line Format --character-sets-dir=path

Directory containing character sets.

• --connect-retries

Command-Line Format --connect-retries=#

Type Integer

Default Value 12

Minimum Value 0

Maximum Value 12

Number of times to retry connection before giving up.

• --connect-retry-delay

Command-Line Format --connect-retry-delay=#

Type Integer

Default Value 5

Minimum Value 0

Maximum Value 5

Number of seconds to wait between attempts to contact management server.

• --connect-string

Command-Line Format --connect-string=connection-string

Type String

Default Value [none]

Same as --ndb-connectstring.

• --core-file

Command-Line Format --core-file

Write core file on error; used in debugging.

• --defaults-extra-file

Command-Line Format --defaults-extra-file=path

3584

ndbinfo_select_all — Select From ndbinfo Tables

Type String

Default Value [none]

Read given file after global files are read.

• --defaults-file

Command-Line Format --defaults-file=path

Type String

Default Value [none]

Read default options from given file only.

• --defaults-group-suffix

Command-Line Format --defaults-group-suffix=string

Type String

Default Value [none]

Also read groups with concat(group, suffix).

• --delay=seconds

Command-Line Format --delay=#

Type Numeric

Default Value 5

Minimum Value 0

Maximum Value MAX_INT

This option sets the number of seconds to wait between executing loops. Has no effect if --loops is set
to 0 or 1.

• --help

Command-Line Format --help

Display help text and exit.

• --login-path

Command-Line Format --login-path=path

Type String

Default Value [none]

Read given path from login file.

• --loops=number, -l number

Command-Line Format --loops=#

Type Numeric

3585

ndbinfo_select_all — Select From ndbinfo Tables

Default Value 1

Minimum Value 0

Maximum Value MAX_INT

This option sets the number of times to execute the select. Use --delay to set the time between loops.

• --ndb-connectstring

Command-Line Format --ndb-connectstring=connection-string

Type String

Default Value [none]

Set connect string for connecting to ndb_mgmd. Syntax: "[nodeid=id;][host=]hostname[:port]". Overrides
entries in NDB_CONNECTSTRING and my.cnf.

• --ndb-mgmd-host

Command-Line Format --ndb-mgmd-host=connection-string

Type String

Default Value [none]

Same as --ndb-connectstring.

• --ndb-nodeid

Command-Line Format --ndb-nodeid=#

Type Integer

Default Value [none]

Set node ID for this node, overriding any ID set by --ndb-connectstring.

• --ndb-optimized-node-selection

Command-Line Format --ndb-optimized-node-selection

Enable optimizations for selection of nodes for transactions. Enabled by default; use --skip-ndb-
optimized-node-selection to disable.

• --no-defaults

Command-Line Format --no-defaults

Do not read default options from any option file other than login file.

• --print-defaults

Command-Line Format --print-defaults

Print program argument list and exit.
3586

ndbmtd — The NDB Cluster Data Node Daemon (Multi-Threaded)

• --usage

Command-Line Format --usage

Display help text and exit; same as --help.

• --version

Command-Line Format --version

Display version information and exit.

ndbinfo_select_all is unable to read the following tables:

• arbitrator_validity_detail

• arbitrator_validity_summary

• cluster_locks

• cluster_operations

• cluster_transactions

• disk_write_speed_aggregate_node

• locks_per_fragment

• memory_per_fragment

• memoryusage

• operations_per_fragment

• server_locks

• server_operations

• server_transactions

• table_info

21.5.3 ndbmtd — The NDB Cluster Data Node Daemon (Multi-Threaded)

ndbmtd is a multithreaded version of ndbd, the process that is used to handle all the data in tables
using the NDBCLUSTER storage engine. ndbmtd is intended for use on host computers having multiple
CPU cores. Except where otherwise noted, ndbmtd functions in the same way as ndbd; therefore, in
this section, we concentrate on the ways in which ndbmtd differs from ndbd, and you should consult
Section 21.5.1, “ndbd — The NDB Cluster Data Node Daemon”, for additional information about running
NDB Cluster data nodes that apply to both the single-threaded and multithreaded versions of the data node
process.

Command-line options and configuration parameters used with ndbd also apply to ndbmtd. For more
information about these options and parameters, see Section 21.5.1, “ndbd — The NDB Cluster Data Node
Daemon”, and Section 21.4.3.6, “Defining NDB Cluster Data Nodes”, respectively.

ndbmtd is also file system-compatible with ndbd. In other words, a data node running ndbd can be
stopped, the binary replaced with ndbmtd, and then restarted without any loss of data. (However,

3587

ndb_mgmd — The NDB Cluster Management Server Daemon

when doing this, you must make sure that MaxNoOfExecutionThreads is set to an apppriate value
before restarting the node if you wish for ndbmtd to run in multithreaded fashion.) Similarly, an ndbmtd
binary can be replaced with ndbd simply by stopping the node and then starting ndbd in place of the
multithreaded binary. It is not necessary when switching between the two to start the data node binary
using --initial.

Using ndbmtd differs from using ndbd in two key respects:

1. Because ndbmtd runs by default in single-threaded mode (that is, it behaves like ndbd), you
must configure it to use multiple threads. This can be done by setting an appropriate value in
the config.ini file for the MaxNoOfExecutionThreads configuration parameter or the
ThreadConfig configuration parameter. Using MaxNoOfExecutionThreads is simpler, but
ThreadConfig offers more flexibility. For more information about these configuration parameters and
their use, see Multi-Threading Configuration Parameters (ndbmtd).

2. Trace files are generated by critical errors in ndbmtd processes in a somewhat different fashion from
how these are generated by ndbd failures. These differences are discussed in more detail in the next
few paragraphs.

Like ndbd, ndbmtd generates a set of log files which are placed in the directory specified by DataDir in
the config.ini configuration file. Except for trace files, these are generated in the same way and have
the same names as those generated by ndbd.

In the event of a critical error, ndbmtd generates trace files describing what happened just prior to the
error' occurrence. These files, which can be found in the data node's DataDir, are useful for analysis
of problems by the NDB Cluster Development and Support teams. One trace file is generated for each
ndbmtd thread. The names of these files have the following pattern:

ndb_node_id_trace.log.trace_id_tthread_id,

In this pattern, node_id stands for the data node's unique node ID in the cluster, trace_id
is a trace sequence number, and thread_id is the thread ID. For example, in the event of the
failure of an ndbmtd process running as an NDB Cluster data node having the node ID 3 and with
MaxNoOfExecutionThreads equal to 4, four trace files are generated in the data node's data directory.
If the is the first time this node has failed, then these files are named ndb_3_trace.log.1_t1,
ndb_3_trace.log.1_t2, ndb_3_trace.log.1_t3, and ndb_3_trace.log.1_t4. Internally, these
trace files follow the same format as ndbd trace files.

The ndbd exit codes and messages that are generated when a data node process shuts down prematurely
are also used by ndbmtd. See Data Node Error Messages, for a listing of these.

Note

It is possible to use ndbd and ndbmtd concurrently on different data nodes in the
same NDB Cluster. However, such configurations have not been tested extensively;
thus, we cannot recommend doing so in a production setting at this time.

21.5.4 ndb_mgmd — The NDB Cluster Management Server Daemon

The management server is the process that reads the cluster configuration file and distributes this
information to all nodes in the cluster that request it. It also maintains a log of cluster activities.
Management clients can connect to the management server and check the cluster's status.

Options that can be used with ndb_mgmd are shown in the following table. Additional descriptions follow
the table.

3588

https://dev.mysql.com/doc/ndb-internals/en/ndb-node-error-messages.html

ndb_mgmd — The NDB Cluster Management Server Daemon

Table 21.24 Command-line options used with the program ndb_mgmd

Format Description Added, Deprecated, or
Removed

--bind-address=host Local bind address (Supported in all NDB releases
based on MySQL 5.7)

--character-sets-dir=path Directory containing character
sets

(Supported in all NDB releases
based on MySQL 5.7)

--config-cache[=TRUE|
FALSE]

Enable management server
configuration cache; true by
default

(Supported in all NDB releases
based on MySQL 5.7)

--config-file=file,

-f file

Specify cluster configuration file;
also specify --reload or --initial to
override configuration cache if
present

(Supported in all NDB releases
based on MySQL 5.7)

--configdir=directory,

--config-dir=directory

Specify cluster management
server configuration cache
directory

(Supported in all NDB releases
based on MySQL 5.7)

--connect-retries=# Number of times to retry
connection before giving up

(Supported in all NDB releases
based on MySQL 5.7)

--connect-retry-delay=# Number of seconds to wait
between attempts to contact
management server

(Supported in all NDB releases
based on MySQL 5.7)

--connect-
string=connection_string,

-c connection_string

Same as --ndb-connectstring (Supported in all NDB releases
based on MySQL 5.7)

--core-file Write core file on error; used in
debugging

(Supported in all NDB releases
based on MySQL 5.7)

--daemon,

-d

Run ndb_mgmd in daemon mode
(default)

(Supported in all NDB releases
based on MySQL 5.7)

--defaults-extra-
file=path

Read given file after global files
are read

(Supported in all NDB releases
based on MySQL 5.7)

--defaults-file=path Read default options from given
file only

(Supported in all NDB releases
based on MySQL 5.7)

--defaults-group-
suffix=string

Also read groups with
concat(group, suffix)

(Supported in all NDB releases
based on MySQL 5.7)

--help,

-?

Display help text and exit (Supported in all NDB releases
based on MySQL 5.7)

--initial Causes management server to
reload configuration data from
configuration file, bypassing
configuration cache

(Supported in all NDB releases
based on MySQL 5.7)

--install[=name] Used to install management
server process as Windows
service; does not apply on other
platforms

(Supported in all NDB releases
based on MySQL 5.7)

3589

ndb_mgmd — The NDB Cluster Management Server Daemon

Format Description Added, Deprecated, or
Removed

--interactive Run ndb_mgmd in interactive
mode (not officially supported in
production; for testing purposes
only)

(Supported in all NDB releases
based on MySQL 5.7)

--log-name=name Name to use when writing cluster
log messages applying to this
node

(Supported in all NDB releases
based on MySQL 5.7)

--login-path=path Read given path from login file (Supported in all NDB releases
based on MySQL 5.7)

--mycnf Read cluster configuration data
from my.cnf file

(Supported in all NDB releases
based on MySQL 5.7)

--ndb-
connectstring=connection_string,

-c connection_string

Set connect string for
connecting to ndb_mgmd.
Syntax: "[nodeid=id;]
[host=]hostname[:port]".
Overrides entries in
NDB_CONNECTSTRING and
my.cnf

(Supported in all NDB releases
based on MySQL 5.7)

--ndb-mgmd-
host=connection_string,

-c connection_string

Same as --ndb-connectstring (Supported in all NDB releases
based on MySQL 5.7)

--ndb-nodeid=# Set node ID for this node,
overriding any ID set by --ndb-
connectstring

(Supported in all NDB releases
based on MySQL 5.7)

--ndb-optimized-node-
selection

Enable optimizations for selection
of nodes for transactions. Enabled
by default; use --skip-ndb-
optimized-node-selection to
disable

(Supported in all NDB releases
based on MySQL 5.7)

--no-defaults Do not read default options from
any option file other than login file

(Supported in all NDB releases
based on MySQL 5.7)

--no-nodeid-checks Do not perform any node ID
checks

(Supported in all NDB releases
based on MySQL 5.7)

--nodaemon Do not run ndb_mgmd as a
daemon

(Supported in all NDB releases
based on MySQL 5.7)

--nowait-nodes=list Do not wait for management
nodes specified when starting this
management server; requires --
ndb-nodeid option

(Supported in all NDB releases
based on MySQL 5.7)

--print-defaults Print program argument list and
exit

(Supported in all NDB releases
based on MySQL 5.7)

--print-full-config,

-P

Print full configuration and exit (Supported in all NDB releases
based on MySQL 5.7)

3590

ndb_mgmd — The NDB Cluster Management Server Daemon

Format Description Added, Deprecated, or
Removed

--reload Causes management server to
compare configuration file with
configuration cache

(Supported in all NDB releases
based on MySQL 5.7)

--remove[=name] Used to remove management
server process that was previously
installed as Windows service,
optionally specifying name of
service to be removed; does not
apply on other platforms

(Supported in all NDB releases
based on MySQL 5.7)

--skip-config-file Do not use configuration file (Supported in all NDB releases
based on MySQL 5.7)

--usage,

-?

Display help text and exit; same
as --help

(Supported in all NDB releases
based on MySQL 5.7)

--verbose,

-v

Write additional information to log (Supported in all NDB releases
based on MySQL 5.7)

--version,

-V

Display version information and
exit

(Supported in all NDB releases
based on MySQL 5.7)

• --bind-address=host

Command-Line Format --bind-address=host

Type String

Default Value [none]

Causes the management server to bind to a specific network interface (host name or IP address). This
option has no default value.

• --character-sets-dir

Command-Line Format --character-sets-dir=path

Directory containing character sets.

• --config-cache

Command-Line Format --config-cache[=TRUE|FALSE]

Type Boolean

Default Value TRUE

This option, whose default value is 1 (or TRUE, or ON), can be used to disable the management server's
configuration cache, so that it reads its configuration from config.ini every time it starts (see

3591

ndb_mgmd — The NDB Cluster Management Server Daemon

Section 21.4.3, “NDB Cluster Configuration Files”). You can do this by starting the ndb_mgmd process
with any one of the following options:

• --config-cache=0

• --config-cache=FALSE

• --config-cache=OFF

• --skip-config-cache

Using one of the options just listed is effective only if the management server has no stored configuration
at the time it is started. If the management server finds any configuration cache files, then the --
config-cache option or the --skip-config-cache option is ignored. Therefore, to disable
configuration caching, the option should be used the first time that the management server is started.
Otherwise—that is, if you wish to disable configuration caching for a management server that has
already created a configuration cache—you must stop the management server, delete any existing
configuration cache files manually, then restart the management server with --skip-config-cache
(or with --config-cache set equal to 0, OFF, or FALSE).

Configuration cache files are normally created in a directory named mysql-cluster under the
installation directory (unless this location has been overridden using the --configdir option). Each
time the management server updates its configuration data, it writes a new cache file. The files are
named sequentially in order of creation using the following format:

ndb_node-id_config.bin.seq-number

node-id is the management server's node ID; seq-number is a sequence number, beginning with
1. For example, if the management server's node ID is 5, then the first three configuration cache files
would, when they are created, be named ndb_5_config.bin.1, ndb_5_config.bin.2, and
ndb_5_config.bin.3.

If your intent is to purge or reload the configuration cache without actually disabling caching, you should
start ndb_mgmd with one of the options --reload or --initial instead of --skip-config-cache.

To re-enable the configuration cache, simply restart the management server, but without the --config-
cache or --skip-config-cache option that was used previously to disable the configuration cache.

ndb_mgmd does not check for the configuration directory (--configdir) or attempts to create one
when --skip-config-cache is used. (Bug #13428853)

• --config-file=filename, -f filename

Command-Line Format --config-file=file

Disabled by skip-config-file

Type File name

3592

ndb_mgmd — The NDB Cluster Management Server Daemon

Default Value [none]

Instructs the management server as to which file it should use for its configuration file. By default,
the management server looks for a file named config.ini in the same directory as the ndb_mgmd
executable; otherwise the file name and location must be specified explicitly.

This option has no default value, and is ignored unless the management server is forced to read the
configuration file, either because ndb_mgmd was started with the --reload or --initial option, or
because the management server could not find any configuration cache.

The --config-file option is also read if ndb_mgmd was started with --config-cache=OFF. See
Section 21.4.3, “NDB Cluster Configuration Files”, for more information.

• --configdir=dir_name

Command-Line Format --configdir=directory

--config-dir=directory

Type File name

Default Value $INSTALLDIR/mysql-cluster

Specifies the cluster management server's configuration cache directory. --config-dir is an alias for
this option.

• --connect-retries

Command-Line Format --connect-retries=#

Type Integer

Default Value 12

Minimum Value 0

Maximum Value 12

Number of times to retry connection before giving up.

• --connect-retry-delay

Command-Line Format --connect-retry-delay=#

Type Integer

Default Value 5

Minimum Value 0

Maximum Value 5

Number of seconds to wait between attempts to contact management server.

• --connect-string

Command-Line Format --connect-string=connection_string

Type String

3593

ndb_mgmd — The NDB Cluster Management Server Daemon

Default Value [none]

Same as --ndb-connectstring.

• --core-file

Command-Line Format --core-file

Write core file on error; used in debugging.

• --daemon, -d

Command-Line Format --daemon

Instructs ndb_mgmd to start as a daemon process. This is the default behavior.

This option has no effect when running ndb_mgmd on Windows platforms.

• --defaults-extra-file

Command-Line Format --defaults-extra-file=path

Type String

Default Value [none]

Read given file after global files are read.

• --defaults-file

Command-Line Format --defaults-file=path

Type String

Default Value [none]

Read default options from given file only.

• --defaults-group-suffix

Command-Line Format --defaults-group-suffix=string

Type String

Default Value [none]

Also read groups with concat(group, suffix).

• --help

Command-Line Format --help

Display help text and exit.

3594

ndb_mgmd — The NDB Cluster Management Server Daemon

• --initial

Command-Line Format --initial

Configuration data is cached internally, rather than being read from the cluster global configuration file
each time the management server is started (see Section 21.4.3, “NDB Cluster Configuration Files”).
Using the --initial option overrides this behavior, by forcing the management server to delete any
existing cache files, and then to re-read the configuration data from the cluster configuration file and to
build a new cache.

This differs in two ways from the --reload option. First, --reload forces the server to check the
configuration file against the cache and reload its data only if the contents of the file are different from
the cache. Second, --reload does not delete any existing cache files.

If ndb_mgmd is invoked with --initial but cannot find a global configuration file, the management
server cannot start.

When a management server starts, it checks for another management server in the same NDB Cluster
and tries to use the other management server's configuration data. This behavior has implications when
performing a rolling restart of an NDB Cluster with multiple management nodes. See Section 21.6.5,
“Performing a Rolling Restart of an NDB Cluster”, for more information.

When used together with the --config-file option, the cache is cleared only if the configuration file is
actually found.

• --install[=name]

Command-Line Format --install[=name]

Platform Specific Windows

Type String

Default Value ndb_mgmd

Causes ndb_mgmd to be installed as a Windows service. Optionally, you can specify a name for the
service; if not set, the service name defaults to ndb_mgmd. Although it is preferable to specify other
ndb_mgmd program options in a my.ini or my.cnf configuration file, it is possible to use them together
with --install. However, in such cases, the --install option must be specified first, before any
other options are given, for the Windows service installation to succeed.

It is generally not advisable to use this option together with the --initial option, since this causes
the configuration cache to be wiped and rebuilt every time the service is stopped and started. Care
should also be taken if you intend to use any other ndb_mgmd options that affect the starting of the
management server, and you should make absolutely certain you fully understand and allow for any
possible consequences of doing so.

The --install option has no effect on non-Windows platforms.

• --interactive

Command-Line Format --interactive

Starts ndb_mgmd in interactive mode; that is, an ndb_mgm client session is started as soon as the
management server is running. This option does not start any other NDB Cluster nodes.

3595

ndb_mgmd — The NDB Cluster Management Server Daemon

• --login-path

Command-Line Format --login-path=path

Type String

Default Value [none]

Read given path from login file.

• --log-name=name

Command-Line Format --log-name=name

Type String

Default Value MgmtSrvr

Provides a name to be used for this node in the cluster log.

• --mycnf

Command-Line Format --mycnf

Read configuration data from the my.cnf file.

• --ndb-connectstring

Command-Line Format --ndb-connectstring=connection_string

Type String

Default Value [none]

Set connection string. Syntax: [nodeid=id;][host=]hostname[:port]. Overrides entries in
NDB_CONNECTSTRING and my.cnf; ignored if --config-file is specified.

• --ndb-mgmd-host

Command-Line Format --ndb-mgmd-host=connection_string

Type String

Default Value [none]

Same as --ndb-connectstring.

• --ndb-nodeid

Command-Line Format --ndb-nodeid=#

Type Integer

Default Value [none]

Set node ID for this node, overriding any ID set by --ndb-connectstring.

3596

ndb_mgmd — The NDB Cluster Management Server Daemon

• --ndb-optimized-node-selection

Command-Line Format --ndb-optimized-node-selection

Enable optimizations for selection of nodes for transactions. Enabled by default; use --skip-ndb-
optimized-node-selection to disable.

• --no-defaults

Command-Line Format --no-defaults

Do not read default options from any option file other than login file.

• --no-nodeid-checks

Command-Line Format --no-nodeid-checks

Do not perform any checks of node IDs.

• --nodaemon

Command-Line Format --nodaemon

Instructs ndb_mgmd not to start as a daemon process.

The default behavior for ndb_mgmd on Windows is to run in the foreground, making this option
unnecessary on Windows platforms.

• --nowait-nodes

Command-Line Format --nowait-nodes=list

Type Numeric

Default Value [none]

Minimum Value 1

Maximum Value 255

When starting an NDB Cluster is configured with two management nodes, each management server
normally checks to see whether the other ndb_mgmd is also operational and whether the other
management server's configuration is identical to its own. However, it is sometimes desirable to start
the cluster with only one management node (and perhaps to allow the other ndb_mgmd to be started
later). This option causes the management node to bypass any checks for any other management nodes
whose node IDs are passed to this option, permitting the cluster to start as though configured to use only
the management node that was started.

For purposes of illustration, consider the following portion of a config.ini file (where we have omitted
most of the configuration parameters that are not relevant to this example):

[ndbd]
NodeId = 1
HostName = 198.51.100.101

[ndbd]
NodeId = 2
HostName = 198.51.100.102

[ndbd]

3597

ndb_mgmd — The NDB Cluster Management Server Daemon

NodeId = 3
HostName = 198.51.100.103

[ndbd]
NodeId = 4
HostName = 198.51.100.104

[ndb_mgmd]
NodeId = 10
HostName = 198.51.100.150

[ndb_mgmd]
NodeId = 11
HostName = 198.51.100.151

[api]
NodeId = 20
HostName = 198.51.100.200

[api]
NodeId = 21
HostName = 198.51.100.201

Assume that you wish to start this cluster using only the management server having node ID 10 and
running on the host having the IP address 198.51.100.150. (Suppose, for example, that the host
computer on which you intend to the other management server is temporarily unavailable due to
a hardware failure, and you are waiting for it to be repaired.) To start the cluster in this way, use a
command line on the machine at 198.51.100.150 to enter the following command:

$> ndb_mgmd --ndb-nodeid=10 --nowait-nodes=11

As shown in the preceding example, when using --nowait-nodes, you must also use the --ndb-
nodeid option to specify the node ID of this ndb_mgmd process.

You can then start each of the cluster's data nodes in the usual way. If you wish to start and use
the second management server in addition to the first management server at a later time without
restarting the data nodes, you must start each data node with a connection string that references both
management servers, like this:

$> ndbd -c 198.51.100.150,198.51.100.151

The same is true with regard to the connection string used with any mysqld processes that you wish
to start as NDB Cluster SQL nodes connected to this cluster. See Section 21.4.3.3, “NDB Cluster
Connection Strings”, for more information.

When used with ndb_mgmd, this option affects the behavior of the management node with regard to
other management nodes only. Do not confuse it with the --nowait-nodes option used with ndbd or
ndbmtd to permit a cluster to start with fewer than its full complement of data nodes; when used with
data nodes, this option affects their behavior only with regard to other data nodes.

Multiple management node IDs may be passed to this option as a comma-separated list. Each node
ID must be no less than 1 and no greater than 255. In practice, it is quite rare to use more than two
management servers for the same NDB Cluster (or to have any need for doing so); in most cases you
need to pass to this option only the single node ID for the one management server that you do not wish
to use when starting the cluster.

Note

When you later start the “missing” management server, its configuration must
match that of the management server that is already in use by the cluster.

3598

ndb_mgmd — The NDB Cluster Management Server Daemon

Otherwise, it fails the configuration check performed by the existing management
server, and does not start.

• --print-defaults

Command-Line Format --print-defaults

Print program argument list and exit.

• --print-full-config, -P

Command-Line Format --print-full-config

Shows extended information regarding the configuration of the cluster. With this option on the command
line the ndb_mgmd process prints information about the cluster setup including an extensive list of the
cluster configuration sections as well as parameters and their values. Normally used together with the --
config-file (-f) option.

• --reload

Command-Line Format --reload

NDB Cluster configuration data is stored internally rather than being read from the cluster global
configuration file each time the management server is started (see Section 21.4.3, “NDB Cluster
Configuration Files”). Using this option forces the management server to check its internal data store
against the cluster configuration file and to reload the configuration if it finds that the configuration file
does not match the cache. Existing configuration cache files are preserved, but not used.

This differs in two ways from the --initial option. First, --initial causes all cache files to be
deleted. Second, --initial forces the management server to re-read the global configuration file and
construct a new cache.

If the management server cannot find a global configuration file, then the --reload option is ignored.

When --reload is used, the management server must be able to communicate with data nodes and
any other management servers in the cluster before it attempts to read the global configuration file;
otherwise, the management server fails to start. This can happen due to changes in the networking
environment, such as new IP addresses for nodes or an altered firewall configuration. In such cases, you
must use --initial instead to force the exsiting cached configuration to be discarded and reloaded
from the file. See Section 21.6.5, “Performing a Rolling Restart of an NDB Cluster”, for additional
information.

• --remove{=name]

Command-Line Format --remove[=name]

Platform Specific Windows

Type String

Default Value ndb_mgmd

Remove a management server process that has been installed as a Windows service, optionally
specifying the name of the service to be removed. Applies only to Windows platforms.

3599

ndb_mgm — The NDB Cluster Management Client

• --skip-config-file

Command-Line Format --skip-config-file

Do not read cluster configuration file; ignore --initial and --reload options if specified.

• --usage

Command-Line Format --usage

Display help text and exit; same as --help.

• --verbose, -v

Command-Line Format --verbose

Remove a management server process that has been installed as a Windows service, optionally
specifying the name of the service to be removed. Applies only to Windows platforms.

• --version

Command-Line Format --version

Display version information and exit.

It is not strictly necessary to specify a connection string when starting the management server. However, if
you are using more than one management server, a connection string should be provided and each node
in the cluster should specify its node ID explicitly.

See Section 21.4.3.3, “NDB Cluster Connection Strings”, for information about using connection strings.
Section 21.5.4, “ndb_mgmd — The NDB Cluster Management Server Daemon”, describes other options
for ndb_mgmd.

The following files are created or used by ndb_mgmd in its starting directory, and are placed in the
DataDir as specified in the config.ini configuration file. In the list that follows, node_id is the unique
node identifier.

• config.ini is the configuration file for the cluster as a whole. This file is created by the user and
read by the management server. Section 21.4, “Configuration of NDB Cluster”, discusses how to set up
this file.

• ndb_node_id_cluster.log is the cluster events log file. Examples of such events include checkpoint
startup and completion, node startup events, node failures, and levels of memory usage. A complete
listing of cluster events with descriptions may be found in Section 21.6, “Management of NDB Cluster”.

By default, when the size of the cluster log reaches one million bytes, the file is renamed to
ndb_node_id_cluster.log.seq_id, where seq_id is the sequence number of the cluster log file.
(For example: If files with the sequence numbers 1, 2, and 3 already exist, the next log file is named
using the number 4.) You can change the size and number of files, and other characteristics of the
cluster log, using the LogDestination configuration parameter.

• ndb_node_id_out.log is the file used for stdout and stderr when running the management server
as a daemon.

• ndb_node_id.pid is the process ID file used when running the management server as a daemon.

21.5.5 ndb_mgm — The NDB Cluster Management Client

3600

ndb_mgm — The NDB Cluster Management Client

The ndb_mgm management client process is actually not needed to run the cluster. Its value lies in
providing a set of commands for checking the cluster's status, starting backups, and performing other
administrative functions. The management client accesses the management server using a C API.
Advanced users can also employ this API for programming dedicated management processes to perform
tasks similar to those performed by ndb_mgm.

To start the management client, it is necessary to supply the host name and port number of the
management server:

$> ndb_mgm [host_name [port_num]]

For example:

$> ndb_mgm ndb_mgmd.mysql.com 1186

The default host name and port number are localhost and 1186, respectively.

Options that can be used with ndb_mgm are shown in the following table. Additional descriptions follow the
table.

Table 21.25 Command-line options used with the program ndb_mgm

Format Description Added, Deprecated, or
Removed

--character-sets-dir=path Directory containing character
sets

(Supported in all NDB releases
based on MySQL 5.7)

--connect-retry-delay=# Number of seconds to wait
between attempts to contact
management server

(Supported in all NDB releases
based on MySQL 5.7)

--connect-
string=connection_string,

-c connection_string

Same as --ndb-connectstring (Supported in all NDB releases
based on MySQL 5.7)

--core-file Write core file on error; used in
debugging

(Supported in all NDB releases
based on MySQL 5.7)

--defaults-extra-
file=path

Read given file after global files
are read

(Supported in all NDB releases
based on MySQL 5.7)

--defaults-file=path Read default options from given
file only

(Supported in all NDB releases
based on MySQL 5.7)

--defaults-group-
suffix=string

Also read groups with
concat(group, suffix)

(Supported in all NDB releases
based on MySQL 5.7)

--execute=command,

-e command

Execute command and exit (Supported in all NDB releases
based on MySQL 5.7)

--help,

-?

Display help text and exit (Supported in all NDB releases
based on MySQL 5.7)

--login-path=path Read given path from login file (Supported in all NDB releases
based on MySQL 5.7)

--ndb-
connectstring=connection_string,

Set connect string for
connecting to ndb_mgmd.

(Supported in all NDB releases
based on MySQL 5.7)

3601

ndb_mgm — The NDB Cluster Management Client

Format Description Added, Deprecated, or
Removed

-c connection_string Syntax: "[nodeid=id;]
[host=]hostname[:port]".
Overrides entries in
NDB_CONNECTSTRING and
my.cnf

--ndb-mgmd-
host=connection_string,

-c connection_string

Same as --ndb-connectstring (Supported in all NDB releases
based on MySQL 5.7)

--ndb-nodeid=# Set node ID for this node,
overriding any ID set by --ndb-
connectstring

(Supported in all NDB releases
based on MySQL 5.7)

--ndb-optimized-node-
selection

Enable optimizations for selection
of nodes for transactions. Enabled
by default; use --skip-ndb-
optimized-node-selection to
disable

(Supported in all NDB releases
based on MySQL 5.7)

--no-defaults Do not read default options from
any option file other than login file

(Supported in all NDB releases
based on MySQL 5.7)

--print-defaults Print program argument list and
exit

(Supported in all NDB releases
based on MySQL 5.7)

--try-reconnect=#,

-t #

Set number of times to retry
connection before giving up;
synonym for --connect-retries

(Supported in all NDB releases
based on MySQL 5.7)

--usage,

-?

Display help text and exit; same
as --help

(Supported in all NDB releases
based on MySQL 5.7)

--version,

-V

Display version information and
exit

(Supported in all NDB releases
based on MySQL 5.7)

• --character-sets-dir

Command-Line Format --character-sets-dir=path

Directory containing character sets.

• --connect-retries=#

Command-Line Format --connect-retries=#

Type Numeric

Default Value 3

Minimum Value 0

Maximum Value 4294967295

This option specifies the number of times following the first attempt to retry a connection before giving up
(the client always tries the connection at least once). The length of time to wait per attempt is set using
--connect-retry-delay.

3602

ndb_mgm — The NDB Cluster Management Client

This option is synonymous with the --try-reconnect option, which is now deprecated.

• --connect-retry-delay

Command-Line Format --connect-retry-delay=#

Type Integer

Default Value 5

Minimum Value 0

Maximum Value 5

Number of seconds to wait between attempts to contact management server.

• --connect-string

Command-Line Format --connect-string=connection_string

Type String

Default Value [none]

Same as --ndb-connectstring.

• --core-file

Command-Line Format --core-file

Write core file on error; used in debugging.

• --defaults-extra-file

Command-Line Format --defaults-extra-file=path

Type String

Default Value [none]

Read given file after global files are read.

• --defaults-file

Command-Line Format --defaults-file=path

Type String

Default Value [none]

Read default options from given file only.

• --defaults-group-suffix

Command-Line Format --defaults-group-suffix=string

Type String

Default Value [none]

Also read groups with concat(group, suffix).

3603

ndb_mgm — The NDB Cluster Management Client

• --execute=command, -e command

Command-Line Format --execute=command

This option can be used to send a command to the NDB Cluster management client from the system
shell. For example, either of the following is equivalent to executing SHOW in the management client:

$> ndb_mgm -e "SHOW"

$> ndb_mgm --execute="SHOW"

This is analogous to how the --execute or -e option works with the mysql command-line client. See
Section 4.2.2.1, “Using Options on the Command Line”.

Note

If the management client command to be passed using this option contains any
space characters, then the command must be enclosed in quotation marks.
Either single or double quotation marks may be used. If the management client
command contains no space characters, the quotation marks are optional.

• --help

Command-Line Format --help

Display help text and exit.

• --login-path

Command-Line Format --login-path=path

Type String

Default Value [none]

Read given path from login file.

• --ndb-connectstring

Command-Line Format --ndb-connectstring=connection_string

Type String

Default Value [none]

Set connect string for connecting to ndb_mgmd. Syntax: [nodeid=id;][host=]hostname[:port].
Overrides entries in NDB_CONNECTSTRING and my.cnf.

• --ndb-mgmd-host

Command-Line Format --ndb-mgmd-host=connection_string

Type String

Default Value [none]

Same as --ndb-connectstring.3604

ndb_mgm — The NDB Cluster Management Client

• --ndb-nodeid

Command-Line Format --ndb-nodeid=#

Type Integer

Default Value [none]

Set node ID for this node, overriding any ID set by --ndb-connectstring.

• --ndb-optimized-node-selection

Command-Line Format --ndb-optimized-node-selection

Enable optimizations for selection of nodes for transactions. Enabled by default; use --skip-ndb-
optimized-node-selection to disable.

• --no-defaults

Command-Line Format --no-defaults

Do not read default options from any option file other than login file.

• --print-defaults

Command-Line Format --print-defaults

Print program argument list and exit.

• --try-reconnect=number

Command-Line Format --try-reconnect=#

Deprecated Yes

Type (≥ 5.7.10-ndb-7.5.0) Numeric

Type Integer

Default Value (≥ 5.7.10-ndb-7.5.0) 12

Default Value 3

Minimum Value 0

Maximum Value 4294967295

If the connection to the management server is broken, the node tries to reconnect to it every 5 seconds
until it succeeds. By using this option, it is possible to limit the number of attempts to number before
giving up and reporting an error instead.

This option is deprecated and subject to removal in a future release. Use --connect-retries,
instead.

• --usage

Command-Line Format --usage

Display help text and exit; same as --help.

• --version

3605

ndb_blob_tool — Check and Repair BLOB and TEXT columns of NDB Cluster Tables

Command-Line Format --version

Display version information and exit.

Additional information about using ndb_mgm can be found in Section 21.6.1, “Commands in the NDB
Cluster Management Client”.

21.5.6 ndb_blob_tool — Check and Repair BLOB and TEXT columns of NDB
Cluster Tables

This tool can be used to check for and remove orphaned BLOB column parts from NDB tables, as well as
to generate a file listing any orphaned parts. It is sometimes useful in diagnosing and repairing corrupted or
damaged NDB tables containing BLOB or TEXT columns.

The basic syntax for ndb_blob_tool is shown here:

ndb_blob_tool [options] table [column, ...]

Unless you use the --help option, you must specify an action to be performed by including one or
more of the options --check-orphans, --delete-orphans, or --dump-file. These options cause
ndb_blob_tool to check for orphaned BLOB parts, remove any orphaned BLOB parts, and generate a
dump file listing orphaned BLOB parts, respectively, and are described in more detail later in this section.

You must also specify the name of a table when invoking ndb_blob_tool. In addition, you can optionally
follow the table name with the (comma-separated) names of one or more BLOB or TEXT columns from that
table. If no columns are listed, the tool works on all of the table's BLOB and TEXT columns. If you need to
specify a database, use the --database (-d) option.

The --verbose option provides additional information in the output about the tool's progress.

Options that can be used with ndb_blob_tool are shown in the following table. Additional descriptions
follow the table.

Table 21.26 Command-line options used with the program ndb_blob_tool

Format Description Added, Deprecated, or
Removed

--add-missing Write dummy blob parts to take
place of those which are missing

ADDED: NDB 7.5.18, NDB 7.6.14

--character-sets-dir=path Directory containing character
sets

(Supported in all NDB releases
based on MySQL 5.7)

--check-missing Check for blobs having inline parts
but missing one or more parts
from parts table

ADDED: NDB 7.5.18, NDB 7.6.14

--check-orphans Check for blob parts having no
corresponding inline parts

(Supported in all NDB releases
based on MySQL 5.7)

--connect-retries=# Number of times to retry
connection before giving up

(Supported in all NDB releases
based on MySQL 5.7)

--connect-retry-delay=# Number of seconds to wait
between attempts to contact
management server

(Supported in all NDB releases
based on MySQL 5.7)

--connect-
string=connection_string,

Same as --ndb-connectstring (Supported in all NDB releases
based on MySQL 5.7)

3606

ndb_blob_tool — Check and Repair BLOB and TEXT columns of NDB Cluster Tables

Format Description Added, Deprecated, or
Removed

-c connection_string

--core-file Write core file on error; used in
debugging

(Supported in all NDB releases
based on MySQL 5.7)

--database=name,

-d name

Database to find the table in (Supported in all NDB releases
based on MySQL 5.7)

--defaults-extra-
file=path

Read given file after global files
are read

(Supported in all NDB releases
based on MySQL 5.7)

--defaults-file=path Read default options from given
file only

(Supported in all NDB releases
based on MySQL 5.7)

--defaults-group-
suffix=string

Also read groups with
concat(group, suffix)

(Supported in all NDB releases
based on MySQL 5.7)

--delete-orphans Delete blob parts having no
corresponding inline parts

(Supported in all NDB releases
based on MySQL 5.7)

--dump-file=file Write orphan keys to specified file (Supported in all NDB releases
based on MySQL 5.7)

--help,

-?

Display help text and exit (Supported in all NDB releases
based on MySQL 5.7)

--login-path=path Read given path from login file (Supported in all NDB releases
based on MySQL 5.7)

--ndb-
connectstring=connection_string,

-c connection_string

Set connect string for
connecting to ndb_mgmd.
Syntax: "[nodeid=id;]
[host=]hostname[:port]".
Overrides entries in
NDB_CONNECTSTRING and
my.cnf

(Supported in all NDB releases
based on MySQL 5.7)

--ndb-mgmd-
host=connection_string,

-c connection_string

Same as --ndb-connectstring (Supported in all NDB releases
based on MySQL 5.7)

--ndb-nodeid=# Set node ID for this node,
overriding any ID set by --ndb-
connectstring

(Supported in all NDB releases
based on MySQL 5.7)

--ndb-optimized-node-
selection

Enable optimizations for selection
of nodes for transactions. Enabled
by default; use --skip-ndb-
optimized-node-selection to
disable

(Supported in all NDB releases
based on MySQL 5.7)

--no-defaults Do not read default options from
any option file other than login file

(Supported in all NDB releases
based on MySQL 5.7)

--print-defaults Print program argument list and
exit

(Supported in all NDB releases
based on MySQL 5.7)

--usage, Display help text and exit; same
as --help

(Supported in all NDB releases
based on MySQL 5.7)

3607

ndb_blob_tool — Check and Repair BLOB and TEXT columns of NDB Cluster Tables

Format Description Added, Deprecated, or
Removed

-?

--verbose,

-v

Verbose output (Supported in all NDB releases
based on MySQL 5.7)

--version,

-V

Display version information and
exit

(Supported in all NDB releases
based on MySQL 5.7)

• --add-missing

Command-Line Format --add-missing

Introduced 5.7.29-ndb-7.6.14

For each inline part in NDB Cluster tables which has no corresponding BLOB part, write a dummy BLOB
part of the required length, consisting of spaces.

• --character-sets-dir

Command-Line Format --character-sets-dir=path

Directory containing character sets.

• --check-missing

Command-Line Format --check-missing

Introduced 5.7.29-ndb-7.6.14

Check for inline parts in NDB Cluster tables which have no corresponding BLOB parts.

• --check-orphans

Command-Line Format --check-orphans

Check for BLOB parts in NDB Cluster tables which have no corresponding inline parts.

• --connect-retries

Command-Line Format --connect-retries=#

Type Integer

Default Value 12

Minimum Value 0

Maximum Value 12

Number of times to retry connection before giving up.

• --connect-retry-delay

Command-Line Format --connect-retry-delay=#

Type Integer

3608

ndb_blob_tool — Check and Repair BLOB and TEXT columns of NDB Cluster Tables

Default Value 5

Minimum Value 0

Maximum Value 5

Number of seconds to wait between attempts to contact management server.

• --connect-string

Command-Line Format --connect-string=connection_string

Type String

Default Value [none]

Same as --ndb-connectstring.

• --core-file

Command-Line Format --core-file

Write core file on error; used in debugging.

• --database=db_name, -d

Command-Line Format --database=name

Type String

Default Value [none]

Specify the database to find the table in.

• --defaults-extra-file

Command-Line Format --defaults-extra-file=path

Type String

Default Value [none]

Read given file after global files are read.

• --defaults-file

Command-Line Format --defaults-file=path

Type String

Default Value [none]

Read default options from given file only.

• --defaults-group-suffix

Command-Line Format --defaults-group-suffix=string

Type String

Default Value [none]

Also read groups with concat(group, suffix).

3609

ndb_blob_tool — Check and Repair BLOB and TEXT columns of NDB Cluster Tables

• --delete-orphans

Command-Line Format --delete-orphans

Remove BLOB parts from NDB Cluster tables which have no corresponding inline parts.

• --dump-file=file

Command-Line Format --dump-file=file

Type File name

Default Value [none]

Writes a list of orphaned BLOB column parts to file. The information written to the file includes the
table key and BLOB part number for each orphaned BLOB part.

• --help

Command-Line Format --help

Display help text and exit.

• --login-path

Command-Line Format --login-path=path

Type String

Default Value [none]

Read given path from login file.

• --ndb-connectstring

Command-Line Format --ndb-connectstring=connection_string

Type String

Default Value [none]

Set connect string for connecting to ndb_mgmd. Syntax: "[nodeid=id;][host=]hostname[:port]". Overrides
entries in NDB_CONNECTSTRING and my.cnf.

• --ndb-mgmd-host

Command-Line Format --ndb-mgmd-host=connection_string

Type String

Default Value [none]

Same as --ndb-connectstring.

• --ndb-nodeid

Command-Line Format --ndb-nodeid=#

Type Integer

Default Value [none]

3610

ndb_blob_tool — Check and Repair BLOB and TEXT columns of NDB Cluster Tables

Set node ID for this node, overriding any ID set by --ndb-connectstring.

• --ndb-optimized-node-selection

Command-Line Format --ndb-optimized-node-selection

Enable optimizations for selection of nodes for transactions. Enabled by default; use --skip-ndb-
optimized-node-selection to disable.

• --no-defaults

Command-Line Format --no-defaults

Do not read default options from any option file other than login file.

• --print-defaults

Command-Line Format --print-defaults

Print program argument list and exit.

• --usage

Command-Line Format --usage

Display help text and exit; same as --help.

• --verbose

Command-Line Format --verbose

Provide extra information in the tool's output regarding its progress.

• --version

Command-Line Format --version

Display version information and exit.

Example

First we create an NDB table in the test database, using the CREATE TABLE statement shown here:

USE test;

CREATE TABLE btest (
 c0 BIGINT UNSIGNED NOT NULL AUTO_INCREMENT PRIMARY KEY,
 c1 TEXT,
 c2 BLOB
) ENGINE=NDB;

Then we insert a few rows into this table, using a series of statements similar to this one:

INSERT INTO btest VALUES (NULL, 'x', REPEAT('x', 1000));

When run with --check-orphans against this table, ndb_blob_tool generates the following output:

$> ndb_blob_tool --check-orphans --verbose -d test btest
connected

3611

ndb_config — Extract NDB Cluster Configuration Information

processing 2 blobs
processing blob #0 c1 NDB$BLOB_19_1
NDB$BLOB_19_1: nextResult: res=1
total parts: 0
orphan parts: 0
processing blob #1 c2 NDB$BLOB_19_2
NDB$BLOB_19_2: nextResult: res=0
NDB$BLOB_19_2: nextResult: res=0
NDB$BLOB_19_2: nextResult: res=0
NDB$BLOB_19_2: nextResult: res=0
NDB$BLOB_19_2: nextResult: res=0
NDB$BLOB_19_2: nextResult: res=0
NDB$BLOB_19_2: nextResult: res=0
NDB$BLOB_19_2: nextResult: res=0
NDB$BLOB_19_2: nextResult: res=0
NDB$BLOB_19_2: nextResult: res=0
NDB$BLOB_19_2: nextResult: res=1
total parts: 10
orphan parts: 0
disconnected

NDBT_ProgramExit: 0 - OK

The tool reports that there are no NDB BLOB column parts associated with column c1, even though c1
is a TEXT column. This is due to the fact that, in an NDB table, only the first 256 bytes of a BLOB or TEXT
column value are stored inline, and only the excess, if any, is stored separately; thus, if there are no values
using more than 256 bytes in a given column of one of these types, no BLOB column parts are created by
NDB for this column. See Section 11.7, “Data Type Storage Requirements”, for more information.

21.5.7 ndb_config — Extract NDB Cluster Configuration Information

This tool extracts current configuration information for data nodes, SQL nodes, and API nodes from one of
a number of sources: an NDB Cluster management node, or its config.ini or my.cnf file. By default,
the management node is the source for the configuration data; to override the default, execute ndb_config
with the --config-file or --mycnf option. It is also possible to use a data node as the source by
specifying its node ID with --config_from_node=node_id.

ndb_config can also provide an offline dump of all configuration parameters which can be used, along
with their default, maximum, and minimum values and other information. The dump can be produced in
either text or XML format; for more information, see the discussion of the --configinfo and --xml
options later in this section).

You can filter the results by section (DB, SYSTEM, or CONNECTIONS) using one of the options --nodes, --
system, or --connections.

Options that can be used with ndb_config are shown in the following table. Additional descriptions follow
the table.

Table 21.27 Command-line options used with the program ndb_config

Format Description Added, Deprecated, or
Removed

--character-sets-dir=path Directory containing character
sets

(Supported in all NDB releases
based on MySQL 5.7)

--config-file=file_name Set the path to config.ini file (Supported in all NDB releases
based on MySQL 5.7)

--config-from-node=# Obtain configuration data from the
node having this ID (must be a
data node)

(Supported in all NDB releases
based on MySQL 5.7)

3612

ndb_config — Extract NDB Cluster Configuration Information

Format Description Added, Deprecated, or
Removed

--configinfo Dumps information about all NDB
configuration parameters in text
format with default, maximum, and
minimum values. Use with --xml to
obtain XML output

(Supported in all NDB releases
based on MySQL 5.7)

--connections Print information only about
connections specified in [tcp], [tcp
default], [sci], [sci default], [shm],
or [shm default] sections of cluster
configuration file. Cannot be used
with --system or --nodes

(Supported in all NDB releases
based on MySQL 5.7)

--connect-retries=# Number of times to retry
connection before giving up

(Supported in all NDB releases
based on MySQL 5.7)

--connect-retry-delay=# Number of seconds to wait
between attempts to contact
management server

(Supported in all NDB releases
based on MySQL 5.7)

--connect-
string=connection_string,

-c connection_string

Same as --ndb-connectstring (Supported in all NDB releases
based on MySQL 5.7)

--core-file Write core file on error; used in
debugging

(Supported in all NDB releases
based on MySQL 5.7)

--defaults-extra-
file=path

Read given file after global files
are read

(Supported in all NDB releases
based on MySQL 5.7)

--defaults-file=path Read default options from given
file only

(Supported in all NDB releases
based on MySQL 5.7)

--defaults-group-
suffix=string

Also read groups with
concat(group, suffix)

(Supported in all NDB releases
based on MySQL 5.7)

--diff-default Print only configuration
parameters that have non-default
values

ADDED: NDB 7.5.7, NDB 7.6.3

--fields=string,

-f

Field separator (Supported in all NDB releases
based on MySQL 5.7)

--help,

-?

Display help text and exit (Supported in all NDB releases
based on MySQL 5.7)

--host=name Specify host (Supported in all NDB releases
based on MySQL 5.7)

--login-path=path Read given path from login file (Supported in all NDB releases
based on MySQL 5.7)

--mycnf Read configuration data from
my.cnf file

(Supported in all NDB releases
based on MySQL 5.7)

--ndb-
connectstring=connection_string,

-c connection_string

Set connect string for
connecting to ndb_mgmd.
Syntax: "[nodeid=id;]

(Supported in all NDB releases
based on MySQL 5.7)

3613

ndb_config — Extract NDB Cluster Configuration Information

Format Description Added, Deprecated, or
Removed

[host=]hostname[:port]".
Overrides entries in
NDB_CONNECTSTRING and
my.cnf

--ndb-mgmd-
host=connection_string,

-c connection_string

Same as --ndb-connectstring (Supported in all NDB releases
based on MySQL 5.7)

--ndb-nodeid=# Set node ID for this node,
overriding any ID set by --ndb-
connectstring

(Supported in all NDB releases
based on MySQL 5.7)

--ndb-optimized-node-
selection

Enable optimizations for selection
of nodes for transactions. Enabled
by default; use --skip-ndb-
optimized-node-selection to
disable

(Supported in all NDB releases
based on MySQL 5.7)

--no-defaults Do not read default options from
any option file other than login file

(Supported in all NDB releases
based on MySQL 5.7)

--nodeid=# Get configuration of node with this
ID

(Supported in all NDB releases
based on MySQL 5.7)

--nodes Print node information ([ndbd] or
[ndbd default] section of cluster
configuration file) only. Cannot
be used with --system or --
connections

(Supported in all NDB releases
based on MySQL 5.7)

--query=string,

-q string

One or more query options
(attributes)

(Supported in all NDB releases
based on MySQL 5.7)

--query-all,

-a

Dumps all parameters and values
to a single comma-delimited string

ADDED: NDB 7.4.16, NDB 7.5.7

--print-defaults Print program argument list and
exit

(Supported in all NDB releases
based on MySQL 5.7)

--rows=string,

-r string

Row separator (Supported in all NDB releases
based on MySQL 5.7)

--system Print SYSTEM section information
only (see ndb_config --configinfo
output). Cannot be used with --
nodes or --connections

(Supported in all NDB releases
based on MySQL 5.7)

--type=name Specify node type (Supported in all NDB releases
based on MySQL 5.7)

--usage,

-?

Display help text and exit; same
as --help

(Supported in all NDB releases
based on MySQL 5.7)

--version, Display version information and
exit

(Supported in all NDB releases
based on MySQL 5.7)

3614

ndb_config — Extract NDB Cluster Configuration Information

Format Description Added, Deprecated, or
Removed

-V

--configinfo --xml Use --xml with --configinfo
to obtain a dump of all NDB
configuration parameters in XML
format with default, maximum, and
minimum values

(Supported in all NDB releases
based on MySQL 5.7)

• --character-sets-dir

Command-Line Format --character-sets-dir=path

Directory containing character sets.

• --configinfo

The --configinfo option causes ndb_config to dump a list of each NDB Cluster configuration
parameter supported by the NDB Cluster distribution of which ndb_config is a part, including the
following information:

• A brief description of each parameter's purpose, effects, and usage

• The section of the config.ini file where the parameter may be used

• The parameter's data type or unit of measurement

• Where applicable, the parameter's default, minimum, and maximum values

• NDB Cluster release version and build information

By default, this output is in text format. Part of this output is shown here:

$> ndb_config --configinfo

****** SYSTEM ******

Name (String)
Name of system (NDB Cluster)
MANDATORY

PrimaryMGMNode (Non-negative Integer)
Node id of Primary ndb_mgmd(MGM) node
Default: 0 (Min: 0, Max: 4294967039)

ConfigGenerationNumber (Non-negative Integer)
Configuration generation number
Default: 0 (Min: 0, Max: 4294967039)

****** DB ******

MaxNoOfSubscriptions (Non-negative Integer)
Max no of subscriptions (default 0 == MaxNoOfTables)
Default: 0 (Min: 0, Max: 4294967039)

MaxNoOfSubscribers (Non-negative Integer)
Max no of subscribers (default 0 == 2 * MaxNoOfTables)
Default: 0 (Min: 0, Max: 4294967039)

3615

ndb_config — Extract NDB Cluster Configuration Information

…

Use this option together with the --xml option to obtain output in XML format.

• --config-file=path-to-file

Command-Line Format --config-file=file_name

Type File name

Default Value

Gives the path to the management server's configuration file (config.ini). This may be a relative or
absolute path. If the management node resides on a different host from the one on which ndb_config
is invoked, then an absolute path must be used.

• --config_from_node=#

Command-Line Format --config-from-node=#

Type Numeric

Default Value none

Minimum Value 1

Maximum Value 48

Obtain the cluster's configuration data from the data node that has this ID.

If the node having this ID is not a data node, ndb_config fails with an error. (To obtain configuration
data from the management node instead, simply omit this option.)

• --connections

Command-Line Format --connections

Tells ndb_config to print CONNECTIONS information only—that is, information about parameters found
in the [tcp], [tcp default], [shm], or [shm default] sections of the cluster configuration file
(see Section 21.4.3.10, “NDB Cluster TCP/IP Connections”, and Section 21.4.3.12, “NDB Cluster Shared
Memory Connections”, for more information).

This option is mutually exclusive with --nodes and --system; only one of these 3 options can be used.

• --connect-retries

Command-Line Format --connect-retries=#

Type Integer

Default Value 12

Minimum Value 0

Maximum Value 12

Number of times to retry connection before giving up.

• --connect-retry-delay

Command-Line Format --connect-retry-delay=#

3616

ndb_config — Extract NDB Cluster Configuration Information

Type Integer

Default Value 5

Minimum Value 0

Maximum Value 5

Number of seconds to wait between attempts to contact management server.

• --connect-string

Command-Line Format --connect-string=connection_string

Type String

Default Value [none]

Same as --ndb-connectstring.

• --core-file

Command-Line Format --core-file

Write core file on error; used in debugging.

• --defaults-extra-file

Command-Line Format --defaults-extra-file=path

Type String

Default Value [none]

Read given file after global files are read.

• --defaults-file

Command-Line Format --defaults-file=path

Type String

Default Value [none]

Read default options from given file only.

• --defaults-group-suffix

Command-Line Format --defaults-group-suffix=string

Type String

Default Value [none]

Also read groups with concat(group, suffix).

• --diff-default

Command-Line Format --diff-default

Introduced 5.7.18-ndb-7.6.3

Print only configuration parameters that have non-default values.

3617

ndb_config — Extract NDB Cluster Configuration Information

• --fields=delimiter, -f delimiter

Command-Line Format --fields=string

Type String

Default Value

Specifies a delimiter string used to separate the fields in the result. The default is , (the comma
character).

Note

If the delimiter contains spaces or escapes (such as \n for the linefeed
character), then it must be quoted.

• --help

Command-Line Format --help

Display help text and exit.

• --host=hostname

Command-Line Format --host=name

Type String

Default Value

Specifies the host name of the node for which configuration information is to be obtained.

Note

While the hostname localhost usually resolves to the IP address 127.0.0.1,
this may not necessarily be true for all operating platforms and configurations.
This means that it is possible, when localhost is used in config.ini, for
ndb_config --host=localhost to fail if ndb_config is run on a different
host where localhost resolves to a different address (for example, on some
versions of SUSE Linux, this is 127.0.0.2). In general, for best results, you
should use numeric IP addresses for all NDB Cluster configuration values relating
to hosts, or verify that all NDB Cluster hosts handle localhost in the same
fashion.

• --login-path

Command-Line Format --login-path=path

Type String

Default Value [none]

Read given path from login file.

• --mycnf

Command-Line Format --mycnf

Read configuration data from the my.cnf file.

3618

ndb_config — Extract NDB Cluster Configuration Information

• --ndb-connectstring=connection_string, -c connection_string

Command-Line Format --ndb-connectstring=connection_string

Type String

Default Value [none]

Specifies the connection string to use in connecting to the management server. The format for the
connection string is the same as described in Section 21.4.3.3, “NDB Cluster Connection Strings”, and
defaults to localhost:1186.

• --ndb-mgmd-host

Command-Line Format --ndb-mgmd-host=connection_string

Type String

Default Value [none]

Same as --ndb-connectstring.

• --ndb-nodeid

Command-Line Format --ndb-nodeid=#

Type Integer

Default Value [none]

Set node ID for this node, overriding any ID set by --ndb-connectstring.

• --ndb-optimized-node-selection

Command-Line Format --ndb-optimized-node-selection

Enable optimizations for selection of nodes for transactions. Enabled by default; use --skip-ndb-
optimized-node-selection to disable.

• --no-defaults

Command-Line Format --no-defaults

Do not read default options from any option file other than login file.

• --nodeid=node_id

Command-Line Format --ndb-nodeid=#

Type Integer

Default Value [none]

Specify the node ID of the node for which configuration information is to be obtained. Formerly, --id
could be used as a synonym for this option; in NDB 7.5 and later, the only form accepted is --nodeid.

3619

ndb_config — Extract NDB Cluster Configuration Information

• --nodes

Command-Line Format --nodes

Tells ndb_config to print information relating only to parameters defined in an [ndbd] or [ndbd
default] section of the cluster configuration file (see Section 21.4.3.6, “Defining NDB Cluster Data
Nodes”).

This option is mutually exclusive with --connections and --system; only one of these 3 options can
be used.

• --query=query-options, -q query-options

Command-Line Format --query=string

Type String

Default Value

This is a comma-delimited list of query options—that is, a list of one or more node attributes to be
returned. These include nodeid (node ID), type (node type—that is, ndbd, mysqld, or ndb_mgmd), and
any configuration parameters whose values are to be obtained.

For example, --query=nodeid,type,datamemory,datadir returns the node ID, node type,
DataMemory, and DataDir for each node.

Formerly, id was accepted as a synonym for nodeid, but has been removed in NDB 7.5 and later.

Note

If a given parameter is not applicable to a certain type of node, than an empty
string is returned for the corresponding value. See the examples later in this
section for more information.

• --query-all, -a

Command-Line Format --query-all

Introduced 5.7.18-ndb-7.5.7

Type String

Default Value

Returns a comma-delimited list of all query options (node attributes; note that this list is a single string.

This option was introduced in NDB 7.5.7 (Bug #60095, Bug #11766869).

• --print-defaults

Command-Line Format --print-defaults

Print program argument list and exit.

• --rows=separator, -r separator

Command-Line Format --rows=string

Type String

3620

ndb_config — Extract NDB Cluster Configuration Information

Default Value

Specifies a separator string used to separate the rows in the result. The default is a space character.

Note

If the separator contains spaces or escapes (such as \n for the linefeed
character), then it must be quoted.

• --system

Command-Line Format --system

Tells ndb_config to print SYSTEM information only. This consists of system variables that cannot
be changed at run time; thus, there is no corresponding section of the cluster configuration file for
them. They can be seen (prefixed with ****** SYSTEM ******) in the output of ndb_config --
configinfo.

This option is mutually exclusive with --nodes and --connections; only one of these 3 options can
be used.

• --type=node_type

Command-Line Format --type=name

Type Enumeration

Default Value [none]

Valid Values ndbd

mysqld

ndb_mgmd

Filters results so that only configuration values applying to nodes of the specified node_type (ndbd,
mysqld, or ndb_mgmd) are returned.

• --usage, --help, or -?

Command-Line Format --help

Causes ndb_config to print a list of available options, and then exit. Synonym for --help.

• --version, -V

Command-Line Format --version

Causes ndb_config to print a version information string, and then exit.

• --configinfo --xml

Command-Line Format --configinfo --xml

Cause ndb_config --configinfo to provide output as XML by adding this option. A portion of such
output is shown in this example:

$> ndb_config --configinfo --xml

3621

ndb_config — Extract NDB Cluster Configuration Information

<configvariables protocolversion="1" ndbversionstring="5.7.44-ndb-7.5.36"
 ndbversion="460032" ndbversionmajor="7" ndbversionminor="5"
 ndbversionbuild="0">
 <section name="SYSTEM">
 <param name="Name" comment="Name of system (NDB Cluster)" type="string"
 mandatory="true"/>
 <param name="PrimaryMGMNode" comment="Node id of Primary ndb_mgmd(MGM) node"
 type="unsigned" default="0" min="0" max="4294967039"/>
 <param name="ConfigGenerationNumber" comment="Configuration generation number"
 type="unsigned" default="0" min="0" max="4294967039"/>
 </section>
 <section name="MYSQLD" primarykeys="NodeId">
 <param name="wan" comment="Use WAN TCP setting as default" type="bool"
 default="false"/>
 <param name="HostName" comment="Name of computer for this node"
 type="string" default=""/>
 <param name="Id" comment="NodeId" type="unsigned" mandatory="true"
 min="1" max="255" deprecated="true"/>
 <param name="NodeId" comment="Number identifying application node (mysqld(API))"
 type="unsigned" mandatory="true" min="1" max="255"/>
 <param name="ExecuteOnComputer" comment="HostName" type="string"
 deprecated="true"/>

 …

 </section>

 …

</configvariables>

Note

Normally, the XML output produced by ndb_config --configinfo --xml
is formatted using one line per element; we have added extra whitespace in
the previous example, as well as the next one, for reasons of legibility. This
should not make any difference to applications using this output, since most XML
processors either ignore nonessential whitespace as a matter of course, or can
be instructed to do so.

The XML output also indicates when changing a given parameter requires that data nodes be restarted
using the --initial option. This is shown by the presence of an initial="true" attribute in the
corresponding <param> element. In addition, the restart type (system or node) is also shown; if a
given parameter requires a system restart, this is indicated by the presence of a restart="system"
attribute in the corresponding <param> element. For example, changing the value set for the Diskless
parameter requires a system initial restart, as shown here (with the restart and initial attributes
highlighted for visibility):

<param name="Diskless" comment="Run wo/ disk" type="bool" default="false"
 restart="system" initial="true"/>

Currently, no initial attribute is included in the XML output for <param> elements corresponding to
parameters which do not require initial restarts; in other words, initial="false" is the default, and
the value false should be assumed if the attribute is not present. Similarly, the default restart type is
node (that is, an online or “rolling” restart of the cluster), but the restart attribute is included only if

3622

ndb_config — Extract NDB Cluster Configuration Information

the restart type is system (meaning that all cluster nodes must be shut down at the same time, then
restarted).

Deprecated parameters are indicated in the XML output by the deprecated attribute, as shown here:

<param name="NoOfDiskPagesToDiskAfterRestartACC" comment="DiskCheckpointSpeed"
 type="unsigned" default="20" min="1" max="4294967039" deprecated="true"/>

In such cases, the comment refers to one or more parameters that supersede the deprecated
parameter. Similarly to initial, the deprecated attribute is indicated only when the parameter
is deprecated, with deprecated="true", and does not appear at all for parameters which are not
deprecated. (Bug #21127135)

Beginning with NDB 7.5.0, parameters that are required are indicated with mandatory="true", as
shown here:

<param name="NodeId"
 comment="Number identifying application node (mysqld(API))"
 type="unsigned" mandatory="true" min="1" max="255"/>

In much the same way that the initial or deprecated attribute is displayed only for a parameter
that requires an intial restart or that is deprecated, the mandatory attribute is included only if the given
parameter is actually required.

Important

The --xml option can be used only with the --configinfo option. Using --
xml without --configinfo fails with an error.

Unlike the options used with this program to obtain current configuration data, --configinfo and --
xml use information obtained from the NDB Cluster sources when ndb_config was compiled. For this
reason, no connection to a running NDB Cluster or access to a config.ini or my.cnf file is required
for these two options.

Combining other ndb_config options (such as --query or --type) with --configinfo (with or
without the --xml option is not supported. Currently, if you attempt to do so, the usual result is that
all other options besides --configinfo or --xml are simply ignored. However, this behavior is not
guaranteed and is subject to change at any time. In addition, since ndb_config, when used with the --
configinfo option, does not access the NDB Cluster or read any files, trying to specify additional options
such as --ndb-connectstring or --config-file with --configinfo serves no purpose.

Examples

1. To obtain the node ID and type of each node in the cluster:

$> ./ndb_config --query=nodeid,type --fields=':' --rows='\n'
1:ndbd
2:ndbd
3:ndbd
4:ndbd
5:ndb_mgmd
6:mysqld
7:mysqld
8:mysqld
9:mysqld

In this example, we used the --fields options to separate the ID and type of each node with a colon
character (:), and the --rows options to place the values for each node on a new line in the output.

3623

ndb_cpcd — Automate Testing for NDB Development

2. To produce a connection string that can be used by data, SQL, and API nodes to connect to the
management server:

$> ./ndb_config --config-file=usr/local/mysql/cluster-data/config.ini \
--query=hostname,portnumber --fields=: --rows=, --type=ndb_mgmd
198.51.100.179:1186

3. This invocation of ndb_config checks only data nodes (using the --type option), and shows the
values for each node's ID and host name, as well as the values set for its DataMemory and DataDir
parameters:

$> ./ndb_config --type=ndbd --query=nodeid,host,datamemory,datadir -f ' : ' -r '\n'
1 : 198.51.100.193 : 83886080 : /usr/local/mysql/cluster-data
2 : 198.51.100.112 : 83886080 : /usr/local/mysql/cluster-data
3 : 198.51.100.176 : 83886080 : /usr/local/mysql/cluster-data
4 : 198.51.100.119 : 83886080 : /usr/local/mysql/cluster-data

In this example, we used the short options -f and -r for setting the field delimiter and row separator,
respectively, as well as the short option -q to pass a list of parameters to be obtained.

4. To exclude results from any host except one in particular, use the --host option:

$> ./ndb_config --host=198.51.100.176 -f : -r '\n' -q id,type
3:ndbd
5:ndb_mgmd

In this example, we also used the short form -q to determine the attributes to be queried.

Similarly, you can limit results to a node with a specific ID using the --nodeid option.

21.5.8 ndb_cpcd — Automate Testing for NDB Development

A utility having this name was formerly part of an internal automated test framework used in testing and
debugging NDB Cluster. It is no longer included in NDB Cluster distributions provided by Oracle.

21.5.9 ndb_delete_all — Delete All Rows from an NDB Table

ndb_delete_all deletes all rows from the given NDB table. In some cases, this can be much faster than
DELETE or even TRUNCATE TABLE.

Usage

ndb_delete_all -c connection_string tbl_name -d db_name

This deletes all rows from the table named tbl_name in the database named db_name. It is exactly
equivalent to executing TRUNCATE db_name.tbl_name in MySQL.

Options that can be used with ndb_delete_all are shown in the following table. Additional descriptions
follow the table.

Table 21.28 Command-line options used with the program ndb_delete_all

Format Description Added, Deprecated, or
Removed

--character-sets-dir=path Directory containing character
sets

(Supported in all NDB releases
based on MySQL 5.7)

--connect-retries=# Number of times to retry
connection before giving up

(Supported in all NDB releases
based on MySQL 5.7)

3624

ndb_delete_all — Delete All Rows from an NDB Table

Format Description Added, Deprecated, or
Removed

--connect-retry-delay=# Number of seconds to wait
between attempts to contact
management server

(Supported in all NDB releases
based on MySQL 5.7)

--connect-
string=connection_string,

-c connection_string

Same as --ndb-connectstring (Supported in all NDB releases
based on MySQL 5.7)

--core-file Write core file on error; used in
debugging

(Supported in all NDB releases
based on MySQL 5.7)

--database=name,

-d name

Name of the database in which
the table is found

(Supported in all NDB releases
based on MySQL 5.7)

--defaults-extra-
file=path

Read given file after global files
are read

(Supported in all NDB releases
based on MySQL 5.7)

--defaults-file=path Read default options from given
file only

(Supported in all NDB releases
based on MySQL 5.7)

--defaults-group-
suffix=string

Also read groups with
concat(group, suffix)

(Supported in all NDB releases
based on MySQL 5.7)

--diskscan Perform disk scan (Supported in all NDB releases
based on MySQL 5.7)

--help,

-?

Display help text and exit (Supported in all NDB releases
based on MySQL 5.7)

--login-path=path Read given path from login file (Supported in all NDB releases
based on MySQL 5.7)

--ndb-
connectstring=connection_string,

-c connection_string

Set connect string for
connecting to ndb_mgmd.
Syntax: "[nodeid=id;]
[host=]hostname[:port]".
Overrides entries in
NDB_CONNECTSTRING and
my.cnf

(Supported in all NDB releases
based on MySQL 5.7)

--ndb-mgmd-
host=connection_string,

-c connection_string

Same as --ndb-connectstring (Supported in all NDB releases
based on MySQL 5.7)

--ndb-nodeid=# Set node ID for this node,
overriding any ID set by --ndb-
connectstring

(Supported in all NDB releases
based on MySQL 5.7)

--ndb-optimized-node-
selection

Enable optimizations for selection
of nodes for transactions. Enabled
by default; use --skip-ndb-
optimized-node-selection to
disable

(Supported in all NDB releases
based on MySQL 5.7)

--no-defaults Do not read default options from
any option file other than login file

(Supported in all NDB releases
based on MySQL 5.7)

3625

ndb_delete_all — Delete All Rows from an NDB Table

Format Description Added, Deprecated, or
Removed

--print-defaults Print program argument list and
exit

(Supported in all NDB releases
based on MySQL 5.7)

--transactional,

-t

Perform delete in one single
transaction; possible to run out of
operations when used

(Supported in all NDB releases
based on MySQL 5.7)

--tupscan Perform tuple scan (Supported in all NDB releases
based on MySQL 5.7)

--usage,

-?

Display help text and exit; same
as --help

(Supported in all NDB releases
based on MySQL 5.7)

--version,

-V

Display version information and
exit

(Supported in all NDB releases
based on MySQL 5.7)

• --character-sets-dir

Command-Line Format --character-sets-dir=path

Directory containing character sets.

• --connect-retries

Command-Line Format --connect-retries=#

Type Integer

Default Value 12

Minimum Value 0

Maximum Value 12

Number of times to retry connection before giving up.

• --connect-retry-delay

Command-Line Format --connect-retry-delay=#

Type Integer

Default Value 5

Minimum Value 0

Maximum Value 5

Number of seconds to wait between attempts to contact management server.

• --connect-string

Command-Line Format --connect-string=connection_string

Type String

Default Value [none]

Same as --ndb-connectstring.
3626

ndb_delete_all — Delete All Rows from an NDB Table

• --core-file

Command-Line Format --core-file

Write core file on error; used in debugging.

• --database, -d

Command-Line Format --database=name

Type String

Default Value TEST_DB

Name of the database containing the table to delete from.

• --defaults-extra-file

Command-Line Format --defaults-extra-file=path

Type String

Default Value [none]

Read given file after global files are read.

• --defaults-file

Command-Line Format --defaults-file=path

Type String

Default Value [none]

Read default options from given file only.

• --defaults-group-suffix

Command-Line Format --defaults-group-suffix=string

Type String

Default Value [none]

Also read groups with concat(group, suffix).

• --diskscan

Command-Line Format --diskscan

Run a disk scan.

• --help

Command-Line Format --help

Display help text and exit.

3627

ndb_delete_all — Delete All Rows from an NDB Table

• --login-path

Command-Line Format --login-path=path

Type String

Default Value [none]

Read given path from login file.

• --ndb-connectstring

Command-Line Format --ndb-connectstring=connection_string

Type String

Default Value [none]

Set connect string for connecting to ndb_mgmd. Syntax: "[nodeid=id;][host=]hostname[:port]". Overrides
entries in NDB_CONNECTSTRING and my.cnf.

• --ndb-mgmd-host

Command-Line Format --ndb-mgmd-host=connection_string

Type String

Default Value [none]

Same as --ndb-connectstring.

• --ndb-nodeid

Command-Line Format --ndb-nodeid=#

Type Integer

Default Value [none]

Set node ID for this node, overriding any ID set by --ndb-connectstring.

• --ndb-optimized-node-selection

Command-Line Format --ndb-optimized-node-selection

Enable optimizations for selection of nodes for transactions. Enabled by default; use --skip-ndb-
optimized-node-selection to disable.

• --no-defaults

Command-Line Format --no-defaults

Do not read default options from any option file other than login file.

• --print-defaults

Command-Line Format --print-defaults

Print program argument list and exit.

• --transactional, -t

3628

ndb_desc — Describe NDB Tables

Use of this option causes the delete operation to be performed as a single transaction.

Warning

With very large tables, using this option may cause the number of operations
available to the cluster to be exceeded.

• --tupscan

Run a tuple scan.

• --usage

Command-Line Format --usage

Display help text and exit; same as --help.

• --version

Command-Line Format --version

Display version information and exit.

21.5.10 ndb_desc — Describe NDB Tables

ndb_desc provides a detailed description of one or more NDB tables.

Usage

ndb_desc -c connection_string tbl_name -d db_name [options]

ndb_desc -c connection_string index_name -d db_name -t tbl_name

Additional options that can be used with ndb_desc are listed later in this section.

Sample Output

MySQL table creation and population statements:

USE test;

CREATE TABLE fish (
 id INT(11) NOT NULL AUTO_INCREMENT,
 name VARCHAR(20) NOT NULL,
 length_mm INT(11) NOT NULL,
 weight_gm INT(11) NOT NULL,

 PRIMARY KEY pk (id),
 UNIQUE KEY uk (name)
) ENGINE=NDB;

INSERT INTO fish VALUES
 (NULL, 'guppy', 35, 2), (NULL, 'tuna', 2500, 150000),
 (NULL, 'shark', 3000, 110000), (NULL, 'manta ray', 1500, 50000),
 (NULL, 'grouper', 900, 125000), (NULL ,'puffer', 250, 2500);

Output from ndb_desc:

$> ./ndb_desc -c localhost fish -d test -p
-- fish --
Version: 2

3629

ndb_desc — Describe NDB Tables

Fragment type: HashMapPartition
K Value: 6
Min load factor: 78
Max load factor: 80
Temporary table: no
Number of attributes: 4
Number of primary keys: 1
Length of frm data: 337
Max Rows: 0
Row Checksum: 1
Row GCI: 1
SingleUserMode: 0
ForceVarPart: 1
PartitionCount: 2
FragmentCount: 2
PartitionBalance: FOR_RP_BY_LDM
ExtraRowGciBits: 0
ExtraRowAuthorBits: 0
TableStatus: Retrieved
Table options:
HashMap: DEFAULT-HASHMAP-3840-2
-- Attributes --
id Int PRIMARY KEY DISTRIBUTION KEY AT=FIXED ST=MEMORY AUTO_INCR
name Varchar(20;latin1_swedish_ci) NOT NULL AT=SHORT_VAR ST=MEMORY DYNAMIC
length_mm Int NOT NULL AT=FIXED ST=MEMORY DYNAMIC
weight_gm Int NOT NULL AT=FIXED ST=MEMORY DYNAMIC
-- Indexes --
PRIMARY KEY(id) - UniqueHashIndex
PRIMARY(id) - OrderedIndex
uk(name) - OrderedIndex
uk$unique(name) - UniqueHashIndex
-- Per partition info --
Partition Row count Commit count Frag fixed memory Frag varsized memory Extent_space Free extent_space
0 2 2 32768 32768 0 0
1 4 4 32768 32768 0 0

NDBT_ProgramExit: 0 - OK

Information about multiple tables can be obtained in a single invocation of ndb_desc by using their names,
separated by spaces. All of the tables must be in the same database.

You can obtain additional information about a specific index using the --table (short form: -t) option and
supplying the name of the index as the first argument to ndb_desc, as shown here:

$> ./ndb_desc uk -d test -t fish
-- uk --
Version: 2
Base table: fish
Number of attributes: 1
Logging: 0
Index type: OrderedIndex
Index status: Retrieved
-- Attributes --
name Varchar(20;latin1_swedish_ci) NOT NULL AT=SHORT_VAR ST=MEMORY
-- IndexTable 10/uk --
Version: 2
Fragment type: FragUndefined
K Value: 6
Min load factor: 78
Max load factor: 80
Temporary table: yes
Number of attributes: 2
Number of primary keys: 1
Length of frm data: 0
Max Rows: 0

3630

ndb_desc — Describe NDB Tables

Row Checksum: 1
Row GCI: 1
SingleUserMode: 2
ForceVarPart: 0
PartitionCount: 2
FragmentCount: 2
FragmentCountType: ONE_PER_LDM_PER_NODE
ExtraRowGciBits: 0
ExtraRowAuthorBits: 0
TableStatus: Retrieved
Table options:
-- Attributes --
name Varchar(20;latin1_swedish_ci) NOT NULL AT=SHORT_VAR ST=MEMORY
NDB$TNODE Unsigned [64] PRIMARY KEY DISTRIBUTION KEY AT=FIXED ST=MEMORY
-- Indexes --
PRIMARY KEY(NDB$TNODE) - UniqueHashIndex

NDBT_ProgramExit: 0 - OK

When an index is specified in this way, the --extra-partition-info and --extra-node-info
options have no effect.

The Version column in the output contains the table's schema object version. For information about
interpreting this value, see NDB Schema Object Versions.

Three of the table properties that can be set using NDB_TABLE comments embedded in CREATE TABLE
and ALTER TABLE statements are also visible in ndb_desc output. The table's FRAGMENT_COUNT_TYPE
is always shown in the FragmentCountType column. READ_ONLY and FULLY_REPLICATED, if set to 1,
are shown in the Table options column. You can see this after executing the following ALTER TABLE
statement in the mysql client:

mysql> ALTER TABLE fish COMMENT='NDB_TABLE=READ_ONLY=1,FULLY_REPLICATED=1';
1 row in set, 1 warning (0.00 sec)

mysql> SHOW WARNINGS\G
+---------+------+---+
| Level | Code | Message |
+---------+------+---+
| Warning | 1296 | Got error 4503 'Table property is FRAGMENT_COUNT_TYPE=ONE_PER_LDM_PER_NODE but not in comment' from NDB |
+---------+------+---+
1 row in set (0.00 sec)

The warning is issued because READ_ONLY=1 requires that the table's fragment count type is (or be set
to) ONE_PER_LDM_PER_NODE_GROUP; NDB sets this automatically in such cases. You can check that the
ALTER TABLE statement has the desired effect using SHOW CREATE TABLE:

mysql> SHOW CREATE TABLE fish\G
*************************** 1. row ***************************
 Table: fish
Create Table: CREATE TABLE `fish` (
 `id` int(11) NOT NULL AUTO_INCREMENT,
 `name` varchar(20) NOT NULL,
 `length_mm` int(11) NOT NULL,
 `weight_gm` int(11) NOT NULL,
 PRIMARY KEY (`id`),
 UNIQUE KEY `uk` (`name`)
) ENGINE=ndbcluster DEFAULT CHARSET=latin1
COMMENT='NDB_TABLE=READ_BACKUP=1,FULLY_REPLICATED=1'
1 row in set (0.01 sec)

Because FRAGMENT_COUNT_TYPE was not set explicitly, its value is not shown in the comment text printed
by SHOW CREATE TABLE. ndb_desc, however, displays the updated value for this attribute. The Table
options column shows the binary properties just enabled. You can see this in the output shown here
(emphasized text):

3631

https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-schema-object-versions.html

ndb_desc — Describe NDB Tables

$> ./ndb_desc -c localhost fish -d test -p
-- fish --
Version: 4
Fragment type: HashMapPartition
K Value: 6
Min load factor: 78
Max load factor: 80
Temporary table: no
Number of attributes: 4
Number of primary keys: 1
Length of frm data: 380
Max Rows: 0
Row Checksum: 1
Row GCI: 1
SingleUserMode: 0
ForceVarPart: 1
PartitionCount: 1
FragmentCount: 1
FragmentCountType: ONE_PER_LDM_PER_NODE_GROUP
ExtraRowGciBits: 0
ExtraRowAuthorBits: 0
TableStatus: Retrieved
Table options: readbackup, fullyreplicated
HashMap: DEFAULT-HASHMAP-3840-1
-- Attributes --
id Int PRIMARY KEY DISTRIBUTION KEY AT=FIXED ST=MEMORY AUTO_INCR
name Varchar(20;latin1_swedish_ci) NOT NULL AT=SHORT_VAR ST=MEMORY DYNAMIC
length_mm Int NOT NULL AT=FIXED ST=MEMORY DYNAMIC
weight_gm Int NOT NULL AT=FIXED ST=MEMORY DYNAMIC
-- Indexes --
PRIMARY KEY(id) - UniqueHashIndex
PRIMARY(id) - OrderedIndex
uk(name) - OrderedIndex
uk$unique(name) - UniqueHashIndex
-- Per partition info --
Partition Row count Commit count Frag fixed memory Frag varsized memory Extent_space Free extent_space

NDBT_ProgramExit: 0 - OK

For more information about these table properties, see Section 13.1.18.9, “Setting NDB Comment
Options”.

The Extent_space and Free extent_space columns are applicable only to NDB tables having
columns on disk; for tables having only in-memory columns, these columns always contain the value 0.

To illustrate their use, we modify the previous example. First, we must create the necessary Disk Data
objects, as shown here:

CREATE LOGFILE GROUP lg_1
 ADD UNDOFILE 'undo_1.log'
 INITIAL_SIZE 16M
 UNDO_BUFFER_SIZE 2M
 ENGINE NDB;

ALTER LOGFILE GROUP lg_1
 ADD UNDOFILE 'undo_2.log'
 INITIAL_SIZE 12M
 ENGINE NDB;

CREATE TABLESPACE ts_1
 ADD DATAFILE 'data_1.dat'
 USE LOGFILE GROUP lg_1
 INITIAL_SIZE 32M
 ENGINE NDB;

ALTER TABLESPACE ts_1

3632

ndb_desc — Describe NDB Tables

 ADD DATAFILE 'data_2.dat'
 INITIAL_SIZE 48M
 ENGINE NDB;

(For more information on the statements just shown and the objects created by them, see
Section 21.6.11.1, “NDB Cluster Disk Data Objects”, as well as Section 13.1.15, “CREATE LOGFILE
GROUP Statement”, and Section 13.1.19, “CREATE TABLESPACE Statement”.)

Now we can create and populate a version of the fish table that stores 2 of its columns on disk (deleting
the previous version of the table first, if it already exists):

CREATE TABLE fish (
 id INT(11) NOT NULL AUTO_INCREMENT,
 name VARCHAR(20) NOT NULL,
 length_mm INT(11) NOT NULL,
 weight_gm INT(11) NOT NULL,

 PRIMARY KEY pk (id),
 UNIQUE KEY uk (name)
) TABLESPACE ts_1 STORAGE DISK
ENGINE=NDB;

INSERT INTO fish VALUES
 (NULL, 'guppy', 35, 2), (NULL, 'tuna', 2500, 150000),
 (NULL, 'shark', 3000, 110000), (NULL, 'manta ray', 1500, 50000),
 (NULL, 'grouper', 900, 125000), (NULL ,'puffer', 250, 2500);

When run against this version of the table, ndb_desc displays the following output:

$> ./ndb_desc -c localhost fish -d test -p
-- fish --
Version: 1
Fragment type: HashMapPartition
K Value: 6
Min load factor: 78
Max load factor: 80
Temporary table: no
Number of attributes: 4
Number of primary keys: 1
Length of frm data: 346
Max Rows: 0
Row Checksum: 1
Row GCI: 1
SingleUserMode: 0
ForceVarPart: 1
PartitionCount: 2
FragmentCount: 2
FragmentCountType: ONE_PER_LDM_PER_NODE
ExtraRowGciBits: 0
ExtraRowAuthorBits: 0
TableStatus: Retrieved
Table options:
HashMap: DEFAULT-HASHMAP-3840-2
-- Attributes --
id Int PRIMARY KEY DISTRIBUTION KEY AT=FIXED ST=MEMORY AUTO_INCR
name Varchar(20;latin1_swedish_ci) NOT NULL AT=SHORT_VAR ST=MEMORY
length_mm Int NOT NULL AT=FIXED ST=DISK
weight_gm Int NOT NULL AT=FIXED ST=DISK
-- Indexes --
PRIMARY KEY(id) - UniqueHashIndex
PRIMARY(id) - OrderedIndex
uk(name) - OrderedIndex
uk$unique(name) - UniqueHashIndex
-- Per partition info --
Partition Row count Commit count Frag fixed memory Frag varsized memory Extent_space Free extent_space
0 2 2 32768 32768 1048576 1044440

3633

ndb_desc — Describe NDB Tables

1 4 4 32768 32768 1048576 1044400

NDBT_ProgramExit: 0 - OK

This means that 1048576 bytes are allocated from the tablespace for this table on each partition, of which
1044440 bytes remain free for additional storage. In other words, 1048576 - 1044440 = 4136 bytes per
partition is currently being used to store the data from this table's disk-based columns. The number of
bytes shown as Free extent_space is available for storing on-disk column data from the fish table
only; for this reason, it is not visible when selecting from the Information Schema FILES table.

For fully replicated tables, ndb_desc shows only the nodes holding primary partition fragment replicas;
nodes with copy fragment replicas (only) are ignored. Beginning with NDB 7.5.4, you can obtain such
information, using the mysql client, from the table_distribution_status, table_fragments,
table_info, and table_replicas tables in the ndbinfo database.

Options that can be used with ndb_desc are shown in the following table. Additional descriptions follow
the table.

Table 21.29 Command-line options used with the program ndb_desc

Format Description Added, Deprecated, or
Removed

--auto-inc,

-a

Show next value for
AUTO_INCREMENT oolumn if
table has one

ADDED: NDB 7.6.14

--blob-info,

-b

Include partition information for
BLOB tables in output. Requires
that the -p option also be used

(Supported in all NDB releases
based on MySQL 5.7)

--character-sets-dir=path Directory containing character
sets

(Supported in all NDB releases
based on MySQL 5.7)

--connect-retries=# Number of times to retry
connection before giving up

(Supported in all NDB releases
based on MySQL 5.7)

--connect-retry-delay=# Number of seconds to wait
between attempts to contact
management server

(Supported in all NDB releases
based on MySQL 5.7)

--connect-
string=connection_string,

-c connection_string

Same as --ndb-connectstring (Supported in all NDB releases
based on MySQL 5.7)

--context,

-x

Show extra information for table
such as database, schema, name,
and internal ID

ADDED: NDB 7.6.14

--core-file Write core file on error; used in
debugging

(Supported in all NDB releases
based on MySQL 5.7)

--database=name,

-d name

Name of database containing
table

(Supported in all NDB releases
based on MySQL 5.7)

--defaults-extra-
file=path

Read given file after global files
are read

(Supported in all NDB releases
based on MySQL 5.7)

--defaults-file=path Read default options from given
file only

(Supported in all NDB releases
based on MySQL 5.7)

3634

ndb_desc — Describe NDB Tables

Format Description Added, Deprecated, or
Removed

--defaults-group-
suffix=string

Also read groups with
concat(group, suffix)

(Supported in all NDB releases
based on MySQL 5.7)

--extra-node-info,

-n

Include partition-to-data-node
mappings in output; requires --
extra-partition-info

(Supported in all NDB releases
based on MySQL 5.7)

--extra-partition-info,

-p

Display information about
partitions

(Supported in all NDB releases
based on MySQL 5.7)

--help,

-?

Display help text and exit (Supported in all NDB releases
based on MySQL 5.7)

--login-path=path Read given path from login file (Supported in all NDB releases
based on MySQL 5.7)

--ndb-
connectstring=connection_string,

-c connection_string

Set connect string for
connecting to ndb_mgmd.
Syntax: "[nodeid=id;]
[host=]hostname[:port]".
Overrides entries in
NDB_CONNECTSTRING and
my.cnf

(Supported in all NDB releases
based on MySQL 5.7)

--ndb-mgmd-
host=connection_string,

-c connection_string

Same as --ndb-connectstring (Supported in all NDB releases
based on MySQL 5.7)

--ndb-nodeid=# Set node ID for this node,
overriding any ID set by --ndb-
connectstring

(Supported in all NDB releases
based on MySQL 5.7)

--ndb-optimized-node-
selection

Enable optimizations for selection
of nodes for transactions. Enabled
by default; use --skip-ndb-
optimized-node-selection to
disable

(Supported in all NDB releases
based on MySQL 5.7)

--no-defaults Do not read default options from
any option file other than login file

(Supported in all NDB releases
based on MySQL 5.7)

--print-defaults Print program argument list and
exit

(Supported in all NDB releases
based on MySQL 5.7)

--retries=#,

-r #

Number of times to retry the
connection (once per second)

(Supported in all NDB releases
based on MySQL 5.7)

--table=name,

-t name

Specify the table in which to find
an index. When this option is
used, -p and -n have no effect and
are ignored

(Supported in all NDB releases
based on MySQL 5.7)

--unqualified,

-u

Use unqualified table names (Supported in all NDB releases
based on MySQL 5.7)

3635

ndb_desc — Describe NDB Tables

Format Description Added, Deprecated, or
Removed

--usage,

-?

Display help text and exit; same
as --help

(Supported in all NDB releases
based on MySQL 5.7)

--version,

-V

Display version information and
exit

(Supported in all NDB releases
based on MySQL 5.7)

• --auto-inc, -a

Show the next value for a table's AUTO_INCREMENT column, if it has one.

• --blob-info, -b

Include information about subordinate BLOB and TEXT columns.

Use of this option also requires the use of the --extra-partition-info (-p) option.

• --character-sets-dir

Command-Line Format --character-sets-dir=path

Directory containing character sets.

• --connect-retries

Command-Line Format --connect-retries=#

Type Integer

Default Value 12

Minimum Value 0

Maximum Value 12

Number of times to retry connection before giving up.

• --connect-retry-delay

Command-Line Format --connect-retry-delay=#

Type Integer

Default Value 5

Minimum Value 0

Maximum Value 5

Number of seconds to wait between attempts to contact management server.

• --connect-string

Command-Line Format --connect-string=connection_string

Type String
3636

ndb_desc — Describe NDB Tables

Default Value [none]

Same as --ndb-connectstring.

• --context, -x

Show additional contextual information for the table such as schema, database name, table name, and
the table's internal ID.

• --core-file

Command-Line Format --core-file

Write core file on error; used in debugging.

• --database=db_name, -d

Specify the database in which the table should be found.

• --defaults-extra-file

Command-Line Format --defaults-extra-file=path

Type String

Default Value [none]

Read given file after global files are read.

• --defaults-file

Command-Line Format --defaults-file=path

Type String

Default Value [none]

Read default options from given file only.

• --defaults-group-suffix

Command-Line Format --defaults-group-suffix=string

Type String

Default Value [none]

Also read groups with concat(group, suffix).

• --extra-node-info, -n

Include information about the mappings between table partitions and the data nodes upon which they
reside. This information can be useful for verifying distribution awareness mechanisms and supporting
more efficient application access to the data stored in NDB Cluster.

Use of this option also requires the use of the --extra-partition-info (-p) option.

• --extra-partition-info, -p

Print additional information about the table's partitions.

3637

ndb_desc — Describe NDB Tables

• --help

Command-Line Format --help

Display help text and exit.

• --login-path

Command-Line Format --login-path=path

Type String

Default Value [none]

Read given path from login file.

• --ndb-connectstring

Command-Line Format --ndb-connectstring=connection_string

Type String

Default Value [none]

Set connect string for connecting to ndb_mgmd. Syntax: "[nodeid=id;][host=]hostname[:port]". Overrides
entries in NDB_CONNECTSTRING and my.cnf.

• --ndb-mgmd-host

Command-Line Format --ndb-mgmd-host=connection_string

Type String

Default Value [none]

Same as --ndb-connectstring.

• --ndb-nodeid

Command-Line Format --ndb-nodeid=#

Type Integer

Default Value [none]

Set node ID for this node, overriding any ID set by --ndb-connectstring.

• --ndb-optimized-node-selection

Command-Line Format --ndb-optimized-node-selection

Enable optimizations for selection of nodes for transactions. Enabled by default; use --skip-ndb-
optimized-node-selection to disable.

• --no-defaults

Command-Line Format --no-defaults

Do not read default options from any option file other than login file.

• --print-defaults

3638

ndb_drop_index — Drop Index from an NDB Table

Command-Line Format --print-defaults

Print program argument list and exit.

• --retries=#, -r

Try to connect this many times before giving up. One connect attempt is made per second.

• --table=tbl_name, -t

Specify the table in which to look for an index.

• --unqualified, -u

Use unqualified table names.

• --usage

Command-Line Format --usage

Display help text and exit; same as --help.

• --version

Command-Line Format --version

Display version information and exit.

In NDB 7.5.3 and later, table indexes listed in the output are ordered by ID. Previously, this was not
deterministic and could vary between platforms. (Bug #81763, Bug #23547742)

21.5.11 ndb_drop_index — Drop Index from an NDB Table

ndb_drop_index drops the specified index from an NDB table. It is recommended that you use this utility
only as an example for writing NDB API applications—see the Warning later in this section for details.

Usage

ndb_drop_index -c connection_string table_name index -d db_name

The statement shown above drops the index named index from the table in the database.

Options that can be used with ndb_drop_index are shown in the following table. Additional descriptions
follow the table.

Table 21.30 Command-line options used with the program ndb_drop_index

Format Description Added, Deprecated, or
Removed

--character-sets-dir=path Directory containing character
sets

(Supported in all NDB releases
based on MySQL 5.7)

--connect-retries=# Number of times to retry
connection before giving up

(Supported in all NDB releases
based on MySQL 5.7)

--connect-retry-delay=# Number of seconds to wait
between attempts to contact
management server

(Supported in all NDB releases
based on MySQL 5.7)

3639

ndb_drop_index — Drop Index from an NDB Table

Format Description Added, Deprecated, or
Removed

--connect-
string=connection_string,

-c connection_string

Same as --ndb-connectstring (Supported in all NDB releases
based on MySQL 5.7)

--core-file Write core file on error; used in
debugging

(Supported in all NDB releases
based on MySQL 5.7)

--database=name,

-d name

Name of database in which table
is found

(Supported in all NDB releases
based on MySQL 5.7)

--defaults-extra-
file=path

Read given file after global files
are read

(Supported in all NDB releases
based on MySQL 5.7)

--defaults-file=path Read default options from given
file only

(Supported in all NDB releases
based on MySQL 5.7)

--defaults-group-
suffix=string

Also read groups with
concat(group, suffix)

(Supported in all NDB releases
based on MySQL 5.7)

--help,

-?

Display help text and exit (Supported in all NDB releases
based on MySQL 5.7)

--login-path=path Read given path from login file (Supported in all NDB releases
based on MySQL 5.7)

--ndb-
connectstring=connection_string,

-c connection_string

Set connect string for
connecting to ndb_mgmd.
Syntax: "[nodeid=id;]
[host=]hostname[:port]".
Overrides entries in
NDB_CONNECTSTRING and
my.cnf

(Supported in all NDB releases
based on MySQL 5.7)

--ndb-mgmd-
host=connection_string,

-c connection_string

Same as --ndb-connectstring (Supported in all NDB releases
based on MySQL 5.7)

--ndb-nodeid=# Set node ID for this node,
overriding any ID set by --ndb-
connectstring

(Supported in all NDB releases
based on MySQL 5.7)

--ndb-optimized-node-
selection

Enable optimizations for selection
of nodes for transactions. Enabled
by default; use --skip-ndb-
optimized-node-selection to
disable

(Supported in all NDB releases
based on MySQL 5.7)

--no-defaults Do not read default options from
any option file other than login file

(Supported in all NDB releases
based on MySQL 5.7)

--print-defaults Print program argument list and
exit

(Supported in all NDB releases
based on MySQL 5.7)

--usage,

-?

Display help text and exit; same
as --help

(Supported in all NDB releases
based on MySQL 5.7)

3640

ndb_drop_index — Drop Index from an NDB Table

Format Description Added, Deprecated, or
Removed

--version,

-V

Display version information and
exit

(Supported in all NDB releases
based on MySQL 5.7)

• --character-sets-dir

Command-Line Format --character-sets-dir=path

Directory containing character sets.

• --connect-retries

Command-Line Format --connect-retries=#

Type Integer

Default Value 12

Minimum Value 0

Maximum Value 12

Number of times to retry connection before giving up.

• --connect-retry-delay

Command-Line Format --connect-retry-delay=#

Type Integer

Default Value 5

Minimum Value 0

Maximum Value 5

Number of seconds to wait between attempts to contact management server.

• --connect-string

Command-Line Format --connect-string=connection_string

Type String

Default Value [none]

Same as --ndb-connectstring.

• --core-file

Command-Line Format --core-file

Write core file on error; used in debugging.

• --database, -d

Command-Line Format --database=name

Type String

3641

ndb_drop_index — Drop Index from an NDB Table

Default Value TEST_DB

Name of the database in which the table resides.

• --defaults-extra-file

Command-Line Format --defaults-extra-file=path

Type String

Default Value [none]

Read given file after global files are read.

• --defaults-file

Command-Line Format --defaults-file=path

Type String

Default Value [none]

Read default options from given file only.

• --defaults-group-suffix

Command-Line Format --defaults-group-suffix=string

Type String

Default Value [none]

Also read groups with concat(group, suffix).

• --help

Command-Line Format --help

Display help text and exit.

• --login-path

Command-Line Format --login-path=path

Type String

Default Value [none]

Read given path from login file.

• --ndb-connectstring

Command-Line Format --ndb-connectstring=connection_string

Type String

Default Value [none]

Set connect string for connecting to ndb_mgmd. Syntax: "[nodeid=id;][host=]hostname[:port]". Overrides
entries in NDB_CONNECTSTRING and my.cnf.

• --ndb-mgmd-host

3642

ndb_drop_index — Drop Index from an NDB Table

Command-Line Format --ndb-mgmd-host=connection_string

Type String

Default Value [none]

Same as --ndb-connectstring.

• --ndb-nodeid

Command-Line Format --ndb-nodeid=#

Type Integer

Default Value [none]

Set node ID for this node, overriding any ID set by --ndb-connectstring.

• --ndb-optimized-node-selection

Command-Line Format --ndb-optimized-node-selection

Enable optimizations for selection of nodes for transactions. Enabled by default; use --skip-ndb-
optimized-node-selection to disable.

• --no-defaults

Command-Line Format --no-defaults

Do not read default options from any option file other than login file.

• --print-defaults

Command-Line Format --print-defaults

Print program argument list and exit.

• --usage

Command-Line Format --usage

Display help text and exit; same as --help.

• --version

Command-Line Format --version

Display version information and exit.

Warning

Operations performed on Cluster table indexes using the NDB API are not visible to
MySQL and make the table unusable by a MySQL server. If you use this program
to drop an index, then try to access the table from an SQL node, an error results, as
shown here:

$> ./ndb_drop_index -c localhost dogs ix -d ctest1
Dropping index dogs/idx...OK

3643

ndb_drop_table — Drop an NDB Table

NDBT_ProgramExit: 0 - OK

$> ./mysql -u jon -p ctest1
Enter password: *******
Reading table information for completion of table and column names
You can turn off this feature to get a quicker startup with -A

Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 7 to server version: 5.7.44-ndb-7.5.36

Type 'help;' or '\h' for help. Type '\c' to clear the buffer.

mysql> SHOW TABLES;
+------------------+
| Tables_in_ctest1 |
+------------------+
| a |
| bt1 |
| bt2 |
| dogs |
| employees |
| fish |
+------------------+
6 rows in set (0.00 sec)

mysql> SELECT * FROM dogs;
ERROR 1296 (HY000): Got error 4243 'Index not found' from NDBCLUSTER

In such a case, your only option for making the table available to MySQL again is to drop the table and
re-create it. You can use either the SQL statementDROP TABLE or the ndb_drop_table utility (see
Section 21.5.12, “ndb_drop_table — Drop an NDB Table”) to drop the table.

21.5.12 ndb_drop_table — Drop an NDB Table

ndb_drop_table drops the specified NDB table. (If you try to use this on a table created with a storage
engine other than NDB, the attempt fails with the error 723: No such table exists.) This operation
is extremely fast; in some cases, it can be an order of magnitude faster than using a MySQL DROP TABLE
statement on an NDB table.

Usage

ndb_drop_table -c connection_string tbl_name -d db_name

Options that can be used with ndb_drop_table are shown in the following table. Additional descriptions
follow the table.

Table 21.31 Command-line options used with the program ndb_drop_table

Format Description Added, Deprecated, or
Removed

--character-sets-dir=path Directory containing character
sets

(Supported in all NDB releases
based on MySQL 5.7)

--connect-retries=# Number of times to retry
connection before giving up

(Supported in all NDB releases
based on MySQL 5.7)

--connect-retry-delay=# Number of seconds to wait
between attempts to contact
management server

(Supported in all NDB releases
based on MySQL 5.7)

--connect-
string=connection_string,

Same as --ndb-connectstring (Supported in all NDB releases
based on MySQL 5.7)

3644

ndb_drop_table — Drop an NDB Table

Format Description Added, Deprecated, or
Removed

-c connection_string

--core-file Write core file on error; used in
debugging

(Supported in all NDB releases
based on MySQL 5.7)

--database=name,

-d name

Name of database in which table
is found

(Supported in all NDB releases
based on MySQL 5.7)

--defaults-extra-
file=path

Read given file after global files
are read

(Supported in all NDB releases
based on MySQL 5.7)

--defaults-file=path Read default options from given
file only

(Supported in all NDB releases
based on MySQL 5.7)

--defaults-group-
suffix=string

Also read groups with
concat(group, suffix)

(Supported in all NDB releases
based on MySQL 5.7)

--help,

-?

Display help text and exit (Supported in all NDB releases
based on MySQL 5.7)

--login-path=path Read given path from login file (Supported in all NDB releases
based on MySQL 5.7)

--ndb-
connectstring=connection_string,

-c connection_string

Set connect string for
connecting to ndb_mgmd.
Syntax: "[nodeid=id;]
[host=]hostname[:port]".
Overrides entries in
NDB_CONNECTSTRING and
my.cnf

(Supported in all NDB releases
based on MySQL 5.7)

--ndb-mgmd-
host=connection_string,

-c connection_string

Same as --ndb-connectstring (Supported in all NDB releases
based on MySQL 5.7)

--ndb-nodeid=# Set node ID for this node,
overriding any ID set by --ndb-
connectstring

(Supported in all NDB releases
based on MySQL 5.7)

--ndb-optimized-node-
selection

Enable optimizations for selection
of nodes for transactions. Enabled
by default; use --skip-ndb-
optimized-node-selection to
disable

(Supported in all NDB releases
based on MySQL 5.7)

--no-defaults Do not read default options from
any option file other than login file

(Supported in all NDB releases
based on MySQL 5.7)

--print-defaults Print program argument list and
exit

(Supported in all NDB releases
based on MySQL 5.7)

--usage,

-?

Display help text and exit; same
as --help

(Supported in all NDB releases
based on MySQL 5.7)

--version,

-V

Display version information and
exit

(Supported in all NDB releases
based on MySQL 5.7)

3645

ndb_drop_table — Drop an NDB Table

• --character-sets-dir

Command-Line Format --character-sets-dir=path

Directory containing character sets.

• --connect-retries

Command-Line Format --connect-retries=#

Type Integer

Default Value 12

Minimum Value 0

Maximum Value 12

Number of times to retry connection before giving up.

• --connect-retry-delay

Command-Line Format --connect-retry-delay=#

Type Integer

Default Value 5

Minimum Value 0

Maximum Value 5

Number of seconds to wait between attempts to contact management server.

• --connect-string

Command-Line Format --connect-string=connection_string

Type String

Default Value [none]

Same as --ndb-connectstring.

• --core-file

Command-Line Format --core-file

Write core file on error; used in debugging.

• --database, -d

Command-Line Format --database=name

Type String

Default Value TEST_DB

Name of the database in which the table resides.

• --defaults-extra-file

Command-Line Format --defaults-extra-file=path

3646

ndb_drop_table — Drop an NDB Table

Type String

Default Value [none]

Read given file after global files are read.

• --defaults-file

Command-Line Format --defaults-file=path

Type String

Default Value [none]

Read default options from given file only.

• --defaults-group-suffix

Command-Line Format --defaults-group-suffix=string

Type String

Default Value [none]

Also read groups with concat(group, suffix).

• --help

Command-Line Format --help

Display help text and exit.

• --login-path

Command-Line Format --login-path=path

Type String

Default Value [none]

Read given path from login file.

• --ndb-connectstring

Command-Line Format --ndb-connectstring=connection_string

Type String

Default Value [none]

Set connect string for connecting to ndb_mgmd. Syntax: "[nodeid=id;][host=]hostname[:port]". Overrides
entries in NDB_CONNECTSTRING and my.cnf.

• --ndb-mgmd-host

Command-Line Format --ndb-mgmd-host=connection_string

Type String

Default Value [none]

Same as --ndb-connectstring.

3647

ndb_error_reporter — NDB Error-Reporting Utility

• --ndb-nodeid

Command-Line Format --ndb-nodeid=#

Type Integer

Default Value [none]

Set node ID for this node, overriding any ID set by --ndb-connectstring.

• --ndb-optimized-node-selection

Command-Line Format --ndb-optimized-node-selection

Enable optimizations for selection of nodes for transactions. Enabled by default; use --skip-ndb-
optimized-node-selection to disable.

• --no-defaults

Command-Line Format --no-defaults

Do not read default options from any option file other than login file.

• --print-defaults

Command-Line Format --print-defaults

Print program argument list and exit.

• --usage

Command-Line Format --usage

Display help text and exit; same as --help.

• --version

Command-Line Format --version

Display version information and exit.

21.5.13 ndb_error_reporter — NDB Error-Reporting Utility

ndb_error_reporter creates an archive from data node and management node log files that can be
used to help diagnose bugs or other problems with a cluster. It is highly recommended that you make use
of this utility when filing reports of bugs in NDB Cluster.

Options that can be used with ndb_error_reporter are shown in the following table. Additional
descriptions follow the table.

Table 21.32 Command-line options used with the program ndb_error_reporter

Format Description Added, Deprecated, or
Removed

--connection-timeout=# Number of seconds to wait when
connecting to nodes before timing
out

(Supported in all NDB releases
based on MySQL 5.7)

3648

ndb_error_reporter — NDB Error-Reporting Utility

Format Description Added, Deprecated, or
Removed

--dry-scp Disable scp with remote hosts;
used in testing only

(Supported in all NDB releases
based on MySQL 5.7)

--fs Include file system data in error
report; can use a large amount of
disk space

(Supported in all NDB releases
based on MySQL 5.7)

--help,

-?

Display help text and exit (Supported in all NDB releases
based on MySQL 5.7)

--skip-nodegroup=# Skip all nodes in the node group
having this ID

(Supported in all NDB releases
based on MySQL 5.7)

Usage

ndb_error_reporter path/to/config-file [username] [options]

This utility is intended for use on a management node host, and requires the path to the management host
configuration file (usually named config.ini). Optionally, you can supply the name of a user that is able
to access the cluster's data nodes using SSH, to copy the data node log files. ndb_error_reporter
then includes all of these files in archive that is created in the same directory in which it is run. The archive
is named ndb_error_report_YYYYMMDDhhmmss.tar.bz2, where YYYYMMDDhhmmss is a datetime
string.

 ndb_error_reporter also accepts the options listed here:

• --connection-timeout=timeout

Command-Line Format --connection-timeout=#

Type Integer

Default Value 0

Wait this many seconds when trying to connect to nodes before timing out.

• --dry-scp

Command-Line Format --dry-scp

Run ndb_error_reporter without using scp from remote hosts. Used for testing only.

• --fs

Command-Line Format --fs

Copy the data node file systems to the management host and include them in the archive.

Because data node file systems can be extremely large, even after being compressed, we ask that you
please do not send archives created using this option to Oracle unless you are specifically requested to
do so.

• --help

Command-Line Format --help

3649

ndb_import — Import CSV Data Into NDB

Display help text and exit.

• --skip-nodegroup=nodegroup_id

Command-Line Format --connection-timeout=#

Type Integer

Default Value 0

Skip all nodes belong to the node group having the supplied node group ID.

21.5.14 ndb_import — Import CSV Data Into NDB

ndb_import imports CSV-formatted data, such as that produced by mysqldump --tab, directly into NDB
using the NDB API. ndb_import requires a connection to an NDB management server (ndb_mgmd) to
function; it does not require a connection to a MySQL Server.

Usage

ndb_import db_name file_name options

ndb_import requires two arguments. db_name is the name of the database where the table into which
to import the data is found; file_name is the name of the CSV file from which to read the data; this
must include the path to this file if it is not in the current directory. The name of the file must match that of
the table; the file's extension, if any, is not taken into consideration. Options supported by ndb_import
include those for specifying field separators, escapes, and line terminators, and are described later in this
section.

ndb_import rejects any empty lines read from the CSV file.

ndb_import must be able to connect to an NDB Cluster management server; for this reason, there must
be an unused [api] slot in the cluster config.ini file.

To duplicate an existing table that uses a different storage engine, such as InnoDB, as an NDB table, use
the mysql client to perform a SELECT INTO OUTFILE statement to export the existing table to a CSV
file, then to execute a CREATE TABLE LIKE statement to create a new table having the same structure
as the existing table, then perform ALTER TABLE ... ENGINE=NDB on the new table; after this, from
the system shell, invoke ndb_import to load the data into the new NDB table. For example, an existing
InnoDB table named myinnodb_table in a database named myinnodb can be exported into an NDB
table named myndb_table in a database named myndb as shown here, assuming that you are already
logged in as a MySQL user with the appropriate privileges:

1. In the mysql client:

mysql> USE myinnodb;

mysql> SELECT * INTO OUTFILE '/tmp/myndb_table.csv'
 > FIELDS TERMINATED BY ',' OPTIONALLY ENCLOSED BY '"' ESCAPED BY '\\'
 > LINES TERMINATED BY '\n'
 > FROM myinnodbtable;

mysql> CREATE DATABASE myndb;

mysql> USE myndb;

mysql> CREATE TABLE myndb_table LIKE myinnodb.myinnodb_table;

mysql> ALTER TABLE myndb_table ENGINE=NDB;

3650

ndb_import — Import CSV Data Into NDB

mysql> EXIT;
Bye
$>

Once the target database and table have been created, a running mysqld is no longer required. You
can stop it using mysqladmin shutdown or another method before proceeding, if you wish.

2. In the system shell:

if you are not already in the MySQL bin directory:
$> cd path-to-mysql-bin-dir

$> ndb_import myndb /tmp/myndb_table.csv --fields-optionally-enclosed-by='"' \
 --fields-terminated-by="," --fields-escaped-by='\\'

The output should resemble what is shown here:

job-1 import myndb.myndb_table from /tmp/myndb_table.csv
job-1 [running] import myndb.myndb_table from /tmp/myndb_table.csv
job-1 [success] import myndb.myndb_table from /tmp/myndb_table.csv
job-1 imported 19984 rows in 0h0m9s at 2277 rows/s
jobs summary: defined: 1 run: 1 with success: 1 with failure: 0
$>

Options that can be used with ndb_import are shown in the following table. Additional descriptions follow
the table.

Table 21.33 Command-line options used with the program ndb_import

Format Description Added, Deprecated, or
Removed

--abort-on-error Dump core on any fatal error;
used for debugging

ADDED: NDB 7.6.2

--ai-increment=# For table with hidden PK, specify
autoincrement increment. See
mysqld

ADDED: NDB 7.6.2

--ai-offset=# For table with hidden PK, specify
autoincrement offset. See mysqld

ADDED: NDB 7.6.2

--ai-prefetch-sz=# For table with hidden PK, specify
number of autoincrement values
that are prefetched. See mysqld

ADDED: NDB 7.6.2

--character-sets-dir=path Directory containing character
sets

ADDED: NDB 7.6.2

--connect-retries=# Number of times to retry
connection before giving up

(Supported in all NDB releases
based on MySQL 5.7)

--connect-retry-delay=# Number of seconds to wait
between attempts to contact
management server

ADDED: NDB 7.6.2

--connect-
string=connection_string,

-c connection_string

Same as --ndb-connectstring ADDED: NDB 7.6.2

--connections=# Number of cluster connections to
create

ADDED: NDB 7.6.2

3651

ndb_import — Import CSV Data Into NDB

Format Description Added, Deprecated, or
Removed

--continue When job fails, continue to next
job

ADDED: NDB 7.6.2

--core-file Write core file on error; used in
debugging

ADDED: NDB 7.6.2

--csvopt=opts Shorthand option for setting
typical CSV option values. See
documentation for syntax and
other information

ADDED: NDB 7.6.2

--db-workers=# Number of threads, per data node,
executing database operations

ADDED: NDB 7.6.2

--defaults-extra-
file=path

Read given file after global files
are read

ADDED: NDB 7.6.2

--defaults-file=path Read default options from given
file only

ADDED: NDB 7.6.2

--defaults-group-
suffix=string

Also read groups with
concat(group, suffix)

ADDED: NDB 7.6.2

--errins-type=name Error insert type, for testing
purposes; use "list" to obtain all
possible values

ADDED: NDB 7.6.2

--errins-delay=# Error insert delay in milliseconds;
random variation is added

ADDED: NDB 7.6.2

--fields-enclosed-by=char Same as FIELDS ENCLOSED
BY option for LOAD DATA
statements. For CSV input this is
same as using --fields-optionally-
enclosed-by

ADDED: NDB 7.6.2

--fields-escaped-by=char Same as FIELDS ESCAPED BY
option for LOAD DATA statements

ADDED: NDB 7.6.2

--fields-optionally-
enclosed-by=char

Same as FIELDS OPTIONALLY
ENCLOSED BY option for LOAD
DATA statements

ADDED: NDB 7.6.2

--fields-terminated-
by=char

Same as FIELDS TERMINATED
BY option for LOAD DATA
statements

ADDED: NDB 7.6.2

--help,

-?

Display help text and exit ADDED: NDB 7.6.2

--idlesleep=# Number of milliseconds to sleep
waiting for more to do

ADDED: NDB 7.6.2

--idlespin=# Number of times to retry before
idlesleep

ADDED: NDB 7.6.2

--ignore-lines=# Ignore first # lines in input file.
Used to skip a non-data header

ADDED: NDB 7.6.2

--input-type=name Input type: random or csv ADDED: NDB 7.6.2

3652

ndb_import — Import CSV Data Into NDB

Format Description Added, Deprecated, or
Removed

--input-workers=# Number of threads processing
input. Must be 2 or more if --input-
type is csv

ADDED: NDB 7.6.2

--keep-state State files (except non-empty
*.rej files) are normally removed
on job completion. Using this
option causes all state files to be
preserved instead

ADDED: NDB 7.6.4

--lines-terminated-
by=char

Same as LINES TERMINATED
BY option for LOAD DATA
statements

ADDED: NDB 7.6.2

--login-path=path Read given path from login file ADDED: NDB 7.6.2

--max-rows=# Import only this number of input
data rows; default is 0, which
imports all rows

ADDED: NDB 7.6.2

--monitor=# Periodically print status of running
job if something has changed
(status, rejected rows, temporary
errors). Value 0 disables. Value
1 prints any change seen. Higher
values reduce status printing
exponentially up to some pre-
defined limit

ADDED: NDB 7.6.2

--ndb-
connectstring=connection_string,

-c connection_string

Set connect string for
connecting to ndb_mgmd.
Syntax: "[nodeid=id;]
[host=]hostname[:port]".
Overrides entries in
NDB_CONNECTSTRING and
my.cnf

ADDED: NDB 7.6.2

--ndb-mgmd-
host=connection_string,

-c connection_string

Same as --ndb-connectstring ADDED: NDB 7.6.2

--ndb-nodeid=# Set node ID for this node,
overriding any ID set by --ndb-
connectstring

ADDED: NDB 7.6.2

--ndb-optimized-node-
selection

Enable optimizations for selection
of nodes for transactions. Enabled
by default; use --skip-ndb-
optimized-node-selection to
disable

(Supported in all NDB releases
based on MySQL 5.7)

--no-asynch Run database operations as
batches, in single transactions

ADDED: NDB 7.6.2

--no-defaults Do not read default options from
any option file other than login file

ADDED: NDB 7.6.2

3653

ndb_import — Import CSV Data Into NDB

Format Description Added, Deprecated, or
Removed

--no-hint Tells transaction coordinator not
to use distribution key hint when
selecting data node

ADDED: NDB 7.6.2

--opbatch=# A db execution batch is a set of
transactions and operations sent
to NDB kernel. This option limits
NDB operations (including blob
operations) in a db execution
batch. Therefore it also limits
number of asynch transactions.
Value 0 is not valid

ADDED: NDB 7.6.2

--opbytes=# Limit bytes in execution batch
(default 0 = no limit)

ADDED: NDB 7.6.2

--output-type=name Output type: ndb is default, null
used for testing

ADDED: NDB 7.6.2

--output-workers=# Number of threads processing
output or relaying database
operations

ADDED: NDB 7.6.2

--pagesize=# Align I/O buffers to given size ADDED: NDB 7.6.2

--pagecnt=# Size of I/O buffers as multiple
of page size. CSV input worker
allocates double-sized buffer

ADDED: NDB 7.6.2

--polltimeout=# Timeout per poll for completed
asynchonous transactions;
polling continues until all polls are
completed, or error occurs

ADDED: NDB 7.6.2

--print-defaults Print program argument list and
exit

ADDED: NDB 7.6.2

--rejects=# Limit number of rejected rows
(rows with permanent error) in
data load. Default is 0 which
means that any rejected row
causes a fatal error. The row
exceeding the limit is also added
to *.rej

ADDED: NDB 7.6.2

--resume If job aborted (temporary error,
user interrupt), resume with rows
not yet processed

ADDED: NDB 7.6.2

--rowbatch=# Limit rows in row queues (default
0 = no limit); must be 1 or more if
--input-type is random

ADDED: NDB 7.6.2

--rowbytes=# Limit bytes in row queues (0 = no
limit)

ADDED: NDB 7.6.2

--state-dir=path Where to write state files; currect
directory is default

ADDED: NDB 7.6.2

3654

ndb_import — Import CSV Data Into NDB

Format Description Added, Deprecated, or
Removed

--stats Save performance related options
and internal statistics in *.sto and
*.stt files. These files are kept on
successful completion even if --
keep-state is not used

ADDED: NDB 7.6.4

--tempdelay=# Number of milliseconds to sleep
between temporary errors

ADDED: NDB 7.6.2

--temperrors=# Number of times a transaction
can fail due to a temporary error,
per execution batch; 0 means
any temporary error is fatal. Such
errors do not cause any rows to
be written to .rej file

ADDED: NDB 7.6.2

--usage,

-?

Display help text and exit; same
as --help

ADDED: NDB 7.6.2

--verbose[=#],

-v [#]

Enable verbose output ADDED: NDB 7.6.2

--version,

-V

Display version information and
exit

ADDED: NDB 7.6.2

• --abort-on-error

Command-Line Format --abort-on-error

Introduced 5.7.18-ndb-7.6.2

Dump core on any fatal error; used for debugging only.

• --ai-increment=#

Command-Line Format --ai-increment=#

Introduced 5.7.18-ndb-7.6.2

Type Integer

Default Value 1

Minimum Value 1

Maximum Value 4294967295

For a table with a hidden primary key, specify the autoincrement increment, like the
auto_increment_increment system variable does in the MySQL Server.

• --ai-offset=#

Command-Line Format --ai-offset=#

Introduced 5.7.18-ndb-7.6.2

Type Integer
3655

ndb_import — Import CSV Data Into NDB

Default Value 1

Minimum Value 1

Maximum Value 4294967295

For a table with hidden primary key, specify the autoincrement offset. Similar to the
auto_increment_offset system variable.

• --ai-prefetch-sz=#

Command-Line Format --ai-prefetch-sz=#

Introduced 5.7.18-ndb-7.6.2

Type Integer

Default Value 1024

Minimum Value 1

Maximum Value 4294967295

For a table with a hidden primary key, specify the number of autoincrement values that are prefetched.
Behaves like the ndb_autoincrement_prefetch_sz system variable does in the MySQL Server.

• --character-sets-dir

Command-Line Format --character-sets-dir=path

Introduced 5.7.18-ndb-7.6.2

Directory containing character sets.

• --connect-retries

Command-Line Format --connect-retries=#

Type Integer

Default Value 12

Minimum Value 0

Maximum Value 12

Number of times to retry connection before giving up.

• --connect-retry-delay

Command-Line Format --connect-retry-delay=#

Introduced 5.7.18-ndb-7.6.2

Type Integer

Default Value 5

Minimum Value 0

Maximum Value 5

Number of seconds to wait between attempts to contact management server.
3656

ndb_import — Import CSV Data Into NDB

• --connections=#

Command-Line Format --connections=#

Introduced 5.7.18-ndb-7.6.2

Type Integer

Default Value 1

Minimum Value 1

Maximum Value 4294967295

Number of cluster connections to create.

• --connect-string

Command-Line Format --connect-string=connection_string

Introduced 5.7.18-ndb-7.6.2

Type String

Default Value [none]

Same as --ndb-connectstring.

• --continue

Command-Line Format --continue

Introduced 5.7.18-ndb-7.6.2

When a job fails, continue to the next job.

• --core-file

Command-Line Format --core-file

Introduced 5.7.18-ndb-7.6.2

Write core file on error; used in debugging.

• --csvopt=string

Command-Line Format --csvopt=opts

Introduced 5.7.18-ndb-7.6.2

Type String

3657

ndb_import — Import CSV Data Into NDB

Default Value [none]

Provides a shortcut method for setting typical CSV import options. The argument to this option is a string
consisting of one or more of the following parameters:

• c: Fields terminated by comma

• d: Use defaults, except where overridden by another parameter

• n: Lines terminated by \n

• q: Fields optionally enclosed by double quote characters (")

• r: Line terminated by \r

The order of the parameters makes no difference, except that if both n and r are specified, the one
occurring last is the parameter which takes effect.

This option is intended for use in testing under conditions in which it is difficult to transmit escapes or
quotation marks.

• --db-workers=#

Command-Line Format --db-workers=#

Introduced 5.7.18-ndb-7.6.2

Type Integer

Default Value (≥ 5.7.20-ndb-7.6.4) 4

Default Value (≥ 5.7.18-ndb-7.6.2, ≤ 5.7.18-
ndb-7.6.3)

1

Minimum Value 1

Maximum Value 4294967295

Number of threads, per data node, executing database operations.

• --defaults-extra-file

Command-Line Format --defaults-extra-file=path

Introduced 5.7.18-ndb-7.6.2

Type String

Default Value [none]

Read given file after global files are read.

• --defaults-file

Command-Line Format --defaults-file=path

Introduced 5.7.18-ndb-7.6.2

Type String

Default Value [none]

Read default options from given file only.

3658

ndb_import — Import CSV Data Into NDB

• --defaults-group-suffix

Command-Line Format --defaults-group-suffix=string

Introduced 5.7.18-ndb-7.6.2

Type String

Default Value [none]

Also read groups with concat(group, suffix).

• --errins-type=name

Command-Line Format --errins-type=name

Introduced 5.7.18-ndb-7.6.2

Type Enumeration

Default Value [none]

Valid Values stopjob

stopall

sighup

sigint

list

Error insert type; use list as the name value to obtain all possible values. This option is used for testing
purposes only.

• --errins-delay=#

Command-Line Format --errins-delay=#

Introduced 5.7.18-ndb-7.6.2

Type Integer

Default Value 1000

Minimum Value 0

Maximum Value 4294967295

Unit ms

Error insert delay in milliseconds; random variation is added. This option is used for testing purposes
only.

• --fields-enclosed-by=char

Command-Line Format --fields-enclosed-by=char

Introduced 5.7.18-ndb-7.6.2

Type String

3659

ndb_import — Import CSV Data Into NDB

Default Value [none]

This works in the same way as the FIELDS ENCLOSED BY option does for the LOAD DATA statement,
specifying a character to be interpeted as quoting field values. For CSV input, this is the same as --
fields-optionally-enclosed-by.

• --fields-escaped-by=name

Command-Line Format --fields-escaped-by=char

Introduced 5.7.18-ndb-7.6.2

Type String

Default Value \

Specify an escape character in the same way as the FIELDS ESCAPED BY option does for the SQL
LOAD DATA statement.

• --fields-optionally-enclosed-by=char

Command-Line Format --fields-optionally-enclosed-by=char

Introduced 5.7.18-ndb-7.6.2

Type String

Default Value [none]

This works in the same way as the FIELDS OPTIONALLY ENCLOSED BY option does for the LOAD
DATA statement, specifying a character to be interpeted as optionally quoting field values. For CSV input,
this is the same as --fields-enclosed-by.

• --fields-terminated-by=char

Command-Line Format --fields-terminated-by=char

Introduced 5.7.18-ndb-7.6.2

Type String

Default Value \t

This works in the same way as the FIELDS TERMINATED BY option does for the LOAD DATA
statement, specifying a character to be interpeted as the field separator.

• --help

Command-Line Format --help

Introduced 5.7.18-ndb-7.6.2

Display help text and exit.

• --idlesleep=#

Command-Line Format --idlesleep=#

Introduced 5.7.18-ndb-7.6.2

Type Integer

Default Value 1

3660

ndb_import — Import CSV Data Into NDB

Minimum Value 1

Maximum Value 4294967295

Unit ms

Number of milliseconds to sleep waiting for more work to perform.

• --idlespin=#

Command-Line Format --idlespin=#

Introduced 5.7.18-ndb-7.6.2

Type Integer

Default Value 0

Minimum Value 0

Maximum Value 4294967295

Number of times to retry before sleeping.

• --ignore-lines=#

Command-Line Format --ignore-lines=#

Introduced 5.7.18-ndb-7.6.2

Type Integer

Default Value 0

Minimum Value 0

Maximum Value 4294967295

Cause ndb_import to ignore the first # lines of the input file. This can be employed to skip a file header
that does not contain any data.

• --input-type=name

Command-Line Format --input-type=name

Introduced 5.7.18-ndb-7.6.2

Type Enumeration

Default Value csv

Valid Values random

csv

Set the type of input type. The default is csv; random is intended for testing purposes only. .

• --input-workers=#

Command-Line Format --input-workers=#

Introduced 5.7.18-ndb-7.6.2

Type Integer

Default Value (≥ 5.7.20-ndb-7.6.4) 4
3661

ndb_import — Import CSV Data Into NDB

Default Value (≥ 5.7.18-ndb-7.6.2, ≤ 5.7.18-
ndb-7.6.3)

2

Minimum Value 1

Maximum Value 4294967295

Set the number of threads processing input.

• --keep-state

Command-Line Format --keep-state

Introduced 5.7.20-ndb-7.6.4

By default, ndb_import removes all state files (except non-empty *.rej files) when it completes a job.
Specify this option (nor argument is required) to force the program to retain all state files instead.

• --lines-terminated-by=name

Command-Line Format --lines-terminated-by=char

Introduced 5.7.18-ndb-7.6.2

Type String

Default Value \n

This works in the same way as the LINES TERMINATED BY option does for the LOAD DATA statement,
specifying a character to be interpeted as end-of-line.

• --login-path

Command-Line Format --login-path=path

Introduced 5.7.18-ndb-7.6.2

Type String

Default Value [none]

Read given path from login file.

• --log-level=#

Command-Line Format --log-level=#

Type Integer

Default Value 0

Minimum Value 0

Maximum Value 2

Performs internal logging at the given level. This option is intended primarily for internal and
development use.

In debug builds of NDB only, the logging level can be set using this option to a maximum of 4.

• --max-rows=#

Command-Line Format --max-rows=#

3662

ndb_import — Import CSV Data Into NDB

Introduced 5.7.18-ndb-7.6.2

Type Integer

Default Value 0

Minimum Value 0

Maximum Value 4294967295

Unit bytes

Import only this number of input data rows; the default is 0, which imports all rows.

• --monitor=#

Command-Line Format --monitor=#

Introduced 5.7.18-ndb-7.6.2

Type Integer

Default Value 2

Minimum Value 0

Maximum Value 4294967295

Unit bytes

Periodically print the status of a running job if something has changed (status, rejected rows, temporary
errors). Set to 0 to disable this reporting. Setting to 1 prints any change that is seen. Higher values
reduce the frequency of this status reporting.

• --ndb-connectstring

Command-Line Format --ndb-connectstring=connection_string

Introduced 5.7.18-ndb-7.6.2

Type String

Default Value [none]

Set connect string for connecting to ndb_mgmd. Syntax: "[nodeid=id;][host=]hostname[:port]". Overrides
entries in NDB_CONNECTSTRING and my.cnf.

• --ndb-mgmd-host

Command-Line Format --ndb-mgmd-host=connection_string

Introduced 5.7.18-ndb-7.6.2

Type String

Default Value [none]

Same as --ndb-connectstring.

• --ndb-nodeid

Command-Line Format --ndb-nodeid=#

Introduced 5.7.18-ndb-7.6.2

Type Integer

3663

ndb_import — Import CSV Data Into NDB

Default Value [none]

Set node ID for this node, overriding any ID set by --ndb-connectstring.

• --ndb-optimized-node-selection

Command-Line Format --ndb-optimized-node-selection

Enable optimizations for selection of nodes for transactions. Enabled by default; use --skip-ndb-
optimized-node-selection to disable.

• --no-asynch

Command-Line Format --no-asynch

Introduced 5.7.18-ndb-7.6.2

Run database operations as batches, in single transactions.

• --no-defaults

Command-Line Format --no-defaults

Introduced 5.7.18-ndb-7.6.2

Do not read default options from any option file other than login file.

• --no-hint

Command-Line Format --no-hint

Introduced 5.7.18-ndb-7.6.2

Do not use distribution key hinting to select a data node.

• --opbatch=#

Command-Line Format --opbatch=#

Introduced 5.7.18-ndb-7.6.2

Type Integer

Default Value 256

Minimum Value 1

Maximum Value 4294967295

Unit bytes

Set a limit on the number of operations (including blob operations), and thus the number of
asynchronous transactions, per execution batch.

• --opbytes=#

Command-Line Format --opbytes=#

Introduced 5.7.18-ndb-7.6.2

Type Integer

3664

ndb_import — Import CSV Data Into NDB

Default Value 0

Minimum Value 0

Maximum Value 4294967295

Unit bytes

Set a limit on the number of bytes per execution batch. Use 0 for no limit.

• --output-type=name

Command-Line Format --output-type=name

Introduced 5.7.18-ndb-7.6.2

Type Enumeration

Default Value ndb

Valid Values null

Set the output type. ndb is the default. null is used only for testing.

• --output-workers=#

Command-Line Format --output-workers=#

Introduced 5.7.18-ndb-7.6.2

Type Integer

Default Value 2

Minimum Value 1

Maximum Value 4294967295

Set the number of threads processing output or relaying database operations.

• --pagesize=#

Command-Line Format --pagesize=#

Introduced 5.7.18-ndb-7.6.2

Type Integer

Default Value 4096

Minimum Value 1

Maximum Value 4294967295

Unit bytes

Align I/O buffers to the given size.

• --pagecnt=#

Command-Line Format --pagecnt=#

Introduced 5.7.18-ndb-7.6.2

Type Integer

Default Value 64
3665

ndb_import — Import CSV Data Into NDB

Minimum Value 1

Maximum Value 4294967295

Set the size of I/O buffers as multiple of page size. The CSV input worker allocates buffer that is doubled
in size.

• --polltimeout=#

Command-Line Format --polltimeout=#

Introduced 5.7.18-ndb-7.6.2

Type Integer

Default Value 1000

Minimum Value 1

Maximum Value 4294967295

Unit ms

Set a timeout per poll for completed asynchonous transactions; polling continues until all polls are
completed, or until an error occurs.

• --print-defaults

Command-Line Format --print-defaults

Introduced 5.7.18-ndb-7.6.2

Print program argument list and exit.

• --rejects=#

Command-Line Format --rejects=#

Introduced 5.7.18-ndb-7.6.2

Type Integer

Default Value 0

Minimum Value 0

Maximum Value 4294967295

Limit the number of rejected rows (rows with permanent errors) in the data load. The default is 0, which
means that any rejected row causes a fatal error. Any rows causing the limit to be exceeded are added
to the .rej file.

The limit imposed by this option is effective for the duration of the current run. A run restarted using --
resume is considered a “new” run for this purpose.

• --resume

Command-Line Format --resume

Introduced 5.7.18-ndb-7.6.2

If a job is aborted (due to a temporary db error or when interrupted by the user), resume with any rows
not yet processed.

3666

ndb_import — Import CSV Data Into NDB

• --rowbatch=#

Command-Line Format --rowbatch=#

Introduced 5.7.18-ndb-7.6.2

Type Integer

Default Value 0

Minimum Value 0

Maximum Value 4294967295

Unit rows

Set a limit on the number of rows per row queue. Use 0 for no limit.

• --rowbytes=#

Command-Line Format --rowbytes=#

Introduced 5.7.18-ndb-7.6.2

Type Integer

Default Value 262144

Minimum Value 0

Maximum Value 4294967295

Unit bytes

Set a limit on the number of bytes per row queue. Use 0 for no limit.

• --stats

Command-Line Format --stats

Introduced 5.7.20-ndb-7.6.4

Save information about options related to performance and other internal statistics in files named *.sto
and *.stt. These files are always kept on successful completion (even if --keep-state is not also
specified).

• --state-dir=name

Command-Line Format --state-dir=path

Introduced 5.7.18-ndb-7.6.2

Type String

Default Value .

Where to write the state files (tbl_name.map, tbl_name.rej, tbl_name.res, and tbl_name.stt)
produced by a run of the program; the default is the current directory.

• --tempdelay=#

Command-Line Format --tempdelay=#

Introduced 5.7.18-ndb-7.6.2

Type Integer

3667

ndb_import — Import CSV Data Into NDB

Default Value 10

Minimum Value 0

Maximum Value 4294967295

Unit ms

Number of milliseconds to sleep between temporary errors.

• --temperrors=#

Command-Line Format --temperrors=#

Introduced 5.7.18-ndb-7.6.2

Type Integer

Default Value 0

Minimum Value 0

Maximum Value 4294967295

Number of times a transaction can fail due to a temporary error, per execution batch. The default is 0,
which means that any temporary error is fatal. Temporary errors do not cause any rows to be added to
the .rej file.

• --usage

Command-Line Format --usage

Introduced 5.7.18-ndb-7.6.2

Display help text and exit; same as --help.

• --verbose, -v

Command-Line Format --verbose[=#]

Introduced 5.7.18-ndb-7.6.2

Type (≥ 5.7.20-ndb-7.6.4) Boolean

Type (≥ 5.7.18-ndb-7.6.2, ≤ 5.7.18-ndb-7.6.3) Integer

Default Value (≥ 5.7.20-ndb-7.6.4) false

Default Value (≥ 5.7.18-ndb-7.6.2, ≤ 5.7.18-
ndb-7.6.3)

0

Minimum Value 0

Maximum Value 2

Enable verbose output.

Note

Previously, this option controlled the internal logging level for debugging
messages. In NDB 7.6, use the --log-level option for this purpose instead.

• --version

Command-Line Format --version

3668

ndb_index_stat — NDB Index Statistics Utility

Introduced 5.7.18-ndb-7.6.2

Display version information and exit.

As with LOAD DATA, options for field and line formatting much match those used to create the CSV
file, whether this was done using SELECT INTO ... OUTFILE, or by some other means. There is no
equivalent to the LOAD DATA statement STARTING WITH option.

ndb_import was added in NDB 7.6.

21.5.15 ndb_index_stat — NDB Index Statistics Utility

ndb_index_stat provides per-fragment statistical information about indexes on NDB tables. This includes
cache version and age, number of index entries per partition, and memory consumption by indexes.

Usage

To obtain basic index statistics about a given NDB table, invoke ndb_index_stat as shown here, with
the name of the table as the first argument and the name of the database containing this table specified
immediately following it, using the --database (-d) option:

ndb_index_stat table -d database

In this example, we use ndb_index_stat to obtain such information about an NDB table named mytable
in the test database:

$> ndb_index_stat -d test mytable
table:City index:PRIMARY fragCount:2
sampleVersion:3 loadTime:1399585986 sampleCount:1994 keyBytes:7976
query cache: valid:1 sampleCount:1994 totalBytes:27916
times in ms: save: 7.133 sort: 1.974 sort per sample: 0.000

NDBT_ProgramExit: 0 - OK

sampleVersion is the version number of the cache from which the statistics data is taken. Running
ndb_index_stat with the --update option causes sampleVersion to be incremented.

loadTime shows when the cache was last updated. This is expressed as seconds since the Unix Epoch.

sampleCount is the number of index entries found per partition. You can estimate the total number of
entries by multiplying this by the number of fragments (shown as fragCount).

sampleCount can be compared with the cardinality of SHOW INDEX or
INFORMATION_SCHEMA.STATISTICS, although the latter two provide a view of the table as a whole,
while ndb_index_stat provides a per-fragment average.

keyBytes is the number of bytes used by the index. In this example, the primary key is an integer, which
requires four bytes for each index, so keyBytes can be calculated in this case as shown here:

 keyBytes = sampleCount * (4 bytes per index) = 1994 * 4 = 7976

This information can also be obtained using the corresponding column definitions from the Information
Schema COLUMNS table (this requires a MySQL Server and a MySQL client application).

totalBytes is the total memory consumed by all indexes on the table, in bytes.

Timings shown in the preceding examples are specific to each invocation of ndb_index_stat.

The --verbose option provides some additional output, as shown here:

$> ndb_index_stat -d test mytable --verbose
random seed 1337010518

3669

ndb_index_stat — NDB Index Statistics Utility

connected
loop 1 of 1
table:mytable index:PRIMARY fragCount:4
sampleVersion:2 loadTime:1336751773 sampleCount:0 keyBytes:0
read stats
query cache created
query cache: valid:1 sampleCount:0 totalBytes:0
times in ms: save: 20.766 sort: 0.001
disconnected

NDBT_ProgramExit: 0 - OK

$>

If the only output from the program is NDBT_ProgramExit: 0 - OK, this may indicate that no statistics
yet exist. To force them to be created (or updated if they already exist), invoke ndb_index_stat with the
--update option, or execute ANALYZE TABLE on the table in the mysql client.

Options

The following table includes options that are specific to the NDB Cluster ndb_index_stat utility.
Additional descriptions are listed following the table.

Table 21.34 Command-line options used with the program ndb_index_stat

Format Description Added, Deprecated, or
Removed

--character-sets-dir=path Directory containing character
sets

(Supported in all NDB releases
based on MySQL 5.7)

--connect-retries=# Number of times to retry
connection before giving up

(Supported in all NDB releases
based on MySQL 5.7)

--connect-retry-delay=# Number of seconds to wait
between attempts to contact
management server

(Supported in all NDB releases
based on MySQL 5.7)

--connect-
string=connection_string,

-c connection_string

Same as --ndb-connectstring (Supported in all NDB releases
based on MySQL 5.7)

--core-file Write core file on error; used in
debugging

(Supported in all NDB releases
based on MySQL 5.7)

--database=name,

-d name

Name of database containing
table

(Supported in all NDB releases
based on MySQL 5.7)

--defaults-extra-
file=path

Read given file after global files
are read

(Supported in all NDB releases
based on MySQL 5.7)

--defaults-file=path Read default options from given
file only

(Supported in all NDB releases
based on MySQL 5.7)

--defaults-group-
suffix=string

Also read groups with
concat(group, suffix)

(Supported in all NDB releases
based on MySQL 5.7)

--delete Delete index statistics for table,
stopping any auto-update
previously configured

(Supported in all NDB releases
based on MySQL 5.7)

--dump Print query cache (Supported in all NDB releases
based on MySQL 5.7)

3670

ndb_index_stat — NDB Index Statistics Utility

Format Description Added, Deprecated, or
Removed

--help,

-?

Display help text and exit (Supported in all NDB releases
based on MySQL 5.7)

--login-path=path Read given path from login file (Supported in all NDB releases
based on MySQL 5.7)

--loops=# Set the number of times to
perform given command; default is
0

(Supported in all NDB releases
based on MySQL 5.7)

--ndb-
connectstring=connection_string,

-c connection_string

Set connect string for
connecting to ndb_mgmd.
Syntax: "[nodeid=id;]
[host=]hostname[:port]".
Overrides entries in
NDB_CONNECTSTRING and
my.cnf

(Supported in all NDB releases
based on MySQL 5.7)

--ndb-mgmd-
host=connection_string,

-c connection_string

Same as --ndb-connectstring (Supported in all NDB releases
based on MySQL 5.7)

--ndb-nodeid=# Set node ID for this node,
overriding any ID set by --ndb-
connectstring

(Supported in all NDB releases
based on MySQL 5.7)

--ndb-optimized-node-
selection

Enable optimizations for selection
of nodes for transactions. Enabled
by default; use --skip-ndb-
optimized-node-selection to
disable

(Supported in all NDB releases
based on MySQL 5.7)

--no-defaults Do not read default options from
any option file other than login file

(Supported in all NDB releases
based on MySQL 5.7)

--print-defaults Print program argument list and
exit

(Supported in all NDB releases
based on MySQL 5.7)

--query=# Perform random range queries on
first key attr (must be int unsigned)

(Supported in all NDB releases
based on MySQL 5.7)

--sys-drop Drop any statistics tables and
events in NDB kernel (all statistics
are lost)

(Supported in all NDB releases
based on MySQL 5.7)

--sys-create Create all statistics tables and
events in NDB kernel, if none of
them already exist

(Supported in all NDB releases
based on MySQL 5.7)

--sys-create-if-not-exist Create any statistics tables and
events in NDB kernel that do not
already exist

(Supported in all NDB releases
based on MySQL 5.7)

--sys-create-if-not-valid Create any statistics tables or
events that do not already exist
in the NDB kernel, after dropping
any that are invalid

(Supported in all NDB releases
based on MySQL 5.7)

3671

ndb_index_stat — NDB Index Statistics Utility

Format Description Added, Deprecated, or
Removed

--sys-check Verify that NDB system index
statistics and event tables exist

(Supported in all NDB releases
based on MySQL 5.7)

--sys-skip-tables Do not apply sys-* options to
tables

(Supported in all NDB releases
based on MySQL 5.7)

--sys-skip-events Do not apply sys-* options to
events

(Supported in all NDB releases
based on MySQL 5.7)

--update Update index statistics for table,
restarting any auto-update
previously configured

(Supported in all NDB releases
based on MySQL 5.7)

--usage,

-?

Display help text and exit; same
as --help

(Supported in all NDB releases
based on MySQL 5.7)

--verbose,

-v

Turn on verbose output (Supported in all NDB releases
based on MySQL 5.7)

--version,

-V

Display version information and
exit

(Supported in all NDB releases
based on MySQL 5.7)

• --character-sets-dir

Command-Line Format --character-sets-dir=path

Directory containing character sets.

• --connect-retries

Command-Line Format --connect-retries=#

Type Integer

Default Value 12

Minimum Value 0

Maximum Value 12

Number of times to retry connection before giving up.

• --connect-retry-delay

Command-Line Format --connect-retry-delay=#

Type Integer

Default Value 5

Minimum Value 0

Maximum Value 5

Number of seconds to wait between attempts to contact management server.

3672

ndb_index_stat — NDB Index Statistics Utility

• --connect-string

Command-Line Format --connect-string=connection_string

Type String

Default Value [none]

Same as --ndb-connectstring.

• --core-file

Command-Line Format --core-file

Write core file on error; used in debugging.

• --database=name, -d name

Command-Line Format --database=name

Type String

Default Value [none]

Minimum Value

Maximum Value

The name of the database that contains the table being queried.

• --defaults-extra-file

Command-Line Format --defaults-extra-file=path

Type String

Default Value [none]

Read given file after global files are read.

• --defaults-file

Command-Line Format --defaults-file=path

Type String

Default Value [none]

Read default options from given file only.

• --defaults-group-suffix

Command-Line Format --defaults-group-suffix=string

Type String

Default Value [none]

Also read groups with concat(group, suffix).

• --delete

Command-Line Format --delete

3673

ndb_index_stat — NDB Index Statistics Utility

Delete the index statistics for the given table, stopping any auto-update that was previously configured.

• --dump

Command-Line Format --dump

Dump the contents of the query cache.

• --help

Command-Line Format --help

Display help text and exit.

• --login-path

Command-Line Format --login-path=path

Type String

Default Value [none]

Read given path from login file.

• --loops=#

Command-Line Format --loops=#

Type Numeric

Default Value 0

Minimum Value 0

Maximum Value MAX_INT

Repeat commands this number of times (for use in testing).

• --ndb-connectstring

Command-Line Format --ndb-connectstring=connection_string

Type String

Default Value [none]

Set connect string for connecting to ndb_mgmd. Syntax: "[nodeid=id;][host=]hostname[:port]". Overrides
entries in NDB_CONNECTSTRING and my.cnf.

• --ndb-mgmd-host

Command-Line Format --ndb-mgmd-host=connection_string

Type String

Default Value [none]

Same as --ndb-connectstring.3674

ndb_index_stat — NDB Index Statistics Utility

• --ndb-nodeid

Command-Line Format --ndb-nodeid=#

Type Integer

Default Value [none]

Set node ID for this node, overriding any ID set by --ndb-connectstring.

• --ndb-optimized-node-selection

Command-Line Format --ndb-optimized-node-selection

Enable optimizations for selection of nodes for transactions. Enabled by default; use --skip-ndb-
optimized-node-selection to disable.

• --no-defaults

Command-Line Format --no-defaults

Do not read default options from any option file other than login file.

• --print-defaults

Command-Line Format --print-defaults

Print program argument list and exit.

• --query=#

Command-Line Format --query=#

Type Numeric

Default Value 0

Minimum Value 0

Maximum Value MAX_INT

Perform random range queries on first key attribute (must be int unsigned).

• --sys-drop

Command-Line Format --sys-drop

Drop all statistics tables and events in the NDB kernel. This causes all statistics to be lost.

• --sys-create

Command-Line Format --sys-create

Create all statistics tables and events in the NDB kernel. This works only if none of them exist previously.3675

ndb_index_stat — NDB Index Statistics Utility

• --sys-create-if-not-exist

Command-Line Format --sys-create-if-not-exist

Create any NDB system statistics tables or events (or both) that do not already exist when the program
is invoked.

• --sys-create-if-not-valid

Command-Line Format --sys-create-if-not-valid

Create any NDB system statistics tables or events that do not already exist, after dropping any that are
invalid.

• --sys-check

Command-Line Format --sys-check

Verify that all required system statistics tables and events exist in the NDB kernel.

• --sys-skip-tables

Command-Line Format --sys-skip-tables

Do not apply any --sys-* options to any statistics tables.

• --sys-skip-events

Command-Line Format --sys-skip-events

Do not apply any --sys-* options to any events.

• --update

Command-Line Format --update

Update the index statistics for the given table, and restart any auto-update that was previously
configured.

• --usage

Command-Line Format --usage

Display help text and exit; same as --help.

• --verbose

Command-Line Format --verbose

Turn on verbose output.

• --version

Command-Line Format --version

Display version information and exit.

3676

ndb_move_data — NDB Data Copy Utility

ndb_index_stat system options. The following options are used to generate and update the statistics
tables in the NDB kernel. None of these options can be mixed with statistics options (see ndb_index_stat
statistics options).

• --sys-drop

• --sys-create

• --sys-create-if-not-exist

• --sys-create-if-not-valid

• --sys-check

• --sys-skip-tables

• --sys-skip-events

ndb_index_stat statistics options. The options listed here are used to generate index statistics. They
work with a given table and database. They cannot be mixed with system options (see ndb_index_stat
system options).

• --database

• --delete

• --update

• --dump

• --query

21.5.16 ndb_move_data — NDB Data Copy Utility

ndb_move_data copies data from one NDB table to another.

Usage

The program is invoked with the names of the source and target tables; either or both of these may be
qualified optionally with the database name. Both tables must use the NDB storage engine.

ndb_move_data options source target

Options that can be used with ndb_move_data are shown in the following table. Additional descriptions
follow the table.

Table 21.35 Command-line options used with the program ndb_move_data

Format Description Added, Deprecated, or
Removed

--abort-on-error Dump core on permanent error
(debug option)

(Supported in all NDB releases
based on MySQL 5.7)

--character-sets-dir=path Directory where character sets are (Supported in all NDB releases
based on MySQL 5.7)

--connect-retries=# Number of times to retry
connection before giving up

(Supported in all NDB releases
based on MySQL 5.7)

--connect-retry-delay=# Number of seconds to wait
between attempts to contact
management server

(Supported in all NDB releases
based on MySQL 5.7)

3677

ndb_move_data — NDB Data Copy Utility

Format Description Added, Deprecated, or
Removed

--connect-
string=connection_string,

-c connection_string

Same as --ndb-connectstring (Supported in all NDB releases
based on MySQL 5.7)

--core-file Write core file on error; used in
debugging

(Supported in all NDB releases
based on MySQL 5.7)

--database=name,

-d name

Name of database in which table
is found

(Supported in all NDB releases
based on MySQL 5.7)

--defaults-extra-
file=path

Read given file after global files
are read

(Supported in all NDB releases
based on MySQL 5.7)

--defaults-file=path Read default options from given
file only

(Supported in all NDB releases
based on MySQL 5.7)

--defaults-group-
suffix=string

Also read groups with
concat(group, suffix)

(Supported in all NDB releases
based on MySQL 5.7)

--drop-source Drop source table after all rows
have been moved

(Supported in all NDB releases
based on MySQL 5.7)

--error-insert Insert random temporary errors
(used in testing)

(Supported in all NDB releases
based on MySQL 5.7)

--exclude-missing-columns Ignore extra columns in source or
target table

(Supported in all NDB releases
based on MySQL 5.7)

--help,

-?

Display help text and exit (Supported in all NDB releases
based on MySQL 5.7)

--login-path=path Read given path from login file (Supported in all NDB releases
based on MySQL 5.7)

--lossy-conversions,

-l

Allow attribute data to be
truncated when converted to
smaller type

(Supported in all NDB releases
based on MySQL 5.7)

--ndb-
connectstring=connection_string,

-c connection_string

Set connect string for
connecting to ndb_mgmd.
Syntax: "[nodeid=id;]
[host=]hostname[:port]".
Overrides entries in
NDB_CONNECTSTRING and
my.cnf

(Supported in all NDB releases
based on MySQL 5.7)

--ndb-mgmd-
host=connection_string,

-c connection_string

Same as --ndb-connectstring (Supported in all NDB releases
based on MySQL 5.7)

--ndb-nodeid=# Set node ID for this node,
overriding any ID set by --ndb-
connectstring

(Supported in all NDB releases
based on MySQL 5.7)

--ndb-optimized-node-
selection

Enable optimizations for selection
of nodes for transactions. Enabled
by default; use --skip-ndb-

(Supported in all NDB releases
based on MySQL 5.7)

3678

ndb_move_data — NDB Data Copy Utility

Format Description Added, Deprecated, or
Removed

optimized-node-selection to
disable

--no-defaults Do not read default options from
any option file other than login file

(Supported in all NDB releases
based on MySQL 5.7)

--print-defaults Print program argument list and
exit

(Supported in all NDB releases
based on MySQL 5.7)

--promote-attributes,

-A

Allow attribute data to be
converted to larger type

(Supported in all NDB releases
based on MySQL 5.7)

--staging-tries=x[,y[,z]] Specify tries on temporary errors;
format is x[,y[,z]] where x=max
tries (0=no limit), y=min delay
(ms), z=max delay (ms)

(Supported in all NDB releases
based on MySQL 5.7)

--usage,

-?

Display help text and exit; same
as --help

(Supported in all NDB releases
based on MySQL 5.7)

--verbose Enable verbose messages (Supported in all NDB releases
based on MySQL 5.7)

--version,

-V

Display version information and
exit

(Supported in all NDB releases
based on MySQL 5.7)

• --abort-on-error

Command-Line Format --abort-on-error

Dump core on permanent error (debug option).

• --character-sets-dir=name

Command-Line Format --character-sets-dir=path

Type String

Default Value [none]

Directory where character sets are.

• --connect-retry-delay

Command-Line Format --connect-retry-delay=#

Type Integer

Default Value 5

Minimum Value 0

Maximum Value 5

Number of seconds to wait between attempts to contact management server.

3679

ndb_move_data — NDB Data Copy Utility

• --connect-retries

Command-Line Format --connect-retries=#

Type Integer

Default Value 12

Minimum Value 0

Maximum Value 12

Number of times to retry connection before giving up.

• --connect-string

Command-Line Format --connect-string=connection_string

Type String

Default Value [none]

Same as --ndb-connectstring.

• --core-file

Command-Line Format --core-file

Write core file on error; used in debugging.

• --database=dbname, -d

Command-Line Format --database=name

Type String

Default Value TEST_DB

Name of the database in which the table is found.

• --defaults-extra-file

Command-Line Format --defaults-extra-file=path

Type String

Default Value [none]

Read given file after global files are read.

• --defaults-file

Command-Line Format --defaults-file=path

Type String

Default Value [none]

Read default options from given file only.

• --defaults-group-suffix

Command-Line Format --defaults-group-suffix=string

3680

ndb_move_data — NDB Data Copy Utility

Type String

Default Value [none]

Also read groups with concat(group, suffix).

• --drop-source

Command-Line Format --drop-source

Drop source table after all rows have been moved.

• --error-insert

Command-Line Format --error-insert

Insert random temporary errors (testing option).

• --exclude-missing-columns

Command-Line Format --exclude-missing-columns

Ignore extra columns in source or target table.

• --help

Command-Line Format --help

Display help text and exit.

• --login-path

Command-Line Format --login-path=path

Type String

Default Value [none]

Read given path from login file.

• --lossy-conversions, -l

Command-Line Format --lossy-conversions

Allow attribute data to be truncated when converted to a smaller type.

• --ndb-connectstring

Command-Line Format --ndb-connectstring=connection_string

Type String

Default Value [none]

Set connect string for connecting to ndb_mgmd. Syntax: "[nodeid=id;][host=]hostname[:port]". Overrides
entries in NDB_CONNECTSTRING and my.cnf.

• --ndb-mgmd-host

3681

ndb_move_data — NDB Data Copy Utility

Command-Line Format --ndb-mgmd-host=connection_string

Type String

Default Value [none]

Same as --ndb-connectstring.

• --ndb-nodeid

Command-Line Format --ndb-nodeid=#

Type Integer

Default Value [none]

Set node ID for this node, overriding any ID set by --ndb-connectstring.

• --ndb-optimized-node-selection

Command-Line Format --ndb-optimized-node-selection

Enable optimizations for selection of nodes for transactions. Enabled by default; use --skip-ndb-
optimized-node-selection to disable.

• --no-defaults

Command-Line Format --no-defaults

Do not read default options from any option file other than login file.

• --print-defaults

Command-Line Format --print-defaults

Print program argument list and exit.

• --promote-attributes, -A

Command-Line Format --promote-attributes

Allow attribute data to be converted to a larger type.

• --staging-tries=x[,y[,z]]

Command-Line Format --staging-tries=x[,y[,z]]

Type String

Default Value 0,1000,60000

Specify tries on temporary errors. Format is x[,y[,z]] where x=max tries (0=no limit), y=min delay (ms),
z=max delay (ms).

3682

ndb_perror — Obtain NDB Error Message Information

• --usage

Command-Line Format --usage

Display help text and exit; same as --help.

• --verbose

Command-Line Format --verbose

Enable verbose messages.

• --version

Command-Line Format --version

Display version information and exit.

21.5.17 ndb_perror — Obtain NDB Error Message Information

ndb_perror shows information about an NDB error, given its error code. This includes the error
message, the type of error, and whether the error is permanent or temporary. Added to the MySQL NDB
Cluster distribution in NDB 7.6, it is intended as a drop-in replacement for perror --ndb.

Usage

ndb_perror [options] error_code

ndb_perror does not need to access a running NDB Cluster, or any nodes (including SQL nodes). To
view information about a given NDB error, invoke the program, using the error code as an argument, like
this:

$> ndb_perror 323
NDB error code 323: Invalid nodegroup id, nodegroup already existing: Permanent error: Application error

To display only the error message, invoke ndb_perror with the --silent option (short form -s), as
shown here:

$> ndb_perror -s 323
Invalid nodegroup id, nodegroup already existing: Permanent error: Application error

Like perror, ndb_perror accepts multiple error codes:

$> ndb_perror 321 1001
NDB error code 321: Invalid nodegroup id: Permanent error: Application error
NDB error code 1001: Illegal connect string

Additional program options for ndb_perror are described later in this section.

ndb_perror replaces perror --ndb, which is deprecated in NDB 7.6 and subject to removal in a future
release of MySQL NDB Cluster. To make substitution easier in scripts and other applications that might
depend on perror for obtaining NDB error information, ndb_perror supports its own “dummy” --ndb
option, which does nothing.

The following table includes all options that are specific to the NDB Cluster program ndb_perror.
Additional descriptions follow the table.

3683

ndb_perror — Obtain NDB Error Message Information

Table 21.36 Command-line options used with the program ndb_perror

Format Description Added, Deprecated, or
Removed

--defaults-extra-
file=path

Read given file after global files
are read

(Supported in all NDB releases
based on MySQL 5.7)

--defaults-file=path Read default options from given
file only

(Supported in all NDB releases
based on MySQL 5.7)

--defaults-group-
suffix=string

Also read groups with
concat(group, suffix)

(Supported in all NDB releases
based on MySQL 5.7)

--help,

-?

Display help text ADDED: NDB 7.6.4

--login-path=path Read given path from login file (Supported in all NDB releases
based on MySQL 5.7)

--ndb For compatibility with applications
depending on old versions of
perror; does nothing

ADDED: NDB 7.6.4

--no-defaults Do not read default options from
any option file other than login file

(Supported in all NDB releases
based on MySQL 5.7)

--print-defaults Print program argument list and
exit

(Supported in all NDB releases
based on MySQL 5.7)

--silent,

-s

Show error message only ADDED: NDB 7.6.4

--version,

-V

Print program version information
and exit

ADDED: NDB 7.6.4

--verbose,

-v

Verbose output; disable with --
silent

ADDED: NDB 7.6.4

Additional Options

• --help, -?

Command-Line Format --help

Introduced 5.7.19-ndb-7.6.4

Display program help text and exit.

• --ndb

Command-Line Format --ndb

Introduced 5.7.19-ndb-7.6.4

For compatibility with applications depending on old versions of perror that use that program's --ndb
option. The option when used with ndb_perror does nothing, and is ignored by it.

• --silent, -s

3684

https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster-programs-ndb-perror.html#option_ndb_perror_defaults-extra-file
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster-programs-ndb-perror.html#option_ndb_perror_defaults-extra-file
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster-programs-ndb-perror.html#option_ndb_perror_defaults-file
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster-programs-ndb-perror.html#option_ndb_perror_defaults-group-suffix
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster-programs-ndb-perror.html#option_ndb_perror_defaults-group-suffix
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster-programs-ndb-perror.html#option_ndb_perror_login-path
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster-programs-ndb-perror.html#option_ndb_perror_no-defaults
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster-programs-ndb-perror.html#option_ndb_perror_print-defaults

ndb_print_backup_file — Print NDB Backup File Contents

Command-Line Format --silent

Introduced 5.7.19-ndb-7.6.4

Show error message only.

• --version, -V

Command-Line Format --version

Introduced 5.7.19-ndb-7.6.4

Print program version information and exit.

• --verbose, -v

Command-Line Format --verbose

Introduced 5.7.19-ndb-7.6.4

Verbose output; disable with --silent.

21.5.18 ndb_print_backup_file — Print NDB Backup File Contents

ndb_print_backup_file obtains diagnostic information from a cluster backup file.

Usage

ndb_print_backup_file file_name

file_name is the name of a cluster backup file. This can be any of the files (.Data, .ctl, or .log file)
found in a cluster backup directory. These files are found in the data node's backup directory under the
subdirectory BACKUP-#, where # is the sequence number for the backup. For more information about
cluster backup files and their contents, see Section 21.6.8.1, “NDB Cluster Backup Concepts”.

Like ndb_print_schema_file and ndb_print_sys_file (and unlike most of the other NDB utilities
that are intended to be run on a management server host or to connect to a management server)
ndb_print_backup_file must be run on a cluster data node, since it accesses the data node file
system directly. Because it does not make use of the management server, this utility can be used when the
management server is not running, and even when the cluster has been completely shut down.

Additional Options

None.

21.5.19 ndb_print_file — Print NDB Disk Data File Contents

ndb_print_file obtains information from an NDB Cluster Disk Data file.

Usage

ndb_print_file [-v] [-q] file_name+

file_name is the name of an NDB Cluster Disk Data file. Multiple filenames are accepted, separated by
spaces.

Like ndb_print_schema_file and ndb_print_sys_file (and unlike most of the other NDB utilities
that are intended to be run on a management server host or to connect to a management server)

3685

ndb_print_frag_file — Print NDB Fragment List File Contents

ndb_print_file must be run on an NDB Cluster data node, since it accesses the data node file system
directly. Because it does not make use of the management server, this utility can be used when the
management server is not running, and even when the cluster has been completely shut down.

Additional Options

ndb_print_file supports the following options:

• -v: Make output verbose.

• -q: Suppress output (quiet mode).

• --help, -h, -?: Print help message.

For more information, see Section 21.6.11, “NDB Cluster Disk Data Tables”.

21.5.20 ndb_print_frag_file — Print NDB Fragment List File Contents

ndb_print_frag_file obtains information from a cluster fragment list file. It is intended for use in
helping to diagnose issues with data node restarts.

Usage

ndb_print_frag_file file_name

file_name is the name of a cluster fragment list file, which matches the pattern SX.FragList, where X
is a digit in the range 2-9 inclusive, and are found in the data node file system of the data node having the
node ID nodeid, in directories named ndb_nodeid_fs/DN/DBDIH/, where N is 1 or 2. Each fragment
file contains records of the fragments belonging to each NDB table. For more information about cluster
fragment files, see NDB Cluster Data Node File System Directory.

Like ndb_print_backup_file, ndb_print_sys_file, and ndb_print_schema_file (and unlike
most of the other NDB utilities that are intended to be run on a management server host or to connect to a
management server), ndb_print_frag_file must be run on a cluster data node, since it accesses the
data node file system directly. Because it does not make use of the management server, this utility can be
used when the management server is not running, and even when the cluster has been completely shut
down.

Additional Options

None.

Sample Output

$> ndb_print_frag_file /usr/local/mysqld/data/ndb_3_fs/D1/DBDIH/S2.FragList
Filename: /usr/local/mysqld/data/ndb_3_fs/D1/DBDIH/S2.FragList with size 8192
noOfPages = 1 noOfWords = 182
Table Data

Num Frags: 2 NoOfReplicas: 2 hashpointer: 4294967040
kvalue: 6 mask: 0x00000000 method: HashMap
Storage is on Logged and checkpointed, survives SR
------ Fragment with FragId: 0 --------
Preferred Primary: 2 numStoredReplicas: 2 numOldStoredReplicas: 0 distKey: 0 LogPartId: 0
-------Stored Replica----------
Replica node is: 2 initialGci: 2 numCrashedReplicas = 0 nextLcpNo = 1
LcpNo[0]: maxGciCompleted: 1 maxGciStarted: 2 lcpId: 1 lcpStatus: valid
LcpNo[1]: maxGciCompleted: 0 maxGciStarted: 0 lcpId: 0 lcpStatus: invalid
-------Stored Replica----------
Replica node is: 3 initialGci: 2 numCrashedReplicas = 0 nextLcpNo = 1

3686

https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-ndbd-filesystemdir-files.html

ndb_print_schema_file — Print NDB Schema File Contents

LcpNo[0]: maxGciCompleted: 1 maxGciStarted: 2 lcpId: 1 lcpStatus: valid
LcpNo[1]: maxGciCompleted: 0 maxGciStarted: 0 lcpId: 0 lcpStatus: invalid
------ Fragment with FragId: 1 --------
Preferred Primary: 3 numStoredReplicas: 2 numOldStoredReplicas: 0 distKey: 0 LogPartId: 1
-------Stored Replica----------
Replica node is: 3 initialGci: 2 numCrashedReplicas = 0 nextLcpNo = 1
LcpNo[0]: maxGciCompleted: 1 maxGciStarted: 2 lcpId: 1 lcpStatus: valid
LcpNo[1]: maxGciCompleted: 0 maxGciStarted: 0 lcpId: 0 lcpStatus: invalid
-------Stored Replica----------
Replica node is: 2 initialGci: 2 numCrashedReplicas = 0 nextLcpNo = 1
LcpNo[0]: maxGciCompleted: 1 maxGciStarted: 2 lcpId: 1 lcpStatus: valid
LcpNo[1]: maxGciCompleted: 0 maxGciStarted: 0 lcpId: 0 lcpStatus: invalid

21.5.21 ndb_print_schema_file — Print NDB Schema File Contents

ndb_print_schema_file obtains diagnostic information from a cluster schema file.

Usage

ndb_print_schema_file file_name

file_name is the name of a cluster schema file. For more information about cluster schema files, see
NDB Cluster Data Node File System Directory.

Like ndb_print_backup_file and ndb_print_sys_file (and unlike most of the other NDB utilities
that are intended to be run on a management server host or to connect to a management server)
ndb_print_schema_file must be run on a cluster data node, since it accesses the data node file
system directly. Because it does not make use of the management server, this utility can be used when the
management server is not running, and even when the cluster has been completely shut down.

Additional Options

None.

21.5.22 ndb_print_sys_file — Print NDB System File Contents

ndb_print_sys_file obtains diagnostic information from an NDB Cluster system file.

Usage

ndb_print_sys_file file_name

file_name is the name of a cluster system file (sysfile). Cluster system files are located in a data node's
data directory (DataDir); the path under this directory to system files matches the pattern ndb_#_fs/D#/
DBDIH/P#.sysfile. In each case, the # represents a number (not necessarily the same number). For
more information, see NDB Cluster Data Node File System Directory.

Like ndb_print_backup_file and ndb_print_schema_file (and unlike most of the other NDB
utilities that are intended to be run on a management server host or to connect to a management server)
ndb_print_backup_file must be run on a cluster data node, since it accesses the data node file
system directly. Because it does not make use of the management server, this utility can be used when the
management server is not running, and even when the cluster has been completely shut down.

Additional Options

None.

21.5.23 ndb_redo_log_reader — Check and Print Content of Cluster Redo Log

3687

https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-ndbd-filesystemdir-files.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-ndbd-filesystemdir-files.html

ndb_redo_log_reader — Check and Print Content of Cluster Redo Log

Reads a redo log file, checking it for errors, printing its contents in a human-readable format, or both.
ndb_redo_log_reader is intended for use primarily by NDB Cluster developers and Support personnel
in debugging and diagnosing problems.

This utility remains under development, and its syntax and behavior are subject to change in future NDB
Cluster releases.

The C++ source files for ndb_redo_log_reader can be found in the directory /storage/ndb/src/
kernel/blocks/dblqh/redoLogReader.

Options that can be used with ndb_redo_log_reader are shown in the following table. Additional
descriptions follow the table.

Table 21.37 Command-line options used with the program ndb_redo_log_reader

Format Description Added, Deprecated, or
Removed

-dump Print dump info (Supported in all NDB releases
based on MySQL 5.7)

-filedescriptors Print file descriptors only (Supported in all NDB releases
based on MySQL 5.7)

--help Print usage information (has no
short form)

(Supported in all NDB releases
based on MySQL 5.7)

-lap Provide lap info, with max GCI
started and completed

(Supported in all NDB releases
based on MySQL 5.7)

-mbyte # Starting megabyte (Supported in all NDB releases
based on MySQL 5.7)

-mbyteheaders Show only first page header of
each megabyte in file

(Supported in all NDB releases
based on MySQL 5.7)

-nocheck Do not check records for errors (Supported in all NDB releases
based on MySQL 5.7)

-noprint Do not print records (Supported in all NDB releases
based on MySQL 5.7)

-page # Start with this page (Supported in all NDB releases
based on MySQL 5.7)

-pageheaders Show page headers only (Supported in all NDB releases
based on MySQL 5.7)

-pageindex # Start with this page index (Supported in all NDB releases
based on MySQL 5.7)

-twiddle Bit-shifted dump (Supported in all NDB releases
based on MySQL 5.7)

Usage

ndb_redo_log_reader file_name [options]

file_name is the name of a cluster redo log file. redo log files are located in the numbered directories
under the data node's data directory (DataDir); the path under this directory to the redo log files matches
the pattern ndb_nodeid_fs/D#/DBLQH/S#.FragLog. nodeid is the data node's node ID. The two
instances of # each represent a number (not necessarily the same number); the number following D
is in the range 8-39 inclusive; the range of the number following S varies according to the value of the

3688

ndb_redo_log_reader — Check and Print Content of Cluster Redo Log

NoOfFragmentLogFiles configuration parameter, whose default value is 16; thus, the default range
of the number in the file name is 0-15 inclusive. For more information, see NDB Cluster Data Node File
System Directory.

The name of the file to be read may be followed by one or more of the options listed here:

• -dump

Command-Line Format -dump

Print dump info.

• Command-Line Format -filedescriptors

-filedescriptors: Print file descriptors only.

• Command-Line Format --help

--help: Print usage information.

• -lap

Command-Line Format -lap

Provide lap info, with max GCI started and completed.

• Command-Line Format -mbyte #

Type Numeric

Default Value 0

Minimum Value 0

Maximum Value 15

-mbyte #: Starting megabyte.

is an integer in the range 0 to 15, inclusive.

• Command-Line Format -mbyteheaders

-mbyteheaders: Show only the first page header of every megabyte in the file.

• Command-Line Format -noprint

-noprint: Do not print the contents of the log file.

• Command-Line Format -nocheck

-nocheck: Do not check the log file for errors.

• Command-Line Format -page #

Type Integer

Default Value 0

Minimum Value 0

3689

https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-ndbd-filesystemdir-files.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-ndbd-filesystemdir-files.html

ndb_restore — Restore an NDB Cluster Backup

Maximum Value 31

-page #: Start at this page.

is an integer in the range 0 to 31, inclusive.

• Command-Line Format -pageheaders

-pageheaders: Show page headers only.

• Command-Line Format -pageindex #

Type Integer

Default Value 12

Minimum Value 12

Maximum Value 8191

-pageindex #: Start at this page index.

is an integer between 12 and 8191, inclusive.

• -twiddle

Command-Line Format -twiddle

Bit-shifted dump.

Like ndb_print_backup_file and ndb_print_schema_file (and unlike most of the NDB utilities
that are intended to be run on a management server host or to connect to a management server)
ndb_redo_log_reader must be run on a cluster data node, since it accesses the data node file system
directly. Because it does not make use of the management server, this utility can be used when the
management server is not running, and even when the cluster has been completely shut down.

21.5.24 ndb_restore — Restore an NDB Cluster Backup

The NDB Cluster restoration program is implemented as a separate command-line utility ndb_restore,
which can normally be found in the MySQL bin directory. This program reads the files created as a result
of the backup and inserts the stored information into the database.

Note

Beginning with NDB 7.5.15 and 7.6.11, this program no longer prints
NDBT_ProgramExit: ... when it finishes its run. Applications depending on this
behavior should be modified accordingly when upgrading from earlier releases.

ndb_restore must be executed once for each of the backup files that were created by the START
BACKUP command used to create the backup (see Section 21.6.8.2, “Using The NDB Cluster Management
Client to Create a Backup”). This is equal to the number of data nodes in the cluster at the time that the
backup was created.

Note

Before using ndb_restore, it is recommended that the cluster be running in
single user mode, unless you are restoring multiple data nodes in parallel. See
Section 21.6.6, “NDB Cluster Single User Mode”, for more information.

3690

ndb_restore — Restore an NDB Cluster Backup

Options that can be used with ndb_restore are shown in the following table. Additional descriptions
follow the table.

Table 21.38 Command-line options used with the program ndb_restore

Format Description Added, Deprecated, or
Removed

--allow-pk-changes[=0|1] Allow changes to set of columns
making up table's primary key

ADDED: NDB 7.6.14

--append Append data to tab-delimited file (Supported in all NDB releases
based on MySQL 5.7)

--backup-path=path Path to backup files directory (Supported in all NDB releases
based on MySQL 5.7)

--backupid=#,

-b #

Restore from backup having this
ID

(Supported in all NDB releases
based on MySQL 5.7)

--character-sets-dir=path Directory containing character
sets

(Supported in all NDB releases
based on MySQL 5.7)

--
connect=connection_string,

-c connection_string

Alias for --connectstring (Supported in all NDB releases
based on MySQL 5.7)

--connect-retries=# Number of times to retry
connection before giving up

(Supported in all NDB releases
based on MySQL 5.7)

--connect-retry-delay=# Number of seconds to wait
between attempts to contact
management server

(Supported in all NDB releases
based on MySQL 5.7)

--connect-
string=connection_string,

-c connection_string

Same as --ndb-connectstring (Supported in all NDB releases
based on MySQL 5.7)

--core-file Write core file on error; used in
debugging

(Supported in all NDB releases
based on MySQL 5.7)

--defaults-extra-
file=path

Read given file after global files
are read

(Supported in all NDB releases
based on MySQL 5.7)

--defaults-file=path Read default options from given
file only

(Supported in all NDB releases
based on MySQL 5.7)

--defaults-group-
suffix=string

Also read groups with
concat(group, suffix)

(Supported in all NDB releases
based on MySQL 5.7)

--disable-indexes Causes indexes from backup to
be ignored; may decrease time
needed to restore data

(Supported in all NDB releases
based on MySQL 5.7)

--dont-ignore-systab-0,

-f

Do not ignore system table during
restore; experimental only; not for
production use

(Supported in all NDB releases
based on MySQL 5.7)

--exclude-databases=list List of one or more databases
to exclude (includes those not
named)

(Supported in all NDB releases
based on MySQL 5.7)

3691

ndb_restore — Restore an NDB Cluster Backup

Format Description Added, Deprecated, or
Removed

--exclude-intermediate-
sql-tables[=TRUE|FALSE]

Do not restore any intermediate
tables (having names prefixed
with '#sql-') that were left over
from copying ALTER TABLE
operations; specify FALSE to
restore such tables

(Supported in all NDB releases
based on MySQL 5.7)

--exclude-missing-columns Causes columns from backup
version of table that are missing
from version of table in database
to be ignored

(Supported in all NDB releases
based on MySQL 5.7)

--exclude-missing-tables Causes tables from backup that
are missing from database to be
ignored

(Supported in all NDB releases
based on MySQL 5.7)

--exclude-tables=list List of one or more tables to
exclude (includes those in same
database that are not named);
each table reference must include
database name

(Supported in all NDB releases
based on MySQL 5.7)

--fields-enclosed-by=char Fields are enclosed by this
character

(Supported in all NDB releases
based on MySQL 5.7)

--fields-optionally-
enclosed-by

Fields are optionally enclosed by
this character

(Supported in all NDB releases
based on MySQL 5.7)

--fields-terminated-
by=char

Fields are terminated by this
character

(Supported in all NDB releases
based on MySQL 5.7)

--help,

-?

Display help text and exit (Supported in all NDB releases
based on MySQL 5.7)

--hex Print binary types in hexadecimal
format

(Supported in all NDB releases
based on MySQL 5.7)

--ignore-extended-pk-
updates[=0|1]

Ignore log entries containing
updates to columns now included
in extended primary key

ADDED: NDB 7.6.14

--include-databases=list List of one or more databases
to restore (excludes those not
named)

(Supported in all NDB releases
based on MySQL 5.7)

--include-tables=list List of one or more tables to
restore (excludes those in same
database that are not named);
each table reference must include
database name

(Supported in all NDB releases
based on MySQL 5.7)

--lines-terminated-
by=char

Lines are terminated by this
character

(Supported in all NDB releases
based on MySQL 5.7)

--login-path=path Read given path from login file (Supported in all NDB releases
based on MySQL 5.7)

--lossy-conversions,

-L

Allow lossy conversions of
column values (type demotions or

(Supported in all NDB releases
based on MySQL 5.7)

3692

ndb_restore — Restore an NDB Cluster Backup

Format Description Added, Deprecated, or
Removed

changes in sign) when restoring
data from backup

--no-binlog If mysqld is connected and using
binary logging, do not log restored
data

(Supported in all NDB releases
based on MySQL 5.7)

--no-defaults Do not read default options from
any option file other than login file

(Supported in all NDB releases
based on MySQL 5.7)

--no-restore-disk-objects,

-d

Do not restore objects relating to
Disk Data

(Supported in all NDB releases
based on MySQL 5.7)

--no-upgrade,

-u

Do not upgrade array type for
varsize attributes which do not
already resize VAR data, and do
not change column attributes

(Supported in all NDB releases
based on MySQL 5.7)

--ndb-
connectstring=connection_string,

-c connection_string

Set connect string for
connecting to ndb_mgmd.
Syntax: "[nodeid=id;]
[host=]hostname[:port]".
Overrides entries in
NDB_CONNECTSTRING and
my.cnf

(Supported in all NDB releases
based on MySQL 5.7)

--ndb-mgmd-
host=connection_string,

-c connection_string

Same as --ndb-connectstring (Supported in all NDB releases
based on MySQL 5.7)

--ndb-nodegroup-map=map,

-z

Specify node group map; unused,
unsupported

(Supported in all NDB releases
based on MySQL 5.7)

--ndb-nodeid=# Set node ID for this node,
overriding any ID set by --ndb-
connectstring

(Supported in all NDB releases
based on MySQL 5.7)

--ndb-optimized-node-
selection

Enable optimizations for selection
of nodes for transactions. Enabled
by default; use --skip-ndb-
optimized-node-selection to
disable

(Supported in all NDB releases
based on MySQL 5.7)

--nodeid=#,

-n #

ID of node where backup was
taken

(Supported in all NDB releases
based on MySQL 5.7)

--num-slices=# Number of slices to apply when
restoring by slice

ADDED: NDB 7.6.13

--parallelism=#,

-p #

Number of parallel transactions to
use while restoring data

(Supported in all NDB releases
based on MySQL 5.7)

--preserve-trailing-
spaces,

-P

Allow preservation of trailing
spaces (including padding) when

(Supported in all NDB releases
based on MySQL 5.7)

3693

ndb_restore — Restore an NDB Cluster Backup

Format Description Added, Deprecated, or
Removed

promoting fixed-width string types
to variable-width types

--print Print metadata, data, and log to
stdout (equivalent to --print-meta
--print-data --print-log)

(Supported in all NDB releases
based on MySQL 5.7)

--print-data Print data to stdout (Supported in all NDB releases
based on MySQL 5.7)

--print-defaults Print program argument list and
exit

(Supported in all NDB releases
based on MySQL 5.7)

--print-log Print log to stdout (Supported in all NDB releases
based on MySQL 5.7)

--print-meta Print metadata to stdout (Supported in all NDB releases
based on MySQL 5.7)

--print-sql-log Write SQL log to stdout ADDED: NDB 7.5.4

--progress-frequency=# Print status of restore each given
number of seconds

(Supported in all NDB releases
based on MySQL 5.7)

--promote-attributes,

-A

Allow attributes to be promoted
when restoring data from backup

(Supported in all NDB releases
based on MySQL 5.7)

--rebuild-indexes Causes multithreaded rebuilding
of ordered indexes found in
backup; number of threads
used is determined by setting
BuildIndexThreads

(Supported in all NDB releases
based on MySQL 5.7)

--remap-column=string Apply offset to value of specified
column using indicated function
and arguments. Format is
[db].[tbl].[col]:[fn]:[args]; see
documentation for details

ADDED: NDB 7.6.14

--restore-data,

-r

Restore table data and logs into
NDB Cluster using NDB API

(Supported in all NDB releases
based on MySQL 5.7)

--restore-epoch,

-e

Restore epoch info into
status table; useful on replica
cluster for starting replication;
updates or inserts row in
mysql.ndb_apply_status with ID 0

(Supported in all NDB releases
based on MySQL 5.7)

--restore-meta,

-m

Restore metadata to NDB Cluster
using NDB API

(Supported in all NDB releases
based on MySQL 5.7)

--restore-privilege-
tables

Restore MySQL privilege tables
that were previously moved to
NDB

(Supported in all NDB releases
based on MySQL 5.7)

--rewrite-database=string Restore to differently named
database; format is olddb,newdb

(Supported in all NDB releases
based on MySQL 5.7)

3694

ndb_restore — Restore an NDB Cluster Backup

Format Description Added, Deprecated, or
Removed

--skip-broken-objects Ignore missing blob tables in
backup file

(Supported in all NDB releases
based on MySQL 5.7)

--skip-table-check,

-s

Skip table structure check during
restore

(Supported in all NDB releases
based on MySQL 5.7)

--skip-unknown-objects Causes schema objects not
recognized by ndb_restore to be
ignored when restoring backup
made from newer NDB version to
older version

(Supported in all NDB releases
based on MySQL 5.7)

--slice-id=# Slice ID, when restoring by slices ADDED: NDB 7.6.13

--tab=path,

-T path

Creates a tab-separated .txt file
for each table in path provided

(Supported in all NDB releases
based on MySQL 5.7)

--timestamp-
printouts{=true|false}

Prefix all info, error, and debug log
messages with timestamps

ADDED: NDB 7.5.30, 5.7.41-
ndb-7.6.26

--usage,

-?

Display help text and exit; same
as --help

(Supported in all NDB releases
based on MySQL 5.7)

--verbose=# Level of verbosity in output (Supported in all NDB releases
based on MySQL 5.7)

--version,

-V

Display version information and
exit

(Supported in all NDB releases
based on MySQL 5.7)

• --allow-pk-changes

Command-Line Format --allow-pk-changes[=0|1]

Introduced 5.7.29-ndb-7.6.14

Type Integer

Default Value 0

Minimum Value 0

Maximum Value 1

When this option is set to 1, ndb_restore allows the primary keys in a table definition to differ from that
of the same table in the backup. This may be desirable when backing up and restoring between different
schema versions with primary key changes on one or more tables, and it appears that performing

3695

ndb_restore — Restore an NDB Cluster Backup

the restore operation using ndb_restore is simpler or mor efficient than issuing many ALTER TABLE
statements after restoring table schemas and data.

The following changes in primary key definitions are supported by --allow-pk-changes:

• Extending the primary key: A non-nullable column that exists in the table schema in the backup
becomes part of the table's primary key in the database.

Important

When extending a table's primary key, any columns which become part of
primary key must not be updated while the backup is being taken; any such
updates discovered by ndb_restore cause the restore operation to fail, even
when no change in value takes place. In some cases, it may be possible to
override this behavior using the --ignore-extended-pk-updates option;
see the description of this option for more information.

• Contracting the primary key (1): A column that is already part of the table's primary key in the
backup schema is no longer part of the primary key, but remains in the table.

• Contracting the primary key (2): A column that is already part of the table's primary key in the
backup schema is removed from the table entirely.

These differences can be combined with other schema differences supported by ndb_restore,
including changes to blob and text columns requiring the use of staging tables.

Basic steps in a typical scenario using primary key schema changes are listed here:

1. Restore table schemas using ndb_restore --restore-meta

2. Alter schema to that desired, or create it

3. Back up the desired schema

4. Run ndb_restore --disable-indexes using the backup from the previous step, to drop indexes
and constraints

5. Run ndb_restore --allow-pk-changes (possibly along with --ignore-extended-pk-
updates, --disable-indexes, and possibly other options as needed) to restore all data

6. Run ndb_restore --rebuild-indexes using the backup made with the desired schema, to
rebuild indexes and constraints

When extending the primary key, it may be necessary for ndb_restore to use a temporary secondary
unique index during the restore operation to map from the old primary key to the new one. Such an index
is created only when necessary to apply events from the backup log to a table which has an extended
primary key. This index is named NDB$RESTORE_PK_MAPPING, and is created on each table requiring
it; it can be shared, if necessary, by multiple instances of ndb_restore instances running in parallel.
(Running ndb_restore --rebuild-indexes at the end of the restore process causes this index to
be dropped.)

3696

ndb_restore — Restore an NDB Cluster Backup

• --append

Command-Line Format --append

When used with the --tab and --print-data options, this causes the data to be appended to any
existing files having the same names.

• --backup-path=dir_name

Command-Line Format --backup-path=path

Type Directory name

Default Value ./

The path to the backup directory is required; this is supplied to ndb_restore using the --backup-
path option, and must include the subdirectory corresponding to the ID backup of the backup to be
restored. For example, if the data node's DataDir is /var/lib/mysql-cluster, then the backup
directory is /var/lib/mysql-cluster/BACKUP, and the backup files for the backup with the ID 3 can
be found in /var/lib/mysql-cluster/BACKUP/BACKUP-3. The path may be absolute or relative
to the directory in which the ndb_restore executable is located, and may be optionally prefixed with
backup-path=.

It is possible to restore a backup to a database with a different configuration than it was created from.
For example, suppose that a backup with backup ID 12, created in a cluster with two storage nodes
having the node IDs 2 and 3, is to be restored to a cluster with four nodes. Then ndb_restore
must be run twice—once for each storage node in the cluster where the backup was taken. However,
ndb_restore cannot always restore backups made from a cluster running one version of MySQL to
a cluster running a different MySQL version. See Section 21.3.7, “Upgrading and Downgrading NDB
Cluster”, for more information.

Important

It is not possible to restore a backup made from a newer version of NDB Cluster
using an older version of ndb_restore. You can restore a backup made from
a newer version of MySQL to an older cluster, but you must use a copy of
ndb_restore from the newer NDB Cluster version to do so.

For example, to restore a cluster backup taken from a cluster running NDB
Cluster 7.6.36 to a cluster running NDB Cluster 7.5.36, you must use the
ndb_restore that comes with the NDB Cluster 7.6.36 distribution.

For more rapid restoration, the data may be restored in parallel, provided that there is a sufficient
number of cluster connections available. That is, when restoring to multiple nodes in parallel, you must
have an [api] or [mysqld] section in the cluster config.ini file available for each concurrent
ndb_restore process. However, the data files must always be applied before the logs.

• --backupid=#, -b

Command-Line Format --backupid=#

Type Numeric

Default Value none

This option is used to specify the ID or sequence number of the backup, and is the same number
shown by the management client in the Backup backup_id completed message displayed upon3697

ndb_restore — Restore an NDB Cluster Backup

completion of a backup. (See Section 21.6.8.2, “Using The NDB Cluster Management Client to Create a
Backup”.)

Important

When restoring cluster backups, you must be sure to restore all data nodes
from backups having the same backup ID. Using files from different backups
can at best result in restoring the cluster to an inconsistent state, and may fail
altogether.

In NDB 7.5.13 and later, and in NDB 7.6.9 and later, this option is required.

• --character-sets-dir

Command-Line Format --character-sets-dir=path

Directory containing character sets.

• --connect, -c

Command-Line Format --connect=connection_string

Type String

Default Value localhost:1186

Alias for --ndb-connectstring.

• --connect-retries

Command-Line Format --connect-retries=#

Type Integer

Default Value 12

Minimum Value 0

Maximum Value 12

Number of times to retry connection before giving up.

• --connect-retry-delay

Command-Line Format --connect-retry-delay=#

Type Integer

Default Value 5

Minimum Value 0

Maximum Value 5

Number of seconds to wait between attempts to contact management server.

• --connect-string

Command-Line Format --connect-string=connection_string

Type String

Default Value [none]

3698

ndb_restore — Restore an NDB Cluster Backup

Same as --ndb-connectstring.

• --core-file

Command-Line Format --core-file

Write core file on error; used in debugging.

• --defaults-extra-file

Command-Line Format --defaults-extra-file=path

Type String

Default Value [none]

Read given file after global files are read.

• --defaults-file

Command-Line Format --defaults-file=path

Type String

Default Value [none]

Read default options from given file only.

• --defaults-group-suffix

Command-Line Format --defaults-group-suffix=string

Type String

Default Value [none]

Also read groups with concat(group, suffix).

• --disable-indexes

Command-Line Format --disable-indexes

Disable restoration of indexes during restoration of the data from a native NDB backup. Afterwards, you
can restore indexes for all tables at once with multithreaded building of indexes using --rebuild-
indexes, which should be faster than rebuilding indexes concurrently for very large tables.

Beginning with NDB 7.5.24 and NDB 7.6.20, this option also drops any foreign keys specified in the
backup.

• --dont-ignore-systab-0, -f

Command-Line Format --dont-ignore-systab-0

Normally, when restoring table data and metadata, ndb_restore ignores the copy of the NDB system
table that is present in the backup. --dont-ignore-systab-0 causes the system table to be
restored. This option is intended for experimental and development use only, and is not recommended in
a production environment.

• --exclude-databases=db-list

3699

ndb_restore — Restore an NDB Cluster Backup

Command-Line Format --exclude-databases=list

Type String

Default Value

Comma-delimited list of one or more databases which should not be restored.

This option is often used in combination with --exclude-tables; see that option's description for
further information and examples.

• --exclude-intermediate-sql-tables[=TRUE|FALSE]

Command-Line Format --exclude-intermediate-sql-
tables[=TRUE|FALSE]

Type Boolean

Default Value TRUE

When performing copying ALTER TABLE operations, mysqld creates intermediate tables (whose
names are prefixed with #sql-). When TRUE, the --exclude-intermediate-sql-tables option
keeps ndb_restore from restoring such tables that may have been left over from these operations.
This option is TRUE by default.

• --exclude-missing-columns

Command-Line Format --exclude-missing-columns

It is possible to restore only selected table columns using this option, which causes ndb_restore to
ignore any columns missing from tables being restored as compared to the versions of those tables
found in the backup. This option applies to all tables being restored. If you wish to apply this option only
to selected tables or databases, you can use it in combination with one or more of the --include-* or
--exclude-* options described elsewhere in this section to do so, then restore data to the remaining
tables using a complementary set of these options.

• --exclude-missing-tables

Command-Line Format --exclude-missing-tables

It is possible to restore only selected tables using this option, which causes ndb_restore to ignore any
tables from the backup that are not found in the target database.

• --exclude-tables=table-list

Command-Line Format --exclude-tables=list

Type String

3700

ndb_restore — Restore an NDB Cluster Backup

Default Value

List of one or more tables to exclude; each table reference must include the database name. Often used
together with --exclude-databases.

When --exclude-databases or --exclude-tables is used, only those databases or tables named
by the option are excluded; all other databases and tables are restored by ndb_restore.

This table shows several invocations of ndb_restore usng --exclude-* options (other options
possibly required have been omitted for clarity), and the effects these options have on restoring from an
NDB Cluster backup:

Table 21.39 Several invocations of ndb_restore using --exclude-* options, and the effects these
options have on restoring from an NDB Cluster backup.

Option Result

--exclude-databases=db1 All tables in all databases except db1 are restored;
no tables in db1 are restored

--exclude-databases=db1,db2 (or --
exclude-databases=db1 --exclude-
databases=db2)

All tables in all databases except db1 and db2 are
restored; no tables in db1 or db2 are restored

--exclude-tables=db1.t1 All tables except t1 in database db1 are restored;
all other tables in db1 are restored; all tables in all
other databases are restored

--exclude-tables=db1.t2,db2.t1 (or
--exclude-tables=db1.t2 --exclude-
tables=db2.t1)

All tables in database db1 except for t2 and
all tables in database db2 except for table t1
are restored; no other tables in db1 or db2 are

3701

ndb_restore — Restore an NDB Cluster Backup

Option Result
restored; all tables in all other databases are
restored

You can use these two options together. For example, the following causes all tables in all databases
except for databases db1 and db2, and tables t1 and t2 in database db3, to be restored:

$> ndb_restore [...] --exclude-databases=db1,db2 --exclude-tables=db3.t1,db3.t2

(Again, we have omitted other possibly necessary options in the interest of clarity and brevity from the
example just shown.)

You can use --include-* and --exclude-* options together, subject to the following rules:

• The actions of all --include-* and --exclude-* options are cumulative.

• All --include-* and --exclude-* options are evaluated in the order passed to ndb_restore, from
right to left.

• In the event of conflicting options, the first (rightmost) option takes precedence. In other words, the first
option (going from right to left) that matches against a given database or table “wins”.

For example, the following set of options causes ndb_restore to restore all tables from database db1
except db1.t1, while restoring no other tables from any other databases:

--include-databases=db1 --exclude-tables=db1.t1

However, reversing the order of the options just given simply causes all tables from database db1 to
be restored (including db1.t1, but no tables from any other database), because the --include-
databases option, being farthest to the right, is the first match against database db1 and thus takes
precedence over any other option that matches db1 or any tables in db1:

--exclude-tables=db1.t1 --include-databases=db1

• --fields-enclosed-by=char

Command-Line Format --fields-enclosed-by=char

Type String

Default Value

Each column value is enclosed by the string passed to this option (regardless of data type; see the
description of --fields-optionally-enclosed-by).

• --fields-optionally-enclosed-by

Command-Line Format --fields-optionally-enclosed-by

Type String

Default Value

The string passed to this option is used to enclose column values containing character data (such as
CHAR, VARCHAR, BINARY, TEXT, or ENUM).

• --fields-terminated-by=char

Command-Line Format --fields-terminated-by=char

3702

ndb_restore — Restore an NDB Cluster Backup

Type String

Default Value \t (tab)

The string passed to this option is used to separate column values. The default value is a tab character
(\t).

• --help

Command-Line Format --help

Display help text and exit.

• --hex

Command-Line Format --hex

If this option is used, all binary values are output in hexadecimal format.

• --ignore-extended-pk-updates

Command-Line Format --ignore-extended-pk-updates[=0|1]

Introduced 5.7.29-ndb-7.6.14

Type Integer

Default Value 0

Minimum Value 0

Maximum Value 1

When using the --allow-pk-changes option, columns which become part of a table's primary key
must not be updated while the backup is being taken; such columns should keep the same values from
the time values are inserted into them until the rows containing the values are deleted. If ndb_restore
encounters updates to these columns when restoring a backup, the restore fails. Because some
applications may set values for all columns when updating a row, even when some column values are
not changed, the backup may include log events appearing to update columns which are not in fact
modified. In such cases you can set --ignore-extended-pk-updates to 1, forcing ndb_restore
to ignore such updates.

Important

When causing these updates to be ignored, the user is responsible for ensuring
that there are no updates to the values of any columns that become part of the
primary key.

For more information, see the description of --allow-pk-changes.

• --include-databases=db-list

Command-Line Format --include-databases=list

Type String

Default Value

Comma-delimited list of one or more databases to restore. Often used together with --include-
tables; see the description of that option for further information and examples.

3703

ndb_restore — Restore an NDB Cluster Backup

• --include-tables=table-list

Command-Line Format --include-tables=list

Type String

Default Value

Comma-delimited list of tables to restore; each table reference must include the database name.

When --include-databases or --include-tables is used, only those databases or tables named
by the option are restored; all other databases and tables are excluded by ndb_restore, and are not
restored.

The following table shows several invocations of ndb_restore using --include-* options (other
options possibly required have been omitted for clarity), and the effects these have on restoring from an
NDB Cluster backup:

Table 21.40 Several invocations of ndb_restore using --include-* options, and their effects on
restoring from an NDB Cluster backup.

Option Result

--include-databases=db1 Only tables in database db1 are restored; all tables
in all other databases are ignored

--include-databases=db1,db2 (or --
include-databases=db1 --include-
databases=db2)

Only tables in databases db1 and db2 are
restored; all tables in all other databases are
ignored

--include-tables=db1.t1 Only table t1 in database db1 is restored; no other
tables in db1 or in any other database are restored

--include-tables=db1.t2,db2.t1 (or
--include-tables=db1.t2 --include-
tables=db2.t1)

Only the table t2 in database db1 and the table
t1 in database db2 are restored; no other tables in
db1, db2, or any other database are restored

You can also use these two options together. For example, the following causes all tables in databases
db1 and db2, together with the tables t1 and t2 in database db3, to be restored (and no other
databases or tables):

$> ndb_restore [...] --include-databases=db1,db2 --include-tables=db3.t1,db3.t2

(Again we have omitted other, possibly required, options in the example just shown.)

It also possible to restore only selected databases, or selected tables from a single database, without
any --include-* (or --exclude-*) options, using the syntax shown here:

ndb_restore other_options db_name,[db_name[,...] | tbl_name[,tbl_name][,...]]

In other words, you can specify either of the following to be restored:

• All tables from one or more databases

• One or more tables from a single database

• --lines-terminated-by=char

Command-Line Format --lines-terminated-by=char3704

ndb_restore — Restore an NDB Cluster Backup

Type String

Default Value \n (linebreak)

Specifies the string used to end each line of output. The default is a linefeed character (\n).

• --login-path

Command-Line Format --login-path=path

Type String

Default Value [none]

Read given path from login file.

• --lossy-conversions, -L

Command-Line Format --lossy-conversions

This option is intended to complement the --promote-attributes option. Using --lossy-
conversions allows lossy conversions of column values (type demotions or changes in sign) when
restoring data from backup. With some exceptions, the rules governing demotion are the same as for
MySQL replication; see Replication of Columns Having Different Data Types, for information about
specific type conversions currently supported by attribute demotion.

Beginning with NDB 7.5.23 and NDB 7.6.19, this option also makes it possible to restore a NULL column
as NOT NULL. The column must not contain any NULL entries; otherwise ndb_restore stops with an
error.

ndb_restore reports any truncation of data that it performs during lossy conversions once per attribute
and column.

• --ndb-connectstring

Command-Line Format --ndb-connectstring=connection_string

Type String

Default Value [none]

Set connect string for connecting to ndb_mgmd. Syntax: "[nodeid=id;][host=]hostname[:port]". Overrides
entries in NDB_CONNECTSTRING and my.cnf.

• --ndb-mgmd-host

Command-Line Format --ndb-mgmd-host=connection_string

Type String

Default Value [none]

Same as --ndb-connectstring.

3705

ndb_restore — Restore an NDB Cluster Backup

• --ndb-nodegroup-map=map, -z

Command-Line Format --ndb-nodegroup-map=map

Intended for restoring a backup taken from one node group to a different node group, but never
completely implemented; unsupported.

• --ndb-nodeid

Command-Line Format --ndb-nodeid=#

Type Integer

Default Value [none]

Set node ID for this node, overriding any ID set by --ndb-connectstring.

• --ndb-optimized-node-selection

Command-Line Format --ndb-optimized-node-selection

Enable optimizations for selection of nodes for transactions. Enabled by default; use --skip-ndb-
optimized-node-selection to disable.

• --no-binlog

Command-Line Format --no-binlog

This option prevents any connected SQL nodes from writing data restored by ndb_restore to their
binary logs.

• --no-defaults

Command-Line Format --no-defaults

Do not read default options from any option file other than login file.

• --no-restore-disk-objects, -d

Command-Line Format --no-restore-disk-objects

This option stops ndb_restore from restoring any NDB Cluster Disk Data objects, such as tablespaces
and log file groups; see Section 21.6.11, “NDB Cluster Disk Data Tables”, for more information about
these.

• --no-upgrade, -u

Command-Line Format --no-upgrade

When using ndb_restore to restore a backup, VARCHAR columns created using the old fixed format
are resized and recreated using the variable-width format now employed. This behavior can be
overridden by specifying --no-upgrade.

• --nodeid=#, -n

Command-Line Format --nodeid=#

3706

ndb_restore — Restore an NDB Cluster Backup

Type Numeric

Default Value none

Specify the node ID of the data node on which the backup was taken.

When restoring to a cluster with different number of data nodes from that where the backup was
taken, this information helps identify the correct set or sets of files to be restored to a given node. (In
such cases, multiple files usually need to be restored to a single data node.) See Section 21.5.24.2,
“Restoring to a different number of data nodes”, for additional information and examples.

In NDB 7.5.13 and later, and in NDB 7.6.9 and later, this option is required.

• --num-slices=#

Command-Line Format --num-slices=#

Introduced 5.7.29-ndb-7.6.13

Type Integer

Default Value 1

Minimum Value 1

Maximum Value 1024

When restoring a backup by slices, this option sets the number of slices into which to divide the backup.
This allows multiple instances of ndb_restore to restore disjoint subsets in parallel, potentially
reducing the amount of time required to perform the restore operation.

A slice is a subset of the data in a given backup; that is, it is a set of fragments having the same slice ID,
specified using the --slice-id option. The two options must always be used together, and the value
set by --slice-id must always be less than the number of slices.

ndb_restore encounters fragments and assigns each one a fragment counter. When restoring by
slices, a slice ID is assigned to each fragment; this slice ID is in the range 0 to 1 less than the number
of slices. For a table that is not a BLOB table, the slice to which a given fragment belongs is determined
using the formula shown here:

[slice_ID] = [fragment_counter] % [number_of_slices]

For a BLOB table, a fragment counter is not used; the fragment number is used instead, along with the ID
of the main table for the BLOB table (recall that NDB stores BLOB values in a separate table internally). In
this case, the slice ID for a given fragment is calculated as shown here:

[slice_ID] =
([main_table_ID] + [fragment_ID]) % [number_of_slices]

Thus, restoring by N slices means running N instances of ndb_restore, all with --num-slices=N
(along with any other necessary options) and one each with --slice-id=1, --slice-id=2, --
slice-id=3, and so on through slice-id=N-1.

• --parallelism=#, -p

Command-Line Format --parallelism=#

Type Numeric

Default Value 128
3707

ndb_restore — Restore an NDB Cluster Backup

Minimum Value 1

Maximum Value 1024

ndb_restore uses single-row transactions to apply many rows concurrently. This parameter
determines the number of parallel transactions (concurrent rows) that an instance of ndb_restore tries
to use. By default, this is 128; the minimum is 1, and the maximum is 1024.

The work of performing the inserts is parallelized across the threads in the data nodes involved. This
mechanism is employed for restoring bulk data from the .Data file—that is, the fuzzy snapshot of the
data; it is not used for building or rebuilding indexes. The change log is applied serially; index drops and
builds are DDL operations and handled separately. There is no thread-level parallelism on the client side
of the restore.

• --preserve-trailing-spaces, -P

Command-Line Format --preserve-trailing-spaces

Cause trailing spaces to be preserved when promoting a fixed-width character data type to its variable-
width equivalent—that is, when promoting a CHAR column value to VARCHAR, or a BINARY column value
to VARBINARY. Otherwise, any trailing spaces are dropped from such column values when they are
inserted into the new columns.

Note

Although you can promote CHAR columns to VARCHAR and BINARY columns to
VARBINARY, you cannot promote VARCHAR columns to CHAR or VARBINARY
columns to BINARY.

• --print

Command-Line Format --print

Causes ndb_restore to print all data, metadata, and logs to stdout. Equivalent to using the --
print-data, --print-meta, and --print-log options together.

Note

Use of --print or any of the --print_* options is in effect performing a dry
run. Including one or more of these options causes any output to be redirected
to stdout; in such cases, ndb_restore makes no attempt to restore data or
metadata to an NDB Cluster.

• --print-data

Command-Line Format --print-data

Cause ndb_restore to direct its output to stdout. Often used together with one or more of --tab, --
fields-enclosed-by, --fields-optionally-enclosed-by, --fields-terminated-by, --
hex, and --append.

TEXT and BLOB column values are always truncated. Such values are truncated to the first 256 bytes in
the output. This cannot currently be overridden when using --print-data.

3708

ndb_restore — Restore an NDB Cluster Backup

• --print-defaults

Command-Line Format --print-defaults

Print program argument list and exit.

• --print-log

Command-Line Format --print-log

Cause ndb_restore to output its log to stdout.

• --print-meta

Command-Line Format --print-meta

Print all metadata to stdout.

• print-sql-log

Command-Line Format --print-sql-log

Introduced 5.7.16-ndb-7.5.4

Log SQL statements to stdout. Use the option to enable; normally this behavior is disabled. The option
checks before attempting to log whether all the tables being restored have explicitly defined primary
keys; queries on a table having only the hidden primary key implemented by NDB cannot be converted to
valid SQL.

This option does not work with tables having BLOB columns.

The --print-sql-log option was added in NDB 7.5.4. (Bug #13511949)

• --progress-frequency=N

Command-Line Format --progress-frequency=#

Type Numeric

Default Value 0

Minimum Value 0

Maximum Value 65535

Print a status report each N seconds while the backup is in progress. 0 (the default) causes no status
reports to be printed. The maximum is 65535.

• --promote-attributes, -A

Command-Line Format --promote-attributes

ndb_restore supports limited attribute promotion in much the same way that it is supported by MySQL
replication; that is, data backed up from a column of a given type can generally be restored to a column
using a “larger, similar” type. For example, data from a CHAR(20) column can be restored to a column
declared as VARCHAR(20), VARCHAR(30), or CHAR(30); data from a MEDIUMINT column can be

3709

ndb_restore — Restore an NDB Cluster Backup

restored to a column of type INT or BIGINT. See Replication of Columns Having Different Data Types,
for a table of type conversions currently supported by attribute promotion.

Beginning with NDB 7.5.23 and NDB 7.6.19, this option also makes it possible to restore a NOT NULL
column as NULL.

Attribute promotion by ndb_restore must be enabled explicitly, as follows:

1. Prepare the table to which the backup is to be restored. ndb_restore cannot be used to re-create
the table with a different definition from the original; this means that you must either create the table
manually, or alter the columns which you wish to promote using ALTER TABLE after restoring the
table metadata but before restoring the data.

2. Invoke ndb_restore with the --promote-attributes option (short form -A) when restoring the
table data. Attribute promotion does not occur if this option is not used; instead, the restore operation
fails with an error.

When converting between character data types and TEXT or BLOB, only conversions between character
types (CHAR and VARCHAR) and binary types (BINARY and VARBINARY) can be performed at the same
time. For example, you cannot promote an INT column to BIGINT while promoting a VARCHAR column
to TEXT in the same invocation of ndb_restore.

Converting between TEXT columns using different character sets is not supported, and is expressly
disallowed.

When performing conversions of character or binary types to TEXT or BLOB with ndb_restore, you
may notice that it creates and uses one or more staging tables named table_name$STnode_id.
These tables are not needed afterwards, and are normally deleted by ndb_restore following a
successful restoration.

• --rebuild-indexes

Command-Line Format --rebuild-indexes

Enable multithreaded rebuilding of the ordered indexes while restoring a native NDB backup. The number
of threads used for building ordered indexes by ndb_restore with this option is controlled by the
BuildIndexThreads data node configuration parameter and the number of LDMs.

It is necessary to use this option only for the first run of ndb_restore; this causes all ordered indexes
to be rebuilt without using --rebuild-indexes again when restoring subsequent nodes. You should
use this option prior to inserting new rows into the database; otherwise, it is possible for a row to be
inserted that later causes a unique constraint violation when trying to rebuild the indexes.

Building of ordered indices is parallelized with the number of LDMs by default. Offline index builds
performed during node and system restarts can be made faster using the BuildIndexThreads data
node configuration parameter; this parameter has no effect on dropping and rebuilding of indexes by
ndb_restore, which is performed online.

Rebuilding of unique indexes uses disk write bandwidth for redo logging and local checkpointing. An
insufficient amount of this bandwith can lead to redo buffer overload or log overload errors. In such
cases you can run ndb_restore --rebuild-indexes again; the process resumes at the point where
the error occurred. You can also do this when you have encountered temporary errors. You can repeat
execution of ndb_restore --rebuild-indexes indefinitely; you may be able to stop such errors by
reducing the value of --parallelism. If the problem is insufficient space, you can increase the size of
the redo log (FragmentLogFileSize node configuration parameter), or you can increase the speed at

3710

ndb_restore — Restore an NDB Cluster Backup

which LCPs are performed (MaxDiskWriteSpeed and related parameters), in order to free space more
quickly.

• --remap-column=db.tbl.col:fn:args

Command-Line Format --remap-column=string

Introduced 5.7.29-ndb-7.6.14

Type String

Default Value [none]

When used together with --restore-data, this option applies a function to the value of the indicated
column. Values in the argument string are listed here:

• db: Database name, following any renames performed by --rewrite-database.

• tbl: Table name.

• col: Name of the column to be updated. This column must be of type INT or BIGINT. The column
can also be but is not required to be UNSIGNED.

• fn: Function name; currently, the only supported name is offset.

• args: Arguments supplied to the function. Currently, only a single argument, the size of the offset
to be added by the offset function, is supported. Negative values are supported. The size of the
argument cannot exceed that of the signed variant of the column's type; for example, if col is an INT
column, then the allowed range of the argument passed to the offset function is -2147483648
to 2147483647 (see Section 11.1.2, “Integer Types (Exact Value) - INTEGER, INT, SMALLINT,
TINYINT, MEDIUMINT, BIGINT”).

If applying the offset value to the column would cause an overflow or underflow, the restore operation
fails. This could happen, for example, if the column is a BIGINT, and the option attempts to apply
an offset value of 8 on a row in which the column value is 4294967291, since 4294967291 + 8 =
4294967299 > 4294967295.

This option can be useful when you wish to merge data stored in multiple source instances of NDB
Cluster (all using the same schema) into a single destination NDB Cluster, using NDB native backup
(see Section 21.6.8.2, “Using The NDB Cluster Management Client to Create a Backup”) and
ndb_restore to merge the data, where primary and unique key values are overlapping between source
clusters, and it is necessary as part of the process to remap these values to ranges that do not overlap.
It may also be necessary to preserve other relationships between tables. To fulfill such requirements, it
is possible to use the option multiple times in the same invocation of ndb_restore to remap columns of
different tables, as shown here:

$> ndb_restore --restore-data --remap-column=hr.employee.id:offset:1000 \
 --remap-column=hr.manager.id:offset:1000 --remap-column=hr.firstaiders.id:offset:1000

(Other options not shown here may also be used.)

--remap-column can also be used to update multiple columns of the same table. Combinations of
multiple tables and columns are possible. Different offset values can also be used for different columns
of the same table, like this:

$> ndb_restore --restore-data --remap-column=hr.employee.salary:offset:10000 \

3711

ndb_restore — Restore an NDB Cluster Backup

 --remap-column=hr.employee.hours:offset:-10

When source backups contain duplicate tables which should not be merged, you can handle this by
using --exclude-tables, --exclude-databases, or by some other means in your application.

Information about the structure and other characteristics of tables to be merged can obtained using SHOW
CREATE TABLE; the ndb_desc tool; and MAX(), MIN(), LAST_INSERT_ID(), and other MySQL
functions.

Replication of changes from merged to unmerged tables, or from unmerged to merged tables, in
separate instances of NDB Cluster is not supported.

• --restore-data, -r

Command-Line Format --restore-data

Output NDB table data and logs.

• --restore-epoch, -e

Command-Line Format --restore-epoch

Add (or restore) epoch information to the cluster replication status table. This is useful
for starting replication on an NDB replica cluster. When this option is used, the row in the
mysql.ndb_apply_status having 0 in the id column is updated if it already exists; such a row
is inserted if it does not already exist. (See Section 21.7.9, “NDB Cluster Backups With NDB Cluster
Replication”.)

• --restore-meta, -m

Command-Line Format --restore-meta

This option causes ndb_restore to print NDB table metadata.

The first time you run the ndb_restore restoration program, you also need to restore the metadata.
In other words, you must re-create the database tables—this can be done by running it with the --
restore-meta (-m) option. Restoring the metadata need be done only on a single data node; this is
sufficient to restore it to the entire cluster.

In older versions of NDB Cluster, tables whose schemas were restored using this option used the
same number of partitions as they did on the original cluster, even if it had a differing number of data
nodes from the new cluster. In NDB 7.5.2 and later, when restoring metadata, this is no longer an issue;
ndb_restore now uses the default number of partitions for the target cluster, unless the number of
local data manager threads is also changed from what it was for data nodes in the original cluster.

Note

The cluster should have an empty database when starting to restore a backup.
(In other words, you should start the data nodes with --initial prior to
performing the restore.)

3712

ndb_restore — Restore an NDB Cluster Backup

• --restore-privilege-tables

Command-Line Format --restore-privilege-tables

ndb_restore does not by default restore distributed MySQL privilege tables. This option causes
ndb_restore to restore the privilege tables.

This works only if the privilege tables were converted to NDB before the backup was taken. For more
information, see Section 21.6.13, “Distributed Privileges Using Shared Grant Tables”.

• --rewrite-database=olddb,newdb

Command-Line Format --rewrite-database=string

Type String

Default Value none

This option makes it possible to restore to a database having a different name from that used in the
backup. For example, if a backup is made of a database named products, you can restore the data it
contains to a database named inventory, use this option as shown here (omitting any other options
that might be required):

$> ndb_restore --rewrite-database=product,inventory

The option can be employed multiple times in a single invocation of ndb_restore. Thus it is
possible to restore simultaneously from a database named db1 to a database named db2 and from
a database named db3 to one named db4 using --rewrite-database=db1,db2 --rewrite-
database=db3,db4. Other ndb_restore options may be used between multiple occurrences of --
rewrite-database.

In the event of conflicts between multiple --rewrite-database options, the last --rewrite-
database option used, reading from left to right, is the one that takes effect. For example, if --
rewrite-database=db1,db2 --rewrite-database=db1,db3 is used, only --rewrite-
database=db1,db3 is honored, and --rewrite-database=db1,db2 is ignored. It is also possible
to restore from multiple databases to a single database, so that --rewrite-database=db1,db3 --
rewrite-database=db2,db3 restores all tables and data from databases db1 and db2 into database
db3.

Important

When restoring from multiple backup databases into a single target database
using --rewrite-database, no check is made for collisions between table or
other object names, and the order in which rows are restored is not guaranteed.
This means that it is possible in such cases for rows to be overwritten and
updates to be lost.

• --skip-broken-objects

Command-Line Format --skip-broken-objects

This option causes ndb_restore to ignore corrupt tables while reading a native NDB backup, and to
continue restoring any remaining tables (that are not also corrupted). Currently, the --skip-broken-
objects option works only in the case of missing blob parts tables.

3713

ndb_restore — Restore an NDB Cluster Backup

• --skip-table-check, -s

Command-Line Format --skip-table-check

It is possible to restore data without restoring table metadata. By default when doing this, ndb_restore
fails with an error if a mismatch is found between the table data and the table schema; this option
overrides that behavior.

Some of the restrictions on mismatches in column definitions when restoring data using ndb_restore
are relaxed; when one of these types of mismatches is encountered, ndb_restore does not stop with
an error as it did previously, but rather accepts the data and inserts it into the target table while issuing a
warning to the user that this is being done. This behavior occurs whether or not either of the options --
skip-table-check or --promote-attributes is in use. These differences in column definitions
are of the following types:

• Different COLUMN_FORMAT settings (FIXED, DYNAMIC, DEFAULT)

• Different STORAGE settings (MEMORY, DISK)

• Different default values

• Different distribution key settings

• --skip-unknown-objects

Command-Line Format --skip-unknown-objects

This option causes ndb_restore to ignore any schema objects it does not recognize while reading a
native NDB backup. This can be used for restoring a backup made from a cluster running (for example)
NDB 7.6 to a cluster running NDB Cluster 7.5.

• --slice-id=#

Command-Line Format --slice-id=#

Introduced 5.7.29-ndb-7.6.13

Type Integer

Default Value 0

Minimum Value 0

Maximum Value 1023

When restoring by slices, this is the ID of the slice to restore. This option is always used together with --
num-slices, and its value must be always less than that of --num-slices.

For more information, see the description of the --num-slices elsewhere in this section.

• --tab=dir_name, -T dir_name

Command-Line Format --tab=path

Type Directory name

Causes --print-data to create dump files, one per table, each named tbl_name.txt. It requires as
its argument the path to the directory where the files should be saved; use . for the current directory.3714

ndb_restore — Restore an NDB Cluster Backup

• --timestamp-printouts

Command-Line Format --timestamp-printouts{=true|false}

Introduced 5.7.41-ndb-7.5.30, 5.7.41-ndb-7.6.26

Type Boolean

Default Value false

Causes info, error, and debug log messages to be prefixed with timestamps.

This option is disabled by default in NDB 7.5 and NDB 7.6. Set it explicitly to true to enable.

• --usage

Command-Line Format --usage

Display help text and exit; same as --help.

• --verbose=#

Command-Line Format --verbose=#

Type Numeric

Default Value 1

Minimum Value 0

Maximum Value 255

Sets the level for the verbosity of the output. The minimum is 0; the maximum is 255. The default value
is 1.

• --version

Command-Line Format --version

Display version information and exit.

Typical options for this utility are shown here:

ndb_restore [-c connection_string] -n node_id -b backup_id \
 [-m] -r --backup-path=/path/to/backup/files

Normally, when restoring from an NDB Cluster backup, ndb_restore requires at a minimum the --
nodeid (short form: -n), --backupid (short form: -b), and --backup-path options. In addition, when
ndb_restore is used to restore any tables containing unique indexes, you must include --disable-
indexes or --rebuild-indexes. (Bug #57782, Bug #11764893)

The -c option is used to specify a connection string which tells ndb_restore where to locate the cluster
management server (see Section 21.4.3.3, “NDB Cluster Connection Strings”). If this option is not used,
then ndb_restore attempts to connect to a management server on localhost:1186. This utility acts
as a cluster API node, and so requires a free connection “slot” to connect to the cluster management
server. This means that there must be at least one [api] or [mysqld] section that can be used by it
in the cluster config.ini file. It is a good idea to keep at least one empty [api] or [mysqld] section
in config.ini that is not being used for a MySQL server or other application for this reason (see
Section 21.4.3.7, “Defining SQL and Other API Nodes in an NDB Cluster”).

3715

ndb_restore — Restore an NDB Cluster Backup

You can verify that ndb_restore is connected to the cluster by using the SHOW command in the ndb_mgm
management client. You can also accomplish this from a system shell, as shown here:

$> ndb_mgm -e "SHOW"

Error reporting.
ndb_restore reports both temporary and permanent errors. In the case of temporary errors, it may able
to recover from them, and reports Restore successful, but encountered temporary error,
please look at configuration in such cases.

Important

After using ndb_restore to initialize an NDB Cluster for use in circular replication,
binary logs on the SQL node acting as the replica are not automatically created,
and you must cause them to be created manually. To cause the binary logs to be
created, issue a SHOW TABLES statement on that SQL node before running START
SLAVE. This is a known issue in NDB Cluster.

21.5.24.1 Restoring an NDB Backup to a Different Version of NDB Cluster

The following two sections provide information about restoring a native NDB backup to a different version
of NDB Cluster from the version in which the backup was taken.

In addition, you should consult Section 21.3.7, “Upgrading and Downgrading NDB Cluster”, for other issues
you may encounter when attempting to restore an NDB backup to a cluster running a different version of
the NDB software.

It is also advisable to review What is New in NDB Cluster 8.0, as well as Section 2.10.3, “Changes in
MySQL 5.7”, for other changes between NDB 8.0 and previous versions of NDB Cluster that may be
relevant to your particular circumstances.

Restoring an NDB backup to a previous version of NDB Cluster

You may encounter issues when restoring a backup taken from a later version of NDB Cluster to a
previous one, due to the use of features which do not exist in the earlier version. Some of these issues are
listed here:

• Tables created in NDB 8.0 by default use the utf8mb4_ai_ci character set, which is not available
in NDB 7.6 and earlier, and so cannot be read by an ndb_restore binary from one of these earlier
versions. In such cases, it is necessary to alter any tables using utf8mb4_ai_ci so that they use a
character set supported in the older version prior to performing the backup.

• Due to changes in how the MySQL Server and NDB handle table metadata, tables created or
altered using the included MySQL server binary from NDB 8.0.14 or later cannot be restored using
ndb_restore to an earlier version of NDB Cluster. Such tables use .sdi files which are not
understood by older versions of mysqld.

A backup taken in NDB 8.0.14 or later of tables which were created in NDB 8.0.13 or earlier, and which
have not been altered since upgrading to NDB 8.0.14 or later, should be restorable to older versions of
NDB Cluster.

Since it is possible to restore metadata and table data separately, you can in such cases restore the
table schemas from a dump made using mysqldump, or by executing the necessary CREATE TABLE
statements manually, then import only the table data using ndb_restore with the --restore-data
option.

3716

https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster-what-is-new.html#mysql-cluster-what-is-new-8-0

ndb_restore — Restore an NDB Cluster Backup

• Encrypted backups created in NDB 8.0.22 and later cannot be restored using ndb_restore from NDB
8.0.21 or earlier.

• The NDB_STORED_USER privilege is not supported prior to NDB 8.0.18.

• NDB Cluster 8.0.18 and later supports up to 144 data nodes, while earlier versions support a maximum
of only 48 data nodes. See Restoring to Fewer Nodes Than the Original, for information with situations in
which this incompatibility causes an issue.

Restoring an NDB backup to a later version of NDB Cluster

In general, it should be possible to restore a backup created using the ndb_mgm client START BACKUP
command in an older version of NDB to a newer version, provided that you use the ndb_restore binary
that comes with the newer version. (It may be possible to use the older version of ndb_restore, but this
is not recommended.) Additional potential issues are listed here:

• When restoring the metadata from a backup (--restore-meta option), ndb_restore normally
attempts to reproduce the captured table schema exactly as it was when the backup was taken.

Tables created in versions of NDB prior to 8.0.14 use .frm files for their metadata. These files can be
read by the mysqld in NDB 8.0.14 and later, which can use the information contained therein to create
the .sdi files used by the MySQL data dictionary in later versions.

• When restoring an older backup to a newer version of NDB, it may not be possible to take advantage
of newer features such as hashmap partitioning, greater number of hashmap buckets, read backup,
and different partitioning layouts. For this reason, it may be preferable to restore older schemas using
mysqldump and the mysql client, which allows NDB to make use of the new schema features.

• Tables using the old temporal types which did not support fractional seconds (used prior to MySQL
5.6.4 and NDB 7.3.31) cannot be restored to NDB 8.0 using ndb_restore. You can check such tables
using CHECK TABLE, and then upgrade them to the newer temporal column format, if necessary, using
REPAIR TABLE in the mysql client; this must be done prior to taking the backup. See Preparing Your
Installation for Upgrade, for more information.

You also restore such tables using a dump created with mysqldump.

• Distributed grant tables created in NDB 7.6 and earlier are not supported in NDB 8.0. Such tables can be
restored to an NDB 8.0 cluster, but they have no effect on access control.

21.5.24.2 Restoring to a different number of data nodes

It is possible to restore from an NDB backup to a cluster having a different number of data nodes than
the original from which the backup was taken. The following two sections discuss, respectively, the cases
where the target cluster has a lesser or greater number of data nodes than the source of the backup.

Restoring to Fewer Nodes Than the Original

You can restore to a cluster having fewer data nodes than the original provided that the larger number of
nodes is an even multiple of the smaller number. In the following example, we use a backup taken on a
cluster having four data nodes to a cluster having two data nodes.

1. The management server for the original cluster is on host host10. The original cluster has four data
nodes, with the node IDs and host names shown in the following extract from the management server's
config.ini file:

[ndbd]
NodeId=2

3717

https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_ndb-stored-user
https://dev.mysql.com/doc/refman/8.0/en/upgrade-prerequisites.html
https://dev.mysql.com/doc/refman/8.0/en/upgrade-prerequisites.html

ndb_restore — Restore an NDB Cluster Backup

HostName=host2

[ndbd]
NodeId=4
HostName=host4

[ndbd]
NodeId=6
HostName=host6

[ndbd]
NodeId=8
HostName=host8

We assume that each data node was originally started with ndbmtd --ndb-
connectstring=host10 or the equivalent.

2. Perform a backup in the normal manner. See Section 21.6.8.2, “Using The NDB Cluster Management
Client to Create a Backup”, for information about how to do this.

3. The files created by the backup on each data node are listed here, where N is the node ID and B is the
backup ID.

• BACKUP-B-0.N.Data

• BACKUP-B.N.ctl

• BACKUP-B.N.log

These files are found under BackupDataDir/BACKUP/BACKUP-B, on each data node. For the rest of
this example, we assume that the backup ID is 1.

Have all of these files available for later copying to the new data nodes (where they can be accessed
on the data node's local file system by ndb_restore). It is simplest to copy them all to a single
location; we assume that this is what you have done.

4. The management server for the target cluster is on host host20, and the target has two data nodes,
with the node IDs and host names shown, from the management server config.ini file on host20:

[ndbd]
NodeId=3
hostname=host3

[ndbd]
NodeId=5
hostname=host5

Each of the data node processes on host3 and host5 should be started with ndbmtd -c host20 --
initial or the equivalent, so that the new (target) cluster starts with clean data node file systems.

5. Copy two different sets of two backup files to each of the target data nodes. For this example, copy the
backup files from nodes 2 and 4 from the original cluster to node 3 in the target cluster. These files are
listed here:

• BACKUP-1-0.2.Data

• BACKUP-1.2.ctl

• BACKUP-1.2.log

• BACKUP-1-0.4.Data

3718

ndb_restore — Restore an NDB Cluster Backup

• BACKUP-1.4.ctl

• BACKUP-1.4.log

Then copy the backup files from nodes 6 and 8 to node 5; these files are shown in the following list:

• BACKUP-1-0.6.Data

• BACKUP-1.6.ctl

• BACKUP-1.6.log

• BACKUP-1-0.8.Data

• BACKUP-1.8.ctl

• BACKUP-1.8.log

For the remainder of this example, we assume that the respective backup files have been saved to the
directory /BACKUP-1 on each of nodes 3 and 5.

6. On each of the two target data nodes, you must restore from both sets of backups. First, restore the
backups from nodes 2 and 4 to node 3 by invoking ndb_restore on host3 as shown here:

$> ndb_restore -c host20 --nodeid=2 --backupid=1 --restore-data --backup-path=/BACKUP-1

$> ndb_restore -c host20 --nodeid=4 --backupid=1 --restore-data --backup-path=/BACKUP-1

Then restore the backups from nodes 6 and 8 to node 5 by invoking ndb_restore on host5, like this:

$> ndb_restore -c host20 --nodeid=6 --backupid=1 --restore-data --backup-path=/BACKUP-1

$> ndb_restore -c host20 --nodeid=8 --backupid=1 --restore-data --backup-path=/BACKUP-1

Restoring to More Nodes Than the Original

The node ID specified for a given ndb_restore command is that of the node in the original backup and
not that of the data node to restore it to. When performing a backup using the method described in this
section, ndb_restore connects to the management server and obtains a list of data nodes in the cluster
the backup is being restored to. The restored data is distributed accordingly, so that the number of nodes
in the target cluster does not need to be to be known or calculated when performing the backup.

Note

When changing the total number of LCP threads or LQH threads per node group,
you should recreate the schema from backup created using mysqldump.

1. Create the backup of the data. You can do this by invoking the ndb_mgm client START BACKUP
command from the system shell, like this:

$> ndb_mgm -e "START BACKUP 1"

This assumes that the desired backup ID is 1.

2. Create a backup of the schema. In NDB 7.5.2 and later, this step is necessary only if the total number
of LCP threads or LQH threads per node group is changed.

$> mysqldump --no-data --routines --events --triggers --databases > myschema.sql

3719

ndb_restore — Restore an NDB Cluster Backup

Important

Once you have created the NDB native backup using ndb_mgm, you must not
make any schema changes before creating the backup of the schema, if you do
so.

3. Copy the backup directory to the new cluster. For example if the backup you want to restore has ID
1 and BackupDataDir = /backups/node_nodeid, then the path to the backup on this node is /
backups/node_1/BACKUP/BACKUP-1. Inside this directory there are three files, listed here:

• BACKUP-1-0.1.Data

• BACKUP-1.1.ctl

• BACKUP-1.1.log

You should copy the entire directory to the new node.

If you needed to create a schema file, copy this to a location on an SQL node where it can be read by
mysqld.

There is no requirement for the backup to be restored from a specific node or nodes.

To restore from the backup just created, perform the following steps:

1. Restore the schema.

• If you created a separate schema backup file using mysqldump, import this file using the mysql
client, similar to what is shown here:

$> mysql < myschema.sql

When importing the schema file, you may need to specify the --user and --password options
(and possibly others) in addition to what is shown, in order for the mysql client to be able to connect
to the MySQL server.

• If you did not need to create a schema file, you can re-create the schema using ndb_restore --
restore-meta (short form -m), similar to what is shown here:

$> ndb_restore --nodeid=1 --backupid=1 --restore-meta --backup-path=/backups/node_1/BACKUP/BACKUP-1

ndb_restore must be able to contact the management server; add the --ndb-connectstring
option if and as needed to make this possible.

2. Restore the data. This needs to be done once for each data node in the original cluster, each time
using that data node's node ID. Assuming that there were 4 data nodes originally, the set of commands
required would look something like this:

ndb_restore --nodeid=1 --backupid=1 --restore-data --backup-path=/backups/node_1/BACKUP/BACKUP-1 --disable-indexes
ndb_restore --nodeid=2 --backupid=1 --restore-data --backup-path=/backups/node_2/BACKUP/BACKUP-1 --disable-indexes
ndb_restore --nodeid=3 --backupid=1 --restore-data --backup-path=/backups/node_3/BACKUP/BACKUP-1 --disable-indexes
ndb_restore --nodeid=4 --backupid=1 --restore-data --backup-path=/backups/node_4/BACKUP/BACKUP-1 --disable-indexes

These can be run in parallel.

Be sure to add the --ndb-connectstring option as needed.

3720

ndb_select_all — Print Rows from an NDB Table

3. Rebuild the indexes. These were disabled by the --disable-indexes option used in the commands
just shown. Recreating the indexes avoids errors due to the restore not being consistent at all points.
Rebuilding the indexes can also improve performance in some cases. To rebuild the indexes, execute
the following command once, on a single node:

$> ndb_restore --nodeid=1 --backupid=1 --backup-path=/backups/node_1/BACKUP/BACKUP-1 --rebuild-indexes

As mentioned previously, you may need to add the --ndb-connectstring option, so that
ndb_restore can contact the management server.

21.5.25 ndb_select_all — Print Rows from an NDB Table

ndb_select_all prints all rows from an NDB table to stdout.

Usage

ndb_select_all -c connection_string tbl_name -d db_name [> file_name]

Options that can be used with ndb_select_all are shown in the following table. Additional descriptions
follow the table.

Table 21.41 Command-line options used with the program ndb_select_all

Format Description Added, Deprecated, or
Removed

--character-sets-dir=path Directory containing character
sets

(Supported in all NDB releases
based on MySQL 5.7)

--connect-retries=# Number of times to retry
connection before giving up

(Supported in all NDB releases
based on MySQL 5.7)

--connect-retry-delay=# Number of seconds to wait
between attempts to contact
management server

(Supported in all NDB releases
based on MySQL 5.7)

--connect-
string=connection_string,

-c connection_string

Same as --ndb-connectstring (Supported in all NDB releases
based on MySQL 5.7)

--core-file Write core file on error; used in
debugging

(Supported in all NDB releases
based on MySQL 5.7)

--database=name,

-d name

Name of database in which table
is found

(Supported in all NDB releases
based on MySQL 5.7)

--defaults-extra-
file=path

Read given file after global files
are read

(Supported in all NDB releases
based on MySQL 5.7)

--defaults-file=path Read default options from given
file only

(Supported in all NDB releases
based on MySQL 5.7)

--defaults-group-
suffix=string

Also read groups with
concat(group, suffix)

(Supported in all NDB releases
based on MySQL 5.7)

--delimiter=char,

-D char

Set column delimiter (Supported in all NDB releases
based on MySQL 5.7)

--descending,

-z

Sort resultset in descending order
(requires --order)

(Supported in all NDB releases
based on MySQL 5.7)

3721

ndb_select_all — Print Rows from an NDB Table

Format Description Added, Deprecated, or
Removed

--disk Print disk references (useful
only for Disk Data tables having
unindexed columns)

(Supported in all NDB releases
based on MySQL 5.7)

--gci Include GCI in output (Supported in all NDB releases
based on MySQL 5.7)

--gci64 Include GCI and row epoch in
output

(Supported in all NDB releases
based on MySQL 5.7)

--header[=value],

-h

Print header (set to 0|FALSE to
disable headers in output)

(Supported in all NDB releases
based on MySQL 5.7)

--lock=#,

-l #

Lock type (Supported in all NDB releases
based on MySQL 5.7)

--login-path=path Read given path from login file (Supported in all NDB releases
based on MySQL 5.7)

--help,

-?

Display help text and exit (Supported in all NDB releases
based on MySQL 5.7)

--ndb-
connectstring=connection_string,

-c connection_string

Set connect string for
connecting to ndb_mgmd.
Syntax: "[nodeid=id;]
[host=]hostname[:port]".
Overrides entries in
NDB_CONNECTSTRING and
my.cnf

(Supported in all NDB releases
based on MySQL 5.7)

--ndb-mgmd-
host=connection_string,

-c connection_string

Same as --ndb-connectstring (Supported in all NDB releases
based on MySQL 5.7)

--ndb-nodeid=# Set node ID for this node,
overriding any ID set by --ndb-
connectstring

(Supported in all NDB releases
based on MySQL 5.7)

--ndb-optimized-node-
selection

Enable optimizations for selection
of nodes for transactions. Enabled
by default; use --skip-ndb-
optimized-node-selection to
disable

(Supported in all NDB releases
based on MySQL 5.7)

--no-defaults Do not read default options from
any option file other than login file

(Supported in all NDB releases
based on MySQL 5.7)

--nodata Do not print table column data (Supported in all NDB releases
based on MySQL 5.7)

--order=index,

-o index

Sort resultset according to index
having this name

(Supported in all NDB releases
based on MySQL 5.7)

--parallelism=#,

-p #

Degree of parallelism (Supported in all NDB releases
based on MySQL 5.7)

3722

ndb_select_all — Print Rows from an NDB Table

Format Description Added, Deprecated, or
Removed

--print-defaults Print program argument list and
exit

(Supported in all NDB releases
based on MySQL 5.7)

--rowid Print row ID (Supported in all NDB releases
based on MySQL 5.7)

--tupscan,

-t

Scan in tup order (Supported in all NDB releases
based on MySQL 5.7)

--usage,

-?

Display help text and exit; same
as --help

(Supported in all NDB releases
based on MySQL 5.7)

--useHexFormat,

-x

Output numbers in hexadecimal
format

(Supported in all NDB releases
based on MySQL 5.7)

--version,

-V

Display version information and
exit

(Supported in all NDB releases
based on MySQL 5.7)

• --character-sets-dir

Command-Line Format --character-sets-dir=path

Directory containing character sets.

• --connect-retries

Command-Line Format --connect-retries=#

Type Integer

Default Value 12

Minimum Value 0

Maximum Value 12

Number of times to retry connection before giving up.

• --connect-retry-delay

Command-Line Format --connect-retry-delay=#

Type Integer

Default Value 5

Minimum Value 0

Maximum Value 5

Number of seconds to wait between attempts to contact management server.

• --connect-string

Command-Line Format --connect-string=connection_string

Type String 3723

ndb_select_all — Print Rows from an NDB Table

Default Value [none]

Same as --ndb-connectstring.

• --core-file

Command-Line Format --core-file

Write core file on error; used in debugging.

• --database=dbname, -d dbname

Name of the database in which the table is found. The default value is TEST_DB.

• --descending, -z

Sorts the output in descending order. This option can be used only in conjunction with the -o (--order)
option.

• --defaults-extra-file

Command-Line Format --defaults-extra-file=path

Type String

Default Value [none]

Read given file after global files are read.

• --defaults-file

Command-Line Format --defaults-file=path

Type String

Default Value [none]

Read default options from given file only.

• --defaults-group-suffix

Command-Line Format --defaults-group-suffix=string

Type String

Default Value [none]

Also read groups with concat(group, suffix).

• --delimiter=character, -D character

Causes the character to be used as a column delimiter. Only table data columns are separated by this
delimiter.

The default delimiter is the tab character.

• --disk

Adds a disk reference column to the output. The column is nonempty only for Disk Data tables having
nonindexed columns.

3724

ndb_select_all — Print Rows from an NDB Table

• --gci

Adds a GCI column to the output showing the global checkpoint at which each row was last updated.
See Section 21.2, “NDB Cluster Overview”, and Section 21.6.3.2, “NDB Cluster Log Events”, for more
information about checkpoints.

• --gci64

Adds a ROW$GCI64 column to the output showing the global checkpoint at which each row was last
updated, as well as the number of the epoch in which this update occurred.

• --help

Command-Line Format --help

Display help text and exit.

• --lock=lock_type, -l lock_type

Employs a lock when reading the table. Possible values for lock_type are:

• 0: Read lock

• 1: Read lock with hold

• 2: Exclusive read lock

There is no default value for this option.

• --login-path

Command-Line Format --login-path=path

Type String

Default Value [none]

Read given path from login file.

• --header=FALSE

Excludes column headers from the output.

• --nodata

Causes any table data to be omitted.

• --ndb-connectstring

Command-Line Format --ndb-connectstring=connection_string

Type String

Default Value [none]

Set connect string for connecting to ndb_mgmd. Syntax: "[nodeid=id;][host=]hostname[:port]". Overrides
entries in NDB_CONNECTSTRING and my.cnf.

3725

ndb_select_all — Print Rows from an NDB Table

• --ndb-mgmd-host

Command-Line Format --ndb-mgmd-host=connection_string

Type String

Default Value [none]

Same as --ndb-connectstring.

• --ndb-nodeid

Command-Line Format --ndb-nodeid=#

Type Integer

Default Value [none]

Set node ID for this node, overriding any ID set by --ndb-connectstring.

• --ndb-optimized-node-selection

Command-Line Format --ndb-optimized-node-selection

Enable optimizations for selection of nodes for transactions. Enabled by default; use --skip-ndb-
optimized-node-selection to disable.

• --no-defaults

Command-Line Format --no-defaults

Do not read default options from any option file other than login file.

• --order=index_name, -o index_name

Orders the output according to the index named index_name.

Note

This is the name of an index, not of a column; the index must have been explicitly
named when created.

• parallelism=#, -p #

Specifies the degree of parallelism.

• --print-defaults

Command-Line Format --print-defaults

Print program argument list and exit.

• --rowid

Adds a ROWID column providing information about the fragments in which rows are stored.

• --tupscan, -t

Scan the table in the order of the tuples.

3726

ndb_select_all — Print Rows from an NDB Table

• --usage

Command-Line Format --usage

Display help text and exit; same as --help.

• --useHexFormat -x

Causes all numeric values to be displayed in hexadecimal format. This does not affect the output of
numerals contained in strings or datetime values.

• --version

Command-Line Format --version

Display version information and exit.

Sample Output

Output from a MySQL SELECT statement:

mysql> SELECT * FROM ctest1.fish;
+----+-----------+
| id | name |
+----+-----------+
3	shark
6	puffer
2	tuna
4	manta ray
5	grouper
1	guppy
+----+-----------+
6 rows in set (0.04 sec)

Output from the equivalent invocation of ndb_select_all:

$> ./ndb_select_all -c localhost fish -d ctest1
id name
3 [shark]
6 [puffer]
2 [tuna]
4 [manta ray]
5 [grouper]
1 [guppy]
6 rows returned

NDBT_ProgramExit: 0 - OK

All string values are enclosed by square brackets ([...]) in the output of ndb_select_all. For another
example, consider the table created and populated as shown here:

CREATE TABLE dogs (
 id INT(11) NOT NULL AUTO_INCREMENT,
 name VARCHAR(25) NOT NULL,
 breed VARCHAR(50) NOT NULL,
 PRIMARY KEY pk (id),
 KEY ix (name)
)
TABLESPACE ts STORAGE DISK
ENGINE=NDBCLUSTER;

INSERT INTO dogs VALUES
 ('', 'Lassie', 'collie'),
 ('', 'Scooby-Doo', 'Great Dane'),

3727

ndb_select_count — Print Row Counts for NDB Tables

 ('', 'Rin-Tin-Tin', 'Alsatian'),
 ('', 'Rosscoe', 'Mutt');

This demonstrates the use of several additional ndb_select_all options:

$> ./ndb_select_all -d ctest1 dogs -o ix -z --gci --disk
GCI id name breed DISK_REF
834461 2 [Scooby-Doo] [Great Dane] [m_file_no: 0 m_page: 98 m_page_idx: 0]
834878 4 [Rosscoe] [Mutt] [m_file_no: 0 m_page: 98 m_page_idx: 16]
834463 3 [Rin-Tin-Tin] [Alsatian] [m_file_no: 0 m_page: 34 m_page_idx: 0]
835657 1 [Lassie] [Collie] [m_file_no: 0 m_page: 66 m_page_idx: 0]
4 rows returned

NDBT_ProgramExit: 0 - OK

21.5.26 ndb_select_count — Print Row Counts for NDB Tables

ndb_select_count prints the number of rows in one or more NDB tables. With a single table, the result is
equivalent to that obtained by using the MySQL statement SELECT COUNT(*) FROM tbl_name.

Usage

ndb_select_count [-c connection_string] -ddb_name tbl_name[, tbl_name2[, ...]]

Options that can be used with ndb_select_count are shown in the following table. Additional
descriptions follow the table.

Table 21.42 Command-line options used with the program ndb_select_count

Format Description Added, Deprecated, or
Removed

--character-sets-dir=path Directory containing character
sets

(Supported in all NDB releases
based on MySQL 5.7)

--connect-retries=# Number of times to retry
connection before giving up

(Supported in all NDB releases
based on MySQL 5.7)

--connect-retry-delay=# Number of seconds to wait
between attempts to contact
management server

(Supported in all NDB releases
based on MySQL 5.7)

--connect-
string=connection_string,

-c connection_string

Same as --ndb-connectstring (Supported in all NDB releases
based on MySQL 5.7)

--core-file Write core file on error; used in
debugging

(Supported in all NDB releases
based on MySQL 5.7)

--database=name,

-d name

Name of database in which table
is found

(Supported in all NDB releases
based on MySQL 5.7)

--defaults-extra-
file=path

Read given file after global files
are read

(Supported in all NDB releases
based on MySQL 5.7)

--defaults-file=path Read default options from given
file only

(Supported in all NDB releases
based on MySQL 5.7)

--defaults-group-
suffix=string

Also read groups with
concat(group, suffix)

(Supported in all NDB releases
based on MySQL 5.7)

--help,

-?

Display help text and exit (Supported in all NDB releases
based on MySQL 5.7)

3728

ndb_select_count — Print Row Counts for NDB Tables

Format Description Added, Deprecated, or
Removed

--lock=#,

-l #

Lock type (Supported in all NDB releases
based on MySQL 5.7)

--login-path=path Read given path from login file (Supported in all NDB releases
based on MySQL 5.7)

--ndb-
connectstring=connection_string,

-c connection_string

Set connect string for
connecting to ndb_mgmd.
Syntax: "[nodeid=id;]
[host=]hostname[:port]".
Overrides entries in
NDB_CONNECTSTRING and
my.cnf

(Supported in all NDB releases
based on MySQL 5.7)

--ndb-mgmd-
host=connection_string,

-c connection_string

Same as --ndb-connectstring (Supported in all NDB releases
based on MySQL 5.7)

--ndb-nodeid=# Set node ID for this node,
overriding any ID set by --ndb-
connectstring

(Supported in all NDB releases
based on MySQL 5.7)

--ndb-optimized-node-
selection

Enable optimizations for selection
of nodes for transactions. Enabled
by default; use --skip-ndb-
optimized-node-selection to
disable

(Supported in all NDB releases
based on MySQL 5.7)

--no-defaults Do not read default options from
any option file other than login file

(Supported in all NDB releases
based on MySQL 5.7)

--parallelism=#,

-p #

Degree of parallelism (Supported in all NDB releases
based on MySQL 5.7)

--print-defaults Print program argument list and
exit

(Supported in all NDB releases
based on MySQL 5.7)

--usage,

-?

Display help text and exit; same
as --help

(Supported in all NDB releases
based on MySQL 5.7)

--version,

-V

Display version information and
exit

(Supported in all NDB releases
based on MySQL 5.7)

• --character-sets-dir

Command-Line Format --character-sets-dir=path

Directory containing character sets.

• --connect-retries

Command-Line Format --connect-retries=#

Type Integer

3729

ndb_select_count — Print Row Counts for NDB Tables

Default Value 12

Minimum Value 0

Maximum Value 12

Number of times to retry connection before giving up.

• --connect-retry-delay

Command-Line Format --connect-retry-delay=#

Type Integer

Default Value 5

Minimum Value 0

Maximum Value 5

Number of seconds to wait between attempts to contact management server.

• --connect-string

Command-Line Format --connect-string=connection_string

Type String

Default Value [none]

Same as --ndb-connectstring.

• --core-file

Command-Line Format --core-file

Write core file on error; used in debugging.

• --defaults-file

Command-Line Format --defaults-file=path

Type String

Default Value [none]

Read default options from given file only.

• --defaults-extra-file

Command-Line Format --defaults-extra-file=path

Type String

Default Value [none]

Read given file after global files are read.

• --defaults-group-suffix

Command-Line Format --defaults-group-suffix=string

Type String

3730

ndb_select_count — Print Row Counts for NDB Tables

Default Value [none]

Also read groups with concat(group, suffix).

• --login-path

Command-Line Format --login-path=path

Type String

Default Value [none]

Read given path from login file.

• --help

Command-Line Format --help

Display help text and exit.

• --ndb-connectstring

Command-Line Format --ndb-connectstring=connection_string

Type String

Default Value [none]

Set connect string for connecting to ndb_mgmd. Syntax: "[nodeid=id;][host=]hostname[:port]". Overrides
entries in NDB_CONNECTSTRING and my.cnf.

• --ndb-mgmd-host

Command-Line Format --ndb-mgmd-host=connection_string

Type String

Default Value [none]

Same as --ndb-connectstring.

• --ndb-optimized-node-selection

Command-Line Format --ndb-optimized-node-selection

Enable optimizations for selection of nodes for transactions. Enabled by default; use --skip-ndb-
optimized-node-selection to disable.

• --ndb-nodeid

Command-Line Format --ndb-nodeid=#

Type Integer

Default Value [none]

Set node ID for this node, overriding any ID set by --ndb-connectstring.
3731

ndb_show_tables — Display List of NDB Tables

• --no-defaults

Command-Line Format --no-defaults

Do not read default options from any option file other than login file.

• --print-defaults

Command-Line Format --print-defaults

Print program argument list and exit.

• --usage

Command-Line Format --usage

Display help text and exit; same as --help.

• --version

Command-Line Format --version

Display version information and exit.

You can obtain row counts from multiple tables in the same database by listing the table names separated
by spaces when invoking this command, as shown under Sample Output.

Sample Output

$> ./ndb_select_count -c localhost -d ctest1 fish dogs
6 records in table fish
4 records in table dogs

NDBT_ProgramExit: 0 - OK

21.5.27 ndb_show_tables — Display List of NDB Tables

ndb_show_tables displays a list of all NDB database objects in the cluster. By default, this includes not
only both user-created tables and NDB system tables, but NDB-specific indexes, internal triggers, and NDB
Cluster Disk Data objects as well.

Options that can be used with ndb_show_tables are shown in the following table. Additional descriptions
follow the table.

Table 21.43 Command-line options used with the program ndb_show_tables

Format Description Added, Deprecated, or
Removed

--character-sets-dir=path Directory containing character
sets

(Supported in all NDB releases
based on MySQL 5.7)

--connect-retries=# Number of times to retry
connection before giving up

(Supported in all NDB releases
based on MySQL 5.7)

--connect-retry-delay=# Number of seconds to wait
between attempts to contact
management server

(Supported in all NDB releases
based on MySQL 5.7)

3732

ndb_show_tables — Display List of NDB Tables

Format Description Added, Deprecated, or
Removed

--connect-
string=connection_string,

-c connection_string

Same as --ndb-connectstring (Supported in all NDB releases
based on MySQL 5.7)

--core-file Write core file on error; used in
debugging

(Supported in all NDB releases
based on MySQL 5.7)

--database=name,

-d name

Specifies database in which table
is found; database name must be
followed by table name

(Supported in all NDB releases
based on MySQL 5.7)

--defaults-extra-
file=path

Read given file after global files
are read

(Supported in all NDB releases
based on MySQL 5.7)

--defaults-file=path Read default options from given
file only

(Supported in all NDB releases
based on MySQL 5.7)

--defaults-group-
suffix=string

Also read groups with
concat(group, suffix)

(Supported in all NDB releases
based on MySQL 5.7)

--login-path=path Read given path from login file (Supported in all NDB releases
based on MySQL 5.7)

--loops=#,

-l #

Number of times to repeat output (Supported in all NDB releases
based on MySQL 5.7)

--help,

-?

Display help text and exit (Supported in all NDB releases
based on MySQL 5.7)

--ndb-
connectstring=connection_string,

-c connection_string

Set connect string for
connecting to ndb_mgmd.
Syntax: "[nodeid=id;]
[host=]hostname[:port]".
Overrides entries in
NDB_CONNECTSTRING and
my.cnf

(Supported in all NDB releases
based on MySQL 5.7)

--ndb-mgmd-
host=connection_string,

-c connection_string

Same as --ndb-connectstring (Supported in all NDB releases
based on MySQL 5.7)

--ndb-nodeid=# Set node ID for this node,
overriding any ID set by --ndb-
connectstring

(Supported in all NDB releases
based on MySQL 5.7)

--ndb-optimized-node-
selection

Enable optimizations for selection
of nodes for transactions. Enabled
by default; use --skip-ndb-
optimized-node-selection to
disable

(Supported in all NDB releases
based on MySQL 5.7)

--no-defaults Do not read default options from
any option file other than login file

(Supported in all NDB releases
based on MySQL 5.7)

--parsable,

-p

Return output suitable for MySQL
LOAD DATA statement

(Supported in all NDB releases
based on MySQL 5.7)

3733

ndb_show_tables — Display List of NDB Tables

Format Description Added, Deprecated, or
Removed

--print-defaults Print program argument list and
exit

(Supported in all NDB releases
based on MySQL 5.7)

--show-temp-status Show table temporary flag (Supported in all NDB releases
based on MySQL 5.7)

--type=#,

-t #

Limit output to objects of this type (Supported in all NDB releases
based on MySQL 5.7)

--unqualified,

-u

Do not qualify table names (Supported in all NDB releases
based on MySQL 5.7)

--usage,

-?

Display help text and exit; same
as --help

(Supported in all NDB releases
based on MySQL 5.7)

--version,

-V

Display version information and
exit

(Supported in all NDB releases
based on MySQL 5.7)

Usage

ndb_show_tables [-c connection_string]

• --character-sets-dir

Command-Line Format --character-sets-dir=path

Directory containing character sets.

• --connect-retries

Command-Line Format --connect-retries=#

Type Integer

Default Value 12

Minimum Value 0

Maximum Value 12

Number of times to retry connection before giving up.

• --connect-retry-delay

Command-Line Format --connect-retry-delay=#

Type Integer

Default Value 5

Minimum Value 0

Maximum Value 5

Number of seconds to wait between attempts to contact management server.

• --connect-string

3734

ndb_show_tables — Display List of NDB Tables

Command-Line Format --connect-string=connection_string

Type String

Default Value [none]

Same as --ndb-connectstring.

• --core-file

Command-Line Format --core-file

Write core file on error; used in debugging.

• --database, -d

Specifies the name of the database in which the desired table is found. If this option is given, the name
of a table must follow the database name.

If this option has not been specified, and no tables are found in the TEST_DB database,
ndb_show_tables issues a warning.

• --defaults-extra-file

Command-Line Format --defaults-extra-file=path

Type String

Default Value [none]

Read given file after global files are read.

• --defaults-file

Command-Line Format --defaults-file=path

Type String

Default Value [none]

Read default options from given file only.

• --defaults-group-suffix

Command-Line Format --defaults-group-suffix=string

Type String

Default Value [none]

Also read groups with concat(group, suffix).

• --help

Command-Line Format --help

Display help text and exit. 3735

ndb_show_tables — Display List of NDB Tables

• --login-path

Command-Line Format --login-path=path

Type String

Default Value [none]

Read given path from login file.

• --loops, -l

Specifies the number of times the utility should execute. This is 1 when this option is not specified, but if
you do use the option, you must supply an integer argument for it.

• --ndb-connectstring

Command-Line Format --ndb-connectstring=connection_string

Type String

Default Value [none]

Set connect string for connecting to ndb_mgmd. Syntax: "[nodeid=id;][host=]hostname[:port]". Overrides
entries in NDB_CONNECTSTRING and my.cnf.

• --ndb-mgmd-host

Command-Line Format --ndb-mgmd-host=connection_string

Type String

Default Value [none]

Same as --ndb-connectstring.

• --ndb-nodeid

Command-Line Format --ndb-nodeid=#

Type Integer

Default Value [none]

Set node ID for this node, overriding any ID set by --ndb-connectstring.

• --ndb-optimized-node-selection

Command-Line Format --ndb-optimized-node-selection

Enable optimizations for selection of nodes for transactions. Enabled by default; use --skip-ndb-
optimized-node-selection to disable.

• --no-defaults

Command-Line Format --no-defaults

Do not read default options from any option file other than login file.

3736

ndb_size.pl — NDBCLUSTER Size Requirement Estimator

• --parsable, -p

Using this option causes the output to be in a format suitable for use with LOAD DATA.

• --print-defaults

Command-Line Format --print-defaults

Print program argument list and exit.

• --show-temp-status

If specified, this causes temporary tables to be displayed.

• --type, -t

Can be used to restrict the output to one type of object, specified by an integer type code as shown here:

• 1: System table

• 2: User-created table

• 3: Unique hash index

Any other value causes all NDB database objects to be listed (the default).

• --unqualified, -u

If specified, this causes unqualified object names to be displayed.

• --usage

Command-Line Format --usage

Display help text and exit; same as --help.

• --version

Command-Line Format --version

Display version information and exit.

Note

Only user-created NDB Cluster tables may be accessed from MySQL; system
tables such as SYSTAB_0 are not visible to mysqld. However, you can
examine the contents of system tables using NDB API applications such as
ndb_select_all (see Section 21.5.25, “ndb_select_all — Print Rows from an
NDB Table”).

Prior to NDB 7.5.18 and 7.6.14, this program printed NDBT_ProgramExit - status upon completion of
its run, due to an unnecessary dependency on the NDBT testing library. This dependency is has now been
removed, eliminating the extraneous output.

21.5.28 ndb_size.pl — NDBCLUSTER Size Requirement Estimator

This is a Perl script that can be used to estimate the amount of space that would be required by a MySQL
database if it were converted to use the NDBCLUSTER storage engine. Unlike the other utilities discussed

3737

ndb_size.pl — NDBCLUSTER Size Requirement Estimator

in this section, it does not require access to an NDB Cluster (in fact, there is no reason for it to do so).
However, it does need to access the MySQL server on which the database to be tested resides.

Requirements

• A running MySQL server. The server instance does not have to provide support for NDB Cluster.

• A working installation of Perl.

• The DBI module, which can be obtained from CPAN if it is not already part of your Perl installation.
(Many Linux and other operating system distributions provide their own packages for this library.)

• A MySQL user account having the necessary privileges. If you do not wish to use an existing account,
then creating one using GRANT USAGE ON db_name.*—where db_name is the name of the database
to be examined—is sufficient for this purpose.

ndb_size.pl can also be found in the MySQL sources in storage/ndb/tools.

Options that can be used with ndb_size.pl are shown in the following table. Additional descriptions
follow the table.

Table 21.44 Command-line options used with the program ndb_size.pl

Format Description Added, Deprecated, or
Removed

--database=string Database or databases to
examine; a comma-delimited list;
default is ALL (use all databases
found on server)

(Supported in all NDB releases
based on MySQL 5.7)

--hostname=string Specify host and optional port in
host[:port] format

(Supported in all NDB releases
based on MySQL 5.7)

--socket=path Specify socket to connect to (Supported in all NDB releases
based on MySQL 5.7)

--user=string Specify MySQL user name (Supported in all NDB releases
based on MySQL 5.7)

--password=password Specify MySQL user password (Supported in all NDB releases
based on MySQL 5.7)

--format=string Set output format (text or HTML) (Supported in all NDB releases
based on MySQL 5.7)

--excludetables=list Skip any tables in comma-
separated list

(Supported in all NDB releases
based on MySQL 5.7)

--excludedbs=list Skip any databases in comma-
separated list

(Supported in all NDB releases
based on MySQL 5.7)

--savequeries=path Saves all queries on database into
file specified

(Supported in all NDB releases
based on MySQL 5.7)

--loadqueries=path Loads all queries from file
specified; does not connect to
database

(Supported in all NDB releases
based on MySQL 5.7)

--real_table_name=string Designates table to handle unique
index size calculations

(Supported in all NDB releases
based on MySQL 5.7)

Usage

perl ndb_size.pl [--database={db_name|ALL}] [--hostname=host[:port]] [--socket=socket] \

3738

ndb_size.pl — NDBCLUSTER Size Requirement Estimator

 [--user=user] [--password=password] \
 [--help|-h] [--format={html|text}] \
 [--loadqueries=file_name] [--savequeries=file_name]

By default, this utility attempts to analyze all databases on the server. You can specify a single database
using the --database option; the default behavior can be made explicit by using ALL for the name
of the database. You can also exclude one or more databases by using the --excludedbs option
with a comma-separated list of the names of the databases to be skipped. Similarly, you can cause
specific tables to be skipped by listing their names, separated by commas, following the optional --
excludetables option. A host name can be specified using --hostname; the default is localhost.
You can specify a port in addition to the host using host:port format for the value of --hostname.
The default port number is 3306. If necessary, you can also specify a socket; the default is /var/lib/
mysql.sock. A MySQL user name and password can be specified the corresponding options shown.
It also possible to control the format of the output using the --format option; this can take either of the
values html or text, with text being the default. An example of the text output is shown here:

$> ndb_size.pl --database=test --socket=/tmp/mysql.sock
ndb_size.pl report for database: 'test' (1 tables)
--
Connected to: DBI:mysql:host=localhost;mysql_socket=/tmp/mysql.sock

Including information for versions: 4.1, 5.0, 5.1

test.t1

DataMemory for Columns (* means varsized DataMemory):
 Column Name Type Varsized Key 4.1 5.0 5.1
 HIDDEN_NDB_PKEY bigint PRI 8 8 8
 c2 varchar(50) Y 52 52 4*
 c1 int(11) 4 4 4
 -- -- --
Fixed Size Columns DM/Row 64 64 12
 Varsize Columns DM/Row 0 0 4

DataMemory for Indexes:
 Index Name Type 4.1 5.0 5.1
 PRIMARY BTREE 16 16 16
 -- -- --
 Total Index DM/Row 16 16 16

IndexMemory for Indexes:
 Index Name 4.1 5.0 5.1
 PRIMARY 33 16 16
 -- -- --
 Indexes IM/Row 33 16 16

Summary (for THIS table):
 4.1 5.0 5.1
 Fixed Overhead DM/Row 12 12 16
 NULL Bytes/Row 4 4 4
 DataMemory/Row 96 96 48
 (Includes overhead, bitmap and indexes)

 Varsize Overhead DM/Row 0 0 8
 Varsize NULL Bytes/Row 0 0 4
 Avg Varside DM/Row 0 0 16

 No. Rows 0 0 0

 Rows/32kb DM Page 340 340 680
Fixedsize DataMemory (KB) 0 0 0

Rows/32kb Varsize DM Page 0 0 2040
 Varsize DataMemory (KB) 0 0 0

3739

ndb_top — View CPU usage information for NDB threads

 Rows/8kb IM Page 248 512 512
 IndexMemory (KB) 0 0 0

Parameter Minimum Requirements

* indicates greater than default

 Parameter Default 4.1 5.0 5.1
 DataMemory (KB) 81920 0 0 0
 NoOfOrderedIndexes 128 1 1 1
 NoOfTables 128 1 1 1
 IndexMemory (KB) 18432 0 0 0
 NoOfUniqueHashIndexes 64 0 0 0
 NoOfAttributes 1000 3 3 3
 NoOfTriggers 768 5 5 5

For debugging purposes, the Perl arrays containing the queries run by this script can be read from the
file specified using can be saved to a file using --savequeries; a file containing such arrays to be read
during script execution can be specified using --loadqueries. Neither of these options has a default
value.

To produce output in HTML format, use the --format option and redirect the output to a file, as shown
here:

$> ndb_size.pl --database=test --socket=/tmp/mysql.sock --format=html > ndb_size.html

(Without the redirection, the output is sent to stdout.)

The output from this script includes the following information:

• Minimum values for the DataMemory, IndexMemory, MaxNoOfTables, MaxNoOfAttributes,
MaxNoOfOrderedIndexes, and MaxNoOfTriggers configuration parameters required to
accommodate the tables analyzed.

• Memory requirements for all of the tables, attributes, ordered indexes, and unique hash indexes defined
in the database.

• The IndexMemory and DataMemory required per table and table row.

21.5.29 ndb_top — View CPU usage information for NDB threads

ndb_top displays running information in the terminal about CPU usage by NDB threads on an NDB
Cluster data node. Each thread is represented by two rows in the output, the first showing system
statistics, the second showing the measured statistics for the thread.

ndb_top is available in MySQL NDB Cluster 7.6 (and later).

Usage

ndb_top [-h hostname] [-t port] [-u user] [-p pass] [-n node_id]

ndb_top connects to a MySQL Server running as an SQL node of the cluster. By default, it attempts to
connect to a mysqld running on localhost and port 3306, as the MySQL root user with no password
specified. You can override the default host and port using, respectively, --host (-h) and --port (-t).
To specify a MySQL user and password, use the --user (-u) and --passwd (-p) options. This user must
be able to read tables in the ndbinfo database (ndb_top uses information from ndbinfo.cpustat and
related tables).

For more information about MySQL user accounts and passwords, see Section 6.2, “Access Control and
Account Management”.

3740

ndb_top — View CPU usage information for NDB threads

Output is available as plain text or an ASCII graph; you can specify this using the --text (-x) and --
graph (-g) options, respectively. These two display modes provide the same information; they can be
used concurrently. At least one display mode must be in use.

Color display of the graph is supported and enabled by default (--color or -c option). With color support
enabled, the graph display shows OS user time in blue, OS system time in green, and idle time as blank.
For measured load, blue is used for execution time, yellow for send time, red for time spent in send
buffer full waits, and blank spaces for idle time. The percentage shown in the graph display is the sum of
percentages for all threads which are not idle. Colors are not currently configurable; you can use grayscale
instead by using --skip-color.

The sorted view (--sort, -r) is based on the maximum of the measured load and the load reported by
the OS. Display of these can be enabled and disabled using the --measured-load (-m) and --os-load
(-o) options. Display of at least one of these loads must be enabled.

The program tries to obtain statistics from a data node having the node ID given by the --node-id (-n)
option; if unspecified, this is 1. ndb_top cannot provide information about other types of nodes.

The view adjusts itself to the height and width of the terminal window; the minimum supported width is 76
characters.

Once started, ndb_top runs continuously until forced to exit; you can quit the program using Ctrl-C. The
display updates once per second; to set a different delay interval, use --sleep-time (-s).

Note

ndb_top is available on macOS, Linux, and Solaris. It is not currently supported on
Windows platforms.

The following table includes all options that are specific to the NDB Cluster program ndb_top. Additional
descriptions follow the table.

Table 21.45 Command-line options used with the program ndb_top

Format Description Added, Deprecated, or
Removed

--color,

-c

Show ASCII graphs in color; use --
skip-colors to disable

ADDED: NDB 7.6.3

--defaults-extra-
file=path

Read given file after global files
are read

(Supported in all NDB releases
based on MySQL 5.7)

--defaults-file=path Read default options from given
file only

(Supported in all NDB releases
based on MySQL 5.7)

--defaults-group-
suffix=string

Also read groups with
concat(group, suffix)

(Supported in all NDB releases
based on MySQL 5.7)

--graph,

-g

Display data using graphs; use --
skip-graphs to disable

ADDED: NDB 7.6.3

--help Show program usage information ADDED: NDB 7.6.3

--host=string,

-h string

Host name or IP address of
MySQL Server to connect to

ADDED: NDB 7.6.3

--login-path=path Read given path from login file (Supported in all NDB releases
based on MySQL 5.7)

3741

ndb_top — View CPU usage information for NDB threads

Format Description Added, Deprecated, or
Removed

--measured-load,

-m

Show measured load by thread ADDED: NDB 7.6.3

--no-defaults Do not read default options from
any option file other than login file

(Supported in all NDB releases
based on MySQL 5.7)

--node-id=#,

-n #

Watch node having this node ID ADDED: NDB 7.6.3

--os-load,

-o

Show load measured by operating
system

ADDED: NDB 7.6.3

--passwd=password,

-p password

Connect using this password
(same as --password option)

ADDED: NDB 7.6.3

REMOVED: NDB 7.6.4

--password=password,

-p password

Connect using this password ADDED: NDB 7.6.6

--port=#,

-t # (<=7.6.5),

-P # (>=7.6.6)

Port number to use when
connecting to MySQL Server

ADDED: NDB 7.6.3

--print-defaults Print program argument list and
exit

(Supported in all NDB releases
based on MySQL 5.7)

--sleep-time=#,

-s #

Time to wait between display
refreshes, in seconds

ADDED: NDB 7.6.3

--socket=path,

-S path

Socket file to use for connection ADDED: NDB 7.6.6

--sort,

-r

Sort threads by usage; use --skip-
sort to disable

ADDED: NDB 7.6.3

--text,

-x (<=7.6.5),

-t (>=7.6.6)

Display data using text ADDED: NDB 7.6.3

--usage Show program usage information;
same as --help

ADDED: NDB 7.6.3

--user=name,

-u name

Connect as this MySQL user ADDED: NDB 7.6.3

Additional Options

• --color, -c

Command-Line Format --color

3742

ndb_top — View CPU usage information for NDB threads

Introduced 5.7.19-ndb-7.6.3

Show ASCII graphs in color; use --skip-colors to disable.

• --defaults-extra-file

Command-Line Format --defaults-extra-file=path

Type String

Default Value [none]

Read given file after global files are read.

• --defaults-file

Command-Line Format --defaults-file=path

Type String

Default Value [none]

Read default options from given file only.

• --defaults-group-suffix

Command-Line Format --defaults-group-suffix=string

Type String

Default Value [none]

Also read groups with concat(group, suffix).

• --graph, -g

Command-Line Format --graph

Introduced 5.7.19-ndb-7.6.3

Display data using graphs; use --skip-graphs to disable. This option or --text must be true; both
options may be true.

• --help, -?

Command-Line Format --help

Introduced 5.7.19-ndb-7.6.3

Show program usage information.

• --host[=name], -h

Command-Line Format --host=string

Introduced 5.7.19-ndb-7.6.3

Type String

Default Value localhost

Host name or IP address of MySQL Server to connect to.

3743

ndb_top — View CPU usage information for NDB threads

• --login-path

Command-Line Format --login-path=path

Type String

Default Value [none]

Read given path from login file.

• --measured-load, -m

Command-Line Format --measured-load

Introduced 5.7.19-ndb-7.6.3

Show measured load by thread. This option or --os-load must be true; both options may be true.

• --no-defaults

Command-Line Format --no-defaults

Do not read default options from any option file other than login file.

• --node-id[=#], -n

Command-Line Format --node-id=#

Introduced 5.7.19-ndb-7.6.3

Type Integer

Default Value 1

Watch the data node having this node ID.

• --os-load, -o

Command-Line Format --os-load

Introduced 5.7.19-ndb-7.6.3

Show load measured by operating system. This option or --measured-load must be true; both options
may be true.

• --passwd[=password], -p

Command-Line Format --passwd=password

Introduced 5.7.19-ndb-7.6.3

Removed 5.7.20-ndb-7.6.4

Type String

Default Value NULL

Connect to a MySQL Server using this password and the MySQL user specified by --user. Synonym
for --password.

This password is associated with a MySQL user account only, and is not related in any way to the
password used with encrypted NDB backups.

3744

ndb_top — View CPU usage information for NDB threads

• --password[=password], -p

Command-Line Format --password=password

Introduced 5.7.22-ndb-7.6.6

Type String

Default Value NULL

Connect to a MySQL Server using this password and the MySQL user specified by --user.

This password is associated with a MySQL user account only, and is not related in any way to the
password used with encrypted NDB backups.

• --port[=#], -P

Command-Line Format --port=#

Introduced 5.7.19-ndb-7.6.3

Type Integer

Default Value 3306

Port number to use when connecting to MySQL Server.

(Formerly, the short form for this option was -t, which was repurposed as the short form of --text.)

• --print-defaults

Command-Line Format --print-defaults

Print program argument list and exit.

• --sleep-time[=seconds], -s

Command-Line Format --sleep-time=#

Introduced 5.7.19-ndb-7.6.3

Type Integer

Default Value 1

Time to wait between display refreshes, in seconds.

• --socket=path/to/file, -S

Command-Line Format --socket=path

Introduced 5.7.22-ndb-7.6.6

Type Path name

Default Value [none]

Use the specified socket file for the connection.

• --sort, -r

Command-Line Format --sort

3745

ndb_top — View CPU usage information for NDB threads

Introduced 5.7.19-ndb-7.6.3

Sort threads by usage; use --skip-sort to disable.

• --text, -t

Command-Line Format --text

Introduced 5.7.19-ndb-7.6.3

Display data using text. This option or --graph must be true; both options may be true.

(The short form for this option was -x in previous versions of NDB Cluster, but this is no longer
supported.)

• --usage

Command-Line Format --usage

Introduced 5.7.19-ndb-7.6.3

Display help text and exit; same as --help.

• --user[=name], -u

Command-Line Format --user=name

Introduced 5.7.19-ndb-7.6.3

Type String

Default Value root

Connect as this MySQL user. Normally requires a password supplied by the --password option.

Sample Output. The next figure shows ndb_top running in a terminal window on a Linux system with
an ndbmtd data node under a moderate load. Here, the program has been invoked using ndb_top -n8 -
x to provide both text and graph output:

3746

ndb_waiter — Wait for NDB Cluster to Reach a Given Status

Figure 21.7 ndb_top Running in Terminal

21.5.30 ndb_waiter — Wait for NDB Cluster to Reach a Given Status

ndb_waiter repeatedly (each 100 milliseconds) prints out the status of all cluster data nodes until either
the cluster reaches a given status or the --timeout limit is exceeded, then exits. By default, it waits for
the cluster to achieve STARTED status, in which all nodes have started and connected to the cluster. This
can be overridden using the --no-contact and --not-started options.

The node states reported by this utility are as follows:

• NO_CONTACT: The node cannot be contacted.

• UNKNOWN: The node can be contacted, but its status is not yet known. Usually, this means that the node
has received a START or RESTART command from the management server, but has not yet acted on it.

• NOT_STARTED: The node has stopped, but remains in contact with the cluster. This is seen when
restarting the node using the management client's RESTART command.

• STARTING: The node's ndbd process has started, but the node has not yet joined the cluster.

3747

ndb_waiter — Wait for NDB Cluster to Reach a Given Status

• STARTED: The node is operational, and has joined the cluster.

• SHUTTING_DOWN: The node is shutting down.

• SINGLE USER MODE: This is shown for all cluster data nodes when the cluster is in single user mode.

Options that can be used with ndb_waiter are shown in the following table. Additional descriptions follow
the table.

Table 21.46 Command-line options used with the program ndb_waiter

Format Description Added, Deprecated, or
Removed

--character-sets-dir=path Directory containing character
sets

(Supported in all NDB releases
based on MySQL 5.7)

--connect-retries=# Number of times to retry
connection before giving up

(Supported in all NDB releases
based on MySQL 5.7)

--connect-retry-delay=# Number of seconds to wait
between attempts to contact
management server

(Supported in all NDB releases
based on MySQL 5.7)

--connect-
string=connection_string,

-c connection_string

Same as --ndb-connectstring (Supported in all NDB releases
based on MySQL 5.7)

--core-file Write core file on error; used in
debugging

(Supported in all NDB releases
based on MySQL 5.7)

--defaults-extra-
file=path

Read given file after global files
are read

(Supported in all NDB releases
based on MySQL 5.7)

--defaults-file=path Read default options from given
file only

(Supported in all NDB releases
based on MySQL 5.7)

--defaults-group-
suffix=string

Also read groups with
concat(group, suffix)

(Supported in all NDB releases
based on MySQL 5.7)

--help,

-?

Display help text and exit (Supported in all NDB releases
based on MySQL 5.7)

--login-path=path Read given path from login file (Supported in all NDB releases
based on MySQL 5.7)

--ndb-
connectstring=connection_string,

-c connection_string

Set connect string for
connecting to ndb_mgmd.
Syntax: "[nodeid=id;]
[host=]hostname[:port]".
Overrides entries in
NDB_CONNECTSTRING and
my.cnf

(Supported in all NDB releases
based on MySQL 5.7)

--ndb-mgmd-
host=connection_string,

-c connection_string

Same as --ndb-connectstring (Supported in all NDB releases
based on MySQL 5.7)

--ndb-nodeid=# Set node ID for this node,
overriding any ID set by --ndb-
connectstring

(Supported in all NDB releases
based on MySQL 5.7)

3748

ndb_waiter — Wait for NDB Cluster to Reach a Given Status

Format Description Added, Deprecated, or
Removed

--ndb-optimized-node-
selection

Enable optimizations for selection
of nodes for transactions. Enabled
by default; use --skip-ndb-
optimized-node-selection to
disable

(Supported in all NDB releases
based on MySQL 5.7)

--no-contact,

-n

Wait for cluster to reach NO
CONTACT state

(Supported in all NDB releases
based on MySQL 5.7)

--no-defaults Do not read default options from
any option file other than login file

(Supported in all NDB releases
based on MySQL 5.7)

--not-started Wait for cluster to reach NOT
STARTED state

(Supported in all NDB releases
based on MySQL 5.7)

--nowait-nodes=list List of nodes not to be waited for (Supported in all NDB releases
based on MySQL 5.7)

--print-defaults Print program argument list and
exit

(Supported in all NDB releases
based on MySQL 5.7)

--single-user Wait for cluster to enter single
user mode

(Supported in all NDB releases
based on MySQL 5.7)

--timeout=#,

-t #

Wait this many seconds, then
exit whether or not cluster has
reached desired state

(Supported in all NDB releases
based on MySQL 5.7)

--usage,

-?

Display help text and exit; same
as --help

(Supported in all NDB releases
based on MySQL 5.7)

--version,

-V

Display version information and
exit

(Supported in all NDB releases
based on MySQL 5.7)

--wait-nodes=list,

-w list

List of nodes to be waited for (Supported in all NDB releases
based on MySQL 5.7)

Usage

ndb_waiter [-c connection_string]

Additional Options

• --character-sets-dir

Command-Line Format --character-sets-dir=path

Directory containing character sets.

• --connect-retries

Command-Line Format --connect-retries=#

Type Integer

Default Value 12

3749

ndb_waiter — Wait for NDB Cluster to Reach a Given Status

Minimum Value 0

Maximum Value 12

Number of times to retry connection before giving up.

• --connect-retry-delay

Command-Line Format --connect-retry-delay=#

Type Integer

Default Value 5

Minimum Value 0

Maximum Value 5

Number of seconds to wait between attempts to contact management server.

• --connect-string

Command-Line Format --connect-string=connection_string

Type String

Default Value [none]

Same as --ndb-connectstring.

• --core-file

Command-Line Format --core-file

Write core file on error; used in debugging.

• --defaults-extra-file

Command-Line Format --defaults-extra-file=path

Type String

Default Value [none]

Read given file after global files are read.

• --defaults-file

Command-Line Format --defaults-file=path

Type String

Default Value [none]

Read default options from given file only.

• --defaults-group-suffix

Command-Line Format --defaults-group-suffix=string

Type String

Default Value [none]

3750

ndb_waiter — Wait for NDB Cluster to Reach a Given Status

Also read groups with concat(group, suffix).

• --login-path

Command-Line Format --login-path=path

Type String

Default Value [none]

Read given path from login file.

• --help

Command-Line Format --help

Display help text and exit.

• --ndb-connectstring

Command-Line Format --ndb-connectstring=connection_string

Type String

Default Value [none]

Set connect string for connecting to ndb_mgmd. Syntax: "[nodeid=id;][host=]hostname[:port]". Overrides
entries in NDB_CONNECTSTRING and my.cnf.

• --ndb-mgmd-host

Command-Line Format --ndb-mgmd-host=connection_string

Type String

Default Value [none]

Same as --ndb-connectstring.

• --ndb-nodeid

Command-Line Format --ndb-nodeid=#

Type Integer

Default Value [none]

Set node ID for this node, overriding any ID set by --ndb-connectstring.

• --ndb-optimized-node-selection

Command-Line Format --ndb-optimized-node-selection

Enable optimizations for selection of nodes for transactions. Enabled by default; use --skip-ndb-
optimized-node-selection to disable.

• --no-contact, -n

Instead of waiting for the STARTED state, ndb_waiter continues running until the cluster reaches
NO_CONTACT status before exiting.

3751

ndb_waiter — Wait for NDB Cluster to Reach a Given Status

• --no-defaults

Command-Line Format --no-defaults

Do not read default options from any option file other than login file.

• --not-started

Instead of waiting for the STARTED state, ndb_waiter continues running until the cluster reaches
NOT_STARTED status before exiting.

• --nowait-nodes=list

When this option is used, ndb_waiter does not wait for the nodes whose IDs are listed. The list is
comma-delimited; ranges can be indicated by dashes, as shown here:

$> ndb_waiter --nowait-nodes=1,3,7-9

Important

Do not use this option together with the --wait-nodes option.

• --print-defaults

Command-Line Format --print-defaults

Print program argument list and exit.

• --timeout=seconds, -t seconds

Time to wait. The program exits if the desired state is not achieved within this number of seconds. The
default is 120 seconds (1200 reporting cycles).

• --single-user

The program waits for the cluster to enter single user mode.

• --usage

Command-Line Format --usage

Display help text and exit; same as --help.

• --version

Command-Line Format --version

Display version information and exit.

3752

ndb_waiter — Wait for NDB Cluster to Reach a Given Status

• --wait-nodes=list, -w list

When this option is used, ndb_waiter waits only for the nodes whose IDs are listed. The list is comma-
delimited; ranges can be indicated by dashes, as shown here:

$> ndb_waiter --wait-nodes=2,4-6,10

Important

Do not use this option together with the --nowait-nodes option.

Sample Output. Shown here is the output from ndb_waiter when run against a 4-node cluster in
which two nodes have been shut down and then started again manually. Duplicate reports (indicated by
...) are omitted.

$> ./ndb_waiter -c localhost

Connecting to mgmsrv at (localhost)
State node 1 STARTED
State node 2 NO_CONTACT
State node 3 STARTED
State node 4 NO_CONTACT
Waiting for cluster enter state STARTED

...

State node 1 STARTED
State node 2 UNKNOWN
State node 3 STARTED
State node 4 NO_CONTACT
Waiting for cluster enter state STARTED

...

State node 1 STARTED
State node 2 STARTING
State node 3 STARTED
State node 4 NO_CONTACT
Waiting for cluster enter state STARTED

...

State node 1 STARTED
State node 2 STARTING
State node 3 STARTED
State node 4 UNKNOWN
Waiting for cluster enter state STARTED

...

State node 1 STARTED
State node 2 STARTING
State node 3 STARTED
State node 4 STARTING
Waiting for cluster enter state STARTED

...

State node 1 STARTED
State node 2 STARTED
State node 3 STARTED
State node 4 STARTING
Waiting for cluster enter state STARTED

...

3753

Management of NDB Cluster

State node 1 STARTED
State node 2 STARTED
State node 3 STARTED
State node 4 STARTED
Waiting for cluster enter state STARTED

Note

If no connection string is specified, then ndb_waiter tries to connect to a
management on localhost, and reports Connecting to mgmsrv at (null).

Prior to NDB 7.5.18 and 7.6.14, this program printed NDBT_ProgramExit - status upon completion of
its run, due to an unnecessary dependency on the NDBT testing library. This dependency is has now been
removed, eliminating the extraneous output.

21.6 Management of NDB Cluster
Managing an NDB Cluster involves a number of tasks, the first of which is to configure and start NDB
Cluster. This is covered in Section 21.4, “Configuration of NDB Cluster”, and Section 21.5, “NDB Cluster
Programs”.

The next few sections cover the management of a running NDB Cluster.

For information about security issues relating to management and deployment of an NDB Cluster, see
Section 21.6.18, “NDB Cluster Security Issues”.

There are essentially two methods of actively managing a running NDB Cluster. The first of these is
through the use of commands entered into the management client whereby cluster status can be checked,
log levels changed, backups started and stopped, and nodes stopped and started. The second method
involves studying the contents of the cluster log ndb_node_id_cluster.log; this is usually found in the
management server's DataDir directory, but this location can be overridden using the LogDestination
option. (Recall that node_id represents the unique identifier of the node whose activity is being logged.)
The cluster log contains event reports generated by ndbd. It is also possible to send cluster log entries to a
Unix system log.

Some aspects of the cluster's operation can be also be monitored from an SQL node using the SHOW
ENGINE NDB STATUS statement.

More detailed information about NDB Cluster operations is available in real time through an SQL interface
using the ndbinfo database. For more information, see Section 21.6.15, “ndbinfo: The NDB Cluster
Information Database”.

NDB statistics counters provide improved monitoring using the mysql client. These counters, implemented
in the NDB kernel, relate to operations performed by or affecting Ndb objects, such as starting, closing,
and aborting transactions; primary key and unique key operations; table, range, and pruned scans; blocked
threads waiting for various operations to complete; and data and events sent and received by NDB Cluster.
The counters are incremented by the NDB kernel whenever NDB API calls are made or data is sent to or
received by the data nodes.

mysqld exposes the NDB API statistics counters as system status variables, which can be identified from
the prefix common to all of their names (Ndb_api_). The values of these variables can be read in the
mysql client from the output of a SHOW STATUS statement, or by querying either the SESSION_STATUS
table or the GLOBAL_STATUS table (in the INFORMATION_SCHEMA database). By comparing the values of
the status variables before and after the execution of an SQL statement that acts on NDB tables, you can
observe the actions taken on the NDB API level that correspond to this statement, which can be beneficial
for monitoring and performance tuning of NDB Cluster.

3754

https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html

Commands in the NDB Cluster Management Client

MySQL Cluster Manager provides an advanced command-line interface that simplifies many otherwise
complex NDB Cluster management tasks, such as starting, stopping, or restarting an NDB Cluster with
a large number of nodes. The MySQL Cluster Manager client also supports commands for getting and
setting the values of most node configuration parameters as well as mysqld server options and variables
relating to NDB Cluster. See MySQL Cluster Manager 1.4.8 User Manual, for more information.

21.6.1 Commands in the NDB Cluster Management Client

In addition to the central configuration file, a cluster may also be controlled through a command-line
interface available through the management client ndb_mgm. This is the primary administrative interface to
a running cluster.

Commands for the event logs are given in Section 21.6.3, “Event Reports Generated in NDB Cluster”;
commands for creating backups and restoring from them are provided in Section 21.6.8, “Online Backup of
NDB Cluster”.

Using ndb_mgm with MySQL Cluster Manager. MySQL Cluster Manager handles starting and
stopping processes and tracks their states internally, so it is not necessary to use ndb_mgm for these
tasks for an NDB Cluster that is under MySQL Cluster Manager control. it is recommended not to use the
ndb_mgm command-line client that comes with the NDB Cluster distribution to perform operations that
involve starting or stopping nodes. These include but are not limited to the START, STOP, RESTART, and
SHUTDOWN commands. For more information, see MySQL Cluster Manager Process Commands.

The management client has the following basic commands. In the listing that follows, node_id denotes
either a data node ID or the keyword ALL, which indicates that the command should be applied to all of the
cluster's data nodes.

• CONNECT connection-string

Connects to the management server indicated by the connection string. If the client is already connected
to this server, the client reconnects.

• CREATE NODEGROUP nodeid[, nodeid, ...]

Creates a new NDB Cluster node group and causes data nodes to join it.

This command is used after adding new data nodes online to an NDB Cluster, and causes them to join
a new node group and thus to begin participating fully in the cluster. The command takes as its sole
parameter a comma-separated list of node IDs—these are the IDs of the nodes just added and started,
and that are to join the new node group. The list must contain no duplicate IDs; beginning with NDB
7.5.23 and NDB 7.6.19, the presence of any duplicates causes the command to return an error. The
number of nodes in the list must be the same as the number of nodes in each node group that is already
part of the cluster (each NDB Cluster node group must have the same number of nodes). In other words,
if the NDB Cluster consists of 2 node groups having 2 data nodes each, then the new node group must
also have 2 data nodes.

The node group ID of the new node group created by this command is determined automatically, and
always the next highest unused node group ID in the cluster; it is not possible to set it manually.

For more information, see Section 21.6.7, “Adding NDB Cluster Data Nodes Online”.

• DROP NODEGROUP nodegroup_id

Drops the NDB Cluster node group with the given nodegroup_id.

This command can be used to drop a node group from an NDB Cluster. DROP NODEGROUP takes as its
sole argument the node group ID of the node group to be dropped.

3755

https://dev.mysql.com/doc/mysql-cluster-manager/1.4/en/
https://dev.mysql.com/doc/mysql-cluster-manager/1.4/en/mcm-process-commands.html

Commands in the NDB Cluster Management Client

DROP NODEGROUP acts only to remove the data nodes in the effected node group from that node
group. It does not stop data nodes, assign them to a different node group, or remove them from the
cluster's configuration. A data node that does not belong to a node group is indicated in the output of
the management client SHOW command with no nodegroup in place of the node group ID, like this
(indicated using bold text):

id=3 @10.100.2.67 (5.7.44-ndb-7.5.36, no nodegroup)

DROP NODEGROUP works only when all data nodes in the node group to be dropped are completely
empty of any table data and table definitions. Since there is currently no way using ndb_mgm or the
mysql client to remove all data from a specific data node or node group, this means that the command
succeeds only in the two following cases:

1. After issuing CREATE NODEGROUP in the ndb_mgm client, but before issuing any ALTER
TABLE ... REORGANIZE PARTITION statements in the mysql client.

2. After dropping all NDBCLUSTER tables using DROP TABLE.

TRUNCATE TABLE does not work for this purpose because this removes only the table data; the data
nodes continue to store an NDBCLUSTER table's definition until a DROP TABLE statement is issued
that causes the table metadata to be dropped.

For more information about DROP NODEGROUP, see Section 21.6.7, “Adding NDB Cluster Data Nodes
Online”.

• ENTER SINGLE USER MODE node_id

Enters single user mode, whereby only the MySQL server identified by the node ID node_id is
permitted to access the database.

• EXIT SINGLE USER MODE

Exits single user mode, enabling all SQL nodes (that is, all running mysqld processes) to access the
database.

Note

It is possible to use EXIT SINGLE USER MODE even when not in single user
mode, although the command has no effect in this case.

• HELP

Displays information on all available commands.

• node_id NODELOG DEBUG {ON|OFF}

Toggles debug logging in the node log, as though the effected data node or nodes had been started with
the --verbose option. NODELOG DEBUG ON starts debug logging; NODELOG DEBUG OFF switches
debug logging off.

This command was added in NDB 7.6.

3756

Commands in the NDB Cluster Management Client

• PROMPT [prompt]

Changes the prompt shown by ndb_mgm to the string literal prompt.

prompt should not be quoted (unless you want the prompt to include the quotation marks). Unlike the
case with the mysql client, special character sequences and escapes are not recognized. If called
without an argument, the command resets the prompt to the default value (ndb_mgm>).

Some examples are shown here:

ndb_mgm> PROMPT mgm#1:
mgm#1: SHOW
Cluster Configuration
...
mgm#1: PROMPT mymgm >
mymgm > PROMPT 'mymgm:'
'mymgm:' PROMPT mymgm:
mymgm: PROMPT
ndb_mgm> EXIT
$>

Note that leading spaces and spaces within the prompt string are not trimmed. Trailing spaces are
removed.

The PROMPT command was added in NDB 7.5.0.

• QUIT, EXIT

Terminates the management client.

This command does not affect any nodes connected to the cluster.

• node_id REPORT report-type

Displays a report of type report-type for the data node identified by node_id, or for all data nodes
using ALL.

Currently, there are three accepted values for report-type:

• BackupStatus provides a status report on a cluster backup in progress

• MemoryUsage displays how much data memory and index memory is being used by each data node
as shown in this example:

ndb_mgm> ALL REPORT MEMORY

Node 1: Data usage is 5%(177 32K pages of total 3200)
Node 1: Index usage is 0%(108 8K pages of total 12832)
Node 2: Data usage is 5%(177 32K pages of total 3200)
Node 2: Index usage is 0%(108 8K pages of total 12832)

This information is also available from the ndbinfo.memoryusage table.

• EventLog reports events from the event log buffers of one or more data nodes.

report-type is case-insensitive and “fuzzy”; for MemoryUsage, you can use MEMORY (as shown in the
prior example), memory, or even simply MEM (or mem). You can abbreviate BackupStatus in a similar
fashion.

3757

Commands in the NDB Cluster Management Client

• node_id RESTART [-n] [-i] [-a] [-f]

Restarts the data node identified by node_id (or all data nodes).

Using the -i option with RESTART causes the data node to perform an initial restart; that is, the node's
file system is deleted and recreated. The effect is the same as that obtained from stopping the data node
process and then starting it again using ndbd --initial from the system shell.

Note

Backup files and Disk Data files are not removed when this option is used.

Using the -n option causes the data node process to be restarted, but the data node is not actually
brought online until the appropriate START command is issued. The effect of this option is the same as
that obtained from stopping the data node and then starting it again using ndbd --nostart or ndbd -n
from the system shell.

Using the -a causes all current transactions relying on this node to be aborted. No GCP check is done
when the node rejoins the cluster.

Normally, RESTART fails if taking the node offline would result in an incomplete cluster. The -f option
forces the node to restart without checking for this. If this option is used and the result is an incomplete
cluster, the entire cluster is restarted.

• SHOW

Displays basic information about the cluster and cluster nodes. For all nodes, the output includes the
node's ID, type, and NDB software version. If the node is connected, its IP address is also shown;
otherwise the output shows not connected, accepting connect from ip_address, with any
host used for nodes that are permitted to connect from any address.

In addition, for data nodes, the output includes starting if the node has not yet started, and shows
the node group of which the node is a member. If the data node is acting as the master node, this is
indicated with an asterisk (*).

Consider a cluster whose configuration file includes the information shown here (possible additional
settings are omitted for clarity):

[ndbd default]
DataMemory= 128G
NoOfReplicas= 2

[ndb_mgmd]
NodeId=50
HostName=198.51.100.150

[ndbd]
NodeId=5
HostName=198.51.100.10
DataDir=/var/lib/mysql-cluster

[ndbd]
NodeId=6
HostName=198.51.100.20
DataDir=/var/lib/mysql-cluster

[ndbd]
NodeId=7
HostName=198.51.100.30
DataDir=/var/lib/mysql-cluster

3758

Commands in the NDB Cluster Management Client

[ndbd]
NodeId=8
HostName=198.51.100.40
DataDir=/var/lib/mysql-cluster

[mysqld]
NodeId=100
HostName=198.51.100.100

[api]
NodeId=101

After this cluster (including one SQL node) has been started, SHOW displays the following output:

ndb_mgm> SHOW
Connected to Management Server at: localhost:1186
Cluster Configuration

[ndbd(NDB)] 4 node(s)
id=5 @198.51.100.10 (5.7.44-ndb-7.6.36, Nodegroup: 0, *)
id=6 @198.51.100.20 (5.7.44-ndb-7.6.36, Nodegroup: 0)
id=7 @198.51.100.30 (5.7.44-ndb-7.6.36, Nodegroup: 1)
id=8 @198.51.100.40 (5.7.44-ndb-7.6.36, Nodegroup: 1)

[ndb_mgmd(MGM)] 1 node(s)
id=50 @198.51.100.150 (5.7.44-ndb-7.6.36)

[mysqld(API)] 2 node(s)
id=100 @198.51.100.100 (5.7.44-ndb-7.6.36)
id=101 (not connected, accepting connect from any host)

The output from this command also indicates when the cluster is in single user mode (see the
description of the ENTER SINGLE USER MODE command, as well as Section 21.6.6, “NDB Cluster
Single User Mode”).

• SHUTDOWN

Shuts down all cluster data nodes and management nodes. To exit the management client after this has
been done, use EXIT or QUIT.

This command does not shut down any SQL nodes or API nodes that are connected to the cluster.

• node_id STATUS

Displays status information for the data node identified by node_id (or for all data nodes).

Possible node status values include UNKNOWN, NO_CONTACT, NOT_STARTED, STARTING, STARTED,
SHUTTING_DOWN, and RESTARTING.

The output from this command also indicates when the cluster is in single user mode (status SINGLE
USER MODE).

3759

Commands in the NDB Cluster Management Client

• node_id START

Brings online the data node identified by node_id (or all data nodes).

ALL START works on all data nodes only, and does not affect management nodes.

Important

To use this command to bring a data node online, the data node must have been
started using --nostart or -n.

• node_id STOP [-a] [-f]

Stops the data or management node identified by node_id.

Note

ALL STOP works to stop all data nodes only, and does not affect management
nodes.

A node affected by this command disconnects from the cluster, and its associated ndbd or ndb_mgmd
process terminates.

The -a option causes the node to be stopped immediately, without waiting for the completion of any
pending transactions.

Normally, STOP fails if the result would cause an incomplete cluster. The -f option forces the node to
shut down without checking for this. If this option is used and the result is an incomplete cluster, the
cluster immediately shuts down.

Warning

Use of the -a option also disables the safety check otherwise performed when
STOP is invoked to insure that stopping the node does not cause an incomplete
cluster. In other words, you should exercise extreme care when using the -a
option with the STOP command, due to the fact that this option makes it possible
for the cluster to undergo a forced shutdown because it no longer has a complete
copy of all data stored in NDB.

Additional commands. A number of other commands available in the ndb_mgm client are described
elsewhere, as shown in the following list:

• START BACKUP is used to perform an online backup in the ndb_mgm client; the ABORT BACKUP
command is used to cancel a backup already in progress. For more information, see Section 21.6.8,
“Online Backup of NDB Cluster”.

• The CLUSTERLOG command is used to perform various logging functions. See Section 21.6.3, “Event
Reports Generated in NDB Cluster”, for more information and examples. NDB 7.6 adds NODELOG
DEBUG to activate or deactivate debug printouts in node logs, as described previously in this section.

• For testing and diagnostics work, the client supports a DUMP command which can be used to execute
internal commands on the cluster. It should never be used in a production setting unless directed to do
so by MySQL Support. For more information, see NDB Cluster Management Client DUMP Commands.

3760

https://dev.mysql.com/doc/ndb-internals/en/dump-commands.html
https://dev.mysql.com/doc/ndb-internals/en/dump-commands.html

NDB Cluster Log Messages

21.6.2 NDB Cluster Log Messages

This section contains information about the messages written to the cluster log in response to different
cluster log events. It provides additional, more specific information on NDB transporter errors.

21.6.2.1 NDB Cluster: Messages in the Cluster Log

The following table lists the most common NDB cluster log messages. For information about the cluster
log, log events, and event types, see Section 21.6.3, “Event Reports Generated in NDB Cluster”. These
log messages also correspond to log event types in the MGM API; see The Ndb_logevent_type Type, for
related information of interest to Cluster API developers.

Table 21.47 Common NDB cluster log messages

Log Message Description Event Name Event Type Priority Severity

Node
mgm_node_id:
Node
data_node_id
Connected

The data node
having node ID
node_id has
connected to the
management
server (node
mgm_node_id).

Connected Connection 8 INFO

Node
mgm_node_id:
Node
data_node_id
Disconnected

The data node
having node ID
data_node_id
has
disconnected
from the
management
server (node
mgm_node_id).

Disconnected Connection 8 ALERT

Node
data_node_id:
Communication
to Node
api_node_id
closed

The API node
or SQL node
having node ID
api_node_id
is no longer
communicating
with data node
data_node_id.

CommunicationClosedConnection 8 INFO

Node
data_node_id:
Communication
to Node
api_node_id
opened

The API node
or SQL node
having node ID
api_node_id
is now
communicating
with data node
data_node_id.

CommunicationOpenedConnection 8 INFO

Node
mgm_node_id:
Node
api_node_id:
API version

The API node
having node ID
api_node_id
has connected
to management
node

ConnectedApiVersionConnection 8 INFO

3761

https://dev.mysql.com/doc/ndbapi/en/mgm-types.html#mgm-ndb-logevent-type

NDB Cluster Log Messages

Log Message Description Event Name Event Type Priority Severity
mgm_node_id
using NDB
API version
version
(generally the
same as the
MySQL version
number).

Node
node_id:
Global
checkpoint
gci started

A global
checkpoint with
the ID gci has
been started;
node node_id
is the master
responsible
for this global
checkpoint.

GlobalCheckpointStartedCheckpoint 9 INFO

Node
node_id:
Global
checkpoint
gci
completed

The global
checkpoint
having the ID
gci has been
completed;
node node_id
was the master
responsible
for this global
checkpoint.

GlobalCheckpointCompletedCheckpoint 10 INFO

Node
node_id:
Local
checkpoint
lcp started.
Keep GCI =
current_gci
oldest
restorable
GCI =
old_gci

The local
checkpoint
having
sequence ID
lcp has been
started on node
node_id. The
most recent GCI
that can be used
has the index
current_gci,
and the oldest
GCI from which
the cluster can
be restored
has the index
old_gci.

LocalCheckpointStartedCheckpoint 7 INFO

Node
node_id:
Local
checkpoint
lcp
completed

The local
checkpoint
having
sequence ID
lcp on node

LocalCheckpointCompletedCheckpoint 8 INFO

3762

NDB Cluster Log Messages

Log Message Description Event Name Event Type Priority Severity
node_id has
been completed.

Node
node_id:
Local
Checkpoint
stopped in
CALCULATED_KEEP_GCI

The node
was unable to
determine the
most recent
usable GCI.

LCPStoppedInCalcKeepGciCheckpoint 0 ALERT

Node
node_id:
Table ID =
table_id,
fragment
ID =
fragment_id
has
completed
LCP on Node
node_id
maxGciStarted:
started_gci
maxGciCompleted:
completed_gci

A table fragment
has been
checkpointed
to disk on node
node_id. The
GCI in progress
has the index
started_gci,
and the most
recent GCI
to have been
completed
has the index
completed_gci.

LCPFragmentCompletedCheckpoint 11 INFO

Node
node_id:
ACC Blocked
num_1 and
TUP Blocked
num_2 times
last second

Undo logging
is blocked
because the log
buffer is close to
overflowing.

UndoLogBlockedCheckpoint 7 INFO

Node
node_id:
Start
initiated
version

Data node
node_id,
running
NDB version
version, is
beginning its
startup process.

NDBStartStartedStartUp 1 INFO

Node
node_id:
Started
version

Data node
node_id,
running
NDB version
version,
has started
successfully.

NDBStartCompletedStartUp 1 INFO

Node
node_id:
STTORRY
received
after

The node has
received a
signal indicating
that a cluster
restart has
completed.

STTORRYRecievedStartUp 15 INFO

3763

NDB Cluster Log Messages

Log Message Description Event Name Event Type Priority Severity
restart
finished

Node
node_id:
Start
phase phase
completed
(type)

The node has
completed
start phase
phase of a
type start. For
a listing of start
phases, see
Section 21.6.4,
“Summary of
NDB Cluster
Start Phases”.
(type is one
of initial,
system, node,
initial
node, or
<Unknown>.)

StartPhaseCompletedStartUp 4 INFO

Node
node_id:
CM_REGCONF
president =
president_id,
own Node =
own_id, our
dynamic id =
dynamic_id

Node
president_id
has been
selected as
“president”.
own_id and
dynamic_id
should always
be the same
as the ID
(node_id) of
the reporting
node.

CM_REGCONF StartUp 3 INFO

Node
node_id:
CM_REGREF
from Node
president_id
to our Node
node_id.
Cause =
cause

The reporting
node (ID
node_id)
was unable to
accept node
president_id
as president.
The cause of
the problem
is given as
one of Busy,
Election
with wait
= false, Not
president,
Election
without
selecting
new

CM_REGREF StartUp 8 INFO

3764

NDB Cluster Log Messages

Log Message Description Event Name Event Type Priority Severity
candidate,
or No such
cause.

Node
node_id:
We are Node
own_id with
dynamic ID
dynamic_id,
our left
neighbor is
Node id_1,
our right is
Node id_2

The node has
discovered its
neighboring
nodes in the
cluster (node
id_1 and
node id_2).
node_id,
own_id, and
dynamic_id
should always
be the same;
if they are not,
this indicates
a serious
misconfiguration
of the cluster
nodes.

FIND_NEIGHBOURSStartUp 8 INFO

Node
node_id:
type
shutdown
initiated

The node has
received a
shutdown signal.
The type of
shutdown is
either Cluster
or Node.

NDBStopStartedStartUp 1 INFO

Node
node_id:
Node
shutdown
completed
[, action]
[Initiated
by signal
signal.]

The node has
been shut down.
This report
may include an
action, which
if present is one
of restarting,
no start,
or initial.
The report may
also include a
reference to an
NDB Protocol
signal;
for possible
signals, refer to
Operations and
Signals.

NDBStopCompletedStartUp 1 INFO

Node
node_id:
Forced node
shutdown
completed

The node has
been forcibly
shut down. The
action (one of
restarting,

NDBStopForcedStartUp 1 ALERT

3765

https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-ndb-protocol-operations-signals.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-ndb-protocol-operations-signals.html

NDB Cluster Log Messages

Log Message Description Event Name Event Type Priority Severity
[, action].
[Occurred
during
startphase
start_phase.]
[Initiated
by signal.]
[Caused
by error
error_code:
'error_message(error_classification).
error_status'.
[(extra info
extra_code)]]

no start,
or initial)
subsequently
being taken,
if any, is also
reported. If
the shutdown
occurred while
the node
was starting,
the report
includes the
start_phase
during which the
node failed. If
this was a result
of a signal
sent to the node,
this information
is also provided
(see Operations
and Signals,
for more
information).
If the error
causing the
failure is known,
this is also
included;
for more
information
about NDB error
messages and
classifications,
see NDB Cluster
API Errors.

Node
node_id:
Node
shutdown
aborted

The node
shutdown
process was
aborted by the
user.

NDBStopAbortedStartUp 1 INFO

Node
node_id:
StartLog:
[GCI Keep:
keep_pos
LastCompleted:
last_pos
NewestRestorable:
restore_pos]

This reports
global
checkpoints
referenced
during a node
start. The redo
log prior to
keep_pos
is dropped.
last_pos is

StartREDOLog StartUp 4 INFO

3766

https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-ndb-protocol-operations-signals.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-ndb-protocol-operations-signals.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-errors.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-errors.html

NDB Cluster Log Messages

Log Message Description Event Name Event Type Priority Severity
the last global
checkpoint in
which data node
the participated;
restore_pos
is the global
checkpoint
which is actually
used to restore
all data nodes.

startup_message
[Listed
separately; see
below.]

There are a
number of
possible startup
messages that
can be logged
under different
circumstances.
These are listed
separately; see
Section 21.6.2.2,
“NDB Cluster
Log Startup
Messages”.

StartReport StartUp 4 INFO

Node
node_id:
Node restart
completed
copy of
dictionary
information

Copying of
data dictionary
information to
the restarted
node has been
completed.

NR_CopyDict NodeRestart 8 INFO

Node
node_id:
Node restart
completed
copy of
distribution
information

Copying of data
distribution
information to
the restarted
node has been
completed.

NR_CopyDistr NodeRestart 8 INFO

Node
node_id:
Node restart
starting
to copy the
fragments to
Node node_id

Copy of
fragments to
starting data
node node_id
has begun

NR_CopyFragsStartedNodeRestart 8 INFO

Node
node_id:
Table ID =
table_id,
fragment
ID =

Fragment
fragment_id
from table
table_id has
been copied

NR_CopyFragDoneNodeRestart 10 INFO

3767

NDB Cluster Log Messages

Log Message Description Event Name Event Type Priority Severity
fragment_id
have been
copied to
Node node_id

to data node
node_id

Node
node_id:
Node restart
completed
copying the
fragments to
Node node_id

Copying of all
table fragments
to restarting
data node
node_id has
been completed

NR_CopyFragsCompletedNodeRestart 8 INFO

Node
node_id:
Node
node1_id
completed
failure
of Node
node2_id

Data node
node1_id has
detected the
failure of data
node node2_id

NodeFailCompletedNodeRestart 8 ALERT

All nodes
completed
failure of
Node node_id

All (remaining)
data nodes have
detected the
failure of data
node node_id

NodeFailCompletedNodeRestart 8 ALERT

Node
failure of
node_idblock
completed

The failure
of data node
node_id has
been detected in
the blockNDB
kernel block,
where block
is 1 of DBTC,
DBDICT,
DBDIH, or
DBLQH; for more
information, see
NDB Kernel
Blocks

NodeFailCompletedNodeRestart 8 ALERT

Node
mgm_node_id:
Node
data_node_id
has failed.
The Node
state at
failure was
state_code

A data node
has failed. Its
state at the
time of failure
is described by
an arbitration
state code
state_code:
possible state
code values can
be found in the
file include/

NODE_FAILREP NodeRestart 8 ALERT

3768

https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbtc.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbdict.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbdih.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dblqh.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks.html

NDB Cluster Log Messages

Log Message Description Event Name Event Type Priority Severity
kernel/
signaldata/
ArbitSignalData.hpp.

President
restarts
arbitration
thread
[state=state_code]
or Prepare
arbitrator
node node_id
[ticket=ticket_id]
or Receive
arbitrator
node node_id
[ticket=ticket_id]
or Started
arbitrator
node node_id
[ticket=ticket_id]
or Lost
arbitrator
node node_id
- process
failure
[state=state_code]
or Lost
arbitrator
node
node_id -
process exit
[state=state_code]
or Lost
arbitrator
node
node_id -
error_message
[state=state_code]

This is a report
on the current
state and
progress of
arbitration in
the cluster.
node_id is the
node ID of the
management
node or SQL
node selected
as the arbitrator.
state_code
is an arbitration
state code,
as found in
include/
kernel/
signaldata/
ArbitSignalData.hpp.
When an error
has occurred, an
error_message,
also defined in
ArbitSignalData.hpp,
is provided.
ticket_id
is a unique
identifier handed
out by the
arbitrator when
it is selected to
all the nodes
that participated
in its selection;
this is used to
ensure that each
node requesting
arbitration was
one of the nodes
that took part
in the selection
process.

ArbitState NodeRestart 6 INFO

Arbitration
check lost
- less than
1/2 nodes
left or

This message
reports on
the result of
arbitration.
In the event

ArbitResult NodeRestart 2 ALERT

3769

NDB Cluster Log Messages

Log Message Description Event Name Event Type Priority Severity
Arbitration
check won
- all node
groups and
more than
1/2 nodes
left or
Arbitration
check won -
node group
majority or
Arbitration
check lost
- missing
node group
or Network
partitioning
-
arbitration
required or
Arbitration
won -
positive
reply
from node
node_id or
Arbitration
lost -
negative
reply from
node node_id
or Network
partitioning
- no
arbitrator
available
or Network
partitioning
- no
arbitrator
configured or
Arbitration
failure -
error_message
[state=state_code]

of arbitration
failure, an
error_message
and an
arbitration
state_code
are provided;
definitions for
both of these
are found in
include/
kernel/
signaldata/
ArbitSignalData.hpp.

Node
node_id: GCP
Take over
started

This node is
attempting
to assume
responsibility for
the next global
checkpoint (that
is, it is becoming

GCP_TakeoverStartedNodeRestart 7 INFO

3770

NDB Cluster Log Messages

Log Message Description Event Name Event Type Priority Severity
the master
node)

Node
node_id: GCP
Take over
completed

This node has
become the
master, and
has assumed
responsibility for
the next global
checkpoint

GCP_TakeoverCompletedNodeRestart 7 INFO

Node
node_id: LCP
Take over
started

This node is
attempting
to assume
responsibility
for the next
set of local
checkpoints
(that is, it is
becoming the
master node)

LCP_TakeoverStartedNodeRestart 7 INFO

Node
node_id: LCP
Take over
completed

This node has
become the
master, and
has assumed
responsibility
for the next
set of local
checkpoints

LCP_TakeoverCompletedNodeRestart 7 INFO

Node
node_id:
Trans.
Count =
transactions,
Commit Count
= commits,
Read Count
= reads,
Simple Read
Count =
simple_reads,
Write Count
= writes,
AttrInfo
Count =
AttrInfo_objects,
Concurrent
Operations =
concurrent_operations,
Abort Count
= aborts,
Scans =
scans, Range

This report of
transaction
activity is given
approximately
once every 10
seconds

TransReportCountersStatistic 8 INFO

3771

NDB Cluster Log Messages

Log Message Description Event Name Event Type Priority Severity
scans =
range_scans

Node
node_id:
Operations=operations

Number of
operations
performed
by this node,
provided
approximately
once every 10
seconds

OperationReportCountersStatistic 8 INFO

Node
node_id:
Table
with ID =
table_id
created

A table having
the table ID
shown has been
created

TableCreated Statistic 7 INFO

Node
node_id:
Mean loop
Counter in
doJob last
8192 times =
count

JobStatistic Statistic 9 INFO

Mean send
size to Node
= node_id
last 4096
sends =
bytes bytes

This node is
sending an
average of
bytes bytes per
send to node
node_id

SendBytesStatisticStatistic 9 INFO

Mean receive
size to Node
= node_id
last 4096
sends =
bytes bytes

This node is
receiving an
average of
bytes of data
each time it
receives data
from node
node_id

ReceiveBytesStatisticStatistic 9 INFO

Node
node_id:
Data
usage is
data_memory_percentage%
(data_pages_used
32K pages
of total
data_pages_total)
/ Node
node_id:
Index
usage is

This report
is generated
when a DUMP
1000 command
is issued in
the cluster
management
client

MemoryUsage Statistic 5 INFO

3772

https://dev.mysql.com/doc/ndb-internals/en/dump-command-1000.html
https://dev.mysql.com/doc/ndb-internals/en/dump-command-1000.html

NDB Cluster Log Messages

Log Message Description Event Name Event Type Priority Severity
index_memory_percentage%
(index_pages_used
8K pages
of total
index_pages_total)

Node
node1_id:
Transporter
to node
node2_id
reported
error
error_code:
error_message

A transporter
error occurred
while
communicating
with node
node2_id;
for a listing
of transporter
error codes
and messages,
see NDB
Transporter
Errors, in
MySQL NDB
Cluster Internals
Manual

TransporterErrorError 2 ERROR

Node
node1_id:
Transporter
to node
node2_id
reported
error
error_code:
error_message

A warning of
a potential
transporter
problem while
communicating
with node
node2_id;
for a listing
of transporter
error codes
and messages,
see NDB
Transporter
Errors, for more
information

TransporterWarningError 8 WARNING

Node
node1_id:
Node
node2_id
missed
heartbeat
heartbeat_id

This node
missed a
heartbeat from
node node2_id

MissedHeartbeatError 8 WARNING

Node
node1_id:
Node
node2_id
declared
dead due

This node has
missed at least
3 heartbeats
from node
node2_id, and
so has declared
that node “dead”

DeadDueToHeartbeatError 8 ALERT

3773

https://dev.mysql.com/doc/ndb-internals/en/ndb-transporter-errors.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-transporter-errors.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-transporter-errors.html
https://dev.mysql.com/doc/ndb-internals/en/
https://dev.mysql.com/doc/ndb-internals/en/
https://dev.mysql.com/doc/ndb-internals/en/
https://dev.mysql.com/doc/ndb-internals/en/ndb-transporter-errors.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-transporter-errors.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-transporter-errors.html

NDB Cluster Log Messages

Log Message Description Event Name Event Type Priority Severity
to missed
heartbeat

Node
node1_id:
Node Sent
Heartbeat
to node =
node2_id

This node
has sent a
heartbeat to
node node2_id

SentHeartbeatInfo 12 INFO

(NDB 7.5.0 and
earlier:) Node
node_id:
Event buffer
status:
used=bytes_used
(percent_used%)
alloc=bytes_allocated
(percent_available%)
max=bytes_available
apply_epoch=latest_restorable_epoch
latest_epoch=latest_epoch

This report is
seen during
heavy event
buffer usage,
for example,
when many
updates are
being applied in
a relatively short
period of time;
the report shows
the number of
bytes and the
percentage of
event buffer
memory used,
the bytes
allocated and
percentage still
available, and
the latest and
latest restorable
epochs

EventBufferStatusInfo 7 INFO

(NDB 7.5.1 and
later:) Node
node_id:
Event buffer
status
(object_id):
used=bytes_used
(percent_used%
of alloc)
alloc=bytes_allocated
max=bytes_available
latest_consumed_epoch=latest_consumed_epoch
latest_buffered_epoch=latest_buffered_epoch
report_reason=report_reason

This report is
seen during
heavy event
buffer usage,
for example,
when many
updates are
being applied in
a relatively short
period of time;
the report shows
the number of
bytes and the
percentage of
event buffer
memory used,
the bytes
allocated and
percentage
still available,

EventBufferStatus2Info 7 INFO

3774

NDB Cluster Log Messages

Log Message Description Event Name Event Type Priority Severity
and the latest
buffered and
consumed
epochs;
for more
information, see
Section 21.6.2.3,
“Event Buffer
Reporting in the
Cluster Log”

Node
node_id:
Entering
single user
mode, Node
node_id:
Entered
single user
mode Node
API_node_id
has
exclusive
access, Node
node_id:
Entering
single user
mode

These reports
are written to the
cluster log when
entering and
exiting single
user mode;
API_node_id
is the node ID of
the API or SQL
having exclusive
access to the
cluster (for more
information, see
Section 21.6.6,
“NDB Cluster
Single User
Mode”); the
message
Unknown
single
user report
API_node_id
indicates an
error has taken
place and
should never be
seen in normal
operation

SingleUser Info 7 INFO

Node
node_id:
Backup
backup_id
started
from node
mgm_node_id

A backup has
been started
using the
management
node having
mgm_node_id;
this message is
also displayed
in the cluster
management
client when the
START BACKUP
command is

BackupStartedBackup 7 INFO

3775

NDB Cluster Log Messages

Log Message Description Event Name Event Type Priority Severity
issued; for more
information, see
Section 21.6.8.2,
“Using The
NDB Cluster
Management
Client to Create
a Backup”

Node
node_id:
Backup
backup_id
started
from node
mgm_node_id
completed.
StartGCP:
start_gcp
StopGCP:
stop_gcp
#Records:
records
#LogRecords:
log_records
Data:
data_bytes
bytes Log:
log_bytes
bytes

The backup
having the ID
backup_id has
been completed;
for more
information, see
Section 21.6.8.2,
“Using The
NDB Cluster
Management
Client to Create
a Backup”

BackupCompletedBackup 7 INFO

Node
node_id:
Backup
request from
mgm_node_id
failed
to start.
Error:
error_code

The backup
failed to start; for
error codes, see
MGM API Errors

BackupFailedToStartBackup 7 ALERT

Node
node_id:
Backup
backup_id
started from
mgm_node_id
has been
aborted.
Error:
error_code

The backup
was terminated
after starting,
possibly due to
user intervention

BackupAbortedBackup 7 ALERT

3776

https://dev.mysql.com/doc/ndbapi/en/mgm-errors.html

NDB Cluster Log Messages

21.6.2.2 NDB Cluster Log Startup Messages

Possible startup messages with descriptions are provided in the following list:

• Initial start, waiting for %s to connect, nodes [all: %s connected: %s no-
wait: %s]

• Waiting until nodes: %s connects, nodes [all: %s connected: %s no-wait: %s]

• Waiting %u sec for nodes %s to connect, nodes [all: %s connected: %s no-
wait: %s]

• Waiting for non partitioned start, nodes [all: %s connected: %s missing: %s
no-wait: %s]

• Waiting %u sec for non partitioned start, nodes [all: %s connected: %s
missing: %s no-wait: %s]

• Initial start with nodes %s [missing: %s no-wait: %s]

• Start with all nodes %s

• Start with nodes %s [missing: %s no-wait: %s]

• Start potentially partitioned with nodes %s [missing: %s no-wait: %s]

• Unknown startreport: 0x%x [%s %s %s %s]

21.6.2.3 Event Buffer Reporting in the Cluster Log

NDB uses one or more memory buffers for events received from the data nodes. There is one such buffer
for each Ndb object subscribing to table events, which means that there are usually two buffers for each
mysqld performing binary logging (one buffer for schema events, and one for data events). Each buffer
contains epochs made up of events. These events consist of operation types (insert, update, delete) and
row data (before and after images plus metadata).

NDB generates messages in the cluster log to describe the state of these buffers. Although these reports
appear in the cluster log, they refer to buffers on API nodes (unlike most other cluster log messages,
which are generated by data nodes). These messages and the data structures underlying them were
changed significantly in NDB 7.5.1, with the addition of the NDB_LE_EventBufferStatus2 event type
and the ndb_logevent_EventBufferStatus2 data structure (see The Ndb_logevent_type Type). The
remainder of this discussion focuses on the implementation based on NDB_LE_EventBufferStatus2.

Event buffer logging reports in the cluster log use the format shown here:

Node node_id: Event buffer status (object_id):
used=bytes_used (percent_used% of alloc)
alloc=bytes_allocated (percent_alloc% of max) max=bytes_available
latest_consumed_epoch=latest_consumed_epoch
latest_buffered_epoch=latest_buffered_epoch
report_reason=report_reason

The fields making up this report are listed here, with descriptions:

• node_id: ID of the node where the report originated.

• object_id: ID of the Ndb object where the report originated.

• bytes_used: Number of bytes used by the buffer.

3777

https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html
https://dev.mysql.com/doc/ndbapi/en/mgm-types.html#mgm-ndb-logevent-type
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html

NDB Cluster Log Messages

• percent_used: Percentage of allocated bytes used.

• bytes_allocated: Number of bytes allocated to this buffer.

• percent_alloc: Percentage of available bytes used; not printed if ndb_eventbuffer_max_alloc is
equal to 0 (unlimited).

• bytes_available: Number of bytes available; this is 0 if ndb_eventbuffer_max_alloc is 0
(unlimited).

• latest_consumed_epoch: The epoch most recently consumed to completion. (In NDB API
applications, this is done by calling nextEvent().)

• latest_buffered_epoch: The epoch most recently buffered (completely) in the event buffer.

• report_reason: The reason for making the report. Possible reasons are shown later in this section.

The latest_consumed_epoch and latest_buffered_epoch fields correspond, respectively, to the
apply_gci and latest_gci fields of the old-style event buffer logging messages used prior to NDB
7.5.1.

Possible reasons for reporting are described in the following list:

• ENOUGH_FREE_EVENTBUFFER: The event buffer has sufficient space.

LOW_FREE_EVENTBUFFER: The event buffer is running low on free space.

The threshold free percentage level triggering these reports can be adjusted by setting the
ndb_report_thresh_binlog_mem_usage server variable.

• BUFFERED_EPOCHS_OVER_THRESHOLD: Whether the number of buffered epochs has exceeded
the configured threshold. This number is the difference between the latest epoch that has been
received in its entirety and the epoch that has most recently been consumed (in NDB API applications,
this is done by calling nextEvent() or nextEvent2()). The report is generated every second
until the number of buffered epochs goes below the threshold, which can be adjusted by setting the
ndb_report_thresh_binlog_epoch_slip server variable. You can also adjust the threshold in
NDB API applications by calling setEventBufferQueueEmptyEpoch().

• PARTIALLY_DISCARDING: Event buffer memory is exhausted—that is, 100% of
ndb_eventbuffer_max_alloc has been used. Any partially buffered epoch is buffered to completion
even is usage exceeds 100%, but any new epochs received are discarded. This means that a gap has
occurred in the event stream.

• COMPLETELY_DISCARDING: No epochs are buffered.

• PARTIALLY_BUFFERING: The buffer free percentage following the gap has risen to the threshold, which
can be set in the mysql client using the ndb_eventbuffer_free_percent server system variable or
in NDB API applications by calling set_eventbuffer_free_percent(). New epochs are buffered.
Epochs that could not be completed due to the gap are discarded.

• COMPLETELY_BUFFERING: All epochs received are being buffered, which means that there is sufficient
event buffer memory. The gap in the event stream has been closed.

21.6.2.4 NDB Cluster: NDB Transporter Errors

This section lists error codes, names, and messages that are written to the cluster log in the event of
transporter errors.

3778

https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html#ndb-ndb-nextevent
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html#ndb-ndb-nextevent
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html#ndb-ndb-nextevent2
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html#ndb-ndb-seteventbufferqueueemptyepoch
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html#ndb-ndb-set-eventbuffer-free-percent

NDB Cluster Log Messages

0x00 TE_NO_ERROR

No error

0x01 TE_ERROR_CLOSING_SOCKET

Error found during closing of socket

0x02 TE_ERROR_IN_SELECT_BEFORE_ACCEPT

Error found before accept. The transporter will retry

0x03 TE_INVALID_MESSAGE_LENGTH

Error found in message (invalid message length)

0x04 TE_INVALID_CHECKSUM

Error found in message (checksum)

0x05 TE_COULD_NOT_CREATE_SOCKET

Error found while creating socket(can't create
socket)

0x06 TE_COULD_NOT_BIND_SOCKET

Error found while binding server socket

0x07 TE_LISTEN_FAILED

Error found while listening to server socket

0x08 TE_ACCEPT_RETURN_ERROR

Error found during accept(accept return error)

0x0b TE_SHM_DISCONNECT

The remote node has disconnected

0x0c TE_SHM_IPC_STAT

Unable to check shm segment

0x0d TE_SHM_UNABLE_TO_CREATE_SEGMENT

Unable to create shm segment

0x0e TE_SHM_UNABLE_TO_ATTACH_SEGMENT

Unable to attach shm segment

0x0f TE_SHM_UNABLE_TO_REMOVE_SEGMENT

Unable to remove shm segment

0x10 TE_TOO_SMALL_SIGID

Sig ID too small

3779

Event Reports Generated in NDB Cluster

0x11 TE_TOO_LARGE_SIGID

Sig ID too large

0x12 TE_WAIT_STACK_FULL

Wait stack was full

0x13 TE_RECEIVE_BUFFER_FULL

Receive buffer was full

0x14 TE_SIGNAL_LOST_SEND_BUFFER_FULL

Send buffer was full,and trying to force send fails

0x15 TE_SIGNAL_LOST

Send failed for unknown reason(signal lost)

0x16 TE_SEND_BUFFER_FULL

The send buffer was full, but sleeping for a while
solved

0x21 TE_SHM_IPC_PERMANENT

Shm ipc Permanent error

Note

Transporter error codes 0x17 through 0x20 and 0x22 are reserved for SCI
connections, which are not supported in this version of NDB Cluster, and so are not
included here.

21.6.3 Event Reports Generated in NDB Cluster

In this section, we discuss the types of event logs provided by NDB Cluster, and the types of events that
are logged.

NDB Cluster provides two types of event log:

• The cluster log, which includes events generated by all cluster nodes. The cluster log is the log
recommended for most uses because it provides logging information for an entire cluster in a single
location.

By default, the cluster log is saved to a file named ndb_node_id_cluster.log, (where node_id is
the node ID of the management server) in the management server's DataDir.

Cluster logging information can also be sent to stdout or a syslog facility in addition to or instead
of being saved to a file, as determined by the values set for the DataDir and LogDestination
configuration parameters. See Section 21.4.3.5, “Defining an NDB Cluster Management Server”, for
more information about these parameters.

• Node logs are local to each node.

Output generated by node event logging is written to the file ndb_node_id_out.log (where node_id
is the node's node ID) in the node's DataDir. Node event logs are generated for both management
nodes and data nodes.

3780

Event Reports Generated in NDB Cluster

Node logs are intended to be used only during application development, or for debugging application
code.

Each reportable event can be distinguished according to three different criteria:

• Category: This can be any one of the following values: STARTUP, SHUTDOWN, STATISTICS,
CHECKPOINT, NODERESTART, CONNECTION, ERROR, or INFO.

• Priority: This is represented by one of the numbers from 0 to 15 inclusive, where 0 indicates “most
important” and 15 “least important.”

• Severity Level: This can be any one of the following values: ALERT, CRITICAL, ERROR, WARNING,
INFO, or DEBUG.

The cluster log can be filtered on these properties using the NDB management client CLUSTERLOG
command. This command affects the cluster log only, and has no effect on the node logs; debug logging in
one or more node logs can be turned on and off using the ndb_mgm NODELOG DEBUG command.

The format used in the cluster log is as shown here:

2007-01-26 19:35:55 [MgmSrvr] INFO -- Node 1: Data usage is 2%(60 32K pages of total 2560)
2007-01-26 19:35:55 [MgmSrvr] INFO -- Node 1: Index usage is 1%(24 8K pages of total 2336)
2007-01-26 19:35:55 [MgmSrvr] INFO -- Node 1: Resource 0 min: 0 max: 639 curr: 0
2007-01-26 19:35:55 [MgmSrvr] INFO -- Node 2: Data usage is 2%(76 32K pages of total 2560)
2007-01-26 19:35:55 [MgmSrvr] INFO -- Node 2: Index usage is 1%(24 8K pages of total 2336)
2007-01-26 19:35:55 [MgmSrvr] INFO -- Node 2: Resource 0 min: 0 max: 639 curr: 0
2007-01-26 19:35:55 [MgmSrvr] INFO -- Node 3: Data usage is 2%(58 32K pages of total 2560)
2007-01-26 19:35:55 [MgmSrvr] INFO -- Node 3: Index usage is 1%(25 8K pages of total 2336)
2007-01-26 19:35:55 [MgmSrvr] INFO -- Node 3: Resource 0 min: 0 max: 639 curr: 0
2007-01-26 19:35:55 [MgmSrvr] INFO -- Node 4: Data usage is 2%(74 32K pages of total 2560)
2007-01-26 19:35:55 [MgmSrvr] INFO -- Node 4: Index usage is 1%(25 8K pages of total 2336)
2007-01-26 19:35:55 [MgmSrvr] INFO -- Node 4: Resource 0 min: 0 max: 639 curr: 0
2007-01-26 19:39:42 [MgmSrvr] INFO -- Node 4: Node 9 Connected
2007-01-26 19:39:42 [MgmSrvr] INFO -- Node 1: Node 9 Connected
2007-01-26 19:39:42 [MgmSrvr] INFO -- Node 1: Node 9: API 5.7.44-ndb-7.5.36
2007-01-26 19:39:42 [MgmSrvr] INFO -- Node 2: Node 9 Connected
2007-01-26 19:39:42 [MgmSrvr] INFO -- Node 2: Node 9: API 5.7.44-ndb-7.5.36
2007-01-26 19:39:42 [MgmSrvr] INFO -- Node 3: Node 9 Connected
2007-01-26 19:39:42 [MgmSrvr] INFO -- Node 3: Node 9: API 5.7.44-ndb-7.5.36
2007-01-26 19:39:42 [MgmSrvr] INFO -- Node 4: Node 9: API 5.7.44-ndb-7.5.36
2007-01-26 19:59:22 [MgmSrvr] ALERT -- Node 2: Node 7 Disconnected
2007-01-26 19:59:22 [MgmSrvr] ALERT -- Node 2: Node 7 Disconnected

Each line in the cluster log contains the following information:

• A timestamp in YYYY-MM-DD HH:MM:SS format.

• The type of node which is performing the logging. In the cluster log, this is always [MgmSrvr].

• The severity of the event.

• The ID of the node reporting the event.

• A description of the event. The most common types of events to appear in the log are connections and
disconnections between different nodes in the cluster, and when checkpoints occur. In some cases, the
description may contain status information.

For additional information, see Section 21.6.3.2, “NDB Cluster Log Events”.

21.6.3.1 NDB Cluster Logging Management Commands

3781

Event Reports Generated in NDB Cluster

ndb_mgm supports a number of management commands related to the cluster log and node logs. In the
listing that follows, node_id denotes either a storage node ID or the keyword ALL, which indicates that the
command should be applied to all of the cluster's data nodes.

• CLUSTERLOG ON

Turns the cluster log on.

• CLUSTERLOG OFF

Turns the cluster log off.

• CLUSTERLOG INFO

Provides information about cluster log settings.

• node_id CLUSTERLOG category=threshold

Logs category events with priority less than or equal to threshold in the cluster log.

• CLUSTERLOG TOGGLE severity_level

Toggles cluster logging of events of the specified severity_level.

The following table describes the default setting (for all data nodes) of the cluster log category threshold. If
an event has a priority with a value lower than or equal to the priority threshold, it is reported in the cluster
log.

Note

Events are reported per data node, and that the threshold can be set to different
values on different nodes.

Table 21.48 Cluster log categories, with default threshold setting

Category Default threshold (All data nodes)

STARTUP 7

SHUTDOWN 7

STATISTICS 7

CHECKPOINT 7

NODERESTART 7

CONNECTION 8

ERROR 15

INFO 7

BACKUP 15

CONGESTION 7

SCHEMA 7

The STATISTICS category can provide a great deal of useful data. See Section 21.6.3.3, “Using
CLUSTERLOG STATISTICS in the NDB Cluster Management Client”, for more information.

Thresholds are used to filter events within each category. For example, a STARTUP event with a priority of
3 is not logged unless the threshold for STARTUP is set to 3 or higher. Only events with priority 3 or lower
are sent if the threshold is 3.

3782

Event Reports Generated in NDB Cluster

The following table shows the event severity levels.

Note

These correspond to Unix syslog levels, except for LOG_EMERG and
LOG_NOTICE, which are not used or mapped.

Table 21.49 Event severity levels

Severity Level Value Severity Description

1 ALERT A condition that should be
corrected immediately, such as a
corrupted system database

2 CRITICAL Critical conditions, such as device
errors or insufficient resources

3 ERROR Conditions that should be
corrected, such as configuration
errors

4 WARNING Conditions that are not errors, but
that might require special handling

5 INFO Informational messages

6 DEBUG Debugging messages used for
NDBCLUSTER development

Event severity levels can be turned on or off using CLUSTERLOG TOGGLE. If a severity level is turned on,
then all events with a priority less than or equal to the category thresholds are logged. If the severity level
is turned off then no events belonging to that severity level are logged.

Important

Cluster log levels are set on a per ndb_mgmd, per subscriber basis. This means
that, in an NDB Cluster with multiple management servers, using a CLUSTERLOG
command in an instance of ndb_mgm connected to one management server affects
only logs generated by that management server but not by any of the others. This
also means that, should one of the management servers be restarted, only logs
generated by that management server are affected by the resetting of log levels
caused by the restart.

21.6.3.2 NDB Cluster Log Events

An event report reported in the event logs has the following format:

datetime [string] severity -- message

For example:

09:19:30 2005-07-24 [NDB] INFO -- Node 4 Start phase 4 completed

This section discusses all reportable events, ordered by category and severity level within each category.

In the event descriptions, GCP and LCP mean “Global Checkpoint” and “Local Checkpoint”, respectively.

CONNECTION Events

These events are associated with connections between Cluster nodes.

3783

Event Reports Generated in NDB Cluster

Table 21.50 Events associated with connections between cluster nodes

Event Priority Severity Level Description

Connected 8 INFO Data nodes connected

Disconnected 8 ALERT Data nodes disconnected

CommunicationClosed 8 INFO SQL node or data node
connection closed

CommunicationOpened 8 INFO SQL node or data node
connection open

ConnectedApiVersion 8 INFO Connection using API
version

CHECKPOINT Events

The logging messages shown here are associated with checkpoints.

Table 21.51 Events associated with checkpoints

Event Priority Severity Level Description

GlobalCheckpointStarted9 INFO Start of GCP: REDO log
is written to disk

GlobalCheckpointCompleted10 INFO GCP finished

LocalCheckpointStarted7 INFO Start of LCP: data written
to disk

LocalCheckpointCompleted7 INFO LCP completed normally

LCPStoppedInCalcKeepGci0 ALERT LCP stopped

LCPFragmentCompleted11 INFO LCP on a fragment has
been completed

UndoLogBlocked 7 INFO UNDO logging blocked;
buffer near overflow

RedoStatus 7 INFO Redo status

STARTUP Events

The following events are generated in response to the startup of a node or of the cluster and of its
success or failure. They also provide information relating to the progress of the startup process, including
information concerning logging activities.

Table 21.52 Events relating to the startup of a node or cluster

Event Priority Severity Level Description

NDBStartStarted 1 INFO Data node start phases
initiated (all nodes
starting)

NDBStartCompleted 1 INFO Start phases completed,
all data nodes

STTORRYRecieved 15 INFO Blocks received after
completion of restart

3784

Event Reports Generated in NDB Cluster

Event Priority Severity Level Description

StartPhaseCompleted 4 INFO Data node start phase X
completed

CM_REGCONF 3 INFO Node has been
successfully included into
the cluster; shows the
node, managing node,
and dynamic ID

CM_REGREF 8 INFO Node has been refused
for inclusion in the
cluster; cannot be
included in cluster due
to misconfiguration,
inability to establish
communication, or other
problem

FIND_NEIGHBOURS 8 INFO Shows neighboring data
nodes

NDBStopStarted 1 INFO Data node shutdown
initiated

NDBStopCompleted 1 INFO Data node shutdown
complete

NDBStopForced 1 ALERT Forced shutdown of data
node

NDBStopAborted 1 INFO Unable to shut down data
node normally

StartREDOLog 4 INFO New redo log started;
GCI keep X, newest
restorable GCI Y

StartLog 10 INFO New log started; log part
X, start MB Y, stop MB Z

UNDORecordsExecuted 15 INFO Undo records executed

StartReport 4 INFO Report started

LogFileInitStatus 7 INFO Log file initialization
status

LogFileInitCompStatus7 INFO Log file completion status

StartReadLCP 10 INFO Start read for local
checkpoint

ReadLCPComplete 10 INFO Read for local checkpoint
completed

RunRedo 8 INFO Running the redo log

RebuildIndex 10 INFO Rebuilding indexes

NODERESTART Events

The following events are generated when restarting a node and relate to the success or failure of the node
restart process.

3785

Event Reports Generated in NDB Cluster

Table 21.53 Events relating to restarting a node

Event Priority Severity Level Description

NR_CopyDict 7 INFO Completed copying of
dictionary information

NR_CopyDistr 7 INFO Completed copying
distribution information

NR_CopyFragsStarted 7 INFO Starting to copy
fragments

NR_CopyFragDone 10 INFO Completed copying a
fragment

NR_CopyFragsCompleted7 INFO Completed copying all
fragments

NodeFailCompleted 8 ALERT Node failure phase
completed

NODE_FAILREP 8 ALERT Reports that a node has
failed

ArbitState 6 INFO Report whether an
arbitrator is found or not;
there are seven different
possible outcomes when
seeking an arbitrator,
listed here:

• Management server
restarts arbitration
thread [state=X]

• Prepare arbitrator node
X [ticket=Y]

• Receive arbitrator node
X [ticket=Y]

• Started arbitrator node
X [ticket=Y]

• Lost arbitrator node
X - process failure
[state=Y]

• Lost arbitrator node X -
process exit [state=Y]

• Lost arbitrator node X
<error msg> [state=Y]

ArbitResult 2 ALERT Report arbitrator results;
there are eight different
possible results for
arbitration attempts,
listed here:

3786

Event Reports Generated in NDB Cluster

Event Priority Severity Level Description
• Arbitration check failed:

less than 1/2 nodes left

• Arbitration check
succeeded: node
group majority

• Arbitration check failed:
missing node group

• Network partitioning:
arbitration required

• Arbitration succeeded:
affirmative response
from node X

• Arbitration failed:
negative response
from node X

• Network partitioning:
no arbitrator available

• Network partitioning:
no arbitrator configured

GCP_TakeoverStarted 7 INFO GCP takeover started

GCP_TakeoverCompleted7 INFO GCP takeover complete

LCP_TakeoverStarted 7 INFO LCP takeover started

LCP_TakeoverCompleted7 INFO LCP takeover complete
(state = X)

ConnectCheckStarted 6 INFO Connection check started

ConnectCheckCompleted6 INFO Connection check
completed

NodeFailRejected 6 ALERT Node failure phase failed

STATISTICS Events

The following events are of a statistical nature. They provide information such as numbers of transactions
and other operations, amount of data sent or received by individual nodes, and memory usage.

Table 21.54 Events of a statistical nature

Event Priority Severity Level Description

TransReportCounters 8 INFO Report transaction
statistics, including
numbers of transactions,
commits, reads, simple
reads, writes, concurrent
operations, attribute
information, and aborts

3787

Event Reports Generated in NDB Cluster

Event Priority Severity Level Description

OperationReportCounters8 INFO Number of operations

TableCreated 7 INFO Report number of tables
created

JobStatistic 9 INFO Mean internal job
scheduling statistics

ThreadConfigLoop 9 INFO Number of thread
configuration loops

SendBytesStatistic 9 INFO Mean number of bytes
sent to node X

ReceiveBytesStatistic9 INFO Mean number of bytes
received from node X

MemoryUsage 5 INFO Data and index memory
usage (80%, 90%, and
100%)

MTSignalStatistics 9 INFO Multithreaded signals

SCHEMA Events

These events relate to NDB Cluster schema operations.

Table 21.55 Events relating to NDB Cluster schema operations

Event Priority Severity Level Description

CreateSchemaObject 8 INFO Schema objected created

AlterSchemaObject 8 INFO Schema object updated

DropSchemaObject 8 INFO Schema object dropped

ERROR Events

These events relate to Cluster errors and warnings. The presence of one or more of these generally
indicates that a major malfunction or failure has occurred.

Table 21.56 Events relating to cluster errors and warnings

Event Priority Severity Level Description

TransporterError 2 ERROR Transporter error

TransporterWarning 8 WARNING Transporter warning

MissedHeartbeat 8 WARNING Node X missed heartbeat
number Y

DeadDueToHeartbeat 8 ALERT Node X declared “dead”
due to missed heartbeat

WarningEvent 2 WARNING General warning event

SubscriptionStatus 4 WARNING Change in subscription
status

INFO Events

3788

Event Reports Generated in NDB Cluster

These events provide general information about the state of the cluster and activities associated with
Cluster maintenance, such as logging and heartbeat transmission.

Table 21.57 Information events

Event Priority Severity Level Description

SentHeartbeat 12 INFO Sent heartbeat

CreateLogBytes 11 INFO Create log: Log part, log
file, size in MB

InfoEvent 2 INFO General informational
event

EventBufferStatus 7 INFO Event buffer status

EventBufferStatus2 7 INFO Improved event buffer
status information; added
in NDB 7.5.1

Note

SentHeartbeat events are available only if NDB Cluster was compiled with
VM_TRACE enabled.

SINGLEUSER Events

These events are associated with entering and exiting single user mode.

Table 21.58 Events relating to single user mode

Event Priority Severity Level Description

SingleUser 7 INFO Entering or exiting single
user mode

BACKUP Events

These events provide information about backups being created or restored.

Table 21.59 Backup events

Event Priority Severity Level Description

BackupStarted 7 INFO Backup started

BackupStatus 7 INFO Backup status

BackupCompleted 7 INFO Backup completed

BackupFailedToStart 7 ALERT Backup failed to start

BackupAborted 7 ALERT Backup aborted by user

RestoreStarted 7 INFO Started restoring from
backup

RestoreMetaData 7 INFO Restoring metadata

RestoreData 7 INFO Restoring data

3789

Event Reports Generated in NDB Cluster

Event Priority Severity Level Description

RestoreLog 7 INFO Restoring log files

RestoreCompleted 7 INFO Completed restoring from
backup

SavedEvent 7 INFO Event saved

21.6.3.3 Using CLUSTERLOG STATISTICS in the NDB Cluster Management Client

The NDB management client's CLUSTERLOG STATISTICS command can provide a number of useful
statistics in its output. Counters providing information about the state of the cluster are updated at 5-
second reporting intervals by the transaction coordinator (TC) and the local query handler (LQH), and
written to the cluster log.

Transaction coordinator statistics. Each transaction has one transaction coordinator, which is chosen
by one of the following methods:

• In a round-robin fashion

• By communication proximity

• By supplying a data placement hint when the transaction is started

Note

You can determine which TC selection method is used for transactions started from
a given SQL node using the ndb_optimized_node_selection system variable.

All operations within the same transaction use the same transaction coordinator, which reports the
following statistics:

• Trans count. This is the number transactions started in the last interval using this TC as the
transaction coordinator. Any of these transactions may have committed, have been aborted, or remain
uncommitted at the end of the reporting interval.

Note

Transactions do not migrate between TCs.

• Commit count. This is the number of transactions using this TC as the transaction coordinator that
were committed in the last reporting interval. Because some transactions committed in this reporting
interval may have started in a previous reporting interval, it is possible for Commit count to be greater
than Trans count.

• Read count. This is the number of primary key read operations using this TC as the transaction
coordinator that were started in the last reporting interval, including simple reads. This count also
includes reads performed as part of unique index operations. A unique index read operation generates 2
primary key read operations—1 for the hidden unique index table, and 1 for the table on which the read
takes place.

• Simple read count. This is the number of simple read operations using this TC as the transaction
coordinator that were started in the last reporting interval.

• Write count. This is the number of primary key write operations using this TC as the transaction
coordinator that were started in the last reporting interval. This includes all inserts, updates, writes and
deletes, as well as writes performed as part of unique index operations.

3790

Event Reports Generated in NDB Cluster

Note

A unique index update operation can generate multiple PK read and write
operations on the index table and on the base table.

• AttrInfoCount. This is the number of 32-bit data words received in the last reporting interval for
primary key operations using this TC as the transaction coordinator. For reads, this is proportional to the
number of columns requested. For inserts and updates, this is proportional to the number of columns
written, and the size of their data. For delete operations, this is usually zero.

Unique index operations generate multiple PK operations and so increase this count. However, data
words sent to describe the PK operation itself, and the key information sent, are not counted here.
Attribute information sent to describe columns to read for scans, or to describe ScanFilters, is also not
counted in AttrInfoCount.

• Concurrent Operations. This is the number of primary key or scan operations using this TC as the
transaction coordinator that were started during the last reporting interval but that were not completed.
Operations increment this counter when they are started and decrement it when they are completed; this
occurs after the transaction commits. Dirty reads and writes—as well as failed operations—decrement
this counter.

The maximum value that Concurrent Operations can have is the maximum number of operations
that a TC block can support; currently, this is (2 * MaxNoOfConcurrentOperations) + 16 +
MaxNoOfConcurrentTransactions. (For more information about these configuration parameters,
see the Transaction Parameters section of Section 21.4.3.6, “Defining NDB Cluster Data Nodes”.)

• Abort count. This is the number of transactions using this TC as the transaction coordinator that
were aborted during the last reporting interval. Because some transactions that were aborted in the last
reporting interval may have started in a previous reporting interval, Abort count can sometimes be
greater than Trans count.

• Scans. This is the number of table scans using this TC as the transaction coordinator that were
started during the last reporting interval. This does not include range scans (that is, ordered index
scans).

• Range scans. This is the number of ordered index scans using this TC as the transaction coordinator
that were started in the last reporting interval.

• Local reads. This is the number of primary-key read operations performed using a transaction
coordinator on a node that also holds the primary fragment replica of the record. This count can also be
obtained from the LOCAL_READS counter in the ndbinfo.counters table.

• Local writes. This contains the number of primary-key read operations that were performed using a
transaction coordinator on a node that also holds the primary fragment replica of the record. This count
can also be obtained from the LOCAL_WRITES counter in the ndbinfo.counters table.

Local query handler statistics (Operations). There is 1 cluster event per local query handler block
(that is, 1 per data node process). Operations are recorded in the LQH where the data they are operating
on resides.

Note

A single transaction may operate on data stored in multiple LQH blocks.

The Operations statistic provides the number of local operations performed by this LQH block in the
last reporting interval, and includes all types of read and write operations (insert, update, write, and delete

3791

Summary of NDB Cluster Start Phases

operations). This also includes operations used to replicate writes. For example, in a cluster having two
fragment replicas, the write to the primary fragment replica is recorded in the primary LQH, and the write to
the backup is recorded in the backup LQH. Unique key operations may result in multiple local operations;
however, this does not include local operations generated as a result of a table scan or ordered index
scan, which are not counted.

Process scheduler statistics. In addition to the statistics reported by the transaction coordinator and
local query handler, each ndbd process has a scheduler which also provides useful metrics relating to the
performance of an NDB Cluster. This scheduler runs in an infinite loop; during each loop the scheduler
performs the following tasks:

1. Read any incoming messages from sockets into a job buffer.

2. Check whether there are any timed messages to be executed; if so, put these into the job buffer as
well.

3. Execute (in a loop) any messages in the job buffer.

4. Send any distributed messages that were generated by executing the messages in the job buffer.

5. Wait for any new incoming messages.

Process scheduler statistics include the following:

• Mean Loop Counter. This is the number of loops executed in the third step from the preceding
list. This statistic increases in size as the utilization of the TCP/IP buffer improves. You can use this to
monitor changes in performance as you add new data node processes.

• Mean send size and Mean receive size. These statistics enable you to gauge the efficiency of,
respectively writes and reads between nodes. The values are given in bytes. Higher values mean a
lower cost per byte sent or received; the maximum value is 64K.

To cause all cluster log statistics to be logged, you can use the following command in the NDB
management client:

ndb_mgm> ALL CLUSTERLOG STATISTICS=15

Note

Setting the threshold for STATISTICS to 15 causes the cluster log to become very
verbose, and to grow quite rapidly in size, in direct proportion to the number of
cluster nodes and the amount of activity in the NDB Cluster.

For more information about NDB Cluster management client commands relating to logging and reporting,
see Section 21.6.3.1, “NDB Cluster Logging Management Commands”.

21.6.4 Summary of NDB Cluster Start Phases

This section provides a simplified outline of the steps involved when NDB Cluster data nodes are started.
More complete information can be found in NDB Cluster Start Phases, in the NDB Internals Guide.

These phases are the same as those reported in the output from the node_id STATUS command in the
management client (see Section 21.6.1, “Commands in the NDB Cluster Management Client”). These start
phases are also reported in the start_phase column of the ndbinfo.nodes table.

Start types. There are several different startup types and modes, as shown in the following list:

• Initial start. The cluster starts with a clean file system on all data nodes. This occurs either when the
cluster started for the very first time, or when all data nodes are restarted using the --initial option.

3792

https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-start-phases.html

Summary of NDB Cluster Start Phases

Note

Disk Data files are not removed when restarting a node using --initial.

• System restart. The cluster starts and reads data stored in the data nodes. This occurs when
the cluster has been shut down after having been in use, when it is desired for the cluster to resume
operations from the point where it left off.

• Node restart. This is the online restart of a cluster node while the cluster itself is running.

• Initial node restart. This is the same as a node restart, except that the node is reinitialized and
started with a clean file system.

Setup and initialization (phase -1). Prior to startup, each data node (ndbd process) must be initialized.
Initialization consists of the following steps:

1. Obtain a node ID

2. Fetch configuration data

3. Allocate ports to be used for inter-node communications

4. Allocate memory according to settings obtained from the configuration file

When a data node or SQL node first connects to the management node, it reserves a cluster node ID. To
make sure that no other node allocates the same node ID, this ID is retained until the node has managed
to connect to the cluster and at least one ndbd reports that this node is connected. This retention of the
node ID is guarded by the connection between the node in question and ndb_mgmd.

After each data node has been initialized, the cluster startup process can proceed. The stages which the
cluster goes through during this process are listed here:

• Phase 0. The NDBFS and NDBCNTR blocks start. Data node file systems are cleared on those data
nodes that were started with --initial option.

• Phase 1. In this stage, all remaining NDB kernel blocks are started. NDB Cluster connections are
set up, inter-block communications are established, and heartbeats are started. In the case of a node
restart, API node connections are also checked.

Note

When one or more nodes hang in Phase 1 while the remaining node or nodes
hang in Phase 2, this often indicates network problems. One possible cause
of such issues is one or more cluster hosts having multiple network interfaces.
Another common source of problems causing this condition is the blocking of
TCP/IP ports needed for communications between cluster nodes. In the latter
case, this is often due to a misconfigured firewall.

• Phase 2. The NDBCNTR kernel block checks the states of all existing nodes. The master node is
chosen, and the cluster schema file is initialized.

• Phase 3. The DBLQH and DBTC kernel blocks set up communications between them. The startup type
is determined; if this is a restart, the DBDIH block obtains permission to perform the restart.

• Phase 4. For an initial start or initial node restart, the redo log files are created. The number of these
files is equal to NoOfFragmentLogFiles.

3793

https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-ndbfs.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-ndbcntr.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dblqh.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbtc.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbdih.html

Performing a Rolling Restart of an NDB Cluster

For a system restart:

• Read schema or schemas.

• Read data from the local checkpoint.

• Apply all redo information until the latest restorable global checkpoint has been reached.

For a node restart, find the tail of the redo log.

• Phase 5. Most of the database-related portion of a data node start is performed during this phase. For
an initial start or system restart, a local checkpoint is executed, followed by a global checkpoint. Periodic
checks of memory usage begin during this phase, and any required node takeovers are performed.

• Phase 6. In this phase, node groups are defined and set up.

• Phase 7. The arbitrator node is selected and begins to function. The next backup ID is set, as is the
backup disk write speed. Nodes reaching this start phase are marked as Started. It is now possible for
API nodes (including SQL nodes) to connect to the cluster.

• Phase 8. If this is a system restart, all indexes are rebuilt (by DBDIH).

• Phase 9. The node internal startup variables are reset.

• Phase 100 (OBSOLETE). Formerly, it was at this point during a node restart or initial node restart
that API nodes could connect to the node and begin to receive events. Currently, this phase is empty.

• Phase 101. At this point in a node restart or initial node restart, event delivery is handed over to the
node joining the cluster. The newly-joined node takes over responsibility for delivering its primary data to
subscribers. This phase is also referred to as SUMA handover phase.

After this process is completed for an initial start or system restart, transaction handling is enabled. For a
node restart or initial node restart, completion of the startup process means that the node may now act as
a transaction coordinator.

21.6.5 Performing a Rolling Restart of an NDB Cluster

This section discusses how to perform a rolling restart of an NDB Cluster installation, so called because
it involves stopping and starting (or restarting) each node in turn, so that the cluster itself remains
operational. This is often done as part of a rolling upgrade or rolling downgrade, where high availability
of the cluster is mandatory and no downtime of the cluster as a whole is permissible. Where we refer to
upgrades, the information provided here also generally applies to downgrades as well.

There are a number of reasons why a rolling restart might be desirable. These are described in the next
few paragraphs.

Configuration change.
To make a change in the cluster's configuration, such as adding an SQL node to the cluster, or setting a
configuration parameter to a new value.

NDB Cluster software upgrade or downgrade. To upgrade the cluster to a newer version of the NDB
Cluster software (or to downgrade it to an older version). This is usually referred to as a “rolling upgrade”
(or “rolling downgrade”, when reverting to an older version of NDB Cluster).

Change on node host. To make changes in the hardware or operating system on which one or more
NDB Cluster node processes are running.

3794

https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbdih.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-suma.html

Performing a Rolling Restart of an NDB Cluster

System reset (cluster reset).
To reset the cluster because it has reached an undesirable state. In such cases it is often desirable to
reload the data and metadata of one or more data nodes. This can be done in any of three ways:

• Start each data node process (ndbd or possibly ndbmtd) with the --initial option, which forces the
data node to clear its file system and to reload all NDB Cluster data and metadata from the other data
nodes.

• Create a backup using the ndb_mgm client START BACKUP command prior to performing the restart.
Following the upgrade, restore the node or nodes using ndb_restore.

See Section 21.6.8, “Online Backup of NDB Cluster”, and Section 21.5.24, “ndb_restore — Restore an
NDB Cluster Backup”, for more information.

• Use mysqldump to create a backup prior to the upgrade; afterward, restore the dump using LOAD
DATA.

Resource Recovery.
To free memory previously allocated to a table by successive INSERT and DELETE operations, for re-use
by other NDB Cluster tables.

The process for performing a rolling restart may be generalized as follows:

1. Stop all cluster management nodes (ndb_mgmd processes), reconfigure them, then restart them. (See
Rolling restarts with multiple management servers.)

2. Stop, reconfigure, then restart each cluster data node (ndbd process) in turn.

Some node configuration parameters can be updated by issuing RESTART for each of the data nodes
in the ndb_mgm client following the previous step. Other parameters require that the data node be
stopped completely using the management client STOP command, then started again from a system
shell by invoking the ndbd or ndbmtd executable as appropriate. (A shell command such as kill can
also be used on most Unix systems to stop a data node process, but the STOP command is preferred
and usually simpler.)

Note

On Windows, you can also use SC STOP and SC START commands, NET
STOP and NET START commands, or the Windows Service Manager to
stop and start nodes which have been installed as Windows services (see
Section 21.3.2.4, “Installing NDB Cluster Processes as Windows Services”).

The type of restart required is indicated in the documentation for each node configuration parameter.
See Section 21.4.3, “NDB Cluster Configuration Files”.

3. Stop, reconfigure, then restart each cluster SQL node (mysqld process) in turn.

NDB Cluster supports a somewhat flexible order for upgrading nodes. When upgrading an NDB Cluster,
you may upgrade API nodes (including SQL nodes) before upgrading the management nodes, data nodes,
or both. In other words, you are permitted to upgrade the API and SQL nodes in any order. This is subject
to the following provisions:

• This functionality is intended for use as part of an online upgrade only. A mix of node binaries from
different NDB Cluster releases is neither intended nor supported for continuous, long-term use in a
production setting.

3795

NDB Cluster Single User Mode

• You must upgrade all nodes of the same type (management, data, or API node) before upgrading any
nodes of a different type. This remains true regardless of the order in which the nodes are upgraded.

• You must upgrade all management nodes before upgrading any data nodes. This remains true
regardless of the order in which you upgrade the cluster's API and SQL nodes.

• Features specific to the “new” version must not be used until all management nodes and data nodes
have been upgraded.

This also applies to any MySQL Server version change that may apply, in addition to the NDB engine
version change, so do not forget to take this into account when planning the upgrade. (This is true for
online upgrades of NDB Cluster in general.)

It is not possible for any API node to perform schema operations (such as data definition statements)
during a node restart. Due in part to this limitation, schema operations are also not supported during an
online upgrade or downgrade. In addition, it is not possible to perform native backups while an upgrade or
downgrade is ongoing.

Rolling restarts with multiple management servers. When performing a rolling restart of an NDB
Cluster with multiple management nodes, you should keep in mind that ndb_mgmd checks to see if any
other management node is running, and, if so, tries to use that node's configuration data. To keep this from
occurring, and to force ndb_mgmd to re-read its configuration file, perform the following steps:

1. Stop all NDB Cluster ndb_mgmd processes.

2. Update all config.ini files.

3. Start a single ndb_mgmd with --reload, --initial, or both options as desired.

4. If you started the first ndb_mgmd with the --initial option, you must also start any remaining
ndb_mgmd processes using --initial.

Regardless of any other options used when starting the first ndb_mgmd, you should not start any
remaining ndb_mgmd processes after the first one using --reload.

5. Complete the rolling restarts of the data nodes and API nodes as normal.

When performing a rolling restart to update the cluster's configuration, you can use the
config_generation column of the ndbinfo.nodes table to keep track of which data nodes have been
successfully restarted with the new configuration. See Section 21.6.15.28, “The ndbinfo nodes Table”.

21.6.6 NDB Cluster Single User Mode

Single user mode enables the database administrator to restrict access to the database system to a single
API node, such as a MySQL server (SQL node) or an instance of ndb_restore. When entering single
user mode, connections to all other API nodes are closed gracefully and all running transactions are
aborted. No new transactions are permitted to start.

Once the cluster has entered single user mode, only the designated API node is granted access to the
database.

You can use the ALL STATUS command in the ndb_mgm client to see when the cluster has entered
single user mode. You can also check the status column of the ndbinfo.nodes table (see
Section 21.6.15.28, “The ndbinfo nodes Table”, for more information).

Example:

3796

Adding NDB Cluster Data Nodes Online

ndb_mgm> ENTER SINGLE USER MODE 5

After this command has executed and the cluster has entered single user mode, the API node whose node
ID is 5 becomes the cluster's only permitted user.

The node specified in the preceding command must be an API node; attempting to specify any other type
of node is rejected.

Note

When the preceding command is invoked, all transactions running on the
designated node are aborted, the connection is closed, and the server must be
restarted.

The command EXIT SINGLE USER MODE changes the state of the cluster's data nodes from single user
mode to normal mode. API nodes—such as MySQL Servers—waiting for a connection (that is, waiting for
the cluster to become ready and available), are again permitted to connect. The API node denoted as the
single-user node continues to run (if still connected) during and after the state change.

Example:

ndb_mgm> EXIT SINGLE USER MODE

There are two recommended ways to handle a node failure when running in single user mode:

• Method 1:

1. Finish all single user mode transactions

2. Issue the EXIT SINGLE USER MODE command

3. Restart the cluster's data nodes

• Method 2:

Restart storage nodes prior to entering single user mode.

21.6.7 Adding NDB Cluster Data Nodes Online

This section describes how to add NDB Cluster data nodes “online”—that is, without needing to shut down
the cluster completely and restart it as part of the process.

Important

Currently, you must add new data nodes to an NDB Cluster as part of a new node
group. In addition, it is not possible to change the number of fragment replicas (or
the number of nodes per node group) online.

21.6.7.1 Adding NDB Cluster Data Nodes Online: General Issues

This section provides general information about the behavior of and current limitations in adding NDB
Cluster nodes online.

Redistribution of Data. The ability to add new nodes online includes a means to reorganize
NDBCLUSTER table data and indexes so that they are distributed across all data nodes, including the new
ones, by means of the ALTER TABLE ... REORGANIZE PARTITION statement. Table reorganization

3797

Adding NDB Cluster Data Nodes Online

of both in-memory and Disk Data tables is supported. This redistribution does not currently include unique
indexes (only ordered indexes are redistributed).

The redistribution for NDBCLUSTER tables already existing before the new data nodes were added is not
automatic, but can be accomplished using simple SQL statements in mysql or another MySQL client
application. However, all data and indexes added to tables created after a new node group has been
added are distributed automatically among all cluster data nodes, including those added as part of the new
node group.

Partial starts. It is possible to add a new node group without all of the new data nodes being started.
It is also possible to add a new node group to a degraded cluster—that is, a cluster that is only partially
started, or where one or more data nodes are not running. In the latter case, the cluster must have enough
nodes running to be viable before the new node group can be added.

Effects on ongoing operations. Normal DML operations using NDB Cluster data are not prevented
by the creation or addition of a new node group, or by table reorganization. However, it is not possible
to perform DDL concurrently with table reorganization—that is, no other DDL statements can be issued
while an ALTER TABLE ... REORGANIZE PARTITION statement is executing. In addition, during
the execution of ALTER TABLE ... REORGANIZE PARTITION (or the execution of any other DDL
statement), it is not possible to restart cluster data nodes.

Failure handling. Failures of data nodes during node group creation and table reorganization are
handled as shown in the following table:

Table 21.60 Data node failure handling during node group creation and table reorganization

Failure during Failure in “Old” data
node

Failure in “New” data
node

System Failure

Node group creation • If a node other than
the master fails:
The creation of the
node group is always
rolled forward.

• If the master fails:

• If the internal
commit point has
been reached:
The creation of the
node group is rolled
forward.

• If the internal
commit point
has not yet been
reached. The
creation of the node
group is rolled back

• If a node other than
the master fails:
The creation of the
node group is always
rolled forward.

• If the master fails:

• If the internal
commit point has
been reached:
The creation of the
node group is rolled
forward.

• If the internal
commit point
has not yet been
reached. The
creation of the node
group is rolled back

• If the execution
of CREATE
NODEGROUP has
reached the internal
commit point:
When restarted, the
cluster includes the
new node group.
Otherwise it without.

• If the execution
of CREATE
NODEGROUP has
not yet reached the
internal commit
point: When
restarted, the cluster
does not include the
new node group.

Table reorganization • If a node other
than the master
fails: The table
reorganization is
always rolled forward.

• If a node other
than the master
fails: The table
reorganization is
always rolled forward.

• If the execution of
an ALTER TABLE ...
REORGANIZE
PARTITION statement
has reached the

3798

Adding NDB Cluster Data Nodes Online

Failure during Failure in “Old” data
node

Failure in “New” data
node

System Failure

• If the master fails:

• If the internal
commit point
has been
reached: The
table reorganization
is rolled forward.

• If the internal
commit point
has not yet been
reached. The
table reorganization
is rolled back.

• If the master fails:

• If the internal
commit point
has been
reached: The
table reorganization
is rolled forward.

• If the internal
commit point
has not yet been
reached. The
table reorganization
is rolled back.

internal commit
point: When the
cluster is restarted,
the data and indexes
belonging to table
are distributed using
the “new” data nodes.

• If the execution of
an ALTER TABLE ...
REORGANIZE
PARTITION statement
has not yet reached
the internal commit
point: When the
cluster is restarted,
the data and indexes
belonging to table
are distributed using
only the “old” data
nodes.

Dropping node groups. The ndb_mgm client supports a DROP NODEGROUP command, but it is possible
to drop a node group only when no data nodes in the node group contain any data. Since there is currently
no way to “empty” a specific data node or node group, this command works only the following two cases:

1. After issuing CREATE NODEGROUP in the ndb_mgm client, but before issuing any ALTER TABLE ...
REORGANIZE PARTITION statements in the mysql client.

2. After dropping all NDBCLUSTER tables using DROP TABLE.

TRUNCATE TABLE does not work for this purpose because the data nodes continue to store the table
definitions.

21.6.7.2 Adding NDB Cluster Data Nodes Online: Basic procedure

In this section, we list the basic steps required to add new data nodes to an NDB Cluster. This procedure
applies whether you are using ndbd or ndbmtd binaries for the data node processes. For a more detailed
example, see Section 21.6.7.3, “Adding NDB Cluster Data Nodes Online: Detailed Example”.

Assuming that you already have a running NDB Cluster, adding data nodes online requires the following
steps:

1. Edit the cluster configuration config.ini file, adding new [ndbd] sections corresponding to the
nodes to be added. In the case where the cluster uses multiple management servers, these changes
need to be made to all config.ini files used by the management servers.

You must be careful that node IDs for any new data nodes added in the config.ini file do not
overlap node IDs used by existing nodes. In the event that you have API nodes using dynamically
allocated node IDs and these IDs match node IDs that you want to use for new data nodes, it is
possible to force any such API nodes to “migrate”, as described later in this procedure.

2. Perform a rolling restart of all NDB Cluster management servers.

3799

Adding NDB Cluster Data Nodes Online

Important

All management servers must be restarted with the --reload or --initial
option to force the reading of the new configuration.

3. Perform a rolling restart of all existing NDB Cluster data nodes. It is not necessary (or usually even
desirable) to use --initial when restarting the existing data nodes.

If you are using API nodes with dynamically allocated IDs matching any node IDs that you wish to
assign to new data nodes, you must restart all API nodes (including SQL nodes) before restarting any
of the data nodes processes in this step. This causes any API nodes with node IDs that were previously
not explicitly assigned to relinquish those node IDs and acquire new ones.

4. Perform a rolling restart of any SQL or API nodes connected to the NDB Cluster.

5. Start the new data nodes.

The new data nodes may be started in any order. They can also be started concurrently, as long as
they are started after the rolling restarts of all existing data nodes have been completed, and before
proceeding to the next step.

6. Execute one or more CREATE NODEGROUP commands in the NDB Cluster management client to create
the new node group or node groups to which the new data nodes belong.

7. Redistribute the cluster's data among all data nodes, including the new ones. Normally this is done by
issuing an ALTER TABLE ... ALGORITHM=INPLACE, REORGANIZE PARTITION statement in the
mysql client for each NDBCLUSTER table.

Exception: For tables created using the MAX_ROWS option, this statement does not work; instead, use
ALTER TABLE ... ALGORITHM=INPLACE MAX_ROWS=... to reorganize such tables. You should
also bear in mind that using MAX_ROWS to set the number of partitions in this fashion is deprecated in
NDB 7.5.4 and later, where you should use PARTITION_BALANCE instead; see Section 13.1.18.9,
“Setting NDB Comment Options”, for more information.

Note

This needs to be done only for tables already existing at the time the new node
group is added. Data in tables created after the new node group is added is
distributed automatically; however, data added to any given table tbl that
existed before the new nodes were added is not distributed using the new nodes
until that table has been reorganized.

8. ALTER TABLE ... REORGANIZE PARTITION ALGORITHM=INPLACE reorganizes partitions but
does not reclaim the space freed on the “old” nodes. You can do this by issuing, for each NDBCLUSTER
table, an OPTIMIZE TABLE statement in the mysql client.

This works for space used by variable-width columns of in-memory NDB tables. OPTIMIZE TABLE is
not supported for fixed-width columns of in-memory tables; it is also not supported for Disk Data tables.

You can add all the nodes desired, then issue several CREATE NODEGROUP commands in succession to
add the new node groups to the cluster.

21.6.7.3 Adding NDB Cluster Data Nodes Online: Detailed Example

In this section we provide a detailed example illustrating how to add new NDB Cluster data nodes online,
starting with an NDB Cluster having 2 data nodes in a single node group and concluding with a cluster
having 4 data nodes in 2 node groups.

3800

Adding NDB Cluster Data Nodes Online

Starting configuration. For purposes of illustration, we assume a minimal configuration, and that the
cluster uses a config.ini file containing only the following information:

[ndbd default]
DataMemory = 100M
IndexMemory = 100M
NoOfReplicas = 2
DataDir = /usr/local/mysql/var/mysql-cluster

[ndbd]
Id = 1
HostName = 198.51.100.1

[ndbd]
Id = 2
HostName = 198.51.100.2

[mgm]
HostName = 198.51.100.10
Id = 10

[api]
Id=20
HostName = 198.51.100.20

[api]
Id=21
HostName = 198.51.100.21

Note

We have left a gap in the sequence between data node IDs and other nodes. This
make it easier later to assign node IDs that are not already in use to data nodes
which are newly added.

We also assume that you have already started the cluster using the appropriate command line or my.cnf
options, and that running SHOW in the management client produces output similar to what is shown here:

-- NDB Cluster -- Management Client --
ndb_mgm> SHOW
Connected to Management Server at: 198.51.100.10:1186
Cluster Configuration

[ndbd(NDB)] 2 node(s)
id=1 @198.51.100.1 (5.7.44-ndb-7.5.36, Nodegroup: 0, *)
id=2 @198.51.100.2 (5.7.44-ndb-7.5.36, Nodegroup: 0)

[ndb_mgmd(MGM)] 1 node(s)
id=10 @198.51.100.10 (5.7.44-ndb-7.5.36)

[mysqld(API)] 2 node(s)
id=20 @198.51.100.20 (5.7.44-ndb-7.5.36)
id=21 @198.51.100.21 (5.7.44-ndb-7.5.36)

Finally, we assume that the cluster contains a single NDBCLUSTER table created as shown here:

USE n;

CREATE TABLE ips (
 id BIGINT NOT NULL AUTO_INCREMENT PRIMARY KEY,
 country_code CHAR(2) NOT NULL,
 type CHAR(4) NOT NULL,
 ip_address VARCHAR(15) NOT NULL,
 addresses BIGINT UNSIGNED DEFAULT NULL,
 date BIGINT UNSIGNED DEFAULT NULL

3801

Adding NDB Cluster Data Nodes Online

) ENGINE NDBCLUSTER;

The memory usage and related information shown later in this section was generated after inserting
approximately 50000 rows into this table.

Note

In this example, we show the single-threaded ndbd being used for the data node
processes. You can also apply this example, if you are using the multithreaded
ndbmtd by substituting ndbmtd for ndbd wherever it appears in the steps that
follow.

Step 1: Update configuration file. Open the cluster global configuration file in a text editor and
add [ndbd] sections corresponding to the 2 new data nodes. (We give these data nodes IDs 3 and 4,
and assume that they are to be run on host machines at addresses 198.51.100.3 and 198.51.100.4,
respectively.) After you have added the new sections, the contents of the config.ini file should look like
what is shown here, where the additions to the file are shown in bold type:

[ndbd default]
DataMemory = 100M
IndexMemory = 100M
NoOfReplicas = 2
DataDir = /usr/local/mysql/var/mysql-cluster

[ndbd]
Id = 1
HostName = 198.51.100.1

[ndbd]
Id = 2
HostName = 198.51.100.2

[ndbd]
Id = 3
HostName = 198.51.100.3

[ndbd]
Id = 4
HostName = 198.51.100.4

[mgm]
HostName = 198.51.100.10
Id = 10

[api]
Id=20
HostName = 198.51.100.20

[api]
Id=21
HostName = 198.51.100.21

Once you have made the necessary changes, save the file.

Step 2: Restart the management server. Restarting the cluster management server requires that you
issue separate commands to stop the management server and then to start it again, as follows:

1. Stop the management server using the management client STOP command, as shown here:

ndb_mgm> 10 STOP
Node 10 has shut down.
Disconnecting to allow Management Server to shutdown

$>

3802

Adding NDB Cluster Data Nodes Online

2. Because shutting down the management server causes the management client to terminate, you must
start the management server from the system shell. For simplicity, we assume that config.ini is
in the same directory as the management server binary, but in practice, you must supply the correct
path to the configuration file. You must also supply the --reload or --initial option so that the
management server reads the new configuration from the file rather than its configuration cache. If
your shell's current directory is also the same as the directory where the management server binary is
located, then you can invoke the management server as shown here:

$> ndb_mgmd -f config.ini --reload
2008-12-08 17:29:23 [MgmSrvr] INFO -- NDB Cluster Management Server. 5.7.44-ndb-7.5.36
2008-12-08 17:29:23 [MgmSrvr] INFO -- Reading cluster configuration from 'config.ini'

If you check the output of SHOW in the management client after restarting the ndb_mgm process, you should
now see something like this:

-- NDB Cluster -- Management Client --
ndb_mgm> SHOW
Connected to Management Server at: 198.51.100.10:1186
Cluster Configuration

[ndbd(NDB)] 2 node(s)
id=1 @198.51.100.1 (5.7.44-ndb-7.5.36, Nodegroup: 0, *)
id=2 @198.51.100.2 (5.7.44-ndb-7.5.36, Nodegroup: 0)
id=3 (not connected, accepting connect from 198.51.100.3)
id=4 (not connected, accepting connect from 198.51.100.4)

[ndb_mgmd(MGM)] 1 node(s)
id=10 @198.51.100.10 (5.7.44-ndb-7.5.36)

[mysqld(API)] 2 node(s)
id=20 @198.51.100.20 (5.7.44-ndb-7.5.36)
id=21 @198.51.100.21 (5.7.44-ndb-7.5.36)

Step 3: Perform a rolling restart of the existing data nodes. This step can be accomplished entirely
within the cluster management client using the RESTART command, as shown here:

ndb_mgm> 1 RESTART
Node 1: Node shutdown initiated
Node 1: Node shutdown completed, restarting, no start.
Node 1 is being restarted

ndb_mgm> Node 1: Start initiated (version 7.5.36)
Node 1: Started (version 7.5.36)

ndb_mgm> 2 RESTART
Node 2: Node shutdown initiated
Node 2: Node shutdown completed, restarting, no start.
Node 2 is being restarted

ndb_mgm> Node 2: Start initiated (version 7.5.36)

ndb_mgm> Node 2: Started (version 7.5.36)

Important

After issuing each X RESTART command, wait until the management client reports
Node X: Started (version ...) before proceeding any further.

You can verify that all existing data nodes were restarted using the updated configuration by checking the
ndbinfo.nodes table in the mysql client.

Step 4: Perform a rolling restart of all cluster API nodes. Shut down and restart each MySQL server
acting as an SQL node in the cluster using mysqladmin shutdown followed by mysqld_safe (or

3803

Adding NDB Cluster Data Nodes Online

another startup script). This should be similar to what is shown here, where password is the MySQL root
password for a given MySQL server instance:

$> mysqladmin -uroot -ppassword shutdown
081208 20:19:56 mysqld_safe mysqld from pid file
/usr/local/mysql/var/tonfisk.pid ended
$> mysqld_safe --ndbcluster --ndb-connectstring=198.51.100.10 &
081208 20:20:06 mysqld_safe Logging to '/usr/local/mysql/var/tonfisk.err'.
081208 20:20:06 mysqld_safe Starting mysqld daemon with databases
from /usr/local/mysql/var

Of course, the exact input and output depend on how and where MySQL is installed on the system, as well
as which options you choose to start it (and whether or not some or all of these options are specified in a
my.cnf file).

Step 5: Perform an initial start of the new data nodes. From a system shell on each of the hosts for
the new data nodes, start the data nodes as shown here, using the --initial option:

$> ndbd -c 198.51.100.10 --initial

Note

Unlike the case with restarting the existing data nodes, you can start the new data
nodes concurrently; you do not need to wait for one to finish starting before starting
the other.

Wait until both of the new data nodes have started before proceeding with the next step. Once the new
data nodes have started, you can see in the output of the management client SHOW command that they do
not yet belong to any node group (as indicated with bold type here):

ndb_mgm> SHOW
Connected to Management Server at: 198.51.100.10:1186
Cluster Configuration

[ndbd(NDB)] 2 node(s)
id=1 @198.51.100.1 (5.7.44-ndb-7.5.36, Nodegroup: 0, *)
id=2 @198.51.100.2 (5.7.44-ndb-7.5.36, Nodegroup: 0)
id=3 @198.51.100.3 (5.7.44-ndb-7.5.36, no nodegroup)
id=4 @198.51.100.4 (5.7.44-ndb-7.5.36, no nodegroup)

[ndb_mgmd(MGM)] 1 node(s)
id=10 @198.51.100.10 (5.7.44-ndb-7.5.36)

[mysqld(API)] 2 node(s)
id=20 @198.51.100.20 (5.7.44-ndb-7.5.36)
id=21 @198.51.100.21 (5.7.44-ndb-7.5.36)

Step 6: Create a new node group. You can do this by issuing a CREATE NODEGROUP command in the
cluster management client. This command takes as its argument a comma-separated list of the node IDs
of the data nodes to be included in the new node group, as shown here:

ndb_mgm> CREATE NODEGROUP 3,4
Nodegroup 1 created

By issuing SHOW again, you can verify that data nodes 3 and 4 have joined the new node group (again
indicated in bold type):

ndb_mgm> SHOW
Connected to Management Server at: 198.51.100.10:1186
Cluster Configuration

3804

Adding NDB Cluster Data Nodes Online

[ndbd(NDB)] 2 node(s)
id=1 @198.51.100.1 (5.7.44-ndb-7.5.36, Nodegroup: 0, *)
id=2 @198.51.100.2 (5.7.44-ndb-7.5.36, Nodegroup: 0)
id=3 @198.51.100.3 (5.7.44-ndb-7.5.36, Nodegroup: 1)
id=4 @198.51.100.4 (5.7.44-ndb-7.5.36, Nodegroup: 1)

[ndb_mgmd(MGM)] 1 node(s)
id=10 @198.51.100.10 (5.7.44-ndb-7.5.36)

[mysqld(API)] 2 node(s)
id=20 @198.51.100.20 (5.7.44-ndb-7.5.36)
id=21 @198.51.100.21 (5.7.44-ndb-7.5.36)

Step 7: Redistribute cluster data. When a node group is created, existing data and indexes are not
automatically distributed to the new node group's data nodes, as you can see by issuing the appropriate
REPORT command in the management client:

ndb_mgm> ALL REPORT MEMORY

Node 1: Data usage is 5%(177 32K pages of total 3200)
Node 1: Index usage is 0%(108 8K pages of total 12832)
Node 2: Data usage is 5%(177 32K pages of total 3200)
Node 2: Index usage is 0%(108 8K pages of total 12832)
Node 3: Data usage is 0%(0 32K pages of total 3200)
Node 3: Index usage is 0%(0 8K pages of total 12832)
Node 4: Data usage is 0%(0 32K pages of total 3200)
Node 4: Index usage is 0%(0 8K pages of total 12832)

By using ndb_desc with the -p option, which causes the output to include partitioning information, you
can see that the table still uses only 2 partitions (in the Per partition info section of the output,
shown here in bold text):

$> ndb_desc -c 198.51.100.10 -d n ips -p
-- ips --
Version: 1
Fragment type: 9
K Value: 6
Min load factor: 78
Max load factor: 80
Temporary table: no
Number of attributes: 6
Number of primary keys: 1
Length of frm data: 340
Row Checksum: 1
Row GCI: 1
SingleUserMode: 0
ForceVarPart: 1
FragmentCount: 2
TableStatus: Retrieved
-- Attributes --
id Bigint PRIMARY KEY DISTRIBUTION KEY AT=FIXED ST=MEMORY AUTO_INCR
country_code Char(2;latin1_swedish_ci) NOT NULL AT=FIXED ST=MEMORY
type Char(4;latin1_swedish_ci) NOT NULL AT=FIXED ST=MEMORY
ip_address Varchar(15;latin1_swedish_ci) NOT NULL AT=SHORT_VAR ST=MEMORY
addresses Bigunsigned NULL AT=FIXED ST=MEMORY
date Bigunsigned NULL AT=FIXED ST=MEMORY

-- Indexes --
PRIMARY KEY(id) - UniqueHashIndex
PRIMARY(id) - OrderedIndex

-- Per partition info --
Partition Row count Commit count Frag fixed memory Frag varsized memory
0 26086 26086 1572864 557056
1 26329 26329 1605632 557056

3805

Adding NDB Cluster Data Nodes Online

NDBT_ProgramExit: 0 - OK

You can cause the data to be redistributed among all of the data nodes by performing, for each NDB table,
an ALTER TABLE ... ALGORITHM=INPLACE, REORGANIZE PARTITION statement in the mysql
client.

Important

ALTER TABLE ... ALGORITHM=INPLACE, REORGANIZE PARTITION does not
work on tables that were created with the MAX_ROWS option. Instead, use ALTER
TABLE ... ALGORITHM=INPLACE, MAX_ROWS=... to reorganize such tables.

Keep in mind that using MAX_ROWS to set the number of partitions per table is
deprecated in NDB 7.5.4 and later, where you should use PARTITION_BALANCE
instead; see Section 13.1.18.9, “Setting NDB Comment Options”, for more
information.

After issuing the statement ALTER TABLE ips ALGORITHM=INPLACE, REORGANIZE PARTITION, you
can see using ndb_desc that the data for this table is now stored using 4 partitions, as shown here (with
the relevant portions of the output in bold type):

$> ndb_desc -c 198.51.100.10 -d n ips -p
-- ips --
Version: 16777217
Fragment type: 9
K Value: 6
Min load factor: 78
Max load factor: 80
Temporary table: no
Number of attributes: 6
Number of primary keys: 1
Length of frm data: 341
Row Checksum: 1
Row GCI: 1
SingleUserMode: 0
ForceVarPart: 1
FragmentCount: 4
TableStatus: Retrieved
-- Attributes --
id Bigint PRIMARY KEY DISTRIBUTION KEY AT=FIXED ST=MEMORY AUTO_INCR
country_code Char(2;latin1_swedish_ci) NOT NULL AT=FIXED ST=MEMORY
type Char(4;latin1_swedish_ci) NOT NULL AT=FIXED ST=MEMORY
ip_address Varchar(15;latin1_swedish_ci) NOT NULL AT=SHORT_VAR ST=MEMORY
addresses Bigunsigned NULL AT=FIXED ST=MEMORY
date Bigunsigned NULL AT=FIXED ST=MEMORY

-- Indexes --
PRIMARY KEY(id) - UniqueHashIndex
PRIMARY(id) - OrderedIndex

-- Per partition info --
Partition Row count Commit count Frag fixed memory Frag varsized memory
0 12981 52296 1572864 557056
1 13236 52515 1605632 557056
2 13105 13105 819200 294912
3 13093 13093 819200 294912

NDBT_ProgramExit: 0 - OK

Note

Normally, ALTER TABLE table_name [ALGORITHM=INPLACE,] REORGANIZE
PARTITION is used with a list of partition identifiers and a set of partition definitions

3806

Adding NDB Cluster Data Nodes Online

to create a new partitioning scheme for a table that has already been explicitly
partitioned. Its use here to redistribute data onto a new NDB Cluster node group is
an exception in this regard; when used in this way, no other keywords or identifiers
follow REORGANIZE PARTITION.

For more information, see Section 13.1.8, “ALTER TABLE Statement”.

In addition, for each table, the ALTER TABLE statement should be followed by an OPTIMIZE TABLE to
reclaim wasted space. You can obtain a list of all NDBCLUSTER tables using the following query against the
Information Schema TABLES table:

SELECT TABLE_SCHEMA, TABLE_NAME
 FROM INFORMATION_SCHEMA.TABLES
 WHERE ENGINE = 'NDBCLUSTER';

Note

The INFORMATION_SCHEMA.TABLES.ENGINE value for an NDB Cluster table is
always NDBCLUSTER, regardless of whether the CREATE TABLE statement used to
create the table (or ALTER TABLE statement used to convert an existing table from
a different storage engine) used NDB or NDBCLUSTER in its ENGINE option.

You can see after performing these statements in the output of ALL REPORT MEMORY that the data and
indexes are now redistributed between all cluster data nodes, as shown here:

ndb_mgm> ALL REPORT MEMORY

Node 1: Data usage is 5%(176 32K pages of total 3200)
Node 1: Index usage is 0%(76 8K pages of total 12832)
Node 2: Data usage is 5%(176 32K pages of total 3200)
Node 2: Index usage is 0%(76 8K pages of total 12832)
Node 3: Data usage is 2%(80 32K pages of total 3200)
Node 3: Index usage is 0%(51 8K pages of total 12832)
Node 4: Data usage is 2%(80 32K pages of total 3200)
Node 4: Index usage is 0%(50 8K pages of total 12832)

Note

Since only one DDL operation on NDBCLUSTER tables can be executed at a time,
you must wait for each ALTER TABLE ... REORGANIZE PARTITION statement
to finish before issuing the next one.

It is not necessary to issue ALTER TABLE ... REORGANIZE PARTITION statements for NDBCLUSTER
tables created after the new data nodes have been added; data added to such tables is distributed among
all data nodes automatically. However, in NDBCLUSTER tables that existed prior to the addition of the
new nodes, neither existing nor new data is distributed using the new nodes until these tables have been
reorganized using ALTER TABLE ... REORGANIZE PARTITION.

Alternative procedure, without rolling restart. It is possible to avoid the need for a rolling restart
by configuring the extra data nodes, but not starting them, when first starting the cluster. We assume, as
before, that you wish to start with two data nodes—nodes 1 and 2—in one node group and later to expand
the cluster to four data nodes, by adding a second node group consisting of nodes 3 and 4:

[ndbd default]
DataMemory = 100M
IndexMemory = 100M
NoOfReplicas = 2
DataDir = /usr/local/mysql/var/mysql-cluster

[ndbd]
Id = 1

3807

Online Backup of NDB Cluster

HostName = 198.51.100.1

[ndbd]
Id = 2
HostName = 198.51.100.2

[ndbd]
Id = 3
HostName = 198.51.100.3
Nodegroup = 65536

[ndbd]
Id = 4
HostName = 198.51.100.4
Nodegroup = 65536

[mgm]
HostName = 198.51.100.10
Id = 10

[api]
Id=20
HostName = 198.51.100.20

[api]
Id=21
HostName = 198.51.100.21

The data nodes to be brought online at a later time (nodes 3 and 4) can be configured with NodeGroup =
65536, in which case nodes 1 and 2 can each be started as shown here:

$> ndbd -c 198.51.100.10 --initial

The data nodes configured with NodeGroup = 65536 are treated by the management server as though
you had started nodes 1 and 2 using --nowait-nodes=3,4 after waiting for a period of time determined
by the setting for the StartNoNodeGroupTimeout data node configuration parameter. By default, this is
15 seconds (15000 milliseconds).

Note

StartNoNodegroupTimeout must be the same for all data nodes in the cluster;
for this reason, you should always set it in the [ndbd default] section of the
config.ini file, rather than for individual data nodes.

When you are ready to add the second node group, you need only perform the following additional steps:

1. Start data nodes 3 and 4, invoking the data node process once for each new node:

$> ndbd -c 198.51.100.10 --initial

2. Issue the appropriate CREATE NODEGROUP command in the management client:

ndb_mgm> CREATE NODEGROUP 3,4

3. In the mysql client, issue ALTER TABLE ... REORGANIZE PARTITION and OPTIMIZE TABLE
statements for each existing NDBCLUSTER table. (As noted elsewhere in this section, existing NDB
Cluster tables cannot use the new nodes for data distribution until this has been done.)

21.6.8 Online Backup of NDB Cluster

The next few sections describe how to prepare for and then to create an NDB Cluster backup using the
functionality for this purpose found in the ndb_mgm management client. To distinguish this type of backup

3808

Online Backup of NDB Cluster

from a backup made using mysqldump, we sometimes refer to it as a “native” NDB Cluster backup. (For
information about the creation of backups with mysqldump, see Section 4.5.4, “mysqldump — A Database
Backup Program”.) Restoration of NDB Cluster backups is done using the ndb_restore utility provided
with the NDB Cluster distribution; for information about ndb_restore and its use in restoring NDB Cluster
backups, see Section 21.5.24, “ndb_restore — Restore an NDB Cluster Backup”.

21.6.8.1 NDB Cluster Backup Concepts

A backup is a snapshot of the database at a given time. The backup consists of three main parts:

• Metadata. The names and definitions of all database tables

• Table records. The data actually stored in the database tables at the time that the backup was made

• Transaction log. A sequential record telling how and when data was stored in the database

Each of these parts is saved on all nodes participating in the backup. During backup, each node saves
these three parts into three files on disk:

• BACKUP-backup_id.node_id.ctl

A control file containing control information and metadata. Each node saves the same table definitions
(for all tables in the cluster) to its own version of this file.

• BACKUP-backup_id-0.node_id.data

A data file containing the table records, which are saved on a per-fragment basis. That is, different
nodes save different fragments during the backup. The file saved by each node starts with a header that
states the tables to which the records belong. Following the list of records there is a footer containing a
checksum for all records.

• BACKUP-backup_id.node_id.log

A log file containing records of committed transactions. Only transactions on tables stored in the backup
are stored in the log. Nodes involved in the backup save different records because different nodes host
different database fragments.

In the listing just shown, backup_id stands for the backup identifier and node_id is the unique identifier
for the node creating the file.

The location of the backup files is determined by the BackupDataDir parameter.

21.6.8.2 Using The NDB Cluster Management Client to Create a Backup

Before starting a backup, make sure that the cluster is properly configured for performing one. (See
Section 21.6.8.3, “Configuration for NDB Cluster Backups”.)

The START BACKUP command is used to create a backup:

START BACKUP [backup_id] [wait_option] [snapshot_option]

wait_option:
WAIT {STARTED | COMPLETED} | NOWAIT

snapshot_option:
SNAPSHOTSTART | SNAPSHOTEND

Successive backups are automatically identified sequentially, so the backup_id, an integer greater
than or equal to 1, is optional; if it is omitted, the next available value is used. If an existing backup_id

3809

Online Backup of NDB Cluster

value is used, the backup fails with the error Backup failed: file already exists. If used, the
backup_id must follow START BACKUP immediately, before any other options are used.

The wait_option can be used to determine when control is returned to the management client after a
START BACKUP command is issued, as shown in the following list:

• If NOWAIT is specified, the management client displays a prompt immediately, as seen here:

ndb_mgm> START BACKUP NOWAIT
ndb_mgm>

In this case, the management client can be used even while it prints progress information from the
backup process.

• With WAIT STARTED the management client waits until the backup has started before returning control
to the user, as shown here:

ndb_mgm> START BACKUP WAIT STARTED
Waiting for started, this may take several minutes
Node 2: Backup 3 started from node 1
ndb_mgm>

• WAIT COMPLETED causes the management client to wait until the backup process is complete before
returning control to the user.

WAIT COMPLETED is the default.

 A snapshot_option can be used to determine whether the backup matches the state of the cluster
when START BACKUP was issued, or when it was completed. SNAPSHOTSTART causes the backup to
match the state of the cluster when the backup began; SNAPSHOTEND causes the backup to reflect the
state of the cluster when the backup was finished. SNAPSHOTEND is the default, and matches the behavior
found in previous NDB Cluster releases.

Note

If you use the SNAPSHOTSTART option with START BACKUP, and the
CompressedBackup parameter is enabled, only the data and control files are
compressed—the log file is not compressed.

If both a wait_option and a snapshot_option are used, they may be specified in either order. For
example, all of the following commands are valid, assuming that there is no existing backup having 4 as its
ID:

START BACKUP WAIT STARTED SNAPSHOTSTART
START BACKUP SNAPSHOTSTART WAIT STARTED
START BACKUP 4 WAIT COMPLETED SNAPSHOTSTART
START BACKUP SNAPSHOTEND WAIT COMPLETED
START BACKUP 4 NOWAIT SNAPSHOTSTART

The procedure for creating a backup consists of the following steps:

1. Start the management client (ndb_mgm), if it not running already.

2. Execute the START BACKUP command. This produces several lines of output indicating the progress of
the backup, as shown here:

ndb_mgm> START BACKUP
Waiting for completed, this may take several minutes
Node 2: Backup 1 started from node 1

3810

Online Backup of NDB Cluster

Node 2: Backup 1 started from node 1 completed
 StartGCP: 177 StopGCP: 180
 #Records: 7362 #LogRecords: 0
 Data: 453648 bytes Log: 0 bytes
ndb_mgm>

3. When the backup has started the management client displays this message:

Backup backup_id started from node node_id

backup_id is the unique identifier for this particular backup. This identifier is saved in the cluster
log, if it has not been configured otherwise. node_id is the identifier of the management server
that is coordinating the backup with the data nodes. At this point in the backup process the cluster
has received and processed the backup request. It does not mean that the backup has finished. An
example of this statement is shown here:

Node 2: Backup 1 started from node 1

4. The management client indicates with a message like this one that the backup has started:

Backup backup_id started from node node_id completed

As is the case for the notification that the backup has started, backup_id is the unique identifier for
this particular backup, and node_id is the node ID of the management server that is coordinating the
backup with the data nodes. This output is accompanied by additional information including relevant
global checkpoints, the number of records backed up, and the size of the data, as shown here:

Node 2: Backup 1 started from node 1 completed
 StartGCP: 177 StopGCP: 180
 #Records: 7362 #LogRecords: 0
 Data: 453648 bytes Log: 0 bytes

It is also possible to perform a backup from the system shell by invoking ndb_mgm with the -e or --
execute option, as shown in this example:

$> ndb_mgm -e "START BACKUP 6 WAIT COMPLETED SNAPSHOTSTART"

When using START BACKUP in this way, you must specify the backup ID.

Cluster backups are created by default in the BACKUP subdirectory of the DataDir on each data node.
This can be overridden for one or more data nodes individually, or for all cluster data nodes in the
config.ini file using the BackupDataDir configuration parameter. The backup files created for a
backup with a given backup_id are stored in a subdirectory named BACKUP-backup_id in the backup
directory.

Cancelling backups. To cancel or abort a backup that is already in progress, perform the following
steps:

1. Start the management client.

2. Execute this command:

ndb_mgm> ABORT BACKUP backup_id

The number backup_id is the identifier of the backup that was included in the response of the
management client when the backup was started (in the message Backup backup_id started
from node management_node_id).

3. The management client acknowledges the abort request with Abort of backup backup_id
ordered.

3811

Online Backup of NDB Cluster

Note

At this point, the management client has not yet received a response from the
cluster data nodes to this request, and the backup has not yet actually been
aborted.

4. After the backup has been aborted, the management client reports this fact in a manner similar to what
is shown here:

Node 1: Backup 3 started from 5 has been aborted.
 Error: 1321 - Backup aborted by user request: Permanent error: User defined error
Node 3: Backup 3 started from 5 has been aborted.
 Error: 1323 - 1323: Permanent error: Internal error
Node 2: Backup 3 started from 5 has been aborted.
 Error: 1323 - 1323: Permanent error: Internal error
Node 4: Backup 3 started from 5 has been aborted.
 Error: 1323 - 1323: Permanent error: Internal error

In this example, we have shown sample output for a cluster with 4 data nodes, where the sequence
number of the backup to be aborted is 3, and the management node to which the cluster management
client is connected has the node ID 5. The first node to complete its part in aborting the backup reports
that the reason for the abort was due to a request by the user. (The remaining nodes report that the
backup was aborted due to an unspecified internal error.)

Note

There is no guarantee that the cluster nodes respond to an ABORT BACKUP
command in any particular order.

The Backup backup_id started from node management_node_id has been aborted
messages mean that the backup has been terminated and that all files relating to this backup have
been removed from the cluster file system.

It is also possible to abort a backup in progress from a system shell using this command:

$> ndb_mgm -e "ABORT BACKUP backup_id"

Note

If there is no backup having the ID backup_id running when an ABORT BACKUP is
issued, the management client makes no response, nor is it indicated in the cluster
log that an invalid abort command was sent.

21.6.8.3 Configuration for NDB Cluster Backups

Five configuration parameters are essential for backup:

• BackupDataBufferSize

The amount of memory used to buffer data before it is written to disk.

• BackupLogBufferSize

The amount of memory used to buffer log records before these are written to disk.

• BackupMemory

The total memory allocated in a data node for backups. This should be the sum of the memory allocated
for the backup data buffer and the backup log buffer.

3812

Importing Data Into MySQL Cluster

• BackupWriteSize

The default size of blocks written to disk. This applies for both the backup data buffer and the backup log
buffer.

• BackupMaxWriteSize

The maximum size of blocks written to disk. This applies for both the backup data buffer and the backup
log buffer.

In addition, CompressedBackup causes NDB to use compression when creating and writing to backup
files.

More detailed information about these parameters can be found in Backup Parameters.

You can also set a location for the backup files using the BackupDataDir configuration parameter. The
default is FileSystemPath/BACKUP/BACKUP-backup_id.

21.6.8.4 NDB Cluster Backup Troubleshooting

If an error code is returned when issuing a backup request, the most likely cause is insufficient memory or
disk space. You should check that there is enough memory allocated for the backup.

Important

If you have set BackupDataBufferSize and BackupLogBufferSize and their
sum is greater than 4MB, then you must also set BackupMemory as well.

You should also make sure that there is sufficient space on the hard drive partition of the backup target.

NDB does not support repeatable reads, which can cause problems with the restoration process. Although
the backup process is “hot”, restoring an NDB Cluster from backup is not a 100% “hot” process. This is due
to the fact that, for the duration of the restore process, running transactions get nonrepeatable reads from
the restored data. This means that the state of the data is inconsistent while the restore is in progress.

21.6.9 Importing Data Into MySQL Cluster

It is common when setting up a new instance of NDB Cluster to need to import data from an existing
NDB Cluster, instance of MySQL, or other source. This data is most often available in one or more of the
following formats:

• An SQL dump file such as produced by mysqldump or mysqlpump. This can be imported using the
mysql client, as shown later in this section.

• A CSV file produced by mysqldump or other export program. Such files can be imported into NDB using
LOAD DATA INFILE in the mysql client, or with the ndb_import utility provided with the NDB Cluster
distribution. For more information about the latter, see Section 21.5.14, “ndb_import — Import CSV Data
Into NDB”.

• A native NDB backup produced using START BACKUP in the NDB management client. To import a
native backup, you must use the ndb_restore program that comes as part of NDB Cluster. See
Section 21.5.24, “ndb_restore — Restore an NDB Cluster Backup”, for more about using this program.

When importing data from an SQL file, it is often not necessary to enforce transactions or foreign keys,
and temporarily disabling these features can speed up the import process greatly. This can be done using
the mysql client, either from a client session, or by invoking it on the command line. Within a mysql client
session, you can perform the import using the following SQL statements:

3813

MySQL Server Usage for NDB Cluster

SET ndb_use_transactions=0;
SET foreign_key_checks=0;

source path/to/dumpfile;

SET ndb_use_transactions=1;
SET foreign_key_checks=1;

When performing the import in this fashion, you must enable ndb_use_transaction and
foreign_key_checks again following execution of the mysql client's source command. Otherwise, it
is possible for later statements in same session may also be executed without enforcing transactions or
foreign key constraints, and which could lead to data inconcsistency.

From the system shell, you can import the SQL file while disabling enforcement of transaction and foreign
keys by using the mysql client with the --init-command option, like this:

$> mysql --init-command='SET ndb_use_transactions=0; SET foreign_key_checks=0' < path/to/dumpfile

It is also possible to load the data into an InnoDB table, and convert it to use the NDB storage engine
afterwards using ALTER TABLE ... ENGINE NDB). You should take into account, especially for many
tables, that this may require a number of such operations; in addition, if foreign keys are used, you must
mind the order of the ALTER TABLE statements carefully, due to the fact that foreign keys do not work
between tables using different MySQL storage engines.

You should be aware that the methods described previously in this section are not optimized for
very large data sets or large transactions. Should an application really need big transactions or
many concurrent transactions as part of normal operation, you may wish to increase the value of the
MaxNoOfConcurrentOperations data node configuration parameter, which reserves more memory to
allow a data node to take over a transaction if its transaction coordinator stops unexpectedly.

You may also wish to do this when performing bulk DELETE or UPDATE operations on NDB Cluster tables.
If possible, try to have applications perform these operations in chunks, for example, by adding LIMIT to
such statements.

If a data import operation does not complete successfully, for whatever reason, you should be prepared
to perform any necessary cleanup including possibly one or more DROP TABLE statements, DROP
DATABASE statements, or both. Failing to do so may leave the database in an inconsistent state.

21.6.10 MySQL Server Usage for NDB Cluster

mysqld is the traditional MySQL server process. To be used with NDB Cluster, mysqld needs to
be built with support for the NDB storage engine, as it is in the precompiled binaries available from
https://dev.mysql.com/downloads/. If you build MySQL from source, you must invoke CMake with the -
DWITH_NDBCLUSTER=1 option to include support for NDB.

For more information about compiling NDB Cluster from source, see Section 21.3.1.4, “Building NDB
Cluster from Source on Linux”, and Section 21.3.2.2, “Compiling and Installing NDB Cluster from Source
on Windows”.

(For information about mysqld options and variables, in addition to those discussed in this section,
which are relevant to NDB Cluster, see Section 21.4.3.9, “MySQL Server Options and Variables for NDB
Cluster”.)

If the mysqld binary has been built with Cluster support, the NDBCLUSTER storage engine is still disabled
by default. You can use either of two possible options to enable this engine:

• Use --ndbcluster as a startup option on the command line when starting mysqld.

3814

https://dev.mysql.com/downloads/

MySQL Server Usage for NDB Cluster

• Insert a line containing ndbcluster in the [mysqld] section of your my.cnf file.

An easy way to verify that your server is running with the NDBCLUSTER storage engine enabled is to issue
the SHOW ENGINES statement in the MySQL Monitor (mysql). You should see the value YES as the
Support value in the row for NDBCLUSTER. If you see NO in this row or if there is no such row displayed in
the output, you are not running an NDB-enabled version of MySQL. If you see DISABLED in this row, you
need to enable it in either one of the two ways just described.

To read cluster configuration data, the MySQL server requires at a minimum three pieces of information:

• The MySQL server's own cluster node ID

• The host name or IP address for the management server

• The number of the TCP/IP port on which it can connect to the management server

Node IDs can be allocated dynamically, so it is not strictly necessary to specify them explicitly.

The mysqld parameter ndb-connectstring is used to specify the connection string either on the
command line when starting mysqld or in my.cnf. The connection string contains the host name or IP
address where the management server can be found, as well as the TCP/IP port it uses.

In the following example, ndb_mgmd.mysql.com is the host where the management server resides, and
the management server listens for cluster messages on port 1186:

$> mysqld --ndbcluster --ndb-connectstring=ndb_mgmd.mysql.com:1186

See Section 21.4.3.3, “NDB Cluster Connection Strings”, for more information on connection strings.

Given this information, the MySQL server can act as a full participant in the cluster. (We often refer to a
mysqld process running in this manner as an SQL node.) It is fully aware of all cluster data nodes as well
as their status, and establishes connections to all data nodes. In this case, it is able to use any data node
as a transaction coordinator and to read and update node data.

You can see in the mysql client whether a MySQL server is connected to the cluster using SHOW
PROCESSLIST. If the MySQL server is connected to the cluster, and you have the PROCESS privilege, then
the first row of the output is as shown here:

mysql> SHOW PROCESSLIST \G
*************************** 1. row ***************************
 Id: 1
 User: system user
 Host:
 db:
Command: Daemon
 Time: 1
 State: Waiting for event from ndbcluster
 Info: NULL

Important

To participate in an NDB Cluster, the mysqld process must be started with both
the options --ndbcluster and --ndb-connectstring (or their equivalents in
my.cnf). If mysqld is started with only the --ndbcluster option, or if it is unable
to contact the cluster, it is not possible to work with NDB tables, nor is it possible to
create any new tables regardless of storage engine. The latter restriction is a safety
measure intended to prevent the creation of tables having the same names as NDB
tables while the SQL node is not connected to the cluster. If you wish to create

3815

NDB Cluster Disk Data Tables

tables using a different storage engine while the mysqld process is not participating
in an NDB Cluster, you must restart the server without the --ndbcluster option.

21.6.11 NDB Cluster Disk Data Tables

It is possible to store the nonindexed columns of NDB tables on disk, rather than in RAM.

As part of implementing NDB Cluster Disk Data work, a number of improvements were made in NDB
Cluster for the efficient handling of very large amounts (terabytes) of data during node recovery and restart.
These include a “no-steal” algorithm for synchronizing a starting node with very large data sets. For more
information, see the paper Recovery Principles of NDB Cluster 5.1, by NDB Cluster developers Mikael
Ronström and Jonas Oreland.

NDB Cluster Disk Data performance can be influenced by a number of configuration parameters. For
information about these parameters and their effects, see NDB Cluster Disk Data configuration parameters
and NDB Cluster Disk Data storage and GCP Stop errors

The performance of an NDB Cluster that uses Disk Data storage can also be greatly improved by
separating data node file systems from undo log files and tablespace data files, which can be done
using symbolic links. For more information, see Section 21.6.11.2, “Using Symbolic Links with Disk Data
Objects”.

21.6.11.1 NDB Cluster Disk Data Objects

NDB Cluster Disk Data storage is implemented using a number of Disk Data objects. These include the
following:

• Tablespaces act as containers for other Disk Data objects.

• Undo log files undo information required for rolling back transactions.

• One or more undo log files are assigned to a log file group, which is then assigned to a tablespace.

• Data files store Disk Data table data. A data file is assigned directly to a tablespace.

Undo log files and data files are actual files in the file system of each data node; by default they are placed
in ndb_node_id_fs in the DataDir specified in the NDB Cluster config.ini file, and where node_id
is the data node's node ID. It is possible to place these elsewhere by specifying either an absolute or
relative path as part of the filename when creating the undo log or data file. Statements that create these
files are shown later in this section.

NDB Cluster tablespaces and log file groups are not implemented as files.

Important

Although not all Disk Data objects are implemented as files, they all share the same
namespace. This means that each Disk Data object must be uniquely named (and
not merely each Disk Data object of a given type). For example, you cannot have a
tablespace and a log file group both named dd1.

Assuming that you have already set up an NDB Cluster with all nodes (including management and SQL
nodes), the basic steps for creating an NDB Cluster table on disk are as follows:

1. Create a log file group, and assign one or more undo log files to it (an undo log file is also sometimes
referred to as an undofile).

3816

http://www.vldb2005.org/program/paper/wed/p1108-ronstrom.pdf

NDB Cluster Disk Data Tables

Note

Undo log files are necessary only for Disk Data tables; they are not used for
NDBCLUSTER tables that are stored only in memory.

2. Create a tablespace; assign the log file group, as well as one or more data files, to the tablespace.

3. Create a Disk Data table that uses this tablespace for data storage.

Each of these tasks can be accomplished using SQL statements in the mysql client or other MySQL client
application, as shown in the example that follows.

1. We create a log file group named lg_1 using CREATE LOGFILE GROUP. This log file group is to be
made up of two undo log files, which we name undo_1.log and undo_2.log, whose initial sizes are
16 MB and 12 MB, respectively. (The default initial size for an undo log file is 128 MB.) Optionally, you
can also specify a size for the log file group's undo buffer, or permit it to assume the default value of 8
MB. In this example, we set the UNDO buffer's size at 2 MB. A log file group must be created with an
undo log file; so we add undo_1.log to lg_1 in this CREATE LOGFILE GROUP statement:

CREATE LOGFILE GROUP lg_1
 ADD UNDOFILE 'undo_1.log'
 INITIAL_SIZE 16M
 UNDO_BUFFER_SIZE 2M
 ENGINE NDBCLUSTER;

To add undo_2.log to the log file group, use the following ALTER LOGFILE GROUP statement:

ALTER LOGFILE GROUP lg_1
 ADD UNDOFILE 'undo_2.log'
 INITIAL_SIZE 12M
 ENGINE NDBCLUSTER;

Some items of note:

• The .log file extension used here is not required. We use it merely to make the log files easily
recognizable.

• Every CREATE LOGFILE GROUP and ALTER LOGFILE GROUP statement must include an ENGINE
option. The only permitted values for this option are NDBCLUSTER and NDB.

Important

There can exist at most one log file group in the same NDB Cluster at any
given time.

• When you add an undo log file to a log file group using ADD UNDOFILE 'filename', a file with
the name filename is created in the ndb_node_id_fs directory within the DataDir of each data
node in the cluster, where node_id is the node ID of the data node. Each undo log file is of the size
specified in the SQL statement. For example, if an NDB Cluster has 4 data nodes, then the ALTER
LOGFILE GROUP statement just shown creates 4 undo log files, 1 each on in the data directory of
each of the 4 data nodes; each of these files is named undo_2.log and each file is 12 MB in size.

• UNDO_BUFFER_SIZE is limited by the amount of system memory available.

• For more information about the CREATE LOGFILE GROUP statement, see Section 13.1.15,
“CREATE LOGFILE GROUP Statement”. For more information about ALTER LOGFILE GROUP, see
Section 13.1.5, “ALTER LOGFILE GROUP Statement”.

3817

NDB Cluster Disk Data Tables

2. Now we can create a tablespace, which contains files to be used by NDB Cluster Disk Data tables
for storing their data. A tablespace is also associated with a particular log file group. When creating a
new tablespace, you must specify the log file group which it is to use for undo logging; you must also
specify a data file. You can add more data files to the tablespace after the tablespace is created; it is
also possible to drop data files from a tablespace (an example of dropping data files is provided later in
this section).

Assume that we wish to create a tablespace named ts_1 which uses lg_1 as its log file group. This
tablespace is to contain two data files named data_1.dat and data_2.dat, whose initial sizes are
32 MB and 48 MB, respectively. (The default value for INITIAL_SIZE is 128 MB.) We can do this
using two SQL statements, as shown here:

CREATE TABLESPACE ts_1
 ADD DATAFILE 'data_1.dat'
 USE LOGFILE GROUP lg_1
 INITIAL_SIZE 32M
 ENGINE NDBCLUSTER;

ALTER TABLESPACE ts_1
 ADD DATAFILE 'data_2.dat'
 INITIAL_SIZE 48M
 ENGINE NDBCLUSTER;

The CREATE TABLESPACE statement creates a tablespace ts_1 with the data file data_1.dat,
and associates ts_1 with log file group lg_1. The ALTER TABLESPACE adds the second data file
(data_2.dat).

Some items of note:

• As is the case with the .log file extension used in this example for undo log files, there is no special
significance for the .dat file extension; it is used merely for easy recognition of data files.

• When you add a data file to a tablespace using ADD DATAFILE 'filename', a file with the name
filename is created in the ndb_node_id_fs directory within the DataDir of each data node in
the cluster, where node_id is the node ID of the data node. Each data file is of the size specified in
the SQL statement. For example, if an NDB Cluster has 4 data nodes, then the ALTER TABLESPACE
statement just shown creates 4 data files, 1 each in the data directory of each of the 4 data nodes;
each of these files is named data_2.dat and each file is 48 MB in size.

• NDB 7.6 (and later) reserves 4% of each tablespace for use during data node restarts. This space is
not available for storing data.

• All CREATE TABLESPACE and ALTER TABLESPACE statements must contain an ENGINE clause;
only tables using the same storage engine as the tablespace can be created in the tablespace. For
NDB Cluster tablespaces, the only permitted values for this option are NDBCLUSTER and NDB.

• For more information about the CREATE TABLESPACE and ALTER TABLESPACE statements, see
Section 13.1.19, “CREATE TABLESPACE Statement”, and Section 13.1.9, “ALTER TABLESPACE
Statement”.

3. Now it is possible to create a table whose nonindexed columns are stored on disk in the tablespace
ts_1:

CREATE TABLE dt_1 (
 member_id INT UNSIGNED NOT NULL AUTO_INCREMENT PRIMARY KEY,
 last_name VARCHAR(50) NOT NULL,
 first_name VARCHAR(50) NOT NULL,
 dob DATE NOT NULL,
 joined DATE NOT NULL,

3818

NDB Cluster Disk Data Tables

 INDEX(last_name, first_name)
)
 TABLESPACE ts_1 STORAGE DISK
 ENGINE NDBCLUSTER;

The TABLESPACE ... STORAGE DISK option tells the NDBCLUSTER storage engine to use
tablespace ts_1 for disk data storage.

Once table ts_1 has been created as shown, you can perform INSERT, SELECT, UPDATE, and
DELETE statements on it just as you would with any other MySQL table.

It is also possible to specify whether an individual column is stored on disk or in memory by using a
STORAGE clause as part of the column's definition in a CREATE TABLE or ALTER TABLE statement.
STORAGE DISK causes the column to be stored on disk, and STORAGE MEMORY causes in-memory
storage to be used. See Section 13.1.18, “CREATE TABLE Statement”, for more information.

Indexing of columns implicitly stored on disk. For table dt_1 as defined in the example just shown,
only the dob and joined columns are stored on disk. This is because there are indexes on the id,
last_name, and first_name columns, and so data belonging to these columns is stored in RAM. Only
nonindexed columns can be held on disk; indexes and indexed column data continue to be stored in
memory. This tradeoff between the use of indexes and conservation of RAM is something you must keep
in mind as you design Disk Data tables.

You cannot add an index to a column that has been explicitly declared STORAGE DISK, without first
changing its storage type to MEMORY; any attempt to do so fails with an error. A column which implicitly
uses disk storage can be indexed; when this is done, the column's storage type is changed to MEMORY
automatically. By “implicitly”, we mean a column whose storage type is not declared, but which is which
inherited from the parent table. In the following CREATE TABLE statement (using the tablespace ts_1
defined previously), columns c2 and c3 use disk storage implicitly:

mysql> CREATE TABLE ti (
 -> c1 INT PRIMARY KEY,
 -> c2 INT,
 -> c3 INT,
 -> c4 INT
 ->)
 -> STORAGE DISK
 -> TABLESPACE ts_1
 -> ENGINE NDBCLUSTER;
Query OK, 0 rows affected (1.31 sec)

Because c2, c3, and c4 are themselves not declared with STORAGE DISK, it is possible to index them.
Here, we add indexes to c2 and c3, using, respectively, CREATE INDEX and ALTER TABLE:

mysql> CREATE INDEX i1 ON ti(c2);
Query OK, 0 rows affected (2.72 sec)
Records: 0 Duplicates: 0 Warnings: 0

mysql> ALTER TABLE ti ADD INDEX i2(c3);
Query OK, 0 rows affected (0.92 sec)
Records: 0 Duplicates: 0 Warnings: 0

SHOW CREATE TABLE confirms that the indexes were added.

mysql> SHOW CREATE TABLE ti\G
*************************** 1. row ***************************
 Table: ti
Create Table: CREATE TABLE `ti` (
 `c1` int(11) NOT NULL,
 `c2` int(11) DEFAULT NULL,
 `c3` int(11) DEFAULT NULL,

3819

NDB Cluster Disk Data Tables

 `c4` int(11) DEFAULT NULL,
 PRIMARY KEY (`c1`),
 KEY `i1` (`c2`),
 KEY `i2` (`c3`)
) /*!50100 TABLESPACE `ts_1` STORAGE DISK */ ENGINE=ndbcluster DEFAULT CHARSET=latin1
1 row in set (0.00 sec)

You can see using ndb_desc that the indexed columns (emphasized text) now use in-memory rather than
on-disk storage:

$> ./ndb_desc -d test t1
-- t1 --
Version: 33554433
Fragment type: HashMapPartition
K Value: 6
Min load factor: 78
Max load factor: 80
Temporary table: no
Number of attributes: 4
Number of primary keys: 1
Length of frm data: 317
Max Rows: 0
Row Checksum: 1
Row GCI: 1
SingleUserMode: 0
ForceVarPart: 1
PartitionCount: 4
FragmentCount: 4
PartitionBalance: FOR_RP_BY_LDM
ExtraRowGciBits: 0
ExtraRowAuthorBits: 0
TableStatus: Retrieved
Table options:
HashMap: DEFAULT-HASHMAP-3840-4
-- Attributes --
c1 Int PRIMARY KEY DISTRIBUTION KEY AT=FIXED ST=MEMORY
c2 Int NULL AT=FIXED ST=MEMORY
c3 Int NULL AT=FIXED ST=MEMORY
c4 Int NULL AT=FIXED ST=DISK
-- Indexes --
PRIMARY KEY(c1) - UniqueHashIndex
i2(c3) - OrderedIndex
PRIMARY(c1) - OrderedIndex
i1(c2) - OrderedIndex

NDBT_ProgramExit: 0 - OK

Performance note. The performance of a cluster using Disk Data storage is greatly improved if Disk
Data files are kept on a separate physical disk from the data node file system. This must be done for each
data node in the cluster to derive any noticeable benefit.

You may use absolute and relative file system paths with ADD UNDOFILE and ADD DATAFILE. Relative
paths are calculated relative to the data node's data directory. You may also use symbolic links; see
Section 21.6.11.2, “Using Symbolic Links with Disk Data Objects”, for more information and examples.

A log file group, a tablespace, and any Disk Data tables using these must be created in a particular order.
The same is true for dropping any of these objects:

• A log file group cannot be dropped as long as any tablespaces are using it.

• A tablespace cannot be dropped as long as it contains any data files.

• You cannot drop any data files from a tablespace as long as there remain any tables which are using the
tablespace.

3820

NDB Cluster Disk Data Tables

• It is not possible to drop files created in association with a different tablespace than the one with which
the files were created. (Bug #20053)

For example, to drop all the objects created so far in this section, you would use the following statements:

mysql> DROP TABLE dt_1;

mysql> ALTER TABLESPACE ts_1
 -> DROP DATAFILE 'data_2.dat'
 -> ENGINE NDBCLUSTER;

mysql> ALTER TABLESPACE ts_1
 -> DROP DATAFILE 'data_1.dat'
 -> ENGINE NDBCLUSTER;

mysql> DROP TABLESPACE ts_1
 -> ENGINE NDBCLUSTER;

mysql> DROP LOGFILE GROUP lg_1
 -> ENGINE NDBCLUSTER;

These statements must be performed in the order shown, except that the two ALTER TABLESPACE ...
DROP DATAFILE statements may be executed in either order.

You can obtain information about data files used by Disk Data tables by querying the FILES table in the
INFORMATION_SCHEMA database. An extra “NULL row” provides additional information about undo log
files. For more information and examples, see Section 24.3.9, “The INFORMATION_SCHEMA FILES
Table”.

21.6.11.2 Using Symbolic Links with Disk Data Objects

The performance of an NDB Cluster that uses Disk Data storage can be greatly improved by separating
the data node file system from any tablespace files (undo log files and data files), and placing these on
different disks. In early versions of NDB Cluster, there was no direct support for this in NDB Cluster,
and it was necessary to achieve this separation using symbolic links. NDB Cluster now supports
the data node configuration parameters FileSystemPathDD, FileSystemPathDataFiles, and
FileSystemPathUndoFiles, which make the use of symbolic links for this purpose unnecessary. For
more information about these parameters, see Disk Data file system parameters.

21.6.11.3 NDB Cluster Disk Data Storage Requirements

 The following items apply to Disk Data storage requirements:

• Variable-length columns of Disk Data tables take up a fixed amount of space. For each row, this is equal
to the space required to store the largest possible value for that column.

For general information about calculating these values, see Section 11.7, “Data Type Storage
Requirements”.

You can obtain an estimate the amount of space available in data files and undo log files by querying
the Information Schema FILES table. For more information and examples, see Section 24.3.9, “The
INFORMATION_SCHEMA FILES Table”.

Note

The OPTIMIZE TABLE statement does not have any effect on Disk Data tables.

• In a Disk Data table, the first 256 bytes of a TEXT or BLOB column are stored in memory; only the
remainder is stored on disk.

3821

Online Operations with ALTER TABLE in NDB Cluster

• Each row in a Disk Data table uses 8 bytes in memory to point to the data stored on disk. This means
that, in some cases, converting an in-memory column to the disk-based format can actually result in
greater memory usage. For example, converting a CHAR(4) column from memory-based to disk-based
format increases the amount of DataMemory used per row from 4 to 8 bytes.

Important

Starting the cluster with the --initial option does not remove Disk Data files.
You must remove these manually prior to performing an initial restart of the cluster.

Performance of Disk Data tables can be improved by minimizing the number of disk seeks by making sure
that DiskPageBufferMemory is of sufficient size. You can query the diskpagebuffer table to help
determine whether the value for this parameter needs to be increased.

21.6.12 Online Operations with ALTER TABLE in NDB Cluster

MySQL NDB Cluster 7.5 and 7.6 support online table schema changes using ALTER TABLE ...
ALGORITHM=DEFAULT|INPLACE|COPY. NDB Cluster handles COPY and INPLACE as described in the
next few paragraphs.

For ALGORITHM=COPY, the mysqld NDB Cluster handler performs the following actions:

• Tells the data nodes to create an empty copy of the table, and to make the required schema changes to
this copy.

• Reads rows from the original table, and writes them to the copy.

• Tells the data nodes to drop the original table and then to rename the copy.

We sometimes refer to this as a “copying” or “offline” ALTER TABLE.

DML operations are not permitted concurrently with a copying ALTER TABLE.

The mysqld on which the copying ALTER TABLE statement is issued takes a metadata lock, but this is
in effect only on that mysqld. Other NDB clients can modify row data during a copying ALTER TABLE,
resulting in inconsistency.

For ALGORITHM=INPLACE, the NDB Cluster handler tells the data nodes to make the required changes,
and does not perform any copying of data.

We also refer to this as a “non-copying” or “online” ALTER TABLE.

A non-copying ALTER TABLE allows concurrent DML operations.

Regardless of the algorithm used, the mysqld takes a Global Schema Lock (GSL) while executing ALTER
TABLE; this prevents execution of any (other) DDL or backups concurrently on this or any other SQL node
in the cluster. This is normally not problematic, unless the ALTER TABLE takes a very long time.

Note

Some older releases of NDB Cluster used a syntax specific to NDB for online ALTER
TABLE operations. That syntax has since been removed.

Operations that add and drop indexes on variable-width columns of NDB tables occur online. Online
operations are noncopying; that is, they do not require that indexes be re-created. They do not lock the
table being altered from access by other API nodes in an NDB Cluster (but see Limitations of NDB online
operations, later in this section). Such operations do not require single user mode for NDB table alterations

3822

Online Operations with ALTER TABLE in NDB Cluster

made in an NDB cluster with multiple API nodes; transactions can continue uninterrupted during online
DDL operations.

ALGORITHM=INPLACE can be used to perform online ADD COLUMN, ADD INDEX (including CREATE
INDEX statements), and DROP INDEX operations on NDB tables. Online renaming of NDB tables is also
supported.

Disk-based columns cannot be added to NDB tables online. This means that, if you wish to add an in-
memory column to an NDB table that uses a table-level STORAGE DISK option, you must declare the new
column as using memory-based storage explicitly. For example—assuming that you have already created
tablespace ts1—suppose that you create table t1 as follows:

mysql> CREATE TABLE t1 (
 > c1 INT NOT NULL PRIMARY KEY,
 > c2 VARCHAR(30)
 >)
 > TABLESPACE ts1 STORAGE DISK
 > ENGINE NDB;
Query OK, 0 rows affected (1.73 sec)
Records: 0 Duplicates: 0 Warnings: 0

You can add a new in-memory column to this table online as shown here:

mysql> ALTER TABLE t1
 > ADD COLUMN c3 INT COLUMN_FORMAT DYNAMIC STORAGE MEMORY,
 > ALGORITHM=INPLACE;
Query OK, 0 rows affected (1.25 sec)
Records: 0 Duplicates: 0 Warnings: 0

This statement fails if the STORAGE MEMORY option is omitted:

mysql> ALTER TABLE t1
 > ADD COLUMN c4 INT COLUMN_FORMAT DYNAMIC,
 > ALGORITHM=INPLACE;
ERROR 1846 (0A000): ALGORITHM=INPLACE is not supported. Reason:
Adding column(s) or add/reorganize partition not supported online. Try
ALGORITHM=COPY.

If you omit the COLUMN_FORMAT DYNAMIC option, the dynamic column format is employed automatically,
but a warning is issued, as shown here:

mysql> ALTER ONLINE TABLE t1 ADD COLUMN c4 INT STORAGE MEMORY;
Query OK, 0 rows affected, 1 warning (1.17 sec)
Records: 0 Duplicates: 0 Warnings: 0

mysql> SHOW WARNINGS\G
*************************** 1. row ***************************
 Level: Warning
 Code: 1478
Message: DYNAMIC column c4 with STORAGE DISK is not supported, column will
become FIXED

mysql> SHOW CREATE TABLE t1\G
*************************** 1. row ***************************
 Table: t1
Create Table: CREATE TABLE `t1` (
 `c1` int(11) NOT NULL,
 `c2` varchar(30) DEFAULT NULL,
 `c3` int(11) /*!50606 STORAGE MEMORY */ /*!50606 COLUMN_FORMAT DYNAMIC */ DEFAULT NULL,
 `c4` int(11) /*!50606 STORAGE MEMORY */ DEFAULT NULL,
 PRIMARY KEY (`c1`)
) /*!50606 TABLESPACE ts_1 STORAGE DISK */ ENGINE=ndbcluster DEFAULT CHARSET=latin1
1 row in set (0.03 sec)

3823

Online Operations with ALTER TABLE in NDB Cluster

Note

The STORAGE and COLUMN_FORMAT keywords are supported only in NDB Cluster;
in any other version of MySQL, attempting to use either of these keywords in a
CREATE TABLE or ALTER TABLE statement results in an error.

It is also possible to use the statement ALTER TABLE ... REORGANIZE PARTITION,
ALGORITHM=INPLACE with no partition_names INTO (partition_definitions) option on NDB
tables. This can be used to redistribute NDB Cluster data among new data nodes that have been added
to the cluster online. This does not perform any defragmentation, which requires an OPTIMIZE TABLE or
null ALTER TABLE statement. For more information, see Section 21.6.7, “Adding NDB Cluster Data Nodes
Online”.

Limitations of NDB online operations

Online DROP COLUMN operations are not supported.

Online ALTER TABLE, CREATE INDEX, or DROP INDEX statements that add columns or add or drop
indexes are subject to the following limitations:

• A given online ALTER TABLE can use only one of ADD COLUMN, ADD INDEX, or DROP INDEX. One
or more columns can be added online in a single statement; only one index may be created or dropped
online in a single statement.

• The table being altered is not locked with respect to API nodes other than the one on which an online
ALTER TABLE ADD COLUMN, ADD INDEX, or DROP INDEX operation (or CREATE INDEX or DROP
INDEX statement) is run. However, the table is locked against any other operations originating on the
same API node while the online operation is being executed.

• The table to be altered must have an explicit primary key; the hidden primary key created by the NDB
storage engine is not sufficient for this purpose.

• The storage engine used by the table cannot be changed online.

• The tablespace used by the table cannot be changed online. (Bug #99269, Bug #31180526)

• When used with NDB Cluster Disk Data tables, it is not possible to change the storage type (DISK or
MEMORY) of a column online. This means, that when you add or drop an index in such a way that the
operation would be performed online, and you want the storage type of the column or columns to be
changed, you must use ALGORITHM=COPY in the statement that adds or drops the index.

Columns to be added online cannot use the BLOB or TEXT type, and must meet the following criteria:

• The columns must be dynamic; that is, it must be possible to create them using COLUMN_FORMAT
DYNAMIC. If you omit the COLUMN_FORMAT DYNAMIC option, the dynamic column format is employed
automatically.

• The columns must permit NULL values and not have any explicit default value other than NULL. Columns
added online are automatically created as DEFAULT NULL, as can be seen here:

mysql> CREATE TABLE t2 (
 > c1 INT NOT NULL AUTO_INCREMENT PRIMARY KEY
 >) ENGINE=NDB;
Query OK, 0 rows affected (1.44 sec)

mysql> ALTER TABLE t2
 > ADD COLUMN c2 INT,
 > ADD COLUMN c3 INT,
 > ALGORITHM=INPLACE;

3824

Online Operations with ALTER TABLE in NDB Cluster

Query OK, 0 rows affected, 2 warnings (0.93 sec)

mysql> SHOW CREATE TABLE t1\G
*************************** 1. row ***************************
 Table: t1
Create Table: CREATE TABLE `t2` (
 `c1` int(11) NOT NULL AUTO_INCREMENT,
 `c2` int(11) DEFAULT NULL,
 `c3` int(11) DEFAULT NULL,
 PRIMARY KEY (`c1`)
) ENGINE=ndbcluster DEFAULT CHARSET=latin1
1 row in set (0.00 sec)

• The columns must be added following any existing columns. If you attempt to add a column online
before any existing columns or using the FIRST keyword, the statement fails with an error.

• Existing table columns cannot be reordered online.

For online ALTER TABLE operations on NDB tables, fixed-format columns are converted to dynamic when
they are added online, or when indexes are created or dropped online, as shown here (repeating the
CREATE TABLE and ALTER TABLE statements just shown for the sake of clarity):

mysql> CREATE TABLE t2 (
 > c1 INT NOT NULL AUTO_INCREMENT PRIMARY KEY
 >) ENGINE=NDB;
Query OK, 0 rows affected (1.44 sec)

mysql> ALTER TABLE t2
 > ADD COLUMN c2 INT,
 > ADD COLUMN c3 INT,
 > ALGORITHM=INPLACE;
Query OK, 0 rows affected, 2 warnings (0.93 sec)

mysql> SHOW WARNINGS;
*************************** 1. row ***************************
 Level: Warning
 Code: 1478
Message: Converted FIXED field 'c2' to DYNAMIC to enable online ADD COLUMN
*************************** 2. row ***************************
 Level: Warning
 Code: 1478
Message: Converted FIXED field 'c3' to DYNAMIC to enable online ADD COLUMN
2 rows in set (0.00 sec)

Only the column or columns to be added online must be dynamic. Existing columns need not be; this
includes the table's primary key, which may also be FIXED, as shown here:

mysql> CREATE TABLE t3 (
 > c1 INT NOT NULL AUTO_INCREMENT PRIMARY KEY COLUMN_FORMAT FIXED
 >) ENGINE=NDB;
Query OK, 0 rows affected (2.10 sec)

mysql> ALTER TABLE t3 ADD COLUMN c2 INT, ALGORITHM=INPLACE;
Query OK, 0 rows affected, 1 warning (0.78 sec)
Records: 0 Duplicates: 0 Warnings: 0

mysql> SHOW WARNINGS;
*************************** 1. row ***************************
 Level: Warning
 Code: 1478
Message: Converted FIXED field 'c2' to DYNAMIC to enable online ADD COLUMN
1 row in set (0.00 sec)

Columns are not converted from FIXED to DYNAMIC column format by renaming operations. For more
information about COLUMN_FORMAT, see Section 13.1.18, “CREATE TABLE Statement”.

3825

Distributed Privileges Using Shared Grant Tables

The KEY, CONSTRAINT, and IGNORE keywords are supported in ALTER TABLE statements using
ALGORITHM=INPLACE.

Beginning with NDB Cluster 7.5.7, setting MAX_ROWS to 0 using an online ALTER TABLE statement is
disallowed. You must use a copying ALTER TABLE to perform this operation. (Bug #21960004)

21.6.13 Distributed Privileges Using Shared Grant Tables

NDB Cluster supports distribution of MySQL users and privileges across all SQL nodes in an NDB Cluster.
This support is not enabled by default; you should follow the procedure outlined in this section in order to
do so.

Normally, each MySQL server's user privilege tables in the mysql database must use the MyISAM storage
engine, which means that a user account and its associated privileges created on one SQL node are not
available on the cluster's other SQL nodes. An SQL file ndb_dist_priv.sql provided with the NDB
Cluster distribution can be found in the share directory in the MySQL installation directory.

The first step in enabling distributed privileges is to load this script into a MySQL Server that functions
as an SQL node (which we refer to after this as the target SQL node or MySQL Server). You can do this
by executing the following command from the system shell on the target SQL node after changing to its
MySQL installation directory (where options stands for any additional options needed to connect to this
SQL node):

$> mysql options -uroot < share/ndb_dist_priv.sql

Importing ndb_dist_priv.sql creates a number of stored routines (six stored procedures and one
stored function) in the mysql database on the target SQL node. After connecting to the SQL node in the
mysql client (as the MySQL root user), you can verify that these were created as shown here:

mysql> SELECT ROUTINE_NAME, ROUTINE_SCHEMA, ROUTINE_TYPE
 -> FROM INFORMATION_SCHEMA.ROUTINES
 -> WHERE ROUTINE_NAME LIKE 'mysql_cluster%'
 -> ORDER BY ROUTINE_TYPE;
+---+----------------+--------------+
| ROUTINE_NAME | ROUTINE_SCHEMA | ROUTINE_TYPE |
+---+----------------+--------------+
mysql_cluster_privileges_are_distributed	mysql	FUNCTION
mysql_cluster_backup_privileges	mysql	PROCEDURE
mysql_cluster_move_grant_tables	mysql	PROCEDURE
mysql_cluster_move_privileges	mysql	PROCEDURE
mysql_cluster_restore_local_privileges	mysql	PROCEDURE
mysql_cluster_restore_privileges	mysql	PROCEDURE
mysql_cluster_restore_privileges_from_local	mysql	PROCEDURE
+---+----------------+--------------+
7 rows in set (0.01 sec)

The stored procedure named mysql_cluster_move_privileges creates backup copies of the existing
privilege tables, then converts them to NDB.

mysql_cluster_move_privileges performs the backup and conversion in two steps. The first step is
to call mysql_cluster_backup_privileges, which creates two sets of copies in the mysql database:

• A set of local copies that use the MyISAM storage engine. Their names are generated by adding the
suffix _backup to the original privilege table names.

• A set of distributed copies that use the NDBCLUSTER storage engine. These tables are named by
prefixing ndb_ and appending _backup to the names of the original tables.

3826

Distributed Privileges Using Shared Grant Tables

After the copies are created, mysql_cluster_move_privileges invokes
mysql_cluster_move_grant_tables, which contains the ALTER TABLE ... ENGINE = NDB
statements that convert the mysql system tables to NDB.

Normally, you should not invoke either mysql_cluster_backup_privileges or
mysql_cluster_move_grant_tables manually; these stored procedures are intended only for use by
mysql_cluster_move_privileges.

Although the original privilege tables are backed up automatically, it is always a good idea to create
backups manually of the existing privilege tables on all affected SQL nodes before proceeding. You can do
this using mysqldump in a manner similar to what is shown here:

$> mysqldump options -uroot \
 mysql user db tables_priv columns_priv procs_priv proxies_priv > backup_file

To perform the conversion, you must be connected to the target SQL node using the mysql client (again,
as the MySQL root user). Invoke the stored procedure like this:

mysql> CALL mysql.mysql_cluster_move_privileges();
Query OK, 0 rows affected (22.32 sec)

Depending on the number of rows in the privilege tables, this procedure may take some time to execute.
If some of the privilege tables are empty, you may see one or more No data - zero rows fetched,
selected, or processed warnings when mysql_cluster_move_privileges returns. In such
cases, the warnings may be safely ignored. To verify that the conversion was successful, you can use the
stored function mysql_cluster_privileges_are_distributed as shown here:

mysql> SELECT CONCAT(
 -> 'Conversion ',
 -> IF(mysql.mysql_cluster_privileges_are_distributed(), 'succeeded', 'failed'),
 -> '.')
 -> AS Result;
+-----------------------+
| Result |
+-----------------------+
| Conversion succeeded. |
+-----------------------+
1 row in set (0.00 sec)

mysql_cluster_privileges_are_distributed checks for the existence of the distributed privilege
tables and returns 1 if all of the privilege tables are distributed; otherwise, it returns 0.

You can verify that the backups have been created using a query such as this one:

mysql> SELECT TABLE_NAME, ENGINE FROM INFORMATION_SCHEMA.TABLES
 -> WHERE TABLE_SCHEMA = 'mysql' AND TABLE_NAME LIKE '%backup'
 -> ORDER BY ENGINE;
+-------------------------+------------+
| TABLE_NAME | ENGINE |
+-------------------------+------------+
db_backup	MyISAM
user_backup	MyISAM
columns_priv_backup	MyISAM
tables_priv_backup	MyISAM
proxies_priv_backup	MyISAM
procs_priv_backup	MyISAM
ndb_columns_priv_backup	ndbcluster
ndb_user_backup	ndbcluster
ndb_tables_priv_backup	ndbcluster
ndb_proxies_priv_backup	ndbcluster
ndb_procs_priv_backup	ndbcluster
ndb_db_backup	ndbcluster

3827

Distributed Privileges Using Shared Grant Tables

+-------------------------+------------+
12 rows in set (0.00 sec)

Once the conversion to distributed privileges has been made, any time a MySQL user account is created,
dropped, or has its privileges updated on any SQL node, the changes take effect immediately on all other
MySQL servers attached to the cluster. Once privileges are distributed, any new MySQL Servers that
connect to the cluster automatically participate in the distribution.

Note

For clients connected to SQL nodes at the time that
mysql_cluster_move_privileges is executed, you may need to execute
FLUSH PRIVILEGES on those SQL nodes, or to disconnect and then reconnect the
clients, in order for those clients to be able to see the changes in privileges.

All MySQL user privileges are distributed across all connected MySQL Servers. This includes any
privileges associated with views and stored routines, even though distribution of views and stored routines
themselves is not currently supported.

In the event that an SQL node becomes disconnected from the cluster while
mysql_cluster_move_privileges is running, you must drop its privilege tables after reconnecting
to the cluster, using a statement such as DROP TABLE IF EXISTS mysql.user mysql.db
mysql.tables_priv mysql.columns_priv mysql.procs_priv. This causes the SQL node to use
the shared privilege tables rather than its own local versions of them. This is not needed when connecting
a new SQL node to the cluster for the first time.

In the event of an initial restart of the entire cluster (all data nodes shut down, then started again with
--initial), the shared privilege tables are lost. If this happens, you can restore them using the
original target SQL node either from the backups made by mysql_cluster_move_privileges
or from a dump file created with mysqldump. If you need to use a new MySQL Server to perform
the restoration, you should start it with --skip-grant-tables when connecting to the cluster for
the first time; after this, you can restore the privilege tables locally, then distribute them again using
mysql_cluster_move_privileges. After restoring and distributing the tables, you should restart this
MySQL Server without the --skip-grant-tables option.

You can also restore the distributed tables using ndb_restore --restore-privilege-tables
from a backup made using START BACKUP in the ndb_mgm client. (The MyISAM tables created
by mysql_cluster_move_privileges are not backed up by the START BACKUP command.)
ndb_restore does not restore the privilege tables by default; the --restore-privilege-tables
option causes it to do so.

You can restore the SQL node's local privileges using either of two procedures.
mysql_cluster_restore_privileges works as follows:

1. If copies of the mysql.ndb_*_backup tables are available, attempt to restore the system tables from
these.

2. Otherwise, attempt to restore the system tables from the local backups named *_backup (without the
ndb_ prefix).

The other procedure, named mysql_cluster_restore_local_privileges, restores the system
tables from the local backups only, without checking the ndb_* backups.

The system tables re-created by mysql_cluster_restore_privileges or
mysql_cluster_restore_local_privileges use the MySQL server default storage engine; they are
not shared or distributed in any way, and do not use NDB Cluster's NDB storage engine.

3828

NDB API Statistics Counters and Variables

The additional stored procedure mysql_cluster_restore_privileges_from_local
is intended for the use of mysql_cluster_restore_privileges and
mysql_cluster_restore_local_privileges. It should not be invoked directly.

Important

Applications that access NDB Cluster data directly, including NDB API and ClusterJ
applications, are not subject to the MySQL privilege system. This means that,
once you have distributed the grant tables, they can be freely accessed by such
applications, just as they can any other NDB tables. In particular, you should keep in
mind that NDB API and ClusterJ applications can read and write user names, host
names, password hashes, and any other contents of the distributed grant tables
without any restrictions.

21.6.14 NDB API Statistics Counters and Variables

A number of types of statistical counters relating to actions performed by or affecting Ndb objects are
available. Such actions include starting and closing (or aborting) transactions; primary key and unique key
operations; table, range, and pruned scans; threads blocked while waiting for the completion of various
operations; and data and events sent and received by NDBCLUSTER. The counters are incremented
inside the NDB kernel whenever NDB API calls are made or data is sent to or received by the data nodes.
mysqld exposes these counters as system status variables; their values can be read in the output of
SHOW STATUS, or by querying the Information Schema SESSION_STATUS or GLOBAL_STATUS table.
By comparing the values before and after statements operating on NDB tables, you can observe the
corresponding actions taken on the API level, and thus the cost of performing the statement.

You can list all of these status variables using the following SHOW STATUS statement:

mysql> SHOW STATUS LIKE 'ndb_api%';
+--+-------------+
| Variable_name | Value |
+--+-------------+
Ndb_api_wait_exec_complete_count	2
Ndb_api_wait_scan_result_count	3
Ndb_api_wait_meta_request_count	101
Ndb_api_wait_nanos_count	83664697215
Ndb_api_bytes_sent_count	13608
Ndb_api_bytes_received_count	142800
Ndb_api_trans_start_count	2
Ndb_api_trans_commit_count	1
Ndb_api_trans_abort_count	0
Ndb_api_trans_close_count	2
Ndb_api_pk_op_count	1
Ndb_api_uk_op_count	0
Ndb_api_table_scan_count	1
Ndb_api_range_scan_count	0
Ndb_api_pruned_scan_count	0
Ndb_api_scan_batch_count	0
Ndb_api_read_row_count	1
Ndb_api_trans_local_read_row_count	1
Ndb_api_adaptive_send_forced_count	0
Ndb_api_adaptive_send_unforced_count	3
Ndb_api_adaptive_send_deferred_count	0
Ndb_api_event_data_count	0
Ndb_api_event_nondata_count	0
Ndb_api_event_bytes_count	0
Ndb_api_wait_exec_complete_count_slave	0
Ndb_api_wait_scan_result_count_slave	0
Ndb_api_wait_meta_request_count_slave	0
Ndb_api_wait_nanos_count_slave	0
Ndb_api_bytes_sent_count_slave	0
Ndb_api_bytes_received_count_slave	0

3829

https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html

NDB API Statistics Counters and Variables

Ndb_api_trans_start_count_slave	0
Ndb_api_trans_commit_count_slave	0
Ndb_api_trans_abort_count_slave	0
Ndb_api_trans_close_count_slave	0
Ndb_api_pk_op_count_slave	0
Ndb_api_uk_op_count_slave	0
Ndb_api_table_scan_count_slave	0
Ndb_api_range_scan_count_slave	0
Ndb_api_pruned_scan_count_slave	0
Ndb_api_scan_batch_count_slave	0
Ndb_api_read_row_count_slave	0
Ndb_api_trans_local_read_row_count_slave	0
Ndb_api_adaptive_send_forced_count_slave	0
Ndb_api_adaptive_send_unforced_count_slave	0
Ndb_api_adaptive_send_deferred_count_slave	0
Ndb_api_event_data_count_injector	0
Ndb_api_event_nondata_count_injector	0
Ndb_api_event_bytes_count_injector	0
Ndb_api_wait_exec_complete_count_session	0
Ndb_api_wait_scan_result_count_session	0
Ndb_api_wait_meta_request_count_session	0
Ndb_api_wait_nanos_count_session	0
Ndb_api_bytes_sent_count_session	0
Ndb_api_bytes_received_count_session	0
Ndb_api_trans_start_count_session	0
Ndb_api_trans_commit_count_session	0
Ndb_api_trans_abort_count_session	0
Ndb_api_trans_close_count_session	0
Ndb_api_pk_op_count_session	0
Ndb_api_uk_op_count_session	0
Ndb_api_table_scan_count_session	0
Ndb_api_range_scan_count_session	0
Ndb_api_pruned_scan_count_session	0
Ndb_api_scan_batch_count_session	0
Ndb_api_read_row_count_session	0
Ndb_api_trans_local_read_row_count_session	0
Ndb_api_adaptive_send_forced_count_session	0
Ndb_api_adaptive_send_unforced_count_session	0
Ndb_api_adaptive_send_deferred_count_session	0
+--+-------------+
69 rows in set (0.00 sec)

These status variables are also available from the SESSION_STATUS and GLOBAL_STATUS tables of the
INFORMATION_SCHEMA database, as shown here:

mysql> SELECT * FROM INFORMATION_SCHEMA.SESSION_STATUS
 -> WHERE VARIABLE_NAME LIKE 'ndb_api%';
+--+----------------+
| VARIABLE_NAME | VARIABLE_VALUE |
+--+----------------+
Ndb_api_wait_exec_complete_count	2
Ndb_api_wait_scan_result_count	3
Ndb_api_wait_meta_request_count	101
Ndb_api_wait_nanos_count	74890499869
Ndb_api_bytes_sent_count	13608
Ndb_api_bytes_received_count	142800
Ndb_api_trans_start_count	2
Ndb_api_trans_commit_count	1
Ndb_api_trans_abort_count	0
Ndb_api_trans_close_count	2
Ndb_api_pk_op_count	1
Ndb_api_uk_op_count	0
Ndb_api_table_scan_count	1
Ndb_api_range_scan_count	0
Ndb_api_pruned_scan_count	0
Ndb_api_scan_batch_count	0
Ndb_api_read_row_count	1

3830

NDB API Statistics Counters and Variables

Ndb_api_trans_local_read_row_count	1
Ndb_api_adaptive_send_forced_count	0
Ndb_api_adaptive_send_unforced_count	3
Ndb_api_adaptive_send_deferred_count	0
Ndb_api_event_data_count	0
Ndb_api_event_nondata_count	0
Ndb_api_event_bytes_count	0
Ndb_api_wait_exec_complete_count_slave	0
Ndb_api_wait_scan_result_count_slave	0
Ndb_api_wait_meta_request_count_slave	0
Ndb_api_wait_nanos_count_slave	0
Ndb_api_bytes_sent_count_slave	0
Ndb_api_bytes_received_count_slave	0
Ndb_api_trans_start_count_slave	0
Ndb_api_trans_commit_count_slave	0
Ndb_api_trans_abort_count_slave	0
Ndb_api_trans_close_count_slave	0
Ndb_api_pk_op_count_slave	0
Ndb_api_uk_op_count_slave	0
Ndb_api_table_scan_count_slave	0
Ndb_api_range_scan_count_slave	0
Ndb_api_pruned_scan_count_slave	0
Ndb_api_scan_batch_count_slave	0
Ndb_api_read_row_count_slave	0
Ndb_api_trans_local_read_row_count_slave	0
Ndb_api_adaptive_send_forced_count_slave	0
Ndb_api_adaptive_send_unforced_count_slave	0
Ndb_api_adaptive_send_deferred_count_slave	0
Ndb_api_event_data_count_injector	0
Ndb_api_event_nondata_count_injector	0
Ndb_api_event_bytes_count_injector	0
Ndb_api_wait_exec_complete_count_session	0
Ndb_api_wait_scan_result_count_session	0
Ndb_api_wait_meta_request_count_session	0
Ndb_api_wait_nanos_count_session	0
Ndb_api_bytes_sent_count_session	0
Ndb_api_bytes_received_count_session	0
Ndb_api_trans_start_count_session	0
Ndb_api_trans_commit_count_session	0
Ndb_api_trans_abort_count_session	0
Ndb_api_trans_close_count_session	0
Ndb_api_pk_op_count_session	0
Ndb_api_uk_op_count_session	0
Ndb_api_table_scan_count_session	0
Ndb_api_range_scan_count_session	0
Ndb_api_pruned_scan_count_session	0
Ndb_api_scan_batch_count_session	0
Ndb_api_read_row_count_session	0
Ndb_api_trans_local_read_row_count_session	0
Ndb_api_adaptive_send_forced_count_session	0
Ndb_api_adaptive_send_unforced_count_session	0
Ndb_api_adaptive_send_deferred_count_session	0
+--+----------------+
69 rows in set (0.00 sec)

mysql> SELECT * FROM INFORMATION_SCHEMA.GLOBAL_STATUS
 -> WHERE VARIABLE_NAME LIKE 'ndb_api%';
+--+----------------+
| VARIABLE_NAME | VARIABLE_VALUE |
+--+----------------+
Ndb_api_wait_exec_complete_count	2
Ndb_api_wait_scan_result_count	3
Ndb_api_wait_meta_request_count	101
Ndb_api_wait_nanos_count	13640285623
Ndb_api_bytes_sent_count	13608
Ndb_api_bytes_received_count	142800
Ndb_api_trans_start_count	2

3831

NDB API Statistics Counters and Variables

Ndb_api_trans_commit_count	1
Ndb_api_trans_abort_count	0
Ndb_api_trans_close_count	2
Ndb_api_pk_op_count	1
Ndb_api_uk_op_count	0
Ndb_api_table_scan_count	1
Ndb_api_range_scan_count	0
Ndb_api_pruned_scan_count	0
Ndb_api_scan_batch_count	0
Ndb_api_read_row_count	1
Ndb_api_trans_local_read_row_count	1
Ndb_api_adaptive_send_forced_count	0
Ndb_api_adaptive_send_unforced_count	3
Ndb_api_adaptive_send_deferred_count	0
Ndb_api_event_data_count	0
Ndb_api_event_nondata_count	0
Ndb_api_event_bytes_count	0
Ndb_api_wait_exec_complete_count_slave	0
Ndb_api_wait_scan_result_count_slave	0
Ndb_api_wait_meta_request_count_slave	0
Ndb_api_wait_nanos_count_slave	0
Ndb_api_bytes_sent_count_slave	0
Ndb_api_bytes_received_count_slave	0
Ndb_api_trans_start_count_slave	0
Ndb_api_trans_commit_count_slave	0
Ndb_api_trans_abort_count_slave	0
Ndb_api_trans_close_count_slave	0
Ndb_api_pk_op_count_slave	0
Ndb_api_uk_op_count_slave	0
Ndb_api_table_scan_count_slave	0
Ndb_api_range_scan_count_slave	0
Ndb_api_pruned_scan_count_slave	0
Ndb_api_scan_batch_count_slave	0
Ndb_api_read_row_count_slave	0
Ndb_api_trans_local_read_row_count_slave	0
Ndb_api_adaptive_send_forced_count_slave	0
Ndb_api_adaptive_send_unforced_count_slave	0
Ndb_api_adaptive_send_deferred_count_slave	0
Ndb_api_event_data_count_injector	0
Ndb_api_event_nondata_count_injector	0
Ndb_api_event_bytes_count_injector	0
Ndb_api_wait_exec_complete_count_session	0
Ndb_api_wait_scan_result_count_session	0
Ndb_api_wait_meta_request_count_session	0
Ndb_api_wait_nanos_count_session	0
Ndb_api_bytes_sent_count_session	0
Ndb_api_bytes_received_count_session	0
Ndb_api_trans_start_count_session	0
Ndb_api_trans_commit_count_session	0
Ndb_api_trans_abort_count_session	0
Ndb_api_trans_close_count_session	0
Ndb_api_pk_op_count_session	0
Ndb_api_uk_op_count_session	0
Ndb_api_table_scan_count_session	0
Ndb_api_range_scan_count_session	0
Ndb_api_pruned_scan_count_session	0
Ndb_api_scan_batch_count_session	0
Ndb_api_read_row_count_session	0
Ndb_api_trans_local_read_row_count_session	0
Ndb_api_adaptive_send_forced_count_session	0
Ndb_api_adaptive_send_unforced_count_session	0
Ndb_api_adaptive_send_deferred_count_session	0
+--+----------------+
69 rows in set (0.01 sec)

3832

NDB API Statistics Counters and Variables

Each Ndb object has its own counters. NDB API applications can read the values of the counters
for use in optimization or monitoring. For multithreaded clients which use more than one Ndb object
concurrently, it is also possible to obtain a summed view of counters from all Ndb objects belonging to a
given Ndb_cluster_connection.

Four sets of these counters are exposed. One set applies to the current session only; the other 3 are
global. This is in spite of the fact that their values can be obtained as either session or global status
variables in the mysql client. This means that specifying the SESSION or GLOBAL keyword with SHOW
STATUS has no effect on the values reported for NDB API statistics status variables, and the value for
each of these variables is the same whether the value is obtained from the equivalent column of the
SESSION_STATUS or the GLOBAL_STATUS table.

• Session counters (session specific)

Session counters relate to the Ndb objects in use by (only) the current session. Use of such objects by
other MySQL clients does not influence these counts.

In order to minimize confusion with standard MySQL session variables, we refer to the variables that
correspond to these NDB API session counters as “_session variables”, with a leading underscore.

• Replica counters (global)

This set of counters relates to the Ndb objects used by the replicat SQL thread, if any. If this mysqld
does not act as a replica, or does not use NDB tables, then all of these counts are 0.

We refer to the related status variables as “_slave variables” (with a leading underscore).

• Injector counters (global)

Injector counters relate to the Ndb object used to listen to cluster events by the binary log injector thread.
Even when not writing a binary log, mysqld processes attached to an NDB Cluster continue to listen for
some events, such as schema changes.

We refer to the status variables that correspond to NDB API injector counters as “_injector variables”
(with a leading underscore).

• Server (Global) counters (global)

This set of counters relates to all Ndb objects currently used by this mysqld. This includes all MySQL
client applications, the replica SQL thread (if any), the binlog injector, and the NDB utility thread.

We refer to the status variables that correspond to these counters as “global variables” or “mysqld-level
variables”.

You can obtain values for a particular set of variables by additionally filtering for the substring session,
slave, or injector in the variable name (along with the common prefix Ndb_api). For _session
variables, this can be done as shown here:

mysql> SHOW STATUS LIKE 'ndb_api%session';
+--+---------+
| Variable_name | Value |
+--+---------+
Ndb_api_wait_exec_complete_count_session	2
Ndb_api_wait_scan_result_count_session	0
Ndb_api_wait_meta_request_count_session	1
Ndb_api_wait_nanos_count_session	8144375
Ndb_api_bytes_sent_count_session	68
Ndb_api_bytes_received_count_session	84
Ndb_api_trans_start_count_session	1

3833

https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb-cluster-connection.html
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html

NDB API Statistics Counters and Variables

Ndb_api_trans_commit_count_session	1
Ndb_api_trans_abort_count_session	0
Ndb_api_trans_close_count_session	1
Ndb_api_pk_op_count_session	1
Ndb_api_uk_op_count_session	0
Ndb_api_table_scan_count_session	0
Ndb_api_range_scan_count_session	0
Ndb_api_pruned_scan_count_session	0
Ndb_api_scan_batch_count_session	0
Ndb_api_read_row_count_session	1
Ndb_api_trans_local_read_row_count_session	1
+--+---------+
18 rows in set (0.50 sec)

To obtain a listing of the NDB API mysqld-level status variables, filter for variable names beginning with
ndb_api and ending in _count, like this:

mysql> SELECT * FROM INFORMATION_SCHEMA.SESSION_STATUS
 -> WHERE VARIABLE_NAME LIKE 'ndb_api%count';
+------------------------------------+----------------+
| VARIABLE_NAME | VARIABLE_VALUE |
+------------------------------------+----------------+
NDB_API_WAIT_EXEC_COMPLETE_COUNT	4
NDB_API_WAIT_SCAN_RESULT_COUNT	3
NDB_API_WAIT_META_REQUEST_COUNT	28
NDB_API_WAIT_NANOS_COUNT	53756398
NDB_API_BYTES_SENT_COUNT	1060
NDB_API_BYTES_RECEIVED_COUNT	9724
NDB_API_TRANS_START_COUNT	3
NDB_API_TRANS_COMMIT_COUNT	2
NDB_API_TRANS_ABORT_COUNT	0
NDB_API_TRANS_CLOSE_COUNT	3
NDB_API_PK_OP_COUNT	2
NDB_API_UK_OP_COUNT	0
NDB_API_TABLE_SCAN_COUNT	1
NDB_API_RANGE_SCAN_COUNT	0
NDB_API_PRUNED_SCAN_COUNT	0
NDB_API_SCAN_BATCH_COUNT	0
NDB_API_READ_ROW_COUNT	2
NDB_API_TRANS_LOCAL_READ_ROW_COUNT	2
NDB_API_EVENT_DATA_COUNT	0
NDB_API_EVENT_NONDATA_COUNT	0
NDB_API_EVENT_BYTES_COUNT	0
+------------------------------------+----------------+
21 rows in set (0.09 sec)

Not all counters are reflected in all 4 sets of status variables. For the event counters
DataEventsRecvdCount, NondataEventsRecvdCount, and EventBytesRecvdCount, only
_injector and mysqld-level NDB API status variables are available:

mysql> SHOW STATUS LIKE 'ndb_api%event%';
+--------------------------------------+-------+
| Variable_name | Value |
+--------------------------------------+-------+
Ndb_api_event_data_count_injector	0
Ndb_api_event_nondata_count_injector	0
Ndb_api_event_bytes_count_injector	0
Ndb_api_event_data_count	0
Ndb_api_event_nondata_count	0
Ndb_api_event_bytes_count	0
+--------------------------------------+-------+
6 rows in set (0.00 sec)

_injector status variables are not implemented for any other NDB API counters, as shown here:

mysql> SHOW STATUS LIKE 'ndb_api%injector%';

3834

NDB API Statistics Counters and Variables

+--------------------------------------+-------+
| Variable_name | Value |
+--------------------------------------+-------+
Ndb_api_event_data_count_injector	0
Ndb_api_event_nondata_count_injector	0
Ndb_api_event_bytes_count_injector	0
+--------------------------------------+-------+
3 rows in set (0.00 sec)

The names of the status variables can easily be associated with the names of the corresponding counters.
Each NDB API statistics counter is listed in the following table with a description as well as the names of
any MySQL server status variables corresponding to this counter.

Table 21.61 NDB API statistics counters

Counter Name Description Status Variables (by statistic
type):

• Session

• Slave (replica)

• Injector

• Server

WaitExecCompleteCount Number of times thread has
been blocked while waiting for
execution of an operation to
complete. Includes all execute()
calls as well as implicit executes
for blob operations and auto-
increment not visible to clients.

• Ndb_api_wait_exec_complete_count_session

• Ndb_api_wait_exec_complete_count_slave

• [none]

• Ndb_api_wait_exec_complete_count

WaitScanResultCount Number of times thread has been
blocked while waiting for a scan-
based signal, such waiting for
additional results, or for a scan to
close.

• Ndb_api_wait_scan_result_count_session

• Ndb_api_wait_scan_result_count_slave

• [none]

• Ndb_api_wait_scan_result_count

WaitMetaRequestCount Number of times thread has been
blocked waiting for a metadata-
based signal; this can occur when
waiting for a DDL operation or for
an epoch to be started (or ended).

• Ndb_api_wait_meta_request_count_session

• Ndb_api_wait_meta_request_count_slave

• [none]

• Ndb_api_wait_meta_request_count

WaitNanosCount Total time (in nanoseconds) spent
waiting for some type of signal
from the data nodes.

• Ndb_api_wait_nanos_count_session

• Ndb_api_wait_nanos_count_slave

• [none]

• Ndb_api_wait_nanos_count

BytesSentCount Amount of data (in bytes) sent to
the data nodes

• Ndb_api_bytes_sent_count_session

• Ndb_api_bytes_sent_count_slave

3835

https://dev.mysql.com/doc/ndbapi/en/ndb-ndbtransaction.html#ndb-ndbtransaction-execute

NDB API Statistics Counters and Variables

Counter Name Description Status Variables (by statistic
type):

• Session

• Slave (replica)

• Injector

• Server
• [none]

• Ndb_api_bytes_sent_count

BytesRecvdCount Amount of data (in bytes) received
from the data nodes

• Ndb_api_bytes_received_count_session

• Ndb_api_bytes_received_count_slave

• [none]

• Ndb_api_bytes_received_count

TransStartCount Number of transactions started. • Ndb_api_trans_start_count_session

• Ndb_api_trans_start_count_slave

• [none]

• Ndb_api_trans_start_count

TransCommitCount Number of transactions
committed.

• Ndb_api_trans_commit_count_session

• Ndb_api_trans_commit_count_slave

• [none]

• Ndb_api_trans_commit_count

TransAbortCount Number of transactions aborted. • Ndb_api_trans_abort_count_session

• Ndb_api_trans_abort_count_slave

• [none]

• Ndb_api_trans_abort_count

TransCloseCount Number of transactions aborted.
(This value may be greater than
the sum of TransCommitCount
and TransAbortCount.)

• Ndb_api_trans_close_count_session

• Ndb_api_trans_close_count_slave

• [none]

• Ndb_api_trans_close_count

PkOpCount Number of operations based
on or using primary keys. This
count includes blob-part table
operations, implicit unlocking
operations, and auto-increment
operations, as well as primary

• Ndb_api_pk_op_count_session

• Ndb_api_pk_op_count_slave

• [none]

• Ndb_api_pk_op_count

3836

NDB API Statistics Counters and Variables

Counter Name Description Status Variables (by statistic
type):

• Session

• Slave (replica)

• Injector

• Server
key operations normally visible to
MySQL clients.

UkOpCount Number of operations based on or
using unique keys.

• Ndb_api_uk_op_count_session

• Ndb_api_uk_op_count_slave

• [none]

• Ndb_api_uk_op_count

TableScanCount Number of table scans that have
been started. This includes scans
of internal tables.

• Ndb_api_table_scan_count_session

• Ndb_api_table_scan_count_slave

• [none]

• Ndb_api_table_scan_count

RangeScanCount Number of range scans that have
been started.

• Ndb_api_range_scan_count_session

• Ndb_api_range_scan_count_slave

• [none]

• Ndb_api_range_scan_count

PrunedScanCount Number of scans that have been
pruned to a single partition.

• Ndb_api_pruned_scan_count_session

• Ndb_api_pruned_scan_count_slave

• [none]

• Ndb_api_pruned_scan_count

ScanBatchCount Number of batches of rows
received. (A batch in this context
is a set of scan results from a
single fragment.)

• Ndb_api_scan_batch_count_session

• Ndb_api_scan_batch_count_slave

• [none]

• Ndb_api_scan_batch_count

ReadRowCount Total number of rows that have
been read. Includes rows read
using primary key, unique key,
and scan operations.

• Ndb_api_read_row_count_session

• Ndb_api_read_row_count_slave

• [none]

• Ndb_api_read_row_count

3837

NDB API Statistics Counters and Variables

Counter Name Description Status Variables (by statistic
type):

• Session

• Slave (replica)

• Injector

• Server

TransLocalReadRowCount Number of rows read from the
data same node on which the
transaction was being run.

• Ndb_api_trans_local_read_row_count_session

• Ndb_api_trans_local_read_row_count_slave

• [none]

• Ndb_api_trans_local_read_row_count

DataEventsRecvdCount Number of row change events
received.

• [none]

• [none]

• Ndb_api_event_data_count_injector

• Ndb_api_event_data_count

NondataEventsRecvdCount Number of events received, other
than row change events.

• [none]

• [none]

• Ndb_api_event_nondata_count_injector

• Ndb_api_event_nondata_count

EventBytesRecvdCount Number of bytes of events
received.

• [none]

• [none]

• Ndb_api_event_bytes_count_injector

• Ndb_api_event_bytes_count

To see all counts of committed transactions—that is, all TransCommitCount counter status variables—
you can filter the results of SHOW STATUS for the substring trans_commit_count, like this:

mysql> SHOW STATUS LIKE '%trans_commit_count%';
+------------------------------------+-------+
| Variable_name | Value |
+------------------------------------+-------+
Ndb_api_trans_commit_count_session	1
Ndb_api_trans_commit_count_slave	0
Ndb_api_trans_commit_count	2
+------------------------------------+-------+
3 rows in set (0.00 sec)

From this you can determine that 1 transaction has been committed in the current mysql client session,
and 2 transactions have been committed on this mysqld since it was last restarted.

You can see how various NDB API counters are incremented by a given SQL statement by comparing
the values of the corresponding _session status variables immediately before and after performing the

3838

NDB API Statistics Counters and Variables

statement. In this example, after getting the initial values from SHOW STATUS, we create in the test
database an NDB table, named t, that has a single column:

mysql> SHOW STATUS LIKE 'ndb_api%session%';
+--+--------+
| Variable_name | Value |
+--+--------+
Ndb_api_wait_exec_complete_count_session	2
Ndb_api_wait_scan_result_count_session	0
Ndb_api_wait_meta_request_count_session	3
Ndb_api_wait_nanos_count_session	820705
Ndb_api_bytes_sent_count_session	132
Ndb_api_bytes_received_count_session	372
Ndb_api_trans_start_count_session	1
Ndb_api_trans_commit_count_session	1
Ndb_api_trans_abort_count_session	0
Ndb_api_trans_close_count_session	1
Ndb_api_pk_op_count_session	1
Ndb_api_uk_op_count_session	0
Ndb_api_table_scan_count_session	0
Ndb_api_range_scan_count_session	0
Ndb_api_pruned_scan_count_session	0
Ndb_api_scan_batch_count_session	0
Ndb_api_read_row_count_session	1
Ndb_api_trans_local_read_row_count_session	1
+--+--------+
18 rows in set (0.00 sec)

mysql> USE test;
Database changed
mysql> CREATE TABLE t (c INT) ENGINE NDBCLUSTER;
Query OK, 0 rows affected (0.85 sec)

Now you can execute a new SHOW STATUS statement and observe the changes, as shown here (with the
changed rows highlighted in the output):

mysql> SHOW STATUS LIKE 'ndb_api%session%';
+--+-----------+
| Variable_name | Value |
+--+-----------+
Ndb_api_wait_exec_complete_count_session	8
Ndb_api_wait_scan_result_count_session	0
Ndb_api_wait_meta_request_count_session	17
Ndb_api_wait_nanos_count_session	706871709
Ndb_api_bytes_sent_count_session	2376
Ndb_api_bytes_received_count_session	3844
Ndb_api_trans_start_count_session	4
Ndb_api_trans_commit_count_session	4
Ndb_api_trans_abort_count_session	0
Ndb_api_trans_close_count_session	4
Ndb_api_pk_op_count_session	6
Ndb_api_uk_op_count_session	0
Ndb_api_table_scan_count_session	0
Ndb_api_range_scan_count_session	0
Ndb_api_pruned_scan_count_session	0
Ndb_api_scan_batch_count_session	0
Ndb_api_read_row_count_session	2
Ndb_api_trans_local_read_row_count_session	1
+--+-----------+
18 rows in set (0.00 sec)

Similarly, you can see the changes in the NDB API statistics counters caused by inserting a row into t:
Insert the row, then run the same SHOW STATUS statement used in the previous example, as shown here:

mysql> INSERT INTO t VALUES (100);
Query OK, 1 row affected (0.00 sec)

3839

ndbinfo: The NDB Cluster Information Database

mysql> SHOW STATUS LIKE 'ndb_api%session%';
+--+-----------+
| Variable_name | Value |
+--+-----------+
Ndb_api_wait_exec_complete_count_session	11
Ndb_api_wait_scan_result_count_session	6
Ndb_api_wait_meta_request_count_session	20
Ndb_api_wait_nanos_count_session	707370418
Ndb_api_bytes_sent_count_session	2724
Ndb_api_bytes_received_count_session	4116
Ndb_api_trans_start_count_session	7
Ndb_api_trans_commit_count_session	6
Ndb_api_trans_abort_count_session	0
Ndb_api_trans_close_count_session	7
Ndb_api_pk_op_count_session	8
Ndb_api_uk_op_count_session	0
Ndb_api_table_scan_count_session	1
Ndb_api_range_scan_count_session	0
Ndb_api_pruned_scan_count_session	0
Ndb_api_scan_batch_count_session	0
Ndb_api_read_row_count_session	3
Ndb_api_trans_local_read_row_count_session	2
+--+-----------+
18 rows in set (0.00 sec)

We can make a number of observations from these results:

• Although we created t with no explicit primary key, 5 primary key operations were performed in doing so
(the difference in the “before” and “after” values of Ndb_api_pk_op_count_session, or 6 minus 1).
This reflects the creation of the hidden primary key that is a feature of all tables using the NDB storage
engine.

• By comparing successive values for Ndb_api_wait_nanos_count_session, we can see that the
NDB API operations implementing the CREATE TABLE statement waited much longer (706871709 -
820705 = 706051004 nanoseconds, or approximately 0.7 second) for responses from the data nodes
than those executed by the INSERT (707370418 - 706871709 = 498709 ns or roughly .0005 second).
The execution times reported for these statements in the mysql client correlate roughly with these
figures.

On platforms without sufficient (nanosecond) time resolution, small changes in the value of
the WaitNanosCount NDB API counter due to SQL statements that execute very quickly
may not always be visible in the values of Ndb_api_wait_nanos_count_session,
Ndb_api_wait_nanos_count_slave, or Ndb_api_wait_nanos_count.

• The INSERT statement incremented both the ReadRowCount and TransLocalReadRowCount NDB
API statistics counters, as reflected by the increased values of Ndb_api_read_row_count_session
and Ndb_api_trans_local_read_row_count_session.

21.6.15 ndbinfo: The NDB Cluster Information Database

ndbinfo is a database containing information specific to NDB Cluster.

This database contains a number of tables, each providing a different sort of data about NDB Cluster node
status, resource usage, and operations. You can find more detailed information about each of these tables
in the next several sections.

ndbinfo is included with NDB Cluster support in the MySQL Server; no special compilation or
configuration steps are required; the tables are created by the MySQL Server when it connects to the
cluster. You can verify that ndbinfo support is active in a given MySQL Server instance using SHOW

3840

ndbinfo: The NDB Cluster Information Database

PLUGINS; if ndbinfo support is enabled, you should see a row containing ndbinfo in the Name column
and ACTIVE in the Status column, as shown here (emphasized text):

mysql> SHOW PLUGINS;
+----------------------------------+--------+--------------------+---------+---------+
| Name | Status | Type | Library | License |
+----------------------------------+--------+--------------------+---------+---------+
binlog	ACTIVE	STORAGE ENGINE	NULL	GPL
mysql_native_password	ACTIVE	AUTHENTICATION	NULL	GPL
sha256_password	ACTIVE	AUTHENTICATION	NULL	GPL
MRG_MYISAM	ACTIVE	STORAGE ENGINE	NULL	GPL
MEMORY	ACTIVE	STORAGE ENGINE	NULL	GPL
CSV	ACTIVE	STORAGE ENGINE	NULL	GPL
MyISAM	ACTIVE	STORAGE ENGINE	NULL	GPL
InnoDB	ACTIVE	STORAGE ENGINE	NULL	GPL
INNODB_TRX	ACTIVE	INFORMATION SCHEMA	NULL	GPL
INNODB_LOCKS	ACTIVE	INFORMATION SCHEMA	NULL	GPL
INNODB_LOCK_WAITS	ACTIVE	INFORMATION SCHEMA	NULL	GPL
INNODB_CMP	ACTIVE	INFORMATION SCHEMA	NULL	GPL
INNODB_CMP_RESET	ACTIVE	INFORMATION SCHEMA	NULL	GPL
INNODB_CMPMEM	ACTIVE	INFORMATION SCHEMA	NULL	GPL
INNODB_CMPMEM_RESET	ACTIVE	INFORMATION SCHEMA	NULL	GPL
INNODB_CMP_PER_INDEX	ACTIVE	INFORMATION SCHEMA	NULL	GPL
INNODB_CMP_PER_INDEX_RESET	ACTIVE	INFORMATION SCHEMA	NULL	GPL
INNODB_BUFFER_PAGE	ACTIVE	INFORMATION SCHEMA	NULL	GPL
INNODB_BUFFER_PAGE_LRU	ACTIVE	INFORMATION SCHEMA	NULL	GPL
INNODB_BUFFER_POOL_STATS	ACTIVE	INFORMATION SCHEMA	NULL	GPL
INNODB_TEMP_TABLE_INFO	ACTIVE	INFORMATION SCHEMA	NULL	GPL
INNODB_METRICS	ACTIVE	INFORMATION SCHEMA	NULL	GPL
INNODB_FT_DEFAULT_STOPWORD	ACTIVE	INFORMATION SCHEMA	NULL	GPL
INNODB_FT_DELETED	ACTIVE	INFORMATION SCHEMA	NULL	GPL
INNODB_FT_BEING_DELETED	ACTIVE	INFORMATION SCHEMA	NULL	GPL
INNODB_FT_CONFIG	ACTIVE	INFORMATION SCHEMA	NULL	GPL
INNODB_FT_INDEX_CACHE	ACTIVE	INFORMATION SCHEMA	NULL	GPL
INNODB_FT_INDEX_TABLE	ACTIVE	INFORMATION SCHEMA	NULL	GPL
INNODB_SYS_TABLES	ACTIVE	INFORMATION SCHEMA	NULL	GPL
INNODB_SYS_TABLESTATS	ACTIVE	INFORMATION SCHEMA	NULL	GPL
INNODB_SYS_INDEXES	ACTIVE	INFORMATION SCHEMA	NULL	GPL
INNODB_SYS_COLUMNS	ACTIVE	INFORMATION SCHEMA	NULL	GPL
INNODB_SYS_FIELDS	ACTIVE	INFORMATION SCHEMA	NULL	GPL
INNODB_SYS_FOREIGN	ACTIVE	INFORMATION SCHEMA	NULL	GPL
INNODB_SYS_FOREIGN_COLS	ACTIVE	INFORMATION SCHEMA	NULL	GPL
INNODB_SYS_TABLESPACES	ACTIVE	INFORMATION SCHEMA	NULL	GPL
INNODB_SYS_DATAFILES	ACTIVE	INFORMATION SCHEMA	NULL	GPL
INNODB_SYS_VIRTUAL	ACTIVE	INFORMATION SCHEMA	NULL	GPL
PERFORMANCE_SCHEMA	ACTIVE	STORAGE ENGINE	NULL	GPL
ndbCluster	ACTIVE	STORAGE ENGINE	NULL	GPL
ndbinfo	ACTIVE	STORAGE ENGINE	NULL	GPL
ndb_transid_mysql_connection_map	ACTIVE	INFORMATION SCHEMA	NULL	GPL
BLACKHOLE	ACTIVE	STORAGE ENGINE	NULL	GPL
ARCHIVE	ACTIVE	STORAGE ENGINE	NULL	GPL
partition	ACTIVE	STORAGE ENGINE	NULL	GPL
ngram	ACTIVE	FTPARSER	NULL	GPL
+----------------------------------+--------+--------------------+---------+---------+
46 rows in set (0.00 sec)

You can also do this by checking the output of SHOW ENGINES for a line including ndbinfo in the Engine
column and YES in the Support column, as shown here (emphasized text):

mysql> SHOW ENGINES\G
*************************** 1. row ***************************
 Engine: ndbcluster
 Support: YES
 Comment: Clustered, fault-tolerant tables
Transactions: YES
 XA: NO
 Savepoints: NO

3841

ndbinfo: The NDB Cluster Information Database

*************************** 2. row ***************************
 Engine: CSV
 Support: YES
 Comment: CSV storage engine
Transactions: NO
 XA: NO
 Savepoints: NO
*************************** 3. row ***************************
 Engine: InnoDB
 Support: DEFAULT
 Comment: Supports transactions, row-level locking, and foreign keys
Transactions: YES
 XA: YES
 Savepoints: YES
*************************** 4. row ***************************
 Engine: BLACKHOLE
 Support: YES
 Comment: /dev/null storage engine (anything you write to it disappears)
Transactions: NO
 XA: NO
 Savepoints: NO
*************************** 5. row ***************************
 Engine: MyISAM
 Support: YES
 Comment: MyISAM storage engine
Transactions: NO
 XA: NO
 Savepoints: NO
*************************** 6. row ***************************
 Engine: MRG_MYISAM
 Support: YES
 Comment: Collection of identical MyISAM tables
Transactions: NO
 XA: NO
 Savepoints: NO
*************************** 7. row ***************************
 Engine: ARCHIVE
 Support: YES
 Comment: Archive storage engine
Transactions: NO
 XA: NO
 Savepoints: NO
*************************** 8. row ***************************
 Engine: ndbinfo
 Support: YES
 Comment: NDB Cluster system information storage engine
Transactions: NO
 XA: NO
 Savepoints: NO
*************************** 9. row ***************************
 Engine: PERFORMANCE_SCHEMA
 Support: YES
 Comment: Performance Schema
Transactions: NO
 XA: NO
 Savepoints: NO
*************************** 10. row ***************************
 Engine: MEMORY
 Support: YES
 Comment: Hash based, stored in memory, useful for temporary tables
Transactions: NO
 XA: NO
 Savepoints: NO
10 rows in set (0.00 sec)

3842

ndbinfo: The NDB Cluster Information Database

If ndbinfo support is enabled, then you can access ndbinfo using SQL statements in mysql or another
MySQL client. For example, you can see ndbinfo listed in the output of SHOW DATABASES, as shown
here (emphasized text):

mysql> SHOW DATABASES;
+--------------------+
| Database |
+--------------------+
| information_schema |
| mysql |
| ndbinfo |
| performance_schema |
| sys |
+--------------------+
5 rows in set (0.04 sec)

If the mysqld process was not started with the --ndbcluster option, ndbinfo is not available and
is not displayed by SHOW DATABASES. If mysqld was formerly connected to an NDB Cluster but the
cluster becomes unavailable (due to events such as cluster shutdown, loss of network connectivity, and so
forth), ndbinfo and its tables remain visible, but an attempt to access any tables (other than blocks or
config_params) fails with Got error 157 'Connection to NDB failed' from NDBINFO.

With the exception of the blocks and config_params tables, what we refer to as ndbinfo “tables”
are actually views generated from internal NDB tables not normally visible to the MySQL Server. You can
make these tables visible by setting the ndbinfo_show_hidden system variable to ON (or 1), but this is
normally not necessary.

All ndbinfo tables are read-only, and are generated on demand when queried. Because many of them
are generated in parallel by the data nodes while other are specific to a given SQL node, they are not
guaranteed to provide a consistent snapshot.

In addition, pushing down of joins is not supported on ndbinfo tables; so joining large ndbinfo tables
can require transfer of a large amount of data to the requesting API node, even when the query makes use
of a WHERE clause.

ndbinfo tables are not included in the query cache. (Bug #59831)

You can select the ndbinfo database with a USE statement, and then issue a SHOW TABLES statement to
obtain a list of tables, just as for any other database, like this:

mysql> USE ndbinfo;
Database changed

mysql> SHOW TABLES;
+---------------------------------+
| Tables_in_ndbinfo |
+---------------------------------+
| arbitrator_validity_detail |
| arbitrator_validity_summary |
| blocks |
| cluster_locks |
| cluster_operations |
| cluster_transactions |
| config_nodes |
| config_params |
| config_values |
| counters |
| cpustat |
| cpustat_1sec |
| cpustat_20sec |
| cpustat_50ms |

3843

ndbinfo: The NDB Cluster Information Database

| dict_obj_info |
| dict_obj_types |
| disk_write_speed_aggregate |
| disk_write_speed_aggregate_node |
| disk_write_speed_base |
| diskpagebuffer |
| error_messages |
| locks_per_fragment |
| logbuffers |
| logspaces |
| membership |
| memory_per_fragment |
| memoryusage |
| nodes |
| operations_per_fragment |
| processes |
| resources |
| restart_info |
| server_locks |
| server_operations |
| server_transactions |
| table_distribution_status |
| table_fragments |
| table_info |
| table_replicas |
| tc_time_track_stats |
| threadblocks |
| threads |
| threadstat |
| transporters |
+---------------------------------+
44 rows in set (0.00 sec)

In NDB 7.5.0 (and later), all ndbinfo tables use the NDB storage engine; however, an ndbinfo entry still
appears in the output of SHOW ENGINES and SHOW PLUGINS as described previously.

The config_values table was added in NDB 7.5.0.

The cpustat, cpustat_50ms, cpustat_1sec, cpustat_20sec, and threads tables were added in
NDB 7.5.2.

The cluster_locks, locks_per_fragment, and server_locks tables were added in NDB 7.5.3.

The dict_obj_info, table_distribution_status, table_fragments, table_info, and
table_replicas tables were added in NDB 7.5.4.

The config_nodes and processes tables were added in NDB 7.5.7.

The error_messages table was added in NDB 7.6.

You can execute SELECT statements against these tables, just as you would normally expect:

mysql> SELECT * FROM memoryusage;
+---------+---------------------+--------+------------+------------+-------------+
| node_id | memory_type | used | used_pages | total | total_pages |
+---------+---------------------+--------+------------+------------+-------------+
5	Data memory	753664	23	1073741824	32768
5	Index memory	163840	20	1074003968	131104
5	Long message buffer	2304	9	67108864	262144
6	Data memory	753664	23	1073741824	32768
6	Index memory	163840	20	1074003968	131104
6	Long message buffer	2304	9	67108864	262144
+---------+---------------------+--------+------------+------------+-------------+
6 rows in set (0.02 sec)

3844

ndbinfo: The NDB Cluster Information Database

More complex queries, such as the two following SELECT statements using the memoryusage table, are
possible:

mysql> SELECT SUM(used) as 'Data Memory Used, All Nodes'
 > FROM memoryusage
 > WHERE memory_type = 'Data memory';
+-----------------------------+
| Data Memory Used, All Nodes |
+-----------------------------+
| 6460 |
+-----------------------------+
1 row in set (0.37 sec)

mysql> SELECT SUM(max) as 'Total IndexMemory Available'
 > FROM memoryusage
 > WHERE memory_type = 'Index memory';
+-----------------------------+
| Total IndexMemory Available |
+-----------------------------+
| 25664 |
+-----------------------------+
1 row in set (0.33 sec)

ndbinfo table and column names are case-sensitive (as is the name of the ndbinfo database itself).
These identifiers are in lowercase. Trying to use the wrong lettercase results in an error, as shown in this
example:

mysql> SELECT * FROM nodes;
+---------+--------+---------+-------------+
| node_id | uptime | status | start_phase |
+---------+--------+---------+-------------+
| 1 | 13602 | STARTED | 0 |
| 2 | 16 | STARTED | 0 |
+---------+--------+---------+-------------+
2 rows in set (0.04 sec)

mysql> SELECT * FROM Nodes;
ERROR 1146 (42S02): Table 'ndbinfo.Nodes' doesn't exist

mysqldump ignores the ndbinfo database entirely, and excludes it from any output. This is true even
when using the --databases or --all-databases option.

NDB Cluster also maintains tables in the INFORMATION_SCHEMA information database, including the
FILES table which contains information about files used for NDB Cluster Disk Data storage, and the
ndb_transid_mysql_connection_map table, which shows the relationships between transactions,
transaction coordinators, and NDB Cluster API nodes. For more information, see the descriptions of the
tables or Section 21.6.16, “INFORMATION_SCHEMA Tables for NDB Cluster”.

21.6.15.1 The ndbinfo arbitrator_validity_detail Table

The arbitrator_validity_detail table shows the view that each data node in the cluster has of the
arbitrator. It is a subset of the membership table.

The arbitrator_validity_detail table contains the following columns:

• node_id

This node's node ID

• arbitrator

Node ID of arbitrator

3845

ndbinfo: The NDB Cluster Information Database

• arb_ticket

Internal identifier used to track arbitration

• arb_connected

Whether this node is connected to the arbitrator; either of Yes or No

• arb_state

Arbitration state

Notes

The node ID is the same as that reported by ndb_mgm -e "SHOW".

All nodes should show the same arbitrator and arb_ticket values as well as the same arb_state
value. Possible arb_state values are ARBIT_NULL, ARBIT_INIT, ARBIT_FIND, ARBIT_PREP1,
ARBIT_PREP2, ARBIT_START, ARBIT_RUN, ARBIT_CHOOSE, ARBIT_CRASH, and UNKNOWN.

arb_connected shows whether the current node is connected to the arbitrator.

21.6.15.2 The ndbinfo arbitrator_validity_summary Table

The arbitrator_validity_summary table provides a composite view of the arbitrator with regard to
the cluster's data nodes.

The arbitrator_validity_summary table contains the following columns:

• arbitrator

Node ID of arbitrator

• arb_ticket

Internal identifier used to track arbitration

• arb_connected

Whether this arbitrator is connected to the cluster; either of Yes or No

• consensus_count

Number of data nodes that see this node as arbitrator

Notes

In normal operations, this table should have only 1 row for any appreciable length of time. If it has more
than 1 row for longer than a few moments, then either not all nodes are connected to the arbitrator, or all
nodes are connected, but do not agree on the same arbitrator.

The arbitrator column shows the arbitrator's node ID.

arb_ticket is the internal identifier used by this arbitrator.

arb_connected shows whether this node is connected to the cluster as an arbitrator.

21.6.15.3 The ndbinfo blocks Table

3846

ndbinfo: The NDB Cluster Information Database

The blocks table is a static table which simply contains the names and internal IDs of all NDB kernel
blocks (see NDB Kernel Blocks). It is for use by the other ndbinfo tables (most of which are actually
views) in mapping block numbers to block names for producing human-readable output.

The blocks table contains the following columns:

• block_number

Block number

• block_name

Block name

Notes

To obtain a list of all block names, simply execute SELECT block_name FROM ndbinfo.blocks.
Although this is a static table, its content can vary between different NDB Cluster releases.

21.6.15.4 The ndbinfo cluster_locks Table

The cluster_locks table provides information about current lock requests holding and waiting for
locks on NDB tables in an NDB Cluster, and is intended as a companion table to cluster_operations.
Information obtain from the cluster_locks table may be useful in investigating stalls and deadlocks.

The cluster_locks table contains the following columns:

• node_id

ID of reporting node

• block_instance

ID of reporting LDM instance

• tableid

ID of table containing this row

• fragmentid

ID of fragment containing locked row

• rowid

ID of locked row

• transid

Transaction ID

• mode

Lock request mode

• state

Lock state

3847

https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks.html

ndbinfo: The NDB Cluster Information Database

• detail

Whether this is first holding lock in row lock queue

• op

Operation type

• duration_millis

Milliseconds spent waiting or holding lock

• lock_num

ID of lock object

• waiting_for

Waiting for lock with this ID

Notes

The table ID (tableid column) is assigned internally, and is the same as that used in other ndbinfo
tables. It is also shown in the output of ndb_show_tables.

The transaction ID (transid column) is the identifier generated by the NDB API for the transaction
requesting or holding the current lock.

The mode column shows the lock mode; this is always one of S (indicating a shared lock) or X (an
exclusive lock). If a transaction holds an exclusive lock on a given row, all other locks on that row have the
same transaction ID.

The state column shows the lock state. Its value is always one of H (holding) or W (waiting). A waiting lock
request waits for a lock held by a different transaction.

When the detail column contains a * (asterisk character), this means that this lock is the first holding
lock in the affected row's lock queue; otherwise, this column is empty. This information can be used to help
identify the unique entries in a list of lock requests.

The op column shows the type of operation requesting the lock. This is always one of the values READ,
INSERT, UPDATE, DELETE, SCAN, or REFRESH.

The duration_millis column shows the number of milliseconds for which this lock request has been
waiting or holding the lock. This is reset to 0 when a lock is granted for a waiting request.

The lock ID (lockid column) is unique to this node and block instance.

The lock state is shown in the lock_state column; if this is W, the lock is waiting to be granted, and
the waiting_for column shows the lock ID of the lock object this request is waiting for. Otherwise, the
waiting_for column is empty. waiting_for can refer only to locks on the same row, as identified by
node_id, block_instance, tableid, fragmentid, and rowid.

The cluster_locks table was added in NDB 7.5.3.

21.6.15.5 The ndbinfo cluster_operations Table

The cluster_operations table provides a per-operation (stateful primary key op) view of all activity
in the NDB Cluster from the point of view of the local data management (LQH) blocks (see The DBLQH
Block).

3848

https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dblqh.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dblqh.html

ndbinfo: The NDB Cluster Information Database

The cluster_operations table contains the following columns:

• node_id

Node ID of reporting LQH block

• block_instance

LQH block instance

• transid

Transaction ID

• operation_type

Operation type (see text for possible values)

• state

Operation state (see text for possible values)

• tableid

Table ID

• fragmentid

Fragment ID

• client_node_id

Client node ID

• client_block_ref

Client block reference

• tc_node_id

Transaction coordinator node ID

• tc_block_no

Transaction coordinator block number

• tc_block_instance

Transaction coordinator block instance

Notes

The transaction ID is a unique 64-bit number which can be obtained using the NDB API's
getTransactionId() method. (Currently, the MySQL Server does not expose the NDB API transaction
ID of an ongoing transaction.)

The operation_type column can take any one of the values READ, READ-SH, READ-EX, INSERT,
UPDATE, DELETE, WRITE, UNLOCK, REFRESH, SCAN, SCAN-SH, SCAN-EX, or <unknown>.

3849

https://dev.mysql.com/doc/ndbapi/en/ndb-ndbtransaction.html#ndb-ndbtransaction-gettransactionid

ndbinfo: The NDB Cluster Information Database

The state column can have any one of the values ABORT_QUEUED, ABORT_STOPPED,
COMMITTED, COMMIT_QUEUED, COMMIT_STOPPED, COPY_CLOSE_STOPPED,
COPY_FIRST_STOPPED, COPY_STOPPED, COPY_TUPKEY, IDLE, LOG_ABORT_QUEUED,
LOG_COMMIT_QUEUED, LOG_COMMIT_QUEUED_WAIT_SIGNAL, LOG_COMMIT_WRITTEN,
LOG_COMMIT_WRITTEN_WAIT_SIGNAL, LOG_QUEUED, PREPARED, PREPARED_RECEIVED_COMMIT,
SCAN_CHECK_STOPPED, SCAN_CLOSE_STOPPED, SCAN_FIRST_STOPPED, SCAN_RELEASE_STOPPED,
SCAN_STATE_USED, SCAN_STOPPED, SCAN_TUPKEY, STOPPED, TC_NOT_CONNECTED, WAIT_ACC,
WAIT_ACC_ABORT, WAIT_AI_AFTER_ABORT, WAIT_ATTR, WAIT_SCAN_AI, WAIT_TUP,
WAIT_TUPKEYINFO, WAIT_TUP_COMMIT, or WAIT_TUP_TO_ABORT. (If the MySQL Server is running
with ndbinfo_show_hidden enabled, you can view this list of states by selecting from the ndb
$dblqh_tcconnect_state table, which is normally hidden.)

You can obtain the name of an NDB table from its table ID by checking the output of ndb_show_tables.

The fragid is the same as the partition number seen in the output of ndb_desc --extra-partition-
info (short form -p).

In client_node_id and client_block_ref, client refers to an NDB Cluster API or SQL node (that
is, an NDB API client or a MySQL Server attached to the cluster).

The block_instance and tc_block_instance column provide, respectively, the DBLQH and DBTC
block instance numbers. You can use these along with the block names to obtain information about
specific threads from the threadblocks table.

21.6.15.6 The ndbinfo cluster_transactions Table

The cluster_transactions table shows information about all ongoing transactions in an NDB Cluster.

The cluster_transactions table contains the following columns:

• node_id

Node ID of transaction coordinator

• block_instance

TC block instance

• transid

Transaction ID

• state

Operation state (see text for possible values)

• count_operations

Number of stateful primary key operations in transaction (includes reads with locks, as well as DML
operations)

• outstanding_operations

Operations still being executed in local data management blocks

• inactive_seconds

Time spent waiting for API

3850

https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dblqh.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbtc.html

ndbinfo: The NDB Cluster Information Database

• client_node_id

Client node ID

• client_block_ref

Client block reference

Notes

The transaction ID is a unique 64-bit number which can be obtained using the NDB API's
getTransactionId() method. (Currently, the MySQL Server does not expose the NDB API transaction
ID of an ongoing transaction.)

block_instance refers to an instance of a kernel block. Together with the block name, this number can
be used to look up a given instance in the threadblocks table.

The state column can have any one of the values CS_ABORTING, CS_COMMITTING, CS_COMMIT_SENT,
CS_COMPLETE_SENT, CS_COMPLETING, CS_CONNECTED, CS_DISCONNECTED, CS_FAIL_ABORTED,
CS_FAIL_ABORTING, CS_FAIL_COMMITTED, CS_FAIL_COMMITTING, CS_FAIL_COMPLETED,
CS_FAIL_PREPARED, CS_PREPARE_TO_COMMIT, CS_RECEIVING, CS_REC_COMMITTING,
CS_RESTART, CS_SEND_FIRE_TRIG_REQ, CS_STARTED, CS_START_COMMITTING,
CS_START_SCAN, CS_WAIT_ABORT_CONF, CS_WAIT_COMMIT_CONF, CS_WAIT_COMPLETE_CONF,
CS_WAIT_FIRE_TRIG_REQ. (If the MySQL Server is running with ndbinfo_show_hidden enabled, you
can view this list of states by selecting from the ndb$dbtc_apiconnect_state table, which is normally
hidden.)

In client_node_id and client_block_ref, client refers to an NDB Cluster API or SQL node (that
is, an NDB API client or a MySQL Server attached to the cluster).

The tc_block_instance column provides the DBTC block instance number. You can use this along with
the block name to obtain information about specific threads from the threadblocks table.

21.6.15.7 The ndbinfo config_nodes Table

The config_nodes table shows nodes configured in an NDB Cluster config.ini file. For each node,
the table displays a row containing the node ID, the type of node (management node, data node, or API
node), and the name or IP address of the host on which the node is configured to run.

This table does not indicate whether a given node is actually running, or whether it is currently connected
to the cluster. Information about nodes connected to an NDB Cluster can be obtained from the nodes and
processes table.

The config_nodes table contains the following columns:

• node_id

The node's ID

• node_type

The type of node

• node_hostname

The name or IP address of the host on which the node resides

3851

https://dev.mysql.com/doc/ndbapi/en/ndb-ndbtransaction.html#ndb-ndbtransaction-gettransactionid
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbtc.html

ndbinfo: The NDB Cluster Information Database

Notes

The node_id column shows the node ID used in the config.ini file for this node; if none is specified,
the node ID that would be assigned automatically to this node is displayed.

The node_type column displays one of the following three values:

• MGM: Management node.

• NDB: Data node.

• API: API node; this includes SQL nodes.

The node_hostname column shows the node host as specified in the config.ini file. This can be
empty for an API node, if HostName has not been set in the cluster configuration file. If HostName has
not been set for a data node in the configuration file, localhost is used here. localhost is also used if
HostName has not been specified for a management node.

The config_nodes table was added in NDB 7.5.7.

21.6.15.8 The ndbinfo config_params Table

The config_params table is a static table which provides the names and internal ID numbers of and
other information about NDB Cluster configuration parameters.

The config_params table contains the following columns:

• param_number

The parameter's internal ID number

• param_name

The name of the parameter

• param_description

A brief description of the parameter

• param_type

The parameter's data type

• param_default

The parameter's default value, if any

• param_min

The parameter's maximum value, if any

• param_max

The parameter's minimum value, if any

• param_mandatory

This is 1 if the parameter is required, otherwise 0

3852

ndbinfo: The NDB Cluster Information Database

• param_status

Currently unused

Notes

In NDB Cluster 7.5 (and later), this table is read-only. The param_description, param_type,
param_default, param_min, param_max, param_mandatory, and param_status columns were all
added in NDB 7.5.0.

Although this is a static table, its content can vary between NDB Cluster installations, since supported
parameters can vary due to differences between software releases, cluster hardware configurations, and
other factors.

21.6.15.9 The ndbinfo config_values Table

The config_values table, implemented in NDB 7.5.0, provides information about the current state
of node configuration parameter values. Each row in the table corresponds to the current value of a
parameter on a given node.

• node_id

ID of the node in the cluster

• config_param

The parameter's internal ID number

• config_value

Current value of the parameter

Notes

This table's config_param column and the config_params table's param_number column use the
same parameter identifiers. By joining the two tables on these columns, you can obtain detailed information
about desired node configuration parameters. The query shown here provides the current values for all
parameters on each data node in the cluster, ordered by node ID and parameter name:

SELECT v.node_id AS 'Node Id',
 p.param_name AS 'Parameter',
 v.config_value AS 'Value'
FROM config_values v
JOIN config_params p
ON v.config_param=p.param_number
WHERE p.param_name NOT LIKE '__%'
ORDER BY v.node_id, p.param_name;

Partial output from the previous query when run on a small example cluster used for simple testing:

+---------+--+----------------+
| Node Id | Parameter | Value |
+---------+--+----------------+
2	Arbitration	1
2	ArbitrationTimeout	7500
2	BackupDataBufferSize	16777216
2	BackupDataDir	/home/jon/data
2	BackupDiskWriteSpeedPct	50
2	BackupLogBufferSize	16777216

3853

ndbinfo: The NDB Cluster Information Database

...

3	TotalSendBufferMemory	0
3	TransactionBufferMemory	1048576
3	TransactionDeadlockDetectionTimeout	1200
3	TransactionInactiveTimeout	4294967039
3	TwoPassInitialNodeRestartCopy	0
3	UndoDataBuffer	16777216
3	UndoIndexBuffer	2097152
+---------+--+----------------+
248 rows in set (0.02 sec)

The WHERE clause filters out parameters whose names begin with a double underscore (__); these
parameters are reserved for testing and other internal uses by the NDB developers, and are not intended
for use in a production NDB Cluster.

You can obtain output that is more specific, more detailed, or both by issuing the proper queries. This
example provides all types of available information about the NodeId, NoOfReplicas, HostName,
DataMemory, IndexMemory, and TotalSendBufferMemory parameters as currently set for all data
nodes in the cluster:

SELECT p.param_name AS Name,
 v.node_id AS Node,
 p.param_type AS Type,
 p.param_default AS 'Default',
 p.param_min AS Minimum,
 p.param_max AS Maximum,
 CASE p.param_mandatory WHEN 1 THEN 'Y' ELSE 'N' END AS 'Required',
 v.config_value AS Current
FROM config_params p
JOIN config_values v
ON p.param_number = v.config_param
WHERE p. param_name
 IN ('NodeId', 'NoOfReplicas', 'HostName',
 'DataMemory', 'IndexMemory', 'TotalSendBufferMemory')\G

The output from this query when run on a small NDB Cluster with 2 data nodes used for simple testing is
shown here:

*************************** 1. row ***************************
 Name: NodeId
 Node: 2
 Type: unsigned
 Default:
 Minimum: 1
 Maximum: 48
Required: Y
 Current: 2
*************************** 2. row ***************************
 Name: HostName
 Node: 2
 Type: string
 Default: localhost
 Minimum:
 Maximum:
Required: N
 Current: 127.0.0.1
*************************** 3. row ***************************
 Name: TotalSendBufferMemory
 Node: 2
 Type: unsigned
 Default: 0
 Minimum: 262144
 Maximum: 4294967039
Required: N

3854

ndbinfo: The NDB Cluster Information Database

 Current: 0
*************************** 4. row ***************************
 Name: NoOfReplicas
 Node: 2
 Type: unsigned
 Default: 2
 Minimum: 1
 Maximum: 4
Required: N
 Current: 2
*************************** 5. row ***************************
 Name: DataMemory
 Node: 2
 Type: unsigned
 Default: 102760448
 Minimum: 1048576
 Maximum: 1099511627776
Required: N
 Current: 524288000
*************************** 6. row ***************************
 Name: NodeId
 Node: 3
 Type: unsigned
 Default:
 Minimum: 1
 Maximum: 48
Required: Y
 Current: 3
*************************** 7. row ***************************
 Name: HostName
 Node: 3
 Type: string
 Default: localhost
 Minimum:
 Maximum:
Required: N
 Current: 127.0.0.1
*************************** 8. row ***************************
 Name: TotalSendBufferMemory
 Node: 3
 Type: unsigned
 Default: 0
 Minimum: 262144
 Maximum: 4294967039
Required: N
 Current: 0
*************************** 9. row ***************************
 Name: NoOfReplicas
 Node: 3
 Type: unsigned
 Default: 2
 Minimum: 1
 Maximum: 4
Required: N
 Current: 2
*************************** 10. row ***************************
 Name: DataMemory
 Node: 3
 Type: unsigned
 Default: 102760448
 Minimum: 1048576
 Maximum: 1099511627776
Required: N
 Current: 524288000
10 rows in set (0.01 sec)

21.6.15.10 The ndbinfo counters Table

3855

ndbinfo: The NDB Cluster Information Database

The counters table provides running totals of events such as reads and writes for specific kernel blocks
and data nodes. Counts are kept from the most recent node start or restart; a node start or restart resets all
counters on that node. Not all kernel blocks have all types of counters.

The counters table contains the following columns:

• node_id

The data node ID

• block_name

Name of the associated NDB kernel block (see NDB Kernel Blocks).

• block_instance

Block instance

• counter_id

The counter's internal ID number; normally an integer between 1 and 10, inclusive.

• counter_name

The name of the counter. See text for names of individual counters and the NDB kernel block with which
each counter is associated.

• val

The counter's value

Notes

Each counter is associated with a particular NDB kernel block.

The OPERATIONS counter is associated with the DBLQH (local query handler) kernel block (see The
DBLQH Block). A primary-key read counts as one operation, as does a primary-key update. For reads,
there is one operation in DBLQH per operation in DBTC. For writes, there is one operation counted per
fragment replica.

The ATTRINFO, TRANSACTIONS, COMMITS, READS, LOCAL_READS, SIMPLE_READS, WRITES,
LOCAL_WRITES, ABORTS, TABLE_SCANS, and RANGE_SCANS counters are associated with the DBTC
(transaction co-ordinator) kernel block (see The DBTC Block).

LOCAL_WRITES and LOCAL_READS are primary-key operations using a transaction coordinator in a node
that also holds the primary fragment replica of the record.

The READS counter includes all reads. LOCAL_READS includes only those reads of the primary fragment
replica on the same node as this transaction coordinator. SIMPLE_READS includes only those reads in
which the read operation is the beginning and ending operation for a given transaction. Simple reads
do not hold locks but are part of a transaction, in that they observe uncommitted changes made by the
transaction containing them but not of any other uncommitted transactions. Such reads are “simple” from
the point of view of the TC block; since they hold no locks they are not durable, and once DBTC has routed
them to the relevant LQH block, it holds no state for them.

ATTRINFO keeps a count of the number of times an interpreted program is sent to the data node. See NDB
Protocol Messages, for more information about ATTRINFO messages in the NDB kernel.

3856

https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dblqh.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dblqh.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dblqh.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dblqh.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbtc.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbtc.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbtc.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-ndb-protocol-messages.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-ndb-protocol-messages.html

ndbinfo: The NDB Cluster Information Database

The LOCAL_TABLE_SCANS_SENT, READS_RECEIVED, PRUNED_RANGE_SCANS_RECEIVED,
RANGE_SCANS_RECEIVED, LOCAL_READS_SENT, CONST_PRUNED_RANGE_SCANS_RECEIVED,
LOCAL_RANGE_SCANS_SENT, REMOTE_READS_SENT, REMOTE_RANGE_SCANS_SENT,
READS_NOT_FOUND, SCAN_BATCHES_RETURNED, TABLE_SCANS_RECEIVED, and
SCAN_ROWS_RETURNED counters are associated with the DBSPJ (select push-down join) kernel block (see
The DBSPJ Block).

The block_name and block_instance columns provide, respectively, the applicable NDB kernel block
name and instance number. You can use these to obtain information about specific threads from the
threadblocks table.

A number of counters provide information about transporter overload and send buffer sizing when
troubleshooting such issues. For each LQH instance, there is one instance of each counter in the following
list:

• LQHKEY_OVERLOAD: Number of primary key requests rejected at the LQH block instance due to
transporter overload

• LQHKEY_OVERLOAD_TC: Count of instances of LQHKEY_OVERLOAD where the TC node transporter was
overloaded

• LQHKEY_OVERLOAD_READER: Count of instances of LQHKEY_OVERLOAD where the API reader (reads
only) node was overloaded.

• LQHKEY_OVERLOAD_NODE_PEER: Count of instances of LQHKEY_OVERLOAD where the next backup
data node (writes only) was overloaded

• LQHKEY_OVERLOAD_SUBSCRIBER: Count of instances of LQHKEY_OVERLOAD where a event subscriber
(writes only) was overloaded.

• LQHSCAN_SLOWDOWNS: Count of instances where a fragment scan batch size was reduced due to
scanning API transporter overload.

21.6.15.11 The ndbinfo cpustat Table

The cpustat table provides per-thread CPU statistics gathered each second, for each thread running in
the NDB kernel.

The cpustat table contains the following columns:

• node_id

ID of the node where the thread is running

• thr_no

Thread ID (specific to this node)

• OS_user

OS user time

• OS_system

OS system time

• OS_idle

3857

https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbspj.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbspj.html

ndbinfo: The NDB Cluster Information Database

OS idle time

• thread_exec

Thread execution time

• thread_sleeping

Thread sleep time

• thread_spinning

Thread spin time

• thread_send

Thread send time

• thread_buffer_full

Thread buffer full time

• elapsed_time

Elapsed time

Notes

This table was added in NDB 7.5.2.

21.6.15.12 The ndbinfo cpustat_50ms Table

The cpustat_50ms table provides raw, per-thread CPU data obtained each 50 milliseconds for each
thread running in the NDB kernel.

Like cpustat_1sec and cpustat_20sec, this table shows 20 measurement sets per thread, each
referencing a period of the named duration. Thus, cpsustat_50ms provides 1 second of history.

The cpustat_50ms table contains the following columns:

• node_id

ID of the node where the thread is running

• thr_no

Thread ID (specific to this node)

• OS_user_time

OS user time

• OS_system_time

OS system time

• OS_idle_time

3858

ndbinfo: The NDB Cluster Information Database

OS idle time

• exec_time

Thread execution time

• sleep_time

Thread sleep time

• spin_time

Thread spin time

• send_time

Thread send time

• buffer_full_time

Thread buffer full time

• elapsed_time

Elapsed time

Notes

This table was added in NDB 7.5.2.

21.6.15.13 The ndbinfo cpustat_1sec Table

The cpustat-1sec table provides raw, per-thread CPU data obtained each second for each thread
running in the NDB kernel.

Like cpustat_50ms and cpustat_20sec, this table shows 20 measurement sets per thread, each
referencing a period of the named duration. Thus, cpsustat_1sec provides 20 seconds of history.

The cpustat_1sec table contains the following columns:

• node_id

ID of the node where the thread is running

• thr_no

Thread ID (specific to this node)

• OS_user_time

OS user time

• OS_system_time

OS system time

• OS_idle_time

3859

ndbinfo: The NDB Cluster Information Database

OS idle time

• exec_time

Thread execution time

• sleep_time

Thread sleep time

• spin_time

Thread spin time

• send_time

Thread send time

• buffer_full_time

Thread buffer full time

• elapsed_time

Elapsed time

Notes

This table was added in NDB 7.5.2.

21.6.15.14 The ndbinfo cpustat_20sec Table

The cpustat_20sec table provides raw, per-thread CPU data obtained each 20 seconds, for each thread
running in the NDB kernel.

Like cpustat_50ms and cpustat_1sec, this table shows 20 measurement sets per thread, each
referencing a period of the named duration. Thus, cpsustat_20sec provides 400 seconds of history.

The cpustat_20sec table contains the following columns:

• node_id

ID of the node where the thread is running

• thr_no

Thread ID (specific to this node)

• OS_user_time

OS user time

• OS_system_time

OS system time

• OS_idle_time

3860

ndbinfo: The NDB Cluster Information Database

OS idle time

• exec_time

Thread execution time

• sleep_time

Thread sleep time

• spin_time

Thread spin time

• send_time

Thread send time

• buffer_full_time

Thread buffer full time

• elapsed_time

Elapsed time

Notes

This table was added in NDB 7.5.2.

21.6.15.15 The ndbinfo dict_obj_info Table

The dict_obj_info table provides information about NDB data dictionary (DICT) objects such as tables
and indexes. (The dict_obj_types table can be queried for a list of all the types.) This information
includes the object's type, state, parent object (if any), and fully qualified name.

The dict_obj_info table contains the following columns:

• type

Type of DICT object; join on dict_obj_types to obtain the name

• id

Object identifier; for Disk Data undo log files and data files, this is the same as the value shown in the
LOGFILE_GROUP_NUMBER column of the Information Schema FILES table

• version

Object version

• state

Object state

• parent_obj_type

Parent object's type (a dict_obj_types type ID); 0 indicates that the object has no parent

3861

https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbdict.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbdict.html

ndbinfo: The NDB Cluster Information Database

• parent_obj_id

Parent object ID (such as a base table); 0 indicates that the object has no parent

• fq_name

Fully qualified object name; for a table, this has the form database_name/def/table_name,
for a primary key, the form is sys/def/table_id/PRIMARY, and for a unique key it is sys/
def/table_id/uk_name$unique

Notes

This table was added in NDB 7.5.4.

21.6.15.16 The ndbinfo dict_obj_types Table

The dict_obj_types table is a static table listing possible dictionary object types used in the NDB
kernel. These are the same types defined by Object::Type in the NDB API.

The dict_obj_types table contains the following columns:

• type_id

The type ID for this type

• type_name

The name of this type

21.6.15.17 The ndbinfo disk_write_speed_base Table

The disk_write_speed_base table provides base information about the speed of disk writes during
LCP, backup, and restore operations.

The disk_write_speed_base table contains the following columns:

• node_id

Node ID of this node

• thr_no

Thread ID of this LDM thread

• millis_ago

Milliseconds since this reporting period ended

• millis_passed

Milliseconds elapsed in this reporting period

• backup_lcp_bytes_written

Number of bytes written to disk by local checkpoints and backup processes during this period

• redo_bytes_written

Number of bytes written to REDO log during this period

3862

https://dev.mysql.com/doc/ndbapi/en/ndb-object.html#ndb-object-type

ndbinfo: The NDB Cluster Information Database

• target_disk_write_speed

Actual speed of disk writes per LDM thread (base data)

21.6.15.18 The ndbinfo disk_write_speed_aggregate Table

The disk_write_speed_aggregate table provides aggregated information about the speed of disk
writes during LCP, backup, and restore operations.

The disk_write_speed_aggregate table contains the following columns:

• node_id

Node ID of this node

• thr_no

Thread ID of this LDM thread

• backup_lcp_speed_last_sec

Number of bytes written to disk by backup and LCP processes in the last second

• redo_speed_last_sec

Number of bytes written to REDO log in the last second

• backup_lcp_speed_last_10sec

Number of bytes written to disk by backup and LCP processes per second, averaged over the last 10
seconds

• redo_speed_last_10sec

Number of bytes written to REDO log per second, averaged over the last 10 seconds

• std_dev_backup_lcp_speed_last_10sec

Standard deviation in number of bytes written to disk by backup and LCP processes per second,
averaged over the last 10 seconds

• std_dev_redo_speed_last_10sec

Standard deviation in number of bytes written to REDO log per second, averaged over the last 10
seconds

• backup_lcp_speed_last_60sec

Number of bytes written to disk by backup and LCP processes per second, averaged over the last 60
seconds

• redo_speed_last_60sec

Number of bytes written to REDO log per second, averaged over the last 10 seconds

• std_dev_backup_lcp_speed_last_60sec

Standard deviation in number of bytes written to disk by backup and LCP processes per second,
averaged over the last 60 seconds

3863

ndbinfo: The NDB Cluster Information Database

• std_dev_redo_speed_last_60sec

Standard deviation in number of bytes written to REDO log per second, averaged over the last 60
seconds

• slowdowns_due_to_io_lag

Number of seconds since last node start that disk writes were slowed due to REDO log I/O lag

• slowdowns_due_to_high_cpu

Number of seconds since last node start that disk writes were slowed due to high CPU usage

• disk_write_speed_set_to_min

Number of seconds since last node start that disk write speed was set to minimum

• current_target_disk_write_speed

Actual speed of disk writes per LDM thread (aggregated)

21.6.15.19 The ndbinfo disk_write_speed_aggregate_node Table

The disk_write_speed_aggregate_node table provides aggregated information per node about the
speed of disk writes during LCP, backup, and restore operations.

The disk_write_speed_aggregate_node table contains the following columns:

• node_id

Node ID of this node

• backup_lcp_speed_last_sec

Number of bytes written to disk by backup and LCP processes in the last second

• redo_speed_last_sec

Number of bytes written to the redo log in the last second

• backup_lcp_speed_last_10sec

Number of bytes written to disk by backup and LCP processes per second, averaged over the last 10
seconds

• redo_speed_last_10sec

Number of bytes written to the redo log each second, averaged over the last 10 seconds

• backup_lcp_speed_last_60sec

Number of bytes written to disk by backup and LCP processes per second, averaged over the last 60
seconds

• redo_speed_last_60sec

Number of bytes written to the redo log each second, averaged over the last 60 seconds

21.6.15.20 The ndbinfo diskpagebuffer Table

3864

ndbinfo: The NDB Cluster Information Database

The diskpagebuffer table provides statistics about disk page buffer usage by NDB Cluster Disk Data
tables.

The diskpagebuffer table contains the following columns:

• node_id

The data node ID

• block_instance

Block instance

• pages_written

Number of pages written to disk.

• pages_written_lcp

Number of pages written by local checkpoints.

• pages_read

Number of pages read from disk

• log_waits

Number of page writes waiting for log to be written to disk

• page_requests_direct_return

Number of requests for pages that were available in buffer

• page_requests_wait_queue

Number of requests that had to wait for pages to become available in buffer

• page_requests_wait_io

Number of requests that had to be read from pages on disk (pages were unavailable in buffer)

Notes

You can use this table with NDB Cluster Disk Data tables to determine whether DiskPageBufferMemory
is sufficiently large to allow data to be read from the buffer rather from disk; minimizing disk seeks can help
improve performance of such tables.

You can determine the proportion of reads from DiskPageBufferMemory to the total number of reads
using a query such as this one, which obtains this ratio as a percentage:

SELECT
 node_id,
 100 * page_requests_direct_return /
 (page_requests_direct_return + page_requests_wait_io)
 AS hit_ratio
FROM ndbinfo.diskpagebuffer;

The result from this query should be similar to what is shown here, with one row for each data node in the
cluster (in this example, the cluster has 4 data nodes):

+---------+-----------+

3865

ndbinfo: The NDB Cluster Information Database

| node_id | hit_ratio |
+---------+-----------+
5	97.6744
6	97.6879
7	98.1776
8	98.1343
+---------+-----------+
4 rows in set (0.00 sec)

hit_ratio values approaching 100% indicate that only a very small number of reads are being made
from disk rather than from the buffer, which means that Disk Data read performance is approaching
an optimum level. If any of these values are less than 95%, this is a strong indicator that the setting for
DiskPageBufferMemory needs to be increased in the config.ini file.

Note

A change in DiskPageBufferMemory requires a rolling restart of all of the
cluster's data nodes before it takes effect.

block_instance refers to an instance of a kernel block. Together with the block name, this number can
be used to look up a given instance in the threadblocks table. Using this information, you can obtain
information about disk page buffer metrics relating to individual threads; an example query using LIMIT 1
to limit the output to a single thread is shown here:

mysql> SELECT
 > node_id, thr_no, block_name, thread_name, pages_written,
 > pages_written_lcp, pages_read, log_waits,
 > page_requests_direct_return, page_requests_wait_queue,
 > page_requests_wait_io
 > FROM ndbinfo.diskpagebuffer
 > INNER JOIN ndbinfo.threadblocks USING (node_id, block_instance)
 > INNER JOIN ndbinfo.threads USING (node_id, thr_no)
 > WHERE block_name = 'PGMAN' LIMIT 1\G
*************************** 1. row ***************************
 node_id: 1
 thr_no: 1
 block_name: PGMAN
 thread_name: rep
 pages_written: 0
 pages_written_lcp: 0
 pages_read: 1
 log_waits: 0
page_requests_direct_return: 4
 page_requests_wait_queue: 0
 page_requests_wait_io: 1
1 row in set (0.01 sec)

21.6.15.21 The ndbinfo error_messages Table

The error_messages table provides information about

The error_messages table contains the following columns:

• error_code

Numeric error code

• error_description

Description of error

• error_status

3866

ndbinfo: The NDB Cluster Information Database

Error status code

• error_classification

Error classification code

Notes

error_code is a numeric NDB error code. This is the same error code that can be supplied to
ndb_perror or perror --ndb.

error_description provides a basic description of the condition causing the error.

The error_status column provides status information relating to the error. Possible values for this
column are listed here:

• No error

• Illegal connect string

• Illegal server handle

• Illegal reply from server

• Illegal number of nodes

• Illegal node status

• Out of memory

• Management server not connected

• Could not connect to socket

• Start failed

• Stop failed

• Restart failed

• Could not start backup

• Could not abort backup

• Could not enter single user mode

• Could not exit single user mode

• Failed to complete configuration change

• Failed to get configuration

• Usage error

• Success

• Permanent error

• Temporary error

• Unknown result

3867

ndbinfo: The NDB Cluster Information Database

• Temporary error, restart node

• Permanent error, external action needed

• Ndbd file system error, restart node initial

• Unknown

The error_classification column shows the error classification. See NDB Error Classifications, for
information about classification codes and their meanings.

The error_messages table was added in NDB 7.6.

21.6.15.22 The ndbinfo locks_per_fragment Table

The locks_per_fragment table provides information about counts of lock claim requests,
and the outcomes of these requests on a per-fragment basis, serving as a companion table to
operations_per_fragment and memory_per_fragment. This table also shows the total time spent
waiting for locks successfully and unsuccessfully since fragment or table creation, or since the most recent
restart.

The locks_per_fragment table contains the following columns:

• fq_name

Fully qualified table name

• parent_fq_name

Fully qualified name of parent object

• type

Table type; see text for possible values

• table_id

Table ID

• node_id

Reporting node ID

• block_instance

LDM instance ID

• fragment_num

Fragment identifier

• ex_req

Exclusive lock requests started

• ex_imm_ok

Exclusive lock requests immediately granted

• ex_wait_ok

3868

https://dev.mysql.com/doc/ndbapi/en/ndb-error-classifications.html

ndbinfo: The NDB Cluster Information Database

Exclusive lock requests granted following wait

• ex_wait_fail

Exclusive lock requests not granted

• sh_req

Shared lock requests started

• sh_imm_ok

Shared lock requests immediately granted

• sh_wait_ok

Shared lock requests granted following wait

• sh_wait_fail

Shared lock requests not granted

• wait_ok_millis

Time spent waiting for lock requests that were granted, in milliseconds

• wait_fail_millis

Time spent waiting for lock requests that failed, in milliseconds

Notes

block_instance refers to an instance of a kernel block. Together with the block name, this number can
be used to look up a given instance in the threadblocks table.

fq_name is a fully qualified database object name in database/schema/name format, such as test/
def/t1 or sys/def/10/b$unique.

parent_fq_name is the fully qualified name of this object's parent object (table).

table_id is the table's internal ID generated by NDB. This is the same internal table ID shown in other
ndbinfo tables; it is also visible in the output of ndb_show_tables.

The type column shows the type of table. This is always one of System table, User table, Unique
hash index, Hash index, Unique ordered index, Ordered index, Hash index trigger,
Subscription trigger, Read only constraint, Index trigger, Reorganize trigger,
Tablespace, Log file group, Data file, Undo file, Hash map, Foreign key definition,
Foreign key parent trigger, Foreign key child trigger, or Schema transaction.

The values shown in all of the columns ex_req, ex_req_imm_ok, ex_wait_ok, ex_wait_fail,
sh_req, sh_req_imm_ok, sh_wait_ok, and sh_wait_fail represent cumulative numbers of requests
since the table or fragment was created, or since the last restart of this node, whichever of these occurred
later. This is also true for the time values shown in the wait_ok_millis and wait_fail_millis
columns.

Every lock request is considered either to be in progress, or to have completed in some way (that is, to
have succeeded or failed). This means that the following relationships are true:

ex_req >= (ex_req_imm_ok + ex_wait_ok + ex_wait_fail)

3869

ndbinfo: The NDB Cluster Information Database

sh_req >= (sh_req_imm_ok + sh_wait_ok + sh_wait_fail)

The number of requests currently in progress is the current number of incomplete requests, which can be
found as shown here:

[exclusive lock requests in progress] =
 ex_req - (ex_req_imm_ok + ex_wait_ok + ex_wait_fail)

[shared lock requests in progress] =
 sh_req - (sh_req_imm_ok + sh_wait_ok + sh_wait_fail)

A failed wait indicates an aborted transaction, but the abort may or may not be caused by a lock wait
timeout. You can obtain the total number of aborts while waiting for locks as shown here:

[aborts while waiting for locks] = ex_wait_fail + sh_wait_fail

The locks_per_fragment table was added in NDB 7.5.3.

21.6.15.23 The ndbinfo logbuffers Table

The logbuffer table provides information on NDB Cluster log buffer usage.

The logbuffers table contains the following columns:

• node_id

The ID of this data node.

• log_type

Type of log. In NDB 7.5, one of: REDO or DD-UNDO. In NDB 7.6, one of: REDO, DD-UNDO, BACKUP-DATA,
or BACKUP-LOG.

• log_id

The log ID; for Disk Data undo log files, this is the same as the value shown in the
LOGFILE_GROUP_NUMBER column of the Information Schema FILES table as well as the value shown
for the log_id column of the ndbinfo logspaces table

• log_part

The log part number

• total

Total space available for this log

• used

Space used by this log

Notes

NDB 7.6.6 makes available logbuffers table rows reflecting two additional log types when performing an
NDB backup. One of these rows has the log type BACKUP-DATA, which shows the amount of data buffer
used during backup to copy fragments to backup files. The other row has the log type BACKUP-LOG, which
displays the amount of log buffer used during the backup to record changes made after the backup has
started. One each of these log_type rows is shown in the logbuffers table for each data node in the
cluster. These rows are not present unless an NDB backup is currently being performed. (Bug #25822988)

3870

ndbinfo: The NDB Cluster Information Database

21.6.15.24 The ndbinfo logspaces Table

This table provides information about NDB Cluster log space usage.

The logspaces table contains the following columns:

• node_id

The ID of this data node.

• log_type

Type of log; one of: REDO or DD-UNDO.

• log_id

The log ID; for Disk Data undo log files, this is the same as the value shown in the
LOGFILE_GROUP_NUMBER column of the Information Schema FILES table as well as the value shown
for the log_id column of the ndbinfo logbuffers table

• log_part

The log part number.

• total

Total space available for this log.

• used

Space used by this log.

21.6.15.25 The ndbinfo membership Table

The membership table describes the view that each data node has of all the others in the cluster,
including node group membership, president node, arbitrator, arbitrator successor, arbitrator connection
states, and other information.

The membership table contains the following columns:

• node_id

This node's node ID

• group_id

Node group to which this node belongs

• left node

Node ID of the previous node

• right_node

Node ID of the next node

• president

President's node ID

3871

ndbinfo: The NDB Cluster Information Database

• successor

Node ID of successor to president

• succession_order

Order in which this node succeeds to presidency

• Conf_HB_order

-

• arbitrator

Node ID of arbitrator

• arb_ticket

Internal identifier used to track arbitration

• arb_state

Arbitration state

• arb_connected

Whether this node is connected to the arbitrator; either of Yes or No

• connected_rank1_arbs

Connected arbitrators of rank 1

• connected_rank2_arbs

Connected arbitrators of rank 1

Notes

The node ID and node group ID are the same as reported by ndb_mgm -e "SHOW".

left_node and right_node are defined in terms of a model that connects all data nodes in a circle, in
order of their node IDs, similar to the ordering of the numbers on a clock dial, as shown here:

Figure 21.8 Circular Arrangement of NDB Cluster Nodes

3872

ndbinfo: The NDB Cluster Information Database

In this example, we have 8 data nodes, numbered 5, 6, 7, 8, 12, 13, 14, and 15, ordered clockwise in
a circle. We determine “left” and “right” from the interior of the circle. The node to the left of node 5 is
node 15, and the node to the right of node 5 is node 6. You can see all these relationships by running the
following query and observing the output:

mysql> SELECT node_id,left_node,right_node
 -> FROM ndbinfo.membership;
+---------+-----------+------------+
| node_id | left_node | right_node |
+---------+-----------+------------+
5	15	6
6	5	7
7	6	8
8	7	12
12	8	13
13	12	14
14	13	15
15	14	5
+---------+-----------+------------+
8 rows in set (0.00 sec)

The designations “left” and “right” are used in the event log in the same way.

The president node is the node viewed by the current node as responsible for setting an arbitrator
(see NDB Cluster Start Phases). If the president fails or becomes disconnected, the current node
expects the node whose ID is shown in the successor column to become the new president. The
succession_order column shows the place in the succession queue that the current node views itself
as having.

In a normal NDB Cluster, all data nodes should see the same node as president, and the same node
(other than the president) as its successor. In addition, the current president should see itself as 1 in the
order of succession, the successor node should see itself as 2, and so on.

All nodes should show the same arb_ticket values as well as the same arb_state values. Possible
arb_state values are ARBIT_NULL, ARBIT_INIT, ARBIT_FIND, ARBIT_PREP1, ARBIT_PREP2,
ARBIT_START, ARBIT_RUN, ARBIT_CHOOSE, ARBIT_CRASH, and UNKNOWN.

arb_connected shows whether this node is connected to the node shown as this node's arbitrator.

The connected_rank1_arbs and connected_rank2_arbs columns each display a list of 0 or more
arbitrators having an ArbitrationRank equal to 1, or to 2, respectively.

Note

Both management nodes and API nodes are eligible to become arbitrators.

21.6.15.26 The ndbinfo memoryusage Table

Querying this table provides information similar to that provided by the ALL REPORT MemoryUsage
command in the ndb_mgm client, or logged by ALL DUMP 1000.

The memoryusage table contains the following columns:

• node_id

The node ID of this data node.

• memory_type

3873

https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-start-phases.html
https://dev.mysql.com/doc/ndb-internals/en/dump-command-1000.html

ndbinfo: The NDB Cluster Information Database

One of Data memory, Index memory, or Long message buffer.

• used

Number of bytes currently used for data memory or index memory by this data node.

• used_pages

Number of pages currently used for data memory or index memory by this data node; see text.

• total

Total number of bytes of data memory or index memory available for this data node; see text.

• total_pages

Total number of memory pages available for data memory or index memory on this data node; see text.

Notes

The total column represents the total amount of memory in bytes available for the given resource (data
memory or index memory) on a particular data node. This number should be approximately equal to the
setting of the corresponding configuration parameter in the config.ini file.

Suppose that the cluster has 2 data nodes having node IDs 5 and 6, and the config.ini file contains the
following:

[ndbd default]
DataMemory = 1G
IndexMemory = 1G

Suppose also that the value of the LongMessageBuffer configuration parameter is allowed to assume its
default (64 MB).

The following query shows approximately the same values:

mysql> SELECT node_id, memory_type, total
 > FROM ndbinfo.memoryusage;
+---------+---------------------+------------+
| node_id | memory_type | total |
+---------+---------------------+------------+
5	Data memory	1073741824
5	Index memory	1074003968
5	Long message buffer	67108864
6	Data memory	1073741824
6	Index memory	1074003968
6	Long message buffer	67108864
+---------+---------------------+------------+
6 rows in set (0.00 sec)

In this case, the total column values for index memory are slightly higher than the value set of
IndexMemory due to internal rounding.

For the used_pages and total_pages columns, resources are measured in pages, which are 32K in
size for DataMemory and 8K for IndexMemory. For long message buffer memory, the page size is 256
bytes.

21.6.15.27 The ndbinfo memory_per_fragment Table

• memory_per_fragment Table: Notes

3874

ndbinfo: The NDB Cluster Information Database

• memory_per_fragment Table: Examples

The memory_per_fragment table provides information about the usage of memory by individual
fragments. See the Notes later in this section to see how you can use this to find out how much memory is
used by NDB tables.

The memory_per_fragment table contains the following columns:

• fq_name

Name of this fragment

• parent_fq_name

Name of this fragment's parent

• type

Dictionary object type (Object::Type, in the NDB API) used for this fragment; one of System table,
User table, Unique hash index, Hash index, Unique ordered index, Ordered index,
Hash index trigger, Subscription trigger, Read only constraint, Index trigger,
Reorganize trigger, Tablespace, Log file group, Data file, Undo file, Hash map,
Foreign key definition, Foreign key parent trigger, Foreign key child trigger, or
Schema transaction.

You can also obtain this list by executing TABLE ndbinfo.dict_obj_types in the mysql client.

• table_id

Table ID for this table

• node_id

Node ID for this node

• block_instance

NDB kernel block instance ID; you can use this number to obtain information about specific threads from
the threadblocks table.

• fragment_num

Fragment ID (number)

• fixed_elem_alloc_bytes

Number of bytes allocated for fixed-sized elements

• fixed_elem_free_bytes

Free bytes remaining in pages allocated to fixed-size elements

• fixed_elem_size_bytes

Length of each fixed-size element in bytes

• fixed_elem_count

Number of fixed-size elements

3875

https://dev.mysql.com/doc/ndbapi/en/ndb-object.html#ndb-object-type
https://dev.mysql.com/doc/refman/8.0/en/table.html

ndbinfo: The NDB Cluster Information Database

• fixed_elem_free_count

Number of free rows for fixed-size elements

• var_elem_alloc_bytes

Number of bytes allocated for variable-size elements

• var_elem_free_bytes

Free bytes remaining in pages allocated to variable-size elements

• var_elem_count

Number of variable-size elements

• hash_index_alloc_bytes

Number of bytes allocated to hash indexes

memory_per_fragment Table: Notes

The memory_per_fragment table contains one row for every table fragment replica and every index
fragment replica in the system; this means that, for example, when NoOfReplicas=2, there are normally
two fragment replicas for each fragment. This is true as long as all data nodes are running and connected
to the cluster; for a data node that is missing, there are no rows for the fragment replicas that it hosts.

The columns of the memory_per_fragment table can be grouped according to their function or purpose
as follows:

• Key columns: fq_name, type, table_id, node_id, block_instance, and fragment_num

• Relationship column: parent_fq_name

• Fixed-size storage columns: fixed_elem_alloc_bytes, fixed_elem_free_bytes,
fixed_elem_size_bytes, fixed_elem_count, and fixed_elem_free_count

• Variable-sized storage columns: var_elem_alloc_bytes, var_elem_free_bytes, and
var_elem_count

• Hash index column: hash_index_alloc_bytes

The parent_fq_name and fq_name columns can be used to identify indexes associated with a table.
Similar schema object hierarchy information is available in other ndbinfo tables.

Table and index fragment replicas allocate DataMemory in 32KB pages. These memory pages are
managed as listed here:

• Fixed-size pages: These store the fixed-size parts of rows stored in a given fragment. Every row has a
fixed-size part.

• Variable-sized pages: These store variable-sized parts for rows in the fragment. Every row having one or
more variable-sized, one or more dynamic columns (or both) has a variable-sized part.

• Hash index pages: These are allocated as 8 KB subpages, and store the primary key hash index
structure.

Each row in an NDB table has a fixed-size part, consisting of a row header, and one or more fixed-size
columns. The row may also contain one or more variable-size part references, one or more disk part

3876

ndbinfo: The NDB Cluster Information Database

references, or both. Each row also has a primary key hash index entry (corresponding to the hidden
primary key that is part of every NDB table).

From the foregoing we can see that each table fragment and index fragment together allocate the amount
of DataMemory calculated as shown here:

DataMemory =
 (number_of_fixed_pages + number_of_var_pages) * 32KB
 + number_of_hash_pages * 8KB

Since fixed_elem_alloc_bytes and var_elem_alloc_bytes are always multiples of 32768 bytes,
we can further determine that number_of_fixed_pages = fixed_elem_alloc_bytes / 32768
and number_of_var_pages = var_elem_alloc_bytes / 32768. hash_index_alloc_bytes is
always a multiple of 8192 bytes, so number_of_hash_pages = hash_index_alloc_bytes / 8192.

A fixed size page has an internal header and a number of fixed-size slots, each of which can contain one
row's fixed-size part. The size of a given row's fixed size part is schema-dependent, and is provided by
the fixed_elem_size_bytes column; the number of fixed-size slots per page can be determined by
calculating the total number of slots and the total number of pages, like this:

fixed_slots = fixed_elem_count + fixed_elem_free_count

fixed_pages = fixed_elem_alloc_bytes / 32768

slots_per_page = total_slots / total_pages

fixed_elem_count is in effect the row count for a given table fragment, since each row has
1 fixed element, fixed_elem_free_count is the total number of free fixed-size slots across
the allocated pages. fixed_elem_free_bytes is equal to fixed_elem_free_count *
fixed_elem_size_bytes.

A fragment can have any number of fixed-size pages; when the last row on a fixed-size page is deleted,
the page is released to the DataMemory page pool. Fixed-size pages can be fragmented, with more pages
allocated than is required by the number of fixed-size slots in use. You can check whether this is the case
by comparing the pages required to the pages allocated, which you can calculate like this:

fixed_pages_required = 1 + (fixed_elem_count / slots_per_page)

fixed_page_utilization = fixed_pages_required / fixed_pages

A variable-sized page has an internal header and uses the remaining space to store one or more
variable-sized row parts; the number of parts stored depends on the schema and the actual data
stored. Since not all schemas or rows have a variable-sized part, var_elem_count can be less than
fixed_elem_count. The total free space available on all variable-sized pages in the fragment is shown
by the var_elem_free_bytes column; because this space may be spread over multiple pages, it cannot
necessarily be used to store an entry of a particular size. Each variable-sized page is reorganized as
needed to fit the changing size of variable-sized row parts as they are inserted, updated, and deleted; if a
given row part grows too large for the page it is in, it can be moved to a different page.

Variable-sized page utilisation can be calculated as shown here:

var_page_used_bytes = var_elem_alloc_bytes - var_elem_free_bytes

var_page_utilisation = var_page_used_bytes / var_elem_alloc_bytes

avg_row_var_part_size = var_page_used_bytes / fixed_elem_count

We can obtain the average variable part size per row like this:

avg_row_var_part_size = var_page_used_bytes / fixed_elem_count

3877

ndbinfo: The NDB Cluster Information Database

Secondary unique indexes are implemented internally as independent tables with the following schema:

• Primary key: Indexed columns in base table.

• Values: Primary key columns from base table.

These tables are distributed and fragmented as normal. This means that their fragment replicas use fixed,
variable, and hash index pages as with any other NDB table.

Secondary ordered indexes are fragmented and distributed in the same way as the base table. Ordered
index fragments are T-tree structures which maintain a balanced tree containing row references in the
order implied by the indexed columns. Since the tree contains references rather than actual data, the T-
tree storage cost is not dependent on the size or number of indexed columns, but is rather a function of
the number of rows. The tree is constructed using fixed-size node structures, each of which may contain a
number of row references; the number of nodes required depends on the number of rows in the table, and
the tree structure necessary to represent the ordering. In the memory_per_fragment table, we can see
that ordered indexes allocate only fixed-size pages, so as usual the relevant columns from this table are as
listed here:

• fixed_elem_alloc_bytes: This is equal to 32768 times the number of fixed-size pages.

• fixed_elem_count: The number of T-tree nodes in use.

• fixed_elem_size_bytes: The number of bytes per T-tree node.

• fixed_elem_free_count: The number of T-tree node slots available in the pages allocated.

• fixed_elem_free_bytes: This is equal to fixed_elem_free_count *
fixed_elem_size_bytes.

If free space in a page is fragmented, the page is defragmented. OPTIMIZE TABLE can be used to
defragment a table's variable-sized pages; this moves row variable-sized parts between pages so that
some whole pages can be freed for re-use.

memory_per_fragment Table: Examples

• Getting general information about fragments and memory usage

• Finding a table and its indexes

• Finding the memory allocated by schema elements

• Finding the memory allocated for a table and all indexes

• Finding the memory allocated per row

• Finding the total memory in use per row

• Finding the memory allocated per element

• Finding the average memory allocated per row, by element

• Finding the average memory allocated per row

• Finding the average memory allocated per row for a table

• Finding the memory in use by each schema element

• Finding the average memory in use by each schema element

3878

ndbinfo: The NDB Cluster Information Database

• Finding the average memory in use per row, by element

• Finding the total average memory in use per row

For the following examples, we create a simple table with three integer columns, one of which has a
primary key, one having a unique index, and one with no indexes, as well as one VARCHAR column with no
indexes, as shown here:

mysql> CREATE DATABASE IF NOT EXISTS test;
Query OK, 1 row affected (0.06 sec)

mysql> USE test;
Database changed

mysql> CREATE TABLE t1 (
 -> c1 BIGINT NOT NULL AUTO_INCREMENT PRIMARY KEY,
 -> c2 INT,
 -> c3 INT UNIQUE,
 ->) ENGINE=NDBCLUSTER;
Query OK, 0 rows affected (0.27 sec)

Following creation of the table, we insert 50,000 rows containing random data; the precise method
of generating and inserting these rows makes no practical difference, and we leave the method of
accomplishing as an exercise for the user.

Getting general information about fragments and memory usage

This query shows general information about memory usage for each fragment:

mysql> SELECT
 -> fq_name, node_id, block_instance, fragment_num, fixed_elem_alloc_bytes,
 -> fixed_elem_free_bytes, fixed_elem_size_bytes, fixed_elem_count,
 -> fixed_elem_free_count, var_elem_alloc_bytes, var_elem_free_bytes,
 -> var_elem_count
 -> FROM ndbinfo.memory_per_fragment
 -> WHERE fq_name = "test/def/t1"\G
*************************** 1. row ***************************
 fq_name: test/def/t1
 node_id: 5
 block_instance: 1
 fragment_num: 0
fixed_elem_alloc_bytes: 1114112
 fixed_elem_free_bytes: 11836
 fixed_elem_size_bytes: 44
 fixed_elem_count: 24925
 fixed_elem_free_count: 269
 var_elem_alloc_bytes: 1245184
 var_elem_free_bytes: 32552
 var_elem_count: 24925
*************************** 2. row ***************************
 fq_name: test/def/t1
 node_id: 5
 block_instance: 1
 fragment_num: 1
fixed_elem_alloc_bytes: 1114112
 fixed_elem_free_bytes: 5236
 fixed_elem_size_bytes: 44
 fixed_elem_count: 25075
 fixed_elem_free_count: 119
 var_elem_alloc_bytes: 1277952
 var_elem_free_bytes: 54232
 var_elem_count: 25075
*************************** 3. row ***************************
 fq_name: test/def/t1
 node_id: 6

3879

ndbinfo: The NDB Cluster Information Database

 block_instance: 1
 fragment_num: 0
fixed_elem_alloc_bytes: 1114112
 fixed_elem_free_bytes: 11836
 fixed_elem_size_bytes: 44
 fixed_elem_count: 24925
 fixed_elem_free_count: 269
 var_elem_alloc_bytes: 1245184
 var_elem_free_bytes: 32552
 var_elem_count: 24925
*************************** 4. row ***************************
 fq_name: test/def/t1
 node_id: 6
 block_instance: 1
 fragment_num: 1
fixed_elem_alloc_bytes: 1114112
 fixed_elem_free_bytes: 5236
 fixed_elem_size_bytes: 44
 fixed_elem_count: 25075
 fixed_elem_free_count: 119
 var_elem_alloc_bytes: 1277952
 var_elem_free_bytes: 54232
 var_elem_count: 25075
4 rows in set (0.12 sec)

Finding a table and its indexes

This query can be used to find a specific table and its indexes:

mysql> SELECT fq_name
 -> FROM ndbinfo.memory_per_fragment
 -> WHERE fq_name = 'test/def/t1' OR parent_fq_name='test/def/t1'
 -> GROUP BY fq_name;
+----------------------+
| fq_name |
+----------------------+
| test/def/t1 |
| sys/def/13/PRIMARY |
| sys/def/13/c3 |
| sys/def/13/c3$unique |
+----------------------+
4 rows in set (0.13 sec)

mysql> SELECT COUNT(*) FROM t1;
+----------+
| COUNT(*) |
+----------+
| 50000 |
+----------+
1 row in set (0.00 sec)

Finding the memory allocated by schema elements

This query shows the memory allocated by each schema element (in total across all replicas):

mysql> SELECT
 -> fq_name AS Name,
 -> SUM(fixed_elem_alloc_bytes) AS Fixed,
 -> SUM(var_elem_alloc_bytes) AS Var,
 -> SUM(hash_index_alloc_bytes) AS Hash,
 -> SUM(fixed_elem_alloc_bytes+var_elem_alloc_bytes+hash_index_alloc_bytes) AS Total
 -> FROM ndbinfo.memory_per_fragment
 -> WHERE fq_name = 'test/def/t1' OR parent_fq_name='test/def/t1'
 -> GROUP BY fq_name;
+----------------------+---------+---------+---------+----------+
| Name | Fixed | Var | Hash | Total |

3880

ndbinfo: The NDB Cluster Information Database

+----------------------+---------+---------+---------+----------+
test/def/t1	4456448	5046272	1425408	10928128
sys/def/13/PRIMARY	1966080	0	0	1966080
sys/def/13/c3	1441792	0	0	1441792
sys/def/13/c3$unique	3276800	0	1425408	4702208
+----------------------+---------+---------+---------+----------+
4 rows in set (0.11 sec)

Finding the memory allocated for a table and all indexes

The sum of memory allocated for the table and all its indexes (in total across all replicas) can be obtained
using the query shown here:

mysql> SELECT
 -> SUM(fixed_elem_alloc_bytes) AS Fixed,
 -> SUM(var_elem_alloc_bytes) AS Var,
 -> SUM(hash_index_alloc_bytes) AS Hash,
 -> SUM(fixed_elem_alloc_bytes+var_elem_alloc_bytes+hash_index_alloc_bytes) AS Total
 -> FROM ndbinfo.memory_per_fragment
 -> WHERE fq_name = 'test/def/t1' OR parent_fq_name='test/def/t1';
+----------+---------+---------+----------+
| Fixed | Var | Hash | Total |
+----------+---------+---------+----------+
| 11141120 | 5046272 | 2850816 | 19038208 |
+----------+---------+---------+----------+
1 row in set (0.12 sec)

This is an abbreviated version of the previous query which shows only the total memory used by the table:

mysql> SELECT
 -> SUM(fixed_elem_alloc_bytes+var_elem_alloc_bytes+hash_index_alloc_bytes) AS Total
 -> FROM ndbinfo.memory_per_fragment
 -> WHERE fq_name = 'test/def/t1' OR parent_fq_name='test/def/t1';
+----------+
| Total |
+----------+
| 19038208 |
+----------+
1 row in set (0.12 sec)

Finding the memory allocated per row

The following query shows the total memory allocated per row (across all replicas):

mysql> SELECT
 -> SUM(fixed_elem_alloc_bytes+var_elem_alloc_bytes+hash_index_alloc_bytes)
 -> /
 -> SUM(fixed_elem_count) AS Total_alloc_per_row
 -> FROM ndbinfo.memory_per_fragment
 -> WHERE fq_name = 'test/def/t1';
+---------------------+
| Total_alloc_per_row |
+---------------------+
| 109.2813 |
+---------------------+
1 row in set (0.12 sec)

Finding the total memory in use per row

To obtain the total memory in use per row (across all replicas), we need the total memory used divided by
the row count, which is the fixed_elem_count for the base table like this:

mysql> SELECT

3881

ndbinfo: The NDB Cluster Information Database

 -> SUM(
 -> (fixed_elem_alloc_bytes - fixed_elem_free_bytes)
 -> + (var_elem_alloc_bytes - var_elem_free_bytes)
 -> + hash_index_alloc_bytes
 ->)
 -> /
 -> SUM(fixed_elem_count)
 -> AS total_in_use_per_row
 -> FROM ndbinfo.memory_per_fragment
 -> WHERE fq_name = 'test/def/t1';
+----------------------+
| total_in_use_per_row |
+----------------------+
| 107.2042 |
+----------------------+
1 row in set (0.12 sec)

Finding the memory allocated per element

The memory allocated by each schema element (in total across all replicas) can be found using the
following query:

mysql> SELECT
 -> fq_name AS Name,
 -> SUM(fixed_elem_alloc_bytes) AS Fixed,
 -> SUM(var_elem_alloc_bytes) AS Var,
 -> SUM(hash_index_alloc_bytes) AS Hash,
 -> SUM(fixed_elem_alloc_bytes + var_elem_alloc_bytes + hash_index_alloc_bytes)
 -> AS Total_alloc
 -> FROM ndbinfo.memory_per_fragment
 -> WHERE fq_name = 'test/def/t1' OR parent_fq_name='test/def/t1'
 -> GROUP BY fq_name;
+----------------------+---------+---------+---------+-------------+
| Name | Fixed | Var | Hash | Total_alloc |
+----------------------+---------+---------+---------+-------------+
test/def/t1	4456448	5046272	1425408	10928128
sys/def/13/PRIMARY	1966080	0	0	1966080
sys/def/13/c3	1441792	0	0	1441792
sys/def/13/c3$unique	3276800	0	1425408	4702208
+----------------------+---------+---------+---------+-------------+
4 rows in set (0.11 sec)

Finding the average memory allocated per row, by element

To obtain the average memory allocated per row by each schema element (in total across all replicas),
we use a subquery to get the base table fixed element count each time to get an average per row since
fixed_elem_count for the indexes is not necessarily the same as for the base table, as shown here:

mysql> SELECT
 -> fq_name AS Name,
 -> (SELECT SUM(fixed_elem_count)
 -> FROM ndbinfo.memory_per_fragment
 -> WHERE fq_name='test/def/t1') AS Table_rows,
 ->
 -> SUM(fixed_elem_alloc_bytes)
 -> /
 -> (SELECT SUM(fixed_elem_count)
 -> FROM ndbinfo.memory_per_fragment
 -> WHERE fq_name='test/def/t1') AS Avg_fixed_alloc,
 ->
 -> SUM(var_elem_alloc_bytes)
 -> /
 -> (SELECT SUM(fixed_elem_count)
 -> FROM ndbinfo.memory_per_fragment
 -> WHERE fq_name='test/def/t1') as Avg_var_alloc,

3882

ndbinfo: The NDB Cluster Information Database

 ->
 -> SUM(hash_index_alloc_bytes)
 -> /
 -> (SELECT SUM(fixed_elem_count)
 -> FROM ndbinfo.memory_per_fragment
 -> WHERE fq_name='test/def/t1') as Avg_hash_alloc,
 ->
 -> SUM(fixed_elem_alloc_bytes+var_elem_alloc_bytes+hash_index_alloc_bytes)
 -> /
 -> (SELECT SUM(fixed_elem_count)
 -> FROM ndbinfo.memory_per_fragment
 -> WHERE fq_name='test/def/t1') as Avg_total_alloc
 ->
 -> FROM ndbinfo.memory_per_fragment
 -> WHERE fq_name = 'test/def/t1' or parent_fq_name='test/def/t1'
 -> GROUP BY fq_name;
+----------------------+------------+-----------------+---------------+----------------+-----------------+
| Name | Table_rows | Avg_fixed_alloc | Avg_var_alloc | Avg_hash_alloc | Avg_total_alloc |
+----------------------+------------+-----------------+---------------+----------------+-----------------+
test/def/t1	100000	44.5645	50.4627	14.2541	109.2813
sys/def/13/PRIMARY	100000	19.6608	0.0000	0.0000	19.6608
sys/def/13/c3	100000	14.4179	0.0000	0.0000	14.4179
sys/def/13/c3$unique	100000	32.7680	0.0000	14.2541	47.0221
+----------------------+------------+-----------------+---------------+----------------+-----------------+
4 rows in set (0.70 sec)

Finding the average memory allocated per row

Average memory allocated per row (in total across all replicas):

mysql> SELECT
 -> (SELECT SUM(fixed_elem_count)
 -> FROM ndbinfo.memory_per_fragment
 -> WHERE fq_name='test/def/t1') AS Table_rows,
 ->
 -> SUM(fixed_elem_alloc_bytes)
 -> /
 -> (SELECT SUM(fixed_elem_count)
 -> FROM ndbinfo.memory_per_fragment
 -> WHERE fq_name='test/def/t1') AS Avg_fixed_alloc,
 ->
 -> SUM(var_elem_alloc_bytes)
 -> /
 -> (SELECT SUM(fixed_elem_count)
 -> FROM ndbinfo.memory_per_fragment
 -> WHERE fq_name='test/def/t1') AS Avg_var_alloc,
 ->
 -> SUM(hash_index_alloc_bytes)
 -> /
 -> (SELECT SUM(fixed_elem_count)
 -> FROM ndbinfo.memory_per_fragment
 -> WHERE fq_name='test/def/t1') AS Avg_hash_alloc,
 ->
 -> SUM(fixed_elem_alloc_bytes + var_elem_alloc_bytes + hash_index_alloc_bytes)
 -> /
 -> (SELECT SUM(fixed_elem_count)
 -> FROM ndbinfo.memory_per_fragment
 -> WHERE fq_name='test/def/t1') AS Avg_total_alloc
 ->
 -> FROM ndbinfo.memory_per_fragment
 -> WHERE fq_name = 'test/def/t1' OR parent_fq_name='test/def/t1';
+------------+-----------------+---------------+----------------+-----------------+
| Table_rows | Avg_fixed_alloc | Avg_var_alloc | Avg_hash_alloc | Avg_total_alloc |
+------------+-----------------+---------------+----------------+-----------------+
| 100000 | 111.4112 | 50.4627 | 28.5082 | 190.3821 |
+------------+-----------------+---------------+----------------+-----------------+
1 row in set (0.71 sec)

3883

ndbinfo: The NDB Cluster Information Database

Finding the average memory allocated per row for a table

To get the average amount of memory allocated per row for the entire table across all replicas, we can use
the query shown here:

mysql> SELECT
 -> (SELECT SUM(fixed_elem_count)
 -> FROM ndbinfo.memory_per_fragment
 -> WHERE fq_name='test/def/t1') AS table_rows,
 ->
 -> SUM(fixed_elem_alloc_bytes + var_elem_alloc_bytes + hash_index_alloc_bytes)
 -> /
 -> (SELECT SUM(fixed_elem_count)
 -> FROM ndbinfo.memory_per_fragment
 -> WHERE fq_name='test/def/t1') AS avg_total_alloc
 ->
 -> FROM ndbinfo.memory_per_fragment
 -> WHERE fq_name = 'test/def/t1' OR parent_fq_name='test/def/t1';
+------------+-----------------+
| table_rows | avg_total_alloc |
+------------+-----------------+
| 100000 | 190.3821 |
+------------+-----------------+
1 row in set (0.33 sec)

Finding the memory in use by each schema element

To obtain the memory in use per schema element across all replicas, we need to sum the difference
between allocated and free memory for each element, like this:

mysql> SELECT
 -> fq_name AS Name,
 -> SUM(fixed_elem_alloc_bytes - fixed_elem_free_bytes) AS fixed_inuse,
 -> SUM(var_elem_alloc_bytes-var_elem_free_bytes) AS var_inuse,
 -> SUM(hash_index_alloc_bytes) AS hash_memory,
 -> SUM((fixed_elem_alloc_bytes - fixed_elem_free_bytes)
 -> + (var_elem_alloc_bytes - var_elem_free_bytes)
 -> + hash_index_alloc_bytes) AS total_alloc
 -> FROM ndbinfo.memory_per_fragment
 -> WHERE fq_name = 'test/def/t1' OR parent_fq_name='test/def/t1'
 -> GROUP BY fq_name;
+----------------------+-------------+-----------+---------+-------------+
| fq_name | fixed_inuse | var_inuse | hash | total_alloc |
+----------------------+-------------+-----------+---------+-------------+
test/def/t1	4422304	4872704	1425408	10720416
sys/def/13/PRIMARY	1950848	0	0	1950848
sys/def/13/c3	1428736	0	0	1428736
sys/def/13/c3$unique	3212800	0	1425408	4638208
+----------------------+-------------+-----------+---------+-------------+
4 rows in set (0.13 sec)

Finding the average memory in use by each schema element

This query gets the average memory in use per schema element across all replicas:

mysql> SELECT
 -> fq_name AS Name,
 ->
 -> (SELECT SUM(fixed_elem_count)
 -> FROM ndbinfo.memory_per_fragment
 -> WHERE fq_name='test/def/t1') AS table_rows,
 ->
 -> SUM(fixed_elem_alloc_bytes - fixed_elem_free_bytes)
 -> /

3884

ndbinfo: The NDB Cluster Information Database

 -> (SELECT SUM(fixed_elem_count)
 -> FROM ndbinfo.memory_per_fragment
 -> WHERE fq_name='test/def/t1') AS avg_fixed_inuse,
 ->
 -> SUM(var_elem_alloc_bytes - var_elem_free_bytes)
 -> /
 -> (SELECT SUM(fixed_elem_count)
 -> FROM ndbinfo.memory_per_fragment
 -> WHERE fq_name='test/def/t1') AS avg_var_inuse,
 ->
 -> SUM(hash_index_alloc_bytes)
 -> /
 -> (SELECT SUM(fixed_elem_count)
 -> FROM ndbinfo.memory_per_fragment
 -> WHERE fq_name='test/def/t1') AS avg_hash,
 ->
 -> SUM(
 -> (fixed_elem_alloc_bytes - fixed_elem_free_bytes)
 -> + (var_elem_alloc_bytes - var_elem_free_bytes) + hash_index_alloc_bytes)
 -> /
 -> (SELECT SUM(fixed_elem_count)
 -> FROM ndbinfo.memory_per_fragment
 -> WHERE fq_name='test/def/t1') AS avg_total_inuse
 ->
 -> FROM ndbinfo.memory_per_fragment
 -> WHERE fq_name = 'test/def/t1' OR parent_fq_name='test/def/t1'
 -> GROUP BY fq_name;
+----------------------+------------+-----------------+---------------+----------+-----------------+
| Name | table_rows | avg_fixed_inuse | avg_var_inuse | avg_hash | avg_total_inuse |
+----------------------+------------+-----------------+---------------+----------+-----------------+
test/def/t1	100000	44.2230	48.7270	14.2541	107.2042
sys/def/13/PRIMARY	100000	19.5085	0.0000	0.0000	19.5085
sys/def/13/c3	100000	14.2874	0.0000	0.0000	14.2874
sys/def/13/c3$unique	100000	32.1280	0.0000	14.2541	46.3821
+----------------------+------------+-----------------+---------------+----------+-----------------+
4 rows in set (0.72 sec)

Finding the average memory in use per row, by element

This query gets the average memory in use per row, by element, across all replicas:

mysql> SELECT
 -> (SELECT SUM(fixed_elem_count)
 -> FROM ndbinfo.memory_per_fragment
 -> WHERE fq_name='test/def/t1') AS table_rows,
 ->
 -> SUM(fixed_elem_alloc_bytes - fixed_elem_free_bytes)
 -> /
 -> (SELECT SUM(fixed_elem_count)
 -> FROM ndbinfo.memory_per_fragment
 -> WHERE fq_name='test/def/t1') AS avg_fixed_inuse,
 ->
 -> SUM(var_elem_alloc_bytes - var_elem_free_bytes)
 -> /
 -> (SELECT SUM(fixed_elem_count)
 -> FROM ndbinfo.memory_per_fragment
 -> WHERE fq_name='test/def/t1') AS avg_var_inuse,
 ->
 -> SUM(hash_index_alloc_bytes)
 -> /
 -> (SELECT SUM(fixed_elem_count)
 -> FROM ndbinfo.memory_per_fragment
 -> WHERE fq_name='test/def/t1') AS avg_hash,
 ->
 -> SUM(
 -> (fixed_elem_alloc_bytes - fixed_elem_free_bytes)
 -> + (var_elem_alloc_bytes - var_elem_free_bytes)

3885

ndbinfo: The NDB Cluster Information Database

 -> + hash_index_alloc_bytes)
 -> /
 -> (SELECT SUM(fixed_elem_count)
 -> FROM ndbinfo.memory_per_fragment
 -> WHERE fq_name='test/def/t1') AS avg_total_inuse
 ->
 -> FROM ndbinfo.memory_per_fragment
 -> WHERE fq_name = 'test/def/t1' OR parent_fq_name='test/def/t1';
+------------+-----------------+---------------+----------+-----------------+
| table_rows | avg_fixed_inuse | avg_var_inuse | avg_hash | avg_total_inuse |
+------------+-----------------+---------------+----------+-----------------+
| 100000 | 110.1469 | 48.7270 | 28.5082 | 187.3821 |
+------------+-----------------+---------------+----------+-----------------+
1 row in set (0.68 sec)

Finding the total average memory in use per row

This query obtains the total average memory in use, per row:

mysql> SELECT
 -> SUM(
 -> (fixed_elem_alloc_bytes - fixed_elem_free_bytes)
 -> + (var_elem_alloc_bytes - var_elem_free_bytes)
 -> + hash_index_alloc_bytes)
 -> /
 -> (SELECT
 -> SUM(fixed_elem_count)
 -> FROM ndbinfo.memory_per_fragment
 -> WHERE fq_name='test/def/t1') AS avg_total_in_use
 -> FROM ndbinfo.memory_per_fragment
 -> WHERE fq_name = 'test/def/t1' OR parent_fq_name='test/def/t1';
+------------------+
| avg_total_in_use |
+------------------+
| 187.3821 |
+------------------+
1 row in set (0.24 sec)

21.6.15.28 The ndbinfo nodes Table

This table contains information on the status of data nodes. For each data node that is running in the
cluster, a corresponding row in this table provides the node's node ID, status, and uptime. For nodes that
are starting, it also shows the current start phase.

The nodes table contains the following columns:

• node_id

The data node's unique node ID in the cluster.

• uptime

Time since the node was last started, in seconds.

• status

Current status of the data node; see text for possible values.

• start_phase

If the data node is starting, the current start phase.

• config_generation

3886

ndbinfo: The NDB Cluster Information Database

The version of the cluster configuration file in use on this data node.

Notes

The uptime column shows the time in seconds that this node has been running since it was last started or
restarted. This is a BIGINT value. This figure includes the time actually needed to start the node; in other
words, this counter starts running the moment that ndbd or ndbmtd is first invoked; thus, even for a node
that has not yet finished starting, uptime may show a nonzero value.

The status column shows the node's current status. This is one of: NOTHING, CMVMI, STARTING,
STARTED, SINGLEUSER, STOPPING_1, STOPPING_2, STOPPING_3, or STOPPING_4. When the status
is STARTING, you can see the current start phase in the start_phase column (see later in this section).
SINGLEUSER is displayed in the status column for all data nodes when the cluster is in single user mode
(see Section 21.6.6, “NDB Cluster Single User Mode”). Seeing one of the STOPPING states does not
necessarily mean that the node is shutting down but can mean rather that it is entering a new state. For
example, if you put the cluster in single user mode, you can sometimes see data nodes report their state
briefly as STOPPING_2 before the status changes to SINGLEUSER.

The start_phase column uses the same range of values as those used in the output of the ndb_mgm
client node_id STATUS command (see Section 21.6.1, “Commands in the NDB Cluster Management
Client”). If the node is not currently starting, then this column shows 0. For a listing of NDB Cluster start
phases with descriptions, see Section 21.6.4, “Summary of NDB Cluster Start Phases”.

The config_generation column shows which version of the cluster configuration is in effect on each
data node. This can be useful when performing a rolling restart of the cluster in order to make changes in
configuration parameters. For example, from the output of the following SELECT statement, you can see
that node 3 is not yet using the latest version of the cluster configuration (6) although nodes 1, 2, and 4 are
doing so:

mysql> USE ndbinfo;
Database changed
mysql> SELECT * FROM nodes;
+---------+--------+---------+-------------+-------------------+
| node_id | uptime | status | start_phase | config_generation |
+---------+--------+---------+-------------+-------------------+
1	10462	STARTED	0	6
2	10460	STARTED	0	6
3	10457	STARTED	0	5
4	10455	STARTED	0	6
+---------+--------+---------+-------------+-------------------+
2 rows in set (0.04 sec)

Therefore, for the case just shown, you should restart node 3 to complete the rolling restart of the cluster.

Nodes that are stopped are not accounted for in this table. Suppose that you have an NDB Cluster with 4
data nodes (node IDs 1, 2, 3 and 4), and all nodes are running normally, then this table contains 4 rows, 1
for each data node:

mysql> USE ndbinfo;
Database changed
mysql> SELECT * FROM nodes;
+---------+--------+---------+-------------+-------------------+
| node_id | uptime | status | start_phase | config_generation |
+---------+--------+---------+-------------+-------------------+
1	11776	STARTED	0	6
2	11774	STARTED	0	6
3	11771	STARTED	0	6
4	11769	STARTED	0	6
+---------+--------+---------+-------------+-------------------+
4 rows in set (0.04 sec)

3887

ndbinfo: The NDB Cluster Information Database

If you shut down one of the nodes, only the nodes that are still running are represented in the output of this
SELECT statement, as shown here:

ndb_mgm> 2 STOP
Node 2: Node shutdown initiated
Node 2: Node shutdown completed.
Node 2 has shutdown.

mysql> SELECT * FROM nodes;
+---------+--------+---------+-------------+-------------------+
| node_id | uptime | status | start_phase | config_generation |
+---------+--------+---------+-------------+-------------------+
1	11807	STARTED	0	6
3	11802	STARTED	0	6
4	11800	STARTED	0	6
+---------+--------+---------+-------------+-------------------+
3 rows in set (0.02 sec)

21.6.15.29 The ndbinfo operations_per_fragment Table

The operations_per_fragment table provides information about the operations performed on
individual fragments and fragment replicas, as well as about some of the results from these operations.

The operations_per_fragment table contains the following columns:

• fq_name

Name of this fragment

• parent_fq_name

Name of this fragment's parent

• type

Type of object; see text for possible values

• table_id

Table ID for this table

• node_id

Node ID for this node

• block_instance

Kernel block instance ID

• fragment_num

Fragment ID (number)

• tot_key_reads

Total number of key reads for this fragment replica

• tot_key_inserts

Total number of key inserts for this fragment replica

3888

ndbinfo: The NDB Cluster Information Database

• tot_key_updates

total number of key updates for this fragment replica

• tot_key_writes

Total number of key writes for this fragment replica

• tot_key_deletes

Total number of key deletes for this fragment replica

• tot_key_refs

Number of key operations refused

• tot_key_attrinfo_bytes

Total size of all attrinfo attributes

• tot_key_keyinfo_bytes

Total size of all keyinfo attributes

• tot_key_prog_bytes

Total size of all interpreted programs carried by attrinfo attributes

• tot_key_inst_exec

Total number of instructions executed by interpreted programs for key operations

• tot_key_bytes_returned

Total size of all data and metadata returned from key read operations

• tot_frag_scans

Total number of scans performed on this fragment replica

• tot_scan_rows_examined

Total number of rows examined by scans

• tot_scan_rows_returned

Total number of rows returned to client

• tot_scan_bytes_returned

Total size of data and metadata returned to the client

• tot_scan_prog_bytes

Total size of interpreted programs for scan operations

• tot_scan_bound_bytes

Total size of all bounds used in ordered index scans

3889

ndbinfo: The NDB Cluster Information Database

• tot_scan_inst_exec

Total number of instructions executed for scans

• tot_qd_frag_scans

Number of times that scans of this fragment replica have been queued

• conc_frag_scans

Number of scans currently active on this fragment replica (excluding queued scans)

• conc_qd_frag_scans

Number of scans currently queued for this fragment replica

• tot_commits

Total number of row changes committed to this fragment replica

Notes

The fq_name contains the fully qualified name of the schema object to which this fragment replica
belongs. This currently has the following formats:

• Base table: DbName/def/TblName

• BLOB table: DbName/def/NDB$BLOB_BaseTblId_ColNo

• Ordered index: sys/def/BaseTblId/IndexName

• Unique index: sys/def/BaseTblId/IndexName$unique

The $unique suffix shown for unique indexes is added by mysqld; for an index created by a different
NDB API client application, this may differ, or not be present.

The syntax just shown for fully qualified object names is an internal interface which is subject to change in
future releases.

Consider a table t1 created and modified by the following SQL statements:

CREATE DATABASE mydb;

USE mydb;

CREATE TABLE t1 (
 a INT NOT NULL,
 b INT NOT NULL,
 t TEXT NOT NULL,
 PRIMARY KEY (b)
) ENGINE=ndbcluster;

CREATE UNIQUE INDEX ix1 ON t1(b) USING HASH;

If t1 is assigned table ID 11, this yields the fq_name values shown here:

• Base table: mydb/def/t1

• BLOB table: mydb/def/NDB$BLOB_11_2

• Ordered index (primary key): sys/def/11/PRIMARY

3890

ndbinfo: The NDB Cluster Information Database

• Unique index: sys/def/11/ix1$unique

For indexes or BLOB tables, the parent_fq_name column contains the fq_name of the corresponding
base table. For base tables, this column is always NULL.

The type column shows the schema object type used for this fragment, which can take any one of the
values System table, User table, Unique hash index, or Ordered index. BLOB tables are
shown as User table.

The table_id column value is unique at any given time, but can be reused if the corresponding object
has been deleted. The same ID can be seen using the ndb_show_tables utility.

The block_instance column shows which LDM instance this fragment replica belongs to. You can use
this to obtain information about specific threads from the threadblocks table. The first such instance is
always numbered 0.

Since there are typically two replicas, and assuming that this is so, each fragment_num value should
appear twice in the table, on two different data nodes from the same node group.

Since NDB does not use single-key access for ordered indexes, the counts for tot_key_reads,
tot_key_inserts, tot_key_updates, tot_key_writes, and tot_key_deletes are not
incremented by ordered index operations.

Note

When using tot_key_writes, you should keep in mind that a write operation
in this context updates the row if the key exists, and inserts a new row otherwise.
(One use of this is in the NDB implementation of the REPLACE SQL statement.)

The tot_key_refs column shows the number of key operations refused by the LDM. Generally, such
a refusal is due to duplicate keys (inserts), Key not found errors (updates, deletes, and reads), or the
operation was rejected by an interpreted program used as a predicate on the row matching the key.

The attrinfo and keyinfo attributes counted by the tot_key_attrinfo_bytes and
tot_key_keyinfo_bytes columns are attributes of an LQHKEYREQ signal (see The NDB
Communication Protocol) used to initiate a key operation by the LDM. An attrinfo typically contains
tuple field values (inserts and updates) or projection specifications (for reads); keyinfo contains the
primary or unique key needed to locate a given tuple in this schema object.

The value shown by tot_frag_scans includes both full scans (that examine every row) and scans of
subsets. Unique indexes and BLOB tables are never scanned, so this value, like other scan-related counts,
is 0 for fragment replicas of these.

tot_scan_rows_examined may display less than the total number of rows in a given fragment replica,
since ordered index scans can limited by bounds. In addition, a client may choose to end a scan before
all potentially matching rows have been examined; this occurs when using an SQL statement containing
a LIMIT or EXISTS clause, for example. tot_scan_rows_returned is always less than or equal to
tot_scan_rows_examined.

tot_scan_bytes_returned includes, in the case of pushed joins, projections returned to the DBSPJ
block in the NDB kernel.

tot_qd_frag_scans can be effected by the setting for the MaxParallelScansPerFragment data
node configuration parameter, which limits the number of scans that may execute concurrently on a single
fragment replica.

21.6.15.30 The ndbinfo processes Table

3891

https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-ndb-protocol.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-ndb-protocol.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbspj.html

ndbinfo: The NDB Cluster Information Database

This table contains information about NDB Cluster node processes; each node is represented by the row in
the table. Only nodes that are connected to the cluster are shown in this table. You can obtain information
about nodes that are configured but not connected to the cluster from the nodes and config_nodes
tables.

The processes table contains the following columns:

• node_id

The node's unique node ID in the cluster

• node_type

Type of node (management, data, or API node; see text)

• node_version

Version of the NDB software program running on this node.

• process_id

This node's process ID

• angel_process_id

Process ID of this node's angel process

• process_name

Name of the executable

• service_URI

Service URI of this node (see text)

Notes

node_id is the ID assigned to this node in the cluster.

The node_type column displays one of the following three values:

• MGM: Management node.

• NDB: Data node.

• API: API or SQL node.

For an executable shipped with the NDB Cluster distribution, node_version shows the two-part MySQL
NDB Cluster version string, such as 5.7.44-ndb-7.5.36 or 5.7.44-ndb-7.6.36, that it was compiled
with. See Version strings used in NDB Cluster software, for more information.

process_id is the node executable's process ID as shown by the host operating system using a process
display application such as top on Linux, or the Task Manager on Windows platforms.

angel_process_id is the system process ID for the node's angel process, which ensures that a data
node or SQL is automatically restarted in cases of failures. For management nodes and API nodes other
than SQL nodes, the value of this column is NULL.

The process_name column shows the name of the running executable. For management nodes,
this is ndb_mgmd. For data nodes, this is ndbd (single-threaded) or ndbmtd (multithreaded).

3892

ndbinfo: The NDB Cluster Information Database

For SQL nodes, this is mysqld. For other types of API nodes, it is the name of the executable
program connected to the cluster; NDB API applications can set a custom value for this using
Ndb_cluster_connection::set_name().

service_URI shows the service network address. For management nodes and data nodes, the
scheme used is ndb://. For SQL nodes, this is mysql://. By default, API nodes other than SQL
nodes use ndb:// for the scheme; NDB API applications can set this to a custom value using
Ndb_cluster_connection::set_service_uri(). regardless of the node type, the scheme is
followed by the IP address used by the NDB transporter for the node in question. For management nodes
and SQL nodes, this address includes the port number (usually 1186 for management nodes and 3306
for SQL nodes). If the SQL node was started with the bind_address system variable set, this address is
used instead of the transporter address, unless the bind address is set to *, 0.0.0.0, or ::.

Additional path information may be included in the service_URI value for an SQL node reflecting
various configuration options. For example, mysql://198.51.100.3/tmp/mysql.sock
indicates that the SQL node was started with the skip_networking system variable enabled, and
mysql://198.51.100.3:3306/?server-id=1 shows that replication is enabled for this SQL node.

The processes table was added in NDB 7.5.7.

21.6.15.31 The ndbinfo resources Table

This table provides information about data node resource availability and usage.

These resources are sometimes known as super-pools.

The resources table contains the following columns:

• node_id

The unique node ID of this data node.

• resource_name

Name of the resource; see text.

• reserved

The amount reserved for this resource, as a number of 32KB pages.

• used

The amount actually used by this resource, as a number of 32KB pages.

• max

The maximum amount (number of 32KB pages) of this resource that is available to this data node. 0 in
this column indicates that the resource is unlimited, which means the effective maximum is 4294967295
(232-1).

Notes

The resource_name can be any one of the names shown in the following table:

• RESERVED: Reserved by the system; cannot be overridden.

• TRANSACTION_MEMORY: Memory allocated for transactions on this data node.

3893

https://dev.mysql.com/doc/ndbapi/en/ndb-ndb-cluster-connection.html#ndb-ndb-cluster-connection-set-name

ndbinfo: The NDB Cluster Information Database

• DISK_OPERATIONS: If a log file group is allocated, the size of the undo log buffer is used to set the size
of this resource. This resource is used only to allocate the undo log buffer for an undo log file group;
there can only be one such group. Overallocation occurs as needed by CREATE LOGFILE GROUP.

• DISK_RECORDS: Records allocated for Disk Data operations.

• DATA_MEMORY: Used for main memory tuples, indexes, and hash indexes. Sum of DataMemory and
IndexMemory, plus 8 pages of 32 KB each if IndexMemory has been set. Cannot be overallocated.

• JOBBUFFER: Used for allocating job buffers by the NDB scheduler; cannot be overallocated. This
is approximately 2 MB per thread plus a 1 MB buffer in both directions for all threads that can
communicate. For large configurations this consume several GB.

• FILE_BUFFERS: Used by the redo log handler in the DBLQH kernel block; cannot be overallocated. Size
is NoOfFragmentLogParts * RedoBuffer, plus 1 MB per log file part.

• TRANSPORTER_BUFFERS: Used for send buffers by ndbmtd; the sum of TotalSendBufferMemory
and ExtraSendBufferMemory. This resource that can be overallocated by up to 25 percent.
TotalSendBufferMemory is calculated by summing the send buffer memory per node, the default
value of which is 2 MB. Thus, in a system having four data nodes and eight API nodes, the data nodes
have 12 * 2 MB send buffer memory. ExtraSendBufferMemory is used by ndbmtd and amounts to
2 MB extra memory per thread. Thus, with 4 LDM threads, 2 TC threads, 1 main thread, 1 replication
thread, and 2 receive threads, ExtraSendBufferMemory is 10 * 2 MB. Overallocation of this resource
can be performed by setting the SharedGlobalMemory data node configuration parameter.

• DISK_PAGE_BUFFER: Used for the disk page buffer; determined by the DiskPageBufferMemory
configuration parameter. Cannot be overallocated.

• QUERY_MEMORY: Used by the DBSPJ kernel block.

• SCHEMA_TRANS_MEMORY: Minimum is 2 MB; can be overallocated to use any remaining available
memory.

21.6.15.32 The ndbinfo restart_info Table

The restart_info table contains information about node restart operations. Each entry in the table
corresponds to a node restart status report in real time from a data node with the given node ID. Only the
most recent report for any given node is shown.

The restart_info table contains the following columns:

• node_id

Node ID in the cluster

• node_restart_status

Node status; see text for values. Each of these corresponds to a possible value of
node_restart_status_int.

• node_restart_status_int

Node status code; see text for values.

• secs_to_complete_node_failure

Time in seconds to complete node failure handling

3894

https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dblqh.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbspj.html

ndbinfo: The NDB Cluster Information Database

• secs_to_allocate_node_id

Time in seconds from node failure completion to allocation of node ID

• secs_to_include_in_heartbeat_protocol

Time in seconds from allocation of node ID to inclusion in heartbeat protocol

• secs_until_wait_for_ndbcntr_master

Time in seconds from being included in heartbeat protocol until waiting for NDBCNTR master began

• secs_wait_for_ndbcntr_master

Time in seconds spent waiting to be accepted by NDBCNTR master for starting

• secs_to_get_start_permitted

Time in seconds elapsed from receiving of permission for start from master until all nodes have accepted
start of this node

• secs_to_wait_for_lcp_for_copy_meta_data

Time in seconds spent waiting for LCP completion before copying metadata

• secs_to_copy_meta_data

Time in seconds required to copy metadata from master to newly starting node

• secs_to_include_node

Time in seconds waited for GCP and inclusion of all nodes into protocols

• secs_starting_node_to_request_local_recovery

Time in seconds that the node just starting spent waiting to request local recovery

• secs_for_local_recovery

Time in seconds required for local recovery by node just starting

• secs_restore_fragments

Time in seconds required to restore fragments from LCP files

• secs_undo_disk_data

Time in seconds required to execute undo log on disk data part of records

• secs_exec_redo_log

Time in seconds required to execute redo log on all restored fragments

• secs_index_rebuild

Time in seconds required to rebuild indexes on restored fragments

• secs_to_synchronize_starting_node

Time in seconds required to synchronize starting node from live nodes

3895

https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-ndbcntr.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-ndbcntr.html

ndbinfo: The NDB Cluster Information Database

• secs_wait_lcp_for_restart

Time in seconds required for LCP start and completion before restart was completed

• secs_wait_subscription_handover

Time in seconds spent waiting for handover of replication subscriptions

• total_restart_secs

Total number of seconds from node failure until node is started again

Notes

The following list contains values defined for the node_restart_status_int column with their internal
status names (in parentheses), and the corresponding messages shown in the node_restart_status
column:

• 0 (ALLOCATED_NODE_ID)

Allocated node id

• 1 (INCLUDED_IN_HB_PROTOCOL)

Included in heartbeat protocol

• 2 (NDBCNTR_START_WAIT)

Wait for NDBCNTR master to permit us to start

• 3 (NDBCNTR_STARTED)

NDBCNTR master permitted us to start

• 4 (START_PERMITTED)

All nodes permitted us to start

• 5 (WAIT_LCP_TO_COPY_DICT)

Wait for LCP completion to start copying metadata

• 6 (COPY_DICT_TO_STARTING_NODE)

Copying metadata to starting node

• 7 (INCLUDE_NODE_IN_LCP_AND_GCP)

Include node in LCP and GCP protocols

• 8 (LOCAL_RECOVERY_STARTED)

Restore fragments ongoing

• 9 (COPY_FRAGMENTS_STARTED)

Synchronizing starting node with live nodes

• 10 (WAIT_LCP_FOR_RESTART)

3896

ndbinfo: The NDB Cluster Information Database

Wait for LCP to ensure durability

• 11 (WAIT_SUMA_HANDOVER)

Wait for handover of subscriptions

• 12 (RESTART_COMPLETED)

Restart completed

• 13 (NODE_FAILED)

Node failed, failure handling in progress

• 14 (NODE_FAILURE_COMPLETED)

Node failure handling completed

• 15 (NODE_GETTING_PERMIT)

All nodes permitted us to start

• 16 (NODE_GETTING_INCLUDED)

Include node in LCP and GCP protocols

• 17 (NODE_GETTING_SYNCHED)

Synchronizing starting node with live nodes

• 18 (NODE_GETTING_LCP_WAITED)

[none]

• 19 (NODE_ACTIVE)

Restart completed

• 20 (NOT_DEFINED_IN_CLUSTER)

[none]

• 21 (NODE_NOT_RESTARTED_YET)

Initial state

Status numbers 0 through 12 apply on master nodes only; the remainder of those shown in the table apply
to all restarting data nodes. Status numbers 13 and 14 define node failure states; 20 and 21 occur when no
information about the restart of a given node is available.

See also Section 21.6.4, “Summary of NDB Cluster Start Phases”.

21.6.15.33 The ndbinfo server_locks Table

The server_locks table is similar in structure to the cluster_locks table, and provides a subset of
the information found in the latter table, but which is specific to the SQL node (MySQL server) where it
resides. (The cluster_locks table provides information about all locks in the cluster.) More precisely,

3897

ndbinfo: The NDB Cluster Information Database

server_locks contains information about locks requested by threads belonging to the current mysqld
instance, and serves as a companion table to server_operations. This may be useful for correlating
locking patterns with specific MySQL user sessions, queries, or use cases.

The server_locks table contains the following columns:

• mysql_connection_id

MySQL connection ID

• node_id

ID of reporting node

• block_instance

ID of reporting LDM instance

• tableid

ID of table containing this row

• fragmentid

ID of fragment containing locked row

• rowid

ID of locked row

• transid

Transaction ID

• mode

Lock request mode

• state

Lock state

• detail

Whether this is first holding lock in row lock queue

• op

Operation type

• duration_millis

Milliseconds spent waiting or holding lock

• lock_num

ID of lock object

• waiting_for

3898

ndbinfo: The NDB Cluster Information Database

Waiting for lock with this ID

Notes

The mysql_connection_id column shows the MySQL connection or thread ID as shown by SHOW
PROCESSLIST.

block_instance refers to an instance of a kernel block. Together with the block name, this number can
be used to look up a given instance in the threadblocks table.

The tableid is assigned to the table by NDB; the same ID is used for this table in other ndbinfo tables,
as well as in the output of ndb_show_tables.

The transaction ID shown in the transid column is the identifier generated by the NDB API for the
transaction requesting or holding the current lock.

The mode column shows the lock mode, which is always one of S (shared lock) or X (exclusive lock). If a
transaction has an exclusive lock on a given row, all other locks on that row have the same transaction ID.

The state column shows the lock state. Its value is always one of H (holding) or W (waiting). A waiting lock
request waits for a lock held by a different transaction.

The detail column indicates whether this lock is the first holding lock in the affected row's lock queue,
in which case it contains a * (asterisk character); otherwise, this column is empty. This information can be
used to help identify the unique entries in a list of lock requests.

The op column shows the type of operation requesting the lock. This is always one of the values READ,
INSERT, UPDATE, DELETE, SCAN, or REFRESH.

The duration_millis column shows the number of milliseconds for which this lock request has been
waiting or holding the lock. This is reset to 0 when a lock is granted for a waiting request.

The lock ID (lockid column) is unique to this node and block instance.

If the lock_state column's value is W, this lock is waiting to be granted, and the waiting_for column
shows the lock ID of the lock object this request is waiting for. Otherwise, waiting_for is empty.
waiting_for can refer only to locks on the same row (as identified by node_id, block_instance,
tableid, fragmentid, and rowid).

The server_locks table was added in NDB 7.5.3.

21.6.15.34 The ndbinfo server_operations Table

The server_operations table contains entries for all ongoing NDB operations that the current SQL node
(MySQL Server) is currently involved in. It effectively is a subset of the cluster_operations table, in
which operations for other SQL and API nodes are not shown.

The server_operations table contains the following columns:

• mysql_connection_id

MySQL Server connection ID

• node_id

Node ID

3899

ndbinfo: The NDB Cluster Information Database

• block_instance

Block instance

• transid

Transaction ID

• operation_type

Operation type (see text for possible values)

• state

Operation state (see text for possible values)

• tableid

Table ID

• fragmentid

Fragment ID

• client_node_id

Client node ID

• client_block_ref

Client block reference

• tc_node_id

Transaction coordinator node ID

• tc_block_no

Transaction coordinator block number

• tc_block_instance

Transaction coordinator block instance

Notes

The mysql_connection_id is the same as the connection or session ID shown in the
output of SHOW PROCESSLIST. It is obtained from the INFORMATION_SCHEMA table
NDB_TRANSID_MYSQL_CONNECTION_MAP.

block_instance refers to an instance of a kernel block. Together with the block name, this number can
be used to look up a given instance in the threadblocks table.

The transaction ID (transid) is a unique 64-bit number which can be obtained using the NDB API's
getTransactionId() method. (Currently, the MySQL Server does not expose the NDB API transaction
ID of an ongoing transaction.)

The operation_type column can take any one of the values READ, READ-SH, READ-EX, INSERT,
UPDATE, DELETE, WRITE, UNLOCK, REFRESH, SCAN, SCAN-SH, SCAN-EX, or <unknown>.

3900

https://dev.mysql.com/doc/ndbapi/en/ndb-ndbtransaction.html#ndb-ndbtransaction-gettransactionid

ndbinfo: The NDB Cluster Information Database

The state column can have any one of the values ABORT_QUEUED, ABORT_STOPPED,
COMMITTED, COMMIT_QUEUED, COMMIT_STOPPED, COPY_CLOSE_STOPPED,
COPY_FIRST_STOPPED, COPY_STOPPED, COPY_TUPKEY, IDLE, LOG_ABORT_QUEUED,
LOG_COMMIT_QUEUED, LOG_COMMIT_QUEUED_WAIT_SIGNAL, LOG_COMMIT_WRITTEN,
LOG_COMMIT_WRITTEN_WAIT_SIGNAL, LOG_QUEUED, PREPARED, PREPARED_RECEIVED_COMMIT,
SCAN_CHECK_STOPPED, SCAN_CLOSE_STOPPED, SCAN_FIRST_STOPPED, SCAN_RELEASE_STOPPED,
SCAN_STATE_USED, SCAN_STOPPED, SCAN_TUPKEY, STOPPED, TC_NOT_CONNECTED, WAIT_ACC,
WAIT_ACC_ABORT, WAIT_AI_AFTER_ABORT, WAIT_ATTR, WAIT_SCAN_AI, WAIT_TUP,
WAIT_TUPKEYINFO, WAIT_TUP_COMMIT, or WAIT_TUP_TO_ABORT. (If the MySQL Server is running
with ndbinfo_show_hidden enabled, you can view this list of states by selecting from the ndb
$dblqh_tcconnect_state table, which is normally hidden.)

You can obtain the name of an NDB table from its table ID by checking the output of ndb_show_tables.

The fragid is the same as the partition number seen in the output of ndb_desc --extra-partition-
info (short form -p).

In client_node_id and client_block_ref, client refers to an NDB Cluster API or SQL node (that
is, an NDB API client or a MySQL Server attached to the cluster).

The block_instance and tc_block_instance column provide NDB kernel block instance numbers.
You can use these to obtain information about specific threads from the threadblocks table.

21.6.15.35 The ndbinfo server_transactions Table

The server_transactions table is subset of the cluster_transactions table, but includes only
those transactions in which the current SQL node (MySQL Server) is a participant, while including the
relevant connection IDs.

The server_transactions table contains the following columns:

• mysql_connection_id

MySQL Server connection ID

• node_id

Transaction coordinator node ID

• block_instance

Transaction coordinator block instance

• transid

Transaction ID

• state

Operation state (see text for possible values)

• count_operations

Number of stateful operations in the transaction

• outstanding_operations

Operations still being executed by local data management layer (LQH blocks)

3901

ndbinfo: The NDB Cluster Information Database

• inactive_seconds

Time spent waiting for API

• client_node_id

Client node ID

• client_block_ref

Client block reference

Notes

The mysql_connection_id is the same as the connection or session ID shown in the
output of SHOW PROCESSLIST. It is obtained from the INFORMATION_SCHEMA table
NDB_TRANSID_MYSQL_CONNECTION_MAP.

block_instance refers to an instance of a kernel block. Together with the block name, this number can
be used to look up a given instance in the threadblocks table.

The transaction ID (transid) is a unique 64-bit number which can be obtained using the NDB API's
getTransactionId() method. (Currently, the MySQL Server does not expose the NDB API transaction
ID of an ongoing transaction.)

The state column can have any one of the values CS_ABORTING, CS_COMMITTING, CS_COMMIT_SENT,
CS_COMPLETE_SENT, CS_COMPLETING, CS_CONNECTED, CS_DISCONNECTED, CS_FAIL_ABORTED,
CS_FAIL_ABORTING, CS_FAIL_COMMITTED, CS_FAIL_COMMITTING, CS_FAIL_COMPLETED,
CS_FAIL_PREPARED, CS_PREPARE_TO_COMMIT, CS_RECEIVING, CS_REC_COMMITTING,
CS_RESTART, CS_SEND_FIRE_TRIG_REQ, CS_STARTED, CS_START_COMMITTING,
CS_START_SCAN, CS_WAIT_ABORT_CONF, CS_WAIT_COMMIT_CONF, CS_WAIT_COMPLETE_CONF,
CS_WAIT_FIRE_TRIG_REQ. (If the MySQL Server is running with ndbinfo_show_hidden enabled, you
can view this list of states by selecting from the ndb$dbtc_apiconnect_state table, which is normally
hidden.)

In client_node_id and client_block_ref, client refers to an NDB Cluster API or SQL node (that
is, an NDB API client or a MySQL Server attached to the cluster).

The block_instance column provides the DBTC kernel block instance number. You can use this to
obtain information about specific threads from the threadblocks table.

21.6.15.36 The ndbinfo table_distribution_status Table

The table_distribution_status table provides information about the progress of table distribution
for NDB tables.

The table_distribution_status table contains the following columns:

• node_id

Node id

• table_id

Table ID

• tab_copy_status

3902

https://dev.mysql.com/doc/ndbapi/en/ndb-ndbtransaction.html#ndb-ndbtransaction-gettransactionid
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbtc.html

ndbinfo: The NDB Cluster Information Database

Status of copying of table distribution data to disk; one of IDLE, SR_PHASE1_READ_PAGES,
SR_PHASE2_READ_TABLE, SR_PHASE3_COPY_TABLE, REMOVE_NODE, LCP_READ_TABLE,
COPY_TAB_REQ, COPY_NODE_STATE, ADD_TABLE_MASTER, ADD_TABLE_SLAVE,
INVALIDATE_NODE_LCP, ALTER_TABLE, COPY_TO_SAVE, or GET_TABINFO

• tab_update_status

Status of updating of table distribution data; one of IDLE, LOCAL_CHECKPOINT,
LOCAL_CHECKPOINT_QUEUED, REMOVE_NODE, COPY_TAB_REQ, ADD_TABLE_MASTER,
ADD_TABLE_SLAVE, INVALIDATE_NODE_LCP, or CALLBACK

• tab_lcp_status

Status of table LCP; one of ACTIVE (waiting for local checkpoint to be performed), WRITING_TO_FILE
(checkpoint performed but not yet written to disk), or COMPLETED (checkpoint performed and persisted to
disk)

• tab_status

Table internal status; one of ACTIVE (table exists), CREATING (table is being created), or DROPPING
(table is being dropped)

• tab_storage

Table recoverability; one of NORMAL (fully recoverable with redo logging and checkpointing), NOLOGGING
(recoverable from node crash, empty following cluster crash), or TEMPORARY (not recoverable)

• tab_partitions

Number of partitions in table

• tab_fragments

Number of fragments in table; normally same as tab_partitions; for fully replicated tables equal to
tab_partitions * [number of node groups]

• current_scan_count

Current number of active scans

• scan_count_wait

Current number of scans waiting to be performed before ALTER TABLE can complete.

• is_reorg_ongoing

Whether table is currently being reorganized (1 if true)

Notes

The table_distribution_status table was added in NDB 7.5.4.

21.6.15.37 The ndbinfo table_fragments Table

The table_fragments table provides information about the fragmentation, partitioning, distribution, and
(internal) replication of NDB tables.

The table_fragments table contains the following columns:

3903

ndbinfo: The NDB Cluster Information Database

• node_id

Node ID (DIH master)

• table_id

Table ID

• partition_id

Partition ID

• fragment_id

Fragment ID (same as partition ID unless table is fully replicated)

• partition_order

Order of fragment in partition

• log_part_id

Log part ID of fragment

• no_of_replicas

Number of fragment replicas

• current_primary

Current primary node ID

• preferred_primary

Preferred primary node ID

• current_first_backup

Current first backup node ID

• current_second_backup

Current second backup node ID

• current_third_backup

Current third backup node ID

• num_alive_replicas

Current number of live fragment replicas

• num_dead_replicas

Current number of dead fragment replicas

• num_lcp_replicas

Number of fragment replicas remaining to be checkpointed

3904

https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbdih.html

ndbinfo: The NDB Cluster Information Database

Notes

The table_fragments table was added in NDB 7.5.4.

21.6.15.38 The ndbinfo table_info Table

The table_info table provides information about logging, checkpointing, distribution, and storage
options in effect for individual NDB tables.

The table_info table contains the following columns:

• table_id

Table ID

• logged_table

Whether table is logged (1) or not (0)

• row_contains_gci

Whether table rows contain GCI (1 true, 0 false)

• row_contains_checksum

Whether table rows contain checksum (1 true, 0 false)

• read_backup

If backup fragment replicas are read this is 1, otherwise 0

• fully_replicated

If table is fully replicated this is 1, otherwise 0

• storage_type

Table storage type; one of MEMORY or DISK

• hashmap_id

Hashmap ID

• partition_balance

Partition balance (fragment count type) used for table; one of FOR_RP_BY_NODE, FOR_RA_BY_NODE,
FOR_RP_BY_LDM, or FOR_RA_BY_LDM

• create_gci

GCI in which table was created

Notes

The table_info table was added in NDB 7.5.4.

21.6.15.39 The ndbinfo table_replicas Table

The table_replicas table provides information about the copying, distribution, and checkpointing of
NDB table fragments and fragment replicas.

3905

ndbinfo: The NDB Cluster Information Database

The table_replicas table contains the following columns:

• node_id

ID of the node from which data is fetched (DIH master)

• table_id

Table ID

• fragment_id

Fragment ID

• initial_gci

Initial GCI for table

• replica_node_id

ID of node where fragment replica is stored

• is_lcp_ongoing

Is 1 if LCP is ongoing on this fragment, 0 otherwise

• num_crashed_replicas

Number of crashed fragment replica instances

• last_max_gci_started

Highest GCI started in most recent LCP

• last_max_gci_completed

Highest GCI completed in most recent LCP

• last_lcp_id

ID of most recent LCP

• prev_lcp_id

ID of previous LCP

• prev_max_gci_started

Highest GCI started in previous LCP

• prev_max_gci_completed

Highest GCI completed in previous LCP

• last_create_gci

Last Create GCI of last crashed fragment replica instance

• last_replica_gci

3906

https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbdih.html

ndbinfo: The NDB Cluster Information Database

Last GCI of last crashed fragment replica instance

• is_replica_alive

1 if this fragment replica is alive, 0 otherwise

Notes

The table_replicas table was added in NDB 7.5.4.

21.6.15.40 The ndbinfo tc_time_track_stats Table

The tc_time_track_stats table provides time-tracking information obtained from the DBTC block (TC)
instances in the data nodes, through API nodes access NDB. Each TC instance tracks latencies for a set
of activities it undertakes on behalf of API nodes or other data nodes; these activities include transactions,
transaction errors, key reads, key writes, unique index operations, failed key operations of any type, scans,
failed scans, fragment scans, and failed fragment scans.

A set of counters is maintained for each activity, each counter covering a range of latencies less than or
equal to an upper bound. At the conclusion of each activity, its latency is determined and the appropriate
counter incremented. tc_time_track_stats presents this information as rows, with a row for each
instance of the following:

• Data node, using its ID

• TC block instance

• Other communicating data node or API node, using its ID

• Upper bound value

Notes

Each row contains a value for each activity type. This is the number of times that this activity occurred
with a latency within the range specified by the row (that is, where the latency does not exceed the upper
bound).

The tc_time_track_stats table contains the following columns:

• node_id

Requesting node ID

• block_number

TC block number

• block_instance

TC block instance number

• comm_node_id

Node ID of communicating API or data node

• upper_bound

Upper bound of interval (in microseconds)

3907

https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbtc.html

ndbinfo: The NDB Cluster Information Database

• scans

Based on duration of successful scans from opening to closing, tracked against the API or data nodes
requesting them.

• scan_errors

Based on duration of failed scans from opening to closing, tracked against the API or data nodes
requesting them.

• scan_fragments

Based on duration of successful fragment scans from opening to closing, tracked against the data nodes
executing them

• scan_fragment_errors

Based on duration of failed fragment scans from opening to closing, tracked against the data nodes
executing them

• transactions

Based on duration of successful transactions from beginning until sending of commit ACK, tracked
against the API or data nodes requesting them. Stateless transactions are not included.

• transaction_errors

Based on duration of failing transactions from start to point of failure, tracked against the API or data
nodes requesting them.

• read_key_ops

Based on duration of successful primary key reads with locks. Tracked against both the API or data node
requesting them and the data node executing them.

• write_key_ops

Based on duration of successful primary key writes, tracked against both the API or data node
requesting them and the data node executing them.

• index_key_ops

Based on duration of successful unique index key operations, tracked against both the API or data node
requesting them and the data node executing reads of base tables.

• key_op_errors

Based on duration of all unsuccessful key read or write operations, tracked against both the API or data
node requesting them and the data node executing them.

The block_instance column provides the DBTC kernel block instance number. You can use this
together with the block name to obtain information about specific threads from the threadblocks table.

21.6.15.41 The ndbinfo threadblocks Table

The threadblocks table associates data nodes, threads, and instances of NDB kernel blocks.

The threadblocks table contains the following columns:

3908

https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbtc.html

ndbinfo: The NDB Cluster Information Database

• node_id

Node ID

• thr_no

Thread ID

• block_name

Block name

• block_instance

Block instance number

Notes

The value of the block_name in this table is one of the values found in the block_name column when
selecting from the ndbinfo.blocks table. Although the list of possible values is static for a given NDB
Cluster release, the list may vary between releases.

The block_instance column provides the kernel block instance number.

21.6.15.42 The ndbinfo threads Table

The threads table provides information about threads running in the NDB kernel.

The threads table contains the following columns:

• node_id

ID of the node where the thread is running

• thr_no

Thread ID (specific to this node)

• thread_name

Thread name (type of thread)

• thread_description

Thread (type) description

Notes

Sample output from a 2-node example cluster, including thread descriptions, is shown here:

mysql> SELECT * FROM threads;
+---------+--------+-------------+--+
| node_id | thr_no | thread_name | thread_description |
+---------+--------+-------------+--+
5	0	main	main thread, schema and distribution handling
5	1	rep	rep thread, asynch replication and proxy block handling
5	2	ldm	ldm thread, handling a set of data partitions
5	3	recv	receive thread, performing receive and polling for new receives
6	0	main	main thread, schema and distribution handling

3909

ndbinfo: The NDB Cluster Information Database

6	1	rep	rep thread, asynch replication and proxy block handling
6	2	ldm	ldm thread, handling a set of data partitions
6	3	recv	receive thread, performing receive and polling for new receives
+---------+--------+-------------+--+
8 rows in set (0.01 sec)

This table was added in NDB 7.5.2.

21.6.15.43 The ndbinfo threadstat Table

The threadstat table provides a rough snapshot of statistics for threads running in the NDB kernel.

The threadstat table contains the following columns:

• node_id

Node ID

• thr_no

Thread ID

• thr_nm

Thread name

• c_loop

Number of loops in main loop

• c_exec

Number of signals executed

• c_wait

Number of times waiting for additional input

• c_l_sent_prioa

Number of priority A signals sent to own node

• c_l_sent_priob

Number of priority B signals sent to own node

• c_r_sent_prioa

Number of priority A signals sent to remote node

• c_r_sent_priob

Number of priority B signals sent to remote node

• os_tid

OS thread ID

• os_now

3910

ndbinfo: The NDB Cluster Information Database

OS time (ms)

• os_ru_utime

OS user CPU time (µs)

• os_ru_stime

OS system CPU time (µs)

• os_ru_minflt

OS page reclaims (soft page faults)

• os_ru_majflt

OS page faults (hard page faults)

• os_ru_nvcsw

OS voluntary context switches

• os_ru_nivcsw

OS involuntary context switches

Notes

os_time uses the system gettimeofday() call.

The values of the os_ru_utime, os_ru_stime, os_ru_minflt, os_ru_majflt, os_ru_nvcsw, and
os_ru_nivcsw columns are obtained using the system getrusage() call, or the equivalent.

Since this table contains counts taken at a given point in time, for best results it is necessary to query
this table periodically and store the results in an intermediate table or tables. The MySQL Server's Event
Scheduler can be employed to automate such monitoring. For more information, see Section 23.4, “Using
the Event Scheduler”.

21.6.15.44 The ndbinfo transporters Table

This table contains information about NDB transporters.

The transporters table contains the following columns:

• node_id

This data node's unique node ID in the cluster

• remote_node_id

The remote data node's node ID

• status

Status of the connection

• remote_address

Name or IP address of the remote host

3911

ndbinfo: The NDB Cluster Information Database

• bytes_sent

Number of bytes sent using this connection

• bytes_received

Number of bytes received using this connection

• connect_count

Number of times connection established on this transporter

• overloaded

1 if this transporter is currently overloaded, otherwise 0

• overload_count

Number of times this transporter has entered overload state since connecting

• slowdown

1 if this transporter is in slowdown state, otherwise 0

• slowdown_count

Number of times this transporter has entered slowdown state since connecting

Notes

For each running data node in the cluster, the transporters table displays a row showing the status
of each of that node's connections with all nodes in the cluster, including itself. This information is shown
in the table's status column, which can have any one of the following values: CONNECTING, CONNECTED,
DISCONNECTING, or DISCONNECTED.

Connections to API and management nodes which are configured but not currently connected to the
cluster are shown with status DISCONNECTED. Rows where the node_id is that of a data node which is
not currently connected are not shown in this table. (This is similar omission of disconnected nodes in the
ndbinfo.nodes table.

The remote_address is the host name or address for the node whose ID is shown in the
remote_node_id column. The bytes_sent from this node and bytes_received by this node are
the numbers, respectively, of bytes sent and received by the node using this connection since it was
established. For nodes whose status is CONNECTING or DISCONNECTED, these columns always display 0.

Assume you have a 5-node cluster consisting of 2 data nodes, 2 SQL nodes, and 1 management node, as
shown in the output of the SHOW command in the ndb_mgm client:

ndb_mgm> SHOW
Connected to Management Server at: localhost:1186
Cluster Configuration

[ndbd(NDB)] 2 node(s)
id=1 @10.100.10.1 (5.7.44-ndb-7.6.36, Nodegroup: 0, *)
id=2 @10.100.10.2 (5.7.44-ndb-7.6.36, Nodegroup: 0)

[ndb_mgmd(MGM)] 1 node(s)
id=10 @10.100.10.10 (5.7.44-ndb-7.6.36)

3912

ndbinfo: The NDB Cluster Information Database

[mysqld(API)] 2 node(s)
id=20 @10.100.10.20 (5.7.44-ndb-7.6.36)
id=21 @10.100.10.21 (5.7.44-ndb-7.6.36)

There are 10 rows in the transporters table—5 for the first data node, and 5 for the second—assuming
that all data nodes are running, as shown here:

mysql> SELECT node_id, remote_node_id, status
 -> FROM ndbinfo.transporters;
+---------+----------------+---------------+
| node_id | remote_node_id | status |
+---------+----------------+---------------+
1	1	DISCONNECTED
1	2	CONNECTED
1	10	CONNECTED
1	20	CONNECTED
1	21	CONNECTED
2	1	CONNECTED
2	2	DISCONNECTED
2	10	CONNECTED
2	20	CONNECTED
2	21	CONNECTED
+---------+----------------+---------------+
10 rows in set (0.04 sec)

If you shut down one of the data nodes in this cluster using the command 2 STOP in the ndb_mgm client,
then repeat the previous query (again using the mysql client), this table now shows only 5 rows—1 row for
each connection from the remaining management node to another node, including both itself and the data
node that is currently offline—and displays CONNECTING for the status of each remaining connection to the
data node that is currently offline, as shown here:

mysql> SELECT node_id, remote_node_id, status
 -> FROM ndbinfo.transporters;
+---------+----------------+---------------+
| node_id | remote_node_id | status |
+---------+----------------+---------------+
1	1	DISCONNECTED
1	2	CONNECTING
1	10	CONNECTED
1	20	CONNECTED
1	21	CONNECTED
+---------+----------------+---------------+
5 rows in set (0.02 sec)

The connect_count, overloaded, overload_count, slowdown, and slowdown_count counters
are reset on connection, and retain their values after the remote node disconnects. The bytes_sent
and bytes_received counters are also reset on connection, and so retain their values following
disconnection (until the next connection resets them).

The overload state referred to by the overloaded and overload_count columns occurs
when this transporter's send buffer contains more than OVerloadLimit bytes (default is 80% of
SendBufferMemory, that is, 0.8 * 2097152 = 1677721 bytes). When a given transporter is in a state
of overload, any new transaction that tries to use this transporter fails with Error 1218 (Send Buffers
overloaded in NDB kernel). This affects both scans and primary key operations.

The slowdown state referenced by the slowdown and slowdown_count columns of this table occurs
when the transporter's send buffer contains more than 60% of the overload limit (equal to 0.6 * 2097152 =
1258291 bytes by default). In this state, any new scan using this transporter has its batch size reduced to
minimize the load on the transporter.

Common causes of send buffer slowdown or overloading include the following:

3913

INFORMATION_SCHEMA Tables for NDB Cluster

• Data size, in particular the quantity of data stored in TEXT columns or BLOB columns (or both types of
columns)

• Having a data node (ndbd or ndbmtd) on the same host as an SQL node that is engaged in binary
logging

• Large number of rows per transaction or transaction batch

• Configuration issues such as insufficient SendBufferMemory

• Hardware issues such as insufficient RAM or poor network connectivity

See also Section 21.4.3.13, “Configuring NDB Cluster Send Buffer Parameters”.

21.6.16 INFORMATION_SCHEMA Tables for NDB Cluster

Two INFORMATION_SCHEMA tables provide information that is of particular use when managing
an NDB Cluster . The FILES table provides information about NDB Cluster Disk Data files. The
ndb_transid_mysql_connection_map table provides a mapping between transactions, transaction
coordinators, and API nodes.

Additional statistical and other data about NDB Cluster transactions, operations, threads, blocks, and other
aspects of performance can be obtained from the tables in the ndbinfo database. For information about
these tables, see Section 21.6.15, “ndbinfo: The NDB Cluster Information Database”.

21.6.17 Quick Reference: NDB Cluster SQL Statements

This section discusses several SQL statements that can prove useful in managing and monitoring a
MySQL server that is connected to an NDB Cluster, and in some cases provide information about the
cluster itself.

• SHOW ENGINE NDB STATUS, SHOW ENGINE NDBCLUSTER STATUS

The output of this statement contains information about the server's connection to the cluster, creation
and usage of NDB Cluster objects, and binary logging for NDB Cluster replication.

See Section 13.7.5.15, “SHOW ENGINE Statement”, for a usage example and more detailed
information.

• SHOW ENGINES

This statement can be used to determine whether or not clustering support is enabled in the MySQL
server, and if so, whether it is active.

See Section 13.7.5.16, “SHOW ENGINES Statement”, for more detailed information.

Note

This statement does not support a LIKE clause. However, you can use LIKE to
filter queries against the Information Schema ENGINES table, as discussed in the
next item.

• SELECT * FROM INFORMATION_SCHEMA.ENGINES [WHERE ENGINE LIKE 'NDB%']

This is the equivalent of SHOW ENGINES, but uses the ENGINES table of the INFORMATION_SCHEMA
database. Unlike the case with the SHOW ENGINES statement, it is possible to filter the results using
a LIKE clause, and to select specific columns to obtain information that may be of use in scripts. For

3914

Quick Reference: NDB Cluster SQL Statements

example, the following query shows whether the server was built with NDB support and, if so, whether it
is enabled:

mysql> SELECT SUPPORT FROM INFORMATION_SCHEMA.ENGINES
 -> WHERE ENGINE LIKE 'NDB%';
+---------+
| support |
+---------+
| ENABLED |
+---------+

See Section 24.3.7, “The INFORMATION_SCHEMA ENGINES Table”, for more information.

• SHOW VARIABLES LIKE 'NDB%'

This statement provides a list of most server system variables relating to the NDB storage engine, and
their values, as shown here, using NDB 7.6:

mysql> SHOW VARIABLES LIKE 'NDB%';
+--------------------------------------+---------------------------------------+
| Variable_name | Value |
+--------------------------------------+---------------------------------------+
ndb_allow_copying_alter_table	ON
ndb_autoincrement_prefetch_sz	1
ndb_batch_size	32768
ndb_blob_read_batch_bytes	65536
ndb_blob_write_batch_bytes	65536
ndb_cache_check_time	0
ndb_clear_apply_status	ON
ndb_cluster_connection_pool	1
ndb_cluster_connection_pool_nodeids	
ndb_connectstring	127.0.0.1
ndb_data_node_neighbour	0
ndb_default_column_format	FIXED
ndb_deferred_constraints	0
ndb_distribution	KEYHASH
ndb_eventbuffer_free_percent	20
ndb_eventbuffer_max_alloc	0
ndb_extra_logging	1
ndb_force_send	ON
ndb_fully_replicated	OFF
ndb_index_stat_enable	ON
ndb_index_stat_option	loop_enable=1000ms,loop_idle=1000ms,
loop_busy=100ms,update_batch=1,read_batch=4,idle_batch=32,check_batch=8,	
check_delay=10m,delete_batch=8,clean_delay=1m,error_batch=4,error_delay=1m,	
evict_batch=8,evict_delay=1m,cache_limit=32M,cache_lowpct=90,zero_total=0	
ndb_join_pushdown	ON
ndb_log_apply_status	OFF
ndb_log_bin	ON
ndb_log_binlog_index	ON
ndb_log_empty_epochs	OFF
ndb_log_empty_update	OFF
ndb_log_exclusive_reads	OFF
ndb_log_orig	OFF
ndb_log_transaction_id	OFF
ndb_log_update_as_write	ON
ndb_log_update_minimal	OFF
ndb_log_updated_only	ON
ndb_mgmd_host	127.0.0.1
ndb_nodeid	0
ndb_optimization_delay	10
ndb_optimized_node_selection	3
ndb_read_backup	OFF
ndb_recv_thread_activation_threshold	8
ndb_recv_thread_cpu_mask	
ndb_report_thresh_binlog_epoch_slip	10

3915

Quick Reference: NDB Cluster SQL Statements

ndb_report_thresh_binlog_mem_usage	10
ndb_row_checksum	1
ndb_show_foreign_key_mock_tables	OFF
ndb_slave_conflict_role	NONE
ndb_table_no_logging	OFF
ndb_table_temporary	OFF
ndb_use_copying_alter_table	OFF
ndb_use_exact_count	OFF
ndb_use_transactions	ON
ndb_version	460301
ndb_version_string	ndb-7.6.36
ndb_wait_connected	30
ndb_wait_setup	30
ndbinfo_database	ndbinfo
ndbinfo_max_bytes	0
ndbinfo_max_rows	10
ndbinfo_offline	OFF
ndbinfo_show_hidden	OFF
ndbinfo_table_prefix	ndb$
ndbinfo_version	460301
+--------------------------------------+---------------------------------------+
61 rows in set (0.02 sec)

See Section 5.1.7, “Server System Variables”, for more information.

• SELECT * FROM INFORMATION_SCHEMA.GLOBAL_VARIABLES WHERE VARIABLE_NAME LIKE
'NDB%';

Although it is deprecated in NDB 7.5 and NDB 7.6, you can use this statement (and others accessing
the INFORMATION_SCHEMA.GLOBAL_VARIABLES table) if show_compatibility_56 is enabled.
(Querying the performance_schema.global_variables table is preferred; see next item.) It is
equivalent to the SHOW VARIABLES statement described in the previous item, and provides almost
identical output, as shown here:

mysql> SET @@global.show_compatibility_56=ON;
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT * FROM INFORMATION_SCHEMA.GLOBAL_VARIABLES
 -> WHERE VARIABLE_NAME LIKE 'NDB%';

mysql> SELECT * FROM INFORMATION_SCHEMA.GLOBAL_VARIABLES WHERE VARIABLE_NAME LIKE 'NDB%';
+--------------------------------------+---------------------------------------+
| VARIABLE_NAME | VARIABLE_VALUE |
+--------------------------------------+---------------------------------------+
NDB_CLUSTER_CONNECTION_POOL_NODEIDS	
NDB_LOG_BINLOG_INDEX	ON
NDB_WAIT_SETUP	30
NDB_ROW_CHECKSUM	1
NDB_WAIT_CONNECTED	30
NDB_USE_EXACT_COUNT	OFF
NDB_RECV_THREAD_ACTIVATION_THRESHOLD	8
NDB_READ_BACKUP	OFF
NDB_EVENTBUFFER_MAX_ALLOC	0
NDBINFO_DATABASE	ndbinfo
NDB_LOG_APPLY_STATUS	OFF
NDB_JOIN_PUSHDOWN	ON
NDB_RECV_THREAD_CPU_MASK	
NDBINFO_VERSION	460301
NDB_CONNECTSTRING	127.0.0.1
NDB_TABLE_NO_LOGGING	OFF
NDB_LOG_UPDATED_ONLY	ON
NDB_VERSION	460301
NDB_LOG_UPDATE_MINIMAL	OFF
NDB_OPTIMIZATION_DELAY	10
NDB_DEFAULT_COLUMN_FORMAT	FIXED

3916

Quick Reference: NDB Cluster SQL Statements

NDB_LOG_UPDATE_AS_WRITE	ON
NDB_SHOW_FOREIGN_KEY_MOCK_TABLES	OFF
NDB_VERSION_STRING	ndb-7.6.36
NDBINFO_OFFLINE	OFF
NDB_INDEX_STAT_OPTION	loop_enable=1000ms,loop_idle=1000ms,
loop_busy=100ms,update_batch=1,read_batch=4,idle_batch=32,check_batch=8,	
check_delay=10m,delete_batch=8,clean_delay=1m,error_batch=4,error_delay=1m,	
evict_batch=8,evict_delay=1m,cache_limit=32M,cache_lowpct=90,zero_total=0	
NDBINFO_MAX_ROWS	10
NDB_BATCH_SIZE	32768
NDB_USE_TRANSACTIONS	ON
NDB_NODEID	0
NDB_ALLOW_COPYING_ALTER_TABLE	ON
NDB_SLAVE_CONFLICT_ROLE	NONE
NDB_REPORT_THRESH_BINLOG_MEM_USAGE	10
NDB_FULLY_REPLICATED	OFF
NDB_MGMD_HOST	127.0.0.1
NDB_REPORT_THRESH_BINLOG_EPOCH_SLIP	10
NDBINFO_MAX_BYTES	0
NDB_LOG_BIN	ON
NDBINFO_TABLE_PREFIX	ndb$
NDB_LOG_EMPTY_EPOCHS	OFF
NDB_LOG_ORIG	OFF
NDB_LOG_EXCLUSIVE_READS	OFF
NDB_LOG_TRANSACTION_ID	OFF
NDB_DATA_NODE_NEIGHBOUR	0
NDB_CLEAR_APPLY_STATUS	ON
NDBINFO_SHOW_HIDDEN	OFF
NDB_INDEX_STAT_ENABLE	ON
NDB_DISTRIBUTION	KEYHASH
NDB_BLOB_WRITE_BATCH_BYTES	65536
NDB_DEFERRED_CONSTRAINTS	0
NDB_TABLE_TEMPORARY	OFF
NDB_EXTRA_LOGGING	1
NDB_AUTOINCREMENT_PREFETCH_SZ	1
NDB_FORCE_SEND	ON
NDB_OPTIMIZED_NODE_SELECTION	3
NDB_CLUSTER_CONNECTION_POOL	1
NDB_EVENTBUFFER_FREE_PERCENT	20
NDB_USE_COPYING_ALTER_TABLE	OFF
NDB_CACHE_CHECK_TIME	0
NDB_BLOB_READ_BATCH_BYTES	65536
NDB_LOG_EMPTY_UPDATE	OFF
+--------------------------------------+---------------------------------------+
61 rows in set, 1 warning (0.00 sec)

mysql> SHOW WARNINGS;
+---------+------+---+
| Level | Code | Message |
+---------+------+---+
| Warning | 1287 | 'INFORMATION_SCHEMA.GLOBAL_VARIABLES' is deprecated and will
be removed in a future release. Please use performance_schema.global_variables
instead |
+---------+------+---+

Unlike the case with the SHOW VARIABLES statement, it is possible to select individual columns. For
example:

mysql> SELECT VARIABLE_VALUE
 -> FROM INFORMATION_SCHEMA.GLOBAL_VARIABLES
 -> WHERE VARIABLE_NAME = 'ndb_force_send';
+----------------+
| VARIABLE_VALUE |
+----------------+
| ON |

3917

Quick Reference: NDB Cluster SQL Statements

+----------------+

See Section 24.3.11, “The INFORMATION_SCHEMA GLOBAL_VARIABLES and
SESSION_VARIABLES Tables”, and Section 5.1.7, “Server System Variables”, for more information.
See also Section 25.20, “Migrating to Performance Schema System and Status Variable Tables”.

• SELECT * FROM performance_schema.global_variables WHERE VARIABLE_NAME LIKE
'NDB%'

This statement is the equivalent of the SHOW VARIABLES statement described in the previous item, and
is preferred in NDB 7.5 and NDB 7.6 to querying the INFORMATION_SCHEMA.GLOBAL_VARIABLES
table (now deprecated; see previous item). It provides output almost identical to that produced by SHOW
VARIABLES, as shown here:

mysql> SELECT * FROM performance_schema.global_variables
 -> WHERE VARIABLE_NAME LIKE 'NDB%';
+--------------------------------------+---------------------------------------+
| VARIABLE_NAME | VARIABLE_VALUE |
+--------------------------------------+---------------------------------------+
ndb_allow_copying_alter_table	ON
ndb_autoincrement_prefetch_sz	1
ndb_batch_size	32768
ndb_blob_read_batch_bytes	65536
ndb_blob_write_batch_bytes	65536
ndb_cache_check_time	0
ndb_clear_apply_status	ON
ndb_cluster_connection_pool	1
ndb_cluster_connection_pool_nodeids	
ndb_connectstring	127.0.0.1
ndb_data_node_neighbour	0
ndb_default_column_format	FIXED
ndb_deferred_constraints	0
ndb_distribution	KEYHASH
ndb_eventbuffer_free_percent	20
ndb_eventbuffer_max_alloc	0
ndb_extra_logging	1
ndb_force_send	ON
ndb_fully_replicated	OFF
ndb_index_stat_enable	ON
ndb_index_stat_option	loop_enable=1000ms,loop_idle=1000ms,
loop_busy=100ms,update_batch=1,read_batch=4,idle_batch=32,check_batch=8,	
check_delay=10m,delete_batch=8,clean_delay=1m,error_batch=4,error_delay=1m,	
evict_batch=8,evict_delay=1m,cache_limit=32M,cache_lowpct=90,zero_total=0	
ndb_join_pushdown	ON
ndb_log_apply_status	OFF
ndb_log_bin	ON
ndb_log_binlog_index	ON
ndb_log_empty_epochs	OFF
ndb_log_empty_update	OFF
ndb_log_exclusive_reads	OFF
ndb_log_orig	OFF
ndb_log_transaction_id	OFF
ndb_log_update_as_write	ON
ndb_log_update_minimal	OFF
ndb_log_updated_only	ON
ndb_mgmd_host	127.0.0.1
ndb_nodeid	0
ndb_optimization_delay	10
ndb_optimized_node_selection	3
ndb_read_backup	OFF
ndb_recv_thread_activation_threshold	8
ndb_recv_thread_cpu_mask	
ndb_report_thresh_binlog_epoch_slip	10
ndb_report_thresh_binlog_mem_usage	10
ndb_row_checksum	1

3918

Quick Reference: NDB Cluster SQL Statements

ndb_show_foreign_key_mock_tables	OFF
ndb_slave_conflict_role	NONE
ndb_table_no_logging	OFF
ndb_table_temporary	OFF
ndb_use_copying_alter_table	OFF
ndb_use_exact_count	OFF
ndb_use_transactions	ON
ndb_version	460301
ndb_version_string	ndb-7.6.36
ndb_wait_connected	30
ndb_wait_setup	30
ndbinfo_database	ndbinfo
ndbinfo_max_bytes	0
ndbinfo_max_rows	10
ndbinfo_offline	OFF
ndbinfo_show_hidden	OFF
ndbinfo_table_prefix	ndb$
ndbinfo_version	460301
+--------------------------------------+---------------------------------------+

Unlike the case with the SHOW VARIABLES statement, it is possible to select individual columns. For
example:

mysql> SELECT VARIABLE_VALUE
 -> FROM performance_schema.global_variables
 -> WHERE VARIABLE_NAME = 'ndb_force_send';
+----------------+
| VARIABLE_VALUE |
+----------------+
| ON |
+----------------+

A more useful query is shown here:

mysql> SELECT VARIABLE_NAME AS Name, VARIABLE_VALUE AS Value
 > FROM performance_schema.global_variables
 > WHERE VARIABLE_NAME
 > IN ('version', 'ndb_version',
 > 'ndb_version_string', 'ndbinfo_version');

+--------------------+-------------------+
| Name | Value |
+--------------------+-------------------+
ndb_version	460301
ndb_version_string	ndb-7.6.36
ndbinfo_version	460301
version	5.7.44-ndb-7.6.36
+--------------------+-------------------+

See Section 25.12.13, “Performance Schema System Variable Tables”, and Section 5.1.7, “Server
System Variables”, for more information.

• SHOW STATUS LIKE 'NDB%'

This statement shows at a glance whether or not the MySQL server is acting as a cluster SQL node, and
if so, it provides the MySQL server's cluster node ID, the host name and port for the cluster management
server to which it is connected, and the number of data nodes in the cluster, as shown here:

mysql> SHOW STATUS LIKE 'NDB%';
+--+-------------------------------+
| Variable_name | Value |
+--+-------------------------------+
Ndb_api_wait_exec_complete_count	2
Ndb_api_wait_scan_result_count	5
Ndb_api_wait_meta_request_count	54

3919

Quick Reference: NDB Cluster SQL Statements

Ndb_api_wait_nanos_count	1849442202547
Ndb_api_bytes_sent_count	2044
Ndb_api_bytes_received_count	81384
Ndb_api_trans_start_count	2
Ndb_api_trans_commit_count	1
Ndb_api_trans_abort_count	0
Ndb_api_trans_close_count	2
Ndb_api_pk_op_count	1
Ndb_api_uk_op_count	0
Ndb_api_table_scan_count	1
Ndb_api_range_scan_count	0
Ndb_api_pruned_scan_count	0
Ndb_api_scan_batch_count	2
Ndb_api_read_row_count	4
Ndb_api_trans_local_read_row_count	2
Ndb_api_adaptive_send_forced_count	0
Ndb_api_adaptive_send_unforced_count	3
Ndb_api_adaptive_send_deferred_count	0
Ndb_api_event_data_count	0
Ndb_api_event_nondata_count	0
Ndb_api_event_bytes_count	0
Ndb_api_wait_exec_complete_count_slave	0
Ndb_api_wait_scan_result_count_slave	0
Ndb_api_wait_meta_request_count_slave	0
Ndb_api_wait_nanos_count_slave	0
Ndb_api_bytes_sent_count_slave	0
Ndb_api_bytes_received_count_slave	0
Ndb_api_trans_start_count_slave	0
Ndb_api_trans_commit_count_slave	0
Ndb_api_trans_abort_count_slave	0
Ndb_api_trans_close_count_slave	0
Ndb_api_pk_op_count_slave	0
Ndb_api_uk_op_count_slave	0
Ndb_api_table_scan_count_slave	0
Ndb_api_range_scan_count_slave	0
Ndb_api_pruned_scan_count_slave	0
Ndb_api_scan_batch_count_slave	0
Ndb_api_read_row_count_slave	0
Ndb_api_trans_local_read_row_count_slave	0
Ndb_api_adaptive_send_forced_count_slave	0
Ndb_api_adaptive_send_unforced_count_slave	0
Ndb_api_adaptive_send_deferred_count_slave	0
Ndb_slave_max_replicated_epoch	0
Ndb_api_event_data_count_injector	0
Ndb_api_event_nondata_count_injector	0
Ndb_api_event_bytes_count_injector	0
Ndb_cluster_node_id	100
Ndb_config_from_host	127.0.0.1
Ndb_config_from_port	1186
Ndb_number_of_data_nodes	2
Ndb_number_of_ready_data_nodes	2
Ndb_connect_count	0
Ndb_execute_count	0
Ndb_scan_count	0
Ndb_pruned_scan_count	0
Ndb_schema_locks_count	0
Ndb_api_wait_exec_complete_count_session	0
Ndb_api_wait_scan_result_count_session	0
Ndb_api_wait_meta_request_count_session	0
Ndb_api_wait_nanos_count_session	0
Ndb_api_bytes_sent_count_session	0
Ndb_api_bytes_received_count_session	0
Ndb_api_trans_start_count_session	0
Ndb_api_trans_commit_count_session	0
Ndb_api_trans_abort_count_session	0
Ndb_api_trans_close_count_session	0
Ndb_api_pk_op_count_session	0

3920

Quick Reference: NDB Cluster SQL Statements

Ndb_api_uk_op_count_session	0
Ndb_api_table_scan_count_session	0
Ndb_api_range_scan_count_session	0
Ndb_api_pruned_scan_count_session	0
Ndb_api_scan_batch_count_session	0
Ndb_api_read_row_count_session	0
Ndb_api_trans_local_read_row_count_session	0
Ndb_api_adaptive_send_forced_count_session	0
Ndb_api_adaptive_send_unforced_count_session	0
Ndb_api_adaptive_send_deferred_count_session	0
Ndb_sorted_scan_count	0
Ndb_pushed_queries_defined	0
Ndb_pushed_queries_dropped	0
Ndb_pushed_queries_executed	0
Ndb_pushed_reads	0
Ndb_last_commit_epoch_server	29347511533580
Ndb_last_commit_epoch_session	0
Ndb_system_name	MC_20191209172820
Ndb_conflict_fn_max	0
Ndb_conflict_fn_old	0
Ndb_conflict_fn_max_del_win	0
Ndb_conflict_fn_epoch	0
Ndb_conflict_fn_epoch_trans	0
Ndb_conflict_fn_epoch2	0
Ndb_conflict_fn_epoch2_trans	0
Ndb_conflict_trans_row_conflict_count	0
Ndb_conflict_trans_row_reject_count	0
Ndb_conflict_trans_reject_count	0
Ndb_conflict_trans_detect_iter_count	0
Ndb_conflict_trans_conflict_commit_count	0
Ndb_conflict_epoch_delete_delete_count	0
Ndb_conflict_reflected_op_prepare_count	0
Ndb_conflict_reflected_op_discard_count	0
Ndb_conflict_refresh_op_count	0
Ndb_conflict_last_conflict_epoch	0
Ndb_conflict_last_stable_epoch	0
Ndb_index_stat_status	allow:1,enable:1,busy:0,
loop:1000,list:(new:0,update:0,read:0,idle:0,check:0,delete:0,error:0,total:0),	
analyze:(queue:0,wait:0),stats:(nostats:0,wait:0),total:(analyze:(all:0,error:0),	
query:(all:0,nostats:0,error:0),event:(act:0,skip:0,miss:0),	
cache:(refresh:0,clean:0,pinned:0,drop:0,evict:0)),	
cache:(query:0,clean:0,drop:0,evict:0,usedpct:0.00,highpct:0.00)	
Ndb_index_stat_cache_query	0
Ndb_index_stat_cache_clean	0
+--+-------------------------------+

If the MySQL server was built with clustering support, but it is not connected to a cluster, all rows in the
output of this statement contain a zero or an empty string.

See also Section 13.7.5.35, “SHOW STATUS Statement”.

• SELECT * FROM INFORMATION_SCHEMA.GLOBAL_STATUS WHERE VARIABLE_NAME LIKE 'NDB
%';

This statement, although deprecated in NDB 7.5 and NDB 7.6, can be used if
show_compatibility_56 is enabled to obtain similar output to the SHOW STATUS
statement discussed in the previous item; the preferred method is to query the
performance_schema.global_status table (see next item). Unlike the case with SHOW STATUS,

3921

Quick Reference: NDB Cluster SQL Statements

it is possible using the SELECT to extract values in SQL for use in scripts for monitoring and automation
purposes.

See Section 24.3.10, “The INFORMATION_SCHEMA GLOBAL_STATUS and SESSION_STATUS
Tables”, as well as Section 25.20, “Migrating to Performance Schema System and Status Variable
Tables”, for more information.

• SELECT * FROM performance_schema.global_status WHERE VARIABLE_NAME LIKE 'NDB
%'

This statement provides similar output to the SHOW STATUS statement discussed previously. Unlike the
case with SHOW STATUS, it is possible using SELECT statements to extract values in SQL for use in
scripts for monitoring and automation purposes.

See Section 25.12.14, “Performance Schema Status Variable Tables”, for more information.

• SELECT * FROM INFORMATION_SCHEMA.PLUGINS WHERE PLUGIN_NAME LIKE 'NDB%'

This statement displays information from the Information Schema PLUGINS table about plugins
associated with NDB Cluster, such as version, author, and license, as shown here:

mysql> SELECT * FROM INFORMATION_SCHEMA.PLUGINS
 > WHERE PLUGIN_NAME LIKE 'NDB%'\G
*************************** 1. row ***************************
 PLUGIN_NAME: ndbcluster
 PLUGIN_VERSION: 1.0
 PLUGIN_STATUS: ACTIVE
 PLUGIN_TYPE: STORAGE ENGINE
 PLUGIN_TYPE_VERSION: 50729.0
 PLUGIN_LIBRARY: NULL
PLUGIN_LIBRARY_VERSION: NULL
 PLUGIN_AUTHOR: MySQL AB
 PLUGIN_DESCRIPTION: Clustered, fault-tolerant tables
 PLUGIN_LICENSE: GPL
 LOAD_OPTION: ON
*************************** 2. row ***************************
 PLUGIN_NAME: ndbinfo
 PLUGIN_VERSION: 0.1
 PLUGIN_STATUS: ACTIVE
 PLUGIN_TYPE: STORAGE ENGINE
 PLUGIN_TYPE_VERSION: 50744.0
 PLUGIN_LIBRARY: NULL
PLUGIN_LIBRARY_VERSION: NULL
 PLUGIN_AUTHOR: Sun Microsystems Inc.
 PLUGIN_DESCRIPTION: MySQL Cluster system information storage engine
 PLUGIN_LICENSE: GPL
 LOAD_OPTION: ON
*************************** 3. row ***************************
 PLUGIN_NAME: ndb_transid_mysql_connection_map
 PLUGIN_VERSION: 0.1
 PLUGIN_STATUS: ACTIVE
 PLUGIN_TYPE: INFORMATION SCHEMA
 PLUGIN_TYPE_VERSION: 50744.0
 PLUGIN_LIBRARY: NULL
PLUGIN_LIBRARY_VERSION: NULL
 PLUGIN_AUTHOR: Oracle Corporation
 PLUGIN_DESCRIPTION: Map between mysql connection id and ndb transaction id
 PLUGIN_LICENSE: GPL
 LOAD_OPTION: ON

You can also use the SHOW PLUGINS statement to display this information, but the output from that
statement cannot easily be filtered. See also The MySQL Plugin API, which describes where and how
the information in the PLUGINS table is obtained.

3922

https://dev.mysql.com/doc/extending-mysql/5.7/en/plugin-api.html

NDB Cluster Security Issues

You can also query the tables in the ndbinfo information database for real-time data about many NDB
Cluster operations. See Section 21.6.15, “ndbinfo: The NDB Cluster Information Database”.

21.6.18 NDB Cluster Security Issues

This section discusses security considerations to take into account when setting up and running NDB
Cluster.

Topics covered in this section include the following:

• NDB Cluster and network security issues

• Configuration issues relating to running NDB Cluster securely

• NDB Cluster and the MySQL privilege system

• MySQL standard security procedures as applicable to NDB Cluster

21.6.18.1 NDB Cluster Security and Networking Issues

In this section, we discuss basic network security issues as they relate to NDB Cluster. It is extremely
important to remember that NDB Cluster “out of the box” is not secure; you or your network administrator
must take the proper steps to ensure that your cluster cannot be compromised over the network.

Cluster communication protocols are inherently insecure, and no encryption or similar security measures
are used in communications between nodes in the cluster. Because network speed and latency have
a direct impact on the cluster's efficiency, it is also not advisable to employ SSL or other encryption to
network connections between nodes, as such schemes effectively slow communications.

It is also true that no authentication is used for controlling API node access to an NDB Cluster. As with
encryption, the overhead of imposing authentication requirements would have an adverse impact on
Cluster performance.

In addition, there is no checking of the source IP address for either of the following when accessing the
cluster:

• SQL or API nodes using “free slots” created by empty [mysqld] or [api] sections in the config.ini
file

This means that, if there are any empty [mysqld] or [api] sections in the config.ini file, then any
API nodes (including SQL nodes) that know the management server's host name (or IP address) and
port can connect to the cluster and access its data without restriction. (See Section 21.6.18.2, “NDB
Cluster and MySQL Privileges”, for more information about this and related issues.)

Note

 You can exercise some control over SQL and API node access to the cluster by
specifying a HostName parameter for all [mysqld] and [api] sections in the
config.ini file. However, this also means that, should you wish to connect an
API node to the cluster from a previously unused host, you need to add an [api]
section containing its host name to the config.ini file.

More information is available elsewhere in this chapter about the HostName
parameter. Also see Section 21.4.1, “Quick Test Setup of NDB Cluster”, for
configuration examples using HostName with API nodes.

3923

NDB Cluster Security Issues

• Any ndb_mgm client

This means that any cluster management client that is given the management server's host name (or
IP address) and port (if not the standard port) can connect to the cluster and execute any management
client command. This includes commands such as ALL STOP and SHUTDOWN.

 For these reasons, it is necessary to protect the cluster on the network level. The safest network
configuration for Cluster is one which isolates connections between Cluster nodes from any other network
communications. This can be accomplished by any of the following methods:

1. Keeping Cluster nodes on a network that is physically separate from any public networks. This option is
the most dependable; however, it is the most expensive to implement.

We show an example of an NDB Cluster setup using such a physically segregated network here:

Figure 21.9 NDB Cluster with Hardware Firewall

This setup has two networks, one private (solid box) for the Cluster management servers and data
nodes, and one public (dotted box) where the SQL nodes reside. (We show the management and data
nodes connected using a gigabit switch since this provides the best performance.) Both networks are
protected from the outside by a hardware firewall, sometimes also known as a network-based firewall.

This network setup is safest because no packets can reach the cluster's management or data nodes
from outside the network—and none of the cluster's internal communications can reach the outside
—without going through the SQL nodes, as long as the SQL nodes do not permit any packets to be
forwarded. This means, of course, that all SQL nodes must be secured against hacking attempts.

Important

With regard to potential security vulnerabilities, an SQL node is no different from
any other MySQL server. See Section 6.1.3, “Making MySQL Secure Against
Attackers”, for a description of techniques you can use to secure MySQL
servers.

2. Using one or more software firewalls (also known as host-based firewalls) to control which packets
pass through to the cluster from portions of the network that do not require access to it. In this type
of setup, a software firewall must be installed on every host in the cluster which might otherwise be
accessible from outside the local network.

3924

NDB Cluster Security Issues

The host-based option is the least expensive to implement, but relies purely on software to provide
protection and so is the most difficult to keep secure.

This type of network setup for NDB Cluster is illustrated here:

Figure 21.10 NDB Cluster with Software Firewalls

Using this type of network setup means that there are two zones of NDB Cluster hosts. Each cluster
host must be able to communicate with all of the other machines in the cluster, but only those hosting
SQL nodes (dotted box) can be permitted to have any contact with the outside, while those in the zone
containing the data nodes and management nodes (solid box) must be isolated from any machines that
are not part of the cluster. Applications using the cluster and user of those applications must not be
permitted to have direct access to the management and data node hosts.

To accomplish this, you must set up software firewalls that limit the traffic to the type or types shown in
the following table, according to the type of node that is running on each cluster host computer:

Table 21.62 Node types in a host-based firewall cluster configuration

Node Type Permitted Traffic

SQL or API node • It originates from the IP address of a
management or data node (using any TCP or
UDP port).

• It originates from within the network in which
the cluster resides and is on the port that your
application is using.

Data node or Management node • It originates from the IP address of a
management or data node (using any TCP or
UDP port).

3925

NDB Cluster Security Issues

Node Type Permitted Traffic
• It originates from the IP address of an SQL or

API node.

Any traffic other than that shown in the table for a given node type should be denied.

The specifics of configuring a firewall vary from firewall application to firewall application, and are
beyond the scope of this Manual. iptables is a very common and reliable firewall application, which
is often used with APF as a front end to make configuration easier. You can (and should) consult the
documentation for the software firewall that you employ, should you choose to implement an NDB
Cluster network setup of this type, or of a “mixed” type as discussed under the next item.

3. It is also possible to employ a combination of the first two methods, using both hardware and software
to secure the cluster—that is, using both network-based and host-based firewalls. This is between the
first two schemes in terms of both security level and cost. This type of network setup keeps the cluster
behind the hardware firewall, but permits incoming packets to travel beyond the router connecting all
cluster hosts to reach the SQL nodes.

One possible network deployment of an NDB Cluster using hardware and software firewalls in
combination is shown here:

Figure 21.11 NDB Cluster with a Combination of Hardware and Software Firewalls

In this case, you can set the rules in the hardware firewall to deny any external traffic except to SQL
nodes and API nodes, and then permit traffic to them only on the ports required by your application.

Whatever network configuration you use, remember that your objective from the viewpoint of keeping
the cluster secure remains the same—to prevent any unessential traffic from reaching the cluster while
ensuring the most efficient communication between the nodes in the cluster.

 Because NDB Cluster requires large numbers of ports to be open for communications between nodes,
the recommended option is to use a segregated network. This represents the simplest way to prevent
unwanted traffic from reaching the cluster.

3926

NDB Cluster Security Issues

Note

 If you wish to administer an NDB Cluster remotely (that is, from outside the
local network), the recommended way to do this is to use ssh or another secure
login shell to access an SQL node host. From this host, you can then run the
management client to access the management server safely, from within the
cluster's own local network.

Even though it is possible to do so in theory, it is not recommended to use ndb_mgm
to manage a Cluster directly from outside the local network on which the Cluster
is running. Since neither authentication nor encryption takes place between the
management client and the management server, this represents an extremely
insecure means of managing the cluster, and is almost certain to be compromised
sooner or later.

21.6.18.2 NDB Cluster and MySQL Privileges

In this section, we discuss how the MySQL privilege system works in relation to NDB Cluster and the
implications of this for keeping an NDB Cluster secure.

 Standard MySQL privileges apply to NDB Cluster tables. This includes all MySQL privilege types (SELECT
privilege, UPDATE privilege, DELETE privilege, and so on) granted on the database, table, and column
level. As with any other MySQL Server, user and privilege information is stored in the mysql system
database. The SQL statements used to grant and revoke privileges on NDB tables, databases containing
such tables, and columns within such tables are identical in all respects with the GRANT and REVOKE
statements used in connection with database objects involving any (other) MySQL storage engine. The
same thing is true with respect to the CREATE USER and DROP USER statements.

 It is important to keep in mind that, by default, the MySQL grant tables use the MyISAM storage engine.
Because of this, those tables are not normally duplicated or shared among MySQL servers acting as
SQL nodes in an NDB Cluster. In other words, changes in users and their privileges do not automatically
propagate between SQL nodes by default. If you wish, you can enable automatic distribution of MySQL
users and privileges across NDB Cluster SQL nodes; see Section 21.6.13, “Distributed Privileges Using
Shared Grant Tables”, for details.

 Conversely, because there is no way in MySQL to deny privileges (privileges can either be revoked or
not granted in the first place, but not denied as such), there is no special protection for NDB tables on one
SQL node from users that have privileges on another SQL node; (This is true even if you are not using
automatic distribution of user privileges. The definitive example of this is the MySQL root account, which
can perform any action on any database object. In combination with empty [mysqld] or [api] sections
of the config.ini file, this account can be especially dangerous. To understand why, consider the
following scenario:

• The config.ini file contains at least one empty [mysqld] or [api] section. This means that the
NDB Cluster management server performs no checking of the host from which a MySQL Server (or other
API node) accesses the NDB Cluster.

• There is no firewall, or the firewall fails to protect against access to the NDB Cluster from hosts external
to the network.

• The host name or IP address of the NDB Cluster management server is known or can be determined
from outside the network.

If these conditions are true, then anyone, anywhere can start a MySQL Server with --ndbcluster
--ndb-connectstring=management_host and access this NDB Cluster. Using the MySQL root
account, this person can then perform the following actions:

3927

NDB Cluster Security Issues

• Execute metadata statements such as SHOW DATABASES statement (to obtain a list of all NDB
databases on the server) or SHOW TABLES FROM some_ndb_database statement to obtain a list of
all NDB tables in a given database

• Run any legal MySQL statements on any of the discovered tables, such as:

• SELECT * FROM some_table to read all the data from any table

• DELETE FROM some_table to delete all the data from a table

• DESCRIBE some_table or SHOW CREATE TABLE some_table to determine the table schema

• UPDATE some_table SET column1 = some_value to fill a table column with “garbage” data; this
could actually cause much greater damage than simply deleting all the data

More insidious variations might include statements like these:

UPDATE some_table SET an_int_column = an_int_column + 1

or

UPDATE some_table SET a_varchar_column = REVERSE(a_varchar_column)

Such malicious statements are limited only by the imagination of the attacker.

The only tables that would be safe from this sort of mayhem would be those tables that were created
using storage engines other than NDB, and so not visible to a “rogue” SQL node.

 A user who can log in as root can also access the INFORMATION_SCHEMA database and its tables,
and so obtain information about databases, tables, stored routines, scheduled events, and any other
database objects for which metadata is stored in INFORMATION_SCHEMA.

It is also a very good idea to use different passwords for the root accounts on different NDB Cluster
SQL nodes unless you are using distributed privileges.

In sum, you cannot have a safe NDB Cluster if it is directly accessible from outside your local network.

Important

Never leave the MySQL root account password empty. This is just as true when
running MySQL as an NDB Cluster SQL node as it is when running it as a
standalone (non-Cluster) MySQL Server, and should be done as part of the MySQL
installation process before configuring the MySQL Server as an SQL node in an
NDB Cluster.

If you wish to employ NDB Cluster's distributed privilege capabilities, you should not simply convert the
system tables in the mysql database to use the NDB storage engine manually. Use the stored procedure
provided for this purpose instead; see Section 21.6.13, “Distributed Privileges Using Shared Grant Tables”.

Otherwise, if you need to synchronize mysql system tables between SQL nodes, you can use standard
MySQL replication to do so, or employ a script to copy table entries between the MySQL servers.

Summary. The most important points to remember regarding the MySQL privilege system with regard
to NDB Cluster are listed here:

1. Users and privileges established on one SQL node do not automatically exist or take effect on other
SQL nodes in the cluster. Conversely, removing a user or privilege on one SQL node in the cluster
does not remove the user or privilege from any other SQL nodes.

3928

NDB Cluster Security Issues

2. You can distribute MySQL users and privileges among SQL nodes using the SQL script, and the stored
procedures it contains, that are supplied for this purpose in the NDB Cluster distribution.

3. Once a MySQL user is granted privileges on an NDB table from one SQL node in an NDB Cluster, that
user can “see” any data in that table regardless of the SQL node from which the data originated, even if
you are not using privilege distribution.

21.6.18.3 NDB Cluster and MySQL Security Procedures

In this section, we discuss MySQL standard security procedures as they apply to running NDB Cluster.

In general, any standard procedure for running MySQL securely also applies to running a MySQL Server
as part of an NDB Cluster. First and foremost, you should always run a MySQL Server as the mysql
operating system user; this is no different from running MySQL in a standard (non-Cluster) environment.
The mysql system account should be uniquely and clearly defined. Fortunately, this is the default behavior
for a new MySQL installation. You can verify that the mysqld process is running as the mysql operating
system user by using the system command such as the one shown here:

$> ps aux | grep mysql
root 10467 0.0 0.1 3616 1380 pts/3 S 11:53 0:00 \
 /bin/sh ./mysqld_safe --ndbcluster --ndb-connectstring=localhost:1186
mysql 10512 0.2 2.5 58528 26636 pts/3 Sl 11:53 0:00 \
 /usr/local/mysql/libexec/mysqld --basedir=/usr/local/mysql \
 --datadir=/usr/local/mysql/var --user=mysql --ndbcluster \
 --ndb-connectstring=localhost:1186 --pid-file=/usr/local/mysql/var/mothra.pid \
 --log-error=/usr/local/mysql/var/mothra.err
jon 10579 0.0 0.0 2736 688 pts/0 S+ 11:54 0:00 grep mysql

If the mysqld process is running as any other user than mysql, you should immediately shut it down and
restart it as the mysql user. If this user does not exist on the system, the mysql user account should be
created, and this user should be part of the mysql user group; in this case, you should also make sure
that the MySQL data directory on this system (as set using the --datadir option for mysqld) is owned
by the mysql user, and that the SQL node's my.cnf file includes user=mysql in the [mysqld] section.
Alternatively, you can start the MySQL server process with --user=mysql on the command line, but it is
preferable to use the my.cnf option, since you might forget to use the command-line option and so have
mysqld running as another user unintentionally. The mysqld_safe startup script forces MySQL to run as
the mysql user.

Important

Never run mysqld as the system root user. Doing so means that potentially any file
on the system can be read by MySQL, and thus—should MySQL be compromised
—by an attacker.

 As mentioned in the previous section (see Section 21.6.18.2, “NDB Cluster and MySQL Privileges”), you
should always set a root password for the MySQL Server as soon as you have it running. You should also
delete the anonymous user account that is installed by default. You can accomplish these tasks using the
following statements:

$> mysql -u root

mysql> UPDATE mysql.user
 -> SET Password=PASSWORD('secure_password')
 -> WHERE User='root';

mysql> DELETE FROM mysql.user
 -> WHERE User='';

mysql> FLUSH PRIVILEGES;

3929

NDB Cluster Replication

Be very careful when executing the DELETE statement not to omit the WHERE clause, or you risk deleting
all MySQL users. Be sure to run the FLUSH PRIVILEGES statement as soon as you have modified the
mysql.user table, so that the changes take immediate effect. Without FLUSH PRIVILEGES, the changes
do not take effect until the next time that the server is restarted.

Note

 Many of the NDB Cluster utilities such as ndb_show_tables, ndb_desc, and
ndb_select_all also work without authentication and can reveal table names,
schemas, and data. By default these are installed on Unix-style systems with the
permissions wxr-xr-x (755), which means they can be executed by any user that
can access the mysql/bin directory.

See Section 21.5, “NDB Cluster Programs”, for more information about these
utilities.

21.7 NDB Cluster Replication

NDB Cluster supports asynchronous replication, more usually referred to simply as “replication”. This
section explains how to set up and manage a configuration in which one group of computers operating
as an NDB Cluster replicates to a second computer or group of computers. We assume some familiarity
on the part of the reader with standard MySQL replication as discussed elsewhere in this Manual. (See
Chapter 16, Replication).

Note

NDB Cluster does not support replication using GTIDs; semisynchronous replication
and group replication are also not supported by the NDB storage engine.

Normal (non-clustered) replication involves a source server (formerly called a “master”) and a replica
server (formerly referred to as a “slave”), the source being so named because operations and data to
be replicated originate with it, and the replica being the recipient of these. In NDB Cluster, replication is
conceptually very similar but can be more complex in practice, as it may be extended to cover a number
of different configurations including replicating between two complete clusters. Although an NDB Cluster
itself depends on the NDB storage engine for clustering functionality, it is not necessary to use NDB as the
storage engine for the replica's copies of the replicated tables (see Replication from NDB to other storage
engines). However, for maximum availability, it is possible (and preferable) to replicate from one NDB
Cluster to another, and it is this scenario that we discuss, as shown in the following figure:

3930

NDB Cluster Replication

Figure 21.12 NDB Cluster-to-Cluster Replication Layout

In this scenario, the replication process is one in which successive states of a source cluster are logged
and saved to a replica cluster. This process is accomplished by a special thread known as the NDB binary
log injector thread, which runs on each MySQL server and produces a binary log (binlog). This thread
ensures that all changes in the cluster producing the binary log—and not just those changes that are
effected through the MySQL Server—are inserted into the binary log with the correct serialization order.
We refer to the MySQL source and replica servers as replication servers or replication nodes, and the data
flow or line of communication between them as a replication channel.

For information about performing point-in-time recovery with NDB Cluster and NDB Cluster Replication,
see Section 21.7.9.2, “Point-In-Time Recovery Using NDB Cluster Replication”.

NDB API replica status variables. NDB API counters can provide enhanced monitoring capabilities
on replica clusters. These counters are implemented as NDB statistics _slave status variables, as
seen in the output of SHOW STATUS, or in the results of queries against the SESSION_STATUS or
GLOBAL_STATUS table in a mysql client session connected to a MySQL Server that is acting as a
replica in NDB Cluster Replication. By comparing the values of these status variables before and after the
execution of statements affecting replicated NDB tables, you can observe the corresponding actions taken
on the NDB API level by the replica, which can be useful when monitoring or troubleshooting NDB Cluster
Replication. Section 21.6.14, “NDB API Statistics Counters and Variables”, provides additional information.

3931

NDB Cluster Replication: Abbreviations and Symbols

Replication from NDB to non-NDB tables. It is possible to replicate NDB tables from an NDB Cluster
acting as the replication source to tables using other MySQL storage engines such as InnoDB or MyISAM
on a replica mysqld. This is subject to a number of conditions; see Replication from NDB to other storage
engines, and Replication from NDB to a nontransactional storage engine, for more information.

21.7.1 NDB Cluster Replication: Abbreviations and Symbols

Throughout this section, we use the following abbreviations or symbols for referring to the source and
replica clusters, and to processes and commands run on the clusters or cluster nodes:

Table 21.63 Abbreviations used throughout this section referring to source and replica clusters,
and to processes and commands run on cluster nodes

Symbol or Abbreviation Description (Refers to...)

S The cluster serving as the (primary) replication
source

R The cluster acting as the (primary) replica

shellS> Shell command to be issued on the source cluster

mysqlS> MySQL client command issued on a single MySQL
server running as an SQL node on the source
cluster

mysqlS*> MySQL client command to be issued on all SQL
nodes participating in the replication source cluster

shellR> Shell command to be issued on the replica cluster

mysqlR> MySQL client command issued on a single MySQL
server running as an SQL node on the replica
cluster

mysqlR*> MySQL client command to be issued on all SQL
nodes participating in the replica cluster

C Primary replication channel

C' Secondary replication channel

S' Secondary replication source

R' Secondary replica

21.7.2 General Requirements for NDB Cluster Replication

A replication channel requires two MySQL servers acting as replication servers (one each for the source
and replica). For example, this means that in the case of a replication setup with two replication channels
(to provide an extra channel for redundancy), there should be a total of four replication nodes, two per
cluster.

Replication of an NDB Cluster as described in this section and those following is dependent on row-
based replication. This means that the replication source MySQL server must be running with --binlog-
format=ROW or --binlog-format=MIXED, as described in Section 21.7.6, “Starting NDB Cluster
Replication (Single Replication Channel)”. For general information about row-based replication, see
Section 16.2.1, “Replication Formats”.

Important

If you attempt to use NDB Cluster Replication with --binlog-
format=STATEMENT, replication fails to work properly because the

3932

Known Issues in NDB Cluster Replication

ndb_binlog_index table on the source cluster and the epoch column of
the ndb_apply_status table on the replica cluster are not updated (see
Section 21.7.4, “NDB Cluster Replication Schema and Tables”). Instead, only
updates on the MySQL server acting as the replication source propagate to the
replica, and no updates from any other SQL nodes in the source cluster are
replicated.

The default value for the --binlog-format option is MIXED.

Each MySQL server used for replication in either cluster must be uniquely identified among all the MySQL
replication servers participating in either cluster (you cannot have replication servers on both the source
and replica clusters sharing the same ID). This can be done by starting each SQL node using the --
server-id=id option, where id is a unique integer. Although it is not strictly necessary, we assume for
purposes of this discussion that all NDB Cluster binaries are of the same release version.

It is generally true in MySQL Replication that both MySQL servers (mysqld processes) involved must
be compatible with one another with respect to both the version of the replication protocol used and the
SQL feature sets which they support (see Section 16.4.2, “Replication Compatibility Between MySQL
Versions”). It is due to such differences between the binaries in the NDB Cluster and MySQL Server 5.7
distributions that NDB Cluster Replication has the additional requirement that both mysqld binaries come
from an NDB Cluster distribution. The simplest and easiest way to assure that the mysqld servers are
compatible is to use the same NDB Cluster distribution for all source and replica mysqld binaries.

We assume that the replica server or cluster is dedicated to replication of the source cluster, and that no
other data is being stored on it.

All NDB tables being replicated must be created using a MySQL server and client. Tables and other
database objects created using the NDB API (with, for example, Dictionary::createTable()) are not
visible to a MySQL server and so are not replicated. Updates by NDB API applications to existing tables
that were created using a MySQL server can be replicated.

Note

It is possible to replicate an NDB Cluster using statement-based replication.
However, in this case, the following restrictions apply:

• All updates to data rows on the cluster acting as the source must be directed to a
single MySQL server.

• It is not possible to replicate a cluster using multiple simultaneous MySQL
replication processes.

• Only changes made at the SQL level are replicated.

These are in addition to the other limitations of statement-based replication
as opposed to row-based replication; see Section 16.2.1.1, “Advantages and
Disadvantages of Statement-Based and Row-Based Replication”, for more specific
information concerning the differences between the two replication formats.

21.7.3 Known Issues in NDB Cluster Replication

This section discusses known problems or issues when using replication with NDB Cluster.

Loss of connection between source and replica. A loss of connection can occur either between
the source cluster SQL node and the replica cluster SQL node, or between the source SQL node and the

3933

https://dev.mysql.com/doc/ndbapi/en/ndb-dictionary.html#ndb-dictionary-createtable

Known Issues in NDB Cluster Replication

data nodes of the source cluster. In the latter case, this can occur not only as a result of loss of physical
connection (for example, a broken network cable), but due to the overflow of data node event buffers; if
the SQL node is too slow to respond, it may be dropped by the cluster (this is controllable to some degree
by adjusting the MaxBufferedEpochs and TimeBetweenEpochs configuration parameters). If this
occurs, it is entirely possible for new data to be inserted into the source cluster without being recorded in
the source SQL node's binary log. For this reason, to guarantee high availability, it is extremely important
to maintain a backup replication channel, to monitor the primary channel, and to fail over to the secondary
replication channel when necessary to keep the replica cluster synchronized with the source. NDB Cluster
is not designed to perform such monitoring on its own; for this, an external application is required.

 The source SQL node issues a “gap” event when connecting or reconnecting to the source cluster. (A
gap event is a type of “incident event,” which indicates an incident that occurs that affects the contents
of the database but that cannot easily be represented as a set of changes. Examples of incidents are
server failures, database resynchronization, some software updates, and some hardware changes.)
When the replica encounters a gap in the replication log, it stops with an error message. This message is
available in the output of SHOW SLAVE STATUS, and indicates that the SQL thread has stopped due to an
incident registered in the replication stream, and that manual intervention is required. See Section 21.7.8,
“Implementing Failover with NDB Cluster Replication”, for more information about what to do in such
circumstances.

Important

Because NDB Cluster is not designed on its own to monitor replication status
or provide failover, if high availability is a requirement for the replica server or
cluster, then you must set up multiple replication lines, monitor the source mysqld
on the primary replication line, and be prepared fail over to a secondary line if
and as necessary. This must be done manually, or possibly by means of a third-
party application. For information about implementing this type of setup, see
Section 21.7.7, “Using Two Replication Channels for NDB Cluster Replication”, and
Section 21.7.8, “Implementing Failover with NDB Cluster Replication”.

If you are replicating from a standalone MySQL server to an NDB Cluster, one
channel is usually sufficient.

Circular replication. NDB Cluster Replication supports circular replication, as shown in the next
example. The replication setup involves three NDB Clusters numbered 1, 2, and 3, in which Cluster 1
acts as the replication source for Cluster 2, Cluster 2 acts as the source for Cluster 3, and Cluster 3 acts
as the source for Cluster 1, thus completing the circle. Each NDB Cluster has two SQL nodes, with SQL
nodes A and B belonging to Cluster 1, SQL nodes C and D belonging to Cluster 2, and SQL nodes E and F
belonging to Cluster 3.

Circular replication using these clusters is supported as long as the following conditions are met:

• The SQL nodes on all source and replica clusters are the same.

• All SQL nodes acting as sources and replicas are started with the log_slave_updates system
variable enabled.

This type of circular replication setup is shown in the following diagram:

3934

Known Issues in NDB Cluster Replication

Figure 21.13 NDB Cluster Circular Replication With All Sources As Replicas

In this scenario, SQL node A in Cluster 1 replicates to SQL node C in Cluster 2; SQL node C replicates
to SQL node E in Cluster 3; SQL node E replicates to SQL node A. In other words, the replication line
(indicated by the curved arrows in the diagram) directly connects all SQL nodes used as sources and
replicas.

It should also be possible to set up circular replication in which not all source SQL nodes are also replicas,
as shown here:

3935

Known Issues in NDB Cluster Replication

Figure 21.14 NDB Cluster Circular Replication Where Not All Sources Are Replicas

In this case, different SQL nodes in each cluster are used as sources and replicas. However, you must not
start any of the SQL nodes with the log_slave_updates system variable enabled. This type of circular
replication scheme for NDB Cluster, in which the line of replication (again indicated by the curved arrows in
the diagram) is discontinuous, should be possible, but it should be noted that it has not yet been thoroughly
tested and must therefore still be considered experimental.

3936

Known Issues in NDB Cluster Replication

Note

The NDB storage engine uses idempotent execution mode, which suppresses
duplicate-key and other errors that otherwise break circular replication of NDB
Cluster. This is equivalent to setting the global slave_exec_mode system variable
to IDEMPOTENT, although this is not necessary in NDB Cluster replication, since
NDB Cluster sets this variable automatically and ignores any attempts to set it
explicitly.

NDB Cluster replication and primary keys. In the event of a node failure, errors in replication of NDB
tables without primary keys can still occur, due to the possibility of duplicate rows being inserted in such
cases. For this reason, it is highly recommended that all NDB tables being replicated have explicit primary
keys.

NDB Cluster Replication and Unique Keys. In older versions of NDB Cluster, operations that
updated values of unique key columns of NDB tables could result in duplicate-key errors when replicated.
This issue is solved for replication between NDB tables by deferring unique key checks until after all table
row updates have been performed.

Deferring constraints in this way is currently supported only by NDB. Thus, updates of unique keys when
replicating from NDB to a different storage engine such as InnoDB or MyISAM are still not supported.

The problem encountered when replicating without deferred checking of unique key updates can be
illustrated using NDB table such as t, is created and populated on the source (and transmitted to a replica
that does not support deferred unique key updates) as shown here:

CREATE TABLE t (
 p INT PRIMARY KEY,
 c INT,
 UNIQUE KEY u (c)
) ENGINE NDB;

INSERT INTO t
 VALUES (1,1), (2,2), (3,3), (4,4), (5,5);

The following UPDATE statement on t succeeds on the source, since the rows affected are processed in
the order determined by the ORDER BY option, performed over the entire table:

UPDATE t SET c = c - 1 ORDER BY p;

The same statement fails with a duplicate key error or other constraint violation on the replica, because the
ordering of the row updates is performed for one partition at a time, rather than for the table as a whole.

Note

Every NDB table is implicitly partitioned by key when it is created. See
Section 22.2.5, “KEY Partitioning”, for more information.

GTIDs not supported. Replication using global transaction IDs is not compatible with the NDB storage
engine, and is not supported. Enabling GTIDs is likely to cause NDB Cluster Replication to fail.

Multithreaded replicas not supported. NDB Cluster does not support multithreaded replicas. This
is because the replica may not be able to separate transactions occurring in one database from those
in another if they are written within the same epoch. In addition, every transaction handled by the NDB
storage engine involves at least two databases—the target database and the mysql system database—
due to the requirement for updating the mysql.ndb_apply_status table (see Section 21.7.4, “NDB
Cluster Replication Schema and Tables”). This in turn breaks the requirement for multithreading that the
transaction is specific to a given database.

3937

Known Issues in NDB Cluster Replication

Prior to NDB 7.5.7 and NDB 7.6.3, setting any system variables relating to multithreaded slaves such
as slave_parallel_workers and slave_checkpoint_group (or the equivalent mysqld startup
options) was completely ignored, and had no effect.

Beginning with NDB 7.5.7 and NDB 7.6.3, slave_parallel_workers is always 0. If set to any other
value on startup, NDB changes it to 0, and writes a message to the mysqld server log file.

Restarting with --initial. Restarting the cluster with the --initial option causes the sequence of
GCI and epoch numbers to start over from 0. (This is generally true of NDB Cluster and not limited to
replication scenarios involving Cluster.) The MySQL servers involved in replication should in this case be
restarted. After this, you should use the RESET MASTER and RESET SLAVE statements to clear the invalid
ndb_binlog_index and ndb_apply_status tables, respectively.

Replication from NDB to other storage engines. It is possible to replicate an NDB table on the source
to a table using a different storage engine on the replica, taking into account the restrictions listed here:

• Multi-source and circular replication are not supported (tables on both the source and the replica must
use the NDB storage engine for this to work).

• Using a storage engine which does not perform binary logging for tables on the replica requires special
handling.

• Use of a nontransactional storage engine for tables on the replica also requires special handling.

• The source mysqld must be started with --ndb-log-update-as-write=0 or --ndb-log-update-
as-write=OFF.

The next few paragraphs provide additional information about each of the issues just described.

Multiple sources not supported when replicating NDB to other storage engines. For replication
from NDB to a different storage engine, the relationship between the two databases must be one-to-one.
This means that bidirectional or circular replication is not supported between NDB Cluster and other
storage engines.

In addition, it is not possible to configure more than one replication channel when replicating between NDB
and a different storage engine. (An NDB Cluster database can simultaneously replicate to multiple NDB
Cluster databases.) If the source uses NDB tables, it is still possible to have more than one MySQL Server
maintain a binary log of all changes, but for the replica to change sources (fail over), the new source-
replica relationship must be explicitly defined on the replica.

Replicating NDB tables to a storage engine that does not perform binary logging. If you attempt
to replicate from an NDB Cluster to a replica that uses a storage engine that does not handle its own
binary logging, the replication process aborts with the error Binary logging not possible ...
Statement cannot be written atomically since more than one engine involved and
at least one engine is self-logging (Error 1595). It is possible to work around this issue in one
of the following ways:

• Turn off binary logging on the replica. This can be accomplished by setting sql_log_bin = 0.

• Change the storage engine used for the mysql.ndb_apply_status table. Causing this table to use
an engine that does not handle its own binary logging can also eliminate the conflict. This can be done
by issuing a statement such as ALTER TABLE mysql.ndb_apply_status ENGINE=MyISAM on the
replica. It is safe to do this when using a storage engine other than NDB on the replica, since you do not
need to worry about keeping multiple replicas synchronized.

• Filter out changes to the mysql.ndb_apply_status table on the replica. This can be done by
starting the replica with --replicate-ignore-table=mysql.ndb_apply_status. If you need for

3938

Known Issues in NDB Cluster Replication

other tables to be ignored by replication, you might wish to use an appropriate --replicate-wild-
ignore-table option instead.

Important

You should not disable replication or binary logging of
mysql.ndb_apply_status or change the storage engine used for this table
when replicating from one NDB Cluster to another. See Replication and binary log
filtering rules with replication between NDB Clusters, for details.

Replication from NDB to a nontransactional storage engine. When replicating from NDB to a
nontransactional storage engine such as MyISAM, you may encounter unnecessary duplicate key errors
when replicating INSERT ... ON DUPLICATE KEY UPDATE statements. You can suppress these by
using --ndb-log-update-as-write=0, which forces updates to be logged as writes, rather than as
updates.

Replication and binary log filtering rules with replication between NDB Clusters. If you are using
any of the options --replicate-do-*, --replicate-ignore-*, --binlog-do-db, or --binlog-
ignore-db to filter databases or tables being replicated, you must take care not to block replication or
binary logging of the mysql.ndb_apply_status, which is required for replication between NDB Clusters
to operate properly. In particular, you must keep in mind the following:

1. Using --replicate-do-db=db_name (and no other --replicate-do-* or --replicate-
ignore-* options) means that only tables in database db_name are replicated. In this case, you
should also use --replicate-do-db=mysql, --binlog-do-db=mysql, or --replicate-do-
table=mysql.ndb_apply_status to ensure that mysql.ndb_apply_status is populated on
replicas.

Using --binlog-do-db=db_name (and no other --binlog-do-db options) means that
changes only to tables in database db_name are written to the binary log. In this case, you should
also use --replicate-do-db=mysql, --binlog-do-db=mysql, or --replicate-do-
table=mysql.ndb_apply_status to ensure that mysql.ndb_apply_status is populated on
replicas.

2. Using --replicate-ignore-db=mysql means that no tables in the mysql database are replicated.
In this case, you should also use --replicate-do-table=mysql.ndb_apply_status to ensure
that mysql.ndb_apply_status is replicated.

Using --binlog-ignore-db=mysql means that no changes to tables in the mysql
database are written to the binary log. In this case, you should also use --replicate-do-
table=mysql.ndb_apply_status to ensure that mysql.ndb_apply_status is replicated.

You should also remember that each replication rule requires the following:

1. Its own --replicate-do-* or --replicate-ignore-* option, and that multiple rules cannot be
expressed in a single replication filtering option. For information about these rules, see Section 16.1.6,
“Replication and Binary Logging Options and Variables”.

2. Its own --binlog-do-db or --binlog-ignore-db option, and that multiple rules cannot be
expressed in a single binary log filtering option. For information about these rules, see Section 5.4.4,
“The Binary Log”.

If you are replicating an NDB Cluster to a replica that uses a storage engine other than NDB, the
considerations just given previously may not apply, as discussed elsewhere in this section.

NDB Cluster Replication and IPv6. While the NDB API and MGM API (and thus data nodes and
management nodes) do not support IPv6 in NDB 7.5 and 7.6, MySQL Servers—including those acting as

3939

NDB Cluster Replication Schema and Tables

SQL nodes in an NDB Cluster—can use IPv6 to contact other MySQL Servers. This means that you can
replicate between NDB Clusters using IPv6 to connect the source and replica SQL nodes as shown by the
dotted arrow in the following diagram:

Figure 21.15 Replication Between SQL Nodes Connected Using IPv6

All connections originating within the NDB Cluster —represented in the preceding diagram by solid arrows
—must use IPv4. In other words, all NDB Cluster data nodes, management servers, and management
clients must be accessible from one another using IPv4. In addition, SQL nodes must use IPv4 to
communicate with the cluster.

Since there is currently no support in the NDB and MGM APIs for IPv6, any applications written using
these APIs must also make all connections using IPv4.

Attribute promotion and demotion. NDB Cluster Replication includes support for attribute promotion
and demotion. The implementation of the latter distinguishes between lossy and non-lossy type
conversions, and their use on the replica can be controlled by setting the slave_type_conversions
global server system variable.

For more information about attribute promotion and demotion in NDB Cluster, see Row-based replication:
attribute promotion and demotion.

NDB, unlike InnoDB or MyISAM, does not write changes to virtual columns to the binary log; however,
this has no detrimental effects on NDB Cluster Replication or replication between NDB and other storage
engines. Changes to stored generated columns are logged.

21.7.4 NDB Cluster Replication Schema and Tables

• ndb_apply_status Table

• ndb_binlog_index Table

• ndb_replication Table

3940

NDB Cluster Replication Schema and Tables

Replication in NDB Cluster makes use of a number of dedicated tables in the mysql database on each
MySQL Server instance acting as an SQL node in both the cluster being replicated and in the replica. This
is true regardless of whether the replica is a single server or a cluster.

The ndb_binlog_index and ndb_apply_status tables are created in the mysql database. They
should not be explicitly replicated by the user. User intervention is normally not required to create or
maintain either of these tables, since both are maintained by the NDB binary log (binlog) injector thread.
This keeps the source mysqld process updated to changes performed by the NDB storage engine. The
NDB binlog injector thread receives events directly from the NDB storage engine. The NDB injector is
responsible for capturing all the data events within the cluster, and ensures that all events which change,
insert, or delete data are recorded in the ndb_binlog_index table. The replica I/O thread transfers the
events from the source's binary log to the replica's relay log.

The ndb_replication table must be created manually. This table can be updated by the user to perform
filtering by database or table. See ndb_replication Table, for more information. ndb_replication is
also used in NDB Replication conflict detection and resolution for conflict resolution control; see Conflict
Resolution Control.

Even though ndb_binlog_index and ndb_apply_status are created and maintained automatically,
it is advisable to check for the existence and integrity of these tables as an initial step in preparing an
NDB Cluster for replication. It is possible to view event data recorded in the binary log by querying the
mysql.ndb_binlog_index table directly on the source. This can be also be accomplished using the
SHOW BINLOG EVENTS statement on either the source or replica SQL node. (See Section 13.7.5.2,
“SHOW BINLOG EVENTS Statement”.)

You can also obtain useful information from the output of SHOW ENGINE NDB STATUS.

Note

When performing schema changes on NDB tables, applications should wait until the
ALTER TABLE statement has returned in the MySQL client connection that issued
the statement before attempting to use the updated definition of the table.

ndb_apply_status Table

ndb_apply_status is used to keep a record of the operations that have been replicated from the source
to the replica. If the ndb_apply_status table does not exist on the replica, ndb_restore re-creates it.

Unlike the case with ndb_binlog_index, the data in this table is not specific to any one SQL node in the
(replica) cluster, and so ndb_apply_status can use the NDBCLUSTER storage engine, as shown here:

CREATE TABLE `ndb_apply_status` (
 `server_id` INT(10) UNSIGNED NOT NULL,
 `epoch` BIGINT(20) UNSIGNED NOT NULL,
 `log_name` VARCHAR(255) CHARACTER SET latin1 COLLATE latin1_bin NOT NULL,
 `start_pos` BIGINT(20) UNSIGNED NOT NULL,
 `end_pos` BIGINT(20) UNSIGNED NOT NULL,
 PRIMARY KEY (`server_id`) USING HASH
) ENGINE=NDBCLUSTER DEFAULT CHARSET=latin1;

The ndb_apply_status table is populated only on replicas, which means that, on the source, this table
never contains any rows; thus, there is no need to allot any DataMemory to ndb_apply_status there.

Because this table is populated from data originating on the source, it should be allowed to replicate;
any replication filtering or binary log filtering rules that inadvertently prevent the replica from updating
ndb_apply_status, or that prevent the source from writing into the binary log may prevent replication

3941

NDB Cluster Replication Schema and Tables

between clusters from operating properly. For more information about potential problems arising from such
filtering rules, see Replication and binary log filtering rules with replication between NDB Clusters.

0 in the epoch column of this table indicates a transaction originating from a storage engine other than
NDB.

ndb_binlog_index Table

NDB Cluster Replication uses the ndb_binlog_index table for storing the binary log's indexing data.
Since this table is local to each MySQL server and does not participate in clustering, it uses the InnoDB
storage engine. This means that it must be created separately on each mysqld participating in the source
cluster. (The binary log itself contains updates from all MySQL servers in the cluster.) This table is defined
as follows:

CREATE TABLE `ndb_binlog_index` (
 `Position` BIGINT(20) UNSIGNED NOT NULL,
 `File` VARCHAR(255) NOT NULL,
 `epoch` BIGINT(20) UNSIGNED NOT NULL,
 `inserts` INT(10) UNSIGNED NOT NULL,
 `updates` INT(10) UNSIGNED NOT NULL,
 `deletes` INT(10) UNSIGNED NOT NULL,
 `schemaops` INT(10) UNSIGNED NOT NULL,
 `orig_server_id` INT(10) UNSIGNED NOT NULL,
 `orig_epoch` BIGINT(20) UNSIGNED NOT NULL,
 `gci` INT(10) UNSIGNED NOT NULL,
 `next_position` bigint(20) unsigned NOT NULL,
 `next_file` varchar(255) NOT NULL,
 PRIMARY KEY (`epoch`,`orig_server_id`,`orig_epoch`)
) ENGINE=InnoDB DEFAULT CHARSET=latin1;

Note

Prior to NDB 7.5.2, this table always used the MyISAM storage engine. If you are
upgrading from an earlier release, you can use mysql_upgrade with the --force
and --upgrade-system-tables options after starting the server.) The system
table upgrade causes an ALTER TABLE ... ENGINE=INNODB statement to be
executed for this table. Use of the MyISAM storage engine for this table continues to
be supported for backward compatibility.

ndb_binlog_index may require additional disk space after being converted to
InnoDB. If this becomes an issue, you may be able to conserve space by using
an InnoDB tablespace for this table, changing its ROW_FORMAT to COMPRESSED,
or both. For more information, see Section 13.1.19, “CREATE TABLESPACE
Statement”, and Section 13.1.18, “CREATE TABLE Statement”, as well as
Section 14.6.3, “Tablespaces”.

The size of the ndb_binlog_index table is dependent on the number of epochs per binary log file and
the number of binary log files. The number of epochs per binary log file normally depends on the amount
of binary log generated per epoch and the size of the binary log file, with smaller epochs resulting in more
epochs per file. You should be aware that empty epochs produce inserts to the ndb_binlog_index table,
even when the --ndb-log-empty-epochs option is OFF, meaning that the number of entries per file
depends on the length of time that the file is in use; this relationship can be represented by the formula
shown here:

[number of epochs per file] = [time spent per file] / TimeBetweenEpochs

A busy NDB Cluster writes to the binary log regularly and presumably rotates binary log files more quickly
than a quiet one. This means that a “quiet” NDB Cluster with --ndb-log-empty-epochs=ON can

3942

NDB Cluster Replication Schema and Tables

actually have a much higher number of ndb_binlog_index rows per file than one with a great deal of
activity.

When mysqld is started with the --ndb-log-orig option, the orig_server_id and orig_epoch
columns store, respectively, the ID of the server on which the event originated and the epoch in which the
event took place on the originating server, which is useful in NDB Cluster replication setups employing
multiple sources. The SELECT statement used to find the closest binary log position to the highest
applied epoch on the replica in a multi-source setup (see Section 21.7.10, “NDB Cluster Replication:
Bidirectional and Circular Replication”) employs these two columns, which are not indexed. This can lead
to performance issues when trying to fail over, since the query must perform a table scan, especially when
the source has been running with --ndb-log-empty-epochs=ON. You can improve multi-source failover
times by adding an index to these columns, as shown here:

ALTER TABLE mysql.ndb_binlog_index
 ADD INDEX orig_lookup USING BTREE (orig_server_id, orig_epoch);

Adding this index provides no benefit when replicating from a single source to a single replica, since
the query used to get the binary log position in such cases makes no use of orig_server_id or
orig_epoch.

See Section 21.7.8, “Implementing Failover with NDB Cluster Replication”, for more information about
using the next_position and next_file columns.

The following figure shows the relationship of the NDB Cluster replication source server, its binary log
injector thread, and the mysql.ndb_binlog_index table.

Figure 21.16 The Replication Source Cluster

ndb_replication Table

The ndb_replication table is used to control binary logging and conflict resolution, and acts on a per-
table basis. Each row in this table corresponds to a table being replicated, determines how to log changes
to the table and, if a conflict resolution function is specified, and determines how to resolve conflicts for that
table.

3943

NDB Cluster Replication Schema and Tables

Unlike the ndb_apply_status and ndb_replication tables, the ndb_replication table must be
created manually, using the SQL statement shown here:

CREATE TABLE mysql.ndb_replication (
 db VARBINARY(63),
 table_name VARBINARY(63),
 server_id INT UNSIGNED,
 binlog_type INT UNSIGNED,
 conflict_fn VARBINARY(128),
 PRIMARY KEY USING HASH (db, table_name, server_id)
) ENGINE=NDB
PARTITION BY KEY(db,table_name);

The columns of this table are listed here, with descriptions:

• db column

The name of the database containing the table to be replicated.

You may employ either or both of the wildcards _ and % as part of the database name. (See Matching
with wildcards, later in this section.)

• table_name column

The name of the table to be replicated.

The table name may include either or both of the wildcards _ and %. See Matching with wildcards, later in
this section.

• server_id column

The unique server ID of the MySQL instance (SQL node) where the table resides.

0 in this column acts like a wildcard equivalent to %, and matches any server ID. (See Matching with
wildcards, later in this section.)

• binlog_type column

The type of binary logging to be employed. See text for values and descriptions.

• conflict_fn column

The conflict resolution function to be applied; one of NDB$OLD(), NDB$MAX(), NDB
$MAX_DELETE_WIN(), NDB$EPOCH(), NDB$EPOCH_TRANS(), NDB$EPOCH2(), NDB
$EPOCH2_TRANS(); NULL indicates that conflict resolution is not used for this table.

See Conflict Resolution Functions, for more information about these functions and their uses in NDB
Replication conflict resolution.

Some conflict resolution functions (NDB$OLD(), NDB$EPOCH(), NDB$EPOCH_TRANS()) require the use
of one or more user-created exceptions tables. See Conflict Resolution Exceptions Table.

To enable conflict resolution with NDB Replication, it is necessary to create and populate this table with
control information on the SQL node or nodes on which the conflict should be resolved. Depending on the
conflict resolution type and method to be employed, this may be the source, the replica, or both servers.
In a simple source-replica setup where data can also be changed locally on the replica this is typically
the replica. In a more complex replication scheme, such as bidirectional replication, this is usually all
of the sources involved. See Section 21.7.11, “NDB Cluster Replication Conflict Resolution”, for more
information.

3944

NDB Cluster Replication Schema and Tables

The ndb_replication table allows table-level control over binary logging outside the scope of conflict
resolution, in which case conflict_fn is specified as NULL, while the remaining column values are used
to control binary logging for a given table or set of tables matching a wildcard expression. By setting the
proper value for the binlog_type column, you can make logging for a given table or tables use a desired
binary log format, or disabling binary logging altogether. Possible values for this column, with values and
descriptions, are shown in the following table:

Table 21.64 binlog_type values, with values and descriptions

Value Description

0 Use server default

1 Do not log this table in the binary log (same effect as
sql_log_bin = 0, but applies to one or more specified
tables only)

2 Log updated attributes only; log these as WRITE_ROW
events

3 Log full row, even if not updated (MySQL server default
behavior)

6 Use updated attributes, even if values are unchanged

7 Log full row, even if no values are changed; log updates
as UPDATE_ROW events

8 Log update as UPDATE_ROW; log only primary key
columns in before image, and only updated columns
in after image (same effect as --ndb-log-update-
minimal, but applies to one or more specified tables
only)

9 Log update as UPDATE_ROW; log only primary key
columns in before image, and all columns other than
primary key columns in after image

Note

binlog_type values 4 and 5 are not used, and so are omitted from the table just
shown, as well as from the next table.

Several binlog_type values are equivalent to various combinations of the mysqld logging options --
ndb-log-updated-only, --ndb-log-update-as-write, and --ndb-log-update-minimal, as
shown in the following table:

Table 21.65 binlog_type values with equivalent combinations of NDB logging options

Value --ndb-log-updated-only
Value

--ndb-log-update-as-
write Value

--ndb-log-update-
minimal Value

0 -- -- --

1 -- -- --

2 ON ON OFF

3 OFF ON OFF

6 ON OFF OFF

7 OFF OFF OFF

8 ON OFF ON

3945

NDB Cluster Replication Schema and Tables

Value --ndb-log-updated-only
Value

--ndb-log-update-as-
write Value

--ndb-log-update-
minimal Value

9 OFF OFF ON

Binary logging can be set to different formats for different tables by inserting rows into the
ndb_replication table using the appropriate db, table_name, and binlog_type column values. The
internal integer value shown in the preceding table should be used when setting the binary logging format.
The following two statements set binary logging to logging of full rows (value 3) for table test.a, and to
logging of updates only (value 2) for table test.b:

Table test.a: Log full rows
INSERT INTO mysql.ndb_replication VALUES("test", "a", 0, 3, NULL);

Table test.b: log updates only
INSERT INTO mysql.ndb_replication VALUES("test", "b", 0, 2, NULL);

To disable logging for one or more tables, use 1 for binlog_type, as shown here:

Disable binary logging for table test.t1
INSERT INTO mysql.ndb_replication VALUES("test", "t1", 0, 1, NULL);

Disable binary logging for any table in 'test' whose name begins with 't'
INSERT INTO mysql.ndb_replication VALUES("test", "t%", 0, 1, NULL);

Disabling logging for a given table is the equivalent of setting sql_log_bin = 0, except that it applies to
one or more tables individually. If an SQL node is not performing binary logging for a given table, it is not
sent the row change events for those tables. This means that it is not receiving all changes and discarding
some, but rather it is not subscribing to these changes.

Disabling logging can be useful for a number of reasons, including those listed here:

• Not sending changes across the network generally saves bandwidth, buffering, and CPU resources.

• Not logging changes to tables with very frequent updates but whose value is not great is a good fit for
transient data (such as session data) that may be relatively unimportant in the event of a complete failure
of the cluster.

• Using a session variable (or sql_log_bin) and application code, it is also possible to log (or not to log)
certain SQL statements or types of SQL statements; for example, it may be desirable in some cases not
to record DDL statements on one or more tables.

• Splitting replication streams into two (or more) binary logs can be done for reasons of performance, a
need to replicate different databases to different places, use of different binary logging types for different
databases, and so on.

Matching with wildcards. In order not to make it necessary to insert a row in the ndb_replication
table for each and every combination of database, table, and SQL node in your replication setup, NDB
supports wildcard matching on the this table's db, table_name, and server_id columns. Database
and table names used in, respectively, db and table_name may contain either or both of the following
wildcards:

• _ (underscore character): matches zero or more characters

• % (percent sign): matches a single character

(These are the same wildcards as supported by the MySQL LIKE operator.)

The server_id column supports 0 as a wildcard equivalent to _ (matches anything). This is used in the
examples shown previously.

3946

Preparing the NDB Cluster for Replication

A given row in the ndb_replication table can use wildcards to match any of the database name, table
name, and server ID in any combination. Where there are multiple potential matches in the table, the best
match is chosen, according to the table shown here, where W represents a wildcard match, E an exact
match, and the greater the value in the Quality column, the better the match:

Table 21.66 Weights of different combinations of wildcard and exact matches on columns in the
mysql.ndb_replication table

db table_name server_id Quality

W W W 1

W W E 2

W E W 3

W E E 4

E W W 5

E W E 6

E E W 7

E E E 8

Thus, an exact match on database name, table name, and server ID is considered best (strongest), while
the weakest (worst) match is a wildcard match on all three columns. Only the strength of the match is
considered when choosing which rule to apply; the order in which the rows occur in the table has no effect
on this determination.

Logging Full or Partial Rows. There are two basic methods of logging rows, as determined by the
setting of the --ndb-log-updated-only option for mysqld:

• Log complete rows (option set to ON)

• Log only column data that has been updated—that is, column data whose value has been set,
regardless of whether or not this value was actually changed. This is the default behavior (option set to
OFF).

It is usually sufficient—and more efficient—to log updated columns only; however, if you need to log full
rows, you can do so by setting --ndb-log-updated-only to 0 or OFF.

Logging Changed Data as Updates. The setting of the MySQL Server's --ndb-log-update-as-
write option determines whether logging is performed with or without the “before” image.

Because conflict resolution for updates and delete operations is done in the MySQL Server's update
handler, it is necessary to control the logging performed by the replication source such that updates are
updates and not writes; that is, such that updates are treated as changes in existing rows rather than the
writing of new rows, even though these replace existing rows.

This option is turned on by default; in other words, updates are treated as writes. That is, updates are by
default written as write_row events in the binary log, rather than as update_row events.

To disable the option, start the source mysqld with --ndb-log-update-as-write=0 or --ndb-
log-update-as-write=OFF. You must do this when replicating from NDB tables to tables using a
different storage engine; see Replication from NDB to other storage engines, and Replication from NDB to
a nontransactional storage engine, for more information.

21.7.5 Preparing the NDB Cluster for Replication

3947

Preparing the NDB Cluster for Replication

Preparing the NDB Cluster for replication consists of the following steps:

1. Check all MySQL servers for version compatibility (see Section 21.7.2, “General Requirements for NDB
Cluster Replication”).

2. Create a replication account on the source Cluster with the appropriate privileges, using the following
two SQL statements:

mysqlS> CREATE USER 'replica_user'@'replica_host'
 -> IDENTIFIED BY 'replica_password';

mysqlS> GRANT REPLICATION SLAVE ON *.*
 -> TO 'replica_user'@'replica_host';

In the previous statement, replica_user is the replication account user name, replica_host is
the host name or IP address of the replica, and replica_password is the password to assign to this
account.

For example, to create a replica user account with the name myreplica, logging in from the host
named replica-host, and using the password 53cr37, use the following CREATE USER and GRANT
statements:

mysqlS> CREATE USER 'myreplica'@'replica-host'
 -> IDENTIFIED BY '53cr37';

mysqlS> GRANT REPLICATION SLAVE ON *.*
 -> TO 'myreplica'@'replica-host';

For security reasons, it is preferable to use a unique user account—not employed for any other purpose
—for the replication account.

3. Set up the replica to use the source. Using the mysql client, this can be accomplished with the
following CHANGE MASTER TO statement:

mysqlR> CHANGE MASTER TO
 -> MASTER_HOST='source_host',
 -> MASTER_PORT=source_port,
 -> MASTER_USER='replica_user',
 -> MASTER_PASSWORD='replica_password';

In the previous statement, source_host is the host name or IP address of the replication source,
source_port is the port for the replica to use when connecting to the source, replica_user is the
user name set up for the replica on the source, and replica_password is the password set for that
user account in the previous step.

For example, to tell the replica to use the MySQL server whose host name is rep-source with the
replication account created in the previous step, use the following statement:

mysqlR> CHANGE MASTER TO
 -> MASTER_HOST='rep-source',
 -> MASTER_PORT=3306,
 -> MASTER_USER='myreplica',
 -> MASTER_PASSWORD='53cr37';

For a complete list of options that can be used with this statement, see Section 13.4.2.1, “CHANGE
MASTER TO Statement”.

To provide replication backup capability, you also need to add an --ndb-connectstring option to
the replica's my.cnf file prior to starting the replication process. See Section 21.7.9, “NDB Cluster
Backups With NDB Cluster Replication”, for details.

3948

Starting NDB Cluster Replication (Single Replication Channel)

For additional options that can be set in my.cnf for replicas, see Section 16.1.6, “Replication and
Binary Logging Options and Variables”.

4. If the source cluster is already in use, you can create a backup of the source and load this onto the
replica to cut down on the amount of time required for the replica to synchronize itself with the source.
If the replica is also running NDB Cluster, this can be accomplished using the backup and restore
procedure described in Section 21.7.9, “NDB Cluster Backups With NDB Cluster Replication”.

ndb-connectstring=management_host[:port]

In the event that you are not using NDB Cluster on the replica, you can create a backup with this
command on the source:

shellS> mysqldump --master-data=1

Then import the resulting data dump onto the replica by copying the dump file over to it. After this, you
can use the mysql client to import the data from the dumpfile into the replica database as shown here,
where dump_file is the name of the file that was generated using mysqldump on the source, and
db_name is the name of the database to be replicated:

shellR> mysql -u root -p db_name < dump_file

For a complete list of options to use with mysqldump, see Section 4.5.4, “mysqldump — A Database
Backup Program”.

Note

If you copy the data to the replica in this fashion, you should make sure that
the replica is started with the --skip-slave-start option on the command
line, or else include skip-slave-start in the replica's my.cnf file to keep it
from trying to connect to the source to begin replicating before all the data has
been loaded. Once the data loading has completed, follow the additional steps
outlined in the next two sections.

5. Ensure that each MySQL server acting as a replication source is assigned a unique server ID, and
has binary logging enabled, using the row-based format. (See Section 16.2.1, “Replication Formats”.)
In addition, we recommend enabling the slave_allow_batching system variable; beginning with
NDB 7.6.23, a warning is issued if this variable is set to OFF. You should also consider increasing the
values used with the --ndb-batch-size and --ndb-blob-write-batch-bytes options as well.
All of these options can be set either in the source server's my.cnf file, or on the command line when
starting the source mysqld process. See Section 21.7.6, “Starting NDB Cluster Replication (Single
Replication Channel)”, for more information.

21.7.6 Starting NDB Cluster Replication (Single Replication Channel)

This section outlines the procedure for starting NDB Cluster replication using a single replication channel.

1. Start the MySQL replication source server by issuing this command, where id is this server's unique ID
(see Section 21.7.2, “General Requirements for NDB Cluster Replication”):

shellS> mysqld --ndbcluster --server-id=id \
 --log-bin --ndb-log-bin &

This starts the server's mysqld process with binary logging enabled using the proper logging format.

3949

Starting NDB Cluster Replication (Single Replication Channel)

Note

You can also start the source with --binlog-format=MIXED, in which case
row-based replication is used automatically when replicating between clusters.
Statement-based binary logging is not supported for NDB Cluster Replication
(see Section 21.7.2, “General Requirements for NDB Cluster Replication”).

2. Start the MySQL replica server as shown here:

shellR> mysqld --ndbcluster --server-id=id &

In the command just shown, id is the replica server's unique ID. It is not necessary to enable logging
on the replica.

Note

You should use the --skip-slave-start option with this command or else
you should include skip-slave-start in the replica server's my.cnf file,
unless you want replication to begin immediately. With the use of this option, the
start of replication is delayed until the appropriate START SLAVE statement has
been issued, as explained in Step 4 below.

3. It is necessary to synchronize the replica server with the source server's replication binary log. If binary
logging has not previously been running on the source, run the following statement on the replica:

mysqlR> CHANGE MASTER TO
 -> MASTER_LOG_FILE='',
 -> MASTER_LOG_POS=4;

This instructs the replica to begin reading the source server's binary log from the log's starting point.
Otherwise—that is, if you are loading data from the source using a backup—see Section 21.7.8,
“Implementing Failover with NDB Cluster Replication”, for information on how to obtain the correct
values to use for MASTER_LOG_FILE and MASTER_LOG_POS in such cases.

4. Finally, instruct the replica to begin applying replication by issuing this command from the mysql client
on the replica:

mysqlR> START SLAVE;

This also initiates the transmission of data and changes from the source to the replica.

It is also possible to use two replication channels, in a manner similar to the procedure described in
the next section; the differences between this and using a single replication channel are covered in
Section 21.7.7, “Using Two Replication Channels for NDB Cluster Replication”.

It is also possible to improve cluster replication performance by enabling batched updates. This can
be accomplished by setting the slave_allow_batching system variable on the replicas' mysqld
processes. Normally, updates are applied as soon as they are received. However, the use of batching
causes updates to be applied in batches of 32 KB each; this can result in higher throughput and less CPU
usage, particularly where individual updates are relatively small.

Note

Batching works on a per-epoch basis; updates belonging to more than one
transaction can be sent as part of the same batch.

All outstanding updates are applied when the end of an epoch is reached, even if
the updates total less than 32 KB.

3950

Using Two Replication Channels for NDB Cluster Replication

Batching can be turned on and off at runtime. To activate it at runtime, you can use either of these two
statements:

SET GLOBAL slave_allow_batching = 1;
SET GLOBAL slave_allow_batching = ON;

If a particular batch causes problems (such as a statement whose effects do not appear to be replicated
correctly), batching can be deactivated using either of the following statements:

SET GLOBAL slave_allow_batching = 0;
SET GLOBAL slave_allow_batching = OFF;

You can check whether batching is currently being used by means of an appropriate SHOW VARIABLES
statement, like this one:

mysql> SHOW VARIABLES LIKE 'slave%';
+---------------------------+-------+
| Variable_name | Value |
+---------------------------+-------+
slave_allow_batching	ON
slave_compressed_protocol	OFF
slave_load_tmpdir	/tmp
slave_net_timeout	3600
slave_skip_errors	OFF
slave_transaction_retries	10
+---------------------------+-------+
6 rows in set (0.00 sec)

21.7.7 Using Two Replication Channels for NDB Cluster Replication

In a more complete example scenario, we envision two replication channels to provide redundancy and
thereby guard against possible failure of a single replication channel. This requires a total of four replication
servers, two source servers on the source cluster and two replica servers on the replica cluster. For
purposes of the discussion that follows, we assume that unique identifiers are assigned as shown here:

Table 21.67 NDB Cluster replication servers described in the text

Server ID Description

1 Source - primary replication channel (S)

2 Source - secondary replication channel (S')

3 Replica - primary replication channel (R)

4 replica - secondary replication channel (R')

Setting up replication with two channels is not radically different from setting up a single replication
channel. First, the mysqld processes for the primary and secondary replication source servers must
be started, followed by those for the primary and secondary replicas. The replication processes can be
initiated by issuing the START SLAVE statement on each of the replicas. The commands and the order in
which they need to be issued are shown here:

1. Start the primary replication source:

shellS> mysqld --ndbcluster --server-id=1 \
 --log-bin &

2. Start the secondary replication source:

shellS'> mysqld --ndbcluster --server-id=2 \
 --log-bin &

3. Start the primary replica server:

3951

Implementing Failover with NDB Cluster Replication

shellR> mysqld --ndbcluster --server-id=3 \
 --skip-slave-start &

4. Start the secondary replica server:

shellR'> mysqld --ndbcluster --server-id=4 \
 --skip-slave-start &

5. Finally, initiate replication on the primary channel by executing the START SLAVE statement on the
primary replica as shown here:

mysqlR> START SLAVE;

Warning

Only the primary channel must be started at this point. The secondary
replication channel needs to be started only in the event that the primary
replication channel fails, as described in Section 21.7.8, “Implementing
Failover with NDB Cluster Replication”. Running multiple replication channels
simultaneously can result in unwanted duplicate records being created on the
replicas.

As mentioned previously, it is not necessary to enable binary logging on the replicas.

21.7.8 Implementing Failover with NDB Cluster Replication

In the event that the primary Cluster replication process fails, it is possible to switch over to the secondary
replication channel. The following procedure describes the steps required to accomplish this.

1. Obtain the time of the most recent global checkpoint (GCP). That is, you need to determine the most
recent epoch from the ndb_apply_status table on the replica cluster, which can be found using the
following query:

mysqlR'> SELECT @latest:=MAX(epoch)
 -> FROM mysql.ndb_apply_status;

In a circular replication topology, with a source and a replica running on each host, when you are using
ndb_log_apply_status=1, NDB Cluster epochs are written in the replicas' binary logs. This means
that the ndb_apply_status table contains information for the replica on this host as well as for any
other host which acts as a replica of the replication source server running on this host.

In this case, you need to determine the latest epoch on this replica to the exclusion of any epochs
from any other replicas in this replica's binary log that were not listed in the IGNORE_SERVER_IDS
options of the CHANGE MASTER TO statement used to set up this replica. The reason for excluding
such epochs is that rows in the mysql.ndb_apply_status table whose server IDs have a match in
the IGNORE_SERVER_IDS list from the CHANGE MASTER TO statement used to prepare this replicas's
source are also considered to be from local servers, in addition to those having the replica's own server
ID. You can retrieve this list as Replicate_Ignore_Server_Ids from the output of SHOW SLAVE
STATUS. We assume that you have obtained this list and are substituting it for ignore_server_ids
in the query shown here, which like the previous version of the query, selects the greatest epoch into a
variable named @latest:

mysqlR'> SELECT @latest:=MAX(epoch)
 -> FROM mysql.ndb_apply_status
 -> WHERE server_id NOT IN (ignore_server_ids);

In some cases, it may be simpler or more efficient (or both) to use a list of the server IDs to be included
and server_id IN server_id_list in the WHERE condition of the preceding query.

3952

Implementing Failover with NDB Cluster Replication

2. Using the information obtained from the query shown in Step 1, obtain the corresponding records from
the ndb_binlog_index table on the source cluster.

You can use the following query to obtain the needed records from the ndb_binlog_index table on
the source:

mysqlS'> SELECT
 -> @file:=SUBSTRING_INDEX(next_file, '/', -1),
 -> @pos:=next_position
 -> FROM mysql.ndb_binlog_index
 -> WHERE epoch = @latest;

These are the records saved on the source since the failure of the primary replication channel. We
have employed a user variable @latest here to represent the value obtained in Step 1. Of course, it is
not possible for one mysqld instance to access user variables set on another server instance directly.
These values must be “plugged in” to the second query manually or by an application.

Important

You must ensure that the replica mysqld is started with --slave-skip-
errors=ddl_exist_errors before executing START SLAVE. Otherwise,
replication may stop with duplicate DDL errors.

3. Now it is possible to synchronize the secondary channel by running the following query on the
secondary replica server:

mysqlR'> CHANGE MASTER TO
 -> MASTER_LOG_FILE='@file',
 -> MASTER_LOG_POS=@pos;

Again we have employed user variables (in this case @file and @pos) to represent the values
obtained in Step 2 and applied in Step 3; in practice these values must be inserted manually or using
an application that can access both of the servers involved.

Note

@file is a string value such as '/var/log/mysql/replication-source-
bin.00001', and so must be quoted when used in SQL or application code.
However, the value represented by @pos must not be quoted. Although MySQL
normally attempts to convert strings to numbers, this case is an exception.

4. You can now initiate replication on the secondary channel by issuing the appropriate statement on the
secondary replica mysqld:

mysqlR'> START SLAVE;

Once the secondary replication channel is active, you can investigate the failure of the primary and effect
repairs. The precise actions required to do this depend upon the reasons for which the primary channel
failed.

Warning

The secondary replication channel is to be started only if and when the primary
replication channel has failed. Running multiple replication channels simultaneously
can result in unwanted duplicate records being created on the replicas.

If the failure is limited to a single server, it should in theory be possible to replicate from S to R', or from S'
to R.

3953

NDB Cluster Backups With NDB Cluster Replication

21.7.9 NDB Cluster Backups With NDB Cluster Replication

This section discusses making backups and restoring from them using NDB Cluster replication.
We assume that the replication servers have already been configured as covered previously (see
Section 21.7.5, “Preparing the NDB Cluster for Replication”, and the sections immediately following). This
having been done, the procedure for making a backup and then restoring from it is as follows:

1. There are two different methods by which the backup may be started.

• Method A. This method requires that the cluster backup process was previously enabled on the
source server, prior to starting the replication process. This can be done by including the following
line in a [mysql_cluster] section in the my.cnf file, where management_host is the
IP address or host name of the NDB management server for the source cluster, and port is the
management server's port number:

ndb-connectstring=management_host[:port]

Note

The port number needs to be specified only if the default port (1186) is not
being used. See Section 21.3.3, “Initial Configuration of NDB Cluster”, for
more information about ports and port allocation in NDB Cluster.

 In this case, the backup can be started by executing this statement on the replication source:

shellS> ndb_mgm -e "START BACKUP"

• Method B. If the my.cnf file does not specify where to find the management host, you can start
the backup process by passing this information to the NDB management client as part of the START
BACKUP command. This can be done as shown here, where management_host and port are the
host name and port number of the management server:

shellS> ndb_mgm management_host:port -e "START BACKUP"

In our scenario as outlined earlier (see Section 21.7.5, “Preparing the NDB Cluster for Replication”),
this would be executed as follows:

shellS> ndb_mgm rep-source:1186 -e "START BACKUP"

2. Copy the cluster backup files to the replica that is being brought on line. Each system running an ndbd
process for the source cluster has cluster backup files located on it, and all of these files must be
copied to the replica to ensure a successful restore. The backup files can be copied into any directory
on the computer where the replica's management host resides, as long as the MySQL and NDB
binaries have read permissions in that directory. In this case, we assume that these files have been
copied into the directory /var/BACKUPS/BACKUP-1.

While it is not necessary that the replica cluster have the same number of ndbd processes (data
nodes) as the source, it is highly recommended this number be the same. It is necessary that the
replica be started with the --skip-slave-start option, to prevent premature startup of the
replication process.

3. Create any databases on the replica cluster that are present on the source cluster and that are to be
replicated.

3954

NDB Cluster Backups With NDB Cluster Replication

Important

A CREATE DATABASE (or CREATE SCHEMA) statement corresponding to each
database to be replicated must be executed on each SQL node in the replica
cluster.

4. Reset the replica cluster using this statement in the mysql client:

mysqlR> RESET SLAVE;

5. You can now start the cluster restoration process on the replica using the ndb_restore command
for each backup file in turn. For the first of these, it is necessary to include the -m option to restore the
cluster metadata, as shown here:

shellR> ndb_restore -c replica_host:port -n node-id \
 -b backup-id -m -r dir

dir is the path to the directory where the backup files have been placed on the replica. For the
ndb_restore commands corresponding to the remaining backup files, the -m option should not be
used.

For restoring from a source cluster with four data nodes (as shown in the figure in Section 21.7, “NDB
Cluster Replication”) where the backup files have been copied to the directory /var/BACKUPS/
BACKUP-1, the proper sequence of commands to be executed on the replica might look like this:

shellR> ndb_restore -c replica-host:1186 -n 2 -b 1 -m \
 -r ./var/BACKUPS/BACKUP-1
shellR> ndb_restore -c replica-host:1186 -n 3 -b 1 \
 -r ./var/BACKUPS/BACKUP-1
shellR> ndb_restore -c replica-host:1186 -n 4 -b 1 \
 -r ./var/BACKUPS/BACKUP-1
shellR> ndb_restore -c replica-host:1186 -n 5 -b 1 -e \
 -r ./var/BACKUPS/BACKUP-1

Important

The -e (or --restore-epoch) option in the final invocation of ndb_restore
in this example is required to make sure that the epoch is written to the replica's
mysql.ndb_apply_status table. Without this information, the replica cannot
synchronize properly with the source. (See Section 21.5.24, “ndb_restore —
Restore an NDB Cluster Backup”.)

6. Now you need to obtain the most recent epoch from the ndb_apply_status table on the replica (as
discussed in Section 21.7.8, “Implementing Failover with NDB Cluster Replication”):

mysqlR> SELECT @latest:=MAX(epoch)
 FROM mysql.ndb_apply_status;

7. Using @latest as the epoch value obtained in the previous step, you can obtain the correct starting
position @pos in the correct binary log file @file from the mysql.ndb_binlog_index table on the
source. The query shown here gets these from the next_position and next_file columns from
the last epoch applied before the logical restore position:

mysqlS> SELECT
 -> @file:=SUBSTRING_INDEX(next_file, '/', -1),
 -> @pos:=next_position
 -> FROM mysql.ndb_binlog_index
 -> WHERE epoch > @latest

3955

NDB Cluster Backups With NDB Cluster Replication

 -> ORDER BY epoch ASC LIMIT 1;

In the event that there is currently no replication traffic, you can get similar information by running SHOW
MASTER STATUS on the source and using the value shown in the Position column of the output for
the file whose name has the suffix with the greatest value for all files shown in the File column. In this
case, you must determine which file this is and supply the name in the next step manually or by parsing
the output with a script.

8. Using the values obtained in the previous step, you can now issue the appropriate CHANGE MASTER
TO statement in the replica's mysql client:

mysqlR> CHANGE MASTER TO
 -> MASTER_LOG_FILE='@file',
 -> MASTER_LOG_POS=@pos;

9. Now that the replica knows from what point in which binary log file to start reading data from the source,
you can cause the replica to begin replicating with this statement:

mysqlR> START SLAVE;

To perform a backup and restore on a second replication channel, it is necessary only to repeat these
steps, substituting the host names and IDs of the secondary source and replica for those of the primary
source and replica servers where appropriate, and running the preceding statements on them.

For additional information on performing Cluster backups and restoring Cluster from backups, see
Section 21.6.8, “Online Backup of NDB Cluster”.

21.7.9.1 NDB Cluster Replication: Automating Synchronization of the Replica to the Source
Binary Log

It is possible to automate much of the process described in the previous section (see Section 21.7.9, “NDB
Cluster Backups With NDB Cluster Replication”). The following Perl script reset-replica.pl serves as
an example of how you can do this.

#!/user/bin/perl -w

file: reset-replica.pl

Copyright (c) 2005, 2020, Oracle and/or its affiliates. All rights reserved.

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to:
Free Software Foundation, Inc.
59 Temple Place, Suite 330
Boston, MA 02111-1307 USA
#
Version 1.1

######################## Includes ###############################

use DBI;

3956

NDB Cluster Backups With NDB Cluster Replication

######################## Globals ################################

my $m_host='';
my $m_port='';
my $m_user='';
my $m_pass='';
my $s_host='';
my $s_port='';
my $s_user='';
my $s_pass='';
my $dbhM='';
my $dbhS='';

####################### Sub Prototypes ##########################

sub CollectCommandPromptInfo;
sub ConnectToDatabases;
sub DisconnectFromDatabases;
sub GetReplicaEpoch;
sub GetSourceInfo;
sub UpdateReplica;

######################## Program Main ###########################

CollectCommandPromptInfo;
ConnectToDatabases;
GetReplicaEpoch;
GetSourceInfo;
UpdateReplica;
DisconnectFromDatabases;

################## Collect Command Prompt Info ##################

sub CollectCommandPromptInfo
{
 ### Check that user has supplied correct number of command line args
 die "Usage:\n
 reset-replica >source MySQL host< >source MySQL port< \n
 >source user< >source pass< >replica MySQL host< \n
 >replica MySQL port< >replica user< >replica pass< \n
 All 8 arguments must be passed. Use BLANK for NULL passwords\n"
 unless @ARGV == 8;

 $m_host = $ARGV[0];
 $m_port = $ARGV[1];
 $m_user = $ARGV[2];
 $m_pass = $ARGV[3];
 $s_host = $ARGV[4];
 $s_port = $ARGV[5];
 $s_user = $ARGV[6];
 $s_pass = $ARGV[7];

 if ($m_pass eq "BLANK") { $m_pass = '';}
 if ($s_pass eq "BLANK") { $s_pass = '';}
}

############### Make connections to both databases #############

sub ConnectToDatabases
{
 ### Connect to both source and replica cluster databases

 ### Connect to source
 $dbhM
 = DBI->connect(
 "dbi:mysql:database=mysql;host=$m_host;port=$m_port",
 "$m_user", "$m_pass")

3957

NDB Cluster Backups With NDB Cluster Replication

 or die "Can't connect to source cluster MySQL process!
 Error: $DBI::errstr\n";

 ### Connect to replica
 $dbhS
 = DBI->connect(
 "dbi:mysql:database=mysql;host=$s_host",
 "$s_user", "$s_pass")
 or die "Can't connect to replica cluster MySQL process!
 Error: $DBI::errstr\n";
}

################ Disconnect from both databases ################

sub DisconnectFromDatabases
{
 ### Disconnect from source

 $dbhM->disconnect
 or warn " Disconnection failed: $DBI::errstr\n";

 ### Disconnect from replica

 $dbhS->disconnect
 or warn " Disconnection failed: $DBI::errstr\n";
}

###################### Find the last good GCI ##################

sub GetReplicaEpoch
{
 $sth = $dbhS->prepare("SELECT MAX(epoch)
 FROM mysql.ndb_apply_status;")
 or die "Error while preparing to select epoch from replica: ",
 $dbhS->errstr;

 $sth->execute
 or die "Selecting epoch from replica error: ", $sth->errstr;

 $sth->bind_col (1, \$epoch);
 $sth->fetch;
 print "\tReplica epoch = $epoch\n";
 $sth->finish;
}

####### Find the position of the last GCI in the binary log ########

sub GetSourceInfo
{
 $sth = $dbhM->prepare("SELECT
 SUBSTRING_INDEX(File, '/', -1), Position
 FROM mysql.ndb_binlog_index
 WHERE epoch > $epoch
 ORDER BY epoch ASC LIMIT 1;")
 or die "Prepare to select from source error: ", $dbhM->errstr;

 $sth->execute
 or die "Selecting from source error: ", $sth->errstr;

 $sth->bind_col (1, \$binlog);
 $sth->bind_col (2, \$binpos);
 $sth->fetch;
 print "\tSource binary log file = $binlog\n";
 print "\tSource binary log position = $binpos\n";
 $sth->finish;
}

3958

NDB Cluster Backups With NDB Cluster Replication

########## Set the replica to process from that location #########

sub UpdateReplica
{
 $sth = $dbhS->prepare("CHANGE MASTER TO
 MASTER_LOG_FILE='$binlog',
 MASTER_LOG_POS=$binpos;")
 or die "Prepare to CHANGE MASTER error: ", $dbhS->errstr;

 $sth->execute
 or die "CHANGE MASTER on replica error: ", $sth->errstr;
 $sth->finish;
 print "\tReplica has been updated. You may now start the replica.\n";
}

end reset-replica.pl

21.7.9.2 Point-In-Time Recovery Using NDB Cluster Replication

Point-in-time recovery—that is, recovery of data changes made since a given point in time—is performed
after restoring a full backup that returns the server to its state when the backup was made. Performing
point-in-time recovery of NDB Cluster tables with NDB Cluster and NDB Cluster Replication can be
accomplished using a native NDB data backup (taken by issuing CREATE BACKUP in the ndb_mgm client)
and restoring the ndb_binlog_index table (from a dump made using mysqldump).

To perform point-in-time recovery of NDB Cluster, it is necessary to follow the steps shown here:

1. Back up all NDB databases in the cluster, using the START BACKUP command in the ndb_mgm client
(see Section 21.6.8, “Online Backup of NDB Cluster”).

2. At some later point, prior to restoring the cluster, make a backup of the mysql.ndb_binlog_index
table. It is probably simplest to use mysqldump for this task. Also back up the binary log files at this
time.

This backup should be updated regularly—perhaps even hourly—depending on your needs.

3. (Catastrophic failure or error occurs.)

4. Locate the last known good backup.

5. Clear the data node file systems (using ndbd --initial or ndbmtd --initial).

Note

NDB Cluster Disk Data tablespace and log files are not removed by --
initial. You must delete these manually.

6. Use DROP TABLE or TRUNCATE TABLE with the mysql.ndb_binlog_index table.

7. Execute ndb_restore, restoring all data. You must include the --restore-epoch option when you
run ndb_restore, so that the ndb_apply_status table is populated correctly. (See Section 21.5.24,
“ndb_restore — Restore an NDB Cluster Backup”, for more information.)

8. Restore the ndb_binlog_index table from the output of mysqldump and restore the binary log files
from backup, if necessary.

9. Find the epoch applied most recently—that is, the maximum epoch column value in the
ndb_apply_status table—as the user variable @LATEST_EPOCH (emphasized):

SELECT @LATEST_EPOCH:=MAX(epoch)

3959

NDB Cluster Replication: Bidirectional and Circular Replication

 FROM mysql.ndb_apply_status;

10. Find the latest binary log file (@FIRST_FILE) and position (Position column value) within this file that
correspond to @LATEST_EPOCH in the ndb_binlog_index table:

SELECT Position, @FIRST_FILE:=File
 FROM mysql.ndb_binlog_index
 WHERE epoch > @LATEST_EPOCH ORDER BY epoch ASC LIMIT 1;

11. Using mysqlbinlog, replay the binary log events from the given file and position up to the point of the
failure. (See Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”.)

See also Section 7.5, “Point-in-Time (Incremental) Recovery”, for more information about the binary log,
replication, and incremental recovery.

21.7.10 NDB Cluster Replication: Bidirectional and Circular Replication

It is possible to use NDB Cluster for bidirectional replication between two clusters, as well as for circular
replication between any number of clusters.

Circular replication example. In the next few paragraphs we consider the example of a replication
setup involving three NDB Clusters numbered 1, 2, and 3, in which Cluster 1 acts as the replication source
for Cluster 2, Cluster 2 acts as the source for Cluster 3, and Cluster 3 acts as the source for Cluster 1.
Each cluster has two SQL nodes, with SQL nodes A and B belonging to Cluster 1, SQL nodes C and D
belonging to Cluster 2, and SQL nodes E and F belonging to Cluster 3.

Circular replication using these clusters is supported as long as the following conditions are met:

• The SQL nodes on all sources and replicas are the same.

• All SQL nodes acting as sources and replicas are started with the log_slave_updates system
variable enabled.

This type of circular replication setup is shown in the following diagram:

3960

NDB Cluster Replication: Bidirectional and Circular Replication

Figure 21.17 NDB Cluster Circular Replication with All Sources As Replicas

In this scenario, SQL node A in Cluster 1 replicates to SQL node C in Cluster 2; SQL node C replicates
to SQL node E in Cluster 3; SQL node E replicates to SQL node A. In other words, the replication line
(indicated by the curved arrows in the diagram) directly connects all SQL nodes used as replication
sources and replicas.

It is also possible to set up circular replication in such a way that not all source SQL nodes are also
replicas, as shown here:

3961

NDB Cluster Replication: Bidirectional and Circular Replication

Figure 21.18 NDB Cluster Circular Replication Where Not All Sources Are Replicas

In this case, different SQL nodes in each cluster are used as replication sources and replicas. You must
not start any of the SQL nodes with the log_slave_updates system variable enabled. This type of
circular replication scheme for NDB Cluster, in which the line of replication (again indicated by the curved
arrows in the diagram) is discontinuous, should be possible, but it should be noted that it has not yet been
thoroughly tested and must therefore still be considered experimental.

Using NDB-native backup and restore to initialize a replica cluster. When setting up circular
replication, it is possible to initialize the replica cluster by using the management client START BACKUP

3962

NDB Cluster Replication: Bidirectional and Circular Replication

command on one NDB Cluster to create a backup and then applying this backup on another NDB Cluster
using ndb_restore. This does not automatically create binary logs on the second NDB Cluster's SQL
node acting as the replica; in order to cause the binary logs to be created, you must issue a SHOW TABLES
statement on that SQL node; this should be done prior to running START SLAVE. This is a known issue.

Multi-source failover example. In this section, we discuss failover in a multi-source NDB Cluster
replication setup with three NDB Clusters having server IDs 1, 2, and 3. In this scenario, Cluster 1
replicates to Clusters 2 and 3; Cluster 2 also replicates to Cluster 3. This relationship is shown here:

Figure 21.19 NDB Cluster Multi-Master Replication With 3 Sources

In other words, data replicates from Cluster 1 to Cluster 3 through 2 different routes: directly, and by way of
Cluster 2.

Not all MySQL servers taking part in multi-source replication must act as both source and replica, and a
given NDB Cluster might use different SQL nodes for different replication channels. Such a case is shown
here:

3963

NDB Cluster Replication: Bidirectional and Circular Replication

Figure 21.20 NDB Cluster Multi-Source Replication, With MySQL Servers

MySQL servers acting as replicas must be run with the log_slave_updates system variable enabled.
Which mysqld processes require this option is also shown in the preceding diagram.

Note

Using the log_slave_updates system variable has no effect on servers not
being run as replicas.

The need for failover arises when one of the replicating clusters goes down. In this example, we consider
the case where Cluster 1 is lost to service, and so Cluster 3 loses 2 sources of updates from Cluster 1.
Because replication between NDB Clusters is asynchronous, there is no guarantee that Cluster 3's updates
originating directly from Cluster 1 are more recent than those received through Cluster 2. You can handle
this by ensuring that Cluster 3 catches up to Cluster 2 with regard to updates from Cluster 1. In terms of
MySQL servers, this means that you need to replicate any outstanding updates from MySQL server C to
server F.

On server C, perform the following queries:

mysqlC> SELECT @latest:=MAX(epoch)
 -> FROM mysql.ndb_apply_status
 -> WHERE server_id=1;

mysqlC> SELECT
 -> @file:=SUBSTRING_INDEX(File, '/', -1),

3964

NDB Cluster Replication Conflict Resolution

 -> @pos:=Position
 -> FROM mysql.ndb_binlog_index
 -> WHERE orig_epoch >= @latest
 -> AND orig_server_id = 1
 -> ORDER BY epoch ASC LIMIT 1;

Note

You can improve the performance of this query, and thus likely speed up failover
times significantly, by adding the appropriate index to the ndb_binlog_index
table. See Section 21.7.4, “NDB Cluster Replication Schema and Tables”, for more
information.

Copy over the values for @file and @pos manually from server C to server F (or have your application
perform the equivalent). Then, on server F, execute the following CHANGE MASTER TO statement:

mysqlF> CHANGE MASTER TO
 -> MASTER_HOST = 'serverC'
 -> MASTER_LOG_FILE='@file',
 -> MASTER_LOG_POS=@pos;

Once this has been done, you can issue a START SLAVE statement on MySQL server F; this causes any
missing updates originating from server B to be replicated to server F.

The CHANGE MASTER TO statement also supports an IGNORE_SERVER_IDS option which takes a
comma-separated list of server IDs and causes events originating from the corresponding servers
to be ignored. For more information, see Section 13.4.2.1, “CHANGE MASTER TO Statement”, and
Section 13.7.5.34, “SHOW SLAVE STATUS Statement”. For information about how this option intereacts
with the ndb_log_apply_status variable, see Section 21.7.8, “Implementing Failover with NDB Cluster
Replication”.

21.7.11 NDB Cluster Replication Conflict Resolution

• Requirements

• Source Column Control

• Conflict Resolution Control

• Conflict Resolution Functions

• Conflict Resolution Exceptions Table

• Conflict Detection Status Variables

• Examples

When using a replication setup involving multiple sources (including circular replication), it is possible that
different sources may try to update the same row on the replica with different data. Conflict resolution
in NDB Cluster Replication provides a means of resolving such conflicts by permitting a user-defined
resolution column to be used to determine whether or not an update on a given source should be applied
on the replica.

Some types of conflict resolution supported by NDB Cluster (NDB$OLD(), NDB$MAX(), NDB
$MAX_DELETE_WIN()) implement this user-defined column as a “timestamp” column (although its type
cannot be TIMESTAMP, as explained later in this section). These types of conflict resolution are always
applied a row-by-row basis rather than a transactional basis. The epoch-based conflict resolution functions
NDB$EPOCH() and NDB$EPOCH_TRANS() compare the order in which epochs are replicated (and thus

3965

NDB Cluster Replication Conflict Resolution

these functions are transactional). Different methods can be used to compare resolution column values on
the replica when conflicts occur, as explained later in this section; the method used can be set to act on a
single table, database, or server, or on a set of one or more tables using pattern matching. See Matching
with wildcards, for information about using pattern matches in the db, table_name, and server_id
columns of the mysql.ndb_replication table.

You should also keep in mind that it is the application's responsibility to ensure that the resolution column
is correctly populated with relevant values, so that the resolution function can make the appropriate choice
when determining whether to apply an update.

Requirements

Preparations for conflict resolution must be made on both the source and the replica. These tasks are
described in the following list:

• On the source writing the binary logs, you must determine which columns are sent (all columns or only
those that have been updated). This is done for the MySQL Server as a whole by applying the mysqld
startup option --ndb-log-updated-only (described later in this section), or on one or more specific
tables by placing the proper entries in the mysql.ndb_replication table (see ndb_replication Table).

Note

If you are replicating tables with very large columns (such as TEXT or BLOB
columns), --ndb-log-updated-only can also be useful for reducing the size
of the binary logs and avoiding possible replication failures due to exceeding
max_allowed_packet.

See Section 16.4.1.19, “Replication and max_allowed_packet”, for more
information about this issue.

• On the replica, you must determine which type of conflict resolution to apply (“latest timestamp wins”,
“same timestamp wins”, “primary wins”, “primary wins, complete transaction”, or none). This is done
using the mysql.ndb_replication system table, and applies to one or more specific tables (see
ndb_replication Table).

• NDB Cluster also supports read conflict detection, that is, detecting conflicts between reads of a given
row in one cluster and updates or deletes of the same row in another cluster. This requires exclusive
read locks obtained by setting ndb_log_exclusive_reads equal to 1 on the replica. All rows read by
a conflicting read are logged in the exceptions table. For more information, see Read conflict detection
and resolution.

• NDB applies WRITE_ROW events strictly as inserts, requiring that there is not already any such row; that
is, an incoming write is always rejected if the row already exists.

When using the functions NDB$OLD(), NDB$MAX(), and NDB$MAX_DELETE_WIN() for timestamp-
based conflict resolution, we often refer to the column used for determining updates as a “timestamp”
column. However, the data type of this column is never TIMESTAMP; instead, its data type should be INT
(INTEGER) or BIGINT. The “timestamp” column should also be UNSIGNED and NOT NULL.

The NDB$EPOCH() and NDB$EPOCH_TRANS() functions discussed later in this section work by comparing
the relative order of replication epochs applied on a primary and secondary NDB Cluster, and do not make
use of timestamps.

Source Column Control

 We can see update operations in terms of “before” and “after” images—that is, the states of the table
before and after the update is applied. Normally, when updating a table with a primary key, the “before”

3966

NDB Cluster Replication Conflict Resolution

image is not of great interest; however, when we need to determine on a per-update basis whether or not
to use the updated values on a replica, we need to make sure that both images are written to the source's
binary log. This is done with the --ndb-log-update-as-write option for mysqld, as described later in
this section.

Important

Whether logging of complete rows or of updated columns only is done is decided
when the MySQL server is started, and cannot be changed online; you must either
restart mysqld, or start a new mysqld instance with different logging options.

Conflict Resolution Control

 Conflict resolution is usually enabled on the server where conflicts can occur. Like logging method
selection, it is enabled by entries in the mysql.ndb_replication table.

NBT_UPDATED_ONLY_MINIMAL and NBT_UPDATED_FULL_MINIMAL can be used with NDB$EPOCH(),
NDB$EPOCH2(), and NDB$EPOCH_TRANS(), because these do not require “before” values of columns
which are not primary keys. Conflict resolution algorithms requiring the old values, such as NDB$MAX()
and NDB$OLD(), do not work correctly with these binlog_type values.

Conflict Resolution Functions

This section provides detailed information about the functions which can be used for conflict detection and
resolution with NDB Replication. These functions are listed here in alphabetical order:

• NDB$OLD()

• NDB$MAX()

• NDB$MAX_DELETE_WIN()

• NDB$EPOCH()

• NDB$EPOCH_TRANS()

• NDB$EPOCH2()

• NDB$EPOCH2_TRANS()

NDB$OLD()

 If the value of column_name is the same on both the source and the replica, then the update is applied;
otherwise, the update is not applied on the replica and an exception is written to the log. This is illustrated
by the following pseudocode:

if (source_old_column_value == replica_current_column_value)
 apply_update();
else
 log_exception();

 This function can be used for “same value wins” conflict resolution. This type of conflict resolution ensures
that updates are not applied on the replica from the wrong source.

Important

The column value from the source's “before” image is used by this function.

3967

NDB Cluster Replication Conflict Resolution

NDB$MAX()

 If the “timestamp” column value for a given row coming from the source is higher than that on the replica, it
is applied; otherwise it is not applied on the replica. This is illustrated by the following pseudocode:

if (source_new_column_value > replica_current_column_value)
 apply_update();

 This function can be used for “greatest timestamp wins” conflict resolution. This type of conflict resolution
ensures that, in the event of a conflict, the version of the row that was most recently updated is the version
that persists.

Important

The column value from the sources's “after” image is used by this function.

NDB$MAX_DELETE_WIN()

 This is a variation on NDB$MAX(). Due to the fact that no timestamp is available for a delete operation, a
delete using NDB$MAX() is in fact processed as NDB$OLD, but for some use cases, this is not optimal. For
NDB$MAX_DELETE_WIN(), if the “timestamp” column value for a given row adding or updating an existing
row coming from the source is higher than that on the replica, it is applied. However, delete operations are
treated as always having the higher value. This is illustrated by the following pseudocode:

if ((source_new_column_value > replica_current_column_value)
 ||
 operation.type == "delete")
 apply_update();

 This function can be used for “greatest timestamp, delete wins” conflict resolution. This type of conflict
resolution ensures that, in the event of a conflict, the version of the row that was deleted or (otherwise)
most recently updated is the version that persists.

Note

As with NDB$MAX(), the column value from the source's “after” image is the value
used by this function.

NDB$EPOCH()

 The NDB$EPOCH() function tracks the order in which replicated epochs are applied on a replica cluster
relative to changes originating on the replica. This relative ordering is used to determine whether changes
originating on the replica are concurrent with any changes that originate locally, and are therefore
potentially in conflict.

Most of what follows in the description of NDB$EPOCH() also applies to NDB$EPOCH_TRANS(). Any
exceptions are noted in the text.

NDB$EPOCH() is asymmetric, operating on one NDB Cluster in a bidirectional replication configuration
(sometimes referred to as “active-active” replication). We refer here to cluster on which it operates as
the primary, and the other as the secondary. The replica on the primary is responsible for detecting and
handling conflicts, while the replica on the secondary is not involved in any conflict detection or handling.

When the replica on the primary detects conflicts, it injects events into its own binary log to compensate for
these; this ensures that the secondary NDB Cluster eventually realigns itself with the primary and so keeps
the primary and secondary from diverging. This compensation and realignment mechanism requires that

3968

NDB Cluster Replication Conflict Resolution

the primary NDB Cluster always wins any conflicts with the secondary—that is, that the primary's changes
are always used rather than those from the secondary in event of a conflict. This “primary always wins” rule
has the following implications:

• Operations that change data, once committed on the primary, are fully persistent and are not undone or
rolled back by conflict detection and resolution.

• Data read from the primary is fully consistent. Any changes committed on the Primary (locally or from the
replica) are not reverted later.

• Operations that change data on the secondary may later be reverted if the primary determines that they
are in conflict.

• Individual rows read on the secondary are self-consistent at all times, each row always reflecting either a
state committed by the secondary, or one committed by the primary.

• Sets of rows read on the secondary may not necessarily be consistent at a given single point in time. For
NDB$EPOCH_TRANS(), this is a transient state; for NDB$EPOCH(), it can be a persistent state.

• Assuming a period of sufficient length without any conflicts, all data on the secondary NDB Cluster
(eventually) becomes consistent with the primary's data.

NDB$EPOCH() and NDB$EPOCH_TRANS() do not require any user schema modifications, or application
changes to provide conflict detection. However, careful thought must be given to the schema used, and the
access patterns used, to verify that the complete system behaves within specified limits.

Each of the NDB$EPOCH() and NDB$EPOCH_TRANS() functions can take an optional parameter; this is
the number of bits to use to represent the lower 32 bits of the epoch, and should be set to no less than the
value calculated as shown here:

CEIL(LOG2(TimeBetweenGlobalCheckpoints / TimeBetweenEpochs), 1)

For the default values of these configuration parameters (2000 and 100 milliseconds, respectively), this
gives a value of 5 bits, so the default value (6) should be sufficient, unless other values are used for
TimeBetweenGlobalCheckpoints, TimeBetweenEpochs, or both. A value that is too small can result
in false positives, while one that is too large could lead to excessive wasted space in the database.

Both NDB$EPOCH() and NDB$EPOCH_TRANS() insert entries for conflicting rows into the relevant
exceptions tables, provided that these tables have been defined according to the same exceptions table
schema rules as described elsewhere in this section (see NDB$OLD()). You must create any exceptions
table before creating the data table with which it is to be used.

As with the other conflict detection functions discussed in this section, NDB$EPOCH() and NDB
$EPOCH_TRANS() are activated by including relevant entries in the mysql.ndb_replication table
(see ndb_replication Table). The roles of the primary and secondary NDB Clusters in this scenario are fully
determined by mysql.ndb_replication table entries.

Because the conflict detection algorithms employed by NDB$EPOCH() and NDB$EPOCH_TRANS() are
asymmetric, you must use different values for the server_id entries of the primary and secondary
replicas.

A conflict between DELETE operations alone is not sufficient to trigger a conflict using NDB$EPOCH() or
NDB$EPOCH_TRANS(), and the relative placement within epochs does not matter.

Limitations on NDB$EPOCH()

 The following limitations currently apply when using NDB$EPOCH() to perform conflict detection:

3969

NDB Cluster Replication Conflict Resolution

• Conflicts are detected using NDB Cluster epoch boundaries, with granularity proportional to
TimeBetweenEpochs (default: 100 milliseconds). The minimum conflict window is the minimum
time during which concurrent updates to the same data on both clusters always report a conflict. This
is always a nonzero length of time, and is roughly proportional to 2 * (latency + queueing +
TimeBetweenEpochs). This implies that—assuming the default for TimeBetweenEpochs and
ignoring any latency between clusters (as well as any queuing delays)—the minimum conflict window
size is approximately 200 milliseconds. This minimum window should be considered when looking at
expected application “race” patterns.

• Additional storage is required for tables using the NDB$EPOCH() and NDB$EPOCH_TRANS() functions;
from 1 to 32 bits extra space per row is required, depending on the value passed to the function.

• Conflicts between delete operations may result in divergence between the primary and secondary. When
a row is deleted on both clusters concurrently, the conflict can be detected, but is not recorded, since the
row is deleted. This means that further conflicts during the propagation of any subsequent realignment
operations are not detected, which can lead to divergence.

Deletes should be externally serialized, or routed to one cluster only. Alternatively, a separate row
should be updated transactionally with such deletes and any inserts that follow them, so that conflicts
can be tracked across row deletes. This may require changes in applications.

• Only two NDB Clusters in a birectional “active-active” configuration are currently supported when using
NDB$EPOCH() or NDB$EPOCH_TRANS() for conflict detection.

• Tables having BLOB or TEXT columns are not currently supported with NDB$EPOCH() or NDB
$EPOCH_TRANS().

NDB$EPOCH_TRANS()

 NDB$EPOCH_TRANS() extends the NDB$EPOCH() function. Conflicts are detected and handled in the
same way using the “primary wins all” rule (see NDB$EPOCH()) but with the extra condition that any
other rows updated in the same transaction in which the conflict occurred are also regarded as being in
conflict. In other words, where NDB$EPOCH() realigns individual conflicting rows on the secondary, NDB
$EPOCH_TRANS() realigns conflicting transactions.

In addition, any transactions which are detectably dependent on a conflicting transaction are also regarded
as being in conflict, these dependencies being determined by the contents of the secondary cluster's binary
log. Since the binary log contains only data modification operations (inserts, updates, and deletes), only
overlapping data modifications are used to determine dependencies between transactions.

NDB$EPOCH_TRANS() is subject to the same conditions and limitations as NDB$EPOCH(), and in addition
requires that Version 2 binary log row events are used (log_bin_use_v1_row_events equal to 0),
which adds a storage overhead of 2 bytes per event in the binary log. In addition, all transaction IDs must
be recorded in the secondary's binary log, using --ndb-log-transaction-id set to ON. This adds a
variable amount of overhead (up to 13 bytes per row).

See NDB$EPOCH().

NDB$EPOCH2()

 The NDB$EPOCH2() function is similar to NDB$EPOCH(), except that NDB$EPOCH2() provides for
delete-delete handling with a bidirectional replication topology. In this scenario, primary and secondary
roles are assigned to the two sources by setting the ndb_slave_conflict_role system variable to
the appropriate value on each source (usually one each of PRIMARY, SECONDARY). When this is done,
modifications made by the secondary are reflected by the primary back to the secondary which then
conditionally applies them.

3970

NDB Cluster Replication Conflict Resolution

NDB$EPOCH2_TRANS()

 NDB$EPOCH2_TRANS() extends the NDB$EPOCH2() function. Conflicts are detected and handled in
the same way, and assigning primary and secondary roles to the replicating clusters, but with the extra
condition that any other rows updated in the same transaction in which the conflict occurred are also
regarded as being in conflict. That is, NDB$EPOCH2() realigns individual conflicting rows on the secondary,
while NDB$EPOCH_TRANS() realigns conflicting transactions.

Where NDB$EPOCH() and NDB$EPOCH_TRANS() use metadata that is specified per row, per last modified
epoch, to determine on the primary whether an incoming replicated row change from the secondary
is concurrent with a locally committed change; concurrent changes are regarded as conflicting, with
subesequent exceptions table updates and realignment of the secondary. A problem arises when a row is
deleted on the primary so there is no longer any last-modified epoch available to determine whether any
replicated operations conflict, which means that conflicting delete operationss are not detected. This can
result in divergence, an example being a delete on one cluster which is concurrent with a delete and insert
on the other; this why delete operations can be routed to only one cluster when using NDB$EPOCH() and
NDB$EPOCH_TRANS().

NDB$EPOCH2() bypasses the issue just described—storing information about deleted rows on the
PRIMARY—by ignoring any delete-delete conflict, and by avoiding any potential resultant divergence as
well. This is accomplished by reflecting any operation successfully applied on and replicated from the
secondary back to the secondary. On its return to the secondary, it can be used to reapply an operation on
the secondary which was deleted by an operation originating from the primary.

When using NDB$EPOCH2(), you should keep in mind that the secondary applies the delete from the
primary, removing the new row until it is restored by a reflected operation. In theory, the subsequent insert
or update on the secondary conflicts with the delete from the primary, but in this case, we choose to ignore
this and allow the secondary to “win”, in the interest of preventing divergence between the clusters. In other
words, after a delete, the primary does not detect conflicts, and instead adopts the secondary's following
changes immediately. Because of this, the secondary's state can revisit multiple previous committed states
as it progresses to a final (stable) state, and some of these may be visible.

You should also be aware that reflecting all operations from the secondary back to the primary increases
the size of the primary's logbinary log, as well as demands on bandwidth, CPU usage, and disk I/O.

Application of reflected operations on the secondary depends on the state of the target
row on the secondary. Whether or not reflected changes are applied on the secondary
can be tracked by checking the Ndb_conflict_reflected_op_prepare_count
and Ndb_conflict_reflected_op_discard_count status variables. The number
of changes applied is simply the difference between these two values (note that
Ndb_conflict_reflected_op_prepare_count is always greater than or equal to
Ndb_conflict_reflected_op_discard_count).

Events are applied if and only if both of the following conditions are true:

• The existence of the row—that is, whether or not it exists—is in accordance with the type of event. For
delete and update operations, the row must already exist. For insert operations, the row must not exist.

• The row was last modified by the primary. It is possible that the modification was accomplished through
the execution of a reflected operation.

If both of these conditions are not met, the reflected operation is discarded by the secondary.

Conflict Resolution Exceptions Table

 To use the NDB$OLD() conflict resolution function, it is also necessary to create an exceptions table
corresponding to each NDB table for which this type of conflict resolution is to be employed. This is also

3971

NDB Cluster Replication Conflict Resolution

true when using NDB$EPOCH() or NDB$EPOCH_TRANS(). The name of this table is that of the table for
which conflict resolution is to be applied, with the string $EX appended. (For example, if the name of the
original table is mytable, the name of the corresponding exceptions table name should be mytable$EX.)
The syntax for creating the exceptions table is as shown here:

CREATE TABLE original_table$EX (
 [NDB$]server_id INT UNSIGNED,
 [NDB$]source_server_id INT UNSIGNED,
 [NDB$]source_epoch BIGINT UNSIGNED,
 [NDB$]count INT UNSIGNED,

 [NDB$OP_TYPE ENUM('WRITE_ROW','UPDATE_ROW', 'DELETE_ROW',
 'REFRESH_ROW', 'READ_ROW') NOT NULL,]
 [NDB$CFT_CAUSE ENUM('ROW_DOES_NOT_EXIST', 'ROW_ALREADY_EXISTS',
 'DATA_IN_CONFLICT', 'TRANS_IN_CONFLICT') NOT NULL,]
 [NDB$ORIG_TRANSID BIGINT UNSIGNED NOT NULL,]

 original_table_pk_columns,

 [orig_table_column|orig_table_column$OLD|orig_table_column$NEW,]

 [additional_columns,]

 PRIMARY KEY([NDB$]server_id, [NDB$]source_server_id, [NDB$]source_epoch, [NDB$]count)
) ENGINE=NDB;

The first four columns are required. The names of the first four columns and the columns matching
the original table's primary key columns are not critical; however, we suggest for reasons of clarity
and consistency, that you use the names shown here for the server_id, source_server_id,
source_epoch, and count columns, and that you use the same names as in the original table for the
columns matching those in the original table's primary key.

If the exceptions table uses one or more of the optional columns NDBOP_TYPE, NDBCFT_CAUSE, or NDB
$ORIG_TRANSID discussed later in this section, then each of the required columns must also be named
using the prefix NDB$. If desired, you can use the NDB$ prefix to name the required columns even if you do
not define any optional columns, but in this case, all four of the required columns must be named using the
prefix.

Following these columns, the columns making up the original table's primary key should be copied in the
order in which they are used to define the primary key of the original table. The data types for the columns
duplicating the primary key columns of the original table should be the same as (or larger than) those of the
original columns. A subset of the primary key columns may be used.

The exceptions table must use the NDB storage engine. (An example that uses NDB$OLD() with an
exceptions table is shown later in this section.)

Additional columns may optionally be defined following the copied primary key columns, but not before any
of them; any such extra columns cannot be NOT NULL. NDB Cluster supports three additional, predefined
optional columns NDBOP_TYPE, NDBCFT_CAUSE, and NDB$ORIG_TRANSID, which are described in the
next few paragraphs.

 NDB$OP_TYPE: This column can be used to obtain the type of operation causing the conflict. If you use
this column, define it as shown here:

NDB$OP_TYPE ENUM('WRITE_ROW', 'UPDATE_ROW', 'DELETE_ROW',
 'REFRESH_ROW', 'READ_ROW') NOT NULL

The WRITE_ROW, UPDATE_ROW, and DELETE_ROW operation types represent user-initiated operations.
REFRESH_ROW operations are operations generated by conflict resolution in compensating transactions

3972

NDB Cluster Replication Conflict Resolution

sent back to the originating cluster from the cluster that detected the conflict. READ_ROW operations are
user-initiated read tracking operations defined with exclusive row locks.

 NDB$CFT_CAUSE: You can define an optional column NDB$CFT_CAUSE which provides the cause of the
registered conflict. This column, if used, is defined as shown here:

NDB$CFT_CAUSE ENUM('ROW_DOES_NOT_EXIST', 'ROW_ALREADY_EXISTS',
 'DATA_IN_CONFLICT', 'TRANS_IN_CONFLICT') NOT NULL

ROW_DOES_NOT_EXIST can be reported as the cause for UPDATE_ROW and WRITE_ROW operations;
ROW_ALREADY_EXISTS can be reported for WRITE_ROW events. DATA_IN_CONFLICT is reported when
a row-based conflict function detects a conflict; TRANS_IN_CONFLICT is reported when a transactional
conflict function rejects all of the operations belonging to a complete transaction.

 NDB$ORIG_TRANSID: The NDB$ORIG_TRANSID column, if used, contains the ID of the originating
transaction. This column should be defined as follows:

NDB$ORIG_TRANSID BIGINT UNSIGNED NOT NULL

NDB$ORIG_TRANSID is a 64-bit value generated by NDB. This value can be used to correlate multiple
exceptions table entries belonging to the same conflicting transaction from the same or different exceptions
tables.

Additional reference columns which are not part of the original table's primary key can be named
colname$OLD or colname$NEW. colname$OLD references old values in update and delete operations—
that is, operations containing DELETE_ROW events. colname$NEW can be used to reference new values in
insert and update operations—in other words, operations using WRITE_ROW events, UPDATE_ROW events,
or both types of events. Where a conflicting operation does not supply a value for a given reference column
that is not a primary key, the exceptions table row contains either NULL, or a defined default value for that
column.

Important

The mysql.ndb_replication table is read when a data table is set up for
replication, so the row corresponding to a table to be replicated must be inserted
into mysql.ndb_replication before the table to be replicated is created.

Conflict Detection Status Variables

 Several status variables can be used to monitor conflict detection. You can see how many rows have
been found in conflict by NDB$EPOCH() since this replica was last restarted from the current value of the
Ndb_conflict_fn_epoch system status variable.

Ndb_conflict_fn_epoch_trans provides the number of rows that have been found directly in conflict
by NDB$EPOCH_TRANS(). Ndb_conflict_fn_epoch2 and Ndb_conflict_fn_epoch2_trans
show the number of rows found in conflict by NDB$EPOCH2() and NDB$EPOCH2_TRANS(),
respectively. The number of rows actually realigned, including those affected due to their
membership in or dependency on the same transactions as other conflicting rows, is given by
Ndb_conflict_trans_row_reject_count.

Another server status variable Ndb_conflict_fn_max provides a count of the number of times that a
row was not applied on the current SQL node due to “greatest timestamp wins” conflict resolution since the
last time that mysqld was started. Ndb_conflict_fn_max_del_win provides a count of the number of
times that conflict resolution based on the outcome of NDB$MAX_DELETE_WIN() has been applied.

The number of times that a row was not applied as the result of “same timestamp wins” conflict
resolution on a given mysqld since the last time it was restarted is given by the global status variable

3973

NDB Cluster Replication Conflict Resolution

Ndb_conflict_fn_old. In addition to incrementing Ndb_conflict_fn_old, the primary key of the
row that was not used is inserted into an exceptions table, as explained elsewhere in this section.

See also NDB Cluster Status Variables.

Examples

The following examples assume that you have already a working NDB Cluster replication setup, as
described in Section 21.7.5, “Preparing the NDB Cluster for Replication”, and Section 21.7.6, “Starting
NDB Cluster Replication (Single Replication Channel)”.

NDB$MAX() example. Suppose you wish to enable “greatest timestamp wins” conflict resolution on
table test.t1, using column mycol as the “timestamp”. This can be done using the following steps:

1. Make sure that you have started the source mysqld with --ndb-log-update-as-write=OFF.

2. On the source, perform this INSERT statement:

INSERT INTO mysql.ndb_replication
 VALUES ('test', 't1', 0, NULL, 'NDB$MAX(mycol)');

Note

If the ndb_replication table does not already exist, you must create it. See
ndb_replication Table.

Inserting a 0 into the server_id column indicates that all SQL nodes accessing this table should use
conflict resolution. If you want to use conflict resolution on a specific mysqld only, use the actual server
ID.

Inserting NULL into the binlog_type column has the same effect as inserting 0 (NBT_DEFAULT); the
server default is used.

3. Create the test.t1 table:

CREATE TABLE test.t1 (
 columns
 mycol INT UNSIGNED,
 columns
) ENGINE=NDB;

Now, when updates are performed on this table, conflict resolution is applied, and the version of the
row having the greatest value for mycol is written to the replica.

Note

Other binlog_type options such as NBT_UPDATED_ONLY_USE_UPDATE (6)
should be used to control logging on the source using the ndb_replication table
rather than by using command-line options.

NDB$OLD() example. Suppose an NDB table such as the one defined here is being replicated, and you
wish to enable “same timestamp wins” conflict resolution for updates to this table:

CREATE TABLE test.t2 (
 a INT UNSIGNED NOT NULL,
 b CHAR(25) NOT NULL,
 columns,
 mycol INT UNSIGNED NOT NULL,
 columns,
 PRIMARY KEY pk (a, b)
) ENGINE=NDB;

3974

NDB Cluster Replication Conflict Resolution

The following steps are required, in the order shown:

1. First—and prior to creating test.t2—you must insert a row into the mysql.ndb_replication
table, as shown here:

INSERT INTO mysql.ndb_replication
 VALUES ('test', 't2', 0, 0, 'NDB$OLD(mycol)');

Possible values for the binlog_type column are shown earlier in this section; in this case, we use 0
to specify that the server default logging behavior be used. The value 'NDB$OLD(mycol)' should be
inserted into the conflict_fn column.

2. Create an appropriate exceptions table for test.t2. The table creation statement shown here includes
all required columns; any additional columns must be declared following these columns, and before the
definition of the table's primary key.

CREATE TABLE test.t2$EX (
 server_id INT UNSIGNED,
 source_server_id INT UNSIGNED,
 source_epoch BIGINT UNSIGNED,
 count INT UNSIGNED,
 a INT UNSIGNED NOT NULL,
 b CHAR(25) NOT NULL,

 [additional_columns,]

 PRIMARY KEY(server_id, source_server_id, source_epoch, count)
) ENGINE=NDB;

We can include additional columns for information about the type, cause, and originating transaction ID
for a given conflict. We are also not required to supply matching columns for all primary key columns in
the original table. This means you can create the exceptions table like this:

CREATE TABLE test.t2$EX (
 NDB$server_id INT UNSIGNED,
 NDB$source_server_id INT UNSIGNED,
 NDB$source_epoch BIGINT UNSIGNED,
 NDB$count INT UNSIGNED,
 a INT UNSIGNED NOT NULL,

 NDB$OP_TYPE ENUM('WRITE_ROW','UPDATE_ROW', 'DELETE_ROW',
 'REFRESH_ROW', 'READ_ROW') NOT NULL,
 NDB$CFT_CAUSE ENUM('ROW_DOES_NOT_EXIST', 'ROW_ALREADY_EXISTS',
 'DATA_IN_CONFLICT', 'TRANS_IN_CONFLICT') NOT NULL,
 NDB$ORIG_TRANSID BIGINT UNSIGNED NOT NULL,

 [additional_columns,]

 PRIMARY KEY(NDB$server_id, NDB$source_server_id, NDB$source_epoch, NDB$count)
) ENGINE=NDB;

Note

The NDB$ prefix is required for the four required columns since we included
at least one of the columns NDBOP_TYPE, NDBCFT_CAUSE, or NDB
$ORIG_TRANSID in the table definition.

3. Create the table test.t2 as shown previously.

These steps must be followed for every table for which you wish to perform conflict resolution using NDB
$OLD(). For each such table, there must be a corresponding row in mysql.ndb_replication, and
there must be an exceptions table in the same database as the table being replicated.

3975

NDB Cluster Replication Conflict Resolution

Read conflict detection and resolution. NDB Cluster also supports tracking of read operations,
which makes it possible in circular replication setups to manage conflicts between reads of a given row
in one cluster and updates or deletes of the same row in another. This example uses employee and
department tables to model a scenario in which an employee is moved from one department to another
on the source cluster (which we refer to hereafter as cluster A) while the replica cluster (hereafter B)
updates the employee count of the employee's former department in an interleaved transaction.

The data tables have been created using the following SQL statements:

Employee table
CREATE TABLE employee (
 id INT PRIMARY KEY,
 name VARCHAR(2000),
 dept INT NOT NULL
) ENGINE=NDB;

Department table
CREATE TABLE department (
 id INT PRIMARY KEY,
 name VARCHAR(2000),
 members INT
) ENGINE=NDB;

The contents of the two tables include the rows shown in the (partial) output of the following SELECT
statements:

mysql> SELECT id, name, dept FROM employee;
+---------------+------+
| id | name | dept |
+------+--------+------+
...
998	Mike	3
999	Joe	3
1000	Mary	3
...
+------+--------+------+

mysql> SELECT id, name, members FROM department;
+-----+-------------+---------+
| id | name | members |
+-----+-------------+---------+
...
| 3 | Old project | 24 |
...
+-----+-------------+---------+

We assume that we are already using an exceptions table that includes the four required columns (and
these are used for this table's primary key), the optional columns for operation type and cause, and the
original table's primary key column, created using the SQL statement shown here:

CREATE TABLE employee$EX (
 NDB$server_id INT UNSIGNED,
 NDB$source_server_id INT UNSIGNED,
 NDB$source_epoch BIGINT UNSIGNED,
 NDB$count INT UNSIGNED,

 NDB$OP_TYPE ENUM('WRITE_ROW','UPDATE_ROW', 'DELETE_ROW',
 'REFRESH_ROW','READ_ROW') NOT NULL,
 NDB$CFT_CAUSE ENUM('ROW_DOES_NOT_EXIST',
 'ROW_ALREADY_EXISTS',
 'DATA_IN_CONFLICT',
 'TRANS_IN_CONFLICT') NOT NULL,

 id INT NOT NULL,

3976

NDB Cluster Replication Conflict Resolution

 PRIMARY KEY(NDB$server_id, NDB$source_server_id, NDB$source_epoch, NDB$count)
) ENGINE=NDB;

Suppose there occur the two simultaneous transactions on the two clusters. On cluster A, we create a new
department, then move employee number 999 into that department, using the following SQL statements:

BEGIN;
 INSERT INTO department VALUES (4, "New project", 1);
 UPDATE employee SET dept = 4 WHERE id = 999;
COMMIT;

At the same time, on cluster B, another transaction reads from employee, as shown here:

BEGIN;
 SELECT name FROM employee WHERE id = 999;
 UPDATE department SET members = members - 1 WHERE id = 3;
commit;

The conflicting transactions are not normally detected by the conflict resolution mechanism, since the
conflict is between a read (SELECT) and an update operation. You can circumvent this issue by executing
SET ndb_log_exclusive_reads = 1 on the replica cluster. Acquiring exclusive read locks in this way
causes any rows read on the source to be flagged as needing conflict resolution on the replica cluster. If
we enable exclusive reads in this way prior to the logging of these transactions, the read on cluster B is
tracked and sent to cluster A for resolution; the conflict on the employee row is subsequently detected and
the transaction on cluster B is aborted.

The conflict is registered in the exceptions table (on cluster A) as a READ_ROW operation (see Conflict
Resolution Exceptions Table, for a description of operation types), as shown here:

mysql> SELECT id, NDBOP_TYPE, NDBCFT_CAUSE FROM employee$EX;
+-------+-------------+-------------------+
| id | NDB$OP_TYPE | NDB$CFT_CAUSE |
+-------+-------------+-------------------+
...
| 999 | READ_ROW | TRANS_IN_CONFLICT |
+-------+-------------+-------------------+

Any existing rows found in the read operation are flagged. This means that multiple rows resulting from the
same conflict may be logged in the exception table, as shown by examining the effects a conflict between
an update on cluster A and a read of multiple rows on cluster B from the same table in simultaneous
transactions. The transaction executed on cluster A is shown here:

BEGIN;
 INSERT INTO department VALUES (4, "New project", 0);
 UPDATE employee SET dept = 4 WHERE dept = 3;
 SELECT COUNT(*) INTO @count FROM employee WHERE dept = 4;
 UPDATE department SET members = @count WHERE id = 4;
COMMIT;

Concurrently a transaction containing the statements shown here runs on cluster B:

SET ndb_log_exclusive_reads = 1; # Must be set if not already enabled
...
BEGIN;
 SELECT COUNT(*) INTO @count FROM employee WHERE dept = 3 FOR UPDATE;
 UPDATE department SET members = @count WHERE id = 3;
COMMIT;

In this case, all three rows matching the WHERE condition in the second transaction's SELECT are read, and
are thus flagged in the exceptions table, as shown here:

3977

NDB Cluster Release Notes

mysql> SELECT id, NDBOP_TYPE, NDBCFT_CAUSE FROM employee$EX;
+-------+-------------+-------------------+
| id | NDB$OP_TYPE | NDB$CFT_CAUSE |
+-------+-------------+-------------------+
...
998	READ_ROW	TRANS_IN_CONFLICT
999	READ_ROW	TRANS_IN_CONFLICT
1000	READ_ROW	TRANS_IN_CONFLICT
...
+-------+-------------+-------------------+

Read tracking is performed on the basis of existing rows only. A read based on a given condition track
conflicts only of any rows that are found and not of any rows that are inserted in an interleaved transaction.
This is similar to how exclusive row locking is performed in a single instance of NDB Cluster.

21.8 NDB Cluster Release Notes

Changes in NDB Cluster releases are documented separately from this reference manual; you can find
release notes for the changes in each NDB Cluster 7.5 release at NDB 7.5 Release Notes, and for each
NDB Cluster 7.6 release at NDB 7.6 Release Notes.

You can obtain release notes for older versions of NDB Cluster from NDB Cluster Release Notes.

3978

https://dev.mysql.com/doc/relnotes/mysql-cluster/7.5/en/
https://dev.mysql.com/doc/relnotes/mysql-cluster/7.6/en/
https://dev.mysql.com/doc/index-cluster.html#cluster-relnotes

Chapter 22 Partitioning

Table of Contents
22.1 Overview of Partitioning in MySQL ... 3981
22.2 Partitioning Types ... 3984

22.2.1 RANGE Partitioning .. 3986
22.2.2 LIST Partitioning ... 3990
22.2.3 COLUMNS Partitioning ... 3992
22.2.4 HASH Partitioning .. 4000
22.2.5 KEY Partitioning ... 4003
22.2.6 Subpartitioning ... 4005
22.2.7 How MySQL Partitioning Handles NULL .. 4009

22.3 Partition Management ... 4013
22.3.1 Management of RANGE and LIST Partitions ... 4014
22.3.2 Management of HASH and KEY Partitions .. 4020
22.3.3 Exchanging Partitions and Subpartitions with Tables .. 4021
22.3.4 Maintenance of Partitions ... 4029
22.3.5 Obtaining Information About Partitions ... 4030

22.4 Partition Pruning ... 4032
22.5 Partition Selection ... 4035
22.6 Restrictions and Limitations on Partitioning .. 4041

22.6.1 Partitioning Keys, Primary Keys, and Unique Keys ... 4049
22.6.2 Partitioning Limitations Relating to Storage Engines ... 4052
22.6.3 Partitioning Limitations Relating to Functions ... 4053
22.6.4 Partitioning and Locking ... 4055

This chapter discusses MySQL's implementation of user-defined partitioning.

Note

As of MySQL 5.7.17, the generic partitioning handler in the MySQL server is
deprecated, and is removed in MySQL 8.0, when the storage engine used for a
given table is expected to provide its own (“native”) partitioning handler. Currently,
only the InnoDB and NDB storage engines do this.

Use of tables with nonnative partitioning results in an
ER_WARN_DEPRECATED_SYNTAX warning. In MySQL 5.7.17 through 5.7.20,
the server automatically performs a check at startup to identify tables that use
nonnative partitioning; for any that are found, the server writes a message to its
error log. To disable this check, use the --disable-partition-engine-check
option. In MySQL 5.7.21 and later, this check is not performed; in these versions,
you must start the server with --disable-partition-engine-check=false,
if you wish for the server to check for tables using the generic partitioning handler
(Bug #85830, Bug #25846957).

To prepare for migration to MySQL 8.0, any table with nonnative partitioning
should be changed to use an engine that provides native partitioning, or be made
nonpartitioned. For example, to change a table to InnoDB, execute this statement:

ALTER TABLE table_name ENGINE = INNODB;

3979

https://dev.mysql.com/doc/mysql-errors/5.7/en/server-error-reference.html#error_er_warn_deprecated_syntax

You can determine whether your MySQL Server supports partitioning by checking the output of the SHOW
PLUGINS statement, like this:

mysql> SHOW PLUGINS;
+------------+----------+----------------+---------+---------+
| Name | Status | Type | Library | License |
+------------+----------+----------------+---------+---------+
binlog	ACTIVE	STORAGE ENGINE	NULL	GPL
partition	ACTIVE	STORAGE ENGINE	NULL	GPL
ARCHIVE	ACTIVE	STORAGE ENGINE	NULL	GPL
BLACKHOLE	ACTIVE	STORAGE ENGINE	NULL	GPL
CSV	ACTIVE	STORAGE ENGINE	NULL	GPL
FEDERATED	DISABLED	STORAGE ENGINE	NULL	GPL
MEMORY	ACTIVE	STORAGE ENGINE	NULL	GPL
InnoDB	ACTIVE	STORAGE ENGINE	NULL	GPL
MRG_MYISAM	ACTIVE	STORAGE ENGINE	NULL	GPL
MyISAM	ACTIVE	STORAGE ENGINE	NULL	GPL
ndbcluster	DISABLED	STORAGE ENGINE	NULL	GPL
+------------+----------+----------------+---------+---------+
11 rows in set (0.00 sec)

You can also check the Information Schema PLUGINS table with a query similar to this one:

mysql> SELECT
 -> PLUGIN_NAME as Name,
 -> PLUGIN_VERSION as Version,
 -> PLUGIN_STATUS as Status
 -> FROM INFORMATION_SCHEMA.PLUGINS
 -> WHERE PLUGIN_TYPE='STORAGE ENGINE';
+--------------------+---------+--------+
| Name | Version | Status |
+--------------------+---------+--------+
binlog	1.0	ACTIVE
CSV	1.0	ACTIVE
MEMORY	1.0	ACTIVE
MRG_MYISAM	1.0	ACTIVE
MyISAM	1.0	ACTIVE
PERFORMANCE_SCHEMA	0.1	ACTIVE
BLACKHOLE	1.0	ACTIVE
ARCHIVE	3.0	ACTIVE
InnoDB	5.7	ACTIVE
partition	1.0	ACTIVE
+--------------------+---------+--------+
10 rows in set (0.00 sec)

In either case, if you do not see the partition plugin listed with the value ACTIVE for the Status
column in the output (shown in bold text in each of the examples just given), then your version of MySQL
was not built with partitioning support.

MySQL 5.7 Community binaries provided by Oracle include partitioning support. For information about
partitioning support offered in MySQL Enterprise Edition binaries, see Chapter 28, MySQL Enterprise
Edition.

To enable partitioning if you are compiling MySQL 5.7 from source, the build must be configured with the -
DWITH_PARTITION_STORAGE_ENGINE option. For more information, see Section 2.8, “Installing MySQL
from Source”.

If your MySQL binary is built with partitioning support, nothing further needs to be done to enable it (for
example, no special entries are required in your my.cnf file).

If you want to disable partitioning support, you can start the MySQL Server with the --skip-partition
option. When partitioning support is disabled, you can see any existing partitioned tables and drop them
(although doing this is not advised), but you cannot otherwise manipulate them or access their data.

3980

Overview of Partitioning in MySQL

See Section 22.1, “Overview of Partitioning in MySQL”, for an introduction to partitioning and partitioning
concepts.

MySQL supports several types of partitioning as well as subpartitioning; see Section 22.2, “Partitioning
Types”, and Section 22.2.6, “Subpartitioning”.

Section 22.3, “Partition Management”, covers methods of adding, removing, and altering partitions in
existing partitioned tables.

Section 22.3.4, “Maintenance of Partitions”, discusses table maintenance commands for use with
partitioned tables.

The PARTITIONS table in the INFORMATION_SCHEMA database provides information about partitions and
partitioned tables. See Section 24.3.16, “The INFORMATION_SCHEMA PARTITIONS Table”, for more
information; for some examples of queries against this table, see Section 22.2.7, “How MySQL Partitioning
Handles NULL”.

For known issues with partitioning in MySQL 5.7, see Section 22.6, “Restrictions and Limitations on
Partitioning”.

You may also find the following resources to be useful when working with partitioned tables.

Additional Resources. Other sources of information about user-defined partitioning in MySQL include
the following:

• MySQL Partitioning Forum

This is the official discussion forum for those interested in or experimenting with MySQL Partitioning
technology. It features announcements and updates from MySQL developers and others. It is monitored
by members of the Partitioning Development and Documentation Teams.

• PlanetMySQL

A MySQL news site featuring MySQL-related blogs, which should be of interest to anyone using
my MySQL. We encourage you to check here for links to blogs kept by those working with MySQL
Partitioning, or to have your own blog added to those covered.

MySQL 5.7 binaries are available from https://dev.mysql.com/downloads/mysql/5.7.html. However, for the
latest partitioning bugfixes and feature additions, you can obtain the source from our GitHub repository. To
enable partitioning, the build must be configured with the -DWITH_PARTITION_STORAGE_ENGINE option.
For more information about building MySQL, see Section 2.8, “Installing MySQL from Source”. If you have
problems compiling a partitioning-enabled MySQL 5.7 build, check the MySQL Partitioning Forum and ask
for assistance there if you do not find a solution to your problem already posted.

22.1 Overview of Partitioning in MySQL

This section provides a conceptual overview of partitioning in MySQL 5.7.

For information on partitioning restrictions and feature limitations, see Section 22.6, “Restrictions and
Limitations on Partitioning”.

The SQL standard does not provide much in the way of guidance regarding the physical aspects of data
storage. The SQL language itself is intended to work independently of any data structures or media
underlying the schemas, tables, rows, or columns with which it works. Nonetheless, most advanced
database management systems have evolved some means of determining the physical location to be

3981

https://forums.mysql.com/list.php?106
http://www.planetmysql.org/
https://dev.mysql.com/downloads/mysql/5.7.html
https://forums.mysql.com/list.php?106

Overview of Partitioning in MySQL

used for storing specific pieces of data in terms of the file system, hardware or even both. In MySQL, the
InnoDB storage engine has long supported the notion of a tablespace, and the MySQL Server, even prior
to the introduction of partitioning, could be configured to employ different physical directories for storing
different databases (see Section 8.12.3, “Using Symbolic Links”, for an explanation of how this is done).

Partitioning takes this notion a step further, by enabling you to distribute portions of individual tables across
a file system according to rules which you can set largely as needed. In effect, different portions of a table
are stored as separate tables in different locations. The user-selected rule by which the division of data is
accomplished is known as a partitioning function, which in MySQL can be the modulus, simple matching
against a set of ranges or value lists, an internal hashing function, or a linear hashing function. The function
is selected according to the partitioning type specified by the user, and takes as its parameter the value
of a user-supplied expression. This expression can be a column value, a function acting on one or more
column values, or a set of one or more column values, depending on the type of partitioning that is used.

In the case of RANGE, LIST, and [LINEAR] HASH partitioning, the value of the partitioning column is passed
to the partitioning function, which returns an integer value representing the number of the partition in which
that particular record should be stored. This function must be nonconstant and nonrandom. It may not
contain any queries, but may use an SQL expression that is valid in MySQL, as long as that expression
returns either NULL or an integer intval such that

-MAXVALUE <= intval <= MAXVALUE

(MAXVALUE is used to represent the least upper bound for the type of integer in question. -MAXVALUE
represents the greatest lower bound.)

For [LINEAR] KEY, RANGE COLUMNS, and LIST COLUMNS partitioning, the partitioning expression consists
of a list of one or more columns.

For [LINEAR] KEY partitioning, the partitioning function is supplied by MySQL.

For more information about permitted partitioning column types and partitioning functions, see
Section 22.2, “Partitioning Types”, as well as Section 13.1.18, “CREATE TABLE Statement”, which
provides partitioning syntax descriptions and additional examples. For information about restrictions on
partitioning functions, see Section 22.6.3, “Partitioning Limitations Relating to Functions”.

This is known as horizontal partitioning—that is, different rows of a table may be assigned to different
physical partitions. MySQL 5.7 does not support vertical partitioning, in which different columns of a table
are assigned to different physical partitions. There are no plans at this time to introduce vertical partitioning
into MySQL.

For information about determining whether your MySQL Server binary supports user-defined partitioning,
see Chapter 22, Partitioning.

For creating partitioned tables, you can use most storage engines that are supported by your MySQL
server; the MySQL partitioning engine runs in a separate layer and can interact with any of these. In
MySQL 5.7, all partitions of the same partitioned table must use the same storage engine; for example, you
cannot use MyISAM for one partition and InnoDB for another. However, there is nothing preventing you
from using different storage engines for different partitioned tables on the same MySQL server or even in
the same database.

MySQL partitioning cannot be used with the MERGE, CSV, or FEDERATED storage engines.

Partitioning by KEY or LINEAR KEY is possible with NDB, but other types of user-defined partitioning are
not supported for tables using this storage engine. In addition, an NDB table that employs user-defined
partitioning must have an explicit primary key, and any columns referenced in the table's partitioning
expression must be part of the primary key. However, if no columns are listed in the PARTITION BY KEY

3982

Overview of Partitioning in MySQL

or PARTITION BY LINEAR KEY clause of the CREATE TABLE or ALTER TABLE statement used to
create or modify a user-partitioned NDB table, then the table is not required to have an explicit primary key.
For more information, see Section 21.2.7.1, “Noncompliance with SQL Syntax in NDB Cluster”.

To employ a particular storage engine for a partitioned table, it is necessary only to use the [STORAGE]
ENGINE option just as you would for a nonpartitioned table. However, you should keep in mind that
[STORAGE] ENGINE (and other table options) need to be listed before any partitioning options are used in
a CREATE TABLE statement. This example shows how to create a table that is partitioned by hash into 6
partitions and which uses the InnoDB storage engine:

CREATE TABLE ti (id INT, amount DECIMAL(7,2), tr_date DATE)
 ENGINE=INNODB
 PARTITION BY HASH(MONTH(tr_date))
 PARTITIONS 6;

Each PARTITION clause can include a [STORAGE] ENGINE option, but in MySQL 5.7 this has no effect.

Important

Partitioning applies to all data and indexes of a table; you cannot partition only the
data and not the indexes, or vice versa, nor can you partition only a portion of the
table.

Data and indexes for each partition can be assigned to a specific directory using the DATA DIRECTORY
and INDEX DIRECTORY options for the PARTITION clause of the CREATE TABLE statement used to
create the partitioned table.

DATA DIRECTORY and INDEX DIRECTORY are not supported for individual partitions or subpartitions of
MyISAM tables on Windows.

Only the DATA DIRECTORY option is supported for individual partitions and subpartitions of InnoDB
tables.

All columns used in the table's partitioning expression must be part of every unique key that the table may
have, including any primary key. This means that a table such as this one, created by the following SQL
statement, cannot be partitioned:

CREATE TABLE tnp (
 id INT NOT NULL AUTO_INCREMENT,
 ref BIGINT NOT NULL,
 name VARCHAR(255),
 PRIMARY KEY pk (id),
 UNIQUE KEY uk (name)
);

Because the keys pk and uk have no columns in common, there are no columns available for use in a
partitioning expression. Possible workarounds in this situation include adding the name column to the
table's primary key, adding the id column to uk, or simply removing the unique key altogether. See
Section 22.6.1, “Partitioning Keys, Primary Keys, and Unique Keys”, for more information.

In addition, MAX_ROWS and MIN_ROWS can be used to determine the maximum and minimum numbers of
rows, respectively, that can be stored in each partition. See Section 22.3, “Partition Management”, for more
information on these options.

The MAX_ROWS option can also be useful for creating NDB Cluster tables with extra partitions, thus
allowing for greater storage of hash indexes. See the documentation for the DataMemory data node
configuration parameter, as well as Section 21.2.2, “NDB Cluster Nodes, Node Groups, Fragment
Replicas, and Partitions”, for more information.

3983

Partitioning Types

Some advantages of partitioning are listed here:

• Partitioning makes it possible to store more data in one table than can be held on a single disk or file
system partition.

• Data that loses its usefulness can often be easily removed from a partitioned table by dropping the
partition (or partitions) containing only that data. Conversely, the process of adding new data can in
some cases be greatly facilitated by adding one or more new partitions for storing specifically that data.

• Some queries can be greatly optimized in virtue of the fact that data satisfying a given WHERE clause can
be stored only on one or more partitions, which automatically excludes any remaining partitions from the
search. Because partitions can be altered after a partitioned table has been created, you can reorganize
your data to enhance frequent queries that may not have been often used when the partitioning scheme
was first set up. This ability to exclude non-matching partitions (and thus any rows they contain) is often
referred to as partition pruning. For more information, see Section 22.4, “Partition Pruning”.

In addition, MySQL supports explicit partition selection for queries. For example, SELECT * FROM t
PARTITION (p0,p1) WHERE c < 5 selects only those rows in partitions p0 and p1 that match the
WHERE condition. In this case, MySQL does not check any other partitions of table t; this can greatly
speed up queries when you already know which partition or partitions you wish to examine. Partition
selection is also supported for the data modification statements DELETE, INSERT, REPLACE, UPDATE,
and LOAD DATA, LOAD XML. See the descriptions of these statements for more information and
examples.

22.2 Partitioning Types

This section discusses the types of partitioning which are available in MySQL 5.7. These include the types
listed here:

• RANGE partitioning. This type of partitioning assigns rows to partitions based on column values
falling within a given range. See Section 22.2.1, “RANGE Partitioning”. For information about an
extension to this type, RANGE COLUMNS, see Section 22.2.3.1, “RANGE COLUMNS partitioning”.

• LIST partitioning. Similar to partitioning by RANGE, except that the partition is selected based
on columns matching one of a set of discrete values. See Section 22.2.2, “LIST Partitioning”. For
information about an extension to this type, LIST COLUMNS, see Section 22.2.3.2, “LIST COLUMNS
partitioning”.

• HASH partitioning. With this type of partitioning, a partition is selected based on the value returned
by a user-defined expression that operates on column values in rows to be inserted into the table. The
function may consist of any expression valid in MySQL that yields an integer value. See Section 22.2.4,
“HASH Partitioning”.

An extension to this type, LINEAR HASH, is also available, see Section 22.2.4.1, “LINEAR HASH
Partitioning”.

• KEY partitioning. This type of partitioning is similar to partitioning by HASH, except that only one or
more columns to be evaluated are supplied, and the MySQL server provides its own hashing function.
These columns can contain other than integer values, since the hashing function supplied by MySQL
guarantees an integer result regardless of the column data type. An extension to this type, LINEAR KEY,
is also available. See Section 22.2.5, “KEY Partitioning”.

A very common use of database partitioning is to segregate data by date. Some database systems support
explicit date partitioning, which MySQL does not implement in 5.7. However, it is not difficult in MySQL

3984

Partitioning Types

to create partitioning schemes based on DATE, TIME, or DATETIME columns, or based on expressions
making use of such columns.

When partitioning by KEY or LINEAR KEY, you can use a DATE, TIME, or DATETIME column as the
partitioning column without performing any modification of the column value. For example, this table
creation statement is perfectly valid in MySQL:

CREATE TABLE members (
 firstname VARCHAR(25) NOT NULL,
 lastname VARCHAR(25) NOT NULL,
 username VARCHAR(16) NOT NULL,
 email VARCHAR(35),
 joined DATE NOT NULL
)
PARTITION BY KEY(joined)
PARTITIONS 6;

In MySQL 5.7, it is also possible to use a DATE or DATETIME column as the partitioning column using
RANGE COLUMNS and LIST COLUMNS partitioning.

MySQL's other partitioning types, however, require a partitioning expression that yields an integer value
or NULL. If you wish to use date-based partitioning by RANGE, LIST, HASH, or LINEAR HASH, you can
simply employ a function that operates on a DATE, TIME, or DATETIME column and returns such a value,
as shown here:

CREATE TABLE members (
 firstname VARCHAR(25) NOT NULL,
 lastname VARCHAR(25) NOT NULL,
 username VARCHAR(16) NOT NULL,
 email VARCHAR(35),
 joined DATE NOT NULL
)
PARTITION BY RANGE(YEAR(joined)) (
 PARTITION p0 VALUES LESS THAN (1960),
 PARTITION p1 VALUES LESS THAN (1970),
 PARTITION p2 VALUES LESS THAN (1980),
 PARTITION p3 VALUES LESS THAN (1990),
 PARTITION p4 VALUES LESS THAN MAXVALUE
);

Additional examples of partitioning using dates may be found in the following sections of this chapter:

• Section 22.2.1, “RANGE Partitioning”

• Section 22.2.4, “HASH Partitioning”

• Section 22.2.4.1, “LINEAR HASH Partitioning”

For more complex examples of date-based partitioning, see the following sections:

• Section 22.4, “Partition Pruning”

• Section 22.2.6, “Subpartitioning”

MySQL partitioning is optimized for use with the TO_DAYS(), YEAR(), and TO_SECONDS() functions.
However, you can use other date and time functions that return an integer or NULL, such as WEEKDAY(),
DAYOFYEAR(), or MONTH(). See Section 12.7, “Date and Time Functions”, for more information about
such functions.

It is important to remember—regardless of the type of partitioning that you use—that partitions are always
numbered automatically and in sequence when created, starting with 0. When a new row is inserted into a

3985

RANGE Partitioning

partitioned table, it is these partition numbers that are used in identifying the correct partition. For example,
if your table uses 4 partitions, these partitions are numbered 0, 1, 2, and 3. For the RANGE and LIST
partitioning types, it is necessary to ensure that there is a partition defined for each partition number. For
HASH partitioning, the user-supplied expression must evaluate to an integer value. For KEY partitioning, this
issue is taken care of automatically by the hashing function which the MySQL server employs internally.

Names of partitions generally follow the rules governing other MySQL identifiers, such as those for tables
and databases. However, you should note that partition names are not case-sensitive. For example, the
following CREATE TABLE statement fails as shown:

mysql> CREATE TABLE t2 (val INT)
 -> PARTITION BY LIST(val)(
 -> PARTITION mypart VALUES IN (1,3,5),
 -> PARTITION MyPart VALUES IN (2,4,6)
 ->);
ERROR 1488 (HY000): Duplicate partition name mypart

Failure occurs because MySQL sees no difference between the partition names mypart and MyPart.

When you specify the number of partitions for the table, this must be expressed as a positive, nonzero
integer literal with no leading zeros, and may not be an expression such as 0.8E+01 or 6-2, even if it
evaluates to an integer value. Decimal fractions are not permitted.

In the sections that follow, we do not necessarily provide all possible forms for the syntax that can be
used for creating each partition type; this information may be found in Section 13.1.18, “CREATE TABLE
Statement”.

22.2.1 RANGE Partitioning

A table that is partitioned by range is partitioned in such a way that each partition contains rows for
which the partitioning expression value lies within a given range. Ranges should be contiguous but
not overlapping, and are defined using the VALUES LESS THAN operator. For the next few examples,
suppose that you are creating a table such as the following to hold personnel records for a chain of 20
video stores, numbered 1 through 20:

CREATE TABLE employees (
 id INT NOT NULL,
 fname VARCHAR(30),
 lname VARCHAR(30),
 hired DATE NOT NULL DEFAULT '1970-01-01',
 separated DATE NOT NULL DEFAULT '9999-12-31',
 job_code INT NOT NULL,
 store_id INT NOT NULL
);

Note

The employees table used here has no primary or unique keys. While the
examples work as shown for purposes of the present discussion, you should keep
in mind that tables are extremely likely in practice to have primary keys, unique
keys, or both, and that allowable choices for partitioning columns depend on the
columns used for these keys, if any are present. For a discussion of these issues,
see Section 22.6.1, “Partitioning Keys, Primary Keys, and Unique Keys”.

This table can be partitioned by range in a number of ways, depending on your needs. One way would
be to use the store_id column. For instance, you might decide to partition the table 4 ways by adding a
PARTITION BY RANGE clause as shown here:

CREATE TABLE employees (

3986

RANGE Partitioning

 id INT NOT NULL,
 fname VARCHAR(30),
 lname VARCHAR(30),
 hired DATE NOT NULL DEFAULT '1970-01-01',
 separated DATE NOT NULL DEFAULT '9999-12-31',
 job_code INT NOT NULL,
 store_id INT NOT NULL
)
PARTITION BY RANGE (store_id) (
 PARTITION p0 VALUES LESS THAN (6),
 PARTITION p1 VALUES LESS THAN (11),
 PARTITION p2 VALUES LESS THAN (16),
 PARTITION p3 VALUES LESS THAN (21)
);

In this partitioning scheme, all rows corresponding to employees working at stores 1 through 5 are stored
in partition p0, to those employed at stores 6 through 10 are stored in partition p1, and so on. Note that
each partition is defined in order, from lowest to highest. This is a requirement of the PARTITION BY
RANGE syntax; you can think of it as being analogous to a series of if ... elseif ... statements in C
or Java in this regard.

It is easy to determine that a new row containing the data (72, 'Mitchell', 'Wilson',
'1998-06-25', DEFAULT, 7, 13) is inserted into partition p2, but what happens when your chain
adds a 21st store? Under this scheme, there is no rule that covers a row whose store_id is greater
than 20, so an error results because the server does not know where to place it. You can keep this from
occurring by using a “catchall” VALUES LESS THAN clause in the CREATE TABLE statement that provides
for all values greater than the highest value explicitly named:

CREATE TABLE employees (
 id INT NOT NULL,
 fname VARCHAR(30),
 lname VARCHAR(30),
 hired DATE NOT NULL DEFAULT '1970-01-01',
 separated DATE NOT NULL DEFAULT '9999-12-31',
 job_code INT NOT NULL,
 store_id INT NOT NULL
)
PARTITION BY RANGE (store_id) (
 PARTITION p0 VALUES LESS THAN (6),
 PARTITION p1 VALUES LESS THAN (11),
 PARTITION p2 VALUES LESS THAN (16),
 PARTITION p3 VALUES LESS THAN MAXVALUE
);

Another way to avoid an error when no matching value is found is to use the IGNORE keyword as part of
the INSERT statement. For an example, see Section 22.2.2, “LIST Partitioning”.

MAXVALUE represents an integer value that is always greater than the largest possible integer value (in
mathematical language, it serves as a least upper bound). Now, any rows whose store_id column
value is greater than or equal to 16 (the highest value defined) are stored in partition p3. At some point
in the future—when the number of stores has increased to 25, 30, or more—you can use an ALTER
TABLE statement to add new partitions for stores 21-25, 26-30, and so on (see Section 22.3, “Partition
Management”, for details of how to do this).

In much the same fashion, you could partition the table based on employee job codes—that is, based on
ranges of job_code column values. For example—assuming that two-digit job codes are used for regular
(in-store) workers, three-digit codes are used for office and support personnel, and four-digit codes are
used for management positions—you could create the partitioned table using the following statement:

CREATE TABLE employees (
 id INT NOT NULL,

3987

RANGE Partitioning

 fname VARCHAR(30),
 lname VARCHAR(30),
 hired DATE NOT NULL DEFAULT '1970-01-01',
 separated DATE NOT NULL DEFAULT '9999-12-31',
 job_code INT NOT NULL,
 store_id INT NOT NULL
)
PARTITION BY RANGE (job_code) (
 PARTITION p0 VALUES LESS THAN (100),
 PARTITION p1 VALUES LESS THAN (1000),
 PARTITION p2 VALUES LESS THAN (10000)
);

In this instance, all rows relating to in-store workers would be stored in partition p0, those relating to office
and support staff in p1, and those relating to managers in partition p2.

It is also possible to use an expression in VALUES LESS THAN clauses. However, MySQL must be able to
evaluate the expression's return value as part of a LESS THAN (<) comparison.

Rather than splitting up the table data according to store number, you can use an expression based on one
of the two DATE columns instead. For example, let us suppose that you wish to partition based on the year
that each employee left the company; that is, the value of YEAR(separated). An example of a CREATE
TABLE statement that implements such a partitioning scheme is shown here:

CREATE TABLE employees (
 id INT NOT NULL,
 fname VARCHAR(30),
 lname VARCHAR(30),
 hired DATE NOT NULL DEFAULT '1970-01-01',
 separated DATE NOT NULL DEFAULT '9999-12-31',
 job_code INT,
 store_id INT
)
PARTITION BY RANGE (YEAR(separated)) (
 PARTITION p0 VALUES LESS THAN (1991),
 PARTITION p1 VALUES LESS THAN (1996),
 PARTITION p2 VALUES LESS THAN (2001),
 PARTITION p3 VALUES LESS THAN MAXVALUE
);

In this scheme, for all employees who left before 1991, the rows are stored in partition p0; for those who
left in the years 1991 through 1995, in p1; for those who left in the years 1996 through 2000, in p2; and for
any workers who left after the year 2000, in p3.

It is also possible to partition a table by RANGE, based on the value of a TIMESTAMP column, using the
UNIX_TIMESTAMP() function, as shown in this example:

CREATE TABLE quarterly_report_status (
 report_id INT NOT NULL,
 report_status VARCHAR(20) NOT NULL,
 report_updated TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP
)
PARTITION BY RANGE (UNIX_TIMESTAMP(report_updated)) (
 PARTITION p0 VALUES LESS THAN (UNIX_TIMESTAMP('2008-01-01 00:00:00')),
 PARTITION p1 VALUES LESS THAN (UNIX_TIMESTAMP('2008-04-01 00:00:00')),
 PARTITION p2 VALUES LESS THAN (UNIX_TIMESTAMP('2008-07-01 00:00:00')),
 PARTITION p3 VALUES LESS THAN (UNIX_TIMESTAMP('2008-10-01 00:00:00')),
 PARTITION p4 VALUES LESS THAN (UNIX_TIMESTAMP('2009-01-01 00:00:00')),
 PARTITION p5 VALUES LESS THAN (UNIX_TIMESTAMP('2009-04-01 00:00:00')),
 PARTITION p6 VALUES LESS THAN (UNIX_TIMESTAMP('2009-07-01 00:00:00')),
 PARTITION p7 VALUES LESS THAN (UNIX_TIMESTAMP('2009-10-01 00:00:00')),
 PARTITION p8 VALUES LESS THAN (UNIX_TIMESTAMP('2010-01-01 00:00:00')),
 PARTITION p9 VALUES LESS THAN (MAXVALUE)

3988

RANGE Partitioning

);

Any other expressions involving TIMESTAMP values are not permitted. (See Bug #42849.)

Range partitioning is particularly useful when one or more of the following conditions is true:

• You want or need to delete “old” data. If you are using the partitioning scheme shown previously for the
employees table, you can simply use ALTER TABLE employees DROP PARTITION p0; to delete
all rows relating to employees who stopped working for the firm prior to 1991. (See Section 13.1.8,
“ALTER TABLE Statement”, and Section 22.3, “Partition Management”, for more information.) For a
table with a great many rows, this can be much more efficient than running a DELETE query such as
DELETE FROM employees WHERE YEAR(separated) <= 1990;.

• You want to use a column containing date or time values, or containing values arising from some other
series.

• You frequently run queries that depend directly on the column used for partitioning the table. For
example, when executing a query such as EXPLAIN SELECT COUNT(*) FROM employees WHERE
separated BETWEEN '2000-01-01' AND '2000-12-31' GROUP BY store_id;, MySQL
can quickly determine that only partition p2 needs to be scanned because the remaining partitions
cannot contain any records satisfying the WHERE clause. See Section 22.4, “Partition Pruning”, for more
information about how this is accomplished.

A variant on this type of partitioning is RANGE COLUMNS partitioning. Partitioning by RANGE COLUMNS
makes it possible to employ multiple columns for defining partitioning ranges that apply both to placement
of rows in partitions and for determining the inclusion or exclusion of specific partitions when performing
partition pruning. See Section 22.2.3.1, “RANGE COLUMNS partitioning”, for more information.

Partitioning schemes based on time intervals. If you wish to implement a partitioning scheme based
on ranges or intervals of time in MySQL 5.7, you have two options:

1. Partition the table by RANGE, and for the partitioning expression, employ a function operating on a
DATE, TIME, or DATETIME column and returning an integer value, as shown here:

CREATE TABLE members (
 firstname VARCHAR(25) NOT NULL,
 lastname VARCHAR(25) NOT NULL,
 username VARCHAR(16) NOT NULL,
 email VARCHAR(35),
 joined DATE NOT NULL
)
PARTITION BY RANGE(YEAR(joined)) (
 PARTITION p0 VALUES LESS THAN (1960),
 PARTITION p1 VALUES LESS THAN (1970),
 PARTITION p2 VALUES LESS THAN (1980),
 PARTITION p3 VALUES LESS THAN (1990),
 PARTITION p4 VALUES LESS THAN MAXVALUE
);

In MySQL 5.7, it is also possible to partition a table by RANGE based on the value of a TIMESTAMP
column, using the UNIX_TIMESTAMP() function, as shown in this example:

CREATE TABLE quarterly_report_status (
 report_id INT NOT NULL,
 report_status VARCHAR(20) NOT NULL,
 report_updated TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP
)
PARTITION BY RANGE (UNIX_TIMESTAMP(report_updated)) (
 PARTITION p0 VALUES LESS THAN (UNIX_TIMESTAMP('2008-01-01 00:00:00')),
 PARTITION p1 VALUES LESS THAN (UNIX_TIMESTAMP('2008-04-01 00:00:00')),

3989

LIST Partitioning

 PARTITION p2 VALUES LESS THAN (UNIX_TIMESTAMP('2008-07-01 00:00:00')),
 PARTITION p3 VALUES LESS THAN (UNIX_TIMESTAMP('2008-10-01 00:00:00')),
 PARTITION p4 VALUES LESS THAN (UNIX_TIMESTAMP('2009-01-01 00:00:00')),
 PARTITION p5 VALUES LESS THAN (UNIX_TIMESTAMP('2009-04-01 00:00:00')),
 PARTITION p6 VALUES LESS THAN (UNIX_TIMESTAMP('2009-07-01 00:00:00')),
 PARTITION p7 VALUES LESS THAN (UNIX_TIMESTAMP('2009-10-01 00:00:00')),
 PARTITION p8 VALUES LESS THAN (UNIX_TIMESTAMP('2010-01-01 00:00:00')),
 PARTITION p9 VALUES LESS THAN (MAXVALUE)
);

In MySQL 5.7, any other expressions involving TIMESTAMP values are not permitted. (See Bug
#42849.)

Note

It is also possible in MySQL 5.7 to use
UNIX_TIMESTAMP(timestamp_column) as a partitioning expression for
tables that are partitioned by LIST. However, it is usually not practical to do so.

2. Partition the table by RANGE COLUMNS, using a DATE or DATETIME column as the partitioning column.
For example, the members table could be defined using the joined column directly, as shown here:

CREATE TABLE members (
 firstname VARCHAR(25) NOT NULL,
 lastname VARCHAR(25) NOT NULL,
 username VARCHAR(16) NOT NULL,
 email VARCHAR(35),
 joined DATE NOT NULL
)
PARTITION BY RANGE COLUMNS(joined) (
 PARTITION p0 VALUES LESS THAN ('1960-01-01'),
 PARTITION p1 VALUES LESS THAN ('1970-01-01'),
 PARTITION p2 VALUES LESS THAN ('1980-01-01'),
 PARTITION p3 VALUES LESS THAN ('1990-01-01'),
 PARTITION p4 VALUES LESS THAN MAXVALUE
);

Note

The use of partitioning columns employing date or time types other than DATE or
DATETIME is not supported with RANGE COLUMNS.

22.2.2 LIST Partitioning

List partitioning in MySQL is similar to range partitioning in many ways. As in partitioning by RANGE, each
partition must be explicitly defined. The chief difference between the two types of partitioning is that,
in list partitioning, each partition is defined and selected based on the membership of a column value
in one of a set of value lists, rather than in one of a set of contiguous ranges of values. This is done
by using PARTITION BY LIST(expr) where expr is a column value or an expression based on a
column value and returning an integer value, and then defining each partition by means of a VALUES IN
(value_list), where value_list is a comma-separated list of integers.

Note

In MySQL 5.7, it is possible to match against only a list of integers (and possibly
NULL—see Section 22.2.7, “How MySQL Partitioning Handles NULL”) when
partitioning by LIST.

However, other column types may be used in value lists when employing LIST
COLUMN partitioning, which is described later in this section.

3990

LIST Partitioning

Unlike the case with partitions defined by range, list partitions do not need to be declared in any particular
order. For more detailed syntactical information, see Section 13.1.18, “CREATE TABLE Statement”.

For the examples that follow, we assume that the basic definition of the table to be partitioned is provided
by the CREATE TABLE statement shown here:

CREATE TABLE employees (
 id INT NOT NULL,
 fname VARCHAR(30),
 lname VARCHAR(30),
 hired DATE NOT NULL DEFAULT '1970-01-01',
 separated DATE NOT NULL DEFAULT '9999-12-31',
 job_code INT,
 store_id INT
);

(This is the same table used as a basis for the examples in Section 22.2.1, “RANGE Partitioning”.)

Suppose that there are 20 video stores distributed among 4 franchises as shown in the following table.

Region Store ID Numbers

North 3, 5, 6, 9, 17

East 1, 2, 10, 11, 19, 20

West 4, 12, 13, 14, 18

Central 7, 8, 15, 16

To partition this table in such a way that rows for stores belonging to the same region are stored in the
same partition, you could use the CREATE TABLE statement shown here:

CREATE TABLE employees (
 id INT NOT NULL,
 fname VARCHAR(30),
 lname VARCHAR(30),
 hired DATE NOT NULL DEFAULT '1970-01-01',
 separated DATE NOT NULL DEFAULT '9999-12-31',
 job_code INT,
 store_id INT
)
PARTITION BY LIST(store_id) (
 PARTITION pNorth VALUES IN (3,5,6,9,17),
 PARTITION pEast VALUES IN (1,2,10,11,19,20),
 PARTITION pWest VALUES IN (4,12,13,14,18),
 PARTITION pCentral VALUES IN (7,8,15,16)
);

This makes it easy to add or drop employee records relating to specific regions to or from the table. For
instance, suppose that all stores in the West region are sold to another company. In MySQL 5.7, all
rows relating to employees working at stores in that region can be deleted with the query ALTER TABLE
employees TRUNCATE PARTITION pWest, which can be executed much more efficiently than the
equivalent DELETE statement DELETE FROM employees WHERE store_id IN (4,12,13,14,18);.
(Using ALTER TABLE employees DROP PARTITION pWest would also delete all of these rows, but
would also remove the partition pWest from the definition of the table; you would need to use an ALTER
TABLE ... ADD PARTITION statement to restore the table's original partitioning scheme.)

As with RANGE partitioning, it is possible to combine LIST partitioning with partitioning by hash or key to
produce a composite partitioning (subpartitioning). See Section 22.2.6, “Subpartitioning”.

Unlike the case with RANGE partitioning, there is no “catch-all” such as MAXVALUE; all expected values
for the partitioning expression should be covered in PARTITION ... VALUES IN (...) clauses. An

3991

COLUMNS Partitioning

INSERT statement containing an unmatched partitioning column value fails with an error, as shown in this
example:

mysql> CREATE TABLE h2 (
 -> c1 INT,
 -> c2 INT
 ->)
 -> PARTITION BY LIST(c1) (
 -> PARTITION p0 VALUES IN (1, 4, 7),
 -> PARTITION p1 VALUES IN (2, 5, 8)
 ->);
Query OK, 0 rows affected (0.11 sec)

mysql> INSERT INTO h2 VALUES (3, 5);
ERROR 1525 (HY000): Table has no partition for value 3

When inserting multiple rows using a single INSERT statement the behavior depends on whether the
table uses a transactional storage engine. For an InnoDB table, the statement is considered a single
transaction, so the presence of any unmatched values causes the statement to fail completely, and no
rows are inserted. For a table using a nontransactional storage engine such as MyISAM, any rows coming
before the row containing the unmatched value are inserted, but any coming after it are not.

You can cause this type of error to be ignored by using the IGNORE keyword, although a warning is issued
for each row containing unmatched partitioning column values, as shown here.

mysql> TRUNCATE h2;
Query OK, 1 row affected (0.00 sec)

mysql> TABLE h2;
Empty set (0.00 sec)

mysql> INSERT IGNORE INTO h2 VALUES (2, 5), (6, 10), (7, 5), (3, 1), (1, 9);
Query OK, 3 rows affected, 2 warnings (0.01 sec)
Records: 5 Duplicates: 2 Warnings: 2

mysql> SHOW WARNINGS;
+---------+------+------------------------------------+
| Level | Code | Message |
+---------+------+------------------------------------+
| Warning | 1526 | Table has no partition for value 6 |
| Warning | 1526 | Table has no partition for value 3 |
+---------+------+------------------------------------+
2 rows in set (0.00 sec)

You can see in the output of the following TABLE statement that rows containing unmatched partitioning
column values were silently rejected, while rows containing no unmatched values were inserted into the
table:

mysql> TABLE h2;
+------+------+
| c1 | c2 |
+------+------+
7	5
1	9
2	5
+------+------+
3 rows in set (0.00 sec)

MySQL also provides support for LIST COLUMNS partitioning, a variant of LIST partitioning that enables
you to use columns of types other than integer for partitioning columns, and to use multiple columns as
partitioning keys. For more information, see Section 22.2.3.2, “LIST COLUMNS partitioning”.

22.2.3 COLUMNS Partitioning

3992

https://dev.mysql.com/doc/refman/8.0/en/table.html

COLUMNS Partitioning

The next two sections discuss COLUMNS partitioning, which are variants on RANGE and LIST partitioning.
COLUMNS partitioning enables the use of multiple columns in partitioning keys. All of these columns are
taken into account both for the purpose of placing rows in partitions and for the determination of which
partitions are to be checked for matching rows in partition pruning.

In addition, both RANGE COLUMNS partitioning and LIST COLUMNS partitioning support the use of non-
integer columns for defining value ranges or list members. The permitted data types are shown in the
following list:

• All integer types: TINYINT, SMALLINT, MEDIUMINT, INT (INTEGER), and BIGINT. (This is the same as
with partitioning by RANGE and LIST.)

Other numeric data types (such as DECIMAL or FLOAT) are not supported as partitioning columns.

• DATE and DATETIME.

Columns using other data types relating to dates or times are not supported as partitioning columns.

• The following string types: CHAR, VARCHAR, BINARY, and VARBINARY.

TEXT and BLOB columns are not supported as partitioning columns.

The discussions of RANGE COLUMNS and LIST COLUMNS partitioning in the next two sections assume that
you are already familiar with partitioning based on ranges and lists as supported in MySQL 5.1 and later;
for more information about these, see Section 22.2.1, “RANGE Partitioning”, and Section 22.2.2, “LIST
Partitioning”, respectively.

22.2.3.1 RANGE COLUMNS partitioning

Range columns partitioning is similar to range partitioning, but enables you to define partitions using
ranges based on multiple column values. In addition, you can define the ranges using columns of types
other than integer types.

RANGE COLUMNS partitioning differs significantly from RANGE partitioning in the following ways:

• RANGE COLUMNS does not accept expressions, only names of columns.

• RANGE COLUMNS accepts a list of one or more columns.

RANGE COLUMNS partitions are based on comparisons between tuples (lists of column values) rather
than comparisons between scalar values. Placement of rows in RANGE COLUMNS partitions is also
based on comparisons between tuples; this is discussed further later in this section.

• RANGE COLUMNS partitioning columns are not restricted to integer columns; string, DATE and DATETIME
columns can also be used as partitioning columns. (See Section 22.2.3, “COLUMNS Partitioning”, for
details.)

The basic syntax for creating a table partitioned by RANGE COLUMNS is shown here:

CREATE TABLE table_name
PARTITION BY RANGE COLUMNS(column_list) (
 PARTITION partition_name VALUES LESS THAN (value_list)[,
 PARTITION partition_name VALUES LESS THAN (value_list)][,
 ...]
)

column_list:
 column_name[, column_name][, ...]

3993

COLUMNS Partitioning

value_list:
 value[, value][, ...]

Note

Not all CREATE TABLE options that can be used when creating partitioned tables
are shown here. For complete information, see Section 13.1.18, “CREATE TABLE
Statement”.

In the syntax just shown, column_list is a list of one or more columns (sometimes called a partitioning
column list), and value_list is a list of values (that is, it is a partition definition value list). A
value_list must be supplied for each partition definition, and each value_list must have the same
number of values as the column_list has columns. Generally speaking, if you use N columns in the
COLUMNS clause, then each VALUES LESS THAN clause must also be supplied with a list of N values.

The elements in the partitioning column list and in the value list defining each partition must occur in the
same order. In addition, each element in the value list must be of the same data type as the corresponding
element in the column list. However, the order of the column names in the partitioning column list and the
value lists does not have to be the same as the order of the table column definitions in the main part of
the CREATE TABLE statement. As with table partitioned by RANGE, you can use MAXVALUE to represent
a value such that any legal value inserted into a given column is always less than this value. Here is an
example of a CREATE TABLE statement that helps to illustrate all of these points:

mysql> CREATE TABLE rcx (
 -> a INT,
 -> b INT,
 -> c CHAR(3),
 -> d INT
 ->)
 -> PARTITION BY RANGE COLUMNS(a,d,c) (
 -> PARTITION p0 VALUES LESS THAN (5,10,'ggg'),
 -> PARTITION p1 VALUES LESS THAN (10,20,'mmm'),
 -> PARTITION p2 VALUES LESS THAN (15,30,'sss'),
 -> PARTITION p3 VALUES LESS THAN (MAXVALUE,MAXVALUE,MAXVALUE)
 ->);
Query OK, 0 rows affected (0.15 sec)

Table rcx contains the columns a, b, c, d. The partitioning column list supplied to the COLUMNS clause
uses 3 of these columns, in the order a, d, c. Each value list used to define a partition contains 3 values in
the same order; that is, each value list tuple has the form (INT, INT, CHAR(3)), which corresponds to the
data types used by columns a, d, and c (in that order).

Placement of rows into partitions is determined by comparing the tuple from a row to be inserted that
matches the column list in the COLUMNS clause with the tuples used in the VALUES LESS THAN clauses
to define partitions of the table. Because we are comparing tuples (that is, lists or sets of values) rather
than scalar values, the semantics of VALUES LESS THAN as used with RANGE COLUMNS partitions
differs somewhat from the case with simple RANGE partitions. In RANGE partitioning, a row generating
an expression value that is equal to a limiting value in a VALUES LESS THAN is never placed in the
corresponding partition; however, when using RANGE COLUMNS partitioning, it is sometimes possible for
a row whose partitioning column list's first element is equal in value to the that of the first element in a
VALUES LESS THAN value list to be placed in the corresponding partition.

Consider the RANGE partitioned table created by this statement:

CREATE TABLE r1 (
 a INT,
 b INT
)
PARTITION BY RANGE (a) (

3994

COLUMNS Partitioning

 PARTITION p0 VALUES LESS THAN (5),
 PARTITION p1 VALUES LESS THAN (MAXVALUE)
);

If we insert 3 rows into this table such that the column value for a is 5 for each row, all 3 rows are stored in
partition p1 because the a column value is in each case not less than 5, as we can see by executing the
proper query against the Information Schema PARTITIONS table:

mysql> INSERT INTO r1 VALUES (5,10), (5,11), (5,12);
Query OK, 3 rows affected (0.00 sec)
Records: 3 Duplicates: 0 Warnings: 0

mysql> SELECT PARTITION_NAME, TABLE_ROWS
 -> FROM INFORMATION_SCHEMA.PARTITIONS
 -> WHERE TABLE_NAME = 'r1';
+----------------+------------+
| PARTITION_NAME | TABLE_ROWS |
+----------------+------------+
| p0 | 0 |
| p1 | 3 |
+----------------+------------+
2 rows in set (0.00 sec)

Now consider a similar table rc1 that uses RANGE COLUMNS partitioning with both columns a and b
referenced in the COLUMNS clause, created as shown here:

CREATE TABLE rc1 (
 a INT,
 b INT
)
PARTITION BY RANGE COLUMNS(a, b) (
 PARTITION p0 VALUES LESS THAN (5, 12),
 PARTITION p3 VALUES LESS THAN (MAXVALUE, MAXVALUE)
);

If we insert exactly the same rows into rc1 as we just inserted into r1, the distribution of the rows is quite
different:

mysql> INSERT INTO rc1 VALUES (5,10), (5,11), (5,12);
Query OK, 3 rows affected (0.00 sec)
Records: 3 Duplicates: 0 Warnings: 0

mysql> SELECT PARTITION_NAME, TABLE_ROWS
 -> FROM INFORMATION_SCHEMA.PARTITIONS
 -> WHERE TABLE_NAME = 'rc1';
+----------------+------------+
| PARTITION_NAME | TABLE_ROWS |
+----------------+------------+
| p0 | 2 |
| p3 | 1 |
+----------------+------------+
2 rows in set (0.00 sec)

This is because we are comparing rows rather than scalar values. We can compare the row values
inserted with the limiting row value from the VALUES THAN LESS THAN clause used to define partition p0
in table rc1, like this:

mysql> SELECT (5,10) < (5,12), (5,11) < (5,12), (5,12) < (5,12);
+-----------------+-----------------+-----------------+
| (5,10) < (5,12) | (5,11) < (5,12) | (5,12) < (5,12) |
+-----------------+-----------------+-----------------+
| 1 | 1 | 0 |
+-----------------+-----------------+-----------------+
1 row in set (0.00 sec)

3995

COLUMNS Partitioning

The 2 tuples (5,10) and (5,11) evaluate as less than (5,12), so they are stored in partition p0. Since
5 is not less than 5 and 12 is not less than 12, (5,12) is considered not less than (5,12), and is stored
in partition p1.

The SELECT statement in the preceding example could also have been written using explicit row
constructors, like this:

SELECT ROW(5,10) < ROW(5,12), ROW(5,11) < ROW(5,12), ROW(5,12) < ROW(5,12);

For more information about the use of row constructors in MySQL, see Section 13.2.10.5, “Row
Subqueries”.

For a table partitioned by RANGE COLUMNS using only a single partitioning column, the storing of rows in
partitions is the same as that of an equivalent table that is partitioned by RANGE. The following CREATE
TABLE statement creates a table partitioned by RANGE COLUMNS using 1 partitioning column:

CREATE TABLE rx (
 a INT,
 b INT
)
PARTITION BY RANGE COLUMNS (a) (
 PARTITION p0 VALUES LESS THAN (5),
 PARTITION p1 VALUES LESS THAN (MAXVALUE)
);

If we insert the rows (5,10), (5,11), and (5,12) into this table, we can see that their placement is the
same as it is for the table r we created and populated earlier:

mysql> INSERT INTO rx VALUES (5,10), (5,11), (5,12);
Query OK, 3 rows affected (0.00 sec)
Records: 3 Duplicates: 0 Warnings: 0

mysql> SELECT PARTITION_NAME,TABLE_ROWS
 -> FROM INFORMATION_SCHEMA.PARTITIONS
 -> WHERE TABLE_NAME = 'rx';
+----------------+------------+
| PARTITION_NAME | TABLE_ROWS |
+----------------+------------+
| p0 | 0 |
| p1 | 3 |
+----------------+------------+
2 rows in set (0.00 sec)

It is also possible to create tables partitioned by RANGE COLUMNS where limiting values for one or more
columns are repeated in successive partition definitions. You can do this as long as the tuples of column
values used to define the partitions are strictly increasing. For example, each of the following CREATE
TABLE statements is valid:

CREATE TABLE rc2 (
 a INT,
 b INT
)
PARTITION BY RANGE COLUMNS(a,b) (
 PARTITION p0 VALUES LESS THAN (0,10),
 PARTITION p1 VALUES LESS THAN (10,20),
 PARTITION p2 VALUES LESS THAN (10,30),
 PARTITION p3 VALUES LESS THAN (MAXVALUE,MAXVALUE)
);

CREATE TABLE rc3 (
 a INT,
 b INT
)
PARTITION BY RANGE COLUMNS(a,b) (

3996

COLUMNS Partitioning

 PARTITION p0 VALUES LESS THAN (0,10),
 PARTITION p1 VALUES LESS THAN (10,20),
 PARTITION p2 VALUES LESS THAN (10,30),
 PARTITION p3 VALUES LESS THAN (10,35),
 PARTITION p4 VALUES LESS THAN (20,40),
 PARTITION p5 VALUES LESS THAN (MAXVALUE,MAXVALUE)
);

The following statement also succeeds, even though it might appear at first glance that it would not, since
the limiting value of column b is 25 for partition p0 and 20 for partition p1, and the limiting value of column
c is 100 for partition p1 and 50 for partition p2:

CREATE TABLE rc4 (
 a INT,
 b INT,
 c INT
)
PARTITION BY RANGE COLUMNS(a,b,c) (
 PARTITION p0 VALUES LESS THAN (0,25,50),
 PARTITION p1 VALUES LESS THAN (10,20,100),
 PARTITION p2 VALUES LESS THAN (10,30,50),
 PARTITION p3 VALUES LESS THAN (MAXVALUE,MAXVALUE,MAXVALUE)
);

When designing tables partitioned by RANGE COLUMNS, you can always test successive partition
definitions by comparing the desired tuples using the mysql client, like this:

mysql> SELECT (0,25,50) < (10,20,100), (10,20,100) < (10,30,50);
+-------------------------+--------------------------+
| (0,25,50) < (10,20,100) | (10,20,100) < (10,30,50) |
+-------------------------+--------------------------+
| 1 | 1 |
+-------------------------+--------------------------+
1 row in set (0.00 sec)

If a CREATE TABLE statement contains partition definitions that are not in strictly increasing order, it fails
with an error, as shown in this example:

mysql> CREATE TABLE rcf (
 -> a INT,
 -> b INT,
 -> c INT
 ->)
 -> PARTITION BY RANGE COLUMNS(a,b,c) (
 -> PARTITION p0 VALUES LESS THAN (0,25,50),
 -> PARTITION p1 VALUES LESS THAN (20,20,100),
 -> PARTITION p2 VALUES LESS THAN (10,30,50),
 -> PARTITION p3 VALUES LESS THAN (MAXVALUE,MAXVALUE,MAXVALUE)
 ->);
ERROR 1493 (HY000): VALUES LESS THAN value must be strictly increasing for each partition

When you get such an error, you can deduce which partition definitions are invalid by making “less than”
comparisons between their column lists. In this case, the problem is with the definition of partition p2
because the tuple used to define it is not less than the tuple used to define partition p3, as shown here:

mysql> SELECT (0,25,50) < (20,20,100), (20,20,100) < (10,30,50);
+-------------------------+--------------------------+
| (0,25,50) < (20,20,100) | (20,20,100) < (10,30,50) |
+-------------------------+--------------------------+
| 1 | 0 |
+-------------------------+--------------------------+
1 row in set (0.00 sec)

It is also possible for MAXVALUE to appear for the same column in more than one VALUES LESS THAN
clause when using RANGE COLUMNS. However, the limiting values for individual columns in successive

3997

COLUMNS Partitioning

partition definitions should otherwise be increasing, there should be no more than one partition defined
where MAXVALUE is used as the upper limit for all column values, and this partition definition should appear
last in the list of PARTITION ... VALUES LESS THAN clauses. In addition, you cannot use MAXVALUE
as the limiting value for the first column in more than one partition definition.

As stated previously, it is also possible with RANGE COLUMNS partitioning to use non-integer columns
as partitioning columns. (See Section 22.2.3, “COLUMNS Partitioning”, for a complete listing of these.)
Consider a table named employees (which is not partitioned), created using the following statement:

CREATE TABLE employees (
 id INT NOT NULL,
 fname VARCHAR(30),
 lname VARCHAR(30),
 hired DATE NOT NULL DEFAULT '1970-01-01',
 separated DATE NOT NULL DEFAULT '9999-12-31',
 job_code INT NOT NULL,
 store_id INT NOT NULL
);

Using RANGE COLUMNS partitioning, you can create a version of this table that stores each row in one of
four partitions based on the employee's last name, like this:

CREATE TABLE employees_by_lname (
 id INT NOT NULL,
 fname VARCHAR(30),
 lname VARCHAR(30),
 hired DATE NOT NULL DEFAULT '1970-01-01',
 separated DATE NOT NULL DEFAULT '9999-12-31',
 job_code INT NOT NULL,
 store_id INT NOT NULL
)
PARTITION BY RANGE COLUMNS (lname) (
 PARTITION p0 VALUES LESS THAN ('g'),
 PARTITION p1 VALUES LESS THAN ('m'),
 PARTITION p2 VALUES LESS THAN ('t'),
 PARTITION p3 VALUES LESS THAN (MAXVALUE)
);

Alternatively, you could cause the employees table as created previously to be partitioned using this
scheme by executing the following ALTER TABLE statement:

ALTER TABLE employees PARTITION BY RANGE COLUMNS (lname) (
 PARTITION p0 VALUES LESS THAN ('g'),
 PARTITION p1 VALUES LESS THAN ('m'),
 PARTITION p2 VALUES LESS THAN ('t'),
 PARTITION p3 VALUES LESS THAN (MAXVALUE)
);

Note

Because different character sets and collations have different sort orders, the
character sets and collations in use may effect which partition of a table partitioned
by RANGE COLUMNS a given row is stored in when using string columns as
partitioning columns. In addition, changing the character set or collation for a given
database, table, or column after such a table is created may cause changes in how
rows are distributed. For example, when using a case-sensitive collation, 'and'
sorts before 'Andersen', but when using a collation that is case-insensitive, the
reverse is true.

For information about how MySQL handles character sets and collations, see
Chapter 10, Character Sets, Collations, Unicode.

3998

COLUMNS Partitioning

Similarly, you can cause the employees table to be partitioned in such a way that each row is stored in
one of several partitions based on the decade in which the corresponding employee was hired using the
ALTER TABLE statement shown here:

ALTER TABLE employees PARTITION BY RANGE COLUMNS (hired) (
 PARTITION p0 VALUES LESS THAN ('1970-01-01'),
 PARTITION p1 VALUES LESS THAN ('1980-01-01'),
 PARTITION p2 VALUES LESS THAN ('1990-01-01'),
 PARTITION p3 VALUES LESS THAN ('2000-01-01'),
 PARTITION p4 VALUES LESS THAN ('2010-01-01'),
 PARTITION p5 VALUES LESS THAN (MAXVALUE)
);

See Section 13.1.18, “CREATE TABLE Statement”, for additional information about PARTITION BY
RANGE COLUMNS syntax.

22.2.3.2 LIST COLUMNS partitioning

MySQL 5.7 provides support for LIST COLUMNS partitioning. This is a variant of LIST partitioning that
enables the use of multiple columns as partition keys, and for columns of data types other than integer
types to be used as partitioning columns; you can use string types, DATE, and DATETIME columns. (For
more information about permitted data types for COLUMNS partitioning columns, see Section 22.2.3,
“COLUMNS Partitioning”.)

Suppose that you have a business that has customers in 12 cities which, for sales and marketing
purposes, you organize into 4 regions of 3 cities each as shown in the following table:

Region Cities

1 Oskarshamn, Högsby, Mönsterås

2 Vimmerby, Hultsfred, Västervik

3 Nässjö, Eksjö, Vetlanda

4 Uppvidinge, Alvesta, Växjo

With LIST COLUMNS partitioning, you can create a table for customer data that assigns a row to any of
4 partitions corresponding to these regions based on the name of the city where a customer resides, as
shown here:

CREATE TABLE customers_1 (
 first_name VARCHAR(25),
 last_name VARCHAR(25),
 street_1 VARCHAR(30),
 street_2 VARCHAR(30),
 city VARCHAR(15),
 renewal DATE
)
PARTITION BY LIST COLUMNS(city) (
 PARTITION pRegion_1 VALUES IN('Oskarshamn', 'Högsby', 'Mönsterås'),
 PARTITION pRegion_2 VALUES IN('Vimmerby', 'Hultsfred', 'Västervik'),
 PARTITION pRegion_3 VALUES IN('Nässjö', 'Eksjö', 'Vetlanda'),
 PARTITION pRegion_4 VALUES IN('Uppvidinge', 'Alvesta', 'Växjo')
);

As with partitioning by RANGE COLUMNS, you do not need to use expressions in the COLUMNS() clause
to convert column values into integers. (In fact, the use of expressions other than column names is not
permitted with COLUMNS().)

It is also possible to use DATE and DATETIME columns, as shown in the following example that uses the
same name and columns as the customers_1 table shown previously, but employs LIST COLUMNS

3999

HASH Partitioning

partitioning based on the renewal column to store rows in one of 4 partitions depending on the week in
February 2010 the customer's account is scheduled to renew:

CREATE TABLE customers_2 (
 first_name VARCHAR(25),
 last_name VARCHAR(25),
 street_1 VARCHAR(30),
 street_2 VARCHAR(30),
 city VARCHAR(15),
 renewal DATE
)
PARTITION BY LIST COLUMNS(renewal) (
 PARTITION pWeek_1 VALUES IN('2010-02-01', '2010-02-02', '2010-02-03',
 '2010-02-04', '2010-02-05', '2010-02-06', '2010-02-07'),
 PARTITION pWeek_2 VALUES IN('2010-02-08', '2010-02-09', '2010-02-10',
 '2010-02-11', '2010-02-12', '2010-02-13', '2010-02-14'),
 PARTITION pWeek_3 VALUES IN('2010-02-15', '2010-02-16', '2010-02-17',
 '2010-02-18', '2010-02-19', '2010-02-20', '2010-02-21'),
 PARTITION pWeek_4 VALUES IN('2010-02-22', '2010-02-23', '2010-02-24',
 '2010-02-25', '2010-02-26', '2010-02-27', '2010-02-28')
);

This works, but becomes cumbersome to define and maintain if the number of dates involved grows very
large; in such cases, it is usually more practical to employ RANGE or RANGE COLUMNS partitioning instead.
In this case, since the column we wish to use as the partitioning key is a DATE column, we use RANGE
COLUMNS partitioning, as shown here:

CREATE TABLE customers_3 (
 first_name VARCHAR(25),
 last_name VARCHAR(25),
 street_1 VARCHAR(30),
 street_2 VARCHAR(30),
 city VARCHAR(15),
 renewal DATE
)
PARTITION BY RANGE COLUMNS(renewal) (
 PARTITION pWeek_1 VALUES LESS THAN('2010-02-09'),
 PARTITION pWeek_2 VALUES LESS THAN('2010-02-15'),
 PARTITION pWeek_3 VALUES LESS THAN('2010-02-22'),
 PARTITION pWeek_4 VALUES LESS THAN('2010-03-01')
);

See Section 22.2.3.1, “RANGE COLUMNS partitioning”, for more information.

In addition (as with RANGE COLUMNS partitioning), you can use multiple columns in the COLUMNS()
clause.

See Section 13.1.18, “CREATE TABLE Statement”, for additional information about PARTITION BY LIST
COLUMNS() syntax.

22.2.4 HASH Partitioning

Partitioning by HASH is used primarily to ensure an even distribution of data among a predetermined
number of partitions. With range or list partitioning, you must specify explicitly into which partition a given
column value or set of column values is to be stored; with hash partitioning, MySQL takes care of this for
you, and you need only specify a column value or expression based on a column value to be hashed and
the number of partitions into which the partitioned table is to be divided.

To partition a table using HASH partitioning, it is necessary to append to the CREATE TABLE statement a
PARTITION BY HASH (expr) clause, where expr is an expression that returns an integer. This can
simply be the name of a column whose type is one of MySQL's integer types. In addition, you most likely

4000

HASH Partitioning

want to follow this with PARTITIONS num, where num is a positive integer representing the number of
partitions into which the table is to be divided.

Note

For simplicity, the tables in the examples that follow do not use any keys. You
should be aware that, if a table has any unique keys, every column used in the
partitioning expression for this table must be part of every unique key, including
the primary key. See Section 22.6.1, “Partitioning Keys, Primary Keys, and Unique
Keys”, for more information.

The following statement creates a table that uses hashing on the store_id column and is divided into 4
partitions:

CREATE TABLE employees (
 id INT NOT NULL,
 fname VARCHAR(30),
 lname VARCHAR(30),
 hired DATE NOT NULL DEFAULT '1970-01-01',
 separated DATE NOT NULL DEFAULT '9999-12-31',
 job_code INT,
 store_id INT
)
PARTITION BY HASH(store_id)
PARTITIONS 4;

If you do not include a PARTITIONS clause, the number of partitions defaults to 1.

Using the PARTITIONS keyword without a number following it results in a syntax error.

You can also use an SQL expression that returns an integer for expr. For instance, you might want to
partition based on the year in which an employee was hired. This can be done as shown here:

CREATE TABLE employees (
 id INT NOT NULL,
 fname VARCHAR(30),
 lname VARCHAR(30),
 hired DATE NOT NULL DEFAULT '1970-01-01',
 separated DATE NOT NULL DEFAULT '9999-12-31',
 job_code INT,
 store_id INT
)
PARTITION BY HASH(YEAR(hired))
PARTITIONS 4;

expr must return a nonconstant, nonrandom integer value (in other words, it should be varying but
deterministic), and must not contain any prohibited constructs as described in Section 22.6, “Restrictions
and Limitations on Partitioning”. You should also keep in mind that this expression is evaluated each time
a row is inserted or updated (or possibly deleted); this means that very complex expressions may give rise
to performance issues, particularly when performing operations (such as batch inserts) that affect a great
many rows at one time.

The most efficient hashing function is one which operates upon a single table column and whose value
increases or decreases consistently with the column value, as this allows for “pruning” on ranges of
partitions. That is, the more closely that the expression varies with the value of the column on which it is
based, the more efficiently MySQL can use the expression for hash partitioning.

For example, where date_col is a column of type DATE, then the expression TO_DAYS(date_col)
is said to vary directly with the value of date_col, because for every change in the value of
date_col, the value of the expression changes in a consistent manner. The variance of the expression
YEAR(date_col) with respect to date_col is not quite as direct as that of TO_DAYS(date_col),

4001

HASH Partitioning

because not every possible change in date_col produces an equivalent change in YEAR(date_col).
Even so, YEAR(date_col) is a good candidate for a hashing function, because it varies directly with
a portion of date_col and there is no possible change in date_col that produces a disproportionate
change in YEAR(date_col).

By way of contrast, suppose that you have a column named int_col whose type is INT. Now consider
the expression POW(5-int_col,3) + 6. This would be a poor choice for a hashing function because
a change in the value of int_col is not guaranteed to produce a proportional change in the value of the
expression. Changing the value of int_col by a given amount can produce widely differing changes in
the value of the expression. For example, changing int_col from 5 to 6 produces a change of -1 in the
value of the expression, but changing the value of int_col from 6 to 7 produces a change of -7 in the
expression value.

In other words, the more closely the graph of the column value versus the value of the expression follows a
straight line as traced by the equation y=cx where c is some nonzero constant, the better the expression
is suited to hashing. This has to do with the fact that the more nonlinear an expression is, the more uneven
the distribution of data among the partitions it tends to produce.

In theory, pruning is also possible for expressions involving more than one column value, but determining
which of such expressions are suitable can be quite difficult and time-consuming. For this reason, the use
of hashing expressions involving multiple columns is not particularly recommended.

When PARTITION BY HASH is used, MySQL determines which partition of num partitions to use based
on the modulus of the result of the expression. In other words, for a given expression expr, the partition in
which the record is stored is partition number N, where N = MOD(expr, num). Suppose that table t1 is
defined as follows, so that it has 4 partitions:

CREATE TABLE t1 (col1 INT, col2 CHAR(5), col3 DATE)
 PARTITION BY HASH(YEAR(col3))
 PARTITIONS 4;

If you insert a record into t1 whose col3 value is '2005-09-15', then the partition in which it is stored is
determined as follows:

MOD(YEAR('2005-09-01'),4)
= MOD(2005,4)
= 1

MySQL 5.7 also supports a variant of HASH partitioning known as linear hashing which employs a more
complex algorithm for determining the placement of new rows inserted into the partitioned table. See
Section 22.2.4.1, “LINEAR HASH Partitioning”, for a description of this algorithm.

The user-supplied expression is evaluated each time a record is inserted or updated. It may also—
depending on the circumstances—be evaluated when records are deleted.

22.2.4.1 LINEAR HASH Partitioning

MySQL also supports linear hashing, which differs from regular hashing in that linear hashing utilizes a
linear powers-of-two algorithm whereas regular hashing employs the modulus of the hashing function's
value.

Syntactically, the only difference between linear-hash partitioning and regular hashing is the addition of the
LINEAR keyword in the PARTITION BY clause, as shown here:

CREATE TABLE employees (
 id INT NOT NULL,
 fname VARCHAR(30),
 lname VARCHAR(30),
 hired DATE NOT NULL DEFAULT '1970-01-01',

4002

KEY Partitioning

 separated DATE NOT NULL DEFAULT '9999-12-31',
 job_code INT,
 store_id INT
)
PARTITION BY LINEAR HASH(YEAR(hired))
PARTITIONS 4;

Given an expression expr, the partition in which the record is stored when linear hashing is used is
partition number N from among num partitions, where N is derived according to the following algorithm:

1. Find the next power of 2 greater than num. We call this value V; it can be calculated as:

V = POWER(2, CEILING(LOG(2, num)))

(Suppose that num is 13. Then LOG(2,13) is 3.7004397181411. CEILING(3.7004397181411) is 4,
and V = POWER(2,4), which is 16.)

2. Set N = F(column_list) & (V - 1).

3. While N >= num:

• Set V = V / 2

• Set N = N & (V - 1)

Suppose that the table t1, using linear hash partitioning and having 6 partitions, is created using this
statement:

CREATE TABLE t1 (col1 INT, col2 CHAR(5), col3 DATE)
 PARTITION BY LINEAR HASH(YEAR(col3))
 PARTITIONS 6;

Now assume that you want to insert two records into t1 having the col3 column values '2003-04-14'
and '1998-10-19'. The partition number for the first of these is determined as follows:

V = POWER(2, CEILING(LOG(2,6))) = 8
N = YEAR('2003-04-14') & (8 - 1)
 = 2003 & 7
 = 3

(3 >= 6 is FALSE: record stored in partition #3)

The number of the partition where the second record is stored is calculated as shown here:

V = 8
N = YEAR('1998-10-19') & (8 - 1)
 = 1998 & 7
 = 6

(6 >= 6 is TRUE: additional step required)

N = 6 & ((8 / 2) - 1)
 = 6 & 3
 = 2

(2 >= 6 is FALSE: record stored in partition #2)

The advantage in partitioning by linear hash is that the adding, dropping, merging, and splitting of partitions
is made much faster, which can be beneficial when dealing with tables containing extremely large amounts
(terabytes) of data. The disadvantage is that data is less likely to be evenly distributed between partitions
as compared with the distribution obtained using regular hash partitioning.

22.2.5 KEY Partitioning

4003

KEY Partitioning

Partitioning by key is similar to partitioning by hash, except that where hash partitioning employs a user-
defined expression, the hashing function for key partitioning is supplied by the MySQL server. NDB Cluster
uses MD5() for this purpose; for tables using other storage engines, the server employs its own internal
hashing function which is based on the same algorithm as PASSWORD().

The syntax rules for CREATE TABLE ... PARTITION BY KEY are similar to those for creating a table
that is partitioned by hash. The major differences are listed here:

• KEY is used rather than HASH.

• KEY takes only a list of zero or more column names. Any columns used as the partitioning key must
comprise part or all of the table's primary key, if the table has one. Where no column name is specified
as the partitioning key, the table's primary key is used, if there is one. For example, the following CREATE
TABLE statement is valid in MySQL 5.7:

CREATE TABLE k1 (
 id INT NOT NULL PRIMARY KEY,
 name VARCHAR(20)
)
PARTITION BY KEY()
PARTITIONS 2;

If there is no primary key but there is a unique key, then the unique key is used for the partitioning key:

CREATE TABLE k1 (
 id INT NOT NULL,
 name VARCHAR(20),
 UNIQUE KEY (id)
)
PARTITION BY KEY()
PARTITIONS 2;

However, if the unique key column were not defined as NOT NULL, then the previous statement would
fail.

In both of these cases, the partitioning key is the id column, even though it is not shown in the output
of SHOW CREATE TABLE or in the PARTITION_EXPRESSION column of the Information Schema
PARTITIONS table.

Unlike the case with other partitioning types, columns used for partitioning by KEY are not restricted to
integer or NULL values. For example, the following CREATE TABLE statement is valid:

CREATE TABLE tm1 (
 s1 CHAR(32) PRIMARY KEY
)
PARTITION BY KEY(s1)
PARTITIONS 10;

The preceding statement would not be valid, were a different partitioning type to be specified. (In
this case, simply using PARTITION BY KEY() would also be valid and have the same effect as
PARTITION BY KEY(s1), since s1 is the table's primary key.)

For additional information about this issue, see Section 22.6, “Restrictions and Limitations on
Partitioning”.

Columns with index prefixes are not supported in partitioning keys. This means that CHAR, VARCHAR,
BINARY, and VARBINARY columns can be used in a partitioning key, as long as they do not employ
prefixes; because a prefix must be specified for BLOB and TEXT columns in index definitions, it is not
possible to use columns of these two types in partitioning keys. In MySQL 5.7, columns using prefixes

4004

Subpartitioning

are permitted when creating, altering, or upgrading partitioned tables, even though they are not included
in the table's partitioning key. This is a known issue in MySQL 5.7 which is addressed in MySQL 8.0,
where this permissive behavior is deprecated, and the server displays appropriate warnings or errors
when attempting to use such columns in these cases. See Column index prefixes not supported for key
partitioning, for more information and examples.

Note

Tables using the NDB storage engine are implicitly partitioned by KEY, using
the table's primary key as the partitioning key (as with other MySQL storage
engines). In the event that the NDB Cluster table has no explicit primary key, the
“hidden” primary key generated by the NDB storage engine for each NDB Cluster
table is used as the partitioning key.

If you define an explicit partitioning scheme for an NDB table, the table must have
an explicit primary key, and any columns used in the partitioning expression must
be part of this key. However, if the table uses an “empty” partitioning expression
—that is, PARTITION BY KEY() with no column references—then no explicit
primary key is required.

You can observe this partitioning using the ndb_desc utility (with the -p option).

Important

For a key-partitioned table, you cannot execute an ALTER TABLE DROP
PRIMARY KEY, as doing so generates the error ERROR 1466 (HY000):
Field in list of fields for partition function not found in
table. This is not an issue for NDB Cluster tables which are partitioned by KEY;
in such cases, the table is reorganized using the “hidden” primary key as the
table's new partitioning key. See Chapter 21, MySQL NDB Cluster 7.5 and NDB
Cluster 7.6.

It is also possible to partition a table by linear key. Here is a simple example:

CREATE TABLE tk (
 col1 INT NOT NULL,
 col2 CHAR(5),
 col3 DATE
)
PARTITION BY LINEAR KEY (col1)
PARTITIONS 3;

Using LINEAR has the same effect on KEY partitioning as it does on HASH partitioning, with the
partition number being derived using a powers-of-two algorithm rather than modulo arithmetic. See
Section 22.2.4.1, “LINEAR HASH Partitioning”, for a description of this algorithm and its implications.

22.2.6 Subpartitioning

Subpartitioning—also known as composite partitioning—is the further division of each partition in a
partitioned table. Consider the following CREATE TABLE statement:

CREATE TABLE ts (id INT, purchased DATE)
 PARTITION BY RANGE(YEAR(purchased))
 SUBPARTITION BY HASH(TO_DAYS(purchased))
 SUBPARTITIONS 2 (
 PARTITION p0 VALUES LESS THAN (1990),
 PARTITION p1 VALUES LESS THAN (2000),

4005

Subpartitioning

 PARTITION p2 VALUES LESS THAN MAXVALUE
);

Table ts has 3 RANGE partitions. Each of these partitions—p0, p1, and p2—is further divided into 2
subpartitions. In effect, the entire table is divided into 3 * 2 = 6 partitions. However, due to the action
of the PARTITION BY RANGE clause, the first 2 of these store only those records with a value less than
1990 in the purchased column.

In MySQL 5.7, it is possible to subpartition tables that are partitioned by RANGE or LIST. Subpartitions may
use either HASH or KEY partitioning. This is also known as composite partitioning.

Note

SUBPARTITION BY HASH and SUBPARTITION BY KEY generally follow
the same syntax rules as PARTITION BY HASH and PARTITION BY KEY,
respectively. An exception to this is that SUBPARTITION BY KEY (unlike
PARTITION BY KEY) does not currently support a default column, so the column
used for this purpose must be specified, even if the table has an explicit primary
key. This is a known issue which we are working to address; see Issues with
subpartitions, for more information and an example.

It is also possible to define subpartitions explicitly using SUBPARTITION clauses to specify options for
individual subpartitions. For example, a more verbose fashion of creating the same table ts as shown in
the previous example would be:

CREATE TABLE ts (id INT, purchased DATE)
 PARTITION BY RANGE(YEAR(purchased))
 SUBPARTITION BY HASH(TO_DAYS(purchased)) (
 PARTITION p0 VALUES LESS THAN (1990) (
 SUBPARTITION s0,
 SUBPARTITION s1
),
 PARTITION p1 VALUES LESS THAN (2000) (
 SUBPARTITION s2,
 SUBPARTITION s3
),
 PARTITION p2 VALUES LESS THAN MAXVALUE (
 SUBPARTITION s4,
 SUBPARTITION s5
)
);

Some syntactical items of note are listed here:

• Each partition must have the same number of subpartitions.

• If you explicitly define any subpartitions using SUBPARTITION on any partition of a partitioned table, you
must define them all. In other words, the following statement fails:

CREATE TABLE ts (id INT, purchased DATE)
 PARTITION BY RANGE(YEAR(purchased))
 SUBPARTITION BY HASH(TO_DAYS(purchased)) (
 PARTITION p0 VALUES LESS THAN (1990) (
 SUBPARTITION s0,
 SUBPARTITION s1
),
 PARTITION p1 VALUES LESS THAN (2000),
 PARTITION p2 VALUES LESS THAN MAXVALUE (
 SUBPARTITION s2,
 SUBPARTITION s3
)

4006

Subpartitioning

);

This statement would still fail even if it included a SUBPARTITIONS 2 clause.

• Each SUBPARTITION clause must include (at a minimum) a name for the subpartition. Otherwise, you
may set any desired option for the subpartition or allow it to assume its default setting for that option.

• Subpartition names must be unique across the entire table. For example, the following CREATE TABLE
statement is valid in MySQL 5.7:

CREATE TABLE ts (id INT, purchased DATE)
 PARTITION BY RANGE(YEAR(purchased))
 SUBPARTITION BY HASH(TO_DAYS(purchased)) (
 PARTITION p0 VALUES LESS THAN (1990) (
 SUBPARTITION s0,
 SUBPARTITION s1
),
 PARTITION p1 VALUES LESS THAN (2000) (
 SUBPARTITION s2,
 SUBPARTITION s3
),
 PARTITION p2 VALUES LESS THAN MAXVALUE (
 SUBPARTITION s4,
 SUBPARTITION s5
)
);

Subpartitions can be used with especially large MyISAM tables to distribute data and indexes across many
disks. Suppose that you have 6 disks mounted as /disk0, /disk1, /disk2, and so on. Now consider the
following example:

CREATE TABLE ts (id INT, purchased DATE)
 ENGINE = MYISAM
 PARTITION BY RANGE(YEAR(purchased))
 SUBPARTITION BY HASH(TO_DAYS(purchased)) (
 PARTITION p0 VALUES LESS THAN (1990) (
 SUBPARTITION s0
 DATA DIRECTORY = '/disk0/data'
 INDEX DIRECTORY = '/disk0/idx',
 SUBPARTITION s1
 DATA DIRECTORY = '/disk1/data'
 INDEX DIRECTORY = '/disk1/idx'
),
 PARTITION p1 VALUES LESS THAN (2000) (
 SUBPARTITION s2
 DATA DIRECTORY = '/disk2/data'
 INDEX DIRECTORY = '/disk2/idx',
 SUBPARTITION s3
 DATA DIRECTORY = '/disk3/data'
 INDEX DIRECTORY = '/disk3/idx'
),
 PARTITION p2 VALUES LESS THAN MAXVALUE (
 SUBPARTITION s4
 DATA DIRECTORY = '/disk4/data'
 INDEX DIRECTORY = '/disk4/idx',
 SUBPARTITION s5
 DATA DIRECTORY = '/disk5/data'
 INDEX DIRECTORY = '/disk5/idx'
)
);

In this case, a separate disk is used for the data and for the indexes of each RANGE. Many other variations
are possible; another example might be:

CREATE TABLE ts (id INT, purchased DATE)

4007

Subpartitioning

 ENGINE = MYISAM
 PARTITION BY RANGE(YEAR(purchased))
 SUBPARTITION BY HASH(TO_DAYS(purchased)) (
 PARTITION p0 VALUES LESS THAN (1990) (
 SUBPARTITION s0a
 DATA DIRECTORY = '/disk0'
 INDEX DIRECTORY = '/disk1',
 SUBPARTITION s0b
 DATA DIRECTORY = '/disk2'
 INDEX DIRECTORY = '/disk3'
),
 PARTITION p1 VALUES LESS THAN (2000) (
 SUBPARTITION s1a
 DATA DIRECTORY = '/disk4/data'
 INDEX DIRECTORY = '/disk4/idx',
 SUBPARTITION s1b
 DATA DIRECTORY = '/disk5/data'
 INDEX DIRECTORY = '/disk5/idx'
),
 PARTITION p2 VALUES LESS THAN MAXVALUE (
 SUBPARTITION s2a,
 SUBPARTITION s2b
)
);

Here, the storage is as follows:

• Rows with purchased dates from before 1990 take up a vast amount of space, so are split up 4 ways,
with a separate disk dedicated to the data and to the indexes for each of the two subpartitions (s0a and
s0b) making up partition p0. In other words:

• The data for subpartition s0a is stored on /disk0.

• The indexes for subpartition s0a are stored on /disk1.

• The data for subpartition s0b is stored on /disk2.

• The indexes for subpartition s0b are stored on /disk3.

• Rows containing dates ranging from 1990 to 1999 (partition p1) do not require as much room as those
from before 1990. These are split between 2 disks (/disk4 and /disk5) rather than 4 disks as with the
legacy records stored in p0:

• Data and indexes belonging to p1's first subpartition (s1a) are stored on /disk4—the data in /
disk4/data, and the indexes in /disk4/idx.

• Data and indexes belonging to p1's second subpartition (s1b) are stored on /disk5—the data in /
disk5/data, and the indexes in /disk5/idx.

• Rows reflecting dates from the year 2000 to the present (partition p2) do not take up as much space as
required by either of the two previous ranges. Currently, it is sufficient to store all of these in the default
location.

In future, when the number of purchases for the decade beginning with the year 2000 grows to a point
where the default location no longer provides sufficient space, the corresponding rows can be moved
using an ALTER TABLE ... REORGANIZE PARTITION statement. See Section 22.3, “Partition
Management”, for an explanation of how this can be done.

The DATA DIRECTORY and INDEX DIRECTORY options are not permitted in partition definitions when the
NO_DIR_IN_CREATE server SQL mode is in effect. In MySQL 5.7, these options are also not permitted
when defining subpartitions (Bug #42954).

4008

How MySQL Partitioning Handles NULL

22.2.7 How MySQL Partitioning Handles NULL

Partitioning in MySQL does nothing to disallow NULL as the value of a partitioning expression, whether it is
a column value or the value of a user-supplied expression. Even though it is permitted to use NULL as the
value of an expression that must otherwise yield an integer, it is important to keep in mind that NULL is not
a number. MySQL's partitioning implementation treats NULL as being less than any non-NULL value, just
as ORDER BY does.

This means that treatment of NULL varies between partitioning of different types, and may produce
behavior which you do not expect if you are not prepared for it. This being the case, we discuss in this
section how each MySQL partitioning type handles NULL values when determining the partition in which a
row should be stored, and provide examples for each.

Handling of NULL with RANGE partitioning. If you insert a row into a table partitioned by RANGE such
that the column value used to determine the partition is NULL, the row is inserted into the lowest partition.
Consider these two tables in a database named p, created as follows:

mysql> CREATE TABLE t1 (
 -> c1 INT,
 -> c2 VARCHAR(20)
 ->)
 -> PARTITION BY RANGE(c1) (
 -> PARTITION p0 VALUES LESS THAN (0),
 -> PARTITION p1 VALUES LESS THAN (10),
 -> PARTITION p2 VALUES LESS THAN MAXVALUE
 ->);
Query OK, 0 rows affected (0.09 sec)

mysql> CREATE TABLE t2 (
 -> c1 INT,
 -> c2 VARCHAR(20)
 ->)
 -> PARTITION BY RANGE(c1) (
 -> PARTITION p0 VALUES LESS THAN (-5),
 -> PARTITION p1 VALUES LESS THAN (0),
 -> PARTITION p2 VALUES LESS THAN (10),
 -> PARTITION p3 VALUES LESS THAN MAXVALUE
 ->);
Query OK, 0 rows affected (0.09 sec)

You can see the partitions created by these two CREATE TABLE statements using the following query
against the PARTITIONS table in the INFORMATION_SCHEMA database:

mysql> SELECT TABLE_NAME, PARTITION_NAME, TABLE_ROWS, AVG_ROW_LENGTH, DATA_LENGTH
 > FROM INFORMATION_SCHEMA.PARTITIONS
 > WHERE TABLE_SCHEMA = 'p' AND TABLE_NAME LIKE 't_';
+------------+----------------+------------+----------------+-------------+
| TABLE_NAME | PARTITION_NAME | TABLE_ROWS | AVG_ROW_LENGTH | DATA_LENGTH |
+------------+----------------+------------+----------------+-------------+
t1	p0	0	0	0
t1	p1	0	0	0
t1	p2	0	0	0
t2	p0	0	0	0
t2	p1	0	0	0
t2	p2	0	0	0
t2	p3	0	0	0
+------------+----------------+------------+----------------+-------------+
7 rows in set (0.00 sec)

(For more information about this table, see Section 24.3.16, “The INFORMATION_SCHEMA PARTITIONS
Table”.) Now let us populate each of these tables with a single row containing a NULL in the column used
as the partitioning key, and verify that the rows were inserted using a pair of SELECT statements:

4009

How MySQL Partitioning Handles NULL

mysql> INSERT INTO t1 VALUES (NULL, 'mothra');
Query OK, 1 row affected (0.00 sec)

mysql> INSERT INTO t2 VALUES (NULL, 'mothra');
Query OK, 1 row affected (0.00 sec)

mysql> SELECT * FROM t1;
+------+--------+
| id | name |
+------+--------+
| NULL | mothra |
+------+--------+
1 row in set (0.00 sec)

mysql> SELECT * FROM t2;
+------+--------+
| id | name |
+------+--------+
| NULL | mothra |
+------+--------+
1 row in set (0.00 sec)

You can see which partitions are used to store the inserted rows by rerunning the previous query against
INFORMATION_SCHEMA.PARTITIONS and inspecting the output:

mysql> SELECT TABLE_NAME, PARTITION_NAME, TABLE_ROWS, AVG_ROW_LENGTH, DATA_LENGTH
 > FROM INFORMATION_SCHEMA.PARTITIONS
 > WHERE TABLE_SCHEMA = 'p' AND TABLE_NAME LIKE 't_';
+------------+----------------+------------+----------------+-------------+
| TABLE_NAME | PARTITION_NAME | TABLE_ROWS | AVG_ROW_LENGTH | DATA_LENGTH |
+------------+----------------+------------+----------------+-------------+
t1	p0	1	20	20
t1	p1	0	0	0
t1	p2	0	0	0
t2	p0	1	20	20
t2	p1	0	0	0
t2	p2	0	0	0
t2	p3	0	0	0
+------------+----------------+------------+----------------+-------------+
7 rows in set (0.01 sec)

You can also demonstrate that these rows were stored in the lowest partition of each table by dropping
these partitions, and then re-running the SELECT statements:

mysql> ALTER TABLE t1 DROP PARTITION p0;
Query OK, 0 rows affected (0.16 sec)

mysql> ALTER TABLE t2 DROP PARTITION p0;
Query OK, 0 rows affected (0.16 sec)

mysql> SELECT * FROM t1;
Empty set (0.00 sec)

mysql> SELECT * FROM t2;
Empty set (0.00 sec)

(For more information on ALTER TABLE ... DROP PARTITION, see Section 13.1.8, “ALTER TABLE
Statement”.)

NULL is also treated in this way for partitioning expressions that use SQL functions. Suppose that we
define a table using a CREATE TABLE statement such as this one:

CREATE TABLE tndate (
 id INT,
 dt DATE

4010

How MySQL Partitioning Handles NULL

)
PARTITION BY RANGE(YEAR(dt)) (
 PARTITION p0 VALUES LESS THAN (1990),
 PARTITION p1 VALUES LESS THAN (2000),
 PARTITION p2 VALUES LESS THAN MAXVALUE
);

As with other MySQL functions, YEAR(NULL) returns NULL. A row with a dt column value of NULL is
treated as though the partitioning expression evaluated to a value less than any other value, and so is
inserted into partition p0.

Handling of NULL with LIST partitioning. A table that is partitioned by LIST admits NULL values if
and only if one of its partitions is defined using that value-list that contains NULL. The converse of this is
that a table partitioned by LIST which does not explicitly use NULL in a value list rejects rows resulting in a
NULL value for the partitioning expression, as shown in this example:

mysql> CREATE TABLE ts1 (
 -> c1 INT,
 -> c2 VARCHAR(20)
 ->)
 -> PARTITION BY LIST(c1) (
 -> PARTITION p0 VALUES IN (0, 3, 6),
 -> PARTITION p1 VALUES IN (1, 4, 7),
 -> PARTITION p2 VALUES IN (2, 5, 8)
 ->);
Query OK, 0 rows affected (0.01 sec)

mysql> INSERT INTO ts1 VALUES (9, 'mothra');
ERROR 1504 (HY000): Table has no partition for value 9

mysql> INSERT INTO ts1 VALUES (NULL, 'mothra');
ERROR 1504 (HY000): Table has no partition for value NULL

Only rows having a c1 value between 0 and 8 inclusive can be inserted into ts1. NULL falls outside this
range, just like the number 9. We can create tables ts2 and ts3 having value lists containing NULL, as
shown here:

mysql> CREATE TABLE ts2 (
 -> c1 INT,
 -> c2 VARCHAR(20)
 ->)
 -> PARTITION BY LIST(c1) (
 -> PARTITION p0 VALUES IN (0, 3, 6),
 -> PARTITION p1 VALUES IN (1, 4, 7),
 -> PARTITION p2 VALUES IN (2, 5, 8),
 -> PARTITION p3 VALUES IN (NULL)
 ->);
Query OK, 0 rows affected (0.01 sec)

mysql> CREATE TABLE ts3 (
 -> c1 INT,
 -> c2 VARCHAR(20)
 ->)
 -> PARTITION BY LIST(c1) (
 -> PARTITION p0 VALUES IN (0, 3, 6),
 -> PARTITION p1 VALUES IN (1, 4, 7, NULL),
 -> PARTITION p2 VALUES IN (2, 5, 8)
 ->);
Query OK, 0 rows affected (0.01 sec)

When defining value lists for partitioning, you can (and should) treat NULL just as you would any other
value. For example, both VALUES IN (NULL) and VALUES IN (1, 4, 7, NULL) are valid, as are
VALUES IN (1, NULL, 4, 7), VALUES IN (NULL, 1, 4, 7), and so on. You can insert a row
having NULL for column c1 into each of the tables ts2 and ts3:

4011

How MySQL Partitioning Handles NULL

mysql> INSERT INTO ts2 VALUES (NULL, 'mothra');
Query OK, 1 row affected (0.00 sec)

mysql> INSERT INTO ts3 VALUES (NULL, 'mothra');
Query OK, 1 row affected (0.00 sec)

By issuing the appropriate query against the Information Schema PARTITIONS table, you can determine
which partitions were used to store the rows just inserted (we assume, as in the previous examples, that
the partitioned tables were created in the p database):

mysql> SELECT TABLE_NAME, PARTITION_NAME, TABLE_ROWS, AVG_ROW_LENGTH, DATA_LENGTH
 > FROM INFORMATION_SCHEMA.PARTITIONS
 > WHERE TABLE_SCHEMA = 'p' AND TABLE_NAME LIKE 'ts_';
+------------+----------------+------------+----------------+-------------+
| TABLE_NAME | PARTITION_NAME | TABLE_ROWS | AVG_ROW_LENGTH | DATA_LENGTH |
+------------+----------------+------------+----------------+-------------+
ts2	p0	0	0	0
ts2	p1	0	0	0
ts2	p2	0	0	0
ts2	p3	1	20	20
ts3	p0	0	0	0
ts3	p1	1	20	20
ts3	p2	0	0	0
+------------+----------------+------------+----------------+-------------+
7 rows in set (0.01 sec)

As shown earlier in this section, you can also verify which partitions were used for storing the rows by
deleting these partitions and then performing a SELECT.

Handling of NULL with HASH and KEY partitioning. NULL is handled somewhat differently for tables
partitioned by HASH or KEY. In these cases, any partition expression that yields a NULL value is treated as
though its return value were zero. We can verify this behavior by examining the effects on the file system of
creating a table partitioned by HASH and populating it with a record containing appropriate values. Suppose
that you have a table th (also in the p database) created using the following statement:

mysql> CREATE TABLE th (
 -> c1 INT,
 -> c2 VARCHAR(20)
 ->)
 -> PARTITION BY HASH(c1)
 -> PARTITIONS 2;
Query OK, 0 rows affected (0.00 sec)

The partitions belonging to this table can be viewed using the query shown here:

mysql> SELECT TABLE_NAME,PARTITION_NAME,TABLE_ROWS,AVG_ROW_LENGTH,DATA_LENGTH
 > FROM INFORMATION_SCHEMA.PARTITIONS
 > WHERE TABLE_SCHEMA = 'p' AND TABLE_NAME ='th';
+------------+----------------+------------+----------------+-------------+
| TABLE_NAME | PARTITION_NAME | TABLE_ROWS | AVG_ROW_LENGTH | DATA_LENGTH |
+------------+----------------+------------+----------------+-------------+
| th | p0 | 0 | 0 | 0 |
| th | p1 | 0 | 0 | 0 |
+------------+----------------+------------+----------------+-------------+
2 rows in set (0.00 sec)

TABLE_ROWS for each partition is 0. Now insert two rows into th whose c1 column values are NULL and 0,
and verify that these rows were inserted, as shown here:

mysql> INSERT INTO th VALUES (NULL, 'mothra'), (0, 'gigan');
Query OK, 1 row affected (0.00 sec)

mysql> SELECT * FROM th;
+------+---------+

4012

Partition Management

| c1 | c2 |
+------+---------+
| NULL | mothra |
+------+---------+
| 0 | gigan |
+------+---------+
2 rows in set (0.01 sec)

Recall that for any integer N, the value of NULL MOD N is always NULL. For tables that are partitioned
by HASH or KEY, this result is treated for determining the correct partition as 0. Checking the Information
Schema PARTITIONS table once again, we can see that both rows were inserted into partition p0:

mysql> SELECT TABLE_NAME, PARTITION_NAME, TABLE_ROWS, AVG_ROW_LENGTH, DATA_LENGTH
 > FROM INFORMATION_SCHEMA.PARTITIONS
 > WHERE TABLE_SCHEMA = 'p' AND TABLE_NAME ='th';
+------------+----------------+------------+----------------+-------------+
| TABLE_NAME | PARTITION_NAME | TABLE_ROWS | AVG_ROW_LENGTH | DATA_LENGTH |
+------------+----------------+------------+----------------+-------------+
| th | p0 | 2 | 20 | 20 |
| th | p1 | 0 | 0 | 0 |
+------------+----------------+------------+----------------+-------------+
2 rows in set (0.00 sec)

By repeating the last example using PARTITION BY KEY in place of PARTITION BY HASH in the
definition of the table, you can verify that NULL is also treated like 0 for this type of partitioning.

22.3 Partition Management
MySQL 5.7 provides a number of ways to modify partitioned tables. It is possible to add, drop, redefine,
merge, or split existing partitions. All of these actions can be carried out using the partitioning extensions
to the ALTER TABLE statement. There are also ways to obtain information about partitioned tables and
partitions. We discuss these topics in the sections that follow.

• For information about partition management in tables partitioned by RANGE or LIST, see Section 22.3.1,
“Management of RANGE and LIST Partitions”.

• For a discussion of managing HASH and KEY partitions, see Section 22.3.2, “Management of HASH and
KEY Partitions”.

• See Section 22.3.5, “Obtaining Information About Partitions”, for a discussion of mechanisms provided in
MySQL 5.7 for obtaining information about partitioned tables and partitions.

• For a discussion of performing maintenance operations on partitions, see Section 22.3.4, “Maintenance
of Partitions”.

Note

In MySQL 5.7, all partitions of a partitioned table must have the same number of
subpartitions, and it is not possible to change the subpartitioning once the table has
been created.

To change a table's partitioning scheme, it is necessary only to use the ALTER TABLE statement with a
partition_options clause. This clause has the same syntax as that as used with CREATE TABLE for
creating a partitioned table, and always begins with the keywords PARTITION BY. Suppose that you have
a table partitioned by range using the following CREATE TABLE statement:

CREATE TABLE trb3 (id INT, name VARCHAR(50), purchased DATE)
 PARTITION BY RANGE(YEAR(purchased)) (
 PARTITION p0 VALUES LESS THAN (1990),
 PARTITION p1 VALUES LESS THAN (1995),
 PARTITION p2 VALUES LESS THAN (2000),

4013

Management of RANGE and LIST Partitions

 PARTITION p3 VALUES LESS THAN (2005)
);

To repartition this table so that it is partitioned by key into two partitions using the id column value as the
basis for the key, you can use this statement:

ALTER TABLE trb3 PARTITION BY KEY(id) PARTITIONS 2;

This has the same effect on the structure of the table as dropping the table and re-creating it using CREATE
TABLE trb3 PARTITION BY KEY(id) PARTITIONS 2;.

ALTER TABLE ... ENGINE = ... changes only the storage engine used by the table, and leaves the
table's partitioning scheme intact. Use ALTER TABLE ... REMOVE PARTITIONING to remove a table's
partitioning. See Section 13.1.8, “ALTER TABLE Statement”.

Important

Only a single PARTITION BY, ADD PARTITION, DROP PARTITION, REORGANIZE
PARTITION, or COALESCE PARTITION clause can be used in a given ALTER
TABLE statement. If you (for example) wish to drop a partition and reorganize
a table's remaining partitions, you must do so in two separate ALTER TABLE
statements (one using DROP PARTITION and then a second one using
REORGANIZE PARTITION).

In MySQL 5.7, it is possible to delete all rows from one or more selected partitions using ALTER
TABLE ... TRUNCATE PARTITION.

22.3.1 Management of RANGE and LIST Partitions

Adding and dropping of range and list partitions are handled in a similar fashion, so we discuss the
management of both sorts of partitioning in this section. For information about working with tables that are
partitioned by hash or key, see Section 22.3.2, “Management of HASH and KEY Partitions”.

Dropping a partition from a table that is partitioned by either RANGE or by LIST can be accomplished using
the ALTER TABLE statement with the DROP PARTITION option. Suppose that you have created a table
that is partitioned by range and then populated with 10 records using the following CREATE TABLE and
INSERT statements:

mysql> CREATE TABLE tr (id INT, name VARCHAR(50), purchased DATE)
 -> PARTITION BY RANGE(YEAR(purchased)) (
 -> PARTITION p0 VALUES LESS THAN (1990),
 -> PARTITION p1 VALUES LESS THAN (1995),
 -> PARTITION p2 VALUES LESS THAN (2000),
 -> PARTITION p3 VALUES LESS THAN (2005),
 -> PARTITION p4 VALUES LESS THAN (2010),
 -> PARTITION p5 VALUES LESS THAN (2015)
 ->);
Query OK, 0 rows affected (0.28 sec)

mysql> INSERT INTO tr VALUES
 -> (1, 'desk organiser', '2003-10-15'),
 -> (2, 'alarm clock', '1997-11-05'),
 -> (3, 'chair', '2009-03-10'),
 -> (4, 'bookcase', '1989-01-10'),
 -> (5, 'exercise bike', '2014-05-09'),
 -> (6, 'sofa', '1987-06-05'),
 -> (7, 'espresso maker', '2011-11-22'),
 -> (8, 'aquarium', '1992-08-04'),
 -> (9, 'study desk', '2006-09-16'),
 -> (10, 'lava lamp', '1998-12-25');
Query OK, 10 rows affected (0.05 sec)

4014

Management of RANGE and LIST Partitions

Records: 10 Duplicates: 0 Warnings: 0

You can see which items should have been inserted into partition p2 as shown here:

mysql> SELECT * FROM tr
 -> WHERE purchased BETWEEN '1995-01-01' AND '1999-12-31';
+------+-------------+------------+
| id | name | purchased |
+------+-------------+------------+
| 2 | alarm clock | 1997-11-05 |
| 10 | lava lamp | 1998-12-25 |
+------+-------------+------------+
2 rows in set (0.00 sec)

You can also get this information using partition selection, as shown here:

mysql> SELECT * FROM tr PARTITION (p2);
+------+-------------+------------+
| id | name | purchased |
+------+-------------+------------+
| 2 | alarm clock | 1997-11-05 |
| 10 | lava lamp | 1998-12-25 |
+------+-------------+------------+
2 rows in set (0.00 sec)

See Section 22.5, “Partition Selection”, for more information.

To drop the partition named p2, execute the following command:

mysql> ALTER TABLE tr DROP PARTITION p2;
Query OK, 0 rows affected (0.03 sec)

Note

The NDBCLUSTER storage engine does not support ALTER TABLE ... DROP
PARTITION. It does, however, support the other partitioning-related extensions to
ALTER TABLE that are described in this chapter.

It is very important to remember that, when you drop a partition, you also delete all the data that was stored
in that partition. You can see that this is the case by re-running the previous SELECT query:

mysql> SELECT * FROM tr WHERE purchased
 -> BETWEEN '1995-01-01' AND '1999-12-31';
Empty set (0.00 sec)

Because of this, you must have the DROP privilege for a table before you can execute ALTER TABLE ...
DROP PARTITION on that table.

If you wish to drop all data from all partitions while preserving the table definition and its partitioning
scheme, use the TRUNCATE TABLE statement. (See Section 13.1.34, “TRUNCATE TABLE Statement”.)

If you intend to change the partitioning of a table without losing data, use ALTER TABLE ...
REORGANIZE PARTITION instead. See below or in Section 13.1.8, “ALTER TABLE Statement”, for
information about REORGANIZE PARTITION.

If you now execute a SHOW CREATE TABLE statement, you can see how the partitioning makeup of the
table has been changed:

mysql> SHOW CREATE TABLE tr\G
*************************** 1. row ***************************
 Table: tr
Create Table: CREATE TABLE `tr` (
 `id` int(11) DEFAULT NULL,
 `name` varchar(50) DEFAULT NULL,

4015

Management of RANGE and LIST Partitions

 `purchased` date DEFAULT NULL
) ENGINE=InnoDB DEFAULT CHARSET=latin1
/*!50100 PARTITION BY RANGE (YEAR(purchased))
(PARTITION p0 VALUES LESS THAN (1990) ENGINE = InnoDB,
 PARTITION p1 VALUES LESS THAN (1995) ENGINE = InnoDB,
 PARTITION p3 VALUES LESS THAN (2005) ENGINE = InnoDB,
 PARTITION p4 VALUES LESS THAN (2010) ENGINE = InnoDB,
 PARTITION p5 VALUES LESS THAN (2015) ENGINE = InnoDB) */
1 row in set (0.00 sec)

When you insert new rows into the changed table with purchased column values between
'1995-01-01' and '2004-12-31' inclusive, those rows are stored in partition p3. You can verify this as
follows:

mysql> INSERT INTO tr VALUES (11, 'pencil holder', '1995-07-12');
Query OK, 1 row affected (0.00 sec)

mysql> SELECT * FROM tr WHERE purchased
 -> BETWEEN '1995-01-01' AND '2004-12-31';
+------+----------------+------------+
| id | name | purchased |
+------+----------------+------------+
| 1 | desk organiser | 2003-10-15 |
| 11 | pencil holder | 1995-07-12 |
+------+----------------+------------+
2 rows in set (0.00 sec)

mysql> ALTER TABLE tr DROP PARTITION p3;
Query OK, 0 rows affected (0.03 sec)

mysql> SELECT * FROM tr WHERE purchased
 -> BETWEEN '1995-01-01' AND '2004-12-31';
Empty set (0.00 sec)

The number of rows dropped from the table as a result of ALTER TABLE ... DROP PARTITION is not
reported by the server as it would be by the equivalent DELETE query.

Dropping LIST partitions uses exactly the same ALTER TABLE ... DROP PARTITION syntax as used
for dropping RANGE partitions. However, there is one important difference in the effect this has on your
use of the table afterward: You can no longer insert into the table any rows having any of the values that
were included in the value list defining the deleted partition. (See Section 22.2.2, “LIST Partitioning”, for an
example.)

To add a new range or list partition to a previously partitioned table, use the ALTER TABLE ... ADD
PARTITION statement. For tables which are partitioned by RANGE, this can be used to add a new range to
the end of the list of existing partitions. Suppose that you have a partitioned table containing membership
data for your organization, which is defined as follows:

CREATE TABLE members (
 id INT,
 fname VARCHAR(25),
 lname VARCHAR(25),
 dob DATE
)
PARTITION BY RANGE(YEAR(dob)) (
 PARTITION p0 VALUES LESS THAN (1980),
 PARTITION p1 VALUES LESS THAN (1990),
 PARTITION p2 VALUES LESS THAN (2000)
);

Suppose further that the minimum age for members is 16. As the calendar approaches the end of 2015,
you realize that you are soon going to be admitting members who were born in 2000 (and later). You can
modify the members table to accommodate new members born in the years 2000 to 2010 as shown here:

4016

Management of RANGE and LIST Partitions

ALTER TABLE members ADD PARTITION (PARTITION p3 VALUES LESS THAN (2010));

With tables that are partitioned by range, you can use ADD PARTITION to add new partitions to the high
end of the partitions list only. Trying to add a new partition in this manner between or before existing
partitions results in an error as shown here:

mysql> ALTER TABLE members
 > ADD PARTITION (
 > PARTITION n VALUES LESS THAN (1970));
ERROR 1463 (HY000): VALUES LESS THAN value must be strictly »
 increasing for each partition

You can work around this problem by reorganizing the first partition into two new ones that split the range
between them, like this:

ALTER TABLE members
 REORGANIZE PARTITION p0 INTO (
 PARTITION n0 VALUES LESS THAN (1970),
 PARTITION n1 VALUES LESS THAN (1980)
);

Using SHOW CREATE TABLE you can see that the ALTER TABLE statement has had the desired effect:

mysql> SHOW CREATE TABLE members\G
*************************** 1. row ***************************
 Table: members
Create Table: CREATE TABLE `members` (
 `id` int(11) DEFAULT NULL,
 `fname` varchar(25) DEFAULT NULL,
 `lname` varchar(25) DEFAULT NULL,
 `dob` date DEFAULT NULL
) ENGINE=InnoDB DEFAULT CHARSET=latin1
/*!50100 PARTITION BY RANGE (YEAR(dob))
(PARTITION n0 VALUES LESS THAN (1970) ENGINE = InnoDB,
 PARTITION n1 VALUES LESS THAN (1980) ENGINE = InnoDB,
 PARTITION p1 VALUES LESS THAN (1990) ENGINE = InnoDB,
 PARTITION p2 VALUES LESS THAN (2000) ENGINE = InnoDB,
 PARTITION p3 VALUES LESS THAN (2010) ENGINE = InnoDB) */
1 row in set (0.00 sec)

See also Section 13.1.8.1, “ALTER TABLE Partition Operations”.

You can also use ALTER TABLE ... ADD PARTITION to add new partitions to a table that is partitioned
by LIST. Suppose a table tt is defined using the following CREATE TABLE statement:

CREATE TABLE tt (
 id INT,
 data INT
)
PARTITION BY LIST(data) (
 PARTITION p0 VALUES IN (5, 10, 15),
 PARTITION p1 VALUES IN (6, 12, 18)
);

You can add a new partition in which to store rows having the data column values 7, 14, and 21 as
shown:

ALTER TABLE tt ADD PARTITION (PARTITION p2 VALUES IN (7, 14, 21));

Keep in mind that you cannot add a new LIST partition encompassing any values that are already included
in the value list of an existing partition. If you attempt to do so, an error results:

mysql> ALTER TABLE tt ADD PARTITION

4017

Management of RANGE and LIST Partitions

 > (PARTITION np VALUES IN (4, 8, 12));
ERROR 1465 (HY000): Multiple definition of same constant »
 in list partitioning

Because any rows with the data column value 12 have already been assigned to partition p1, you cannot
create a new partition on table tt that includes 12 in its value list. To accomplish this, you could drop
p1, and add np and then a new p1 with a modified definition. However, as discussed earlier, this would
result in the loss of all data stored in p1—and it is often the case that this is not what you really want to do.
Another solution might appear to be to make a copy of the table with the new partitioning and to copy the
data into it using CREATE TABLE ... SELECT ..., then drop the old table and rename the new one,
but this could be very time-consuming when dealing with a large amounts of data. This also might not be
feasible in situations where high availability is a requirement.

You can add multiple partitions in a single ALTER TABLE ... ADD PARTITION statement as shown
here:

CREATE TABLE employees (
 id INT NOT NULL,
 fname VARCHAR(50) NOT NULL,
 lname VARCHAR(50) NOT NULL,
 hired DATE NOT NULL
)
PARTITION BY RANGE(YEAR(hired)) (
 PARTITION p1 VALUES LESS THAN (1991),
 PARTITION p2 VALUES LESS THAN (1996),
 PARTITION p3 VALUES LESS THAN (2001),
 PARTITION p4 VALUES LESS THAN (2005)
);

ALTER TABLE employees ADD PARTITION (
 PARTITION p5 VALUES LESS THAN (2010),
 PARTITION p6 VALUES LESS THAN MAXVALUE
);

Fortunately, MySQL's partitioning implementation provides ways to redefine partitions without losing data.
Let us look first at a couple of simple examples involving RANGE partitioning. Recall the members table
which is now defined as shown here:

mysql> SHOW CREATE TABLE members\G
*************************** 1. row ***************************
 Table: members
Create Table: CREATE TABLE `members` (
 `id` int(11) DEFAULT NULL,
 `fname` varchar(25) DEFAULT NULL,
 `lname` varchar(25) DEFAULT NULL,
 `dob` date DEFAULT NULL
) ENGINE=InnoDB DEFAULT CHARSET=latin1
/*!50100 PARTITION BY RANGE (YEAR(dob))
(PARTITION n0 VALUES LESS THAN (1970) ENGINE = InnoDB,
 PARTITION n1 VALUES LESS THAN (1980) ENGINE = InnoDB,
 PARTITION p1 VALUES LESS THAN (1990) ENGINE = InnoDB,
 PARTITION p2 VALUES LESS THAN (2000) ENGINE = InnoDB,
 PARTITION p3 VALUES LESS THAN (2010) ENGINE = InnoDB) */
1 row in set (0.00 sec)

Suppose that you would like to move all rows representing members born before 1960 into a separate
partition. As we have already seen, this cannot be done using ALTER TABLE ... ADD PARTITION.
However, you can use another partition-related extension to ALTER TABLE to accomplish this:

ALTER TABLE members REORGANIZE PARTITION n0 INTO (
 PARTITION s0 VALUES LESS THAN (1960),
 PARTITION s1 VALUES LESS THAN (1970)
);

4018

Management of RANGE and LIST Partitions

In effect, this command splits partition n0 into two new partitions s0 and s1. It also moves the data that
was stored in n0 into the new partitions according to the rules embodied in the two PARTITION ...
VALUES ... clauses, so that s0 contains only those records for which YEAR(dob) is less than 1960 and
s1 contains those rows in which YEAR(dob) is greater than or equal to 1960 but less than 1970.

A REORGANIZE PARTITION clause may also be used for merging adjacent partitions. You can reverse
the effect of the previous statement on the members table as shown here:

ALTER TABLE members REORGANIZE PARTITION s0,s1 INTO (
 PARTITION p0 VALUES LESS THAN (1970)
);

No data is lost in splitting or merging partitions using REORGANIZE PARTITION. In executing the above
statement, MySQL moves all of the records that were stored in partitions s0 and s1 into partition p0.

The general syntax for REORGANIZE PARTITION is shown here:

ALTER TABLE tbl_name
 REORGANIZE PARTITION partition_list
 INTO (partition_definitions);

Here, tbl_name is the name of the partitioned table, and partition_list is a comma-separated
list of names of one or more existing partitions to be changed. partition_definitions
is a comma-separated list of new partition definitions, which follow the same rules as for the
partition_definitions list used in CREATE TABLE. You are not limited to merging several partitions
into one, or to splitting one partition into many, when using REORGANIZE PARTITION. For example, you
can reorganize all four partitions of the members table into two, like this:

ALTER TABLE members REORGANIZE PARTITION p0,p1,p2,p3 INTO (
 PARTITION m0 VALUES LESS THAN (1980),
 PARTITION m1 VALUES LESS THAN (2000)
);

You can also use REORGANIZE PARTITION with tables that are partitioned by LIST. Let us return to the
problem of adding a new partition to the list-partitioned tt table and failing because the new partition had
a value that was already present in the value-list of one of the existing partitions. We can handle this by
adding a partition that contains only nonconflicting values, and then reorganizing the new partition and the
existing one so that the value which was stored in the existing one is now moved to the new one:

ALTER TABLE tt ADD PARTITION (PARTITION np VALUES IN (4, 8));
ALTER TABLE tt REORGANIZE PARTITION p1,np INTO (
 PARTITION p1 VALUES IN (6, 18),
 PARTITION np VALUES in (4, 8, 12)
);

Here are some key points to keep in mind when using ALTER TABLE ... REORGANIZE PARTITION to
repartition tables that are partitioned by RANGE or LIST:

• The PARTITION options used to determine the new partitioning scheme are subject to the same rules as
those used with a CREATE TABLE statement.

A new RANGE partitioning scheme cannot have any overlapping ranges; a new LIST partitioning scheme
cannot have any overlapping sets of values.

• The combination of partitions in the partition_definitions list should account for the same range
or set of values overall as the combined partitions named in the partition_list.

For example, partitions p1 and p2 together cover the years 1980 through 1999 in the members table
used as an example in this section. Any reorganization of these two partitions should cover the same
range of years overall.

4019

Management of HASH and KEY Partitions

• For tables partitioned by RANGE, you can reorganize only adjacent partitions; you cannot skip range
partitions.

For instance, you could not reorganize the example members table using a statement beginning with
ALTER TABLE members REORGANIZE PARTITION p0,p2 INTO ... because p0 covers the years
prior to 1970 and p2 the years from 1990 through 1999 inclusive, so these are not adjacent partitions.
(You cannot skip partition p1 in this case.)

• You cannot use REORGANIZE PARTITION to change the type of partitioning used by the table (for
example, you cannot change RANGE partitions to HASH partitions or the reverse). You also cannot use
this statement to change the partitioning expression or column. To accomplish either of these tasks
without dropping and re-creating the table, you can use ALTER TABLE ... PARTITION BY ..., as
shown here:

ALTER TABLE members
 PARTITION BY HASH(YEAR(dob))
 PARTITIONS 8;

22.3.2 Management of HASH and KEY Partitions

Tables which are partitioned by hash or by key are very similar to one another with regard to making
changes in a partitioning setup, and both differ in a number of ways from tables which have been
partitioned by range or list. For that reason, this section addresses the modification of tables partitioned by
hash or by key only. For a discussion of adding and dropping of partitions of tables that are partitioned by
range or list, see Section 22.3.1, “Management of RANGE and LIST Partitions”.

You cannot drop partitions from tables that are partitioned by HASH or KEY in the same way that you can
from tables that are partitioned by RANGE or LIST. However, you can merge HASH or KEY partitions using
the ALTER TABLE ... COALESCE PARTITION statement. Suppose that you have a table containing
data about clients, which is divided into twelve partitions. The clients table is defined as shown here:

CREATE TABLE clients (
 id INT,
 fname VARCHAR(30),
 lname VARCHAR(30),
 signed DATE
)
PARTITION BY HASH(MONTH(signed))
PARTITIONS 12;

To reduce the number of partitions from twelve to eight, execute the following ALTER TABLE command:

mysql> ALTER TABLE clients COALESCE PARTITION 4;
Query OK, 0 rows affected (0.02 sec)

COALESCE works equally well with tables that are partitioned by HASH, KEY, LINEAR HASH, or LINEAR
KEY. Here is an example similar to the previous one, differing only in that the table is partitioned by
LINEAR KEY:

mysql> CREATE TABLE clients_lk (
 -> id INT,
 -> fname VARCHAR(30),
 -> lname VARCHAR(30),
 -> signed DATE
 ->)
 -> PARTITION BY LINEAR KEY(signed)
 -> PARTITIONS 12;
Query OK, 0 rows affected (0.03 sec)

mysql> ALTER TABLE clients_lk COALESCE PARTITION 4;
Query OK, 0 rows affected (0.06 sec)

4020

Exchanging Partitions and Subpartitions with Tables

Records: 0 Duplicates: 0 Warnings: 0

The number following COALESCE PARTITION is the number of partitions to merge into the remainder—in
other words, it is the number of partitions to remove from the table.

If you attempt to remove more partitions than the table has, the result is an error like the one shown:

mysql> ALTER TABLE clients COALESCE PARTITION 18;
ERROR 1478 (HY000): Cannot remove all partitions, use DROP TABLE instead

To increase the number of partitions for the clients table from 12 to 18. use ALTER TABLE ... ADD
PARTITION as shown here:

ALTER TABLE clients ADD PARTITION PARTITIONS 6;

22.3.3 Exchanging Partitions and Subpartitions with Tables

In MySQL 5.7, it is possible to exchange a table partition or subpartition with a table using ALTER TABLE
pt EXCHANGE PARTITION p WITH TABLE nt, where pt is the partitioned table and p is the partition
or subpartition of pt to be exchanged with unpartitioned table nt, provided that the following statements
are true:

1. Table nt is not itself partitioned.

2. Table nt is not a temporary table.

3. The structures of tables pt and nt are otherwise identical.

4. Table nt contains no foreign key references, and no other table has any foreign keys that refer to nt.

5. There are no rows in nt that lie outside the boundaries of the partition definition for p. This condition
does not apply if the WITHOUT VALIDATION option is used. The [{WITH|WITHOUT} VALIDATION]
option was added in MySQL 5.7.5.

6. Both tables must use the same character set and collation.

7. For InnoDB tables, both tables must use the same row format. To determine the row format of an
InnoDB table, query the Information Schema INNODB_SYS_TABLES table.

8. Any partition-level MAX_ROWS setting for p must be the same as the table-level MAX_ROWS value set
for nt. The setting for any partition-level MIN_ROWS setting for p must also be the same any table-level
MIN_ROWS value set for nt.

This is true in either case whether not pt has an exlpicit table-level MAX_ROWS or MIN_ROWS option in
effect.

9. The AVG_ROW_LENGTH cannot differ between the two tables pt and nt.

10. pt does not have any partitions that use the DATA DIRECTORY option. This restriction is lifted for
InnoDB tables in MySQL 5.7.25 and later.

11. INDEX DIRECTORY cannot differ between the table and the partition to be exchanged with it.

12. No table or partition TABLESPACE options can be used in either of the tables.

In addition to the ALTER, INSERT, and CREATE privileges usually required for ALTER TABLE statements,
you must have the DROP privilege to perform ALTER TABLE ... EXCHANGE PARTITION.

You should also be aware of the following effects of ALTER TABLE ... EXCHANGE PARTITION:

4021

Exchanging Partitions and Subpartitions with Tables

• Executing ALTER TABLE ... EXCHANGE PARTITION does not invoke any triggers on either the
partitioned table or the table to be exchanged.

• Any AUTO_INCREMENT columns in the exchanged table are reset.

• The IGNORE keyword has no effect when used with ALTER TABLE ... EXCHANGE PARTITION.

The syntax of the ALTER TABLE ... EXCHANGE PARTITION statement is shown here, where pt is the
partitioned table, p is the partition or subpartition to be exchanged, and nt is the nonpartitioned table to be
exchanged with p:

ALTER TABLE pt
 EXCHANGE PARTITION p
 WITH TABLE nt;

Optionally, you can append a WITH VALIDATION or WITHOUT VALIDATION clause. When WITHOUT
VALIDATION is specified, the ALTER TABLE ... EXCHANGE PARTITION operation does not perform
row-by-row validation when exchanging a partition a nonpartitioned table, allowing database administrators
to assume responsibility for ensuring that rows are within the boundaries of the partition definition. WITH
VALIDATION is the default behavior and need not be specified explicitly. The [{WITH|WITHOUT}
VALIDATION] option was added in MySQL 5.7.5.

One and only one partition or subpartition may be exchanged with one and only one nonpartitioned
table in a single ALTER TABLE EXCHANGE PARTITION statement. To exchange multiple partitions or
subpartitions, use multiple ALTER TABLE EXCHANGE PARTITION statements. EXCHANGE PARTITION
may not be combined with other ALTER TABLE options. The partitioning and (if applicable) subpartitioning
used by the partitioned table may be of any type or types supported in MySQL 5.7.

Exchanging a Partition with a Nonpartitioned Table

Suppose that a partitioned table e has been created and populated using the following SQL statements:

CREATE TABLE e (
 id INT NOT NULL,
 fname VARCHAR(30),
 lname VARCHAR(30)
)
 PARTITION BY RANGE (id) (
 PARTITION p0 VALUES LESS THAN (50),
 PARTITION p1 VALUES LESS THAN (100),
 PARTITION p2 VALUES LESS THAN (150),
 PARTITION p3 VALUES LESS THAN (MAXVALUE)
);

INSERT INTO e VALUES
 (1669, "Jim", "Smith"),
 (337, "Mary", "Jones"),
 (16, "Frank", "White"),
 (2005, "Linda", "Black");

Now we create a nonpartitioned copy of e named e2. This can be done using the mysql client as shown
here:

mysql> CREATE TABLE e2 LIKE e;
Query OK, 0 rows affected (1.34 sec)

mysql> ALTER TABLE e2 REMOVE PARTITIONING;
Query OK, 0 rows affected (0.90 sec)
Records: 0 Duplicates: 0 Warnings: 0

You can see which partitions in table e contain rows by querying the Information Schema PARTITIONS
table, like this:

4022

Exchanging Partitions and Subpartitions with Tables

mysql> SELECT PARTITION_NAME, TABLE_ROWS
 -> FROM INFORMATION_SCHEMA.PARTITIONS
 -> WHERE TABLE_NAME = 'e';
+----------------+------------+
| PARTITION_NAME | TABLE_ROWS |
+----------------+------------+
p0	1
p1	0
p2	0
p3	3
+----------------+------------+
4 rows in set (0.00 sec)

Note

For partitioned InnoDB tables, the row count given in the TABLE_ROWS column of
the Information Schema PARTITIONS table is only an estimated value used in SQL
optimization, and is not always exact.

To exchange partition p0 in table e with table e2, you can use the ALTER TABLE statement shown here:

mysql> ALTER TABLE e EXCHANGE PARTITION p0 WITH TABLE e2;
Query OK, 0 rows affected (0.28 sec)

More precisely, the statement just issued causes any rows found in the partition to be swapped with
those found in the table. You can observe how this has happened by querying the Information Schema
PARTITIONS table, as before. The table row that was previously found in partition p0 is no longer present:

mysql> SELECT PARTITION_NAME, TABLE_ROWS
 -> FROM INFORMATION_SCHEMA.PARTITIONS
 -> WHERE TABLE_NAME = 'e';
+----------------+------------+
| PARTITION_NAME | TABLE_ROWS |
+----------------+------------+
p0	0
p1	0
p2	0
p3	3
+----------------+------------+
4 rows in set (0.00 sec)

If you query table e2, you can see that the “missing” row can now be found there:

mysql> SELECT * FROM e2;
+----+-------+-------+
| id | fname | lname |
+----+-------+-------+
| 16 | Frank | White |
+----+-------+-------+
1 row in set (0.00 sec)

The table to be exchanged with the partition does not necessarily have to be empty. To demonstrate this,
we first insert a new row into table e, making sure that this row is stored in partition p0 by choosing an id
column value that is less than 50, and verifying this afterward by querying the PARTITIONS table:

mysql> INSERT INTO e VALUES (41, "Michael", "Green");
Query OK, 1 row affected (0.05 sec)

mysql> SELECT PARTITION_NAME, TABLE_ROWS
 -> FROM INFORMATION_SCHEMA.PARTITIONS
 -> WHERE TABLE_NAME = 'e';
+----------------+------------+
| PARTITION_NAME | TABLE_ROWS |
+----------------+------------+
| p0 | 1 |

4023

Exchanging Partitions and Subpartitions with Tables

p1	0
p2	0
p3	3
+----------------+------------+
4 rows in set (0.00 sec)

Now we once again exchange partition p0 with table e2 using the same ALTER TABLE statement as
previously:

mysql> ALTER TABLE e EXCHANGE PARTITION p0 WITH TABLE e2;
Query OK, 0 rows affected (0.28 sec)

The output of the following queries shows that the table row that was stored in partition p0 and the table
row that was stored in table e2, prior to issuing the ALTER TABLE statement, have now switched places:

mysql> SELECT * FROM e;
+------+-------+-------+
| id | fname | lname |
+------+-------+-------+
16	Frank	White
1669	Jim	Smith
337	Mary	Jones
2005	Linda	Black
+------+-------+-------+
4 rows in set (0.00 sec)

mysql> SELECT PARTITION_NAME, TABLE_ROWS
 -> FROM INFORMATION_SCHEMA.PARTITIONS
 -> WHERE TABLE_NAME = 'e';
+----------------+------------+
| PARTITION_NAME | TABLE_ROWS |
+----------------+------------+
p0	1
p1	0
p2	0
p3	3
+----------------+------------+
4 rows in set (0.00 sec)

mysql> SELECT * FROM e2;
+----+---------+-------+
| id | fname | lname |
+----+---------+-------+
| 41 | Michael | Green |
+----+---------+-------+
1 row in set (0.00 sec)

Nonmatching Rows

You should keep in mind that any rows found in the nonpartitioned table prior to issuing the ALTER
TABLE ... EXCHANGE PARTITION statement must meet the conditions required for them to be stored
in the target partition; otherwise, the statement fails. To see how this occurs, first insert a row into e2 that
is outside the boundaries of the partition definition for partition p0 of table e. For example, insert a row with
an id column value that is too large; then, try to exchange the table with the partition again:

mysql> INSERT INTO e2 VALUES (51, "Ellen", "McDonald");
Query OK, 1 row affected (0.08 sec)

mysql> ALTER TABLE e EXCHANGE PARTITION p0 WITH TABLE e2;
ERROR 1707 (HY000): Found row that does not match the partition

Only the WITHOUT VALIDATION option would permit this operation to succeed:

mysql> ALTER TABLE e EXCHANGE PARTITION p0 WITH TABLE e2 WITHOUT VALIDATION;
Query OK, 0 rows affected (0.02 sec)

4024

Exchanging Partitions and Subpartitions with Tables

When a partition is exchanged with a table that contains rows that do not match the partition definition, it is
the responsibility of the database administrator to fix the non-matching rows, which can be performed using
REPAIR TABLE or ALTER TABLE ... REPAIR PARTITION.

Exchanging Partitions Without Row-By-Row Validation

To avoid time consuming validation when exchanging a partition with a table that has many rows, it is
possible to skip the row-by-row validation step by appending WITHOUT VALIDATION to the ALTER
TABLE ... EXCHANGE PARTITION statement.

The following example compares the difference between execution times when exchanging a partition with
a nonpartitioned table, with and without validation. The partitioned table (table e) contains two partitions of
1 million rows each. The rows in p0 of table e are removed and p0 is exchanged with a nonpartitioned table
of 1 million rows. The WITH VALIDATION operation takes 0.74 seconds. By comparison, the WITHOUT
VALIDATION operation takes 0.01 seconds.

Create a partitioned table with 1 million rows in each partition

CREATE TABLE e (
 id INT NOT NULL,
 fname VARCHAR(30),
 lname VARCHAR(30)
)
 PARTITION BY RANGE (id) (
 PARTITION p0 VALUES LESS THAN (1000001),
 PARTITION p1 VALUES LESS THAN (2000001),
);

SELECT COUNT(*) FROM e;
| COUNT(*) |
+----------+
| 2000000 |
+----------+
1 row in set (0.27 sec)

View the rows in each partition

SELECT PARTITION_NAME, TABLE_ROWS FROM INFORMATION_SCHEMA.PARTITIONS WHERE TABLE_NAME = 'e';
+----------------+-------------+
| PARTITION_NAME | TABLE_ROWS |
+----------------+-------------+
| p0 | 1000000 |
| p1 | 1000000 |
+----------------+-------------+
2 rows in set (0.00 sec)

Create a nonpartitioned table of the same structure and populate it with 1 million rows

CREATE TABLE e2 (
 id INT NOT NULL,
 fname VARCHAR(30),
 lname VARCHAR(30)
);

mysql> SELECT COUNT(*) FROM e2;
+----------+
| COUNT(*) |
+----------+
| 1000000 |
+----------+
1 row in set (0.24 sec)

Create another nonpartitioned table of the same structure and populate it with 1 million rows

4025

Exchanging Partitions and Subpartitions with Tables

CREATE TABLE e3 (
 id INT NOT NULL,
 fname VARCHAR(30),
 lname VARCHAR(30)
);

mysql> SELECT COUNT(*) FROM e3;
+----------+
| COUNT(*) |
+----------+
| 1000000 |
+----------+
1 row in set (0.25 sec)

Drop the rows from p0 of table e

mysql> DELETE FROM e WHERE id < 1000001;
Query OK, 1000000 rows affected (5.55 sec)

Confirm that there are no rows in partition p0

mysql> SELECT PARTITION_NAME, TABLE_ROWS FROM INFORMATION_SCHEMA.PARTITIONS WHERE TABLE_NAME = 'e';
+----------------+------------+
| PARTITION_NAME | TABLE_ROWS |
+----------------+------------+
| p0 | 0 |
| p1 | 1000000 |
+----------------+------------+
2 rows in set (0.00 sec)

Exchange partition p0 of table e with the table e2 'WITH VALIDATION'

mysql> ALTER TABLE e EXCHANGE PARTITION p0 WITH TABLE e2 WITH VALIDATION;
Query OK, 0 rows affected (0.74 sec)

Confirm that the partition was exchanged with table e2

mysql> SELECT PARTITION_NAME, TABLE_ROWS FROM INFORMATION_SCHEMA.PARTITIONS WHERE TABLE_NAME = 'e';
+----------------+------------+
| PARTITION_NAME | TABLE_ROWS |
+----------------+------------+
| p0 | 1000000 |
| p1 | 1000000 |
+----------------+------------+
2 rows in set (0.00 sec)

Once again, drop the rows from p0 of table e

mysql> DELETE FROM e WHERE id < 1000001;
Query OK, 1000000 rows affected (5.55 sec)

Confirm that there are no rows in partition p0

mysql> SELECT PARTITION_NAME, TABLE_ROWS FROM INFORMATION_SCHEMA.PARTITIONS WHERE TABLE_NAME = 'e';
+----------------+------------+
| PARTITION_NAME | TABLE_ROWS |
+----------------+------------+
| p0 | 0 |
| p1 | 1000000 |
+----------------+------------+
2 rows in set (0.00 sec)

Exchange partition p0 of table e with the table e3 'WITHOUT VALIDATION'

mysql> ALTER TABLE e EXCHANGE PARTITION p0 WITH TABLE e3 WITHOUT VALIDATION;
Query OK, 0 rows affected (0.01 sec)

4026

Exchanging Partitions and Subpartitions with Tables

Confirm that the partition was exchanged with table e3

mysql> SELECT PARTITION_NAME, TABLE_ROWS FROM INFORMATION_SCHEMA.PARTITIONS WHERE TABLE_NAME = 'e';
+----------------+------------+
| PARTITION_NAME | TABLE_ROWS |
+----------------+------------+
| p0 | 1000000 |
| p1 | 1000000 |
+----------------+------------+
2 rows in set (0.00 sec)

If a partition is exchanged with a table that contains rows that do not match the partition definition, it is the
responsibility of the database administrator to fix the non-matching rows, which can be performed using
REPAIR TABLE or ALTER TABLE ... REPAIR PARTITION.

Exchanging a Subpartition with a Nonpartitioned Table

You can also exchange a subpartition of a subpartitioned table (see Section 22.2.6, “Subpartitioning”) with
a nonpartitioned table using an ALTER TABLE ... EXCHANGE PARTITION statement. In the following
example, we first create a table es that is partitioned by RANGE and subpartitioned by KEY, populate this
table as we did table e, and then create an empty, nonpartitioned copy es2 of the table, as shown here:

mysql> CREATE TABLE es (
 -> id INT NOT NULL,
 -> fname VARCHAR(30),
 -> lname VARCHAR(30)
 ->)
 -> PARTITION BY RANGE (id)
 -> SUBPARTITION BY KEY (lname)
 -> SUBPARTITIONS 2 (
 -> PARTITION p0 VALUES LESS THAN (50),
 -> PARTITION p1 VALUES LESS THAN (100),
 -> PARTITION p2 VALUES LESS THAN (150),
 -> PARTITION p3 VALUES LESS THAN (MAXVALUE)
 ->);
Query OK, 0 rows affected (2.76 sec)

mysql> INSERT INTO es VALUES
 -> (1669, "Jim", "Smith"),
 -> (337, "Mary", "Jones"),
 -> (16, "Frank", "White"),
 -> (2005, "Linda", "Black");
Query OK, 4 rows affected (0.04 sec)
Records: 4 Duplicates: 0 Warnings: 0

mysql> CREATE TABLE es2 LIKE es;
Query OK, 0 rows affected (1.27 sec)

mysql> ALTER TABLE es2 REMOVE PARTITIONING;
Query OK, 0 rows affected (0.70 sec)
Records: 0 Duplicates: 0 Warnings: 0

Although we did not explicitly name any of the subpartitions when creating table es, we can obtain
generated names for these by including the SUBPARTITION_NAME of the PARTITIONS table from
INFORMATION_SCHEMA when selecting from that table, as shown here:

mysql> SELECT PARTITION_NAME, SUBPARTITION_NAME, TABLE_ROWS
 -> FROM INFORMATION_SCHEMA.PARTITIONS
 -> WHERE TABLE_NAME = 'es';
+----------------+-------------------+------------+
| PARTITION_NAME | SUBPARTITION_NAME | TABLE_ROWS |
+----------------+-------------------+------------+
| p0 | p0sp0 | 1 |

4027

Exchanging Partitions and Subpartitions with Tables

p0	p0sp1	0
p1	p1sp0	0
p1	p1sp1	0
p2	p2sp0	0
p2	p2sp1	0
p3	p3sp0	3
p3	p3sp1	0
+----------------+-------------------+------------+
8 rows in set (0.00 sec)

The following ALTER TABLE statement exchanges subpartition p3sp0 table es with the nonpartitioned
table es2:

mysql> ALTER TABLE es EXCHANGE PARTITION p3sp0 WITH TABLE es2;
Query OK, 0 rows affected (0.29 sec)

You can verify that the rows were exchanged by issuing the following queries:

mysql> SELECT PARTITION_NAME, SUBPARTITION_NAME, TABLE_ROWS
 -> FROM INFORMATION_SCHEMA.PARTITIONS
 -> WHERE TABLE_NAME = 'es';
+----------------+-------------------+------------+
| PARTITION_NAME | SUBPARTITION_NAME | TABLE_ROWS |
+----------------+-------------------+------------+
p0	p0sp0	1
p0	p0sp1	0
p1	p1sp0	0
p1	p1sp1	0
p2	p2sp0	0
p2	p2sp1	0
p3	p3sp0	0
p3	p3sp1	0
+----------------+-------------------+------------+
8 rows in set (0.00 sec)

mysql> SELECT * FROM es2;
+------+-------+-------+
| id | fname | lname |
+------+-------+-------+
1669	Jim	Smith
337	Mary	Jones
2005	Linda	Black
+------+-------+-------+
3 rows in set (0.00 sec)

If a table is subpartitioned, you can exchange only a subpartition of the table—not an entire partition—with
an unpartitioned table, as shown here:

mysql> ALTER TABLE es EXCHANGE PARTITION p3 WITH TABLE es2;
ERROR 1704 (HY000): Subpartitioned table, use subpartition instead of partition

The comparison of table structures used by MySQL is very strict. The number, order, names, and types of
columns and indexes of the partitioned table and the nonpartitioned table must match exactly. In addition,
both tables must use the same storage engine:

mysql> CREATE TABLE es3 LIKE e;
Query OK, 0 rows affected (1.31 sec)

mysql> ALTER TABLE es3 REMOVE PARTITIONING;
Query OK, 0 rows affected (0.53 sec)
Records: 0 Duplicates: 0 Warnings: 0

mysql> SHOW CREATE TABLE es3\G
*************************** 1. row ***************************
 Table: es3

4028

Maintenance of Partitions

Create Table: CREATE TABLE `es3` (
 `id` int(11) NOT NULL,
 `fname` varchar(30) DEFAULT NULL,
 `lname` varchar(30) DEFAULT NULL
) ENGINE=InnoDB DEFAULT CHARSET=latin1
1 row in set (0.00 sec)

mysql> ALTER TABLE es3 ENGINE = MyISAM;
Query OK, 0 rows affected (0.15 sec)
Records: 0 Duplicates: 0 Warnings: 0

mysql> ALTER TABLE es EXCHANGE PARTITION p3sp0 WITH TABLE es3;
ERROR 1497 (HY000): The mix of handlers in the partitions is not allowed in this version of MySQL

22.3.4 Maintenance of Partitions

A number of table and partition maintenance tasks can be carried out using SQL statements intended for
such purposes on partitioned tables in MySQL 5.7.

Table maintenance of partitioned tables can be accomplished using the statements CHECK TABLE,
OPTIMIZE TABLE, ANALYZE TABLE, and REPAIR TABLE, which are supported for partitioned tables.

You can use a number of extensions to ALTER TABLE for performing operations of this type on one or
more partitions directly, as described in the following list:

• Rebuilding partitions. Rebuilds the partition; this has the same effect as dropping all records stored
in the partition, then reinserting them. This can be useful for purposes of defragmentation.

Example:

ALTER TABLE t1 REBUILD PARTITION p0, p1;

• Optimizing partitions. If you have deleted a large number of rows from a partition or if you have
made many changes to a partitioned table with variable-length rows (that is, having VARCHAR, BLOB, or
TEXT columns), you can use ALTER TABLE ... OPTIMIZE PARTITION to reclaim any unused space
and to defragment the partition data file.

Example:

ALTER TABLE t1 OPTIMIZE PARTITION p0, p1;

Using OPTIMIZE PARTITION on a given partition is equivalent to running CHECK PARTITION,
ANALYZE PARTITION, and REPAIR PARTITION on that partition.

Some MySQL storage engines, including InnoDB, do not support per-partition optimization; in these
cases, ALTER TABLE ... OPTIMIZE PARTITION analyzes and rebuilds the entire table, and causes
an appropriate warning to be issued. (Bug #11751825, Bug #42822) Use ALTER TABLE ... REBUILD
PARTITION and ALTER TABLE ... ANALYZE PARTITION instead, to avoid this issue.

• Analyzing partitions. This reads and stores the key distributions for partitions.

Example:

ALTER TABLE t1 ANALYZE PARTITION p3;

• Repairing partitions. This repairs corrupted partitions.

Example:

ALTER TABLE t1 REPAIR PARTITION p0,p1;

4029

Obtaining Information About Partitions

Normally, REPAIR PARTITION fails when the partition contains duplicate key errors. In MySQL 5.7.2
and later, you can use ALTER IGNORE TABLE with this option, in which case all rows that cannot be
moved due to the presence of duplicate keys are removed from the partition (Bug #16900947).

• Checking partitions. You can check partitions for errors in much the same way that you can use
CHECK TABLE with nonpartitioned tables.

Example:

ALTER TABLE trb3 CHECK PARTITION p1;

This command tells you if the data or indexes in partition p1 of table t1 are corrupted. If this is the case,
use ALTER TABLE ... REPAIR PARTITION to repair the partition.

Normally, CHECK PARTITION fails when the partition contains duplicate key errors. In MySQL 5.7.2
and later, you can use ALTER IGNORE TABLE with this option, in which case the statement returns
the contents of each row in the partition where a duplicate key violation is found. Only the values for the
columns in the partitioning expression for the table are reported. (Bug #16900947)

Each of the statements in the list just shown also supports the keyword ALL in place of the list of partition
names. Using ALL causes the statement to act on all partitions in the table.

The use of mysqlcheck and myisamchk is not supported with partitioned tables.

In MySQL 5.7, you can also truncate partitions using ALTER TABLE ... TRUNCATE PARTITION.
This statement can be used to delete all rows from one or more partitions in much the same way that
TRUNCATE TABLE deletes all rows from a table.

ALTER TABLE ... TRUNCATE PARTITION ALL truncates all partitions in the table.

Prior to MySQL 5.7.2, ANALYZE, CHECK, OPTIMIZE, REBUILD, REPAIR, and TRUNCATE operations were
not permitted on subpartitions (Bug #14028340, Bug #65184).

22.3.5 Obtaining Information About Partitions

This section discusses obtaining information about existing partitions, which can be done in a number of
ways. Methods of obtaining such information include the following:

• Using the SHOW CREATE TABLE statement to view the partitioning clauses used in creating a partitioned
table.

• Using the SHOW TABLE STATUS statement to determine whether a table is partitioned.

• Querying the Information Schema PARTITIONS table.

• Using the statement EXPLAIN SELECT to see which partitions are used by a given SELECT.

As discussed elsewhere in this chapter, SHOW CREATE TABLE includes in its output the PARTITION BY
clause used to create a partitioned table. For example:

mysql> SHOW CREATE TABLE trb3\G
*************************** 1. row ***************************
 Table: trb3
Create Table: CREATE TABLE `trb3` (
 `id` int(11) default NULL,
 `name` varchar(50) default NULL,
 `purchased` date default NULL
) ENGINE=MyISAM DEFAULT CHARSET=latin1

4030

Obtaining Information About Partitions

PARTITION BY RANGE (YEAR(purchased)) (
 PARTITION p0 VALUES LESS THAN (1990) ENGINE = MyISAM,
 PARTITION p1 VALUES LESS THAN (1995) ENGINE = MyISAM,
 PARTITION p2 VALUES LESS THAN (2000) ENGINE = MyISAM,
 PARTITION p3 VALUES LESS THAN (2005) ENGINE = MyISAM
)
1 row in set (0.00 sec)

The output from SHOW TABLE STATUS for partitioned tables is the same as that for nonpartitioned tables,
except that the Create_options column contains the string partitioned. The Engine column
contains the name of the storage engine used by all partitions of the table. (See Section 13.7.5.36, “SHOW
TABLE STATUS Statement”, for more information about this statement.)

You can also obtain information about partitions from INFORMATION_SCHEMA, which contains a
PARTITIONS table. See Section 24.3.16, “The INFORMATION_SCHEMA PARTITIONS Table”.

It is possible to determine which partitions of a partitioned table are involved in a given SELECT query using
EXPLAIN. The partitions column in the EXPLAIN output lists the partitions from which records would
be matched by the query.

Suppose that you have a table trb1 created and populated as follows:

CREATE TABLE trb1 (id INT, name VARCHAR(50), purchased DATE)
 PARTITION BY RANGE(id)
 (
 PARTITION p0 VALUES LESS THAN (3),
 PARTITION p1 VALUES LESS THAN (7),
 PARTITION p2 VALUES LESS THAN (9),
 PARTITION p3 VALUES LESS THAN (11)
);

INSERT INTO trb1 VALUES
 (1, 'desk organiser', '2003-10-15'),
 (2, 'CD player', '1993-11-05'),
 (3, 'TV set', '1996-03-10'),
 (4, 'bookcase', '1982-01-10'),
 (5, 'exercise bike', '2004-05-09'),
 (6, 'sofa', '1987-06-05'),
 (7, 'popcorn maker', '2001-11-22'),
 (8, 'aquarium', '1992-08-04'),
 (9, 'study desk', '1984-09-16'),
 (10, 'lava lamp', '1998-12-25');

You can see which partitions are used in a query such as SELECT * FROM trb1;, as shown here:

mysql> EXPLAIN SELECT * FROM trb1\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: trb1
 partitions: p0,p1,p2,p3
 type: ALL
possible_keys: NULL
 key: NULL
 key_len: NULL
 ref: NULL
 rows: 10
 Extra: Using filesort

In this case, all four partitions are searched. However, when a limiting condition making use of the
partitioning key is added to the query, you can see that only those partitions containing matching values
are scanned, as shown here:

mysql> EXPLAIN SELECT * FROM trb1 WHERE id < 5\G

4031

Partition Pruning

*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: trb1
 partitions: p0,p1
 type: ALL
possible_keys: NULL
 key: NULL
 key_len: NULL
 ref: NULL
 rows: 10
 Extra: Using where

EXPLAIN also provides information about keys used and possible keys:

mysql> ALTER TABLE trb1 ADD PRIMARY KEY (id);
Query OK, 10 rows affected (0.03 sec)
Records: 10 Duplicates: 0 Warnings: 0

mysql> EXPLAIN SELECT * FROM trb1 WHERE id < 5\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: trb1
 partitions: p0,p1
 type: range
possible_keys: PRIMARY
 key: PRIMARY
 key_len: 4
 ref: NULL
 rows: 7
 Extra: Using where

If EXPLAIN PARTITIONS is used to examine a query against a nonpartitioned table, no error is produced,
but the value of the partitions column is always NULL.

The rows column of EXPLAIN output displays the total number of rows in the table.

See also Section 13.8.2, “EXPLAIN Statement”.

22.4 Partition Pruning
This section discusses an optimization known as partition pruning. The core concept behind partition
pruning is relatively simple, and can be described as “Do not scan partitions where there can be no
matching values”. Suppose that you have a partitioned table t1 defined by this statement:

CREATE TABLE t1 (
 fname VARCHAR(50) NOT NULL,
 lname VARCHAR(50) NOT NULL,
 region_code TINYINT UNSIGNED NOT NULL,
 dob DATE NOT NULL
)
PARTITION BY RANGE(region_code) (
 PARTITION p0 VALUES LESS THAN (64),
 PARTITION p1 VALUES LESS THAN (128),
 PARTITION p2 VALUES LESS THAN (192),
 PARTITION p3 VALUES LESS THAN MAXVALUE
);

Consider the case where you wish to obtain results from a SELECT statement such as this one:

SELECT fname, lname, region_code, dob
 FROM t1
 WHERE region_code > 125 AND region_code < 130;

4032

Partition Pruning

It is easy to see that none of the rows which ought to be returned are in either of the partitions p0 or p3;
that is, we need to search only in partitions p1 and p2 to find matching rows. By doing so, it is possible to
expend much less time and effort in finding matching rows than would be required to scan all partitions in
the table. This “cutting away” of unneeded partitions is known as pruning. When the optimizer can make
use of partition pruning in performing this query, execution of the query can be an order of magnitude
faster than the same query against a nonpartitioned table containing the same column definitions and data.

Note

When pruning is performed on a partitioned MyISAM table, all partitions are opened,
whether or not they are examined, due to the design of the MyISAM storage engine.
This means that you must have a sufficient number of file descriptors available to
cover all partitions of the table. See MyISAM and partition file descriptor usage.

This limitation does not apply to partitioned tables using other MySQL storage
engines such as InnoDB.

The optimizer can perform pruning whenever a WHERE condition can be reduced to either one of the
following two cases:

• partition_column = constant

• partition_column IN (constant1, constant2, ..., constantN)

In the first case, the optimizer simply evaluates the partitioning expression for the value given, determines
which partition contains that value, and scans only this partition. In many cases, the equal sign can be
replaced with another arithmetic comparison, including <, >, <=, >=, and <>. Some queries using BETWEEN
in the WHERE clause can also take advantage of partition pruning. See the examples later in this section.

In the second case, the optimizer evaluates the partitioning expression for each value in the list, creates a
list of matching partitions, and then scans only the partitions in this partition list.

MySQL can apply partition pruning to SELECT, DELETE, and UPDATE statements. An INSERT statement
also accesses only one partition per inserted row; this is true even for a table that is partitioned by HASH or
KEY although this is not currently shown in the output of EXPLAIN.

Pruning can also be applied to short ranges, which the optimizer can convert into equivalent lists of values.
For instance, in the previous example, the WHERE clause can be converted to WHERE region_code IN
(126, 127, 128, 129). Then the optimizer can determine that the first two values in the list are found
in partition p1, the remaining two values in partition p2, and that the other partitions contain no relevant
values and so do not need to be searched for matching rows.

The optimizer can also perform pruning for WHERE conditions that involve comparisons of the preceding
types on multiple columns for tables that use RANGE COLUMNS or LIST COLUMNS partitioning.

This type of optimization can be applied whenever the partitioning expression consists of an equality
or a range which can be reduced to a set of equalities, or when the partitioning expression represents
an increasing or decreasing relationship. Pruning can also be applied for tables partitioned on a DATE
or DATETIME column when the partitioning expression uses the YEAR() or TO_DAYS() function. In
addition, in MySQL 5.7, pruning can be applied for such tables when the partitioning expression uses the
TO_SECONDS() function.

Suppose that table t2, defined as shown here, is partitioned on a DATE column:

CREATE TABLE t2 (
 fname VARCHAR(50) NOT NULL,
 lname VARCHAR(50) NOT NULL,
 region_code TINYINT UNSIGNED NOT NULL,

4033

Partition Pruning

 dob DATE NOT NULL
)
PARTITION BY RANGE(YEAR(dob)) (
 PARTITION d0 VALUES LESS THAN (1970),
 PARTITION d1 VALUES LESS THAN (1975),
 PARTITION d2 VALUES LESS THAN (1980),
 PARTITION d3 VALUES LESS THAN (1985),
 PARTITION d4 VALUES LESS THAN (1990),
 PARTITION d5 VALUES LESS THAN (2000),
 PARTITION d6 VALUES LESS THAN (2005),
 PARTITION d7 VALUES LESS THAN MAXVALUE
);

The following statements using t2 can make of use partition pruning:

SELECT * FROM t2 WHERE dob = '1982-06-23';

UPDATE t2 SET region_code = 8 WHERE dob BETWEEN '1991-02-15' AND '1997-04-25';

DELETE FROM t2 WHERE dob >= '1984-06-21' AND dob <= '1999-06-21'

In the case of the last statement, the optimizer can also act as follows:

1. Find the partition containing the low end of the range.

YEAR('1984-06-21') yields the value 1984, which is found in partition d3.

2. Find the partition containing the high end of the range.

YEAR('1999-06-21') evaluates to 1999, which is found in partition d5.

3. Scan only these two partitions and any partitions that may lie between them.

In this case, this means that only partitions d3, d4, and d5 are scanned. The remaining partitions may
be safely ignored (and are ignored).

Important

Invalid DATE and DATETIME values referenced in the WHERE condition of a
statement against a partitioned table are treated as NULL. This means that a query
such as SELECT * FROM partitioned_table WHERE date_column <
'2008-12-00' does not return any values (see Bug #40972).

So far, we have looked only at examples using RANGE partitioning, but pruning can be applied with other
partitioning types as well.

Consider a table that is partitioned by LIST, where the partitioning expression is increasing or
decreasing, such as the table t3 shown here. (In this example, we assume for the sake of brevity that the
region_code column is limited to values between 1 and 10 inclusive.)

CREATE TABLE t3 (
 fname VARCHAR(50) NOT NULL,
 lname VARCHAR(50) NOT NULL,
 region_code TINYINT UNSIGNED NOT NULL,
 dob DATE NOT NULL
)
PARTITION BY LIST(region_code) (
 PARTITION r0 VALUES IN (1, 3),
 PARTITION r1 VALUES IN (2, 5, 8),
 PARTITION r2 VALUES IN (4, 9),
 PARTITION r3 VALUES IN (6, 7, 10)
);

4034

Partition Selection

For a statement such as SELECT * FROM t3 WHERE region_code BETWEEN 1 AND 3, the optimizer
determines in which partitions the values 1, 2, and 3 are found (r0 and r1) and skips the remaining ones
(r2 and r3).

For tables that are partitioned by HASH or [LINEAR] KEY, partition pruning is also possible in cases in
which the WHERE clause uses a simple = relation against a column used in the partitioning expression.
Consider a table created like this:

CREATE TABLE t4 (
 fname VARCHAR(50) NOT NULL,
 lname VARCHAR(50) NOT NULL,
 region_code TINYINT UNSIGNED NOT NULL,
 dob DATE NOT NULL
)
PARTITION BY KEY(region_code)
PARTITIONS 8;

A statement that compares a column value with a constant can be pruned:

UPDATE t4 WHERE region_code = 7;

Pruning can also be employed for short ranges, because the optimizer can turn such conditions into IN
relations. For example, using the same table t4 as defined previously, queries such as these can be
pruned:

SELECT * FROM t4 WHERE region_code > 2 AND region_code < 6;

SELECT * FROM t4 WHERE region_code BETWEEN 3 AND 5;

In both these cases, the WHERE clause is transformed by the optimizer into WHERE region_code IN
(3, 4, 5).

Important

This optimization is used only if the range size is smaller than the number of
partitions. Consider this statement:

DELETE FROM t4 WHERE region_code BETWEEN 4 AND 12;

The range in the WHERE clause covers 9 values (4, 5, 6, 7, 8, 9, 10, 11, 12), but t4
has only 8 partitions. This means that the DELETE cannot be pruned.

When a table is partitioned by HASH or [LINEAR] KEY, pruning can be used only on integer columns. For
example, this statement cannot use pruning because dob is a DATE column:

SELECT * FROM t4 WHERE dob >= '2001-04-14' AND dob <= '2005-10-15';

However, if the table stores year values in an INT column, then a query having WHERE year_col >=
2001 AND year_col <= 2005 can be pruned.

Prior to MySQL 5.7.1, partition pruning was disabled for all tables using a storage engine that provides
automatic partitioning, such as the NDB storage engine used by NDB Cluster. (Bug #14672885) Beginning
with MySQL 5.7.1, such tables can be pruned if they are explicitly partitioned. (Bug #14827952)

22.5 Partition Selection

MySQL 5.7 supports explicit selection of partitions and subpartitions that, when executing a statement,
should be checked for rows matching a given WHERE condition. Partition selection is similar to partition
pruning, in that only specific partitions are checked for matches, but differs in two key respects:

4035

Partition Selection

1. The partitions to be checked are specified by the issuer of the statement, unlike partition pruning, which
is automatic.

2. Whereas partition pruning applies only to queries, explicit selection of partitions is supported for both
queries and a number of DML statements.

SQL statements supporting explicit partition selection are listed here:

• SELECT

• DELETE

• INSERT

• REPLACE

• UPDATE

• LOAD DATA.

• LOAD XML.

The remainder of this section discusses explicit partition selection as it applies generally to the statements
just listed, and provides some examples.

Explicit partition selection is implemented using a PARTITION option. For all supported statements, this
option uses the syntax shown here:

 PARTITION (partition_names)

 partition_names:
 partition_name, ...

This option always follows the name of the table to which the partition or partitions belong.
partition_names is a comma-separated list of partitions or subpartitions to be used. Each name in this
list must be the name of an existing partition or subpartition of the specified table; if any of the partitions
or subpartitions are not found, the statement fails with an error (partition 'partition_name' does
not exist). Partitions and subpartitions named in partition_names may be listed in any order, and
may overlap.

When the PARTITION option is used, only the partitions and subpartitions listed are checked for matching
rows. This option can be used in a SELECT statement to determine which rows belong to a given partition.
Consider a partitioned table named employees, created and populated using the statements shown here:

SET @@SQL_MODE = '';

CREATE TABLE employees (
 id INT NOT NULL AUTO_INCREMENT PRIMARY KEY,
 fname VARCHAR(25) NOT NULL,
 lname VARCHAR(25) NOT NULL,
 store_id INT NOT NULL,
 department_id INT NOT NULL
)
 PARTITION BY RANGE(id) (
 PARTITION p0 VALUES LESS THAN (5),
 PARTITION p1 VALUES LESS THAN (10),
 PARTITION p2 VALUES LESS THAN (15),
 PARTITION p3 VALUES LESS THAN MAXVALUE
);

INSERT INTO employees VALUES
 ('', 'Bob', 'Taylor', 3, 2), ('', 'Frank', 'Williams', 1, 2),
 ('', 'Ellen', 'Johnson', 3, 4), ('', 'Jim', 'Smith', 2, 4),

4036

Partition Selection

 ('', 'Mary', 'Jones', 1, 1), ('', 'Linda', 'Black', 2, 3),
 ('', 'Ed', 'Jones', 2, 1), ('', 'June', 'Wilson', 3, 1),
 ('', 'Andy', 'Smith', 1, 3), ('', 'Lou', 'Waters', 2, 4),
 ('', 'Jill', 'Stone', 1, 4), ('', 'Roger', 'White', 3, 2),
 ('', 'Howard', 'Andrews', 1, 2), ('', 'Fred', 'Goldberg', 3, 3),
 ('', 'Barbara', 'Brown', 2, 3), ('', 'Alice', 'Rogers', 2, 2),
 ('', 'Mark', 'Morgan', 3, 3), ('', 'Karen', 'Cole', 3, 2);

You can see which rows are stored in partition p1 like this:

mysql> SELECT * FROM employees PARTITION (p1);
+----+-------+--------+----------+---------------+
| id | fname | lname | store_id | department_id |
+----+-------+--------+----------+---------------+
5	Mary	Jones	1	1
6	Linda	Black	2	3
7	Ed	Jones	2	1
8	June	Wilson	3	1
9	Andy	Smith	1	3
+----+-------+--------+----------+---------------+
5 rows in set (0.00 sec)

The result is the same as obtained by the query SELECT * FROM employees WHERE id BETWEEN 5
AND 9.

To obtain rows from multiple partitions, supply their names as a comma-delimited list. For example,
SELECT * FROM employees PARTITION (p1, p2) returns all rows from partitions p1 and p2 while
excluding rows from the remaining partitions.

Any valid query against a partitioned table can be rewritten with a PARTITION option to restrict the result
to one or more desired partitions. You can use WHERE conditions, ORDER BY and LIMIT options, and
so on. You can also use aggregate functions with HAVING and GROUP BY options. Each of the following
queries produces a valid result when run on the employees table as previously defined:

mysql> SELECT * FROM employees PARTITION (p0, p2)
 -> WHERE lname LIKE 'S%';
+----+-------+-------+----------+---------------+
| id | fname | lname | store_id | department_id |
+----+-------+-------+----------+---------------+
| 4 | Jim | Smith | 2 | 4 |
| 11 | Jill | Stone | 1 | 4 |
+----+-------+-------+----------+---------------+
2 rows in set (0.00 sec)

mysql> SELECT id, CONCAT(fname, ' ', lname) AS name
 -> FROM employees PARTITION (p0) ORDER BY lname;
+----+----------------+
| id | name |
+----+----------------+
3	Ellen Johnson
4	Jim Smith
1	Bob Taylor
2	Frank Williams
+----+----------------+
4 rows in set (0.06 sec)

mysql> SELECT store_id, COUNT(department_id) AS c
 -> FROM employees PARTITION (p1,p2,p3)
 -> GROUP BY store_id HAVING c > 4;
+---+----------+
| c | store_id |
+---+----------+
| 5 | 2 |
| 5 | 3 |
+---+----------+

4037

Partition Selection

2 rows in set (0.00 sec)

Statements using partition selection can be employed with tables using any of the partitioning types
supported in MySQL 5.7. When a table is created using [LINEAR] HASH or [LINEAR] KEY partitioning
and the names of the partitions are not specified, MySQL automatically names the partitions p0, p1,
p2, ..., pN-1, where N is the number of partitions. For subpartitions not explicitly named, MySQL assigns
automatically to the subpartitions in each partition pX the names pXsp0, pXsp1, pXsp2, ..., pXspM-1,
where M is the number of subpartitions. When executing against this table a SELECT (or other SQL
statement for which explicit partition selection is allowed), you can use these generated names in a
PARTITION option, as shown here:

mysql> CREATE TABLE employees_sub (
 -> id INT NOT NULL AUTO_INCREMENT,
 -> fname VARCHAR(25) NOT NULL,
 -> lname VARCHAR(25) NOT NULL,
 -> store_id INT NOT NULL,
 -> department_id INT NOT NULL,
 -> PRIMARY KEY pk (id, lname)
 ->)
 -> PARTITION BY RANGE(id)
 -> SUBPARTITION BY KEY (lname)
 -> SUBPARTITIONS 2 (
 -> PARTITION p0 VALUES LESS THAN (5),
 -> PARTITION p1 VALUES LESS THAN (10),
 -> PARTITION p2 VALUES LESS THAN (15),
 -> PARTITION p3 VALUES LESS THAN MAXVALUE
 ->);
Query OK, 0 rows affected (1.14 sec)

mysql> INSERT INTO employees_sub # re-use data in employees table
 -> SELECT * FROM employees;
Query OK, 18 rows affected (0.09 sec)
Records: 18 Duplicates: 0 Warnings: 0

mysql> SELECT id, CONCAT(fname, ' ', lname) AS name
 -> FROM employees_sub PARTITION (p2sp1);
+----+---------------+
| id | name |
+----+---------------+
| 10 | Lou Waters |
| 14 | Fred Goldberg |
+----+---------------+
2 rows in set (0.00 sec)

You may also use a PARTITION option in the SELECT portion of an INSERT ... SELECT statement, as
shown here:

mysql> CREATE TABLE employees_copy LIKE employees;
Query OK, 0 rows affected (0.28 sec)

mysql> INSERT INTO employees_copy
 -> SELECT * FROM employees PARTITION (p2);
Query OK, 5 rows affected (0.04 sec)
Records: 5 Duplicates: 0 Warnings: 0

mysql> SELECT * FROM employees_copy;
+----+--------+----------+----------+---------------+
| id | fname | lname | store_id | department_id |
+----+--------+----------+----------+---------------+
10	Lou	Waters	2	4
11	Jill	Stone	1	4
12	Roger	White	3	2
13	Howard	Andrews	1	2
14	Fred	Goldberg	3	3
+----+--------+----------+----------+---------------+

4038

Partition Selection

5 rows in set (0.00 sec)

Partition selection can also be used with joins. Suppose we create and populate two tables using the
statements shown here:

CREATE TABLE stores (
 id INT NOT NULL AUTO_INCREMENT PRIMARY KEY,
 city VARCHAR(30) NOT NULL
)
 PARTITION BY HASH(id)
 PARTITIONS 2;

INSERT INTO stores VALUES
 ('', 'Nambucca'), ('', 'Uranga'),
 ('', 'Bellingen'), ('', 'Grafton');

CREATE TABLE departments (
 id INT NOT NULL AUTO_INCREMENT PRIMARY KEY,
 name VARCHAR(30) NOT NULL
)
 PARTITION BY KEY(id)
 PARTITIONS 2;

INSERT INTO departments VALUES
 ('', 'Sales'), ('', 'Customer Service'),
 ('', 'Delivery'), ('', 'Accounting');

You can explicitly select partitions (or subpartitions, or both) from any or all of the tables in a join. (The
PARTITION option used to select partitions from a given table immediately follows the name of the
table, before all other options, including any table alias.) For example, the following query gets the name,
employee ID, department, and city of all employees who work in the Sales or Delivery department (partition
p1 of the departments table) at the stores in either of the cities of Nambucca and Bellingen (partition p0
of the stores table):

mysql> SELECT
 -> e.id AS 'Employee ID', CONCAT(e.fname, ' ', e.lname) AS Name,
 -> s.city AS City, d.name AS department
 -> FROM employees AS e
 -> JOIN stores PARTITION (p1) AS s ON e.store_id=s.id
 -> JOIN departments PARTITION (p0) AS d ON e.department_id=d.id
 -> ORDER BY e.lname;
+-------------+---------------+-----------+------------+
| Employee ID | Name | City | department |
+-------------+---------------+-----------+------------+
14	Fred Goldberg	Bellingen	Delivery
5	Mary Jones	Nambucca	Sales
17	Mark Morgan	Bellingen	Delivery
9	Andy Smith	Nambucca	Delivery
8	June Wilson	Bellingen	Sales
+-------------+---------------+-----------+------------+
5 rows in set (0.00 sec)

For general information about joins in MySQL, see Section 13.2.9.2, “JOIN Clause”.

When the PARTITION option is used with DELETE statements, only those partitions (and subpartitions, if
any) listed with the option are checked for rows to be deleted. Any other partitions are ignored, as shown
here:

mysql> SELECT * FROM employees WHERE fname LIKE 'j%';
+----+-------+--------+----------+---------------+
| id | fname | lname | store_id | department_id |
+----+-------+--------+----------+---------------+
4	Jim	Smith	2	4
8	June	Wilson	3	1
11	Jill	Stone	1	4

4039

Partition Selection

+----+-------+--------+----------+---------------+
3 rows in set (0.00 sec)

mysql> DELETE FROM employees PARTITION (p0, p1)
 -> WHERE fname LIKE 'j%';
Query OK, 2 rows affected (0.09 sec)

mysql> SELECT * FROM employees WHERE fname LIKE 'j%';
+----+-------+-------+----------+---------------+
| id | fname | lname | store_id | department_id |
+----+-------+-------+----------+---------------+
| 11 | Jill | Stone | 1 | 4 |
+----+-------+-------+----------+---------------+
1 row in set (0.00 sec)

Only the two rows in partitions p0 and p1 matching the WHERE condition were deleted. As you can see
from the result when the SELECT is run a second time, there remains a row in the table matching the
WHERE condition, but residing in a different partition (p2).

UPDATE statements using explicit partition selection behave in the same way; only rows in the partitions
referenced by the PARTITION option are considered when determining the rows to be updated, as can be
seen by executing the following statements:

mysql> UPDATE employees PARTITION (p0)
 -> SET store_id = 2 WHERE fname = 'Jill';
Query OK, 0 rows affected (0.00 sec)
Rows matched: 0 Changed: 0 Warnings: 0

mysql> SELECT * FROM employees WHERE fname = 'Jill';
+----+-------+-------+----------+---------------+
| id | fname | lname | store_id | department_id |
+----+-------+-------+----------+---------------+
| 11 | Jill | Stone | 1 | 4 |
+----+-------+-------+----------+---------------+
1 row in set (0.00 sec)

mysql> UPDATE employees PARTITION (p2)
 -> SET store_id = 2 WHERE fname = 'Jill';
Query OK, 1 row affected (0.09 sec)
Rows matched: 1 Changed: 1 Warnings: 0

mysql> SELECT * FROM employees WHERE fname = 'Jill';
+----+-------+-------+----------+---------------+
| id | fname | lname | store_id | department_id |
+----+-------+-------+----------+---------------+
| 11 | Jill | Stone | 2 | 4 |
+----+-------+-------+----------+---------------+
1 row in set (0.00 sec)

In the same way, when PARTITION is used with DELETE, only rows in the partition or partitions named in
the partition list are checked for deletion.

For statements that insert rows, the behavior differs in that failure to find a suitable partition causes the
statement to fail. This is true for both INSERT and REPLACE statements, as shown here:

mysql> INSERT INTO employees PARTITION (p2) VALUES (20, 'Jan', 'Jones', 1, 3);
ERROR 1729 (HY000): Found a row not matching the given partition set
mysql> INSERT INTO employees PARTITION (p3) VALUES (20, 'Jan', 'Jones', 1, 3);
Query OK, 1 row affected (0.07 sec)

mysql> REPLACE INTO employees PARTITION (p0) VALUES (20, 'Jan', 'Jones', 3, 2);
ERROR 1729 (HY000): Found a row not matching the given partition set

mysql> REPLACE INTO employees PARTITION (p3) VALUES (20, 'Jan', 'Jones', 3, 2);
Query OK, 2 rows affected (0.09 sec)

4040

Restrictions and Limitations on Partitioning

For statements that write multiple rows to a partitioned table that uses the InnoDB storage engine:
If any row in the list following VALUES cannot be written to one of the partitions specified in the
partition_names list, the entire statement fails and no rows are written. This is shown for INSERT
statements in the following example, reusing the employees table created previously:

mysql> ALTER TABLE employees
 -> REORGANIZE PARTITION p3 INTO (
 -> PARTITION p3 VALUES LESS THAN (20),
 -> PARTITION p4 VALUES LESS THAN (25),
 -> PARTITION p5 VALUES LESS THAN MAXVALUE
 ->);
Query OK, 6 rows affected (2.09 sec)
Records: 6 Duplicates: 0 Warnings: 0

mysql> SHOW CREATE TABLE employees\G
*************************** 1. row ***************************
 Table: employees
Create Table: CREATE TABLE `employees` (
 `id` int(11) NOT NULL AUTO_INCREMENT,
 `fname` varchar(25) NOT NULL,
 `lname` varchar(25) NOT NULL,
 `store_id` int(11) NOT NULL,
 `department_id` int(11) NOT NULL,
 PRIMARY KEY (`id`)
) ENGINE=InnoDB AUTO_INCREMENT=27 DEFAULT CHARSET=latin1
/*!50100 PARTITION BY RANGE (id)
(PARTITION p0 VALUES LESS THAN (5) ENGINE = InnoDB,
 PARTITION p1 VALUES LESS THAN (10) ENGINE = InnoDB,
 PARTITION p2 VALUES LESS THAN (15) ENGINE = InnoDB,
 PARTITION p3 VALUES LESS THAN (20) ENGINE = InnoDB,
 PARTITION p4 VALUES LESS THAN (25) ENGINE = InnoDB,
 PARTITION p5 VALUES LESS THAN MAXVALUE ENGINE = InnoDB) */
1 row in set (0.00 sec)

mysql> INSERT INTO employees PARTITION (p3, p4) VALUES
 -> (24, 'Tim', 'Greene', 3, 1), (26, 'Linda', 'Mills', 2, 1);
ERROR 1729 (HY000): Found a row not matching the given partition set

mysql> INSERT INTO employees PARTITION (p3, p4, p5) VALUES
 -> (24, 'Tim', 'Greene', 3, 1), (26, 'Linda', 'Mills', 2, 1);
Query OK, 2 rows affected (0.06 sec)
Records: 2 Duplicates: 0 Warnings: 0

The preceding is true for both INSERT statements and REPLACE statements that write multiple rows.

In MySQL 5.7.1 and later, partition selection is disabled for tables employing a storage engine that supplies
automatic partitioning, such as NDB. (Bug #14827952)

22.6 Restrictions and Limitations on Partitioning
This section discusses current restrictions and limitations on MySQL partitioning support.

Prohibited constructs. The following constructs are not permitted in partitioning expressions:

• Stored procedures, stored functions, loadable functions, or plugins.

• Declared variables or user variables.

For a list of SQL functions which are permitted in partitioning expressions, see Section 22.6.3, “Partitioning
Limitations Relating to Functions”.

Arithmetic and logical operators. Use of the arithmetic operators +, -, and * is permitted in
partitioning expressions. However, the result must be an integer value or NULL (except in the case of

4041

Restrictions and Limitations on Partitioning

[LINEAR] KEY partitioning, as discussed elsewhere in this chapter; see Section 22.2, “Partitioning
Types”, for more information).

The DIV operator is also supported, and the / operator is not permitted. (Bug #30188, Bug #33182)

The bit operators |, &, ^, <<, >>, and ~ are not permitted in partitioning expressions.

HANDLER statements. Previously, the HANDLER statement was not supported with partitioned tables.
This limitation is removed beginning with MySQL 5.7.1.

Server SQL mode. Tables employing user-defined partitioning do not preserve the SQL mode in
effect at the time that they were created. As discussed in Section 5.1.10, “Server SQL Modes”, the results
of many MySQL functions and operators may change according to the server SQL mode. Therefore, a
change in the SQL mode at any time after the creation of partitioned tables may lead to major changes
in the behavior of such tables, and could easily lead to corruption or loss of data. For these reasons, it is
strongly recommended that you never change the server SQL mode after creating partitioned tables.

Examples. The following examples illustrate some changes in behavior of partitioned tables due to a
change in the server SQL mode:

1. Error handling. Suppose that you create a partitioned table whose partitioning expression is one
such as column DIV 0 or column MOD 0, as shown here:

mysql> CREATE TABLE tn (c1 INT)
 -> PARTITION BY LIST(1 DIV c1) (
 -> PARTITION p0 VALUES IN (NULL),
 -> PARTITION p1 VALUES IN (1)
 ->);
Query OK, 0 rows affected (0.05 sec)

The default behavior for MySQL is to return NULL for the result of a division by zero, without producing
any errors:

mysql> SELECT @@sql_mode;
+------------+
| @@sql_mode |
+------------+
| |
+------------+
1 row in set (0.00 sec)

mysql> INSERT INTO tn VALUES (NULL), (0), (1);
Query OK, 3 rows affected (0.00 sec)
Records: 3 Duplicates: 0 Warnings: 0

However, changing the server SQL mode to treat division by zero as an error and to enforce strict error
handling causes the same INSERT statement to fail, as shown here:

mysql> SET sql_mode='STRICT_ALL_TABLES,ERROR_FOR_DIVISION_BY_ZERO';
Query OK, 0 rows affected (0.00 sec)

mysql> INSERT INTO tn VALUES (NULL), (0), (1);
ERROR 1365 (22012): Division by 0

2. Table accessibility. Sometimes a change in the server SQL mode can make partitioned tables
unusable. The following CREATE TABLE statement can be executed successfully only if the
NO_UNSIGNED_SUBTRACTION mode is in effect:

mysql> SELECT @@sql_mode;
+------------+
| @@sql_mode |

4042

Restrictions and Limitations on Partitioning

+------------+
| |
+------------+
1 row in set (0.00 sec)

mysql> CREATE TABLE tu (c1 BIGINT UNSIGNED)
 -> PARTITION BY RANGE(c1 - 10) (
 -> PARTITION p0 VALUES LESS THAN (-5),
 -> PARTITION p1 VALUES LESS THAN (0),
 -> PARTITION p2 VALUES LESS THAN (5),
 -> PARTITION p3 VALUES LESS THAN (10),
 -> PARTITION p4 VALUES LESS THAN (MAXVALUE)
 ->);
ERROR 1563 (HY000): Partition constant is out of partition function domain

mysql> SET sql_mode='NO_UNSIGNED_SUBTRACTION';
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT @@sql_mode;
+-------------------------+
| @@sql_mode |
+-------------------------+
| NO_UNSIGNED_SUBTRACTION |
+-------------------------+
1 row in set (0.00 sec)

mysql> CREATE TABLE tu (c1 BIGINT UNSIGNED)
 -> PARTITION BY RANGE(c1 - 10) (
 -> PARTITION p0 VALUES LESS THAN (-5),
 -> PARTITION p1 VALUES LESS THAN (0),
 -> PARTITION p2 VALUES LESS THAN (5),
 -> PARTITION p3 VALUES LESS THAN (10),
 -> PARTITION p4 VALUES LESS THAN (MAXVALUE)
 ->);
Query OK, 0 rows affected (0.05 sec)

If you remove the NO_UNSIGNED_SUBTRACTION server SQL mode after creating tu, you may no
longer be able to access this table:

mysql> SET sql_mode='';
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT * FROM tu;
ERROR 1563 (HY000): Partition constant is out of partition function domain
mysql> INSERT INTO tu VALUES (20);
ERROR 1563 (HY000): Partition constant is out of partition function domain

See also Section 5.1.10, “Server SQL Modes”.

Server SQL modes also impact replication of partitioned tables. Disparate SQL modes on source and
replica can lead to partitioning expressions being evaluated differently; this can cause the distribution of
data among partitions to be different in the source's and replica's copies of a given table, and may even
cause inserts into partitioned tables that succeed on the source to fail on the replica. For best results, you
should always use the same server SQL mode on the source and on the replica.

Performance considerations. Some effects of partitioning operations on performance are given in the
following list:

• File system operations. Partitioning and repartitioning operations (such as ALTER TABLE
with PARTITION BY ..., REORGANIZE PARTITION, or REMOVE PARTITIONING) depend on
file system operations for their implementation. This means that the speed of these operations
is affected by such factors as file system type and characteristics, disk speed, swap space, file
handling efficiency of the operating system, and MySQL server options and variables that relate to

4043

Restrictions and Limitations on Partitioning

file handling. In particular, you should make sure that large_files_support is enabled and that
open_files_limit is set properly. For partitioned tables using the MyISAM storage engine, increasing
myisam_max_sort_file_size may improve performance; partitioning and repartitioning operations
involving InnoDB tables may be made more efficient by enabling innodb_file_per_table.

See also Maximum number of partitions.

• MyISAM and partition file descriptor usage.
For a partitioned MyISAM table, MySQL uses 2 file descriptors for each partition, for each such table that
is open. This means that you need many more file descriptors to perform operations on a partitioned
MyISAM table than on a table which is identical to it except that the latter table is not partitioned,
particularly when performing ALTER TABLE operations.

Assume a MyISAM table t with 100 partitions, such as the table created by this SQL statement:

CREATE TABLE t (c1 VARCHAR(50))
PARTITION BY KEY (c1) PARTITIONS 100
ENGINE=MYISAM;

Note

For brevity, we use KEY partitioning for the table shown in this example, but file
descriptor usage as described here applies to all partitioned MyISAM tables,
regardless of the type of partitioning that is employed. Partitioned tables using
other storage engines such as InnoDB are not affected by this issue.

Now assume that you wish to repartition t so that it has 101 partitions, using the statement shown here:

ALTER TABLE t PARTITION BY KEY (c1) PARTITIONS 101;

To process this ALTER TABLE statement, MySQL uses 402 file descriptors—that is, two for each of the
100 original partitions, plus two for each of the 101 new partitions. This is because all partitions (old and
new) must be opened concurrently during the reorganization of the table data. It is recommended that,
if you expect to perform such operations, you should make sure that the open_files_limit system
variable is not set too low to accommodate them.

• Table locks. Generally, the process executing a partitioning operation on a table takes a write lock on
the table. Reads from such tables are relatively unaffected; pending INSERT and UPDATE operations are
performed as soon as the partitioning operation has completed. For InnoDB-specific exceptions to this
limitation, see Partitioning Operations.

• Storage engine. Partitioning operations, queries, and update operations generally tend to be faster
with MyISAM tables than with InnoDB or NDB tables.

• Indexes; partition pruning. As with nonpartitioned tables, proper use of indexes can speed up
queries on partitioned tables significantly. In addition, designing partitioned tables and queries on these
tables to take advantage of partition pruning can improve performance dramatically. See Section 22.4,
“Partition Pruning”, for more information.

Previously, index condition pushdown was not supported for partitioned tables. This limitation was
removed in MySQL 5.7.3. See Section 8.2.1.5, “Index Condition Pushdown Optimization”.

• Performance with LOAD DATA. In MySQL 5.7, LOAD DATA uses buffering to improve performance.
You should be aware that the buffer uses 130 KB memory per partition to achieve this.

Maximum number of partitions.
The maximum possible number of partitions for a given table not using the NDB storage engine is 8192.
This number includes subpartitions.

4044

Restrictions and Limitations on Partitioning

The maximum possible number of user-defined partitions for a table using the NDB storage engine is
determined according to the version of the NDB Cluster software being used, the number of data nodes,
and other factors. See NDB and user-defined partitioning, for more information.

If, when creating tables with a large number of partitions (but less than the maximum), you encounter
an error message such as Got error ... from storage engine: Out of resources
when opening file, you may be able to address the issue by increasing the value of the
open_files_limit system variable. However, this is dependent on the operating system, and may not
be possible or advisable on all platforms; see Section B.3.2.16, “File Not Found and Similar Errors”, for
more information. In some cases, using large numbers (hundreds) of partitions may also not be advisable
due to other concerns, so using more partitions does not automatically lead to better results.

See also File system operations.

Query cache not supported.
The query cache is not supported for partitioned tables, and is automatically disabled for queries involving
partitioned tables. The query cache cannot be enabled for such queries.

Per-partition key caches.
In MySQL 5.7, key caches are supported for partitioned MyISAM tables, using the CACHE INDEX and
LOAD INDEX INTO CACHE statements. Key caches may be defined for one, several, or all partitions, and
indexes for one, several, or all partitions may be preloaded into key caches.

Foreign keys not supported for partitioned InnoDB tables.
Partitioned tables using the InnoDB storage engine do not support foreign keys. More specifically, this
means that the following two statements are true:

1. No definition of an InnoDB table employing user-defined partitioning may contain foreign key
references; no InnoDB table whose definition contains foreign key references may be partitioned.

2. No InnoDB table definition may contain a foreign key reference to a user-partitioned table; no InnoDB
table with user-defined partitioning may contain columns referenced by foreign keys.

The scope of the restrictions just listed includes all tables that use the InnoDB storage engine. CREATE
TABLE and ALTER TABLE statements that would result in tables violating these restrictions are not
allowed.

ALTER TABLE ... ORDER BY. An ALTER TABLE ... ORDER BY column statement run against a
partitioned table causes ordering of rows only within each partition.

Effects on REPLACE statements by modification of primary keys. It can be desirable in some
cases (see Section 22.6.1, “Partitioning Keys, Primary Keys, and Unique Keys”) to modify a table's primary
key. Be aware that, if your application uses REPLACE statements and you do this, the results of these
statements can be drastically altered. See Section 13.2.8, “REPLACE Statement”, for more information
and an example.

FULLTEXT indexes.
Partitioned tables do not support FULLTEXT indexes or searches, even for partitioned tables employing the
InnoDB or MyISAM storage engine.

Spatial columns. Columns with spatial data types such as POINT or GEOMETRY cannot be used in
partitioned tables.

Temporary tables.
Temporary tables cannot be partitioned. (Bug #17497)

Log tables. It is not possible to partition the log tables; an ALTER TABLE ... PARTITION BY ...
statement on such a table fails with an error.

4045

Restrictions and Limitations on Partitioning

Data type of partitioning key.
A partitioning key must be either an integer column or an expression that resolves to an integer.
Expressions employing ENUM columns cannot be used. The column or expression value may also be
NULL. (See Section 22.2.7, “How MySQL Partitioning Handles NULL”.)

There are two exceptions to this restriction:

1. When partitioning by [LINEAR] KEY, it is possible to use columns of any valid MySQL data type other
than TEXT or BLOB as partitioning keys, because MySQL's internal key-hashing functions produce the
correct data type from these types. For example, the following two CREATE TABLE statements are
valid:

CREATE TABLE tkc (c1 CHAR)
PARTITION BY KEY(c1)
PARTITIONS 4;

CREATE TABLE tke
 (c1 ENUM('red', 'orange', 'yellow', 'green', 'blue', 'indigo', 'violet'))
PARTITION BY LINEAR KEY(c1)
PARTITIONS 6;

2. When partitioning by RANGE COLUMNS or LIST COLUMNS, it is possible to use string, DATE, and
DATETIME columns. For example, each of the following CREATE TABLE statements is valid:

CREATE TABLE rc (c1 INT, c2 DATE)
PARTITION BY RANGE COLUMNS(c2) (
 PARTITION p0 VALUES LESS THAN('1990-01-01'),
 PARTITION p1 VALUES LESS THAN('1995-01-01'),
 PARTITION p2 VALUES LESS THAN('2000-01-01'),
 PARTITION p3 VALUES LESS THAN('2005-01-01'),
 PARTITION p4 VALUES LESS THAN(MAXVALUE)
);

CREATE TABLE lc (c1 INT, c2 CHAR(1))
PARTITION BY LIST COLUMNS(c2) (
 PARTITION p0 VALUES IN('a', 'd', 'g', 'j', 'm', 'p', 's', 'v', 'y'),
 PARTITION p1 VALUES IN('b', 'e', 'h', 'k', 'n', 'q', 't', 'w', 'z'),
 PARTITION p2 VALUES IN('c', 'f', 'i', 'l', 'o', 'r', 'u', 'x', NULL)
);

Neither of the preceding exceptions applies to BLOB or TEXT column types.

Subqueries.
A partitioning key may not be a subquery, even if that subquery resolves to an integer value or NULL.

Column index prefixes not supported for key partitioning. When creating a table that is partitioned
by key, any columns in the partitioning key which use column prefixes are not used in the table's
partitioning function. Consider the following CREATE TABLE statement, which has three VARCHAR
columns, and whose primary key uses all three columns and specifies prefixes for two of them:

CREATE TABLE t1 (
 a VARCHAR(10000),
 b VARCHAR(25),
 c VARCHAR(10),
 PRIMARY KEY (a(10), b, c(2))
) PARTITION BY KEY() PARTITIONS 2;

This statement is accepted, but the resulting table is actually created as if you had issued the following
statement, using only the primary key column which does not include a prefix (column b) for the partitioning
key:

CREATE TABLE t1 (

4046

Restrictions and Limitations on Partitioning

 a VARCHAR(10000),
 b VARCHAR(25),
 c VARCHAR(10),
 PRIMARY KEY (a(10), b, c(2))
) PARTITION BY KEY(b) PARTITIONS 2;

No warning is issued or any other indication provided that this has occurred, except in the event that all
columns specified for the partitioning key use prefixes, in which case the statement fails with the error
message shown here:

mysql> CREATE TABLE t2 (
 -> a VARCHAR(10000),
 -> b VARCHAR(25),
 -> c VARCHAR(10),
 -> PRIMARY KEY (a(10), b(5), c(2))
 ->) PARTITION BY KEY() PARTITIONS 2;
ERROR 1503 (HY000): A PRIMARY KEY must include all columns in the
table's partitioning function

This also occurs when altering or upgrading such tables, and includes cases in which the columns used
in the partitioning function are defined implicitly as those in the table's primary key by employing an empty
PARTITION BY KEY() clause.

This is a known issue which is addressed in MySQL 8.0 by deprecating the permissive behavior; in
MYSQL 8.0, if any columns using prefixes are included in a table's partitioning function, the server logs an
appropriate warning for each such column, or raises a descriptive error if necessary. (Allowing the use of
columns with prefixes in partitioning keys is subject to removal altogether in a future version of MySQL.)

For general information about partitioning tables by key, see Section 22.2.5, “KEY Partitioning”.

Issues with subpartitions.
Subpartitions must use HASH or KEY partitioning. Only RANGE and LIST partitions may be subpartitioned;
HASH and KEY partitions cannot be subpartitioned.

 SUBPARTITION BY KEY requires that the subpartitioning column or columns be specified explicitly,
unlike the case with PARTITION BY KEY, where it can be omitted (in which case the table's primary key
column is used by default). Consider the table created by this statement:

CREATE TABLE ts (
 id INT NOT NULL AUTO_INCREMENT PRIMARY KEY,
 name VARCHAR(30)
);

You can create a table having the same columns, partitioned by KEY, using a statement such as this one:

CREATE TABLE ts (
 id INT NOT NULL AUTO_INCREMENT PRIMARY KEY,
 name VARCHAR(30)
)
PARTITION BY KEY()
PARTITIONS 4;

The previous statement is treated as though it had been written like this, with the table's primary key
column used as the partitioning column:

CREATE TABLE ts (
 id INT NOT NULL AUTO_INCREMENT PRIMARY KEY,
 name VARCHAR(30)
)
PARTITION BY KEY(id)
PARTITIONS 4;

4047

Restrictions and Limitations on Partitioning

However, the following statement that attempts to create a subpartitioned table using the default column as
the subpartitioning column fails, and the column must be specified for the statement to succeed, as shown
here:

mysql> CREATE TABLE ts (
 -> id INT NOT NULL AUTO_INCREMENT PRIMARY KEY,
 -> name VARCHAR(30)
 ->)
 -> PARTITION BY RANGE(id)
 -> SUBPARTITION BY KEY()
 -> SUBPARTITIONS 4
 -> (
 -> PARTITION p0 VALUES LESS THAN (100),
 -> PARTITION p1 VALUES LESS THAN (MAXVALUE)
 ->);
ERROR 1064 (42000): You have an error in your SQL syntax; check the manual that
corresponds to your MySQL server version for the right syntax to use near ')

mysql> CREATE TABLE ts (
 -> id INT NOT NULL AUTO_INCREMENT PRIMARY KEY,
 -> name VARCHAR(30)
 ->)
 -> PARTITION BY RANGE(id)
 -> SUBPARTITION BY KEY(id)
 -> SUBPARTITIONS 4
 -> (
 -> PARTITION p0 VALUES LESS THAN (100),
 -> PARTITION p1 VALUES LESS THAN (MAXVALUE)
 ->);
Query OK, 0 rows affected (0.07 sec)

This is a known issue (see Bug #51470).

DATA DIRECTORY and INDEX DIRECTORY options. DATA DIRECTORY and INDEX DIRECTORY
are subject to the following restrictions when used with partitioned tables:

• Table-level DATA DIRECTORY and INDEX DIRECTORY options are ignored (see Bug #32091).

• On Windows, the DATA DIRECTORY and INDEX DIRECTORY options are not supported for individual
partitions or subpartitions of MyISAM tables. However, you can use DATA DIRECTORY for individual
partitions or subpartitions of InnoDB tables.

Repairing and rebuilding partitioned tables. The statements CHECK TABLE, OPTIMIZE TABLE,
ANALYZE TABLE, and REPAIR TABLE are supported for partitioned tables.

In addition, you can use ALTER TABLE ... REBUILD PARTITION to rebuild one or more partitions of a
partitioned table; ALTER TABLE ... REORGANIZE PARTITION also causes partitions to be rebuilt. See
Section 13.1.8, “ALTER TABLE Statement”, for more information about these two statements.

Starting in MySQL 5.7.2, ANALYZE, CHECK, OPTIMIZE, REPAIR, and TRUNCATE operations are supported
with subpartitions. REBUILD was also accepted syntax prior to MySQL 5.7.5, although this had no effect.
(Bug #19075411, Bug #73130) See also Section 13.1.8.1, “ALTER TABLE Partition Operations”.

mysqlcheck, myisamchk, and myisampack are not supported with partitioned tables.

FOR EXPORT option (FLUSH TABLES). The FLUSH TABLES statement's FOR EXPORT option is not
supported for partitioned InnoDB tables in MySQL 5.7.4 and earlier. (Bug #16943907)

File name delimiters for partitions and subpartitions. Table partition and subpartition file names
include generated delimiters such as #P# and #SP#. The lettercase of such delimiters can vary and should
not be depended upon.

4048

Partitioning Keys, Primary Keys, and Unique Keys

22.6.1 Partitioning Keys, Primary Keys, and Unique Keys

This section discusses the relationship of partitioning keys with primary keys and unique keys. The rule
governing this relationship can be expressed as follows: All columns used in the partitioning expression for
a partitioned table must be part of every unique key that the table may have.

In other words, every unique key on the table must use every column in the table's partitioning expression.
(This also includes the table's primary key, since it is by definition a unique key. This particular case is
discussed later in this section.) For example, each of the following table creation statements is invalid:

CREATE TABLE t1 (
 col1 INT NOT NULL,
 col2 DATE NOT NULL,
 col3 INT NOT NULL,
 col4 INT NOT NULL,
 UNIQUE KEY (col1, col2)
)
PARTITION BY HASH(col3)
PARTITIONS 4;

CREATE TABLE t2 (
 col1 INT NOT NULL,
 col2 DATE NOT NULL,
 col3 INT NOT NULL,
 col4 INT NOT NULL,
 UNIQUE KEY (col1),
 UNIQUE KEY (col3)
)
PARTITION BY HASH(col1 + col3)
PARTITIONS 4;

In each case, the proposed table would have at least one unique key that does not include all columns
used in the partitioning expression.

Each of the following statements is valid, and represents one way in which the corresponding invalid table
creation statement could be made to work:

CREATE TABLE t1 (
 col1 INT NOT NULL,
 col2 DATE NOT NULL,
 col3 INT NOT NULL,
 col4 INT NOT NULL,
 UNIQUE KEY (col1, col2, col3)
)
PARTITION BY HASH(col3)
PARTITIONS 4;

CREATE TABLE t2 (
 col1 INT NOT NULL,
 col2 DATE NOT NULL,
 col3 INT NOT NULL,
 col4 INT NOT NULL,
 UNIQUE KEY (col1, col3)
)
PARTITION BY HASH(col1 + col3)
PARTITIONS 4;

This example shows the error produced in such cases:

mysql> CREATE TABLE t3 (
 -> col1 INT NOT NULL,
 -> col2 DATE NOT NULL,
 -> col3 INT NOT NULL,
 -> col4 INT NOT NULL,

4049

Partitioning Keys, Primary Keys, and Unique Keys

 -> UNIQUE KEY (col1, col2),
 -> UNIQUE KEY (col3)
 ->)
 -> PARTITION BY HASH(col1 + col3)
 -> PARTITIONS 4;
ERROR 1491 (HY000): A PRIMARY KEY must include all columns in the table's partitioning function

The CREATE TABLE statement fails because both col1 and col3 are included in the proposed
partitioning key, but neither of these columns is part of both of unique keys on the table. This shows one
possible fix for the invalid table definition:

mysql> CREATE TABLE t3 (
 -> col1 INT NOT NULL,
 -> col2 DATE NOT NULL,
 -> col3 INT NOT NULL,
 -> col4 INT NOT NULL,
 -> UNIQUE KEY (col1, col2, col3),
 -> UNIQUE KEY (col3)
 ->)
 -> PARTITION BY HASH(col3)
 -> PARTITIONS 4;
Query OK, 0 rows affected (0.05 sec)

In this case, the proposed partitioning key col3 is part of both unique keys, and the table creation
statement succeeds.

The following table cannot be partitioned at all, because there is no way to include in a partitioning key any
columns that belong to both unique keys:

CREATE TABLE t4 (
 col1 INT NOT NULL,
 col2 INT NOT NULL,
 col3 INT NOT NULL,
 col4 INT NOT NULL,
 UNIQUE KEY (col1, col3),
 UNIQUE KEY (col2, col4)
);

Since every primary key is by definition a unique key, this restriction also includes the table's primary key, if
it has one. For example, the next two statements are invalid:

CREATE TABLE t5 (
 col1 INT NOT NULL,
 col2 DATE NOT NULL,
 col3 INT NOT NULL,
 col4 INT NOT NULL,
 PRIMARY KEY(col1, col2)
)
PARTITION BY HASH(col3)
PARTITIONS 4;

CREATE TABLE t6 (
 col1 INT NOT NULL,
 col2 DATE NOT NULL,
 col3 INT NOT NULL,
 col4 INT NOT NULL,
 PRIMARY KEY(col1, col3),
 UNIQUE KEY(col2)
)
PARTITION BY HASH(YEAR(col2))
PARTITIONS 4;

In both cases, the primary key does not include all columns referenced in the partitioning expression.
However, both of the next two statements are valid:

4050

Partitioning Keys, Primary Keys, and Unique Keys

CREATE TABLE t7 (
 col1 INT NOT NULL,
 col2 DATE NOT NULL,
 col3 INT NOT NULL,
 col4 INT NOT NULL,
 PRIMARY KEY(col1, col2)
)
PARTITION BY HASH(col1 + YEAR(col2))
PARTITIONS 4;

CREATE TABLE t8 (
 col1 INT NOT NULL,
 col2 DATE NOT NULL,
 col3 INT NOT NULL,
 col4 INT NOT NULL,
 PRIMARY KEY(col1, col2, col4),
 UNIQUE KEY(col2, col1)
)
PARTITION BY HASH(col1 + YEAR(col2))
PARTITIONS 4;

If a table has no unique keys—this includes having no primary key—then this restriction does not apply,
and you may use any column or columns in the partitioning expression as long as the column type is
compatible with the partitioning type.

For the same reason, you cannot later add a unique key to a partitioned table unless the key includes all
columns used by the table's partitioning expression. Consider the partitioned table created as shown here:

mysql> CREATE TABLE t_no_pk (c1 INT, c2 INT)
 -> PARTITION BY RANGE(c1) (
 -> PARTITION p0 VALUES LESS THAN (10),
 -> PARTITION p1 VALUES LESS THAN (20),
 -> PARTITION p2 VALUES LESS THAN (30),
 -> PARTITION p3 VALUES LESS THAN (40)
 ->);
Query OK, 0 rows affected (0.12 sec)

It is possible to add a primary key to t_no_pk using either of these ALTER TABLE statements:

possible PK
mysql> ALTER TABLE t_no_pk ADD PRIMARY KEY(c1);
Query OK, 0 rows affected (0.13 sec)
Records: 0 Duplicates: 0 Warnings: 0

drop this PK
mysql> ALTER TABLE t_no_pk DROP PRIMARY KEY;
Query OK, 0 rows affected (0.10 sec)
Records: 0 Duplicates: 0 Warnings: 0

use another possible PK
mysql> ALTER TABLE t_no_pk ADD PRIMARY KEY(c1, c2);
Query OK, 0 rows affected (0.12 sec)
Records: 0 Duplicates: 0 Warnings: 0

drop this PK
mysql> ALTER TABLE t_no_pk DROP PRIMARY KEY;
Query OK, 0 rows affected (0.09 sec)
Records: 0 Duplicates: 0 Warnings: 0

However, the next statement fails, because c1 is part of the partitioning key, but is not part of the proposed
primary key:

fails with error 1503
mysql> ALTER TABLE t_no_pk ADD PRIMARY KEY(c2);
ERROR 1503 (HY000): A PRIMARY KEY must include all columns in the table's partitioning function

4051

Partitioning Limitations Relating to Storage Engines

Since t_no_pk has only c1 in its partitioning expression, attempting to adding a unique key on c2 alone
fails. However, you can add a unique key that uses both c1 and c2.

These rules also apply to existing nonpartitioned tables that you wish to partition using ALTER TABLE ...
PARTITION BY. Consider a table np_pk created as shown here:

mysql> CREATE TABLE np_pk (
 -> id INT NOT NULL AUTO_INCREMENT,
 -> name VARCHAR(50),
 -> added DATE,
 -> PRIMARY KEY (id)
 ->);
Query OK, 0 rows affected (0.08 sec)

The following ALTER TABLE statement fails with an error, because the added column is not part of any
unique key in the table:

mysql> ALTER TABLE np_pk
 -> PARTITION BY HASH(TO_DAYS(added))
 -> PARTITIONS 4;
ERROR 1503 (HY000): A PRIMARY KEY must include all columns in the table's partitioning function

However, this statement using the id column for the partitioning column is valid, as shown here:

mysql> ALTER TABLE np_pk
 -> PARTITION BY HASH(id)
 -> PARTITIONS 4;
Query OK, 0 rows affected (0.11 sec)
Records: 0 Duplicates: 0 Warnings: 0

In the case of np_pk, the only column that may be used as part of a partitioning expression is id; if you
wish to partition this table using any other column or columns in the partitioning expression, you must first
modify the table, either by adding the desired column or columns to the primary key, or by dropping the
primary key altogether.

22.6.2 Partitioning Limitations Relating to Storage Engines

The following limitations apply to the use of storage engines with user-defined partitioning of tables.

MERGE storage engine. User-defined partitioning and the MERGE storage engine are not compatible.
Tables using the MERGE storage engine cannot be partitioned. Partitioned tables cannot be merged.

FEDERATED storage engine. Partitioning of FEDERATED tables is not supported; it is not possible to
create partitioned FEDERATED tables.

CSV storage engine. Partitioned tables using the CSV storage engine are not supported; it is not
possible to create partitioned CSV tables.

InnoDB storage engine. InnoDB foreign keys and MySQL partitioning are not compatible. Partitioned
InnoDB tables cannot have foreign key references, nor can they have columns referenced by foreign keys.
InnoDB tables which have or which are referenced by foreign keys cannot be partitioned.

InnoDB does not support the use of multiple disks for subpartitions. (This is currently supported only by
MyISAM.)

In addition, ALTER TABLE ... OPTIMIZE PARTITION does not work correctly with partitioned tables
that use the InnoDB storage engine. Use ALTER TABLE ... REBUILD PARTITION and ALTER
TABLE ... ANALYZE PARTITION, instead, for such tables. For more information, see Section 13.1.8.1,
“ALTER TABLE Partition Operations”.

4052

Partitioning Limitations Relating to Functions

User-defined partitioning and the NDB storage engine (NDB Cluster). Partitioning by KEY (including
LINEAR KEY) is the only type of partitioning supported for the NDB storage engine. It is not possible under
normal circumstances in NDB Cluster to create an NDB Cluster table using any partitioning type other than
[LINEAR] KEY, and attempting to do so fails with an error.

Exception (not for production): It is possible to override this restriction by setting the new system variable
on NDB Cluster SQL nodes to ON. If you choose to do this, you should be aware that tables using
partitioning types other than [LINEAR] KEY are not supported in production. In such cases, you can
create and use tables with partitioning types other than KEY or LINEAR KEY, but you do this entirely at
your own risk. You should also be aware that this functionality is now deprecated and subject to removal
without further notice in a future release of NDB Cluster.

The maximum number of partitions that can be defined for an NDB table depends on the number of data
nodes and node groups in the cluster, the version of the NDB Cluster software in use, and other factors.
See NDB and user-defined partitioning, for more information.

As of MySQL NDB Cluster 7.5.2, the maximum amount of fixed-size data that can be stored per partition in
an NDB table is 128 TB. Previously, this was 16 GB.

CREATE TABLE and ALTER TABLE statements that would cause a user-partitioned NDB table not to meet
either or both of the following two requirements are not permitted, and fail with an error:

1. The table must have an explicit primary key.

2. All columns listed in the table's partitioning expression must be part of the primary key.

Exception. If a user-partitioned NDB table is created using an empty column-list (that is, using
PARTITION BY KEY() or PARTITION BY LINEAR KEY()), then no explicit primary key is required.

Partition selection. Partition selection is not supported for NDB tables. See Section 22.5, “Partition
Selection”, for more information.

Upgrading partitioned tables. When performing an upgrade, tables which are partitioned by KEY and
which use any storage engine other than NDB must be dumped and reloaded.

Same storage engine for all partitions. All partitions of a partitioned table must use the same storage
engine and it must be the same storage engine used by the table as a whole. In addition, if one does not
specify an engine on the table level, then one must do either of the following when creating or altering a
partitioned table:

• Do not specify any engine for any partition or subpartition

• Specify the engine for all partitions or subpartitions

22.6.3 Partitioning Limitations Relating to Functions

This section discusses limitations in MySQL Partitioning relating specifically to functions used in
partitioning expressions.

Only the MySQL functions shown in the following list are allowed in partitioning expressions:

• ABS()

• CEILING() (see CEILING() and FLOOR())

• DATEDIFF()

4053

Partitioning Limitations Relating to Functions

• DAY()

• DAYOFMONTH()

• DAYOFWEEK()

• DAYOFYEAR()

• EXTRACT() (see EXTRACT() function with WEEK specifier)

• FLOOR() (see CEILING() and FLOOR())

• HOUR()

• MICROSECOND()

• MINUTE()

• MOD()

• MONTH()

• QUARTER()

• SECOND()

• TIME_TO_SEC()

• TO_DAYS()

• TO_SECONDS()

• UNIX_TIMESTAMP() (with TIMESTAMP columns)

• WEEKDAY()

• YEAR()

• YEARWEEK()

In MySQL 5.7, partition pruning is supported for the TO_DAYS(), TO_SECONDS(), YEAR(), and
UNIX_TIMESTAMP() functions. See Section 22.4, “Partition Pruning”, for more information.

CEILING() and FLOOR(). Each of these functions returns an integer only if it is passed an argument
of an exact numeric type, such as one of the INT types or DECIMAL. This means, for example, that the
following CREATE TABLE statement fails with an error, as shown here:

mysql> CREATE TABLE t (c FLOAT) PARTITION BY LIST(FLOOR(c))(
 -> PARTITION p0 VALUES IN (1,3,5),
 -> PARTITION p1 VALUES IN (2,4,6)
 ->);
ERROR 1490 (HY000): The PARTITION function returns the wrong type

EXTRACT() function with WEEK specifier. The value returned by the EXTRACT() function, when
used as EXTRACT(WEEK FROM col), depends on the value of the default_week_format system
variable. For this reason, EXTRACT() is not permitted as a partitioning function when it specifies the unit
as WEEK. (Bug #54483)

See Section 12.6.2, “Mathematical Functions”, for more information about the return types of these
functions, as well as Section 11.1, “Numeric Data Types”.

4054

Partitioning and Locking

22.6.4 Partitioning and Locking

For storage engines such as MyISAM that actually execute table-level locks when executing DML or DDL
statements, such a statement in older versions of MySQL (5.6.5 and earlier) that affected a partitioned
table imposed a lock on the table as a whole; that is, all partitions were locked until the statement was
finished. In MySQL 5.7, partition lock pruning eliminates unneeded locks in many cases, and most
statements reading from or updating a partitioned MyISAM table cause only the effected partitions to
be locked. For example, a SELECT from a partitioned MyISAM table locks only those partitions actually
containing rows that satisfy the SELECT statement's WHERE condition are locked.

For statements affecting partitioned tables using storage engines such as InnoDB, that employ row-level
locking and do not actually perform (or need to perform) the locks prior to partition pruning, this is not an
issue.

The next few paragraphs discuss the effects of partition lock pruning for various MySQL statements on
tables using storage engines that employ table-level locks.

Effects on DML statements

SELECT statements (including those containing unions or joins) lock only those partitions that actually need
to be read. This also applies to SELECT ... PARTITION.

An UPDATE prunes locks only for tables on which no partitioning columns are updated.

REPLACE and INSERT lock only those partitions having rows to be inserted or replaced. However, if an
AUTO_INCREMENT value is generated for any partitioning column then all partitions are locked.

INSERT ... ON DUPLICATE KEY UPDATE is pruned as long as no partitioning column is updated.

INSERT ... SELECT locks only those partitions in the source table that need to be read, although all
partitions in the target table are locked.

Locks imposed by LOAD DATA statements on partitioned tables cannot be pruned.

The presence of BEFORE INSERT or BEFORE UPDATE triggers using any partitioning column of a
partitioned table means that locks on INSERT and UPDATE statements updating this table cannot be
pruned, since the trigger can alter its values: A BEFORE INSERT trigger on any of the table's partitioning
columns means that locks set by INSERT or REPLACE cannot be pruned, since the BEFORE INSERT
trigger may change a row's partitioning columns before the row is inserted, forcing the row into a different
partition than it would be otherwise. A BEFORE UPDATE trigger on a partitioning column means that locks
imposed by UPDATE or INSERT ... ON DUPLICATE KEY UPDATE cannot be pruned.

Affected DDL statements

CREATE VIEW does not cause any locks.

ALTER TABLE ... EXCHANGE PARTITION prunes locks; only the exchanged table and the exchanged
partition are locked.

ALTER TABLE ... TRUNCATE PARTITION prunes locks; only the partitions to be emptied are locked.

In addition, ALTER TABLE statements take metadata locks on the table level.

Other statements

LOCK TABLES cannot prune partition locks.

4055

Partitioning and Locking

CALL stored_procedure(expr) supports lock pruning, but evaluating expr does not.

DO and SET statements do not support partitioning lock pruning.

4056

Chapter 23 Stored Objects

Table of Contents
23.1 Defining Stored Programs ... 4058
23.2 Using Stored Routines .. 4059

23.2.1 Stored Routine Syntax .. 4060
23.2.2 Stored Routines and MySQL Privileges ... 4061
23.2.3 Stored Routine Metadata .. 4061
23.2.4 Stored Procedures, Functions, Triggers, and LAST_INSERT_ID() 4061

23.3 Using Triggers .. 4062
23.3.1 Trigger Syntax and Examples ... 4062
23.3.2 Trigger Metadata .. 4066

23.4 Using the Event Scheduler .. 4067
23.4.1 Event Scheduler Overview .. 4067
23.4.2 Event Scheduler Configuration .. 4068
23.4.3 Event Syntax .. 4070
23.4.4 Event Metadata .. 4070
23.4.5 Event Scheduler Status .. 4071
23.4.6 The Event Scheduler and MySQL Privileges .. 4072

23.5 Using Views .. 4075
23.5.1 View Syntax ... 4075
23.5.2 View Processing Algorithms .. 4075
23.5.3 Updatable and Insertable Views .. 4077
23.5.4 The View WITH CHECK OPTION Clause .. 4079
23.5.5 View Metadata ... 4080

23.6 Stored Object Access Control .. 4081
23.7 Stored Program Binary Logging ... 4084
23.8 Restrictions on Stored Programs ... 4090
23.9 Restrictions on Views .. 4094

This chapter discusses stored database objects that are defined in terms of SQL code that is stored on the
server for later execution.

Stored objects include these object types:

• Stored procedure: An object created with CREATE PROCEDURE and invoked using the CALL statement.
A procedure does not have a return value but can modify its parameters for later inspection by the caller.
It can also generate result sets to be returned to the client program.

• Stored function: An object created with CREATE FUNCTION and used much like a built-in function. You
invoke it in an expression and it returns a value during expression evaluation.

• Trigger: An object created with CREATE TRIGGER that is associated with a table. A trigger is activated
when a particular event occurs for the table, such as an insert or update.

• Event: An object created with CREATE EVENT and invoked by the server according to schedule.

• View: An object created with CREATE VIEW that when referenced produces a result set. A view acts as
a virtual table.

Terminology used in this document reflects the stored object hierarchy:

4057

Defining Stored Programs

• Stored routines include stored procedures and functions.

• Stored programs include stored routines, triggers, and events.

• Stored objects include stored programs and views.

This chapter describes how to use stored objects. The following sections provide additional information
about SQL syntax for statements related to these objects, and about object processing:

• For each object type, there are CREATE, ALTER, and DROP statements that control which objects exist
and how they are defined. See Section 13.1, “Data Definition Statements”.

• The CALL statement is used to invoke stored procedures. See Section 13.2.1, “CALL Statement”.

• Stored program definitions include a body that may use compound statements, loops, conditionals, and
declared variables. See Section 13.6, “Compound Statements”.

• Metadata changes to objects referred to by stored programs are detected and cause automatic reparsing
of the affected statements when the program is next executed. For more information, see Section 8.10.4,
“Caching of Prepared Statements and Stored Programs”.

23.1 Defining Stored Programs

Each stored program contains a body that consists of an SQL statement. This statement may be a
compound statement made up of several statements separated by semicolon (;) characters. For example,
the following stored procedure has a body made up of a BEGIN ... END block that contains a SET
statement and a REPEAT loop that itself contains another SET statement:

CREATE PROCEDURE dorepeat(p1 INT)
BEGIN
 SET @x = 0;
 REPEAT SET @x = @x + 1; UNTIL @x > p1 END REPEAT;
END;

If you use the mysql client program to define a stored program containing semicolon characters, a
problem arises. By default, mysql itself recognizes the semicolon as a statement delimiter, so you must
redefine the delimiter temporarily to cause mysql to pass the entire stored program definition to the server.

To redefine the mysql delimiter, use the delimiter command. The following example shows how to
do this for the dorepeat() procedure just shown. The delimiter is changed to // to enable the entire
definition to be passed to the server as a single statement, and then restored to ; before invoking the
procedure. This enables the ; delimiter used in the procedure body to be passed through to the server
rather than being interpreted by mysql itself.

mysql> delimiter //

mysql> CREATE PROCEDURE dorepeat(p1 INT)
 -> BEGIN
 -> SET @x = 0;
 -> REPEAT SET @x = @x + 1; UNTIL @x > p1 END REPEAT;
 -> END
 -> //
Query OK, 0 rows affected (0.00 sec)

mysql> delimiter ;

mysql> CALL dorepeat(1000);
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT @x;

4058

Using Stored Routines

+------+
| @x |
+------+
| 1001 |
+------+
1 row in set (0.00 sec)

You can redefine the delimiter to a string other than //, and the delimiter can consist of a single character
or multiple characters. You should avoid the use of the backslash (\) character because that is the escape
character for MySQL.

The following is an example of a function that takes a parameter, performs an operation using an SQL
function, and returns the result. In this case, it is unnecessary to use delimiter because the function
definition contains no internal ; statement delimiters:

mysql> CREATE FUNCTION hello (s CHAR(20))
mysql> RETURNS CHAR(50) DETERMINISTIC
 -> RETURN CONCAT('Hello, ',s,'!');
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT hello('world');
+----------------+
| hello('world') |
+----------------+
| Hello, world! |
+----------------+
1 row in set (0.00 sec)

23.2 Using Stored Routines

MySQL supports stored routines (procedures and functions). A stored routine is a set of SQL statements
that can be stored in the server. Once this has been done, clients don't need to keep reissuing the
individual statements but can refer to the stored routine instead.

Stored routines require the proc table in the mysql database. This table is created during the MySQL
installation procedure. If you are upgrading to MySQL 5.7 from an earlier version, be sure to update your
grant tables to make sure that the proc table exists. See Section 4.4.7, “mysql_upgrade — Check and
Upgrade MySQL Tables”.

Stored routines can be particularly useful in certain situations:

• When multiple client applications are written in different languages or work on different platforms, but
need to perform the same database operations.

• When security is paramount. Banks, for example, use stored procedures and functions for all common
operations. This provides a consistent and secure environment, and routines can ensure that each
operation is properly logged. In such a setup, applications and users would have no access to the
database tables directly, but can only execute specific stored routines.

Stored routines can provide improved performance because less information needs to be sent between
the server and the client. The tradeoff is that this does increase the load on the database server because
more of the work is done on the server side and less is done on the client (application) side. Consider this if
many client machines (such as Web servers) are serviced by only one or a few database servers.

Stored routines also enable you to have libraries of functions in the database server. This is a feature
shared by modern application languages that enable such design internally (for example, by using
classes). Using these client application language features is beneficial for the programmer even outside
the scope of database use.

4059

Additional Resources

MySQL follows the SQL:2003 syntax for stored routines, which is also used by IBM's DB2. All syntax
described here is supported and any limitations and extensions are documented where appropriate.

Additional Resources

• You may find the Stored Procedures User Forum of use when working with stored procedures and
functions.

• For answers to some commonly asked questions regarding stored routines in MySQL, see Section A.4,
“MySQL 5.7 FAQ: Stored Procedures and Functions”.

• There are some restrictions on the use of stored routines. See Section 23.8, “Restrictions on Stored
Programs”.

• Binary logging for stored routines takes place as described in Section 23.7, “Stored Program Binary
Logging”.

23.2.1 Stored Routine Syntax

A stored routine is either a procedure or a function. Stored routines are created with the CREATE
PROCEDURE and CREATE FUNCTION statements (see Section 13.1.16, “CREATE PROCEDURE and
CREATE FUNCTION Statements”). A procedure is invoked using a CALL statement (see Section 13.2.1,
“CALL Statement”), and can only pass back values using output variables. A function can be called from
inside a statement just like any other function (that is, by invoking the function's name), and can return a
scalar value. The body of a stored routine can use compound statements (see Section 13.6, “Compound
Statements”).

Stored routines can be dropped with the DROP PROCEDURE and DROP FUNCTION statements (see
Section 13.1.27, “DROP PROCEDURE and DROP FUNCTION Statements”), and altered with the ALTER
PROCEDURE and ALTER FUNCTION statements (see Section 13.1.6, “ALTER PROCEDURE Statement”).

A stored procedure or function is associated with a particular database. This has several implications:

• When the routine is invoked, an implicit USE db_name is performed (and undone when the routine
terminates). USE statements within stored routines are not permitted.

• You can qualify routine names with the database name. This can be used to refer to a routine that is not
in the current database. For example, to invoke a stored procedure p or function f that is associated with
the test database, you can say CALL test.p() or test.f().

• When a database is dropped, all stored routines associated with it are dropped as well.

Stored functions cannot be recursive.

Recursion in stored procedures is permitted but disabled by default. To enable recursion, set
the max_sp_recursion_depth server system variable to a value greater than zero. Stored
procedure recursion increases the demand on thread stack space. If you increase the value of
max_sp_recursion_depth, it may be necessary to increase thread stack size by increasing the value of
thread_stack at server startup. See Section 5.1.7, “Server System Variables”, for more information.

MySQL supports a very useful extension that enables the use of regular SELECT statements (that
is, without using cursors or local variables) inside a stored procedure. The result set of such a query
is simply sent directly to the client. Multiple SELECT statements generate multiple result sets, so the
client must use a MySQL client library that supports multiple result sets. This means the client must
use a client library from a version of MySQL at least as recent as 4.1. The client should also specify
the CLIENT_MULTI_RESULTS option when it connects. For C programs, this can be done with the

4060

https://forums.mysql.com/list.php?98

Stored Routines and MySQL Privileges

mysql_real_connect() C API function. See mysql_real_connect(), and Multiple Statement Execution
Support.

23.2.2 Stored Routines and MySQL Privileges

The MySQL grant system takes stored routines into account as follows:

• The CREATE ROUTINE privilege is needed to create stored routines.

• The ALTER ROUTINE privilege is needed to alter or drop stored routines. This privilege is granted
automatically to the creator of a routine if necessary, and dropped from the creator when the routine is
dropped.

• The EXECUTE privilege is required to execute stored routines. However, this privilege is granted
automatically to the creator of a routine if necessary (and dropped from the creator when the routine is
dropped). Also, the default SQL SECURITY characteristic for a routine is DEFINER, which enables users
who have access to the database with which the routine is associated to execute the routine.

• If the automatic_sp_privileges system variable is 0, the EXECUTE and ALTER ROUTINE privileges
are not automatically granted to and dropped from the routine creator.

• The creator of a routine is the account used to execute the CREATE statement for it. This might not be
the same as the account named as the DEFINER in the routine definition.

The server manipulates the mysql.proc table in response to statements that create, alter, or drop stored
routines. Manual manipulation of this table is not supported.

23.2.3 Stored Routine Metadata

To obtain metadata about stored routines:

• Query the ROUTINES table of the INFORMATION_SCHEMA database. See Section 24.3.21, “The
INFORMATION_SCHEMA ROUTINES Table”.

• Use the SHOW CREATE PROCEDURE and SHOW CREATE FUNCTION statements to see routine
definitions. See Section 13.7.5.9, “SHOW CREATE PROCEDURE Statement”.

• Use the SHOW PROCEDURE STATUS and SHOW FUNCTION STATUS statements to see routine
characteristics. See Section 13.7.5.28, “SHOW PROCEDURE STATUS Statement”.

• Use the SHOW PROCEDURE CODE and SHOW FUNCTION CODE statements to see a representation
of the internal implementation of the routine. See Section 13.7.5.27, “SHOW PROCEDURE CODE
Statement”.

23.2.4 Stored Procedures, Functions, Triggers, and LAST_INSERT_ID()

Within the body of a stored routine (procedure or function) or a trigger, the value of LAST_INSERT_ID()
changes the same way as for statements executed outside the body of these kinds of objects (see
Section 12.15, “Information Functions”). The effect of a stored routine or trigger upon the value of
LAST_INSERT_ID() that is seen by following statements depends on the kind of routine:

• If a stored procedure executes statements that change the value of LAST_INSERT_ID(), the changed
value is seen by statements that follow the procedure call.

• For stored functions and triggers that change the value, the value is restored when the function or trigger
ends, so following statements do not see a changed value.

4061

https://dev.mysql.com/doc/c-api/5.7/en/mysql-real-connect.html
https://dev.mysql.com/doc/c-api/5.7/en/mysql-real-connect.html
https://dev.mysql.com/doc/c-api/5.7/en/c-api-multiple-queries.html
https://dev.mysql.com/doc/c-api/5.7/en/c-api-multiple-queries.html

Using Triggers

23.3 Using Triggers

A trigger is a named database object that is associated with a table, and that activates when a particular
event occurs for the table. Some uses for triggers are to perform checks of values to be inserted into a
table or to perform calculations on values involved in an update.

A trigger is defined to activate when a statement inserts, updates, or deletes rows in the associated table.
These row operations are trigger events. For example, rows can be inserted by INSERT or LOAD DATA
statements, and an insert trigger activates for each inserted row. A trigger can be set to activate either
before or after the trigger event. For example, you can have a trigger activate before each row that is
inserted into a table or after each row that is updated.

Important

MySQL triggers activate only for changes made to tables by SQL statements. This
includes changes to base tables that underlie updatable views. Triggers do not
activate for changes to tables made by APIs that do not transmit SQL statements
to the MySQL Server. This means that triggers are not activated by updates made
using the NDB API.

Triggers are not activated by changes in INFORMATION_SCHEMA or
performance_schema tables. Those tables are actually views and triggers are not
permitted on views.

The following sections describe the syntax for creating and dropping triggers, show some examples of how
to use them, and indicate how to obtain trigger metadata.

Additional Resources

• You may find the MySQL User Forums helpful when working with triggers.

• For answers to commonly asked questions regarding triggers in MySQL, see Section A.5, “MySQL 5.7
FAQ: Triggers”.

• There are some restrictions on the use of triggers; see Section 23.8, “Restrictions on Stored Programs”.

• Binary logging for triggers takes place as described in Section 23.7, “Stored Program Binary Logging”.

23.3.1 Trigger Syntax and Examples

To create a trigger or drop a trigger, use the CREATE TRIGGER or DROP TRIGGER statement, described in
Section 13.1.20, “CREATE TRIGGER Statement”, and Section 13.1.31, “DROP TRIGGER Statement”.

Here is a simple example that associates a trigger with a table, to activate for INSERT operations. The
trigger acts as an accumulator, summing the values inserted into one of the columns of the table.

mysql> CREATE TABLE account (acct_num INT, amount DECIMAL(10,2));
Query OK, 0 rows affected (0.03 sec)

mysql> CREATE TRIGGER ins_sum BEFORE INSERT ON account
 FOR EACH ROW SET @sum = @sum + NEW.amount;
Query OK, 0 rows affected (0.01 sec)

The CREATE TRIGGER statement creates a trigger named ins_sum that is associated with the account
table. It also includes clauses that specify the trigger action time, the triggering event, and what to do when
the trigger activates:

4062

https://forums.mysql.com/list.php?20

Trigger Syntax and Examples

• The keyword BEFORE indicates the trigger action time. In this case, the trigger activates before each row
inserted into the table. The other permitted keyword here is AFTER.

• The keyword INSERT indicates the trigger event; that is, the type of operation that activates the trigger.
In the example, INSERT operations cause trigger activation. You can also create triggers for DELETE
and UPDATE operations.

• The statement following FOR EACH ROW defines the trigger body; that is, the statement to execute
each time the trigger activates, which occurs once for each row affected by the triggering event. In the
example, the trigger body is a simple SET that accumulates into a user variable the values inserted into
the amount column. The statement refers to the column as NEW.amount which means “the value of the
amount column to be inserted into the new row.”

To use the trigger, set the accumulator variable to zero, execute an INSERT statement, and then see what
value the variable has afterward:

mysql> SET @sum = 0;
mysql> INSERT INTO account VALUES(137,14.98),(141,1937.50),(97,-100.00);
mysql> SELECT @sum AS 'Total amount inserted';
+-----------------------+
| Total amount inserted |
+-----------------------+
| 1852.48 |
+-----------------------+

In this case, the value of @sum after the INSERT statement has executed is 14.98 + 1937.50 - 100,
or 1852.48.

To destroy the trigger, use a DROP TRIGGER statement. You must specify the schema name if the trigger
is not in the default schema:

mysql> DROP TRIGGER test.ins_sum;

If you drop a table, any triggers for the table are also dropped.

Trigger names exist in the schema namespace, meaning that all triggers must have unique names within a
schema. Triggers in different schemas can have the same name.

As of MySQL 5.7.2, it is possible to define multiple triggers for a given table that have the same trigger
event and action time. For example, you can have two BEFORE UPDATE triggers for a table. By default,
triggers that have the same trigger event and action time activate in the order they were created. To affect
trigger order, specify a clause after FOR EACH ROW that indicates FOLLOWS or PRECEDES and the name
of an existing trigger that also has the same trigger event and action time. With FOLLOWS, the new trigger
activates after the existing trigger. With PRECEDES, the new trigger activates before the existing trigger.

For example, the following trigger definition defines another BEFORE INSERT trigger for the account
table:

mysql> CREATE TRIGGER ins_transaction BEFORE INSERT ON account
 FOR EACH ROW PRECEDES ins_sum
 SET
 @deposits = @deposits + IF(NEW.amount>0,NEW.amount,0),
 @withdrawals = @withdrawals + IF(NEW.amount<0,-NEW.amount,0);
Query OK, 0 rows affected (0.01 sec)

This trigger, ins_transaction, is similar to ins_sum but accumulates deposits and withdrawals
separately. It has a PRECEDES clause that causes it to activate before ins_sum; without that clause, it
would activate after ins_sum because it is created after ins_sum.

4063

Trigger Syntax and Examples

Before MySQL 5.7.2, there cannot be multiple triggers for a given table that have the same trigger event
and action time. For example, you cannot have two BEFORE UPDATE triggers for a table. To work around
this, you can define a trigger that executes multiple statements by using the BEGIN ... END compound
statement construct after FOR EACH ROW. (An example appears later in this section.)

Within the trigger body, the OLD and NEW keywords enable you to access columns in the rows affected by a
trigger. OLD and NEW are MySQL extensions to triggers; they are not case-sensitive.

In an INSERT trigger, only NEW.col_name can be used; there is no old row. In a DELETE trigger, only
OLD.col_name can be used; there is no new row. In an UPDATE trigger, you can use OLD.col_name to
refer to the columns of a row before it is updated and NEW.col_name to refer to the columns of the row
after it is updated.

A column named with OLD is read only. You can refer to it (if you have the SELECT privilege), but not
modify it. You can refer to a column named with NEW if you have the SELECT privilege for it. In a BEFORE
trigger, you can also change its value with SET NEW.col_name = value if you have the UPDATE
privilege for it. This means you can use a trigger to modify the values to be inserted into a new row or used
to update a row. (Such a SET statement has no effect in an AFTER trigger because the row change has
already occurred.)

In a BEFORE trigger, the NEW value for an AUTO_INCREMENT column is 0, not the sequence number that is
generated automatically when the new row actually is inserted.

By using the BEGIN ... END construct, you can define a trigger that executes multiple statements.
Within the BEGIN block, you also can use other syntax that is permitted within stored routines such as
conditionals and loops. However, just as for stored routines, if you use the mysql program to define a
trigger that executes multiple statements, it is necessary to redefine the mysql statement delimiter so
that you can use the ; statement delimiter within the trigger definition. The following example illustrates
these points. It defines an UPDATE trigger that checks the new value to be used for updating each row, and
modifies the value to be within the range from 0 to 100. This must be a BEFORE trigger because the value
must be checked before it is used to update the row:

mysql> delimiter //
mysql> CREATE TRIGGER upd_check BEFORE UPDATE ON account
 FOR EACH ROW
 BEGIN
 IF NEW.amount < 0 THEN
 SET NEW.amount = 0;
 ELSEIF NEW.amount > 100 THEN
 SET NEW.amount = 100;
 END IF;
 END;//
mysql> delimiter ;

It can be easier to define a stored procedure separately and then invoke it from the trigger using a simple
CALL statement. This is also advantageous if you want to execute the same code from within several
triggers.

There are limitations on what can appear in statements that a trigger executes when activated:

• The trigger cannot use the CALL statement to invoke stored procedures that return data to the client or
that use dynamic SQL. (Stored procedures are permitted to return data to the trigger through OUT or
INOUT parameters.)

• The trigger cannot use statements that explicitly or implicitly begin or end a transaction, such as START
TRANSACTION, COMMIT, or ROLLBACK. (ROLLBACK to SAVEPOINT is permitted because it does not
end a transaction.).

4064

Trigger Syntax and Examples

See also Section 23.8, “Restrictions on Stored Programs”.

MySQL handles errors during trigger execution as follows:

• If a BEFORE trigger fails, the operation on the corresponding row is not performed.

• A BEFORE trigger is activated by the attempt to insert or modify the row, regardless of whether the
attempt subsequently succeeds.

• An AFTER trigger is executed only if any BEFORE triggers and the row operation execute successfully.

• An error during either a BEFORE or AFTER trigger results in failure of the entire statement that caused
trigger invocation.

• For transactional tables, failure of a statement should cause rollback of all changes performed by the
statement. Failure of a trigger causes the statement to fail, so trigger failure also causes rollback. For
nontransactional tables, such rollback cannot be done, so although the statement fails, any changes
performed prior to the point of the error remain in effect.

Triggers can contain direct references to tables by name, such as the trigger named testref shown in
this example:

CREATE TABLE test1(a1 INT);
CREATE TABLE test2(a2 INT);
CREATE TABLE test3(a3 INT NOT NULL AUTO_INCREMENT PRIMARY KEY);
CREATE TABLE test4(
 a4 INT NOT NULL AUTO_INCREMENT PRIMARY KEY,
 b4 INT DEFAULT 0
);

delimiter |

CREATE TRIGGER testref BEFORE INSERT ON test1
 FOR EACH ROW
 BEGIN
 INSERT INTO test2 SET a2 = NEW.a1;
 DELETE FROM test3 WHERE a3 = NEW.a1;
 UPDATE test4 SET b4 = b4 + 1 WHERE a4 = NEW.a1;
 END;
|

delimiter ;

INSERT INTO test3 (a3) VALUES
 (NULL), (NULL), (NULL), (NULL), (NULL),
 (NULL), (NULL), (NULL), (NULL), (NULL);

INSERT INTO test4 (a4) VALUES
 (0), (0), (0), (0), (0), (0), (0), (0), (0), (0);

Suppose that you insert the following values into table test1 as shown here:

mysql> INSERT INTO test1 VALUES
 (1), (3), (1), (7), (1), (8), (4), (4);
Query OK, 8 rows affected (0.01 sec)
Records: 8 Duplicates: 0 Warnings: 0

As a result, the four tables contain the following data:

mysql> SELECT * FROM test1;
+------+
| a1 |
+------+
| 1 |

4065

Trigger Metadata

| 3 |
| 1 |
| 7 |
| 1 |
| 8 |
| 4 |
| 4 |
+------+
8 rows in set (0.00 sec)

mysql> SELECT * FROM test2;
+------+
| a2 |
+------+
| 1 |
| 3 |
| 1 |
| 7 |
| 1 |
| 8 |
| 4 |
| 4 |
+------+
8 rows in set (0.00 sec)

mysql> SELECT * FROM test3;
+----+
| a3 |
+----+
| 2 |
| 5 |
| 6 |
| 9 |
| 10 |
+----+
5 rows in set (0.00 sec)

mysql> SELECT * FROM test4;
+----+------+
| a4 | b4 |
+----+------+
1	3
2	0
3	1
4	2
5	0
6	0
7	1
8	1
9	0
10	0
+----+------+
10 rows in set (0.00 sec)

23.3.2 Trigger Metadata

To obtain metadata about triggers:

• Query the TRIGGERS table of the INFORMATION_SCHEMA database. See Section 24.3.29, “The
INFORMATION_SCHEMA TRIGGERS Table”.

• Use the SHOW CREATE TRIGGER statement. See Section 13.7.5.11, “SHOW CREATE TRIGGER
Statement”.

• Use the SHOW TRIGGERS statement. See Section 13.7.5.38, “SHOW TRIGGERS Statement”.

4066

Using the Event Scheduler

23.4 Using the Event Scheduler
The MySQL Event Scheduler manages the scheduling and execution of events, that is, tasks that run
according to a schedule. The following discussion covers the Event Scheduler and is divided into the
following sections:

• Section 23.4.1, “Event Scheduler Overview”, provides an introduction to and conceptual overview of
MySQL Events.

• Section 23.4.3, “Event Syntax”, discusses the SQL statements for creating, altering, and dropping
MySQL Events.

• Section 23.4.4, “Event Metadata”, shows how to obtain information about events and how this
information is stored by the MySQL Server.

• Section 23.4.6, “The Event Scheduler and MySQL Privileges”, discusses the privileges required to work
with events and the ramifications that events have with regard to privileges when executing.

Stored routines require the event table in the mysql database. This table is created during the MySQL
5.7 installation procedure. If you are upgrading to MySQL 5.7 from an earlier version, be sure to update
your grant tables to make sure that the event table exists. See Section 2.10, “Upgrading MySQL”.

Additional Resources

• There are some restrictions on the use of events; see Section 23.8, “Restrictions on Stored Programs”.

• Binary logging for events takes place as described in Section 23.7, “Stored Program Binary Logging”.

• You may also find the MySQL User Forums to be helpful.

23.4.1 Event Scheduler Overview

MySQL Events are tasks that run according to a schedule. Therefore, we sometimes refer to them as
scheduled events. When you create an event, you are creating a named database object containing one or
more SQL statements to be executed at one or more regular intervals, beginning and ending at a specific
date and time. Conceptually, this is similar to the idea of the Unix crontab (also known as a “cron job”) or
the Windows Task Scheduler.

Scheduled tasks of this type are also sometimes known as “temporal triggers”, implying that these are
objects that are triggered by the passage of time. While this is essentially correct, we prefer to use the
term events to avoid confusion with triggers of the type discussed in Section 23.3, “Using Triggers”. Events
should more specifically not be confused with “temporary triggers”. Whereas a trigger is a database object
whose statements are executed in response to a specific type of event that occurs on a given table, a
(scheduled) event is an object whose statements are executed in response to the passage of a specified
time interval.

While there is no provision in the SQL Standard for event scheduling, there are precedents in other
database systems, and you may notice some similarities between these implementations and that found in
the MySQL Server.

MySQL Events have the following major features and properties:

• In MySQL, an event is uniquely identified by its name and the schema to which it is assigned.

• An event performs a specific action according to a schedule. This action consists of an SQL statement,
which can be a compound statement in a BEGIN ... END block if desired (see Section 13.6,

4067

https://forums.mysql.com/list.php?20

Event Scheduler Configuration

“Compound Statements”). An event's timing can be either one-time or recurrent. A one-time event
executes one time only. A recurrent event repeats its action at a regular interval, and the schedule for
a recurring event can be assigned a specific start day and time, end day and time, both, or neither. (By
default, a recurring event's schedule begins as soon as it is created, and continues indefinitely, until it is
disabled or dropped.)

If a repeating event does not terminate within its scheduling interval, the result may be multiple instances
of the event executing simultaneously. If this is undesirable, you should institute a mechanism to prevent
simultaneous instances. For example, you could use the GET_LOCK() function, or row or table locking.

• Users can create, modify, and drop scheduled events using SQL statements intended for these
purposes. Syntactically invalid event creation and modification statements fail with an appropriate error
message. A user may include statements in an event's action which require privileges that the user does
not actually have. The event creation or modification statement succeeds but the event's action fails. See
Section 23.4.6, “The Event Scheduler and MySQL Privileges” for details.

• Many of the properties of an event can be set or modified using SQL statements. These properties
include the event's name, timing, persistence (that is, whether it is preserved following the expiration
of its schedule), status (enabled or disabled), action to be performed, and the schema to which it is
assigned. See Section 13.1.2, “ALTER EVENT Statement”.

The default definer of an event is the user who created the event, unless the event has been altered, in
which case the definer is the user who issued the last ALTER EVENT statement affecting that event. An
event can be modified by any user having the EVENT privilege on the database for which the event is
defined. See Section 23.4.6, “The Event Scheduler and MySQL Privileges”.

• An event's action statement may include most SQL statements permitted within stored routines. For
restrictions, see Section 23.8, “Restrictions on Stored Programs”.

23.4.2 Event Scheduler Configuration

Events are executed by a special event scheduler thread; when we refer to the Event Scheduler, we
actually refer to this thread. When running, the event scheduler thread and its current state can be seen by
users having the PROCESS privilege in the output of SHOW PROCESSLIST, as shown in the discussion that
follows.

The global event_scheduler system variable determines whether the Event Scheduler is enabled and
running on the server. It has one of the following values, which affect event scheduling as described:

• OFF: The Event Scheduler is stopped. The event scheduler thread does not run, is not shown
in the output of SHOW PROCESSLIST, and no scheduled events execute. OFF is the default
event_scheduler value.

When the Event Scheduler is stopped (event_scheduler is OFF), it can be started by setting the value
of event_scheduler to ON. (See next item.)

• ON: The Event Scheduler is started; the event scheduler thread runs and executes all scheduled events.

When the Event Scheduler is ON, the event scheduler thread is listed in the output of SHOW
PROCESSLIST as a daemon process, and its state is represented as shown here:

mysql> SHOW PROCESSLIST\G
*************************** 1. row ***************************
 Id: 1
 User: root
 Host: localhost
 db: NULL

4068

Event Scheduler Configuration

Command: Query
 Time: 0
 State: NULL
 Info: show processlist
*************************** 2. row ***************************
 Id: 2
 User: event_scheduler
 Host: localhost
 db: NULL
Command: Daemon
 Time: 3
 State: Waiting for next activation
 Info: NULL
2 rows in set (0.00 sec)

Event scheduling can be stopped by setting the value of event_scheduler to OFF.

• DISABLED: This value renders the Event Scheduler nonoperational. When the Event Scheduler is
DISABLED, the event scheduler thread does not run (and so does not appear in the output of SHOW
PROCESSLIST). In addition, the Event Scheduler state cannot be changed at runtime.

If the Event Scheduler status has not been set to DISABLED, event_scheduler can be toggled between
ON and OFF (using SET). It is also possible to use 0 for OFF, and 1 for ON when setting this variable. Thus,
any of the following 4 statements can be used in the mysql client to turn on the Event Scheduler:

SET GLOBAL event_scheduler = ON;
SET @@GLOBAL.event_scheduler = ON;
SET GLOBAL event_scheduler = 1;
SET @@GLOBAL.event_scheduler = 1;

Similarly, any of these 4 statements can be used to turn off the Event Scheduler:

SET GLOBAL event_scheduler = OFF;
SET @@GLOBAL.event_scheduler = OFF;
SET GLOBAL event_scheduler = 0;
SET @@GLOBAL.event_scheduler = 0;

Although ON and OFF have numeric equivalents, the value displayed for event_scheduler by SELECT or
SHOW VARIABLES is always one of OFF, ON, or DISABLED. DISABLED has no numeric equivalent. For this
reason, ON and OFF are usually preferred over 1 and 0 when setting this variable.

Note that attempting to set event_scheduler without specifying it as a global variable causes an error:

mysql< SET @@event_scheduler = OFF;
ERROR 1229 (HY000): Variable 'event_scheduler' is a GLOBAL
variable and should be set with SET GLOBAL

Important

It is possible to set the Event Scheduler to DISABLED only at server startup. If
event_scheduler is ON or OFF, you cannot set it to DISABLED at runtime. Also, if
the Event Scheduler is set to DISABLED at startup, you cannot change the value of
event_scheduler at runtime.

To disable the event scheduler, use one of the following two methods:

• As a command-line option when starting the server:

--event-scheduler=DISABLED

• In the server configuration file (my.cnf, or my.ini on Windows systems), include the line where it can
be read by the server (for example, in a [mysqld] section):

4069

Event Syntax

event_scheduler=DISABLED

To enable the Event Scheduler, restart the server without the --event-scheduler=DISABLED
command-line option, or after removing or commenting out the line containing event-
scheduler=DISABLED in the server configuration file, as appropriate. Alternatively, you can use ON (or 1)
or OFF (or 0) in place of the DISABLED value when starting the server.

Note

You can issue event-manipulation statements when event_scheduler is set
to DISABLED. No warnings or errors are generated in such cases (provided that
the statements are themselves valid). However, scheduled events cannot execute
until this variable is set to ON (or 1). Once this has been done, the event scheduler
thread executes all events whose scheduling conditions are satisfied.

Starting the MySQL server with the --skip-grant-tables option causes event_scheduler to be set
to DISABLED, overriding any other value set either on the command line or in the my.cnf or my.ini file
(Bug #26807).

For SQL statements used to create, alter, and drop events, see Section 23.4.3, “Event Syntax”.

MySQL provides an EVENTS table in the INFORMATION_SCHEMA database. This table can be queried to
obtain information about scheduled events which have been defined on the server. See Section 23.4.4,
“Event Metadata”, and Section 24.3.8, “The INFORMATION_SCHEMA EVENTS Table”, for more
information.

For information regarding event scheduling and the MySQL privilege system, see Section 23.4.6, “The
Event Scheduler and MySQL Privileges”.

23.4.3 Event Syntax

MySQL provides several SQL statements for working with scheduled events:

• New events are defined using the CREATE EVENT statement. See Section 13.1.12, “CREATE EVENT
Statement”.

• The definition of an existing event can be changed by means of the ALTER EVENT statement. See
Section 13.1.2, “ALTER EVENT Statement”.

• When a scheduled event is no longer wanted or needed, it can be deleted from the server by its definer
using the DROP EVENT statement. See Section 13.1.23, “DROP EVENT Statement”. Whether an event
persists past the end of its schedule also depends on its ON COMPLETION clause, if it has one. See
Section 13.1.12, “CREATE EVENT Statement”.

An event can be dropped by any user having the EVENT privilege for the database on which the event is
defined. See Section 23.4.6, “The Event Scheduler and MySQL Privileges”.

23.4.4 Event Metadata

To obtain metadata about events:

• Query the event table of the mysql database.

• Query the EVENTS table of the INFORMATION_SCHEMA database. See Section 24.3.8, “The
INFORMATION_SCHEMA EVENTS Table”.

4070

Event Scheduler Status

• Use the SHOW CREATE EVENT statement. See Section 13.7.5.7, “SHOW CREATE EVENT Statement”.

• Use the SHOW EVENTS statement. See Section 13.7.5.18, “SHOW EVENTS Statement”.

Event Scheduler Time Representation

Each session in MySQL has a session time zone (STZ). This is the session time_zone value that is
initialized from the server's global time_zone value when the session begins but may be changed during
the session.

The session time zone that is current when a CREATE EVENT or ALTER EVENT statement executes is
used to interpret times specified in the event definition. This becomes the event time zone (ETZ); that is,
the time zone that is used for event scheduling and is in effect within the event as it executes.

For representation of event information in the mysql.event table, the execute_at, starts, and ends
times are converted to UTC and stored along with the event time zone. This enables event execution to
proceed as defined regardless of any subsequent changes to the server time zone or daylight saving time
effects. The last_executed time is also stored in UTC.

If you select information from mysql.event, the times just mentioned are retrieved as UTC values.
These times can also be obtained by selecting from the Information Schema EVENTS table or from SHOW
EVENTS, but they are reported as ETZ values. Other times available from these sources indicate when
an event was created or last altered; these are displayed as STZ values. The following table summarizes
representation of event times.

Value mysql.event EVENTS Table SHOW EVENTS

Execute at UTC ETZ ETZ

Starts UTC ETZ ETZ

Ends UTC ETZ ETZ

Last executed UTC ETZ n/a

Created STZ STZ n/a

Last altered STZ STZ n/a

23.4.5 Event Scheduler Status

The Event Scheduler writes information about event execution that terminates with an error or warning to
the MySQL Server's error log. See Section 23.4.6, “The Event Scheduler and MySQL Privileges” for an
example.

To obtain information about the state of the Event Scheduler for debugging and troubleshooting purposes,
run mysqladmin debug (see Section 4.5.2, “mysqladmin — A MySQL Server Administration Program”);
after running this command, the server's error log contains output relating to the Event Scheduler, similar to
what is shown here:

Events status:
LLA = Last Locked At LUA = Last Unlocked At
WOC = Waiting On Condition DL = Data Locked

Event scheduler status:
State : INITIALIZED
Thread id : 0
LLA : n/a:0
LUA : n/a:0
WOC : NO

4071

The Event Scheduler and MySQL Privileges

Workers : 0
Executed : 0
Data locked: NO

Event queue status:
Element count : 0
Data locked : NO
Attempting lock : NO
LLA : init_queue:95
LUA : init_queue:103
WOC : NO
Next activation : never

In statements that occur as part of events executed by the Event Scheduler, diagnostics messages (not
only errors, but also warnings) are written to the error log, and, on Windows, to the application event log.
For frequently executed events, it is possible for this to result in many logged messages. For example,
for SELECT ... INTO var_list statements, if the query returns no rows, a warning with error code
1329 occurs (No data), and the variable values remain unchanged. If the query returns multiple rows,
error 1172 occurs (Result consisted of more than one row). For either condition, you can avoid
having the warnings be logged by declaring a condition handler; see Section 13.6.7.2, “DECLARE ...
HANDLER Statement”. For statements that may retrieve multiple rows, another strategy is to use LIMIT 1
to limit the result set to a single row.

23.4.6 The Event Scheduler and MySQL Privileges

To enable or disable the execution of scheduled events, it is necessary to set the value of the global
event_scheduler system variable. This requires privileges sufficient to set global system variables. See
Section 5.1.8.1, “System Variable Privileges”.

The EVENT privilege governs the creation, modification, and deletion of events. This privilege can be
bestowed using GRANT. For example, this GRANT statement confers the EVENT privilege for the schema
named myschema on the user jon@ghidora:

GRANT EVENT ON myschema.* TO jon@ghidora;

(We assume that this user account already exists, and that we wish for it to remain unchanged otherwise.)

To grant this same user the EVENT privilege on all schemas, use the following statement:

GRANT EVENT ON *.* TO jon@ghidora;

The EVENT privilege has global or schema-level scope. Therefore, trying to grant it on a single table results
in an error as shown:

mysql> GRANT EVENT ON myschema.mytable TO jon@ghidora;
ERROR 1144 (42000): Illegal GRANT/REVOKE command; please
consult the manual to see which privileges can be used

It is important to understand that an event is executed with the privileges of its definer, and that it cannot
perform any actions for which its definer does not have the requisite privileges. For example, suppose
that jon@ghidora has the EVENT privilege for myschema. Suppose also that this user has the SELECT
privilege for myschema, but no other privileges for this schema. It is possible for jon@ghidora to create a
new event such as this one:

CREATE EVENT e_store_ts
 ON SCHEDULE
 EVERY 10 SECOND
 DO
 INSERT INTO myschema.mytable VALUES (UNIX_TIMESTAMP());

4072

The Event Scheduler and MySQL Privileges

The user waits for a minute or so, and then performs a SELECT * FROM mytable; query, expecting to
see several new rows in the table. Instead, the table is empty. Since the user does not have the INSERT
privilege for the table in question, the event has no effect.

If you inspect the MySQL error log (hostname.err), you can see that the event is executing, but the
action it is attempting to perform fails:

2013-09-24T12:41:31.261992Z 25 [ERROR] Event Scheduler:
[jon@ghidora][cookbook.e_store_ts] INSERT command denied to user
'jon'@'ghidora' for table 'mytable'
2013-09-24T12:41:31.262022Z 25 [Note] Event Scheduler:
[jon@ghidora].[myschema.e_store_ts] event execution failed.
2013-09-24T12:41:41.271796Z 26 [ERROR] Event Scheduler:
[jon@ghidora][cookbook.e_store_ts] INSERT command denied to user
'jon'@'ghidora' for table 'mytable'
2013-09-24T12:41:41.272761Z 26 [Note] Event Scheduler:
[jon@ghidora].[myschema.e_store_ts] event execution failed.

Since this user very likely does not have access to the error log, it is possible to verify whether the event's
action statement is valid by executing it directly:

mysql> INSERT INTO myschema.mytable VALUES (UNIX_TIMESTAMP());
ERROR 1142 (42000): INSERT command denied to user
'jon'@'ghidora' for table 'mytable'

Inspection of the Information Schema EVENTS table shows that e_store_ts exists and is enabled, but its
LAST_EXECUTED column is NULL:

mysql> SELECT * FROM INFORMATION_SCHEMA.EVENTS
 > WHERE EVENT_NAME='e_store_ts'
 > AND EVENT_SCHEMA='myschema'\G
*************************** 1. row ***************************
 EVENT_CATALOG: NULL
 EVENT_SCHEMA: myschema
 EVENT_NAME: e_store_ts
 DEFINER: jon@ghidora
 EVENT_BODY: SQL
EVENT_DEFINITION: INSERT INTO myschema.mytable VALUES (UNIX_TIMESTAMP())
 EVENT_TYPE: RECURRING
 EXECUTE_AT: NULL
 INTERVAL_VALUE: 5
 INTERVAL_FIELD: SECOND
 SQL_MODE: NULL
 STARTS: 0000-00-00 00:00:00
 ENDS: 0000-00-00 00:00:00
 STATUS: ENABLED
 ON_COMPLETION: NOT PRESERVE
 CREATED: 2006-02-09 22:36:06
 LAST_ALTERED: 2006-02-09 22:36:06
 LAST_EXECUTED: NULL
 EVENT_COMMENT:
1 row in set (0.00 sec)

To rescind the EVENT privilege, use the REVOKE statement. In this example, the EVENT privilege on the
schema myschema is removed from the jon@ghidora user account:

REVOKE EVENT ON myschema.* FROM jon@ghidora;

Important

Revoking the EVENT privilege from a user does not delete or disable any events
that may have been created by that user.

4073

The Event Scheduler and MySQL Privileges

An event is not migrated or dropped as a result of renaming or dropping the user
who created it.

Suppose that the user jon@ghidora has been granted the EVENT and INSERT privileges on the
myschema schema. This user then creates the following event:

CREATE EVENT e_insert
 ON SCHEDULE
 EVERY 7 SECOND
 DO
 INSERT INTO myschema.mytable;

After this event has been created, root revokes the EVENT privilege for jon@ghidora. However,
e_insert continues to execute, inserting a new row into mytable each seven seconds. The same would
be true if root had issued either of these statements:

• DROP USER jon@ghidora;

• RENAME USER jon@ghidora TO someotherguy@ghidora;

You can verify that this is true by examining the mysql.event table (discussed later in this section) or the
Information Schema EVENTS table before and after issuing a DROP USER or RENAME USER statement.

Event definitions are stored in the mysql.event table. To drop an event created by another user account,
the MySQL root user (or another user with the necessary privileges) can delete rows from this table. For
example, to remove the event e_insert shown previously, root can use the following statement:

DELETE FROM mysql.event
 WHERE db = 'myschema'
 AND name = 'e_insert';

It is very important to match the event name and database schema name when deleting rows from the
mysql.event table. This is because different events of the same name can exist in different schemas.

Users' EVENT privileges are stored in the Event_priv columns of the mysql.user and
mysql.db tables. In both cases, this column holds one of the values 'Y' or 'N'. 'N' is the default.
mysql.user.Event_priv is set to 'Y' for a given user only if that user has the global EVENT privilege
(that is, if the privilege was bestowed using GRANT EVENT ON *.*). For a schema-level EVENT privilege,
GRANT creates a row in mysql.db and sets that row's Db column to the name of the schema, the User
column to the name of the user, and the Event_priv column to 'Y'. There should never be any need to
manipulate these tables directly, since the GRANT EVENT and REVOKE EVENT statements perform the
required operations on them.

Five status variables provide counts of event-related operations (but not of statements executed by events;
see Section 23.8, “Restrictions on Stored Programs”). These are:

• Com_create_event: The number of CREATE EVENT statements executed since the last server restart.

• Com_alter_event: The number of ALTER EVENT statements executed since the last server restart.

• Com_drop_event: The number of DROP EVENT statements executed since the last server restart.

• Com_show_create_event: The number of SHOW CREATE EVENT statements executed since the last
server restart.

• Com_show_events: The number of SHOW EVENTS statements executed since the last server restart.

You can view current values for all of these at one time by running the statement SHOW STATUS LIKE
'%event%';.

4074

Using Views

23.5 Using Views
MySQL supports views, including updatable views. Views are stored queries that when invoked produce a
result set. A view acts as a virtual table.

The following discussion describes the syntax for creating and dropping views, and shows some examples
of how to use them.

Additional Resources

• You may find the MySQL User Forums helpful when working with views.

• For answers to some commonly asked questions regarding views in MySQL, see Section A.6, “MySQL
5.7 FAQ: Views”.

• There are some restrictions on the use of views; see Section 23.9, “Restrictions on Views”.

23.5.1 View Syntax

The CREATE VIEW statement creates a new view (see Section 13.1.21, “CREATE VIEW Statement”).
To alter the definition of a view or drop a view, use ALTER VIEW (see Section 13.1.10, “ALTER VIEW
Statement”), or DROP VIEW (see Section 13.1.32, “DROP VIEW Statement”).

A view can be created from many kinds of SELECT statements. It can refer to base tables or other views.
It can use joins, UNION, and subqueries. The SELECT need not even refer to any tables. The following
example defines a view that selects two columns from another table, as well as an expression calculated
from those columns:

mysql> CREATE TABLE t (qty INT, price INT);
mysql> INSERT INTO t VALUES(3, 50), (5, 60);
mysql> CREATE VIEW v AS SELECT qty, price, qty*price AS value FROM t;
mysql> SELECT * FROM v;
+------+-------+-------+
| qty | price | value |
+------+-------+-------+
| 3 | 50 | 150 |
| 5 | 60 | 300 |
+------+-------+-------+
mysql> SELECT * FROM v WHERE qty = 5;
+------+-------+-------+
| qty | price | value |
+------+-------+-------+
| 5 | 60 | 300 |
+------+-------+-------+

23.5.2 View Processing Algorithms

The optional ALGORITHM clause for CREATE VIEW or ALTER VIEW is a MySQL extension to standard
SQL. It affects how MySQL processes the view. ALGORITHM takes three values: MERGE, TEMPTABLE, or
UNDEFINED.

• For MERGE, the text of a statement that refers to the view and the view definition are merged such that
parts of the view definition replace corresponding parts of the statement.

• For TEMPTABLE, the results from the view are retrieved into a temporary table, which then is used to
execute the statement.

• For UNDEFINED, MySQL chooses which algorithm to use. It prefers MERGE over TEMPTABLE if possible,
because MERGE is usually more efficient and because a view cannot be updated if a temporary table is
used.

4075

https://forums.mysql.com/list.php?20

View Processing Algorithms

• If no ALGORITHM clause is present, the default algorithm is determined by the value of the
derived_merge flag of the optimizer_switch system variable. For additional discussion, see
Section 8.2.2.4, “Optimizing Derived Tables and View References with Merging or Materialization”.

A reason to specify TEMPTABLE explicitly is that locks can be released on underlying tables after the
temporary table has been created and before it is used to finish processing the statement. This might result
in quicker lock release than the MERGE algorithm so that other clients that use the view are not blocked as
long.

A view algorithm can be UNDEFINED for three reasons:

• No ALGORITHM clause is present in the CREATE VIEW statement.

• The CREATE VIEW statement has an explicit ALGORITHM = UNDEFINED clause.

• ALGORITHM = MERGE is specified for a view that can be processed only with a temporary table. In this
case, MySQL generates a warning and sets the algorithm to UNDEFINED.

As mentioned earlier, MERGE is handled by merging corresponding parts of a view definition into the
statement that refers to the view. The following examples briefly illustrate how the MERGE algorithm works.
The examples assume that there is a view v_merge that has this definition:

CREATE ALGORITHM = MERGE VIEW v_merge (vc1, vc2) AS
SELECT c1, c2 FROM t WHERE c3 > 100;

Example 1: Suppose that we issue this statement:

SELECT * FROM v_merge;

MySQL handles the statement as follows:

• v_merge becomes t

• * becomes vc1, vc2, which corresponds to c1, c2

• The view WHERE clause is added

The resulting statement to be executed becomes:

SELECT c1, c2 FROM t WHERE c3 > 100;

Example 2: Suppose that we issue this statement:

SELECT * FROM v_merge WHERE vc1 < 100;

This statement is handled similarly to the previous one, except that vc1 < 100 becomes c1 < 100 and
the view WHERE clause is added to the statement WHERE clause using an AND connective (and parentheses
are added to make sure the parts of the clause are executed with correct precedence). The resulting
statement to be executed becomes:

SELECT c1, c2 FROM t WHERE (c3 > 100) AND (c1 < 100);

Effectively, the statement to be executed has a WHERE clause of this form:

WHERE (select WHERE) AND (view WHERE)

If the MERGE algorithm cannot be used, a temporary table must be used instead. Constructs that prevent
merging are the same as those that prevent merging in derived tables. Examples are SELECT DISTINCT

4076

Updatable and Insertable Views

or LIMIT in the subquery. For details, see Section 8.2.2.4, “Optimizing Derived Tables and View
References with Merging or Materialization”.

23.5.3 Updatable and Insertable Views

Some views are updatable and references to them can be used to specify tables to be updated in data
change statements. That is, you can use them in statements such as UPDATE, DELETE, or INSERT to
update the contents of the underlying table. Derived tables can also be specified in multiple-table UPDATE
and DELETE statements, but can only be used for reading data to specify rows to be updated or deleted.
Generally, the view references must be updatable, meaning that they may be merged and not materialized.
Composite views have more complex rules.

For a view to be updatable, there must be a one-to-one relationship between the rows in the view and the
rows in the underlying table. There are also certain other constructs that make a view nonupdatable. To be
more specific, a view is not updatable if it contains any of the following:

• Aggregate functions (SUM(), MIN(), MAX(), COUNT(), and so forth)

• DISTINCT

• GROUP BY

• HAVING

• UNION or UNION ALL

• Subquery in the select list

Before MySQL 5.7.11, subqueries in the select list fail for INSERT, but are okay for UPDATE, DELETE. As
of MySQL 5.7.11, that is still true for nondependent subqueries. For dependent subqueries in the select
list, no data change statements are permitted.

• Certain joins (see additional join discussion later in this section)

• Reference to nonupdatable view in the FROM clause

• Subquery in the WHERE clause that refers to a table in the FROM clause

• Refers only to literal values (in this case, there is no underlying table to update)

• ALGORITHM = TEMPTABLE (use of a temporary table always makes a view nonupdatable)

• Multiple references to any column of a base table (fails for INSERT, okay for UPDATE, DELETE)

A generated column in a view is considered updatable because it is possible to assign to it. However, if
such a column is updated explicitly, the only permitted value is DEFAULT. For information about generated
columns, see Section 13.1.18.7, “CREATE TABLE and Generated Columns”.

It is sometimes possible for a multiple-table view to be updatable, assuming that it can be processed with
the MERGE algorithm. For this to work, the view must use an inner join (not an outer join or a UNION). Also,
only a single table in the view definition can be updated, so the SET clause must name only columns from
one of the tables in the view. Views that use UNION ALL are not permitted even though they might be
theoretically updatable.

With respect to insertability (being updatable with INSERT statements), an updatable view is insertable if it
also satisfies these additional requirements for the view columns:

4077

Updatable and Insertable Views

• There must be no duplicate view column names.

• The view must contain all columns in the base table that do not have a default value.

• The view columns must be simple column references. They must not be expressions, such as these:

3.14159
col1 + 3
UPPER(col2)
col3 / col4
(subquery)

MySQL sets a flag, called the view updatability flag, at CREATE VIEW time. The flag is set to YES (true) if
UPDATE and DELETE (and similar operations) are legal for the view. Otherwise, the flag is set to NO (false).
The IS_UPDATABLE column in the Information Schema VIEWS table displays the status of this flag.

If a view is not updatable, statements such UPDATE, DELETE, and INSERT are illegal and are rejected.
(Even if a view is updatable, it might not be possible to insert into it, as described elsewhere in this
section.)

The IS_UPDATABLE flag may be unreliable if a view depends on one or more other views, and one of
these underlying views is updated. Regardless of the IS_UPDATABLE value, the server keeps track of the
updatability of a view and correctly rejects data change operations to views that are not updatable. If the
IS_UPDATABLE value for a view has become inaccurate to due to changes to underlying views, the value
can be updated by deleting and re-creating the view.

The updatability of views may be affected by the value of the updatable_views_with_limit system
variable. See Section 5.1.7, “Server System Variables”.

For the following discussion, suppose that these tables and views exist:

CREATE TABLE t1 (x INTEGER);
CREATE TABLE t2 (c INTEGER);
CREATE VIEW vmat AS SELECT SUM(x) AS s FROM t1;
CREATE VIEW vup AS SELECT * FROM t2;
CREATE VIEW vjoin AS SELECT * FROM vmat JOIN vup ON vmat.s=vup.c;

INSERT, UPDATE, and DELETE statements are permitted as follows:

• INSERT: The insert table of an INSERT statement may be a view reference that is merged. If the view
is a join view, all components of the view must be updatable (not materialized). For a multiple-table
updatable view, INSERT can work if it inserts into a single table.

This statement is invalid because one component of the join view is nonupdatable:

INSERT INTO vjoin (c) VALUES (1);

This statement is valid; the view contains no materialized components:

INSERT INTO vup (c) VALUES (1);

• UPDATE: The table or tables to be updated in an UPDATE statement may be view references that are
merged. If a view is a join view, at least one component of the view must be updatable (this differs from
INSERT).

In a multiple-table UPDATE statement, the updated table references of the statement must be base
tables or updatable view references. Nonupdated table references may be materialized views or derived
tables.

This statement is valid; column c is from the updatable part of the join view:

4078

The View WITH CHECK OPTION Clause

UPDATE vjoin SET c=c+1;

This statement is invalid; column x is from the nonupdatable part:

UPDATE vjoin SET x=x+1;

This statement is valid; the updated table reference of the multiple-table UPDATE is an updatable view
(vup):

UPDATE vup JOIN (SELECT SUM(x) AS s FROM t1) AS dt ON ...
SET c=c+1;

This statement is invalid; it tries to update a materialized derived table:

UPDATE vup JOIN (SELECT SUM(x) AS s FROM t1) AS dt ON ...
SET s=s+1;

• DELETE: The table or tables to be deleted from in a DELETE statement must be merged views. Join
views are not allowed (this differs from INSERT and UPDATE).

This statement is invalid because the view is a join view:

DELETE vjoin WHERE ...;

This statement is valid because the view is a merged (updatable) view:

DELETE vup WHERE ...;

This statement is valid because it deletes from a merged (updatable) view:

DELETE vup FROM vup JOIN (SELECT SUM(x) AS s FROM t1) AS dt ON ...;

Additional discussion and examples follow.

Earlier discussion in this section pointed out that a view is not insertable if not all columns are simple
column references (for example, if it contains columns that are expressions or composite expressions).
Although such a view is not insertable, it can be updatable if you update only columns that are not
expressions. Consider this view:

CREATE VIEW v AS SELECT col1, 1 AS col2 FROM t;

This view is not insertable because col2 is an expression. But it is updatable if the update does not try to
update col2. This update is permissible:

UPDATE v SET col1 = 0;

This update is not permissible because it attempts to update an expression column:

UPDATE v SET col2 = 0;

If a table contains an AUTO_INCREMENT column, inserting into an insertable view on the table that does
not include the AUTO_INCREMENT column does not change the value of LAST_INSERT_ID(), because
the side effects of inserting default values into columns not part of the view should not be visible.

23.5.4 The View WITH CHECK OPTION Clause

The WITH CHECK OPTION clause can be given for an updatable view to prevent inserts to rows for which
the WHERE clause in the select_statement is not true. It also prevents updates to rows for which the

4079

View Metadata

WHERE clause is true but the update would cause it to be not true (in other words, it prevents visible rows
from being updated to nonvisible rows).

In a WITH CHECK OPTION clause for an updatable view, the LOCAL and CASCADED keywords determine
the scope of check testing when the view is defined in terms of another view. When neither keyword is
given, the default is CASCADED.

Before MySQL 5.7.6, WITH CHECK OPTION testing works like this:

• With LOCAL, the view WHERE clause is checked, but no underlying views are checked.

• With CASCADED, the view WHERE clause is checked, then checking recurses to underlying views,
adds WITH CASCADED CHECK OPTION to them (for purposes of the check; their definitions remain
unchanged), and applies the same rules.

• With no check option, the view WHERE clause is not checked, and no underlying views are checked.

As of MySQL 5.7.6, WITH CHECK OPTION testing is standard-compliant (with changed semantics from
previously for LOCAL and no check clause):

• With LOCAL, the view WHERE clause is checked, then checking recurses to underlying views and applies
the same rules.

• With CASCADED, the view WHERE clause is checked, then checking recurses to underlying views,
adds WITH CASCADED CHECK OPTION to them (for purposes of the check; their definitions remain
unchanged), and applies the same rules.

• With no check option, the view WHERE clause is not checked, then checking recurses to underlying
views, and applies the same rules.

Consider the definitions for the following table and set of views:

CREATE TABLE t1 (a INT);
CREATE VIEW v1 AS SELECT * FROM t1 WHERE a < 2
WITH CHECK OPTION;
CREATE VIEW v2 AS SELECT * FROM v1 WHERE a > 0
WITH LOCAL CHECK OPTION;
CREATE VIEW v3 AS SELECT * FROM v1 WHERE a > 0
WITH CASCADED CHECK OPTION;

Here the v2 and v3 views are defined in terms of another view, v1. Before MySQL 5.7.6, because v2 has
a LOCAL check option, inserts are tested only against the v2 check. v3 has a CASCADED check option,
so inserts are tested not only against the v3 check, but against those of underlying views. The following
statements illustrate these differences:

mysql> INSERT INTO v2 VALUES (2);
Query OK, 1 row affected (0.00 sec)
mysql> INSERT INTO v3 VALUES (2);
ERROR 1369 (HY000): CHECK OPTION failed 'test.v3'

As of MySQL 5.7.6, the semantics for LOCAL differ from previously: Inserts for v2 are checked against its
LOCAL check option, then (unlike before 5.7.6), the check recurses to v1 and the rules are applied again.
The rules for v1 cause a check failure. The check for v3 fails as before:

mysql> INSERT INTO v2 VALUES (2);
ERROR 1369 (HY000): CHECK OPTION failed 'test.v2'
mysql> INSERT INTO v3 VALUES (2);
ERROR 1369 (HY000): CHECK OPTION failed 'test.v3'

23.5.5 View Metadata

4080

Stored Object Access Control

To obtain metadata about views:

• Query the VIEWS table of the INFORMATION_SCHEMA database. See Section 24.3.31, “The
INFORMATION_SCHEMA VIEWS Table”.

• Use the SHOW CREATE VIEW statement. See Section 13.7.5.13, “SHOW CREATE VIEW Statement”.

23.6 Stored Object Access Control

Stored programs (procedures, functions, triggers, and events) and views are defined prior to use and,
when referenced, execute within a security context that determines their privileges. The privileges
applicable to execution of a stored object are controlled by its DEFINER attribute and SQL SECURITY
characteristic.

• The DEFINER Attribute

• The SQL SECURITY Characteristic

• Examples

• Orphan Stored Objects

• Risk-Minimization Guidelines

The DEFINER Attribute

A stored object definition can include a DEFINER attribute that names a MySQL account. If a definition
omits the DEFINER attribute, the default object definer is the user who creates it.

The following rules determine which accounts you can specify as the DEFINER attribute for a stored object:

• If you have the SUPER privilege, you can specify any account as the DEFINER attribute. If the account
does not exist, a warning is generated.

• Otherwise, the only permitted account is your own, specified either literally or as CURRENT_USER or
CURRENT_USER(). You cannot set the definer to any other account.

Creating a stored object with a nonexistent DEFINER account creates an orphan object, which may have
negative consequences; see Orphan Stored Objects.

The SQL SECURITY Characteristic

For stored routines (procedures and functions) and views, the object definition can include an SQL
SECURITY characteristic with a value of DEFINER or INVOKER to specify whether the object executes in
definer or invoker context. If the definition omits the SQL SECURITY characteristic, the default is definer
context.

Triggers and events have no SQL SECURITY characteristic and always execute in definer context. The
server invokes these objects automatically as necessary, so there is no invoking user.

Definer and invoker security contexts differ as follows:

• A stored object that executes in definer security context executes with the privileges of the account
named by its DEFINER attribute. These privileges may be entirely different from those of the invoking
user. The invoker must have appropriate privileges to reference the object (for example, EXECUTE to call
a stored procedure or SELECT to select from a view), but during object execution, the invoker's privileges

4081

Examples

are ignored and only the DEFINER account privileges matter. If the DEFINER account has few privileges,
the object is correspondingly limited in the operations it can perform. If the DEFINER account is highly
privileged (such as an administrative account), the object can perform powerful operations no matter
who invokes it.

• A stored routine or view that executes in invoker security context can perform only operations for which
the invoker has privileges. The DEFINER attribute has no effect on object execution.

Examples

Consider the following stored procedure, which is declared with SQL SECURITY DEFINER to execute in
definer security context:

CREATE DEFINER = 'admin'@'localhost' PROCEDURE p1()
SQL SECURITY DEFINER
BEGIN
 UPDATE t1 SET counter = counter + 1;
END;

Any user who has the EXECUTE privilege for p1 can invoke it with a CALL statement. However,
when p1 executes, it does so in definer security context and thus executes with the privileges of
'admin'@'localhost', the account named as its DEFINER attribute. This account must have the
EXECUTE privilege for p1 as well as the UPDATE privilege for the table t1 referenced within the object
body. Otherwise, the procedure fails.

Now consider this stored procedure, which is identical to p1 except that its SQL SECURITY characteristic
is INVOKER:

CREATE DEFINER = 'admin'@'localhost' PROCEDURE p2()
SQL SECURITY INVOKER
BEGIN
 UPDATE t1 SET counter = counter + 1;
END;

Unlike p1, p2 executes in invoker security context and thus with the privileges of the invoking user
regardless of the DEFINER attribute value. p2 fails if the invoker lacks the EXECUTE privilege for p2 or the
UPDATE privilege for the table t1.

Orphan Stored Objects

An orphan stored object is one for which its DEFINER attribute names a nonexistent account:

• An orphan stored object can be created by specifying a nonexistent DEFINER account at object-creation
time.

• An existing stored object can become orphaned through execution of a DROP USER statement that drops
the object DEFINER account, or a RENAME USER statement that renames the object DEFINER account.

An orphan stored object may be problematic in these ways:

• Because the DEFINER account does not exist, the object may not work as expected if it executes in
definer security context:

• For a stored routine, an error occurs at routine execution time if the SQL SECURITY value is DEFINER
but the definer account does not exist.

• For a trigger, it is not a good idea for trigger activation to occur until the account actually does exist.
Otherwise, the behavior with respect to privilege checking is undefined.

4082

Orphan Stored Objects

• For an event, an error occurs at event execution time if the account does not exist.

• For a view, an error occurs when the view is referenced if the SQL SECURITY value is DEFINER but
the definer account does not exist.

• The object may present a security risk if the nonexistent DEFINER account is subsequently re-created for
a purpose unrelated to the object. In this case, the account “adopts” the object and, with the appropriate
privileges, is able to execute it even if that is not intended.

To obtain information about the accounts used as stored object definers in a MySQL installation, query the
INFORMATION_SCHEMA.

This query identifies which INFORMATION_SCHEMA tables describe objects that have a DEFINER attribute:

mysql> SELECT TABLE_SCHEMA, TABLE_NAME FROM INFORMATION_SCHEMA.COLUMNS
 WHERE COLUMN_NAME = 'DEFINER';
+--------------------+------------+
| TABLE_SCHEMA | TABLE_NAME |
+--------------------+------------+
information_schema	EVENTS
information_schema	ROUTINES
information_schema	TRIGGERS
information_schema	VIEWS
+--------------------+------------+

The result tells you which tables to query to discover which stored object DEFINER values exist and which
objects have a particular DEFINER value:

• To identify which DEFINER values exist in each table, use these queries:

SELECT DISTINCT DEFINER FROM INFORMATION_SCHEMA.EVENTS;
SELECT DISTINCT DEFINER FROM INFORMATION_SCHEMA.ROUTINES;
SELECT DISTINCT DEFINER FROM INFORMATION_SCHEMA.TRIGGERS;
SELECT DISTINCT DEFINER FROM INFORMATION_SCHEMA.VIEWS;

The query results are significant for any account displayed as follows:

• If the account exists, dropping or renaming it causes stored objects to become orphaned. If you plan to
drop or rename the account, consider first dropping its associated stored objects or redefining them to
have a different definer.

• If the account does not exist, creating it causes it to adopt currently orphaned stored objects. If you
plan to create the account, consider whether the orphaned objects should be associated with it. If not,
redefine them to have a different definer.

To redefine an object with a different definer, you can use ALTER EVENT or ALTER VIEW to directly
modify the DEFINER account of events and views. For stored procedures and functions and for triggers,
you must drop the object and re-create it with a different DEFINER account

• To identify which objects have a given DEFINER account, use these queries, substituting the account of
interest for user_name@host_name:

SELECT EVENT_SCHEMA, EVENT_NAME FROM INFORMATION_SCHEMA.EVENTS
WHERE DEFINER = 'user_name@host_name';
SELECT ROUTINE_SCHEMA, ROUTINE_NAME, ROUTINE_TYPE
FROM INFORMATION_SCHEMA.ROUTINES
WHERE DEFINER = 'user_name@host_name';
SELECT TRIGGER_SCHEMA, TRIGGER_NAME FROM INFORMATION_SCHEMA.TRIGGERS
WHERE DEFINER = 'user_name@host_name';
SELECT TABLE_SCHEMA, TABLE_NAME FROM INFORMATION_SCHEMA.VIEWS
WHERE DEFINER = 'user_name@host_name';

4083

Risk-Minimization Guidelines

For the ROUTINES table, the query includes the ROUTINE_TYPE column so that output rows distinguish
whether the DEFINER is for a stored procedure or stored function.

If the account you are searching for does not exist, any objects displayed by those queries are orphan
objects.

Risk-Minimization Guidelines

To minimize the risk potential for stored object creation and use, follow these guidelines:

• Do not create orphan stored objects; that is, objects for which the DEFINER attribute names a
nonexistent account. Do not cause stored objects to become orphaned by dropping or renaming an
account named by the DEFINER attribute of any existing object.

• For a stored routine or view, use SQL SECURITY INVOKER in the object definition when possible so
that it can be used only by users with permissions appropriate for the operations performed by the
object.

• If you create definer-context stored objects while using an account that has the SUPER privilege, specify
an explicit DEFINER attribute that names an account possessing only the privileges required for the
operations performed by the object. Specify a highly privileged DEFINER account only when absolutely
necessary.

• Administrators can prevent users from creating stored objects that specify highly privileged DEFINER
accounts by not granting them the SUPER privilege.

• Definer-context objects should be written keeping in mind that they may be able to access data for which
the invoking user has no privileges. In some cases, you can prevent references to these objects by not
granting unauthorized users particular privileges:

• A stored routine cannot be referenced by a user who does not have the EXECUTE privilege for it.

• A view cannot be referenced by a user who does not have the appropriate privilege for it (SELECT to
select from it, INSERT to insert into it, and so forth).

However, no such control exists for triggers and events because they always execute in definer context.
The server invokes these objects automatically as necessary, and users do not reference them directly:

• A trigger is activated by access to the table with which it is associated, even ordinary table accesses
by users with no special privileges.

• An event is executed by the server on a scheduled basis.

In both cases, if the DEFINER account is highly privileged, the object may be able to perform sensitive or
dangerous operations. This remains true if the privileges needed to create the object are revoked from
the account of the user who created it. Administrators should be especially careful about granting users
object-creation privileges.

23.7 Stored Program Binary Logging
The binary log contains information about SQL statements that modify database contents. This information
is stored in the form of “events” that describe the modifications. (Binary log events differ from scheduled
event stored objects.) The binary log has two important purposes:

• For replication, the binary log is used on source replication servers as a record of the statements to be
sent to replica servers. The source sends the events contained in its binary log to its replicas, which

4084

Stored Program Binary Logging

execute those events to make the same data changes that were made on the source. See Section 16.2,
“Replication Implementation”.

• Certain data recovery operations require use of the binary log. After a backup file has been restored,
the events in the binary log that were recorded after the backup was made are re-executed. These
events bring databases up to date from the point of the backup. See Section 7.3.2, “Using Backups for
Recovery”.

However, if logging occurs at the statement level, there are certain binary logging issues with respect to
stored programs (stored procedures and functions, triggers, and events):

• In some cases, a statement might affect different sets of rows on source and replica.

• Replicated statements executed on a replica are processed by the replica SQL thread, which has full
privileges. It is possible for a procedure to follow different execution paths on source and replica servers,
so a user can write a routine containing a dangerous statement that executes only on the replica where it
is processed by a thread that has full privileges.

• If a stored program that modifies data is nondeterministic, it is not repeatable. This can result in different
data on source and replica, or cause restored data to differ from the original data.

This section describes how MySQL handles binary logging for stored programs. It states the current
conditions that the implementation places on the use of stored programs, and what you can do to avoid
logging problems. It also provides additional information about the reasons for these conditions.

Unless noted otherwise, the remarks here assume that binary logging is enabled on the server (see
Section 5.4.4, “The Binary Log”.) If the binary log is not enabled, replication is not possible, nor is the
binary log available for data recovery. In MySQL 5.7, binary logging is not enabled by default, and you
enable it using the --log-bin option.

In general, the issues described here result when binary logging occurs at the SQL statement level
(statement-based binary logging). If you use row-based binary logging, the log contains changes made to
individual rows as a result of executing SQL statements. When routines or triggers execute, row changes
are logged, not the statements that make the changes. For stored procedures, this means that the CALL
statement is not logged. For stored functions, row changes made within the function are logged, not the
function invocation. For triggers, row changes made by the trigger are logged. On the replica side, only the
row changes are seen, not the stored program invocation.

Mixed format binary logging (binlog_format=MIXED) uses statement-based binary logging, except for
cases where only row-based binary logging is guaranteed to lead to proper results. With mixed format,
when a stored function, stored procedure, trigger, event, or prepared statement contains anything that is
not safe for statement-based binary logging, the entire statement is marked as unsafe and logged in row
format. The statements used to create and drop procedures, functions, triggers, and events are always
safe, and are logged in statement format. For more information about row-based, mixed, and statement-
based logging, and how safe and unsafe statements are determined, see Section 16.2.1, “Replication
Formats”.

The conditions on the use of stored functions in MySQL can be summarized as follows. These conditions
do not apply to stored procedures or Event Scheduler events and they do not apply unless binary logging
is enabled.

• To create or alter a stored function, you must have the SUPER privilege, in addition to the CREATE
ROUTINE or ALTER ROUTINE privilege that is normally required. (Depending on the DEFINER value in
the function definition, SUPER might be required regardless of whether binary logging is enabled. See
Section 13.1.16, “CREATE PROCEDURE and CREATE FUNCTION Statements”.)

4085

Stored Program Binary Logging

• When you create a stored function, you must declare either that it is deterministic or that it does not
modify data. Otherwise, it may be unsafe for data recovery or replication.

By default, for a CREATE FUNCTION statement to be accepted, at least one of DETERMINISTIC, NO
SQL, or READS SQL DATA must be specified explicitly. Otherwise an error occurs:

ERROR 1418 (HY000): This function has none of DETERMINISTIC, NO SQL,
or READS SQL DATA in its declaration and binary logging is enabled
(you *might* want to use the less safe log_bin_trust_function_creators
variable)

This function is deterministic (and does not modify data), so it is safe:

CREATE FUNCTION f1(i INT)
RETURNS INT
DETERMINISTIC
READS SQL DATA
BEGIN
 RETURN i;
END;

This function uses UUID(), which is not deterministic, so the function also is not deterministic and is not
safe:

CREATE FUNCTION f2()
RETURNS CHAR(36) CHARACTER SET utf8
BEGIN
 RETURN UUID();
END;

This function modifies data, so it may not be safe:

CREATE FUNCTION f3(p_id INT)
RETURNS INT
BEGIN
 UPDATE t SET modtime = NOW() WHERE id = p_id;
 RETURN ROW_COUNT();
END;

Assessment of the nature of a function is based on the “honesty” of the creator. MySQL does not check
that a function declared DETERMINISTIC is free of statements that produce nondeterministic results.

• When you attempt to execute a stored function, if binlog_format=STATEMENT is set, the
DETERMINISTIC keyword must be specified in the function definition. If this is not the case, an error
is generated and the function does not run, unless log_bin_trust_function_creators=1 is
specified to override this check (see below). For recursive function calls, the DETERMINISTIC keyword
is required on the outermost call only. If row-based or mixed binary logging is in use, the statement is
accepted and replicated even if the function was defined without the DETERMINISTIC keyword.

• Because MySQL does not check if a function really is deterministic at creation time, the invocation
of a stored function with the DETERMINISTIC keyword might carry out an action that is unsafe for
statement-based logging, or invoke a function or procedure containing unsafe statements. If this occurs
when binlog_format=STATEMENT is set, a warning message is issued. If row-based or mixed binary
logging is in use, no warning is issued, and the statement is replicated in row-based format.

• To relax the preceding conditions on function creation (that you must have the SUPER privilege
and that a function must be declared deterministic or to not modify data), set the global
log_bin_trust_function_creators system variable to 1. By default, this variable has a value of 0,
but you can change it like this:

mysql> SET GLOBAL log_bin_trust_function_creators = 1;

4086

Stored Program Binary Logging

You can also set this variable at server startup.

If binary logging is not enabled, log_bin_trust_function_creators does not apply. SUPER is
not required for function creation unless, as described previously, the DEFINER value in the function
definition requires it.

• For information about built-in functions that may be unsafe for replication (and thus cause stored
functions that use them to be unsafe as well), see Section 16.4.1, “Replication Features and Issues”.

Triggers are similar to stored functions, so the preceding remarks regarding functions also apply to triggers
with the following exception: CREATE TRIGGER does not have an optional DETERMINISTIC characteristic,
so triggers are assumed to be always deterministic. However, this assumption might be invalid in some
cases. For example, the UUID() function is nondeterministic (and does not replicate). Be careful about
using such functions in triggers.

Triggers can update tables, so error messages similar to those for stored functions occur with CREATE
TRIGGER if you do not have the required privileges. On the replica side, the replica uses the trigger
DEFINER attribute to determine which user is considered to be the creator of the trigger.

The rest of this section provides additional detail about the logging implementation and its implications.
You need not read it unless you are interested in the background on the rationale for the current logging-
related conditions on stored routine use. This discussion applies only for statement-based logging, and
not for row-based logging, with the exception of the first item: CREATE and DROP statements are logged as
statements regardless of the logging mode.

• The server writes CREATE EVENT, CREATE PROCEDURE, CREATE FUNCTION, ALTER EVENT, ALTER
PROCEDURE, ALTER FUNCTION, DROP EVENT, DROP PROCEDURE, and DROP FUNCTION statements
to the binary log.

• A stored function invocation is logged as a SELECT statement if the function changes data and occurs
within a statement that would not otherwise be logged. This prevents nonreplication of data changes that
result from use of stored functions in nonlogged statements. For example, SELECT statements are not
written to the binary log, but a SELECT might invoke a stored function that makes changes. To handle
this, a SELECT func_name() statement is written to the binary log when the given function makes a
change. Suppose that the following statements are executed on the source server:

CREATE FUNCTION f1(a INT) RETURNS INT
BEGIN
 IF (a < 3) THEN
 INSERT INTO t2 VALUES (a);
 END IF;
 RETURN 0;
END;

CREATE TABLE t1 (a INT);
INSERT INTO t1 VALUES (1),(2),(3);

SELECT f1(a) FROM t1;

When the SELECT statement executes, the function f1() is invoked three times. Two of those
invocations insert a row, and MySQL logs a SELECT statement for each of them. That is, MySQL writes
the following statements to the binary log:

SELECT f1(1);
SELECT f1(2);

The server also logs a SELECT statement for a stored function invocation when the function invokes a
stored procedure that causes an error. In this case, the server writes the SELECT statement to the log

4087

Stored Program Binary Logging

along with the expected error code. On the replica, if the same error occurs, that is the expected result
and replication continues. Otherwise, replication stops.

• Logging stored function invocations rather than the statements executed by a function has a security
implication for replication, which arises from two factors:

• It is possible for a function to follow different execution paths on source and replica servers.

• Statements executed on a replica are processed by the replica SQL thread which has full privileges.

The implication is that although a user must have the CREATE ROUTINE privilege to create a function,
the user can write a function containing a dangerous statement that executes only on the replica where
it is processed by a thread that has full privileges. For example, if the source and replica servers have
server ID values of 1 and 2, respectively, a user on the source server could create and invoke an unsafe
function unsafe_func() as follows:

mysql> delimiter //
mysql> CREATE FUNCTION unsafe_func () RETURNS INT
 -> BEGIN
 -> IF @@server_id=2 THEN dangerous_statement; END IF;
 -> RETURN 1;
 -> END;
 -> //
mysql> delimiter ;
mysql> INSERT INTO t VALUES(unsafe_func());

The CREATE FUNCTION and INSERT statements are written to the binary log, so the replica executes
them. Because the replica SQL thread has full privileges, it executes the dangerous statement. Thus, the
function invocation has different effects on the source and replica and is not replication-safe.

To guard against this danger for servers that have binary logging enabled, stored function creators must
have the SUPER privilege, in addition to the usual CREATE ROUTINE privilege that is required. Similarly,
to use ALTER FUNCTION, you must have the SUPER privilege in addition to the ALTER ROUTINE
privilege. Without the SUPER privilege, an error occurs:

ERROR 1419 (HY000): You do not have the SUPER privilege and
binary logging is enabled (you *might* want to use the less safe
log_bin_trust_function_creators variable)

If you do not want to require function creators to have the SUPER privilege (for example, if all users with
the CREATE ROUTINE privilege on your system are experienced application developers), set the global
log_bin_trust_function_creators system variable to 1. You can also set this variable at server
startup. If binary logging is not enabled, log_bin_trust_function_creators does not apply.
SUPER is not required for function creation unless, as described previously, the DEFINER value in the
function definition requires it.

• If a function that performs updates is nondeterministic, it is not repeatable. This can have two
undesirable effects:

• It makes a replica different from the source.

• Restored data is different from the original data.

To deal with these problems, MySQL enforces the following requirement: On a source server, creation
and alteration of a function is refused unless you declare the function to be deterministic or to not modify
data. Two sets of function characteristics apply here:

• The DETERMINISTIC and NOT DETERMINISTIC characteristics indicate whether a function
always produces the same result for given inputs. The default is NOT DETERMINISTIC if neither

4088

Stored Program Binary Logging

characteristic is given. To declare that a function is deterministic, you must specify DETERMINISTIC
explicitly.

• The CONTAINS SQL, NO SQL, READS SQL DATA, and MODIFIES SQL DATA characteristics provide
information about whether the function reads or writes data. Either NO SQL or READS SQL DATA
indicates that a function does not change data, but you must specify one of these explicitly because
the default is CONTAINS SQL if no characteristic is given.

By default, for a CREATE FUNCTION statement to be accepted, at least one of DETERMINISTIC, NO
SQL, or READS SQL DATA must be specified explicitly. Otherwise an error occurs:

ERROR 1418 (HY000): This function has none of DETERMINISTIC, NO SQL,
or READS SQL DATA in its declaration and binary logging is enabled
(you *might* want to use the less safe log_bin_trust_function_creators
variable)

If you set log_bin_trust_function_creators to 1, the requirement that functions be deterministic
or not modify data is dropped.

• Stored procedure calls are logged at the statement level rather than at the CALL level. That is, the server
does not log the CALL statement, it logs those statements within the procedure that actually execute.
As a result, the same changes that occur on the source server are observed on replicas. This prevents
problems that could result from a procedure having different execution paths on different machines.

In general, statements executed within a stored procedure are written to the binary log using the same
rules that would apply were the statements to be executed in standalone fashion. Some special care is
taken when logging procedure statements because statement execution within procedures is not quite
the same as in nonprocedure context:

• A statement to be logged might contain references to local procedure variables. These variables do
not exist outside of stored procedure context, so a statement that refers to such a variable cannot be
logged literally. Instead, each reference to a local variable is replaced by this construct for logging
purposes:

NAME_CONST(var_name, var_value)

var_name is the local variable name, and var_value is a constant indicating the value that the
variable has at the time the statement is logged. NAME_CONST() has a value of var_value, and a
“name” of var_name. Thus, if you invoke this function directly, you get a result like this:

mysql> SELECT NAME_CONST('myname', 14);
+--------+
| myname |
+--------+
| 14 |
+--------+

NAME_CONST() enables a logged standalone statement to be executed on a replica with the same
effect as the original statement that was executed on the source within a stored procedure.

The use of NAME_CONST() can result in a problem for CREATE TABLE ... SELECT statements
when the source column expressions refer to local variables. Converting these references to
NAME_CONST() expressions can result in column names that are different on the source and replica

4089

Restrictions on Stored Programs

servers, or names that are too long to be legal column identifiers. A workaround is to supply aliases for
columns that refer to local variables. Consider this statement when myvar has a value of 1:

CREATE TABLE t1 SELECT myvar;

That is rewritten as follows:

CREATE TABLE t1 SELECT NAME_CONST(myvar, 1);

To ensure that the source and replica tables have the same column names, write the statement like
this:

CREATE TABLE t1 SELECT myvar AS myvar;

The rewritten statement becomes:

CREATE TABLE t1 SELECT NAME_CONST(myvar, 1) AS myvar;

• A statement to be logged might contain references to user-defined variables. To handle this, MySQL
writes a SET statement to the binary log to make sure that the variable exists on the replica with the
same value as on the source. For example, if a statement refers to a variable @my_var, that statement
is preceded in the binary log by the following statement, where value is the value of @my_var on the
source:

SET @my_var = value;

• Procedure calls can occur within a committed or rolled-back transaction. Transactional context is
accounted for so that the transactional aspects of procedure execution are replicated correctly. That is,
the server logs those statements within the procedure that actually execute and modify data, and also
logs BEGIN, COMMIT, and ROLLBACK statements as necessary. For example, if a procedure updates
only transactional tables and is executed within a transaction that is rolled back, those updates are not
logged. If the procedure occurs within a committed transaction, BEGIN and COMMIT statements are
logged with the updates. For a procedure that executes within a rolled-back transaction, its statements
are logged using the same rules that would apply if the statements were executed in standalone
fashion:

• Updates to transactional tables are not logged.

• Updates to nontransactional tables are logged because rollback does not cancel them.

• Updates to a mix of transactional and nontransactional tables are logged surrounded by BEGIN and
ROLLBACK so that replicas make the same changes and rollbacks as on the source.

• A stored procedure call is not written to the binary log at the statement level if the procedure is invoked
from within a stored function. In that case, the only thing logged is the statement that invokes the
function (if it occurs within a statement that is logged) or a DO statement (if it occurs within a statement
that is not logged). For this reason, care should be exercised in the use of stored functions that invoke a
procedure, even if the procedure is otherwise safe in itself.

23.8 Restrictions on Stored Programs
• SQL Statements Not Permitted in Stored Routines

• Restrictions for Stored Functions

• Restrictions for Triggers

• Name Conflicts within Stored Routines

4090

SQL Statements Not Permitted in Stored Routines

• Replication Considerations

• Debugging Considerations

• Unsupported Syntax from the SQL:2003 Standard

• Stored Routine Concurrency Considerations

• Event Scheduler Restrictions

• Stored Programs in NDB Cluster

These restrictions apply to the features described in Chapter 23, Stored Objects.

Some of the restrictions noted here apply to all stored routines; that is, both to stored procedures and
stored functions. There are also some restrictions specific to stored functions but not to stored procedures.

The restrictions for stored functions also apply to triggers. There are also some restrictions specific to
triggers.

The restrictions for stored procedures also apply to the DO clause of Event Scheduler event definitions.
There are also some restrictions specific to events.

SQL Statements Not Permitted in Stored Routines

Stored routines cannot contain arbitrary SQL statements. The following statements are not permitted:

• The locking statements LOCK TABLES and UNLOCK TABLES.

• ALTER VIEW.

• LOAD DATA and LOAD XML.

• SQL prepared statements (PREPARE, EXECUTE, DEALLOCATE PREPARE) can be used in stored
procedures, but not in stored functions or triggers. Thus, stored functions and triggers cannot use
dynamic SQL (where you construct statements as strings and then execute them).

• Generally, statements not permitted in SQL prepared statements are also not permitted in stored
programs. For a list of statements supported as prepared statements, see Section 13.5, “Prepared
Statements”. Exceptions are SIGNAL, RESIGNAL, and GET DIAGNOSTICS, which are not permissible
as prepared statements but are permitted in stored programs.

• Because local variables are in scope only during stored program execution, references to them are not
permitted in prepared statements created within a stored program. Prepared statement scope is the
current session, not the stored program, so the statement could be executed after the program ends, at
which point the variables would no longer be in scope. For example, SELECT ... INTO local_var
cannot be used as a prepared statement. This restriction also applies to stored procedure and function
parameters. See Section 13.5.1, “PREPARE Statement”.

• Within all stored programs (stored procedures and functions, triggers, and events), the parser treats
BEGIN [WORK] as the beginning of a BEGIN ... END block.

To begin a transaction within a stored procedure or event, use START TRANSACTION instead.

START TRANSACTION cannot be used within a stored function or trigger.

Restrictions for Stored Functions

The following additional statements or operations are not permitted within stored functions. They are
permitted within stored procedures, except stored procedures that are invoked from within a stored function

4091

Restrictions for Triggers

or trigger. For example, if you use FLUSH in a stored procedure, that stored procedure cannot be called
from a stored function or trigger.

• Statements that perform explicit or implicit commit or rollback. Support for these statements is not
required by the SQL standard, which states that each DBMS vendor may decide whether to permit them.

• Statements that return a result set. This includes SELECT statements that do not have an INTO
var_list clause and other statements such as SHOW, EXPLAIN, and CHECK TABLE. A function
can process a result set either with SELECT ... INTO var_list or by using a cursor and FETCH
statements. See Section 13.2.9.1, “SELECT ... INTO Statement”, and Section 13.6.6, “Cursors”.

• FLUSH statements.

• Stored functions cannot be used recursively.

• A stored function or trigger cannot modify a table that is already being used (for reading or writing) by the
statement that invoked the function or trigger.

• If you refer to a temporary table multiple times in a stored function under different aliases, a Can't
reopen table: 'tbl_name' error occurs, even if the references occur in different statements within
the function.

• HANDLER ... READ statements that invoke stored functions can cause replication errors and are
disallowed.

Restrictions for Triggers

For triggers, the following additional restrictions apply:

• Triggers are not activated by foreign key actions.

• When using row-based replication, triggers on the replica are not activated by statements originating on
the source. The triggers on the replica are activated when using statement-based replication. For more
information, see Section 16.4.1.34, “Replication and Triggers”.

• The RETURN statement is not permitted in triggers, which cannot return a value. To exit a trigger
immediately, use the LEAVE statement.

• Triggers are not permitted on tables in the mysql database. Nor are they permitted on
INFORMATION_SCHEMA or performance_schema tables. Those tables are actually views and triggers
are not permitted on views.

• The trigger cache does not detect when metadata of the underlying objects has changed. If a trigger
uses a table and the table has changed since the trigger was loaded into the cache, the trigger operates
using the outdated metadata.

Name Conflicts within Stored Routines

The same identifier might be used for a routine parameter, a local variable, and a table column. Also, the
same local variable name can be used in nested blocks. For example:

CREATE PROCEDURE p (i INT)
BEGIN
 DECLARE i INT DEFAULT 0;
 SELECT i FROM t;
 BEGIN
 DECLARE i INT DEFAULT 1;
 SELECT i FROM t;

4092

Replication Considerations

 END;
END;

In such cases, the identifier is ambiguous and the following precedence rules apply:

• A local variable takes precedence over a routine parameter or table column.

• A routine parameter takes precedence over a table column.

• A local variable in an inner block takes precedence over a local variable in an outer block.

The behavior that variables take precedence over table columns is nonstandard.

Replication Considerations

Use of stored routines can cause replication problems. This issue is discussed further in Section 23.7,
“Stored Program Binary Logging”.

The --replicate-wild-do-table=db_name.tbl_name option applies to tables, views, and triggers.
It does not apply to stored procedures and functions, or events. To filter statements operating on the latter
objects, use one or more of the --replicate-*-db options.

Debugging Considerations

There are no stored routine debugging facilities.

Unsupported Syntax from the SQL:2003 Standard

The MySQL stored routine syntax is based on the SQL:2003 standard. The following items from that
standard are not currently supported:

• UNDO handlers

• FOR loops

Stored Routine Concurrency Considerations

To prevent problems of interaction between sessions, when a client issues a statement, the server uses a
snapshot of routines and triggers available for execution of the statement. That is, the server calculates a
list of procedures, functions, and triggers that may be used during execution of the statement, loads them,
and then proceeds to execute the statement. While the statement executes, it does not see changes to
routines performed by other sessions.

For maximum concurrency, stored functions should minimize their side-effects; in particular, updating a
table within a stored function can reduce concurrent operations on that table. A stored function acquires
table locks before executing, to avoid inconsistency in the binary log due to mismatch of the order in
which statements execute and when they appear in the log. When statement-based binary logging is
used, statements that invoke a function are recorded rather than the statements executed within the
function. Consequently, stored functions that update the same underlying tables do not execute in parallel.
In contrast, stored procedures do not acquire table-level locks. All statements executed within stored
procedures are written to the binary log, even for statement-based binary logging. See Section 23.7,
“Stored Program Binary Logging”.

Event Scheduler Restrictions

The following limitations are specific to the Event Scheduler:

4093

Stored Programs in NDB Cluster

• Event names are handled in case-insensitive fashion. For example, you cannot have two events in the
same database with the names anEvent and AnEvent.

• An event may not be created, altered, or dropped from within a stored program, if the event name is
specified by means of a variable. An event also may not create, alter, or drop stored routines or triggers.

• DDL statements on events are prohibited while a LOCK TABLES statement is in effect.

• Event timings using the intervals YEAR, QUARTER, MONTH, and YEAR_MONTH are resolved in months;
those using any other interval are resolved in seconds. There is no way to cause events scheduled
to occur at the same second to execute in a given order. In addition—due to rounding, the nature of
threaded applications, and the fact that a nonzero length of time is required to create events and to
signal their execution—events may be delayed by as much as 1 or 2 seconds. However, the time shown
in the Information Schema EVENTS table's LAST_EXECUTED column or the mysql.event table's
last_executed column is always accurate to within one second of the actual event execution time.
(See also Bug #16522.)

• Each execution of the statements contained in the body of an event takes place in a new connection;
thus, these statements have no effect in a given user session on the server's statement counts such
as Com_select and Com_insert that are displayed by SHOW STATUS. However, such counts are
updated in the global scope. (Bug #16422)

• Events do not support times later than the end of the Unix Epoch; this is approximately the beginning of
the year 2038. Such dates are specifically not permitted by the Event Scheduler. (Bug #16396)

• References to stored functions, loadable functions, and tables in the ON SCHEDULE clauses of CREATE
EVENT and ALTER EVENT statements are not supported. These sorts of references are not permitted.
(See Bug #22830 for more information.)

Stored Programs in NDB Cluster

While stored procedures, stored functions, triggers, and scheduled events are all supported by tables using
the NDB storage engine, you must keep in mind that these do not propagate automatically between MySQL
Servers acting as Cluster SQL nodes. This is because of the following:

• Stored routine definitions are kept in tables in the mysql system database using the MyISAM storage
engine, and so do not participate in clustering.

• The .TRN and .TRG files containing trigger definitions are not read by the NDB storage engine, and are
not copied between Cluster nodes.

Any stored routine or trigger that interacts with NDB Cluster tables must be re-created by running the
appropriate CREATE PROCEDURE, CREATE FUNCTION, or CREATE TRIGGER statements on each MySQL
Server that participates in the cluster where you wish to use the stored routine or trigger. Similarly, any
changes to existing stored routines or triggers must be carried out explicitly on all Cluster SQL nodes,
using the appropriate ALTER or DROP statements on each MySQL Server accessing the cluster.

Warning

Do not attempt to work around the issue described in the first item mentioned
previously by converting any mysql database tables to use the NDB storage engine.
Altering the system tables in the mysql database is not supported and is very likely
to produce undesirable results.

23.9 Restrictions on Views

4094

Restrictions on Views

The maximum number of tables that can be referenced in the definition of a view is 61.

View processing is not optimized:

• It is not possible to create an index on a view.

• Indexes can be used for views processed using the merge algorithm. However, a view that is processed
with the temptable algorithm is unable to take advantage of indexes on its underlying tables (although
indexes can be used during generation of the temporary tables).

Before MySQL 5.7.7, subqueries cannot be used in the FROM clause of a view.

There is a general principle that you cannot modify a table and select from the same table in a subquery.
See Section 13.2.10.12, “Restrictions on Subqueries”.

The same principle also applies if you select from a view that selects from the table, if the view selects from
the table in a subquery and the view is evaluated using the merge algorithm. Example:

CREATE VIEW v1 AS
SELECT * FROM t2 WHERE EXISTS (SELECT 1 FROM t1 WHERE t1.a = t2.a);

UPDATE t1, v2 SET t1.a = 1 WHERE t1.b = v2.b;

If the view is evaluated using a temporary table, you can select from the table in the view subquery and still
modify that table in the outer query. In this case the view is stored in a temporary table and thus you are
not really selecting from the table in a subquery and modifying it “at the same time.” (This is another reason
you might wish to force MySQL to use the temptable algorithm by specifying ALGORITHM = TEMPTABLE
in the view definition.)

You can use DROP TABLE or ALTER TABLE to drop or alter a table that is used in a view definition. No
warning results from the DROP or ALTER operation, even though this invalidates the view. Instead, an
error occurs later, when the view is used. CHECK TABLE can be used to check for views that have been
invalidated by DROP or ALTER operations.

With regard to view updatability, the overall goal for views is that if any view is theoretically updatable, it
should be updatable in practice. Many theoretically updatable views can be updated now, but limitations
still exist. For details, see Section 23.5.3, “Updatable and Insertable Views”.

There exists a shortcoming with the current implementation of views. If a user is granted the basic
privileges necessary to create a view (the CREATE VIEW and SELECT privileges), that user cannot call
SHOW CREATE VIEW on that object unless the user is also granted the SHOW VIEW privilege.

That shortcoming can lead to problems backing up a database with mysqldump, which may fail due to
insufficient privileges. This problem is described in Bug #22062.

The workaround to the problem is for the administrator to manually grant the SHOW VIEW privilege to users
who are granted CREATE VIEW, since MySQL does not grant it implicitly when views are created.

Views do not have indexes, so index hints do not apply. Use of index hints when selecting from a view is
not permitted.

SHOW CREATE VIEW displays view definitions using an AS alias_name clause for each column. If a
column is created from an expression, the default alias is the expression text, which can be quite long.
Aliases for column names in CREATE VIEW statements are checked against the maximum column length
of 64 characters (not the maximum alias length of 256 characters). As a result, views created from the
output of SHOW CREATE VIEW fail if any column alias exceeds 64 characters. This can cause problems in
the following circumstances for views with too-long aliases:

4095

Restrictions on Views

• View definitions fail to replicate to newer replicas that enforce the column-length restriction.

• Dump files created with mysqldump cannot be loaded into servers that enforce the column-length
restriction.

A workaround for either problem is to modify each problematic view definition to use aliases that provide
shorter column names. Then the view replicates properly, and can be dumped and reloaded without
causing an error. To modify the definition, drop and create the view again with DROP VIEW and CREATE
VIEW, or replace the definition with CREATE OR REPLACE VIEW.

For problems that occur when reloading view definitions in dump files, another workaround is to edit
the dump file to modify its CREATE VIEW statements. However, this does not change the original view
definitions, which may cause problems for subsequent dump operations.

4096

Chapter 24 INFORMATION_SCHEMA Tables

Table of Contents
24.1 Introduction ... 4098
24.2 INFORMATION_SCHEMA Table Reference ... 4101
24.3 INFORMATION_SCHEMA General Tables ... 4105

24.3.1 INFORMATION_SCHEMA General Table Reference ... 4105
24.3.2 The INFORMATION_SCHEMA CHARACTER_SETS Table .. 4106
24.3.3 The INFORMATION_SCHEMA COLLATIONS Table .. 4106
24.3.4 The INFORMATION_SCHEMA COLLATION_CHARACTER_SET_APPLICABILITY
Table .. 4107
24.3.5 The INFORMATION_SCHEMA COLUMNS Table .. 4107
24.3.6 The INFORMATION_SCHEMA COLUMN_PRIVILEGES Table 4110
24.3.7 The INFORMATION_SCHEMA ENGINES Table .. 4111
24.3.8 The INFORMATION_SCHEMA EVENTS Table ... 4112
24.3.9 The INFORMATION_SCHEMA FILES Table ... 4116
24.3.10 The INFORMATION_SCHEMA GLOBAL_STATUS and SESSION_STATUS Tables 4123
24.3.11 The INFORMATION_SCHEMA GLOBAL_VARIABLES and SESSION_VARIABLES
Tables .. 4123
24.3.12 The INFORMATION_SCHEMA KEY_COLUMN_USAGE Table 4124
24.3.13 The INFORMATION_SCHEMA ndb_transid_mysql_connection_map Table 4125
24.3.14 The INFORMATION_SCHEMA OPTIMIZER_TRACE Table .. 4126
24.3.15 The INFORMATION_SCHEMA PARAMETERS Table .. 4127
24.3.16 The INFORMATION_SCHEMA PARTITIONS Table ... 4128
24.3.17 The INFORMATION_SCHEMA PLUGINS Table .. 4132
24.3.18 The INFORMATION_SCHEMA PROCESSLIST Table .. 4133
24.3.19 The INFORMATION_SCHEMA PROFILING Table ... 4134
24.3.20 The INFORMATION_SCHEMA REFERENTIAL_CONSTRAINTS Table 4135
24.3.21 The INFORMATION_SCHEMA ROUTINES Table .. 4136
24.3.22 The INFORMATION_SCHEMA SCHEMATA Table ... 4139
24.3.23 The INFORMATION_SCHEMA SCHEMA_PRIVILEGES Table 4140
24.3.24 The INFORMATION_SCHEMA STATISTICS Table .. 4141
24.3.25 The INFORMATION_SCHEMA TABLES Table .. 4142
24.3.26 The INFORMATION_SCHEMA TABLESPACES Table ... 4146
24.3.27 The INFORMATION_SCHEMA TABLE_CONSTRAINTS Table 4146
24.3.28 The INFORMATION_SCHEMA TABLE_PRIVILEGES Table 4147
24.3.29 The INFORMATION_SCHEMA TRIGGERS Table .. 4148
24.3.30 The INFORMATION_SCHEMA USER_PRIVILEGES Table .. 4150
24.3.31 The INFORMATION_SCHEMA VIEWS Table .. 4150

24.4 INFORMATION_SCHEMA InnoDB Tables .. 4152
24.4.1 INFORMATION_SCHEMA InnoDB Table Reference .. 4152
24.4.2 The INFORMATION_SCHEMA INNODB_BUFFER_PAGE Table 4154
24.4.3 The INFORMATION_SCHEMA INNODB_BUFFER_PAGE_LRU Table 4157
24.4.4 The INFORMATION_SCHEMA INNODB_BUFFER_POOL_STATS Table 4160
24.4.5 The INFORMATION_SCHEMA INNODB_CMP and INNODB_CMP_RESET Tables 4163
24.4.6 The INFORMATION_SCHEMA INNODB_CMPMEM and INNODB_CMPMEM_RESET
Tables .. 4164
24.4.7 The INFORMATION_SCHEMA INNODB_CMP_PER_INDEX and
INNODB_CMP_PER_INDEX_RESET Tables ... 4166
24.4.8 The INFORMATION_SCHEMA INNODB_FT_BEING_DELETED Table 4167
24.4.9 The INFORMATION_SCHEMA INNODB_FT_CONFIG Table 4168

4097

Introduction

24.4.10 The INFORMATION_SCHEMA INNODB_FT_DEFAULT_STOPWORD Table 4169
24.4.11 The INFORMATION_SCHEMA INNODB_FT_DELETED Table 4170
24.4.12 The INFORMATION_SCHEMA INNODB_FT_INDEX_CACHE Table 4171
24.4.13 The INFORMATION_SCHEMA INNODB_FT_INDEX_TABLE Table 4173
24.4.14 The INFORMATION_SCHEMA INNODB_LOCKS Table ... 4174
24.4.15 The INFORMATION_SCHEMA INNODB_LOCK_WAITS Table 4176
24.4.16 The INFORMATION_SCHEMA INNODB_METRICS Table ... 4177
24.4.17 The INFORMATION_SCHEMA INNODB_SYS_COLUMNS Table 4179
24.4.18 The INFORMATION_SCHEMA INNODB_SYS_DATAFILES Table 4180
24.4.19 The INFORMATION_SCHEMA INNODB_SYS_FIELDS Table 4181
24.4.20 The INFORMATION_SCHEMA INNODB_SYS_FOREIGN Table 4182
24.4.21 The INFORMATION_SCHEMA INNODB_SYS_FOREIGN_COLS Table 4183
24.4.22 The INFORMATION_SCHEMA INNODB_SYS_INDEXES Table 4183
24.4.23 The INFORMATION_SCHEMA INNODB_SYS_TABLES Table 4185
24.4.24 The INFORMATION_SCHEMA INNODB_SYS_TABLESPACES Table 4186
24.4.25 The INFORMATION_SCHEMA INNODB_SYS_TABLESTATS View 4188
24.4.26 The INFORMATION_SCHEMA INNODB_SYS_VIRTUAL Table 4189
24.4.27 The INFORMATION_SCHEMA INNODB_TEMP_TABLE_INFO Table 4190
24.4.28 The INFORMATION_SCHEMA INNODB_TRX Table .. 4192

24.5 INFORMATION_SCHEMA Thread Pool Tables .. 4194
24.5.1 INFORMATION_SCHEMA Thread Pool Table Reference ... 4195
24.5.2 The INFORMATION_SCHEMA TP_THREAD_GROUP_STATE Table 4195
24.5.3 The INFORMATION_SCHEMA TP_THREAD_GROUP_STATS Table 4197
24.5.4 The INFORMATION_SCHEMA TP_THREAD_STATE Table ... 4199

24.6 INFORMATION_SCHEMA Connection Control Tables .. 4199
24.6.1 INFORMATION_SCHEMA Connection Control Table Reference 4199
24.6.2 The INFORMATION_SCHEMA
CONNECTION_CONTROL_FAILED_LOGIN_ATTEMPTS Table ... 4200

24.7 INFORMATION_SCHEMA MySQL Enterprise Firewall Tables ... 4200
24.7.1 INFORMATION_SCHEMA Firewall Table Reference .. 4200
24.7.2 The INFORMATION_SCHEMA MYSQL_FIREWALL_USERS Table 4201
24.7.3 The INFORMATION_SCHEMA MYSQL_FIREWALL_WHITELIST Table 4201

24.8 Extensions to SHOW Statements .. 4201

INFORMATION_SCHEMA provides access to database metadata, information about the MySQL server such
as the name of a database or table, the data type of a column, or access privileges. Other terms that are
sometimes used for this information are data dictionary and system catalog.

24.1 Introduction
INFORMATION_SCHEMA provides access to database metadata, information about the MySQL server such
as the name of a database or table, the data type of a column, or access privileges. Other terms that are
sometimes used for this information are data dictionary and system catalog.

• INFORMATION_SCHEMA Usage Notes

• Character Set Considerations

• INFORMATION_SCHEMA as Alternative to SHOW Statements

• INFORMATION_SCHEMA and Privileges

• Performance Considerations

• Standards Considerations

4098

INFORMATION_SCHEMA Usage Notes

• Conventions in the INFORMATION_SCHEMA Reference Sections

• Related Information

INFORMATION_SCHEMA Usage Notes

INFORMATION_SCHEMA is a database within each MySQL instance, the place that stores information
about all the other databases that the MySQL server maintains. The INFORMATION_SCHEMA database
contains several read-only tables. They are actually views, not base tables, so there are no files associated
with them, and you cannot set triggers on them. Also, there is no database directory with that name.

Although you can select INFORMATION_SCHEMA as the default database with a USE statement, you can
only read the contents of tables, not perform INSERT, UPDATE, or DELETE operations on them.

Here is an example of a statement that retrieves information from INFORMATION_SCHEMA:

mysql> SELECT table_name, table_type, engine
 FROM information_schema.tables
 WHERE table_schema = 'db5'
 ORDER BY table_name;
+------------+------------+--------+
| table_name | table_type | engine |
+------------+------------+--------+
fk	BASE TABLE	InnoDB
fk2	BASE TABLE	InnoDB
goto	BASE TABLE	MyISAM
into	BASE TABLE	MyISAM
k	BASE TABLE	MyISAM
kurs	BASE TABLE	MyISAM
loop	BASE TABLE	MyISAM
pk	BASE TABLE	InnoDB
t	BASE TABLE	MyISAM
t2	BASE TABLE	MyISAM
t3	BASE TABLE	MyISAM
t7	BASE TABLE	MyISAM
tables	BASE TABLE	MyISAM
v	VIEW	NULL
v2	VIEW	NULL
v3	VIEW	NULL
v56	VIEW	NULL
+------------+------------+--------+
17 rows in set (0.01 sec)

Explanation: The statement requests a list of all the tables in database db5, showing just three pieces of
information: the name of the table, its type, and its storage engine.

Character Set Considerations

The definition for character columns (for example, TABLES.TABLE_NAME) is generally VARCHAR(N)
CHARACTER SET utf8 where N is at least 64. MySQL uses the default collation for this character set
(utf8_general_ci) for all searches, sorts, comparisons, and other string operations on such columns.

Because some MySQL objects are represented as files, searches in INFORMATION_SCHEMA string
columns can be affected by file system case sensitivity. For more information, see Section 10.8.7, “Using
Collation in INFORMATION_SCHEMA Searches”.

INFORMATION_SCHEMA as Alternative to SHOW Statements

The SELECT ... FROM INFORMATION_SCHEMA statement is intended as a more consistent way to
provide access to the information provided by the various SHOW statements that MySQL supports (SHOW
DATABASES, SHOW TABLES, and so forth). Using SELECT has these advantages, compared to SHOW:

4099

INFORMATION_SCHEMA and Privileges

• It conforms to Codd's rules, because all access is done on tables.

• You can use the familiar syntax of the SELECT statement, and only need to learn some table and column
names.

• The implementor need not worry about adding keywords.

• You can filter, sort, concatenate, and transform the results from INFORMATION_SCHEMA queries into
whatever format your application needs, such as a data structure or a text representation to parse.

• This technique is more interoperable with other database systems. For example, Oracle Database users
are familiar with querying tables in the Oracle data dictionary.

Because SHOW is familiar and widely used, the SHOW statements remain as an alternative. In fact, along
with the implementation of INFORMATION_SCHEMA, there are enhancements to SHOW as described in
Section 24.8, “Extensions to SHOW Statements”.

INFORMATION_SCHEMA and Privileges

For most INFORMATION_SCHEMA tables, each MySQL user has the right to access them, but can see only
the rows in the tables that correspond to objects for which the user has the proper access privileges. In
some cases (for example, the ROUTINE_DEFINITION column in the INFORMATION_SCHEMA ROUTINES
table), users who have insufficient privileges see NULL. Some tables have different privilege requirements;
for these, the requirements are mentioned in the applicable table descriptions. For example, InnoDB tables
(tables with names that begin with INNODB_) require the PROCESS privilege.

The same privileges apply to selecting information from INFORMATION_SCHEMA and viewing the same
information through SHOW statements. In either case, you must have some privilege on an object to see
information about it.

Performance Considerations

INFORMATION_SCHEMA queries that search for information from more than one database might take
a long time and impact performance. To check the efficiency of a query, you can use EXPLAIN. For
information about using EXPLAIN output to tune INFORMATION_SCHEMA queries, see Section 8.2.3,
“Optimizing INFORMATION_SCHEMA Queries”.

Standards Considerations

The implementation for the INFORMATION_SCHEMA table structures in MySQL follows the ANSI/ISO
SQL:2003 standard Part 11 Schemata. Our intent is approximate compliance with SQL:2003 core feature
F021 Basic information schema.

Users of SQL Server 2000 (which also follows the standard) may notice a strong similarity. However,
MySQL has omitted many columns that are not relevant for our implementation, and added columns
that are MySQL-specific. One such added column is the ENGINE column in the INFORMATION_SCHEMA
TABLES table.

Although other DBMSs use a variety of names, like syscat or system, the standard name is
INFORMATION_SCHEMA.

To avoid using any name that is reserved in the standard or in DB2, SQL Server, or Oracle, we changed
the names of some columns marked “MySQL extension”. (For example, we changed COLLATION to
TABLE_COLLATION in the TABLES table.) See the list of reserved words near the end of this article:
https://web.archive.org/web/20070428032454/http://www.dbazine.com/db2/db2-disarticles/gulutzan5.

4100

https://web.archive.org/web/20070428032454/http://www.dbazine.com/db2/db2-disarticles/gulutzan5

Conventions in the INFORMATION_SCHEMA Reference Sections

Conventions in the INFORMATION_SCHEMA Reference Sections

The following sections describe each of the tables and columns in INFORMATION_SCHEMA. For each
column, there are three pieces of information:

• “INFORMATION_SCHEMA Name” indicates the name for the column in the INFORMATION_SCHEMA table.
This corresponds to the standard SQL name unless the “Remarks” field says “MySQL extension.”

• “SHOW Name” indicates the equivalent field name in the closest SHOW statement, if there is one.

• “Remarks” provides additional information where applicable. If this field is NULL, it means that the value
of the column is always NULL. If this field says “MySQL extension,” the column is a MySQL extension to
standard SQL.

Many sections indicate what SHOW statement is equivalent to a SELECT that retrieves information from
INFORMATION_SCHEMA. For SHOW statements that display information for the default database if you omit
a FROM db_name clause, you can often select information for the default database by adding an AND
TABLE_SCHEMA = SCHEMA() condition to the WHERE clause of a query that retrieves information from an
INFORMATION_SCHEMA table.

Related Information

These sections discuss additional INFORMATION_SCHEMA-related topics:

• information about INFORMATION_SCHEMA tables specific to the InnoDB storage engine: Section 24.4,
“INFORMATION_SCHEMA InnoDB Tables”

• information about INFORMATION_SCHEMA tables specific to the thread pool plugin: Section 24.5,
“INFORMATION_SCHEMA Thread Pool Tables”

• information about INFORMATION_SCHEMA tables specific to the CONNECTION_CONTROL plugin:
Section 24.6, “INFORMATION_SCHEMA Connection Control Tables”

• Answers to questions that are often asked concerning the INFORMATION_SCHEMA database:
Section A.7, “MySQL 5.7 FAQ: INFORMATION_SCHEMA”

• INFORMATION_SCHEMA queries and the optimizer: Section 8.2.3, “Optimizing
INFORMATION_SCHEMA Queries”

• The effect of collation on INFORMATION_SCHEMA comparisons: Section 10.8.7, “Using Collation in
INFORMATION_SCHEMA Searches”

24.2 INFORMATION_SCHEMA Table Reference
The following table summarizes all available INFORMATION_SCHEMA tables. For greater detail, see the
individual table descriptions.

Table 24.1 INFORMATION_SCHEMA Tables

Table Name Description Introduced Deprecated

CHARACTER_SETS Available character sets

COLLATION_CHARACTER_SET_APPLICABILITYCharacter set applicable
to each collation

COLLATIONS Collations for each
character set

4101

INFORMATION_SCHEMA Table Reference

Table Name Description Introduced Deprecated

COLUMN_PRIVILEGES Privileges defined on
columns

COLUMNS Columns in each table

CONNECTION_CONTROL_FAILED_LOGIN_ATTEMPTSCurrent number of
consecutive failed
connection attempts per
account

5.7.17

ENGINES Storage engine
properties

EVENTS Event Manager events

FILES Files that store
tablespace data

GLOBAL_STATUS Global status variables

GLOBAL_VARIABLES Global system variables

INNODB_BUFFER_PAGE Pages in InnoDB buffer
pool

INNODB_BUFFER_PAGE_LRULRU ordering of pages in
InnoDB buffer pool

INNODB_BUFFER_POOL_STATSInnoDB buffer pool
statistics

INNODB_CMP Status for operations
related to compressed
InnoDB tables

INNODB_CMP_PER_INDEXStatus for operations
related to compressed
InnoDB tables and
indexes

INNODB_CMP_PER_INDEX_RESETStatus for operations
related to compressed
InnoDB tables and
indexes

INNODB_CMP_RESET Status for operations
related to compressed
InnoDB tables

INNODB_CMPMEM Status for compressed
pages within InnoDB
buffer pool

INNODB_CMPMEM_RESET Status for compressed
pages within InnoDB
buffer pool

INNODB_FT_BEING_DELETEDSnapshot of
INNODB_FT_DELETED
table

INNODB_FT_CONFIG Metadata for InnoDB
table FULLTEXT

4102

INFORMATION_SCHEMA Table Reference

Table Name Description Introduced Deprecated
index and associated
processing

INNODB_FT_DEFAULT_STOPWORDDefault list of stopwords
for InnoDB FULLTEXT
indexes

INNODB_FT_DELETED Rows deleted from
InnoDB table FULLTEXT
index

INNODB_FT_INDEX_CACHEToken information for
newly inserted rows in
InnoDB FULLTEXT index

INNODB_FT_INDEX_TABLEInverted index
information for
processing text searches
against InnoDB table
FULLTEXT index

INNODB_LOCK_WAITS InnoDB transaction lock-
wait information

5.7.14

INNODB_LOCKS InnoDB transaction lock
information

5.7.14

INNODB_METRICS InnoDB performance
information

INNODB_SYS_COLUMNS Columns in each InnoDB
table

INNODB_SYS_DATAFILESData file path information
for InnoDB file-per-table
and general tablespaces

INNODB_SYS_FIELDS Key columns of InnoDB
indexes

INNODB_SYS_FOREIGN InnoDB foreign-key
metadata

INNODB_SYS_FOREIGN_COLSInnoDB foreign-key
column status information

INNODB_SYS_INDEXES InnoDB index metadata

INNODB_SYS_TABLES InnoDB table metadata

INNODB_SYS_TABLESPACESInnoDB file-per-table,
general, and undo
tablespace metadata

INNODB_SYS_TABLESTATSInnoDB table low-level
status information

INNODB_SYS_VIRTUAL InnoDB virtual generated
column metadata

INNODB_TEMP_TABLE_INFOInformation about active
user-created InnoDB
temporary tables

4103

INFORMATION_SCHEMA Table Reference

Table Name Description Introduced Deprecated

INNODB_TRX Active InnoDB
transaction information

KEY_COLUMN_USAGE Which key columns have
constraints

MYSQL_FIREWALL_USERSFirewall in-memory data
for account profiles

MYSQL_FIREWALL_WHITELISTFirewall in-memory
data for account profile
allowlists

ndb_transid_mysql_connection_mapNDB transaction
information

OPTIMIZER_TRACE Information produced by
optimizer trace activity

PARAMETERS Stored routine
parameters and stored
function return values

PARTITIONS Table partition
information

PLUGINS Plugin information

PROCESSLIST Information about
currently executing
threads

PROFILING Statement profiling
information

REFERENTIAL_CONSTRAINTSForeign key information

ROUTINES Stored routine
information

SCHEMA_PRIVILEGES Privileges defined on
schemas

SCHEMATA Schema information

SESSION_STATUS Status variables for
current session

SESSION_VARIABLES System variables for
current session

STATISTICS Table index statistics

TABLE_CONSTRAINTS Which tables have
constraints

TABLE_PRIVILEGES Privileges defined on
tables

TABLES Table information

TABLESPACES Tablespace information

TP_THREAD_GROUP_STATEThread pool thread group
states

4104

INFORMATION_SCHEMA General Tables

Table Name Description Introduced Deprecated

TP_THREAD_GROUP_STATSThread pool thread group
statistics

TP_THREAD_STATE Thread pool thread
information

TRIGGERS Trigger information

USER_PRIVILEGES Privileges defined
globally per user

VIEWS View information

24.3 INFORMATION_SCHEMA General Tables

The following sections describe what may be denoted as the “general” set of INFORMATION_SCHEMA
tables. These are the tables not associated with particular storage engines, components, or plugins.

24.3.1 INFORMATION_SCHEMA General Table Reference

The following table summarizes INFORMATION_SCHEMA general tables. For greater detail, see the
individual table descriptions.

Table 24.2 INFORMATION_SCHEMA General Tables

Table Name Description

CHARACTER_SETS Available character sets

COLLATION_CHARACTER_SET_APPLICABILITY Character set applicable to each collation

COLLATIONS Collations for each character set

COLUMN_PRIVILEGES Privileges defined on columns

COLUMNS Columns in each table

ENGINES Storage engine properties

EVENTS Event Manager events

FILES Files that store tablespace data

GLOBAL_STATUS Global status variables

GLOBAL_VARIABLES Global system variables

KEY_COLUMN_USAGE Which key columns have constraints

ndb_transid_mysql_connection_map NDB transaction information

OPTIMIZER_TRACE Information produced by optimizer trace activity

PARAMETERS Stored routine parameters and stored function
return values

PARTITIONS Table partition information

PLUGINS Plugin information

PROCESSLIST Information about currently executing threads

PROFILING Statement profiling information

REFERENTIAL_CONSTRAINTS Foreign key information

ROUTINES Stored routine information

4105

The INFORMATION_SCHEMA CHARACTER_SETS Table

Table Name Description

SCHEMA_PRIVILEGES Privileges defined on schemas

SCHEMATA Schema information

SESSION_STATUS Status variables for current session

SESSION_VARIABLES System variables for current session

STATISTICS Table index statistics

TABLE_CONSTRAINTS Which tables have constraints

TABLE_PRIVILEGES Privileges defined on tables

TABLES Table information

TABLESPACES Tablespace information

TRIGGERS Trigger information

USER_PRIVILEGES Privileges defined globally per user

VIEWS View information

24.3.2 The INFORMATION_SCHEMA CHARACTER_SETS Table

The CHARACTER_SETS table provides information about available character sets.

The CHARACTER_SETS table has these columns:

• CHARACTER_SET_NAME

The character set name.

• DEFAULT_COLLATE_NAME

The default collation for the character set.

• DESCRIPTION

A description of the character set.

• MAXLEN

The maximum number of bytes required to store one character.

Notes

Character set information is also available from the SHOW CHARACTER SET statement. See
Section 13.7.5.3, “SHOW CHARACTER SET Statement”. The following statements are equivalent:

SELECT * FROM INFORMATION_SCHEMA.CHARACTER_SETS
 [WHERE CHARACTER_SET_NAME LIKE 'wild']

SHOW CHARACTER SET
 [LIKE 'wild']

24.3.3 The INFORMATION_SCHEMA COLLATIONS Table

The COLLATIONS table provides information about collations for each character set.

The COLLATIONS table has these columns:

4106

The INFORMATION_SCHEMA COLLATION_CHARACTER_SET_APPLICABILITY Table

• COLLATION_NAME

The collation name.

• CHARACTER_SET_NAME

The name of the character set with which the collation is associated.

• ID

The collation ID.

• IS_DEFAULT

Whether the collation is the default for its character set.

• IS_COMPILED

Whether the character set is compiled into the server.

• SORTLEN

This is related to the amount of memory required to sort strings expressed in the character set.

Notes

Collation information is also available from the SHOW COLLATION statement. See Section 13.7.5.4,
“SHOW COLLATION Statement”. The following statements are equivalent:

SELECT COLLATION_NAME FROM INFORMATION_SCHEMA.COLLATIONS
 [WHERE COLLATION_NAME LIKE 'wild']

SHOW COLLATION
 [LIKE 'wild']

24.3.4 The INFORMATION_SCHEMA
COLLATION_CHARACTER_SET_APPLICABILITY Table

The COLLATION_CHARACTER_SET_APPLICABILITY table indicates what character set is applicable for
what collation.

The COLLATION_CHARACTER_SET_APPLICABILITY table has these columns:

• COLLATION_NAME

The collation name.

• CHARACTER_SET_NAME

The name of the character set with which the collation is associated.

Notes

The COLLATION_CHARACTER_SET_APPLICABILITY columns are equivalent to the first two columns
displayed by the SHOW COLLATION statement.

24.3.5 The INFORMATION_SCHEMA COLUMNS Table

The COLUMNS table provides information about columns in tables.

4107

The INFORMATION_SCHEMA COLUMNS Table

The COLUMNS table has these columns:

• TABLE_CATALOG

The name of the catalog to which the table containing the column belongs. This value is always def.

• TABLE_SCHEMA

The name of the schema (database) to which the table containing the column belongs.

• TABLE_NAME

The name of the table containing the column.

• COLUMN_NAME

The name of the column.

• ORDINAL_POSITION

The position of the column within the table. ORDINAL_POSITION is necessary because you might want
to say ORDER BY ORDINAL_POSITION. Unlike SHOW COLUMNS, SELECT from the COLUMNS table does
not have automatic ordering.

• COLUMN_DEFAULT

The default value for the column. This is NULL if the column has an explicit default of NULL, or if the
column definition includes no DEFAULT clause.

• IS_NULLABLE

The column nullability. The value is YES if NULL values can be stored in the column, NO if not.

• DATA_TYPE

The column data type.

The DATA_TYPE value is the type name only with no other information. The COLUMN_TYPE value
contains the type name and possibly other information such as the precision or length.

• CHARACTER_MAXIMUM_LENGTH

For string columns, the maximum length in characters.

• CHARACTER_OCTET_LENGTH

For string columns, the maximum length in bytes.

• NUMERIC_PRECISION

For numeric columns, the numeric precision.

• NUMERIC_SCALE

For numeric columns, the numeric scale.

• DATETIME_PRECISION

For temporal columns, the fractional seconds precision.

4108

The INFORMATION_SCHEMA COLUMNS Table

• CHARACTER_SET_NAME

For character string columns, the character set name.

• COLLATION_NAME

For character string columns, the collation name.

• COLUMN_TYPE

The column data type.

The DATA_TYPE value is the type name only with no other information. The COLUMN_TYPE value
contains the type name and possibly other information such as the precision or length.

• COLUMN_KEY

Whether the column is indexed:

• If COLUMN_KEY is empty, the column either is not indexed or is indexed only as a secondary column in
a multiple-column, nonunique index.

• If COLUMN_KEY is PRI, the column is a PRIMARY KEY or is one of the columns in a multiple-column
PRIMARY KEY.

• If COLUMN_KEY is UNI, the column is the first column of a UNIQUE index. (A UNIQUE index permits
multiple NULL values, but you can tell whether the column permits NULL by checking the Null
column.)

• If COLUMN_KEY is MUL, the column is the first column of a nonunique index in which multiple
occurrences of a given value are permitted within the column.

If more than one of the COLUMN_KEY values applies to a given column of a table, COLUMN_KEY displays
the one with the highest priority, in the order PRI, UNI, MUL.

A UNIQUE index may be displayed as PRI if it cannot contain NULL values and there is no PRIMARY
KEY in the table. A UNIQUE index may display as MUL if several columns form a composite UNIQUE
index; although the combination of the columns is unique, each column can still hold multiple
occurrences of a given value.

• EXTRA

Any additional information that is available about a given column. The value is nonempty in these cases:

• auto_increment for columns that have the AUTO_INCREMENT attribute.

• on update CURRENT_TIMESTAMP for TIMESTAMP or DATETIME columns that have the ON UPDATE
CURRENT_TIMESTAMP attribute.

• STORED GENERATED or VIRTUAL GENERATED for generated columns.

• PRIVILEGES

The privileges you have for the column.

• COLUMN_COMMENT

Any comment included in the column definition.

4109

The INFORMATION_SCHEMA COLUMN_PRIVILEGES Table

• GENERATION_EXPRESSION

For generated columns, displays the expression used to compute column values. Empty for
nongenerated columns. For information about generated columns, see Section 13.1.18.7, “CREATE
TABLE and Generated Columns”.

Notes

• In SHOW COLUMNS, the Type display includes values from several different COLUMNS columns.

• CHARACTER_OCTET_LENGTH should be the same as CHARACTER_MAXIMUM_LENGTH, except for
multibyte character sets.

• CHARACTER_SET_NAME can be derived from COLLATION_NAME. For example, if you say SHOW FULL
COLUMNS FROM t, and you see in the COLLATION_NAME column a value of latin1_swedish_ci, the
character set is what is before the first underscore: latin1.

Column information is also available from the SHOW COLUMNS statement. See Section 13.7.5.5, “SHOW
COLUMNS Statement”. The following statements are nearly equivalent:

SELECT COLUMN_NAME, DATA_TYPE, IS_NULLABLE, COLUMN_DEFAULT
 FROM INFORMATION_SCHEMA.COLUMNS
 WHERE table_name = 'tbl_name'
 [AND table_schema = 'db_name']
 [AND column_name LIKE 'wild']

SHOW COLUMNS
 FROM tbl_name
 [FROM db_name]
 [LIKE 'wild']

24.3.6 The INFORMATION_SCHEMA COLUMN_PRIVILEGES Table

The COLUMN_PRIVILEGES table provides information about column privileges. It takes its values from the
mysql.columns_priv system table.

The COLUMN_PRIVILEGES table has these columns:

• GRANTEE

The name of the account to which the privilege is granted, in 'user_name'@'host_name' format.

• TABLE_CATALOG

The name of the catalog to which the table containing the column belongs. This value is always def.

• TABLE_SCHEMA

The name of the schema (database) to which the table containing the column belongs.

• TABLE_NAME

The name of the table containing the column.

• COLUMN_NAME

The name of the column.

• PRIVILEGE_TYPE

4110

The INFORMATION_SCHEMA ENGINES Table

The privilege granted. The value can be any privilege that can be granted at the column level; see
Section 13.7.1.4, “GRANT Statement”. Each row lists a single privilege, so there is one row per column
privilege held by the grantee.

In the output from SHOW FULL COLUMNS, the privileges are all in one column and in lowercase, for
example, select,insert,update,references. In COLUMN_PRIVILEGES, there is one privilege per
row, in uppercase.

• IS_GRANTABLE

YES if the user has the GRANT OPTION privilege, NO otherwise. The output does not list GRANT OPTION
as a separate row with PRIVILEGE_TYPE='GRANT OPTION'.

Notes

• COLUMN_PRIVILEGES is a nonstandard INFORMATION_SCHEMA table.

The following statements are not equivalent:

SELECT ... FROM INFORMATION_SCHEMA.COLUMN_PRIVILEGES

SHOW GRANTS ...

24.3.7 The INFORMATION_SCHEMA ENGINES Table

The ENGINES table provides information about storage engines. This is particularly useful for checking
whether a storage engine is supported, or to see what the default engine is.

The ENGINES table has these columns:

• ENGINE

The name of the storage engine.

• SUPPORT

The server's level of support for the storage engine, as shown in the following table.

Value Meaning

YES The engine is supported and is active

DEFAULT Like YES, plus this is the default engine

NO The engine is not supported

DISABLED The engine is supported but has been disabled

A value of NO means that the server was compiled without support for the engine, so it cannot be
enabled at runtime.

A value of DISABLED occurs either because the server was started with an option that disables the
engine, or because not all options required to enable it were given. In the latter case, the error log should
contain a reason indicating why the option is disabled. See Section 5.4.2, “The Error Log”.

You might also see DISABLED for a storage engine if the server was compiled to support it, but was
started with a --skip-engine_name option. For the NDB storage engine, DISABLED means the server
was compiled with support for NDB Cluster, but was not started with the --ndbcluster option.

All MySQL servers support MyISAM tables. It is not possible to disable MyISAM.

4111

The INFORMATION_SCHEMA EVENTS Table

• COMMENT

A brief description of the storage engine.

• TRANSACTIONS

Whether the storage engine supports transactions.

• XA

Whether the storage engine supports XA transactions.

• SAVEPOINTS

Whether the storage engine supports savepoints.

Notes

• ENGINES is a nonstandard INFORMATION_SCHEMA table.

Storage engine information is also available from the SHOW ENGINES statement. See Section 13.7.5.16,
“SHOW ENGINES Statement”. The following statements are equivalent:

SELECT * FROM INFORMATION_SCHEMA.ENGINES

SHOW ENGINES

24.3.8 The INFORMATION_SCHEMA EVENTS Table

The EVENTS table provides information about Event Manager events, which are discussed in Section 23.4,
“Using the Event Scheduler”.

The EVENTS table has these columns:

• EVENT_CATALOG

The name of the catalog to which the event belongs. This value is always def.

• EVENT_SCHEMA

The name of the schema (database) to which the event belongs.

• EVENT_NAME

The name of the event.

• DEFINER

The account named in the DEFINER clause (often the user who created the event), in
'user_name'@'host_name' format.

• TIME_ZONE

The event time zone, which is the time zone used for scheduling the event and that is in effect within the
event as it executes. The default value is SYSTEM.

• EVENT_BODY

The language used for the statements in the event's DO clause. The value is always SQL.

• EVENT_DEFINITION

4112

The INFORMATION_SCHEMA EVENTS Table

The text of the SQL statement making up the event's DO clause; in other words, the statement executed
by this event.

• EVENT_TYPE

The event repetition type, either ONE TIME (transient) or RECURRING (repeating).

• EXECUTE_AT

For a one-time event, this is the DATETIME value specified in the AT clause of the CREATE EVENT
statement used to create the event, or of the last ALTER EVENT statement that modified the event. The
value shown in this column reflects the addition or subtraction of any INTERVAL value included in the
event's AT clause. For example, if an event is created using ON SCHEDULE AT CURRENT_TIMESTAMP
+ '1:6' DAY_HOUR, and the event was created at 2018-02-09 14:05:30, the value shown in this
column would be '2018-02-10 20:05:30'. If the event's timing is determined by an EVERY clause
instead of an AT clause (that is, if the event is recurring), the value of this column is NULL.

• INTERVAL_VALUE

For a recurring event, the number of intervals to wait between event executions. For a transient event,
the value is always NULL.

• INTERVAL_FIELD

The time units used for the interval which a recurring event waits before repeating. For a transient event,
the value is always NULL.

• SQL_MODE

The SQL mode in effect when the event was created or altered, and under which the event executes.
For the permitted values, see Section 5.1.10, “Server SQL Modes”.

• STARTS

The start date and time for a recurring event. This is displayed as a DATETIME value, and is NULL if
no start date and time are defined for the event. For a transient event, this column is always NULL. For
a recurring event whose definition includes a STARTS clause, this column contains the corresponding
DATETIME value. As with the EXECUTE_AT column, this value resolves any expressions used. If there is
no STARTS clause affecting the timing of the event, this column is NULL

• ENDS

For a recurring event whose definition includes a ENDS clause, this column contains the corresponding
DATETIME value. As with the EXECUTE_AT column, this value resolves any expressions used. If there is
no ENDS clause affecting the timing of the event, this column is NULL.

• STATUS

The event status. One of ENABLED, DISABLED, or SLAVESIDE_DISABLED. SLAVESIDE_DISABLED
indicates that the creation of the event occurred on another MySQL server acting as a replication source
and replicated to the current MySQL server which is acting as a replica, but the event is not presently
being executed on the replica. For more information, see Section 16.4.1.16, “Replication of Invoked
Features”. information.

• ON_COMPLETION

One of the two values PRESERVE or NOT PRESERVE.

4113

The INFORMATION_SCHEMA EVENTS Table

• CREATED

The date and time when the event was created. This is a TIMESTAMP value.

• LAST_ALTERED

The date and time when the event was last modified. This is a TIMESTAMP value. If the event has not
been modified since its creation, this value is the same as the CREATED value.

• LAST_EXECUTED

The date and time when the event last executed. This is a DATETIME value. If the event has never
executed, this column is NULL.

LAST_EXECUTED indicates when the event started. As a result, the ENDS column is never less than
LAST_EXECUTED.

• EVENT_COMMENT

The text of the comment, if the event has one. If not, this value is empty.

• ORIGINATOR

The server ID of the MySQL server on which the event was created; used in replication. This value may
be updated by ALTER EVENT to the server ID of the server on which that statement occurs, if executed
on a replication source. The default value is 0.

• CHARACTER_SET_CLIENT

The session value of the character_set_client system variable when the event was created.

• COLLATION_CONNECTION

The session value of the collation_connection system variable when the event was created.

• DATABASE_COLLATION

The collation of the database with which the event is associated.

Notes

• EVENTS is a nonstandard INFORMATION_SCHEMA table.

• Times in the EVENTS table are displayed using the event time zone, the current session time zone, or
UTC, as described in Section 23.4.4, “Event Metadata”.

• For more information about SLAVESIDE_DISABLED and the ORIGINATOR column, see
Section 16.4.1.16, “Replication of Invoked Features”.

Example

Suppose that the user 'jon'@'ghidora' creates an event named e_daily, and then modifies it a few
minutes later using an ALTER EVENT statement, as shown here:

DELIMITER |

CREATE EVENT e_daily
 ON SCHEDULE
 EVERY 1 DAY
 COMMENT 'Saves total number of sessions then clears the table each day'
 DO

4114

The INFORMATION_SCHEMA EVENTS Table

 BEGIN
 INSERT INTO site_activity.totals (time, total)
 SELECT CURRENT_TIMESTAMP, COUNT(*)
 FROM site_activity.sessions;
 DELETE FROM site_activity.sessions;
 END |

DELIMITER ;

ALTER EVENT e_daily
 ENABLE;

(Note that comments can span multiple lines.)

This user can then run the following SELECT statement, and obtain the output shown:

mysql> SELECT * FROM INFORMATION_SCHEMA.EVENTS
 WHERE EVENT_NAME = 'e_daily'
 AND EVENT_SCHEMA = 'myschema'\G
*************************** 1. row ***************************
 EVENT_CATALOG: def
 EVENT_SCHEMA: myschema
 EVENT_NAME: e_daily
 DEFINER: jon@ghidora
 TIME_ZONE: SYSTEM
 EVENT_BODY: SQL
 EVENT_DEFINITION: BEGIN
 INSERT INTO site_activity.totals (time, total)
 SELECT CURRENT_TIMESTAMP, COUNT(*)
 FROM site_activity.sessions;
 DELETE FROM site_activity.sessions;
 END
 EVENT_TYPE: RECURRING
 EXECUTE_AT: NULL
 INTERVAL_VALUE: 1
 INTERVAL_FIELD: DAY
 SQL_MODE: ONLY_FULL_GROUP_BY,STRICT_TRANS_TABLES,
 NO_ZERO_IN_DATE,NO_ZERO_DATE,
 ERROR_FOR_DIVISION_BY_ZERO,
 NO_AUTO_CREATE_USER,NO_ENGINE_SUBSTITUTION
 STARTS: 2018-08-08 11:06:34
 ENDS: NULL
 STATUS: ENABLED
 ON_COMPLETION: NOT PRESERVE
 CREATED: 2018-08-08 11:06:34
 LAST_ALTERED: 2018-08-08 11:06:34
 LAST_EXECUTED: 2018-08-08 16:06:34
 EVENT_COMMENT: Saves total number of sessions then clears the
 table each day
 ORIGINATOR: 1
CHARACTER_SET_CLIENT: utf8
COLLATION_CONNECTION: utf8_general_ci
 DATABASE_COLLATION: latin1_swedish_ci

Event information is also available from the SHOW EVENTS statement. See Section 13.7.5.18, “SHOW
EVENTS Statement”. The following statements are equivalent:

SELECT
 EVENT_SCHEMA, EVENT_NAME, DEFINER, TIME_ZONE, EVENT_TYPE, EXECUTE_AT,
 INTERVAL_VALUE, INTERVAL_FIELD, STARTS, ENDS, STATUS, ORIGINATOR,
 CHARACTER_SET_CLIENT, COLLATION_CONNECTION, DATABASE_COLLATION
 FROM INFORMATION_SCHEMA.EVENTS
 WHERE table_schema = 'db_name'
 [AND column_name LIKE 'wild']

SHOW EVENTS
 [FROM db_name]

4115

The INFORMATION_SCHEMA FILES Table

 [LIKE 'wild']

24.3.9 The INFORMATION_SCHEMA FILES Table

The FILES table provides information about the files in which MySQL tablespace data is stored.

The FILES table provides information about InnoDB data files. In NDB Cluster, this table also provides
information about the files in which NDB Cluster Disk Data tables are stored. For additional information
specific to InnoDB, see InnoDB Notes, later in this section; for additional information specific to NDB
Cluster, see NDB Notes.

The FILES table has these columns:

• FILE_ID

For InnoDB: The tablespace ID, also referred to as the space_id or fil_space_t::id.

For NDB: A file identifier. FILE_ID column values are auto-generated.

• FILE_NAME

For InnoDB: The name of the data file. File-per-table and general tablespaces have an .ibd file name
extension. Undo tablespaces are prefixed by undo. The system tablespace is prefixed by ibdata.
Temporary tablespaces are prefixed by ibtmp. The file name includes the file path, which may be
relative to the MySQL data directory (the value of the datadir system variable).

For NDB: The name of an UNDO log file created by CREATE LOGFILE GROUP or ALTER LOGFILE
GROUP, or of a data file created by CREATE TABLESPACE or ALTER TABLESPACE.

• FILE_TYPE

For InnoDB: The tablespace file type. There are three possible file types for InnoDB files. TABLESPACE
is the file type for any system, general, or file-per-table tablespace file that holds tables, indexes, or other
forms of user data. TEMPORARY is the file type for temporary tablespaces. UNDO LOG is the file type for
undo tablespaces, which hold undo records.

For NDB: One of the values UNDO LOG, DATAFILE, or TABLESPACE.

• TABLESPACE_NAME

The name of the tablespace with which the file is associated.

• TABLE_CATALOG

This value is always empty.

• TABLE_SCHEMA

This is always NULL.

• TABLE_NAME

This is always NULL.

• LOGFILE_GROUP_NAME

For InnoDB: This is always NULL.

For NDB: The name of the log file group to which the log file or data file belongs.

4116

The INFORMATION_SCHEMA FILES Table

• LOGFILE_GROUP_NUMBER

For InnoDB: This is always NULL.

For NDB: For a Disk Data undo log file, the auto-generated ID number of the log file group
to which the log file belongs. This is the same as the value shown for the id column in the
ndbinfo.dict_obj_info table and the log_id column in the ndbinfo.logspaces and
ndbinfo.logspaces tables for this undo log file.

• ENGINE

For InnoDB: This is always InnoDB.

For NDB: This is always ndbcluster.

• FULLTEXT_KEYS

This is always NULL.

• DELETED_ROWS

This is always NULL.

• UPDATE_COUNT

This is always NULL.

• FREE_EXTENTS

For InnoDB: The number of fully free extents in the current data file.

For NDB: The number of extents which have not yet been used by the file.

• TOTAL_EXTENTS

For InnoDB: The number of full extents used in the current data file. Any partial extent at the end of the
file is not counted.

For NDB: The total number of extents allocated to the file.

• EXTENT_SIZE

For InnoDB: Extent size is 1048576 (1MB) for files with a 4KB, 8KB, or 16KB page size. Extent size is
2097152 bytes (2MB) for files with a 32KB page size, and 4194304 (4MB) for files with a 64KB page
size. FILES does not report InnoDB page size. Page size is defined by the innodb_page_size
system variable. Extent size information can also be retrieved from the INNODB_SYS_TABLESPACES
table where FILES.FILE_ID = INNODB_SYS_TABLESPACES.SPACE.

For NDB: The size of an extent for the file in bytes.

• INITIAL_SIZE

For InnoDB: The initial size of the file in bytes.

For NDB: The size of the file in bytes. This is the same value that was used in the INITIAL_SIZE
clause of the CREATE LOGFILE GROUP, ALTER LOGFILE GROUP, CREATE TABLESPACE, or ALTER
TABLESPACE statement used to create the file.

• MAXIMUM_SIZE

4117

The INFORMATION_SCHEMA FILES Table

For InnoDB: The maximum number of bytes permitted in the file. The value is NULL for all data
files except for predefined system tablespace data files. Maximum system tablespace file size is
defined by innodb_data_file_path. Maximum temporary tablespace file size is defined by
innodb_temp_data_file_path. A NULL value for a predefined system tablespace data file indicates
that a file size limit was not defined explicitly.

For NDB: This value is always the same as the INITIAL_SIZE value.

• AUTOEXTEND_SIZE

The auto-extend size of the tablespace. For NDB, AUTOEXTEND_SIZE is always NULL.

• CREATION_TIME

This is always NULL.

• LAST_UPDATE_TIME

This is always NULL.

• LAST_ACCESS_TIME

This is always NULL.

• RECOVER_TIME

This is always NULL.

• TRANSACTION_COUNTER

This is always NULL.

• VERSION

For InnoDB: This is always NULL.

For NDB: The version number of the file.

• ROW_FORMAT

For InnoDB: This is always NULL.

For NDB: One of FIXED or DYNAMIC.

• TABLE_ROWS

This is always NULL.

• AVG_ROW_LENGTH

This is always NULL.

• DATA_LENGTH

This is always NULL.

• MAX_DATA_LENGTH

This is always NULL.

4118

The INFORMATION_SCHEMA FILES Table

• INDEX_LENGTH

This is always NULL.

• DATA_FREE

For InnoDB: The total amount of free space (in bytes) for the entire tablespace. Predefined system
tablespaces, which include the system tablespace and temporary table tablespaces, may have one or
more data files.

For NDB: This is always NULL.

• CREATE_TIME

This is always NULL.

• UPDATE_TIME

This is always NULL.

• CHECK_TIME

This is always NULL.

• CHECKSUM

This is always NULL.

• STATUS

For InnoDB: This value is NORMAL by default. InnoDB file-per-table tablespaces may report
IMPORTING, which indicates that the tablespace is not yet available.

For NDB: This is always NORMAL.

• EXTRA

For InnoDB: This is always NULL.

For NDB: This column shows which data node the data file or undo log file belongs to (each data node
having its own copy of each file); for an undo log files, it also shows the size of the undo log buffer.
Suppose that you use this statement on an NDB Cluster with four data nodes:

CREATE LOGFILE GROUP mygroup
 ADD UNDOFILE 'new_undo.dat'
 INITIAL_SIZE 2G
 ENGINE NDB;

After running the CREATE LOGFILE GROUP statement successfully, you should see a result similar to
the one shown here for this query against the FILES table:

mysql> SELECT LOGFILE_GROUP_NAME, FILE_TYPE, EXTRA
 FROM INFORMATION_SCHEMA.FILES
 WHERE FILE_NAME = 'new_undo.dat';

+--------------------+-----------+---+
| LOGFILE_GROUP_NAME | FILE_TYPE | EXTRA |
+--------------------+-----------+---+
mygroup	UNDO LOG	CLUSTER_NODE=5;UNDO_BUFFER_SIZE=8388608
mygroup	UNDO LOG	CLUSTER_NODE=6;UNDO_BUFFER_SIZE=8388608
mygroup	UNDO LOG	CLUSTER_NODE=7;UNDO_BUFFER_SIZE=8388608

4119

The INFORMATION_SCHEMA FILES Table

| mygroup | UNDO LOG | CLUSTER_NODE=8;UNDO_BUFFER_SIZE=8388608 |
+--------------------+-----------+---+

Notes

• FILES is a nonstandard INFORMATION_SCHEMA table.

InnoDB Notes

The following notes apply to InnoDB data files.

• Data reported by FILES is reported from the InnoDB in-memory cache for open files. By comparison,
INNODB_SYS_DATAFILES reports data from the InnoDB SYS_DATAFILES internal data dictionary
table.

• The data reported by FILES includes temporary tablespace data. This data is not available in
the InnoDB SYS_DATAFILES internal data dictionary table, and is therefore not reported by
INNODB_SYS_DATAFILES.

• Undo tablespace data is reported by FILES.

• The following query returns all data pertinent to InnoDB tablespaces.

SELECT
 FILE_ID, FILE_NAME, FILE_TYPE, TABLESPACE_NAME, FREE_EXTENTS,
 TOTAL_EXTENTS, EXTENT_SIZE, INITIAL_SIZE, MAXIMUM_SIZE,
 AUTOEXTEND_SIZE, DATA_FREE, STATUS
FROM INFORMATION_SCHEMA.FILES WHERE ENGINE='InnoDB'\G

NDB Notes

• The FILES table provides information about Disk Data files only; you cannot use it for determining disk
space allocation or availability for individual NDB tables. However, it is possible to see how much space
is allocated for each NDB table having data stored on disk—as well as how much remains available for
storage of data on disk for that table—using ndb_desc.

• The CREATION_TIME, LAST_UPDATE_TIME, and LAST_ACCESSED values are as reported by the
operating system, and are not supplied by the NDB storage engine. Where no value is provided by the
operating system, these columns display NULL.

• The difference between the TOTAL EXTENTS and FREE_EXTENTS columns is the number of extents
currently in use by the file:

SELECT TOTAL_EXTENTS - FREE_EXTENTS AS extents_used
 FROM INFORMATION_SCHEMA.FILES
 WHERE FILE_NAME = 'myfile.dat';

To approximate the amount of disk space in use by the file, multiply that difference by the value of the
EXTENT_SIZE column, which gives the size of an extent for the file in bytes:

SELECT (TOTAL_EXTENTS - FREE_EXTENTS) * EXTENT_SIZE AS bytes_used
 FROM INFORMATION_SCHEMA.FILES
 WHERE FILE_NAME = 'myfile.dat';

Similarly, you can estimate the amount of space that remains available in a given file by multiplying
FREE_EXTENTS by EXTENT_SIZE:

SELECT FREE_EXTENTS * EXTENT_SIZE AS bytes_free
 FROM INFORMATION_SCHEMA.FILES
 WHERE FILE_NAME = 'myfile.dat';

4120

The INFORMATION_SCHEMA FILES Table

Important

The byte values produced by the preceding queries are approximations only, and
their precision is inversely proportional to the value of EXTENT_SIZE. That is, the
larger EXTENT_SIZE becomes, the less accurate the approximations are.

It is also important to remember that once an extent is used, it cannot be freed again without dropping
the data file of which it is a part. This means that deletes from a Disk Data table do not release disk
space.

The extent size can be set in a CREATE TABLESPACE statement. For more information, see
Section 13.1.19, “CREATE TABLESPACE Statement”.

• An additional row is present in the FILES table following the creation of a logfile group. This row has
NULL for the value of the FILE_NAME column and 0 for the value of the FILE_ID column; the value of
the FILE_TYPE column is always UNDO LOG, and that of the STATUS column is always NORMAL. The
value of the ENGINE column for this row is always ndbcluster.

The FREE_EXTENTS column in this row shows the total number of free extents available to all undo files
belonging to a given log file group whose name and number are shown in the LOGFILE_GROUP_NAME
and LOGFILE_GROUP_NUMBER columns, respectively.

Suppose there are no existing log file groups on your NDB Cluster, and you create one using the
following statement:

mysql> CREATE LOGFILE GROUP lg1
 ADD UNDOFILE 'undofile.dat'
 INITIAL_SIZE = 16M
 UNDO_BUFFER_SIZE = 1M
 ENGINE = NDB;

You can now see this NULL row when you query the FILES table:

mysql> SELECT DISTINCT
 FILE_NAME AS File,
 FREE_EXTENTS AS Free,
 TOTAL_EXTENTS AS Total,
 EXTENT_SIZE AS Size,
 INITIAL_SIZE AS Initial
 FROM INFORMATION_SCHEMA.FILES;
+--------------+---------+---------+------+----------+
| File | Free | Total | Size | Initial |
+--------------+---------+---------+------+----------+
| undofile.dat | NULL | 4194304 | 4 | 16777216 |
| NULL | 4184068 | NULL | 4 | NULL |
+--------------+---------+---------+------+----------+

The total number of free extents available for undo logging is always somewhat less than the sum of
the TOTAL_EXTENTS column values for all undo files in the log file group due to overhead required for
maintaining the undo files. This can be seen by adding a second undo file to the log file group, then
repeating the previous query against the FILES table:

mysql> ALTER LOGFILE GROUP lg1
 ADD UNDOFILE 'undofile02.dat'
 INITIAL_SIZE = 4M
 ENGINE = NDB;

mysql> SELECT DISTINCT
 FILE_NAME AS File,
 FREE_EXTENTS AS Free,

4121

The INFORMATION_SCHEMA FILES Table

 TOTAL_EXTENTS AS Total,
 EXTENT_SIZE AS Size,
 INITIAL_SIZE AS Initial
 FROM INFORMATION_SCHEMA.FILES;
+----------------+---------+---------+------+----------+
| File | Free | Total | Size | Initial |
+----------------+---------+---------+------+----------+
undofile.dat	NULL	4194304	4	16777216
undofile02.dat	NULL	1048576	4	4194304
NULL	5223944	NULL	4	NULL
+----------------+---------+---------+------+----------+

The amount of free space in bytes which is available for undo logging by Disk Data tables using this log
file group can be approximated by multiplying the number of free extents by the initial size:

mysql> SELECT
 FREE_EXTENTS AS 'Free Extents',
 FREE_EXTENTS * EXTENT_SIZE AS 'Free Bytes'
 FROM INFORMATION_SCHEMA.FILES
 WHERE LOGFILE_GROUP_NAME = 'lg1'
 AND FILE_NAME IS NULL;
+--------------+------------+
| Free Extents | Free Bytes |
+--------------+------------+
| 5223944 | 20895776 |
+--------------+------------+

If you create an NDB Cluster Disk Data table and then insert some rows into it, you can see
approximately how much space remains for undo logging afterward, for example:

mysql> CREATE TABLESPACE ts1
 ADD DATAFILE 'data1.dat'
 USE LOGFILE GROUP lg1
 INITIAL_SIZE 512M
 ENGINE = NDB;

mysql> CREATE TABLE dd (
 c1 INT NOT NULL PRIMARY KEY,
 c2 INT,
 c3 DATE
)
 TABLESPACE ts1 STORAGE DISK
 ENGINE = NDB;

mysql> INSERT INTO dd VALUES
 (NULL, 1234567890, '2007-02-02'),
 (NULL, 1126789005, '2007-02-03'),
 (NULL, 1357924680, '2007-02-04'),
 (NULL, 1642097531, '2007-02-05');

mysql> SELECT
 FREE_EXTENTS AS 'Free Extents',
 FREE_EXTENTS * EXTENT_SIZE AS 'Free Bytes'
 FROM INFORMATION_SCHEMA.FILES
 WHERE LOGFILE_GROUP_NAME = 'lg1'
 AND FILE_NAME IS NULL;
+--------------+------------+
| Free Extents | Free Bytes |
+--------------+------------+
| 5207565 | 20830260 |
+--------------+------------+

• An additional row is present in the FILES table for any NDB Cluster tablespace, whether or not any data
files are associated with the tablespace. This row has NULL for the value of the FILE_NAME column, and
the value of the FILE_ID column is always 0. The value shown in the FILE_TYPE column is always

4122

The INFORMATION_SCHEMA GLOBAL_STATUS and SESSION_STATUS Tables

TABLESPACE, and that of the STATUS column is always NORMAL. The value of the ENGINE column for
this row is always ndbcluster.

• For additional information, and examples of creating and dropping NDB Cluster Disk Data objects, see
Section 21.6.11, “NDB Cluster Disk Data Tables”.

• As of MySQL 5.7.31, you must have the PROCESS privilege to query this table.

24.3.10 The INFORMATION_SCHEMA GLOBAL_STATUS and
SESSION_STATUS Tables

Note

The value of the show_compatibility_56 system variable affects the
information available from the tables described here. For details, see the description
of that variable in Section 5.1.7, “Server System Variables”.

Note

Information available from the tables described here is also available from the
Performance Schema. The INFORMATION_SCHEMA tables are deprecated in
preference to the Performance Schema tables and are removed in MySQL 8.0.
For advice on migrating away from the INFORMATION_SCHEMA tables to the
Performance Schema tables, see Section 25.20, “Migrating to Performance
Schema System and Status Variable Tables”.

The GLOBAL_STATUS and SESSION_STATUS tables provide information about server status variables.
Their contents correspond to the information produced by the SHOW GLOBAL STATUS and SHOW
SESSION STATUS statements (see Section 13.7.5.35, “SHOW STATUS Statement”).

Notes

• The VARIABLE_VALUE column for each of these tables is defined as VARCHAR(1024).

24.3.11 The INFORMATION_SCHEMA GLOBAL_VARIABLES and
SESSION_VARIABLES Tables

Note

The value of the show_compatibility_56 system variable affects the
information available from the tables described here. For details, see the description
of that variable in Section 5.1.7, “Server System Variables”.

Note

Information available from the tables described here is also available from the
Performance Schema. The INFORMATION_SCHEMA tables are deprecated in
preference to the Performance Schema tables and are removed in MySQL 8.0.
For advice on migrating away from the INFORMATION_SCHEMA tables to the
Performance Schema tables, see Section 25.20, “Migrating to Performance
Schema System and Status Variable Tables”.

The GLOBAL_VARIABLES and SESSION_VARIABLES tables provide information about server status
variables. Their contents correspond to the information produced by the SHOW GLOBAL VARIABLES and
SHOW SESSION VARIABLES statements (see Section 13.7.5.39, “SHOW VARIABLES Statement”).

4123

The INFORMATION_SCHEMA KEY_COLUMN_USAGE Table

Notes

• The VARIABLE_VALUE column for each of these tables is defined as VARCHAR(1024). For variables
with very long values that are not completely displayed, use SELECT as a workaround. For example:

SELECT @@GLOBAL.innodb_data_file_path;

24.3.12 The INFORMATION_SCHEMA KEY_COLUMN_USAGE Table

The KEY_COLUMN_USAGE table describes which key columns have constraints.

The KEY_COLUMN_USAGE table has these columns:

• CONSTRAINT_CATALOG

The name of the catalog to which the constraint belongs. This value is always def.

• CONSTRAINT_SCHEMA

The name of the schema (database) to which the constraint belongs.

• CONSTRAINT_NAME

The name of the constraint.

• TABLE_CATALOG

The name of the catalog to which the table belongs. This value is always def.

• TABLE_SCHEMA

The name of the schema (database) to which the table belongs.

• TABLE_NAME

The name of the table that has the constraint.

• COLUMN_NAME

The name of the column that has the constraint.

If the constraint is a foreign key, then this is the column of the foreign key, not the column that the foreign
key references.

• ORDINAL_POSITION

The column's position within the constraint, not the column's position within the table. Column positions
are numbered beginning with 1.

• POSITION_IN_UNIQUE_CONSTRAINT

NULL for unique and primary-key constraints. For foreign-key constraints, this column is the ordinal
position in key of the table that is being referenced.

• REFERENCED_TABLE_SCHEMA

The name of the schema (database) referenced by the constraint.

• REFERENCED_TABLE_NAME

4124

The INFORMATION_SCHEMA ndb_transid_mysql_connection_map Table

The name of the table referenced by the constraint.

• REFERENCED_COLUMN_NAME

The name of the column referenced by the constraint.

Suppose that there are two tables name t1 and t3 that have the following definitions:

CREATE TABLE t1
(
 s1 INT,
 s2 INT,
 s3 INT,
 PRIMARY KEY(s3)
) ENGINE=InnoDB;

CREATE TABLE t3
(
 s1 INT,
 s2 INT,
 s3 INT,
 KEY(s1),
 CONSTRAINT CO FOREIGN KEY (s2) REFERENCES t1(s3)
) ENGINE=InnoDB;

For those two tables, the KEY_COLUMN_USAGE table has two rows:

• One row with CONSTRAINT_NAME = 'PRIMARY', TABLE_NAME = 't1', COLUMN_NAME = 's3',
ORDINAL_POSITION = 1, POSITION_IN_UNIQUE_CONSTRAINT = NULL.

• One row with CONSTRAINT_NAME = 'CO', TABLE_NAME = 't3', COLUMN_NAME = 's2',
ORDINAL_POSITION = 1, POSITION_IN_UNIQUE_CONSTRAINT = 1.

24.3.13 The INFORMATION_SCHEMA ndb_transid_mysql_connection_map
Table

The ndb_transid_mysql_connection_map table provides a mapping between NDB transactions, NDB
transaction coordinators, and MySQL Servers attached to an NDB Cluster as API nodes. This information
is used when populating the server_operations and server_transactions tables of the ndbinfo
NDB Cluster information database.

The ndb_transid_mysql_connection_map table has these columns:

• mysql_connection_id

The MySQL server connection ID.

• node_id

The transaction coordinator node ID.

• ndb_transid

The NDB transaction ID.

Notes

The mysql_connection_id value is the same as the connection or session ID shown in the output of
SHOW PROCESSLIST.

4125

The INFORMATION_SCHEMA OPTIMIZER_TRACE Table

There are no SHOW statements associated with this table.

This is a nonstandard table, specific to NDB Cluster. It is implemented as an INFORMATION_SCHEMA
plugin; you can verify that it is supported by checking the output of SHOW PLUGINS. If
ndb_transid_mysql_connection_map support is enabled, the output from this statement includes
a plugin having this name, of type INFORMATION SCHEMA, and having status ACTIVE, as shown here
(using emphasized text):

mysql> SHOW PLUGINS;
+----------------------------------+--------+--------------------+---------+---------+
| Name | Status | Type | Library | License |
+----------------------------------+--------+--------------------+---------+---------+
binlog	ACTIVE	STORAGE ENGINE	NULL	GPL
mysql_native_password	ACTIVE	AUTHENTICATION	NULL	GPL
CSV	ACTIVE	STORAGE ENGINE	NULL	GPL
MEMORY	ACTIVE	STORAGE ENGINE	NULL	GPL
MRG_MYISAM	ACTIVE	STORAGE ENGINE	NULL	GPL
MyISAM	ACTIVE	STORAGE ENGINE	NULL	GPL
PERFORMANCE_SCHEMA	ACTIVE	STORAGE ENGINE	NULL	GPL
BLACKHOLE	ACTIVE	STORAGE ENGINE	NULL	GPL
ARCHIVE	ACTIVE	STORAGE ENGINE	NULL	GPL
ndbcluster	ACTIVE	STORAGE ENGINE	NULL	GPL
ndbinfo	ACTIVE	STORAGE ENGINE	NULL	GPL
ndb_transid_mysql_connection_map	ACTIVE	INFORMATION SCHEMA	NULL	GPL
InnoDB	ACTIVE	STORAGE ENGINE	NULL	GPL
INNODB_TRX	ACTIVE	INFORMATION SCHEMA	NULL	GPL
INNODB_LOCKS	ACTIVE	INFORMATION SCHEMA	NULL	GPL
INNODB_LOCK_WAITS	ACTIVE	INFORMATION SCHEMA	NULL	GPL
INNODB_CMP	ACTIVE	INFORMATION SCHEMA	NULL	GPL
INNODB_CMP_RESET	ACTIVE	INFORMATION SCHEMA	NULL	GPL
INNODB_CMPMEM	ACTIVE	INFORMATION SCHEMA	NULL	GPL
INNODB_CMPMEM_RESET	ACTIVE	INFORMATION SCHEMA	NULL	GPL
partition	ACTIVE	STORAGE ENGINE	NULL	GPL
+----------------------------------+--------+--------------------+---------+---------+
22 rows in set (0.00 sec)

The plugin is enabled by default. You can disable it (or force the server not to run unless the plugin
starts) by starting the server with the --ndb-transid-mysql-connection-map option. If the plugin is
disabled, the status is shown by SHOW PLUGINS as DISABLED. The plugin cannot be enabled or disabled
at runtime.

Although the names of this table and its columns are displayed using lowercase, you can use uppercase or
lowercase when referring to them in SQL statements.

For this table to be created, the MySQL Server must be a binary supplied with the NDB Cluster distribution,
or one built from the NDB Cluster sources with NDB storage engine support enabled. It is not available in
the standard MySQL 5.7 Server.

24.3.14 The INFORMATION_SCHEMA OPTIMIZER_TRACE Table

The OPTIMIZER_TRACE table provides information produced by the optimizer tracing capability for
traced statements. To enable tracking, use the optimizer_trace system variable. For details, see
Section 8.15, “Tracing the Optimizer”.

The OPTIMIZER_TRACE table has these columns:

• QUERY

The text of the traced statement.

• TRACE

4126

The INFORMATION_SCHEMA PARAMETERS Table

The trace, in JSON format.

• MISSING_BYTES_BEYOND_MAX_MEM_SIZE

Each remembered trace is a string that is extended as optimization progresses and appends data to it.
The optimizer_trace_max_mem_size variable sets a limit on the total amount of memory used by
all currently remembered traces. If this limit is reached, the current trace is not extended (and thus is
incomplete), and the MISSING_BYTES_BEYOND_MAX_MEM_SIZE column shows the number of bytes
missing from the trace.

• INSUFFICIENT_PRIVILEGES

If a traced query uses views or stored routines that have SQL SECURITY with a value of DEFINER, it
may be that a user other than the definer is denied from seeing the trace of the query. In that case, the
trace is shown as empty and INSUFFICIENT_PRIVILEGES has a value of 1. Otherwise, the value is 0.

24.3.15 The INFORMATION_SCHEMA PARAMETERS Table

The PARAMETERS table provides information about parameters for stored routines (stored procedures and
stored functions), and about return values for stored functions. The PARAMETERS table does not include
built-in (native) functions or loadable functions. Parameter information is similar to the contents of the
param_list column in the mysql.proc table.

The PARAMETERS table has these columns:

• SPECIFIC_CATALOG

The name of the catalog to which the routine containing the parameter belongs. This value is always
def.

• SPECIFIC_SCHEMA

The name of the schema (database) to which the routine containing the parameter belongs.

• SPECIFIC_NAME

The name of the routine containing the parameter.

• ORDINAL_POSITION

For successive parameters of a stored procedure or function, the ORDINAL_POSITION values are 1,
2, 3, and so forth. For a stored function, there is also a row that applies to the function return value (as
described by the RETURNS clause). The return value is not a true parameter, so the row that describes it
has these unique characteristics:

• The ORDINAL_POSITION value is 0.

• The PARAMETER_NAME and PARAMETER_MODE values are NULL because the return value has no
name and the mode does not apply.

• PARAMETER_MODE

The mode of the parameter. This value is one of IN, OUT, or INOUT. For a stored function return value,
this value is NULL.

• PARAMETER_NAME

4127

The INFORMATION_SCHEMA PARTITIONS Table

The name of the parameter. For a stored function return value, this value is NULL.

• DATA_TYPE

The parameter data type.

The DATA_TYPE value is the type name only with no other information. The DTD_IDENTIFIER value
contains the type name and possibly other information such as the precision or length.

• CHARACTER_MAXIMUM_LENGTH

For string parameters, the maximum length in characters.

• CHARACTER_OCTET_LENGTH

For string parameters, the maximum length in bytes.

• NUMERIC_PRECISION

For numeric parameters, the numeric precision.

• NUMERIC_SCALE

For numeric parameters, the numeric scale.

• DATETIME_PRECISION

For temporal parameters, the fractional seconds precision.

• CHARACTER_SET_NAME

For character string parameters, the character set name.

• COLLATION_NAME

For character string parameters, the collation name.

• DTD_IDENTIFIER

The parameter data type.

The DATA_TYPE value is the type name only with no other information. The DTD_IDENTIFIER value
contains the type name and possibly other information such as the precision or length.

• ROUTINE_TYPE

PROCEDURE for stored procedures, FUNCTION for stored functions.

24.3.16 The INFORMATION_SCHEMA PARTITIONS Table

The PARTITIONS table provides information about table partitions. Each row in this table corresponds to
an individual partition or subpartition of a partitioned table. For more information about partitioning tables,
see Chapter 22, Partitioning.

The PARTITIONS table has these columns:

• TABLE_CATALOG

The name of the catalog to which the table belongs. This value is always def.

4128

The INFORMATION_SCHEMA PARTITIONS Table

• TABLE_SCHEMA

The name of the schema (database) to which the table belongs.

• TABLE_NAME

The name of the table containing the partition.

• PARTITION_NAME

The name of the partition.

• SUBPARTITION_NAME

If the PARTITIONS table row represents a subpartition, the name of subpartition; otherwise NULL.

• PARTITION_ORDINAL_POSITION

All partitions are indexed in the same order as they are defined, with 1 being the number assigned to the
first partition. The indexing can change as partitions are added, dropped, and reorganized; the number
shown is this column reflects the current order, taking into account any indexing changes.

• SUBPARTITION_ORDINAL_POSITION

Subpartitions within a given partition are also indexed and reindexed in the same manner as partitions
are indexed within a table.

• PARTITION_METHOD

One of the values RANGE, LIST, HASH, LINEAR HASH, KEY, or LINEAR KEY; that is, one of the
available partitioning types as discussed in Section 22.2, “Partitioning Types”.

• SUBPARTITION_METHOD

One of the values HASH, LINEAR HASH, KEY, or LINEAR KEY; that is, one of the available
subpartitioning types as discussed in Section 22.2.6, “Subpartitioning”.

• PARTITION_EXPRESSION

The expression for the partitioning function used in the CREATE TABLE or ALTER TABLE statement that
created the table's current partitioning scheme.

For example, consider a partitioned table created in the test database using this statement:

CREATE TABLE tp (
 c1 INT,
 c2 INT,
 c3 VARCHAR(25)
)
PARTITION BY HASH(c1 + c2)
PARTITIONS 4;

The PARTITION_EXPRESSION column in a PARTITIONS table row for a partition from this table
displays c1 + c2, as shown here:

mysql> SELECT DISTINCT PARTITION_EXPRESSION
 FROM INFORMATION_SCHEMA.PARTITIONS
 WHERE TABLE_NAME='tp' AND TABLE_SCHEMA='test';
+----------------------+
| PARTITION_EXPRESSION |

4129

The INFORMATION_SCHEMA PARTITIONS Table

+----------------------+
| c1 + c2 |
+----------------------+

For an NDB table that is not explicitly partitioned, this column is empty. For tables using other storage
engines and which are not partitioned, this column is NULL.

• SUBPARTITION_EXPRESSION

This works in the same fashion for the subpartitioning expression that defines the subpartitioning for
a table as PARTITION_EXPRESSION does for the partitioning expression used to define a table's
partitioning.

If the table has no subpartitions, this column is NULL.

• PARTITION_DESCRIPTION

This column is used for RANGE and LIST partitions. For a RANGE partition, it contains the value set in
the partition's VALUES LESS THAN clause, which can be either an integer or MAXVALUE. For a LIST
partition, this column contains the values defined in the partition's VALUES IN clause, which is a list of
comma-separated integer values.

For partitions whose PARTITION_METHOD is other than RANGE or LIST, this column is always NULL.

• TABLE_ROWS

The number of table rows in the partition.

For partitioned InnoDB tables, the row count given in the TABLE_ROWS column is only an estimated
value used in SQL optimization, and may not always be exact.

For NDB tables, you can also obtain this information using the ndb_desc utility.

• AVG_ROW_LENGTH

The average length of the rows stored in this partition or subpartition, in bytes. This is the same as
DATA_LENGTH divided by TABLE_ROWS.

For NDB tables, you can also obtain this information using the ndb_desc utility.

• DATA_LENGTH

The total length of all rows stored in this partition or subpartition, in bytes; that is, the total number of
bytes stored in the partition or subpartition.

For NDB tables, you can also obtain this information using the ndb_desc utility.

• MAX_DATA_LENGTH

The maximum number of bytes that can be stored in this partition or subpartition.

For NDB tables, you can also obtain this information using the ndb_desc utility.

• INDEX_LENGTH

The length of the index file for this partition or subpartition, in bytes.

For partitions of NDB tables, whether the tables use implicit or explicit partitioning, the INDEX_LENGTH
column value is always 0. However, you can obtain equivalent information using the ndb_desc utility.

4130

The INFORMATION_SCHEMA PARTITIONS Table

• DATA_FREE

The number of bytes allocated to the partition or subpartition but not used.

For NDB tables, you can also obtain this information using the ndb_desc utility.

• CREATE_TIME

The time that the partition or subpartition was created.

• UPDATE_TIME

The time that the partition or subpartition was last modified.

• CHECK_TIME

The last time that the table to which this partition or subpartition belongs was checked.

For partitioned InnoDB tables, the value is always NULL.

• CHECKSUM

The checksum value, if any; otherwise NULL.

• PARTITION_COMMENT

The text of the comment, if the partition has one. If not, this value is empty.

The maximum length for a partition comment is defined as 1024 characters, and the display width of the
PARTITION_COMMENT column is also 1024, characters to match this limit.

• NODEGROUP

This is the nodegroup to which the partition belongs. For NDB Cluster tables, this is always default.
For partitioned tables using storage engines other than NDB, the value is also default. Otherwise, this
column is empty.

• TABLESPACE_NAME

The name of the tablespace to which the partition belongs. The value is always DEFAULT, unless the
table uses the NDB storage engine (see the Notes at the end of this section).

Notes

• PARTITIONS is a nonstandard INFORMATION_SCHEMA table.

• A table using any storage engine other than NDB and which is not partitioned has one row in
the PARTITIONS table. However, the values of the PARTITION_NAME, SUBPARTITION_NAME,
PARTITION_ORDINAL_POSITION, SUBPARTITION_ORDINAL_POSITION, PARTITION_METHOD,
SUBPARTITION_METHOD, PARTITION_EXPRESSION, SUBPARTITION_EXPRESSION, and
PARTITION_DESCRIPTION columns are all NULL. Also, the PARTITION_COMMENT column in this case
is blank.

• An NDB table which is not explicitly partitioned has one row in the PARTITIONS table for each data node
in the NDB cluster. For each such row:

• The SUBPARTITION_NAME, SUBPARTITION_ORDINAL_POSITION, SUBPARTITION_METHOD,
SUBPARTITION_EXPRESSION, CREATE_TIME, UPDATE_TIME, CHECK_TIME, CHECKSUM, and
TABLESPACE_NAME columns are all NULL.

4131

The INFORMATION_SCHEMA PLUGINS Table

• The PARTITION_METHOD is always KEY.

• The NODEGROUP column is default.

• The PARTITION_EXPRESSION and PARTITION_COMMENT columns are empty.

24.3.17 The INFORMATION_SCHEMA PLUGINS Table

The PLUGINS table provides information about server plugins.

The PLUGINS table has these columns:

• PLUGIN_NAME

The name used to refer to the plugin in statements such as INSTALL PLUGIN and UNINSTALL
PLUGIN.

• PLUGIN_VERSION

The version from the plugin's general type descriptor.

• PLUGIN_STATUS

The plugin status, one of ACTIVE, INACTIVE, DISABLED, or DELETED.

• PLUGIN_TYPE

The type of plugin, such as STORAGE ENGINE, INFORMATION_SCHEMA, or AUTHENTICATION.

• PLUGIN_TYPE_VERSION

The version from the plugin's type-specific descriptor.

• PLUGIN_LIBRARY

The name of the plugin shared library file. This is the name used to refer to the plugin file in statements
such as INSTALL PLUGIN and UNINSTALL PLUGIN. This file is located in the directory named by
the plugin_dir system variable. If the library name is NULL, the plugin is compiled in and cannot be
uninstalled with UNINSTALL PLUGIN.

• PLUGIN_LIBRARY_VERSION

The plugin API interface version.

• PLUGIN_AUTHOR

The plugin author.

• PLUGIN_DESCRIPTION

A short description of the plugin.

• PLUGIN_LICENSE

How the plugin is licensed (for example, GPL).

• LOAD_OPTION

4132

The INFORMATION_SCHEMA PROCESSLIST Table

How the plugin was loaded. The value is OFF, ON, FORCE, or FORCE_PLUS_PERMANENT. See
Section 5.5.1, “Installing and Uninstalling Plugins”.

Notes

• PLUGINS is a nonstandard INFORMATION_SCHEMA table.

• For plugins installed with INSTALL PLUGIN, the PLUGIN_NAME and PLUGIN_LIBRARY values are also
registered in the mysql.plugin table.

• For information about plugin data structures that form the basis of the information in the PLUGINS table,
see The MySQL Plugin API.

Plugin information is also available from the SHOW PLUGINS statement. See Section 13.7.5.25, “SHOW
PLUGINS Statement”. These statements are equivalent:

SELECT
 PLUGIN_NAME, PLUGIN_STATUS, PLUGIN_TYPE,
 PLUGIN_LIBRARY, PLUGIN_LICENSE
FROM INFORMATION_SCHEMA.PLUGINS;

SHOW PLUGINS;

24.3.18 The INFORMATION_SCHEMA PROCESSLIST Table

The MySQL process list indicates the operations currently being performed by the set of threads executing
within the server. The PROCESSLIST table is one source of process information. For a comparison of this
table with other sources, see Sources of Process Information.

The PROCESSLIST table has these columns:

• ID

The connection identifier. This is the same value displayed in the Id column of the SHOW PROCESSLIST
statement, displayed in the PROCESSLIST_ID column of the Performance Schema threads table, and
returned by the CONNECTION_ID() function within the thread.

• USER

The MySQL user who issued the statement. A value of system user refers to a nonclient thread
spawned by the server to handle tasks internally, for example, a delayed-row handler thread or an I/O
or SQL thread used on replica hosts. For system user, there is no host specified in the Host column.
unauthenticated user refers to a thread that has become associated with a client connection but for
which authentication of the client user has not yet occurred. event_scheduler refers to the thread that
monitors scheduled events (see Section 23.4, “Using the Event Scheduler”).

• HOST

The host name of the client issuing the statement (except for system user, for which there is no host).
The host name for TCP/IP connections is reported in host_name:client_port format to make it
easier to determine which client is doing what.

• DB

The default database for the thread, or NULL if none has been selected.

• COMMAND

4133

https://dev.mysql.com/doc/extending-mysql/5.7/en/plugin-api.html

The INFORMATION_SCHEMA PROFILING Table

The type of command the thread is executing on behalf of the client, or Sleep if the session is idle. For
descriptions of thread commands, see Section 8.14, “Examining Server Thread (Process) Information”.
The value of this column corresponds to the COM_xxx commands of the client/server protocol and
Com_xxx status variables. See Section 5.1.9, “Server Status Variables”.

• TIME

The time in seconds that the thread has been in its current state. For a replica SQL thread, the value
is the number of seconds between the timestamp of the last replicated event and the real time of the
replica host. See Section 16.2.3, “Replication Threads”.

• STATE

An action, event, or state that indicates what the thread is doing. For descriptions of STATE values, see
Section 8.14, “Examining Server Thread (Process) Information”.

Most states correspond to very quick operations. If a thread stays in a given state for many seconds,
there might be a problem that needs to be investigated.

• INFO

The statement the thread is executing, or NULL if it is executing no statement. The statement might be
the one sent to the server, or an innermost statement if the statement executes other statements. For
example, if a CALL statement executes a stored procedure that is executing a SELECT statement, the
INFO value shows the SELECT statement.

Notes

• PROCESSLIST is a nonstandard INFORMATION_SCHEMA table.

• Like the output from the SHOW PROCESSLIST statement, the PROCESSLIST table provides information
about all threads, even those belonging to other users, if you have the PROCESS privilege. Otherwise
(without the PROCESS privilege), nonanonymous users have access to information about their own
threads but not threads for other users, and anonymous users have no access to thread information.

• If an SQL statement refers to the PROCESSLIST table, MySQL populates the entire table once, when
statement execution begins, so there is read consistency during the statement. There is no read
consistency for a multi-statement transaction.

The following statements are equivalent:

SELECT * FROM INFORMATION_SCHEMA.PROCESSLIST

SHOW FULL PROCESSLIST

24.3.19 The INFORMATION_SCHEMA PROFILING Table

The PROFILING table provides statement profiling information. Its contents correspond to the information
produced by the SHOW PROFILE and SHOW PROFILES statements (see Section 13.7.5.30, “SHOW
PROFILE Statement”). The table is empty unless the profiling session variable is set to 1.

Note

This table is deprecated; expect it to be removed in a future release of MySQL.
Use the Performance Schema instead; see Section 25.19.1, “Query Profiling Using
Performance Schema”.

4134

The INFORMATION_SCHEMA REFERENTIAL_CONSTRAINTS Table

The PROFILING table has these columns:

• QUERY_ID

A numeric statement identifier.

• SEQ

A sequence number indicating the display order for rows with the same QUERY_ID value.

• STATE

The profiling state to which the row measurements apply.

• DURATION

How long statement execution remained in the given state, in seconds.

• CPU_USER, CPU_SYSTEM

User and system CPU use, in seconds.

• CONTEXT_VOLUNTARY, CONTEXT_INVOLUNTARY

How many voluntary and involuntary context switches occurred.

• BLOCK_OPS_IN, BLOCK_OPS_OUT

The number of block input and output operations.

• MESSAGES_SENT, MESSAGES_RECEIVED

The number of communication messages sent and received.

• PAGE_FAULTS_MAJOR, PAGE_FAULTS_MINOR

The number of major and minor page faults.

• SWAPS

How many swaps occurred.

• SOURCE_FUNCTION, SOURCE_FILE, and SOURCE_LINE

Information indicating where in the source code the profiled state executes.

Notes

• PROFILING is a nonstandard INFORMATION_SCHEMA table.

Profiling information is also available from the SHOW PROFILE and SHOW PROFILES statements. See
Section 13.7.5.30, “SHOW PROFILE Statement”. For example, the following queries are equivalent:

SHOW PROFILE FOR QUERY 2;

SELECT STATE, FORMAT(DURATION, 6) AS DURATION
FROM INFORMATION_SCHEMA.PROFILING
WHERE QUERY_ID = 2 ORDER BY SEQ;

24.3.20 The INFORMATION_SCHEMA REFERENTIAL_CONSTRAINTS Table

4135

The INFORMATION_SCHEMA ROUTINES Table

The REFERENTIAL_CONSTRAINTS table provides information about foreign keys.

The REFERENTIAL_CONSTRAINTS table has these columns:

• CONSTRAINT_CATALOG

The name of the catalog to which the constraint belongs. This value is always def.

• CONSTRAINT_SCHEMA

The name of the schema (database) to which the constraint belongs.

• CONSTRAINT_NAME

The name of the constraint.

• UNIQUE_CONSTRAINT_CATALOG

The name of the catalog containing the unique constraint that the constraint references. This value is
always def.

• UNIQUE_CONSTRAINT_SCHEMA

The name of the schema (database) containing the unique constraint that the constraint references.

• UNIQUE_CONSTRAINT_NAME

The name of the unique constraint that the constraint references.

• MATCH_OPTION

The value of the constraint MATCH attribute. The only valid value at this time is NONE.

• UPDATE_RULE

The value of the constraint ON UPDATE attribute. The possible values are CASCADE, SET NULL, SET
DEFAULT, RESTRICT, NO ACTION.

• DELETE_RULE

The value of the constraint ON DELETE attribute. The possible values are CASCADE, SET NULL, SET
DEFAULT, RESTRICT, NO ACTION.

• TABLE_NAME

The name of the table. This value is the same as in the TABLE_CONSTRAINTS table.

• REFERENCED_TABLE_NAME

The name of the table referenced by the constraint.

24.3.21 The INFORMATION_SCHEMA ROUTINES Table

The ROUTINES table provides information about stored routines (stored procedures and stored functions).
The ROUTINES table does not include built-in (native) functions or loadable functions.

The column named “mysql.proc Name” indicates the mysql.proc table column that corresponds to the
INFORMATION_SCHEMA ROUTINES table column, if any.

The ROUTINES table has these columns:

4136

The INFORMATION_SCHEMA ROUTINES Table

• SPECIFIC_NAME

The name of the routine.

• ROUTINE_CATALOG

The name of the catalog to which the routine belongs. This value is always def.

• ROUTINE_SCHEMA

The name of the schema (database) to which the routine belongs.

• ROUTINE_NAME

The name of the routine.

• ROUTINE_TYPE

PROCEDURE for stored procedures, FUNCTION for stored functions.

• DATA_TYPE

If the routine is a stored function, the return value data type. If the routine is a stored procedure, this
value is empty.

The DATA_TYPE value is the type name only with no other information. The DTD_IDENTIFIER value
contains the type name and possibly other information such as the precision or length.

• CHARACTER_MAXIMUM_LENGTH

For stored function string return values, the maximum length in characters. If the routine is a stored
procedure, this value is NULL.

• CHARACTER_OCTET_LENGTH

For stored function string return values, the maximum length in bytes. If the routine is a stored
procedure, this value is NULL.

• NUMERIC_PRECISION

For stored function numeric return values, the numeric precision. If the routine is a stored procedure, this
value is NULL.

• NUMERIC_SCALE

For stored function numeric return values, the numeric scale. If the routine is a stored procedure, this
value is NULL.

• DATETIME_PRECISION

For stored function temporal return values, the fractional seconds precision. If the routine is a stored
procedure, this value is NULL.

• CHARACTER_SET_NAME

For stored function character string return values, the character set name. If the routine is a stored
procedure, this value is NULL.

• COLLATION_NAME

4137

The INFORMATION_SCHEMA ROUTINES Table

For stored function character string return values, the collation name. If the routine is a stored procedure,
this value is NULL.

• DTD_IDENTIFIER

If the routine is a stored function, the return value data type. If the routine is a stored procedure, this
value is empty.

The DATA_TYPE value is the type name only with no other information. The DTD_IDENTIFIER value
contains the type name and possibly other information such as the precision or length.

• ROUTINE_BODY

The language used for the routine definition. This value is always SQL.

• ROUTINE_DEFINITION

The text of the SQL statement executed by the routine.

• EXTERNAL_NAME

This value is always NULL.

• EXTERNAL_LANGUAGE

The language of the stored routine. MySQL calculates EXTERNAL_LANGUAGE thus:

• If mysql.proc.language='SQL', EXTERNAL_LANGUAGE is NULL

• Otherwise, EXTERNAL_LANGUAGE is what is in mysql.proc.language. However, we do not have
external languages yet, so it is always NULL.

• PARAMETER_STYLE

This value is always SQL.

• IS_DETERMINISTIC

YES or NO, depending on whether the routine is defined with the DETERMINISTIC characteristic.

• SQL_DATA_ACCESS

The data access characteristic for the routine. The value is one of CONTAINS SQL, NO SQL, READS
SQL DATA, or MODIFIES SQL DATA.

• SQL_PATH

This value is always NULL.

• SECURITY_TYPE

The routine SQL SECURITY characteristic. The value is one of DEFINER or INVOKER.

• CREATED

The date and time when the routine was created. This is a TIMESTAMP value.

• LAST_ALTERED

4138

The INFORMATION_SCHEMA SCHEMATA Table

The date and time when the routine was last modified. This is a TIMESTAMP value. If the routine has not
been modified since its creation, this value is the same as the CREATED value.

• SQL_MODE

The SQL mode in effect when the routine was created or altered, and under which the routine executes.
For the permitted values, see Section 5.1.10, “Server SQL Modes”.

• ROUTINE_COMMENT

The text of the comment, if the routine has one. If not, this value is empty.

• DEFINER

The account named in the DEFINER clause (often the user who created the routine), in
'user_name'@'host_name' format.

• CHARACTER_SET_CLIENT

The session value of the character_set_client system variable when the routine was created.

• COLLATION_CONNECTION

The session value of the collation_connection system variable when the routine was created.

• DATABASE_COLLATION

The collation of the database with which the routine is associated.

Notes

• To see information about a routine, you must be the user named in the routine DEFINER clause or have
SELECT access to the mysql.proc table. If you do not have privileges for the routine itself, the value
displayed for the ROUTINE_DEFINITION column is NULL.

• Information about stored function return values is also available in the PARAMETERS table. The return
value row for a stored function can be identified as the row that has an ORDINAL_POSITION value of 0.

24.3.22 The INFORMATION_SCHEMA SCHEMATA Table

A schema is a database, so the SCHEMATA table provides information about databases.

The SCHEMATA table has these columns:

• CATALOG_NAME

The name of the catalog to which the schema belongs. This value is always def.

• SCHEMA_NAME

The name of the schema.

• DEFAULT_CHARACTER_SET_NAME

The schema default character set.

• DEFAULT_COLLATION_NAME

4139

The INFORMATION_SCHEMA SCHEMA_PRIVILEGES Table

The schema default collation.

• SQL_PATH

This value is always NULL.

Schema names are also available from the SHOW DATABASES statement. See Section 13.7.5.14, “SHOW
DATABASES Statement”. The following statements are equivalent:

SELECT SCHEMA_NAME AS `Database`
 FROM INFORMATION_SCHEMA.SCHEMATA
 [WHERE SCHEMA_NAME LIKE 'wild']

SHOW DATABASES
 [LIKE 'wild']

You see only those databases for which you have some kind of privilege, unless you have the global SHOW
DATABASES privilege.

Caution

Because a global privilege is considered a privilege for all databases, any global
privilege enables a user to see all database names with SHOW DATABASES or by
examining the INFORMATION_SCHEMA SCHEMATA table.

24.3.23 The INFORMATION_SCHEMA SCHEMA_PRIVILEGES Table

The SCHEMA_PRIVILEGES table provides information about schema (database) privileges. It takes its
values from the mysql.db system table.

The SCHEMA_PRIVILEGES table has these columns:

• GRANTEE

The name of the account to which the privilege is granted, in 'user_name'@'host_name' format.

• TABLE_CATALOG

The name of the catalog to which the schema belongs. This value is always def.

• TABLE_SCHEMA

The name of the schema.

• PRIVILEGE_TYPE

The privilege granted. The value can be any privilege that can be granted at the schema level; see
Section 13.7.1.4, “GRANT Statement”. Each row lists a single privilege, so there is one row per schema
privilege held by the grantee.

• IS_GRANTABLE

YES if the user has the GRANT OPTION privilege, NO otherwise. The output does not list GRANT OPTION
as a separate row with PRIVILEGE_TYPE='GRANT OPTION'.

Notes

• SCHEMA_PRIVILEGES is a nonstandard INFORMATION_SCHEMA table.

4140

The INFORMATION_SCHEMA STATISTICS Table

The following statements are not equivalent:

SELECT ... FROM INFORMATION_SCHEMA.SCHEMA_PRIVILEGES

SHOW GRANTS ...

24.3.24 The INFORMATION_SCHEMA STATISTICS Table

The STATISTICS table provides information about table indexes.

The STATISTICS table has these columns:

• TABLE_CATALOG

The name of the catalog to which the table containing the index belongs. This value is always def.

• TABLE_SCHEMA

The name of the schema (database) to which the table containing the index belongs.

• TABLE_NAME

The name of the table containing the index.

• NON_UNIQUE

0 if the index cannot contain duplicates, 1 if it can.

• INDEX_SCHEMA

The name of the schema (database) to which the index belongs.

• INDEX_NAME

The name of the index. If the index is the primary key, the name is always PRIMARY.

• SEQ_IN_INDEX

The column sequence number in the index, starting with 1.

• COLUMN_NAME

The column name. See also the description for the EXPRESSION column.

• COLLATION

How the column is sorted in the index. This can have values A (ascending), D (descending), or NULL (not
sorted).

• CARDINALITY

An estimate of the number of unique values in the index. To update this number, run ANALYZE TABLE
or (for MyISAM tables) myisamchk -a.

CARDINALITY is counted based on statistics stored as integers, so the value is not necessarily exact
even for small tables. The higher the cardinality, the greater the chance that MySQL uses the index
when doing joins.

• SUB_PART

4141

The INFORMATION_SCHEMA TABLES Table

The index prefix. That is, the number of indexed characters if the column is only partly indexed, NULL if
the entire column is indexed.

Note

Prefix limits are measured in bytes. However, prefix lengths for index
specifications in CREATE TABLE, ALTER TABLE, and CREATE INDEX
statements are interpreted as number of characters for nonbinary string types
(CHAR, VARCHAR, TEXT) and number of bytes for binary string types (BINARY,
VARBINARY, BLOB). Take this into account when specifying a prefix length for a
nonbinary string column that uses a multibyte character set.

For additional information about index prefixes, see Section 8.3.4, “Column Indexes”, and
Section 13.1.14, “CREATE INDEX Statement”.

• PACKED

Indicates how the key is packed. NULL if it is not.

• NULLABLE

Contains YES if the column may contain NULL values and '' if not.

• INDEX_TYPE

The index method used (BTREE, FULLTEXT, HASH, RTREE).

• COMMENT

Information about the index not described in its own column, such as disabled if the index is disabled.

• INDEX_COMMENT

Any comment provided for the index with a COMMENT attribute when the index was created.

Notes

• There is no standard INFORMATION_SCHEMA table for indexes. The MySQL column list is similar to
what SQL Server 2000 returns for sp_statistics, except that QUALIFIER and OWNER are replaced
with CATALOG and SCHEMA, respectively.

Information about table indexes is also available from the SHOW INDEX statement. See Section 13.7.5.22,
“SHOW INDEX Statement”. The following statements are equivalent:

SELECT * FROM INFORMATION_SCHEMA.STATISTICS
 WHERE table_name = 'tbl_name'
 AND table_schema = 'db_name'

SHOW INDEX
 FROM tbl_name
 FROM db_name

24.3.25 The INFORMATION_SCHEMA TABLES Table

The TABLES table provides information about tables in databases.

The TABLES table has these columns:

4142

The INFORMATION_SCHEMA TABLES Table

• TABLE_CATALOG

The name of the catalog to which the table belongs. This value is always def.

• TABLE_SCHEMA

The name of the schema (database) to which the table belongs.

• TABLE_NAME

The name of the table.

• TABLE_TYPE

BASE TABLE for a table, VIEW for a view, or SYSTEM VIEW for an INFORMATION_SCHEMA table.

The TABLES table does not list TEMPORARY tables.

• ENGINE

The storage engine for the table. See Chapter 14, The InnoDB Storage Engine, and Chapter 15,
Alternative Storage Engines.

For partitioned tables, ENGINE shows the name of the storage engine used by all partitions.

• VERSION

The version number of the table's .frm file.

• ROW_FORMAT

The row-storage format (Fixed, Dynamic, Compressed, Redundant, Compact). For MyISAM tables,
Dynamic corresponds to what myisamchk -dvv reports as Packed. InnoDB table format is either
Redundant or Compact when using the Antelope file format, or Compressed or Dynamic when
using the Barracuda file format.

• TABLE_ROWS

The number of rows. Some storage engines, such as MyISAM, store the exact count. For other storage
engines, such as InnoDB, this value is an approximation, and may vary from the actual value by as
much as 40% to 50%. In such cases, use SELECT COUNT(*) to obtain an accurate count.

TABLE_ROWS is NULL for INFORMATION_SCHEMA tables.

For InnoDB tables, the row count is only a rough estimate used in SQL optimization. (This is also true if
the InnoDB table is partitioned.)

• AVG_ROW_LENGTH

The average row length.

Refer to the notes at the end of this section for related information.

• DATA_LENGTH

For MyISAM, DATA_LENGTH is the length of the data file, in bytes.

For InnoDB, DATA_LENGTH is the approximate amount of space allocated for the clustered index, in
bytes. Specifically, it is the clustered index size, in pages, multiplied by the InnoDB page size.

4143

The INFORMATION_SCHEMA TABLES Table

Refer to the notes at the end of this section for information regarding other storage engines.

• MAX_DATA_LENGTH

For MyISAM, MAX_DATA_LENGTH is maximum length of the data file. This is the total number of bytes of
data that can be stored in the table, given the data pointer size used.

Unused for InnoDB.

Refer to the notes at the end of this section for information regarding other storage engines.

• INDEX_LENGTH

For MyISAM, INDEX_LENGTH is the length of the index file, in bytes.

For InnoDB, INDEX_LENGTH is the approximate amount of space allocated for non-clustered indexes,
in bytes. Specifically, it is the sum of non-clustered index sizes, in pages, multiplied by the InnoDB page
size.

Refer to the notes at the end of this section for information regarding other storage engines.

• DATA_FREE

The number of allocated but unused bytes.

InnoDB tables report the free space of the tablespace to which the table belongs. For a table located
in the shared tablespace, this is the free space of the shared tablespace. If you are using multiple
tablespaces and the table has its own tablespace, the free space is for only that table. Free space
means the number of bytes in completely free extents minus a safety margin. Even if free space displays
as 0, it may be possible to insert rows as long as new extents need not be allocated.

For NDB Cluster, DATA_FREE shows the space allocated on disk for, but not used by, a Disk Data table
or fragment on disk. (In-memory data resource usage is reported by the DATA_LENGTH column.)

For partitioned tables, this value is only an estimate and may not be absolutely correct. A more accurate
method of obtaining this information in such cases is to query the INFORMATION_SCHEMA PARTITIONS
table, as shown in this example:

SELECT SUM(DATA_FREE)
 FROM INFORMATION_SCHEMA.PARTITIONS
 WHERE TABLE_SCHEMA = 'mydb'
 AND TABLE_NAME = 'mytable';

For more information, see Section 24.3.16, “The INFORMATION_SCHEMA PARTITIONS Table”.

• AUTO_INCREMENT

The next AUTO_INCREMENT value.

• CREATE_TIME

When the table was created.

• UPDATE_TIME

When the data file was last updated. For some storage engines, this value is NULL. For example,
InnoDB stores multiple tables in its system tablespace and the data file timestamp does not apply. Even
with file-per-table mode with each InnoDB table in a separate .ibd file, change buffering can delay the

4144

The INFORMATION_SCHEMA TABLES Table

write to the data file, so the file modification time is different from the time of the last insert, update, or
delete. For MyISAM, the data file timestamp is used; however, on Windows the timestamp is not updated
by updates, so the value is inaccurate.

UPDATE_TIME displays a timestamp value for the last UPDATE, INSERT, or DELETE performed on
InnoDB tables that are not partitioned. For MVCC, the timestamp value reflects the COMMIT time, which
is considered the last update time. Timestamps are not persisted when the server is restarted or when
the table is evicted from the InnoDB data dictionary cache.

The UPDATE_TIME column also shows this information for partitioned InnoDB tables.

• CHECK_TIME

When the table was last checked. Not all storage engines update this time, in which case, the value is
always NULL.

For partitioned InnoDB tables, CHECK_TIME is always NULL.

• TABLE_COLLATION

The table default collation. The output does not explicitly list the table default character set, but the
collation name begins with the character set name.

• CHECKSUM

The live checksum value, if any.

• CREATE_OPTIONS

Extra options used with CREATE TABLE.

CREATE_OPTIONS shows partitioned if the table is partitioned.

CREATE_OPTIONS shows the ENCRYPTION clause specified for tables created in file-per-table
tablespaces.

When creating a table with strict mode disabled, the storage engine's default row format is used if the
specified row format is not supported. The actual row format of the table is reported in the ROW_FORMAT
column. CREATE_OPTIONS shows the row format that was specified in the CREATE TABLE statement.

When altering the storage engine of a table, table options that are not applicable to the new storage
engine are retained in the table definition to enable reverting the table with its previously defined options
to the original storage engine, if necessary. The CREATE_OPTIONS column may show retained options.

• TABLE_COMMENT

The comment used when creating the table (or information as to why MySQL could not access the table
information).

Notes

• For NDB tables, the output of this statement shows appropriate values for the AVG_ROW_LENGTH and
DATA_LENGTH columns, with the exception that BLOB columns are not taken into account.

• For NDB tables, DATA_LENGTH includes data stored in main memory only; the MAX_DATA_LENGTH and
DATA_FREE columns apply to Disk Data.

4145

The INFORMATION_SCHEMA TABLESPACES Table

• For NDB Cluster Disk Data tables, MAX_DATA_LENGTH shows the space allocated for the disk part of a
Disk Data table or fragment. (In-memory data resource usage is reported by the DATA_LENGTH column.)

• For MEMORY tables, the DATA_LENGTH, MAX_DATA_LENGTH, and INDEX_LENGTH values approximate
the actual amount of allocated memory. The allocation algorithm reserves memory in large amounts to
reduce the number of allocation operations.

• For views, all TABLES columns are NULL except that TABLE_NAME indicates the view name and
TABLE_COMMENT says VIEW.

Table information is also available from the SHOW TABLE STATUS and SHOW TABLES statements.
See Section 13.7.5.36, “SHOW TABLE STATUS Statement”, and Section 13.7.5.37, “SHOW TABLES
Statement”. The following statements are equivalent:

SELECT
 TABLE_NAME, ENGINE, VERSION, ROW_FORMAT, TABLE_ROWS, AVG_ROW_LENGTH,
 DATA_LENGTH, MAX_DATA_LENGTH, INDEX_LENGTH, DATA_FREE, AUTO_INCREMENT,
 CREATE_TIME, UPDATE_TIME, CHECK_TIME, TABLE_COLLATION, CHECKSUM,
 CREATE_OPTIONS, TABLE_COMMENT
 FROM INFORMATION_SCHEMA.TABLES
 WHERE table_schema = 'db_name'
 [AND table_name LIKE 'wild']

SHOW TABLE STATUS
 FROM db_name
 [LIKE 'wild']

The following statements are equivalent:

SELECT
 TABLE_NAME, TABLE_TYPE
 FROM INFORMATION_SCHEMA.TABLES
 WHERE table_schema = 'db_name'
 [AND table_name LIKE 'wild']

SHOW FULL TABLES
 FROM db_name
 [LIKE 'wild']

24.3.26 The INFORMATION_SCHEMA TABLESPACES Table

This table is unused. Other INFORMATION_SCHEMA tables may provide related information:

• For NDB, the INFORMATION_SCHEMA FILES table provides tablespace-related information.

• For InnoDB, the INFORMATION_SCHEMA INNODB_SYS_TABLESPACES and INNODB_SYS_DATAFILES
tables provide tablespace metadata.

24.3.27 The INFORMATION_SCHEMA TABLE_CONSTRAINTS Table

The TABLE_CONSTRAINTS table describes which tables have constraints.

The TABLE_CONSTRAINTS table has these columns:

• CONSTRAINT_CATALOG

The name of the catalog to which the constraint belongs. This value is always def.

• CONSTRAINT_SCHEMA

The name of the schema (database) to which the constraint belongs.

4146

The INFORMATION_SCHEMA TABLE_PRIVILEGES Table

• CONSTRAINT_NAME

The name of the constraint.

• TABLE_SCHEMA

The name of the schema (database) to which the table belongs.

• TABLE_NAME

The name of the table.

• CONSTRAINT_TYPE

The type of constraint. The value can be UNIQUE, PRIMARY KEY, FOREIGN KEY, or CHECK. This is a
CHAR (not ENUM) column. The CHECK value is not available until MySQL supports CHECK.

The UNIQUE and PRIMARY KEY information is about the same as what you get from the Key_name
column in the output from SHOW INDEX when the Non_unique column is 0.

24.3.28 The INFORMATION_SCHEMA TABLE_PRIVILEGES Table

The TABLE_PRIVILEGES table provides information about table privileges. It takes its values from the
mysql.tables_priv system table.

The TABLE_PRIVILEGES table has these columns:

• GRANTEE

The name of the account to which the privilege is granted, in 'user_name'@'host_name' format.

• TABLE_CATALOG

The name of the catalog to which the table belongs. This value is always def.

• TABLE_SCHEMA

The name of the schema (database) to which the table belongs.

• TABLE_NAME

The name of the table.

• PRIVILEGE_TYPE

The privilege granted. The value can be any privilege that can be granted at the table level; see
Section 13.7.1.4, “GRANT Statement”. Each row lists a single privilege, so there is one row per table
privilege held by the grantee.

• IS_GRANTABLE

YES if the user has the GRANT OPTION privilege, NO otherwise. The output does not list GRANT OPTION
as a separate row with PRIVILEGE_TYPE='GRANT OPTION'.

Notes

• TABLE_PRIVILEGES is a nonstandard INFORMATION_SCHEMA table.

The following statements are not equivalent:

4147

The INFORMATION_SCHEMA TRIGGERS Table

SELECT ... FROM INFORMATION_SCHEMA.TABLE_PRIVILEGES

SHOW GRANTS ...

24.3.29 The INFORMATION_SCHEMA TRIGGERS Table

The TRIGGERS table provides information about triggers. To see information about a table's triggers, you
must have the TRIGGER privilege for the table.

The TRIGGERS table has these columns:

• TRIGGER_CATALOG

The name of the catalog to which the trigger belongs. This value is always def.

• TRIGGER_SCHEMA

The name of the schema (database) to which the trigger belongs.

• TRIGGER_NAME

The name of the trigger.

• EVENT_MANIPULATION

The trigger event. This is the type of operation on the associated table for which the trigger activates.
The value is INSERT (a row was inserted), DELETE (a row was deleted), or UPDATE (a row was
modified).

• EVENT_OBJECT_CATALOG, EVENT_OBJECT_SCHEMA, and EVENT_OBJECT_TABLE

As noted in Section 23.3, “Using Triggers”, every trigger is associated with exactly one table. These
columns indicate the catalog and schema (database) in which this table occurs, and the table name,
respectively. The EVENT_OBJECT_CATALOG value is always def.

• ACTION_ORDER

The ordinal position of the trigger's action within the list of triggers on the same table with the same
EVENT_MANIPULATION and ACTION_TIMING values.

• ACTION_CONDITION

This value is always NULL.

• ACTION_STATEMENT

The trigger body; that is, the statement executed when the trigger activates. This text uses UTF-8
encoding.

• ACTION_ORIENTATION

This value is always ROW.

• ACTION_TIMING

Whether the trigger activates before or after the triggering event. The value is BEFORE or AFTER.

• ACTION_REFERENCE_OLD_TABLE

This value is always NULL.

4148

The INFORMATION_SCHEMA TRIGGERS Table

• ACTION_REFERENCE_NEW_TABLE

This value is always NULL.

• ACTION_REFERENCE_OLD_ROW and ACTION_REFERENCE_NEW_ROW

The old and new column identifiers, respectively. The ACTION_REFERENCE_OLD_ROW value is always
OLD and the ACTION_REFERENCE_NEW_ROW value is always NEW.

• CREATED

The date and time when the trigger was created. This is a TIMESTAMP(2) value (with a fractional part
in hundredths of seconds) for triggers created in MySQL 5.7.2 or later, NULL for triggers created prior to
5.7.2.

• SQL_MODE

The SQL mode in effect when the trigger was created, and under which the trigger executes. For the
permitted values, see Section 5.1.10, “Server SQL Modes”.

• DEFINER

The account named in the DEFINER clause (often the user who created the trigger), in
'user_name'@'host_name' format.

• CHARACTER_SET_CLIENT

The session value of the character_set_client system variable when the trigger was created.

• COLLATION_CONNECTION

The session value of the collation_connection system variable when the trigger was created.

• DATABASE_COLLATION

The collation of the database with which the trigger is associated.

Example

The following example uses the ins_sum trigger defined in Section 23.3, “Using Triggers”:

mysql> SELECT * FROM INFORMATION_SCHEMA.TRIGGERS
 WHERE TRIGGER_SCHEMA='test' AND TRIGGER_NAME='ins_sum'\G
*************************** 1. row ***************************
 TRIGGER_CATALOG: def
 TRIGGER_SCHEMA: test
 TRIGGER_NAME: ins_sum
 EVENT_MANIPULATION: INSERT
 EVENT_OBJECT_CATALOG: def
 EVENT_OBJECT_SCHEMA: test
 EVENT_OBJECT_TABLE: account
 ACTION_ORDER: 1
 ACTION_CONDITION: NULL
 ACTION_STATEMENT: SET @sum = @sum + NEW.amount
 ACTION_ORIENTATION: ROW
 ACTION_TIMING: BEFORE
ACTION_REFERENCE_OLD_TABLE: NULL
ACTION_REFERENCE_NEW_TABLE: NULL
 ACTION_REFERENCE_OLD_ROW: OLD
 ACTION_REFERENCE_NEW_ROW: NEW
 CREATED: 2018-08-08 10:10:12.61
 SQL_MODE: ONLY_FULL_GROUP_BY,STRICT_TRANS_TABLES,

4149

The INFORMATION_SCHEMA USER_PRIVILEGES Table

 NO_ZERO_IN_DATE,NO_ZERO_DATE,
 ERROR_FOR_DIVISION_BY_ZERO,
 NO_AUTO_CREATE_USER,NO_ENGINE_SUBSTITUTION
 DEFINER: me@localhost
 CHARACTER_SET_CLIENT: utf8
 COLLATION_CONNECTION: utf8_general_ci
 DATABASE_COLLATION: latin1_swedish_ci

Trigger information is also available from the SHOW TRIGGERS statement. See Section 13.7.5.38, “SHOW
TRIGGERS Statement”.

24.3.30 The INFORMATION_SCHEMA USER_PRIVILEGES Table

The USER_PRIVILEGES table provides information about global privileges. It takes its values from the
mysql.user system table.

The USER_PRIVILEGES table has these columns:

• GRANTEE

The name of the account to which the privilege is granted, in 'user_name'@'host_name' format.

• TABLE_CATALOG

The name of the catalog. This value is always def.

• PRIVILEGE_TYPE

The privilege granted. The value can be any privilege that can be granted at the global level; see
Section 13.7.1.4, “GRANT Statement”. Each row lists a single privilege, so there is one row per global
privilege held by the grantee.

• IS_GRANTABLE

YES if the user has the GRANT OPTION privilege, NO otherwise. The output does not list GRANT OPTION
as a separate row with PRIVILEGE_TYPE='GRANT OPTION'.

Notes

• USER_PRIVILEGES is a nonstandard INFORMATION_SCHEMA table.

The following statements are not equivalent:

SELECT ... FROM INFORMATION_SCHEMA.USER_PRIVILEGES

SHOW GRANTS ...

24.3.31 The INFORMATION_SCHEMA VIEWS Table

The VIEWS table provides information about views in databases. You must have the SHOW VIEW privilege
to access this table.

The VIEWS table has these columns:

• TABLE_CATALOG

The name of the catalog to which the view belongs. This value is always def.

• TABLE_SCHEMA

The name of the schema (database) to which the view belongs.

4150

The INFORMATION_SCHEMA VIEWS Table

• TABLE_NAME

The name of the view.

• VIEW_DEFINITION

The SELECT statement that provides the definition of the view. This column has most of what you see
in the Create Table column that SHOW CREATE VIEW produces. Skip the words before SELECT and
skip the words WITH CHECK OPTION. Suppose that the original statement was:

CREATE VIEW v AS
 SELECT s2,s1 FROM t
 WHERE s1 > 5
 ORDER BY s1
 WITH CHECK OPTION;

Then the view definition looks like this:

SELECT s2,s1 FROM t WHERE s1 > 5 ORDER BY s1

• CHECK_OPTION

The value of the CHECK_OPTION attribute. The value is one of NONE, CASCADE, or LOCAL.

• IS_UPDATABLE

MySQL sets a flag, called the view updatability flag, at CREATE VIEW time. The flag is set to YES (true)
if UPDATE and DELETE (and similar operations) are legal for the view. Otherwise, the flag is set to NO
(false). The IS_UPDATABLE column in the VIEWS table displays the status of this flag.

If a view is not updatable, statements such UPDATE, DELETE, and INSERT are illegal and are rejected.
(Even if a view is updatable, it might not be possible to insert into it; for details, refer to Section 23.5.3,
“Updatable and Insertable Views”.)

The IS_UPDATABLE flag may be unreliable if a view depends on one or more other views, and one of
these underlying views is updated. Regardless of the IS_UPDATABLE value, the server keeps track of
the updatability of a view and correctly rejects data change operations to views that are not updatable. If
the IS_UPDATABLE value for a view has become inaccurate to due to changes to underlying views, the
value can be updated by deleting and re-creating the view.

• DEFINER

The account of the user who created the view, in 'user_name'@'host_name' format.

• SECURITY_TYPE

The view SQL SECURITY characteristic. The value is one of DEFINER or INVOKER.

• CHARACTER_SET_CLIENT

The session value of the character_set_client system variable when the view was created.

• COLLATION_CONNECTION

The session value of the collation_connection system variable when the view was created.

Notes

MySQL permits different sql_mode settings to tell the server the type of SQL syntax to support. For
example, you might use the ANSI SQL mode to ensure MySQL correctly interprets the standard SQL

4151

INFORMATION_SCHEMA InnoDB Tables

concatenation operator, the double bar (||), in your queries. If you then create a view that concatenates
items, you might worry that changing the sql_mode setting to a value different from ANSI could cause
the view to become invalid. But this is not the case. No matter how you write out a view definition, MySQL
always stores it the same way, in a canonical form. Here is an example that shows how the server changes
a double bar concatenation operator to a CONCAT() function:

mysql> SET sql_mode = 'ANSI';
Query OK, 0 rows affected (0.00 sec)

mysql> CREATE VIEW test.v AS SELECT 'a' || 'b' as col1;
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT VIEW_DEFINITION FROM INFORMATION_SCHEMA.VIEWS
 WHERE TABLE_SCHEMA = 'test' AND TABLE_NAME = 'v';
+----------------------------------+
| VIEW_DEFINITION |
+----------------------------------+
| select concat('a','b') AS `col1` |
+----------------------------------+
1 row in set (0.00 sec)

The advantage of storing a view definition in canonical form is that changes made later to the value of
sql_mode do not affect the results from the view. However, an additional consequence is that comments
prior to SELECT are stripped from the definition by the server.

24.4 INFORMATION_SCHEMA InnoDB Tables
This section provides table definitions for INFORMATION_SCHEMA InnoDB tables. For related information
and examples, see Section 14.16, “InnoDB INFORMATION_SCHEMA Tables”.

INFORMATION_SCHEMA InnoDB tables can be used to monitor ongoing InnoDB activity, to detect
inefficiencies before they turn into issues, or to troubleshoot performance and capacity issues. As your
database becomes bigger and busier, running up against the limits of your hardware capacity, you monitor
and tune these aspects to keep the database running smoothly.

24.4.1 INFORMATION_SCHEMA InnoDB Table Reference

The following table summarizes INFORMATION_SCHEMA InnoDB tables. For greater detail, see the
individual table descriptions.

Table 24.3 INFORMATION_SCHEMA InnoDB Tables

Table Name Description Deprecated

INNODB_BUFFER_PAGE Pages in InnoDB buffer pool

INNODB_BUFFER_PAGE_LRU LRU ordering of pages in InnoDB
buffer pool

INNODB_BUFFER_POOL_STATS InnoDB buffer pool statistics

INNODB_CMP Status for operations related to
compressed InnoDB tables

INNODB_CMP_PER_INDEX Status for operations related to
compressed InnoDB tables and
indexes

INNODB_CMP_PER_INDEX_RESETStatus for operations related to
compressed InnoDB tables and
indexes

4152

INFORMATION_SCHEMA InnoDB Table Reference

Table Name Description Deprecated

INNODB_CMP_RESET Status for operations related to
compressed InnoDB tables

INNODB_CMPMEM Status for compressed pages
within InnoDB buffer pool

INNODB_CMPMEM_RESET Status for compressed pages
within InnoDB buffer pool

INNODB_FT_BEING_DELETED Snapshot of
INNODB_FT_DELETED table

INNODB_FT_CONFIG Metadata for InnoDB table
FULLTEXT index and associated
processing

INNODB_FT_DEFAULT_STOPWORDDefault list of stopwords for
InnoDB FULLTEXT indexes

INNODB_FT_DELETED Rows deleted from InnoDB table
FULLTEXT index

INNODB_FT_INDEX_CACHE Token information for newly
inserted rows in InnoDB
FULLTEXT index

INNODB_FT_INDEX_TABLE Inverted index information for
processing text searches against
InnoDB table FULLTEXT index

INNODB_LOCK_WAITS InnoDB transaction lock-wait
information

5.7.14

INNODB_LOCKS InnoDB transaction lock
information

5.7.14

INNODB_METRICS InnoDB performance information

INNODB_SYS_COLUMNS Columns in each InnoDB table

INNODB_SYS_DATAFILES Data file path information for
InnoDB file-per-table and general
tablespaces

INNODB_SYS_FIELDS Key columns of InnoDB indexes

INNODB_SYS_FOREIGN InnoDB foreign-key metadata

INNODB_SYS_FOREIGN_COLS InnoDB foreign-key column status
information

INNODB_SYS_INDEXES InnoDB index metadata

INNODB_SYS_TABLES InnoDB table metadata

INNODB_SYS_TABLESPACES InnoDB file-per-table, general, and
undo tablespace metadata

INNODB_SYS_TABLESTATS InnoDB table low-level status
information

INNODB_SYS_VIRTUAL InnoDB virtual generated column
metadata

INNODB_TEMP_TABLE_INFO Information about active user-
created InnoDB temporary tables

4153

The INFORMATION_SCHEMA INNODB_BUFFER_PAGE Table

Table Name Description Deprecated

INNODB_TRX Active InnoDB transaction
information

24.4.2 The INFORMATION_SCHEMA INNODB_BUFFER_PAGE Table

The INNODB_BUFFER_PAGE table provides information about each page in the InnoDB buffer pool.

For related usage information and examples, see Section 14.16.5, “InnoDB INFORMATION_SCHEMA
Buffer Pool Tables”.

Warning

Querying the INNODB_BUFFER_PAGE table can affect performance. Do not query
this table on a production system unless you are aware of the performance impact
and have determined it to be acceptable. To avoid impacting performance on a
production system, reproduce the issue you want to investigate and query buffer
pool statistics on a test instance.

The INNODB_BUFFER_PAGE table has these columns:

• POOL_ID

The buffer pool ID. This is an identifier to distinguish between multiple buffer pool instances.

• BLOCK_ID

The buffer pool block ID.

• SPACE

The tablespace ID; the same value as INNODB_SYS_TABLES.SPACE.

• PAGE_NUMBER

The page number.

• PAGE_TYPE

The page type. The following table shows the permitted values.

Table 24.4 INNODB_BUFFER_PAGE.PAGE_TYPE Values

Page Type Description

ALLOCATED Freshly allocated page

BLOB Uncompressed BLOB page

COMPRESSED_BLOB2 Subsequent comp BLOB page

COMPRESSED_BLOB First compressed BLOB page

EXTENT_DESCRIPTOR Extent descriptor page

FILE_SPACE_HEADER File space header

IBUF_BITMAP Insert buffer bitmap

IBUF_FREE_LIST Insert buffer free list

4154

The INFORMATION_SCHEMA INNODB_BUFFER_PAGE Table

Page Type Description

IBUF_INDEX Insert buffer index

INDEX B-tree node

INODE Index node

RTREE_INDEX R-tree index

SYSTEM System page

TRX_SYSTEM Transaction system data

UNDO_LOG Undo log page

UNKNOWN Unknown

• FLUSH_TYPE

The flush type.

• FIX_COUNT

The number of threads using this block within the buffer pool. When zero, the block is eligible to be
evicted.

• IS_HASHED

Whether a hash index has been built on this page.

• NEWEST_MODIFICATION

The Log Sequence Number of the youngest modification.

• OLDEST_MODIFICATION

The Log Sequence Number of the oldest modification.

• ACCESS_TIME

An abstract number used to judge the first access time of the page.

• TABLE_NAME

The name of the table the page belongs to. This column is applicable only to pages with a PAGE_TYPE
value of INDEX.

• INDEX_NAME

The name of the index the page belongs to. This can be the name of a clustered index or a secondary
index. This column is applicable only to pages with a PAGE_TYPE value of INDEX.

• NUMBER_RECORDS

The number of records within the page.

• DATA_SIZE

The sum of the sizes of the records. This column is applicable only to pages with a PAGE_TYPE value of
INDEX.

• COMPRESSED_SIZE

4155

The INFORMATION_SCHEMA INNODB_BUFFER_PAGE Table

The compressed page size. NULL for pages that are not compressed.

• PAGE_STATE

The page state. The following table shows the permitted values.

Table 24.5 INNODB_BUFFER_PAGE.PAGE_STATE Values

Page State Description

FILE_PAGE A buffered file page

MEMORY Contains a main memory object

NOT_USED In the free list

NULL Clean compressed pages, compressed pages
in the flush list, pages used as buffer pool watch
sentinels

READY_FOR_USE A free page

REMOVE_HASH Hash index should be removed before placing in
the free list

• IO_FIX

Whether any I/O is pending for this page: IO_NONE = no pending I/O, IO_READ = read pending,
IO_WRITE = write pending.

• IS_OLD

Whether the block is in the sublist of old blocks in the LRU list.

• FREE_PAGE_CLOCK

The value of the freed_page_clock counter when the block was the last placed at the head of the
LRU list. The freed_page_clock counter tracks the number of blocks removed from the end of the
LRU list.

Example

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_BUFFER_PAGE LIMIT 1\G
*************************** 1. row ***************************
 POOL_ID: 0
 BLOCK_ID: 0
 SPACE: 97
 PAGE_NUMBER: 2473
 PAGE_TYPE: INDEX
 FLUSH_TYPE: 1
 FIX_COUNT: 0
 IS_HASHED: YES
NEWEST_MODIFICATION: 733855581
OLDEST_MODIFICATION: 0
 ACCESS_TIME: 3378385672
 TABLE_NAME: `employees`.`salaries`
 INDEX_NAME: PRIMARY
 NUMBER_RECORDS: 468
 DATA_SIZE: 14976
 COMPRESSED_SIZE: 0
 PAGE_STATE: FILE_PAGE
 IO_FIX: IO_NONE
 IS_OLD: YES

4156

The INFORMATION_SCHEMA INNODB_BUFFER_PAGE_LRU Table

 FREE_PAGE_CLOCK: 66

Notes

• This table is useful primarily for expert-level performance monitoring, or when developing performance-
related extensions for MySQL.

• You must have the PROCESS privilege to query this table.

• Use the INFORMATION_SCHEMA COLUMNS table or the SHOW COLUMNS statement to view additional
information about the columns of this table, including data types and default values.

• When tables, table rows, partitions, or indexes are deleted, associated pages remain in the buffer pool
until space is required for other data. The INNODB_BUFFER_PAGE table reports information about these
pages until they are evicted from the buffer pool. For more information about how the InnoDB manages
buffer pool data, see Section 14.5.1, “Buffer Pool”.

24.4.3 The INFORMATION_SCHEMA INNODB_BUFFER_PAGE_LRU Table

The INNODB_BUFFER_PAGE_LRU table provides information about the pages in the InnoDB buffer pool;
in particular, how they are ordered in the LRU list that determines which pages to evict from the buffer pool
when it becomes full.

The INNODB_BUFFER_PAGE_LRU table has the same columns as the INNODB_BUFFER_PAGE table,
except that the INNODB_BUFFER_PAGE_LRU table has LRU_POSITION and COMPRESSED columns
instead of BLOCK_ID and PAGE_STATE columns.

For related usage information and examples, see Section 14.16.5, “InnoDB INFORMATION_SCHEMA
Buffer Pool Tables”.

Warning

Querying the INNODB_BUFFER_PAGE_LRU table can affect performance. Do not
query this table on a production system unless you are aware of the performance
impact and have determined it to be acceptable. To avoid impacting performance
on a production system, reproduce the issue you want to investigate and query
buffer pool statistics on a test instance.

The INNODB_BUFFER_PAGE_LRU table has these columns:

• POOL_ID

The buffer pool ID. This is an identifier to distinguish between multiple buffer pool instances.

• LRU_POSITION

The position of the page in the LRU list.

• SPACE

The tablespace ID; the same value as INNODB_SYS_TABLES.SPACE.

• PAGE_NUMBER

The page number.

• PAGE_TYPE

The page type. The following table shows the permitted values.

4157

The INFORMATION_SCHEMA INNODB_BUFFER_PAGE_LRU Table

Table 24.6 INNODB_BUFFER_PAGE_LRU.PAGE_TYPE Values

Page Type Description

ALLOCATED Freshly allocated page

BLOB Uncompressed BLOB page

COMPRESSED_BLOB2 Subsequent comp BLOB page

COMPRESSED_BLOB First compressed BLOB page

EXTENT_DESCRIPTOR Extent descriptor page

FILE_SPACE_HEADER File space header

IBUF_BITMAP Insert buffer bitmap

IBUF_FREE_LIST Insert buffer free list

IBUF_INDEX Insert buffer index

INDEX B-tree node

INODE Index node

RTREE_INDEX R-tree index

SYSTEM System page

TRX_SYSTEM Transaction system data

UNDO_LOG Undo log page

UNKNOWN Unknown

• FLUSH_TYPE

The flush type.

• FIX_COUNT

The number of threads using this block within the buffer pool. When zero, the block is eligible to be
evicted.

• IS_HASHED

Whether a hash index has been built on this page.

• NEWEST_MODIFICATION

The Log Sequence Number of the youngest modification.

• OLDEST_MODIFICATION

The Log Sequence Number of the oldest modification.

• ACCESS_TIME

An abstract number used to judge the first access time of the page.

• TABLE_NAME

The name of the table the page belongs to. This column is applicable only to pages with a PAGE_TYPE
value of INDEX.

• INDEX_NAME

4158

The INFORMATION_SCHEMA INNODB_BUFFER_PAGE_LRU Table

The name of the index the page belongs to. This can be the name of a clustered index or a secondary
index. This column is applicable only to pages with a PAGE_TYPE value of INDEX.

• NUMBER_RECORDS

The number of records within the page.

• DATA_SIZE

The sum of the sizes of the records. This column is applicable only to pages with a PAGE_TYPE value of
INDEX.

• COMPRESSED_SIZE

The compressed page size. NULL for pages that are not compressed.

• COMPRESSED

Whether the page is compressed.

• IO_FIX

Whether any I/O is pending for this page: IO_NONE = no pending I/O, IO_READ = read pending,
IO_WRITE = write pending.

• IS_OLD

Whether the block is in the sublist of old blocks in the LRU list.

• FREE_PAGE_CLOCK

The value of the freed_page_clock counter when the block was the last placed at the head of the
LRU list. The freed_page_clock counter tracks the number of blocks removed from the end of the
LRU list.

Example

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_BUFFER_PAGE_LRU LIMIT 1\G
*************************** 1. row ***************************
 POOL_ID: 0
 LRU_POSITION: 0
 SPACE: 97
 PAGE_NUMBER: 1984
 PAGE_TYPE: INDEX
 FLUSH_TYPE: 1
 FIX_COUNT: 0
 IS_HASHED: YES
NEWEST_MODIFICATION: 719490396
OLDEST_MODIFICATION: 0
 ACCESS_TIME: 3378383796
 TABLE_NAME: `employees`.`salaries`
 INDEX_NAME: PRIMARY
 NUMBER_RECORDS: 468
 DATA_SIZE: 14976
 COMPRESSED_SIZE: 0
 COMPRESSED: NO
 IO_FIX: IO_NONE
 IS_OLD: YES
 FREE_PAGE_CLOCK: 0

4159

The INFORMATION_SCHEMA INNODB_BUFFER_POOL_STATS Table

Notes

• This table is useful primarily for expert-level performance monitoring, or when developing performance-
related extensions for MySQL.

• You must have the PROCESS privilege to query this table.

• Use the INFORMATION_SCHEMA COLUMNS table or the SHOW COLUMNS statement to view additional
information about the columns of this table, including data types and default values.

• Querying this table can require MySQL to allocate a large block of contiguous memory, more than 64
bytes times the number of active pages in the buffer pool. This allocation could potentially cause an out-
of-memory error, especially for systems with multi-gigabyte buffer pools.

• Querying this table requires MySQL to lock the data structure representing the buffer pool while
traversing the LRU list, which can reduce concurrency, especially for systems with multi-gigabyte buffer
pools.

• When tables, table rows, partitions, or indexes are deleted, associated pages remain in the buffer pool
until space is required for other data. The INNODB_BUFFER_PAGE_LRU table reports information about
these pages until they are evicted from the buffer pool. For more information about how the InnoDB
manages buffer pool data, see Section 14.5.1, “Buffer Pool”.

24.4.4 The INFORMATION_SCHEMA INNODB_BUFFER_POOL_STATS Table

The INNODB_BUFFER_POOL_STATS table provides much of the same buffer pool information provided
in SHOW ENGINE INNODB STATUS output. Much of the same information may also be obtained using
InnoDB buffer pool server status variables.

The idea of making pages in the buffer pool “young” or “not young” refers to transferring them between the
sublists at the head and tail of the buffer pool data structure. Pages made “young” take longer to age out of
the buffer pool, while pages made “not young” are moved much closer to the point of eviction.

For related usage information and examples, see Section 14.16.5, “InnoDB INFORMATION_SCHEMA
Buffer Pool Tables”.

The INNODB_BUFFER_POOL_STATS table has these columns:

• POOL_ID

The buffer pool ID. This is an identifier to distinguish between multiple buffer pool instances.

• POOL_SIZE

The InnoDB buffer pool size in pages.

• FREE_BUFFERS

The number of free pages in the InnoDB buffer pool.

• DATABASE_PAGES

The number of pages in the InnoDB buffer pool containing data. This number includes both dirty and
clean pages.

• OLD_DATABASE_PAGES

The number of pages in the old buffer pool sublist.

4160

The INFORMATION_SCHEMA INNODB_BUFFER_POOL_STATS Table

• MODIFIED_DATABASE_PAGES

The number of modified (dirty) database pages.

• PENDING_DECOMPRESS

The number of pages pending decompression.

• PENDING_READS

The number of pending reads.

• PENDING_FLUSH_LRU

The number of pages pending flush in the LRU.

• PENDING_FLUSH_LIST

The number of pages pending flush in the flush list.

• PAGES_MADE_YOUNG

The number of pages made young.

• PAGES_NOT_MADE_YOUNG

The number of pages not made young.

• PAGES_MADE_YOUNG_RATE

The number of pages made young per second (pages made young since the last printout / time
elapsed).

• PAGES_MADE_NOT_YOUNG_RATE

The number of pages not made per second (pages not made young since the last printout / time
elapsed).

• NUMBER_PAGES_READ

The number of pages read.

• NUMBER_PAGES_CREATED

The number of pages created.

• NUMBER_PAGES_WRITTEN

The number of pages written.

• PAGES_READ_RATE

The number of pages read per second (pages read since the last printout / time elapsed).

• PAGES_CREATE_RATE

The number of pages created per second (pages created since the last printout / time elapsed).

• PAGES_WRITTEN_RATE

The number of pages written per second (pages written since the last printout / time elapsed).

4161

The INFORMATION_SCHEMA INNODB_BUFFER_POOL_STATS Table

• NUMBER_PAGES_GET

The number of logical read requests.

• HIT_RATE

The buffer pool hit rate.

• YOUNG_MAKE_PER_THOUSAND_GETS

The number of pages made young per thousand gets.

• NOT_YOUNG_MAKE_PER_THOUSAND_GETS

The number of pages not made young per thousand gets.

• NUMBER_PAGES_READ_AHEAD

The number of pages read ahead.

• NUMBER_READ_AHEAD_EVICTED

The number of pages read into the InnoDB buffer pool by the read-ahead background thread that were
subsequently evicted without having been accessed by queries.

• READ_AHEAD_RATE

The read-ahead rate per second (pages read ahead since the last printout / time elapsed).

• READ_AHEAD_EVICTED_RATE

The number of read-ahead pages evicted without access per second (read-ahead pages not accessed
since the last printout / time elapsed).

• LRU_IO_TOTAL

Total LRU I/O.

• LRU_IO_CURRENT

LRU I/O for the current interval.

• UNCOMPRESS_TOTAL

The total number of pages decompressed.

• UNCOMPRESS_CURRENT

The number of pages decompressed in the current interval.

Example

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_BUFFER_POOL_STATS\G
*************************** 1. row ***************************
 POOL_ID: 0
 POOL_SIZE: 8192
 FREE_BUFFERS: 1
 DATABASE_PAGES: 8085
 OLD_DATABASE_PAGES: 2964
 MODIFIED_DATABASE_PAGES: 0
 PENDING_DECOMPRESS: 0
 PENDING_READS: 0

4162

The INFORMATION_SCHEMA INNODB_CMP and INNODB_CMP_RESET Tables

 PENDING_FLUSH_LRU: 0
 PENDING_FLUSH_LIST: 0
 PAGES_MADE_YOUNG: 22821
 PAGES_NOT_MADE_YOUNG: 3544303
 PAGES_MADE_YOUNG_RATE: 357.62602199870594
 PAGES_MADE_NOT_YOUNG_RATE: 0
 NUMBER_PAGES_READ: 2389
 NUMBER_PAGES_CREATED: 12385
 NUMBER_PAGES_WRITTEN: 13111
 PAGES_READ_RATE: 0
 PAGES_CREATE_RATE: 0
 PAGES_WRITTEN_RATE: 0
 NUMBER_PAGES_GET: 33322210
 HIT_RATE: 1000
 YOUNG_MAKE_PER_THOUSAND_GETS: 18
NOT_YOUNG_MAKE_PER_THOUSAND_GETS: 0
 NUMBER_PAGES_READ_AHEAD: 2024
 NUMBER_READ_AHEAD_EVICTED: 0
 READ_AHEAD_RATE: 0
 READ_AHEAD_EVICTED_RATE: 0
 LRU_IO_TOTAL: 0
 LRU_IO_CURRENT: 0
 UNCOMPRESS_TOTAL: 0
 UNCOMPRESS_CURRENT: 0

Notes

• This table is useful primarily for expert-level performance monitoring, or when developing performance-
related extensions for MySQL.

• You must have the PROCESS privilege to query this table.

• Use the INFORMATION_SCHEMA COLUMNS table or the SHOW COLUMNS statement to view additional
information about the columns of this table, including data types and default values.

24.4.5 The INFORMATION_SCHEMA INNODB_CMP and INNODB_CMP_RESET
Tables

The INNODB_CMP and INNODB_CMP_RESET tables provide status information on operations related to
compressed InnoDB tables.

The INNODB_CMP and INNODB_CMP_RESET tables have these columns:

• PAGE_SIZE

The compressed page size in bytes.

• COMPRESS_OPS

The number of times a B-tree page of size PAGE_SIZE has been compressed. Pages are compressed
whenever an empty page is created or the space for the uncompressed modification log runs out.

• COMPRESS_OPS_OK

The number of times a B-tree page of size PAGE_SIZE has been successfully compressed. This count
should never exceed COMPRESS_OPS.

• COMPRESS_TIME

The total time in seconds used for attempts to compress B-tree pages of size PAGE_SIZE.

• UNCOMPRESS_OPS

4163

The INFORMATION_SCHEMA INNODB_CMPMEM and INNODB_CMPMEM_RESET Tables

The number of times a B-tree page of size PAGE_SIZE has been uncompressed. B-tree pages are
uncompressed whenever compression fails or at first access when the uncompressed page does not
exist in the buffer pool.

• UNCOMPRESS_TIME

The total time in seconds used for uncompressing B-tree pages of the size PAGE_SIZE.

Example

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_CMP\G
*************************** 1. row ***************************
 page_size: 1024
 compress_ops: 0
compress_ops_ok: 0
 compress_time: 0
 uncompress_ops: 0
uncompress_time: 0
*************************** 2. row ***************************
 page_size: 2048
 compress_ops: 0
compress_ops_ok: 0
 compress_time: 0
 uncompress_ops: 0
uncompress_time: 0
*************************** 3. row ***************************
 page_size: 4096
 compress_ops: 0
compress_ops_ok: 0
 compress_time: 0
 uncompress_ops: 0
uncompress_time: 0
*************************** 4. row ***************************
 page_size: 8192
 compress_ops: 86955
compress_ops_ok: 81182
 compress_time: 27
 uncompress_ops: 26828
uncompress_time: 5
*************************** 5. row ***************************
 page_size: 16384
 compress_ops: 0
compress_ops_ok: 0
 compress_time: 0
 uncompress_ops: 0
uncompress_time: 0

Notes

• Use these tables to measure the effectiveness of InnoDB table compression in your database.

• You must have the PROCESS privilege to query this table.

• Use the INFORMATION_SCHEMA COLUMNS table or the SHOW COLUMNS statement to view additional
information about the columns of this table, including data types and default values.

• For usage information, see Section 14.9.1.4, “Monitoring InnoDB Table Compression at Runtime” and
Section 14.16.1.3, “Using the Compression Information Schema Tables”. For general information about
InnoDB table compression, see Section 14.9, “InnoDB Table and Page Compression”.

24.4.6 The INFORMATION_SCHEMA INNODB_CMPMEM and
INNODB_CMPMEM_RESET Tables

4164

The INFORMATION_SCHEMA INNODB_CMPMEM and INNODB_CMPMEM_RESET Tables

The INNODB_CMPMEM and INNODB_CMPMEM_RESET tables provide status information on compressed
pages within the InnoDB buffer pool.

The INNODB_CMPMEM and INNODB_CMPMEM_RESET tables have these columns:

• PAGE_SIZE

The block size in bytes. Each record of this table describes blocks of this size.

• BUFFER_POOL_INSTANCE

A unique identifier for the buffer pool instance.

• PAGES_USED

The number of blocks of size PAGE_SIZE that are currently in use.

• PAGES_FREE

The number of blocks of size PAGE_SIZE that are currently available for allocation. This column shows
the external fragmentation in the memory pool. Ideally, these numbers should be at most 1.

• RELOCATION_OPS

The number of times a block of size PAGE_SIZE has been relocated. The buddy system can relocate the
allocated “buddy neighbor” of a freed block when it tries to form a bigger freed block. Reading from the
INNODB_CMPMEM_RESET table resets this count.

• RELOCATION_TIME

The total time in microseconds used for relocating blocks of size PAGE_SIZE. Reading from the table
INNODB_CMPMEM_RESET resets this count.

Example

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_CMPMEM\G
*************************** 1. row ***************************
 page_size: 1024
buffer_pool_instance: 0
 pages_used: 0
 pages_free: 0
 relocation_ops: 0
 relocation_time: 0
*************************** 2. row ***************************
 page_size: 2048
buffer_pool_instance: 0
 pages_used: 0
 pages_free: 0
 relocation_ops: 0
 relocation_time: 0
*************************** 3. row ***************************
 page_size: 4096
buffer_pool_instance: 0
 pages_used: 0
 pages_free: 0
 relocation_ops: 0
 relocation_time: 0
*************************** 4. row ***************************
 page_size: 8192
buffer_pool_instance: 0
 pages_used: 7673
 pages_free: 15

4165

The INFORMATION_SCHEMA INNODB_CMP_PER_INDEX and INNODB_CMP_PER_INDEX_RESET Tables

 relocation_ops: 4638
 relocation_time: 0
*************************** 5. row ***************************
 page_size: 16384
buffer_pool_instance: 0
 pages_used: 0
 pages_free: 0
 relocation_ops: 0
 relocation_time: 0

Notes

• Use these tables to measure the effectiveness of InnoDB table compression in your database.

• You must have the PROCESS privilege to query this table.

• Use the INFORMATION_SCHEMA COLUMNS table or the SHOW COLUMNS statement to view additional
information about the columns of this table, including data types and default values.

• For usage information, see Section 14.9.1.4, “Monitoring InnoDB Table Compression at Runtime” and
Section 14.16.1.3, “Using the Compression Information Schema Tables”. For general information about
InnoDB table compression, see Section 14.9, “InnoDB Table and Page Compression”.

24.4.7 The INFORMATION_SCHEMA INNODB_CMP_PER_INDEX and
INNODB_CMP_PER_INDEX_RESET Tables

The INNODB_CMP_PER_INDEX and INNODB_CMP_PER_INDEX_RESET tables provide status information
on operations related to compressed InnoDB tables and indexes, with separate statistics for each
combination of database, table, and index, to help you evaluate the performance and usefulness of
compression for specific tables.

For a compressed InnoDB table, both the table data and all the secondary indexes are compressed. In
this context, the table data is treated as just another index, one that happens to contain all the columns: the
clustered index.

The INNODB_CMP_PER_INDEX and INNODB_CMP_PER_INDEX_RESET tables have these columns:

• DATABASE_NAME

The schema (database) containing the applicable table.

• TABLE_NAME

The table to monitor for compression statistics.

• INDEX_NAME

The index to monitor for compression statistics.

• COMPRESS_OPS

The number of compression operations attempted. Pages are compressed whenever an empty page is
created or the space for the uncompressed modification log runs out.

• COMPRESS_OPS_OK

The number of successful compression operations. Subtract from the COMPRESS_OPS value to get
the number of compression failures. Divide by the COMPRESS_OPS value to get the percentage of
compression failures.

4166

The INFORMATION_SCHEMA INNODB_FT_BEING_DELETED Table

• COMPRESS_TIME

The total time in seconds used for compressing data in this index.

• UNCOMPRESS_OPS

The number of uncompression operations performed. Compressed InnoDB pages are uncompressed
whenever compression fails, or the first time a compressed page is accessed in the buffer pool and the
uncompressed page does not exist.

• UNCOMPRESS_TIME

The total time in seconds used for uncompressing data in this index.

Example

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_CMP_PER_INDEX\G
*************************** 1. row ***************************
 database_name: employees
 table_name: salaries
 index_name: PRIMARY
 compress_ops: 0
compress_ops_ok: 0
 compress_time: 0
 uncompress_ops: 23451
uncompress_time: 4
*************************** 2. row ***************************
 database_name: employees
 table_name: salaries
 index_name: emp_no
 compress_ops: 0
compress_ops_ok: 0
 compress_time: 0
 uncompress_ops: 1597
uncompress_time: 0

Notes

• Use these tables to measure the effectiveness of InnoDB table compression for specific tables, indexes,
or both.

• You must have the PROCESS privilege to query these tables.

• Use the INFORMATION_SCHEMA COLUMNS table or the SHOW COLUMNS statement to view additional
information about the columns of these tables, including data types and default values.

• Because collecting separate measurements for every index imposes substantial performance overhead,
INNODB_CMP_PER_INDEX and INNODB_CMP_PER_INDEX_RESET statistics are not gathered by
default. You must enable the innodb_cmp_per_index_enabled system variable before performing
the operations on compressed tables that you want to monitor.

• For usage information, see Section 14.9.1.4, “Monitoring InnoDB Table Compression at Runtime” and
Section 14.16.1.3, “Using the Compression Information Schema Tables”. For general information about
InnoDB table compression, see Section 14.9, “InnoDB Table and Page Compression”.

24.4.8 The INFORMATION_SCHEMA INNODB_FT_BEING_DELETED Table

The INNODB_FT_BEING_DELETED table provides a snapshot of the INNODB_FT_DELETED table;
it is used only during an OPTIMIZE TABLE maintenance operation. When OPTIMIZE TABLE is
run, the INNODB_FT_BEING_DELETED table is emptied, and DOC_ID values are removed from the

4167

The INFORMATION_SCHEMA INNODB_FT_CONFIG Table

INNODB_FT_DELETED table. Because the contents of INNODB_FT_BEING_DELETED typically have
a short lifetime, this table has limited utility for monitoring or debugging. For information about running
OPTIMIZE TABLE on tables with FULLTEXT indexes, see Section 12.9.6, “Fine-Tuning MySQL Full-Text
Search”.

This table is empty initially. Before querying it, set the value of the innodb_ft_aux_table system
variable to the name (including the database name) of the table that contains the FULLTEXT
index; for example test/articles. The output appears similar to the example provided for the
INNODB_FT_DELETED table.

For related usage information and examples, see Section 14.16.4, “InnoDB INFORMATION_SCHEMA
FULLTEXT Index Tables”.

The INNODB_FT_BEING_DELETED table has these columns:

• DOC_ID

The document ID of the row that is in the process of being deleted. This value might reflect the value
of an ID column that you defined for the underlying table, or it can be a sequence value generated by
InnoDB when the table contains no suitable column. This value is used when you do text searches, to
skip rows in the INNODB_FT_INDEX_TABLE table before data for deleted rows is physically removed
from the FULLTEXT index by an OPTIMIZE TABLE statement. For more information, see Optimizing
InnoDB Full-Text Indexes.

Notes

• You must have the PROCESS privilege to query this table.

• Use the INFORMATION_SCHEMA COLUMNS table or the SHOW COLUMNS statement to view additional
information about the columns of this table, including data types and default values.

• For more information about InnoDB FULLTEXT search, see Section 14.6.2.4, “InnoDB Full-Text
Indexes”, and Section 12.9, “Full-Text Search Functions”.

24.4.9 The INFORMATION_SCHEMA INNODB_FT_CONFIG Table

The INNODB_FT_CONFIG table provides metadata about the FULLTEXT index and associated processing
for an InnoDB table.

This table is empty initially. Before querying it, set the value of the innodb_ft_aux_table system
variable to the name (including the database name) of the table that contains the FULLTEXT index; for
example test/articles.

For related usage information and examples, see Section 14.16.4, “InnoDB INFORMATION_SCHEMA
FULLTEXT Index Tables”.

The INNODB_FT_CONFIG table has these columns:

• KEY

The name designating an item of metadata for an InnoDB table containing a FULLTEXT index.

The values for this column might change, depending on the needs for performance tuning and
debugging for InnoDB full-text processing. The key names and their meanings include:

• optimize_checkpoint_limit: The number of seconds after which an OPTIMIZE TABLE run
stops.

4168

The INFORMATION_SCHEMA INNODB_FT_DEFAULT_STOPWORD Table

• synced_doc_id: The next DOC_ID to be issued.

• stopword_table_name: The database/table name for a user-defined stopword table. The
VALUE column is empty if there is no user-defined stopword table.

• use_stopword: Indicates whether a stopword table is used, which is defined when the FULLTEXT
index is created.

• VALUE

The value associated with the corresponding KEY column, reflecting some limit or current value for an
aspect of a FULLTEXT index for an InnoDB table.

Example

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_FT_CONFIG;
+---------------------------+-------------------+
| KEY | VALUE |
+---------------------------+-------------------+
optimize_checkpoint_limit	180
synced_doc_id	0
stopword_table_name	test/my_stopwords
use_stopword	1
+---------------------------+-------------------+

Notes

• This table is intended only for internal configuration. It is not intended for statistical information purposes.

• You must have the PROCESS privilege to query this table.

• Use the INFORMATION_SCHEMA COLUMNS table or the SHOW COLUMNS statement to view additional
information about the columns of this table, including data types and default values.

• For more information about InnoDB FULLTEXT search, see Section 14.6.2.4, “InnoDB Full-Text
Indexes”, and Section 12.9, “Full-Text Search Functions”.

24.4.10 The INFORMATION_SCHEMA INNODB_FT_DEFAULT_STOPWORD
Table

The INNODB_FT_DEFAULT_STOPWORD table holds a list of stopwords that are used by default when
creating a FULLTEXT index on InnoDB tables. For information about the default InnoDB stopword list and
how to define your own stopword lists, see Section 12.9.4, “Full-Text Stopwords”.

For related usage information and examples, see Section 14.16.4, “InnoDB INFORMATION_SCHEMA
FULLTEXT Index Tables”.

The INNODB_FT_DEFAULT_STOPWORD table has these columns:

• value

A word that is used by default as a stopword for FULLTEXT indexes on InnoDB tables. This is not used
if you override the default stopword processing with either the innodb_ft_server_stopword_table
or the innodb_ft_user_stopword_table system variable.

Example

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_FT_DEFAULT_STOPWORD;

4169

The INFORMATION_SCHEMA INNODB_FT_DELETED Table

+-------+
| value |
+-------+
| a |
| about |
| an |
| are |
| as |
| at |
| be |
| by |
| com |
| de |
| en |
| for |
| from |
| how |
| i |
| in |
| is |
| it |
| la |
| of |
| on |
| or |
| that |
| the |
| this |
| to |
| was |
| what |
| when |
| where |
| who |
| will |
| with |
| und |
| the |
| www |
+-------+
36 rows in set (0.00 sec)

Notes

• You must have the PROCESS privilege to query this table.

• Use the INFORMATION_SCHEMA COLUMNS table or the SHOW COLUMNS statement to view additional
information about the columns of this table, including data types and default values.

• For more information about InnoDB FULLTEXT search, see Section 14.6.2.4, “InnoDB Full-Text
Indexes”, and Section 12.9, “Full-Text Search Functions”.

24.4.11 The INFORMATION_SCHEMA INNODB_FT_DELETED Table

The INNODB_FT_DELETED table stores rows that are deleted from the FULLTEXT index for an InnoDB
table. To avoid expensive index reorganization during DML operations for an InnoDB FULLTEXT index,
the information about newly deleted words is stored separately, filtered out of search results when you
do a text search, and removed from the main search index only when you issue an OPTIMIZE TABLE
statement for the InnoDB table. For more information, see Optimizing InnoDB Full-Text Indexes.

This table is empty initially. Before querying it, set the value of the innodb_ft_aux_table system
variable to the name (including the database name) of the table that contains the FULLTEXT index; for
example test/articles.

4170

The INFORMATION_SCHEMA INNODB_FT_INDEX_CACHE Table

For related usage information and examples, see Section 14.16.4, “InnoDB INFORMATION_SCHEMA
FULLTEXT Index Tables”.

The INNODB_FT_DELETED table has these columns:

• DOC_ID

The document ID of the newly deleted row. This value might reflect the value of an ID column that
you defined for the underlying table, or it can be a sequence value generated by InnoDB when the
table contains no suitable column. This value is used when you do text searches, to skip rows in
the INNODB_FT_INDEX_TABLE table before data for deleted rows is physically removed from the
FULLTEXT index by an OPTIMIZE TABLE statement. For more information, see Optimizing InnoDB Full-
Text Indexes.

Example

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_FT_DELETED;
+--------+
| DOC_ID |
+--------+
| 6 |
| 7 |
| 8 |
+--------+

Notes

• You must have the PROCESS privilege to query this table.

• Use the INFORMATION_SCHEMA COLUMNS table or the SHOW COLUMNS statement to view additional
information about the columns of this table, including data types and default values.

• For more information about InnoDB FULLTEXT search, see Section 14.6.2.4, “InnoDB Full-Text
Indexes”, and Section 12.9, “Full-Text Search Functions”.

24.4.12 The INFORMATION_SCHEMA INNODB_FT_INDEX_CACHE Table

The INNODB_FT_INDEX_CACHE table provides token information about newly inserted rows in a
FULLTEXT index. To avoid expensive index reorganization during DML operations, the information about
newly indexed words is stored separately, and combined with the main search index only when OPTIMIZE
TABLE is run, when the server is shut down, or when the cache size exceeds a limit defined by the
innodb_ft_cache_size or innodb_ft_total_cache_size system variable.

This table is empty initially. Before querying it, set the value of the innodb_ft_aux_table system
variable to the name (including the database name) of the table that contains the FULLTEXT index; for
example test/articles.

For related usage information and examples, see Section 14.16.4, “InnoDB INFORMATION_SCHEMA
FULLTEXT Index Tables”.

The INNODB_FT_INDEX_CACHE table has these columns:

• WORD

A word extracted from the text of a newly inserted row.

• FIRST_DOC_ID

4171

The INFORMATION_SCHEMA INNODB_FT_INDEX_CACHE Table

The first document ID in which this word appears in the FULLTEXT index.

• LAST_DOC_ID

The last document ID in which this word appears in the FULLTEXT index.

• DOC_COUNT

The number of rows in which this word appears in the FULLTEXT index. The same word can occur
several times within the cache table, once for each combination of DOC_ID and POSITION values.

• DOC_ID

The document ID of the newly inserted row. This value might reflect the value of an ID column that you
defined for the underlying table, or it can be a sequence value generated by InnoDB when the table
contains no suitable column.

• POSITION

The position of this particular instance of the word within the relevant document identified by the DOC_ID
value. The value does not represent an absolute position; it is an offset added to the POSITION of the
previous instance of that word.

Notes

• This table is empty initially. Before querying it, set the value of the innodb_ft_aux_table system
variable to the name (including the database name) of the table that contains the FULLTEXT
index; for example test/articles. The following example demonstrates how to use the
innodb_ft_aux_table system variable to show information about a FULLTEXT index for a specified
table.

mysql> USE test;

mysql> CREATE TABLE articles (
 id INT UNSIGNED AUTO_INCREMENT NOT NULL PRIMARY KEY,
 title VARCHAR(200),
 body TEXT,
 FULLTEXT (title,body)
) ENGINE=InnoDB;

mysql> INSERT INTO articles (title,body) VALUES
 ('MySQL Tutorial','DBMS stands for DataBase ...'),
 ('How To Use MySQL Well','After you went through a ...'),
 ('Optimizing MySQL','In this tutorial we show ...'),
 ('1001 MySQL Tricks','1. Never run mysqld as root. 2. ...'),
 ('MySQL vs. YourSQL','In the following database comparison ...'),
 ('MySQL Security','When configured properly, MySQL ...');

mysql> SET GLOBAL innodb_ft_aux_table = 'test/articles';

mysql> SELECT WORD, DOC_COUNT, DOC_ID, POSITION
 FROM INFORMATION_SCHEMA.INNODB_FT_INDEX_CACHE LIMIT 5;
+------------+-----------+--------+----------+
| WORD | DOC_COUNT | DOC_ID | POSITION |
+------------+-----------+--------+----------+
1001	1	4	0
after	1	2	22
comparison	1	5	44
configured	1	6	20
database	2	1	31
+------------+-----------+--------+----------+

4172

The INFORMATION_SCHEMA INNODB_FT_INDEX_TABLE Table

• You must have the PROCESS privilege to query this table.

• Use the INFORMATION_SCHEMA COLUMNS table or the SHOW COLUMNS statement to view additional
information about the columns of this table, including data types and default values.

• For more information about InnoDB FULLTEXT search, see Section 14.6.2.4, “InnoDB Full-Text
Indexes”, and Section 12.9, “Full-Text Search Functions”.

24.4.13 The INFORMATION_SCHEMA INNODB_FT_INDEX_TABLE Table

The INNODB_FT_INDEX_TABLE table provides information about the inverted index used to process text
searches against the FULLTEXT index of an InnoDB table.

This table is empty initially. Before querying it, set the value of the innodb_ft_aux_table system
variable to the name (including the database name) of the table that contains the FULLTEXT index; for
example test/articles.

For related usage information and examples, see Section 14.16.4, “InnoDB INFORMATION_SCHEMA
FULLTEXT Index Tables”.

The INNODB_FT_INDEX_TABLE table has these columns:

• WORD

A word extracted from the text of the columns that are part of a FULLTEXT.

• FIRST_DOC_ID

The first document ID in which this word appears in the FULLTEXT index.

• LAST_DOC_ID

The last document ID in which this word appears in the FULLTEXT index.

• DOC_COUNT

The number of rows in which this word appears in the FULLTEXT index. The same word can occur
several times within the cache table, once for each combination of DOC_ID and POSITION values.

• DOC_ID

The document ID of the row containing the word. This value might reflect the value of an ID column that
you defined for the underlying table, or it can be a sequence value generated by InnoDB when the table
contains no suitable column.

• POSITION

The position of this particular instance of the word within the relevant document identified by the DOC_ID
value.

Notes

• This table is empty initially. Before querying it, set the value of the innodb_ft_aux_table system
variable to the name (including the database name) of the table that contains the FULLTEXT
index; for example test/articles. The following example demonstrates how to use the
innodb_ft_aux_table system variable to show information about a FULLTEXT index for a specified
table. Before information for newly inserted rows appears in INNODB_FT_INDEX_TABLE, the FULLTEXT
index cache must be flushed to disk. This is accomplished by running an OPTIMIZE TABLE operation

4173

The INFORMATION_SCHEMA INNODB_LOCKS Table

on the indexed table with the innodb_optimize_fulltext_only system variable enabled. (The
example disables that variable again at the end because it is intended to be enabled only temporarily.)

mysql> USE test;

mysql> CREATE TABLE articles (
 id INT UNSIGNED AUTO_INCREMENT NOT NULL PRIMARY KEY,
 title VARCHAR(200),
 body TEXT,
 FULLTEXT (title,body)
) ENGINE=InnoDB;

mysql> INSERT INTO articles (title,body) VALUES
 ('MySQL Tutorial','DBMS stands for DataBase ...'),
 ('How To Use MySQL Well','After you went through a ...'),
 ('Optimizing MySQL','In this tutorial we show ...'),
 ('1001 MySQL Tricks','1. Never run mysqld as root. 2. ...'),
 ('MySQL vs. YourSQL','In the following database comparison ...'),
 ('MySQL Security','When configured properly, MySQL ...');

mysql> SET GLOBAL innodb_optimize_fulltext_only=ON;

mysql> OPTIMIZE TABLE articles;
+---------------+----------+----------+----------+
| Table | Op | Msg_type | Msg_text |
+---------------+----------+----------+----------+
| test.articles | optimize | status | OK |
+---------------+----------+----------+----------+

mysql> SET GLOBAL innodb_ft_aux_table = 'test/articles';

mysql> SELECT WORD, DOC_COUNT, DOC_ID, POSITION
 FROM INFORMATION_SCHEMA.INNODB_FT_INDEX_TABLE LIMIT 5;
+------------+-----------+--------+----------+
| WORD | DOC_COUNT | DOC_ID | POSITION |
+------------+-----------+--------+----------+
1001	1	4	0
after	1	2	22
comparison	1	5	44
configured	1	6	20
database	2	1	31
+------------+-----------+--------+----------+

mysql> SET GLOBAL innodb_optimize_fulltext_only=OFF;

• You must have the PROCESS privilege to query this table.

• Use the INFORMATION_SCHEMA COLUMNS table or the SHOW COLUMNS statement to view additional
information about the columns of this table, including data types and default values.

• For more information about InnoDB FULLTEXT search, see Section 14.6.2.4, “InnoDB Full-Text
Indexes”, and Section 12.9, “Full-Text Search Functions”.

24.4.14 The INFORMATION_SCHEMA INNODB_LOCKS Table

The INNODB_LOCKS table provides information about each lock that an InnoDB transaction has requested
but not yet acquired, and each lock that a transaction holds that is blocking another transaction.

Note

This table is deprecated as of MySQL 5.7.14 and is removed in MySQL 8.0.

The INNODB_LOCKS table has these columns:

4174

The INFORMATION_SCHEMA INNODB_LOCKS Table

• LOCK_ID

A unique lock ID number, internal to InnoDB. Treat it as an opaque string. Although LOCK_ID currently
contains TRX_ID, the format of the data in LOCK_ID is subject to change at any time. Do not write
applications that parse the LOCK_ID value.

• LOCK_TRX_ID

The ID of the transaction holding the lock. To obtain details about the transaction, join this column with
the TRX_ID column of the INNODB_TRX table.

• LOCK_MODE

How the lock is requested. Permitted lock mode descriptors are S, X, IS, IX, GAP, AUTO_INC, and
UNKNOWN. Lock mode descriptors may be used in combination to identify particular lock modes. For
information about InnoDB lock modes, see Section 14.7.1, “InnoDB Locking”.

• LOCK_TYPE

The type of lock. Permitted values are RECORD for a row-level lock, TABLE for a table-level lock.

• LOCK_TABLE

The name of the table that has been locked or contains locked records.

• LOCK_INDEX

The name of the index, if LOCK_TYPE is RECORD; otherwise NULL.

• LOCK_SPACE

The tablespace ID of the locked record, if LOCK_TYPE is RECORD; otherwise NULL.

• LOCK_PAGE

The page number of the locked record, if LOCK_TYPE is RECORD; otherwise NULL.

• LOCK_REC

The heap number of the locked record within the page, if LOCK_TYPE is RECORD; otherwise NULL.

• LOCK_DATA

The data associated with the lock, if any. A value is shown if the LOCK_TYPE is RECORD, otherwise the
value is NULL. Primary key values of the locked record are shown for a lock placed on the primary key
index. Secondary index values of the locked record are shown for a lock placed on a unique secondary
index. Secondary index values are shown with primary key values appended if the secondary index is
not unique. If there is no primary key, LOCK_DATA shows either the key values of a selected unique
index or the unique InnoDB internal row ID number, according to the rules governing InnoDB clustered
index use (see Section 14.6.2.1, “Clustered and Secondary Indexes”). LOCK_DATA reports “supremum
pseudo-record” for a lock taken on a supremum pseudo-record. If the page containing the locked record
is not in the buffer pool because it was written to disk while the lock was held, InnoDB does not fetch the
page from disk. Instead, LOCK_DATA reports NULL.

Example

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_LOCKS\G
*************************** 1. row ***************************

4175

The INFORMATION_SCHEMA INNODB_LOCK_WAITS Table

 lock_id: 3723:72:3:2
lock_trx_id: 3723
 lock_mode: X
 lock_type: RECORD
 lock_table: `mysql`.`t`
 lock_index: PRIMARY
 lock_space: 72
 lock_page: 3
 lock_rec: 2
 lock_data: 1, 9
*************************** 2. row ***************************
 lock_id: 3722:72:3:2
lock_trx_id: 3722
 lock_mode: S
 lock_type: RECORD
 lock_table: `mysql`.`t`
 lock_index: PRIMARY
 lock_space: 72
 lock_page: 3
 lock_rec: 2
 lock_data: 1, 9

Notes

• Use this table to help diagnose performance problems that occur during times of heavy concurrent load.
Its contents are updated as described in Section 14.16.2.3, “Persistence and Consistency of InnoDB
Transaction and Locking Information”.

• You must have the PROCESS privilege to query this table.

• Use the INFORMATION_SCHEMA COLUMNS table or the SHOW COLUMNS statement to view additional
information about the columns of this table, including data types and default values.

• For usage information, see Section 14.16.2.1, “Using InnoDB Transaction and Locking Information”.

24.4.15 The INFORMATION_SCHEMA INNODB_LOCK_WAITS Table

The INNODB_LOCK_WAITS table contains one or more rows for each blocked InnoDB transaction,
indicating the lock it has requested and any locks that are blocking that request.

Note

This table is deprecated as of MySQL 5.7.14 and is removed in MySQL 8.0.

The INNODB_LOCK_WAITS table has these columns:

• REQUESTING_TRX_ID

The ID of the requesting (blocked) transaction.

• REQUESTED_LOCK_ID

The ID of the lock for which a transaction is waiting. To obtain details about the lock, join this column
with the LOCK_ID column of the INNODB_LOCKS table.

• BLOCKING_TRX_ID

The ID of the blocking transaction.

• BLOCKING_LOCK_ID

4176

The INFORMATION_SCHEMA INNODB_METRICS Table

The ID of a lock held by a transaction blocking another transaction from proceeding. To obtain details
about the lock, join this column with the LOCK_ID column of the INNODB_LOCKS table.

Example

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_LOCK_WAITS\G
*************************** 1. row ***************************
requesting_trx_id: 3396
requested_lock_id: 3396:91:3:2
 blocking_trx_id: 3395
 blocking_lock_id: 3395:91:3:2

Notes

• Use this table to help diagnose performance problems that occur during times of heavy concurrent load.
Its contents are updated as described in Section 14.16.2.3, “Persistence and Consistency of InnoDB
Transaction and Locking Information”.

• You must have the PROCESS privilege to query this table.

• Use the INFORMATION_SCHEMA COLUMNS table or the SHOW COLUMNS statement to view additional
information about the columns of this table, including data types and default values.

• For usage information, see Section 14.16.2.1, “Using InnoDB Transaction and Locking Information”.

24.4.16 The INFORMATION_SCHEMA INNODB_METRICS Table

The INNODB_METRICS table provides a wide variety of InnoDB performance information, complementing
the specific focus areas of the Performance Schema tables for InnoDB. With simple queries, you can
check the overall health of the system. With more detailed queries, you can diagnose issues such as
performance bottlenecks, resource shortages, and application issues.

Each monitor represents a point within the InnoDB source code that is instrumented to gather counter
information. Each counter can be started, stopped, and reset. You can also perform these actions for a
group of counters using their common module name.

By default, relatively little data is collected. To start, stop, and reset counters, set one of the system
variables innodb_monitor_enable, innodb_monitor_disable, innodb_monitor_reset, or
innodb_monitor_reset_all, using the name of the counter, the name of the module, a wildcard match
for such a name using the “%” character, or the special keyword all.

For usage information, see Section 14.16.6, “InnoDB INFORMATION_SCHEMA Metrics Table”.

The INNODB_METRICS table has these columns:

• NAME

A unique name for the counter.

• SUBSYSTEM

The aspect of InnoDB that the metric applies to.

• COUNT

The value since the counter was enabled.

• MAX_COUNT

4177

The INFORMATION_SCHEMA INNODB_METRICS Table

The maximum value since the counter was enabled.

• MIN_COUNT

The minimum value since the counter was enabled.

• AVG_COUNT

The average value since the counter was enabled.

• COUNT_RESET

The counter value since it was last reset. (The _RESET columns act like the lap counter on a stopwatch:
you can measure the activity during some time interval, while the cumulative figures are still available in
COUNT, MAX_COUNT, and so on.)

• MAX_COUNT_RESET

The maximum counter value since it was last reset.

• MIN_COUNT_RESET

The minimum counter value since it was last reset.

• AVG_COUNT_RESET

The average counter value since it was last reset.

• TIME_ENABLED

The timestamp of the last start.

• TIME_DISABLED

The timestamp of the last stop.

• TIME_ELAPSED

The elapsed time in seconds since the counter started.

• TIME_RESET

The timestamp of the last reset.

• STATUS

Whether the counter is still running (enabled) or stopped (disabled).

• TYPE

Whether the item is a cumulative counter, or measures the current value of some resource.

• COMMENT

The counter description.

Example

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_METRICS WHERE NAME='dml_inserts'\G

4178

The INFORMATION_SCHEMA INNODB_SYS_COLUMNS Table

*************************** 1. row ***************************
 NAME: dml_inserts
 SUBSYSTEM: dml
 COUNT: 3
 MAX_COUNT: 3
 MIN_COUNT: NULL
 AVG_COUNT: 0.046153846153846156
 COUNT_RESET: 3
MAX_COUNT_RESET: 3
MIN_COUNT_RESET: NULL
AVG_COUNT_RESET: NULL
 TIME_ENABLED: 2014-12-04 14:18:28
 TIME_DISABLED: NULL
 TIME_ELAPSED: 65
 TIME_RESET: NULL
 STATUS: enabled
 TYPE: status_counter
 COMMENT: Number of rows inserted

Notes

• You must have the PROCESS privilege to query this table.

• Use the INFORMATION_SCHEMA COLUMNS table or the SHOW COLUMNS statement to view additional
information about the columns of this table, including data types and default values.

• Transaction counter COUNT values may differ from the number of transaction events reported in
Performance Schema EVENTS_TRANSACTIONS_SUMMARY tables. InnoDB counts only those
transactions that it executes, whereas Performance Schema collects events for all non-aborted
transactions initiated by the server, including empty transactions.

24.4.17 The INFORMATION_SCHEMA INNODB_SYS_COLUMNS Table

The INNODB_SYS_COLUMNS table provides metadata about InnoDB table columns, equivalent to the
information from the SYS_COLUMNS table in the InnoDB data dictionary.

For related usage information and examples, see Section 14.16.3, “InnoDB INFORMATION_SCHEMA
System Tables”.

The INNODB_SYS_COLUMNS table has these columns:

• TABLE_ID

An identifier representing the table associated with the column; the same value as
INNODB_SYS_TABLES.TABLE_ID.

• NAME

The name of the column. These names can be uppercase or lowercase depending on the
lower_case_table_names setting. There are no special system-reserved names for columns.

• POS

The ordinal position of the column within the table, starting from 0 and incrementing sequentially.
When a column is dropped, the remaining columns are reordered so that the sequence has no gaps.
The POS value for a virtual generated column encodes the column sequence number and ordinal
position of the column. For more information, see the POS column description in Section 24.4.26, “The
INFORMATION_SCHEMA INNODB_SYS_VIRTUAL Table”.

• MTYPE

4179

The INFORMATION_SCHEMA INNODB_SYS_DATAFILES Table

Stands for “main type”. A numeric identifier for the column type. 1 = VARCHAR, 2 = CHAR, 3 =
FIXBINARY, 4 = BINARY, 5 = BLOB, 6 = INT, 7 = SYS_CHILD, 8 = SYS, 9 = FLOAT, 10 = DOUBLE, 11 =
DECIMAL, 12 = VARMYSQL, 13 = MYSQL, 14 = GEOMETRY.

• PRTYPE

The InnoDB “precise type”, a binary value with bits representing MySQL data type, character set code,
and nullability.

• LEN

The column length, for example 4 for INT and 8 for BIGINT. For character columns in multibyte
character sets, this length value is the maximum length in bytes needed to represent a definition such as
VARCHAR(N); that is, it might be 2*N, 3*N, and so on depending on the character encoding.

Example

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_SYS_COLUMNS where TABLE_ID = 71\G
*************************** 1. row ***************************
TABLE_ID: 71
 NAME: col1
 POS: 0
 MTYPE: 6
 PRTYPE: 1027
 LEN: 4
*************************** 2. row ***************************
TABLE_ID: 71
 NAME: col2
 POS: 1
 MTYPE: 2
 PRTYPE: 524542
 LEN: 10
*************************** 3. row ***************************
TABLE_ID: 71
 NAME: col3
 POS: 2
 MTYPE: 1
 PRTYPE: 524303
 LEN: 10

Notes

• You must have the PROCESS privilege to query this table.

• Use the INFORMATION_SCHEMA COLUMNS table or the SHOW COLUMNS statement to view additional
information about the columns of this table, including data types and default values.

24.4.18 The INFORMATION_SCHEMA INNODB_SYS_DATAFILES Table

The INNODB_SYS_DATAFILES table provides data file path information for InnoDB file-per-table and
general tablespaces, equivalent to the information in the SYS_DATAFILES table in the InnoDB data
dictionary.

For related usage information and examples, see Section 14.16.3, “InnoDB INFORMATION_SCHEMA
System Tables”.

4180

The INFORMATION_SCHEMA INNODB_SYS_FIELDS Table

Note

The INFORMATION_SCHEMA FILES table reports metadata for all InnoDB
tablespace types including file-per-table tablespaces, general tablespaces, the
system tablespace, the temporary tablespace, and undo tablespaces, if present.

The INNODB_SYS_DATAFILES table has these columns:

• SPACE

The tablespace ID.

• PATH

The tablespace data file path. If a file-per-table tablespace is created in a location outside the MySQL
data directory, the path value is a fully qualified directory path. Otherwise, the path is relative to the data
directory.

Example

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_SYS_DATAFILES WHERE SPACE = 57\G
*************************** 1. row ***************************
SPACE: 57
 PATH: ./test/t1.ibd

Notes

• You must have the PROCESS privilege to query this table.

• Use the INFORMATION_SCHEMA COLUMNS table or the SHOW COLUMNS statement to view additional
information about the columns of this table, including data types and default values.

24.4.19 The INFORMATION_SCHEMA INNODB_SYS_FIELDS Table

The INNODB_SYS_FIELDS table provides metadata about the key columns (fields) of InnoDB indexes,
equivalent to the information from the SYS_FIELDS table in the InnoDB data dictionary.

For related usage information and examples, see Section 14.16.3, “InnoDB INFORMATION_SCHEMA
System Tables”.

The INNODB_SYS_FIELDS table has these columns:

• INDEX_ID

An identifier for the index associated with this key field; the same value as
INNODB_SYS_INDEXES.INDEX_ID.

• NAME

The name of the original column from the table; the same value as INNODB_SYS_COLUMNS.NAME.

• POS

The ordinal position of the key field within the index, starting from 0 and incrementing sequentially. When
a column is dropped, the remaining columns are reordered so that the sequence has no gaps.

Example

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_SYS_FIELDS WHERE INDEX_ID = 117\G

4181

The INFORMATION_SCHEMA INNODB_SYS_FOREIGN Table

*************************** 1. row ***************************
INDEX_ID: 117
 NAME: col1
 POS: 0

Notes

• You must have the PROCESS privilege to query this table.

• Use the INFORMATION_SCHEMA COLUMNS table or the SHOW COLUMNS statement to view additional
information about the columns of this table, including data types and default values.

24.4.20 The INFORMATION_SCHEMA INNODB_SYS_FOREIGN Table

The INNODB_SYS_FOREIGN table provides metadata about InnoDB foreign keys, equivalent to the
information from the SYS_FOREIGN table in the InnoDB data dictionary.

For related usage information and examples, see Section 14.16.3, “InnoDB INFORMATION_SCHEMA
System Tables”.

The INNODB_SYS_FOREIGN table has these columns:

• ID

The name (not a numeric value) of the foreign key index, preceded by the schema (database) name (for
example, test/products_fk).

• FOR_NAME

The name of the child table in this foreign key relationship.

• REF_NAME

The name of the parent table in this foreign key relationship.

• N_COLS

The number of columns in the foreign key index.

• TYPE

A collection of bit flags with information about the foreign key column, ORed together. 0 = ON DELETE/
UPDATE RESTRICT, 1 = ON DELETE CASCADE, 2 = ON DELETE SET NULL, 4 = ON UPDATE
CASCADE, 8 = ON UPDATE SET NULL, 16 = ON DELETE NO ACTION, 32 = ON UPDATE NO ACTION.

Example

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_SYS_FOREIGN\G
*************************** 1. row ***************************
 ID: test/fk1
FOR_NAME: test/child
REF_NAME: test/parent
 N_COLS: 1
 TYPE: 1

Notes

• You must have the PROCESS privilege to query this table.

4182

The INFORMATION_SCHEMA INNODB_SYS_FOREIGN_COLS Table

• Use the INFORMATION_SCHEMA COLUMNS table or the SHOW COLUMNS statement to view additional
information about the columns of this table, including data types and default values.

24.4.21 The INFORMATION_SCHEMA INNODB_SYS_FOREIGN_COLS Table

The INNODB_SYS_FOREIGN_COLS table provides status information about the columns of InnoDB foreign
keys, equivalent to the information from the SYS_FOREIGN_COLS table in the InnoDB data dictionary.

For related usage information and examples, see Section 14.16.3, “InnoDB INFORMATION_SCHEMA
System Tables”.

The INNODB_SYS_FOREIGN_COLS table has these columns:

• ID

The foreign key index associated with this index key field, using the same value as
INNODB_SYS_FOREIGN.ID.

• FOR_COL_NAME

The name of the associated column in the child table.

• REF_COL_NAME

The name of the associated column in the parent table.

• POS

The ordinal position of this key field within the foreign key index, starting from 0.

Example

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_SYS_FOREIGN_COLS WHERE ID = 'test/fk1'\G
*************************** 1. row ***************************
 ID: test/fk1
FOR_COL_NAME: parent_id
REF_COL_NAME: id
 POS: 0

Notes

• You must have the PROCESS privilege to query this table.

• Use the INFORMATION_SCHEMA COLUMNS table or the SHOW COLUMNS statement to view additional
information about the columns of this table, including data types and default values.

24.4.22 The INFORMATION_SCHEMA INNODB_SYS_INDEXES Table

The INNODB_SYS_INDEXES table provides metadata about InnoDB indexes, equivalent to the information
in the internal SYS_INDEXES table in the InnoDB data dictionary.

For related usage information and examples, see Section 14.16.3, “InnoDB INFORMATION_SCHEMA
System Tables”.

The INNODB_SYS_INDEXES table has these columns:

• INDEX_ID

4183

The INFORMATION_SCHEMA INNODB_SYS_INDEXES Table

An identifier for the index. Index identifiers are unique across all the databases in an instance.

• NAME

The name of the index. Most indexes created implicitly by InnoDB have consistent names but the index
names are not necessarily unique. Examples: PRIMARY for a primary key index, GEN_CLUST_INDEX for
the index representing a primary key when one is not specified, and ID_IND, FOR_IND, and REF_IND
for foreign key constraints.

• TABLE_ID

An identifier representing the table associated with the index; the same value as
INNODB_SYS_TABLES.TABLE_ID.

• TYPE

A numeric value derived from bit-level information that identifies the index type. 0 = nonunique
secondary index; 1 = automatically generated clustered index (GEN_CLUST_INDEX); 2 = unique
nonclustered index; 3 = clustered index; 32 = full-text index; 64 = spatial index; 128 = secondary index
on a virtual generated column.

• N_FIELDS

The number of columns in the index key. For GEN_CLUST_INDEX indexes, this value is 0 because the
index is created using an artificial value rather than a real table column.

• PAGE_NO

The root page number of the index B-tree. For full-text indexes, the PAGE_NO column is unused and set
to -1 (FIL_NULL) because the full-text index is laid out in several B-trees (auxiliary tables).

• SPACE

An identifier for the tablespace where the index resides. 0 means the InnoDB system tablespace. Any
other number represents a table created with a separate .ibd file in file-per-table mode. This identifier
stays the same after a TRUNCATE TABLE statement. Because all indexes for a table reside in the same
tablespace as the table, this value is not necessarily unique.

• MERGE_THRESHOLD

The merge threshold value for index pages. If the amount of data in an index page falls below the
MERGE_THRESHOLD value when a row is deleted or when a row is shortened by an update operation,
InnoDB attempts to merge the index page with the neighboring index page. The default threshold value
is 50%. For more information, see Section 14.8.12, “Configuring the Merge Threshold for Index Pages”.

Example

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_SYS_INDEXES WHERE TABLE_ID = 34\G
*************************** 1. row ***************************
 INDEX_ID: 39
 NAME: GEN_CLUST_INDEX
 TABLE_ID: 34
 TYPE: 1
 N_FIELDS: 0
 PAGE_NO: 3
 SPACE: 23
MERGE_THRESHOLD: 50
*************************** 2. row ***************************
 INDEX_ID: 40

4184

The INFORMATION_SCHEMA INNODB_SYS_TABLES Table

 NAME: i1
 TABLE_ID: 34
 TYPE: 0
 N_FIELDS: 1
 PAGE_NO: 4
 SPACE: 23
MERGE_THRESHOLD: 50

Notes

• You must have the PROCESS privilege to query this table.

• Use the INFORMATION_SCHEMA COLUMNS table or the SHOW COLUMNS statement to view additional
information about the columns of this table, including data types and default values.

24.4.23 The INFORMATION_SCHEMA INNODB_SYS_TABLES Table

The INNODB_SYS_TABLES table provides metadata about InnoDB tables, equivalent to the information
from the SYS_TABLES table in the InnoDB data dictionary.

For related usage information and examples, see Section 14.16.3, “InnoDB INFORMATION_SCHEMA
System Tables”.

The INNODB_SYS_TABLES table has these columns:

• TABLE_ID

An identifier for the InnoDB table. This value is unique across all databases in the instance.

• NAME

The name of the table, preceded by the schema (database) name where appropriate (for example,
test/t1). Names of databases and user tables are in the same case as they were originally defined,
possibly influenced by the lower_case_table_names setting.

• FLAG

A numeric value that represents bit-level information about table format and storage characteristics.

• N_COLS

The number of columns in the table. The number reported includes three hidden columns that are
created by InnoDB (DB_ROW_ID, DB_TRX_ID, and DB_ROLL_PTR). The number reported also includes
virtual generated columns, if present.

• SPACE

An identifier for the tablespace where the table resides. 0 means the InnoDB system tablespace. Any
other number represents either a file-per-table tablespace or a general tablespace. This identifier stays
the same after a TRUNCATE TABLE statement. For file-per-table tablespaces, this identifier is unique for
tables across all databases in the instance.

• FILE_FORMAT

The table's file format (Antelope or Barracuda).

• ROW_FORMAT

The table's row format (Compact, Redundant, Dynamic, or Compressed).

4185

The INFORMATION_SCHEMA INNODB_SYS_TABLESPACES Table

• ZIP_PAGE_SIZE

The zip page size. Applies only to tables with a row format of Compressed.

• SPACE_TYPE

The type of tablespace to which the table belongs. Possible values include System for
the system tablespace, General for general tablespaces, and Single for file-per-table
tablespaces. Tables assigned to the system tablespace using CREATE TABLE or ALTER TABLE
TABLESPACE=innodb_system have a SPACE_TYPE of General. For more information, see CREATE
TABLESPACE.

Example

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_SYS_TABLES WHERE TABLE_ID = 214\G
*************************** 1. row ***************************
 TABLE_ID: 214
 NAME: test/t1
 FLAG: 129
 N_COLS: 4
 SPACE: 233
 FILE_FORMAT: Antelope
 ROW_FORMAT: Compact
ZIP_PAGE_SIZE: 0
 SPACE_TYPE: General

Notes

• You must have the PROCESS privilege to query this table.

• Use the INFORMATION_SCHEMA COLUMNS table or the SHOW COLUMNS statement to view additional
information about the columns of this table, including data types and default values.

24.4.24 The INFORMATION_SCHEMA INNODB_SYS_TABLESPACES Table

The INNODB_SYS_TABLESPACES table provides metadata about InnoDB file-per-table and general
tablespaces, equivalent to the information in the SYS_TABLESPACES table in the InnoDB data dictionary.

For related usage information and examples, see Section 14.16.3, “InnoDB INFORMATION_SCHEMA
System Tables”.

Note

The INFORMATION_SCHEMA FILES table reports metadata for all InnoDB
tablespace types including file-per-table tablespaces, general tablespaces, the
system tablespace, the temporary tablespace, and undo tablespaces, if present.

The INNODB_SYS_TABLESPACES table has these columns:

• SPACE

The tablespace ID.

• NAME

The schema (database) and table name.

• FLAG

4186

The INFORMATION_SCHEMA INNODB_SYS_TABLESPACES Table

A numeric value that represents bit-level information about tablespace format and storage
characteristics.

• FILE_FORMAT

The tablespace file format. For example, Antelope, Barracuda, or Any (general tablespaces support
any row format). The data in this field is interpreted from the tablespace flags information that resides in
the .ibd file. For more information about InnoDB file formats, see Section 14.10, “InnoDB File-Format
Management”.

• ROW_FORMAT

The tablespace row format (Compact or Redundant, Dynamic, or Compressed). The data in this
column is interpreted from the tablespace flags information that resides in the .ibd file.

• PAGE_SIZE

The tablespace page size. The data in this column is interpreted from the tablespace flags information
that resides in the .ibd file.

• ZIP_PAGE_SIZE

The tablespace zip page size. The data in this column is interpreted from the tablespace flags
information that resides in the .ibd file.

• SPACE_TYPE

The type of tablespace. Possible values include General for general tablespaces and Single for file-
per-table tablespaces.

• FS_BLOCK_SIZE

The file system block size, which is the unit size used for hole punching. This column pertains to the
InnoDB transparent page compression feature.

• FILE_SIZE

The apparent size of the file, which represents the maximum size of the file, uncompressed. This column
pertains to the InnoDB transparent page compression feature.

• ALLOCATED_SIZE

The actual size of the file, which is the amount of space allocated on disk. This column pertains to the
InnoDB transparent page compression feature.

Example

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_SYS_TABLESPACES WHERE SPACE = 26\G
*************************** 1. row ***************************
 SPACE: 26
 NAME: test/t1
 FLAG: 0
 FILE_FORMAT: Antelope
 ROW_FORMAT: Compact or Redundant
 PAGE_SIZE: 16384
 ZIP_PAGE_SIZE: 0
 SPACE_TYPE: Single
 FS_BLOCK_SIZE: 4096
 FILE_SIZE: 98304

4187

The INFORMATION_SCHEMA INNODB_SYS_TABLESTATS View

ALLOCATED_SIZE: 65536

Notes

• You must have the PROCESS privilege to query this table.

• Use the INFORMATION_SCHEMA COLUMNS table or the SHOW COLUMNS statement to view additional
information about the columns of this table, including data types and default values.

• Because tablespace flags are always zero for all Antelope file formats (unlike table flags), there is no
way to determine from this flag integer if the tablespace row format is Redundant or Compact. As a
result, the possible values for the ROW_FORMAT field are “Compact or Redundant”, “Compressed”, or
“Dynamic.”

• With the introduction of general tablespaces, InnoDB system tablespace data (for SPACE 0) is exposed
in INNODB_SYS_TABLESPACES.

24.4.25 The INFORMATION_SCHEMA INNODB_SYS_TABLESTATS View

The INNODB_SYS_TABLESTATS table provides a view of low-level status information about InnoDB
tables. This data is used by the MySQL optimizer to calculate which index to use when querying an
InnoDB table. This information is derived from in-memory data structures rather than data stored on disk.
There is no corresponding internal InnoDB system table.

InnoDB tables are represented in this view if they have been opened since the last server restart and have
not aged out of the table cache. Tables for which persistent stats are available are always represented in
this view.

Table statistics are updated only for DELETE or UPDATE operations that modify indexed columns. Statistics
are not updated by operations that modify only nonindexed columns.

ANALYZE TABLE clears table statistics and sets the STATS_INITIALIZED column to Uninitialized.
Statistics are collected again the next time the table is accessed.

For related usage information and examples, see Section 14.16.3, “InnoDB INFORMATION_SCHEMA
System Tables”.

The INNODB_SYS_TABLESTATS table has these columns:

• TABLE_ID

An identifier representing the table for which statistics are available; the same value as
INNODB_SYS_TABLES.TABLE_ID.

• NAME

The name of the table; the same value as INNODB_SYS_TABLES.NAME.

• STATS_INITIALIZED

The value is Initialized if the statistics are already collected, Uninitialized if not.

• NUM_ROWS

The current estimated number of rows in the table. Updated after each DML operation. The value could
be imprecise if uncommitted transactions are inserting into or deleting from the table.

• CLUST_INDEX_SIZE

4188

The INFORMATION_SCHEMA INNODB_SYS_VIRTUAL Table

The number of pages on disk that store the clustered index, which holds the InnoDB table data in
primary key order. This value might be null if no statistics are collected yet for the table.

• OTHER_INDEX_SIZE

The number of pages on disk that store all secondary indexes for the table. This value might be null if no
statistics are collected yet for the table.

• MODIFIED_COUNTER

The number of rows modified by DML operations, such as INSERT, UPDATE, DELETE, and also cascade
operations from foreign keys. This column is reset each time table statistics are recalculated

• AUTOINC

The next number to be issued for any auto-increment-based operation. The rate at which the AUTOINC
value changes depends on how many times auto-increment numbers have been requested and how
many numbers are granted per request.

• REF_COUNT

When this counter reaches zero, the table metadata can be evicted from the table cache.

Example

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_SYS_TABLESTATS where TABLE_ID = 71\G
*************************** 1. row ***************************
 TABLE_ID: 71
 NAME: test/t1
STATS_INITIALIZED: Initialized
 NUM_ROWS: 1
 CLUST_INDEX_SIZE: 1
 OTHER_INDEX_SIZE: 0
 MODIFIED_COUNTER: 1
 AUTOINC: 0
 REF_COUNT: 1

Notes

• This table is useful primarily for expert-level performance monitoring, or when developing performance-
related extensions for MySQL.

• You must have the PROCESS privilege to query this table.

• Use the INFORMATION_SCHEMA COLUMNS table or the SHOW COLUMNS statement to view additional
information about the columns of this table, including data types and default values.

24.4.26 The INFORMATION_SCHEMA INNODB_SYS_VIRTUAL Table

The INNODB_SYS_VIRTUAL table provides metadata about InnoDB virtual generated columns and
columns upon which virtual generated columns are based, equivalent to information in the SYS_VIRTUAL
table in the InnoDB data dictionary.

A row appears in the INNODB_SYS_VIRTUAL table for each column upon which a virtual generated
column is based.

The INNODB_SYS_VIRTUAL table has these columns:

• TABLE_ID

4189

The INFORMATION_SCHEMA INNODB_TEMP_TABLE_INFO Table

An identifier representing the table associated with the virtual column; the same value as
INNODB_SYS_TABLES.TABLE_ID.

• POS

The position value of the virtual generated column. The value is large because it encodes the column
sequence number and ordinal position. The formula used to calculate the value uses a bitwise operation:

((nth virtual generated column for the InnoDB instance + 1) << 16)
+ the ordinal position of the virtual generated column

For example, if the first virtual generated column in the InnoDB instance is the third column of the table,
the formula is (0 + 1) << 16) + 2. The first virtual generated column in the InnoDB instance is
always number 0. As the third column in the table, the ordinal position of the virtual generated column is
2. Ordinal positions are counted from 0.

• BASE_POS

The ordinal position of the columns upon which a virtual generated column is based.

Example

mysql> CREATE TABLE `t1` (
 `a` int(11) DEFAULT NULL,
 `b` int(11) DEFAULT NULL,
 `c` int(11) GENERATED ALWAYS AS (a+b) VIRTUAL,
 `h` varchar(10) DEFAULT NULL
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4;

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_VIRTUAL
 WHERE TABLE_ID IN
 (SELECT TABLE_ID FROM INFORMATION_SCHEMA.INNODB_TABLES
 WHERE NAME LIKE "test/t1");
+----------+-------+----------+
| TABLE_ID | POS | BASE_POS |
+----------+-------+----------+
| 95 | 65538 | 0 |
| 95 | 65538 | 1 |
+----------+-------+----------+

Notes

• If a constant value is assigned to a virtual generated column, as in the following table, an entry for the
column does not appear in the INNODB_SYS_VIRTUAL table. For an entry to appear, a virtual generated
column must have a base column.

CREATE TABLE `t1` (
 `a` int(11) DEFAULT NULL,
 `b` int(11) DEFAULT NULL,
 `c` int(11) GENERATED ALWAYS AS (5) VIRTUAL
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4;

However, metadata for such a column does appear in the INNODB_SYS_COLUMNS table.

• You must have the PROCESS privilege to query this table.

• Use the INFORMATION_SCHEMA COLUMNS table or the SHOW COLUMNS statement to view additional
information about the columns of this table, including data types and default values.

24.4.27 The INFORMATION_SCHEMA INNODB_TEMP_TABLE_INFO Table

4190

The INFORMATION_SCHEMA INNODB_TEMP_TABLE_INFO Table

The INNODB_TEMP_TABLE_INFO table provides information about user-created InnoDB temporary tables
that are active in an InnoDB instance. It does not provide information about internal InnoDB temporary
tables used by the optimizer. The INNODB_TEMP_TABLE_INFO table is created when first queried, exists
only in memory, and is not persisted to disk.

For usage information and examples, see Section 14.16.7, “InnoDB INFORMATION_SCHEMA Temporary
Table Info Table”.

The INNODB_TEMP_TABLE_INFO table has these columns:

• TABLE_ID

The table ID of the temporary table.

• NAME

The name of the temporary table.

• N_COLS

The number of columns in the temporary table. The number includes three hidden columns created by
InnoDB (DB_ROW_ID, DB_TRX_ID, and DB_ROLL_PTR).

• SPACE

The ID of the temporary tablespace where the temporary table resides. In 5.7, non-compressed InnoDB
temporary tables reside in a shared temporary tablespace. The data file for the shared temporary
tablespace is defined by the innodb_temp_data_file_path system variable. By default, there is
a single data file for the shared temporary tablespace named ibtmp1, which is located in the data
directory. Compressed temporary tables reside in separate file-per-table tablespaces located in the
temporary file directory defined by tmpdir. The temporary tablespace ID is a nonzero value that is
dynamically generated on server restart.

• PER_TABLE_TABLESPACE

A value of TRUE indicates that the temporary table resides in a separate file-per-table tablespace. A
value of FALSE indicates that the temporary table resides in the shared temporary tablespace.

• IS_COMPRESSED

A value of TRUE indicates that the temporary table is compressed.

Example

mysql> CREATE TEMPORARY TABLE t1 (c1 INT PRIMARY KEY) ENGINE=INNODB;

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_TEMP_TABLE_INFO\G
*************************** 1. row ***************************
 TABLE_ID: 38
 NAME: #sql26cf_6_0
 N_COLS: 4
 SPACE: 52
PER_TABLE_TABLESPACE: FALSE
 IS_COMPRESSED: FALSE

Notes

• This table is useful primarily for expert-level monitoring.

• You must have the PROCESS privilege to query this table.

4191

The INFORMATION_SCHEMA INNODB_TRX Table

• Use the INFORMATION_SCHEMA COLUMNS table or the SHOW COLUMNS statement to view additional
information about the columns of this table, including data types and default values.

24.4.28 The INFORMATION_SCHEMA INNODB_TRX Table

The INNODB_TRX table provides information about every transaction currently executing inside InnoDB,
including whether the transaction is waiting for a lock, when the transaction started, and the SQL statement
the transaction is executing, if any.

For usage information, see Section 14.16.2.1, “Using InnoDB Transaction and Locking Information”.

The INNODB_TRX table has these columns:

• TRX_ID

A unique transaction ID number, internal to InnoDB. These IDs are not created for transactions that are
read only and nonlocking. For details, see Section 8.5.3, “Optimizing InnoDB Read-Only Transactions”.

• TRX_WEIGHT

The weight of a transaction, reflecting (but not necessarily the exact count of) the number of rows
altered and the number of rows locked by the transaction. To resolve a deadlock, InnoDB selects
the transaction with the smallest weight as the “victim” to roll back. Transactions that have changed
nontransactional tables are considered heavier than others, regardless of the number of altered and
locked rows.

• TRX_STATE

The transaction execution state. Permitted values are RUNNING, LOCK WAIT, ROLLING BACK, and
COMMITTING.

• TRX_STARTED

The transaction start time.

• TRX_REQUESTED_LOCK_ID

The ID of the lock the transaction is currently waiting for, if TRX_STATE is LOCK WAIT; otherwise NULL.
To obtain details about the lock, join this column with the LOCK_ID column of the INNODB_LOCKS table.

• TRX_WAIT_STARTED

The time when the transaction started waiting on the lock, if TRX_STATE is LOCK WAIT; otherwise
NULL.

• TRX_MYSQL_THREAD_ID

The MySQL thread ID. To obtain details about the thread, join this column with the ID column of the
INFORMATION_SCHEMA PROCESSLIST table, but see Section 14.16.2.3, “Persistence and Consistency
of InnoDB Transaction and Locking Information”.

• TRX_QUERY

The SQL statement that is being executed by the transaction.

• TRX_OPERATION_STATE

The transaction's current operation, if any; otherwise NULL.

4192

The INFORMATION_SCHEMA INNODB_TRX Table

• TRX_TABLES_IN_USE

The number of InnoDB tables used while processing the current SQL statement of this transaction.

• TRX_TABLES_LOCKED

The number of InnoDB tables that the current SQL statement has row locks on. (Because these are row
locks, not table locks, the tables can usually still be read from and written to by multiple transactions,
despite some rows being locked.)

• TRX_LOCK_STRUCTS

The number of locks reserved by the transaction.

• TRX_LOCK_MEMORY_BYTES

The total size taken up by the lock structures of this transaction in memory.

• TRX_ROWS_LOCKED

The approximate number or rows locked by this transaction. The value might include delete-marked
rows that are physically present but not visible to the transaction.

• TRX_ROWS_MODIFIED

The number of modified and inserted rows in this transaction.

• TRX_CONCURRENCY_TICKETS

A value indicating how much work the current transaction can do before being swapped out, as specified
by the innodb_concurrency_tickets system variable.

• TRX_ISOLATION_LEVEL

The isolation level of the current transaction.

• TRX_UNIQUE_CHECKS

Whether unique checks are turned on or off for the current transaction. For example, they might be
turned off during a bulk data load.

• TRX_FOREIGN_KEY_CHECKS

Whether foreign key checks are turned on or off for the current transaction. For example, they might be
turned off during a bulk data load.

• TRX_LAST_FOREIGN_KEY_ERROR

The detailed error message for the last foreign key error, if any; otherwise NULL.

• TRX_ADAPTIVE_HASH_LATCHED

Whether the adaptive hash index is locked by the current transaction. When the adaptive hash index
search system is partitioned, a single transaction does not lock the entire adaptive hash index. Adaptive
hash index partitioning is controlled by innodb_adaptive_hash_index_parts, which is set to 8 by
default.

• TRX_ADAPTIVE_HASH_TIMEOUT

4193

INFORMATION_SCHEMA Thread Pool Tables

Deprecated in MySQL 5.7.8. Always returns 0.

Whether to relinquish the search latch immediately for the adaptive hash index, or reserve it across calls
from MySQL. When there is no adaptive hash index contention, this value remains zero and statements
reserve the latch until they finish. During times of contention, it counts down to zero, and statements
release the latch immediately after each row lookup. When the adaptive hash index search system is
partitioned (controlled by innodb_adaptive_hash_index_parts), the value remains 0.

• TRX_IS_READ_ONLY

A value of 1 indicates the transaction is read only.

• TRX_AUTOCOMMIT_NON_LOCKING

A value of 1 indicates the transaction is a SELECT statement that does not use the FOR UPDATE or
LOCK IN SHARED MODE clauses, and is executing with autocommit enabled so that the transaction
contains only this one statement. When this column and TRX_IS_READ_ONLY are both 1, InnoDB
optimizes the transaction to reduce the overhead associated with transactions that change table data.

Example

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_TRX\G
*************************** 1. row ***************************
 trx_id: 1510
 trx_state: RUNNING
 trx_started: 2014-11-19 13:24:40
 trx_requested_lock_id: NULL
 trx_wait_started: NULL
 trx_weight: 586739
 trx_mysql_thread_id: 2
 trx_query: DELETE FROM employees.salaries WHERE salary > 65000
 trx_operation_state: updating or deleting
 trx_tables_in_use: 1
 trx_tables_locked: 1
 trx_lock_structs: 3003
 trx_lock_memory_bytes: 450768
 trx_rows_locked: 1407513
 trx_rows_modified: 583736
 trx_concurrency_tickets: 0
 trx_isolation_level: REPEATABLE READ
 trx_unique_checks: 1
 trx_foreign_key_checks: 1
trx_last_foreign_key_error: NULL
 trx_adaptive_hash_latched: 0
 trx_adaptive_hash_timeout: 10000
 trx_is_read_only: 0
trx_autocommit_non_locking: 0

Notes

• Use this table to help diagnose performance problems that occur during times of heavy concurrent load.
Its contents are updated as described in Section 14.16.2.3, “Persistence and Consistency of InnoDB
Transaction and Locking Information”.

• You must have the PROCESS privilege to query this table.

• Use the INFORMATION_SCHEMA COLUMNS table or the SHOW COLUMNS statement to view additional
information about the columns of this table, including data types and default values.

24.5 INFORMATION_SCHEMA Thread Pool Tables

4194

INFORMATION_SCHEMA Thread Pool Table Reference

The following sections describe the INFORMATION_SCHEMA tables associated with the thread pool
plugin (see Section 5.5.3, “MySQL Enterprise Thread Pool”). They provide information about thread pool
operation:

• TP_THREAD_GROUP_STATE: Information about thread pool thread group states

• TP_THREAD_GROUP_STATS: Thread group statistics

• TP_THREAD_STATE: Information about thread pool thread states

Rows in these tables represent snapshots in time. In the case of TP_THREAD_STATE, all rows for a thread
group comprise a snapshot in time. Thus, the MySQL server holds the mutex of the thread group while
producing the snapshot. But it does not hold mutexes on all thread groups at the same time, to prevent a
statement against TP_THREAD_STATE from blocking the entire MySQL server.

The thread pool INFORMATION_SCHEMA tables are implemented by individual plugins and the decision
whether to load one can be made independently of the others (see Section 5.5.3.2, “Thread Pool
Installation”). However, the content of all the tables depends on the thread pool plugin being enabled. If a
table plugin is enabled but the thread pool plugin is not, the table becomes visible and can be accessed,
but is empty.

24.5.1 INFORMATION_SCHEMA Thread Pool Table Reference

The following table summarizes INFORMATION_SCHEMA thread pool tables. For greater detail, see the
individual table descriptions.

Table 24.7 INFORMATION_SCHEMA Thread Pool Tables

Table Name Description

TP_THREAD_GROUP_STATE Thread pool thread group states

TP_THREAD_GROUP_STATS Thread pool thread group statistics

TP_THREAD_STATE Thread pool thread information

24.5.2 The INFORMATION_SCHEMA TP_THREAD_GROUP_STATE Table

The TP_THREAD_GROUP_STATE table has one row per thread group in the thread pool. Each row provides
information about the current state of a group.

The TP_THREAD_GROUP_STATE table has these columns:

• TP_GROUP_ID

The thread group ID. This is a unique key within the table.

• CONSUMER THREADS

The number of consumer threads. There is at most one thread ready to start executing if the active
threads become stalled or blocked.

• RESERVE_THREADS

The number of threads in the reserved state. This means that they are not started until there is a need
to wake a new thread and there is no consumer thread. This is where most threads end up when the
thread group has created more threads than needed for normal operation. Often a thread group needs
additional threads for a short while and then does not need them again for a while. In this case, they go

4195

The INFORMATION_SCHEMA TP_THREAD_GROUP_STATE Table

into the reserved state and remain until needed again. They take up some extra memory resources, but
no extra computing resources.

• CONNECT_THREAD_COUNT

The number of threads that are processing or waiting to process connection initialization and
authentication. There can be a maximum of four connection threads per thread group; these threads
expire after a period of inactivity.

This column was added in MySQL 5.7.18.

• CONNECTION_COUNT

The number of connections using this thread group.

• QUEUED_QUERIES

The number of statements waiting in the high-priority queue.

• QUEUED_TRANSACTIONS

The number of statements waiting in the low-priority queue. These are the initial statements for
transactions that have not started, so they also represent queued transactions.

• STALL_LIMIT

The value of the thread_pool_stall_limit system variable for the thread group. This is the same
value for all thread groups.

• PRIO_KICKUP_TIMER

The value of the thread_pool_prio_kickup_timer system variable for the thread group. This is the
same value for all thread groups.

• ALGORITHM

The value of the thread_pool_algorithm system variable for the thread group. This is the same
value for all thread groups.

• THREAD_COUNT

The number of threads started in the thread pool as part of this thread group.

• ACTIVE_THREAD_COUNT

The number of threads active in executing statements.

• STALLED_THREAD_COUNT

The number of stalled statements in the thread group. A stalled statement could be executing, but from a
thread pool perspective it is stalled and making no progress. A long-running statement quickly ends up in
this category.

• WAITING_THREAD_NUMBER

If there is a thread handling the polling of statements in the thread group, this specifies the thread
number within this thread group. It is possible that this thread could be executing a statement.

• OLDEST_QUEUED

4196

The INFORMATION_SCHEMA TP_THREAD_GROUP_STATS Table

How long in milliseconds the oldest queued statement has been waiting for execution.

• MAX_THREAD_IDS_IN_GROUP

The maximum thread ID of the threads in the group. This is the same as MAX(TP_THREAD_NUMBER) for
the threads when selected from the TP_THREAD_STATE table. That is, these two queries are equivalent:

SELECT TP_GROUP_ID, MAX_THREAD_IDS_IN_GROUP
FROM TP_THREAD_GROUP_STATE;

SELECT TP_GROUP_ID, MAX(TP_THREAD_NUMBER)
FROM TP_THREAD_STATE GROUP BY TP_GROUP_ID;

24.5.3 The INFORMATION_SCHEMA TP_THREAD_GROUP_STATS Table

The TP_THREAD_GROUP_STATS table reports statistics per thread group. There is one row per group.

The TP_THREAD_GROUP_STATS table has these columns:

• TP_GROUP_ID

The thread group ID. This is a unique key within the table.

• CONNECTIONS_STARTED

The number of connections started.

• CONNECTIONS_CLOSED

The number of connections closed.

• QUERIES_EXECUTED

The number of statements executed. This number is incremented when a statement starts executing, not
when it finishes.

• QUERIES_QUEUED

The number of statements received that were queued for execution. This does not count statements that
the thread group was able to begin executing immediately without queuing, which can happen under the
conditions described in Section 5.5.3.3, “Thread Pool Operation”.

• THREADS_STARTED

The number of threads started.

• PRIO_KICKUPS

The number of statements that have been moved from low-priority queue to high-priority queue based
on the value of the thread_pool_prio_kickup_timer system variable. If this number increases
quickly, consider increasing the value of that variable. A quickly increasing counter means that the
priority system is not keeping transactions from starting too early. For InnoDB, this most likely means
deteriorating performance due to too many concurrent transactions..

• STALLED_QUERIES_EXECUTED

The number of statements that have become defined as stalled due to executing for longer than the
value of the thread_pool_stall_limit system variable.

4197

The INFORMATION_SCHEMA TP_THREAD_GROUP_STATS Table

• BECOME_CONSUMER_THREAD

The number of times thread have been assigned the consumer thread role.

• BECOME_RESERVE_THREAD

The number of times threads have been assigned the reserve thread role.

• BECOME_WAITING_THREAD

The number of times threads have been assigned the waiter thread role. When statements are queued,
this happens very often, even in normal operation, so rapid increases in this value are normal in the case
of a highly loaded system where statements are queued up.

• WAKE_THREAD_STALL_CHECKER

The number of times the stall check thread decided to wake or create a thread to possibly handle some
statements or take care of the waiter thread role.

• SLEEP_WAITS

The number of THD_WAIT_SLEEP waits. These occur when threads go to sleep; for example, by calling
the SLEEP() function.

• DISK_IO_WAITS

The number of THD_WAIT_DISKIO waits. These occur when threads perform disk I/O that is likely to
not hit the file system cache. Such waits occur when the buffer pool reads and writes data to disk, not for
normal reads from and writes to files.

• ROW_LOCK_WAITS

The number of THD_WAIT_ROW_LOCK waits for release of a row lock by another transaction.

• GLOBAL_LOCK_WAITS

The number of THD_WAIT_GLOBAL_LOCK waits for a global lock to be released.

• META_DATA_LOCK_WAITS

The number of THD_WAIT_META_DATA_LOCK waits for a metadata lock to be released.

• TABLE_LOCK_WAITS

The number of THD_WAIT_TABLE_LOCK waits for a table to be unlocked that the statement needs to
access.

• USER_LOCK_WAITS

The number of THD_WAIT_USER_LOCK waits for a special lock constructed by the user thread.

• BINLOG_WAITS

The number of THD_WAIT_BINLOG_WAITS waits for the binary log to become free.

• GROUP_COMMIT_WAITS

The number of THD_WAIT_GROUP_COMMIT waits. These occur when a group commit must wait for the
other parties to complete their part of a transaction.

4198

The INFORMATION_SCHEMA TP_THREAD_STATE Table

• FSYNC_WAITS

The number of THD_WAIT_SYNC waits for a file sync operation.

24.5.4 The INFORMATION_SCHEMA TP_THREAD_STATE Table

The TP_THREAD_STATE table has one row per thread created by the thread pool to handle connections.

The TP_THREAD_STATE table has these columns:

• TP_GROUP_ID

The thread group ID.

• TP_THREAD_NUMBER

The ID of the thread within its thread group. TP_GROUP_ID and TP_THREAD_NUMBER together provide a
unique key within the table.

• PROCESS_COUNT

The 10ms interval in which the statement that uses this thread is currently executing. 0 means no
statement is executing, 1 means it is in the first 10ms, and so forth.

• WAIT_TYPE

The type of wait for the thread. NULL means the thread is not blocked. Otherwise, the thread is blocked
by a call to thd_wait_begin() and the value specifies the type of wait. The xxx_WAIT columns of the
TP_THREAD_GROUP_STATS table accumulate counts for each wait type.

The WAIT_TYPE value is a string that describes the type of wait, as shown in the following table.

Table 24.8 TP_THREAD_STATE Table WAIT_TYPE Values

Wait Type Meaning

THD_WAIT_SLEEP Waiting for sleep

THD_WAIT_DISKIO Waiting for Disk IO

THD_WAIT_ROW_LOCK Waiting for row lock

THD_WAIT_GLOBAL_LOCK Waiting for global lock

THD_WAIT_META_DATA_LOCK Waiting for metadata lock

THD_WAIT_TABLE_LOCK Waiting for table lock

THD_WAIT_USER_LOCK Waiting for user lock

THD_WAIT_BINLOG Waiting for binlog

THD_WAIT_GROUP_COMMIT Waiting for group commit

THD_WAIT_SYNC Waiting for fsync

24.6 INFORMATION_SCHEMA Connection Control Tables

The following sections describe the INFORMATION_SCHEMA tables associated with the
connection_control plugin.

24.6.1 INFORMATION_SCHEMA Connection Control Table Reference

4199

The INFORMATION_SCHEMA CONNECTION_CONTROL_FAILED_LOGIN_ATTEMPTS Table

The following table summarizes INFORMATION_SCHEMA connection control tables. For greater detail, see
the individual table descriptions.

Table 24.9 INFORMATION_SCHEMA Connection Control Tables

Table Name Description Introduced

CONNECTION_CONTROL_FAILED_LOGIN_ATTEMPTSCurrent number of consecutive
failed connection attempts per
account

5.7.17

24.6.2 The INFORMATION_SCHEMA
CONNECTION_CONTROL_FAILED_LOGIN_ATTEMPTS Table

This table provides information about the current number of consecutive failed connection attempts per
account (user/host combination). The table was added in MySQL 5.7.17.

CONNECTION_CONTROL_FAILED_LOGIN_ATTEMPTS has these columns:

• USERHOST

The user/host combination indicating an account that has failed connection attempts, in
'user_name'@'host_name' format.

• FAILED_ATTEMPTS

The current number of consecutive failed connection attempts for the USERHOST value. This counts
all failed attempts, regardless of whether they were delayed. The number of attempts for which the
server added a delay to its response is the difference between the FAILED_ATTEMPTS value and the
connection_control_failed_connections_threshold system variable value.

Notes

• The CONNECTION_CONTROL_FAILED_LOGIN_ATTEMPTS plugin must be activated for this table to be
available, and the CONNECTION_CONTROL plugin must be activated or the table contents are always
empty. See Section 6.4.2, “Connection Control Plugins”.

• The table contains rows only for accounts that have had one or more consecutive failed connection
attempts without a subsequent successful attempt. When an account connects successfully, its failed-
connection count is reset to zero and the server removes any row corresponding to the account.

• Assigning a value to the connection_control_failed_connections_threshold system variable
at runtime resets all accumulated failed-connection counters to zero, which causes the table to become
empty.

24.7 INFORMATION_SCHEMA MySQL Enterprise Firewall Tables
The following sections describe the INFORMATION_SCHEMA tables associated with MySQL Enterprise
Firewall (see Section 6.4.6, “MySQL Enterprise Firewall”). They provide views into the firewall in-memory
data cache. These tables are available only if the appropriate firewall plugins are enabled.

24.7.1 INFORMATION_SCHEMA Firewall Table Reference

The following table summarizes INFORMATION_SCHEMA firewall tables. For greater detail, see the
individual table descriptions.

4200

The INFORMATION_SCHEMA MYSQL_FIREWALL_USERS Table

Table 24.10 INFORMATION_SCHEMA Firewall Tables

Table Name Description

MYSQL_FIREWALL_USERS Firewall in-memory data for account profiles

MYSQL_FIREWALL_WHITELIST Firewall in-memory data for account profile allowlists

24.7.2 The INFORMATION_SCHEMA MYSQL_FIREWALL_USERS Table

The MYSQL_FIREWALL_USERS table provides a view into the in-memory data cache for MySQL Enterprise
Firewall. It lists names and operational modes of registered firewall account profiles. It is used in
conjunction with the mysql.firewall_users system table that provides persistent storage of firewall
data; see MySQL Enterprise Firewall Tables.

The MYSQL_FIREWALL_USERS table has these columns:

• USERHOST

The account profile name. Each account name has the format user_name@host_name.

• MODE

The current operational mode for the profile. Permitted mode values are OFF, DETECTING,
PROTECTING, RECORDING, and RESET. For details about their meanings, see Firewall Concepts.

24.7.3 The INFORMATION_SCHEMA MYSQL_FIREWALL_WHITELIST Table

The MYSQL_FIREWALL_WHITELIST table provides a view into the in-memory data cache for MySQL
Enterprise Firewall. It lists allowlist rules of registered firewall account profiles. It is used in conjunction with
the mysql.firewall_whitelist system table that provides persistent storage of firewall data; see
MySQL Enterprise Firewall Tables.

The MYSQL_FIREWALL_WHITELIST table has these columns:

• USERHOST

The account profile name. Each account name has the format user_name@host_name.

• RULE

A normalized statement indicating an acceptable statement pattern for the profile. A profile allowlist is the
union of its rules.

24.8 Extensions to SHOW Statements
Some extensions to SHOW statements accompany the implementation of INFORMATION_SCHEMA:

• SHOW can be used to get information about the structure of INFORMATION_SCHEMA itself.

• Several SHOW statements accept a WHERE clause that provides more flexibility in specifying which rows
to display.

The IS_UPDATABLE flag may be unreliable if a view depends on one or more other views, and one of
these underlying views is updated. Regardless of the IS_UPDATABLE value, the server keeps track of
the updatability of a view and correctly rejects data change operations to views that are not updatable. If
the IS_UPDATABLE value for a view has become inaccurate to due to changes to underlying views, the
value can be updated by deleting and recreating the view.

4201

Extensions to SHOW Statements

INFORMATION_SCHEMA is an information database, so its name is included in the output from SHOW
DATABASES. Similarly, SHOW TABLES can be used with INFORMATION_SCHEMA to obtain a list of its
tables:

mysql> SHOW TABLES FROM INFORMATION_SCHEMA;
+---------------------------------------+
| Tables_in_INFORMATION_SCHEMA |
+---------------------------------------+
| CHARACTER_SETS |
| COLLATIONS |
| COLLATION_CHARACTER_SET_APPLICABILITY |
| COLUMNS |
| COLUMN_PRIVILEGES |
| ENGINES |
| EVENTS |
| FILES |
| GLOBAL_STATUS |
| GLOBAL_VARIABLES |
| KEY_COLUMN_USAGE |
| PARTITIONS |
| PLUGINS |
| PROCESSLIST |
| REFERENTIAL_CONSTRAINTS |
| ROUTINES |
| SCHEMATA |
| SCHEMA_PRIVILEGES |
| SESSION_STATUS |
| SESSION_VARIABLES |
| STATISTICS |
| TABLES |
| TABLE_CONSTRAINTS |
| TABLE_PRIVILEGES |
| TRIGGERS |
| USER_PRIVILEGES |
| VIEWS |
+---------------------------------------+

SHOW COLUMNS and DESCRIBE can display information about the columns in individual
INFORMATION_SCHEMA tables.

SHOW statements that accept a LIKE clause to limit the rows displayed also permit a WHERE clause that
specifies more general conditions that selected rows must satisfy:

SHOW CHARACTER SET
SHOW COLLATION
SHOW COLUMNS
SHOW DATABASES
SHOW FUNCTION STATUS
SHOW INDEX
SHOW OPEN TABLES
SHOW PROCEDURE STATUS
SHOW STATUS
SHOW TABLE STATUS
SHOW TABLES
SHOW TRIGGERS
SHOW VARIABLES

The WHERE clause, if present, is evaluated against the column names displayed by the SHOW statement.
For example, the SHOW CHARACTER SET statement produces these output columns:

mysql> SHOW CHARACTER SET;
+----------+-----------------------------+---------------------+--------+
| Charset | Description | Default collation | Maxlen |
+----------+-----------------------------+---------------------+--------+
| big5 | Big5 Traditional Chinese | big5_chinese_ci | 2 |

4202

Extensions to SHOW Statements

dec8	DEC West European	dec8_swedish_ci	1
cp850	DOS West European	cp850_general_ci	1
hp8	HP West European	hp8_english_ci	1
koi8r	KOI8-R Relcom Russian	koi8r_general_ci	1
latin1	cp1252 West European	latin1_swedish_ci	1
latin2	ISO 8859-2 Central European	latin2_general_ci	1
...

To use a WHERE clause with SHOW CHARACTER SET, you would refer to those column names. As an
example, the following statement displays information about character sets for which the default collation
contains the string 'japanese':

mysql> SHOW CHARACTER SET WHERE `Default collation` LIKE '%japanese%';
+---------+---------------------------+---------------------+--------+
| Charset | Description | Default collation | Maxlen |
+---------+---------------------------+---------------------+--------+
ujis	EUC-JP Japanese	ujis_japanese_ci	3
sjis	Shift-JIS Japanese	sjis_japanese_ci	2
cp932	SJIS for Windows Japanese	cp932_japanese_ci	2
eucjpms	UJIS for Windows Japanese	eucjpms_japanese_ci	3
+---------+---------------------------+---------------------+--------+

This statement displays the multibyte character sets:

mysql> SHOW CHARACTER SET WHERE Maxlen > 1;
+---------+---------------------------+---------------------+--------+
| Charset | Description | Default collation | Maxlen |
+---------+---------------------------+---------------------+--------+
big5	Big5 Traditional Chinese	big5_chinese_ci	2
ujis	EUC-JP Japanese	ujis_japanese_ci	3
sjis	Shift-JIS Japanese	sjis_japanese_ci	2
euckr	EUC-KR Korean	euckr_korean_ci	2
gb2312	GB2312 Simplified Chinese	gb2312_chinese_ci	2
gbk	GBK Simplified Chinese	gbk_chinese_ci	2
utf8	UTF-8 Unicode	utf8_general_ci	3
ucs2	UCS-2 Unicode	ucs2_general_ci	2
cp932	SJIS for Windows Japanese	cp932_japanese_ci	2
eucjpms	UJIS for Windows Japanese	eucjpms_japanese_ci	3
+---------+---------------------------+---------------------+--------+

4203

4204

Chapter 25 MySQL Performance Schema

Table of Contents
25.1 Performance Schema Quick Start .. 4207
25.2 Performance Schema Build Configuration .. 4213
25.3 Performance Schema Startup Configuration ... 4214
25.4 Performance Schema Runtime Configuration ... 4216

25.4.1 Performance Schema Event Timing .. 4217
25.4.2 Performance Schema Event Filtering .. 4220
25.4.3 Event Pre-Filtering .. 4222
25.4.4 Pre-Filtering by Instrument .. 4223
25.4.5 Pre-Filtering by Object .. 4224
25.4.6 Pre-Filtering by Thread ... 4226
25.4.7 Pre-Filtering by Consumer .. 4228
25.4.8 Example Consumer Configurations ... 4231
25.4.9 Naming Instruments or Consumers for Filtering Operations .. 4236
25.4.10 Determining What Is Instrumented .. 4237

25.5 Performance Schema Queries ... 4237
25.6 Performance Schema Instrument Naming Conventions ... 4238
25.7 Performance Schema Status Monitoring ... 4241
25.8 Performance Schema Atom and Molecule Events ... 4244
25.9 Performance Schema Tables for Current and Historical Events ... 4245
25.10 Performance Schema Statement Digests ... 4246
25.11 Performance Schema General Table Characteristics ... 4250
25.12 Performance Schema Table Descriptions ... 4251

25.12.1 Performance Schema Table Reference ... 4251
25.12.2 Performance Schema Setup Tables .. 4255
25.12.3 Performance Schema Instance Tables .. 4260
25.12.4 Performance Schema Wait Event Tables ... 4265
25.12.5 Performance Schema Stage Event Tables ... 4271
25.12.6 Performance Schema Statement Event Tables .. 4277
25.12.7 Performance Schema Transaction Tables .. 4288
25.12.8 Performance Schema Connection Tables .. 4296
25.12.9 Performance Schema Connection Attribute Tables ... 4299
25.12.10 Performance Schema User-Defined Variable Tables ... 4302
25.12.11 Performance Schema Replication Tables ... 4303
25.12.12 Performance Schema Lock Tables .. 4314
25.12.13 Performance Schema System Variable Tables ... 4318
25.12.14 Performance Schema Status Variable Tables ... 4319
25.12.15 Performance Schema Summary Tables ... 4321
25.12.16 Performance Schema Miscellaneous Tables .. 4341

25.13 Performance Schema Option and Variable Reference ... 4353
25.14 Performance Schema Command Options ... 4357
25.15 Performance Schema System Variables ... 4358
25.16 Performance Schema Status Variables .. 4376
25.17 The Performance Schema Memory-Allocation Model .. 4379
25.18 Performance Schema and Plugins ... 4380
25.19 Using the Performance Schema to Diagnose Problems ... 4380

25.19.1 Query Profiling Using Performance Schema .. 4381
25.20 Migrating to Performance Schema System and Status Variable Tables 4383
25.21 Restrictions on Performance Schema ... 4385

4205

The MySQL Performance Schema is a feature for monitoring MySQL Server execution at a low level. The
Performance Schema has these characteristics:

• The Performance Schema provides a way to inspect internal execution of the server at runtime. It
is implemented using the PERFORMANCE_SCHEMA storage engine and the performance_schema
database. The Performance Schema focuses primarily on performance data. This differs from
INFORMATION_SCHEMA, which serves for inspection of metadata.

• The Performance Schema monitors server events. An “event” is anything the server does that takes time
and has been instrumented so that timing information can be collected. In general, an event could be a
function call, a wait for the operating system, a stage of an SQL statement execution such as parsing or
sorting, or an entire statement or group of statements. Event collection provides access to information
about synchronization calls (such as for mutexes) file and table I/O, table locks, and so forth for the
server and for several storage engines.

• Performance Schema events are distinct from events written to the server's binary log (which describe
data modifications) and Event Scheduler events (which are a type of stored program).

• Performance Schema events are specific to a given instance of the MySQL Server. Performance
Schema tables are considered local to the server, and changes to them are not replicated or written to
the binary log.

• Current events are available, as well as event histories and summaries. This enables you to determine
how many times instrumented activities were performed and how much time they took. Event information
is available to show the activities of specific threads, or activity associated with particular objects such as
a mutex or file.

• The PERFORMANCE_SCHEMA storage engine collects event data using “instrumentation points” in server
source code.

• Collected events are stored in tables in the performance_schema database. These tables can be
queried using SELECT statements like other tables.

• Performance Schema configuration can be modified dynamically by updating tables in the
performance_schema database through SQL statements. Configuration changes affect data collection
immediately.

• Tables in the Performance Schema are in-memory tables that use no persistent on-disk storage. The
contents are repopulated beginning at server startup and discarded at server shutdown.

• Monitoring is available on all platforms supported by MySQL.

Some limitations might apply: The types of timers might vary per platform. Instruments that apply
to storage engines might not be implemented for all storage engines. Instrumentation of each third-
party engine is the responsibility of the engine maintainer. See also Section 25.21, “Restrictions on
Performance Schema”.

• Data collection is implemented by modifying the server source code to add instrumentation. There are no
separate threads associated with the Performance Schema, unlike other features such as replication or
the Event Scheduler.

The Performance Schema is intended to provide access to useful information about server execution while
having minimal impact on server performance. The implementation follows these design goals:

• Activating the Performance Schema causes no changes in server behavior. For example, it does
not cause thread scheduling to change, and it does not cause query execution plans (as shown by
EXPLAIN) to change.

4206

Performance Schema Quick Start

• Server monitoring occurs continuously and unobtrusively with very little overhead. Activating the
Performance Schema does not make the server unusable.

• The parser is unchanged. There are no new keywords or statements.

• Execution of server code proceeds normally even if the Performance Schema fails internally.

• When there is a choice between performing processing during event collection initially or during event
retrieval later, priority is given to making collection faster. This is because collection is ongoing whereas
retrieval is on demand and might never happen at all.

• It is easy to add new instrumentation points.

• Instrumentation is versioned. If the instrumentation implementation changes, previously instrumented
code continues to work. This benefits developers of third-party plugins because it is not necessary to
upgrade each plugin to stay synchronized with the latest Performance Schema changes.

Note

 The MySQL sys schema is a set of objects that provides convenient access to
data collected by the Performance Schema. The sys schema is installed by default.
For usage instructions, see Chapter 26, MySQL sys Schema.

25.1 Performance Schema Quick Start
This section briefly introduces the Performance Schema with examples that show how to use it. For
additional examples, see Section 25.19, “Using the Performance Schema to Diagnose Problems”.

The Performance Schema is enabled by default. To enable or disable it explicitly, start the server with the
performance_schema variable set to an appropriate value. For example, use these lines in the server
my.cnf file:

[mysqld]
performance_schema=ON

When the server starts, it sees performance_schema and attempts to initialize the Performance
Schema. To verify successful initialization, use this statement:

mysql> SHOW VARIABLES LIKE 'performance_schema';
+--------------------+-------+
| Variable_name | Value |
+--------------------+-------+
| performance_schema | ON |
+--------------------+-------+

A value of ON means that the Performance Schema initialized successfully and is ready for use. A value of
OFF means that some error occurred. Check the server error log for information about what went wrong.

The Performance Schema is implemented as a storage engine. If this engine is available (which you
should already have checked earlier), you should see it listed with a SUPPORT value of YES in the output
from the Information Schema ENGINES table or the SHOW ENGINES statement:

mysql> SELECT * FROM INFORMATION_SCHEMA.ENGINES
 WHERE ENGINE='PERFORMANCE_SCHEMA'\G
*************************** 1. row ***************************
 ENGINE: PERFORMANCE_SCHEMA
 SUPPORT: YES
 COMMENT: Performance Schema
TRANSACTIONS: NO
 XA: NO

4207

Performance Schema Quick Start

 SAVEPOINTS: NO

mysql> SHOW ENGINES\G
...
 Engine: PERFORMANCE_SCHEMA
 Support: YES
 Comment: Performance Schema
Transactions: NO
 XA: NO
 Savepoints: NO
...

The PERFORMANCE_SCHEMA storage engine operates on tables in the performance_schema database.
You can make performance_schema the default database so that references to its tables need not be
qualified with the database name:

mysql> USE performance_schema;

Performance Schema tables are stored in the performance_schema database. Information about the
structure of this database and its tables can be obtained, as for any other database, by selecting from
the INFORMATION_SCHEMA database or by using SHOW statements. For example, use either of these
statements to see what Performance Schema tables exist:

mysql> SELECT TABLE_NAME FROM INFORMATION_SCHEMA.TABLES
 WHERE TABLE_SCHEMA = 'performance_schema';
+--+
| TABLE_NAME |
+--+
| accounts |
| cond_instances |
...
| events_stages_current |
| events_stages_history |
| events_stages_history_long |
| events_stages_summary_by_account_by_event_name |
| events_stages_summary_by_host_by_event_name |
| events_stages_summary_by_thread_by_event_name |
| events_stages_summary_by_user_by_event_name |
| events_stages_summary_global_by_event_name |
| events_statements_current |
| events_statements_history |
| events_statements_history_long |
...
| file_instances |
| file_summary_by_event_name |
| file_summary_by_instance |
| host_cache |
| hosts |
| memory_summary_by_account_by_event_name |
| memory_summary_by_host_by_event_name |
| memory_summary_by_thread_by_event_name |
| memory_summary_by_user_by_event_name |
| memory_summary_global_by_event_name |
| metadata_locks |
| mutex_instances |
| objects_summary_global_by_type |
| performance_timers |
| replication_connection_configuration |
| replication_connection_status |
| replication_applier_configuration |
| replication_applier_status |
| replication_applier_status_by_coordinator |
| replication_applier_status_by_worker |
| rwlock_instances |
| session_account_connect_attrs |
| session_connect_attrs |

4208

Performance Schema Quick Start

| setup_actors |
| setup_consumers |
| setup_instruments |
| setup_objects |
| setup_timers |
| socket_instances |
| socket_summary_by_event_name |
| socket_summary_by_instance |
| table_handles |
| table_io_waits_summary_by_index_usage |
| table_io_waits_summary_by_table |
| table_lock_waits_summary_by_table |
| threads |
| users |
+--+

mysql> SHOW TABLES FROM performance_schema;
+--+
| Tables_in_performance_schema |
+--+
| accounts |
| cond_instances |
| events_stages_current |
| events_stages_history |
| events_stages_history_long |
...

The number of Performance Schema tables increases over time as implementation of additional
instrumentation proceeds.

The name of the performance_schema database is lowercase, as are the names of tables within it.
Queries should specify the names in lowercase.

To see the structure of individual tables, use SHOW CREATE TABLE:

mysql> SHOW CREATE TABLE performance_schema.setup_consumers\G
*************************** 1. row ***************************
 Table: setup_consumers
Create Table: CREATE TABLE `setup_consumers` (
 `NAME` varchar(64) NOT NULL,
 `ENABLED` enum('YES','NO') NOT NULL
) ENGINE=PERFORMANCE_SCHEMA DEFAULT CHARSET=utf8

Table structure is also available by selecting from tables such as INFORMATION_SCHEMA.COLUMNS or by
using statements such as SHOW COLUMNS.

Tables in the performance_schema database can be grouped according to the type of information
in them: Current events, event histories and summaries, object instances, and setup (configuration)
information. The following examples illustrate a few uses for these tables. For detailed information about
the tables in each group, see Section 25.12, “Performance Schema Table Descriptions”.

Initially, not all instruments and consumers are enabled, so the performance schema does not collect all
events. To turn all of these on and enable event timing, execute two statements (the row counts may differ
depending on MySQL version):

mysql> UPDATE performance_schema.setup_instruments
 SET ENABLED = 'YES', TIMED = 'YES';
Query OK, 560 rows affected (0.04 sec)
mysql> UPDATE performance_schema.setup_consumers
 SET ENABLED = 'YES';
Query OK, 10 rows affected (0.00 sec)

To see what the server is doing at the moment, examine the events_waits_current table. It contains
one row per thread showing each thread's most recent monitored event:

4209

Performance Schema Quick Start

mysql> SELECT *
 FROM performance_schema.events_waits_current\G
*************************** 1. row ***************************
 THREAD_ID: 0
 EVENT_ID: 5523
 END_EVENT_ID: 5523
 EVENT_NAME: wait/synch/mutex/mysys/THR_LOCK::mutex
 SOURCE: thr_lock.c:525
 TIMER_START: 201660494489586
 TIMER_END: 201660494576112
 TIMER_WAIT: 86526
 SPINS: NULL
 OBJECT_SCHEMA: NULL
 OBJECT_NAME: NULL
 INDEX_NAME: NULL
 OBJECT_TYPE: NULL
OBJECT_INSTANCE_BEGIN: 142270668
 NESTING_EVENT_ID: NULL
 NESTING_EVENT_TYPE: NULL
 OPERATION: lock
 NUMBER_OF_BYTES: NULL
 FLAGS: 0
...

This event indicates that thread 0 was waiting for 86,526 picoseconds to acquire a lock on
THR_LOCK::mutex, a mutex in the mysys subsystem. The first few columns provide the following
information:

• The ID columns indicate which thread the event comes from and the event number.

• EVENT_NAME indicates what was instrumented and SOURCE indicates which source file contains the
instrumented code.

• The timer columns show when the event started and stopped and how long it took. If an event is still
in progress, the TIMER_END and TIMER_WAIT values are NULL. Timer values are approximate and
expressed in picoseconds. For information about timers and event time collection, see Section 25.4.1,
“Performance Schema Event Timing”.

The history tables contain the same kind of rows as the current-events table but have more rows and show
what the server has been doing “recently” rather than “currently.” The events_waits_history and
events_waits_history_long tables contain the most recent 10 events per thread and most recent
10,000 events, respectively. For example, to see information for recent events produced by thread 13, do
this:

mysql> SELECT EVENT_ID, EVENT_NAME, TIMER_WAIT
 FROM performance_schema.events_waits_history
 WHERE THREAD_ID = 13
 ORDER BY EVENT_ID;
+----------+---+------------+
| EVENT_ID | EVENT_NAME | TIMER_WAIT |
+----------+---+------------+
86	wait/synch/mutex/mysys/THR_LOCK::mutex	686322
87	wait/synch/mutex/mysys/THR_LOCK_malloc	320535
88	wait/synch/mutex/mysys/THR_LOCK_malloc	339390
89	wait/synch/mutex/mysys/THR_LOCK_malloc	377100
90	wait/synch/mutex/sql/LOCK_plugin	614673
91	wait/synch/mutex/sql/LOCK_open	659925
92	wait/synch/mutex/sql/THD::LOCK_thd_data	494001
93	wait/synch/mutex/mysys/THR_LOCK_malloc	222489
94	wait/synch/mutex/mysys/THR_LOCK_malloc	214947
95	wait/synch/mutex/mysys/LOCK_alarm	312993
+----------+---+------------+

As new events are added to a history table, older events are discarded if the table is full.

4210

Performance Schema Quick Start

Summary tables provide aggregated information for all events over time. The tables in this group
summarize event data in different ways. To see which instruments have been executed the most times or
have taken the most wait time, sort the events_waits_summary_global_by_event_name table on
the COUNT_STAR or SUM_TIMER_WAIT column, which correspond to a COUNT(*) or SUM(TIMER_WAIT)
value, respectively, calculated over all events:

mysql> SELECT EVENT_NAME, COUNT_STAR
 FROM performance_schema.events_waits_summary_global_by_event_name
 ORDER BY COUNT_STAR DESC LIMIT 10;
+---+------------+
| EVENT_NAME | COUNT_STAR |
+---+------------+
wait/synch/mutex/mysys/THR_LOCK_malloc	6419
wait/io/file/sql/FRM	452
wait/synch/mutex/sql/LOCK_plugin	337
wait/synch/mutex/mysys/THR_LOCK_open	187
wait/synch/mutex/mysys/LOCK_alarm	147
wait/synch/mutex/sql/THD::LOCK_thd_data	115
wait/io/file/myisam/kfile	102
wait/synch/mutex/sql/LOCK_global_system_variables	89
wait/synch/mutex/mysys/THR_LOCK::mutex	89
wait/synch/mutex/sql/LOCK_open	88
+---+------------+

mysql> SELECT EVENT_NAME, SUM_TIMER_WAIT
 FROM performance_schema.events_waits_summary_global_by_event_name
 ORDER BY SUM_TIMER_WAIT DESC LIMIT 10;
+--+----------------+
| EVENT_NAME | SUM_TIMER_WAIT |
+--+----------------+
wait/io/file/sql/MYSQL_LOG	1599816582
wait/synch/mutex/mysys/THR_LOCK_malloc	1530083250
wait/io/file/sql/binlog_index	1385291934
wait/io/file/sql/FRM	1292823243
wait/io/file/myisam/kfile	411193611
wait/io/file/myisam/dfile	322401645
wait/synch/mutex/mysys/LOCK_alarm	145126935
wait/io/file/sql/casetest	104324715
wait/synch/mutex/sql/LOCK_plugin	86027823
wait/io/file/sql/pid	72591750
+--+----------------+

These results show that the THR_LOCK_malloc mutex is “hot,” both in terms of how often it is used and
amount of time that threads wait attempting to acquire it.

Note

The THR_LOCK_malloc mutex is used only in debug builds. In production builds it
is not hot because it is nonexistent.

Instance tables document what types of objects are instrumented. An instrumented object, when used
by the server, produces an event. These tables provide event names and explanatory notes or status
information. For example, the file_instances table lists instances of instruments for file I/O operations
and their associated files:

mysql> SELECT *
 FROM performance_schema.file_instances\G
*************************** 1. row ***************************
 FILE_NAME: /opt/mysql-log/60500/binlog.000007
EVENT_NAME: wait/io/file/sql/binlog
OPEN_COUNT: 0
*************************** 2. row ***************************
 FILE_NAME: /opt/mysql/60500/data/mysql/tables_priv.MYI
EVENT_NAME: wait/io/file/myisam/kfile

4211

Performance Schema Quick Start

OPEN_COUNT: 1
*************************** 3. row ***************************
 FILE_NAME: /opt/mysql/60500/data/mysql/columns_priv.MYI
EVENT_NAME: wait/io/file/myisam/kfile
OPEN_COUNT: 1
...

Setup tables are used to configure and display monitoring characteristics. For example,
setup_instruments lists the set of instruments for which events can be collected and shows which of
them are enabled:

mysql> SELECT * FROM performance_schema.setup_instruments;
+---+---------+-------+
| NAME | ENABLED | TIMED |
+---+---------+-------+
...
stage/sql/end	NO	NO
stage/sql/executing	NO	NO
stage/sql/init	NO	NO
stage/sql/insert	NO	NO
...		
statement/sql/load	YES	YES
statement/sql/grant	YES	YES
statement/sql/check	YES	YES
statement/sql/flush	YES	YES
...		
wait/synch/mutex/sql/LOCK_global_read_lock	YES	YES
wait/synch/mutex/sql/LOCK_global_system_variables	YES	YES
wait/synch/mutex/sql/LOCK_lock_db	YES	YES
wait/synch/mutex/sql/LOCK_manager	YES	YES
...		
wait/synch/rwlock/sql/LOCK_grant	YES	YES
wait/synch/rwlock/sql/LOGGER::LOCK_logger	YES	YES
wait/synch/rwlock/sql/LOCK_sys_init_connect	YES	YES
wait/synch/rwlock/sql/LOCK_sys_init_slave	YES	YES
...		
wait/io/file/sql/binlog	YES	YES
wait/io/file/sql/binlog_index	YES	YES
wait/io/file/sql/casetest	YES	YES
wait/io/file/sql/dbopt	YES	YES
...

To understand how to interpret instrument names, see Section 25.6, “Performance Schema Instrument
Naming Conventions”.

To control whether events are collected for an instrument, set its ENABLED value to YES or NO. For
example:

mysql> UPDATE performance_schema.setup_instruments
 SET ENABLED = 'NO'
 WHERE NAME = 'wait/synch/mutex/sql/LOCK_mysql_create_db';

The Performance Schema uses collected events to update tables in the performance_schema
database, which act as “consumers” of event information. The setup_consumers table lists the available
consumers and which are enabled:

mysql> SELECT * FROM performance_schema.setup_consumers;
+----------------------------------+---------+
| NAME | ENABLED |
+----------------------------------+---------+
events_stages_current	NO
events_stages_history	NO
events_stages_history_long	NO
events_statements_current	YES
events_statements_history	YES

4212

Performance Schema Build Configuration

events_statements_history_long	NO
events_transactions_current	NO
events_transactions_history	NO
events_transactions_history_long	NO
events_waits_current	NO
events_waits_history	NO
events_waits_history_long	NO
global_instrumentation	YES
thread_instrumentation	YES
statements_digest	YES
+----------------------------------+---------+

To control whether the Performance Schema maintains a consumer as a destination for event information,
set its ENABLED value.

For more information about the setup tables and how to use them to control event collection, see
Section 25.4.2, “Performance Schema Event Filtering”.

There are some miscellaneous tables that do not fall into any of the previous groups. For example,
performance_timers lists the available event timers and their characteristics. For information about
timers, see Section 25.4.1, “Performance Schema Event Timing”.

25.2 Performance Schema Build Configuration
The Performance Schema is mandatory and always compiled in. It is possible to exclude certain parts of
the Performance Schema instrumentation. For example, to exclude stage and statement instrumentation,
do this:

$> cmake . \
 -DDISABLE_PSI_STAGE=1 \
 -DDISABLE_PSI_STATEMENT=1

For more information, see the descriptions of the DISABLE_PSI_XXX CMake options in Section 2.8.7,
“MySQL Source-Configuration Options”.

If you install MySQL over a previous installation that was configured without the Performance Schema (or
with an older version of the Performance Schema that has missing or out-of-date tables). One indication of
this issue is the presence of messages such as the following in the error log:

[ERROR] Native table 'performance_schema'.'events_waits_history'
has the wrong structure
[ERROR] Native table 'performance_schema'.'events_waits_history_long'
has the wrong structure
...

To correct that problem, perform the MySQL upgrade procedure. See Section 2.10, “Upgrading MySQL”.

To verify whether a server was built with Performance Schema support, check its help output. If the
Performance Schema is available, the output mentions several variables with names that begin with
performance_schema:

$> mysqld --verbose --help
...
 --performance_schema
 Enable the performance schema.
 --performance_schema_events_waits_history_long_size=#
 Number of rows in events_waits_history_long.
...

You can also connect to the server and look for a line that names the PERFORMANCE_SCHEMA storage
engine in the output from SHOW ENGINES:

4213

Performance Schema Startup Configuration

mysql> SHOW ENGINES\G
...
 Engine: PERFORMANCE_SCHEMA
 Support: YES
 Comment: Performance Schema
Transactions: NO
 XA: NO
 Savepoints: NO
...

If the Performance Schema was not configured into the server at build time, no row for
PERFORMANCE_SCHEMA appears in the output from SHOW ENGINES. You might see
performance_schema listed in the output from SHOW DATABASES, but it has no tables and cannot be
used.

A line for PERFORMANCE_SCHEMA in the SHOW ENGINES output means that the Performance Schema is
available, not that it is enabled. To enable it, you must do so at server startup, as described in the next
section.

25.3 Performance Schema Startup Configuration
To use the MySQL Performance Schema, it must be enabled at server startup to enable event collection to
occur.

Assuming that the Performance Schema is available, it is enabled by default. To enable or disable it
explicitly, start the server with the performance_schema variable set to an appropriate value. For
example, use these lines in your my.cnf file:

[mysqld]
performance_schema=ON

If the server is unable to allocate any internal buffer during Performance Schema initialization, the
Performance Schema disables itself and sets performance_schema to OFF, and the server runs without
instrumentation.

The Performance Schema also permits instrument and consumer configuration at server startup.

To control an instrument at server startup, use an option of this form:

--performance-schema-instrument='instrument_name=value'

Here, instrument_name is an instrument name such as wait/synch/mutex/sql/LOCK_open, and
value is one of these values:

• OFF, FALSE, or 0: Disable the instrument

• ON, TRUE, or 1: Enable and time the instrument

• COUNTED: Enable and count (rather than time) the instrument

Each --performance-schema-instrument option can specify only one instrument name, but
multiple instances of the option can be given to configure multiple instruments. In addition, patterns are
permitted in instrument names to configure instruments that match the pattern. To configure all condition
synchronization instruments as enabled and counted, use this option:

--performance-schema-instrument='wait/synch/cond/%=COUNTED'

To disable all instruments, use this option:

--performance-schema-instrument='%=OFF'

4214

Performance Schema Startup Configuration

Exception: The memory/performance_schema/% instruments are built in and cannot be disabled at
startup.

Longer instrument name strings take precedence over shorter pattern names, regardless of order. For
information about specifying patterns to select instruments, see Section 25.4.9, “Naming Instruments or
Consumers for Filtering Operations”.

An unrecognized instrument name is ignored. It is possible that a plugin installed later may create the
instrument, at which time the name is recognized and configured.

To control a consumer at server startup, use an option of this form:

--performance-schema-consumer-consumer_name=value

Here, consumer_name is a consumer name such as events_waits_history, and value is one of
these values:

• OFF, FALSE, or 0: Do not collect events for the consumer

• ON, TRUE, or 1: Collect events for the consumer

For example, to enable the events_waits_history consumer, use this option:

--performance-schema-consumer-events-waits-history=ON

The permitted consumer names can be found by examining the setup_consumers table. Patterns are
not permitted. Consumer names in the setup_consumers table use underscores, but for consumers set
at startup, dashes and underscores within the name are equivalent.

The Performance Schema includes several system variables that provide configuration information:

mysql> SHOW VARIABLES LIKE 'perf%';
+--+---------+
| Variable_name | Value |
+--+---------+
performance_schema	ON
performance_schema_accounts_size	100
performance_schema_digests_size	200
performance_schema_events_stages_history_long_size	10000
performance_schema_events_stages_history_size	10
performance_schema_events_statements_history_long_size	10000
performance_schema_events_statements_history_size	10
performance_schema_events_waits_history_long_size	10000
performance_schema_events_waits_history_size	10
performance_schema_hosts_size	100
performance_schema_max_cond_classes	80
performance_schema_max_cond_instances	1000
...

The performance_schema variable is ON or OFF to indicate whether the Performance Schema is
enabled or disabled. The other variables indicate table sizes (number of rows) or memory allocation
values.

Note

With the Performance Schema enabled, the number of Performance Schema
instances affects the server memory footprint, perhaps to a large extent. The
Performance Schema autoscales many parameters to use memory only as
required; see Section 25.17, “The Performance Schema Memory-Allocation Model”.

To change the value of Performance Schema system variables, set them at server startup. For example,
put the following lines in a my.cnf file to change the sizes of the history tables for wait events:

4215

Performance Schema Runtime Configuration

[mysqld]
performance_schema
performance_schema_events_waits_history_size=20
performance_schema_events_waits_history_long_size=15000

The Performance Schema automatically sizes the values of several of its parameters at server startup if
they are not set explicitly. For example, it sizes the parameters that control the sizes of the events waits
tables this way. the Performance Schema allocates memory incrementally, scaling its memory use to
actual server load, instead of allocating all the memory it needs during server startup. Consequently,
many sizing parameters need not be set at all. To see which parameters are autosized or autoscaled, use
mysqld --verbose --help and examine the option descriptions, or see Section 25.15, “Performance
Schema System Variables”.

For each autosized parameter that is not set at server startup, the Performance Schema determines how
to set its value based on the value of the following system values, which are considered as “hints” about
how you have configured your MySQL server:

max_connections
open_files_limit
table_definition_cache
table_open_cache

To override autosizing or autoscaling for a given parameter, set it to a value other than −1 at startup. In this
case, the Performance Schema assigns it the specified value.

At runtime, SHOW VARIABLES displays the actual values that autosized parameters were set to.
Autoscaled parameters display with a value of −1.

If the Performance Schema is disabled, its autosized and autoscaled parameters remain set to −1 and
SHOW VARIABLES displays −1.

25.4 Performance Schema Runtime Configuration
Specific Performance Schema features can be enabled at runtime to control which types of event collection
occur.

Performance Schema setup tables contain information about monitoring configuration:

mysql> SELECT TABLE_NAME FROM INFORMATION_SCHEMA.TABLES
 WHERE TABLE_SCHEMA = 'performance_schema'
 AND TABLE_NAME LIKE 'setup%';
+-------------------+
| TABLE_NAME |
+-------------------+
| setup_actors |
| setup_consumers |
| setup_instruments |
| setup_objects |
| setup_timers |
+-------------------+

You can examine the contents of these tables to obtain information about Performance Schema monitoring
characteristics. If you have the UPDATE privilege, you can change Performance Schema operation by
modifying setup tables to affect how monitoring occurs. For additional details about these tables, see
Section 25.12.2, “Performance Schema Setup Tables”.

To see which event timers are selected, query the setup_timers tables:

mysql> SELECT * FROM performance_schema.setup_timers;
+-------------+-------------+
| NAME | TIMER_NAME |

4216

Performance Schema Event Timing

+-------------+-------------+
idle	MICROSECOND
wait	CYCLE
stage	NANOSECOND
statement	NANOSECOND
transaction	NANOSECOND
+-------------+-------------+

The NAME value indicates the type of instrument to which the timer applies, and TIMER_NAME indicates
which timer applies to those instruments. The timer applies to instruments where their name begins with an
element matching the NAME value.

To change the timer, update the NAME value. For example, to use the NANOSECOND timer for the wait
timer:

mysql> UPDATE performance_schema.setup_timers
 SET TIMER_NAME = 'NANOSECOND'
 WHERE NAME = 'wait';
mysql> SELECT * FROM performance_schema.setup_timers;
+-------------+-------------+
| NAME | TIMER_NAME |
+-------------+-------------+
idle	MICROSECOND
wait	NANOSECOND
stage	NANOSECOND
statement	NANOSECOND
transaction	NANOSECOND
+-------------+-------------+

For discussion of timers, see Section 25.4.1, “Performance Schema Event Timing”.

The setup_instruments and setup_consumers tables list the instruments for which events can be
collected and the types of consumers for which event information actually is collected, respectively. Other
setup tables enable further modification of the monitoring configuration. Section 25.4.2, “Performance
Schema Event Filtering”, discusses how you can modify these tables to affect event collection.

If there are Performance Schema configuration changes that must be made at runtime using SQL
statements and you would like these changes to take effect each time the server starts, put the statements
in a file and start the server with the init_file system variable set to name the file. This strategy
can also be useful if you have multiple monitoring configurations, each tailored to produce a different
kind of monitoring, such as casual server health monitoring, incident investigation, application behavior
troubleshooting, and so forth. Put the statements for each monitoring configuration into their own file and
specify the appropriate file as the init_file value when you start the server.

25.4.1 Performance Schema Event Timing

Events are collected by means of instrumentation added to the server source code. Instruments time
events, which is how the Performance Schema provides an idea of how long events take. It is also possible
to configure instruments not to collect timing information. This section discusses the available timers and
their characteristics, and how timing values are represented in events.

Performance Schema Timers

Two Performance Schema tables provide timer information:

• performance_timers lists the available timers and their characteristics.

• setup_timers indicates which timers are used for which instruments.

Each timer row in setup_timers must refer to one of the timers listed in performance_timers.

4217

Performance Schema Event Timing

Timers vary in precision and amount of overhead. To see what timers are available and their
characteristics, check the performance_timers table:

mysql> SELECT * FROM performance_schema.performance_timers;
+-------------+-----------------+------------------+----------------+
| TIMER_NAME | TIMER_FREQUENCY | TIMER_RESOLUTION | TIMER_OVERHEAD |
+-------------+-----------------+------------------+----------------+
CYCLE	2389029850	1	72
NANOSECOND	1000000000	1	112
MICROSECOND	1000000	1	136
MILLISECOND	1036	1	168
TICK	105	1	2416
+-------------+-----------------+------------------+----------------+

If the values associated with a given timer name are NULL, that timer is not supported on your platform.
The rows that do not contain NULL indicate which timers you can use in setup_timers.

The columns have these meanings:

• The TIMER_NAME column shows the names of the available timers. CYCLE refers to the timer that is
based on the CPU (processor) cycle counter. The timers in setup_timers that you can use are those
that do not have NULL in the other columns. If the values associated with a given timer name are NULL,
that timer is not supported on your platform.

• TIMER_FREQUENCY indicates the number of timer units per second. For a cycle timer, the frequency
is generally related to the CPU speed. The value shown was obtained on a system with a 2.4GHz
processor. The other timers are based on fixed fractions of seconds. For TICK, the frequency may vary
by platform (for example, some use 100 ticks/second, others 1000 ticks/second).

• TIMER_RESOLUTION indicates the number of timer units by which timer values increase at a time. If a
timer has a resolution of 10, its value increases by 10 each time.

• TIMER_OVERHEAD is the minimal number of cycles of overhead to obtain one timing with the given timer.
The overhead per event is twice the value displayed because the timer is invoked at the beginning and
end of the event.

To see which timers are in effect or to change timers, access the setup_timers table:

mysql> SELECT * FROM performance_schema.setup_timers;
+-------------+-------------+
| NAME | TIMER_NAME |
+-------------+-------------+
idle	MICROSECOND
wait	CYCLE
stage	NANOSECOND
statement	NANOSECOND
transaction	NANOSECOND
+-------------+-------------+

mysql> UPDATE performance_schema.setup_timers
 SET TIMER_NAME = 'MICROSECOND'
 WHERE NAME = 'idle';
mysql> SELECT * FROM performance_schema.setup_timers;
+-------------+-------------+
| NAME | TIMER_NAME |
+-------------+-------------+
idle	MICROSECOND
wait	CYCLE
stage	NANOSECOND
statement	NANOSECOND
transaction	NANOSECOND
+-------------+-------------+

4218

Performance Schema Event Timing

By default, the Performance Schema uses the best timer available for each instrument type, but you can
select a different one.

To time wait events, the most important criterion is to reduce overhead, at the possible expense of the
timer accuracy, so using the CYCLE timer is the best.

The time a statement (or stage) takes to execute is in general orders of magnitude larger than the time
it takes to execute a single wait. To time statements, the most important criterion is to have an accurate
measure, which is not affected by changes in processor frequency, so using a timer which is not based
on cycles is the best. The default timer for statements is NANOSECOND. The extra “overhead” compared
to the CYCLE timer is not significant, because the overhead caused by calling a timer twice (once when
the statement starts, once when it ends) is orders of magnitude less compared to the CPU time used to
execute the statement itself. Using the CYCLE timer has no benefit here, only drawbacks.

The precision offered by the cycle counter depends on processor speed. If the processor runs at 1 GHz
(one billion cycles/second) or higher, the cycle counter delivers sub-nanosecond precision. Using the cycle
counter is much cheaper than getting the actual time of day. For example, the standard gettimeofday()
function can take hundreds of cycles, which is an unacceptable overhead for data gathering that may occur
thousands or millions of times per second.

Cycle counters also have disadvantages:

• End users expect to see timings in wall-clock units, such as fractions of a second. Converting from
cycles to fractions of seconds can be expensive. For this reason, the conversion is a quick and fairly
rough multiplication operation.

• Processor cycle rate might change, such as when a laptop goes into power-saving mode or when a CPU
slows down to reduce heat generation. If a processor's cycle rate fluctuates, conversion from cycles to
real-time units is subject to error.

• Cycle counters might be unreliable or unavailable depending on the processor or the operating system.
For example, on Pentiums, the instruction is RDTSC (an assembly-language rather than a C instruction)
and it is theoretically possible for the operating system to prevent user-mode programs from using it.

• Some processor details related to out-of-order execution or multiprocessor synchronization might cause
the counter to seem fast or slow by up to 1000 cycles.

MySQL works with cycle counters on x386 (Windows, macOS, Linux, Solaris, and other Unix flavors),
PowerPC, and IA-64.

Performance Schema Timer Representation in Events

Rows in Performance Schema tables that store current events and historical events have three columns to
represent timing information: TIMER_START and TIMER_END indicate when an event started and finished,
and TIMER_WAIT indicates event duration.

The setup_instruments table has an ENABLED column to indicate the instruments for which to collect
events. The table also has a TIMED column to indicate which instruments are timed. If an instrument is not
enabled, it produces no events. If an enabled instrument is not timed, events produced by the instrument
have NULL for the TIMER_START, TIMER_END, and TIMER_WAIT timer values. This in turn causes
those values to be ignored when calculating aggregate time values in summary tables (sum, minimum,
maximum, and average).

Internally, times within events are stored in units given by the timer in effect when event timing begins.
For display when events are retrieved from Performance Schema tables, times are shown in picoseconds
(trillionths of a second) to normalize them to a standard unit, regardless of which timer is selected.

4219

Performance Schema Event Filtering

Modifications to the setup_timers table affect monitoring immediately. Events already in progress may
use the original timer for the begin time and the new timer for the end time. To avoid unpredictable results
after you make timer changes, use TRUNCATE TABLE to reset Performance Schema statistics.

The timer baseline (“time zero”) occurs at Performance Schema initialization during server startup.
TIMER_START and TIMER_END values in events represent picoseconds since the baseline. TIMER_WAIT
values are durations in picoseconds.

Picosecond values in events are approximate. Their accuracy is subject to the usual forms of error
associated with conversion from one unit to another. If the CYCLE timer is used and the processor rate
varies, there might be drift. For these reasons, it is not reasonable to look at the TIMER_START value for
an event as an accurate measure of time elapsed since server startup. On the other hand, it is reasonable
to use TIMER_START or TIMER_WAIT values in ORDER BY clauses to order events by start time or
duration.

The choice of picoseconds in events rather than a value such as microseconds has a performance
basis. One implementation goal was to show results in a uniform time unit, regardless of the timer.
In an ideal world this time unit would look like a wall-clock unit and be reasonably precise; in other
words, microseconds. But to convert cycles or nanoseconds to microseconds, it would be necessary to
perform a division for every instrumentation. Division is expensive on many platforms. Multiplication is not
expensive, so that is what is used. Therefore, the time unit is an integer multiple of the highest possible
TIMER_FREQUENCY value, using a multiplier large enough to ensure that there is no major precision
loss. The result is that the time unit is “picoseconds.” This precision is spurious, but the decision enables
overhead to be minimized.

While a wait, stage, statement, or transaction event is executing, the respective current-event tables
display current-event timing information:

events_waits_current
events_stages_current
events_statements_current
events_transactions_current

To make it possible to determine how long a not-yet-completed event has been running, the timer columns
are set as follows:

• TIMER_START is populated.

• TIMER_END is populated with the current timer value.

• TIMER_WAIT is populated with the time elapsed so far (TIMER_END − TIMER_START).

Events that have not yet completed have an END_EVENT_ID value of NULL. To assess time elapsed so far
for an event, use the TIMER_WAIT column. Therefore, to identify events that have not yet completed and
have taken longer than N picoseconds thus far, monitoring applications can use this expression in queries:

WHERE END_EVENT_ID IS NULL AND TIMER_WAIT > N

Event identification as just described assumes that the corresponding instruments have ENABLED and
TIMED set to YES and that the relevant consumers are enabled.

25.4.2 Performance Schema Event Filtering

Events are processed in a producer/consumer fashion:

• Instrumented code is the source for events and produces events to be collected. The
setup_instruments table lists the instruments for which events can be collected, whether they are
enabled, and (for enabled instruments) whether to collect timing information:

4220

Performance Schema Event Filtering

mysql> SELECT * FROM performance_schema.setup_instruments;
+---+---------+-------+
| NAME | ENABLED | TIMED |
+---+---------+-------+
...
wait/synch/mutex/sql/LOCK_global_read_lock	YES	YES
wait/synch/mutex/sql/LOCK_global_system_variables	YES	YES
wait/synch/mutex/sql/LOCK_lock_db	YES	YES
wait/synch/mutex/sql/LOCK_manager	YES	YES
...

The setup_instruments table provides the most basic form of control over event production. To
further refine event production based on the type of object or thread being monitored, other tables may
be used as described in Section 25.4.3, “Event Pre-Filtering”.

• Performance Schema tables are the destinations for events and consume events. The
setup_consumers table lists the types of consumers to which event information can be sent and
whether they are enabled:

mysql> SELECT * FROM performance_schema.setup_consumers;
+----------------------------------+---------+
| NAME | ENABLED |
+----------------------------------+---------+
events_stages_current	NO
events_stages_history	NO
events_stages_history_long	NO
events_statements_current	YES
events_statements_history	YES
events_statements_history_long	NO
events_transactions_current	NO
events_transactions_history	NO
events_transactions_history_long	NO
events_waits_current	NO
events_waits_history	NO
events_waits_history_long	NO
global_instrumentation	YES
thread_instrumentation	YES
statements_digest	YES
+----------------------------------+---------+

Filtering can be done at different stages of performance monitoring:

• Pre-filtering. This is done by modifying Performance Schema configuration so that only certain types
of events are collected from producers, and collected events update only certain consumers. To do this,
enable or disable instruments or consumers. Pre-filtering is done by the Performance Schema and has a
global effect that applies to all users.

Reasons to use pre-filtering:

• To reduce overhead. Performance Schema overhead should be minimal even with all instruments
enabled, but perhaps you want to reduce it further. Or you do not care about timing events and want to
disable the timing code to eliminate timing overhead.

• To avoid filling the current-events or history tables with events in which you have no interest. Pre-
filtering leaves more “room” in these tables for instances of rows for enabled instrument types. If you
enable only file instruments with pre-filtering, no rows are collected for nonfile instruments. With post-
filtering, nonfile events are collected, leaving fewer rows for file events.

• To avoid maintaining some kinds of event tables. If you disable a consumer, the server does not
spend time maintaining destinations for that consumer. For example, if you do not care about event
histories, you can disable the history table consumers to improve performance.

4221

Event Pre-Filtering

• Post-filtering. This involves the use of WHERE clauses in queries that select information from
Performance Schema tables, to specify which of the available events you want to see. Post-filtering
is performed on a per-user basis because individual users select which of the available events are of
interest.

Reasons to use post-filtering:

• To avoid making decisions for individual users about which event information is of interest.

• To use the Performance Schema to investigate a performance issue when the restrictions to impose
using pre-filtering are not known in advance.

The following sections provide more detail about pre-filtering and provide guidelines for naming
instruments or consumers in filtering operations. For information about writing queries to retrieve
information (post-filtering), see Section 25.5, “Performance Schema Queries”.

25.4.3 Event Pre-Filtering

Pre-filtering is done by the Performance Schema and has a global effect that applies to all users. Pre-
filtering can be applied to either the producer or consumer stage of event processing:

• To configure pre-filtering at the producer stage, several tables can be used:

• setup_instruments indicates which instruments are available. An instrument disabled in this
table produces no events regardless of the contents of the other production-related setup tables. An
instrument enabled in this table is permitted to produce events, subject to the contents of the other
tables.

• setup_objects controls whether the Performance Schema monitors particular table and stored
program objects.

• threads indicates whether monitoring is enabled for each server thread.

• setup_actors determines the initial monitoring state for new foreground threads.

• To configure pre-filtering at the consumer stage, modify the setup_consumers table. This determines
the destinations to which events are sent. setup_consumers also implicitly affects event production. If
a given event is not e sent to any destination (is not be consumed), the Performance Schema does not
produce it.

Modifications to any of these tables affect monitoring immediately, with some exceptions:

• Modifications to some instruments in the setup_instruments table are effective only at server startup;
changing them at runtime has no effect. This affects primarily mutexes, conditions, and rwlocks in the
server, although there may be other instruments for which this is true. This restriction is lifted as of
MySQL 5.7.12.

• Modifications to the setup_actors table affect only foreground threads created subsequent to the
modification, not existing threads.

When you change the monitoring configuration, the Performance Schema does not flush the history tables.
Events already collected remain in the current-events and history tables until displaced by newer events.
If you disable instruments, you might need to wait a while before events for them are displaced by newer
events of interest. Alternatively, use TRUNCATE TABLE to empty the history tables.

After making instrumentation changes, you might want to truncate the summary tables. Generally, the
effect is to reset the summary columns to 0 or NULL, not to remove rows. This enables you to clear

4222

Pre-Filtering by Instrument

collected values and restart aggregation. That might be useful, for example, after you have made a
runtime configuration change. Exceptions to this truncation behavior are noted in individual summary table
sections.

The following sections describe how to use specific tables to control Performance Schema pre-filtering.

25.4.4 Pre-Filtering by Instrument

The setup_instruments table lists the available instruments:

mysql> SELECT * FROM performance_schema.setup_instruments;
+---+---------+-------+
| NAME | ENABLED | TIMED |
+---+---------+-------+
...
stage/sql/end	NO	NO
stage/sql/executing	NO	NO
stage/sql/init	NO	NO
stage/sql/insert	NO	NO
...		
statement/sql/load	YES	YES
statement/sql/grant	YES	YES
statement/sql/check	YES	YES
statement/sql/flush	YES	YES
...		
wait/synch/mutex/sql/LOCK_global_read_lock	YES	YES
wait/synch/mutex/sql/LOCK_global_system_variables	YES	YES
wait/synch/mutex/sql/LOCK_lock_db	YES	YES
wait/synch/mutex/sql/LOCK_manager	YES	YES
...		
wait/synch/rwlock/sql/LOCK_grant	YES	YES
wait/synch/rwlock/sql/LOGGER::LOCK_logger	YES	YES
wait/synch/rwlock/sql/LOCK_sys_init_connect	YES	YES
wait/synch/rwlock/sql/LOCK_sys_init_slave	YES	YES
...		
wait/io/file/sql/binlog	YES	YES
wait/io/file/sql/binlog_index	YES	YES
wait/io/file/sql/casetest	YES	YES
wait/io/file/sql/dbopt	YES	YES
...

To control whether an instrument is enabled, set its ENABLED column to YES or NO. To configure whether
to collect timing information for an enabled instrument, set its TIMED value to YES or NO. Setting the TIMED
column affects Performance Schema table contents as described in Section 25.4.1, “Performance Schema
Event Timing”.

Modifications to most setup_instruments rows affect monitoring immediately. For some instruments,
modifications are effective only at server startup; changing them at runtime has no effect. This affects
primarily mutexes, conditions, and rwlocks in the server, although there may be other instruments for which
this is true.

The setup_instruments table provides the most basic form of control over event production. To further
refine event production based on the type of object or thread being monitored, other tables may be used as
described in Section 25.4.3, “Event Pre-Filtering”.

The following examples demonstrate possible operations on the setup_instruments table. These
changes, like other pre-filtering operations, affect all users. Some of these queries use the LIKE operator
and a pattern match instrument names. For additional information about specifying patterns to select
instruments, see Section 25.4.9, “Naming Instruments or Consumers for Filtering Operations”.

• Disable all instruments:

4223

Pre-Filtering by Object

UPDATE performance_schema.setup_instruments
SET ENABLED = 'NO';

Now no events are collected.

• Disable all file instruments, adding them to the current set of disabled instruments:

UPDATE performance_schema.setup_instruments
SET ENABLED = 'NO'
WHERE NAME LIKE 'wait/io/file/%';

• Disable only file instruments, enable all other instruments:

UPDATE performance_schema.setup_instruments
SET ENABLED = IF(NAME LIKE 'wait/io/file/%', 'NO', 'YES');

• Enable all but those instruments in the mysys library:

UPDATE performance_schema.setup_instruments
SET ENABLED = CASE WHEN NAME LIKE '%/mysys/%' THEN 'YES' ELSE 'NO' END;

• Disable a specific instrument:

UPDATE performance_schema.setup_instruments
SET ENABLED = 'NO'
WHERE NAME = 'wait/synch/mutex/mysys/TMPDIR_mutex';

• To toggle the state of an instrument, “flip” its ENABLED value:

UPDATE performance_schema.setup_instruments
SET ENABLED = IF(ENABLED = 'YES', 'NO', 'YES')
WHERE NAME = 'wait/synch/mutex/mysys/TMPDIR_mutex';

• Disable timing for all events:

UPDATE performance_schema.setup_instruments
SET TIMED = 'NO';

25.4.5 Pre-Filtering by Object

The setup_objects table controls whether the Performance Schema monitors particular table and
stored program objects. The initial setup_objects contents look like this:

mysql> SELECT * FROM performance_schema.setup_objects;
+-------------+--------------------+-------------+---------+-------+
| OBJECT_TYPE | OBJECT_SCHEMA | OBJECT_NAME | ENABLED | TIMED |
+-------------+--------------------+-------------+---------+-------+
EVENT	mysql	%	NO	NO
EVENT	performance_schema	%	NO	NO
EVENT	information_schema	%	NO	NO
EVENT	%	%	YES	YES
FUNCTION	mysql	%	NO	NO
FUNCTION	performance_schema	%	NO	NO
FUNCTION	information_schema	%	NO	NO
FUNCTION	%	%	YES	YES
PROCEDURE	mysql	%	NO	NO
PROCEDURE	performance_schema	%	NO	NO
PROCEDURE	information_schema	%	NO	NO
PROCEDURE	%	%	YES	YES
TABLE	mysql	%	NO	NO
TABLE	performance_schema	%	NO	NO
TABLE	information_schema	%	NO	NO
TABLE	%	%	YES	YES

4224

Pre-Filtering by Object

TRIGGER	mysql	%	NO	NO
TRIGGER	performance_schema	%	NO	NO
TRIGGER	information_schema	%	NO	NO
TRIGGER	%	%	YES	YES
+-------------+--------------------+-------------+---------+-------+

Modifications to the setup_objects table affect object monitoring immediately.

The OBJECT_TYPE column indicates the type of object to which a row applies. TABLE filtering affects table
I/O events (wait/io/table/sql/handler instrument) and table lock events (wait/lock/table/
sql/handler instrument).

The OBJECT_SCHEMA and OBJECT_NAME columns should contain a literal schema or object name, or '%'
to match any name.

The ENABLED column indicates whether matching objects are monitored, and TIMED indicates whether
to collect timing information. Setting the TIMED column affects Performance Schema table contents as
described in Section 25.4.1, “Performance Schema Event Timing”.

The effect of the default object configuration is to instrument all objects except those in the mysql,
INFORMATION_SCHEMA, and performance_schema databases. (Tables in the INFORMATION_SCHEMA
database are not instrumented regardless of the contents of setup_objects; the row for
information_schema.% simply makes this default explicit.)

When the Performance Schema checks for a match in setup_objects, it tries to find more specific
matches first. For rows that match a given OBJECT_TYPE, the Performance Schema checks rows in this
order:

• Rows with OBJECT_SCHEMA='literal' and OBJECT_NAME='literal'.

• Rows with OBJECT_SCHEMA='literal' and OBJECT_NAME='%'.

• Rows with OBJECT_SCHEMA='%' and OBJECT_NAME='%'.

For example, with a table db1.t1, the Performance Schema looks in TABLE rows for a match for 'db1'
and 't1', then for 'db1' and '%', then for '%' and '%'. The order in which matching occurs matters
because different matching setup_objects rows can have different ENABLED and TIMED values.

For table-related events, the Performance Schema combines the contents of setup_objects with
setup_instruments to determine whether to enable instruments and whether to time enabled
instruments:

• For tables that match a row in setup_objects, table instruments produce events only if ENABLED is
YES in both setup_instruments and setup_objects.

• The TIMED values in the two tables are combined, so that timing information is collected only when both
values are YES.

For stored program objects, the Performance Schema takes the ENABLED and TIMED columns directly
from the setup_objects row. There is no combining of values with setup_instruments.

Suppose that setup_objects contains the following TABLE rows that apply to db1, db2, and db3:

+-------------+---------------+-------------+---------+-------+
| OBJECT_TYPE | OBJECT_SCHEMA | OBJECT_NAME | ENABLED | TIMED |
+-------------+---------------+-------------+---------+-------+
TABLE	db1	t1	YES	YES
TABLE	db1	t2	NO	NO
TABLE	db2	%	YES	YES
TABLE	db3	%	NO	NO

4225

Pre-Filtering by Thread

| TABLE | % | % | YES | YES |
+-------------+---------------+-------------+---------+-------+

If an object-related instrument in setup_instruments has an ENABLED value of NO, events for the object
are not monitored. If the ENABLED value is YES, event monitoring occurs according to the ENABLED value
in the relevant setup_objects row:

• db1.t1 events are monitored

• db1.t2 events are not monitored

• db2.t3 events are monitored

• db3.t4 events are not monitored

• db4.t5 events are monitored

Similar logic applies for combining the TIMED columns from the setup_instruments and
setup_objects tables to determine whether to collect event timing information.

If a persistent table and a temporary table have the same name, matching against setup_objects
rows occurs the same way for both. It is not possible to enable monitoring for one table but not the other.
However, each table is instrumented separately.

25.4.6 Pre-Filtering by Thread

The threads table contains a row for each server thread. Each row contains information about a thread
and indicates whether monitoring is enabled for it. For the Performance Schema to monitor a thread, these
things must be true:

• The thread_instrumentation consumer in the setup_consumers table must be YES.

• The threads.INSTRUMENTED column must be YES.

• Monitoring occurs only for those thread events produced from instruments that are enabled in the
setup_instruments table.

The threads table also indicates for each server thread whether to perform historical event logging. This
includes wait, stage, statement, and transaction events and affects logging to these tables:

events_waits_history
events_waits_history_long
events_stages_history
events_stages_history_long
events_statements_history
events_statements_history_long
events_transactions_history
events_transactions_history_long

For historical event logging to occur, these things must be true:

• The appropriate history-related consumers in the setup_consumers table must be enabled. For
example, wait event logging in the events_waits_history and events_waits_history_long
tables requires the corresponding events_waits_history and events_waits_history_long
consumers to be YES.

• The threads.HISTORY column must be YES.

• Logging occurs only for those thread events produced from instruments that are enabled in the
setup_instruments table.

4226

Pre-Filtering by Thread

For foreground threads (resulting from client connections), the initial values of the INSTRUMENTED and
HISTORY columns in threads table rows are determined by whether the user account associated with a
thread matches any row in the setup_actors table. The values come from the ENABLED and HISTORY
columns of the matching setup_actors table row.

For background threads, there is no associated user. INSTRUMENTED and HISTORY are YES by default
and setup_actors is not consulted.

The initial setup_actors contents look like this:

mysql> SELECT * FROM performance_schema.setup_actors;
+------+------+------+---------+---------+
| HOST | USER | ROLE | ENABLED | HISTORY |
+------+------+------+---------+---------+
| % | % | % | YES | YES |
+------+------+------+---------+---------+

The HOST and USER columns should contain a literal host or user name, or '%' to match any name.

The ENABLED and HISTORY columns indicate whether to enable instrumentation and historical event
logging for matching threads, subject to the other conditions described previously.

When the Performance Schema checks for a match for each new foreground thread in setup_actors, it
tries to find more specific matches first, using the USER and HOST columns (ROLE is unused):

• Rows with USER='literal' and HOST='literal'.

• Rows with USER='literal' and HOST='%'.

• Rows with USER='%' and HOST='literal'.

• Rows with USER='%' and HOST='%'.

The order in which matching occurs matters because different matching setup_actors rows can have
different USER and HOST values. This enables instrumenting and historical event logging to be applied
selectively per host, user, or account (user and host combination), based on the ENABLED and HISTORY
column values:

• When the best match is a row with ENABLED=YES, the INSTRUMENTED value for the thread becomes
YES. When the best match is a row with HISTORY=YES, the HISTORY value for the thread becomes
YES.

• When the best match is a row with ENABLED=NO, the INSTRUMENTED value for the thread becomes NO.
When the best match is a row with HISTORY=NO, the HISTORY value for the thread becomes NO.

• When no match is found, the INSTRUMENTED and HISTORY values for the thread become NO.

The ENABLED and HISTORY columns in setup_actors rows can be set to YES or NO independent of one
another. This means you can enable instrumentation separately from whether you collect historical events.

By default, monitoring and historical event collection are enabled for all new foreground threads because
the setup_actors table initially contains a row with '%' for both HOST and USER. To perform more
limited matching such as to enable monitoring only for some foreground threads, you must change this row
because it matches any connection, and add rows for more specific HOST/USER combinations.

Suppose that you modify setup_actors as follows:

UPDATE performance_schema.setup_actors
SET ENABLED = 'NO', HISTORY = 'NO'
WHERE HOST = '%' AND USER = '%';
INSERT INTO performance_schema.setup_actors

4227

Pre-Filtering by Consumer

(HOST,USER,ROLE,ENABLED,HISTORY)
VALUES('localhost','joe','%','YES','YES');
INSERT INTO performance_schema.setup_actors
(HOST,USER,ROLE,ENABLED,HISTORY)
VALUES('hosta.example.com','joe','%','YES','NO');
INSERT INTO performance_schema.setup_actors
(HOST,USER,ROLE,ENABLED,HISTORY)
VALUES('%','sam','%','NO','YES');

The UPDATE statement changes the default match to disable instrumentation and historical event
collection. The INSERT statements add rows for more specific matches.

Now the Performance Schema determines how to set the INSTRUMENTED and HISTORY values for new
connection threads as follows:

• If joe connects from the local host, the connection matches the first inserted row. The INSTRUMENTED
and HISTORY values for the thread become YES.

• If joe connects from hosta.example.com, the connection matches the second inserted row. The
INSTRUMENTED value for the thread becomes YES and the HISTORY value becomes NO.

• If joe connects from any other host, there is no match. The INSTRUMENTED and HISTORY values for
the thread become NO.

• If sam connects from any host, the connection matches the third inserted row. The INSTRUMENTED
value for the thread becomes NO and the HISTORY value becomes YES.

• For any other connection, the row with HOST and USER set to '%' matches. This row now has ENABLED
and HISTORY set to NO, so the INSTRUMENTED and HISTORY values for the thread become NO.

Modifications to the setup_actors table affect only foreground threads created subsequent to the
modification, not existing threads. To affect existing threads, modify the INSTRUMENTED and HISTORY
columns of threads table rows.

25.4.7 Pre-Filtering by Consumer

The setup_consumers table lists the available consumer types and which are enabled:

mysql> SELECT * FROM performance_schema.setup_consumers;
+----------------------------------+---------+
| NAME | ENABLED |
+----------------------------------+---------+
events_stages_current	NO
events_stages_history	NO
events_stages_history_long	NO
events_statements_current	YES
events_statements_history	YES
events_statements_history_long	NO
events_transactions_current	NO
events_transactions_history	NO
events_transactions_history_long	NO
events_waits_current	NO
events_waits_history	NO
events_waits_history_long	NO
global_instrumentation	YES
thread_instrumentation	YES
statements_digest	YES
+----------------------------------+---------+

Modify the setup_consumers table to affect pre-filtering at the consumer stage and determine the
destinations to which events are sent. To enable or disable a consumer, set its ENABLED value to YES or
NO.

4228

Pre-Filtering by Consumer

Modifications to the setup_consumers table affect monitoring immediately.

If you disable a consumer, the server does not spend time maintaining destinations for that consumer. For
example, if you do not care about historical event information, disable the history consumers:

UPDATE performance_schema.setup_consumers
SET ENABLED = 'NO'
WHERE NAME LIKE '%history%';

The consumer settings in the setup_consumers table form a hierarchy from higher levels to lower. The
following principles apply:

• Destinations associated with a consumer receive no events unless the Performance Schema checks the
consumer and the consumer is enabled.

• A consumer is checked only if all consumers it depends on (if any) are enabled.

• If a consumer is not checked, or is checked but is disabled, other consumers that depend on it are not
checked.

• Dependent consumers may have their own dependent consumers.

• If an event would not be sent to any destination, the Performance Schema does not produce it.

The following lists describe the available consumer values. For discussion of several representative
consumer configurations and their effect on instrumentation, see Section 25.4.8, “Example Consumer
Configurations”.

• Global and Thread Consumers

• Wait Event Consumers

• Stage Event Consumers

• Statement Event Consumers

• Transaction Event Consumers

• Statement Digest Consumer

Global and Thread Consumers

• global_instrumentation is the highest level consumer. If global_instrumentation is NO,
it disables global instrumentation. All other settings are lower level and are not checked; it does
not matter what they are set to. No global or per thread information is maintained and no individual
events are collected in the current-events or event-history tables. If global_instrumentation
is YES, the Performance Schema maintains information for global states and also checks the
thread_instrumentation consumer.

• thread_instrumentation is checked only if global_instrumentation is YES. Otherwise,
if thread_instrumentation is NO, it disables thread-specific instrumentation and all lower-level
settings are ignored. No information is maintained per thread and no individual events are collected
in the current-events or event-history tables. If thread_instrumentation is YES, the Performance
Schema maintains thread-specific information and also checks events_xxx_current consumers.

Wait Event Consumers

These consumers require both global_instrumentation and thread_instrumentation to be YES
or they are not checked. If checked, they act as follows:

4229

Pre-Filtering by Consumer

• events_waits_current, if NO, disables collection of individual wait events in the
events_waits_current table. If YES, it enables wait event collection and the Performance Schema
checks the events_waits_history and events_waits_history_long consumers.

• events_waits_history is not checked if event_waits_current is NO. Otherwise, an
events_waits_history value of NO or YES disables or enables collection of wait events in the
events_waits_history table.

• events_waits_history_long is not checked if event_waits_current is NO. Otherwise, an
events_waits_history_long value of NO or YES disables or enables collection of wait events in the
events_waits_history_long table.

Stage Event Consumers

These consumers require both global_instrumentation and thread_instrumentation to be YES
or they are not checked. If checked, they act as follows:

• events_stages_current, if NO, disables collection of individual stage events in the
events_stages_current table. If YES, it enables stage event collection and the Performance
Schema checks the events_stages_history and events_stages_history_long consumers.

• events_stages_history is not checked if event_stages_current is NO. Otherwise, an
events_stages_history value of NO or YES disables or enables collection of stage events in the
events_stages_history table.

• events_stages_history_long is not checked if event_stages_current is NO. Otherwise, an
events_stages_history_long value of NO or YES disables or enables collection of stage events in
the events_stages_history_long table.

Statement Event Consumers

These consumers require both global_instrumentation and thread_instrumentation to be YES
or they are not checked. If checked, they act as follows:

• events_statements_current, if NO, disables collection of individual statement
events in the events_statements_current table. If YES, it enables statement event
collection and the Performance Schema checks the events_statements_history and
events_statements_history_long consumers.

• events_statements_history is not checked if events_statements_current is NO. Otherwise,
an events_statements_history value of NO or YES disables or enables collection of statement
events in the events_statements_history table.

• events_statements_history_long is not checked if events_statements_current is NO.
Otherwise, an events_statements_history_long value of NO or YES disables or enables collection
of statement events in the events_statements_history_long table.

Transaction Event Consumers

These consumers require both global_instrumentation and thread_instrumentation to be YES
or they are not checked. If checked, they act as follows:

• events_transactions_current, if NO, disables collection of individual transaction
events in the events_transactions_current table. If YES, it enables transaction event
collection and the Performance Schema checks the events_transactions_history and
events_transactions_history_long consumers.

4230

Example Consumer Configurations

• events_transactions_history is not checked if events_transactions_current is NO.
Otherwise, an events_transactions_history value of NO or YES disables or enables collection of
transaction events in the events_transactions_history table.

• events_transactions_history_long is not checked if events_transactions_current is
NO. Otherwise, an events_transactions_history_long value of NO or YES disables or enables
collection of transaction events in the events_transactions_history_long table.

Statement Digest Consumer

The statements_digest consumer requires global_instrumentation to be YES or it is not
checked. There is no dependency on the statement event consumers, so you can obtain statistics per
digest without having to collect statistics in events_statements_current, which is advantageous
in terms of overhead. Conversely, you can get detailed statements in events_statements_current
without digests (the DIGEST and DIGEST_TEXT columns are NULL).

For more information about statement digesting, see Section 25.10, “Performance Schema Statement
Digests”.

25.4.8 Example Consumer Configurations

The consumer settings in the setup_consumers table form a hierarchy from higher levels to lower.
The following discussion describes how consumers work, showing specific configurations and their
effects as consumer settings are enabled progressively from high to low. The consumer values shown
are representative. The general principles described here apply to other consumer values that may be
available.

The configuration descriptions occur in order of increasing functionality and overhead. If you do not need
the information provided by enabling lower-level settings, disable them and the Performance Schema
executes less code on your behalf and you have less information to sift through.

The setup_consumers table contains the following hierarchy of values:

global_instrumentation
 thread_instrumentation
 events_waits_current
 events_waits_history
 events_waits_history_long
 events_stages_current
 events_stages_history
 events_stages_history_long
 events_statements_current
 events_statements_history
 events_statements_history_long
 events_transactions_current
 events_transactions_history
 events_transactions_history_long
 statements_digest

Note

In the consumer hierarchy, the consumers for waits, stages, statements, and
transactions are all at the same level. This differs from the event nesting hierarchy,
for which wait events nest within stage events, which nest within statement events,
which nest within transaction events.

If a given consumer setting is NO, the Performance Schema disables the instrumentation associated with
the consumer and ignores all lower-level settings. If a given setting is YES, the Performance Schema

4231

Example Consumer Configurations

enables the instrumentation associated with it and checks the settings at the next lowest level. For a
description of the rules for each consumer, see Section 25.4.7, “Pre-Filtering by Consumer”.

For example, if global_instrumentation is enabled, thread_instrumentation is checked. If
thread_instrumentation is enabled, the events_xxx_current consumers are checked. If of these
events_waits_current is enabled, events_waits_history and events_waits_history_long
are checked.

Each of the following configuration descriptions indicates which setup elements the Performance Schema
checks and which output tables it maintains (that is, for which tables it collects information).

• No Instrumentation

• Global Instrumentation Only

• Global and Thread Instrumentation Only

• Global, Thread, and Current-Event Instrumentation

• Global, Thread, Current-Event, and Event-History instrumentation

No Instrumentation

Server configuration state:

mysql> SELECT * FROM performance_schema.setup_consumers;
+---------------------------+---------+
| NAME | ENABLED |
+---------------------------+---------+
| global_instrumentation | NO |
...
+---------------------------+---------+

In this configuration, nothing is instrumented.

Setup elements checked:

• Table setup_consumers, consumer global_instrumentation

Output tables maintained:

• None

Global Instrumentation Only

Server configuration state:

mysql> SELECT * FROM performance_schema.setup_consumers;
+---------------------------+---------+
| NAME | ENABLED |
+---------------------------+---------+
| global_instrumentation | YES |
| thread_instrumentation | NO |
...
+---------------------------+---------+

In this configuration, instrumentation is maintained only for global states. Per-thread instrumentation is
disabled.

Additional setup elements checked, relative to the preceding configuration:

4232

Example Consumer Configurations

• Table setup_consumers, consumer thread_instrumentation

• Table setup_instruments

• Table setup_objects

• Table setup_timers

Additional output tables maintained, relative to the preceding configuration:

• mutex_instances

• rwlock_instances

• cond_instances

• file_instances

• users

• hosts

• accounts

• socket_summary_by_event_name

• file_summary_by_instance

• file_summary_by_event_name

• objects_summary_global_by_type

• memory_summary_global_by_event_name

• table_lock_waits_summary_by_table

• table_io_waits_summary_by_index_usage

• table_io_waits_summary_by_table

• events_waits_summary_by_instance

• events_waits_summary_global_by_event_name

• events_stages_summary_global_by_event_name

• events_statements_summary_global_by_event_name

• events_transactions_summary_global_by_event_name

Global and Thread Instrumentation Only

Server configuration state:

mysql> SELECT * FROM performance_schema.setup_consumers;
+----------------------------------+---------+
| NAME | ENABLED |
+----------------------------------+---------+
global_instrumentation	YES
thread_instrumentation	YES
events_waits_current	NO

4233

Example Consumer Configurations

...
| events_stages_current | NO |
...
| events_statements_current | NO |
...
| events_transactions_current | NO |
...
+----------------------------------+---------+

In this configuration, instrumentation is maintained globally and per thread. No individual events are
collected in the current-events or event-history tables.

Additional setup elements checked, relative to the preceding configuration:

• Table setup_consumers, consumers events_xxx_current, where xxx is waits, stages,
statements, transactions

• Table setup_actors

• Column threads.instrumented

Additional output tables maintained, relative to the preceding configuration:

• events_xxx_summary_by_yyy_by_event_name, where xxx is waits, stages, statements,
transactions; and yyy is thread, user, host, account

Global, Thread, and Current-Event Instrumentation

Server configuration state:

mysql> SELECT * FROM performance_schema.setup_consumers;
+----------------------------------+---------+
| NAME | ENABLED |
+----------------------------------+---------+
global_instrumentation	YES
thread_instrumentation	YES
events_waits_current	YES
events_waits_history	NO
events_waits_history_long	NO
events_stages_current	YES
events_stages_history	NO
events_stages_history_long	NO
events_statements_current	YES
events_statements_history	NO
events_statements_history_long	NO
events_transactions_current	YES
events_transactions_history	NO
events_transactions_history_long	NO
...
+----------------------------------+---------+

In this configuration, instrumentation is maintained globally and per thread. Individual events are collected
in the current-events table, but not in the event-history tables.

Additional setup elements checked, relative to the preceding configuration:

• Consumers events_xxx_history, where xxx is waits, stages, statements, transactions

• Consumers events_xxx_history_long, where xxx is waits, stages, statements,
transactions

Additional output tables maintained, relative to the preceding configuration:

4234

Example Consumer Configurations

• events_xxx_current, where xxx is waits, stages, statements, transactions

Global, Thread, Current-Event, and Event-History instrumentation

The preceding configuration collects no event history because the events_xxx_history and
events_xxx_history_long consumers are disabled. Those consumers can be enabled separately or
together to collect event history per thread, globally, or both.

This configuration collects event history per thread, but not globally:

mysql> SELECT * FROM performance_schema.setup_consumers;
+----------------------------------+---------+
| NAME | ENABLED |
+----------------------------------+---------+
global_instrumentation	YES
thread_instrumentation	YES
events_waits_current	YES
events_waits_history	YES
events_waits_history_long	NO
events_stages_current	YES
events_stages_history	YES
events_stages_history_long	NO
events_statements_current	YES
events_statements_history	YES
events_statements_history_long	NO
events_transactions_current	YES
events_transactions_history	YES
events_transactions_history_long	NO
...
+----------------------------------+---------+

Event-history tables maintained for this configuration:

• events_xxx_history, where xxx is waits, stages, statements, transactions

This configuration collects event history globally, but not per thread:

mysql> SELECT * FROM performance_schema.setup_consumers;
+----------------------------------+---------+
| NAME | ENABLED |
+----------------------------------+---------+
global_instrumentation	YES
thread_instrumentation	YES
events_waits_current	YES
events_waits_history	NO
events_waits_history_long	YES
events_stages_current	YES
events_stages_history	NO
events_stages_history_long	YES
events_statements_current	YES
events_statements_history	NO
events_statements_history_long	YES
events_transactions_current	YES
events_transactions_history	NO
events_transactions_history_long	YES
...
+----------------------------------+---------+

Event-history tables maintained for this configuration:

• events_xxx_history_long, where xxx is waits, stages, statements, transactions

This configuration collects event history per thread and globally:

mysql> SELECT * FROM performance_schema.setup_consumers;

4235

Naming Instruments or Consumers for Filtering Operations

+----------------------------------+---------+
| NAME | ENABLED |
+----------------------------------+---------+
global_instrumentation	YES
thread_instrumentation	YES
events_waits_current	YES
events_waits_history	YES
events_waits_history_long	YES
events_stages_current	YES
events_stages_history	YES
events_stages_history_long	YES
events_statements_current	YES
events_statements_history	YES
events_statements_history_long	YES
events_transactions_current	YES
events_transactions_history	YES
events_transactions_history_long	YES
...
+----------------------------------+---------+

Event-history tables maintained for this configuration:

• events_xxx_history, where xxx is waits, stages, statements, transactions

• events_xxx_history_long, where xxx is waits, stages, statements, transactions

25.4.9 Naming Instruments or Consumers for Filtering Operations

Names given for filtering operations can be as specific or general as required. To indicate a single
instrument or consumer, specify its name in full:

UPDATE performance_schema.setup_instruments
SET ENABLED = 'NO'
WHERE NAME = 'wait/synch/mutex/myisammrg/MYRG_INFO::mutex';

UPDATE performance_schema.setup_consumers
SET ENABLED = 'NO'
WHERE NAME = 'events_waits_current';

To specify a group of instruments or consumers, use a pattern that matches the group members:

UPDATE performance_schema.setup_instruments
SET ENABLED = 'NO'
WHERE NAME LIKE 'wait/synch/mutex/%';

UPDATE performance_schema.setup_consumers
SET ENABLED = 'NO'
WHERE NAME LIKE '%history%';

If you use a pattern, it should be chosen so that it matches all the items of interest and no others. For
example, to select all file I/O instruments, it is better to use a pattern that includes the entire instrument
name prefix:

... WHERE NAME LIKE 'wait/io/file/%';

The pattern '%/file/%' matches other instruments that have an element of '/file/' anywhere in the
name. Even less suitable is the pattern '%file%' because it matches instruments with 'file' anywhere
in the name, such as wait/synch/mutex/innodb/file_open_mutex.

To check which instrument or consumer names a pattern matches, perform a simple test:

SELECT NAME FROM performance_schema.setup_instruments
WHERE NAME LIKE 'pattern';

4236

Determining What Is Instrumented

SELECT NAME FROM performance_schema.setup_consumers
WHERE NAME LIKE 'pattern';

For information about the types of names that are supported, see Section 25.6, “Performance Schema
Instrument Naming Conventions”.

25.4.10 Determining What Is Instrumented

It is always possible to determine what instruments the Performance Schema includes by checking the
setup_instruments table. For example, to see what file-related events are instrumented for the InnoDB
storage engine, use this query:

mysql> SELECT * FROM performance_schema.setup_instruments
 WHERE NAME LIKE 'wait/io/file/innodb/%';
+--------------------------------------+---------+-------+
| NAME | ENABLED | TIMED |
+--------------------------------------+---------+-------+
wait/io/file/innodb/innodb_data_file	YES	YES
wait/io/file/innodb/innodb_log_file	YES	YES
wait/io/file/innodb/innodb_temp_file	YES	YES
+--------------------------------------+---------+-------+

An exhaustive description of precisely what is instrumented is not given in this documentation, for several
reasons:

• What is instrumented is the server code. Changes to this code occur often, which also affects the set of
instruments.

• It is not practical to list all the instruments because there are hundreds of them.

• As described earlier, it is possible to find out by querying the setup_instruments table. This
information is always up to date for your version of MySQL, also includes instrumentation for
instrumented plugins you might have installed that are not part of the core server, and can be used by
automated tools.

25.5 Performance Schema Queries

Pre-filtering limits which event information is collected and is independent of any particular user. By
contrast, post-filtering is performed by individual users through the use of queries with appropriate WHERE
clauses that restrict what event information to select from the events available after pre-filtering has been
applied.

In Section 25.4.3, “Event Pre-Filtering”, an example showed how to pre-filter for file instruments. If the
event tables contain both file and nonfile information, post-filtering is another way to see information only
for file events. Add a WHERE clause to queries to restrict event selection appropriately:

mysql> SELECT THREAD_ID, NUMBER_OF_BYTES
 FROM performance_schema.events_waits_history
 WHERE EVENT_NAME LIKE 'wait/io/file/%'
 AND NUMBER_OF_BYTES IS NOT NULL;
+-----------+-----------------+
| THREAD_ID | NUMBER_OF_BYTES |
+-----------+-----------------+
11	66
11	47
11	139
5	24
5	834
+-----------+-----------------+

4237

Performance Schema Instrument Naming Conventions

25.6 Performance Schema Instrument Naming Conventions
An instrument name consists of a sequence of elements separated by '/' characters. Example names:

wait/io/file/myisam/log
wait/io/file/mysys/charset
wait/lock/table/sql/handler
wait/synch/cond/mysys/COND_alarm
wait/synch/cond/sql/BINLOG::update_cond
wait/synch/mutex/mysys/BITMAP_mutex
wait/synch/mutex/sql/LOCK_delete
wait/synch/rwlock/sql/Query_cache_query::lock
stage/sql/closing tables
stage/sql/Sorting result
statement/com/Execute
statement/com/Query
statement/sql/create_table
statement/sql/lock_tables

The instrument name space has a tree-like structure. The elements of an instrument name from left to right
provide a progression from more general to more specific. The number of elements a name has depends
on the type of instrument.

The interpretation of a given element in a name depends on the elements to the left of it. For example,
myisam appears in both of the following names, but myisam in the first name is related to file I/O, whereas
in the second it is related to a synchronization instrument:

wait/io/file/myisam/log
wait/synch/cond/myisam/MI_SORT_INFO::cond

Instrument names consist of a prefix with a structure defined by the Performance Schema implementation
and a suffix defined by the developer implementing the instrument code. The top-level element of an
instrument prefix indicates the type of instrument. This element also determines which event timer in the
setup_timers table applies to the instrument. For the prefix part of instrument names, the top level
indicates the type of instrument.

The suffix part of instrument names comes from the code for the instruments themselves. Suffixes may
include levels such as these:

• A name for the major element (a server module such as myisam, innodb, mysys, or sql) or a plugin
name.

• The name of a variable in the code, in the form XXX (a global variable) or CCC::MMM (a member MMM in
class CCC). Examples: COND_thread_cache, THR_LOCK_myisam, BINLOG::LOCK_index.

• Top-Level Instrument Elements

• Idle Instrument Elements

• Memory Instrument Elements

• Stage Instrument Elements

• Statement Instrument Elements

• Wait Instrument Elements

Top-Level Instrument Elements

• idle: An instrumented idle event. This instrument has no further elements.

4238

Idle Instrument Elements

• memory: An instrumented memory event.

• stage: An instrumented stage event.

• statement: An instrumented statement event.

• transaction: An instrumented transaction event. This instrument has no further elements.

• wait: An instrumented wait event.

Idle Instrument Elements

The idle instrument is used for idle events, which The Performance Schema generates as discussed in
the description of the socket_instances.STATE column in Section 25.12.3.5, “The socket_instances
Table”.

Memory Instrument Elements

Most memory instrumentation is disabled by default, and can be enabled or disabled
at startup, or dynamically at runtime by updating the ENABLED column of the relevant
instruments in the setup_instruments table. Memory instruments have names of the form
memory/code_area/instrument_name where code_area is a value such as sql or myisam, and
instrument_name is the instrument detail.

Instruments named with the prefix memory/performance_schema/ expose how much memory is
allocated for internal buffers in the Performance Schema. The memory/performance_schema/
instruments are built in, always enabled, and cannot be disabled at startup or runtime. Built-in memory
instruments are displayed only in the memory_summary_global_by_event_name table. For more
information, see Section 25.17, “The Performance Schema Memory-Allocation Model”.

Stage Instrument Elements

Stage instruments have names of the form stage/code_area/stage_name, where code_area is
a value such as sql or myisam, and stage_name indicates the stage of statement processing, such
as Sorting result or Sending data. Stages correspond to the thread states displayed by SHOW
PROCESSLIST or that are visible in the Information Schema PROCESSLIST table.

Statement Instrument Elements

• statement/abstract/*: An abstract instrument for statement operations. Abstract instruments
are used during the early stages of statement classification before the exact statement type is known,
then changed to a more specific statement instrument when the type is known. For a description of this
process, see Section 25.12.6, “Performance Schema Statement Event Tables”.

• statement/com: An instrumented command operation. These have names corresponding to
COM_xxx operations (see the mysql_com.h header file and sql/sql_parse.cc. For example,
the statement/com/Connect and statement/com/Init DB instruments correspond to the
COM_CONNECT and COM_INIT_DB commands.

• statement/scheduler/event: A single instrument to track all events executed by the Event
Scheduler. This instrument comes into play when a scheduled event begins executing.

• statement/sp: An instrumented internal instruction executed by a stored program. For example,
the statement/sp/cfetch and statement/sp/freturn instruments are used cursor fetch and
function return instructions.

4239

Wait Instrument Elements

• statement/sql: An instrumented SQL statement operation. For example, the statement/sql/
create_db and statement/sql/select instruments are used for CREATE DATABASE and SELECT
statements.

Wait Instrument Elements

• wait/io

An instrumented I/O operation.

• wait/io/file

An instrumented file I/O operation. For files, the wait is the time waiting for the file operation to
complete (for example, a call to fwrite()). Due to caching, the physical file I/O on the disk might not
happen within this call.

• wait/io/socket

An instrumented socket operation. Socket instruments have names of the form wait/io/socket/
sql/socket_type. The server has a listening socket for each network protocol that it supports.
The instruments associated with listening sockets for TCP/IP or Unix socket file connections have a
socket_type value of server_tcpip_socket or server_unix_socket, respectively. When a
listening socket detects a connection, the server transfers the connection to a new socket managed
by a separate thread. The instrument for the new connection thread has a socket_type value of
client_connection.

• wait/io/table

An instrumented table I/O operation. These include row-level accesses to persistent base tables or
temporary tables. Operations that affect rows are fetch, insert, update, and delete. For a view, waits
are associated with base tables referenced by the view.

Unlike most waits, a table I/O wait can include other waits. For example, table I/O might include file I/O
or memory operations. Thus, events_waits_current for a table I/O wait usually has two rows. For
more information, see Section 25.8, “Performance Schema Atom and Molecule Events”.

Some row operations might cause multiple table I/O waits. For example, an insert might activate a
trigger that causes an update.

• wait/lock

An instrumented lock operation.

• wait/lock/table

An instrumented table lock operation.

• wait/lock/metadata/sql/mdl

An instrumented metadata lock operation.

• wait/synch

An instrumented synchronization object. For synchronization objects, the TIMER_WAIT time includes the
amount of time blocked while attempting to acquire a lock on the object, if any.

• wait/synch/cond

4240

Performance Schema Status Monitoring

A condition is used by one thread to signal to other threads that something they were waiting for has
happened. If a single thread was waiting for a condition, it can wake up and proceed with its execution.
If several threads were waiting, they can all wake up and compete for the resource for which they were
waiting.

• wait/synch/mutex

A mutual exclusion object used to permit access to a resource (such as a section of executable code)
while preventing other threads from accessing the resource.

• wait/synch/rwlock

A read/write lock object used to lock a specific variable for access while preventing its use by other
threads. A shared read lock can be acquired simultaneously by multiple threads. An exclusive write
lock can be acquired by only one thread at a time.

• wait/synch/sxlock

A shared-exclusive (SX) lock is a type of rwlock lock object that provides write access to a common
resource while permitting inconsistent reads by other threads. sxlocks optimize concurrency and
improve scalability for read-write workloads.

25.7 Performance Schema Status Monitoring
There are several status variables associated with the Performance Schema:

mysql> SHOW STATUS LIKE 'perf%';
+---+-------+
| Variable_name | Value |
+---+-------+
Performance_schema_accounts_lost	0
Performance_schema_cond_classes_lost	0
Performance_schema_cond_instances_lost	0
Performance_schema_digest_lost	0
Performance_schema_file_classes_lost	0
Performance_schema_file_handles_lost	0
Performance_schema_file_instances_lost	0
Performance_schema_hosts_lost	0
Performance_schema_locker_lost	0
Performance_schema_memory_classes_lost	0
Performance_schema_metadata_lock_lost	0
Performance_schema_mutex_classes_lost	0
Performance_schema_mutex_instances_lost	0
Performance_schema_nested_statement_lost	0
Performance_schema_program_lost	0
Performance_schema_rwlock_classes_lost	0
Performance_schema_rwlock_instances_lost	0
Performance_schema_session_connect_attrs_lost	0
Performance_schema_socket_classes_lost	0
Performance_schema_socket_instances_lost	0
Performance_schema_stage_classes_lost	0
Performance_schema_statement_classes_lost	0
Performance_schema_table_handles_lost	0
Performance_schema_table_instances_lost	0
Performance_schema_thread_classes_lost	0
Performance_schema_thread_instances_lost	0
Performance_schema_users_lost	0
+---+-------+

The Performance Schema status variables provide information about instrumentation that could not be
loaded or created due to memory constraints. Names for these variables have several forms:

4241

Performance Schema Status Monitoring

• Performance_schema_xxx_classes_lost indicates how many instruments of type xxx could not
be loaded.

• Performance_schema_xxx_instances_lost indicates how many instances of object type xxx
could not be created.

• Performance_schema_xxx_handles_lost indicates how many instances of object type xxx could
not be opened.

• Performance_schema_locker_lost indicates how many events are “lost” or not recorded.

For example, if a mutex is instrumented in the server source but the server cannot allocate memory
for the instrumentation at runtime, it increments Performance_schema_mutex_classes_lost.
The mutex still functions as a synchronization object (that is, the server continues to function normally),
but performance data for it is not collected. If the instrument can be allocated, it can be used for
initializing instrumented mutex instances. For a singleton mutex such as a global mutex, there is
only one instance. Other mutexes have an instance per connection, or per page in various caches
and data buffers, so the number of instances varies over time. Increasing the maximum number of
connections or the maximum size of some buffers increases the maximum number of instances that
might be allocated at once. If the server cannot create a given instrumented mutex instance, it increments
Performance_schema_mutex_instances_lost.

Suppose that the following conditions hold:

• The server was started with the --performance_schema_max_mutex_classes=200 option and
thus has room for 200 mutex instruments.

• 150 mutex instruments have been loaded already.

• The plugin named plugin_a contains 40 mutex instruments.

• The plugin named plugin_b contains 20 mutex instruments.

The server allocates mutex instruments for the plugins depending on how many they need and how many
are available, as illustrated by the following sequence of statements:

INSTALL PLUGIN plugin_a

The server now has 150+40 = 190 mutex instruments.

UNINSTALL PLUGIN plugin_a;

The server still has 190 instruments. All the historical data generated by the plugin code is still available,
but new events for the instruments are not collected.

INSTALL PLUGIN plugin_a;

The server detects that the 40 instruments are already defined, so no new instruments are created, and
previously assigned internal memory buffers are reused. The server still has 190 instruments.

INSTALL PLUGIN plugin_b;

The server has room for 200-190 = 10 instruments (in this case, mutex classes), and sees that the
plugin contains 20 new instruments. 10 instruments are loaded, and 10 are discarded or “lost.” The
Performance_schema_mutex_classes_lost indicates the number of instruments (mutex classes)
lost:

mysql> SHOW STATUS LIKE "perf%mutex_classes_lost";
+---------------------------------------+-------+

4242

Performance Schema Status Monitoring

| Variable_name | Value |
+---------------------------------------+-------+
| Performance_schema_mutex_classes_lost | 10 |
+---------------------------------------+-------+
1 row in set (0.10 sec)

The instrumentation still works and collects (partial) data for plugin_b.

When the server cannot create a mutex instrument, these results occur:

• No row for the instrument is inserted into the setup_instruments table.

• Performance_schema_mutex_classes_lost increases by 1.

• Performance_schema_mutex_instances_lost does not change. (When the mutex instrument is
not created, it cannot be used to create instrumented mutex instances later.)

The pattern just described applies to all types of instruments, not just mutexes.

A value of Performance_schema_mutex_classes_lost greater than 0 can happen in two cases:

• To save a few bytes of memory, you start the server with --
performance_schema_max_mutex_classes=N, where N is less than the default value. The default
value is chosen to be sufficient to load all the plugins provided in the MySQL distribution, but this can
be reduced if some plugins are never loaded. For example, you might choose not to load some of the
storage engines in the distribution.

• You load a third-party plugin that is instrumented for the Performance Schema but do not allow for the
plugin's instrumentation memory requirements when you start the server. Because it comes from a third
party, the instrument memory consumption of this engine is not accounted for in the default value chosen
for performance_schema_max_mutex_classes.

If the server has insufficient resources for the plugin's instruments and you do not explicitly allocate more
using --performance_schema_max_mutex_classes=N, loading the plugin leads to starvation of
instruments.

If the value chosen for performance_schema_max_mutex_classes is too small, no error is
reported in the error log and there is no failure at runtime. However, the content of the tables in the
performance_schema database misses events. The Performance_schema_mutex_classes_lost
status variable is the only visible sign to indicate that some events were dropped internally due to failure to
create instruments.

If an instrument is not lost, it is known to the Performance Schema, and is used when instrumenting
instances. For example, wait/synch/mutex/sql/LOCK_delete is the name of a mutex instrument
in the setup_instruments table. This single instrument is used when creating a mutex in the code (in
THD::LOCK_delete) however many instances of the mutex are needed as the server runs. In this case,
LOCK_delete is a mutex that is per connection (THD), so if a server has 1000 connections, there are 1000
threads, and 1000 instrumented LOCK_delete mutex instances (THD::LOCK_delete).

If the server does not have room for all these 1000 instrumented mutexes (instances), some mutexes
are created with instrumentation, and some are created without instrumentation. If the server can
create only 800 instances, 200 instances are lost. The server continues to run, but increments
Performance_schema_mutex_instances_lost by 200 to indicate that instances could not be
created.

A value of Performance_schema_mutex_instances_lost greater than 0 can
happen when the code initializes more mutexes at runtime than were allocated for --
performance_schema_max_mutex_instances=N.

4243

Performance Schema Atom and Molecule Events

The bottom line is that if SHOW STATUS LIKE 'perf%' says that nothing was lost (all values are zero),
the Performance Schema data is accurate and can be relied upon. If something was lost, the data is
incomplete, and the Performance Schema could not record everything given the insufficient amount
of memory it was given to use. In this case, the specific Performance_schema_xxx_lost variable
indicates the problem area.

It might be appropriate in some cases to cause deliberate instrument starvation. For example, if you do not
care about performance data for file I/O, you can start the server with all Performance Schema parameters
related to file I/O set to 0. No memory is allocated for file-related classes, instances, or handles, and all file
events are lost.

Use SHOW ENGINE PERFORMANCE_SCHEMA STATUS to inspect the internal operation of the Performance
Schema code:

mysql> SHOW ENGINE PERFORMANCE_SCHEMA STATUS\G
...
*************************** 3. row ***************************
 Type: performance_schema
 Name: events_waits_history.size
Status: 76
*************************** 4. row ***************************
 Type: performance_schema
 Name: events_waits_history.count
Status: 10000
*************************** 5. row ***************************
 Type: performance_schema
 Name: events_waits_history.memory
Status: 760000
...
*************************** 57. row ***************************
 Type: performance_schema
 Name: performance_schema.memory
Status: 26459600
...

This statement is intended to help the DBA understand the effects that different Performance Schema
options have on memory requirements. For a description of the field meanings, see Section 13.7.5.15,
“SHOW ENGINE Statement”.

25.8 Performance Schema Atom and Molecule Events

For a table I/O event, there are usually two rows in events_waits_current, not one. For example, a
row fetch might result in rows like this:

Row# EVENT_NAME TIMER_START TIMER_END
---- ---------- ----------- ---------
 1 wait/io/file/myisam/dfile 10001 10002
 2 wait/io/table/sql/handler 10000 NULL

The row fetch causes a file read. In the example, the table I/O fetch event started before the file I/O event
but has not finished (its TIMER_END value is NULL). The file I/O event is “nested” within the table I/O event.

This occurs because, unlike other “atomic” wait events such as for mutexes or file I/O, table I/O events
are “molecular” and include (overlap with) other events. In events_waits_current, the table I/O event
usually has two rows:

• One row for the most recent table I/O wait event

• One row for the most recent wait event of any kind

4244

Performance Schema Tables for Current and Historical Events

Usually, but not always, the “of any kind” wait event differs from the table I/O event. As each subsidiary
event completes, it disappears from events_waits_current. At this point, and until the next subsidiary
event begins, the table I/O wait is also the most recent wait of any kind.

25.9 Performance Schema Tables for Current and Historical Events

For wait, stage, statement, and transaction events, the Performance Schema can monitor and store current
events. In addition, when events end, the Performance Schema can store them in history tables. For each
event type, the Performance Schema uses three tables for storing current and historical events. The tables
have names of the following forms, where xxx indicates the event type (waits, stages, statements,
transactions):

• events_xxx_current: The “current events” table stores the current monitored event for each thread
(one row per thread).

• events_xxx_history: The “recent history” table stores the most recent events that have ended per
thread (up to a maximum number of rows per thread).

• events_xxx_history_long: The “long history” table stores the most recent events that have ended
globally (across all threads, up to a maximum number of rows per table).

The _current table for each event type contains one row per thread, so there is no system variable for
configuring its maximum size. The Performance Schema autosizes the history tables, or the sizes can be
configured explicitly at server startup using table-specific system variables, as indicated in the sections
that describe the individual history tables. Typical autosized values are 10 rows per thread for _history
tables, and 10,000 rows total for _history_long tables.

For each event type, the _current, _history, and _history_long tables have the same columns.

The _current tables show what is currently happening within the server. When a current event ends, it is
removed from its _current table.

The _history and _history_long tables show what has happened in the recent past. When the history
tables become full, old events are discarded as new events are added. Rows expire from the _history
and _history_long tables in different ways because the tables serve different purposes:

• _history is meant to investigate individual threads, independently of the global server load.

• _history_long is meant to investigate the server globally, not each thread.

The difference between the two types of history tables relates to the data retention policy. Both tables
contains the same data when an event is first seen. However, data within each table expires differently
over time, so that data might be preserved for a longer or shorter time in each table:

• For _history, when the table contains the maximum number of rows for a given thread, the oldest
thread row is discarded when a new row for that thread is added.

• For _history_long, when the table becomes full, the oldest row is discarded when a new row is
added, regardless of which thread generated either row.

When a thread ends, all its rows are discarded from the _history table but not from the _history_long
table.

The following example illustrates the differences in how events are added to and discarded from the two
types of history tables. The principles apply equally to all event types. The example is based on these
assumptions:

4245

Performance Schema Statement Digests

• The Performance Schema is configured to retain 10 rows per thread in the _history table and 10,000
rows total in the _history_long table.

• Thread A generates 1 event per second.

Thread B generates 100 events per second.

• No other threads are running.

After 5 seconds of execution:

• A and B have generated 5 and 500 events, respectively.

• _history contains 5 rows for A and 10 rows for B. Because storage per thread is limited to 10 rows, no
rows have been discarded for A, whereas 490 rows have been discarded for B.

• _history_long contains 5 rows for A and 500 rows for B. Because the table has a maximum size of
10,000 rows, no rows have been discarded for either thread.

After 5 minutes (300 seconds) of execution:

• A and B have generated 300 and 30,000 events, respectively.

• _history contains 10 rows for A and 10 rows for B. Because storage per thread is limited to 10 rows,
290 rows have been discarded for A, whereas 29,990 rows have been discarded for B. Rows for A
include data up to 10 seconds old, whereas rows for B include data up to only .1 seconds old.

• _history_long contains 10,000 rows. Because A and B together generate 101 events per second, the
table contains data up to approximately 10,000/101 = 99 seconds old, with a mix of rows approximately
100 to 1 from B as opposed to A.

25.10 Performance Schema Statement Digests
The MySQL server is capable of maintaining statement digest information. The digesting process converts
each SQL statement to normalized form (the statement digest) and computes an MD5 hash value (the
digest hash value) from the normalized result. Normalization permits statements that are similar to be
grouped and summarized to expose information about the types of statements the server is executing and
how often they occur. This section describes how statement digesting occurs and how it can be useful.

Digesting occurs in the parser regardless of whether the Performance Schema is available, so that
other server components such as MySQL Enterprise Firewall and query rewrite plugins have access to
statement digests.

• Statement Digest General Concepts

• Statement Digests in the Performance Schema

• Statement Digest Memory Use

Statement Digest General Concepts

When the parser receives an SQL statement, it computes a statement digest if that digest is needed, which
is true if any of the following conditions are true:

• Performance Schema digest instrumentation is enabled

• MySQL Enterprise Firewall is enabled

4246

Statement Digest General Concepts

• A query rewrite plugin is enabled

The max_digest_length system variable value determines the maximum number of bytes available
per session for computation of normalized statement digests. Once that amount of space is used during
digest computation, truncation occurs: no further tokens from a parsed statement are collected or figure
into its digest value. Statements that differ only after that many bytes of parsed tokens produce the same
normalized statement digest and are considered identical if compared or if aggregated for digest statistics.

Warning

Setting the max_digest_length system variable to zero disables digest
production, which also disables server functionality that requires digests.

After the normalized statement has been computed, an MD5 hash value is computed from it. In addition:

• If MySQL Enterprise Firewall is enabled, it is called and the digest as computed is available to it.

• If any query rewrite plugin is enabled, it is called and the statement digest and digest value are available
to it.

• If the Performance Schema has digest instrumentation enabled, it makes a copy of the normalized
statement digest, allocating a maximum of performance_schema_max_digest_length bytes for it.
Consequently, if performance_schema_max_digest_length is less than max_digest_length,
the copy is truncated relative to the original. The copy of the normalized statement digest is stored in
the appropriate Performance Schema tables, along with the MD5 hash value computed from the original
normalized statement. (If the Performance Schema truncates its copy of the normalized statement digest
relative to the original, it does not recompute the MD5 hash value.)

Statement normalization transforms the statement text to a more standardized digest string representation
that preserves the general statement structure while removing information not essential to the structure:

• Object identifiers such as database and table names are preserved.

• Literal values are converted to parameter markers. A normalized statement does not retain information
such as names, passwords, dates, and so forth.

• Comments are removed and whitespace is adjusted.

Consider these statements:

SELECT * FROM orders WHERE customer_id=10 AND quantity>20
SELECT * FROM orders WHERE customer_id = 20 AND quantity > 100

To normalize these statements, the parser replaces data values by ? and adjusts whitespace. Both
statements yield the same normalized form and thus are considered “the same”:

SELECT * FROM orders WHERE customer_id = ? AND quantity > ?

The normalized statement contains less information but is still representative of the original statement.
Other similar statements that have different data values have the same normalized form.

Now consider these statements:

SELECT * FROM customers WHERE customer_id = 1000
SELECT * FROM orders WHERE customer_id = 1000

In this case, the normalized statements differ because the object identifiers differ:

SELECT * FROM customers WHERE customer_id = ?

4247

Statement Digests in the Performance Schema

SELECT * FROM orders WHERE customer_id = ?

If normalization produces a statement that exceeds the space available in the digest buffer (as determined
by max_digest_length), truncation occurs and the text ends with “...”. Long normalized statements that
differ only in the part that occurs following the “...” are considered the same. Consider these statements:

SELECT * FROM mytable WHERE cola = 10 AND colb = 20
SELECT * FROM mytable WHERE cola = 10 AND colc = 20

If the cutoff happens to be right after the AND, both statements have this normalized form:

SELECT * FROM mytable WHERE cola = ? AND ...

In this case, the difference in the second column name is lost and both statements are considered the
same.

Statement Digests in the Performance Schema

In the Performance Schema, statement digesting involves these elements:

• A statements_digest consumer in the setup_consumers table controls whether the Performance
Schema maintains digest information. See Statement Digest Consumer.

• The statement event tables (events_statements_current, events_statements_history, and
events_statements_history_long) have columns for storing normalized statement digests and
the corresponding digest MD5 hash values:

• DIGEST_TEXT is the text of the normalized statement digest. This is a copy of the original normalized
statement that was computed to a maximum of max_digest_length bytes, further truncated as
necessary to performance_schema_max_digest_length bytes.

• DIGEST is the digest MD5 hash value computed from the original normalized statement.

See Section 25.12.6, “Performance Schema Statement Event Tables”.

• The events_statements_summary_by_digest summary table provides aggregated statement
digest information. This table aggregates information for statements per SCHEMA_NAME and DIGEST
combination. The Performance Schema uses MD5 hash values for aggregation because they are fast to
compute and have a favorable statistical distribution that minimizes collisions. See Section 25.12.15.3,
“Statement Summary Tables”.

The statement event tables also have an SQL_TEXT column that contains the original SQL statement. The
maximum space available for statement display is 1024 bytes by default. To change this value, set the
performance_schema_max_sql_text_length system variable at server startup.

The performance_schema_max_digest_length system variable determines the maximum
number of bytes available per statement for digest value storage in the Performance Schema.
However, the display length of statement digests may be longer than the available buffer size due
to internal encoding of statement elements such as keywords and literal values. Consequently,
values selected from the DIGEST_TEXT column of statement event tables may appear to exceed the
performance_schema_max_digest_length value.

The events_statements_summary_by_digest summary table provides a profile of the statements
executed by the server. It shows what kinds of statements an application is executing and how often. An
application developer can use this information together with other information in the table to assess the
application's performance characteristics. For example, table columns that show wait times, lock times,
or index use may highlight types of queries that are inefficient. This gives the developer insight into which
parts of the application need attention.

4248

Statement Digest Memory Use

The events_statements_summary_by_digest summary table has a fixed size. By default the
Performance Schema estimates the size to use at startup. To specify the table size explicitly, set the
performance_schema_digests_size system variable at server startup. If the table becomes
full, the Performance Schema groups statements that have SCHEMA_NAME and DIGEST values not
matching existing values in the table in a special row with SCHEMA_NAME and DIGEST set to NULL. This
permits all statements to be counted. However, if the special row accounts for a significant percentage
of the statements executed, it might be desirable to increase the summary table size by increasing
performance_schema_digests_size.

Statement Digest Memory Use

For applications that generate very long statements that differ only at the end, increasing
max_digest_length enables computation of digests that distinguish statements that would otherwise
aggregate to the same digest. Conversely, decreasing max_digest_length causes the server to devote
less memory to digest storage but increases the likelihood of longer statements aggregating to the same
digest. Administrators should keep in mind that larger values result in correspondingly increased memory
requirements, particularly for workloads that involve large numbers of simultaneous sessions (the server
allocates max_digest_length bytes per session).

As described previously, normalized statement digests as computed by the parser are constrained
to a maximum of max_digest_length bytes, whereas normalized statement digests stored in the
Performance Schema use performance_schema_max_digest_length bytes. The following
memory-use considerations apply regarding the relative values of max_digest_length and
performance_schema_max_digest_length:

• If max_digest_length is less than performance_schema_max_digest_length:

• Server components other than the Performance Schema use normalized statement digests that take
up to max_digest_length bytes.

• The Performance Schema does not further truncate normalized statement digests that it stores, but
allocates more memory than max_digest_length bytes per digest, which is unnecessary.

• If max_digest_length equals performance_schema_max_digest_length:

• Server components other than the Performance Schema use normalized statement digests that take
up to max_digest_length bytes.

• The Performance Schema does not further truncate normalized statement digests that it stores, and
allocates the same amount of memory as max_digest_length bytes per digest.

• If max_digest_length is greater than performance_schema_max_digest_length:

• Server components other than the Performance Schema use normalized statement digests that take
up to max_digest_length bytes.

• The Performance Schema further truncates normalized statement digests that it stores, and allocates
less memory than max_digest_length bytes per digest.

Because the Performance Schema statement event tables might store many digests, setting
performance_schema_max_digest_length smaller than max_digest_length enables
administrators to balance these factors:

• The need to have long normalized statement digests available for server components outside the
Performance Schema

• Many concurrent sessions, each of which allocates digest-computation memory

4249

Performance Schema General Table Characteristics

• The need to limit memory consumption by the Performance Schema statement event tables when
storing many statement digests

The performance_schema_max_digest_length setting is not per session, it is per statement, and a
session can store multiple statements in the events_statements_history table. A typical number of
statements in this table is 10 per session, so each session consumes 10 times the memory indicated by
the performance_schema_max_digest_length value, for this table alone.

Also, there are many statements (and digests) collected globally, most notably in the
events_statements_history_long table. Here, too, N statements stored consume N times the
memory indicated by the performance_schema_max_digest_length value.

To assess the amount of memory used for SQL statement storage and digest computation, use the SHOW
ENGINE PERFORMANCE_SCHEMA STATUS statement, or monitor these instruments:

mysql> SELECT NAME
 FROM performance_schema.setup_instruments
 WHERE NAME LIKE '%.sqltext';
+--+
| NAME |
+--+
| memory/performance_schema/events_statements_history.sqltext |
| memory/performance_schema/events_statements_current.sqltext |
| memory/performance_schema/events_statements_history_long.sqltext |
+--+

mysql> SELECT NAME
 FROM performance_schema.setup_instruments
 WHERE NAME LIKE 'memory/performance_schema/%.tokens';
+--+
| NAME |
+--+
| memory/performance_schema/events_statements_history.tokens |
| memory/performance_schema/events_statements_current.tokens |
| memory/performance_schema/events_statements_summary_by_digest.tokens |
| memory/performance_schema/events_statements_history_long.tokens |
+--+

25.11 Performance Schema General Table Characteristics
The name of the performance_schema database is lowercase, as are the names of tables within it.
Queries should specify the names in lowercase.

Many tables in the performance_schema database are read only and cannot be modified:

mysql> TRUNCATE TABLE performance_schema.setup_instruments;
ERROR 1683 (HY000): Invalid performance_schema usage.

Some of the setup tables have columns that can be modified to affect Performance Schema operation;
some also permit rows to be inserted or deleted. Truncation is permitted to clear collected events, so
TRUNCATE TABLE can be used on tables containing those kinds of information, such as tables named with
a prefix of events_waits_.

Summary tables can be truncated with TRUNCATE TABLE. Generally, the effect is to reset the summary
columns to 0 or NULL, not to remove rows. This enables you to clear collected values and restart
aggregation. That might be useful, for example, after you have made a runtime configuration change.
Exceptions to this truncation behavior are noted in individual summary table sections.

Privileges are as for other databases and tables:

• To retrieve from performance_schema tables, you must have the SELECT privilege.

4250

Performance Schema Table Descriptions

• To change those columns that can be modified, you must have the UPDATE privilege.

• To truncate tables that can be truncated, you must have the DROP privilege.

Because only a limited set of privileges apply to Performance Schema tables, attempts to use GRANT ALL
as shorthand for granting privileges at the database or table leval fail with an error:

mysql> GRANT ALL ON performance_schema.*
 TO 'u1'@'localhost';
ERROR 1044 (42000): Access denied for user 'root'@'localhost'
to database 'performance_schema'
mysql> GRANT ALL ON performance_schema.setup_instruments
 TO 'u2'@'localhost';
ERROR 1044 (42000): Access denied for user 'root'@'localhost'
to database 'performance_schema'

Instead, grant exactly the desired privileges:

mysql> GRANT SELECT ON performance_schema.*
 TO 'u1'@'localhost';
Query OK, 0 rows affected (0.03 sec)

mysql> GRANT SELECT, UPDATE ON performance_schema.setup_instruments
 TO 'u2'@'localhost';
Query OK, 0 rows affected (0.02 sec)

25.12 Performance Schema Table Descriptions
Tables in the performance_schema database can be grouped as follows:

• Setup tables. These tables are used to configure and display monitoring characteristics.

• Current events tables. The events_waits_current table contains the most recent event for
each thread. Other similar tables contain current events at different levels of the event hierarchy:
events_stages_current for stage events, events_statements_current for statement events,
and events_transactions_current for transaction events.

• History tables. These tables have the same structure as the current events tables, but contain more
rows. For example, for wait events, events_waits_history table contains the most recent 10 events
per thread. events_waits_history_long contains the most recent 10,000 events. Other similar
tables exist for stage, statement, and transaction histories.

To change the sizes of the history tables, set the appropriate system variables
at server startup. For example, to set the sizes of the wait event history
tables, set performance_schema_events_waits_history_size and
performance_schema_events_waits_history_long_size.

• Summary tables. These tables contain information aggregated over groups of events, including those
that have been discarded from the history tables.

• Instance tables. These tables document what types of objects are instrumented. An instrumented object,
when used by the server, produces an event. These tables provide event names and explanatory notes
or status information.

• Miscellaneous tables. These do not fall into any of the other table groups.

25.12.1 Performance Schema Table Reference

The following table summarizes all available Performance Schema tables. For greater detail, see the
individual table descriptions.

4251

Performance Schema Table Reference

Table 25.1 Performance Schema Tables

Table Name Description Deprecated

accounts Connection statistics per client
account

cond_instances Synchronization object instances

events_stages_current Current stage events

events_stages_history Most recent stage events per
thread

events_stages_history_longMost recent stage events overall

events_stages_summary_by_account_by_event_nameStage events per account and
event name

events_stages_summary_by_host_by_event_nameStage events per host name and
event name

events_stages_summary_by_thread_by_event_nameStage waits per thread and event
name

events_stages_summary_by_user_by_event_nameStage events per user name and
event name

events_stages_summary_global_by_event_nameStage waits per event name

events_statements_current Current statement events

events_statements_history Most recent statement events per
thread

events_statements_history_longMost recent statement events
overall

events_statements_summary_by_account_by_event_nameStatement events per account and
event name

events_statements_summary_by_digestStatement events per schema and
digest value

events_statements_summary_by_host_by_event_nameStatement events per host name
and event name

events_statements_summary_by_programStatement events per stored
program

events_statements_summary_by_thread_by_event_nameStatement events per thread and
event name

events_statements_summary_by_user_by_event_nameStatement events per user name
and event name

events_statements_summary_global_by_event_nameStatement events per event name

events_transactions_currentCurrent transaction events

events_transactions_historyMost recent transaction events per
thread

events_transactions_history_longMost recent transaction events
overall

events_transactions_summary_by_account_by_event_nameTransaction events per account
and event name

4252

Performance Schema Table Reference

Table Name Description Deprecated

events_transactions_summary_by_host_by_event_nameTransaction events per host name
and event name

events_transactions_summary_by_thread_by_event_nameTransaction events per thread and
event name

events_transactions_summary_by_user_by_event_nameTransaction events per user name
and event name

events_transactions_summary_global_by_event_nameTransaction events per event
name

events_waits_current Current wait events

events_waits_history Most recent wait events per thread

events_waits_history_long Most recent wait events overall

events_waits_summary_by_account_by_event_nameWait events per account and
event name

events_waits_summary_by_host_by_event_nameWait events per host name and
event name

events_waits_summary_by_instanceWait events per instance

events_waits_summary_by_thread_by_event_nameWait events per thread and event
name

events_waits_summary_by_user_by_event_nameWait events per user name and
event name

events_waits_summary_global_by_event_nameWait events per event name

file_instances File instances

file_summary_by_event_name File events per event name

file_summary_by_instance File events per file instance

global_status Global status variables

global_variables Global system variables

host_cache Information from internal host
cache

hosts Connection statistics per client
host name

memory_summary_by_account_by_event_nameMemory operations per account
and event name

memory_summary_by_host_by_event_nameMemory operations per host and
event name

memory_summary_by_thread_by_event_nameMemory operations per thread and
event name

memory_summary_by_user_by_event_nameMemory operations per user and
event name

memory_summary_global_by_event_nameMemory operations globally per
event name

metadata_locks Metadata locks and lock requests

4253

Performance Schema Table Reference

Table Name Description Deprecated

mutex_instances Mutex synchronization object
instances

objects_summary_global_by_typeObject summaries

performance_timers Which event timers are available

prepared_statements_instancesPrepared statement instances and
statistics

replication_applier_configurationConfiguration parameters for
replication applier on replica

replication_applier_statusCurrent status of replication
applier on replica

replication_applier_status_by_coordinatorSQL or coordinator thread applier
status

replication_applier_status_by_workerWorker thread applier status

replication_connection_configurationConfiguration parameters for
connecting to source

replication_connection_statusCurrent status of connection to
source

replication_group_member_statsReplication group member
statistics

replication_group_members Replication group member
network and status

rwlock_instances Lock synchronization object
instances

session_account_connect_attrsConnection attributes per for
current session

session_connect_attrs Connection attributes for all
sessions

session_status Status variables for current
session

session_variables System variables for current
session

setup_actors How to initialize monitoring for
new foreground threads

setup_consumers Consumers for which event
information can be stored

setup_instruments Classes of instrumented objects
for which events can be collected

setup_objects Which objects should be
monitored

setup_timers Currently selected event timers 5.7.21

socket_instances Active connection instances

socket_summary_by_event_nameSocket waits and I/O per event
name

4254

Performance Schema Setup Tables

Table Name Description Deprecated

socket_summary_by_instanceSocket waits and I/O per instance

status_by_account Session status variables per
account

status_by_host Session status variables per host
name

status_by_thread Session status variables per
session

status_by_user Session status variables per user
name

table_handles Table locks and lock requests

table_io_waits_summary_by_index_usageTable I/O waits per index

table_io_waits_summary_by_tableTable I/O waits per table

table_lock_waits_summary_by_tableTable lock waits per table

threads Information about server threads

user_variables_by_thread User-defined variables per thread

users Connection statistics per client
user name

variables_by_thread Session system variables per
session

25.12.2 Performance Schema Setup Tables

The setup tables provide information about the current instrumentation and enable the monitoring
configuration to be changed. For this reason, some columns in these tables can be changed if you have
the UPDATE privilege.

The use of tables rather than individual variables for setup information provides a high degree of flexibility
in modifying Performance Schema configuration. For example, you can use a single statement with
standard SQL syntax to make multiple simultaneous configuration changes.

These setup tables are available:

• setup_actors: How to initialize monitoring for new foreground threads

• setup_consumers: The destinations to which event information can be sent and stored

• setup_instruments: The classes of instrumented objects for which events can be collected

• setup_objects: Which objects should be monitored

• setup_timers: The current event timer

25.12.2.1 The setup_actors Table

The setup_actors table contains information that determines whether to enable monitoring
and historical event logging for new foreground server threads (threads associated with client
connections). This table has a maximum size of 100 rows by default. To change the table size, modify the
performance_schema_setup_actors_size system variable at server startup.

For each new foreground thread, the Performance Schema matches the user and host for the thread
against the rows of the setup_actors table. If a row from that table matches, its ENABLED and HISTORY

4255

Performance Schema Setup Tables

column values are used to set the INSTRUMENTED and HISTORY columns, respectively, of the threads
table row for the thread. This enables instrumenting and historical event logging to be applied selectively
per host, user, or account (user and host combination). If there is no match, the INSTRUMENTED and
HISTORY columns for the thread are set to NO.

For background threads, there is no associated user. INSTRUMENTED and HISTORY are YES by default
and setup_actors is not consulted.

The initial contents of the setup_actors table match any user and host combination, so monitoring and
historical event collection are enabled by default for all foreground threads:

mysql> SELECT * FROM performance_schema.setup_actors;
+------+------+------+---------+---------+
| HOST | USER | ROLE | ENABLED | HISTORY |
+------+------+------+---------+---------+
| % | % | % | YES | YES |
+------+------+------+---------+---------+

For information about how to use the setup_actors table to affect event monitoring, see Section 25.4.6,
“Pre-Filtering by Thread”.

Modifications to the setup_actors table affect only foreground threads created subsequent to the
modification, not existing threads. To affect existing threads, modify the INSTRUMENTED and HISTORY
columns of threads table rows.

The setup_actors table has these columns:

• HOST

The host name. This should be a literal name, or '%' to mean “any host.”

• USER

The user name. This should be a literal name, or '%' to mean “any user.”

• ROLE

Unused.

• ENABLED

Whether to enable instrumentation for foreground threads matched by the row. The value is YES or NO.

• HISTORY

Whether to log historical events for foreground threads matched by the row. The value is YES or NO.

TRUNCATE TABLE is permitted for the setup_actors table. It removes the rows.

25.12.2.2 The setup_consumers Table

The setup_consumers table lists the types of consumers for which event information can be stored and
which are enabled:

mysql> SELECT * FROM performance_schema.setup_consumers;
+----------------------------------+---------+
| NAME | ENABLED |
+----------------------------------+---------+
events_stages_current	NO
events_stages_history	NO
events_stages_history_long	NO

4256

Performance Schema Setup Tables

events_statements_current	YES
events_statements_history	YES
events_statements_history_long	NO
events_transactions_current	NO
events_transactions_history	NO
events_transactions_history_long	NO
events_waits_current	NO
events_waits_history	NO
events_waits_history_long	NO
global_instrumentation	YES
thread_instrumentation	YES
statements_digest	YES
+----------------------------------+---------+

The consumer settings in the setup_consumers table form a hierarchy from higher levels to lower. For
detailed information about the effect of enabling different consumers, see Section 25.4.7, “Pre-Filtering by
Consumer”.

Modifications to the setup_consumers table affect monitoring immediately.

The setup_consumers table has these columns:

• NAME

The consumer name.

• ENABLED

Whether the consumer is enabled. The value is YES or NO. This column can be modified. If you disable a
consumer, the server does not spend time adding event information to it.

TRUNCATE TABLE is not permitted for the setup_consumers table.

25.12.2.3 The setup_instruments Table

The setup_instruments table lists classes of instrumented objects for which events can be collected:

mysql> SELECT * FROM performance_schema.setup_instruments;
+---+---------+-------+
| NAME | ENABLED | TIMED |
+---+---------+-------+
...
stage/sql/end	NO	NO
stage/sql/executing	NO	NO
stage/sql/init	NO	NO
stage/sql/insert	NO	NO
...		
statement/sql/load	YES	YES
statement/sql/grant	YES	YES
statement/sql/check	YES	YES
statement/sql/flush	YES	YES
...		
wait/synch/mutex/sql/LOCK_global_read_lock	YES	YES
wait/synch/mutex/sql/LOCK_global_system_variables	YES	YES
wait/synch/mutex/sql/LOCK_lock_db	YES	YES
wait/synch/mutex/sql/LOCK_manager	YES	YES
...		
wait/synch/rwlock/sql/LOCK_grant	YES	YES
wait/synch/rwlock/sql/LOGGER::LOCK_logger	YES	YES
wait/synch/rwlock/sql/LOCK_sys_init_connect	YES	YES
wait/synch/rwlock/sql/LOCK_sys_init_slave	YES	YES
...		
wait/io/file/sql/binlog	YES	YES
wait/io/file/sql/binlog_index	YES	YES
wait/io/file/sql/casetest	YES	YES

4257

Performance Schema Setup Tables

| wait/io/file/sql/dbopt | YES | YES |
...

Each instrument added to the source code provides a row for the setup_instruments table, even
when the instrumented code is not executed. When an instrument is enabled and executed, instrumented
instances are created, which are visible in the xxx_instances tables, such as file_instances or
rwlock_instances.

Modifications to most setup_instruments rows affect monitoring immediately. For some instruments,
modifications are effective only at server startup; changing them at runtime has no effect. This affects
primarily mutexes, conditions, and rwlocks in the server, although there may be other instruments for which
this is true.

For more information about the role of the setup_instruments table in event filtering, see
Section 25.4.3, “Event Pre-Filtering”.

The setup_instruments table has these columns:

• NAME

The instrument name. Instrument names may have multiple parts and form a hierarchy, as discussed in
Section 25.6, “Performance Schema Instrument Naming Conventions”. Events produced from execution
of an instrument have an EVENT_NAME value that is taken from the instrument NAME value. (Events do
not really have a “name,” but this provides a way to associate events with instruments.)

• ENABLED

Whether the instrument is enabled. The value is YES or NO. A disabled instrument produces no events.
This column can be modified, although setting ENABLED has no effect for instruments that have already
been created.

• TIMED

Whether the instrument is timed. The value is YES or NO. This column can be modified, although setting
TIMED has no effect for instruments that have already been created.

For memory instruments, the TIMED column in setup_instruments is ignored because memory
operations are not timed.

If an enabled instrument is not timed, the instrument code is enabled, but the timer is not. Events
produced by the instrument have NULL for the TIMER_START, TIMER_END, and TIMER_WAIT timer
values. This in turn causes those values to be ignored when calculating the sum, minimum, maximum,
and average time values in summary tables.

TRUNCATE TABLE is not permitted for the setup_instruments table.

25.12.2.4 The setup_objects Table

The setup_objects table controls whether the Performance Schema monitors particular objects.
This table has a maximum size of 100 rows by default. To change the table size, modify the
performance_schema_setup_objects_size system variable at server startup.

The initial setup_objects contents look like this:

mysql> SELECT * FROM performance_schema.setup_objects;
+-------------+--------------------+-------------+---------+-------+
| OBJECT_TYPE | OBJECT_SCHEMA | OBJECT_NAME | ENABLED | TIMED |
+-------------+--------------------+-------------+---------+-------+
| EVENT | mysql | % | NO | NO |

4258

Performance Schema Setup Tables

EVENT	performance_schema	%	NO	NO
EVENT	information_schema	%	NO	NO
EVENT	%	%	YES	YES
FUNCTION	mysql	%	NO	NO
FUNCTION	performance_schema	%	NO	NO
FUNCTION	information_schema	%	NO	NO
FUNCTION	%	%	YES	YES
PROCEDURE	mysql	%	NO	NO
PROCEDURE	performance_schema	%	NO	NO
PROCEDURE	information_schema	%	NO	NO
PROCEDURE	%	%	YES	YES
TABLE	mysql	%	NO	NO
TABLE	performance_schema	%	NO	NO
TABLE	information_schema	%	NO	NO
TABLE	%	%	YES	YES
TRIGGER	mysql	%	NO	NO
TRIGGER	performance_schema	%	NO	NO
TRIGGER	information_schema	%	NO	NO
TRIGGER	%	%	YES	YES
+-------------+--------------------+-------------+---------+-------+

Modifications to the setup_objects table affect object monitoring immediately.

For object types listed in setup_objects, the Performance Schema uses the table to how to monitor
them. Object matching is based on the OBJECT_SCHEMA and OBJECT_NAME columns. Objects for which
there is no match are not monitored.

The effect of the default object configuration is to instrument all tables except those in the mysql,
INFORMATION_SCHEMA, and performance_schema databases. (Tables in the INFORMATION_SCHEMA
database are not instrumented regardless of the contents of setup_objects; the row for
information_schema.% simply makes this default explicit.)

When the Performance Schema checks for a match in setup_objects, it tries to find more specific
matches first. For example, with a table db1.t1, it looks for a match for 'db1' and 't1', then for 'db1'
and '%', then for '%' and '%'. The order in which matching occurs matters because different matching
setup_objects rows can have different ENABLED and TIMED values.

Rows can be inserted into or deleted from setup_objects by users with the INSERT or DELETE privilege
on the table. For existing rows, only the ENABLED and TIMED columns can be modified, by users with the
UPDATE privilege on the table.

For more information about the role of the setup_objects table in event filtering, see Section 25.4.3,
“Event Pre-Filtering”.

The setup_objects table has these columns:

• OBJECT_TYPE

The type of object to instrument. The value is one of 'EVENT' (Event Scheduler event), 'FUNCTION'
(stored function), 'PROCEDURE' (stored procedure), 'TABLE' (base table), or 'TRIGGER' (trigger).

TABLE filtering affects table I/O events (wait/io/table/sql/handler instrument) and table lock
events (wait/lock/table/sql/handler instrument).

• OBJECT_SCHEMA

The schema that contains the object. This should be a literal name, or '%' to mean “any schema.”

• OBJECT_NAME

The name of the instrumented object. This should be a literal name, or '%' to mean “any object.”

4259

Performance Schema Instance Tables

• ENABLED

Whether events for the object are instrumented. The value is YES or NO. This column can be modified.

• TIMED

Whether events for the object are timed. The value is YES or NO. This column can be modified.

TRUNCATE TABLE is permitted for the setup_objects table. It removes the rows.

25.12.2.5 The setup_timers Table

The setup_timers table shows the currently selected event timers:

mysql> SELECT * FROM performance_schema.setup_timers;
+-------------+-------------+
| NAME | TIMER_NAME |
+-------------+-------------+
idle	MICROSECOND
wait	CYCLE
stage	NANOSECOND
statement	NANOSECOND
transaction	NANOSECOND
+-------------+-------------+

Note

As of MySQL 5.7.21, the Performance Schema setup_timers table is deprecated
and is removed in MySQL 8.0, as is the TICKS row in the performance_timers
table.

The setup_timers.TIMER_NAME value can be changed to select a different timer. The value can be any
of the values in the performance_timers.TIMER_NAME column. For an explanation of how event timing
occurs, see Section 25.4.1, “Performance Schema Event Timing”.

Modifications to the setup_timers table affect monitoring immediately. Events already in progress may
use the original timer for the begin time and the new timer for the end time. To avoid unpredictable results
after you make timer changes, use TRUNCATE TABLE to reset Performance Schema statistics.

The setup_timers table has these columns:

• NAME

The type of instrument the timer is used for.

• TIMER_NAME

The timer that applies to the instrument type. This column can be modified.

TRUNCATE TABLE is not permitted for the setup_timers table.

25.12.3 Performance Schema Instance Tables

Instance tables document what types of objects are instrumented. They provide event names and
explanatory notes or status information:

• cond_instances: Condition synchronization object instances

• file_instances: File instances

4260

Performance Schema Instance Tables

• mutex_instances: Mutex synchronization object instances

• rwlock_instances: Lock synchronization object instances

• socket_instances: Active connection instances

These tables list instrumented synchronization objects, files, and connections. There are three types
of synchronization objects: cond, mutex, and rwlock. Each instance table has an EVENT_NAME or
NAME column to indicate the instrument associated with each row. Instrument names may have multiple
parts and form a hierarchy, as discussed in Section 25.6, “Performance Schema Instrument Naming
Conventions”.

The mutex_instances.LOCKED_BY_THREAD_ID and
rwlock_instances.WRITE_LOCKED_BY_THREAD_ID columns are extremely important for investigating
performance bottlenecks or deadlocks. For examples of how to use them for this purpose, see
Section 25.19, “Using the Performance Schema to Diagnose Problems”

25.12.3.1 The cond_instances Table

The cond_instances table lists all the conditions seen by the Performance Schema while the server
executes. A condition is a synchronization mechanism used in the code to signal that a specific event has
happened, so that a thread waiting for this condition can resume work.

When a thread is waiting for something to happen, the condition name is an indication of what the thread is
waiting for, but there is no immediate way to tell which other threads cause the condition to happen.

The cond_instances table has these columns:

• NAME

The instrument name associated with the condition.

• OBJECT_INSTANCE_BEGIN

The address in memory of the instrumented condition.

TRUNCATE TABLE is not permitted for the cond_instances table.

25.12.3.2 The file_instances Table

The file_instances table lists all the files seen by the Performance Schema when executing file I/
O instrumentation. If a file on disk has never been opened, it is not in file_instances. When a file is
deleted from the disk, it is also removed from the file_instances table.

The file_instances table has these columns:

• FILE_NAME

The file name.

• EVENT_NAME

The instrument name associated with the file.

• OPEN_COUNT

The count of open handles on the file. If a file was opened and then closed, it was opened 1 time, but
OPEN_COUNT is 0. To list all the files currently opened by the server, use WHERE OPEN_COUNT > 0.

4261

Performance Schema Instance Tables

TRUNCATE TABLE is not permitted for the file_instances table.

25.12.3.3 The mutex_instances Table

The mutex_instances table lists all the mutexes seen by the Performance Schema while the server
executes. A mutex is a synchronization mechanism used in the code to enforce that only one thread at
a given time can have access to some common resource. The resource is said to be “protected” by the
mutex.

When two threads executing in the server (for example, two user sessions executing a query
simultaneously) do need to access the same resource (a file, a buffer, or some piece of data), these two
threads compete against each other, so that the first query to obtain a lock on the mutex causes the other
query to wait until the first is done and unlocks the mutex.

The work performed while holding a mutex is said to be in a “critical section,” and multiple queries do
execute this critical section in a serialized way (one at a time), which is a potential bottleneck.

The mutex_instances table has these columns:

• NAME

The instrument name associated with the mutex.

• OBJECT_INSTANCE_BEGIN

The address in memory of the instrumented mutex.

• LOCKED_BY_THREAD_ID

When a thread currently has a mutex locked, LOCKED_BY_THREAD_ID is the THREAD_ID of the locking
thread, otherwise it is NULL.

TRUNCATE TABLE is not permitted for the mutex_instances table.

For every mutex instrumented in the code, the Performance Schema provides the following information.

• The setup_instruments table lists the name of the instrumentation point, with the prefix wait/
synch/mutex/.

• When some code creates a mutex, a row is added to the mutex_instances table. The
OBJECT_INSTANCE_BEGIN column is a property that uniquely identifies the mutex.

• When a thread attempts to lock a mutex, the events_waits_current table shows a row for that
thread, indicating that it is waiting on a mutex (in the EVENT_NAME column), and indicating which mutex
is waited on (in the OBJECT_INSTANCE_BEGIN column).

• When a thread succeeds in locking a mutex:

• events_waits_current shows that the wait on the mutex is completed (in the TIMER_END and
TIMER_WAIT columns)

• The completed wait event is added to the events_waits_history and
events_waits_history_long tables

• mutex_instances shows that the mutex is now owned by the thread (in the THREAD_ID column).

• When a thread unlocks a mutex, mutex_instances shows that the mutex now has no owner (the
THREAD_ID column is NULL).

4262

Performance Schema Instance Tables

• When a mutex object is destroyed, the corresponding row is removed from mutex_instances.

By performing queries on both of the following tables, a monitoring application or a DBA can detect
bottlenecks or deadlocks between threads that involve mutexes:

• events_waits_current, to see what mutex a thread is waiting for

• mutex_instances, to see which other thread currently owns a mutex

25.12.3.4 The rwlock_instances Table

The rwlock_instances table lists all the rwlock (read write lock) instances seen by the Performance
Schema while the server executes. An rwlock is a synchronization mechanism used in the code to
enforce that threads at a given time can have access to some common resource following certain rules.
The resource is said to be “protected” by the rwlock. The access is either shared (many threads can have
a read lock at the same time), exclusive (only one thread can have a write lock at a given time), or shared-
exclusive (a thread can have a write lock while permitting inconsistent reads by other threads). Shared-
exclusive access is otherwise known as an sxlock and optimizes concurrency and improves scalability for
read-write workloads.

Depending on how many threads are requesting a lock, and the nature of the locks requested, access can
be either granted in shared mode, exclusive mode, shared-exclusive mode or not granted at all, waiting for
other threads to finish first.

The rwlock_instances table has these columns:

• NAME

The instrument name associated with the lock.

• OBJECT_INSTANCE_BEGIN

The address in memory of the instrumented lock.

• WRITE_LOCKED_BY_THREAD_ID

When a thread currently has an rwlock locked in exclusive (write) mode,
WRITE_LOCKED_BY_THREAD_ID is the THREAD_ID of the locking thread, otherwise it is NULL.

• READ_LOCKED_BY_COUNT

When a thread currently has an rwlock locked in shared (read) mode, READ_LOCKED_BY_COUNT is
incremented by 1. This is a counter only, so it cannot be used directly to find which thread holds a read
lock, but it can be used to see whether there is a read contention on an rwlock, and see how many
readers are currently active.

TRUNCATE TABLE is not permitted for the rwlock_instances table.

By performing queries on both of the following tables, a monitoring application or a DBA may detect some
bottlenecks or deadlocks between threads that involve locks:

• events_waits_current, to see what rwlock a thread is waiting for

• rwlock_instances, to see which other thread currently owns an rwlock

There is a limitation: The rwlock_instances can be used only to identify the thread holding a write lock,
but not the threads holding a read lock.

25.12.3.5 The socket_instances Table

4263

Performance Schema Instance Tables

The socket_instances table provides a real-time snapshot of the active connections to the MySQL
server. The table contains one row per TCP/IP or Unix socket file connection. Information available in
this table provides a real-time snapshot of the active connections to the server. (Additional information is
available in socket summary tables, including network activity such as socket operations and number of
bytes transmitted and received; see Section 25.12.15.8, “Socket Summary Tables”).

mysql> SELECT * FROM performance_schema.socket_instances\G
*************************** 1. row ***************************
 EVENT_NAME: wait/io/socket/sql/server_unix_socket
OBJECT_INSTANCE_BEGIN: 4316619408
 THREAD_ID: 1
 SOCKET_ID: 16
 IP:
 PORT: 0
 STATE: ACTIVE
*************************** 2. row ***************************
 EVENT_NAME: wait/io/socket/sql/client_connection
OBJECT_INSTANCE_BEGIN: 4316644608
 THREAD_ID: 21
 SOCKET_ID: 39
 IP: 127.0.0.1
 PORT: 55233
 STATE: ACTIVE
*************************** 3. row ***************************
 EVENT_NAME: wait/io/socket/sql/server_tcpip_socket
OBJECT_INSTANCE_BEGIN: 4316699040
 THREAD_ID: 1
 SOCKET_ID: 14
 IP: 0.0.0.0
 PORT: 50603
 STATE: ACTIVE

Socket instruments have names of the form wait/io/socket/sql/socket_type and are used like
this:

1. The server has a listening socket for each network protocol that it supports. The instruments associated
with listening sockets for TCP/IP or Unix socket file connections have a socket_type value of
server_tcpip_socket or server_unix_socket, respectively.

2. When a listening socket detects a connection, the server transfers the connection to a new socket
managed by a separate thread. The instrument for the new connection thread has a socket_type
value of client_connection.

3. When a connection terminates, the row in socket_instances corresponding to it is deleted.

The socket_instances table has these columns:

• EVENT_NAME

The name of the wait/io/socket/* instrument that produced the event. This is a NAME value from
the setup_instruments table. Instrument names may have multiple parts and form a hierarchy, as
discussed in Section 25.6, “Performance Schema Instrument Naming Conventions”.

• OBJECT_INSTANCE_BEGIN

This column uniquely identifies the socket. The value is the address of an object in memory.

• THREAD_ID

The internal thread identifier assigned by the server. Each socket is managed by a single thread, so
each socket can be mapped to a thread which can be mapped to a server process.

4264

Performance Schema Wait Event Tables

• SOCKET_ID

The internal file handle assigned to the socket.

• IP

The client IP address. The value may be either an IPv4 or IPv6 address, or blank to indicate a Unix
socket file connection.

• PORT

The TCP/IP port number, in the range from 0 to 65535.

• STATE

The socket status, either IDLE or ACTIVE. Wait times for active sockets are tracked using the
corresponding socket instrument. Wait times for idle sockets are tracked using the idle instrument.

A socket is idle if it is waiting for a request from the client. When a socket becomes idle, the event row
in socket_instances that is tracking the socket switches from a status of ACTIVE to IDLE. The
EVENT_NAME value remains wait/io/socket/*, but timing for the instrument is suspended. Instead,
an event is generated in the events_waits_current table with an EVENT_NAME value of idle.

When the next request is received, the idle event terminates, the socket instance switches from IDLE
to ACTIVE, and timing of the socket instrument resumes.

TRUNCATE TABLE is not permitted for the socket_instances table.

The IP:PORT column combination value identifies the connection. This combination value is used in the
OBJECT_NAME column of the events_waits_xxx tables, to identify the connection from which socket
events come:

• For the Unix domain listener socket (server_unix_socket), the port is 0, and the IP is ''.

• For client connections via the Unix domain listener (client_connection), the port is 0, and the IP is
''.

• For the TCP/IP server listener socket (server_tcpip_socket), the port is always the master port (for
example, 3306), and the IP is always 0.0.0.0.

• For client connections via the TCP/IP listener (client_connection), the port is whatever the server
assigns, but never 0. The IP is the IP of the originating host (127.0.0.1 or ::1 for the local host)

25.12.4 Performance Schema Wait Event Tables

The Performance Schema instruments waits, which are events that take time. Within the event hierarchy,
wait events nest within stage events, which nest within statement events, which nest within transaction
events.

These tables store wait events:

• events_waits_current: The current wait event for each thread.

• events_waits_history: The most recent wait events that have ended per thread.

• events_waits_history_long: The most recent wait events that have ended globally (across all
threads).

4265

Performance Schema Wait Event Tables

The following sections describe the wait event tables. There are also summary tables that aggregate
information about wait events; see Section 25.12.15.1, “Wait Event Summary Tables”.

For more information about the relationship between the three wait event tables, see Section 25.9,
“Performance Schema Tables for Current and Historical Events”.

Configuring Wait Event Collection

To control whether to collect wait events, set the state of the relevant instruments and consumers:

• The setup_instruments table contains instruments with names that begin with wait. Use these
instruments to enable or disable collection of individual wait event classes.

• The setup_consumers table contains consumer values with names corresponding to the current and
historical wait event table names. Use these consumers to filter collection of wait events.

Some wait instruments are enabled by default; others are disabled. For example:

mysql> SELECT * FROM performance_schema.setup_instruments
 WHERE NAME LIKE 'wait/io/file/innodb%';
+--------------------------------------+---------+-------+
| NAME | ENABLED | TIMED |
+--------------------------------------+---------+-------+
wait/io/file/innodb/innodb_data_file	YES	YES
wait/io/file/innodb/innodb_log_file	YES	YES
wait/io/file/innodb/innodb_temp_file	YES	YES
+--------------------------------------+---------+-------+
mysql> SELECT *
 FROM performance_schema.setup_instruments WHERE
 NAME LIKE 'wait/io/socket/%';
+--+---------+-------+
| NAME | ENABLED | TIMED |
+--+---------+-------+
wait/io/socket/sql/server_tcpip_socket	NO	NO
wait/io/socket/sql/server_unix_socket	NO	NO
wait/io/socket/sql/client_connection	NO	NO
+--+---------+-------+

The wait consumers are disabled by default:

mysql> SELECT *
 FROM performance_schema.setup_consumers
 WHERE NAME LIKE 'events_waits%';
+---------------------------+---------+
| NAME | ENABLED |
+---------------------------+---------+
events_waits_current	NO
events_waits_history	NO
events_waits_history_long	NO
+---------------------------+---------+

To control wait event collection at server startup, use lines like these in your my.cnf file:

• Enable:

[mysqld]
performance-schema-instrument='wait/%=ON'
performance-schema-consumer-events-waits-current=ON
performance-schema-consumer-events-waits-history=ON
performance-schema-consumer-events-waits-history-long=ON

• Disable:

[mysqld]
performance-schema-instrument='wait/%=OFF'

4266

Performance Schema Wait Event Tables

performance-schema-consumer-events-waits-current=OFF
performance-schema-consumer-events-waits-history=OFF
performance-schema-consumer-events-waits-history-long=OFF

To control wait event collection at runtime, update the setup_instruments and setup_consumers
tables:

• Enable:

UPDATE performance_schema.setup_instruments
SET ENABLED = 'YES', TIMED = 'YES'
WHERE NAME LIKE 'wait/%';

UPDATE performance_schema.setup_consumers
SET ENABLED = 'YES'
WHERE NAME LIKE 'events_waits%';

• Disable:

UPDATE performance_schema.setup_instruments
SET ENABLED = 'NO', TIMED = 'NO'
WHERE NAME LIKE 'wait/%';

UPDATE performance_schema.setup_consumers
SET ENABLED = 'NO'
WHERE NAME LIKE 'events_waits%';

To collect only specific wait events, enable only the corresponding wait instruments. To collect wait events
only for specific wait event tables, enable the wait instruments but only the wait consumers corresponding
to the desired tables.

The setup_timers table contains a row with a NAME value of wait that indicates the unit for wait event
timing. The default unit is CYCLE:

mysql> SELECT *
 FROM performance_schema.setup_timers
 WHERE NAME = 'wait';
+------+------------+
| NAME | TIMER_NAME |
+------+------------+
| wait | CYCLE |
+------+------------+

To change the timing unit, modify the TIMER_NAME value:

UPDATE performance_schema.setup_timers
SET TIMER_NAME = 'NANOSECOND'
WHERE NAME = 'wait';

For additional information about configuring event collection, see Section 25.3, “Performance Schema
Startup Configuration”, and Section 25.4, “Performance Schema Runtime Configuration”.

25.12.4.1 The events_waits_current Table

The events_waits_current table contains current wait events. The table stores one row per thread
showing the current status of the thread's most recent monitored wait event, so there is no system variable
for configuring the table size.

Of the tables that contain wait event rows, events_waits_current is the most fundamental. Other
tables that contain wait event rows are logically derived from the current events. For example, the
events_waits_history and events_waits_history_long tables are collections of the most recent
wait events that have ended, up to a maximum number of rows per thread and globally across all threads,
respectively.

4267

Performance Schema Wait Event Tables

For more information about the relationship between the three wait event tables, see Section 25.9,
“Performance Schema Tables for Current and Historical Events”.

For information about configuring whether to collect wait events, see Section 25.12.4, “Performance
Schema Wait Event Tables”.

The events_waits_current table has these columns:

• THREAD_ID, EVENT_ID

The thread associated with the event and the thread current event number when the event starts. The
THREAD_ID and EVENT_ID values taken together uniquely identify the row. No two rows have the same
pair of values.

• END_EVENT_ID

This column is set to NULL when the event starts and updated to the thread current event number when
the event ends.

• EVENT_NAME

The name of the instrument that produced the event. This is a NAME value from the
setup_instruments table. Instrument names may have multiple parts and form a hierarchy, as
discussed in Section 25.6, “Performance Schema Instrument Naming Conventions”.

• SOURCE

The name of the source file containing the instrumented code that produced the event and the line
number in the file at which the instrumentation occurs. This enables you to check the source to
determine exactly what code is involved. For example, if a mutex or lock is being blocked, you can check
the context in which this occurs.

• TIMER_START, TIMER_END, TIMER_WAIT

Timing information for the event. The unit for these values is picoseconds (trillionths of a second). The
TIMER_START and TIMER_END values indicate when event timing started and ended. TIMER_WAIT is
the event elapsed time (duration).

If an event has not finished, TIMER_END is the current timer value and TIMER_WAIT is the time elapsed
so far (TIMER_END − TIMER_START).

If an event is produced from an instrument that has TIMED = NO, timing information is not collected,
and TIMER_START, TIMER_END, and TIMER_WAIT are all NULL.

For discussion of picoseconds as the unit for event times and factors that affect time values, see
Section 25.4.1, “Performance Schema Event Timing”.

• SPINS

For a mutex, the number of spin rounds. If the value is NULL, the code does not use spin rounds or
spinning is not instrumented.

• OBJECT_SCHEMA, OBJECT_NAME, OBJECT_TYPE, OBJECT_INSTANCE_BEGIN

These columns identify the object “being acted on.” What that means depends on the object type.

For a synchronization object (cond, mutex, rwlock):

4268

Performance Schema Wait Event Tables

• OBJECT_SCHEMA, OBJECT_NAME, and OBJECT_TYPE are NULL.

• OBJECT_INSTANCE_BEGIN is the address of the synchronization object in memory.

For a file I/O object:

• OBJECT_SCHEMA is NULL.

• OBJECT_NAME is the file name.

• OBJECT_TYPE is FILE.

• OBJECT_INSTANCE_BEGIN is an address in memory.

For a socket object:

• OBJECT_NAME is the IP:PORT value for the socket.

• OBJECT_INSTANCE_BEGIN is an address in memory.

For a table I/O object:

• OBJECT_SCHEMA is the name of the schema that contains the table.

• OBJECT_NAME is the table name.

• OBJECT_TYPE is TABLE for a persistent base table or TEMPORARY TABLE for a temporary table.

• OBJECT_INSTANCE_BEGIN is an address in memory.

An OBJECT_INSTANCE_BEGIN value itself has no meaning, except that different values indicate
different objects. OBJECT_INSTANCE_BEGIN can be used for debugging. For example, it can be used
with GROUP BY OBJECT_INSTANCE_BEGIN to see whether the load on 1,000 mutexes (that protect,
say, 1,000 pages or blocks of data) is spread evenly or just hitting a few bottlenecks. This can help you
correlate with other sources of information if you see the same object address in a log file or another
debugging or performance tool.

• INDEX_NAME

The name of the index used. PRIMARY indicates the table primary index. NULL means that no index was
used.

• NESTING_EVENT_ID

The EVENT_ID value of the event within which this event is nested.

• NESTING_EVENT_TYPE

The nesting event type. The value is TRANSACTION, STATEMENT, STAGE, or WAIT.

• OPERATION

The type of operation performed, such as lock, read, or write.

• NUMBER_OF_BYTES

The number of bytes read or written by the operation. For table I/O waits (events for the wait/io/
table/sql/handler instrument), NUMBER_OF_BYTES indicates the number of rows. If the value is

4269

Performance Schema Wait Event Tables

greater than 1, the event is for a batch I/O operation. The following discussion describes the difference
between exclusively single-row reporting and reporting that reflects batch I/O.

MySQL executes joins using a nested-loop implementation. The job of the Performance Schema
instrumentation is to provide row count and accumulated execution time per table in the join. Assume a
join query of the following form that is executed using a table join order of t1, t2, t3:

SELECT ... FROM t1 JOIN t2 ON ... JOIN t3 ON ...

Table “fanout” is the increase or decrease in number of rows from adding a table during join processing.
If the fanout for table t3 is greater than 1, the majority of row-fetch operations are for that table. Suppose
that the join accesses 10 rows from t1, 20 rows from t2 per row from t1, and 30 rows from t3 per row
of table t2. With single-row reporting, the total number of instrumented operations is:

10 + (10 * 20) + (10 * 20 * 30) = 6210

A significant reduction in the number of instrumented operations is achievable by aggregating them
per scan (that is, per unique combination of rows from t1 and t2). With batch I/O reporting, the
Performance Schema produces an event for each scan of the innermost table t3 rather than for each
row, and the number of instrumented row operations reduces to:

10 + (10 * 20) + (10 * 20) = 410

That is a reduction of 93%, illustrating how the batch-reporting strategy significantly reduces
Performance Schema overhead for table I/O by reducing the number of reporting calls. The tradeoff is
lesser accuracy for event timing. Rather than time for an individual row operation as in per-row reporting,
timing for batch I/O includes time spent for operations such as join buffering, aggregation, and returning
rows to the client.

For batch I/O reporting to occur, these conditions must be true:

• Query execution accesses the innermost table of a query block (for a single-table query, that table
counts as innermost)

• Query execution does not request a single row from the table (so, for example, eq_ref access
prevents use of batch reporting)

• Query execution does not evaluate a subquery containing table access for the table

• FLAGS

Reserved for future use.

TRUNCATE TABLE is permitted for the events_waits_current table. It removes the rows.

25.12.4.2 The events_waits_history Table

The events_waits_history table contains the N most recent wait events that have ended per thread.
Wait events are not added to the table until they have ended. When the table contains the maximum
number of rows for a given thread, the oldest thread row is discarded when a new row for that thread is
added. When a thread ends, all its rows are discarded.

The Performance Schema autosizes the value of N during server startup. To set the number of rows per
thread explicitly, set the performance_schema_events_waits_history_size system variable at
server startup.

The events_waits_history table has the same columns as events_waits_current. See
Section 25.12.4.1, “The events_waits_current Table”.

4270

Performance Schema Stage Event Tables

TRUNCATE TABLE is permitted for the events_waits_history table. It removes the rows.

For more information about the relationship between the three wait event tables, see Section 25.9,
“Performance Schema Tables for Current and Historical Events”.

For information about configuring whether to collect wait events, see Section 25.12.4, “Performance
Schema Wait Event Tables”.

25.12.4.3 The events_waits_history_long Table

The events_waits_history_long table contains N the most recent wait events that have ended
globally, across all threads. Wait events are not added to the table until they have ended. When the table
becomes full, the oldest row is discarded when a new row is added, regardless of which thread generated
either row.

The Performance Schema autosizes the value of N during server startup. To set the table size explicitly, set
the performance_schema_events_waits_history_long_size system variable at server startup.

The events_waits_history_long table has the same columns as events_waits_current. See
Section 25.12.4.1, “The events_waits_current Table”.

TRUNCATE TABLE is permitted for the events_waits_history_long table. It removes the rows.

For more information about the relationship between the three wait event tables, see Section 25.9,
“Performance Schema Tables for Current and Historical Events”.

For information about configuring whether to collect wait events, see Section 25.12.4, “Performance
Schema Wait Event Tables”.

25.12.5 Performance Schema Stage Event Tables

The Performance Schema instruments stages, which are steps during the statement-execution process,
such as parsing a statement, opening a table, or performing a filesort operation. Stages correspond
to the thread states displayed by SHOW PROCESSLIST or that are visible in the Information Schema
PROCESSLIST table. Stages begin and end when state values change.

Within the event hierarchy, wait events nest within stage events, which nest within statement events, which
nest within transaction events.

These tables store stage events:

• events_stages_current: The current stage event for each thread.

• events_stages_history: The most recent stage events that have ended per thread.

• events_stages_history_long: The most recent stage events that have ended globally (across all
threads).

The following sections describe the stage event tables. There are also summary tables that aggregate
information about stage events; see Section 25.12.15.2, “Stage Summary Tables”.

For more information about the relationship between the three stage event tables, see Section 25.9,
“Performance Schema Tables for Current and Historical Events”.

• Configuring Stage Event Collection

• Stage Event Progress Information

4271

Performance Schema Stage Event Tables

Configuring Stage Event Collection

To control whether to collect stage events, set the state of the relevant instruments and consumers:

• The setup_instruments table contains instruments with names that begin with stage. Use these
instruments to enable or disable collection of individual stage event classes.

• The setup_consumers table contains consumer values with names corresponding to the current and
historical stage event table names. Use these consumers to filter collection of stage events.

Other than those instruments that provide statement progress information, the stage instruments are
disabled by default. For example:

mysql> SELECT *
 FROM performance_schema.setup_instruments
 WHERE NAME RLIKE 'stage/sql/[a-c]';
+--+---------+-------+
| NAME | ENABLED | TIMED |
+--+---------+-------+
stage/sql/After create	NO	NO
stage/sql/allocating local table	NO	NO
stage/sql/altering table	NO	NO
stage/sql/committing alter table to storage engine	NO	NO
stage/sql/Changing master	NO	NO
stage/sql/Checking master version	NO	NO
stage/sql/checking permissions	NO	NO
stage/sql/checking privileges on cached query	NO	NO
stage/sql/checking query cache for query	NO	NO
stage/sql/cleaning up	NO	NO
stage/sql/closing tables	NO	NO
stage/sql/Connecting to master	NO	NO
stage/sql/converting HEAP to MyISAM	NO	NO
stage/sql/Copying to group table	NO	NO
stage/sql/Copying to tmp table	NO	NO
stage/sql/copy to tmp table	NO	NO
stage/sql/Creating sort index	NO	NO
stage/sql/creating table	NO	NO
stage/sql/Creating tmp table	NO	NO
+--+---------+-------+

Stage event instruments that provide statement progress information are enabled and timed by default:

mysql> SELECT *
 FROM performance_schema.setup_instruments
 WHERE ENABLED='YES' AND NAME LIKE "stage/%";
+--+---------+-------+
| NAME | ENABLED | TIMED |
+--+---------+-------+
stage/sql/copy to tmp table	YES	YES
stage/innodb/alter table (end)	YES	YES
stage/innodb/alter table (flush)	YES	YES
stage/innodb/alter table (insert)	YES	YES
stage/innodb/alter table (log apply index)	YES	YES
stage/innodb/alter table (log apply table)	YES	YES
stage/innodb/alter table (merge sort)	YES	YES
stage/innodb/alter table (read PK and internal sort)	YES	YES
stage/innodb/buffer pool load	YES	YES
+--+---------+-------+

The stage consumers are disabled by default:

mysql> SELECT *
 FROM performance_schema.setup_consumers
 WHERE NAME LIKE 'events_stages%';

4272

Performance Schema Stage Event Tables

+----------------------------+---------+
| NAME | ENABLED |
+----------------------------+---------+
events_stages_current	NO
events_stages_history	NO
events_stages_history_long	NO
+----------------------------+---------+

To control stage event collection at server startup, use lines like these in your my.cnf file:

• Enable:

[mysqld]
performance-schema-instrument='stage/%=ON'
performance-schema-consumer-events-stages-current=ON
performance-schema-consumer-events-stages-history=ON
performance-schema-consumer-events-stages-history-long=ON

• Disable:

[mysqld]
performance-schema-instrument='stage/%=OFF'
performance-schema-consumer-events-stages-current=OFF
performance-schema-consumer-events-stages-history=OFF
performance-schema-consumer-events-stages-history-long=OFF

To control stage event collection at runtime, update the setup_instruments and setup_consumers
tables:

• Enable:

UPDATE performance_schema.setup_instruments
SET ENABLED = 'YES', TIMED = 'YES'
WHERE NAME LIKE 'stage/%';

UPDATE performance_schema.setup_consumers
SET ENABLED = 'YES'
WHERE NAME LIKE 'events_stages%';

• Disable:

UPDATE performance_schema.setup_instruments
SET ENABLED = 'NO', TIMED = 'NO'
WHERE NAME LIKE 'stage/%';

UPDATE performance_schema.setup_consumers
SET ENABLED = 'NO'
WHERE NAME LIKE 'events_stages%';

To collect only specific stage events, enable only the corresponding stage instruments. To collect stage
events only for specific stage event tables, enable the stage instruments but only the stage consumers
corresponding to the desired tables.

The setup_timers table contains a row with a NAME value of stage that indicates the unit for stage
event timing. The default unit is NANOSECOND:

mysql> SELECT *
 FROM performance_schema.setup_timers
 WHERE NAME = 'stage';
+-------+------------+
| NAME | TIMER_NAME |
+-------+------------+
| stage | NANOSECOND |
+-------+------------+

4273

Performance Schema Stage Event Tables

To change the timing unit, modify the TIMER_NAME value:

UPDATE performance_schema.setup_timers
SET TIMER_NAME = 'MICROSECOND'
WHERE NAME = 'stage';

For additional information about configuring event collection, see Section 25.3, “Performance Schema
Startup Configuration”, and Section 25.4, “Performance Schema Runtime Configuration”.

Stage Event Progress Information

The Performance Schema stage event tables contain two columns that, taken together, provide a stage
progress indicator for each row:

• WORK_COMPLETED: The number of work units completed for the stage

• WORK_ESTIMATED: The number of work units expected for the stage

Each column is NULL if no progress information is provided for an instrument. Interpretation of the
information, if it is available, depends entirely on the instrument implementation. The Performance Schema
tables provide a container to store progress data, but make no assumptions about the semantics of the
metric itself:

• A “work unit” is an integer metric that increases over time during execution, such as the number of bytes,
rows, files, or tables processed. The definition of “work unit” for a particular instrument is left to the
instrumentation code providing the data.

• The WORK_COMPLETED value can increase one or many units at a time, depending on the instrumented
code.

• The WORK_ESTIMATED value can change during the stage, depending on the instrumented code.

Instrumentation for a stage event progress indicator can implement any of the following behaviors:

• No progress instrumentation

This is the most typical case, where no progress data is provided. The WORK_COMPLETED and
WORK_ESTIMATED columns are both NULL.

• Unbounded progress instrumentation

Only the WORK_COMPLETED column is meaningful. No data is provided for the WORK_ESTIMATED
column, which displays 0.

By querying the events_stages_current table for the monitored session, a monitoring application
can report how much work has been performed so far, but cannot report whether the stage is near
completion. Currently, no stages are instrumented like this.

• Bounded progress instrumentation

The WORK_COMPLETED and WORK_ESTIMATED columns are both meaningful.

This type of progress indicator is appropriate for an operation with a defined completion criterion, such
as the table-copy instrument described later. By querying the events_stages_current table for
the monitored session, a monitoring application can report how much work has been performed so far,
and can report the overall completion percentage for the stage, by computing the WORK_COMPLETED /
WORK_ESTIMATED ratio.

4274

Performance Schema Stage Event Tables

The stage/sql/copy to tmp table instrument illustrates how progress indicators work. During
execution of an ALTER TABLE statement, the stage/sql/copy to tmp table stage is used, and this
stage can execute potentially for a long time, depending on the size of the data to copy.

The table-copy task has a defined termination (all rows copied), and the stage/sql/copy to tmp
table stage is instrumented to provided bounded progress information: The work unit used is number of
rows copied, WORK_COMPLETED and WORK_ESTIMATED are both meaningful, and their ratio indicates task
percentage complete.

To enable the instrument and the relevant consumers, execute these statements:

UPDATE performance_schema.setup_instruments
SET ENABLED='YES'
WHERE NAME='stage/sql/copy to tmp table';

UPDATE performance_schema.setup_consumers
SET ENABLED='YES'
WHERE NAME LIKE 'events_stages_%';

To see the progress of an ongoing ALTER TABLE statement, select from the events_stages_current
table.

25.12.5.1 The events_stages_current Table

The events_stages_current table contains current stage events. The table stores one row per thread
showing the current status of the thread's most recent monitored stage event, so there is no system
variable for configuring the table size.

Of the tables that contain stage event rows, events_stages_current is the most fundamental. Other
tables that contain stage event rows are logically derived from the current events. For example, the
events_stages_history and events_stages_history_long tables are collections of the most
recent stage events that have ended, up to a maximum number of rows per thread and globally across all
threads, respectively.

For more information about the relationship between the three stage event tables, see Section 25.9,
“Performance Schema Tables for Current and Historical Events”.

For information about configuring whether to collect stage events, see Section 25.12.5, “Performance
Schema Stage Event Tables”.

The events_stages_current table has these columns:

• THREAD_ID, EVENT_ID

The thread associated with the event and the thread current event number when the event starts. The
THREAD_ID and EVENT_ID values taken together uniquely identify the row. No two rows have the same
pair of values.

• END_EVENT_ID

This column is set to NULL when the event starts and updated to the thread current event number when
the event ends.

• EVENT_NAME

The name of the instrument that produced the event. This is a NAME value from the
setup_instruments table. Instrument names may have multiple parts and form a hierarchy, as
discussed in Section 25.6, “Performance Schema Instrument Naming Conventions”.

4275

Performance Schema Stage Event Tables

• SOURCE

The name of the source file containing the instrumented code that produced the event and the line
number in the file at which the instrumentation occurs. This enables you to check the source to
determine exactly what code is involved.

• TIMER_START, TIMER_END, TIMER_WAIT

Timing information for the event. The unit for these values is picoseconds (trillionths of a second). The
TIMER_START and TIMER_END values indicate when event timing started and ended. TIMER_WAIT is
the event elapsed time (duration).

If an event has not finished, TIMER_END is the current timer value and TIMER_WAIT is the time elapsed
so far (TIMER_END − TIMER_START).

If an event is produced from an instrument that has TIMED = NO, timing information is not collected,
and TIMER_START, TIMER_END, and TIMER_WAIT are all NULL.

For discussion of picoseconds as the unit for event times and factors that affect time values, see
Section 25.4.1, “Performance Schema Event Timing”.

• WORK_COMPLETED, WORK_ESTIMATED

These columns provide stage progress information, for instruments that have been implemented to
produce such information. WORK_COMPLETED indicates how many work units have been completed for
the stage, and WORK_ESTIMATED indicates how many work units are expected for the stage. For more
information, see Stage Event Progress Information.

• NESTING_EVENT_ID

The EVENT_ID value of the event within which this event is nested. The nesting event for a stage event
is usually a statement event.

• NESTING_EVENT_TYPE

The nesting event type. The value is TRANSACTION, STATEMENT, STAGE, or WAIT.

TRUNCATE TABLE is permitted for the events_stages_current table. It removes the rows.

25.12.5.2 The events_stages_history Table

The events_stages_history table contains the N most recent stage events that have ended per
thread. Stage events are not added to the table until they have ended. When the table contains the
maximum number of rows for a given thread, the oldest thread row is discarded when a new row for that
thread is added. When a thread ends, all its rows are discarded.

The Performance Schema autosizes the value of N during server startup. To set the number of rows per
thread explicitly, set the performance_schema_events_stages_history_size system variable at
server startup.

The events_stages_history table has the same columns as events_stages_current. See
Section 25.12.5.1, “The events_stages_current Table”.

TRUNCATE TABLE is permitted for the events_stages_history table. It removes the rows.

For more information about the relationship between the three stage event tables, see Section 25.9,
“Performance Schema Tables for Current and Historical Events”.

4276

Performance Schema Statement Event Tables

For information about configuring whether to collect stage events, see Section 25.12.5, “Performance
Schema Stage Event Tables”.

25.12.5.3 The events_stages_history_long Table

The events_stages_history_long table contains the N most recent stage events that have ended
globally, across all threads. Stage events are not added to the table until they have ended. When the table
becomes full, the oldest row is discarded when a new row is added, regardless of which thread generated
either row.

The Performance Schema autosizes the value of N during server startup. To set the table size explicitly, set
the performance_schema_events_stages_history_long_size system variable at server startup.

The events_stages_history_long table has the same columns as events_stages_current. See
Section 25.12.5.1, “The events_stages_current Table”.

TRUNCATE TABLE is permitted for the events_stages_history_long table. It removes the rows.

For more information about the relationship between the three stage event tables, see Section 25.9,
“Performance Schema Tables for Current and Historical Events”.

For information about configuring whether to collect stage events, see Section 25.12.5, “Performance
Schema Stage Event Tables”.

25.12.6 Performance Schema Statement Event Tables

The Performance Schema instruments statement execution. Statement events occur at a high level of
the event hierarchy. Within the event hierarchy, wait events nest within stage events, which nest within
statement events, which nest within transaction events.

These tables store statement events:

• events_statements_current: The current statement event for each thread.

• events_statements_history: The most recent statement events that have ended per thread.

• events_statements_history_long: The most recent statement events that have ended globally
(across all threads).

• prepared_statements_instances: Prepared statement instances and statistics

The following sections describe the statement event tables. There are also summary tables that aggregate
information about statement events; see Section 25.12.15.3, “Statement Summary Tables”.

For more information about the relationship between the three events_statements_xxx event tables,
see Section 25.9, “Performance Schema Tables for Current and Historical Events”.

• Configuring Statement Event Collection

• Statement Monitoring

Configuring Statement Event Collection

To control whether to collect statement events, set the state of the relevant instruments and consumers:

• The setup_instruments table contains instruments with names that begin with statement. Use
these instruments to enable or disable collection of individual statement event classes.

4277

Performance Schema Statement Event Tables

• The setup_consumers table contains consumer values with names corresponding to the current and
historical statement event table names, and the statement digest consumer. Use these consumers to
filter collection of statement events and statement digesting.

The statement instruments are enabled by default, and the events_statements_current,
events_statements_history, and statements_digest statement consumers are enabled by
default:

mysql> SELECT *
 FROM performance_schema.setup_instruments
 WHERE NAME LIKE 'statement/%';
+---+---------+-------+
| NAME | ENABLED | TIMED |
+---+---------+-------+
statement/sql/select	YES	YES
statement/sql/create_table	YES	YES
statement/sql/create_index	YES	YES
...		
statement/sp/stmt	YES	YES
statement/sp/set	YES	YES
statement/sp/set_trigger_field	YES	YES
statement/scheduler/event	YES	YES
statement/com/Sleep	YES	YES
statement/com/Quit	YES	YES
statement/com/Init DB	YES	YES
...		
statement/abstract/Query	YES	YES
statement/abstract/new_packet	YES	YES
statement/abstract/relay_log	YES	YES
+---+---------+-------+

mysql> SELECT *
 FROM performance_schema.setup_consumers
 WHERE NAME LIKE '%statements%';
+--------------------------------+---------+
| NAME | ENABLED |
+--------------------------------+---------+
events_statements_current	YES
events_statements_history	YES
events_statements_history_long	NO
statements_digest	YES
+--------------------------------+---------+

To control statement event collection at server startup, use lines like these in your my.cnf file:

• Enable:

[mysqld]
performance-schema-instrument='statement/%=ON'
performance-schema-consumer-events-statements-current=ON
performance-schema-consumer-events-statements-history=ON
performance-schema-consumer-events-statements-history-long=ON
performance-schema-consumer-statements-digest=ON

• Disable:

[mysqld]
performance-schema-instrument='statement/%=OFF'
performance-schema-consumer-events-statements-current=OFF
performance-schema-consumer-events-statements-history=OFF
performance-schema-consumer-events-statements-history-long=OFF
performance-schema-consumer-statements-digest=OFF

To control statement event collection at runtime, update the setup_instruments and
setup_consumers tables:

4278

Performance Schema Statement Event Tables

• Enable:

UPDATE performance_schema.setup_instruments
SET ENABLED = 'YES', TIMED = 'YES'
WHERE NAME LIKE 'statement/%';

UPDATE performance_schema.setup_consumers
SET ENABLED = 'YES'
WHERE NAME LIKE '%statements%';

• Disable:

UPDATE performance_schema.setup_instruments
SET ENABLED = 'NO', TIMED = 'NO'
WHERE NAME LIKE 'statement/%';

UPDATE performance_schema.setup_consumers
SET ENABLED = 'NO'
WHERE NAME LIKE '%statements%';

To collect only specific statement events, enable only the corresponding statement instruments. To collect
statement events only for specific statement event tables, enable the statement instruments but only the
statement consumers corresponding to the desired tables.

The setup_timers table contains a row with a NAME value of statement that indicates the unit for
statement event timing. The default unit is NANOSECOND:

mysql> SELECT *
 FROM performance_schema.setup_timers
 WHERE NAME = 'statement';
+-----------+------------+
| NAME | TIMER_NAME |
+-----------+------------+
| statement | NANOSECOND |
+-----------+------------+

To change the timing unit, modify the TIMER_NAME value:

UPDATE performance_schema.setup_timers
SET TIMER_NAME = 'MICROSECOND'
WHERE NAME = 'statement';

For additional information about configuring event collection, see Section 25.3, “Performance Schema
Startup Configuration”, and Section 25.4, “Performance Schema Runtime Configuration”.

Statement Monitoring

Statement monitoring begins from the moment the server sees that activity is requested on a thread, to
the moment when all activity has ceased. Typically, this means from the time the server gets the first
packet from the client to the time the server has finished sending the response. Statements within stored
programs are monitored like other statements.

When the Performance Schema instruments a request (server command or SQL statement), it uses
instrument names that proceed in stages from more general (or “abstract”) to more specific until it arrives
at a final instrument name.

Final instrument names correspond to server commands and SQL statements:

• Server commands correspond to the COM_xxx codes defined in the mysql_com.h header file
and processed in sql/sql_parse.cc. Examples are COM_PING and COM_QUIT. Instruments for
commands have names that begin with statement/com, such as statement/com/Ping and
statement/com/Quit.

4279

Performance Schema Statement Event Tables

• SQL statements are expressed as text, such as DELETE FROM t1 or SELECT * FROM t2.
Instruments for SQL statements have names that begin with statement/sql, such as statement/
sql/delete and statement/sql/select.

Some final instrument names are specific to error handling:

• statement/com/Error accounts for messages received by the server that are out of band. It can be
used to detect commands sent by clients that the server does not understand. This may be helpful for
purposes such as identifying clients that are misconfigured or using a version of MySQL more recent
than that of the server, or clients that are attempting to attack the server.

• statement/sql/error accounts for SQL statements that fail to parse. It can be used to detect
malformed queries sent by clients. A query that fails to parse differs from a query that parses but fails
due to an error during execution. For example, SELECT * FROM is malformed, and the statement/
sql/error instrument is used. By contrast, SELECT * parses but fails with a No tables used error.
In this case, statement/sql/select is used and the statement event contains information to indicate
the nature of the error.

A request can be obtained from any of these sources:

• As a command or statement request from a client, which sends the request as packets

• As a statement string read from the relay log on a replica

• As an event from the Event Scheduler

The details for a request are not initially known and the Performance Schema proceeds from abstract to
specific instrument names in a sequence that depends on the source of the request.

For a request received from a client:

1. When the server detects a new packet at the socket level, a new statement is started with an abstract
instrument name of statement/abstract/new_packet.

2. When the server reads the packet number, it knows more about the type of request received, and the
Performance Schema refines the instrument name. For example, if the request is a COM_PING packet,
the instrument name becomes statement/com/Ping and that is the final name. If the request is
a COM_QUERY packet, it is known to correspond to an SQL statement but not the particular type of
statement. In this case, the instrument changes from one abstract name to a more specific but still
abstract name, statement/abstract/Query, and the request requires further classification.

3. If the request is a statement, the statement text is read and given to the parser. After parsing, the
exact statement type is known. If the request is, for example, an INSERT statement, the Performance
Schema refines the instrument name from statement/abstract/Query to statement/sql/
insert, which is the final name.

For a request read as a statement from the relay log on a replica:

1. Statements in the relay log are stored as text and are read as such. There is no network protocol, so
the statement/abstract/new_packet instrument is not used. Instead, the initial instrument is
statement/abstract/relay_log.

2. When the statement is parsed, the exact statement type is known. If the request is, for example,
an INSERT statement, the Performance Schema refines the instrument name from statement/
abstract/Query to statement/sql/insert, which is the final name.

The preceding description applies only for statement-based replication. For row-based replication, table I/
O done on the replica as it processes row changes can be instrumented, but row events in the relay log do
not appear as discrete statements.

4280

Performance Schema Statement Event Tables

For a request received from the Event Scheduler:

The event execution is instrumented using the name statement/scheduler/event. This is the final
name.

Statements executed within the event body are instrumented using statement/sql/* names, without
use of any preceding abstract instrument. An event is a stored program, and stored programs are
precompiled in memory before execution. Consequently, there is no parsing at runtime and the type of
each statement is known by the time it executes.

Statements executed within the event body are child statements. For example, if an event executes
an INSERT statement, execution of the event itself is the parent, instrumented using statement/
scheduler/event, and the INSERT is the child, instrumented using statement/sql/insert. The
parent/child relationship holds between separate instrumented operations. This differs from the sequence
of refinement that occurs within a single instrumented operation, from abstract to final instrument names.

For statistics to be collected for statements, it is not sufficient to enable only the final statement/sql/*
instruments used for individual statement types. The abtract statement/abstract/* instruments must
be enabled as well. This should not normally be an issue because all statement instruments are enabled
by default. However, an application that enables or disables statement instruments selectively must
take into account that disabling abstract instruments also disables statistics collection for the individual
statement instruments. For example, to collect statistics for INSERT statements, statement/sql/
insert must be enabled, but also statement/abstract/new_packet and statement/abstract/
Query. Similarly, for replicated statements to be instrumented, statement/abstract/relay_log must
be enabled.

No statistics are aggregated for abstract instruments such as statement/abstract/Query because no
statement is ever classified with an abstract instrument as the final statement name.

25.12.6.1 The events_statements_current Table

The events_statements_current table contains current statement events. The table stores one row
per thread showing the current status of the thread's most recent monitored statement event, so there is no
system variable for configuring the table size.

Of the tables that contain statement event rows, events_statements_current is the most
fundamental. Other tables that contain statement event rows are logically derived from the current events.
For example, the events_statements_history and events_statements_history_long tables
are collections of the most recent statement events that have ended, up to a maximum number of rows per
thread and globally across all threads, respectively.

For more information about the relationship between the three events_statements_xxx event tables,
see Section 25.9, “Performance Schema Tables for Current and Historical Events”.

For information about configuring whether to collect statement events, see Section 25.12.6, “Performance
Schema Statement Event Tables”.

The events_statements_current table has these columns:

• THREAD_ID, EVENT_ID

The thread associated with the event and the thread current event number when the event starts. The
THREAD_ID and EVENT_ID values taken together uniquely identify the row. No two rows have the same
pair of values.

• END_EVENT_ID

4281

Performance Schema Statement Event Tables

This column is set to NULL when the event starts and updated to the thread current event number when
the event ends.

• EVENT_NAME

The name of the instrument from which the event was collected. This is a NAME value from the
setup_instruments table. Instrument names may have multiple parts and form a hierarchy, as
discussed in Section 25.6, “Performance Schema Instrument Naming Conventions”.

For SQL statements, the EVENT_NAME value initially is statement/com/Query until the statement
is parsed, then changes to a more appropriate value, as described in Section 25.12.6, “Performance
Schema Statement Event Tables”.

• SOURCE

The name of the source file containing the instrumented code that produced the event and the line
number in the file at which the instrumentation occurs. This enables you to check the source to
determine exactly what code is involved.

• TIMER_START, TIMER_END, TIMER_WAIT

Timing information for the event. The unit for these values is picoseconds (trillionths of a second). The
TIMER_START and TIMER_END values indicate when event timing started and ended. TIMER_WAIT is
the event elapsed time (duration).

If an event has not finished, TIMER_END is the current timer value and TIMER_WAIT is the time elapsed
so far (TIMER_END − TIMER_START).

If an event is produced from an instrument that has TIMED = NO, timing information is not collected,
and TIMER_START, TIMER_END, and TIMER_WAIT are all NULL.

For discussion of picoseconds as the unit for event times and factors that affect time values, see
Section 25.4.1, “Performance Schema Event Timing”.

• LOCK_TIME

The time spent waiting for table locks. This value is computed in microseconds but normalized to
picoseconds for easier comparison with other Performance Schema timers.

• SQL_TEXT

The text of the SQL statement. For a command not associated with an SQL statement, the value is
NULL.

The maximum space available for statement display is 1024 bytes by default. To change this value, set
the performance_schema_max_sql_text_length system variable at server startup.

• DIGEST

The statement digest MD5 value as a string of 32 hexadecimal characters, or NULL if the
statements_digest consumer is no. For more information about statement digesting, see
Section 25.10, “Performance Schema Statement Digests”.

• DIGEST_TEXT

The normalized statement digest text, or NULL if the statements_digest consumer is no. For more
information about statement digesting, see Section 25.10, “Performance Schema Statement Digests”.

4282

Performance Schema Statement Event Tables

The performance_schema_max_digest_length system variable determines the maximum number
of bytes available per session for digest value storage. However, the display length of statement digests
may be longer than the available buffer size due to encoding of statement elements such as keywords
and literal values in digest buffer. Consequently, values selected from the DIGEST_TEXT column of
statement event tables may appear to exceed the performance_schema_max_digest_length
value.

• CURRENT_SCHEMA

The default database for the statement, NULL if there is none.

• OBJECT_SCHEMA, OBJECT_NAME, OBJECT_TYPE

For nested statements (stored programs), these columns contain information about the parent
statement. Otherwise they are NULL.

• OBJECT_INSTANCE_BEGIN

This column identifies the statement. The value is the address of an object in memory.

• MYSQL_ERRNO

The statement error number, from the statement diagnostics area.

• RETURNED_SQLSTATE

The statement SQLSTATE value, from the statement diagnostics area.

• MESSAGE_TEXT

The statement error message, from the statement diagnostics area.

• ERRORS

Whether an error occurred for the statement. The value is 0 if the SQLSTATE value begins with 00
(completion) or 01 (warning). The value is 1 is the SQLSTATE value is anything else.

• WARNINGS

The number of warnings, from the statement diagnostics area.

• ROWS_AFFECTED

The number of rows affected by the statement. For a description of the meaning of “affected,” see
mysql_affected_rows().

• ROWS_SENT

The number of rows returned by the statement.

• ROWS_EXAMINED

The number of rows examined by the server layer (not counting any processing internal to storage
engines).

• CREATED_TMP_DISK_TABLES

Like the Created_tmp_disk_tables status variable, but specific to the statement.

4283

https://dev.mysql.com/doc/c-api/5.7/en/mysql-affected-rows.html

Performance Schema Statement Event Tables

• CREATED_TMP_TABLES

Like the Created_tmp_tables status variable, but specific to the statement.

• SELECT_FULL_JOIN

Like the Select_full_join status variable, but specific to the statement.

• SELECT_FULL_RANGE_JOIN

Like the Select_full_range_join status variable, but specific to the statement.

• SELECT_RANGE

Like the Select_range status variable, but specific to the statement.

• SELECT_RANGE_CHECK

Like the Select_range_check status variable, but specific to the statement.

• SELECT_SCAN

Like the Select_scan status variable, but specific to the statement.

• SORT_MERGE_PASSES

Like the Sort_merge_passes status variable, but specific to the statement.

• SORT_RANGE

Like the Sort_range status variable, but specific to the statement.

• SORT_ROWS

Like the Sort_rows status variable, but specific to the statement.

• SORT_SCAN

Like the Sort_scan status variable, but specific to the statement.

• NO_INDEX_USED

1 if the statement performed a table scan without using an index, 0 otherwise.

• NO_GOOD_INDEX_USED

1 if the server found no good index to use for the statement, 0 otherwise. For additional information,
see the description of the Extra column from EXPLAIN output for the Range checked for each
record value in Section 8.8.2, “EXPLAIN Output Format”.

• NESTING_EVENT_ID, NESTING_EVENT_TYPE, NESTING_EVENT_LEVEL

These three columns are used with other columns to provide information as follows for top-level
(unnested) statements and nested statements (executed within a stored program).

For top level statements:

OBJECT_TYPE = NULL
OBJECT_SCHEMA = NULL

4284

Performance Schema Statement Event Tables

OBJECT_NAME = NULL
NESTING_EVENT_ID = NULL
NESTING_EVENT_TYPE = NULL
NESTING_LEVEL = 0

For nested statements:

OBJECT_TYPE = the parent statement object type
OBJECT_SCHEMA = the parent statement object schema
OBJECT_NAME = the parent statement object name
NESTING_EVENT_ID = the parent statement EVENT_ID
NESTING_EVENT_TYPE = 'STATEMENT'
NESTING_LEVEL = the parent statement NESTING_LEVEL plus one

TRUNCATE TABLE is permitted for the events_statements_current table. It removes the rows.

25.12.6.2 The events_statements_history Table

The events_statements_history table contains the N most recent statement events that have ended
per thread. Statement events are not added to the table until they have ended. When the table contains the
maximum number of rows for a given thread, the oldest thread row is discarded when a new row for that
thread is added. When a thread ends, all its rows are discarded.

The Performance Schema autosizes the value of N during server startup. To set the number of rows per
thread explicitly, set the performance_schema_events_statements_history_size system variable
at server startup.

The events_statements_history table has the same columns as events_statements_current.
See Section 25.12.6.1, “The events_statements_current Table”.

TRUNCATE TABLE is permitted for the events_statements_history table. It removes the rows.

For more information about the relationship between the three events_statements_xxx event tables,
see Section 25.9, “Performance Schema Tables for Current and Historical Events”.

For information about configuring whether to collect statement events, see Section 25.12.6, “Performance
Schema Statement Event Tables”.

25.12.6.3 The events_statements_history_long Table

The events_statements_history_long table contains the N most recent statement events that have
ended globally, across all threads. Statement events are not added to the table until they have ended.
When the table becomes full, the oldest row is discarded when a new row is added, regardless of which
thread generated either row.

The value of N is autosized at server startup. To set the table size explicitly, set the
performance_schema_events_statements_history_long_size system variable at server
startup.

The events_statements_history_long table has the same columns as
events_statements_current. See Section 25.12.6.1, “The events_statements_current Table”.

TRUNCATE TABLE is permitted for the events_statements_history_long table. It removes the rows.

For more information about the relationship between the three events_statements_xxx event tables,
see Section 25.9, “Performance Schema Tables for Current and Historical Events”.

For information about configuring whether to collect statement events, see Section 25.12.6, “Performance
Schema Statement Event Tables”.

4285

Performance Schema Statement Event Tables

25.12.6.4 The prepared_statements_instances Table

The Performance Schema provides instrumentation for prepared statements, for which there are two
protocols:

• The binary protocol. This is accessed through the MySQL C API and maps onto underlying server
commands as shown in the following table.

C API Function Corresponding Server Command

mysql_stmt_prepare() COM_STMT_PREPARE

mysql_stmt_execute() COM_STMT_EXECUTE

mysql_stmt_close() COM_STMT_CLOSE

• The text protocol. This is accessed using SQL statements and maps onto underlying server commands
as shown in the following table.

SQL Statement Corresponding Server Command

PREPARE SQLCOM_PREPARE

EXECUTE SQLCOM_EXECUTE

DEALLOCATE PREPARE, DROP PREPARE SQLCOM_DEALLOCATE PREPARE

Performance Schema prepared statement instrumentation covers both protocols. The following discussion
refers to the server commands rather than the C API functions or SQL statements.

Information about prepared statements is available in the prepared_statements_instances
table. This table enables inspection of prepared statements used in the server and
provides aggregated statistics about them. To control the size of this table, set the
performance_schema_max_prepared_statements_instances system variable at server startup.

Collection of prepared statement information depends on the statement instruments shown in the following
table. These instruments are enabled by default. To modify them, update the setup_instruments table.

Instrument Server Command

statement/com/Prepare COM_STMT_PREPARE

statement/com/Execute COM_STMT_EXECUTE

statement/sql/prepare_sql SQLCOM_PREPARE

statement/sql/execute_sql SQLCOM_EXECUTE

The Performance Schema manages the contents of the prepared_statements_instances table as
follows:

• Statement preparation

A COM_STMT_PREPARE or SQLCOM_PREPARE command creates a prepared statement
in the server. If the statement is successfully instrumented, a new row is added to the
prepared_statements_instances table. If the statement cannot be instrumented,
Performance_schema_prepared_statements_lost status variable is incremented.

• Prepared statement execution

Execution of a COM_STMT_EXECUTE or SQLCOM_PREPARE command for an instrumented prepared
statement instance updates the corresponding prepared_statements_instances table row.

4286

https://dev.mysql.com/doc/c-api/5.7/en/mysql-stmt-prepare.html
https://dev.mysql.com/doc/c-api/5.7/en/mysql-stmt-execute.html
https://dev.mysql.com/doc/c-api/5.7/en/mysql-stmt-close.html

Performance Schema Statement Event Tables

• Prepared statement deallocation

Execution of a COM_STMT_CLOSE or SQLCOM_DEALLOCATE_PREPARE command for an instrumented
prepared statement instance removes the corresponding prepared_statements_instances table
row. To avoid resource leaks, removal occurs even if the prepared statement instruments described
previously are disabled.

The prepared_statements_instances table has these columns:

• OBJECT_INSTANCE_BEGIN

The address in memory of the instrumented prepared statement.

• STATEMENT_ID

The internal statement ID assigned by the server. The text and binary protocols both use statement IDs.

• STATEMENT_NAME

For the binary protocol, this column is NULL. For the text protocol, this column is the external statement
name assigned by the user. For example, for the following SQL statement, the name of the prepared
statement is stmt:

PREPARE stmt FROM 'SELECT 1';

• SQL_TEXT

The prepared statement text, with ? placeholder markers.

• OWNER_THREAD_ID, OWNER_EVENT_ID

These columns indicate the event that created the prepared statement.

• OWNER_OBJECT_TYPE, OWNER_OBJECT_SCHEMA, OWNER_OBJECT_NAME

For a prepared statement created by a client session, these columns are NULL. For a prepared
statement created by a stored program, these columns point to the stored program. A typical user error
is forgetting to deallocate prepared statements. These columns can be used to find stored programs that
leak prepared statements:

SELECT
 OWNER_OBJECT_TYPE, OWNER_OBJECT_SCHEMA, OWNER_OBJECT_NAME,
 STATEMENT_NAME, SQL_TEXT
FROM performance_schema.prepared_statements_instances
WHERE OWNER_OBJECT_TYPE IS NOT NULL;

• TIMER_PREPARE

The time spent executing the statement preparation itself.

• COUNT_REPREPARE

The number of times the statement was reprepared internally (see Section 8.10.4, “Caching of Prepared
Statements and Stored Programs”). Timing statistics for repreparation are not available because it is
counted as part of statement execution, not as a separate operation.

• COUNT_EXECUTE, SUM_TIMER_EXECUTE, MIN_TIMER_EXECUTE, AVG_TIMER_EXECUTE,
MAX_TIMER_EXECUTE

Aggregated statistics for executions of the prepared statement.

4287

Performance Schema Transaction Tables

• SUM_xxx

The remaining SUM_xxx columns are the same as for the statement summary tables (see
Section 25.12.15.3, “Statement Summary Tables”).

TRUNCATE TABLE resets the statistics columns of the prepared_statements_instances table.

25.12.7 Performance Schema Transaction Tables

The Performance Schema instruments transactions. Within the event hierarchy, wait events nest within
stage events, which nest within statement events, which nest within transaction events.

These tables store transaction events:

• events_transactions_current: The current transaction event for each thread.

• events_transactions_history: The most recent transaction events that have ended per thread.

• events_transactions_history_long: The most recent transaction events that have ended
globally (across all threads).

The following sections describe the transaction event tables. There are also summary tables that
aggregate information about transaction events; see Section 25.12.15.4, “Transaction Summary Tables”.

For more information about the relationship between the three transaction event tables, see Section 25.9,
“Performance Schema Tables for Current and Historical Events”.

• Configuring Transaction Event Collection

• Transaction Boundaries

• Transaction Instrumentation

• Transactions and Nested Events

• Transactions and Stored Programs

• Transactions and Savepoints

• Transactions and Errors

Configuring Transaction Event Collection

To control whether to collect transaction events, set the state of the relevant instruments and consumers:

• The setup_instruments table contains an instrument named transaction. Use this instrument to
enable or disable collection of individual transaction event classes.

• The setup_consumers table contains consumer values with names corresponding to the current and
historical transaction event table names. Use these consumers to filter collection of transaction events.

The transaction instrument and the transaction consumers are disabled by default:

mysql> SELECT *
 FROM performance_schema.setup_instruments
 WHERE NAME = 'transaction';
+-------------+---------+-------+
| NAME | ENABLED | TIMED |
+-------------+---------+-------+
| transaction | NO | NO |

4288

Performance Schema Transaction Tables

+-------------+---------+-------+
mysql> SELECT *
 FROM performance_schema.setup_consumers
 WHERE NAME LIKE 'events_transactions%';
+----------------------------------+---------+
| NAME | ENABLED |
+----------------------------------+---------+
events_transactions_current	NO
events_transactions_history	NO
events_transactions_history_long	NO
+----------------------------------+---------+

To control transaction event collection at server startup, use lines like these in your my.cnf file:

• Enable:

[mysqld]
performance-schema-instrument='transaction=ON'
performance-schema-consumer-events-transactions-current=ON
performance-schema-consumer-events-transactions-history=ON
performance-schema-consumer-events-transactions-history-long=ON

• Disable:

[mysqld]
performance-schema-instrument='transaction=OFF'
performance-schema-consumer-events-transactions-current=OFF
performance-schema-consumer-events-transactions-history=OFF
performance-schema-consumer-events-transactions-history-long=OFF

To control transaction event collection at runtime, update the setup_instruments and
setup_consumers tables:

• Enable:

UPDATE performance_schema.setup_instruments
SET ENABLED = 'YES', TIMED = 'YES'
WHERE NAME = 'transaction';

UPDATE performance_schema.setup_consumers
SET ENABLED = 'YES'
WHERE NAME LIKE 'events_transactions%';

• Disable:

UPDATE performance_schema.setup_instruments
SET ENABLED = 'NO', TIMED = 'NO'
WHERE NAME = 'transaction';

UPDATE performance_schema.setup_consumers
SET ENABLED = 'NO'
WHERE NAME LIKE 'events_transactions%';

To collect transaction events only for specific transaction event tables, enable the transaction
instrument but only the transaction consumers corresponding to the desired tables.

The setup_timers table contains a row with a NAME value of transaction that indicates the unit for
transaction event timing. The default unit is NANOSECOND:

mysql> SELECT *
 FROM performance_schema.setup_timers
 WHERE NAME = 'transaction';
+-------------+------------+
| NAME | TIMER_NAME |

4289

Performance Schema Transaction Tables

+-------------+------------+
| transaction | NANOSECOND |
+-------------+------------+

To change the timing unit, modify the TIMER_NAME value:

UPDATE performance_schema.setup_timers
SET TIMER_NAME = 'MICROSECOND'
WHERE NAME = 'transaction';

For additional information about configuring event collection, see Section 25.3, “Performance Schema
Startup Configuration”, and Section 25.4, “Performance Schema Runtime Configuration”.

Transaction Boundaries

In MySQL Server, transactions start explicitly with these statements:

START TRANSACTION | BEGIN | XA START | XA BEGIN

Transactions also start implicitly. For example, when the autocommit system variable is enabled, the start
of each statement starts a new transaction.

When autocommit is disabled, the first statement following a committed transaction marks the start of a
new transaction. Subsequent statements are part of the transaction until it is committed.

Transactions explicitly end with these statements:

COMMIT | ROLLBACK | XA COMMIT | XA ROLLBACK

Transactions also end implicitly, by execution of DDL statements, locking statements, and server
administration statements.

In the following discussion, references to START TRANSACTION also apply to BEGIN, XA START, and
XA BEGIN. Similarly, references to COMMIT and ROLLBACK apply to XA COMMIT and XA ROLLBACK,
respectively.

The Performance Schema defines transaction boundaries similarly to that of the server. The start and end
of a transaction event closely match the corresponding state transitions in the server:

• For an explicitly started transaction, the transaction event starts during processing of the START
TRANSACTION statement.

• For an implicitly started transaction, the transaction event starts on the first statement that uses a
transactional engine after the previous transaction has ended.

• For any transaction, whether explicitly or implicitly ended, the transaction event ends when the server
transitions out of the active transaction state during the processing of COMMIT or ROLLBACK.

There are subtle implications to this approach:

• Transaction events in the Performance Schema do not fully include the statement events associated with
the corresponding START TRANSACTION, COMMIT, or ROLLBACK statements. There is a trivial amount
of timing overlap between the transaction event and these statements.

• Statements that work with nontransactional engines have no effect on the transaction state of the
connection. For implicit transactions, the transaction event begins with the first statement that uses a
transactional engine. This means that statements operating exclusively on nontransactional tables are
ignored, even following START TRANSACTION.

To illustrate, consider the following scenario:

4290

Performance Schema Transaction Tables

1. SET autocommit = OFF;
2. CREATE TABLE t1 (a INT) ENGINE = InnoDB;
3. START TRANSACTION; -- Transaction 1 START
4. INSERT INTO t1 VALUES (1), (2), (3);
5. CREATE TABLE t2 (a INT) ENGINE = MyISAM; -- Transaction 1 COMMIT
 -- (implicit; DDL forces commit)
6. INSERT INTO t2 VALUES (1), (2), (3); -- Update nontransactional table
7. UPDATE t2 SET a = a + 1; -- ... and again
8. INSERT INTO t1 VALUES (4), (5), (6); -- Write to transactional table
 -- Transaction 2 START (implicit)
9. COMMIT; -- Transaction 2 COMMIT

From the perspective of the server, Transaction 1 ends when table t2 is created. Transaction 2 does not
start until a transactional table is accessed, despite the intervening updates to nontransactional tables.

From the perspective of the Performance Schema, Transaction 2 starts when the server transitions into an
active transaction state. Statements 6 and 7 are not included within the boundaries of Transaction 2, which
is consistent with how the server writes transactions to the binary log.

Transaction Instrumentation

Three attributes define transactions:

• Access mode (read only, read write)

• Isolation level (SERIALIZABLE, REPEATABLE READ, and so forth)

• Implicit (autocommit enabled) or explicit (autocommit disabled)

To reduce complexity of the transaction instrumentation and to ensure that the collected transaction data
provides complete, meaningful results, all transactions are instrumented independently of access mode,
isolation level, or autocommit mode.

To selectively examine transaction history, use the attribute columns in the transaction event tables:
ACCESS_MODE, ISOLATION_LEVEL, and AUTOCOMMIT.

The cost of transaction instrumentation can be reduced various ways, such as enabling or disabling
transaction instrumentation according to user, account, host, or thread (client connection).

Transactions and Nested Events

The parent of a transaction event is the event that initiated the transaction. For an explicitly started
transaction, this includes the START TRANSACTION and COMMIT AND CHAIN statements. For an
implicitly started transaction, it is the first statement that uses a transactional engine after the previous
transaction ends.

In general, a transaction is the top-level parent to all events initiated during the transaction, including
statements that explicitly end the transaction such as COMMIT and ROLLBACK. Exceptions are statements
that implicitly end a transaction, such as DDL statements, in which case the current transaction must be
committed before the new statement is executed.

Transactions and Stored Programs

Transactions and stored program events are related as follows:

• Stored Procedures

Stored procedures operate independently of transactions. A stored procedure can be started within a
transaction, and a transaction can be started or ended from within a stored procedure. If called from

4291

Performance Schema Transaction Tables

within a transaction, a stored procedure can execute statements that force a commit of the parent
transaction and then start a new transaction.

If a stored procedure is started within a transaction, that transaction is the parent of the stored procedure
event.

If a transaction is started by a stored procedure, the stored procedure is the parent of the transaction
event.

• Stored Functions

Stored functions are restricted from causing an explicit or implicit commit or rollback. Stored function
events can reside within a parent transaction event.

• Triggers

Triggers activate as part of a statement that accesses the table with which it is associated, so the parent
of a trigger event is always the statement that activates it.

Triggers cannot issue statements that cause an explicit or implicit commit or rollback of a transaction.

• Scheduled Events

The execution of the statements in the body of a scheduled event takes place in a new connection.
Nesting of a scheduled event within a parent transaction is not applicable.

Transactions and Savepoints

Savepoint statements are recorded as separate statement events. Transaction events include separate
counters for SAVEPOINT, ROLLBACK TO SAVEPOINT, and RELEASE SAVEPOINT statements issued
during the transaction.

Transactions and Errors

Errors and warnings that occur within a transaction are recorded in statement events, but not in the
corresponding transaction event. This includes transaction-specific errors and warnings, such as a rollback
on a nontransactional table or GTID consistency errors.

25.12.7.1 The events_transactions_current Table

The events_transactions_current table contains current transaction events. The table stores one
row per thread showing the current status of the thread's most recent monitored transaction event, so there
is no system variable for configuring the table size. For example:

mysql> SELECT *
 FROM performance_schema.events_transactions_current LIMIT 1\G
*************************** 1. row ***************************
 THREAD_ID: 26
 EVENT_ID: 7
 END_EVENT_ID: NULL
 EVENT_NAME: transaction
 STATE: ACTIVE
 TRX_ID: NULL
 GTID: 3E11FA47-71CA-11E1-9E33-C80AA9429562:56
 XID: NULL
 XA_STATE: NULL
 SOURCE: transaction.cc:150
 TIMER_START: 420833537900000
 TIMER_END: NULL

4292

Performance Schema Transaction Tables

 TIMER_WAIT: NULL
 ACCESS_MODE: READ WRITE
 ISOLATION_LEVEL: REPEATABLE READ
 AUTOCOMMIT: NO
 NUMBER_OF_SAVEPOINTS: 0
NUMBER_OF_ROLLBACK_TO_SAVEPOINT: 0
 NUMBER_OF_RELEASE_SAVEPOINT: 0
 OBJECT_INSTANCE_BEGIN: NULL
 NESTING_EVENT_ID: 6
 NESTING_EVENT_TYPE: STATEMENT

Of the tables that contain transaction event rows, events_transactions_current is the most
fundamental. Other tables that contain transaction event rows are logically derived from the current events.
For example, the events_transactions_history and events_transactions_history_long
tables are collections of the most recent transaction events that have ended, up to a maximum number of
rows per thread and globally across all threads, respectively.

For more information about the relationship between the three transaction event tables, see Section 25.9,
“Performance Schema Tables for Current and Historical Events”.

For information about configuring whether to collect transaction events, see Section 25.12.7, “Performance
Schema Transaction Tables”.

The events_transactions_current table has these columns:

• THREAD_ID, EVENT_ID

The thread associated with the event and the thread current event number when the event starts. The
THREAD_ID and EVENT_ID values taken together uniquely identify the row. No two rows have the same
pair of values.

• END_EVENT_ID

This column is set to NULL when the event starts and updated to the thread current event number when
the event ends.

• EVENT_NAME

The name of the instrument from which the event was collected. This is a NAME value from the
setup_instruments table. Instrument names may have multiple parts and form a hierarchy, as
discussed in Section 25.6, “Performance Schema Instrument Naming Conventions”.

• STATE

The current transaction state. The value is ACTIVE (after START TRANSACTION or BEGIN), COMMITTED
(after COMMIT), or ROLLED BACK (after ROLLBACK).

• TRX_ID

Unused.

• GTID

The GTID column contains the value of gtid_next, which can be one of ANONYMOUS, AUTOMATIC, or
a GTID using the format UUID:NUMBER. For transactions that use gtid_next=AUTOMATIC, which is
all normal client transactions, the GTID column changes when the transaction commits and the actual
GTID is assigned. If gtid_mode is either ON or ON_PERMISSIVE, the GTID column changes to the
transaction's GTID. If gtid_mode is either OFF or OFF_PERMISSIVE, the GTID column changes to
ANONYMOUS.

4293

Performance Schema Transaction Tables

• XID_FORMAT_ID, XID_GTRID, and XID_BQUAL

The elements of the XA transaction identifier. They have the format described in Section 13.3.7.1, “XA
Transaction SQL Statements”.

• XA_STATE

The state of the XA transaction. The value is ACTIVE (after XA START), IDLE (after XA END),
PREPARED (after XA PREPARE), ROLLED BACK (after XA ROLLBACK), or COMMITTED (after XA
COMMIT).

On a replica, the same XA transaction can appear in the events_transactions_current table with
different states on different threads. This is because immediately after the XA transaction is prepared,
it is detached from the replication applier thread, and can be committed or rolled back by any thread on
the replica. The events_transactions_current table displays the current status of the most recent
monitored transaction event on the thread, and does not update this status when the thread is idle. So
the XA transaction can still be displayed in the PREPARED state for the original applier thread, after it has
been processed by another thread. To positively identify XA transactions that are still in the PREPARED
state and need to be recovered, use the XA RECOVER statement rather than the Performance Schema
transaction tables.

• SOURCE

The name of the source file containing the instrumented code that produced the event and the line
number in the file at which the instrumentation occurs. This enables you to check the source to
determine exactly what code is involved.

• TIMER_START, TIMER_END, TIMER_WAIT

Timing information for the event. The unit for these values is picoseconds (trillionths of a second). The
TIMER_START and TIMER_END values indicate when event timing started and ended. TIMER_WAIT is
the event elapsed time (duration).

If an event has not finished, TIMER_END is the current timer value and TIMER_WAIT is the time elapsed
so far (TIMER_END − TIMER_START).

If an event is produced from an instrument that has TIMED = NO, timing information is not collected,
and TIMER_START, TIMER_END, and TIMER_WAIT are all NULL.

For discussion of picoseconds as the unit for event times and factors that affect time values, see
Section 25.4.1, “Performance Schema Event Timing”.

• ACCESS_MODE

The transaction access mode. The value is READ WRITE or READ ONLY.

• ISOLATION_LEVEL

The transaction isolation level. The value is REPEATABLE READ, READ COMMITTED, READ
UNCOMMITTED, or SERIALIZABLE.

• AUTOCOMMIT

Whether autcommit mode was enabled when the transaction started.

• NUMBER_OF_SAVEPOINTS, NUMBER_OF_ROLLBACK_TO_SAVEPOINT,
NUMBER_OF_RELEASE_SAVEPOINT

4294

Performance Schema Transaction Tables

The number of SAVEPOINT, ROLLBACK TO SAVEPOINT, and RELEASE SAVEPOINT statements issued
during the transaction.

• OBJECT_INSTANCE_BEGIN

Unused.

• NESTING_EVENT_ID

The EVENT_ID value of the event within which this event is nested.

• NESTING_EVENT_TYPE

The nesting event type. The value is TRANSACTION, STATEMENT, STAGE, or WAIT. (TRANSACTION
does not appear because transactions cannot be nested.)

TRUNCATE TABLE is permitted for the events_transactions_current table. It removes the rows.

25.12.7.2 The events_transactions_history Table

The events_transactions_history table contains the N most recent transaction events that have
ended per thread. Transaction events are not added to the table until they have ended. When the table
contains the maximum number of rows for a given thread, the oldest thread row is discarded when a new
row for that thread is added. When a thread ends, all its rows are discarded.

The Performance Schema autosizes the value of N during server startup. To set the number of rows per
thread explicitly, set the performance_schema_events_transactions_history_size system
variable at server startup.

The events_transactions_history table has the same columns as
events_transactions_current. See Section 25.12.7.1, “The events_transactions_current Table”.

TRUNCATE TABLE is permitted for the events_transactions_history table. It removes the rows.

For more information about the relationship between the three transaction event tables, see Section 25.9,
“Performance Schema Tables for Current and Historical Events”.

For information about configuring whether to collect transaction events, see Section 25.12.7, “Performance
Schema Transaction Tables”.

25.12.7.3 The events_transactions_history_long Table

The events_transactions_history_long table contains the N most recent transaction events that
have ended globally, across all threads. Transaction events are not added to the table until they have
ended. When the table becomes full, the oldest row is discarded when a new row is added, regardless of
which thread generated either row.

The Performance Schema autosizes the value of N is autosized at server startup. To set the table size
explicitly, set the performance_schema_events_transactions_history_long_size system
variable at server startup.

The events_transactions_history_long table has the same columns as
events_transactions_current. See Section 25.12.7.1, “The events_transactions_current Table”.

TRUNCATE TABLE is permitted for the events_transactions_history_long table. It removes the
rows.

4295

Performance Schema Connection Tables

For more information about the relationship between the three transaction event tables, see Section 25.9,
“Performance Schema Tables for Current and Historical Events”.

For information about configuring whether to collect transaction events, see Section 25.12.7, “Performance
Schema Transaction Tables”.

25.12.8 Performance Schema Connection Tables

When a client connects to the MySQL server, it does so under a particular user name and from a particular
host. The Performance Schema provides statistics about these connections, tracking them per account
(user and host combination) as well as separately per user name and host name, using these tables:

• accounts: Connection statistics per client account

• hosts: Connection statistics per client host name

• users: Connection statistics per client user name

The meaning of “account” in the connection tables is similar to its meaning in the MySQL grant tables in
the mysql system database, in the sense that the term refers to a combination of user and host values.
They differ in that, for grant tables, the host part of an account can be a pattern, whereas for Performance
Schema tables, the host value is always a specific nonpattern host name.

Each connection table has CURRENT_CONNECTIONS and TOTAL_CONNECTIONS columns to track the
current and total number of connections per “tracking value” on which its statistics are based. The tables
differ in what they use for the tracking value. The accounts table has USER and HOST columns to track
connections per user and host combination. The users and hosts tables have a USER and HOST column,
respectively, to track connections per user name and host name.

The Performance Schema also counts internal threads and threads for user sessions that failed to
authenticate, using rows with USER and HOST column values of NULL.

Suppose that clients named user1 and user2 each connect one time from hosta and hostb. The
Performance Schema tracks the connections as follows:

• The accounts table has four rows, for the user1/hosta, user1/hostb, user2/hosta, and
user2/hostb account values, each row counting one connection per account.

• The hosts table has two rows, for hosta and hostb, each row counting two connections per host
name.

• The users table has two rows, for user1 and user2, each row counting two connections per user
name.

When a client connects, the Performance Schema determines which row in each connection table
applies, using the tracking value appropriate to each table. If there is no such row, one is added. Then
the Performance Schema increments by one the CURRENT_CONNECTIONS and TOTAL_CONNECTIONS
columns in that row.

When a client disconnects, the Performance Schema decrements by one the CURRENT_CONNECTIONS
column in the row and leaves the TOTAL_CONNECTIONS column unchanged.

TRUNCATE TABLE is permitted for connection tables. It has these effects:

• Rows are removed for accounts, hosts, or users that have no current connections (rows with
CURRENT_CONNECTIONS = 0).

4296

Performance Schema Connection Tables

• Nonremoved rows are reset to count only current connections: For rows with CURRENT_CONNECTIONS
> 0, TOTAL_CONNECTIONS is reset to CURRENT_CONNECTIONS.

• Summary tables that depend on the connection table are implicitly truncated, as described later in this
section.

The Performance Schema maintains summary tables that aggregate connection statistics for various event
types by account, host, or user. These tables have _summary_by_account, _summary_by_host, or
_summary_by_user in the name. To identify them, use this query:

mysql> SELECT TABLE_NAME FROM INFORMATION_SCHEMA.TABLES
 WHERE TABLE_SCHEMA = 'performance_schema'
 AND TABLE_NAME REGEXP '_summary_by_(account|host|user)'
 ORDER BY TABLE_NAME;
+--+
| TABLE_NAME |
+--+
| events_stages_summary_by_account_by_event_name |
| events_stages_summary_by_host_by_event_name |
| events_stages_summary_by_user_by_event_name |
| events_statements_summary_by_account_by_event_name |
| events_statements_summary_by_host_by_event_name |
| events_statements_summary_by_user_by_event_name |
| events_transactions_summary_by_account_by_event_name |
| events_transactions_summary_by_host_by_event_name |
| events_transactions_summary_by_user_by_event_name |
| events_waits_summary_by_account_by_event_name |
| events_waits_summary_by_host_by_event_name |
| events_waits_summary_by_user_by_event_name |
| memory_summary_by_account_by_event_name |
| memory_summary_by_host_by_event_name |
| memory_summary_by_user_by_event_name |
+--+

For details about individual connection summary tables, consult the section that describes tables for the
summarized event type:

• Wait event summaries: Section 25.12.15.1, “Wait Event Summary Tables”

• Stage event summaries: Section 25.12.15.2, “Stage Summary Tables”

• Statement event summaries: Section 25.12.15.3, “Statement Summary Tables”

• Transaction event summaries: Section 25.12.15.4, “Transaction Summary Tables”

• Memory event summaries: Section 25.12.15.9, “Memory Summary Tables”

TRUNCATE TABLE is permitted for connection summary tables. It removes rows for accounts, hosts,
or users with no connections, and resets the summary columns to zero for the remaining rows. In
addition, each summary table that is aggregated by account, host, user, or thread is implicitly truncated
by truncation of the connection table on which it depends. The following table describes the relationship
between connection table truncation and implicitly truncated tables.

Table 25.2 Implicit Effects of Connection Table Truncation

Truncated Connection Table Implicitly Truncated Summary Tables

accounts Tables with names containing
_summary_by_account, _summary_by_thread

hosts Tables with names containing
_summary_by_account, _summary_by_host,
_summary_by_thread

4297

Performance Schema Connection Tables

Truncated Connection Table Implicitly Truncated Summary Tables

users Tables with names containing
_summary_by_account, _summary_by_user,
_summary_by_thread

Truncating a _summary_global summary table also implicitly truncates its corresponding connection and
thread summary tables. For example, truncating events_waits_summary_global_by_event_name
implicitly truncates the wait event summary tables that are aggregated by account, host, user, or thread.

25.12.8.1 The accounts Table

The accounts table contains a row for each account that has connected to the MySQL server. For each
account, the table counts the current and total number of connections. The table size is autosized at server
startup. To set the table size explicitly, set the performance_schema_accounts_size system variable
at server startup. To disable account statistics, set this variable to 0.

The accounts table has the following columns. For a description of how the Performance Schema
maintains rows in this table, including the effect of TRUNCATE TABLE, see Section 25.12.8, “Performance
Schema Connection Tables”.

• USER

The client user name for the connection. This is NULL for an internal thread, or for a user session that
failed to authenticate.

• HOST

The host from which the client connected. This is NULL for an internal thread, or for a user session that
failed to authenticate.

• CURRENT_CONNECTIONS

The current number of connections for the account.

• TOTAL_CONNECTIONS

The total number of connections for the account.

25.12.8.2 The hosts Table

The hosts table contains a row for each host from which clients have connected to the MySQL server. For
each host name, the table counts the current and total number of connections. The table size is autosized
at server startup. To set the table size explicitly, set the performance_schema_hosts_size system
variable at server startup. To disable host statistics, set this variable to 0.

The hosts table has the following columns. For a description of how the Performance Schema maintains
rows in this table, including the effect of TRUNCATE TABLE, see Section 25.12.8, “Performance Schema
Connection Tables”.

• HOST

The host from which the client connected. This is NULL for an internal thread, or for a user session that
failed to authenticate.

• CURRENT_CONNECTIONS

The current number of connections for the host.

4298

Performance Schema Connection Attribute Tables

• TOTAL_CONNECTIONS

The total number of connections for the host.

25.12.8.3 The users Table

The users table contains a row for each user who has connected to the MySQL server. For each user
name, the table counts the current and total number of connections. The table size is autosized at server
startup. To set the table size explicitly, set the performance_schema_users_size system variable at
server startup. To disable user statistics, set this variable to 0.

The users table has the following columns. For a description of how the Performance Schema maintains
rows in this table, including the effect of TRUNCATE TABLE, see Section 25.12.8, “Performance Schema
Connection Tables”.

• USER

The client user name for the connection. This is NULL for an internal thread, or for a user session that
failed to authenticate.

• CURRENT_CONNECTIONS

The current number of connections for the user.

• TOTAL_CONNECTIONS

The total number of connections for the user.

25.12.9 Performance Schema Connection Attribute Tables

Connection attributes are key-value pairs that application programs can pass to the server at connect
time. For applications based on the C API implemented by the libmysqlclient client library, the
mysql_options() and mysql_options4() functions define the connection attribute set. Other MySQL
Connectors may provide their own attribute-definition methods.

These Performance Schema tables expose attribute information:

• session_account_connect_attrs: Connection attributes for the current session, and other
sessions associated with the session account

• session_connect_attrs: Connection attributes for all sessions

Attribute names that begin with an underscore (_) are reserved for internal use and should not be created
by application programs. This convention permits new attributes to be introduced by MySQL without
colliding with application attributes, and enables application programs to define their own attributes that do
not collide with internal attributes.

• Available Connection Atrributes

• Connection Atrribute Limits

Available Connection Atrributes

The set of connection attributes visible within a given connection varies depending on factors such as your
platform, MySQL Connector used to establish the connection, or client program.

The libmysqlclient client library sets these attributes:

4299

https://dev.mysql.com/doc/c-api/5.7/en/mysql-options.html
https://dev.mysql.com/doc/c-api/5.7/en/mysql-options4.html

Performance Schema Connection Attribute Tables

• _client_name: The client name (libmysql for the client library).

• _client_version: The client library version.

• _os: The operating system (for example, Linux, Win64).

• _pid: The client process ID.

• _platform: The machine platform (for example, x86_64).

• _thread: The client thread ID (Windows only).

Other MySQL Connectors may define their own connection attributes.

MySQL Connector/J defines these attributes:

• _client_license: The connector license type.

• _runtime_vendor: The Java runtime environment (JRE) vendor.

• _runtime_version: The Java runtime environment (JRE) version.

MySQL Connector/NET defines these attributes:

• _client_version: The client library version.

• _os: The operating system (for example, Linux, Win64).

• _pid: The client process ID.

• _platform: The machine platform (for example, x86_64).

• _program_name: The client name.

• _thread: The client thread ID (Windows only).

PHP defines attributes that depend on how it was compiled:

• Compiled using libmysqlclient: The standard libmysqlclient attributes, described previously.

• Compiled using mysqlnd: Only the _client_name attribute, with a value of mysqlnd.

Many MySQL client programs set a program_name attribute with a value equal to the client name.
For example, mysqladmin and mysqldump set program_name to mysqladmin and mysqldump,
respectively.

Some MySQL client programs define additional attributes:

• mysqlbinlog:

• _client_role: binary_log_listener

• Replica connections:

• program_name: mysqld

• _client_role: binary_log_listener

• _client_replication_channel_name: The channel name.

• FEDERATED storage engine connections:

4300

Performance Schema Connection Attribute Tables

• program_name: mysqld

• _client_role: federated_storage

Connection Atrribute Limits

There are limits on the amount of connection attribute data transmitted from client to server:

• A fixed limit imposed by the client prior to connect time.

• A fixed limit imposed by the server at connect time.

• A configurable limit imposed by the Performance Schema at connect time.

For connections initiated using the C API, the libmysqlclient library imposes a limit of 64KB on the
aggregate size of connection attribute data on the client side: Calls to mysql_options() that cause
this limit to be exceeded produce a CR_INVALID_PARAMETER_NO error. Other MySQL Connectors may
impose their own client-side limits on how much connection attribute data can be transmitted to the server.

On the server side, these size checks on connection attribute data occur:

• The server imposes a limit of 64KB on the aggregate size of connection attribute data it can accept. If a
client attempts to send more than 64KB of attribute data, the server rejects the connection.

• For accepted connections, the Performance Schema checks aggregate attribute size against the value
of the performance_schema_session_connect_attrs_size system variable. If attribute size
exceeds this value, these actions take place:

• The Performance Schema truncates the attribute data and increments the
Performance_schema_session_connect_attrs_lost status variable, which indicates the
number of connections for which attribute truncation occurred.

• The Performance Schema writes a message to the error log if the log_error_verbosity system
variable is greater than 1:

[Warning] Connection attributes of length N were truncated

25.12.9.1 The session_account_connect_attrs Table

Application programs can provide key-value connection attributes to be passed to the server at connect
time. For descriptions of common attributes, see Section 25.12.9, “Performance Schema Connection
Attribute Tables”.

The session_account_connect_attrs table contains connection attributes only for the current
session, and other sessions associated with the session account. To see connection attributes for all
sessions, use the session_connect_attrs table.

The session_account_connect_attrs table has these columns:

• PROCESSLIST_ID

The connection identifier for the session.

• ATTR_NAME

The attribute name.

• ATTR_VALUE

4301

https://dev.mysql.com/doc/c-api/5.7/en/mysql-options.html
https://dev.mysql.com/doc/mysql-errors/5.7/en/client-error-reference.html#error_cr_invalid_parameter_no

Performance Schema User-Defined Variable Tables

The attribute value.

• ORDINAL_POSITION

The order in which the attribute was added to the set of connection attributes.

TRUNCATE TABLE is not permitted for the session_account_connect_attrs table.

25.12.9.2 The session_connect_attrs Table

Application programs can provide key-value connection attributes to be passed to the server at connect
time. For descriptions of common attributes, see Section 25.12.9, “Performance Schema Connection
Attribute Tables”.

The session_connect_attrs table contains connection attributes for all sessions. To see connection
attributes only for the current session, and other sessions associated with the session account, use the
session_account_connect_attrs table.

The session_connect_attrs table has these columns:

• PROCESSLIST_ID

The connection identifier for the session.

• ATTR_NAME

The attribute name.

• ATTR_VALUE

The attribute value.

• ORDINAL_POSITION

The order in which the attribute was added to the set of connection attributes.

TRUNCATE TABLE is not permitted for the session_connect_attrs table.

25.12.10 Performance Schema User-Defined Variable Tables

The Performance Schema provides a user_variables_by_thread table that exposes user-defined
variables. These are variables defined within a specific session and include a @ character preceding the
name; see Section 9.4, “User-Defined Variables”.

The user_variables_by_thread table has these columns:

• THREAD_ID

The thread identifier of the session in which the variable is defined.

• VARIABLE_NAME

The variable name, without the leading @ character.

• VARIABLE_VALUE

The variable value.

TRUNCATE TABLE is not permitted for the user_variables_by_thread table.

4302

Performance Schema Replication Tables

25.12.11 Performance Schema Replication Tables

The Performance Schema provides tables that expose replication information. This is similar to the
information available from the SHOW SLAVE STATUS statement, but representation in table form is more
accessible and has usability benefits:

• SHOW SLAVE STATUS output is useful for visual inspection, but not so much for programmatic use. By
contrast, using the Performance Schema tables, information about replica status can be searched using
general SELECT queries, including complex WHERE conditions, joins, and so forth.

• Query results can be saved in tables for further analysis, or assigned to variables and thus used in
stored procedures.

• The replication tables provide better diagnostic information. For multithreaded replica operation, SHOW
SLAVE STATUS reports all coordinator and worker thread errors using the Last_SQL_Errno and
Last_SQL_Error fields, so only the most recent of those errors is visible and information can be lost.
The replication tables store errors on a per-thread basis without loss of information.

• The last seen transaction is visible in the replication tables on a per-worker basis. This is information not
avilable from SHOW SLAVE STATUS.

• Developers familiar with the Performance Schema interface can extend the replication tables to provide
additional information by adding rows to the tables.

Replication Table Descriptions

The Performance Schema provides the following replication-related tables:

• Tables that contain information about the connection of a replica to the replication source server:

• replication_connection_configuration: Configuration parameters for connecting to the
source

• replication_connection_status: Current status of the connection to the source

• Tables that contain general (not thread-specific) information about the transaction applier:

• replication_applier_configuration: Configuration parameters for the transaction applier on
the replica.

• replication_applier_status: Current status of the transaction applier on the replica.

• Tables that contain information about specific threads responsible for applying transactions received
from the source:

• replication_applier_status_by_coordinator: Status of the coordinator thread (empty
unless the replica is multithreaded).

• replication_applier_status_by_worker: Status of the applier thread or worker threads if the
replica is multithreaded.

• Tables that contain information about replication group members:

• replication_group_members: Provides network and status information for group members.

• replication_group_member_stats: Provides statistical information about group members and
transaction in which they participate.

4303

Performance Schema Replication Tables

The following sections describe each replication table in more detail, including the correspondence
between the columns produced by SHOW SLAVE STATUS and the replication table columns in which the
same information appears.

The remainder of this introduction to the replication tables describes how the Performance Schema
populates them and which fields from SHOW SLAVE STATUS are not represented in the tables.

Replication Table Life Cycle

The Performance Schema populates the replication tables as follows:

• Prior to execution of CHANGE MASTER TO, the tables are empty.

• After CHANGE MASTER TO, the configuration parameters can be seen in the tables. At this time, there
are no active replica threads, so the THREAD_ID columns are NULL and the SERVICE_STATE columns
have a value of OFF.

• After START SLAVE, non-NULL THREAD_ID values can be seen. Threads that are idle or active have a
SERVICE_STATE value of ON. The thread that connects to the source has a value of CONNECTING while
it establishes the connection, and ON thereafter as long as the connection lasts.

• After STOP SLAVE, the THREAD_ID columns become NULL and the SERVICE_STATE columns for
threads that no longer exist have a value of OFF.

• The tables are preserved after STOP SLAVE or threads dying due to an error.

• The replication_applier_status_by_worker table is nonempty only when the replica is
operating in multithreaded mode. That is, if the slave_parallel_workers system variable is greater
than 0, this table is populated when START SLAVE is executed, and the number of rows shows the
number of workers.

SHOW SLAVE STATUS Information Not In the Replication Tables

The information in the Performance Schema replication tables differs somewhat from the information
available from SHOW SLAVE STATUS because the tables are oriented toward use of global transaction
identifiers (GTIDs), not file names and positions, and they represent server UUID values, not server
ID values. Due to these differences, several SHOW SLAVE STATUS columns are not preserved in the
Performance Schema replication tables, or are represented a different way:

• The following fields refer to file names and positions and are not preserved:

Master_Log_File
Read_Master_Log_Pos
Relay_Log_File
Relay_Log_Pos
Relay_Master_Log_File
Exec_Master_Log_Pos
Until_Condition
Until_Log_File
Until_Log_Pos

• The Master_Info_File field is not preserved. It refers to the master.info file, which has been
superseded by crash-safe tables.

• The following fields are based on server_id, not server_uuid, and are not preserved:

Master_Server_Id
Replicate_Ignore_Server_Ids

4304

Performance Schema Replication Tables

• The Skip_Counter field is based on event counts, not GTIDs, and is not preserved.

• These error fields are aliases for Last_SQL_Errno and Last_SQL_Error, so they are not preserved:

Last_Errno
Last_Error

In the Performance Schema, this error information is available in the LAST_ERROR_NUMBER and
LAST_ERROR_MESSAGE columns of the replication_applier_status_by_worker table
(and replication_applier_status_by_coordinator if the replica is multithreaded). Those
tables provide more specific per-thread error information than is available from Last_Errno and
Last_Error.

• Fields that provide information about command-line filtering options is not preserved:

Replicate_Do_DB
Replicate_Ignore_DB
Replicate_Do_Table
Replicate_Ignore_Table
Replicate_Wild_Do_Table
Replicate_Wild_Ignore_Table

• The Slave_IO_State and Slave_SQL_Running_State fields are not preserved. If needed, these
values can be obtained from the process list by using the THREAD_ID column of the appropriate
replication table and joining it with the ID column in the INFORMATION_SCHEMA PROCESSLIST table to
select the STATE column of the latter table.

• The Executed_Gtid_Set field can show a large set with a great deal of text. Instead, the Performance
Schema tables show GTIDs of transactions that are currently being applied by the replica. Alternatively,
the set of executed GTIDs can be obtained from the value of the gtid_executed system variable.

• The Seconds_Behind_Master and Relay_Log_Space fields are in to-be-decided status and are not
preserved.

Status Variables Moved to Replication Tables

As of MySQL version 5.7.5, the following status variables (previously monitored using SHOW STATUS) were
moved to the Perfomance Schema replication tables:

• Slave_retried_transactions

• Slave_last_heartbeat

• Slave_received_heartbeats

• Slave_heartbeat_period

• Slave_running

These status variables are now only relevant when a single replication channel is being used because they
only report the status of the default replication channel. When multiple replication channels exist, use the
Performance Schema replication tables described in this section, which report these variables for each
existing replication channel.

Replication Channels

The first column of the replication Performance Schema tables is CHANNEL_NAME. This enables the
tables to be viewed per replication channel. In a non-multisource replication setup there is a single default

4305

Performance Schema Replication Tables

replication channel. When you are using multiple replication channels on a replica, you can filter the
tables per replication channel to monitor a specific replication channel. See Section 16.2.2, “Replication
Channels” and Section 16.1.5.8, “Multi-Source Replication Monitoring” for more information.

25.12.11.1 The replication_connection_configuration Table

This table shows the configuration parameters used by the replica for connecting to the source.
Parameters stored in the table can be changed at runtime with the CHANGE MASTER TO statement, as
indicated in the column descriptions.

Compared to the replication_connection_status table,
replication_connection_configuration changes less frequently. It contains values that
define how the replica connects to the source and that remain constant during the connection, whereas
replication_connection_status contains values that change during the connection.

The replication_connection_configuration table has the following columns. The column
descriptions indicate the corresponding CHANGE MASTER TO options from which the column
values are taken, and the table given later in this section shows the correspondence between
replication_connection_configuration columns and SHOW SLAVE STATUS columns.

• CHANNEL_NAME

The replication channel which this row is displaying. There is always a default replication channel,
and more replication channels can be added. See Section 16.2.2, “Replication Channels” for more
information. (CHANGE MASTER TO option: FOR CHANNEL)

• HOST

The replication source server that the replica is connected to. (CHANGE MASTER TO option:
MASTER_HOST)

• PORT

The port used to connect to the replication source server. (CHANGE MASTER TO option: MASTER_PORT)

• USER

The user name of the account used to connect to the replication source server. (CHANGE MASTER TO
option: MASTER_USER)

• NETWORK_INTERFACE

The network interface that the replica is bound to, if any. (CHANGE MASTER TO option: MASTER_BIND)

• AUTO_POSITION

1 if autopositioning is in use; otherwise 0. (CHANGE MASTER TO option: MASTER_AUTO_POSITION)

• SSL_ALLOWED, SSL_CA_FILE, SSL_CA_PATH, SSL_CERTIFICATE, SSL_CIPHER, SSL_KEY,
SSL_VERIFY_SERVER_CERTIFICATE, SSL_CRL_FILE, SSL_CRL_PATH

These columns show the SSL parameters used by the replica to connect to the replication source server,
if any.

SSL_ALLOWED has these values:

• Yes if an SSL connection to the source is permitted

4306

Performance Schema Replication Tables

• No if an SSL connection to the source is not permitted

• Ignored if an SSL connection is permitted but the replica does not have SSL support enabled

CHANGE MASTER TO options for the other SSL columns: MASTER_SSL_CA, MASTER_SSL_CAPATH,
MASTER_SSL_CERT, MASTER_SSL_CIPHER, MASTER_SSL_CRL, MASTER_SSL_CRLPATH,
MASTER_SSL_KEY, MASTER_SSL_VERIFY_SERVER_CERT.

• CONNECTION_RETRY_INTERVAL

The number of seconds between connect retries. (CHANGE MASTER TO option:
MASTER_CONNECT_RETRY)

• CONNECTION_RETRY_COUNT

The number of times the replica can attempt to reconnect to the source in the event of a lost connection.
(CHANGE MASTER TO option: MASTER_RETRY_COUNT)

• HEARTBEAT_INTERVAL

The replication heartbeat interval on a replica, measured in seconds. (CHANGE MASTER TO option:
MASTER_HEARTBEAT_PERIOD)

• TLS_VERSION

The TLS version used on the source. For TLS version information, see Section 6.3.2, “Encrypted
Connection TLS Protocols and Ciphers”. (CHANGE MASTER TO option: MASTER_TLS_VERSION)

This column was added in MySQL 5.7.10.

TRUNCATE TABLE is not permitted for the replication_connection_configuration table.

The following table shows the correspondence between replication_connection_configuration
columns and SHOW SLAVE STATUS columns.

replication_connection_configuration
Column

SHOW SLAVE STATUS Column

CHANNEL_NAME Channel_name

HOST Master_Host

PORT Master_Port

USER Master_User

NETWORK_INTERFACE Master_Bind

AUTO_POSITION Auto_Position

SSL_ALLOWED Master_SSL_Allowed

SSL_CA_FILE Master_SSL_CA_File

SSL_CA_PATH Master_SSL_CA_Path

SSL_CERTIFICATE Master_SSL_Cert

SSL_CIPHER Master_SSL_Cipher

SSL_KEY Master_SSL_Key

SSL_VERIFY_SERVER_CERTIFICATE Master_SSL_Verify_Server_Cert

4307

Performance Schema Replication Tables

replication_connection_configuration
Column

SHOW SLAVE STATUS Column

SSL_CRL_FILE Master_SSL_Crl

SSL_CRL_PATH Master_SSL_Crlpath

CONNECTION_RETRY_INTERVAL Connect_Retry

CONNECTION_RETRY_COUNT Master_Retry_Count

HEARTBEAT_INTERVAL None

TLS_VERSION Master_TLS_Version

25.12.11.2 The replication_connection_status Table

This table shows the current status of the replication I/O thread that handles the replica's connection to the
source.

Compared to the replication_connection_configuration table,
replication_connection_status changes more frequently. It contains values that change during the
connection, whereas replication_connection_configuration contains values which define how
the replica connects to the source and that remain constant during the connection.

The replication_connection_status table has these columns:

• CHANNEL_NAME

The replication channel which this row is displaying. There is always a default replication channel,
and more replication channels can be added. See Section 16.2.2, “Replication Channels” for more
information.

• GROUP_NAME

If this server is a member of a group, shows the name of the group the server belongs to.

• SOURCE_UUID

The server_uuid value from the source.

• THREAD_ID

The I/O thread ID.

• SERVICE_STATE

ON (thread exists and is active or idle), OFF (thread no longer exists), or CONNECTING (thread exists and
is connecting to the source).

• RECEIVED_TRANSACTION_SET

The set of global transaction IDs (GTIDs) corresponding to all transactions received by this replica.
Empty if GTIDs are not in use. See GTID Sets for more information.

• LAST_ERROR_NUMBER, LAST_ERROR_MESSAGE

The error number and error message of the most recent error that caused the I/O thread to stop. An
error number of 0 and message of the empty string mean “no error.” If the LAST_ERROR_MESSAGE value
is not empty, the error values also appear in the replica's error log.

4308

Performance Schema Replication Tables

Issuing RESET MASTER or RESET SLAVE resets the values shown in these columns.

• LAST_ERROR_TIMESTAMP

A timestamp in YYMMDD hh:mm:ss format that shows when the most recent I/O error took place.

• LAST_HEARTBEAT_TIMESTAMP

A timestamp in YYMMDD hh:mm:ss format that shows when the most recent heartbeat signal was
received by a replica.

• COUNT_RECEIVED_HEARTBEATS

The total number of heartbeat signals that a replica received since the last time it was restarted or reset,
or a CHANGE MASTER TO statement was issued.

TRUNCATE TABLE is not permitted for the replication_connection_status table.

The following table shows the correspondence between replication_connection_status columns
and SHOW SLAVE STATUS columns.

replication_connection_status Column SHOW SLAVE STATUS Column

SOURCE_UUID Master_UUID

THREAD_ID None

SERVICE_STATE Slave_IO_Running

RECEIVED_TRANSACTION_SET Retrieved_Gtid_Set

LAST_ERROR_NUMBER Last_IO_Errno

LAST_ERROR_MESSAGE Last_IO_Error

LAST_ERROR_TIMESTAMP Last_IO_Error_Timestamp

25.12.11.3 The replication_applier_configuration Table

This table shows the configuration parameters that affect transactions applied by the replica. Parameters
stored in the table can be changed at runtime with the CHANGE MASTER TO statement, as indicated in the
column descriptions.

The replication_applier_configuration table has these columns:

• CHANNEL_NAME

The replication channel which this row is displaying. There is always a default replication channel,
and more replication channels can be added. See Section 16.2.2, “Replication Channels” for more
information.

• DESIRED_DELAY

The number of seconds that the replica must lag the source. (CHANGE MASTER TO option:
MASTER_DELAY)

TRUNCATE TABLE is not permitted for the replication_applier_configuration table.

The following table shows the correspondence between replication_applier_configuration
columns and SHOW SLAVE STATUS columns.

4309

Performance Schema Replication Tables

replication_applier_configuration
Column

SHOW SLAVE STATUS Column

DESIRED_DELAY SQL_Delay

25.12.11.4 The replication_applier_status Table

This table shows the current general transaction execution status on the replica.
The table provides information about general aspects of transaction applier status
that are not specific to any thread involved. Thread-specific status information is
available in the replication_applier_status_by_coordinator table (and
replication_applier_status_by_worker if the replica is multithreaded).

The replication_applier_status table has these columns:

• CHANNEL_NAME

The replication channel which this row is displaying. There is always a default replication channel,
and more replication channels can be added. See Section 16.2.2, “Replication Channels” for more
information.

• SERVICE_STATE

Shows ON when the replication channel's applier threads are active or idle, OFF means that the applier
threads are not active.

• REMAINING_DELAY

If the replica is waiting for DESIRED_DELAY seconds to pass since the source applied an event,
this field contains the number of delay seconds remaining. At other times, this field is NULL. (The
DESIRED_DELAY value is stored in the replication_applier_configuration table.)

• COUNT_TRANSACTIONS_RETRIES

Shows the number of retries that were made because the replication SQL thread failed to
apply a transaction. The maximum number of retries for a given transaction is set by the
slave_transaction_retries system variable.

TRUNCATE TABLE is not permitted for the replication_applier_status table.

The following table shows the correspondence between replication_applier_status columns and
SHOW SLAVE STATUS columns.

replication_applier_status Column SHOW SLAVE STATUS Column

SERVICE_STATE None

REMAINING_DELAY SQL_Remaining_Delay

25.12.11.5 The replication_applier_status_by_coordinator Table

For a multithreaded replica, the replica uses multiple worker threads and a coordinator thread to manage
them, and this table shows the status of the coordinator thread. For a single-threaded replica, this table is
empty. For a multithreaded replica, the replication_applier_status_by_worker table shows the
status of the worker threads.

The replication_applier_status_by_coordinator table has these columns:

• CHANNEL_NAME

4310

Performance Schema Replication Tables

The replication channel which this row is displaying. There is always a default replication channel,
and more replication channels can be added. See Section 16.2.2, “Replication Channels” for more
information.

• THREAD_ID

The SQL/coordinator thread ID.

• SERVICE_STATE

ON (thread exists and is active or idle) or OFF (thread no longer exists).

• LAST_ERROR_NUMBER, LAST_ERROR_MESSAGE

The error number and error message of the most recent error that caused the SQL/coordinator
thread to stop. An error number of 0 and message which is an empty string means “no error”. If the
LAST_ERROR_MESSAGE value is not empty, the error values also appear in the replica's error log.

Issuing RESET MASTER or RESET SLAVE resets the values shown in these columns.

All error codes and messages displayed in the LAST_ERROR_NUMBER and LAST_ERROR_MESSAGE
columns correspond to error values listed in Server Error Message Reference.

• LAST_ERROR_TIMESTAMP

A timestamp in YYMMDD hh:mm:ss format that shows when the most recent SQL/coordinator error
occurred.

TRUNCATE TABLE is not permitted for the replication_applier_status_by_coordinator table.

The following table shows the correspondence between
replication_applier_status_by_coordinator columns and SHOW SLAVE STATUS columns.

replication_applier_status_by_coordinator
Column

SHOW SLAVE STATUS Column

THREAD_ID None

SERVICE_STATE Slave_SQL_Running

LAST_ERROR_NUMBER Last_SQL_Errno

LAST_ERROR_MESSAGE Last_SQL_Error

LAST_ERROR_TIMESTAMP Last_SQL_Error_Timestamp

25.12.11.6 The replication_applier_status_by_worker Table

If the replica is not multithreaded, this table shows the status of the applier thread. Otherwise,
the replica uses multiple worker threads and a coordinator thread to manage them,
and this table shows the status of the worker threads. For a multithreaded replica, the
replication_applier_status_by_coordinator table shows the status of the coordinator thread.

The replication_applier_status_by_worker table has these columns:

• CHANNEL_NAME

The replication channel which this row is displaying. There is always a default replication channel,
and more replication channels can be added. See Section 16.2.2, “Replication Channels” for more
information.

4311

https://dev.mysql.com/doc/mysql-errors/5.7/en/server-error-reference.html

Performance Schema Replication Tables

• WORKER_ID

The worker identifier (same value as the id column in the mysql.slave_worker_info table). After
STOP SLAVE, the THREAD_ID column becomes NULL, but the WORKER_ID value is preserved.

• THREAD_ID

The worker thread identifier.

• SERVICE_STATE

ON (thread exists and is active or idle) or OFF (thread no longer exists).

• LAST_SEEN_TRANSACTION

The transaction that the worker has last seen. The worker has not necessarily applied this transaction
because it could still be in the process of doing so.

If the gtid_mode system variable value is OFF, this column is ANONYMOUS, indicating that transactions
do not have global transaction identifiers (GTIDs) and are identified by file and position only.

If gtid_mode is ON, the column value is defined as follows:

• If no transaction has executed, the column is empty.

• When a transaction has executed, the column is set from gtid_next as soon as gtid_next is set.
From this moment, the column always shows a GTID.

• The GTID is preserved until the next transaction is executed. If an error occurs, the column value
is the GTID of the transaction being executed by the worker when the error occurred. The following
statement shows whether or not that transaction has been committed:

SELECT GTID_SUBSET(LAST_SEEN_TRANSACTION, @@GLOBAL.GTID_EXECUTED)
FROM performance_schema.replication_applier_status_by_worker;

If the statement returns zero, the transaction has not yet been committed, either because it is still
being processed, or because the worker thread was stopped while it was being processed. If the
statement returns nonzero, the transaction has been committed.

• LAST_ERROR_NUMBER, LAST_ERROR_MESSAGE

The error number and error message of the most recent error that caused the worker thread to stop. An
error number of 0 and message of the empty string mean “no error”. If the LAST_ERROR_MESSAGE value
is not empty, the error values also appear in the replica's error log.

Issuing RESET MASTER or RESET SLAVE resets the values shown in these columns.

All error codes and messages displayed in the LAST_ERROR_NUMBER and LAST_ERROR_MESSAGE
columns correspond to error values listed in Server Error Message Reference.

• LAST_ERROR_TIMESTAMP

A timestamp in YYMMDD hh:mm:ss format that shows when the most recent worker error occurred.

TRUNCATE TABLE is not permitted for the replication_applier_status_by_worker table.

The following table shows the correspondence between replication_applier_status_by_worker
columns and SHOW SLAVE STATUS columns.

4312

https://dev.mysql.com/doc/mysql-errors/5.7/en/server-error-reference.html

Performance Schema Replication Tables

replication_applier_status_by_worker
Column

SHOW SLAVE STATUS Column

WORKER_ID None

THREAD_ID None

SERVICE_STATE None

LAST_SEEN_TRANSACTION None

LAST_ERROR_NUMBER Last_SQL_Errno

LAST_ERROR_MESSAGE Last_SQL_Error

LAST_ERROR_TIMESTAMP Last_SQL_Error_Timestamp

25.12.11.7 The replication_group_member_stats Table

This table shows statistical information for MySQL Group Replication members. It is populated only when
Group Replication is running.

The replication_group_member_stats table has these columns:

• CHANNEL_NAME

Name of the Group Replication channel.

• VIEW_ID

Current view identifier for this group.

• MEMBER_ID

The member server UUID. This has a different value for each member in the group. This also serves as
a key because it is unique to each member.

• COUNT_TRANSACTIONS_IN_QUEUE

The number of transactions in the queue pending conflict detection checks. Once the transactions have
been checked for conflicts, if they pass the check, they are queued to be applied as well.

• COUNT_TRANSACTIONS_CHECKED

The number of transactions that have been checked for conflicts.

• COUNT_CONFLICTS_DETECTED

The number of transactions that have not passed the conflict detection check.

• COUNT_TRANSACTIONS_ROWS_VALIDATING

Number of transaction rows which can be used for certification, but have not been garbage collected.
Can be thought of as the current size of the conflict detection database against which each transaction is
certified.

• TRANSACTIONS_COMMITTED_ALL_MEMBERS

The transactions that have been successfully committed on all members of the replication group, shown
as GTID Sets. This is updated at a fixed time interval.

• LAST_CONFLICT_FREE_TRANSACTION

4313

Performance Schema Lock Tables

The transaction identifier of the last conflict free transaction which was checked.

TRUNCATE TABLE is not permitted for the replication_group_member_stats table.

25.12.11.8 The replication_group_members Table

This table shows network and status information for replication group members. The network addresses
shown are the addresses used to connect clients to the group, and should not be confused with the
member's internal group communication address specified by group_replication_local_address.

The replication_group_members table has these columns:

• CHANNEL_NAME

Name of the Group Replication channel.

• MEMBER_ID

Identifier for this member; the same as the server UUID.

• MEMBER_HOST

Network address of this member (host name or IP address). Retrieved from the member's hostname
variable.

• MEMBER_PORT

Port on which the server is listening. Retrieved from the member's port variable.

• MEMBER_STATE

Current state of this member; can be any one of the following:

• OFFLINE: The Group Replication plugin is installed but has not been started.

• RECOVERING: The server has joined a group from which it is retrieving data.

• ONLINE: The member is in a fully functioning state.

• ERROR: The member has encountered an error, either during applying transactions or during the
recovery phase, and is not participating in the group's transactions.

• UNREACHABLE: The failure detection process suspects that this member cannot be contacted,
because the group messages have timed out.

TRUNCATE TABLE is not permitted for the replication_group_members table.

25.12.12 Performance Schema Lock Tables

The Performance Schema exposes lock information through these tables:

• metadata_locks: Metadata locks held and requested

• table_handles: Table locks held and requested

The following sections describe these tables in more detail.

25.12.12.1 The metadata_locks Table

4314

Performance Schema Lock Tables

MySQL uses metadata locking to manage concurrent access to database objects and to ensure data
consistency; see Section 8.11.4, “Metadata Locking”. Metadata locking applies not just to tables, but also
to schemas, stored programs (procedures, functions, triggers, scheduled events), tablespaces, user locks
acquired with the GET_LOCK() function (see Section 12.14, “Locking Functions”), and locks acquired with
the locking service described in Section 5.5.6.1, “The Locking Service”.

The Performance Schema exposes metadata lock information through the metadata_locks table:

• Locks that have been granted (shows which sessions own which current metadata locks).

• Locks that have been requested but not yet granted (shows which sessions are waiting for which
metadata locks).

• Lock requests that have been killed by the deadlock detector.

• Lock requests that have timed out and are waiting for the requesting session's lock request to be
discarded.

This information enables you to understand metadata lock dependencies between sessions. You can see
not only which lock a session is waiting for, but which session currently holds that lock.

The metadata_locks table is read only and cannot be updated. It is autosized by default; to configure
the table size, set the performance_schema_max_metadata_locks system variable at server startup.

Metadata lock instrumentation uses the wait/lock/metadata/sql/mdl instrument, which is disabled
by default.

To control metadata lock instrumentation state at server startup, use lines like these in your my.cnf file:

• Enable:

[mysqld]
performance-schema-instrument='wait/lock/metadata/sql/mdl=ON'

• Disable:

[mysqld]
performance-schema-instrument='wait/lock/metadata/sql/mdl=OFF'

To control metadata lock instrumentation state at runtime, update the setup_instruments table:

• Enable:

UPDATE performance_schema.setup_instruments
SET ENABLED = 'YES', TIMED = 'YES'
WHERE NAME = 'wait/lock/metadata/sql/mdl';

• Disable:

UPDATE performance_schema.setup_instruments
SET ENABLED = 'NO', TIMED = 'NO'
WHERE NAME = 'wait/lock/metadata/sql/mdl';

The Performance Schema maintains metadata_locks table content as follows, using the LOCK_STATUS
column to indicate the status of each lock:

• When a metadata lock is requested and obtained immediately, a row with a status of GRANTED is
inserted.

4315

Performance Schema Lock Tables

• When a metadata lock is requested and not obtained immediately, a row with a status of PENDING is
inserted.

• When a metadata lock previously requested is granted, its row status is updated to GRANTED.

• When a metadata lock is released, its row is deleted.

• When a pending lock request is canceled by the deadlock detector to break a deadlock
(ER_LOCK_DEADLOCK), its row status is updated from PENDING to VICTIM.

• When a pending lock request times out (ER_LOCK_WAIT_TIMEOUT), its row status is updated from
PENDING to TIMEOUT.

• When granted lock or pending lock request is killed, its row status is updated from GRANTED or PENDING
to KILLED.

• The VICTIM, TIMEOUT, and KILLED status values are brief and signify that the lock row is about to be
deleted.

• The PRE_ACQUIRE_NOTIFY and POST_RELEASE_NOTIFY status values are brief and signify that the
metadata locking subsubsystem is notifying interested storage engines while entering lock acquisition
operations or leaving lock release operations. These status values were added in MySQL 5.7.11.

The metadata_locks table has these columns:

• OBJECT_TYPE

The type of lock used in the metadata lock subsystem. The value is one of GLOBAL, SCHEMA, TABLE,
FUNCTION, PROCEDURE, TRIGGER (currently unused), EVENT, COMMIT, USER LEVEL LOCK,
TABLESPACE, or LOCKING SERVICE.

A value of USER LEVEL LOCK indicates a lock acquired with GET_LOCK(). A value of LOCKING
SERVICE indicates a lock acquired with the locking service described in Section 5.5.6.1, “The Locking
Service”.

• OBJECT_SCHEMA

The schema that contains the object.

• OBJECT_NAME

The name of the instrumented object.

• OBJECT_INSTANCE_BEGIN

The address in memory of the instrumented object.

• LOCK_TYPE

The lock type from the metadata lock subsystem. The value is one of INTENTION_EXCLUSIVE,
SHARED, SHARED_HIGH_PRIO, SHARED_READ, SHARED_WRITE, SHARED_UPGRADABLE,
SHARED_NO_WRITE, SHARED_NO_READ_WRITE, or EXCLUSIVE.

• LOCK_DURATION

The lock duration from the metadata lock subsystem. The value is one of STATEMENT, TRANSACTION,
or EXPLICIT. The STATEMENT and TRANSACTION values signify locks that are released implicitly at
statement or transaction end, respectively. The EXPLICIT value signifies locks that survive statement or

4316

https://dev.mysql.com/doc/mysql-errors/5.7/en/server-error-reference.html#error_er_lock_deadlock
https://dev.mysql.com/doc/mysql-errors/5.7/en/server-error-reference.html#error_er_lock_wait_timeout

Performance Schema Lock Tables

transaction end and are released by explicit action, such as global locks acquired with FLUSH TABLES
WITH READ LOCK.

• LOCK_STATUS

The lock status from the metadata lock subsystem. The value is one of PENDING, GRANTED, VICTIM,
TIMEOUT, KILLED, PRE_ACQUIRE_NOTIFY, or POST_RELEASE_NOTIFY. The Performance Schema
assigns these values as described previously.

• SOURCE

The name of the source file containing the instrumented code that produced the event and the line
number in the file at which the instrumentation occurs. This enables you to check the source to
determine exactly what code is involved.

• OWNER_THREAD_ID

The thread requesting a metadata lock.

• OWNER_EVENT_ID

The event requesting a metadata lock.

TRUNCATE TABLE is not permitted for the metadata_locks table.

25.12.12.2 The table_handles Table

The Performance Schema exposes table lock information through the table_handles table to show the
table locks currently in effect for each opened table handle. table_handles reports what is recorded by
the table lock instrumentation. This information shows which table handles the server has open, how they
are locked, and by which sessions.

The table_handles table is read only and cannot be updated. It is autosized by default; to configure the
table size, set the performance_schema_max_table_handles system variable at server startup.

Table lock instrumentation uses the wait/lock/table/sql/handler instrument, which is enabled by
default.

To control table lock instrumentation state at server startup, use lines like these in your my.cnf file:

• Enable:

[mysqld]
performance-schema-instrument='wait/lock/table/sql/handler=ON'

• Disable:

[mysqld]
performance-schema-instrument='wait/lock/table/sql/handler=OFF'

To control table lock instrumentation state at runtime, update the setup_instruments table:

• Enable:

UPDATE performance_schema.setup_instruments
SET ENABLED = 'YES', TIMED = 'YES'
WHERE NAME = 'wait/lock/table/sql/handler';

• Disable:

4317

Performance Schema System Variable Tables

UPDATE performance_schema.setup_instruments
SET ENABLED = 'NO', TIMED = 'NO'
WHERE NAME = 'wait/lock/table/sql/handler';

The table_handles table has these columns:

• OBJECT_TYPE

The table opened by a table handle.

• OBJECT_SCHEMA

The schema that contains the object.

• OBJECT_NAME

The name of the instrumented object.

• OBJECT_INSTANCE_BEGIN

The table handle address in memory.

• OWNER_THREAD_ID

The thread owning the table handle.

• OWNER_EVENT_ID

The event which caused the table handle to be opened.

• INTERNAL_LOCK

The table lock used at the SQL level. The value is one of READ, READ WITH SHARED LOCKS, READ
HIGH PRIORITY, READ NO INSERT, WRITE ALLOW WRITE, WRITE CONCURRENT INSERT, WRITE
LOW PRIORITY, or WRITE. For information about these lock types, see the include/thr_lock.h
source file.

• EXTERNAL_LOCK

The table lock used at the storage engine level. The value is one of READ EXTERNAL or WRITE
EXTERNAL.

TRUNCATE TABLE is not permitted for the table_handles table.

25.12.13 Performance Schema System Variable Tables

Note

The value of the show_compatibility_56 system variable affects the
information available from the tables described here. For details, see the description
of that variable in Section 5.1.7, “Server System Variables”.

The MySQL server maintains many system variables that indicate how it is configured (see Section 5.1.7,
“Server System Variables”). System variable information is available in these Performance Schema tables:

• global_variables: Global system variables. An application that wants only global values should use
this table.

4318

Performance Schema Status Variable Tables

• session_variables: System variables for the current session. An application that wants all system
variable values for its own session should use this table. It includes the session variables for its session,
as well as the values of global variables that have no session counterpart.

• variables_by_thread: Session system variables for each active session. An application that wants
to know the session variable values for specific sessions should use this table. It includes session
variables only, identified by thread ID.

The session variable tables (session_variables, variables_by_thread) contain information only
for active sessions, not terminated sessions.

The global_variables and session_variables tables have these columns:

• VARIABLE_NAME

The system variable name.

• VARIABLE_VALUE

The system variable value. For global_variables, this column contains the global value. For
session_variables, this column contains the variable value in effect for the current session.

The variables_by_thread table has these columns:

• THREAD_ID

The thread identifier of the session in which the system variable is defined.

• VARIABLE_NAME

The system variable name.

• VARIABLE_VALUE

The session variable value for the session named by the THREAD_ID column.

The variables_by_thread table contains system variable information only about foreground threads. If
not all threads are instrumented by the Performance Schema, this table may miss some rows. In this case,
the Performance_schema_thread_instances_lost status variable is greater than zero.

TRUNCATE TABLE is not supported for Performance Schema system variable tables.

25.12.14 Performance Schema Status Variable Tables

Note

The value of the show_compatibility_56 system variable affects the
information available from the tables described here. For details, see the description
of that variable in Section 5.1.7, “Server System Variables”.

The MySQL server maintains many status variables that provide information about its operation (see
Section 5.1.9, “Server Status Variables”). Status variable information is available in these Performance
Schema tables:

• global_status: Global status variables. An application that wants only global values should use this
table.

4319

Performance Schema Status Variable Tables

• session_status: Status variables for the current session. An application that wants all status variable
values for its own session should use this table. It includes the session variables for its session, as well
as the values of global variables that have no session counterpart.

• status_by_thread: Session status variables for each active session. An application that wants to
know the session variable values for specific sessions should use this table. It includes session variables
only, identified by thread ID.

There are also summary tables that provide status variable information aggregated by account, host name,
and user name. See Section 25.12.15.10, “Status Variable Summary Tables”.

The session variable tables (session_status, status_by_thread) contain information only for active
sessions, not terminated sessions.

The Performance Schema collects statistics for global status variables only for threads for which the
INSTRUMENTED value is YES in the threads table. Statistics for session status variables are always
collected, regardless of the INSTRUMENTED value.

The Performance Schema does not collect statistics for Com_xxx status variables
in the status variable tables. To obtain global and per-session statement execution
counts, use the events_statements_summary_global_by_event_name and
events_statements_summary_by_thread_by_event_name tables, respectively. For example:

SELECT EVENT_NAME, COUNT_STAR
FROM performance_schema.events_statements_summary_global_by_event_name
WHERE EVENT_NAME LIKE 'statement/sql/%';

The global_status and session_status tables have these columns:

• VARIABLE_NAME

The status variable name.

• VARIABLE_VALUE

The status variable value. For global_status, this column contains the global value. For
session_status, this column contains the variable value for the current session.

The status_by_thread table contains the status of each active thread. It has these columns:

• THREAD_ID

The thread identifier of the session in which the status variable is defined.

• VARIABLE_NAME

The status variable name.

• VARIABLE_VALUE

The session variable value for the session named by the THREAD_ID column.

The status_by_thread table contains status variable information only about foreground threads. If the
performance_schema_max_thread_instances system variable is not autoscaled (signified by a
value of −1) and the maximum permitted number of instrumented thread objects is not greater than the
number of background threads, the table is empty.

The Performance Schema supports TRUNCATE TABLE for status variable tables as follows:

4320

Performance Schema Summary Tables

• global_status: Resets thread, account, host, and user status. Resets global status variables except
those that the server never resets.

• session_status: Not supported.

• status_by_thread: Aggregates status for all threads to the global status and account status, then
resets thread status. If account statistics are not collected, the session status is added to host and user
status, if host and user status are collected.

Account, host, and user statistics are not collected if the performance_schema_accounts_size,
performance_schema_hosts_size, and performance_schema_users_size system variables,
respectively, are set to 0.

FLUSH STATUS adds the session status from all active sessions to the global status variables, resets
the status of all active sessions, and resets account, host, and user status values aggregated from
disconnected sessions.

25.12.15 Performance Schema Summary Tables

Summary tables provide aggregated information for terminated events over time. The tables in this group
summarize event data in different ways.

Each summary table has grouping columns that determine how to group the data to be aggregated, and
summary columns that contain the aggregated values. Tables that summarize events in similar ways often
have similar sets of summary columns and differ only in the grouping columns used to determine how
events are aggregated.

Summary tables can be truncated with TRUNCATE TABLE. Generally, the effect is to reset the summary
columns to 0 or NULL, not to remove rows. This enables you to clear collected values and restart
aggregation. That might be useful, for example, after you have made a runtime configuration change.
Exceptions to this truncation behavior are noted in individual summary table sections.

Wait Event Summaries

Table 25.3 Performance Schema Wait Event Summary Tables

Table Name Description

events_waits_summary_by_account_by_event_nameWait events per account and event name

events_waits_summary_by_host_by_event_nameWait events per host name and event name

events_waits_summary_by_instance Wait events per instance

events_waits_summary_by_thread_by_event_nameWait events per thread and event name

events_waits_summary_by_user_by_event_nameWait events per user name and event name

events_waits_summary_global_by_event_nameWait events per event name

Stage Summaries

Table 25.4 Performance Schema Stage Event Summary Tables

Table Name Description

events_stages_summary_by_account_by_event_nameStage events per account and event name

events_stages_summary_by_host_by_event_nameStage events per host name and event name

events_stages_summary_by_thread_by_event_nameStage waits per thread and event name

events_stages_summary_by_user_by_event_nameStage events per user name and event name

4321

Performance Schema Summary Tables

Table Name Description

events_stages_summary_global_by_event_nameStage waits per event name

Statement Summaries

Table 25.5 Performance Schema Statement Event Summary Tables

Table Name Description

events_statements_summary_by_account_by_event_nameStatement events per account and event name

events_statements_summary_by_digest Statement events per schema and digest value

events_statements_summary_by_host_by_event_nameStatement events per host name and event name

events_statements_summary_by_program Statement events per stored program

events_statements_summary_by_thread_by_event_nameStatement events per thread and event name

events_statements_summary_by_user_by_event_nameStatement events per user name and event name

events_statements_summary_global_by_event_nameStatement events per event name

prepared_statements_instances Prepared statement instances and statistics

Transaction Summaries

Table 25.6 Performance Schema Transaction Event Summary Tables

Table Name Description

events_transactions_summary_by_account_by_event_nameTransaction events per account and event name

events_transactions_summary_by_host_by_event_nameTransaction events per host name and event name

events_transactions_summary_by_thread_by_event_nameTransaction events per thread and event name

events_transactions_summary_by_user_by_event_nameTransaction events per user name and event name

events_transactions_summary_global_by_event_nameTransaction events per event name

Object Wait Summaries

Table 25.7 Performance Schema Object Event Summary Tables

Table Name Description

objects_summary_global_by_type Object summaries

File I/O Summaries

Table 25.8 Performance Schema File I/O Event Summary Tables

Table Name Description

file_summary_by_event_name File events per event name

file_summary_by_instance File events per file instance

Table I/O and Lock Wait Summaries

Table 25.9 Performance Schema Table I/O and Lock Wait Event Summary Tables

Table Name Description

table_io_waits_summary_by_index_usage Table I/O waits per index

4322

Performance Schema Summary Tables

Table Name Description

table_io_waits_summary_by_table Table I/O waits per table

table_lock_waits_summary_by_table Table lock waits per table

Socket Summaries

Table 25.10 Performance Schema Socket Event Summary Tables

Table Name Description

socket_summary_by_event_name Socket waits and I/O per event name

socket_summary_by_instance Socket waits and I/O per instance

Memory Summaries

Table 25.11 Performance Schema Memory Operation Summary Tables

Table Name Description

memory_summary_by_account_by_event_name Memory operations per account and event name

memory_summary_by_host_by_event_name Memory operations per host and event name

memory_summary_by_thread_by_event_name Memory operations per thread and event name

memory_summary_by_user_by_event_name Memory operations per user and event name

memory_summary_global_by_event_name Memory operations globally per event name

Status Variable Summaries

Table 25.12 Performance Schema Error Status Variable Summary Tables

Table Name Description

status_by_account Session status variables per account

status_by_host Session status variables per host name

status_by_user Session status variables per user name

25.12.15.1 Wait Event Summary Tables

The Performance Schema maintains tables for collecting current and recent wait events, and aggregates
that information in summary tables. Section 25.12.4, “Performance Schema Wait Event Tables” describes
the events on which wait summaries are based. See that discussion for information about the content of
wait events, the current and recent wait event tables, and how to control wait event collection, which is
disabled by default.

Example wait event summary information:

mysql> SELECT *
 FROM performance_schema.events_waits_summary_global_by_event_name\G
...
*************************** 6. row ***************************
 EVENT_NAME: wait/synch/mutex/sql/BINARY_LOG::LOCK_index
 COUNT_STAR: 8
SUM_TIMER_WAIT: 2119302
MIN_TIMER_WAIT: 196092
AVG_TIMER_WAIT: 264912

4323

Performance Schema Summary Tables

MAX_TIMER_WAIT: 569421
...
*************************** 9. row ***************************
 EVENT_NAME: wait/synch/mutex/sql/hash_filo::lock
 COUNT_STAR: 69
SUM_TIMER_WAIT: 16848828
MIN_TIMER_WAIT: 0
AVG_TIMER_WAIT: 244185
MAX_TIMER_WAIT: 735345
...

Each wait event summary table has one or more grouping columns to indicate how the table aggregates
events. Event names refer to names of event instruments in the setup_instruments table:

• events_waits_summary_by_account_by_event_name has EVENT_NAME, USER, and HOST
columns. Each row summarizes events for a given account (user and host combination) and event
name.

• events_waits_summary_by_host_by_event_name has EVENT_NAME and HOST columns. Each
row summarizes events for a given host and event name.

• events_waits_summary_by_instance has EVENT_NAME and OBJECT_INSTANCE_BEGIN
columns. Each row summarizes events for a given event name and object. If an instrument is used
to create multiple instances, each instance has a unique OBJECT_INSTANCE_BEGIN value and is
summarized separately in this table.

• events_waits_summary_by_thread_by_event_name has THREAD_ID and EVENT_NAME
columns. Each row summarizes events for a given thread and event name.

• events_waits_summary_by_user_by_event_name has EVENT_NAME and USER columns. Each
row summarizes events for a given user and event name.

• events_waits_summary_global_by_event_name has an EVENT_NAME column. Each row
summarizes events for a given event name. An instrument might be used to create multiple instances
of the instrumented object. For example, if there is an instrument for a mutex that is created for each
connection, there are as many instances as there are connections. The summary row for the instrument
summarizes over all these instances.

Each wait event summary table has these summary columns containing aggregated values:

• COUNT_STAR

The number of summarized events. This value includes all events, whether timed or nontimed.

• SUM_TIMER_WAIT

The total wait time of the summarized timed events. This value is calculated only for timed events
because nontimed events have a wait time of NULL. The same is true for the other xxx_TIMER_WAIT
values.

• MIN_TIMER_WAIT

The minimum wait time of the summarized timed events.

• AVG_TIMER_WAIT

The average wait time of the summarized timed events.

• MAX_TIMER_WAIT

4324

Performance Schema Summary Tables

The maximum wait time of the summarized timed events.

TRUNCATE TABLE is permitted for wait summary tables. It has these effects:

• For summary tables not aggregated by account, host, or user, truncation resets the summary columns to
zero rather than removing rows.

• For summary tables aggregated by account, host, or user, truncation removes rows for accounts, hosts,
or users with no connections, and resets the summary columns to zero for the remaining rows.

In addition, each wait summary table that is aggregated by account, host, user, or thread is
implicitly truncated by truncation of the connection table on which it depends, or truncation of
events_waits_summary_global_by_event_name. For details, see Section 25.12.8, “Performance
Schema Connection Tables”.

25.12.15.2 Stage Summary Tables

The Performance Schema maintains tables for collecting current and recent stage events, and aggregates
that information in summary tables. Section 25.12.5, “Performance Schema Stage Event Tables” describes
the events on which stage summaries are based. See that discussion for information about the content of
stage events, the current and historical stage event tables, and how to control stage event collection, which
is disabled by default.

Example stage event summary information:

mysql> SELECT *
 FROM performance_schema.events_stages_summary_global_by_event_name\G
...
*************************** 5. row ***************************
 EVENT_NAME: stage/sql/checking permissions
 COUNT_STAR: 57
SUM_TIMER_WAIT: 26501888880
MIN_TIMER_WAIT: 7317456
AVG_TIMER_WAIT: 464945295
MAX_TIMER_WAIT: 12858936792
...
*************************** 9. row ***************************
 EVENT_NAME: stage/sql/closing tables
 COUNT_STAR: 37
SUM_TIMER_WAIT: 662606568
MIN_TIMER_WAIT: 1593864
AVG_TIMER_WAIT: 17907891
MAX_TIMER_WAIT: 437977248
...

Each stage summary table has one or more grouping columns to indicate how the table aggregates
events. Event names refer to names of event instruments in the setup_instruments table:

• events_stages_summary_by_account_by_event_name has EVENT_NAME, USER, and HOST
columns. Each row summarizes events for a given account (user and host combination) and event
name.

• events_stages_summary_by_host_by_event_name has EVENT_NAME and HOST columns. Each
row summarizes events for a given host and event name.

• events_stages_summary_by_thread_by_event_name has THREAD_ID and EVENT_NAME
columns. Each row summarizes events for a given thread and event name.

• events_stages_summary_by_user_by_event_name has EVENT_NAME and USER columns. Each
row summarizes events for a given user and event name.

4325

Performance Schema Summary Tables

• events_stages_summary_global_by_event_name has an EVENT_NAME column. Each row
summarizes events for a given event name.

Each stage summary table has these summary columns containing aggregated values: COUNT_STAR,
SUM_TIMER_WAIT, MIN_TIMER_WAIT, AVG_TIMER_WAIT, and MAX_TIMER_WAIT. These columns are
analogous to the columns of the same names in the wait event summary tables (see Section 25.12.15.1,
“Wait Event Summary Tables”), except that the stage summary tables aggregate events from
events_stages_current rather than events_waits_current.

TRUNCATE TABLE is permitted for stage summary tables. It has these effects:

• For summary tables not aggregated by account, host, or user, truncation resets the summary columns to
zero rather than removing rows.

• For summary tables aggregated by account, host, or user, truncation removes rows for accounts, hosts,
or users with no connections, and resets the summary columns to zero for the remaining rows.

In addition, each stage summary table that is aggregated by account, host, user, or thread is
implicitly truncated by truncation of the connection table on which it depends, or truncation of
events_stages_summary_global_by_event_name. For details, see Section 25.12.8, “Performance
Schema Connection Tables”.

25.12.15.3 Statement Summary Tables

The Performance Schema maintains tables for collecting current and recent statement events, and
aggregates that information in summary tables. Section 25.12.6, “Performance Schema Statement
Event Tables” describes the events on which statement summaries are based. See that discussion for
information about the content of statement events, the current and historical statement event tables, and
how to control statement event collection, which is partially disabled by default.

Example statement event summary information:

mysql> SELECT *
 FROM performance_schema.events_statements_summary_global_by_event_name\G
*************************** 1. row ***************************
 EVENT_NAME: statement/sql/select
 COUNT_STAR: 25
 SUM_TIMER_WAIT: 1535983999000
 MIN_TIMER_WAIT: 209823000
 AVG_TIMER_WAIT: 61439359000
 MAX_TIMER_WAIT: 1363397650000
 SUM_LOCK_TIME: 20186000000
 SUM_ERRORS: 0
 SUM_WARNINGS: 0
 SUM_ROWS_AFFECTED: 0
 SUM_ROWS_SENT: 388
 SUM_ROWS_EXAMINED: 370
SUM_CREATED_TMP_DISK_TABLES: 0
 SUM_CREATED_TMP_TABLES: 0
 SUM_SELECT_FULL_JOIN: 0
 SUM_SELECT_FULL_RANGE_JOIN: 0
 SUM_SELECT_RANGE: 0
 SUM_SELECT_RANGE_CHECK: 0
 SUM_SELECT_SCAN: 6
 SUM_SORT_MERGE_PASSES: 0
 SUM_SORT_RANGE: 0
 SUM_SORT_ROWS: 0
 SUM_SORT_SCAN: 0
 SUM_NO_INDEX_USED: 6
 SUM_NO_GOOD_INDEX_USED: 0
...

4326

Performance Schema Summary Tables

Each statement summary table has one or more grouping columns to indicate how the table aggregates
events. Event names refer to names of event instruments in the setup_instruments table:

• events_statements_summary_by_account_by_event_name has EVENT_NAME, USER, and HOST
columns. Each row summarizes events for a given account (user and host combination) and event
name.

• events_statements_summary_by_digest has SCHEMA_NAME and DIGEST columns. Each
row summarizes events per schema and digest value. (The DIGEST_TEXT column contains the
corresponding normalized statement digest text, but is neither a grouping nor a summary column.)

The maximum number of rows in the table is autosized at server startup. To set this maximum explicitly,
set the performance_schema_digests_size system variable at server startup.

• events_statements_summary_by_host_by_event_name has EVENT_NAME and HOST columns.
Each row summarizes events for a given host and event name.

• events_statements_summary_by_program has OBJECT_TYPE, OBJECT_SCHEMA, and
OBJECT_NAME columns. Each row summarizes events for a given stored program (stored procedure or
function, trigger, or event).

• events_statements_summary_by_thread_by_event_name has THREAD_ID and EVENT_NAME
columns. Each row summarizes events for a given thread and event name.

• events_statements_summary_by_user_by_event_name has EVENT_NAME and USER columns.
Each row summarizes events for a given user and event name.

• events_statements_summary_global_by_event_name has an EVENT_NAME column. Each row
summarizes events for a given event name.

• prepared_statements_instances has an OBJECT_INSTANCE_BEGIN column. Each row
summarizes events for a given prepared statement.

Each statement summary table has these summary columns containing aggregated values (with
exceptions as noted):

• COUNT_STAR, SUM_TIMER_WAIT, MIN_TIMER_WAIT, AVG_TIMER_WAIT, MAX_TIMER_WAIT

These columns are analogous to the columns of the same names in the wait event summary tables
(see Section 25.12.15.1, “Wait Event Summary Tables”), except that the statement summary tables
aggregate events from events_statements_current rather than events_waits_current.

The prepared_statements_instances table does not have these columns.

• SUM_xxx

The aggregate of the corresponding xxx column in the events_statements_current table. For
example, the SUM_LOCK_TIME and SUM_ERRORS columns in statement summary tables are the
aggregates of the LOCK_TIME and ERRORS columns in events_statements_current table.

The events_statements_summary_by_digest table has these additional summary columns:

• FIRST_SEEN, LAST_SEEN

Timestamps indicating when statements with the given digest value were first seen and most recently
seen.

The events_statements_summary_by_program table has these additional summary columns:

4327

Performance Schema Summary Tables

• COUNT_STATEMENTS, SUM_STATEMENTS_WAIT, MIN_STATEMENTS_WAIT, AVG_STATEMENTS_WAIT,
MAX_STATEMENTS_WAIT

Statistics about nested statements invoked during stored program execution.

The prepared_statements_instances table has these additional summary columns:

• COUNT_EXECUTE, SUM_TIMER_EXECUTE, MIN_TIMER_EXECUTE, AVG_TIMER_EXECUTE,
MAX_TIMER_EXECUTE

Aggregated statistics for executions of the prepared statement.

TRUNCATE TABLE is permitted for statement summary tables. It has these effects:

• For events_statements_summary_by_digest, it removes the rows.

• For other summary tables not aggregated by account, host, or user, truncation resets the summary
columns to zero rather than removing rows.

• For other summary tables aggregated by account, host, or user, truncation removes rows for accounts,
hosts, or users with no connections, and resets the summary columns to zero for the remaining rows.

In addition, each statement summary table that is aggregated by account, host, user, or thread
is implicitly truncated by truncation of the connection table on which it depends, or truncation of
events_statements_summary_global_by_event_name. For details, see Section 25.12.8,
“Performance Schema Connection Tables”.

Statement Digest Aggregation Rules

If the statements_digest consumer is enabled, aggregation into
events_statements_summary_by_digest occurs as follows when a statement completes.
Aggregation is based on the DIGEST value computed for the statement.

• If a events_statements_summary_by_digest row already exists with the digest value for the
statement that just completed, statistics for the statement are aggregated to that row. The LAST_SEEN
column is updated to the current time.

• If no row has the digest value for the statement that just completed, and the table is not full, a new row
is created for the statement. The FIRST_SEEN and LAST_SEEN columns are initialized with the current
time.

• If no row has the statement digest value for the statement that just completed, and the table is full, the
statistics for the statement that just completed are added to a special “catch-all” row with DIGEST =
NULL, which is created if necessary. If the row is created, the FIRST_SEEN and LAST_SEEN columns
are initialized with the current time. Otherwise, the LAST_SEEN column is updated with the current time.

The row with DIGEST = NULL is maintained because Performance Schema tables have a maximum size
due to memory constraints. The DIGEST = NULL row permits digests that do not match other rows to be
counted even if the summary table is full, using a common “other” bucket. This row helps you estimate
whether the digest summary is representative:

• A DIGEST = NULL row that has a COUNT_STAR value that represents 5% of all digests shows that the
digest summary table is very representative; the other rows cover 95% of the statements seen.

• A DIGEST = NULL row that has a COUNT_STAR value that represents 50% of all digests shows that
the digest summary table is not very representative; the other rows cover only half the statements
seen. Most likely the DBA should increase the maximum table size so that more of the rows counted
in the DIGEST = NULL row would be counted using more specific rows instead. By default, the table is

4328

Performance Schema Summary Tables

autosized, but if this size is too small, set the performance_schema_digests_size system variable
to a larger value at server startup.

Stored Program Instrumentation Behavior

For stored program types for which instrumentation is enabled in the setup_objects table,
events_statements_summary_by_program maintains statistics for stored programs as follows:

• A row is added for an object when it is first used in the server.

• The row for an object is removed when the object is dropped.

• Statistics are aggregated in the row for an object as it executes.

See also Section 25.4.3, “Event Pre-Filtering”.

25.12.15.4 Transaction Summary Tables

The Performance Schema maintains tables for collecting current and recent transaction events, and
aggregates that information in summary tables. Section 25.12.7, “Performance Schema Transaction
Tables” describes the events on which transaction summaries are based. See that discussion for
information about the content of transaction events, the current and historical transaction event tables, and
how to control transaction event collection, which is disabled by default.

Example transaction event summary information:

mysql> SELECT *
 FROM performance_schema.events_transactions_summary_global_by_event_name
 LIMIT 1\G
*************************** 1. row ***************************
 EVENT_NAME: transaction
 COUNT_STAR: 5
 SUM_TIMER_WAIT: 19550092000
 MIN_TIMER_WAIT: 2954148000
 AVG_TIMER_WAIT: 3910018000
 MAX_TIMER_WAIT: 5486275000
 COUNT_READ_WRITE: 5
SUM_TIMER_READ_WRITE: 19550092000
MIN_TIMER_READ_WRITE: 2954148000
AVG_TIMER_READ_WRITE: 3910018000
MAX_TIMER_READ_WRITE: 5486275000
 COUNT_READ_ONLY: 0
 SUM_TIMER_READ_ONLY: 0
 MIN_TIMER_READ_ONLY: 0
 AVG_TIMER_READ_ONLY: 0
 MAX_TIMER_READ_ONLY: 0

Each transaction summary table has one or more grouping columns to indicate how the table aggregates
events. Event names refer to names of event instruments in the setup_instruments table:

• events_transactions_summary_by_account_by_event_name has USER, HOST, and
EVENT_NAME columns. Each row summarizes events for a given account (user and host combination)
and event name.

• events_transactions_summary_by_host_by_event_name has HOST and EVENT_NAME
columns. Each row summarizes events for a given host and event name.

• events_transactions_summary_by_thread_by_event_name has THREAD_ID and EVENT_NAME
columns. Each row summarizes events for a given thread and event name.

• events_transactions_summary_by_user_by_event_name has USER and EVENT_NAME
columns. Each row summarizes events for a given user and event name.

4329

Performance Schema Summary Tables

• events_transactions_summary_global_by_event_name has an EVENT_NAME column. Each
row summarizes events for a given event name.

Each transaction summary table has these summary columns containing aggregated values:

• COUNT_STAR, SUM_TIMER_WAIT, MIN_TIMER_WAIT, AVG_TIMER_WAIT, MAX_TIMER_WAIT

These columns are analogous to the columns of the same names in the wait event summary tables
(see Section 25.12.15.1, “Wait Event Summary Tables”), except that the transaction summary tables
aggregate events from events_transactions_current rather than events_waits_current.
These columns summarize read-write and read-only transactions.

• COUNT_READ_WRITE, SUM_TIMER_READ_WRITE, MIN_TIMER_READ_WRITE,
AVG_TIMER_READ_WRITE, MAX_TIMER_READ_WRITE

These are similar to the COUNT_STAR and xxx_TIMER_WAIT columns, but summarize read-write
transactions only. The transaction access mode specifies whether transactions operate in read/write or
read-only mode.

• COUNT_READ_ONLY, SUM_TIMER_READ_ONLY, MIN_TIMER_READ_ONLY, AVG_TIMER_READ_ONLY,
MAX_TIMER_READ_ONLY

These are similar to the COUNT_STAR and xxx_TIMER_WAIT columns, but summarize read-only
transactions only. The transaction access mode specifies whether transactions operate in read/write or
read-only mode.

TRUNCATE TABLE is permitted for transaction summary tables. It has these effects:

• For summary tables not aggregated by account, host, or user, truncation resets the summary columns to
zero rather than removing rows.

• For summary tables aggregated by account, host, or user, truncation removes rows for accounts, hosts,
or users with no connections, and resets the summary columns to zero for the remaining rows.

In addition, each transaction summary table that is aggregated by account, host, user, or thread
is implicitly truncated by truncation of the connection table on which it depends, or truncation of
events_transactions_summary_global_by_event_name. For details, see Section 25.12.8,
“Performance Schema Connection Tables”.

Transaction Aggregation Rules

Transaction event collection occurs without regard to isolation level, access mode, or autocommit mode.

Transaction event collection occurs for all non-aborted transactions initiated by the server, including empty
transactions.

Read-write transactions are generally more resource intensive than read-only transactions, therefore
transaction summary tables include separate aggregate columns for read-write and read-only transactions.

Resource requirements may also vary with transaction isolation level. However, presuming that only one
isolation level would be used per server, aggregation by isolation level is not provided.

25.12.15.5 Object Wait Summary Table

The Performance Schema maintains the objects_summary_global_by_type table for aggregating
object wait events.

4330

Performance Schema Summary Tables

Example object wait event summary information:

mysql> SELECT * FROM performance_schema.objects_summary_global_by_type\G
...
*************************** 3. row ***************************
 OBJECT_TYPE: TABLE
 OBJECT_SCHEMA: test
 OBJECT_NAME: t
 COUNT_STAR: 3
SUM_TIMER_WAIT: 263126976
MIN_TIMER_WAIT: 1522272
AVG_TIMER_WAIT: 87708678
MAX_TIMER_WAIT: 258428280
...
*************************** 10. row ***************************
 OBJECT_TYPE: TABLE
 OBJECT_SCHEMA: mysql
 OBJECT_NAME: user
 COUNT_STAR: 14
SUM_TIMER_WAIT: 365567592
MIN_TIMER_WAIT: 1141704
AVG_TIMER_WAIT: 26111769
MAX_TIMER_WAIT: 334783032
...

The objects_summary_global_by_type table has these grouping columns to indicate how the table
aggregates events: OBJECT_TYPE, OBJECT_SCHEMA, and OBJECT_NAME. Each row summarizes events
for the given object.

objects_summary_global_by_type has the same summary columns as the
events_waits_summary_by_xxx tables. See Section 25.12.15.1, “Wait Event Summary Tables”.

TRUNCATE TABLE is permitted for the object summary table. It resets the summary columns to zero rather
than removing rows.

25.12.15.6 File I/O Summary Tables

The Performance Schema maintains file I/O summary tables that aggregate information about I/O
operations.

Example file I/O event summary information:

mysql> SELECT * FROM performance_schema.file_summary_by_event_name\G
...
*************************** 2. row ***************************
 EVENT_NAME: wait/io/file/sql/binlog
 COUNT_STAR: 31
 SUM_TIMER_WAIT: 8243784888
 MIN_TIMER_WAIT: 0
 AVG_TIMER_WAIT: 265928484
 MAX_TIMER_WAIT: 6490658832
...
mysql> SELECT * FROM performance_schema.file_summary_by_instance\G
...
*************************** 2. row ***************************
 FILE_NAME: /var/mysql/share/english/errmsg.sys
 EVENT_NAME: wait/io/file/sql/ERRMSG
 EVENT_NAME: wait/io/file/sql/ERRMSG
 OBJECT_INSTANCE_BEGIN: 4686193384
 COUNT_STAR: 5
 SUM_TIMER_WAIT: 13990154448
 MIN_TIMER_WAIT: 26349624
 AVG_TIMER_WAIT: 2798030607
 MAX_TIMER_WAIT: 8150662536

4331

Performance Schema Summary Tables

...

Each file I/O summary table has one or more grouping columns to indicate how the table aggregates
events. Event names refer to names of event instruments in the setup_instruments table:

• file_summary_by_event_name has an EVENT_NAME column. Each row summarizes events for a
given event name.

• file_summary_by_instance has FILE_NAME, EVENT_NAME, and OBJECT_INSTANCE_BEGIN
columns. Each row summarizes events for a given file and event name.

Each file I/O summary table has the following summary columns containing aggregated values. Some
columns are more general and have values that are the same as the sum of the values of more fine-
grained columns. In this way, aggregations at higher levels are available directly without the need for user-
defined views that sum lower-level columns.

• COUNT_STAR, SUM_TIMER_WAIT, MIN_TIMER_WAIT, AVG_TIMER_WAIT, MAX_TIMER_WAIT

These columns aggregate all I/O operations.

• COUNT_READ, SUM_TIMER_READ, MIN_TIMER_READ, AVG_TIMER_READ, MAX_TIMER_READ,
SUM_NUMBER_OF_BYTES_READ

These columns aggregate all read operations, including FGETS, FGETC, FREAD, and READ.

• COUNT_WRITE, SUM_TIMER_WRITE, MIN_TIMER_WRITE, AVG_TIMER_WRITE, MAX_TIMER_WRITE,
SUM_NUMBER_OF_BYTES_WRITE

These columns aggregate all write operations, including FPUTS, FPUTC, FPRINTF, VFPRINTF, FWRITE,
and PWRITE.

• COUNT_MISC, SUM_TIMER_MISC, MIN_TIMER_MISC, AVG_TIMER_MISC, MAX_TIMER_MISC

These columns aggregate all other I/O operations, including CREATE, DELETE, OPEN, CLOSE,
STREAM_OPEN, STREAM_CLOSE, SEEK, TELL, FLUSH, STAT, FSTAT, CHSIZE, RENAME, and SYNC.
There are no byte counts for these operations.

TRUNCATE TABLE is permitted for file I/O summary tables. It resets the summary columns to zero rather
than removing rows.

The MySQL server uses several techniques to avoid I/O operations by caching information read from files,
so it is possible that statements you might expect to result in I/O events do not do so. You may be able to
ensure that I/O does occur by flushing caches or restarting the server to reset its state.

25.12.15.7 Table I/O and Lock Wait Summary Tables

The following sections describe the table I/O and lock wait summary tables:

• table_io_waits_summary_by_index_usage: Table I/O waits per index

• table_io_waits_summary_by_table: Table I/O waits per table

• table_lock_waits_summary_by_table: Table lock waits per table

The table_io_waits_summary_by_table Table

The table_io_waits_summary_by_table table aggregates all table I/O wait events, as generated by
the wait/io/table/sql/handler instrument. The grouping is by table.

4332

Performance Schema Summary Tables

The table_io_waits_summary_by_table table has these grouping columns to indicate how the table
aggregates events: OBJECT_TYPE, OBJECT_SCHEMA, and OBJECT_NAME. These columns have the same
meaning as in the events_waits_current table. They identify the table to which the row applies.

table_io_waits_summary_by_table has the following summary columns containing aggregated
values. As indicated in the column descriptions, some columns are more general and have values that are
the same as the sum of the values of more fine-grained columns. For example, columns that aggregate all
writes hold the sum of the corresponding columns that aggregate inserts, updates, and deletes. In this way,
aggregations at higher levels are available directly without the need for user-defined views that sum lower-
level columns.

• COUNT_STAR, SUM_TIMER_WAIT, MIN_TIMER_WAIT, AVG_TIMER_WAIT, MAX_TIMER_WAIT

These columns aggregate all I/O operations. They are the same as the sum of the corresponding
xxx_READ and xxx_WRITE columns.

• COUNT_READ, SUM_TIMER_READ, MIN_TIMER_READ, AVG_TIMER_READ, MAX_TIMER_READ

These columns aggregate all read operations. They are the same as the sum of the corresponding
xxx_FETCH columns.

• COUNT_WRITE, SUM_TIMER_WRITE, MIN_TIMER_WRITE, AVG_TIMER_WRITE, MAX_TIMER_WRITE

These columns aggregate all write operations. They are the same as the sum of the corresponding
xxx_INSERT, xxx_UPDATE, and xxx_DELETE columns.

• COUNT_FETCH, SUM_TIMER_FETCH, MIN_TIMER_FETCH, AVG_TIMER_FETCH, MAX_TIMER_FETCH

These columns aggregate all fetch operations.

• COUNT_INSERT, SUM_TIMER_INSERT, MIN_TIMER_INSERT, AVG_TIMER_INSERT,
MAX_TIMER_INSERT

These columns aggregate all insert operations.

• COUNT_UPDATE, SUM_TIMER_UPDATE, MIN_TIMER_UPDATE, AVG_TIMER_UPDATE,
MAX_TIMER_UPDATE

These columns aggregate all update operations.

• COUNT_DELETE, SUM_TIMER_DELETE, MIN_TIMER_DELETE, AVG_TIMER_DELETE,
MAX_TIMER_DELETE

These columns aggregate all delete operations.

TRUNCATE TABLE is permitted for table I/O summary tables. It resets the summary
columns to zero rather than removing rows. Truncating this table also truncates the
table_io_waits_summary_by_index_usage table.

The table_io_waits_summary_by_index_usage Table

The table_io_waits_summary_by_index_usage table aggregates all table index I/O wait events, as
generated by the wait/io/table/sql/handler instrument. The grouping is by table index.

The columns of table_io_waits_summary_by_index_usage are nearly identical to
table_io_waits_summary_by_table. The only difference is the additional group column,
INDEX_NAME, which corresponds to the name of the index that was used when the table I/O wait event
was recorded:

4333

Performance Schema Summary Tables

• A value of PRIMARY indicates that table I/O used the primary index.

• A value of NULL means that table I/O used no index.

• Inserts are counted against INDEX_NAME = NULL.

TRUNCATE TABLE is permitted for table I/O summary tables. It resets the summary
columns to zero rather than removing rows. This table is also truncated by truncation of the
table_io_waits_summary_by_table table. A DDL operation that changes the index structure of a
table may cause the per-index statistics to be reset.

The table_lock_waits_summary_by_table Table

The table_lock_waits_summary_by_table table aggregates all table lock wait events, as generated
by the wait/lock/table/sql/handler instrument. The grouping is by table.

This table contains information about internal and external locks:

• An internal lock corresponds to a lock in the SQL layer. This is currently implemented by a call to
thr_lock(). In event rows, these locks are distinguished by the OPERATION column, which has one of
these values:

read normal
read with shared locks
read high priority
read no insert
write allow write
write concurrent insert
write delayed
write low priority
write normal

• An external lock corresponds to a lock in the storage engine layer. This is currently implemented by a
call to handler::external_lock(). In event rows, these locks are distinguished by the OPERATION
column, which has one of these values:

read external
write external

The table_lock_waits_summary_by_table table has these grouping columns to indicate how the
table aggregates events: OBJECT_TYPE, OBJECT_SCHEMA, and OBJECT_NAME. These columns have the
same meaning as in the events_waits_current table. They identify the table to which the row applies.

table_lock_waits_summary_by_table has the following summary columns containing aggregated
values. As indicated in the column descriptions, some columns are more general and have values that are
the same as the sum of the values of more fine-grained columns. For example, columns that aggregate
all locks hold the sum of the corresponding columns that aggregate read and write locks. In this way,
aggregations at higher levels are available directly without the need for user-defined views that sum lower-
level columns.

• COUNT_STAR, SUM_TIMER_WAIT, MIN_TIMER_WAIT, AVG_TIMER_WAIT, MAX_TIMER_WAIT

These columns aggregate all lock operations. They are the same as the sum of the corresponding
xxx_READ and xxx_WRITE columns.

• COUNT_READ, SUM_TIMER_READ, MIN_TIMER_READ, AVG_TIMER_READ, MAX_TIMER_READ

These columns aggregate all read-lock operations. They are the same as the sum of the corresponding
xxx_READ_NORMAL, xxx_READ_WITH_SHARED_LOCKS, xxx_READ_HIGH_PRIORITY, and
xxx_READ_NO_INSERT columns.

4334

Performance Schema Summary Tables

• COUNT_WRITE, SUM_TIMER_WRITE, MIN_TIMER_WRITE, AVG_TIMER_WRITE, MAX_TIMER_WRITE

These columns aggregate all write-lock operations. They are the same as the sum of the corresponding
xxx_WRITE_ALLOW_WRITE, xxx_WRITE_CONCURRENT_INSERT, xxx_WRITE_LOW_PRIORITY, and
xxx_WRITE_NORMAL columns.

• COUNT_READ_NORMAL, SUM_TIMER_READ_NORMAL, MIN_TIMER_READ_NORMAL,
AVG_TIMER_READ_NORMAL, MAX_TIMER_READ_NORMAL

These columns aggregate internal read locks.

• COUNT_READ_WITH_SHARED_LOCKS, SUM_TIMER_READ_WITH_SHARED_LOCKS,
MIN_TIMER_READ_WITH_SHARED_LOCKS, AVG_TIMER_READ_WITH_SHARED_LOCKS,
MAX_TIMER_READ_WITH_SHARED_LOCKS

These columns aggregate internal read locks.

• COUNT_READ_HIGH_PRIORITY, SUM_TIMER_READ_HIGH_PRIORITY,
MIN_TIMER_READ_HIGH_PRIORITY, AVG_TIMER_READ_HIGH_PRIORITY,
MAX_TIMER_READ_HIGH_PRIORITY

These columns aggregate internal read locks.

• COUNT_READ_NO_INSERT, SUM_TIMER_READ_NO_INSERT, MIN_TIMER_READ_NO_INSERT,
AVG_TIMER_READ_NO_INSERT, MAX_TIMER_READ_NO_INSERT

These columns aggregate internal read locks.

• COUNT_READ_EXTERNAL, SUM_TIMER_READ_EXTERNAL, MIN_TIMER_READ_EXTERNAL,
AVG_TIMER_READ_EXTERNAL, MAX_TIMER_READ_EXTERNAL

These columns aggregate external read locks.

• COUNT_WRITE_ALLOW_WRITE, SUM_TIMER_WRITE_ALLOW_WRITE,
MIN_TIMER_WRITE_ALLOW_WRITE, AVG_TIMER_WRITE_ALLOW_WRITE,
MAX_TIMER_WRITE_ALLOW_WRITE

These columns aggregate internal write locks.

• COUNT_WRITE_CONCURRENT_INSERT, SUM_TIMER_WRITE_CONCURRENT_INSERT,
MIN_TIMER_WRITE_CONCURRENT_INSERT, AVG_TIMER_WRITE_CONCURRENT_INSERT,
MAX_TIMER_WRITE_CONCURRENT_INSERT

These columns aggregate internal write locks.

• COUNT_WRITE_LOW_PRIORITY, SUM_TIMER_WRITE_LOW_PRIORITY,
MIN_TIMER_WRITE_LOW_PRIORITY, AVG_TIMER_WRITE_LOW_PRIORITY,
MAX_TIMER_WRITE_LOW_PRIORITY

These columns aggregate internal write locks.

• COUNT_WRITE_NORMAL, SUM_TIMER_WRITE_NORMAL, MIN_TIMER_WRITE_NORMAL,
AVG_TIMER_WRITE_NORMAL, MAX_TIMER_WRITE_NORMAL

These columns aggregate internal write locks.

• COUNT_WRITE_EXTERNAL, SUM_TIMER_WRITE_EXTERNAL, MIN_TIMER_WRITE_EXTERNAL,
AVG_TIMER_WRITE_EXTERNAL, MAX_TIMER_WRITE_EXTERNAL

4335

Performance Schema Summary Tables

These columns aggregate external write locks.

TRUNCATE TABLE is permitted for table lock summary tables. It resets the summary columns to zero
rather than removing rows.

25.12.15.8 Socket Summary Tables

These socket summary tables aggregate timer and byte count information for socket operations:

• socket_summary_by_event_name: Aggregate timer and byte count statistics generated by the
wait/io/socket/* instruments for all socket I/O operations, per socket instrument.

• socket_summary_by_instance: Aggregate timer and byte count statistics generated by the wait/
io/socket/* instruments for all socket I/O operations, per socket instance. When a connection
terminates, the row in socket_summary_by_instance corresponding to it is deleted.

The socket summary tables do not aggregate waits generated by idle events while sockets are waiting
for the next request from the client. For idle event aggregations, use the wait-event summary tables; see
Section 25.12.15.1, “Wait Event Summary Tables”.

Each socket summary table has one or more grouping columns to indicate how the table aggregates
events. Event names refer to names of event instruments in the setup_instruments table:

• socket_summary_by_event_name has an EVENT_NAME column. Each row summarizes events for a
given event name.

• socket_summary_by_instance has an OBJECT_INSTANCE_BEGIN column. Each row summarizes
events for a given object.

Each socket summary table has these summary columns containing aggregated values:

• COUNT_STAR, SUM_TIMER_WAIT, MIN_TIMER_WAIT, AVG_TIMER_WAIT, MAX_TIMER_WAIT

These columns aggregate all operations.

• COUNT_READ, SUM_TIMER_READ, MIN_TIMER_READ, AVG_TIMER_READ, MAX_TIMER_READ,
SUM_NUMBER_OF_BYTES_READ

These columns aggregate all receive operations (RECV, RECVFROM, and RECVMSG).

• COUNT_WRITE, SUM_TIMER_WRITE, MIN_TIMER_WRITE, AVG_TIMER_WRITE, MAX_TIMER_WRITE,
SUM_NUMBER_OF_BYTES_WRITE

These columns aggregate all send operations (SEND, SENDTO, and SENDMSG).

• COUNT_MISC, SUM_TIMER_MISC, MIN_TIMER_MISC, AVG_TIMER_MISC, MAX_TIMER_MISC

These columns aggregate all other socket operations, such as CONNECT, LISTEN, ACCEPT, CLOSE, and
SHUTDOWN. There are no byte counts for these operations.

The socket_summary_by_instance table also has an EVENT_NAME column that indicates the class of
the socket: client_connection, server_tcpip_socket, server_unix_socket. This column can
be grouped on to isolate, for example, client activity from that of the server listening sockets.

TRUNCATE TABLE is permitted for socket summary tables. Except for
events_statements_summary_by_digest, tt resets the summary columns to zero rather than
removing rows.

4336

Performance Schema Summary Tables

25.12.15.9 Memory Summary Tables

The Performance Schema instruments memory usage and aggregates memory usage statistics, detailed
by these factors:

• Type of memory used (various caches, internal buffers, and so forth)

• Thread, account, user, host indirectly performing the memory operation

The Performance Schema instruments the following aspects of memory use

• Memory sizes used

• Operation counts

• Low and high water marks

Memory sizes help to understand or tune the memory consumption of the server.

Operation counts help to understand or tune the overall pressure the server is putting on the memory
allocator, which has an impact on performance. Allocating a single byte one million times is not the same
as allocating one million bytes a single time; tracking both sizes and counts can expose the difference.

Low and high water marks are critical to detect workload spikes, overall workload stability, and possible
memory leaks.

Memory summary tables do not contain timing information because memory events are not timed.

For information about collecting memory usage data, see Memory Instrumentation Behavior.

Example memory event summary information:

mysql> SELECT *
 FROM performance_schema.memory_summary_global_by_event_name
 WHERE EVENT_NAME = 'memory/sql/TABLE'\G
*************************** 1. row ***************************
 EVENT_NAME: memory/sql/TABLE
 COUNT_ALLOC: 1381
 COUNT_FREE: 924
 SUM_NUMBER_OF_BYTES_ALLOC: 2059873
 SUM_NUMBER_OF_BYTES_FREE: 1407432
 LOW_COUNT_USED: 0
 CURRENT_COUNT_USED: 457
 HIGH_COUNT_USED: 461
 LOW_NUMBER_OF_BYTES_USED: 0
CURRENT_NUMBER_OF_BYTES_USED: 652441
 HIGH_NUMBER_OF_BYTES_USED: 669269

Each memory summary table has one or more grouping columns to indicate how the table aggregates
events. Event names refer to names of event instruments in the setup_instruments table:

• memory_summary_by_account_by_event_name has USER, HOST, and EVENT_NAME columns. Each
row summarizes events for a given account (user and host combination) and event name.

• memory_summary_by_host_by_event_name has HOST and EVENT_NAME columns. Each row
summarizes events for a given host and event name.

• memory_summary_by_thread_by_event_name has THREAD_ID and EVENT_NAME columns. Each
row summarizes events for a given thread and event name.

4337

Performance Schema Summary Tables

• memory_summary_by_user_by_event_name has USER and EVENT_NAME columns. Each row
summarizes events for a given user and event name.

• memory_summary_global_by_event_name has an EVENT_NAME column. Each row summarizes
events for a given event name.

Each memory summary table has these summary columns containing aggregated values:

• COUNT_ALLOC, COUNT_FREE

The aggregated numbers of calls to memory-allocation and memory-free functions.

• SUM_NUMBER_OF_BYTES_ALLOC, SUM_NUMBER_OF_BYTES_FREE

The aggregated sizes of allocated and freed memory blocks.

• CURRENT_COUNT_USED

The aggregated number of currently allocated blocks that have not been freed yet. This is a convenience
column, equal to COUNT_ALLOC − COUNT_FREE.

• CURRENT_NUMBER_OF_BYTES_USED

The aggregated size of currently allocated memory blocks that have not been freed yet. This is a
convenience column, equal to SUM_NUMBER_OF_BYTES_ALLOC − SUM_NUMBER_OF_BYTES_FREE.

• LOW_COUNT_USED, HIGH_COUNT_USED

The low and high water marks corresponding to the CURRENT_COUNT_USED column.

• LOW_NUMBER_OF_BYTES_USED, HIGH_NUMBER_OF_BYTES_USED

The low and high water marks corresponding to the CURRENT_NUMBER_OF_BYTES_USED column.

TRUNCATE TABLE is permitted for memory summary tables. It has these effects:

• In general, truncation resets the baseline for statistics, but does not change the server state. That is,
truncating a memory table does not free memory.

• COUNT_ALLOC and COUNT_FREE are reset to a new baseline, by reducing each counter by the same
value.

• Likewise, SUM_NUMBER_OF_BYTES_ALLOC and SUM_NUMBER_OF_BYTES_FREE are reset to a new
baseline.

• LOW_COUNT_USED and HIGH_COUNT_USED are reset to CURRENT_COUNT_USED.

• LOW_NUMBER_OF_BYTES_USED and HIGH_NUMBER_OF_BYTES_USED are reset to
CURRENT_NUMBER_OF_BYTES_USED.

In addition, each memory summary table that is aggregated by account, host, user, or thread
is implicitly truncated by truncation of the connection table on which it depends, or truncation of
memory_summary_global_by_event_name. For details, see Section 25.12.8, “Performance Schema
Connection Tables”.

Memory Instrumentation Behavior

Memory instruments are listed in the setup_instruments table and have names of the form
memory/code_area/instrument_name. Most memory instrumentation is disabled by default.

4338

Performance Schema Summary Tables

Instruments named with the prefix memory/performance_schema/ expose how much memory is
allocated for internal buffers in the Performance Schema itself. The memory/performance_schema/
instruments are built in, always enabled, and cannot be disabled at startup or runtime. Built-in memory
instruments are displayed only in the memory_summary_global_by_event_name table.

To control memory instrumentation state at server startup, use lines like these in your my.cnf file:

• Enable:

[mysqld]
performance-schema-instrument='memory/%=ON'

• Disable:

[mysqld]
performance-schema-instrument='memory/%=OFF'

To control memory instrumentation state at runtime, update the ENABLED column of the relevant
instruments in the setup_instruments table:

• Enable:

UPDATE performance_schema.setup_instruments
SET ENABLED = 'YES'
WHERE NAME LIKE 'memory/%';

• Disable:

UPDATE performance_schema.setup_instruments
SET ENABLED = 'NO'
WHERE NAME LIKE 'memory/%';

For memory instruments, the TIMED column in setup_instruments is ignored because memory
operations are not timed.

When a thread in the server executes a memory allocation that has been instrumented, these rules apply:

• If the thread is not instrumented or the memory instrument is not enabled, the memory block allocated is
not instrumented.

• Otherwise (that is, both the thread and the instrument are enabled), the memory block allocated is
instrumented.

For deallocation, these rules apply:

• If a memory allocation operation was instrumented, the corresponding free operation is instrumented,
regardless of the current instrument or thread enabled status.

• If a memory allocation operation was not instrumented, the corresponding free operation is not
instrumented, regardless of the current instrument or thread enabled status.

For the per-thread statistics, the following rules apply.

When an instrumented memory block of size N is allocated, the Performance Schema makes these
updates to memory summary table columns:

• COUNT_ALLOC: Increased by 1

• CURRENT_COUNT_USED: Increased by 1

• HIGH_COUNT_USED: Increased if CURRENT_COUNT_USED is a new maximum

4339

Performance Schema Summary Tables

• SUM_NUMBER_OF_BYTES_ALLOC: Increased by N

• CURRENT_NUMBER_OF_BYTES_USED: Increased by N

• HIGH_NUMBER_OF_BYTES_USED: Increased if CURRENT_NUMBER_OF_BYTES_USED is a new maximum

When an instrumented memory block is deallocated, the Performance Schema makes these updates to
memory summary table columns:

• COUNT_FREE: Increased by 1

• CURRENT_COUNT_USED: Decreased by 1

• LOW_COUNT_USED: Decreased if CURRENT_COUNT_USED is a new minimum

• SUM_NUMBER_OF_BYTES_FREE: Increased by N

• CURRENT_NUMBER_OF_BYTES_USED: Decreased by N

• LOW_NUMBER_OF_BYTES_USED: Decreased if CURRENT_NUMBER_OF_BYTES_USED is a new minimum

For higher-level aggregates (global, by account, by user, by host), the same rules apply as expected for
low and high water marks.

• LOW_COUNT_USED and LOW_NUMBER_OF_BYTES_USED are lower estimates. The value reported by
the Performance Schema is guaranteed to be less than or equal to the lowest count or size of memory
effectively used at runtime.

• HIGH_COUNT_USED and HIGH_NUMBER_OF_BYTES_USED are higher estimates. The value reported
by the Performance Schema is guaranteed to be greater than or equal to the highest count or size of
memory effectively used at runtime.

For lower estimates in summary tables other than memory_summary_global_by_event_name, it is
possible for values to go negative if memory ownership is transferred between threads.

Here is an example of estimate computation; but note that estimate implementation is subject to change:

Thread 1 uses memory in the range from 1MB to 2MB during execution, as reported by
the LOW_NUMBER_OF_BYTES_USED and HIGH_NUMBER_OF_BYTES_USED columns of the
memory_summary_by_thread_by_event_name table.

Thread 2 uses memory in the range from 10MB to 12MB during execution, as reported likewise.

When these two threads belong to the same user account, the per-account summary estimates that this
account used memory in the range from 11MB to 14MB. That is, the LOW_NUMBER_OF_BYTES_USED
for the higher level aggregate is the sum of each LOW_NUMBER_OF_BYTES_USED (assuming the worst
case). Likewise, the HIGH_NUMBER_OF_BYTES_USED for the higher level aggregate is the sum of each
HIGH_NUMBER_OF_BYTES_USED (assuming the worst case).

11MB is a lower estimate that can occur only if both threads hit the low usage mark at the same time.

14MB is a higher estimate that can occur only if both threads hit the high usage mark at the same time.

The real memory usage for this account could have been in the range from 11.5MB to 13.5MB.

For capacity planning, reporting the worst case is actually the desired behavior, as it shows what can
potentially happen when sessions are uncorrelated, which is typically the case.

4340

Performance Schema Miscellaneous Tables

25.12.15.10 Status Variable Summary Tables

Note

The value of the show_compatibility_56 system variable affects the
information available from the tables described here. For details, see the description
of that variable in Section 5.1.7, “Server System Variables”.

The Performance Schema makes status variable information available in the tables described in
Section 25.12.14, “Performance Schema Status Variable Tables”. It also makes aggregated status variable
information available in summary tables, described here. Each status variable summary table has one or
more grouping columns to indicate how the table aggregates status values:

• status_by_account has USER, HOST, and VARIABLE_NAME columns to summarize status variables
by account.

• status_by_host has HOST and VARIABLE_NAME columns to summarize status variables by the host
from which clients connected.

• status_by_user has USER and VARIABLE_NAME columns to summarize status variables by client
user name.

Each status variable summary table has this summary column containing aggregated values:

• VARIABLE_VALUE

The aggregated status variable value for active and terminated sessions.

The meaning of “account” in these tables is similar to its meaning in the MySQL grant tables in the mysql
system database, in the sense that the term refers to a combination of user and host values. They differ
in that, for grant tables, the host part of an account can be a pattern, whereas for Performance Schema
tables, the host value is always a specific nonpattern host name.

Account status is collected when sessions terminate. The session status counters are added to the global
status counters and the corresponding account status counters. If account statistics are not collected, the
session status is added to host and user status, if host and user status are collected.

Account, host, and user statistics are not collected if the performance_schema_accounts_size,
performance_schema_hosts_size, and performance_schema_users_size system variables,
respectively, are set to 0.

The Performance Schema supports TRUNCATE TABLE for status variable summary tables as follows; in all
cases, status for active sessions is unaffected:

• status_by_account: Aggregates account status from terminated sessions to user and host status,
then resets account status.

• status_by_host: Resets aggregated host status from terminated sessions.

• status_by_user: Resets aggregated user status from terminated sessions.

FLUSH STATUS adds the session status from all active sessions to the global status variables, resets
the status of all active sessions, and resets account, host, and user status values aggregated from
disconnected sessions.

25.12.16 Performance Schema Miscellaneous Tables

The following sections describe tables that do not fall into the table categories discussed in the preceding
sections:

4341

Performance Schema Miscellaneous Tables

• host_cache: Information from the internal host cache.

• performance_timers: Which event timers are available.

• threads: Information about server threads.

25.12.16.1 The host_cache Table

The MySQL server maintains an in-memory host cache that contains client host name and IP address
information and is used to avoid Domain Name System (DNS) lookups. The host_cache table exposes
the contents of this cache. The host_cache_size system variable controls the size of the host cache,
as well as the size of the host_cache table. For operational and configuration information about the host
cache, see Section 5.1.11.2, “DNS Lookups and the Host Cache”.

Because the host_cache table exposes the contents of the host cache, it can be examined using SELECT
statements. This may help you diagnose the causes of connection problems. The Performance Schema
must be enabled or this table is empty.

The host_cache table has these columns:

• IP

The IP address of the client that connected to the server, expressed as a string.

• HOST

The resolved DNS host name for that client IP, or NULL if the name is unknown.

• HOST_VALIDATED

Whether the IP-to-host name-to-IP DNS resolution was performed successfully for the client IP. If
HOST_VALIDATED is YES, the HOST column is used as the host name corresponding to the IP so that
additional calls to DNS can be avoided. While HOST_VALIDATED is NO, DNS resolution is attempted
for each connection attempt, until it eventually completes with either a valid result or a permanent error.
This information enables the server to avoid caching bad or missing host names during temporary DNS
failures, which would negatively affect clients forever.

• SUM_CONNECT_ERRORS

The number of connection errors that are deemed “blocking” (assessed against the
max_connect_errors system variable). Only protocol handshake errors are counted, and only for
hosts that passed validation (HOST_VALIDATED = YES).

Once SUM_CONNECT_ERRORS for a given host reaches the value of max_connect_errors,
new connections from that host are blocked. The SUM_CONNECT_ERRORS value can exceed
the max_connect_errors value because multiple connection attempts from a host can occur
simultaneously while the host is not blocked. Any or all of them can fail, independently incrementing
SUM_CONNECT_ERRORS, possibly beyond the value of max_connect_errors.

Suppose that max_connect_errors is 200 and SUM_CONNECT_ERRORS for a given host is
199. If 10 clients attempt to connect from that host simultaneously, none of them are blocked
because SUM_CONNECT_ERRORS has not reached 200. If blocking errors occur for five of the clients,
SUM_CONNECT_ERRORS is increased by one for each client, for a resulting SUM_CONNECT_ERRORS
value of 204. The other five clients succeed and are not blocked because the value of
SUM_CONNECT_ERRORS when their connection attempts began had not reached 200. New connections
from the host that begin after SUM_CONNECT_ERRORS reaches 200 are blocked.

• COUNT_HOST_BLOCKED_ERRORS

4342

Performance Schema Miscellaneous Tables

The number of connections that were blocked because SUM_CONNECT_ERRORS exceeded the value of
the max_connect_errors system variable.

• COUNT_NAMEINFO_TRANSIENT_ERRORS

The number of transient errors during IP-to-host name DNS resolution.

• COUNT_NAMEINFO_PERMANENT_ERRORS

The number of permanent errors during IP-to-host name DNS resolution.

• COUNT_FORMAT_ERRORS

The number of host name format errors. MySQL does not perform matching of Host column values in
the mysql.user system table against host names for which one or more of the initial components of the
name are entirely numeric, such as 1.2.example.com. The client IP address is used instead. For the
rationale why this type of matching does not occur, see Section 6.2.4, “Specifying Account Names”.

• COUNT_ADDRINFO_TRANSIENT_ERRORS

The number of transient errors during host name-to-IP reverse DNS resolution.

• COUNT_ADDRINFO_PERMANENT_ERRORS

The number of permanent errors during host name-to-IP reverse DNS resolution.

• COUNT_FCRDNS_ERRORS

The number of forward-confirmed reverse DNS errors. These errors occur when IP-to-host name-to-IP
DNS resolution produces an IP address that does not match the client originating IP address.

• COUNT_HOST_ACL_ERRORS

The number of errors that occur because no users are permitted to connect from the client host. In
such cases, the server returns ER_HOST_NOT_PRIVILEGED and does not even ask for a user name or
password.

• COUNT_NO_AUTH_PLUGIN_ERRORS

The number of errors due to requests for an unavailable authentication plugin. A plugin can be
unavailable if, for example, it was never loaded or a load attempt failed.

• COUNT_AUTH_PLUGIN_ERRORS

The number of errors reported by authentication plugins.

An authentication plugin can report different error codes to indicate the root cause
of a failure. Depending on the type of error, one of these columns is incremented:
COUNT_AUTHENTICATION_ERRORS, COUNT_AUTH_PLUGIN_ERRORS, COUNT_HANDSHAKE_ERRORS.
New return codes are an optional extension to the existing plugin API. Unknown or unexpected plugin
errors are counted in the COUNT_AUTH_PLUGIN_ERRORS column.

• COUNT_HANDSHAKE_ERRORS

The number of errors detected at the wire protocol level.

• COUNT_PROXY_USER_ERRORS

4343

https://dev.mysql.com/doc/mysql-errors/5.7/en/server-error-reference.html#error_er_host_not_privileged

Performance Schema Miscellaneous Tables

The number of errors detected when proxy user A is proxied to another user B who does not exist.

• COUNT_PROXY_USER_ACL_ERRORS

The number of errors detected when proxy user A is proxied to another user B who does exist but for
whom A does not have the PROXY privilege.

• COUNT_AUTHENTICATION_ERRORS

The number of errors caused by failed authentication.

• COUNT_SSL_ERRORS

The number of errors due to SSL problems.

• COUNT_MAX_USER_CONNECTIONS_ERRORS

The number of errors caused by exceeding per-user connection quotas. See Section 6.2.16, “Setting
Account Resource Limits”.

• COUNT_MAX_USER_CONNECTIONS_PER_HOUR_ERRORS

The number of errors caused by exceeding per-user connections-per-hour quotas. See Section 6.2.16,
“Setting Account Resource Limits”.

• COUNT_DEFAULT_DATABASE_ERRORS

The number of errors related to the default database. For example, the database does not exist or the
user has no privileges to access it.

• COUNT_INIT_CONNECT_ERRORS

The number of errors caused by execution failures of statements in the init_connect system variable
value.

• COUNT_LOCAL_ERRORS

The number of errors local to the server implementation and not related to the network, authentication, or
authorization. For example, out-of-memory conditions fall into this category.

• COUNT_UNKNOWN_ERRORS

The number of other, unknown errors not accounted for by other columns in this table. This column is
reserved for future use, in case new error conditions must be reported, and if preserving the backward
compatibility and structure of the host_cache table is required.

• FIRST_SEEN

The timestamp of the first connection attempt seen from the client in the IP column.

• LAST_SEEN

The timestamp of the most recent connection attempt seen from the client in the IP column.

• FIRST_ERROR_SEEN

The timestamp of the first error seen from the client in the IP column.

• LAST_ERROR_SEEN

4344

Performance Schema Miscellaneous Tables

The timestamp of the most recent error seen from the client in the IP column.

TRUNCATE TABLE is permitted for the host_cache table. It requires the DROP privilege for the table.
Truncating the table flushes the host cache, which has the effects described in Flushing the Host Cache.

25.12.16.2 The performance_timers Table

The performance_timers table shows which event timers are available:

mysql> SELECT * FROM performance_schema.performance_timers;
+-------------+-----------------+------------------+----------------+
| TIMER_NAME | TIMER_FREQUENCY | TIMER_RESOLUTION | TIMER_OVERHEAD |
+-------------+-----------------+------------------+----------------+
CYCLE	2389029850	1	72
NANOSECOND	1000000000	1	112
MICROSECOND	1000000	1	136
MILLISECOND	1036	1	168
TICK	105	1	2416
+-------------+-----------------+------------------+----------------+

If the values associated with a given timer name are NULL, that timer is not supported on your platform.
The rows that do not contain NULL indicate which timers you can use in setup_timers. For an
explanation of how event timing occurs, see Section 25.4.1, “Performance Schema Event Timing”.

Note

As of MySQL 5.7.21, the Performance Schema setup_timers table is deprecated
and is removed in MySQL 8.0, as is the TICKS row in the performance_timers
table.

The performance_timers table has these columns:

• TIMER_NAME

The name by which to refer to the timer when configuring the setup_timers table.

• TIMER_FREQUENCY

The number of timer units per second. For a cycle timer, the frequency is generally related to the CPU
speed. For example, on a system with a 2.4GHz processor, the CYCLE may be close to 2400000000.

• TIMER_RESOLUTION

Indicates the number of timer units by which timer values increase. If a timer has a resolution of 10, its
value increases by 10 each time.

• TIMER_OVERHEAD

The minimal number of cycles of overhead to obtain one timing with the given timer. The Performance
Schema determines this value by invoking the timer 20 times during initialization and picking the smallest
value. The total overhead really is twice this amount because the instrumentation invokes the timer at
the start and end of each event. The timer code is called only for timed events, so this overhead does
not apply for nontimed events.

TRUNCATE TABLE is not permitted for the performance_timers table.

25.12.16.3 The processlist Table

4345

Performance Schema Miscellaneous Tables

Note

The processlist table is automatically created in the Performance Schema for
new installations of MySQL 5.7.39, or higher. It is also created automatically by an
upgrade.

The MySQL process list indicates the operations currently being performed by the set of threads executing
within the server. The processlist table is one source of process information. For a comparison of this
table with other sources, see Sources of Process Information.

The processlist table can be queried directly. If you have the PROCESS privilege, you can see all
threads, even those belonging to other users. Otherwise (without the PROCESS privilege), nonanonymous
users have access to information about their own threads but not threads for other users, and anonymous
users have no access to thread information.

Note

If the performance_schema_show_processlist system variable is enabled,
the processlist table also serves as the basis for an alternative implementation
underlying the SHOW PROCESSLIST statement. For details, see later in this section.

The processlist table contains a row for each server process:

mysql> SELECT * FROM performance_schema.processlist\G
*************************** 1. row ***************************
 ID: 5
 USER: event_scheduler
 HOST: localhost
 DB: NULL
COMMAND: Daemon
 TIME: 137
 STATE: Waiting on empty queue
 INFO: NULL
*************************** 2. row ***************************
 ID: 9
 USER: me
 HOST: localhost:58812
 DB: NULL
COMMAND: Sleep
 TIME: 95
 STATE:
 INFO: NULL
*************************** 3. row ***************************
 ID: 10
 USER: me
 HOST: localhost:58834
 DB: test
COMMAND: Query
 TIME: 0
 STATE: executing
 INFO: SELECT * FROM performance_schema.processlist
...

The processlist table has these columns:

• ID

The connection identifier. This is the same value displayed in the Id column of the SHOW PROCESSLIST
statement, displayed in the PROCESSLIST_ID column of the Performance Schema threads table, and
returned by the CONNECTION_ID() function within the thread.

• USER

4346

Performance Schema Miscellaneous Tables

The MySQL user who issued the statement. A value of system user refers to a nonclient thread
spawned by the server to handle tasks internally, for example, a delayed-row handler thread or an I/O
or SQL thread used on replica hosts. For system user, there is no host specified in the Host column.
unauthenticated user refers to a thread that has become associated with a client connection but for
which authentication of the client user has not yet occurred. event_scheduler refers to the thread that
monitors scheduled events (see Section 23.4, “Using the Event Scheduler”).

Note

A USER value of system user is distinct from the SYSTEM_USER privilege. The
former designates internal threads. The latter distinguishes the system user and
regular user account categories (see Account Categories).

• HOST

The host name of the client issuing the statement (except for system user, for which there is no host).
The host name for TCP/IP connections is reported in host_name:client_port format to make it
easier to determine which client is doing what.

• DB

The default database for the thread, or NULL if none has been selected.

• COMMAND

The type of command the thread is executing on behalf of the client, or Sleep if the session is idle. For
descriptions of thread commands, see Section 8.14, “Examining Server Thread (Process) Information”.
The value of this column corresponds to the COM_xxx commands of the client/server protocol and
Com_xxx status variables. See Section 5.1.9, “Server Status Variables”

• TIME

The time in seconds that the thread has been in its current state. For a replica SQL thread, the value
is the number of seconds between the timestamp of the last replicated event and the real time of the
replica host. See Section 16.2.3, “Replication Threads”.

• STATE

An action, event, or state that indicates what the thread is doing. For descriptions of STATE values, see
Section 8.14, “Examining Server Thread (Process) Information”.

Most states correspond to very quick operations. If a thread stays in a given state for many seconds,
there might be a problem that needs to be investigated.

• INFO

The statement the thread is executing, or NULL if it is executing no statement. The statement might be
the one sent to the server, or an innermost statement if the statement executes other statements. For
example, if a CALL statement executes a stored procedure that is executing a SELECT statement, the
INFO value shows the SELECT statement.

• EXECUTION_ENGINE

The query execution engine. The value is either PRIMARY or SECONDARY. For use with MySQL
HeatWave Service and MySQL HeatWave, where the PRIMARY engine is InnoDB and the SECONDARY
engine is MySQL HeatWave (RAPID). For MySQL Community Edition Server, MySQL Enterprise Edition

4347

https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_system-user
https://dev.mysql.com/doc/refman/8.0/en/account-categories.html

Performance Schema Miscellaneous Tables

Server (on-premise), and MySQL HeatWave Service without MySQL HeatWave, the value is always
PRIMARY. This column was added in MySQL 8.0.29.

TRUNCATE TABLE is not permitted for the processlist table.

As mentioned previously, if the performance_schema_show_processlist system variable is enabled,
the processlist table serves as the basis for an alternative implementation of other process information
sources:

• The SHOW PROCESSLIST statement.

• The mysqladmin processlist command (which uses SHOW PROCESSLIST statement).

The default SHOW PROCESSLIST implementation iterates across active threads from within the thread
manager while holding a global mutex. This has negative performance consequences, particularly on busy
systems. The alternative SHOW PROCESSLIST implementation is based on the Performance Schema
processlist table. This implementation queries active thread data from the Performance Schema rather
than the thread manager and does not require a mutex.

MySQL configuration affects processlist table contents as follows:

• Minimum required configuration:

• The MySQL server must be configured and built with thread instrumentation enabled. This is true by
default; it is controlled using the DISABLE_PSI_THREAD CMake option.

• The Performance Schema must be enabled at server startup. This is true by default; it is controlled
using the performance_schema system variable.

With that configuration satisfied, performance_schema_show_processlist enables or disables
the alternative SHOW PROCESSLIST implementation. If the minimum configuration is not satisfied, the
processlist table (and thus SHOW PROCESSLIST) may not return all data.

• Recommended configuration:

• To avoid having some threads ignored:

• Leave the performance_schema_max_thread_instances system variable set to its default or
set it at least as great as the max_connections system variable.

• Leave the performance_schema_max_thread_classes system variable set to its default.

• To avoid having some STATE column values be empty, leave the
performance_schema_max_stage_classes system variable set to its default.

The default for those configuration parameters is -1, which causes the Performance Schema to autosize
them at server startup. With the parameters set as indicated, the processlist table (and thus SHOW
PROCESSLIST) produce complete process information.

The preceding configuration parameters affect the contents of the processlist table.
For a given configuration, however, the processlist contents are unaffected by the
performance_schema_show_processlist setting.

The alternative process list implementation does not apply to the INFORMATION_SCHEMA PROCESSLIST
table or the COM_PROCESS_INFO command of the MySQL client/server protocol.

25.12.16.4 The threads Table

4348

Performance Schema Miscellaneous Tables

The threads table contains a row for each server thread. Each row contains information about a thread
and indicates whether monitoring and historical event logging are enabled for it:

mysql> SELECT * FROM performance_schema.threads\G
*************************** 1. row ***************************
 THREAD_ID: 1
 NAME: thread/sql/main
 TYPE: BACKGROUND
 PROCESSLIST_ID: NULL
 PROCESSLIST_USER: NULL
 PROCESSLIST_HOST: NULL
 PROCESSLIST_DB: NULL
PROCESSLIST_COMMAND: NULL
 PROCESSLIST_TIME: 80284
 PROCESSLIST_STATE: NULL
 PROCESSLIST_INFO: NULL
 PARENT_THREAD_ID: NULL
 ROLE: NULL
 INSTRUMENTED: YES
 HISTORY: YES
 CONNECTION_TYPE: NULL
 THREAD_OS_ID: 489803
...
*************************** 4. row ***************************
 THREAD_ID: 51
 NAME: thread/sql/one_connection
 TYPE: FOREGROUND
 PROCESSLIST_ID: 34
 PROCESSLIST_USER: isabella
 PROCESSLIST_HOST: localhost
 PROCESSLIST_DB: performance_schema
PROCESSLIST_COMMAND: Query
 PROCESSLIST_TIME: 0
 PROCESSLIST_STATE: Sending data
 PROCESSLIST_INFO: SELECT * FROM performance_schema.threads
 PARENT_THREAD_ID: 1
 ROLE: NULL
 INSTRUMENTED: YES
 HISTORY: YES
 CONNECTION_TYPE: SSL/TLS
 THREAD_OS_ID: 755399
...

When the Performance Schema initializes, it populates the threads table based on the threads in
existence then. Thereafter, a new row is added each time the server creates a thread.

The INSTRUMENTED and HISTORY column values for new threads are determined by the contents of
the setup_actors table. For information about how to use the setup_actors table to control these
columns, see Section 25.4.6, “Pre-Filtering by Thread”.

Removal of rows from the threads table occurs when threads end. For a thread associated with a client
session, removal occurs when the session ends. If a client has auto-reconnect enabled and the session
reconnects after a disconnect, the session becomes associated with a new row in the threads table that
has a different PROCESSLIST_ID value. The initial INSTRUMENTED and HISTORY values for the new
thread may be different from those of the original thread: The setup_actors table may have changed in
the meantime, and if the INSTRUMENTED or HISTORY value for the original thread was changed after the
row was initialized, the change does not carry over to the new thread.

You can enable or disable thread monitoring (that is, whether events executed by the thread are
instrumented) and historical event logging. To control the initial INSTRUMENTED and HISTORY values
for new foreground threads, use the setup_actors table. To control these aspects of existing threads,
set the INSTRUMENTED and HISTORY columns of threads table rows. (For more information about the

4349

Performance Schema Miscellaneous Tables

conditions under which thread monitoring and historical event logging occur, see the descriptions of the
INSTRUMENTED and HISTORY columns.)

For a comparison of the threads table columns with names having a prefix of PROCESSLIST_ to other
process information sources, see Sources of Process Information.

Important

For thread information sources other than the threads table, information about
threads for other users is shown only if the current user has the PROCESS privilege.
That is not true of the threads table; all rows are shown to any user who has
the SELECT privilege for the table. Users who should not be able to see threads
for other users by accessing the threads table should not be given the SELECT
privilege for it.

The threads table has these columns:

• THREAD_ID

A unique thread identifier.

• NAME

The name associated with the thread instrumentation code in the server. For example, thread/sql/
one_connection corresponds to the thread function in the code responsible for handling a user
connection, and thread/sql/main stands for the main() function of the server.

• TYPE

The thread type, either FOREGROUND or BACKGROUND. User connection threads are foreground threads.
Threads associated with internal server activity are background threads. Examples are internal InnoDB
threads, “binlog dump” threads sending information to replicas, and replication I/O and SQL threads.

• PROCESSLIST_ID

For a foreground thread (associated with a user connection), this is the connection identifier. This is the
same value displayed in the ID column of the INFORMATION_SCHEMA PROCESSLIST table, displayed in
the Id column of SHOW PROCESSLIST output, and returned by the CONNECTION_ID() function within
the thread.

For a background thread (not associated with a user connection), PROCESSLIST_ID is NULL, so the
values are not unique.

• PROCESSLIST_USER

The user associated with a foreground thread, NULL for a background thread.

• PROCESSLIST_HOST

The host name of the client associated with a foreground thread, NULL for a background thread.

Unlike the HOST column of the INFORMATION_SCHEMA PROCESSLIST table or the Host column of
SHOW PROCESSLIST output, the PROCESSLIST_HOST column does not include the port number for
TCP/IP connections. To obtain this information from the Performance Schema, enable the socket
instrumentation (which is not enabled by default) and examine the socket_instances table:

mysql> SELECT * FROM performance_schema.setup_instruments
 WHERE NAME LIKE 'wait/io/socket%';

4350

Performance Schema Miscellaneous Tables

+--+---------+-------+
| NAME | ENABLED | TIMED |
+--+---------+-------+
wait/io/socket/sql/server_tcpip_socket	NO	NO
wait/io/socket/sql/server_unix_socket	NO	NO
wait/io/socket/sql/client_connection	NO	NO
+--+---------+-------+
3 rows in set (0.01 sec)

mysql> UPDATE performance_schema.setup_instruments
 SET ENABLED='YES'
 WHERE NAME LIKE 'wait/io/socket%';
Query OK, 3 rows affected (0.00 sec)
Rows matched: 3 Changed: 3 Warnings: 0

mysql> SELECT * FROM performance_schema.socket_instances\G
*************************** 1. row ***************************
 EVENT_NAME: wait/io/socket/sql/client_connection
OBJECT_INSTANCE_BEGIN: 140612577298432
 THREAD_ID: 31
 SOCKET_ID: 53
 IP: ::ffff:127.0.0.1
 PORT: 55642
 STATE: ACTIVE
...

• PROCESSLIST_DB

The default database for the thread, or NULL if none has been selected.

• PROCESSLIST_COMMAND

For foreground threads, the type of command the thread is executing on behalf of the client, or Sleep if
the session is idle. For descriptions of thread commands, see Section 8.14, “Examining Server Thread
(Process) Information”. The value of this column corresponds to the COM_xxx commands of the client/
server protocol and Com_xxx status variables. See Section 5.1.9, “Server Status Variables”

Background threads do not execute commands on behalf of clients, so this column may be NULL.

• PROCESSLIST_TIME

The time in seconds that the thread has been in its current state. For a replica SQL thread, the value
is the number of seconds between the timestamp of the last replicated event and the real time of the
replica host. See Section 16.2.3, “Replication Threads”.

• PROCESSLIST_STATE

An action, event, or state that indicates what the thread is doing. For descriptions of
PROCESSLIST_STATE values, see Section 8.14, “Examining Server Thread (Process) Information”.
If the value if NULL, the thread may correspond to an idle client session or the work it is doing is not
instrumented with stages.

Most states correspond to very quick operations. If a thread stays in a given state for many seconds,
there might be a problem that bears investigation.

• PROCESSLIST_INFO

The statement the thread is executing, or NULL if it is executing no statement. The statement might be
the one sent to the server, or an innermost statement if the statement executes other statements. For
example, if a CALL statement executes a stored procedure that is executing a SELECT statement, the
PROCESSLIST_INFO value shows the SELECT statement.

4351

Performance Schema Miscellaneous Tables

• PARENT_THREAD_ID

If this thread is a subthread (spawned by another thread), this is the THREAD_ID value of the spawning
thread.

• ROLE

Unused.

• INSTRUMENTED

Whether events executed by the thread are instrumented. The value is YES or NO.

• For foreground threads, the initial INSTRUMENTED value is determined by whether the user account
associated with the thread matches any row in the setup_actors table. Matching is based on the
values of the PROCESSLIST_USER and PROCESSLIST_HOST columns.

If the thread spawns a subthread, matching occurs again for the threads table row created for the
subthread.

• For background threads, INSTRUMENTED is YES by default. setup_actors is not consulted because
there is no associated user for background threads.

• For any thread, its INSTRUMENTED value can be changed during the lifetime of the thread.

For monitoring of events executed by the thread to occur, these things must be true:

• The thread_instrumentation consumer in the setup_consumers table must be YES.

• The threads.INSTRUMENTED column must be YES.

• Monitoring occurs only for those thread events produced from instruments that have the ENABLED
column set to YES in the setup_instruments table.

• HISTORY

Whether to log historical events for the thread. The value is YES or NO.

• For foreground threads, the initial HISTORY value is determined by whether the user account
associated with the thread matches any row in the setup_actors table. Matching is based on the
values of the PROCESSLIST_USER and PROCESSLIST_HOST columns.

If the thread spawns a subthread, matching occurs again for the threads table row created for the
subthread.

• For background threads, HISTORY is YES by default. setup_actors is not consulted because there
is no associated user for background threads.

• For any thread, its HISTORY value can be changed during the lifetime of the thread.

For historical event logging for the thread to occur, these things must be true:

• The appropriate history-related consumers in the setup_consumers table must be enabled. For
example, wait event logging in the events_waits_history and events_waits_history_long
tables requires the corresponding events_waits_history and events_waits_history_long
consumers to be YES.

• The threads.HISTORY column must be YES.

4352

Performance Schema Option and Variable Reference

• Logging occurs only for those thread events produced from instruments that have the ENABLED
column set to YES in the setup_instruments table.

• CONNECTION_TYPE

The protocol used to establish the connection, or NULL for background threads. Permitted values are
TCP/IP (TCP/IP connection established without encryption), SSL/TLS (TCP/IP connection established
with encryption), Socket (Unix socket file connection), Named Pipe (Windows named pipe connection),
and Shared Memory (Windows shared memory connection).

• THREAD_OS_ID

The thread or task identifier as defined by the underlying operating system, if there is one:

• When a MySQL thread is associated with the same operating system thread for its lifetime,
THREAD_OS_ID contains the operating system thread ID.

• When a MySQL thread is not associated with the same operating system thread for its lifetime,
THREAD_OS_ID contains NULL. This is typical for user sessions when the thread pool plugin is used
(see Section 5.5.3, “MySQL Enterprise Thread Pool”).

For Windows, THREAD_OS_ID corresponds to the thread ID visible in Process Explorer (https://
technet.microsoft.com/en-us/sysinternals/bb896653.aspx).

For Linux, THREAD_OS_ID corresponds to the value of the gettid() function. This value is exposed,
for example, using the perf or ps -L commands, or in the proc file system (/proc/[pid]/
task/[tid]). For more information, see the perf-stat(1), ps(1), and proc(5) man pages.

TRUNCATE TABLE is not permitted for the threads table.

25.13 Performance Schema Option and Variable Reference

Table 25.13 Performance Schema Variable Reference

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

performance_schemaYes Yes Yes Global No

Performance_schema_accounts_lost Yes Global No

performance_schema_accounts_sizeYes Yes Yes Global No

Performance_schema_cond_classes_lost Yes Global No

Performance_schema_cond_instances_lost Yes Global No

performance-
schema-
consumer-
events-
stages-
current

Yes Yes

performance-
schema-
consumer-
events-
stages-history

Yes Yes

4353

https://technet.microsoft.com/en-us/sysinternals/bb896653.aspx
https://technet.microsoft.com/en-us/sysinternals/bb896653.aspx

Performance Schema Option and Variable Reference

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

performance-
schema-
consumer-
events-
stages-
history-long

Yes Yes

performance-
schema-
consumer-
events-
statements-
current

Yes Yes

performance-
schema-
consumer-
events-
statements-
history

Yes Yes

performance-
schema-
consumer-
events-
statements-
history-long

Yes Yes

performance-
schema-
consumer-
events-
transactions-
current

Yes Yes

performance-
schema-
consumer-
events-
transactions-
history

Yes Yes

performance-
schema-
consumer-
events-
transactions-
history-long

Yes Yes

performance-
schema-
consumer-
events-waits-
current

Yes Yes

performance-
schema-

Yes Yes

4354

Performance Schema Option and Variable Reference

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic
consumer-
events-waits-
history

performance-
schema-
consumer-
events-waits-
history-long

Yes Yes

performance-
schema-
consumer-
global-
instrumentation

Yes Yes

performance-
schema-
consumer-
statements-
digest

Yes Yes

performance-
schema-
consumer-
thread-
instrumentation

Yes Yes

Performance_schema_digest_lost Yes Global No

performance_schema_digests_sizeYes Yes Yes Global No

performance_schema_events_stages_history_long_sizeYes Yes Yes Global No

performance_schema_events_stages_history_sizeYes Yes Yes Global No

performance_schema_events_statements_history_long_sizeYes Yes Yes Global No

performance_schema_events_statements_history_sizeYes Yes Yes Global No

performance_schema_events_transactions_history_long_sizeYes Yes Yes Global No

performance_schema_events_transactions_history_sizeYes Yes Yes Global No

performance_schema_events_waits_history_long_sizeYes Yes Yes Global No

performance_schema_events_waits_history_sizeYes Yes Yes Global No

Performance_schema_file_classes_lost Yes Global No

Performance_schema_file_handles_lost Yes Global No

Performance_schema_file_instances_lost Yes Global No

Performance_schema_hosts_lost Yes Global No

performance_schema_hosts_sizeYes Yes Yes Global No

performance-
schema-
instrument

Yes Yes

Performance_schema_locker_lost Yes Global No

performance_schema_max_cond_classesYes Yes Yes Global No

4355

Performance Schema Option and Variable Reference

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

performance_schema_max_cond_instancesYes Yes Yes Global No

performance_schema_max_digest_lengthYes Yes Yes Global No

performance_schema_max_file_classesYes Yes Yes Global No

performance_schema_max_file_handlesYes Yes Yes Global No

performance_schema_max_file_instancesYes Yes Yes Global No

performance_schema_max_memory_classesYes Yes Yes Global No

performance_schema_max_metadata_locksYes Yes Yes Global No

performance_schema_max_mutex_classesYes Yes Yes Global No

performance_schema_max_mutex_instancesYes Yes Yes Global No

performance_schema_max_prepared_statements_instancesYes Yes Yes Global No

performance_schema_max_program_instancesYes Yes Yes Global No

performance_schema_max_rwlock_classesYes Yes Yes Global No

performance_schema_max_rwlock_instancesYes Yes Yes Global No

performance_schema_max_socket_classesYes Yes Yes Global No

performance_schema_max_socket_instancesYes Yes Yes Global No

performance_schema_max_stage_classesYes Yes Yes Global No

performance_schema_max_statement_classesYes Yes Yes Global No

performance_schema_max_statement_stackYes Yes Yes Global No

performance_schema_max_table_handlesYes Yes Yes Global No

performance_schema_max_table_instancesYes Yes Yes Global No

performance_schema_max_thread_classesYes Yes Yes Global No

performance_schema_max_thread_instancesYes Yes Yes Global No

Performance_schema_memory_classes_lost Yes Global No

Performance_schema_metadata_lock_lost Yes Global No

Performance_schema_mutex_classes_lost Yes Global No

Performance_schema_mutex_instances_lost Yes Global No

Performance_schema_nested_statement_lost Yes Global No

Performance_schema_prepared_statements_lost Yes Global No

Performance_schema_program_lost Yes Global No

Performance_schema_rwlock_classes_lost Yes Global No

Performance_schema_rwlock_instances_lost Yes Global No

Performance_schema_session_connect_attrs_lost Yes Global No

performance_schema_session_connect_attrs_sizeYes Yes Yes Global No

performance_schema_setup_actors_sizeYes Yes Yes Global No

performance_schema_setup_objects_sizeYes Yes Yes Global No

Performance_schema_socket_classes_lost Yes Global No

Performance_schema_socket_instances_lost Yes Global No

Performance_schema_stage_classes_lost Yes Global No

4356

Performance Schema Command Options

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

Performance_schema_statement_classes_lost Yes Global No

Performance_schema_table_handles_lost Yes Global No

Performance_schema_table_instances_lost Yes Global No

Performance_schema_thread_classes_lost Yes Global No

Performance_schema_thread_instances_lost Yes Global No

Performance_schema_users_lost Yes Global No

performance_schema_users_sizeYes Yes Yes Global No

25.14 Performance Schema Command Options
Performance Schema parameters can be specified at server startup on the command line or in option files
to configure Performance Schema instruments and consumers. Runtime configuration is also possible in
many cases (see Section 25.4, “Performance Schema Runtime Configuration”), but startup configuration
must be used when runtime configuration is too late to affect instruments that have already been initialized
during the startup process.

Performance Schema consumers and instruments can be configured at startup using the following syntax.
For additional details, see Section 25.3, “Performance Schema Startup Configuration”.

• --performance-schema-consumer-consumer_name=value

Configure a Performance Schema consumer. Consumer names in the setup_consumers table use
underscores, but for consumers set at startup, dashes and underscores within the name are equivalent.
Options for configuring individual consumers are detailed later in this section.

• --performance-schema-instrument=instrument_name=value

Configure a Performance Schema instrument. The name may be given as a pattern to configure
instruments that match the pattern.

The following items configure individual consumers:

• --performance-schema-consumer-events-stages-current=value

Configure the events-stages-current consumer.

• --performance-schema-consumer-events-stages-history=value

Configure the events-stages-history consumer.

• --performance-schema-consumer-events-stages-history-long=value

Configure the events-stages-history-long consumer.

• --performance-schema-consumer-events-statements-current=value

Configure the events-statements-current consumer.

• --performance-schema-consumer-events-statements-history=value

Configure the events-statements-history consumer.

• --performance-schema-consumer-events-statements-history-long=value

4357

Performance Schema System Variables

Configure the events-statements-history-long consumer.

• --performance-schema-consumer-events-transactions-current=value

Configure the Performance Schema events-transactions-current consumer.

• --performance-schema-consumer-events-transactions-history=value

Configure the Performance Schema events-transactions-history consumer.

• --performance-schema-consumer-events-transactions-history-long=value

Configure the Performance Schema events-transactions-history-long consumer.

• --performance-schema-consumer-events-waits-current=value

Configure the events-waits-current consumer.

• --performance-schema-consumer-events-waits-history=value

Configure the events-waits-history consumer.

• --performance-schema-consumer-events-waits-history-long=value

Configure the events-waits-history-long consumer.

• --performance-schema-consumer-global-instrumentation=value

Configure the global-instrumentation consumer.

• --performance-schema-consumer-statements-digest=value

Configure the statements-digest consumer.

• --performance-schema-consumer-thread-instrumentation=value

Configure the thread-instrumentation consumer.

25.15 Performance Schema System Variables
The Performance Schema implements several system variables that provide configuration information:

mysql> SHOW VARIABLES LIKE 'perf%';
+--+-------+
| Variable_name | Value |
+--+-------+
performance_schema	ON
performance_schema_accounts_size	-1
performance_schema_digests_size	10000
performance_schema_events_stages_history_long_size	10000
performance_schema_events_stages_history_size	10
performance_schema_events_statements_history_long_size	10000
performance_schema_events_statements_history_size	10
performance_schema_events_transactions_history_long_size	10000
performance_schema_events_transactions_history_size	10
performance_schema_events_waits_history_long_size	10000
performance_schema_events_waits_history_size	10
performance_schema_hosts_size	-1
performance_schema_max_cond_classes	80
performance_schema_max_cond_instances	-1
performance_schema_max_digest_length	1024
performance_schema_max_file_classes	50

4358

Performance Schema System Variables

performance_schema_max_file_handles	32768
performance_schema_max_file_instances	-1
performance_schema_max_index_stat	-1
performance_schema_max_memory_classes	320
performance_schema_max_metadata_locks	-1
performance_schema_max_mutex_classes	200
performance_schema_max_mutex_instances	-1
performance_schema_max_prepared_statements_instances	-1
performance_schema_max_program_instances	-1
performance_schema_max_rwlock_classes	40
performance_schema_max_rwlock_instances	-1
performance_schema_max_socket_classes	10
performance_schema_max_socket_instances	-1
performance_schema_max_sql_text_length	1024
performance_schema_max_stage_classes	150
performance_schema_max_statement_classes	192
performance_schema_max_statement_stack	10
performance_schema_max_table_handles	-1
performance_schema_max_table_instances	-1
performance_schema_max_table_lock_stat	-1
performance_schema_max_thread_classes	50
performance_schema_max_thread_instances	-1
performance_schema_session_connect_attrs_size	512
performance_schema_setup_actors_size	-1
performance_schema_setup_objects_size	-1
performance_schema_users_size	-1
+--+-------+

Performance Schema system variables can be set at server startup on the command line or in option
files, and many can be set at runtime. See Section 25.13, “Performance Schema Option and Variable
Reference”.

The Performance Schema automatically sizes the values of several of its parameters at server startup
if they are not set explicitly. For more information, see Section 25.3, “Performance Schema Startup
Configuration”.

Performance Schema system variables have the following meanings:

• performance_schema

Command-Line Format --performance-schema[={OFF|ON}]

System Variable performance_schema

Scope Global

Dynamic No

Type Boolean

Default Value ON

The value of this variable is ON or OFF to indicate whether the Performance Schema is enabled. By
default, the value is ON. At server startup, you can specify this variable with no value or a value of ON or
1 to enable it, or with a value of OFF or 0 to disable it.

Even when the Performance Schema is disabled, it continues to populate the global_variables,
session_variables, global_status, and session_status tables. This occurs as necessary
to permit the results for the SHOW VARIABLES and SHOW STATUS statements to be drawn from those
tables, depending on the setting of the show_compatibiliy_56 system variable.

• performance_schema_accounts_size

Command-Line Format --performance-schema-accounts-size=#

4359

Performance Schema System Variables

System Variable performance_schema_accounts_size

Scope Global

Dynamic No

Type Integer

Default Value -1 (signifies autoscaling; do not assign this literal
value)

Minimum Value -1 (signifies autoscaling; do not assign this literal
value)

Maximum Value 1048576

The number of rows in the accounts table. If this variable is 0, the Performance Schema does
not maintain connection statistics in the accounts table or status variable information in the
status_by_account table.

• performance_schema_digests_size

Command-Line Format --performance-schema-digests-size=#

System Variable performance_schema_digests_size

Scope Global

Dynamic No

Type Integer

Default Value -1 (signifies autosizing; do not assign this literal
value)

Minimum Value -1 (signifies autoscaling; do not assign this literal
value)

Maximum Value 1048576

The maximum number of rows in the events_statements_summary_by_digest table. If this
maximum is exceeded such that a digest cannot be instrumented, the Performance Schema increments
the Performance_schema_digest_lost status variable.

For more information about statement digesting, see Section 25.10, “Performance Schema Statement
Digests”.

• performance_schema_events_stages_history_long_size

Command-Line Format --performance-schema-events-stages-
history-long-size=#

System Variable performance_schema_events_stages_history_long_size

Scope Global

Dynamic No

Type Integer

Default Value -1 (signifies autosizing; do not assign this literal
value)

Minimum Value -1 (signifies autoscaling; do not assign this literal
value)

4360

Performance Schema System Variables

Maximum Value 1048576

The number of rows in the events_stages_history_long table.

• performance_schema_events_stages_history_size

Command-Line Format --performance-schema-events-stages-
history-size=#

System Variable performance_schema_events_stages_history_size

Scope Global

Dynamic No

Type Integer

Default Value -1 (signifies autosizing; do not assign this literal
value)

Minimum Value -1 (signifies autoscaling; do not assign this literal
value)

Maximum Value 1024

The number of rows per thread in the events_stages_history table.

• performance_schema_events_statements_history_long_size

Command-Line Format --performance-schema-events-
statements-history-long-size=#

System Variable performance_schema_events_statements_history_long_size

Scope Global

Dynamic No

Type Integer

Default Value -1 (signifies autosizing; do not assign this literal
value)

Minimum Value -1 (signifies autoscaling; do not assign this literal
value)

Maximum Value 1048576

The number of rows in the events_statements_history_long table.

• performance_schema_events_statements_history_size

Command-Line Format --performance-schema-events-
statements-history-size=#

System Variable performance_schema_events_statements_history_size

Scope Global

Dynamic No

Type Integer

Default Value -1 (signifies autosizing; do not assign this literal
value)

4361

Performance Schema System Variables

Minimum Value -1 (signifies autoscaling; do not assign this literal
value)

Maximum Value 1024

The number of rows per thread in the events_statements_history table.

• performance_schema_events_transactions_history_long_size

Command-Line Format --performance-schema-events-
transactions-history-long-size=#

System Variable performance_schema_events_transactions_history_long_size

Scope Global

Dynamic No

Type Integer

Default Value -1 (signifies autosizing; do not assign this literal
value)

Minimum Value -1 (signifies autoscaling; do not assign this literal
value)

Maximum Value 1048576

The number of rows in the events_transactions_history_long table.

• performance_schema_events_transactions_history_size

Command-Line Format --performance-schema-events-
transactions-history-size=#

System Variable performance_schema_events_transactions_history_size

Scope Global

Dynamic No

Type Integer

Default Value -1 (signifies autosizing; do not assign this literal
value)

Minimum Value -1 (signifies autoscaling; do not assign this literal
value)

Maximum Value 1024

The number of rows per thread in the events_transactions_history table.

• performance_schema_events_waits_history_long_size

Command-Line Format --performance-schema-events-waits-
history-long-size=#

System Variable performance_schema_events_waits_history_long_size

Scope Global

Dynamic No

Type Integer
4362

Performance Schema System Variables

Default Value -1 (signifies autosizing; do not assign this literal
value)

Minimum Value -1 (signifies autoscaling; do not assign this literal
value)

Maximum Value 1048576

The number of rows in the events_waits_history_long table.

• performance_schema_events_waits_history_size

Command-Line Format --performance-schema-events-waits-
history-size=#

System Variable performance_schema_events_waits_history_size

Scope Global

Dynamic No

Type Integer

Default Value -1 (signifies autosizing; do not assign this literal
value)

Minimum Value -1 (signifies autoscaling; do not assign this literal
value)

Maximum Value 1024

The number of rows per thread in the events_waits_history table.

• performance_schema_hosts_size

Command-Line Format --performance-schema-hosts-size=#

System Variable performance_schema_hosts_size

Scope Global

Dynamic No

Type Integer

Default Value -1 (signifies autoscaling; do not assign this literal
value)

Minimum Value -1 (signifies autoscaling; do not assign this literal
value)

Maximum Value 1048576

The number of rows in the hosts table. If this variable is 0, the Performance Schema does not maintain
connection statistics in the hosts table or status variable information in the status_by_host table.

• performance_schema_max_cond_classes

Command-Line Format --performance-schema-max-cond-
classes=#

System Variable performance_schema_max_cond_classes

Scope Global

Dynamic No

4363

Performance Schema System Variables

Type Integer

Default Value 80

Minimum Value 0

Maximum Value 256

The maximum number of condition instruments. For information about how to set and use this variable,
see Section 25.7, “Performance Schema Status Monitoring”.

• performance_schema_max_cond_instances

Command-Line Format --performance-schema-max-cond-
instances=#

System Variable performance_schema_max_cond_instances

Scope Global

Dynamic No

Type Integer

Default Value -1 (signifies autoscaling; do not assign this literal
value)

Minimum Value -1 (signifies autoscaling; do not assign this literal
value)

Maximum Value 1048576

The maximum number of instrumented condition objects. For information about how to set and use this
variable, see Section 25.7, “Performance Schema Status Monitoring”.

• performance_schema_max_digest_length

Command-Line Format --performance-schema-max-digest-
length=#

System Variable performance_schema_max_digest_length

Scope Global

Dynamic No

Type Integer

Default Value 1024

Minimum Value 0

Maximum Value 1048576

Unit bytes

The maximum number of bytes of memory reserved per statement for computation of normalized
statement digest values in the Performance Schema. This variable is related to max_digest_length;
see the description of that variable in Section 5.1.7, “Server System Variables”.

For more information about statement digesting, including considerations regarding memory use, see
Section 25.10, “Performance Schema Statement Digests”.

4364

Performance Schema System Variables

• performance_schema_max_file_classes

Command-Line Format --performance-schema-max-file-
classes=#

System Variable performance_schema_max_file_classes

Scope Global

Dynamic No

Type Integer

Default Value 80

Minimum Value 0

Maximum Value 256

The maximum number of file instruments. For information about how to set and use this variable, see
Section 25.7, “Performance Schema Status Monitoring”.

• performance_schema_max_file_handles

Command-Line Format --performance-schema-max-file-
handles=#

System Variable performance_schema_max_file_handles

Scope Global

Dynamic No

Type Integer

Default Value 32768

Minimum Value 0

Maximum Value 1048576

The maximum number of opened file objects. For information about how to set and use this variable, see
Section 25.7, “Performance Schema Status Monitoring”.

The value of performance_schema_max_file_handles should be greater than the value of
open_files_limit: open_files_limit affects the maximum number of open file handles the
server can support and performance_schema_max_file_handles affects how many of these file
handles can be instrumented.

• performance_schema_max_file_instances

Command-Line Format --performance-schema-max-file-
instances=#

System Variable performance_schema_max_file_instances

Scope Global

Dynamic No

Type Integer

Default Value -1 (signifies autoscaling; do not assign this literal
value)

Minimum Value -1 (signifies autoscaling; do not assign this literal
value)

4365

Performance Schema System Variables

Maximum Value 1048576

The maximum number of instrumented file objects. For information about how to set and use this
variable, see Section 25.7, “Performance Schema Status Monitoring”.

• performance_schema_max_index_stat

Command-Line Format --performance-schema-max-index-stat=#

System Variable performance_schema_max_index_stat

Scope Global

Dynamic No

Type Integer

Default Value -1 (signifies autosizing; do not assign this literal
value)

Minimum Value -1 (signifies autoscaling; do not assign this literal
value)

Maximum Value 1048576

The maximum number of indexes for which the Performance Schema maintains statistics. If this
maximum is exceeded such that index statistics are lost, the Performance Schema increments the
Performance_schema_index_stat_lost status variable. The default value is autosized using the
value of performance_schema_max_table_instances.

• performance_schema_max_memory_classes

Command-Line Format --performance-schema-max-memory-
classes=#

System Variable performance_schema_max_memory_classes

Scope Global

Dynamic No

Type Integer

Default Value 320

Minimum Value 0

Maximum Value 1024

The maximum number of memory instruments. For information about how to set and use this variable,
see Section 25.7, “Performance Schema Status Monitoring”.

• performance_schema_max_metadata_locks

Command-Line Format --performance-schema-max-metadata-
locks=#

System Variable performance_schema_max_metadata_locks

Scope Global

Dynamic No

Type Integer

4366

Performance Schema System Variables

Default Value -1 (signifies autoscaling; do not assign this literal
value)

Minimum Value -1 (signifies autoscaling; do not assign this literal
value)

Maximum Value 10485760

The maximum number of metadata lock instruments. This value controls the
size of the metadata_locks table. If this maximum is exceeded such that a
metadata lock cannot be instrumented, the Performance Schema increments the
Performance_schema_metadata_lock_lost status variable.

• performance_schema_max_mutex_classes

Command-Line Format --performance-schema-max-mutex-
classes=#

System Variable performance_schema_max_mutex_classes

Scope Global

Dynamic No

Type Integer

Default Value 200

Minimum Value 0

Maximum Value 256

The maximum number of mutex instruments. For information about how to set and use this variable, see
Section 25.7, “Performance Schema Status Monitoring”.

• performance_schema_max_mutex_instances

Command-Line Format --performance-schema-max-mutex-
instances=#

System Variable performance_schema_max_mutex_instances

Scope Global

Dynamic No

Type Integer

Default Value -1 (signifies autoscaling; do not assign this literal
value)

Minimum Value -1 (signifies autoscaling; do not assign this literal
value)

Maximum Value 104857600

The maximum number of instrumented mutex objects. For information about how to set and use this
variable, see Section 25.7, “Performance Schema Status Monitoring”.

• performance_schema_max_prepared_statements_instances

Command-Line Format --performance-schema-max-prepared-
statements-instances=#

System Variable performance_schema_max_prepared_statements_instances

4367

Performance Schema System Variables

Scope Global

Dynamic No

Type Integer

Default Value -1 (signifies autoscaling; do not assign this literal
value)

Minimum Value -1 (signifies autoscaling; do not assign this literal
value)

Maximum Value 4194304

The maximum number of rows in the prepared_statements_instances table. If this maximum is
exceeded such that a prepared statement cannot be instrumented, the Performance Schema increments
the Performance_schema_prepared_statements_lost status variable. For information about how
to set and use this variable, see Section 25.7, “Performance Schema Status Monitoring”.

The default value of this variable is autosized based on the value of the max_prepared_stmt_count
system variable.

• performance_schema_max_rwlock_classes

Command-Line Format --performance-schema-max-rwlock-
classes=#

System Variable performance_schema_max_rwlock_classes

Scope Global

Dynamic No

Type Integer

Default Value (≥ 5.7.25) 50

Default Value (≤ 5.7.24) 40

Minimum Value 0

Maximum Value 256

The maximum number of rwlock instruments. For information about how to set and use this variable, see
Section 25.7, “Performance Schema Status Monitoring”.

• performance_schema_max_program_instances

Command-Line Format --performance-schema-max-program-
instances=#

System Variable performance_schema_max_program_instances

Scope Global

Dynamic No

Type Integer

Default Value -1 (signifies autoscaling; do not assign this literal
value)

Minimum Value -1 (signifies autoscaling; do not assign this literal
value)

4368

Performance Schema System Variables

Maximum Value 1048576

The maximum number of stored programs for which the Performance Schema maintains
statistics. If this maximum is exceeded, the Performance Schema increments the
Performance_schema_program_lost status variable. For information about how to set and use this
variable, see Section 25.7, “Performance Schema Status Monitoring”.

• performance_schema_max_rwlock_instances

Command-Line Format --performance-schema-max-rwlock-
instances=#

System Variable performance_schema_max_rwlock_instances

Scope Global

Dynamic No

Type Integer

Default Value -1 (signifies autosizing; do not assign this literal
value)

Minimum Value -1 (signifies autosizing; do not assign this literal
value)

Maximum Value 104857600

The maximum number of instrumented rwlock objects. For information about how to set and use this
variable, see Section 25.7, “Performance Schema Status Monitoring”.

• performance_schema_max_socket_classes

Command-Line Format --performance-schema-max-socket-
classes=#

System Variable performance_schema_max_socket_classes

Scope Global

Dynamic No

Type Integer

Default Value 10

Minimum Value 0

Maximum Value 256

The maximum number of socket instruments. For information about how to set and use this variable, see
Section 25.7, “Performance Schema Status Monitoring”.

• performance_schema_max_socket_instances

Command-Line Format --performance-schema-max-socket-
instances=#

System Variable performance_schema_max_socket_instances

Scope Global

Dynamic No

Type Integer 4369

Performance Schema System Variables

Default Value -1 (signifies autoscaling; do not assign this literal
value)

Minimum Value -1 (signifies autoscaling; do not assign this literal
value)

Maximum Value 1048576

The maximum number of instrumented socket objects. For information about how to set and use this
variable, see Section 25.7, “Performance Schema Status Monitoring”.

• performance_schema_max_sql_text_length

Command-Line Format --performance-schema-max-sql-text-
length=#

System Variable performance_schema_max_sql_text_length

Scope Global

Dynamic No

Type Integer

Default Value 1024

Minimum Value 0

Maximum Value 1048576

Unit bytes

The maximum number of bytes used to store SQL statements in the SQL_TEXT column
of the events_statements_current, events_statements_history, and
events_statements_history_long statement event tables. Any bytes in excess of
performance_schema_max_sql_text_length are discarded and do not appear in the SQL_TEXT
column. Statements differing only after that many initial bytes are indistinguishable in this column.

Decreasing the performance_schema_max_sql_text_length value reduces memory use but
causes more statements to become indistinguishable if they differ only at the end. Increasing the value
increases memory use but permits longer statements to be distinguished.

• performance_schema_max_stage_classes

Command-Line Format --performance-schema-max-stage-
classes=#

System Variable performance_schema_max_stage_classes

Scope Global

Dynamic No

Type Integer

Default Value 150

Minimum Value 0

Maximum Value 256

The maximum number of stage instruments. For information about how to set and use this variable, see
Section 25.7, “Performance Schema Status Monitoring”.

• performance_schema_max_statement_classes

4370

Performance Schema System Variables

Command-Line Format --performance-schema-max-statement-
classes=#

System Variable performance_schema_max_statement_classes

Scope Global

Dynamic No

Type Integer

Minimum Value 0

Maximum Value 256

The maximum number of statement instruments. For information about how to set and use this variable,
see Section 25.7, “Performance Schema Status Monitoring”.

The default value is calculated at server build time based on the number of commands in the client/
server protocol and the number of SQL statement types supported by the server.

This variable should not be changed, unless to set it to 0 to disable all statement instrumentation and
save all memory associated with it. Setting the variable to nonzero values other than the default has no
benefit; in particular, values larger than the default cause more memory to be allocated then is needed.

• performance_schema_max_statement_stack

Command-Line Format --performance-schema-max-statement-
stack=#

System Variable performance_schema_max_statement_stack

Scope Global

Dynamic No

Type Integer

Default Value 10

Minimum Value 1

Maximum Value 256

The maximum depth of nested stored program calls for which the Performance Schema
maintains statistics. When this maximum is exceeded, the Performance Schema increments the
Performance_schema_nested_statement_lost status variable for each stored program statement
executed.

• performance_schema_max_table_handles

Command-Line Format --performance-schema-max-table-
handles=#

System Variable performance_schema_max_table_handles

Scope Global

Dynamic No

Type Integer

Default Value -1 (signifies autoscaling; do not assign this literal
value)

4371

Performance Schema System Variables

Minimum Value -1 (signifies autoscaling; do not assign this literal
value)

Maximum Value 1048576

The maximum number of opened table objects. This value controls the size of the table_handles
table. If this maximum is exceeded such that a table handle cannot be instrumented, the Performance
Schema increments the Performance_schema_table_handles_lost status variable. For
information about how to set and use this variable, see Section 25.7, “Performance Schema Status
Monitoring”.

• performance_schema_max_table_instances

Command-Line Format --performance-schema-max-table-
instances=#

System Variable performance_schema_max_table_instances

Scope Global

Dynamic No

Type Integer

Default Value -1 (signifies autoscaling; do not assign this literal
value)

Minimum Value -1 (signifies autoscaling; do not assign this literal
value)

Maximum Value 1048576

The maximum number of instrumented table objects. For information about how to set and use this
variable, see Section 25.7, “Performance Schema Status Monitoring”.

• performance_schema_max_table_lock_stat

Command-Line Format --performance-schema-max-table-lock-
stat=#

System Variable performance_schema_max_table_lock_stat

Scope Global

Dynamic No

Type Integer

Default Value -1 (signifies autosizing; do not assign this literal
value)

Minimum Value -1 (signifies autoscaling; do not assign this literal
value)

Maximum Value 1048576

The maximum number of tables for which the Performance Schema maintains lock statistics. If this
maximum is exceeded such that table lock statistics are lost, the Performance Schema increments the
Performance_schema_table_lock_stat_lost status variable.

4372

Performance Schema System Variables

• performance_schema_max_thread_classes

Command-Line Format --performance-schema-max-thread-
classes=#

System Variable performance_schema_max_thread_classes

Scope Global

Dynamic No

Type Integer

Default Value 50

Minimum Value 0

Maximum Value 256

The maximum number of thread instruments. For information about how to set and use this variable, see
Section 25.7, “Performance Schema Status Monitoring”.

• performance_schema_max_thread_instances

Command-Line Format --performance-schema-max-thread-
instances=#

System Variable performance_schema_max_thread_instances

Scope Global

Dynamic No

Type Integer

Default Value -1 (signifies autosizing; do not assign this literal
value)

Minimum Value -1 (signifies autoscaling; do not assign this literal
value)

Maximum Value 1048576

The maximum number of instrumented thread objects. The value controls the size of the threads table.
If this maximum is exceeded such that a thread cannot be instrumented, the Performance Schema
increments the Performance_schema_thread_instances_lost status variable. For information
about how to set and use this variable, see Section 25.7, “Performance Schema Status Monitoring”.

The max_connections system variable affects how many threads can run in the server.
performance_schema_max_thread_instances affects how many of these running threads can be
instrumented.

The variables_by_thread and status_by_thread tables contain system
and status variable information only about foreground threads. If not all threads are
instrumented by the Performance Schema, this table may miss some rows. In this case, the
Performance_schema_thread_instances_lost status variable is greater than zero.

• performance_schema_session_connect_attrs_size

Command-Line Format --performance-schema-session-connect-
attrs-size=#

System Variable performance_schema_session_connect_attrs_size
4373

Performance Schema System Variables

Scope Global

Dynamic No

Type Integer

Default Value -1 (signifies autosizing; do not assign this literal
value)

Minimum Value -1 (signifies autosizing; do not assign this literal
value)

Maximum Value 1048576

Unit bytes

The amount of preallocated memory per thread reserved to hold connection attribute key-
value pairs. If the aggregate size of connection attribute data sent by a client is larger
than this amount, the Performance Schema truncates the attribute data, increments the
Performance_schema_session_connect_attrs_lost status variable, and writes a message to
the error log indicating that truncation occurred if the log_error_verbosity system variable value is
greater than 1.

The default value of performance_schema_session_connect_attrs_size
is autosized at server startup. This value may be small, so if truncation occurs
(Performance_schema_session_connect_attrs_lost becomes nonzero), you may wish to set
performance_schema_session_connect_attrs_size explicitly to a larger value.

Although the maximum permitted performance_schema_session_connect_attrs_size value is
1MB, the effective maximum is 64KB because the server imposes a limit of 64KB on the aggregate size
of connection attribute data it can accept. If a client attempts to send more than 64KB of attribute data,
the server rejects the connection. For more information, see Section 25.12.9, “Performance Schema
Connection Attribute Tables”.

• performance_schema_setup_actors_size

Command-Line Format --performance-schema-setup-actors-
size=#

System Variable performance_schema_setup_actors_size

Scope Global

Dynamic No

Type Integer

Default Value -1 (signifies autoscaling; do not assign this literal
value)

Minimum Value -1 (signifies autosizing; do not assign this literal
value)

Maximum Value 1048576

The number of rows in the setup_actors table.

• performance_schema_setup_objects_size

Command-Line Format --performance-schema-setup-objects-
size=#

System Variable performance_schema_setup_objects_size

4374

Performance Schema System Variables

Scope Global

Dynamic No

Type Integer

Default Value -1 (signifies autoscaling; do not assign this literal
value)

Minimum Value -1 (signifies autoscaling; do not assign this literal
value)

Maximum Value 1048576

The number of rows in the setup_objects table.

• performance_schema_show_processlist

Command-Line Format --performance-schema-show-
processlist[={OFF|ON}]

Introduced 5.7.39

System Variable performance_schema_show_processlist

Scope Global

Dynamic Yes

Type Boolean

Default Value OFF

The SHOW PROCESSLIST statement provides process information by collecting thread data from all
active threads. The performance_schema_show_processlist variable determines which SHOW
PROCESSLIST implementation to use:

• The default implementation iterates across active threads from within the thread manager while
holding a global mutex. This has negative performance consequences, particularly on busy systems.

• The alternative SHOW PROCESSLIST implementation is based on the Performance Schema
processlist table. This implementation queries active thread data from the Performance Schema
rather than the thread manager and does not require a mutex.

To enable the alternative implementation, enable the performance_schema_show_processlist
system variable. To ensure that the default and alternative implementations yield the same information,
certain configuration requirements must be met; see Section 25.12.16.3, “The processlist Table”.

• performance_schema_users_size

Command-Line Format --performance-schema-users-size=#

System Variable performance_schema_users_size

Scope Global

Dynamic No

Type Integer

Default Value -1 (signifies autoscaling; do not assign this literal
value)

Minimum Value -1 (signifies autoscaling; do not assign this literal
value)

4375

Performance Schema Status Variables

Maximum Value 1048576

The number of rows in the users table. If this variable is 0, the Performance Schema does not maintain
connection statistics in the users table or status variable information in the status_by_user table.

25.16 Performance Schema Status Variables
The Performance Schema implements several status variables that provide information about
instrumentation that could not be loaded or created due to memory constraints:

mysql> SHOW STATUS LIKE 'perf%';
+---+-------+
| Variable_name | Value |
+---+-------+
Performance_schema_accounts_lost	0
Performance_schema_cond_classes_lost	0
Performance_schema_cond_instances_lost	0
Performance_schema_file_classes_lost	0
Performance_schema_file_handles_lost	0
Performance_schema_file_instances_lost	0
Performance_schema_hosts_lost	0
Performance_schema_locker_lost	0
Performance_schema_mutex_classes_lost	0
Performance_schema_mutex_instances_lost	0
Performance_schema_rwlock_classes_lost	0
Performance_schema_rwlock_instances_lost	0
Performance_schema_socket_classes_lost	0
Performance_schema_socket_instances_lost	0
Performance_schema_stage_classes_lost	0
Performance_schema_statement_classes_lost	0
Performance_schema_table_handles_lost	0
Performance_schema_table_instances_lost	0
Performance_schema_thread_classes_lost	0
Performance_schema_thread_instances_lost	0
Performance_schema_users_lost	0
+---+-------+

For information on using these variables to check Performance Schema status, see Section 25.7,
“Performance Schema Status Monitoring”.

Performance Schema status variables have the following meanings:

• Performance_schema_accounts_lost

The number of times a row could not be added to the accounts table because it was full.

• Performance_schema_cond_classes_lost

How many condition instruments could not be loaded.

• Performance_schema_cond_instances_lost

How many condition instrument instances could not be created.

• Performance_schema_digest_lost

The number of digest instances that could not be instrumented in the
events_statements_summary_by_digest table. This can be nonzero if the value of
performance_schema_digests_size is too small.

• Performance_schema_file_classes_lost

4376

Performance Schema Status Variables

How many file instruments could not be loaded.

• Performance_schema_file_handles_lost

How many file instrument instances could not be opened.

• Performance_schema_file_instances_lost

How many file instrument instances could not be created.

• Performance_schema_hosts_lost

The number of times a row could not be added to the hosts table because it was full.

• Performance_schema_index_stat_lost

The number of indexes for which statistics were lost. This can be nonzero if the value of
performance_schema_max_index_stat is too small.

• Performance_schema_locker_lost

How many events are “lost” or not recorded, due to the following conditions:

• Events are recursive (for example, waiting for A caused a wait on B, which caused a wait on C).

• The depth of the nested events stack is greater than the limit imposed by the implementation.

Events recorded by the Performance Schema are not recursive, so this variable should always be 0.

• Performance_schema_memory_classes_lost

The number of times a memory instrument could not be loaded.

• Performance_schema_metadata_lock_lost

The number of metadata locks that could not be instrumented in the metadata_locks table. This can
be nonzero if the value of performance_schema_max_metadata_locks is too small.

• Performance_schema_mutex_classes_lost

How many mutex instruments could not be loaded.

• Performance_schema_mutex_instances_lost

How many mutex instrument instances could not be created.

• Performance_schema_nested_statement_lost

The number of stored program statements for which statistics were lost. This can be nonzero if the value
of performance_schema_max_statement_stack is too small.

• Performance_schema_prepared_statements_lost

The number of prepared statements that could not be instrumented in the
prepared_statements_instances table. This can be nonzero if the value of
performance_schema_max_prepared_statements_instances is too small.

• Performance_schema_program_lost

4377

Performance Schema Status Variables

The number of stored programs for which statistics were lost. This can be nonzero if the value of
performance_schema_max_program_instances is too small.

• Performance_schema_rwlock_classes_lost

How many rwlock instruments could not be loaded.

• Performance_schema_rwlock_instances_lost

How many rwlock instrument instances could not be created.

• Performance_schema_session_connect_attrs_lost

The number of connections for which connection attribute truncation has occurred.
For a given connection, if the client sends connection attribute key-value pairs
for which the aggregate size is larger than the reserved storage permitted by the
value of the performance_schema_session_connect_attrs_size system
variable, the Performance Schema truncates the attribute data and increments
Performance_schema_session_connect_attrs_lost. If this value is nonzero, you may wish to
set performance_schema_session_connect_attrs_size to a larger value.

For more information about connection attributes, see Section 25.12.9, “Performance Schema
Connection Attribute Tables”.

• Performance_schema_socket_classes_lost

How many socket instruments could not be loaded.

• Performance_schema_socket_instances_lost

How many socket instrument instances could not be created.

• Performance_schema_stage_classes_lost

How many stage instruments could not be loaded.

• Performance_schema_statement_classes_lost

How many statement instruments could not be loaded.

• Performance_schema_table_handles_lost

How many table instrument instances could not be opened. This can be nonzero if the value of
performance_schema_max_table_handles is too small.

• Performance_schema_table_instances_lost

How many table instrument instances could not be created.

• Performance_schema_table_lock_stat_lost

The number of tables for which lock statistics were lost. This can be nonzero if the value of
performance_schema_max_table_lock_stat is too small.

• Performance_schema_thread_classes_lost

How many thread instruments could not be loaded.

4378

The Performance Schema Memory-Allocation Model

• Performance_schema_thread_instances_lost

The number of thread instances that could not be instrumented in the threads table. This can be
nonzero if the value of performance_schema_max_thread_instances is too small.

• Performance_schema_users_lost

The number of times a row could not be added to the users table because it was full.

25.17 The Performance Schema Memory-Allocation Model
The Performance Schema uses this memory allocation model:

• May allocate memory at server startup

• May allocate additional memory during server operation

• Never free memory during server operation (although it might be recycled)

• Free all memory used at shutdown

The result is to relax memory constraints so that the Performance Schema can be used with less
configuration, and to decrease the memory footprint so that consumption scales with server load. Memory
used depends on the load actually seen, not the load estimated or explicitly configured for.

Several Performance Schema sizing parameters are autoscaled and need not be configured explicitly
unless you want to establish an explicit limit on memory allocation:

performance_schema_accounts_size
performance_schema_hosts_size
performance_schema_max_cond_instances
performance_schema_max_file_instances
performance_schema_max_index_stat
performance_schema_max_metadata_locks
performance_schema_max_mutex_instances
performance_schema_max_prepared_statements_instances
performance_schema_max_program_instances
performance_schema_max_rwlock_instances
performance_schema_max_socket_instances
performance_schema_max_table_handles
performance_schema_max_table_instances
performance_schema_max_table_lock_stat
performance_schema_max_thread_instances
performance_schema_users_size

For an autoscaled parameter, configuration works like this:

• With the value set to -1 (the default), the parameter is autoscaled:

• The corresponding internal buffer is empty initially and no memory is allocated.

• As the Performance Schema collects data, memory is allocated in the corresponding buffer. The buffer
size is unbounded, and may grow with the load.

• With the value set to 0:

• The corresponding internal buffer is empty initially and no memory is allocated.

• With the value set to N > 0:

• The corresponding internal buffer is empty initially and no memory is allocated.

4379

Performance Schema and Plugins

• As the Performance Schema collects data, memory is allocated in the corresponding buffer, until the
buffer size reaches N.

• Once the buffer size reaches N, no more memory is allocated. Data collected by the Performance
Schema for this buffer is lost, and any corresponding “lost instance” counters are incremented.

To see how much memory the Performance Schema is using, check the instruments designed for
that purpose. The Performance Schema allocates memory internally and associates each buffer
with a dedicated instrument so that memory consumption can be traced to individual buffers.
Instruments named with the prefix memory/performance_schema/ expose how much memory
is allocated for these internal buffers. The buffers are global to the server, so the instruments
are displayed only in the memory_summary_global_by_event_name table, and not in other
memory_summary_by_xxx_by_event_name tables.

This query shows the information associated with the memory instruments:

SELECT * FROM performance_schema.memory_summary_global_by_event_name
WHERE EVENT_NAME LIKE 'memory/performance_schema/%';

25.18 Performance Schema and Plugins

Removing a plugin with UNINSTALL PLUGIN does not affect information already collected for code in
that plugin. Time spent executing the code while the plugin was loaded was still spent even if the plugin
is unloaded later. The associated event information, including aggregate information, remains readable in
performance_schema database tables. For additional information about the effect of plugin installation
and removal, see Section 25.7, “Performance Schema Status Monitoring”.

A plugin implementor who instruments plugin code should document its instrumentation characteristics to
enable those who load the plugin to account for its requirements. For example, a third-party storage engine
should include in its documentation how much memory the engine needs for mutex and other instruments.

25.19 Using the Performance Schema to Diagnose Problems

The Performance Schema is a tool to help a DBA do performance tuning by taking real measurements
instead of “wild guesses.” This section demonstrates some ways to use the Performance Schema for this
purpose. The discussion here relies on the use of event filtering, which is described in Section 25.4.2,
“Performance Schema Event Filtering”.

The following example provides one methodology that you can use to analyze a repeatable problem,
such as investigating a performance bottleneck. To begin, you should have a repeatable use case where
performance is deemed “too slow” and needs optimization, and you should enable all instrumentation (no
pre-filtering at all).

1. Run the use case.

2. Using the Performance Schema tables, analyze the root cause of the performance problem. This
analysis relies heavily on post-filtering.

3. For problem areas that are ruled out, disable the corresponding instruments. For example, if analysis
shows that the issue is not related to file I/O in a particular storage engine, disable the file I/O
instruments for that engine. Then truncate the history and summary tables to remove previously
collected events.

4. Repeat the process at step 1.

4380

Query Profiling Using Performance Schema

At each iteration, the Performance Schema output, particularly the events_waits_history_long
table, contains less and less “noise” caused by nonsignificant instruments, and given that this table has
a fixed size, contains more and more data relevant to the analysis of the problem at hand.

At each iteration, investigation should lead closer and closer to the root cause of the problem, as the
signal-to-noise ratio improves, making analysis easier.

5. Once a root cause of performance bottleneck is identified, take the appropriate corrective action, such
as:

• Tune the server parameters (cache sizes, memory, and so forth).

• Tune a query by writing it differently,

• Tune the database schema (tables, indexes, and so forth).

• Tune the code (this applies to storage engine or server developers only).

6. Start again at step 1, to see the effects of the changes on performance.

The mutex_instances.LOCKED_BY_THREAD_ID and
rwlock_instances.WRITE_LOCKED_BY_THREAD_ID columns are extremely important for investigating
performance bottlenecks or deadlocks. This is made possible by Performance Schema instrumentation as
follows:

1. Suppose that thread 1 is stuck waiting for a mutex.

2. You can determine what the thread is waiting for:

SELECT * FROM performance_schema.events_waits_current
WHERE THREAD_ID = thread_1;

Say the query result identifies that the thread is waiting for mutex A, found in
events_waits_current.OBJECT_INSTANCE_BEGIN.

3. You can determine which thread is holding mutex A:

SELECT * FROM performance_schema.mutex_instances
WHERE OBJECT_INSTANCE_BEGIN = mutex_A;

Say the query result identifies that it is thread 2 holding mutex A, as found in
mutex_instances.LOCKED_BY_THREAD_ID.

4. You can see what thread 2 is doing:

SELECT * FROM performance_schema.events_waits_current
WHERE THREAD_ID = thread_2;

25.19.1 Query Profiling Using Performance Schema

The following example demonstrates how to use Performance Schema statement events and stage events
to retrieve data comparable to profiling information provided by SHOW PROFILES and SHOW PROFILE
statements.

The setup_actors table can be used to limit the collection of historical events by host, user, or account
to reduce runtime overhead and the amount of data collected in history tables. The first step of the
example shows how to limit collection of historical events to a specific user.

4381

Query Profiling Using Performance Schema

Performance Schema displays event timer information in picoseconds (trillionths of a second) to
normalize timing data to a standard unit. In the following example, TIMER_WAIT values are divided by
1000000000000 to show data in units of seconds. Values are also truncated to 6 decimal places to display
data in the same format as SHOW PROFILES and SHOW PROFILE statements.

1. Limit the collection of historical events to the user running the query. By default, setup_actors is
configured to allow monitoring and historical event collection for all foreground threads:

mysql> SELECT * FROM performance_schema.setup_actors;
+------+------+------+---------+---------+
| HOST | USER | ROLE | ENABLED | HISTORY |
+------+------+------+---------+---------+
| % | % | % | YES | YES |
+------+------+------+---------+---------+

Update the default row in the setup_actors table to disable historical event collection and monitoring
for all foreground threads, and insert a new row that enables monitoring and historical event collection
for the user running the query:

mysql> UPDATE performance_schema.setup_actors
 SET ENABLED = 'NO', HISTORY = 'NO'
 WHERE HOST = '%' AND USER = '%';

mysql> INSERT INTO performance_schema.setup_actors
 (HOST,USER,ROLE,ENABLED,HISTORY)
 VALUES('localhost','test_user','%','YES','YES');

Data in the setup_actors table should now appear similar to the following:

mysql> SELECT * FROM performance_schema.setup_actors;
+-----------+-----------+------+---------+---------+
| HOST | USER | ROLE | ENABLED | HISTORY |
+-----------+-----------+------+---------+---------+
| % | % | % | NO | NO |
| localhost | test_user | % | YES | YES |
+-----------+-----------+------+---------+---------+

2. Ensure that statement and stage instrumentation is enabled by updating the setup_instruments
table. Some instruments may already be enabled by default.

mysql> UPDATE performance_schema.setup_instruments
 SET ENABLED = 'YES', TIMED = 'YES'
 WHERE NAME LIKE '%statement/%';

mysql> UPDATE performance_schema.setup_instruments
 SET ENABLED = 'YES', TIMED = 'YES'
 WHERE NAME LIKE '%stage/%';

3. Ensure that events_statements_* and events_stages_* consumers are enabled. Some
consumers may already be enabled by default.

mysql> UPDATE performance_schema.setup_consumers
 SET ENABLED = 'YES'
 WHERE NAME LIKE '%events_statements_%';

mysql> UPDATE performance_schema.setup_consumers
 SET ENABLED = 'YES'
 WHERE NAME LIKE '%events_stages_%';

4. Under the user account you are monitoring, run the statement that you want to profile. For example:

mysql> SELECT * FROM employees.employees WHERE emp_no = 10001;
+--------+------------+------------+-----------+--------+------------+
| emp_no | birth_date | first_name | last_name | gender | hire_date |

4382

Migrating to Performance Schema System and Status Variable Tables

+--------+------------+------------+-----------+--------+------------+
| 10001 | 1953-09-02 | Georgi | Facello | M | 1986-06-26 |
+--------+------------+------------+-----------+--------+------------+

5. Identify the EVENT_ID of the statement by querying the events_statements_history_long
table. This step is similar to running SHOW PROFILES to identify the Query_ID. The following query
produces output similar to SHOW PROFILES:

mysql> SELECT EVENT_ID, TRUNCATE(TIMER_WAIT/1000000000000,6) as Duration, SQL_TEXT
 FROM performance_schema.events_statements_history_long WHERE SQL_TEXT like '%10001%';
+----------+----------+--+
| event_id | duration | sql_text |
+----------+----------+--+
| 31 | 0.028310 | SELECT * FROM employees.employees WHERE emp_no = 10001 |
+----------+----------+--+

6. Query the events_stages_history_long table to retrieve the statement's stage events. Stages
are linked to statements using event nesting. Each stage event record has a NESTING_EVENT_ID
column that contains the EVENT_ID of the parent statement.

mysql> SELECT event_name AS Stage, TRUNCATE(TIMER_WAIT/1000000000000,6) AS Duration
 FROM performance_schema.events_stages_history_long WHERE NESTING_EVENT_ID=31;
+--------------------------------+----------+
| Stage | Duration |
+--------------------------------+----------+
stage/sql/starting	0.000080
stage/sql/checking permissions	0.000005
stage/sql/Opening tables	0.027759
stage/sql/init	0.000052
stage/sql/System lock	0.000009
stage/sql/optimizing	0.000006
stage/sql/statistics	0.000082
stage/sql/preparing	0.000008
stage/sql/executing	0.000000
stage/sql/Sending data	0.000017
stage/sql/end	0.000001
stage/sql/query end	0.000004
stage/sql/closing tables	0.000006
stage/sql/freeing items	0.000272
stage/sql/cleaning up	0.000001
+--------------------------------+----------+

25.20 Migrating to Performance Schema System and Status Variable
Tables

The INFORMATION_SCHEMA has tables that contain system and status variable information (see
Section 24.3.11, “The INFORMATION_SCHEMA GLOBAL_VARIABLES and SESSION_VARIABLES
Tables”, and Section 24.3.10, “The INFORMATION_SCHEMA GLOBAL_STATUS and
SESSION_STATUS Tables”). The Performance Schema also contains system and status variable
tables (see Section 25.12.13, “Performance Schema System Variable Tables”, and Section 25.12.14,
“Performance Schema Status Variable Tables”). The Performance Schema tables are intended to replace
the INFORMATION_SCHEMA tables, which are deprecated as of MySQL 5.7.6 and are removed in MySQL
8.0.

This section describes the intended migration path away from the INFORMATION_SCHEMA system and
status variable tables to the corresponding Performance Schema tables. Application developers should
use this information as guidance regarding the changes required to access system and status variables
in MySQL 5.7.6 and up as the INFORMATION_SCHEMA tables become deprecated and eventually are
removed.

MySQL 5.6

4383

Migrating to Performance Schema System and Status Variable Tables

In MySQL 5.6, system and status variable information is available from these SHOW statements:

SHOW VARIABLES
SHOW STATUS

And from these INFORMATION_SCHEMA tables:

INFORMATION_SCHEMA.GLOBAL_VARIABLES
INFORMATION_SCHEMA.SESSION_VARIABLES

INFORMATION_SCHEMA.GLOBAL_STATUS
INFORMATION_SCHEMA.SESSION_STATUS

MySQL 5.7

As of MySQL 5.7.6, the Performance Schema includes these tables as new sources of system and status
variable information:

performance_schema.global_variables
performance_schema.session_variables
performance_schema.variables_by_thread

performance_schema.global_status
performance_schema.session_status
performance_schema.status_by_thread
performance_schema.status_by_account
performance_schema.status_by_host
performance_schema.status_by_user

MySQL 5.7.6 also adds a show_compatibility_56 system variable to control how the server makes
system and status variable information available.

When show_compatibility_56 is ON, compatibility with MySQL 5.6 is enabled. The older system and
status variable sources (SHOW statements, INFORMATION_SCHEMA tables) are available with semantics
identical to MySQL 5.6. Applications should run as is, with no code changes, and should see the same
variable names and values as in MySQL 5.6. Warnings occur under these circumstances:

• A deprecation warning is raised when selecting from the INFORMATION_SCHEMA tables.

• In MySQL 5.7.6 and 5.7.7, a deprecation warning is raised when using a WHERE clause with the SHOW
statements. This behavior does not occur as of MySQL 5.7.8.

When show_compatibility_56 is OFF, compatibility with MySQL 5.6 is disabled and several changes
result. Applications must be revised as follows to run properly:

• Selecting from the INFORMATION_SCHEMA tables produces an error. Applications that access the
INFORMATION_SCHEMA tables should be revised to use the corresponding Performance Schema tables
instead.

Before MySQL 5.7.9, selecting from the INFORMATION_SCHEMA tables produces an empty
result set plus a deprecation warning. This was not sufficient notice to signal the need to migrate
to the corresponding Performance Schema system and status variable tables for the case that
show_compatibility_56=OFF. Producing an error in MySQL 5.7.9 and higher makes it more evident
that an application is operating under conditions that require modification, as well as where the problem
lies.

In MySQL 5.7.6 and 5.7.7, the Performance Schema session_variables and session_status
tables do not fully reflect all variable values in effect for the current session; they include no rows for
global variables that have no session counterpart. This is corrected in MySQL 5.7.8.

4384

Restrictions on Performance Schema

• Output for the SHOW statements is produced using the underlying Performance Schema tables.
Applications written to use these statements can still use them, but it is best to use MySQL 5.7.8 or
higher. In MySQL 5.7.6 and 5.7.7, the results may differ:

• SHOW [SESSION] VARIABLES output does not include global variables that have no session
counterpart.

• Using a WHERE clause with the SHOW statements produces an error.

• These Slave_xxx status variables become unavailable through SHOW STATUS:

Slave_heartbeat_period
Slave_last_heartbeat
Slave_received_heartbeats
Slave_retried_transactions
Slave_running

Applications that use these status variables should be revised to obtain this information using the
replication-related Performance Schema tables. For details, see Effect of show_compatibility_56 on
Slave Status Variables.

• The Performance Schema does not collect statistics for Com_xxx status variables
in the status variable tables. To obtain global and per-session statement execution
counts, use the events_statements_summary_global_by_event_name and
events_statements_summary_by_thread_by_event_name tables, respectively.

Migration and Privileges

Initially, with the introduction of Performance Schema system and status variable tables in MySQL 5.7.6,
access to those tables required the SELECT privilege, just as for other Performance Schema tables.
However, this had the consequence that when show_compatibility_56=OFF, the SHOW VARIABLES
and SHOW STATUS statements also required the SELECT privilege: With compatibility disabled, output for
those statements was taken from the Performance Schema global_variables, session_variables,
global_status, and session_status tables.

As of MySQL 5.7.9, those Performance Schema tables are world readable and accessible without
the SELECT privilege. Consequently, SHOW VARIABLES and SHOW STATUS do not require
privileges on the underlying Performance Schema tables from which their output is produced when
show_compatibility_56=OFF.

Beyond MySQL 5.7

In a MySQL 8.0, the INFORMATION_SCHEMA variable tables and the show_compatibility_56
system variable are removed, and output from the SHOW statements is always based on the underlying
Performance Schema tables.

Applications that have been revised to work in MySQL 5.7 when show_compatibility_56=OFF should
work without further changes, except that it is not possible to test or set show_compatibility_56
because it does not exist.

25.21 Restrictions on Performance Schema

The Performance Schema avoids using mutexes to collect or produce data, so there are no guarantees of
consistency and results can sometimes be incorrect. Event values in performance_schema tables are
nondeterministic and nonrepeatable.

4385

Restrictions on Performance Schema

If you save event information in another table, you should not assume that the original events are still
available later. For example, if you select events from a performance_schema table into a temporary
table, intending to join that table with the original table later, there might be no matches.

mysqldump and BACKUP DATABASE ignore tables in the performance_schema database.

Tables in the performance_schema database cannot be locked with LOCK TABLES, except the
setup_xxx tables.

Tables in the performance_schema database cannot be indexed.

Results for queries that refer to tables in the performance_schema database are not saved in the query
cache.

Tables in the performance_schema database are not replicated.

The Performance Schema is not available in libmysqld, the embedded server.

The types of timers might vary per platform. The performance_timers table shows which event timers
are available. If the values in this table for a given timer name are NULL, that timer is not supported on your
platform.

Instruments that apply to storage engines might not be implemented for all storage engines.
Instrumentation of each third-party engine is the responsibility of the engine maintainer.

4386

Chapter 26 MySQL sys Schema

Table of Contents
26.1 Prerequisites for Using the sys Schema ... 4387
26.2 Using the sys Schema .. 4388
26.3 sys Schema Progress Reporting .. 4389
26.4 sys Schema Object Reference .. 4390

26.4.1 sys Schema Object Index ... 4390
26.4.2 sys Schema Tables and Triggers .. 4395
26.4.3 sys Schema Views ... 4398
26.4.4 sys Schema Stored Procedures .. 4439
26.4.5 sys Schema Stored Functions ... 4459

MySQL 5.7 includes the sys schema, a set of objects that helps DBAs and developers interpret data
collected by the Performance Schema. sys schema objects can be used for typical tuning and diagnosis
use cases. Objects in this schema include:

• Views that summarize Performance Schema data into more easily understandable form.

• Stored procedures that perform operations such as Performance Schema configuration and generating
diagnostic reports.

• Stored functions that query Performance Schema configuration and provide formatting services.

For new installations, the sys schema is installed by default during data directory initialization if you use
mysqld with the --initialize or --initialize-insecure option. You can drop the sys schema
manually after initialization if it is unneeded.

For upgrades, mysql_upgrade installs the sys schema if it is not installed, and upgrades it to the current
version otherwise. To permit this behavior to be suppressed, mysql_upgrade has a --skip-sys-
schema option.

mysql_upgrade returns an error if a sys schema exists but has no version view, on the assumption
that absence of this view indicates a user-created sys schema. To upgrade in this case, remove or
rename the existing sys schema first.

sys schema objects have a DEFINER of 'mysql.sys'@'localhost'. Use of the dedicated mysql.sys
account avoids problems that occur if a DBA renames or removes the root account.

26.1 Prerequisites for Using the sys Schema
Before using the sys schema, the prerequisites described in this section must be satisfied.

Because the sys schema provides an alternative means of accessing the Performance Schema, the
Performance Schema must be enabled for the sys schema to work. See Section 25.3, “Performance
Schema Startup Configuration”.

For full access to the sys schema, a user must have these privileges:

• SELECT on all sys tables and views

• EXECUTE on all sys stored procedures and functions

• INSERT and UPDATE for the sys_config table, if changes are to be made to it

4387

Using the sys Schema

• Additional privileges for certain sys schema stored procedures and functions, as noted in their
descriptions (for example, the ps_setup_save() procedure)

It is also necessary to have privileges for the objects underlying the sys schema objects:

• SELECT on any Performance Schema tables accessed by sys schema objects, and UPDATE for any
tables to be updated using sys schema objects

• PROCESS for the INFORMATION_SCHEMA INNODB_BUFFER_PAGE table

Certain Performance Schema instruments and consumers must be enabled and (for instruments) timed to
take full advantage of sys schema capabilities:

• All wait instruments

• All stage instruments

• All statement instruments

• xxx_current and xxx_history_long consumers for all events

You can use the sys schema itself to enable all of the additional instruments and consumers:

CALL sys.ps_setup_enable_instrument('wait');
CALL sys.ps_setup_enable_instrument('stage');
CALL sys.ps_setup_enable_instrument('statement');
CALL sys.ps_setup_enable_consumer('current');
CALL sys.ps_setup_enable_consumer('history_long');

Note

For many uses of the sys schema, the default Performance Schema is sufficient
for data collection. Enabling all the instruments and consumers just mentioned has
a performance impact, so it is preferable to enable only the additional configuration
you need. Also, remember that if you enable additional configuration, you can easily
restore the default configuration like this:

CALL sys.ps_setup_reset_to_default(TRUE);

26.2 Using the sys Schema
You can make the sys schema the default schema so that references to its objects need not be qualified
with the schema name:

mysql> USE sys;
Database changed
mysql> SELECT * FROM version;
+-------------+------------------+
| sys_version | mysql_version |
+-------------+------------------+
| 1.5.1 | 5.7.24-debug-log |
+-------------+------------------+

(The version view shows the sys schema and MySQL server versions.)

To access sys schema objects while a different schema is the default (or simply to be explicit), qualify
object references with the schema name:

mysql> SELECT * FROM sys.version;
+-------------+------------------+
| sys_version | mysql_version |
+-------------+------------------+

4388

sys Schema Progress Reporting

| 1.5.1 | 5.7.24-debug-log |
+-------------+------------------+

The sys schema contains many views that summarize Performance Schema tables in various ways. Most
of these views come in pairs, such that one member of the pair has the same name as the other member,
plus a x$ prefix. For example, the host_summary_by_file_io view summarizes file I/O grouped by
host and displays latencies converted from picoseconds to more readable values (with units);

mysql> SELECT * FROM sys.host_summary_by_file_io;
+------------+-------+------------+
| host | ios | io_latency |
+------------+-------+------------+
| localhost | 67570 | 5.38 s |
| background | 3468 | 4.18 s |
+------------+-------+------------+

The x$host_summary_by_file_io view summarizes the same data but displays unformatted
picosecond latencies:

mysql> SELECT * FROM sys.x$host_summary_by_file_io;
+------------+-------+---------------+
| host | ios | io_latency |
+------------+-------+---------------+
| localhost | 67574 | 5380678125144 |
| background | 3474 | 4758696829416 |
+------------+-------+---------------+

The view without the x$ prefix is intended to provide output that is more user friendly and easier for
humans to read. The view with the x$ prefix that displays the same values in raw form is intended more
for use with other tools that perform their own processing on the data. For additional information about the
differences between non-x$ and x$ views, see Section 26.4.3, “sys Schema Views”.

To examine sys schema object definitions, use the appropriate SHOW statement or
INFORMATION_SCHEMA query. For example, to examine the definitions of the session view and
format_bytes() function, use these statements:

mysql> SHOW CREATE VIEW sys.session;
mysql> SHOW CREATE FUNCTION sys.format_bytes;

However, those statements display the definitions in relatively unformatted form. To view object definitions
with more readable formatting, access the individual .sql files found under the scripts/sys_schema in
MySQL source distributions. Prior to MySQL 5.7.28, the sources are maintained in a separate distribution
available from the sys schema development website at https://github.com/mysql/mysql-sys.

Neither mysqldump nor mysqlpump dump the sys schema by default. To generate a dump file, name the
sys schema explicitly on the command line using either of these commands:

mysqldump --databases --routines sys > sys_dump.sql
mysqlpump sys > sys_dump.sql

To reinstall the schema from the dump file, use this command:

mysql < sys_dump.sql

26.3 sys Schema Progress Reporting
The following sys schema views provide progress reporting for long-running transactions:

processlist
session
x$processlist
x$session

4389

https://github.com/mysql/mysql-sys

sys Schema Object Reference

Assuming that the required instruments and consumers are enabled, the progress column of these views
shows the percentage of work completed for stages that support progress reporting.

Stage progress reporting requires that the events_stages_current consumer be enabled, as well as
the instruments for which progress information is desired. Instruments for these stages currently support
progress reporting:

stage/sql/Copying to tmp table
stage/innodb/alter table (end)
stage/innodb/alter table (flush)
stage/innodb/alter table (insert)
stage/innodb/alter table (log apply index)
stage/innodb/alter table (log apply table)
stage/innodb/alter table (merge sort)
stage/innodb/alter table (read PK and internal sort)
stage/innodb/buffer pool load

For stages that do not support estimated and completed work reporting, or if the required instruments or
consumers are not enabled, the progress column is NULL.

26.4 sys Schema Object Reference
The sys schema includes tables and triggers, views, and stored procedures and functions. The following
sections provide details for each of these objects.

26.4.1 sys Schema Object Index

The following tables list sys schema objects and provide a short description of each one.

Table 26.1 sys Schema Tables and Triggers

Table or Trigger Name Description

sys_config sys schema configuration options table

sys_config_insert_set_user sys_config insert trigger

sys_config_update_set_user sys_config update trigger

Table 26.2 sys Schema Views

View Name Description Deprecated

host_summary, x
$host_summary

Statement activity, file I/O, and
connections, grouped by host

host_summary_by_file_io, x
$host_summary_by_file_io

File I/O, grouped by host

host_summary_by_file_io_type,
x
$host_summary_by_file_io_type

File I/O, grouped by host and
event type

host_summary_by_stages, x
$host_summary_by_stages

Statement stages, grouped by
host

host_summary_by_statement_latency,
x
$host_summary_by_statement_latency

Statement statistics, grouped by
host

host_summary_by_statement_type,
x
$host_summary_by_statement_type

Statements executed, grouped by
host and statement

4390

sys Schema Object Index

View Name Description Deprecated

innodb_buffer_stats_by_schema,
x
$innodb_buffer_stats_by_schema

InnoDB buffer information,
grouped by schema

innodb_buffer_stats_by_table,
x
$innodb_buffer_stats_by_table

InnoDB buffer information,
grouped by schema and table

innodb_lock_waits, x
$innodb_lock_waits

InnoDB lock information

io_by_thread_by_latency, x
$io_by_thread_by_latency

I/O consumers, grouped by thread

io_global_by_file_by_bytes,
x
$io_global_by_file_by_bytes

Global I/O consumers, grouped by
file and bytes

io_global_by_file_by_latency,
x
$io_global_by_file_by_latency

Global I/O consumers, grouped by
file and latency

io_global_by_wait_by_bytes,
x
$io_global_by_wait_by_bytes

Global I/O consumers, grouped by
bytes

io_global_by_wait_by_latency,
x
$io_global_by_wait_by_latency

Global I/O consumers, grouped by
latency

latest_file_io, x
$latest_file_io

Most recent I/O, grouped by file
and thread

memory_by_host_by_current_bytes,
x
$memory_by_host_by_current_bytes

Memory use, grouped by host

memory_by_thread_by_current_bytes,
x
$memory_by_thread_by_current_bytes

Memory use, grouped by thread

memory_by_user_by_current_bytes,
x
$memory_by_user_by_current_bytes

Memory use, grouped by user

memory_global_by_current_bytes,
x
$memory_global_by_current_bytes

Memory use, grouped by
allocation type

memory_global_total, x
$memory_global_total

Total memory use

metrics Server metrics

processlist, x$processlist Processlist information

ps_check_lost_instrumentationVariables that have lost
instruments

schema_auto_increment_columnsAUTO_INCREMENT column
information

4391

sys Schema Object Index

View Name Description Deprecated

schema_index_statistics, x
$schema_index_statistics

Index statistics

schema_object_overview Types of objects within each
schema

schema_redundant_indexes Duplicate or redundant indexes

schema_table_lock_waits, x
$schema_table_lock_waits

Sessions waiting for metadata
locks

schema_table_statistics, x
$schema_table_statistics

Table statistics

schema_table_statistics_with_buffer,
x
$schema_table_statistics_with_buffer

Table statistics, including InnoDB
buffer pool statistics

schema_tables_with_full_table_scans,
x
$schema_tables_with_full_table_scans

Tables being accessed with full
scans

schema_unused_indexes Indexes not in active use

session, x$session Processlist information for user
sessions

session_ssl_status Connection SSL information

statement_analysis, x
$statement_analysis

Statement aggregate statistics

statements_with_errors_or_warnings,
x
$statements_with_errors_or_warnings

Statements that have produced
errors or warnings

statements_with_full_table_scans,
x
$statements_with_full_table_scans

Statements that have done full
table scans

statements_with_runtimes_in_95th_percentile,
x
$statements_with_runtimes_in_95th_percentile

Statements with highest average
runtime

statements_with_sorting, x
$statements_with_sorting

Statements that performed sorts

statements_with_temp_tables,
x
$statements_with_temp_tables

Statements that used temporary
tables

user_summary, x
$user_summary

User statement and connection
activity

user_summary_by_file_io, x
$user_summary_by_file_io

File I/O, grouped by user

user_summary_by_file_io_type,
x
$user_summary_by_file_io_type

File I/O, grouped by user and
event

user_summary_by_stages, x
$user_summary_by_stages

Stage events, grouped by user

4392

sys Schema Object Index

View Name Description Deprecated

user_summary_by_statement_latency,
x
$user_summary_by_statement_latency

Statement statistics, grouped by
user

user_summary_by_statement_type,
x
$user_summary_by_statement_type

Statements executed, grouped by
user and statement

version Current sys schema and MySQL
server versions

5.7.28

wait_classes_global_by_avg_latency,
x
$wait_classes_global_by_avg_latency

Wait class average latency,
grouped by event class

wait_classes_global_by_latency,
x
$wait_classes_global_by_latency

Wait class total latency, grouped
by event class

waits_by_host_by_latency,
x
$waits_by_host_by_latency

Wait events, grouped by host and
event

waits_by_user_by_latency,
x
$waits_by_user_by_latency

Wait events, grouped by user and
event

waits_global_by_latency, x
$waits_global_by_latency

Wait events, grouped by event

x
$ps_digest_95th_percentile_by_avg_us

Helper view for 95th-percentile
views

x
$ps_digest_avg_latency_distribution

Helper view for 95th-percentile
views

x
$ps_schema_table_statistics_io

Helper view for table-statistics
views

x$schema_flattened_keys Helper view for
schema_redundant_indexes

Table 26.3 sys Schema Stored Procedures

Procedure Name Description

create_synonym_db() Create synonym for schema

diagnostics() Collect system diagnostic information

execute_prepared_stmt() Execute prepared statement

ps_setup_disable_background_threads() Disable background thread instrumentation

ps_setup_disable_consumer() Disable consumers

ps_setup_disable_instrument() Disable instruments

ps_setup_disable_thread() Disable instrumentation for thread

ps_setup_enable_background_threads() Enable background thread instrumentation

ps_setup_enable_consumer() Enable consumers

ps_setup_enable_instrument() Enable instruments

4393

sys Schema Object Index

Procedure Name Description

ps_setup_enable_thread() Enable instrumentation for thread

ps_setup_reload_saved() Reload saved Performance Schema configuration

ps_setup_reset_to_default() Reset saved Performance Schema configuration

ps_setup_save() Save Performance Schema configuration

ps_setup_show_disabled() Display disabled Performance Schema configuration

ps_setup_show_disabled_consumers() Display disabled Performance Schema consumers

ps_setup_show_disabled_instruments() Display disabled Performance Schema instruments

ps_setup_show_enabled() Display enabled Performance Schema configuration

ps_setup_show_enabled_consumers() Display enabled Performance Schema consumers

ps_setup_show_enabled_instruments() Display enabled Performance Schema instruments

ps_statement_avg_latency_histogram() Display statement latency histogram

ps_trace_statement_digest() Trace Performance Schema instrumentation for
digest

ps_trace_thread() Dump Performance Schema data for thread

ps_truncate_all_tables() Truncate Performance Schema summary tables

statement_performance_analyzer() Report of statements running on server

table_exists() Whether a table exists

Table 26.4 sys Schema Stored Functions

Function Name Description Introduced

extract_schema_from_file_name()Extract schema name part of file
name

extract_table_from_file_name()Extract table name part of file
name

format_bytes() Convert byte count to value with
units

format_path() Replace directories in path name
with symbolic system variable
names

format_statement() Truncate long statement to fixed
length

format_time() Convert picoseconds time to value
with units

list_add() Add item to list

list_drop() Remove item from list

ps_is_account_enabled() Whether Performance Schema
instrumentation for account is
enabled

ps_is_consumer_enabled() Whether Performance Schema
consumer is enabled

ps_is_instrument_default_enabled()Whether Performance Schema
instrument is enabled by default

4394

sys Schema Tables and Triggers

Function Name Description Introduced

ps_is_instrument_default_timed()Whether Performance Schema
instrument is timed by default

ps_is_thread_instrumented()Whether Performance Schema
instrumentation for connection ID
is enabled

ps_thread_account() Account associated with
Performance Schema thread ID

ps_thread_id() Performance Schema thread ID
associated with connection ID

ps_thread_stack() Event information for connection
ID

ps_thread_trx_info() Transaction information for thread
ID

quote_identifier() Quote string as identifier 5.7.14

sys_get_config() sys schema configuration option
value

version_major() MySQL server major version
number

version_minor() MySQL server minor version
number

version_patch() MySQL server patch release
version number

26.4.2 sys Schema Tables and Triggers

The following sections describe sys schema tables and triggers.

26.4.2.1 The sys_config Table

This table contains sys schema configuration options, one row per option. Configuration changes made by
updating this table persist across client sessions and server restarts.

The sys_config table has these columns:

• variable

The configuration option name.

• value

The configuration option value.

• set_time

The timestamp of the most recent modification to the row.

• set_by

The account that made the most recent modification to the row. The value is NULL if the row has not
been changed since the sys schema was installed.

4395

sys Schema Tables and Triggers

As an efficiency measure to minimize the number of direct reads from the sys_config table, sys schema
functions that use a value from this table check for a user-defined variable with a corresponding name,
which is the user-defined variable having the same name plus a @sys. prefix. (For example, the variable
corresponding to the diagnostics.include_raw option is @sys.diagnostics.include_raw.)
If the user-defined variable exists in the current session and is non-NULL, the function uses its value in
preference to the value in the sys_config table. Otherwise, the function reads and uses the value from
the table. In the latter case, the calling function conventionally also sets the corresponding user-defined
variable to the table value so that further references to the configuration option within the same session
use the variable and need not read the table again.

For example, the statement_truncate_len option controls the maximum length of statements returned
by the format_statement() function. The default is 64. To temporarily change the value to 32 for your
current session, set the corresponding @sys.statement_truncate_len user-defined variable:

mysql> SET @stmt = 'SELECT variable, value, set_time, set_by FROM sys_config';
mysql> SELECT sys.format_statement(@stmt);
+--+
| sys.format_statement(@stmt) |
+--+
| SELECT variable, value, set_time, set_by FROM sys_config |
+--+
mysql> SET @sys.statement_truncate_len = 32;
mysql> SELECT sys.format_statement(@stmt);
+-----------------------------------+
| sys.format_statement(@stmt) |
+-----------------------------------+
| SELECT variabl ... ROM sys_config |
+-----------------------------------+

Subsequent invocations of format_statement() within the session continue to use the user-defined
variable value (32), rather than the value stored in the table (64).

To stop using the user-defined variable and revert to using the value in the table, set the variable to NULL
within your session:

mysql> SET @sys.statement_truncate_len = NULL;
mysql> SELECT sys.format_statement(@stmt);
+--+
| sys.format_statement(@stmt) |
+--+
| SELECT variable, value, set_time, set_by FROM sys_config |
+--+

Alternatively, end your current session (causing the user-defined variable to no longer exist) and begin a
new session.

The conventional relationship just described between options in the sys_config table and user-defined
variables can be exploited to make temporary configuration changes that end when your session ends.
However, if you set a user-defined variable and then subsequently change the corresponding table value
within the same session, the changed table value is not used in that session as long as the user-defined
variable exists and is not NULL. (The changed table value is used in other sessions that do not have the
user-defined variable assigned.)

The following list describes the options in the sys_config table and the corresponding user-defined
variables:

• diagnostics.allow_i_s_tables, @sys.diagnostics.allow_i_s_tables

If this option is ON, the diagnostics() procedure is permitted to perform table scans on the
Information Schema TABLES table. This can be expensive if there are many tables. The default is OFF.

4396

sys Schema Tables and Triggers

• diagnostics.include_raw, @sys.diagnostics.include_raw

If this option is ON, the diagnostics() procedure includes the raw output from querying the metrics
view. The default is OFF.

• ps_thread_trx_info.max_length, @sys.ps_thread_trx_info.max_length

The maximum length for JSON output produced by the ps_thread_trx_info() function. The default
is 65535.

• statement_performance_analyzer.limit,
@sys.statement_performance_analyzer.limit

The maximum number of rows to return for views that have no built-in limit. (For example, the
statements_with_runtimes_in_95th_percentile view has a built-in limit in the sense that it
returns only statements with average execution time in the 95th percentile.) The default is 100.

• statement_performance_analyzer.view, @sys.statement_performance_analyzer.view

The custom query or view to be used by the statement_performance_analyzer() procedure
(which is itself invoked by the diagnostics() procedure). If the option value contains a space, it is
interpreted as a query. Otherwise, it must be the name of an existing view that queries the Performance
Schema events_statements_summary_by_digest table. There cannot be any LIMIT clause in
the query or view definition if the statement_performance_analyzer.limit configuration option is
greater than 0. The default is NULL (no custom view defined).

• statement_truncate_len, @sys.statement_truncate_len

The maximum length of statements returned by the format_statement() function. Longer statements
are truncated to this length. The default is 64.

Other options can be added to the sys_config table. For example, the diagnostics() and
execute_prepared_stmt() procedures use the debug option if it exists, but this option is not part of
the sys_config table by default because debug output normally is enabled only temporarily, by setting
the corresponding @sys.debug user-defined variable. To enable debug output without having to set that
variable in individual sessions, add the option to the table:

mysql> INSERT INTO sys.sys_config (variable, value) VALUES('debug', 'ON');

To change the debug setting in the table, do two things. First, modify the value in the table itself:

mysql> UPDATE sys.sys_config
 SET value = 'OFF'
 WHERE variable = 'debug';

Second, to also ensure that procedure invocations within the current session use the changed value from
the table, set the corresponding user-defined variable to NULL:

mysql> SET @sys.debug = NULL;

26.4.2.2 The sys_config_insert_set_user Trigger

For rows added to the sys_config table by INSERT statements, the sys_config_insert_set_user
trigger sets the set_by column to the current user.

26.4.2.3 The sys_config_update_set_user Trigger

The sys_config_update_set_user trigger for the sys_config table is similar to the
sys_config_insert_set_user trigger, but for UPDATE statements.

4397

sys Schema Views

26.4.3 sys Schema Views

The following sections describe sys schema views.

The sys schema contains many views that summarize Performance Schema tables in various ways. Most
of these views come in pairs, such that one member of the pair has the same name as the other member,
plus a x$ prefix. For example, the host_summary_by_file_io view summarizes file I/O grouped by
host and displays latencies converted from picoseconds to more readable values (with units);

mysql> SELECT * FROM sys.host_summary_by_file_io;
+------------+-------+------------+
| host | ios | io_latency |
+------------+-------+------------+
| localhost | 67570 | 5.38 s |
| background | 3468 | 4.18 s |
+------------+-------+------------+

The x$host_summary_by_file_io view summarizes the same data but displays unformatted
picosecond latencies:

mysql> SELECT * FROM sys.x$host_summary_by_file_io;
+------------+-------+---------------+
| host | ios | io_latency |
+------------+-------+---------------+
| localhost | 67574 | 5380678125144 |
| background | 3474 | 4758696829416 |
+------------+-------+---------------+

The view without the x$ prefix is intended to provide output that is more user friendly and easier to read.
The view with the x$ prefix that displays the same values in raw form is intended more for use with other
tools that perform their own processing on the data.

Views without the x$ prefix differ from the corresponding x$ views in these ways:

• Byte counts are formatted with size units using format_bytes().

• Time values are formatted with temporal units using format_time().

• SQL statements are truncated to a maximum display width using format_statement().

• Path name are shortened using format_path().

26.4.3.1 The host_summary and x$host_summary Views

These views summarize statement activity, file I/O, and connections, grouped by host.

The host_summary and x$host_summary views have these columns:

• host

The host from which the client connected. Rows for which the HOST column in the underlying
Performance Schema table is NULL are assumed to be for background threads and are reported with a
host name of background.

• statements

The total number of statements for the host.

• statement_latency

The total wait time of timed statements for the host.

4398

sys Schema Views

• statement_avg_latency

The average wait time per timed statement for the host.

• table_scans

The total number of table scans for the host.

• file_ios

The total number of file I/O events for the host.

• file_io_latency

The total wait time of timed file I/O events for the host.

• current_connections

The current number of connections for the host.

• total_connections

The total number of connections for the host.

• unique_users

The number of distinct users for the host.

• current_memory

The current amount of allocated memory for the host.

• total_memory_allocated

The total amount of allocated memory for the host.

26.4.3.2 The host_summary_by_file_io and x$host_summary_by_file_io Views

These views summarize file I/O, grouped by host. By default, rows are sorted by descending total file I/O
latency.

The host_summary_by_file_io and x$host_summary_by_file_io views have these columns:

• host

The host from which the client connected. Rows for which the HOST column in the underlying
Performance Schema table is NULL are assumed to be for background threads and are reported with a
host name of background.

• ios

The total number of file I/O events for the host.

• io_latency

The total wait time of timed file I/O events for the host.

26.4.3.3 The host_summary_by_file_io_type and x$host_summary_by_file_io_type Views

4399

sys Schema Views

These views summarize file I/O, grouped by host and event type. By default, rows are sorted by host and
descending total I/O latency.

The host_summary_by_file_io_type and x$host_summary_by_file_io_type views have these
columns:

• host

The host from which the client connected. Rows for which the HOST column in the underlying
Performance Schema table is NULL are assumed to be for background threads and are reported with a
host name of background.

• event_name

The file I/O event name.

• total

The total number of occurrences of the file I/O event for the host.

• total_latency

The total wait time of timed occurrences of the file I/O event for the host.

• max_latency

The maximum single wait time of timed occurrences of the file I/O event for the host.

26.4.3.4 The host_summary_by_stages and x$host_summary_by_stages Views

These views summarize statement stages, grouped by host. By default, rows are sorted by host and
descending total latency.

The host_summary_by_stages and x$host_summary_by_stages views have these columns:

• host

The host from which the client connected. Rows for which the HOST column in the underlying
Performance Schema table is NULL are assumed to be for background threads and are reported with a
host name of background.

• event_name

The stage event name.

• total

The total number of occurrences of the stage event for the host.

• total_latency

The total wait time of timed occurrences of the stage event for the host.

• avg_latency

The average wait time per timed occurrence of the stage event for the host.

26.4.3.5 The host_summary_by_statement_latency and x
$host_summary_by_statement_latency Views

4400

sys Schema Views

These views summarize overall statement statistics, grouped by host. By default, rows are sorted by
descending total latency.

The host_summary_by_statement_latency and x$host_summary_by_statement_latency
views have these columns:

• host

The host from which the client connected. Rows for which the HOST column in the underlying
Performance Schema table is NULL are assumed to be for background threads and are reported with a
host name of background.

• total

The total number of statements for the host.

• total_latency

The total wait time of timed statements for the host.

• max_latency

The maximum single wait time of timed statements for the host.

• lock_latency

The total time waiting for locks by timed statements for the host.

• rows_sent

The total number of rows returned by statements for the host.

• rows_examined

The total number of rows read from storage engines by statements for the host.

• rows_affected

The total number of rows affected by statements for the host.

• full_scans

The total number of full table scans by statements for the host.

26.4.3.6 The host_summary_by_statement_type and x$host_summary_by_statement_type
Views

These views summarize informaion about statements executed, grouped by host and statement type. By
default, rows are sorted by host and descending total latency.

The host_summary_by_statement_type and x$host_summary_by_statement_type views have
these columns:

• host

The host from which the client connected. Rows for which the HOST column in the underlying
Performance Schema table is NULL are assumed to be for background threads and are reported with a
host name of background.

4401

sys Schema Views

• statement

The final component of the statement event name.

• total

The total number of occurrences of the statement event for the host.

• total_latency

The total wait time of timed occurrences of the statement event for the host.

• max_latency

The maximum single wait time of timed occurrences of the statement event for the host.

• lock_latency

The total time waiting for locks by timed occurrences of the statement event for the host.

• rows_sent

The total number of rows returned by occurrences of the statement event for the host.

• rows_examined

The total number of rows read from storage engines by occurrences of the statement event for the host.

• rows_affected

The total number of rows affected by occurrences of the statement event for the host.

• full_scans

The total number of full table scans by occurrences of the statement event for the host.

26.4.3.7 The innodb_buffer_stats_by_schema and x$innodb_buffer_stats_by_schema
Views

These views summarize the information in the INFORMATION_SCHEMA INNODB_BUFFER_PAGE table,
grouped by schema. By default, rows are sorted by descending buffer size.

Warning

Querying views that access the INNODB_BUFFER_PAGE table can affect
performance. Do not query these views on a production system unless you are
aware of the performance impact and have determined it to be acceptable. To avoid
impacting performance on a production system, reproduce the issue you want to
investigate and query buffer pool statistics on a test instance.

The innodb_buffer_stats_by_schema and x$innodb_buffer_stats_by_schema views have
these columns:

• object_schema

The schema name for the object, or InnoDB System if the table belongs to the InnoDB storage engine.

• allocated

4402

sys Schema Views

The total number of bytes allocated for the schema.

• data

The total number of data bytes allocated for the schema.

• pages

The total number of pages allocated for the schema.

• pages_hashed

The total number of hashed pages allocated for the schema.

• pages_old

The total number of old pages allocated for the schema.

• rows_cached

The total number of cached rows for the schema.

26.4.3.8 The innodb_buffer_stats_by_table and x$innodb_buffer_stats_by_table Views

These views summarize the information in the INFORMATION_SCHEMA INNODB_BUFFER_PAGE table,
grouped by schema and table. By default, rows are sorted by descending buffer size.

Warning

Querying views that access the INNODB_BUFFER_PAGE table can affect
performance. Do not query these views on a production system unless you are
aware of the performance impact and have determined it to be acceptable. To avoid
impacting performance on a production system, reproduce the issue you want to
investigate and query buffer pool statistics on a test instance.

The innodb_buffer_stats_by_table and x$innodb_buffer_stats_by_table views have these
columns:

• object_schema

The schema name for the object, or InnoDB System if the table belongs to the InnoDB storage engine.

• object_name

The table name.

• allocated

The total number of bytes allocated for the table.

• data

The number of data bytes allocated for the table.

• pages

The total number of pages allocated for the table.

4403

sys Schema Views

• pages_hashed

The number of hashed pages allocated for the table.

• pages_old

The number of old pages allocated for the table.

• rows_cached

The number of cached rows for the table.

26.4.3.9 The innodb_lock_waits and x$innodb_lock_waits Views

These views summarize the InnoDB locks that transactions are waiting for. By default, rows are sorted by
descending lock age.

The innodb_lock_waits and x$innodb_lock_waits views have these columns:

• wait_started

The time at which the lock wait started.

• wait_age

How long the lock has been waited for, as a TIME value.

• wait_age_secs

How long the lock has been waited for, in seconds.

• locked_table

The name of the locked table. This column contains combined schema/table name values.

• locked_index

The name of the locked index.

• locked_type

The type of the waiting lock.

• waiting_trx_id

The ID of the waiting transaction.

• waiting_trx_started

The time at which the waiting transaction started.

• waiting_trx_age

How long the waiting transaction has been waiting, as a TIME value.

• waiting_trx_rows_locked

The number of rows locked by the waiting transaction.

• waiting_trx_rows_modified

4404

sys Schema Views

The number of rows modified by the waiting transaction.

• waiting_pid

The processlist ID of the waiting transaction.

• waiting_query

The statement that is waiting for the lock.

• waiting_lock_id

The ID of the waiting lock.

• waiting_lock_mode

The mode of the waiting lock.

• blocking_trx_id

The ID of the transaction that is blocking the waiting lock.

• blocking_pid

The processlist ID of the blocking transaction.

• blocking_query

The statement the blocking transaction is executing. This field reports NULL if the session that issued
the blocking query becomes idle. For more information, see Identifying a Blocking Query After the
Issuing Session Becomes Idle.

• blocking_lock_id

The ID of the lock that is blocking the waiting lock.

• blocking_lock_mode

The mode of the lock that is blocking the waiting lock.

• blocking_trx_started

The time at which the blocking transaction started.

• blocking_trx_age

How long the blocking transaction has been executing, as a TIME value.

• blocking_trx_rows_locked

The number of rows locked by the blocking transaction.

• blocking_trx_rows_modified

The number of rows modified by the blocking transaction.

• sql_kill_blocking_query

The KILL statement to execute to kill the blocking statement.

4405

sys Schema Views

• sql_kill_blocking_connection

The KILL statement to execute to kill the session running the blocking statement.

26.4.3.10 The io_by_thread_by_latency and x$io_by_thread_by_latency Views

These views summarize I/O consumers to display time waiting for I/O, grouped by thread. By default, rows
are sorted by descending total I/O latency.

The io_by_thread_by_latency and x$io_by_thread_by_latency views have these columns:

• user

For foreground threads, the account associated with the thread. For background threads, the thread
name.

• total

The total number of I/O events for the thread.

• total_latency

The total wait time of timed I/O events for the thread.

• min_latency

The minimum single wait time of timed I/O events for the thread.

• avg_latency

The average wait time per timed I/O event for the thread.

• max_latency

The maximum single wait time of timed I/O events for the thread.

• thread_id

The thread ID.

• processlist_id

For foreground threads, the processlist ID of the thread. For background threads, NULL.

26.4.3.11 The io_global_by_file_by_bytes and x$io_global_by_file_by_bytes Views

These views summarize global I/O consumers to display amount of I/O, grouped by file. By default, rows
are sorted by descending total I/O (bytes read and written).

The io_global_by_file_by_bytes and x$io_global_by_file_by_bytes views have these
columns:

• file

The file path name.

• count_read

The total number of read events for the file.

4406

sys Schema Views

• total_read

The total number of bytes read from the file.

• avg_read

The average number of bytes per read from the file.

• count_write

The total number of write events for the file.

• total_written

The total number of bytes written to the file.

• avg_write

The average number of bytes per write to the file.

• total

The total number of bytes read and written for the file.

• write_pct

The percentage of total bytes of I/O that were writes.

26.4.3.12 The io_global_by_file_by_latency and x$io_global_by_file_by_latency Views

These views summarize global I/O consumers to display time waiting for I/O, grouped by file. By default,
rows are sorted by descending total latency.

The io_global_by_file_by_latency and x$io_global_by_file_by_latency views have these
columns:

• file

The file path name.

• total

The total number of I/O events for the file.

• total_latency

The total wait time of timed I/O events for the file.

• count_read

The total number of read I/O events for the file.

• read_latency

The total wait time of timed read I/O events for the file.

• count_write

The total number of write I/O events for the file.

4407

sys Schema Views

• write_latency

The total wait time of timed write I/O events for the file.

• count_misc

The total number of other I/O events for the file.

• misc_latency

The total wait time of timed other I/O events for the file.

26.4.3.13 The io_global_by_wait_by_bytes and x$io_global_by_wait_by_bytes Views

These views summarize global I/O consumers to display amount of I/O and time waiting for I/O, grouped
by event. By default, rows are sorted by descending total I/O (bytes read and written).

The io_global_by_wait_by_bytes and x$io_global_by_wait_by_bytes views have these
columns:

• event_name

The I/O event name, with the wait/io/file/ prefix stripped.

• total

The total number of occurrences of the I/O event.

• total_latency

The total wait time of timed occurrences of the I/O event.

• min_latency

The minimum single wait time of timed occurrences of the I/O event.

• avg_latency

The average wait time per timed occurrence of the I/O event.

• max_latency

The maximum single wait time of timed occurrences of the I/O event.

• count_read

The number of read requests for the I/O event.

• total_read

The number of bytes read for the I/O event.

• avg_read

The average number of bytes per read for the I/O event.

• count_write

The number of write requests for the I/O event.

4408

sys Schema Views

• total_written

The number of bytes written for the I/O event.

• avg_written

The average number of bytes per write for the I/O event.

• total_requested

The total number of bytes read and written for the I/O event.

26.4.3.14 The io_global_by_wait_by_latency and x$io_global_by_wait_by_latency Views

These views summarize global I/O consumers to display amount of I/O and time waiting for I/O, grouped
by event. By default, rows are sorted by descending total latency.

The io_global_by_wait_by_latency and x$io_global_by_wait_by_latency views have these
columns:

• event_name

The I/O event name, with the wait/io/file/ prefix stripped.

• total

The total number of occurrences of the I/O event.

• total_latency

The total wait time of timed occurrences of the I/O event.

• avg_latency

The average wait time per timed occurrence of the I/O event.

• max_latency

The maximum single wait time of timed occurrences of the I/O event.

• read_latency

The total wait time of timed read occurrences of the I/O event.

• write_latency

The total wait time of timed write occurrences of the I/O event.

• misc_latency

The total wait time of timed other occurrences of the I/O event.

• count_read

The number of read requests for the I/O event.

• total_read

The number of bytes read for the I/O event.

4409

sys Schema Views

• avg_read

The average number of bytes per read for the I/O event.

• count_write

The number of write requests for the I/O event.

• total_written

The number of bytes written for the I/O event.

• avg_written

The average number of bytes per write for the I/O event.

26.4.3.15 The latest_file_io and x$latest_file_io Views

These views summarize file I/O activity, grouped by file and thread. By default, rows are sorted with most
recent I/O first.

The latest_file_io and x$latest_file_io views have these columns:

• thread

For foreground threads, the account associated with the thread (and port number for TCP/IP
connections). For background threads, the thread name and thread ID

• file

The file path name.

• latency

The wait time of the file I/O event.

• operation

The type of operation.

• requested

The number of data bytes requested for the file I/O event.

26.4.3.16 The memory_by_host_by_current_bytes and x
$memory_by_host_by_current_bytes Views

These views summarize memory use, grouped by host. By default, rows are sorted by descending amount
of memory used.

The memory_by_host_by_current_bytes and x$memory_by_host_by_current_bytes views
have these columns:

• host

The host from which the client connected. Rows for which the HOST column in the underlying
Performance Schema table is NULL are assumed to be for background threads and are reported with a
host name of background.

4410

sys Schema Views

• current_count_used

The current number of allocated memory blocks that have not been freed yet for the host.

• current_allocated

The current number of allocated bytes that have not been freed yet for the host.

• current_avg_alloc

The current number of allocated bytes per memory block for the host.

• current_max_alloc

The largest single current memory allocation in bytes for the host.

• total_allocated

The total memory allocation in bytes for the host.

26.4.3.17 The memory_by_thread_by_current_bytes and x
$memory_by_thread_by_current_bytes Views

These views summarize memory use, grouped by thread. By default, rows are sorted by descending
amount of memory used.

The memory_by_thread_by_current_bytes and x$memory_by_thread_by_current_bytes
views have these columns:

• thread_id

The thread ID.

• user

The thread user or thread name.

• current_count_used

The current number of allocated memory blocks that have not been freed yet for the thread.

• current_allocated

The current number of allocated bytes that have not been freed yet for the thread.

• current_avg_alloc

The current number of allocated bytes per memory block for the thread.

• current_max_alloc

The largest single current memory allocation in bytes for the thread.

• total_allocated

The total memory allocation in bytes for the thread.

26.4.3.18 The memory_by_user_by_current_bytes and x
$memory_by_user_by_current_bytes Views

4411

sys Schema Views

These views summarize memory use, grouped by user. By default, rows are sorted by descending amount
of memory used.

The memory_by_user_by_current_bytes and x$memory_by_user_by_current_bytes views
have these columns:

• user

The client user name. Rows for which the USER column in the underlying Performance Schema table is
NULL are assumed to be for background threads and are reported with a host name of background.

• current_count_used

The current number of allocated memory blocks that have not been freed yet for the user.

• current_allocated

The current number of allocated bytes that have not been freed yet for the user.

• current_avg_alloc

The current number of allocated bytes per memory block for the user.

• current_max_alloc

The largest single current memory allocation in bytes for the user.

• total_allocated

The total memory allocation in bytes for the user.

26.4.3.19 The memory_global_by_current_bytes and x$memory_global_by_current_bytes
Views

These views summarize memory use, grouped by allocation type (that is, by event). By default, rows are
sorted by descending amount of memory used.

The memory_global_by_current_bytes and x$memory_global_by_current_bytes views have
these columns:

• event_name

The memory event name.

• current_count

The total number of occurrences of the event.

• current_alloc

The current number of allocated bytes that have not been freed yet for the event.

• current_avg_alloc

The current number of allocated bytes per memory block for the event.

• high_count

The high-water mark for number of memory blocks allocated for the event.

4412

sys Schema Views

• high_alloc

The high-water mark for number of bytes allocated for the event.

• high_avg_alloc

The high-water mark for average number of bytes per memory block allocated for the event.

26.4.3.20 The memory_global_total and x$memory_global_total Views

These views summarize total memory use within the server.

The memory_global_total and x$memory_global_total views have these columns:

• total_allocated

The total bytes of memory allocated within the server.

26.4.3.21 The metrics View

This view summarizes MySQL server metrics to show variable names, values, types, and whether they are
enabled. By default, rows are sorted by variable type and name.

The metrics view includes this information:

• Global status variables from the Performance Schema global_status table

• InnoDB metrics from the INFORMATION_SCHEMA INNODB_METRICS table

• Current and total memory allocation, based on the Performance Schema memory instrumentation

• The current time (human readable and Unix timestamp formats)

There is some duplication of information between the global_status and INNODB_METRICS tables,
which the metrics view eliminates.

The metrics view has these columns:

• Variable_name

The metric name. The metric type determines the source from which the name is taken:

• For global status variables: The VARIABLE_NAME column of the global_status table

• For InnoDB metrics: The NAME column of the INNODB_METRICS table

• For other metrics: A view-provided descriptive string

• Variable_value

The metric value. The metric type determines the source from which the value is taken:

• For global status variables: The VARIABLE_VALUE column of the global_status table

• For InnoDB metrics: The COUNT column of the INNODB_METRICS table

• For memory metrics: The relevant column from the Performance Schema
memory_summary_global_by_event_name table

4413

sys Schema Views

• For the current time: The value of NOW(3) or UNIX_TIMESTAMP(NOW(3))

• Type

The metric type:

• For global status variables: Global Status

• For InnoDB metrics: InnoDB Metrics - %, where % is replaced by the value of the SUBSYSTEM
column of the INNODB_METRICS table

• For memory metrics: Performance Schema

• For the current time: System Time

• Enabled

Whether the metric is enabled:

• For global status variables: YES

• For InnoDB metrics: YES if the STATUS column of the INNODB_METRICS table is enabled, NO
otherwise

• For memory metrics: NO, YES, or PARTIAL (currently, PARTIAL occurs only for memory metrics and
indicates that not all memory/% instruments are enabled; Performance Schema memory instruments
are always enabled)

• For the current time: YES

26.4.3.22 The processlist and x$processlist Views

The MySQL process list indicates the operations currently being performed by the set of threads
executing within the server. The processlist and x$processlist views summarize process
information. They provide more complete information than the SHOW PROCESSLIST statement and the
INFORMATION_SCHEMA PROCESSLIST table, and are also nonblocking. By default, rows are sorted by
descending process time and descending wait time. For a comparison of process information sources, see
Sources of Process Information.

The column descriptions here are brief. For additional information, see the description of the Performance
Schema threads table at Section 25.12.16.4, “The threads Table”.

The processlist and x$processlist views have these columns:

• thd_id

The thread ID.

• conn_id

The connection ID.

• user

The thread user or thread name.

• db

4414

sys Schema Views

The default database for the thread, or NULL if there is none.

• command

For foreground threads, the type of command the thread is executing on behalf of the client, or Sleep if
the session is idle.

• state

An action, event, or state that indicates what the thread is doing.

• time

The time in seconds that the thread has been in its current state.

• current_statement

The statement the thread is executing, or NULL if it is not executing any statement.

• statement_latency

How long the statement has been executing.

• progress

The percentage of work completed for stages that support progress reporting. See Section 26.3, “sys
Schema Progress Reporting”.

• lock_latency

The time spent waiting for locks by the current statement.

• rows_examined

The number of rows read from storage engines by the current statement.

• rows_sent

The number of rows returned by the current statement.

• rows_affected

The number of rows affected by the current statement.

• tmp_tables

The number of internal in-memory temporary tables created by the current statement.

• tmp_disk_tables

The number of internal on-disk temporary tables created by the current statement.

• full_scan

The number of full table scans performed by the current statement.

• last_statement

The last statement executed by the thread, if there is no currently executing statement or wait.

4415

sys Schema Views

• last_statement_latency

How long the last statement executed.

• current_memory

The number of bytes allocated by the thread.

• last_wait

The name of the most recent wait event for the thread.

• last_wait_latency

The wait time of the most recent wait event for the thread.

• source

The source file and line number containing the instrumented code that produced the event.

• trx_latency

The wait time of the current transaction for the thread.

• trx_state

The state for the current transaction for the thread.

• trx_autocommit

Whether autocommit mode was enabled when the current transaction started.

• pid

The client process ID.

• program_name

The client program name.

26.4.3.23 The ps_check_lost_instrumentation View

This view returns information about lost Performance Schema instruments, to indicate whether the
Performance Schema is unable to monitor all runtime data.

The ps_check_lost_instrumentation view has these columns:

• variable_name

The Performance Schema status variable name indicating which type of instrument was lost.

• variable_value

The number of instruments lost.

26.4.3.24 The schema_auto_increment_columns View

This view indicates which tables have AUTO_INCREMENT columns and provides information about those
columns, such as the current and maximum column values and the usage ratio (ratio of used to possible
values). By default, rows are sorted by descending usage ratio and maximum column value.

4416

sys Schema Views

Tables in these schemas are excluded from view output: mysql, sys, INFORMATION_SCHEMA,
performance_schema.

The schema_auto_increment_columns view has these columns:

• table_schema

The schema that contains the table.

• table_name

The table that contains the AUTO_INCREMENT column.

• column_name

The name of the AUTO_INCREMENT column.

• data_type

The data type of the column.

• column_type

The column type of the column, which is the data type plus possibly other information. For example, for a
column with a bigint(20) unsigned column type, the data type is just bigint.

• is_signed

Whether the column type is signed.

• is_unsigned

Whether the column type is unsigned.

• max_value

The maximum permitted value for the column.

• auto_increment

The current AUTO_INCREMENT value for the column.

• auto_increment_ratio

The ratio of used to permitted values for the column. This indicates how much of the sequence of values
is “used up.”

26.4.3.25 The schema_index_statistics and x$schema_index_statistics Views

These views provide index statistics. By default, rows are sorted by descending total index latency.

The schema_index_statistics and x$schema_index_statistics views have these columns:

• table_schema

The schema that contains the table.

• table_name

The table that contains the index.

4417

sys Schema Views

• index_name

The name of the index.

• rows_selected

The total number of rows read using the index.

• select_latency

The total wait time of timed reads using the index.

• rows_inserted

The total number of rows inserted into the index.

• insert_latency

The total wait time of timed inserts into the index.

• rows_updated

The total number of rows updated in the index.

• update_latency

The total wait time of timed updates in the index.

• rows_deleted

The total number of rows deleted from the index.

• delete_latency

The total wait time of timed deletes from the index.

26.4.3.26 The schema_object_overview View

This view summarizes the types of objects within each schema. By default, rows are sorted by schema and
object type.

Note

For MySQL instances with a large number of objects, this view might take a long
time to execute.

The schema_object_overview view has these columns:

• db

The schema name.

• object_type

The object type: BASE TABLE, INDEX (index_type), EVENT, FUNCTION, PROCEDURE, TRIGGER,
VIEW.

• count

4418

sys Schema Views

The number of objects in the schema of the given type.

26.4.3.27 The schema_redundant_indexes and x$schema_flattened_keys Views

The schema_redundant_indexes view displays indexes that duplicate other indexes or
are made redundant by them. The x$schema_flattened_keys view is a helper view for
schema_redundant_indexes.

In the following column descriptions, the dominant index is the one that makes the redundant index
redundant.

The schema_redundant_indexes view has these columns:

• table_schema

The schema that contains the table.

• table_name

The table that contains the index.

• redundant_index_name

The name of the redundant index.

• redundant_index_columns

The names of the columns in the redundant index.

• redundant_index_non_unique

The number of nonunique columns in the redundant index.

• dominant_index_name

The name of the dominant index.

• dominant_index_columns

The names of the columns in the dominant index.

• dominant_index_non_unique

The number of nonunique columns in the dominant index.

• subpart_exists

Whether the index indexes only part of a column.

• sql_drop_index

The statement to execute to drop the redundant index.

The x$schema_flattened_keys view has these columns:

• table_schema

The schema that contains the table.

4419

sys Schema Views

• table_name

The table that contains the index.

• index_name

An index name.

• non_unique

The number of nonunique columns in the index.

• subpart_exists

Whether the index indexes only part of a column.

• index_columns

The name of the columns in the index.

26.4.3.28 The schema_table_lock_waits and x$schema_table_lock_waits Views

These views display which sessions are blocked waiting on metadata locks, and what is blocking them.

The column descriptions here are brief. For additional information, see the description of the Performance
Schema metadata_locks table at Section 25.12.12.1, “The metadata_locks Table”.

The schema_table_lock_waits and x$schema_table_lock_waits views have these columns:

• object_schema

The schema containing the object to be locked.

• object_name

The name of the instrumented object.

• waiting_thread_id

The thread ID of the thread that is waiting for the lock.

• waiting_pid

The processlist ID of the thread that is waiting for the lock.

• waiting_account

The account associated with the session that is waiting for the lock.

• waiting_lock_type

The type of the waiting lock.

• waiting_lock_duration

How long the waiting lock has been waiting.

• waiting_query

The statement that is waiting for the lock.

4420

sys Schema Views

• waiting_query_secs

How long the statement has been waiting, in seconds.

• waiting_query_rows_affected

The number of rows affected by the statement.

• waiting_query_rows_examined

The number of rows read from storage engines by the statement.

• blocking_thread_id

The thread ID of the thread that is blocking the waiting lock.

• blocking_pid

The processlist ID of the thread that is blocking the waiting lock.

• blocking_account

The account associated with the thread that is blocking the waiting lock.

• blocking_lock_type

The type of lock that is blocking the waiting lock.

• blocking_lock_duration

How long the blocking lock has been held.

• sql_kill_blocking_query

The KILL statement to execute to kill the blocking statement.

• sql_kill_blocking_connection

The KILL statement to execute to kill the session running the blocking statement.

26.4.3.29 The schema_table_statistics and x$schema_table_statistics Views

These views summarize table statistics. By default, rows are sorted by descending total wait time (tables
with most contention first).

These views user a helper view, x$ps_schema_table_statistics_io.

The schema_table_statistics and x$schema_table_statistics views have these columns:

• table_schema

The schema that contains the table.

• table_name

The table name.

• total_latency

The total wait time of timed I/O events for the table.

4421

sys Schema Views

• rows_fetched

The total number of rows read from the table.

• fetch_latency

The total wait time of timed read I/O events for the table.

• rows_inserted

The total number of rows inserted into the table.

• insert_latency

The total wait time of timed insert I/O events for the table.

• rows_updated

The total number of rows updated in the table.

• update_latency

The total wait time of timed update I/O events for the table.

• rows_deleted

The total number of rows deleted from the table.

• delete_latency

The total wait time of timed delete I/O events for the table.

• io_read_requests

The total number of read requests for the table.

• io_read

The total number of bytes read from the table.

• io_read_latency

The total wait time of reads from the table.

• io_write_requests

The total number of write requests for the table.

• io_write

The total number of bytes written to the table.

• io_write_latency

The total wait time of writes to the table.

• io_misc_requests

The total number of miscellaneous I/O requests for the table.

4422

sys Schema Views

• io_misc_latency

The total wait time of miscellaneous I/O requests for the table.

26.4.3.30 The schema_table_statistics_with_buffer and x
$schema_table_statistics_with_buffer Views

These views summarize table statistics, including InnoDB buffer pool statistics. By default, rows are sorted
by descending total wait time (tables with most contention first).

These views user a helper view, x$ps_schema_table_statistics_io.

The schema_table_statistics_with_buffer and x
$schema_table_statistics_with_buffer views have these columns:

• table_schema

The schema that contains the table.

• table_name

The table name.

• rows_fetched

The total number of rows read from the table.

• fetch_latency

The total wait time of timed read I/O events for the table.

• rows_inserted

The total number of rows inserted into the table.

• insert_latency

The total wait time of timed insert I/O events for the table.

• rows_updated

The total number of rows updated in the table.

• update_latency

The total wait time of timed update I/O events for the table.

• rows_deleted

The total number of rows deleted from the table.

• delete_latency

The total wait time of timed delete I/O events for the table.

• io_read_requests

The total number of read requests for the table.

4423

sys Schema Views

• io_read

The total number of bytes read from the table.

• io_read_latency

The total wait time of reads from the table.

• io_write_requests

The total number of write requests for the table.

• io_write

The total number of bytes written to the table.

• io_write_latency

The total wait time of writes to the table.

• io_misc_requests

The total number of miscellaneous I/O requests for the table.

• io_misc_latency

The total wait time of miscellaneous I/O requests for the table.

• innodb_buffer_allocated

The total number of InnoDB buffer bytes allocated for the table.

• innodb_buffer_data

The total number of InnoDB data bytes allocated for the table.

• innodb_buffer_free

The total number of InnoDB nondata bytes allocated for the table (innodb_buffer_allocated −
innodb_buffer_data).

• innodb_buffer_pages

The total number of InnoDB pages allocated for the table.

• innodb_buffer_pages_hashed

The total number of InnoDB hashed pages allocated for the table.

• innodb_buffer_pages_old

The total number of InnoDB old pages allocated for the table.

• innodb_buffer_rows_cached

The total number of InnoDB cached rows for the table.

26.4.3.31 The schema_tables_with_full_table_scans and x
$schema_tables_with_full_table_scans Views

4424

sys Schema Views

These views display which tables are being accessed with full table scans. By default, rows are sorted by
descending rows scanned.

The schema_tables_with_full_table_scans and x
$schema_tables_with_full_table_scans views have these columns:

• object_schema

The schema name.

• object_name

The table name.

• rows_full_scanned

The total number of rows scanned by full scans of the table.

• latency

The total wait time of full scans of the table.

26.4.3.32 The schema_unused_indexes View

These views display indexes for which there are no events, which indicates that they are not being used.
By default, rows are sorted by schema and table.

This view is most useful when the server has been up and processing long enough that its workload is
representative. Otherwise, presence of an index in this view may not be meaningful.

The schema_unused_indexes view has these columns:

• object_schema

The schema name.

• object_name

The table name.

• index_name

The unused index name.

26.4.3.33 The session and x$session Views

These views are similar to processlist and x$processlist, but they filter out background processes
to display only user sessions. For descriptions of the columns, see Section 26.4.3.22, “The processlist and
x$processlist Views”.

26.4.3.34 The session_ssl_status View

For each connection, this view displays the SSL version, cipher, and count of reused SSL sessions.

The session_ssl_status view has these columns:

• thread_id

The thread ID for the connection.

4425

sys Schema Views

• ssl_version

The version of SSL used for the connection.

• ssl_cipher

The SSL cipher used for the connection.

• ssl_sessions_reused

The number of reused SSL sessions for the connection.

26.4.3.35 The statement_analysis and x$statement_analysis Views

These views list normalized statements with aggregated statistics. The content mimics the MySQL
Enterprise Monitor Query Analysis view. By default, rows are sorted by descending total latency.

The statement_analysis and x$statement_analysis views have these columns:

• query

The normalized statement string.

• db

The default database for the statement, or NULL if there is none.

• full_scan

The total number of full table scans performed by occurrences of the statement.

• exec_count

The total number of times the statement has executed.

• err_count

The total number of errors produced by occurrences of the statement.

• warn_count

The total number of warnings produced by occurrences of the statement.

• total_latency

The total wait time of timed occurrences of the statement.

• max_latency

The maximum single wait time of timed occurrences of the statement.

• avg_latency

The average wait time per timed occurrence of the statement.

• lock_latency

The total time waiting for locks by timed occurrences of the statement.

• rows_sent

4426

sys Schema Views

The total number of rows returned by occurrences of the statement.

• rows_sent_avg

The average number of rows returned per occurrence of the statement.

• rows_examined

The total number of rows read from storage engines by occurrences of the statement.

• rows_examined_avg

The average number of rows read from storage engines per occurrence of the statement.

• rows_affected

The total number of rows affected by occurrences of the statement.

• rows_affected_avg

The average number of rows affected per occurrence of the statement.

• tmp_tables

The total number of internal in-memory temporary tables created by occurrences of the statement.

• tmp_disk_tables

The total number of internal on-disk temporary tables created by occurrences of the statement.

• rows_sorted

The total number of rows sorted by occurrences of the statement.

• sort_merge_passes

The total number of sort merge passes by occurrences of the statement.

• digest

The statement digest.

• first_seen

The time at which the statement was first seen.

• last_seen

The time at which the statement was most recently seen.

26.4.3.36 The statements_with_errors_or_warnings and x
$statements_with_errors_or_warnings Views

These views display normalized statements that have produced errors or warnings. By default, rows are
sorted by descending error and warning counts.

The statements_with_errors_or_warnings and x$statements_with_errors_or_warnings
views have these columns:

4427

sys Schema Views

• query

The normalized statement string.

• db

The default database for the statement, or NULL if there is none.

• exec_count

The total number of times the statement has executed.

• errors

The total number of errors produced by occurrences of the statement.

• error_pct

The percentage of statement occurrences that produced errors.

• warnings

The total number of warnings produced by occurrences of the statement.

• warning_pct

The percentage of statement occurrences that produced warnings.

• first_seen

The time at which the statement was first seen.

• last_seen

The time at which the statement was most recently seen.

• digest

The statement digest.

26.4.3.37 The statements_with_full_table_scans and x$statements_with_full_table_scans
Views

These views display normalized statements that have done full table scans. By default, rows are sorted by
descending percentage of time a full scan was done and descending total latency.

The statements_with_full_table_scans and x$statements_with_full_table_scans views
have these columns:

• query

The normalized statement string.

• db

The default database for the statement, or NULL if there is none.

• exec_count

4428

sys Schema Views

The total number of times the statement has executed.

• total_latency

The total wait time of timed statement events for the statement.

• no_index_used_count

The total number of times no index was used to scan the table.

• no_good_index_used_count

The total number of times no good index was used to scan the table.

• no_index_used_pct

The percentage of the time no index was used to scan the table.

• rows_sent

The total number of rows returned from the table.

• rows_examined

The total number of rows read from the storage engine for the table.

• rows_sent_avg

The average number of rows returned from the table.

• rows_examined_avg

The average number of rows read from the storage engine for the table.

• first_seen

The time at which the statement was first seen.

• last_seen

The time at which the statement was most recently seen.

• digest

The statement digest.

26.4.3.38 The statements_with_runtimes_in_95th_percentile and x
$statements_with_runtimes_in_95th_percentile Views

These views list statements with runtimes in the 95th percentile. By default, rows are sorted by descending
average latency.

Both views use two helper views, x$ps_digest_avg_latency_distribution and x
$ps_digest_95th_percentile_by_avg_us.

The statements_with_runtimes_in_95th_percentile and x
$statements_with_runtimes_in_95th_percentile views have these columns:

4429

sys Schema Views

• query

The normalized statement string.

• db

The default database for the statement, or NULL if there is none.

• full_scan

The total number of full table scans performed by occurrences of the statement.

• exec_count

The total number of times the statement has executed.

• err_count

The total number of errors produced by occurrences of the statement.

• warn_count

The total number of warnings produced by occurrences of the statement.

• total_latency

The total wait time of timed occurrences of the statement.

• max_latency

The maximum single wait time of timed occurrences of the statement.

• avg_latency

The average wait time per timed occurrence of the statement.

• rows_sent

The total number of rows returned by occurrences of the statement.

• rows_sent_avg

The average number of rows returned per occurrence of the statement.

• rows_examined

The total number of rows read from storage engines by occurrences of the statement.

• rows_examined_avg

The average number of rows read from storage engines per occurrence of the statement.

• first_seen

The time at which the statement was first seen.

• last_seen

The time at which the statement was most recently seen.

4430

sys Schema Views

• digest

The statement digest.

26.4.3.39 The statements_with_sorting and x$statements_with_sorting Views

These views list normalized statements that have performed sorts. By default, rows are sorted by
descending total latency.

The statements_with_sorting and x$statements_with_sorting views have these columns:

• query

The normalized statement string.

• db

The default database for the statement, or NULL if there is none.

• exec_count

The total number of times the statement has executed.

• total_latency

The total wait time of timed occurrences of the statement.

• sort_merge_passes

The total number of sort merge passes by occurrences of the statement.

• avg_sort_merges

The average number of sort merge passes per occurrence of the statement.

• sorts_using_scans

The total number of sorts using table scans by occurrences of the statement.

• sort_using_range

The total number of sorts using range accesses by occurrences of the statement.

• rows_sorted

The total number of rows sorted by occurrences of the statement.

• avg_rows_sorted

The average number of rows sorted per occurrence of the statement.

• first_seen

The time at which the statement was first seen.

• last_seen

The time at which the statement was most recently seen.

• digest

4431

sys Schema Views

The statement digest.

26.4.3.40 The statements_with_temp_tables and x$statements_with_temp_tables Views

These views list normalized statements that have used temporary tables. By default, rows are sorted by
descending number of on-disk temporary tables used and descending number of in-memory temporary
tables used.

The statements_with_temp_tables and x$statements_with_temp_tables views have these
columns:

• query

The normalized statement string.

• db

The default database for the statement, or NULL if there is none.

• exec_count

The total number of times the statement has executed.

• total_latency

The total wait time of timed occurrences of the statement.

• memory_tmp_tables

The total number of internal in-memory temporary tables created by occurrences of the statement.

• disk_tmp_tables

The total number of internal on-disk temporary tables created by occurrences of the statement.

• avg_tmp_tables_per_query

The average number of internal temporary tables created per occurrence of the statement.

• tmp_tables_to_disk_pct

The percentage of internal in-memory temporary tables that were converted to on-disk tables.

• first_seen

The time at which the statement was first seen.

• last_seen

The time at which the statement was most recently seen.

• digest

The statement digest.

26.4.3.41 The user_summary and x$user_summary Views

These views summarize statement activity, file I/O, and connections, grouped by user. By default, rows are
sorted by descending total latency.

4432

sys Schema Views

The user_summary and x$user_summary views have these columns:

• user

The client user name. Rows for which the USER column in the underlying Performance Schema table is
NULL are assumed to be for background threads and are reported with a host name of background.

• statements

The total number of statements for the user.

• statement_latency

The total wait time of timed statements for the user.

• statement_avg_latency

The average wait time per timed statement for the user.

• table_scans

The total number of table scans for the user.

• file_ios

The total number of file I/O events for the user.

• file_io_latency

The total wait time of timed file I/O events for the user.

• current_connections

The current number of connections for the user.

• total_connections

The total number of connections for the user.

• unique_hosts

The number of distinct hosts from which connections for the user have originated.

• current_memory

The current amount of allocated memory for the user.

• total_memory_allocated

The total amount of allocated memory for the user.

26.4.3.42 The user_summary_by_file_io and x$user_summary_by_file_io Views

These views summarize file I/O, grouped by user. By default, rows are sorted by descending total file I/O
latency.

The user_summary_by_file_io and x$user_summary_by_file_io views have these columns:

• user

4433

sys Schema Views

The client user name. Rows for which the USER column in the underlying Performance Schema table is
NULL are assumed to be for background threads and are reported with a host name of background.

• ios

The total number of file I/O events for the user.

• io_latency

The total wait time of timed file I/O events for the user.

26.4.3.43 The user_summary_by_file_io_type and x$user_summary_by_file_io_type Views

These views summarize file I/O, grouped by user and event type. By default, rows are sorted by user and
descending total latency.

The user_summary_by_file_io_type and x$user_summary_by_file_io_type views have these
columns:

• user

The client user name. Rows for which the USER column in the underlying Performance Schema table is
NULL are assumed to be for background threads and are reported with a host name of background.

• event_name

The file I/O event name.

• total

The total number of occurrences of the file I/O event for the user.

• latency

The total wait time of timed occurrences of the file I/O event for the user.

• max_latency

The maximum single wait time of timed occurrences of the file I/O event for the user.

26.4.3.44 The user_summary_by_stages and x$user_summary_by_stages Views

These views summarize stages, grouped by user. By default, rows are sorted by user and descending total
stage latency.

The user_summary_by_stages and x$user_summary_by_stages views have these columns:

• user

The client user name. Rows for which the USER column in the underlying Performance Schema table is
NULL are assumed to be for background threads and are reported with a host name of background.

• event_name

The stage event name.

• total

4434

sys Schema Views

The total number of occurrences of the stage event for the user.

• total_latency

The total wait time of timed occurrences of the stage event for the user.

• avg_latency

The average wait time per timed occurrence of the stage event for the user.

26.4.3.45 The user_summary_by_statement_latency and x
$user_summary_by_statement_latency Views

These views summarize overall statement statistics, grouped by user. By default, rows are sorted by
descending total latency.

The user_summary_by_statement_latency and x$user_summary_by_statement_latency
views have these columns:

• user

The client user name. Rows for which the USER column in the underlying Performance Schema table is
NULL are assumed to be for background threads and are reported with a host name of background.

• total

The total number of statements for the user.

• total_latency

The total wait time of timed statements for the user.

• max_latency

The maximum single wait time of timed statements for the user.

• lock_latency

The total time waiting for locks by timed statements for the user.

• rows_sent

The total number of rows returned by statements for the user.

• rows_examined

The total number of rows read from storage engines by statements for the user.

• rows_affected

The total number of rows affected by statements for the user.

• full_scans

The total number of full table scans by statements for the user.

26.4.3.46 The user_summary_by_statement_type and x$user_summary_by_statement_type
Views

4435

sys Schema Views

These views summarize informaion about statements executed, grouped by user and statement type. By
default, rows are sorted by user and descending total latency.

The user_summary_by_statement_type and x$user_summary_by_statement_type views have
these columns:

• user

The client user name. Rows for which the USER column in the underlying Performance Schema table is
NULL are assumed to be for background threads and are reported with a host name of background.

• statement

The final component of the statement event name.

• total

The total number of occurrences of the statement event for the user.

• total_latency

The total wait time of timed occurrences of the statement event for the user.

• max_latency

The maximum single wait time of timed occurrences of the statement event for the user.

• lock_latency

The total time waiting for locks by timed occurrences of the statement event for the user.

• rows_sent

The total number of rows returned by occurrences of the statement event for the user.

• rows_examined

The total number of rows read from storage engines by occurrences of the statement event for the user.

• rows_affected

The total number of rows affected by occurrences of the statement event for the user.

• full_scans

The total number of full table scans by occurrences of the statement event for the user.

26.4.3.47 The version View

This view provides the current sys schema and MySQL server versions.

Note

As of MySQL 5.7.28, this view is deprecated and subject to removal in a future
MySQL version. Applications that use it should be migrated to use an alternative
instead. For example, use the VERSION() function to retrieve the MySQL server
version.

4436

sys Schema Views

The version view has these columns:

• sys_version

The sys schema version.

• mysql_version

The MySQL server version.

26.4.3.48 The wait_classes_global_by_avg_latency and x
$wait_classes_global_by_avg_latency Views

These views summarize wait class average latencies, grouped by event class. By default, rows are sorted
by descending average latency. Idle events are ignored.

An event class is determined by stripping from the event name everything after the first three components.
For example, the class for wait/io/file/sql/slow_log is wait/io/file.

The wait_classes_global_by_avg_latency and x$wait_classes_global_by_avg_latency
views have these columns:

• event_class

The event class.

• total

The total number of occurrences of events in the class.

• total_latency

The total wait time of timed occurrences of events in the class.

• min_latency

The minimum single wait time of timed occurrences of events in the class.

• avg_latency

The average wait time per timed occurrence of events in the class.

• max_latency

The maximum single wait time of timed occurrences of events in the class.

26.4.3.49 The wait_classes_global_by_latency and x$wait_classes_global_by_latency
Views

These views summarize wait class total latencies, grouped by event class. By default, rows are sorted by
descending total latency. Idle events are ignored.

An event class is determined by stripping from the event name everything after the first three components.
For example, the class for wait/io/file/sql/slow_log is wait/io/file.

The wait_classes_global_by_latency and x$wait_classes_global_by_latency views have
these columns:

4437

sys Schema Views

• event_class

The event class.

• total

The total number of occurrences of events in the class.

• total_latency

The total wait time of timed occurrences of events in the class.

• min_latency

The minimum single wait time of timed occurrences of events in the class.

• avg_latency

The average wait time per timed occurrence of events in the class.

• max_latency

The maximum single wait time of timed occurrences of events in the class.

26.4.3.50 The waits_by_host_by_latency and x$waits_by_host_by_latency Views

These views summarize wait events, grouped by host and event. By default, rows are sorted by host and
descending total latency. Idle events are ignored.

The waits_by_host_by_latency and x$waits_by_host_by_latency views have these columns:

• host

The host from which the connection originated.

• event

The event name.

• total

The total number of occurrences of the event for the host.

• total_latency

The total wait time of timed occurrences of the event for the host.

• avg_latency

The average wait time per timed occurrence of the event for the host.

• max_latency

The maximum single wait time of timed occurrences of the event for the host.

26.4.3.51 The waits_by_user_by_latency and x$waits_by_user_by_latency Views

These views summarize wait events, grouped by user and event. By default, rows are sorted by user and
descending total latency. Idle events are ignored.

4438

sys Schema Stored Procedures

The waits_by_user_by_latency and x$waits_by_user_by_latency views have these columns:

• user

The user associated with the connection.

• event

The event name.

• total

The total number of occurrences of the event for the user.

• total_latency

The total wait time of timed occurrences of the event for the user.

• avg_latency

The average wait time per timed occurrence of the event for the user.

• max_latency

The maximum single wait time of timed occurrences of the event for the user.

26.4.3.52 The waits_global_by_latency and x$waits_global_by_latency Views

These views summarize wait events, grouped by event. By default, rows are sorted by descending total
latency. Idle events are ignored.

The waits_global_by_latency and x$waits_global_by_latency views have these columns:

• events

The event name.

• total

The total number of occurrences of the event.

• total_latency

The total wait time of timed occurrences of the event.

• avg_latency

The average wait time per timed occurrence of the event.

• max_latency

The maximum single wait time of timed occurrences of the event.

26.4.4 sys Schema Stored Procedures

The following sections describe sys schema stored procedures.

26.4.4.1 The create_synonym_db() Procedure

4439

sys Schema Stored Procedures

Given a schema name, this procedure creates a synonym schema containing views that refer to all the
tables and views in the original schema. This can be used, for example, to create a shorter name by which
to refer to a schema with a long name (such as info rather than INFORMATION_SCHEMA).

Parameters

• in_db_name VARCHAR(64): The name of the schema for which to create the synonym.

• in_synonym VARCHAR(64): The name to use for the synonym schema. This schema must not already
exist.

Example

mysql> SHOW DATABASES;
+--------------------+
| Database |
+--------------------+
| information_schema |
| mysql |
| performance_schema |
| sys |
| world |
+--------------------+
mysql> CALL sys.create_synonym_db('INFORMATION_SCHEMA', 'info');
+---------------------------------------+
| summary |
+---------------------------------------+
| Created 63 views in the info database |
+---------------------------------------+
mysql> SHOW DATABASES;
+--------------------+
| Database |
+--------------------+
| information_schema |
| info |
| mysql |
| performance_schema |
| sys |
| world |
+--------------------+
mysql> SHOW FULL TABLES FROM info;
+---------------------------------------+------------+
| Tables_in_info | Table_type |
+---------------------------------------+------------+
character_sets	VIEW
collation_character_set_applicability	VIEW
collations	VIEW
column_privileges	VIEW
columns	VIEW
...

26.4.4.2 The diagnostics() Procedure

Creates a report of the current server status for diagnostic purposes.

This procedure disables binary logging during its execution by manipulating the session value of the
sql_log_bin system variable. That is a restricted operation, so the procedure requires privileges
sufficient to set restricted session variables. See Section 5.1.8.1, “System Variable Privileges”.

Data collected for diagnostics() includes this information:

• Information from the metrics view (see Section 26.4.3.21, “The metrics View”)

4440

sys Schema Stored Procedures

• Information from other relevant sys schema views, such as the one that detemines queries in the 95th
percentile

• Information from the ndbinfo schema, if the MySQL server is part of NDB Cluster

• Replication status (both source and replica)

Some of the sys schema views are calculated as initial (optional), overall, and delta values:

• The initial view is the content of the view at the start of the diagnostics() procedure. This
output is the same as the start values used for the delta view. The initial view is included if the
diagnostics.include_raw configuration option is ON.

• The overall view is the content of the view at the end of the diagnostics() procedure. This output is
the same as the end values used for the delta view. The overall view is always included.

• The delta view is the difference from the beginning to the end of procedure execution. The minimum and
maximum values are the minimum and maximum values from the end view, respectively. They do not
necessarily reflect the minimum and maximum values in the monitored period. Except for the metrics
view, the delta is calculated only between the first and last outputs.

Parameters

• in_max_runtime INT UNSIGNED: The maximum data collection time in seconds. Use NULL to collect
data for the default of 60 seconds. Otherwise, use a value greater than 0.

• in_interval INT UNSIGNED: The sleep time between data collections in seconds. Use NULL to
sleep for the default of 30 seconds. Otherwise, use a value greater than 0.

• in_auto_config ENUM('current', 'medium', 'full'): The Performance Schema
configuration to use. Permitted values are:

• current: Use the current instrument and consumer settings.

• medium: Enable some instruments and consumers.

• full: Enable all instruments and consumers.

Note

The more instruments and consumers enabled, the more impact on MySQL
server performance. Be careful with the medium setting and especially the full
setting, which has a large performance impact.

Use of the medium or full setting requires the SUPER privilege.

If a setting other than current is chosen, the current settings are restored at the end of the procedure.

Configuration Options

diagnostics() operation can be modified using the following configuration options or their
corresponding user-defined variables (see Section 26.4.2.1, “The sys_config Table”):

• debug, @sys.debug

If this option is ON, produce debugging output. The default is OFF.

• diagnostics.allow_i_s_tables, @sys.diagnostics.allow_i_s_tables

4441

sys Schema Stored Procedures

If this option is ON, the diagnostics() procedure is permitted to perform table scans on the
Information Schema TABLES table. This can be expensive if there are many tables. The default is OFF.

• diagnostics.include_raw, @sys.diagnostics.include_raw

If this option is ON, the diagnostics() procedure output includes the raw output from querying the
metrics view. The default is OFF.

• statement_truncate_len, @sys.statement_truncate_len

The maximum length of statements returned by the format_statement() function. Longer statements
are truncated to this length. The default is 64.

Example

Create a diagnostics report that starts an iteration every 30 seconds and runs for at most 120 seconds
using the current Performance Schema settings:

mysql> CALL sys.diagnostics(120, 30, 'current');

To capture the output from the diagnostics() procedure in a file as it runs, use the mysql client tee
filename and notee commands (see Section 4.5.1.2, “mysql Client Commands”):

mysql> tee diag.out;
mysql> CALL sys.diagnostics(120, 30, 'current');
mysql> notee;

26.4.4.3 The execute_prepared_stmt() Procedure

Given an SQL statement as a string, executes it as a prepared statement. The prepared statement
is deallocated after execution, so it is not subject to reuse. Thus, this procedure is useful primarily for
executing dynamic statements on a one-time basis.

This procedure uses sys_execute_prepared_stmt as the prepared statement name. If that statement
name exists when the procedure is called, its previous content is destroyed.

Parameters

• in_query LONGTEXT CHARACTER SET utf8: The statement string to execute.

Configuration Options

execute_prepared_stmt() operation can be modified using the following configuration options or their
corresponding user-defined variables (see Section 26.4.2.1, “The sys_config Table”):

• debug, @sys.debug

If this option is ON, produce debugging output. The default is OFF.

Example

mysql> CALL sys.execute_prepared_stmt('SELECT COUNT(*) FROM mysql.user');
+----------+
| COUNT(*) |
+----------+
| 15 |
+----------+

26.4.4.4 The ps_setup_disable_background_threads() Procedure

4442

sys Schema Stored Procedures

Disables Performance Schema instrumentation for all background threads. Produces a result set indicating
how many background threads were disabled. Already disabled threads do not count.

Parameters

None.

Example

mysql> CALL sys.ps_setup_disable_background_threads();
+--------------------------------+
| summary |
+--------------------------------+
| Disabled 24 background threads |
+--------------------------------+

26.4.4.5 The ps_setup_disable_consumer() Procedure

Disables Performance Schema consumers with names that contain the argument. Produces a result set
indicating how many consumers were disabled. Already disabled consumers do not count.

Parameters

• consumer VARCHAR(128): The value used to match consumer names, which are identified by using
%consumer% as an operand for a LIKE pattern match.

A value of '' matches all consumers.

Example

Disable all statement consumers:

mysql> CALL sys.ps_setup_disable_consumer('statement');
+----------------------+
| summary |
+----------------------+
| Disabled 4 consumers |
+----------------------+

26.4.4.6 The ps_setup_disable_instrument() Procedure

Disables Performance Schema instruments with names that contain the argument. Produces a result set
indicating how many instruments were disabled. Already disabled instruments do not count.

Parameters

• in_pattern VARCHAR(128): The value used to match instrument names, which are identified by
using %in_pattern% as an operand for a LIKE pattern match.

A value of '' matches all instruments.

Example

Disable a specific instrument:

mysql> CALL sys.ps_setup_disable_instrument('wait/lock/metadata/sql/mdl');

4443

sys Schema Stored Procedures

+-----------------------+
| summary |
+-----------------------+
| Disabled 1 instrument |
+-----------------------+

Disable all mutex instruments:

mysql> CALL sys.ps_setup_disable_instrument('mutex');
+--------------------------+
| summary |
+--------------------------+
| Disabled 177 instruments |
+--------------------------+

26.4.4.7 The ps_setup_disable_thread() Procedure

Given a connection ID, disables Performance Schema instrumentation for the thread. Produces a result set
indicating how many threads were disabled. Already disabled threads do not count.

Parameters

• in_connection_id BIGINT: The connection ID. This is a value of the type given in the
PROCESSLIST_ID column of the Performance Schema threads table or the Id column of SHOW
PROCESSLIST output.

Example

Disable a specific connection by its connection ID:

mysql> CALL sys.ps_setup_disable_thread(225);
+-------------------+
| summary |
+-------------------+
| Disabled 1 thread |
+-------------------+

Disable the current connection:

mysql> CALL sys.ps_setup_disable_thread(CONNECTION_ID());
+-------------------+
| summary |
+-------------------+
| Disabled 1 thread |
+-------------------+

26.4.4.8 The ps_setup_enable_background_threads() Procedure

Enables Performance Schema instrumentation for all background threads. Produces a result set indicating
how many background threads were enabled. Already enabled threads do not count.

Parameters

None.

Example

4444

sys Schema Stored Procedures

mysql> CALL sys.ps_setup_enable_background_threads();
+-------------------------------+
| summary |
+-------------------------------+
| Enabled 24 background threads |
+-------------------------------+

26.4.4.9 The ps_setup_enable_consumer() Procedure

Enables Performance Schema consumers with names that contain the argument. Produces a result set
indicating how many consumers were enabled. Already enabled consumers do not count.

Parameters

• consumer VARCHAR(128): The value used to match consumer names, which are identified by using
%consumer% as an operand for a LIKE pattern match.

A value of '' matches all consumers.

Example

Enable all statement consumers:

mysql> CALL sys.ps_setup_enable_consumer('statement');
+---------------------+
| summary |
+---------------------+
| Enabled 4 consumers |
+---------------------+

26.4.4.10 The ps_setup_enable_instrument() Procedure

Enables Performance Schema instruments with names that contain the argument. Produces a result set
indicating how many instruments were enabled. Already enabled instruments do not count.

Parameters

• in_pattern VARCHAR(128): The value used to match instrument names, which are identified by
using %in_pattern% as an operand for a LIKE pattern match.

A value of '' matches all instruments.

Example

Enable a specific instrument:

mysql> CALL sys.ps_setup_enable_instrument('wait/lock/metadata/sql/mdl');
+----------------------+
| summary |
+----------------------+
| Enabled 1 instrument |
+----------------------+

Enable all mutex instruments:

mysql> CALL sys.ps_setup_enable_instrument('mutex');
+-------------------------+

4445

sys Schema Stored Procedures

| summary |
+-------------------------+
| Enabled 177 instruments |
+-------------------------+

26.4.4.11 The ps_setup_enable_thread() Procedure

Given a connection ID, enables Performance Schema instrumentation for the thread. Produces a result set
indicating how many threads were enabled. Already enabled threads do not count.

Parameters

• in_connection_id BIGINT: The connection ID. This is a value of the type given in the
PROCESSLIST_ID column of the Performance Schema threads table or the Id column of SHOW
PROCESSLIST output.

Example

Enable a specific connection by its connection ID:

mysql> CALL sys.ps_setup_enable_thread(225);
+------------------+
| summary |
+------------------+
| Enabled 1 thread |
+------------------+

Enable the current connection:

mysql> CALL sys.ps_setup_enable_thread(CONNECTION_ID());
+------------------+
| summary |
+------------------+
| Enabled 1 thread |
+------------------+

26.4.4.12 The ps_setup_reload_saved() Procedure

Reloads a Performance Schema configuration saved earlier within the same session using
ps_setup_save(). For more information, see the description of ps_setup_save().

This procedure disables binary logging during its execution by manipulating the session value of the
sql_log_bin system variable. That is a restricted operation, so the procedure requires privileges
sufficient to set restricted session variables. See Section 5.1.8.1, “System Variable Privileges”.

Parameters

None.

26.4.4.13 The ps_setup_reset_to_default() Procedure

Resets the Performance Schema configuration to its default settings.

Parameters

• in_verbose BOOLEAN: Whether to display information about each setup stage during procedure
execution. This includes the SQL statements executed.

4446

sys Schema Stored Procedures

Example

mysql> CALL sys.ps_setup_reset_to_default(TRUE)\G
*************************** 1. row ***************************
status: Resetting: setup_actors
DELETE
FROM performance_schema.setup_actors
WHERE NOT (HOST = '%' AND USER = '%' AND ROLE = '%')

*************************** 1. row ***************************
status: Resetting: setup_actors
INSERT IGNORE INTO performance_schema.setup_actors
VALUES ('%', '%', '%')

...

26.4.4.14 The ps_setup_save() Procedure

Saves the current Performance Schema configuration. This enables you to alter the configuration
temporarily for debugging or other purposes, then restore it to the previous state by invoking the
ps_setup_reload_saved() procedure.

To prevent other simultaneous calls to save the configuration, ps_setup_save() acquires an advisory
lock named sys.ps_setup_save by calling the GET_LOCK() function. ps_setup_save() takes a
timeout parameter to indicate how many seconds to wait if the lock already exists (which indicates that
some other session has a saved configuration outstanding). If the timeout expires without obtaining the
lock, ps_setup_save() fails.

It is intended you call ps_setup_reload_saved() later within the same session as ps_setup_save()
because the configuration is saved in TEMPORARY tables. ps_setup_save() drops the temporary tables
and releases the lock. If you end your session without invoking ps_setup_save(), the tables and lock
disappear automatically.

This procedure disables binary logging during its execution by manipulating the session value of the
sql_log_bin system variable. That is a restricted operation, so the procedure requires privileges
sufficient to set restricted session variables. See Section 5.1.8.1, “System Variable Privileges”.

Parameters

• in_timeout INT: How many seconds to wait to obtain the sys.ps_setup_save lock. A negative
timeout value means infinite timeout.

Example

mysql> CALL sys.ps_setup_save(10);

... make Performance Schema configuration changes ...

mysql> CALL sys.ps_setup_reload_saved();

26.4.4.15 The ps_setup_show_disabled() Procedure

Displays all currently disabled Performance Schema configuration.

Parameters

• in_show_instruments BOOLEAN: Whether to display disabled instruments. This might be a long list.

• in_show_threads BOOLEAN: Whether to display disabled threads.

4447

sys Schema Stored Procedures

Example

mysql> CALL sys.ps_setup_show_disabled(TRUE, TRUE);
+----------------------------+
| performance_schema_enabled |
+----------------------------+
| 1 |
+----------------------------+

+---------------+
| enabled_users |
+---------------+
| '%'@'%' |
+---------------+

+-------------+----------------------+---------+-------+
| object_type | objects | enabled | timed |
+-------------+----------------------+---------+-------+
EVENT	mysql.%	NO	NO
EVENT	performance_schema.%	NO	NO
EVENT	information_schema.%	NO	NO
FUNCTION	mysql.%	NO	NO
FUNCTION	performance_schema.%	NO	NO
FUNCTION	information_schema.%	NO	NO
PROCEDURE	mysql.%	NO	NO
PROCEDURE	performance_schema.%	NO	NO
PROCEDURE	information_schema.%	NO	NO
TABLE	mysql.%	NO	NO
TABLE	performance_schema.%	NO	NO
TABLE	information_schema.%	NO	NO
TRIGGER	mysql.%	NO	NO
TRIGGER	performance_schema.%	NO	NO
TRIGGER	information_schema.%	NO	NO
+-------------+----------------------+---------+-------+

...

26.4.4.16 The ps_setup_show_disabled_consumers() Procedure

Displays all currently disabled Performance Schema consumers.

Parameters

None.

Example

mysql> CALL sys.ps_setup_show_disabled_consumers();
+----------------------------------+
| disabled_consumers |
+----------------------------------+
| events_stages_current |
| events_stages_history |
| events_stages_history_long |
| events_statements_history |
| events_statements_history_long |
| events_transactions_history |
| events_transactions_history_long |
| events_waits_current |
| events_waits_history |
| events_waits_history_long |
+----------------------------------+

26.4.4.17 The ps_setup_show_disabled_instruments() Procedure

4448

sys Schema Stored Procedures

Displays all currently disabled Performance Schema instruments. This might be a long list.

Parameters

None.

Example

mysql> CALL sys.ps_setup_show_disabled_instruments()\G
*************************** 1. row ***************************
disabled_instruments: wait/synch/mutex/sql/TC_LOG_MMAP::LOCK_tc
 timed: NO
*************************** 2. row ***************************
disabled_instruments: wait/synch/mutex/sql/THD::LOCK_query_plan
 timed: NO
*************************** 3. row ***************************
disabled_instruments: wait/synch/mutex/sql/MYSQL_BIN_LOG::LOCK_commit
 timed: NO
...

26.4.4.18 The ps_setup_show_enabled() Procedure

Displays all currently enabled Performance Schema configuration.

Parameters

• in_show_instruments BOOLEAN: Whether to display enabled instruments. This might be a long list.

• in_show_threads BOOLEAN: Whether to display enabled threads.

Example

mysql> CALL sys.ps_setup_show_enabled(FALSE, FALSE);
+----------------------------+
| performance_schema_enabled |
+----------------------------+
| 1 |
+----------------------------+
1 row in set (0.00 sec)

+---------------+
| enabled_users |
+---------------+
| '%'@'%' |
+---------------+
1 row in set (0.00 sec)

+-------------+---------+---------+-------+
| object_type | objects | enabled | timed |
+-------------+---------+---------+-------+
EVENT	%.%	YES	YES
FUNCTION	%.%	YES	YES
PROCEDURE	%.%	YES	YES
TABLE	%.%	YES	YES
TRIGGER	%.%	YES	YES
+-------------+---------+---------+-------+
5 rows in set (0.00 sec)

+---------------------------+
| enabled_consumers |
+---------------------------+
| events_statements_current |

4449

sys Schema Stored Procedures

| events_statements_history |
| global_instrumentation |
| statements_digest |
| thread_instrumentation |
+---------------------------+

26.4.4.19 The ps_setup_show_enabled_consumers() Procedure

Displays all currently enabled Performance Schema consumers.

Parameters

None.

Example

mysql> CALL sys.ps_setup_show_enabled_consumers();
+---------------------------+
| enabled_consumers |
+---------------------------+
| events_statements_current |
| events_statements_history |
| global_instrumentation |
| statements_digest |
| thread_instrumentation |
+---------------------------+

26.4.4.20 The ps_setup_show_enabled_instruments() Procedure

Displays all currently enabled Performance Schema instruments. This might be a long list.

Parameters

None.

Example

mysql> CALL sys.ps_setup_show_enabled_instruments()\G
*************************** 1. row ***************************
enabled_instruments: wait/io/file/sql/map
 timed: YES
*************************** 2. row ***************************
enabled_instruments: wait/io/file/sql/binlog
 timed: YES
*************************** 3. row ***************************
enabled_instruments: wait/io/file/sql/binlog_cache
 timed: YES
...

26.4.4.21 The ps_statement_avg_latency_histogram() Procedure

Displays a textual histogram graph of the average latency values across all normalized statements tracked
within the Performance Schema events_statements_summary_by_digest table.

This procedure can be used to display a very high-level picture of the latency distribution of statements
running within this MySQL instance.

Parameters

None.

4450

sys Schema Stored Procedures

Example

The histogram output in statement units. For example, * = 2 units in the histogram legend means that
each * character represents 2 statements.

mysql> CALL sys.ps_statement_avg_latency_histogram()\G
*************************** 1. row ***************************
Performance Schema Statement Digest Average Latency Histogram:

 . = 1 unit
 * = 2 units
 # = 3 units

(0 - 66ms) 88 | #############################
(66 - 133ms) 14 |
(133 - 199ms) 4 |
(199 - 265ms) 5 | **
(265 - 332ms) 1 | .
(332 - 398ms) 0 |
(398 - 464ms) 1 | .
(464 - 531ms) 0 |
(531 - 597ms) 0 |
(597 - 663ms) 0 |
(663 - 730ms) 0 |
(730 - 796ms) 0 |
(796 - 863ms) 0 |
(863 - 929ms) 0 |
(929 - 995ms) 0 |
(995 - 1062ms) 0 |

 Total Statements: 114; Buckets: 16; Bucket Size: 66 ms;

26.4.4.22 The ps_trace_statement_digest() Procedure

Traces all Performance Schema instrumentation for a specific statement digest.

If you find a statement of interest within the Performance Schema
events_statements_summary_by_digest table, specify its DIGEST column MD5 value to this
procedure and indicate the polling duration and interval. The result is a report of all statistics tracked within
Performance Schema for that digest for the interval.

The procedure also attempts to execute EXPLAIN for the longest running example of the digest during
the interval. This attempt might fail because the Performance Schema truncates long SQL_TEXT values.
Consequently, EXPLAIN fails due to parse errors.

This procedure disables binary logging during its execution by manipulating the session value of the
sql_log_bin system variable. That is a restricted operation, so the procedure requires privileges
sufficient to set restricted session variables. See Section 5.1.8.1, “System Variable Privileges”.

Parameters

• in_digest VARCHAR(32): The statement digest identifier to analyze.

• in_runtime INT: How long to run the analysis in seconds.

• in_interval DECIMAL(2,2): The analysis interval in seconds (which can be fractional) at which to
try to take snapshots.

• in_start_fresh BOOLEAN: Whether to truncate the Performance Schema
events_statements_history_long and events_stages_history_long tables before starting.

4451

sys Schema Stored Procedures

• in_auto_enable BOOLEAN: Whether to automatically enable required consumers.

Example

mysql> CALL sys.ps_trace_statement_digest('891ec6860f98ba46d89dd20b0c03652c', 10, 0.1, TRUE, TRUE);
+--------------------+
| SUMMARY STATISTICS |
+--------------------+
| SUMMARY STATISTICS |
+--------------------+
1 row in set (9.11 sec)

+------------+-----------+-----------+-----------+---------------+------------+------------+
| executions | exec_time | lock_time | rows_sent | rows_examined | tmp_tables | full_scans |
+------------+-----------+-----------+-----------+---------------+------------+------------+
| 21 | 4.11 ms | 2.00 ms | 0 | 21 | 0 | 0 |
+------------+-----------+-----------+-----------+---------------+------------+------------+
1 row in set (9.11 sec)

+--+-------+-----------+
| event_name | count | latency |
+--+-------+-----------+
stage/sql/checking query cache for query	16	724.37 us
stage/sql/statistics	16	546.92 us
stage/sql/freeing items	18	520.11 us
stage/sql/init	51	466.80 us
...		
stage/sql/cleaning up	18	11.92 us
stage/sql/executing	16	6.95 us
+--+-------+-----------+
17 rows in set (9.12 sec)

+---------------------------+
| LONGEST RUNNING STATEMENT |
+---------------------------+
| LONGEST RUNNING STATEMENT |
+---------------------------+
1 row in set (9.16 sec)

+-----------+-----------+-----------+-----------+---------------+------------+-----------+
| thread_id | exec_time | lock_time | rows_sent | rows_examined | tmp_tables | full_scan |
+-----------+-----------+-----------+-----------+---------------+------------+-----------+
| 166646 | 618.43 us | 1.00 ms | 0 | 1 | 0 | 0 |
+-----------+-----------+-----------+-----------+---------------+------------+-----------+
1 row in set (9.16 sec)

Truncated for clarity...
+---+
| sql_text |
+---+
| select hibeventhe0_.id as id1382_, hibeventhe0_.createdTime ... |
+---+
1 row in set (9.17 sec)

+--+-----------+
| event_name | latency |
+--+-----------+
stage/sql/init	8.61 us
stage/sql/Waiting for query cache lock	453.23 us
stage/sql/init	331.07 ns
stage/sql/checking query cache for query	43.04 us
...	
stage/sql/freeing items	30.46 us
stage/sql/cleaning up	662.13 ns
+--+-----------+
18 rows in set (9.23 sec)

4452

sys Schema Stored Procedures

+----+-------------+--------------+-------+---------------+-----------+---------+-------------+------+-------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+--------------+-------+---------------+-----------+---------+-------------+------+-------+
| 1 | SIMPLE | hibeventhe0_ | const | fixedTime | fixedTime | 775 | const,const | 1 | NULL |
+----+-------------+--------------+-------+---------------+-----------+---------+-------------+------+-------+
1 row in set (9.27 sec)

Query OK, 0 rows affected (9.28 sec)

26.4.4.23 The ps_trace_thread() Procedure

Dumps all Performance Schema data for an instrumented thread to a .dot formatted graph file (for the
DOT graph description language). Each result set returned from the procedure should be used for a
complete graph.

This procedure disables binary logging during its execution by manipulating the session value of the
sql_log_bin system variable. That is a restricted operation, so the procedure requires privileges
sufficient to set restricted session variables. See Section 5.1.8.1, “System Variable Privileges”.

Parameters

• in_thread_id INT: The thread to trace.

• in_outfile VARCHAR(255): The name to use for the .dot output file.

• in_max_runtime DECIMAL(20,2): The maximum number of seconds (which can be fractional) to
collect data. Use NULL to collect data for the default of 60 seconds.

• in_interval DECIMAL(20,2): The number of seconds (which can be fractional) to sleep between
data collections. Use NULL to sleep for the default of 1 second.

• in_start_fresh BOOLEAN: Whether to reset all Performance Schema data before tracing.

• in_auto_setup BOOLEAN: Whether to disable all other threads and enable all instruments and
consumers. This also resets the settings at the end of the run.

• in_debug BOOLEAN: Whether to include file:lineno information in the graph.

Example

mysql> CALL sys.ps_trace_thread(25, CONCAT('/tmp/stack-', REPLACE(NOW(), ' ', '-'), '.dot'), NULL, NULL, TRUE, TRUE, TRUE);
+-------------------+
| summary |
+-------------------+
| Disabled 1 thread |
+-------------------+
1 row in set (0.00 sec)

+---+
| Info |
+---+
| Data collection starting for THREAD_ID = 25 |
+---+
1 row in set (0.03 sec)

+---+
| Info |
+---+
| Stack trace written to /tmp/stack-2014-02-16-21:18:41.dot |
+---+
1 row in set (60.07 sec)

4453

sys Schema Stored Procedures

+---+
| Convert to PDF |
+---+
| dot -Tpdf -o /tmp/stack_25.pdf /tmp/stack-2014-02-16-21:18:41.dot |
+---+
1 row in set (60.07 sec)

+---+
| Convert to PNG |
+---+
| dot -Tpng -o /tmp/stack_25.png /tmp/stack-2014-02-16-21:18:41.dot |
+---+
1 row in set (60.07 sec)

+------------------+
| summary |
+------------------+
| Enabled 1 thread |
+------------------+
1 row in set (60.32 sec)

26.4.4.24 The ps_truncate_all_tables() Procedure

Truncates all Performance Schema summary tables, resetting all aggregated instrumentation as a
snapshot. Produces a result set indicating how many tables were truncated.

Parameters

• in_verbose BOOLEAN: Whether to display each TRUNCATE TABLE statement before executing it.

Example

mysql> CALL sys.ps_truncate_all_tables(FALSE);
+---------------------+
| summary |
+---------------------+
| Truncated 44 tables |
+---------------------+

26.4.4.25 The statement_performance_analyzer() Procedure

Creates a report of the statements running on the server. The views are calculated based on the overall
and/or delta activity.

This procedure disables binary logging during its execution by manipulating the session value of the
sql_log_bin system variable. That is a restricted operation, so the procedure requires privileges
sufficient to set restricted session variables. See Section 5.1.8.1, “System Variable Privileges”.

Parameters

• in_action ENUM('snapshot', 'overall', 'delta', 'create_tmp', 'create_table',
'save', 'cleanup'): The action to take. These values are permitted:

• snapshot: Store a snapshot. The default is to make a snapshot of the current content of the
Performance Schema events_statements_summary_by_digest table. By setting in_table,
this can be overwritten to copy the content of the specified table. The snapshot is stored in the sys
schema tmp_digests temporary table.

• overall: Generate an analysis based on the content of the table specified by in_table.
For the overall analysis, in_table can be NOW() to use a fresh snapshot. This overwrites
an existing snapshot. Use NULL for in_table to use the existing snapshot. If in_table is

4454

sys Schema Stored Procedures

NULL and no snapshot exists, a new snapshot is created. The in_views parameter and the
statement_performance_analyzer.limit configuration option affect the operation of this
procedure.

• delta: Generate a delta analysis. The delta is calculated between the reference table
specified by in_table and the snapshot, which must exist. This action uses the sys
schema tmp_digests_delta temporary table. The in_views parameter and the
statement_performance_analyzer.limit configuration option affect the operation of this
procedure.

• create_table: Create a regular table suitable for storing the snapshot for later use (for example, for
calculating deltas).

• create_tmp: Create a temporary table suitable for storing the snapshot for later use (for example, for
calculating deltas).

• save: Save the snapshot in the table specified by in_table. The table must exist and have the
correct structure. If no snapshot exists, a new snapshot is created.

• cleanup: Remove the temporary tables used for the snapshot and delta.

• in_table VARCHAR(129): The table parameter used for some of the actions specified by the
in_action parameter. Use the format db_name.tbl_name or tbl_name without using any backtick
(`) identifier-quoting characters. Periods (.) are not supported in database and table names.

The meaning of the in_table value for each in_action value is detailed in the individual in_action
value descriptions.

• in_views SET ('with_runtimes_in_95th_percentile', 'analysis',
'with_errors_or_warnings', 'with_full_table_scans', 'with_sorting',
'with_temp_tables', 'custom'): Which views to include. This parameter is a SET value, so it can
contain multiple view names, separated by commas. The default is to include all views except custom.
The following values are permitted:

• with_runtimes_in_95th_percentile: Use the
statements_with_runtimes_in_95th_percentile view.

• analysis: Use the statement_analysis view.

• with_errors_or_warnings: Use the statements_with_errors_or_warnings view.

• with_full_table_scans: Use the statements_with_full_table_scans view.

• with_sorting: Use the statements_with_sorting view.

• with_temp_tables: Use the statements_with_temp_tables view.

• custom: Use a custom view. This view must be specified using the
statement_performance_analyzer.view configuration option to name a query or an existing
view.

Configuration Options

statement_performance_analyzer() operation can be modified using the following configuration
options or their corresponding user-defined variables (see Section 26.4.2.1, “The sys_config Table”):

• debug, @sys.debug

4455

sys Schema Stored Procedures

If this option is ON, produce debugging output. The default is OFF.

• statement_performance_analyzer.limit,
@sys.statement_performance_analyzer.limit

The maximum number of rows to return for views that have no built-in limit. The default is 100.

• statement_performance_analyzer.view, @sys.statement_performance_analyzer.view

The custom query or view to be used. If the option value contains a space, it is interpreted as a
query. Otherwise, it must be the name of an existing view that queries the Performance Schema
events_statements_summary_by_digest table. There cannot be any LIMIT clause in the query
or view definition if the statement_performance_analyzer.limit configuration option is greater
than 0. If specifying a view, use the same format as for the in_table parameter. The default is NULL
(no custom view defined).

Example

To create a report with the queries in the 95th percentile since the last truncation of
events_statements_summary_by_digest and with a one-minute delta period:

1. Create a temporary table to store the initial snapshot.

2. Create the initial snapshot.

3. Save the initial snapshot in the temporary table.

4. Wait one minute.

5. Create a new snapshot.

6. Perform analysis based on the new snapshot.

7. Perform analysis based on the delta between the initial and new snapshots.

mysql> CALL sys.statement_performance_analyzer('create_tmp', 'mydb.tmp_digests_ini', NULL);
Query OK, 0 rows affected (0.08 sec)

mysql> CALL sys.statement_performance_analyzer('snapshot', NULL, NULL);
Query OK, 0 rows affected (0.02 sec)

mysql> CALL sys.statement_performance_analyzer('save', 'mydb.tmp_digests_ini', NULL);
Query OK, 0 rows affected (0.00 sec)

mysql> DO SLEEP(60);
Query OK, 0 rows affected (1 min 0.00 sec)

mysql> CALL sys.statement_performance_analyzer('snapshot', NULL, NULL);
Query OK, 0 rows affected (0.02 sec)

mysql> CALL sys.statement_performance_analyzer('overall', NULL, 'with_runtimes_in_95th_percentile');
+---+
| Next Output |
+---+
| Queries with Runtime in 95th Percentile |
+---+
1 row in set (0.05 sec)

...

mysql> CALL sys.statement_performance_analyzer('delta', 'mydb.tmp_digests_ini', 'with_runtimes_in_95th_percentile');

4456

sys Schema Stored Procedures

+---+
| Next Output |
+---+
| Queries with Runtime in 95th Percentile |
+---+
1 row in set (0.03 sec)

...

Create an overall report of the 95th percentile queries and the top 10 queries with full table scans:

mysql> CALL sys.statement_performance_analyzer('snapshot', NULL, NULL);
Query OK, 0 rows affected (0.01 sec)

mysql> SET @sys.statement_performance_analyzer.limit = 10;
Query OK, 0 rows affected (0.00 sec)

mysql> CALL sys.statement_performance_analyzer('overall', NULL, 'with_runtimes_in_95th_percentile,with_full_table_scans');
+---+
| Next Output |
+---+
| Queries with Runtime in 95th Percentile |
+---+
1 row in set (0.01 sec)

...

+-------------------------------------+
| Next Output |
+-------------------------------------+
| Top 10 Queries with Full Table Scan |
+-------------------------------------+
1 row in set (0.09 sec)

...

Use a custom view showing the top 10 queries sorted by total execution time, refreshing the view every
minute using the watch command in Linux:

mysql> CREATE OR REPLACE VIEW mydb.my_statements AS
 SELECT sys.format_statement(DIGEST_TEXT) AS query,
 SCHEMA_NAME AS db,
 COUNT_STAR AS exec_count,
 sys.format_time(SUM_TIMER_WAIT) AS total_latency,
 sys.format_time(AVG_TIMER_WAIT) AS avg_latency,
 ROUND(IFNULL(SUM_ROWS_SENT / NULLIF(COUNT_STAR, 0), 0)) AS rows_sent_avg,
 ROUND(IFNULL(SUM_ROWS_EXAMINED / NULLIF(COUNT_STAR, 0), 0)) AS rows_examined_avg,
 ROUND(IFNULL(SUM_ROWS_AFFECTED / NULLIF(COUNT_STAR, 0), 0)) AS rows_affected_avg,
 DIGEST AS digest
 FROM performance_schema.events_statements_summary_by_digest
 ORDER BY SUM_TIMER_WAIT DESC;
Query OK, 0 rows affected (0.10 sec)

mysql> CALL sys.statement_performance_analyzer('create_table', 'mydb.digests_prev', NULL);
Query OK, 0 rows affected (0.10 sec)

$> watch -n 60 "mysql sys --table -e \"
> SET @sys.statement_performance_analyzer.view = 'mydb.my_statements';
> SET @sys.statement_performance_analyzer.limit = 10;
> CALL statement_performance_analyzer('snapshot', NULL, NULL);
> CALL statement_performance_analyzer('delta', 'mydb.digests_prev', 'custom');
> CALL statement_performance_analyzer('save', 'mydb.digests_prev', NULL);
> \""

Every 60.0s: mysql sys --table -e " ... Mon Dec 22 10:58:51 2014

+----------------------------------+

4457

sys Schema Stored Procedures

| Next Output |
+----------------------------------+
| Top 10 Queries Using Custom View |
+----------------------------------+
+-------------------+-------+------------+---------------+-------------+---------------+-------------------+-------------------+----------------------------------+
| query | db | exec_count | total_latency | avg_latency | rows_sent_avg | rows_examined_avg | rows_affected_avg | digest |
+-------------------+-------+------------+---------------+-------------+---------------+-------------------+-------------------+----------------------------------+
...

26.4.4.26 The table_exists() Procedure

Tests whether a given table exists as a regular table, a TEMPORARY table, or a view. The procedure returns
the table type in an OUT parameter. If both a temporary and a permanent table exist with the given name,
TEMPORARY is returned.

Parameters

• in_db VARCHAR(64): The name of the database in which to check for table existance.

• in_table VARCHAR(64): The name of the table to check the existance of.

• out_exists ENUM('', 'BASE TABLE', 'VIEW', 'TEMPORARY'): The return value. This is an
OUT parameter, so it must be a variable into which the table type can be stored. When the procedure
returns, the variable has one of the following values to indicate whether the table exists:

• '': The table name does not exist as a base table, TEMPORARY table, or view.

• BASE TABLE: The table name exists as a base (permanent) table.

• VIEW: The table name exists as a view.

• TEMPORARY: The table name exists as a TEMPORARY table.

Example

mysql> CREATE DATABASE db1;
Query OK, 1 row affected (0.01 sec)

mysql> USE db1;
Database changed

mysql> CREATE TABLE t1 (id INT PRIMARY KEY);
Query OK, 0 rows affected (0.03 sec)

mysql> CREATE TABLE t2 (id INT PRIMARY KEY);
Query OK, 0 rows affected (0.20 sec)

mysql> CREATE view v_t1 AS SELECT * FROM t1;
Query OK, 0 rows affected (0.02 sec)

mysql> CREATE TEMPORARY TABLE t1 (id INT PRIMARY KEY);
Query OK, 0 rows affected (0.00 sec)

mysql> CALL sys.table_exists('db1', 't1', @exists); SELECT @exists;
Query OK, 0 rows affected (0.01 sec)

+-----------+
| @exists |
+-----------+
| TEMPORARY |
+-----------+
1 row in set (0.00 sec)

4458

sys Schema Stored Functions

mysql> CALL sys.table_exists('db1', 't2', @exists); SELECT @exists;
Query OK, 0 rows affected (0.02 sec)

+------------+
| @exists |
+------------+
| BASE TABLE |
+------------+
1 row in set (0.00 sec)

mysql> CALL sys.table_exists('db1', 'v_t1', @exists); SELECT @exists;
Query OK, 0 rows affected (0.02 sec)

+---------+
| @exists |
+---------+
| VIEW |
+---------+
1 row in set (0.00 sec)

mysql> CALL sys.table_exists('db1', 't3', @exists); SELECT @exists;
Query OK, 0 rows affected (0.00 sec)

+---------+
| @exists |
+---------+
| |
+---------+
1 row in set (0.00 sec)

26.4.5 sys Schema Stored Functions

The following sections describe sys schema stored functions.

26.4.5.1 The extract_schema_from_file_name() Function

Given a file path name, returns the path component that represents the schema name. This function
assumes that the file name lies within the schema directory. For this reason, it does not work with partitions
or tables defined using their own DATA_DIRECTORY table option.

This function is useful when extracting file I/O information from the Performance Schema that includes file
path names. It provides a convenient way to display schema names, which can be more easily understood
than full path names, and can be used in joins against object schema names.

Parameters

• path VARCHAR(512): The full path to a data file from which to extract the schema name.

Return Value

A VARCHAR(64) value.

Example

mysql> SELECT sys.extract_schema_from_file_name('/usr/local/mysql/data/world/City.ibd');
+---+
| sys.extract_schema_from_file_name('/usr/local/mysql/data/world/City.ibd') |
+---+
| world |
+---+

26.4.5.2 The extract_table_from_file_name() Function

4459

sys Schema Stored Functions

Given a file path name, returns the path component that represents the table name.

This function is useful when extracting file I/O information from the Performance Schema that includes file
path names. It provides a convenient way to display table names, which can be more easily understood
than full path names, and can be used in joins against object table names.

Parameters

• path VARCHAR(512): The full path to a data file from which to extract the table name.

Return Value

A VARCHAR(64) value.

Example

mysql> SELECT sys.extract_table_from_file_name('/usr/local/mysql/data/world/City.ibd');
+--+
| sys.extract_table_from_file_name('/usr/local/mysql/data/world/City.ibd') |
+--+
| City |
+--+

26.4.5.3 The format_bytes() Function

Given a byte count, converts it to human-readable format and returns a string consisting of a value
and a units indicator. Depending on the size of the value, the units part is bytes, KiB (kibibytes), MiB
(mebibytes), GiB (gibibytes), TiB (tebibytes), or PiB (pebibytes).

Parameters

• bytes TEXT: The byte count to format.

Return Value

A TEXT value.

Example

mysql> SELECT sys.format_bytes(512), sys.format_bytes(18446644073709551615);
+-----------------------+--+
| sys.format_bytes(512) | sys.format_bytes(18446644073709551615) |
+-----------------------+--+
| 512 bytes | 16383.91 PiB |
+-----------------------+--+

26.4.5.4 The format_path() Function

Given a path name, returns the modified path name after replacing subpaths that match the values of the
following system variables, in order:

datadir
tmpdir
slave_load_tmpdir
innodb_data_home_dir
innodb_log_group_home_dir
innodb_undo_directory
basedir

A value that matches the value of system variable sysvar is replaced with the string @@GLOBAL.sysvar.

4460

sys Schema Stored Functions

Prior to MySQL 5.7.14, backslashes in Windows path names are converted to forward slashes in the result.

Parameters

• path VARCHAR(512): The path name to format.

Return Value

A VARCHAR(512) CHARACTER SET utf8 value.

Example

mysql> SELECT sys.format_path('/usr/local/mysql/data/world/City.ibd');
+---+
| sys.format_path('/usr/local/mysql/data/world/City.ibd') |
+---+
| @@datadir/world/City.ibd |
+---+

26.4.5.5 The format_statement() Function

Given a string (normally representing an SQL statement), reduces it to the length given by the
statement_truncate_len configuration option, and returns the result. No truncation occurs if the string
is shorter than statement_truncate_len. Otherwise, the middle part of the string is replaced by an
ellipsis (...).

This function is useful for formatting possibly lengthy statements retrieved from Performance Schema
tables to a known fixed maximum length.

Parameters

• statement LONGTEXT: The statement to format.

Configuration Options

format_statement() operation can be modified using the following configuration options or their
corresponding user-defined variables (see Section 26.4.2.1, “The sys_config Table”):

• statement_truncate_len, @sys.statement_truncate_len

The maximum length of statements returned by the format_statement() function. Longer statements
are truncated to this length. The default is 64.

Return Value

A LONGTEXT value.

Example

By default, format_statement() truncates statements to be no more than 64 characters. Setting
@sys.statement_truncate_len changes the truncation length for the current session:

mysql> SET @stmt = 'SELECT variable, value, set_time, set_by FROM sys_config';
mysql> SELECT sys.format_statement(@stmt);
+--+
| sys.format_statement(@stmt) |
+--+
| SELECT variable, value, set_time, set_by FROM sys_config |
+--+

4461

sys Schema Stored Functions

mysql> SET @sys.statement_truncate_len = 32;
mysql> SELECT sys.format_statement(@stmt);
+-----------------------------------+
| sys.format_statement(@stmt) |
+-----------------------------------+
| SELECT variabl ... ROM sys_config |
+-----------------------------------+

26.4.5.6 The format_time() Function

Given a Performance Schema latency or wait time in picoseconds, converts it to human-readable format
and returns a string consisting of a value and a units indicator. Depending on the size of the value, the
units part is ps (picoseconds), ns (nanoseconds), us (microseconds), ms (milliseconds), s (seconds), m
(minutes), h (hours), d (days), or w (weeks).

Parameters

• picoseconds TEXT: The picoseconds value to format.

Return Value

A TEXT value.

Example

mysql> SELECT sys.format_time(3501), sys.format_time(188732396662000);
+-----------------------+----------------------------------+
| sys.format_time(3501) | sys.format_time(188732396662000) |
+-----------------------+----------------------------------+
| 3.50 ns | 3.15 m |
+-----------------------+----------------------------------+

26.4.5.7 The list_add() Function

Adds a value to a comma-separated list of values and returns the result.

This function and list_drop() can be useful for manipulating the value of system variables such as
sql_mode and optimizer_switch that take a comma-separated list of values.

Parameters

• in_list TEXT: The list to be modified.

• in_add_value TEXT: The value to add to the list.

Return Value

A TEXT value.

Example

mysql> SELECT @@sql_mode;
+--+
| @@sql_mode |
+--+
| ONLY_FULL_GROUP_BY,STRICT_TRANS_TABLES |
+--+
mysql> SET @@sql_mode = sys.list_add(@@sql_mode, 'NO_ENGINE_SUBSTITUTION');
mysql> SELECT @@sql_mode;
+---+

4462

sys Schema Stored Functions

| @@sql_mode |
+---+
| ONLY_FULL_GROUP_BY,STRICT_TRANS_TABLES,NO_ENGINE_SUBSTITUTION |
+---+
mysql> SET @@sql_mode = sys.list_drop(@@sql_mode, 'ONLY_FULL_GROUP_BY');
mysql> SELECT @@sql_mode;
+--+
| @@sql_mode |
+--+
| STRICT_TRANS_TABLES,NO_ENGINE_SUBSTITUTION |
+--+

26.4.5.8 The list_drop() Function

Removes a value from a comma-separated list of values and returns the result. For more information, see
the description of list_add()

Parameters

• in_list TEXT: The list to be modified.

• in_drop_value TEXT: The value to drop from the list.

Return Value

A TEXT value.

26.4.5.9 The ps_is_account_enabled() Function

Returns YES or NO to indicate whether Performance Schema instrumentation for a given account is
enabled.

Parameters

• in_host VARCHAR(60): The host name of the account to check.

• in_user VARCHAR(32): The user name of the account to check.

Return Value

An ENUM('YES','NO') value.

Example

mysql> SELECT sys.ps_is_account_enabled('localhost', 'root');
+--+
| sys.ps_is_account_enabled('localhost', 'root') |
+--+
| YES |
+--+

26.4.5.10 The ps_is_consumer_enabled() Function

Returns YES or NO to indicate whether a given Performance Schema consumer is enabled, or NULL if the
argument is NULL. If the argument is not a valid consumer name, an error occurs. (Prior to MySQL 5.7.28,
the function returns NULL if the argument is not a valid consumer name.)

This function accounts for the consumer hierarchy, so a consumer is not considered enabled unless
all consumers on which depends are also enabled. For information about the consumer hierarchy, see
Section 25.4.7, “Pre-Filtering by Consumer”.

4463

sys Schema Stored Functions

Parameters

• in_consumer VARCHAR(64): The name of the consumer to check.

Return Value

An ENUM('YES','NO') value.

Example

mysql> SELECT sys.ps_is_consumer_enabled('thread_instrumentation');
+--+
| sys.ps_is_consumer_enabled('thread_instrumentation') |
+--+
| YES |
+--+

26.4.5.11 The ps_is_instrument_default_enabled() Function

Returns YES or NO to indicate whether a given Performance Schema instrument is enabled by default.

Parameters

• in_instrument VARCHAR(128): The name of the instrument to check.

Return Value

An ENUM('YES','NO') value.

Example

mysql> SELECT sys.ps_is_instrument_default_enabled('memory/innodb/row_log_buf');
+---+
| sys.ps_is_instrument_default_enabled('memory/innodb/row_log_buf') |
+---+
| NO |
+---+
mysql> SELECT sys.ps_is_instrument_default_enabled('statement/sql/alter_user');
+--+
| sys.ps_is_instrument_default_enabled('statement/sql/alter_user') |
+--+
| YES |
+--+

26.4.5.12 The ps_is_instrument_default_timed() Function

Returns YES or NO to indicate whether a given Performance Schema instrument is timed by default.

Parameters

• in_instrument VARCHAR(128): The name of the instrument to check.

Return Value

An ENUM('YES','NO') value.

Example

mysql> SELECT sys.ps_is_instrument_default_timed('memory/innodb/row_log_buf');
+---+

4464

sys Schema Stored Functions

| sys.ps_is_instrument_default_timed('memory/innodb/row_log_buf') |
+---+
| NO |
+---+
mysql> SELECT sys.ps_is_instrument_default_timed('statement/sql/alter_user');
+--+
| sys.ps_is_instrument_default_timed('statement/sql/alter_user') |
+--+
| YES |
+--+

26.4.5.13 The ps_is_thread_instrumented() Function

Returns YES or NO to indicate whether Performance Schema instrumentation for a given connection ID is
enabled, UNKNOWN if the ID is unknown, or NULL if the ID is NULL.

Parameters

• in_connection_id BIGINT UNSIGNED: The connection ID. This is a value of the type given in
the PROCESSLIST_ID column of the Performance Schema threads table or the Id column of SHOW
PROCESSLIST output.

Return Value

An ENUM('YES','NO','UNKNOWN') value.

Example

mysql> SELECT sys.ps_is_thread_instrumented(43);
+-----------------------------------+
| sys.ps_is_thread_instrumented(43) |
+-----------------------------------+
| UNKNOWN |
+-----------------------------------+
mysql> SELECT sys.ps_is_thread_instrumented(CONNECTION_ID());
+--+
| sys.ps_is_thread_instrumented(CONNECTION_ID()) |
+--+
| YES |
+--+

26.4.5.14 The ps_thread_account() Function

Given a Performance Schema thread ID, returns the user_name@host_name account associated with the
thread.

Parameters

• in_thread_id BIGINT UNSIGNED: The thread ID for which to return the account. The value should
match the THREAD_ID column from some Performance Schema threads table row.

Return Value

A TEXT value.

Example

mysql> SELECT sys.ps_thread_account(sys.ps_thread_id(CONNECTION_ID()));
+--+
| sys.ps_thread_account(sys.ps_thread_id(CONNECTION_ID())) |

4465

sys Schema Stored Functions

+--+
| root@localhost |
+--+

26.4.5.15 The ps_thread_id() Function

Returns the Performance Schema thread ID assigned to a given connection ID, or the thread ID for the
current connection if the connection ID is NULL.

Parameters

• in_connection_id BIGINT UNSIGNED: The ID of the connection for which to return the thread ID.
This is a value of the type given in the PROCESSLIST_ID column of the Performance Schema threads
table or the Id column of SHOW PROCESSLIST output.

Return Value

A BIGINT UNSIGNED value.

Example

mysql> SELECT sys.ps_thread_id(260);
+-----------------------+
| sys.ps_thread_id(260) |
+-----------------------+
| 285 |
+-----------------------+

26.4.5.16 The ps_thread_stack() Function

Returns a JSON formatted stack of all statements, stages, and events within the Performance Schema for
a given thread ID.

Parameters

• in_thread_id BIGINT: The ID of the thread to trace. The value should match the THREAD_ID
column from some Performance Schema threads table row.

• in_verbose BOOLEAN: Whether to include file:lineno information in the events.

Return Value

A LONGTEXT CHARACTER SET latin1 value.

Example

mysql> SELECT sys.ps_thread_stack(37, FALSE) AS thread_stack\G
*************************** 1. row ***************************
thread_stack: {"rankdir": "LR","nodesep": "0.10",
"stack_created": "2014-02-19 13:39:03", "mysql_version": "5.7.3-m13",
"mysql_user": "root@localhost","events": [{"nesting_event_id": "0",
"event_id": "10", "timer_wait": 256.35, "event_info": "sql/select",
"wait_info": "select @@version_comment limit 1\nerrors: 0\nwarnings: 0\nlock time:
...

26.4.5.17 The ps_thread_trx_info() Function

Returns a JSON object containing information about a given thread. The information includes the
current transaction, and the statements it has already executed, derived from the Performance Schema

4466

sys Schema Stored Functions

events_transactions_current and events_statements_history tables. (The consumers for
those tables must be enabled to obtain full data in the JSON object.)

If the output exceeds the truncation length (65535 by default), a JSON error object is returned, such as:

{ "error": "Trx info truncated: Row 6 was cut by GROUP_CONCAT()" }

Similar error objects are returned for other warnings and exceptions raised during function execution.

Parameters

• in_thread_id BIGINT UNSIGNED: The thread ID for which to return transaction information. The
value should match the THREAD_ID column from some Performance Schema threads table row.

Configuration Options

ps_thread_trx_info() operation can be modified using the following configuration options or their
corresponding user-defined variables (see Section 26.4.2.1, “The sys_config Table”):

• ps_thread_trx_info.max_length, @sys.ps_thread_trx_info.max_length

The maximum length of the output. The default is 65535.

Return Value

A LONGTEXT value.

Example

mysql> SELECT sys.ps_thread_trx_info(48)\G
*************************** 1. row ***************************
sys.ps_thread_trx_info(48): [
 {
 "time": "790.70 us",
 "state": "COMMITTED",
 "mode": "READ WRITE",
 "autocommitted": "NO",
 "gtid": "AUTOMATIC",
 "isolation": "REPEATABLE READ",
 "statements_executed": [
 {
 "sql_text": "INSERT INTO info VALUES (1, \'foo\')",
 "time": "471.02 us",
 "schema": "trx",
 "rows_examined": 0,
 "rows_affected": 1,
 "rows_sent": 0,
 "tmp_tables": 0,
 "tmp_disk_tables": 0,
 "sort_rows": 0,
 "sort_merge_passes": 0
 },
 {
 "sql_text": "COMMIT",
 "time": "254.42 us",
 "schema": "trx",
 "rows_examined": 0,
 "rows_affected": 0,
 "rows_sent": 0,
 "tmp_tables": 0,
 "tmp_disk_tables": 0,
 "sort_rows": 0,
 "sort_merge_passes": 0

4467

sys Schema Stored Functions

 }
]
 },
 {
 "time": "426.20 us",
 "state": "COMMITTED",
 "mode": "READ WRITE",
 "autocommitted": "NO",
 "gtid": "AUTOMATIC",
 "isolation": "REPEATABLE READ",
 "statements_executed": [
 {
 "sql_text": "INSERT INTO info VALUES (2, \'bar\')",
 "time": "107.33 us",
 "schema": "trx",
 "rows_examined": 0,
 "rows_affected": 1,
 "rows_sent": 0,
 "tmp_tables": 0,
 "tmp_disk_tables": 0,
 "sort_rows": 0,
 "sort_merge_passes": 0
 },
 {
 "sql_text": "COMMIT",
 "time": "213.23 us",
 "schema": "trx",
 "rows_examined": 0,
 "rows_affected": 0,
 "rows_sent": 0,
 "tmp_tables": 0,
 "tmp_disk_tables": 0,
 "sort_rows": 0,
 "sort_merge_passes": 0
 }
]
 }
]

26.4.5.18 The quote_identifier() Function

Given a string argument, this function produces a quoted identifier suitable for inclusion in SQL statements.
This is useful when a value to be used as an identifier is a reserved word or contains backtick (`)
characters. It was added in MySQL 5.7.14.

Parameters

in_identifier TEXT: The identifier to quote.

Return Value

A TEXT value.

Example

mysql> SELECT sys.quote_identifier('plain');
+-------------------------------+
| sys.quote_identifier('plain') |
+-------------------------------+
| `plain` |
+-------------------------------+
mysql> SELECT sys.quote_identifier('trick`ier');
+-----------------------------------+
| sys.quote_identifier('trick`ier') |

4468

sys Schema Stored Functions

+-----------------------------------+
| `trick``ier` |
+-----------------------------------+
mysql> SELECT sys.quote_identifier('integer');
+---------------------------------+
| sys.quote_identifier('integer') |
+---------------------------------+
| `integer` |
+---------------------------------+

26.4.5.19 The sys_get_config() Function

Given a configuration option name, returns the option value from the sys_config table, or the provided
default value (which may be NULL) if the option does not exist in the table.

If sys_get_config() returns the default value and that value is NULL, it is expected that the caller is
able to handle NULL for the given configuration option.

By convention, routines that call sys_get_config() first check whether the corresponding user-defined
variable exists and is non-NULL. If so, the routine uses the variable value without reading the sys_config
table. If the variable does not exist or is NULL, the routine reads the option value from the table and sets
the user-defined variable to that value. For more information about the relationship between configuration
options and their corresponding user-defined variables, see Section 26.4.2.1, “The sys_config Table”.

If you want to check whether the configuration option has already been set and, if not, use the return
value of sys_get_config(), you can use IFNULL(...) (see example later). However, this should
not be done inside a loop (for example, for each row in a result set) because for repeated calls where the
assignment is needed only in the first iteration, using IFNULL(...) is expected to be significantly slower
than using an IF (...) THEN ... END IF; block (see example later).

Parameters

• in_variable_name VARCHAR(128): The name of the configuration option for which to return the
value.

• in_default_value VARCHAR(128): The default value to return if the configuration option is not
found in the sys_config table.

Return Value

A VARCHAR(128) value.

Example

Get a configuration value from the sys_config table, falling back to 128 as the default if the option is not
present in the table:

mysql> SELECT sys.sys_get_config('statement_truncate_len', 128) AS Value;
+-------+
| Value |
+-------+
| 64 |
+-------+

One-liner example: Check whether the option is already set; if not, assign the IFNULL(...) result (using
the value from the sys_config table):

mysql> SET @sys.statement_truncate_len =
 IFNULL(@sys.statement_truncate_len,
 sys.sys_get_config('statement_truncate_len', 64));

4469

sys Schema Stored Functions

IF (...) THEN ... END IF; block example: Check whether the option is already set; if not, assign
the value from the sys_config table:

IF (@sys.statement_truncate_len IS NULL) THEN
 SET @sys.statement_truncate_len = sys.sys_get_config('statement_truncate_len', 64);
END IF;

26.4.5.20 The version_major() Function

This function returns the major version of the MySQL server.

Parameters

None.

Return Value

A TINYINT UNSIGNED value.

Example

mysql> SELECT VERSION(), sys.version_major();
+------------------+---------------------+
| VERSION() | sys.version_major() |
+------------------+---------------------+
| 5.7.24-debug-log | 5 |
+------------------+---------------------+

26.4.5.21 The version_minor() Function

This function returns the minor version of the MySQL server.

Parameters

None.

Return Value

A TINYINT UNSIGNED value.

Example

mysql> SELECT VERSION(), sys.version_minor();
+------------------+---------------------+
| VERSION() | sys.version_minor() |
+------------------+---------------------+
| 5.7.24-debug-log | 7 |
+------------------+---------------------+

26.4.5.22 The version_patch() Function

This function returns the patch release version of the MySQL server.

Parameters

None.

Return Value

A TINYINT UNSIGNED value.

4470

sys Schema Stored Functions

Example

mysql> SELECT VERSION(), sys.version_patch();
+------------------+---------------------+
| VERSION() | sys.version_patch() |
+------------------+---------------------+
| 5.7.24-debug-log | 24 |
+------------------+---------------------+

4471

4472

Chapter 27 Connectors and APIs

Table of Contents
27.1 MySQL Connector/C++ ... 4476
27.2 MySQL Connector/J .. 4476
27.3 MySQL Connector/NET ... 4476
27.4 MySQL Connector/ODBC .. 4476
27.5 MySQL Connector/Python ... 4476
27.6 libmysqld, the Embedded MySQL Server Library .. 4476

27.6.1 Compiling Programs with libmysqld ... 4477
27.6.2 Restrictions When Using the Embedded MySQL Server ... 4478
27.6.3 Options with the Embedded Server ... 4478
27.6.4 Embedded Server Examples ... 4479

27.7 MySQL C API ... 4482
27.8 MySQL PHP API .. 4482
27.9 MySQL Perl API ... 4482
27.10 MySQL Python API ... 4483
27.11 MySQL Ruby APIs .. 4483

27.11.1 The MySQL/Ruby API .. 4484
27.11.2 The Ruby/MySQL API .. 4484

27.12 MySQL Tcl API ... 4484
27.13 MySQL Eiffel Wrapper ... 4484

MySQL Connectors provide connectivity to the MySQL server for client programs. APIs provide low-level
access to MySQL resources using either the classic MySQL protocol or X Protocol. Both Connectors and
the APIs enable you to connect and execute MySQL statements from another language or environment,
including ODBC, Java (JDBC), C++, Python, PHP, Perl, Ruby, and native C and embedded MySQL
instances.

MySQL Connectors

Oracle develops a number of connectors:

• Connector/C++ enables C++ applications to connect to MySQL.

• Connector/J provides driver support for connecting to MySQL from Java applications using the standard
Java Database Connectivity (JDBC) API.

• Connector/NET enables developers to create .NET applications that connect to MySQL. Connector/NET
implements a fully functional ADO.NET interface and provides support for use with ADO.NET aware
tools. Applications that use Connector/NET can be written in any supported .NET language.

• Connector/ODBC provides driver support for connecting to MySQL using the Open Database
Connectivity (ODBC) API. Support is available for ODBC connectivity from Windows, Unix, and macOS
platforms.

• Connector/Python provides driver support for connecting to MySQL from Python applications using an
API that is compliant with the Python DB API version 2.0. No additional Python modules or MySQL client
libraries are required.

The MySQL C API

For direct access to using MySQL natively within a C application, there are two methods:

4473

https://dev.mysql.com/doc/connector-cpp/9.4/en/
https://dev.mysql.com/doc/connector-j/en/
https://dev.mysql.com/doc/connector-net/en/
https://dev.mysql.com/doc/connector-odbc/en/
https://dev.mysql.com/doc/connector-python/en/
http://www.python.org/dev/peps/pep-0249/

Third-Party MySQL APIs

• The C API provides low-level access to the MySQL client/server protocol through the libmysqlclient
client library. This is the primary method used to connect to an instance of the MySQL server, and is
used both by MySQL command-line clients and many of the MySQL Connectors and third-party APIs
detailed here.

libmysqlclient is included in MySQL distributions.

• libmysqld is an embedded MySQL server library that enables you to embed an instance of the MySQL
server into your C applications.

libmysqld is included in MySQL distributions.

Note

The libmysqld embedded server library is deprecated as of MySQL 5.7.19 and
is removed in MySQL 8.0.

See also MySQL C API Implementations.

To access MySQL from a C application, or to build an interface to MySQL for a language not supported by
the Connectors or APIs in this chapter, the C API is where to start. A number of programmer's utilities are
available to help with the process; see Section 4.7, “Program Development Utilities”.

Third-Party MySQL APIs

The remaining APIs described in this chapter provide an interface to MySQL from specific application
languages. These third-party solutions are not developed or supported by Oracle. Basic information on
their usage and abilities is provided here for reference purposes only.

All the third-party language APIs are developed using one of two methods, using libmysqlclient or by
implementing a native driver. The two solutions offer different benefits:

• Using libmysqlclient offers complete compatibility with MySQL because it uses the same libraries
as the MySQL client applications. However, the feature set is limited to the implementation and
interfaces exposed through libmysqlclient and the performance may be lower as data is copied
between the native language, and the MySQL API components.

• Native drivers are an implementation of the MySQL network protocol entirely within the host language
or environment. Native drivers are fast, as there is less copying of data between components, and they
can offer advanced functionality not available through the standard MySQL API. Native drivers are also
easier for end users to build and deploy because no copy of the MySQL client libraries is needed to build
the native driver components.

Table 27.1, “MySQL APIs and Interfaces” lists many of the libraries and interfaces available for MySQL.

Table 27.1 MySQL APIs and Interfaces

Environment API Type Notes

Ada GNU Ada MySQL
Bindings

libmysqlclient See MySQL Bindings for
GNU Ada

C C API libmysqlclient See MySQL 5.7 C API
Developer Guide.

C++ Connector/C++ libmysqlclient See MySQL Connector/C
++ 9.5 Developer Guide.

MySQL++ libmysqlclient See MySQL++ website.

4474

https://dev.mysql.com/doc/c-api/5.7/en/
https://dev.mysql.com/doc/c-api/5.7/en/c-api-implementations.html
https://dev.mysql.com/doc/c-api/5.7/en/
http://gnade.sourceforge.net/
http://gnade.sourceforge.net/
https://dev.mysql.com/doc/c-api/5.7/en/
https://dev.mysql.com/doc/c-api/5.7/en/
https://dev.mysql.com/doc/connector-cpp/9.4/en/
https://dev.mysql.com/doc/connector-cpp/9.4/en/
http://tangentsoft.net/mysql++/doc/

Third-Party MySQL APIs

Environment API Type Notes

MySQL wrapped libmysqlclient See MySQL wrapped.

Cocoa MySQL-Cocoa libmysqlclient Compatible with
the Objective-C
Cocoa environment.
See http://mysql-
cocoa.sourceforge.net/

D MySQL for D libmysqlclient See MySQL for D.

Eiffel Eiffel MySQL libmysqlclient See Section 27.13,
“MySQL Eiffel Wrapper”.

Erlang erlang-mysql-driver libmysqlclient See erlang-mysql-
driver.

Haskell Haskell MySQL Bindings Native Driver See Brian O'Sullivan's
pure Haskell MySQL
bindings.

hsql-mysql libmysqlclient See MySQL driver for
Haskell.

Java/JDBC Connector/J Native Driver See MySQL Connector/J
Developer Guide.

Kaya MyDB libmysqlclient See MyDB.

Lua LuaSQL libmysqlclient See LuaSQL.

.NET/Mono Connector/NET Native Driver See MySQL Connector/
NET Developer Guide.

Objective Caml OBjective Caml MySQL
Bindings

libmysqlclient See MySQL Bindings for
Objective Caml.

Octave Database bindings for
GNU Octave

libmysqlclient See Database bindings
for GNU Octave.

ODBC Connector/ODBC libmysqlclient See MySQL Connector/
ODBC Developer Guide.

Perl DBI/DBD::mysql libmysqlclient See Section 27.9,
“MySQL Perl API”.

Net::MySQL Native Driver See Net::MySQL at
CPAN

PHP mysql, ext/mysql
interface (deprecated)

libmysqlclient See MySQL and PHP.

mysqli, ext/mysqli
interface

libmysqlclient See MySQL and PHP.

PDO_MYSQL libmysqlclient See MySQL and PHP.

PDO mysqlnd Native Driver

Python Connector/Python Native Driver See MySQL Connector/
Python Developer Guide.

Python Connector/Python C
Extension

libmysqlclient See MySQL Connector/
Python Developer Guide.

MySQLdb libmysqlclient See Section 27.10,
“MySQL Python API”.

4475

http://www.alhem.net/project/mysql/
http://mysql-cocoa.sourceforge.net/
http://mysql-cocoa.sourceforge.net/
http://www.steinmole.de/d/
http://code.google.com/p/erlang-mysql-driver/
http://code.google.com/p/erlang-mysql-driver/
http://www.serpentine.com/blog/software/mysql/
http://www.serpentine.com/blog/software/mysql/
http://www.serpentine.com/blog/software/mysql/
http://hackage.haskell.org/cgi-bin/hackage-scripts/package/hsql-mysql-1.7
http://hackage.haskell.org/cgi-bin/hackage-scripts/package/hsql-mysql-1.7
https://dev.mysql.com/doc/connector-j/en/
https://dev.mysql.com/doc/connector-j/en/
http://kayalang.org/library/latest/MyDB
http://keplerproject.github.io/luasql/doc/us/
https://dev.mysql.com/doc/connector-net/en/
https://dev.mysql.com/doc/connector-net/en/
http://raevnos.pennmush.org/code/ocaml-mysql/
http://raevnos.pennmush.org/code/ocaml-mysql/
http://octave.sourceforge.net/database/index.html
http://octave.sourceforge.net/database/index.html
https://dev.mysql.com/doc/connector-odbc/en/
https://dev.mysql.com/doc/connector-odbc/en/
http://search.cpan.org/dist/Net-MySQL/MySQL.pm
https://dev.mysql.com/doc/apis-php/en/
https://dev.mysql.com/doc/apis-php/en/
https://dev.mysql.com/doc/apis-php/en/
https://dev.mysql.com/doc/connector-python/en/
https://dev.mysql.com/doc/connector-python/en/
https://dev.mysql.com/doc/connector-python/en/
https://dev.mysql.com/doc/connector-python/en/

MySQL Connector/C++

Environment API Type Notes

Ruby mysql2 libmysqlclient Uses libmysqlclient.
See Section 27.11,
“MySQL Ruby APIs”.

Scheme Myscsh libmysqlclient See Myscsh.

SPL sql_mysql libmysqlclient See sql_mysql for SPL.

Tcl MySQLtcl libmysqlclient See Section 27.12,
“MySQL Tcl API”.

27.1 MySQL Connector/C++
The MySQL Connector/C++ manual is published in standalone form, not as part of the MySQL Reference
Manual. For information, see these documents:

• Main manual: MySQL Connector/C++ 9.5 Developer Guide

• Release notes: MySQL Connector/C++ Release Notes

27.2 MySQL Connector/J
The MySQL Connector/J manual is published in standalone form, not as part of the MySQL Reference
Manual. For information, see these documents:

• Main manual: MySQL Connector/J Developer Guide

• Release notes: MySQL Connector/J Release Notes

27.3 MySQL Connector/NET
The MySQL Connector/NET manual is published in standalone form, not as part of the MySQL Reference
Manual. For information, see these documents:

• Main manual: MySQL Connector/NET Developer Guide

• Release notes: MySQL Connector/NET Release Notes

27.4 MySQL Connector/ODBC
The MySQL Connector/ODBC manual is published in standalone form, not as part of the MySQL
Reference Manual. For information, see these documents:

• Main manual: MySQL Connector/ODBC Developer Guide

• Release notes: MySQL Connector/ODBC Release Notes

27.5 MySQL Connector/Python
The MySQL Connector/Python manual is published in standalone form, not as part of the MySQL
Reference Manual. For information, see these documents:

• Main manual: MySQL Connector/Python Developer Guide

• Release notes: MySQL Connector/Python Release Notes

27.6 libmysqld, the Embedded MySQL Server Library

4476

https://github.com/aehrisch/myscsh
http://www.clifford.at/spl/spldoc/sql_mysql.html
https://dev.mysql.com/doc/connector-cpp/9.4/en/
https://dev.mysql.com/doc/relnotes/connector-cpp/en/
https://dev.mysql.com/doc/connector-j/en/
https://dev.mysql.com/doc/relnotes/connector-j/en/
https://dev.mysql.com/doc/connector-net/en/
https://dev.mysql.com/doc/relnotes/connector-net/en/
https://dev.mysql.com/doc/connector-odbc/en/
https://dev.mysql.com/doc/relnotes/connector-odbc/en/
https://dev.mysql.com/doc/connector-python/en/
https://dev.mysql.com/doc/relnotes/connector-python/en/

Compiling Programs with libmysqld

The embedded MySQL server library makes it possible to run a full-featured MySQL server inside a
client application. The main benefits are increased speed and more simple management for embedded
applications.

Note

The libmysqld embedded server library is deprecated as of MySQL 5.7.19 and is
removed in MySQL 8.0.

The embedded server library is based on the client/server version of MySQL, which is written in C/C++.
Consequently, the embedded server also is written in C/C++. There is no embedded server available in
other languages.

The API is identical for the embedded MySQL version and the client/server version. To change a threaded
application to use the embedded library, you normally only have to add calls to the following functions.

Table 27.2 MySQL Embedded Server Library Functions

Function When to Call

mysql_library_init() Call it before any other MySQL function is called,
preferably early in the main() function.

mysql_library_end() Call it before your program exits.

mysql_thread_init() Call it in each thread you create that accesses
MySQL.

mysql_thread_end() Call it before calling pthread_exit().

Then, link your code with libmysqld.a instead of libmysqlclient.a. To ensure binary compatibility
between your application and the server library, always compile your application against headers for
the same series of MySQL that was used to compile the server library. For example, if libmysqld was
compiled against MySQL 5.6 headers, do not compile your application against MySQL 5.7 headers, or vice
versa.

Because the mysql_library_xxx() functions are also included in libmysqlclient.a, you can
change between the embedded and the client/server version by just linking your application with the right
library. See mysql_library_init().

One difference between the embedded server and the standalone server is that for the embedded server,
authentication for connections is disabled by default.

27.6.1 Compiling Programs with libmysqld

In precompiled binary MySQL distributions that include libmysqld, the embedded server library, MySQL
builds the library using the appropriate vendor compiler if there is one.

To get a libmysqld library if you build MySQL from source yourself, you should configure MySQL with
the -DWITH_EMBEDDED_SERVER=1 option. See Section 2.8.7, “MySQL Source-Configuration Options”.

When you link your program with libmysqld, you must also include the system-specific pthread
libraries and some libraries that the MySQL server uses. You can get the full list of libraries by executing
mysql_config --libmysqld-libs.

The correct flags for compiling and linking a threaded program must be used, even if you do not directly
call any thread functions in your code.

To compile a C program to include the necessary files to embed the MySQL server library into an
executable version of a program, the compiler needs to know where to find various files and needs

4477

https://dev.mysql.com/doc/c-api/5.7/en/mysql-library-init.html
https://dev.mysql.com/doc/c-api/5.7/en/mysql-library-end.html
https://dev.mysql.com/doc/c-api/5.7/en/mysql-thread-init.html
https://dev.mysql.com/doc/c-api/5.7/en/mysql-thread-end.html
https://dev.mysql.com/doc/c-api/5.7/en/mysql-library-init.html

Restrictions When Using the Embedded MySQL Server

instructions on how to compile the program. The following example shows how a program could be
compiled from the command line, assuming that you are using gcc, use the GNU C compiler:

gcc mysql_test.c -o mysql_test \
`/usr/local/mysql/bin/mysql_config --include --libmysqld-libs`

Immediately following the gcc command is the name of the C program source file. After it, the -o option
is given to indicate that the file name that follows is the name that the compiler is to give to the output file,
the compiled program. The next line of code tells the compiler to obtain the location of the include files
and libraries and other settings for the system on which it is compiled. The mysql_config command is
contained in backticks, not single quotation marks.

On some non-gcc platforms, the embedded library depends on C++ runtime libraries and linking against
the embedded library might result in missing-symbol errors. To solve this, link using a C++ compiler or
explicitly list the required libraries on the link command line.

27.6.2 Restrictions When Using the Embedded MySQL Server

The embedded server has the following limitations:

• No loadable functions.

• No stack trace on core dump.

• You cannot set this up as a source or a replica (no replication).

• Very large result sets may be unusable on low memory systems.

• You cannot connect to an embedded server from an outside process with sockets or TCP/IP. However,
you can connect to an intermediate application, which in turn can connect to an embedded server on the
behalf of a remote client or outside process.

• libmysqld does not support encrypted connections. An implication is that if an application linked
against libmysqld establishes a connection to a remote server, the connection cannot be encrypted.

• InnoDB is not reentrant in the embedded server and cannot be used for multiple connections, either
successively or simultaneously.

• The Event Scheduler is not available. Because of this, the event_scheduler system variable is
disabled.

• The Performance Schema is not available.

• The embedded server cannot share the same secure_file_priv directory with another
server. As of MySQL 5.7.8, the default value for this directory can be set at build time with the
INSTALL_SECURE_FILE_PRIV_EMBEDDEDDIR CMake option.

Some of these limitations can be changed by editing the mysql_embed.h include file and recompiling
MySQL.

27.6.3 Options with the Embedded Server

Any options that may be given with the mysqld server daemon, may be used with an embedded server
library. Server options may be given in an array as an argument to the mysql_library_init(),
which initializes the server. They also may be given in an option file like my.cnf. To specify an option
file for a C program, use the --defaults-file option as one of the elements of the second argument
of the mysql_library_init() function. See mysql_library_init(), for more information on the
mysql_library_init() function.

4478

https://dev.mysql.com/doc/c-api/5.7/en/mysql-library-init.html
https://dev.mysql.com/doc/c-api/5.7/en/mysql-library-init.html
https://dev.mysql.com/doc/c-api/5.7/en/mysql-library-init.html
https://dev.mysql.com/doc/c-api/5.7/en/mysql-library-init.html

Embedded Server Examples

Using option files can make it easier to switch between a client/server application and one where MySQL
is embedded. Put common options under the [server] group. These are read by both MySQL versions.
Client/server-specific options should go under the [mysqld] section. Put options specific to the embedded
MySQL server library in the [embedded] section. Options specific to applications go under section labeled
[ApplicationName_SERVER]. See Section 4.2.2.2, “Using Option Files”.

27.6.4 Embedded Server Examples

These two example programs should work without any changes on a Linux or FreeBSD system. For other
operating systems, minor changes are needed, mostly with file paths. These examples are designed to
give enough details for you to understand the problem, without the clutter that is a necessary part of a real
application. The first example is very straightforward. The second example is a little more advanced with
some error checking. The first is followed by a command-line entry for compiling the program. The second
is followed by a GNUmake file that may be used for compiling instead.

Example 1

test1_libmysqld.c

#include <stdio.h>
#include <stdlib.h>
#include <stdarg.h>
#include "mysql.h"

MYSQL *mysql;
MYSQL_RES *results;
MYSQL_ROW record;

static char *server_options[] = \
 { "mysql_test", "--defaults-file=my.cnf", NULL };
int num_elements = (sizeof(server_options) / sizeof(char *)) - 1;

static char *server_groups[] = { "libmysqld_server",
 "libmysqld_client", NULL };

int main(void)
{
 mysql_library_init(num_elements, server_options, server_groups);
 mysql = mysql_init(NULL);
 mysql_options(mysql, MYSQL_READ_DEFAULT_GROUP, "libmysqld_client");
 mysql_options(mysql, MYSQL_OPT_USE_EMBEDDED_CONNECTION, NULL);

 mysql_real_connect(mysql, NULL,NULL,NULL, "database1", 0,NULL,0);

 mysql_query(mysql, "SELECT column1, column2 FROM table1");

 results = mysql_store_result(mysql);

 while((record = mysql_fetch_row(results))) {
 printf("%s - %s \n", record[0], record[1]);
 }

 mysql_free_result(results);
 mysql_close(mysql);
 mysql_library_end();

 return 0;
}

Here is the command line for compiling the above program:

gcc test1_libmysqld.c -o test1_libmysqld \
 `/usr/local/mysql/bin/mysql_config --include --libmysqld-libs`

4479

Embedded Server Examples

Example 2

To try the example, create an test2_libmysqld directory at the same level as the MySQL source
directory. Save the test2_libmysqld.c source and the GNUmakefile in the directory, and run GNU
make from inside the test2_libmysqld directory.

test2_libmysqld.c

/*
 * A simple example client, using the embedded MySQL server library
*/

#include <mysql.h>
#include <stdarg.h>
#include <stdio.h>
#include <stdlib.h>

MYSQL *db_connect(const char *dbname);
void db_disconnect(MYSQL *db);
void db_do_query(MYSQL *db, const char *query);

const char *server_groups[] = {
 "test2_libmysqld_SERVER", "embedded", "server", NULL
};

int
main(int argc, char **argv)
{
 MYSQL *one, *two;

 /* mysql_library_init() must be called before any other mysql
 * functions.
 *
 * You can use mysql_library_init(0, NULL, NULL), and it
 * initializes the server using groups = {
 * "server", "embedded", NULL
 * }.
 *
 * In your $HOME/.my.cnf file, you probably want to put:

[test2_libmysqld_SERVER]
language = /path/to/source/of/mysql/sql/share/english

 * You could, of course, modify argc and argv before passing
 * them to this function. Or you could create new ones in any
 * way you like. But all of the arguments in argv (except for
 * argv[0], which is the program name) should be valid options
 * for the MySQL server.
 *
 * If you link this client against the normal mysqlclient
 * library, this function is just a stub that does nothing.
 */
 mysql_library_init(argc, argv, (char **)server_groups);

 one = db_connect("test");
 two = db_connect(NULL);

 db_do_query(one, "SHOW TABLE STATUS");
 db_do_query(two, "SHOW DATABASES");

 mysql_close(two);
 mysql_close(one);

 /* This must be called after all other mysql functions */
 mysql_library_end();

4480

Embedded Server Examples

 exit(EXIT_SUCCESS);
}

static void
die(MYSQL *db, char *fmt, ...)
{
 va_list ap;
 va_start(ap, fmt);
 vfprintf(stderr, fmt, ap);
 va_end(ap);
 (void)putc('\n', stderr);
 if (db)
 db_disconnect(db);
 exit(EXIT_FAILURE);
}

MYSQL *
db_connect(const char *dbname)
{
 MYSQL *db = mysql_init(NULL);
 if (!db)
 die(db, "mysql_init failed: no memory");
 /*
 * Notice that the client and server use separate group names.
 * This is critical, because the server does not accept the
 * client's options, and vice versa.
 */
 mysql_options(db, MYSQL_READ_DEFAULT_GROUP, "test2_libmysqld_CLIENT");
 if (!mysql_real_connect(db, NULL, NULL, NULL, dbname, 0, NULL, 0))
 die(db, "mysql_real_connect failed: %s", mysql_error(db));

 return db;
}

void
db_disconnect(MYSQL *db)
{
 mysql_close(db);
}

void
db_do_query(MYSQL *db, const char *query)
{
 if (mysql_query(db, query) != 0)
 goto err;

 if (mysql_field_count(db) > 0)
 {
 MYSQL_RES *res;
 MYSQL_ROW row, end_row;
 int num_fields;

 if (!(res = mysql_store_result(db)))
 goto err;
 num_fields = mysql_num_fields(res);
 while ((row = mysql_fetch_row(res)))
 {
 (void)fputs(">> ", stdout);
 for (end_row = row + num_fields; row < end_row; ++row)
 (void)printf("%s\t", row ? (char*)*row : "NULL");
 (void)fputc('\n', stdout);
 }
 (void)fputc('\n', stdout);
 mysql_free_result(res);
 }
 else
 (void)printf("Affected rows: %lld\n", mysql_affected_rows(db));

4481

MySQL C API

 return;

err:
 die(db, "db_do_query failed: %s [%s]", mysql_error(db), query);
}

GNUmakefile

This assumes the MySQL software is installed in /usr/local/mysql
inc := /usr/local/mysql/include/mysql
lib := /usr/local/mysql/lib

If you have not installed the MySQL software yet, try this instead
#inc := $(HOME)/mysql-5.7/include
#lib := $(HOME)/mysql-5.7/libmysqld

CC := gcc
CPPFLAGS := -I$(inc) -D_THREAD_SAFE -D_REENTRANT
CFLAGS := -g -W -Wall
LDFLAGS := -static
You can change -lmysqld to -lmysqlclient to use the
client/server library
LDLIBS = -L$(lib) -lmysqld -lm -ldl -lcrypt

ifneq (,$(shell grep FreeBSD /COPYRIGHT 2>/dev/null))
FreeBSD
LDFLAGS += -pthread
else
Assume Linux
LDLIBS += -lpthread
endif

This works for simple one-file test programs
sources := $(wildcard *.c)
objects := $(patsubst %c,%o,$(sources))
targets := $(basename $(sources))

all: $(targets)

clean:
 rm -f $(targets) $(objects) *.core

27.7 MySQL C API

The MySQL C API Developer Guide is published in standalone form, not as part of the MySQL Reference
Manual. See MySQL 5.7 C API Developer Guide.

27.8 MySQL PHP API

The MySQL PHP API manual is now published in standalone form, not as part of the MySQL Reference
Manual. See MySQL and PHP.

27.9 MySQL Perl API

The Perl DBI module provides a generic interface for database access. You can write a DBI script that
works with many different database engines without change. To use DBI with MySQL, install the following:

1. The DBI module.

2. The DBD::mysql module. This is the DataBase Driver (DBD) module for Perl.

4482

https://dev.mysql.com/doc/c-api/5.7/en/
https://dev.mysql.com/doc/apis-php/en/

MySQL Python API

3. Optionally, the DBD module for any other type of database server you want to access.

Perl DBI is the recommended Perl interface. It replaces an older interface called mysqlperl, which should
be considered obsolete.

These sections contain information about using Perl with MySQL and writing MySQL applications in Perl:

• For installation instructions for Perl DBI support, see Section 2.12, “Perl Installation Notes”.

• For an example of reading options from option files, see Section 5.7.4, “Using Client Programs in a
Multiple-Server Environment”.

• For secure coding tips, see Section 6.1.1, “Security Guidelines”.

• For debugging tips, see Section 5.8.1.4, “Debugging mysqld under gdb”.

• For some Perl-specific environment variables, see Section 4.9, “Environment Variables”.

• For considerations for running on macOS, see Section 2.4, “Installing MySQL on macOS”.

• For ways to quote string literals, see Section 9.1.1, “String Literals”.

DBI information is available at the command line, online, or in printed form:

• Once you have the DBI and DBD::mysql modules installed, you can get information about them at the
command line with the perldoc command:

$> perldoc DBI
$> perldoc DBI::FAQ
$> perldoc DBD::mysql

You can also use pod2man, pod2html, and so on to translate this information into other formats.

• For online information about Perl DBI, visit the DBI website, http://dbi.perl.org/. That site hosts a general
DBI mailing list.

• For printed information, the official DBI book is Programming the Perl DBI (Alligator Descartes and Tim
Bunce, O'Reilly & Associates, 2000). Information about the book is available at the DBI website, http://
dbi.perl.org/.

27.10 MySQL Python API

MySQLdb is a third-party driver that provides MySQL support for Python, compliant with the Python DB API
version 2.0. It can be found at http://sourceforge.net/projects/mysql-python/.

The new MySQL Connector/Python component provides an interface to the same Python API, and is built
into the MySQL Server and supported by Oracle. See MySQL Connector/Python Developer Guide for
details on the Connector, as well as coding guidelines for Python applications and sample Python code.

27.11 MySQL Ruby APIs

The mysql2 Ruby gem provides an API for connecting to MySQL, performing queries, and iterating
through results; it is intended to support MySQL 5.7 and MySQL 8.0. For more information, see the
mysql2 page at RubyGems.org or the project's GitHub page.

For background and syntax information about the Ruby language, see Ruby Programming Language.

4483

http://dbi.perl.org/
http://dbi.perl.org/
http://dbi.perl.org/
http://sourceforge.net/projects/mysql-python/
https://dev.mysql.com/doc/connector-python/en/
https://rubygems.org/gems/mysql2/
https://github.com/brianmario/mysql2
http://www.ruby-lang.org

The MySQL/Ruby API

27.11.1 The MySQL/Ruby API

The MySQL/Ruby module provides access to MySQL databases using Ruby through libmysqlclient.

For information on installing the module, and the functions exposed, see MySQL/Ruby.

27.11.2 The Ruby/MySQL API

The Ruby/MySQL module provides access to MySQL databases using Ruby through a native driver
interface using the MySQL network protocol.

For information on installing the module, and the functions exposed, see Ruby/MySQL.

27.12 MySQL Tcl API

MySQLtcl is a simple API for accessing a MySQL database server from the Tcl programming language. It
can be found at http://www.xdobry.de/mysqltcl/.

27.13 MySQL Eiffel Wrapper

Eiffel MySQL is an interface to the MySQL database server using the Eiffel programming language, written
by Michael Ravits. It can be found at http://efsa.sourceforge.net/archive/ravits/mysql.htm.

4484

http://tmtm.org/en/mysql/ruby/
http://tmtm.org/en/ruby/mysql/README_en.html
http://en.wikipedia.org/wiki/Tcl
http://www.xdobry.de/mysqltcl/
http://en.wikipedia.org/wiki/Eiffel_(programming_language)
http://efsa.sourceforge.net/archive/ravits/mysql.htm

Chapter 28 MySQL Enterprise Edition

Table of Contents
28.1 MySQL Enterprise Backup Overview .. 4485
28.2 MySQL Enterprise Security Overview ... 4486
28.3 MySQL Enterprise Encryption Overview ... 4486
28.4 MySQL Enterprise Audit Overview ... 4487
28.5 MySQL Enterprise Firewall Overview ... 4487
28.6 MySQL Enterprise Thread Pool Overview .. 4487
28.7 MySQL Enterprise Data Masking and De-Identification Overview ... 4487
28.8 MySQL Telemetry ... 4488

MySQL Enterprise Edition is a commercial product. Like MySQL Community Edition, MySQL Enterprise
Edition includes MySQL Server, a fully integrated transaction-safe, ACID-compliant database with full
commit, rollback, crash-recovery, and row-level locking capabilities. In addition, MySQL Enterprise Edition
includes the following components designed to provide monitoring and online backup, as well as improved
security and scalability:

The following sections briefly discuss each of these components and indicate where to find more detailed
information. To learn more about commercial products, see https://www.mysql.com/products/.

• MySQL Enterprise Backup

• MySQL Enterprise Security

• MySQL Enterprise Encryption

• MySQL Enterprise Audit

• MySQL Enterprise Firewall

• MySQL Enterprise Thread Pool

• MySQL Enterprise Data Masking and De-Identification

28.1 MySQL Enterprise Backup Overview
MySQL Enterprise Backup performs hot backup operations for MySQL databases. The product is
architected for efficient and reliable backups of tables created by the InnoDB storage engine. For
completeness, it can also back up tables from MyISAM and other storage engines.

The following discussion briefly summarizes MySQL Enterprise Backup. For more information, see the
MySQL Enterprise Backup manual, available at https://dev.mysql.com/doc/mysql-enterprise-backup/en/.

Hot backups are performed while the database is running and applications are reading and writing to
it. This type of backup does not block normal database operations, and it captures even changes that
occur while the backup is happening. For these reasons, hot backups are desirable when your database
“grows up” -- when the data is large enough that the backup takes significant time, and when your data
is important enough to your business that you must capture every last change, without taking your
application, website, or web service offline.

MySQL Enterprise Backup does a hot backup of all tables that use the InnoDB storage engine. For tables
using MyISAM or other non-InnoDB storage engines, it does a “warm” backup, where the database

4485

https://www.mysql.com/products/
https://dev.mysql.com/doc/mysql-enterprise-backup/en/

MySQL Enterprise Security Overview

continues to run, but those tables cannot be modified while being backed up. For efficient backup
operations, you can designate InnoDB as the default storage engine for new tables, or convert existing
tables to use the InnoDB storage engine.

28.2 MySQL Enterprise Security Overview

MySQL Enterprise Edition provides plugins that implement security features using external services:

• MySQL Enterprise Edition includes an authentication plugin that enables MySQL Server to use LDAP
(Lightweight Directory Access Protocol) to authenticate MySQL users. LDAP Authentications supports
user name and password, SASL, and GSSAPI/Kerberos authentication methods to LDAP services. For
more information, see Section 6.4.1.9, “LDAP Pluggable Authentication”.

• MySQL Enterprise Edition includes an authentication plugin that enables MySQL Server to use Native
Kerberos to authenticate MySQL users using there Kerberos Principals. For more information, see
Kerberos Pluggable Authentication.

• MySQL Enterprise Edition includes an authentication plugin that enables MySQL Server to use PAM
(Pluggable Authentication Modules) to authenticate MySQL users. PAM enables a system to use a
standard interface to access various kinds of authentication methods, such as Unix passwords or an
LDAP directory. For more information, see Section 6.4.1.7, “PAM Pluggable Authentication”.

• MySQL Enterprise Edition includes an authentication plugin that performs external authentication on
Windows, enabling MySQL Server to use native Windows services to authenticate client connections.
Users who have logged in to Windows can connect from MySQL client programs to the server based on
the information in their environment without specifying an additional password. For more information, see
Section 6.4.1.8, “Windows Pluggable Authentication”.

• MySQL Enterprise Edition includes a suite of masking and de-identification functions that perform
subsetting, random generation, and dictionary replacement to de-identify strings, numerics, phone
numbers, emails and more. These functions enable masking existing data using several methods such
as obfuscation (removing identifying characteristics), generation of formatted random data, and data
replacement or substitution. For more information, see Section 6.5, “MySQL Enterprise Data Masking
and De-Identification”.

• MySQL Enterprise Edition includes a set of encryption functions based on the OpenSSL library that
expose OpenSSL capabilities at the SQL level. For more information, see Section 28.3, “MySQL
Enterprise Encryption Overview”.

• MySQL Enterprise Edition 5.7 and higher includes a keyring plugin that uses Oracle Key Vault as a
backend for keyring storage. For more information, see Section 6.4.4, “The MySQL Keyring”.

• MySQL Transparent Data Encryption (TDE) provides at-rest encryption for MySQL Server for all files
that might contain sensitive data. For more information, see Section 14.14, “InnoDB Data-at-Rest
Encryption”, Encrypting Binary Log Files and Relay Log Files, and Encrypting Audit Log Files.

For other related Enterprise security features, see Section 28.3, “MySQL Enterprise Encryption Overview”.

28.3 MySQL Enterprise Encryption Overview

MySQL Enterprise Edition includes a set of encryption functions based on the OpenSSL library that expose
OpenSSL capabilities at the SQL level. These functions enable Enterprise applications to perform the
following operations:

• Implement added data protection using public-key asymmetric cryptography

4486

https://dev.mysql.com/doc/refman/8.0/en/kerberos-pluggable-authentication.html
https://dev.mysql.com/doc/refman/8.0/en/replication-binlog-encryption.html

MySQL Enterprise Audit Overview

• Create public and private keys and digital signatures

• Perform asymmetric encryption and decryption

• Use cryptographic hashing for digital signing and data verification and validation

For more information, see Section 6.6, “MySQL Enterprise Encryption”.

For other related Enterprise security features, see Section 28.2, “MySQL Enterprise Security Overview”.

28.4 MySQL Enterprise Audit Overview
MySQL Enterprise Edition includes MySQL Enterprise Audit, implemented using a server plugin. MySQL
Enterprise Audit uses the open MySQL Audit API to enable standard, policy-based monitoring and logging
of connection and query activity executed on specific MySQL servers. Designed to meet the Oracle audit
specification, MySQL Enterprise Audit provides an out of box, easy to use auditing and compliance solution
for applications that are governed by both internal and external regulatory guidelines.

When installed, the audit plugin enables MySQL Server to produce a log file containing an audit record
of server activity. The log contents include when clients connect and disconnect, and what actions they
perform while connected, such as which databases and tables they access.

For more information, see Section 6.4.5, “MySQL Enterprise Audit”.

28.5 MySQL Enterprise Firewall Overview
MySQL Enterprise Edition includes MySQL Enterprise Firewall, an application-level firewall that enables
database administrators to permit or deny SQL statement execution based on matching against allowlists
of accepted statement patterns. This helps harden MySQL Server against attacks such as SQL injection or
attempts to exploit applications by using them outside of their legitimate query workload characteristics.

Each MySQL account registered with the firewall has its own statement allowlist, enabling protection to
be tailored per account. For a given account, the firewall can operate in recording or protecting mode, for
training in the accepted statement patterns or protection against unacceptable statements.

For more information, see Section 6.4.6, “MySQL Enterprise Firewall”.

28.6 MySQL Enterprise Thread Pool Overview
MySQL Enterprise Edition includes MySQL Enterprise Thread Pool, implemented using a server plugin.
The default thread-handling model in MySQL Server executes statements using one thread per client
connection. As more clients connect to the server and execute statements, overall performance degrades.
In MySQL Enterprise Edition, a thread pool plugin provides an alternative thread-handling model designed
to reduce overhead and improve performance. The plugin implements a thread pool that increases server
performance by efficiently managing statement execution threads for large numbers of client connections.

For more information, see Section 5.5.3, “MySQL Enterprise Thread Pool”.

28.7 MySQL Enterprise Data Masking and De-Identification Overview
MySQL Enterprise Edition 5.7 and higher includes MySQL Enterprise Data Masking and De-Identification,
implemented as a plugin library containing a plugin and several loadable functions. Data masking hides
sensitive information by replacing real values with substitutes. MySQL Enterprise Data Masking and De-
Identification functions enable masking existing data using several methods such as obfuscation (removing
identifying characteristics), generation of formatted random data, and data replacement or substitution.

4487

MySQL Telemetry

For more information, see Section 6.5, “MySQL Enterprise Data Masking and De-Identification”.

28.8 MySQL Telemetry

The MySQL telemetry component is based on the OpenTelemetry (OTel) project, an open-source, vendor-
neutral observability framework providing a common observability standard. It enables users to instrument
their applications in order to export observability data: traces, metrics and logs, enabling increased
granularity of debugging and testing.

For more information, see Telemetry.

4488

https://dev.mysql.com/doc/refman/8.4/en/telemetry.html

Chapter 29 MySQL Workbench
MySQL Workbench provides a graphical tool for working with MySQL servers and databases. MySQL
Workbench is developed and tested with MySQL Server 8.0. MySQL Workbench may connect to MySQL
Server 8.4 and higher but some MySQL Workbench features may not function with those newer server
versions.

The following discussion briefly describes MySQL Workbench capabilities. For more information, see the
MySQL Workbench manual, available at https://dev.mysql.com/doc/workbench/en/.

MySQL Workbench provides five main areas of functionality:

• SQL Development: Enables you to create and manage connections to database servers. As well as
enabling you to configure connection parameters, MySQL Workbench provides the capability to execute
SQL queries on the database connections using the built-in SQL Editor. This functionality replaces that
previously provided by the Query Browser standalone application.

• Data Modeling: Enables you to create models of your database schema graphically, reverse and
forward engineer between a schema and a live database, and edit all aspects of your database using
the comprehensive Table Editor. The Table Editor provides easy-to-use facilities for editing Tables,
Columns, Indexes, Triggers, Partitioning, Options, Inserts and Privileges, Routines and Views.

• Server Administration: Enables you to create and administer server instances.

• Data Migration: Allows you to migrate from Microsoft SQL Server, Sybase ASE, SQLite, SQL
Anywhere, PostreSQL, and other RDBMS tables, objects and data to MySQL. Migration also supports
migrating from earlier versions of MySQL to the latest releases.

• MySQL Enterprise Support: Support for Enterprise products such as MySQL Enterprise Backup and
MySQL Audit.

MySQL Workbench is available in two editions, the Community Edition and the Commercial Edition. The
Community Edition is available free of charge. The Commercial Edition provides additional Enterprise
features, such as database documentation generation, at low cost.

4489

https://dev.mysql.com/doc/workbench/en/

4490

Appendix A MySQL 5.7 Frequently Asked Questions

Table of Contents
A.1 MySQL 5.7 FAQ: General ... 4491
A.2 MySQL 5.7 FAQ: Storage Engines .. 4493
A.3 MySQL 5.7 FAQ: Server SQL Mode .. 4494
A.4 MySQL 5.7 FAQ: Stored Procedures and Functions ... 4495
A.5 MySQL 5.7 FAQ: Triggers .. 4499
A.6 MySQL 5.7 FAQ: Views .. 4501
A.7 MySQL 5.7 FAQ: INFORMATION_SCHEMA ... 4502
A.8 MySQL 5.7 FAQ: Migration ... 4502
A.9 MySQL 5.7 FAQ: Security ... 4503
A.10 MySQL 5.7 FAQ: NDB Cluster .. 4505
A.11 MySQL 5.7 FAQ: MySQL Chinese, Japanese, and Korean Character Sets 4518
A.12 MySQL 5.7 FAQ: Connectors & APIs .. 4531
A.13 MySQL 5.7 FAQ: C API, libmysql .. 4531
A.14 MySQL 5.7 FAQ: Replication .. 4532
A.15 MySQL 5.7 FAQ: MySQL Enterprise Thread Pool .. 4536
A.16 MySQL 5.7 FAQ: InnoDB Change Buffer ... 4538
A.17 MySQL 5.7 FAQ: InnoDB Data-at-Rest Encryption ... 4539
A.18 MySQL 5.7 FAQ: Virtualization Support ... 4542

A.1 MySQL 5.7 FAQ: General
A.1.1 Which version of MySQL is production-ready (GA)? .. 4491
A.1.2 Can MySQL do subqueries? .. 4492
A.1.3 Can MySQL perform multiple-table inserts, updates, and deletes? .. 4492
A.1.4 Does MySQL 5.7 have a Query Cache? Does it work on Server, Instance or Database? 4492
A.1.5 Does MySQL have Sequences? ... 4492
A.1.6 Does MySQL have a NOW() function with fractions of seconds? .. 4492
A.1.7 Does MySQL work with multi-core processors? ... 4492
A.1.8 Why do I see multiple processes for mysqld? .. 4493
A.1.9 Can MySQL perform ACID transactions? .. 4493

A.1.1. Which version of MySQL is production-ready (GA)?

MySQL 9.6, 8.4, and 8.0 are actively supported for production use.

The MySQL 9 Innovation series began with the MySQL 9.0.0 release on 01 July 2024.

The MySQL 8.4 LTS series began with the MySQL 8.4.0 release on 30 April 2024.

The MySQL 8 Innovation series began with the MySQL 8.1.0 release on 18 July 2023. Active
development ended on 2024-01-16 with the MySQL 8.3.0 release.

MySQL 8.0 achieved General Availability (GA) status with MySQL 8.0.11, which was released for
production use on 19 April 2018. It became a bugfix series as of MySQL 8.0.34 with the introduction
of the Innovation and LTS release model.

MySQL 5.7 achieved General Availability (GA) status with MySQL 5.7.9, which was released for
production use on 21 October 2015. Active development for MySQL 5.7 ended on 25 October 2023
with the MySQL 5.7.44 release.

4491

https://dev.mysql.com/doc/refman/8.4/en/mysql-releases.html

MySQL 5.7 FAQ: General

MySQL 5.6 achieved General Availability (GA) status with MySQL 5.6.10, which was released for
production use on 5 February 2013. Active development for MySQL 5.6 has ended.

MySQL 5.5 achieved General Availability (GA) status with MySQL 5.5.8, which was released for
production use on 3 December 2010. Active development for MySQL 5.5 has ended.

MySQL 5.1 achieved General Availability (GA) status with MySQL 5.1.30, which was released for
production use on 14 November 2008. Active development for MySQL 5.1 has ended.

MySQL 5.0 achieved General Availability (GA) status with MySQL 5.0.15, which was released for
production use on 19 October 2005. Active development for MySQL 5.0 has ended.

A.1.2. Can MySQL do subqueries?

Yes. See Section 13.2.10, “Subqueries”.

A.1.3. Can MySQL perform multiple-table inserts, updates, and deletes?

Yes. For the syntax required to perform multiple-table updates, see Section 13.2.11, “UPDATE
Statement”; for that required to perform multiple-table deletes, see Section 13.2.2, “DELETE
Statement”.

A multiple-table insert can be accomplished using a trigger whose FOR EACH ROW clause contains
multiple INSERT statements within a BEGIN ... END block. See Section 23.3, “Using Triggers”.

A.1.4. Does MySQL 5.7 have a Query Cache? Does it work on Server, Instance or Database?

Yes. (However, the query cache is deprecated as of MySQL 5.7.20, and is removed in MySQL
8.0.) The query cache operates on the server level, caching complete result sets matched with
the original query string. If an exactly identical query is made (which often happens, particularly in
web applications), no parsing or execution is necessary; the result is sent directly from the cache.
Various tuning options are available. See Section 8.10.3, “The MySQL Query Cache”.

A.1.5. Does MySQL have Sequences?

No. However, MySQL has an AUTO_INCREMENT system, which can also handle inserts in a multi-
source replication setup. With the auto_increment_increment and auto_increment_offset
system variables, you can set each server to generate auto-increment values that don't conflict with
other servers. The auto_increment_increment value should be greater than the number of
servers, and each server should have a unique offset.

A.1.6. Does MySQL have a NOW() function with fractions of seconds?

Yes, see Section 11.2.7, “Fractional Seconds in Time Values”.

A.1.7. Does MySQL work with multi-core processors?

Yes. MySQL is fully multithreaded, and makes use of all CPUs made available to it. Not all CPUs
may be available; modern operating systems should be able to utilize all underlying CPUs, but also
make it possible to restrict a process to a specific CPU or sets of CPUs.

On Windows, there is currently a limit to the number of (logical) processors that mysqld can use: a
single processor group, which is limited to a maximum of 64 logical processors.

Use of multiple cores may be seen in these ways:

• A single core is usually used to service the commands issued from one session.

4492

MySQL 5.7 FAQ: Storage Engines

• A few background threads make limited use of extra cores; for example, to keep background I/O
tasks moving.

• If the database is I/O-bound (indicated by CPU consumption less than capacity), adding more
CPUs is futile. If the database is partitioned into an I/O-bound part and a CPU-bond part, adding
CPUs may still be useful.

A.1.8. Why do I see multiple processes for mysqld?

mysqld is a single-process program, not a multi-process program, and does not fork or launch other
processes. However, mysqld is multithreaded and some process-reporting system utilities display
separate entries for each thread of multithreaded processes, which may lead to the appearance of
multiple mysqld processes when in fact there is only one.

A.1.9. Can MySQL perform ACID transactions?

Yes. All current MySQL versions support transactions. The InnoDB storage engine offers full ACID
transactions with row-level locking, multi-versioning, nonlocking repeatable reads, and all four SQL
standard isolation levels.

The NDB storage engine supports the READ COMMITTED transaction isolation level only.

A.2 MySQL 5.7 FAQ: Storage Engines
A.2.1 Where can I obtain complete documentation for MySQL storage engines? 4493
A.2.2 Are there any new storage engines in MySQL 5.7? ... 4493
A.2.3 Have any storage engines been removed in MySQL 5.7? .. 4493
A.2.4 Can I prevent the use of a particular storage engine? .. 4493
A.2.5 Is there an advantage to using the InnoDB storage engine exclusively, as opposed to a

combination of InnoDB and non-InnoDB storage engines? .. 4493
A.2.6 What are the unique benefits of the ARCHIVE storage engine? .. 4494

A.2.1. Where can I obtain complete documentation for MySQL storage engines?

See Chapter 15, Alternative Storage Engines. That chapter contains information about all MySQL
storage engines except for the InnoDB storage engine and the NDB storage engine (used for
MySQL Cluster). InnoDB is covered in Chapter 14, The InnoDB Storage Engine. NDB is covered in
Chapter 21, MySQL NDB Cluster 7.5 and NDB Cluster 7.6.

A.2.2. Are there any new storage engines in MySQL 5.7?

No. InnoDB is the default storage engine for new tables. See Section 14.1, “Introduction to InnoDB”
for details.

A.2.3. Have any storage engines been removed in MySQL 5.7?

No.

A.2.4. Can I prevent the use of a particular storage engine?

Yes. The disabled_storage_engines configuration option defines which storage engines
cannot be used to create tables or tablespaces. By default, disabled_storage_engines is
empty (no engines disabled), but it can be set to a comma-separated list of one or more engines.

A.2.5. Is there an advantage to using the InnoDB storage engine exclusively, as opposed to a combination
of InnoDB and non-InnoDB storage engines?

4493

MySQL 5.7 FAQ: Server SQL Mode

Yes. Using InnoDB tables exclusively can simplify backup and recovery operations. MySQL
Enterprise Backup does a hot backup of all tables that use the InnoDB storage engine. For tables
using MyISAM or other non-InnoDB storage engines, it does a “warm” backup, where the database
continues to run, but those tables cannot be modified while being backed up. See Section 28.1,
“MySQL Enterprise Backup Overview”.

A.2.6. What are the unique benefits of the ARCHIVE storage engine?

The ARCHIVE storage engine stores large amounts of data without indexes; it has a small footprint,
and performs selects using table scans. See Section 15.5, “The ARCHIVE Storage Engine”, for
details.

A.3 MySQL 5.7 FAQ: Server SQL Mode
A.3.1 What are server SQL modes? .. 4494
A.3.2 How many server SQL modes are there? ... 4494
A.3.3 How do you determine the server SQL mode? .. 4494
A.3.4 Is the mode dependent on the database or connection? .. 4494
A.3.5 Can the rules for strict mode be extended? .. 4494
A.3.6 Does strict mode impact performance? ... 4494
A.3.7 What is the default server SQL mode when MySQL 5.7 is installed? 4495

A.3.1. What are server SQL modes?

Server SQL modes define what SQL syntax MySQL should support and what kind of data validation
checks it should perform. This makes it easier to use MySQL in different environments and to use
MySQL together with other database servers. The MySQL Server apply these modes individually to
different clients. For more information, see Section 5.1.10, “Server SQL Modes”.

A.3.2. How many server SQL modes are there?

Each mode can be independently switched on and off. See Section 5.1.10, “Server SQL Modes”, for
a complete list of available modes.

A.3.3. How do you determine the server SQL mode?

You can set the default SQL mode (for mysqld startup) with the --sql-mode option. Using the
statement SET [GLOBAL|SESSION] sql_mode='modes', you can change the settings from
within a connection, either locally to the connection, or to take effect globally. You can retrieve the
current mode by issuing a SELECT @@sql_mode statement.

A.3.4. Is the mode dependent on the database or connection?

A mode is not linked to a particular database. Modes can be set locally to the session (connection),
or globally for the server. you can change these settings using SET [GLOBAL|SESSION]
sql_mode='modes'.

A.3.5. Can the rules for strict mode be extended?

When we refer to strict mode, we mean a mode where at least one of the modes TRADITIONAL,
STRICT_TRANS_TABLES, or STRICT_ALL_TABLES is enabled. Options can be combined, so you
can add restrictions to a mode. See Section 5.1.10, “Server SQL Modes”, for more information.

A.3.6. Does strict mode impact performance?

The intensive validation of input data that some settings requires more time than if the validation
is not done. While the performance impact is not that great, if you do not require such validation

4494

MySQL 5.7 FAQ: Stored Procedures and Functions

(perhaps your application already handles all of this), then MySQL gives you the option of leaving
strict mode disabled. However, if you do require it, strict mode can provide such validation.

A.3.7. What is the default server SQL mode when MySQL 5.7 is installed?

The default SQL mode in MySQL 5.7 includes these modes: ONLY_FULL_GROUP_BY,
STRICT_TRANS_TABLES, NO_ZERO_IN_DATE, NO_ZERO_DATE,
ERROR_FOR_DIVISION_BY_ZERO, NO_AUTO_CREATE_USER, and NO_ENGINE_SUBSTITUTION.

For information about all available modes and default MySQL behavior, see Section 5.1.10, “Server
SQL Modes”.

A.4 MySQL 5.7 FAQ: Stored Procedures and Functions

A.4.1 Does MySQL support stored procedures and functions? .. 4495
A.4.2 Where can I find documentation for MySQL stored procedures and stored functions? 4495
A.4.3 Is there a discussion forum for MySQL stored procedures? .. 4495
A.4.4 Where can I find the ANSI SQL 2003 specification for stored procedures? 4496
A.4.5 How do you manage stored routines? .. 4496
A.4.6 Is there a way to view all stored procedures and stored functions in a given database? 4496
A.4.7 Where are stored procedures stored? ... 4496
A.4.8 Is it possible to group stored procedures or stored functions into packages? 4496
A.4.9 Can a stored procedure call another stored procedure? ... 4496
A.4.10 Can a stored procedure call a trigger? .. 4496
A.4.11 Can a stored procedure access tables? .. 4496
A.4.12 Do stored procedures have a statement for raising application errors? 4497
A.4.13 Do stored procedures provide exception handling? .. 4497
A.4.14 Can MySQL stored routines return result sets? ... 4497
A.4.15 Is WITH RECOMPILE supported for stored procedures? .. 4497
A.4.16 Is there a MySQL equivalent to using mod_plsql as a gateway on Apache to talk directly to

a stored procedure in the database? ... 4497
A.4.17 Can I pass an array as input to a stored procedure? ... 4497
A.4.18 Can I pass a cursor as an IN parameter to a stored procedure? .. 4497
A.4.19 Can I return a cursor as an OUT parameter from a stored procedure? 4497
A.4.20 Can I print out a variable's value within a stored routine for debugging purposes? 4497
A.4.21 Can I commit or roll back transactions inside a stored procedure? .. 4497
A.4.22 Do MySQL stored procedures and functions work with replication? 4497
A.4.23 Are stored procedures and functions created on a replication source server replicated to a

replica? .. 4497
A.4.24 How are actions that take place inside stored procedures and functions replicated? 4498
A.4.25 Are there special security requirements for using stored procedures and functions together

with replication? .. 4498
A.4.26 What limitations exist for replicating stored procedure and function actions? 4498
A.4.27 Do the preceding limitations affect the ability of MySQL to do point-in-time recovery? 4498
A.4.28 What is being done to correct the aforementioned limitations? .. 4498

A.4.1. Does MySQL support stored procedures and functions?

Yes. MySQL supports two types of stored routines, stored procedures, and stored functions.

A.4.2. Where can I find documentation for MySQL stored procedures and stored functions?

See Section 23.2, “Using Stored Routines”.

A.4.3. Is there a discussion forum for MySQL stored procedures?

4495

MySQL 5.7 FAQ: Stored Procedures and Functions

Yes. See https://forums.mysql.com/list.php?98.

A.4.4. Where can I find the ANSI SQL 2003 specification for stored procedures?

Unfortunately, the official specifications are not freely available (ANSI makes them available for
purchase). However, there are books, such as SQL-99 Complete, Really by Peter Gulutzan and
Trudy Pelzer, that provide a comprehensive overview of the standard, including coverage of stored
procedures.

A.4.5. How do you manage stored routines?

It is always good practice to use a clear naming scheme for your stored routines. You can
manage stored procedures with CREATE [FUNCTION|PROCEDURE], ALTER [FUNCTION|
PROCEDURE], DROP [FUNCTION|PROCEDURE], and SHOW CREATE [FUNCTION|PROCEDURE].
You can obtain information about existing stored procedures using the ROUTINES table in
the INFORMATION_SCHEMA database (see Section 24.3.21, “The INFORMATION_SCHEMA
ROUTINES Table”).

A.4.6. Is there a way to view all stored procedures and stored functions in a given database?

Yes. For a database named dbname, use this query on the INFORMATION_SCHEMA.ROUTINES
table:

SELECT ROUTINE_TYPE, ROUTINE_NAME
 FROM INFORMATION_SCHEMA.ROUTINES
 WHERE ROUTINE_SCHEMA='dbname';

For more information, see Section 24.3.21, “The INFORMATION_SCHEMA ROUTINES Table”.

The body of a stored routine can be viewed using SHOW CREATE FUNCTION (for a stored function)
or SHOW CREATE PROCEDURE (for a stored procedure). See Section 13.7.5.9, “SHOW CREATE
PROCEDURE Statement”, for more information.

A.4.7. Where are stored procedures stored?

In the proc table of the mysql system database. However, you should not access the tables
in the system database directly. Instead, query the INFORMATION_SCHEMA ROUTINES and
PARAMETERS tables. See Section 24.3.21, “The INFORMATION_SCHEMA ROUTINES Table”, and
Section 24.3.15, “The INFORMATION_SCHEMA PARAMETERS Table”.

You can also use SHOW CREATE FUNCTION to obtain information about stored functions, and SHOW
CREATE PROCEDURE to obtain information about stored procedures. See Section 13.7.5.9, “SHOW
CREATE PROCEDURE Statement”.

A.4.8. Is it possible to group stored procedures or stored functions into packages?

No. This is not supported in MySQL.

A.4.9. Can a stored procedure call another stored procedure?

Yes.

A.4.10.Can a stored procedure call a trigger?

A stored procedure can execute an SQL statement, such as an UPDATE, that causes a trigger to
activate.

A.4.11.Can a stored procedure access tables?

4496

https://forums.mysql.com/list.php?98

MySQL 5.7 FAQ: Stored Procedures and Functions

Yes. A stored procedure can access one or more tables as required.

A.4.12.Do stored procedures have a statement for raising application errors?

Yes. MySQL implements the SQL standard SIGNAL and RESIGNAL statements. See
Section 13.6.7, “Condition Handling”.

A.4.13.Do stored procedures provide exception handling?

MySQL implements HANDLER definitions according to the SQL standard. See Section 13.6.7.2,
“DECLARE ... HANDLER Statement”, for details.

A.4.14.Can MySQL stored routines return result sets?

Stored procedures can, but stored functions cannot. If you perform an ordinary SELECT inside a
stored procedure, the result set is returned directly to the client. You need to use the MySQL 4.1 (or
higher) client/server protocol for this to work. This means that, for example, in PHP, you need to use
the mysqli extension rather than the old mysql extension.

A.4.15.Is WITH RECOMPILE supported for stored procedures?

No.

A.4.16.Is there a MySQL equivalent to using mod_plsql as a gateway on Apache to talk directly to a
stored procedure in the database?

There is no equivalent in MySQL.

A.4.17.Can I pass an array as input to a stored procedure?

No.

A.4.18.Can I pass a cursor as an IN parameter to a stored procedure?

Cursors are only available inside stored procedures.

A.4.19.Can I return a cursor as an OUT parameter from a stored procedure?

Cursors are only available inside stored procedures. However, if you do not open a cursor on
a SELECT, the result is sent directly to the client. You can also SELECT INTO variables. See
Section 13.2.9, “SELECT Statement”.

A.4.20.Can I print out a variable's value within a stored routine for debugging purposes?

Yes, you can do this in a stored procedure, but not in a stored function. If you perform an ordinary
SELECT inside a stored procedure, the result set is returned directly to the client. You must use the
MySQL 4.1 (or above) client/server protocol for this to work. This means that, for example, in PHP,
you need to use the mysqli extension rather than the old mysql extension.

A.4.21.Can I commit or roll back transactions inside a stored procedure?

Yes. However, you cannot perform transactional operations within a stored function.

A.4.22.Do MySQL stored procedures and functions work with replication?

Yes, standard actions carried out in stored procedures and functions are replicated from a
replication source server to a replica. There are a few limitations that are described in detail in
Section 23.7, “Stored Program Binary Logging”.

A.4.23.Are stored procedures and functions created on a replication source server replicated to a replica?

4497

MySQL 5.7 FAQ: Stored Procedures and Functions

Yes, creation of stored procedures and functions carried out through normal DDL statements on a
replication source server are replicated to a replica, so that the objects exist on both servers. ALTER
and DROP statements for stored procedures and functions are also replicated.

A.4.24.How are actions that take place inside stored procedures and functions replicated?

MySQL records each DML event that occurs in a stored procedure and replicates those individual
actions to a replica. The actual calls made to execute stored procedures are not replicated.

Stored functions that change data are logged as function invocations, not as the DML events that
occur inside each function.

A.4.25.Are there special security requirements for using stored procedures and functions together with
replication?

Yes. Because a replica has authority to execute any statement read from a source's binary log,
special security constraints exist for using stored functions with replication. If replication or binary
logging in general (for the purpose of point-in-time recovery) is active, then MySQL DBAs have two
security options open to them:

1. Any user wishing to create stored functions must be granted the SUPER privilege.

2. Alternatively, a DBA can set the log_bin_trust_function_creators system variable to 1,
which enables anyone with the standard CREATE ROUTINE privilege to create stored functions.

A.4.26.What limitations exist for replicating stored procedure and function actions?

Nondeterministic (random) or time-based actions embedded in stored procedures may not
replicate properly. By their very nature, randomly produced results are not predictable and
cannot be exactly reproduced; therefore, random actions replicated to a replica do not mirror
those performed on a source. Declaring stored functions to be DETERMINISTIC or setting the
log_bin_trust_function_creators system variable to 0 keeps random operations producing
random values from being invoked.

In addition, time-based actions cannot be reproduced on a replica because the timing of such
actions in a stored procedure is not reproducible through the binary log used for replication. It
records only DML events and does not factor in timing constraints.

Finally, nontransactional tables for which errors occur during large DML actions (such as bulk
inserts) may experience replication issues in that a source may be partially updated from DML
activity, but no updates are done to the replica because of the errors that occurred. A workaround
is for a function's DML actions to be carried out with the IGNORE keyword so that updates on the
source that cause errors are ignored and updates that do not cause errors are replicated to the
replica.

A.4.27.Do the preceding limitations affect the ability of MySQL to do point-in-time recovery?

The same limitations that affect replication do affect point-in-time recovery.

A.4.28.What is being done to correct the aforementioned limitations?

You can choose either statement-based replication or row-based replication. The original replication
implementation is based on statement-based binary logging. Row-based binary logging resolves the
limitations mentioned earlier.

Mixed replication is also available (by starting the server with --binlog-format=mixed). This
hybrid form of replication “knows” whether statement-level replication can safely be used, or row-
level replication is required.

4498

MySQL 5.7 FAQ: Triggers

For additional information, see Section 16.2.1, “Replication Formats”.

A.5 MySQL 5.7 FAQ: Triggers

A.5.1 Where can I find the documentation for MySQL 5.7 triggers? ... 4499
A.5.2 Is there a discussion forum for MySQL Triggers? .. 4499
A.5.3 Does MySQL have statement-level or row-level triggers? ... 4499
A.5.4 Are there any default triggers? ... 4499
A.5.5 How are triggers managed in MySQL? ... 4499
A.5.6 Is there a way to view all triggers in a given database? ... 4499
A.5.7 Where are triggers stored? .. 4500
A.5.8 Can a trigger call a stored procedure? .. 4500
A.5.9 Can triggers access tables? ... 4500
A.5.10 Can a table have multiple triggers with the same trigger event and action time? 4500
A.5.11 Is it possible for a trigger to update tables on a remote server? .. 4500
A.5.12 Do triggers work with replication? ... 4500
A.5.13 How are actions carried out through triggers on a source replicated to a replica? 4500

A.5.1. Where can I find the documentation for MySQL 5.7 triggers?

See Section 23.3, “Using Triggers”.

A.5.2. Is there a discussion forum for MySQL Triggers?

Yes. It is available at https://forums.mysql.com/list.php?99.

A.5.3. Does MySQL have statement-level or row-level triggers?

All triggers are FOR EACH ROW; that is, the trigger is activated for each row that is inserted,
updated, or deleted. MySQL does not support triggers using FOR EACH STATEMENT.

A.5.4. Are there any default triggers?

Not explicitly. MySQL does have specific special behavior for some TIMESTAMP columns, as well as
for columns which are defined using AUTO_INCREMENT.

A.5.5. How are triggers managed in MySQL?

Triggers can be created using the CREATE TRIGGER statement, and dropped using DROP
TRIGGER. See Section 13.1.20, “CREATE TRIGGER Statement”, and Section 13.1.31, “DROP
TRIGGER Statement”, for more about these statements.

Information about triggers can be obtained by querying the INFORMATION_SCHEMA.TRIGGERS
table. See Section 24.3.29, “The INFORMATION_SCHEMA TRIGGERS Table”.

A.5.6. Is there a way to view all triggers in a given database?

Yes. You can obtain a listing of all triggers defined on database dbname using a query on the
INFORMATION_SCHEMA.TRIGGERS table such as the one shown here:

SELECT TRIGGER_NAME, EVENT_MANIPULATION, EVENT_OBJECT_TABLE, ACTION_STATEMENT
 FROM INFORMATION_SCHEMA.TRIGGERS
 WHERE TRIGGER_SCHEMA='dbname';

For more information about this table, see Section 24.3.29, “The INFORMATION_SCHEMA
TRIGGERS Table”.

4499

https://forums.mysql.com/list.php?99

MySQL 5.7 FAQ: Triggers

You can also use the SHOW TRIGGERS statement, which is specific to MySQL. See
Section 13.7.5.38, “SHOW TRIGGERS Statement”.

A.5.7. Where are triggers stored?

Triggers are stored in .TRG files, with one such file one per table.

A.5.8. Can a trigger call a stored procedure?

Yes.

A.5.9. Can triggers access tables?

A trigger can access both old and new data in its own table. A trigger can also affect other tables,
but it is not permitted to modify a table that is already being used (for reading or writing) by the
statement that invoked the function or trigger.

A.5.10.Can a table have multiple triggers with the same trigger event and action time?

It is possible to define multiple triggers for a given table that have the same trigger event and action
time. For example, you can have two BEFORE UPDATE triggers for a table. By default, triggers
that have the same trigger event and action time activate in the order they were created. To affect
trigger order, specify a clause after FOR EACH ROW that indicates FOLLOWS or PRECEDES and the
name of an existing trigger that also has the same trigger event and action time. With FOLLOWS, the
new trigger activates after the existing trigger. With PRECEDES, the new trigger activates before the
existing trigger.

A.5.11.Is it possible for a trigger to update tables on a remote server?

Yes. A table on a remote server could be updated using the FEDERATED storage engine. (See
Section 15.8, “The FEDERATED Storage Engine”).

A.5.12.Do triggers work with replication?

Yes. However, the way in which they work depends whether you are using MySQL's “classic”
statement-based or row-based replication format.

When using statement-based replication, triggers on the replica are executed by statements that are
executed on the source (and replicated to the replica).

When using row-based replication, triggers are not executed on the replica due to statements
that were run on the source and then replicated to the replica. Instead, when using row-based
replication, the changes caused by executing the trigger on the source are applied on the replica.

For more information, see Section 16.4.1.34, “Replication and Triggers”.

A.5.13.How are actions carried out through triggers on a source replicated to a replica?

Again, this depends on whether you are using statement-based or row-based replication.

Statement-based replication. First, the triggers that exist on a source must be re-created on the
replica server. Once this is done, the replication flow works as any other standard DML statement
that participates in replication. For example, consider a table EMP that has an AFTER insert trigger,
which exists on a replication source server. The same EMP table and AFTER insert trigger exist on
the replica server as well. The replication flow would be:

1. An INSERT statement is made to EMP.

4500

MySQL 5.7 FAQ: Views

2. The AFTER trigger on EMP activates.

3. The INSERT statement is written to the binary log.

4. The replica picks up the INSERT statement to EMP and executes it.

5. The AFTER trigger on EMP that exists on the replica activates.

Row-based replication. When you use row-based replication, the changes caused by executing
the trigger on the source are applied on the replica. However, the triggers themselves are not
actually executed on the replica under row-based replication. This is because, if both the source and
the replica applied the changes from the source and, in addition, the trigger causing these changes
were applied on the replica, the changes would in effect be applied twice on the replica, leading to
different data on the source and the replica.

In most cases, the outcome is the same for both row-based and statement-based replication.
However, if you use different triggers on the source and replica, you cannot use row-based
replication. (This is because the row-based format replicates the changes made by triggers
executing on the source to the replicas, rather than the statements that caused the triggers to
execute, and the corresponding triggers on the replica are not executed.) Instead, any statements
causing such triggers to be executed must be replicated using statement-based replication.

For more information, see Section 16.4.1.34, “Replication and Triggers”.

A.6 MySQL 5.7 FAQ: Views
A.6.1 Where can I find documentation covering MySQL Views? .. 4501
A.6.2 Is there a discussion forum for MySQL Views? ... 4501
A.6.3 What happens to a view if an underlying table is dropped or renamed? 4501
A.6.4 Does MySQL have table snapshots? .. 4501
A.6.5 Does MySQL have materialized views? .. 4501
A.6.6 Can you insert into views that are based on joins? .. 4502

A.6.1. Where can I find documentation covering MySQL Views?

See Section 23.5, “Using Views”.

You may also find the MySQL User Forums to be helpful.

A.6.2. Is there a discussion forum for MySQL Views?

See the MySQL User Forums.

A.6.3. What happens to a view if an underlying table is dropped or renamed?

After a view has been created, it is possible to drop or alter a table or view to which the definition
refers. To check a view definition for problems of this kind, use the CHECK TABLE statement. (See
Section 13.7.2.2, “CHECK TABLE Statement”.)

A.6.4. Does MySQL have table snapshots?

No.

A.6.5. Does MySQL have materialized views?

No.

4501

https://forums.mysql.com/list.php?20
https://forums.mysql.com/list.php?20

MySQL 5.7 FAQ: INFORMATION_SCHEMA

A.6.6. Can you insert into views that are based on joins?

It is possible, provided that your INSERT statement has a column list that makes it clear there is only
one table involved.

You cannot insert into multiple tables with a single insert on a view.

A.7 MySQL 5.7 FAQ: INFORMATION_SCHEMA
A.7.1 Where can I find documentation for the MySQL INFORMATION_SCHEMA database? 4502
A.7.2 Is there a discussion forum for INFORMATION_SCHEMA? ... 4502
A.7.3 Where can I find the ANSI SQL 2003 specification for INFORMATION_SCHEMA? 4502
A.7.4 What is the difference between the Oracle Data Dictionary and MySQL

INFORMATION_SCHEMA? .. 4502
A.7.5 Can I add to or otherwise modify the tables found in the INFORMATION_SCHEMA database? 4502

A.7.1. Where can I find documentation for the MySQL INFORMATION_SCHEMA database?

See Chapter 24, INFORMATION_SCHEMA Tables.

You may also find the MySQL User Forums to be helpful.

A.7.2. Is there a discussion forum for INFORMATION_SCHEMA?

See the MySQL User Forums.

A.7.3. Where can I find the ANSI SQL 2003 specification for INFORMATION_SCHEMA?

Unfortunately, the official specifications are not freely available. (ANSI makes them available
for purchase.) However, there are books available, such as SQL-99 Complete, Really by Peter
Gulutzan and Trudy Pelzer, that provide a comprehensive overview of the standard, including
INFORMATION_SCHEMA.

A.7.4. What is the difference between the Oracle Data Dictionary and MySQL INFORMATION_SCHEMA?

Both Oracle and MySQL provide metadata in tables. However, Oracle and MySQL use different
table names and column names. The MySQL implementation is more similar to those found in DB2
and SQL Server, which also support INFORMATION_SCHEMA as defined in the SQL standard.

A.7.5. Can I add to or otherwise modify the tables found in the INFORMATION_SCHEMA database?

No. Since applications may rely on a certain standard structure, this should not be modified.
For this reason, we cannot support bugs or other issues which result from modifying
INFORMATION_SCHEMA tables or data.

A.8 MySQL 5.7 FAQ: Migration
A.8.1 Where can I find information on how to upgrade or downgrade MySQL? 4502
A.8.2 How has storage engine (table type) support changed in MySQL 5.7 from previous versions? ... 4502

A.8.1. Where can I find information on how to upgrade or downgrade MySQL?

For detailed upgrade information, see Section 2.10, “Upgrading MySQL”. Do not skip a major
version when upgrading, but rather complete the process in steps, upgrading from one major
version to the next in each step. This may seem more complicated, but ultimately saves time and
trouble. If you encounter problems during the upgrade, their origin is easier to identify, either by you
or, if you have a MySQL Enterprise subscription, by MySQL support.

A.8.2. How has storage engine (table type) support changed in MySQL 5.7 from previous versions?

4502

https://forums.mysql.com/list.php?20
https://forums.mysql.com/list.php?20

MySQL 5.7 FAQ: Security

Storage engine support has changed as follows:

• Support for ISAM tables was removed in MySQL 5.0 and you should now use the MyISAM storage
engine in place of ISAM. To convert a table tblname from ISAM to MyISAM, simply issue a
statement such as this one:

ALTER TABLE tblname ENGINE=MYISAM;

• Internal RAID for MyISAM tables was also removed in MySQL 5.0. This was formerly used to
allow large tables in file systems that did not support file sizes greater than 2GB. All modern file
systems allow for larger tables; in addition, there are now other solutions such as MERGE tables
and views.

• The VARCHAR column type now retains trailing spaces in all storage engines.

• MEMORY tables (formerly known as HEAP tables) can also contain VARCHAR columns.

A.9 MySQL 5.7 FAQ: Security

A.9.1 Where can I find documentation that addresses security issues for MySQL? 4503
A.9.2 What is the default authentication plugin in MySQL 5.7? .. 4503
A.9.3 Does MySQL have native support for SSL? .. 4504
A.9.4 Is SSL support built into MySQL binaries, or must I recompile the binary myself to enable it? 4504
A.9.5 Does MySQL have built-in authentication against LDAP directories? 4504
A.9.6 Does MySQL include support for Roles Based Access Control (RBAC)? 4504
A.9.7 Does MySQL support TLS 1.0 and 1.1? ... 4504

A.9.1. Where can I find documentation that addresses security issues for MySQL?

The best place to start is Chapter 6, Security.

Other portions of the MySQL Documentation which you may find useful with regard to specific
security concerns include the following:

• Section 6.1.1, “Security Guidelines”.

• Section 6.1.3, “Making MySQL Secure Against Attackers”.

• Section B.3.3.2, “How to Reset the Root Password”.

• Section 6.1.5, “How to Run MySQL as a Normal User”.

• Section 6.1.4, “Security-Related mysqld Options and Variables”.

• Section 6.1.6, “Security Considerations for LOAD DATA LOCAL”.

• Section 2.9, “Postinstallation Setup and Testing”.

• Section 6.3, “Using Encrypted Connections”.

• Loadable Function Security Precautions.

There is also the Secure Deployment Guide, which provides procedures for deploying a generic
binary distribution of MySQL Enterprise Edition Server with features for managing the security of
your MySQL installation.

A.9.2. What is the default authentication plugin in MySQL 5.7?

4503

https://dev.mysql.com/doc/extending-mysql/5.7/en/adding-loadable-function.html#loadable-function-security
https://dev.mysql.com/doc/mysql-secure-deployment-guide/8.0/en/

MySQL 5.7 FAQ: Security

The default authentication plugin in MySQL 5.7 is mysql_native_password. For information
about this plugin, see Section 6.4.1.1, “Native Pluggable Authentication”. For general information
about pluggable authentication and other available authentication plugins, see Section 6.2.13,
“Pluggable Authentication”, and Section 6.4.1, “Authentication Plugins”.

A.9.3. Does MySQL have native support for SSL?

Yes, the binaries have support for SSL connections between the client and server. See Section 6.3,
“Using Encrypted Connections”.

You can also tunnel a connection using SSH, if (for example) the client application does not support
SSL connections. For an example, see Section 6.3.5, “Connecting to MySQL Remotely from
Windows with SSH”.

A.9.4. Is SSL support built into MySQL binaries, or must I recompile the binary myself to enable it?

Yes, the binaries have SSL enabled for client/server connections that are secured, authenticated, or
both. See Section 6.3, “Using Encrypted Connections”.

A.9.5. Does MySQL have built-in authentication against LDAP directories?

The Enterprise edition includes a PAM Authentication Plugin that supports authentication against an
LDAP directory.

A.9.6. Does MySQL include support for Roles Based Access Control (RBAC)?

Not at this time.

A.9.7. Does MySQL support TLS 1.0 and 1.1?

Support for the TLSv1 and TLSv1.1 connection protocols is removed as of MySQL 8.0.28. The
protocols were deprecated from MySQL 8.0.26. For the consequences of that removal, see
Deprecated TLS Protocols.

Support for TLS versions 1.0 and 1.1 is removed because those protocol versions are old, released
in 1996 and 2006, respectively. The algorithms used are weak and outdated.

Unless you are using very old versions of MySQL Server or connectors, you are unlikely to have
connections using TLS 1.0 or 1.1. MySQL connectors and clients select the highest TLS version
available by default.

When was support for TLS 1.2 added to MySQL Server? MySQL Community Server added TLS 1.2
support when the community server switched to OpenSSL for MySQL 5.6, 5.7, and 8.0 in 2019. For
MySQL Enterprise Edition, OpenSSL added TLS 1.2 support in 2015, in MySQL Server 5.7.10.

How can one view which TLS versions are in active use? For MySQL 5.7 or 8.0, review whether
TLS 1.0 or 1.1 is in use by running this query:

SELECT
 `session_ssl_status`.`thread_id`, `session_ssl_status`.`ssl_version`,
 `session_ssl_status`.`ssl_cipher`, `session_ssl_status`.`ssl_sessions_reused`
FROM `sys`.`session_ssl_status`
WHERE ssl_version NOT IN ('TLSv1.3','TLSv1.2');

If a thread using TLSv1.0 or TLSv1.1 is listed, you can determine where this connection is coming
from by running this query:

4504

MySQL 5.7 FAQ: NDB Cluster

SELECT thd_id,conn_id, user, db, current_statement, program_name
FROM sys.processlist
WHERE thd_id IN (
 SELECT `session_ssl_status`.`thread_id`
 FROM `sys`.`session_ssl_status`
 WHERE ssl_version NOT IN ('TLSv1.3','TLSv1.2')
);

Alternatively, you can run this query:

SELECT *
FROM sys.session
WHERE thd_id IN (
 SELECT `session_ssl_status`.`thread_id`
 FROM `sys`.`session_ssl_status`
 WHERE ssl_version NOT IN ('TLSv1.3','TLSv1.2')
);

These queries provide details needed to determine which application is not supporting TLS 1.2 or
1.3, and target upgrades for those.

Are there other options for testing for TLS 1.0 or 1.1? Yes, you can disable those versions prior
to upgrading your server to a newer version. Explicitly specify which version to use, either in
mysql.cnf (or mysql.ini) or by using SET PERSIST, for example: --tls-version=TLSv12.

Do all MySQL Connectors (5.7 and 8.0) support TLS 1.2 and higher? What about C and C++
applications using libmysql? For C and C++ applications using the community libmysqlclient
library, use an OpenSSL-based library (that is, do not use YaSSL). Usage of OpenSSL was unified
in 2018 (in MySQL 8.0.4 and 5.7.28, respectively). The same applies for Connector/ODBC and
Connector/C++. To determine what library dependencies are used, run the following commands to
see if OpenSSL is listed. On Linux, use this command:

$> sudo ldd usr/local/mysql/lib/libmysqlclient.a | grep -i openssl

On MacOS, use this command:

$> sudo otool -l /usr/local/mysql/lib/libmysqlclient.a | grep -i openssl

Check the documentation for each connector, but they do support TLS 1.2 and TLS 1.3.

A.10 MySQL 5.7 FAQ: NDB Cluster

In the following section, we answer questions that are frequently asked about NDB Cluster and the NDB
storage engine.

A.10.1 Which versions of the MySQL software support NDB Cluster? Do I have to compile from
source? .. 4506

A.10.2 What do “NDB” and “NDBCLUSTER” mean? .. 4507
A.10.3 What is the difference between using NDB Cluster versus using MySQL Replication? 4507
A.10.4 Do I need any special networking to run NDB Cluster? How do computers in a cluster

communicate? .. 4507
A.10.5 How many computers do I need to run an NDB Cluster, and why? 4508
A.10.6 What do the different computers do in an NDB Cluster? .. 4508
A.10.7 When I run the SHOW command in the NDB Cluster management client, I see a line of output

that looks like this: .. 4508
A.10.8 With which operating systems can I use NDB Cluster? .. 4509
A.10.9 What are the hardware requirements for running NDB Cluster? .. 4509
A.10.10 How much RAM do I need to use NDB Cluster? Is it possible to use disk memory at all? 4509

4505

MySQL 5.7 FAQ: NDB Cluster

A.10.11 What file systems can I use with NDB Cluster? What about network file systems or network
shares? .. 4510

A.10.12 Can I run NDB Cluster nodes inside virtual machines (such as those created by VMWare,
VirtualBox, Parallels, or Xen)? ... 4511

A.10.13 I am trying to populate an NDB Cluster database. The loading process terminates
prematurely and I get an error message like this one: .. 4511

A.10.14 NDB Cluster uses TCP/IP. Does this mean that I can run it over the Internet, with one or
more nodes in remote locations? ... 4511

A.10.15 Do I have to learn a new programming or query language to use NDB Cluster? 4512
A.10.16 What programming languages and APIs are supported by NDB Cluster? 4512
A.10.17 Does NDB Cluster include any management tools? ... 4512
A.10.18 How do I find out what an error or warning message means when using NDB Cluster? 4512
A.10.19 Is NDB Cluster transaction-safe? What isolation levels are supported? 4513
A.10.20 What storage engines are supported by NDB Cluster? ... 4513
A.10.21 In the event of a catastrophic failure— for example, the whole city loses power and my UPS

fails—would I lose all my data? ... 4513
A.10.22 Is it possible to use FULLTEXT indexes with NDB Cluster? .. 4513
A.10.23 Can I run multiple nodes on a single computer? .. 4513
A.10.24 Can I add data nodes to an NDB Cluster without restarting it? .. 4514
A.10.25 Are there any limitations that I should be aware of when using NDB Cluster? 4514
A.10.26 Does NDB Cluster support foreign keys? .. 4514
A.10.27 How do I import an existing MySQL database into an NDB Cluster? 4514
A.10.28 How do NDB Cluster nodes communicate with one another? ... 4515
A.10.29 What is an arbitrator? .. 4515
A.10.30 What data types are supported by NDB Cluster? ... 4515
A.10.31 How do I start and stop NDB Cluster? .. 4516
A.10.32 What happens to NDB Cluster data when the cluster is shut down? 4516
A.10.33 Is it a good idea to have more than one management node for an NDB Cluster? 4517
A.10.34 Can I mix different kinds of hardware and operating systems in one NDB Cluster? 4517
A.10.35 Can I run two data nodes on a single host? Two SQL nodes? .. 4517
A.10.36 Can I use host names with NDB Cluster? ... 4517
A.10.37 Does NDB Cluster support IPv6? .. 4517
A.10.38 How do I handle MySQL users in an NDB Cluster having multiple MySQL servers? 4517
A.10.39 How do I continue to send queries in the event that one of the SQL nodes fails? 4517
A.10.40 How do I back up and restore an NDB Cluster? .. 4518
A.10.41 What is an “angel process”? ... 4518

A.10.1.Which versions of the MySQL software support NDB Cluster? Do I have to compile from source?

NDB Cluster is not supported in standard MySQL Server releases. Instead, MySQL NDB Cluster is
provided as a separate product. Available NDB Cluster release series include the following:

• NDB Cluster 7.3 / NDB Cluster 7.4. These two series are no longer maintained or supported
for new deployments. Users of NDB Cluster 7.3 or 7.4 should upgrade to NDB 7.5 or newer as
soon as possible. We recommend that new deployments use the latest NDB Cluster 8.0 release.

• NDB Cluster 7.5. This series is a previous General Availability (GA) version of NDB Cluster,
still available for production use, although we recommend that new deployments use the latest
NDB Cluster 8.0 release. The latest NDB Cluster 7.5 releases can be obtained from https://
dev.mysql.com/downloads/cluster/.

• NDB Cluster 7.6. This series is a previous General Availability (GA) version of NDB Cluster,
still available for production use, although we recommend that new deployments use the latest
NDB Cluster 8.0 release. The latest NDB Cluster 7.6 releases can be obtained from https://
dev.mysql.com/downloads/cluster/.

4506

https://dev.mysql.com/downloads/cluster/
https://dev.mysql.com/downloads/cluster/
https://dev.mysql.com/downloads/cluster/
https://dev.mysql.com/downloads/cluster/

MySQL 5.7 FAQ: NDB Cluster

• NDB Cluster 8.0. This series is the most recent General Availability (GA) version of NDB
Cluster, based on version 8.0 of the NDB storage engine and MySQL Server 8.0. NDB Cluster 8.0
is available for production use; new deployments intended for production should use the latest GA
release in this series, which is currently NDB Cluster 8.0.44. You can obtain the most recent NDB
Cluster 8.0 release from https://dev.mysql.com/downloads/cluster/. For information about new
features and other important changes in this series, see What is New in MySQL NDB Cluster 8.0.

You can obtain and compile NDB Cluster from source (see Section 21.3.1.4, “Building NDB Cluster
from Source on Linux”, and Section 21.3.2.2, “Compiling and Installing NDB Cluster from Source
on Windows”), but for all but the most specialized cases, we recommend using one of the following
installers provided by Oracle that is appropriate to your operating platform and circumstances:

• Linux binary release (tar.gz file)

• Linux RPM package

• Linux .deb file

• Windows binary “no-install” release

• Windows MSI Installer

Installation packages may also be available from your platform's package management system.

You can determine whether your MySQL Server has NDB support using one of the statements SHOW
VARIABLES LIKE 'have_%', SHOW ENGINES, or SHOW PLUGINS.

A.10.2.What do “NDB” and “NDBCLUSTER” mean?

“NDB” stands for “Network Database”. NDB and NDBCLUSTER are both names for the storage
engine that enables clustering support with MySQL. NDB is preferred, but either name is correct.

A.10.3.What is the difference between using NDB Cluster versus using MySQL Replication?

In traditional MySQL replication, a source MySQL server updates one or more replicas.
Transactions are committed sequentially, and a slow transaction can cause the replica to lag behind
the source. This means that if the source fails, it is possible that the replica might not have recorded
the last few transactions. If a transaction-safe engine such as InnoDB is being used, a transaction
is either completed on the replica or not applied at all, but replication does not guarantee that all
data on the source and the replica remains consistent at all times. In NDB Cluster, all data nodes
are kept in synchrony, and a transaction committed by any one data node is committed for all data
nodes. In the event of a data node failure, all remaining data nodes remain in a consistent state.

In short, whereas standard MySQL replication is asynchronous, NDB Cluster is synchronous.

Asynchronous replication is also available in NDB Cluster. NDB Cluster Replication (also sometimes
known as “geo-replication”) includes the capability to replicate both between two NDB Clusters, and
from an NDB Cluster to a non-Cluster MySQL server. See Section 21.7, “NDB Cluster Replication”.

A.10.4.Do I need any special networking to run NDB Cluster? How do computers in a cluster
communicate?

NDB Cluster is intended to be used in a high-bandwidth environment, with computers connecting
using TCP/IP. Its performance depends directly upon the connection speed between the cluster's
computers. The minimum connectivity requirements for NDB Cluster include a typical 100-megabit
Ethernet network or the equivalent. We recommend you use gigabit Ethernet whenever available.

4507

https://dev.mysql.com/downloads/cluster/
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster-what-is-new.html

MySQL 5.7 FAQ: NDB Cluster

A.10.5.How many computers do I need to run an NDB Cluster, and why?

A minimum of three computers is required to run a viable cluster. However, the minimum
recommended number of computers in an NDB Cluster is four: one each to run the management
and SQL nodes, and two computers to serve as data nodes. The purpose of the two data nodes
is to provide redundancy; the management node must run on a separate machine to guarantee
continued arbitration services in the event that one of the data nodes fails.

To provide increased throughput and high availability, you should use multiple SQL nodes (MySQL
Servers connected to the cluster). It is also possible (although not strictly necessary) to run multiple
management servers.

A.10.6.What do the different computers do in an NDB Cluster?

An NDB Cluster has both a physical and logical organization, with computers being the physical
elements. The logical or functional elements of a cluster are referred to as nodes, and a computer
housing a cluster node is sometimes referred to as a cluster host. There are three types of nodes,
each corresponding to a specific role within the cluster. These are:

• Management node. This node provides management services for the cluster as a whole,
including startup, shutdown, backups, and configuration data for the other nodes. The
management node server is implemented as the application ndb_mgmd; the management client
used to control NDB Cluster is ndb_mgm. See Section 21.5.4, “ndb_mgmd — The NDB Cluster
Management Server Daemon”, and Section 21.5.5, “ndb_mgm — The NDB Cluster Management
Client”, for information about these programs.

• Data node. This type of node stores and replicates data. Data node functionality is handled by
instances of the NDB data node process ndbd. For more information, see Section 21.5.1, “ndbd —
The NDB Cluster Data Node Daemon”.

• SQL node. This is simply an instance of MySQL Server (mysqld) that is built with support
for the NDBCLUSTER storage engine and started with the --ndb-cluster option to enable
the engine and the --ndb-connectstring option to enable it to connect to an NDB Cluster
management server. For more about these options, see MySQL Server Options for NDB Cluster.

Note

An API node is any application that makes direct use of Cluster data nodes
for data storage and retrieval. An SQL node can thus be considered a
type of API node that uses a MySQL Server to provide an SQL interface
to the Cluster. You can write such applications (that do not depend on
a MySQL Server) using the NDB API, which supplies a direct, object-
oriented transaction and scanning interface to NDB Cluster data; see NDB
Cluster API Overview: The NDB API, for more information.

A.10.7.When I run the SHOW command in the NDB Cluster management client, I see a line of output that
looks like this:

id=2 @10.100.10.32 (Version: 8.0.44-ndb-8.0.44 Nodegroup: 0, *)

What does the * mean? How is this node different from the others?

The simplest answer is, “It's not something you can control, and it's nothing that you need to worry
about in any case, unless you're a software engineer writing or analyzing the NDB Cluster source
code”.

If you don't find that answer satisfactory, here's a longer and more technical version:

4508

https://dev.mysql.com/doc/ndbapi/en/overview-ndb-api.html
https://dev.mysql.com/doc/ndbapi/en/overview-ndb-api.html

MySQL 5.7 FAQ: NDB Cluster

A number of mechanisms in NDB Cluster require distributed coordination among the data nodes.
These distributed algorithms and protocols include global checkpointing, DDL (schema) changes,
and node restart handling. To make this coordination simpler, the data nodes “elect” one of their
number to act as leader. There is no user-facing mechanism for influencing this selection, which is
completely automatic; the fact that it is automatic is a key part of NDB Cluster's internal architecture.

When a node acts as the “leader” for any of these mechanisms, it is usually the point of coordination
for the activity, and the other nodes act as “followers”, carrying out their parts of the activity as
directed by the leader. If the node acting as leader fails, then the remaining nodes elect a new
leader. Tasks in progress that were being coordinated by the old leader may either fail or be
continued by the new leader, depending on the actual mechanism involved.

It is possible for some of these different mechanisms and protocols to have different leader nodes,
but in general the same leader is chosen for all of them. The node indicated as the leader in the
output of SHOW in the management client is known internally as the DICT manager, responsible for
coordinating DDL and metadata activity.

NDB Cluster is designed in such a way that the choice of leader has no discernible effect outside
the cluster itself. For example, the current leader does not have significantly higher CPU or resource
usage than the other data nodes, and failure of the leader should not have a significantly different
impact on the cluster than the failure of any other data node.

A.10.8.With which operating systems can I use NDB Cluster?

NDB Cluster is supported on most Unix-like operating systems. NDB Cluster is also supported in
production settings on Microsoft Windows operating systems.

For more detailed information concerning the level of support which is offered for NDB Cluster on
various operating system versions, operating system distributions, and hardware platforms, please
refer to https://www.mysql.com/support/supportedplatforms/cluster.html.

A.10.9.What are the hardware requirements for running NDB Cluster?

NDB Cluster should run on any platform for which NDB-enabled binaries are available. For data
nodes and API nodes, faster CPUs and more memory are likely to improve performance, and 64-
bit CPUs are likely to be more effective than 32-bit processors. There must be sufficient memory
on machines used for data nodes to hold each node's share of the database (see How much RAM
do I Need? for more information). For a computer which is used only for running the NDB Cluster
management server, the requirements are minimal; a common desktop PC (or the equivalent) is
generally sufficient for this task. Nodes can communicate through the standard TCP/IP network and
hardware. They can also use the high-speed SCI protocol; however, special networking hardware
and software are required to use SCI (see Section 21.4.4, “Using High-Speed Interconnects with
NDB Cluster”).

A.10.10.How much RAM do I need to use NDB Cluster? Is it possible to use disk memory at all?

NDB Cluster was originally implemented as in-memory only, but all versions currently available
also provide the ability to store NDB Cluster on disk. See Section 21.6.11, “NDB Cluster Disk Data
Tables”, for more information.

For in-memory NDB tables, you can use the following formula for obtaining a rough estimate of how
much RAM is needed for each data node in the cluster:

(SizeofDatabase × NumberOfReplicas × 1.1) / NumberOfDataNodes

4509

https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbdict.html
https://www.mysql.com/support/supportedplatforms/cluster.html

MySQL 5.7 FAQ: NDB Cluster

To calculate the memory requirements more exactly requires determining, for each table in the
cluster database, the storage space required per row (see Section 11.7, “Data Type Storage
Requirements”, for details), and multiplying this by the number of rows. You must also remember to
account for any column indexes as follows:

• Each primary key or hash index created for an NDBCLUSTER table requires 21−25 bytes per
record. These indexes use IndexMemory.

• Each ordered index requires 10 bytes storage per record, using DataMemory.

• Creating a primary key or unique index also creates an ordered index, unless this index is created
with USING HASH. In other words:

• A primary key or unique index on a Cluster table normally takes up 31 to 35 bytes per record.

• However, if the primary key or unique index is created with USING HASH, then it requires only
21 to 25 bytes per record.

Creating NDB Cluster tables with USING HASH for all primary keys and unique indexes generally
causes table updates to run more quickly—in some cases by a much as 20 to 30 percent faster than
updates on tables where USING HASH was not used in creating primary and unique keys. This is
due to the fact that less memory is required (because no ordered indexes are created), and that less
CPU must be utilized (because fewer indexes must be read and possibly updated). However, it also
means that queries that could otherwise use range scans must be satisfied by other means, which
can result in slower selects.

When calculating Cluster memory requirements, you may find useful the ndb_size.pl utility
which is available in recent MySQL 5.7 releases. This Perl script connects to a current (non-Cluster)
MySQL database and creates a report on how much space that database would require if it used
the NDBCLUSTER storage engine. For more information, see Section 21.5.28, “ndb_size.pl —
NDBCLUSTER Size Requirement Estimator”.

It is especially important to keep in mind that every NDB Cluster table must have a primary key.
The NDB storage engine creates a primary key automatically if none is defined; this primary key is
created without USING HASH.

You can determine how much memory is being used for storage of NDB Cluster data and indexes
at any given time using the REPORT MEMORYUSAGE command in the ndb_mgm client; see
Section 21.6.1, “Commands in the NDB Cluster Management Client”, for more information. In
addition, warnings are written to the cluster log when 80% of available DataMemory or (prior to
NDB 7.6) IndexMemory is in use, and again when usage reaches 90%, 99%, and 100%.

A.10.11.What file systems can I use with NDB Cluster? What about network file systems or network shares?

Generally, any file system that is native to the host operating system should work well with NDB
Cluster. If you find that a given file system works particularly well (or not so especially well) with
NDB Cluster, we invite you to discuss your findings in the NDB Cluster Forums.

For Windows, we recommend that you use NTFS file systems for NDB Cluster, just as we do for
standard MySQL. We do not test NDB Cluster with FAT or VFAT file systems. Because of this, we
do not recommend their use with MySQL or NDB Cluster.

NDB Cluster is implemented as a shared-nothing solution; the idea behind this is that the failure of a
single piece of hardware should not cause the failure of multiple cluster nodes, or possibly even the

4510

https://forums.mysql.com/list.php?25

MySQL 5.7 FAQ: NDB Cluster

failure of the cluster as a whole. For this reason, the use of network shares or network file systems
is not supported for NDB Cluster. This also applies to shared storage devices such as SANs.

A.10.12.Can I run NDB Cluster nodes inside virtual machines (such as those created by VMWare,
VirtualBox, Parallels, or Xen)?

NDB Cluster is supported for use in virtual machines. We currently support and test using Oracle
VM.

Some NDB Cluster users have successfully deployed NDB Cluster using other virtualization
products; in such cases, Oracle can provide NDB Cluster support, but issues specific to the virtual
environment must be referred to that product's vendor.

A.10.13.I am trying to populate an NDB Cluster database. The loading process terminates prematurely and I
get an error message like this one:

ERROR 1114: The table 'my_cluster_table' is full

Why is this happening?

The cause is very likely to be that your setup does not provide sufficient RAM for all table data and
all indexes, including the primary key required by the NDB storage engine and automatically created
in the event that the table definition does not include the definition of a primary key.

It is also worth noting that all data nodes should have the same amount of RAM, since no data node
in a cluster can use more memory than the least amount available to any individual data node. For
example, if there are four computers hosting Cluster data nodes, and three of these have 3GB of
RAM available to store Cluster data while the remaining data node has only 1GB RAM, then each
data node can devote at most 1GB to NDB Cluster data and indexes.

In some cases it is possible to get Table is full errors in MySQL client applications even when
ndb_mgm -e "ALL REPORT MEMORYUSAGE" shows significant free DataMemory. You can force
NDB to create extra partitions for NDB Cluster tables and thus have more memory available for hash
indexes by using the MAX_ROWS option for CREATE TABLE. In general, setting MAX_ROWS to twice
the number of rows that you expect to store in the table should be sufficient.

For similar reasons, you can also sometimes encounter problems with data node restarts on nodes
that are heavily loaded with data. The MinFreePct parameter can help with this issue by reserving
a portion (5% by default) of DataMemory and (prior to NDB 7.6) IndexMemory for use in restarts.
This reserved memory is not available for storing NDB tables or data.

A.10.14.NDB Cluster uses TCP/IP. Does this mean that I can run it over the Internet, with one or more
nodes in remote locations?

It is very unlikely that a cluster would perform reliably under such conditions, as NDB Cluster was
designed and implemented with the assumption that it would be run under conditions guaranteeing
dedicated high-speed connectivity such as that found in a LAN setting using 100 Mbps or gigabit
Ethernet—preferably the latter. We neither test nor warrant its performance using anything slower
than this.

Also, it is extremely important to keep in mind that communications between the nodes in an
NDB Cluster are not secure; they are neither encrypted nor safeguarded by any other protective
mechanism. The most secure configuration for a cluster is in a private network behind a firewall,
with no direct access to any Cluster data or management nodes from outside. (For SQL nodes, you
should take the same precautions as you would with any other instance of the MySQL server.) For
more information, see Section 21.6.18, “NDB Cluster Security Issues”.

4511

http://www.oracle.com/technetwork/server-storage/vm/index.html
http://www.oracle.com/technetwork/server-storage/vm/index.html

MySQL 5.7 FAQ: NDB Cluster

A.10.15.Do I have to learn a new programming or query language to use NDB Cluster?

No. Although some specialized commands are used to manage and configure the cluster itself, only
standard (My)SQL statements are required for the following operations:

• Creating, altering, and dropping tables

• Inserting, updating, and deleting table data

• Creating, changing, and dropping primary and unique indexes

Some specialized configuration parameters and files are required to set up an NDB Cluster—see
Section 21.4.3, “NDB Cluster Configuration Files”, for information about these.

A few simple commands are used in the NDB Cluster management client (ndb_mgm) for tasks
such as starting and stopping cluster nodes. See Section 21.6.1, “Commands in the NDB Cluster
Management Client”.

A.10.16.What programming languages and APIs are supported by NDB Cluster?

NDB Cluster supports the same programming APIs and languages as the standard MySQL Server,
including ODBC, .Net, the MySQL C API, and numerous drivers for popular scripting languages
such as PHP, Perl, and Python. NDB Cluster applications written using these APIs behave similarly
to other MySQL applications; they transmit SQL statements to a MySQL Server (in the case of NDB
Cluster, an SQL node), and receive responses containing rows of data. For more information about
these APIs, see Chapter 27, Connectors and APIs.

NDB Cluster also supports application programming using the NDB API, which provides a low-level
C++ interface to NDB Cluster data without needing to go through a MySQL Server. See The NDB
API. In addition, many NDBCLUSTER management functions are exposed by the C-language MGM
API; see The MGM API, for more information.

NDB Cluster also supports Java application programming using ClusterJ, which supports a domain
object model of data using sessions and transactions. See Java and NDB Cluster, for more
information.

NDB Cluster 8.0 also includes adapters supporting NoSQL applications written against Node.js,
with NDB Cluster as the data store. See MySQL NoSQL Connector for JavaScript, for more
information.

A.10.17.Does NDB Cluster include any management tools?

NDB Cluster includes a command line client for performing basic management functions. See
Section 21.5.5, “ndb_mgm — The NDB Cluster Management Client”, and Section 21.6.1,
“Commands in the NDB Cluster Management Client”.

NDB Cluster is also supported by MySQL Cluster Manager, a separate product providing an
advanced command line interface that can automate many NDB Cluster management tasks such as
rolling restarts and configuration changes. For more information about MySQL Cluster Manager, see
MySQL Cluster Manager 1.4.8 User Manual.

A.10.18.How do I find out what an error or warning message means when using NDB Cluster?

There are two ways in which this can be done:

• From within the mysql client, use SHOW ERRORS or SHOW WARNINGS immediately upon being
notified of the error or warning condition.

4512

https://dev.mysql.com/doc/ndbapi/en/ndbapi.html
https://dev.mysql.com/doc/ndbapi/en/ndbapi.html
https://dev.mysql.com/doc/ndbapi/en/mgm-api.html
https://dev.mysql.com/doc/ndbapi/en/mccj-overview-java.html
https://dev.mysql.com/doc/ndbapi/en/ndb-nodejs.html
https://dev.mysql.com/doc/mysql-cluster-manager/1.4/en/

MySQL 5.7 FAQ: NDB Cluster

• From a system shell prompt, use perror --ndb error_code.

A.10.19.Is NDB Cluster transaction-safe? What isolation levels are supported?

Yes. For tables created with the NDB storage engine, transactions are supported. Currently, NDB
Cluster supports only the READ COMMITTED transaction isolation level.

A.10.20.What storage engines are supported by NDB Cluster?

NDB Cluster requires the NDB storage engine. That is, in order for a table to be shared between
nodes in an NDB Cluster, the table must be created using ENGINE=NDB (or the equivalent option
ENGINE=NDBCLUSTER).

It is possible to create tables using other storage engines (such as InnoDB or MyISAM) on a MySQL
server being used with NDB Cluster, but since these tables do not use NDB, they do not participate
in clustering; each such table is strictly local to the individual MySQL server instance on which it is
created.

NDB Cluster is quite different from InnoDB clustering with regard to architecture, requirements,
and implementation; despite any similarity in their names, the two are not compatible. For more
information about InnoDB clustering, see MySQL AdminAPI. See also Section 21.2.6, “MySQL
Server Using InnoDB Compared with NDB Cluster”, for information about the differences between
the NDB and InnoDB storage engines.

A.10.21.In the event of a catastrophic failure— for example, the whole city loses power and my UPS fails—
would I lose all my data?

All committed transactions are logged. Therefore, although it is possible that some data could be
lost in the event of a catastrophe, this should be quite limited. Data loss can be further reduced by
minimizing the number of operations per transaction. (It is not a good idea to perform large numbers
of operations per transaction in any case.)

A.10.22.Is it possible to use FULLTEXT indexes with NDB Cluster?

FULLTEXT indexing is currently supported only by the InnoDB and MyISAM storage engines. See
Section 12.9, “Full-Text Search Functions”, for more information.

A.10.23.Can I run multiple nodes on a single computer?

It is possible but not always advisable. One of the chief reasons to run a cluster is to provide
redundancy. To obtain the full benefits of this redundancy, each node should reside on a separate
machine. If you place multiple nodes on a single machine and that machine fails, you lose all of
those nodes. For this reason, if you do run multiple data nodes on a single machine, it is extremely
important that they be set up in such a way that the failure of this machine does not cause the loss
of all the data nodes in a given node group.

Given that NDB Cluster can be run on commodity hardware loaded with a low-cost (or even no-cost)
operating system, the expense of an extra machine or two is well worth it to safeguard mission-
critical data. It also worth noting that the requirements for a cluster host running a management
node are minimal. This task can be accomplished with a 300 MHz Pentium or equivalent CPU and
sufficient RAM for the operating system, plus a small amount of overhead for the ndb_mgmd and
ndb_mgm processes.

It is acceptable to run multiple cluster data nodes on a single host that has multiple CPUs, cores,
or both. The NDB Cluster distribution also provides a multithreaded version of the data node binary
intended for use on such systems. For more information, see Section 21.5.3, “ndbmtd — The NDB
Cluster Data Node Daemon (Multi-Threaded)”.

4513

https://dev.mysql.com/doc/mysql-shell/8.0/en/admin-api-userguide.html

MySQL 5.7 FAQ: NDB Cluster

It is also possible in some cases to run data nodes and SQL nodes concurrently on the same
machine; how well such an arrangement performs is dependent on a number of factors such as
number of cores and CPUs as well as the amount of disk and memory available to the data node
and SQL node processes, and you must take these factors into account when planning such a
configuration.

A.10.24.Can I add data nodes to an NDB Cluster without restarting it?

It is possible to add new data nodes to a running NDB Cluster without taking the cluster offline. For
more information, see Section 21.6.7, “Adding NDB Cluster Data Nodes Online”.

For other types of NDB Cluster nodes, a rolling restart is all that is required (see Section 21.6.5,
“Performing a Rolling Restart of an NDB Cluster”).

A.10.25.Are there any limitations that I should be aware of when using NDB Cluster?

Limitations on NDB tables in MySQL NDB Cluster include the following:

• Temporary tables are not supported; a CREATE TEMPORARY TABLE statement using
ENGINE=NDB or ENGINE=NDBCLUSTER fails with an error.

• The only types of user-defined partitioning supported for NDBCLUSTER tables are KEY and
LINEAR KEY. Trying to create an NDB table using any other partitioning type fails with an error.

• FULLTEXT indexes are not supported.

• Index prefixes are not supported. Only complete columns may be indexed.

• Spatial indexes are not supported (although spatial columns can be used). See Section 11.4,
“Spatial Data Types”.

• Support for partial transactions and partial rollbacks is comparable to that of other transactional
storage engines such as InnoDB that can roll back individual statements.

• The maximum number of attributes allowed per table is 512. Attribute names cannot be any
longer than 31 characters. For each table, the maximum combined length of the table and
database names is 122 characters.

• Priot to NDB 8.0, the maximum size for a table row is 14 kilobytes, not counting BLOB values. In
NDB 8.0, this maximum is increased to 30000 bytes. See Section 21.2.7.5, “Limits Associated
with Database Objects in NDB Cluster”, for more information.

There is no set limit for the number of rows per NDB table. Limits on table size depend on a
number of factors, in particular on the amount of RAM available to each data node.

For a complete listing of limitations in NDB Cluster, see Section 21.2.7, “Known Limitations of NDB
Cluster”. See also Previous NDB Cluster Issues Resolved in NDB Cluster 8.0.

A.10.26.Does NDB Cluster support foreign keys?

NDB Cluster provides support for foreign key constraints which is comparable to that found in
the InnoDB storage engine; see Section 1.6.3.2, “FOREIGN KEY Constraints”, for more detailed
information, as well as Section 13.1.18.5, “FOREIGN KEY Constraints”. Applications requiring
foreign key support should use NDB Cluster 7.3, 7.4, 7.5, or later.

A.10.27.How do I import an existing MySQL database into an NDB Cluster?

4514

https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster-limitations-resolved.html

MySQL 5.7 FAQ: NDB Cluster

You can import databases into NDB Cluster much as you would with any other version of MySQL.
Other than the limitations mentioned elsewhere in this FAQ, the only other special requirement is
that any tables to be included in the cluster must use the NDB storage engine. This means that the
tables must be created with ENGINE=NDB or ENGINE=NDBCLUSTER.

It is also possible to convert existing tables that use other storage engines to NDBCLUSTER using
one or more ALTER TABLE statement. However, the definition of the table must be compatible
with the NDBCLUSTER storage engine prior to making the conversion. In MySQL 5.7, an additional
workaround is also required; see Section 21.2.7, “Known Limitations of NDB Cluster”, for details.

A.10.28.How do NDB Cluster nodes communicate with one another?

Cluster nodes can communicate through any of three different transport mechanisms: TCP/IP, SHM
(shared memory), and SCI (Scalable Coherent Interface). Where available, SHM is used by default
between nodes residing on the same cluster host; however, this is considered experimental. SCI is
a high-speed (1 gigabit per second and higher), high-availability protocol used in building scalable
multi-processor systems; it requires special hardware and drivers. See Section 21.4.4, “Using High-
Speed Interconnects with NDB Cluster”, for more about using SCI as a transport mechanism for
NDB Cluster.

A.10.29.What is an arbitrator?

If one or more data nodes in a cluster fail, it is possible that not all cluster data nodes are able to
“see” one another. In fact, it is possible that two sets of data nodes might become isolated from
one another in a network partitioning, also known as a “split-brain” scenario. This type of situation
is undesirable because each set of data nodes tries to behave as though it is the entire cluster. An
arbitrator is required to decide between the competing sets of data nodes.

When all data nodes in at least one node group are alive, network partitioning is not an issue,
because no single subset of the cluster can form a functional cluster on its own. The real problem
arises when no single node group has all its nodes alive, in which case network partitioning (the
“split-brain” scenario) becomes possible. Then an arbitrator is required. All cluster nodes recognize
the same node as the arbitrator, which is normally the management server; however, it is possible
to configure any of the MySQL Servers in the cluster to act as the arbitrator instead. The arbitrator
accepts the first set of cluster nodes to contact it, and tells the remaining set to shut down. Arbitrator
selection is controlled by the ArbitrationRank configuration parameter for MySQL Server and
management server nodes. You can also use the ArbitrationRank configuration parameter
to control the arbitrator selection process. For more information about these parameters, see
Section 21.4.3.5, “Defining an NDB Cluster Management Server”.

The role of arbitrator does not in and of itself impose any heavy demands upon the host so
designated, and thus the arbitrator host does not need to be particularly fast or to have extra
memory especially for this purpose.

A.10.30.What data types are supported by NDB Cluster?

NDB Cluster supports all of the usual MySQL data types, including those associated with
MySQL's spatial extensions; however, the NDB storage engine does not support spatial indexes.
(Spatial indexes are supported only by MyISAM; see Section 11.4, “Spatial Data Types”, for more
information.) In addition, there are some differences with regard to indexes when used with NDB
tables.

Note

NDB Cluster Disk Data tables (that is, tables created with TABLESPACE ...
STORAGE DISK ENGINE=NDB or TABLESPACE ... STORAGE DISK

4515

MySQL 5.7 FAQ: NDB Cluster

ENGINE=NDBCLUSTER) have only fixed-width rows. This means that (for
example) each Disk Data table record containing a VARCHAR(255) column
requires space for 255 characters (as required for the character set and
collation being used for the table), regardless of the actual number of
characters stored therein.

See Section 21.2.7, “Known Limitations of NDB Cluster”, for more information about these issues.

A.10.31.How do I start and stop NDB Cluster?

It is necessary to start each node in the cluster separately, in the following order:

1. Start the management node, using the ndb_mgmd command.

When starting the cluster for the first time, you must include the -f or --config-file option to
tell the management node where its configuration file can be found.

2. Start each data node with the ndbd command.

Each data node must be started with the -c or --ndb-connectstring option so that the data
node knows how to connect to the management server.

3. Start each MySQL Server (SQL node) using your preferred startup script, such as
mysqld_safe.

Each MySQL Server must be started with the --ndbcluster and --ndb-connectstring
options. These options cause mysqld to enable NDBCLUSTER storage engine support and how
to connect to the management server.

Each of these commands must be run from a system shell on the machine housing the affected
node. (You do not have to be physically present at the machine—a remote login shell can be used
for this purpose.) You can verify that the cluster is running by starting the NDB management client
ndb_mgm on the machine housing the management node and issuing the SHOW or ALL STATUS
command.

To shut down a running cluster, issue the command SHUTDOWN in the management client.
Alternatively, you may enter the following command in a system shell:

$> ndb_mgm -e "SHUTDOWN"

(The quotation marks in this example are optional, since there are no spaces in the command
string following the -e option; in addition, the SHUTDOWN command, like other management client
commands, is not case-sensitive.)

Either of these commands causes the ndb_mgm, ndb_mgm, and any ndbd processes to terminate
gracefully. MySQL servers running as SQL nodes can be stopped using mysqladmin shutdown.

For more information, see Section 21.6.1, “Commands in the NDB Cluster Management Client”, and
Section 21.3.6, “Safe Shutdown and Restart of NDB Cluster”.

MySQL Cluster Manager provides additional ways to handle starting ansd stopping of NDB Cluster
nodes. See MySQL Cluster Manager 1.4.8 User Manual, for more information about this tool.

A.10.32.What happens to NDB Cluster data when the cluster is shut down?

The data that was held in memory by the cluster's data nodes is written to disk, and is reloaded into
memory the next time that the cluster is started.

4516

https://dev.mysql.com/doc/mysql-cluster-manager/1.4/en/

MySQL 5.7 FAQ: NDB Cluster

A.10.33.Is it a good idea to have more than one management node for an NDB Cluster?

It can be helpful as a fail-safe. Only one management node controls the cluster at any given time,
but it is possible to configure one management node as primary, and one or more additional
management nodes to take over in the event that the primary management node fails.

See Section 21.4.3, “NDB Cluster Configuration Files”, for information on how to configure NDB
Cluster management nodes.

A.10.34.Can I mix different kinds of hardware and operating systems in one NDB Cluster?

Yes, as long as all machines and operating systems have the same “endianness” (all big-endian or
all little-endian).

It is also possible to use software from different NDB Cluster releases on different nodes. However,
we support such use only as part of a rolling upgrade procedure (see Section 21.6.5, “Performing a
Rolling Restart of an NDB Cluster”).

A.10.35.Can I run two data nodes on a single host? Two SQL nodes?

Yes, it is possible to do this. In the case of multiple data nodes, it is advisable (but not required) for
each node to use a different data directory. If you want to run multiple SQL nodes on one machine,
each instance of mysqld must use a different TCP/IP port.

Running data nodes and SQL nodes together on the same host is possible, but you should be
aware that the ndbd or ndbmtd processes may compete for memory with mysqld.

A.10.36.Can I use host names with NDB Cluster?

Yes, it is possible to use DNS and DHCP for cluster hosts. However, if your application requires
“five nines” availability, you should use fixed (numeric) IP addresses, since making communication
between Cluster hosts dependent on services such as DNS and DHCP introduces additional
potential points of failure.

A.10.37.Does NDB Cluster support IPv6?

IPv6 is supported for connections between SQL nodes (MySQL servers), but connections between
all other types of NDB Cluster nodes must use IPv4.

In practical terms, this means that you can use IPv6 for replication between NDB Clusters, but
connections between nodes in the same NDB Cluster must use IPv4. For more information, see
Section 21.7.3, “Known Issues in NDB Cluster Replication”.

A.10.38.How do I handle MySQL users in an NDB Cluster having multiple MySQL servers?

MySQL user accounts and privileges are normally not automatically propagated between different
MySQL servers accessing the same NDB Cluster. MySQL NDB Cluster provides support for
distributed privileges, which you can enable by following a procedure provided in the documentation;
see Section 21.6.13, “Distributed Privileges Using Shared Grant Tables”, for more information.

Important

The mechanism for handling users distributed or shared between NDB
Cluster SQL nodes changed significantly in NDB 8.0; this implementation
is not compatible with that in NDB 7.6 and earlier. See Privilege
Synchronization and NDB_STORED_USER, for details.

A.10.39.How do I continue to send queries in the event that one of the SQL nodes fails?

4517

https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster-privilege-synchronization.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster-privilege-synchronization.html

MySQL 5.7 FAQ: MySQL Chinese, Japanese, and Korean Character Sets

MySQL NDB Cluster does not provide any sort of automatic failover between SQL nodes. Your
application must be prepared to handle the loss of SQL nodes and to fail over between them.

A.10.40.How do I back up and restore an NDB Cluster?

You can use the NDB Cluster native backup and restore functionality in the NDB management
client and the ndb_restore program. See Section 21.6.8, “Online Backup of NDB Cluster”, and
Section 21.5.24, “ndb_restore — Restore an NDB Cluster Backup”.

You can also use the traditional functionality provided for this purpose in mysqldump and the
MySQL server. See Section 4.5.4, “mysqldump — A Database Backup Program”, for more
information.

A.10.41.What is an “angel process”?

This process monitors and, if necessary, attempts to restart the data node process. If you check the
list of active processes on your system after starting ndbd, you can see that there are actually 2
processes running by that name, as shown here (we omit the output from ndb_mgmd and ndbd for
brevity):

$> ./ndb_mgmd

$> ps aux | grep ndb
me 23002 0.0 0.0 122948 3104 ? Ssl 14:14 0:00 ./ndb_mgmd
me 23025 0.0 0.0 5284 820 pts/2 S+ 14:14 0:00 grep ndb

$> ./ndbd -c 127.0.0.1 --initial

$> ps aux | grep ndb
me 23002 0.0 0.0 123080 3356 ? Ssl 14:14 0:00 ./ndb_mgmd
me 23096 0.0 0.0 35876 2036 ? Ss 14:14 0:00 ./ndbmtd -c 127.0.0.1 --initial
me 23097 1.0 2.4 524116 91096 ? Sl 14:14 0:00 ./ndbmtd -c 127.0.0.1 --initial
me 23168 0.0 0.0 5284 812 pts/2 R+ 14:15 0:00 grep ndb

The ndbd process showing 0.0 for both memory and CPU usage is the angel process (although it
actually does use a very small amount of each). This process merely checks to see if the main ndbd
or ndbmtd process (the primary data node process which actually handles the data) is running. If
permitted to do so (for example, if the StopOnError configuration parameter is set to false), the
angel process tries to restart the primary data node process.

A.11 MySQL 5.7 FAQ: MySQL Chinese, Japanese, and Korean
Character Sets

This set of Frequently Asked Questions derives from the experience of MySQL's Support and Development
groups in handling many inquiries about CJK (Chinese-Japanese-Korean) issues.

A.11.1 What CJK character sets are available in MySQL? .. 4519
A.11.2 I have inserted CJK characters into my table. Why does SELECT display them as “?”

characters? ... 4520
A.11.3 What problems should I be aware of when working with the Big5 Chinese character set? 4522
A.11.4 Why do Japanese character set conversions fail? ... 4522
A.11.5 What should I do if I want to convert SJIS 81CA to cp932? ... 4523
A.11.6 How does MySQL represent the Yen (¥) sign? ... 4523
A.11.7 Of what issues should I be aware when working with Korean character sets in MySQL? 4524
A.11.8 Why do I get Incorrect string value error messages? .. 4524
A.11.9 Why does my GUI front end or browser display CJK characters incorrectly in my application

using Access, PHP, or another API? ... 4525

4518

MySQL 5.7 FAQ: MySQL Chinese, Japanese, and Korean Character Sets

A.11.10 I've upgraded to MySQL 5.7. How can I revert to behavior like that in MySQL 4.0 with regard
to character sets? ... 4525

A.11.11 Why do some LIKE and FULLTEXT searches with CJK characters fail? 4527
A.11.12 How do I know whether character X is available in all character sets? 4527
A.11.13 Why do CJK strings sort incorrectly in Unicode? (I) ... 4528
A.11.14 Why do CJK strings sort incorrectly in Unicode? (II) ... 4529
A.11.15 Why are my supplementary characters rejected by MySQL? .. 4530
A.11.16 Should “CJK” be “CJKV”? .. 4531
A.11.17 Does MySQL permit CJK characters to be used in database and table names? 4531
A.11.18 Where can I find translations of the MySQL Manual into Chinese, Japanese, and Korean? ... 4531
A.11.19 Where can I get help with CJK and related issues in MySQL? .. 4531

A.11.1.What CJK character sets are available in MySQL?

The list of CJK character sets may vary depending on your MySQL version. For example,
the gb18030 character set is not supported prior to MySQL 5.7.4. However, since the name
of the applicable language appears in the DESCRIPTION column for every entry in the
INFORMATION_SCHEMA.CHARACTER_SETS table, you can obtain a current list of all the non-
Unicode CJK character sets using this query:

mysql> SELECT CHARACTER_SET_NAME, DESCRIPTION
 FROM INFORMATION_SCHEMA.CHARACTER_SETS
 WHERE DESCRIPTION LIKE '%Chin%'
 OR DESCRIPTION LIKE '%Japanese%'
 OR DESCRIPTION LIKE '%Korean%'
 ORDER BY CHARACTER_SET_NAME;
+--------------------+---------------------------------+
| CHARACTER_SET_NAME | DESCRIPTION |
+--------------------+---------------------------------+
big5	Big5 Traditional Chinese
cp932	SJIS for Windows Japanese
eucjpms	UJIS for Windows Japanese
euckr	EUC-KR Korean
gb18030	China National Standard GB18030
gb2312	GB2312 Simplified Chinese
gbk	GBK Simplified Chinese
sjis	Shift-JIS Japanese
ujis	EUC-JP Japanese
+--------------------+---------------------------------+

(For more information, see Section 24.3.2, “The INFORMATION_SCHEMA CHARACTER_SETS
Table”.)

MySQL supports three variants of the GB (Guojia Biaozhun, or National Standard, or Simplified
Chinese) character sets which are official in the People's Republic of China: gb2312, gbk, and (as
of MySQL 5.7.4) gb18030.

Sometimes people try to insert gbk characters into gb2312, and it works most of the time because
gbk is a superset of gb2312. But eventually they try to insert a rarer Chinese character and it does
not work. (For an example, see Bug #16072).

Here, we try to clarify exactly what characters are legitimate in gb2312 or gbk, with reference to the
official documents. Please check these references before reporting gb2312 or gbk bugs:

• The MySQL gbk character set is in reality “Microsoft code page 936”. This differs from the official
gbk for characters A1A4 (middle dot), A1AA (em dash), A6E0-A6F5, and A8BB-A8C0.

• For a listing of gbk/Unicode mappings, see http://www.unicode.org/Public/MAPPINGS/
VENDORS/MICSFT/WINDOWS/CP936.TXT.

4519

http://www.unicode.org/Public/MAPPINGS/VENDORS/MICSFT/WINDOWS/CP936.TXT
http://www.unicode.org/Public/MAPPINGS/VENDORS/MICSFT/WINDOWS/CP936.TXT

MySQL 5.7 FAQ: MySQL Chinese, Japanese, and Korean Character Sets

It is also possible to store CJK characters in Unicode character sets, although the available
collations may not sort characters quite as you expect:

• The utf8 and ucs2 character sets support the characters from Unicode Basic Multilingual Plane
(BMP). These characters have code point values between U+0000 and U+FFFF.

• The utf8mb4, utf16, utf16le, and utf32 character sets support BMP characters, as well as
supplementary characters that lie outside the BMP. Supplementary characters have code point
values between U+10000 and U+10FFFF.

The collation used for a Unicode character set determines the ability to sort (that is, distinguish)
characters in the set:

• Collations based on Unicode Collation Algorithm (UCA) 4.0.0 distinguish only BMP characters.

• Collations based on UCA 5.2.0 or 9.0.0 distinguish BMP and supplementary characters.

• Non-UCA collations may not distinguish all Unicode characters. For example, the utf8mb4
default collation is utf8mb4_general_ci, which distinguishes only BMP characters.

Moreover, distinguishing characters is not the same as ordering them per the conventions
of a given CJK language. Currently, MySQL has only one CJK-specific UCA collation,
gb18030_unicode_520_ci (which requires use of the non-Unicode gb18030 character set).

For information about Unicode collations and their differentiating properties, including collation
properties for supplementary characters, see Section 10.10.1, “Unicode Character Sets”.

A.11.2.I have inserted CJK characters into my table. Why does SELECT display them as “?” characters?

This problem is usually due to a setting in MySQL that does not match the settings for the
application program or the operating system. Here are some common steps for correcting these
types of issues:

• Be certain of what MySQL version you are using.

Use the statement SELECT VERSION(); to determine this.

• Make sure that the database is actually using the desired character set.

People often think that the client character set is always the same as either the server character
set or the character set used for display purposes. However, both of these are false assumptions.
You can make sure by checking the result of SHOW CREATE TABLE tablename or, better yet,
by using this statement:

SELECT character_set_name, collation_name
 FROM information_schema.columns
 WHERE table_schema = your_database_name
 AND table_name = your_table_name
 AND column_name = your_column_name;

• Determine the hexadecimal value of the character or characters that are not being displayed
correctly.

You can obtain this information for a column column_name in the table table_name using the
following query:

SELECT HEX(column_name)

4520

MySQL 5.7 FAQ: MySQL Chinese, Japanese, and Korean Character Sets

FROM table_name;

3F is the encoding for the ? character; this means that ? is the character actually stored in the
column. This most often happens because of a problem converting a particular character from
your client character set to the target character set.

• Make sure that a round trip is possible. When you select literal (or _introducer
hexadecimal-value), do you obtain literal as a result?

For example, the Japanese Katakana character Pe (ペ') exists in all CJK character sets, and has
the code point value (hexadecimal coding) 0x30da. To test a round trip for this character, use this
query:

SELECT 'ペ' AS `ペ`; /* or SELECT _ucs2 0x30da; */

If the result is not also ペ, the round trip failed.

For bug reports regarding such failures, we might ask you to follow up with SELECT
HEX('ペ');. Then we can determine whether the client encoding is correct.

• Make sure that the problem is not with the browser or other application, rather than with MySQL.

Use the mysql client program to accomplish this task. If mysql displays characters correctly but
your application does not, your problem is probably due to system settings.

To determine your settings, use the SHOW VARIABLES statement, whose output should resemble
what is shown here:

mysql> SHOW VARIABLES LIKE 'char%';
+--------------------------+--+
| Variable_name | Value |
+--------------------------+--+
character_set_client	utf8
character_set_connection	utf8
character_set_database	latin1
character_set_filesystem	binary
character_set_results	utf8
character_set_server	latin1
character_set_system	utf8
character_sets_dir	/usr/local/mysql/share/mysql/charsets/
+--------------------------+--+

These are typical character-set settings for an international-oriented client (notice the use of utf8
Unicode) connected to a server in the West (latin1 is a West Europe character set).

Although Unicode (usually the utf8 variant on Unix, and the ucs2 variant on Windows) is
preferable to Latin, it is often not what your operating system utilities support best. Many Windows
users find that a Microsoft character set, such as cp932 for Japanese Windows, is suitable.

If you cannot control the server settings, and you have no idea what setting your underlying
computer uses, try changing to a common character set for the country that you're in (euckr =
Korea; gb18030, gb2312 or gbk = People's Republic of China; big5 = Taiwan; sjis, ujis,
cp932, or eucjpms = Japan; ucs2 or utf8 = anywhere). Usually it is necessary to change only

4521

MySQL 5.7 FAQ: MySQL Chinese, Japanese, and Korean Character Sets

the client and connection and results settings. The SET NAMES. statement changes all three at
once. For example:

SET NAMES 'big5';

Once the setting is correct, you can make it permanent by editing my.cnf or my.ini. For
example you might add lines looking like these:

[mysqld]
character-set-server=big5
[client]
default-character-set=big5

It is also possible that there are issues with the API configuration setting being used in your
application; see Why does my GUI front end or browser not display CJK characters correctly...?
for more information.

A.11.3.What problems should I be aware of when working with the Big5 Chinese character set?

MySQL supports the Big5 character set which is common in Hong Kong and Taiwan (Republic of
China). The MySQL big5 character set is in reality Microsoft code page 950, which is very similar to
the original big5 character set.

A feature request for adding HKSCS extensions has been filed. People who need this extension may
find the suggested patch for Bug #13577 to be of interest.

A.11.4.Why do Japanese character set conversions fail?

MySQL supports the sjis, ujis, cp932, and eucjpms character sets, as well as Unicode. A
common need is to convert between character sets. For example, there might be a Unix server
(typically with sjis or ujis) and a Windows client (typically with cp932).

In the following conversion table, the ucs2 column represents the source, and the sjis, cp932,
ujis, and eucjpms columns represent the destinations; that is, the last 4 columns provide the
hexadecimal result when we use CONVERT(ucs2) or we assign a ucs2 column containing the
value to an sjis, cp932, ujis, or eucjpms column.

Character
Name

ucs2 sjis cp932 ujis eucjpms

BROKEN BAR 00A6 3F 3F 8FA2C3 3F

FULLWIDTH
BROKEN BAR

FFE4 3F FA55 3F 8FA2

YEN SIGN 00A5 3F 3F 20 3F

FULLWIDTH
YEN SIGN

FFE5 818F 818F A1EF 3F

TILDE 007E 7E 7E 7E 7E

OVERLINE 203E 3F 3F 20 3F

HORIZONTAL
BAR

2015 815C 815C A1BD A1BD

EM DASH 2014 3F 3F 3F 3F

REVERSE
SOLIDUS

005C 815F 5C 5C 5C

4522

MySQL 5.7 FAQ: MySQL Chinese, Japanese, and Korean Character Sets

Character
Name

ucs2 sjis cp932 ujis eucjpms

FULLWIDTH
REVERSE
SOLIDUS

FF3C 3F 815F 3F A1C0

WAVE DASH 301C 8160 3F A1C1 3F

FULLWIDTH
TILDE

FF5E 3F 8160 3F A1C1

DOUBLE
VERTICAL
LINE

2016 8161 3F A1C2 3F

PARALLEL TO 2225 3F 8161 3F A1C2

MINUS SIGN 2212 817C 3F A1DD 3F

FULLWIDTH
HYPHEN-
MINUS

FF0D 3F 817C 3F A1DD

CENT SIGN 00A2 8191 3F A1F1 3F

FULLWIDTH
CENT SIGN

FFE0 3F 8191 3F A1F1

POUND SIGN 00A3 8192 3F A1F2 3F

FULLWIDTH
POUND SIGN

FFE1 3F 8192 3F A1F2

NOT SIGN 00AC 81CA 3F A2CC 3F

FULLWIDTH
NOT SIGN

FFE2 3F 81CA 3F A2CC

Now consider the following portion of the table.

ucs2 sjis cp932

NOT SIGN 00AC 81CA 3F

FULLWIDTH NOT
SIGN

FFE2 3F 81CA

This means that MySQL converts the NOT SIGN (Unicode U+00AC) to sjis code point 0x81CA
and to cp932 code point 3F. (3F is the question mark (“?”. This is what is always used when the
conversion cannot be performed.)

A.11.5.What should I do if I want to convert SJIS 81CA to cp932?

Our answer is: “?”. There are disadvantages to this, and many people would prefer a “loose”
conversion, so that 81CA (NOT SIGN) in sjis becomes 81CA (FULLWIDTH NOT SIGN) in
cp932.

A.11.6.How does MySQL represent the Yen (¥) sign?

A problem arises because some versions of Japanese character sets (both sjis and euc) treat 5C
as a reverse solidus (\, also known as a backslash), whereas others treat it as a yen sign (¥).

4523

MySQL 5.7 FAQ: MySQL Chinese, Japanese, and Korean Character Sets

MySQL follows only one version of the JIS (Japanese Industrial Standards) standard description. In
MySQL, 5C is always the reverse solidus (\).

A.11.7.Of what issues should I be aware when working with Korean character sets in MySQL?

In theory, while there have been several versions of the euckr (Extended Unix Code Korea)
character set, only one problem has been noted. We use the “ASCII” variant of EUC-KR, in which
the code point 0x5c is REVERSE SOLIDUS, that is \, instead of the “KS-Roman” variant of EUC-
KR, in which the code point 0x5c is WON SIGN (₩). This means that you cannot convert Unicode U
+20A9 to euckr:

mysql> SELECT
 CONVERT('₩' USING euckr) AS euckr,

 HEX(CONVERT('₩' USING euckr)) AS hexeuckr;
+-------+----------+
| euckr | hexeuckr |
+-------+----------+
| ? | 3F |
+-------+----------+

A.11.8.Why do I get Incorrect string value error messages?

To see the problem, create a table with one Unicode (ucs2) column and one Chinese (gb2312)
column.

mysql> CREATE TABLE ch
 (ucs2 CHAR(3) CHARACTER SET ucs2,
 gb2312 CHAR(3) CHARACTER SET gb2312);

In nonstrict SQL mode, try to place the rare character 汌 in both columns.

mysql> SET sql_mode = '';
mysql> INSERT INTO ch VALUES ('A汌B','A汌B');
Query OK, 1 row affected, 1 warning (0.00 sec)

The INSERT produces a warning. Use the following statement to see what it is:

mysql> SHOW WARNINGS\G
*************************** 1. row ***************************
 Level: Warning
 Code: 1366
Message: Incorrect string value: '\xE6\xB1\x8CB' for column 'gb2312' at row 1

So it is a warning about the gb2312 column only.

mysql> SELECT ucs2,HEX(ucs2),gb2312,HEX(gb2312) FROM ch;
+-------+--------------+--------+-------------+
| ucs2 | HEX(ucs2) | gb2312 | HEX(gb2312) |
+-------+--------------+--------+-------------+
| A汌B | 00416C4C0042 | A?B | 413F42 |
+-------+--------------+--------+-------------+

Several things need explanation here:

1. The 汌 character is not in the gb2312 character set, as described earlier.

2. If you are using an old version of MySQL, you may see a different message.

3. A warning occurs rather than an error because MySQL is not set to use strict SQL mode. In
nonstrict mode, MySQL tries to do what it can, to get the best fit, rather than give up. With

4524

MySQL 5.7 FAQ: MySQL Chinese, Japanese, and Korean Character Sets

strict SQL mode, the Incorrect string value message occurs as an error rather than a
warning, and the INSERT fails.

A.11.9.Why does my GUI front end or browser display CJK characters incorrectly in my application using
Access, PHP, or another API?

Obtain a direct connection to the server using the mysql client, and try the same query there. If
mysql responds correctly, the trouble may be that your application interface requires initialization.
Use mysql to tell you what character set or sets it uses with the statement SHOW VARIABLES
LIKE 'char%';. If you are using Access, you are most likely connecting with Connector/ODBC.
In this case, you should check Configuring Connector/ODBC. If, for example, you use big5, you
would enter SET NAMES 'big5'. (In this case, no ; character is required.) If you are using ASP,
you might need to add SET NAMES in the code. Here is an example that has worked in the past:

<%
Session.CodePage=0
Dim strConnection
Dim Conn
strConnection="driver={MySQL ODBC 3.51 Driver};server=server;uid=username;" \
 & "pwd=password;database=database;stmt=SET NAMES 'big5';"
Set Conn = Server.CreateObject("ADODB.Connection")
Conn.Open strConnection
%>

In much the same way, if you are using any character set other than latin1 with Connector/NET,
you must specify the character set in the connection string. See Connector/NET Connections, for
more information.

If you are using PHP, try this:

<?php
 $link = new mysqli($host, $usr, $pwd, $db);

 if(mysqli_connect_errno())
 {
 printf("Connect failed: %s\n", mysqli_connect_error());
 exit();
 }

 $link->query("SET NAMES 'utf8'");
?>

In this case, we used SET NAMES to change character_set_client,
character_set_connection, and character_set_results.

Another issue often encountered in PHP applications has to do with assumptions made by
the browser. Sometimes adding or changing a <meta> tag suffices to correct the problem: for
example, to insure that the user agent interprets page content as UTF-8, include <meta http-
equiv="Content-Type" content="text/html; charset=utf-8"> in the <head> section
of the HTML page.

If you are using Connector/J, see Using Character Sets and Unicode.

A.11.10.I've upgraded to MySQL 5.7. How can I revert to behavior like that in MySQL 4.0 with regard to
character sets?

In MySQL Version 4.0, there was a single “global” character set for both server and client, and the
decision as to which character to use was made by the server administrator. This changed starting
with MySQL Version 4.1. What happens now is a “handshake”, as described in Section 10.4,
“Connection Character Sets and Collations”:

4525

https://dev.mysql.com/doc/connector-odbc/en/connector-odbc-configuration.html
https://dev.mysql.com/doc/connector-net/en/connector-net-connections.html
https://dev.mysql.com/doc/connector-j/en/connector-j-reference-charsets.html

MySQL 5.7 FAQ: MySQL Chinese, Japanese, and Korean Character Sets

When a client connects, it sends to the server the name of the character set that
it wants to use. The server uses the name to set the character_set_client,
character_set_results, and character_set_connection system
variables. In effect, the server performs a SET NAMES operation using the character
set name.

The effect of this is that you cannot control the client character set by starting mysqld with --
character-set-server=utf8. However, some Asian customers prefer the MySQL 4.0
behavior. To make it possible to retain this behavior, we added a mysqld switch, --character-
set-client-handshake, which can be turned off with --skip-character-set-client-
handshake. If you start mysqld with --skip-character-set-client-handshake, then,
when a client connects, it sends to the server the name of the character set that it wants to use.
However, the server ignores this request from the client.

By way of example, suppose that your favorite server character set is latin1. Suppose further that
the client uses utf8 because this is what the client's operating system supports. Start the server
with latin1 as its default character set:

mysqld --character-set-server=latin1

And then start the client with the default character set utf8:

mysql --default-character-set=utf8

The resulting settings can be seen by viewing the output of SHOW VARIABLES:

mysql> SHOW VARIABLES LIKE 'char%';
+--------------------------+--+
| Variable_name | Value |
+--------------------------+--+
character_set_client	utf8
character_set_connection	utf8
character_set_database	latin1
character_set_filesystem	binary
character_set_results	utf8
character_set_server	latin1
character_set_system	utf8
character_sets_dir	/usr/local/mysql/share/mysql/charsets/
+--------------------------+--+

Now stop the client, and stop the server using mysqladmin. Then start the server again, but this
time tell it to skip the handshake like so:

mysqld --character-set-server=utf8 --skip-character-set-client-handshake

Start the client with utf8 once again as the default character set, then display the resulting settings:

mysql> SHOW VARIABLES LIKE 'char%';
+--------------------------+--+
| Variable_name | Value |
+--------------------------+--+
character_set_client	latin1
character_set_connection	latin1
character_set_database	latin1
character_set_filesystem	binary
character_set_results	latin1
character_set_server	latin1
character_set_system	utf8
character_sets_dir	/usr/local/mysql/share/mysql/charsets/
+--------------------------+--+

4526

MySQL 5.7 FAQ: MySQL Chinese, Japanese, and Korean Character Sets

As you can see by comparing the differing results from SHOW VARIABLES, the server ignores the
client's initial settings if the --skip-character-set-client-handshake option is used.

A.11.11.Why do some LIKE and FULLTEXT searches with CJK characters fail?

For LIKE searches, there is a very simple problem with binary string column types such as BINARY
and BLOB: we must know where characters end. With multibyte character sets, different characters
might have different octet lengths. For example, in utf8, A requires one byte but ペ requires three
bytes, as shown here:

+-------------------------+---------------------------+
| OCTET_LENGTH(_utf8 'A') | OCTET_LENGTH(_utf8 'ペ') |
+-------------------------+---------------------------+
| 1 | 3 |
+-------------------------+---------------------------+

If we do not know where the first character in a string ends, we do not know where the second
character begins, in which case even very simple searches such as LIKE '_A%' fail. The solution
is to use a nonbinary string column type defined to have the proper CJK character set. For example:
mycol TEXT CHARACTER SET sjis. Alternatively, convert to a CJK character set before
comparing.

This is one reason why MySQL cannot permit encodings of nonexistent characters. If it is not strict
about rejecting bad input, it has no way of knowing where characters end.

For FULLTEXT searches, we must know where words begin and end. With Western languages, this
is rarely a problem because most (if not all) of these use an easy-to-identify word boundary: the
space character. However, this is not usually the case with Asian writing. We could use arbitrary
halfway measures, like assuming that all Han characters represent words, or (for Japanese)
depending on changes from Katakana to Hiragana due to grammatical endings. However, the only
sure solution requires a comprehensive word list, which means that we would have to include a
dictionary in the server for each Asian language supported. This is simply not feasible.

A.11.12.How do I know whether character X is available in all character sets?

The majority of simplified Chinese and basic nonhalfwidth Japanese Kana characters appear in all
CJK character sets. The following stored procedure accepts a UCS-2 Unicode character, converts it
to other character sets, and displays the results in hexadecimal.

DELIMITER //

CREATE PROCEDURE p_convert(ucs2_char CHAR(1) CHARACTER SET ucs2)
BEGIN

CREATE TABLE tj
 (ucs2 CHAR(1) character set ucs2,
 utf8 CHAR(1) character set utf8,
 big5 CHAR(1) character set big5,
 cp932 CHAR(1) character set cp932,
 eucjpms CHAR(1) character set eucjpms,
 euckr CHAR(1) character set euckr,
 gb2312 CHAR(1) character set gb2312,
 gbk CHAR(1) character set gbk,
 sjis CHAR(1) character set sjis,
 ujis CHAR(1) character set ujis);

INSERT INTO tj (ucs2) VALUES (ucs2_char);

UPDATE tj SET utf8=ucs2,
 big5=ucs2,

4527

MySQL 5.7 FAQ: MySQL Chinese, Japanese, and Korean Character Sets

 cp932=ucs2,
 eucjpms=ucs2,
 euckr=ucs2,
 gb2312=ucs2,
 gbk=ucs2,
 sjis=ucs2,
 ujis=ucs2;

/* If there are conversion problems, UPDATE produces warnings. */

SELECT hex(ucs2) AS ucs2,
 hex(utf8) AS utf8,
 hex(big5) AS big5,
 hex(cp932) AS cp932,
 hex(eucjpms) AS eucjpms,
 hex(euckr) AS euckr,
 hex(gb2312) AS gb2312,
 hex(gbk) AS gbk,
 hex(sjis) AS sjis,
 hex(ujis) AS ujis
FROM tj;

DROP TABLE tj;

END//

DELIMITER ;

The input can be any single ucs2 character, or it can be the code value (hexadecimal
representation) of that character. For example, from Unicode's list of ucs2 encodings and names
(http://www.unicode.org/Public/UNIDATA/UnicodeData.txt), we know that the Katakana character
Pe appears in all CJK character sets, and that its code value is X'30DA'. If we use this value as the
argument to p_convert(), the result is as shown here:

mysql> CALL p_convert(X'30DA');
+------+--------+------+-------+---------+-------+--------+------+------+------+
| ucs2 | utf8 | big5 | cp932 | eucjpms | euckr | gb2312 | gbk | sjis | ujis |
+------+--------+------+-------+---------+-------+--------+------+------+------+
| 30DA | E3839A | C772 | 8379 | A5DA | ABDA | A5DA | A5DA | 8379 | A5DA |
+------+--------+------+-------+---------+-------+--------+------+------+------+

Since none of the column values is 3F (that is, the question mark character, ?), we know that every
conversion worked.

A.11.13.Why do CJK strings sort incorrectly in Unicode? (I)

Note

The CJK sorting problems described here can occur for MySQL versions
prior to MySQL 8.0. As of MySQL 8.0, they can be solved by using the
utf8mb4 character set and the utf8mb4_ja_0900_as_cs collation.

Sometimes people observe that the result of a utf8_unicode_ci or ucs2_unicode_ci search,
or of an ORDER BY sort is not what they think a native would expect. Although we never rule out the
possibility that there is a bug, we have found in the past that many people do not correctly read the
standard table of weights for the Unicode Collation Algorithm. MySQL uses the tables found under
http://www.unicode.org/Public/UCA/:

• UCA 4.0.0 table: http://www.unicode.org/Public/UCA/4.0.0/allkeys-4.0.0.txt

This includes xxx_unicode_ci collations with no version number in the collation name.

4528

http://www.unicode.org/Public/UNIDATA/UnicodeData.txt
http://www.unicode.org/Public/UCA/
http://www.unicode.org/Public/UCA/4.0.0/allkeys-4.0.0.txt

MySQL 5.7 FAQ: MySQL Chinese, Japanese, and Korean Character Sets

• UCA 5.2.0 table: http://www.unicode.org/Public/UCA/5.2.0/allkeys.txt

This includes collations with _520_ in the collation name.

• UCA 9.0.0 table: http://www.unicode.org/Public/UCA/9.0.0/allkeys.txt

This includes collations with _0900_ in the collation name.

To handle newer UCA versions, we create new collations. We are very wary about changing
ordering of existing collations because that affects indexes, which can bring about situations such as
that reported in Bug #16526, illustrated as follows:

mysql> CREATE TABLE tj (s1 CHAR(1) CHARACTER SET utf8 COLLATE utf8_unicode_ci);
Query OK, 0 rows affected (0.05 sec)

mysql> INSERT INTO tj VALUES ('が'),('か');
Query OK, 2 rows affected (0.00 sec)
Records: 2 Duplicates: 0 Warnings: 0

mysql> SELECT * FROM tj WHERE s1 = 'か';
+------+
| s1 |
+------+
| が |

| か |
+------+

The character in the first result row is not the one that we searched for. Why did MySQL retrieve
it? First we look for the Unicode code point value, which is possible by reading the hexadecimal
number for the ucs2 version of the characters:

mysql> SELECT s1, HEX(CONVERT(s1 USING ucs2)) FROM tj;
+------+-----------------------------+
| s1 | HEX(CONVERT(s1 USING ucs2)) |
+------+-----------------------------+
| が | 304C |

| か | 304B |
+------+-----------------------------+

Now we search for 304B and 304C in the 4.0.0 allkeys table, and find these lines:

304B ; [.1E57.0020.000E.304B] # HIRAGANA LETTER KA
304C ; [.1E57.0020.000E.304B][.0000.0140.0002.3099] # HIRAGANA LETTER GA; QQCM

The official Unicode names (following the “#” mark) tell us the Japanese syllabary (Hiragana),
the informal classification (letter, digit, or punctuation mark), and the Western identifier (KA or GA,
which happen to be voiced and unvoiced components of the same letter pair). More importantly,
the primary weight (the first hexadecimal number inside the square brackets) is 1E57 on both lines.
For comparisons in both searching and sorting, MySQL pays attention to the primary weight only,
ignoring all the other numbers. This means that we are sorting が and か correctly according to the
Unicode specification. If we wanted to distinguish them, we'd have to use a non-UCA (Unicode
Collation Algorithm) collation (utf8_bin or utf8_general_ci), or to compare the HEX() values,
or use ORDER BY CONVERT(s1 USING sjis). Being correct “according to Unicode” is not
enough, of course: the person who submitted the bug was equally correct. To solve this, we need
another collation for Japanese according to the JIS X 4061 standard, in which voiced/unvoiced letter
pairs like KA/GA are distinguishable for ordering purposes.

A.11.14.Why do CJK strings sort incorrectly in Unicode? (II)

4529

http://www.unicode.org/Public/UCA/5.2.0/allkeys.txt
http://www.unicode.org/Public/UCA/9.0.0/allkeys.txt

MySQL 5.7 FAQ: MySQL Chinese, Japanese, and Korean Character Sets

Note

The CJK sorting problems described here can occur for MySQL versions
prior to MySQL 8.0. As of MySQL 8.0, they can be solved by using the
utf8mb4 character set and the utf8mb4_ja_0900_as_cs collation.

If you are using Unicode (ucs2 or utf8), and you know what the Unicode sort order is (see
Section A.11, “MySQL 5.7 FAQ: MySQL Chinese, Japanese, and Korean Character Sets”), but
MySQL still seems to sort your table incorrectly, first verify the character set in the table definition:

mysql> SHOW CREATE TABLE t\G
******************** 1. row ******************
Table: t
Create Table: CREATE TABLE `t` (
`s1` char(1) CHARACTER SET ucs2 DEFAULT NULL
) ENGINE=MyISAM DEFAULT CHARSET=latin1

Since the character set for the column s1 appears to be correct (ucs2), check what information the
INFORMATION_SCHEMA.COLUMNS table can provide about this column:

mysql> SELECT COLUMN_NAME, CHARACTER_SET_NAME, COLLATION_NAME
 FROM INFORMATION_SCHEMA.COLUMNS
 WHERE COLUMN_NAME = 's1'
 AND TABLE_NAME = 't';
+-------------+--------------------+-----------------+
| COLUMN_NAME | CHARACTER_SET_NAME | COLLATION_NAME |
+-------------+--------------------+-----------------+
| s1 | ucs2 | ucs2_general_ci |
+-------------+--------------------+-----------------+

(See Section 24.3.5, “The INFORMATION_SCHEMA COLUMNS Table”, for more information.)

You can see that the collation is ucs2_general_ci instead of ucs2_unicode_ci. The reason
why this is so can be found using SHOW CHARACTER SET, as shown here:

mysql> SHOW CHARSET LIKE 'ucs2%';
+---------+---------------+-------------------+--------+
| Charset | Description | Default collation | Maxlen |
+---------+---------------+-------------------+--------+
| ucs2 | UCS-2 Unicode | ucs2_general_ci | 2 |
+---------+---------------+-------------------+--------+

For ucs2 and utf8, the default collation is “general”. To specify a Unicode UCA collation, use
COLLATE ucs2_unicode_ci, as shown in the preceding item.

A.11.15.Why are my supplementary characters rejected by MySQL?

Supplementary characters lie outside the Unicode Basic Multilingual Plane / Plane 0. BMP
characters have code point values between U+0000 and U+FFFF. Supplementary characters have
code point values between U+10000 and U+10FFFF.

To store supplementary characters, you must use a character set that permits them:

• The utf8 and ucs2 character sets support BMP characters only.

The utf8 character set permits only UTF-8 characters that take up to three bytes. This has led to
reports such as that found in Bug #12600, which we rejected as “not a bug”. With utf8, MySQL

4530

MySQL 5.7 FAQ: Connectors & APIs

must truncate an input string when it encounters bytes that it does no understand. Otherwise, it is
unknown how long the bad multibyte character is.

One possible workaround is to use ucs2 instead of utf8, in which case the “bad” characters are
changed to question marks. However, no truncation takes place. You can also change the data
type to BLOB or BINARY, which perform no validity checking.

• The utf8mb4, utf16, utf16le, and utf32 character sets support BMP characters, as well as
supplementary characters outside the BMP.

A.11.16.Should “CJK” be “CJKV”?

No. The term “CJKV” (Chinese Japanese Korean Vietnamese) refers to Vietnamese character sets
which contain Han (originally Chinese) characters. MySQL supports the modern Vietnamese script
with Western characters, but does not support the old Vietnamese script using Han characters.

As of MySQL 5.6, there are Vietnamese collations for Unicode character sets, as described in
Section 10.10.1, “Unicode Character Sets”.

A.11.17.Does MySQL permit CJK characters to be used in database and table names?

Yes.

A.11.18.Where can I find translations of the MySQL Manual into Chinese, Japanese, and Korean?

The Japanese translation of the MySQL 5.6 manual can be downloaded from https://dev.mysql.com/
doc/.

A.11.19.Where can I get help with CJK and related issues in MySQL?

The following resources are available:

• A listing of MySQL user groups can be found at https://wikis.oracle.com/display/mysql/List+of
+MySQL+User+Groups.

• View feature requests relating to character set issues at http://tinyurl.com/y6xcuf.

• Visit the MySQL Character Sets, Collation, Unicode Forum. http://forums.mysql.com/ also
provides foreign-language forums.

A.12 MySQL 5.7 FAQ: Connectors & APIs
For common questions, issues, and answers relating to the MySQL Connectors and other APIs, see the
following areas of the Manual:

• Using C API Features

• Connector/ODBC Notes and Tips

• Connector/NET Programming

• MySQL Connector/J Developer Guide

A.13 MySQL 5.7 FAQ: C API, libmysql
Frequently asked questions about MySQL C API and libmysql.

A.13.1 What is “MySQL Native C API”? What are typical benefits and use cases? 4532

4531

https://dev.mysql.com/doc/
https://dev.mysql.com/doc/
https://wikis.oracle.com/display/mysql/List+of+MySQL+User+Groups
https://wikis.oracle.com/display/mysql/List+of+MySQL+User+Groups
http://tinyurl.com/y6xcuf
https://forums.mysql.com/list.php?103
http://forums.mysql.com/
https://dev.mysql.com/doc/c-api/5.7/en/c-api-features.html
https://dev.mysql.com/doc/connector-odbc/en/connector-odbc-usagenotes.html
https://dev.mysql.com/doc/connector-net/en/connector-net-programming.html
https://dev.mysql.com/doc/connector-j/en/

MySQL 5.7 FAQ: Replication

A.13.2 Which version of libmysql should I use? ... 4532
A.13.3 What if I want to use the “NoSQL” X DevAPI? .. 4532
A.13.4 How to I download libmysql? .. 4532
A.13.5 Where is the documentation? ... 4532
A.13.6 How do I report bugs? ... 4532
A.13.7 Is it possible to compile the library myself? ... 4532

A.13.1.What is “MySQL Native C API”? What are typical benefits and use cases?

libmysql is a C-based API that you can use in C applications to connect with the MySQL database
server. It is also itself used as the foundation for drivers for standard database APIs like ODBC,
Perl's DBI, and Python's DB API.

A.13.2.Which version of libmysql should I use?

For MySQL 8.0 and 5.7 we recommend libmysql 8.0.

A.13.3.What if I want to use the “NoSQL” X DevAPI?

For C-language and X DevApi Document Store for MySQL, we recommend MySQL Connector/C++.
Connector/C++ has compatible C headers. (This is not applicable to MySQL 5.7 or before.)

A.13.4.How to I download libmysql?

• Linux: The Client Utilities Package is available from the MySQL Community Server download
page.

• Repos: The Client Utilities Package is available from the Yum, APT, SuSE repositories.

• Windows: The Client Utilities Package is available from Windows Installer.

A.13.5.Where is the documentation?

See MySQL 5.7 C API Developer Guide.

A.13.6.How do I report bugs?

Please report any bugs or inconsistencies you observe to our Bugs Database. Select the C API
Client as shown.

A.13.7.Is it possible to compile the library myself?

Compiling MySQL Server also compiles libmysqlclient; there is not a way to only compile
libmysqlclient. For related information, see MySQL C API Implementations.

A.14 MySQL 5.7 FAQ: Replication

In the following section, we provide answers to questions that are most frequently asked about MySQL
Replication.

A.14.1 Must the replica be connected to the source all the time? .. 4533
A.14.2 Must I enable networking on my source and replica to enable replication? 4533
A.14.3 How do I know how late a replica is compared to the source? In other words, how do I know

the date of the last statement replicated by the replica? ... 4533
A.14.4 How do I force the source to block updates until the replica catches up? 4533
A.14.5 What issues should I be aware of when setting up two-way replication? 4534

4532

https://dev.mysql.com/downloads/mysql/
https://dev.mysql.com/downloads/repo/yum/
https://dev.mysql.com/downloads/repo/apt/
https://dev.mysql.com/downloads/repo/suse/
https://dev.mysql.com/downloads/installer/
https://dev.mysql.com/doc/c-api/5.7/en/
https://bugs.mysql.com/
https://dev.mysql.com/doc/c-api/5.7/en/c-api-implementations.html

MySQL 5.7 FAQ: Replication

A.14.6 How can I use replication to improve performance of my system? .. 4534
A.14.7 What should I do to prepare client code in my own applications to use performance-enhancing

replication? ... 4534
A.14.8 When and how much can MySQL replication improve the performance of my system? 4534
A.14.9 How can I use replication to provide redundancy or high availability? 4535
A.14.10 How do I tell whether a replication source server is using statement-based or row-based

binary logging format? .. 4536
A.14.11 How do I tell a replica to use row-based replication? ... 4536
A.14.12 How do I prevent GRANT and REVOKE statements from replicating to replica machines? 4536
A.14.13 Does replication work on mixed operating systems (for example, the source runs on Linux

while replicas run on macOS and Windows)? .. 4536
A.14.14 Does replication work on mixed hardware architectures (for example, the source runs on a

64-bit machine while replicas run on 32-bit machines)? .. 4536

A.14.1.Must the replica be connected to the source all the time?

No, it does not. The replica can go down or stay disconnected for hours or even days, and then
reconnect and catch up on updates. For example, you can set up a source/replica relationship over
a dial-up link where the link is up only sporadically and for short periods of time. The implication of
this is that, at any given time, the replica is not guaranteed to be in synchrony with the source unless
you take some special measures.

To ensure that catchup can occur for a replica that has been disconnected, you must not remove
binary log files from the source that contain information that has not yet been replicated to the
replicas. Asynchronous replication can work only if the replica is able to continue reading the binary
log from the point where it last read events.

A.14.2.Must I enable networking on my source and replica to enable replication?

Yes, networking must be enabled on the source and replica. If networking is not enabled, the replica
cannot connect to the source and transfer the binary log. Verify that the skip_networking system
variable has not been enabled in the configuration file for either server.

A.14.3.How do I know how late a replica is compared to the source? In other words, how do I know the
date of the last statement replicated by the replica?

Check the Seconds_Behind_Master column in the output from SHOW REPLICA | SLAVE
STATUS. See Section 16.1.7.1, “Checking Replication Status”.

When the replication SQL thread executes an event read from the source, it modifies its own time
to the event timestamp. (This is why TIMESTAMP is well replicated.) In the Time column in the
output of SHOW PROCESSLIST, the number of seconds displayed for the replication SQL thread
is the number of seconds between the timestamp of the last replicated event and the real time
of the replica machine. You can use this to determine the date of the last replicated event. Note
that if your replica has been disconnected from the source for one hour, and then reconnects,
you may immediately see large Time values such as 3600 for the replication SQL thread in SHOW
PROCESSLIST. This is because the replica is executing statements that are one hour old. See
Section 16.2.3, “Replication Threads”.

A.14.4.How do I force the source to block updates until the replica catches up?

Use the following procedure:

1. On the source, execute these statements:

mysql> FLUSH TABLES WITH READ LOCK;
mysql> SHOW MASTER STATUS;

4533

https://dev.mysql.com/doc/refman/8.0/en/show-replica-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-replica-status.html

MySQL 5.7 FAQ: Replication

Record the replication coordinates (the current binary log file name and position) from the output
of the SHOW statement.

2. On the replica, issue the following statement, where the arguments to the
SOURCE_POS_WAIT() or MASTER_POS_WAIT() function are the replication coordinate values
obtained in the previous step:

mysql> SELECT MASTER_POS_WAIT('log_name', log_pos);

Or from MySQL 8.0.26:
mysql> SELECT SOURCE_POS_WAIT('log_name', log_pos);

The SELECT statement blocks until the replica reaches the specified log file and position. At that
point, the replica is in synchrony with the source and the statement returns.

3. On the source, issue the following statement to enable the source to begin processing updates
again:

mysql> UNLOCK TABLES;

A.14.5.What issues should I be aware of when setting up two-way replication?

MySQL replication currently does not support any locking protocol between source and replica to
guarantee the atomicity of a distributed (cross-server) update. In other words, it is possible for client
A to make an update to co-source 1, and in the meantime, before it propagates to co-source 2,
client B could make an update to co-source 2 that makes the update of client A work differently than
it did on co-source 1. Thus, when the update of client A makes it to co-source 2, it produces tables
that are different from what you have on co-source 1, even after all the updates from co-source
2 have also propagated. This means that you should not chain two servers together in a two-way
replication relationship unless you are sure that your updates can safely happen in any order, or
unless you take care of mis-ordered updates somehow in the client code.

You should also realize that two-way replication actually does not improve performance very much
(if at all) as far as updates are concerned. Each server must do the same number of updates, just
as you would have a single server do. The only difference is that there is a little less lock contention
because the updates originating on another server are serialized in one replication thread. Even this
benefit might be offset by network delays.

A.14.6.How can I use replication to improve performance of my system?

Set up one server as the source and direct all writes to it. Then configure as many replicas
as you have the budget and rackspace for, and distribute the reads among the source and
the replicas. You can also start the replicas with the --skip-innodb option, enable the
low_priority_updates system variable, and set the delay_key_write system variable to
ALL to get speed improvements on the replica end. In this case, the replica uses nontransactional
MyISAM tables instead of InnoDB tables to get more speed by eliminating transactional overhead.

A.14.7.What should I do to prepare client code in my own applications to use performance-enhancing
replication?

See the guide to using replication as a scale-out solution, Section 16.3.4, “Using Replication for
Scale-Out”.

A.14.8.When and how much can MySQL replication improve the performance of my system?

MySQL replication is most beneficial for a system that processes frequent reads and infrequent
writes. In theory, by using a single-source/multiple-replica setup, you can scale the system by

4534

https://dev.mysql.com/doc/refman/8.0/en/replication-functions-synchronization.html#function_source-pos-wait

MySQL 5.7 FAQ: Replication

adding more replicas until you either run out of network bandwidth, or your update load grows to the
point that the source cannot handle it.

To determine how many replicas you can use before the added benefits begin to level out, and how
much you can improve performance of your site, you must know your query patterns, and determine
empirically by benchmarking the relationship between the throughput for reads and writes on a
typical source and a typical replica. The example here shows a rather simplified calculation of what
you can get with replication for a hypothetical system. Let reads and writes denote the number of
reads and writes per second, respectively.

Let's say that system load consists of 10% writes and 90% reads, and we have determined by
benchmarking that reads is 1200 - 2 * writes. In other words, the system can do 1,200 reads per
second with no writes, the average write is twice as slow as the average read, and the relationship
is linear. Suppose that the source and each replica have the same capacity, and that we have one
source and N replicas. Then we have for each server (source or replica):

reads = 1200 - 2 * writes

reads = 9 * writes / (N + 1) (reads are split, but writes replicated to all replicas)

9 * writes / (N + 1) + 2 * writes = 1200

writes = 1200 / (2 + 9/(N + 1))

The last equation indicates the maximum number of writes for N replicas, given a maximum possible
read rate of 1,200 per second and a ratio of nine reads per write.

This analysis yields the following conclusions:

• If N = 0 (which means we have no replication), our system can handle about 1200/11 = 109 writes
per second.

• If N = 1, we get up to 184 writes per second.

• If N = 8, we get up to 400 writes per second.

• If N = 17, we get up to 480 writes per second.

• Eventually, as N approaches infinity (and our budget negative infinity), we can get very close to
600 writes per second, increasing system throughput about 5.5 times. However, with only eight
servers, we increase it nearly four times.

These computations assume infinite network bandwidth and neglect several other factors that could
be significant on your system. In many cases, you may not be able to perform a computation similar
to the one just shown that accurately predicts what happens on your system if you add N replicas.
However, answering the following questions should help you decide whether and by how much
replication may improve the performance of your system:

• What is the read/write ratio on your system?

• How much more write load can one server handle if you reduce the reads?

• For how many replicas do you have bandwidth available on your network?

A.14.9.How can I use replication to provide redundancy or high availability?

4535

MySQL 5.7 FAQ: MySQL Enterprise Thread Pool

How you implement redundancy is entirely dependent on your application and circumstances. High-
availability solutions (with automatic failover) require active monitoring and either custom scripts or
third party tools to provide the failover support from the original MySQL server to the replica.

To handle the process manually, you should be able to switch from a failed source to a pre-
configured replica by altering your application to talk to the new server or by adjusting the DNS for
the MySQL server from the failed server to the new server.

For more information and some example solutions, see Section 16.3.7, “Switching Sources During
Failover”.

A.14.10.How do I tell whether a replication source server is using statement-based or row-based binary
logging format?

Check the value of the binlog_format system variable:

mysql> SHOW VARIABLES LIKE 'binlog_format';

The value shown is always one of STATEMENT, ROW, or MIXED. For MIXED mode, statement-
based logging is used by default but replication switches automatically to row-based logging under
certain conditions, such as unsafe statements. For information about when this may occur, see
Section 5.4.4.3, “Mixed Binary Logging Format”.

A.14.11.How do I tell a replica to use row-based replication?

Replicas automatically know which format to use.

A.14.12.How do I prevent GRANT and REVOKE statements from replicating to replica machines?

Start the server with the --replicate-wild-ignore-table=mysql.% option to ignore
replication for tables in the mysql database.

A.14.13.Does replication work on mixed operating systems (for example, the source runs on Linux while
replicas run on macOS and Windows)?

Yes.

A.14.14.Does replication work on mixed hardware architectures (for example, the source runs on a 64-bit
machine while replicas run on 32-bit machines)?

Yes.

A.15 MySQL 5.7 FAQ: MySQL Enterprise Thread Pool
A.15.1 What is the Thread Pool and what problem does it solve? ... 4536
A.15.2 How does the Thread Pool limit and manage concurrent sessions and transactions for optimal

performance and throughput? .. 4537
A.15.3 How is the Thread Pool different from the client side Connection Pool? 4537
A.15.4 When should I use the Thread Pool? .. 4537
A.15.5 Are there recommended Thread Pool configurations? .. 4537

A.15.1.What is the Thread Pool and what problem does it solve?

The MySQL Thread Pool is a MySQL server plugin that extends the default connection-handling
capabilities of the MySQL server to limit the number of concurrently executing statements/queries
and transactions to ensure that each has sufficient CPU and memory resources to fulfill its task. For
MySQL 5.7, the Thread Pool plugin is included in MySQL Enterprise Edition, a commercial product.

4536

MySQL 5.7 FAQ: MySQL Enterprise Thread Pool

The default thread-handling model in MySQL Server executes statements using one thread
per client connection. As more clients connect to the server and execute statements, overall
performance degrades. The Thread Pool plugin provides an alternative thread-handling model
designed to reduce overhead and improve performance. The Thread Pool plugin increases server
performance by efficiently managing statement execution threads for large numbers of client
connections, especially on modern multi-CPU/Core systems.

For more information, see Section 5.5.3, “MySQL Enterprise Thread Pool”.

A.15.2.How does the Thread Pool limit and manage concurrent sessions and transactions for optimal
performance and throughput?

The Thread Pool uses a “divide and conquer” approach to limiting and balancing concurrency.
Unlike the default connection handling of the MySQL Server, the Thread Pool separates
connections and threads, so there is no fixed relationship between connections and the threads
that execute statements received from those connections. The Thread Pool then manages client
connections within configurable thread groups, where they are prioritized and queued based on the
nature of the work they were submitted to accomplish.

For more information, see Section 5.5.3.3, “Thread Pool Operation”.

A.15.3.How is the Thread Pool different from the client side Connection Pool?

The MySQL Connection Pool operates on the client side to ensure that a MySQL client does
not constantly connect to and disconnect from the MySQL server. It is designed to cache idle
connections in the MySQL client for use by other users as they are needed. This minimizes the
overhead and expense of establishing and tearing down connections as queries are submitted
to the MySQL server. The MySQL Connection Pool has no visibility as to the query handling
capabilities or load of the back-end MySQL server. By contrast, the Thread Pool operates on the
MySQL server side and is designed to manage the execution of inbound concurrent connections
and queries as they are received from the client connections accessing the back-end MySQL
database. Because of the separation of duties, the MySQL Connection Pool and Thread Pool are
orthogonal and can be used independent of each other.

MySQL Connection Pooling via the MySQL Connectors is covered in Chapter 27, Connectors and
APIs.

A.15.4.When should I use the Thread Pool?

There are a few rules of thumb to consider for optimal Thread Pool use cases:

The MySQL Threads_running variable keeps track of the number of concurrent statements
currently executing in the MySQL Server. If this variable consistently exceeds a region where the
server won't operate optimally (usually going beyond 40 for InnoDB workloads), the Thread Pool
should be beneficial, especially in extreme parallel overload situations.

If you are using the innodb_thread_concurrency to limit the number of concurrently executing
statements, you should find that the Thread Pool solves the same problem, only better, by assigning
connections to thread groups, then queuing executions based on transactional content, user defined
designations, and so forth.

Lastly, if your workload comprises mainly short queries, the Thread Pool should be beneficial.

To learn more, see Section 5.5.3.4, “Thread Pool Tuning”.

A.15.5.Are there recommended Thread Pool configurations?

4537

MySQL 5.7 FAQ: InnoDB Change Buffer

The Thread Pool has a number of user case driven configuration parameters that affect its
performance. To learn about these and tips on tuning, see Section 5.5.3.4, “Thread Pool Tuning”.

A.16 MySQL 5.7 FAQ: InnoDB Change Buffer
A.16.1 What types of operations modify secondary indexes and result in change buffering? 4538
A.16.2 What is the benefit of the InnoDB change buffer? ... 4538
A.16.3 Does the change buffer support other types of indexes? .. 4538
A.16.4 How much space does InnoDB use for the change buffer? ... 4538
A.16.5 How do I determine the current size of the change buffer? ... 4538
A.16.6 When does change buffer merging occur? .. 4539
A.16.7 When is the change buffer flushed? ... 4539
A.16.8 When should the change buffer be used? ... 4539
A.16.9 When should the change buffer not be used? ... 4539
A.16.10 Where can I find additional information about the change buffer? .. 4539

A.16.1.What types of operations modify secondary indexes and result in change buffering?

INSERT, UPDATE, and DELETE operations can modify secondary indexes. If an affected index page
is not in the buffer pool, the changes can be buffered in the change buffer.

A.16.2.What is the benefit of the InnoDB change buffer?

Buffering secondary index changes when secondary index pages are not in the buffer pool avoids
expensive random access I/O operations that would be required to immediately read in affected
index pages from disk. Buffered changes can be applied later, in batches, as pages are read into
the buffer pool by other read operations.

A.16.3.Does the change buffer support other types of indexes?

No. The change buffer only supports secondary indexes. Clustered indexes, full-text indexes, and
spatial indexes are not supported. Full-text indexes have their own caching mechanism.

A.16.4.How much space does InnoDB use for the change buffer?

Prior to the introduction of the innodb_change_buffer_max_size configuration option in
MySQL 5.6, the maximum size of the on-disk change buffer in the system tablespace was 1/3 of the
InnoDB buffer pool size.

In MySQL 5.6 and later, the innodb_change_buffer_max_size configuration option defines
the maximum size of the change buffer as a percentage of the total buffer pool size. By default,
innodb_change_buffer_max_size is set to 25. The maximum setting is 50.

InnoDB does not buffer an operation if it would cause the on-disk change buffer to exceed the
defined limit.

Change buffer pages are not required to persist in the buffer pool and may be evicted by LRU
operations.

A.16.5.How do I determine the current size of the change buffer?

The current size of the change buffer is reported by SHOW ENGINE INNODB STATUS \G, under
the INSERT BUFFER AND ADAPTIVE HASH INDEX heading. For example:

INSERT BUFFER AND ADAPTIVE HASH INDEX

Ibuf: size 1, free list len 0, seg size 2, 0 merges

4538

MySQL 5.7 FAQ: InnoDB Data-at-Rest Encryption

Relevant data points include:

• size: The number of pages used within the change buffer. Change buffer size is equal to seg
size - (1 + free list len). The 1 + value represents the change buffer header page.

• seg size: The size of the change buffer, in pages.

For information about monitoring change buffer status, see Section 14.5.2, “Change Buffer”.

A.16.6.When does change buffer merging occur?

• When a page is read into the buffer pool, buffered changes are merged upon completion of the
read, before the page is made available.

• Change buffer merging is performed as a background task. The innodb_io_capacity
parameter sets an upper limit on the I/O activity performed by InnoDB background tasks such as
merging data from the change buffer.

• A change buffer merge is performed during crash recovery. Changes are applied from the change
buffer (in the system tablespace) to leaf pages of secondary indexes as index pages are read into
the buffer pool.

• The change buffer is fully durable and can survive a system crash. Upon restart, change buffer
merge operations resume as part of normal operations.

• A full merge of the change buffer can be forced as part of a slow server shutdown using --
innodb-fast-shutdown=0.

A.16.7.When is the change buffer flushed?

Updated pages are flushed by the same flushing mechanism that flushes the other pages that
occupy the buffer pool.

A.16.8.When should the change buffer be used?

The change buffer is a feature designed to reduce random I/O to secondary indexes as indexes
grow larger and no longer fit in the InnoDB buffer pool. Generally, the change buffer should be used
when the entire data set does not fit into the buffer pool, when there is substantial DML activity that
modifies secondary index pages, or when there are lots of secondary indexes that are regularly
changed by DML activity.

A.16.9.When should the change buffer not be used?

You might consider disabling the change buffer if the entire data set fits within the InnoDB buffer
pool, if you have relatively few secondary indexes, or if you are using solid-state storage, where
random reads are about as fast as sequential reads. Before making configuration changes, it is
recommended that you run tests using a representative workload to determine if disabling the
change buffer provides any benefit.

A.16.10.Where can I find additional information about the change buffer?

See Section 14.5.2, “Change Buffer”.

A.17 MySQL 5.7 FAQ: InnoDB Data-at-Rest Encryption
A.17.1 Is data decrypted for users who are authorized to see it? .. 4540

4539

MySQL 5.7 FAQ: InnoDB Data-at-Rest Encryption

A.17.2 What is the overhead associated with InnoDB data-at-rest encryption? 4540
A.17.3 What are the encryption algorithms used with InnoDB data-at-rest encryption? 4540
A.17.4 Is it possible to use 3rd party encryption algorithms in place of the one provided by the

InnoDB data-at-rest encryption feature? .. 4540
A.17.5 Can indexed columns be encrypted? .. 4540
A.17.6 What data types and data lengths does InnoDB data-at-rest encryption support? 4540
A.17.7 Does data remain encrypted on the network? ... 4540
A.17.8 Does database memory contain cleartext or encrypted data? ... 4541
A.17.9 How do I know which data to encrypt? ... 4541
A.17.10 How is InnoDB data-at-rest encryption different from encryption functions MySQL already

provides? .. 4541
A.17.11 Does the transportable tablespaces feature work with InnoDB data-at-rest encryption? 4541
A.17.12 Does compression work with InnoDB data-at-rest encryption? ... 4541
A.17.13 Can I use mysqldump with encrypted tables? ... 4541
A.17.14 How do I change (rotate, re-key) the master encryption key? ... 4541
A.17.15 How do I migrate data from a cleartext InnoDB tablespace to an encrypted InnoDB

tablespace? .. 4541
A.17.16 Can the InnoDB data-at-rest feature store the master encryption key in an external device

using the PKSC11 interface? .. 4542

A.17.1.Is data decrypted for users who are authorized to see it?

Yes. InnoDB data-at-rest encryption is designed to transparently apply encryption within the
database without impacting existing applications. Returning data in encrypted format would break
most existing applications. InnoDB data-at-rest encryption provides the benefit of encryption without
the overhead associated with traditional database encryption solutions, which would typically require
expensive and substantial changes to applications, database triggers, and views.

A.17.2.What is the overhead associated with InnoDB data-at-rest encryption?

There is no additional storage overhead. According to internal benchmarks, performance overhead
amounts to a single digit percentage difference.

A.17.3.What are the encryption algorithms used with InnoDB data-at-rest encryption?

InnoDB data-at-rest encryption supports the Advanced Encryption Standard (AES256) block-based
encryption algorithm. It uses Electronic Codebook (ECB) block encryption mode for tablespace key
encryption and Cipher Block Chaining (CBC) block encryption mode for data encryption.

A.17.4.Is it possible to use 3rd party encryption algorithms in place of the one provided by the InnoDB
data-at-rest encryption feature?

No, it is not possible to use other encryption algorithms. The provided encryption algorithm is
broadly accepted.

A.17.5.Can indexed columns be encrypted?

InnoDB data-at-rest encryption supports all indexes transparently.

A.17.6.What data types and data lengths does InnoDB data-at-rest encryption support?

InnoDB data-at-rest encryption supports all supported data types. There is no data length limitation.

A.17.7.Does data remain encrypted on the network?

Data encrypted by the InnoDB data-at-rest feature is decrypted when it is read from the tablespace
file. Thus, if the data is on the network, it is in cleartext form. However, data on the network can be

4540

MySQL 5.7 FAQ: InnoDB Data-at-Rest Encryption

encrypted using MySQL network encryption, which encrypts data traveling to and from a database
using SSL/TLS.

A.17.8.Does database memory contain cleartext or encrypted data?

With InnoDB data-at-rest encryption, in-memory data is decrypted, which provides complete
transparency.

A.17.9.How do I know which data to encrypt?

Compliance with the PCI-DSS standard requires that credit card numbers (Primary Account
Number, or 'PAN') be stored in encrypted form. Breach Notification Laws (for example, CA SB 1386,
CA AB 1950, and similar laws in 43+ more US states) require encryption of first name, last name,
driver license number, and other PII data. In early 2008, CA AB 1298 added medical and health
insurance information to PII data. Additionally, industry specific privacy and security standards may
require encryption of certain assets. For example, assets such as pharmaceutical research results,
oil field exploration results, financial contracts, or personal data of law enforcement informants may
require encryption. In the health care industry, the privacy of patient data, health records and X-ray
images is of the highest importance.

A.17.10.How is InnoDB data-at-rest encryption different from encryption functions MySQL already provides?

There are symmetric and asymmetric encryption APIs in MySQL that can be used to manually
encrypt data within the database. However, the application must manage encryption keys and
perform required encryption and decryption operations by calling API functions. InnoDB data-at-rest
encryption requires no application changes, is transparent to end users, and provides automated,
built-in key management.

A.17.11.Does the transportable tablespaces feature work with InnoDB data-at-rest encryption?

Yes. It is supported for encrypted file-per-table tablespaces. For more information, see Exporting
Encrypted Tablespaces.

A.17.12.Does compression work with InnoDB data-at-rest encryption?

Customers using InnoDB data-at-rest encryption receive the full benefit of compression because
compression is applied before data blocks are encrypted.

A.17.13.Can I use mysqldump with encrypted tables?

Yes. Because these utilities create logical backups, the data dumped from encrypted tables is not
encrypted.

A.17.14.How do I change (rotate, re-key) the master encryption key?

InnoDB data-at-rest encryption uses a two tier key mechanism. When data-at-rest encryption is
used, individual tablespace keys are stored in the header of the underlying tablespace data file.
Tablespace keys are encrypted using the master encryption key. The master encryption key is
generated when tablespace encryption is enabled, and is stored outside the database. The master
encryption key is rotated using the ALTER INSTANCE ROTATE INNODB MASTER KEY statement,
which generates a new master encryption key, stores the key, and rotates the key into use.

A.17.15.How do I migrate data from a cleartext InnoDB tablespace to an encrypted InnoDB tablespace?

Transferring data from one tablespace to another is not required. To encrypt data in an InnoDB file-
per-table tablespace, run ALTER TABLE tbl_name ENCRYPTION = 'Y'. To encrypt a general
tablespace or the mysql tablespace, run ALTER TABLESPACE tablespace_name ENCRYPTION

4541

MySQL 5.7 FAQ: Virtualization Support

= 'Y'. Encryption support for general tablespaces was introduced in MySQL 8.0.13. Encryption
support for the mysql system tablespace is available as of MySQL 8.0.16.

A.17.16.Can the InnoDB data-at-rest feature store the master encryption key in an external device using the
PKSC11 interface?

Not at this time. Currently, the KMIP 1.1 protocol is supported with the keyring_okv plugin, which
is available with MySQL Enterprise Edition.

A.18 MySQL 5.7 FAQ: Virtualization Support

A.18.1 Is MySQL supported on virtualized environments such as Oracle VM, VMWare, Docker,
Microsoft Hyper-V, or others? .. 4542

A.18.1.Is MySQL supported on virtualized environments such as Oracle VM, VMWare, Docker, Microsoft
Hyper-V, or others?

MySQL is supported on virtualized environments, but is certified only for Oracle VM. Contact Oracle
Support for more information.

Be aware of potential problems when using virtualization software. The usual ones are related to
performance, performance degradations, slowness, or unpredictability of disk, I/O, network, and
memory.

4542

http://www.oracle.com/technetwork/server-storage/vm/index.html

Appendix B Error Messages and Common Problems

Table of Contents
B.1 Error Message Sources and Elements ... 4543
B.2 Error Information Interfaces ... 4545
B.3 Problems and Common Errors .. 4547

B.3.1 How to Determine What Is Causing a Problem .. 4547
B.3.2 Common Errors When Using MySQL Programs .. 4548
B.3.3 Administration-Related Issues ... 4559
B.3.4 Query-Related Issues .. 4568
B.3.5 Optimizer-Related Issues ... 4575
B.3.6 Table Definition-Related Issues .. 4575
B.3.7 Known Issues in MySQL .. 4577

This appendix describes the types of error information MySQL provides and how to obtain information
about them. The final section is for troubleshooting. It describes common problems and errors that may
occur and potential resolutions.

Additional Resources

Other error-related documentation includes:

• Information about configuring where and how the server writes the error log: Section 5.4.2, “The Error
Log”

• Information about the character set used for error messages: Section 10.6, “Error Message Character
Set”

• Information about the language used for error messages: Section 10.12, “Setting the Error Message
Language”

• Information about errors related to InnoDB: Section 14.22.4, “InnoDB Error Handling”

• Information about errors specific to NDB Cluster: NDB Cluster API Errors; see also NDB API Errors and
Error Handling, and MGM API Errors

• Descriptions of the error messages that the MySQL server and client programs generate: MySQL 5.7
Error Message Reference

B.1 Error Message Sources and Elements
This section discusses how error messages originate within MySQL and the elements they contain.

• Error Message Sources

• Error Message Elements

Error Message Sources

Error messages can originate on the server side or the client side:

• On the server side, error messages may occur during the startup and shutdown processes, as a result of
issues that occur during SQL statement execution, and so forth.

4543

https://dev.mysql.com/doc/ndb-internals/en/ndb-errors.html
https://dev.mysql.com/doc/ndbapi/en/ndb-api-errors.html
https://dev.mysql.com/doc/ndbapi/en/ndb-api-errors.html
https://dev.mysql.com/doc/ndbapi/en/mgm-errors.html
https://dev.mysql.com/doc/mysql-errors/5.7/en/
https://dev.mysql.com/doc/mysql-errors/5.7/en/

Error Message Elements

• The MySQL server writes some error messages to its error log. These indicate issues of interest to
database administrators or that require DBA action.

• The server sends other error messages to client programs. These indicate issues pertaining only to
a particular client. The MySQL client library takes errors received from the server and makes them
available to the host client program.

• Client-side error messages are generated from within the MySQL client library, usually involving
problems communicating with the server.

Example server-side error messages written to the error log:

• This message produced during the startup process provides a status or progress indicator:

2018-09-26T14:46:06.326016Z 0 [Note] Skipping generation of SSL
certificates as options related to SSL are specified.

• This message indicates an issue that requires DBA action:

2018-10-02T03:20:39.410387Z 0 [ERROR] Plugin 'InnoDB'
registration as a STORAGE ENGINE failed.

Example server-side error message sent to client programs, as displayed by the mysql client:

mysql> SELECT * FROM no_such_table;
ERROR 1146 (42S02): Table 'test.no_such_table' doesn't exist

Example client-side error message originating from within the client library, as displayed by the mysql
client:

$> mysql -h no-such-host
ERROR 2005 (HY000): Unknown MySQL server host 'no-such-host' (0)

Whether an error originates from within the client library or is received from the server, a MySQL client
program may respond in varying ways. As just illustrated, the client may display the error message so the
user can take corrective measures. The client may instead internally attempt to resolve or retry a failed
operation, or take other action.

Error Message Elements

When an error occurs, error information includes several elements: an error code, SQLSTATE value, and
message string. These elements have the following characteristics:

• Error code: This value is numeric. It is MySQL-specific and is not portable to other database systems.

Each error number has a corresponding symbolic value. Examples:

• The symbol for server error number 1146 is ER_NO_SUCH_TABLE.

• The symbol for client error number 2005 is CR_UNKNOWN_HOST.

Error codes are stable across General Availability (GA) releases of a given MySQL series. Before a
series reaches GA status, new codes may still be under development and are subject to change.

• SQLSTATE value: This value is a five-character string (for example, '42S02'). SQLSTATE values are
taken from ANSI SQL and ODBC and are more standardized than the numeric error codes. The first two
characters of an SQLSTATE value indicate the error class:

• Class = '00' indicates success.

4544

https://dev.mysql.com/doc/mysql-errors/5.7/en/server-error-reference.html#error_er_no_such_table
https://dev.mysql.com/doc/mysql-errors/5.7/en/client-error-reference.html#error_cr_unknown_host

Error Information Interfaces

• Class = '01' indicates a warning.

• Class = '02' indicates “not found.” This is relevant within the context of cursors and is used to
control what happens when a cursor reaches the end of a data set. This condition also occurs for
SELECT ... INTO var_list statements that retrieve no rows.

• Class > '02' indicates an exception.

For server-side errors, not all MySQL error numbers have corresponding SQLSTATE values. In these
cases, 'HY000' (general error) is used.

For client-side errors, the SQLSTATE value is always 'HY000' (general error), so it is not meaningful
for distinguishing one client error from another.

• Message string: This string provides a textual description of the error.

B.2 Error Information Interfaces

Error messages can originate on the server side or the client side, and each error message includes an
error code, SQLSTATE value, and message string, as described in Section B.1, “Error Message Sources
and Elements”. For lists of server-side, client-side, and global (shared between server and clients) errors,
see MySQL 5.7 Error Message Reference.

For error checking from within programs, use error code numbers or symbols, not error message strings.
Message strings do not change often, but it is possible. Also, if the database administrator changes the
language setting, that affects the language of message strings; see Section 10.12, “Setting the Error
Message Language”.

Error information in MySQL is available in the server error log, at the SQL level, from within client
programs, and at the command line.

• Error Log

• SQL Error Message Interface

• Client Error Message Interface

• Command-Line Error Message Interface

Error Log

On the server side, some messages are intended for the error log. For information about configuring where
and how the server writes the log, see Section 5.4.2, “The Error Log”.

Other server error messages are intended to be sent to client programs and are available as described in
Client Error Message Interface.

SQL Error Message Interface

At the SQL level, there are several sources of error information in MySQL:

• SQL statement warning and error information is available through the SHOW WARNINGS and SHOW
ERRORS statements. The warning_count system variable indicates the number of errors, warnings,
and notes (with notes excluded if the sql_notes system variable is disabled). The error_count
system variable indicates the number of errors. Its value excludes warnings and notes.

4545

https://dev.mysql.com/doc/mysql-errors/5.7/en/

Client Error Message Interface

• The GET DIAGNOSTICS statement may be used to inspect the diagnostic information in the diagnostics
area. See Section 13.6.7.3, “GET DIAGNOSTICS Statement”.

• SHOW SLAVE STATUS statement output includes information about replication errors occurring on
replica servers.

• SHOW ENGINE INNODB STATUS statement output includes information about the most recent foreign
key error if a CREATE TABLE statement for an InnoDB table fails.

Client Error Message Interface

Client programs receive errors from two sources:

• Errors that originate on the client side from within the MySQL client library.

• Errors that originate on the server side and are sent to the client by the server. These are received within
the client library, which makes them available to the host client program.

Regardless of whether an error originates from within the client library or is received from the server,
a MySQL client program obtains the error code, SQLSTATE value, message string, and other related
information by calling C API functions in the client library:

• mysql_errno() returns the MySQL error code.

• mysql_sqlstate() returns the SQLSTATE value.

• mysql_error() returns the message string.

• mysql_stmt_errno(), mysql_stmt_sqlstate(), and mysql_stmt_error() are the
corresponding error functions for prepared statements.

• mysql_warning_count() returns the number of errors, warnings, and notes for the most recent
statement.

For descriptions of the client library error functions, see MySQL 5.7 C API Developer Guide.

A MySQL client program may respond to an error in varying ways. The client may display the error
message so the user can take corrective measures, internally attempt to resolve or retry a failed operation,
or take other action. For example, (using the mysql client), a failure to connect to the server might result in
this message:

$> mysql -h no-such-host
ERROR 2005 (HY000): Unknown MySQL server host 'no-such-host' (0)

Command-Line Error Message Interface

The perror program provides information from the command line about error numbers. See Section 4.8.2,
“perror — Display MySQL Error Message Information”.

$> perror 1231
MySQL error code 1231 (ER_WRONG_VALUE_FOR_VAR): Variable '%-.64s' can't
be set to the value of '%-.200s'

For MySQL NDB Cluster errors, use ndb_perror. See Section 21.5.17, “ndb_perror — Obtain NDB Error
Message Information”.

$> ndb_perror 323
NDB error code 323: Invalid nodegroup id, nodegroup already existing:
Permanent error: Application error

4546

https://dev.mysql.com/doc/c-api/5.7/en/mysql-errno.html
https://dev.mysql.com/doc/c-api/5.7/en/mysql-sqlstate.html
https://dev.mysql.com/doc/c-api/5.7/en/mysql-error.html
https://dev.mysql.com/doc/c-api/5.7/en/mysql-stmt-errno.html
https://dev.mysql.com/doc/c-api/5.7/en/mysql-stmt-sqlstate.html
https://dev.mysql.com/doc/c-api/5.7/en/mysql-stmt-error.html
https://dev.mysql.com/doc/c-api/5.7/en/mysql-warning-count.html
https://dev.mysql.com/doc/c-api/5.7/en/

Problems and Common Errors

B.3 Problems and Common Errors

This section lists some common problems and error messages that you may encounter. It describes how to
determine the causes of the problems and what to do to solve them.

B.3.1 How to Determine What Is Causing a Problem

When you run into a problem, the first thing you should do is to find out which program or piece of
equipment is causing it:

• If you have one of the following symptoms, then it is probably a hardware problems (such as memory,
motherboard, CPU, or hard disk) or kernel problem:

• The keyboard does not work. This can normally be checked by pressing the Caps Lock key. If the
Caps Lock light does not change, you have to replace your keyboard. (Before doing this, you should
try to restart your computer and check all cables to the keyboard.)

• The mouse pointer does not move.

• The machine does not answer to a remote machine's pings.

• Other programs that are not related to MySQL do not behave correctly.

• Your system restarted unexpectedly. (A faulty user-level program should never be able to take down
your system.)

In this case, you should start by checking all your cables and run some diagnostic tool to check your
hardware! You should also check whether there are any patches, updates, or service packs for your
operating system that could likely solve your problem. Check also that all your libraries (such as glibc)
are up to date.

It is always good to use a machine with ECC memory to discover memory problems early.

• If your keyboard is locked up, you may be able to recover by logging in to your machine from another
machine and executing kbd_mode -a.

• Please examine your system log file (/var/log/messages or similar) for reasons for your problem.
If you think the problem is in MySQL, you should also examine MySQL's log files. See Section 5.4,
“MySQL Server Logs”.

• If you do not think you have hardware problems, you should try to find out which program is causing
problems. Try using top, ps, Task Manager, or some similar program, to check which program is taking
all CPU or is locking the machine.

• Use top, df, or a similar program to check whether you are out of memory, disk space, file descriptors,
or some other critical resource.

• If the problem is some runaway process, you can always try to kill it. If it does not want to die, there is
probably a bug in the operating system.

If you have examined all other possibilities and concluded that the MySQL server or a MySQL client is
causing the problem, it is time to create a bug report, see Section 1.5, “How to Report Bugs or Problems”.
In the bug report, try to give a complete description of how the system is behaving and what you think is
happening. Also state why you think that MySQL is causing the problem. Take into consideration all the
situations described in this chapter. State any problems exactly how they appear when you examine your
system. Use the “copy and paste” method for any output and error messages from programs and log files.

4547

Common Errors When Using MySQL Programs

Try to describe in detail which program is not working and all symptoms you see. We have in the past
received many bug reports that state only “the system does not work.” This provides us with no information
about what could be the problem.

If a program fails, it is always useful to know the following information:

• Has the program in question made a segmentation fault (did it dump core)?

• Is the program taking up all available CPU time? Check with top. Let the program run for a while, it may
simply be evaluating something computationally intensive.

• If the mysqld server is causing problems, can you get any response from it with mysqladmin -u
root ping or mysqladmin -u root processlist?

• What does a client program say when you try to connect to the MySQL server? (Try with mysql, for
example.) Does the client jam? Do you get any output from the program?

When sending a bug report, you should follow the outline described in Section 1.5, “How to Report Bugs or
Problems”.

B.3.2 Common Errors When Using MySQL Programs

This section lists some errors that users frequently encounter when running MySQL programs. Although
the problems show up when you try to run client programs, the solutions to many of the problems involves
changing the configuration of the MySQL server.

B.3.2.1 Access denied

An Access denied error can have many causes. Often the problem is related to the MySQL accounts
that the server permits client programs to use when connecting. See Section 6.2, “Access Control and
Account Management”, and Section 6.2.17, “Troubleshooting Problems Connecting to MySQL”.

B.3.2.2 Can't connect to [local] MySQL server

A MySQL client on Unix can connect to the mysqld server in two different ways: By using a Unix socket
file to connect through a file in the file system (default /tmp/mysql.sock), or by using TCP/IP, which
connects through a port number. A Unix socket file connection is faster than TCP/IP, but can be used only
when connecting to a server on the same computer. A Unix socket file is used if you do not specify a host
name or if you specify the special host name localhost.

If the MySQL server is running on Windows, you can connect using TCP/IP. If the server is started with
the named_pipe system variable enabled, you can also connect with named pipes if you run the client on
the host where the server is running. The name of the named pipe is MySQL by default. If you do not give
a host name when connecting to mysqld, a MySQL client first tries to connect to the named pipe. If that
does not work, it connects to the TCP/IP port. You can force the use of named pipes on Windows by using
. as the host name.

The error (2002) Can't connect to ... normally means that there is no MySQL server running on
the system or that you are using an incorrect Unix socket file name or TCP/IP port number when trying to
connect to the server. You should also check that the TCP/IP port you are using has not been blocked by a
firewall or port blocking service.

The error (2003) Can't connect to MySQL server on 'server' (10061) indicates that the
network connection has been refused. You should check that there is a MySQL server running, that it has
network connections enabled, and that the network port you specified is the one configured on the server.

4548

Common Errors When Using MySQL Programs

Start by checking whether there is a process named mysqld running on your server host. (Use ps xa |
grep mysqld on Unix or the Task Manager on Windows.) If there is no such process, you should start the
server. See Section 2.9.2, “Starting the Server”.

If a mysqld process is running, you can check it by trying the following commands. The port number or
Unix socket file name might be different in your setup. host_ip represents the IP address of the machine
where the server is running.

$> mysqladmin version
$> mysqladmin variables
$> mysqladmin -h `hostname` version variables
$> mysqladmin -h `hostname` --port=3306 version
$> mysqladmin -h host_ip version
$> mysqladmin --protocol=SOCKET --socket=/tmp/mysql.sock version

Note the use of backticks rather than forward quotation marks with the hostname command; these cause
the output of hostname (that is, the current host name) to be substituted into the mysqladmin command.
If you have no hostname command or are running on Windows, you can manually type the host name of
your machine (without backticks) following the -h option. You can also try -h 127.0.0.1 to connect with
TCP/IP to the local host.

Make sure that the server has not been configured to ignore network connections or (if you are attempting
to connect remotely) that it has not been configured to listen only locally on its network interfaces. If the
server was started with the skip_networking system variable enabled, it does not accept TCP/IP
connections at all. If the server was started with the bind_address system variable set to 127.0.0.1,
it listens for TCP/IP connections only locally on the loopback interface and does not accept remote
connections.

Check to make sure that there is no firewall blocking access to MySQL. Your firewall may be configured on
the basis of the application being executed, or the port number used by MySQL for communication (3306
by default). Under Linux or Unix, check your IP tables (or similar) configuration to ensure that the port has
not been blocked. Under Windows, applications such as ZoneAlarm or Windows Firewall may need to be
configured not to block the MySQL port.

Here are some reasons the Can't connect to local MySQL server error might occur:

• mysqld is not running on the local host. Check your operating system's process list to ensure the
mysqld process is present.

• You're running a MySQL server on Windows with many TCP/IP connections to it. If you're experiencing
that quite often your clients get that error, you can find a workaround here: Connection to MySQL Server
Failing on Windows.

• Someone has removed the Unix socket file that mysqld uses (/tmp/mysql.sock by default). For
example, you might have a cron job that removes old files from the /tmp directory. You can always run
mysqladmin version to check whether the Unix socket file that mysqladmin is trying to use really
exists. The fix in this case is to change the cron job to not remove mysql.sock or to place the socket
file somewhere else. See Section B.3.3.6, “How to Protect or Change the MySQL Unix Socket File”.

• You have started the mysqld server with the --socket=/path/to/socket option, but forgotten
to tell client programs the new name of the socket file. If you change the socket path name for the
server, you must also notify the MySQL clients. You can do this by providing the same --socket option
when you run client programs. You also need to ensure that clients have permission to access the
mysql.sock file. To find out where the socket file is, you can do:

$> netstat -ln | grep mysql

See Section B.3.3.6, “How to Protect or Change the MySQL Unix Socket File”.

4549

Common Errors When Using MySQL Programs

• You are using Linux and one server thread has died (dumped core). In this case, you must kill the
other mysqld threads (for example, with kill) before you can restart the MySQL server. See
Section B.3.3.3, “What to Do If MySQL Keeps Crashing”.

• The server or client program might not have the proper access privileges for the directory that holds the
Unix socket file or the socket file itself. In this case, you must either change the access privileges for
the directory or socket file so that the server and clients can access them, or restart mysqld with a --
socket option that specifies a socket file name in a directory where the server can create it and where
client programs can access it.

If you get the error message Can't connect to MySQL server on some_host, you can try the
following things to find out what the problem is:

• Check whether the server is running on that host by executing telnet some_host 3306 and pressing
the Enter key a couple of times. (3306 is the default MySQL port number. Change the value if your
server is listening to a different port.) If there is a MySQL server running and listening to the port, you
should get a response that includes the server's version number. If you get an error such as telnet:
Unable to connect to remote host: Connection refused, then there is no server running
on the given port.

• If the server is running on the local host, try using mysqladmin -h localhost variables to
connect using the Unix socket file. Verify the TCP/IP port number that the server is configured to listen to
(it is the value of the port variable.)

• If you are running under Linux and Security-Enhanced Linux (SELinux) is enabled, see Section 6.7,
“SELinux”.

Connection to MySQL Server Failing on Windows

When you're running a MySQL server on Windows with many TCP/IP connections to it, and you're
experiencing that quite often your clients get a Can't connect to MySQL server error, the reason
might be that Windows does not allow for enough ephemeral (short-lived) ports to serve those connections.

The purpose of TIME_WAIT is to keep a connection accepting packets even after the connection has been
closed. This is because Internet routing can cause a packet to take a slow route to its destination and it
may arrive after both sides have agreed to close. If the port is in use for a new connection, that packet
from the old connection could break the protocol or compromise personal information from the original
connection. The TIME_WAIT delay prevents this by ensuring that the port cannot be reused until after
some time has been permitted for those delayed packets to arrive.

It is safe to reduce TIME_WAIT greatly on LAN connections because there is little chance of packets
arriving at very long delays, as they could through the Internet with its comparatively large distances and
latencies.

Windows permits ephemeral (short-lived) TCP ports to the user. After any port is closed it remains in
TIME_WAIT status for 120 seconds. The port is not available again until this time expires. The default
range of port numbers depends on the version of Windows, with a more limited number of ports in older
versions:

• Windows through Server 2003: Ports in range 1025–5000

• Windows Vista, Server 2008, and newer: Ports in range 49152–65535

With a small stack of available TCP ports (5000) and a high number of TCP ports being open and closed
over a short period of time along with the TIME_WAIT status you have a good chance for running out of
ports. There are two ways to address this problem:

4550

Common Errors When Using MySQL Programs

• Reduce the number of TCP ports consumed quickly by investigating connection pooling or persistent
connections where possible

• Tune some settings in the Windows registry (see below)

Important

The following procedure involves modifying the Windows registry. Before you
modify the registry, make sure to back it up and make sure that you understand
how to restore it if a problem occurs. For information about how to back up, restore,
and edit the registry, view the following article in the Microsoft Knowledge Base:
http://support.microsoft.com/kb/256986/EN-US/.

1. Start Registry Editor (Regedt32.exe).

2. Locate the following key in the registry:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Tcpip\Parameters

3. On the Edit menu, click Add Value, and then add the following registry value:

Value Name: MaxUserPort
Data Type: REG_DWORD
Value: 65534

This sets the number of ephemeral ports available to any user. The valid range is between 5000 and
65534 (decimal). The default value is 0x1388 (5000 decimal).

4. On the Edit menu, click Add Value, and then add the following registry value:

Value Name: TcpTimedWaitDelay
Data Type: REG_DWORD
Value: 30

This sets the number of seconds to hold a TCP port connection in TIME_WAIT state before closing.
The valid range is between 30 and 300 decimal, although you may wish to check with Microsoft for the
latest permitted values. The default value is 0x78 (120 decimal).

5. Quit Registry Editor.

6. Reboot the machine.

Note: Undoing the above should be as simple as deleting the registry entries you've created.

B.3.2.3 Lost connection to MySQL server

There are three likely causes for this error message.

Usually it indicates network connectivity trouble and you should check the condition of your network if this
error occurs frequently. If the error message includes “during query,” this is probably the case you are
experiencing.

Sometimes the “during query” form happens when millions of rows are being sent as part of one or more
queries. If you know that this is happening, you should try increasing net_read_timeout from its default
of 30 seconds to 60 seconds or longer, sufficient for the data transfer to complete.

More rarely, it can happen when the client is attempting the initial connection to the server. In this case, if
your connect_timeout value is set to only a few seconds, you may be able to resolve the problem by
increasing it to ten seconds, perhaps more if you have a very long distance or slow connection. You can

4551

http://support.microsoft.com/kb/256986/EN-US/

Common Errors When Using MySQL Programs

determine whether you are experiencing this more uncommon cause by using SHOW GLOBAL STATUS
LIKE 'Aborted_connects'. It increases by one for each initial connection attempt that the server
aborts. You may see “reading authorization packet” as part of the error message; if so, that also suggests
that this is the solution that you need.

If the cause is none of those just described, you may be experiencing a problem with BLOB values
that are larger than max_allowed_packet, which can cause this error with some clients. Sometime
you may see an ER_NET_PACKET_TOO_LARGE error, and that confirms that you need to increase
max_allowed_packet.

B.3.2.4 Password Fails When Entered Interactively

MySQL client programs prompt for a password when invoked with a --password or -p option that has no
following password value:

$> mysql -u user_name -p
Enter password:

On some systems, you may find that your password works when specified in an option file or on the
command line, but not when you enter it interactively at the Enter password: prompt. This occurs
when the library provided by the system to read passwords limits password values to a small number of
characters (typically eight). That is a problem with the system library, not with MySQL. To work around it,
change your MySQL password to a value that is eight or fewer characters long, or put your password in an
option file.

B.3.2.5 Too many connections

If clients encounter Too many connections errors when attempting to connect to the mysqld server, all
available connections are in use by other clients.

The permitted number of connections is controlled by the max_connections system variable. To support
more connections, set max_connections to a larger value.

mysqld actually permits max_connections + 1 client connections. The extra connection is reserved
for use by accounts that have the SUPER privilege. By granting the privilege to administrators and not
to normal users (who should not need it), an administrator who also has the PROCESS privilege can
connect to the server and use SHOW PROCESSLIST to diagnose problems even if the maximum number of
unprivileged clients are connected. See Section 13.7.5.29, “SHOW PROCESSLIST Statement”.

For more information about how the server handles client connections, see Section 5.1.11.1, “Connection
Interfaces”.

B.3.2.6 Out of memory

If you issue a query using the mysql client program and receive an error like the following one, it means
that mysql does not have enough memory to store the entire query result:

mysql: Out of memory at line 42, 'malloc.c'
mysql: needed 8136 byte (8k), memory in use: 12481367 bytes (12189k)
ERROR 2008: MySQL client ran out of memory

To remedy the problem, first check whether your query is correct. Is it reasonable that it should return so
many rows? If not, correct the query and try again. Otherwise, you can invoke mysql with the --quick
option. This causes it to use the mysql_use_result() C API function to retrieve the result set, which
places less of a load on the client (but more on the server).

B.3.2.7 MySQL server has gone away

4552

https://dev.mysql.com/doc/mysql-errors/5.7/en/server-error-reference.html#error_er_net_packet_too_large
https://dev.mysql.com/doc/c-api/5.7/en/mysql-use-result.html

Common Errors When Using MySQL Programs

This section also covers the related Lost connection to server during query error.

The most common reason for the MySQL server has gone away error is that the server timed out and
closed the connection. In this case, you normally get one of the following error codes (which one you get is
operating system-dependent).

Error Code Description

CR_SERVER_GONE_ERROR The client couldn't send a question to the server.

CR_SERVER_LOST The client didn't get an error when writing to the
server, but it didn't get a full answer (or any answer)
to the question.

By default, the server closes the connection after eight hours if nothing has happened. You can change
the time limit by setting the wait_timeout variable when you start mysqld. See Section 5.1.7, “Server
System Variables”.

If you have a script, you just have to issue the query again for the client to do an automatic reconnection.
This assumes that you have automatic reconnection in the client enabled (which is the default for the
mysql command-line client).

Some other common reasons for the MySQL server has gone away error are:

• You (or the db administrator) has killed the running thread with a KILL statement or a mysqladmin
kill command.

• You tried to run a query after closing the connection to the server. This indicates a logic error in the
application that should be corrected.

• A client application running on a different host does not have the necessary privileges to connect to the
MySQL server from that host.

• You got a timeout from the TCP/IP connection on the client side. This may happen if you have
been using the commands: mysql_options(..., MYSQL_OPT_READ_TIMEOUT,...) or
mysql_options(..., MYSQL_OPT_WRITE_TIMEOUT,...). In this case increasing the timeout may
help solve the problem.

• You have encountered a timeout on the server side and the automatic reconnection in the client is
disabled (the reconnect flag in the MYSQL structure is equal to 0).

• You are using a Windows client and the server had dropped the connection (probably because
wait_timeout expired) before the command was issued.

The problem on Windows is that in some cases MySQL does not get an error from the OS when writing
to the TCP/IP connection to the server, but instead gets the error when trying to read the answer from
the connection.

The solution to this is to either do a mysql_ping() on the connection if there has been a long time
since the last query (this is what Connector/ODBC does) or set wait_timeout on the mysqld server
so high that it in practice never times out.

• You can also get these errors if you send a query to the server that is incorrect or too large. If mysqld
receives a packet that is too large or out of order, it assumes that something has gone wrong with the
client and closes the connection. If you need big queries (for example, if you are working with big BLOB
columns), you can increase the query limit by setting the server's max_allowed_packet variable,

4553

https://dev.mysql.com/doc/mysql-errors/5.7/en/client-error-reference.html#error_cr_server_gone_error
https://dev.mysql.com/doc/mysql-errors/5.7/en/client-error-reference.html#error_cr_server_lost
https://dev.mysql.com/doc/c-api/5.7/en/mysql-options.html
https://dev.mysql.com/doc/c-api/5.7/en/mysql-options.html
https://dev.mysql.com/doc/c-api/5.7/en/mysql-ping.html

Common Errors When Using MySQL Programs

which has a default value of 4MB. You may also need to increase the maximum packet size on the client
end. More information on setting the packet size is given in Section B.3.2.8, “Packet Too Large”.

An INSERT or REPLACE statement that inserts a great many rows can also cause these sorts of errors.
Either one of these statements sends a single request to the server irrespective of the number of rows
to be inserted; thus, you can often avoid the error by reducing the number of rows sent per INSERT or
REPLACE.

• It is also possible to see this error if host name lookups fail (for example, if the DNS server on which your
server or network relies goes down). This is because MySQL is dependent on the host system for name
resolution, but has no way of knowing whether it is working—from MySQL's point of view the problem is
indistinguishable from any other network timeout.

You may also see the MySQL server has gone away error if MySQL is started with the
skip_networking system variable enabled.

Another networking issue that can cause this error occurs if the MySQL port (default 3306) is blocked by
your firewall, thus preventing any connections at all to the MySQL server.

• You can also encounter this error with applications that fork child processes, all of which try to use the
same connection to the MySQL server. This can be avoided by using a separate connection for each
child process.

• You have encountered a bug where the server died while executing the query.

You can check whether the MySQL server died and restarted by executing mysqladmin version and
examining the server's uptime. If the client connection was broken because mysqld crashed and restarted,
you should concentrate on finding the reason for the crash. Start by checking whether issuing the query
again kills the server again. See Section B.3.3.3, “What to Do If MySQL Keeps Crashing”.

You can obtain more information about lost connections by starting mysqld with the
log_error_verbosity system variable set to 3. This logs some of the disconnection messages in the
hostname.err file. See Section 5.4.2, “The Error Log”.

If you want to create a bug report regarding this problem, be sure that you include the following
information:

• Indicate whether the MySQL server died. You can find information about this in the server error log. See
Section B.3.3.3, “What to Do If MySQL Keeps Crashing”.

• If a specific query kills mysqld and the tables involved were checked with CHECK TABLE before you ran
the query, can you provide a reproducible test case? See Section 5.8, “Debugging MySQL”.

• What is the value of the wait_timeout system variable in the MySQL server? (mysqladmin
variables gives you the value of this variable.)

• Have you tried to run mysqld with the general query log enabled to determine whether the problem
query appears in the log? (See Section 5.4.3, “The General Query Log”.)

See also Section B.3.2.9, “Communication Errors and Aborted Connections”, and Section 1.5, “How to
Report Bugs or Problems”.

B.3.2.8 Packet Too Large

A communication packet is a single SQL statement sent to the MySQL server, a single row that is sent to
the client, or a binary log event sent from a replication source server to a replica.

4554

Common Errors When Using MySQL Programs

The largest possible packet that can be transmitted to or from a MySQL 5.7 server or client is 1GB.

When a MySQL client or the mysqld server receives a packet bigger than max_allowed_packet bytes,
it issues an ER_NET_PACKET_TOO_LARGE error and closes the connection. With some clients, you may
also get a Lost connection to MySQL server during query error if the communication packet is
too large.

Both the client and the server have their own max_allowed_packet variable, so if you want to handle big
packets, you must increase this variable both in the client and in the server.

If you are using the mysql client program, its default max_allowed_packet variable is 16MB. To set a
larger value, start mysql like this:

$> mysql --max_allowed_packet=32M

That sets the packet size to 32MB.

The server's default max_allowed_packet value is 4MB. You can increase this if the server needs
to handle big queries (for example, if you are working with big BLOB columns). For example, to set the
variable to 16MB, start the server like this:

$> mysqld --max_allowed_packet=16M

You can also use an option file to set max_allowed_packet. For example, to set the size for the server
to 16MB, add the following lines in an option file:

[mysqld]
max_allowed_packet=16M

It is safe to increase the value of this variable because the extra memory is allocated only when needed.
For example, mysqld allocates more memory only when you issue a long query or when mysqld must
return a large result row. The small default value of the variable is a precaution to catch incorrect packets
between the client and server and also to ensure that you do not run out of memory by using large packets
accidentally.

You can also get strange problems with large packets if you are using large BLOB values but have not
given mysqld access to enough memory to handle the query. If you suspect this is the case, try adding
ulimit -d 256000 to the beginning of the mysqld_safe script and restarting mysqld.

B.3.2.9 Communication Errors and Aborted Connections

If connection problems occur such as communication errors or aborted connections, use these sources of
information to diagnose problems:

• The error log. See Section 5.4.2, “The Error Log”.

• The general query log. See Section 5.4.3, “The General Query Log”.

• The Aborted_xxx and Connection_errors_xxx status variables. See Section 5.1.9, “Server Status
Variables”.

• The host cache, which is accessible using the Performance Schema host_cache table. See
Section 5.1.11.2, “DNS Lookups and the Host Cache”, and Section 25.12.16.1, “The host_cache Table”.

If the log_error_verbosity system variable is set to 3, you might find messages like this in your error
log:

[Note] Aborted connection 854 to db: 'employees' user: 'josh'

4555

https://dev.mysql.com/doc/mysql-errors/5.7/en/server-error-reference.html#error_er_net_packet_too_large

Common Errors When Using MySQL Programs

If a client is unable even to connect, the server increments the Aborted_connects status variable.
Unsuccessful connection attempts can occur for the following reasons:

• A client attempts to access a database but has no privileges for it.

• A client uses an incorrect password.

• A connection packet does not contain the right information.

• It takes more than connect_timeout seconds to obtain a connect packet. See Section 5.1.7, “Server
System Variables”.

If these kinds of things happen, it might indicate that someone is trying to break into your server! If the
general query log is enabled, messages for these types of problems are logged to it.

If a client successfully connects but later disconnects improperly or is terminated, the server increments the
Aborted_clients status variable, and logs an Aborted connection message to the error log. The
cause can be any of the following:

• The client program did not call mysql_close() before exiting.

• The client had been sleeping more than wait_timeout or interactive_timeout seconds without
issuing any requests to the server. See Section 5.1.7, “Server System Variables”.

• The client program ended abruptly in the middle of a data transfer.

Other reasons for problems with aborted connections or aborted clients:

• The max_allowed_packet variable value is too small or queries require more memory than you have
allocated for mysqld. See Section B.3.2.8, “Packet Too Large”.

• Use of Ethernet protocol with Linux, both half and full duplex. Some Linux Ethernet drivers have this
bug. You should test for this bug by transferring a huge file using FTP between the client and server
machines. If a transfer goes in burst-pause-burst-pause mode, you are experiencing a Linux duplex
syndrome. Switch the duplex mode for both your network card and hub/switch to either full duplex or to
half duplex and test the results to determine the best setting.

• A problem with the thread library that causes interrupts on reads.

• Badly configured TCP/IP.

• Faulty Ethernets, hubs, switches, cables, and so forth. This can be diagnosed properly only by replacing
hardware.

See also Section B.3.2.7, “MySQL server has gone away”.

B.3.2.10 The table is full

If a table-full error occurs, it may be that the disk is full or that the table has reached its maximum size. The
effective maximum table size for MySQL databases is usually determined by operating system constraints
on file sizes, not by MySQL internal limits. See Section 8.4.6, “Limits on Table Size”.

B.3.2.11 Can't create/write to file

If you get an error of the following type for some queries, it means that MySQL cannot create a temporary
file for the result set in the temporary directory:

Can't create/write to file '\\sqla3fe_0.ism'.

4556

https://dev.mysql.com/doc/c-api/5.7/en/mysql-close.html

Common Errors When Using MySQL Programs

The preceding error is a typical message for Windows; the Unix message is similar.

One fix is to start mysqld with the --tmpdir option or to add the option to the [mysqld] section of your
option file. For example, to specify a directory of C:\temp, use these lines:

[mysqld]
tmpdir=C:/temp

The C:\temp directory must exist and have sufficient space for the MySQL server to write to. See
Section 4.2.2.2, “Using Option Files”.

Another cause of this error can be permissions issues. Make sure that the MySQL server can write to the
tmpdir directory.

Check also the error code that you get with perror. One reason the server cannot write to a table is that
the file system is full:

$> perror 28
OS error code 28: No space left on device

If you get an error of the following type during startup, it indicates that the file system or directory used for
storing data files is write protected. Provided that the write error is to a test file, the error is not serious and
can be safely ignored.

Can't create test file /usr/local/mysql/data/master.lower-test

B.3.2.12 Commands out of sync

If you get Commands out of sync; you can't run this command now in your client code, you
are calling client functions in the wrong order.

This can happen, for example, if you are using mysql_use_result() and try to execute a new query
before you have called mysql_free_result(). It can also happen if you try to execute two queries that
return data without calling mysql_use_result() or mysql_store_result() in between.

B.3.2.13 Ignoring user

If you get the following error, it means that when mysqld was started or when it reloaded the grant tables,
it found an account in the user table that had an invalid password.

Found wrong password for user 'some_user'@'some_host'; ignoring user

As a result, the account is simply ignored by the permission system.

The following list indicates possible causes of and fixes for this problem:

• You may be running a new version of mysqld with an old user table. Check whether the
Password column of that table is shorter than 16 characters. If so, correct this condition by running
mysql_upgrade.

• The account has an old password (eight characters long). Update the account in the user table to have
a new password.

• You have specified a password in the user table without using the PASSWORD() function. Use mysql
to update the account in the user table with a new password, making sure to use the PASSWORD()
function:

mysql> UPDATE user SET Password=PASSWORD('new_password')
 -> WHERE User='some_user' AND Host='some_host';

4557

https://dev.mysql.com/doc/c-api/5.7/en/mysql-use-result.html
https://dev.mysql.com/doc/c-api/5.7/en/mysql-free-result.html
https://dev.mysql.com/doc/c-api/5.7/en/mysql-use-result.html
https://dev.mysql.com/doc/c-api/5.7/en/mysql-store-result.html

Common Errors When Using MySQL Programs

B.3.2.14 Table 'tbl_name' doesn't exist

If you get either of the following errors, it usually means that no table exists in the default database with the
given name:

Table 'tbl_name' doesn't exist
Can't find file: 'tbl_name' (errno: 2)

In some cases, it may be that the table does exist but that you are referring to it incorrectly:

• Because MySQL uses directories and files to store databases and tables, database and table names are
case-sensitive if they are located on a file system that has case-sensitive file names.

• Even for file systems that are not case-sensitive, such as on Windows, all references to a given table
within a query must use the same lettercase.

You can check which tables are in the default database with SHOW TABLES. See Section 13.7.5, “SHOW
Statements”.

B.3.2.15 Can't initialize character set

You might see an error like this if you have character set problems:

MySQL Connection Failed: Can't initialize character set charset_name

This error can have any of the following causes:

• The character set is a multibyte character set and you have no support for the character
set in the client. In this case, you need to recompile the client by running CMake with the -
DDEFAULT_CHARSET=charset_name or -DWITH_EXTRA_CHARSETS=charset_name option. See
Section 2.8.7, “MySQL Source-Configuration Options”.

All standard MySQL binaries are compiled with -DWITH_EXTRA_CHARSETS=complex, which enables
support for all multibyte character sets. See Section 2.8.7, “MySQL Source-Configuration Options”.

• The character set is a simple character set that is not compiled into mysqld, and the character set
definition files are not in the place where the client expects to find them.

In this case, you need to use one of the following methods to solve the problem:

• Recompile the client with support for the character set. See Section 2.8.7, “MySQL Source-
Configuration Options”.

• Specify to the client the directory where the character set definition files are located. For many clients,
you can do this with the --character-sets-dir option.

• Copy the character definition files to the path where the client expects them to be.

B.3.2.16 File Not Found and Similar Errors

If you get ERROR 'file_name' not found (errno: 23), Can't open file: file_name
(errno: 24), or any other error with errno 23 or errno 24 from MySQL, it means that you have not
allocated enough file descriptors for the MySQL server. You can use the perror utility to get a description
of what the error number means:

$> perror 23
OS error code 23: File table overflow
$> perror 24
OS error code 24: Too many open files

4558

Administration-Related Issues

$> perror 11
OS error code 11: Resource temporarily unavailable

The problem here is that mysqld is trying to keep open too many files simultaneously. You can either tell
mysqld not to open so many files at once or increase the number of file descriptors available to mysqld.

To tell mysqld to keep open fewer files at a time, you can make the table cache smaller by reducing the
value of the table_open_cache system variable (the default value is 64). This may not entirely prevent
running out of file descriptors because in some circumstances the server may attempt to extend the cache
size temporarily, as described in Section 8.4.3.1, “How MySQL Opens and Closes Tables”. Reducing the
value of max_connections also reduces the number of open files (the default value is 100).

To change the number of file descriptors available to mysqld, you can use the --open-files-limit
option to mysqld_safe or set the open_files_limit system variable. See Section 5.1.7, “Server
System Variables”. The easiest way to set these values is to add an option to your option file. See
Section 4.2.2.2, “Using Option Files”. If you have an old version of mysqld that does not support setting
the open files limit, you can edit the mysqld_safe script. There is a commented-out line ulimit -n 256
in the script. You can remove the # character to uncomment this line, and change the number 256 to set
the number of file descriptors to be made available to mysqld.

--open-files-limit and ulimit can increase the number of file descriptors, but only up to the
limit imposed by the operating system. There is also a “hard” limit that can be overridden only if you
start mysqld_safe or mysqld as root (just remember that you also need to start the server with the
--user option in this case so that it does not continue to run as root after it starts up). If you need to
increase the operating system limit on the number of file descriptors available to each process, consult the
documentation for your system.

Note

If you run the tcsh shell, ulimit does not work! tcsh also reports incorrect
values when you ask for the current limits. In this case, you should start
mysqld_safe using sh.

B.3.2.17 Table-Corruption Issues

If you have started mysqld with the myisam_recover_options system variable set, MySQL
automatically checks and tries to repair MyISAM tables if they are marked as 'not closed properly' or
'crashed'. If this happens, MySQL writes an entry in the hostname.err file 'Warning: Checking
table ...' which is followed by Warning: Repairing table if the table needs to be repaired. If you
get a lot of these errors, without mysqld having died unexpectedly just before, then something is wrong
and needs to be investigated further.

When the server detects MyISAM table corruption, it writes additional information to the error log, such as
the name and line number of the source file, and the list of threads accessing the table. Example: Got an
error from thread_id=1, mi_dynrec.c:368. This is useful information to include in bug reports.

See also Section 5.1.6, “Server Command Options”, and Section 5.8.1.7, “Making a Test Case If You
Experience Table Corruption”.

B.3.3 Administration-Related Issues

B.3.3.1 Problems with File Permissions

If you have problems with file permissions, the UMASK or UMASK_DIR environment variable might be set
incorrectly when mysqld starts. For example, mysqld might issue the following error message when you
create a table:

4559

Administration-Related Issues

ERROR: Can't find file: 'path/with/filename.frm' (Errcode: 13)

The default UMASK and UMASK_DIR values are 0640 and 0750, respectively. mysqld assumes that the
value for UMASK or UMASK_DIR is in octal if it starts with a zero. For example, setting UMASK=0600 is
equivalent to UMASK=384 because 0600 octal is 384 decimal.

Assuming that you start mysqld using mysqld_safe, change the default UMASK value as follows:

UMASK=384 # = 600 in octal
export UMASK
mysqld_safe &

Note

An exception applies for the error log file if you start mysqld using mysqld_safe,
which does not respect UMASK: mysqld_safe may create the error log file if it does
not exist prior to starting mysqld, and mysqld_safe uses a umask set to a strict
value of 0137. If this is unsuitable, create the error file manually with the desired
access mode prior to executing mysqld_safe.

By default, mysqld creates database directories with an access permission value of 0750. To modify
this behavior, set the UMASK_DIR variable. If you set its value, new directories are created with the
combined UMASK and UMASK_DIR values. For example, to give group access to all new directories, start
mysqld_safe as follows:

UMASK_DIR=504 # = 770 in octal
export UMASK_DIR
mysqld_safe &

For additional details, see Section 4.9, “Environment Variables”.

B.3.3.2 How to Reset the Root Password

If you have never assigned a root password for MySQL, the server does not require a password at
all for connecting as root. However, this is insecure. For instructions on assigning a password, see
Section 2.9.4, “Securing the Initial MySQL Account”.

If you know the root password and want to change it, see Section 13.7.1.1, “ALTER USER Statement”,
and Section 13.7.1.7, “SET PASSWORD Statement”.

If you assigned a root password previously but have forgotten it, you can assign a new password. The
following sections provide instructions for Windows and Unix and Unix-like systems, as well as generic
instructions that apply to any system.

Resetting the Root Password: Windows Systems

On Windows, use the following procedure to reset the password for the MySQL 'root'@'localhost'
account. To change the password for a root account with a different host name part, modify the
instructions to use that host name.

1. Log on to your system as Administrator.

2. Stop the MySQL server if it is running. For a server that is running as a Windows service, go to the
Services manager: From the Start menu, select Control Panel, then Administrative Tools, then
Services. Find the MySQL service in the list and stop it.

If your server is not running as a service, you may need to use the Task Manager to force it to stop.

4560

Administration-Related Issues

3. Create a text file containing the password-assignment statement on a single line. Replace the
password with the password that you want to use.

ALTER USER 'root'@'localhost' IDENTIFIED BY 'MyNewPass';

4. Save the file. This example assumes that you name the file C:\mysql-init.txt.

5. Open a console window to get to the command prompt: From the Start menu, select Run, then enter
cmd as the command to be run.

6. Start the MySQL server with the init_file system variable set to name the file (notice that the
backslash in the option value is doubled):

C:\> cd "C:\Program Files\MySQL\MySQL Server 5.7\bin"
C:\> mysqld --init-file=C:\\mysql-init.txt

If you installed MySQL to a different location, adjust the cd command accordingly.

The server executes the contents of the file named by the init_file system variable at startup,
changing the 'root'@'localhost' account password.

To have server output to appear in the console window rather than in a log file, add the --console
option to the mysqld command.

If you installed MySQL using the MySQL Installation Wizard, you may need to specify a --defaults-
file option. For example:

C:\> mysqld
 --defaults-file="C:\\ProgramData\\MySQL\\MySQL Server 5.7\\my.ini"
 --init-file=C:\\mysql-init.txt

The appropriate --defaults-file setting can be found using the Services Manager: From the Start
menu, select Control Panel, then Administrative Tools, then Services. Find the MySQL service in
the list, right-click it, and choose the Properties option. The Path to executable field contains
the --defaults-file setting.

7. After the server has started successfully, delete C:\mysql-init.txt.

You should now be able to connect to the MySQL server as root using the new password. Stop the
MySQL server and restart it normally. If you run the server as a service, start it from the Windows Services
window. If you start the server manually, use whatever command you normally use.

If the ALTER USER statement fails to reset the password, try repeating the procedure using the following
statements to modify the user table directly:

UPDATE mysql.user
 SET authentication_string = PASSWORD('MyNewPass'), password_expired = 'N'
 WHERE User = 'root' AND Host = 'localhost';
FLUSH PRIVILEGES;

Resetting the Root Password: Unix and Unix-Like Systems

On Unix, use the following procedure to reset the password for the MySQL 'root'@'localhost'
account. To change the password for a root account with a different host name part, modify the
instructions to use that host name.

The instructions assume that you start the MySQL server from the Unix login account that you normally
use for running it. For example, if you run the server using the mysql login account, you should log in as
mysql before using the instructions. Alternatively, you can log in as root, but in this case you must start

4561

Administration-Related Issues

mysqld with the --user=mysql option. If you start the server as root without using --user=mysql,
the server may create root-owned files in the data directory, such as log files, and these may cause
permission-related problems for future server startups. If that happens, you must either change the
ownership of the files to mysql or remove them.

1. Log on to your system as the Unix user that the MySQL server runs as (for example, mysql).

2. Stop the MySQL server if it is running. Locate the .pid file that contains the server's process ID.
The exact location and name of this file depend on your distribution, host name, and configuration.
Common locations are /var/lib/mysql/, /var/run/mysqld/, and /usr/local/mysql/data/.
Generally, the file name has an extension of .pid and begins with either mysqld or your system's host
name.

Stop the MySQL server by sending a normal kill (not kill -9) to the mysqld process. Use the
actual path name of the .pid file in the following command:

$> kill `cat /mysql-data-directory/host_name.pid`

Use backticks (not forward quotation marks) with the cat command. These cause the output of cat to
be substituted into the kill command.

3. Create a text file containing the password-assignment statement on a single line. Replace the
password with the password that you want to use.

ALTER USER 'root'@'localhost' IDENTIFIED BY 'MyNewPass';

4. Save the file. This example assumes that you name the file /home/me/mysql-init. The file contains
the password, so do not save it where it can be read by other users. If you are not logged in as mysql
(the user the server runs as), make sure that the file has permissions that permit mysql to read it.

5. Start the MySQL server with the init_file system variable set to name the file:

$> mysqld --init-file=/home/me/mysql-init &

The server executes the contents of the file named by the init_file system variable at startup,
changing the 'root'@'localhost' account password.

Other options may be necessary as well, depending on how you normally start your server. For
example, --defaults-file may be needed before the init_file argument.

6. After the server has started successfully, delete /home/me/mysql-init.

You should now be able to connect to the MySQL server as root using the new password. Stop the server
and restart it normally.

If the ALTER USER statement fails to reset the password, try repeating the procedure using the following
statements to modify the user table directly:

UPDATE mysql.user
 SET authentication_string = PASSWORD('MyNewPass'), password_expired = 'N'
 WHERE User = 'root' AND Host = 'localhost';
FLUSH PRIVILEGES;

Resetting the Root Password: Generic Instructions

The preceding sections provide password-resetting instructions specifically for Windows and Unix and
Unix-like systems. Alternatively, on any platform, you can reset the password using the mysql client (but
this approach is less secure):

4562

Administration-Related Issues

1. Stop the MySQL server if necessary, then restart it with the --skip-grant-tables option.
This enables anyone to connect without a password and with all privileges, and disables account-
management statements such as ALTER USER and SET PASSWORD. Because this is insecure, you
might want to use --skip-grant-tables in conjunction with enabling the skip_networking
system variable to prevent remote clients from connecting. On Windows platforms, if you enable
skip_networking, you must also enable shared_memory or named_pipe; otherwise the server
cannot start.

2. Connect to the MySQL server using the mysql client; no password is necessary because the server
was started with --skip-grant-tables:

$> mysql

3. In the mysql client, tell the server to reload the grant tables so that account-management statements
work:

mysql> FLUSH PRIVILEGES;

Then change the 'root'@'localhost' account password. Replace the password with the password
that you want to use. To change the password for a root account with a different host name part,
modify the instructions to use that host name.

mysql> ALTER USER 'root'@'localhost' IDENTIFIED BY 'MyNewPass';

You should now be able to connect to the MySQL server as root using the new password. Stop the
server and restart it normally (without the --skip-grant-tables option and without enabling the
skip_networking system variable).

If the ALTER USER statement fails to reset the password, try repeating the procedure using the following
statements to modify the user table directly:

UPDATE mysql.user SET authentication_string = PASSWORD('MyNewPass')
WHERE User = 'root' AND Host = 'localhost';
FLUSH PRIVILEGES;

B.3.3.3 What to Do If MySQL Keeps Crashing

Each MySQL version is tested on many platforms before it is released. This does not mean that there are
no bugs in MySQL, but if there are bugs, they should be very few and can be hard to find. If you have a
problem, it always helps if you try to find out exactly what crashes your system, because you have a much
better chance of getting the problem fixed quickly.

First, you should try to find out whether the problem is that the mysqld server dies or whether your
problem has to do with your client. You can check how long your mysqld server has been up by executing
mysqladmin version. If mysqld has died and restarted, you may find the reason by looking in the
server's error log. See Section 5.4.2, “The Error Log”.

On some systems, you can find in the error log a stack trace of where mysqld died that you can resolve
with the resolve_stack_dump program. See Section 5.8, “Debugging MySQL”. Note that the variable
values written in the error log may not always be 100% correct.

Many unexpected server exits are caused by corrupted data files or index files. MySQL updates the files
on disk with the write() system call after every SQL statement and before the client is notified about the
result. (This is not true if you are running with the delay_key_write system variable enabled, in which
case data files are written but not index files.) This means that data file contents are safe even if mysqld
crashes, because the operating system ensures that the unflushed data is written to disk. You can force
MySQL to flush everything to disk after every SQL statement by starting mysqld with the --flush option.

4563

Administration-Related Issues

The preceding means that normally you should not get corrupted tables unless one of the following
happens:

• The MySQL server or the server host was killed in the middle of an update.

• You have found a bug in mysqld that caused it to die in the middle of an update.

• Some external program is manipulating data files or index files at the same time as mysqld without
locking the table properly.

• You are running many mysqld servers using the same data directory on a system that does not support
good file system locks (normally handled by the lockd lock manager), or you are running multiple
servers with external locking disabled.

• You have a crashed data file or index file that contains very corrupt data that confused mysqld.

• You have found a bug in the data storage code. This is not likely, but it is at least possible. In this case,
you can try to change the storage engine to another engine by using ALTER TABLE on a repaired copy
of the table.

Because it is very difficult to know why something is crashing, first try to check whether things that work for
others result in an unexpected exit for you. Try the following things:

• Stop the mysqld server with mysqladmin shutdown, run myisamchk --silent --force */
*.MYI from the data directory to check all MyISAM tables, and restart mysqld. This ensures that you
are running from a clean state. See Chapter 5, MySQL Server Administration.

• Start mysqld with the general query log enabled (see Section 5.4.3, “The General Query Log”). Then try
to determine from the information written to the log whether some specific query kills the server. About
95% of all bugs are related to a particular query. Normally, this is one of the last queries in the log file
just before the server restarts. See Section 5.4.3, “The General Query Log”. If you can repeatedly kill
MySQL with a specific query, even when you have checked all tables just before issuing it, then you
have isolated the bug and should submit a bug report for it. See Section 1.5, “How to Report Bugs or
Problems”.

• Try to make a test case that we can use to repeat the problem. See Section 5.8, “Debugging MySQL”.

• Try the fork_big.pl script. (It is located in the tests directory of source distributions.)

• Configuring MySQL for debugging makes it much easier to gather information about possible errors
if something goes wrong. Reconfigure MySQL with the -DWITH_DEBUG=1 option to CMake and then
recompile. See Section 5.8, “Debugging MySQL”.

• Make sure that you have applied the latest patches for your operating system.

• Use the --skip-external-locking option to mysqld. On some systems, the lockd lock manager
does not work properly; the --skip-external-locking option tells mysqld not to use external
locking. (This means that you cannot run two mysqld servers on the same data directory and that you
must be careful if you use myisamchk. Nevertheless, it may be instructive to try the option as a test.)

• If mysqld appears to be running but not responding, try mysqladmin -u root processlist.
Sometimes mysqld is not hung even though it seems unresponsive. The problem may be that
all connections are in use, or there may be some internal lock problem. mysqladmin -u root
processlist usually is able to make a connection even in these cases, and can provide useful
information about the current number of connections and their status.

• Run the command mysqladmin -i 5 status or mysqladmin -i 5 -r status in a separate
window to produce statistics while running other queries.

4564

Administration-Related Issues

• Try the following:

1. Start mysqld from gdb (or another debugger). See Section 5.8, “Debugging MySQL”.

2. Run your test scripts.

3. Print the backtrace and the local variables at the three lowest levels. In gdb, you can do this with the
following commands when mysqld has crashed inside gdb:

backtrace
info local
up
info local
up
info local

With gdb, you can also examine which threads exist with info threads and switch to a specific
thread with thread N, where N is the thread ID.

• Try to simulate your application with a Perl script to force MySQL to exit or misbehave.

• Send a normal bug report. See Section 1.5, “How to Report Bugs or Problems”. Be even more detailed
than usual. Because MySQL works for many people, the crash might result from something that exists
only on your computer (for example, an error that is related to your particular system libraries).

• If you have a problem with tables containing dynamic-length rows and you are using only VARCHAR
columns (not BLOB or TEXT columns), you can try to change all VARCHAR to CHAR with ALTER TABLE.
This forces MySQL to use fixed-size rows. Fixed-size rows take a little extra space, but are much more
tolerant to corruption.

The current dynamic row code has been in use for several years with very few problems, but dynamic-
length rows are by nature more prone to errors, so it may be a good idea to try this strategy to see
whether it helps.

• Consider the possibility of hardware faults when diagnosing problems. Defective hardware can be
the cause of data corruption. Pay particular attention to your memory and disk subsystems when
troubleshooting hardware.

B.3.3.4 How MySQL Handles a Full Disk

This section describes how MySQL responds to disk-full errors (such as “no space left on device”), and to
quota-exceeded errors (such as “write failed” or “user block limit reached”).

This section is relevant for writes to MyISAM tables. It also applies for writes to binary log files and binary
log index file, except that references to “row” and “record” should be understood to mean “event.”

When a disk-full condition occurs, MySQL does the following:

• It checks once every minute to see whether there is enough space to write the current row. If there is
enough space, it continues as if nothing had happened.

• Every 10 minutes it writes an entry to the log file, warning about the disk-full condition.

To alleviate the problem, take the following actions:

• To continue, you only have to free enough disk space to insert all records.

• Alternatively, to abort the thread, use mysqladmin kill. The thread is aborted the next time it checks
the disk (in one minute).

4565

Administration-Related Issues

• Other threads might be waiting for the table that caused the disk-full condition. If you have several
“locked” threads, killing the one thread that is waiting on the disk-full condition enables the other threads
to continue.

Exceptions to the preceding behavior are when you use REPAIR TABLE or OPTIMIZE TABLE or when
the indexes are created in a batch after LOAD DATA or after an ALTER TABLE statement. All of these
statements may create large temporary files that, if left to themselves, would cause big problems for the
rest of the system. If the disk becomes full while MySQL is doing any of these operations, it removes the
big temporary files and mark the table as crashed. The exception is that for ALTER TABLE, the old table is
left unchanged.

B.3.3.5 Where MySQL Stores Temporary Files

On Unix, MySQL uses the value of the TMPDIR environment variable as the path name of the directory
in which to store temporary files. If TMPDIR is not set, MySQL uses the system default, which is usually /
tmp, /var/tmp, or /usr/tmp.

On Windows, MySQL checks in order the values of the TMPDIR, TEMP, and TMP environment variables.
For the first one found to be set, MySQL uses it and does not check those remaining. If none of TMPDIR,
TEMP, or TMP are set, MySQL uses the Windows system default, which is usually C:\windows\temp\.

If the file system containing your temporary file directory is too small, you can use the mysqld --tmpdir
option to specify a directory in a file system where you have enough space.

The --tmpdir option can be set to a list of several paths that are used in round-robin fashion. Paths
should be separated by colon characters (:) on Unix and semicolon characters (;) on Windows.

Note

To spread the load effectively, these paths should be located on different physical
disks, not different partitions of the same disk.

If the MySQL server is acting as a replica, you can set the slave_load_tmpdir system variable to
specify a separate directory for holding temporary files when replicating LOAD DATA statements. This
directory should be in a disk-based file system (not a memory-based file system) so that the temporary files
used to replicate LOAD DATA can survive machine restarts. The directory also should not be one that is
cleared by the operating system during the system startup process. However, replication can now continue
after a restart if the temporary files have been removed.

MySQL arranges that temporary files are removed if mysqld is terminated. On platforms that support it
(such as Unix), this is done by unlinking the file after opening it. The disadvantage of this is that the name
does not appear in directory listings and you do not see a big temporary file that fills up the file system in
which the temporary file directory is located. (In such cases, lsof +L1 may be helpful in identifying large
files associated with mysqld.)

When sorting (ORDER BY or GROUP BY), MySQL normally uses one or two temporary files. The maximum
disk space required is determined by the following expression:

(length of what is sorted + sizeof(row pointer))
* number of matched rows
* 2

The row pointer size is usually four bytes, but may grow in the future for really big tables.

For some statements, MySQL creates temporary SQL tables that are not hidden and have names that
begin with #sql.

Some SELECT queries creates temporary SQL tables to hold intermediate results.

4566

Administration-Related Issues

DDL operations that rebuild the table and are not performed online using the ALGORITHM=INPLACE
technique create a temporary copy of the original table in the same directory as the original table.

Online DDL operations may use temporary log files for recording concurrent DML, temporary sort files
when creating an index, and temporary intermediate tables files when rebuilding the table. For more
information, see Section 14.13.3, “Online DDL Space Requirements”.

InnoDB non-compressed, user-created temporary tables and on-disk internal temporary tables are created
in a temporary tablespace file named ibtmp1 in the MySQL data directory. For more information, see
Section 14.6.3.5, “The Temporary Tablespace”.

See also Section 14.16.7, “InnoDB INFORMATION_SCHEMA Temporary Table Info Table”. Orphan
Temporary Tables.

B.3.3.6 How to Protect or Change the MySQL Unix Socket File

The default location for the Unix socket file that the server uses for communication with local clients is /
tmp/mysql.sock. (For some distribution formats, the directory might be different, such as /var/lib/
mysql for RPMs.)

On some versions of Unix, anyone can delete files in the /tmp directory or other similar directories
used for temporary files. If the socket file is located in such a directory on your system, this might cause
problems.

On most versions of Unix, you can protect your /tmp directory so that files can be deleted only by their
owners or the superuser (root). To do this, set the sticky bit on the /tmp directory by logging in as
root and using the following command:

$> chmod +t /tmp

You can check whether the sticky bit is set by executing ls -ld /tmp. If the last permission character
is t, the bit is set.

Another approach is to change the place where the server creates the Unix socket file. If you do this, you
should also let client programs know the new location of the file. You can specify the file location in several
ways:

• Specify the path in a global or local option file. For example, put the following lines in /etc/my.cnf:

[mysqld]
socket=/path/to/socket

[client]
socket=/path/to/socket

See Section 4.2.2.2, “Using Option Files”.

• Specify a --socket option on the command line to mysqld_safe and when you run client programs.

• Set the MYSQL_UNIX_PORT environment variable to the path of the Unix socket file.

• Recompile MySQL from source to use a different default Unix socket file location. Define the path to
the file with the MYSQL_UNIX_ADDR option when you run CMake. See Section 2.8.7, “MySQL Source-
Configuration Options”.

You can test whether the new socket location works by attempting to connect to the server with this
command:

$> mysqladmin --socket=/path/to/socket version

4567

Query-Related Issues

B.3.3.7 Time Zone Problems

If you have a problem with SELECT NOW() returning values in UTC and not your local time, you have
to tell the server your current time zone. The same applies if UNIX_TIMESTAMP() returns the wrong
value. This should be done for the environment in which the server runs (for example, in mysqld_safe or
mysql.server). See Section 4.9, “Environment Variables”.

You can set the time zone for the server with the --timezone=timezone_name option to
mysqld_safe. You can also set it by setting the TZ environment variable before you start mysqld.

The permissible values for --timezone or TZ are system dependent. Consult your operating system
documentation to see what values are acceptable.

B.3.4 Query-Related Issues

B.3.4.1 Case Sensitivity in String Searches

For nonbinary strings (CHAR, VARCHAR, TEXT), string searches use the collation of the comparison
operands. For binary strings (BINARY, VARBINARY, BLOB), comparisons use the numeric values of the
bytes in the operands; this means that for alphabetic characters, comparisons are case-sensitive.

A comparison between a nonbinary string and binary string is treated as a comparison of binary strings.

Simple comparison operations (>=, >, =, <, <=, sorting, and grouping) are based on each character's
“sort value.” Characters with the same sort value are treated as the same character. For example, if e and
é have the same sort value in a given collation, they compare as equal.

The default character set and collation are latin1 and latin1_swedish_ci, so nonbinary string
comparisons are case-insensitive by default. This means that if you search with col_name LIKE 'a
%', you get all column values that start with A or a. To make this search case-sensitive, make sure that
one of the operands has a case-sensitive or binary collation. For example, if you are comparing a column
and a string that both have the latin1 character set, you can use the COLLATE operator to cause either
operand to have the latin1_general_cs or latin1_bin collation:

col_name COLLATE latin1_general_cs LIKE 'a%'
col_name LIKE 'a%' COLLATE latin1_general_cs
col_name COLLATE latin1_bin LIKE 'a%'
col_name LIKE 'a%' COLLATE latin1_bin

If you want a column always to be treated in case-sensitive fashion, declare it with a case-sensitive or
binary collation. See Section 13.1.18, “CREATE TABLE Statement”.

To cause a case-sensitive comparison of nonbinary strings to be case-insensitive, use COLLATE to name
a case-insensitive collation. The strings in the following example normally are case-sensitive, but COLLATE
changes the comparison to be case-insensitive:

mysql> SET @s1 = 'MySQL' COLLATE latin1_bin,
 -> @s2 = 'mysql' COLLATE latin1_bin;
mysql> SELECT @s1 = @s2;
+-----------+
| @s1 = @s2 |
+-----------+
| 0 |
+-----------+
mysql> SELECT @s1 COLLATE latin1_swedish_ci = @s2;
+-------------------------------------+
| @s1 COLLATE latin1_swedish_ci = @s2 |
+-------------------------------------+
| 1 |

4568

Query-Related Issues

+-------------------------------------+

A binary string is case-sensitive in comparisons. To compare the string as case-insensitive, convert it to a
nonbinary string and use COLLATE to name a case-insensitive collation:

mysql> SET @s = BINARY 'MySQL';
mysql> SELECT @s = 'mysql';
+--------------+
| @s = 'mysql' |
+--------------+
| 0 |
+--------------+
mysql> SELECT CONVERT(@s USING latin1) COLLATE latin1_swedish_ci = 'mysql';
+--+
| CONVERT(@s USING latin1) COLLATE latin1_swedish_ci = 'mysql' |
+--+
| 1 |
+--+

To determine whether a value compares as a nonbinary or binary string, use the COLLATION() function.
This example shows that VERSION() returns a string that has a case-insensitive collation, so comparisons
are case-insensitive:

mysql> SELECT COLLATION(VERSION());
+----------------------+
| COLLATION(VERSION()) |
+----------------------+
| utf8_general_ci |
+----------------------+

For binary strings, the collation value is binary, so comparisons are case-sensitive. One context in which
you may see binary is for compression functions, which return binary strings as a general rule:

mysql> SELECT COLLATION(COMPRESS('x'));
+--------------------------+
| COLLATION(COMPRESS('x')) |
+--------------------------+
| binary |
+--------------------------+

To check the sort value of a string, the WEIGHT_STRING() may be helpful. See Section 12.8, “String
Functions and Operators”.

B.3.4.2 Problems Using DATE Columns

The format of a DATE value is 'YYYY-MM-DD'. According to standard SQL, no other format is permitted.
You should use this format in UPDATE expressions and in the WHERE clause of SELECT statements. For
example:

SELECT * FROM t1 WHERE date >= '2003-05-05';

As a convenience, MySQL automatically converts a date to a number if the date is used in numeric context
and vice versa. MySQL also permits a “relaxed” string format when updating and in a WHERE clause
that compares a date to a DATE, DATETIME, or TIMESTAMP column. “Relaxed” format means that any
punctuation character may be used as the separator between parts. For example, '2004-08-15' and
'2004#08#15' are equivalent. MySQL can also convert a string containing no separators (such as
'20040815'), provided it makes sense as a date.

When you compare a DATE, TIME, DATETIME, or TIMESTAMP to a constant string with the <, <=, =,
>=, >, or BETWEEN operators, MySQL normally converts the string to an internal long integer for faster
comparison (and also for a bit more “relaxed” string checking). However, this conversion is subject to the
following exceptions:

4569

Query-Related Issues

• When you compare two columns

• When you compare a DATE, TIME, DATETIME, or TIMESTAMP column to an expression

• When you use any comparison method other than those just listed, such as IN or STRCMP().

For those exceptions, the comparison is done by converting the objects to strings and performing a string
comparison.

To be on the safe side, assume that strings are compared as strings and use the appropriate string
functions if you want to compare a temporal value to a string.

The special “zero” date '0000-00-00' can be stored and retrieved as '0000-00-00'. When a
'0000-00-00' date is used through Connector/ODBC, it is automatically converted to NULL because
ODBC cannot handle that kind of date.

Because MySQL performs the conversions just described, the following statements work (assume that
idate is a DATE column):

INSERT INTO t1 (idate) VALUES (19970505);
INSERT INTO t1 (idate) VALUES ('19970505');
INSERT INTO t1 (idate) VALUES ('97-05-05');
INSERT INTO t1 (idate) VALUES ('1997.05.05');
INSERT INTO t1 (idate) VALUES ('1997 05 05');
INSERT INTO t1 (idate) VALUES ('0000-00-00');

SELECT idate FROM t1 WHERE idate >= '1997-05-05';
SELECT idate FROM t1 WHERE idate >= 19970505;
SELECT MOD(idate,100) FROM t1 WHERE idate >= 19970505;
SELECT idate FROM t1 WHERE idate >= '19970505';

However, the following statement does not work:

SELECT idate FROM t1 WHERE STRCMP(idate,'20030505')=0;

STRCMP() is a string function, so it converts idate to a string in 'YYYY-MM-DD' format and performs
a string comparison. It does not convert '20030505' to the date '2003-05-05' and perform a date
comparison.

If you enable the ALLOW_INVALID_DATES SQL mode, MySQL permits you to store dates that are given
only limited checking: MySQL requires only that the day is in the range from 1 to 31 and the month is in
the range from 1 to 12. This makes MySQL very convenient for Web applications where you obtain year,
month, and day in three different fields and you want to store exactly what the user inserted (without date
validation).

MySQL permits you to store dates where the day or month and day are zero. This is convenient if you want
to store a birthdate in a DATE column and you know only part of the date. To disallow zero month or day
parts in dates, enable the NO_ZERO_IN_DATE mode.

MySQL permits you to store a “zero” value of '0000-00-00' as a “dummy date.” This is in some cases
more convenient than using NULL values. If a date to be stored in a DATE column cannot be converted
to any reasonable value, MySQL stores '0000-00-00'. To disallow '0000-00-00', enable the
NO_ZERO_DATE mode.

To have MySQL check all dates and accept only legal dates (unless overridden by IGNORE), set the
sql_mode system variable to "NO_ZERO_IN_DATE,NO_ZERO_DATE".

B.3.4.3 Problems with NULL Values

4570

Query-Related Issues

The concept of the NULL value is a common source of confusion for newcomers to SQL, who often
think that NULL is the same thing as an empty string ''. This is not the case. For example, the following
statements are completely different:

mysql> INSERT INTO my_table (phone) VALUES (NULL);
mysql> INSERT INTO my_table (phone) VALUES ('');

Both statements insert a value into the phone column, but the first inserts a NULL value and the second
inserts an empty string. The meaning of the first can be regarded as “phone number is not known” and the
meaning of the second can be regarded as “the person is known to have no phone, and thus no phone
number.”

To help with NULL handling, you can use the IS NULL and IS NOT NULL operators and the IFNULL()
function.

In SQL, the NULL value is never true in comparison to any other value, even NULL. An expression that
contains NULL always produces a NULL value unless otherwise indicated in the documentation for the
operators and functions involved in the expression. All columns in the following example return NULL:

mysql> SELECT NULL, 1+NULL, CONCAT('Invisible',NULL);

To search for column values that are NULL, you cannot use an expr = NULL test. The following
statement returns no rows, because expr = NULL is never true for any expression:

mysql> SELECT * FROM my_table WHERE phone = NULL;

To look for NULL values, you must use the IS NULL test. The following statements show how to find the
NULL phone number and the empty phone number:

mysql> SELECT * FROM my_table WHERE phone IS NULL;
mysql> SELECT * FROM my_table WHERE phone = '';

See Section 3.3.4.6, “Working with NULL Values”, for additional information and examples.

You can add an index on a column that can have NULL values if you are using the MyISAM, InnoDB, or
MEMORY storage engine. Otherwise, you must declare an indexed column NOT NULL, and you cannot
insert NULL into the column.

When reading data with LOAD DATA, empty or missing columns are updated with ''. To load a NULL
value into a column, use \N in the data file. The literal word NULL may also be used under some
circumstances. See Section 13.2.6, “LOAD DATA Statement”.

When using DISTINCT, GROUP BY, or ORDER BY, all NULL values are regarded as equal.

When using ORDER BY, NULL values are presented first, or last if you specify DESC to sort in descending
order.

Aggregate (group) functions such as COUNT(), MIN(), and SUM() ignore NULL values. The exception
to this is COUNT(*), which counts rows and not individual column values. For example, the following
statement produces two counts. The first is a count of the number of rows in the table, and the second is a
count of the number of non-NULL values in the age column:

mysql> SELECT COUNT(*), COUNT(age) FROM person;

For some data types, MySQL handles NULL values specially. For example, if you insert NULL into an
integer or floating-point column that has the AUTO_INCREMENT attribute, the next number in the sequence
is inserted. Under certain conditions, if you insert NULL into a TIMESTAMP column, the current date and
time is inserted; this behavior depends in part on the server SQL mode (see Section 5.1.10, “Server SQL
Modes”) as well as the value of the explicit_defaults_for_timestamp system variable.

4571

Query-Related Issues

B.3.4.4 Problems with Column Aliases

An alias can be used in a query select list to give a column a different name. You can use the alias in
GROUP BY, ORDER BY, or HAVING clauses to refer to the column:

SELECT SQRT(a*b) AS root FROM tbl_name
 GROUP BY root HAVING root > 0;
SELECT id, COUNT(*) AS cnt FROM tbl_name
 GROUP BY id HAVING cnt > 0;
SELECT id AS 'Customer identity' FROM tbl_name;

Standard SQL disallows references to column aliases in a WHERE clause. This restriction is imposed
because when the WHERE clause is evaluated, the column value may not yet have been determined. For
example, the following query is illegal:

SELECT id, COUNT(*) AS cnt FROM tbl_name
 WHERE cnt > 0 GROUP BY id;

The WHERE clause determines which rows should be included in the GROUP BY clause, but it refers to
the alias of a column value that is not known until after the rows have been selected, and grouped by the
GROUP BY.

In the select list of a query, a quoted column alias can be specified using identifier or string quoting
characters:

SELECT 1 AS `one`, 2 AS 'two';

Elsewhere in the statement, quoted references to the alias must use identifier quoting or the reference is
treated as a string literal. For example, this statement groups by the values in column id, referenced using
the alias `a`:

SELECT id AS 'a', COUNT(*) AS cnt FROM tbl_name
 GROUP BY `a`;

This statement groups by the literal string 'a' and does not work as expected:

SELECT id AS 'a', COUNT(*) AS cnt FROM tbl_name
 GROUP BY 'a';

B.3.4.5 Rollback Failure for Nontransactional Tables

If you receive the following message when trying to perform a ROLLBACK, it means that one or more of the
tables you used in the transaction do not support transactions:

Warning: Some non-transactional changed tables couldn't be rolled back

These nontransactional tables are not affected by the ROLLBACK statement.

If you were not deliberately mixing transactional and nontransactional tables within the transaction, the
most likely cause for this message is that a table you thought was transactional actually is not. This can
happen if you try to create a table using a transactional storage engine that is not supported by your
mysqld server (or that was disabled with a startup option). If mysqld does not support a storage engine, it
instead creates the table as a MyISAM table, which is nontransactional.

You can check the storage engine for a table by using either of these statements:

SHOW TABLE STATUS LIKE 'tbl_name';
SHOW CREATE TABLE tbl_name;

See Section 13.7.5.36, “SHOW TABLE STATUS Statement”, and Section 13.7.5.10, “SHOW CREATE
TABLE Statement”.

4572

Query-Related Issues

To check which storage engines your mysqld server supports, use this statement:

SHOW ENGINES;

See Section 13.7.5.16, “SHOW ENGINES Statement” for full details.

B.3.4.6 Deleting Rows from Related Tables

If the total length of the DELETE statement for related_table is more than 1MB (the default value
of the max_allowed_packet system variable), you should split it into smaller parts and execute
multiple DELETE statements. You probably get the fastest DELETE by specifying only 100 to 1,000
related_column values per statement if the related_column is indexed. If the related_column is
not indexed, the speed is independent of the number of arguments in the IN clause.

B.3.4.7 Solving Problems with No Matching Rows

If you have a complicated query that uses many tables but that returns no rows, you should use the
following procedure to find out what is wrong:

1. Test the query with EXPLAIN to check whether you can find something that is obviously wrong. See
Section 13.8.2, “EXPLAIN Statement”.

2. Select only those columns that are used in the WHERE clause.

3. Remove one table at a time from the query until it returns some rows. If the tables are large, it is a good
idea to use LIMIT 10 with the query.

4. Issue a SELECT for the column that should have matched a row against the table that was last removed
from the query.

5. If you are comparing FLOAT or DOUBLE columns with numbers that have decimals, you cannot use
equality (=) comparisons. This problem is common in most computer languages because not all
floating-point values can be stored with exact precision. In some cases, changing the FLOAT to a
DOUBLE fixes this. See Section B.3.4.8, “Problems with Floating-Point Values”.

6. If you still cannot figure out what is wrong, create a minimal test that can be run with mysql test
< query.sql that shows your problems. You can create a test file by dumping the tables with
mysqldump --quick db_name tbl_name_1 ... tbl_name_n > query.sql. Open the file in
an editor, remove some insert lines (if there are more than needed to demonstrate the problem), and
add your SELECT statement at the end of the file.

Verify that the test file demonstrates the problem by executing these commands:

$> mysqladmin create test2
$> mysql test2 < query.sql

Attach the test file to a bug report, which you can file using the instructions in Section 1.5, “How to
Report Bugs or Problems”.

B.3.4.8 Problems with Floating-Point Values

Floating-point numbers sometimes cause confusion because they are approximate and not stored as
exact values. A floating-point value as written in an SQL statement may not be the same as the value
represented internally. Attempts to treat floating-point values as exact in comparisons may lead to
problems. They are also subject to platform or implementation dependencies. The FLOAT and DOUBLE
data types are subject to these issues. For DECIMAL columns, MySQL performs operations with a
precision of 65 decimal digits, which should solve most common inaccuracy problems.

4573

Query-Related Issues

The following example uses DOUBLE to demonstrate how calculations that are done using floating-point
operations are subject to floating-point error.

mysql> CREATE TABLE t1 (i INT, d1 DOUBLE, d2 DOUBLE);
mysql> INSERT INTO t1 VALUES (1, 101.40, 21.40), (1, -80.00, 0.00),
 -> (2, 0.00, 0.00), (2, -13.20, 0.00), (2, 59.60, 46.40),
 -> (2, 30.40, 30.40), (3, 37.00, 7.40), (3, -29.60, 0.00),
 -> (4, 60.00, 15.40), (4, -10.60, 0.00), (4, -34.00, 0.00),
 -> (5, 33.00, 0.00), (5, -25.80, 0.00), (5, 0.00, 7.20),
 -> (6, 0.00, 0.00), (6, -51.40, 0.00);

mysql> SELECT i, SUM(d1) AS a, SUM(d2) AS b
 -> FROM t1 GROUP BY i HAVING a <> b;

+------+-------+------+
| i | a | b |
+------+-------+------+
1	21.4	21.4
2	76.8	76.8
3	7.4	7.4
4	15.4	15.4
5	7.2	7.2
6	-51.4	0
+------+-------+------+

The result is correct. Although the first five records look like they should not satisfy the comparison (the
values of a and b do not appear to be different), they may do so because the difference between the
numbers shows up around the tenth decimal or so, depending on factors such as computer architecture
or the compiler version or optimization level. For example, different CPUs may evaluate floating-point
numbers differently.

If columns d1 and d2 had been defined as DECIMAL rather than DOUBLE, the result of the SELECT query
would have contained only one row—the last one shown above.

The correct way to do floating-point number comparison is to first decide on an acceptable tolerance for
differences between the numbers and then do the comparison against the tolerance value. For example,
if we agree that floating-point numbers should be regarded the same if they are same within a precision of
one in ten thousand (0.0001), the comparison should be written to find differences larger than the tolerance
value:

mysql> SELECT i, SUM(d1) AS a, SUM(d2) AS b FROM t1
 -> GROUP BY i HAVING ABS(a - b) > 0.0001;
+------+-------+------+
| i | a | b |
+------+-------+------+
| 6 | -51.4 | 0 |
+------+-------+------+
1 row in set (0.00 sec)

Conversely, to get rows where the numbers are the same, the test should find differences within the
tolerance value:

mysql> SELECT i, SUM(d1) AS a, SUM(d2) AS b FROM t1
 -> GROUP BY i HAVING ABS(a - b) <= 0.0001;
+------+------+------+
| i | a | b |
+------+------+------+
1	21.4	21.4
2	76.8	76.8
3	7.4	7.4
4	15.4	15.4
5	7.2	7.2
+------+------+------+
5 rows in set (0.03 sec)

4574

Optimizer-Related Issues

Floating-point values are subject to platform or implementation dependencies. Suppose that you execute
the following statements:

CREATE TABLE t1(c1 FLOAT(53,0), c2 FLOAT(53,0));
INSERT INTO t1 VALUES('1e+52','-1e+52');
SELECT * FROM t1;

On some platforms, the SELECT statement returns inf and -inf. On others, it returns 0 and -0.

An implication of the preceding issues is that if you attempt to create a replica by dumping table contents
with mysqldump on the source and reloading the dump file into the replica, tables containing floating-point
columns might differ between the two hosts.

B.3.5 Optimizer-Related Issues

MySQL uses a cost-based optimizer to determine the best way to resolve a query. In many cases, MySQL
can calculate the best possible query plan, but sometimes MySQL does not have enough information
about the data at hand and has to make “educated” guesses about the data.

For the cases when MySQL does not do the "right" thing, tools that you have available to help MySQL are:

• Use the EXPLAIN statement to get information about how MySQL processes a query. To use it, just add
the keyword EXPLAIN to the front of your SELECT statement:

mysql> EXPLAIN SELECT * FROM t1, t2 WHERE t1.i = t2.i;

EXPLAIN is discussed in more detail in Section 13.8.2, “EXPLAIN Statement”.

• Use ANALYZE TABLE tbl_name to update the key distributions for the scanned table. See
Section 13.7.2.1, “ANALYZE TABLE Statement”.

• Use FORCE INDEX for the scanned table to tell MySQL that table scans are very expensive compared
to using the given index:

SELECT * FROM t1, t2 FORCE INDEX (index_for_column)
WHERE t1.col_name=t2.col_name;

USE INDEX and IGNORE INDEX may also be useful. See Section 8.9.4, “Index Hints”.

• Global and table-level STRAIGHT_JOIN. See Section 13.2.9, “SELECT Statement”.

• You can tune global or thread-specific system variables. For example, start mysqld with the --max-
seeks-for-key=1000 option or use SET max_seeks_for_key=1000 to tell the optimizer to assume
that no key scan causes more than 1,000 key seeks. See Section 5.1.7, “Server System Variables”.

B.3.6 Table Definition-Related Issues

B.3.6.1 Problems with ALTER TABLE

If you get a duplicate-key error when using ALTER TABLE to change the character set or collation of a
character column, the cause is either that the new column collation maps two keys to the same value or
that the table is corrupted. In the latter case, you should run REPAIR TABLE on the table. REPAIR TABLE
works for MyISAM, ARCHIVE, and CSV tables.

If ALTER TABLE dies with the following error, the problem may be that MySQL crashed during an earlier
ALTER TABLE operation and there is an old table named A-xxx or B-xxx lying around:

Error on rename of './database/name.frm'

4575

Table Definition-Related Issues

to './database/B-xxx.frm' (Errcode: 17)

In this case, go to the MySQL data directory and delete all files that have names starting with A- or B-.
(You may want to move them elsewhere instead of deleting them.)

ALTER TABLE works in the following way:

• Create a new table named A-xxx with the requested structural changes.

• Copy all rows from the original table to A-xxx.

• Rename the original table to B-xxx.

• Rename A-xxx to your original table name.

• Delete B-xxx.

If something goes wrong with the renaming operation, MySQL tries to undo the changes. If something
goes seriously wrong (although this shouldn't happen), MySQL may leave the old table as B-xxx. A simple
rename of the table files at the system level should get your data back.

If you use ALTER TABLE on a transactional table or if you are using Windows, ALTER TABLE unlocks the
table if you had done a LOCK TABLE on it. This is done because InnoDB and these operating systems
cannot drop a table that is in use.

B.3.6.2 TEMPORARY Table Problems

Temporary tables created with CREATE TEMPORARY TABLE have the following limitations:

• TEMPORARY tables are supported only by the InnoDB, MEMORY, MyISAM, and MERGE storage engines.

• Temporary tables are not supported for NDB Cluster.

• The SHOW TABLES statement does not list TEMPORARY tables.

• To rename TEMPORARY tables, RENAME TABLE does not work. Use ALTER TABLE instead:

ALTER TABLE old_name RENAME new_name;

• You cannot refer to a TEMPORARY table more than once in the same query. For example, the following
does not work:

SELECT * FROM temp_table JOIN temp_table AS t2;

The statement produces this error:

ERROR 1137: Can't reopen table: 'temp_table'

• The Can't reopen table error also occurs if you refer to a temporary table multiple times in a stored
function under different aliases, even if the references occur in different statements within the function.
It may occur for temporary tables created outside stored functions and referred to across multiple calling
and callee functions.

• If a TEMPORARY is created with the same name as an existing non-TEMPORARY table, the
non-TEMPORARY table is hidden until the TEMPORARY table is dropped, even if the tables use different
storage engines.

• There are known issues in using temporary tables with replication. See Section 16.4.1.29, “Replication
and Temporary Tables”, for more information.

4576

Known Issues in MySQL

B.3.7 Known Issues in MySQL

This section lists known issues in recent versions of MySQL.

For information about platform-specific issues, see the installation and debugging instructions in
Section 2.1, “General Installation Guidance”, and Section 5.8, “Debugging MySQL”.

The following problems are known:

• Subquery optimization for IN is not as effective as for =.

• Even if you use lower_case_table_names=2 (which enables MySQL to remember the case used
for databases and table names), MySQL does not remember the case used for database names for the
function DATABASE() or within the various logs (on case-insensitive systems).

• Dropping a FOREIGN KEY constraint does not work in replication because the constraint may have
another name on the replica.

• REPLACE (and LOAD DATA with the REPLACE option) does not trigger ON DELETE CASCADE.

• DISTINCT with ORDER BY does not work inside GROUP_CONCAT() if you do not use all and only those
columns that are in the DISTINCT list.

• When inserting a big integer value (between 263 and 264−1) into a decimal or string column, it is inserted
as a negative value because the number is evaluated in signed integer context.

• With statement-based binary logging, the source server writes the executed queries to the binary log.
This is a very fast, compact, and efficient logging method that works perfectly in most cases. However,
it is possible for the data on the source and replica to become different if a query is designed in such a
way that the data modification is nondeterministic (generally not a recommended practice, even outside
of replication).

For example:

• CREATE TABLE ... SELECT or INSERT ... SELECT statements that insert zero or NULL values
into an AUTO_INCREMENT column.

• DELETE if you are deleting rows from a table that has foreign keys with ON DELETE CASCADE
properties.

• REPLACE ... SELECT, INSERT IGNORE ... SELECT if you have duplicate key values in the
inserted data.

If and only if the preceding queries have no ORDER BY clause guaranteeing a deterministic order.

For example, for INSERT ... SELECT with no ORDER BY, the SELECT may return rows in a
different order (which results in a row having different ranks, hence getting a different number in the
AUTO_INCREMENT column), depending on the choices made by the optimizers on the source and
replica.

A query is optimized differently on the source and replica only if:

• The table is stored using a different storage engine on the source than on the replica. (It is possible
to use different storage engines on the source and replica. For example, you can use InnoDB on the
source, but MyISAM on the replica if the replica has less available disk space.)

• MySQL buffer sizes (key_buffer_size, and so on) are different on the source and replica.

4577

Known Issues in MySQL

• The source and replica run different MySQL versions, and the optimizer code differs between these
versions.

This problem may also affect database restoration using mysqlbinlog|mysql.

The easiest way to avoid this problem is to add an ORDER BY clause to the aforementioned
nondeterministic queries to ensure that the rows are always stored or modified in the same order. Using
row-based or mixed logging format also avoids the problem.

• Log file names are based on the server host name if you do not specify a file name with the startup
option. To retain the same log file names if you change your host name to something else, you
must explicitly use options such as --log-bin=old_host_name-bin. See Section 5.1.6, “Server
Command Options”. Alternatively, rename the old files to reflect your host name change. If these are
binary logs, you must edit the binary log index file and fix the binary log file names there as well. (The
same is true for the relay logs on a replica.)

• mysqlbinlog does not delete temporary files left after a LOAD DATA statement. See Section 4.6.7,
“mysqlbinlog — Utility for Processing Binary Log Files”.

• RENAME does not work with TEMPORARY tables or tables used in a MERGE table.

• When using SET CHARACTER SET, you cannot use translated characters in database, table, and
column names.

• You cannot use _ or % with ESCAPE in LIKE ... ESCAPE.

• The server uses only the first max_sort_length bytes when comparing data values. This means
that values cannot reliably be used in GROUP BY, ORDER BY, or DISTINCT if they differ only after the
first max_sort_length bytes. To work around this, increase the variable value. The default value of
max_sort_length is 1024 and can be changed at server startup time or at runtime.

• Numeric calculations are done with BIGINT or DOUBLE (both are normally 64 bits long). Which precision
you get depends on the function. The general rule is that bit functions are performed with BIGINT
precision, IF() and ELT() with BIGINT or DOUBLE precision, and the rest with DOUBLE precision.
You should try to avoid using unsigned long long values if they resolve to be larger than 63 bits
(9223372036854775807) for anything other than bit fields.

• You can have up to 255 ENUM and SET columns in one table.

• In MIN(), MAX(), and other aggregate functions, MySQL currently compares ENUM and SET columns by
their string value rather than by the string's relative position in the set.

• In an UPDATE statement, columns are updated from left to right. If you refer to an updated column, you
get the updated value instead of the original value. For example, the following statement increments KEY
by 2, not 1:

mysql> UPDATE tbl_name SET KEY=KEY+1,KEY=KEY+1;

• You can refer to multiple temporary tables in the same query, but you cannot refer to any given
temporary table more than once. For example, the following does not work:

mysql> SELECT * FROM temp_table, temp_table AS t2;
ERROR 1137: Can't reopen table: 'temp_table'

• The optimizer may handle DISTINCT differently when you are using “hidden” columns in a join than
when you are not. In a join, hidden columns are counted as part of the result (even if they are not
shown), whereas in normal queries, hidden columns do not participate in the DISTINCT comparison.

4578

Known Issues in MySQL

An example of this is:

SELECT DISTINCT mp3id FROM band_downloads
 WHERE userid = 9 ORDER BY id DESC;

and

SELECT DISTINCT band_downloads.mp3id
 FROM band_downloads,band_mp3
 WHERE band_downloads.userid = 9
 AND band_mp3.id = band_downloads.mp3id
 ORDER BY band_downloads.id DESC;

In the second case, you may get two identical rows in the result set (because the values in the hidden id
column may differ).

Note that this happens only for queries that do not have the ORDER BY columns in the result.

• If you execute a PROCEDURE on a query that returns an empty set, in some cases the PROCEDURE does
not transform the columns.

• Creation of a table of type MERGE does not check whether the underlying tables are compatible types.

• If you use ALTER TABLE to add a UNIQUE index to a table used in a MERGE table and then add a normal
index on the MERGE table, the key order is different for the tables if there was an old, non-UNIQUE key
in the table. This is because ALTER TABLE puts UNIQUE indexes before normal indexes to be able to
detect duplicate keys as early as possible.

• An UPDATE statement involving a temporary table with a join on a non-temporary table having a trigger
defined on it can result in an error, even though the update statement reads only the non-temporary
table, in the following cases:

• With read-only mode enabled (by using SET GLOBAL read_only = 1).

• With the transaction level set to READ_ONLY (that is, using SET GLOBAL TRANSACTION READ ONLY
or SET SESSION TRANSACTION READ ONLY).

4579

4580

Appendix C Indexes

Table of Contents
General Index ... 4581
C Function Index .. 4848
Command Index ... 4852
Function Index .. 4900
INFORMATION_SCHEMA Index ... 4945
Join Types Index .. 4957
Operator Index ... 4959
Option Index ... 4968
Privileges Index .. 5078
SQL Modes Index ... 5088
Statement/Syntax Index .. 5093
Status Variable Index .. 5183
System Variable Index .. 5214
Transaction Isolation Level Index .. 5297

General Index

Symbols
! (logical NOT), 1906
!= (not equal), 1900
", 1661
#mysql50 identifier prefix, 1662, 1668
%, 1913
% (modulo), 1918
% (wildcard character), 1653
& (bitwise AND), 2019
&& (logical AND), 1906
() (parentheses), 1898
(Control+Z) \Z, 1653, 2295
* (multiplication), 1913
+ (addition), 1912
- (subtraction), 1912
- (unary minus), 1912
--basedir

removed features, 24
--bootstrap

deprecated features, 22
--comments

deprecated features, 22
--datadir

removed features, 24
--des-key-file

deprecated features, 21
--fix-db-names

deprecated features, 22

4581

--fix-table-names
deprecated features, 22

--ignore-db-dir
deprecated features, 21

--log-warnings
deprecated features, 20

--password option, 1078
--secure-auth

removed features, 23
--skip-comments

deprecated features, 22
--skip-innodb

deprecated features, 20
--skip-secure-auth

removed features, 23
--ssl

deprecated features, 20
--ssl-verify-server-cert

deprecated features, 20
--temp-pool

deprecated features, 20
--tmpdir

removed features, 24
->, 2090
->>, 2092
-c option (ndb_mgmd) (OBSOLETE), 3592
-d option

ndb_index_stat, 3673
ndb_mgmd, 3594

-e option
ndb_mgm, 3604

-f option
ndb_mgmd, 3592

-l option
ndbinfo_select_all, 3585

-myisam_repair_threads
removed features, 25

-n option
ndbd, 3579
ndbmtd, 3579

-p option, 1078
-P option

ndb_mgmd, 3599
-v option

ndb_mgmd, 3600
.frm file, 2228
.ibd file, 2228
.my.cnf option file, 311, 313, 337, 1045, 1079, 1143
.MYD file, 2228
.MYI file, 2228
.mylogin.cnf option file, 311, 605
.mysql_history file, 426, 1079
.mysql_secret file, 162, 362
.pid (process ID) file, 1438

4582

/ (division), 1913
/etc/passwd, 1088, 2318
3306 port, 211, 756
33060 port, 211
:= (assignment operator), 1907
:= (assignment), 1697
< (less than), 1901
<< (left shift), 299, 2019
<= (less than or equal), 1901
<=> (equal to), 1900
<> (not equal), 1900
= (assignment operator), 1908
= (assignment), 1697
= (equal), 1900
> (greater than), 1901
>= (greater than or equal), 1901
>> (right shift), 2019
[api] (NDB Cluster), 3372
[computer] (NDB Cluster), 3373
[mgm] (NDB Cluster), 3371
[mysqld] (NDB Cluster), 3372
[ndbd default] (NDB Cluster), 3365
[ndbd] (NDB Cluster), 3365
[ndb_mgmd] (NDB Cluster), 3371
[shm] (NDB Cluster), 3373
[tcp] (NDB Cluster), 3373
\" (double quote), 1653, 2106
\' (single quote), 1653
\. (mysql client command), 293, 430
\0 (ASCII NUL), 1652, 2295
\b (backspace), 1653, 2106, 2295
\f (formfeed), 2106
\n (linefeed), 1653, 2106, 2295
\n (newline), 1653, 2106, 2295
\N (NULL), 2295
\N as NULL

deprecated features, 21
\r (carriage return), 1653, 2106, 2295
\t (tab), 1653, 2106, 2295
\u (Unicode character), 2106
\Z (Control+Z) ASCII 26, 1653, 2295
\\ (escape), 1653, 2106
^ (bitwise XOR), 2019
_ (wildcard character), 1653
_ai collation sufffix, 1716
_as collation sufffix, 1716
_bin collation sufffix, 1716, 1739
_ci collation sufffix, 1716
_cs collation sufffix, 1716
_rowid

SELECT statements, 2190, 2210, 2210
`, 1661
| (bitwise OR), 2018
|| (logical OR), 1906

4583

~ (invert bits), 2019

A
abort-on-error option

ndb_import, 3655
ndb_move_data, 3679

abort-slave-event-count option
mysqld, 3025

aborted clients, 4555
aborted connection, 4555
Aborted_clients status variable, 910
Aborted_connects status variable, 910
ABS(), 1914
abstract-numbers option

mysqldumpslow, 643
access control, 1094, 1113
access denied errors, 4548
access privileges, 1094
account

default, 233
root, 233

account locking, 1108, 1139
ALTER USER, 2432
CREATE USER statement, 2439
Locked_connects status variable, 920

account management, 1094
account names, 1111
accounts

adding privileges, 1118
creating, 1118
deleting, 1121
reserved, 1121

accounts table
performance_schema, 4298

account_locked column
user table, 1108

ACID, 2545, 2549, 5301
ACLs, 1094
ACOS(), 1915
activating plugins, 996
ActiveState Perl, 266
adaptive flushing, 5301
adaptive hash index, 2561, 5301
add-drop-database option

mysqldump, 481
mysqlpump, 520

add-drop-table option
mysqldump, 481
mysqlpump, 521

add-drop-trigger option
mysqldump, 481

add-drop-user option
mysqlpump, 521

4584

add-locks option
mysqldump, 497
mysqlpump, 521

add-missing option
ndb_blob_tool, 3608

ADDDATE(), 1925
adding

character sets, 1768
new account privileges, 1118
new user privileges, 1118

addition (+), 1912
ADDTIME(), 1925
admin-auth-plugin option

mysql_install_db, 365
admin-host option

mysql_install_db, 365
admin-require-ssl option

mysql_install_db, 365
admin-user option

mysql_install_db, 366
administration

server, 435
administration of NDB Cluster, 3601
administrative programs, 306
ADO.NET, 5302
AES_DECRYPT(), 2023
AES_ENCRYPT(), 2023
After create

thread state, 1623
age

calculating, 282
aggregate functions, 2115
ai-increment option

ndb_import, 3655
ai-offset option

ndb_import, 3655
ai-prefetch-sz option

ndb_import, 3656
AIO, 5302
alias names

case sensitivity, 1665
aliases

for expressions, 2129
for tables, 2313
in GROUP BY clauses, 2129
names, 1660
on expressions, 2312

ALL, 2330
SELECT modifier, 2316

ALL join type
optimizer, 1555

ALL privilege, 1099
ALL PRIVILEGES privilege, 1099
all-databases option

4585

mysqlcheck, 455
mysqldump, 493
mysqlpump, 521

all-in-1 option
mysqlcheck, 455

all-tablespaces option
mysqldump, 481

Alliance Key Manager
keyring_okv keyring plugin, 1267

allow-keywords option
mysqldump, 482

allow-mismatches option
innochecksum, 571

allow-pk-changes option
ndb_restore, 3695

allow-suspicious-udfs option
mysqld, 739

ALLOW_INVALID_DATES SQL mode, 934
ALTER COLUMN, 2167
ALTER DATABASE, 2152

deprecated features, 22
ALTER EVENT, 2154

and replication, 3144
ALTER FUNCTION, 2155
ALTER IGNORE TABLE

removed features, 24
ALTER INSTANCE, 2155
ALTER LOGFILE GROUP, 2156

(see also NDB Cluster Disk Data)
ALTER privilege, 1099
ALTER PROCEDURE, 2157
ALTER ROUTINE privilege, 1099
ALTER SCHEMA, 2152
ALTER SERVER, 2157
ALTER TABLE, 2158, 2168, 4575

and replication metadata repositories, 3098
monitoring, 2851
ROW_FORMAT, 2701

ALTER TABLE partition validation
new features, 17

ALTER TABLESPACE
NDB Cluster Disk Data, 2181

ALTER USER statement, 1122, 2425
ALTER VIEW, 2183
altering

database, 2152
schema, 2152

altering table
thread state, 1623

altering user accounts, 2425
MySQL Enterprise Backup, 5304
ANALYSE()

PROCEDURE, 1524
analyze option

4586

myisamchk, 588
mysqlcheck, 455

ANALYZE TABLE
and partitioning, 4029

ANALYZE TABLE statement, 2454
Analyzing

thread state, 1623
AND

bitwise, 2019
logical, 1906

anonymous user, 1113, 1116
ANSI, 5302
ANSI mode

running, 47
ansi option

mysqld, 739
ANSI SQL mode, 933, 940
ANSI_QUOTES SQL mode, 934
Antelope, 5302
Antelope file format, 2691, 2763
ANY, 2330
ANY_VALUE(), 2133
Apache, 302
API, 5302
API node (NDB Cluster)

defined, 3287
API nodes (see SQL nodes)
ApiFailureHandlingTimeout, 3451
APIs, 4473

Perl, 4482
append option

ndb_restore, 3697
application error handling, 1094
application programming interface (API), 5302
apply, 5302
apply-slave-statements option

mysqldump, 485
apply_status table (OBSOLETE), 3941

(see also NDB Cluster replication)
approximate-value literals, 2141
approximate-value numeric literals, 1654, 2142
Arbitration, 3452
ArbitrationDelay, 3398, 3497
ArbitrationRank, 3397, 3496
ArbitrationTimeout, 3451
arbitrator_validity_detail

ndbinfo table, 3845
arbitrator_validity_summary

ndbinfo table, 3846
ARCHIVE storage engine, 2915, 2934
Area(), 2066
arithmetic expressions, 1912
arithmetic functions, 2018
arithmetic operators, 2018

4587

.ARM file, 5301
array

JSON, 1847
.ARZ file, 5301
AS, 2313, 2319
AsBinary(), 2059
ASCII(), 1946
ASIN(), 1915
ASP.net, 5302
assembly, 5302
assignment operator

:=, 1907
=, 1908

assignment operators, 1907
AsText(), 2059
asymmetric_decrypt(), 1404
asymmetric_derive(), 1404
asymmetric_encrypt(), 1404
asymmetric_sign(), 1405
asymmetric_verify(), 1406
asynchronous I/O, 2654, 5303
asynchronous replication (see NDB Cluster replication)
ATAN(), 1915
ATAN2(), 1915
atomic, 5303
atomic DDL, 5303
atomic instruction, 5303
attackers

security against, 1087
attribute demotion

replication, 3138
attribute promotion

replication, 3137
audit log encryption functions

audit_log_encryption_password_get(), 1320, 1348
audit_log_encryption_password_set(), 1320, 1349

audit log filtering
legacy mode, 1329, 1340, 1345
rule based, 1327

audit log filtering functions
audit_log_filter_flush(), 1349
audit_log_filter_remove_filter(), 1350
audit_log_filter_remove_user(), 1350
audit_log_filter_set_filter(), 1351
audit_log_filter_set_user(), 1351

audit log reading functions
audit_log_read(), 1324, 1352
audit_log_read_bookmark(), 1324, 1353

audit-log option
mysqld, 1354

audit_log plugin, 1294
and Group Replication, 1364, 3187
installing, 1295

audit_log_buffer_size system variable, 1355

4588

audit_log_compression system variable, 1355
audit_log_connection_policy system variable, 1356
audit_log_current_session system variable, 1356
Audit_log_current_size status variable, 1363
audit_log_disable variable, 1357
audit_log_encryption system variable, 1357
audit_log_encryption_password_get() audit log encryption function, 1320, 1348
audit_log_encryption_password_set() audit log encryption function, 1320, 1349
Audit_log_events status variable, 1364
Audit_log_events_filtered status variable, 1364
Audit_log_events_lost status variable, 1364
Audit_log_events_written status variable, 1364
Audit_log_event_max_drop_size status variable, 1363
audit_log_exclude_accounts system variable, 1357
audit_log_file system variable, 1324, 1358
audit_log_filter table

system table, 970
audit_log_filter_flush() audit log filtering function, 1349
audit_log_filter_id system variable, 1358
audit_log_filter_remove_filter() audit log filtering function, 1350
audit_log_filter_remove_user() audit log filtering function, 1350
audit_log_filter_set_filter() audit log filtering function, 1351
audit_log_filter_set_user() audit log filtering function, 1351
audit_log_flush system variable, 1359
audit_log_format system variable, 1359
audit_log_format_unix_timestamp system variable, 1359
audit_log_include_accounts system variable, 1360
audit_log_policy system variable, 1360
audit_log_read() audit log reading function, 1324, 1352
audit_log_read_bookmark() audit log reading function, 1324, 1353
audit_log_read_buffer_size system variable, 1327, 1361
audit_log_rotate_on_size system variable, 1362
audit_log_statement_policy system variable, 1362
audit_log_strategy system variable, 1363
Audit_log_total_size status variable, 1364
audit_log_user table

system table, 970
Audit_log_write_waits status variable, 1364
authentication

for the InnoDB memcached interface, 2879
LDAP, 1206
SASL, 1206

authentication plugin
authentication_ldap_sasl, 1206
authentication_ldap_sasl_client, 1206
authentication_ldap_simple, 1206
authentication_pam, 1190
authentication_windows, 1201
authentication_windows_client, 1201
auth_socket, 1222
auth_test_plugin, 1224
caching_sha2_password, 1179
mysql_clear_password, 1189
mysql_clear_plugin, 1206

4589

mysql_native_password, 1174
mysql_no_login, 1219
mysql_old_password, 1175
sha256_password, 1184
test_plugin_server, 1224

AUTHENTICATION_LDAP_CLIENT_LOG environment variable, 651, 1232
authentication_ldap_sasl_auth_method_name system variable, 1227
authentication_ldap_sasl_bind_base_dn system variable, 1228
authentication_ldap_sasl_bind_root_dn system variable, 1228
authentication_ldap_sasl_bind_root_pwd system variable, 1229
authentication_ldap_sasl_ca_path system variable, 1229
authentication_ldap_sasl_group_search_attr system variable, 1229
authentication_ldap_sasl_group_search_filter system variable, 1230
authentication_ldap_sasl_init_pool_size system variable, 1231
authentication_ldap_sasl_log_status system variable, 1232
authentication_ldap_sasl_max_pool_size system variable, 1232
authentication_ldap_sasl_server_host system variable, 1233
authentication_ldap_sasl_server_port system variable, 1233
authentication_ldap_sasl_tls system variable, 1233
authentication_ldap_sasl_user_search_attr system variable, 1234
authentication_ldap_simple_auth_method_name system variable, 1234
authentication_ldap_simple_bind_base_dn system variable, 1235
authentication_ldap_simple_bind_root_dn system variable, 1236
authentication_ldap_simple_bind_root_pwd system variable, 1237
authentication_ldap_simple_ca_path system variable, 1237
authentication_ldap_simple_group_search_attr system variable, 1237
authentication_ldap_simple_group_search_filter system variable, 1238
authentication_ldap_simple_init_pool_size system variable, 1238
authentication_ldap_simple_log_status system variable, 1239
authentication_ldap_simple_max_pool_size system variable, 1240
authentication_ldap_simple_server_host system variable, 1240
authentication_ldap_simple_server_port system variable, 1242
authentication_ldap_simple_tls system variable, 1242
authentication_ldap_simple_user_search_attr system variable, 1242
authentication_pam authentication plugin, 1190
AUTHENTICATION_PAM_LOG environment variable, 651, 1200
authentication_windows authentication plugin, 1201
authentication_windows_client authentication plugin, 1201
authentication_windows_log_level system variable, 768
authentication_windows_use_principal_name system variable, 768
auth_socket authentication plugin, 1222
auth_test_plugin authentication plugin, 1224
auto-generate-sql option

mysqlslap, 556
auto-generate-sql-add-autoincrement option

mysqlslap, 556
auto-generate-sql-execute-number option

mysqlslap, 556
auto-generate-sql-guid-primary option

mysqlslap, 556
auto-generate-sql-load-type option

mysqlslap, 556
auto-generate-sql-secondary-indexes option

mysqlslap, 557

4590

auto-generate-sql-unique-query-number option
mysqlslap, 557

auto-generate-sql-unique-write-number option
mysqlslap, 557

auto-generate-sql-write-number option
mysqlslap, 557

auto-inc lock, 2612
auto-inc option

ndb_desc, 3636
auto-increment, 2580, 2580, 2586, 2586, 5303
auto-increment locking, 5303
auto-rehash option

mysql, 399
auto-repair option

mysqlcheck, 455
auto-vertical-output option

mysql, 400
auto.cnf file, 2999

and SHOW SLAVE HOSTS statement, 2507
autocommit, 5304
autocommit mode, 2620
autocommit system variable, 769
automatic_sp_privileges system variable, 769
AutoReconnect

API and SQL nodes, 3500
autowrapped JSON values, 1851
auto_generate_certs system variable, 770
AUTO_INCREMENT, 299, 1797

and NULL values, 4571
and replication, 3133

auto_increment_increment system variable, 3007
auto_increment_offset system variable, 3010
availability, 5304
AVG(), 2117
AVG(DISTINCT), 2117
avoid_temporal_upgrade system variable, 770

B
B-tree, 5304
B-tree indexes, 1514, 2587
background threads, 2655

read, 2653
write, 2653

backslash
escape character, 1651

backspace (\b), 1653, 2106, 2295
backticks, 5304
backup, 5305
BACKUP Events (NDB Cluster), 3789
backup identifiers

native backup and restore, 3811
backup option

myisamchk, 585

4591

myisampack, 598
backup-path option

ndb_restore, 3697
BackupDataBufferSize, 3460, 3812
BackupDataDir, 3407
BackupDiskWriteSpeedPct, 3461
backupid option

ndb_restore, 3697
BackupLogBufferSize, 3462, 3812
BackupMaxWriteSize, 3463, 3813
BackupMemory, 3462, 3812
BackupReportFrequency, 3463
backups, 1415, 4485

databases and tables, 465, 515
in NDB Cluster, 3690, 3808, 3809, 3809, 3812
in NDB Cluster replication, 3954
InnoDB, 2864
with mysqldump, 1425

backups, troubleshooting
in NDB Cluster, 3813

BackupWriteSize, 3463, 3813
back_log system variable, 770
Barracuda, 5305
Barracuda file format, 2673, 2691, 2763
base column, 5305
base64-output option

mysqlbinlog, 617
basedir option

mysql.server, 353
mysqld, 740
mysqld_safe, 344
mysql_install_db, 366
mysql_plugin, 372

basedir system variable, 771
batch mode, 292
batch option

mysql, 400
batch SQL files, 393
BatchByteSize, 3497
Batched Key Access

optimization, 1470, 1472
batched updates (NDB Cluster Replication), 3950
BatchSize, 3498
BatchSizePerLocalScan, 3417
BEGIN, 2344, 2387

labels, 2387
XA transactions, 2359

BENCHMARK(), 2036
benchmarks, 1618
beta, 5305
BETWEEN ... AND, 1901
bidirectional replication

in NDB Cluster, 3960
NDB Cluster, 3965

4592

big5, 4518
BIGINT data type, 1794
big_tables system variable, 771
BIN(), 1947
BINARY, 2001
binary collation, 1739
BINARY data type, 1818, 1821
binary distributions

installing, 81
binary log, 978, 5305

event groups, 2376, 3083
binary logging

and NDB Cluster, 3328
binary-as-hex option

mysql, 400
binary-configure.sh

removed features, 25
binary-mode option

mysql, 401
bind-address option

mysql, 401
mysqladmin, 441
mysqlbinlog, 618
mysqlcheck, 455
mysqldump, 474
mysqlimport, 505
mysqlpump, 521
mysqlshow, 543
mysql_upgrade, 387
ndb_mgmd, 3591

bind_address system variable, 772
binlog, 5305
Binlog Dump

thread command, 1621
BINLOG statement, 2526

mysqlbinlog output, 635
binlog-checksum option

mysqld, 3052
binlog-do-db option

mysqld, 3049
binlog-ignore-db option

mysqld, 3051
binlog-row-event-max-size option

mysqlbinlog, 618
mysqld, 3048

Binlog_cache_disk_use status variable, 910
binlog_cache_size system variable, 3053
Binlog_cache_use status variable, 910
binlog_checksum system variable, 3053
binlog_direct_non_transactional_updates system variable, 3054
binlog_error_action system variable, 3055
binlog_format

BLACKHOLE, 3133
binlog_format system variable, 3055

4593

binlog_group_commit_sync_delay, 3056
binlog_group_commit_sync_no_delay_count, 3057
binlog_gtid_simple_recovery, 3071
binlog_index table (OBSOLETE) (see NDB Cluster replication)
binlog_max_flush_queue_time

deprecated features, 20
binlog_max_flush_queue_time system variable, 3058
binlog_order_commits system variable, 3058
binlog_rows_query_log_events system variable, 3060
binlog_row_image system variable, 3059
Binlog_stmt_cache_disk_use status variable, 910
binlog_stmt_cache_size system variable, 3061
Binlog_stmt_cache_use status variable, 910
binlog_transaction_dependency_history_size system variable, 3062
binlog_transaction_dependency_tracking system variable, 3061
BIT data type, 1793
bit functions, 2018

example, 299
bit operators, 2018
bit-value literal introducer, 1659
bit-value literals, 1659
BIT_AND(), 2117
BIT_COUNT, 299
BIT_COUNT(), 2019
BIT_LENGTH(), 1947
BIT_OR, 299
BIT_OR(), 2117
BIT_XOR(), 2117
BLACKHOLE

binlog_format, 3133
replication, 3133

BLACKHOLE storage engine, 2915, 2936
blind query expansion, 1983, 5306
BLOB, 5306
BLOB columns

default values, 1823
indexing, 1509, 2206
inserting binary data, 1654
size, 1865

BLOB data type, 1818, 1822
blob-info option

ndb_desc, 3636
Block Nested-Loop

optimization, 1470, 1471
Block Nested-Loop join algorithm, 1459
block-search option

myisamchk, 588
blocked hosts

unblocking, 952
blocks

ndbinfo table, 3846
block_encryption_mode system variable, 773
BOOL data type, 1793
BOOLEAN data type, 1793

4594

boolean literals, 1660
boolean options, 319
Boolean search, 1977
bootstrap option

mysqld, 740
bottleneck, 5306
bounce, 5306
brackets

square, 1792
buddy allocator, 2816, 5306
buffer, 5306
buffer pool, 1583, 2639, 2644, 2644, 2645, 2646, 2648, 5306

and compressed tables, 2682
monitoring, 2555, 2643, 2650

buffer pool instance, 5307
buffer sizes, 1583, 2639

client, 4473
Buffer(), 2069
bugs

known, 4577
NDB Cluster

reporting, 3648
reporting, 2, 41

bugs database, 41
bugs.mysql.com, 41
builddir option

mysql_install_db, 366
BuildIndexThreads, 3465
BUILD_CONFIG option

CMake, 203
built-in, 5307
built-in functions

reference, 1871
built-in operators

reference, 1871
bulk loading

for InnoDB tables, 1536
for MyISAM tables, 1544

bulk_insert_buffer_size system variable, 773, 2922
business rules, 5307
Bytes_received status variable, 911
Bytes_sent status variable, 911

C
C, 5307
C API, 4473, 4482, 5307

FAQ, 4531
C#, 5308
C++, 4476, 5308
C:\my.cnf option file, 1045
cache, 5308
CACHE INDEX

and partitioning, 4045

4595

CACHE INDEX statement, 2526
caches

clearing, 2527
cache_policies table, 2897
caching_sha2_password authentication plugin, 1179
calculating

aggregate value for a set of rows, 2115
cardinality, 2495
dates, 282

calendar, 1813
CALL, 2273
can't create/write to file, 4556
Can't reopen table

error message, 4576
cardinality, 1488, 5308
carriage return (\r), 1653, 2106, 2295
CASE, 1909, 2390
case sensitivity

access checking, 1110
account names, 1111
in identifiers, 1665
in names, 1665
in searches, 4568
in string comparisons, 1962
of database names, 47
of replication filtering options, 3105
of table names, 47

CAST, 2002
cast functions, 2000
cast operators, 2000
casts, 1893, 1899, 2000
CC environment variable, 220, 651
CEIL(), 1915
CEILING(), 1916
Centroid(), 2066
.cfg file, 5307
cflags option

mysql_config, 644
change buffer, 2557, 5308

monitoring, 2560
change buffering, 5309

disabling, 2558
CHANGE MASTER TO, 2366

in NDB Cluster, 3948
CHANGE REPLICATION FILTER, 2372
Change user

thread command, 1621
changes to privileges, 1121
changing

column, 2165
field, 2166
socket location, 353, 4567
table, 2158, 2168, 4575

Changing master

4596

thread state, 1633
channel

commands, 3092
replication, 3091

CHAR data type, 1815, 1817
CHAR VARYING data type, 1817
CHAR(), 1947
CHARACTER data type, 1817
character set introducer, 1723
character set repertoire, 1747
character sets, 1710

adding, 1768
and replication, 3134
Asian, 1762
Baltic, 1761
binary, 1766
Central European, 1759
Cyrillic, 1761
Middle East, 1760
new features, 17
repertoire, 1713
restrictions, 1767
South European, 1760
Unicode, 1752
West European, 1758

CHARACTER VARYING data type, 1817
character-set-client-handshake option

mysqld, 740
character-sets-dir option

myisamchk, 586
myisampack, 599
mysql, 401
mysqladmin, 441
mysqlbinlog, 618
mysqlcheck, 456
mysqldump, 485
mysqlimport, 505
mysqlpump, 521
mysqlshow, 543
mysql_upgrade, 387
ndbd, 3573
ndbinfo_select_all, 3584
ndb_blob_tool, 3608
ndb_config, 3615
ndb_delete_all, 3626
ndb_desc, 3636
ndb_drop_index, 3641
ndb_drop_table, 3646
ndb_import, 3656
ndb_index_stat, 3672
ndb_mgm, 3602
ndb_mgmd, 3591
ndb_move_data, 3679
ndb_restore, 3698

4597

ndb_select_all, 3723
ndb_select_count, 3729
ndb_show_tables, 3734
ndb_waiter, 3749

characters
multibyte, 1771

CHARACTER_LENGTH(), 1948
CHARACTER_SETS

INFORMATION_SCHEMA table, 4106
character_sets_dir system variable, 776
character_set_client system variable, 774
character_set_connection system variable, 774
character_set_database

deprecated features, 20
character_set_database system variable, 774
character_set_filesystem system variable, 775
character_set_results system variable, 775
character_set_server system variable, 775
character_set_system system variable, 776
charset command

mysql, 421
charset option

comp_err, 360
CHARSET(), 2036
CHAR_LENGTH(), 1948
check option

myisamchk, 584
mysqlcheck, 456

check options
myisamchk, 584

CHECK TABLE
and partitioning, 4029

CHECK TABLE statement, 2455
check-missing option

ndb_blob_tool, 3608
check-only-changed option

myisamchk, 584
mysqlcheck, 456

check-orphans option
ndb_blob_tool, 3608

check-upgrade option
mysqlcheck, 456

checking
tables for errors, 1435

Checking master version
thread state, 1630

checking permissions
thread state, 1623

checking privileges on cached query
thread state, 1629

checking query cache for query
thread state, 1630

Checking table
thread state, 1623

4598

checkpoint, 5309
CHECKPOINT Events (NDB Cluster), 3784
Checksum, 3554
checksum, 5309
Checksum (NDB Cluster), 3563
checksum errors, 183
CHECKSUM TABLE

and replication, 3134
CHECKSUM TABLE statement, 2460
check_proxy_users system variable, 776, 1138
child table, 5309
Chinese, Japanese, Korean character sets

frequently asked questions, 4518
choosing

a MySQL version, 62
data types, 1866

chroot option
mysqld, 741

circular replication
in NDB Cluster, 3934, 3960, 3965

CJK (Chinese, Japanese, Korean)
Access, PHP, etc., 4518
availability of specific characters, 4518
big5, 4518
character sets available, 4518
characters displayed as question marks, 4518
CJKV, 4518
collations, 4518, 4518
conversion problems with Japanese character sets, 4518
data truncation, 4518
Database and table names, 4518
documentation in Chinese, 4518
documentation in Japanese, 4518
documentation in Korean, 4518
FAQ, 4518
gb2312, gbk, 4518
Japanese character sets, 4518
Korean character set, 4518
LIKE and FULLTEXT, 4518
MySQL 4.0 behavior, 4518
ORDER BY treatment, 4518, 4518
problems with Access, PHP, etc., 4518
problems with Big5 character sets (Chinese), 4518
problems with data truncation, 4518
problems with euckr character set (Korean), 4518
problems with GB character sets (Chinese), 4518
problems with LIKE and FULLTEXT, 4518
problems with Yen sign (Japanese), 4518
rejected characters, 4518
sort order problems, 4518, 4518
sorting problems, 4518, 4518
testing availability of characters, 4518
Unicode collations, 4518
Vietnamese, 4518

4599

Yen sign, 4518
clean page, 5309
clean shutdown, 965, 1040, 3149, 5309
cleaning up

thread state, 1623
clear command

mysql, 421
Clearing

thread state, 1634
clearing

caches, 2527
client, 5309

signal handling, 655
client connections, 947
client libraries, 5310
client programs, 305
client tools, 4473
client-side prepared statement, 5310
clients

debugging, 1052
CLOB, 5310
cloning tables, 2230
CLOSE, 2395
Close stmt

thread command, 1621
closing

tables, 1525
closing tables

thread state, 1623
cluster database (OBSOLETE) (see NDB Cluster replication)
cluster logs, 3780, 3781
clustered index, 5310

InnoDB, 2587
Clustering (see NDB Cluster)
CLUSTERLOG commands (NDB Cluster), 3782
CLUSTERLOG STATISTICS command (NDB Cluster), 3790
cluster_locks

ndbinfo table, 3847
cluster_operations

ndbinfo table, 3848
cluster_replication database (OBSOLETE) (see NDB Cluster replication)
cluster_transactions

ndbinfo table, 3850
CMake

BUILD_CONFIG option, 203
CMAKE_BUILD_TYPE option, 203
CMAKE_CXX_FLAGS option, 218
CMAKE_C_FLAGS option, 218
CMAKE_INSTALL_PREFIX option, 204
COMPILATION_COMMENT option, 208
CPACK_MONOLITHIC_INSTALL option, 203
DEFAULT_CHARSET option, 208
DEFAULT_COLLATION option, 208
DISABLE_PSI_COND option, 208

4600

DISABLE_PSI_FILE option, 208
DISABLE_PSI_IDLE option, 208
DISABLE_PSI_MEMORY option, 208
DISABLE_PSI_METADATA option, 208
DISABLE_PSI_MUTEX option, 208
DISABLE_PSI_PS option, 209
DISABLE_PSI_RWLOCK option, 208
DISABLE_PSI_SOCKET option, 208
DISABLE_PSI_SP option, 208
DISABLE_PSI_STAGE option, 209
DISABLE_PSI_STATEMENT option, 209
DISABLE_PSI_STATEMENT_DIGEST option, 209
DISABLE_PSI_TABLE option, 209
DISABLE_PSI_THREAD option, 209
DISABLE_PSI_TRANSACTION option, 209
DOWNLOAD_BOOST option, 209
DOWNLOAD_BOOST_TIMEOUT option, 209
ENABLED_LOCAL_INFILE option, 210, 1091
ENABLED_PROFILING option, 210
ENABLE_DOWNLOADS option, 209
ENABLE_DTRACE option, 210
ENABLE_GCOV option, 210
ENABLE_GPROF option, 210
FORCE_UNSUPPORTED_COMPILER option, 210
IGNORE_AIO_CHECK option, 210
INSTALL_BINDIR option, 204
INSTALL_DOCDIR option, 204
INSTALL_DOCREADMEDIR option, 204
INSTALL_INCLUDEDIR option, 204
INSTALL_INFODIR option, 204
INSTALL_LAYOUT option, 204
INSTALL_LIBDIR option, 204
INSTALL_MANDIR option, 205
INSTALL_MYSQLKEYRINGDIR option, 205
INSTALL_MYSQLSHAREDIR option, 205
INSTALL_MYSQLTESTDIR option, 205
INSTALL_PKGCONFIGDIR option, 205
INSTALL_PLUGINDIR option, 205
INSTALL_SBINDIR option, 205
INSTALL_SCRIPTDIR option, 205
INSTALL_SECURE_FILE_PRIVDIR option, 205
INSTALL_SECURE_FILE_PRIV_EMBEDDEDDIR option, 205
INSTALL_SHAREDIR option, 205
INSTALL_SUPPORTFILESDIR option, 206
MAX_INDEXES option, 210
MEMCACHED_HOME option, 218
MUTEX_TYPE option, 211
MYSQLX_TCP_PORT option, 211
MYSQLX_UNIX_ADDR option, 211
MYSQL_DATADIR option, 206
MYSQL_MAINTAINER_MODE option, 211
MYSQL_PROJECT_NAME option, 211
MYSQL_TCP_PORT option, 211
MYSQL_UNIX_ADDR option, 211

4601

ODBC_INCLUDES option, 206
ODBC_LIB_DIR option, 206
OPTIMIZER_TRACE option, 211
options, 194
REPRODUCIBLE_BUILD option, 211
running after prior invocation, 190, 220
SUNPRO_CXX_LIBRARY option, 218
SYSCONFDIR option, 206
SYSTEMD_PID_DIR option, 206
SYSTEMD_SERVICE_NAME option, 206
TMPDIR option, 206
VERSION file, 221
WIN_DEBUG_NO_INLINE option, 211
WITHOUT_SERVER option, 217
WITH_ASAN option, 212
WITH_ASAN_SCOPE option, 212
WITH_AUTHENTICATION_LDAP option, 212
WITH_AUTHENTICATION_PAM option, 212
WITH_AWS_SDK option, 212
WITH_BOOST option, 212
WITH_BUNDLED_LIBEVENT option, 219
WITH_BUNDLED_MEMCACHED option, 219
WITH_CLASSPATH option, 219
WITH_CLIENT_PROTOCOL_TRACING option, 213
WITH_CURL option, 213
WITH_DEBUG option, 213
WITH_DEFAULT_COMPILER_OPTIONS option, 218
WITH_DEFAULT_FEATURE_SET option, 213
WITH_EDITLINE option, 213
WITH_EMBEDDED_SERVER option, 214
WITH_EMBEDDED_SHARED_LIBRARY option, 214
WITH_ERROR_INSERT option, 219
WITH_EXTRA_CHARSETS option, 214
WITH_GMOCK option, 214
WITH_INNODB_EXTRA_DEBUG option, 214
WITH_INNODB_MEMCACHED option, 214
WITH_KEYRING_TEST option, 214
WITH_LDAP option, 214
WITH_LIBEVENT option, 215
WITH_LIBWRAP option, 215
WITH_LZ4 option, 215
WITH_MECAB option, 215
WITH_MSAN option, 215
WITH_MSCRT_DEBUG option, 215
WITH_NDBAPI_EXAMPLES option, 219
WITH_NDBCLUSTER option, 219
WITH_NDBCLUSTER_STORAGE_ENGINE option, 219
WITH_NDBMTD option, 219
WITH_NDB_BINLOG option, 219
WITH_NDB_DEBUG option, 219
WITH_NDB_JAVA option, 219
WITH_NDB_PORT option, 219
WITH_NDB_TEST option, 220
WITH_NUMA option, 215

4602

WITH_PROTOBUF option, 216
WITH_RAPID option, 216
WITH_SASL option, 216
WITH_SSL option, 216
WITH_SYSTEMD option, 216
WITH_TEST_TRACE_PLUGIN option, 217
WITH_UBSAN option, 217
WITH_UNIT_TESTS option, 217
WITH_UNIXODBC option, 217
WITH_VALGRIND option, 217
WITH_ZLIB option, 217

CMakeCache.txt file, 220
CMAKE_BUILD_TYPE option

CMake, 203
CMAKE_CXX_FLAGS option

CMake, 218
CMAKE_C_FLAGS option

CMake, 218
CMAKE_INSTALL_PREFIX option

CMake, 204
COALESCE(), 1902
code injection

XPath, 2016
coercibility

collation, 1737
COERCIBILITY(), 2037
cold backup, 5310
collating

strings, 1771
collation

adding, 1772
coercibility, 1737
INFORMATION_SCHEMA, 1742
modifying, 1773

COLLATION(), 2037
collations, 1710

Asian, 1762
Baltic, 1761
binary, 1739, 1766
Central European, 1759
Cyrillic, 1761
Middle East, 1760
naming conventions, 1716
PAD SPACE, 1740, 1820
South European, 1760
Unicode, 1752
West European, 1758
_ai suffix, 1716
_as suffix, 1716
_bin suffix, 1716, 1739
_ci suffix, 1716
_ss suffix, 1716

COLLATIONS
INFORMATION_SCHEMA table, 4106

4603

COLLATION_CHARACTER_SET_APPLICABILITY
INFORMATION_SCHEMA table, 4107

collation_connection system variable, 777
collation_database

deprecated features, 20
collation_database system variable, 777
collation_server system variable, 777
color option

ndb_top, 3742
column, 5310

changing, 2166
types, 1792

column alias
problems, 4572
quoting, 1662, 4572

column comment options (NDB), 2246
column comments, 2208
column format, 2208
column index, 5310
column names

case sensitivity, 1665
column prefix, 5310
column storage, 2208
column-names option

mysql, 401
column-type-info option

mysql, 402
columns

displaying, 540
indexes, 1509
names, 1660
other types, 1867
selecting, 280
storage requirements, 1862

COLUMNS
INFORMATION_SCHEMA table, 4107

columns option
mysqlimport, 505

columns partitioning, 3993
columns per table

maximum, 1530
columns_priv table

system table, 968, 1105
COLUMN_PRIVILEGES

INFORMATION_SCHEMA table, 4110
comma-separated values data, reading, 2294, 2319
command interceptor, 5311
command option precedence, 309
command options

mysql, 394
mysqladmin, 438
mysqld, 738

command options (NDB Cluster)
mysqld, 3505

4604

ndbd, 3571
ndbinfo_select_all, 3582
ndb_mgm, 3601
ndb_mgmd, 3588

command syntax, 4
command-line history

mysql, 426
command-line tool, 110, 393
commands

for binary distribution, 82
commands option

mysql, 403
commands out of sync, 4557
comment stripping

deprecated features, 22
comment syntax, 1705
comments

adding, 1705
starting, 53

comments option
mysql, 404
mysqldump, 482

COMMIT, 2344
XA transactions, 2359

commit, 5311
commit option

mysqlslap, 557
committing alter table to storage engine

thread state, 1623
Committing events to binlog

thread state, 1633
compact option

mysqldump, 489
compact row format, 2699, 5311
comparison operators, 1899
comparisons

access checking, 1110
account names, 1111

compatibility
with ODBC, 867, 1664, 1795, 1893, 1904, 2208, 2322
with Oracle, 48, 2122, 2166, 2538
with PostgreSQL, 49
with standard SQL, 46

compatible option
mysqldump, 489

COMPILATION_COMMENT option
CMake, 208

compiling
optimizing, 1606

compiling MySQL server
problems, 220

complete-insert option
mysqldump, 489
mysqlpump, 522

4605

completion_type system variable, 777
composite index, 5311
composite partitioning, 4006
compound statements, 2387
compress option

mysql, 404
mysqladmin, 442
mysqlcheck, 456
mysqldump, 475
mysqlimport, 505
mysqlpump, 522
mysqlshow, 543
mysqlslap, 558
mysql_upgrade, 387

COMPRESS(), 2027
compress-output option

mysqlpump, 522
compressed backup, 5311
compressed row format, 2701, 5312
compressed table, 5312
compressed tables, 598, 2926
CompressedBackup, 3464
CompressedLCP, 3433
compression, 2672, 2687, 5312

algorithms, 2680
application and schema design, 2677
BLOBs, VARCHAR and TEXT, 2681
buffer pool considerations, 2682
compressed page size, 2678
configuration characteristics, 2678
connection, 339
data and indexes, 2680
data characteristics, 2676
enabling for a table, 2673
implementation, 2680
information schema, 2815
KEY_BLOCK_SIZE, 2678
log file format, 2683
modification log, 2681
monitoring, 2679
overflow pages, 2681
overview, 2673
tuning, 2675
workload characteristics, 2678

compression failure, 5312
Compression status variable, 912
comp_err, 305, 359

charset option, 360
debug option, 360
debug-info option, 360
header-file option, 360
help option, 359
in-file option, 361
name-file option, 361

4606

out-dir option, 361
out-file option, 361
state-file option, 361
version option, 361

COM_FIELD_LIST
deprecated features, 22

COM_PROCESS_INFO
deprecated features, 22

COM_PROCESS_KILL
deprecated features, 22

COM_REFRESH
deprecated features, 22

CONCAT(), 1948
concatenation

string, 1651, 1948
CONCAT_WS(), 1948
concurrency, 2545, 5312

of commits, 2756
of threads, 2808
tickets, 2758

concurrency option
mysqlslap, 558

concurrent inserts, 1598, 1601
concurrent_insert system variable, 778
condition handling

INOUT parameters, 2424
new features, 15
OUT parameters, 2424

Conditions, 2397
conditions, 2490, 2523
cond_instances table

performance_schema, 4261
config-cache option

ndb_mgmd, 3591
config-file option

my_print_defaults, 646
ndb_config, 3616
ndb_mgmd, 3592

config.ini (NDB Cluster), 3350, 3383, 3384, 3600
configdir option

ndb_mgmd, 3593
ConfigGenerationNumber, 3503
configinfo option

ndb_config, 3615
configuration

NDB Cluster, 3364
server, 658

configuration file, 5312
configuration files, 1143
configure action

MySQLInstallerConsole, 112
configuring backups

in NDB Cluster, 3812
configuring NDB Cluster, 3331, 3361, 3600, 3815

4607

Configuring NDB Cluster (concepts), 3287
config_from_node option

ndb_config, 3616
config_nodes

ndbinfo table, 3851
config_options table, 2897
config_params

ndbinfo table, 3852
config_values

ndbinfo table, 3853
conflict detection status variables

NDB Cluster Replication, 3973
conflict resolution

enabling, 3967
NDB Cluster Replication, 3965
ndb_replication table, 3943

Connect
thread command, 1621

connect command
mysql, 421

CONNECT command (NDB Cluster), 3755
connect option

ndb_restore, 3698
Connect Out

thread command, 1621
connect-delay option

ndbd, 3573
ndbmtd, 3573

connect-expired-password option
mysql, 404

connect-retries option
ndbd, 3574
ndbinfo_select_all, 3584
ndbmtd, 3574
ndb_blob_tool, 3608
ndb_config, 3616
ndb_delete_all, 3626
ndb_desc, 3636
ndb_drop_index, 3641
ndb_drop_table, 3646
ndb_import, 3656
ndb_index_stat, 3672
ndb_mgm, 3602
ndb_mgmd, 3593
ndb_move_data, 3680
ndb_restore, 3698
ndb_select_all, 3723
ndb_select_count, 3729
ndb_show_tables, 3734
ndb_waiter, 3749

connect-retry-delay option
ndbd, 3574
ndbinfo_select_all, 3584
ndbmtd, 3574

4608

ndb_blob_tool, 3608
ndb_config, 3616
ndb_delete_all, 3626
ndb_desc, 3636
ndb_drop_index, 3641
ndb_drop_table, 3646
ndb_import, 3656
ndb_index_stat, 3672
ndb_mgm, 3603
ndb_mgmd, 3593
ndb_move_data, 3679
ndb_restore, 3698
ndb_select_all, 3723
ndb_select_count, 3730
ndb_show_tables, 3734
ndb_waiter, 3750

connect-string option
ndbd, 3574
ndbinfo_select_all, 3584
ndb_blob_tool, 3609
ndb_config, 3617
ndb_delete_all, 3626
ndb_desc, 3636
ndb_drop_index, 3641
ndb_drop_table, 3646
ndb_import, 3657
ndb_index_stat, 3673
ndb_mgm, 3603
ndb_mgmd, 3593
ndb_move_data, 3680
ndb_restore, 3698
ndb_select_all, 3723
ndb_select_count, 3730
ndb_show_tables, 3734
ndb_waiter, 3750

connect-timeout option
mysql, 405
mysqladmin, 442

ConnectBackoffMaxTime, 3501
ConnectCheckIntervalDelay, 3444
connecting

remotely with SSH, 1173
to the server, 269, 335
verification, 1113

Connecting to master
thread state, 1631

connection, 5313
aborted, 4555

connection compression, 339
connection control table reference

INFORMATION_SCHEMA, 4200
CONNECTION Events (NDB Cluster), 3783
connection management, 947
connection pool, 5313

4609

connection string, 5313 (see NDB Cluster)
connection-server-id option

mysqlbinlog, 619
connection-timeout option

ndb_error_reporter, 3649
ConnectionMap, 3494
connections option

ndb_config, 3616
ndb_import, 3657

Connections status variable, 912
CONNECTION_CONTROL plugin

installing, 1243
status variables, 1249
system variables, 1247

Connection_control_delay_generated status variable, 1249
connection_control_failed_connections_threshold system variable, 1247
CONNECTION_CONTROL_FAILED_LOGIN_ATTEMPTS

INFORMATION_SCHEMA table, 4200
CONNECTION_CONTROL_FAILED_LOGIN_ATTEMPTS plugin

installing, 1243
connection_control_max_connection_delay system variable, 1248
connection_control_min_connection_delay system variable, 1248
Connection_errors_accept status variable, 912
Connection_errors_internal status variable, 912
Connection_errors_max_connections status variable, 912
Connection_errors_peer_address status variable, 912
Connection_errors_select status variable, 912
Connection_errors_tcpwrap status variable, 912
CONNECTION_ID(), 2037
connector, 5313
Connector/C++, 4473, 4476, 5313
Connector/J, 4473, 4476, 5313
Connector/NET, 4473, 4476, 5313
Connector/ODBC, 4473, 4476, 5314
Connector/PHP, 5314
Connector/Python, 4473, 4476
Connectors, 4473
connect_timeout system variable, 779
consistent read, 5314
consistent reads, 2621
console option

mysqld, 741
const table

optimizer, 1553, 2316
constant table, 1446
constraint, 5314
constraints, 53

foreign keys, 2232
containers table, 2897
Contains(), 2077
context option

ndb_desc, 3637
continue option

ndb_import, 3657

4610

Control+C
statement termination, 394, 416

CONV(), 1916
conventions

syntax, 2
typographical, 2

CONVERT, 2003
CONVERT TO, 2169
converting HEAP to ondisk

thread state, 1623
CONVERT_TZ(), 1925
ConvexHull(), 2069
copy to tmp table

thread state, 1624
copying databases, 257
copying tables, 2231
Copying to group table

thread state, 1624
Copying to tmp table

thread state, 1624
Copying to tmp table on disk

thread state, 1624
core-file option

mysqld, 741
ndbd, 3574
ndbinfo_select_all, 3584
ndb_blob_tool, 3609
ndb_config, 3617
ndb_delete_all, 3627
ndb_desc, 3637
ndb_drop_index, 3641
ndb_drop_table, 3646
ndb_import, 3657
ndb_index_stat, 3673
ndb_mgm, 3603
ndb_mgmd, 3594
ndb_move_data, 3680
ndb_restore, 3699
ndb_select_all, 3724
ndb_select_count, 3730
ndb_show_tables, 3735
ndb_waiter, 3750

core-file-size option
mysqld_safe, 344

core_file system variable, 779
correct-checksum option

myisamchk, 586
correlated subqueries, 2332
corruption, 2905

InnoDB, 2865
COS(), 1916
cost model

optimizer, 1580
COT(), 1916

4611

count option
innochecksum, 569
myisam_ftdump, 576
mysqladmin, 442
mysqlshow, 543

COUNT(), 2117
COUNT(DISTINCT), 2118
counter, 5314
counters

ndbinfo table, 3855
counting

table rows, 287
covering index, 5314
CPACK_MONOLITHIC_INSTALL option

CMake, 203
CPU-bound, 5315
cpustat

ndbinfo table, 3857
cpustat_1sec

ndbinfo table, 3859
cpustat_20sec

ndbinfo table, 3860
cpustat_50ms

ndbinfo table, 3858
crash, 1045, 5315

recovery, 1434
repeated, 4563
replication, 3149

crash recovery, 5315
InnoDB, 2866, 2867

crash-safe replication, 3030, 3114
CrashOnCorruptedTuple, 3434
CRC32(), 1916
CREATE ... IF NOT EXISTS

and replication, 3134
CREATE DATABASE, 2183
Create DB

thread command, 1621
CREATE EVENT, 2184

and replication, 3144
CREATE FUNCTION, 2196
CREATE FUNCTION statement, 2465
CREATE INDEX, 2188
CREATE LOGFILE GROUP, 2194

(see also NDB Cluster Disk Data)
CREATE NODEGROUP command (NDB Cluster), 3755
create option

mysqlslap, 558
CREATE privilege, 1099
CREATE PROCEDURE, 2196
CREATE ROUTINE privilege, 1099
CREATE SCHEMA, 2183
CREATE SERVER, 2201
CREATE TABLE, 2202

4612

DIRECTORY options
and replication, 3140

KEY_BLOCK_SIZE, 2678
NDB_COLUMN options, 2247
NDB_TABLE options, 2249
options for table compression, 2673
ROW_FORMAT, 2701

CREATE TABLE ... SELECT
and replication, 3134

CREATE TABLESPACE, 2252
general tablespace, 2252

CREATE TABLESPACE privilege, 1099
CREATE TEMPORARY TABLE

deprecated features, 23
CREATE TEMPORARY TABLES privilege, 1099
CREATE TRIGGER, 2258
CREATE USER privilege, 1099
CREATE USER statement, 1118, 1122, 2432
CREATE VIEW, 2260
CREATE VIEW privilege, 1099
create-options option

mysqldump, 489
create-schema option

mysqlslap, 558
Created_tmp_disk_tables status variable, 913
Created_tmp_files status variable, 913
Created_tmp_tables status variable, 913
create_asymmetric_priv_key(), 1406
create_asymmetric_pub_key(), 1407
create_dh_parameters(), 1407
create_digest(), 1407
create_synonym_db() procedure

sys schema, 4439
creating

bug reports, 41
database, 2183
databases, 273
default startup options, 311
loadable function, 2465
schema, 2183
tables, 275

Creating index
thread state, 1624

Creating sort index
thread state, 1624

creating table
thread state, 1624

Creating tmp table
thread state, 1624

creating user accounts, 2432
CROSS JOIN, 2319
Crosses(), 2073
CRUD, 5315
CR_SERVER_GONE_ERROR, 4552

4613

CR_SERVER_LOST_ERROR, 4553
CSV data, reading, 2294, 2319
csv option

mysqlslap, 558
CSV storage engine, 2915, 2933
csvopt option

ndb_import, 3657
CURDATE(), 1926
CURRENT_DATE, 1926
CURRENT_TIME, 1926
CURRENT_TIMESTAMP, 1926
CURRENT_USER(), 2038
cursor, 5315
Cursors, 2395
CURTIME(), 1926
CXX environment variable, 220, 651
cxxflags option

mysql_config, 645

D
Daemon

thread command, 1621
daemon option

ndb_mgmd, 3594
daemonize option

mysqld, 741
daemon_memcached_enable_binlog system variable, 2738
daemon_memcached_engine_lib_name system variable, 2738
daemon_memcached_engine_lib_path system variable, 2739
daemon_memcached_option system variable, 2739
daemon_memcached_r_batch_size system variable, 2740
daemon_memcached_w_batch_size system variable, 2740
data

importing, 430, 501
loading into tables, 277
retrieving, 278
size, 1521

data dictionary, 5315
data directory, 5316

mysql_upgrade_info file, 384
DATA DIRECTORY

and replication, 3140
data encryption, 2726
data files, 5316
Data Masking plugin

installing, 1383
uninstalling, 1383

data node (NDB Cluster)
defined, 3287

data nodes
memory allocation, 3466

data nodes (NDB Cluster), 3570, 3587
Data on disk (NDB Cluster)

4614

and INFORMATION_SCHEMA.FILES table, 4116
Data truncation with CJK characters, 4518
data type

BIGINT, 1794
BINARY, 1818, 1821
BIT, 1793
BLOB, 1818, 1822
BOOL, 1793, 1867
BOOLEAN, 1793, 1867
CHAR, 1815, 1817
CHAR VARYING, 1817
CHARACTER, 1817
CHARACTER VARYING, 1817
DATE, 1802, 1803
DATETIME, 1802, 1803
DEC, 1795
DECIMAL, 1794, 2141
DOUBLE, 1795
DOUBLE PRECISION, 1796
ENUM, 1819, 1824
FIXED, 1795
FLOAT, 1795, 1795, 1795
GEOMETRY, 1831
GEOMETRYCOLLECTION, 1831
INT, 1794
INTEGER, 1794
LINESTRING, 1831
LONG, 1822
LONGBLOB, 1819
LONGTEXT, 1819
MEDIUMBLOB, 1818
MEDIUMINT, 1794
MEDIUMTEXT, 1818
MULTILINESTRING, 1831
MULTIPOINT, 1831
MULTIPOLYGON, 1831
NATIONAL CHAR, 1817
NATIONAL VARCHAR, 1817
NCHAR, 1817
NUMERIC, 1795
NVARCHAR, 1817
POINT, 1831
POLYGON, 1831
REAL, 1796
SET, 1819, 1827
SMALLINT, 1794
TEXT, 1818, 1822
TIME, 1803, 1805
TIMESTAMP, 1802, 1803
TINYBLOB, 1818
TINYINT, 1793
TINYTEXT, 1818
VARBINARY, 1818, 1821
VARCHAR, 1815, 1817

4615

VARCHARACTER, 1817
YEAR, 1803, 1806

data types, 1792
date and time, 1800
numeric, 1792
string, 1815

data warehouse, 5316
data-at-rest encryption, 2726
data-file-length option

myisamchk, 586
database, 5316

altering, 2152
creating, 2183
deleting, 2265
renaming, 2271

Database information
obtaining, 2473

database metadata, 4098
database names

case sensitivity, 47, 1665
database objects

metadata, 1714
database option

mysql, 405
mysqlbinlog, 619
ndb_blob_tool, 3609
ndb_delete_all, 3627
ndb_desc, 3637
ndb_drop_index, 3641
ndb_drop_table, 3646
ndb_index_stat, 3673
ndb_move_data, 3680
ndb_show_tables, 3735

database symlinking
removed features, 24

DATABASE(), 2039
databases

backups, 1415
copying, 257
creating, 273, 2183
defined, 4
displaying, 540
dumping, 465, 515
information about, 291
names, 1660
replicating, 2953
selecting, 275, 2542
symbolic links, 1608
using, 273

databases option
mysqlcheck, 456
mysqldump, 493
mysqlpump, 522

DataDir, 3398, 3406

4616

datadir option
mysql.server, 353
mysqld, 742
mysqld_safe, 344
mysql_install_db, 366
mysql_plugin, 372
mysql_ssl_rsa_setup, 381

datadir system variable, 780
DataMemory, 3408
DATE, 4569
date and time data types, 1800
date and time functions, 1922
date calculations, 282
DATE columns

problems, 4569
DATE data type, 1802, 1803
date data types

storage requirements, 1863
date literals, 1655
date values

problems, 1804
DATE(), 1926
DATEDIFF(), 1927
dates

used with partitioning, 3984
used with partitioning (examples), 3988, 4001, 4006, 4033

DATETIME data type, 1802, 1803
datetime_format system variable, 780
DATE_ADD(), 1927
date_format system variable, 780
DATE_FORMAT(), 1928
DATE_SUB(), 1927, 1929
DAY(), 1929
Daylight Saving Time, 959, 1519, 1941
DAYNAME(), 1930
DAYOFMONTH(), 1930
DAYOFWEEK(), 1930
DAYOFYEAR(), 1930
db table

sorting, 1117
system table, 233, 968, 1105

db-workers option
ndb_import, 3658

DB2
deprecated features, 19

DB2 SQL mode, 940
DBI interface, 4482
DBI->quote, 1654
DBI->trace, 1048
DBI/DBD interface, 4482
DBI_TRACE environment variable, 651, 1048
DBI_USER environment variable, 651
DBUG package, 1052
DCL, 2440, 2451, 5316

4617

DDEX provider, 5316
DDL, 2152, 5316
DDL log, 993
deadlock, 1597, 2352, 2624, 2629, 2629, 2630, 2630, 2794, 3151, 4380, 5317
deadlock detection, 5317
DEALLOCATE PREPARE, 2382, 2386
deb file

MySQL APT Repository, 157
MySQL SLES Repository, 157

Debug
thread command, 1621

debug option
comp_err, 360
myisamchk, 580
myisampack, 599
mysql, 405
mysqladmin, 442
mysqlbinlog, 620
mysqlcheck, 456
mysqld, 742
mysqldump, 482
mysqldumpslow, 642
mysqlimport, 506
mysqlpump, 523
mysqlshow, 544
mysqlslap, 559
mysql_config_editor, 608
mysql_upgrade, 387
my_print_defaults, 646

debug system variable, 780
debug-check option

mysql, 405
mysqladmin, 442
mysqlbinlog, 620
mysqlcheck, 457
mysqldump, 483
mysqlimport, 506
mysqlpump, 523
mysqlshow, 544
mysqlslap, 559
mysql_upgrade, 387

debug-info option
comp_err, 360
mysql, 405
mysqladmin, 443
mysqlbinlog, 621
mysqlcheck, 457
mysqldump, 483
mysqlimport, 506
mysqlpump, 523
mysqlshow, 544
mysqlslap, 559
mysql_upgrade, 388

debug-sync-timeout option

4618

mysqld, 742
debugging

client, 1052
MySQL, 1045
server, 1045

debugging support, 194
debug_sync system variable, 781
DEC data type, 1795
decimal arithmetic, 2141
DECIMAL data type, 1794, 2141
decimal point, 1792
DECLARE, 2388
DECODE(), 2027

deprecated features, 21
decode_bits myisamchk variable, 582
DEFAULT

constraint, 55
default

privileges, 233
default account, 233
default host name, 335
default installation location, 80
default options, 311
default proxy user, 1135
DEFAULT value clause, 1860, 2207
default values, 1860, 2207, 2282

BLOB and TEXT columns, 1823
explicit, 1860
implicit, 1860
suppression, 55

DEFAULT(), 2134
default-auth option, 324

mysql, 406
mysqladmin, 443
mysqlbinlog, 621
mysqlcheck, 458
mysqldump, 475
mysqlimport, 506
mysqlpump, 523
mysqlshow, 544
mysqlslap, 559
mysql_upgrade, 388

default-character-set option
mysql, 406
mysqladmin, 443
mysqlcheck, 457
mysqldump, 485
mysqlimport, 506
mysqlpump, 524
mysqlshow, 544
mysql_upgrade, 388

default-parallelism option
mysqlpump, 524

default-time-zone option

4619

mysqld, 743
DefaultHashMapSize, 3421, 3500
DefaultOperationRedoProblemAction

API and SQL nodes, 3500
defaults

embedded, 4478
defaults option

mysql_install_db, 366
defaults-extra-file option, 317

myisamchk, 581
mysql, 406
mysqladmin, 443
mysqlbinlog, 621
mysqlcheck, 457
mysqld, 743
mysqldump, 479
mysqld_multi, 355
mysqld_safe, 344
mysqlimport, 507
mysqlpump, 524
mysqlshow, 545
mysqlslap, 559
mysql_install_db, 367
mysql_secure_installation, 375
mysql_upgrade, 388
my_print_defaults, 646
ndbd, 3575
ndbinfo_select_all, 3584
ndb_blob_tool, 3609
ndb_config, 3617
ndb_delete_all, 3627
ndb_desc, 3637
ndb_drop_index, 3642
ndb_drop_table, 3646
ndb_import, 3658
ndb_index_stat, 3673
ndb_mgm, 3603
ndb_mgmd, 3594
ndb_move_data, 3680
ndb_restore, 3699
ndb_select_all, 3724
ndb_select_count, 3730
ndb_show_tables, 3735
ndb_top, 3743
ndb_waiter, 3750

defaults-file option, 317
myisamchk, 581
mysql, 406
mysqladmin, 443
mysqlbinlog, 621
mysqlcheck, 457
mysqld, 743
mysqldump, 480
mysqld_multi, 355

4620

mysqld_safe, 345
mysqlimport, 507
mysqlpump, 524
mysqlshow, 545
mysqlslap, 560
mysql_install_db, 367
mysql_secure_installation, 376
mysql_upgrade, 388
my_print_defaults, 646
ndbd, 3575
ndbinfo_select_all, 3585
ndb_blob_tool, 3609
ndb_config, 3617
ndb_delete_all, 3627
ndb_desc, 3637
ndb_drop_index, 3642
ndb_drop_table, 3647
ndb_import, 3658
ndb_index_stat, 3673
ndb_mgm, 3603
ndb_mgmd, 3594
ndb_move_data, 3680
ndb_restore, 3699
ndb_select_all, 3724
ndb_select_count, 3730
ndb_show_tables, 3735
ndb_top, 3743
ndb_waiter, 3750

defaults-group-suffix option, 317
myisamchk, 581
mysql, 407
mysqladmin, 444
mysqlbinlog, 621
mysqlcheck, 458
mysqld, 743
mysqldump, 480
mysqlimport, 507
mysqlpump, 525
mysqlshow, 545
mysqlslap, 560
mysql_secure_installation, 376
mysql_upgrade, 388
my_print_defaults, 646
ndbd, 3575
ndbinfo_select_all, 3585
ndb_blob_tool, 3609
ndb_config, 3617
ndb_delete_all, 3627
ndb_desc, 3637
ndb_drop_index, 3642
ndb_drop_table, 3647
ndb_import, 3659
ndb_index_stat, 3673
ndb_mgm, 3603

4621

ndb_mgmd, 3594
ndb_move_data, 3680
ndb_restore, 3699
ndb_select_all, 3724
ndb_select_count, 3730
ndb_show_tables, 3735
ndb_top, 3743
ndb_waiter, 3750

default_authentication_plugin system variable, 781
DEFAULT_CHARSET option

CMake, 208
DEFAULT_COLLATION option

CMake, 208
default_password_lifetime system variable, 782
default_storage_engine system variable, 783
default_tmp_storage_engine system variable, 784
default_week_format system variable, 784
defer-table-indexes option

mysqlpump, 525
DEFINER privileges, 2494, 4081
DEGREES(), 1916
delay option

ndbinfo_select_all, 3585
DELAYED, 2289

INSERT modifier, 2284
Delayed insert

thread command, 1621
delayed replication, 3131
Delayed_errors status variable, 913
delayed_insert_limit system variable, 785
Delayed_insert_threads status variable, 913
delayed_insert_timeout system variable, 786
delayed_queue_size system variable, 786
Delayed_writes status variable, 913
delay_key_write system variable, 784, 2922
DELETE, 2274

and NDB Cluster, 3322
delete, 5317
delete buffering, 5317
delete option

mysqlimport, 507
ndb_index_stat, 3673

DELETE privilege, 1100
delete-master-logs option

mysqldump, 486
delete-orphans option

ndb_blob_tool, 3610
deleting

accounts, 1121
database, 2265
foreign key, 2168, 2237
function, 2466
index, 2167, 2266
primary key, 2167

4622

rows, 4573
schema, 2265
table, 2268
user, 2439
users, 2439

deleting from main table
thread state, 1624

deleting from reference tables
thread state, 1624

deletion
mysql.sock, 4567

delimiter command
mysql, 421

delimiter option
mysql, 407
mysqlslap, 560
ndb_select_all, 3724

demo_test table, 2873
denormalized, 5317
deprecated features, 18

--bootstrap, 22
--comments, 22
--des-key-file, 21
--fix-db-names, 22
--fix-table-names, 22
--ignore-db-dir, 21
--log-warnings, 20
--skip-comments, 22
--skip-innodb, 20
--ssl, 20
--ssl-verify-server-cert, 20
--temp-pool, 20
ALTER DATABASE, 22
binlog_max_flush_queue_time, 20
character_set_database, 20
collation_database, 20
comment stripping, 22
COM_FIELD_LIST, 22
COM_PROCESS_INFO, 22
COM_PROCESS_KILL, 22
COM_REFRESH, 22
CREATE TEMPORARY TABLE, 23
DB2, 19
DECODE(), 21
DES_DECRYPT(), 21
DES_ENCRYPT(), 21
DES_KEY_FILE, 21
DTrace, 23
embedded server library, 22
ENCODE(), 21
ENCRYPT(), 21
ERROR_FOR_DIVISION_BY_ZERO, 19
EXPLAIN EXTENDED, 21
EXPLAIN PARTITIONS, 21

4623

FLUSH QUERY CACHE, 20
GRANT, 19
GROUP BY sorting, 21
have_crypt, 21
HAVE_CRYPT, 21
have_query_cache, 20
IDENTIFIED BY PASSWORD, 19
ignore_db_dirs, 21
InnoDB shared tablespaces, 23
INNODB_LOCKS, 21
INNODB_LOCK_WAITS, 21
innodb_support_xa, 20
JSON_MERGE(), 23
libmysqld, 22
log_warnings, 20
MAXDB, 19
MBREqual(), 21
metadata_locks_cache_size, 20
metadata_locks_hash_instances, 20
MSSQL, 19
myisamchk --parallel-recover, 23
myisam_repair_threads, 23
MYSQL323, 19
MYSQL40, 19
mysqld_safe, 22
mysql_install_db, 22
mysql_kill(), 22
mysql_list_fields(), 22
mysql_list_processes(), 22
MYSQL_OPT_SSL_ENFORCE, 20
MYSQL_OPT_SSL_VERIFY_SERVER_CERT, 20
mysql_plugin, 22
mysql_refresh(), 22
mysql_shutdown(), 22
ndb_cache_check_time, 20
NO_FIELD_OPTIONS, 19
NO_KEY_OPTIONS, 19
NO_TABLE_OPTIONS, 19
NO_ZERO_DATE, 19
NO_ZERO_IN_DATE, 19
old_passwords, 19
ORACLE, 19
PASSWORD(), 19
performance_timers, 21
perror, 23
POSTGRESQL, 19
pre-5.1 database name conversion, 22
PROCEDURE ANALYSE(), 21
PROFILING, 21
Qcache_free_blocks, 20
Qcache_free_memory, 20
Qcache_inserts, 20, 20
Qcache_lowmem_prunes, 20
Qcache_not_cached, 20

4624

Qcache_queries_in_cache, 20
Qcache_total_blocks, 20
query cache, 20
query_cache_limit, 20
query_cache_min_res_unit, 20
query_cache_size, 20
query_cache_type, 20
query_cache_wlock_invalidate, 20
replace, 23
RESET QUERY CACHE, 20
resolveip, 22
resolve_stack_dump, 22
setup_timers, 21
spatial functions, 21
SQL mode, 19, 19
SQL_CACHE, 20
sql_log_bin, 21
SQL_NO_CACHE, 20
sync_frm, 20
sys.version, 21
tx_isolation, 20
tx_read_only, 20
\N as NULL, 21

derived tables, 2333
materialization prevention, 1498
optimization, 1489, 1497
updatable views, 4077

des-key-file option
mysqld, 743

DESC, 2537
descending index, 5317
descending option

ndb_select_all, 3724
DESCRIBE, 291, 2537
description option

myisamchk, 589
design

issues, 4577
DES_DECRYPT(), 2028

deprecated features, 21
DES_ENCRYPT(), 2028

deprecated features, 21
DES_KEY_FILE

deprecated features, 21
detach option

mysqlslap, 560
development of NDB Cluster, 3294
development source tree, 192
diagnostics() procedure

sys schema, 4440
dictionary collation, German, 1712, 1759, 1759
DictTrace, 3460
dict_obj_info

ndbinfo table, 3861

4625

dict_obj_types
ndbinfo table, 3862

diff-default option
ndb_config, 3617

digits, 1792
Dimension(), 2060
directory structure

default, 80
dirty page, 2741, 5318
dirty read, 5318
disable named command

mysql, 407
--disable option prefix, 319
disable-indexes option

ndb_restore, 3699
disable-keys option

mysqldump, 495
disable-log-bin option

mysqlbinlog, 622
disable-partition-engine-check option

mysqld, 744
disabled_storage_engines system variable, 786
DISABLE_PSI_COND option

CMake, 208
DISABLE_PSI_FILE option

CMake, 208
DISABLE_PSI_IDLE option

CMake, 208
DISABLE_PSI_MEMORY option

CMake, 208
DISABLE_PSI_METADATA option

CMake, 208
DISABLE_PSI_MUTEX option

CMake, 208
DISABLE_PSI_PS option

CMake, 209
DISABLE_PSI_RWLOCK option

CMake, 208
DISABLE_PSI_SOCKET option

CMake, 208
DISABLE_PSI_SP option

CMake, 208
DISABLE_PSI_STAGE option

CMake, 209
DISABLE_PSI_STATEMENT option

CMake, 209
DISABLE_PSI_STATEMENT_DIGEST option

CMake, 209
DISABLE_PSI_TABLE option

CMake, 209
DISABLE_PSI_THREAD option

CMake, 209
DISABLE_PSI_TRANSACTION option

CMake, 209

4626

DISCARD TABLESPACE, 2170, 2574
discard_or_import_tablespace

thread state, 1624
disconnect-slave-event-count option

mysqld, 3025
disconnecting

from the server, 269
disconnect_on_expired_password system variable, 787
Disjoint(), 2077
Disk Data tables (NDB Cluster) (see NDB Cluster Disk Data)
disk failure

InnoDB, 2865
disk full, 4565
disk I/O, 1538
disk option

ndb_select_all, 3724
disk performance, 1606
disk-based, 5318
disk-bound, 5318
DiskIOThreadPool, 3482, 3486
Diskless, 3434
diskpagebuffer

ndbinfo table, 3864
DiskPageBufferEntries, 3480
DiskPageBufferMemory, 3481, 3486
disks

splitting data across, 1609
diskscan option

ndb_delete_all, 3627
DiskSyncSize, 3449
disk_write_speed_aggregate

ndbinfo table, 3863
disk_write_speed_aggregate_node

ndbinfo table, 3864
disk_write_speed_base

ndbinfo table, 3862
display size, 1792
display triggers, 2520
display width, 1792
displaying

database information, 540
information

Cardinality, 2495
Collation, 2495
SHOW, 2473, 2477, 2519
SHOW statement, 2494, 2496

table status, 2516
Distance(), 2073
DISTINCT, 280, 1482

AVG(), 2117
COUNT(), 2118
MAX(), 2121
MIN(), 2121
SELECT modifier, 2316

4627

SUM(), 2122
DISTINCTROW

SELECT modifier, 2316
distinguished name

LDAP authentication, 1208
distributed privileges (NDB Cluster), 3826

and NDB API applications, 3829
DIV, 1913
division (/), 1913
div_precision_increment system variable, 788
DML, 2273, 5318

DELETE statement, 2274
INSERT statement, 2280
UPDATE statement, 2340

DN (see distinguished name)
DNS, 949
DNS SRV records, 1241
DO, 2278
DocBook XML

documentation source format, 4
Docker, 254
Docker images

on Windows, 173
document id, 5318
document store, 3253

MySQL as a, 3253
Documentation

in Chinese, 4518
in Japanese, 4518
in Korean, 4518

dont-ignore-systab-0 option
ndb_restore, 3699

DOUBLE data type, 1795
DOUBLE PRECISION data type, 1796
double quote (\"), 1653, 2106
doublewrite buffer, 918, 2704, 2761, 5318
downgrades

NDB Cluster, 3357, 3794
downgrading, 258
downloading, 63
DOWNLOAD_BOOST option

CMake, 209
DOWNLOAD_BOOST_TIMEOUT option

CMake, 209
drop, 5319
DROP ... IF EXISTS

and replication, 3135
DROP DATABASE, 2265
Drop DB

thread command, 1621
DROP EVENT, 2266
DROP FOREIGN KEY, 2168, 2237
DROP FUNCTION, 2267
DROP FUNCTION statement, 2466

4628

DROP INDEX, 2167, 2266
DROP LOGFILE GROUP, 2267

(see also NDB Cluster Disk Data)
DROP NODEGROUP command (NDB Cluster), 3755
DROP PREPARE, 2386
DROP PRIMARY KEY, 2167
DROP privilege, 1100
DROP PROCEDURE, 2267
DROP SCHEMA, 2265
DROP SERVER, 2268
DROP TABLE, 2268

and NDB Cluster, 3322
DROP TABLESPACE, 2269

general tablespace, 2269
DROP TRIGGER, 2270
DROP USER statement, 1118, 2439
DROP VIEW, 2270
drop-source option

ndb_move_data, 3681
dropping

accounts, 1121
user, 2439

dry-scp option
ndb_error_reporter, 3649

DSN, 5319
DTrace, 1055

deprecated features, 23
DUAL, 2312
dump option

myisam_ftdump, 576
ndb_index_stat, 3674
ndb_redo_log_reader, 3689

dump-date option
mysqldump, 483

dump-file option
ndb_blob_tool, 3610

dump-slave option
mysqldump, 486

DUMPFILE, 2319
dumping

databases and tables, 465, 515
Duplicate Weedout

semijoin strategy, 1491
duplicate-key error, 2586
dynamic cursor, 5319
dynamic row format, 2700, 5319
dynamic SQL, 5319
dynamic statement, 5319
dynamic table characteristics, 2925

E
early adopter, 5319
early-plugin-load option

4629

mysqld, 744
edit command

mysql, 422
ego command

mysql, 422
Eiffel, 5320
Eiffel Wrapper, 4484
ELT(), 1949
embedded, 5320
embedded MySQL server library, 4476
embedded option

mysql_config, 645
embedded server library

deprecated features, 22
embedded-libs option

mysql_config, 645
--enable option prefix, 319
enable-cleartext-plugin option

mysql, 407
mysqladmin, 444
mysqlcheck, 459
mysqldump, 475
mysqlimport, 508
mysqlshow, 545
mysqlslap, 561

ENABLED_LOCAL_INFILE option
CMake, 210, 1091

ENABLED_PROFILING option
CMake, 210

EnablePartialLcp, 3423
EnableRedoControl, 3428
ENABLE_DOWNLOADS option

CMake, 209
ENABLE_DTRACE option

CMake, 210
ENABLE_GCOV option

CMake, 210
ENABLE_GPROF option

CMake, 210
ENCODE(), 2029

deprecated features, 21
ENCRYPT(), 2029

deprecated features, 21
encrypted connections, 1148

as mandatory, 1155
command options, 327

encryption, 1087, 1148, 2726
encryption functions, 2021
end

thread state, 1624
END, 2387
end-page option

innochecksum, 570
EndPoint(), 2063

4630

end_markers_in_json system variable, 788
enforce_gtid_consistency system variable, 3072
engine condition pushdown, 1455
engine option

mysqlslap, 561
ENGINES

INFORMATION_SCHEMA table, 4111
engine_cost

system table, 1581
engine_cost table

system table, 970
ENTER SINGLE USER MODE command (NDB Cluster), 3756
entering

queries, 270
enterprise components

MySQL Enterprise Audit, 4487
MySQL Enterprise Backup, 4485
MySQL Enterprise Data Masking and De-Identification, 4487
MySQL Enterprise Encryption, 4486
MySQL Enterprise Firewall, 4487
MySQL Enterprise Security, 4486
MySQL Enterprise Thread Pool, 4487
telemetry, 4488

enterprise extensions
MySQL Enterprise Audit, 1294
MySQL Enterprise Data Masking and De-Identification, 1381
MySQL Enterprise Encryption, 1399
MySQL Enterprise Firewall, 1365
MySQL Enterprise Security, 1190, 1201, 1206
MySQL Enterprise Thread Pool, 1001

ENUM
size, 1866

ENUM data type, 1819, 1824
Envelope(), 2060
environment variable

AUTHENTICATION_LDAP_CLIENT_LOG, 651, 1232
AUTHENTICATION_PAM_LOG, 651, 1200
CC, 220, 651
CXX, 220, 651
DBI_TRACE, 651, 1048
DBI_USER, 651
HOME, 426, 651
LDAPNOINIT, 1211
LD_LIBRARY_PATH, 267
LD_RUN_PATH, 267, 651
LIBMYSQL_ENABLE_CLEARTEXT_PLUGIN, 651
LIBMYSQL_PLUGINS, 651
LIBMYSQL_PLUGIN_DIR, 651
MYSQLX_TCP_PORT, 651
MYSQLX_UNIX_PORT, 651
MYSQL_DEBUG, 308, 651, 1052
MYSQL_GROUP_SUFFIX, 651
MYSQL_HISTFILE, 426, 651
MYSQL_HISTIGNORE, 426, 651

4631

MYSQL_HOME, 651
MYSQL_HOST, 338, 651
MYSQL_OPENSSL_UDF_DH_BITS_THRESHOLD, 651, 1402
MYSQL_OPENSSL_UDF_DSA_BITS_THRESHOLD, 651, 1402
MYSQL_OPENSSL_UDF_RSA_BITS_THRESHOLD, 651, 1402
MYSQL_PS1, 651
MYSQL_PWD, 308, 338, 651
MYSQL_TCP_PORT, 308, 651, 1044, 1045
MYSQL_TEST_LOGIN_FILE, 318, 605, 651
MYSQL_TEST_TRACE_CRASH, 651
MYSQL_TEST_TRACE_DEBUG, 651
MYSQL_UNIX_PORT, 308, 651, 1044, 1045
PATH, 124, 130, 231, 309, 651
PKG_CONFIG_PATH, 651
TMPDIR, 308, 651, 4566
TZ, 651, 956, 4568
UMASK, 651, 4559
UMASK_DIR, 651, 4560
USER, 338, 651

environment variables, 308, 340, 1143
list of, 650

epoch, 1802
equal (=), 1900
Equals(), 2078
eq_ref join type

optimizer, 1553
Errcode, 648
errins-delay option

ndb_import, 3659
errins-type option

ndb_import, 3659
errno, 648
Error

thread command, 1621
ERROR Events (NDB Cluster), 3788
error handling

application, 1094
error log, 5320
error logs (NDB Cluster), 3580
error messages

can't find file, 4559
Can't reopen table, 4576
displaying, 648
languages, 1768, 1768
The used command is not allowed with this MySQL version, 1091

error-insert option
ndb_move_data, 3681

errors
access denied, 4548
and replication, 3149
checking tables for, 1435
common, 4547
directory checksum, 183
in subqueries, 2336

4632

known, 4577
list of, 4548
lost connection, 4551
reporting, 41, 41
sources of information, 4545

error_count system variable, 789
ERROR_FOR_DIVISION_BY_ZERO

deprecated features, 19
ERROR_FOR_DIVISION_BY_ZERO SQL mode, 934
error_messages

ndbinfo table, 3866
escape (\\), 1653, 2106
escape sequences

option files, 314
strings, 1651

establishing encrypted connections, 1150
estimating

query performance, 1565
event groups, 2376, 3083
event log format (NDB Cluster), 3783
event logs (NDB Cluster), 3780, 3781, 3782
EVENT privilege, 1100
event scheduler, 4057

thread states, 1634
Event Scheduler, 4067

altering events, 2154
and MySQL privileges, 4072
and mysqladmin debug, 4071
and replication, 3144, 3144
and SHOW PROCESSLIST, 4068
concepts, 4067
creating events, 2184
dropping events, 2266
enabling and disabling, 4068
event metadata, 4070
obtaining status information, 4071
SQL statements, 4070
starting and stopping, 4068
time representation, 4071

event severity levels (NDB Cluster), 3782
event table

system table, 968
event types (NDB Cluster), 3781, 3783
EventLogBufferSize, 3455
events, 4057, 4067

altering, 2154
creating, 2184
dropping, 2266
metadata, 4070
restrictions, 4090
status variables, 4074

EVENTS
INFORMATION_SCHEMA table, 4073, 4112

events option

4633

mysqldump, 493
mysqlpump, 525

events_stages_current table
performance_schema, 4275

events_stages_history table
performance_schema, 4276

events_stages_history_long table
performance_schema, 4277

events_stages_summary_by_account_by_event_name table
performance_schema, 4325

events_stages_summary_by_host_by_event_name table
performance_schema, 4325

events_stages_summary_by_thread_by_event_name table
performance_schema, 4325

events_stages_summary_by_user_by_event_name table
performance_schema, 4325

events_stages_summary_global_by_event_name table
performance_schema, 4325

events_statements_current table
performance_schema, 4281

events_statements_history table
performance_schema, 4285

events_statements_history_long table
performance_schema, 4285

events_statements_summary_by_account_by_event_name table
performance_schema, 4326

events_statements_summary_by_digest table
performance_schema, 4326

events_statements_summary_by_host_by_event_name table
performance_schema, 4326

events_statements_summary_by_program table
performance_schema, 4326

events_statements_summary_by_thread_by_event_name table
performance_schema, 4326

events_statements_summary_by_user_by_event_name table
performance_schema, 4326

events_statements_summary_global_by_event_name table
performance_schema, 4326

events_transactions_current table
performance_schema, 4292

events_transactions_history table
performance_schema, 4295

events_transactions_history_long table
performance_schema, 4295

events_transactions_summary_by_account_by_event table
performance_schema, 4329

events_transactions_summary_by_host_by_event_name table
performance_schema, 4329

events_transactions_summary_by_thread_by_event_name table
performance_schema, 4329

events_transactions_summary_by_user_by_event_name table
performance_schema, 4329

events_transactions_summary_global_by_event_name table
performance_schema, 4329

4634

events_waits_current table
performance_schema, 4267

events_waits_history table
performance_schema, 4270

events_waits_history_long table
performance_schema, 4271

events_waits_summary_by_account_by_event_name table
performance_schema, 4323

events_waits_summary_by_host_by_event_name table
performance_schema, 4323

events_waits_summary_by_instance table
performance_schema, 4323

events_waits_summary_by_thread_by_event_name table
performance_schema, 4323

events_waits_summary_by_user_by_event_name table
performance_schema, 4323

events_waits_summary_global_by_event_name table
performance_schema, 4323

event_scheduler system variable, 789
eviction, 5320
exact-value literals, 2141
exact-value numeric literals, 1654, 2142
example option

mysqld_multi, 355
EXAMPLE storage engine, 2915, 2949
examples

compressed tables, 600
myisamchk output, 589
queries, 294

exception interceptor, 5320
exceptions table

NDB Cluster Replication, 3971
exclude-databases option

mysqlpump, 526
ndb_restore, 3699

exclude-events option
mysqlpump, 526

exclude-gtids option
mysqlbinlog, 622

exclude-intermediate-sql-tables option
ndb_restore, 3700

exclude-missing-columns option
ndb_move_data, 3681
ndb_restore, 3700

exclude-missing-tables option
ndb_restore, 3700

exclude-routines option
mysqlpump, 526

exclude-tables option
mysqlpump, 526
ndb_restore, 3700

exclude-triggers option
mysqlpump, 526

exclude-users option

4635

mysqlpump, 527
exclusive lock, 2612, 5320
Execute

thread command, 1622
EXECUTE, 2382, 2386
execute option

mysql, 407
ndb_mgm, 3604

EXECUTE privilege, 1100
ExecuteOnComputer, 3394, 3402, 3495
execute_prepared_stmt() procedure

sys schema, 4442
executing

thread state, 1625
executing SQL statements from text files, 292, 430
Execution of init_command

thread state, 1625
execution threads (NDB Cluster), 3469
EXISTS

with subqueries, 2332
EXISTS() operator, 1902
exit command

mysql, 422
EXIT command (NDB Cluster), 3757
EXIT SINGLE USER MODE command (NDB Cluster), 3756
exit-info option

mysqld, 746
EXP(), 1917
expired password

resetting, 1125
expired passwords, 1126
expire_logs_days system variable, 3062
EXPLAIN, 1547, 2537, 4030, 4031
EXPLAIN EXTENDED

deprecated features, 21
EXPLAIN PARTITIONS

deprecated features, 21
EXPLAIN used with partitioned tables, 4030
explicit default values, 1860
explicit_defaults_for_timestamp system variable, 790
EXPORT_SET(), 1949
expression aliases, 2129, 2312
expression syntax, 1701
expressions

extended, 285
extend-check option

myisamchk, 584, 586
extended option

mysqlcheck, 458
extended-insert option

mysqldump, 495
mysqlpump, 527

extensions
to standard SQL, 46

4636

extent, 5320
ExteriorRing(), 2066
external locking, 746, 864, 1434, 1604, 1627
external-locking option

mysqld, 746
external_user system variable, 791
extra-file option

my_print_defaults, 646
extra-node-info option

ndb_desc, 3637
extra-partition-info option

ndb_desc, 3637
extra-sql-file option

mysql_install_db, 367
EXTRACT(), 1930
extracting

dates, 282
ExtractValue(), 2009
extract_schema_from_file_name() function

sys schema, 4459
extract_table_from_file_name() function

sys schema, 4459
ExtraSendBufferMemory

API nodes, 3498
data nodes, 3487
management nodes, 3399

F
failover, 5321

in NDB Cluster replication, 3952
Java clients, 3288

failure detection
Group Replication, 3171

FALSE, 1654, 1660
testing for, 1904, 1904

false literal
JSON, 1847

FAQs
C API, 4531
Connectors and APIs, 4531
InnoDB Data-at-Rest Encryption, 4539
libmysql, 4531
NDB Cluster, 4505
replication, 4532
Virtualization Support, 4542

Fast Index Creation, 5321
fast option

myisamchk, 585
mysqlcheck, 459

fast shutdown, 5321
features of MySQL, 6
features, deprecated (see deprecated features)
features, new (see new features)

4637

features, removed (see removed features)
FEDERATED storage engine, 2915, 2943
Fetch

thread command, 1622
FETCH, 2396
field

changing, 2166
Field List

thread command, 1622
FIELD(), 1949
fields option

ndb_config, 3618
fields-enclosed-by option

mysqldump, 490, 508
ndb_import, 3659
ndb_restore, 3702

fields-escaped-by option
mysqldump, 490, 508
ndb_import, 3660

fields-optionally-enclosed-by option
mysqldump, 490, 508
ndb_import, 3660
ndb_restore, 3702

fields-terminated-by option
mysqldump, 489, 508
ndb_import, 3660
ndb_restore, 3702

FILE, 1951
file descriptors

innodb_open_files, 2791
log tables, 973
max_connections, 1525
MERGE, 2942
open_files_limit, 625, 834
partitioned MyISAM tables, 4044
table_definition_cache, 875
table_open_cache, 876, 1525
too many open files, 4558

file format, 2691, 5321
Antelope, 2681
Barracuda, 2673
identifying, 2695
modifying, 2696

FILE privilege, 1100
file-per-table, 2566, 5322
files

binary log, 978
created by CREATE TABLE, 2228
DDL log, 993
error messages, 1768
general query log, 976
log, 993
metadata log, 993
not found message, 4559

4638

permissions, 4559
repairing, 585
script, 292
size limits, 1528
slow query log, 991
text, 430, 501

FILES
INFORMATION_SCHEMA table, 4116

filesort optimization, 1478, 1581
FileSystemPath, 3407
FileSystemPathDataFiles, 3483
FileSystemPathDD, 3482
FileSystemPathUndoFiles, 3484
file_instances table

performance_schema, 4261
file_summary_by_event_name table

performance_schema, 4331
file_summary_by_instance table

performance_schema, 4331
fill factor, 2587, 5322
fill_help_tables.sql, 961
FIND_IN_SET(), 1949
Finished reading one binlog; switching to next binlog

thread state, 1630
firewall table reference

INFORMATION_SCHEMA, 4200
firewalls (software)

and NDB Cluster, 3924, 3926
Firewall_access_denied status variable, 1381
Firewall_access_granted status variable, 1381
Firewall_access_suspicious status variable, 1381
Firewall_cached_entries status variable, 1381
firewall_users MySQL Enterprise Firewall table, 1377
firewall_users table

system table, 970
firewall_whitelist MySQL Enterprise Firewall table, 1377
firewall_whitelist table

system table, 970
FirstMatch

semijoin strategy, 1491
fix-db-names option

mysqlcheck, 459
fix-table-names option

mysqlcheck, 459
FIXED data type, 1795
fixed row format, 5322
fixed-point arithmetic, 2141
FLOAT data type, 1795, 1795, 1795
floating-point number, 1795
floating-point values

and replication, 3141
floats, 1654
FLOOR(), 1917
flow control functions, 1908

4639

FLUSH
and replication, 3141

flush, 5322
flush list, 5322
flush option

mysqld, 746
FLUSH QUERY CACHE

deprecated features, 20
FLUSH statement, 2527
flush system variable, 791
flush tables, 438
flush-logs option

mysqldump, 497
flush-privileges option

mysqldump, 497
flushing, 2646
Flush_commands status variable, 913
flush_rewrite_rules() Rewriter function, 1015
flush_time system variable, 792
FOR UPDATE, 2316
FORCE

plugin activation option, 999
FORCE INDEX, 1577, 4575
FORCE KEY, 1577
force option

myisamchk, 585, 586
myisampack, 599
mysql, 407
mysqladmin, 444
mysqlcheck, 459
mysqldump, 484
mysqlimport, 508
mysql_upgrade, 389

force-if-open option
mysqlbinlog, 622

force-read option
mysqlbinlog, 622

FORCE_PLUS_PERMANENT
plugin activation option, 999

FORCE_UNSUPPORTED_COMPILER option
CMake, 210

foreign key, 5323
constraint, 54, 54
deleting, 2168, 2237

FOREIGN KEY constraint, 5323
foreign key constraints, 2232
FOREIGN KEY constraints

and online DDL, 2725
foreign keys, 50, 296, 2168
foreign_key_checks system variable, 792
FORMAT(), 1950
format_bytes() function

sys schema, 4460
format_path() function

4640

sys schema, 4460
format_statement() function

sys schema, 4461
format_time() function

sys schema, 4462
formfeed (\f), 2106
FOUND_ROWS(), 2039
fractional seconds

and replication, 3141
fractional seconds precision, 1792, 1801
fragment replicas (NDB Cluster), 3290
FragmentLogFileSize, 3422
FRAGMENT_COUNT_TYPE (NDB_TABLE) (OBSOLETE)

NDB Cluster, 2250
FreeBSD troubleshooting, 221
freeing items

thread state, 1625
.frm file, 5321
FROM, 2313
FROM_BASE64(), 1950
FROM_DAYS(), 1930
FROM_UNIXTIME(), 1930
fs option

ndb_error_reporter, 3649
FTS, 5323
ft_boolean_syntax system variable, 793
ft_max_word_len myisamchk variable, 582
ft_max_word_len system variable, 793
ft_min_word_len myisamchk variable, 582
ft_min_word_len system variable, 794
ft_query_expansion_limit system variable, 794
ft_stopword_file myisamchk variable, 582
ft_stopword_file system variable, 794
full backup, 5323
full disk, 4565
full table scan, 5323
full table scans

avoiding, 1488
full-text index

InnoDB, 2589
monitoring, 2593

full-text queries
optimization, 1510

full-text search, 1972, 5323
FULLTEXT, 1972
fulltext

stopword list, 1986
FULLTEXT index, 5323
FULLTEXT initialization

thread state, 1625
fulltext join type

optimizer, 1553
FULLY_REPLICATED (NDB_TABLE)

NDB Cluster, 2251

4641

func table
system table, 968, 1037

function
creating, 2465
deleting, 2466

function installation
keyring, 1276

function names
parsing, 1669
resolving ambiguity, 1669

functional dependence, 938, 2126, 2130
functions, 1870

aggregate, 2115
and replication, 3141
arithmetic, 2018
bit, 2018
cast, 2000
date and time, 1922
encryption, 2021
flow control, 1908
for SELECT and WHERE clauses, 1870
GROUP BY, 2115
grouping, 1898
GTIDs, 2113
information, 2035
loadable, 2465, 2466
locking, 2033
mathematical, 1914
miscellaneous, 2133
stored, 4059
string, 1944
string comparison, 1962

fuzzy checkpointing, 5324

G
GA, 5324

MySQL releases, 62
GAC, 5324
gap, 5324
gap event, 3934
gap lock, 2612, 5324

InnoDB, 2628, 2779
gb2312, gbk, 4518
gci option

ndb_select_all, 3725
gci64 option

ndb_select_all, 3725
GCP Stop errors (NDB Cluster), 3486
gdb

using, 1047
gdb option

mysqld, 746
Gemalto SafeNet KeySecure Applicance

4642

keyring_okv keyring plugin, 1266
general information, 1
General Public License, 5
general query log, 976, 5324
general table reference

INFORMATION_SCHEMA, 4105
general tablespace, 5324
general_log system variable, 795
general_log table

system table, 969
general_log_file system variable, 795
generated column, 5325
generated columns

ALTER TABLE, 2178
CREATE TABLE, 2240
CREATE TRIGGER, 2259
CREATE VIEW, 2264
INFORMATION_SCHEMA.COLUMNS table, 4110
INSERT, 2282
new features, 16
REPLACE, 2309
secondary indexes, 2243
SHOW COLUMNS statement, 2478, 4109
UPDATE, 2342
views, 4077

gen_blacklist() MySQL Enterprise Data Masking and De-Identification function, 1397
gen_dictionary() MySQL Enterprise Data Masking and De-Identification function, 1397
gen_dictionary_drop() MySQL Enterprise Data Masking and De-Identification function, 1398
gen_dictionary_load() MySQL Enterprise Data Masking and De-Identification function, 1399
gen_range() MySQL Enterprise Data Masking and De-Identification function, 1394
gen_rnd_email() MySQL Enterprise Data Masking and De-Identification function, 1395
gen_rnd_pan() MySQL Enterprise Data Masking and De-Identification function, 1395
gen_rnd_ssn() MySQL Enterprise Data Masking and De-Identification function, 1396
gen_rnd_us_phone() MySQL Enterprise Data Masking and De-Identification function, 1396
geographic feature, 1830
GeomCollFromText(), 2052
GeomCollFromWKB(), 2055
geometrically valid

GIS values, 1841
spatial values, 1841

geometry, 1830
GEOMETRY data type, 1831
geometry values

internal storage format, 1840
WKB format, 1839
WKT format, 1838

GEOMETRYCOLLECTION data type, 1831
GeometryCollection(), 2058
GeometryCollectionFromText(), 2052
GeometryCollectionFromWKB(), 2055
GeometryFromText(), 2052
GeometryFromWKB(), 2055
GeometryN(), 2068
GeometryType(), 2060

4643

GeomFromText(), 2052
GeomFromWKB(), 2055
geospatial feature, 1830
German dictionary collation, 1712, 1759, 1759
German phone book collation, 1712, 1759, 1759
GET DIAGNOSTICS, 2401
get-server-public-key option, 328

mysql, 408
mysqladmin, 444
mysqlbinlog, 622
mysqlcheck, 460
mysqldump, 475
mysqlimport, 508
mysqlpump, 527
mysqlshow, 546
mysqlslap, 561

getting MySQL, 63
GET_FORMAT(), 1931
GET_LOCK(), 2033
GIS, 1829
GIS data types

storage requirements, 1866
GIS values

geometrically valid, 1841
Git tree, 192
Glassfish, 5325
GLength(), 2063
GLOBAL

SET statement, 2468
global privileges, 2440, 2451
global transaction, 5325
GLOBAL_STATUS

INFORMATION_SCHEMA table, 4123
GLOBAL_VARIABLES

INFORMATION_SCHEMA table, 4123
go command

mysql, 422
Google Test, 209
GRANT

deprecated features, 19
GRANT OPTION privilege, 1100
GRANT statement, 1118, 2440
grant table distribution (NDB Cluster), 3826
grant tables

columns_priv table, 968, 1105
db table, 233, 968, 1105
procs_priv table, 968, 1105
proxies_priv, 1134
proxies_priv table, 233, 968, 1105
sorting, 1115, 1117
structure, 1104
tables_priv table, 968, 1105
user table, 233, 968, 1105

granting

4644

privileges, 2440
grants

display, 2493
graph option

ndb_top, 3743
greater than (>), 1901
greater than or equal (>=), 1901
greatest timestamp wins (conflict resolution), 3968
greatest timestamp, delete wins (conflict resolution), 3968
GREATEST(), 1902
grep option

mysqldumpslow, 643
Group (NDB Cluster), 3563
GROUP BY

aliases in, 2129
extensions to standard SQL, 2126, 2314
implicit sorting, 1478
maximum sort length, 2314
WITH ROLLUP, 2122

GROUP BY functions, 2115
GROUP BY optimizing, 1480
GROUP BY sorting

deprecated features, 21
group commit, 5325
group preferences

LDAP authentication, 1217
Group Replication, 3165

adding a second instance, 3179
adding additional instances, 3181
adding instances, 3179
allowlist, 3207
and audit_log plugin, 1364, 3187
asynchronous replication, 3167
background, 3166
choosing mode, 3191
configuring instances, 3174
data definition language statements, 3238
data manipulation statements, 3237
deploying in multi primary or single primary mode, 3191
deploying in single primary mode, 3172
deploying instances, 3173
details, 3170
distributed recovery, 3238
distributed recovery basics, 3238
distributed recovery usage advice and limitations, 3244
election process, 3192
examples of use case scenarios, 3170
failure detection, 3171
frequently asked questions, 3232
getting started, 3172
Group Communication System, 3236
group membership, 3170
group_replication_ip_whitelist, 3207
ip address allowlisting, 3206

4645

launching, 3177
limitations, 3186
message compression, 3245
modes, 3191
monitoring, 3188
multi primary mode, 3192
MySQL Enterprise Backup, 3201
network partitioning, 3194
observability, 3245
operations, 3191
Paxos, 3236
plugin architecture, 3236
primary secondary replication, 3167
recovering from a point in time, 3239
replication group member stats, 3190
replication technologies, 3167
replication_group_members table, 3190
requirements, 3184
requirements and limitations, 3184
restarting, 3199
secure socket layer support, 3208
security, 3206
server states, 3189
server variables, 3210
single primary mode, 3192
ssl support, 3208
summary, 3168
system variables, 3211
technical details, 3236
the group, 3237
tuning recovery, 3193
use cases, 3169
user credentials, 3176
view, 3170
view changes, 3240

Group Replication and Performance Schema
new features, 18

Group Replication SQL statements
new features, 18

grouping
expressions, 1898

GROUP_CONCAT(), 2118
group_concat_max_len system variable, 795
group_replication_allow_local_disjoint_gtids_join system variable, 3213
group_replication_allow_local_lower_version_join system variable, 3213
group_replication_auto_increment_increment system variable, 3214
group_replication_bootstrap_group system variable, 3215
group_replication_components_stop_timeout system variable, 3215
group_replication_compression_threshold system variable, 3215
group_replication_enforce_update_everywhere_checks system variable, 3216
group_replication_exit_state_action system variable, 3216
group_replication_flow_control_applier_threshold system variable, 3218
group_replication_flow_control_certifier_threshold system variable, 3218
group_replication_flow_control_hold_percent system variable, 3219

4646

group_replication_flow_control_max_quota system variable, 3219
group_replication_flow_control_member_quota_percent system variable, 3219
group_replication_flow_control_min_quota system variable, 3220
group_replication_flow_control_min_recovery_quota system variable, 3220
group_replication_flow_control_mode system variable, 3220
group_replication_force_members system variable, 3221
group_replication_group_name system variable, 3221
group_replication_group_seeds system variable, 3222
group_replication_gtid_assignment_block_size system variable, 3222
group_replication_ip_whitelist, 3223
group_replication_local_address system variable, 3224
group_replication_member_weight system variable, 3225
group_replication_poll_spin_loops system variable, 3225
group_replication_primary_member status variable, 913
group_replication_recovery_complete_at system variable, 3226
group_replication_recovery_reconnect_interval system variable, 3226
group_replication_recovery_retry_count system variable, 3226
group_replication_recovery_ssl_ca system variable, 3227
group_replication_recovery_ssl_capath system variable, 3227
group_replication_recovery_ssl_cert system variable, 3227
group_replication_recovery_ssl_cipher system variable, 3228
group_replication_recovery_ssl_crl system variable, 3228
group_replication_recovery_ssl_crlpath system variable, 3228
group_replication_recovery_ssl_key system variable, 3228
group_replication_recovery_ssl_verify_server_cert system variable, 3229
group_replication_recovery_use_ssl system variable, 3229
group_replication_single_primary_mode system variable, 3229
group_replication_ssl_mode system variable, 3230
group_replication_start_on_boot system variable, 3230
group_replication_transaction_size_limit system variable, 3230
group_replication_unreachable_majority_timeout, 3231
GTID functions, 2113
GTID sets

representation, 2967
GTIDs, 2965

and failover, 2978
and scaleout, 2978
auto-positioning, 2975
concepts, 2966
gtid_purged, 2973
life cycle, 2970
logging, 2968
replication with, 2976
restrictions, 2981

gtid_executed system variable, 3073
gtid_executed table

system table, 969, 2968
gtid_executed_compression_period, 3074
gtid_executed_compression_period system variable

mysql.gtid_executed table, 2970
gtid_mode system variable, 3074
gtid_next system variable, 3075
gtid_owned system variable, 3076
gtid_purged, 2973

4647

gtid_purged system variable, 3076
GTID_SUBSET(), 2113
GTID_SUBTRACT(), 2114
GUID, 5325

H
HANDLER, 2279

new features, 17
Handlers, 2398
Handler_commit status variable, 913
Handler_delete status variable, 914
Handler_discover status variable, 3538
Handler_external_lock status variable, 914
Handler_mrr_init status variable, 914
Handler_prepare status variable, 914
Handler_read_first status variable, 914
Handler_read_key status variable, 914
Handler_read_last status variable, 914
Handler_read_next status variable, 914
Handler_read_prev status variable, 914
Handler_read_rnd status variable, 914
Handler_read_rnd_next status variable, 914
Handler_rollback status variable, 915
Handler_savepoint status variable, 915
Handler_savepoint_rollback status variable, 915
Handler_update status variable, 915
Handler_write status variable, 915
hash index, 5325
hash indexes, 1514
hash partitioning, 4000
hash partitions

managing, 4020
splitting and merging, 4020

have_compress system variable, 796
have_crypt

deprecated features, 21
HAVE_CRYPT

deprecated features, 21
have_crypt system variable, 796
have_dynamic_loading system variable, 796
have_geometry system variable, 796
have_openssl system variable, 796
have_profiling system variable, 796
have_query_cache

deprecated features, 20
have_query_cache system variable, 796
have_rtree_keys system variable, 796
have_ssl system variable, 796
have_statement_timeout system variable, 797
have_symlink system variable, 797
HAVING clause, 2314
HDD, 5326
header option

4648

ndb_select_all, 3725
header-file option

comp_err, 360
HEAP storage engine, 2915, 2928
heartbeat, 5326
HeartbeatIntervalDbApi, 3442
HeartbeatIntervalDbDb, 3441
HeartbeatIntervalMgmdMgmd

management nodes, 3400
HeartbeatOrder, 3442
HeartbeatThreadPriority, 3399, 3498
help action

MySQLInstallerConsole, 113
help command

mysql, 421
HELP command (NDB Cluster), 3756
help option

comp_err, 360
innochecksum, 568
myisamchk, 580
myisampack, 598
myisam_ftdump, 576
mysql, 399
mysqladmin, 441
mysqlbinlog, 617
mysqlcheck, 455
mysqld, 739
mysqldump, 484
mysqldumpslow, 642
mysqld_multi, 355
mysqld_safe, 344
mysqlimport, 505
mysqlpump, 520
mysqlshow, 543
mysqlslap, 555
mysql_config_editor, 608
mysql_install_db, 365
mysql_plugin, 372
mysql_secure_installation, 375
mysql_ssl_rsa_setup, 380
mysql_upgrade, 387
my_print_defaults, 646
ndbd, 3575
ndbinfo_select_all, 3585
ndb_blob_tool, 3610
ndb_config, 3618
ndb_delete_all, 3627
ndb_desc, 3638
ndb_drop_index, 3642
ndb_drop_table, 3647
ndb_error_reporter, 3649
ndb_import, 3660
ndb_index_stat, 3674
ndb_mgm, 3604

4649

ndb_mgmd, 3594
ndb_move_data, 3681
ndb_perror, 3684
ndb_restore, 3703
ndb_select_all, 3725
ndb_select_count, 3731
ndb_show_tables, 3735
ndb_top, 3743
ndb_waiter, 3751
perror, 649
resolveip, 650
resolve_stack_dump, 647

HELP option
myisamchk, 580

HELP statement, 2540
help tables

system tables, 969
help_category table

system table, 969
help_keyword table

system table, 969
help_relation table

system table, 969
help_topic table

system table, 969
hex option

ndb_restore, 3703
HEX(), 1917, 1950
hex-blob option

mysqldump, 490
mysqlpump, 527

hexadecimal literal introducer, 1658
hexadecimal literals, 1657
hexdump option

mysqlbinlog, 623
high-water mark, 5326
HIGH_NOT_PRECEDENCE SQL mode, 934
HIGH_PRIORITY

INSERT modifier, 2284
SELECT modifier, 2316

hints, 47
index, 1577, 2313
optimizer, 1571

histignore option
mysql, 408

history list, 5326
history of MySQL, 8
hole punching, 5326
HOME environment variable, 426, 651
host, 5326
host cache, 949
host name

default, 335
host name caching, 949

4650

host name resolution, 949
host names, 335

in account names, 1111
in default account, 233

host option, 324
mysql, 408
mysqladmin, 445
mysqlbinlog, 623
mysqlcheck, 460
mysqldump, 476
mysqldumpslow, 643
mysqlimport, 509
mysqlpump, 527
mysqlshow, 546
mysqlslap, 561
mysql_secure_installation, 376
mysql_upgrade, 389
ndb_config, 3618
ndb_top, 3743

HostName, 3395, 3403, 3495
HostName (NDB Cluster), 3923
hostname system variable, 798
HostName1, 3554, 3563
HostName2, 3555, 3564
hosts table

performance_schema, 4298
host_cache table

performance_schema, 949, 4342
host_summary view

sys schema, 4398
host_summary_by_file_io view

sys schema, 4399
host_summary_by_file_io_type view

sys schema, 4399
host_summary_by_stages view

sys schema, 4400
host_summary_by_statement_latency view

sys schema, 4400
host_summary_by_statement_type view

sys schema, 4401
hot, 5326
hot backup, 5326
HOUR(), 1932
html option

mysql, 408

I
i-am-a-dummy option

mysql, 415
ib-file set, 2692, 5327
ibbackup_logfile, 5327
.ibd file, 5327
ibdata file, 2228, 5328

4651

ibtmp file, 5328
.ibz file, 5327
ib_logfile, 5328
icc

MySQL builds, 81
Id, 3393, 3493
idempotent option

mysqlbinlog, 623
IDENTIFIED BY PASSWORD

deprecated features, 19
identifiers, 1660

case sensitivity, 1665
quoting, 1661

identity system variable, 798
idlesleep option

ndb_import, 3660
idlespin option

ndb_import, 3661
IF, 2391
IF(), 1909
IFNULL(), 1910
IGNORE

DELETE modifier, 2276
INSERT modifier, 2284
LOAD DATA modifier, 2292
UPDATE modifier, 2342
with partitioned tables, 945, 2284

IGNORE INDEX, 1577
IGNORE KEY, 1577
ignore option

mysqlimport, 509
ignore-db-dir option

mysqld, 747
ignore-error option

mysqldump, 493
ignore-extended-pk-updates option

ndb_restore, 3703
ignore-lines option

mysqlimport, 509
ndb_import, 3661

ignore-spaces option
mysql, 409

ignore-table option
mysqldump, 494

IGNORE_AIO_CHECK option
CMake, 210

ignore_builtin_innodb system variable, 2740
ignore_db_dirs

deprecated features, 21
ignore_db_dirs system variable, 798
IGNORE_SPACE SQL mode, 934
ilist, 5328
implicit default values, 1860
implicit GROUP BY sorting, 1478

4652

implicit row lock, 5328
IMPORT TABLESPACE, 2170, 2574
importing

data, 430, 501
importing data

NDB Cluster, 3813
IN, 2330
IN(), 1903
in-file option

comp_err, 361
in-memory database, 5328
include option

mysql_config, 645
include-databases option

mysqlpump, 528
ndb_restore, 3703

include-events option
mysqlpump, 528

include-gtids option
mysqlbinlog, 623

include-master-host-port option
mysqldump, 487

include-routines option
mysqlpump, 528

include-tables option
mysqlpump, 528
ndb_restore, 3704

include-triggers option
mysqlpump, 528

include-users option
mysqlpump, 528

increasing with replication
speed, 2953

incremental backup, 5328
incremental recovery, 1430

using NDB Cluster replication, 3959
index, 5329

deleting, 2167, 2266
rebuilding, 256
sorted index builds, 2588

index cache, 5329
index condition pushdown, 5329

new features, 17
INDEX DIRECTORY

and replication, 3140
index dives

range optimization, 1451
index dives (for statistics estimation), 2666
index extensions, 1515
index hint, 5329
index hints, 1577, 2313
index join type

optimizer, 1555
index prefix, 5329

4653

index prefixes
partitioning, 4046

INDEX privilege, 1100
index statistics

NDB, 3489
index-record lock

InnoDB, 2628, 2779
indexed temporary table

semijoin strategy, 1491
indexes, 2188

and BLOB columns, 1509, 2206
and IS NULL, 1514
and LIKE, 1514
and ndb_restore, 3710
and NULL values, 2207
and TEXT columns, 1509, 2206
assigning to key cache, 2526
BLOB columns, 2190
block size, 802
column prefixes, 1509
columns, 1509
leftmost prefix of, 1508, 1512
multi-column, 1511
multiple-part, 2188
names, 1660
TEXT columns, 2190
TIMESTAMP lookups, 1519
use of, 1507

IndexMemory, 3409
IndexStatAutoCreate

data nodes, 3489
IndexStatAutoUpdate

data nodes, 3490
IndexStatSaveScale

data nodes, 3491
IndexStatSaveSize

data nodes, 3490
IndexStatTriggerPct

data nodes, 3491
IndexStatTriggerScale

data nodes, 3492
IndexStatUpdateDelay

data nodes, 3492
index_merge join type

optimizer, 1554
index_subquery join type

optimizer, 1554
indirect indexes

NDB Cluster, 2245
INET6_ATON(), 2135
INET6_NTOA(), 2136
INET_ATON(), 2134
INET_NTOA(), 2135
infimum record, 5329

4654

INFO Events (NDB Cluster), 3789
info option

innochecksum, 568
information functions, 2035
information option

myisamchk, 585
INFORMATION SCHEMA

InnoDB tables, 2815
INFORMATION_SCHEMA, 4098, 5330

and security issues, 3928
collation and searching, 1742
connection control table reference, 4199
connection control tables, 4199
firewall table reference, 4200
general table reference, 4105
general tables, 4105
InnoDB table reference, 4152
InnoDB tables, 4152
INNODB_CMP table, 2815
INNODB_CMPMEM table, 2816
INNODB_CMPMEM_RESET table, 2816
INNODB_CMP_RESET table, 2815
INNODB_LOCKS table, 2817
INNODB_LOCK_WAITS table, 2817
INNODB_TRX table, 2817
MySQL Enterprise Firewall tables, 4200
table reference, 4101
thread pool table reference, 4195
Thread pool tables, 4194

INFORMATION_SCHEMA queries
optimization, 1500

INFORMATION_SCHEMA.ENGINES table
and NDB Cluster, 3914

INFORMATION_SCHEMA.GLOBAL_STATUS table
and NDB Cluster, 3921

INFORMATION_SCHEMA.GLOBAL_VARIABLES table
and NDB Cluster, 3916

INFORMATION_SCHEMA.PLUGINS table
and NDB Cluster, 3922

INFO_BIN file
binary distribution configuration options, 43, 185

init
thread state, 1625

Init DB
thread command, 1622

init-command option
mysql, 409

InitFragmentLogFiles, 3423
initial option

ndbd, 3576
ndbmtd, 3576
ndb_mgmd, 3595

initial-start option
ndbd, 3577

4655

ndbmtd, 3577
initialize option

mysqld, 747
initialize-insecure option

mysqld, 747
Initialized

thread state, 1634
InitialLogFileGroup, 3484
InitialNoOfOpenFiles, 3422
InitialTablespace, 3485
init_connect system variable, 799
init_file system variable, 799
init_slave system variable, 3026
injection

SQL, 1092, 1365, 2017, 2382
XPath code, 2016

INNER JOIN, 2319
innochecksum, 306, 568

allow-mismatches option, 571
count option, 569
end-page option, 570
help option, 568
info option, 568
log option, 573
no-check option, 571
page option, 570
page-type-dump option, 573
page-type-summary option, 573
read from standard in option, 574
start-page option, 570
strict-check option, 571
verbose option, 569
version option, 569
write option, 572

InnoDB, 2545, 5330
.frm files, 2562
adaptive hash index, 2561
and application feature requirements, 3317
application performance, 2579
applications supported, 3317
architecture, 2552
asynchronous I/O, 2654
auto-inc lock, 2612
auto-increment columns, 2580
autocommit mode, 2620, 2620
availability, 3315
backups, 2864
change buffer, 2557
checkpoints, 2706
clustered index, 2587
COMPACT row format, 2699
compared to NDB Cluster, 3315, 3315, 3317, 3317
configuration parameters, 2731
consistent reads, 2621

4656

corruption, 2865
crash recovery, 2866, 2866, 2867
creating tables, 2562
data files, 2594
deadlock detection, 2630
deadlock example, 2629
deadlocks, 2577, 2629, 2630
disk failure, 2865
disk I/O, 2704
disk I/O optimization, 1538
DYNAMIC row format, 2701, 2701
exclusive lock, 2612
file space management, 2705
file-per-table tablespace, 2597
files, 2580
full-text indexes, 2589
gap lock, 2612, 2628, 2779
in-memory structures, 2552
index-record lock, 2628, 2779
insert-intention lock, 2612
intention lock, 2612
limitations, 2913
limits, 2911
Linux, 2654
lock modes, 2612
locking, 2612, 2612, 2624
locking reads, 2623
log files, 2610
memory usage, 2575
migrating tables, 2573
Monitors, 2904
multi-versioning, 2550
new features, 11
next-key lock, 2612, 2628, 2779
NFS, 2633
on-disk structures, 2562
online DDL, 2707
page size, 2587
physical index structure, 2587
point-in-time recovery, 2865
primary keys, 2563, 2579
raw partitions, 2596
record-level locks, 2628, 2779
recovery, 2865
redo log, 2609
REDUNDANT row format, 2698
replication, 2868
restrictions, 2913
row format, 2563, 2703
secondary index, 2587
semi-consistent read, 2779
shared lock, 2612
Solaris issues, 183
sorted index builds, 2588

4657

storage, 2578
storage layout, 2577
system variables, 2731
table properties, 2563
tables, 2562

converting from other storage engines, 2575
transaction model, 2612, 2616
transactions, 2576
transferring data, 2578
troubleshooting, 2903

cannot open datafile, 2907
CREATE TABLE failure, 2906
data dictionary problems, 2906
deadlocks, 2629, 2630
defragmenting tables, 2706
I/O problems, 2904
online DDL, 2725
open file error, 2907
orphan intermediate tables, 2907
orphan temporary tables, 2908
performance problems, 1532
recovery problems, 2905
restoring orphan ibd files, 2910
SQL errors, 2911
tablespace does not exist, 2909

InnoDB buffer pool, 1583, 2555, 2639, 2644, 2644, 2645, 2648
InnoDB Cluster

introduction, 3279
InnoDB Monitors, 2856

enabling, 2857
output, 2859

innodb option
mysqld, 2737

InnoDB parameters, new
innodb_file_format_check, 2694
innodb_large_prefix, 2777

InnoDB predicate locks, 2616
InnoDB shared tablespaces

deprecated features, 23
InnoDB storage engine, 2545, 2915
InnoDB Table Monitor

removed features, 25
InnoDB table reference

INFORMATION_SCHEMA, 4152
InnoDB tables

storage requirements, 1862
InnoDB Tablespace Monitor

removed features, 25
innodb-status-file option

mysqld, 2738
innodb_adaptive_flushing system variable, 2741
innodb_adaptive_flushing_lwm system variable, 2741
innodb_adaptive_hash_index

and innodb_thread_concurrency, 2652

4658

innodb_adaptive_hash_index system variable, 2741
innodb_adaptive_hash_index_parts variable, 2742
innodb_adaptive_max_sleep_delay system variable, 2742
innodb_additional_mem_pool_size

removed features, 25
innodb_additional_mem_pool_size system variable

and innodb_use_sys_malloc, 2652
innodb_api_bk_commit_interval system variable, 2743
innodb_api_disable_rowlock system variable, 2743
innodb_api_enable_binlog system variable, 2744
innodb_api_enable_mdl system variable, 2744
innodb_api_trx_level system variable, 2744
innodb_autoextend_increment system variable, 2745
innodb_autoinc_lock_mode, 5330
innodb_autoinc_lock_mode system variable, 2745
Innodb_available_undo_logs status variable, 915
innodb_background_drop_list_empty system variable, 2745
INNODB_BUFFER_PAGE

INFORMATION_SCHEMA table, 4154
INNODB_BUFFER_PAGE_LRU

INFORMATION_SCHEMA table, 4157
Innodb_buffer_pool_bytes_data status variable, 916
Innodb_buffer_pool_bytes_dirty status variable, 916
innodb_buffer_pool_chunk_size system variable, 2746
innodb_buffer_pool_dump_at_shutdown system variable, 2747
innodb_buffer_pool_dump_now system variable, 2747
innodb_buffer_pool_dump_pct system variable, 2748
Innodb_buffer_pool_dump_status status variable, 915
innodb_buffer_pool_filename system variable, 2748
innodb_buffer_pool_instances system variable, 2748
innodb_buffer_pool_load_abort system variable, 2749
innodb_buffer_pool_load_at_startup system variable, 2750
innodb_buffer_pool_load_now system variable, 2750
Innodb_buffer_pool_load_status status variable, 915
Innodb_buffer_pool_pages_data status variable, 916
Innodb_buffer_pool_pages_dirty status variable, 916
Innodb_buffer_pool_pages_flushed status variable, 916
Innodb_buffer_pool_pages_free status variable, 916
Innodb_buffer_pool_pages_latched status variable, 916
Innodb_buffer_pool_pages_misc status variable, 916
Innodb_buffer_pool_pages_total status variable, 916
Innodb_buffer_pool_reads status variable, 917
Innodb_buffer_pool_read_ahead status variable, 916
Innodb_buffer_pool_read_ahead_evicted status variable, 916
Innodb_buffer_pool_read_ahead_rnd status variable, 917
Innodb_buffer_pool_read_requests status variable, 917
Innodb_buffer_pool_resize_status status variable, 917
innodb_buffer_pool_size system variable, 2751
INNODB_BUFFER_POOL_STATS

INFORMATION_SCHEMA table, 4160
Innodb_buffer_pool_wait_free status variable, 917
Innodb_buffer_pool_write_requests status variable, 917
innodb_buffer_stats_by_schema view

sys schema, 4402

4659

innodb_buffer_stats_by_table view
sys schema, 4403

innodb_change_buffering, 2558
innodb_change_buffering system variable, 2752
innodb_change_buffering_debug, 2753
innodb_change_buffer_max_size system variable, 2752
innodb_checksums system variable, 2755
innodb_checksum_algorithm system variable, 2753
INNODB_CMP

INFORMATION_SCHEMA table, 4163
INNODB_CMPMEM

INFORMATION_SCHEMA table, 4164
INNODB_CMPMEM_RESET

INFORMATION_SCHEMA table, 4164
INNODB_CMP_PER_INDEX

INFORMATION_SCHEMA table, 4166
innodb_cmp_per_index_enabled system variable, 2756
INNODB_CMP_PER_INDEX_RESET

INFORMATION_SCHEMA table, 4166
INNODB_CMP_RESET

INFORMATION_SCHEMA table, 4163
innodb_commit_concurrency system variable, 2756
innodb_compression_failure_threshold_pct system variable, 2757
innodb_compression_level system variable, 2757
innodb_compression_pad_pct_max system variable, 2758
innodb_compress_debug, 2756
innodb_concurrency_tickets, 2652
innodb_concurrency_tickets system variable, 2758
innodb_create_intrinsic

removed features, 25
innodb_data_file_path system variable, 2759
Innodb_data_fsyncs status variable, 917
innodb_data_home_dir system variable, 2759
Innodb_data_pending_fsyncs status variable, 917
Innodb_data_pending_reads status variable, 917
Innodb_data_pending_writes status variable, 917
Innodb_data_read status variable, 917
Innodb_data_reads status variable, 917
Innodb_data_writes status variable, 918
Innodb_data_written status variable, 918
Innodb_dblwr_pages_written status variable, 918
Innodb_dblwr_writes status variable, 918
innodb_deadlock_detect system variable, 2760
innodb_default_row_format, 2701
innodb_default_row_format system variable, 2760
innodb_disable_resize_buffer_pool_debug, 2761
innodb_disable_sort_file_cache system variable, 2761
innodb_doublewrite system variable, 2761
innodb_fast_shutdown system variable, 2762
innodb_file_format, 2691, 5330

Antelope, 2681
Barracuda, 2673
identifying, 2695

innodb_file_format system variable, 2763

4660

innodb_file_format_check, 2694
innodb_file_format_check system variable, 2764
innodb_file_format_max system variable, 2764
innodb_file_per_table, 2673, 5330
innodb_file_per_table system variable, 2765
innodb_fill_factor system variable, 2765
innodb_fil_make_page_dirty_debug, 2762
innodb_flushing_avg_loops system variable, 2770
innodb_flush_log_at_timeout system variable, 2766
innodb_flush_log_at_trx_commit system variable, 2766
innodb_flush_method system variable, 2767
innodb_flush_neighbors system variable, 2769
innodb_flush_sync system variable, 2770
innodb_force_load_corrupted system variable, 2770
innodb_force_recovery system variable, 2771

DROP TABLE, 2269
innodb_ft_aux_table system variable, 2771
INNODB_FT_BEING_DELETED

INFORMATION_SCHEMA table, 4167
innodb_ft_cache_size system variable, 2771
INNODB_FT_CONFIG

INFORMATION_SCHEMA table, 4168
INNODB_FT_DEFAULT_STOPWORD

INFORMATION_SCHEMA table, 4169
INNODB_FT_DELETED

INFORMATION_SCHEMA table, 4170
innodb_ft_enable_diag_print system variable, 2772
innodb_ft_enable_stopword system variable, 2772
INNODB_FT_INDEX_CACHE

INFORMATION_SCHEMA table, 4171
INNODB_FT_INDEX_TABLE

INFORMATION_SCHEMA table, 4173
innodb_ft_max_token_size system variable, 2773
innodb_ft_min_token_size system variable, 2773
innodb_ft_num_word_optimize system variable, 2774
innodb_ft_result_cache_limit system variable, 2774
innodb_ft_server_stopword_table system variable, 2775
innodb_ft_sort_pll_degree system variable, 2775
innodb_ft_total_cache_size system variable, 2775
innodb_ft_user_stopword_table system variable, 2776
Innodb_have_atomic_builtins status variable, 918
innodb_index_stats table

system table, 970, 2659
innodb_io_capacity, 2655
innodb_io_capacity system variable, 2776
innodb_io_capacity_max system variable, 2777
innodb_large_prefix system variable, 2777
innodb_limit_optimistic_insert_debug, 2778
INNODB_LOCKS

deprecated features, 21
INFORMATION_SCHEMA table, 4174

innodb_locks_unsafe_for_binlog system variable, 2779
innodb_lock_monitor

removed features, 25

4661

INNODB_LOCK_WAITS
deprecated features, 21
INFORMATION_SCHEMA table, 4176

innodb_lock_waits view
sys schema, 4404

innodb_lock_wait_timeout, 5331
innodb_lock_wait_timeout system variable, 2778
innodb_log_buffer_size system variable, 2781
innodb_log_checkpoint_now system variable, 2782
innodb_log_checksums system variable, 2782
innodb_log_checksum_algorithm

removed features, 25
innodb_log_compressed_pages system variable, 2782
innodb_log_files_in_group system variable, 2784
innodb_log_file_size system variable, 2783
innodb_log_group_home_dir system variable, 2784
Innodb_log_waits status variable, 918
Innodb_log_writes status variable, 918
innodb_log_write_ahead_size system variable, 2784
Innodb_log_write_requests status variable, 918
innodb_lru_scan_depth system variable, 2785
innodb_max_dirty_pages_pct system variable, 2785
innodb_max_dirty_pages_pct_lwm system variable, 2786
innodb_max_purge_lag system variable, 2786
innodb_max_purge_lag_delay system variable, 2787
innodb_max_undo_log_size system variable, 2787
innodb_memcache database, 2873, 2897
innodb_memcached_config.sql script, 2873
innodb_merge_threshold_set_all_debug, 2787
INNODB_METRICS

INFORMATION_SCHEMA table, 4177
innodb_mirrored_log_groups

removed features, 24
innodb_monitor

removed features, 25
innodb_monitor_disable system variable, 2788
innodb_monitor_enable system variable, 2788
innodb_monitor_reset system variable, 2788
innodb_monitor_reset_all system variable, 2789
innodb_numa_interleave variable, 2789
Innodb_num_open_files status variable, 918
innodb_old_blocks_pct, 2644
innodb_old_blocks_pct system variable, 2790
innodb_old_blocks_time, 2644
innodb_old_blocks_time system variable, 2790
innodb_online_alter_log_max_size system variable, 2791
innodb_open_files system variable, 2791
innodb_optimize_fulltext_only system variable, 2792
innodb_optimize_point_storage

removed features, 25
Innodb_os_log_fsyncs status variable, 918
Innodb_os_log_pending_fsyncs status variable, 918
Innodb_os_log_pending_writes status variable, 918
Innodb_os_log_written status variable, 918

4662

Innodb_pages_created status variable, 919
Innodb_pages_read status variable, 919
Innodb_pages_written status variable, 919
INNODB_PAGE_ATOMIC_REF_COUNT

removed features, 25
innodb_page_cleaners system variable, 2792
Innodb_page_size status variable, 918
innodb_page_size system variable, 2793
innodb_print_all_deadlocks system variable, 2794

innodb_print_all_deadlocks, 2794
innodb_purge_batch_size system variable, 2795
innodb_purge_rseg_truncate_frequency system variable, 2795
innodb_purge_threads system variable, 2795
innodb_random_read_ahead system variable, 2796
innodb_read_ahead_threshold, 2645
innodb_read_ahead_threshold system variable, 2796
innodb_read_io_threads, 2653
innodb_read_io_threads system variable, 2797
innodb_read_only system variable, 2797
innodb_replication_delay system variable, 2798
innodb_rollback_on_timeout system variable, 2798
innodb_rollback_segments system variable, 2798
Innodb_rows_deleted status variable, 919
Innodb_rows_inserted status variable, 919
Innodb_rows_read status variable, 919
Innodb_rows_updated status variable, 919
Innodb_row_lock_current_waits status variable, 919
Innodb_row_lock_time status variable, 919
Innodb_row_lock_time_avg status variable, 919
Innodb_row_lock_time_max status variable, 919
Innodb_row_lock_waits status variable, 919
innodb_saved_page_number_debug, 2799
innodb_sort_buffer_size system variable, 2799
innodb_spin_wait_delay, 2656
innodb_spin_wait_delay system variable, 2800
innodb_stats_auto_recalc system variable, 2800
innodb_stats_include_delete_marked system variable, 2661, 2801
innodb_stats_method system variable, 2801
innodb_stats_on_metadata system variable, 2802
innodb_stats_persistent system variable

innodb_stats_persistent, 2802
innodb_stats_persistent_sample_pages system variable, 2802
innodb_stats_sample_pages system variable, 2803
innodb_stats_transient_sample_pages, 2666
innodb_stats_transient_sample_pages system variable, 2803
innodb_status_output system variable, 2804
innodb_status_output_locks system variable, 2804
innodb_stat_persistent system variable, 2802
innodb_strict_mode, 5331
innodb_strict_mode system variable, 2805
innodb_support_xa

deprecated features, 20
innodb_support_xa system variable, 2805
innodb_sync_array_size system variable, 2806

4663

innodb_sync_debug, 2806
innodb_sync_spin_loops system variable, 2806
INNODB_SYS_COLUMNS

INFORMATION_SCHEMA table, 4179
INNODB_SYS_DATAFILES

INFORMATION_SCHEMA table, 4180
INNODB_SYS_FIELDS

INFORMATION_SCHEMA table, 4181
INNODB_SYS_FOREIGN

INFORMATION_SCHEMA table, 4182
INNODB_SYS_FOREIGN_COLS

INFORMATION_SCHEMA table, 4183
INNODB_SYS_INDEXES

INFORMATION_SCHEMA table, 4183
INNODB_SYS_TABLES

INFORMATION_SCHEMA table, 4185
INNODB_SYS_TABLESPACES

INFORMATION_SCHEMA table, 4186
INNODB_SYS_TABLESTATS

INFORMATION_SCHEMA table, 4188
INNODB_SYS_VIRTUAL

INFORMATION_SCHEMA table, 4189
innodb_table_locks system variable, 2807
innodb_table_stats table

system table, 970, 2659
innodb_temp_data_file_path system variable, 2807
INNODB_TEMP_TABLE_INFO

INFORMATION_SCHEMA table, 4190
innodb_thread_concurrency, 2652
innodb_thread_concurrency system variable, 2808
innodb_thread_sleep_delay, 2652
innodb_thread_sleep_delay system variable, 2810
innodb_tmpdir system variable, 2810
Innodb_truncated_status_writes status variable, 919
INNODB_TRX

INFORMATION_SCHEMA table, 4192
innodb_trx_purge_view_update_only_debug, 2811
innodb_trx_rseg_n_slots_debug, 2811
innodb_undo_directory system variable, 2811
innodb_undo_logs system variable, 2812
innodb_undo_log_truncate system variable, 2812
innodb_undo_tablespaces system variable, 2813
innodb_use_native_aio, 2654
innodb_use_native_aio system variable, 2814
innodb_use_sys_malloc

and innodb_thread_concurrency, 2652
removed features, 25

innodb_use_sys_malloc system variable, 2652
innodb_version system variable, 2814
innodb_write_io_threads, 2653
innodb_write_io_threads system variable, 2814
Innovation Series, 5331
INOUT parameter

condition handling, 2424

4664

input-type option
ndb_import, 3661

input-workers option
ndb_import, 3661

insecure option
mysql_install_db, 367

INSERT, 1505, 2280
insert, 5331
INSERT ... SELECT, 2284
insert buffer, 5331
insert buffering, 5331

disabling, 2558
INSERT DELAYED, 2289, 2289

removed features, 24
insert intention lock, 5331
INSERT privilege, 1100
INSERT(), 1950
insert-ignore option

mysqldump, 496
mysqlpump, 529

insert-intention lock, 2612
insertable views

insertable, 4077
inserting

speed of, 1505
InsertRecoveryWork, 3308, 3428
inserts

concurrent, 1598, 1601
insert_id system variable, 799
install action

MySQLInstallerConsole, 113
install option

mysqld, 748
ndbd, 3577
ndbmtd, 3577
ndb_mgmd, 3595

INSTALL PLUGIN statement, 2466
install-manual option

mysqld, 748
Installation, 110
installation layouts, 80
installation overview, 185
installing

binary distribution, 81
Linux RPM packages, 157
macOS DMG packages, 133
overview, 60
Perl, 265
Perl on Windows, 266
Solaris PKG packages, 183
source distribution, 185

installing loadable functions, 1036
installing NDB Cluster, 3331

Debian Linux, 3339

4665

Linux, 3333
Linux binary release, 3334
Linux RPM, 3336
Linux source release, 3340
Ubuntu Linux, 3340
Windows, 3341
Windows binary release, 3342
Windows source, 3345

installing plugins, 996, 2466
INSTALL_BINDIR option

CMake, 204
INSTALL_DOCDIR option

CMake, 204
INSTALL_DOCREADMEDIR option

CMake, 204
INSTALL_INCLUDEDIR option

CMake, 204
INSTALL_INFODIR option

CMake, 204
INSTALL_LAYOUT option

CMake, 204
INSTALL_LIBDIR option

CMake, 204
INSTALL_MANDIR option

CMake, 205
INSTALL_MYSQLKEYRINGDIR option

CMake, 205
INSTALL_MYSQLSHAREDIR option

CMake, 205
INSTALL_MYSQLTESTDIR option

CMake, 205
INSTALL_PKGCONFIGDIR option

CMake, 205
INSTALL_PLUGINDIR option

CMake, 205
INSTALL_SBINDIR option

CMake, 205
INSTALL_SCRIPTDIR option

CMake, 205
INSTALL_SECURE_FILE_PRIVDIR option

CMake, 205
INSTALL_SECURE_FILE_PRIV_EMBEDDEDDIR option

CMake, 205
INSTALL_SHAREDIR option

CMake, 205
INSTALL_SUPPORTFILESDIR option

CMake, 206
instance, 5332
instance option

mysqldumpslow, 643
INSTR(), 1951
instrumentation, 5332
INT data type, 1794
integer arithmetic, 2141

4666

INTEGER data type, 1794
integers, 1654
intention lock, 2612, 5332
interactive option

ndb_mgmd, 3595
interactive_timeout system variable, 799
interceptor, 5332
InteriorRingN(), 2066
internal locking, 1597
internal memory allocator

disabling, 2652
internal storage format

geometry values, 1840
internal_tmp_disk_storage_engine system variable, 800
Intersects(), 2078
INTERVAL

temporal interval syntax, 1703
interval syntax, 1703
INTERVAL(), 1903
INTO

SELECT, 2317
intrinsic temporary table, 5332
introducer

binary character set, 1767
bit-value literal, 1659
character set, 1723
hexadecimal literal, 1658
string literal, 1652, 1721

invalid data
constraint, 55

invalidating query cache entries
thread state, 1630

inverted index, 5332
invisible index, 2188
INVOKER privileges, 2494, 4081
IOPS, 5332
io_by_thread_by_latency view

sys schema, 4406
io_global_by_file_by_bytes view

sys schema, 4406
io_global_by_file_by_latency view

sys schema, 4407
io_global_by_wait_by_bytes view

sys schema, 4408
io_global_by_wait_by_latency view

sys schema, 4409
IP addresses

in account names, 1111
IPv6 addresses

in account names, 1111
IPv6 connections, 864
IS boolean_value, 1904
IS NOT boolean_value, 1904
IS NOT DISTINCT FROM operator, 1900

4667

IS NOT NULL, 1904
IS NULL, 1475, 1904

and indexes, 1514
IsClosed(), 2063
IsEmpty(), 2060
.isl file, 5327
ISNULL(), 1905
ISOLATION LEVEL, 2355
isolation level, 2617, 5332
IsSimple(), 2060
IS_FREE_LOCK(), 2035
IS_IPV4(), 2136
IS_IPV4_COMPAT(), 2137
IS_IPV4_MAPPED(), 2137
IS_IPV6(), 2137
IS_USED_LOCK(), 2035
ITERATE, 2393
iterations option

mysqlslap, 561

J
J2EE, 5333
Japanese character sets

conversion, 4518
Japanese, Korean, Chinese character sets

frequently asked questions, 4518
Java, 4476, 5333
JBoss, 5333
JDBC, 4473, 5333
jdbc:mysql:loadbalance://, 3288
JNDI, 5333
join, 5333

nested-loop algorithm, 1462
JOIN, 2319
join algorithm

Block Nested-Loop, 1459
Nested-Loop, 1459

join option
myisampack, 599

join type
ALL, 1555
const, 1553
eq_ref, 1553
fulltext, 1553
index, 1555
index_merge, 1554
index_subquery, 1554
range, 1554
ref, 1553
ref_or_null, 1554
system, 1553
unique_subquery, 1554

joins

4668

USING versus ON, 2324
join_buffer_size system variable, 800
JSON

array, 1847
autowrapped values, 1851
false literal, 1847
NDB Cluster, 2245
new features, 14
normalized values, 1851
null literal, 1847
null, true, and false literals, 1849
object, 1847
quote mark handling, 1850
scalar, 1847
sensible values, 1851
string, 1847
temporal values, 1847
true literal, 1847
valid values, 1848

JSON data type, 1846
JSON functions, 2085, 2085
JSON_APPEND(), 2097
JSON_ARRAY(), 2087
JSON_ARRAYAGG(), 2119
JSON_ARRAY_APPEND(), 2097
JSON_ARRAY_INSERT(), 2098
JSON_CONTAINS(), 2088
JSON_CONTAINS_PATH(), 2089
JSON_DEPTH(), 2107
JSON_EXTRACT(), 2089
JSON_INSERT(), 2099
JSON_KEYS(), 2094
JSON_LENGTH(), 2107
JSON_MERGE(), 1852, 2100

deprecated features, 23
JSON_MERGE_PATCH(), 2100
JSON_MERGE_PRESERVE(), 2102
JSON_OBJECT(), 2087
JSON_OBJECTAGG(), 2120
JSON_PRETTY(), 2110
JSON_QUOTE(), 2087
JSON_REMOVE(), 2103
JSON_REPLACE(), 2104
JSON_SEARCH(), 2094
JSON_SET(), 2104
JSON_STORAGE_SIZE(), 2111
JSON_TYPE(), 2108
JSON_UNQUOTE(), 2105
JSON_VALID(), 2109

K
keep-state option

ndb_import, 3662

4669

keep_files_on_create system variable, 801
Key cache

MyISAM, 1584
key cache

assigning indexes to, 2526
key management

keyring, 1276
key migration

keyring, 1272
key partitioning, 4004
key partitions

managing, 4020
splitting and merging, 4020

key space
MyISAM, 2923

key-value store, 1515
keyring, 1257

key management, 1276
keyring functions

general purpose, 1276
installing, 1276
keyring_key_fetch(), 1281
keyring_key_generate(), 1281
keyring_key_length_fetch(), 1282
keyring_key_remove(), 1282
keyring_key_store(), 1283
keyring_key_type_fetch(), 1283
plugin specific, 1283
uninstalling, 1276
using, 1277

keyring key migration, 1272
keyring plugins

keyring_aws, 1268
keyring_encrypted_file, 1261
keyring_file, 1260
keyring_okv, 1262

keyring service functions
my_key_fetch(), 1034
my_key_generate(), 1034
my_key_remove(), 1035
my_key_store(), 1035

keyring system variables, 1286
keyring-migration-destination option

mysqld, 1285
keyring-migration-host option

mysqld, 1285
keyring-migration-password option

mysqld, 1285
keyring-migration-port option

mysqld, 1285
keyring-migration-socket option

mysqld, 1286
keyring-migration-source option

mysqld, 1286

4670

keyring-migration-user option
mysqld, 1286

keyring_aws functions
keyring_aws_rotate_cmk(), 1283
keyring_aws_rotate_keys(), 1284

keyring_aws keyring plugin, 1268
keyring_aws plugin, 2726

installing, 1258
keyring_aws_cmk_id system variable, 1287
keyring_aws_conf_file system variable, 1287
keyring_aws_data_file system variable, 1287
keyring_aws_region system variable, 1288
keyring_aws_rotate_cmk() keyring_aws function, 1283
keyring_aws_rotate_keys() keyring_aws function, 1284
keyring_encrypted_file keyring plugin, 1261
keyring_encrypted_file plugin, 2726

installing, 1258
keyring_encrypted_file_data system variable, 1290
keyring_encrypted_file_password system variable, 1291
keyring_file keyring plugin, 1260
keyring_file plugin, 2726

installing, 1258
keyring_file_data system variable, 1292
keyring_key_fetch() keyring function, 1281
keyring_key_generate() keyring function, 1281
keyring_key_length_fetch() keyring function, 1282
keyring_key_remove() keyring function, 1282
keyring_key_store() keyring function, 1283
keyring_key_type_fetch() keyring function, 1283
keyring_okv keyring plugin, 1262

configuring, 1263
Gemalto SafeNet KeySecure Applicance, 1266
Oracle Key Vault, 1264
Townsend Alliance Key Manager, 1267

keyring_okv plugin, 2726
installing, 1258

keyring_okv_conf_dir system variable, 1293
keyring_operations system variable, 1294
keyring_udf plugin

installing, 1276
uninstalling, 1276

keys, 1509
foreign, 50, 296
multi-column, 1511
searching on two, 299

keys option
mysqlshow, 546

keys-used option
myisamchk, 586

keystore, 5333
keywords, 1673
Key_blocks_not_flushed status variable, 919
Key_blocks_unused status variable, 920
Key_blocks_used status variable, 920

4671

KEY_BLOCK_SIZE, 2673, 2678, 5334
key_buffer_size myisamchk variable, 582
key_buffer_size system variable, 802
key_cache_age_threshold system variable, 803
key_cache_block_size system variable, 803
key_cache_division_limit system variable, 804
KEY_COLUMN_USAGE

INFORMATION_SCHEMA table, 4124
Key_reads status variable, 920
Key_read_requests status variable, 920
Key_writes status variable, 920
Key_write_requests status variable, 920
Kill

thread command, 1622
KILL statement, 2534
Killed

thread state, 1625
Killing slave

thread state, 1633
known errors, 4577
Korean, 4518

L
labels

stored program block, 2387
language option

mysqld, 748
language support

error messages, 1768
lap option

ndb_redo_log_reader, 3689
large page support, 1615
large tables

NDB Cluster, 2217
large-pages option

mysqld, 749
large_files_support system variable, 804
large_pages system variable, 804
large_page_size system variable, 804
LAST_DAY(), 1932
last_insert_id system variable, 805
LAST_INSERT_ID(), 2040, 2283

and replication, 3133
and stored routines, 4061
and triggers, 4061

Last_query_cost status variable, 920
Last_query_partial_plans status variable, 920
latch, 5334
LateAlloc, 3435
latest_file_io view

sys schema, 4410
layout of installation, 80
lc-messages option

4672

mysqld, 749
mysql_install_db, 368

lc-messages-dir option
mysqld, 750
mysql_install_db, 368

LCASE(), 1951
LCP control, 3308
LcpScanProgressTimeout, 3424
lcp_simulator.cc (test program), 3427
lc_messages system variable, 805
lc_messages_dir system variable, 805
lc_time_names system variable, 805
LDAP

authentication, 1206
LDAP authentication

client-side logging, 1232
server-side logging, 1232, 1240
WITH_AUTHENTICATION_LDAP CMake option, 212

ldap.conf configuration file, 1211
LDAPNOINIT environment variable, 1211
LDML syntax, 1780
LD_LIBRARY_PATH environment variable, 267
LD_RUN_PATH environment variable, 267, 651
LEAST(), 1905
LEAVE, 2393
ledir option

mysqld_safe, 345
LEFT JOIN, 1466, 2319
LEFT OUTER JOIN, 2319
LEFT(), 1951
leftmost prefix of indexes, 1508, 1512
legal names, 1660
length option

myisam_ftdump, 576
LENGTH(), 1951
less than (<), 1901
less than or equal (<=), 1901
libaio, 81, 163, 210
libmysql, 5334

FAQ, 4531
libmysqlclient, 5334
libmysqlclient library, 4473
libmysqld, 4476, 5334

deprecated features, 22
options, 4478

libmysqld library, 4473
libmysqld-libs option

mysql_config, 645
LIBMYSQL_ENABLE_CLEARTEXT_PLUGIN environment variable, 651
LIBMYSQL_PLUGINS environment variable, 651
LIBMYSQL_PLUGIN_DIR environment variable, 651
library

libmysqlclient, 4473
libmysqld, 4473

4673

libs option
mysql_config, 645

libs_r option
mysql_config, 645

license system variable, 806
lifecycle interceptor, 5334
LIKE, 1962

and indexes, 1514
and wildcards, 1514

LIMIT, 2039, 2315
and replication, 3145
optimizations, 1483

limitations
InnoDB, 2913
replication, 3132

limitations of NDB Cluster, 3318
limits

file-size, 1528
InnoDB, 2911
maximum columns per table, 1530
maximum number of databases, 1528, 2183
maximum number of tables, 1528, 2205
maximum row size, 1530
maximum tables per join, 2321
maximum tables per view, 4094
table size, 1528

line-numbers option
mysql, 409

linear hash partitioning, 4002
linear key partitioning, 4005
linefeed (\n), 1653, 2106, 2295
LineFromText(), 2052
LineFromWKB(), 2055
lines-terminated-by option

mysqldump, 490, 509
ndb_import, 3662
ndb_restore, 3704

LINESTRING data type, 1831
LineString(), 2058
LineStringFromText(), 2052
LineStringFromWKB(), 2055
links

symbolic, 1608
list, 5334
list action

MySQLInstallerConsole, 116
list partitioning, 3990, 3993
list partitions

adding and dropping, 4014
managing, 4014

list_add() function
sys schema, 4462

list_drop() function
sys schema, 4463

4674

literals, 1651
bit value, 1659
boolean, 1660
date, 1655
hexadecimal, 1657
numeric, 1654
string, 1651
time, 1655

LN(), 1917
load balancing, 5334
LOAD DATA, 2289, 4571

and replication, 3146
LOCAL loading, 1090

load emulation, 550
LOAD INDEX INTO CACHE

and partitioning, 4045
LOAD XML, 2300
loadable function

creating, 2465
deleting, 2466

loadable functions, 1035
API, 1036
installing, 1036
reference, 1891
uninstalling, 1036

loading
tables, 277

LOAD_FILE(), 1951
load_rewrite_rules() Rewriter function, 1015
local option

mysqlimport, 510, 1091
local-infile option

mysql, 409, 1091
local-load option

mysqlbinlog, 624
local-service option

mysqld, 750
localhost, 5334

special treatment of, 336
LOCALTIME, 1932
LOCALTIMESTAMP, 1932
local_infile system variable, 806, 1090
LOCATE(), 1952
LocationDomainId (API nodes), 3496
LocationDomainId (data nodes), 3404
LocationDomainId (management nodes), 3395
lock, 5335
lock escalation, 5335
LOCK IN SHARE MODE, 2316
lock mode, 5335
Lock Monitor, 2857, 2859
lock option

mysqldumpslow, 643
ndb_select_all, 3725

4675

LOCK TABLES, 2349
LOCK TABLES privilege, 1100
lock-all-tables option

mysqldump, 498
lock-tables option

mysqldump, 498
mysqlimport, 510

Locked_connects status variable, 920
locked_in_memory system variable, 807
LockExecuteThreadToCPU, 3465
locking, 1606, 2612, 5335

external, 746, 864, 1434, 1604, 1627
information schema, 2817
InnoDB, 2612
internal, 1597
metadata, 1601
row-level, 1597
table-level, 1597

locking functions, 2033
locking methods, 1597
locking read, 5335
locking service

installing, 1030
mysql_acquire_locking_service_locks() C function, 1029
mysql_release_locking_service_locks() C function, 1029
service_get_read_locks() function, 1033
service_get_write_locks() function, 1033
service_release_locks() function, 1033
uninstalling, 1030

locking_service service, 1028
LockMaintThreadsToCPU, 3466
LockPagesInMainMemory, 3435
locks_per_fragment

ndbinfo table, 3868
lock_wait_timeout system variable, 806
log, 5335
log buffer, 5336
log file, 5336
log files

maintaining, 993
log files (NDB Cluster), 3580

ndbmtd, 3588
log group, 5336
log option

innochecksum, 573
mysqld_multi, 356

LOG(), 1917
log-bin option

mysqld, 3048
log-bin-index option

mysqld, 3049
log-error option

mysqld, 750
mysqldump, 484

4676

mysqld_safe, 345
log-error-file option

mysqlpump, 529
log-isam option

mysqld, 750
log-level option

ndb_import, 3662
log-name option

ndb_mgmd, 3596
log-raw option

mysqld, 751
log-short-format option

mysqld, 751
log-tc option

mysqld, 751
log-tc-size option

mysqld, 751
log-warnings option

mysqld, 752, 3014
LOG10(), 1918
LOG2(), 1918
logbuffer-size option

ndbd, 3577
ndbmtd, 3577

logbuffers
ndbinfo table, 3870

LogDestination, 3396
logging

new features, 16
passwords, 1080

logging commands (NDB Cluster), 3781
logging slow query

thread state, 1625
logical, 5336
logical backup, 5336
logical operators, 1905
login

thread state, 1625
login-file option

mysql_install_db, 368
login-path option, 318

mysql, 409
mysqladmin, 445
mysqlbinlog, 624
mysqlcheck, 460
mysqldump, 476
mysqlimport, 510
mysqlpump, 529
mysqlshow, 546
mysqlslap, 562
mysql_install_db, 368
mysql_upgrade, 389
my_print_defaults, 647
ndbd, 3578

4677

ndbinfo_select_all, 3585
ndb_blob_tool, 3610
ndb_config, 3618
ndb_delete_all, 3628
ndb_desc, 3638
ndb_drop_index, 3642
ndb_drop_table, 3647
ndb_import, 3662
ndb_index_stat, 3674
ndb_mgm, 3604
ndb_mgmd, 3596
ndb_move_data, 3681
ndb_restore, 3705
ndb_select_all, 3725
ndb_select_count, 3731
ndb_show_tables, 3736
ndb_top, 3744
ndb_waiter, 3751

LogLevelCheckpoint, 3456
LogLevelCongestion, 3458
LogLevelConnection, 3457
LogLevelError, 3457
LogLevelInfo, 3458
LogLevelNodeRestart, 3457
LogLevelShutdown, 3456
LogLevelStartup, 3455
LogLevelStatistic, 3456
logs

flushing, 971
server, 970

logspaces
ndbinfo table, 3871

log_bin system variable, 3063
log_bin_basename system variable, 3063
log_bin_index system variable, 3063
log_bin_trust_function_creators system variable, 3064
log_bin_use_v1_row_events system variable, 3064
log_builtin_as_identified_by_password system variable, 3065
log_error system variable, 807
log_error_verbosity system variable, 807
log_output system variable, 808
log_queries_not_using_indexes system variable, 808
log_slave_updates system variable, 3065
log_slow_admin_statements system variable

mysqld, 809
log_slow_slave_statements system variable, 3026
log_statements_unsafe_for_binlog system variable, 3066
log_syslog system variable, 809
log_syslog_facility system variable, 809
log_syslog_include_pid system variable, 810
log_syslog_tag system variable, 810
log_throttle_queries_not_using_indexes system variable, 811
log_timestamps system variable, 810
log_warnings

4678

deprecated features, 20
log_warnings system variable, 811
Long Data

thread command, 1622
LONG data type, 1822
LONGBLOB data type, 1819
LongMessageBuffer, 3418
LONGTEXT data type, 1819
long_query_time system variable, 812
LOOP, 2393

labels, 2387
loops option

ndbinfo_select_all, 3585
ndb_index_stat, 3674
ndb_show_tables, 3736

Loose Index Scan
GROUP BY optimizing, 1480

--loose option prefix, 319
LooseScan

semijoin strategy, 1491
loose_, 5336
lossy-conversions option

ndb_move_data, 3681
ndb_restore, 3705

lost connection errors, 4551
lost+found directory, 747
low-priority option

mysqlimport, 510
low-water mark, 5336
LOWER(), 1952
lower_case_file_system system variable, 813

GRANT, 2446
lower_case_table_names system variable, 814
LOW_PRIORITY

DELETE modifier, 2276, 2277
INSERT modifier, 2284
UPDATE modifier, 2328, 2341

low_priority_updates system variable, 813
LPAD(), 1952
LRU, 5336
LRU page replacement, 2644
LSN, 5336
LTRIM(), 1952
LTS Series, 5337
lz4_decompress, 307, 648

M
macOS

installation, 133
main features of MySQL, 6
maintaining

log files, 993
tables, 1438

4679

maintenance
tables, 450

MAKEDATE(), 1932
MAKETIME(), 1932
MAKE_SET(), 1953
Making temporary file (append) before replaying LOAD DATA INFILE

thread state, 1632
Making temporary file (create) before replaying LOAD DATA INFILE

thread state, 1632
malicious SQL statements

and NDB Cluster, 3928
manage keys

thread state, 1625
management client (NDB Cluster), 3601

(see also mgm)
management node (NDB Cluster)

defined, 3287
management nodes (NDB Cluster), 3588

(see also mgmd)
managing NDB Cluster, 3754
managing NDB Cluster processes, 3570
manual

available formats, 2
online location, 2
syntax conventions, 2
typographical conventions, 2

mask_inner() MySQL Enterprise Data Masking and De-Identification function, 1391
mask_outer() MySQL Enterprise Data Masking and De-Identification function, 1391
mask_pan() MySQL Enterprise Data Masking and De-Identification function, 1392
mask_pan_relaxed() MySQL Enterprise Data Masking and De-Identification function, 1393
mask_ssn() MySQL Enterprise Data Masking and De-Identification function, 1394
Master has sent all binlog to slave; waiting for more updates

thread state, 1630
master thread, 5337
master-data option

mysqldump, 487
master-info-file option

mysqld, 3015
master-retry-count option

mysqld, 3015
master_info_repository system variable, 3026, 3098
MASTER_POS_WAIT(), 2138
master_verify_checksum system variable, 3066
MATCH ... AGAINST(), 1972
matching

patterns, 285
materialization

derived tables, 1497
subqueries, 1492
view references, 1497

math, 2141
mathematical functions, 1914
MAX(), 2121
MAX(DISTINCT), 2121

4680

max-allowed-packet option
mysql, 410
mysqldump, 496
mysqlpump, 529
mysql_upgrade, 389

max-binlog-dump-events option
mysqld, 3052

max-join-size option
mysql, 410

max-record-length option
myisamchk, 587

max-relay-log-size option
mysqld, 3015

max-rows option
ndb_import, 3662

MaxAllocate, 3421
MaxBufferedEpochBytes, 3447
MaxBufferedEpochs, 3447
MAXDB

deprecated features, 19
MAXDB SQL mode, 940
MaxDiskWriteSpeed, 3449
MaxDiskWriteSpeedOtherNodeRestart, 3450
MaxDiskWriteSpeedOwnRestart, 3450
MaxDMLOperationsPerTransaction, 3415
MaxFKBuildBatchSize, 3418
--maximum option prefix, 319
maximums

maximum columns per table, 1530
maximum number of databases, 1528, 2183
maximum number of tables, 1528, 2205
maximum row size, 1530
maximum tables per join, 2321
maximum tables per view, 4094
table size, 1528

MaxLCPStartDelay, 3425
MaxNoOfAttributes, 3429
MaxNoOfConcurrentIndexOperations, 3416
MaxNoOfConcurrentOperations, 3414
MaxNoOfConcurrentScans, 3419
MaxNoOfConcurrentSubOperations, 3433
MaxNoOfConcurrentTransactions, 3413
MaxNoOfExecutionThreads

ndbmtd, 3469
MaxNoOfFiredTriggers, 3416
MaxNoOfLocalOperations, 3415
MaxNoOfLocalScans, 3419
MaxNoOfOpenFiles, 3424
MaxNoOfOrderedIndexes, 3430
MaxNoOfSavedMessages, 3425
MaxNoOfSubscribers, 3432
MaxNoOfSubscriptions, 3432
MaxNoOfTables, 3429
MaxNoOfTriggers, 3431

4681

MaxNoOfUniqueHashIndexes, 3431
MaxParallelCopyInstances, 3420
MaxParallelScansPerFragment, 3420
MaxReorgBuildBatchSize, 3420
MaxScanBatchSize, 3499
MaxSendDelay, 3472
MaxStartFailRetries, 3489
MaxUIBuildBatchSize, 3421
max_allowed_packet

and replication, 3146
max_allowed_packet system variable, 814
max_binlog_cache_size system variable, 3066
max_binlog_size system variable, 3067
max_binlog_stmt_cache_size system variable, 3068
MAX_BLOB_PART_SIZE, 2247
max_connections system variable, 815
MAX_CONNECTIONS_PER_HOUR, 1140
max_connect_errors system variable, 815
max_delayed_threads system variable, 816
max_digest_length system variable, 816
max_error_count system variable, 817
max_execution_time system variable, 817
Max_execution_time_exceeded status variable, 920
Max_execution_time_set status variable, 920
Max_execution_time_set_failed status variable, 921
max_heap_table_size system variable, 818
MAX_INDEXES option

CMake, 210
max_insert_delayed_threads system variable, 818
max_join_size system variable, 433, 819
max_length_for_sort_data system variable, 819
max_points_in_geometry system variable, 820
max_prepared_stmt_count system variable, 820
MAX_QUERIES_PER_HOUR, 1140
max_relay_log_size system variable, 3027
MAX_ROWS

and NDB Cluster, 3983
NDB Cluster, 2217

max_seeks_for_key system variable, 820
max_sort_length system variable, 821
max_sp_recursion_depth system variable, 821
max_tmp_tables system variable, 821
MAX_UPDATES_PER_HOUR, 1140
Max_used_connections status variable, 921
Max_used_connections_time status variable, 921
MAX_USER_CONNECTIONS, 1140
max_user_connections system variable, 822
max_write_lock_count system variable, 822
MBR, 2075
MBRContains(), 2075
MBRCoveredBy(), 2075
MBRCovers(), 2076
MBRDisjoint(), 2076
MBREqual(), 2076

4682

deprecated features, 21
MBREquals(), 2076
MBRIntersects(), 2077
MBROverlaps(), 2077
MBRTouches(), 2077
MBRWithin(), 2077
MD5(), 2030
MDL, 5337
measured-load option

ndb_top, 3744
MeCab full-text parser plugin

new features, 11
mecab_charset status variable, 921
mecab_rc_file system variable, 823
medium trust, 5337
medium-check option

myisamchk, 585
mysqlcheck, 460

MEDIUMBLOB data type, 1818
MEDIUMINT data type, 1794
MEDIUMTEXT data type, 1818
membership

ndbinfo table, 3871
memcached, 2870, 5338
MEMCACHED_HOME option

CMake, 218
MEMCACHED_SASL_PWDB environment variable, 2879
memcapable command, 2871
memlock option

mysqld, 752
memory allocation library, 180, 346
memory allocator

innodb_use_sys_malloc, 2652
MEMORY storage engine, 2915, 2928

and replication, 3146
optimization, 1510

memory usage
myisamchk, 596

memory use, 1611
in NDB Cluster, 3322
monitoring, 1613
Performance Schema, 4215

memoryusage
ndbinfo table, 3873

memory_by_host_by_current_bytes view
sys schema, 4410

memory_by_thread_by_current_bytes view
sys schema, 4411

memory_by_user_by_current_bytes view
sys schema, 4411

memory_global_by_current_bytes view
sys schema, 4412

memory_global_total view
sys schema, 4413

4683

memory_per_fragment
ndbinfo table, 3874

memory_summary_by_account_by_event_name table
performance_schema, 4337

memory_summary_by_host_by_event_name table
performance_schema, 4337

memory_summary_by_thread_by_event_name table
performance_schema, 4337

memory_summary_by_user_by_event_name table
performance_schema, 4337

memory_summary_global_by_event_name table
performance_schema, 4337

MemReportFrequency, 3458
merge, 5338
MERGE storage engine, 2915, 2938
MERGE tables

defined, 2938
merging

derived tables, 1497
view references, 1497

merging JSON values, 1852
metadata

database, 4098
database object, 1714
InnoDB, 4152
stored routines, 4061
triggers, 4066
views, 4080

metadata lock, 5338
metadata locking, 1601, 4315
metadata log, 993
metadata_locks table

performance_schema, 4315
metadata_locks_cache_size

deprecated features, 20
metadata_locks_cache_size system variable, 823
metadata_locks_hash_instances

deprecated features, 20
metadata_locks_hash_instances system variable, 823
methods

locking, 1597
metrics counter, 5338
metrics view

sys schema, 4413
mgmd (NDB Cluster)

defined, 3287
(see also management node (NDB Cluster))

MICROSECOND(), 1933
MID(), 1953
midpoint insertion, 2644
midpoint insertion strategy, 5338
milestone

MySQL releases, 62
MIN(), 2121

4684

MIN(DISTINCT), 2121
MinDiskWriteSpeed, 3451
MinFreePct, 3412
mini-transaction, 5338
minimum bounding rectangle, 2075
minus

unary (-), 1912
MINUTE(), 1933
min_examined_row_limit system variable, 824
mirror sites, 63
miscellaneous functions, 2133
mixed statements (Replication), 3154
mixed-mode insert, 5338
MLineFromText(), 2052
MLineFromWKB(), 2055
MM.MySQL, 5339
MOD (modulo), 1918
MOD(), 1918
modes

batch, 292
modify action

MySQLInstallerConsole, 116
modulo (%), 1918
modulo (MOD), 1918
monitor

terminal, 269
monitor option

ndb_import, 3663
monitoring, 1613, 2555, 2560, 2593, 2643, 2650, 2679, 2851, 2853

multi-source replication, 2997
threads, 1619

Monitors, 2856
enabling, 2857
InnoDB, 2904
output, 2859

Mono, 5339
MONTH(), 1933
MONTHNAME(), 1933
MPointFromText(), 2052
MPointFromWKB(), 2056
MPolyFromText(), 2053
MPolyFromWKB(), 2056
.MRG file, 5337
msql2mysql

removed features, 25
MSSQL

deprecated features, 19
MSSQL SQL mode, 940
multi mysqld, 353
multi-column indexes, 1511
multi-core, 5339
Multi-Range Read

optimization, 1469
multi-source replication, 2993

4685

adding binary log source, 2996
adding GTID source, 2995
configuring, 2993
error messages, 2993
in NDB Cluster, 3965
monitoring, 2997
new features, 18
overview, 2993
performance schema, 2997
provisioning, 2994
resetting replica, 2996
starting replica, 2996
stopping replica, 2996
tutorials, 2993

multibyte character sets, 4558
multibyte characters, 1771
MULTILINESTRING data type, 1831
MultiLineString(), 2058
MultiLineStringFromText(), 2052
MultiLineStringFromWKB(), 2055
multiple buffer pools, 2644
multiple servers, 1038
multiple-part index, 2188
multiplication (*), 1913
MULTIPOINT data type, 1831
MultiPoint(), 2058
MultiPointFromText(), 2052
MultiPointFromWKB(), 2056
MULTIPOLYGON data type, 1831
MultiPolygon(), 2058
MultiPolygonFromText(), 2053
MultiPolygonFromWKB(), 2056
mutex, 5339
mutex wait

monitoring, 2853
mutex_instances table

performance_schema, 4262
MUTEX_TYPE option

CMake, 211
MVCC, 5339
MVCC (multi-version concurrency control), 2550
My

derivation, 8
my-print-defaults option

mysql_plugin, 372
my.cnf, 5339

and NDB Cluster, 3350, 3383, 3384
in NDB Cluster, 3815

my.cnf option file, 3132
my.ini, 5339
mycnf option

ndb_config, 3618
ndb_mgmd, 3596

.MYD file, 5337

4686

.MYI file, 5337
MyISAM

compressed tables, 598, 2926
converting tables to InnoDB, 2575

MyISAM key cache, 1584
MyISAM storage engine, 2915, 2919
myisam-block-size option

mysqld, 753
myisamchk, 306, 576

analyze option, 588
backup option, 585
block-search option, 588
character-sets-dir option, 586
check option, 584
check-only-changed option, 584
correct-checksum option, 586
data-file-length option, 586
debug option, 580
defaults-extra-file option, 581
defaults-file option, 581
defaults-group-suffix option, 581
description option, 589
example output, 589
extend-check option, 584, 586
fast option, 584
force option, 585, 586
help option, 580
HELP option, 580
information option, 585
keys-used option, 586
max-record-length option, 587
medium-check option, 585
no-defaults option, 581
options, 580
parallel-recover option, 587
print-defaults option, 582
quick option, 587
read-only option, 585
recover option, 587
safe-recover option, 587
set-auto-increment[option, 589
set-collation option, 588
silent option, 582
sort-index option, 589
sort-records option, 589
sort-recover option, 588
tmpdir option, 588
unpack option, 588
update-state option, 585
verbose option, 582
version option, 582
wait option, 582

myisamchk --parallel-recover
deprecated features, 23

4687

myisamlog, 306, 596
myisampack, 306, 598, 2240, 2926

backup option, 598
character-sets-dir option, 599
debug option, 599
force option, 599
help option, 598
join option, 599
silent option, 599
test option, 599
tmpdir option, 600
verbose option, 600
version option, 600
wait option, 600

myisam_block_size myisamchk variable, 582
myisam_data_pointer_size system variable, 824
myisam_ftdump, 306, 575

count option, 576
dump option, 576
help option, 576
length option, 576
stats option, 576
verbose option, 576

myisam_max_sort_file_size system variable, 825, 2923
myisam_mmap_size system variable, 825
myisam_recover_options system variable, 826, 2923
myisam_repair_threads

deprecated features, 23
myisam_repair_threads system variable, 827
myisam_sort_buffer_size myisamchk variable, 582
myisam_sort_buffer_size system variable, 827, 2923
myisam_stats_method system variable, 828
myisam_use_mmap system variable, 828
MyODBC drivers, 5339
MySQL

debugging, 1045
defined, 4
introduction, 4
pronunciation, 5
upgrading, 382

mysql, 305, 393, 5339
auto-rehash option, 399
auto-vertical-output option, 400
batch option, 400
binary-as-hex option, 400
binary-mode option, 401
bind-address option, 401
character-sets-dir option, 401
charset command, 421
clear command, 421
column-names option, 401
column-type-info option, 402
commands option, 403
comments option, 404

4688

compress option, 404
connect command, 421
connect-expired-password option, 404
connect-timeout option, 405
database option, 405
debug option, 405
debug-check option, 405
debug-info option, 405
default-auth option, 406
default-character-set option, 406
defaults-extra-file option, 406
defaults-file option, 406
defaults-group-suffix option, 407
delimiter command, 421
delimiter option, 407
disable named commands, 407
edit command, 422
ego command, 422
enable-cleartext-plugin option, 407
execute option, 407
exit command, 422
force option, 407
get-server-public-key option, 408
go command, 422
help command, 421
help option, 399
histignore option, 408
host option, 408
html option, 408
i-am-a-dummy option, 415
ignore-spaces option, 409
init-command option, 409
line-numbers option, 409
local-infile option, 409, 1091
login-path option, 409
max-allowed-packet option, 410
max-join-size option, 410
named-commands option, 410
net-buffer-length option, 410
no-auto-rehash option, 410
no-beep option, 410
no-defaults option, 411
nopager command, 422
notee command, 422
nowarning command, 422
one-database option, 411
pager command, 422
pager option, 411
password option, 412
pipe option, 412
plugin-dir option, 412
port option, 412
print command, 422
print-defaults option, 413

4689

prompt command, 423
prompt option, 413
protocol option, 413
quick option, 413
quit command, 423
raw option, 414
reconnect option, 415
rehash command, 423
resetconnection command, 423
safe-updates option, 415
secure-auth option, 415
select-limit option, 415
server-public-key-path option, 416
shared-memory-base-name option, 416
show-warnings option, 416
sigint-ignore option, 416
silent option, 417
skip-column-names option, 417
skip-line-numbers option, 417
socket option, 417
source command, 423
SSL options, 417
status command, 424
syslog option, 418
system command, 424
table option, 418
tee command, 424
tee option, 418
tls-version option, 418
unbuffered option, 419
use command, 424
user option, 419
verbose option, 419
version option, 419
vertical option, 419
wait option, 419
warnings command, 424
xml option, 419

MySQL APT Repository, 157, 252
MySQL binary distribution, 62
MySQL C API, 4482
mysql client

new features, 16
mysql client parser

versus mysqld parser, 434
MySQL Cluster Manager

and ndb_mgm, 3755
mysql command options, 394
mysql commands

list of, 420
mysql database

gtid_executed table, 2968
MySQL Dolphin name, 8
MySQL Enterprise Audit, 1294, 4487

4690

MySQL Enterprise Backup, 4485
Group Replication, 3201

MySQL Enterprise Data Masking and De-Identification, 1381, 4487
MySQL Enterprise Data Masking and De-Identification functions

gen_blacklist(), 1397
gen_dictionary(), 1397
gen_dictionary_drop(), 1398
gen_dictionary_load(), 1399
gen_range(), 1394
gen_rnd_email(), 1395
gen_rnd_pan(), 1395
gen_rnd_ssn(), 1396
gen_rnd_us_phone(), 1396
mask_inner(), 1391
mask_outer(), 1391
mask_pan(), 1392
mask_pan_relaxed(), 1393
mask_ssn(), 1394

MySQL Enterprise Data Masking and De-Identification plugin
elements, 1383

MySQL Enterprise Encryption, 1399, 4486
MySQL Enterprise Firewall, 1365, 4487

installing, 1367
using, 1369

MySQL Enterprise Firewall functions
mysql_firewall_flush_status(), 1380
normalize_statement(), 1380
read_firewall_users(), 1379
read_firewall_whitelist(), 1379
set_firewall_mode(), 1379

MySQL Enterprise Firewall stored procedures
sp_reload_firewall_rules(), 1378
sp_set_firewall_mode(), 1378

MySQL Enterprise Firewall tables
firewall_users, 1377
firewall_whitelist, 1377

MySQL Enterprise Security, 1190, 1201, 1206, 4486
MySQL Enterprise Thread Pool, 1001, 4487

elements, 1002
installing, 1002

MySQL Enterprise Transparent Data Encryption, 2726
MySQL history, 8
mysql history file, 426
MySQL Installer, 89
MySQL name, 8
MySQL privileges

and NDB Cluster, 3927
mysql prompt command, 425
MySQL server

mysqld, 341, 658
MySQL Shell, 3251

NoSQL, 3251
MySQL SLES Repository, 157, 252
mysql source (command for reading from text files), 293, 430

4691

MySQL source distribution, 62
MySQL storage engines, 2915
MySQL system tables

and NDB Cluster, 3927
and replication, 3147

MySQL version, 63
MySQL Yum Repository, 150, 154, 250
mysql \. (command for reading from text files), 293, 430
mysql.event table, 4074
mysql.gtid_executed table, 2968

compression, 2969
thread/sql/compress_gtid_table, 2970

mysql.server, 304, 351
basedir option, 353
datadir option, 353
pid-file option, 353
service-startup-timeout option, 353

mysql.slave_master_info table, 3098
mysql.slave_relay_log_info table, 3098
mysql.sock

protection, 4567
MYSQL323

deprecated features, 19
MYSQL323 SQL mode, 940
MYSQL40

deprecated features, 19
MYSQL40 SQL mode, 941
mysqlaccess

removed features, 25
mysqladmin, 305, 435, 2184, 2266, 2515, 2521, 2527, 2534

bind-address option, 441
character-sets-dir option, 441
compress option, 442
connect-timeout option, 442
count option, 442
debug option, 442
debug-check option, 442
debug-info option, 443
default-auth option, 443
default-character-set option, 443
defaults-extra-file option, 443
defaults-file option, 443
defaults-group-suffix option, 444
enable-cleartext-plugin option, 444
force option, 444
get-server-public-key option, 444
help option, 441
host option, 445
login-path option, 445
no-beep option, 445
no-defaults option, 445
password option, 446
pipe option, 446
plugin-dir option, 446

4692

port option, 446
print-defaults option, 446
protocol option, 447
relative option, 447
secure-auth option, 447
server-public-key-path option, 448
shared-memory-base-name option, 448
show-warnings option, 447
shutdown-timeout option, 448
silent option, 448
sleep option, 449
socket option, 449
SSL options, 449
tls-version option, 449
user option, 449
verbose option, 450
version option, 450
vertical option, 450
wait option, 450

mysqladmin command options, 438
mysqladmin option

mysqld_multi, 356
mysqlbackup command, 5340
mysqlbinlog, 307, 611

base64-output option, 617
bind-address option, 618
binlog-row-event-max-size option, 618
character-sets-dir option, 618
connection-server-id option, 619
database option, 619
debug option, 620
debug-check option, 620
debug-info option, 621
default-auth option, 621
defaults-extra-file option, 621
defaults-file option, 621
defaults-group-suffix option, 621
disable-log-bin option, 622
exclude-gtids option, 622
force-if-open option, 622
force-read option, 622
get-server-public-key option, 622
help option, 617
hexdump option, 623
host option, 623
idempotent option, 623
include-gtids option, 623
local-load option, 624
login-path option, 624
new features, 16
no-defaults option, 624
offset option, 624
open-files-limit option, 625
password option, 625

4693

plugin-dir option, 625
port option, 625
print-defaults option, 625
protocol option, 626
raw option, 626
read-from-remote-master option, 626
read-from-remote-server option, 626
result-file option, 627
rewrite-db option, 627
secure-auth option, 628
server-id option, 628
server-id-bits option, 628
server-public-key-path option, 629
set-charset option, 629
shared-memory-base-name option, 629
short-form option, 629
skip-gtids option, 630
socket option, 630
SSL options, 630
start-datetime option, 630
start-position option, 631
stop-datetime option, 631
stop-never option, 631
stop-never-slave-server-id option, 631
stop-position option, 632
tls-version option, 632
to-last-log option, 632
user option, 632
verbose option, 632
verify-binlog-checksum option, 633
version option, 633

mysqlbug
removed features, 25

mysqlcheck, 305, 450
all-databases option, 455
all-in-1 option, 455
analyze option, 455
auto-repair option, 455
bind-address option, 455
character-sets-dir option, 456
check option, 456
check-only-changed option, 456
check-upgrade option, 456
compress option, 456
databases option, 456
debug option, 456
debug-check option, 457
debug-info option, 457
default-auth option, 458
default-character-set option, 457
defaults-extra-file option, 457
defaults-file option, 457
defaults-group-suffix option, 458
enable-cleartext-plugin option, 459

4694

extended option, 458
fast option, 459
fix-db-names option, 459
fix-table-names option, 459
force option, 459
get-server-public-key option, 460
help option, 455
host option, 460
login-path option, 460
medium-check option, 460
no-defaults option, 460
optimize option, 461
password option, 461
pipe option, 461
plugin-dir option, 461
port option, 462
print-defaults option, 462
protocol option, 462
quick option, 462
repair option, 462
secure-auth option, 463
server-public-key-path option, 463
shared-memory-base-name option, 464
silent option, 464
skip-database option, 464
socket option, 464
SSL options, 464
tables option, 464
tls-version option, 465
use-frm option, 465
user option, 465
verbose option, 465
version option, 465
write-binlog option, 465

mysqlclient, 5340
mysqld, 304, 5340

abort-slave-event-count option, 3025
allow-suspicious-udfs option, 739
ansi option, 739
as NDB Cluster process, 3505, 3814
audit-log option, 1354
basedir option, 740
binlog-checksum option, 3052
binlog-do-db option, 3049
binlog-ignore-db option, 3051
binlog-row-event-max-size option, 3048
bootstrap option, 740
character-set-client-handshake option, 740
chroot option, 741
command options, 738
console option, 741
core-file option, 741
daemonize option, 741
datadir option, 742

4695

debug option, 742
debug-sync-timeout option, 742
default-time-zone option, 743
defaults-extra-file option, 743
defaults-file option, 743
defaults-group-suffix option, 743
des-key-file option, 743
disable-partition-engine-check option, 744
disconnect-slave-event-count option, 3025
early-plugin-load option, 744
exit codes, 966
exit-info option, 746
external-locking option, 746
flush option, 746
gdb option, 746
help option, 739
ignore-db-dir option, 747
initialize option, 747
initialize-insecure option, 747
innodb option, 2737
innodb-status-file option, 2738
install option, 748
install-manual option, 748
keyring-migration-destination option, 1285
keyring-migration-host option, 1285
keyring-migration-password option, 1285
keyring-migration-port option, 1285
keyring-migration-socket option, 1286
keyring-migration-source option, 1286
keyring-migration-user option, 1286
language option, 748
large-pages option, 749
lc-messages option, 749
lc-messages-dir option, 750
local-service option, 750
log-bin option, 3048
log-bin-index option, 3049
log-error option, 750
log-isam option, 750
log-raw option, 751
log-short-format option, 751
log-tc option, 751
log-tc-size option, 751
log-warnings option, 752, 3014
log_slow_admin_statements system variable, 809
master-info-file option, 3015
master-retry-count option, 3015
max-binlog-dump-events option, 3052
max-relay-log-size option, 3015
memlock option, 752
myisam-block-size option, 753
MySQL server, 341, 658
ndb-allow-copying-alter-table option, 3505
ndb-batch-size option, 3506

4696

ndb-blob-read-batch-bytes option, 3507
ndb-blob-write-batch-bytes option, 3508
ndb-cluster-connection-pool option, 3506
ndb-cluster-connection-pool-nodeids option, 3507
ndb-connectstring option, 3508
ndb-log-apply-status, 3510
ndb-log-empty-epochs, 3510
ndb-log-empty-update, 3511
ndb-log-exclusive-reads, 3511
ndb-log-fail-terminate, 3511
ndb-log-orig, 3511
ndb-log-transaction-id, 3512
ndb-nodeid, 3514
ndb-optimization-delay option, 3515
ndb-optimized-node-selection option, 3515
ndb-transid-mysql-connection-map option, 3515
ndb-wait-connected option, 3516
ndb-wait-setup option, 3516
ndbcluster option, 3505
no-defaults option, 753
old-style-user-limits option, 753
partition option, 754
performance-schema-consumer-events-stages-current option, 4357
performance-schema-consumer-events-stages-history option, 4357
performance-schema-consumer-events-stages-history-long option, 4357
performance-schema-consumer-events-statements-current option, 4357
performance-schema-consumer-events-statements-history option, 4357
performance-schema-consumer-events-statements-history-long option, 4358
performance-schema-consumer-events-transactions-current option, 4358
performance-schema-consumer-events-transactions-history option, 4358
performance-schema-consumer-events-transactions-history-long option, 4358
performance-schema-consumer-events-waits-current option, 4358
performance-schema-consumer-events-waits-history option, 4358
performance-schema-consumer-events-waits-history-long option, 4358
performance-schema-consumer-global-instrumentation option, 4358
performance-schema-consumer-statements-digest option, 4358
performance-schema-consumer-thread-instrumentation option, 4358
performance-schema-consumer-xxx option, 4357
performance-schema-instrument option, 4357
plugin option prefix, 755
plugin-load option, 754
plugin-load-add option, 755
port option, 756
port-open-timeout option, 756
print-defaults option, 756
relay-log-purge option, 3016
relay-log-space-limit option, 3016
remove option, 756
replicate-do-db option, 3016
replicate-do-table option, 3019
replicate-ignore-db option, 3018
replicate-ignore-table option, 3020
replicate-rewrite-db option, 3020
replicate-same-server-id option, 3021

4697

replicate-wild-do-table option, 3021
replicate-wild-ignore-table option, 3022
role in NDB Cluster (see SQL Node (NDB Cluster))
safe-user-create option, 757
server_uuid variable, 2999
show-slave-auth-info option, 3006
skip-grant-tables option, 757
skip-host-cache option, 758
skip-innodb option, 759, 2738
skip-ndbcluster option, 3517
skip-new option, 759
skip-partition option, 759
skip-show-database option, 759
skip-slave-start option, 3023
skip-ssl option, 761
skip-stack-trace option, 760
skip-symbolic-links option, 762
slave-skip-errors option, 3023
slave-sql-verify-checksum option, 3024
slow-start-timeout option, 760
socket option, 760
sporadic-binlog-dump-fail option, 3052
sql-mode option, 760
ssl option, 761
standalone option, 762
starting, 1089
super-large-pages option, 762
symbolic-links option, 762
sysdate-is-now option, 763
tc-heuristic-recover option, 763
temp-pool option, 763
tmpdir option, 764
transaction-isolation option, 764
transaction-read-only option, 764
user option, 765
validate-password option, 1252
validate-user-plugins option, 765
verbose option, 766
version option, 766

mysqld (NDB Cluster), 3570
mysqld option

malloc-lib, 346
mysqld_multi, 356
mysqld_safe, 347
mysql_plugin, 372

mysqld options, 659
mysqld options and variables

NDB Cluster, 3505
mysqld parser

versus mysql client parser, 434
mysqld system variables, 659
mysqld-file option

mysql_install_db, 369
mysqld-safe-log-timestamps option

4698

mysqld_safe, 345
mysqld-version option

mysqld_safe, 347
MySQLdb, 5340
mysqldump, 258, 306, 465, 5340

add-drop-database option, 481
add-drop-table option, 481
add-drop-trigger option, 481
add-locks option, 497
all-databases option, 493
all-tablespaces option, 481
allow-keywords option, 482
apply-slave-statements option, 485
bind-address option, 474
character-sets-dir option, 485
comments option, 482
compact option, 489
compatible option, 489
complete-insert option, 489
compress option, 475
create-options option, 489
databases option, 493
debug option, 482
debug-check option, 483
debug-info option, 483
default-auth option, 475
default-character-set option, 485
defaults-extra-file option, 479
defaults-file option, 480
defaults-group-suffix option, 480
delete-master-logs option, 486
disable-keys option, 495
dump-date option, 483
dump-slave option, 486
enable-cleartext-plugin option, 475
events option, 493
extended-insert option, 495
fields-enclosed-by option, 490, 508
fields-escaped-by option, 490, 508
fields-optionally-enclosed-by option, 490, 508
fields-terminated-by option, 489, 508
flush-logs option, 497
flush-privileges option, 497
force option, 484
get-server-public-key option, 475
help option, 484
hex-blob option, 490
host option, 476
ignore-error option, 493
ignore-table option, 494
include-master-host-port option, 487
insert-ignore option, 496
lines-terminated-by option, 490, 509
lock-all-tables option, 498

4699

lock-tables option, 498
log-error option, 484
login-path option, 476
master-data option, 487
max-allowed-packet option, 496
net-buffer-length option, 496
no-autocommit option, 498
no-create-db option, 481
no-create-info option, 482
no-data option, 494
no-defaults option, 480
no-set-names option, 485
no-tablespaces option, 482
opt option, 496
order-by-primary option, 498
password option, 476
pipe option, 477
plugin-dir option, 477
port option, 477
print-defaults option, 481
problems, 501, 4095
protocol option, 477
quick option, 497
quote-names option, 490
replace option, 482
result-file option, 491
routines option, 494
secure-auth option, 477
server-public-key-path option, 478
set-charset option, 485
set-gtid-purged option, 488
shared-memory-base-name option, 499
single-transaction option, 499
skip-comments option, 484
skip-mysql-schema option, 478
skip-opt option, 497
socket option, 479
SSL options, 479
tab option, 491
tables option, 494
tls-version option, 479
triggers option, 495
tz-utc option, 491
user option, 479
using for backups, 1424
verbose option, 484
version option, 484
views, 501, 4095
where option, 495
workarounds, 501, 4095
xml option, 492

mysqldumpslow, 307, 641
abstract-numbers option, 643
debug option, 642

4700

grep option, 643
help option, 642
host option, 643
instance option, 643
lock option, 643
reverse option, 643
sort option, 643
top option, 643
verbose option, 644

mysqld_multi, 304, 353
defaults-extra-file option, 355
defaults-file option, 355
example option, 355
help option, 355
log option, 356
mysqladmin option, 356
mysqld option, 356
no-defaults option, 355
no-log option, 356
password option, 356
silent option, 357
tcp-ip option, 357
user option, 357
verbose option, 357
version option, 357

mysqld_safe, 304, 341
basedir option, 344
core-file-size option, 344
datadir option, 344
defaults-extra-file option, 344
defaults-file option, 345
deprecated features, 22
help option, 344
ledir option, 345
log-error option, 345
malloc-lib option, 346
mysqld option, 347
mysqld-safe-log-timestamps option, 345
mysqld-version option, 347
nice option, 348
no-defaults option, 348
open-files-limit option, 348
pid-file option, 348
plugin-dir option, 349
port option, 349
skip-kill-mysqld option, 349
skip-syslog option, 349
socket option, 349
syslog option, 349
syslog-tag option, 350
timezone option, 350
user option, 350

mysqlhotcopy
removed features, 25

4701

mysqlimport, 258, 306, 501, 2289
bind-address option, 505
character-sets-dir option, 505
columns option, 505
compress option, 505
debug option, 506
debug-check option, 506
debug-info option, 506
default-auth option, 506
default-character-set option, 506
defaults-extra-file option, 507
defaults-file option, 507
defaults-group-suffix option, 507
delete option, 507
enable-cleartext-plugin option, 508
force option, 508
get-server-public-key option, 508
help option, 505
host option, 509
ignore option, 509
ignore-lines option, 509
local option, 510, 1091
lock-tables option, 510
login-path option, 510
low-priority option, 510
no-defaults option, 510
password option, 511
pipe option, 511
plugin-dir option, 511
port option, 511
print-defaults option, 512
protocol option, 512
replace option, 512
secure-auth option, 513
server-public-key-path option, 513
shared-memory-base-name option, 513
silent option, 514
socket option, 514
SSL options, 514
tls-version option, 514
use-threads option, 515
user option, 514
verbose option, 515
version option, 515

MySQLInstallerConsole, 110
configure action, 112
help action, 113
install action, 113
list action, 116
modify action, 116
remove action, 117
set action, 117
status action, 118
update action, 119

4702

upgrade action, 119
mysqlpump, 306, 515

add-drop-database option, 520
add-drop-table option, 521
add-drop-user option, 521
add-locks option, 521
all-databases option, 521
bind-address option, 521
character-sets-dir option, 521
complete-insert option, 522
compress option, 522
compress-output option, 522
databases option, 522
debug option, 523
debug-check option, 523
debug-info option, 523
default-auth option, 523
default-character-set option, 524
default-parallelism option, 524
defaults-extra-file option, 524
defaults-file option, 524
defaults-group-suffix option, 525
defer-table-indexes option, 525
events option, 525
exclude-databases option, 526
exclude-events option, 526
exclude-routines option, 526
exclude-tables option, 526
exclude-triggers option, 526
exclude-users option, 527
extended-insert option, 527
get-server-public-key option, 527
help option, 520
hex-blob option, 527
host option, 527
include-databases option, 528
include-events option, 528
include-routines option, 528
include-tables option, 528
include-triggers option, 528
include-users option, 528
insert-ignore option, 529
log-error-file option, 529
login-path option, 529
max-allowed-packet option, 529
net-buffer-length option, 529
no-create-db option, 530
no-create-info option, 530
no-defaults option, 530
object selection, 537
parallel-schemas option, 530
parallelism, 538
password option, 531
plugin-dir option, 531

4703

port option, 531
print-defaults option, 531
protocol option, 532
replace option, 532
restrictions, 539
result-file option, 532
routines option, 532
secure-auth option, 533
server-public-key-path option, 533
set-charset option, 533
set-gtid-purged option, 534
single-transaction option, 534
skip-definer option, 535
skip-dump-rows option, 535
socket option, 535
SSL options, 535
tls-version option, 536
triggers option, 536
tz-utc option, 536
user option, 536
users option, 536
version option, 537
watch-progress option, 537

mysqlsh, 306
mysqlshow, 306, 540

bind-address option, 543
character-sets-dir option, 543
compress option, 543
count option, 543
debug option, 544
debug-check option, 544
debug-info option, 544
default-auth option, 544
default-character-set option, 544
defaults-extra-file option, 545
defaults-file option, 545
defaults-group-suffix option, 545
enable-cleartext-plugin option, 545
get-server-public-key option, 546
help option, 543
host option, 546
keys option, 546
login-path option, 546
no-defaults option, 546
password option, 547
pipe option, 547
plugin-dir option, 547
port option, 548
print-defaults option, 548
protocol option, 548
secure-auth option, 548
server-public-key-path option, 549
shared-memory-base-name option, 549
show-table-type option, 549

4704

socket option, 549
SSL options, 550
status option, 550
tls-version option, 550
user option, 550
verbose option, 550
version option, 550

mysqlslap, 306, 550
auto-generate-sql option, 556
auto-generate-sql-add-autoincrement option, 556
auto-generate-sql-execute-number option, 556
auto-generate-sql-guid-primary option, 556
auto-generate-sql-load-type option, 556
auto-generate-sql-secondary-indexes option, 557
auto-generate-sql-unique-query-number option, 557
auto-generate-sql-unique-write-number option, 557
auto-generate-sql-write-number option, 557
commit option, 557
compress option, 558
concurrency option, 558
create option, 558
create-schema option, 558
csv option, 558
debug option, 559
debug-check option, 559
debug-info option, 559
default-auth option, 559
defaults-extra-file option, 559
defaults-file option, 560
defaults-group-suffix option, 560
delimiter option, 560
detach option, 560
enable-cleartext-plugin option, 561
engine option, 561
get-server-public-key option, 561
help option, 555
host option, 561
iterations option, 561
login-path option, 562
no-defaults option, 562
no-drop option, 562
number-char-cols option, 562
number-int-cols option, 562
number-of-queries option, 563
only-print option, 563
password option, 563
pipe option, 563
plugin-dir option, 564
port option, 564
post-query option, 564
post-system option, 564
pre-query option, 564
pre-system option, 564
print-defaults option, 565

4705

protocol option, 565
query option, 565
secure-auth option, 565
server-public-key-path option, 566
shared-memory-base-name option, 566
silent option, 566
socket option, 566
sql-mode option, 567
SSL options, 567
tls-version option, 567
user option, 567
verbose option, 567
version option, 567

mysqlx, 3266
mysqlx_bind_address system variable, 3267
mysqlx_connect_timeout system variable, 3267
mysqlx_idle_worker_thread_timeout system variable, 3268
mysqlx_max_allowed_packet system variable, 3268
mysqlx_max_connections system variable, 3268
mysqlx_min_worker_threads system variable, 3269
mysqlx_port system variable, 3269
mysqlx_port_open_timeout system variable, 3270
mysqlx_socket system variable, 3270
mysqlx_ssl_ca system variable, 3271
mysqlx_ssl_capath system variable, 3271
mysqlx_ssl_cert system variable, 3271
mysqlx_ssl_cipher system variable, 3272
mysqlx_ssl_crl system variable, 3272
mysqlx_ssl_crlpath system variable, 3272
mysqlx_ssl_key system variable, 3272
MYSQLX_TCP_PORT environment variable, 651
MYSQLX_TCP_PORT option

CMake, 211
MYSQLX_UNIX_ADDR option

CMake, 211
MYSQLX_UNIX_PORT environment variable, 651
mysql_acquire_locking_service_locks() C function

locking service, 1029
mysql_clear_password authentication plugin, 1189
mysql_cluster_backup_privileges, 3826
mysql_cluster_move_grant_tables, 3826
mysql_cluster_move_privileges, 3826
mysql_cluster_privileges_are_distributed, 3827
mysql_cluster_restore_local_privileges, 3828
mysql_cluster_restore_privileges, 3828
mysql_cluster_restore_privileges_from_local, 3828
mysql_config, 644

cflags option, 644
cxxflags option, 645
embedded option, 645
embedded-libs option, 645
include option, 645
libmysqld-libs option, 645
libs option, 645

4706

libs_r option, 645
plugindir option, 645
port option, 645
socket option, 645
variable option, 645
version option, 645

mysql_config_editor, 307, 605
debug option, 608
help option, 608
verbose option, 608
version option, 608

mysql_config_server, 644
mysql_convert_table_format

removed features, 25
MYSQL_DATADIR option

CMake, 206
MYSQL_DEBUG environment variable, 308, 651, 1052
mysql_find_rows

removed features, 25
mysql_firewall_flush_status() MySQL Enterprise Firewall function, 1380
mysql_firewall_mode system variable, 1380
mysql_firewall_trace system variable, 1380
MYSQL_FIREWALL_USERS

INFORMATION_SCHEMA table, 4201
MYSQL_FIREWALL_WHITELIST

INFORMATION_SCHEMA table, 4201
mysql_fix_extensions

removed features, 25
MYSQL_GROUP_SUFFIX environment variable, 651
MYSQL_HISTFILE environment variable, 426, 651
MYSQL_HISTIGNORE environment variable, 426, 651
MYSQL_HOME environment variable, 651
MYSQL_HOST environment variable, 338, 651
mysql_info(), 2160, 2283, 2300, 2342
mysql_insert_id(), 2283
mysql_install_db, 305, 361

admin-auth-plugin option, 365
admin-host option, 365
admin-require-ssl option, 365
admin-user option, 366
basedir option, 366
builddir option, 366
datadir option, 366
defaults option, 366
defaults-extra-file option, 367
defaults-file option, 367
deprecated features, 22
extra-sql-file option, 367
help option, 365
insecure option, 367
lc-messages option, 368
lc-messages-dir option, 368
login-file option, 368
login-path option, 368

4707

mysqld-file option, 369
no-defaults option, 369
random-password-file option, 369
skip-sys-schema option, 370
srcdir option, 370
user option, 370
verbose option, 370
version option, 370

mysql_keyring service, 1033
mysql_kill()

deprecated features, 22
mysql_list_fields()

deprecated features, 22
mysql_list_processes()

deprecated features, 22
MYSQL_MAINTAINER_MODE option

CMake, 211
mysql_native_password authentication plugin, 1174
mysql_native_password_proxy_users system variable, 828, 1138
mysql_no_login authentication plugin, 1219
mysql_old_password

removed features, 23
mysql_old_password authentication plugin, 1175
MYSQL_OPENSSL_UDF_DH_BITS_THRESHOLD environment variable, 651, 1402
MYSQL_OPENSSL_UDF_DSA_BITS_THRESHOLD environment variable, 651, 1402
MYSQL_OPENSSL_UDF_RSA_BITS_THRESHOLD environment variable, 651, 1402
mysql_options()

MYSQL_OPT_LOCAL_INFILE, 1091
MYSQL_OPT_SSL_ENFORCE

deprecated features, 20
MYSQL_OPT_SSL_VERIFY_SERVER_CERT

deprecated features, 20
mysql_plugin, 305, 370

basedir option, 372
datadir option, 372
deprecated features, 22
help option, 372
my-print-defaults option, 372
mysqld option, 372
no-defaults option, 372
plugin-dir option, 373
plugin-ini option, 373
print-defaults option, 373
verbose option, 373
version option, 373

MYSQL_PROJECT_NAME option
CMake, 211

MYSQL_PS1 environment variable, 651
MYSQL_PWD environment variable, 308, 338, 651
mysql_real_escape_string_quote(), 1654, 1954
mysql_refresh()

deprecated features, 22
mysql_release_locking_service_locks() C function

locking service, 1029

4708

mysql_secure_installation, 305, 373
defaults-extra-file option, 375
defaults-file option, 376
defaults-group-suffix option, 376
help option, 375
host option, 376
no-defaults option, 376
password option, 376
port option, 377
print-defaults option, 377
protocol option, 377
socket option, 377
SSL options, 377
tls-version option, 378
use-default option, 378
user option, 378

mysql_session_track_get_first() C API function, 963
mysql_session_track_get_next() C API function, 963
mysql_setpermission

removed features, 25
mysql_shutdown()

deprecated features, 22
mysql_ssl_rsa_setup, 305, 378

datadir option, 381
help option, 380
suffix option, 381
uid option, 381
verbose option, 381
version option, 381

MYSQL_TCP_PORT environment variable, 308, 651, 1044, 1045
MYSQL_TCP_PORT option

CMake, 211
MYSQL_TEST_LOGIN_FILE environment variable, 318, 605, 651
MYSQL_TEST_TRACE_CRASH environment variable, 651
MYSQL_TEST_TRACE_DEBUG environment variable, 651
mysql_tzinfo_to_sql, 305, 381
MYSQL_UNIX_ADDR option

CMake, 211
MYSQL_UNIX_PORT environment variable, 308, 651, 1044, 1045
mysql_upgrade, 305, 382

bind-address option, 387
character-sets-dir option, 387
compress option, 387
debug option, 387
debug-check option, 387
debug-info option, 388
default-auth option, 388
default-character-set option, 388
defaults-extra-file option, 388
defaults-file option, 388
defaults-group-suffix option, 388
force option, 389
help option, 387
host option, 389

4709

login-path option, 389
max-allowed-packet option, 389
mysql_upgrade_info file, 384
net-buffer-length option, 390
no-defaults option, 390
password option, 390
pipe option, 390
plugin-dir option, 391
port option, 391
print-defaults option, 391
protocol option, 391
shared-memory-base-name option, 391
skip-sys-schema option, 392
socket option, 392
SSL options, 392
tls-version option, 392
upgrade-system-tables option, 392
user option, 393
verbose option, 393
version-check option, 393
write-binlog option, 393

mysql_upgrade_info file
mysql_upgrade, 384

mysql_waitpid
removed features, 25

mysql_zap
removed features, 25

my_key_fetch() keyring service function, 1034
my_key_generate() keyring service function, 1034
my_key_remove() keyring service function, 1035
my_key_store() keyring service function, 1035
my_print_defaults, 307, 646

config-file option, 646
debug option, 646
defaults-extra-file option, 646
defaults-file option, 646
defaults-group-suffix option, 646
extra-file option, 646
help option, 646
login-path option, 647
no-defaults option, 647
show option, 647
verbose option, 647
version option, 647

N
Name, 3504
name-file option

comp_err, 361
named pipes, 122, 128
named time zone support

Unknown or incorrect time zone, 957
named-commands option

4710

mysql, 410
named_pipe system variable, 829
named_pipe_full_access_group system variable, 829
names, 1660

case sensitivity, 1665
variables, 1697

NAME_CONST(), 2138, 4089
naming

releases of MySQL, 62
NATIONAL CHAR data type, 1817
NATIONAL VARCHAR data type, 1817
native backup and restore

backup identifiers, 3811
native C API, 5340
native functions

reference, 1871
native operators

reference, 1871
NATURAL JOIN, 2319
natural key, 5340
NATURAL LEFT JOIN, 2319
NATURAL LEFT OUTER JOIN, 2319
NATURAL RIGHT JOIN, 2319
NATURAL RIGHT OUTER JOIN, 2319
NCHAR data type, 1817
NDB API

and distributed grant tables, 3829
and distributed privileges, 3829

NDB API counters (NDB Cluster), 3829
scope, 3832
status variables associated with, 3835
types, 3833

NDB API database objects
and NDB Cluster replication, 3933

NDB API replica status variables
and NDB Cluster Replication, 3931

NDB Cluster, 3282
"quick" configuration, 3362
administration, 3505, 3571, 3588, 3601, 3601, 3755, 3790
and application feature requirements, 3317
and DNS, 3332
and INFORMATION_SCHEMA, 3928
and IP addressing, 3332
and MySQL privileges, 3927
and MySQL root user, 3927, 3929
and networking, 3293
and transactions, 3409
API node, 3287, 3493
applications supported, 3317
availability, 3315
available platforms, 3283
BACKUP Events, 3789
backups, 3690, 3808, 3809, 3809, 3812, 3813
CHECKPOINT Events, 3784

4711

cluster logs, 3780, 3781
CLUSTERLOG commands, 3782
CLUSTERLOG STATISTICS command, 3790
commands, 3505, 3571, 3588, 3601, 3755
compared to InnoDB, 3315, 3315, 3317, 3317
compared to standalone MySQL Server, 3315, 3315, 3317, 3317
concepts, 3287
configuration, 3331, 3361, 3362, 3391, 3393, 3401, 3493, 3600, 3815
configuration (example), 3384
configuration changes, 3794
configuration files, 3350, 3383
configuration parameters, 3364, 3365, 3371, 3372, 3373
configuring, 3812
CONNECT command, 3755
CONNECTION Events, 3783
connection string, 3390
CREATE NODEGROUP command, 3755
data node, 3287, 3401
data nodes, 3570, 3587
defining node hosts, 3391
direct connections between nodes, 3560
Disk Data tables (see NDB Cluster Disk Data)
DROP NODEGROUP command, 3755
ENTER SINGLE USER MODE command, 3756
ERROR Events, 3788
error logs, 3580
event log format, 3783
event logging thresholds, 3782
event logs, 3780, 3781
event severity levels, 3782
event types, 3781, 3783
execution threads, 3469
EXIT command, 3757
EXIT SINGLE USER MODE command, 3756
FAQ, 4505
fragment replicas, 3290
FULLY_REPLICATED (NDB_TABLE), 2251
GCP Stop errors, 3486
general description, 3285
HELP command, 3756
HostName parameter

and security, 3923
importing data, 3813
indirect indexes, 2245
INFO Events, 3788
information sources, 3285
insecurity of communication protocols, 3923
installation, 3331
installation (Linux), 3333
installation (Windows), 3341
installing .deb file (Linux), 3340
installing binary (Windows), 3342
installing binary release (Linux), 3334
installing from source (Linux), 3340

4712

installing from source (Windows), 3345
installing RPM (Linux), 3336
interconnects, 3289, 3570
Java clients, 3288
JSON, 2245
large tables, 2217
log files, 3580, 3588
logging commands, 3781
management client (ndb_mgm), 3601
management commands, 3790
management node, 3287, 3393
management nodes, 3588
managing, 3754
MAX_ROWS, 2217
memory usage and recovery, 3322, 3795
mgm client, 3755
mgm management client, 3790
mgm process, 3601
mgmd process, 3588
monitoring, 3829
multiple management servers, 3796
mysqld options and variables for, 3505
mysqld process, 3505, 3814
ndbd, 3570
ndbd process, 3571, 3792
ndbinfo_select_all, 3581
ndbmtd, 3587
ndb_mgm, 3352, 3601
ndb_mgmd process, 3588
network configuration

and security, 3924
networking, 3560, 3561
node failure (single user mode), 3797
node identifiers, 3564, 3564
node logs, 3780
NODELOG DEBUG command, 3756
NODERESTART Events, 3785
nodes and node groups, 3290
nodes and types, 3287
NOLOGGING (NDB_TABLE), 2249
partitioning support, 3321
partitions, 3290
PARTITION_BALANCE (NDB_TABLE), 2250
performing queries, 3353
preparing for replication, 3948
process management, 3570
PROMPT command, 3757
QUIT command, 3757
READ_BACKUP (NDB_TABLE), 2249
replication, 3930

(see also NDB Cluster replication)
REPORT command, 3757
requirements, 3293
resetting, 3795

4713

RESTART command, 3758
restarting, 3356
restoring backups, 3690
rolling restarts (multiple management servers), 3796
runtime statistics, 3790
SCHEMA Events, 3788
security, 3923

and firewalls, 3924, 3926
and HostName parameter, 3923
and network configuration, 3924
and network ports, 3926
and remote administration, 3927
networking, 3923

security procedures, 3929
shared memory transport, 3561
SHOW command, 3758
SHUTDOWN command, 3759
shutting down, 3356
single user mode, 3756, 3796
SINGLEUSER Events, 3789
SQL node, 3287, 3493
SQL nodes, 3814
SQL statements for monitoring, 3914
START BACKUP command, 3954
START command, 3760
start phases (summary), 3792
starting, 3362
starting nodes, 3346, 3352
starting or restarting, 3792
STARTUP Events, 3784
STATISTICS Events, 3787
STATUS command, 3759
status variables, 3538
STOP command, 3760
storage requirements, 1862
thread states, 1633
trace files, 3581
transaction handling, 3325
transaction isolation level, 3323
transporters, 3289, 3570

shared memory (SHM), 3561
TCP/IP, 3560

troubleshooting backups, 3813
upgrades and downgrades, 3357, 3794
USING HASH, 2192
using tables and data, 3353

NDB Cluster 7.5, 3294
NDB Cluster 7.6, 3294
NDB Cluster Auto-Installer (NO LONGER SUPPORTED), 3361, 3361
NDB Cluster Disk Data, 3816

creating log file groups, 3817
creating tables, 3816, 3818
creating tablespaces, 3818
dropping Disk Data objects, 3820

4714

storage requirements, 3821
NDB Cluster How-To, 3331
NDB Cluster limitations, 3318

and differences from standard MySQL limits, 3322
binary logging, 3328
database objects, 3326
Disk Data storage, 3329
error handling and reporting, 3326
geometry data types, 3320
implementation, 3328
imposed by configuration, 3322
JSON columns, 3321
memory usage and transaction handling, 3325
multiple management servers, 3330
multiple MySQL servers, 3330
partitioning, 3321
performance, 3328
syntax, 3318
transactions, 3323
unsupported features, 3327

NDB Cluster processes, 3570
NDB Cluster programs, 3570
NDB Cluster replication, 3930

and --initial option, 3938
and circular replication, 3934
and NDB API database objects, 3933
and primary key, 3937
and single point of failure, 3951
and unique keys, 3937
backups, 3954
bidirectional replication, 3960
circular replication, 3960
concepts, 3932, 3932
conflict resolution, 3965
failover, 3951, 3952
gap event, 3934
known issues, 3933
loss of connection, 3933
point-in-time recovery, 3959
preparing, 3947
read conflict detection and resolution, 3976
requirements, 3932
reset-replica.pl backup automation script, 3956
restoring from backup, 3954
starting, 3949
storage engines other than NDB on replica, 3938
synchronization of source and replica, 3956
system tables used, 3940

NDB Cluster Replication
and NDB API replica status variables, 3931

NDB Cluster replication conflict resolution
exceptions table, 3971

NDB comment options, 2246
ndb option

4715

ndb_perror, 3684
perror, 649

NDB statistics variables
and NDB API counters, 3835

NDB statistics variables (NDB Cluster), 3829
scope, 3832
types, 3833

NDB storage engine (see NDB Cluster)
FAQ, 4505

NDB tables
and MySQL root user, 3927

NDB utilities
security issues, 3930

NDB$CFT_CAUSE, 3973
NDB$EPOCH(), 3968

limitations, 3969
NDB$EPOCH2(), 3970
NDB$EPOCH2_TRANS(), 3971
NDB$EPOCH_TRANS(), 3968, 3970
NDB$MAX(), 3968
NDB$MAX_DELETE_WIN(), 3968
NDB$OLD, 3967
NDB$OP_TYPE, 3972
NDB$ORIG_TRANSID, 3973
ndb-allow-copying-alter-table option

mysqld, 3505
ndb-batch-size option

mysqld, 3506
ndb-blob-read-batch-bytes option

mysqld, 3507
ndb-blob-write-batch-bytes option

mysqld, 3508
ndb-cluster-connection-pool option

mysqld, 3506
ndb-cluster-connection-pool-nodeids option

mysqld, 3507
ndb-connectstring option

mysqld, 3508
ndbd, 3578
ndbinfo_select_all, 3586
ndb_blob_tool, 3610
ndb_config, 3619
ndb_delete_all, 3628
ndb_desc, 3638
ndb_drop_index, 3642
ndb_drop_table, 3647
ndb_import, 3663
ndb_index_stat, 3674
ndb_mgm, 3604
ndb_mgmd, 3596
ndb_move_data, 3681
ndb_restore, 3705
ndb_select_all, 3725
ndb_select_count, 3731

4716

ndb_show_tables, 3736
ndb_waiter, 3751

ndb-default-column-format option (NDB Cluster), 3509
ndb-deferred-constraints option (NDB Cluster), 3509
ndb-distribution option (NDB Cluster), 3509
ndb-log-apply-status option

mysqld, 3510
ndb-log-empty-epochs option

mysqld, 3510
ndb-log-empty-update option

mysqld, 3511
ndb-log-exclusive-reads option

mysqld, 3511
ndb-log-fail-terminate option

mysqld, 3511
ndb-log-orig option

mysqld, 3511
ndb-log-transaction-id option

mysqld, 3512
ndb-log-update-as-write

conflict resolution, 3966
ndb-log-update-as-write option (NDB Cluster), 3512
ndb-log-update-minimal option (NDB Cluster), 3513
ndb-log-update-write, 3947
ndb-log-updated-only, 3947
ndb-log-updated-only option (NDB Cluster), 3513
ndb-mgmd-host option

ndbd, 3578
ndbinfo_select_all, 3586
ndb_blob_tool, 3610
ndb_config, 3619
ndb_delete_all, 3628
ndb_desc, 3638
ndb_drop_index, 3643
ndb_drop_table, 3647
ndb_import, 3663
ndb_index_stat, 3674
ndb_mgm, 3604
ndb_mgmd, 3596
ndb_move_data, 3681
ndb_restore, 3705
ndb_select_all, 3726
ndb_select_count, 3731
ndb_show_tables, 3736
ndb_waiter, 3751

ndb-mgmd-host option (NDB Cluster), 3514
ndb-nodegroup-map option

ndb_restore, 3706
ndb-nodeid option

mysqld, 3514
ndbd, 3578
ndbinfo_select_all, 3586
ndb_blob_tool, 3610
ndb_config, 3619

4717

ndb_delete_all, 3628
ndb_desc, 3638
ndb_drop_index, 3643
ndb_drop_table, 3648
ndb_import, 3663
ndb_index_stat, 3675
ndb_mgm, 3605
ndb_mgmd, 3596
ndb_move_data, 3682
ndb_restore, 3706
ndb_select_all, 3726
ndb_select_count, 3731
ndb_show_tables, 3736
ndb_waiter, 3751

ndb-optimization-delay option
mysqld, 3515

ndb-optimized-node-selection option
mysqld, 3515
ndbd, 3578
ndbinfo_select_all, 3586
ndb_blob_tool, 3611
ndb_config, 3619
ndb_delete_all, 3628
ndb_desc, 3638
ndb_drop_index, 3643
ndb_drop_table, 3648
ndb_import, 3664
ndb_index_stat, 3675
ndb_mgm, 3605
ndb_mgmd, 3597
ndb_move_data, 3682
ndb_restore, 3706
ndb_select_all, 3726
ndb_select_count, 3731
ndb_show_tables, 3736
ndb_waiter, 3751

ndb-transid-mysql-connection-map option
mysqld, 3515

ndb-wait-connected option
mysqld, 3516

ndb-wait-setup option
mysqld, 3516

ndbcluster option
mysqld, 3505

NDBCLUSTER storage engine (see NDB Cluster)
ndbd, 3570, 3570

-n option, 3579
character-sets-dir option, 3573
connect-delay option, 3573
connect-retries option, 3574
connect-retry-delay option, 3574
connect-string option, 3574
core-file option, 3574
defaults-extra-file option, 3575

4718

defaults-file option, 3575
defaults-group-suffix option, 3575
help option, 3575
initial option, 3576
initial-start option, 3577
install option, 3577
logbuffer-size option, 3577
login-path option, 3578
ndb-connectstring option, 3578
ndb-mgmd-host option, 3578
ndb-nodeid option, 3578
ndb-optimized-node-selection option, 3578
no-defaults option, 3579
nostart option, 3579
nowait-nodes option, 3579
print-defaults option, 3579
remove option, 3579
usage option, 3580
verbose option, 3580
version option, 3580

ndbd (NDB Cluster)
defined, 3287

(see also data node (NDB Cluster))
ndbinfo database, 3840

and query cache, 3843
basic usage, 3844
determining support for, 3840

ndbinfo_database system variable, 3536
ndbinfo_max_bytes system variable, 3536
ndbinfo_max_rows system variable, 3536
ndbinfo_offline system variable, 3537
ndbinfo_select_all, 3570, 3581

-l option, 3585
character-sets-dir option, 3584
connect-retries option, 3584
connect-retry-delay option, 3584
connect-string option, 3584
core-file option, 3584
defaults-extra-file option, 3584
defaults-file option, 3585
defaults-group-suffix option, 3585
delay option, 3585
help option, 3585
login-path option, 3585
loops option, 3585
ndb-connectstring option, 3586
ndb-mgmd-host option, 3586
ndb-nodeid option, 3586
ndb-optimized-node-selection option, 3586
no-defaults option, 3586
print-defaults option, 3586
usage option, 3587
version option, 3587

ndbinfo_show_hidden system variable, 3537

4719

ndbinfo_table_prefix system variable, 3537
ndbinfo_version system variable, 3538, 3538
ndbmtd, 3570, 3587

-n option, 3579
configuration, 3472, 3473, 3473
connect-delay option, 3573
connect-retries option, 3574
connect-retry-delay option, 3574
initial option, 3576
initial-start option, 3577
install option, 3577
logbuffer-size option, 3577
MaxNoOfExecutionThreads, 3469
nostart option, 3579
nowait-nodes option, 3579
remove option, 3579
trace files, 3588, 3588
verbose option, 3580

Ndb_api_adaptive_send_deferred_count status variable, 3538
Ndb_api_adaptive_send_deferred_count_session status variable, 3538
Ndb_api_adaptive_send_deferred_count_slave status variable, 3538
Ndb_api_adaptive_send_forced_count status variable, 3538
Ndb_api_adaptive_send_forced_count_session status variable, 3538
Ndb_api_adaptive_send_forced_count_slave status variable, 3539
Ndb_api_adaptive_send_unforced_count status variable, 3539
Ndb_api_adaptive_send_unforced_count_slave session variable, 3539
Ndb_api_adaptive_send_unforced_count_slave status variable, 3539
Ndb_api_bytes_received_count status variable, 3540
Ndb_api_bytes_received_count_session status variable, 3540
Ndb_api_bytes_received_count_slave status variable, 3540
Ndb_api_bytes_sent_count status variable, 3539
Ndb_api_bytes_sent_count_session status variable, 3539
Ndb_api_bytes_sent_count_slave status variable, 3539
Ndb_api_event_bytes_count status variable, 3541
Ndb_api_event_bytes_count_injector status variable, 3541
Ndb_api_event_data_count status variable, 3540
Ndb_api_event_data_count_injector status variable, 3540
Ndb_api_event_nondata_count status variable, 3541
Ndb_api_event_nondata_count_injector status variable, 3540
Ndb_api_pk_op_count status variable, 3541
Ndb_api_pk_op_count_session status variable, 3541
Ndb_api_pk_op_count_slave status variable, 3541
Ndb_api_pruned_scan_count status variable, 3542
Ndb_api_pruned_scan_count_session status variable, 3542
Ndb_api_pruned_scan_count_slave status variable, 3542
Ndb_api_range_scan_count status variable, 3542
Ndb_api_range_scan_count_session status variable, 3542
Ndb_api_range_scan_count_slave status variable, 3542
Ndb_api_read_row_count status variable, 3543
Ndb_api_read_row_count_session status variable, 3543
Ndb_api_read_row_count_slave status variable, 3543
Ndb_api_scan_batch_count status variable, 3544
Ndb_api_scan_batch_count_session status variable, 3543
Ndb_api_scan_batch_count_slave status variable, 3543

4720

Ndb_api_table_scan_count status variable, 3544
Ndb_api_table_scan_count_session status variable, 3544
Ndb_api_table_scan_count_slave status variable, 3544
Ndb_api_trans_abort_count status variable, 3545
Ndb_api_trans_abort_count_session status variable, 3544
Ndb_api_trans_abort_count_slave status variable, 3544
Ndb_api_trans_close_count status variable, 3545
Ndb_api_trans_close_count_session status variable, 3545
Ndb_api_trans_close_count_slave status variable, 3545
Ndb_api_trans_commit_count status variable, 3546
Ndb_api_trans_commit_count_session status variable, 3545
Ndb_api_trans_commit_count_slave status variable, 3546
Ndb_api_trans_local_read_row_count status variable, 3546
Ndb_api_trans_local_read_row_count_session status variable, 3546
Ndb_api_trans_local_read_row_count_slave status variable, 3546
Ndb_api_trans_start_count status variable, 3547
Ndb_api_trans_start_count_session status variable, 3546
Ndb_api_trans_start_count_slave status variable, 3547
Ndb_api_uk_op_count status variable, 3547
Ndb_api_uk_op_count_session status variable, 3547
Ndb_api_uk_op_count_slave status variable, 3547
Ndb_api_wait_exec_complete_count status variable, 3548
Ndb_api_wait_exec_complete_count_session status variable, 3547
Ndb_api_wait_exec_complete_count_slave status variable, 3548
Ndb_api_wait_meta_request_count status variable, 3548
Ndb_api_wait_meta_request_count_session status variable, 3548
Ndb_api_wait_meta_request_count_slave status variable, 3548
Ndb_api_wait_nanos_count status variable, 3549
Ndb_api_wait_nanos_count_session status variable, 3548
Ndb_api_wait_nanos_count_slave status variable, 3549
Ndb_api_wait_scan_result_count status variable, 3549
Ndb_api_wait_scan_result_count_session status variable, 3549
Ndb_api_wait_scan_result_count_slave status variable, 3549
ndb_apply_status table (NDB Cluster replication), 3941, 3952

(see also NDB Cluster replication)
ndb_autoincrement_prefetch_sz system variable, 3517
ndb_binlog_index table

system table, 970
ndb_binlog_index table (NDB Cluster replication), 3942, 3953

(see also NDB Cluster replication)
ndb_blob_tool, 3570, 3606

add-missing option, 3608
character-sets-dir option, 3608
check-missing option, 3608
check-orphans option, 3608
connect-retries option, 3608
connect-retry-delay option, 3608
connect-string option, 3609
core-file option, 3609
database option, 3609
defaults-extra-file option, 3609
defaults-file option, 3609
defaults-group-suffix option, 3609
delete-orphans option, 3610

4721

dump-file option, 3610
help option, 3610
login-path option, 3610
ndb-connectstring option, 3610
ndb-mgmd-host option, 3610
ndb-nodeid option, 3610
ndb-optimized-node-selection option, 3611
no-defaults option, 3611
print-defaults option, 3611
usage option, 3611
verbose option, 3611
version option, 3611

ndb_cache_check_time
deprecated features, 20

ndb_cache_check_time system variable, 3517
ndb_clear_apply_status system variable, 3518
Ndb_cluster_node_id status variable, 3550
NDB_COLUMN, 2247
ndb_config, 3570, 3612

character-sets-dir option, 3615
config-file option, 3616
configinfo option, 3615
config_from_node option, 3616
connect-retries option, 3616
connect-retry-delay option, 3616
connect-string option, 3617
connections option, 3616
core-file option, 3617
defaults-extra-file option, 3617
defaults-file option, 3617
defaults-group-suffix option, 3617
diff-default option, 3617
fields option, 3618
help option, 3618
host option, 3618
login-path option, 3618
mycnf option, 3618
ndb-connectstring option, 3619
ndb-mgmd-host option, 3619
ndb-nodeid option, 3619
ndb-optimized-node-selection option, 3619
no-defaults option, 3619
nodeid option, 3619
nodes option, 3620
print-defaults option, 3620
query option, 3620, 3620
query-all option, 3620
rows option, 3620
system option, 3621
type option, 3621
usage option, 3621
version option, 3621
xml option, 3621

Ndb_config_from_host status variable, 3550

4722

Ndb_config_from_port status variable, 3550
Ndb_conflict_fn_epoch status variable, 3550
Ndb_conflict_fn_epoch2 status variable, 3550
Ndb_conflict_fn_epoch2_trans status variable, 3550
Ndb_conflict_fn_epoch_trans status variable, 3550
Ndb_conflict_fn_max status variable, 3550
Ndb_conflict_fn_max_del_win status variable, 3551
Ndb_conflict_fn_old status variable, 3551
Ndb_conflict_last_conflict_epoch status variable, 3551
Ndb_conflict_last_stable_epoch status variable, 3551
Ndb_conflict_reflected_op_discard_count status variable, 3551
Ndb_conflict_reflected_op_prepare_count status variable, 3551
Ndb_conflict_refresh_op_count status variable, 3551
Ndb_conflict_trans_conflict_commit_count status variable, 3552
Ndb_conflict_trans_detect_iter_count status variable, 3552
Ndb_conflict_trans_reject_count status variable, 3552
Ndb_conflict_trans_row_conflict_count status variable, 3551
Ndb_conflict_trans_row_reject_count status variable, 3552
ndb_cpcd, 3570, 3624
ndb_data_node_neighbour system variable, 3518
ndb_default_column_format system variable, 3519
ndb_deferred_constraints system variable, 3519
ndb_delete_all, 3570, 3624

character-sets-dir option, 3626
connect-retries option, 3626
connect-retry-delay option, 3626
connect-string option, 3626
core-file option, 3627
database option, 3627
defaults-extra-file option, 3627
defaults-file option, 3627
defaults-group-suffix option, 3627
diskscan option, 3627
help option, 3627
login-path option, 3628
ndb-connectstring option, 3628
ndb-mgmd-host option, 3628
ndb-nodeid option, 3628
ndb-optimized-node-selection option, 3628
no-defaults option, 3628
print-defaults option, 3628
transactional option, 3629
tupscan option, 3629
usage option, 3629
version option, 3629

ndb_desc, 3570, 3629
auto-inc option, 3636
blob-info option, 3636
character-sets-dir option, 3636
connect-retries option, 3636
connect-retry-delay option, 3636
connect-string option, 3636
context option, 3637
core-file option, 3637

4723

database option, 3637
defaults-extra-file option, 3637
defaults-file option, 3637
defaults-group-suffix option, 3637
extra-node-info option, 3637
extra-partition-info option, 3637
help option, 3638
login-path option, 3638
ndb-connectstring option, 3638
ndb-mgmd-host option, 3638
ndb-nodeid option, 3638
ndb-optimized-node-selection option, 3638
no-defaults option, 3638
print-defaults option, 3639
retries option, 3639
table option, 3639
unqualified option, 3639
usage option, 3639
version option, 3639

ndb_distribution system variable, 3520
ndb_dist_priv.sql, 3826
ndb_drop_index, 3570, 3639

character-sets-dir option, 3641
connect-retries option, 3641
connect-retry-delay option, 3641
connect-string option, 3641
core-file option, 3641
database option, 3641
defaults-extra-file option, 3642
defaults-file option, 3642
defaults-group-suffix option, 3642
help option, 3642
login-path option, 3642
ndb-connectstring option, 3642
ndb-mgmd-host option, 3643
ndb-nodeid option, 3643
ndb-optimized-node-selection option, 3643
no-defaults option, 3643
print-defaults option, 3643
usage option, 3643
version option, 3643

ndb_drop_table, 3570, 3644
character-sets-dir option, 3646
connect-retries option, 3646
connect-retry-delay option, 3646
connect-string option, 3646
core-file option, 3646
database option, 3646
defaults-extra-file option, 3646
defaults-file option, 3647
defaults-group-suffix option, 3647
help option, 3647
login-path option, 3647
ndb-connectstring option, 3647

4724

ndb-mgmd-host option, 3647
ndb-nodeid option, 3648
ndb-optimized-node-selection option, 3648
no-defaults option, 3648
print-defaults option, 3648
usage option, 3648
version option, 3648

Ndb_epoch_delete_delete_count status variable, 3552
ndb_error_reporter, 3570, 3648

connection-timeout option, 3649
dry-scp option, 3649
fs option, 3649
help option, 3649
options, 3649
skip-nodegroup option, 3650

ndb_eventbuffer_free_percent system variable, 3520
ndb_eventbuffer_max_alloc system variable, 3520
Ndb_execute_count status variable, 3552
ndb_extra_logging system variable, 3521
ndb_force_send system variable, 3521
ndb_fully_replicated system variable, 3521
ndb_import, 3570, 3650

abort-on-error option, 3655
ai-increment option, 3655
ai-offset option, 3655
ai-prefetch-sz option, 3656
character-sets-dir option, 3656
connect-retries option, 3656
connect-retry-delay option, 3656
connect-string option, 3657
connections option, 3657
continue option, 3657
core-file option, 3657
csvopt option, 3657
db-workers option, 3658
defaults-extra-file option, 3658
defaults-file option, 3658
defaults-group-suffix option, 3659
errins-delay option, 3659
errins-type option, 3659
fields-enclosed-by option, 3659
fields-escaped-by option, 3660
fields-optionally-enclosed-by option, 3660
fields-terminated-by option, 3660
help option, 3660
idlesleep option, 3660
idlespin option, 3661
ignore-lines option, 3661
input-type option, 3661
input-workers option, 3661
keep-state option, 3662
lines-terminated-by option, 3662
log-level option, 3662
login-path option, 3662

4725

max-rows option, 3662
monitor option, 3663
ndb-connectstring option, 3663
ndb-mgmd-host option, 3663
ndb-nodeid option, 3663
ndb-optimized-node-selection option, 3664
no-asynch option, 3664
no-defaults option, 3664
no-hint option, 3664
opbatch option, 3664
opbytes option, 3664
output-type option, 3665
output-workers option, 3665
pagecnt option, 3665
pagesize option, 3665
polltimeout option, 3666
print-defaults option, 3666
rejects option, 3666
resume option, 3666
rowbatch option, 3667
rowbytes option, 3667
state-dir option, 3667
stats option, 3667
tempdelay option, 3667
temperrors option, 3668
usage option, 3668
verbose option, 3668
version option, 3668

ndb_index_stat, 3570, 3669
-d option, 3673
character-sets-dir option, 3672
connect-retries option, 3672
connect-retry-delay option, 3672
connect-string option, 3673
core-file option, 3673
database option, 3673
defaults-extra-file option, 3673
defaults-file option, 3673
defaults-group-suffix option, 3673
delete option, 3673
dump option, 3674
example, 3669
help option, 3674
interpreting output, 3669
login-path option, 3674
loops option, 3674
ndb-connectstring option, 3674
ndb-mgmd-host option, 3674
ndb-nodeid option, 3675
ndb-optimized-node-selection option, 3675
no-defaults option, 3675
print-defaults option, 3675
query option, 3675
sys-check option, 3676

4726

sys-create option, 3675
sys-create-if-not-exist option, 3676
sys-create-if-not-valid option, 3676
sys-drop option, 3675
sys-skip-events option, 3676
sys-skip-tables option, 3676
update option, 3676
usage option, 3676
verbose option, 3676
version option, 3676

ndb_index_stat_enable system variable, 3522
ndb_index_stat_option system variable, 3522
ndb_join_pushdown system variable, 3524
Ndb_last_commit_epoch_server status variable, 3552
Ndb_last_commit_epoch_session status variable, 3552
ndb_log_apply_status system variable, 3526
ndb_log_apply_status variable (NDB Cluster replication), 3952
ndb_log_bin system variable, 3526
ndb_log_binlog_index system variable, 3526
ndb_log_empty_epochs system variable, 3527
ndb_log_empty_update system variable, 3527
ndb_log_exclusive_reads (system variable), 3977
ndb_log_exclusive_reads system variable, 3527
ndb_log_orig system variable, 3527
ndb_log_transaction_id system variable, 3528
ndb_mgm, 3570, 3600 (see mgm)

-e option, 3604
character-sets-dir option, 3602
connect-retries option, 3602
connect-retry-delay option, 3603
connect-string option, 3603
core-file option, 3603
defaults-extra-file option, 3603
defaults-file option, 3603
defaults-group-suffix option, 3603
execute option, 3604
help option, 3604
login-path option, 3604
ndb-connectstring option, 3604
ndb-mgmd-host option, 3604
ndb-nodeid option, 3605
ndb-optimized-node-selection option, 3605
no-defaults option, 3605
print-defaults option, 3605
usage option, 3605
using with MySQL Cluster Manager, 3755
version option, 3606

ndb_mgm (NDB Cluster management node client), 3352
ndb_mgmd, 3570 (see mgmd)

-d option, 3594
-f option, 3592
-P option, 3599
-v option, 3600
bind-address option, 3591

4727

character-sets-dir option, 3591
config-cache option, 3591
config-file option, 3592
configdir option, 3593
connect-retries option, 3593
connect-retry-delay option, 3593
connect-string option, 3593
core-file option, 3594
daemon option, 3594
defaults-extra-file option, 3594
defaults-file option, 3594
defaults-group-suffix option, 3594
help option, 3594
initial option, 3595
install option, 3595
interactive option, 3595
log-name option, 3596
login-path option, 3596
mycnf option, 3596
ndb-connectstring option, 3596
ndb-mgmd-host option, 3596
ndb-nodeid option, 3596
ndb-optimized-node-selection option, 3597
no-defaults option, 3597
no-nodeid-checks option, 3597
nodaemon option, 3597
nowait-nodes option, 3597
print-defaults option, 3599
print-full-config option, 3599
reload option, 3599
remove option, 3599
skip-config-file option, 3600
usage option, 3600
verbose option, 3600
version option, 3600

ndb_mgmd (NDB Cluster process), 3588
ndb_mgmd (NDB Cluster)

defined, 3287
(see also management node (NDB Cluster))

ndb_move_data, 3570, 3677
abort-on-error option, 3679
character-sets-dir option, 3679
connect-retries option, 3680
connect-retry-delay option, 3679
connect-string option, 3680
core-file option, 3680
database option, 3680
defaults-extra-file option, 3680
defaults-file option, 3680
defaults-group-suffix option, 3680
drop-source option, 3681
error-insert option, 3681
exclude-missing-columns option, 3681
help option, 3681

4728

login-path option, 3681
lossy-conversions option, 3681
ndb-connectstring option, 3681
ndb-mgmd-host option, 3681
ndb-nodeid option, 3682
ndb-optimized-node-selection option, 3682
no-defaults option, 3682
print-defaults option, 3682
promote-attributes option, 3682
staging-tries option, 3682
usage option, 3683
verbose option, 3683
version option, 3683

Ndb_number_of_data_nodes status variable, 3552
ndb_optimized_node_selection system variable, 3528
ndb_perror, 3683

help option, 3684
ndb option, 3684
silent option, 3684
verbose option, 3685
version option, 3685

ndb_print_backup_file, 3570, 3685
ndb_print_file, 3570, 3685
ndb_print_frag_file, 3570, 3686
ndb_print_schema_file, 3570, 3687
ndb_print_sys_file, 3570, 3687
Ndb_pruned_scan_count status variable, 3553
Ndb_pushed_queries_defined status variable, 3552
Ndb_pushed_queries_dropped status variable, 3553
Ndb_pushed_queries_executed status variable, 3553
Ndb_pushed_reads status variable, 3553
ndb_read_backup

and NDB_TABLE, 2249
ndb_read_backup system variable, 3529
ndb_recv_thread_activation_threshold system variable, 3530
ndb_recv_thread_cpu_mask system variable, 3530
ndb_redo_log_reader, 3687

dump option, 3689
lap option, 3689
twiddle option, 3690

ndb_replication table, 3943
ndb_report_thresh_binlog_epoch_slip system variable, 3530
ndb_report_thresh_binlog_mem_usage system variable, 3531
ndb_restore, 3690

allow-pk-changes option, 3695
and circular replication, 3962
and distributed privileges, 3828
append option, 3697
backup-path option, 3697
backupid option, 3697
character-sets-dir option, 3698
connect option, 3698
connect-retries option, 3698
connect-retry-delay option, 3698

4729

connect-string option, 3698
core-file option, 3699
defaults-extra-file option, 3699
defaults-file option, 3699
defaults-group-suffix option, 3699
disable-indexes option, 3699
dont-ignore-systab-0 option, 3699
errors, 3716
exclude-databases option, 3699
exclude-intermediate-sql-tables option, 3700
exclude-missing-columns option, 3700
exclude-missing-tables option, 3700
exclude-tables option, 3700
fields-enclosed-by option, 3702
fields-optionally-enclosed-by option, 3702
fields-terminated-by option, 3702
help option, 3703
hex option, 3703
ignore-extended-pk-updates option, 3703
include-databases option, 3703
include-tables option, 3704
lines-terminated-by option, 3704
login-path option, 3705
lossy-conversions option, 3705
ndb-connectstring option, 3705
ndb-mgmd-host option, 3705
ndb-nodegroup-map option, 3706
ndb-nodeid option, 3706
ndb-optimized-node-selection option, 3706
no-binlog option, 3706
no-defaults option, 3706
no-restore-disk-objects option, 3706
no-upgrade option, 3706
nodeid option, 3706
num-slices option, 3707
parallelism option, 3707
preserve-trailing-spaces option, 3708
print option, 3708
print-data option, 3708
print-defaults option, 3709
print-log option, 3709
print-meta option, 3709
print-sql-log option, 3709
progress-frequency option, 3709
promote-attributes option, 3709
rebuild-indexes option, 3710
remap-column option, 3711
restore-data option, 3712
restore-epoch option, 3712
restore-meta option, 3712
restore-privilege-tables option, 3713
rewrite-database option, 3713
skip-broken-objects option, 3713
skip-table-check option, 3714

4730

skip-unknown-objects option, 3714
slice-id option, 3714
tab option, 3714
timestamp-printouts option, 3715
typical and required options, 3715
usage option, 3715
verbose option, 3715
version option, 3715

ndb_row_checksum system variable, 3531
Ndb_scan_count status variable, 3553
ndb_select_all, 3570, 3721

character-sets-dir option, 3723
connect-retries option, 3723
connect-retry-delay option, 3723
connect-string option, 3723
core-file option, 3724
database option, 3724
defaults-extra-file option, 3724
defaults-file option, 3724
defaults-group-suffix option, 3724
delimiter option, 3724
descending option, 3724
disk option, 3724
gci option, 3725
gci64 option, 3725
header option, 3725
help option, 3725
lock option, 3725
login-path option, 3725
ndb-connectstring option, 3725
ndb-mgmd-host option, 3726
ndb-nodeid option, 3726
ndb-optimized-node-selection option, 3726
no-defaults option, 3726
nodata option, 3725
order option, 3726
parallelism option, 3726
print-defaults option, 3726
rowid option, 3726
tupscan option, 3726
usage option, 3727
useHexFormat option, 3727
version option, 3727

ndb_select_count, 3570, 3728
character-sets-dir option, 3729
connect-retries option, 3729
connect-retry-delay option, 3730
connect-string option, 3730
core-file option, 3730
defaults-extra-file option, 3730
defaults-file option, 3730
defaults-group-suffix option, 3730
help option, 3731
login-path option, 3731

4731

ndb-connectstring option, 3731
ndb-mgmd-host option, 3731
ndb-nodeid option, 3731
ndb-optimized-node-selection option, 3731
no-defaults option, 3732
print-defaults option, 3732
usage option, 3732
version option, 3732

ndb_setup.py (NO LONGER SUPPORTED), 3570
ndb_show_foreign_key_mock_tables system variable, 3532
ndb_show_tables, 3570, 3732

character-sets-dir option, 3734
connect-retries option, 3734
connect-retry-delay option, 3734
connect-string option, 3734
core-file option, 3735
database option, 3735
defaults-extra-file option, 3735
defaults-file option, 3735
defaults-group-suffix option, 3735
help option, 3735
login-path option, 3736
loops option, 3736
ndb-connectstring option, 3736
ndb-mgmd-host option, 3736
ndb-nodeid option, 3736
ndb-optimized-node-selection option, 3736
no-defaults option, 3736
parsable option, 3737
print-defaults option, 3737
show-temp-status option, 3737
type option, 3737
unqualified option, 3737
usage option, 3737
version option, 3737

ndb_size.pl, 3570, 3737
ndb_size.pl script, 1863
ndb_slave_conflict_role system variable, 3532
Ndb_slave_max_replicated_epoch status variable, 3553
Ndb_system_name status variable, 3553
NDB_TABLE, 2214, 2249
ndb_table_no_logging system variable, 3532
ndb_table_temporary system variable, 3533
ndb_top, 3570, 3740

color option, 3742
defaults-extra-file option, 3743
defaults-file option, 3743
defaults-group-suffix option, 3743
graph option, 3743
help option, 3743
host option, 3743
login-path option, 3744
measured-load option, 3744
no-defaults option, 3744

4732

node-id option, 3744
os-load option, 3744
passwd option, 3744
password option, 3745
port option, 3745
print-defaults option, 3745
sleep-time option, 3745
socket option, 3745
sort option, 3745
text option, 3746
usage option, 3746
user option, 3746

ndb_transid_mysql_connection_map
INFORMATION_SCHEMA table, 4125

ndb_use_copying_alter_table system variable, 3533
ndb_use_exact_count system variable, 3533
ndb_use_transactions system variable, 3533
ndb_version system variable, 3534
ndb_version_string system variable, 3534
ndb_waiter, 3570, 3747

character-sets-dir option, 3749
connect-retries option, 3749
connect-retry-delay option, 3750
connect-string option, 3750
core-file option, 3750
defaults-extra-file option, 3750
defaults-file option, 3750
defaults-group-suffix option, 3750
help option, 3751
login-path option, 3751
ndb-connectstring option, 3751
ndb-mgmd-host option, 3751
ndb-nodeid option, 3751
ndb-optimized-node-selection option, 3751
no-contact option, 3751
no-defaults option, 3752
not-started option, 3752
nowait-nodes option, 3752
print-defaults option, 3752
single-user option, 3752
timeout option, 3752
usage option, 3752
version option, 3752
wait-nodes option, 3753

negative values, 1654
neighbor page, 5341
nested queries, 2327
Nested-Loop join algorithm, 1459
nested-loop join algorithm, 1462
.NET, 5340
net-buffer-length option

mysql, 410
mysqldump, 496
mysqlpump, 529

4733

mysql_upgrade, 390
netmask notation

in account names, 1112
network ports

and NDB Cluster, 3926
net_buffer_length system variable, 830
net_read_timeout system variable, 830
net_retry_count system variable, 830
net_write_timeout system variable, 831
new features, 9

ALTER TABLE partition validation, 17
character sets, 17
condition handling, 15
generated columns, 16
Group Replication and Performance Schema, 18
Group Replication SQL statements, 18
HANDLER, 17
index condition pushdown, 17
InnoDB, 11
JSON, 14
logging, 16
MeCab full-text parser plugin, 11
multi-source replication, 18
mysql client, 16
mysqlbinlog, 16
ngram full-text parser plugin, 11
online ALTER TABLE, 11
optimizer, 15
replication source, 17
security, 9
show_compatibility_56, 15
source dump thread, 17
SQL mode, 10
sys schema, 15
system and status variables, 15
test suite, 18
triggers, 16

new features in NDB Cluster, 3294
new system variable, 831
newline (\n), 1653, 2106, 2295
next-key lock, 2612, 5341

InnoDB, 2628, 2779
NFS

InnoDB, 2633
ngram full-text parser plugin

new features, 11
ngram_token_size system variable, 831
nice option

mysqld_safe, 348
no matching rows, 4573
no-asynch option

ndb_import, 3664
no-auto-rehash option

mysql, 410

4734

no-autocommit option
mysqldump, 498

no-beep option
mysql, 410
mysqladmin, 445

no-binlog option
ndb_restore, 3706

no-check option
innochecksum, 571

no-contact option
ndb_waiter, 3751

no-create-db option
mysqldump, 481
mysqlpump, 530

no-create-info option
mysqldump, 482
mysqlpump, 530

no-data option
mysqldump, 494

no-defaults option, 318
myisamchk, 581
mysql, 411
mysqladmin, 445
mysqlbinlog, 624
mysqlcheck, 460
mysqld, 753
mysqldump, 480
mysqld_multi, 355
mysqld_safe, 348
mysqlimport, 510
mysqlpump, 530
mysqlshow, 546
mysqlslap, 562
mysql_install_db, 369
mysql_plugin, 372
mysql_secure_installation, 376
mysql_upgrade, 390
my_print_defaults, 647
ndbd, 3579
ndbinfo_select_all, 3586
ndb_blob_tool, 3611
ndb_config, 3619
ndb_delete_all, 3628
ndb_desc, 3638
ndb_drop_index, 3643
ndb_drop_table, 3648
ndb_import, 3664
ndb_index_stat, 3675
ndb_mgm, 3605
ndb_mgmd, 3597
ndb_move_data, 3682
ndb_restore, 3706
ndb_select_all, 3726
ndb_select_count, 3732

4735

ndb_show_tables, 3736
ndb_top, 3744
ndb_waiter, 3752

no-drop option
mysqlslap, 562

no-hint option
ndb_import, 3664

no-log option
mysqld_multi, 356

no-nodeid-checks option
ndb_mgmd, 3597

no-restore-disk-objects option
ndb_restore, 3706

no-set-names option
mysqldump, 485

no-tablespaces option
mysqldump, 482

no-upgrade option
ndb_restore, 3706

nodaemon option
ndb_mgmd, 3597

nodata option
ndb_select_all, 3725

node groups (NDB Cluster), 3290
node logs (NDB Cluster), 3780
node-id option

ndb_top, 3744
NodeGroup, 3404
NodeId, 3394, 3402, 3494
nodeid option

ndb_config, 3619
ndb_restore, 3706

NodeId1, 3555, 3564
NodeId2, 3555, 3564
NodeIdServer, 3556, 3565
NODELOG DEBUG command (NDB Cluster), 3756
NODERESTART Events (NDB Cluster), 3785
nodes

ndbinfo table, 3886
nodes option

ndb_config, 3620
NOLOGGING, 2249
NOLOGGING (NDB_TABLE)

NDB Cluster, 2249
non-locking read, 5341
non-repeatable read, 5341
nonblocking I/O, 5341
nondelimited strings, 1656
nondeterministic functions

optimization, 1486
replication, 1486

nonlogging tables
NDB Cluster, 2249, 3532

Nontransactional tables, 4572

4736

NoOfFragmentLogFiles, 3426
NoOfFragmentLogParts, 3473
NoOfReplicas, 3405
nopager command

mysql, 422
normalized, 5341
normalized JSON values, 1851
normalize_statement() MySQL Enterprise Firewall function, 1380
NoSQL, 3251, 5342
NoSQL database

MySQL as a, 3253
nostart option

ndbd, 3579
ndbmtd, 3579

NOT
logical, 1906

NOT BETWEEN, 1902
not equal (!=), 1900
not equal (<>), 1900
NOT EXISTS

with subqueries, 2332
NOT EXISTS() operator, 1902
NOT IN, 1903
NOT LIKE, 1964
NOT NULL

constraint, 55
NOT NULL constraint, 5342
NOT REGEXP, 1966
not-started option

ndb_waiter, 3752
notee command

mysql, 422
Not_flushed_delayed_rows status variable, 921
NOW(), 1933
NOWAIT (START BACKUP command), 3810
nowait-nodes option

ndbd, 3579
ndbmtd, 3579
ndb_mgmd, 3597
ndb_waiter, 3752

nowarning command
mysql, 422

NO_AUTO_CREATE_USER SQL mode, 935
NO_AUTO_VALUE_ON_ZERO SQL mode, 935
NO_BACKSLASH_ESCAPES SQL mode, 936
NO_DIR_IN_CREATE SQL mode, 936
NO_ENGINE_SUBSTITUTION SQL mode, 936
NO_FIELD_OPTIONS

deprecated features, 19
NO_FIELD_OPTIONS SQL mode, 936
NO_KEY_OPTIONS

deprecated features, 19
NO_KEY_OPTIONS SQL mode, 936
NO_TABLE_OPTIONS

4737

deprecated features, 19
NO_TABLE_OPTIONS SQL mode, 936
NO_UNSIGNED_SUBTRACTION SQL mode, 936
NO_ZERO_DATE

deprecated features, 19
NO_ZERO_DATE SQL mode, 938
NO_ZERO_IN_DATE

deprecated features, 19
NO_ZERO_IN_DATE SQL mode, 938
NUL, 1652, 2295
NULL, 284, 4570, 5342

ORDER BY, 1478, 2314
testing for null, 1900, 1902, 1904, 1904, 1910

null literal
JSON, 1847

NULL value, 284, 1660
ORDER BY, 1660

NULL values
and AUTO_INCREMENT columns, 4571
and indexes, 2207
and TIMESTAMP columns, 4571
vs. empty values, 4570

NULL-complemented row, 1463, 1467
null-rejected condition, 1467
NULLIF(), 1910
num-slices option

ndb_restore, 3707
Numa, 3466
number-char-cols option

mysqlslap, 562
number-int-cols option

mysqlslap, 562
number-of-queries option

mysqlslap, 563
numbers, 1654
NUMERIC data type, 1795
numeric data types, 1792

storage requirements, 1863
numeric literals

approximate-value, 1654, 2142
exact-value, 1654, 2142

numeric precision, 1792
numeric scale, 1792
numeric-dump-file option

resolve_stack_dump, 647
NumInteriorRings(), 2066
NumPoints(), 2063
NVARCHAR data type, 1817

O
object

JSON, 1847
objects

4738

stored, 4057
objects_summary_global_by_type table

performance_schema, 4330
obtaining information about partitions, 4030
OCT(), 1953
OCTET_LENGTH(), 1953
ODBC, 5342
ODBC compatibility, 867, 1664, 1795, 1893, 1904, 2208, 2322
ODBC_INCLUDES option

CMake, 206
ODBC_LIB_DIR option

CMake, 206
ODirect, 3436
ODirectSyncFlag, 3436
OFF

plugin activation option, 999
off-page column, 5343
offline_mode system variable, 832
offset option

mysqlbinlog, 624
OGC (see Open Geospatial Consortium)
OLAP, 2122
old system variable, 832
old-style-user-limits option

mysqld, 753
old_alter_table system variable, 833
OLD_PASSWORD()

removed features, 24
old_passwords

deprecated features, 19
removed features, 24

old_passwords system variable, 833
OLTP, 5343
ON

plugin activation option, 999
ON DUPLICATE KEY

INSERT modifier, 2284
ON DUPLICATE KEY UPDATE, 2280
ON versus USING

joins, 2324
one-database option

mysql, 411
Ongoing_anonymous_gtid_violating_transaction_count status variable, 921
Ongoing_anonymous_transaction_count status variable, 921
Ongoing_automatic_gtid_violating_transaction_count status variable, 921
online, 5343
online ALTER TABLE

new features, 11
online DDL, 2707, 2708, 5343

concurrency, 2720
limitations, 2725

online location of manual, 2
online upgrades and downgrades (NDB Cluster), 3794

order of node updates, 3795

4739

only-print option
mysqlslap, 563

ONLY_FULL_GROUP_BY
SQL mode, 2126

ONLY_FULL_GROUP_BY SQL mode, 938
opbatch option

ndb_import, 3664
opbytes option

ndb_import, 3664
OPEN, 2396
Open Geospatial Consortium, 1829
Open Source

defined, 5
open tables, 438, 1525
open-files-limit option

mysqlbinlog, 625
mysqld_safe, 348

Opened_files status variable, 921
Opened_tables status variable, 922
Opened_table_definitions status variable, 922
OpenGIS, 1829
opening

tables, 1525
Opening master dump table

thread state, 1633
Opening mysql.ndb_apply_status

thread state, 1633
Opening tables

thread state, 1625
OpenLDAP configuration

ldap.conf file, 1211
opens, 438
OpenSSL, 193, 1148

compared to yaSSL, 1171
OpenSSL versus yaSSL

detecting, 1172
Open_files status variable, 921
open_files_limit system variable, 834
Open_streams status variable, 921
Open_tables status variable, 921
Open_table_definitions status variable, 921
operating systems

file-size limits, 1528
supported, 62

operations
arithmetic, 1912

operations_per_fragment
ndbinfo table, 3888

operators, 1870
arithmetic, 2018
assignment, 1697, 1907
bit, 2018
cast, 1911, 2000
logical, 1905

4740

precedence, 1898
string, 1944
string comparison, 1962

.OPT file, 5342
opt option

mysqldump, 496
optimistic, 5343
optimization, 1443, 1538

Batched Key Access, 1470, 1472
benchmarking, 1617
BLOB types, 1524
Block Nested-Loop, 1470, 1471
character and string types, 1523
data change statements, 1505
data size, 1521
DELETE statements, 1506
derived tables, 1489
disk I/O, 1606
foreign keys, 1509
full table scans, 1488
full-text queries, 1510
indexes, 1507
INFORMATION_SCHEMA queries, 1500
InnoDB tables, 1532
INSERT statements, 1505
many tables, 1525
MEMORY storage engine, 1510
MEMORY tables, 1547
memory usage, 1611
Multi-Range Read, 1469
MyISAM tables, 1543
nondeterministic functions, 1486
numeric types, 1523
Performance Schema queries, 1502
PERFORMANCE_SCHEMA, 1619
primary keys, 1509
REPAIR TABLE statements, 1545
SELECT statements, 1445
spatial queries, 1510
SQL statements, 1444
subqueries, 1489
subquery, 1493
subquery materialization, 1492
tips, 1507
UPDATE statements, 1506
views, 1489
WHERE clauses, 1446

optimization (NDB), 1455, 3524
optimizations, 1453

LIMIT clause, 1483
row constructors, 1487

optimize option
mysqlcheck, 461

OPTIMIZE TABLE

4741

and partitioning, 4029
OPTIMIZE TABLE statement, 2460
optimizer, 5344

and replication, 3148
controlling, 1566
cost model, 1580
new features, 15
query plan evaluation, 1566
switchable optimizations, 1566

optimizer hints, 1571
optimizer statistics

for InnoDB tables, 2659
Optimizer Statistics, 2666
optimizer_prune_level system variable, 835
optimizer_search_depth system variable, 835
optimizer_switch system variable, 835, 1566
OPTIMIZER_TRACE

INFORMATION_SCHEMA table, 4126
OPTIMIZER_TRACE option

CMake, 211
optimizer_trace system variable, 837
optimizer_trace_features system variable, 838
optimizer_trace_limit system variable, 838
optimizer_trace_max_mem_size system variable, 838
optimizer_trace_offset system variable, 839
optimizing

DISTINCT, 1482
filesort, 1478, 1581
GROUP BY, 1480
LEFT JOIN, 1466
ORDER BY, 1476
outer joins, 1466
RIGHT JOIN, 1466
tables, 1438
thread state, 1626

option, 5344
option file, 5344
option files, 311, 1143

.my.cnf, 311, 313, 337, 1045, 1079, 1143

.mylogin.cnf, 311, 605
C:\my.cnf, 1045
escape sequences, 314
my.cnf, 3132

option prefix
--disable, 319
--enable, 319
--loose, 319
--maximum, 319
--skip, 319

option prefixes
removed features, 24

options
boolean, 319
CMake, 194

4742

command-line
mysql, 394
mysqladmin, 438

embedded server, 4478
libmysqld, 4478
myisamchk, 580
mysqld, 659
provided by MySQL, 269
replication, 3132

OR, 299, 1453
bitwise, 2018
logical, 1906

OR Index Merge optimization, 1453
ORACLE

deprecated features, 19
Oracle compatibility, 48, 2122, 2166, 2538
Oracle Key Vault, 2726

keyring_okv keyring plugin, 1264
ORACLE SQL mode, 941
ORD(), 1953
ORDER BY, 281, 2170, 2313

maximum sort length, 2314
NULL, 1478, 2314
NULL value, 1660

ORDER BY optimization, 1476
order option

ndb_select_all, 3726
order-by-primary option

mysqldump, 498
orphan stored objects, 4082
os-load option

ndb_top, 3744
Out of resources error

and partitioned tables, 4044
OUT parameter

condition handling, 2424
out-dir option

comp_err, 361
out-file option

comp_err, 361
out-of-range handling, 1798
outer joins

optimizing, 1466
OUTFILE, 2318
output-type option

ndb_import, 3665
output-workers option

ndb_import, 3665
overflow handling, 1798
overflow page, 5344
Overlaps(), 2078
OverloadLimit, 3556, 3565
overview, 1

4743

P
PAD SPACE collations, 1740, 1820
PAD_CHAR_TO_FULL_LENGTH SQL mode, 939
page, 5344
page cleaner, 5344
page compression, 2687
page option

innochecksum, 570
page size, 5345

InnoDB, 2587
page-type-dump option

innochecksum, 573
page-type-summary option

innochecksum, 573
pagecnt option

ndb_import, 3665
pager command

mysql, 422
pager option

mysql, 412
pagesize option

ndb_import, 3665
PAM

pluggable authentication, 1190
.par file, 5344
parallel-recover option

myisamchk, 587
parallel-schemas option

mysqlpump, 530
parallelism option

ndb_restore, 3707
parameters

server, 658
PARAMETERS

INFORMATION_SCHEMA table, 4127
parent table, 5345
parentheses (and), 1898
parsable option

ndb_show_tables, 3737
parser_max_mem_size system variable, 839
partial backup, 5345
partial index, 5345
partial trust, 5345
partial updates

and replication, 3149
PARTITION, 3979
PARTITION BY LIST COLUMNS, 3993
PARTITION BY RANGE COLUMNS, 3993
partition management, 4013
partition option

mysqld, 754
partition pruning, 4032
partitioning, 3979

4744

advantages, 3984
and dates, 3984
and foreign keys, 4045
and FULLTEXT indexes, 4045
and key cache, 4045
and query cache, 4045
and replication, 3148, 3150
and SQL mode, 3150, 4042
and subqueries, 4046
and temporary tables, 4045, 4049
by hash, 4000
by key, 4003
by linear hash, 4002
by linear key, 4005
by list, 3990
by range, 3986
COLUMNS, 3992
concepts, 3981
data type of partitioning key, 4046
enabling, 3979
functions allowed in partitioning expressions, 4053
index prefixes, 4046
keys, 3983
limitations, 4041
operators not permitted in partitioning expressions, 4041
operators supported in partitioning expressions, 4041
optimization, 4031, 4032
partitioning expression, 3983
resources, 3981
storage engines (limitations), 4052
subpartitioning, 4047
support, 3979
support in NDB Cluster, 3321
tables, 3979
types, 3984

Partitioning
maximum number of partitions, 4044

partitioning information statements, 4030
partitioning keys and primary keys, 4049
partitioning keys and unique keys, 4049
partitions

adding and dropping, 4013
analyzing, 4029
checking, 4029
managing, 4013
modifying, 4013
optimizing, 4029
repairing, 4029
splitting and merging, 4013
truncating, 4013

PARTITIONS
INFORMATION_SCHEMA table, 4128

partitions (NDB Cluster), 3290
PARTITION_BALANCE, 2249

4745

PARTITION_BALANCE (NDB_TABLE)
NDB Cluster, 2250

passwd option
ndb_top, 3744

password
resetting expired, 1125
root user, 233

password encryption
reversibility of, 2030

password management, 1123
password option, 324

mysql, 412
mysqladmin, 446
mysqlbinlog, 625
mysqlcheck, 461
mysqldump, 476
mysqld_multi, 356
mysqlimport, 511
mysqlpump, 531
mysqlshow, 547
mysqlslap, 563
mysql_secure_installation, 376
mysql_upgrade, 390
ndb_top, 3745

password policy, 1249
password validation, 1249
PASSWORD(), 2030, 4557

deprecated features, 19
passwords

administrator guidelines, 1080
expiration, 1126
for the InnoDB memcached interface, 2879
for users, 1095
forgotten, 4560
hashing, 1081
logging, 1080
lost, 4560
resetting, 1126, 4560
security, 1078, 1094
setting, 1122, 2447, 2452
user guidelines, 1078

PATH environment variable, 124, 130, 231, 309, 651
path name separators

Windows, 314
pattern matching, 285, 1965
performance, 1443

benchmarks, 1618
disk I/O, 1606
estimating, 1565

Performance Schema, 2849, 4206, 5345
event filtering, 4220
memory use, 4215
table reference, 4251

Performance Schema queries

4746

optimization, 1502
performance-schema-consumer-events-stages-current option

mysqld, 4357
performance-schema-consumer-events-stages-history option

mysqld, 4357
performance-schema-consumer-events-stages-history-long option

mysqld, 4357
performance-schema-consumer-events-statements-current option

mysqld, 4357
performance-schema-consumer-events-statements-history option

mysqld, 4357
performance-schema-consumer-events-statements-history-long option

mysqld, 4358
performance-schema-consumer-events-transactions-current option

mysqld, 4358
performance-schema-consumer-events-transactions-history option

mysqld, 4358
performance-schema-consumer-events-transactions-history-long option

mysqld, 4358
performance-schema-consumer-events-waits-current option

mysqld, 4358
performance-schema-consumer-events-waits-history option

mysqld, 4358
performance-schema-consumer-events-waits-history-long option

mysqld, 4358
performance-schema-consumer-global-instrumentation option

mysqld, 4358
performance-schema-consumer-statements-digest option

mysqld, 4358
performance-schema-consumer-thread-instrumentation option

mysqld, 4358
performance-schema-consumer-xxx option

mysqld, 4357
performance-schema-instrument option

mysqld, 4357
performance_schema

accounts table, 4298
cond_instances table, 4261
events_stages_current table, 4275
events_stages_history table, 4276
events_stages_history_long table, 4277
events_stages_summary_by_account_by_event_name table, 4325
events_stages_summary_by_host_by_event_name table, 4325
events_stages_summary_by_thread_by_event_name table, 4325
events_stages_summary_by_user_by_event_name table, 4325
events_stages_summary_global_by_event_name table, 4325
events_statements_current table, 4281
events_statements_history table, 4285
events_statements_history_long table, 4285
events_statements_summary_by_account_by_event_name table, 4326
events_statements_summary_by_digest table, 4326
events_statements_summary_by_host_by_event_name table, 4326
events_statements_summary_by_program table, 4326
events_statements_summary_by_thread_by_event_name table, 4326

4747

events_statements_summary_by_user_by_event_name table, 4326
events_statements_summary_global_by_event_name table, 4326
events_transactions_current table, 4292
events_transactions_history table, 4295
events_transactions_history_long table, 4295
events_transactions_summary_by_account_by_event table, 4329
events_transactions_summary_by_host_by_event_name table, 4329
events_transactions_summary_by_thread_by_event_name table, 4329
events_transactions_summary_by_user_by_event_name table, 4329
events_transactions_summary_global_by_event_name table, 4329
events_waits_current table, 4267
events_waits_history table, 4270
events_waits_history_long table, 4271
events_waits_summary_by_account_by_event_name table, 4323
events_waits_summary_by_host_by_event_name table, 4323
events_waits_summary_by_instance table, 4323
events_waits_summary_by_thread_by_event_name table, 4323
events_waits_summary_by_user_by_event_name table, 4323
events_waits_summary_global_by_event_name table, 4323
file_instances table, 4261
file_summary_by_event_name table, 4331
file_summary_by_instance table, 4331
hosts table, 4298
host_cache table, 949, 4342
memory_summary_by_account_by_event_name table, 4337
memory_summary_by_host_by_event_name table, 4337
memory_summary_by_thread_by_event_name table, 4337
memory_summary_by_user_by_event_name table, 4337
memory_summary_global_by_event_name table, 4337
metadata_locks table, 4314
mutex_instances table, 4262
objects_summary_global_by_type table, 4330
performance_timers table, 4345
prepared_statements_instances table, 4326
processlist table, 4345
replication_applier_configuration, 4309
replication_applier_status, 4310
replication_applier_status_by_coordinator, 4310
replication_applier_status_by_worker, 4311
replication_connection_configuration, 4306
replication_connection_status, 4308
replication_group_members, 4314
replication_group_member_stats, 4313
rwlock_instances table, 4263
session_account_connect_attrs table, 4301
session_connect_attrs table, 4302
setup_actors table, 4255
setup_consumers table, 4256
setup_instruments table, 4257
setup_objects table, 4258
setup_timers table, 4260
socket_instances table, 4263
socket_summary_by_event_name table, 4336
socket_summary_by_instance table, 4336

4748

table_handles table, 4317
table_io_waits_summary_by_index_usage table, 4333
table_io_waits_summary_by_table table, 4332
table_lock_waits_summary_by_table table, 4334
thread table, 4348
users table, 4299
user_variables_by_thread table, 4302

performance_schema database, 4206
restrictions, 4385
TRUNCATE TABLE, 4250, 4385

PERFORMANCE_SCHEMA storage engine, 4206
performance_schema system variable, 4359
performance_schema.global_status table

and NDB Cluster, 3922
performance_schema.global_variables table

and NDB Cluster, 3918
Performance_schema_accounts_lost status variable, 4376
performance_schema_accounts_size system variable, 4359
Performance_schema_cond_classes_lost status variable, 4376
Performance_schema_cond_instances_lost status variable, 4376
performance_schema_digests_size system variable, 4360
Performance_schema_digest_lost status variable, 4376
performance_schema_events_stages_history_long_size system variable, 4360
performance_schema_events_stages_history_size system variable, 4361
performance_schema_events_statements_history_long_size system variable, 4361
performance_schema_events_statements_history_size system variable, 4361
performance_schema_events_transactions_history_long_size system variable, 4362
performance_schema_events_transactions_history_size system variable, 4362
performance_schema_events_waits_history_long_size system variable, 4362
performance_schema_events_waits_history_size system variable, 4363
Performance_schema_file_classes_lost status variable, 4377
Performance_schema_file_handles_lost status variable, 4377
Performance_schema_file_instances_lost status variable, 4377
Performance_schema_hosts_lost status variable, 4377
performance_schema_hosts_size system variable, 4363
Performance_schema_index_stat_lost status variable, 4377
Performance_schema_locker_lost status variable, 4377
performance_schema_max_cond_classes system variable, 4363
performance_schema_max_cond_instances system variable, 4364
performance_schema_max_digest_length system variable, 4364
performance_schema_max_file_classes system variable, 4365
performance_schema_max_file_handles system variable, 4365
performance_schema_max_file_instances system variable, 4365
performance_schema_max_index_stat system variable, 4366
performance_schema_max_memory_classes system variable, 4366
performance_schema_max_metadata_locks system variable, 4366
performance_schema_max_mutex_classes system variable, 4367
performance_schema_max_mutex_instances system variable, 4367
performance_schema_max_prepared_statements_instances system variable, 4367
performance_schema_max_program_instances system variable, 4368
performance_schema_max_rwlock_classes system variable, 4368
performance_schema_max_rwlock_instances system variable, 4369
performance_schema_max_socket_classes system variable, 4369
performance_schema_max_socket_instances system variable, 4369

4749

performance_schema_max_sql_text_length system variable, 4370
performance_schema_max_stage_classes system variable, 4370
performance_schema_max_statement_classes system variable, 4370
performance_schema_max_statement_stack system variable, 4371
performance_schema_max_table_handles system variable, 4371
performance_schema_max_table_instances system variable, 4372
performance_schema_max_table_lock_stat system variable, 4372
performance_schema_max_thread_classes system variable, 4373
performance_schema_max_thread_instances system variable, 4373
Performance_schema_memory_classes_lost status variable, 4377
Performance_schema_metadata_lock_lost status variable, 4377
Performance_schema_mutex_classes_lost status variable, 4377
Performance_schema_mutex_instances_lost status variable, 4377
Performance_schema_nested_statement_lost status variable, 4377
Performance_schema_prepared_statements_lost status variable, 4377
Performance_schema_program_lost status variable, 4378
Performance_schema_rwlock_classes_lost status variable, 4378
Performance_schema_rwlock_instances_lost status variable, 4378
Performance_schema_session_connect_attrs_lost status variable, 4378
performance_schema_session_connect_attrs_size system variable, 4373
performance_schema_setup_actors_size system variable, 4374
performance_schema_setup_objects_size system variable, 4374
performance_schema_show_processlist system variable, 4375
Performance_schema_socket_classes_lost status variable, 4378
Performance_schema_socket_instances_lost status variable, 4378
Performance_schema_stage_classes_lost status variable, 4378
Performance_schema_statement_classes_lost status variable, 4378
Performance_schema_table_handles_lost status variable, 4378
Performance_schema_table_instances_lost status variable, 4378
Performance_schema_table_lock_stat_lost status variable, 4378
Performance_schema_thread_classes_lost status variable, 4378
Performance_schema_thread_instances_lost status variable, 4379
Performance_schema_users_lost status variable, 4379
performance_schema_users_size system variable, 4375
performance_timers

deprecated features, 21
performance_timers table

performance_schema, 4345
PERIOD_ADD(), 1934
PERIOD_DIFF(), 1934
Perl, 5345

installing, 265
installing on Windows, 266

Perl API, 4482, 5346
Perl DBI/DBD

installation problems, 267
permission checks

effect on speed, 1506
perror, 307, 648

deprecated features, 23
help option, 649
ndb option, 649
silent option, 649
verbose option, 649

4750

version option, 649
persistent statistics, 5346
pessimistic, 5346
phantom, 5346
phantom rows, 2628
phone book collation, German, 1712, 1759, 1759
PHP, 5346
PHP API, 5346
physical, 5346
physical backup, 5347
PI(), 1919
pid-file option

mysql.server, 353
mysqld_safe, 348

pid_file system variable, 839
Ping

thread command, 1622
pipe option, 325

mysql, 412, 461
mysqladmin, 446
mysqldump, 477
mysqlimport, 511
mysqlshow, 547
mysqlslap, 563
mysql_upgrade, 390

PIPES_AS_CONCAT SQL mode, 939
PITR, 5347
PKG_CONFIG_PATH environment variable, 651
plan stability, 5347
platforms

supported, 62
pluggable authentication

PAM, 1190
restrictions, 1130
Windows, 1201

plugin
audit_log, 1294

plugin activation options
FORCE, 999
FORCE_PLUS_PERMANENT, 999
OFF, 999
ON, 999

plugin API, 995
plugin installing

audit_log, 1295
CONNECTION_CONTROL, 1243
CONNECTION_CONTROL_FAILED_LOGIN_ATTEMPTS, 1243
Data Masking, 1383
keyring_aws, 1258
keyring_encrypted_file, 1258
keyring_file, 1258
keyring_okv, 1258
keyring_udf, 1276
MySQL Enterprise Firewall plugins, 1367

4751

MySQL Enterprise Thread Pool, 1002
Rewriter query rewrite plugin, 1008
validate_password, 1251
Version Tokens, 1016

plugin option prefix
mysqld, 755

plugin service
locking_service, 1028
mysql_keyring, 1033

plugin services, 1027
plugin table

system table, 969
plugin uninstalling

Data Masking, 1383
Rewriter query rewrite plugin, 1008
Version Tokens, 1016

plugin-dir option, 325
mysql, 412
mysqladmin, 446
mysqlbinlog, 625
mysqlcheck, 461
mysqldump, 477
mysqld_safe, 349
mysqlimport, 511
mysqlpump, 531
mysqlshow, 547
mysqlslap, 564
mysql_plugin, 373
mysql_upgrade, 391

plugin-ini option
mysql_plugin, 373

plugin-load option
mysqld, 754

plugin-load-add option
mysqld, 755

plugindir option
mysql_config, 645

plugins
activating, 996
installing, 996, 2466
security, 1173
server, 995
uninstalling, 996, 2468

PLUGINS
INFORMATION_SCHEMA table, 4132

plugin_dir system variable, 840
POINT data type, 1831
Point(), 2058
point-in-time recovery, 1430, 5347

InnoDB, 2865
using NDB Cluster replication, 3959

PointFromText(), 2053
PointFromWKB(), 2056
PointN(), 2063

4752

polltimeout option
ndb_import, 3666

PolyFromText(), 2053
PolyFromWKB(), 2056
POLYGON data type, 1831
Polygon(), 2058
PolygonFromText(), 2053
PolygonFromWKB(), 2056
port, 5347
port option, 325

mysql, 412
mysqladmin, 446
mysqlbinlog, 625
mysqlcheck, 462
mysqld, 756
mysqldump, 477
mysqld_safe, 349
mysqlimport, 511
mysqlpump, 531
mysqlshow, 548
mysqlslap, 564
mysql_config, 645
mysql_secure_installation, 377
mysql_upgrade, 391
ndb_top, 3745

port system variable, 840
port-open-timeout option

mysqld, 756
portability, 1444

types, 1867
PortNumber, 3395, 3565
PortNumber (OBSOLETE), 3556
PortNumberStats, 3398
ports, 211, 211, 229, 335, 625, 650, 1043, 1076, 1142, 1173, 4263, 4548
POSITION(), 1953
post-filtering

Performance Schema, 4220
post-query option

mysqlslap, 564
post-system option

mysqlslap, 564
POSTGRESQL

deprecated features, 19
PostgreSQL compatibility, 49
POSTGRESQL SQL mode, 941
postinstall

multiple servers, 1038
postinstallation

setup and testing, 222
POW(), 1919
POWER(), 1919
pre-4.1 passwords

removed features, 23
pre-5.1 database name conversion

4753

deprecated features, 22
pre-filtering

Performance Schema, 4220
pre-query option

mysqlslap, 564
pre-system option

mysqlslap, 564
precedence

command options, 309
operator, 1898

precision
arithmetic, 2141
fractional seconds, 1792, 1801
numeric, 1792

precision math, 2141
preload_buffer_size system variable, 840
Prepare

thread command, 1622
PREPARE, 2382, 2386

XA transactions, 2359
prepared backup, 5347
prepared statement, 5347
prepared statements, 2382, 2386, 2386, 2386

repreparation, 1595
prepared_statements_instances table

performance_schema, 4326
Prepared_stmt_count status variable, 922
preparing

thread state, 1626
preparing for alter table

thread state, 1626
PreSendChecksum, 3557, 3566
preserve-trailing-spaces option

ndb_restore, 3708
primary key, 5347

constraint, 54
deleting, 2167

PRIMARY KEY, 2167, 2209
primary keys

and partitioning keys, 4049
PrimaryMGMNode, 3504
print command

mysql, 422
print option

ndb_restore, 3708
print-data option

ndb_restore, 3708
print-defaults option, 318

myisamchk, 582
mysql, 413
mysqladmin, 446
mysqlbinlog, 625
mysqlcheck, 462
mysqld, 756

4754

mysqldump, 481
mysqlimport, 512
mysqlpump, 531
mysqlshow, 548
mysqlslap, 565
mysql_plugin, 373
mysql_secure_installation, 377
mysql_upgrade, 391
ndbd, 3579
ndbinfo_select_all, 3586
ndb_blob_tool, 3611
ndb_config, 3620
ndb_delete_all, 3628
ndb_desc, 3639
ndb_drop_index, 3643
ndb_drop_table, 3648
ndb_import, 3666
ndb_index_stat, 3675
ndb_mgm, 3605
ndb_mgmd, 3599
ndb_move_data, 3682
ndb_restore, 3709
ndb_select_all, 3726
ndb_select_count, 3732
ndb_show_tables, 3737
ndb_top, 3745
ndb_waiter, 3752

print-full-config option
ndb_mgmd, 3599

print-log option
ndb_restore, 3709

print-meta option
ndb_restore, 3709

print-sql-log option
ndb_restore, 3709

privilege
changes, 1121

privilege checks
effect on speed, 1506

privilege information
location, 1104

privilege system, 1094
privileges

access, 1094
adding, 1118
ALL, 1099
ALL PRIVILEGES, 1099
ALTER, 1099
ALTER ROUTINE, 1099
and replication, 3147
checking, 1120
CREATE, 1099
CREATE ROUTINE, 1099
CREATE TABLESPACE, 1099

4755

CREATE TEMPORARY TABLES, 1099
CREATE USER, 1099
CREATE VIEW, 1099
default, 233
DEFINER, 2494, 4081
DELETE, 1100
deleting, 2439
display, 2493
DROP, 1100
dropping, 2439
EVENT, 1100
EXECUTE, 1100
FILE, 1100
GRANT OPTION, 1100
granting, 2440
INDEX, 1100
INSERT, 1100
INVOKER, 2494, 4081
LOCK TABLES, 1100
PROCESS, 1101
PROXY, 1101
REFERENCES, 1101
RELOAD, 1101
REPLICATION CLIENT, 1101
REPLICATION SLAVE, 1102
revoking, 1120, 2451
SELECT, 1102
SHOW DATABASES, 1102
SHOW VIEW, 1102
SHUTDOWN, 1102
SQL SECURITY, 4081
stored objects, 4081
SUPER, 1102
TEMPORARY tables, 1099, 2230, 2448
TRIGGER, 1103
UPDATE, 1103
USAGE, 1103

problems
access denied errors, 4548
common errors, 4547
compiling MySQL server, 220
DATE columns, 4569
date values, 1804
installing on Solaris, 183
installing Perl, 267
lost connection errors, 4551
reporting, 2, 41
starting the server, 229
table locking, 1599
time zone, 4568

proc table
system table, 969

PROCEDURE, 2316
PROCEDURE ANALYSE(), 1524

4756

deprecated features, 21
procedures

stored, 4059
process, 5348
process management (NDB Cluster), 3570
PROCESS privilege, 1101
processes

display, 2500
monitoring, 1619
ndbinfo table, 3891

Processing events
thread state, 1633

Processing events from schema table
thread state, 1633

Processlist
thread command, 1622

PROCESSLIST, 2500
INFORMATION_SCHEMA table, 4133
possible inconsistency with INFORMATION_SCHEMA tables, 2824

processlist
monitoring, 4345

processlist table
performance_schema, 4345

processlist view
sys schema, 4414

procs_priv table
system table, 968, 1105

PROFILING
deprecated features, 21
INFORMATION_SCHEMA table, 4134

profiling system variable, 841
profiling_history_size system variable, 841
program variables

setting, 319
program-development utilities, 307
programs

administrative, 306
client, 305
stored, 2387, 4057
utility, 306

progress-frequency option
ndb_restore, 3709

promote-attributes option
ndb_move_data, 3682
ndb_restore, 3709

prompt command
mysql, 423

PROMPT command (NDB Cluster), 3757
prompt option

mysql, 413
prompts

meanings, 272
pronunciation

MySQL, 5

4757

protocol option, 326
mysql, 413
mysqladmin, 447
mysqlbinlog, 626
mysqlcheck, 462
mysqldump, 477
mysqlimport, 512
mysqlpump, 532
mysqlshow, 548
mysqlslap, 565
mysql_secure_installation, 377
mysql_upgrade, 391

protocol_version system variable, 841
proxies_priv

grant table, 1134
proxies_priv table

system table, 233, 968, 1105
proximity search, 1977
Proxy, 3557
PROXY privilege, 1101
proxy user mapping

LDAP authentication, 1217
proxy users, 1132

conflict with anonymous users, 1136
default proxy user, 1135
LDAP authentication, 1214
PAM authentication, 1197
PROXY privilege, 1134
server user mapping, 1138
system variables, 1139
Windows authentication, 1204

proxy_user system variable, 841
pseudo-record, 5348
pseudo_slave_mode system variable, 841
pseudo_thread_id system variable, 842
ps_check_lost_instrumentation view

sys schema, 4416
ps_is_account_enabled() function

sys schema, 4463
ps_is_consumer_enabled() function

sys schema, 4463
ps_is_instrument_default_enabled() function

sys schema, 4464
ps_is_instrument_default_timed() function

sys schema, 4464
ps_is_thread_instrumented() function

sys schema, 4465
ps_setup_disable_background_threads() procedure

sys schema, 4442
ps_setup_disable_consumer() procedure

sys schema, 4443
ps_setup_disable_instrument() procedure

sys schema, 4443
ps_setup_disable_thread() procedure

4758

sys schema, 4444
ps_setup_enable_background_threads() procedure

sys schema, 4444
ps_setup_enable_consumer() procedure

sys schema, 4445
ps_setup_enable_instrument() procedure

sys schema, 4445
ps_setup_enable_thread() procedure

sys schema, 4446
ps_setup_reload_saved() procedure

sys schema, 4446
ps_setup_reset_to_default() procedure

sys schema, 4446
ps_setup_save() procedure

sys schema, 4447
ps_setup_show_disabled() procedure

sys schema, 4447
ps_setup_show_disabled_consumers() procedure

sys schema, 4448
ps_setup_show_disabled_instruments() procedure

sys schema, 4448
ps_setup_show_enabled() procedure

sys schema, 4449
ps_setup_show_enabled_consumers() procedure

sys schema, 4450
ps_setup_show_enabled_instruments() procedure

sys schema, 4450
ps_statement_avg_latency_histogram() procedure

sys schema, 4450
ps_thread_account() function

sys schema, 4465
ps_thread_id() function

sys schema, 4466
ps_thread_stack() function

sys schema, 4466
ps_thread_trx_info() function

sys schema, 4466
ps_trace_statement_digest() procedure

sys schema, 4451
ps_trace_thread() procedure

sys schema, 4453
ps_truncate_all_tables() procedure

sys schema, 4454
Pthreads, 5348
purge, 2657, 5348
PURGE BINARY LOGS, 2363
purge buffering, 5348
purge configuration, 2657
purge lag, 5348
PURGE MASTER LOGS, 2363
purge scheduling, 2657
purge thread, 5348
Purging old relay logs

thread state, 1626

4759

pushdown joins (NDB), 3524
Python, 4476, 5348

third-party driver, 4483
Python API, 5348

Q
Qcache_free_blocks

deprecated features, 20
Qcache_free_blocks status variable, 922
Qcache_free_memory

deprecated features, 20
Qcache_free_memory status variable, 922
Qcache_hits status variable, 922
Qcache_inserts

deprecated features, 20, 20
Qcache_inserts status variable, 922
Qcache_lowmem_prunes

deprecated features, 20
Qcache_lowmem_prunes status variable, 923
Qcache_not_cached

deprecated features, 20
Qcache_not_cached status variable, 923
Qcache_queries_in_cache

deprecated features, 20
Qcache_queries_in_cache status variable, 923
Qcache_total_blocks

deprecated features, 20
Qcache_total_blocks status variable, 923
QUARTER(), 1934
queries

entering, 270
estimating performance, 1565
examples, 294
speed of, 1444

Queries status variable, 923
Query

thread command, 1622
query, 5349
query cache

and ndbinfo database tables, 3843
and partitioned tables, 4045
deprecated features, 20
thread states, 1629

Query Cache, 1588
query end

thread state, 1626
query execution plan, 5349
query expansion, 1983
query option

mysqlslap, 565
ndb_config, 3620, 3620
ndb_index_stat, 3675

query rewrite plugins

4760

Rewriter, 1007
query-all option

ndb_config, 3620
query_alloc_block_size system variable, 842
query_cache_limit

deprecated features, 20
query_cache_limit system variable, 843
query_cache_min_res_unit

deprecated features, 20
query_cache_min_res_unit system variable, 843
query_cache_size

deprecated features, 20
query_cache_size system variable, 844
query_cache_type

deprecated features, 20
query_cache_type system variable, 844
query_cache_wlock_invalidate

deprecated features, 20
query_cache_wlock_invalidate system variable, 845
query_prealloc_size system variable, 846
questions, 438
Questions status variable, 923
Queueing master event to the relay log

thread state, 1631
QUICK

DELETE modifier, 2276, 2277
quick option

myisamchk, 587
mysql, 413
mysqlcheck, 462
mysqldump, 497

quiesce, 5349
Quit

thread command, 1622
quit command

mysql, 423
QUIT command (NDB Cluster), 3757
quotation marks

in strings, 1653
QUOTE(), 1654, 1953
quote-names option

mysqldump, 490
quote_identifier() function

sys schema, 4468
quoting, 1654

account names, 1111
column alias, 1662, 4572
host names in account names, 1111
schema objects, 2442
user names in account names, 1111

quoting binary data, 1654
quoting of identifiers, 1661

4761

R
R-tree, 5349
RADIANS(), 1919
RAID, 5349
RAND(), 1919
random dive, 5349
random-password-file option

mysql_install_db, 369
RANDOM_BYTES(), 2031
rand_seed1 system variable, 846
rand_seed2 system variable, 847
range join type

optimizer, 1554
range partitioning, 3986, 3993
range partitions

adding and dropping, 4014
managing, 4014

range_alloc_block_size system variable, 847
range_optimizer_max_mem_size system variable, 847
raw backup, 5349
raw option

mysql, 414
mysqlbinlog, 626

raw partitions, 2596
rbr_exec_mode system variable, 847
RC

MySQL releases, 62
READ COMMITTED, 5350

implementation in NDB Cluster, 3323
transaction isolation level, 2618

read conflict detection and resolution
in NDB Cluster Replication, 3976

read from standard in
innochecksum, 574

read phenomena, 5350
READ UNCOMMITTED, 5350

transaction isolation level, 2620
read view, 5350
read-ahead, 5350

linear, 2645
random, 2645

read-from-remote-master option
mysqlbinlog, 626

read-from-remote-server option
mysqlbinlog, 626

read-only option
myisamchk, 585

read-only transaction, 5350
Reading event from the relay log

thread state, 1632
Reading master dump table data

thread state, 1633
READ_BACKUP, 2249

4762

READ_BACKUP (NDB_TABLE)
NDB Cluster, 2249

read_buffer_size myisamchk variable, 582
read_buffer_size system variable, 848
read_firewall_users() MySQL Enterprise Firewall function, 1379
read_firewall_whitelist() MySQL Enterprise Firewall function, 1379
read_only system variable, 849
read_rnd_buffer_size system variable, 850
REAL data type, 1796
RealtimeScheduler, 3467
REAL_AS_FLOAT SQL mode, 939
rebuild-indexes option

ndb_restore, 3710
Rebuilding the index on master dump table

thread state, 1633
ReceiveBufferMemory, 3557
Receiving from client

thread state, 1626
reconfiguring, 220
reconnect option

mysql, 415
Reconnecting after a failed binlog dump request

thread state, 1631
Reconnecting after a failed master event read

thread state, 1631
reconnection

automatic, 4349
record lock, 5351
record-level locks

InnoDB, 2628, 2779
RECOVER

XA transactions, 2359
recover option

myisamchk, 587
recovery

from crash, 1434
incremental, 1430
InnoDB, 2865
point in time, 1430

RecoveryWork, 3426
redo, 5351
redo log, 2609, 2610, 5351

controlling usage, 3308
redo log archiving, 5351
RedoBuffer, 3454
RedoOverCommitCounter

data nodes, 3487
RedoOverCommitLimit

data nodes, 3488
reducing

data size, 1521
redundant row format, 2698, 5351
ref join type

optimizer, 1553

4763

references, 2168
REFERENCES privilege, 1101
referential integrity, 2545, 5351
REFERENTIAL_CONSTRAINTS

INFORMATION_SCHEMA table, 4135
Refresh

thread command, 1622
ref_or_null, 1475
ref_or_null join type

optimizer, 1554
REGEXP, 1966
REGEXP operator, 1965
Register Slave

thread command, 1622
Registering slave on master

thread state, 1631
regular expression syntax, 1965
rehash command

mysql, 423
rejects option

ndb_import, 3666
relational, 5351
relational databases

defined, 5
relative option

mysqladmin, 447
relay log (replication), 3098
relay-log-purge option

mysqld, 3016
relay-log-space-limit option

mysqld, 3016
relay_log system variable, 3027
relay_log_basename system variable, 3028
relay_log_index system variable, 3028
relay_log_info_file system variable, 3029
relay_log_info_repository system variable, 3029, 3098
relay_log_purge system variable, 3030
relay_log_recovery system variable, 3030
relay_log_space_limit system variable, 3031
release numbers, 62
RELEASE SAVEPOINT, 2348
releases

GA, 62
milestone, 62
naming scheme, 62
RC, 62

RELEASE_ALL_LOCKS(), 2035
RELEASE_LOCK(), 2035
relevance, 5352
reload option

ndb_mgmd, 3599
RELOAD privilege, 1101
remap-column option

ndb_restore, 3711

4764

remote administration (NDB Cluster)
and security issues, 3927

remove action
MySQLInstallerConsole, 117

remove option
mysqld, 756
ndbd, 3579
ndbmtd, 3579
ndb_mgmd, 3599

removed features, 23
--basedir, 24
--datadir, 24
--secure-auth, 23
--skip-secure-auth, 23
--tmpdir, 24
ALTER IGNORE TABLE, 24
binary-configure.sh, 25
database symlinking, 24
InnoDB Table Monitor, 25
InnoDB Tablespace Monitor, 25
innodb_additional_mem_pool_size, 25
innodb_create_intrinsic, 25
innodb_lock_monitor, 25
innodb_log_checksum_algorithm, 25
innodb_mirrored_log_groups, 24
innodb_monitor, 25
innodb_optimize_point_storage, 25
INNODB_PAGE_ATOMIC_REF_COUNT, 25
innodb_use_sys_malloc, 25
INSERT DELAYED, 24
msql2mysql, 25
myisam_repair_threads, 25
mysqlaccess, 25
mysqlbug, 25
mysqlhotcopy, 25
mysql_convert_table_format, 25
mysql_find_rows, 25
mysql_fix_extensions, 25
mysql_old_password, 23
mysql_setpermission, 25
mysql_waitpid, 25
mysql_zap, 25
OLD_PASSWORD(), 24
old_passwords, 24
option prefixes, 24
pre-4.1 passwords, 23
secure_auth, 23
SHOW ENGINE INNODB MUTEX, 24
storage_engine, 24
thread_concurrency, 24
timed_mutexes, 24
YEAR(2), 24

Removing duplicates
thread state, 1626

4765

removing tmp table
thread state, 1626

rename
thread state, 1626

rename database, 2271
rename result table

thread state, 1626
RENAME TABLE, 2271
RENAME USER statement, 2451
renaming user accounts, 2451
Reopen tables

thread state, 1626
repair

tables, 450
Repair by sorting

thread state, 1626
Repair done

thread state, 1626
repair option

mysqlcheck, 462
repair options

myisamchk, 585
REPAIR TABLE

and partitioning, 4029
and replication, 3148

REPAIR TABLE statement, 2463
and replication, 2463
options, 2464
output, 2465
partitioning support, 2464
storage engine support, 2464

Repair with keycache
thread state, 1626

repairing
tables, 1435

REPEAT, 2393
labels, 2387

REPEAT(), 1954
REPEATABLE READ, 5352

transaction isolation level, 2617
repertoire, 5352

character set, 1713, 1747
string, 1713

replace, 307
deprecated features, 23

REPLACE, 2308
LOAD DATA modifier, 2292

replace option
mysqldump, 482
mysqlimport, 512
mysqlpump, 532

replace utility, 649
REPLACE(), 1954
replica, 5352

4766

replicas
statements, 2366

replicate-do-db option
mysqld, 3016

replicate-do-table option
mysqld, 3019

replicate-ignore-db option
mysqld, 3018

replicate-ignore-table option
mysqld, 3020

replicate-rewrite-db option
mysqld, 3020

replicate-same-server-id option
mysqld, 3021

replicate-wild-do-table option
mysqld, 3021

replicate-wild-ignore-table option
mysqld, 3022

replication, 2953, 5352
and AUTO_INCREMENT, 3133
and character sets, 3134
and CHECKSUM TABLE statement, 3134
and CREATE ... IF NOT EXISTS, 3134
and CREATE TABLE ... SELECT, 3134
and DATA DIRECTORY, 3140
and DROP ... IF EXISTS, 3135
and errors on replica, 3149
and floating-point values, 3141
and FLUSH, 3141
and fractional seconds, 3141
and functions, 3141
and INDEX DIRECTORY, 3140
and invoked features, 3144
and LAST_INSERT_ID(), 3133
and LIMIT, 3145
and LOAD DATA, 3146
and max_allowed_packet, 3146
and MEMORY tables, 3146
and mysql (system) database, 3147
and partial updates, 3149
and partitioned tables, 3148
and partitioning, 3150
and privileges, 3147
and query optimizer, 3148
and REPAIR TABLE statement, 2463, 3148
and reserved words, 3148
and scheduled events, 3144, 3144
and SQL mode, 3150
and stored routines, 3144
and temporary tables, 3150
and time zones, 3151
and TIMESTAMP, 3133
and transactions, 3151, 3153
and triggers, 3144, 3155

4767

and TRUNCATE TABLE, 3156
and user name length, 3156
and variables, 3156
and views, 3158
attribute demotion, 3138
attribute promotion, 3138
BLACKHOLE, 3133
circular, 3934
crashes, 3149
delayed, 3131
group, 3165
in NDB Cluster, 3930

(see also NDB Cluster replication)
nondeterministic functions, 1486
relay log, 3098
replication metadata repositories, 3098
row-based vs statement-based, 3085
safe and unsafe statements, 3089
semisynchronous, 3125
shutdown and restart, 3149, 3150
statements incompatible with STATEMENT format, 3086
timeouts, 3151
unexpected halt, 3114
with differing tables on source and replica, 3136

replication channel
commands, 3092
compatibility, 3093
naming conventions, 3095
startup options, 3094

replication channels, 3091
REPLICATION CLIENT privilege, 1101
replication filtering options

and case sensitivity, 3105
replication formats

compared, 3085
replication implementation, 3084
replication limitations, 3132
replication metadata repositories, 3098
replication mode, 2987

concepts, 2987
disabling online, 2991
enabling online, 2989
verifying anonymous transactions, 2992

replication options, 3132
replication replica

thread states, 1630, 1632, 1632
replication server

statements, 2381
REPLICATION SLAVE privilege, 1102
replication source

new features, 17
thread states, 1630

replication source servers
statements, 2363

4768

replication technologies, 3167
replication, asynchronous (see NDB Cluster replication)
replication_applier_configuration

performance_schema, 4309
replication_applier_status

performance_schema, 4310
replication_applier_status_by_coordinator

performance_schema, 4310
replication_applier_status_by_worker

performance_schema, 4311
replication_connection_configuration

performance_schema, 4306
replication_connection_status

performance_schema, 4308
replication_group_members

performance_schema, 4314
replication_group_member_stats

performance_schema, 4313
replication_optimize_for_static_plugin_config system variable, 3032
replication_sender_observe_commit_only system variable, 3032
REPORT command (NDB Cluster), 3757
reporting

bugs, 2, 41
errors, 41
problems, 2

report_host system variable, 3032
report_password system variable, 3033
report_port system variable, 3033
report_user system variable, 3034
REPRODUCIBLE_BUILD option

CMake, 211
Requesting binlog dump

thread state, 1631
REQUIRE option

ALTER USER, 2429
CREATE USER statement, 2436
GRANT statement, 2449

require_secure_transport system variable, 850
reserved user accounts, 1121
reserved words, 1673

and replication, 3148
RESET MASTER, 2364
RESET MASTER statement, 2536
RESET QUERY CACHE

deprecated features, 20
RESET SLAVE, 2375
RESET SLAVE ALL, 2375
RESET SLAVE statement, 2536
Reset stmt

thread command, 1622
reset-replica.pl

NDB Cluster replication, 3956
resetconnection command

mysql, 423

4769

resetting expired password, 1125
RESIGNAL, 2407
resolveip, 307, 650

deprecated features, 22
help option, 650
silent option, 650
version option, 650

resolve_stack_dump, 307, 647
deprecated features, 22
help option, 647
numeric-dump-file option, 647
symbols-file option, 648
version option, 648

resource limits
user accounts, 822, 1140, 2430, 2438, 2450

resources
ndbinfo table, 3893

RESTART command (NDB Cluster), 3758
restarting

the server, 232
RestartOnErrorInsert, 3437
RestartSubscriberConnectTimeout, 3453
restart_info

ndbinfo table, 3894
restore, 5353
restore-data option

ndb_restore, 3712
restore-epoch option

ndb_restore, 3712
restore-meta option

ndb_restore, 3712
restore-privilege-tables option

ndb_restore, 3713
restoring backups

in NDB Cluster, 3690
restoring from backup

in NDB Cluster replication, 3954
restoring NDB backups

between NDB release series, 3716
to earlier versions of NDB, 3716
to later versions of NDB, 3717

restrictions
character sets, 1767
events, 4090
InnoDB, 2913
performance_schema database, 4385
pluggable authentication, 1130
server-side cursors, 2396
signals, 2424
stored routines, 4090
subqueries, 2339
triggers, 4090
views, 4094
XA transactions, 2361

4770

result-file option
mysqlbinlog, 627
mysqldump, 491
mysqlpump, 532

resume option
ndb_import, 3666

retries option
ndb_desc, 3639

retrieving
data from tables, 278

RETURN, 2394
return (\r), 1653, 2106, 2295
reverse option

mysqldumpslow, 643
REVERSE(), 1954
REVOKE statement, 1118, 2451
revoking

privileges, 2451
rewrite-database option

ndb_restore, 3713
rewrite-db option

mysqlbinlog, 627
Rewriter functions

flush_rewrite_rules(), 1015
load_rewrite_rules(), 1015

Rewriter query rewrite plugin, 1007
installing, 1008
uninstalling, 1008

rewriter_enabled system variable, 1015
Rewriter_number_loaded_rules status variable, 1015
Rewriter_number_reloads status variable, 1016
Rewriter_number_rewritten_queries status variable, 1016
Rewriter_reload_error status variable, 1016
rewriter_verbose system variable, 1015
RIGHT JOIN, 1466, 2319
RIGHT OUTER JOIN, 2319
RIGHT(), 1954
RLIKE, 1966
ROLLBACK, 2344

XA transactions, 2359
rollback, 5353
rollback segment, 2604, 2605, 5353
ROLLBACK TO SAVEPOINT, 2348
Rolling back

thread state, 1627
rolling restart (NDB Cluster), 3794
ROLLUP, 2122
root password, 233
root user, 1076

password resetting, 4560
ROUND(), 1921
rounding, 2141
rounding errors, 1794
routines

4771

stored, 4057, 4059
ROUTINES

INFORMATION_SCHEMA table, 4136
routines option

mysqldump, 494
mysqlpump, 532

ROW, 2331
row, 5353
row constructors, 2331

optimizations, 1487
row format, 5353
row lock, 5353
row size

maximum, 1530
row subqueries, 2331
row-based replication, 5353

advantages, 3087
disadvantages, 3088

row-level locking, 1597, 5354
rowbatch option

ndb_import, 3667
rowbytes option

ndb_import, 3667
rowid option

ndb_select_all, 3726
rows

counting, 287
deleting, 4573
matching problems, 4573
selecting, 279
sorting, 281

rows option
ndb_config, 3620

ROW_COUNT(), 2044
ROW_FORMAT

COMPACT, 2699
COMPRESSED, 2673, 2701
DYNAMIC, 2700
REDUNDANT, 2698

RPAD(), 1954
Rpl_semi_sync_master_clients status variable, 924
rpl_semi_sync_master_enabled system variable, 3010
Rpl_semi_sync_master_net_avg_wait_time status variable, 924
Rpl_semi_sync_master_net_waits status variable, 924
Rpl_semi_sync_master_net_wait_time status variable, 924
Rpl_semi_sync_master_no_times status variable, 924
Rpl_semi_sync_master_no_tx status variable, 924
Rpl_semi_sync_master_status status variable, 924
Rpl_semi_sync_master_timefunc_failures status variable, 924
rpl_semi_sync_master_timeout system variable, 3010
rpl_semi_sync_master_trace_level system variable, 3011
Rpl_semi_sync_master_tx_avg_wait_time status variable, 924
Rpl_semi_sync_master_tx_waits status variable, 925
Rpl_semi_sync_master_tx_wait_time status variable, 925

4772

rpl_semi_sync_master_wait_for_slave_count system variable, 3011
rpl_semi_sync_master_wait_no_slave system variable, 3012
rpl_semi_sync_master_wait_point system variable, 3012
Rpl_semi_sync_master_wait_pos_backtraverse status variable, 925
Rpl_semi_sync_master_wait_sessions status variable, 925
Rpl_semi_sync_master_yes_tx status variable, 925
rpl_semi_sync_slave_enabled system variable, 3034
Rpl_semi_sync_slave_status status variable, 925
rpl_semi_sync_slave_trace_level system variable, 3034
rpl_stop_slave_timeout system variable, 3035
RPM file, 150, 154, 157
RPM Package Manager, 157
Rsa_public_key status variable, 925
RTRIM(), 1955
Ruby, 5354
Ruby API, 4483, 5354
running

ANSI mode, 47
batch mode, 292
multiple servers, 1038
queries, 270

running CMake after prior invocation, 190, 220
rw-lock, 5354
rwlock_instances table

performance_schema, 4263

S
safe statement (replication)

defined, 3089
safe-recover option

myisamchk, 587
safe-updates mode, 433
safe-updates option

mysql, 415, 433
safe-user-create option

mysqld, 757
SafeNet KeySecure Applicance

keyring_okv keyring plugin, 1266
Sakila, 8
same value wins (conflict resolution), 3967
sandbox mode

for expired-password accounts, 1126
SASL, 2879

authentication, 1206
SAVEPOINT, 2348
savepoint, 5354
Saving state

thread state, 1627
scalability, 5354
Scalable Coherent Interface (NDB Cluster) (OBSOLETE), 3570
scalar

JSON, 1847
scale

4773

arithmetic, 2141
numeric, 1792

scale out, 5355
scale up, 5355
SchedulerExecutionTimer, 3467
SchedulerResponsiveness, 3467
SchedulerSpinTimer, 3468
schema, 5355

altering, 2152
creating, 2183
deleting, 2265

SCHEMA Events (NDB Cluster), 3788
SCHEMA(), 2045
SCHEMATA

INFORMATION_SCHEMA table, 4139
schema_auto_increment_columns view

sys schema, 4416
schema_index_statistics view

sys schema, 4417
schema_object_overview view

sys schema, 4418
SCHEMA_PRIVILEGES

INFORMATION_SCHEMA table, 4140
schema_redundant_indexes view

sys schema, 4419
schema_tables_with_full_table_scans view

sys schema, 4424
schema_table_lock_waits view

sys schema, 4420
schema_table_statistics view

sys schema, 4421
schema_table_statistics_with_buffer view

sys schema, 4423
schema_unused_indexes view

sys schema, 4425
SCI (NDB Cluster) (OBSOLETE), 3570
script files, 292
scripts, 341, 353

SQL, 393
search index, 5355
searching

and case sensitivity, 4568
full-text, 1972
MySQL Web pages, 41
two keys, 299

Searching rows for update
thread state, 1627

SECOND(), 1934
secondary index, 5355

InnoDB, 2587
secure connections, 1148

command options, 327
secure-auth option, 326

mysql, 415

4774

mysqladmin, 447
mysqlbinlog, 628
mysqlcheck, 463
mysqldump, 477
mysqlimport, 513
mysqlpump, 533
mysqlshow, 548
mysqlslap, 565

secure_auth
removed features, 23

secure_auth system variable, 851
secure_file_priv system variable, 851
securing an NDB Cluster, 3929
security

against attackers, 1087
and malicious SQL statements, 3928
and NDB utilities, 3930
for the InnoDB memcached interface, 2879
new features, 9
plugins, 1173

security system, 1094
SEC_TO_TIME(), 1934
segment, 5355
SELECT

INTO, 2317
LIMIT, 2310
optimizing, 1547, 2537
Query Cache, 1588

SELECT INTO TABLE, 50
SELECT privilege, 1102
select-limit option

mysql, 415
selecting

databases, 274
selectivity, 5356
Select_full_join status variable, 925
Select_full_range_join status variable, 925
Select_range status variable, 925
Select_range_check status variable, 926
Select_scan status variable, 926
SELinux, 1407

Document Store TCP port context, 1411
error log file context, 1410
file context, 1409
Group Replication TCP port context, 1411
LDAP authentication, 1210
mode, 1409
MySQL data directory context, 1410
MySQL feature TCP port context, 1411
MySQL Server policies, 1409
mysqld TCP port context, 1411
PID file context, 1410
secure_file_priv directory context, 1410
status, 1408

4775

TCP port context, 1411
troubleshooting, 1412
Unix domain file context, 1410

semi-consistent read, 5356
InnoDB, 2779

semijoins, 1489
semisynchronous replication, 3125

administrative interface, 3128
configuration, 3129
installation, 3129
monitoring, 3131

SendBufferMemory, 3558, 3566
Sending binlog event to slave

thread state, 1630
sending cached result to client

thread state, 1630
Sending to client

thread state, 1627
SendSignalId, 3558, 3566
sensible JSON values, 1851
SEQUENCE, 299
sequence emulation, 2043
sequences, 299
SERIAL, 1792, 1794
SERIAL DEFAULT VALUE, 1860
SERIALIZABLE, 5356

transaction isolation level, 2620
server, 5356

connecting, 269, 335
debugging, 1045
disconnecting, 269
logs, 970
restart, 232
shutdown, 231
signal handling, 653
starting, 223
starting and stopping, 235
starting problems, 229

server administration, 435
server configuration, 658
server connections

command options, 323
server plugins, 995
server variables, 2521 (see system variables)

Group Replication, 3210
server-id option

mysqlbinlog, 628
server-id-bits option

mysqlbinlog, 628
server-public-key-path option, 328

mysql, 416
mysqladmin, 448
mysqlbinlog, 629
mysqlcheck, 463

4776

mysqldump, 478
mysqlimport, 513
mysqlpump, 533
mysqlshow, 549
mysqlslap, 566

server-side cursors
restrictions, 2396

server-side prepared statement, 5356
ServerPort, 3403
servers

multiple, 1038
servers table

system table, 970
server_cost

system table, 1580
server_cost table

system table, 970
server_id system variable, 2998
server_id_bits system variable, 3534, 3534
server_locks

ndbinfo table, 3897
server_operations

ndbinfo table, 3899
server_transactions

ndbinfo table, 3901
server_uuid system variable

mysqld, 2999
service-startup-timeout option

mysql.server, 353
services

for plugins, 1027
service_get_read_locks() function

locking service, 1033
service_get_write_locks() function

locking service, 1033
service_release_locks() function

locking service, 1033
servlet, 5356
SESSION

SET statement, 2468
session state

change tracking, 962
session state information, 852, 853, 853, 854
session track gtids, 852
session trackers

SESSION_TRACK_GTIDS, 963
SESSION_TRACK_SCHEMA, 963
SESSION_TRACK_STATE_CHANGE, 963
SESSION_TRACK_SYSTEM_VARIABLES, 963
SESSION_TRACK_TRANSACTION_CHARACTERISTICS, 963
SESSION_TRACK_TRANSACTION_STATE, 963

session variables
and replication, 3156

session view

4777

sys schema, 4425
session_account_connect_attrs table

performance_schema, 4301
session_connect_attrs table

performance_schema, 4302
session_ssl_status view

sys schema, 4425
SESSION_STATUS

INFORMATION_SCHEMA table, 4123
SESSION_TRACK_GTIDS session tracker, 963
session_track_gtids system variable, 852, 963
SESSION_TRACK_SCHEMA session tracker, 963
session_track_schema system variable, 853, 963
SESSION_TRACK_STATE_CHANGE session tracker, 963
session_track_state_change system variable, 853, 963
SESSION_TRACK_SYSTEM_VARIABLES session tracker, 963
session_track_system_variables system variable, 854, 963
SESSION_TRACK_TRANSACTION_CHARACTERISTICS session tracker, 963
session_track_transaction_info system variable, 855
SESSION_TRACK_TRANSACTION_STATE session tracker, 963
SESSION_USER(), 2045
SESSION_VARIABLES

INFORMATION_SCHEMA table, 4123
SET

CHARACTER SET, 1726
NAMES, 1726
size, 1866

set action
MySQLInstallerConsole, 117

SET CHARACTER SET statement, 2472
SET CHARSET statement, 2472
SET data type, 1819, 1827
SET GLOBAL sql_slave_skip_counter, 2376, 3083
SET GLOBAL statement, 894
SET NAMES, 1732
SET NAMES statement, 2472
Set option

thread command, 1622
SET PASSWORD statement, 2452
SET SESSION statement, 894
SET sql_log_bin, 2365
SET statement

assignment operator, 1908
CHARACTER SET, 2472
CHARSET, 2472
NAMES, 2472
variable assignment, 2468

SET TRANSACTION, 2355
set-auto-increment[option

myisamchk, 589
set-charset option

mysqlbinlog, 629
mysqldump, 485
mysqlpump, 533

4778

set-collation option
myisamchk, 588

set-gtid-purged option
mysqldump, 488
mysqlpump, 534

setting
passwords, 1122

setting passwords, 2452
setting program variables, 319
setup

postinstallation, 222
thread state, 1627

setup_actors table
performance_schema, 4255

setup_consumers table
performance_schema, 4256

setup_instruments table
performance_schema, 4257

setup_objects table
performance_schema, 4258

setup_timers
deprecated features, 21

setup_timers table
performance_schema, 4260

set_firewall_mode() MySQL Enterprise Firewall function, 1379
SHA(), 2031
SHA1(), 2031
SHA2(), 2032
sha256_password authentication plugin, 1184
sha256_password_auto_generate_rsa_keys system variable, 856
sha256_password_private_key_path system variable, 856
sha256_password_proxy_users system variable, 857, 1138
sha256_password_public_key_path system variable, 857
shared lock, 2612, 5357
Shared memory parameters (NDB)

PortNumber, 3565
shared memory transporter (see NDB Cluster)
shared tablespace, 5357
shared-memory-base-name option, 327

mysql, 416
mysqladmin, 448
mysqlbinlog, 629
mysqlcheck, 464
mysqldump, 499
mysqlimport, 513
mysqlshow, 549
mysqlslap, 566
mysql_upgrade, 391

SharedGlobalMemory, 3481
shared_memory system variable, 857
shared_memory_base_name system variable, 858
sharp checkpoint, 5357
shell syntax, 4
ShmKey, 3567

4779

ShmSize, 3567
ShmSpinTime, 3568
short-form option

mysqlbinlog, 629
SHOW

in NDB Cluster management client, 3364
SHOW BINARY LOGS statement, 2473, 2474
SHOW BINLOG EVENTS statement, 2473, 2474
SHOW CHARACTER SET statement, 2473, 2475
SHOW COLLATION statement, 2473, 2476
SHOW COLUMNS statement, 2473, 2477
SHOW command (NDB Cluster), 3758
SHOW CREATE DATABASE statement, 2473, 2479
SHOW CREATE EVENT statement, 2473
SHOW CREATE FUNCTION statement, 2473, 2480
SHOW CREATE PROCEDURE statement, 2473, 2480
SHOW CREATE SCHEMA statement, 2473, 2479
SHOW CREATE TABLE statement, 2473, 2480
SHOW CREATE TRIGGER statement, 2473, 2481
SHOW CREATE USER statement, 2482
SHOW CREATE VIEW statement, 2473, 2482
SHOW DATABASES privilege, 1102
SHOW DATABASES statement, 2473, 2483
SHOW ENGINE

and NDB Cluster, 3914
SHOW ENGINE INNODB MUTEX

removed features, 24
SHOW ENGINE INNODB STATUS

and innodb_use_sys_malloc, 2652
SHOW ENGINE INNODB STATUS statement, 2484
SHOW ENGINE NDB STATUS, 3914
SHOW ENGINE NDBCLUSTER STATUS, 3914
SHOW ENGINE statement, 2473, 2484
SHOW ENGINES

and NDB Cluster, 3914
SHOW ENGINES statement, 2473, 2488
SHOW ERRORS statement, 2473, 2490
SHOW EVENTS statement, 2473, 2491
SHOW extensions, 4201
SHOW FIELDS statement, 2473, 2477
SHOW FUNCTION CODE statement, 2473, 2493
SHOW FUNCTION STATUS statement, 2473, 2493
SHOW GRANTS statement, 2473, 2493
SHOW INDEX statement, 2473, 2494
SHOW KEYS statement, 2473, 2494
SHOW MASTER LOGS statement, 2473, 2474
SHOW MASTER STATUS statement, 2473, 2496
SHOW OPEN TABLES statement, 2473, 2496
show option

my_print_defaults, 647
SHOW PLUGINS statement, 2473, 2497
SHOW PRIVILEGES statement, 2473, 2498
SHOW PROCEDURE CODE statement, 2473, 2499
SHOW PROCEDURE STATUS statement, 2473, 2500

4780

SHOW PROCESSLIST statement, 2473, 2500
SHOW PROFILE statement, 2473, 2502
SHOW PROFILES statement, 2473, 2502, 2505
SHOW RELAYLOG EVENTS statement, 2473, 2505
SHOW SCHEDULER STATUS, 4071
SHOW SCHEMAS statement, 2483
SHOW SLAVE HOSTS statement, 2473, 2506
SHOW SLAVE STATUS statement, 2473, 2507
SHOW STATUS

and NDB Cluster, 3919
SHOW STATUS statement, 2473, 2515
SHOW STORAGE ENGINES statement, 2488
SHOW TABLE STATUS statement, 2473, 2516
SHOW TABLES statement, 2473, 2519
SHOW TRIGGERS statement, 2473, 2520
SHOW VARIABLES

and NDB Cluster, 3915
SHOW VARIABLES statement, 2473, 2521
SHOW VIEW privilege, 1102
SHOW WARNINGS statement, 2473, 2523
SHOW with WHERE, 4098, 4201
show-slave-auth-info option

mysqld, 3006
show-table-type option

mysqlshow, 549
show-temp-status option

ndb_show_tables, 3737
show-warnings option

mysql, 416
mysqladmin, 447

showing
database information, 540

show_compatibility_56
new features, 15

show_compatibility_56 system variable, 858
show_create_table_verbosity system variable, 863
show_old_temporals system variable, 863
shutdown, 5357

server, 965
Shutdown

thread command, 1623
SHUTDOWN command (NDB Cluster), 3759
SHUTDOWN privilege, 1102
SHUTDOWN statement, 2537
shutdown-timeout option

mysqladmin, 448
shutting down

the server, 231
Shutting down

thread state, 1633
SIGHUP signal

log maintenance, 994
server response, 653, 2528

SIGINT signal

4781

client response, 655
mysql client, 416
server response, 653, 1048

sigint-ignore option
mysql, 416

SIGN(), 1921
SIGNAL, 2412
signal handling, 653
signals

client response, 655
restrictions, 2424
server response, 653

SigNum, 3568
SIGPIPE signal

client response, 655
SIGTERM signal

server response, 653, 2537
silent column changes, 2239
silent option

myisamchk, 582
myisampack, 599
mysql, 417
mysqladmin, 448
mysqlcheck, 464
mysqld_multi, 357
mysqlimport, 514
mysqlslap, 566
ndb_perror, 3684
perror, 649
resolveip, 650

SIN(), 1922
single quote (\'), 1653
single user mode (NDB Cluster), 3756, 3796

and ndb_restore, 3690
single-transaction option

mysqldump, 499
mysqlpump, 534

single-user option
ndb_waiter, 3752

SINGLEUSER Events (NDB Cluster), 3789
size of tables, 1528
sizes

display, 1792
--skip option prefix, 319
skip-broken-objects option

ndb_restore, 3713
skip-column-names option

mysql, 417
skip-comments option

mysqldump, 484
skip-config-file option

ndb_mgmd, 3600
skip-database option

mysqlcheck, 464

4782

skip-definer option
mysqlpump, 535

skip-dump-rows option
mysqlpump, 535

skip-grant-tables option
mysqld, 757

skip-gtids option
mysqlbinlog, 630

skip-host-cache option
mysqld, 758

skip-innodb option
mysqld, 759, 2738

skip-kill-mysqld option
mysqld_safe, 349

skip-line-numbers option
mysql, 417

skip-mysql-schema option
mysqldump, 478

skip-ndbcluster option
mysqld, 3517

skip-new option
mysqld, 759

skip-nodegroup option
ndb_error_reporter, 3650

skip-opt option
mysqldump, 497

skip-partition option
mysqld, 759

skip-show-database option
mysqld, 759

skip-slave-start option
mysqld, 3023

skip-ssl option, 329
mysqld, 761

skip-stack-trace option
mysqld, 760

skip-symbolic-links option
mysqld, 762

skip-sys-schema option
mysql_install_db, 370
mysql_upgrade, 392

skip-syslog option
mysqld_safe, 349

skip-table-check option
ndb_restore, 3714

skip-unknown-objects option
ndb_restore, 3714

skip_external_locking system variable, 864
skip_name_resolve system variable, 864
skip_networking system variable, 865
skip_show_database system variable, 865
Slave has read all relay log; waiting for more updates

thread state, 1632
slave-skip-errors option

4783

mysqld, 3023
slave-sql-verify-checksum option

mysqld, 3024
slave_allow_batching, 3951
slave_allow_batching system variable, 3535
slave_checkpoint_group system variable, 3035
slave_checkpoint_period system variable, 3036
slave_compressed_protocol system variable, 3037
slave_exec_mode system variable, 3037
Slave_heartbeat_period status variable, 926
Slave_last_heartbeat status variable, 926
slave_load_tmpdir system variable, 3037
slave_master_info table

system table, 970
slave_max_allowed_packet system variable, 3038
slave_net_timeout system variable, 3039
Slave_open_temp_tables status variable, 926
slave_parallel_type system variable, 3039
slave_parallel_workers system variable, 3040
slave_pending_jobs_size_max system variable, 3041
slave_preserve_commit_order, 3041
Slave_received_heartbeats status variable, 927
slave_relay_log_info table

system table, 970
Slave_retried_transactions status variable, 927
Slave_rows_last_search_algorithm_used status variable, 927
slave_rows_search_algorithms system variable, 3042
Slave_running status variable, 927
slave_skip_errors system variable, 3043
slave_sql_verify_checksum system variable, 3043
slave_transaction_retries system variable, 3044
slave_type_conversions system variable, 3044
slave_worker_info table

system table, 970
Sleep

thread command, 1623
sleep option

mysqladmin, 449
SLEEP(), 2139
sleep-time option

ndb_top, 3745
slice-id option

ndb_restore, 3714
slow queries, 438
slow query log, 991, 5357
slow shutdown, 5357
slow-start-timeout option

mysqld, 760
Slow_launch_threads status variable, 928
slow_launch_time system variable, 865
slow_log table

system table, 969
Slow_queries status variable, 928
slow_query_log system variable, 866

4784

slow_query_log_file system variable, 866
SMALLINT data type, 1794
snapshot, 5357
SNAPSHOTEND (START BACKUP command), 3810
SNAPSHOTSTART (START BACKUP command), 3810
socket option, 327

mysql, 417
mysqladmin, 449
mysqlbinlog, 630
mysqlcheck, 464
mysqld, 760
mysqldump, 479
mysqld_safe, 349
mysqlimport, 514
mysqlpump, 535
mysqlshow, 549
mysqlslap, 566
mysql_config, 645
mysql_secure_installation, 377
mysql_upgrade, 392
ndb_top, 3745

socket system variable, 866
socket_instances table

performance_schema, 4263
socket_summary_by_event_name table

performance_schema, 4336
socket_summary_by_instance table

performance_schema, 4336
Solaris

installation, 183
Solaris installation problems, 183
Solaris troubleshooting, 221
Solaris x86_64 issues, 1538
SOME, 2330
sort buffer, 5357
sort option

mysqldumpslow, 643
ndb_top, 3745

sort-index option
myisamchk, 589

sort-records option
myisamchk, 589

sort-recover option
myisamchk, 588

sorting
data, 281
grant tables, 1115, 1117
table rows, 281

Sorting for group
thread state, 1627

Sorting for order
thread state, 1627

Sorting index
thread state, 1627

4785

Sorting result
thread state, 1627

sort_buffer_size myisamchk variable, 582
sort_buffer_size system variable, 867
sort_key_blocks myisamchk variable, 582
Sort_merge_passes status variable, 928
Sort_range status variable, 928
Sort_rows status variable, 928
Sort_scan status variable, 928
SOUNDEX(), 1955
SOUNDS LIKE, 1955
source, 5357
source (mysql client command), 293, 430
source command

mysql, 423
source distribution

installing, 185
source dump thread

new features, 17
space ID, 5358
SPACE(), 1955
sparse file, 5358
spatial data types, 1829

storage requirements, 1866
spatial extensions in MySQL, 1829
spatial functions, 2045

deprecated features, 21
SPATIAL index

InnoDB predicate locks, 2616
spatial queries

optimization, 1510
spatial values

syntactically well-formed, 1841
speed

increasing with replication, 2953
inserting, 1505
of queries, 1445

spin, 5358
sporadic-binlog-dump-fail option

mysqld, 3052
Spring, 5358
sp_reload_firewall_rules() MySQL Enterprise Firewall stored procedure, 1378
sp_set_firewall_mode() MySQL Enterprise Firewall stored procedure, 1378
SQL, 5358

defined, 5
SQL injection, 1092, 1365, 2017, 2382
SQL mode, 931

ALLOW_INVALID_DATES, 934
and partitioning, 3150, 4042
and replication, 3150
ANSI, 933, 940
ANSI_QUOTES, 934
DB2, 940
deprecated features, 19, 19

4786

ERROR_FOR_DIVISION_BY_ZERO, 934
HIGH_NOT_PRECEDENCE, 934
IGNORE_SPACE, 934
MAXDB, 940
MSSQL, 940
MYSQL323, 940
MYSQL40, 941
new features, 10
NO_AUTO_CREATE_USER, 935
NO_AUTO_VALUE_ON_ZERO, 935
NO_BACKSLASH_ESCAPES, 936
NO_DIR_IN_CREATE, 936
NO_ENGINE_SUBSTITUTION, 936
NO_FIELD_OPTIONS, 936
NO_KEY_OPTIONS, 936
NO_TABLE_OPTIONS, 936
NO_UNSIGNED_SUBTRACTION, 936
NO_ZERO_DATE, 938
NO_ZERO_IN_DATE, 938
ONLY_FULL_GROUP_BY, 938, 2126
ORACLE, 941
PAD_CHAR_TO_FULL_LENGTH, 939
PIPES_AS_CONCAT, 939
POSTGRESQL, 941
REAL_AS_FLOAT, 939
strict, 933
STRICT_ALL_TABLES, 939
STRICT_TRANS_TABLES, 933, 939
TRADITIONAL, 933, 941

SQL node (NDB Cluster)
defined, 3287

SQL nodes (NDB Cluster), 3814
SQL scripts, 393
SQL SECURITY

effect on privileges, 4081
SQL statements

replicas, 2366
replication server, 2381
replication source servers, 2363

SQL statements relating to NDB Cluster, 3914
SQL-92

extensions to, 46
sql-mode option

mysqld, 760
mysqlslap, 567

SQLState, 5358
sql_auto_is_null system variable, 867
SQL_BIG_RESULT

SELECT modifier, 2317
sql_big_selects system variable, 868
SQL_BUFFER_RESULT

SELECT modifier, 2317
sql_buffer_result system variable, 868
SQL_CACHE, 1592

4787

deprecated features, 20
SELECT modifier, 2317

SQL_CALC_FOUND_ROWS, 1483
SELECT modifier, 2317

sql_log_bin
deprecated features, 21

sql_log_bin system variable, 3068
sql_log_off system variable, 868
sql_mode system variable, 869
sql_notes system variable, 870
SQL_NO_CACHE, 1592

deprecated features, 20
SELECT modifier, 2317

sql_quote_show_create system variable, 870
sql_safe_updates system variable, 433, 870
sql_select_limit system variable, 433, 871
sql_slave_skip_counter, 2376, 3083
sql_slave_skip_counter system variable, 3045
SQL_SMALL_RESULT

SELECT modifier, 2317
sql_warnings system variable, 871
SQRT(), 1922
square brackets, 1792
srcdir option

mysql_install_db, 370
SRID values

handling by spatial functions, 2051
SRID(), 2060
SSD, 2672, 5358
SSH, 1087, 1173
SSL, 1148, 5358

command options, 327
establishing connections, 1150
OpenSSL compared to yaSSL, 1171
X.509 Basics, 1148

SSL library
configuring, 193

ssl option, 329
mysqld, 761

SSL options
mysql, 417
mysqladmin, 449
mysqlbinlog, 630
mysqlcheck, 464
mysqldump, 479
mysqlimport, 514
mysqlpump, 535
mysqlshow, 550
mysqlslap, 567
mysql_secure_installation, 377
mysql_upgrade, 392

SSL related options
ALTER USER, 2429
CREATE USER statement, 2436

4788

GRANT statement, 2449
ssl-ca option, 330
ssl-capath option, 330
ssl-cert option, 330
ssl-cipher option, 331
ssl-crl option, 331
ssl-crlpath option, 331
ssl-key option, 332
ssl-mode option, 332
ssl-verify-server-cert option, 334
Ssl_accepts status variable, 928
Ssl_accept_renegotiates status variable, 928
ssl_ca system variable, 871
Ssl_callback_cache_hits status variable, 928
ssl_capath system variable, 872
ssl_cert system variable, 872
Ssl_cipher status variable, 928
ssl_cipher system variable, 872
Ssl_cipher_list status variable, 928
Ssl_client_connects status variable, 928
Ssl_connect_renegotiates status variable, 928
ssl_crl system variable, 873
ssl_crlpath system variable, 873
Ssl_ctx_verify_depth status variable, 929
Ssl_ctx_verify_mode status variable, 929
Ssl_default_timeout status variable, 929
Ssl_finished_accepts status variable, 929
Ssl_finished_connects status variable, 929
ssl_key system variable, 873
Ssl_server_not_after status variable, 929
Ssl_server_not_before status variable, 929
Ssl_sessions_reused status variable, 929
Ssl_session_cache_hits status variable, 929
Ssl_session_cache_misses status variable, 929
Ssl_session_cache_mode status variable, 929
Ssl_session_cache_overflows status variable, 929
Ssl_session_cache_size status variable, 929
Ssl_session_cache_timeouts status variable, 929
Ssl_used_session_cache_entries status variable, 930
Ssl_verify_depth status variable, 930
Ssl_verify_mode status variable, 930
Ssl_version status variable, 930
staging-tries option

ndb_move_data, 3682
standalone option

mysqld, 762
Standard Monitor, 2857, 2859, 2862
Standard SQL

differences from, 50, 2450
extensions to, 46, 47

standards compatibility, 46
START

XA transactions, 2359
START BACKUP

4789

NOWAIT, 3810
SNAPSHOTEND, 3810
SNAPSHOTSTART, 3810
syntax, 3809
WAIT COMPLETED, 3810
WAIT STARTED, 3810

START command (NDB Cluster), 3760
START GROUP_REPLICATION, 2381
START SLAVE, 2376
START TRANSACTION, 2344
start-datetime option

mysqlbinlog, 630
start-page option

innochecksum, 570
start-position option

mysqlbinlog, 631
StartConnectBackoffMaxTime, 3502
StartFailRetryDelay, 3489
StartFailureTimeout, 3440
starting

comments, 53
mysqld, 1089
the server, 223
the server automatically, 235
thread state, 1627

Starting many servers, 1038
StartNoNodeGroupTimeout, 3441
StartPartialTimeout, 3439
StartPartitionedTimeout, 3440
StartPoint(), 2066
startup, 5359
STARTUP Events (NDB Cluster), 3784
startup options

default, 311
replication channel, 3094

startup parameters, 658
mysql, 394
mysqladmin, 438
tuning, 1606

StartupStatusReportFrequency, 3459
state-dir option

ndb_import, 3667
state-file option

comp_err, 361
statement interceptor, 5359
statement termination

Control+C, 394, 416
statement-based replication, 5359

advantages, 3085
disadvantages, 3086
unsafe statements, 3086

statements
compound, 2387
CREATE USER, 1118

4790

DROP USER, 1118
GRANT, 1118
replicas, 2366
replication server, 2381
replication source servers, 2363
REVOKE, 1118

statements_with_errors_or_warnings view
sys schema, 4427

statements_with_full_table_scans view
sys schema, 4428

statements_with_runtimes_in_95th_percentile view
sys schema, 4429

statements_with_sorting view
sys schema, 4431

statements_with_temp_tables view
sys schema, 4432

statement_analysis view
sys schema, 4426

statement_performance_analyzer() procedure
sys schema, 4454

Statistics
thread command, 1623

statistics, 5359
thread state, 1627

STATISTICS
INFORMATION_SCHEMA table, 4141

STATISTICS Events (NDB Cluster), 3787
stats option

myisam_ftdump, 576
ndb_import, 3667

stats_method myisamchk variable, 582
status

tables, 2516
status action

MySQLInstallerConsole, 118
status command

mysql, 424
results, 437

STATUS command (NDB Cluster), 3759
status option

mysqlshow, 550
status variable

Aborted_clients, 910
Aborted_connects, 910
Audit_log_current_size, 1363
Audit_log_events, 1364
Audit_log_events_filtered, 1364
Audit_log_events_lost, 1364
Audit_log_events_written, 1364
Audit_log_event_max_drop_size, 1363
Audit_log_total_size, 1364
Audit_log_write_waits, 1364
Binlog_cache_disk_use, 910
Binlog_cache_use, 910

4791

Binlog_stmt_cache_disk_use, 910
Binlog_stmt_cache_use, 910
Bytes_received, 911
Bytes_sent, 911
Compression, 912
Connections, 912
Connection_control_delay_generated, 1249
Connection_errors_accept, 912
Connection_errors_internal, 912
Connection_errors_max_connections, 912
Connection_errors_peer_address, 912
Connection_errors_select, 912
Connection_errors_tcpwrap, 912
Created_tmp_disk_tables, 913
Created_tmp_files, 913
Created_tmp_tables, 913
Delayed_errors, 913
Delayed_insert_threads, 913
Delayed_writes, 913
Firewall_access_denied, 1381
Firewall_access_granted, 1381
Firewall_access_suspicious, 1381
Firewall_cached_entries, 1381
Flush_commands, 913
group_replication_primary_member, 913
Handler_commit, 913
Handler_delete, 914
Handler_discover, 3538
Handler_external_lock, 914
Handler_mrr_init, 914
Handler_prepare, 914
Handler_read_first, 914
Handler_read_key, 914
Handler_read_last, 914
Handler_read_next, 914
Handler_read_prev, 914
Handler_read_rnd, 914
Handler_read_rnd_next, 914
Handler_rollback, 915
Handler_savepoint, 915
Handler_savepoint_rollback, 915
Handler_update, 915
Handler_write, 915
Innodb_available_undo_logs, 915
Innodb_buffer_pool_bytes_data, 916
Innodb_buffer_pool_bytes_dirty, 916
Innodb_buffer_pool_dump_status, 915
Innodb_buffer_pool_load_status, 915
Innodb_buffer_pool_pages_data, 916
Innodb_buffer_pool_pages_dirty, 916
Innodb_buffer_pool_pages_flushed, 916
Innodb_buffer_pool_pages_free, 916
Innodb_buffer_pool_pages_latched, 916
Innodb_buffer_pool_pages_misc, 916

4792

Innodb_buffer_pool_pages_total, 916
Innodb_buffer_pool_reads, 917
Innodb_buffer_pool_read_ahead, 916
Innodb_buffer_pool_read_ahead_evicted, 916
Innodb_buffer_pool_read_ahead_rnd, 917
Innodb_buffer_pool_read_requests, 917
Innodb_buffer_pool_resize_status, 917
Innodb_buffer_pool_wait_free, 917
Innodb_buffer_pool_write_requests, 917
Innodb_data_fsyncs, 917
Innodb_data_pending_fsyncs, 917
Innodb_data_pending_reads, 917
Innodb_data_pending_writes, 917
Innodb_data_read, 917
Innodb_data_reads, 917
Innodb_data_writes, 918
Innodb_data_written, 918
Innodb_dblwr_pages_written, 918
Innodb_dblwr_writes, 918
Innodb_have_atomic_builtins, 918
Innodb_log_waits, 918
Innodb_log_writes, 918
Innodb_log_write_requests, 918
Innodb_num_open_files, 918
Innodb_os_log_fsyncs, 918
Innodb_os_log_pending_fsyncs, 918
Innodb_os_log_pending_writes, 918
Innodb_os_log_written, 918
Innodb_pages_created, 919
Innodb_pages_read, 919
Innodb_pages_written, 919
Innodb_page_size, 918
Innodb_rows_deleted, 919
Innodb_rows_inserted, 919
Innodb_rows_read, 919
Innodb_rows_updated, 919
Innodb_row_lock_current_waits, 919
Innodb_row_lock_time, 919
Innodb_row_lock_time_avg, 919
Innodb_row_lock_time_max, 919
Innodb_row_lock_waits, 919
Innodb_truncated_status_writes, 919
Key_blocks_not_flushed, 919
Key_blocks_unused, 920
Key_blocks_used, 920
Key_reads, 920
Key_read_requests, 920
Key_writes, 920
Key_write_requests, 920
Last_query_cost, 920
Last_query_partial_plans, 920
Locked_connects, 920
Max_execution_time_exceeded, 920
Max_execution_time_set, 920

4793

Max_execution_time_set_failed, 921
Max_used_connections, 921
Max_used_connections_time, 921
mecab_charset, 921
Ndb_api_adaptive_send_deferred_count, 3538
Ndb_api_adaptive_send_deferred_count_session, 3538
Ndb_api_adaptive_send_deferred_count_slave, 3538
Ndb_api_adaptive_send_forced_count, 3538
Ndb_api_adaptive_send_forced_count_session, 3538
Ndb_api_adaptive_send_forced_count_slave, 3539
Ndb_api_adaptive_send_unforced_count, 3539
Ndb_api_adaptive_send_unforced_count_session, 3539
Ndb_api_adaptive_send_unforced_count_slave, 3539
Ndb_api_bytes_received_count, 3540
Ndb_api_bytes_received_count_session, 3540
Ndb_api_bytes_received_count_slave, 3540
Ndb_api_bytes_sent_count, 3539
Ndb_api_bytes_sent_count_session, 3539
Ndb_api_bytes_sent_count_slave, 3539
Ndb_api_event_bytes_count, 3541
Ndb_api_event_bytes_count_injector, 3541
Ndb_api_event_data_count, 3540
Ndb_api_event_data_count_injector, 3540
Ndb_api_event_nondata_count, 3541
Ndb_api_event_nondata_count_injector, 3540
Ndb_api_pk_op_count, 3541
Ndb_api_pk_op_count_session, 3541
Ndb_api_pk_op_count_slave, 3541
Ndb_api_pruned_scan_count, 3542
Ndb_api_pruned_scan_count_session, 3542
Ndb_api_pruned_scan_count_slave, 3542
Ndb_api_range_scan_count, 3542
Ndb_api_range_scan_count_session, 3542
Ndb_api_range_scan_count_slave, 3542
Ndb_api_read_row_count, 3543
Ndb_api_read_row_count_session, 3543
Ndb_api_read_row_count_slave, 3543
Ndb_api_scan_batch_count, 3544
Ndb_api_scan_batch_count_session, 3543
Ndb_api_scan_batch_count_slave, 3543
Ndb_api_table_scan_count, 3544
Ndb_api_table_scan_count_session, 3544
Ndb_api_table_scan_count_slave, 3544
Ndb_api_trans_abort_count, 3545
Ndb_api_trans_abort_count_session, 3544
Ndb_api_trans_abort_count_slave, 3544
Ndb_api_trans_close_count, 3545
Ndb_api_trans_close_count_session, 3545
Ndb_api_trans_close_count_slave, 3545
Ndb_api_trans_commit_count, 3546
Ndb_api_trans_commit_count_session, 3545
Ndb_api_trans_commit_count_slave, 3546
Ndb_api_trans_local_read_row_count, 3546
Ndb_api_trans_local_read_row_count_session, 3546

4794

Ndb_api_trans_local_read_row_count_slave, 3546
Ndb_api_trans_start_count, 3547
Ndb_api_trans_start_count_session, 3546
Ndb_api_trans_start_count_slave, 3547
Ndb_api_uk_op_count, 3547
Ndb_api_uk_op_count_session, 3547
Ndb_api_uk_op_count_slave, 3547
Ndb_api_wait_exec_complete_count, 3548
Ndb_api_wait_exec_complete_count_session, 3547
Ndb_api_wait_exec_complete_count_slave, 3548
Ndb_api_wait_meta_request_count, 3548
Ndb_api_wait_meta_request_count_session, 3548
Ndb_api_wait_meta_request_count_slave, 3548
Ndb_api_wait_nanos_count, 3549
Ndb_api_wait_nanos_count_session, 3548
Ndb_api_wait_nanos_count_slave, 3549
Ndb_api_wait_scan_result_count, 3549
Ndb_api_wait_scan_result_count_session, 3549
Ndb_api_wait_scan_result_count_slave, 3549
Ndb_cluster_node_id, 3550
Ndb_config_from_host, 3550
Ndb_config_from_port, 3550
Ndb_conflict_fn_epoch, 3550
Ndb_conflict_fn_epoch2, 3550
Ndb_conflict_fn_epoch2_trans, 3550
Ndb_conflict_fn_epoch_trans, 3550
Ndb_conflict_fn_max, 3550
Ndb_conflict_fn_max_del_win, 3551
Ndb_conflict_fn_old, 3551
Ndb_conflict_last_conflict_epoch, 3551
Ndb_conflict_last_stable_epoch, 3551
Ndb_conflict_reflected_op_discard_count, 3551
Ndb_conflict_reflected_op_prepare_count, 3551
Ndb_conflict_refresh_op_count, 3551
Ndb_conflict_trans_conflict_commit_count, 3552
Ndb_conflict_trans_detect_iter_count, 3552
Ndb_conflict_trans_reject_count, 3552
Ndb_conflict_trans_row_conflict_count, 3551
Ndb_conflict_trans_row_reject_count, 3552
Ndb_epoch_delete_delete_count, 3552
Ndb_execute_count, 3552
Ndb_last_commit_epoch_server, 3552
Ndb_last_commit_epoch_session, 3552
Ndb_number_of_data_nodes, 3552
Ndb_pruned_scan_count, 3553
Ndb_pushed_queries_defined, 3552
Ndb_pushed_queries_dropped, 3553
Ndb_pushed_queries_executed, 3553
Ndb_pushed_reads, 3553
Ndb_scan_count, 3553
Ndb_slave_max_replicated_epoch, 3553
Ndb_system_name, 3553
Not_flushed_delayed_rows, 921
Ongoing_anonymous_gtid_violating_transaction_count, 921

4795

Ongoing_anonymous_transaction_count, 921
Ongoing_automatic_gtid_violating_transaction_count, 921
Opened_files, 921
Opened_tables, 922
Opened_table_definitions, 922
Open_files, 921
Open_streams, 921
Open_tables, 921
Open_table_definitions, 921
Performance_schema_accounts_lost, 4376
Performance_schema_cond_classes_lost, 4376
Performance_schema_cond_instances_lost, 4376
Performance_schema_digest_lost, 4376
Performance_schema_file_classes_lost, 4377
Performance_schema_file_handles_lost, 4377
Performance_schema_file_instances_lost, 4377
Performance_schema_hosts_lost, 4377
Performance_schema_index_stat_lost, 4377
Performance_schema_locker_lost, 4377
Performance_schema_memory_classes_lost, 4377
Performance_schema_metadata_lock_lost, 4377
Performance_schema_mutex_classes_lost, 4377
Performance_schema_mutex_instances_lost, 4377
Performance_schema_nested_statement_lost, 4377
Performance_schema_prepared_statements_lost, 4377
Performance_schema_program_lost, 4378
Performance_schema_rwlock_classes_lost, 4378
Performance_schema_rwlock_instances_lost, 4378
Performance_schema_session_connect_attrs_lost, 4378
Performance_schema_socket_classes_lost, 4378
Performance_schema_socket_instances_lost, 4378
Performance_schema_stage_classes_lost, 4378
Performance_schema_statement_classes_lost, 4378
Performance_schema_table_handles_lost, 4378
Performance_schema_table_instances_lost, 4378
Performance_schema_table_lock_stat_lost, 4378
Performance_schema_thread_classes_lost, 4378
Performance_schema_thread_instances_lost, 4379
Performance_schema_users_lost, 4379
Prepared_stmt_count, 922
Qcache_free_blocks, 922
Qcache_free_memory, 922
Qcache_hits, 922
Qcache_inserts, 922
Qcache_lowmem_prunes, 923
Qcache_not_cached, 923
Qcache_queries_in_cache, 923
Qcache_total_blocks, 923
Queries, 923
Questions, 923
Rewriter_number_loaded_rules, 1015
Rewriter_number_reloads, 1016
Rewriter_number_rewritten_queries, 1016
Rewriter_reload_error, 1016

4796

Rpl_semi_sync_master_clients, 924
Rpl_semi_sync_master_net_avg_wait_time, 924
Rpl_semi_sync_master_net_waits, 924
Rpl_semi_sync_master_net_wait_time, 924
Rpl_semi_sync_master_no_times, 924
Rpl_semi_sync_master_no_tx, 924
Rpl_semi_sync_master_status, 924
Rpl_semi_sync_master_timefunc_failures, 924
Rpl_semi_sync_master_tx_avg_wait_time, 924
Rpl_semi_sync_master_tx_waits, 925
Rpl_semi_sync_master_tx_wait_time, 925
Rpl_semi_sync_master_wait_pos_backtraverse, 925
Rpl_semi_sync_master_wait_sessions, 925
Rpl_semi_sync_master_yes_tx, 925
Rpl_semi_sync_slave_status, 925
Rsa_public_key, 925
Select_full_join, 925
Select_full_range_join, 925
Select_range, 925
Select_range_check, 926
Select_scan, 926
Slave_heartbeat_period, 926
Slave_last_heartbeat, 926
Slave_open_temp_tables, 926
Slave_received_heartbeats, 927
Slave_retried_transactions, 927
Slave_rows_last_search_algorithm_used, 927
Slave_running, 927
Slow_launch_threads, 928
Slow_queries, 928
Sort_merge_passes, 928
Sort_range, 928
Sort_rows, 928
Sort_scan, 928
Ssl_accepts, 928
Ssl_accept_renegotiates, 928
Ssl_callback_cache_hits, 928
Ssl_cipher, 928
Ssl_cipher_list, 928
Ssl_client_connects, 928
Ssl_connect_renegotiates, 928
Ssl_ctx_verify_depth, 929
Ssl_ctx_verify_mode, 929
Ssl_default_timeout, 929
Ssl_finished_accepts, 929
Ssl_finished_connects, 929
Ssl_server_not_after, 929
Ssl_server_not_before, 929
Ssl_sessions_reused, 929
Ssl_session_cache_hits, 929
Ssl_session_cache_misses, 929
Ssl_session_cache_mode, 929
Ssl_session_cache_overflows, 929
Ssl_session_cache_size, 929

4797

Ssl_session_cache_timeouts, 929
Ssl_used_session_cache_entries, 930
Ssl_verify_depth, 930
Ssl_verify_mode, 930
Ssl_version, 930
Table_locks_immediate, 930
Table_locks_waited, 930
Table_open_cache_hits, 930
Table_open_cache_misses, 930
Table_open_cache_overflows, 930
Tc_log_max_pages_used, 931
Tc_log_page_siz, 931
Tc_log_page_waits, 931
Threads_cached, 931
Threads_connected, 931
Threads_created, 931
Threads_running, 931
Uptime, 931
Uptime_since_flush_status, 931
validate_password_dictionary_file_last_parsed, 1257
validate_password_dictionary_file_words_count, 1257

status variables, 909, 2515
NDB Cluster, 3538
NDB Cluster replication conflict detection, 3973

STD(), 2122
STDDEV(), 2122
STDDEV_POP(), 2122
STDDEV_SAMP(), 2122
stemming, 5359
STOP command (NDB Cluster), 3760
STOP GROUP_REPLICATION, 2382
STOP SLAVE, 2380
stop-datetime option

mysqlbinlog, 631
stop-never option

mysqlbinlog, 631
stop-never-slave-server-id option

mysqlbinlog, 631
stop-position option

mysqlbinlog, 632
StopOnError, 3437
stopping

the server, 235
stopword, 5359
stopword list

user-defined, 1986
stopwords, 1984
storage engine, 5360

ARCHIVE, 2934
InnoDB, 2545
PERFORMANCE_SCHEMA, 4206

storage engines
and application feature requirements, 3317
applications supported, 3317

4798

availability, 3315
choosing, 2915
differences between NDB and InnoDB, 3315
usage scenarios, 3317

storage nodes - see data nodes, ndbd (see data nodes, ndbd)
storage nodes - see data nodes, ndbd, ndbmtd (see data nodes, ndbd, ndbmtd)
storage requirements

data types, 1862
date data types, 1863
InnoDB tables, 1862
NDB Cluster, 1862
numeric data types, 1863
spatial data types, 1866
string data types, 1864
time data types, 1863

storage space
minimizing, 1521

storage_engine
removed features, 24

stored functions, 4059
stored generated column, 5360
stored object, 5360
stored object privileges, 4081
stored objects, 4057

orphan, 4082
stored procedures, 4059
stored program, 5360
stored programs, 2387, 4057

reparsing, 1595
stored routine, 5360
stored routines, 4057, 4059

and replication, 3144
LAST_INSERT_ID(), 4061
metadata, 4061
restrictions, 4090

stored_program_cache system variable, 874
storing result in query cache

thread state, 1630
STRAIGHT_JOIN, 1466, 1548, 1562, 2319, 2539

join type, 1490
SELECT modifier, 1490, 2316

STRCMP(), 1965
strict mode, 5360
strict SQL mode, 933
strict-check option

innochecksum, 571
STRICT_ALL_TABLES SQL mode, 939
STRICT_TRANS_TABLES SQL mode, 933, 939
string

JSON, 1847
string collating, 1771
string comparison functions, 1962
string comparison operators, 1962
string comparisons

4799

case sensitivity, 1962
string concatenation, 1651, 1948
string data types, 1815

storage requirements, 1864
string functions, 1944
string literal introducer, 1652, 1721
string literals, 1651
string operators, 1944
string replacement

replace utility, 649
string types, 1815
StringMemory, 3411
strings

defined, 1651
escape sequences, 1651
nondelimited, 1656
repertoire, 1713

striping
defined, 1607

STR_TO_DATE(), 1935
ST_Area(), 2066
ST_AsBinary(), 2059
ST_AsGeoJSON(), 2080
ST_AsText(), 2059
ST_Buffer(), 2070
ST_Buffer_Strategy(), 2071
ST_Centroid(), 2067
ST_Contains(), 2073
ST_ConvexHull(), 2071
ST_Crosses(), 2073
ST_Difference(), 2071
ST_Dimension(), 2061
ST_Disjoint(), 2074
ST_Distance(), 2074
ST_Distance_Sphere(), 2082
ST_EndPoint(), 2064
ST_Envelope(), 2061
ST_Equals(), 2074
ST_ExteriorRing(), 2067
ST_GeoHash(), 2078
ST_GeomCollFromText(), 2053
ST_GeomCollFromWKB(), 2056
ST_GeometryCollectionFromText(), 2053
ST_GeometryCollectionFromWKB(), 2056
ST_GeometryFromText(), 2053
ST_GeometryFromWKB(), 2057
ST_GeometryN(), 2068
ST_GeometryType(), 2061
ST_GeomFromGeoJSON(), 2081
ST_GeomFromText(), 2053
ST_GeomFromWKB(), 2057
ST_InteriorRingN(), 2068
ST_Intersection(), 2072
ST_Intersects(), 2074

4800

ST_IsClosed(), 2064
ST_IsEmpty(), 2062
ST_IsSimple(), 2062
ST_IsValid(), 2082
ST_LatFromGeoHash(), 2079
ST_Length(), 2064
ST_LineFromText(), 2054
ST_LineFromWKB(), 2057
ST_LineStringFromText(), 2054
ST_LineStringFromWKB(), 2057
ST_LongFromGeoHash(), 2079
ST_MakeEnvelope(), 2083
ST_MLineFromText(), 2054
ST_MLineFromWKB(), 2057
ST_MPointFromText(), 2054
ST_MPointFromWKB(), 2057
ST_MPolyFromText(), 2054
ST_MPolyFromWKB(), 2057
ST_MultiLineStringFromText(), 2054
ST_MultiLineStringFromWKB(), 2057
ST_MultiPointFromText(), 2054
ST_MultiPointFromWKB(), 2057
ST_MultiPolygonFromText(), 2054
ST_MultiPolygonFromWKB(), 2057
ST_NumGeometries(), 2069
ST_NumInteriorRing(), 2068
ST_NumInteriorRings(), 2068
ST_NumPoints(), 2065
ST_Overlaps(), 2074
ST_PointFromGeoHash(), 2080
ST_PointFromText(), 2054
ST_PointFromWKB(), 2057
ST_PointN(), 2065
ST_PolyFromText(), 2054
ST_PolyFromWKB(), 2058
ST_PolygonFromText(), 2054
ST_PolygonFromWKB(), 2058
ST_Simplify(), 2084
ST_SRID(), 2062
ST_StartPoint(), 2065
ST_SymDifference(), 2072
ST_Touches(), 2075
ST_Union(), 2072
ST_Validate(), 2084
ST_Within(), 2075
ST_X(), 2062
ST_Y(), 2062
SUBDATE(), 1936
sublist, 5360
SUBPARTITION BY KEY

known issues, 4047
subpartitioning, 4005
subpartitions, 4005

known issues, 4047

4801

subqueries, 2327
correlated, 2332
errors, 2336
in FROM clause (see derived tables)
optimization, 1489, 1493
restrictions, 2339
rewriting as joins, 2339
with ALL, 2330
with ANY, IN, SOME, 2330
with EXISTS, 2332
with NOT EXISTS, 2332
with row constructors, 2331

subquery (see subqueries)
subquery materialization, 1492
subselects, 2327
SUBSTR(), 1955
SUBSTRING(), 1956
SUBSTRING_INDEX(), 1956
SUBTIME(), 1936
subtraction (-), 1912
suffix option

mysql_ssl_rsa_setup, 381
SUM(), 2122
SUM(DISTINCT), 2122
SUNPRO_CXX_LIBRARY option

CMake, 218
SUPER privilege, 1102
super-large-pages option

mysqld, 762
superuser, 233
super_read_only system variable, 874
support

for operating systems, 62
for platforms, 62

suppression
default values, 55

supremum record, 5360
surrogate key, 5360
symbolic links, 1608, 1609

databases, 1608
tables, 1608
Windows, 1609

symbolic-links option
mysqld, 762

symbols-file option
resolve_stack_dump, 648

synchronization of source and replica
in NDB Cluster Replication, 3956

Syncing ndb table schema operation and binlog
thread state, 1633

sync_binlog system variable, 3069
sync_frm

deprecated features, 20
sync_frm system variable, 875

4802

sync_master_info system variable, 3045
sync_relay_log system variable, 3046
sync_relay_log_info system variable, 3046
syntactically well-formed

GIS values, 1841
spatial values, 1841

syntax
regular expression, 1965

syntax conventions, 2
synthetic key, 5361
sys schema, 4207

create_synonym_db() procedure, 4440
diagnostics() procedure, 4440
execute_prepared_stmt() procedure, 4442
extract_schema_from_file_name() function, 4459
extract_table_from_file_name() function, 4459
format_bytes() function, 4460
format_path() function, 4460
format_statement() function, 4461
format_time() function, 4462
host_summary view, 4398
host_summary_by_file_io view, 4399
host_summary_by_file_io_type view, 4399
host_summary_by_stages view, 4400
host_summary_by_statement_latency view, 4400
host_summary_by_statement_type view, 4401
innodb_buffer_stats_by_schema view, 4402
innodb_buffer_stats_by_table view, 4403
innodb_lock_waits view, 4404
io_by_thread_by_latency view, 4406
io_global_by_file_by_bytes view, 4406
io_global_by_file_by_latency view, 4407
io_global_by_wait_by_bytes view, 4408
io_global_by_wait_by_latency view, 4409
latest_file_io view, 4410
list_add() function, 4462
list_drop() function, 4463
memory_by_host_by_current_bytes view, 4410
memory_by_thread_by_current_bytes view, 4411
memory_by_user_by_current_bytes view, 4411
memory_global_by_current_bytes view, 4412
memory_global_total view, 4413
metrics view, 4413
new features, 15
object ownership, 4387
processlist view, 4414
ps_check_lost_instrumentation view, 4416
ps_is_account_enabled() function, 4463
ps_is_consumer_enabled() function, 4463
ps_is_instrument_default_enabled() function, 4464
ps_is_instrument_default_timed() function, 4464
ps_is_thread_instrumented() function, 4465
ps_setup_disable_background_threads() procedure, 4443
ps_setup_disable_consumer() procedure, 4443

4803

ps_setup_disable_instrument() procedure, 4443
ps_setup_disable_thread() procedure, 4444
ps_setup_enable_background_threads() procedure, 4444
ps_setup_enable_consumer() procedure, 4445
ps_setup_enable_instrument() procedure, 4445
ps_setup_enable_thread() procedure, 4446
ps_setup_reload_saved() procedure, 4446
ps_setup_reset_to_default() procedure, 4446
ps_setup_save() procedure, 4447
ps_setup_show_disabled() procedure, 4447
ps_setup_show_disabled_consumers() procedure, 4448
ps_setup_show_disabled_instruments() procedure, 4449
ps_setup_show_enabled() procedure, 4449
ps_setup_show_enabled_consumers() procedure, 4450
ps_setup_show_enabled_instruments() procedure, 4450
ps_statement_avg_latency_histogram() procedure, 4450
ps_thread_account() function, 4465
ps_thread_id() function, 4466
ps_thread_stack() function, 4466
ps_thread_trx_info() function, 4466
ps_trace_statement_digest() procedure, 4451
ps_trace_thread() procedure, 4453
ps_truncate_all_tables() procedure, 4454
quote_identifier() function, 4468
schema_auto_increment_columns view, 4416
schema_index_statistics view, 4417
schema_object_overview view, 4418
schema_redundant_indexes view, 4419
schema_tables_with_full_table_scans view, 4424
schema_table_lock_waits view, 4420
schema_table_statistics view, 4421
schema_table_statistics_with_buffer view, 4423
schema_unused_indexes view, 4425
session view, 4425
session_ssl_status view, 4425
statements_with_errors_or_warnings view, 4427
statements_with_full_table_scans view, 4428
statements_with_runtimes_in_95th_percentile view, 4429
statements_with_sorting view, 4431
statements_with_temp_tables view, 4432
statement_analysis view, 4426
statement_performance_analyzer() procedure, 4454
sys_config table, 4395
sys_get_config() function, 4469
table_exists() procedure, 4458
user_summary view, 4432
user_summary_by_file_io view, 4433
user_summary_by_file_io_type view, 4434
user_summary_by_stages view, 4434
user_summary_by_statement_latency view, 4435
user_summary_by_statement_type view, 4436
version view, 4436
version_major() function, 4470
version_minor() function, 4470

4804

version_patch() function, 4470
waits_by_host_by_latency view, 4438
waits_by_user_by_latency view, 4438
waits_global_by_latency view, 4439
wait_classes_global_by_avg_latency view, 4437
wait_classes_global_by_latency view, 4437
x$ views, 4398
x$host_summary view, 4398
x$host_summary_by_file_io view, 4399
x$host_summary_by_file_io_type view, 4399
x$host_summary_by_stages view, 4400
x$host_summary_by_statement_latency view, 4400
x$host_summary_by_statement_type view, 4401
x$innodb_buffer_stats_by_schema view, 4402
x$innodb_buffer_stats_by_table view, 4403
x$innodb_lock_waits view, 4404
x$io_by_thread_by_latency view, 4406
x$io_global_by_file_by_bytes view, 4406
x$io_global_by_file_by_latency view, 4407
x$io_global_by_wait_by_bytes view, 4408
x$io_global_by_wait_by_latency view, 4409
x$latest_file_io view, 4410
x$memory_by_host_by_current_bytes view, 4410
x$memory_by_thread_by_current_bytes view, 4411
x$memory_by_user_by_current_bytes view, 4411
x$memory_global_by_current_bytes view, 4412
x$memory_global_total view, 4413
x$processlist view, 4414
x$schema_flattened_keys view, 4419
x$schema_index_statistics view, 4417
x$schema_tables_with_full_table_scans view, 4424
x$schema_table_lock_waits view, 4420
x$schema_table_statistics view, 4421
x$schema_table_statistics_with_buffer view, 4423
x$session view, 4425
x$statements_with_errors_or_warnings view, 4427
x$statements_with_full_table_scans view, 4428
x$statements_with_runtimes_in_95th_percentile view, 4429
x$statements_with_sorting view, 4431
x$statements_with_temp_tables view, 4432
x$statement_analysis view, 4426
x$user_summary view, 4432
x$user_summary_by_file_io view, 4433
x$user_summary_by_file_io_type view, 4434
x$user_summary_by_stages view, 4434
x$user_summary_by_statement_latency view, 4435
x$user_summary_by_statement_type view, 4436
x$waits_by_host_by_latency view, 4438
x$waits_by_user_by_latency view, 4438
x$waits_global_by_latency view, 4439
x$wait_classes_global_by_avg_latency view, 4437
x$wait_classes_global_by_latency view, 4437

sys-check option
ndb_index_stat, 3676

4805

sys-create option
ndb_index_stat, 3675

sys-create-if-not-exist option
ndb_index_stat, 3676

sys-create-if-not-valid option
ndb_index_stat, 3676

sys-drop option
ndb_index_stat, 3675

sys-skip-events option
ndb_index_stat, 3676

sys-skip-tables option
ndb_index_stat, 3676

sys.version
deprecated features, 21

SYSCONFDIR option
CMake, 206

SYSDATE(), 1937
sysdate-is-now option

mysqld, 763
syslog option

mysql, 418
mysqld_safe, 349

syslog-tag option
mysqld_safe, 350

system
privilege, 1094
security, 1076

system and status variables
new features, 15

system command
mysql, 424

System lock
thread state, 1627

system optimization, 1606
system option

ndb_config, 3621
system table

optimizer, 1553, 2316
system tables

audit_log_filter table, 970
audit_log_user table, 970
columns_priv table, 968, 1105
db table, 233, 968, 1105
engine_cost, 1581
engine_cost table, 970
event table, 968
firewall_users table, 970
firewall_whitelist table, 970
func table, 968, 1037
general_log table, 969
gtid_executed table, 969, 2968
help tables, 969
help_category table, 969
help_keyword table, 969

4806

help_relation table, 969
help_topic table, 969
innodb_index_stats table, 970, 2659
innodb_table_stats table, 970, 2659
ndb_binlog_index table, 970
plugin table, 969
proc table, 969
procs_priv table, 968, 1105
proxies_priv table, 233, 968, 1105
servers table, 970
server_cost, 1580
server_cost table, 970
slave_master_info table, 970
slave_relay_log_info table, 970
slave_worker_info table, 970
slow_log table, 969
tables_priv table, 968, 1105
time zone tables, 969
time_zone table, 969
time_zone_leap_second table, 969
time_zone_name table, 969
time_zone_transition table, 969
time_zone_transition_type table, 969
user table, 233, 968, 1105

system tablespace, 5361
system variable

audit_log_buffer_size, 1355
audit_log_compression, 1355
audit_log_connection_policy, 1356
audit_log_current_session, 1356
audit_log_disable, 1357
audit_log_encryption, 1357
audit_log_exclude_accounts, 1357
audit_log_file, 1324, 1358
audit_log_filter_id, 1358
audit_log_flush, 1359
audit_log_format, 1359
audit_log_format_unix_timestamp, 1359
audit_log_include_accounts, 1360
audit_log_policy, 1360
audit_log_read_buffer_size, 1327, 1361
audit_log_rotate_on_size, 1362
audit_log_statement_policy, 1362
audit_log_strategy, 1363
authentication_ldap_sasl_auth_method_name, 1227
authentication_ldap_sasl_bind_base_dn, 1228
authentication_ldap_sasl_bind_root_dn, 1228
authentication_ldap_sasl_bind_root_pwd, 1229
authentication_ldap_sasl_ca_path, 1229
authentication_ldap_sasl_group_search_attr, 1229
authentication_ldap_sasl_group_search_filter, 1230
authentication_ldap_sasl_init_pool_size, 1231
authentication_ldap_sasl_log_status, 1232
authentication_ldap_sasl_max_pool_size, 1232

4807

authentication_ldap_sasl_server_host, 1233
authentication_ldap_sasl_server_port, 1233
authentication_ldap_sasl_tls, 1233
authentication_ldap_sasl_user_search_attr, 1234
authentication_ldap_simple_auth_method_name, 1234
authentication_ldap_simple_bind_base_dn, 1235
authentication_ldap_simple_bind_root_dn, 1236
authentication_ldap_simple_bind_root_pwd, 1237
authentication_ldap_simple_ca_path, 1237
authentication_ldap_simple_group_search_attr, 1237
authentication_ldap_simple_group_search_filter, 1238
authentication_ldap_simple_init_pool_size, 1238
authentication_ldap_simple_log_status, 1239
authentication_ldap_simple_max_pool_size, 1240
authentication_ldap_simple_server_host, 1240
authentication_ldap_simple_server_port, 1242
authentication_ldap_simple_tls, 1242
authentication_ldap_simple_user_search_attr, 1242
authentication_windows_log_level, 768
authentication_windows_use_principal_name, 768
autocommit, 769
automatic_sp_privileges, 769
auto_generate_certs, 770
auto_increment_increment, 3007
auto_increment_offset, 3010
avoid_temporal_upgrade, 770
back_log, 770
basedir, 771
big_tables, 771
bind_address, 772
binlog_cache_size, 3053
binlog_checksum, 3053
binlog_direct_non_transactional_updates, 3054
binlog_error_action, 3055
binlog_format, 3055
binlog_group_commit_sync_delay, 3056
binlog_group_commit_sync_no_delay_count, 3057
binlog_gtid_simple_recovery, 3071
binlog_max_flush_queue_time, 3058
binlog_order_commits, 3058
binlog_rows_query_log_events, 3060
binlog_row_image, 3059
binlog_stmt_cache_size, 3061
binlog_transaction_dependency_history_size, 3062
binlog_transaction_dependency_tracking, 3061
block_encryption_mode, 773
bulk_insert_buffer_size, 773, 2922
character_sets_dir, 776
character_set_client, 774
character_set_connection, 774
character_set_database, 774
character_set_filesystem, 775
character_set_results, 775
character_set_server, 775

4808

character_set_system, 776
check_proxy_users, 776, 1138
collation_connection, 777
collation_database, 777
collation_server, 777
completion_type, 777
concurrent_insert, 778
connection_control_failed_connections_threshold, 1247
connection_control_max_connection_delay, 1248
connection_control_min_connection_delay, 1248
connect_timeout, 779
core_file, 779
daemon_memcached_enable_binlog, 2738
daemon_memcached_engine_lib_name, 2738
daemon_memcached_engine_lib_path, 2739
daemon_memcached_option, 2739
daemon_memcached_r_batch_size, 2740
daemon_memcached_w_batch_size, 2740
datadir, 780
datetime_format, 780
date_format, 780
debug, 780
debug_sync, 781
default_authentication_plugin, 781
default_password_lifetime, 782
default_storage_engine, 783
default_tmp_storage_engine, 784
default_week_format, 784
delayed_insert_limit, 785
delayed_insert_timeout, 786
delayed_queue_size, 786
delay_key_write, 784, 2922
disabled_storage_engines, 786
disconnect_on_expired_password, 787
div_precision_increment, 788
end_markers_in_json, 788
error_count, 789
event_scheduler, 789
expire_logs_days, 3062
explicit_defaults_for_timestamp, 790
external_user, 791
flush, 791
flush_time, 792
foreign_key_checks, 792
ft_boolean_syntax, 793
ft_max_word_len, 793
ft_min_word_len, 794
ft_query_expansion_limit, 794
ft_stopword_file, 794
general_log, 795
general_log_file, 795
group_concat_max_len, 795
group_replication_allow_local_disjoint_gtids_join, 3213
group_replication_allow_local_lower_version_join, 3213

4809

group_replication_auto_increment_increment, 3214
group_replication_bootstrap_group, 3215
group_replication_components_stop_timeout, 3215
group_replication_compression_threshold, 3215
group_replication_enforce_update_everywhere_checks, 3216
group_replication_exit_state_action, 3216
group_replication_flow_control_applier_threshold, 3218
group_replication_flow_control_certifier_threshold, 3218
group_replication_flow_control_hold_percent, 3219
group_replication_flow_control_max_quota, 3219
group_replication_flow_control_member_quota_percent, 3219
group_replication_flow_control_min_quota, 3220
group_replication_flow_control_min_recovery_quota, 3220
group_replication_flow_control_mode, 3220
group_replication_force_members, 3221
group_replication_group_name, 3221
group_replication_group_seeds, 3222
group_replication_gtid_assignment_block_size, 3222
group_replication_ip_whitelist, 3223
group_replication_local_address, 3224
group_replication_member_weight, 3225
group_replication_poll_spin_loops, 3225
group_replication_recovery_complete_at, 3226
group_replication_recovery_reconnect_interval, 3226
group_replication_recovery_retry_count, 3226
group_replication_recovery_ssl_ca, 3227
group_replication_recovery_ssl_capath, 3227
group_replication_recovery_ssl_cert, 3227
group_replication_recovery_ssl_cipher, 3228
group_replication_recovery_ssl_crl, 3228
group_replication_recovery_ssl_crlpath, 3228
group_replication_recovery_ssl_key, 3228
group_replication_recovery_ssl_verify_server_cert, 3229
group_replication_recovery_use_ssl, 3229
group_replication_single_primary_mode, 3229
group_replication_ssl_mode, 3230
group_replication_start_on_boot, 3230
group_replication_transaction_size_limit, 3230
group_replication_unreachable_majority_timeout, 3231
gtid_executed, 3073
gtid_executed_compression_period, 3074
gtid_purged, 3076
have_compress, 796
have_crypt, 796
have_dynamic_loading, 796
have_geometry, 796
have_openssl, 796
have_profiling, 796
have_query_cache, 796
have_rtree_keys, 796
have_ssl, 796
have_statement_timeout, 797
have_symlink, 797
hostname, 798

4810

identity, 798
ignore_builtin_innodb, 2740
ignore_db_dirs, 798
init_connect, 799
init_file, 799
init_slave, 3026
innodb_adaptive_flushing, 2741
innodb_adaptive_flushing_lwm, 2741
innodb_adaptive_hash_index, 2741
innodb_adaptive_hash_index_parts, 2742
innodb_adaptive_max_sleep_delay, 2742
innodb_api_bk_commit_interval, 2743
innodb_api_disable_rowlock, 2743
innodb_api_enable_binlog, 2744
innodb_api_enable_mdl, 2744
innodb_api_trx_level, 2744
innodb_autoextend_increment, 2745
innodb_autoinc_lock_mode, 2745
innodb_background_drop_list_empty, 2745
innodb_buffer_pool_chunk_size, 2746
innodb_buffer_pool_dump_at_shutdown, 2747
innodb_buffer_pool_dump_now, 2747
innodb_buffer_pool_dump_pct, 2748
innodb_buffer_pool_filename, 2748
innodb_buffer_pool_instances, 2748
innodb_buffer_pool_load_abort, 2749
innodb_buffer_pool_load_at_startup, 2750
innodb_buffer_pool_load_now, 2750
innodb_buffer_pool_size, 2751
innodb_change_buffering, 2752
innodb_change_buffering_debug, 2753
innodb_change_buffer_max_size, 2752
innodb_checksums, 2755
innodb_checksum_algorithm, 2753
innodb_cmp_per_index_enabled, 2756
innodb_commit_concurrency, 2756
innodb_compression_failure_threshold_pct, 2757
innodb_compression_level, 2757
innodb_compression_pad_pct_max, 2758
innodb_compress_debug, 2756
innodb_concurrency_tickets, 2758
innodb_data_file_path, 2759
innodb_data_home_dir, 2759
innodb_deadlock_detect, 2760
innodb_default_row_format, 2760
innodb_disable_resize_buffer_pool_debug, 2761
innodb_disable_sort_file_cache, 2761
innodb_doublewrite, 2761
innodb_fast_shutdown, 2762
innodb_file_format, 2763
innodb_file_format_check, 2764
innodb_file_format_max, 2764
innodb_file_per_table, 2765
innodb_fill_factor, 2765

4811

innodb_fil_make_page_dirty_debug, 2762
innodb_flushing_avg_loops, 2770
innodb_flush_log_at_timeout, 2766
innodb_flush_log_at_trx_commit, 2766
innodb_flush_method, 2767
innodb_flush_neighbors, 2769
innodb_flush_sync, 2770
innodb_force_load_corrupted, 2770
innodb_force_recovery, 2771
innodb_ft_aux_table, 2771
innodb_ft_cache_size, 2771
innodb_ft_enable_diag_print, 2772
innodb_ft_enable_stopword, 2772
innodb_ft_max_token_size, 2773
innodb_ft_min_token_size, 2773
innodb_ft_num_word_optimize, 2774
innodb_ft_result_cache_limit, 2774
innodb_ft_server_stopword_table, 2775
innodb_ft_sort_pll_degree, 2775
innodb_ft_total_cache_size, 2775
innodb_ft_user_stopword_table, 2776
innodb_io_capacity, 2776
innodb_io_capacity_max, 2777
innodb_limit_optimistic_insert_debug, 2778
innodb_locks_unsafe_for_binlog, 2779
innodb_lock_wait_timeout, 2778
innodb_log_buffer_size, 2781
innodb_log_checkpoint_now, 2782
innodb_log_checksums, 2782
innodb_log_compressed_pages, 2782
innodb_log_files_in_group, 2784
innodb_log_file_size, 2783
innodb_log_group_home_dir, 2784
innodb_log_write_ahead_size, 2784
innodb_lru_scan_depth, 2785
innodb_max_dirty_pages_pct, 2785
innodb_max_dirty_pages_pct_lwm, 2786
innodb_max_purge_lag, 2786
innodb_max_purge_lag_delay, 2787
innodb_max_undo_log_size, 2787
innodb_merge_threshold_set_all_debug, 2787
innodb_monitor_disable, 2788
innodb_monitor_enable, 2788
innodb_monitor_reset, 2788
innodb_monitor_reset_all, 2789
innodb_numa_interleave, 2789
innodb_old_blocks_pct, 2790
innodb_old_blocks_time, 2790
innodb_online_alter_log_max_size, 2791
innodb_open_files, 2791
innodb_optimize_fulltext_only, 2792
innodb_page_cleaners, 2792
innodb_page_size, 2793
innodb_purge_batch_size, 2795

4812

innodb_purge_rseg_truncate_frequency, 2795
innodb_purge_threads, 2795
innodb_random_read_ahead, 2796
innodb_read_ahead_threshold, 2796
innodb_read_io_threads, 2797
innodb_read_only, 2797
innodb_replication_delay, 2798
innodb_rollback_on_timeout, 2798
innodb_rollback_segments, 2798
innodb_saved_page_number_debug, 2799
innodb_sort_buffer_size, 2799
innodb_spin_wait_delay, 2800
innodb_stats_auto_recalc, 2800
innodb_stats_include_delete_marked, 2661, 2801
innodb_stats_method, 2801
innodb_stats_on_metadata, 2802
innodb_stats_persistent_sample_pages, 2802
innodb_stats_sample_pages, 2803
innodb_stats_transient_sample_pages, 2803
innodb_status_output, 2804
innodb_status_output_locks, 2804
innodb_strict_mode, 2805
innodb_support_xa, 2805
innodb_sync_array_size, 2806
innodb_sync_debug, 2806
innodb_sync_spin_loops, 2806
innodb_table_locks, 2807
innodb_temp_data_file_path, 2807
innodb_thread_concurrency, 2808
innodb_thread_sleep_delay, 2810
innodb_tmpdir, 2810
innodb_trx_purge_view_update_only_debug, 2811
innodb_trx_rseg_n_slots_debug, 2811
innodb_undo_directory, 2811
innodb_undo_log_truncate, 2812
innodb_undo_tablespaces, 2813
innodb_use_native_aio, 2814
innodb_version, 2814
innodb_write_io_threads, 2814
insert_id, 799
interactive_timeout, 799
internal_tmp_disk_storage_engine, 800
join_buffer_size, 800
keep_files_on_create, 801
keyring_aws_cmk_id, 1287
keyring_aws_conf_file, 1287
keyring_aws_data_file, 1287
keyring_aws_region, 1288
keyring_encrypted_file_data, 1290
keyring_encrypted_file_password, 1291
keyring_file_data, 1292
keyring_okv_conf_dir, 1293
keyring_operations, 1294
key_buffer_size, 802

4813

key_cache_age_threshold, 803
key_cache_block_size, 803
key_cache_division_limit, 804
large_files_support, 804
large_pages, 804
large_page_size, 804
last_insert_id, 805
lc_messages, 805
lc_messages_dir, 805
lc_time_names, 805
license, 806
local_infile, 806, 1090
locked_in_memory, 807
lock_wait_timeout, 806
log_bin, 3063
log_bin_basename, 3063
log_bin_index, 3063
log_bin_trust_function_creators, 3064
log_bin_use_v1_row_events, 3064
log_builtin_as_identified_by_password, 3065
log_error, 807
log_error_verbosity, 807
log_output, 808
log_queries_not_using_indexes, 808
log_slave_updates, 3065
log_slow_slave_statements, 3026
log_statements_unsafe_for_binlog, 3066
log_syslog, 809
log_syslog_facility, 809
log_syslog_include_pid, 810
log_syslog_tag, 810
log_throttle_queries_not_using_indexes, 811
log_timestamps, 810
log_warnings, 811
long_query_time, 812
lower_case_file_system, 813
lower_case_table_names, 814
low_priority_updates, 813
master_info_repository, 3026
master_verify_checksum, 3066
max_allowed_packet, 814
max_binlog_cache_size, 3066
max_binlog_size, 3067
max_binlog_stmt_cache_size, 3068
max_connections, 815
max_connect_errors, 815
max_delayed_threads, 816
max_digest_length, 816
max_error_count, 817
max_execution_time, 817
max_heap_table_size, 818
max_insert_delayed_threads, 818
max_join_size, 433, 819
max_length_for_sort_data, 819

4814

max_points_in_geometry, 820
max_prepared_stmt_count, 820
max_relay_log_size, 3027
max_seeks_for_key, 820
max_sort_length, 821
max_sp_recursion_depth, 821
max_tmp_tables, 821
max_user_connections, 822
max_write_lock_count, 822
mecab_rc_file, 823
metadata_locks_cache_size, 823
metadata_locks_hash_instances, 823
min_examined_row_limit, 824
myisam_data_pointer_size, 824
myisam_max_sort_file_size, 825, 2923
myisam_mmap_size, 825
myisam_recover_options, 826, 2923
myisam_repair_threads, 827
myisam_sort_buffer_size, 827, 2923
myisam_stats_method, 828
myisam_use_mmap, 828
mysqlx_bind_address, 3267
mysqlx_connect_timeout, 3267
mysqlx_idle_worker_thread_timeout, 3268
mysqlx_max_allowed_packet, 3268
mysqlx_max_connections, 3268
mysqlx_min_worker_threads, 3269
mysqlx_port, 3269
mysqlx_port_open_timeout, 3270
mysqlx_socket, 3270
mysqlx_ssl_ca, 3271
mysqlx_ssl_capath, 3271
mysqlx_ssl_cert, 3271
mysqlx_ssl_cipher, 3272
mysqlx_ssl_crl, 3272
mysqlx_ssl_crlpath, 3272
mysqlx_ssl_key, 3272
mysql_firewall_mode, 1380
mysql_firewall_trace, 1380
mysql_native_password_proxy_users, 828, 1138
named_pipe, 829
named_pipe_full_access_group, 829
ndbinfo_database, 3536
ndbinfo_max_bytes, 3536
ndbinfo_max_rows, 3536
ndbinfo_offline, 3537
ndbinfo_show_hidden, 3537
ndbinfo_table_prefix, 3537
ndbinfo_version, 3538, 3538
ndb_autoincrement_prefetch_sz, 3517
ndb_cache_check_time, 3517
ndb_clear_apply_status, 3518
ndb_data_node_neighbour, 3518
ndb_default_column_format, 3519

4815

ndb_deferred_constraints, 3519
ndb_distribution, 3520
ndb_eventbuffer_free_percent, 3520
ndb_eventbuffer_max_alloc, 3520
ndb_extra_logging, 3521
ndb_force_send, 3521
ndb_fully_replicated, 3521
ndb_index_stat_enable, 3522
ndb_index_stat_option, 3522
ndb_join_pushdown, 3524
ndb_log_apply_status, 3526
ndb_log_bin, 3526
ndb_log_binlog_index, 3526
ndb_log_empty_epochs, 3527
ndb_log_empty_update, 3527
ndb_log_exclusive_reads, 3527
ndb_log_orig, 3527
ndb_log_transaction_id, 3528
ndb_optimized_node_selection, 3528
ndb_read_backup, 3529
ndb_recv_thread_activation_threshold, 3530
ndb_recv_thread_cpu_mask, 3530
ndb_report_thresh_binlog_epoch_slip, 3530
ndb_report_thresh_binlog_mem_usage, 3531
ndb_row_checksum, 3531
ndb_show_foreign_key_mock_tables, 3532
ndb_slave_conflict_role, 3532
ndb_table_no_logging, 3532
ndb_table_temporary, 3533
ndb_use_copying_alter_table, 3533
ndb_use_exact_count, 3533
ndb_use_transactions, 3533
ndb_version, 3534
ndb_version_string, 3534
net_buffer_length, 830
net_read_timeout, 830
net_retry_count, 830
net_write_timeout, 831
new, 831
ngram_token_size, 831
offline_mode, 832
old, 832
old_alter_table, 833
old_passwords, 833
open_files_limit, 834
optimizer_prune_level, 835
optimizer_search_depth, 835
optimizer_switch, 835
optimizer_trace, 837
optimizer_trace_features, 838
optimizer_trace_limit, 838
optimizer_trace_max_mem_size, 838
optimizer_trace_offset, 839
parser_max_mem_size, 839

4816

performance_schema, 4359
performance_schema_accounts_size, 4359
performance_schema_digests_size, 4360
performance_schema_events_stages_history_long_size, 4360
performance_schema_events_stages_history_size, 4361
performance_schema_events_statements_history_long_size, 4361
performance_schema_events_statements_history_size, 4361
performance_schema_events_transactions_history_long_size, 4362
performance_schema_events_transactions_history_size, 4362
performance_schema_events_waits_history_long_size, 4362
performance_schema_events_waits_history_size, 4363
performance_schema_hosts_size, 4363
performance_schema_max_cond_classes, 4363
performance_schema_max_cond_instances, 4364
performance_schema_max_digest_length, 4364
performance_schema_max_file_classes, 4365
performance_schema_max_file_handles, 4365
performance_schema_max_file_instances, 4365
performance_schema_max_index_stat, 4366
performance_schema_max_memory_classes, 4366
performance_schema_max_metadata_locks, 4366
performance_schema_max_mutex_classes, 4367
performance_schema_max_mutex_instances, 4367
performance_schema_max_prepared_statements_instances, 4367
performance_schema_max_program_instances, 4368
performance_schema_max_rwlock_classes, 4368
performance_schema_max_rwlock_instances, 4369
performance_schema_max_socket_classes, 4369
performance_schema_max_socket_instances, 4369
performance_schema_max_sql_text_length, 4370
performance_schema_max_stage_classes, 4370
performance_schema_max_statement_classes, 4370
performance_schema_max_statement_stack, 4371
performance_schema_max_table_handles, 4371
performance_schema_max_table_instances, 4372
performance_schema_max_table_lock_stat, 4372
performance_schema_max_thread_classes, 4373
performance_schema_max_thread_instances, 4373
performance_schema_session_connect_attrs_size, 4373
performance_schema_setup_actors_size, 4374
performance_schema_setup_objects_size, 4374
performance_schema_show_processlist, 4375
performance_schema_users_size, 4375
pid_file, 839
plugin_dir, 840
port, 840
preload_buffer_size, 840
profiling, 841
profiling_history_size, 841
protocol_version, 841
proxy_user, 841
pseudo_slave_mode, 841
pseudo_thread_id, 842
query_alloc_block_size, 842

4817

query_cache_limit, 843
query_cache_min_res_unit, 843
query_cache_size, 844
query_cache_type, 844
query_cache_wlock_invalidate, 845
query_prealloc_size, 846
rand_seed1, 846
rand_seed2, 847
range_alloc_block_size, 847
range_optimizer_max_mem_size, 847
rbr_exec_mode, 847
read_buffer_size, 848
read_only, 849
read_rnd_buffer_size, 850
relay_log, 3027
relay_log_basename, 3028
relay_log_index, 3028
relay_log_info_file, 3029
relay_log_info_repository, 3029
relay_log_purge, 3030
relay_log_recovery, 3030
relay_log_space_limit, 3031
replication_optimize_for_static_plugin_config, 3032
replication_sender_observe_commit_only, 3032
report_host, 3032
report_password, 3033
report_port, 3033
report_user, 3034
require_secure_transport, 850
rewriter_enabled, 1015
rewriter_verbose, 1015
rpl_semi_sync_master_enabled, 3010
rpl_semi_sync_master_timeout, 3010
rpl_semi_sync_master_trace_level, 3011
rpl_semi_sync_master_wait_for_slave_count, 3011
rpl_semi_sync_master_wait_no_slave, 3012
rpl_semi_sync_master_wait_point, 3012
rpl_semi_sync_slave_enabled, 3034
rpl_semi_sync_slave_trace_level, 3034
rpl_stop_slave_timeout, 3035
secure_auth, 851
secure_file_priv, 851
server_id, 2998
server_id_bits, 3534, 3534
session_track_gtids, 852, 963
session_track_schema, 853, 963
session_track_state_change, 853, 963
session_track_system_variables, 854, 963
session_track_transaction_info, 855
sha256_password_auto_generate_rsa_keys, 856
sha256_password_private_key_path, 856
sha256_password_proxy_users, 857, 1138
sha256_password_public_key_path, 857
shared_memory, 857

4818

shared_memory_base_name, 858
show_compatibility_56, 858
show_create_table_verbosity, 863
show_old_temporals, 863
skip_external_locking, 864
skip_name_resolve, 864
skip_networking, 865
skip_show_database, 865
slave_allow_batching, 3535
slave_checkpoint_group, 3035
slave_checkpoint_period, 3036
slave_compressed_protocol, 3037
slave_exec_mode, 3037
slave_load_tmpdir, 3037
slave_max_allowed_packet, 3038
slave_net_timeout, 3039
slave_parallel_type, 3039
slave_parallel_workers, 3040
slave_pending_jobs_size_max, 3041
slave_preserve_commit_order, 3041
slave_rows_search_algorithms, 3042
slave_skip_errors, 3043
slave_sql_verify_checksum, 3043
slave_transaction_retries, 3044
slave_type_conversions, 3044
slow_launch_time, 865
slow_query_log, 866
slow_query_log_file, 866
socket, 866
sort_buffer_size, 867
sql_auto_is_null, 867
sql_big_selects, 868
sql_buffer_result, 868
sql_log_bin, 3068
sql_log_off, 868
sql_mode, 869
sql_notes, 870
sql_quote_show_create, 870
sql_safe_updates, 433, 870
sql_select_limit, 433, 871
sql_slave_skip_counter, 3045
sql_warnings, 871
ssl_ca, 871
ssl_capath, 872
ssl_cert, 872
ssl_cipher, 872
ssl_crl, 873
ssl_crlpath, 873
ssl_key, 873
stored_program_cache, 874
super_read_only, 874
sync_binlog, 3069
sync_frm, 875
sync_master_info, 3045

4819

sync_relay_log, 3046
sync_relay_log_info, 3046
system_time_zone, 875, 956
table_definition_cache, 875
table_open_cache, 876
table_open_cache_instances, 877
thread_cache_size, 877
thread_handling, 878
thread_pool_algorithm, 878
thread_pool_high_priority_connection, 879
thread_pool_max_unused_threads, 879
thread_pool_prio_kickup_timer, 880
thread_pool_size, 880
thread_pool_stall_limit, 880
thread_stack, 881
timestamp, 882
time_format, 881
time_zone, 881, 956
tls_version, 882
tmpdir, 883
tmp_table_size, 883
transaction_alloc_block_size, 884
transaction_allow_batching, 3535
transaction_isolation, 884
transaction_prealloc_size, 886
transaction_read_only, 887
transaction_write_set_extraction, 3070
tx_isolation, 888
tx_read_only, 889
unique_checks, 889
updatable_views_with_limit, 889
validate_password_check_user_name, 1253
validate_password_dictionary_file, 1254
validate_password_length, 1255
validate_password_mixed_case_count, 1255
validate_password_number_count, 1255
validate_password_policy, 1256
validate_password_special_char_count, 1256
version, 890
version_comment, 890
version_compile_machine, 890
version_compile_os, 890
version_tokens_session, 1026
version_tokens_session_number, 1027
wait_timeout, 891
warning_count, 891

system variables, 766, 891, 2521
and replication, 3156
enforce_gtid_consistency, 3072
gtid_mode, 3074
gtid_next, 3075
gtid_owned, 3076
mysqld, 659
privileges required, 894

4820

systemd
CMake SYSTEMD_PID_DIR option, 206
CMake SYSTEMD_SERVICE_NAME option, 206
CMake WITH_SYSTEMD option, 216
managing mysqld, 177
mysqld daemonize option, 741
mysqld exit codes, 966

SYSTEMD_PID_DIR option
CMake, 206

SYSTEMD_SERVICE_NAME option
CMake, 206

system_time_zone system variable, 875, 956
SYSTEM_USER(), 2045
sys_config table

sys schema, 4395
sys_get_config() function

sys schema, 4469

T
tab (\t), 1653, 2106, 2295
tab option

mysqldump, 491
ndb_restore, 3714

table, 5361
changing, 2158, 2168, 4575
deleting, 2268
rebuilding, 256
repair, 256
row size, 1862

table aliases, 2313
table cache, 1525
table comment options (NDB), 2246
table description

myisamchk, 589
table is full, 772, 4556
table lock, 5362
table names

case sensitivity, 47, 1665
table option

mysql, 418
ndb_desc, 3639

table pullout
semijoin strategy, 1491

table reference
INFORMATION_SCHEMA, 4101
Performance Schema, 4251

table scan, 2644
table type, 5362

choosing, 2915
table-level locking, 1597
tables

BLACKHOLE, 2936
checking, 584

4821

cloning, 2230
closing, 1525
compressed, 598
compressed format, 2926
const, 1553
constant, 1446
copying, 2231
counting rows, 287
creating, 275
CSV, 2933
defragment, 2925
defragmenting, 1439, 2460
deleting rows, 4573
displaying, 540
displaying status, 2516
dumping, 465, 515
dynamic, 2925
error checking, 1435
EXAMPLE, 2949
FEDERATED, 2943
flush, 438
fragmentation, 2460
HEAP, 2928
importing, 2566
improving performance, 1521
information, 589
information about, 291
InnoDB, 2545
loading data, 277
maintenance, 450
maintenance schedule, 1438
maximum size, 1528
MEMORY, 2928
MERGE, 2938
merging, 2938
multiple, 289
MyISAM, 2919
names, 1660
open, 1525
opening, 1525
optimizing, 1438
partitioning, 2938
repair, 450
repairing, 1435
retrieving data, 278
selecting columns, 280
selecting rows, 279
sorting rows, 281
symbolic links, 1608
system, 1553
TEMPORARY, 2230
too many, 1526

TABLES
INFORMATION_SCHEMA table, 4142

4822

tables option
mysqlcheck, 464
mysqldump, 494

tablespace, 2597, 5362
TABLESPACES

INFORMATION_SCHEMA table, 4146
tables_priv table

system table, 968, 1105
TABLE_CONSTRAINTS

INFORMATION_SCHEMA table, 4146
table_definition_cache system variable, 875
table_distribution_status

ndbinfo table, 3902
table_exists() procedure

sys schema, 4458
table_fragments

ndbinfo table, 3903
table_handles table

performance_schema, 4317
table_info

ndbinfo table, 3905
table_io_waits_summary_by_index_usage table

performance_schema, 4333
table_io_waits_summary_by_table table

performance_schema, 4332
Table_locks_immediate status variable, 930
Table_locks_waited status variable, 930
table_lock_waits_summary_by_table table

performance_schema, 4334
table_open_cache, 1525
table_open_cache system variable, 876
Table_open_cache_hits status variable, 930
table_open_cache_instances system variable, 877
Table_open_cache_misses status variable, 930
Table_open_cache_overflows status variable, 930
TABLE_PRIVILEGES

INFORMATION_SCHEMA table, 4147
table_replicas

ndbinfo table, 3905
TAN(), 1922
tar

problems on Solaris, 183, 183
tc-heuristic-recover option

mysqld, 763
Tcl, 5363
Tcl API, 4484
TCP parameters (NDB)

NodeIdServer, 3556
Proxy, 3557

tcp-ip option
mysqld_multi, 357

TCP/IP, 122, 128, 211, 211, 335, 349, 377, 412, 625, 645, 650, 756, 947, 1038, 1087, 1142, 4263, 4548
TCP_MAXSEG_SIZE, 3558
TCP_RCV_BUF_SIZE, 3559

4823

TCP_SND_BUF_SIZE, 3559
Tc_log_max_pages_used status variable, 931
Tc_log_page_size status variable, 931
Tc_log_page_waits status variable, 931
tc_time_track_stats

ndbinfo table, 3907
tee command

mysql, 424
tee option

mysql, 418
temp-pool option

mysqld, 763
tempdelay option

ndb_import, 3667
temperrors option

ndb_import, 3668
temporal interval syntax, 1703
temporal values

JSON, 1847
temporary files, 4566
temporary table, 5363
TEMPORARY table privileges, 1099, 2230, 2448
temporary tables

and replication, 3150
internal, 1526
problems, 4576

TEMPORARY tables, 2230
renaming, 2271

temporary tablespace, 5363
terminal monitor

defined, 269
test option

myisampack, 599
test suite

new features, 18
testing

connection to the server, 1113
installation, 223
postinstallation, 222

test_plugin_server authentication plugin, 1224
TEXT

size, 1865
text collection, 5363
TEXT columns

default values, 1823
indexes, 2190, 2190
indexing, 1509, 2206

TEXT data type, 1818, 1822
text files

importing, 430, 501, 2289
text option

ndb_top, 3746
The used command is not allowed with this MySQL version

error message, 1091

4824

thread, 5363
thread cache, 947
thread command

Binlog Dump, 1621
Change user, 1621
Close stmt, 1621
Connect, 1621
Connect Out, 1621
Create DB, 1621
Daemon, 1621
Debug, 1621
Delayed insert, 1621
Drop DB, 1621
Error, 1621
Execute, 1622
Fetch, 1622
Field List, 1622
Init DB, 1622
Kill, 1622
Long Data, 1622
Ping, 1622
Prepare, 1622
Processlist, 1622
Query, 1622
Quit, 1622
Refresh, 1622
Register Slave, 1622
Reset stmt, 1622
Set option, 1622
Shutdown, 1623
Sleep, 1623
Statistics, 1623
Time, 1623

thread commands, 1621
thread pool table reference

INFORMATION_SCHEMA, 4195
thread state

After create, 1623
altering table, 1623
Analyzing, 1623
Changing master, 1633
Checking master version, 1630
checking permissions, 1623
checking privileges on cached query, 1629
checking query cache for query, 1630
Checking table, 1623
cleaning up, 1623
Clearing, 1634
closing tables, 1623
committing alter table to storage engine, 1623
Committing events to binlog, 1633
Connecting to master, 1631
converting HEAP to ondisk, 1623
copy to tmp table, 1624

4825

Copying to group table, 1624
Copying to tmp table, 1624
Copying to tmp table on disk, 1624
Creating index, 1624
Creating sort index, 1624
creating table, 1624
Creating tmp table, 1624
deleting from main table, 1624
deleting from reference tables, 1624
discard_or_import_tablespace, 1624
end, 1624
executing, 1625
Execution of init_command, 1625
Finished reading one binlog; switching to next binlog, 1630
freeing items, 1625
FULLTEXT initialization, 1625
init, 1625
Initialized, 1634
invalidating query cache entries, 1630
Killed, 1625
Killing slave, 1633
logging slow query, 1625
login, 1625
Making temporary file (append) before replaying LOAD DATA INFILE, 1632
Making temporary file (create) before replaying LOAD DATA INFILE, 1632
manage keys, 1625
Master has sent all binlog to slave; waiting for more updates, 1630
Opening master dump table, 1633
Opening mysql.ndb_apply_status, 1633
Opening tables, 1625
optimizing, 1626
preparing, 1626
preparing for alter table, 1626
Processing events, 1633
Processing events from schema table, 1633
Purging old relay logs, 1626
query end, 1626
Queueing master event to the relay log, 1631
Reading event from the relay log, 1632
Reading master dump table data, 1633
Rebuilding the index on master dump table, 1633
Receiving from client, 1626
Reconnecting after a failed binlog dump request, 1631
Reconnecting after a failed master event read, 1631
Registering slave on master, 1631
Removing duplicates, 1626
removing tmp table, 1626
rename, 1626
rename result table, 1626
Reopen tables, 1626
Repair by sorting, 1626
Repair done, 1626
Repair with keycache, 1626
Requesting binlog dump, 1631

4826

Rolling back, 1627
Saving state, 1627
Searching rows for update, 1627
Sending binlog event to slave, 1630
sending cached result to client, 1630
Sending to client, 1627
setup, 1627
Shutting down, 1633
Slave has read all relay log; waiting for more updates, 1632
Sorting for group, 1627
Sorting for order, 1627
Sorting index, 1627
Sorting result, 1627
starting, 1627
statistics, 1627
storing result in query cache, 1630
Syncing ndb table schema operation and binlog, 1633
System lock, 1627
update, 1628
Updating, 1628
updating main table, 1628
updating reference tables, 1628
User lock, 1628
User sleep, 1628
Waiting for allowed to take ndbcluster global schema lock, 1633
Waiting for an event from Coordinator, 1632
Waiting for commit lock, 1628
Waiting for event from ndbcluster, 1633
Waiting for first event from ndbcluster, 1633
Waiting for global read lock, 1628, 1629
Waiting for its turn to commit, 1631
Waiting for master to send event, 1631
Waiting for master update, 1631
Waiting for ndbcluster binlog update to reach current position, 1633
Waiting for ndbcluster global schema lock, 1633
Waiting for ndbcluster to start, 1633
Waiting for next activation, 1634
Waiting for query cache lock, 1630
Waiting for scheduler to stop, 1634
Waiting for schema epoch, 1634
Waiting for schema metadata lock, 1629
Waiting for slave mutex on exit, 1631, 1632
Waiting for Slave Workers to free pending events, 1632
Waiting for stored function metadata lock, 1629
Waiting for stored procedure metadata lock, 1629
Waiting for table flush, 1628
Waiting for table level lock, 1629
Waiting for table metadata lock, 1629
Waiting for tables, 1628
Waiting for the next event in relay log, 1632
Waiting for the slave SQL thread to free enough relay log space, 1631
Waiting for trigger metadata lock, 1629
Waiting on cond, 1629
Waiting on empty queue, 1634

4827

Waiting to finalize termination, 1630
Waiting to reconnect after a failed binlog dump request, 1631
Waiting to reconnect after a failed master event read, 1631
Waiting until MASTER_DELAY seconds after master executed event, 1632
Writing to net, 1629

thread states, 1619
event scheduler, 1634
general, 1623
NDB Cluster, 1633
query cache, 1629
replication replica, 1630, 1632, 1632
replication source, 1630

thread table
performance_schema, 4349

thread/sql/compress_gtid_table, 2970
threadblocks

ndbinfo table, 3908
ThreadConfig, 3473
ThreadPool (see DiskIOThreadPool)
threads, 438, 2500

display, 2500
monitoring, 1619, 2500, 4133, 4349
ndbinfo table, 3909

threadstat
ndbinfo table, 3910

Threads_cached status variable, 931
Threads_connected status variable, 931
Threads_created status variable, 931
Threads_running status variable, 931
thread_cache_size system variable, 877
thread_concurrency

removed features, 24
thread_handling system variable, 878
thread_pool_algorithm system variable, 878
thread_pool_high_priority_connection system variable, 879
thread_pool_max_unused_threads system variable, 879
thread_pool_prio_kickup_timer system variable, 880
thread_pool_size system variable, 880
thread_pool_stall_limit system variable, 880
thread_stack system variable, 881
Time

thread command, 1623
TIME data type, 1803, 1805
time data types

storage requirements, 1863
time literals, 1655
time representation

Event Scheduler, 4071
time zone problems, 4568
time zone tables, 381

system tables, 969
time zones

and replication, 3151
leap seconds, 960

4828

support, 956
upgrading, 959

TIME(), 1937
TimeBetweenEpochs, 3446
TimeBetweenEpochsTimeout, 3446
TimeBetweenGlobalCheckpoints, 3445, 3486
TimeBetweenGlobalCheckpointsTimeout, 3445
TimeBetweenInactiveTransactionAbortCheck, 3447
TimeBetweenLocalCheckpoints, 3444
TimeBetweenWatchDogCheck, 3438
TimeBetweenWatchDogCheckInitial, 3439
TIMEDIFF(), 1938
timed_mutexes

removed features, 24
timeout, 779, 2033
timeout option

ndb_waiter, 3752
timeouts (replication), 3151
TIMESTAMP

and NULL values, 4571
and replication, 3133
indexes, 1519
initialization and updating, 1809

TIMESTAMP data type, 1802, 1803
timestamp system variable, 882
TIMESTAMP(), 1938
timestamp-printouts option

ndb_restore, 3715
TIMESTAMPADD(), 1938
TIMESTAMPDIFF(), 1938
timezone option

mysqld_safe, 350
time_format system variable, 881
TIME_FORMAT(), 1939
TIME_TO_SEC(), 1939
time_zone system variable, 881, 956
time_zone table

system table, 969
time_zone_leap_second table

system table, 969
time_zone_name table

system table, 969
time_zone_transition table

system table, 969
time_zone_transition_type table

system table, 969
TINYBLOB data type, 1818
TINYINT data type, 1793
TINYTEXT data type, 1818
tips

optimization, 1507
TLS, 1148

command options, 327
establishing connections, 1150

4829

TLS related options
ALTER USER, 2429
CREATE USER statement, 2436

tls-version option, 335
mysql, 418
mysqladmin, 449
mysqlbinlog, 632
mysqlcheck, 465
mysqldump, 479
mysqlimport, 514
mysqlpump, 536
mysqlshow, 550
mysqlslap, 567
mysql_secure_installation, 378
mysql_upgrade, 392

tls_version system variable, 882
TMPDIR environment variable, 308, 651, 4566
TMPDIR option

CMake, 206
tmpdir option

myisamchk, 588
myisampack, 600
mysqld, 764

tmpdir system variable, 883
tmp_table_size system variable, 883
to-last-log option

mysqlbinlog, 632
Tomcat, 5363
too many open files, 4558
tools

command-line, 110, 393
mysqld_multi, 353
mysqld_safe, 341

top option
mysqldumpslow, 644

torn page, 2704, 5364
TotalSendBufferMemory

API and SQL nodes, 3499
data nodes, 3487
management nodes, 3400

Touches(), 2075
Townsend Alliance Key Manager

keyring_okv keyring plugin, 1267
TO_BASE64(), 1956
TO_DAYS(), 1939
TO_SECONDS(), 1940
TPS, 5364
TP_THREAD_GROUP_STATE

INFORMATION_SCHEMA table, 4195
TP_THREAD_GROUP_STATS

INFORMATION_SCHEMA table, 4197
TP_THREAD_STATE

INFORMATION_SCHEMA table, 4199
trace DBI method, 1048

4830

trace files
ndbmtd, 3588

trace files (NDB Cluster), 3581
TRADITIONAL SQL mode, 933, 941
trailing spaces

CHAR, 1817, 1819
ENUM, 1825
in comparisons, 1819
SET, 1827
VARCHAR, 1817, 1819

transaction, 5364
transaction access mode, 2355
transaction ID, 5364
transaction isolation level, 2355

NDB Cluster, 3323
READ COMMITTED, 2618
READ UNCOMMITTED, 2620
REPEATABLE READ, 2617
SERIALIZABLE, 2620

transaction state
change tracking, 962

transaction-isolation option
mysqld, 764

transaction-read-only option
mysqld, 764

transaction-safe tables, 2545
transactional option

ndb_delete_all, 3629
TransactionBufferMemory, 3417
TransactionDeadlockDetectionTimeout, 3448
TransactionInactiveTimeout, 3448
transactions, 2612

and replication, 3151, 3153
isolation levels, 2617
metadata locking, 1601
support, 2545

transaction_alloc_block_size system variable, 884
transaction_allow_batching session variable (NDB Cluster), 3535
transaction_isolation system variable, 884
transaction_prealloc_size system variable, 886
transaction_read_only system variable, 887
transaction_write_set_extraction, 3070
transparent data encryption, 2726
transparent page compression, 5364
transportable tablespace, 5364
Transportable Tablespaces, 2566
transporters

ndbinfo table, 3911
.TRG file, 5361
TRIGGER privilege, 1103
triggers, 2258, 2270, 2520, 4057, 4062

and replication, 3144, 3155
LAST_INSERT_ID(), 4061
metadata, 4066

4831

new features, 16
restrictions, 4090

TRIGGERS
INFORMATION_SCHEMA table, 4148

triggers option
mysqldump, 495
mysqlpump, 536

TRIM(), 1957
.TRN file, 5361
troubleshooting, 4545, 5364

ALTER TABLE problems, 4575
compiling MySQL server, 220
connection problems, 1142
InnoDB deadlocks, 2629, 2630
InnoDB errors, 2911
InnoDB recovery problems, 2905
InnoDB table fragmentation, 2706
replication, 3161
startup problems, 229
with MySQL Performance Schema, 4380

TRUE, 1654, 1660
testing for, 1904, 1904

true literal
JSON, 1847

truncate, 5365
TRUNCATE TABLE, 2272

and NDB Cluster, 3322
and replication, 3156
performance_schema database, 4250, 4385

TRUNCATE(), 1922
truststore, 5365
tuning, 1443

InnoDB compressed tables, 2675
tuple, 5365
tupscan option

ndb_delete_all, 3629
ndb_select_all, 3726

tutorial, 269
twiddle option

ndb_redo_log_reader, 3690
two-phase commit, 914, 914, 2805, 5365
TwoPassInitialNodeRestartCopy, 3468
tx_isolation

deprecated features, 20
tx_isolation system variable, 888
tx_read_only

deprecated features, 20
tx_read_only system variable, 889
type conversions, 1893, 1899
type option

ndb_config, 3621
ndb_show_tables, 3737

types
columns, 1792, 1866

4832

data, 1792
date and time, 1800
numeric, 1792
of tables, 2915
portability, 1867
string, 1815

typographical conventions, 2
TZ environment variable, 651, 956, 4568
tz-utc option

mysqldump, 491
mysqlpump, 536

U
UCASE(), 1957
UCS-2, 1710
ucs2 character set, 1747

as client character set, 1727
UDFs (see loadable functions)
uid option

mysql_ssl_rsa_setup, 381
ulimit, 4559
UMASK environment variable, 651, 4559
UMASK_DIR environment variable, 651, 4560
unary minus (-), 1912
unblocking blocked hosts, 952
unbuffered option

mysql, 419
UNCOMPRESS(), 2032
UNCOMPRESSED_LENGTH(), 2032
undo, 5365
undo log, 2604, 2605, 5365
undo log segment, 5365
undo tablespace, 2605, 5366
undo tablespaces, 2604
UndoDataBuffer, 3454
UndoIndexBuffer, 3453
unexpected halt

replication, 3030, 3114
UNHEX(), 1957
Unicode, 1710, 5366
Unicode character (\U), 2106
Unicode Collation Algorithm, 1753
UNINSTALL PLUGIN statement, 2468
uninstalling loadable functions, 1036
uninstalling plugins, 996, 2468
UNION, 299, 2325
UNIQUE, 2167
unique constraint, 5366
unique index, 5366
unique key, 5366

constraint, 54
unique keys

and partitioning keys, 4049

4833

unique_checks system variable, 889
unique_subquery join type

optimizer, 1554
Unix signal handling, 653
UNIX_TIMESTAMP(), 1941
UNKNOWN

testing for, 1904, 1904
Unknown column ... in 'on clause', 2324, 2325
Unknown or incorrect time zone

error, 957
unloading

tables, 278
UNLOCK TABLES, 2349
unnamed views, 2333
unpack option

myisamchk, 588
unqualified option

ndb_desc, 3639
ndb_show_tables, 3737

unsafe statement (replication)
defined, 3089

unsafe statements (replication), 3090
UNSIGNED, 1792, 1797
UNTIL, 2393
updatable views, 4077
updatable_views_with_limit system variable, 889
UPDATE, 50, 2340
update

thread state, 1628
update action

MySQLInstallerConsole, 119
update option

ndb_index_stat, 3676
UPDATE privilege, 1103
update-state option

myisamchk, 585
UpdateXML(), 2011
Updating

thread state, 1628
updating main table

thread state, 1628
updating reference tables

thread state, 1628
upgrade action

MySQLInstallerConsole, 119
upgrade-system-tables option

mysql_upgrade, 392
upgrades

NDB Cluster, 3357, 3794
upgrades and downgrades (NDB Cluster)

compatibility between versions, 3357
upgrading, 236

a Docker installation of MySQL, 254
different architecture, 257

4834

with directly-downloaded RPM Packages, 254
with MySQL APT Repository, 252
with MySQL SLES Repository, 252
with MySQL Yum Repository, 250

upgrading MySQL, 382
UPPER(), 1958
uptime, 438
Uptime status variable, 931
Uptime_since_flush_status status variable, 931
URLs for downloading MySQL, 63
usage option

ndbd, 3580
ndbinfo_select_all, 3587
ndb_blob_tool, 3611
ndb_config, 3621
ndb_delete_all, 3629
ndb_desc, 3639
ndb_drop_index, 3643
ndb_drop_table, 3648
ndb_import, 3668
ndb_index_stat, 3676
ndb_mgm, 3605
ndb_mgmd, 3600
ndb_move_data, 3683
ndb_restore, 3715
ndb_select_all, 3727
ndb_select_count, 3732
ndb_show_tables, 3737
ndb_top, 3746
ndb_waiter, 3752

USAGE privilege, 1103
USE, 2542
use command

mysql, 424
USE INDEX, 1577
USE KEY, 1577
use-default option

mysql_secure_installation, 378
use-frm option

mysqlcheck, 465
use-threads option

mysqlimport, 515
useHexFormat option

ndb_select_all, 3727
user

root, 233
user accounts

altering, 2425
creating, 1118, 2432
renaming, 2451
reserved, 1121
resource limits, 822, 1140, 2430, 2438, 2450

USER environment variable, 338, 651
User lock

4835

thread state, 1628
user management, 1094
user name length

and replication, 3156
user names

and passwords, 1095
in account names, 1111
in default account, 233

user option, 327
mysql, 419
mysqladmin, 449
mysqlbinlog, 632
mysqlcheck, 465
mysqld, 765
mysqldump, 479
mysqld_multi, 357
mysqld_safe, 350
mysqlimport, 514
mysqlpump, 536
mysqlshow, 550
mysqlslap, 567
mysql_install_db, 370
mysql_secure_installation, 378
mysql_upgrade, 393
ndb_top, 3746

user privileges
adding, 1118
checking, 1120
deleting, 2439
dropping, 2439
revoking, 1120

User sleep
thread state, 1628

user table
account_locked column, 1108
sorting, 1115
system table, 233, 968, 1105

user variables
and replication, 3156

USER(), 2045
user-defined functions (see loadable functions)
user-defined variables, 1697
users

deleting, 1121, 2439
users option

mysqlpump, 537
users table

performance_schema, 4299
USER_PRIVILEGES

INFORMATION_SCHEMA table, 4150
user_summary view

sys schema, 4432
user_summary_by_file_io view

sys schema, 4433

4836

user_summary_by_file_io_type view
sys schema, 4434

user_summary_by_stages view
sys schema, 4434

user_summary_by_statement_latency view
sys schema, 4435

user_summary_by_statement_type view
sys schema, 4435

user_variables_by_thread table
performance_schema, 4302

UseShm, 3438
USING HASH

with NDB tables, 2192
using multiple disks to start data, 1609
using NDB Cluster programs, 3570
USING versus ON

joins, 2324
UTC_DATE(), 1942
UTC_TIME(), 1942
UTC_TIMESTAMP(), 1942
UTF-8, 1710

database object metadata, 1714
utf16 character set, 1748

as client character set, 1727
utf16le character set, 1748

as client character set, 1727
utf16_bin collation, 1757
utf32 character set, 1748

as client character set, 1727
utf8 character set, 1747

alias for utf8mb3, 1747, 1747
utf8mb3 character set, 1747

utf8 alias, 1747, 1747
utf8mb4 character set, 1746
utilities

program-development, 307
utility programs, 306
UUID(), 2140
UUID_SHORT(), 2140

V
valid

GIS values, 1841
spatial values, 1841

valid JSON values, 1848
valid numbers

examples, 1654
validate-password option

mysqld, 1252
validate-user-plugins option

mysqld, 765
validate_password plugin, 1249

configuring, 1252

4837

installing, 1251
options, 1252
status variables, 1257
system variables, 1253

validate_password_check_user_name system variable, 1253
validate_password_dictionary_file system variable, 1254
validate_password_dictionary_file_last_parsed status variable, 1257
validate_password_dictionary_file_words_count status variable, 1257
validate_password_length system variable, 1255
validate_password_mixed_case_count system variable, 1255
validate_password_number_count system variable, 1255
validate_password_policy system variable, 1256
validate_password_special_char_count system variable, 1256
VALIDATE_PASSWORD_STRENGTH(), 2032
VALUES(), 2141
VARBINARY data type, 1818, 1821
VARCHAR

size, 1865
VARCHAR data type, 1815, 1817
VARCHARACTER data type, 1817
variable option

mysql_config, 645
variable-length type, 5366
variables

and replication, 3156
environment, 308
server, 2521
status, 909, 2515
system, 766, 891, 2521
user defined, 1697

VARIANCE(), 2122
VAR_POP(), 2122
VAR_SAMP(), 2122
verbose option

innochecksum, 569
myisamchk, 582
myisampack, 600
myisam_ftdump, 576
mysql, 419
mysqladmin, 450
mysqlbinlog, 632
mysqlcheck, 465
mysqld, 766
mysqldump, 484
mysqldumpslow, 644
mysqld_multi, 357
mysqlimport, 515
mysqlshow, 550
mysqlslap, 567
mysql_config_editor, 608
mysql_install_db, 370
mysql_plugin, 373
mysql_ssl_rsa_setup, 381
mysql_upgrade, 393

4838

my_print_defaults, 647
ndbd, 3580
ndbmtd, 3580
ndb_blob_tool, 3611
ndb_import, 3668
ndb_index_stat, 3676
ndb_mgmd, 3600
ndb_move_data, 3683
ndb_perror, 3685
ndb_restore, 3715
perror, 649

verify-binlog-checksum option
mysqlbinlog, 633

version
choosing, 62
latest, 63

VERSION file
CMake, 221

version option
comp_err, 361
innochecksum, 569
myisamchk, 582
myisampack, 600
mysql, 419
mysqladmin, 450
mysqlbinlog, 633
mysqlcheck, 465
mysqld, 766
mysqldump, 484
mysqld_multi, 357
mysqlimport, 515
mysqlpump, 537
mysqlshow, 550
mysqlslap, 567
mysql_config, 645
mysql_config_editor, 608
mysql_install_db, 370
mysql_plugin, 373
mysql_ssl_rsa_setup, 381
my_print_defaults, 647
ndbd, 3580
ndbinfo_select_all, 3587
ndb_blob_tool, 3611
ndb_config, 3621
ndb_delete_all, 3629
ndb_desc, 3639
ndb_drop_index, 3643
ndb_drop_table, 3648
ndb_import, 3668
ndb_index_stat, 3676
ndb_mgm, 3606
ndb_mgmd, 3600
ndb_move_data, 3683
ndb_perror, 3685

4839

ndb_restore, 3715
ndb_select_all, 3727
ndb_select_count, 3732
ndb_show_tables, 3737
ndb_waiter, 3752
perror, 649
resolveip, 650
resolve_stack_dump, 648

version system variable, 890
Version Tokens, 1016
Version Tokens functions

version_tokens_delete(), 1024
version_tokens_edit(), 1024
version_tokens_lock_exclusive(), 1025
version_tokens_lock_shared(), 1025
version_tokens_set(), 1024
version_tokens_show(), 1025
version_tokens_unlock(), 1025

Version Tokens plugin
elements, 1016
installing, 1016
reference, 1023
uninstalling, 1016
using, 1017

version view
sys schema, 4436

VERSION(), 2045
version-check option

mysql_upgrade, 393
version_comment system variable, 890
version_compile_machine system variable, 890
version_compile_os system variable, 890
version_major() function

sys schema, 4470
version_minor() function

sys schema, 4470
version_patch() function

sys schema, 4470
version_tokens_delete() Version Tokens function, 1024
version_tokens_edit() Version Tokens function, 1024
version_tokens_lock_exclusive() Version Tokens function, 1025
version_tokens_lock_shared() Version Tokens function, 1025
version_tokens_session system variable, 1026
version_tokens_session_number system variable, 1027
version_tokens_set() Version Tokens function, 1024
version_tokens_show() Version Tokens function, 1025
version_tokens_unlock() Version Tokens function, 1025
vertical option

mysql, 419
mysqladmin, 450

victim, 5367
Vietnamese, 4518
view, 5367
views, 2260, 4057, 4075

4840

algorithms, 4075
and replication, 3158
limitations, 4095
materialization prevention, 1498
metadata, 4080
optimization, 1489, 1497
privileges, 4095
problems, 4095
restrictions, 4094
updatable, 2260, 4077

VIEWS
INFORMATION_SCHEMA table, 4150

virtual generated column, 5367
virtual index, 5367
Visual Studio, 5367

W
wait, 5367
WAIT COMPLETED (START BACKUP command), 3810
wait option

myisamchk, 582
myisampack, 600
mysql, 419
mysqladmin, 450

WAIT STARTED (START BACKUP command), 3810
wait-nodes option

ndb_waiter, 3753
Waiting for allowed to take ndbcluster global schema lock

thread state, 1633
Waiting for an event from Coordinator

thread state, 1632
Waiting for commit lock

thread state, 1628
Waiting for event from ndbcluster

thread state, 1633
Waiting for event metadata lock

thread state, 1629
Waiting for event read lock

thread state, 1629
Waiting for first event from ndbcluster

thread state, 1633
Waiting for global read lock

thread state, 1628
Waiting for its turn to commit

thread state, 1631
Waiting for master to send event

thread state, 1631
Waiting for master update

thread state, 1631
Waiting for ndbcluster binlog update to reach current position

thread state, 1633
Waiting for ndbcluster global schema lock

thread state, 1633

4841

Waiting for ndbcluster to start
thread state, 1633

Waiting for next activation
thread state, 1634

Waiting for query cache lock
thread state, 1630

Waiting for scheduler to stop
thread state, 1634

Waiting for schema epoch
thread state, 1634

Waiting for schema metadata lock
thread state, 1629

Waiting for slave mutex on exit
thread state, 1631, 1632

Waiting for Slave Workers to free pending events
thread state, 1632

Waiting for stored function metadata lock
thread state, 1629

Waiting for stored procedure metadata lock
thread state, 1629

Waiting for table flush
thread state, 1628

Waiting for table level lock
thread state, 1629

Waiting for table metadata lock
thread state, 1629

Waiting for tables
thread state, 1628

Waiting for the next event in relay log
thread state, 1632

Waiting for the slave SQL thread to free enough relay log space
thread state, 1631

Waiting for trigger metadata lock
thread state, 1629

Waiting on cond
thread state, 1629

Waiting on empty queue
thread state, 1634

Waiting to finalize termination
thread state, 1630

Waiting to reconnect after a failed binlog dump request
thread state, 1631

Waiting to reconnect after a failed master event read
thread state, 1631

Waiting until MASTER_DELAY seconds after master executed event
thread state, 1632

waits_by_host_by_latency view
sys schema, 4438

waits_by_user_by_latency view
sys schema, 4438

waits_global_by_latency view
sys schema, 4439

wait_classes_global_by_avg_latency view
sys schema, 4437

4842

wait_classes_global_by_latency view
sys schema, 4437

WAIT_FOR_EXECUTED_GTID_SET(), 2114
wait_timeout system variable, 891
WAIT_UNTIL_SQL_THREAD_AFTER_GTIDS(), 2115
Wan, 3399, 3501
warm backup, 5367
warm up, 5368
warnings command

mysql, 424
warning_count system variable, 891
watch-progress option

mysqlpump, 537
WatchDogImmediateKill, 3460
WEEK(), 1942
WEEKDAY(), 1944
WEEKOFYEAR(), 1944
WEIGHT_STRING(), 1959
well-formed

GIS values, 1841
spatial values, 1841

Well-Known Binary format
geometry values, 1839

Well-Known Text format
geometry values, 1838

WHERE, 1446
with SHOW, 4098, 4201

where option
mysqldump, 495

WHILE, 2394
labels, 2387

widths
display, 1792

Wildcard character (%), 1653
Wildcard character (_), 1653
wildcards

and LIKE, 1514
in account names, 1112
in mysql.columns_priv table, 1117
in mysql.db table, 1116
in mysql.procs_priv table, 1117
in mysql.tables_priv table, 1117

Windows
interactive history, 431
MySQL restrictions, 132
path name separators, 314
pluggable authentication, 1201
upgrading, 252

WIN_DEBUG_NO_INLINE option
CMake, 211

WITH ROLLUP, 2122
Within(), 2078
WITHOUT_SERVER option

CMake, 217

4843

WITH_ASAN option
CMake, 212

WITH_ASAN_SCOPE option
CMake, 212

WITH_AUTHENTICATION_LDAP option
CMake, 212

WITH_AUTHENTICATION_PAM option
CMake, 212

WITH_AWS_SDK option
CMake, 212

WITH_BOOST option
CMake, 212

WITH_BUNDLED_LIBEVENT option
CMake, 219

WITH_BUNDLED_MEMCACHED option
CMake, 219

WITH_CLASSPATH option
CMake, 219

WITH_CLIENT_PROTOCOL_TRACING option
CMake, 213

WITH_CURL option
CMake, 213

WITH_DEBUG option
CMake, 213

WITH_DEFAULT_COMPILER_OPTIONS option
CMake, 218

WITH_DEFAULT_FEATURE_SET option
CMake, 213

WITH_EDITLINE option
CMake, 213

WITH_EMBEDDED_SERVER option
CMake, 214

WITH_EMBEDDED_SHARED_LIBRARY option
CMake, 214

WITH_ERROR_INSERT option
CMake, 219

WITH_EXTRA_CHARSETS option
CMake, 214

WITH_GMOCK option
CMake, 214

WITH_INNODB_EXTRA_DEBUG option
CMake, 214

WITH_INNODB_MEMCACHED option
CMake, 214

WITH_KEYRING_TEST option
CMake, 214

WITH_LDAP option
CMake, 214

WITH_LIBEVENT option
CMake, 215

WITH_LIBWRAP option
CMake, 215

WITH_LZ4 option
CMake, 215

4844

WITH_MECAB option
CMake, 215

WITH_MSAN option
CMake, 215

WITH_MSCRT_DEBUG option
CMake, 215

WITH_NDBAPI_EXAMPLES option
CMake, 219

WITH_NDBCLUSTER option
CMake, 219

WITH_NDBCLUSTER_STORAGE_ENGINE option
CMake, 219

WITH_NDBMTD option
CMake, 219

WITH_NDB_BINLOG option
CMake, 219

WITH_NDB_DEBUG option
CMake, 219

WITH_NDB_JAVA option
CMake, 219

WITH_NDB_PORT option
CMake, 219

WITH_NDB_TEST option
CMake, 220

WITH_NUMA option
CMake, 215

WITH_PROTOBUF option
CMake, 216

WITH_RAPID option
CMake, 216

WITH_SASL option
CMake, 216

WITH_SSL option
CMake, 216

WITH_SYSTEMD option
CMake, 216

WITH_TEST_TRACE_PLUGIN option
CMake, 217

WITH_UBSAN option
CMake, 217

WITH_UNIT_TESTS option
CMake, 217

WITH_UNIXODBC option
CMake, 217

WITH_VALGRIND option
CMake, 217

WITH_ZLIB option
CMake, 217

WKB format
geometry values, 1839

WKT format
geometry values, 1838

workload, 5368
wrappers

4845

Eiffel, 4484
write combining, 5368
write option

innochecksum, 572
write-binlog option

mysqlcheck, 465
mysql_upgrade, 393

write_buffer_size myisamchk variable, 582
Writing to net

thread state, 1629

X
X Plugin, 3263
X Plugin option

mysqlx, 3266
x$ views

sys schema, 4398
x$host_summary view

sys schema, 4398
x$host_summary_by_file_io view

sys schema, 4399
x$host_summary_by_file_io_type view

sys schema, 4399
x$host_summary_by_stages view

sys schema, 4400
x$host_summary_by_statement_latency view

sys schema, 4400
x$host_summary_by_statement_type view

sys schema, 4401
x$innodb_buffer_stats_by_schema view

sys schema, 4402
x$innodb_buffer_stats_by_table view

sys schema, 4403
x$innodb_lock_waits view

sys schema, 4404
x$io_by_thread_by_latency view

sys schema, 4406
x$io_global_by_file_by_bytes view

sys schema, 4406
x$io_global_by_file_by_latency view

sys schema, 4407
x$io_global_by_wait_by_bytes view

sys schema, 4408
x$io_global_by_wait_by_latency view

sys schema, 4409
x$latest_file_io view

sys schema, 4410
x$memory_by_host_by_current_bytes view

sys schema, 4410
x$memory_by_thread_by_current_bytes view

sys schema, 4411
x$memory_by_user_by_current_bytes view

sys schema, 4411

4846

x$memory_global_by_current_bytes view
sys schema, 4412

x$memory_global_total view
sys schema, 4413

x$processlist view
sys schema, 4414

x$schema_flattened_keys view
sys schema, 4419

x$schema_index_statistics view
sys schema, 4417

x$schema_tables_with_full_table_scans view
sys schema, 4424

x$schema_table_lock_waits view
sys schema, 4420

x$schema_table_statistics view
sys schema, 4421

x$schema_table_statistics_with_buffer view
sys schema, 4423

x$session view
sys schema, 4425

x$statements_with_errors_or_warnings view
sys schema, 4427

x$statements_with_full_table_scans view
sys schema, 4428

x$statements_with_runtimes_in_95th_percentile view
sys schema, 4429

x$statements_with_sorting view
sys schema, 4431

x$statements_with_temp_tables view
sys schema, 4432

x$statement_analysis view
sys schema, 4426

x$user_summary view
sys schema, 4432

x$user_summary_by_file_io view
sys schema, 4433

x$user_summary_by_file_io_type view
sys schema, 4434

x$user_summary_by_stages view
sys schema, 4434

x$user_summary_by_statement_latency view
sys schema, 4435

x$user_summary_by_statement_type view
sys schema, 4436

x$waits_by_host_by_latency view
sys schema, 4438

x$waits_by_user_by_latency view
sys schema, 4438

x$waits_global_by_latency view
sys schema, 4439

x$wait_classes_global_by_avg_latency view
sys schema, 4437

x$wait_classes_global_by_latency view
sys schema, 4437

4847

X(), 2063
X.509/Certificate, 1148
XA, 5368
XA BEGIN, 2359
XA COMMIT, 2359
XA PREPARE, 2359
XA RECOVER, 2359
XA ROLLBACK, 2359
XA START, 2359
XA transactions, 2358

restrictions, 2361
transaction identifiers, 2359

xid
XA transaction identifier, 2359

xml option
mysql, 419
mysqldump, 492
ndb_config, 3621

XOR
bitwise, 2019
logical, 1907

XPath code injection, 2016

Y
Y(), 2063
yaSSL, 193, 1148

compared to OpenSSL, 1171
yaSSL versus OpenSSL

detecting, 1172
YEAR data type, 1803, 1806
YEAR(), 1944
YEAR(2)

removed features, 24
YEARWEEK(), 1944
Yen sign (Japanese), 4518
young, 5368
Your password does not satisfy the current policy requirements

password error, 1250

Z
ZEROFILL, 1792, 1797
zlib_decompress, 308, 650

C Function Index

mysql_affected_rows()
Section 13.2.1, “CALL Statement”
Section 12.15, “Information Functions”
Section 13.2.5, “INSERT Statement”
Section 13.2.8, “REPLACE Statement”

mysql_change_user()
Section 4.5.1.2, “mysql Client Commands”

4848

mysql_close()
Section B.3.2.9, “Communication Errors and Aborted Connections”

mysql_errno()
Section 6.4.5.4, “Audit Log File Formats”
Section B.2, “Error Information Interfaces”
Section 13.6.7.5, “SIGNAL Statement”

mysql_error()
Section B.2, “Error Information Interfaces”
Section 13.6.7.5, “SIGNAL Statement”

mysql_escape_string()
Section 6.1.7, “Client Programming Security Guidelines”

mysql_fetch_row()
Section 15.8.1, “FEDERATED Storage Engine Overview”

mysql_free_result()
Section B.3.2.12, “Commands out of sync”

mysql_get_character_set_info()
Section 10.14.2, “Choosing a Collation ID”

mysql_info()
Section 13.1.8, “ALTER TABLE Statement”
Section 13.2.5, “INSERT Statement”
Section 13.2.6, “LOAD DATA Statement”
Section 1.6.3.1, “PRIMARY KEY and UNIQUE Index Constraints”
Section 13.2.11, “UPDATE Statement”

mysql_insert_id()
Section 13.1.18, “CREATE TABLE Statement”
Section 12.15, “Information Functions”
Section 13.2.5, “INSERT Statement”
Section 5.1.7, “Server System Variables”
Section 3.6.9, “Using AUTO_INCREMENT”

mysql_kill()
Section 1.3, “What Is New in MySQL 5.7”

mysql_library_end()
Section 27.6, “libmysqld, the Embedded MySQL Server Library”

mysql_library_init()
Section 27.6, “libmysqld, the Embedded MySQL Server Library”
Section 27.6.3, “Options with the Embedded Server”

mysql_list_fields()
Section 1.3, “What Is New in MySQL 5.7”

4849

mysql_list_processes()
Section 1.3, “What Is New in MySQL 5.7”

mysql_next_result()
Section 13.2.1, “CALL Statement”

mysql_options()
Section 6.2.1, “Account User Names and Passwords”
Section 6.4.1.4, “Caching SHA-2 Pluggable Authentication”
Section 6.4.1.6, “Client-Side Cleartext Pluggable Authentication”
Section 10.4, “Connection Character Sets and Collations”
Section 4.2.6, “Connection Compression Control”
Section B.3.2.7, “MySQL server has gone away”
Section 25.12.9, “Performance Schema Connection Attribute Tables”
Section 6.1.6, “Security Considerations for LOAD DATA LOCAL”
Section 6.2.12, “Server Handling of Expired Passwords”
Section 6.4.1.5, “SHA-256 Pluggable Authentication”
Section 5.7.4, “Using Client Programs in a Multiple-Server Environment”
Section 1.3, “What Is New in MySQL 5.7”

mysql_options4()
Section 25.12.9, “Performance Schema Connection Attribute Tables”

mysql_ping()
Section B.3.2.7, “MySQL server has gone away”

mysql_query()
Section 13.2.1, “CALL Statement”
Section 1.3, “What Is New in MySQL 5.7”

mysql_real_connect()
Section 13.2.1, “CALL Statement”
Chapter 12, Functions and Operators
Section 12.15, “Information Functions”
Section 13.2.5.2, “INSERT ... ON DUPLICATE KEY UPDATE Statement”
Section 13.2.5, “INSERT Statement”
Section 13.5, “Prepared Statements”
Section 6.2.12, “Server Handling of Expired Passwords”
Section 5.1.7, “Server System Variables”
Section 23.2.1, “Stored Routine Syntax”
Section 4.10, “Unix Signal Handling in MySQL”
Section 5.7.4, “Using Client Programs in a Multiple-Server Environment”

mysql_real_escape_string_quote()
Section 6.1.7, “Client Programming Security Guidelines”
Section 11.4.6, “Populating Spatial Columns”
Section 9.1.1, “String Literals”

mysql_real_query()
Section 13.2.1, “CALL Statement”
Section 15.8.1, “FEDERATED Storage Engine Overview”

4850

mysql_refresh()
Section 1.3, “What Is New in MySQL 5.7”

mysql_session_track_get_first()
Section 5.1.15, “Server Tracking of Client Session State”

mysql_session_track_get_next()
Section 5.1.15, “Server Tracking of Client Session State”

mysql_shutdown()
Section 6.2.2, “Privileges Provided by MySQL”
Section 13.7.6.7, “SHUTDOWN Statement”

mysql_sqlstate()
Section B.2, “Error Information Interfaces”
Section 13.6.7.5, “SIGNAL Statement”

mysql_stmt_attr_set()
Section 13.6.6.5, “Restrictions on Server-Side Cursors”

mysql_stmt_close()
Section 25.12.6.4, “The prepared_statements_instances Table”

mysql_stmt_errno()
Section B.2, “Error Information Interfaces”

mysql_stmt_error()
Section B.2, “Error Information Interfaces”

mysql_stmt_execute()
Section 8.10.3.1, “How the Query Cache Operates”
Section 25.12.6.4, “The prepared_statements_instances Table”

mysql_stmt_next_result()
Section 13.2.1, “CALL Statement”

mysql_stmt_prepare()
Section 8.10.4, “Caching of Prepared Statements and Stored Programs”
Section 8.10.3.1, “How the Query Cache Operates”
Section 13.5, “Prepared Statements”
Section 25.12.6.4, “The prepared_statements_instances Table”

mysql_stmt_send_long_data()
Section 5.1.7, “Server System Variables”

mysql_stmt_sqlstate()
Section B.2, “Error Information Interfaces”

mysql_store_result()
Section B.3.2.12, “Commands out of sync”

4851

Section 15.8.1, “FEDERATED Storage Engine Overview”
Section 4.5.1, “mysql — The MySQL Command-Line Client”

mysql_thread_end()
Section 27.6, “libmysqld, the Embedded MySQL Server Library”

mysql_thread_init()
Section 27.6, “libmysqld, the Embedded MySQL Server Library”

mysql_use_result()
Section B.3.2.12, “Commands out of sync”
Section 4.5.1, “mysql — The MySQL Command-Line Client”
Section B.3.2.6, “Out of memory”

mysql_warning_count()
Section B.2, “Error Information Interfaces”
Section 13.7.5.40, “SHOW WARNINGS Statement”

Command Index
A | B | C | D | E | G | H | I | J | K | L | M | N | O | P | R | S | T | U | V | W | Y | Z

A

[index top]

Access
Section 13.2.2, “DELETE Statement”

addgroup
Section 21.3.1.1, “Installing an NDB Cluster Binary Release on Linux”
Section 2.2, “Installing MySQL on Unix/Linux Using Generic Binaries”

addr2line
Section 5.8.1.5, “Using a Stack Trace”

adduser
Section 21.3.1.1, “Installing an NDB Cluster Binary Release on Linux”
Section 2.2, “Installing MySQL on Unix/Linux Using Generic Binaries”

ALTER TABLE
Section 21.6.12, “Online Operations with ALTER TABLE in NDB Cluster”

APF
Section 21.6.18.1, “NDB Cluster Security and Networking Issues”

apt-get
Section 2.5.8, “Installing MySQL on Linux from the Native Software Repositories”
Section 2.5.6, “Installing MySQL on Linux Using Debian Packages from Oracle”

4852

Section 14.21.4, “Security Considerations for the InnoDB memcached Plugin”

audit2allow
Section 6.7.6, “Troubleshooting SELinux”

B

[index top]

bash
Section 1.1, “About This Manual”
Section 6.1.2.1, “End-User Guidelines for Password Security”
Section 2.4.1, “General Notes on Installing MySQL on macOS”
Section 4.2.1, “Invoking MySQL Programs”
Section 16.1.6.3, “Replica Server Options and Variables”
Section 4.2.7, “Setting Environment Variables”

binary-configure.sh
Section 1.3, “What Is New in MySQL 5.7”

bison
Section 2.8.8, “Dealing with Problems Compiling MySQL”
Section 2.8.2, “Source Installation Prerequisites”

C

[index top]

c++filt
Section 5.8.1.5, “Using a Stack Trace”

cat
Section 14.15, “InnoDB Startup Options and System Variables”
Section 4.5.1.1, “mysql Client Options”

cd
Resetting the Root Password: Windows Systems

chkconfig
Section 21.3.1.1, “Installing an NDB Cluster Binary Release on Linux”
Section 2.5.8, “Installing MySQL on Linux from the Native Software Repositories”
Section 4.3.3, “mysql.server — MySQL Server Startup Script”

chmod
Section 6.4.4.7, “Migrating Keys Between Keyring Keystores”

chown
Section 6.4.4.7, “Migrating Keys Between Keyring Keystores”

CMake
Section 10.13, “Adding a Character Set”

4853

Section 21.3.1.4, “Building NDB Cluster from Source on Linux”
Section B.3.2.15, “Can't initialize character set”
Section 21.3.2.2, “Compiling and Installing NDB Cluster from Source on Windows”
Section 10.5, “Configuring Application Character Set and Collation”
Section 2.8.6, “Configuring SSL Library Support”
Section 2.8.8, “Dealing with Problems Compiling MySQL”
Section 4.9, “Environment Variables”
Section 21.1, “General Information”
Section B.3.3.6, “How to Protect or Change the MySQL Unix Socket File”
Section 14.15, “InnoDB Startup Options and System Variables”
Section 2.8.5, “Installing MySQL Using a Development Source Tree”
Section 2.8.4, “Installing MySQL Using a Standard Source Distribution”
Section 6.4.4.12, “Keyring System Variables”
Section 2.5.10, “Managing MySQL Server with systemd”
Section 21.6.10, “MySQL Server Usage for NDB Cluster”
Section 2.8.7, “MySQL Source-Configuration Options”
Section 25.2, “Performance Schema Build Configuration”
Section 27.6.2, “Restrictions When Using the Embedded MySQL Server”
Section 5.7.3, “Running Multiple MySQL Instances on Unix”
Section 6.1.6, “Security Considerations for LOAD DATA LOCAL”
Section 10.3.2, “Server Character Set and Collation”
Section 5.1.6, “Server Command Options”
Section 5.1.7, “Server System Variables”
Section 2.8.2, “Source Installation Prerequisites”
Section 15.5, “The ARCHIVE Storage Engine”
Section 15.6, “The BLACKHOLE Storage Engine”
Section 15.9, “The EXAMPLE Storage Engine”
Section 15.8, “The FEDERATED Storage Engine”
Section 1.2.2, “The Main Features of MySQL”
Section 25.12.16.3, “The processlist Table”
Section 5.8.4, “Tracing mysqld Using DTrace”
Section 4.2.2.2, “Using Option Files”
Section 1.3, “What Is New in MySQL 5.7”
Section B.3.3.3, “What to Do If MySQL Keeps Crashing”

Cmake
Section 2.8.4, “Installing MySQL Using a Standard Source Distribution”

cmake
Section 2.8.7, “MySQL Source-Configuration Options”
Section 14.21.4, “Security Considerations for the InnoDB memcached Plugin”

cmd
Resetting the Root Password: Windows Systems

cmd.exe
Section 1.1, “About This Manual”
Section 4.6.1, “innochecksum — Offline InnoDB File Checksum Utility”
Section 4.2.1, “Invoking MySQL Programs”

command.com
Section 1.1, “About This Manual”
Section 4.2.1, “Invoking MySQL Programs”

4854

comp_err
Section 4.4.1, “comp_err — Compile MySQL Error Message File”
Section 4.1, “Overview of MySQL Programs”

configure
Section 1.1, “About This Manual”
Section 1.5, “How to Report Bugs or Problems”

copy
Creating a Data Snapshot Using Raw Data Files

coreadm
Section 2.7, “Installing MySQL on Solaris”
Section 5.1.6, “Server Command Options”

cp
Section 16.1.2.6, “Adding Replicas to a Replication Topology”
Section 16.3.1.2, “Backing Up Raw Data from a Replica”
Section 7.1, “Backup and Recovery Types”
Creating a Data Snapshot Using Raw Data Files

cron
Section B.3.2.2, “Can't connect to [local] MySQL server”
Section 13.7.2.2, “CHECK TABLE Statement”
Section 15.2.1, “MyISAM Startup Options”
Section 5.4.7, “Server Log Maintenance”
Section 7.6.5, “Setting Up a MyISAM Table Maintenance Schedule”
Section 3.5, “Using mysql in Batch Mode”

csh
Section 1.1, “About This Manual”
Section 4.2.1, “Invoking MySQL Programs”
Section 4.2.7, “Setting Environment Variables”

D

[index top]

daemon_memcached
Section 14.21.5.2, “Adapting a memcached Application for the InnoDB memcached Plugin”
Section 14.21.2, “InnoDB memcached Architecture”

date
Section 4.3.2, “mysqld_safe — MySQL Server Startup Script”

df
Section B.3.1, “How to Determine What Is Causing a Problem”

dig
Section 4.8.4, “resolveip — Resolve Host name to IP Address or Vice Versa”
Section 1.3, “What Is New in MySQL 5.7”

4855

Directory Utility
Section 2.4.1, “General Notes on Installing MySQL on macOS”

dnf
Section 2.5.5, “Installing MySQL on Linux Using RPM Packages from Oracle”
Section 2.5.1, “Installing MySQL on Linux Using the MySQL Yum Repository”
Section 21.3.1.2, “Installing NDB Cluster from RPM”
Section 2.10.10, “Upgrading MySQL with Directly-Downloaded RPM Packages”
Section 2.10.5, “Upgrading MySQL with the MySQL Yum Repository”

dnf config-manager
Section 2.5.1, “Installing MySQL on Linux Using the MySQL Yum Repository”

docker exec
Section 2.5.7.1, “Basic Steps for MySQL Server Deployment with Docker”

docker images
Section 2.5.7.1, “Basic Steps for MySQL Server Deployment with Docker”

docker inspect
Section 2.5.7.2, “More Topics on Deploying MySQL Server with Docker”

docker logs mysqld-container
Section 2.5.7.2, “More Topics on Deploying MySQL Server with Docker”

docker ps
Section 2.5.7.1, “Basic Steps for MySQL Server Deployment with Docker”

docker pull
Section 2.5.7.1, “Basic Steps for MySQL Server Deployment with Docker”
Section 2.5.7.2, “More Topics on Deploying MySQL Server with Docker”

docker rm
Section 2.5.7.1, “Basic Steps for MySQL Server Deployment with Docker”

docker run
Section 2.5.7.1, “Basic Steps for MySQL Server Deployment with Docker”
Section 2.5.7.2, “More Topics on Deploying MySQL Server with Docker”

docker stop
Section 2.5.7.1, “Basic Steps for MySQL Server Deployment with Docker”

dpkg
Section 2.5.6, “Installing MySQL on Linux Using Debian Packages from Oracle”

dump
Creating a Data Snapshot Using Raw Data Files

E

[index top]

4856

execute()
Section 19.3, “Quick-Start Guide: MySQL for Visual Studio”

export
Section 2.8.8, “Dealing with Problems Compiling MySQL”

G

[index top]

gcc
Section 27.6.1, “Compiling Programs with libmysqld”
Section 2.12.3, “Problems Using the Perl DBI/DBD Interface”

gcov
Section 2.8.7, “MySQL Source-Configuration Options”

gdb
Section 5.8.1.1, “Compiling MySQL for Debugging”
Section 5.8.1.4, “Debugging mysqld under gdb”
Section B.3.3.3, “What to Do If MySQL Keeps Crashing”

getenforce
Section 6.7.2, “Changing the SELinux Mode”

git branch
Section 2.8.5, “Installing MySQL Using a Development Source Tree”

git checkout
Section 2.8.5, “Installing MySQL Using a Development Source Tree”

git log
Section 2.8.5, “Installing MySQL Using a Development Source Tree”

git pull
Section 2.8.5, “Installing MySQL Using a Development Source Tree”

gmake
Section 2.8.4, “Installing MySQL Using a Standard Source Distribution”
Section 2.8.2, “Source Installation Prerequisites”

GnuPG
Section 2.1.4.2, “Signature Checking Using GnuPG”

gnutar
Section 2.2, “Installing MySQL on Unix/Linux Using Generic Binaries”
Section 2.8.2, “Source Installation Prerequisites”

gogoc
Section 5.1.12.5, “Obtaining an IPv6 Address from a Broker”

4857

gpg
Section 2.1.4.2, “Signature Checking Using GnuPG”

gprof
Section 2.8.7, “MySQL Source-Configuration Options”

grep
Section 4.6.8, “mysqldumpslow — Summarize Slow Query Log Files”
Section 3.3.4.7, “Pattern Matching”

groupadd
Section 21.3.1.1, “Installing an NDB Cluster Binary Release on Linux”
Section 2.7, “Installing MySQL on Solaris”
Section 2.2, “Installing MySQL on Unix/Linux Using Generic Binaries”

gtar
Section 2.7, “Installing MySQL on Solaris”
Section 2.2, “Installing MySQL on Unix/Linux Using Generic Binaries”
Section 2.8.2, “Source Installation Prerequisites”

gunzip
Section 6.4.5.5, “Configuring Audit Logging Characteristics”
Section 2.2, “Installing MySQL on Unix/Linux Using Generic Binaries”
Section 2.8.4, “Installing MySQL Using a Standard Source Distribution”

gzip
Section 6.4.5.5, “Configuring Audit Logging Characteristics”
Section 21.4.3.6, “Defining NDB Cluster Data Nodes”
Section 1.5, “How to Report Bugs or Problems”
Section 2.4, “Installing MySQL on macOS”

H

[index top]

help contents
Section 4.5.1.4, “mysql Client Server-Side Help”

host
Section 4.8.4, “resolveip — Resolve Host name to IP Address or Vice Versa”
Section 1.3, “What Is New in MySQL 5.7”

hostname
Section B.3.2.2, “Can't connect to [local] MySQL server”

I

[index top]

icc
Section 2.1.6, “Compiler-Specific Build Characteristics”

4858

ifconfig
Section 5.1.12.1, “Verifying System Support for IPv6”

innochecksum
Section 13.7.2.2, “CHECK TABLE Statement”
Section 4.6.1, “innochecksum — Offline InnoDB File Checksum Utility”
MySQL Glossary
Section 4.1, “Overview of MySQL Programs”
Section 1.3, “What Is New in MySQL 5.7”

InnoDB
Section 13.1.8, “ALTER TABLE Statement”

iptables
Section 17.8, “Frequently Asked Questions”
Section 21.6.18.1, “NDB Cluster Security and Networking Issues”

J

[index top]

java
Section 6.4.4.4, “Using the keyring_okv KMIP Plugin”

K

[index top]

kill
Section B.3.2.2, “Can't connect to [local] MySQL server”
Section 21.4.3.6, “Defining NDB Cluster Data Nodes”
Section 21.5.1, “ndbd — The NDB Cluster Data Node Daemon”
Section 21.6.5, “Performing a Rolling Restart of an NDB Cluster”
Section 4.10, “Unix Signal Handling in MySQL”

ksh
Section 4.2.1, “Invoking MySQL Programs”
Section 4.2.7, “Setting Environment Variables”

kswapd
Section 21.4.3.6, “Defining NDB Cluster Data Nodes”

L

[index top]

launchd
Section 2.4.3, “Installing a MySQL Launch Daemon”

less
Section 4.5.1.2, “mysql Client Commands”

4859

Section 4.5.1.1, “mysql Client Options”

ln
Section 2.2, “Installing MySQL on Unix/Linux Using Generic Binaries”
Section 8.12.3.2, “Using Symbolic Links for MyISAM Tables on Unix”

logger
Section 4.3.2, “mysqld_safe — MySQL Server Startup Script”

ls
Section 6.7, “SELinux”

lsof +L1
Section B.3.3.5, “Where MySQL Stores Temporary Files”

lz4
Section 2.8.7, “MySQL Source-Configuration Options”
Section 4.5.6, “mysqlpump — A Database Backup Program”

lz4_decompress
Section 4.8.1, “lz4_decompress — Decompress mysqlpump LZ4-Compressed Output”
Section 2.8.7, “MySQL Source-Configuration Options”
Section 4.5.6, “mysqlpump — A Database Backup Program”
Section 4.1, “Overview of MySQL Programs”
Section 4.8.5, “zlib_decompress — Decompress mysqlpump ZLIB-Compressed Output”

M

[index top]

m4
Section 2.8.2, “Source Installation Prerequisites”

make
Section 2.8.8, “Dealing with Problems Compiling MySQL”
Section 2.8.4, “Installing MySQL Using a Standard Source Distribution”
Section 2.12.3, “Problems Using the Perl DBI/DBD Interface”
Section 2.8.2, “Source Installation Prerequisites”

make && make install
Section 21.3.1.4, “Building NDB Cluster from Source on Linux”

make install
Section 21.3.1.4, “Building NDB Cluster from Source on Linux”

make package
Section 2.8.4, “Installing MySQL Using a Standard Source Distribution”
Section 2.8.7, “MySQL Source-Configuration Options”

make test
Section 2.8.5, “Installing MySQL Using a Development Source Tree”

4860

Section 2.12.1, “Installing Perl on Unix”

make VERBOSE=1
Section 2.8.8, “Dealing with Problems Compiling MySQL”

md5
Section 2.1.4.1, “Verifying the MD5 Checksum”

md5.exe
Section 2.1.4.1, “Verifying the MD5 Checksum”

md5sum
Section 2.1.4.1, “Verifying the MD5 Checksum”

memcached
Section 14.21.5.2, “Adapting a memcached Application for the InnoDB memcached Plugin”
Section 14.21.5.1, “Adapting an Existing MySQL Schema for the InnoDB memcached Plugin”
Section 14.21.5.5, “Adapting DML Statements to memcached Operations”
Section 14.21.1, “Benefits of the InnoDB memcached Plugin”
Section 14.21.5.4, “Controlling Transactional Behavior of the InnoDB memcached Plugin”
Section 14.21.2, “InnoDB memcached Architecture”
Section 14.21, “InnoDB memcached Plugin”
Section 14.21.7, “InnoDB memcached Plugin Internals”
Section 14.15, “InnoDB Startup Options and System Variables”
MySQL Glossary
Section 14.21.5.6, “Performing DML and DDL Statements on the Underlying InnoDB Table”
Section 14.21.4, “Security Considerations for the InnoDB memcached Plugin”
Section 14.21.3, “Setting Up the InnoDB memcached Plugin”
Section 14.21.6, “The InnoDB memcached Plugin and Replication”
Section 14.21.8, “Troubleshooting the InnoDB memcached Plugin”
Section 14.21.5.3, “Tuning InnoDB memcached Plugin Performance”
Section 14.21.5, “Writing Applications for the InnoDB memcached Plugin”

memcapable
Section 14.21.2, “InnoDB memcached Architecture”

memslap
Section 14.21.5.3, “Tuning InnoDB memcached Plugin Performance”

mgmd
Section 21.3.2.1, “Installing NDB Cluster on Windows from a Binary Release”
Section 21.3, “NDB Cluster Installation”

mkdir
Section 13.1.11, “CREATE DATABASE Statement”

mklink
Section 8.12.3.3, “Using Symbolic Links for Databases on Windows”
Section 1.3, “What Is New in MySQL 5.7”

more
Section 4.5.1.2, “mysql Client Commands”

4861

Section 4.5.1.1, “mysql Client Options”

msql2mysql
Section 1.3, “What Is New in MySQL 5.7”

mv
Section 5.4.2.6, “Error Log File Flushing and Renaming”
Section 5.4.7, “Server Log Maintenance”
Section 5.4.3, “The General Query Log”

my_print_defaults
Section 4.7.2, “my_print_defaults — Display Options from Option Files”
Section 4.4.3, “mysql_plugin — Configure MySQL Server Plugins”
Section 4.1, “Overview of MySQL Programs”
Section 4.7, “Program Development Utilities”

myisam_ftdump
Section 12.9, “Full-Text Search Functions”
Section 4.6.2, “myisam_ftdump — Display Full-Text Index information”
Section 4.1, “Overview of MySQL Programs”

myisamchk
Section 13.7.2.1, “ANALYZE TABLE Statement”
Section 8.6.2, “Bulk Data Loading for MyISAM Tables”
Section 13.7.2.2, “CHECK TABLE Statement”
Section 15.2.3.3, “Compressed Table Characteristics”
Section 15.2.4.1, “Corrupted MyISAM Tables”
Section 7.2, “Database Backup Methods”
Section 5.8.1, “Debugging a MySQL Server”
Section 13.2.2, “DELETE Statement”
Section 15.2.3.2, “Dynamic Table Characteristics”
Section 8.8.2, “EXPLAIN Output Format”
Section 8.11.5, “External Locking”
Section 12.9.6, “Fine-Tuning MySQL Full-Text Search”
Section 7.6.2, “How to Check MyISAM Tables for Errors”
Section 7.6.3, “How to Repair MyISAM Tables”
Section 1.5, “How to Report Bugs or Problems”
Section 8.3.7, “InnoDB and MyISAM Index Statistics Collection”
Section 8.4.6, “Limits on Table Size”
Section 13.7.6.5, “LOAD INDEX INTO CACHE Statement”
Section 22.3.4, “Maintenance of Partitions”
Section 5.8.1.7, “Making a Test Case If You Experience Table Corruption”
Section 15.2.1, “MyISAM Startup Options”
Section 7.6, “MyISAM Table Maintenance and Crash Recovery”
Section 7.6.4, “MyISAM Table Optimization”
Section 15.2.3, “MyISAM Table Storage Formats”
Section 4.6.3.2, “myisamchk Check Options”
Section 4.6.3.1, “myisamchk General Options”
Section 4.6.3.6, “myisamchk Memory Usage”
Section 4.6.3.3, “myisamchk Repair Options”
Section 4.6.3, “myisamchk — MyISAM Table-Maintenance Utility”
Section 4.6.5, “myisampack — Generate Compressed, Read-Only MyISAM Tables”
Section 4.6.3.5, “Obtaining Table Information with myisamchk”

4862

Section 8.6.1, “Optimizing MyISAM Queries”
Section 8.6.3, “Optimizing REPAIR TABLE Statements”
Section 4.6.3.4, “Other myisamchk Options”
Section 4.1, “Overview of MySQL Programs”
Section 15.2.4.2, “Problems from Tables Not Being Closed Properly”
Section 13.7.2.5, “REPAIR TABLE Statement”
Section 22.6, “Restrictions and Limitations on Partitioning”
Section 5.1.7, “Server System Variables”
Section 7.6.5, “Setting Up a MyISAM Table Maintenance Schedule”
Section 13.7.5.22, “SHOW INDEX Statement”
Section 13.7.5.36, “SHOW TABLE STATUS Statement”
Section 15.2.3.1, “Static (Fixed-Length) Table Characteristics”
Section 8.12.1, “System Factors”
Section 24.3.24, “The INFORMATION_SCHEMA STATISTICS Table”
Section 24.3.25, “The INFORMATION_SCHEMA TABLES Table”
Section 1.2.2, “The Main Features of MySQL”
Section 15.2, “The MyISAM Storage Engine”
Section 7.6.1, “Using myisamchk for Crash Recovery”
Section 5.8.1.6, “Using Server Logs to Find Causes of Errors in mysqld”
Section 8.12.3.2, “Using Symbolic Links for MyISAM Tables on Unix”
Section B.3.3.3, “What to Do If MySQL Keeps Crashing”

myisamchk *.MYI
Section 7.6.3, “How to Repair MyISAM Tables”

myisamchk tbl_name
Section 7.6.2, “How to Check MyISAM Tables for Errors”

myisamlog
Section 4.6.4, “myisamlog — Display MyISAM Log File Contents”
Section 4.1, “Overview of MySQL Programs”

myisampack
Section 8.6.2, “Bulk Data Loading for MyISAM Tables”
Section 15.2.3.3, “Compressed Table Characteristics”
Section 13.1.18, “CREATE TABLE Statement”
Section 8.11.5, “External Locking”
Section 8.4.6, “Limits on Table Size”
Section 15.7.1, “MERGE Table Advantages and Disadvantages”
Section 15.2.3, “MyISAM Table Storage Formats”
Section 4.6.3.3, “myisamchk Repair Options”
Section 4.6.5, “myisampack — Generate Compressed, Read-Only MyISAM Tables”
Section 4.6.3.5, “Obtaining Table Information with myisamchk”
Section 8.4.1, “Optimizing Data Size”
Section 4.1, “Overview of MySQL Programs”
Section 22.6, “Restrictions and Limitations on Partitioning”
Section 13.1.18.6, “Silent Column Specification Changes”
Section 15.7, “The MERGE Storage Engine”
Section 15.2, “The MyISAM Storage Engine”

mysql
Section 1.1, “About This Manual”
Section 16.1.5.4, “Adding a Binary Log Based Source to a Multi-Source Replica”

4863

Section 6.2.7, “Adding Accounts, Assigning Privileges, and Dropping Accounts”
Section 16.1.5.3, “Adding GTID-Based Sources to a Multi-Source Replica”
Section 21.6.7.2, “Adding NDB Cluster Data Nodes Online: Basic procedure”
Section 21.6.7.3, “Adding NDB Cluster Data Nodes Online: Detailed Example”
Section 21.6.7.1, “Adding NDB Cluster Data Nodes Online: General Issues”
Section 12.19.1, “Aggregate Function Descriptions”
Section 13.1.8.1, “ALTER TABLE Partition Operations”
Section 6.4.5.11, “Audit Log Reference”
Section 7.1, “Backup and Recovery Types”
Section 2.5.7.1, “Basic Steps for MySQL Server Deployment with Docker”
Section 13.6.1, “BEGIN ... END Compound Statement”
Section 6.4.1.4, “Caching SHA-2 Pluggable Authentication”
Section 12.10, “Cast Functions and Operators”
Section 2.10.3, “Changes in MySQL 5.7”
Section 6.4.1.6, “Client-Side Cleartext Pluggable Authentication”
Section 4.2.2.3, “Command-Line Options that Affect Option-File Handling”
Section 21.6.1, “Commands in the NDB Cluster Management Client”
Section 9.6, “Comments”
Section 21.4, “Configuration of NDB Cluster”
Section 10.5, “Configuring Application Character Set and Collation”
Section 16.1.5.1, “Configuring Multi-Source Replication”
Section 6.3.1, “Configuring MySQL to Use Encrypted Connections”
Section 14.8.11.2, “Configuring Non-Persistent Optimizer Statistics Parameters”
Section 3.1, “Connecting to and Disconnecting from the Server”
Section 4.2.4, “Connecting to the MySQL Server Using Command Options”
Section 5.1.12.4, “Connecting Using IPv6 Nonlocal Host Addresses”
Section 5.1.12.3, “Connecting Using the IPv6 Local Host Address”
Section 10.4, “Connection Character Sets and Collations”
Section 4.2.5, “Connection Transport Protocols”
Section 14.6.1.5, “Converting Tables from MyISAM to InnoDB”
Section 2.10.13, “Copying MySQL Databases to Another Machine”
Section 13.1.16, “CREATE PROCEDURE and CREATE FUNCTION Statements”
Section 3.3.1, “Creating and Selecting a Database”
Section 2.3.4.7, “Customizing the PATH for MySQL Tools”
Section 5.8.2, “Debugging a MySQL Client”
Section 21.4.3.7, “Defining SQL and Other API Nodes in an NDB Cluster”
Section 23.1, “Defining Stored Programs”
Section 8.15.13, “Displaying Traces in Other Applications”
Section 21.6.13, “Distributed Privileges Using Shared Grant Tables”
Section 2.11.5, “Downgrade Troubleshooting”
Section 2.11, “Downgrading MySQL”
Section 14.18.2, “Enabling InnoDB Monitors”
Section 12.13, “Encryption and Compression Functions”
Section 6.1.2.1, “End-User Guidelines for Password Security”
Section 3.2, “Entering Queries”
Section 4.9, “Environment Variables”
Section B.2, “Error Information Interfaces”
Section B.1, “Error Message Sources and Elements”
Section 21.6.2.3, “Event Buffer Reporting in the Cluster Log”
Section 23.4.2, “Event Scheduler Configuration”
Section 7.3, “Example Backup and Recovery Strategy”
Section 3.6, “Examples of Common Queries”
Section 22.3.3, “Exchanging Partitions and Subpartitions with Tables”
Section 4.5.1.5, “Executing SQL Statements from a Text File”

4864

Chapter 12, Functions and Operators
Section 12.17.3, “Functions That Search JSON Values”
Section 21.1, “General Information”
Section 2.4.1, “General Notes on Installing MySQL on macOS”
Section 13.6.7.3, “GET DIAGNOSTICS Statement”
Section 13.7.1.4, “GRANT Statement”
Section B.3.1, “How to Determine What Is Causing a Problem”
Section 14.7.5.3, “How to Minimize and Handle Deadlocks”
Section 1.5, “How to Report Bugs or Problems”
Section 6.1.5, “How to Run MySQL as a Normal User”
Section B.3.2.13, “Ignoring user”
Section 21.6.9, “Importing Data Into MySQL Cluster”
Section 12.15, “Information Functions”
Section 21.3.2.3, “Initial Startup of NDB Cluster on Windows”
Section 14.19.2, “InnoDB Recovery”
Section 2.2, “Installing MySQL on Unix/Linux Using Generic Binaries”
Section 21.3.1.2, “Installing NDB Cluster from RPM”
Section 21.3.2.1, “Installing NDB Cluster on Windows from a Binary Release”
Section 4.2.1, “Invoking MySQL Programs”
Section 21.2.7.8, “Issues Exclusive to NDB Cluster”
Section 17.2.1.4, “Launching Group Replication”
Section 6.4.1.9, “LDAP Pluggable Authentication”
Section 8.2.1.17, “LIMIT Query Optimization”
Section 13.2.6, “LOAD DATA Statement”
Section 13.2.7, “LOAD XML Statement”
Section 7.4.5.1, “Making a Copy of a Database”
Section 6.1.3, “Making MySQL Secure Against Attackers”
Section 21.6, “Management of NDB Cluster”
Section 8.13.1, “Measuring the Speed of Expressions and Functions”
Section 12.20, “Miscellaneous Functions”
Section 2.5.7.2, “More Topics on Deploying MySQL Server with Docker”
Section A.11, “MySQL 5.7 FAQ: MySQL Chinese, Japanese, and Korean Character Sets”
Section A.10, “MySQL 5.7 FAQ: NDB Cluster”
Section 4.5.1.2, “mysql Client Commands”
Section 4.5.1.3, “mysql Client Logging”
Section 4.5.1.1, “mysql Client Options”
Section 4.5.1.4, “mysql Client Server-Side Help”
Section 4.5.1.6, “mysql Client Tips”
Section 6.5.5, “MySQL Enterprise Data Masking and De-Identification Function Descriptions”
MySQL Glossary
Section 2.3.3.1, “MySQL Installer Initial Setup”
Section 5.1.13, “MySQL Server Time Zone Support”
Section 21.6.10, “MySQL Server Usage for NDB Cluster”
Chapter 18, MySQL Shell
Section 4.5.1, “mysql — The MySQL Command-Line Client”
Section 4.3.3, “mysql.server — MySQL Server Startup Script”
Section 4.6.6, “mysql_config_editor — MySQL Configuration Utility”
Section 4.4.2, “mysql_install_db — Initialize MySQL Data Directory”
Section 4.4.6, “mysql_tzinfo_to_sql — Load the Time Zone Tables”
Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.6, “mysqlpump — A Database Backup Program”
Section 4.5.7, “mysqlshow — Display Database, Table, and Column Information”

4865

Section 21.6.14, “NDB API Statistics Counters and Variables”
Section 21.7.9, “NDB Cluster Backups With NDB Cluster Replication”
Section 21.6.11.1, “NDB Cluster Disk Data Objects”
Section 21.3.5, “NDB Cluster Example with Tables and Data”
Section 21.7, “NDB Cluster Replication”
NDB Cluster System Variables
Section 21.5.10, “ndb_desc — Describe NDB Tables”
Section 21.5.14, “ndb_import — Import CSV Data Into NDB”
Section 21.5.15, “ndb_index_stat — NDB Index Statistics Utility”
Section 21.5.5, “ndb_mgm — The NDB Cluster Management Client”
Section 21.6.15, “ndbinfo: The NDB Cluster Information Database”
Section 21.5.2, “ndbinfo_select_all — Select From ndbinfo Tables”
Section 8.9.3, “Optimizer Hints”
Section 4.2.2.6, “Option Defaults, Options Expecting Values, and the = Sign”
Section B.3.2.6, “Out of memory”
Section 4.1, “Overview of MySQL Programs”
Section B.3.2.8, “Packet Too Large”
Section 6.4.1.7, “PAM Pluggable Authentication”
Section 6.1.2.4, “Password Hashing in MySQL”
Section 6.2.13, “Pluggable Authentication”
Section 7.5.1, “Point-in-Time Recovery Using Binary Log”
Section 13.5, “Prepared Statements”
Section 21.7.5, “Preparing the NDB Cluster for Replication”
Section 4.2.2.4, “Program Option Modifiers”
Section 16.1.5.2, “Provisioning a Multi-Source Replica for GTID-Based Replication”
Section 22.2.3.1, “RANGE COLUMNS partitioning”
Section 2.10.12, “Rebuilding or Repairing Tables or Indexes”
Section 7.4.4, “Reloading Delimited-Text Format Backups”
Section 7.4.2, “Reloading SQL-Format Backups”
Resetting the Root Password: Generic Instructions
Restoring an NDB backup to a later version of NDB Cluster
Restoring to More Nodes Than the Original
Section 13.7.1.6, “REVOKE Statement”
Section 2.9.4, “Securing the Initial MySQL Account”
Section 6.1.6, “Security Considerations for LOAD DATA LOCAL”
Section 6.2.12, “Server Handling of Expired Passwords”
Section 5.1.7, “Server System Variables”
Section 5.1.14, “Server-Side Help Support”
Section 13.1.18.9, “Setting NDB Comment Options”
Section 19.2, “Setting Up MySQL as a Document Store”
Section 6.4.1.5, “SHA-256 Pluggable Authentication”
Section 13.7.5.34, “SHOW SLAVE STATUS Statement”
Section 13.7.5.40, “SHOW WARNINGS Statement”
Section 13.6.7.5, “SIGNAL Statement”
Section 6.4.1.11, “Socket Peer-Credential Pluggable Authentication”
Section 4.2.2, “Specifying Program Options”
Section 16.1.5.5, “Starting Multi-Source Replicas”
Section 2.3.4.8, “Starting MySQL as a Windows Service”
Section 21.7.6, “Starting NDB Cluster Replication (Single Replication Channel)”
Section 12.8.1, “String Comparison Functions and Operators”
Section 12.8, “String Functions and Operators”
Section 9.1.1, “String Literals”
Section 2.9.3, “Testing the Server”
Section 11.3.3, “The BINARY and VARBINARY Types”

4866

Section 10.10.8, “The Binary Character Set”
Section 11.3.4, “The BLOB and TEXT Types”
Section 26.4.4.2, “The diagnostics() Procedure”
Section 21.6.15.27, “The ndbinfo memory_per_fragment Table”
Section 21.6.15.44, “The ndbinfo transporters Table”
Section 23.3.1, “Trigger Syntax and Examples”
Section 14.22.3, “Troubleshooting InnoDB Data Dictionary Operations”
Section 6.2.17, “Troubleshooting Problems Connecting to MySQL”
Chapter 3, Tutorial
Section 4.10, “Unix Signal Handling in MySQL”
Section 2.10, “Upgrading MySQL”
Section 2.10.10, “Upgrading MySQL with Directly-Downloaded RPM Packages”
Section 7.3.2, “Using Backups for Recovery”
Section 16.1.3.5, “Using GTIDs for Failover and Scaleout”
Section 17.5.5, “Using MySQL Enterprise Backup with Group Replication”
Section 6.4.6.3, “Using MySQL Enterprise Firewall”
Section 3.5, “Using mysql in Batch Mode”
Section 4.6.7.3, “Using mysqlbinlog to Back Up Binary Log Files”
Section 7.4, “Using mysqldump for Backups”
Section 4.2.2.2, “Using Option Files”
Section 4.2.2.1, “Using Options on the Command Line”
Section 4.2.2.5, “Using Options to Set Program Variables”
Section 5.8.1.6, “Using Server Logs to Find Causes of Errors in mysqld”
Section 8.12.3.3, “Using Symbolic Links for Databases on Windows”
Section 1.3, “What Is New in MySQL 5.7”
Section 21.2.4.1, “What is New in NDB Cluster 7.5”
Section 21.2.4.2, “What is New in NDB Cluster 7.6”
Section 2.3.6, “Windows Postinstallation Procedures”
Section 12.11, “XML Functions”

mysql < dump_file
Section 2.10.3, “Changes in MySQL 5.7”

mysql ...
Section 5.8.1.1, “Compiling MySQL for Debugging”

mysql-test-run.pl
Section 4.6.6, “mysql_config_editor — MySQL Configuration Utility”
Section 4.2.2.2, “Using Option Files”

mysql.exe
Section 21.3.2.3, “Initial Startup of NDB Cluster on Windows”
Section 21.3.2.1, “Installing NDB Cluster on Windows from a Binary Release”
Section 4.5.1.6, “mysql Client Tips”

mysql.server
Section 2.5, “Installing MySQL on Linux”
Section 21.3.1.2, “Installing NDB Cluster from RPM”
Section 6.1.3, “Making MySQL Secure Against Attackers”
Section 4.3.3, “mysql.server — MySQL Server Startup Script”
Section 4.6.8, “mysqldumpslow — Summarize Slow Query Log Files”
Section 4.1, “Overview of MySQL Programs”
Section 5.1.6, “Server Command Options”

4867

Section 2.9.5, “Starting and Stopping MySQL Automatically”
Section B.3.3.7, “Time Zone Problems”

mysql.server stop
Section 4.3.3, “mysql.server — MySQL Server Startup Script”

mysql_client_test_embedded
Section 1.3, “What Is New in MySQL 5.7”

mysql_config
Section 27.6.1, “Compiling Programs with libmysqld”
Section 2.8.8, “Dealing with Problems Compiling MySQL”
Section 4.7.1, “mysql_config — Display Options for Compiling Clients”
Section 4.1, “Overview of MySQL Programs”
Section 1.3, “What Is New in MySQL 5.7”

mysql_config_editor
Section 4.2.2.3, “Command-Line Options that Affect Option-File Handling”
Section 6.1.2.1, “End-User Guidelines for Password Security”
Section 4.9, “Environment Variables”
Section 4.7.2, “my_print_defaults — Display Options from Option Files”
Section 4.6.3.1, “myisamchk General Options”
Section 4.5.1.1, “mysql Client Options”
Section 4.6.6, “mysql_config_editor — MySQL Configuration Utility”
Section 4.4.2, “mysql_install_db — Initialize MySQL Data Directory”
Section 4.4.4, “mysql_secure_installation — Improve MySQL Installation Security”
Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 4.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.6, “mysqlpump — A Database Backup Program”
Section 4.5.7, “mysqlshow — Display Database, Table, and Column Information”
Section 4.5.8, “mysqlslap — A Load Emulation Client”
Section 4.1, “Overview of MySQL Programs”
Section 4.2.2.2, “Using Option Files”

mysql_convert_table_format
Section 1.3, “What Is New in MySQL 5.7”

mysql_find_rows
Section 1.3, “What Is New in MySQL 5.7”

mysql_fix_extensions
Section 1.3, “What Is New in MySQL 5.7”

mysql_install_db
Section 2.10.3, “Changes in MySQL 5.7”
Section 2.8.7, “MySQL Source-Configuration Options”
Section 4.4.2, “mysql_install_db — Initialize MySQL Data Directory”
Section 4.1, “Overview of MySQL Programs”

4868

Section 5.1.6, “Server Command Options”
Section 1.3, “What Is New in MySQL 5.7”

mysql_plugin
Section 4.4.3, “mysql_plugin — Configure MySQL Server Plugins”
Section 4.1, “Overview of MySQL Programs”
Section 1.3, “What Is New in MySQL 5.7”

mysql_secure_installation
Section 2.9.1, “Initializing the Data Directory”
Section 2.5.8, “Installing MySQL on Linux from the Native Software Repositories”
Section 2.5.6, “Installing MySQL on Linux Using Debian Packages from Oracle”
Section 2.7.1, “Installing MySQL on Solaris Using a Solaris PKG”
Section 4.4.2, “mysql_install_db — Initialize MySQL Data Directory”
Section 4.4.4, “mysql_secure_installation — Improve MySQL Installation Security”
Section 4.1, “Overview of MySQL Programs”
Section 2.9.4, “Securing the Initial MySQL Account”

mysql_server_config
Section 4.7.1, “mysql_config — Display Options for Compiling Clients”

mysql_setpermission
Section 1.3, “What Is New in MySQL 5.7”

mysql_ssl_rsa_setup
Section 4.2.3, “Command Options for Connecting to the Server”
Section 6.3.1, “Configuring MySQL to Use Encrypted Connections”
Section 6.3.3.3, “Creating RSA Keys Using openssl”
Section 6.3.3.1, “Creating SSL and RSA Certificates and Keys using MySQL”
Section 6.3.3.2, “Creating SSL Certificates and Keys Using openssl”
Section 2.9.1, “Initializing the Data Directory”
Section 4.4.5, “mysql_ssl_rsa_setup — Create SSL/RSA Files”
Section 4.1, “Overview of MySQL Programs”
Section 6.3, “Using Encrypted Connections”
Section 1.3, “What Is New in MySQL 5.7”

mysql_stmt_execute()
Section 5.1.9, “Server Status Variables”

mysql_stmt_prepare()
Section 5.1.9, “Server Status Variables”

mysql_tzinfo_to_sql
Section 5.1.13, “MySQL Server Time Zone Support”
Section 4.4.6, “mysql_tzinfo_to_sql — Load the Time Zone Tables”
Section 4.1, “Overview of MySQL Programs”

mysql_upgrade
Section 11.2.5, “2-Digit YEAR(2) Limitations and Migrating to 4-Digit YEAR”
Section 6.2.7, “Adding Accounts, Assigning Privileges, and Dropping Accounts”
Section 13.1.1, “ALTER DATABASE Statement”
Section 13.1.8.1, “ALTER TABLE Partition Operations”

4869

Section 13.1.8, “ALTER TABLE Statement”
Section 2.10.3, “Changes in MySQL 5.7”
Section 17.2.1.2, “Configuring an Instance for Group Replication”
Section 2.11.3, “Downgrade Notes”
Section 2.11.4, “Downgrading Binary and Package-based Installations on Unix/Linux”
Section B.3.2.13, “Ignoring user”
Section 6.4.5.2, “Installing or Uninstalling MySQL Enterprise Audit”
Section 6.4.1.3, “Migrating Away from Pre-4.1 Password Hashing and the mysql_old_password Plugin”
Chapter 26, MySQL sys Schema
Section 4.4.2, “mysql_install_db — Initialize MySQL Data Directory”
Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 21.7.4, “NDB Cluster Replication Schema and Tables”
Section 4.1, “Overview of MySQL Programs”
Section 6.1.2.4, “Password Hashing in MySQL”
Section 2.10.12, “Rebuilding or Repairing Tables or Indexes”
Section 2.5.2, “Replacing a Third-Party Distribution of MySQL Using the MySQL Yum Repository”
Section 16.1.3.6, “Restrictions on Replication with GTIDs”
Section 5.1.6, “Server Command Options”
Section 5.1.7, “Server System Variables”
Section 19.2, “Setting Up MySQL as a Document Store”
Section 16.4.3, “Upgrading a Replication Topology”
Section 21.3.7.1, “Upgrading and Downgrading NDB 7.5”
Section 2.10.4, “Upgrading MySQL Binary or Package-based Installations on Unix/Linux”
Section 2.10.8, “Upgrading MySQL on Windows”
Section 2.10.10, “Upgrading MySQL with Directly-Downloaded RPM Packages”
Section 2.10.5, “Upgrading MySQL with the MySQL Yum Repository”
Section 1.3, “What Is New in MySQL 5.7”
Section 21.2.4.1, “What is New in NDB Cluster 7.5”

mysql_waitpid
Section 1.3, “What Is New in MySQL 5.7”

mysql_zap
Section 1.3, “What Is New in MySQL 5.7”

mysqlaccess
Section 1.3, “What Is New in MySQL 5.7”

mysqladmin
Section 6.2.10, “Assigning Account Passwords”
Section 16.3.1.1, “Backing Up a Replica Using mysqldump”
Section 6.4.1.4, “Caching SHA-2 Pluggable Authentication”
Section B.3.2.2, “Can't connect to [local] MySQL server”
Section 6.4.1.6, “Client-Side Cleartext Pluggable Authentication”
Section 5.1.1, “Configuring the Server”
Section 4.2.4, “Connecting to the MySQL Server Using Command Options”
Section 10.4, “Connection Character Sets and Collations”
Section 13.1.11, “CREATE DATABASE Statement”
Section 2.3.4.7, “Customizing the PATH for MySQL Tools”
Section 5.8.1, “Debugging a MySQL Server”
Section 13.1.22, “DROP DATABASE Statement”
Section 13.7.6.3, “FLUSH Statement”
Section 2.4.1, “General Notes on Installing MySQL on macOS”

4870

Section B.3.1, “How to Determine What Is Causing a Problem”
Section 7.6.3, “How to Repair MyISAM Tables”
Section 1.5, “How to Report Bugs or Problems”
Section 21.3.1.2, “Installing NDB Cluster from RPM”
Section 17.4, “Monitoring Group Replication”
Section A.11, “MySQL 5.7 FAQ: MySQL Chinese, Japanese, and Korean Character Sets”
Section 2.3.3.1, “MySQL Installer Initial Setup”
Section 5.4, “MySQL Server Logs”
Section 4.6.6, “mysql_config_editor — MySQL Configuration Utility”
Section 4.4.2, “mysql_install_db — Initialize MySQL Data Directory”
Section 4.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 4.3.4, “mysqld_multi — Manage Multiple MySQL Servers”
Section 4.1, “Overview of MySQL Programs”
Section 25.12.9, “Performance Schema Connection Attribute Tables”
Section 6.2.13, “Pluggable Authentication”
Section 6.2.2, “Privileges Provided by MySQL”
Section 5.7.3, “Running Multiple MySQL Instances on Unix”
Section 2.9.4, “Securing the Initial MySQL Account”
Section 16.1.3.4, “Setting Up Replication Using GTIDs”
Section 6.4.1.5, “SHA-256 Pluggable Authentication”
Section 2.3.4.8, “Starting MySQL as a Windows Service”
Section 2.3.4.6, “Starting MySQL from the Windows Command Line”
Section 2.9.3, “Testing the Server”
Section 1.2.2, “The Main Features of MySQL”
Section 5.1.16, “The Server Shutdown Process”
Section 2.10.8, “Upgrading MySQL on Windows”
Section 4.2.2.2, “Using Option Files”
Section 4.2.2.1, “Using Options on the Command Line”
Section B.3.3.3, “What to Do If MySQL Keeps Crashing”

mysqladmin debug
Section 5.8.1, “Debugging a MySQL Server”
Section 23.4.5, “Event Scheduler Status”
Section 13.7.1.4, “GRANT Statement”
Section 6.2.2, “Privileges Provided by MySQL”

mysqladmin extended-status
Section 13.7.5.35, “SHOW STATUS Statement”

mysqladmin flush-hosts
Section 5.1.11.2, “DNS Lookups and the Host Cache”
Section 6.2.17, “Troubleshooting Problems Connecting to MySQL”

mysqladmin flush-logs
Section 7.3.3, “Backup Strategy Summary”
Section 5.4.2.6, “Error Log File Flushing and Renaming”
Section 7.3.1, “Establishing a Backup Policy”
Section 4.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 5.4.7, “Server Log Maintenance”
Section 16.2.4.1, “The Relay Log”

mysqladmin flush-logs binary
Section 5.4.4, “The Binary Log”

4871

mysqladmin flush-privileges
Section 2.10.13, “Copying MySQL Databases to Another Machine”
Section 6.2.3, “Grant Tables”
Section 4.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 5.1.6, “Server Command Options”
Section 6.2.17, “Troubleshooting Problems Connecting to MySQL”
Section 6.2.9, “When Privilege Changes Take Effect”

mysqladmin flush-tables
Section 8.6.2, “Bulk Data Loading for MyISAM Tables”
Section 8.11.5, “External Locking”
Section 8.4.3.1, “How MySQL Opens and Closes Tables”
Section 8.12.4.1, “How MySQL Uses Memory”
Section 4.6.5, “myisampack — Generate Compressed, Read-Only MyISAM Tables”
Section 7.6.1, “Using myisamchk for Crash Recovery”

mysqladmin flush-xxx
Section 6.2.7, “Adding Accounts, Assigning Privileges, and Dropping Accounts”

mysqladmin kill
Section B.3.3.4, “How MySQL Handles a Full Disk”
Section 13.7.6.4, “KILL Statement”
Section 12.14, “Locking Functions”
Section B.3.2.7, “MySQL server has gone away”
Section 6.2.2, “Privileges Provided by MySQL”

mysqladmin password
Section 4.5.2, “mysqladmin — A MySQL Server Administration Program”

mysqladmin processlist
Section 8.14.1, “Accessing the Process List”
Section 6.2.7, “Adding Accounts, Assigning Privileges, and Dropping Accounts”
Section 13.7.6.4, “KILL Statement”
Section 6.1.3, “Making MySQL Secure Against Attackers”
Section 6.2.2, “Privileges Provided by MySQL”
Section 25.12.16.3, “The processlist Table”

mysqladmin processlist status
Section 5.8.1, “Debugging a MySQL Server”

mysqladmin refresh
Section 6.2.7, “Adding Accounts, Assigning Privileges, and Dropping Accounts”
Section 8.4.3.1, “How MySQL Opens and Closes Tables”
Section 5.4.7, “Server Log Maintenance”

mysqladmin reload
Section 6.2.7, “Adding Accounts, Assigning Privileges, and Dropping Accounts”
Section 6.2.3, “Grant Tables”
Section 1.5, “How to Report Bugs or Problems”
Section 5.1.6, “Server Command Options”
Section 6.2.16, “Setting Account Resource Limits”

4872

Section 6.2.9, “When Privilege Changes Take Effect”

mysqladmin reload version
Section 1.5, “How to Report Bugs or Problems”

mysqladmin shutdown
Section 6.2.6, “Access Control, Stage 2: Request Verification”
Section 21.6.7.3, “Adding NDB Cluster Data Nodes Online: Detailed Example”
Section 5.8.1.2, “Creating Trace Files”
Section 13.7.1.4, “GRANT Statement”
Section 7.6.3, “How to Repair MyISAM Tables”
Section 6.1.5, “How to Run MySQL as a Normal User”
Section 2.4.2, “Installing MySQL on macOS Using Native Packages”
Section 5.8.1.7, “Making a Test Case If You Experience Table Corruption”
Section A.10, “MySQL 5.7 FAQ: NDB Cluster”
Section 4.3.3, “mysql.server — MySQL Server Startup Script”
Section 4.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 21.5.14, “ndb_import — Import CSV Data Into NDB”
Section 6.2.2, “Privileges Provided by MySQL”
Section 16.4.1.29, “Replication and Temporary Tables”
Section 21.3.6, “Safe Shutdown and Restart of NDB Cluster”
Section 13.7.6.7, “SHUTDOWN Statement”
Section 2.3.4.8, “Starting MySQL as a Windows Service”
Section 5.1.16, “The Server Shutdown Process”
Section B.3.3.3, “What to Do If MySQL Keeps Crashing”

mysqladmin status
Section 8.4.3.1, “How MySQL Opens and Closes Tables”
Section 4.5.2, “mysqladmin — A MySQL Server Administration Program”

mysqladmin variables
Section B.3.2.7, “MySQL server has gone away”
Section 13.7.5.39, “SHOW VARIABLES Statement”

mysqladmin variables extended-status processlist
Section 1.5, “How to Report Bugs or Problems”

mysqladmin ver
Section 5.8.1.1, “Compiling MySQL for Debugging”

mysqladmin version
Section B.3.2.2, “Can't connect to [local] MySQL server”
Section 1.5, “How to Report Bugs or Problems”
Section B.3.2.7, “MySQL server has gone away”
Section 2.9.3, “Testing the Server”
Section B.3.3.3, “What to Do If MySQL Keeps Crashing”

mysqlanalyze
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”

mysqlbackup
Section 7.1, “Backup and Recovery Types”

4873

Creating a Data Snapshot Using Raw Data Files
Section 14.19.1, “InnoDB Backup”
MySQL Glossary
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 16.1.3.5, “Using GTIDs for Failover and Scaleout”

mysqlbinlog
Section 16.2.1.1, “Advantages and Disadvantages of Statement-Based and Row-Based Replication”
Section 13.7.6.1, “BINLOG Statement”
Section 12.12, “Bit Functions and Operators”
Section 6.4.1.4, “Caching SHA-2 Pluggable Authentication”
Command Probes
Section 16.1.3.1, “GTID Format and Storage”
Section 16.1.3.2, “GTID Life Cycle”
Section 16.4.5, “How to Report Replication Bugs or Problems”
Section 14.19.2, “InnoDB Recovery”
Section B.3.7, “Known Issues in MySQL”
Section 12.20, “Miscellaneous Functions”
Section 4.5.1.1, “mysql Client Options”
MySQL Glossary
Section 4.6.7.1, “mysqlbinlog Hex Dump Format”
Section 4.6.7.2, “mysqlbinlog Row Event Display”
Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”
NDB Cluster System Variables
Section 4.1, “Overview of MySQL Programs”
Section 25.12.9, “Performance Schema Connection Attribute Tables”
Section 7.5.1, “Point-in-Time Recovery Using Binary Log”
Section 7.5.2, “Point-in-Time Recovery Using Event Positions”
Section 21.7.9.2, “Point-In-Time Recovery Using NDB Cluster Replication”
Section 6.2.2, “Privileges Provided by MySQL”
Section 16.4.1.18, “Replication and LOAD DATA”
Section 16.4.1.37, “Replication and Variables”
Section 5.1.7, “Server System Variables”
Section 6.4.1.5, “SHA-256 Pluggable Authentication”
Section 13.7.5.2, “SHOW BINLOG EVENTS Statement”
Section 13.7.5.32, “SHOW RELAYLOG EVENTS Statement”
Section 16.1.7.3, “Skipping Transactions”
Section 4.6.7.4, “Specifying the mysqlbinlog Server ID”
Section 13.4.2.5, “START SLAVE Statement”
Section 5.4.4, “The Binary Log”
Section 5.4.3, “The General Query Log”
Section 16.2.4.1, “The Relay Log”
Section 16.2.1.2, “Usage of Row-Based Logging and Replication”
Section 7.3.2, “Using Backups for Recovery”
Section 16.1.3.5, “Using GTIDs for Failover and Scaleout”
Section 4.6.7.3, “Using mysqlbinlog to Back Up Binary Log Files”
Section 1.3, “What Is New in MySQL 5.7”

mysqlbinlog binary-log-file | mysql
Section 5.8.1.7, “Making a Test Case If You Experience Table Corruption”

mysqlbinlog|mysql
Section B.3.7, “Known Issues in MySQL”

4874

mysqlbug
Section 1.3, “What Is New in MySQL 5.7”

mysqlcheck
Section 13.1.1, “ALTER DATABASE Statement”
Section 6.4.1.4, “Caching SHA-2 Pluggable Authentication”
Section 6.4.1.6, “Client-Side Cleartext Pluggable Authentication”
Section 10.4, “Connection Character Sets and Collations”
Section 22.3.4, “Maintenance of Partitions”
Section 9.2.4, “Mapping of Identifiers to File Names”
Section 4.7.2, “my_print_defaults — Display Options from Option Files”
Section 7.6, “MyISAM Table Maintenance and Crash Recovery”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.1, “Overview of MySQL Programs”
Section 2.10.12, “Rebuilding or Repairing Tables or Indexes”
Section 22.6, “Restrictions and Limitations on Partitioning”
Section 5.1.7, “Server System Variables”
Section 6.4.1.5, “SHA-256 Pluggable Authentication”
Section 1.2.2, “The Main Features of MySQL”
Section 15.2, “The MyISAM Storage Engine”
Section 1.3, “What Is New in MySQL 5.7”

mysqld
Section 1.1, “About This Manual”
Section 8.2.1.20, “Avoiding Full Table Scans”
Section 2.5.7.1, “Basic Steps for MySQL Server Deployment with Docker”
Section 5.4.4.1, “Binary Logging Formats”
Section 16.1.6.4, “Binary Logging Options and Variables”
Section 21.3.1.4, “Building NDB Cluster from Source on Linux”
Section B.3.2.2, “Can't connect to [local] MySQL server”
Section B.3.2.11, “Can't create/write to file”
Section B.3.2.15, “Can't initialize character set”
Section 13.4.2.2, “CHANGE REPLICATION FILTER Statement”
Section 2.10.3, “Changes in MySQL 5.7”
Section 21.6.1, “Commands in the NDB Cluster Management Client”
Section 9.6, “Comments”
Section B.3.2.9, “Communication Errors and Aborted Connections”
Section 4.4.1, “comp_err — Compile MySQL Error Message File”
Section 5.8.1.1, “Compiling MySQL for Debugging”
Section 21.4, “Configuration of NDB Cluster”
Section 2.8.6, “Configuring SSL Library Support”
Section 5.1.1, “Configuring the Server”
Section 5.1.11.1, “Connection Interfaces”
Section 14.21.5.4, “Controlling Transactional Behavior of the InnoDB memcached Plugin”
Section 15.2.4.1, “Corrupted MyISAM Tables”
Section 13.1.18, “CREATE TABLE Statement”
Section 5.8.1.2, “Creating Trace Files”
Section 14.7.5, “Deadlocks in InnoDB”
Section 5.8.1, “Debugging a MySQL Server”
Section 5.8.1.4, “Debugging mysqld under gdb”
Section 21.4.3.6, “Defining NDB Cluster Data Nodes”
Section 21.4.3.7, “Defining SQL and Other API Nodes in an NDB Cluster”
Section 5.1.11.2, “DNS Lookups and the Host Cache”

4875

Section 14.6.5, “Doublewrite Buffer”
Section 2.11.3, “Downgrade Notes”
Section 2.11.4, “Downgrading Binary and Package-based Installations on Unix/Linux”
Section 14.10.1, “Enabling File Formats”
Section 14.18.2, “Enabling InnoDB Monitors”
Section 8.12.4.3, “Enabling Large Page Support”
Section 4.9, “Environment Variables”
Section 5.4.2.6, “Error Log File Flushing and Renaming”
Section 5.4.2.5, “Error Log Output Format”
Section 5.4.2.2, “Error Logging on Unix and Unix-Like Systems”
Section 5.4.2.1, “Error Logging on Windows”
Section 5.4.2.3, “Error Logging to the System Log”
Section 21.6.2.3, “Event Buffer Reporting in the Cluster Log”
Section 8.11.5, “External Locking”
Section B.3.2.16, “File Not Found and Similar Errors”
Section 14.6.3.2, “File-Per-Table Tablespaces”
Section 12.9.6, “Fine-Tuning MySQL Full-Text Search”
Section 14.22.2, “Forcing InnoDB Recovery”
Section 21.1, “General Information”
Section 21.7.2, “General Requirements for NDB Cluster Replication”
Section 8.14.3, “General Thread States”
Section 8.12.4.1, “How MySQL Uses Memory”
Section B.3.1, “How to Determine What Is Causing a Problem”
Section 7.6.3, “How to Repair MyISAM Tables”
Section 1.5, “How to Report Bugs or Problems”
Section 6.1.5, “How to Run MySQL as a Normal User”
Section 9.2.3, “Identifier Case Sensitivity”
Section B.3.2.13, “Ignoring user”
Section 21.7.8, “Implementing Failover with NDB Cluster Replication”
Section 12.15, “Information Functions”
Section 21.3.3, “Initial Configuration of NDB Cluster”
Section 21.3.4, “Initial Startup of NDB Cluster”
Section 2.9.1, “Initializing the Data Directory”
Section 14.19.1, “InnoDB Backup”
Section 14.12.1, “InnoDB Disk I/O”
Section 14.21.2, “InnoDB memcached Architecture”
Section 14.19.2, “InnoDB Recovery”
Section 14.8.1, “InnoDB Startup Configuration”
Section 14.15, “InnoDB Startup Options and System Variables”
Section 14.22, “InnoDB Troubleshooting”
Section 13.2.5.2, “INSERT ... ON DUPLICATE KEY UPDATE Statement”
Section 13.2.5, “INSERT Statement”
Section 21.3.1, “Installation of NDB Cluster on Linux”
Section 21.3.1.1, “Installing an NDB Cluster Binary Release on Linux”
Section 2.5.5, “Installing MySQL on Linux Using RPM Packages from Oracle”
Section 2.4.2, “Installing MySQL on macOS Using Native Packages”
Section 2.7, “Installing MySQL on Solaris”
Section 2.2, “Installing MySQL on Unix/Linux Using Generic Binaries”
Section 21.3.1.2, “Installing NDB Cluster from RPM”
Section 21.3.2.1, “Installing NDB Cluster on Windows from a Binary Release”
Section 21.3.2.4, “Installing NDB Cluster Processes as Windows Services”
Section 21.2.7.8, “Issues Exclusive to NDB Cluster”
Section 13.7.6.4, “KILL Statement”
Section 21.7.3, “Known Issues in NDB Cluster Replication”

4876

Section 13.2.6, “LOAD DATA Statement”
Section 13.3.5, “LOCK TABLES and UNLOCK TABLES Statements”
Section 12.14, “Locking Functions”
Section 5.8.1.7, “Making a Test Case If You Experience Table Corruption”
Section 6.1.3, “Making MySQL Secure Against Attackers”
Section 21.6, “Management of NDB Cluster”
Section 2.5.10, “Managing MySQL Server with systemd”
Section 6.4.4.7, “Migrating Keys Between Keyring Keystores”
Section 12.20, “Miscellaneous Functions”
Section 5.4.4.3, “Mixed Binary Logging Format”
Section 14.6.1.4, “Moving or Copying InnoDB Tables”
Section 15.2.1, “MyISAM Startup Options”
Section 4.6.3.2, “myisamchk Check Options”
Section 4.6.3.1, “myisamchk General Options”
Section 4.6.3, “myisamchk — MyISAM Table-Maintenance Utility”
Section 4.6.5, “myisampack — Generate Compressed, Read-Only MyISAM Tables”
Section A.1, “MySQL 5.7 FAQ: General”
Section A.11, “MySQL 5.7 FAQ: MySQL Chinese, Japanese, and Korean Character Sets”
Section A.10, “MySQL 5.7 FAQ: NDB Cluster”
Section A.3, “MySQL 5.7 FAQ: Server SQL Mode”
Section 4.5.1.6, “mysql Client Tips”
MySQL Glossary
Section 2.3.1, “MySQL Installation Layout on Microsoft Windows”
Chapter 5, MySQL Server Administration
Section B.3.2.7, “MySQL server has gone away”
Section 5.4, “MySQL Server Logs”
MySQL Server Options for NDB Cluster
Section 5.1.13, “MySQL Server Time Zone Support”
Section 21.6.10, “MySQL Server Usage for NDB Cluster”
Section 21.2.6, “MySQL Server Using InnoDB Compared with NDB Cluster”
Section 2.8.7, “MySQL Source-Configuration Options”
Section 1.6, “MySQL Standards Compliance”
Chapter 26, MySQL sys Schema
Section 4.3.3, “mysql.server — MySQL Server Startup Script”
Section 4.4.2, “mysql_install_db — Initialize MySQL Data Directory”
Section 4.4.3, “mysql_plugin — Configure MySQL Server Plugins”
Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.3.1, “mysqld — The MySQL Server”
Section 4.3.4, “mysqld_multi — Manage Multiple MySQL Servers”
Section 4.3.2, “mysqld_safe — MySQL Server Startup Script”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 21.6.14, “NDB API Statistics Counters and Variables”
Section 21.6.18.3, “NDB Cluster and MySQL Security Procedures”
Section 21.4.3.1, “NDB Cluster Configuration: Basic Example”
Section 21.2.1, “NDB Cluster Core Concepts”
Section 21.3, “NDB Cluster Installation”
Section 21.4.2.5, “NDB Cluster mysqld Option and Variable Reference”
Section 21.2.2, “NDB Cluster Nodes, Node Groups, Fragment Replicas, and Partitions”
Section 21.2, “NDB Cluster Overview”
Section 21.5, “NDB Cluster Programs”
Section 21.7, “NDB Cluster Replication”
Section 21.7.11, “NDB Cluster Replication Conflict Resolution”
Section 21.7.4, “NDB Cluster Replication Schema and Tables”

4877

Section 21.7.10, “NDB Cluster Replication: Bidirectional and Circular Replication”
NDB Cluster Status Variables
NDB Cluster System Variables
Section 21.5.14, “ndb_import — Import CSV Data Into NDB”
Section 21.5.4, “ndb_mgmd — The NDB Cluster Management Server Daemon”
Section 21.5.24, “ndb_restore — Restore an NDB Cluster Backup”
Section 21.5.27, “ndb_show_tables — Display List of NDB Tables”
Section 21.5.29, “ndb_top — View CPU usage information for NDB threads”
Section 21.6.15, “ndbinfo: The NDB Cluster Information Database”
Section 21.2.7.1, “Noncompliance with SQL Syntax in NDB Cluster”
Section 21.6.12, “Online Operations with ALTER TABLE in NDB Cluster”
Section 13.7.2.4, “OPTIMIZE TABLE Statement”
Section B.3.5, “Optimizer-Related Issues”
Section 27.6.3, “Options with the Embedded Server”
Section 21.2.5.1, “Options, Variables, and Parameters Added, Deprecated or Removed in NDB 7.5”
Section 21.2.5.2, “Options, Variables, and Parameters Added, Deprecated or Removed in NDB 7.6”
Section 4.1, “Overview of MySQL Programs”
Section 21.4.2, “Overview of NDB Cluster Configuration Parameters, Options, and Variables”
Section B.3.2.8, “Packet Too Large”
Section 25.3, “Performance Schema Startup Configuration”
Section 21.6.5, “Performing a Rolling Restart of an NDB Cluster”
Section 21.7.5, “Preparing the NDB Cluster for Replication”
Section 15.2.4.2, “Problems from Tables Not Being Closed Properly”
Section B.3.3.1, “Problems with File Permissions”
Section 4.2.2.4, “Program Option Modifiers”
Section 8.10.3.3, “Query Cache Configuration”
Section 13.7.2.5, “REPAIR TABLE Statement”
Section 16.1.6.1, “Replication and Binary Logging Option and Variable Reference”
Section 16.1.6, “Replication and Binary Logging Options and Variables”
Section 16.4.1.26, “Replication and Source or Replica Shutdowns”
Section 16.4.1.32, “Replication and Transaction Inconsistencies”
Section 16.2.4.2, “Replication Metadata Repositories”
Section 16.1.6.2, “Replication Source Options and Variables”
Section 13.4.2.3, “RESET SLAVE Statement”
Resetting the Root Password: Unix and Unix-Like Systems
Resetting the Root Password: Windows Systems
Section 4.7.3, “resolve_stack_dump — Resolve Numeric Stack Trace Dump to Symbols”
Restoring an NDB backup to a later version of NDB Cluster
Restoring an NDB backup to a previous version of NDB Cluster
Restoring to More Nodes Than the Original
Section B.3.4.5, “Rollback Failure for Nontransactional Tables”
Section 5.7, “Running Multiple MySQL Instances on One Machine”
Section 2.9.4, “Securing the Initial MySQL Account”
Section 6.1.6, “Security Considerations for LOAD DATA LOCAL”
Section 6.1.4, “Security-Related mysqld Options and Variables”
Section 13.2.9.1, “SELECT ... INTO Statement”
Section 2.3.4.3, “Selecting a MySQL Server Type”
Section 6.7, “SELinux”
Section 4.3, “Server and Server-Startup Programs”
Section 10.3.2, “Server Character Set and Collation”
Section 5.1.6, “Server Command Options”
Section 5.4.7, “Server Log Maintenance”
Section 5.1.9, “Server Status Variables”
Section 5.1.7, “Server System Variables”

4878

Section 10.12, “Setting the Error Message Language”
Section 6.7.5.2, “Setting the TCP Port Context for MySQL Features”
Section 6.7.5.1, “Setting the TCP Port Context for mysqld”
Section 7.6.5, “Setting Up a MyISAM Table Maintenance Schedule”
Section 16.1.3.4, “Setting Up Replication Using GTIDs”
Section 14.21.3, “Setting Up the InnoDB memcached Plugin”
Section 13.7.5.15, “SHOW ENGINE Statement”
Section 4.2.2, “Specifying Program Options”
Section 13.4.2.5, “START SLAVE Statement”
Section 2.9.5, “Starting and Stopping MySQL Automatically”
Section 5.7.2.2, “Starting Multiple MySQL Instances as Windows Services”
Section 5.7.2.1, “Starting Multiple MySQL Instances at the Windows Command Line”
Section 2.3.4.8, “Starting MySQL as a Windows Service”
Section 2.3.4.6, “Starting MySQL from the Windows Command Line”
Section 21.7.6, “Starting NDB Cluster Replication (Single Replication Channel)”
Section 16.2.2.3, “Startup Options and Replication Channels”
Section 16.3.7, “Switching Sources During Failover”
Section 8.11.2, “Table Locking Issues”
Section B.3.2.17, “Table-Corruption Issues”
Section 2.3.4.9, “Testing The MySQL Installation”
Section 2.9.3, “Testing the Server”
Section 5.4.4, “The Binary Log”
Section 15.6, “The BLACKHOLE Storage Engine”
Section 5.8.3, “The DBUG Package”
Section 5.4.6, “The DDL Log”
Section 5.4.2, “The Error Log”
Section 5.4.3, “The General Query Log”
Section 14.21.6, “The InnoDB memcached Plugin and Replication”
Section 15.2, “The MyISAM Storage Engine”
Section 8.10.3, “The MySQL Query Cache”
Section 5.1, “The MySQL Server”
Section 21.6.15.29, “The ndbinfo operations_per_fragment Table”
Section 21.6.15.33, “The ndbinfo server_locks Table”
Section 5.4.5, “The Slow Query Log”
Section B.3.3.7, “Time Zone Problems”
Section B.3.2.5, “Too many connections”
Section 5.8.4, “Tracing mysqld Using DTrace”
Section 2.3.5, “Troubleshooting a Microsoft Windows MySQL Server Installation”
Section 14.22.1, “Troubleshooting InnoDB I/O Problems”
Section 6.2.17, “Troubleshooting Problems Connecting to MySQL”
Section 2.9.2.1, “Troubleshooting Problems Starting the MySQL Server”
Section 4.10, “Unix Signal Handling in MySQL”
Section 2.10.11, “Upgrade Troubleshooting”
Section 21.3.7.1, “Upgrading and Downgrading NDB 7.5”
Section 2.10.8, “Upgrading MySQL on Windows”
Section 2.10.10, “Upgrading MySQL with Directly-Downloaded RPM Packages”
Section 5.8.1.5, “Using a Stack Trace”
Section 7.6.1, “Using myisamchk for Crash Recovery”
Section 4.2.2.2, “Using Option Files”
Section 5.8.1.6, “Using Server Logs to Find Causes of Errors in mysqld”
Section 8.12.3.3, “Using Symbolic Links for Databases on Windows”
Section 8.12.3.2, “Using Symbolic Links for MyISAM Tables on Unix”
Section 21.7.7, “Using Two Replication Channels for NDB Cluster Replication”
Section 5.8.1.3, “Using WER with PDB to create a Windows crashdump”

4879

Section 1.3, “What Is New in MySQL 5.7”
Section 21.2.4.1, “What is New in NDB Cluster 7.5”
Section 21.2.4.2, “What is New in NDB Cluster 7.6”
Section B.3.3.3, “What to Do If MySQL Keeps Crashing”
Section 6.2.9, “When Privilege Changes Take Effect”
Section B.3.3.5, “Where MySQL Stores Temporary Files”
Section 2.1.2, “Which MySQL Version and Distribution to Install”

mysqld mysqld.trace
Section 5.8.1.2, “Creating Trace Files”

mysqld-debug
Section 5.8.1.2, “Creating Trace Files”
Section 2.2, “Installing MySQL on Unix/Linux Using Generic Binaries”
Section 4.3.1, “mysqld — The MySQL Server”
Section 4.3.2, “mysqld_safe — MySQL Server Startup Script”
Section 2.3.4.3, “Selecting a MySQL Server Type”

mysqld.exe
Section 21.3.2.3, “Initial Startup of NDB Cluster on Windows”
Section 21.3.2.1, “Installing NDB Cluster on Windows from a Binary Release”
Section 21.3.2.4, “Installing NDB Cluster Processes as Windows Services”

mysqld_multi
Section 2.5.10, “Managing MySQL Server with systemd”
Section 4.3.4, “mysqld_multi — Manage Multiple MySQL Servers”
Section 4.1, “Overview of MySQL Programs”
Section 5.7.3, “Running Multiple MySQL Instances on Unix”

mysqld_multi.server
Section 2.5.10, “Managing MySQL Server with systemd”

mysqld_safe
Section 21.6.7.3, “Adding NDB Cluster Data Nodes Online: Detailed Example”
Section 2.10.3, “Changes in MySQL 5.7”
Section 5.8.1.1, “Compiling MySQL for Debugging”
Section 5.1.1, “Configuring the Server”
Section 2.11.3, “Downgrade Notes”
Section 2.11.4, “Downgrading Binary and Package-based Installations on Unix/Linux”
Section 5.4.2.2, “Error Logging on Unix and Unix-Like Systems”
Section 5.4.2.3, “Error Logging to the System Log”
Section B.3.2.16, “File Not Found and Similar Errors”
Section B.3.3.6, “How to Protect or Change the MySQL Unix Socket File”
Section 14.22, “InnoDB Troubleshooting”
Section 21.3.1.2, “Installing NDB Cluster from RPM”
Section 6.1.3, “Making MySQL Secure Against Attackers”
Section 2.5.10, “Managing MySQL Server with systemd”
Section A.10, “MySQL 5.7 FAQ: NDB Cluster”
Section 5.1.13, “MySQL Server Time Zone Support”
Section 2.8.7, “MySQL Source-Configuration Options”
Section 4.3.3, “mysql.server — MySQL Server Startup Script”
Section 4.3.4, “mysqld_multi — Manage Multiple MySQL Servers”

4880

Section 4.3.2, “mysqld_safe — MySQL Server Startup Script”
Section 21.6.18.3, “NDB Cluster and MySQL Security Procedures”
Section 4.2.2.6, “Option Defaults, Options Expecting Values, and the = Sign”
Section 4.1, “Overview of MySQL Programs”
Section B.3.2.8, “Packet Too Large”
Section B.3.3.1, “Problems with File Permissions”
Section 5.7, “Running Multiple MySQL Instances on One Machine”
Section 5.7.3, “Running Multiple MySQL Instances on Unix”
Section 5.1.6, “Server Command Options”
Section 5.1.7, “Server System Variables”
Section 2.9.5, “Starting and Stopping MySQL Automatically”
Section 2.9.2, “Starting the Server”
Section 2.9.3, “Testing the Server”
Section 5.4.2, “The Error Log”
Section B.3.3.7, “Time Zone Problems”
Section 2.9.2.1, “Troubleshooting Problems Starting the MySQL Server”
Section 2.10.4, “Upgrading MySQL Binary or Package-based Installations on Unix/Linux”
Section 4.2.2.2, “Using Option Files”
Section 1.3, “What Is New in MySQL 5.7”

mysqldump
Section 11.2.5, “2-Digit YEAR(2) Limitations and Migrating to 4-Digit YEAR”
Section 16.3.1.1, “Backing Up a Replica Using mysqldump”
Section 16.3.1.3, “Backing Up a Source or Replica by Making It Read Only”
Chapter 7, Backup and Recovery
Section 7.1, “Backup and Recovery Types”
Section 7.3.3, “Backup Strategy Summary”
Section 14.5.1, “Buffer Pool”
Section 8.5.5, “Bulk Data Loading for InnoDB Tables”
Section 6.4.1.4, “Caching SHA-2 Pluggable Authentication”
Section 2.10.3, “Changes in MySQL 5.7”
Section 16.1.2.4, “Choosing a Method for Data Snapshots”
Section 6.4.1.6, “Client-Side Cleartext Pluggable Authentication”
Section 4.2.4, “Connecting to the MySQL Server Using Command Options”
Section 4.2.5, “Connection Transport Protocols”
Section 10.9.8, “Converting Between 3-Byte and 4-Byte Unicode Character Sets”
Section 7.4.5.2, “Copy a Database from one Server to Another”
Section 2.10.13, “Copying MySQL Databases to Another Machine”
Section 13.1.18, “CREATE TABLE Statement”
Section 13.1.19, “CREATE TABLESPACE Statement”
Creating a Data Snapshot Using mysqldump
Section 2.3.4.7, “Customizing the PATH for MySQL Tools”
Section 7.2, “Database Backup Methods”
Section 14.12.4, “Defragmenting a Table”
Section 21.6.13, “Distributed Privileges Using Shared Grant Tables”
Section 2.11.5, “Downgrade Troubleshooting”
Section 2.11.4, “Downgrading Binary and Package-based Installations on Unix/Linux”
Section 7.4.3, “Dumping Data in Delimited-Text Format with mysqldump”
Section 7.4.1, “Dumping Data in SQL Format with mysqldump”
Section 7.4.5.3, “Dumping Stored Programs”
Section 7.4.5.4, “Dumping Table Definitions and Content Separately”
Section 7.3.1, “Establishing a Backup Policy”
Section 7.3, “Example Backup and Recovery Strategy”

4881

Section 13.1.18.5, “FOREIGN KEY Constraints”
Section 1.5, “How to Report Bugs or Problems”
Section 9.2.3, “Identifier Case Sensitivity”
Section 21.6.9, “Importing Data Into MySQL Cluster”
Section 4.6.1, “innochecksum — Offline InnoDB File Checksum Utility”
Section 14.19.1, “InnoDB Backup”
Section 2.6, “Installing MySQL Using Unbreakable Linux Network (ULN)”
Section 21.3.1.2, “Installing NDB Cluster from RPM”
Section 13.2.6, “LOAD DATA Statement”
Section 13.2.7, “LOAD XML Statement”
Section 7.4.5.1, “Making a Copy of a Database”
Section 9.2.4, “Mapping of Identifiers to File Names”
Section 14.6.1.4, “Moving or Copying InnoDB Tables”
Section A.10, “MySQL 5.7 FAQ: NDB Cluster”
Section 4.5.1.1, “mysql Client Options”
Section 5.4, “MySQL Server Logs”
Section 4.6.6, “mysql_config_editor — MySQL Configuration Utility”
Section 7.4.5, “mysqldump Tips”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 21.3.5, “NDB Cluster Example with Tables and Data”
Section 21.2, “NDB Cluster Overview”
Section 21.5.14, “ndb_import — Import CSV Data Into NDB”
Section 21.6.15, “ndbinfo: The NDB Cluster Information Database”
Section 16.1.2.3, “Obtaining the Replication Source's Binary Log Coordinates”
Section 21.6.8, “Online Backup of NDB Cluster”
Section 4.1, “Overview of MySQL Programs”
Section 25.12.9, “Performance Schema Connection Attribute Tables”
Section 21.6.5, “Performing a Rolling Restart of an NDB Cluster”
Section 21.7.9.2, “Point-In-Time Recovery Using NDB Cluster Replication”
Section 21.7.5, “Preparing the NDB Cluster for Replication”
Section 6.2.2, “Privileges Provided by MySQL”
Section B.3.4.8, “Problems with Floating-Point Values”
Section 16.1.5.2, “Provisioning a Multi-Source Replica for GTID-Based Replication”
Section 14.8.10, “Purge Configuration”
Section 2.10.12, “Rebuilding or Repairing Tables or Indexes”
Section 7.4.4, “Reloading Delimited-Text Format Backups”
Section 7.4.2, “Reloading SQL-Format Backups”
Section 16.3.5, “Replicating Different Databases to Different Replicas”
Section 16.4.1.32, “Replication and Transaction Inconsistencies”
Restoring an NDB backup to a later version of NDB Cluster
Restoring an NDB backup to a previous version of NDB Cluster
Restoring to More Nodes Than the Original
Section 25.21, “Restrictions on Performance Schema”
Section 16.1.3.6, “Restrictions on Replication with GTIDs”
Section 23.9, “Restrictions on Views”
Section 5.4.1, “Selecting General Query Log and Slow Query Log Output Destinations”
Section 5.4.7, “Server Log Maintenance”
Section 5.1.10, “Server SQL Modes”
Section 5.1.7, “Server System Variables”
Setting Up Replication with Existing Data
Section 6.4.1.5, “SHA-256 Pluggable Authentication”
Section B.3.4.7, “Solving Problems with No Matching Rows”
Section 2.3.4.8, “Starting MySQL as a Windows Service”
Section 16.1.3.7, “Stored Function Examples to Manipulate GTIDs”

4882

Section 11.3.4, “The BLOB and TEXT Types”
Section 14.21.6, “The InnoDB memcached Plugin and Replication”
Section 1.2.2, “The Main Features of MySQL”
Section 14.6.3.1, “The System Tablespace”
Section 6.2.17, “Troubleshooting Problems Connecting to MySQL”
Section 13.7.3.4, “UNINSTALL PLUGIN Statement”
Section 2.10.4, “Upgrading MySQL Binary or Package-based Installations on Unix/Linux”
Section 16.1.3.5, “Using GTIDs for Failover and Scaleout”
Section 4.6.7.3, “Using mysqlbinlog to Back Up Binary Log Files”
Section 7.4, “Using mysqldump for Backups”
Section 4.2.2.2, “Using Option Files”
Section 4.2.2.5, “Using Options to Set Program Variables”
Section 16.3.1, “Using Replication for Backups”
Section 16.3.3, “Using Replication with Different Source and Replica Storage Engines”
Section 26.2, “Using the sys Schema”
Section 1.3, “What Is New in MySQL 5.7”
Section 12.11, “XML Functions”

mysqldump mysql
Section 6.2.17, “Troubleshooting Problems Connecting to MySQL”

mysqldumpslow
Section 4.6.8, “mysqldumpslow — Summarize Slow Query Log Files”
Section 4.1, “Overview of MySQL Programs”
Section 5.4.5, “The Slow Query Log”

mysqlhotcopy
Section 1.3, “What Is New in MySQL 5.7”

mysqlimport
Section 7.1, “Backup and Recovery Types”
Section 6.4.1.4, “Caching SHA-2 Pluggable Authentication”
Section 10.4, “Connection Character Sets and Collations”
Section 2.10.13, “Copying MySQL Databases to Another Machine”
Section 7.2, “Database Backup Methods”
Section 2.11.5, “Downgrade Troubleshooting”
Section 13.2.6, “LOAD DATA Statement”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.1, “Overview of MySQL Programs”
Section 7.4.4, “Reloading Delimited-Text Format Backups”
Section 6.1.6, “Security Considerations for LOAD DATA LOCAL”
Section 6.4.1.5, “SHA-256 Pluggable Authentication”
Section 21.2.4.2, “What is New in NDB Cluster 7.6”

MySQLInstallerConsole
Section 2.3.3.5, “MySQL Installer Console Reference”

MySQLInstallerConsole.exe
Section 2.3.3.5, “MySQL Installer Console Reference”
Section 2.3.3.1, “MySQL Installer Initial Setup”

mysqloptimize
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”

4883

mysqlpump
Section 6.4.1.4, “Caching SHA-2 Pluggable Authentication”
Section 13.1.19, “CREATE TABLESPACE Statement”
Section 21.6.9, “Importing Data Into MySQL Cluster”
Section 2.6, “Installing MySQL Using Unbreakable Linux Network (ULN)”
Section 4.8.1, “lz4_decompress — Decompress mysqlpump LZ4-Compressed Output”
Section 4.5.6, “mysqlpump — A Database Backup Program”
Section 4.1, “Overview of MySQL Programs”
Section 6.4.1.5, “SHA-256 Pluggable Authentication”
Section 2.10.4, “Upgrading MySQL Binary or Package-based Installations on Unix/Linux”
Section 26.2, “Using the sys Schema”
Section 4.8.5, “zlib_decompress — Decompress mysqlpump ZLIB-Compressed Output”

mysqlrepair
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”

mysqlsh
Section 4.1, “Overview of MySQL Programs”

mysqlshow
Section 6.4.1.4, “Caching SHA-2 Pluggable Authentication”
Section 6.4.1.6, “Client-Side Cleartext Pluggable Authentication”
Section 4.2.4, “Connecting to the MySQL Server Using Command Options”
Section 10.4, “Connection Character Sets and Collations”
Section 4.5.7, “mysqlshow — Display Database, Table, and Column Information”
Section 4.1, “Overview of MySQL Programs”
Section 6.4.1.5, “SHA-256 Pluggable Authentication”
Section 13.7.5.14, “SHOW DATABASES Statement”
Section 13.7.5.22, “SHOW INDEX Statement”
Section 13.7.5.36, “SHOW TABLE STATUS Statement”
Section 2.3.4.9, “Testing The MySQL Installation”
Section 2.9.3, “Testing the Server”
Section 2.3.6, “Windows Postinstallation Procedures”

mysqlshow db_name
Section 13.7.5.37, “SHOW TABLES Statement”

mysqlshow db_name tbl_name
Section 13.7.5.5, “SHOW COLUMNS Statement”

mysqlslap
Section 6.4.1.4, “Caching SHA-2 Pluggable Authentication”
Section 6.4.1.6, “Client-Side Cleartext Pluggable Authentication”
Section 14.17.2, “Monitoring InnoDB Mutex Waits Using Performance Schema”
Section 4.5.8, “mysqlslap — A Load Emulation Client”
Section 4.1, “Overview of MySQL Programs”
Section 6.4.1.5, “SHA-256 Pluggable Authentication”
Section 8.13.2, “Using Your Own Benchmarks”

mysqltest
Section 6.4.1.4, “Caching SHA-2 Pluggable Authentication”
Section 21.3.1.2, “Installing NDB Cluster from RPM”

4884

Section 5.1.15, “Server Tracking of Client Session State”
Section 6.4.1.5, “SHA-256 Pluggable Authentication”
Section 1.3, “What Is New in MySQL 5.7”

mysqltest_embedded
Section 1.3, “What Is New in MySQL 5.7”

N

[index top]

nbdmtd
Section 21.4.3.6, “Defining NDB Cluster Data Nodes”

ndb_blob_tool
Section 21.5.6, “ndb_blob_tool — Check and Repair BLOB and TEXT columns of NDB Cluster Tables”
Section 21.2.4.1, “What is New in NDB Cluster 7.5”
Section 21.2.4.2, “What is New in NDB Cluster 7.6”

ndb_config
Section 21.3.1.2, “Installing NDB Cluster from RPM”
Section 21.5, “NDB Cluster Programs”
Section 21.5.7, “ndb_config — Extract NDB Cluster Configuration Information”
Section 21.2.4.2, “What is New in NDB Cluster 7.6”

ndb_delete_all
Section 21.5.9, “ndb_delete_all — Delete All Rows from an NDB Table”

ndb_desc
Section 21.6.7.3, “Adding NDB Cluster Data Nodes Online: Detailed Example”
Section 21.4.3.6, “Defining NDB Cluster Data Nodes”
Section 21.3.1.2, “Installing NDB Cluster from RPM”
Section 22.2.5, “KEY Partitioning”
Section 21.6.18.3, “NDB Cluster and MySQL Security Procedures”
Section 21.6.11.1, “NDB Cluster Disk Data Objects”
Section 21.5.10, “ndb_desc — Describe NDB Tables”
Section 21.5.24, “ndb_restore — Restore an NDB Cluster Backup”
Section 13.1.18.9, “Setting NDB Comment Options”
Section 24.3.9, “The INFORMATION_SCHEMA FILES Table”
Section 24.3.16, “The INFORMATION_SCHEMA PARTITIONS Table”
Section 21.6.15.5, “The ndbinfo cluster_operations Table”
Section 21.6.15.34, “The ndbinfo server_operations Table”
Section 21.2.4.2, “What is New in NDB Cluster 7.6”

ndb_drop_index
Section 21.5.11, “ndb_drop_index — Drop Index from an NDB Table”

ndb_drop_table
Section 21.5.11, “ndb_drop_index — Drop Index from an NDB Table”
Section 21.5.12, “ndb_drop_table — Drop an NDB Table”

ndb_error_reporter
Section 21.5.13, “ndb_error_reporter — NDB Error-Reporting Utility”

4885

ndb_import
Section 21.6.9, “Importing Data Into MySQL Cluster”
Section 21.5.14, “ndb_import — Import CSV Data Into NDB”
Section 21.2.4.2, “What is New in NDB Cluster 7.6”

ndb_index_stat
Section 21.5.15, “ndb_index_stat — NDB Index Statistics Utility”

ndb_mgm
Section 21.6.7.3, “Adding NDB Cluster Data Nodes Online: Detailed Example”
Section 21.6.7.1, “Adding NDB Cluster Data Nodes Online: General Issues”
Section 21.3.1.4, “Building NDB Cluster from Source on Linux”
Section 21.6.1, “Commands in the NDB Cluster Management Client”
Section 21.6.13, “Distributed Privileges Using Shared Grant Tables”
Section 21.6.3, “Event Reports Generated in NDB Cluster”
Section 21.1, “General Information”
Section 21.3.4, “Initial Startup of NDB Cluster”
Section 21.3.2.3, “Initial Startup of NDB Cluster on Windows”
Section 21.3.1, “Installation of NDB Cluster on Linux”
Section 21.3.1.1, “Installing an NDB Cluster Binary Release on Linux”
Section 21.3.1.2, “Installing NDB Cluster from RPM”
Section 21.3.1.3, “Installing NDB Cluster Using .deb Files”
Section A.10, “MySQL 5.7 FAQ: NDB Cluster”
Section 21.2.1, “NDB Cluster Core Concepts”
Section 21.6.3.1, “NDB Cluster Logging Management Commands”
Section 21.5, “NDB Cluster Programs”
Section 21.6.18.1, “NDB Cluster Security and Networking Issues”
Section 21.6.6, “NDB Cluster Single User Mode”
Section 21.5.5, “ndb_mgm — The NDB Cluster Management Client”
Section 21.5.4, “ndb_mgmd — The NDB Cluster Management Server Daemon”
Section 21.5.24, “ndb_restore — Restore an NDB Cluster Backup”
Section 21.6.8, “Online Backup of NDB Cluster”
Section 21.6.5, “Performing a Rolling Restart of an NDB Cluster”
Section 21.7.9.2, “Point-In-Time Recovery Using NDB Cluster Replication”
Restoring an NDB backup to a later version of NDB Cluster
Restoring to More Nodes Than the Original
Section 21.3.6, “Safe Shutdown and Restart of NDB Cluster”
Section 21.6.15.1, “The ndbinfo arbitrator_validity_detail Table”
Section 21.6.15.25, “The ndbinfo membership Table”
Section 21.6.15.26, “The ndbinfo memoryusage Table”
Section 21.6.15.28, “The ndbinfo nodes Table”
Section 21.6.15.44, “The ndbinfo transporters Table”
Section 21.6.8.2, “Using The NDB Cluster Management Client to Create a Backup”
Section 21.2.4.1, “What is New in NDB Cluster 7.5”
Section 21.2.4.2, “What is New in NDB Cluster 7.6”

ndb_mgm.exe
Section 21.3.2.3, “Initial Startup of NDB Cluster on Windows”
Section 21.3.2.1, “Installing NDB Cluster on Windows from a Binary Release”

ndb_mgmd
Section 21.3.1.4, “Building NDB Cluster from Source on Linux”

4886

Section 21.6.1, “Commands in the NDB Cluster Management Client”
Section 21.4.3.5, “Defining an NDB Cluster Management Server”
Section 21.4.3.6, “Defining NDB Cluster Data Nodes”
Section 21.3.4, “Initial Startup of NDB Cluster”
Section 21.3.1, “Installation of NDB Cluster on Linux”
Section 21.3.1.1, “Installing an NDB Cluster Binary Release on Linux”
Section 21.3.1.2, “Installing NDB Cluster from RPM”
Section 21.3.2.1, “Installing NDB Cluster on Windows from a Binary Release”
Section 21.3.1.3, “Installing NDB Cluster Using .deb Files”
Section A.10, “MySQL 5.7 FAQ: NDB Cluster”
Section 2.8.7, “MySQL Source-Configuration Options”
Section 21.4.3.1, “NDB Cluster Configuration: Basic Example”
Section 21.4.3.3, “NDB Cluster Connection Strings”
Section 21.2.1, “NDB Cluster Core Concepts”
Section 21.6.3.1, “NDB Cluster Logging Management Commands”
Section 21.2.2, “NDB Cluster Nodes, Node Groups, Fragment Replicas, and Partitions”
Section 21.5, “NDB Cluster Programs”
Section 21.5.14, “ndb_import — Import CSV Data Into NDB”
Section 21.5.5, “ndb_mgm — The NDB Cluster Management Client”
Section 21.5.4, “ndb_mgmd — The NDB Cluster Management Server Daemon”
Section 21.5.1, “ndbd — The NDB Cluster Data Node Daemon”
Section 21.6.5, “Performing a Rolling Restart of an NDB Cluster”
Section 21.4.1, “Quick Test Setup of NDB Cluster”
Section 21.3.6, “Safe Shutdown and Restart of NDB Cluster”
Section 21.6.4, “Summary of NDB Cluster Start Phases”
Section 21.2.4.2, “What is New in NDB Cluster 7.6”

ndb_mgmd.exe
Section 21.3.2.3, “Initial Startup of NDB Cluster on Windows”
Section 21.3.2.1, “Installing NDB Cluster on Windows from a Binary Release”
Section 21.3.2.4, “Installing NDB Cluster Processes as Windows Services”

ndb_move_data
Section 21.5.16, “ndb_move_data — NDB Data Copy Utility”

ndb_perror
Section B.2, “Error Information Interfaces”
Section 21.5.17, “ndb_perror — Obtain NDB Error Message Information”
Section 4.8.2, “perror — Display MySQL Error Message Information”
Section 21.6.15.21, “The ndbinfo error_messages Table”
Section 1.3, “What Is New in MySQL 5.7”
Section 21.2.4.2, “What is New in NDB Cluster 7.6”

ndb_print_backup_file
Section 21.5.18, “ndb_print_backup_file — Print NDB Backup File Contents”
Section 21.5.20, “ndb_print_frag_file — Print NDB Fragment List File Contents”
Section 21.5.21, “ndb_print_schema_file — Print NDB Schema File Contents”
Section 21.5.22, “ndb_print_sys_file — Print NDB System File Contents”
Section 21.5.23, “ndb_redo_log_reader — Check and Print Content of Cluster Redo Log”

ndb_print_file
Section 21.5.19, “ndb_print_file — Print NDB Disk Data File Contents”

4887

ndb_print_frag_file
Section 21.5.20, “ndb_print_frag_file — Print NDB Fragment List File Contents”

ndb_print_schema_file
Section 21.5.18, “ndb_print_backup_file — Print NDB Backup File Contents”
Section 21.5.19, “ndb_print_file — Print NDB Disk Data File Contents”
Section 21.5.20, “ndb_print_frag_file — Print NDB Fragment List File Contents”
Section 21.5.21, “ndb_print_schema_file — Print NDB Schema File Contents”
Section 21.5.22, “ndb_print_sys_file — Print NDB System File Contents”
Section 21.5.23, “ndb_redo_log_reader — Check and Print Content of Cluster Redo Log”

ndb_print_sys_file
Section 21.5.18, “ndb_print_backup_file — Print NDB Backup File Contents”
Section 21.5.19, “ndb_print_file — Print NDB Disk Data File Contents”
Section 21.5.20, “ndb_print_frag_file — Print NDB Fragment List File Contents”
Section 21.5.21, “ndb_print_schema_file — Print NDB Schema File Contents”
Section 21.5.22, “ndb_print_sys_file — Print NDB System File Contents”

ndb_redo_log_reader
Section 21.5.23, “ndb_redo_log_reader — Check and Print Content of Cluster Redo Log”

ndb_restore
Section 7.1, “Backup and Recovery Types”
Section 21.4.3.6, “Defining NDB Cluster Data Nodes”
Section 21.6.13, “Distributed Privileges Using Shared Grant Tables”
Section 21.6.9, “Importing Data Into MySQL Cluster”
Section A.10, “MySQL 5.7 FAQ: NDB Cluster”
Section 21.7.9, “NDB Cluster Backups With NDB Cluster Replication”
Section 21.2.1, “NDB Cluster Core Concepts”
Section 21.2, “NDB Cluster Overview”
Section 21.5, “NDB Cluster Programs”
Section 21.7.4, “NDB Cluster Replication Schema and Tables”
Section 21.7.10, “NDB Cluster Replication: Bidirectional and Circular Replication”
Section 21.6.6, “NDB Cluster Single User Mode”
Section 21.5.24, “ndb_restore — Restore an NDB Cluster Backup”
Section 21.6.8, “Online Backup of NDB Cluster”
Section 21.6.5, “Performing a Rolling Restart of an NDB Cluster”
Section 21.7.9.2, “Point-In-Time Recovery Using NDB Cluster Replication”
Restoring an NDB backup to a later version of NDB Cluster
Restoring an NDB backup to a previous version of NDB Cluster
Restoring to Fewer Nodes Than the Original
Restoring to More Nodes Than the Original
Section 21.2.4.1, “What is New in NDB Cluster 7.5”
Section 21.2.4.2, “What is New in NDB Cluster 7.6”

ndb_select_all
Section 21.6.18.3, “NDB Cluster and MySQL Security Procedures”
Section 21.5.25, “ndb_select_all — Print Rows from an NDB Table”
Section 21.5.27, “ndb_show_tables — Display List of NDB Tables”

ndb_select_count
Section 21.5.26, “ndb_select_count — Print Row Counts for NDB Tables”

4888

ndb_setup.py
Section 21.2.4.1, “What is New in NDB Cluster 7.5”
Section 21.2.4.2, “What is New in NDB Cluster 7.6”

ndb_show_tables
Section 21.6.18.3, “NDB Cluster and MySQL Security Procedures”
Section 21.5, “NDB Cluster Programs”
Section 21.5.27, “ndb_show_tables — Display List of NDB Tables”
Section 21.6.15.4, “The ndbinfo cluster_locks Table”
Section 21.6.15.5, “The ndbinfo cluster_operations Table”
Section 21.6.15.22, “The ndbinfo locks_per_fragment Table”
Section 21.6.15.29, “The ndbinfo operations_per_fragment Table”
Section 21.6.15.33, “The ndbinfo server_locks Table”
Section 21.6.15.34, “The ndbinfo server_operations Table”
Section 21.2.4.1, “What is New in NDB Cluster 7.5”
Section 21.2.4.2, “What is New in NDB Cluster 7.6”

ndb_size.pl
Section 11.7, “Data Type Storage Requirements”
Section A.10, “MySQL 5.7 FAQ: NDB Cluster”
Section 21.5.28, “ndb_size.pl — NDBCLUSTER Size Requirement Estimator”

ndb_top
Section 21.5.29, “ndb_top — View CPU usage information for NDB threads”
Section 21.2.4.2, “What is New in NDB Cluster 7.6”

ndb_waiter
Section 21.5.30, “ndb_waiter — Wait for NDB Cluster to Reach a Given Status”
Section 21.2.4.1, “What is New in NDB Cluster 7.5”
Section 21.2.4.2, “What is New in NDB Cluster 7.6”

ndbd
Section 21.6.7.2, “Adding NDB Cluster Data Nodes Online: Basic procedure”
Section 21.6.7.3, “Adding NDB Cluster Data Nodes Online: Detailed Example”
Section 21.3.1.4, “Building NDB Cluster from Source on Linux”
Section 21.6.1, “Commands in the NDB Cluster Management Client”
Section 21.4.3.6, “Defining NDB Cluster Data Nodes”
Section 21.3.4, “Initial Startup of NDB Cluster”
Section 21.3.1, “Installation of NDB Cluster on Linux”
Section 21.3.1.1, “Installing an NDB Cluster Binary Release on Linux”
Section 21.3.1.2, “Installing NDB Cluster from RPM”
Section 21.3.2.1, “Installing NDB Cluster on Windows from a Binary Release”
Section 21.3.1.3, “Installing NDB Cluster Using .deb Files”
Section 21.6, “Management of NDB Cluster”
Section A.10, “MySQL 5.7 FAQ: NDB Cluster”
Section 21.7.9, “NDB Cluster Backups With NDB Cluster Replication”
Section 21.4.3.1, “NDB Cluster Configuration: Basic Example”
Section 21.2.1, “NDB Cluster Core Concepts”
Section 21.4.2.1, “NDB Cluster Data Node Configuration Parameters”
Section 21.3, “NDB Cluster Installation”
Section 21.2.2, “NDB Cluster Nodes, Node Groups, Fragment Replicas, and Partitions”
Section 21.5, “NDB Cluster Programs”

4889

Section 21.5.4, “ndb_mgmd — The NDB Cluster Management Server Daemon”
Section 21.5.30, “ndb_waiter — Wait for NDB Cluster to Reach a Given Status”
Section 21.5.1, “ndbd — The NDB Cluster Data Node Daemon”
Section 21.5.3, “ndbmtd — The NDB Cluster Data Node Daemon (Multi-Threaded)”
Section 21.4.2, “Overview of NDB Cluster Configuration Parameters, Options, and Variables”
Section 21.6.5, “Performing a Rolling Restart of an NDB Cluster”
Section 21.7.9.2, “Point-In-Time Recovery Using NDB Cluster Replication”
Section 21.4.1, “Quick Test Setup of NDB Cluster”
Section 21.4.3.2, “Recommended Starting Configuration for NDB Cluster”
Section 21.3.6, “Safe Shutdown and Restart of NDB Cluster”
Section 21.6.4, “Summary of NDB Cluster Start Phases”
Section 21.6.15.28, “The ndbinfo nodes Table”
Section 21.6.3.3, “Using CLUSTERLOG STATISTICS in the NDB Cluster Management Client”

ndbd.exe
Section 21.3.2.3, “Initial Startup of NDB Cluster on Windows”
Section 21.3.2.1, “Installing NDB Cluster on Windows from a Binary Release”
Section 21.3.2.4, “Installing NDB Cluster Processes as Windows Services”

ndbinfo_select_all
Section 21.5.2, “ndbinfo_select_all — Select From ndbinfo Tables”

ndbmtd
Section 21.6.7.2, “Adding NDB Cluster Data Nodes Online: Basic procedure”
Section 21.6.7.3, “Adding NDB Cluster Data Nodes Online: Detailed Example”
Section 21.3.1.4, “Building NDB Cluster from Source on Linux”
Section 21.4.3.6, “Defining NDB Cluster Data Nodes”
Section 21.3.1, “Installation of NDB Cluster on Linux”
Section 21.3.1.1, “Installing an NDB Cluster Binary Release on Linux”
Section 21.3.1.2, “Installing NDB Cluster from RPM”
Section A.10, “MySQL 5.7 FAQ: NDB Cluster”
Section 2.8.7, “MySQL Source-Configuration Options”
Section 21.2.1, “NDB Cluster Core Concepts”
Section 21.4.2.1, “NDB Cluster Data Node Configuration Parameters”
Section 21.2.2, “NDB Cluster Nodes, Node Groups, Fragment Replicas, and Partitions”
Section 21.5, “NDB Cluster Programs”
Section 21.5.4, “ndb_mgmd — The NDB Cluster Management Server Daemon”
Section 21.5.29, “ndb_top — View CPU usage information for NDB threads”
Section 21.5.1, “ndbd — The NDB Cluster Data Node Daemon”
Section 21.5.3, “ndbmtd — The NDB Cluster Data Node Daemon (Multi-Threaded)”
Section 21.6.5, “Performing a Rolling Restart of an NDB Cluster”
Section 21.7.9.2, “Point-In-Time Recovery Using NDB Cluster Replication”
Section 21.4.3.2, “Recommended Starting Configuration for NDB Cluster”
Restoring to Fewer Nodes Than the Original
Section 21.3.6, “Safe Shutdown and Restart of NDB Cluster”
Section 21.6.15.28, “The ndbinfo nodes Table”
Section 21.6.15.31, “The ndbinfo resources Table”
Section 21.2.4.1, “What is New in NDB Cluster 7.5”
Section 21.2.4.2, “What is New in NDB Cluster 7.6”

ndbmtd.exe
Section 21.3.2.3, “Initial Startup of NDB Cluster on Windows”
Section 21.3.2.1, “Installing NDB Cluster on Windows from a Binary Release”

4890

Section 21.3.2.4, “Installing NDB Cluster Processes as Windows Services”

NET
Section 21.3.2.4, “Installing NDB Cluster Processes as Windows Services”
Section 2.3.4.8, “Starting MySQL as a Windows Service”

NET START
Section 21.3.2.4, “Installing NDB Cluster Processes as Windows Services”
Section 5.7.2.2, “Starting Multiple MySQL Instances as Windows Services”

NET START mysqld_service_name
Section 2.3.4.8, “Starting MySQL as a Windows Service”
Section 2.3.5, “Troubleshooting a Microsoft Windows MySQL Server Installation”
Section 2.10.8, “Upgrading MySQL on Windows”

NET STOP
Section 21.3.2.4, “Installing NDB Cluster Processes as Windows Services”
Section 5.7.2.2, “Starting Multiple MySQL Instances as Windows Services”

NET STOP mysqld_service_name
Section 2.3.4.8, “Starting MySQL as a Windows Service”
Section 2.10.8, “Upgrading MySQL on Windows”

NET STOP service_name
Section 21.3.6, “Safe Shutdown and Restart of NDB Cluster”

nm
Section 4.7.3, “resolve_stack_dump — Resolve Numeric Stack Trace Dump to Symbols”
Section 5.8.1.5, “Using a Stack Trace”

nslookup
Section 4.8.4, “resolveip — Resolve Host name to IP Address or Vice Versa”
Section 1.3, “What Is New in MySQL 5.7”

nsupdate
Section 16.3.7, “Switching Sources During Failover”

numactl
Section 21.4.3.6, “Defining NDB Cluster Data Nodes”

O

[index top]

okvutil
Section 6.4.4.4, “Using the keyring_okv KMIP Plugin”

openssl
Section 6.4.5.5, “Configuring Audit Logging Characteristics”
Section 6.3.1, “Configuring MySQL to Use Encrypted Connections”
Section 6.3.3.3, “Creating RSA Keys Using openssl”

4891

Section 6.3.3, “Creating SSL and RSA Certificates and Keys”
Section 6.3.3.1, “Creating SSL and RSA Certificates and Keys using MySQL”
Section 6.3.3.2, “Creating SSL Certificates and Keys Using openssl”
Section 4.4.5, “mysql_ssl_rsa_setup — Create SSL/RSA Files”
Section 6.4.4.4, “Using the keyring_okv KMIP Plugin”

openssl md5 package_name
Section 2.1.4.1, “Verifying the MD5 Checksum”

openssl zlib
Section 4.5.6, “mysqlpump — A Database Backup Program”

P

[index top]

perf
Section 25.12.16.4, “The threads Table”

perror
Section B.3.2.11, “Can't create/write to file”
Section B.2, “Error Information Interfaces”
Section B.3.2.16, “File Not Found and Similar Errors”
Section 7.6.3, “How to Repair MyISAM Tables”
Section A.10, “MySQL 5.7 FAQ: NDB Cluster”
Section 21.5.17, “ndb_perror — Obtain NDB Error Message Information”
Section 4.1, “Overview of MySQL Programs”
Section 4.8.2, “perror — Display MySQL Error Message Information”
Section 21.6.15.21, “The ndbinfo error_messages Table”
Section 1.3, “What Is New in MySQL 5.7”
Section 21.2.4.2, “What is New in NDB Cluster 7.6”

pfexec
Section 2.2, “Installing MySQL on Unix/Linux Using Generic Binaries”

PGP
Section 2.1.4.2, “Signature Checking Using GnuPG”

ping6
Section 5.1.12.5, “Obtaining an IPv6 Address from a Broker”

pkg-config
Section 4.9, “Environment Variables”
Section 2.8.7, “MySQL Source-Configuration Options”
Section 4.7.1, “mysql_config — Display Options for Compiling Clients”

pkgadd
Section 2.7.1, “Installing MySQL on Solaris Using a Solaris PKG”

pkgrm
Section 2.7.1, “Installing MySQL on Solaris Using a Solaris PKG”

4892

ppm
Section 2.12, “Perl Installation Notes”

ps
Section 6.2.10, “Assigning Account Passwords”
Section 4.2.4, “Connecting to the MySQL Server Using Command Options”
Section 6.1.2.1, “End-User Guidelines for Password Security”
Section 8.12.4.1, “How MySQL Uses Memory”
Section B.3.1, “How to Determine What Is Causing a Problem”
Section 4.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 6.7, “SELinux”
Section 25.12.16.4, “The threads Table”
Section 2.9.2.1, “Troubleshooting Problems Starting the MySQL Server”

ps xa | grep mysqld
Section B.3.2.2, “Can't connect to [local] MySQL server”

R

[index top]

rename
Section 5.4.2.6, “Error Log File Flushing and Renaming”
Section 5.4.7, “Server Log Maintenance”
Section 5.4.3, “The General Query Log”

replace
Section 4.1, “Overview of MySQL Programs”
Section 4.8.3, “replace — A String-Replacement Utility”
Section 16.3.4, “Using Replication for Scale-Out”
Section 1.3, “What Is New in MySQL 5.7”

resolve_stack_dump
Section 4.1, “Overview of MySQL Programs”
Section 4.7.3, “resolve_stack_dump — Resolve Numeric Stack Trace Dump to Symbols”
Section 5.8.1.5, “Using a Stack Trace”
Section 1.3, “What Is New in MySQL 5.7”

resolveip
Section 4.1, “Overview of MySQL Programs”
Section 4.8.4, “resolveip — Resolve Host name to IP Address or Vice Versa”
Section 1.3, “What Is New in MySQL 5.7”

restart
Section 2.5.5, “Installing MySQL on Linux Using RPM Packages from Oracle”

rm
Section 13.4.1.1, “PURGE BINARY LOGS Statement”

rpm
Section 2.5.5, “Installing MySQL on Linux Using RPM Packages from Oracle”

4893

Section 2.8.4, “Installing MySQL Using a Standard Source Distribution”
Section 2.1.4.4, “Signature Checking Using RPM”
Section 2.10.10, “Upgrading MySQL with Directly-Downloaded RPM Packages”

rpmbuild
Section 2.5.5, “Installing MySQL on Linux Using RPM Packages from Oracle”
Section 2.8.4, “Installing MySQL Using a Standard Source Distribution”
Section 2.8.2, “Source Installation Prerequisites”

rsync
Section 16.1.2.6, “Adding Replicas to a Replication Topology”
Section 7.1, “Backup and Recovery Types”
Creating a Data Snapshot Using Raw Data Files

S

[index top]

SC
Section 2.3.4.8, “Starting MySQL as a Windows Service”

SC DELETE
Section 21.3.2.4, “Installing NDB Cluster Processes as Windows Services”

SC DELETE mysqld_service_name
Section 5.7.2.2, “Starting Multiple MySQL Instances as Windows Services”
Section 2.3.4.8, “Starting MySQL as a Windows Service”

SC DELETE service_name
Section 21.3.2.4, “Installing NDB Cluster Processes as Windows Services”

SC START
Section 21.3.2.4, “Installing NDB Cluster Processes as Windows Services”
Section 21.6.5, “Performing a Rolling Restart of an NDB Cluster”
Section 5.7.2.2, “Starting Multiple MySQL Instances as Windows Services”

SC START mysqld_service_name
Section 2.3.5, “Troubleshooting a Microsoft Windows MySQL Server Installation”
Section 2.10.8, “Upgrading MySQL on Windows”

sc start mysqld_service_name
Section 2.3.4.8, “Starting MySQL as a Windows Service”

SC STOP
Section 21.3.2.4, “Installing NDB Cluster Processes as Windows Services”
Section 21.6.5, “Performing a Rolling Restart of an NDB Cluster”
Section 5.7.2.2, “Starting Multiple MySQL Instances as Windows Services”

SC STOP mysqld_service_name
Section 2.3.4.8, “Starting MySQL as a Windows Service”

4894

sc stop mysqld_service_name
Section 2.3.4.8, “Starting MySQL as a Windows Service”

SC STOP service_name
Section 21.3.6, “Safe Shutdown and Restart of NDB Cluster”

scp
Section 7.1, “Backup and Recovery Types”
Creating a Data Snapshot Using Raw Data Files

sed
Section 3.3.4.7, “Pattern Matching”

SELECT
Section 21.3.5, “NDB Cluster Example with Tables and Data”

semanage
Section 6.7.6, “Troubleshooting SELinux”

semodule
Section 6.7.3, “MySQL Server SELinux Policies”

service
Section 2.5.8, “Installing MySQL on Linux from the Native Software Repositories”
Section 2.5.5, “Installing MySQL on Linux Using RPM Packages from Oracle”
Section 2.5.10, “Managing MySQL Server with systemd”

Service Control Manager
Section 2.3, “Installing MySQL on Microsoft Windows”
Section 2.3.4.8, “Starting MySQL as a Windows Service”

Services
Section 21.3.2.4, “Installing NDB Cluster Processes as Windows Services”
Section 2.3.4.8, “Starting MySQL as a Windows Service”

sestatus
Section 6.7.2, “Changing the SELinux Mode”
Section 6.7.1, “Check if SELinux is Enabled”
Section 17.8, “Frequently Asked Questions”

setenforce
Section 6.7.2, “Changing the SELinux Mode”
Section 6.7.6, “Troubleshooting SELinux”

setenv
Section 4.2.7, “Setting Environment Variables”

sh
Section 1.1, “About This Manual”
Section B.3.2.16, “File Not Found and Similar Errors”

4895

Section 4.2.1, “Invoking MySQL Programs”
Section 4.2.7, “Setting Environment Variables”

SHOW
Section 21.4.1, “Quick Test Setup of NDB Cluster”

SHOW ERRORS
Section A.10, “MySQL 5.7 FAQ: NDB Cluster”

SHOW WARNINGS
Section A.10, “MySQL 5.7 FAQ: NDB Cluster”

sleep
Section 4.3.2, “mysqld_safe — MySQL Server Startup Script”

ssh
Section 21.6.18.1, “NDB Cluster Security and Networking Issues”

start
Section 2.5.5, “Installing MySQL on Linux Using RPM Packages from Oracle”

Start>Run>cmd.exe
Section 6.3.3.2, “Creating SSL Certificates and Keys Using openssl”

status
Section 2.5.5, “Installing MySQL on Linux Using RPM Packages from Oracle”

stop
Section 2.5.5, “Installing MySQL on Linux Using RPM Packages from Oracle”

strings
Section 6.1.1, “Security Guidelines”

su root
Section 21.3.1.1, “Installing an NDB Cluster Binary Release on Linux”

sudo
Section 21.3.1.1, “Installing an NDB Cluster Binary Release on Linux”
Section 2.5.5, “Installing MySQL on Linux Using RPM Packages from Oracle”
Section 2.2, “Installing MySQL on Unix/Linux Using Generic Binaries”

sysctl
Section 8.12.4.3, “Enabling Large Page Support”

System Preferences...
Section 2.4.4, “Installing and Using the MySQL Preference Pane”

systemctl
Section 2.5.10, “Managing MySQL Server with systemd”

4896

systemd
Section 2.8.7, “MySQL Source-Configuration Options”

T

[index top]

tar
Section 16.1.2.6, “Adding Replicas to a Replication Topology”
Section 16.3.1.2, “Backing Up Raw Data from a Replica”
Section 7.1, “Backup and Recovery Types”
Creating a Data Snapshot Using Raw Data Files
Section 3.3, “Creating and Using a Database”
Section 1.5, “How to Report Bugs or Problems”
Section 2.5.5, “Installing MySQL on Linux Using RPM Packages from Oracle”
Section 2.4, “Installing MySQL on macOS”
Section 2.7, “Installing MySQL on Solaris”
Section 2.7.1, “Installing MySQL on Solaris Using a Solaris PKG”
Section 2.2, “Installing MySQL on Unix/Linux Using Generic Binaries”
Section 2.8.4, “Installing MySQL Using a Standard Source Distribution”
Section 21.3.1.2, “Installing NDB Cluster from RPM”
Section 2.12.1, “Installing Perl on Unix”
Section 2.8.1, “Source Installation Methods”
Section 2.8.2, “Source Installation Prerequisites”
Section 6.4.4.4, “Using the keyring_okv KMIP Plugin”
Section 2.1.2, “Which MySQL Version and Distribution to Install”

tcpdump
Section 6.1.1, “Security Guidelines”

tcsh
Section 1.1, “About This Manual”
Section B.3.2.16, “File Not Found and Similar Errors”
Section 2.4.1, “General Notes on Installing MySQL on macOS”
Section 4.2.1, “Invoking MySQL Programs”
Section 4.2.7, “Setting Environment Variables”

tee
Section 4.5.1.2, “mysql Client Commands”

telnet
Section 6.1.1, “Security Guidelines”
Section 14.21.3, “Setting Up the InnoDB memcached Plugin”

Terminal
Section 2.4, “Installing MySQL on macOS”

Text in this style
Section 1.1, “About This Manual”

top
Section B.3.1, “How to Determine What Is Causing a Problem”

4897

Section 21.6.15.30, “The ndbinfo processes Table”

U

[index top]

u
Section 13.7.1.4, “GRANT Statement”

ulimit
Section 21.4.3.6, “Defining NDB Cluster Data Nodes”
Section B.3.2.16, “File Not Found and Similar Errors”
Section 4.3.2, “mysqld_safe — MySQL Server Startup Script”
Section B.3.2.8, “Packet Too Large”
Section 5.1.6, “Server Command Options”
Section 5.1.7, “Server System Variables”

unix_chkpwd
Section 6.4.1.7, “PAM Pluggable Authentication”

update-rc.d
Section 21.3.1.1, “Installing an NDB Cluster Binary Release on Linux”

useradd
Section 21.3.1.1, “Installing an NDB Cluster Binary Release on Linux”
Section 2.7, “Installing MySQL on Solaris”
Section 2.2, “Installing MySQL on Unix/Linux Using Generic Binaries”

V

[index top]

vi
Section 21.3.3, “Initial Configuration of NDB Cluster”
Section 4.5.1.2, “mysql Client Commands”
Section 3.3.4.7, “Pattern Matching”

W

[index top]

watch
Section 26.4.4.25, “The statement_performance_analyzer() Procedure”

WinDbg
Section 5.8.1.3, “Using WER with PDB to create a Windows crashdump”

windbg.exe
Section 5.8.1.3, “Using WER with PDB to create a Windows crashdump”

winMd5Sum
Section 2.1.4.1, “Verifying the MD5 Checksum”

4898

WinZip
Section 16.3.1.2, “Backing Up Raw Data from a Replica”
Section 2.8.4, “Installing MySQL Using a Standard Source Distribution”
Section 2.8.2, “Source Installation Prerequisites”

WordPad
Section 13.2.6, “LOAD DATA Statement”

Y

[index top]

yacc
Section 2.8.8, “Dealing with Problems Compiling MySQL”
Section 9.3, “Keywords and Reserved Words”

yum
Section 2.5.8, “Installing MySQL on Linux from the Native Software Repositories”
Section 2.5.5, “Installing MySQL on Linux Using RPM Packages from Oracle”
Section 2.5.1, “Installing MySQL on Linux Using the MySQL Yum Repository”
Section 21.3.1.2, “Installing NDB Cluster from RPM”
Section 2.10.10, “Upgrading MySQL with Directly-Downloaded RPM Packages”
Section 2.10.5, “Upgrading MySQL with the MySQL Yum Repository”

yum install
Section 2.5.5, “Installing MySQL on Linux Using RPM Packages from Oracle”
Section 2.10.10, “Upgrading MySQL with Directly-Downloaded RPM Packages”

yum update
Section 2.5.1, “Installing MySQL on Linux Using the MySQL Yum Repository”
Section 2.5.2, “Replacing a Third-Party Distribution of MySQL Using the MySQL Yum Repository”

yum update mysql-server
Section 2.5.2, “Replacing a Third-Party Distribution of MySQL Using the MySQL Yum Repository”

yum-config-manager
Section 2.5.1, “Installing MySQL on Linux Using the MySQL Yum Repository”
Section 2.5.2, “Replacing a Third-Party Distribution of MySQL Using the MySQL Yum Repository”

Z

[index top]

zip
Creating a Data Snapshot Using Raw Data Files
Section 1.5, “How to Report Bugs or Problems”

zlib_decompress
Section 4.8.1, “lz4_decompress — Decompress mysqlpump LZ4-Compressed Output”
Section 4.5.6, “mysqlpump — A Database Backup Program”
Section 4.1, “Overview of MySQL Programs”

4899

Section 4.8.5, “zlib_decompress — Decompress mysqlpump ZLIB-Compressed Output”

zsh
Section 4.2.7, “Setting Environment Variables”

zypper
Section 2.5.5, “Installing MySQL on Linux Using RPM Packages from Oracle”
Section 2.10.10, “Upgrading MySQL with Directly-Downloaded RPM Packages”

Function Index
Symbols | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y

Symbols

[index top]

%
Section 1.6.1, “MySQL Extensions to Standard SQL”

A

[index top]

ABS()
Section 13.7.3.1, “CREATE FUNCTION Statement for Loadable Functions”
Section 12.6.2, “Mathematical Functions”
Section 22.6.3, “Partitioning Limitations Relating to Functions”

ACOS()
Section 12.6.2, “Mathematical Functions”

ADDDATE()
Section 12.7, “Date and Time Functions”

addslashes()
Section 6.1.7, “Client Programming Security Guidelines”

ADDTIME()
Section 12.7, “Date and Time Functions”

AES_DECRYPT()
Section 12.13, “Encryption and Compression Functions”
Section 8.10.3.1, “How the Query Cache Operates”
Section 6.6.4, “MySQL Enterprise Encryption Function Descriptions”
Section 5.1.7, “Server System Variables”
Section 6.3.4, “SSL Library-Dependent Capabilities”
Section 1.3, “What Is New in MySQL 5.7”

AES_ENCRYPT()
Section 12.13, “Encryption and Compression Functions”

4900

Section 8.10.3.1, “How the Query Cache Operates”
Section 6.6.4, “MySQL Enterprise Encryption Function Descriptions”
Section 5.1.7, “Server System Variables”
Section 6.3.4, “SSL Library-Dependent Capabilities”
Section 1.3, “What Is New in MySQL 5.7”

ANY_VALUE()
Section 2.10.3, “Changes in MySQL 5.7”
Section 12.19.2, “GROUP BY Modifiers”
Section 12.20, “Miscellaneous Functions”
Section 12.19.3, “MySQL Handling of GROUP BY”
Section 5.1.10, “Server SQL Modes”

Area()
Section 12.16.7.4, “Polygon and MultiPolygon Property Functions”

AsBinary()
Section 12.16.6, “Geometry Format Conversion Functions”

ASCII()
Section 13.8.3, “HELP Statement”
Section 12.8, “String Functions and Operators”

ASIN()
Section 12.6.2, “Mathematical Functions”

AsText()
Section 12.16.6, “Geometry Format Conversion Functions”

AsWKB()
Section 12.16.6, “Geometry Format Conversion Functions”

AsWKT()
Section 12.16.6, “Geometry Format Conversion Functions”

asymmetric_decrypt()
Section 6.6.4, “MySQL Enterprise Encryption Function Descriptions”

asymmetric_derive()
Section 6.6.4, “MySQL Enterprise Encryption Function Descriptions”

asymmetric_encrypt()
Section 6.6.4, “MySQL Enterprise Encryption Function Descriptions”

asymmetric_sign()
Section 6.6.4, “MySQL Enterprise Encryption Function Descriptions”

asymmetric_verify()
Section 6.6.4, “MySQL Enterprise Encryption Function Descriptions”

4901

ATAN()
Section 12.6.2, “Mathematical Functions”

ATAN2()
Section 12.6.2, “Mathematical Functions”

audit_log_encryption_password_get()
Section 6.4.5.11, “Audit Log Reference”
Section 6.4.5.5, “Configuring Audit Logging Characteristics”

audit_log_encryption_password_set()
Section 6.4.5.11, “Audit Log Reference”
Section 6.4.5.5, “Configuring Audit Logging Characteristics”

audit_log_filter_flush()
Section 6.4.5.7, “Audit Log Filtering”
Section 6.4.5.11, “Audit Log Reference”

audit_log_filter_remove_filter()
Section 6.4.5.7, “Audit Log Filtering”
Section 6.4.5.11, “Audit Log Reference”

audit_log_filter_remove_user()
Section 6.4.5.7, “Audit Log Filtering”
Section 6.4.5.11, “Audit Log Reference”

audit_log_filter_set_filter()
Section 6.4.5.7, “Audit Log Filtering”
Section 6.4.5.11, “Audit Log Reference”

audit_log_filter_set_user()
Section 6.4.5.7, “Audit Log Filtering”
Section 6.4.5.11, “Audit Log Reference”

audit_log_read()
Section 6.4.5.11, “Audit Log Reference”
Section 6.4.5.6, “Reading Audit Log Files”

audit_log_read_bookmark()
Section 6.4.5.11, “Audit Log Reference”
Section 6.4.5.6, “Reading Audit Log Files”

AVG()
Section 12.19.1, “Aggregate Function Descriptions”
Section 11.2.1, “Date and Time Data Type Syntax”
Section 8.2.1.15, “GROUP BY Optimization”
Section 11.3.5, “The ENUM Type”
Section 1.2.2, “The Main Features of MySQL”
Section 11.3.6, “The SET Type”

4902

B

[index top]

BENCHMARK()
Section 8.10.3.1, “How the Query Cache Operates”
Section 12.15, “Information Functions”
Section 8.13.1, “Measuring the Speed of Expressions and Functions”
Section 13.2.10.10, “Optimizing Subqueries”

BIN()
Section 9.1.5, “Bit-Value Literals”
Section 12.8, “String Functions and Operators”

BIT_AND()
Section 12.19.1, “Aggregate Function Descriptions”
Section 12.12, “Bit Functions and Operators”
Section 1.6.1, “MySQL Extensions to Standard SQL”

BIT_COUNT()
Section 12.12, “Bit Functions and Operators”
Section 1.6.1, “MySQL Extensions to Standard SQL”

BIT_LENGTH()
Section 12.8, “String Functions and Operators”

BIT_OR()
Section 12.19.1, “Aggregate Function Descriptions”
Section 12.12, “Bit Functions and Operators”
Section 1.6.1, “MySQL Extensions to Standard SQL”

BIT_XOR()
Section 12.19.1, “Aggregate Function Descriptions”
Section 12.12, “Bit Functions and Operators”
Section 1.6.1, “MySQL Extensions to Standard SQL”

Buffer()
Section 12.16.8, “Spatial Operator Functions”

C

[index top]

CAST()
Section 12.12, “Bit Functions and Operators”
Section 9.1.5, “Bit-Value Literals”
Section 12.10, “Cast Functions and Operators”
Section 12.8.3, “Character Set and Collation of Function Results”
Section 12.4.2, “Comparison Functions and Operators”
Section 11.2.9, “Conversion Between Date and Time Types”
Section 12.7, “Date and Time Functions”

4903

Section 9.5, “Expressions”
Section 12.17.2, “Functions That Create JSON Values”
Section 9.1.4, “Hexadecimal Literals”
Section 1.6.2, “MySQL Differences from Standard SQL”
Section 11.5, “The JSON Data Type”
Section 12.3, “Type Conversion in Expression Evaluation”
Section 9.4, “User-Defined Variables”

CAST(expr AS type
Section 12.10, “Cast Functions and Operators”

CEIL()
Section 12.6.2, “Mathematical Functions”

CEILING()
Section 22.2.4.1, “LINEAR HASH Partitioning”
Section 12.6.2, “Mathematical Functions”
Section 22.6.3, “Partitioning Limitations Relating to Functions”

Centroid()
Section 12.16.7.4, “Polygon and MultiPolygon Property Functions”

CHAR()
Section 12.13, “Encryption and Compression Functions”
Section 4.5.1.1, “mysql Client Options”
Section 1.6.1, “MySQL Extensions to Standard SQL”
Section 12.8, “String Functions and Operators”

CHAR_LENGTH()
Section 12.8, “String Functions and Operators”
Section 10.10.1, “Unicode Character Sets”

CHARACTER_LENGTH()
Section 12.8, “String Functions and Operators”

CHARSET()
Section 12.8.3, “Character Set and Collation of Function Results”
Section 12.15, “Information Functions”

COALESCE()
Section 12.4.2, “Comparison Functions and Operators”
Section 13.2.9.2, “JOIN Clause”

COERCIBILITY()
Section 10.8.4, “Collation Coercibility in Expressions”
Section 12.15, “Information Functions”

COLLATION()
Section B.3.4.1, “Case Sensitivity in String Searches”
Section 12.8.3, “Character Set and Collation of Function Results”

4904

Section 12.15, “Information Functions”

COMPRESS()
Section 12.13, “Encryption and Compression Functions”
Section 2.8.7, “MySQL Source-Configuration Options”
Section 5.1.7, “Server System Variables”

CONCAT()
Section 12.19.1, “Aggregate Function Descriptions”
Section 12.10, “Cast Functions and Operators”
Section 12.8.3, “Character Set and Collation of Function Results”
Section 10.2.1, “Character Set Repertoire”
Section 10.8.4, “Collation Coercibility in Expressions”
Section 13.7.3.1, “CREATE FUNCTION Statement for Loadable Functions”
Section 12.4.3, “Logical Operators”
Section 1.6.1, “MySQL Extensions to Standard SQL”
Section 5.1.10, “Server SQL Modes”
Section 13.7.5.13, “SHOW CREATE VIEW Statement”
Section 12.8, “String Functions and Operators”
Section 24.3.31, “The INFORMATION_SCHEMA VIEWS Table”
Section 12.3, “Type Conversion in Expression Evaluation”
Section 12.11, “XML Functions”

CONCAT_WS()
Section 12.19.1, “Aggregate Function Descriptions”
Section 12.8, “String Functions and Operators”

CONNECTION_ID()
Section 6.4.5.4, “Audit Log File Formats”
Section 13.1.18.7, “CREATE TABLE and Generated Columns”
Section 16.2.1.3, “Determination of Safe and Unsafe Statements in Binary Logging”
Section 8.10.3.1, “How the Query Cache Operates”
Section 12.15, “Information Functions”
Section 13.7.6.4, “KILL Statement”
Section 4.5.1.3, “mysql Client Logging”
Section 5.1.7, “Server System Variables”
Section 13.7.5.29, “SHOW PROCESSLIST Statement”
Section 24.3.18, “The INFORMATION_SCHEMA PROCESSLIST Table”
Section 25.12.16.3, “The processlist Table”
Section 25.12.16.4, “The threads Table”

Contains()
Section 12.16.9.2, “Spatial Relation Functions That Use Minimum Bounding Rectangles”

CONV()
Section 12.8.3, “Character Set and Collation of Function Results”
Section 12.6.2, “Mathematical Functions”
Section 12.8, “String Functions and Operators”

CONVERT()
Section 12.10, “Cast Functions and Operators”
Section 10.3.8, “Character Set Introducers”

4905

Section 10.3.6, “Character String Literal Character Set and Collation”
Section 12.4.2, “Comparison Functions and Operators”
Section A.11, “MySQL 5.7 FAQ: MySQL Chinese, Japanese, and Korean Character Sets”
Section 4.5.1.1, “mysql Client Options”
Section 6.5.3, “Using MySQL Enterprise Data Masking and De-Identification”

CONVERT_TZ()
Section 12.7, “Date and Time Functions”
Section 8.10.3.1, “How the Query Cache Operates”
Section 8.3.11, “Indexed Lookups from TIMESTAMP Columns”
Section 13.3.5, “LOCK TABLES and UNLOCK TABLES Statements”
Section 5.1.7, “Server System Variables”
Section 5.4.3, “The General Query Log”
Section 5.4.5, “The Slow Query Log”

ConvexHull()
Section 12.16.8, “Spatial Operator Functions”

COS()
Section 12.6.2, “Mathematical Functions”

COT()
Section 12.6.2, “Mathematical Functions”

COUNT()
Section 12.19.1, “Aggregate Function Descriptions”
Section 3.3.4.8, “Counting Rows”
Section 13.7.3.1, “CREATE FUNCTION Statement for Loadable Functions”
Section 8.2.1.15, “GROUP BY Optimization”
Section 14.24, “InnoDB Restrictions and Limitations”
Section 8.4.4, “Internal Temporary Table Use in MySQL”
Section 21.2.7.3, “Limits Relating to Transaction Handling in NDB Cluster”
Section 12.20, “Miscellaneous Functions”
Section 1.6.1, “MySQL Extensions to Standard SQL”
NDB Cluster Status Variables
Section 8.2.2.4, “Optimizing Derived Tables and View References with Merging or Materialization”
Section B.3.4.3, “Problems with NULL Values”
Section 5.1.10, “Server SQL Modes”
Section 1.2.2, “The Main Features of MySQL”
Section 23.5.3, “Updatable and Insertable Views”
Section 8.2.1.1, “WHERE Clause Optimization”

CRC32()
Section 12.6.2, “Mathematical Functions”

create_asymmetric_priv_key()
Section 4.9, “Environment Variables”
Section 6.6.4, “MySQL Enterprise Encryption Function Descriptions”
Section 6.6.2, “MySQL Enterprise Encryption Usage and Examples”

create_asymmetric_pub_key()
Section 6.6.4, “MySQL Enterprise Encryption Function Descriptions”

4906

create_dh_parameters()
Section 4.9, “Environment Variables”
Section 6.6.4, “MySQL Enterprise Encryption Function Descriptions”
Section 6.6.2, “MySQL Enterprise Encryption Usage and Examples”

create_digest()
Section 6.6.4, “MySQL Enterprise Encryption Function Descriptions”

Crosses()
Section 12.16.9.1, “Spatial Relation Functions That Use Object Shapes”

crypt()
Section 12.13, “Encryption and Compression Functions”
Section 5.1.7, “Server System Variables”

CURDATE()
Section 12.7, “Date and Time Functions”
Section 3.3.4.5, “Date Calculations”
Section 16.2.1.3, “Determination of Safe and Unsafe Statements in Binary Logging”
Section 8.10.3.1, “How the Query Cache Operates”

CURRENT_DATE
Section 11.6, “Data Type Default Values”
Section 12.7, “Date and Time Functions”

CURRENT_DATE()
Section 11.2.9, “Conversion Between Date and Time Types”
Section 12.7, “Date and Time Functions”
Section 16.2.1.3, “Determination of Safe and Unsafe Statements in Binary Logging”
Section 8.10.3.1, “How the Query Cache Operates”

CURRENT_TIME
Section 12.7, “Date and Time Functions”

CURRENT_TIME()
Section 12.7, “Date and Time Functions”
Section 16.2.1.3, “Determination of Safe and Unsafe Statements in Binary Logging”
Section 8.10.3.1, “How the Query Cache Operates”

CURRENT_TIMESTAMP
Section 13.1.8, “ALTER TABLE Statement”
Section 11.2.6, “Automatic Initialization and Updating for TIMESTAMP and DATETIME”
Section 13.1.12, “CREATE EVENT Statement”
Section 11.6, “Data Type Default Values”
Section 12.7, “Date and Time Functions”
Section 5.1.7, “Server System Variables”

CURRENT_TIMESTAMP()
Section 11.2.6, “Automatic Initialization and Updating for TIMESTAMP and DATETIME”
Section 12.7, “Date and Time Functions”
Section 16.2.1.3, “Determination of Safe and Unsafe Statements in Binary Logging”

4907

Section 8.10.3.1, “How the Query Cache Operates”

CURRENT_USER
Section 13.7.1.1, “ALTER USER Statement”
Section 13.1.12, “CREATE EVENT Statement”
Section 13.1.16, “CREATE PROCEDURE and CREATE FUNCTION Statements”
Section 13.1.20, “CREATE TRIGGER Statement”
Section 13.1.21, “CREATE VIEW Statement”
Section 6.2.3, “Grant Tables”
Section 12.15, “Information Functions”
Section 5.4.4.3, “Mixed Binary Logging Format”
Section 16.4.1.15, “Replication and System Functions”
Section 16.4.1.8, “Replication of CURRENT_USER()”
Section 13.7.5.12, “SHOW CREATE USER Statement”
Section 6.2.4, “Specifying Account Names”
Section 23.6, “Stored Object Access Control”

CURRENT_USER()
Section 6.2.5, “Access Control, Stage 1: Connection Verification”
Section 13.7.1.1, “ALTER USER Statement”
Section 6.4.5.4, “Audit Log File Formats”
Section 6.4.2.1, “Connection Control Plugin Installation”
Section 13.1.12, “CREATE EVENT Statement”
Section 13.1.16, “CREATE PROCEDURE and CREATE FUNCTION Statements”
Section 13.1.18.7, “CREATE TABLE and Generated Columns”
Section 13.1.20, “CREATE TRIGGER Statement”
Section 13.1.21, “CREATE VIEW Statement”
Section 6.4.4.8, “General-Purpose Keyring Key-Management Functions”
Section 8.10.3.1, “How the Query Cache Operates”
Section 12.15, “Information Functions”
Section 5.4.4.3, “Mixed Binary Logging Format”
Section 6.4.3.2, “Password Validation Plugin Options and Variables”
Section 6.2.14, “Proxy Users”
Section 16.4.1.15, “Replication and System Functions”
Section 16.4.1.8, “Replication of CURRENT_USER()”
Section 13.7.1.7, “SET PASSWORD Statement”
Section 13.7.5.12, “SHOW CREATE USER Statement”
Section 6.2.4, “Specifying Account Names”
Section 6.2.18, “SQL-Based Account Activity Auditing”
Section 23.6, “Stored Object Access Control”
Section 5.5.6.2, “The Keyring Service”
Section 10.2.2, “UTF-8 for Metadata”

CURTIME()
Section 12.7, “Date and Time Functions”
Section 16.2.1.3, “Determination of Safe and Unsafe Statements in Binary Logging”
Section 8.10.3.1, “How the Query Cache Operates”
Section 5.1.13, “MySQL Server Time Zone Support”
Section 16.4.1.13, “Replication and Fractional Seconds Support”

D

[index top]

4908

DATABASE()
Section 16.1.6.4, “Binary Logging Options and Variables”
Section 3.3.1, “Creating and Selecting a Database”
Section 13.1.22, “DROP DATABASE Statement”
Section 3.4, “Getting Information About Databases and Tables”
Section 8.10.3.1, “How the Query Cache Operates”
Section 12.15, “Information Functions”
Section B.3.7, “Known Issues in MySQL”
Section 10.2.2, “UTF-8 for Metadata”

DATE()
Section 12.7, “Date and Time Functions”

DATE_ADD()
Section 12.6.1, “Arithmetic Operators”
Section 11.2, “Date and Time Data Types”
Section 12.7, “Date and Time Functions”
Section 3.3.4.5, “Date Calculations”
Section 9.5, “Expressions”

DATE_FORMAT()
Section 12.10, “Cast Functions and Operators”
Section 12.7, “Date and Time Functions”
Section 10.16, “MySQL Server Locale Support”
Section 5.1.7, “Server System Variables”

DATE_SUB()
Section 11.2, “Date and Time Data Types”
Section 12.7, “Date and Time Functions”
Section 9.5, “Expressions”

DATEDIFF()
Section 12.7, “Date and Time Functions”
Section 22.6.3, “Partitioning Limitations Relating to Functions”

DAY()
Section 12.7, “Date and Time Functions”
Section 22.6.3, “Partitioning Limitations Relating to Functions”

DAYNAME()
Section 12.7, “Date and Time Functions”
Section 10.16, “MySQL Server Locale Support”
Section 5.1.7, “Server System Variables”

DAYOFMONTH()
Section 12.7, “Date and Time Functions”
Section 3.3.4.5, “Date Calculations”
Section 22.6.3, “Partitioning Limitations Relating to Functions”

DAYOFWEEK()
Section 12.7, “Date and Time Functions”
Section 22.6.3, “Partitioning Limitations Relating to Functions”

4909

DAYOFYEAR()
Section 12.7, “Date and Time Functions”
Section 22.6.3, “Partitioning Limitations Relating to Functions”
Section 22.2, “Partitioning Types”

DECODE()
Section 12.13, “Encryption and Compression Functions”
Section 1.6.1, “MySQL Extensions to Standard SQL”
Section 1.3, “What Is New in MySQL 5.7”

DEFAULT()
Section 13.1.8.2, “ALTER TABLE and Generated Columns”
Section 11.6, “Data Type Default Values”
Section 13.2.5, “INSERT Statement”
Section 12.20, “Miscellaneous Functions”
Section 13.2.8, “REPLACE Statement”

DEGREES()
Section 12.6.2, “Mathematical Functions”

DES_DECRYPT()
Section 12.13, “Encryption and Compression Functions”
Section 13.7.6.3, “FLUSH Statement”
Section 5.1.6, “Server Command Options”
Section 1.3, “What Is New in MySQL 5.7”

DES_ENCRYPT()
Section 12.13, “Encryption and Compression Functions”
Section 13.7.6.3, “FLUSH Statement”
Section 6.2.2, “Privileges Provided by MySQL”
Section 5.1.6, “Server Command Options”
Section 1.3, “What Is New in MySQL 5.7”

Dimension()
Section 12.16.7.1, “General Geometry Property Functions”

Disjoint()
Section 12.16.9.2, “Spatial Relation Functions That Use Minimum Bounding Rectangles”

Distance()
Section 12.16.9.1, “Spatial Relation Functions That Use Object Shapes”

E

[index top]

ELT()
Section 12.8.3, “Character Set and Collation of Function Results”
Section B.3.7, “Known Issues in MySQL”
Section 1.6.1, “MySQL Extensions to Standard SQL”
Section 12.8, “String Functions and Operators”

4910

ENCODE()
Section 12.13, “Encryption and Compression Functions”
Section 1.6.1, “MySQL Extensions to Standard SQL”
Section 1.3, “What Is New in MySQL 5.7”

ENCRYPT()
Section 12.13, “Encryption and Compression Functions”
Section 8.10.3.1, “How the Query Cache Operates”
Section 1.6.1, “MySQL Extensions to Standard SQL”
Section 10.11, “Restrictions on Character Sets”
Section 5.1.7, “Server System Variables”
Section 1.3, “What Is New in MySQL 5.7”

EndPoint()
Section 12.16.7.3, “LineString and MultiLineString Property Functions”

Envelope()
Section 12.16.7.1, “General Geometry Property Functions”

Equals()
Section 12.16.9.2, “Spatial Relation Functions That Use Minimum Bounding Rectangles”

EXP()
Section 13.1.18, “CREATE TABLE Statement”
Section 12.6.2, “Mathematical Functions”

EXPORT_SET()
Section 12.8, “String Functions and Operators”

ExteriorRing()
Section 12.16.7.4, “Polygon and MultiPolygon Property Functions”

EXTRACT()
Section 12.10, “Cast Functions and Operators”
Section 12.7, “Date and Time Functions”
Section 9.5, “Expressions”
Section 22.6.3, “Partitioning Limitations Relating to Functions”

ExtractValue()
Section 12.11, “XML Functions”

F

[index top]

FIELD()
Section 12.8, “String Functions and Operators”

FIND_IN_SET()
Section 12.8, “String Functions and Operators”

4911

Section 11.3.6, “The SET Type”

FLOOR()
Section 12.6.2, “Mathematical Functions”
Section 12.19.3, “MySQL Handling of GROUP BY”
Section 22.6.3, “Partitioning Limitations Relating to Functions”
Section 5.1.7, “Server System Variables”

flush_rewrite_rules()
Rewriter Query Rewrite Plugin Procedures and Functions

FORMAT()
Section 12.8.3, “Character Set and Collation of Function Results”
Section 12.6.2, “Mathematical Functions”
Section 12.20, “Miscellaneous Functions”
Section 1.6.1, “MySQL Extensions to Standard SQL”
Section 10.16, “MySQL Server Locale Support”
Section 12.8, “String Functions and Operators”

FOUND_ROWS()
Section 16.2.1.1, “Advantages and Disadvantages of Statement-Based and Row-Based Replication”
Section 16.2.1.3, “Determination of Safe and Unsafe Statements in Binary Logging”
Section 8.10.3.1, “How the Query Cache Operates”
Section 12.15, “Information Functions”
Section 5.4.4.3, “Mixed Binary Logging Format”
Section 16.4.1.15, “Replication and System Functions”

FROM_BASE64()
Section 12.8, “String Functions and Operators”

FROM_DAYS()
Section 12.7, “Date and Time Functions”
Section 1.6.1, “MySQL Extensions to Standard SQL”

FROM_UNIXTIME()
Section 6.4.5.5, “Configuring Audit Logging Characteristics”
Section 12.7, “Date and Time Functions”
Section 8.3.11, “Indexed Lookups from TIMESTAMP Columns”
Section 16.4.1.31, “Replication and Time Zones”

G

[index top]

gen_blacklist()
Section 6.5.5, “MySQL Enterprise Data Masking and De-Identification Function Descriptions”
Section 6.5.3, “Using MySQL Enterprise Data Masking and De-Identification”

gen_dictionary()
Section 6.5.5, “MySQL Enterprise Data Masking and De-Identification Function Descriptions”
Section 6.5.3, “Using MySQL Enterprise Data Masking and De-Identification”

4912

gen_dictionary_drop()
Section 6.5.5, “MySQL Enterprise Data Masking and De-Identification Function Descriptions”

gen_dictionary_load()
Section 6.5.5, “MySQL Enterprise Data Masking and De-Identification Function Descriptions”
Section 6.5.3, “Using MySQL Enterprise Data Masking and De-Identification”

gen_range()
Section 6.5.5, “MySQL Enterprise Data Masking and De-Identification Function Descriptions”
Section 6.5.3, “Using MySQL Enterprise Data Masking and De-Identification”

gen_rnd_email()
Section 6.5.5, “MySQL Enterprise Data Masking and De-Identification Function Descriptions”
Section 6.5.3, “Using MySQL Enterprise Data Masking and De-Identification”

gen_rnd_pan()
Section 6.5.5, “MySQL Enterprise Data Masking and De-Identification Function Descriptions”
Section 6.5.3, “Using MySQL Enterprise Data Masking and De-Identification”

gen_rnd_ssn()
Section 6.5.5, “MySQL Enterprise Data Masking and De-Identification Function Descriptions”
Section 6.5.3, “Using MySQL Enterprise Data Masking and De-Identification”

gen_rnd_us_phone()
Section 6.5.5, “MySQL Enterprise Data Masking and De-Identification Function Descriptions”
Section 6.5.3, “Using MySQL Enterprise Data Masking and De-Identification”

GeomCollFromText()
Section 12.16.3, “Functions That Create Geometry Values from WKT Values”

GeomCollFromWKB()
Section 12.16.4, “Functions That Create Geometry Values from WKB Values”

GeometryCollection()
Section 12.16.5, “MySQL-Specific Functions That Create Geometry Values”

GeometryCollectionFromText()
Section 12.16.3, “Functions That Create Geometry Values from WKT Values”

GeometryCollectionFromWKB()
Section 12.16.4, “Functions That Create Geometry Values from WKB Values”

GeometryFromText()
Section 12.16.3, “Functions That Create Geometry Values from WKT Values”

GeometryFromWKB()
Section 12.16.4, “Functions That Create Geometry Values from WKB Values”

GeometryN()
Section 12.16.7.5, “GeometryCollection Property Functions”

4913

GeometryType()
Section 12.16.7.1, “General Geometry Property Functions”

GeomFromText()
Section 12.16.3, “Functions That Create Geometry Values from WKT Values”

GeomFromWKB()
Section 12.16.4, “Functions That Create Geometry Values from WKB Values”

GET_FORMAT()
Section 12.7, “Date and Time Functions”
Section 10.16, “MySQL Server Locale Support”

GET_LOCK()
Section 16.2.1.1, “Advantages and Disadvantages of Statement-Based and Row-Based Replication”
Section 2.10.3, “Changes in MySQL 5.7”
Section 13.1.12, “CREATE EVENT Statement”
Section 16.2.1.3, “Determination of Safe and Unsafe Statements in Binary Logging”
Section 23.4.1, “Event Scheduler Overview”
Section 8.14.3, “General Thread States”
Section 17.3.2, “Group Replication Limitations”
Section 8.10.3.1, “How the Query Cache Operates”
Section 8.11.1, “Internal Locking Methods”
Section 13.7.6.4, “KILL Statement”
Section 21.2.7.10, “Limitations Relating to Multiple NDB Cluster Nodes”
Section 13.3.5, “LOCK TABLES and UNLOCK TABLES Statements”
Section 12.14, “Locking Functions”
Section 8.11.4, “Metadata Locking”
Section 16.4.1.15, “Replication and System Functions”
Section 5.5.6.1, “The Locking Service”
The Locking Service Function Interface
Section 25.12.12.1, “The metadata_locks Table”
Section 26.4.4.14, “The ps_setup_save() Procedure”

getrusage()
Section 21.6.15.43, “The ndbinfo threadstat Table”

gettimeofday()
Section 21.6.15.43, “The ndbinfo threadstat Table”

GLength()
Section 12.16.7.3, “LineString and MultiLineString Property Functions”

GREATEST()
Section 12.8.3, “Character Set and Collation of Function Results”
Section 12.4.2, “Comparison Functions and Operators”
Section 11.5, “The JSON Data Type”

GROUP_CONCAT()
Section 12.19.1, “Aggregate Function Descriptions”
Section 8.4.4, “Internal Temporary Table Use in MySQL”
Section B.3.7, “Known Issues in MySQL”

4914

Section 1.6.1, “MySQL Extensions to Standard SQL”
Section 5.1.7, “Server System Variables”
Section 11.5, “The JSON Data Type”
Section 1.2.2, “The Main Features of MySQL”

GROUPING()
Section 12.19.2, “GROUP BY Modifiers”

GTID_SUBSET()
Section 12.18, “Functions Used with Global Transaction Identifiers (GTIDs)”
Section 16.1.3.1, “GTID Format and Storage”
Section 16.1.3.7, “Stored Function Examples to Manipulate GTIDs”

GTID_SUBTRACT()
Section 12.18, “Functions Used with Global Transaction Identifiers (GTIDs)”
Section 16.1.6.5, “Global Transaction ID System Variables”
Section 16.1.3.1, “GTID Format and Storage”
Section 16.1.3.7, “Stored Function Examples to Manipulate GTIDs”

H

[index top]

HEX()
Section 9.1.5, “Bit-Value Literals”
Section 12.8.3, “Character Set and Collation of Function Results”
Section 10.3.6, “Character String Literal Character Set and Collation”
Section 6.4.4.8, “General-Purpose Keyring Key-Management Functions”
Section 9.1.4, “Hexadecimal Literals”
Section 12.6.2, “Mathematical Functions”
Section 12.20, “Miscellaneous Functions”
Section A.11, “MySQL 5.7 FAQ: MySQL Chinese, Japanese, and Korean Character Sets”
Section 12.8, “String Functions and Operators”

HOUR()
Section 12.7, “Date and Time Functions”
Section 22.6.3, “Partitioning Limitations Relating to Functions”

I

[index top]

IF()
Section 12.8.3, “Character Set and Collation of Function Results”
Section 12.5, “Flow Control Functions”
Section 13.6.5.2, “IF Statement”
Section 14.16.3, “InnoDB INFORMATION_SCHEMA System Tables”
Section B.3.7, “Known Issues in MySQL”
Section 1.6.1, “MySQL Extensions to Standard SQL”

IFNULL()
Section 12.5, “Flow Control Functions”

4915

Section B.3.4.3, “Problems with NULL Values”

INET6_ATON()
Section 5.1.12, “IPv6 Support”
Section 12.20, “Miscellaneous Functions”

INET6_NTOA()
Section 5.1.12, “IPv6 Support”
Section 12.20, “Miscellaneous Functions”

INET_ATON()
Section 5.1.12, “IPv6 Support”
Section 12.20, “Miscellaneous Functions”

INET_NTOA()
Section 5.1.12, “IPv6 Support”
Section 12.20, “Miscellaneous Functions”

INSERT()
Section 12.8, “String Functions and Operators”

INSTR()
Section 12.8.3, “Character Set and Collation of Function Results”
Section 12.8, “String Functions and Operators”

InteriorRingN()
Section 12.16.7.4, “Polygon and MultiPolygon Property Functions”

Intersects()
Section 12.16.9.2, “Spatial Relation Functions That Use Minimum Bounding Rectangles”

INTERVAL()
Section 12.4.2, “Comparison Functions and Operators”

IS_FREE_LOCK()
Section 16.2.1.1, “Advantages and Disadvantages of Statement-Based and Row-Based Replication”
Section 16.2.1.3, “Determination of Safe and Unsafe Statements in Binary Logging”
Section 8.10.3.1, “How the Query Cache Operates”
Section 12.14, “Locking Functions”
Section 16.4.1.15, “Replication and System Functions”

IS_IPV4()
Section 12.20, “Miscellaneous Functions”

IS_IPV4_COMPAT()
Section 12.20, “Miscellaneous Functions”

IS_IPV4_MAPPED()
Section 12.20, “Miscellaneous Functions”

4916

IS_IPV6()
Section 12.20, “Miscellaneous Functions”

IS_USED_LOCK()
Section 16.2.1.1, “Advantages and Disadvantages of Statement-Based and Row-Based Replication”
Section 16.2.1.3, “Determination of Safe and Unsafe Statements in Binary Logging”
Section 8.10.3.1, “How the Query Cache Operates”
Section 12.14, “Locking Functions”
Section 16.4.1.15, “Replication and System Functions”

IsClosed()
Section 12.16.7.3, “LineString and MultiLineString Property Functions”

IsEmpty()
Section 12.16.7.1, “General Geometry Property Functions”

ISNULL()
Section 12.4.2, “Comparison Functions and Operators”

IsSimple()
Section 12.16.7.1, “General Geometry Property Functions”

J

[index top]

JSON_APPEND()
Section 12.17.4, “Functions That Modify JSON Values”
Section 1.3, “What Is New in MySQL 5.7”

JSON_ARRAY()
Section 12.17.2, “Functions That Create JSON Values”
Section 11.5, “The JSON Data Type”
Section 1.3, “What Is New in MySQL 5.7”

JSON_ARRAY_APPEND()
Section 12.17.4, “Functions That Modify JSON Values”
Section 1.3, “What Is New in MySQL 5.7”

JSON_ARRAY_INSERT()
Section 12.17.4, “Functions That Modify JSON Values”
Section 1.3, “What Is New in MySQL 5.7”

JSON_ARRAYAGG()
Section 12.19.1, “Aggregate Function Descriptions”
Section 12.17.2, “Functions That Create JSON Values”
Section 12.17.1, “JSON Function Reference”
Section 1.3, “What Is New in MySQL 5.7”

JSON_CONTAINS()
Section 12.17.3, “Functions That Search JSON Values”

4917

Section 1.3, “What Is New in MySQL 5.7”

JSON_CONTAINS_PATH()
Section 12.17.3, “Functions That Search JSON Values”
Section 11.5, “The JSON Data Type”
Section 1.3, “What Is New in MySQL 5.7”

JSON_DEPTH()
Section 12.17.5, “Functions That Return JSON Value Attributes”
Section 1.3, “What Is New in MySQL 5.7”

JSON_EXTRACT()
Section 12.17.3, “Functions That Search JSON Values”
Section 13.1.18.8, “Secondary Indexes and Generated Columns”
Section 11.5, “The JSON Data Type”
Section 1.3, “What Is New in MySQL 5.7”

JSON_INSERT()
Section 12.17.4, “Functions That Modify JSON Values”
Section 11.5, “The JSON Data Type”
Section 1.3, “What Is New in MySQL 5.7”

JSON_KEYS()
Section 12.17.3, “Functions That Search JSON Values”
Section 1.3, “What Is New in MySQL 5.7”

JSON_LENGTH()
Section 12.17.5, “Functions That Return JSON Value Attributes”
Section 1.3, “What Is New in MySQL 5.7”

JSON_MERGE()
Section 12.17.4, “Functions That Modify JSON Values”
Section 11.5, “The JSON Data Type”
Section 1.3, “What Is New in MySQL 5.7”

JSON_MERGE_PATCH()
Section 12.17.4, “Functions That Modify JSON Values”
Section 1.3, “What Is New in MySQL 5.7”

JSON_MERGE_PRESERVE()
Section 12.17.4, “Functions That Modify JSON Values”
Section 1.3, “What Is New in MySQL 5.7”

JSON_OBJECT()
Section 12.17.2, “Functions That Create JSON Values”
Section 11.5, “The JSON Data Type”
Section 1.3, “What Is New in MySQL 5.7”

JSON_OBJECTAGG()
Section 12.19.1, “Aggregate Function Descriptions”

4918

Section 12.17.2, “Functions That Create JSON Values”
Section 12.17.1, “JSON Function Reference”
Section 1.3, “What Is New in MySQL 5.7”

JSON_PRETTY()
Section 12.17.1, “JSON Function Reference”
Section 12.17.6, “JSON Utility Functions”
Section 1.3, “What Is New in MySQL 5.7”

JSON_QUOTE()
Section 12.17.2, “Functions That Create JSON Values”
Section 12.17.6, “JSON Utility Functions”
Section 1.3, “What Is New in MySQL 5.7”

JSON_REMOVE()
Section 12.17.4, “Functions That Modify JSON Values”
Section 1.3, “What Is New in MySQL 5.7”

JSON_REPLACE()
Section 12.17.4, “Functions That Modify JSON Values”
Section 11.5, “The JSON Data Type”
Section 1.3, “What Is New in MySQL 5.7”

JSON_SEARCH()
Section 12.17.3, “Functions That Search JSON Values”
Section 11.5, “The JSON Data Type”
Section 1.3, “What Is New in MySQL 5.7”

JSON_SET()
Section 12.17.4, “Functions That Modify JSON Values”
Section 11.5, “The JSON Data Type”
Section 1.3, “What Is New in MySQL 5.7”

JSON_STORAGE_SIZE()
Section 12.17.1, “JSON Function Reference”
Section 12.17.6, “JSON Utility Functions”
Section 1.3, “What Is New in MySQL 5.7”

JSON_TYPE()
Section 12.17.5, “Functions That Return JSON Value Attributes”
Section 12.17.3, “Functions That Search JSON Values”
Section 11.5, “The JSON Data Type”
Section 1.3, “What Is New in MySQL 5.7”

JSON_UNQUOTE(
Section 12.17.3, “Functions That Search JSON Values”

JSON_UNQUOTE()
Section 12.17.4, “Functions That Modify JSON Values”
Section 8.3.10, “Optimizer Use of Generated Column Indexes”
Section 13.1.18.8, “Secondary Indexes and Generated Columns”

4919

Section 11.5, “The JSON Data Type”
Section 1.3, “What Is New in MySQL 5.7”

JSON_VALID()
Section 12.17.5, “Functions That Return JSON Value Attributes”
Section 1.3, “What Is New in MySQL 5.7”

K

[index top]

keyring_aws_rotate_cmk()
Section 6.4.4.9, “Plugin-Specific Keyring Key-Management Functions”
Section 6.4.4.5, “Using the keyring_aws Amazon Web Services Keyring Plugin”

keyring_aws_rotate_keys()
Section 6.4.4.9, “Plugin-Specific Keyring Key-Management Functions”
Section 6.4.4.5, “Using the keyring_aws Amazon Web Services Keyring Plugin”

keyring_key_fetch()
Section 6.4.4.8, “General-Purpose Keyring Key-Management Functions”

keyring_key_generate()
Section 6.4.4.8, “General-Purpose Keyring Key-Management Functions”

keyring_key_length_fetch()
Section 6.4.4.8, “General-Purpose Keyring Key-Management Functions”

keyring_key_remove()
Section 6.4.4.8, “General-Purpose Keyring Key-Management Functions”

keyring_key_store()
Section 6.4.4.8, “General-Purpose Keyring Key-Management Functions”

keyring_key_type_fetch()
Section 6.4.4.8, “General-Purpose Keyring Key-Management Functions”

L

[index top]

LAST_DAY()
Section 12.7, “Date and Time Functions”

LAST_INSERT_ID()
Section 12.4.2, “Comparison Functions and Operators”
Section 13.1.18, “CREATE TABLE Statement”
Section 16.2.1.3, “Determination of Safe and Unsafe Statements in Binary Logging”
Section 8.10.3.1, “How the Query Cache Operates”
Section 12.15, “Information Functions”

4920

Section 13.2.5.2, “INSERT ... ON DUPLICATE KEY UPDATE Statement”
Section 13.2.5, “INSERT Statement”
Section 13.3.5, “LOCK TABLES and UNLOCK TABLES Statements”
Section 1.6.1, “MySQL Extensions to Standard SQL”
Section 21.5.24, “ndb_restore — Restore an NDB Cluster Backup”
Section 16.4.1.1, “Replication and AUTO_INCREMENT”
Section 16.4.1.15, “Replication and System Functions”
Section 5.1.7, “Server System Variables”
Section 23.2.4, “Stored Procedures, Functions, Triggers, and LAST_INSERT_ID()”
Section 16.4.4, “Troubleshooting Replication”
Section 23.5.3, “Updatable and Insertable Views”
Section 3.6.9, “Using AUTO_INCREMENT”

LCASE()
Section 12.8.3, “Character Set and Collation of Function Results”
Section 12.8, “String Functions and Operators”

LEAST()
Section 12.8.3, “Character Set and Collation of Function Results”
Section 12.4.2, “Comparison Functions and Operators”
Section 11.5, “The JSON Data Type”

LEFT()
Section 12.8, “String Functions and Operators”

LENGTH()
Section 11.7, “Data Type Storage Requirements”
Section 12.8, “String Functions and Operators”
Section 11.4.3, “Supported Spatial Data Formats”

Length()
Section 12.16.7.3, “LineString and MultiLineString Property Functions”
Section 11.4, “Spatial Data Types”

LineFromText()
Section 12.16.3, “Functions That Create Geometry Values from WKT Values”

LineFromWKB()
Section 12.16.4, “Functions That Create Geometry Values from WKB Values”

LineString()
Section 12.16.5, “MySQL-Specific Functions That Create Geometry Values”

LineStringFromText()
Section 12.16.3, “Functions That Create Geometry Values from WKT Values”

LineStringFromWKB()
Section 12.16.4, “Functions That Create Geometry Values from WKB Values”

LN()
Section 12.6.2, “Mathematical Functions”

4921

LOAD_FILE()
Section 16.2.1.1, “Advantages and Disadvantages of Statement-Based and Row-Based Replication”
Section 16.2.1.3, “Determination of Safe and Unsafe Statements in Binary Logging”
Section 8.10.3.1, “How the Query Cache Operates”
Section 13.2.7, “LOAD XML Statement”
Section 5.4.4.3, “Mixed Binary Logging Format”
Section 6.6.2, “MySQL Enterprise Encryption Usage and Examples”
Section 6.2.2, “Privileges Provided by MySQL”
Section 16.4.1.15, “Replication and System Functions”
Section 5.1.7, “Server System Variables”
Section 12.8, “String Functions and Operators”

load_rewrite_rules()
Rewriter Query Rewrite Plugin Procedures and Functions
Section 5.5.4, “The Rewriter Query Rewrite Plugin”

LOCALTIME
Section 11.2.6, “Automatic Initialization and Updating for TIMESTAMP and DATETIME”
Section 12.7, “Date and Time Functions”

LOCALTIME()
Section 11.2.6, “Automatic Initialization and Updating for TIMESTAMP and DATETIME”
Section 12.7, “Date and Time Functions”
Section 16.2.1.3, “Determination of Safe and Unsafe Statements in Binary Logging”

LOCALTIMESTAMP
Section 11.2.6, “Automatic Initialization and Updating for TIMESTAMP and DATETIME”
Section 12.7, “Date and Time Functions”

LOCALTIMESTAMP()
Section 11.2.6, “Automatic Initialization and Updating for TIMESTAMP and DATETIME”
Section 12.7, “Date and Time Functions”
Section 16.2.1.3, “Determination of Safe and Unsafe Statements in Binary Logging”

LOCATE()
Section 12.8, “String Functions and Operators”

LOG()
Section 22.2.4.1, “LINEAR HASH Partitioning”
Section 12.6.2, “Mathematical Functions”

LOG10()
Section 12.6.2, “Mathematical Functions”

LOG2()
Section 12.6.2, “Mathematical Functions”

LOWER()
Section 12.10, “Cast Functions and Operators”
Section 12.8.3, “Character Set and Collation of Function Results”
Section 12.8, “String Functions and Operators”

4922

Section 10.10.1, “Unicode Character Sets”
Section 10.8.7, “Using Collation in INFORMATION_SCHEMA Searches”

LPAD()
Section 12.8, “String Functions and Operators”

LTRIM()
Section 12.8.3, “Character Set and Collation of Function Results”
Section 12.8, “String Functions and Operators”

M

[index top]

MAKE_SET()
Section 12.8, “String Functions and Operators”

MAKEDATE()
Section 12.7, “Date and Time Functions”

MAKETIME()
Section 12.7, “Date and Time Functions”

mask_inner()
Section 6.5.5, “MySQL Enterprise Data Masking and De-Identification Function Descriptions”
Section 6.5.3, “Using MySQL Enterprise Data Masking and De-Identification”

mask_outer()
Section 6.5.5, “MySQL Enterprise Data Masking and De-Identification Function Descriptions”
Section 6.5.3, “Using MySQL Enterprise Data Masking and De-Identification”

mask_pan()
Section 6.5.5, “MySQL Enterprise Data Masking and De-Identification Function Descriptions”
Section 6.5.3, “Using MySQL Enterprise Data Masking and De-Identification”

mask_pan_relaxed()
Section 6.5.5, “MySQL Enterprise Data Masking and De-Identification Function Descriptions”
Section 6.5.3, “Using MySQL Enterprise Data Masking and De-Identification”

mask_ssn()
Section 6.5.5, “MySQL Enterprise Data Masking and De-Identification Function Descriptions”
Section 6.5.3, “Using MySQL Enterprise Data Masking and De-Identification”

MASTER_POS_WAIT()
Section 16.2.1.1, “Advantages and Disadvantages of Statement-Based and Row-Based Replication”
Section 16.2.2.1, “Commands for Operations on a Single Channel”
Section 16.2.2.2, “Compatibility with Previous Replication Statements”
Section 16.2.1.3, “Determination of Safe and Unsafe Statements in Binary Logging”
Section 8.10.3.1, “How the Query Cache Operates”
Section 12.20, “Miscellaneous Functions”

4923

Section A.14, “MySQL 5.7 FAQ: Replication”

MATCH
Section 9.5, “Expressions”

MATCH ()
Section 12.9, “Full-Text Search Functions”

MATCH()
Section 12.9.2, “Boolean Full-Text Searches”
Section 12.9.6, “Fine-Tuning MySQL Full-Text Search”
Section 12.9.5, “Full-Text Restrictions”
Section 12.9, “Full-Text Search Functions”
Section 14.6.2.4, “InnoDB Full-Text Indexes”
MySQL Glossary
Section 12.9.1, “Natural Language Full-Text Searches”

MAX()
Section 11.2.10, “2-Digit Years in Dates”
Section 12.19.1, “Aggregate Function Descriptions”
Section 8.2.1.15, “GROUP BY Optimization”
Section 8.3.1, “How MySQL Uses Indexes”
Section B.3.7, “Known Issues in MySQL”
Section 21.5.24, “ndb_restore — Restore an NDB Cluster Backup”
Section 11.1.1, “Numeric Data Type Syntax”
Section 8.2.2.4, “Optimizing Derived Tables and View References with Merging or Materialization”
Section 13.2.10.10, “Optimizing Subqueries”
Section 5.1.10, “Server SQL Modes”
Section 24.5.2, “The INFORMATION_SCHEMA TP_THREAD_GROUP_STATE Table”
Section 11.5, “The JSON Data Type”
Section 1.2.2, “The Main Features of MySQL”
Section 23.5.3, “Updatable and Insertable Views”
Section 8.3.9, “Use of Index Extensions”
Section 3.6.9, “Using AUTO_INCREMENT”

MBRContains()
Section 12.16.9.2, “Spatial Relation Functions That Use Minimum Bounding Rectangles”
Section 11.4.10, “Using Spatial Indexes”

MBRCoveredBy()
Section 12.16.9.2, “Spatial Relation Functions That Use Minimum Bounding Rectangles”

MBRCovers()
Section 12.16.9.2, “Spatial Relation Functions That Use Minimum Bounding Rectangles”

MBRDisjoint()
Section 12.16.9.2, “Spatial Relation Functions That Use Minimum Bounding Rectangles”

MBREqual()
Section 12.16.9.2, “Spatial Relation Functions That Use Minimum Bounding Rectangles”
Section 1.3, “What Is New in MySQL 5.7”

4924

MBREquals()
Section 12.16.9.2, “Spatial Relation Functions That Use Minimum Bounding Rectangles”
Section 1.3, “What Is New in MySQL 5.7”

MBRIntersects()
Section 12.16.9.2, “Spatial Relation Functions That Use Minimum Bounding Rectangles”

MBROverlaps()
Section 12.16.9.2, “Spatial Relation Functions That Use Minimum Bounding Rectangles”

MBRTouches()
Section 12.16.9.2, “Spatial Relation Functions That Use Minimum Bounding Rectangles”

MBRWithin()
Section 12.16.9.2, “Spatial Relation Functions That Use Minimum Bounding Rectangles”
Section 11.4.10, “Using Spatial Indexes”

MD5()
Section 12.13, “Encryption and Compression Functions”
Section 22.2.5, “KEY Partitioning”
Section 1.6.1, “MySQL Extensions to Standard SQL”
Section 9.2, “Schema Object Names”

MICROSECOND()
Section 12.7, “Date and Time Functions”
Section 22.6.3, “Partitioning Limitations Relating to Functions”

MID()
Section 12.8.3, “Character Set and Collation of Function Results”
Section 12.8, “String Functions and Operators”

MIN()
Section 11.2.10, “2-Digit Years in Dates”
Section 12.19.1, “Aggregate Function Descriptions”
Section 8.2.1.15, “GROUP BY Optimization”
Section 8.3.1, “How MySQL Uses Indexes”
Section B.3.7, “Known Issues in MySQL”
Section 21.5.24, “ndb_restore — Restore an NDB Cluster Backup”
Section 11.1.1, “Numeric Data Type Syntax”
Section 8.2.2.4, “Optimizing Derived Tables and View References with Merging or Materialization”
Section 13.2.10.10, “Optimizing Subqueries”
Section B.3.4.3, “Problems with NULL Values”
Section 11.5, “The JSON Data Type”
Section 1.2.2, “The Main Features of MySQL”
Section 23.5.3, “Updatable and Insertable Views”
Section 8.3.9, “Use of Index Extensions”
Section 8.2.1.1, “WHERE Clause Optimization”

MINUTE()
Section 12.7, “Date and Time Functions”
Section 22.6.3, “Partitioning Limitations Relating to Functions”

4925

MLineFromText()
Section 12.16.3, “Functions That Create Geometry Values from WKT Values”

MLineFromWKB()
Section 12.16.4, “Functions That Create Geometry Values from WKB Values”

MOD()
Section 12.6.1, “Arithmetic Operators”
Section 3.3.4.5, “Date Calculations”
Section 12.6.2, “Mathematical Functions”
Section 1.6.1, “MySQL Extensions to Standard SQL”
Section 22.6.3, “Partitioning Limitations Relating to Functions”
Section 5.1.10, “Server SQL Modes”

MONTH()
Section 12.7, “Date and Time Functions”
Section 3.3.4.5, “Date Calculations”
Section 22.6.3, “Partitioning Limitations Relating to Functions”
Section 22.2, “Partitioning Types”

MONTHNAME()
Section 12.7, “Date and Time Functions”
Section 10.16, “MySQL Server Locale Support”
Section 5.1.7, “Server System Variables”

MPointFromText()
Section 12.16.3, “Functions That Create Geometry Values from WKT Values”

MPointFromWKB()
Section 12.16.4, “Functions That Create Geometry Values from WKB Values”

MPolyFromText()
Section 12.16.3, “Functions That Create Geometry Values from WKT Values”

MPolyFromWKB()
Section 12.16.4, “Functions That Create Geometry Values from WKB Values”

MultiLineString()
Section 12.16.5, “MySQL-Specific Functions That Create Geometry Values”

MultiLineStringFromText()
Section 12.16.3, “Functions That Create Geometry Values from WKT Values”

MultiLineStringFromWKB()
Section 12.16.4, “Functions That Create Geometry Values from WKB Values”

MultiPoint()
Section 12.16.5, “MySQL-Specific Functions That Create Geometry Values”

MultiPointFromText()
Section 12.16.3, “Functions That Create Geometry Values from WKT Values”

4926

MultiPointFromWKB()
Section 12.16.4, “Functions That Create Geometry Values from WKB Values”

MultiPolygon()
Section 12.16.5, “MySQL-Specific Functions That Create Geometry Values”

MultiPolygonFromText()
Section 12.16.3, “Functions That Create Geometry Values from WKT Values”

MultiPolygonFromWKB()
Section 12.16.4, “Functions That Create Geometry Values from WKB Values”

my_open()
Section 5.1.9, “Server Status Variables”

mysql_firewall_flush_status()
Section 6.4.6.4, “MySQL Enterprise Firewall Reference”

N

[index top]

NAME_CONST()
Section 12.20, “Miscellaneous Functions”
Section 23.7, “Stored Program Binary Logging”

normalize_statement()
Section 6.4.6.4, “MySQL Enterprise Firewall Reference”

NOW()
Section 16.2.1.1, “Advantages and Disadvantages of Statement-Based and Row-Based Replication”
Section 11.2.6, “Automatic Initialization and Updating for TIMESTAMP and DATETIME”
Section 13.1.16, “CREATE PROCEDURE and CREATE FUNCTION Statements”
Section 13.1.18.7, “CREATE TABLE and Generated Columns”
Section 11.6, “Data Type Default Values”
Section 12.7, “Date and Time Functions”
Section 16.2.1.3, “Determination of Safe and Unsafe Statements in Binary Logging”
Section 11.2.7, “Fractional Seconds in Time Values”
Section 8.10.3.1, “How the Query Cache Operates”
Section A.1, “MySQL 5.7 FAQ: General”
Section 5.1.13, “MySQL Server Time Zone Support”
Section 16.4.1.15, “Replication and System Functions”
Section 16.4.1.31, “Replication and Time Zones”
Section 5.1.6, “Server Command Options”
Section 5.1.7, “Server System Variables”
Section 26.4.3.21, “The metrics View”
Section 26.4.4.25, “The statement_performance_analyzer() Procedure”
Section 11.2.4, “The YEAR Type”

NULLIF()
Section 12.5, “Flow Control Functions”

4927

NumGeometries()
Section 12.16.7.5, “GeometryCollection Property Functions”

NumInteriorRings()
Section 12.16.7.4, “Polygon and MultiPolygon Property Functions”

NumPoints()
Section 12.16.7.3, “LineString and MultiLineString Property Functions”

O

[index top]

OCT()
Section 12.8, “String Functions and Operators”

OCTET_LENGTH()
Section 12.8, “String Functions and Operators”

ORD()
Section 12.8, “String Functions and Operators”

Overlaps()
Section 12.16.9.2, “Spatial Relation Functions That Use Minimum Bounding Rectangles”

P

[index top]

PASSWORD()
Section 16.2.1.3, “Determination of Safe and Unsafe Statements in Binary Logging”
Section 12.13, “Encryption and Compression Functions”
Section 8.10.3.1, “How the Query Cache Operates”
Section B.3.2.13, “Ignoring user”
Section 22.2.5, “KEY Partitioning”
Section 1.6.1, “MySQL Extensions to Standard SQL”
Section 6.1.2.4, “Password Hashing in MySQL”
Section 6.4.3.2, “Password Validation Plugin Options and Variables”
Section 6.1.2.3, “Passwords and Logging”
Section 5.1.7, “Server System Variables”
Section 13.7.1.7, “SET PASSWORD Statement”
Section 6.4.3, “The Password Validation Plugin”
Section 1.3, “What Is New in MySQL 5.7”

PERIOD_ADD()
Section 12.7, “Date and Time Functions”
Section 1.6.1, “MySQL Extensions to Standard SQL”

PERIOD_DIFF()
Section 12.7, “Date and Time Functions”
Section 1.6.1, “MySQL Extensions to Standard SQL”

4928

PI()
Section 9.2.5, “Function Name Parsing and Resolution”
Section 12.6.2, “Mathematical Functions”

Point()
Section 12.16.5, “MySQL-Specific Functions That Create Geometry Values”
Section 11.4.3, “Supported Spatial Data Formats”

PointFromText()
Section 12.16.3, “Functions That Create Geometry Values from WKT Values”

PointFromWKB()
Section 12.16.4, “Functions That Create Geometry Values from WKB Values”

PointN()
Section 12.16.7.3, “LineString and MultiLineString Property Functions”

PolyFromText()
Section 12.16.3, “Functions That Create Geometry Values from WKT Values”

PolyFromWKB()
Section 12.16.4, “Functions That Create Geometry Values from WKB Values”

Polygon()
Section 12.16.5, “MySQL-Specific Functions That Create Geometry Values”

PolygonFromText()
Section 12.16.3, “Functions That Create Geometry Values from WKT Values”

PolygonFromWKB()
Section 12.16.4, “Functions That Create Geometry Values from WKB Values”

POSITION()
Section 12.8, “String Functions and Operators”

POW()
Section 8.2.1.18, “Function Call Optimization”
Section 22.2.4, “HASH Partitioning”
Section 12.6.2, “Mathematical Functions”

POWER()
Section 22.2.4.1, “LINEAR HASH Partitioning”
Section 12.6.2, “Mathematical Functions”

Q

[index top]

QUARTER()
Section 12.7, “Date and Time Functions”

4929

Section 22.6.3, “Partitioning Limitations Relating to Functions”

QUOTE()
Section 12.8, “String Functions and Operators”
Section 9.1.1, “String Literals”

R

[index top]

RADIANS()
Section 12.6.2, “Mathematical Functions”

RAND()
Section 16.2.1.1, “Advantages and Disadvantages of Statement-Based and Row-Based Replication”
Section 13.1.16, “CREATE PROCEDURE and CREATE FUNCTION Statements”
Section 16.2.1.3, “Determination of Safe and Unsafe Statements in Binary Logging”
Section 8.2.1.18, “Function Call Optimization”
Section 8.10.3.1, “How the Query Cache Operates”
Section 12.6.2, “Mathematical Functions”
Section 16.4.1.15, “Replication and System Functions”
Section 5.1.7, “Server System Variables”

RANDOM_BYTES()
Section 12.13, “Encryption and Compression Functions”
Section 8.10.3.1, “How the Query Cache Operates”

read_firewall_users()
Section 6.4.6.4, “MySQL Enterprise Firewall Reference”

read_firewall_whitelist()
Section 6.4.6.4, “MySQL Enterprise Firewall Reference”

RELEASE_ALL_LOCKS()
Section 2.10.3, “Changes in MySQL 5.7”
Section 8.10.3.1, “How the Query Cache Operates”
Section 12.14, “Locking Functions”

RELEASE_LOCK()
Section 16.2.1.1, “Advantages and Disadvantages of Statement-Based and Row-Based Replication”
Section 16.2.1.3, “Determination of Safe and Unsafe Statements in Binary Logging”
Section 13.2.3, “DO Statement”
Section 8.10.3.1, “How the Query Cache Operates”
Section 8.11.1, “Internal Locking Methods”
Section 13.3.5, “LOCK TABLES and UNLOCK TABLES Statements”
Section 12.14, “Locking Functions”
Section 16.4.1.15, “Replication and System Functions”

REPEAT()
Section 12.8.3, “Character Set and Collation of Function Results”
Section 12.8, “String Functions and Operators”

4930

REPLACE()
Section 12.8.3, “Character Set and Collation of Function Results”
Section 12.8, “String Functions and Operators”

REVERSE()
Section 12.8.3, “Character Set and Collation of Function Results”
Section 12.8, “String Functions and Operators”

RIGHT()
Section 12.8.3, “Character Set and Collation of Function Results”
Section 12.8, “String Functions and Operators”

ROUND()
Section 14.16.3, “InnoDB INFORMATION_SCHEMA System Tables”
Section 12.6.2, “Mathematical Functions”
Section 12.21, “Precision Math”
Section 12.21.5, “Precision Math Examples”
Section 12.21.4, “Rounding Behavior”

ROW_COUNT()
Section 13.2.1, “CALL Statement”
Section 13.2.2, “DELETE Statement”
Section 16.2.1.3, “Determination of Safe and Unsafe Statements in Binary Logging”
Section 12.15, “Information Functions”
Section 13.2.5, “INSERT Statement”
Section 5.4.4.3, “Mixed Binary Logging Format”
Section 16.4.1.15, “Replication and System Functions”
Section 5.1.9, “Server Status Variables”
Section 13.6.7.7, “The MySQL Diagnostics Area”

RPAD()
Section 12.8.3, “Character Set and Collation of Function Results”
Section 12.8, “String Functions and Operators”

RTRIM()
Section 12.8.3, “Character Set and Collation of Function Results”
Section 12.8, “String Functions and Operators”

S

[index top]

SCHEMA()
Section 12.15, “Information Functions”

SEC_TO_TIME()
Section 12.7, “Date and Time Functions”

SECOND()
Section 12.7, “Date and Time Functions”

4931

Section 22.6.3, “Partitioning Limitations Relating to Functions”

service_get_read_locks()
The Locking Service Function Interface

service_get_write_locks()
The Locking Service Function Interface

service_release_locks()
The Locking Service Function Interface

SESSION_USER()
Section 16.2.1.3, “Determination of Safe and Unsafe Statements in Binary Logging”
Section 12.15, “Information Functions”
Section 10.2.2, “UTF-8 for Metadata”

set_firewall_mode()
Section 6.4.6.4, “MySQL Enterprise Firewall Reference”

setrlimit()
Section 5.1.7, “Server System Variables”

SHA()
Section 12.13, “Encryption and Compression Functions”

SHA1()
Section 12.13, “Encryption and Compression Functions”

SHA2()
Section 12.13, “Encryption and Compression Functions”
Section 6.1.1, “Security Guidelines”
Section 5.1.7, “Server System Variables”
Section 1.3, “What Is New in MySQL 5.7”

SIGN()
Section 12.6.2, “Mathematical Functions”

SIN()
Section 12.6.2, “Mathematical Functions”

SLEEP()
Section 16.2.1.1, “Advantages and Disadvantages of Statement-Based and Row-Based Replication”
Section 16.2.1.3, “Determination of Safe and Unsafe Statements in Binary Logging”
Section 8.14.3, “General Thread States”
Section 8.10.3.1, “How the Query Cache Operates”
Section 12.20, “Miscellaneous Functions”
Section 24.5.3, “The INFORMATION_SCHEMA TP_THREAD_GROUP_STATS Table”

SOUNDEX()
Section 12.8.3, “Character Set and Collation of Function Results”
Section 12.8, “String Functions and Operators”

4932

SOURCE_POS_WAIT()
Section A.14, “MySQL 5.7 FAQ: Replication”

SPACE()
Section 12.8.3, “Character Set and Collation of Function Results”
Section 12.8, “String Functions and Operators”

SQRT()
Section 12.6.2, “Mathematical Functions”

SRID()
Section 12.16.7.1, “General Geometry Property Functions”

ST_Area()
Section 12.16.7, “Geometry Property Functions”
Section 12.16.7.4, “Polygon and MultiPolygon Property Functions”

ST_AsBinary()
Section 11.4.7, “Fetching Spatial Data”
Section 12.16.6, “Geometry Format Conversion Functions”

ST_AsGeoJSON()
Section 12.16.11, “Spatial GeoJSON Functions”
Section 11.5, “The JSON Data Type”

ST_AsText()
Section 11.4.7, “Fetching Spatial Data”
Section 12.16.6, “Geometry Format Conversion Functions”

ST_AsWKB()
Section 12.16.6, “Geometry Format Conversion Functions”

ST_AsWKT()
Section 12.16.6, “Geometry Format Conversion Functions”

ST_Buffer()
Section 12.16.8, “Spatial Operator Functions”

ST_Buffer_Strategy()
Section 5.1.7, “Server System Variables”
Section 12.16.8, “Spatial Operator Functions”

ST_Centroid()
Section 12.16.7.4, “Polygon and MultiPolygon Property Functions”

ST_Contains()
Section 12.16.9.1, “Spatial Relation Functions That Use Object Shapes”

ST_ConvexHull()
Section 12.16.8, “Spatial Operator Functions”

4933

ST_Crosses()
Section 12.16.9.1, “Spatial Relation Functions That Use Object Shapes”

ST_Difference()
Section 12.16.8, “Spatial Operator Functions”

ST_Dimension()
Section 12.16.7.1, “General Geometry Property Functions”

ST_Disjoint()
Section 12.16.9.1, “Spatial Relation Functions That Use Object Shapes”

ST_Distance()
Section 12.16.9.1, “Spatial Relation Functions That Use Object Shapes”

ST_Distance_Sphere()
Section 12.16.12, “Spatial Convenience Functions”

ST_EndPoint()
Section 12.16.7.3, “LineString and MultiLineString Property Functions”
Section 12.16.8, “Spatial Operator Functions”

ST_Envelope()
Section 12.16.7.1, “General Geometry Property Functions”
Section 12.16.8, “Spatial Operator Functions”

ST_Equals()
Section 12.16.9.1, “Spatial Relation Functions That Use Object Shapes”

ST_ExteriorRing()
Section 12.16.7.4, “Polygon and MultiPolygon Property Functions”
Section 12.16.8, “Spatial Operator Functions”

ST_GeoHash()
Section 12.16.10, “Spatial Geohash Functions”

ST_GeomCollFromText()
Section 12.16.3, “Functions That Create Geometry Values from WKT Values”

ST_GeomCollFromTxt()
Section 12.16.3, “Functions That Create Geometry Values from WKT Values”

ST_GeomCollFromWKB()
Section 12.16.4, “Functions That Create Geometry Values from WKB Values”

ST_GeometryCollectionFromText()
Section 12.16.3, “Functions That Create Geometry Values from WKT Values”

ST_GeometryCollectionFromWKB()
Section 12.16.4, “Functions That Create Geometry Values from WKB Values”

4934

ST_GeometryFromText()
Section 12.16.3, “Functions That Create Geometry Values from WKT Values”

ST_GeometryFromWKB()
Section 12.16.4, “Functions That Create Geometry Values from WKB Values”

ST_GeometryN()
Section 12.16.7.5, “GeometryCollection Property Functions”
Section 12.16.8, “Spatial Operator Functions”

ST_GeometryType()
Section 12.16.7.1, “General Geometry Property Functions”

ST_GeomFromGeoJSON()
Section 12.16.11, “Spatial GeoJSON Functions”
Section 11.5, “The JSON Data Type”

ST_GeomFromText()
Section 12.16.3, “Functions That Create Geometry Values from WKT Values”
Section 11.4.6, “Populating Spatial Columns”
Section 11.4.3, “Supported Spatial Data Formats”

ST_GeomFromWKB()
Section 12.16.4, “Functions That Create Geometry Values from WKB Values”

ST_InteriorRingN()
Section 12.16.7.4, “Polygon and MultiPolygon Property Functions”
Section 12.16.8, “Spatial Operator Functions”

ST_Intersection()
Section 12.16.8, “Spatial Operator Functions”

ST_Intersects()
Section 12.16.9.1, “Spatial Relation Functions That Use Object Shapes”

ST_IsClosed()
Section 12.16.7.3, “LineString and MultiLineString Property Functions”

ST_IsEmpty()
Section 12.16.7.1, “General Geometry Property Functions”

ST_IsSimple()
Section 12.16.7.1, “General Geometry Property Functions”

ST_IsValid()
Section 11.4.4, “Geometry Well-Formedness and Validity”
Section 12.16.12, “Spatial Convenience Functions”

ST_LatFromGeoHash()
Section 12.16.10, “Spatial Geohash Functions”

4935

ST_Length()
Section 12.16.7.3, “LineString and MultiLineString Property Functions”
Section 11.4, “Spatial Data Types”
Section 12.8, “String Functions and Operators”

ST_LineFromText()
Section 12.16.3, “Functions That Create Geometry Values from WKT Values”

ST_LineFromWKB()
Section 12.16.4, “Functions That Create Geometry Values from WKB Values”

ST_LineStringFromText()
Section 12.16.3, “Functions That Create Geometry Values from WKT Values”

ST_LineStringFromWKB()
Section 12.16.4, “Functions That Create Geometry Values from WKB Values”

ST_LongFromGeoHash()
Section 12.16.10, “Spatial Geohash Functions”

ST_MakeEnvelope()
Section 12.16.12, “Spatial Convenience Functions”

ST_MLineFromText()
Section 12.16.3, “Functions That Create Geometry Values from WKT Values”

ST_MLineFromWKB()
Section 12.16.4, “Functions That Create Geometry Values from WKB Values”

ST_MPointFromText()
Section 12.16.3, “Functions That Create Geometry Values from WKT Values”
Section 11.4.3, “Supported Spatial Data Formats”

ST_MPointFromWKB()
Section 12.16.4, “Functions That Create Geometry Values from WKB Values”

ST_MPolyFromText()
Section 12.16.3, “Functions That Create Geometry Values from WKT Values”

ST_MPolyFromWKB()
Section 12.16.4, “Functions That Create Geometry Values from WKB Values”

ST_MultiLineStringFromText()
Section 12.16.3, “Functions That Create Geometry Values from WKT Values”

ST_MultiLineStringFromWKB()
Section 12.16.4, “Functions That Create Geometry Values from WKB Values”

ST_MultiPointFromText()
Section 12.16.3, “Functions That Create Geometry Values from WKT Values”

4936

ST_MultiPointFromWKB()
Section 12.16.4, “Functions That Create Geometry Values from WKB Values”

ST_MultiPolygonFromText()
Section 12.16.3, “Functions That Create Geometry Values from WKT Values”

ST_MultiPolygonFromWKB()
Section 12.16.4, “Functions That Create Geometry Values from WKB Values”

ST_NumGeometries()
Section 12.16.7.5, “GeometryCollection Property Functions”

ST_NumInteriorRing()
Section 12.16.7.4, “Polygon and MultiPolygon Property Functions”

ST_NumInteriorRings()
Section 12.16.7.4, “Polygon and MultiPolygon Property Functions”

ST_NumPoints()
Section 12.16.7.3, “LineString and MultiLineString Property Functions”

ST_Overlaps()
Section 12.16.9.1, “Spatial Relation Functions That Use Object Shapes”

ST_PointFromGeoHash()
Section 12.16.10, “Spatial Geohash Functions”

ST_PointFromText()
Section 12.16.3, “Functions That Create Geometry Values from WKT Values”

ST_PointFromWKB()
Section 12.16.4, “Functions That Create Geometry Values from WKB Values”

ST_PointN()
Section 12.16.7.3, “LineString and MultiLineString Property Functions”
Section 12.16.8, “Spatial Operator Functions”

ST_PolyFromText()
Section 12.16.3, “Functions That Create Geometry Values from WKT Values”

ST_PolyFromWKB()
Section 12.16.4, “Functions That Create Geometry Values from WKB Values”

ST_PolygonFromText()
Section 12.16.3, “Functions That Create Geometry Values from WKT Values”

ST_PolygonFromWKB()
Section 12.16.4, “Functions That Create Geometry Values from WKB Values”

4937

ST_Simplify()
Section 12.16.12, “Spatial Convenience Functions”

ST_SRID()
Section 12.16.7.1, “General Geometry Property Functions”

ST_StartPoint()
Section 12.16.7.3, “LineString and MultiLineString Property Functions”
Section 12.16.8, “Spatial Operator Functions”

ST_SymDifference()
Section 12.16.8, “Spatial Operator Functions”

ST_Touches()
Section 12.16.9.1, “Spatial Relation Functions That Use Object Shapes”

ST_Union()
Section 12.16.8, “Spatial Operator Functions”

ST_Validate()
Section 12.16.12, “Spatial Convenience Functions”

ST_Within()
Section 12.16.9.1, “Spatial Relation Functions That Use Object Shapes”

ST_X()
Section 12.16.7.2, “Point Property Functions”
Section 11.4.3, “Supported Spatial Data Formats”

ST_Y()
Section 12.16.7.2, “Point Property Functions”

StartPoint()
Section 12.16.7.3, “LineString and MultiLineString Property Functions”

STD()
Section 12.19.1, “Aggregate Function Descriptions”
Section 1.6.1, “MySQL Extensions to Standard SQL”
Section 1.2.2, “The Main Features of MySQL”

STDDEV()
Section 12.19.1, “Aggregate Function Descriptions”

STDDEV_POP()
Section 12.19.1, “Aggregate Function Descriptions”

STDDEV_SAMP()
Section 12.19.1, “Aggregate Function Descriptions”

STR_TO_DATE()
Section 11.2, “Date and Time Data Types”

4938

Section 12.7, “Date and Time Functions”
Section 10.16, “MySQL Server Locale Support”

STRCMP()
Section B.3.4.2, “Problems Using DATE Columns”
Section 12.8.1, “String Comparison Functions and Operators”

SUBDATE()
Section 12.7, “Date and Time Functions”

SUBSTR()
Section 12.8, “String Functions and Operators”

SUBSTRING()
Section 12.8.3, “Character Set and Collation of Function Results”
Section 12.8, “String Functions and Operators”

SUBSTRING_INDEX()
Section 6.2.18, “SQL-Based Account Activity Auditing”
Section 12.8, “String Functions and Operators”

SUBTIME()
Section 12.7, “Date and Time Functions”

SUM()
Section 12.19.1, “Aggregate Function Descriptions”
Section 13.7.3.1, “CREATE FUNCTION Statement for Loadable Functions”
Section 11.2.1, “Date and Time Data Type Syntax”
Section 8.2.1.15, “GROUP BY Optimization”
Section 12.20, “Miscellaneous Functions”
Section 8.2.2.4, “Optimizing Derived Tables and View References with Merging or Materialization”
Section B.3.4.3, “Problems with NULL Values”
Section 11.3.5, “The ENUM Type”
Section 1.2.2, “The Main Features of MySQL”
Section 11.3.6, “The SET Type”
Section 23.5.3, “Updatable and Insertable Views”

SYSDATE()
Section 16.2.1.1, “Advantages and Disadvantages of Statement-Based and Row-Based Replication”
Section 12.7, “Date and Time Functions”
Section 16.2.1.3, “Determination of Safe and Unsafe Statements in Binary Logging”
Section 8.10.3.1, “How the Query Cache Operates”
Section 16.4.1.13, “Replication and Fractional Seconds Support”
Section 16.4.1.15, “Replication and System Functions”
Section 5.1.6, “Server Command Options”
Section 5.1.7, “Server System Variables”

SYSTEM_USER()
Section 16.2.1.3, “Determination of Safe and Unsafe Statements in Binary Logging”
Section 12.15, “Information Functions”
Section 10.2.2, “UTF-8 for Metadata”

4939

T

[index top]

TAN()
Section 12.6.2, “Mathematical Functions”

TIME()
Section 12.7, “Date and Time Functions”

TIME_FORMAT()
Section 12.10, “Cast Functions and Operators”
Section 12.7, “Date and Time Functions”

TIME_TO_SEC()
Section 12.7, “Date and Time Functions”
Section 22.6.3, “Partitioning Limitations Relating to Functions”

TIMEDIFF()
Section 12.7, “Date and Time Functions”

TIMESTAMP()
Section 12.7, “Date and Time Functions”

TIMESTAMPADD()
Section 12.7, “Date and Time Functions”

TIMESTAMPDIFF()
Section 12.7, “Date and Time Functions”
Section 3.3.4.5, “Date Calculations”

TO_BASE64()
Section 12.8, “String Functions and Operators”

TO_DAYS()
Section 12.7, “Date and Time Functions”
Section 22.2.4, “HASH Partitioning”
Section 1.6.1, “MySQL Extensions to Standard SQL”
Section 22.4, “Partition Pruning”
Section 22.6.3, “Partitioning Limitations Relating to Functions”
Section 22.2, “Partitioning Types”

TO_SECONDS()
Section 12.7, “Date and Time Functions”
Section 22.4, “Partition Pruning”
Section 22.6.3, “Partitioning Limitations Relating to Functions”
Section 22.2, “Partitioning Types”

Touches()
Section 12.16.9.1, “Spatial Relation Functions That Use Object Shapes”

4940

TRIM()
Section 12.8.3, “Character Set and Collation of Function Results”
Section 10.7, “Column Character Set Conversion”
Section 1.6.1, “MySQL Extensions to Standard SQL”
Section 12.8, “String Functions and Operators”

TRUNCATE()
Section 12.6.2, “Mathematical Functions”

U

[index top]

UCASE()
Section 12.8.3, “Character Set and Collation of Function Results”
Section 12.8, “String Functions and Operators”

UNCOMPRESS()
Section 12.13, “Encryption and Compression Functions”
Section 2.8.7, “MySQL Source-Configuration Options”
Section 5.1.7, “Server System Variables”

UNCOMPRESSED_LENGTH()
Section 12.13, “Encryption and Compression Functions”

UNHEX()
Section 12.13, “Encryption and Compression Functions”
Section 4.5.1.1, “mysql Client Options”
Section 12.8, “String Functions and Operators”

UNIX_TIMESTAMP()
Section 12.7, “Date and Time Functions”
Section 16.2.1.3, “Determination of Safe and Unsafe Statements in Binary Logging”
Section 8.10.3.1, “How the Query Cache Operates”
Section 8.3.11, “Indexed Lookups from TIMESTAMP Columns”
Section 22.6.3, “Partitioning Limitations Relating to Functions”
Section 22.2.1, “RANGE Partitioning”
Section 5.1.7, “Server System Variables”
Section 26.4.3.21, “The metrics View”
Section B.3.3.7, “Time Zone Problems”

UpdateXML()
Section 12.11, “XML Functions”

UPPER()
Section 12.10, “Cast Functions and Operators”
Section 12.8.3, “Character Set and Collation of Function Results”
Section 10.2.1, “Character Set Repertoire”
Section 12.8, “String Functions and Operators”
Section 10.10.1, “Unicode Character Sets”
Section 10.8.7, “Using Collation in INFORMATION_SCHEMA Searches”

4941

USER()
Section 16.2.1.1, “Advantages and Disadvantages of Statement-Based and Row-Based Replication”
Section 13.7.1.1, “ALTER USER Statement”
Section 10.8.4, “Collation Coercibility in Expressions”
Section 16.2.1.3, “Determination of Safe and Unsafe Statements in Binary Logging”
Section 8.10.3.1, “How the Query Cache Operates”
Section 12.15, “Information Functions”
Section 5.4.4.3, “Mixed Binary Logging Format”
Section 6.4.3.2, “Password Validation Plugin Options and Variables”
Section 6.2.14, “Proxy Users”
Section 16.4.1.15, “Replication and System Functions”
Section 6.2.18, “SQL-Based Account Activity Auditing”
Section 10.2.2, “UTF-8 for Metadata”

UTC_DATE
Section 12.7, “Date and Time Functions”

UTC_DATE()
Section 12.7, “Date and Time Functions”
Section 16.2.1.3, “Determination of Safe and Unsafe Statements in Binary Logging”

UTC_TIME
Section 12.7, “Date and Time Functions”

UTC_TIME()
Section 12.7, “Date and Time Functions”
Section 16.2.1.3, “Determination of Safe and Unsafe Statements in Binary Logging”

UTC_TIMESTAMP
Section 12.7, “Date and Time Functions”

UTC_TIMESTAMP()
Section 12.7, “Date and Time Functions”
Section 16.2.1.3, “Determination of Safe and Unsafe Statements in Binary Logging”
Section 5.1.13, “MySQL Server Time Zone Support”
Section 16.4.1.13, “Replication and Fractional Seconds Support”

UUID()
Section 16.2.1.1, “Advantages and Disadvantages of Statement-Based and Row-Based Replication”
Section 16.1.6.4, “Binary Logging Options and Variables”
Section 16.2.1.3, “Determination of Safe and Unsafe Statements in Binary Logging”
Section 8.2.1.18, “Function Call Optimization”
Section 8.10.3.1, “How the Query Cache Operates”
Section 12.20, “Miscellaneous Functions”
Section 5.4.4.3, “Mixed Binary Logging Format”
Section 16.4.1.15, “Replication and System Functions”
Section 5.4.4.2, “Setting The Binary Log Format”
Section 23.7, “Stored Program Binary Logging”

UUID_SHORT()
Section 16.2.1.1, “Advantages and Disadvantages of Statement-Based and Row-Based Replication”

4942

Section 16.2.1.3, “Determination of Safe and Unsafe Statements in Binary Logging”
Section 8.10.3.1, “How the Query Cache Operates”
Section 12.20, “Miscellaneous Functions”

V

[index top]

VALIDATE_PASSWORD_STRENGTH()
Section 12.13, “Encryption and Compression Functions”
Section 6.4.3.2, “Password Validation Plugin Options and Variables”
Section 6.4.3, “The Password Validation Plugin”

VALUES()
Section 13.2.5.2, “INSERT ... ON DUPLICATE KEY UPDATE Statement”
Section 12.20, “Miscellaneous Functions”

VAR_POP()
Section 12.19.1, “Aggregate Function Descriptions”

VAR_SAMP()
Section 12.19.1, “Aggregate Function Descriptions”

VARIANCE()
Section 12.19.1, “Aggregate Function Descriptions”

VERSION()
Section 16.2.1.1, “Advantages and Disadvantages of Statement-Based and Row-Based Replication”
Section 6.4.5.4, “Audit Log File Formats”
Section B.3.4.1, “Case Sensitivity in String Searches”
Section 10.8.4, “Collation Coercibility in Expressions”
Section 12.15, “Information Functions”
Section 16.4.1.15, “Replication and System Functions”
Section 26.4.3.47, “The version View”
Section 10.2.2, “UTF-8 for Metadata”
Section 1.3, “What Is New in MySQL 5.7”

version_tokens_delete()
Section 5.5.5.3, “Using Version Tokens”
Section 5.5.5.4, “Version Tokens Reference”

version_tokens_edit()
Section 5.5.5.3, “Using Version Tokens”
Section 5.5.5.4, “Version Tokens Reference”

version_tokens_lock_exclusive()
Section 5.5.5.3, “Using Version Tokens”
Section 5.5.5.4, “Version Tokens Reference”

version_tokens_lock_shared()
Section 5.5.5.3, “Using Version Tokens”
Section 5.5.5.4, “Version Tokens Reference”

4943

version_tokens_set()
Section 5.5.5.3, “Using Version Tokens”
Section 5.5.5.4, “Version Tokens Reference”

version_tokens_show()
Section 5.5.5.3, “Using Version Tokens”
Section 5.5.5.4, “Version Tokens Reference”

version_tokens_unlock()
Section 5.5.5.3, “Using Version Tokens”
Section 5.5.5.4, “Version Tokens Reference”

W

[index top]

WAIT_FOR_EXECUTED_GTID_SET()
Section 12.18, “Functions Used with Global Transaction Identifiers (GTIDs)”
Section 16.1.4.1, “Replication Mode Concepts”

WAIT_UNTIL_SQL_THREAD_AFTER_GTIDS()
Section 16.2.2.1, “Commands for Operations on a Single Channel”
Section 16.2.2.2, “Compatibility with Previous Replication Statements”
Section 12.18, “Functions Used with Global Transaction Identifiers (GTIDs)”
Section 13.4.2.5, “START SLAVE Statement”

WEEK()
Section 12.7, “Date and Time Functions”
Section 5.1.7, “Server System Variables”

WEEKDAY()
Section 12.7, “Date and Time Functions”
Section 1.6.1, “MySQL Extensions to Standard SQL”
Section 22.6.3, “Partitioning Limitations Relating to Functions”
Section 22.2, “Partitioning Types”

WEEKOFYEAR()
Section 12.7, “Date and Time Functions”

WEIGHT_STRING()
Section 10.14, “Adding a Collation to a Character Set”
Section B.3.4.1, “Case Sensitivity in String Searches”
Section 12.8, “String Functions and Operators”
Section 10.10.1, “Unicode Character Sets”

Within()
Section 12.16.9.2, “Spatial Relation Functions That Use Minimum Bounding Rectangles”

X

[index top]

4944

X()
Section 12.16.7.2, “Point Property Functions”

Y

[index top]

Y()
Section 12.16.7.2, “Point Property Functions”

YEAR()
Section 12.7, “Date and Time Functions”
Section 3.3.4.5, “Date Calculations”
Section 22.2.4, “HASH Partitioning”
Section 22.2.7, “How MySQL Partitioning Handles NULL”
Section 22.3.1, “Management of RANGE and LIST Partitions”
Section 22.4, “Partition Pruning”
Section 22.6.3, “Partitioning Limitations Relating to Functions”
Section 22.2, “Partitioning Types”
Section 22.2.1, “RANGE Partitioning”

YEARWEEK()
Section 12.7, “Date and Time Functions”
Section 22.6.3, “Partitioning Limitations Relating to Functions”

INFORMATION_SCHEMA Index
C | E | F | G | I | K | M | N | O | P | R | S | T | U | V

C

[index top]

CHARACTER_SETS
Section 10.3.8, “Character Set Introducers”
Section 10.2, “Character Sets and Collations in MySQL”
Section 10.3.6, “Character String Literal Character Set and Collation”
Section 10.3.5, “Column Character Set and Collation”
Section 10.3.3, “Database Character Set and Collation”
Section 13.7.5.3, “SHOW CHARACTER SET Statement”
Section 10.10, “Supported Character Sets and Collations”
Section 10.3.4, “Table Character Set and Collation”
Section 24.3.2, “The INFORMATION_SCHEMA CHARACTER_SETS Table”

COLLATION_CHARACTER_SET_APPLICABILITY
Section 24.3.4, “The INFORMATION_SCHEMA COLLATION_CHARACTER_SET_APPLICABILITY Table”

COLLATIONS
Section 10.15, “Character Set Configuration”
Section 10.2, “Character Sets and Collations in MySQL”
Section 10.14.2, “Choosing a Collation ID”
Section 8.2.3, “Optimizing INFORMATION_SCHEMA Queries”

4945

Section 13.7.5.4, “SHOW COLLATION Statement”
Section 24.3.3, “The INFORMATION_SCHEMA COLLATIONS Table”

COLUMN_PRIVILEGES
Section 24.3.6, “The INFORMATION_SCHEMA COLUMN_PRIVILEGES Table”

COLUMNS
Section 13.1.18, “CREATE TABLE Statement”
Section 21.5.15, “ndb_index_stat — NDB Index Statistics Utility”
Section 8.2.3, “Optimizing INFORMATION_SCHEMA Queries”
Section 5.1.7, “Server System Variables”
Section 13.7.5.5, “SHOW COLUMNS Statement”
Section 24.3.5, “The INFORMATION_SCHEMA COLUMNS Table”
Section 24.4.2, “The INFORMATION_SCHEMA INNODB_BUFFER_PAGE Table”
Section 24.4.3, “The INFORMATION_SCHEMA INNODB_BUFFER_PAGE_LRU Table”
Section 24.4.4, “The INFORMATION_SCHEMA INNODB_BUFFER_POOL_STATS Table”
Section 24.4.5, “The INFORMATION_SCHEMA INNODB_CMP and INNODB_CMP_RESET Tables”
Section 24.4.7, “The INFORMATION_SCHEMA INNODB_CMP_PER_INDEX and
INNODB_CMP_PER_INDEX_RESET Tables”
Section 24.4.6, “The INFORMATION_SCHEMA INNODB_CMPMEM and INNODB_CMPMEM_RESET
Tables”
Section 24.4.8, “The INFORMATION_SCHEMA INNODB_FT_BEING_DELETED Table”
Section 24.4.9, “The INFORMATION_SCHEMA INNODB_FT_CONFIG Table”
Section 24.4.10, “The INFORMATION_SCHEMA INNODB_FT_DEFAULT_STOPWORD Table”
Section 24.4.11, “The INFORMATION_SCHEMA INNODB_FT_DELETED Table”
Section 24.4.12, “The INFORMATION_SCHEMA INNODB_FT_INDEX_CACHE Table”
Section 24.4.13, “The INFORMATION_SCHEMA INNODB_FT_INDEX_TABLE Table”
Section 24.4.15, “The INFORMATION_SCHEMA INNODB_LOCK_WAITS Table”
Section 24.4.14, “The INFORMATION_SCHEMA INNODB_LOCKS Table”
Section 24.4.16, “The INFORMATION_SCHEMA INNODB_METRICS Table”
Section 24.4.17, “The INFORMATION_SCHEMA INNODB_SYS_COLUMNS Table”
Section 24.4.18, “The INFORMATION_SCHEMA INNODB_SYS_DATAFILES Table”
Section 24.4.19, “The INFORMATION_SCHEMA INNODB_SYS_FIELDS Table”
Section 24.4.20, “The INFORMATION_SCHEMA INNODB_SYS_FOREIGN Table”
Section 24.4.21, “The INFORMATION_SCHEMA INNODB_SYS_FOREIGN_COLS Table”
Section 24.4.22, “The INFORMATION_SCHEMA INNODB_SYS_INDEXES Table”
Section 24.4.23, “The INFORMATION_SCHEMA INNODB_SYS_TABLES Table”
Section 24.4.24, “The INFORMATION_SCHEMA INNODB_SYS_TABLESPACES Table”
Section 24.4.25, “The INFORMATION_SCHEMA INNODB_SYS_TABLESTATS View”
Section 24.4.26, “The INFORMATION_SCHEMA INNODB_SYS_VIRTUAL Table”
Section 24.4.27, “The INFORMATION_SCHEMA INNODB_TEMP_TABLE_INFO Table”
Section 24.4.28, “The INFORMATION_SCHEMA INNODB_TRX Table”
Section 2.10.4, “Upgrading MySQL Binary or Package-based Installations on Unix/Linux”

CONNECTION_CONTROL_FAILED_LOGIN_ATTEMPTS
Section 6.4.2.1, “Connection Control Plugin Installation”
Section 6.4.2.2, “Connection Control Plugin System and Status Variables”
Section 24.6.2, “The INFORMATION_SCHEMA CONNECTION_CONTROL_FAILED_LOGIN_ATTEMPTS
Table”

E

[index top]

4946

ENGINES
Section 25.1, “Performance Schema Quick Start”
Section 21.6.17, “Quick Reference: NDB Cluster SQL Statements”
Section 5.1.7, “Server System Variables”
Section 13.7.5.16, “SHOW ENGINES Statement”
Section 24.3.7, “The INFORMATION_SCHEMA ENGINES Table”
Section 14.1.3, “Verifying that InnoDB is the Default Storage Engine”

EVENTS
Section 23.4.4, “Event Metadata”
Section 23.4.2, “Event Scheduler Configuration”
Section 16.4.1.16, “Replication of Invoked Features”
Section 23.8, “Restrictions on Stored Programs”
Section 13.7.5.18, “SHOW EVENTS Statement”
Section 23.4.6, “The Event Scheduler and MySQL Privileges”
Section 24.3.8, “The INFORMATION_SCHEMA EVENTS Table”

F

[index top]

FILES
Section 13.1.5, “ALTER LOGFILE GROUP Statement”
Section 13.1.9, “ALTER TABLESPACE Statement”
Section 13.1.15, “CREATE LOGFILE GROUP Statement”
Section 13.1.19, “CREATE TABLESPACE Statement”
Section 21.6.16, “INFORMATION_SCHEMA Tables for NDB Cluster”
Section 21.6.11.1, “NDB Cluster Disk Data Objects”
Section 21.6.11.3, “NDB Cluster Disk Data Storage Requirements”
Section 21.5.10, “ndb_desc — Describe NDB Tables”
Section 21.6.15, “ndbinfo: The NDB Cluster Information Database”
Section 6.2.2, “Privileges Provided by MySQL”
Section 14.16.8, “Retrieving InnoDB Tablespace Metadata from INFORMATION_SCHEMA.FILES”
Section 24.3.9, “The INFORMATION_SCHEMA FILES Table”
Section 24.4.18, “The INFORMATION_SCHEMA INNODB_SYS_DATAFILES Table”
Section 24.4.24, “The INFORMATION_SCHEMA INNODB_SYS_TABLESPACES Table”
Section 24.3.26, “The INFORMATION_SCHEMA TABLESPACES Table”
Section 21.6.15.15, “The ndbinfo dict_obj_info Table”
Section 21.6.15.23, “The ndbinfo logbuffers Table”
Section 21.6.15.24, “The ndbinfo logspaces Table”
Section 14.6.3.5, “The Temporary Tablespace”

G

[index top]

GLOBAL_STATUS
Section 21.6, “Management of NDB Cluster”
Section 21.6.14, “NDB API Statistics Counters and Variables”
Section 21.7, “NDB Cluster Replication”
Section 5.1.7, “Server System Variables”
Section 13.7.5.35, “SHOW STATUS Statement”

4947

Section 24.3.10, “The INFORMATION_SCHEMA GLOBAL_STATUS and SESSION_STATUS Tables”

GLOBAL_VARIABLES
Section 5.1.7, “Server System Variables”
Section 13.7.5.39, “SHOW VARIABLES Statement”
Section 24.3.11, “The INFORMATION_SCHEMA GLOBAL_VARIABLES and SESSION_VARIABLES
Tables”

I

[index top]

INFORMATION_SCHEMA
Section 21.6.16, “INFORMATION_SCHEMA Tables for NDB Cluster”
Section 14.16, “InnoDB INFORMATION_SCHEMA Tables”
MySQL Glossary
Section 5.2, “The MySQL Data Directory”
Section 26.2, “Using the sys Schema”

INFORMATION_SCHEMA.CHARACTER_SETS
Section A.11, “MySQL 5.7 FAQ: MySQL Chinese, Japanese, and Korean Character Sets”

INFORMATION_SCHEMA.COLUMNS
Section A.11, “MySQL 5.7 FAQ: MySQL Chinese, Japanese, and Korean Character Sets”
Section 25.1, “Performance Schema Quick Start”

INFORMATION_SCHEMA.INNODB_CMP
MySQL Glossary

INFORMATION_SCHEMA.INNODB_SYS_TABLES
Section 14.16.3, “InnoDB INFORMATION_SCHEMA System Tables”

INFORMATION_SCHEMA.INNODB_SYS_TABLESPACES
Section 14.14, “InnoDB Data-at-Rest Encryption”
Section 14.16.3, “InnoDB INFORMATION_SCHEMA System Tables”

INFORMATION_SCHEMA.INNODB_SYS_TABLESTATS
Section 14.16.3, “InnoDB INFORMATION_SCHEMA System Tables”

INFORMATION_SCHEMA.OPTIMIZER_TRACE
Section 8.15, “Tracing the Optimizer”
Section 8.15.1, “Typical Usage”

INFORMATION_SCHEMA.PARTITIONS
Section 22.2.7, “How MySQL Partitioning Handles NULL”

INFORMATION_SCHEMA.PLUGINS
Section 5.5.1, “Installing and Uninstalling Plugins”

INFORMATION_SCHEMA.PROCESSLIST
Section 6.2.2, “Privileges Provided by MySQL”

4948

INFORMATION_SCHEMA.ROUTINES
Section A.4, “MySQL 5.7 FAQ: Stored Procedures and Functions”

INFORMATION_SCHEMA.STATISTICS
Section 21.5.15, “ndb_index_stat — NDB Index Statistics Utility”

INFORMATION_SCHEMA.TRIGGERS
Section A.5, “MySQL 5.7 FAQ: Triggers”

INNODB_BUFFER_PAGE
Section 14.5.2, “Change Buffer”
Section 14.16.5, “InnoDB INFORMATION_SCHEMA Buffer Pool Tables”
Section 26.1, “Prerequisites for Using the sys Schema”
Section 24.4.2, “The INFORMATION_SCHEMA INNODB_BUFFER_PAGE Table”
Section 24.4.3, “The INFORMATION_SCHEMA INNODB_BUFFER_PAGE_LRU Table”
Section 26.4.3.7, “The innodb_buffer_stats_by_schema and x$innodb_buffer_stats_by_schema Views”
Section 26.4.3.8, “The innodb_buffer_stats_by_table and x$innodb_buffer_stats_by_table Views”

INNODB_BUFFER_PAGE_LRU
Section 14.16.5, “InnoDB INFORMATION_SCHEMA Buffer Pool Tables”
Section 14.8.3.6, “Saving and Restoring the Buffer Pool State”
Section 24.4.3, “The INFORMATION_SCHEMA INNODB_BUFFER_PAGE_LRU Table”

INNODB_BUFFER_POOL_STATS
Section 14.5.1, “Buffer Pool”
Section 14.16.5, “InnoDB INFORMATION_SCHEMA Buffer Pool Tables”
Section 24.4.4, “The INFORMATION_SCHEMA INNODB_BUFFER_POOL_STATS Table”

INNODB_CMP
Section 14.16.1, “InnoDB INFORMATION_SCHEMA Tables about Compression”
Section 14.16.1.1, “INNODB_CMP and INNODB_CMP_RESET”
Section 14.16.1.2, “INNODB_CMPMEM and INNODB_CMPMEM_RESET”
Section 14.9.1.4, “Monitoring InnoDB Table Compression at Runtime”
Section 24.4.5, “The INFORMATION_SCHEMA INNODB_CMP and INNODB_CMP_RESET Tables”
Section 14.9.1.3, “Tuning Compression for InnoDB Tables”
Section 14.16.1.3, “Using the Compression Information Schema Tables”

INNODB_CMP_PER_INDEX
Section 14.15, “InnoDB Startup Options and System Variables”
Section 14.9.1.4, “Monitoring InnoDB Table Compression at Runtime”
Section 24.4.7, “The INFORMATION_SCHEMA INNODB_CMP_PER_INDEX and
INNODB_CMP_PER_INDEX_RESET Tables”
Section 14.9.1.3, “Tuning Compression for InnoDB Tables”
Section 14.16.1.3, “Using the Compression Information Schema Tables”

INNODB_CMP_PER_INDEX_RESET
Section 24.4.7, “The INFORMATION_SCHEMA INNODB_CMP_PER_INDEX and
INNODB_CMP_PER_INDEX_RESET Tables”

INNODB_CMP_RESET
Section 14.16.1, “InnoDB INFORMATION_SCHEMA Tables about Compression”

4949

Section 14.16.1.1, “INNODB_CMP and INNODB_CMP_RESET”
Section 14.16.1.2, “INNODB_CMPMEM and INNODB_CMPMEM_RESET”
Section 24.4.5, “The INFORMATION_SCHEMA INNODB_CMP and INNODB_CMP_RESET Tables”

INNODB_CMPMEM
Section 14.16.1, “InnoDB INFORMATION_SCHEMA Tables about Compression”
Section 14.16.1.2, “INNODB_CMPMEM and INNODB_CMPMEM_RESET”
Section 24.4.6, “The INFORMATION_SCHEMA INNODB_CMPMEM and INNODB_CMPMEM_RESET
Tables”
Section 14.16.1.3, “Using the Compression Information Schema Tables”

INNODB_CMPMEM_RESET
Section 14.16.1, “InnoDB INFORMATION_SCHEMA Tables about Compression”
Section 14.16.1.2, “INNODB_CMPMEM and INNODB_CMPMEM_RESET”
Section 24.4.6, “The INFORMATION_SCHEMA INNODB_CMPMEM and INNODB_CMPMEM_RESET
Tables”

INNODB_FT_BEING_DELETED
Section 14.6.2.4, “InnoDB Full-Text Indexes”
Section 14.16.4, “InnoDB INFORMATION_SCHEMA FULLTEXT Index Tables”
Section 14.15, “InnoDB Startup Options and System Variables”
Section 24.4.8, “The INFORMATION_SCHEMA INNODB_FT_BEING_DELETED Table”

INNODB_FT_CONFIG
Section 14.6.2.4, “InnoDB Full-Text Indexes”
Section 14.16.4, “InnoDB INFORMATION_SCHEMA FULLTEXT Index Tables”
Section 14.15, “InnoDB Startup Options and System Variables”
Section 24.4.9, “The INFORMATION_SCHEMA INNODB_FT_CONFIG Table”

INNODB_FT_DEFAULT_STOPWORD
Section 12.9.4, “Full-Text Stopwords”
Section 14.6.2.4, “InnoDB Full-Text Indexes”
Section 14.16.4, “InnoDB INFORMATION_SCHEMA FULLTEXT Index Tables”
Section 24.4.10, “The INFORMATION_SCHEMA INNODB_FT_DEFAULT_STOPWORD Table”

INNODB_FT_DELETED
Section 14.6.2.4, “InnoDB Full-Text Indexes”
Section 14.16.4, “InnoDB INFORMATION_SCHEMA FULLTEXT Index Tables”
Section 14.15, “InnoDB Startup Options and System Variables”
Section 24.4.8, “The INFORMATION_SCHEMA INNODB_FT_BEING_DELETED Table”
Section 24.4.11, “The INFORMATION_SCHEMA INNODB_FT_DELETED Table”

INNODB_FT_INDEX_CACHE
Section 14.6.2.4, “InnoDB Full-Text Indexes”
Section 14.16.4, “InnoDB INFORMATION_SCHEMA FULLTEXT Index Tables”
Section 14.15, “InnoDB Startup Options and System Variables”
Section 12.9.9, “MeCab Full-Text Parser Plugin”
Section 12.9.8, “ngram Full-Text Parser”
Section 24.4.12, “The INFORMATION_SCHEMA INNODB_FT_INDEX_CACHE Table”

INNODB_FT_INDEX_TABLE
Section 12.9.4, “Full-Text Stopwords”

4950

Section 14.6.2.4, “InnoDB Full-Text Indexes”
Section 14.16.4, “InnoDB INFORMATION_SCHEMA FULLTEXT Index Tables”
Section 14.15, “InnoDB Startup Options and System Variables”
Section 24.4.8, “The INFORMATION_SCHEMA INNODB_FT_BEING_DELETED Table”
Section 24.4.11, “The INFORMATION_SCHEMA INNODB_FT_DELETED Table”
Section 24.4.13, “The INFORMATION_SCHEMA INNODB_FT_INDEX_TABLE Table”

INNODB_LOCK_WAITS
Section 14.16.2, “InnoDB INFORMATION_SCHEMA Transaction and Locking Information”
Section 14.16.2.2, “InnoDB Lock and Lock-Wait Information”
Section 14.16.2.3, “Persistence and Consistency of InnoDB Transaction and Locking Information”
Section 24.4.15, “The INFORMATION_SCHEMA INNODB_LOCK_WAITS Table”
Section 14.16.2.1, “Using InnoDB Transaction and Locking Information”
Section 1.3, “What Is New in MySQL 5.7”

INNODB_LOCKS
Section 14.16.2, “InnoDB INFORMATION_SCHEMA Transaction and Locking Information”
Section 14.16.2.2, “InnoDB Lock and Lock-Wait Information”
Section 14.16.2.3, “Persistence and Consistency of InnoDB Transaction and Locking Information”
Section 24.4.15, “The INFORMATION_SCHEMA INNODB_LOCK_WAITS Table”
Section 24.4.14, “The INFORMATION_SCHEMA INNODB_LOCKS Table”
Section 24.4.28, “The INFORMATION_SCHEMA INNODB_TRX Table”
Section 14.16.2.1, “Using InnoDB Transaction and Locking Information”
Section 1.3, “What Is New in MySQL 5.7”

INNODB_METRICS
Section 14.5.2, “Change Buffer”
Section 14.8.12, “Configuring the Merge Threshold for Index Pages”
Section 14.16.6, “InnoDB INFORMATION_SCHEMA Metrics Table”
Section 14.15, “InnoDB Startup Options and System Variables”
MySQL Glossary
Section 24.4.16, “The INFORMATION_SCHEMA INNODB_METRICS Table”
Section 26.4.3.21, “The metrics View”

INNODB_SYS_COLUMNS
Section 14.16.3, “InnoDB INFORMATION_SCHEMA System Tables”
Section 24.4.17, “The INFORMATION_SCHEMA INNODB_SYS_COLUMNS Table”
Section 24.4.26, “The INFORMATION_SCHEMA INNODB_SYS_VIRTUAL Table”

INNODB_SYS_DATAFILES
Section 14.16.3, “InnoDB INFORMATION_SCHEMA System Tables”
Section 14.16.8, “Retrieving InnoDB Tablespace Metadata from INFORMATION_SCHEMA.FILES”
Section 24.3.9, “The INFORMATION_SCHEMA FILES Table”
Section 24.4.18, “The INFORMATION_SCHEMA INNODB_SYS_DATAFILES Table”
Section 24.3.26, “The INFORMATION_SCHEMA TABLESPACES Table”

INNODB_SYS_FIELDS
Section 14.16.3, “InnoDB INFORMATION_SCHEMA System Tables”
Section 24.4.19, “The INFORMATION_SCHEMA INNODB_SYS_FIELDS Table”

INNODB_SYS_FOREIGN
Section 1.6.3.2, “FOREIGN KEY Constraints”

4951

Section 13.1.18.5, “FOREIGN KEY Constraints”
Section 14.16.3, “InnoDB INFORMATION_SCHEMA System Tables”
Section 24.4.20, “The INFORMATION_SCHEMA INNODB_SYS_FOREIGN Table”

INNODB_SYS_FOREIGN_COLS
Section 1.6.3.2, “FOREIGN KEY Constraints”
Section 13.1.18.5, “FOREIGN KEY Constraints”
Section 14.16.3, “InnoDB INFORMATION_SCHEMA System Tables”
Section 24.4.21, “The INFORMATION_SCHEMA INNODB_SYS_FOREIGN_COLS Table”

INNODB_SYS_INDEXES
Section 14.8.12, “Configuring the Merge Threshold for Index Pages”
Section 14.6.2.4, “InnoDB Full-Text Indexes”
Section 14.16.3, “InnoDB INFORMATION_SCHEMA System Tables”
Section 24.4.22, “The INFORMATION_SCHEMA INNODB_SYS_INDEXES Table”

INNODB_SYS_TABLES
Section 22.3.3, “Exchanging Partitions and Subpartitions with Tables”
Section 14.6.2.4, “InnoDB Full-Text Indexes”
Section 14.16.3, “InnoDB INFORMATION_SCHEMA System Tables”
Section 14.11, “InnoDB Row Formats”
Section 24.4.23, “The INFORMATION_SCHEMA INNODB_SYS_TABLES Table”
Section 14.22.3, “Troubleshooting InnoDB Data Dictionary Operations”

INNODB_SYS_TABLESPACES
Section 14.16.3, “InnoDB INFORMATION_SCHEMA System Tables”
Section 14.9.2, “InnoDB Page Compression”
Section 14.16.8, “Retrieving InnoDB Tablespace Metadata from INFORMATION_SCHEMA.FILES”
Section 24.3.9, “The INFORMATION_SCHEMA FILES Table”
Section 24.4.24, “The INFORMATION_SCHEMA INNODB_SYS_TABLESPACES Table”
Section 24.3.26, “The INFORMATION_SCHEMA TABLESPACES Table”

INNODB_SYS_TABLESTATS
Section 13.7.2.1, “ANALYZE TABLE Statement”
Section 14.16.3, “InnoDB INFORMATION_SCHEMA System Tables”
Section 24.4.25, “The INFORMATION_SCHEMA INNODB_SYS_TABLESTATS View”

INNODB_SYS_VIRTUAL
Section 24.4.26, “The INFORMATION_SCHEMA INNODB_SYS_VIRTUAL Table”

INNODB_TEMP_TABLE_INFO
Section 14.16.7, “InnoDB INFORMATION_SCHEMA Temporary Table Info Table”
Section 14.15, “InnoDB Startup Options and System Variables”
Section 24.4.27, “The INFORMATION_SCHEMA INNODB_TEMP_TABLE_INFO Table”
Section 14.6.3.5, “The Temporary Tablespace”

INNODB_TRX
Section 14.16.2, “InnoDB INFORMATION_SCHEMA Transaction and Locking Information”
Section 14.16.2.2, “InnoDB Lock and Lock-Wait Information”
Section 14.15, “InnoDB Startup Options and System Variables”
Section 14.16.2.3, “Persistence and Consistency of InnoDB Transaction and Locking Information”

4952

Section 24.4.14, “The INFORMATION_SCHEMA INNODB_LOCKS Table”
Section 24.4.28, “The INFORMATION_SCHEMA INNODB_TRX Table”
Section 14.16.2.1, “Using InnoDB Transaction and Locking Information”

K

[index top]

KEY_COLUMN_USAGE
Section 1.6.3.2, “FOREIGN KEY Constraints”
Section 13.1.18.5, “FOREIGN KEY Constraints”
Section 8.2.3, “Optimizing INFORMATION_SCHEMA Queries”
Section 24.3.12, “The INFORMATION_SCHEMA KEY_COLUMN_USAGE Table”

M

[index top]

MYSQL_FIREWALL_USERS
Section 6.4.6.4, “MySQL Enterprise Firewall Reference”
Section 24.7.2, “The INFORMATION_SCHEMA MYSQL_FIREWALL_USERS Table”

MYSQL_FIREWALL_WHITELIST
Section 6.4.6.4, “MySQL Enterprise Firewall Reference”
Section 24.7.3, “The INFORMATION_SCHEMA MYSQL_FIREWALL_WHITELIST Table”

N

[index top]

NDB_TRANSID_MYSQL_CONNECTION_MAP
Section 21.6.15.34, “The ndbinfo server_operations Table”
Section 21.6.15.35, “The ndbinfo server_transactions Table”

ndb_transid_mysql_connection_map
Section 21.6.16, “INFORMATION_SCHEMA Tables for NDB Cluster”
MySQL Server Options for NDB Cluster
Section 21.6.15, “ndbinfo: The NDB Cluster Information Database”
Section 24.3.13, “The INFORMATION_SCHEMA ndb_transid_mysql_connection_map Table”

O

[index top]

OPTIMIZER_TRACE
Section 24.3.14, “The INFORMATION_SCHEMA OPTIMIZER_TRACE Table”
Section 8.15.4, “Tuning Trace Purging”

P

[index top]

4953

PARAMETERS
Section A.4, “MySQL 5.7 FAQ: Stored Procedures and Functions”
Section 13.7.5.28, “SHOW PROCEDURE STATUS Statement”
Section 24.3.15, “The INFORMATION_SCHEMA PARAMETERS Table”
Section 24.3.21, “The INFORMATION_SCHEMA ROUTINES Table”

PARTITIONS
Section 22.3.3, “Exchanging Partitions and Subpartitions with Tables”
Section 22.2.7, “How MySQL Partitioning Handles NULL”
Section 22.2.5, “KEY Partitioning”
Section 22.3.5, “Obtaining Information About Partitions”
Section 8.2.3, “Optimizing INFORMATION_SCHEMA Queries”
Chapter 22, Partitioning
Section 22.2.3.1, “RANGE COLUMNS partitioning”
Section 5.1.6, “Server Command Options”
Section 13.7.5.36, “SHOW TABLE STATUS Statement”
Section 24.3.16, “The INFORMATION_SCHEMA PARTITIONS Table”
Section 24.3.25, “The INFORMATION_SCHEMA TABLES Table”

PLUGINS
Section 6.4.2.1, “Connection Control Plugin Installation”
Section 14.14, “InnoDB Data-at-Rest Encryption”
Section 13.7.3.3, “INSTALL PLUGIN Statement”
Section 5.5.1, “Installing and Uninstalling Plugins”
Section 6.4.5.2, “Installing or Uninstalling MySQL Enterprise Audit”
Section 6.4.4.10, “Keyring Metadata”
Section 6.4.4.1, “Keyring Plugin Installation”
Section 6.4.1.9, “LDAP Pluggable Authentication”
Section 6.4.1.10, “No-Login Pluggable Authentication”
Section 5.5.2, “Obtaining Server Plugin Information”
Section 6.4.1.7, “PAM Pluggable Authentication”
Chapter 22, Partitioning
Section 6.4.3.1, “Password Validation Plugin Installation”
Section 21.6.17, “Quick Reference: NDB Cluster SQL Statements”
Section 16.3.9.2, “Semisynchronous Replication Installation and Configuration”
Section 5.1.6, “Server Command Options”
Section 6.4.1.11, “Socket Peer-Credential Pluggable Authentication”
Section 6.4.1.12, “Test Pluggable Authentication”
Section 24.3.17, “The INFORMATION_SCHEMA PLUGINS Table”
Section 5.5.3.2, “Thread Pool Installation”
Section 6.4.1.8, “Windows Pluggable Authentication”

PROCESSLIST
Section 8.14.1, “Accessing the Process List”
Section 12.15, “Information Functions”
Section 13.7.6.4, “KILL Statement”
Section 8.8.4, “Obtaining Execution Plan Information for a Named Connection”
Section 25.6, “Performance Schema Instrument Naming Conventions”
Section 25.12.11, “Performance Schema Replication Tables”
Section 25.12.5, “Performance Schema Stage Event Tables”
Section 14.16.2.3, “Persistence and Consistency of InnoDB Transaction and Locking Information”
Section 13.7.5.29, “SHOW PROCESSLIST Statement”
Section 24.4.28, “The INFORMATION_SCHEMA INNODB_TRX Table”

4954

Section 24.3.18, “The INFORMATION_SCHEMA PROCESSLIST Table”
Section 26.4.3.22, “The processlist and x$processlist Views”
Section 25.12.16.3, “The processlist Table”
Section 25.12.16.4, “The threads Table”
Section 14.16.2.1, “Using InnoDB Transaction and Locking Information”

PROFILING
Section 13.7.5.30, “SHOW PROFILE Statement”
Section 24.3.19, “The INFORMATION_SCHEMA PROFILING Table”
Section 1.3, “What Is New in MySQL 5.7”

R

[index top]

REFERENTIAL_CONSTRAINTS
Section 8.2.3, “Optimizing INFORMATION_SCHEMA Queries”
Section 24.3.20, “The INFORMATION_SCHEMA REFERENTIAL_CONSTRAINTS Table”

ROUTINES
Section 24.1, “Introduction”
Section A.4, “MySQL 5.7 FAQ: Stored Procedures and Functions”
Section 13.7.5.28, “SHOW PROCEDURE STATUS Statement”
Section 23.6, “Stored Object Access Control”
Section 23.2.3, “Stored Routine Metadata”
Section 24.3.21, “The INFORMATION_SCHEMA ROUTINES Table”

S

[index top]

SCHEMA_PRIVILEGES
Section 24.3.23, “The INFORMATION_SCHEMA SCHEMA_PRIVILEGES Table”

SCHEMATA
Section 6.2.3, “Grant Tables”
Section 6.2.2, “Privileges Provided by MySQL”
Section 5.1.7, “Server System Variables”
Section 13.7.5.14, “SHOW DATABASES Statement”
Section 24.3.22, “The INFORMATION_SCHEMA SCHEMATA Table”

SESSION_STATUS
Section 21.6, “Management of NDB Cluster”
Section 21.6.14, “NDB API Statistics Counters and Variables”
Section 21.7, “NDB Cluster Replication”
Section 5.1.7, “Server System Variables”
Section 13.7.5.35, “SHOW STATUS Statement”
Section 24.3.10, “The INFORMATION_SCHEMA GLOBAL_STATUS and SESSION_STATUS Tables”

SESSION_VARIABLES
Section 5.1.7, “Server System Variables”
Section 13.7.5.39, “SHOW VARIABLES Statement”

4955

Section 24.3.11, “The INFORMATION_SCHEMA GLOBAL_VARIABLES and SESSION_VARIABLES
Tables”

STATISTICS
Section 13.7.2.1, “ANALYZE TABLE Statement”
Section 14.8.11.2, “Configuring Non-Persistent Optimizer Statistics Parameters”
Section 8.9.4, “Index Hints”
Section 14.15, “InnoDB Startup Options and System Variables”
Section 8.2.3, “Optimizing INFORMATION_SCHEMA Queries”
Section 13.7.5.22, “SHOW INDEX Statement”
Section 24.3.24, “The INFORMATION_SCHEMA STATISTICS Table”

T

[index top]

TABLE_CONSTRAINTS
Section 14.13.1, “Online DDL Operations”
Section 8.2.3, “Optimizing INFORMATION_SCHEMA Queries”
Section 24.3.20, “The INFORMATION_SCHEMA REFERENTIAL_CONSTRAINTS Table”
Section 24.3.27, “The INFORMATION_SCHEMA TABLE_CONSTRAINTS Table”

TABLE_PRIVILEGES
Section 24.3.28, “The INFORMATION_SCHEMA TABLE_PRIVILEGES Table”

TABLES
Section 21.6.7.3, “Adding NDB Cluster Data Nodes Online: Detailed Example”
Section 13.1.8, “ALTER TABLE Statement”
Section 14.8.11.2, “Configuring Non-Persistent Optimizer Statistics Parameters”
Section 13.1.18, “CREATE TABLE Statement”
Section 14.14, “InnoDB Data-at-Rest Encryption”
Section 14.9.2, “InnoDB Page Compression”
Section 14.15, “InnoDB Startup Options and System Variables”
Section 24.1, “Introduction”
NDB Cluster System Variables
Section 8.2.3, “Optimizing INFORMATION_SCHEMA Queries”
Section 5.1.6, “Server Command Options”
Section 13.1.18.9, “Setting NDB Comment Options”
Section 13.7.5.36, “SHOW TABLE STATUS Statement”
Section 13.7.5.37, “SHOW TABLES Statement”
Section 26.4.4.2, “The diagnostics() Procedure”
Section 24.3.25, “The INFORMATION_SCHEMA TABLES Table”
Section 26.4.2.1, “The sys_config Table”

TP_THREAD_GROUP_STATE
Section 24.5, “INFORMATION_SCHEMA Thread Pool Tables”
Section 24.5.2, “The INFORMATION_SCHEMA TP_THREAD_GROUP_STATE Table”
Section 5.5.3.1, “Thread Pool Elements”

TP_THREAD_GROUP_STATS
Section 24.5, “INFORMATION_SCHEMA Thread Pool Tables”
Section 24.5.3, “The INFORMATION_SCHEMA TP_THREAD_GROUP_STATS Table”

4956

Section 24.5.4, “The INFORMATION_SCHEMA TP_THREAD_STATE Table”
Section 5.5.3.1, “Thread Pool Elements”

TP_THREAD_STATE
Section 24.5, “INFORMATION_SCHEMA Thread Pool Tables”
Section 24.5.2, “The INFORMATION_SCHEMA TP_THREAD_GROUP_STATE Table”
Section 24.5.4, “The INFORMATION_SCHEMA TP_THREAD_STATE Table”
Section 5.5.3.1, “Thread Pool Elements”
Section 5.5.3.2, “Thread Pool Installation”

TRIGGERS
Section 8.2.3, “Optimizing INFORMATION_SCHEMA Queries”
Section 13.7.5.11, “SHOW CREATE TRIGGER Statement”
Section 13.7.5.38, “SHOW TRIGGERS Statement”
Section 24.3.29, “The INFORMATION_SCHEMA TRIGGERS Table”
Section 23.3.2, “Trigger Metadata”

U

[index top]

USER_PRIVILEGES
Section 24.3.30, “The INFORMATION_SCHEMA USER_PRIVILEGES Table”

V

[index top]

VIEWS
Section 8.2.3, “Optimizing INFORMATION_SCHEMA Queries”
Section 13.7.5.13, “SHOW CREATE VIEW Statement”
Section 24.3.31, “The INFORMATION_SCHEMA VIEWS Table”
Section 23.5.3, “Updatable and Insertable Views”
Section 23.5.5, “View Metadata”

Join Types Index
A | C | E | F | I | R | S | U

A

[index top]

ALL
Section 8.2.1.20, “Avoiding Full Table Scans”
Section 8.2.1.11, “Block Nested-Loop and Batched Key Access Joins”
Section 8.8.2, “EXPLAIN Output Format”
Section 8.2.1.6, “Nested-Loop Join Algorithms”

C

[index top]

4957

const
Section 8.8.2, “EXPLAIN Output Format”
Section 8.8.3, “Extended EXPLAIN Output Format”
NDB Cluster System Variables
Section 8.2.1.14, “ORDER BY Optimization”
Section 8.2.1.2, “Range Optimization”
Section 13.2.9, “SELECT Statement”

E

[index top]

eq_ref
Section 8.2.1.11, “Block Nested-Loop and Batched Key Access Joins”
Section 8.8.2, “EXPLAIN Output Format”
Section 8.2.1.5, “Index Condition Pushdown Optimization”
Section 15.7.1, “MERGE Table Advantages and Disadvantages”
NDB Cluster System Variables
Section 8.2.2.3, “Optimizing Subqueries with the EXISTS Strategy”
Section 25.12.4.1, “The events_waits_current Table”

F

[index top]

fulltext
Section 8.8.2, “EXPLAIN Output Format”

I

[index top]

index
Section 8.2.1.11, “Block Nested-Loop and Batched Key Access Joins”
Section 8.8.2, “EXPLAIN Output Format”
Section 8.2.1.6, “Nested-Loop Join Algorithms”

index_merge
Section 8.8.2, “EXPLAIN Output Format”
Section 8.2.1.3, “Index Merge Optimization”

index_subquery
Section 8.8.2, “EXPLAIN Output Format”
Section 13.2.10.10, “Optimizing Subqueries”
Section 8.2.2.3, “Optimizing Subqueries with the EXISTS Strategy”

R

[index top]

4958

range
Section 8.2.1.11, “Block Nested-Loop and Batched Key Access Joins”
Section 8.8.2, “EXPLAIN Output Format”
Section 8.2.1.15, “GROUP BY Optimization”
Section 8.2.1.5, “Index Condition Pushdown Optimization”
Section 8.2.1.3, “Index Merge Optimization”
Section 8.2.1.6, “Nested-Loop Join Algorithms”
Section 8.2.1.2, “Range Optimization”

ref
Section 8.2.1.11, “Block Nested-Loop and Batched Key Access Joins”
Section 8.8.2, “EXPLAIN Output Format”
Section 8.8.3, “Extended EXPLAIN Output Format”
Section 8.2.1.5, “Index Condition Pushdown Optimization”
Section 8.3.7, “InnoDB and MyISAM Index Statistics Collection”
Section 15.7.1, “MERGE Table Advantages and Disadvantages”
NDB Cluster System Variables
Section 8.2.2.4, “Optimizing Derived Tables and View References with Merging or Materialization”
Section 8.2.2.3, “Optimizing Subqueries with the EXISTS Strategy”

ref_or_null
Section 8.8.2, “EXPLAIN Output Format”
Section 8.2.1.5, “Index Condition Pushdown Optimization”
Section 8.2.1.13, “IS NULL Optimization”
Section 8.2.2.3, “Optimizing Subqueries with the EXISTS Strategy”

S

[index top]

system
Section 8.8.2, “EXPLAIN Output Format”
Section 8.8.3, “Extended EXPLAIN Output Format”
Section 8.2.1.2, “Range Optimization”
Section 13.2.9, “SELECT Statement”

U

[index top]

unique_subquery
Section 8.8.2, “EXPLAIN Output Format”
Section 13.2.10.10, “Optimizing Subqueries”
Section 8.2.2.3, “Optimizing Subqueries with the EXISTS Strategy”

Operator Index
Symbols | A | B | C | D | E | I | L | N | O | R | X

Symbols

[index top]

4959

-
Section 12.6.1, “Arithmetic Operators”
Section 12.10, “Cast Functions and Operators”
Section 9.5, “Expressions”
Section 11.1.1, “Numeric Data Type Syntax”
Section 22.6, “Restrictions and Limitations on Partitioning”

!
Section 9.5, “Expressions”
Section 12.4.3, “Logical Operators”
Section 12.4.1, “Operator Precedence”

!=
Section 12.4.2, “Comparison Functions and Operators”
Section 12.4.1, “Operator Precedence”
Section 8.2.1.2, “Range Optimization”
Section 11.5, “The JSON Data Type”

%
Section 12.6.1, “Arithmetic Operators”

&
Section 12.12, “Bit Functions and Operators”
Section 13.1.18, “CREATE TABLE Statement”
Section 22.6, “Restrictions and Limitations on Partitioning”

&&
Section 12.4.3, “Logical Operators”
Section 1.6.1, “MySQL Extensions to Standard SQL”

>
Section 12.4.2, “Comparison Functions and Operators”
Section 8.3.8, “Comparison of B-Tree and Hash Indexes”
Section 8.8.2, “EXPLAIN Output Format”
Section 1.6.1, “MySQL Extensions to Standard SQL”
Section 12.4.1, “Operator Precedence”
Section 8.3.10, “Optimizer Use of Generated Column Indexes”
Section 8.2.1.2, “Range Optimization”
Section 11.5, “The JSON Data Type”

->
Section 12.17.3, “Functions That Search JSON Values”
Section 13.1.18.8, “Secondary Indexes and Generated Columns”
Section 11.5, “The JSON Data Type”

>>
Section 12.12, “Bit Functions and Operators”
Section 1.6.1, “MySQL Extensions to Standard SQL”
Section 22.6, “Restrictions and Limitations on Partitioning”

->>
Section 13.1.18.8, “Secondary Indexes and Generated Columns”

4960

Section 11.5, “The JSON Data Type”

>=
Section 12.4.2, “Comparison Functions and Operators”
Section 8.3.8, “Comparison of B-Tree and Hash Indexes”
Section 8.8.2, “EXPLAIN Output Format”
Section 1.6.1, “MySQL Extensions to Standard SQL”
Section 12.4.1, “Operator Precedence”
Section 8.3.10, “Optimizer Use of Generated Column Indexes”
Section 8.2.1.2, “Range Optimization”
Section 11.5, “The JSON Data Type”

<
Section 12.4.2, “Comparison Functions and Operators”
Section 8.3.8, “Comparison of B-Tree and Hash Indexes”
Section 8.8.2, “EXPLAIN Output Format”
Section 1.6.1, “MySQL Extensions to Standard SQL”
Section 12.4.1, “Operator Precedence”
Section 8.3.10, “Optimizer Use of Generated Column Indexes”
Section 8.2.1.2, “Range Optimization”
Section 11.5, “The JSON Data Type”
Section 3.3.4.6, “Working with NULL Values”

<>
Section 12.4.2, “Comparison Functions and Operators”
Section 8.8.2, “EXPLAIN Output Format”
Section 1.6.1, “MySQL Extensions to Standard SQL”
Section 12.4.1, “Operator Precedence”
Section 8.2.1.2, “Range Optimization”
Section 11.5, “The JSON Data Type”
Section 3.3.4.6, “Working with NULL Values”

<<
Section 12.12, “Bit Functions and Operators”
Section 1.6.1, “MySQL Extensions to Standard SQL”
Section 22.6, “Restrictions and Limitations on Partitioning”

<=
Section 12.4.2, “Comparison Functions and Operators”
Section 8.3.8, “Comparison of B-Tree and Hash Indexes”
Section 8.8.2, “EXPLAIN Output Format”
Section 1.6.1, “MySQL Extensions to Standard SQL”
Section 12.4.1, “Operator Precedence”
Section 8.3.10, “Optimizer Use of Generated Column Indexes”
Section 8.2.1.2, “Range Optimization”
Section 11.5, “The JSON Data Type”

<=>
Section 12.4.2, “Comparison Functions and Operators”
Section 8.15.12, “Example”
Section 8.8.2, “EXPLAIN Output Format”
Section 1.6.1, “MySQL Extensions to Standard SQL”
Section 12.4.1, “Operator Precedence”

4961

Section 8.2.1.2, “Range Optimization”
Section 11.5, “The JSON Data Type”
Section 12.3, “Type Conversion in Expression Evaluation”

*
Section 12.6.1, “Arithmetic Operators”
Section 11.1.1, “Numeric Data Type Syntax”
Section 22.6, “Restrictions and Limitations on Partitioning”

+
Section 12.6.1, “Arithmetic Operators”
Section 12.10, “Cast Functions and Operators”
Section 9.5, “Expressions”
Section 11.1.1, “Numeric Data Type Syntax”
Section 22.6, “Restrictions and Limitations on Partitioning”

/
Section 12.6.1, “Arithmetic Operators”
Section 22.6, “Restrictions and Limitations on Partitioning”
Section 5.1.7, “Server System Variables”

:=
Section 12.4.4, “Assignment Operators”
Section 12.4.1, “Operator Precedence”
Section 13.7.4.1, “SET Syntax for Variable Assignment”
Section 9.4, “User-Defined Variables”

=
Section 12.4.4, “Assignment Operators”
Section 12.4.2, “Comparison Functions and Operators”
Section 8.3.8, “Comparison of B-Tree and Hash Indexes”
Section 8.8.2, “EXPLAIN Output Format”
Section 1.6.1, “MySQL Extensions to Standard SQL”
Section 12.4.1, “Operator Precedence”
Section 8.3.10, “Optimizer Use of Generated Column Indexes”
Section 8.2.1.2, “Range Optimization”
Section 13.2.10.12, “Restrictions on Subqueries”
Section 13.7.4.1, “SET Syntax for Variable Assignment”
Section 12.8.1, “String Comparison Functions and Operators”
Section 11.5, “The JSON Data Type”
Section 9.4, “User-Defined Variables”
Section 3.3.4.6, “Working with NULL Values”

^
Section 12.12, “Bit Functions and Operators”
Section 9.5, “Expressions”
Section 12.4.1, “Operator Precedence”
Section 22.6, “Restrictions and Limitations on Partitioning”

|
Section 12.12, “Bit Functions and Operators”
Section 22.6, “Restrictions and Limitations on Partitioning”

4962

||
Section 12.8.3, “Character Set and Collation of Function Results”
Section 10.8.2, “COLLATE Clause Precedence”
Section 9.5, “Expressions”
Section 12.4.3, “Logical Operators”
Section 1.6.1, “MySQL Extensions to Standard SQL”
Section 12.4.1, “Operator Precedence”
Section 5.1.10, “Server SQL Modes”

~
Section 12.12, “Bit Functions and Operators”
Section 22.6, “Restrictions and Limitations on Partitioning”

A

[index top]

AND
Section 8.3.8, “Comparison of B-Tree and Hash Indexes”
Section 13.1.18, “CREATE TABLE Statement”
Section 8.2.1.3, “Index Merge Optimization”
Section 12.4.3, “Logical Operators”
Section 1.6.1, “MySQL Extensions to Standard SQL”
Section 8.2.2.3, “Optimizing Subqueries with the EXISTS Strategy”
Section 8.2.2.1, “Optimizing Subqueries, Derived Tables, and View References with Semijoin
Transformations”
Section 8.2.1.2, “Range Optimization”
Section 13.2.10.12, “Restrictions on Subqueries”
Section 8.2.1.19, “Row Constructor Expression Optimization”
Section 3.6.7, “Searching on Two Keys”
Section 3.3.4.2, “Selecting Particular Rows”
Section 12.8.1, “String Comparison Functions and Operators”
Section 23.5.2, “View Processing Algorithms”

B

[index top]

BETWEEN
Section 12.4.2, “Comparison Functions and Operators”
Section 8.3.8, “Comparison of B-Tree and Hash Indexes”
Section 8.2.1.12, “Condition Filtering”
Section 8.8.2, “EXPLAIN Output Format”
Section 8.3.10, “Optimizer Use of Generated Column Indexes”
Section 8.2.1.2, “Range Optimization”
Section 11.5, “The JSON Data Type”
Section 12.3, “Type Conversion in Expression Evaluation”

BINARY
Section 12.10, “Cast Functions and Operators”
Section 8.4.2.2, “Optimizing for Character and String Types”
Section 3.3.4.7, “Pattern Matching”

4963

Section 3.3.4.4, “Sorting Rows”

C

[index top]

CASE
Section 13.6.5.1, “CASE Statement”
Section 9.5, “Expressions”
Section 12.5, “Flow Control Functions”
Section 1.6.1, “MySQL Extensions to Standard SQL”

CASE value WHEN compare_value THEN result END
Section 12.5, “Flow Control Functions”

CASE WHEN condition THEN result END
Section 12.5, “Flow Control Functions”

CASE WHEN expr1 = expr2 THEN NULL ELSE expr1 END
Section 12.5, “Flow Control Functions”

column->>path
Section 12.17.3, “Functions That Search JSON Values”

column->path
Section 12.17.3, “Functions That Search JSON Values”
Section 11.5, “The JSON Data Type”
Section 1.3, “What Is New in MySQL 5.7”

D

[index top]

DIV
Section 12.6.1, “Arithmetic Operators”
Section 22.6, “Restrictions and Limitations on Partitioning”

E

[index top]

EXISTS()
Section 12.4.2, “Comparison Functions and Operators”

expr BETWEEN min AND max
Section 12.4.2, “Comparison Functions and Operators”

expr IN ()
Section 12.4.2, “Comparison Functions and Operators”

expr LIKE pat
Section 12.8.1, “String Comparison Functions and Operators”

4964

expr NOT BETWEEN min AND max
Section 12.4.2, “Comparison Functions and Operators”

expr NOT IN ()
Section 12.4.2, “Comparison Functions and Operators”

expr NOT LIKE pat
Section 12.8.1, “String Comparison Functions and Operators”

expr NOT REGEXP pat
Section 12.8.2, “Regular Expressions”

expr NOT RLIKE pat
Section 12.8.2, “Regular Expressions”

expr REGEXP pat
Section 12.8.2, “Regular Expressions”

expr RLIKE pat
Section 12.8.2, “Regular Expressions”

expr1 SOUNDS LIKE expr2
Section 12.8, “String Functions and Operators”

I

[index top]

IN()
Section 8.8.2, “EXPLAIN Output Format”
Section 12.4.1, “Operator Precedence”
Section 8.3.10, “Optimizer Use of Generated Column Indexes”
Section 8.2.1.2, “Range Optimization”
Section 8.2.1.19, “Row Constructor Expression Optimization”
Section 11.5, “The JSON Data Type”
Section 12.3, “Type Conversion in Expression Evaluation”

IS
Section 12.4.1, “Operator Precedence”

IS boolean_value
Section 12.4.2, “Comparison Functions and Operators”

IS NOT boolean_value
Section 12.4.2, “Comparison Functions and Operators”

IS NOT NULL
Section 12.4.2, “Comparison Functions and Operators”
Section B.3.4.3, “Problems with NULL Values”
Section 8.2.1.2, “Range Optimization”

4965

Section 3.3.4.6, “Working with NULL Values”

IS NULL
Section 12.4.2, “Comparison Functions and Operators”
Section 8.8.2, “EXPLAIN Output Format”
Section 8.2.1.13, “IS NULL Optimization”
Section 8.2.2.3, “Optimizing Subqueries with the EXISTS Strategy”
Section B.3.4.3, “Problems with NULL Values”
Section 8.2.1.2, “Range Optimization”
Section 5.1.7, “Server System Variables”
Section 3.3.4.6, “Working with NULL Values”

L

[index top]

LIKE
Section 6.2.6, “Access Control, Stage 2: Request Verification”
Section 12.10, “Cast Functions and Operators”
Section 10.2, “Character Sets and Collations in MySQL”
Section 8.3.8, “Comparison of B-Tree and Hash Indexes”
Section 8.8.2, “EXPLAIN Output Format”
Section 24.8, “Extensions to SHOW Statements”
Section 12.17.3, “Functions That Search JSON Values”
Section 13.8.3, “HELP Statement”
Section A.11, “MySQL 5.7 FAQ: MySQL Chinese, Japanese, and Korean Character Sets”
Section 4.5.1.4, “mysql Client Server-Side Help”
Section 1.6.1, “MySQL Extensions to Standard SQL”
Section 21.7.4, “NDB Cluster Replication Schema and Tables”
Section 12.4.1, “Operator Precedence”
Section 3.3.4.7, “Pattern Matching”
Section 25.4.4, “Pre-Filtering by Instrument”
Section 21.6.17, “Quick Reference: NDB Cluster SQL Statements”
Section 8.2.1.2, “Range Optimization”
Section 16.1.6.3, “Replica Server Options and Variables”
Section 5.1.10, “Server SQL Modes”
Section 13.7.5.3, “SHOW CHARACTER SET Statement”
Section 13.7.5.4, “SHOW COLLATION Statement”
Section 13.7.5.5, “SHOW COLUMNS Statement”
Section 13.7.5.14, “SHOW DATABASES Statement”
Section 13.7.5.18, “SHOW EVENTS Statement”
Section 13.7.5.24, “SHOW OPEN TABLES Statement”
Section 13.7.5.28, “SHOW PROCEDURE STATUS Statement”
Section 13.7.5.35, “SHOW STATUS Statement”
Section 13.7.5.36, “SHOW TABLE STATUS Statement”
Section 13.7.5.37, “SHOW TABLES Statement”
Section 13.7.5.38, “SHOW TRIGGERS Statement”
Section 13.7.5.39, “SHOW VARIABLES Statement”
Section 6.2.4, “Specifying Account Names”
Section 12.8.1, “String Comparison Functions and Operators”
Section 9.1.1, “String Literals”
Section 5.1.8.3, “Structured System Variables”
Section 11.3.2, “The CHAR and VARCHAR Types”

4966

Section 26.4.4.5, “The ps_setup_disable_consumer() Procedure”
Section 26.4.4.6, “The ps_setup_disable_instrument() Procedure”
Section 26.4.4.9, “The ps_setup_enable_consumer() Procedure”
Section 26.4.4.10, “The ps_setup_enable_instrument() Procedure”
Section 11.3.6, “The SET Type”
Section 5.1.8, “Using System Variables”

LIKE '_A%'
Section A.11, “MySQL 5.7 FAQ: MySQL Chinese, Japanese, and Korean Character Sets”

LIKE 'pattern'
Section 8.2.1.2, “Range Optimization”
Section 13.7.5, “SHOW Statements”

LIKE ... ESCAPE
Section B.3.7, “Known Issues in MySQL”

N

[index top]

N % M
Section 12.6.1, “Arithmetic Operators”
Section 12.6.2, “Mathematical Functions”

N MOD M
Section 12.6.1, “Arithmetic Operators”
Section 12.6.2, “Mathematical Functions”

NOT
Section 12.4.3, “Logical Operators”
Section 5.1.10, “Server SQL Modes”

NOT EXISTS()
Section 12.4.2, “Comparison Functions and Operators”

NOT IN()
Section 8.2.1.2, “Range Optimization”

NOT LIKE
Section 3.3.4.7, “Pattern Matching”
Section 12.8.1, “String Comparison Functions and Operators”

NOT REGEXP
Section 1.6.1, “MySQL Extensions to Standard SQL”
Section 3.3.4.7, “Pattern Matching”
Section 12.8.1, “String Comparison Functions and Operators”

NOT RLIKE
Section 3.3.4.7, “Pattern Matching”
Section 12.8.1, “String Comparison Functions and Operators”

4967

O

[index top]

OR
Section 9.5, “Expressions”
Section 13.7.1.4, “GRANT Statement”
Section 8.2.1.3, “Index Merge Optimization”
Section 12.4.3, “Logical Operators”
Section 1.6.1, “MySQL Extensions to Standard SQL”
Section 12.4.1, “Operator Precedence”
Section 8.2.2.3, “Optimizing Subqueries with the EXISTS Strategy”
Section 8.2.1.2, “Range Optimization”
Section 8.2.1.19, “Row Constructor Expression Optimization”
Section 3.6.7, “Searching on Two Keys”
Section 3.3.4.2, “Selecting Particular Rows”
Section 5.1.10, “Server SQL Modes”
Section 12.8.1, “String Comparison Functions and Operators”

R

[index top]

REGEXP
Section 1.6.1, “MySQL Extensions to Standard SQL”
Section 12.4.1, “Operator Precedence”
Section 3.3.4.7, “Pattern Matching”
Section 12.8.2, “Regular Expressions”
Section 10.11, “Restrictions on Character Sets”

RLIKE
Section 3.3.4.7, “Pattern Matching”
Section 12.8.2, “Regular Expressions”
Section 10.11, “Restrictions on Character Sets”

X

[index top]

XOR
Section 12.19.1, “Aggregate Function Descriptions”
Section 12.4.3, “Logical Operators”

Option Index
Symbols | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

Symbols

[index top]

--
Section 1.6.2.4, “'--' as the Start of a Comment”

4968

Section 4.8.3, “replace — A String-Replacement Utility”

-#
Section 4.4.1, “comp_err — Compile MySQL Error Message File”
Section 4.7.2, “my_print_defaults — Display Options from Option Files”
Section 4.6.3.1, “myisamchk General Options”
Section 4.6.5, “myisampack — Generate Compressed, Read-Only MyISAM Tables”
Section 4.5.1.1, “mysql Client Options”
Section 4.6.6, “mysql_config_editor — MySQL Configuration Utility”
Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 4.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.6, “mysqlpump — A Database Backup Program”
Section 4.5.7, “mysqlshow — Display Database, Table, and Column Information”
Section 4.5.8, “mysqlslap — A Load Emulation Client”
Section 4.8.3, “replace — A String-Replacement Utility”
Section 5.1.6, “Server Command Options”
Section 5.8.3, “The DBUG Package”

-1
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”

-?
Section 4.4.1, “comp_err — Compile MySQL Error Message File”
Section 4.6.1, “innochecksum — Offline InnoDB File Checksum Utility”
Section 4.7.2, “my_print_defaults — Display Options from Option Files”
Section 4.6.2, “myisam_ftdump — Display Full-Text Index information”
Section 4.6.3.1, “myisamchk General Options”
Section 4.6.4, “myisamlog — Display MyISAM Log File Contents”
Section 4.6.5, “myisampack — Generate Compressed, Read-Only MyISAM Tables”
Section 4.5.1.1, “mysql Client Options”
Section 4.6.6, “mysql_config_editor — MySQL Configuration Utility”
Section 4.4.2, “mysql_install_db — Initialize MySQL Data Directory”
Section 4.4.3, “mysql_plugin — Configure MySQL Server Plugins”
Section 4.4.4, “mysql_secure_installation — Improve MySQL Installation Security”
Section 4.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.6, “mysqlpump — A Database Backup Program”
Section 4.5.7, “mysqlshow — Display Database, Table, and Column Information”
Section 4.5.8, “mysqlslap — A Load Emulation Client”
Section 21.5.6, “ndb_blob_tool — Check and Repair BLOB and TEXT columns of NDB Cluster Tables”
Section 21.5.7, “ndb_config — Extract NDB Cluster Configuration Information”
Section 21.5.9, “ndb_delete_all — Delete All Rows from an NDB Table”
Section 21.5.10, “ndb_desc — Describe NDB Tables”
Section 21.5.11, “ndb_drop_index — Drop Index from an NDB Table”
Section 21.5.12, “ndb_drop_table — Drop an NDB Table”
Section 21.5.13, “ndb_error_reporter — NDB Error-Reporting Utility”

4969

Section 21.5.14, “ndb_import — Import CSV Data Into NDB”
Section 21.5.15, “ndb_index_stat — NDB Index Statistics Utility”
Section 21.5.5, “ndb_mgm — The NDB Cluster Management Client”
Section 21.5.4, “ndb_mgmd — The NDB Cluster Management Server Daemon”
Section 21.5.16, “ndb_move_data — NDB Data Copy Utility”
Section 21.5.17, “ndb_perror — Obtain NDB Error Message Information”
Section 21.5.19, “ndb_print_file — Print NDB Disk Data File Contents”
Section 21.5.24, “ndb_restore — Restore an NDB Cluster Backup”
Section 21.5.25, “ndb_select_all — Print Rows from an NDB Table”
Section 21.5.26, “ndb_select_count — Print Row Counts for NDB Tables”
Section 21.5.27, “ndb_show_tables — Display List of NDB Tables”
Section 21.5.29, “ndb_top — View CPU usage information for NDB threads”
Section 21.5.30, “ndb_waiter — Wait for NDB Cluster to Reach a Given Status”
Section 21.5.1, “ndbd — The NDB Cluster Data Node Daemon”
Section 21.5.2, “ndbinfo_select_all — Select From ndbinfo Tables”
Section 4.8.2, “perror — Display MySQL Error Message Information”
Section 4.8.3, “replace — A String-Replacement Utility”
Section 4.8.4, “resolveip — Resolve Host name to IP Address or Vice Versa”
Section 5.1.6, “Server Command Options”
Section 1.2.2, “The Main Features of MySQL”
Section 4.2.2.1, “Using Options on the Command Line”

?
Section 4.4.5, “mysql_ssl_rsa_setup — Create SSL/RSA Files”

A

[index top]

-A
Section 4.5.1.1, “mysql Client Options”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.6, “mysqlpump — A Database Backup Program”
Section 21.5.16, “ndb_move_data — NDB Data Copy Utility”
Section 21.5.24, “ndb_restore — Restore an NDB Cluster Backup”
Section 4.6.3.4, “Other myisamchk Options”

-a
Section 21.6.1, “Commands in the NDB Cluster Management Client”
Section 4.6.1, “innochecksum — Offline InnoDB File Checksum Utility”
Section 7.6.4, “MyISAM Table Optimization”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.6.8, “mysqldumpslow — Summarize Slow Query Log Files”
Section 4.5.8, “mysqlslap — A Load Emulation Client”
Section 21.5.7, “ndb_config — Extract NDB Cluster Configuration Information”
Section 21.5.10, “ndb_desc — Describe NDB Tables”
Section 4.6.3.4, “Other myisamchk Options”
Section 21.2.4.2, “What is New in NDB Cluster 7.6”

--abort-on-error
Section 21.5.14, “ndb_import — Import CSV Data Into NDB”
Section 21.5.16, “ndb_move_data — NDB Data Copy Utility”

4970

--abort-slave-event-count
Section 16.1.6.3, “Replica Server Options and Variables”

--add-drop-database
Section 7.4.1, “Dumping Data in SQL Format with mysqldump”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.6, “mysqlpump — A Database Backup Program”

--add-drop-table
Section 2.10.3, “Changes in MySQL 5.7”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.6, “mysqlpump — A Database Backup Program”

--add-drop-trigger
Section 4.5.4, “mysqldump — A Database Backup Program”

--add-drop-user
Section 4.5.6, “mysqlpump — A Database Backup Program”

--add-locks
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.6, “mysqlpump — A Database Backup Program”

--add-missing
Section 21.5.6, “ndb_blob_tool — Check and Repair BLOB and TEXT columns of NDB Cluster Tables”
Section 21.2.4.1, “What is New in NDB Cluster 7.5”
Section 21.2.4.2, “What is New in NDB Cluster 7.6”

--admin-auth-plugin
Section 4.4.2, “mysql_install_db — Initialize MySQL Data Directory”

--admin-host
Section 4.4.2, “mysql_install_db — Initialize MySQL Data Directory”

--admin-require-ssl
Section 4.4.2, “mysql_install_db — Initialize MySQL Data Directory”

--admin-user
Section 4.4.2, “mysql_install_db — Initialize MySQL Data Directory”

--admin-xxx
Section 4.4.2, “mysql_install_db — Initialize MySQL Data Directory”

--ai-increment
Section 21.5.14, “ndb_import — Import CSV Data Into NDB”

--ai-offset
Section 21.5.14, “ndb_import — Import CSV Data Into NDB”

--ai-prefetch-sz
Section 21.5.14, “ndb_import — Import CSV Data Into NDB”

4971

--all
Section 4.6.6, “mysql_config_editor — MySQL Configuration Utility”

--all-databases
Creating a Data Snapshot Using mysqldump
Section 7.4.1, “Dumping Data in SQL Format with mysqldump”
Section 9.2.4, “Mapping of Identifiers to File Names”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.6, “mysqlpump — A Database Backup Program”
Section 21.6.15, “ndbinfo: The NDB Cluster Information Database”
Section 2.10.12, “Rebuilding or Repairing Tables or Indexes”
Section 7.4.2, “Reloading SQL-Format Backups”
Section 5.1.7, “Server System Variables”
Section 2.10.4, “Upgrading MySQL Binary or Package-based Installations on Unix/Linux”
Section 4.6.7.3, “Using mysqlbinlog to Back Up Binary Log Files”

--all-in-1
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”

--all-tablespaces
Section 4.5.4, “mysqldump — A Database Backup Program”

--allow-keywords
Section 4.5.4, “mysqldump — A Database Backup Program”

--allow-mismatches
Section 4.6.1, “innochecksum — Offline InnoDB File Checksum Utility”

--allow-pk-changes
Section 21.5.24, “ndb_restore — Restore an NDB Cluster Backup”
Section 21.2.4.2, “What is New in NDB Cluster 7.6”

--allow-suspicious-udfs
Section 5.1.6, “Server Command Options”

--analyze
Section 7.6.4, “MyISAM Table Optimization”
Section 4.6.3.1, “myisamchk General Options”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.6.3.4, “Other myisamchk Options”
Section 5.1.7, “Server System Variables”

--ansi
Section 1.6, “MySQL Standards Compliance”
Section 5.1.6, “Server Command Options”

antonio
Section 6.4.1.7, “PAM Pluggable Authentication”

--append
Section 21.5.24, “ndb_restore — Restore an NDB Cluster Backup”

4972

--apply-slave-statements
Section 4.5.4, “mysqldump — A Database Backup Program”

--audit-log
Section 6.4.5.11, “Audit Log Reference”
Section 6.4.5.2, “Installing or Uninstalling MySQL Enterprise Audit”

--auto-generate-sql
Section 4.5.8, “mysqlslap — A Load Emulation Client”

--auto-generate-sql-add-autoincrement
Section 4.5.8, “mysqlslap — A Load Emulation Client”

--auto-generate-sql-execute-number
Section 4.5.8, “mysqlslap — A Load Emulation Client”

--auto-generate-sql-guid-primary
Section 4.5.8, “mysqlslap — A Load Emulation Client”

--auto-generate-sql-load-type
Section 4.5.8, “mysqlslap — A Load Emulation Client”

--auto-generate-sql-secondary-indexes
Section 4.5.8, “mysqlslap — A Load Emulation Client”

--auto-generate-sql-unique-query-number
Section 4.5.8, “mysqlslap — A Load Emulation Client”

--auto-generate-sql-unique-write-number
Section 4.5.8, “mysqlslap — A Load Emulation Client”

--auto-generate-sql-write-number
Section 4.5.8, “mysqlslap — A Load Emulation Client”

--auto-inc
Section 21.5.10, “ndb_desc — Describe NDB Tables”
Section 21.2.4.2, “What is New in NDB Cluster 7.6”

--auto-rehash
Section 14.8.11.2, “Configuring Non-Persistent Optimizer Statistics Parameters”
Section 4.5.1.2, “mysql Client Commands”
Section 4.5.1.1, “mysql Client Options”

auto-rehash
Section 14.8.11.2, “Configuring Non-Persistent Optimizer Statistics Parameters”

--auto-repair
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”

--auto-vertical-output
Section 4.5.1.1, “mysql Client Options”

4973

--autocommit
Section 5.1.7, “Server System Variables”

B

[index top]

-B
Section 4.6.3.3, “myisamchk Repair Options”
Section 4.5.1.1, “mysql Client Options”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.6, “mysqlpump — A Database Backup Program”

-b
Section 4.6.5, “myisampack — Generate Compressed, Read-Only MyISAM Tables”
Section 4.5.1.1, “mysql Client Options”
Section 4.4.3, “mysql_plugin — Configure MySQL Server Plugins”
Section 4.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 21.5.10, “ndb_desc — Describe NDB Tables”
Section 21.5.24, “ndb_restore — Restore an NDB Cluster Backup”
Section 4.6.3.4, “Other myisamchk Options”
Section 5.1.6, “Server Command Options”

--back_log
Section 2.7, “Installing MySQL on Solaris”

--backup
Section 4.6.3.3, “myisamchk Repair Options”
Section 4.6.5, “myisampack — Generate Compressed, Read-Only MyISAM Tables”

--backup-path
Section 21.5.24, “ndb_restore — Restore an NDB Cluster Backup”
Restoring to Fewer Nodes Than the Original

backup-path
Section 21.5.24, “ndb_restore — Restore an NDB Cluster Backup”

--backupid
Section 21.5.24, “ndb_restore — Restore an NDB Cluster Backup”
Restoring to Fewer Nodes Than the Original
Section 21.2.4.1, “What is New in NDB Cluster 7.5”
Section 21.2.4.2, “What is New in NDB Cluster 7.6”

--base64-output
Section 16.2.1.1, “Advantages and Disadvantages of Statement-Based and Row-Based Replication”
Section 4.6.7.2, “mysqlbinlog Row Event Display”
Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 16.2.1.2, “Usage of Row-Based Logging and Replication”

--basedir
Section 2.9.1, “Initializing the Data Directory”

4974

Section 2.8.7, “MySQL Source-Configuration Options”
Section 4.4.2, “mysql_install_db — Initialize MySQL Data Directory”
Section 4.4.3, “mysql_plugin — Configure MySQL Server Plugins”
Section 4.3.2, “mysqld_safe — MySQL Server Startup Script”
Section 21.2.7.1, “Noncompliance with SQL Syntax in NDB Cluster”
Section 5.7, “Running Multiple MySQL Instances on One Machine”
Section 5.1.6, “Server Command Options”
Section 2.9.2.1, “Troubleshooting Problems Starting the MySQL Server”
Section 1.3, “What Is New in MySQL 5.7”

basedir
Section 2.3.4.2, “Creating an Option File”
Section 4.3.3, “mysql.server — MySQL Server Startup Script”
Section 2.3.5, “Troubleshooting a Microsoft Windows MySQL Server Installation”

--batch
Section 4.5.1.3, “mysql Client Logging”
Section 4.5.1.1, “mysql Client Options”

--binary-as-hex
Section 12.19.1, “Aggregate Function Descriptions”
Section 6.4.5.11, “Audit Log Reference”
Section 12.10, “Cast Functions and Operators”
Section 12.13, “Encryption and Compression Functions”
Section 12.20, “Miscellaneous Functions”
Section 4.5.1.1, “mysql Client Options”
Section 6.5.5, “MySQL Enterprise Data Masking and De-Identification Function Descriptions”
Section 12.8.1, “String Comparison Functions and Operators”
Section 12.8, “String Functions and Operators”
Section 9.1.1, “String Literals”
Section 11.3.3, “The BINARY and VARBINARY Types”
Section 10.10.8, “The Binary Character Set”
Section 11.3.4, “The BLOB and TEXT Types”

--binary-mode
Section 9.6, “Comments”
Section 4.5.1.2, “mysql Client Commands”
Section 4.5.1.1, “mysql Client Options”
Section 4.5.1.6, “mysql Client Tips”
Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 7.5.1, “Point-in-Time Recovery Using Binary Log”

--bind-address
Section 4.5.1.1, “mysql Client Options”
Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 4.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.6, “mysqlpump — A Database Backup Program”
Section 4.5.7, “mysqlshow — Display Database, Table, and Column Information”
Section 21.5.4, “ndb_mgmd — The NDB Cluster Management Server Daemon”

4975

Section 21.5.1, “ndbd — The NDB Cluster Data Node Daemon”

--binlog-checksum
Section 16.1.6.4, “Binary Logging Options and Variables”

--binlog-do-db
Section 16.1.6.4, “Binary Logging Options and Variables”
Section 16.2.5.1, “Evaluation of Database-Level Replication and Binary Logging Options”
Section 16.2.5, “How Servers Evaluate Replication Filtering Rules”
Section 21.7.3, “Known Issues in NDB Cluster Replication”
Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 16.1.6.3, “Replica Server Options and Variables”
Section 5.4.4, “The Binary Log”

--binlog-format
Section 5.4.4.1, “Binary Logging Formats”
Section 21.7.2, “General Requirements for NDB Cluster Replication”
Section A.4, “MySQL 5.7 FAQ: Stored Procedures and Functions”
Section 5.4.4.2, “Setting The Binary Log Format”
Section 21.7.6, “Starting NDB Cluster Replication (Single Replication Channel)”
Section 21.2.7.6, “Unsupported or Missing Features in NDB Cluster”

--binlog-ignore-db
Section 16.1.6.4, “Binary Logging Options and Variables”
Section 16.2.5.1, “Evaluation of Database-Level Replication and Binary Logging Options”
Section 16.2.5, “How Servers Evaluate Replication Filtering Rules”
Section 21.7.3, “Known Issues in NDB Cluster Replication”
Section 16.1.6.3, “Replica Server Options and Variables”
Section 5.4.4, “The Binary Log”

--binlog-row-event-max-size
Section 16.1.6.4, “Binary Logging Options and Variables”
Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 5.4.4.2, “Setting The Binary Log Format”

--blob-info
Section 21.5.10, “ndb_desc — Describe NDB Tables”

--block-search
Section 4.6.3.4, “Other myisamchk Options”

--bootstrap
Section 5.1.6, “Server Command Options”
Section 5.1.7, “Server System Variables”
Section 1.3, “What Is New in MySQL 5.7”

--builddir
Section 4.4.2, “mysql_install_db — Initialize MySQL Data Directory”

C

[index top]

4976

-C
Section 4.4.1, “comp_err — Compile MySQL Error Message File”
Section 4.6.1, “innochecksum — Offline InnoDB File Checksum Utility”
Section 4.6.3.2, “myisamchk Check Options”
Section 4.5.1.1, “mysql Client Options”
Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 4.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.6, “mysqlpump — A Database Backup Program”
Section 4.5.7, “mysqlshow — Display Database, Table, and Column Information”
Section 4.5.8, “mysqlslap — A Load Emulation Client”

-c
Section 4.6.1, “innochecksum — Offline InnoDB File Checksum Utility”
Section 21.3.2.1, “Installing NDB Cluster on Windows from a Binary Release”
Section 4.7.2, “my_print_defaults — Display Options from Option Files”
Section 4.6.2, “myisam_ftdump — Display Full-Text Index information”
Section 4.6.3.2, “myisamchk Check Options”
Section 4.6.4, “myisamlog — Display MyISAM Log File Contents”
Section A.10, “MySQL 5.7 FAQ: NDB Cluster”
Section 4.5.1.1, “mysql Client Options”
Section 4.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.8, “mysqlslap — A Load Emulation Client”
Section 21.5.6, “ndb_blob_tool — Check and Repair BLOB and TEXT columns of NDB Cluster Tables”
Section 21.5.7, “ndb_config — Extract NDB Cluster Configuration Information”
Section 21.5.9, “ndb_delete_all — Delete All Rows from an NDB Table”
Section 21.5.10, “ndb_desc — Describe NDB Tables”
Section 21.5.11, “ndb_drop_index — Drop Index from an NDB Table”
Section 21.5.12, “ndb_drop_table — Drop an NDB Table”
Section 21.5.14, “ndb_import — Import CSV Data Into NDB”
Section 21.5.15, “ndb_index_stat — NDB Index Statistics Utility”
Section 21.5.5, “ndb_mgm — The NDB Cluster Management Client”
Section 21.5.4, “ndb_mgmd — The NDB Cluster Management Server Daemon”
Section 21.5.16, “ndb_move_data — NDB Data Copy Utility”
Section 21.5.24, “ndb_restore — Restore an NDB Cluster Backup”
Section 21.5.25, “ndb_select_all — Print Rows from an NDB Table”
Section 21.5.26, “ndb_select_count — Print Row Counts for NDB Tables”
Section 21.5.27, “ndb_show_tables — Display List of NDB Tables”
Section 21.5.29, “ndb_top — View CPU usage information for NDB threads”
Section 21.5.30, “ndb_waiter — Wait for NDB Cluster to Reach a Given Status”
Section 21.5.1, “ndbd — The NDB Cluster Data Node Daemon”
Section 21.5.2, “ndbinfo_select_all — Select From ndbinfo Tables”
Restoring to Fewer Nodes Than the Original

--cflags
Section 2.8.8, “Dealing with Problems Compiling MySQL”

4977

Section 4.7.1, “mysql_config — Display Options for Compiling Clients”

--character-set-client-handshake
Section A.11, “MySQL 5.7 FAQ: MySQL Chinese, Japanese, and Korean Character Sets”
Section 5.1.6, “Server Command Options”
Section 10.10.7.1, “The cp932 Character Set”

--character-set-server
Section 10.15, “Character Set Configuration”
Section 10.5, “Configuring Application Character Set and Collation”
Section A.11, “MySQL 5.7 FAQ: MySQL Chinese, Japanese, and Korean Character Sets”
Section 2.8.7, “MySQL Source-Configuration Options”
Section 10.3.2, “Server Character Set and Collation”

--character-sets-dir
Section B.3.2.15, “Can't initialize character set”
Section 10.15, “Character Set Configuration”
Section 4.6.3.3, “myisamchk Repair Options”
Section 4.6.5, “myisampack — Generate Compressed, Read-Only MyISAM Tables”
Section 4.5.1.1, “mysql Client Options”
Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 4.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.6, “mysqlpump — A Database Backup Program”
Section 4.5.7, “mysqlshow — Display Database, Table, and Column Information”
Section 21.5.6, “ndb_blob_tool — Check and Repair BLOB and TEXT columns of NDB Cluster Tables”
Section 21.5.7, “ndb_config — Extract NDB Cluster Configuration Information”
Section 21.5.9, “ndb_delete_all — Delete All Rows from an NDB Table”
Section 21.5.10, “ndb_desc — Describe NDB Tables”
Section 21.5.11, “ndb_drop_index — Drop Index from an NDB Table”
Section 21.5.12, “ndb_drop_table — Drop an NDB Table”
Section 21.5.14, “ndb_import — Import CSV Data Into NDB”
Section 21.5.15, “ndb_index_stat — NDB Index Statistics Utility”
Section 21.5.5, “ndb_mgm — The NDB Cluster Management Client”
Section 21.5.4, “ndb_mgmd — The NDB Cluster Management Server Daemon”
Section 21.5.16, “ndb_move_data — NDB Data Copy Utility”
Section 21.5.24, “ndb_restore — Restore an NDB Cluster Backup”
Section 21.5.25, “ndb_select_all — Print Rows from an NDB Table”
Section 21.5.26, “ndb_select_count — Print Row Counts for NDB Tables”
Section 21.5.27, “ndb_show_tables — Display List of NDB Tables”
Section 21.5.30, “ndb_waiter — Wait for NDB Cluster to Reach a Given Status”
Section 21.5.1, “ndbd — The NDB Cluster Data Node Daemon”
Section 21.5.2, “ndbinfo_select_all — Select From ndbinfo Tables”

--charset
Section 4.4.1, “comp_err — Compile MySQL Error Message File”

--check
Section 4.6.3.2, “myisamchk Check Options”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”

4978

--check-missing
Section 21.5.6, “ndb_blob_tool — Check and Repair BLOB and TEXT columns of NDB Cluster Tables”
Section 21.2.4.1, “What is New in NDB Cluster 7.5”
Section 21.2.4.2, “What is New in NDB Cluster 7.6”

--check-only-changed
Section 4.6.3.2, “myisamchk Check Options”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”

--check-orphans
Section 21.5.6, “ndb_blob_tool — Check and Repair BLOB and TEXT columns of NDB Cluster Tables”

--check-upgrade
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”

--chroot
Section 5.1.6, “Server Command Options”

CMAKE_BUILD_TYPE
Section 2.8.7, “MySQL Source-Configuration Options”

CMAKE_C_FLAGS
Section 5.8.1.1, “Compiling MySQL for Debugging”
Section 2.8.8, “Dealing with Problems Compiling MySQL”
Section 2.8.7, “MySQL Source-Configuration Options”

CMAKE_C_FLAGS_build_type
Section 2.8.7, “MySQL Source-Configuration Options”

CMAKE_C_FLAGS_RELWITHDEBINFO
Section 2.8.7, “MySQL Source-Configuration Options”

CMAKE_CXX_FLAGS
Section 5.8.1.1, “Compiling MySQL for Debugging”
Section 2.8.8, “Dealing with Problems Compiling MySQL”
Section 2.8.7, “MySQL Source-Configuration Options”

CMAKE_CXX_FLAGS_build_type
Section 2.8.7, “MySQL Source-Configuration Options”

CMAKE_CXX_FLAGS_RELWITHDEBINFO
Section 2.8.7, “MySQL Source-Configuration Options”

CMAKE_INSTALL_PREFIX
Section 2.8.5, “Installing MySQL Using a Development Source Tree”
Section 6.4.4.12, “Keyring System Variables”
Section 2.8.7, “MySQL Source-Configuration Options”
Section 5.7.3, “Running Multiple MySQL Instances on Unix”
Section 5.1.7, “Server System Variables”

CMAKE_PREFIX_PATH
Section 2.8.7, “MySQL Source-Configuration Options”

4979

--collation-server
Section 10.15, “Character Set Configuration”
Section 10.5, “Configuring Application Character Set and Collation”
Section 10.3.2, “Server Character Set and Collation”

--collation_server
Section 2.8.7, “MySQL Source-Configuration Options”

--color
Section 21.5.29, “ndb_top — View CPU usage information for NDB threads”

--column-names
Section 4.5.1.1, “mysql Client Options”
Section 4.2.2.4, “Program Option Modifiers”

--column-type-info
Section 8.2.1.17, “LIMIT Query Optimization”
Section 4.5.1.1, “mysql Client Options”

--columns
Section 4.5.5, “mysqlimport — A Data Import Program”

--commands
Section 4.5.1.1, “mysql Client Options”
Section 21.2.4.2, “What is New in NDB Cluster 7.6”

--comments
Section 4.5.1.1, “mysql Client Options”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 8.9.3, “Optimizer Hints”
Section 1.3, “What Is New in MySQL 5.7”

--commit
Section 4.5.8, “mysqlslap — A Load Emulation Client”

--comp
Section 4.2.2.5, “Using Options to Set Program Variables”
Section 1.3, “What Is New in MySQL 5.7”

--compact
Section 4.5.4, “mysqldump — A Database Backup Program”

--compatible
Section 4.5.4, “mysqldump — A Database Backup Program”

COMPILATION_COMMENT
Section 5.1.7, “Server System Variables”

--complete-insert
Section 4.5.4, “mysqldump — A Database Backup Program”

4980

Section 4.5.6, “mysqlpump — A Database Backup Program”

--compr
Section 4.2.2.5, “Using Options to Set Program Variables”
Section 1.3, “What Is New in MySQL 5.7”

--compress
Section 4.2.6, “Connection Compression Control”
Section 4.5.1.1, “mysql Client Options”
Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 4.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.6, “mysqlpump — A Database Backup Program”
Section 4.5.7, “mysqlshow — Display Database, Table, and Column Information”
Section 4.5.8, “mysqlslap — A Load Emulation Client”
Section 4.2.2.5, “Using Options to Set Program Variables”
Section 1.3, “What Is New in MySQL 5.7”

--compress-output
Section 4.5.6, “mysqlpump — A Database Backup Program”

--concurrency
Section 4.5.8, “mysqlslap — A Load Emulation Client”

--config-cache
Section 21.4.3, “NDB Cluster Configuration Files”
Section 21.5.4, “ndb_mgmd — The NDB Cluster Management Server Daemon”

--config-dir
Section 21.5.4, “ndb_mgmd — The NDB Cluster Management Server Daemon”

--config-file
Section 21.3.4, “Initial Startup of NDB Cluster”
Section 21.3.2.3, “Initial Startup of NDB Cluster on Windows”
Section 21.3.2.4, “Installing NDB Cluster Processes as Windows Services”
Section 4.7.2, “my_print_defaults — Display Options from Option Files”
Section A.10, “MySQL 5.7 FAQ: NDB Cluster”
Section 21.4.3.1, “NDB Cluster Configuration: Basic Example”
Section 21.5.7, “ndb_config — Extract NDB Cluster Configuration Information”
Section 21.5.4, “ndb_mgmd — The NDB Cluster Management Server Daemon”

--config-from-node
Section 21.5.7, “ndb_config — Extract NDB Cluster Configuration Information”

--config_from_node
Section 21.5.7, “ndb_config — Extract NDB Cluster Configuration Information”

--configdir
Section 21.4.3, “NDB Cluster Configuration Files”
Section 21.5.4, “ndb_mgmd — The NDB Cluster Management Server Daemon”

4981

--configinfo
Section 21.5.7, “ndb_config — Extract NDB Cluster Configuration Information”

configure
Section 2.3.3.5, “MySQL Installer Console Reference”

--connect
Section 21.5.24, “ndb_restore — Restore an NDB Cluster Backup”

--connect-delay
Section 21.5.1, “ndbd — The NDB Cluster Data Node Daemon”

--connect-expired-password
Section 4.5.1.1, “mysql Client Options”
Section 6.2.12, “Server Handling of Expired Passwords”

--connect-retries
Section 21.5.6, “ndb_blob_tool — Check and Repair BLOB and TEXT columns of NDB Cluster Tables”
Section 21.5.7, “ndb_config — Extract NDB Cluster Configuration Information”
Section 21.5.9, “ndb_delete_all — Delete All Rows from an NDB Table”
Section 21.5.10, “ndb_desc — Describe NDB Tables”
Section 21.5.11, “ndb_drop_index — Drop Index from an NDB Table”
Section 21.5.12, “ndb_drop_table — Drop an NDB Table”
Section 21.5.14, “ndb_import — Import CSV Data Into NDB”
Section 21.5.15, “ndb_index_stat — NDB Index Statistics Utility”
Section 21.5.5, “ndb_mgm — The NDB Cluster Management Client”
Section 21.5.4, “ndb_mgmd — The NDB Cluster Management Server Daemon”
Section 21.5.16, “ndb_move_data — NDB Data Copy Utility”
Section 21.5.24, “ndb_restore — Restore an NDB Cluster Backup”
Section 21.5.25, “ndb_select_all — Print Rows from an NDB Table”
Section 21.5.26, “ndb_select_count — Print Row Counts for NDB Tables”
Section 21.5.27, “ndb_show_tables — Display List of NDB Tables”
Section 21.5.30, “ndb_waiter — Wait for NDB Cluster to Reach a Given Status”
Section 21.5.1, “ndbd — The NDB Cluster Data Node Daemon”
Section 21.5.2, “ndbinfo_select_all — Select From ndbinfo Tables”

--connect-retry-delay
Section 21.5.6, “ndb_blob_tool — Check and Repair BLOB and TEXT columns of NDB Cluster Tables”
Section 21.5.7, “ndb_config — Extract NDB Cluster Configuration Information”
Section 21.5.9, “ndb_delete_all — Delete All Rows from an NDB Table”
Section 21.5.10, “ndb_desc — Describe NDB Tables”
Section 21.5.11, “ndb_drop_index — Drop Index from an NDB Table”
Section 21.5.12, “ndb_drop_table — Drop an NDB Table”
Section 21.5.14, “ndb_import — Import CSV Data Into NDB”
Section 21.5.15, “ndb_index_stat — NDB Index Statistics Utility”
Section 21.5.5, “ndb_mgm — The NDB Cluster Management Client”
Section 21.5.4, “ndb_mgmd — The NDB Cluster Management Server Daemon”
Section 21.5.16, “ndb_move_data — NDB Data Copy Utility”
Section 21.5.24, “ndb_restore — Restore an NDB Cluster Backup”
Section 21.5.25, “ndb_select_all — Print Rows from an NDB Table”
Section 21.5.26, “ndb_select_count — Print Row Counts for NDB Tables”
Section 21.5.27, “ndb_show_tables — Display List of NDB Tables”

4982

Section 21.5.30, “ndb_waiter — Wait for NDB Cluster to Reach a Given Status”
Section 21.5.1, “ndbd — The NDB Cluster Data Node Daemon”
Section 21.5.2, “ndbinfo_select_all — Select From ndbinfo Tables”

--connect-string
Section 21.5.6, “ndb_blob_tool — Check and Repair BLOB and TEXT columns of NDB Cluster Tables”
Section 21.5.7, “ndb_config — Extract NDB Cluster Configuration Information”
Section 21.5.9, “ndb_delete_all — Delete All Rows from an NDB Table”
Section 21.5.10, “ndb_desc — Describe NDB Tables”
Section 21.5.11, “ndb_drop_index — Drop Index from an NDB Table”
Section 21.5.12, “ndb_drop_table — Drop an NDB Table”
Section 21.5.14, “ndb_import — Import CSV Data Into NDB”
Section 21.5.15, “ndb_index_stat — NDB Index Statistics Utility”
Section 21.5.5, “ndb_mgm — The NDB Cluster Management Client”
Section 21.5.4, “ndb_mgmd — The NDB Cluster Management Server Daemon”
Section 21.5.16, “ndb_move_data — NDB Data Copy Utility”
Section 21.5.24, “ndb_restore — Restore an NDB Cluster Backup”
Section 21.5.25, “ndb_select_all — Print Rows from an NDB Table”
Section 21.5.26, “ndb_select_count — Print Row Counts for NDB Tables”
Section 21.5.27, “ndb_show_tables — Display List of NDB Tables”
Section 21.5.30, “ndb_waiter — Wait for NDB Cluster to Reach a Given Status”
Section 21.5.1, “ndbd — The NDB Cluster Data Node Daemon”
Section 21.5.2, “ndbinfo_select_all — Select From ndbinfo Tables”

--connect-timeout
Section 4.5.1.1, “mysql Client Options”
Section 4.5.2, “mysqladmin — A MySQL Server Administration Program”

--connection-control
Section 6.4.2.1, “Connection Control Plugin Installation”

--connection-control-failed-login-attempts
Section 6.4.2.1, “Connection Control Plugin Installation”

--connection-server-id
Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”

--connection-timeout
Section 21.5.13, “ndb_error_reporter — NDB Error-Reporting Utility”

--connections
Section 21.5.7, “ndb_config — Extract NDB Cluster Configuration Information”
Section 21.5.14, “ndb_import — Import CSV Data Into NDB”

--console
Section 14.18.2, “Enabling InnoDB Monitors”
Section 5.4.2.1, “Error Logging on Windows”
Section 21.3.2.3, “Initial Startup of NDB Cluster on Windows”
Section 2.9.1, “Initializing the Data Directory”
Section 14.22, “InnoDB Troubleshooting”
Resetting the Root Password: Windows Systems
Section 5.1.6, “Server Command Options”

4983

Section 2.3.4.6, “Starting MySQL from the Windows Command Line”
Section 2.3.4.5, “Starting the Server for the First Time”

--context
Section 21.5.10, “ndb_desc — Describe NDB Tables”
Section 21.2.4.2, “What is New in NDB Cluster 7.6”

--continue
Section 21.5.14, “ndb_import — Import CSV Data Into NDB”

--core-file
Section 5.8.1.4, “Debugging mysqld under gdb”
Section 21.5.6, “ndb_blob_tool — Check and Repair BLOB and TEXT columns of NDB Cluster Tables”
Section 21.5.7, “ndb_config — Extract NDB Cluster Configuration Information”
Section 21.5.9, “ndb_delete_all — Delete All Rows from an NDB Table”
Section 21.5.10, “ndb_desc — Describe NDB Tables”
Section 21.5.11, “ndb_drop_index — Drop Index from an NDB Table”
Section 21.5.12, “ndb_drop_table — Drop an NDB Table”
Section 21.5.14, “ndb_import — Import CSV Data Into NDB”
Section 21.5.15, “ndb_index_stat — NDB Index Statistics Utility”
Section 21.5.5, “ndb_mgm — The NDB Cluster Management Client”
Section 21.5.4, “ndb_mgmd — The NDB Cluster Management Server Daemon”
Section 21.5.16, “ndb_move_data — NDB Data Copy Utility”
Section 21.5.24, “ndb_restore — Restore an NDB Cluster Backup”
Section 21.5.25, “ndb_select_all — Print Rows from an NDB Table”
Section 21.5.26, “ndb_select_count — Print Row Counts for NDB Tables”
Section 21.5.27, “ndb_show_tables — Display List of NDB Tables”
Section 21.5.30, “ndb_waiter — Wait for NDB Cluster to Reach a Given Status”
Section 21.5.1, “ndbd — The NDB Cluster Data Node Daemon”
Section 21.5.2, “ndbinfo_select_all — Select From ndbinfo Tables”
Section 5.1.6, “Server Command Options”
Section 5.1.7, “Server System Variables”

core-file
Section 5.8.1.3, “Using WER with PDB to create a Windows crashdump”

--core-file-size
Section 2.5.10, “Managing MySQL Server with systemd”
Section 4.3.2, “mysqld_safe — MySQL Server Startup Script”
Section 5.1.6, “Server Command Options”

--correct-checksum
Section 4.6.3.3, “myisamchk Repair Options”

--count
Section 4.6.1, “innochecksum — Offline InnoDB File Checksum Utility”
Section 4.6.2, “myisam_ftdump — Display Full-Text Index information”
Section 4.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 4.5.7, “mysqlshow — Display Database, Table, and Column Information”

--create
Section 4.5.8, “mysqlslap — A Load Emulation Client”

4984

--create-options
Section 4.5.4, “mysqldump — A Database Backup Program”

--create-schema
Section 4.5.8, “mysqlslap — A Load Emulation Client”

--csv
Section 4.5.8, “mysqlslap — A Load Emulation Client”

--csvopt
Section 21.5.14, “ndb_import — Import CSV Data Into NDB”

--cxxflags
Section 2.8.8, “Dealing with Problems Compiling MySQL”
Section 4.7.1, “mysql_config — Display Options for Compiling Clients”

D

[index top]

-D
Section 10.13, “Adding a Character Set”
Section 21.3.1.4, “Building NDB Cluster from Source on Linux”
Section B.3.2.15, “Can't initialize character set”
Section 4.4.1, “comp_err — Compile MySQL Error Message File”
Section 21.3.2.2, “Compiling and Installing NDB Cluster from Source on Windows”
Section 5.8.1.1, “Compiling MySQL for Debugging”
Section 27.6.1, “Compiling Programs with libmysqld”
Section 2.8.6, “Configuring SSL Library Support”
Section 5.8.2, “Debugging a MySQL Client”
Section 4.6.1, “innochecksum — Offline InnoDB File Checksum Utility”
Section 2.8.4, “Installing MySQL Using a Standard Source Distribution”
Section 2.5.10, “Managing MySQL Server with systemd”
Section 4.6.3.3, “myisamchk Repair Options”
Section 4.5.1.1, “mysql Client Options”
Section 21.6.10, “MySQL Server Usage for NDB Cluster”
Section 2.8.7, “MySQL Source-Configuration Options”
Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 21.5.25, “ndb_select_all — Print Rows from an NDB Table”
Chapter 22, Partitioning
Section 16.1.6.3, “Replica Server Options and Variables”
Section 5.1.6, “Server Command Options”
Section 5.1.7, “Server System Variables”
Section 14.21.3, “Setting Up the InnoDB memcached Plugin”
Section 15.5, “The ARCHIVE Storage Engine”
Section 15.6, “The BLACKHOLE Storage Engine”
Section 15.9, “The EXAMPLE Storage Engine”
Section 15.8, “The FEDERATED Storage Engine”
Section 5.8.4, “Tracing mysqld Using DTrace”
Section B.3.3.3, “What to Do If MySQL Keeps Crashing”
Section 2.1.2, “Which MySQL Version and Distribution to Install”

4985

-d
Section 2.5.7.1, “Basic Steps for MySQL Server Deployment with Docker”
Section 4.6.2, “myisam_ftdump — Display Full-Text Index information”
Section 4.6.3.1, “myisamchk General Options”
Section 4.4.3, “mysql_plugin — Configure MySQL Server Plugins”
Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.6.8, “mysqldumpslow — Summarize Slow Query Log Files”
Section 4.5.6, “mysqlpump — A Database Backup Program”
Section 21.5.6, “ndb_blob_tool — Check and Repair BLOB and TEXT columns of NDB Cluster Tables”
Section 21.5.9, “ndb_delete_all — Delete All Rows from an NDB Table”
Section 21.5.10, “ndb_desc — Describe NDB Tables”
Section 21.5.11, “ndb_drop_index — Drop Index from an NDB Table”
Section 21.5.12, “ndb_drop_table — Drop an NDB Table”
Section 21.5.15, “ndb_index_stat — NDB Index Statistics Utility”
Section 21.5.4, “ndb_mgmd — The NDB Cluster Management Server Daemon”
Section 21.5.16, “ndb_move_data — NDB Data Copy Utility”
Section 21.5.23, “ndb_redo_log_reader — Check and Print Content of Cluster Redo Log”
Section 21.5.24, “ndb_restore — Restore an NDB Cluster Backup”
Section 21.5.25, “ndb_select_all — Print Rows from an NDB Table”
Section 21.5.26, “ndb_select_count — Print Row Counts for NDB Tables”
Section 21.5.27, “ndb_show_tables — Display List of NDB Tables”
Section 21.5.1, “ndbd — The NDB Cluster Data Node Daemon”
Section 21.5.2, “ndbinfo_select_all — Select From ndbinfo Tables”
Section 4.6.3.4, “Other myisamchk Options”
Section 5.1.7, “Server System Variables”
Section 6.4.4.4, “Using the keyring_okv KMIP Plugin”

--daemon
Section 21.5.4, “ndb_mgmd — The NDB Cluster Management Server Daemon”
Section 21.5.1, “ndbd — The NDB Cluster Data Node Daemon”

--daemonize
Section 5.1.6, “Server Command Options”

--data-file-length
Section 4.6.3.3, “myisamchk Repair Options”

--database
Section 4.5.1.1, “mysql Client Options”
Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 21.5.6, “ndb_blob_tool — Check and Repair BLOB and TEXT columns of NDB Cluster Tables”
Section 21.5.9, “ndb_delete_all — Delete All Rows from an NDB Table”
Section 21.5.10, “ndb_desc — Describe NDB Tables”
Section 21.5.11, “ndb_drop_index — Drop Index from an NDB Table”
Section 21.5.12, “ndb_drop_table — Drop an NDB Table”
Section 21.5.15, “ndb_index_stat — NDB Index Statistics Utility”
Section 21.5.16, “ndb_move_data — NDB Data Copy Utility”
Section 21.5.25, “ndb_select_all — Print Rows from an NDB Table”
Section 21.5.26, “ndb_select_count — Print Row Counts for NDB Tables”
Section 21.5.27, “ndb_show_tables — Display List of NDB Tables”
Section 21.5.28, “ndb_size.pl — NDBCLUSTER Size Requirement Estimator”

4986

Section 21.5.2, “ndbinfo_select_all — Select From ndbinfo Tables”

--databases
Section 7.4.5.2, “Copy a Database from one Server to Another”
Creating a Data Snapshot Using mysqldump
Section 7.4.1, “Dumping Data in SQL Format with mysqldump”
Section 7.4.5.1, “Making a Copy of a Database”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.6, “mysqlpump — A Database Backup Program”
Section 21.6.15, “ndbinfo: The NDB Cluster Information Database”
Section 2.10.12, “Rebuilding or Repairing Tables or Indexes”
Section 7.4.2, “Reloading SQL-Format Backups”

--datadir
Section 2.3.4.2, “Creating an Option File”
Section 2.9.1, “Initializing the Data Directory”
Section 2.8.7, “MySQL Source-Configuration Options”
Section 4.4.2, “mysql_install_db — Initialize MySQL Data Directory”
Section 4.4.3, “mysql_plugin — Configure MySQL Server Plugins”
Section 4.4.5, “mysql_ssl_rsa_setup — Create SSL/RSA Files”
Section 4.3.2, “mysqld_safe — MySQL Server Startup Script”
Section 21.6.18.3, “NDB Cluster and MySQL Security Procedures”
Section 5.7, “Running Multiple MySQL Instances on One Machine”
Section 5.7.3, “Running Multiple MySQL Instances on Unix”
Section 5.1.6, “Server Command Options”
Section 5.7.1, “Setting Up Multiple Data Directories”
Section 5.2, “The MySQL Data Directory”
Section 2.9.2.1, “Troubleshooting Problems Starting the MySQL Server”
Section 4.2.2.2, “Using Option Files”
Section 1.3, “What Is New in MySQL 5.7”

datadir
Section 2.3.4.2, “Creating an Option File”
Section 2.4.1, “General Notes on Installing MySQL on macOS”
Section 4.3.3, “mysql.server — MySQL Server Startup Script”
Section 2.3.5, “Troubleshooting a Microsoft Windows MySQL Server Installation”
Section 2.3.7, “Windows Platform Restrictions”

--db-workers
Section 21.5.14, “ndb_import — Import CSV Data Into NDB”

--debug
Section 4.4.1, “comp_err — Compile MySQL Error Message File”
Section 5.8.1.1, “Compiling MySQL for Debugging”
Section 4.6.1, “innochecksum — Offline InnoDB File Checksum Utility”
Section 4.7.2, “my_print_defaults — Display Options from Option Files”
Section 4.6.3.1, “myisamchk General Options”
Section 4.6.5, “myisampack — Generate Compressed, Read-Only MyISAM Tables”
Section 4.5.1.1, “mysql Client Options”
Section 2.8.7, “MySQL Source-Configuration Options”
Section 4.6.6, “mysql_config_editor — MySQL Configuration Utility”
Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”

4987

Section 4.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.6.8, “mysqldumpslow — Summarize Slow Query Log Files”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.6, “mysqlpump — A Database Backup Program”
Section 4.5.7, “mysqlshow — Display Database, Table, and Column Information”
Section 4.5.8, “mysqlslap — A Load Emulation Client”
Section 5.1.6, “Server Command Options”
Section 5.1.7, “Server System Variables”
Section 2.3.4.6, “Starting MySQL from the Windows Command Line”
Section 5.8.3, “The DBUG Package”
Section 6.2.17, “Troubleshooting Problems Connecting to MySQL”
Section 2.9.2.1, “Troubleshooting Problems Starting the MySQL Server”

--debug-check
Section 4.5.1.1, “mysql Client Options”
Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 4.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.6, “mysqlpump — A Database Backup Program”
Section 4.5.7, “mysqlshow — Display Database, Table, and Column Information”
Section 4.5.8, “mysqlslap — A Load Emulation Client”

--debug-info
Section 4.4.1, “comp_err — Compile MySQL Error Message File”
Section 4.5.1.1, “mysql Client Options”
Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 4.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.6, “mysqlpump — A Database Backup Program”
Section 4.5.7, “mysqlshow — Display Database, Table, and Column Information”
Section 4.5.8, “mysqlslap — A Load Emulation Client”

--debug-sync-timeout
Section 5.1.6, “Server Command Options”
Section 5.1.7, “Server System Variables”

--default-auth
Section 4.2.3, “Command Options for Connecting to the Server”
Section 4.5.1.1, “mysql Client Options”
Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 4.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.5.4, “mysqldump — A Database Backup Program”

4988

Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.6, “mysqlpump — A Database Backup Program”
Section 4.5.7, “mysqlshow — Display Database, Table, and Column Information”
Section 4.5.8, “mysqlslap — A Load Emulation Client”
Section 6.4.1.1, “Native Pluggable Authentication”
Section 6.4.1.2, “Old Native Pluggable Authentication”
Section 6.2.13, “Pluggable Authentication”

--default-character-set
Section 6.2.1, “Account User Names and Passwords”
Section 10.15, “Character Set Configuration”
Section 10.5, “Configuring Application Character Set and Collation”
Section 10.4, “Connection Character Sets and Collations”
Section 4.5.1.5, “Executing SQL Statements from a Text File”
Section 13.2.6, “LOAD DATA Statement”
Section 4.5.1.1, “mysql Client Options”
Section 4.5.1.6, “mysql Client Tips”
Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 4.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.6, “mysqlpump — A Database Backup Program”
Section 4.5.7, “mysqlshow — Display Database, Table, and Column Information”
Section 5.1.7, “Server System Variables”

--default-parallelism
Section 4.5.6, “mysqlpump — A Database Backup Program”

--default-storage-engine
Section 14.15, “InnoDB Startup Options and System Variables”
Section 5.1.6, “Server Command Options”

--default-time-zone
Section 5.1.13, “MySQL Server Time Zone Support”
Section 5.1.6, “Server Command Options”
Section 5.1.7, “Server System Variables”

--default-tmp-storage-engine
Section 14.15, “InnoDB Startup Options and System Variables”
Section 5.1.6, “Server Command Options”

--default.key_buffer_size
Section 5.1.8.3, “Structured System Variables”

DEFAULT_CHARSET
Section 10.5, “Configuring Application Character Set and Collation”
Section 10.3.2, “Server Character Set and Collation”

DEFAULT_COLLATION
Section 10.5, “Configuring Application Character Set and Collation”
Section 10.3.2, “Server Character Set and Collation”

4989

--defaults
Section 4.4.2, “mysql_install_db — Initialize MySQL Data Directory”

--defaults-extra-file
Section 4.2.2.3, “Command-Line Options that Affect Option-File Handling”
Section 2.9.1, “Initializing the Data Directory”
Section 4.7.2, “my_print_defaults — Display Options from Option Files”
Section 4.6.3.1, “myisamchk General Options”
Section 4.5.1.1, “mysql Client Options”
Section 4.4.2, “mysql_install_db — Initialize MySQL Data Directory”
Section 4.4.4, “mysql_secure_installation — Improve MySQL Installation Security”
Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 4.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.3.4, “mysqld_multi — Manage Multiple MySQL Servers”
Section 4.3.2, “mysqld_safe — MySQL Server Startup Script”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.6, “mysqlpump — A Database Backup Program”
Section 4.5.7, “mysqlshow — Display Database, Table, and Column Information”
Section 4.5.8, “mysqlslap — A Load Emulation Client”
Section 21.5.6, “ndb_blob_tool — Check and Repair BLOB and TEXT columns of NDB Cluster Tables”
Section 21.5.7, “ndb_config — Extract NDB Cluster Configuration Information”
Section 21.5.9, “ndb_delete_all — Delete All Rows from an NDB Table”
Section 21.5.10, “ndb_desc — Describe NDB Tables”
Section 21.5.11, “ndb_drop_index — Drop Index from an NDB Table”
Section 21.5.12, “ndb_drop_table — Drop an NDB Table”
Section 21.5.14, “ndb_import — Import CSV Data Into NDB”
Section 21.5.15, “ndb_index_stat — NDB Index Statistics Utility”
Section 21.5.5, “ndb_mgm — The NDB Cluster Management Client”
Section 21.5.4, “ndb_mgmd — The NDB Cluster Management Server Daemon”
Section 21.5.16, “ndb_move_data — NDB Data Copy Utility”
Section 21.5.17, “ndb_perror — Obtain NDB Error Message Information”
Section 21.5.24, “ndb_restore — Restore an NDB Cluster Backup”
Section 21.5.25, “ndb_select_all — Print Rows from an NDB Table”
Section 21.5.26, “ndb_select_count — Print Row Counts for NDB Tables”
Section 21.5.27, “ndb_show_tables — Display List of NDB Tables”
Section 21.5.29, “ndb_top — View CPU usage information for NDB threads”
Section 21.5.30, “ndb_waiter — Wait for NDB Cluster to Reach a Given Status”
Section 21.5.1, “ndbd — The NDB Cluster Data Node Daemon”
Section 21.5.2, “ndbinfo_select_all — Select From ndbinfo Tables”
Section 5.1.6, “Server Command Options”
Section 4.2.2.2, “Using Option Files”

--defaults-file
Section 4.2.2.3, “Command-Line Options that Affect Option-File Handling”
Section 6.1.2.1, “End-User Guidelines for Password Security”
Section 2.9.1, “Initializing the Data Directory”
Section 14.8.1, “InnoDB Startup Configuration”
Section 6.4.4.7, “Migrating Keys Between Keyring Keystores”
Section 4.7.2, “my_print_defaults — Display Options from Option Files”
Section 4.6.3.1, “myisamchk General Options”

4990

Section 4.5.1.1, “mysql Client Options”
Section 2.8.7, “MySQL Source-Configuration Options”
Section 4.4.2, “mysql_install_db — Initialize MySQL Data Directory”
Section 4.4.4, “mysql_secure_installation — Improve MySQL Installation Security”
Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 4.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.3.4, “mysqld_multi — Manage Multiple MySQL Servers”
Section 4.3.2, “mysqld_safe — MySQL Server Startup Script”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.6, “mysqlpump — A Database Backup Program”
Section 4.5.7, “mysqlshow — Display Database, Table, and Column Information”
Section 4.5.8, “mysqlslap — A Load Emulation Client”
Section 21.5.6, “ndb_blob_tool — Check and Repair BLOB and TEXT columns of NDB Cluster Tables”
Section 21.5.7, “ndb_config — Extract NDB Cluster Configuration Information”
Section 21.5.9, “ndb_delete_all — Delete All Rows from an NDB Table”
Section 21.5.10, “ndb_desc — Describe NDB Tables”
Section 21.5.11, “ndb_drop_index — Drop Index from an NDB Table”
Section 21.5.12, “ndb_drop_table — Drop an NDB Table”
Section 21.5.14, “ndb_import — Import CSV Data Into NDB”
Section 21.5.15, “ndb_index_stat — NDB Index Statistics Utility”
Section 21.5.5, “ndb_mgm — The NDB Cluster Management Client”
Section 21.5.4, “ndb_mgmd — The NDB Cluster Management Server Daemon”
Section 21.5.16, “ndb_move_data — NDB Data Copy Utility”
Section 21.5.17, “ndb_perror — Obtain NDB Error Message Information”
Section 21.5.24, “ndb_restore — Restore an NDB Cluster Backup”
Section 21.5.25, “ndb_select_all — Print Rows from an NDB Table”
Section 21.5.26, “ndb_select_count — Print Row Counts for NDB Tables”
Section 21.5.27, “ndb_show_tables — Display List of NDB Tables”
Section 21.5.29, “ndb_top — View CPU usage information for NDB threads”
Section 21.5.30, “ndb_waiter — Wait for NDB Cluster to Reach a Given Status”
Section 21.5.1, “ndbd — The NDB Cluster Data Node Daemon”
Section 21.5.2, “ndbinfo_select_all — Select From ndbinfo Tables”
Section 27.6.3, “Options with the Embedded Server”
Resetting the Root Password: Unix and Unix-Like Systems
Resetting the Root Password: Windows Systems
Section 5.7, “Running Multiple MySQL Instances on One Machine”
Section 5.7.3, “Running Multiple MySQL Instances on Unix”
Section 5.1.6, “Server Command Options”
Section 5.7.2.2, “Starting Multiple MySQL Instances as Windows Services”
Section 5.7.2.1, “Starting Multiple MySQL Instances at the Windows Command Line”
Section 2.3.4.8, “Starting MySQL as a Windows Service”

--defaults-group-suffix
Section 4.2.2.3, “Command-Line Options that Affect Option-File Handling”
Section 4.9, “Environment Variables”
Section 4.7.2, “my_print_defaults — Display Options from Option Files”
Section 4.6.3.1, “myisamchk General Options”
Section 4.5.1.1, “mysql Client Options”
Section 4.4.4, “mysql_secure_installation — Improve MySQL Installation Security”
Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”

4991

Section 4.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.6, “mysqlpump — A Database Backup Program”
Section 4.5.7, “mysqlshow — Display Database, Table, and Column Information”
Section 4.5.8, “mysqlslap — A Load Emulation Client”
Section 21.5.6, “ndb_blob_tool — Check and Repair BLOB and TEXT columns of NDB Cluster Tables”
Section 21.5.7, “ndb_config — Extract NDB Cluster Configuration Information”
Section 21.5.9, “ndb_delete_all — Delete All Rows from an NDB Table”
Section 21.5.10, “ndb_desc — Describe NDB Tables”
Section 21.5.11, “ndb_drop_index — Drop Index from an NDB Table”
Section 21.5.12, “ndb_drop_table — Drop an NDB Table”
Section 21.5.14, “ndb_import — Import CSV Data Into NDB”
Section 21.5.15, “ndb_index_stat — NDB Index Statistics Utility”
Section 21.5.5, “ndb_mgm — The NDB Cluster Management Client”
Section 21.5.4, “ndb_mgmd — The NDB Cluster Management Server Daemon”
Section 21.5.16, “ndb_move_data — NDB Data Copy Utility”
Section 21.5.17, “ndb_perror — Obtain NDB Error Message Information”
Section 21.5.24, “ndb_restore — Restore an NDB Cluster Backup”
Section 21.5.25, “ndb_select_all — Print Rows from an NDB Table”
Section 21.5.26, “ndb_select_count — Print Row Counts for NDB Tables”
Section 21.5.27, “ndb_show_tables — Display List of NDB Tables”
Section 21.5.29, “ndb_top — View CPU usage information for NDB threads”
Section 21.5.30, “ndb_waiter — Wait for NDB Cluster to Reach a Given Status”
Section 21.5.1, “ndbd — The NDB Cluster Data Node Daemon”
Section 21.5.2, “ndbinfo_select_all — Select From ndbinfo Tables”
Section 5.1.6, “Server Command Options”

--defer-table-indexes
Section 4.5.6, “mysqlpump — A Database Backup Program”

--delay
Section 21.5.2, “ndbinfo_select_all — Select From ndbinfo Tables”

--delay-key-write
Section 8.11.5, “External Locking”

delay_key_write
Section 15.2.1, “MyISAM Startup Options”

--delete
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 21.5.15, “ndb_index_stat — NDB Index Statistics Utility”

--delete-master-logs
Section 4.5.4, “mysqldump — A Database Backup Program”

--delete-orphans
Section 21.5.6, “ndb_blob_tool — Check and Repair BLOB and TEXT columns of NDB Cluster Tables”

4992

--delimiter
Section 4.5.1.1, “mysql Client Options”
Section 4.5.8, “mysqlslap — A Load Emulation Client”
Section 21.5.25, “ndb_select_all — Print Rows from an NDB Table”

--demangle
Section 5.8.1.5, “Using a Stack Trace”

--des-key-file
Section 12.13, “Encryption and Compression Functions”
Section 13.7.6.3, “FLUSH Statement”
Section 5.1.6, “Server Command Options”
Section 1.3, “What Is New in MySQL 5.7”

--descending
Section 21.5.25, “ndb_select_all — Print Rows from an NDB Table”

--description
Section 4.6.3.4, “Other myisamchk Options”

--detach
Section 4.5.8, “mysqlslap — A Load Emulation Client”

--diff-default
Section 21.5.7, “ndb_config — Extract NDB Cluster Configuration Information”

--disable
Section 4.2.2.4, “Program Option Modifiers”

--disable-auto-rehash
Section 14.8.11.2, “Configuring Non-Persistent Optimizer Statistics Parameters”
Section 4.5.1.1, “mysql Client Options”

--disable-indexes
Section 21.5.24, “ndb_restore — Restore an NDB Cluster Backup”
Restoring to More Nodes Than the Original

--disable-innodb
Section 14.1.5, “Turning Off InnoDB”
Section 1.3, “What Is New in MySQL 5.7”

--disable-keys
Section 4.5.4, “mysqldump — A Database Backup Program”

--disable-log-bin
Section 16.1.6.4, “Binary Logging Options and Variables”
Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”

--disable-named-commands
Section 4.5.1.1, “mysql Client Options”

4993

--disable-partition-engine-check
Chapter 22, Partitioning
Section 5.1.6, “Server Command Options”

--disable-plugin_name
Section 5.5.1, “Installing and Uninstalling Plugins”

--disable-ssl
Section 4.2.3, “Command Options for Connecting to the Server”
Section 5.1.6, “Server Command Options”
Section 6.3, “Using Encrypted Connections”
Section 1.3, “What Is New in MySQL 5.7”

DISABLE_PSI_THREAD
Section 25.12.16.3, “The processlist Table”

--disconnect-slave-event-count
Section 16.1.6.3, “Replica Server Options and Variables”

--disk
Section 21.5.25, “ndb_select_all — Print Rows from an NDB Table”

--diskscan
Section 21.5.9, “ndb_delete_all — Delete All Rows from an NDB Table”

--dont-ignore-systab-0
Section 21.5.24, “ndb_restore — Restore an NDB Cluster Backup”

--drop-source
Section 21.5.16, “ndb_move_data — NDB Data Copy Utility”

--dry-scp
Section 21.5.13, “ndb_error_reporter — NDB Error-Reporting Utility”

--dump
Section 4.6.2, “myisam_ftdump — Display Full-Text Index information”
Section 21.5.15, “ndb_index_stat — NDB Index Statistics Utility”

--dump-date
Section 4.5.4, “mysqldump — A Database Backup Program”

--dump-file
Section 21.5.6, “ndb_blob_tool — Check and Repair BLOB and TEXT columns of NDB Cluster Tables”

--dump-slave
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 16.4.1.32, “Replication and Transaction Inconsistencies”

E

[index top]

4994

-E
Section 4.5.1.1, “mysql Client Options”
Section 4.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 4.5.4, “mysqldump — A Database Backup Program”

-e
Section 7.6.2, “How to Check MyISAM Tables for Errors”
Section 4.6.1, “innochecksum — Offline InnoDB File Checksum Utility”
Section 13.2.7, “LOAD XML Statement”
Section 2.5.7.2, “More Topics on Deploying MySQL Server with Docker”
Section 4.7.2, “my_print_defaults — Display Options from Option Files”
Section 4.6.3.2, “myisamchk Check Options”
Section 4.6.3.1, “myisamchk General Options”
Section 4.6.3.3, “myisamchk Repair Options”
Section A.10, “MySQL 5.7 FAQ: NDB Cluster”
Section 4.5.1.1, “mysql Client Options”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.8, “mysqlslap — A Load Emulation Client”
Section 21.7.9, “NDB Cluster Backups With NDB Cluster Replication”
Section 21.5.5, “ndb_mgm — The NDB Cluster Management Client”
Section 21.5.24, “ndb_restore — Restore an NDB Cluster Backup”
Section 4.6.3.5, “Obtaining Table Information with myisamchk”
Section 21.3.6, “Safe Shutdown and Restart of NDB Cluster”
Section 4.2.2.1, “Using Options on the Command Line”
Section 21.6.8.2, “Using The NDB Cluster Management Client to Create a Backup”

--early-plugin-load
Section 2.10.3, “Changes in MySQL 5.7”
Section 5.5.1, “Installing and Uninstalling Plugins”
Section 6.4.4.1, “Keyring Plugin Installation”
Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 5.1.6, “Server Command Options”
Section 6.4.4.5, “Using the keyring_aws Amazon Web Services Keyring Plugin”
Section 6.4.4.3, “Using the keyring_encrypted_file Encrypted File-Based Keyring Plugin”
Section 6.4.4.2, “Using the keyring_file File-Based Keyring Plugin”
Section 6.4.4.4, “Using the keyring_okv KMIP Plugin”

early-plugin-load
Section 14.14, “InnoDB Data-at-Rest Encryption”

--embedded
Section 4.7.1, “mysql_config — Display Options for Compiling Clients”
Section 1.3, “What Is New in MySQL 5.7”

--embedded-libs
Section 4.7.1, “mysql_config — Display Options for Compiling Clients”
Section 1.3, “What Is New in MySQL 5.7”

--embedded-server
Section 1.3, “What Is New in MySQL 5.7”

4995

--enable-cleartext-plugin
Section 6.4.1.6, “Client-Side Cleartext Pluggable Authentication”
Section 6.4.1.9, “LDAP Pluggable Authentication”
Section 4.5.1.1, “mysql Client Options”
Section 4.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.7, “mysqlshow — Display Database, Table, and Column Information”
Section 4.5.8, “mysqlslap — A Load Emulation Client”
Section 6.4.1.7, “PAM Pluggable Authentication”

--enable-plugin_name
Section 5.5.1, “Installing and Uninstalling Plugins”

--enable-ssl
Section 4.2.3, “Command Options for Connecting to the Server”
Section 6.3, “Using Encrypted Connections”
Section 1.3, “What Is New in MySQL 5.7”

ENABLE_DEBUG_SYNC
Section 14.15, “InnoDB Startup Options and System Variables”

enabled
Section 2.5.1, “Installing MySQL on Linux Using the MySQL Yum Repository”
Section 19.2.1.2, “Installing MySQL Shell on Linux”

ENABLED_LOCAL_INFILE
Section 2.8.7, “MySQL Source-Configuration Options”
Section 6.1.6, “Security Considerations for LOAD DATA LOCAL”

--end-page
Section 4.6.1, “innochecksum — Offline InnoDB File Checksum Utility”

--enforce-gtid-consistency
Section 16.1.6.5, “Global Transaction ID System Variables”
Section 16.1.3.6, “Restrictions on Replication with GTIDs”

--engine
Section 4.5.8, “mysqlslap — A Load Emulation Client”

--env
Section 2.5.7.2, “More Topics on Deploying MySQL Server with Docker”

--errins-delay
Section 21.5.14, “ndb_import — Import CSV Data Into NDB”

--errins-type
Section 21.5.14, “ndb_import — Import CSV Data Into NDB”

--error-insert
Section 21.5.16, “ndb_move_data — NDB Data Copy Utility”

4996

--event-scheduler
Section 23.4.2, “Event Scheduler Configuration”

event-scheduler
Section 23.4.2, “Event Scheduler Configuration”

--events
Section 7.4.5.3, “Dumping Stored Programs”
Section 7.4.5.4, “Dumping Table Definitions and Content Separately”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.6, “mysqlpump — A Database Backup Program”
Section 2.10.4, “Upgrading MySQL Binary or Package-based Installations on Unix/Linux”
Section 4.6.7.3, “Using mysqlbinlog to Back Up Binary Log Files”

--example
Section 4.3.4, “mysqld_multi — Manage Multiple MySQL Servers”

--exclude-*
Section 21.5.24, “ndb_restore — Restore an NDB Cluster Backup”

--exclude-databases
Section 4.5.6, “mysqlpump — A Database Backup Program”
Section 21.5.24, “ndb_restore — Restore an NDB Cluster Backup”

--exclude-events
Section 4.5.6, “mysqlpump — A Database Backup Program”

--exclude-gtids
Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”

--exclude-intermediate-sql-tables
Section 21.5.24, “ndb_restore — Restore an NDB Cluster Backup”

--exclude-missing-columns
Section 21.5.16, “ndb_move_data — NDB Data Copy Utility”
Section 21.5.24, “ndb_restore — Restore an NDB Cluster Backup”

--exclude-missing-tables
Section 21.5.24, “ndb_restore — Restore an NDB Cluster Backup”

--exclude-routines
Section 4.5.6, “mysqlpump — A Database Backup Program”

--exclude-tables
Section 4.5.6, “mysqlpump — A Database Backup Program”
Section 21.5.24, “ndb_restore — Restore an NDB Cluster Backup”

--exclude-triggers
Section 4.5.6, “mysqlpump — A Database Backup Program”

4997

--exclude-users
Section 4.5.6, “mysqlpump — A Database Backup Program”

--excludedbs
Section 21.5.28, “ndb_size.pl — NDBCLUSTER Size Requirement Estimator”

--excludetables
Section 21.5.28, “ndb_size.pl — NDBCLUSTER Size Requirement Estimator”

--execute
Section 4.5.1.3, “mysql Client Logging”
Section 4.5.1.1, “mysql Client Options”
Section 21.5.5, “ndb_mgm — The NDB Cluster Management Client”
Section 4.2.2.1, “Using Options on the Command Line”
Section 21.6.8.2, “Using The NDB Cluster Management Client to Create a Backup”

--exit-info
Section 5.1.6, “Server Command Options”

--extend-check
Section 4.6.3.2, “myisamchk Check Options”
Section 4.6.3.1, “myisamchk General Options”
Section 4.6.3.3, “myisamchk Repair Options”

--extended
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”

--extended-insert
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.6, “mysqlpump — A Database Backup Program”

--external-locking
Section 8.11.5, “External Locking”
Section 15.2.1, “MyISAM Startup Options”
Section 5.1.6, “Server Command Options”
Section 5.1.7, “Server System Variables”
Section 8.12.1, “System Factors”

--extra-file
Section 4.7.2, “my_print_defaults — Display Options from Option Files”

--extra-node-info
Section 21.5.10, “ndb_desc — Describe NDB Tables”

--extra-partition-info
Section 21.5.10, “ndb_desc — Describe NDB Tables”
Section 21.6.15.5, “The ndbinfo cluster_operations Table”
Section 21.6.15.34, “The ndbinfo server_operations Table”

--extra-sql-file
Section 4.4.2, “mysql_install_db — Initialize MySQL Data Directory”

4998

F

[index top]

-F
Section 4.4.1, “comp_err — Compile MySQL Error Message File”
Section 4.6.3.2, “myisamchk Check Options”
Section 4.6.4, “myisamlog — Display MyISAM Log File Contents”
Section 4.5.1.2, “mysql Client Commands”
Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.8, “mysqlslap — A Load Emulation Client”

-f
Section 21.6.1, “Commands in the NDB Cluster Management Client”
Section 21.3.4, “Initial Startup of NDB Cluster”
Section 21.3.2.3, “Initial Startup of NDB Cluster on Windows”
Section 4.6.3.2, “myisamchk Check Options”
Section 4.6.3.3, “myisamchk Repair Options”
Section 4.6.4, “myisamlog — Display MyISAM Log File Contents”
Section 4.6.5, “myisampack — Generate Compressed, Read-Only MyISAM Tables”
Section A.10, “MySQL 5.7 FAQ: NDB Cluster”
Section 4.5.1.1, “mysql Client Options”
Section 4.4.2, “mysql_install_db — Initialize MySQL Data Directory”
Section 4.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 21.5.7, “ndb_config — Extract NDB Cluster Configuration Information”
Section 21.5.4, “ndb_mgmd — The NDB Cluster Management Server Daemon”
Section 21.5.23, “ndb_redo_log_reader — Check and Print Content of Cluster Redo Log”
Section 21.5.24, “ndb_restore — Restore an NDB Cluster Backup”
Section 5.8.1.5, “Using a Stack Trace”

--fast
Section 4.6.3.2, “myisamchk Check Options”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”

--federated
Section 15.8, “The FEDERATED Storage Engine”

--fields
Section 21.5.7, “ndb_config — Extract NDB Cluster Configuration Information”

--fields-enclosed-by
Section 7.4.3, “Dumping Data in Delimited-Text Format with mysqldump”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 21.5.14, “ndb_import — Import CSV Data Into NDB”
Section 21.5.24, “ndb_restore — Restore an NDB Cluster Backup”

4999

--fields-escaped-by
Section 7.4.3, “Dumping Data in Delimited-Text Format with mysqldump”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 21.5.14, “ndb_import — Import CSV Data Into NDB”

--fields-optionally-enclosed-by
Section 7.4.3, “Dumping Data in Delimited-Text Format with mysqldump”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 21.5.14, “ndb_import — Import CSV Data Into NDB”
Section 21.5.24, “ndb_restore — Restore an NDB Cluster Backup”

--fields-terminated-by
Section 7.4.3, “Dumping Data in Delimited-Text Format with mysqldump”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 21.5.14, “ndb_import — Import CSV Data Into NDB”
Section 21.5.24, “ndb_restore — Restore an NDB Cluster Backup”

--fields-xxx
Section 4.5.4, “mysqldump — A Database Backup Program”

--fix-db-names
Section 9.2.4, “Mapping of Identifiers to File Names”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 1.3, “What Is New in MySQL 5.7”

--fix-table-names
Section 9.2.4, “Mapping of Identifiers to File Names”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 1.3, “What Is New in MySQL 5.7”

--flush
Section 5.1.6, “Server Command Options”
Section 5.1.7, “Server System Variables”
Section B.3.3.3, “What to Do If MySQL Keeps Crashing”

--flush-logs
Section 7.3.1, “Establishing a Backup Policy”
Section 5.4, “MySQL Server Logs”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 6.2.2, “Privileges Provided by MySQL”

--flush-privileges
Section 2.10.3, “Changes in MySQL 5.7”
Section 4.5.4, “mysqldump — A Database Backup Program”

--force
Section 4.6.3.2, “myisamchk Check Options”
Section 4.6.3.3, “myisamchk Repair Options”

5000

Section 4.6.5, “myisampack — Generate Compressed, Read-Only MyISAM Tables”
Section 4.5.1.1, “mysql Client Options”
Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 4.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 21.7.4, “NDB Cluster Replication Schema and Tables”
Section 21.3.7.1, “Upgrading and Downgrading NDB 7.5”
Section 3.5, “Using mysql in Batch Mode”
Section 21.2.4.1, “What is New in NDB Cluster 7.5”

--force-if-open
Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”

--force-read
Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”

FORCE_UNSUPPORTED_COMPILER
Section 2.8.2, “Source Installation Prerequisites”

--foreground
Section 21.5.1, “ndbd — The NDB Cluster Data Node Daemon”

--format
Section 21.5.28, “ndb_size.pl — NDBCLUSTER Size Requirement Estimator”

--fs
Section 21.5.13, “ndb_error_reporter — NDB Error-Reporting Utility”

G

[index top]

-G
Section 4.5.1.1, “mysql Client Options”
Section 4.6.6, “mysql_config_editor — MySQL Configuration Utility”

-g
Section 5.8.1.1, “Compiling MySQL for Debugging”
Section 4.7.2, “my_print_defaults — Display Options from Option Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.6.8, “mysqldumpslow — Summarize Slow Query Log Files”
Section 21.5.29, “ndb_top — View CPU usage information for NDB threads”

--gci
Section 21.5.25, “ndb_select_all — Print Rows from an NDB Table”

--gci64
Section 21.5.25, “ndb_select_all — Print Rows from an NDB Table”

5001

--gdb
Section 5.8.1.4, “Debugging mysqld under gdb”
Section 5.1.6, “Server Command Options”
Section 4.10, “Unix Signal Handling in MySQL”

--general-log
Section 4.2.2.1, “Using Options on the Command Line”
Section 5.1.8, “Using System Variables”

--general_log
Section 5.4.1, “Selecting General Query Log and Slow Query Log Output Destinations”
Section 5.4.3, “The General Query Log”
Section 4.2.2.1, “Using Options on the Command Line”
Section 5.1.8, “Using System Variables”

--general_log_file
Section 5.7, “Running Multiple MySQL Instances on One Machine”
Section 5.1.7, “Server System Variables”
Section 5.4.3, “The General Query Log”

--get-server-public-key
Section 6.4.1.4, “Caching SHA-2 Pluggable Authentication”
Section 4.2.3, “Command Options for Connecting to the Server”
Section 4.5.1.1, “mysql Client Options”
Section 4.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.6, “mysqlpump — A Database Backup Program”
Section 4.5.7, “mysqlshow — Display Database, Table, and Column Information”
Section 4.5.8, “mysqlslap — A Load Emulation Client”

--graph
Section 21.5.29, “ndb_top — View CPU usage information for NDB threads”

--gtid-mode
Section 16.1.6.5, “Global Transaction ID System Variables”

H

[index top]

-H
Section 4.4.1, “comp_err — Compile MySQL Error Message File”
Section 4.6.3.1, “myisamchk General Options”
Section 4.5.1.1, “mysql Client Options”
Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”

-h
Section 1.1, “About This Manual”

5002

Section 4.2.3, “Command Options for Connecting to the Server”
Section 4.2.4, “Connecting to the MySQL Server Using Command Options”
Section 4.2.1, “Invoking MySQL Programs”
Section 4.6.2, “myisam_ftdump — Display Full-Text Index information”
Section 4.5.1.1, “mysql Client Options”
Section 4.6.6, “mysql_config_editor — MySQL Configuration Utility”
Section 4.4.4, “mysql_secure_installation — Improve MySQL Installation Security”
Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 4.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.6.8, “mysqldumpslow — Summarize Slow Query Log Files”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.6, “mysqlpump — A Database Backup Program”
Section 4.5.7, “mysqlshow — Display Database, Table, and Column Information”
Section 4.5.8, “mysqlslap — A Load Emulation Client”
Section 21.5.19, “ndb_print_file — Print NDB Disk Data File Contents”
Section 21.5.25, “ndb_select_all — Print Rows from an NDB Table”
Section 21.5.29, “ndb_top — View CPU usage information for NDB threads”
Section 4.7.3, “resolve_stack_dump — Resolve Numeric Stack Trace Dump to Symbols”
Section 5.1.6, “Server Command Options”
Section 4.2.2.1, “Using Options on the Command Line”

HAVE_CRYPT
Section 1.3, “What Is New in MySQL 5.7”

--header
Section 21.5.25, “ndb_select_all — Print Rows from an NDB Table”

--header-file
Section 4.4.1, “comp_err — Compile MySQL Error Message File”

--HELP
Section 4.6.3.1, “myisamchk General Options”

--help
Section 4.4.1, “comp_err — Compile MySQL Error Message File”
Section 4.6.1, “innochecksum — Offline InnoDB File Checksum Utility”
Section 21.3.2.4, “Installing NDB Cluster Processes as Windows Services”
Section 4.7.2, “my_print_defaults — Display Options from Option Files”
Section 4.6.2, “myisam_ftdump — Display Full-Text Index information”
Section 4.6.3.1, “myisamchk General Options”
Section 4.6.5, “myisampack — Generate Compressed, Read-Only MyISAM Tables”
Section 4.5.1.1, “mysql Client Options”
Section 4.6.6, “mysql_config_editor — MySQL Configuration Utility”
Section 4.4.2, “mysql_install_db — Initialize MySQL Data Directory”
Section 4.4.3, “mysql_plugin — Configure MySQL Server Plugins”
Section 4.4.4, “mysql_secure_installation — Improve MySQL Installation Security”
Section 4.4.5, “mysql_ssl_rsa_setup — Create SSL/RSA Files”
Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 4.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”

5003

Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.3.4, “mysqld_multi — Manage Multiple MySQL Servers”
Section 4.3.2, “mysqld_safe — MySQL Server Startup Script”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.6.8, “mysqldumpslow — Summarize Slow Query Log Files”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.6, “mysqlpump — A Database Backup Program”
Section 4.5.7, “mysqlshow — Display Database, Table, and Column Information”
Section 4.5.8, “mysqlslap — A Load Emulation Client”
Section 21.5.6, “ndb_blob_tool — Check and Repair BLOB and TEXT columns of NDB Cluster Tables”
Section 21.5.7, “ndb_config — Extract NDB Cluster Configuration Information”
Section 21.5.9, “ndb_delete_all — Delete All Rows from an NDB Table”
Section 21.5.10, “ndb_desc — Describe NDB Tables”
Section 21.5.11, “ndb_drop_index — Drop Index from an NDB Table”
Section 21.5.12, “ndb_drop_table — Drop an NDB Table”
Section 21.5.13, “ndb_error_reporter — NDB Error-Reporting Utility”
Section 21.5.14, “ndb_import — Import CSV Data Into NDB”
Section 21.5.15, “ndb_index_stat — NDB Index Statistics Utility”
Section 21.5.5, “ndb_mgm — The NDB Cluster Management Client”
Section 21.5.4, “ndb_mgmd — The NDB Cluster Management Server Daemon”
Section 21.5.16, “ndb_move_data — NDB Data Copy Utility”
Section 21.5.17, “ndb_perror — Obtain NDB Error Message Information”
Section 21.5.19, “ndb_print_file — Print NDB Disk Data File Contents”
Section 21.5.23, “ndb_redo_log_reader — Check and Print Content of Cluster Redo Log”
Section 21.5.24, “ndb_restore — Restore an NDB Cluster Backup”
Section 21.5.25, “ndb_select_all — Print Rows from an NDB Table”
Section 21.5.26, “ndb_select_count — Print Row Counts for NDB Tables”
Section 21.5.27, “ndb_show_tables — Display List of NDB Tables”
Section 21.5.29, “ndb_top — View CPU usage information for NDB threads”
Section 21.5.30, “ndb_waiter — Wait for NDB Cluster to Reach a Given Status”
Section 21.5.1, “ndbd — The NDB Cluster Data Node Daemon”
Section 21.5.2, “ndbinfo_select_all — Select From ndbinfo Tables”
Section 4.1, “Overview of MySQL Programs”
Section 4.8.2, “perror — Display MySQL Error Message Information”
Section 4.7.3, “resolve_stack_dump — Resolve Numeric Stack Trace Dump to Symbols”
Section 4.8.4, “resolveip — Resolve Host name to IP Address or Vice Versa”
Section 5.1.6, “Server Command Options”
Section 2.9.3, “Testing the Server”
Section 1.2.2, “The Main Features of MySQL”
Section 2.9.2.1, “Troubleshooting Problems Starting the MySQL Server”
Chapter 3, Tutorial
Section 4.2.2.2, “Using Option Files”
Section 4.2.2.1, “Using Options on the Command Line”

help
Section 2.3.3.5, “MySQL Installer Console Reference”

--hex
Section 21.5.24, “ndb_restore — Restore an NDB Cluster Backup”

--hex-blob
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.6, “mysqlpump — A Database Backup Program”

5004

--hexdump
Section 4.6.7.1, “mysqlbinlog Hex Dump Format”
Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”

--histignore
Section 4.5.1.3, “mysql Client Logging”
Section 4.5.1.1, “mysql Client Options”
Section 4.5.1.6, “mysql Client Tips”
Section 1.3, “What Is New in MySQL 5.7”

--host
Section 1.1, “About This Manual”
Section 2.10.3, “Changes in MySQL 5.7”
Section 4.2.3, “Command Options for Connecting to the Server”
Section 4.2.4, “Connecting to the MySQL Server Using Command Options”
Section 2.9.1, “Initializing the Data Directory”
Section 4.2.1, “Invoking MySQL Programs”
Section 4.5.1.1, “mysql Client Options”
Section 4.6.6, “mysql_config_editor — MySQL Configuration Utility”
Section 4.4.4, “mysql_secure_installation — Improve MySQL Installation Security”
Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 4.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.6, “mysqlpump — A Database Backup Program”
Section 4.5.7, “mysqlshow — Display Database, Table, and Column Information”
Section 4.5.8, “mysqlslap — A Load Emulation Client”
Section 21.5.7, “ndb_config — Extract NDB Cluster Configuration Information”
Section 21.5.29, “ndb_top — View CPU usage information for NDB threads”
Section 4.2.2.6, “Option Defaults, Options Expecting Values, and the = Sign”
Section 5.1.7, “Server System Variables”
Section 6.2.17, “Troubleshooting Problems Connecting to MySQL”
Section 5.7.4, “Using Client Programs in a Multiple-Server Environment”
Section 4.6.7.3, “Using mysqlbinlog to Back Up Binary Log Files”
Section 4.2.2.2, “Using Option Files”
Section 4.2.2.1, “Using Options on the Command Line”
Section 19.4.2.2, “X Plugin Options and System Variables”

host
Section 4.6.6, “mysql_config_editor — MySQL Configuration Utility”
Section 4.2.2.2, “Using Option Files”

--hostname
Section 21.5.28, “ndb_size.pl — NDBCLUSTER Size Requirement Estimator”

--html
Section 4.5.1.1, “mysql Client Options”

I

[index top]

5005

-I
Section 4.6.1, “innochecksum — Offline InnoDB File Checksum Utility”
Section 4.6.4, “myisamlog — Display MyISAM Log File Contents”
Section 4.8.2, “perror — Display MySQL Error Message Information”
Section 4.8.3, “replace — A String-Replacement Utility”
Section 4.8.4, “resolveip — Resolve Host name to IP Address or Vice Versa”

-i
Section 21.6.1, “Commands in the NDB Cluster Management Client”
Section 7.6.2, “How to Check MyISAM Tables for Errors”
Section 4.6.3.2, “myisamchk Check Options”
Section 4.6.4, “myisamlog — Display MyISAM Log File Contents”
Section 4.5.1.1, “mysql Client Options”
Section 4.4.3, “mysql_plugin — Configure MySQL Server Plugins”
Section 4.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.6.8, “mysqldumpslow — Summarize Slow Query Log Files”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.7, “mysqlshow — Display Database, Table, and Column Information”
Section 4.5.8, “mysqlslap — A Load Emulation Client”

--i-am-a-dummy
Section 4.5.1.1, “mysql Client Options”
Section 4.5.1.6, “mysql Client Tips”

--id
Section 21.5.7, “ndb_config — Extract NDB Cluster Configuration Information”

--idempotent
Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 5.1.7, “Server System Variables”

--idlesleep
Section 21.5.14, “ndb_import — Import CSV Data Into NDB”

--idlespin
Section 21.5.14, “ndb_import — Import CSV Data Into NDB”

--ignore
Section 4.5.5, “mysqlimport — A Data Import Program”

--ignore-db-dir
Section 2.9.1, “Initializing the Data Directory”
Section 5.1.6, “Server Command Options”
Section 5.1.7, “Server System Variables”
Section 1.3, “What Is New in MySQL 5.7”

--ignore-error
Section 4.5.4, “mysqldump — A Database Backup Program”

--ignore-extended-pk-updates
Section 21.5.24, “ndb_restore — Restore an NDB Cluster Backup”

5006

Section 21.2.4.2, “What is New in NDB Cluster 7.6”

--ignore-lines
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 21.5.14, “ndb_import — Import CSV Data Into NDB”

--ignore-spaces
Section 4.5.1.1, “mysql Client Options”

--ignore-table
Creating a Data Snapshot Using mysqldump
Section 4.5.4, “mysqldump — A Database Backup Program”

--in-file
Section 4.4.1, “comp_err — Compile MySQL Error Message File”

--include
Section 4.7.1, “mysql_config — Display Options for Compiling Clients”

--include-*
Section 21.5.24, “ndb_restore — Restore an NDB Cluster Backup”

--include-databases
Section 4.5.6, “mysqlpump — A Database Backup Program”
Section 21.5.24, “ndb_restore — Restore an NDB Cluster Backup”

--include-events
Section 4.5.6, “mysqlpump — A Database Backup Program”

--include-gtids
Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”

--include-master-host-port
Section 4.5.4, “mysqldump — A Database Backup Program”

--include-routines
Section 4.5.6, “mysqlpump — A Database Backup Program”

--include-tables
Section 4.5.6, “mysqlpump — A Database Backup Program”
Section 21.5.24, “ndb_restore — Restore an NDB Cluster Backup”

--include-triggers
Section 4.5.6, “mysqlpump — A Database Backup Program”

--include-users
Section 4.5.6, “mysqlpump — A Database Backup Program”

--info
Section 4.6.1, “innochecksum — Offline InnoDB File Checksum Utility”

5007

Section 4.8.2, “perror — Display MySQL Error Message Information”
Section 4.8.4, “resolveip — Resolve Host name to IP Address or Vice Versa”

--information
Section 4.6.3.2, “myisamchk Check Options”

--init-command
Section 21.6.9, “Importing Data Into MySQL Cluster”
Section 4.5.1.1, “mysql Client Options”

--init_connect
Section 10.5, “Configuring Application Character Set and Collation”

--initial
Section 21.6.7.2, “Adding NDB Cluster Data Nodes Online: Basic procedure”
Section 21.6.7.3, “Adding NDB Cluster Data Nodes Online: Detailed Example”
Section 21.6.1, “Commands in the NDB Cluster Management Client”
Section 21.4.3.5, “Defining an NDB Cluster Management Server”
Section 21.4.3.4, “Defining Computers in an NDB Cluster”
Section 21.4.3.6, “Defining NDB Cluster Data Nodes”
Section 21.4.3.7, “Defining SQL and Other API Nodes in an NDB Cluster”
Section 21.4.3.8, “Defining the System”
Section 21.6.13, “Distributed Privileges Using Shared Grant Tables”
Section 21.3.4, “Initial Startup of NDB Cluster”
Section 21.3.2.3, “Initial Startup of NDB Cluster on Windows”
Section 21.7.3, “Known Issues in NDB Cluster Replication”
Section 21.2.7.10, “Limitations Relating to Multiple NDB Cluster Nodes”
Section 21.4.3, “NDB Cluster Configuration Files”
Section 21.6.11.3, “NDB Cluster Disk Data Storage Requirements”
Section 21.4.3.12, “NDB Cluster Shared Memory Connections”
Section 21.4.3.10, “NDB Cluster TCP/IP Connections”
Section 21.5.7, “ndb_config — Extract NDB Cluster Configuration Information”
Section 21.5.4, “ndb_mgmd — The NDB Cluster Management Server Daemon”
Section 21.5.24, “ndb_restore — Restore an NDB Cluster Backup”
Section 21.5.1, “ndbd — The NDB Cluster Data Node Daemon”
Section 21.5.3, “ndbmtd — The NDB Cluster Data Node Daemon (Multi-Threaded)”
Section 21.4.2, “Overview of NDB Cluster Configuration Parameters, Options, and Variables”
Section 21.6.5, “Performing a Rolling Restart of an NDB Cluster”
Section 21.7.9.2, “Point-In-Time Recovery Using NDB Cluster Replication”
Restoring to Fewer Nodes Than the Original
Section 21.6.4, “Summary of NDB Cluster Start Phases”
Section 21.3.7.2, “Upgrading and Downgrading NDB 7.6”
Section 21.2.4.2, “What is New in NDB Cluster 7.6”

--initial-start
Section 21.5.1, “ndbd — The NDB Cluster Data Node Daemon”

--initialize
Section 2.3.4.2, “Creating an Option File”
Section 2.11.4, “Downgrading Binary and Package-based Installations on Unix/Linux”
Section 2.9.1, “Initializing the Data Directory”
Section 21.3.1.1, “Installing an NDB Cluster Binary Release on Linux”

5008

MySQL Server Options for NDB Cluster
Chapter 26, MySQL sys Schema
Section 4.4.2, “mysql_install_db — Initialize MySQL Data Directory”
Section 5.1.6, “Server Command Options”
Section 5.1.7, “Server System Variables”
Section 14.6.3.1, “The System Tablespace”
Section 21.3.7.1, “Upgrading and Downgrading NDB 7.5”
Section 1.3, “What Is New in MySQL 5.7”

--initialize-insecure
Section 2.3.4.2, “Creating an Option File”
Section 2.11.4, “Downgrading Binary and Package-based Installations on Unix/Linux”
Section 2.9.1, “Initializing the Data Directory”
Section 21.3.1.1, “Installing an NDB Cluster Binary Release on Linux”
Chapter 26, MySQL sys Schema
Section 4.4.2, “mysql_install_db — Initialize MySQL Data Directory”
Section 5.1.6, “Server Command Options”
Section 5.1.7, “Server System Variables”
Section 14.6.3.1, “The System Tablespace”
Section 1.3, “What Is New in MySQL 5.7”

--innodb
Section 14.15, “InnoDB Startup Options and System Variables”
Section 14.1.5, “Turning Off InnoDB”
Section 1.3, “What Is New in MySQL 5.7”

--innodb-adaptive-hash-index
Section 14.15, “InnoDB Startup Options and System Variables”

--innodb-file-per-table
Section 5.1.6, “Server Command Options”

innodb-file-per-table
Section 5.1.6, “Server Command Options”

--innodb-rollback-on-timeout
Section 14.22.4, “InnoDB Error Handling”
Section 14.15, “InnoDB Startup Options and System Variables”

--innodb-status-file
Section 14.18.2, “Enabling InnoDB Monitors”
Section 14.15, “InnoDB Startup Options and System Variables”

--innodb-xxx
Section 5.1.6, “Server Command Options”

--innodb_file_per_table
Section 8.12.3.3, “Using Symbolic Links for Databases on Windows”

innodb_file_per_table
Creating a Data Snapshot Using Raw Data Files

5009

INNODB_PAGE_ATOMIC_REF_COUNT
Section 1.3, “What Is New in MySQL 5.7”

--innodb_support_xa
Section 5.4.4, “The Binary Log”

--input-type
Section 21.5.14, “ndb_import — Import CSV Data Into NDB”

--input-workers
Section 21.5.14, “ndb_import — Import CSV Data Into NDB”

--insecure
Section 4.4.2, “mysql_install_db — Initialize MySQL Data Directory”

--insert-ignore
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.6, “mysqlpump — A Database Backup Program”

--install
Section 4.2.2.3, “Command-Line Options that Affect Option-File Handling”
Section 21.3.2.4, “Installing NDB Cluster Processes as Windows Services”
Section 21.5.4, “ndb_mgmd — The NDB Cluster Management Server Daemon”
Section 21.5.1, “ndbd — The NDB Cluster Data Node Daemon”
Section 5.1.6, “Server Command Options”
Section 5.7.2.2, “Starting Multiple MySQL Instances as Windows Services”
Section 2.3.4.8, “Starting MySQL as a Windows Service”

install
Section 2.3.3.5, “MySQL Installer Console Reference”

--install-manual
Section 5.1.6, “Server Command Options”
Section 5.7.2.2, “Starting Multiple MySQL Instances as Windows Services”
Section 2.3.4.8, “Starting MySQL as a Windows Service”

INSTALL_LAYOUT
Section 6.4.4.12, “Keyring System Variables”
Section 2.8.7, “MySQL Source-Configuration Options”
Section 5.1.7, “Server System Variables”

INSTALL_LIBDIR
Section 2.8.7, “MySQL Source-Configuration Options”

INSTALL_MYSQLKEYRINGDIR
Section 6.4.4.12, “Keyring System Variables”

INSTALL_SECURE_FILE_PRIV_EMBEDDEDDIR
Section 2.8.7, “MySQL Source-Configuration Options”
Section 27.6.2, “Restrictions When Using the Embedded MySQL Server”
Section 5.1.7, “Server System Variables”

5010

Section 1.3, “What Is New in MySQL 5.7”

INSTALL_SECURE_FILE_PRIVDIR
Section 5.1.7, “Server System Variables”

--interactive
Section 21.5.4, “ndb_mgmd — The NDB Cluster Management Server Daemon”

--iterations
Section 4.5.8, “mysqlslap — A Load Emulation Client”

J

[index top]

-j
Section 4.6.5, “myisampack — Generate Compressed, Read-Only MyISAM Tables”
Section 4.5.1.1, “mysql Client Options”
Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”

--join
Section 4.6.5, “myisampack — Generate Compressed, Read-Only MyISAM Tables”

K

[index top]

-K
Section 4.5.4, “mysqldump — A Database Backup Program”

-k
Section 4.6.3.3, “myisamchk Repair Options”
Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 4.5.7, “mysqlshow — Display Database, Table, and Column Information”

--keep-state
Section 21.5.14, “ndb_import — Import CSV Data Into NDB”

--keep_files_on_create
Section 13.1.18, “CREATE TABLE Statement”

--key-buffer
Section 4.2.2.5, “Using Options to Set Program Variables”
Section 1.3, “What Is New in MySQL 5.7”

--key-buffer-size
Section 4.2.2.5, “Using Options to Set Program Variables”
Section 1.3, “What Is New in MySQL 5.7”

--keyring-migration-destination
Section 6.4.4.11, “Keyring Command Options”

5011

Section 6.4.4.7, “Migrating Keys Between Keyring Keystores”

--keyring-migration-host
Section 6.4.4.11, “Keyring Command Options”
Section 6.4.4.7, “Migrating Keys Between Keyring Keystores”

--keyring-migration-password
Section 6.4.4.11, “Keyring Command Options”
Section 6.4.4.7, “Migrating Keys Between Keyring Keystores”

--keyring-migration-port
Section 6.4.4.11, “Keyring Command Options”
Section 6.4.4.7, “Migrating Keys Between Keyring Keystores”

--keyring-migration-socket
Section 6.4.4.11, “Keyring Command Options”
Section 6.4.4.7, “Migrating Keys Between Keyring Keystores”

--keyring-migration-source
Section 6.4.4.11, “Keyring Command Options”
Section 6.4.4.7, “Migrating Keys Between Keyring Keystores”

--keyring-migration-user
Section 6.4.4.11, “Keyring Command Options”
Section 6.4.4.7, “Migrating Keys Between Keyring Keystores”

--keys
Section 4.5.7, “mysqlshow — Display Database, Table, and Column Information”

--keys-used
Section 4.6.3.3, “myisamchk Repair Options”

L

[index top]

-L
Section 4.5.1.1, “mysql Client Options”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 21.5.24, “ndb_restore — Restore an NDB Cluster Backup”
Section 2.12.3, “Problems Using the Perl DBI/DBD Interface”

-l
Section 4.6.1, “innochecksum — Offline InnoDB File Checksum Utility”
Section 4.7.2, “my_print_defaults — Display Options from Option Files”
Section 4.6.2, “myisam_ftdump — Display Full-Text Index information”
Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.6.8, “mysqldumpslow — Summarize Slow Query Log Files”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 21.5.16, “ndb_move_data — NDB Data Copy Utility”

5012

Section 21.5.23, “ndb_redo_log_reader — Check and Print Content of Cluster Redo Log”
Section 21.5.25, “ndb_select_all — Print Rows from an NDB Table”
Section 21.5.26, “ndb_select_count — Print Row Counts for NDB Tables”
Section 21.5.27, “ndb_show_tables — Display List of NDB Tables”
Section 21.5.2, “ndbinfo_select_all — Select From ndbinfo Tables”

--language
Section 5.1.6, “Server Command Options”

--large-pages
Section 8.12.4.3, “Enabling Large Page Support”
Section 5.1.6, “Server Command Options”
Section 5.1.7, “Server System Variables”

--lc-messages
Section 4.4.2, “mysql_install_db — Initialize MySQL Data Directory”
Section 5.1.6, “Server Command Options”

--lc-messages-dir
Section 4.4.2, “mysql_install_db — Initialize MySQL Data Directory”
Section 5.1.6, “Server Command Options”

--ledir
Section 4.3.2, “mysqld_safe — MySQL Server Startup Script”

--length
Section 4.6.2, “myisam_ftdump — Display Full-Text Index information”

--libmysqld-libs
Section 4.7.1, “mysql_config — Display Options for Compiling Clients”
Section 1.3, “What Is New in MySQL 5.7”

--libs
Section 4.7.1, “mysql_config — Display Options for Compiling Clients”
Section 1.3, “What Is New in MySQL 5.7”

--libs_r
Section 4.7.1, “mysql_config — Display Options for Compiling Clients”

--line-numbers
Section 4.5.1.1, “mysql Client Options”

--lines-terminated-by
Section 7.4.3, “Dumping Data in Delimited-Text Format with mysqldump”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 21.5.14, “ndb_import — Import CSV Data Into NDB”
Section 21.5.24, “ndb_restore — Restore an NDB Cluster Backup”

list
Section 2.3.3.5, “MySQL Installer Console Reference”

5013

--loadqueries
Section 21.5.28, “ndb_size.pl — NDBCLUSTER Size Requirement Estimator”

--local
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 6.1.6, “Security Considerations for LOAD DATA LOCAL”

--local-infile
Section 13.2.7, “LOAD XML Statement”
Section 4.5.1.1, “mysql Client Options”
Section 2.8.7, “MySQL Source-Configuration Options”
Section 6.1.6, “Security Considerations for LOAD DATA LOCAL”

--local-load
Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”

--local-service
Section 5.1.6, “Server Command Options”
Section 2.3.4.8, “Starting MySQL as a Windows Service”

--lock
Section 21.5.25, “ndb_select_all — Print Rows from an NDB Table”
Section 21.5.26, “ndb_select_count — Print Row Counts for NDB Tables”

--lock-all-tables
Section 4.5.4, “mysqldump — A Database Backup Program”

--lock-tables
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.5, “mysqlimport — A Data Import Program”

--log
Section 4.6.1, “innochecksum — Offline InnoDB File Checksum Utility”
Section 4.3.4, “mysqld_multi — Manage Multiple MySQL Servers”

--log-bin
Section 7.3.3, “Backup Strategy Summary”
Section 16.1.6.4, “Binary Logging Options and Variables”
Section 7.2, “Database Backup Methods”
Section 7.3.1, “Establishing a Backup Policy”
Section 16.1.6.5, “Global Transaction ID System Variables”
Section 16.4.5, “How to Report Replication Bugs or Problems”
Section B.3.7, “Known Issues in MySQL”
Section 21.2.7.1, “Noncompliance with SQL Syntax in NDB Cluster”
Section 7.5.1, “Point-in-Time Recovery Using Binary Log”
Section 13.4.1.1, “PURGE BINARY LOGS Statement”
Section 16.1.6.3, “Replica Server Options and Variables”
Section 5.7, “Running Multiple MySQL Instances on One Machine”
Section 5.4.4.2, “Setting The Binary Log Format”
Section 23.7, “Stored Program Binary Logging”
Section 16.3.7, “Switching Sources During Failover”

5014

Section 5.4.4, “The Binary Log”
Section 16.4.4, “Troubleshooting Replication”
Section 7.3.2, “Using Backups for Recovery”
Section 17.5.5, “Using MySQL Enterprise Backup with Group Replication”
Section 4.2.2.1, “Using Options on the Command Line”

--log-bin-index
Section 16.1.6.4, “Binary Logging Options and Variables”
Section 21.2.7.1, “Noncompliance with SQL Syntax in NDB Cluster”
Section 5.4.4, “The Binary Log”

--log-error
Section 5.4.2.2, “Error Logging on Unix and Unix-Like Systems”
Section 5.4.2.1, “Error Logging on Windows”
Section 5.4.2.3, “Error Logging to the System Log”
Section 2.5.7.2, “More Topics on Deploying MySQL Server with Docker”
Section 4.3.2, “mysqld_safe — MySQL Server Startup Script”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.2.2.6, “Option Defaults, Options Expecting Values, and the = Sign”
Section 5.7, “Running Multiple MySQL Instances on One Machine”
Section 5.1.6, “Server Command Options”
Section 5.4.7, “Server Log Maintenance”
Section 2.3.4.6, “Starting MySQL from the Windows Command Line”
Section 2.3.4.5, “Starting the Server for the First Time”

--log-error-file
Section 4.5.6, “mysqlpump — A Database Backup Program”

--log-isam
Section 4.6.4, “myisamlog — Display MyISAM Log File Contents”
Section 5.1.6, “Server Command Options”

--log-level
Section 21.5.14, “ndb_import — Import CSV Data Into NDB”

--log-name
Section 21.5.4, “ndb_mgmd — The NDB Cluster Management Server Daemon”

--log-raw
Section 6.1.2.3, “Passwords and Logging”
Section 5.1.6, “Server Command Options”
Section 5.4.3, “The General Query Log”

--log-short-format
Section 5.1.6, “Server Command Options”
Section 5.4.5, “The Slow Query Log”

--log-slave-updates
Section 16.1.6.5, “Global Transaction ID System Variables”
Section 16.4.5, “How to Report Replication Bugs or Problems”
Section 16.1.6.3, “Replica Server Options and Variables”

5015

Section 16.1.3.4, “Setting Up Replication Using GTIDs”
Section 16.3.7, “Switching Sources During Failover”
Section 5.4.4, “The Binary Log”

--log-tc
Section 5.1.6, “Server Command Options”

--log-tc-size
Section 5.1.6, “Server Command Options”
Section 5.1.9, “Server Status Variables”

--log-warnings
Section 16.1.6.3, “Replica Server Options and Variables”
Section 5.1.6, “Server Command Options”
Section 5.1.7, “Server System Variables”
Section 1.3, “What Is New in MySQL 5.7”

--log_bin
Section 4.2.2.1, “Using Options on the Command Line”

--log_output
Section 5.4.1, “Selecting General Query Log and Slow Query Log Output Destinations”

--log_timestamps
Section 4.3.2, “mysqld_safe — MySQL Server Startup Script”

--logbuffer-size
Section 21.5.1, “ndbd — The NDB Cluster Data Node Daemon”

--login-file
Section 4.4.2, “mysql_install_db — Initialize MySQL Data Directory”

--login-path
Section 4.2.2.3, “Command-Line Options that Affect Option-File Handling”
Section 4.7.2, “my_print_defaults — Display Options from Option Files”
Section 4.5.1.1, “mysql Client Options”
Section 4.6.6, “mysql_config_editor — MySQL Configuration Utility”
Section 4.4.2, “mysql_install_db — Initialize MySQL Data Directory”
Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 4.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.6, “mysqlpump — A Database Backup Program”
Section 4.5.7, “mysqlshow — Display Database, Table, and Column Information”
Section 4.5.8, “mysqlslap — A Load Emulation Client”
Section 21.5.6, “ndb_blob_tool — Check and Repair BLOB and TEXT columns of NDB Cluster Tables”
Section 21.5.7, “ndb_config — Extract NDB Cluster Configuration Information”
Section 21.5.9, “ndb_delete_all — Delete All Rows from an NDB Table”
Section 21.5.10, “ndb_desc — Describe NDB Tables”

5016

Section 21.5.11, “ndb_drop_index — Drop Index from an NDB Table”
Section 21.5.12, “ndb_drop_table — Drop an NDB Table”
Section 21.5.14, “ndb_import — Import CSV Data Into NDB”
Section 21.5.15, “ndb_index_stat — NDB Index Statistics Utility”
Section 21.5.5, “ndb_mgm — The NDB Cluster Management Client”
Section 21.5.4, “ndb_mgmd — The NDB Cluster Management Server Daemon”
Section 21.5.16, “ndb_move_data — NDB Data Copy Utility”
Section 21.5.17, “ndb_perror — Obtain NDB Error Message Information”
Section 21.5.24, “ndb_restore — Restore an NDB Cluster Backup”
Section 21.5.25, “ndb_select_all — Print Rows from an NDB Table”
Section 21.5.26, “ndb_select_count — Print Row Counts for NDB Tables”
Section 21.5.27, “ndb_show_tables — Display List of NDB Tables”
Section 21.5.29, “ndb_top — View CPU usage information for NDB threads”
Section 21.5.30, “ndb_waiter — Wait for NDB Cluster to Reach a Given Status”
Section 21.5.1, “ndbd — The NDB Cluster Data Node Daemon”
Section 21.5.2, “ndbinfo_select_all — Select From ndbinfo Tables”
Section 4.2.2.2, “Using Option Files”

--loops
Section 21.5.15, “ndb_index_stat — NDB Index Statistics Utility”
Section 21.5.27, “ndb_show_tables — Display List of NDB Tables”
Section 21.5.2, “ndbinfo_select_all — Select From ndbinfo Tables”

--loose
Section 4.2.2.4, “Program Option Modifiers”

--loose-opt_name
Section 4.2.2.2, “Using Option Files”

--lossy-conversions
Section 21.5.16, “ndb_move_data — NDB Data Copy Utility”
Section 21.5.24, “ndb_restore — Restore an NDB Cluster Backup”
Section 21.2.4.1, “What is New in NDB Cluster 7.5”
Section 21.2.4.2, “What is New in NDB Cluster 7.6”

--low-priority
Section 4.5.5, “mysqlimport — A Data Import Program”

--low-priority-updates
Section 8.11.3, “Concurrent Inserts”
Section 13.2.5, “INSERT Statement”
Section 8.11.2, “Table Locking Issues”

--lower-case-table-names
Section 9.2.3, “Identifier Case Sensitivity”

M

[index top]

-m
Section 4.6.3.2, “myisamchk Check Options”

5017

Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 21.7.9, “NDB Cluster Backups With NDB Cluster Replication”
Section 21.5.23, “ndb_redo_log_reader — Check and Print Content of Cluster Redo Log”
Section 21.5.24, “ndb_restore — Restore an NDB Cluster Backup”
Section 21.5.29, “ndb_top — View CPU usage information for NDB threads”
Restoring to More Nodes Than the Original

--malloc-lib
Section 2.5.10, “Managing MySQL Server with systemd”
Section 4.3.2, “mysqld_safe — MySQL Server Startup Script”

--master-data
Creating a Data Snapshot Using mysqldump
Section 7.3.1, “Establishing a Backup Policy”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 6.2.2, “Privileges Provided by MySQL”
Section 16.1.3.5, “Using GTIDs for Failover and Scaleout”
Section 4.6.7.3, “Using mysqlbinlog to Back Up Binary Log Files”

--master-info-file
Section 16.1.6.3, “Replica Server Options and Variables”
Section 16.2.4.2, “Replication Metadata Repositories”

--master-retry-count
Section 13.4.2.1, “CHANGE MASTER TO Statement”
Section 16.1.6.3, “Replica Server Options and Variables”
Section 13.7.5.34, “SHOW SLAVE STATUS Statement”

--max-allowed-packet
Section 4.5.1.1, “mysql Client Options”
Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.6, “mysqlpump — A Database Backup Program”

--max-binlog-dump-events
Section 16.1.6.4, “Binary Logging Options and Variables”

--max-binlog-size
Section 16.1.6.3, “Replica Server Options and Variables”

--max-join-size
Section 4.5.1.1, “mysql Client Options”
Section 4.5.1.6, “mysql Client Tips”

--max-record-length
Section 4.6.3.3, “myisamchk Repair Options”
Section 13.7.2.5, “REPAIR TABLE Statement”

--max-relay-log-size
Section 16.1.6.3, “Replica Server Options and Variables”
Section 16.2.2.3, “Startup Options and Replication Channels”

5018

--max-rows
Section 21.5.14, “ndb_import — Import CSV Data Into NDB”

--max-seeks-for-key
Section 8.2.1.20, “Avoiding Full Table Scans”
Section B.3.5, “Optimizer-Related Issues”

--maximum
Section 4.2.2.4, “Program Option Modifiers”

--maximum-back_log
Section 4.2.2.4, “Program Option Modifiers”

--maximum-innodb-log-file-size
Section 5.1.8, “Using System Variables”

--maximum-max_heap_table_size
Section 4.2.2.4, “Program Option Modifiers”

--maximum-query_cache_size
Section 8.10.3.3, “Query Cache Configuration”

--maximum-var_name
Section 5.1.6, “Server Command Options”
Section 5.1.8, “Using System Variables”

--measured-load
Section 21.5.29, “ndb_top — View CPU usage information for NDB threads”

--medium-check
Section 4.6.3.2, “myisamchk Check Options”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”

--memlock
Section 5.1.6, “Server Command Options”
Section 5.1.7, “Server System Variables”
Section 14.6.3.1, “The System Tablespace”

modify
Section 2.3.3.5, “MySQL Installer Console Reference”

--monitor
Section 21.5.14, “ndb_import — Import CSV Data Into NDB”

--mount
Section 2.5.7.2, “More Topics on Deploying MySQL Server with Docker”

--my-plugin
Section 5.5.1, “Installing and Uninstalling Plugins”

5019

--my-print-defaults
Section 4.4.3, “mysql_plugin — Configure MySQL Server Plugins”

--my_plugin
Section 5.5.1, “Installing and Uninstalling Plugins”

--mycnf
Section 21.5.7, “ndb_config — Extract NDB Cluster Configuration Information”
Section 21.5.4, “ndb_mgmd — The NDB Cluster Management Server Daemon”

--myisam-block-size
Section 8.10.2.5, “Key Cache Block Size”
Section 5.1.6, “Server Command Options”

--myisam_sort_buffer_size
Section 4.6.3.6, “myisamchk Memory Usage”

MYSQL_ALLOW_EMPTY_PASSWORD
Section 2.5.7.2, “More Topics on Deploying MySQL Server with Docker”

MYSQL_DATABASE
Section 2.5.7.2, “More Topics on Deploying MySQL Server with Docker”

MYSQL_LOG_CONSOLE
Section 2.5.7.2, “More Topics on Deploying MySQL Server with Docker”

MYSQL_MAINTAINER_MODE
Section 2.8.8, “Dealing with Problems Compiling MySQL”

MYSQL_ONETIME_PASSWORD
Section 2.5.7.1, “Basic Steps for MySQL Server Deployment with Docker”
Section 2.5.7.2, “More Topics on Deploying MySQL Server with Docker”

MYSQL_PASSWORD
Section 2.5.7.2, “More Topics on Deploying MySQL Server with Docker”

MYSQL_RANDOM_ROOT_PASSWORD
Section 2.5.7.2, “More Topics on Deploying MySQL Server with Docker”

MYSQL_ROOT_HOST
Section 2.5.7.2, “More Topics on Deploying MySQL Server with Docker”

MYSQL_ROOT_PASSWORD
Section 2.5.7.2, “More Topics on Deploying MySQL Server with Docker”

MYSQL_TCP_PORT
Section 2.8.5, “Installing MySQL Using a Development Source Tree”
Section 2.8.7, “MySQL Source-Configuration Options”

5020

MYSQL_UNIX_ADDR
Section B.3.3.6, “How to Protect or Change the MySQL Unix Socket File”
Section 2.8.5, “Installing MySQL Using a Development Source Tree”
Section 2.8.7, “MySQL Source-Configuration Options”
Section 19.4.2.2, “X Plugin Options and System Variables”

MYSQL_USER
Section 2.5.7.2, “More Topics on Deploying MySQL Server with Docker”

--mysqladmin
Section 4.3.4, “mysqld_multi — Manage Multiple MySQL Servers”

--mysqld
Section 4.4.3, “mysql_plugin — Configure MySQL Server Plugins”
Section 4.3.4, “mysqld_multi — Manage Multiple MySQL Servers”
Section 4.3.2, “mysqld_safe — MySQL Server Startup Script”

--mysqld-file
Section 4.4.2, “mysql_install_db — Initialize MySQL Data Directory”

--mysqld-safe-log-timestamps
Section 4.3.2, “mysqld_safe — MySQL Server Startup Script”

--mysqld-version
Section 4.3.2, “mysqld_safe — MySQL Server Startup Script”

--mysqlx
Section 19.4.2.2, “X Plugin Options and System Variables”

MYSQLX_UNIX_ADDR
Section 19.4.2.2, “X Plugin Options and System Variables”

N

[index top]

-N
Section 4.4.1, “comp_err — Compile MySQL Error Message File”
Section 4.5.1.1, “mysql Client Options”
Section 4.5.4, “mysqldump — A Database Backup Program”

-n
Section 21.6.1, “Commands in the NDB Cluster Management Client”
Section 4.6.1, “innochecksum — Offline InnoDB File Checksum Utility”
Section 4.7.2, “my_print_defaults — Display Options from Option Files”
Section 4.6.3.3, “myisamchk Repair Options”
Section 4.5.1.1, “mysql Client Options”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.6.8, “mysqldumpslow — Summarize Slow Query Log Files”
Section 21.5.10, “ndb_desc — Describe NDB Tables”

5021

Section 21.5.23, “ndb_redo_log_reader — Check and Print Content of Cluster Redo Log”
Section 21.5.24, “ndb_restore — Restore an NDB Cluster Backup”
Section 21.5.29, “ndb_top — View CPU usage information for NDB threads”
Section 21.5.30, “ndb_waiter — Wait for NDB Cluster to Reach a Given Status”
Section 21.5.1, “ndbd — The NDB Cluster Data Node Daemon”
Section 4.7.3, “resolve_stack_dump — Resolve Numeric Stack Trace Dump to Symbols”

--name
Section 2.5.7.1, “Basic Steps for MySQL Server Deployment with Docker”

--name-file
Section 4.4.1, “comp_err — Compile MySQL Error Message File”

--named-commands
Section 4.5.1.1, “mysql Client Options”

--ndb
Section 21.5.17, “ndb_perror — Obtain NDB Error Message Information”
Section 4.8.2, “perror — Display MySQL Error Message Information”
Section 21.6.15.21, “The ndbinfo error_messages Table”
Section 1.3, “What Is New in MySQL 5.7”
Section 21.2.4.2, “What is New in NDB Cluster 7.6”

--ndb-allow-copying-alter-table
MySQL Server Options for NDB Cluster
Section 21.2.4.1, “What is New in NDB Cluster 7.5”

--ndb-batch-size
MySQL Server Options for NDB Cluster
Section 21.7.5, “Preparing the NDB Cluster for Replication”

--ndb-blob-read-batch-bytes
MySQL Server Options for NDB Cluster

--ndb-blob-write-batch-bytes
MySQL Server Options for NDB Cluster
Section 21.7.5, “Preparing the NDB Cluster for Replication”

--ndb-cluster
Section A.10, “MySQL 5.7 FAQ: NDB Cluster”

--ndb-cluster-connection-pool
MySQL Server Options for NDB Cluster
Section 21.2.4.1, “What is New in NDB Cluster 7.5”

--ndb-cluster-connection-pool-nodeids
MySQL Server Options for NDB Cluster
Section 21.2.4.1, “What is New in NDB Cluster 7.5”

--ndb-connectstring
Section 21.3.2.1, “Installing NDB Cluster on Windows from a Binary Release”

5022

Section A.10, “MySQL 5.7 FAQ: NDB Cluster”
MySQL Server Options for NDB Cluster
Section 21.6.10, “MySQL Server Usage for NDB Cluster”
Section 21.6.18.2, “NDB Cluster and MySQL Privileges”
Section 21.2.1, “NDB Cluster Core Concepts”
Section 21.5.6, “ndb_blob_tool — Check and Repair BLOB and TEXT columns of NDB Cluster Tables”
Section 21.5.7, “ndb_config — Extract NDB Cluster Configuration Information”
Section 21.5.9, “ndb_delete_all — Delete All Rows from an NDB Table”
Section 21.5.10, “ndb_desc — Describe NDB Tables”
Section 21.5.11, “ndb_drop_index — Drop Index from an NDB Table”
Section 21.5.12, “ndb_drop_table — Drop an NDB Table”
Section 21.5.14, “ndb_import — Import CSV Data Into NDB”
Section 21.5.15, “ndb_index_stat — NDB Index Statistics Utility”
Section 21.5.5, “ndb_mgm — The NDB Cluster Management Client”
Section 21.5.4, “ndb_mgmd — The NDB Cluster Management Server Daemon”
Section 21.5.16, “ndb_move_data — NDB Data Copy Utility”
Section 21.5.24, “ndb_restore — Restore an NDB Cluster Backup”
Section 21.5.25, “ndb_select_all — Print Rows from an NDB Table”
Section 21.5.26, “ndb_select_count — Print Row Counts for NDB Tables”
Section 21.5.27, “ndb_show_tables — Display List of NDB Tables”
Section 21.5.30, “ndb_waiter — Wait for NDB Cluster to Reach a Given Status”
Section 21.5.1, “ndbd — The NDB Cluster Data Node Daemon”
Section 21.5.2, “ndbinfo_select_all — Select From ndbinfo Tables”
Section 21.7.5, “Preparing the NDB Cluster for Replication”
Section 21.4.3.2, “Recommended Starting Configuration for NDB Cluster”
Restoring to Fewer Nodes Than the Original
Restoring to More Nodes Than the Original
Section 21.2.4.1, “What is New in NDB Cluster 7.5”

ndb-connectstring
Section 21.5.30, “ndb_waiter — Wait for NDB Cluster to Reach a Given Status”

--ndb-default-column-format
MySQL Server Options for NDB Cluster
Section 21.2.4.1, “What is New in NDB Cluster 7.5”

--ndb-deferred-constraints
MySQL Server Options for NDB Cluster

--ndb-distribution
MySQL Server Options for NDB Cluster

--ndb-log-apply-status
MySQL Server Options for NDB Cluster
NDB Cluster System Variables

--ndb-log-empty-epochs
MySQL Server Options for NDB Cluster
Section 21.7.4, “NDB Cluster Replication Schema and Tables”

--ndb-log-empty-update
MySQL Server Options for NDB Cluster

5023

--ndb-log-exclusive-reads
MySQL Server Options for NDB Cluster

--ndb-log-fail-terminate
MySQL Server Options for NDB Cluster
Section 21.2.4.1, “What is New in NDB Cluster 7.5”
Section 21.2.4.2, “What is New in NDB Cluster 7.6”

--ndb-log-orig
MySQL Server Options for NDB Cluster
Section 21.7.4, “NDB Cluster Replication Schema and Tables”
NDB Cluster System Variables

--ndb-log-transaction-id
Section 16.1.6.4, “Binary Logging Options and Variables”
MySQL Server Options for NDB Cluster
Section 21.7.11, “NDB Cluster Replication Conflict Resolution”
NDB Cluster System Variables

--ndb-log-update-as-write
Section 21.7.3, “Known Issues in NDB Cluster Replication”
MySQL Server Options for NDB Cluster
Section 21.7.11, “NDB Cluster Replication Conflict Resolution”
Section 21.7.4, “NDB Cluster Replication Schema and Tables”

--ndb-log-update-minimal
MySQL Server Options for NDB Cluster
Section 21.7.4, “NDB Cluster Replication Schema and Tables”

--ndb-log-updated-only
MySQL Server Options for NDB Cluster
Section 21.7.11, “NDB Cluster Replication Conflict Resolution”
Section 21.7.4, “NDB Cluster Replication Schema and Tables”

--ndb-mgmd-host
MySQL Server Options for NDB Cluster
Section 21.5.6, “ndb_blob_tool — Check and Repair BLOB and TEXT columns of NDB Cluster Tables”
Section 21.5.7, “ndb_config — Extract NDB Cluster Configuration Information”
Section 21.5.9, “ndb_delete_all — Delete All Rows from an NDB Table”
Section 21.5.10, “ndb_desc — Describe NDB Tables”
Section 21.5.11, “ndb_drop_index — Drop Index from an NDB Table”
Section 21.5.12, “ndb_drop_table — Drop an NDB Table”
Section 21.5.14, “ndb_import — Import CSV Data Into NDB”
Section 21.5.15, “ndb_index_stat — NDB Index Statistics Utility”
Section 21.5.5, “ndb_mgm — The NDB Cluster Management Client”
Section 21.5.4, “ndb_mgmd — The NDB Cluster Management Server Daemon”
Section 21.5.16, “ndb_move_data — NDB Data Copy Utility”
Section 21.5.24, “ndb_restore — Restore an NDB Cluster Backup”
Section 21.5.25, “ndb_select_all — Print Rows from an NDB Table”
Section 21.5.26, “ndb_select_count — Print Row Counts for NDB Tables”
Section 21.5.27, “ndb_show_tables — Display List of NDB Tables”

5024

Section 21.5.30, “ndb_waiter — Wait for NDB Cluster to Reach a Given Status”
Section 21.5.1, “ndbd — The NDB Cluster Data Node Daemon”
Section 21.5.2, “ndbinfo_select_all — Select From ndbinfo Tables”

--ndb-nodegroup-map
Section 21.5.24, “ndb_restore — Restore an NDB Cluster Backup”

--ndb-nodeid
MySQL Server Options for NDB Cluster
Section 21.5.6, “ndb_blob_tool — Check and Repair BLOB and TEXT columns of NDB Cluster Tables”
Section 21.5.7, “ndb_config — Extract NDB Cluster Configuration Information”
Section 21.5.9, “ndb_delete_all — Delete All Rows from an NDB Table”
Section 21.5.10, “ndb_desc — Describe NDB Tables”
Section 21.5.11, “ndb_drop_index — Drop Index from an NDB Table”
Section 21.5.12, “ndb_drop_table — Drop an NDB Table”
Section 21.5.14, “ndb_import — Import CSV Data Into NDB”
Section 21.5.15, “ndb_index_stat — NDB Index Statistics Utility”
Section 21.5.5, “ndb_mgm — The NDB Cluster Management Client”
Section 21.5.4, “ndb_mgmd — The NDB Cluster Management Server Daemon”
Section 21.5.16, “ndb_move_data — NDB Data Copy Utility”
Section 21.5.24, “ndb_restore — Restore an NDB Cluster Backup”
Section 21.5.25, “ndb_select_all — Print Rows from an NDB Table”
Section 21.5.26, “ndb_select_count — Print Row Counts for NDB Tables”
Section 21.5.27, “ndb_show_tables — Display List of NDB Tables”
Section 21.5.30, “ndb_waiter — Wait for NDB Cluster to Reach a Given Status”
Section 21.5.1, “ndbd — The NDB Cluster Data Node Daemon”
Section 21.5.2, “ndbinfo_select_all — Select From ndbinfo Tables”
Section 21.2.4.1, “What is New in NDB Cluster 7.5”

--ndb-optimization-delay
MySQL Server Options for NDB Cluster
Section 13.7.2.4, “OPTIMIZE TABLE Statement”

--ndb-optimized-node-selection
MySQL Server Options for NDB Cluster
Section 21.5.6, “ndb_blob_tool — Check and Repair BLOB and TEXT columns of NDB Cluster Tables”
Section 21.5.7, “ndb_config — Extract NDB Cluster Configuration Information”
Section 21.5.9, “ndb_delete_all — Delete All Rows from an NDB Table”
Section 21.5.10, “ndb_desc — Describe NDB Tables”
Section 21.5.11, “ndb_drop_index — Drop Index from an NDB Table”
Section 21.5.12, “ndb_drop_table — Drop an NDB Table”
Section 21.5.14, “ndb_import — Import CSV Data Into NDB”
Section 21.5.15, “ndb_index_stat — NDB Index Statistics Utility”
Section 21.5.5, “ndb_mgm — The NDB Cluster Management Client”
Section 21.5.4, “ndb_mgmd — The NDB Cluster Management Server Daemon”
Section 21.5.16, “ndb_move_data — NDB Data Copy Utility”
Section 21.5.24, “ndb_restore — Restore an NDB Cluster Backup”
Section 21.5.25, “ndb_select_all — Print Rows from an NDB Table”
Section 21.5.26, “ndb_select_count — Print Row Counts for NDB Tables”
Section 21.5.27, “ndb_show_tables — Display List of NDB Tables”
Section 21.5.30, “ndb_waiter — Wait for NDB Cluster to Reach a Given Status”
Section 21.5.1, “ndbd — The NDB Cluster Data Node Daemon”
Section 21.5.2, “ndbinfo_select_all — Select From ndbinfo Tables”

5025

--ndb-transid-mysql-connection-map
MySQL Server Options for NDB Cluster
Section 24.3.13, “The INFORMATION_SCHEMA ndb_transid_mysql_connection_map Table”

--ndb-wait-connected
MySQL Server Options for NDB Cluster

--ndb-wait-setup
MySQL Server Options for NDB Cluster

--ndbcluster
Section 21.4, “Configuration of NDB Cluster”
Section 21.3.2.1, “Installing NDB Cluster on Windows from a Binary Release”
Section A.10, “MySQL 5.7 FAQ: NDB Cluster”
MySQL Server Options for NDB Cluster
Section 21.6.10, “MySQL Server Usage for NDB Cluster”
Section 21.6.18.2, “NDB Cluster and MySQL Privileges”
Section 21.2.1, “NDB Cluster Core Concepts”
Section 21.6.15, “ndbinfo: The NDB Cluster Information Database”
Section 21.4.3.2, “Recommended Starting Configuration for NDB Cluster”
Section 5.1.6, “Server Command Options”
Section 13.7.5.16, “SHOW ENGINES Statement”
Section 24.3.7, “The INFORMATION_SCHEMA ENGINES Table”
Section 21.3.7.1, “Upgrading and Downgrading NDB 7.5”

--net-buffer-length
Section 4.5.1.1, “mysql Client Options”
Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.6, “mysqlpump — A Database Backup Program”

net_retry_count
Section 16.2.3.1, “Monitoring Replication Main Threads”

net_write_timeout
Section 16.2.3.1, “Monitoring Replication Main Threads”

--network
Section 2.5.7.2, “More Topics on Deploying MySQL Server with Docker”

--nice
Section 2.5.10, “Managing MySQL Server with systemd”
Section 4.3.2, “mysqld_safe — MySQL Server Startup Script”

--no-asynch
Section 21.5.14, “ndb_import — Import CSV Data Into NDB”

--no-auto-rehash
Section 4.5.1.1, “mysql Client Options”

--no-autocommit
Section 4.5.4, “mysqldump — A Database Backup Program”

5026

--no-beep
Section 4.5.1.1, “mysql Client Options”
Section 4.5.2, “mysqladmin — A MySQL Server Administration Program”

--no-binlog
Section 21.5.24, “ndb_restore — Restore an NDB Cluster Backup”

--no-check
Section 4.6.1, “innochecksum — Offline InnoDB File Checksum Utility”

--no-contact
Section 21.5.30, “ndb_waiter — Wait for NDB Cluster to Reach a Given Status”

--no-create-db
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.6, “mysqlpump — A Database Backup Program”

--no-create-info
Section 7.4.5.4, “Dumping Table Definitions and Content Separately”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.6, “mysqlpump — A Database Backup Program”

--no-data
Section 7.4.5.4, “Dumping Table Definitions and Content Separately”
Section 4.5.4, “mysqldump — A Database Backup Program”

--no-defaults
Section 4.2.2.3, “Command-Line Options that Affect Option-File Handling”
Section 4.7.2, “my_print_defaults — Display Options from Option Files”
Section 4.6.3.1, “myisamchk General Options”
Section 4.5.1.1, “mysql Client Options”
Section 4.6.6, “mysql_config_editor — MySQL Configuration Utility”
Section 4.4.2, “mysql_install_db — Initialize MySQL Data Directory”
Section 4.4.3, “mysql_plugin — Configure MySQL Server Plugins”
Section 4.4.4, “mysql_secure_installation — Improve MySQL Installation Security”
Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 4.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.3.4, “mysqld_multi — Manage Multiple MySQL Servers”
Section 4.3.2, “mysqld_safe — MySQL Server Startup Script”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.6, “mysqlpump — A Database Backup Program”
Section 4.5.7, “mysqlshow — Display Database, Table, and Column Information”
Section 4.5.8, “mysqlslap — A Load Emulation Client”
Section 21.5.6, “ndb_blob_tool — Check and Repair BLOB and TEXT columns of NDB Cluster Tables”
Section 21.5.7, “ndb_config — Extract NDB Cluster Configuration Information”
Section 21.5.9, “ndb_delete_all — Delete All Rows from an NDB Table”
Section 21.5.10, “ndb_desc — Describe NDB Tables”
Section 21.5.11, “ndb_drop_index — Drop Index from an NDB Table”
Section 21.5.12, “ndb_drop_table — Drop an NDB Table”

5027

Section 21.5.14, “ndb_import — Import CSV Data Into NDB”
Section 21.5.15, “ndb_index_stat — NDB Index Statistics Utility”
Section 21.5.5, “ndb_mgm — The NDB Cluster Management Client”
Section 21.5.4, “ndb_mgmd — The NDB Cluster Management Server Daemon”
Section 21.5.16, “ndb_move_data — NDB Data Copy Utility”
Section 21.5.17, “ndb_perror — Obtain NDB Error Message Information”
Section 21.5.24, “ndb_restore — Restore an NDB Cluster Backup”
Section 21.5.25, “ndb_select_all — Print Rows from an NDB Table”
Section 21.5.26, “ndb_select_count — Print Row Counts for NDB Tables”
Section 21.5.27, “ndb_show_tables — Display List of NDB Tables”
Section 21.5.29, “ndb_top — View CPU usage information for NDB threads”
Section 21.5.30, “ndb_waiter — Wait for NDB Cluster to Reach a Given Status”
Section 21.5.1, “ndbd — The NDB Cluster Data Node Daemon”
Section 21.5.2, “ndbinfo_select_all — Select From ndbinfo Tables”
Section 5.1.6, “Server Command Options”
Section 6.2.17, “Troubleshooting Problems Connecting to MySQL”
Section 4.2.2.2, “Using Option Files”

--no-drop
Section 4.5.8, “mysqlslap — A Load Emulation Client”

--no-hint
Section 21.5.14, “ndb_import — Import CSV Data Into NDB”

--no-history-logging
Section 17.5.5, “Using MySQL Enterprise Backup with Group Replication”

--no-log
Section 4.3.4, “mysqld_multi — Manage Multiple MySQL Servers”

--no-login-paths
Section 4.6.6, “mysql_config_editor — MySQL Configuration Utility”

--no-nodeid-checks
Section 21.5.4, “ndb_mgmd — The NDB Cluster Management Server Daemon”

--no-restore-disk-objects
Section 21.5.24, “ndb_restore — Restore an NDB Cluster Backup”

--no-set-names
Section 4.5.4, “mysqldump — A Database Backup Program”

--no-tablespaces
Section 4.5.4, “mysqldump — A Database Backup Program”

--no-upgrade
Section 21.5.24, “ndb_restore — Restore an NDB Cluster Backup”

--nodaemon
Section 21.5.4, “ndb_mgmd — The NDB Cluster Management Server Daemon”
Section 21.5.1, “ndbd — The NDB Cluster Data Node Daemon”

5028

--nodata
Section 21.5.25, “ndb_select_all — Print Rows from an NDB Table”

--node-id
Section 21.5.29, “ndb_top — View CPU usage information for NDB threads”

--nodeid
Section 21.5.7, “ndb_config — Extract NDB Cluster Configuration Information”
Section 21.5.24, “ndb_restore — Restore an NDB Cluster Backup”
Restoring to Fewer Nodes Than the Original
Section 21.2.4.1, “What is New in NDB Cluster 7.5”
Section 21.2.4.2, “What is New in NDB Cluster 7.6”

--nodes
Section 21.5.7, “ndb_config — Extract NDB Cluster Configuration Information”

--nostart
Section 21.6.1, “Commands in the NDB Cluster Management Client”
Section 21.5.1, “ndbd — The NDB Cluster Data Node Daemon”

--not-started
Section 21.5.30, “ndb_waiter — Wait for NDB Cluster to Reach a Given Status”

--nowait-nodes
Section 21.6.7.3, “Adding NDB Cluster Data Nodes Online: Detailed Example”
Section 21.4.3.6, “Defining NDB Cluster Data Nodes”
Section 21.5.4, “ndb_mgmd — The NDB Cluster Management Server Daemon”
Section 21.5.30, “ndb_waiter — Wait for NDB Cluster to Reach a Given Status”
Section 21.5.1, “ndbd — The NDB Cluster Data Node Daemon”

--num-slices
Section 21.5.24, “ndb_restore — Restore an NDB Cluster Backup”
Section 21.2.4.2, “What is New in NDB Cluster 7.6”

--number-char-cols
Section 4.5.8, “mysqlslap — A Load Emulation Client”

--number-int-cols
Section 4.5.8, “mysqlslap — A Load Emulation Client”

--number-of-queries
Section 4.5.8, “mysqlslap — A Load Emulation Client”

--numeric-dump-file
Section 4.7.3, “resolve_stack_dump — Resolve Numeric Stack Trace Dump to Symbols”

O

[index top]

-O
Section 4.4.1, “comp_err — Compile MySQL Error Message File”

5029

Section 2.8.7, “MySQL Source-Configuration Options”

-o
Section 27.6.1, “Compiling Programs with libmysqld”
Section 4.6.3.3, “myisamchk Repair Options”
Section 4.6.4, “myisamlog — Display MyISAM Log File Contents”
Section 4.5.1.1, “mysql Client Options”
Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 21.5.25, “ndb_select_all — Print Rows from an NDB Table”
Section 21.5.29, “ndb_top — View CPU usage information for NDB threads”
Section 8.12.2, “Optimizing Disk I/O”

--offset
Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”

--old-style-user-limits
Section 5.1.6, “Server Command Options”
Section 6.2.16, “Setting Account Resource Limits”

--oldpackage
Section 2.5.5, “Installing MySQL on Linux Using RPM Packages from Oracle”

ON
Section 3.3.4.9, “Using More Than one Table”

--one-database
Section 4.5.1.1, “mysql Client Options”

--only-print
Section 4.5.8, “mysqlslap — A Load Emulation Client”

--opbatch
Section 21.5.14, “ndb_import — Import CSV Data Into NDB”

--opbytes
Section 21.5.14, “ndb_import — Import CSV Data Into NDB”

--open-files-limit
Section B.3.2.16, “File Not Found and Similar Errors”
Section 2.5.10, “Managing MySQL Server with systemd”
Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.3.2, “mysqld_safe — MySQL Server Startup Script”
Section 5.1.7, “Server System Variables”

openssl
Section 4.5.6, “mysqlpump — A Database Backup Program”

--opt
Section 8.5.5, “Bulk Data Loading for InnoDB Tables”
Section 4.5.4, “mysqldump — A Database Backup Program”

5030

--opt_name
Section 4.2.2.2, “Using Option Files”

--optimize
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”

--order
Section 21.5.25, “ndb_select_all — Print Rows from an NDB Table”

--order-by-primary
Section 4.5.4, “mysqldump — A Database Backup Program”

--os-load
Section 21.5.29, “ndb_top — View CPU usage information for NDB threads”

--out-dir
Section 4.4.1, “comp_err — Compile MySQL Error Message File”

--out-file
Section 4.4.1, “comp_err — Compile MySQL Error Message File”

--output-type
Section 21.5.14, “ndb_import — Import CSV Data Into NDB”

--output-workers
Section 21.5.14, “ndb_import — Import CSV Data Into NDB”

P

[index top]

-P
Section 4.2.3, “Command Options for Connecting to the Server”
Section 4.2.4, “Connecting to the MySQL Server Using Command Options”
Section 4.2.1, “Invoking MySQL Programs”
Section 4.5.1.1, “mysql Client Options”
Section 4.6.6, “mysql_config_editor — MySQL Configuration Utility”
Section 4.4.3, “mysql_plugin — Configure MySQL Server Plugins”
Section 4.4.4, “mysql_secure_installation — Improve MySQL Installation Security”
Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 4.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.6, “mysqlpump — A Database Backup Program”
Section 4.5.7, “mysqlshow — Display Database, Table, and Column Information”
Section 4.5.8, “mysqlslap — A Load Emulation Client”
Section 21.5.4, “ndb_mgmd — The NDB Cluster Management Server Daemon”
Section 21.5.24, “ndb_restore — Restore an NDB Cluster Backup”
Section 21.5.29, “ndb_top — View CPU usage information for NDB threads”

5031

Section 5.1.6, “Server Command Options”

-p
Section 6.2.1, “Account User Names and Passwords”
Section 21.6.7.3, “Adding NDB Cluster Data Nodes Online: Detailed Example”
Section 4.2.3, “Command Options for Connecting to the Server”
Section 4.2.4, “Connecting to the MySQL Server Using Command Options”
Section 2.11, “Downgrading MySQL”
Section 6.1.2.1, “End-User Guidelines for Password Security”
Section 4.6.1, “innochecksum — Offline InnoDB File Checksum Utility”
Section 4.2.1, “Invoking MySQL Programs”
Section 22.2.5, “KEY Partitioning”
Section 4.6.3.3, “myisamchk Repair Options”
Section 4.6.4, “myisamlog — Display MyISAM Log File Contents”
Section 4.5.1.1, “mysql Client Options”
Section 4.6.6, “mysql_config_editor — MySQL Configuration Utility”
Section 4.4.3, “mysql_plugin — Configure MySQL Server Plugins”
Section 4.4.4, “mysql_secure_installation — Improve MySQL Installation Security”
Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 4.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.6, “mysqlpump — A Database Backup Program”
Section 4.5.7, “mysqlshow — Display Database, Table, and Column Information”
Section 4.5.8, “mysqlslap — A Load Emulation Client”
Section 21.5.10, “ndb_desc — Describe NDB Tables”
Section 21.5.23, “ndb_redo_log_reader — Check and Print Content of Cluster Redo Log”
Section 21.5.24, “ndb_restore — Restore an NDB Cluster Backup”
Section 21.5.25, “ndb_select_all — Print Rows from an NDB Table”
Section 21.5.26, “ndb_select_count — Print Row Counts for NDB Tables”
Section 21.5.27, “ndb_show_tables — Display List of NDB Tables”
Section 21.5.29, “ndb_top — View CPU usage information for NDB threads”
Section 21.5.2, “ndbinfo_select_all — Select From ndbinfo Tables”
Section B.3.2.4, “Password Fails When Entered Interactively”
Section 2.3.4.8, “Starting MySQL as a Windows Service”
Section 2.3.4.6, “Starting MySQL from the Windows Command Line”
Section 2.3.4.9, “Testing The MySQL Installation”
Section 2.9.3, “Testing the Server”
Section 21.6.15.5, “The ndbinfo cluster_operations Table”
Section 21.6.15.34, “The ndbinfo server_operations Table”
Section 6.2.17, “Troubleshooting Problems Connecting to MySQL”
Section 2.10, “Upgrading MySQL”
Section 2.10.8, “Upgrading MySQL on Windows”
Section 4.2.2.1, “Using Options on the Command Line”
Section 2.3.6, “Windows Postinstallation Procedures”

--page
Section 4.6.1, “innochecksum — Offline InnoDB File Checksum Utility”

--page-type-dump
Section 4.6.1, “innochecksum — Offline InnoDB File Checksum Utility”

5032

--page-type-summary
Section 4.6.1, “innochecksum — Offline InnoDB File Checksum Utility”

--pagecnt
Section 21.5.14, “ndb_import — Import CSV Data Into NDB”

--pager
Section 4.5.1.2, “mysql Client Commands”
Section 4.5.1.1, “mysql Client Options”

--pagesize
Section 21.5.14, “ndb_import — Import CSV Data Into NDB”

--parallel-recover
Section 4.6.3.3, “myisamchk Repair Options”

--parallel-schemas
Section 4.5.6, “mysqlpump — A Database Backup Program”

--parallelism
Section 21.5.24, “ndb_restore — Restore an NDB Cluster Backup”
Section 21.5.25, “ndb_select_all — Print Rows from an NDB Table”
Section 21.5.26, “ndb_select_count — Print Row Counts for NDB Tables”
Section 21.5.2, “ndbinfo_select_all — Select From ndbinfo Tables”

parallelism
Section 21.5.25, “ndb_select_all — Print Rows from an NDB Table”

--parsable
Section 21.5.27, “ndb_show_tables — Display List of NDB Tables”

--partition
Section 5.1.6, “Server Command Options”

--passwd
Section 21.5.29, “ndb_top — View CPU usage information for NDB threads”

--password
Section 6.2.1, “Account User Names and Passwords”
Section 4.2.3, “Command Options for Connecting to the Server”
Section 4.2.4, “Connecting to the MySQL Server Using Command Options”
Section 6.1.2.1, “End-User Guidelines for Password Security”
Section 7.3, “Example Backup and Recovery Strategy”
Section 4.2.1, “Invoking MySQL Programs”
Section 4.5.1.1, “mysql Client Options”
Section 4.6.6, “mysql_config_editor — MySQL Configuration Utility”
Section 4.4.4, “mysql_secure_installation — Improve MySQL Installation Security”
Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 4.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”

5033

Section 4.3.4, “mysqld_multi — Manage Multiple MySQL Servers”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.6, “mysqlpump — A Database Backup Program”
Section 4.5.7, “mysqlshow — Display Database, Table, and Column Information”
Section 4.5.8, “mysqlslap — A Load Emulation Client”
Section 21.5.28, “ndb_size.pl — NDBCLUSTER Size Requirement Estimator”
Section 21.5.29, “ndb_top — View CPU usage information for NDB threads”
Section B.3.2.4, “Password Fails When Entered Interactively”
Restoring to More Nodes Than the Original
Section 6.4.1.12, “Test Pluggable Authentication”
Section 6.2.17, “Troubleshooting Problems Connecting to MySQL”
Section 4.6.7.3, “Using mysqlbinlog to Back Up Binary Log Files”
Section 4.2.2.1, “Using Options on the Command Line”

password
Section 4.6.6, “mysql_config_editor — MySQL Configuration Utility”
Section 4.2.2.2, “Using Option Files”

--performance-schema-consumer-consumer_name
Section 25.14, “Performance Schema Command Options”

--performance-schema-consumer-events-stages-current
Section 25.14, “Performance Schema Command Options”

--performance-schema-consumer-events-stages-history
Section 25.14, “Performance Schema Command Options”

--performance-schema-consumer-events-stages-history-long
Section 25.14, “Performance Schema Command Options”

--performance-schema-consumer-events-statements-current
Section 25.14, “Performance Schema Command Options”

--performance-schema-consumer-events-statements-history
Section 25.14, “Performance Schema Command Options”

--performance-schema-consumer-events-statements-history-long
Section 25.14, “Performance Schema Command Options”

--performance-schema-consumer-events-transactions-current
Section 25.14, “Performance Schema Command Options”

--performance-schema-consumer-events-transactions-history
Section 25.14, “Performance Schema Command Options”

--performance-schema-consumer-events-transactions-history-long
Section 25.14, “Performance Schema Command Options”

--performance-schema-consumer-events-waits-current
Section 25.14, “Performance Schema Command Options”

5034

--performance-schema-consumer-events-waits-history
Section 25.14, “Performance Schema Command Options”

--performance-schema-consumer-events-waits-history-long
Section 25.14, “Performance Schema Command Options”

--performance-schema-consumer-global-instrumentation
Section 25.14, “Performance Schema Command Options”

--performance-schema-consumer-statements-digest
Section 25.14, “Performance Schema Command Options”

--performance-schema-consumer-thread-instrumentation
Section 25.14, “Performance Schema Command Options”

--performance-schema-instrument
Section 25.14, “Performance Schema Command Options”
Section 25.3, “Performance Schema Startup Configuration”

--performance-schema-xxx
Section 5.1.6, “Server Command Options”

--performance_schema_max_mutex_classes
Section 25.7, “Performance Schema Status Monitoring”

--performance_schema_max_mutex_instances
Section 25.7, “Performance Schema Status Monitoring”

--pid-file
Section 5.4.2.1, “Error Logging on Windows”
Section 2.5.10, “Managing MySQL Server with systemd”
Section 4.3.4, “mysqld_multi — Manage Multiple MySQL Servers”
Section 4.3.2, “mysqld_safe — MySQL Server Startup Script”
Section 5.7, “Running Multiple MySQL Instances on One Machine”
Section 5.1.6, “Server Command Options”
Section 5.4.4, “The Binary Log”

pid-file
Section 4.3.3, “mysql.server — MySQL Server Startup Script”

--pipe
Section 4.2.3, “Command Options for Connecting to the Server”
Section 4.2.4, “Connecting to the MySQL Server Using Command Options”
Section 4.5.1.1, “mysql Client Options”
Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 4.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.7, “mysqlshow — Display Database, Table, and Column Information”

5035

Section 4.5.8, “mysqlslap — A Load Emulation Client”
Section 2.3.4.9, “Testing The MySQL Installation”

--plugin
Section 5.1.6, “Server Command Options”

--plugin-dir
Section 4.2.3, “Command Options for Connecting to the Server”
Section 6.4.1.9, “LDAP Pluggable Authentication”
Section 4.5.1.1, “mysql Client Options”
Section 4.4.3, “mysql_plugin — Configure MySQL Server Plugins”
Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 4.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.3.2, “mysqld_safe — MySQL Server Startup Script”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.6, “mysqlpump — A Database Backup Program”
Section 4.5.7, “mysqlshow — Display Database, Table, and Column Information”
Section 4.5.8, “mysqlslap — A Load Emulation Client”
Section 6.2.13, “Pluggable Authentication”

--plugin-ini
Section 4.4.3, “mysql_plugin — Configure MySQL Server Plugins”

--plugin-innodb-file-per-table
Section 5.1.6, “Server Command Options”

--plugin-load
Section 6.4.5.11, “Audit Log Reference”
Section 13.7.3.3, “INSTALL PLUGIN Statement”
Section 5.5.1, “Installing and Uninstalling Plugins”
Section 6.4.4.11, “Keyring Command Options”
Section 6.4.4.1, “Keyring Plugin Installation”
Section 2.8.7, “MySQL Source-Configuration Options”
Section 4.4.3, “mysql_plugin — Configure MySQL Server Plugins”
Section 5.1.6, “Server Command Options”
Section 1.3, “What Is New in MySQL 5.7”
Section 19.4.2.2, “X Plugin Options and System Variables”

--plugin-load-add
Section 6.4.5.11, “Audit Log Reference”
Section 6.4.2.1, “Connection Control Plugin Installation”
Section 5.5.1, “Installing and Uninstalling Plugins”
Section 6.4.4.1, “Keyring Plugin Installation”
Section 6.4.1.9, “LDAP Pluggable Authentication”
Section 4.4.3, “mysql_plugin — Configure MySQL Server Plugins”
Section 6.4.1.10, “No-Login Pluggable Authentication”
Section 6.4.1.7, “PAM Pluggable Authentication”
Section 6.4.3.1, “Password Validation Plugin Installation”
Section 6.4.3.2, “Password Validation Plugin Options and Variables”

5036

Section 5.1.6, “Server Command Options”
Section 6.4.1.11, “Socket Peer-Credential Pluggable Authentication”
Section 6.4.1.12, “Test Pluggable Authentication”
Section 5.5.3.2, “Thread Pool Installation”
Section 1.3, “What Is New in MySQL 5.7”
Section 6.4.1.8, “Windows Pluggable Authentication”
Section 19.4.2.2, “X Plugin Options and System Variables”

plugin-load-add
Section 17.2.1.2, “Configuring an Instance for Group Replication”

--plugin-sql-mode
Section 5.1.6, “Server Command Options”

--plugin-xxx
Section 5.1.6, “Server Command Options”

--plugin_dir
Section 2.8.7, “MySQL Source-Configuration Options”

--plugin_name
Section 5.5.1, “Installing and Uninstalling Plugins”
Section 4.4.3, “mysql_plugin — Configure MySQL Server Plugins”

PLUGIN_OPT_ALLOW_EARLY
Section 5.1.6, “Server Command Options”

--plugindir
Section 4.7.1, “mysql_config — Display Options for Compiling Clients”

--polltimeout
Section 21.5.14, “ndb_import — Import CSV Data Into NDB”

--port
Section 4.2.3, “Command Options for Connecting to the Server”
Section 4.2.4, “Connecting to the MySQL Server Using Command Options”
Section 4.2.1, “Invoking MySQL Programs”
Section 4.5.1.1, “mysql Client Options”
Section 2.8.7, “MySQL Source-Configuration Options”
Section 4.7.1, “mysql_config — Display Options for Compiling Clients”
Section 4.6.6, “mysql_config_editor — MySQL Configuration Utility”
Section 4.4.4, “mysql_secure_installation — Improve MySQL Installation Security”
Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 4.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.3.2, “mysqld_safe — MySQL Server Startup Script”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.6, “mysqlpump — A Database Backup Program”
Section 4.5.7, “mysqlshow — Display Database, Table, and Column Information”

5037

Section 4.5.8, “mysqlslap — A Load Emulation Client”
Section 21.5.29, “ndb_top — View CPU usage information for NDB threads”
Section 5.7, “Running Multiple MySQL Instances on One Machine”
Section 5.7.3, “Running Multiple MySQL Instances on Unix”
Section 5.1.6, “Server Command Options”
Section 5.1.7, “Server System Variables”
Section 6.2.17, “Troubleshooting Problems Connecting to MySQL”
Section 2.9.2.1, “Troubleshooting Problems Starting the MySQL Server”
Section 5.7.4, “Using Client Programs in a Multiple-Server Environment”

port
Section 4.6.6, “mysql_config_editor — MySQL Configuration Utility”
Section 4.2.2.2, “Using Option Files”

--port-open-timeout
Section 5.1.6, “Server Command Options”

--post-query
Section 4.5.8, “mysqlslap — A Load Emulation Client”

--post-system
Section 4.5.8, “mysqlslap — A Load Emulation Client”

--pre-query
Section 4.5.8, “mysqlslap — A Load Emulation Client”

--pre-system
Section 4.5.8, “mysqlslap — A Load Emulation Client”

PREFIX
Section 21.3.1.4, “Building NDB Cluster from Source on Linux”

--preserve-trailing-spaces
Section 21.5.24, “ndb_restore — Restore an NDB Cluster Backup”

--print
Section 21.5.24, “ndb_restore — Restore an NDB Cluster Backup”

--print-data
Section 21.5.24, “ndb_restore — Restore an NDB Cluster Backup”

--print-defaults
Section 4.2.2.3, “Command-Line Options that Affect Option-File Handling”
Section 4.6.3.1, “myisamchk General Options”
Section 4.5.1.1, “mysql Client Options”
Section 4.4.3, “mysql_plugin — Configure MySQL Server Plugins”
Section 4.4.4, “mysql_secure_installation — Improve MySQL Installation Security”
Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 4.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”

5038

Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.6, “mysqlpump — A Database Backup Program”
Section 4.5.7, “mysqlshow — Display Database, Table, and Column Information”
Section 4.5.8, “mysqlslap — A Load Emulation Client”
Section 21.5.6, “ndb_blob_tool — Check and Repair BLOB and TEXT columns of NDB Cluster Tables”
Section 21.5.7, “ndb_config — Extract NDB Cluster Configuration Information”
Section 21.5.9, “ndb_delete_all — Delete All Rows from an NDB Table”
Section 21.5.10, “ndb_desc — Describe NDB Tables”
Section 21.5.11, “ndb_drop_index — Drop Index from an NDB Table”
Section 21.5.12, “ndb_drop_table — Drop an NDB Table”
Section 21.5.14, “ndb_import — Import CSV Data Into NDB”
Section 21.5.15, “ndb_index_stat — NDB Index Statistics Utility”
Section 21.5.5, “ndb_mgm — The NDB Cluster Management Client”
Section 21.5.4, “ndb_mgmd — The NDB Cluster Management Server Daemon”
Section 21.5.16, “ndb_move_data — NDB Data Copy Utility”
Section 21.5.17, “ndb_perror — Obtain NDB Error Message Information”
Section 21.5.24, “ndb_restore — Restore an NDB Cluster Backup”
Section 21.5.25, “ndb_select_all — Print Rows from an NDB Table”
Section 21.5.26, “ndb_select_count — Print Row Counts for NDB Tables”
Section 21.5.27, “ndb_show_tables — Display List of NDB Tables”
Section 21.5.29, “ndb_top — View CPU usage information for NDB threads”
Section 21.5.30, “ndb_waiter — Wait for NDB Cluster to Reach a Given Status”
Section 21.5.1, “ndbd — The NDB Cluster Data Node Daemon”
Section 21.5.2, “ndbinfo_select_all — Select From ndbinfo Tables”
Section 5.1.6, “Server Command Options”
Section 2.10.11, “Upgrade Troubleshooting”

--print-full-config
Section 21.5.4, “ndb_mgmd — The NDB Cluster Management Server Daemon”

--print-log
Section 21.5.24, “ndb_restore — Restore an NDB Cluster Backup”

--print-meta
Section 21.5.24, “ndb_restore — Restore an NDB Cluster Backup”

--print-sql-log
Section 21.5.24, “ndb_restore — Restore an NDB Cluster Backup”
Section 21.2.4.1, “What is New in NDB Cluster 7.5”

print-sql-log
Section 21.5.24, “ndb_restore — Restore an NDB Cluster Backup”

--print_*
Section 21.5.24, “ndb_restore — Restore an NDB Cluster Backup”

--progress-frequency
Section 21.5.24, “ndb_restore — Restore an NDB Cluster Backup”

--promote-attributes
Section 21.5.16, “ndb_move_data — NDB Data Copy Utility”

5039

Section 21.5.24, “ndb_restore — Restore an NDB Cluster Backup”
Section 21.2.4.1, “What is New in NDB Cluster 7.5”
Section 21.2.4.2, “What is New in NDB Cluster 7.6”

--prompt
Section 4.5.1.2, “mysql Client Commands”
Section 4.5.1.1, “mysql Client Options”

--protocol
Section 4.2.3, “Command Options for Connecting to the Server”
Section 4.2.4, “Connecting to the MySQL Server Using Command Options”
Section 4.2.5, “Connection Transport Protocols”
Section 4.5.1.1, “mysql Client Options”
Section 4.4.4, “mysql_secure_installation — Improve MySQL Installation Security”
Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 4.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.6, “mysqlpump — A Database Backup Program”
Section 4.5.7, “mysqlshow — Display Database, Table, and Column Information”
Section 4.5.8, “mysqlslap — A Load Emulation Client”
Section 5.7.3, “Running Multiple MySQL Instances on Unix”
Section 2.3.4.5, “Starting the Server for the First Time”
Section 2.3.4.9, “Testing The MySQL Installation”
Section 1.2.2, “The Main Features of MySQL”
Section 5.7.4, “Using Client Programs in a Multiple-Server Environment”

Q

[index top]

-Q
Section 4.5.4, “mysqldump — A Database Backup Program”

-q
Section 4.6.3.3, “myisamchk Repair Options”
Section 4.5.1.1, “mysql Client Options”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.8, “mysqlslap — A Load Emulation Client”
Section 21.5.7, “ndb_config — Extract NDB Cluster Configuration Information”
Section 21.5.19, “ndb_print_file — Print NDB Disk Data File Contents”

--query
Section 4.5.8, “mysqlslap — A Load Emulation Client”
Section 21.5.7, “ndb_config — Extract NDB Cluster Configuration Information”
Section 21.5.15, “ndb_index_stat — NDB Index Statistics Utility”

--query-all
Section 21.5.7, “ndb_config — Extract NDB Cluster Configuration Information”

5040

--query-cache-size
Section 8.11.5, “External Locking”

--quick
Section 4.6.3.6, “myisamchk Memory Usage”
Section 4.6.3.3, “myisamchk Repair Options”
Section 4.5.1.1, “mysql Client Options”
Section 4.5.1, “mysql — The MySQL Command-Line Client”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section B.3.2.6, “Out of memory”
Section 7.6.1, “Using myisamchk for Crash Recovery”
Section 4.2.2.2, “Using Option Files”

--quote-names
Section 4.5.4, “mysqldump — A Database Backup Program”

R

[index top]

-R
Section 7.6.4, “MyISAM Table Optimization”
Section 4.6.4, “myisamlog — Display MyISAM Log File Contents”
Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.6.3.4, “Other myisamchk Options”
Section 6.2.2, “Privileges Provided by MySQL”
Section 4.6.7.3, “Using mysqlbinlog to Back Up Binary Log Files”

-r
Section 7.6.3, “How to Repair MyISAM Tables”
Section 2.2, “Installing MySQL on Unix/Linux Using Generic Binaries”
Section 4.6.3.2, “myisamchk Check Options”
Section 4.6.3.3, “myisamchk Repair Options”
Section 4.6.4, “myisamlog — Display MyISAM Log File Contents”
Section 4.5.1.1, “mysql Client Options”
Section 4.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.6.8, “mysqldumpslow — Summarize Slow Query Log Files”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 21.5.7, “ndb_config — Extract NDB Cluster Configuration Information”
Section 21.5.10, “ndb_desc — Describe NDB Tables”
Section 21.5.24, “ndb_restore — Restore an NDB Cluster Backup”
Section 21.5.29, “ndb_top — View CPU usage information for NDB threads”
Section 21.5.1, “ndbd — The NDB Cluster Data Node Daemon”
Section 5.1.6, “Server Command Options”

--random-password-file
Section 4.4.2, “mysql_install_db — Initialize MySQL Data Directory”

5041

--raw
Section 4.5.1.1, “mysql Client Options”
Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 16.1.3.5, “Using GTIDs for Failover and Scaleout”
Section 4.6.7.3, “Using mysqlbinlog to Back Up Binary Log Files”

--read-from-remote-master
Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 6.2.2, “Privileges Provided by MySQL”
Section 16.1.3.5, “Using GTIDs for Failover and Scaleout”

--read-from-remote-server
Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 6.2.2, “Privileges Provided by MySQL”
Section 4.6.7.4, “Specifying the mysqlbinlog Server ID”
Section 16.1.3.5, “Using GTIDs for Failover and Scaleout”
Section 4.6.7.3, “Using mysqlbinlog to Back Up Binary Log Files”

--read-only
Section 4.6.3.2, “myisamchk Check Options”

--real_table_name
Section 21.5.28, “ndb_size.pl — NDBCLUSTER Size Requirement Estimator”

--rebuild-indexes
Section 21.4.3.6, “Defining NDB Cluster Data Nodes”
Section 21.5.24, “ndb_restore — Restore an NDB Cluster Backup”
Section 21.2.4.2, “What is New in NDB Cluster 7.6”

--reconnect
Section 4.5.1.1, “mysql Client Options”

--recover
Section 4.6.3.2, “myisamchk Check Options”
Section 4.6.3.1, “myisamchk General Options”
Section 4.6.3.6, “myisamchk Memory Usage”
Section 4.6.3.3, “myisamchk Repair Options”

--rejects
Section 21.5.14, “ndb_import — Import CSV Data Into NDB”

--relative
Section 4.5.2, “mysqladmin — A MySQL Server Administration Program”

--relay-log
Section 16.2.2.3, “Startup Options and Replication Channels”
Section 17.5.5, “Using MySQL Enterprise Backup with Group Replication”

--relay-log-index
Section 16.2.2.3, “Startup Options and Replication Channels”

5042

--relay-log-purge
Section 16.1.6.3, “Replica Server Options and Variables”

--relay-log-recovery
Section 16.3.2, “Handling an Unexpected Halt of a Replica”
Section 16.1.6.3, “Replica Server Options and Variables”
Section 16.4.1.32, “Replication and Transaction Inconsistencies”
Section 16.2.4.2, “Replication Metadata Repositories”
Section 13.7.5.34, “SHOW SLAVE STATUS Statement”
Section 5.1.16, “The Server Shutdown Process”

--relay-log-space-limit
Section 16.1.6.3, “Replica Server Options and Variables”
Section 16.2.2.3, “Startup Options and Replication Channels”

--reload
Section 21.6.7.2, “Adding NDB Cluster Data Nodes Online: Basic procedure”
Section 21.6.7.3, “Adding NDB Cluster Data Nodes Online: Detailed Example”
Section 21.3.4, “Initial Startup of NDB Cluster”
Section 21.3.2.3, “Initial Startup of NDB Cluster on Windows”
Section 21.2.7.10, “Limitations Relating to Multiple NDB Cluster Nodes”
Section 21.4.3, “NDB Cluster Configuration Files”
Section 21.5.4, “ndb_mgmd — The NDB Cluster Management Server Daemon”
Section 21.6.5, “Performing a Rolling Restart of an NDB Cluster”

--remap-column
Section 21.5.24, “ndb_restore — Restore an NDB Cluster Backup”
Section 21.2.4.2, “What is New in NDB Cluster 7.6”

--remove
Section 21.3.2.4, “Installing NDB Cluster Processes as Windows Services”
Section 2.3.3.5, “MySQL Installer Console Reference”
Section 21.5.4, “ndb_mgmd — The NDB Cluster Management Server Daemon”
Section 21.5.1, “ndbd — The NDB Cluster Data Node Daemon”
Section 5.1.6, “Server Command Options”
Section 5.7.2.2, “Starting Multiple MySQL Instances as Windows Services”
Section 2.3.4.8, “Starting MySQL as a Windows Service”

remove
Section 2.3.3.5, “MySQL Installer Console Reference”

--remove{
Section 21.5.4, “ndb_mgmd — The NDB Cluster Management Server Daemon”

--repair
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”

--replace
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.6, “mysqlpump — A Database Backup Program”

5043

--replicate-*
Section 13.4.2.2, “CHANGE REPLICATION FILTER Statement”
Section 16.2.5, “How Servers Evaluate Replication Filtering Rules”
Section 16.1.6.3, “Replica Server Options and Variables”

--replicate-*-db
Section 16.1.6.3, “Replica Server Options and Variables”
Section 23.8, “Restrictions on Stored Programs”

--replicate-do-*
Section 21.7.3, “Known Issues in NDB Cluster Replication”

--replicate-do-db
Section 16.1.6.4, “Binary Logging Options and Variables”
Section 13.4.2.2, “CHANGE REPLICATION FILTER Statement”
Section 16.2.5.1, “Evaluation of Database-Level Replication and Binary Logging Options”
Section 16.2.5, “How Servers Evaluate Replication Filtering Rules”
Section 21.7.3, “Known Issues in NDB Cluster Replication”
Section 16.1.6.3, “Replica Server Options and Variables”
Section 16.3.5, “Replicating Different Databases to Different Replicas”
Section 16.4.1.25, “Replication and Reserved Words”
Section 16.4.1.29, “Replication and Temporary Tables”
Section 13.7.5.34, “SHOW SLAVE STATUS Statement”
Section 13.3.1, “START TRANSACTION, COMMIT, and ROLLBACK Statements”
Section 5.4.4, “The Binary Log”

--replicate-do-table
Section 13.4.2.2, “CHANGE REPLICATION FILTER Statement”
Section 16.2.5.2, “Evaluation of Table-Level Replication Options”
Section 16.2.5.3, “Interactions Between Replication Filtering Options”
Section 21.7.3, “Known Issues in NDB Cluster Replication”
Section 16.1.6.3, “Replica Server Options and Variables”
Section 16.4.1.25, “Replication and Reserved Words”
Section 16.4.1.15, “Replication and System Functions”
Section 16.4.1.29, “Replication and Temporary Tables”
Section 13.7.5.34, “SHOW SLAVE STATUS Statement”
Section 15.6, “The BLACKHOLE Storage Engine”

--replicate-ignore-*
Section 21.7.3, “Known Issues in NDB Cluster Replication”

--replicate-ignore-db
Section 16.1.6.4, “Binary Logging Options and Variables”
Section 13.4.2.2, “CHANGE REPLICATION FILTER Statement”
Section 16.2.5.1, “Evaluation of Database-Level Replication and Binary Logging Options”
Section 16.2.5, “How Servers Evaluate Replication Filtering Rules”
Section 16.2.5.3, “Interactions Between Replication Filtering Options”
Section 21.7.3, “Known Issues in NDB Cluster Replication”
Section 16.1.6.3, “Replica Server Options and Variables”
Section 16.4.1.25, “Replication and Reserved Words”
Section 16.4.1.15, “Replication and System Functions”
Section 13.7.5.34, “SHOW SLAVE STATUS Statement”

5044

Section 13.3.1, “START TRANSACTION, COMMIT, and ROLLBACK Statements”
Section 5.4.4, “The Binary Log”

--replicate-ignore-table
Section 13.4.2.2, “CHANGE REPLICATION FILTER Statement”
Section 16.2.5.2, “Evaluation of Table-Level Replication Options”
Section 21.7.3, “Known Issues in NDB Cluster Replication”
Section 16.1.6.3, “Replica Server Options and Variables”
Section 16.4.1.25, “Replication and Reserved Words”
Section 16.4.1.29, “Replication and Temporary Tables”
Section 13.7.5.34, “SHOW SLAVE STATUS Statement”
Section 15.6, “The BLACKHOLE Storage Engine”

--replicate-rewrite-db
Section 13.4.2.2, “CHANGE REPLICATION FILTER Statement”
Section 16.2.5, “How Servers Evaluate Replication Filtering Rules”
Section 16.1.6.3, “Replica Server Options and Variables”

--replicate-same-server-id
Section 13.4.2.1, “CHANGE MASTER TO Statement”
Section 16.1.6.3, “Replica Server Options and Variables”
Section 16.1.6, “Replication and Binary Logging Options and Variables”

--replicate-wild-do-table
Section 13.4.2.2, “CHANGE REPLICATION FILTER Statement”
Section 16.2.5.2, “Evaluation of Table-Level Replication Options”
Section 16.2.5, “How Servers Evaluate Replication Filtering Rules”
Section 16.1.6.3, “Replica Server Options and Variables”
Section 16.3.5, “Replicating Different Databases to Different Replicas”
Section 16.4.1.29, “Replication and Temporary Tables”
Section 23.8, “Restrictions on Stored Programs”
Section 13.7.5.34, “SHOW SLAVE STATUS Statement”

--replicate-wild-ignore-table
Section 13.4.2.2, “CHANGE REPLICATION FILTER Statement”
Section 16.2.5.2, “Evaluation of Table-Level Replication Options”
Section 21.7.3, “Known Issues in NDB Cluster Replication”
Section A.14, “MySQL 5.7 FAQ: Replication”
Section 16.1.6.3, “Replica Server Options and Variables”
Section 16.4.1.29, “Replication and Temporary Tables”
Section 13.7.5.34, “SHOW SLAVE STATUS Statement”

replication-ignore-table
Section 16.4.1.38, “Replication and Views”

--report-host
Section 16.1.7.1, “Checking Replication Status”
Section 17.8, “Frequently Asked Questions”
Section 13.7.5.33, “SHOW SLAVE HOSTS Statement”

--report-password
Section 16.1.6.2, “Replication Source Options and Variables”

5045

Section 13.7.5.33, “SHOW SLAVE HOSTS Statement”

--report-port
Section 13.7.5.33, “SHOW SLAVE HOSTS Statement”

--report-user
Section 16.1.6.2, “Replication Source Options and Variables”
Section 13.7.5.33, “SHOW SLAVE HOSTS Statement”

--restore-data
Section 21.5.24, “ndb_restore — Restore an NDB Cluster Backup”
Restoring an NDB backup to a previous version of NDB Cluster
Restoring to Fewer Nodes Than the Original
Section 21.2.4.2, “What is New in NDB Cluster 7.6”

--restore-epoch
Section 21.7.9, “NDB Cluster Backups With NDB Cluster Replication”
Section 21.5.24, “ndb_restore — Restore an NDB Cluster Backup”
Section 21.7.9.2, “Point-In-Time Recovery Using NDB Cluster Replication”

--restore-meta
Section 21.5.24, “ndb_restore — Restore an NDB Cluster Backup”
Restoring an NDB backup to a later version of NDB Cluster
Restoring to More Nodes Than the Original
Section 21.2.4.1, “What is New in NDB Cluster 7.5”

--restore-privilege-tables
Section 21.6.13, “Distributed Privileges Using Shared Grant Tables”
Section 21.5.24, “ndb_restore — Restore an NDB Cluster Backup”

--result-file
Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.6, “mysqlpump — A Database Backup Program”
Section 4.6.7.3, “Using mysqlbinlog to Back Up Binary Log Files”

--resume
Section 21.5.14, “ndb_import — Import CSV Data Into NDB”

--retries
Section 21.5.10, “ndb_desc — Describe NDB Tables”

--rewrite-database
Section 21.5.24, “ndb_restore — Restore an NDB Cluster Backup”

--rewrite-db
Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 1.3, “What Is New in MySQL 5.7”

--routines
Section 7.4.5.3, “Dumping Stored Programs”

5046

Section 7.4.5.4, “Dumping Table Definitions and Content Separately”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.6, “mysqlpump — A Database Backup Program”
Section 2.10.4, “Upgrading MySQL Binary or Package-based Installations on Unix/Linux”
Section 4.6.7.3, “Using mysqlbinlog to Back Up Binary Log Files”

--rowbatch
Section 21.5.14, “ndb_import — Import CSV Data Into NDB”

--rowbytes
Section 21.5.14, “ndb_import — Import CSV Data Into NDB”

--rowid
Section 21.5.25, “ndb_select_all — Print Rows from an NDB Table”

--rows
Section 21.5.7, “ndb_config — Extract NDB Cluster Configuration Information”

S

[index top]

-S
Section 4.2.3, “Command Options for Connecting to the Server”
Section 4.4.1, “comp_err — Compile MySQL Error Message File”
Section 4.6.1, “innochecksum — Offline InnoDB File Checksum Utility”
Section 4.2.1, “Invoking MySQL Programs”
Section 7.6.4, “MyISAM Table Optimization”
Section 4.5.1.2, “mysql Client Commands”
Section 4.5.1.1, “mysql Client Options”
Section 4.6.6, “mysql_config_editor — MySQL Configuration Utility”
Section 4.4.4, “mysql_secure_installation — Improve MySQL Installation Security”
Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 4.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.6, “mysqlpump — A Database Backup Program”
Section 4.5.7, “mysqlshow — Display Database, Table, and Column Information”
Section 4.5.8, “mysqlslap — A Load Emulation Client”
Section 21.5.29, “ndb_top — View CPU usage information for NDB threads”
Section 4.6.3.4, “Other myisamchk Options”

-s
Section 7.6.2, “How to Check MyISAM Tables for Errors”
Section 7.6.3, “How to Repair MyISAM Tables”
Section 4.6.1, “innochecksum — Offline InnoDB File Checksum Utility”
Section 2.2, “Installing MySQL on Unix/Linux Using Generic Binaries”
Section 4.7.2, “my_print_defaults — Display Options from Option Files”
Section 4.6.2, “myisam_ftdump — Display Full-Text Index information”
Section 4.6.3.1, “myisamchk General Options”
Section 4.6.5, “myisampack — Generate Compressed, Read-Only MyISAM Tables”

5047

Section 4.5.1.1, “mysql Client Options”
Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 4.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.6.8, “mysqldumpslow — Summarize Slow Query Log Files”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.8, “mysqlslap — A Load Emulation Client”
Section 21.5.17, “ndb_perror — Obtain NDB Error Message Information”
Section 21.5.24, “ndb_restore — Restore an NDB Cluster Backup”
Section 21.5.29, “ndb_top — View CPU usage information for NDB threads”
Section 4.8.2, “perror — Display MySQL Error Message Information”
Section 4.8.3, “replace — A String-Replacement Utility”
Section 4.7.3, “resolve_stack_dump — Resolve Numeric Stack Trace Dump to Symbols”
Section 4.8.4, “resolveip — Resolve Host name to IP Address or Vice Versa”
Section 7.6.5, “Setting Up a MyISAM Table Maintenance Schedule”

--safe-recover
Section 4.6.3.1, “myisamchk General Options”
Section 4.6.3.6, “myisamchk Memory Usage”
Section 4.6.3.3, “myisamchk Repair Options”

--safe-updates
Section 4.5.1.2, “mysql Client Commands”
Section 4.5.1.1, “mysql Client Options”
Section 4.5.1.6, “mysql Client Tips”
Section 5.1.7, “Server System Variables”

--safe-user-create
Section 5.1.6, “Server Command Options”

--savequeries
Section 21.5.28, “ndb_size.pl — NDBCLUSTER Size Requirement Estimator”

--secure-auth
Section 2.10.3, “Changes in MySQL 5.7”
Section 4.2.3, “Command Options for Connecting to the Server”
Section 6.4.1.3, “Migrating Away from Pre-4.1 Password Hashing and the mysql_old_password Plugin”
Section 4.5.1.1, “mysql Client Options”
Section 4.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.6, “mysqlpump — A Database Backup Program”
Section 4.5.7, “mysqlshow — Display Database, Table, and Column Information”
Section 4.5.8, “mysqlslap — A Load Emulation Client”
Section 6.1.2.4, “Password Hashing in MySQL”
Section 1.3, “What Is New in MySQL 5.7”

--select-limit
Section 4.5.1.1, “mysql Client Options”
Section 4.5.1.6, “mysql Client Tips”

5048

--server-arg
Section 1.3, “What Is New in MySQL 5.7”

--server-file
Section 1.3, “What Is New in MySQL 5.7”

--server-id
Section 21.7.2, “General Requirements for NDB Cluster Replication”
Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 13.7.5.33, “SHOW SLAVE HOSTS Statement”

--server-id-bits
Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”

--server-public-key-path
Section 6.4.1.4, “Caching SHA-2 Pluggable Authentication”
Section 4.2.3, “Command Options for Connecting to the Server”
Section 4.5.1.1, “mysql Client Options”
Section 4.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.6, “mysqlpump — A Database Backup Program”
Section 4.5.7, “mysqlshow — Display Database, Table, and Column Information”
Section 4.5.8, “mysqlslap — A Load Emulation Client”
Section 6.4.1.5, “SHA-256 Pluggable Authentication”

service-startup-timeout
Section 4.3.3, “mysql.server — MySQL Server Startup Script”

--set
Section 2.3.3.5, “MySQL Installer Console Reference”

set
Section 2.3.3.5, “MySQL Installer Console Reference”

--set-auto-increment
Section 4.6.3.4, “Other myisamchk Options”

--set-charset
Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.6, “mysqlpump — A Database Backup Program”

--set-collation
Section 4.6.3.3, “myisamchk Repair Options”

--set-gtid-purged
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.6, “mysqlpump — A Database Backup Program”
Section 16.1.3.7, “Stored Function Examples to Manipulate GTIDs”

5049

Section 16.1.3.5, “Using GTIDs for Failover and Scaleout”

--shared-memory-base-name
Section 4.2.3, “Command Options for Connecting to the Server”
Section 4.5.1.1, “mysql Client Options”
Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 4.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.7, “mysqlshow — Display Database, Table, and Column Information”
Section 4.5.8, “mysqlslap — A Load Emulation Client”
Section 5.7, “Running Multiple MySQL Instances on One Machine”
Section 5.7.4, “Using Client Programs in a Multiple-Server Environment”

--short-form
Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”

--show
Section 4.7.2, “my_print_defaults — Display Options from Option Files”

--show-slave-auth-info
Section 16.1.6.3, “Replica Server Options and Variables”
Section 16.1.6.2, “Replication Source Options and Variables”
Section 13.7.5.33, “SHOW SLAVE HOSTS Statement”

--show-table-type
Section 4.5.7, “mysqlshow — Display Database, Table, and Column Information”

--show-temp-status
Section 21.5.27, “ndb_show_tables — Display List of NDB Tables”

--show-warnings
Section 4.5.1.1, “mysql Client Options”
Section 4.5.2, “mysqladmin — A MySQL Server Administration Program”

--shutdown-timeout
Section 4.5.2, “mysqladmin — A MySQL Server Administration Program”

--sigint-ignore
Section 4.5.1.1, “mysql Client Options”
Section 4.10, “Unix Signal Handling in MySQL”

--silent
Section 4.6.3.1, “myisamchk General Options”
Section 4.6.5, “myisampack — Generate Compressed, Read-Only MyISAM Tables”
Section 4.5.1.1, “mysql Client Options”
Section 4.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.3.4, “mysqld_multi — Manage Multiple MySQL Servers”
Section 4.5.5, “mysqlimport — A Data Import Program”

5050

Section 4.5.8, “mysqlslap — A Load Emulation Client”
Section 21.5.17, “ndb_perror — Obtain NDB Error Message Information”
Section 4.8.2, “perror — Display MySQL Error Message Information”
Section 4.8.4, “resolveip — Resolve Host name to IP Address or Vice Versa”
Section 7.6.5, “Setting Up a MyISAM Table Maintenance Schedule”

--single-transaction
Section 7.2, “Database Backup Methods”
Section 7.3.1, “Establishing a Backup Policy”
Section 14.19.1, “InnoDB Backup”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.6, “mysqlpump — A Database Backup Program”
Section 14.8.10, “Purge Configuration”

--single-user
Section 21.5.30, “ndb_waiter — Wait for NDB Cluster to Reach a Given Status”

--skip
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.2.2.4, “Program Option Modifiers”
Section 5.1.6, “Server Command Options”

--skip-add-drop-table
Section 4.5.4, “mysqldump — A Database Backup Program”

--skip-add-locks
Section 4.5.4, “mysqldump — A Database Backup Program”

--skip-auto-rehash
Section 4.5.1.1, “mysql Client Options”
Section 14.22.3, “Troubleshooting InnoDB Data Dictionary Operations”

--skip-binlog
Section 17.5.5, “Using MySQL Enterprise Backup with Group Replication”

--skip-broken-objects
Section 21.5.24, “ndb_restore — Restore an NDB Cluster Backup”

--skip-character-set-client-handshake
Section A.11, “MySQL 5.7 FAQ: MySQL Chinese, Japanese, and Korean Character Sets”
Section 5.1.6, “Server Command Options”
Section 5.1.7, “Server System Variables”
Section 10.10.7.1, “The cp932 Character Set”

--skip-color
Section 21.5.29, “ndb_top — View CPU usage information for NDB threads”

--skip-colors
Section 21.5.29, “ndb_top — View CPU usage information for NDB threads”

--skip-column-names
Section 4.5.1.1, “mysql Client Options”

5051

--skip-commands
Section 21.2.4.2, “What is New in NDB Cluster 7.6”

--skip-comments
Section 4.5.1.1, “mysql Client Options”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 1.3, “What Is New in MySQL 5.7”

--skip-config-cache
Section 21.5.4, “ndb_mgmd — The NDB Cluster Management Server Daemon”

--skip-config-file
Section 21.5.4, “ndb_mgmd — The NDB Cluster Management Server Daemon”

--skip-database
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”

--skip-defer-table-indexes
Section 4.5.6, “mysqlpump — A Database Backup Program”

--skip-definer
Section 4.5.6, “mysqlpump — A Database Backup Program”

--skip-disable-keys
Section 4.5.4, “mysqldump — A Database Backup Program”

--skip-dump-date
Section 4.5.4, “mysqldump — A Database Backup Program”

--skip-dump-rows
Section 4.5.6, “mysqlpump — A Database Backup Program”

--skip-engine_name
Section 13.7.5.16, “SHOW ENGINES Statement”
Section 24.3.7, “The INFORMATION_SCHEMA ENGINES Table”

--skip-events
Section 7.4.5.3, “Dumping Stored Programs”
Section 4.5.6, “mysqlpump — A Database Backup Program”

--skip-extended-insert
Section 4.5.4, “mysqldump — A Database Backup Program”

--skip-external-locking
Section 8.11.5, “External Locking”
Section 8.14.3, “General Thread States”
Section 5.1.6, “Server Command Options”
Section 5.1.7, “Server System Variables”
Section 8.12.1, “System Factors”

5052

Section B.3.3.3, “What to Do If MySQL Keeps Crashing”

--skip-federated
Section 16.3.3, “Using Replication with Different Source and Replica Storage Engines”

--skip-grant
Section 4.2.2.5, “Using Options to Set Program Variables”
Section 1.3, “What Is New in MySQL 5.7”

--skip-grant-tables
Section 2.10.3, “Changes in MySQL 5.7”
Section 13.7.3.1, “CREATE FUNCTION Statement for Loadable Functions”
Section 21.6.13, “Distributed Privileges Using Shared Grant Tables”
Section 23.4.2, “Event Scheduler Configuration”
Section 13.7.6.3, “FLUSH Statement”
Section 13.7.3.3, “INSTALL PLUGIN Statement”
Section 5.6.1, “Installing and Uninstalling Loadable Functions”
Section 5.5.1, “Installing and Uninstalling Plugins”
Section 4.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 6.2.13, “Pluggable Authentication”
Resetting the Root Password: Generic Instructions
Section 5.1.6, “Server Command Options”
Section 5.1.7, “Server System Variables”
Section 5.3, “The mysql System Database”
Section 6.2.17, “Troubleshooting Problems Connecting to MySQL”
Section 4.2.2.1, “Using Options on the Command Line”
Section 4.2.2.5, “Using Options to Set Program Variables”
Section 1.3, “What Is New in MySQL 5.7”
Section 6.2.9, “When Privilege Changes Take Effect”

--skip-graphs
Section 21.5.29, “ndb_top — View CPU usage information for NDB threads”

--skip-gtids
Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”

--skip-host-cache
Section 5.1.11.2, “DNS Lookups and the Host Cache”
Section 5.1.6, “Server Command Options”
Section 5.1.7, “Server System Variables”
Section 6.2.17, “Troubleshooting Problems Connecting to MySQL”

--skip-innodb
Section 14.15, “InnoDB Startup Options and System Variables”
Section 5.5.1, “Installing and Uninstalling Plugins”
Section A.14, “MySQL 5.7 FAQ: Replication”
Section 5.1.6, “Server Command Options”
Section 14.1.5, “Turning Off InnoDB”
Section 1.3, “What Is New in MySQL 5.7”

--skip-innodb-adaptive-hash-index
Section 14.15, “InnoDB Startup Options and System Variables”

5053

--skip-innodb-checksums
Section 14.15, “InnoDB Startup Options and System Variables”

--skip-innodb-doublewrite
Section 14.15, “InnoDB Startup Options and System Variables”

--skip-kill-mysqld
Section 4.3.2, “mysqld_safe — MySQL Server Startup Script”

--skip-line-numbers
Section 4.5.1.1, “mysql Client Options”

--skip-lock-tables
Section 4.5.4, “mysqldump — A Database Backup Program”

--skip-log-bin
Section 16.1.6.4, “Binary Logging Options and Variables”
Section 16.1.3.4, “Setting Up Replication Using GTIDs”
Section 16.4.3, “Upgrading a Replication Topology”

--skip-mysql-schema
Section 4.5.4, “mysqldump — A Database Backup Program”

--skip-named-commands
Section 4.5.1.1, “mysql Client Options”

--skip-ndb-optimized-node-selection
MySQL Server Options for NDB Cluster
Section 21.5.6, “ndb_blob_tool — Check and Repair BLOB and TEXT columns of NDB Cluster Tables”
Section 21.5.7, “ndb_config — Extract NDB Cluster Configuration Information”
Section 21.5.9, “ndb_delete_all — Delete All Rows from an NDB Table”
Section 21.5.10, “ndb_desc — Describe NDB Tables”
Section 21.5.11, “ndb_drop_index — Drop Index from an NDB Table”
Section 21.5.12, “ndb_drop_table — Drop an NDB Table”
Section 21.5.14, “ndb_import — Import CSV Data Into NDB”
Section 21.5.15, “ndb_index_stat — NDB Index Statistics Utility”
Section 21.5.5, “ndb_mgm — The NDB Cluster Management Client”
Section 21.5.4, “ndb_mgmd — The NDB Cluster Management Server Daemon”
Section 21.5.16, “ndb_move_data — NDB Data Copy Utility”
Section 21.5.24, “ndb_restore — Restore an NDB Cluster Backup”
Section 21.5.25, “ndb_select_all — Print Rows from an NDB Table”
Section 21.5.26, “ndb_select_count — Print Row Counts for NDB Tables”
Section 21.5.27, “ndb_show_tables — Display List of NDB Tables”
Section 21.5.30, “ndb_waiter — Wait for NDB Cluster to Reach a Given Status”
Section 21.5.1, “ndbd — The NDB Cluster Data Node Daemon”
Section 21.5.2, “ndbinfo_select_all — Select From ndbinfo Tables”

--skip-ndbcluster
MySQL Server Options for NDB Cluster
Section 21.4.2.5, “NDB Cluster mysqld Option and Variable Reference”

5054

--skip-new
Section 5.8.1, “Debugging a MySQL Server”
Section 13.7.2.4, “OPTIMIZE TABLE Statement”
Section 5.1.6, “Server Command Options”
Section 5.1.7, “Server System Variables”

--skip-nodegroup
Section 21.5.13, “ndb_error_reporter — NDB Error-Reporting Utility”

--skip-opt
Section 4.5.4, “mysqldump — A Database Backup Program”

--skip-pager
Section 4.5.1.1, “mysql Client Options”

--skip-partition
Chapter 22, Partitioning
Section 5.1.6, “Server Command Options”

--skip-password
Section 4.2.3, “Command Options for Connecting to the Server”
Section 4.2.4, “Connecting to the MySQL Server Using Command Options”
Section 4.5.1.1, “mysql Client Options”
Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 4.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.6, “mysqlpump — A Database Backup Program”
Section 4.5.7, “mysqlshow — Display Database, Table, and Column Information”
Section 4.5.8, “mysqlslap — A Load Emulation Client”

--skip-plugin-innodb-file-per-table
Section 5.1.6, “Server Command Options”

--skip-plugin_name
Section 5.5.1, “Installing and Uninstalling Plugins”

--skip-quick
Section 4.5.4, “mysqldump — A Database Backup Program”

--skip-quote-names
Section 4.5.4, “mysqldump — A Database Backup Program”

--skip-reconnect
Section 4.5.1.1, “mysql Client Options”
Section 4.5.1.6, “mysql Client Tips”

--skip-relaylog
Section 17.5.5, “Using MySQL Enterprise Backup with Group Replication”

5055

--skip-routines
Section 7.4.5.3, “Dumping Stored Programs”
Section 4.5.6, “mysqlpump — A Database Backup Program”

--skip-safe-updates
Section 4.5.1.1, “mysql Client Options”

--skip-secure-auth
Section 2.10.3, “Changes in MySQL 5.7”
Section 4.2.3, “Command Options for Connecting to the Server”
Section 4.5.1.1, “mysql Client Options”
Section 4.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.6, “mysqlpump — A Database Backup Program”
Section 4.5.7, “mysqlshow — Display Database, Table, and Column Information”
Section 4.5.8, “mysqlslap — A Load Emulation Client”
Section 1.3, “What Is New in MySQL 5.7”

--skip-set-charset
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.6, “mysqlpump — A Database Backup Program”

--skip-show-database
Section 6.2.2, “Privileges Provided by MySQL”
Section 5.1.6, “Server Command Options”
Section 13.7.5.14, “SHOW DATABASES Statement”

--skip-slave-start
Section 16.1.2.6, “Adding Replicas to a Replication Topology”
Section 21.7.9, “NDB Cluster Backups With NDB Cluster Replication”
Section 21.7.5, “Preparing the NDB Cluster for Replication”
Section 16.1.6.3, “Replica Server Options and Variables”
Section 16.1.3.4, “Setting Up Replication Using GTIDs”
Setting Up Replication with Existing Data
Section 13.4.2.5, “START SLAVE Statement”
Section 21.7.6, “Starting NDB Cluster Replication (Single Replication Channel)”
Section 16.2.2.3, “Startup Options and Replication Channels”
Section 16.4.4, “Troubleshooting Replication”
Section 16.4.3, “Upgrading a Replication Topology”

--skip-sort
Section 21.5.29, “ndb_top — View CPU usage information for NDB threads”

--skip-ssl
Section 4.2.3, “Command Options for Connecting to the Server”
Section 5.1.6, “Server Command Options”
Section 6.3, “Using Encrypted Connections”
Section 1.3, “What Is New in MySQL 5.7”

5056

--skip-stack-trace
Section 5.8.1.4, “Debugging mysqld under gdb”
Section 5.1.6, “Server Command Options”

--skip-super-large-pages
Section 8.12.4.3, “Enabling Large Page Support”
Section 5.1.6, “Server Command Options”

--skip-symbolic-links
Section 13.1.18, “CREATE TABLE Statement”
Section 6.1.3, “Making MySQL Secure Against Attackers”
Section 5.1.6, “Server Command Options”
Section 5.1.7, “Server System Variables”
Section 8.12.3.3, “Using Symbolic Links for Databases on Windows”
Section 8.12.3.2, “Using Symbolic Links for MyISAM Tables on Unix”

--skip-sys-schema
Chapter 26, MySQL sys Schema
Section 4.4.2, “mysql_install_db — Initialize MySQL Data Directory”
Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”

--skip-syslog
Section 5.4.2.3, “Error Logging to the System Log”
Section 4.3.2, “mysqld_safe — MySQL Server Startup Script”

--skip-table-check
Section 21.5.24, “ndb_restore — Restore an NDB Cluster Backup”

--skip-triggers
Section 7.4.5.3, “Dumping Stored Programs”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.6, “mysqlpump — A Database Backup Program”

--skip-tz-utc
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.6, “mysqlpump — A Database Backup Program”

--skip-unknown-objects
Section 21.5.24, “ndb_restore — Restore an NDB Cluster Backup”

--skip-version-check
Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”

--skip-warn
Section 4.6.6, “mysql_config_editor — MySQL Configuration Utility”

--skip-watch-progress
Section 4.5.6, “mysqlpump — A Database Backup Program”

--skip-write-binlog
Section 11.2.5, “2-Digit YEAR(2) Limitations and Migrating to 4-Digit YEAR”

5057

Section 4.5.3, “mysqlcheck — A Table Maintenance Program”

--skip_grant_tables
Section 4.2.2.1, “Using Options on the Command Line”

--slave-parallel-workers
Section 16.2.2.3, “Startup Options and Replication Channels”

--slave-skip-counter
Section 16.2.2.3, “Startup Options and Replication Channels”

--slave-skip-errors
Section 21.7.8, “Implementing Failover with NDB Cluster Replication”
Section 16.4.1.27, “Replica Errors During Replication”
Section 16.1.6.3, “Replica Server Options and Variables”

--slave-sql-verify-checksum
Section 16.1.6.4, “Binary Logging Options and Variables”
Section 16.1.6.3, “Replica Server Options and Variables”

--slave_net-timeout
Section 16.2.2.3, “Startup Options and Replication Channels”

--sleep
Section 4.5.2, “mysqladmin — A MySQL Server Administration Program”

--sleep-time
Section 21.5.29, “ndb_top — View CPU usage information for NDB threads”

--slice-id
Section 21.5.24, “ndb_restore — Restore an NDB Cluster Backup”
Section 21.2.4.2, “What is New in NDB Cluster 7.6”

slice-id
Section 21.5.24, “ndb_restore — Restore an NDB Cluster Backup”

--slow-start-timeout
Section 5.1.6, “Server Command Options”

--slow_query_log
Section 5.4.1, “Selecting General Query Log and Slow Query Log Output Destinations”
Section 5.4.5, “The Slow Query Log”

--slow_query_log_file
Section 5.7, “Running Multiple MySQL Instances on One Machine”
Section 5.4.5, “The Slow Query Log”

--socket
Section B.3.2.2, “Can't connect to [local] MySQL server”
Section 4.2.3, “Command Options for Connecting to the Server”
Section 4.2.4, “Connecting to the MySQL Server Using Command Options”

5058

Section 2.5.7.3, “Deploying MySQL on Windows and Other Non-Linux Platforms with Docker”
Section B.3.3.6, “How to Protect or Change the MySQL Unix Socket File”
Section 4.2.1, “Invoking MySQL Programs”
Section 4.5.1.1, “mysql Client Options”
Section 2.8.7, “MySQL Source-Configuration Options”
Section 4.7.1, “mysql_config — Display Options for Compiling Clients”
Section 4.6.6, “mysql_config_editor — MySQL Configuration Utility”
Section 4.4.4, “mysql_secure_installation — Improve MySQL Installation Security”
Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 4.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.3.2, “mysqld_safe — MySQL Server Startup Script”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.6, “mysqlpump — A Database Backup Program”
Section 4.5.7, “mysqlshow — Display Database, Table, and Column Information”
Section 4.5.8, “mysqlslap — A Load Emulation Client”
Section 21.5.28, “ndb_size.pl — NDBCLUSTER Size Requirement Estimator”
Section 21.5.29, “ndb_top — View CPU usage information for NDB threads”
Section 5.7, “Running Multiple MySQL Instances on One Machine”
Section 5.7.3, “Running Multiple MySQL Instances on Unix”
Section 5.1.6, “Server Command Options”
Section 2.3.4.9, “Testing The MySQL Installation”
Section 6.2.17, “Troubleshooting Problems Connecting to MySQL”
Section 5.7.4, “Using Client Programs in a Multiple-Server Environment”

socket
Section 4.6.6, “mysql_config_editor — MySQL Configuration Utility”
Section 4.2.2.2, “Using Option Files”

--sort
Section 21.5.29, “ndb_top — View CPU usage information for NDB threads”

--sort-index
Section 7.6.4, “MyISAM Table Optimization”
Section 4.6.3.4, “Other myisamchk Options”

--sort-records
Section 7.6.4, “MyISAM Table Optimization”
Section 4.6.3.4, “Other myisamchk Options”

--sort-recover
Section 4.6.3.1, “myisamchk General Options”
Section 4.6.3.6, “myisamchk Memory Usage”
Section 4.6.3.3, “myisamchk Repair Options”

--sort_buffer_size
Section 5.1.6, “Server Command Options”

--sporadic-binlog-dump-fail
Section 16.1.6.4, “Binary Logging Options and Variables”

5059

--sql-mode
Chapter 12, Functions and Operators
Section A.3, “MySQL 5.7 FAQ: Server SQL Mode”
Section 4.5.8, “mysqlslap — A Load Emulation Client”
Section 5.1.6, “Server Command Options”
Section 5.1.10, “Server SQL Modes”

sql-mode
Section 5.1.10, “Server SQL Modes”

--srcdir
Section 4.4.2, “mysql_install_db — Initialize MySQL Data Directory”

--ssl
Section 4.2.3, “Command Options for Connecting to the Server”
Section 6.3.1, “Configuring MySQL to Use Encrypted Connections”
Section 6.3.3.1, “Creating SSL and RSA Certificates and Keys using MySQL”
Section 4.5.1.1, “mysql Client Options”
Section 4.4.4, “mysql_secure_installation — Improve MySQL Installation Security”
Section 4.4.5, “mysql_ssl_rsa_setup — Create SSL/RSA Files”
Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 4.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.6, “mysqlpump — A Database Backup Program”
Section 4.5.7, “mysqlshow — Display Database, Table, and Column Information”
Section 4.5.8, “mysqlslap — A Load Emulation Client”
Section 5.1.6, “Server Command Options”
Section 5.1.7, “Server System Variables”
Section 6.3, “Using Encrypted Connections”
Section 1.3, “What Is New in MySQL 5.7”

--ssl*
Section 4.5.1.1, “mysql Client Options”
Section 4.4.4, “mysql_secure_installation — Improve MySQL Installation Security”
Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 4.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.6, “mysqlpump — A Database Backup Program”
Section 4.5.7, “mysqlshow — Display Database, Table, and Column Information”
Section 4.5.8, “mysqlslap — A Load Emulation Client”

--ssl-ca
Section 13.7.1.1, “ALTER USER Statement”
Section 4.2.3, “Command Options for Connecting to the Server”
Section 6.3.1, “Configuring MySQL to Use Encrypted Connections”
Section 13.7.1.2, “CREATE USER Statement”

5060

Section 6.3.3.2, “Creating SSL Certificates and Keys Using openssl”
Section 4.4.5, “mysql_ssl_rsa_setup — Create SSL/RSA Files”
Section 5.1.6, “Server Command Options”
Section 6.3.4, “SSL Library-Dependent Capabilities”
Section 6.3, “Using Encrypted Connections”

--ssl-capath
Section 4.2.3, “Command Options for Connecting to the Server”
Section 6.3.1, “Configuring MySQL to Use Encrypted Connections”
Section 5.1.6, “Server Command Options”
Section 16.3.8, “Setting Up Replication to Use Encrypted Connections”
Section 6.3.4, “SSL Library-Dependent Capabilities”

--ssl-cert
Section 13.7.1.1, “ALTER USER Statement”
Section 4.2.3, “Command Options for Connecting to the Server”
Section 6.3.1, “Configuring MySQL to Use Encrypted Connections”
Section 13.7.1.2, “CREATE USER Statement”
Section 6.3.3.2, “Creating SSL Certificates and Keys Using openssl”
Section 4.4.5, “mysql_ssl_rsa_setup — Create SSL/RSA Files”
Section 6.3, “Using Encrypted Connections”

--ssl-cipher
Section 4.2.3, “Command Options for Connecting to the Server”
Section 6.3.1, “Configuring MySQL to Use Encrypted Connections”
Section 6.3.2, “Encrypted Connection TLS Protocols and Ciphers”
Section 6.3.4, “SSL Library-Dependent Capabilities”

--ssl-crl
Section 4.2.3, “Command Options for Connecting to the Server”
Section 6.3.1, “Configuring MySQL to Use Encrypted Connections”
Section 6.3.4, “SSL Library-Dependent Capabilities”

--ssl-crlpath
Section 4.2.3, “Command Options for Connecting to the Server”
Section 6.3.1, “Configuring MySQL to Use Encrypted Connections”
Section 6.3.4, “SSL Library-Dependent Capabilities”

--ssl-key
Section 13.7.1.1, “ALTER USER Statement”
Section 4.2.3, “Command Options for Connecting to the Server”
Section 6.3.1, “Configuring MySQL to Use Encrypted Connections”
Section 13.7.1.2, “CREATE USER Statement”
Section 6.3.3.2, “Creating SSL Certificates and Keys Using openssl”
Section 4.4.5, “mysql_ssl_rsa_setup — Create SSL/RSA Files”
Section 6.3, “Using Encrypted Connections”

--ssl-mode
Section 13.7.1.1, “ALTER USER Statement”
Section 4.2.3, “Command Options for Connecting to the Server”
Section 6.3.1, “Configuring MySQL to Use Encrypted Connections”

5061

Section 13.7.1.2, “CREATE USER Statement”
Section 6.1.6, “Security Considerations for LOAD DATA LOCAL”
Section 16.3.8, “Setting Up Replication to Use Encrypted Connections”
Section 6.3, “Using Encrypted Connections”
Section 1.3, “What Is New in MySQL 5.7”

--ssl-verify-server-cert
Section 4.2.3, “Command Options for Connecting to the Server”
Section 16.3.8, “Setting Up Replication to Use Encrypted Connections”
Section 6.3, “Using Encrypted Connections”
Section 1.3, “What Is New in MySQL 5.7”

--ssl-xxx
Section 6.3.1, “Configuring MySQL to Use Encrypted Connections”
Section 2.8.6, “Configuring SSL Library Support”
Section 16.3.8, “Setting Up Replication to Use Encrypted Connections”
Section 6.3, “Using Encrypted Connections”

--staging-tries
Section 21.5.16, “ndb_move_data — NDB Data Copy Utility”

--standalone
Section 5.8.1.2, “Creating Trace Files”
Section 5.1.6, “Server Command Options”
Section 2.3.4.6, “Starting MySQL from the Windows Command Line”

--start-datetime
Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 7.5.2, “Point-in-Time Recovery Using Event Positions”

--start-page
Section 4.6.1, “innochecksum — Offline InnoDB File Checksum Utility”

--start-position
Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 7.5.2, “Point-in-Time Recovery Using Event Positions”

--state-dir
Section 21.5.14, “ndb_import — Import CSV Data Into NDB”

--state-file
Section 4.4.1, “comp_err — Compile MySQL Error Message File”

--stats
Section 4.6.2, “myisam_ftdump — Display Full-Text Index information”
Section 21.5.14, “ndb_import — Import CSV Data Into NDB”

--status
Section 2.3.3.5, “MySQL Installer Console Reference”
Section 4.5.7, “mysqlshow — Display Database, Table, and Column Information”

5062

status
Section 2.3.3.5, “MySQL Installer Console Reference”

--stop-datetime
Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 7.5.2, “Point-in-Time Recovery Using Event Positions”

--stop-never
Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.6.7.4, “Specifying the mysqlbinlog Server ID”
Section 4.6.7.3, “Using mysqlbinlog to Back Up Binary Log Files”

--stop-never-slave-server-id
Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.6.7.4, “Specifying the mysqlbinlog Server ID”
Section 4.6.7.3, “Using mysqlbinlog to Back Up Binary Log Files”

--stop-position
Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 7.5.2, “Point-in-Time Recovery Using Event Positions”

--strict-check
Section 4.6.1, “innochecksum — Offline InnoDB File Checksum Utility”

--suffix
Section 6.3.3.1, “Creating SSL and RSA Certificates and Keys using MySQL”
Section 4.4.5, “mysql_ssl_rsa_setup — Create SSL/RSA Files”

--super-large-pages
Section 8.12.4.3, “Enabling Large Page Support”
Section 5.1.6, “Server Command Options”

--symbolic-links
Section 5.1.6, “Server Command Options”

--symbols-file
Section 4.7.3, “resolve_stack_dump — Resolve Numeric Stack Trace Dump to Symbols”

--sys-*
Section 21.5.15, “ndb_index_stat — NDB Index Statistics Utility”

--sys-check
Section 21.5.15, “ndb_index_stat — NDB Index Statistics Utility”

--sys-create
Section 21.5.15, “ndb_index_stat — NDB Index Statistics Utility”

--sys-create-if-not-exist
Section 21.5.15, “ndb_index_stat — NDB Index Statistics Utility”

5063

--sys-create-if-not-valid
Section 21.5.15, “ndb_index_stat — NDB Index Statistics Utility”

--sys-drop
Section 21.5.15, “ndb_index_stat — NDB Index Statistics Utility”

--sys-skip-events
Section 21.5.15, “ndb_index_stat — NDB Index Statistics Utility”

--sys-skip-tables
Section 21.5.15, “ndb_index_stat — NDB Index Statistics Utility”

SYSCONFDIR
Section 4.2.2.2, “Using Option Files”

--sysdate-is-now
Section 16.2.1.1, “Advantages and Disadvantages of Statement-Based and Row-Based Replication”
Section 12.7, “Date and Time Functions”
Section 16.4.1.15, “Replication and System Functions”
Section 5.1.6, “Server Command Options”
Section 5.1.7, “Server System Variables”

--syslog
Section 4.9, “Environment Variables”
Section 5.4.2.3, “Error Logging to the System Log”
Section 2.5.10, “Managing MySQL Server with systemd”
Section 4.5.1.3, “mysql Client Logging”
Section 4.5.1.1, “mysql Client Options”
Section 4.5.1.6, “mysql Client Tips”
Section 4.3.2, “mysqld_safe — MySQL Server Startup Script”
Section 1.3, “What Is New in MySQL 5.7”

--syslog-tag
Section 5.4.2.3, “Error Logging to the System Log”
Section 4.3.2, “mysqld_safe — MySQL Server Startup Script”

--system
Section 21.5.7, “ndb_config — Extract NDB Cluster Configuration Information”

--system-command
Section 4.5.1.1, “mysql Client Options”

T

[index top]

-T
Section 4.4.1, “comp_err — Compile MySQL Error Message File”
Section 4.6.3.2, “myisamchk Check Options”
Section 4.6.5, “myisampack — Generate Compressed, Read-Only MyISAM Tables”

5064

Section 4.5.1.1, “mysql Client Options”
Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.6, “mysqlpump — A Database Backup Program”
Section 4.5.8, “mysqlslap — A Load Emulation Client”
Section 21.5.24, “ndb_restore — Restore an NDB Cluster Backup”
Section 5.1.6, “Server Command Options”

-t
Section 4.6.3.3, “myisamchk Repair Options”
Section 4.6.5, “myisampack — Generate Compressed, Read-Only MyISAM Tables”
Section 4.5.1.1, “mysql Client Options”
Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.6.8, “mysqldumpslow — Summarize Slow Query Log Files”
Section 4.5.6, “mysqlpump — A Database Backup Program”
Section 4.5.7, “mysqlshow — Display Database, Table, and Column Information”
Section 21.5.9, “ndb_delete_all — Delete All Rows from an NDB Table”
Section 21.5.10, “ndb_desc — Describe NDB Tables”
Section 21.5.5, “ndb_mgm — The NDB Cluster Management Client”
Section 21.5.23, “ndb_redo_log_reader — Check and Print Content of Cluster Redo Log”
Section 21.5.25, “ndb_select_all — Print Rows from an NDB Table”
Section 21.5.27, “ndb_show_tables — Display List of NDB Tables”
Section 21.5.29, “ndb_top — View CPU usage information for NDB threads”
Section 21.5.30, “ndb_waiter — Wait for NDB Cluster to Reach a Given Status”
Section 5.1.6, “Server Command Options”

--tab
Section 7.1, “Backup and Recovery Types”
Section 7.2, “Database Backup Methods”
Section 7.4.3, “Dumping Data in Delimited-Text Format with mysqldump”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 21.5.14, “ndb_import — Import CSV Data Into NDB”
Section 21.5.24, “ndb_restore — Restore an NDB Cluster Backup”
Section 7.4, “Using mysqldump for Backups”

--table
Section 4.5.1.1, “mysql Client Options”
Section 21.5.10, “ndb_desc — Describe NDB Tables”

--tables
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.5.4, “mysqldump — A Database Backup Program”

--tc-heuristic-recover
Section 5.1.6, “Server Command Options”

--tcp-ip
Section 4.3.4, “mysqld_multi — Manage Multiple MySQL Servers”

--tee
Section 4.5.1.2, “mysql Client Commands”

5065

Section 4.5.1.1, “mysql Client Options”

--temp-pool
Section 5.1.6, “Server Command Options”
Section 1.3, “What Is New in MySQL 5.7”

--tempdelay
Section 21.5.14, “ndb_import — Import CSV Data Into NDB”

--temperrors
Section 21.5.14, “ndb_import — Import CSV Data Into NDB”

--test
Section 4.6.5, “myisampack — Generate Compressed, Read-Only MyISAM Tables”

Text
Section 1.1, “About This Manual”

--text
Section 21.5.29, “ndb_top — View CPU usage information for NDB threads”

--thread_cache_size
Section 5.8.1.4, “Debugging mysqld under gdb”

--timeout
Section 21.5.30, “ndb_waiter — Wait for NDB Cluster to Reach a Given Status”

--timestamp-printouts
Section 21.5.24, “ndb_restore — Restore an NDB Cluster Backup”

--timestamp-printouts{
Section 21.5.24, “ndb_restore — Restore an NDB Cluster Backup”

--timezone
Section 5.1.13, “MySQL Server Time Zone Support”
Section 4.3.2, “mysqld_safe — MySQL Server Startup Script”
Section 5.1.7, “Server System Variables”
Section B.3.3.7, “Time Zone Problems”

--tls-version
Section 4.2.3, “Command Options for Connecting to the Server”
Section 6.3.1, “Configuring MySQL to Use Encrypted Connections”
Section 6.3.2, “Encrypted Connection TLS Protocols and Ciphers”
Section 4.5.1.1, “mysql Client Options”
Section 4.4.4, “mysql_secure_installation — Improve MySQL Installation Security”
Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 4.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.5, “mysqlimport — A Data Import Program”

5066

Section 4.5.6, “mysqlpump — A Database Backup Program”
Section 4.5.7, “mysqlshow — Display Database, Table, and Column Information”
Section 4.5.8, “mysqlslap — A Load Emulation Client”
Section 6.3, “Using Encrypted Connections”

--tmpdir
Section B.3.2.11, “Can't create/write to file”
Section 4.6.3.6, “myisamchk Memory Usage”
Section 4.6.3.3, “myisamchk Repair Options”
Section 4.6.5, “myisampack — Generate Compressed, Read-Only MyISAM Tables”
Section 5.7, “Running Multiple MySQL Instances on One Machine”
Section 5.1.6, “Server Command Options”
Section 2.3.4.8, “Starting MySQL as a Windows Service”
Section 1.3, “What Is New in MySQL 5.7”
Section B.3.3.5, “Where MySQL Stores Temporary Files”

tmpdir
Section 2.3, “Installing MySQL on Microsoft Windows”

--to-last-log
Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.6.7.4, “Specifying the mysqlbinlog Server ID”
Section 4.6.7.3, “Using mysqlbinlog to Back Up Binary Log Files”

--transaction-isolation
Section 5.1.6, “Server Command Options”
Section 5.1.7, “Server System Variables”
Section 13.3.6, “SET TRANSACTION Statement”
Section 14.7.2.1, “Transaction Isolation Levels”
Section 1.3, “What Is New in MySQL 5.7”

--transaction-read-only
Section 5.1.6, “Server Command Options”
Section 5.1.7, “Server System Variables”
Section 13.3.6, “SET TRANSACTION Statement”
Section 1.3, “What Is New in MySQL 5.7”

--transactional
Section 21.5.9, “ndb_delete_all — Delete All Rows from an NDB Table”

--triggers
Section 7.4.5.3, “Dumping Stored Programs”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.6, “mysqlpump — A Database Backup Program”

--try-reconnect
Section 21.5.5, “ndb_mgm — The NDB Cluster Management Client”

--tupscan
Section 21.5.9, “ndb_delete_all — Delete All Rows from an NDB Table”
Section 21.5.25, “ndb_select_all — Print Rows from an NDB Table”

5067

--type
Section 21.5.7, “ndb_config — Extract NDB Cluster Configuration Information”
Section 21.5.27, “ndb_show_tables — Display List of NDB Tables”

--tz-utc
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.6, “mysqlpump — A Database Backup Program”

U

[index top]

-U
Section 4.6.3.2, “myisamchk Check Options”
Section 4.5.1.1, “mysql Client Options”

-u
Section 6.2.1, “Account User Names and Passwords”
Section 4.2.3, “Command Options for Connecting to the Server”
Section 2.11, “Downgrading MySQL”
Section 4.2.1, “Invoking MySQL Programs”
Section 4.6.3.3, “myisamchk Repair Options”
Section 4.6.4, “myisamlog — Display MyISAM Log File Contents”
Section 4.5.1.1, “mysql Client Options”
Section 4.6.6, “mysql_config_editor — MySQL Configuration Utility”
Section 4.4.2, “mysql_install_db — Initialize MySQL Data Directory”
Section 4.4.4, “mysql_secure_installation — Improve MySQL Installation Security”
Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 4.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.6, “mysqlpump — A Database Backup Program”
Section 4.5.7, “mysqlshow — Display Database, Table, and Column Information”
Section 4.5.8, “mysqlslap — A Load Emulation Client”
Section 21.5.10, “ndb_desc — Describe NDB Tables”
Section 21.5.24, “ndb_restore — Restore an NDB Cluster Backup”
Section 21.5.27, “ndb_show_tables — Display List of NDB Tables”
Section 21.5.29, “ndb_top — View CPU usage information for NDB threads”
Section 5.1.6, “Server Command Options”
Section 2.3.4.9, “Testing The MySQL Installation”
Section 2.9.3, “Testing the Server”
Section 2.10, “Upgrading MySQL”
Section 2.3.6, “Windows Postinstallation Procedures”

--uid
Section 6.3.3.1, “Creating SSL and RSA Certificates and Keys using MySQL”
Section 4.4.5, “mysql_ssl_rsa_setup — Create SSL/RSA Files”

--unbuffered
Section 4.5.1.1, “mysql Client Options”

5068

--unpack
Section 15.2.3, “MyISAM Table Storage Formats”
Section 4.6.3.3, “myisamchk Repair Options”
Section 4.6.5, “myisampack — Generate Compressed, Read-Only MyISAM Tables”

--unqualified
Section 21.5.10, “ndb_desc — Describe NDB Tables”
Section 21.5.27, “ndb_show_tables — Display List of NDB Tables”

--update
Section 21.5.15, “ndb_index_stat — NDB Index Statistics Utility”

update
Section 2.3.3.5, “MySQL Installer Console Reference”

--update-state
Section 7.6.3, “How to Repair MyISAM Tables”
Section 4.6.3.2, “myisamchk Check Options”
Section 15.2, “The MyISAM Storage Engine”

--upgrade
Section 2.3.3.5, “MySQL Installer Console Reference”
Section 2.3.3.4, “MySQL Installer Product Catalog and Dashboard”

upgrade
Section 2.3.3.5, “MySQL Installer Console Reference”

--upgrade-system-tables
Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 21.7.4, “NDB Cluster Replication Schema and Tables”
Section 21.3.7.1, “Upgrading and Downgrading NDB 7.5”
Section 21.2.4.1, “What is New in NDB Cluster 7.5”

--usage
Section 21.5.6, “ndb_blob_tool — Check and Repair BLOB and TEXT columns of NDB Cluster Tables”
Section 21.5.7, “ndb_config — Extract NDB Cluster Configuration Information”
Section 21.5.9, “ndb_delete_all — Delete All Rows from an NDB Table”
Section 21.5.10, “ndb_desc — Describe NDB Tables”
Section 21.5.11, “ndb_drop_index — Drop Index from an NDB Table”
Section 21.5.12, “ndb_drop_table — Drop an NDB Table”
Section 21.5.14, “ndb_import — Import CSV Data Into NDB”
Section 21.5.15, “ndb_index_stat — NDB Index Statistics Utility”
Section 21.5.5, “ndb_mgm — The NDB Cluster Management Client”
Section 21.5.4, “ndb_mgmd — The NDB Cluster Management Server Daemon”
Section 21.5.16, “ndb_move_data — NDB Data Copy Utility”
Section 21.5.24, “ndb_restore — Restore an NDB Cluster Backup”
Section 21.5.25, “ndb_select_all — Print Rows from an NDB Table”
Section 21.5.26, “ndb_select_count — Print Row Counts for NDB Tables”
Section 21.5.27, “ndb_show_tables — Display List of NDB Tables”
Section 21.5.29, “ndb_top — View CPU usage information for NDB threads”
Section 21.5.30, “ndb_waiter — Wait for NDB Cluster to Reach a Given Status”

5069

Section 21.5.1, “ndbd — The NDB Cluster Data Node Daemon”
Section 21.5.2, “ndbinfo_select_all — Select From ndbinfo Tables”

--use-default
Section 4.4.4, “mysql_secure_installation — Improve MySQL Installation Security”

--use-frm
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”

--use-threads
Section 4.5.5, “mysqlimport — A Data Import Program”

--useHexFormat
Section 21.5.25, “ndb_select_all — Print Rows from an NDB Table”

--user
Section 6.2.1, “Account User Names and Passwords”
Section 4.2.3, “Command Options for Connecting to the Server”
Section 7.3, “Example Backup and Recovery Strategy”
Section B.3.2.16, “File Not Found and Similar Errors”
Section 6.1.5, “How to Run MySQL as a Normal User”
Section 2.9.1, “Initializing the Data Directory”
Section 4.2.1, “Invoking MySQL Programs”
Section 6.1.3, “Making MySQL Secure Against Attackers”
Section 6.4.4.7, “Migrating Keys Between Keyring Keystores”
Section 4.5.1.3, “mysql Client Logging”
Section 4.5.1.1, “mysql Client Options”
Section 4.6.6, “mysql_config_editor — MySQL Configuration Utility”
Section 4.4.2, “mysql_install_db — Initialize MySQL Data Directory”
Section 4.4.4, “mysql_secure_installation — Improve MySQL Installation Security”
Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 4.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.3.4, “mysqld_multi — Manage Multiple MySQL Servers”
Section 4.3.2, “mysqld_safe — MySQL Server Startup Script”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.6, “mysqlpump — A Database Backup Program”
Section 4.5.7, “mysqlshow — Display Database, Table, and Column Information”
Section 4.5.8, “mysqlslap — A Load Emulation Client”
Section 21.6.18.3, “NDB Cluster and MySQL Security Procedures”
Section 21.5.28, “ndb_size.pl — NDBCLUSTER Size Requirement Estimator”
Section 21.5.29, “ndb_top — View CPU usage information for NDB threads”
Section 4.2.2.6, “Option Defaults, Options Expecting Values, and the = Sign”
Resetting the Root Password: Unix and Unix-Like Systems
Restoring to More Nodes Than the Original
Section 5.1.6, “Server Command Options”
Section 6.4.1.11, “Socket Peer-Credential Pluggable Authentication”
Section 4.2.2, “Specifying Program Options”
Section 2.9.2, “Starting the Server”
Section 6.4.1.12, “Test Pluggable Authentication”
Section 4.6.7.3, “Using mysqlbinlog to Back Up Binary Log Files”

5070

Section 4.2.2.2, “Using Option Files”

user
Section 4.6.6, “mysql_config_editor — MySQL Configuration Utility”
Section 4.2.2.2, “Using Option Files”

--users
Section 4.5.6, “mysqlpump — A Database Backup Program”

V

[index top]

-V
Section 4.4.1, “comp_err — Compile MySQL Error Message File”
Section 4.6.1, “innochecksum — Offline InnoDB File Checksum Utility”
Section 4.7.2, “my_print_defaults — Display Options from Option Files”
Section 4.6.3.1, “myisamchk General Options”
Section 4.6.4, “myisamlog — Display MyISAM Log File Contents”
Section 4.6.5, “myisampack — Generate Compressed, Read-Only MyISAM Tables”
Section 4.5.1.1, “mysql Client Options”
Section 4.6.6, “mysql_config_editor — MySQL Configuration Utility”
Section 4.4.2, “mysql_install_db — Initialize MySQL Data Directory”
Section 4.4.3, “mysql_plugin — Configure MySQL Server Plugins”
Section 4.4.5, “mysql_ssl_rsa_setup — Create SSL/RSA Files”
Section 4.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.6, “mysqlpump — A Database Backup Program”
Section 4.5.7, “mysqlshow — Display Database, Table, and Column Information”
Section 4.5.8, “mysqlslap — A Load Emulation Client”
Section 21.5.6, “ndb_blob_tool — Check and Repair BLOB and TEXT columns of NDB Cluster Tables”
Section 21.5.7, “ndb_config — Extract NDB Cluster Configuration Information”
Section 21.5.9, “ndb_delete_all — Delete All Rows from an NDB Table”
Section 21.5.10, “ndb_desc — Describe NDB Tables”
Section 21.5.11, “ndb_drop_index — Drop Index from an NDB Table”
Section 21.5.12, “ndb_drop_table — Drop an NDB Table”
Section 21.5.14, “ndb_import — Import CSV Data Into NDB”
Section 21.5.15, “ndb_index_stat — NDB Index Statistics Utility”
Section 21.5.5, “ndb_mgm — The NDB Cluster Management Client”
Section 21.5.4, “ndb_mgmd — The NDB Cluster Management Server Daemon”
Section 21.5.16, “ndb_move_data — NDB Data Copy Utility”
Section 21.5.17, “ndb_perror — Obtain NDB Error Message Information”
Section 21.5.24, “ndb_restore — Restore an NDB Cluster Backup”
Section 21.5.25, “ndb_select_all — Print Rows from an NDB Table”
Section 21.5.26, “ndb_select_count — Print Row Counts for NDB Tables”
Section 21.5.27, “ndb_show_tables — Display List of NDB Tables”
Section 21.5.30, “ndb_waiter — Wait for NDB Cluster to Reach a Given Status”
Section 21.5.1, “ndbd — The NDB Cluster Data Node Daemon”
Section 21.5.2, “ndbinfo_select_all — Select From ndbinfo Tables”
Section 4.8.2, “perror — Display MySQL Error Message Information”

5071

Section 4.8.3, “replace — A String-Replacement Utility”
Section 4.7.3, “resolve_stack_dump — Resolve Numeric Stack Trace Dump to Symbols”
Section 4.8.4, “resolveip — Resolve Host name to IP Address or Vice Versa”
Section 5.1.6, “Server Command Options”
Section 4.2.2.1, “Using Options on the Command Line”

-v
Section 16.1.6.4, “Binary Logging Options and Variables”
Section 7.6.2, “How to Check MyISAM Tables for Errors”
Section 4.6.1, “innochecksum — Offline InnoDB File Checksum Utility”
Section 4.7.2, “my_print_defaults — Display Options from Option Files”
Section 4.6.2, “myisam_ftdump — Display Full-Text Index information”
Section 4.6.3.1, “myisamchk General Options”
Section 4.6.4, “myisamlog — Display MyISAM Log File Contents”
Section 4.6.5, “myisampack — Generate Compressed, Read-Only MyISAM Tables”
Section 4.5.1.1, “mysql Client Options”
Section 4.6.6, “mysql_config_editor — MySQL Configuration Utility”
Section 4.4.2, “mysql_install_db — Initialize MySQL Data Directory”
Section 4.4.3, “mysql_plugin — Configure MySQL Server Plugins”
Section 4.4.5, “mysql_ssl_rsa_setup — Create SSL/RSA Files”
Section 4.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 4.6.7.2, “mysqlbinlog Row Event Display”
Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.6.8, “mysqldumpslow — Summarize Slow Query Log Files”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.7, “mysqlshow — Display Database, Table, and Column Information”
Section 4.5.8, “mysqlslap — A Load Emulation Client”
Section 21.5.6, “ndb_blob_tool — Check and Repair BLOB and TEXT columns of NDB Cluster Tables”
Section 21.5.14, “ndb_import — Import CSV Data Into NDB”
Section 21.5.15, “ndb_index_stat — NDB Index Statistics Utility”
Section 21.5.4, “ndb_mgmd — The NDB Cluster Management Server Daemon”
Section 21.5.17, “ndb_perror — Obtain NDB Error Message Information”
Section 21.5.19, “ndb_print_file — Print NDB Disk Data File Contents”
Section 21.5.1, “ndbd — The NDB Cluster Data Node Daemon”
Section 4.6.3.5, “Obtaining Table Information with myisamchk”
Section 4.8.2, “perror — Display MySQL Error Message Information”
Section 4.8.3, “replace — A String-Replacement Utility”
Section 5.1.6, “Server Command Options”
Section 4.2.2.1, “Using Options on the Command Line”
Section 6.4.4.4, “Using the keyring_okv KMIP Plugin”

--validate-password
Section 6.4.3.1, “Password Validation Plugin Installation”
Section 6.4.3.2, “Password Validation Plugin Options and Variables”

--validate-user-plugins
Section 5.1.6, “Server Command Options”

--var_name
Section 14.15, “InnoDB Startup Options and System Variables”
Section 4.6.3.1, “myisamchk General Options”

5072

Section 5.1.6, “Server Command Options”

--variable
Section 4.7.1, “mysql_config — Display Options for Compiling Clients”

--verbose
Section 16.2.1.1, “Advantages and Disadvantages of Statement-Based and Row-Based Replication”
Section 16.1.6.4, “Binary Logging Options and Variables”
Section 21.6.1, “Commands in the NDB Cluster Management Client”
Section 4.5.1.5, “Executing SQL Statements from a Text File”
Section 4.6.1, “innochecksum — Offline InnoDB File Checksum Utility”
Section 4.7.2, “my_print_defaults — Display Options from Option Files”
Section 4.6.2, “myisam_ftdump — Display Full-Text Index information”
Section 4.6.3.1, “myisamchk General Options”
Section 4.6.5, “myisampack — Generate Compressed, Read-Only MyISAM Tables”
Section 4.5.1.1, “mysql Client Options”
Section 4.6.6, “mysql_config_editor — MySQL Configuration Utility”
Section 4.4.2, “mysql_install_db — Initialize MySQL Data Directory”
Section 4.4.3, “mysql_plugin — Configure MySQL Server Plugins”
Section 4.4.5, “mysql_ssl_rsa_setup — Create SSL/RSA Files”
Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 4.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 4.6.7.2, “mysqlbinlog Row Event Display”
Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.3.4, “mysqld_multi — Manage Multiple MySQL Servers”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.6.8, “mysqldumpslow — Summarize Slow Query Log Files”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.7, “mysqlshow — Display Database, Table, and Column Information”
Section 4.5.8, “mysqlslap — A Load Emulation Client”
Section 21.5.6, “ndb_blob_tool — Check and Repair BLOB and TEXT columns of NDB Cluster Tables”
Section 21.5.14, “ndb_import — Import CSV Data Into NDB”
Section 21.5.15, “ndb_index_stat — NDB Index Statistics Utility”
Section 21.5.4, “ndb_mgmd — The NDB Cluster Management Server Daemon”
Section 21.5.16, “ndb_move_data — NDB Data Copy Utility”
Section 21.5.17, “ndb_perror — Obtain NDB Error Message Information”
Section 21.5.24, “ndb_restore — Restore an NDB Cluster Backup”
Section 21.5.1, “ndbd — The NDB Cluster Data Node Daemon”
Section 4.6.3.4, “Other myisamchk Options”
Section 4.8.2, “perror — Display MySQL Error Message Information”
Section 5.1.6, “Server Command Options”
Section 2.9.2.1, “Troubleshooting Problems Starting the MySQL Server”
Section 16.2.1.2, “Usage of Row-Based Logging and Replication”
Section 4.2.2.2, “Using Option Files”
Section 4.2.2.1, “Using Options on the Command Line”

--verify-binlog-checksum
Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”

--version
Section 4.4.1, “comp_err — Compile MySQL Error Message File”
Section 4.6.1, “innochecksum — Offline InnoDB File Checksum Utility”

5073

Section 4.7.2, “my_print_defaults — Display Options from Option Files”
Section 4.6.3.1, “myisamchk General Options”
Section 4.6.5, “myisampack — Generate Compressed, Read-Only MyISAM Tables”
Section 4.5.1.1, “mysql Client Options”
Section 4.7.1, “mysql_config — Display Options for Compiling Clients”
Section 4.6.6, “mysql_config_editor — MySQL Configuration Utility”
Section 4.4.2, “mysql_install_db — Initialize MySQL Data Directory”
Section 4.4.3, “mysql_plugin — Configure MySQL Server Plugins”
Section 4.4.5, “mysql_ssl_rsa_setup — Create SSL/RSA Files”
Section 4.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.3.4, “mysqld_multi — Manage Multiple MySQL Servers”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.6, “mysqlpump — A Database Backup Program”
Section 4.5.7, “mysqlshow — Display Database, Table, and Column Information”
Section 4.5.8, “mysqlslap — A Load Emulation Client”
Section 21.5.6, “ndb_blob_tool — Check and Repair BLOB and TEXT columns of NDB Cluster Tables”
Section 21.5.7, “ndb_config — Extract NDB Cluster Configuration Information”
Section 21.5.9, “ndb_delete_all — Delete All Rows from an NDB Table”
Section 21.5.10, “ndb_desc — Describe NDB Tables”
Section 21.5.11, “ndb_drop_index — Drop Index from an NDB Table”
Section 21.5.12, “ndb_drop_table — Drop an NDB Table”
Section 21.5.14, “ndb_import — Import CSV Data Into NDB”
Section 21.5.15, “ndb_index_stat — NDB Index Statistics Utility”
Section 21.5.5, “ndb_mgm — The NDB Cluster Management Client”
Section 21.5.4, “ndb_mgmd — The NDB Cluster Management Server Daemon”
Section 21.5.16, “ndb_move_data — NDB Data Copy Utility”
Section 21.5.17, “ndb_perror — Obtain NDB Error Message Information”
Section 21.5.24, “ndb_restore — Restore an NDB Cluster Backup”
Section 21.5.25, “ndb_select_all — Print Rows from an NDB Table”
Section 21.5.26, “ndb_select_count — Print Row Counts for NDB Tables”
Section 21.5.27, “ndb_show_tables — Display List of NDB Tables”
Section 21.5.30, “ndb_waiter — Wait for NDB Cluster to Reach a Given Status”
Section 21.5.1, “ndbd — The NDB Cluster Data Node Daemon”
Section 21.5.2, “ndbinfo_select_all — Select From ndbinfo Tables”
Section 4.8.2, “perror — Display MySQL Error Message Information”
Section 4.7.3, “resolve_stack_dump — Resolve Numeric Stack Trace Dump to Symbols”
Section 4.8.4, “resolveip — Resolve Host name to IP Address or Vice Versa”
Section 5.1.6, “Server Command Options”
Section 4.2.2.1, “Using Options on the Command Line”

--version-check
Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”

--vertical
Section 1.5, “How to Report Bugs or Problems”
Section 4.5.1.1, “mysql Client Options”
Section 4.5.2, “mysqladmin — A MySQL Server Administration Program”

W

[index top]

5074

-W
Section 4.2.3, “Command Options for Connecting to the Server”
Section 4.5.1.1, “mysql Client Options”
Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 4.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.7, “mysqlshow — Display Database, Table, and Column Information”
Section 4.5.8, “mysqlslap — A Load Emulation Client”
Section 5.1.6, “Server Command Options”

-w
Section 4.6.1, “innochecksum — Offline InnoDB File Checksum Utility”
Section 4.6.3.1, “myisamchk General Options”
Section 4.6.4, “myisamlog — Display MyISAM Log File Contents”
Section 4.6.5, “myisampack — Generate Compressed, Read-Only MyISAM Tables”
Section 4.5.1.1, “mysql Client Options”
Section 4.6.6, “mysql_config_editor — MySQL Configuration Utility”
Section 4.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 21.5.30, “ndb_waiter — Wait for NDB Cluster to Reach a Given Status”

--wait
Section 4.6.3.1, “myisamchk General Options”
Section 4.6.5, “myisampack — Generate Compressed, Read-Only MyISAM Tables”
Section 4.5.1.1, “mysql Client Options”
Section 4.5.2, “mysqladmin — A MySQL Server Administration Program”

--wait-nodes
Section 21.5.30, “ndb_waiter — Wait for NDB Cluster to Reach a Given Status”

--warn
Section 4.6.6, “mysql_config_editor — MySQL Configuration Utility”

--watch-progress
Section 4.5.6, “mysqlpump — A Database Backup Program”

--where
Section 4.5.4, “mysqldump — A Database Backup Program”

WITH_BOOST
Section 2.8.7, “MySQL Source-Configuration Options”
Section 2.8.2, “Source Installation Prerequisites”

WITH_CLASSPATH
Section 21.3.1.4, “Building NDB Cluster from Source on Linux”
Section 21.3.2.2, “Compiling and Installing NDB Cluster from Source on Windows”

WITH_CLIENT_PROTOCOL_TRACING
Section 2.8.7, “MySQL Source-Configuration Options”

5075

WITH_DEBUG
Section 14.15, “InnoDB Startup Options and System Variables”
Section 4.6.3.1, “myisamchk General Options”
Section 4.6.5, “myisampack — Generate Compressed, Read-Only MyISAM Tables”
Section 4.5.1.1, “mysql Client Options”
Section 2.8.7, “MySQL Source-Configuration Options”
Section 4.6.6, “mysql_config_editor — MySQL Configuration Utility”
Section 4.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.6.8, “mysqldumpslow — Summarize Slow Query Log Files”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.6, “mysqlpump — A Database Backup Program”
Section 4.5.7, “mysqlshow — Display Database, Table, and Column Information”
Section 4.5.8, “mysqlslap — A Load Emulation Client”
Section 13.7.5.15, “SHOW ENGINE Statement”

WITH_EDITLINE
Section 2.8.7, “MySQL Source-Configuration Options”

WITH_EMBEDDED_SERVER
Section 1.3, “What Is New in MySQL 5.7”

WITH_EMBEDDED_SHARED_LIBRARY
Section 1.3, “What Is New in MySQL 5.7”

WITH_GMOCK
Section 2.8.7, “MySQL Source-Configuration Options”

WITH_LIBEDIT
Section 2.8.7, “MySQL Source-Configuration Options”

WITH_LZ4
Section 2.8.7, “MySQL Source-Configuration Options”

WITH_MECAB
Section 12.9.9, “MeCab Full-Text Parser Plugin”

WITH_NDB_JAVA
Section 21.3.1.4, “Building NDB Cluster from Source on Linux”
Section 21.3.2.2, “Compiling and Installing NDB Cluster from Source on Windows”

WITH_NDBCLUSTER
Section 21.3.1.4, “Building NDB Cluster from Source on Linux”
Section 21.3.2.2, “Compiling and Installing NDB Cluster from Source on Windows”
Section 2.8.7, “MySQL Source-Configuration Options”

WITH_NDBCLUSTER_STORAGE_ENGINE
Section 21.3.1.4, “Building NDB Cluster from Source on Linux”

5076

Section 21.3.2.2, “Compiling and Installing NDB Cluster from Source on Windows”

WITH_NUMA
Section 14.15, “InnoDB Startup Options and System Variables”
Section 2.8.7, “MySQL Source-Configuration Options”

WITH_SSL
Section 2.8.6, “Configuring SSL Library Support”
Section 2.8.7, “MySQL Source-Configuration Options”
Section 2.8.2, “Source Installation Prerequisites”

WITH_SYSTEMD
Section 2.8.7, “MySQL Source-Configuration Options”

WITH_TEST_TRACE_PLUGIN
Section 2.8.7, “MySQL Source-Configuration Options”

WITH_ZLIB
Section 2.8.7, “MySQL Source-Configuration Options”

--write
Section 4.6.1, “innochecksum — Offline InnoDB File Checksum Utility”

--write-binlog
Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 16.1.3.6, “Restrictions on Replication with GTIDs”
Section 16.4.3, “Upgrading a Replication Topology”

X

[index top]

-X
Section 4.5.1.2, “mysql Client Commands”
Section 4.5.1.1, “mysql Client Options”
Section 4.5.4, “mysqldump — A Database Backup Program”

-x
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.8, “mysqlslap — A Load Emulation Client”
Section 21.5.10, “ndb_desc — Describe NDB Tables”
Section 21.5.25, “ndb_select_all — Print Rows from an NDB Table”
Section 21.5.29, “ndb_top — View CPU usage information for NDB threads”
Section 21.2.4.2, “What is New in NDB Cluster 7.6”

--xml
Section 13.2.7, “LOAD XML Statement”
Section 4.5.1.1, “mysql Client Options”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 21.5.7, “ndb_config — Extract NDB Cluster Configuration Information”
Section 12.11, “XML Functions”

5077

Y

[index top]

-Y
Section 4.5.4, “mysqldump — A Database Backup Program”

-y
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.8, “mysqlslap — A Load Emulation Client”

Z

[index top]

-z
Section 21.5.24, “ndb_restore — Restore an NDB Cluster Backup”
Section 21.5.25, “ndb_select_all — Print Rows from an NDB Table”

Privileges Index
A | B | C | D | E | F | G | I | L | N | P | R | S | T | U | X

A

[index top]

ALL
Section 13.7.1.4, “GRANT Statement”
Section 6.2.2, “Privileges Provided by MySQL”

ALL PRIVILEGES
Section 6.2.2, “Privileges Provided by MySQL”

ALTER
Section 13.1.1, “ALTER DATABASE Statement”
Section 13.1.8, “ALTER TABLE Statement”
Section 22.3.3, “Exchanging Partitions and Subpartitions with Tables”
Section 13.7.1.4, “GRANT Statement”
Section 6.2.2, “Privileges Provided by MySQL”
Section 13.1.33, “RENAME TABLE Statement”

ALTER ROUTINE
Section 13.1.3, “ALTER FUNCTION Statement”
Section 13.1.6, “ALTER PROCEDURE Statement”
Section 16.1.6.4, “Binary Logging Options and Variables”
Section 13.1.16, “CREATE PROCEDURE and CREATE FUNCTION Statements”
Section 13.1.27, “DROP PROCEDURE and DROP FUNCTION Statements”
Section 13.7.1.4, “GRANT Statement”
Section 6.2.2, “Privileges Provided by MySQL”
Section 5.1.7, “Server System Variables”
Section 23.7, “Stored Program Binary Logging”
Section 23.2.2, “Stored Routines and MySQL Privileges”

5078

B

[index top]

BINLOG_ADMIN
Section 13.4.1.1, “PURGE BINARY LOGS Statement”

C

[index top]

CREATE
Section 13.1.8, “ALTER TABLE Statement”
Section 13.1.11, “CREATE DATABASE Statement”
Section 13.1.18, “CREATE TABLE Statement”
Section 22.3.3, “Exchanging Partitions and Subpartitions with Tables”
Section 13.7.1.4, “GRANT Statement”
Section 6.2.2, “Privileges Provided by MySQL”
Section 13.1.33, “RENAME TABLE Statement”

CREATE ROUTINE
Section 16.1.6.4, “Binary Logging Options and Variables”
Section 13.1.16, “CREATE PROCEDURE and CREATE FUNCTION Statements”
Section 13.7.1.4, “GRANT Statement”
Section A.4, “MySQL 5.7 FAQ: Stored Procedures and Functions”
Section 6.2.2, “Privileges Provided by MySQL”
Section 23.7, “Stored Program Binary Logging”
Section 23.2.2, “Stored Routines and MySQL Privileges”

CREATE TABLESPACE
Section 13.7.1.4, “GRANT Statement”
Section 6.2.2, “Privileges Provided by MySQL”

CREATE TEMPORARY TABLES
Section 13.1.18.2, “CREATE TEMPORARY TABLE Statement”
Section 13.7.1.4, “GRANT Statement”
Section 6.2.2, “Privileges Provided by MySQL”

CREATE USER
Section 6.2.7, “Adding Accounts, Assigning Privileges, and Dropping Accounts”
Section 13.7.1.1, “ALTER USER Statement”
Section 6.2.10, “Assigning Account Passwords”
Section 13.7.1.2, “CREATE USER Statement”
Section 13.7.1.3, “DROP USER Statement”
Section 13.7.1.4, “GRANT Statement”
Section 6.2.2, “Privileges Provided by MySQL”
Section 13.7.1.5, “RENAME USER Statement”
Section 13.7.1.6, “REVOKE Statement”

CREATE VIEW
Section 13.1.10, “ALTER VIEW Statement”
Section 13.1.21, “CREATE VIEW Statement”
Section 13.7.1.4, “GRANT Statement”

5079

Section 6.2.2, “Privileges Provided by MySQL”
Section 23.9, “Restrictions on Views”

D

[index top]

DELETE
Section 6.2.6, “Access Control, Stage 2: Request Verification”
Section 2.10.3, “Changes in MySQL 5.7”
Section 13.1.18, “CREATE TABLE Statement”
Section 13.2.2, “DELETE Statement”
Section 13.7.3.2, “DROP FUNCTION Statement for Loadable Functions”
Section 13.7.1.3, “DROP USER Statement”
Section 13.7.1.4, “GRANT Statement”
Section 5.6.1, “Installing and Uninstalling Loadable Functions”
Section 5.5.1, “Installing and Uninstalling Plugins”
Section 21.6.18.2, “NDB Cluster and MySQL Privileges”
Section 6.2.2, “Privileges Provided by MySQL”
Section 13.2.8, “REPLACE Statement”
Section 15.7, “The MERGE Storage Engine”
Section 25.12.2.4, “The setup_objects Table”
Section 13.7.3.4, “UNINSTALL PLUGIN Statement”

DROP
Section 6.2, “Access Control and Account Management”
Section 13.1.8, “ALTER TABLE Statement”
Section 13.1.10, “ALTER VIEW Statement”
Section 13.1.21, “CREATE VIEW Statement”
Section 5.1.11.2, “DNS Lookups and the Host Cache”
Section 13.1.22, “DROP DATABASE Statement”
Section 13.1.29, “DROP TABLE Statement”
Section 13.1.32, “DROP VIEW Statement”
Section 22.3.3, “Exchanging Partitions and Subpartitions with Tables”
Section 13.7.1.4, “GRANT Statement”
Section 22.3.1, “Management of RANGE and LIST Partitions”
Section 6.6.1, “MySQL Enterprise Encryption Installation”
Section 25.11, “Performance Schema General Table Characteristics”
Section 6.2.2, “Privileges Provided by MySQL”
Section 13.1.33, “RENAME TABLE Statement”
Section 25.12.16.1, “The host_cache Table”
Section 13.1.34, “TRUNCATE TABLE Statement”

E

[index top]

EVENT
Section 13.1.2, “ALTER EVENT Statement”
Section 13.1.12, “CREATE EVENT Statement”
Section 13.1.23, “DROP EVENT Statement”
Section 23.4.1, “Event Scheduler Overview”
Section 23.4.3, “Event Syntax”

5080

Section 13.7.1.4, “GRANT Statement”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.6, “mysqlpump — A Database Backup Program”
Section 6.2.2, “Privileges Provided by MySQL”
Section 13.7.5.7, “SHOW CREATE EVENT Statement”
Section 13.7.5.18, “SHOW EVENTS Statement”
Section 23.4.6, “The Event Scheduler and MySQL Privileges”

EXECUTE
Section 13.1.16, “CREATE PROCEDURE and CREATE FUNCTION Statements”
Section 13.1.27, “DROP PROCEDURE and DROP FUNCTION Statements”
Section 6.4.4.8, “General-Purpose Keyring Key-Management Functions”
Section 13.7.1.4, “GRANT Statement”
Section 26.1, “Prerequisites for Using the sys Schema”
Section 6.2.2, “Privileges Provided by MySQL”
Section 5.1.7, “Server System Variables”
Section 23.6, “Stored Object Access Control”
Section 23.2.2, “Stored Routines and MySQL Privileges”
Section 6.4.6.3, “Using MySQL Enterprise Firewall”

F

[index top]

FILE
Section 13.1.18, “CREATE TABLE Statement”
Section 7.4.3, “Dumping Data in Delimited-Text Format with mysqldump”
Section 13.7.1.4, “GRANT Statement”
Section 6.2.3, “Grant Tables”
Section 13.2.6, “LOAD DATA Statement”
Section 13.2.7, “LOAD XML Statement”
Section 6.1.3, “Making MySQL Secure Against Attackers”
Section 6.6.2, “MySQL Enterprise Encryption Usage and Examples”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 6.2.2, “Privileges Provided by MySQL”
Section 13.2.9.1, “SELECT ... INTO Statement”
Section 5.1.7, “Server System Variables”
Section 12.8, “String Functions and Operators”
Section 11.3.4, “The BLOB and TEXT Types”
Section 6.2.17, “Troubleshooting Problems Connecting to MySQL”

G

[index top]

GRANT OPTION
Section 13.7.1.4, “GRANT Statement”
Section 6.2.2, “Privileges Provided by MySQL”
Section 13.7.1.6, “REVOKE Statement”
Section 24.3.6, “The INFORMATION_SCHEMA COLUMN_PRIVILEGES Table”
Section 24.3.23, “The INFORMATION_SCHEMA SCHEMA_PRIVILEGES Table”
Section 24.3.28, “The INFORMATION_SCHEMA TABLE_PRIVILEGES Table”
Section 24.3.30, “The INFORMATION_SCHEMA USER_PRIVILEGES Table”

5081

GROUP_REPLICATION_ADMIN
Section 13.4.3.2, “STOP GROUP_REPLICATION Statement”

I

[index top]

INDEX
Section 13.1.8, “ALTER TABLE Statement”
Section 13.7.1.4, “GRANT Statement”
Section 6.2.2, “Privileges Provided by MySQL”

INSERT
Section 6.2.6, “Access Control, Stage 2: Request Verification”
Section 13.1.8, “ALTER TABLE Statement”
Section 13.7.2.1, “ANALYZE TABLE Statement”
Section 6.2.10, “Assigning Account Passwords”
Section 2.10.3, “Changes in MySQL 5.7”
Section 13.7.3.1, “CREATE FUNCTION Statement for Loadable Functions”
Section 13.7.1.2, “CREATE USER Statement”
Section 13.1.21, “CREATE VIEW Statement”
Section 22.3.3, “Exchanging Partitions and Subpartitions with Tables”
Section 13.7.1.4, “GRANT Statement”
Section 13.2.5, “INSERT Statement”
Section 13.7.3.3, “INSTALL PLUGIN Statement”
Section 5.6.1, “Installing and Uninstalling Loadable Functions”
Section 5.5.1, “Installing and Uninstalling Plugins”
Section 6.6.1, “MySQL Enterprise Encryption Installation”
Section 13.7.2.4, “OPTIMIZE TABLE Statement”
Section 15.11.1, “Pluggable Storage Engine Architecture”
Section 26.1, “Prerequisites for Using the sys Schema”
Section 6.2.2, “Privileges Provided by MySQL”
Section 13.1.33, “RENAME TABLE Statement”
Section 13.7.2.5, “REPAIR TABLE Statement”
Section 13.2.8, “REPLACE Statement”
Section 5.1.6, “Server Command Options”
Section 19.2, “Setting Up MySQL as a Document Store”
Section 23.6, “Stored Object Access Control”
Section 23.4.6, “The Event Scheduler and MySQL Privileges”
Section 25.12.2.4, “The setup_objects Table”

L

[index top]

LOCK TABLES
Section 13.7.6.3, “FLUSH Statement”
Section 13.7.1.4, “GRANT Statement”
Section 13.3.5, “LOCK TABLES and UNLOCK TABLES Statements”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.6, “mysqlpump — A Database Backup Program”
Section 6.2.2, “Privileges Provided by MySQL”

5082

N

[index top]

NDB_STORED_USER
Restoring an NDB backup to a previous version of NDB Cluster

P

[index top]

PROCESS
Section 8.14.1, “Accessing the Process List”
Section 6.2.7, “Adding Accounts, Assigning Privileges, and Dropping Accounts”
Section 5.1.11.1, “Connection Interfaces”
Section 14.18.2, “Enabling InnoDB Monitors”
Section 23.4.2, “Event Scheduler Configuration”
Section 13.7.1.4, “GRANT Statement”
Section 24.1, “Introduction”
Section 13.7.6.4, “KILL Statement”
Section 6.1.3, “Making MySQL Secure Against Attackers”
Section 21.6.10, “MySQL Server Usage for NDB Cluster”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 8.8.4, “Obtaining Execution Plan Information for a Named Connection”
Section 26.1, “Prerequisites for Using the sys Schema”
Section 6.2.2, “Privileges Provided by MySQL”
Section 13.7.5.15, “SHOW ENGINE Statement”
Section 13.7.5.29, “SHOW PROCESSLIST Statement”
Section 24.3.9, “The INFORMATION_SCHEMA FILES Table”
Section 24.4.2, “The INFORMATION_SCHEMA INNODB_BUFFER_PAGE Table”
Section 24.4.3, “The INFORMATION_SCHEMA INNODB_BUFFER_PAGE_LRU Table”
Section 24.4.4, “The INFORMATION_SCHEMA INNODB_BUFFER_POOL_STATS Table”
Section 24.4.5, “The INFORMATION_SCHEMA INNODB_CMP and INNODB_CMP_RESET Tables”
Section 24.4.7, “The INFORMATION_SCHEMA INNODB_CMP_PER_INDEX and
INNODB_CMP_PER_INDEX_RESET Tables”
Section 24.4.6, “The INFORMATION_SCHEMA INNODB_CMPMEM and INNODB_CMPMEM_RESET
Tables”
Section 24.4.8, “The INFORMATION_SCHEMA INNODB_FT_BEING_DELETED Table”
Section 24.4.9, “The INFORMATION_SCHEMA INNODB_FT_CONFIG Table”
Section 24.4.10, “The INFORMATION_SCHEMA INNODB_FT_DEFAULT_STOPWORD Table”
Section 24.4.11, “The INFORMATION_SCHEMA INNODB_FT_DELETED Table”
Section 24.4.12, “The INFORMATION_SCHEMA INNODB_FT_INDEX_CACHE Table”
Section 24.4.13, “The INFORMATION_SCHEMA INNODB_FT_INDEX_TABLE Table”
Section 24.4.15, “The INFORMATION_SCHEMA INNODB_LOCK_WAITS Table”
Section 24.4.14, “The INFORMATION_SCHEMA INNODB_LOCKS Table”
Section 24.4.16, “The INFORMATION_SCHEMA INNODB_METRICS Table”
Section 24.4.17, “The INFORMATION_SCHEMA INNODB_SYS_COLUMNS Table”
Section 24.4.18, “The INFORMATION_SCHEMA INNODB_SYS_DATAFILES Table”
Section 24.4.19, “The INFORMATION_SCHEMA INNODB_SYS_FIELDS Table”
Section 24.4.20, “The INFORMATION_SCHEMA INNODB_SYS_FOREIGN Table”
Section 24.4.21, “The INFORMATION_SCHEMA INNODB_SYS_FOREIGN_COLS Table”
Section 24.4.22, “The INFORMATION_SCHEMA INNODB_SYS_INDEXES Table”
Section 24.4.23, “The INFORMATION_SCHEMA INNODB_SYS_TABLES Table”

5083

Section 24.4.24, “The INFORMATION_SCHEMA INNODB_SYS_TABLESPACES Table”
Section 24.4.25, “The INFORMATION_SCHEMA INNODB_SYS_TABLESTATS View”
Section 24.4.26, “The INFORMATION_SCHEMA INNODB_SYS_VIRTUAL Table”
Section 24.4.27, “The INFORMATION_SCHEMA INNODB_TEMP_TABLE_INFO Table”
Section 24.4.28, “The INFORMATION_SCHEMA INNODB_TRX Table”
Section 24.3.18, “The INFORMATION_SCHEMA PROCESSLIST Table”
Section 25.12.16.3, “The processlist Table”
Section 25.12.16.4, “The threads Table”
Section B.3.2.5, “Too many connections”

PROXY
Section 13.7.1.4, “GRANT Statement”
Section 6.2.3, “Grant Tables”
Section 6.4.1.9, “LDAP Pluggable Authentication”
Section 6.4.1.7, “PAM Pluggable Authentication”
Section 6.2.2, “Privileges Provided by MySQL”
Section 6.2.14, “Proxy Users”
Section 2.9.4, “Securing the Initial MySQL Account”
Section 25.12.16.1, “The host_cache Table”
Section 6.4.1.8, “Windows Pluggable Authentication”

PROXY ... WITH GRANT OPTION
Section 6.2.14, “Proxy Users”

R

[index top]

REFERENCES
Section 2.10.3, “Changes in MySQL 5.7”
Section 13.1.18.5, “FOREIGN KEY Constraints”
Section 13.7.1.4, “GRANT Statement”
Section 6.2.2, “Privileges Provided by MySQL”

RELOAD
Section 6.2.6, “Access Control, Stage 2: Request Verification”
Section 6.2.7, “Adding Accounts, Assigning Privileges, and Dropping Accounts”
Section 5.1.11.2, “DNS Lookups and the Host Cache”
Section 12.13, “Encryption and Compression Functions”
Section 13.7.6.3, “FLUSH Statement”
Section 13.7.1.4, “GRANT Statement”
Section 6.2.3, “Grant Tables”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 6.2.2, “Privileges Provided by MySQL”
Section 13.4.1.2, “RESET MASTER Statement”
Section 13.4.2.3, “RESET SLAVE Statement”
Section 13.7.6.6, “RESET Statement”
Section 5.4.7, “Server Log Maintenance”

REPLICATION CLIENT
Section 13.7.1.4, “GRANT Statement”
Section 6.2.2, “Privileges Provided by MySQL”
Section 13.7.5.1, “SHOW BINARY LOGS Statement”

5084

Section 13.7.5.23, “SHOW MASTER STATUS Statement”
Section 13.7.5.34, “SHOW SLAVE STATUS Statement”

REPLICATION SLAVE
Section 16.1.5.1, “Configuring Multi-Source Replication”
Section 16.1.2.2, “Creating a User for Replication”
Section 13.7.1.4, “GRANT Statement”
Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 6.2.2, “Privileges Provided by MySQL”
Section 16.3.8, “Setting Up Replication to Use Encrypted Connections”
Section 13.7.5.2, “SHOW BINLOG EVENTS Statement”
Section 13.7.5.32, “SHOW RELAYLOG EVENTS Statement”
Section 13.7.5.33, “SHOW SLAVE HOSTS Statement”
Section 17.2.1.3, “User Credentials”

S

[index top]

SELECT
Section 6.2, “Access Control and Account Management”
Section 6.2.6, “Access Control, Stage 2: Request Verification”
Section 13.7.2.1, “ANALYZE TABLE Statement”
Section 2.10.3, “Changes in MySQL 5.7”
Section 13.7.2.3, “CHECKSUM TABLE Statement”
Section 13.1.16, “CREATE PROCEDURE and CREATE FUNCTION Statements”
Section 13.1.18.3, “CREATE TABLE ... LIKE Statement”
Section 13.1.18, “CREATE TABLE Statement”
Section 13.1.20, “CREATE TRIGGER Statement”
Section 13.1.21, “CREATE VIEW Statement”
Section 13.2.2, “DELETE Statement”
Section 13.7.6.3, “FLUSH Statement”
Section 13.7.1.4, “GRANT Statement”
Section 13.2.5, “INSERT Statement”
Section 13.3.5, “LOCK TABLES and UNLOCK TABLES Statements”
Section 25.20, “Migrating to Performance Schema System and Status Variable Tables”
Section 6.4.6.4, “MySQL Enterprise Firewall Reference”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.6, “mysqlpump — A Database Backup Program”
Section 21.6.18.2, “NDB Cluster and MySQL Privileges”
Section 13.7.2.4, “OPTIMIZE TABLE Statement”
Section 25.11, “Performance Schema General Table Characteristics”
Section 26.1, “Prerequisites for Using the sys Schema”
Section 6.2.2, “Privileges Provided by MySQL”
Section 13.7.2.5, “REPAIR TABLE Statement”
Section 23.9, “Restrictions on Views”
Section 5.1.7, “Server System Variables”
Section 13.7.5.12, “SHOW CREATE USER Statement”
Section 13.7.5.13, “SHOW CREATE VIEW Statement”
Section 13.7.5.21, “SHOW GRANTS Statement”
Section 23.6, “Stored Object Access Control”
Section 23.4.6, “The Event Scheduler and MySQL Privileges”
Section 15.7, “The MERGE Storage Engine”

5085

Section 25.12.16.4, “The threads Table”
Section 23.3.1, “Trigger Syntax and Examples”
Section 13.2.11, “UPDATE Statement”
Section 21.2.4.2, “What is New in NDB Cluster 7.6”

SHOW DATABASES
Section 13.7.1.4, “GRANT Statement”
Section 6.2.2, “Privileges Provided by MySQL”
Section 5.1.7, “Server System Variables”
Section 13.7.5.14, “SHOW DATABASES Statement”

SHOW VIEW
Section 13.8.2, “EXPLAIN Statement”
Section 13.7.1.4, “GRANT Statement”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.6, “mysqlpump — A Database Backup Program”
Section 6.2.2, “Privileges Provided by MySQL”
Section 23.9, “Restrictions on Views”
Section 13.7.5.13, “SHOW CREATE VIEW Statement”
Section 24.3.31, “The INFORMATION_SCHEMA VIEWS Table”

SHUTDOWN
Section 6.2.6, “Access Control, Stage 2: Request Verification”
Section 13.7.1.4, “GRANT Statement”
Section 6.2.3, “Grant Tables”
Section 4.3.4, “mysqld_multi — Manage Multiple MySQL Servers”
Section 6.2.2, “Privileges Provided by MySQL”
Section 16.1.3.4, “Setting Up Replication Using GTIDs”
Section 13.7.6.7, “SHUTDOWN Statement”
Section 5.1.16, “The Server Shutdown Process”
Section 4.10, “Unix Signal Handling in MySQL”

SUPER
Section 13.7.1, “Account Management Statements”
Section 13.1.3, “ALTER FUNCTION Statement”
Section 13.1.4, “ALTER INSTANCE Statement”
Section 13.1.7, “ALTER SERVER Statement”
Section 13.7.1.1, “ALTER USER Statement”
Section 13.1.10, “ALTER VIEW Statement”
Section 6.2.10, “Assigning Account Passwords”
Section 6.4.5.7, “Audit Log Filtering”
Section 6.4.5.11, “Audit Log Reference”
Section 16.1.6.4, “Binary Logging Options and Variables”
Section 13.7.6.1, “BINLOG Statement”
Section 13.4.2.1, “CHANGE MASTER TO Statement”
Section 13.4.2.2, “CHANGE REPLICATION FILTER Statement”
Section 10.5, “Configuring Application Character Set and Collation”
Section 5.1.11.1, “Connection Interfaces”
Section 13.1.16, “CREATE PROCEDURE and CREATE FUNCTION Statements”
Section 13.1.17, “CREATE SERVER Statement”
Section 13.1.20, “CREATE TRIGGER Statement”
Section 13.7.1.2, “CREATE USER Statement”
Section 6.4.5.9, “Disabling Audit Logging”

5086

Section 5.1.11.2, “DNS Lookups and the Host Cache”
Section 13.1.28, “DROP SERVER Statement”
Section 13.7.1.3, “DROP USER Statement”
Section 12.13, “Encryption and Compression Functions”
Section 13.7.1.4, “GRANT Statement”
Section 14.14, “InnoDB Data-at-Rest Encryption”
Section 13.7.6.4, “KILL Statement”
Section 6.1.3, “Making MySQL Secure Against Attackers”
Section 6.4.4.7, “Migrating Keys Between Keyring Keystores”
Section A.4, “MySQL 5.7 FAQ: Stored Procedures and Functions”
Section 6.5.1, “MySQL Enterprise Data Masking and De-Identification Elements”
Section 6.5.5, “MySQL Enterprise Data Masking and De-Identification Function Descriptions”
Section 6.4.6.4, “MySQL Enterprise Firewall Reference”
Section 5.1.13, “MySQL Server Time Zone Support”
Section 4.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 6.4.4.9, “Plugin-Specific Keyring Key-Management Functions”
Section 6.2.2, “Privileges Provided by MySQL”
Section 13.7.1.5, “RENAME USER Statement”
Section 13.7.1.6, “REVOKE Statement”
Section 16.3.9.2, “Semisynchronous Replication Installation and Configuration”
Section 5.1.10, “Server SQL Modes”
Section 5.1.7, “Server System Variables”
Section 13.7.1.7, “SET PASSWORD Statement”
Section 13.3.6, “SET TRANSACTION Statement”
Section 16.1.2, “Setting Up Binary Log File Position Based Replication”
Section 16.1.3.4, “Setting Up Replication Using GTIDs”
Section 13.7.5.1, “SHOW BINARY LOGS Statement”
Section 13.7.5.23, “SHOW MASTER STATUS Statement”
Section 13.7.5.29, “SHOW PROCESSLIST Statement”
Section 13.7.5.34, “SHOW SLAVE STATUS Statement”
Section 13.4.3.1, “START GROUP_REPLICATION Statement”
Section 13.4.2.5, “START SLAVE Statement”
Section 13.3.1, “START TRANSACTION, COMMIT, and ROLLBACK Statements”
Section 13.4.3.2, “STOP GROUP_REPLICATION Statement”
Section 13.4.2.6, “STOP SLAVE Statement”
Section 23.6, “Stored Object Access Control”
Section 23.7, “Stored Program Binary Logging”
Section 5.1.8.1, “System Variable Privileges”
Section 26.4.4.2, “The diagnostics() Procedure”
Section B.3.2.5, “Too many connections”
Section 6.4.6.3, “Using MySQL Enterprise Firewall”
Section 5.5.5.3, “Using Version Tokens”
Section 5.5.5.1, “Version Tokens Elements”
Section 5.5.5.4, “Version Tokens Reference”

SYSTEM_USER
Section 25.12.16.3, “The processlist Table”

T

[index top]

TRIGGER
Section 13.1.20, “CREATE TRIGGER Statement”

5087

Section 13.1.31, “DROP TRIGGER Statement”
Section 13.7.1.4, “GRANT Statement”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.6, “mysqlpump — A Database Backup Program”
Section 6.2.2, “Privileges Provided by MySQL”
Section 13.7.5.11, “SHOW CREATE TRIGGER Statement”
Section 13.7.5.38, “SHOW TRIGGERS Statement”
Section 24.3.29, “The INFORMATION_SCHEMA TRIGGERS Table”

U

[index top]

UPDATE
Section 13.7.1.1, “ALTER USER Statement”
Section 6.2.10, “Assigning Account Passwords”
Section 2.10.3, “Changes in MySQL 5.7”
Section 13.1.18, “CREATE TABLE Statement”
Section 13.1.20, “CREATE TRIGGER Statement”
Section 13.7.1.4, “GRANT Statement”
Section 13.2.5, “INSERT Statement”
Section 21.6.18.2, “NDB Cluster and MySQL Privileges”
Section 25.11, “Performance Schema General Table Characteristics”
Section 25.4, “Performance Schema Runtime Configuration”
Section 25.12.2, “Performance Schema Setup Tables”
Section 26.1, “Prerequisites for Using the sys Schema”
Section 6.2.2, “Privileges Provided by MySQL”
Section 13.7.1.5, “RENAME USER Statement”
Section 13.7.1.6, “REVOKE Statement”
Section 13.7.1.7, “SET PASSWORD Statement”
Section 23.6, “Stored Object Access Control”
Section 15.7, “The MERGE Storage Engine”
Section 25.12.2.4, “The setup_objects Table”
Section 23.3.1, “Trigger Syntax and Examples”
Section 13.2.11, “UPDATE Statement”

USAGE
Section 13.7.1.4, “GRANT Statement”
Section 6.2.2, “Privileges Provided by MySQL”

X

[index top]

XA_RECOVER_ADMIN
Section 5.1.7, “Server System Variables”

SQL Modes Index
A | D | E | H | I | M | N | O | P | R | S | T

A

[index top]

5088

ALLOW_INVALID_DATES
Section 11.2, “Date and Time Data Types”
Section 12.7, “Date and Time Functions”
Section B.3.4.2, “Problems Using DATE Columns”
Section 5.1.10, “Server SQL Modes”
Section 11.2.2, “The DATE, DATETIME, and TIMESTAMP Types”

ANSI
Section 2.10.3, “Changes in MySQL 5.7”
Section 9.2.5, “Function Name Parsing and Resolution”
Section 5.1.10, “Server SQL Modes”
Section 13.7.5.13, “SHOW CREATE VIEW Statement”
Section 24.3.31, “The INFORMATION_SCHEMA VIEWS Table”

ANSI_QUOTES
Section 13.1.18.5, “FOREIGN KEY Constraints”
Section 4.5.1.6, “mysql Client Tips”
Section 1.6.1, “MySQL Extensions to Standard SQL”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 8.9.3, “Optimizer Hints”
Section 9.2, “Schema Object Names”
Section 5.1.10, “Server SQL Modes”
Section 9.1.1, “String Literals”

D

[index top]

DB2
Section 5.1.10, “Server SQL Modes”
Section 1.3, “What Is New in MySQL 5.7”

E

[index top]

ERROR_FOR_DIVISION_BY_ZERO
Section 12.21.3, “Expression Handling”
Section A.3, “MySQL 5.7 FAQ: Server SQL Mode”
Section 12.21.5, “Precision Math Examples”
Section 5.1.10, “Server SQL Modes”
Section 1.3, “What Is New in MySQL 5.7”

H

[index top]

HIGH_NOT_PRECEDENCE
Section 9.5, “Expressions”
Section 12.4.1, “Operator Precedence”
Section 5.1.10, “Server SQL Modes”

5089

I

[index top]

IGNORE_SPACE
Section 13.1.16, “CREATE PROCEDURE and CREATE FUNCTION Statements”
Section 9.2.5, “Function Name Parsing and Resolution”
Section 4.5.1.1, “mysql Client Options”
Section 5.1.10, “Server SQL Modes”

M

[index top]

MAXDB
Section 11.2.1, “Date and Time Data Type Syntax”
Section 5.1.10, “Server SQL Modes”
Section 11.2.2, “The DATE, DATETIME, and TIMESTAMP Types”
Section 1.3, “What Is New in MySQL 5.7”

MSSQL
Section 5.1.10, “Server SQL Modes”
Section 1.3, “What Is New in MySQL 5.7”

MYSQL323
Section 5.1.10, “Server SQL Modes”
Section 1.3, “What Is New in MySQL 5.7”

MYSQL40
Section 5.1.10, “Server SQL Modes”
Section 1.3, “What Is New in MySQL 5.7”

N

[index top]

NO_AUTO_CREATE_USER
Section 13.7.1.4, “GRANT Statement”
Section A.3, “MySQL 5.7 FAQ: Server SQL Mode”
Section 5.1.10, “Server SQL Modes”
Section 1.3, “What Is New in MySQL 5.7”

NO_AUTO_VALUE_ON_ZERO
Section 13.1.18, “CREATE TABLE Statement”
Section 11.1.6, “Numeric Type Attributes”
Section 5.1.10, “Server SQL Modes”
Section 3.6.9, “Using AUTO_INCREMENT”

NO_BACKSLASH_ESCAPES
Section 12.17.4, “Functions That Modify JSON Values”
Section 12.8.2, “Regular Expressions”
Section 5.1.10, “Server SQL Modes”
Section 12.8.1, “String Comparison Functions and Operators”

5090

Section 9.1.1, “String Literals”
Section 11.5, “The JSON Data Type”

NO_DIR_IN_CREATE
Section 13.1.18, “CREATE TABLE Statement”
Section 16.4.1.11, “Replication and DIRECTORY Table Options”
Section 16.4.1.37, “Replication and Variables”
Section 5.1.10, “Server SQL Modes”
Section 22.2.6, “Subpartitioning”
Section 5.4.4, “The Binary Log”

NO_ENGINE_SUBSTITUTION
Section 13.1.8, “ALTER TABLE Statement”
Section 2.10.3, “Changes in MySQL 5.7”
Section 13.1.18, “CREATE TABLE Statement”
Section 5.5.1, “Installing and Uninstalling Plugins”
Section A.3, “MySQL 5.7 FAQ: Server SQL Mode”
Section 5.1.10, “Server SQL Modes”
Section 15.1, “Setting the Storage Engine”
Section 16.3.3, “Using Replication with Different Source and Replica Storage Engines”
Section 1.3, “What Is New in MySQL 5.7”

NO_FIELD_OPTIONS
Section 5.1.10, “Server SQL Modes”
Section 1.3, “What Is New in MySQL 5.7”

NO_KEY_OPTIONS
Section 5.1.10, “Server SQL Modes”
Section 1.3, “What Is New in MySQL 5.7”

NO_TABLE_OPTIONS
Section 5.1.10, “Server SQL Modes”
Section 1.3, “What Is New in MySQL 5.7”

NO_UNSIGNED_SUBTRACTION
Section 12.6.1, “Arithmetic Operators”
Section 12.10, “Cast Functions and Operators”
Section 11.1.1, “Numeric Data Type Syntax”
Section 11.1.7, “Out-of-Range and Overflow Handling”
Section 22.6, “Restrictions and Limitations on Partitioning”
Section 5.1.10, “Server SQL Modes”

NO_ZERO_DATE
Section 11.2.6, “Automatic Initialization and Updating for TIMESTAMP and DATETIME”
Section 12.10, “Cast Functions and Operators”
Section 13.1.18, “CREATE TABLE Statement”
Section 11.2, “Date and Time Data Types”
Section 12.7, “Date and Time Functions”
Section 13.2.6, “LOAD DATA Statement”
Section A.3, “MySQL 5.7 FAQ: Server SQL Mode”
Section B.3.4.2, “Problems Using DATE Columns”
Section 5.1.10, “Server SQL Modes”

5091

Section 5.1.7, “Server System Variables”
Section 11.2.2, “The DATE, DATETIME, and TIMESTAMP Types”
Section 1.3, “What Is New in MySQL 5.7”

NO_ZERO_IN_DATE
Section 13.1.18, “CREATE TABLE Statement”
Section 11.2, “Date and Time Data Types”
Section 13.2.6, “LOAD DATA Statement”
Section A.3, “MySQL 5.7 FAQ: Server SQL Mode”
Section B.3.4.2, “Problems Using DATE Columns”
Section 5.1.10, “Server SQL Modes”
Section 1.3, “What Is New in MySQL 5.7”

O

[index top]

ONLY_FULL_GROUP_BY
Section 2.10.3, “Changes in MySQL 5.7”
Section 3.3.4.8, “Counting Rows”
Section 12.19.2, “GROUP BY Modifiers”
Section 12.20, “Miscellaneous Functions”
Section A.3, “MySQL 5.7 FAQ: Server SQL Mode”
Section 12.19.3, “MySQL Handling of GROUP BY”
Section 5.1.10, “Server SQL Modes”
Section 1.3, “What Is New in MySQL 5.7”

ORACLE
Section 5.1.10, “Server SQL Modes”
Section 1.3, “What Is New in MySQL 5.7”

P

[index top]

PAD_CHAR_TO_FULL_LENGTH
Section 5.1.10, “Server SQL Modes”
Section 11.3.1, “String Data Type Syntax”
Section 11.3.2, “The CHAR and VARCHAR Types”

PIPES_AS_CONCAT
Section 9.5, “Expressions”
Section 12.4.3, “Logical Operators”
Section 12.4.1, “Operator Precedence”
Section 5.1.10, “Server SQL Modes”

POSTGRESQL
Section 5.1.10, “Server SQL Modes”
Section 1.3, “What Is New in MySQL 5.7”

R

[index top]

5092

REAL_AS_FLOAT
Section 11.1.1, “Numeric Data Type Syntax”
Section 11.1, “Numeric Data Types”
Section 5.1.10, “Server SQL Modes”

S

[index top]

STRICT_ALL_TABLES
Section 1.6.3.3, “Constraints on Invalid Data”
Section 12.21.3, “Expression Handling”
Section A.3, “MySQL 5.7 FAQ: Server SQL Mode”
Section 5.1.10, “Server SQL Modes”
Section 16.4.3, “Upgrading a Replication Topology”

STRICT_TRANS_TABLES
Section 2.10.3, “Changes in MySQL 5.7”
Section 1.6.3.3, “Constraints on Invalid Data”
Section 12.21.3, “Expression Handling”
Section A.3, “MySQL 5.7 FAQ: Server SQL Mode”
Section 5.1.10, “Server SQL Modes”
Section 16.4.3, “Upgrading a Replication Topology”
Section 1.3, “What Is New in MySQL 5.7”

T

[index top]

TRADITIONAL
Section 11.2.6, “Automatic Initialization and Updating for TIMESTAMP and DATETIME”
Section 12.21.3, “Expression Handling”
Section A.3, “MySQL 5.7 FAQ: Server SQL Mode”
Section 5.1.10, “Server SQL Modes”
Section 5.1.7, “Server System Variables”

Statement/Syntax Index
A | B | C | D | E | F | G | H | I | K | L | O | P | R | S | T | U | W | X

A

[index top]

ADD PARTITION
Section 14.13.1, “Online DDL Operations”

ALTER DATABASE
Section 13.1.1, “ALTER DATABASE Statement”
Section 10.5, “Configuring Application Character Set and Collation”
Section 10.3.3, “Database Character Set and Collation”
Section 16.2.5.1, “Evaluation of Database-Level Replication and Binary Logging Options”
Section 16.2.5, “How Servers Evaluate Replication Filtering Rules”

5093

Section 9.2.4, “Mapping of Identifiers to File Names”
Section 1.6.1, “MySQL Extensions to Standard SQL”
Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 16.1.6.3, “Replica Server Options and Variables”
Section 1.3, “What Is New in MySQL 5.7”

ALTER DATABASE ... UPGRADE DATA DIRECTORY NAME
Section 13.3.3, “Statements That Cause an Implicit Commit”

ALTER EVENT
Section 13.1.2, “ALTER EVENT Statement”
Section 13.1.12, “CREATE EVENT Statement”
Section 23.4.4, “Event Metadata”
Section 23.4.1, “Event Scheduler Overview”
Section 23.4.3, “Event Syntax”
Section 12.15, “Information Functions”
Section 16.4.1.8, “Replication of CURRENT_USER()”
Section 16.4.1.16, “Replication of Invoked Features”
Section 23.8, “Restrictions on Stored Programs”
Section 13.7.5.18, “SHOW EVENTS Statement”
Section 13.3.3, “Statements That Cause an Implicit Commit”
Section 23.6, “Stored Object Access Control”
Section 23.7, “Stored Program Binary Logging”
Section 23.4.6, “The Event Scheduler and MySQL Privileges”
Section 24.3.8, “The INFORMATION_SCHEMA EVENTS Table”

ALTER EVENT event_name ENABLE
Section 16.4.1.16, “Replication of Invoked Features”

ALTER FUNCTION
Section 13.1.3, “ALTER FUNCTION Statement”
Section 13.3.3, “Statements That Cause an Implicit Commit”
Section 23.7, “Stored Program Binary Logging”
Section 23.2.1, “Stored Routine Syntax”

ALTER IGNORE TABLE
Section 22.3.4, “Maintenance of Partitions”

ALTER INSTANCE ROTATE INNODB MASTER KEY
Section 14.14, “InnoDB Data-at-Rest Encryption”
Section A.17, “MySQL 5.7 FAQ: InnoDB Data-at-Rest Encryption”

ALTER LOGFILE GROUP
Section 13.1.5, “ALTER LOGFILE GROUP Statement”
Section 21.4.3.6, “Defining NDB Cluster Data Nodes”
Section 21.2.7.8, “Issues Exclusive to NDB Cluster”
Section 21.6.11.1, “NDB Cluster Disk Data Objects”
Section 24.3.9, “The INFORMATION_SCHEMA FILES Table”

ALTER PROCEDURE
Section 13.1.6, “ALTER PROCEDURE Statement”
Section 13.3.3, “Statements That Cause an Implicit Commit”

5094

Section 23.7, “Stored Program Binary Logging”
Section 23.2.1, “Stored Routine Syntax”

ALTER SCHEMA
Section 13.1.1, “ALTER DATABASE Statement”

ALTER SERVER
Section 16.1.6.5, “Global Transaction ID System Variables”
Section 6.2.2, “Privileges Provided by MySQL”
Section 16.4.1.7, “Replication of CREATE SERVER, ALTER SERVER, and DROP SERVER”
Section 13.3.3, “Statements That Cause an Implicit Commit”

ALTER TABLE
Section 11.2.5, “2-Digit YEAR(2) Limitations and Migrating to 4-Digit YEAR”
Section 21.6.7.3, “Adding NDB Cluster Data Nodes Online: Detailed Example”
Section 13.1.8.2, “ALTER TABLE and Generated Columns”
Section 13.1.8.3, “ALTER TABLE Examples”
Section 13.1.8.1, “ALTER TABLE Partition Operations”
Section 13.1.8, “ALTER TABLE Statement”
Section 14.6.1.6, “AUTO_INCREMENT Handling in InnoDB”
Section 16.1.6.4, “Binary Logging Options and Variables”
Section 13.7.2.2, “CHECK TABLE Statement”
Section 10.3.5, “Column Character Set and Collation”
Section 10.7, “Column Character Set Conversion”
Section 8.3.4, “Column Indexes”
Section 14.8.11, “Configuring Optimizer Statistics for InnoDB”
Configuring Optimizer Statistics Parameters for Individual Tables
Section 14.8.12, “Configuring the Merge Threshold for Index Pages”
Section 14.7.2.3, “Consistent Nonlocking Reads”
Section 14.21.5.4, “Controlling Transactional Behavior of the InnoDB memcached Plugin”
Section 10.9.8, “Converting Between 3-Byte and 4-Byte Unicode Character Sets”
Section 14.6.1.5, “Converting Tables from MyISAM to InnoDB”
Section 13.1.14, “CREATE INDEX Statement”
Section 13.1.18, “CREATE TABLE Statement”
Section 3.3.2, “Creating a Table”
Section 14.9.1.2, “Creating Compressed Tables”
Section 14.6.1.1, “Creating InnoDB Tables”
Section 11.4.5, “Creating Spatial Columns”
Section 11.4.9, “Creating Spatial Indexes”
Section 14.6.1.2, “Creating Tables Externally”
Section 21.4.3.6, “Defining NDB Cluster Data Nodes”
Section 14.12.4, “Defragmenting a Table”
Section 13.1.25, “DROP INDEX Statement”
Section 14.10.1, “Enabling File Formats”
Section 14.8.11.3, “Estimating ANALYZE TABLE Complexity for InnoDB Tables”
Section 22.3.3, “Exchanging Partitions and Subpartitions with Tables”
Section 8.8.2, “EXPLAIN Output Format”
Section 15.8.3, “FEDERATED Storage Engine Notes and Tips”
Section 14.6.3.2, “File-Per-Table Tablespaces”
Section 12.9.6, “Fine-Tuning MySQL Full-Text Search”
Section 14.22.2, “Forcing InnoDB Recovery”
Section 1.6.3.2, “FOREIGN KEY Constraints”
Section 13.1.18.5, “FOREIGN KEY Constraints”

5095

Section 12.9, “Full-Text Search Functions”
Section 14.6.3.3, “General Tablespaces”
Section 8.14.3, “General Thread States”
Section 13.7.1.4, “GRANT Statement”
Section 14.9.1.5, “How Compression Works for InnoDB Tables”
Section B.3.3.4, “How MySQL Handles a Full Disk”
Section 8.10.3.1, “How the Query Cache Operates”
Section 7.6.3, “How to Repair MyISAM Tables”
Section 12.15, “Information Functions”
Section 21.3.3, “Initial Configuration of NDB Cluster”
Section 8.3.7, “InnoDB and MyISAM Index Statistics Collection”
Section 14.13, “InnoDB and Online DDL”
Section 14.14, “InnoDB Data-at-Rest Encryption”
Section 14.6.2.4, “InnoDB Full-Text Indexes”
Section 14.17, “InnoDB Integration with MySQL Performance Schema”
Section 14.9.2, “InnoDB Page Compression”
Section 14.11, “InnoDB Row Formats”
Section 14.15, “InnoDB Startup Options and System Variables”
Section 14.9.1, “InnoDB Table Compression”
Section 21.2.7.8, “Issues Exclusive to NDB Cluster”
Section 13.7.6.4, “KILL Statement”
Section B.3.7, “Known Issues in MySQL”
Section 21.2.7.10, “Limitations Relating to Multiple NDB Cluster Nodes”
Section 21.2.7.2, “Limits and Differences of NDB Cluster from Standard MySQL Limits”
Section 8.4.6, “Limits on Table Size”
Section 21.2.7.3, “Limits Relating to Transaction Handling in NDB Cluster”
Section 13.3.5, “LOCK TABLES and UNLOCK TABLES Statements”
Section 22.3.4, “Maintenance of Partitions”
Section 22.3.2, “Management of HASH and KEY Partitions”
Section 22.3.1, “Management of RANGE and LIST Partitions”
Section 12.9.9, “MeCab Full-Text Parser Plugin”
Section 15.7.2, “MERGE Table Problems”
Section 14.17.1, “Monitoring ALTER TABLE Progress for InnoDB Tables Using Performance Schema”
Section 14.6.1.4, “Moving or Copying InnoDB Tables”
Section 15.2.1, “MyISAM Startup Options”
Section 15.2.3, “MyISAM Table Storage Formats”
Section 4.6.3.1, “myisamchk General Options”
Section A.10, “MySQL 5.7 FAQ: NDB Cluster”
Section 1.6.1, “MySQL Extensions to Standard SQL”
MySQL Glossary
MySQL Server Options for NDB Cluster
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.6, “mysqlpump — A Database Backup Program”
Section 21.4.3.1, “NDB Cluster Configuration: Basic Example”
Section 21.6.11.1, “NDB Cluster Disk Data Objects”
Section 21.3.5, “NDB Cluster Example with Tables and Data”
Section 21.7.4, “NDB Cluster Replication Schema and Tables”
NDB Cluster System Variables
Section 21.5.10, “ndb_desc — Describe NDB Tables”
Section 21.5.24, “ndb_restore — Restore an NDB Cluster Backup”
Section 12.9.8, “ngram Full-Text Parser”
Section 21.2.7.1, “Noncompliance with SQL Syntax in NDB Cluster”
Section 14.13.5, “Online DDL Failure Conditions”
Section 14.13.6, “Online DDL Limitations”

5096

Section 14.13.1, “Online DDL Operations”
Section 14.13.2, “Online DDL Performance and Concurrency”
Section 21.6.12, “Online Operations with ALTER TABLE in NDB Cluster”
Section 13.7.2.4, “OPTIMIZE TABLE Statement”
Section 8.4.1, “Optimizing Data Size”
Section 11.1.7, “Out-of-Range and Overflow Handling”
Section 22.1, “Overview of Partitioning in MySQL”
Section 14.9.1.1, “Overview of Table Compression”
Section 22.3, “Partition Management”
Section 22.6.4, “Partitioning and Locking”
Section 22.6.1, “Partitioning Keys, Primary Keys, and Unique Keys”
Section 22.6.2, “Partitioning Limitations Relating to Storage Engines”
Section 25.12.5, “Performance Schema Stage Event Tables”
Section 6.2.2, “Privileges Provided by MySQL”
Section B.3.6.1, “Problems with ALTER TABLE”
Section 22.2.3.1, “RANGE COLUMNS partitioning”
Section 22.2.1, “RANGE Partitioning”
Section 2.10.12, “Rebuilding or Repairing Tables or Indexes”
Section 13.1.33, “RENAME TABLE Statement”
Section 16.4.1.1, “Replication and AUTO_INCREMENT”
Section 16.4.1.25, “Replication and Reserved Words”
Replication with More Columns on Source or Replica
Section 22.6, “Restrictions and Limitations on Partitioning”
Section 23.9, “Restrictions on Views”
Section 5.4.1, “Selecting General Query Log and Slow Query Log Output Destinations”
Section 5.1.6, “Server Command Options”
Section 5.1.10, “Server SQL Modes”
Section 5.1.7, “Server System Variables”
Section 13.1.18.9, “Setting NDB Comment Options”
Section 5.4.4.2, “Setting The Binary Log Format”
Section 15.1, “Setting the Storage Engine”
Section 13.7.5.15, “SHOW ENGINE Statement”
Section 13.7.5.22, “SHOW INDEX Statement”
Section 13.7.5.40, “SHOW WARNINGS Statement”
Section 13.1.18.6, “Silent Column Specification Changes”
Section 14.13.4, “Simplifying DDL Statements with Online DDL”
Section 14.9.1.7, “SQL Compression Syntax Warnings and Errors”
Section 13.3.3, “Statements That Cause an Implicit Commit”
Section 11.3.1, “String Data Type Syntax”
Section 10.3.4, “Table Character Set and Collation”
Section B.3.6.2, “TEMPORARY Table Problems”
Section 24.4.23, “The INFORMATION_SCHEMA INNODB_SYS_TABLES Table”
Section 24.3.16, “The INFORMATION_SCHEMA PARTITIONS Table”
Section 24.3.24, “The INFORMATION_SCHEMA STATISTICS Table”
Section 15.3, “The MEMORY Storage Engine”
Section 15.2, “The MyISAM Storage Engine”
Section 5.4.5, “The Slow Query Log”
Section 14.22.3, “Troubleshooting InnoDB Data Dictionary Operations”
Section 21.2.7.6, “Unsupported or Missing Features in NDB Cluster”
Section 3.6.9, “Using AUTO_INCREMENT”
Section 16.3.3, “Using Replication with Different Source and Replica Storage Engines”
Section 8.12.3.2, “Using Symbolic Links for MyISAM Tables on Unix”
Section 14.10.2, “Verifying File Format Compatibility”
Section 1.3, “What Is New in MySQL 5.7”

5097

Section 21.2.4.1, “What is New in NDB Cluster 7.5”
Section B.3.3.3, “What to Do If MySQL Keeps Crashing”

ALTER TABLE ... ADD FOREIGN KEY
Section 13.1.8, “ALTER TABLE Statement”

ALTER TABLE ... ADD PARTITION
Section 22.3.1, “Management of RANGE and LIST Partitions”

ALTER TABLE ... ALGORITHM=COPY
Section 13.1.8, “ALTER TABLE Statement”
Section 13.1.18.5, “FOREIGN KEY Constraints”

ALTER TABLE ... ALGORITHM=DEFAULT|INPLACE|COPY
Section 21.6.12, “Online Operations with ALTER TABLE in NDB Cluster”

ALTER TABLE ... ALGORITHM=INPLACE
Section 13.1.8, “ALTER TABLE Statement”
Section 13.1.18.5, “FOREIGN KEY Constraints”
Section 14.13.6, “Online DDL Limitations”
Section 1.3, “What Is New in MySQL 5.7”

ALTER TABLE ... ALGORITHM=INPLACE ...
Section 21.2.4.1, “What is New in NDB Cluster 7.5”

ALTER TABLE ... ALGORITHM=INPLACE, REORGANIZE PARTITION
Section 21.6.7.2, “Adding NDB Cluster Data Nodes Online: Basic procedure”
Section 21.6.7.3, “Adding NDB Cluster Data Nodes Online: Detailed Example”

ALTER TABLE ... COMPRESSION
Section 14.9.2, “InnoDB Page Compression”

ALTER TABLE ... COMPRESSION=None
Section 14.9.2, “InnoDB Page Compression”

ALTER TABLE ... DISABLE KEYS
Section 13.2.6, “LOAD DATA Statement”

ALTER TABLE ... DISCARD PARTITION ... TABLESPACE
Section 14.6.1.3, “Importing InnoDB Tables”

ALTER TABLE ... DISCARD TABLESPACE
Section 13.1.19, “CREATE TABLESPACE Statement”
Section 14.6.3.3, “General Tablespaces”
Section 14.6.1.3, “Importing InnoDB Tables”
MySQL Glossary

ALTER TABLE ... DROP FOREIGN KEY
Section 13.1.8, “ALTER TABLE Statement”

ALTER TABLE ... DROP PARTITION
Section 16.4.1.23, “Replication and Partitioning”

5098

ALTER TABLE ... ENABLE KEYS
Section 13.2.6, “LOAD DATA Statement”

ALTER TABLE ... ENCRYPTION
Section 13.1.4, “ALTER INSTANCE Statement”

ALTER TABLE ... ENGINE
Section 5.1.7, “Server System Variables”

ALTER TABLE ... ENGINE = MEMORY
Section 16.4.1.20, “Replication and MEMORY Tables”

ALTER TABLE ... ENGINE = NDB
Section 21.6.13, “Distributed Privileges Using Shared Grant Tables”

ALTER TABLE ... ENGINE permitted_engine
Section 5.1.7, “Server System Variables”

ALTER TABLE ... ENGINE=INNODB
Section 21.7.4, “NDB Cluster Replication Schema and Tables”
Section 21.3.7.1, “Upgrading and Downgrading NDB 7.5”
Section 1.3, “What Is New in MySQL 5.7”
Section 21.2.4.1, “What is New in NDB Cluster 7.5”

ALTER TABLE ... ENGINE=NDB
Section 21.5.14, “ndb_import — Import CSV Data Into NDB”

ALTER TABLE ... EXCHANGE PARTITION
Section 13.1.8.1, “ALTER TABLE Partition Operations”
Section 22.3.3, “Exchanging Partitions and Subpartitions with Tables”
Section 22.6.4, “Partitioning and Locking”
Section 1.3, “What Is New in MySQL 5.7”

ALTER TABLE ... FORCE
Section 13.7.2.4, “OPTIMIZE TABLE Statement”
Section 1.3, “What Is New in MySQL 5.7”

ALTER TABLE ... IMPORT PARTITION ... TABLESPACE
Section 14.6.1.3, “Importing InnoDB Tables”

ALTER TABLE ... IMPORT TABLESPACE
Section 14.6.1.3, “Importing InnoDB Tables”
Section 14.6.1.4, “Moving or Copying InnoDB Tables”
MySQL Glossary

ALTER TABLE ... OPTIMIZE PARTITION
Section 22.3.4, “Maintenance of Partitions”
Section 22.6.2, “Partitioning Limitations Relating to Storage Engines”

ALTER TABLE ... PARTITION BY
Section 22.6.1, “Partitioning Keys, Primary Keys, and Unique Keys”

5099

ALTER TABLE ... PARTITION BY ...
Section 22.3.1, “Management of RANGE and LIST Partitions”
Section 22.6, “Restrictions and Limitations on Partitioning”

ALTER TABLE ... RENAME
Section 8.12.3.2, “Using Symbolic Links for MyISAM Tables on Unix”

ALTER TABLE ... REORGANIZE PARTITION
Section 21.6.7.3, “Adding NDB Cluster Data Nodes Online: Detailed Example”
Section 21.6.7.1, “Adding NDB Cluster Data Nodes Online: General Issues”
Section 21.6.1, “Commands in the NDB Cluster Management Client”

ALTER TABLE ... REPAIR PARTITION
Section 22.3.3, “Exchanging Partitions and Subpartitions with Tables”
Section 22.3.4, “Maintenance of Partitions”

ALTER TABLE ... TABLESPACE
Section 13.1.19, “CREATE TABLESPACE Statement”
Section 14.6.3.2, “File-Per-Table Tablespaces”

ALTER TABLE ... TRUNCATE PARTITION
Section 22.3.4, “Maintenance of Partitions”
Section 22.3, “Partition Management”
Section 22.6.4, “Partitioning and Locking”

ALTER TABLE ... TRUNCATE PARTITION ALL
Section 22.3.4, “Maintenance of Partitions”

ALTER TABLE ... UPGRADE PARTITIONING
Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 1.3, “What Is New in MySQL 5.7”

ALTER TABLE ...IMPORT TABLESPACE
Section 13.1.19, “CREATE TABLESPACE Statement”
Section 14.6.3.3, “General Tablespaces”

ALTER TABLE EXCHANGE PARTITION
Section 22.3.3, “Exchanging Partitions and Subpartitions with Tables”

ALTER TABLE mysql.ndb_apply_status ENGINE=MyISAM
Section 21.7.3, “Known Issues in NDB Cluster Replication”

ALTER TABLE t TRUNCATE PARTITION ()
Section 13.2.2, “DELETE Statement”

ALTER TABLE t3 DROP PARTITION p2
Section 5.4.6, “The DDL Log”

ALTER TABLE table_name ENGINE=InnoDB;
Section 14.1.4, “Testing and Benchmarking with InnoDB”

5100

ALTER TABLE table_name REORGANIZE PARTITION
Section 21.6.7.3, “Adding NDB Cluster Data Nodes Online: Detailed Example”

ALTER TABLE table_name UPGRADE PARTITIONING
Section 2.10.3, “Changes in MySQL 5.7”

ALTER TABLE tbl_name COMPRESSION='None'
Section 2.11.3, “Downgrade Notes”

ALTER TABLE tbl_name ENCRYPTION = 'Y'
Section A.17, “MySQL 5.7 FAQ: InnoDB Data-at-Rest Encryption”

ALTER TABLE tbl_name ENGINE=INNODB
Section 13.1.8, “ALTER TABLE Statement”
Section 14.12.4, “Defragmenting a Table”

ALTER TABLE tbl_name FORCE
Section 13.1.8, “ALTER TABLE Statement”
Section 14.12.4, “Defragmenting a Table”

ALTER TABLE tbl_name TABLESPACE tablespace_name
Section 13.1.19, “CREATE TABLESPACE Statement”
Section 14.6.3.3, “General Tablespaces”
MySQL Glossary
Section 1.3, “What Is New in MySQL 5.7”

ALTER TABLESPACE
Section 13.1.9, “ALTER TABLESPACE Statement”
Section 13.1.19, “CREATE TABLESPACE Statement”
Section 21.4.3.6, “Defining NDB Cluster Data Nodes”
Section 13.1.30, “DROP TABLESPACE Statement”
Section 14.6.3.3, “General Tablespaces”
Section 21.2.7.8, “Issues Exclusive to NDB Cluster”
Section 21.6.11.1, “NDB Cluster Disk Data Objects”
Section 13.3.3, “Statements That Cause an Implicit Commit”
Section 24.3.9, “The INFORMATION_SCHEMA FILES Table”

ALTER TABLESPACE ... ADD DATAFILE
Section 13.1.19, “CREATE TABLESPACE Statement”

ALTER TABLESPACE ... DROP DATAFILE
Section 13.1.30, “DROP TABLESPACE Statement”

ALTER TABLESPACE ... DROP DATATFILE
Section 13.1.19, “CREATE TABLESPACE Statement”

ALTER TABLESPACE ... ENGINE
Section 5.1.7, “Server System Variables”

ALTER TABLESPACE tablespace_name ENCRYPTION = 'Y'
Section A.17, “MySQL 5.7 FAQ: InnoDB Data-at-Rest Encryption”

5101

ALTER USER
Section 6.2.5, “Access Control, Stage 1: Connection Verification”
Section 6.2.15, “Account Locking”
Section 13.7.1.1, “ALTER USER Statement”
Section 6.2.10, “Assigning Account Passwords”
Section 16.1.6.4, “Binary Logging Options and Variables”
Section 4.2.3, “Command Options for Connecting to the Server”
Section 6.3.1, “Configuring MySQL to Use Encrypted Connections”
Section 6.1.2.1, “End-User Guidelines for Password Security”
Section 13.7.1.4, “GRANT Statement”
Section 6.2.3, “Grant Tables”
Section 2.9.1, “Initializing the Data Directory”
Section 6.1.3, “Making MySQL Secure Against Attackers”
Section 6.4.1.3, “Migrating Away from Pre-4.1 Password Hashing and the mysql_old_password Plugin”
Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 6.2.11, “Password Management”
Section 6.4.3.2, “Password Validation Plugin Options and Variables”
Section 6.2.2, “Privileges Provided by MySQL”
Section 6.2.14, “Proxy Users”
Resetting the Root Password: Generic Instructions
Resetting the Root Password: Unix and Unix-Like Systems
Resetting the Root Password: Windows Systems
Section 6.2.12, “Server Handling of Expired Passwords”
Section 5.1.7, “Server System Variables”
Section 13.7.1.7, “SET PASSWORD Statement”
Section 6.2.16, “Setting Account Resource Limits”
Section 6.4.1.11, “Socket Peer-Credential Pluggable Authentication”
Section 13.3.3, “Statements That Cause an Implicit Commit”
Section 6.4.3, “The Password Validation Plugin”
Section 1.3, “What Is New in MySQL 5.7”

ALTER VIEW
Section 13.1.10, “ALTER VIEW Statement”
Section 12.15, “Information Functions”
Section 16.4.1.8, “Replication of CURRENT_USER()”
Section 23.8, “Restrictions on Stored Programs”
Section 13.3.3, “Statements That Cause an Implicit Commit”
Section 23.6, “Stored Object Access Control”
Section 23.5.2, “View Processing Algorithms”
Section 23.5.1, “View Syntax”

ANALYZE PARTITION
Section 14.13.1, “Online DDL Operations”

ANALYZE TABLE
Section 13.1.8, “ALTER TABLE Statement”
Section 13.7.2.1, “ANALYZE TABLE Statement”
Configuring Automatic Statistics Calculation for Persistent Optimizer Statistics
Section 14.8.11.2, “Configuring Non-Persistent Optimizer Statistics Parameters”
Section 14.8.11, “Configuring Optimizer Statistics for InnoDB”
Configuring Optimizer Statistics Parameters for Individual Tables
Configuring the Number of Sampled Pages for InnoDB Optimizer Statistics
Section 13.1.14, “CREATE INDEX Statement”

5102

Section 13.1.18, “CREATE TABLE Statement”
Section 14.8.11.3, “Estimating ANALYZE TABLE Complexity for InnoDB Tables”
Section 8.8.2, “EXPLAIN Output Format”
Section 13.8.2, “EXPLAIN Statement”
Section 12.9.6, “Fine-Tuning MySQL Full-Text Search”
Section 8.14.3, “General Thread States”
Section 16.1.6.5, “Global Transaction ID System Variables”
Including Delete-marked Records in Persistent Statistics Calculations
Section 8.3.7, “InnoDB and MyISAM Index Statistics Collection”
InnoDB Persistent Statistics Tables
InnoDB Persistent Statistics Tables Example
Section 14.15, “InnoDB Startup Options and System Variables”
Section 22.3.4, “Maintenance of Partitions”
Section 15.7.2, “MERGE Table Problems”
Section 7.6, “MyISAM Table Maintenance and Crash Recovery”
Section 4.6.3.1, “myisamchk General Options”
Section 1.6.1, “MySQL Extensions to Standard SQL”
MySQL Glossary
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 21.5.15, “ndb_index_stat — NDB Index Statistics Utility”
Section 8.6.1, “Optimizing MyISAM Queries”
Section 8.8.1, “Optimizing Queries with EXPLAIN”
Section 8.2.1, “Optimizing SELECT Statements”
Section 6.2.2, “Privileges Provided by MySQL”
Section 8.2.1.2, “Range Optimization”
Section 16.4.1.14, “Replication and FLUSH”
Section 22.6, “Restrictions and Limitations on Partitioning”
Section 5.1.7, “Server System Variables”
Section 13.7.5.22, “SHOW INDEX Statement”
Section 13.3.3, “Statements That Cause an Implicit Commit”
Section 24.4.25, “The INFORMATION_SCHEMA INNODB_SYS_TABLESTATS View”
Section 24.3.24, “The INFORMATION_SCHEMA STATISTICS Table”
Section 5.4.5, “The Slow Query Log”

B

[index top]

BEGIN
Section 14.7.2.2, “autocommit, Commit, and Rollback”
Section 13.6.1, “BEGIN ... END Compound Statement”
Section 21.7.11, “NDB Cluster Replication Conflict Resolution”
Section 25.12.7, “Performance Schema Transaction Tables”
Section 16.1.6.3, “Replica Server Options and Variables”
Section 16.4.1.33, “Replication and Transactions”
Section 23.8, “Restrictions on Stored Programs”
Section 5.1.7, “Server System Variables”
Section 13.3.3, “Statements That Cause an Implicit Commit”
Section 23.7, “Stored Program Binary Logging”
Section 25.12.7.1, “The events_transactions_current Table”

BEGIN ... END
Section 13.6.1, “BEGIN ... END Compound Statement”

5103

Section 13.6.5.1, “CASE Statement”
Section 13.6, “Compound Statements”
Section 13.1.20, “CREATE TRIGGER Statement”
Section 13.6.6.1, “Cursor CLOSE Statement”
Section 13.6.6.3, “Cursor FETCH Statement”
Section 13.6.7.2, “DECLARE ... HANDLER Statement”
Section 13.6.3, “DECLARE Statement”
Section 23.1, “Defining Stored Programs”
Section 23.4.1, “Event Scheduler Overview”
Section 13.6.5.4, “LEAVE Statement”
Section 13.6.4.1, “Local Variable DECLARE Statement”
Section 13.6.4.2, “Local Variable Scope and Resolution”
Section 23.8, “Restrictions on Stored Programs”
Section 13.6.7.6, “Scope Rules for Handlers”
Section 13.3.1, “START TRANSACTION, COMMIT, and ROLLBACK Statements”
Section 13.6.2, “Statement Labels”
Section 13.3.3, “Statements That Cause an Implicit Commit”
Section 23.3.1, “Trigger Syntax and Examples”

BINLOG
Section 13.7.6.1, “BINLOG Statement”
Section 4.6.7.2, “mysqlbinlog Row Event Display”
Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 6.2.2, “Privileges Provided by MySQL”
Section 5.1.7, “Server System Variables”

C

[index top]

CACHE INDEX
Section 13.7.6.2, “CACHE INDEX Statement”
Section 16.1.6.5, “Global Transaction ID System Variables”
Section 8.10.2.4, “Index Preloading”
Section 13.7.6.5, “LOAD INDEX INTO CACHE Statement”
Section 8.10.2.2, “Multiple Key Caches”
Section 22.6, “Restrictions and Limitations on Partitioning”
Section 13.3.3, “Statements That Cause an Implicit Commit”

CALL
Section 13.2.1, “CALL Statement”
Section 13.1.16, “CREATE PROCEDURE and CREATE FUNCTION Statements”
Section 13.5, “Prepared Statements”
Section 23.6, “Stored Object Access Control”
Chapter 23, Stored Objects
Section 23.7, “Stored Program Binary Logging”
Section 23.2.1, “Stored Routine Syntax”
Section 8.15.3, “Traceable Statements”
Section 23.3.1, “Trigger Syntax and Examples”

CALL p()
Section 13.6.7.4, “RESIGNAL Statement”

5104

CALL stored_procedure()
Section 22.6.4, “Partitioning and Locking”

CASE
Section 8.10.4, “Caching of Prepared Statements and Stored Programs”
Section 13.6.5.1, “CASE Statement”
Section 12.5, “Flow Control Functions”
Section 13.6.5, “Flow Control Statements”
Section 8.15.3, “Traceable Statements”

CHANGE MASTER TO
Section 16.1.5.4, “Adding a Binary Log Based Source to a Multi-Source Replica”
Section 16.1.5.3, “Adding GTID-Based Sources to a Multi-Source Replica”
Section 6.2.10, “Assigning Account Passwords”
Section 16.3.1.2, “Backing Up Raw Data from a Replica”
Section 16.1.1, “Binary Log File Position Based Replication Configuration Overview”
Section 13.4.2.1, “CHANGE MASTER TO Statement”
Section 2.10.3, “Changes in MySQL 5.7”
Section 16.1.7.1, “Checking Replication Status”
Section 16.2.2.1, “Commands for Operations on a Single Channel”
Section 16.2.2.2, “Compatibility with Previous Replication Statements”
Creating a Data Snapshot Using mysqldump
Section 16.3.10, “Delayed Replication”
Section 6.3.2, “Encrypted Connection TLS Protocols and Ciphers”
Section 17.8, “Frequently Asked Questions”
Section 16.1.6.5, “Global Transaction ID System Variables”
Section 13.7.1.4, “GRANT Statement”
Section 16.1.3.3, “GTID Auto-Positioning”
Section 16.3.2, “Handling an Unexpected Halt of a Replica”
Section 21.7.8, “Implementing Failover with NDB Cluster Replication”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 21.7.9, “NDB Cluster Backups With NDB Cluster Replication”
Section 21.7.10, “NDB Cluster Replication: Bidirectional and Circular Replication”
Section 25.12.11, “Performance Schema Replication Tables”
Section 21.7.5, “Preparing the NDB Cluster for Replication”
Section 6.2.2, “Privileges Provided by MySQL”
Section 16.1.6.3, “Replica Server Options and Variables”
Section 16.1.6, “Replication and Binary Logging Options and Variables”
Section 16.4.1.26, “Replication and Source or Replica Shutdowns”
Section 16.4.1.32, “Replication and Transaction Inconsistencies”
Section 16.2.4.2, “Replication Metadata Repositories”
Section 8.14.8, “Replication Replica Connection Thread States”
Section 8.14.6, “Replication Replica I/O Thread States”
Section 8.14.7, “Replication Replica SQL Thread States”
Section 13.4.2.3, “RESET SLAVE Statement”
Section 16.1.3.6, “Restrictions on Replication with GTIDs”
Section 5.1.9, “Server Status Variables”
Setting the Source Configuration on the Replica
Setting Up Replication between a New Source and Replicas
Section 16.3.8, “Setting Up Replication to Use Encrypted Connections”
Section 16.1.3.4, “Setting Up Replication Using GTIDs”
Setting Up Replication with Existing Data
Section 13.7.5.34, “SHOW SLAVE STATUS Statement”

5105

Skipping Transactions With CHANGE MASTER TO
Skipping Transactions Without GTIDs
Section 13.4.2.5, “START SLAVE Statement”
Section 13.3.3, “Statements That Cause an Implicit Commit”
Section 16.3.7, “Switching Sources During Failover”
Section 14.21.6, “The InnoDB memcached Plugin and Replication”
Section 25.12.11.3, “The replication_applier_configuration Table”
Section 25.12.11.1, “The replication_connection_configuration Table”
Section 16.2.1.2, “Usage of Row-Based Logging and Replication”
Section 17.2.1.3, “User Credentials”
Section 16.1.3.5, “Using GTIDs for Failover and Scaleout”
Section 1.3, “What Is New in MySQL 5.7”

CHANGE REPLICATION FILTER
Section 13.4.2.2, “CHANGE REPLICATION FILTER Statement”
Section 6.2.2, “Privileges Provided by MySQL”
Section 5.1.9, “Server Status Variables”

CHANGE REPLICATION FILTER REPLICATE_DO_DB
Section 16.1.6.3, “Replica Server Options and Variables”

CHANGE REPLICATION FILTER REPLICATE_DO_TABLE
Section 16.1.6.3, “Replica Server Options and Variables”

CHANGE REPLICATION FILTER REPLICATE_IGNORE_DB
Section 16.1.6.3, “Replica Server Options and Variables”

CHANGE REPLICATION FILTER REPLICATE_IGNORE_TABLE
Section 16.1.6.3, “Replica Server Options and Variables”

CHANGE REPLICATION FILTER REPLICATE_REWRITE_DB
Section 16.1.6.3, “Replica Server Options and Variables”

CHANGE REPLICATION FILTER REPLICATE_WILD_DO_TABLE
Section 16.1.6.3, “Replica Server Options and Variables”

CHANGE REPLICATION FILTER REPLICATE_WILD_IGNORE_TABLE
Section 16.1.6.3, “Replica Server Options and Variables”

CHECK PARTITION
Section 14.13.1, “Online DDL Operations”

CHECK TABLE
Section 11.2.5, “2-Digit YEAR(2) Limitations and Migrating to 4-Digit YEAR”
Section 13.1.8.1, “ALTER TABLE Partition Operations”
Section 2.10.3, “Changes in MySQL 5.7”
Section 13.7.2.2, “CHECK TABLE Statement”
Section 15.2.4.1, “Corrupted MyISAM Tables”
Section 13.1.16, “CREATE PROCEDURE and CREATE FUNCTION Statements”
Section 13.1.21, “CREATE VIEW Statement”

5106

Section 8.11.5, “External Locking”
Section 16.1.6.5, “Global Transaction ID System Variables”
Section 7.6.3, “How to Repair MyISAM Tables”
Section 1.5, “How to Report Bugs or Problems”
Section 4.6.1, “innochecksum — Offline InnoDB File Checksum Utility”
Section 14.19.2, “InnoDB Recovery”
Section 14.22, “InnoDB Troubleshooting”
Section 22.3.4, “Maintenance of Partitions”
Section 7.6, “MyISAM Table Maintenance and Crash Recovery”
Section 4.6.3, “myisamchk — MyISAM Table-Maintenance Utility”
Section A.6, “MySQL 5.7 FAQ: Views”
Section 1.6.1, “MySQL Extensions to Standard SQL”
Section B.3.2.7, “MySQL server has gone away”
Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 15.2.4.2, “Problems from Tables Not Being Closed Properly”
Section 2.10.12, “Rebuilding or Repairing Tables or Indexes”
Section 15.4.1, “Repairing and Checking CSV Tables”
Restoring an NDB backup to a later version of NDB Cluster
Section 22.6, “Restrictions and Limitations on Partitioning”
Section 13.6.6.5, “Restrictions on Server-Side Cursors”
Section 23.8, “Restrictions on Stored Programs”
Section 23.9, “Restrictions on Views”
Section 5.4.1, “Selecting General Query Log and Slow Query Log Output Destinations”
Section 5.1.7, “Server System Variables”
Section 7.6.5, “Setting Up a MyISAM Table Maintenance Schedule”
Section 13.3.3, “Statements That Cause an Implicit Commit”
Section 15.5, “The ARCHIVE Storage Engine”
Section 15.7, “The MERGE Storage Engine”
Section 5.4.5, “The Slow Query Log”

CHECK TABLE ... EXTENDED
Section 13.7.2.2, “CHECK TABLE Statement”

CHECK TABLE ... FOR UPGRADE
Section 2.10.3, “Changes in MySQL 5.7”
Section 13.7.2.2, “CHECK TABLE Statement”
Section 13.7.2.5, “REPAIR TABLE Statement”

CHECK TABLE QUICK
Section 13.7.2.2, “CHECK TABLE Statement”

CHECKSUM TABLE
Section 13.7.2.3, “CHECKSUM TABLE Statement”
Section 13.1.18, “CREATE TABLE Statement”
Section 16.4.1.4, “Replication and CHECKSUM TABLE”

CHECKSUM TABLE ... QUICK
Section 13.7.2.3, “CHECKSUM TABLE Statement”

COALESCE PARTITION
Section 14.13.1, “Online DDL Operations”

5107

COMMIT
Section 14.7.2.2, “autocommit, Commit, and Rollback”
Section 8.5.5, “Bulk Data Loading for InnoDB Tables”
Section 14.6.1.5, “Converting Tables from MyISAM to InnoDB”
Section 13.1.16, “CREATE PROCEDURE and CREATE FUNCTION Statements”
Section 14.2, “InnoDB and the ACID Model”
Section 14.15, “InnoDB Startup Options and System Variables”
Section 14.7.3, “Locks Set by Different SQL Statements in InnoDB”
Section 4.5.4, “mysqldump — A Database Backup Program”
NDB Cluster System Variables
Section 16.1.2.3, “Obtaining the Replication Source's Binary Log Coordinates”
Section 8.5.3, “Optimizing InnoDB Read-Only Transactions”
Section 25.12.7, “Performance Schema Transaction Tables”
Section 16.1.6.3, “Replica Server Options and Variables”
Section 16.4.1.33, “Replication and Transactions”
Rewriter Query Rewrite Plugin Procedures and Functions
Section 13.3.4, “SAVEPOINT, ROLLBACK TO SAVEPOINT, and RELEASE SAVEPOINT Statements”
Section 5.1.9, “Server Status Variables”
Section 5.1.7, “Server System Variables”
Section 5.1.15, “Server Tracking of Client Session State”
Section 13.7.5.36, “SHOW TABLE STATUS Statement”
Section 13.3.1, “START TRANSACTION, COMMIT, and ROLLBACK Statements”
Section 13.3.3, “Statements That Cause an Implicit Commit”
Section 23.7, “Stored Program Binary Logging”
Section 5.4.4, “The Binary Log”
Section 25.12.7.1, “The events_transactions_current Table”
Section 24.3.25, “The INFORMATION_SCHEMA TABLES Table”
Section 13.3, “Transactional and Locking Statements”
Section 23.3.1, “Trigger Syntax and Examples”

COMMIT AND CHAIN
Section 25.12.7, “Performance Schema Transaction Tables”
Section 5.1.15, “Server Tracking of Client Session State”

COMPRESSION
Section 14.14, “InnoDB Data-at-Rest Encryption”

CREATE DATABASE
Section 7.1, “Backup and Recovery Types”
Section 10.5, “Configuring Application Character Set and Collation”
Section 7.4.5.2, “Copy a Database from one Server to Another”
Section 13.1.11, “CREATE DATABASE Statement”
Section 10.3.3, “Database Character Set and Collation”
Section 7.4.1, “Dumping Data in SQL Format with mysqldump”
Section 16.2.5.1, “Evaluation of Database-Level Replication and Binary Logging Options”
Section 16.2.5, “How Servers Evaluate Replication Filtering Rules”
Section 9.2.3, “Identifier Case Sensitivity”
Section 21.2.7.8, “Issues Exclusive to NDB Cluster”
Section 1.6.1, “MySQL Extensions to Standard SQL”
Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.6, “mysqlpump — A Database Backup Program”
Section 21.7.9, “NDB Cluster Backups With NDB Cluster Replication”

5108

Section 25.6, “Performance Schema Instrument Naming Conventions”
Section 7.4.2, “Reloading SQL-Format Backups”
Section 16.1.6.3, “Replica Server Options and Variables”
Section 10.3.2, “Server Character Set and Collation”
Section 13.7.5.6, “SHOW CREATE DATABASE Statement”
Section 13.3.3, “Statements That Cause an Implicit Commit”

CREATE DATABASE dbx
Section 16.2.5, “How Servers Evaluate Replication Filtering Rules”

CREATE DATABASE IF NOT EXISTS
Section 16.4.1.5, “Replication of CREATE ... IF NOT EXISTS Statements”

CREATE EVENT
Section 13.1.2, “ALTER EVENT Statement”
Section 13.1.12, “CREATE EVENT Statement”
Section 23.4.4, “Event Metadata”
Section 23.4.3, “Event Syntax”
Section 9.5, “Expressions”
Section 12.15, “Information Functions”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.6, “mysqlpump — A Database Backup Program”
Section 16.4.1.8, “Replication of CURRENT_USER()”
Section 16.4.1.16, “Replication of Invoked Features”
Section 23.8, “Restrictions on Stored Programs”
Section 5.1.6, “Server Command Options”
Section 13.7.5.7, “SHOW CREATE EVENT Statement”
Section 13.7.5.18, “SHOW EVENTS Statement”
Section 13.3.3, “Statements That Cause an Implicit Commit”
Chapter 23, Stored Objects
Section 23.7, “Stored Program Binary Logging”
Section 23.4.6, “The Event Scheduler and MySQL Privileges”
Section 24.3.8, “The INFORMATION_SCHEMA EVENTS Table”
Section 5.3, “The mysql System Database”

CREATE EVENT IF NOT EXISTS
Section 16.4.1.5, “Replication of CREATE ... IF NOT EXISTS Statements”

CREATE FULLTEXT INDEX
Section 8.5.5, “Bulk Data Loading for InnoDB Tables”

CREATE FUNCTION
Section 13.1.3, “ALTER FUNCTION Statement”
Section 13.1.13, “CREATE FUNCTION Statement”
Section 13.7.3.1, “CREATE FUNCTION Statement for Loadable Functions”
Section 13.1.16, “CREATE PROCEDURE and CREATE FUNCTION Statements”
Section 13.7.3.2, “DROP FUNCTION Statement for Loadable Functions”
Section 9.2.5, “Function Name Parsing and Resolution”
Section 6.4.4.8, “General-Purpose Keyring Key-Management Functions”
Section 12.15, “Information Functions”
Section 5.6.1, “Installing and Uninstalling Loadable Functions”
Section 6.5.2, “Installing or Uninstalling MySQL Enterprise Data Masking and De-Identification”

5109

Section 5.5.5.2, “Installing or Uninstalling Version Tokens”
Section 6.6.1, “MySQL Enterprise Encryption Installation”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.6, “mysqlpump — A Database Backup Program”
Section 5.6.2, “Obtaining Information About Loadable Functions”
Section 16.4.1.8, “Replication of CURRENT_USER()”
Section 16.4.1.16, “Replication of Invoked Features”
Section 23.8, “Restrictions on Stored Programs”
Section 5.1.6, “Server Command Options”
Section 13.3.3, “Statements That Cause an Implicit Commit”
Chapter 23, Stored Objects
Section 23.7, “Stored Program Binary Logging”
Section 23.2.1, “Stored Routine Syntax”
The Locking Service Function Interface
Section 5.3, “The mysql System Database”
Section 2.10.11, “Upgrade Troubleshooting”

CREATE INDEX
Section 8.3.4, “Column Indexes”
Section 14.8.12, “Configuring the Merge Threshold for Index Pages”
Section 14.21.5.4, “Controlling Transactional Behavior of the InnoDB memcached Plugin”
Section 13.1.14, “CREATE INDEX Statement”
Section 13.1.18, “CREATE TABLE Statement”
Section 11.4.9, “Creating Spatial Indexes”
Section 12.9, “Full-Text Search Functions”
Section 14.9.1.5, “How Compression Works for InnoDB Tables”
Section 14.6.2.4, “InnoDB Full-Text Indexes”
Section 12.9.9, “MeCab Full-Text Parser Plugin”
MySQL Glossary
Section 12.9.8, “ngram Full-Text Parser”
Section 14.13.1, “Online DDL Operations”
Section 21.6.12, “Online Operations with ALTER TABLE in NDB Cluster”
Section 8.7, “Optimizing for MEMORY Tables”
Section 5.1.7, “Server System Variables”
Section 13.7.5.22, “SHOW INDEX Statement”
Section 13.3.3, “Statements That Cause an Implicit Commit”
Section 24.3.24, “The INFORMATION_SCHEMA STATISTICS Table”
Section 5.4.5, “The Slow Query Log”
Section 21.2.7.6, “Unsupported or Missing Features in NDB Cluster”

CREATE LOGFILE GROUP
Section 13.1.5, “ALTER LOGFILE GROUP Statement”
Section 13.1.15, “CREATE LOGFILE GROUP Statement”
Section 13.1.19, “CREATE TABLESPACE Statement”
Section 21.4.3.6, “Defining NDB Cluster Data Nodes”
Section 21.2.7.8, “Issues Exclusive to NDB Cluster”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 21.6.11.1, “NDB Cluster Disk Data Objects”
Section 24.3.9, “The INFORMATION_SCHEMA FILES Table”
Section 21.6.15.31, “The ndbinfo resources Table”

CREATE OR REPLACE VIEW
Section 13.1.21, “CREATE VIEW Statement”

5110

Section 23.9, “Restrictions on Views”

CREATE PROCEDURE
Section 13.1.6, “ALTER PROCEDURE Statement”
Section 13.2.1, “CALL Statement”
Section 13.1.16, “CREATE PROCEDURE and CREATE FUNCTION Statements”
Section 12.15, “Information Functions”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.6, “mysqlpump — A Database Backup Program”
Section 16.4.1.8, “Replication of CURRENT_USER()”
Section 16.4.1.16, “Replication of Invoked Features”
Section 23.8, “Restrictions on Stored Programs”
Section 13.3.3, “Statements That Cause an Implicit Commit”
Chapter 23, Stored Objects
Section 23.7, “Stored Program Binary Logging”
Section 23.2.1, “Stored Routine Syntax”

CREATE SCHEMA
Section 13.1.11, “CREATE DATABASE Statement”
Section 21.2.7.8, “Issues Exclusive to NDB Cluster”
Section 21.7.9, “NDB Cluster Backups With NDB Cluster Replication”

CREATE SERVER
Section 13.1.7, “ALTER SERVER Statement”
Section 15.8.2.2, “Creating a FEDERATED Table Using CREATE SERVER”
Section 15.8.3, “FEDERATED Storage Engine Notes and Tips”
Section 13.7.6.3, “FLUSH Statement”
Section 16.1.6.5, “Global Transaction ID System Variables”
Section 8.12.4.1, “How MySQL Uses Memory”
Section 15.8.2, “How to Create FEDERATED Tables”
Section 6.2.2, “Privileges Provided by MySQL”
Section 16.4.1.7, “Replication of CREATE SERVER, ALTER SERVER, and DROP SERVER”
Section 13.3.3, “Statements That Cause an Implicit Commit”

CREATE TABLE
Section 13.1.8.3, “ALTER TABLE Examples”
Section 13.1.8.1, “ALTER TABLE Partition Operations”
Section 13.1.8, “ALTER TABLE Statement”
Chapter 15, Alternative Storage Engines
Section 14.6.1.6, “AUTO_INCREMENT Handling in InnoDB”
Section 7.1, “Backup and Recovery Types”
Section 16.1.6.4, “Binary Logging Options and Variables”
Section 2.10.3, “Changes in MySQL 5.7”
Section 10.3.5, “Column Character Set and Collation”
Section 8.3.4, “Column Indexes”
Section 14.8.11, “Configuring Optimizer Statistics for InnoDB”
Configuring Optimizer Statistics Parameters for Individual Tables
Section 14.8.12, “Configuring the Merge Threshold for Index Pages”
Section 14.6.1.5, “Converting Tables from MyISAM to InnoDB”
Section 13.1.12, “CREATE EVENT Statement”
Section 13.1.14, “CREATE INDEX Statement”
Section 13.1.17, “CREATE SERVER Statement”
Section 13.1.18.3, “CREATE TABLE ... LIKE Statement”

5111

Section 13.1.18.4, “CREATE TABLE ... SELECT Statement”
Section 13.1.18.7, “CREATE TABLE and Generated Columns”
Section 13.1.18, “CREATE TABLE Statement”
Section 13.1.19, “CREATE TABLESPACE Statement”
Section 13.1.18.2, “CREATE TEMPORARY TABLE Statement”
Section 15.8.2.1, “Creating a FEDERATED Table Using CONNECTION”
Section 3.3.2, “Creating a Table”
Section 14.9.1.2, “Creating Compressed Tables”
Section 14.6.1.1, “Creating InnoDB Tables”
Section 11.4.5, “Creating Spatial Columns”
Section 11.4.9, “Creating Spatial Indexes”
Section 7.2, “Database Backup Methods”
Section 10.3.3, “Database Character Set and Collation”
Section 21.4.3.6, “Defining NDB Cluster Data Nodes”
Section 7.4.3, “Dumping Data in Delimited-Text Format with mysqldump”
Section 14.10.1, “Enabling File Formats”
Section B.2, “Error Information Interfaces”
Section 14.8.11.3, “Estimating ANALYZE TABLE Complexity for InnoDB Tables”
Section 14.6.3.2, “File-Per-Table Tablespaces”
Section 1.6.3.2, “FOREIGN KEY Constraints”
Section 13.1.18.5, “FOREIGN KEY Constraints”
Section 12.9, “Full-Text Search Functions”
Section 14.6.3.3, “General Tablespaces”
Section 3.4, “Getting Information About Databases and Tables”
Section 16.1.3.1, “GTID Format and Storage”
Section 16.1.3.2, “GTID Life Cycle”
Section 22.2.4, “HASH Partitioning”
Section 13.8.3, “HELP Statement”
Section 14.9.1.5, “How Compression Works for InnoDB Tables”
Section 22.2.7, “How MySQL Partitioning Handles NULL”
Section 8.12.4.1, “How MySQL Uses Memory”
Section 9.2.3, “Identifier Case Sensitivity”
Section 14.6.1.3, “Importing InnoDB Tables”
Section 12.15, “Information Functions”
Section 21.3.3, “Initial Configuration of NDB Cluster”
Section 14.20, “InnoDB and MySQL Replication”
Section 14.14, “InnoDB Data-at-Rest Encryption”
Section 14.6.2.4, “InnoDB Full-Text Indexes”
Section 14.16.3, “InnoDB INFORMATION_SCHEMA System Tables”
Section 14.9.2, “InnoDB Page Compression”
Section 14.11, “InnoDB Row Formats”
Section 14.15, “InnoDB Startup Options and System Variables”
Section 14.9.1, “InnoDB Table Compression”
Section 14.22, “InnoDB Troubleshooting”
Section 16.2.5.3, “Interactions Between Replication Filtering Options”
Section 8.4.4, “Internal Temporary Table Use in MySQL”
Section 14.1, “Introduction to InnoDB”
Section 21.2.7.8, “Issues Exclusive to NDB Cluster”
Section 22.2.5, “KEY Partitioning”
Section 21.2.7.5, “Limits Associated with Database Objects in NDB Cluster”
Section 8.4.6, “Limits on Table Size”
Section 21.2.7.3, “Limits Relating to Transaction Handling in NDB Cluster”
Section 22.2.2, “LIST Partitioning”
Section 13.2.7, “LOAD XML Statement”

5112

Section 3.3.3, “Loading Data into a Table”
Section 13.3.5, “LOCK TABLES and UNLOCK TABLES Statements”
Section 5.4.4.4, “Logging Format for Changes to mysql Database Tables”
Section 22.3.1, “Management of RANGE and LIST Partitions”
Section 12.9.9, “MeCab Full-Text Parser Plugin”
Section 15.2.3, “MyISAM Table Storage Formats”
Section A.10, “MySQL 5.7 FAQ: NDB Cluster”
Section 4.5.1.1, “mysql Client Options”
Section 1.6.1, “MySQL Extensions to Standard SQL”
MySQL Glossary
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.6, “mysqlpump — A Database Backup Program”
Section 21.6.14, “NDB API Statistics Counters and Variables”
Section 21.4.3.1, “NDB Cluster Configuration: Basic Example”
Section 21.6.11.1, “NDB Cluster Disk Data Objects”
NDB Cluster System Variables
Section 21.5.6, “ndb_blob_tool — Check and Repair BLOB and TEXT columns of NDB Cluster Tables”
Section 21.5.10, “ndb_desc — Describe NDB Tables”
Section 12.9.8, “ngram Full-Text Parser”
Section 21.2.7.1, “Noncompliance with SQL Syntax in NDB Cluster”
Section 14.13.1, “Online DDL Operations”
Section 21.6.12, “Online Operations with ALTER TABLE in NDB Cluster”
Section 8.4.1, “Optimizing Data Size”
Section 8.5.7, “Optimizing InnoDB DDL Operations”
Section 22.1, “Overview of Partitioning in MySQL”
Section 14.9.1.1, “Overview of Table Compression”
Section 22.3, “Partition Management”
Section 22.6.1, “Partitioning Keys, Primary Keys, and Unique Keys”
Section 22.6.3, “Partitioning Limitations Relating to Functions”
Section 22.6.2, “Partitioning Limitations Relating to Storage Engines”
Section 22.2, “Partitioning Types”
Section 6.2.2, “Privileges Provided by MySQL”
Section 22.2.3.1, “RANGE COLUMNS partitioning”
Section 22.2.1, “RANGE Partitioning”
Section 7.4.4, “Reloading Delimited-Text Format Backups”
Section 13.2.8, “REPLACE Statement”
Section 16.4.1.1, “Replication and AUTO_INCREMENT”
Section 16.4.1.3, “Replication and Character Sets”
Section 16.4.1.11, “Replication and DIRECTORY Table Options”
Section 16.4.1.13, “Replication and Fractional Seconds Support”
Section 16.4.1.15, “Replication and System Functions”
Section 16.4.1.6, “Replication of CREATE TABLE ... SELECT Statements”
Replication with More Columns on Source or Replica
Restoring an NDB backup to a previous version of NDB Cluster
Section 22.6, “Restrictions and Limitations on Partitioning”
Section 5.4.1, “Selecting General Query Log and Slow Query Log Output Destinations”
Section 5.1.6, “Server Command Options”
Section 5.1.10, “Server SQL Modes”
Section 5.1.7, “Server System Variables”
Section 5.4.4.2, “Setting The Binary Log Format”
Section 15.1, “Setting the Storage Engine”
Section 13.7.5.5, “SHOW COLUMNS Statement”
Section 13.7.5.10, “SHOW CREATE TABLE Statement”
Section 13.7.5.15, “SHOW ENGINE Statement”

5113

Section 13.7.5.22, “SHOW INDEX Statement”
Section 13.7.5.36, “SHOW TABLE STATUS Statement”
Section 13.7.5.40, “SHOW WARNINGS Statement”
Section 13.1.18.6, “Silent Column Specification Changes”
Section 14.9.1.7, “SQL Compression Syntax Warnings and Errors”
Section 13.3.3, “Statements That Cause an Implicit Commit”
Section 11.3.1, “String Data Type Syntax”
Section 22.2.6, “Subpartitioning”
Section 10.3.4, “Table Character Set and Collation”
Section 14.1.4, “Testing and Benchmarking with InnoDB”
Section 15.5, “The ARCHIVE Storage Engine”
Section 11.3.5, “The ENUM Type”
Section 24.4.23, “The INFORMATION_SCHEMA INNODB_SYS_TABLES Table”
Section 24.3.16, “The INFORMATION_SCHEMA PARTITIONS Table”
Section 24.3.24, “The INFORMATION_SCHEMA STATISTICS Table”
Section 24.3.25, “The INFORMATION_SCHEMA TABLES Table”
Section 15.3, “The MEMORY Storage Engine”
Section 15.2, “The MyISAM Storage Engine”
Section 13.2.10.1, “The Subquery as Scalar Operand”
Section 14.22.3, “Troubleshooting InnoDB Data Dictionary Operations”
Section 13.1.34, “TRUNCATE TABLE Statement”
Section 13.7.3.4, “UNINSTALL PLUGIN Statement”
Section 21.2.7.6, “Unsupported or Missing Features in NDB Cluster”
Section 3.6.9, “Using AUTO_INCREMENT”
Section 3.3.4.9, “Using More Than one Table”
Section 7.4, “Using mysqldump for Backups”
Section 16.3.3, “Using Replication with Different Source and Replica Storage Engines”
Section 8.12.3, “Using Symbolic Links”
Section 8.12.3.2, “Using Symbolic Links for MyISAM Tables on Unix”
Section 1.3, “What Is New in MySQL 5.7”
Section 21.2.4.1, “What is New in NDB Cluster 7.5”
Section 2.3.7, “Windows Platform Restrictions”

CREATE TABLE ... ENCRYPTION
Section 13.1.4, “ALTER INSTANCE Statement”

CREATE TABLE ... LIKE
Section 13.1.18.3, “CREATE TABLE ... LIKE Statement”
Section 13.1.18.7, “CREATE TABLE and Generated Columns”
Section 13.3.5, “LOCK TABLES and UNLOCK TABLES Statements”
Section 16.4.1.1, “Replication and AUTO_INCREMENT”
Section 15.7, “The MERGE Storage Engine”

CREATE TABLE ... ROW_FORMAT=COMPRESSED
Section 2.10.3, “Changes in MySQL 5.7”

CREATE TABLE ... SELECT
Section 16.2.1.1, “Advantages and Disadvantages of Statement-Based and Row-Based Replication”
Section 12.10, “Cast Functions and Operators”
Section 14.7.2.3, “Consistent Nonlocking Reads”
Section 13.1.18.4, “CREATE TABLE ... SELECT Statement”
Section 13.1.18.7, “CREATE TABLE and Generated Columns”
Section 16.1.6.5, “Global Transaction ID System Variables”

5114

Section 16.1.3.2, “GTID Life Cycle”
Section B.3.7, “Known Issues in MySQL”
Section 5.4.4.4, “Logging Format for Changes to mysql Database Tables”
Section 16.4.1.6, “Replication of CREATE TABLE ... SELECT Statements”
Section 16.1.3.6, “Restrictions on Replication with GTIDs”
Section 1.6.2.1, “SELECT INTO TABLE Differences”
Section 13.2.9, “SELECT Statement”
Section 5.1.10, “Server SQL Modes”
Section 13.3.3, “Statements That Cause an Implicit Commit”
Section 23.7, “Stored Program Binary Logging”
Section 12.3, “Type Conversion in Expression Evaluation”

CREATE TABLE ... SELECT ...
Section 14.7.3, “Locks Set by Different SQL Statements in InnoDB”
Section 22.3.1, “Management of RANGE and LIST Partitions”

CREATE TABLE ... TABLESPACE
Section 13.1.8, “ALTER TABLE Statement”
Section 13.1.19, “CREATE TABLESPACE Statement”
Section 14.6.1.1, “Creating InnoDB Tables”
Section 14.6.1.2, “Creating Tables Externally”
Section 14.6.3.2, “File-Per-Table Tablespaces”

CREATE TABLE IF NOT EXISTS
Section 16.4.1.5, “Replication of CREATE ... IF NOT EXISTS Statements”

CREATE TABLE IF NOT EXISTS ... LIKE
Section 16.4.1.5, “Replication of CREATE ... IF NOT EXISTS Statements”

CREATE TABLE IF NOT EXISTS ... SELECT
Section 16.4.1.5, “Replication of CREATE ... IF NOT EXISTS Statements”

CREATE TABLE LIKE
Section 21.5.14, “ndb_import — Import CSV Data Into NDB”

CREATE TABLE new_table SELECT ... FROM old_table ...
Section 13.1.18.4, “CREATE TABLE ... SELECT Statement”
Section 13.2.9, “SELECT Statement”

CREATE TABLE tbl_name ... TABLESPACE tablespace_name
Section 13.1.19, “CREATE TABLESPACE Statement”
Section 14.6.3.3, “General Tablespaces”
MySQL Glossary
Section 1.3, “What Is New in MySQL 5.7”

CREATE TABLE...AS SELECT
Section 8.2.1, “Optimizing SELECT Statements”

CREATE TABLESPACE
Section 13.1.9, “ALTER TABLESPACE Statement”
Section 13.1.19, “CREATE TABLESPACE Statement”

5115

Section 21.4.3.6, “Defining NDB Cluster Data Nodes”
Section 13.1.30, “DROP TABLESPACE Statement”
Section 14.12.2, “File Space Management”
Section 14.6.3.3, “General Tablespaces”
Section 21.2.7.8, “Issues Exclusive to NDB Cluster”
MySQL Glossary
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.6, “mysqlpump — A Database Backup Program”
Section 21.6.11.1, “NDB Cluster Disk Data Objects”
Section 5.1.7, “Server System Variables”
Section 13.3.3, “Statements That Cause an Implicit Commit”
Section 24.3.9, “The INFORMATION_SCHEMA FILES Table”
Section 24.4.23, “The INFORMATION_SCHEMA INNODB_SYS_TABLES Table”
Section 1.3, “What Is New in MySQL 5.7”

CREATE TEMPORARY TABLE
Section 13.1.18, “CREATE TABLE Statement”
Section 13.1.18.2, “CREATE TEMPORARY TABLE Statement”
Section 16.1.6.5, “Global Transaction ID System Variables”
Section 13.7.1.4, “GRANT Statement”
Section A.10, “MySQL 5.7 FAQ: NDB Cluster”
Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 6.2.2, “Privileges Provided by MySQL”
Section 16.1.3.6, “Restrictions on Replication with GTIDs”
Section 5.1.7, “Server System Variables”
Section 15.1, “Setting the Storage Engine”
Section 13.3.3, “Statements That Cause an Implicit Commit”
Section B.3.6.2, “TEMPORARY Table Problems”
Section 1.3, “What Is New in MySQL 5.7”

CREATE TRIGGER
Section 13.1.20, “CREATE TRIGGER Statement”
Section 12.15, “Information Functions”
Section A.5, “MySQL 5.7 FAQ: Triggers”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 8.2.2.3, “Optimizing Subqueries with the EXISTS Strategy”
Section 16.4.1.8, “Replication of CURRENT_USER()”
Section 16.4.1.16, “Replication of Invoked Features”
Section 23.8, “Restrictions on Stored Programs”
Section 13.7.5.11, “SHOW CREATE TRIGGER Statement”
Section 13.3.3, “Statements That Cause an Implicit Commit”
Chapter 23, Stored Objects
Section 23.7, “Stored Program Binary Logging”
Section 23.3.1, “Trigger Syntax and Examples”

CREATE UNDO TABLESPACE
MySQL Glossary

CREATE USER
Section 6.2, “Access Control and Account Management”
Section 6.2.5, “Access Control, Stage 1: Connection Verification”
Section 6.2.15, “Account Locking”
Section 6.2.1, “Account User Names and Passwords”

5116

Section 6.2.7, “Adding Accounts, Assigning Privileges, and Dropping Accounts”
Section 6.2.10, “Assigning Account Passwords”
Section 16.1.6.4, “Binary Logging Options and Variables”
Section 6.4.1.4, “Caching SHA-2 Pluggable Authentication”
Section 4.2.3, “Command Options for Connecting to the Server”
Section 6.3.1, “Configuring MySQL to Use Encrypted Connections”
Section 5.1.12.3, “Connecting Using the IPv6 Local Host Address”
Section 13.7.1.2, “CREATE USER Statement”
Section 16.1.2.2, “Creating a User for Replication”
Section 12.13, “Encryption and Compression Functions”
Section 6.1.2.1, “End-User Guidelines for Password Security”
Section 13.7.6.3, “FLUSH Statement”
Section 13.7.1.4, “GRANT Statement”
Section 6.2.3, “Grant Tables”
Section 8.12.4.1, “How MySQL Uses Memory”
Section 2.9.1, “Initializing the Data Directory”
Section 5.1.12, “IPv6 Support”
Section 6.4.1.9, “LDAP Pluggable Authentication”
Section 5.4.4.4, “Logging Format for Changes to mysql Database Tables”
Section 6.1.3, “Making MySQL Secure Against Attackers”
Section 4.5.6, “mysqlpump — A Database Backup Program”
Section 21.6.18.2, “NDB Cluster and MySQL Privileges”
Section 6.4.1.10, “No-Login Pluggable Authentication”
Section 6.4.1.7, “PAM Pluggable Authentication”
Section 6.1.2.4, “Password Hashing in MySQL”
Section 6.2.11, “Password Management”
Section 6.1.2.3, “Passwords and Logging”
Section 21.7.5, “Preparing the NDB Cluster for Replication”
Section 6.2.2, “Privileges Provided by MySQL”
Section 6.2.14, “Proxy Users”
Section 5.1.10, “Server SQL Modes”
Section 5.1.7, “Server System Variables”
Section 6.2.16, “Setting Account Resource Limits”
Section 6.4.1.5, “SHA-256 Pluggable Authentication”
Section 13.7.5.12, “SHOW CREATE USER Statement”
Section 6.4.1.11, “Socket Peer-Credential Pluggable Authentication”
Section 6.2.4, “Specifying Account Names”
Section 13.3.3, “Statements That Cause an Implicit Commit”
Section 6.4.3, “The Password Validation Plugin”
Section 6.3, “Using Encrypted Connections”
Section 19.4.1, “Using Encrypted Connections with X Plugin”
Section 6.4.6.3, “Using MySQL Enterprise Firewall”
Section 1.3, “What Is New in MySQL 5.7”
Section 6.4.1.8, “Windows Pluggable Authentication”

CREATE VIEW
Section 13.1.10, “ALTER VIEW Statement”
Section 13.1.21, “CREATE VIEW Statement”
Section 8.14.3, “General Thread States”
Section 9.2.1, “Identifier Length Limits”
Section 12.15, “Information Functions”
Section 13.3.5, “LOCK TABLES and UNLOCK TABLES Statements”
Section 22.6.4, “Partitioning and Locking”

5117

Section 6.2.2, “Privileges Provided by MySQL”
Section 16.4.1.8, “Replication of CURRENT_USER()”
Section 23.9, “Restrictions on Views”
Section 13.7.5.13, “SHOW CREATE VIEW Statement”
Section 13.3.3, “Statements That Cause an Implicit Commit”
Chapter 23, Stored Objects
Section 24.3.31, “The INFORMATION_SCHEMA VIEWS Table”
Section 23.5.3, “Updatable and Insertable Views”
Section 23.5.2, “View Processing Algorithms”
Section 23.5.1, “View Syntax”

D

[index top]

DEALLOCATE PREPARE
Section 13.5.3, “DEALLOCATE PREPARE Statement”
Section 13.5.1, “PREPARE Statement”
Section 13.5, “Prepared Statements”
Section 23.8, “Restrictions on Stored Programs”
Section 5.1.9, “Server Status Variables”
Section 25.12.6.4, “The prepared_statements_instances Table”

DECLARE
Section 13.1.16, “CREATE PROCEDURE and CREATE FUNCTION Statements”
Section 13.6.3, “DECLARE Statement”
Section 13.6.7.3, “GET DIAGNOSTICS Statement”
Section 13.6.7.5, “SIGNAL Statement”
Section 8.15.3, “Traceable Statements”
Section 13.6.4, “Variables in Stored Programs”

DECLARE ... CONDITION
Section 13.6.7, “Condition Handling”
Section 13.6.7.1, “DECLARE ... CONDITION Statement”
Section 13.6.7.2, “DECLARE ... HANDLER Statement”
Section 13.6.7.5, “SIGNAL Statement”

DECLARE ... HANDLER
Section 13.6.7, “Condition Handling”
Section 13.6.7.1, “DECLARE ... CONDITION Statement”
Section 13.6.7.2, “DECLARE ... HANDLER Statement”
Section 13.6.7.5, “SIGNAL Statement”

DELETE
Section 6.2, “Access Control and Account Management”
Section 14.21.5.5, “Adapting DML Statements to memcached Operations”
Section 6.2.7, “Adding Accounts, Assigning Privileges, and Dropping Accounts”
Section 16.2.1.1, “Advantages and Disadvantages of Statement-Based and Row-Based Replication”
Section 13.1.8.1, “ALTER TABLE Partition Operations”
Section 6.4.5.7, “Audit Log Filtering”
Section 6.4.5.11, “Audit Log Reference”
Section 14.1.2, “Best Practices for InnoDB Tables”

5118

Section 16.1.6.4, “Binary Logging Options and Variables”
Section 8.6.2, “Bulk Data Loading for MyISAM Tables”
Section 14.5.2, “Change Buffer”
Section 2.10.3, “Changes in MySQL 5.7”
Section 14.9.1.6, “Compression for OLTP Workloads”
Section 14.7.2.3, “Consistent Nonlocking Reads”
Section 14.6.1.5, “Converting Tables from MyISAM to InnoDB”
Section 13.1.16, “CREATE PROCEDURE and CREATE FUNCTION Statements”
Section 13.1.20, “CREATE TRIGGER Statement”
Section 13.1.21, “CREATE VIEW Statement”
Section 13.2.2, “DELETE Statement”
Section B.3.4.6, “Deleting Rows from Related Tables”
Section 2.11.3, “Downgrade Notes”
Section 8.8.2, “EXPLAIN Output Format”
Section 13.8.2, “EXPLAIN Statement”
Section 8.8.3, “Extended EXPLAIN Output Format”
Section 15.8.3, “FEDERATED Storage Engine Notes and Tips”
Section 14.22.2, “Forcing InnoDB Recovery”
Section 13.1.18.5, “FOREIGN KEY Constraints”
Section 12.9.5, “Full-Text Restrictions”
Chapter 12, Functions and Operators
Section 8.14.3, “General Thread States”
Section 13.7.1.4, “GRANT Statement”
Section 6.2.3, “Grant Tables”
Section 8.10.3.1, “How the Query Cache Operates”
Section 21.6.9, “Importing Data Into MySQL Cluster”
Section 8.9.4, “Index Hints”
Section 12.15, “Information Functions”
Section 14.20, “InnoDB and MySQL Replication”
Section 14.15, “InnoDB Startup Options and System Variables”
Section 8.11.1, “Internal Locking Methods”
Section 24.1, “Introduction”
Section 13.2.9.2, “JOIN Clause”
Section 9.3, “Keywords and Reserved Words”
Section 13.7.6.4, “KILL Statement”
Section B.3.7, “Known Issues in MySQL”
Section 21.2.7.2, “Limits and Differences of NDB Cluster from Standard MySQL Limits”
Section 21.2.7.3, “Limits Relating to Transaction Handling in NDB Cluster”
Section 22.2.2, “LIST Partitioning”
Section 14.7.3, “Locks Set by Different SQL Statements in InnoDB”
Section 5.4.4.4, “Logging Format for Changes to mysql Database Tables”
Section 22.3.1, “Management of RANGE and LIST Partitions”
Section 15.7.2, “MERGE Table Problems”
Section 4.5.1.1, “mysql Client Options”
Section 4.5.1.6, “mysql Client Tips”
Section 1.6.1, “MySQL Extensions to Standard SQL”
MySQL Glossary
Section 21.6.18.3, “NDB Cluster and MySQL Security Procedures”
Section 21.6.11.1, “NDB Cluster Disk Data Objects”
Section 21.5.9, “ndb_delete_all — Delete All Rows from an NDB Table”
Section 8.8.4, “Obtaining Execution Plan Information for a Named Connection”
Section 14.13.1, “Online DDL Operations”
Section 8.9.3, “Optimizer Hints”
Section 8.2.4, “Optimizing Data Change Statements”

5119

Section 8.8.1, “Optimizing Queries with EXPLAIN”
Section 8.2.1, “Optimizing SELECT Statements”
Section 8.2.2, “Optimizing Subqueries, Derived Tables, and View References”
Section 22.1, “Overview of Partitioning in MySQL”
Section 22.4, “Partition Pruning”
Section 22.5, “Partition Selection”
Section 21.6.5, “Performing a Rolling Restart of an NDB Cluster”
Section 6.2.2, “Privileges Provided by MySQL”
Section 14.8.10, “Purge Configuration”
Section 8.14.4, “Query Cache Thread States”
Section 8.2.1.2, “Range Optimization”
Section 22.2.1, “RANGE Partitioning”
Section 16.1.6.3, “Replica Server Options and Variables”
Section 16.4.1.17, “Replication and LIMIT”
Section 16.4.1.20, “Replication and MEMORY Tables”
Section 16.4.1.22, “Replication and the Query Optimizer”
Section 16.4.1.34, “Replication and Triggers”
Section 13.2.10.11, “Rewriting Subqueries as Joins”
Section 3.3.4.1, “Selecting All Data”
Section 5.4.1, “Selecting General Query Log and Slow Query Log Output Destinations”
Section 5.1.10, “Server SQL Modes”
Section 5.1.9, “Server Status Variables”
Section 5.1.7, “Server System Variables”
Section 13.7.5.36, “SHOW TABLE STATUS Statement”
Statement Probes
Section 13.2.10, “Subqueries”
Section 13.2.10.9, “Subquery Errors”
Section 8.11.2, “Table Locking Issues”
Section 15.5, “The ARCHIVE Storage Engine”
Section 5.4.4, “The Binary Log”
Section 15.6, “The BLACKHOLE Storage Engine”
Section 24.4.25, “The INFORMATION_SCHEMA INNODB_SYS_TABLESTATS View”
Section 24.3.25, “The INFORMATION_SCHEMA TABLES Table”
Section 24.3.31, “The INFORMATION_SCHEMA VIEWS Table”
Section 1.2.2, “The Main Features of MySQL”
Section 15.3, “The MEMORY Storage Engine”
Section 15.7, “The MERGE Storage Engine”
Section 8.15.3, “Traceable Statements”
Section 14.7.2.1, “Transaction Isolation Levels”
Section 23.3.1, “Trigger Syntax and Examples”
Section 6.2.17, “Troubleshooting Problems Connecting to MySQL”
Section 13.1.34, “TRUNCATE TABLE Statement”
Section 14.6.7, “Undo Logs”
Section 23.5.3, “Updatable and Insertable Views”
Section 16.2.1.2, “Usage of Row-Based Logging and Replication”
Section 1.3, “What Is New in MySQL 5.7”
Section 6.2.9, “When Privilege Changes Take Effect”
Section 8.2.1.1, “WHERE Clause Optimization”
Section 6.4.5.8, “Writing Audit Log Filter Definitions”

DELETE FROM ... WHERE ...
Section 14.7.3, “Locks Set by Different SQL Statements in InnoDB”

5120

DELETE FROM t1,t2
Statement Probes

DESCRIBE
Section 3.3.2, “Creating a Table”
Section 13.8.1, “DESCRIBE Statement”
Section 13.8.2, “EXPLAIN Statement”
Section 24.8, “Extensions to SHOW Statements”
Section 1.6.2.3, “FOREIGN KEY Constraint Differences”
Section 3.4, “Getting Information About Databases and Tables”
Section 8.4.4, “Internal Temporary Table Use in MySQL”
Section 13.7.5.5, “SHOW COLUMNS Statement”
Section 13.1.18.6, “Silent Column Specification Changes”
Section 10.2.2, “UTF-8 for Metadata”

DISCARD PARTITION
Section 14.13.1, “Online DDL Operations”

DISCARD PARTITION ... TABLESPACE
Section 13.1.8.1, “ALTER TABLE Partition Operations”

DO
Section 13.1.2, “ALTER EVENT Statement”
Section 13.1.12, “CREATE EVENT Statement”
Section 13.2.3, “DO Statement”
Section 12.14, “Locking Functions”
Section 5.4.4.4, “Logging Format for Changes to mysql Database Tables”
Section 1.6.1, “MySQL Extensions to Standard SQL”
Section 22.6.4, “Partitioning and Locking”
Section 23.8, “Restrictions on Stored Programs”
Section 23.7, “Stored Program Binary Logging”
Section 13.2.10, “Subqueries”
Section 24.3.8, “The INFORMATION_SCHEMA EVENTS Table”
Section 8.15.3, “Traceable Statements”

DROP DATABASE
Section 13.1.22, “DROP DATABASE Statement”
Section 13.1.30, “DROP TABLESPACE Statement”
Section 7.4.1, “Dumping Data in SQL Format with mysqldump”
Section 16.2.5.1, “Evaluation of Database-Level Replication and Binary Logging Options”
Section 14.6.3.3, “General Tablespaces”
Section 16.2.5, “How Servers Evaluate Replication Filtering Rules”
Section 8.10.3.1, “How the Query Cache Operates”
Section 21.6.9, “Importing Data Into MySQL Cluster”
Section 21.2.7.8, “Issues Exclusive to NDB Cluster”
Section 1.6.1, “MySQL Extensions to Standard SQL”
Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.6, “mysqlpump — A Database Backup Program”
Section 16.1.6.3, “Replica Server Options and Variables”
Section 13.3.3, “Statements That Cause an Implicit Commit”
Section 2.3.7, “Windows Platform Restrictions”

5121

DROP DATABASE IF EXISTS
Section 16.4.1.9, “Replication of DROP ... IF EXISTS Statements”

DROP EVENT
Section 23.4.3, “Event Syntax”
Section 16.4.1.16, “Replication of Invoked Features”
Section 13.3.3, “Statements That Cause an Implicit Commit”
Section 23.7, “Stored Program Binary Logging”
Section 23.4.6, “The Event Scheduler and MySQL Privileges”

DROP FUNCTION
Section 13.1.3, “ALTER FUNCTION Statement”
Section 13.7.3.1, “CREATE FUNCTION Statement for Loadable Functions”
Section 13.1.24, “DROP FUNCTION Statement”
Section 13.7.3.2, “DROP FUNCTION Statement for Loadable Functions”
Section 13.1.27, “DROP PROCEDURE and DROP FUNCTION Statements”
Section 9.2.5, “Function Name Parsing and Resolution”
Section 6.4.4.8, “General-Purpose Keyring Key-Management Functions”
Section 5.6.1, “Installing and Uninstalling Loadable Functions”
Section 6.5.2, “Installing or Uninstalling MySQL Enterprise Data Masking and De-Identification”
Section 5.5.5.2, “Installing or Uninstalling Version Tokens”
Section 6.6.1, “MySQL Enterprise Encryption Installation”
Section 16.4.1.16, “Replication of Invoked Features”
Section 13.3.3, “Statements That Cause an Implicit Commit”
Section 23.7, “Stored Program Binary Logging”
Section 23.2.1, “Stored Routine Syntax”
The Locking Service Function Interface
Section 2.10.11, “Upgrade Troubleshooting”

DROP INDEX
Section 13.1.8, “ALTER TABLE Statement”
Section 11.4.9, “Creating Spatial Indexes”
Section 13.1.25, “DROP INDEX Statement”
Section 1.6.1, “MySQL Extensions to Standard SQL”
MySQL Glossary
Section 14.13.1, “Online DDL Operations”
Section 21.6.12, “Online Operations with ALTER TABLE in NDB Cluster”
Section 5.1.7, “Server System Variables”
Section 13.3.3, “Statements That Cause an Implicit Commit”
Section 5.4.5, “The Slow Query Log”

DROP LOGFILE GROUP
Section 13.1.26, “DROP LOGFILE GROUP Statement”
Section 21.2.7.8, “Issues Exclusive to NDB Cluster”

DROP PARTITION
Section 14.13.1, “Online DDL Operations”

DROP PREPARE
Section 25.12.6.4, “The prepared_statements_instances Table”

5122

DROP PROCEDURE
Section 13.1.6, “ALTER PROCEDURE Statement”
Section 16.4.1.16, “Replication of Invoked Features”
Section 13.3.3, “Statements That Cause an Implicit Commit”
Section 23.7, “Stored Program Binary Logging”
Section 23.2.1, “Stored Routine Syntax”

DROP SCHEMA
Section 13.1.22, “DROP DATABASE Statement”
Section 21.2.7.8, “Issues Exclusive to NDB Cluster”
Section 5.1.7, “Server System Variables”

DROP SERVER
Section 13.7.6.3, “FLUSH Statement”
Section 16.1.6.5, “Global Transaction ID System Variables”
Section 8.12.4.1, “How MySQL Uses Memory”
Section 6.2.2, “Privileges Provided by MySQL”
Section 16.4.1.7, “Replication of CREATE SERVER, ALTER SERVER, and DROP SERVER”
Section 13.3.3, “Statements That Cause an Implicit Commit”

DROP TABLE
Section 21.6.7.1, “Adding NDB Cluster Data Nodes Online: General Issues”
Section 13.1.8, “ALTER TABLE Statement”
Section 6.4.5.4, “Audit Log File Formats”
Section 21.6.1, “Commands in the NDB Cluster Management Client”
Section 14.7.2.3, “Consistent Nonlocking Reads”
Section 13.1.19, “CREATE TABLESPACE Statement”
Section 13.1.18.2, “CREATE TEMPORARY TABLE Statement”
Section 13.1.20, “CREATE TRIGGER Statement”
Section 13.1.29, “DROP TABLE Statement”
Section 15.8.3, “FEDERATED Storage Engine Notes and Tips”
Section 14.6.3.2, “File-Per-Table Tablespaces”
Section 14.22.2, “Forcing InnoDB Recovery”
Section 14.6.3.3, “General Tablespaces”
Section 16.1.6.5, “Global Transaction ID System Variables”
Section 16.1.3.2, “GTID Life Cycle”
Section 8.10.3.1, “How the Query Cache Operates”
Section 21.6.9, “Importing Data Into MySQL Cluster”
Section 12.15, “Information Functions”
Section 21.2.7.8, “Issues Exclusive to NDB Cluster”
Section 21.2.7.2, “Limits and Differences of NDB Cluster from Standard MySQL Limits”
Section 13.3.5, “LOCK TABLES and UNLOCK TABLES Statements”
Section 15.7.2, “MERGE Table Problems”
Section 4.5.1.1, “mysql Client Options”
Section 1.6.1, “MySQL Extensions to Standard SQL”
MySQL Glossary
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.6, “mysqlpump — A Database Backup Program”
Section 21.5.11, “ndb_drop_index — Drop Index from an NDB Table”
Section 21.5.12, “ndb_drop_table — Drop an NDB Table”
Section 8.5.7, “Optimizing InnoDB DDL Operations”
Section 21.7.9.2, “Point-In-Time Recovery Using NDB Cluster Replication”
Section 6.2.2, “Privileges Provided by MySQL”

5123

Section 23.9, “Restrictions on Views”
Section 13.6.7.6, “Scope Rules for Handlers”
Section 5.4.1, “Selecting General Query Log and Slow Query Log Output Destinations”
Section 5.1.6, “Server Command Options”
Section 5.1.7, “Server System Variables”
Section 5.4.4.2, “Setting The Binary Log Format”
Section 13.6.7.5, “SIGNAL Statement”
Section 13.3.3, “Statements That Cause an Implicit Commit”
Section 15.3, “The MEMORY Storage Engine”
Section 15.7, “The MERGE Storage Engine”
Section 13.6.7.7, “The MySQL Diagnostics Area”
Section 14.22.3, “Troubleshooting InnoDB Data Dictionary Operations”
Section 13.1.34, “TRUNCATE TABLE Statement”
Section 13.7.3.4, “UNINSTALL PLUGIN Statement”
Section 1.3, “What Is New in MySQL 5.7”

DROP TABLE IF EXISTS
Section 16.4.1.9, “Replication of DROP ... IF EXISTS Statements”

DROP TABLE IF EXISTS mysql.user mysql.db mysql.tables_priv
mysql.columns_priv mysql.procs_priv
Section 21.6.13, “Distributed Privileges Using Shared Grant Tables”

DROP TABLESPACE
Section 14.6.3.3, “General Tablespaces”
Section 21.2.7.8, “Issues Exclusive to NDB Cluster”
Section 5.1.7, “Server System Variables”
Section 13.3.3, “Statements That Cause an Implicit Commit”

DROP TABLESPACE tablespace_name
Section 14.6.3.3, “General Tablespaces”

DROP TEMPORARY TABLE
Section 16.1.6.5, “Global Transaction ID System Variables”
Section 16.1.3.6, “Restrictions on Replication with GTIDs”

DROP TRIGGER
Section 13.1.31, “DROP TRIGGER Statement”
Section A.5, “MySQL 5.7 FAQ: Triggers”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 16.4.1.16, “Replication of Invoked Features”
Section 13.3.3, “Statements That Cause an Implicit Commit”
Section 23.3.1, “Trigger Syntax and Examples”

DROP USER
Section 6.2.1, “Account User Names and Passwords”
Section 6.2.7, “Adding Accounts, Assigning Privileges, and Dropping Accounts”
Section 13.7.1.3, “DROP USER Statement”
Section 13.7.6.3, “FLUSH Statement”
Section 13.7.1.4, “GRANT Statement”
Section 8.12.4.1, “How MySQL Uses Memory”
Section 12.15, “Information Functions”

5124

Section 4.5.6, “mysqlpump — A Database Backup Program”
Section 21.6.18.2, “NDB Cluster and MySQL Privileges”
Section 6.2.2, “Privileges Provided by MySQL”
Section 16.4.1.8, “Replication of CURRENT_USER()”
Section 13.7.1.6, “REVOKE Statement”
Section 13.3.3, “Statements That Cause an Implicit Commit”
Section 23.6, “Stored Object Access Control”
Section 23.4.6, “The Event Scheduler and MySQL Privileges”

DROP VIEW
Section 13.1.32, “DROP VIEW Statement”
Section 13.3.5, “LOCK TABLES and UNLOCK TABLES Statements”
Section 23.9, “Restrictions on Views”
Section 13.3.3, “Statements That Cause an Implicit Commit”
Section 23.5.1, “View Syntax”

DROP VIEW IF EXISTS
Section 16.4.1.9, “Replication of DROP ... IF EXISTS Statements”

E

[index top]

ENCRYPTION
Section 14.14, “InnoDB Data-at-Rest Encryption”

EXCHANGE PARTITION
Section 14.13.1, “Online DDL Operations”

EXECUTE
Section 13.2.1, “CALL Statement”
Section 13.5.2, “EXECUTE Statement”
Section 13.5.1, “PREPARE Statement”
Section 13.5, “Prepared Statements”
Section 23.8, “Restrictions on Stored Programs”
Section 5.1.9, “Server Status Variables”
Section 25.12.6.4, “The prepared_statements_instances Table”

EXPLAIN
Section 13.1.8, “ALTER TABLE Statement”
Section 8.2.1.20, “Avoiding Full Table Scans”
Section 8.2.1.11, “Block Nested-Loop and Batched Key Access Joins”
Section 8.3.4, “Column Indexes”
Section 8.2.1.12, “Condition Filtering”
Configuring the Number of Sampled Pages for InnoDB Optimizer Statistics
Section 13.1.16, “CREATE PROCEDURE and CREATE FUNCTION Statements”
Section 5.8.1, “Debugging a MySQL Server”
Section 13.2.10.8, “Derived Tables”
Section 13.8.1, “DESCRIBE Statement”
Section 8.2.1.16, “DISTINCT Optimization”
Section 8.2.1.4, “Engine Condition Pushdown Optimization”
Section 8.15.12, “Example”
Section 8.8.2, “EXPLAIN Output Format”

5125

Section 13.8.2, “EXPLAIN Statement”
Section 8.8.3, “Extended EXPLAIN Output Format”
Section 12.17.3, “Functions That Search JSON Values”
Section 8.2.1.15, “GROUP BY Optimization”
Section 8.2.1.5, “Index Condition Pushdown Optimization”
Section 8.9.4, “Index Hints”
Section 8.2.1.3, “Index Merge Optimization”
Section 8.4.4, “Internal Temporary Table Use in MySQL”
Section 24.1, “Introduction”
Section 8.2.1.13, “IS NULL Optimization”
Section 8.2.1.17, “LIMIT Query Optimization”
Section 8.2.1.10, “Multi-Range Read Optimization”
Section 4.5.1.6, “mysql Client Tips”
Chapter 25, MySQL Performance Schema
NDB Cluster Status Variables
NDB Cluster System Variables
Section 8.8.4, “Obtaining Execution Plan Information for a Named Connection”
Section 22.3.5, “Obtaining Information About Partitions”
Section 8.9.3, “Optimizer Hints”
Section 8.3.10, “Optimizer Use of Generated Column Indexes”
Section B.3.5, “Optimizer-Related Issues”
Section 8.2.2.4, “Optimizing Derived Tables and View References with Merging or Materialization”
Section 8.2.3, “Optimizing INFORMATION_SCHEMA Queries”
Section 8.8.1, “Optimizing Queries with EXPLAIN”
Section 8.2.1, “Optimizing SELECT Statements”
Section 13.2.10.10, “Optimizing Subqueries”
Section 8.2.2.2, “Optimizing Subqueries with Materialization”
Section 8.2.2.3, “Optimizing Subqueries with the EXISTS Strategy”
Section 8.2.2.1, “Optimizing Subqueries, Derived Tables, and View References with Semijoin
Transformations”
Section 8.2.1.14, “ORDER BY Optimization”
Section 22.4, “Partition Pruning”
Section 6.2.2, “Privileges Provided by MySQL”
Section 8.2.1.2, “Range Optimization”
Section 23.8, “Restrictions on Stored Programs”
Section 13.1.18.8, “Secondary Indexes and Generated Columns”
Section 13.2.9, “SELECT Statement”
Section 8.15.10, “Selecting Optimizer Features to Trace”
Section 13.7.5.40, “SHOW WARNINGS Statement”
Section B.3.4.7, “Solving Problems with No Matching Rows”
Section 1.2.2, “The Main Features of MySQL”
Section 26.4.4.22, “The ps_trace_statement_digest() Procedure”
Section 8.15.3, “Traceable Statements”
Section 8.8, “Understanding the Query Execution Plan”
Section 8.3.9, “Use of Index Extensions”
Section 5.8.1.6, “Using Server Logs to Find Causes of Errors in mysqld”
Section 11.4.10, “Using Spatial Indexes”
Section 8.3.6, “Verifying Index Usage”
Section 1.3, “What Is New in MySQL 5.7”
Section 21.2.4.1, “What is New in NDB Cluster 7.5”

EXPLAIN EXTENDED
Section 8.8.2, “EXPLAIN Output Format”

5126

Section 13.8.2, “EXPLAIN Statement”
Section 8.8.3, “Extended EXPLAIN Output Format”

EXPLAIN FOR CONNECTION
Section 8.8.2, “EXPLAIN Output Format”
Section 8.8.4, “Obtaining Execution Plan Information for a Named Connection”
Section 5.1.9, “Server Status Variables”

EXPLAIN FORMAT=JSON
Section 8.15.2, “System Variables Controlling Tracing”

EXPLAIN PARTITIONS
Section 8.8.2, “EXPLAIN Output Format”
Section 13.8.2, “EXPLAIN Statement”
Section 22.3.5, “Obtaining Information About Partitions”

EXPLAIN SELECT
Section 13.2.10.8, “Derived Tables”
Section 8.8.2, “EXPLAIN Output Format”
Section 14.7.5.3, “How to Minimize and Handle Deadlocks”
Section 1.5, “How to Report Bugs or Problems”
Section 1.6.1, “MySQL Extensions to Standard SQL”
Section 22.3.5, “Obtaining Information About Partitions”

EXPLAIN SELECT COUNT()
Section 22.2.1, “RANGE Partitioning”

EXPLAIN tbl_name
Section 8.8.1, “Optimizing Queries with EXPLAIN”

F

[index top]

FETCH
Section 13.6.6.2, “Cursor DECLARE Statement”
Section 13.6.6.3, “Cursor FETCH Statement”
Section 23.8, “Restrictions on Stored Programs”

FETCH ... INTO var_list
Section 13.6.4, “Variables in Stored Programs”

FLUSH
Section 7.3.1, “Establishing a Backup Policy”
Section 13.7.6.3, “FLUSH Statement”
Section 16.1.6.5, “Global Transaction ID System Variables”
Section 13.7.1.4, “GRANT Statement”
Section 1.6.1, “MySQL Extensions to Standard SQL”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 6.2.2, “Privileges Provided by MySQL”
Section 16.4.1.14, “Replication and FLUSH”
Section 13.7.6.6, “RESET Statement”

5127

Section 23.8, “Restrictions on Stored Programs”
Section 13.3.3, “Statements That Cause an Implicit Commit”
Section 4.10, “Unix Signal Handling in MySQL”
Section 1.3, “What Is New in MySQL 5.7”

FLUSH BINARY LOGS
Section 13.7.6.3, “FLUSH Statement”
Section 5.4.7, “Server Log Maintenance”

FLUSH DES_KEY_FILE
Section 12.13, “Encryption and Compression Functions”
Section 13.7.6.3, “FLUSH Statement”

FLUSH ENGINE LOGS
Section 13.7.6.3, “FLUSH Statement”

FLUSH ERROR LOGS
Section 5.4.2.6, “Error Log File Flushing and Renaming”
Section 13.7.6.3, “FLUSH Statement”

FLUSH GENERAL LOGS
Section 13.7.6.3, “FLUSH Statement”

FLUSH HOSTS
Section 5.1.11.2, “DNS Lookups and the Host Cache”
Section 13.7.6.3, “FLUSH Statement”

FLUSH LOGS
Section 7.3.3, “Backup Strategy Summary”
Section 7.2, “Database Backup Methods”
Section 16.1.4.3, “Disabling GTID Transactions Online”
Section 16.1.4.2, “Enabling GTID Transactions Online”
Section 5.4.2.6, “Error Log File Flushing and Renaming”
Section 7.3.1, “Establishing a Backup Policy”
Section 13.7.6.3, “FLUSH Statement”
Section 5.4, “MySQL Server Logs”
Section 4.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 16.4.1.14, “Replication and FLUSH”
Section 5.4.1, “Selecting General Query Log and Slow Query Log Output Destinations”
Section 5.4.7, “Server Log Maintenance”
Section 5.1.9, “Server Status Variables”
Section 16.1.3.4, “Setting Up Replication Using GTIDs”
Section 16.2.4.1, “The Relay Log”
Section 16.1.3.5, “Using GTIDs for Failover and Scaleout”

FLUSH OPTIMIZER_COSTS
Section 13.7.6.3, “FLUSH Statement”
Section 8.9.5, “The Optimizer Cost Model”

FLUSH PRIVILEGES
Section 1.1, “About This Manual”
Section 21.6.13, “Distributed Privileges Using Shared Grant Tables”

5128

Section 13.7.6.3, “FLUSH Statement”
Section 6.2.3, “Grant Tables”
Section 8.12.4.1, “How MySQL Uses Memory”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 21.6.18.3, “NDB Cluster and MySQL Security Procedures”
Section 16.4.1.14, “Replication and FLUSH”
Section 5.1.6, “Server Command Options”
Section 6.2.16, “Setting Account Resource Limits”
Section 6.2.17, “Troubleshooting Problems Connecting to MySQL”
Section 6.2.9, “When Privilege Changes Take Effect”

FLUSH QUERY CACHE
Section 13.7.6.3, “FLUSH Statement”
Section 8.10.3.4, “Query Cache Status and Maintenance”
Section 1.3, “What Is New in MySQL 5.7”

FLUSH RELAY LOGS
Section 16.2.2.1, “Commands for Operations on a Single Channel”
Section 16.2.2.2, “Compatibility with Previous Replication Statements”
Section 13.7.6.3, “FLUSH Statement”

FLUSH RELAY LOGS FOR CHANNEL channel
Section 13.7.6.3, “FLUSH Statement”

FLUSH SLOW LOGS
Section 13.7.6.3, “FLUSH Statement”

FLUSH STATUS
Section 13.7.6.3, “FLUSH Statement”
Section 17.4, “Monitoring Group Replication”
Section 25.12.14, “Performance Schema Status Variable Tables”
Section 5.1.9, “Server Status Variables”
Section 5.1.7, “Server System Variables”
Section 25.12.15.10, “Status Variable Summary Tables”
Section 8.3.9, “Use of Index Extensions”

FLUSH TABLE
Section 13.7.6.3, “FLUSH Statement”

FLUSH TABLES
Section 8.6.2, “Bulk Data Loading for MyISAM Tables”
Section 8.10.4, “Caching of Prepared Statements and Stored Programs”
Section 13.7.6.3, “FLUSH Statement”
Section 8.14.3, “General Thread States”
Section 13.2.4, “HANDLER Statement”
Section 8.4.3.1, “How MySQL Opens and Closes Tables”
Section 8.12.4.1, “How MySQL Uses Memory”
Section 15.7.2, “MERGE Table Problems”
Section 4.6.3, “myisamchk — MyISAM Table-Maintenance Utility”
Section 16.1.2.3, “Obtaining the Replication Source's Binary Log Coordinates”
Section 15.2.4.2, “Problems from Tables Not Being Closed Properly”
Section 8.10.3.4, “Query Cache Status and Maintenance”

5129

Section 16.4.1.14, “Replication and FLUSH”
Section 22.6, “Restrictions and Limitations on Partitioning”
Section 5.4.1, “Selecting General Query Log and Slow Query Log Output Destinations”
Section 5.1.9, “Server Status Variables”
Section 5.1.7, “Server System Variables”
Section 8.3.9, “Use of Index Extensions”

FLUSH TABLES ... FOR EXPORT
Section 14.6.1.2, “Creating Tables Externally”
Section 13.7.6.3, “FLUSH Statement”
Section 14.6.1.3, “Importing InnoDB Tables”
MySQL Glossary

FLUSH TABLES ...FOR EXPORT
Section 13.7.6.3, “FLUSH Statement”

FLUSH TABLES tbl_name ...
Section 13.7.6.3, “FLUSH Statement”

FLUSH TABLES tbl_name ... FOR EXPORT
Section 13.7.6.3, “FLUSH Statement”

FLUSH TABLES tbl_name ... WITH READ LOCK
Section 13.7.6.3, “FLUSH Statement”

FLUSH TABLES tbl_name WITH READ LOCK
Section 13.2.4, “HANDLER Statement”

FLUSH TABLES WITH READ LOCK
Section 7.2, “Database Backup Methods”
Section 7.3.1, “Establishing a Backup Policy”
Section 13.7.6.3, “FLUSH Statement”
Section 8.14.3, “General Thread States”
Section 13.3.5, “LOCK TABLES and UNLOCK TABLES Statements”
MySQL Glossary
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 16.1.2.3, “Obtaining the Replication Source's Binary Log Coordinates”
Section 16.4.1.14, “Replication and FLUSH”
Section 13.3.7.3, “Restrictions on XA Transactions”
Section 5.4.1, “Selecting General Query Log and Slow Query Log Output Destinations”
Section 5.1.7, “Server System Variables”
Section 13.3.1, “START TRANSACTION, COMMIT, and ROLLBACK Statements”
Section 13.3.3, “Statements That Cause an Implicit Commit”
Section 25.12.12.1, “The metadata_locks Table”

FLUSH USER_RESOURCES
Section 13.7.6.3, “FLUSH Statement”
Section 6.2.16, “Setting Account Resource Limits”

G

[index top]

5130

GET DIAGNOSTICS
Section 13.6.7, “Condition Handling”
Section B.2, “Error Information Interfaces”
Section 13.6.7.3, “GET DIAGNOSTICS Statement”
Section 13.6.7.4, “RESIGNAL Statement”
Section 13.6.7.9, “Restrictions on Condition Handling”
Section 23.8, “Restrictions on Stored Programs”
Section 5.1.7, “Server System Variables”
Section 13.7.5.40, “SHOW WARNINGS Statement”
Section 13.6.7.5, “SIGNAL Statement”
Section 13.6.7.7, “The MySQL Diagnostics Area”

GET STACKED DIAGNOSTICS
Section 13.6.7.3, “GET DIAGNOSTICS Statement”
Section 13.6.7.7, “The MySQL Diagnostics Area”
Section 1.3, “What Is New in MySQL 5.7”

GRANT
Section 6.2, “Access Control and Account Management”
Section 6.2.6, “Access Control, Stage 2: Request Verification”
Section 6.2.1, “Account User Names and Passwords”
Section 6.2.7, “Adding Accounts, Assigning Privileges, and Dropping Accounts”
Section 16.2.1.1, “Advantages and Disadvantages of Statement-Based and Row-Based Replication”
Section 14.8.2, “Configuring InnoDB for Read-Only Operation”
Section 5.1.12.3, “Connecting Using the IPv6 Local Host Address”
Section 13.7.1.2, “CREATE USER Statement”
Section 16.1.2.2, “Creating a User for Replication”
Section 12.13, “Encryption and Compression Functions”
Section 16.2.5.2, “Evaluation of Table-Level Replication Options”
Section 13.7.6.3, “FLUSH Statement”
Section 13.7.1.4, “GRANT Statement”
Section 6.2.3, “Grant Tables”
Section 8.12.4.1, “How MySQL Uses Memory”
Section 12.15, “Information Functions”
Section 2.9.1, “Initializing the Data Directory”
Section 5.1.12, “IPv6 Support”
Section 5.4.4.4, “Logging Format for Changes to mysql Database Tables”
Section A.14, “MySQL 5.7 FAQ: Replication”
MySQL Glossary
Section 4.5.6, “mysqlpump — A Database Backup Program”
Section 21.6.18.2, “NDB Cluster and MySQL Privileges”
Section 8.2.5, “Optimizing Database Privileges”
Section 6.1.2.4, “Password Hashing in MySQL”
Section 6.1.2.3, “Passwords and Logging”
Section 21.7.5, “Preparing the NDB Cluster for Replication”
Section 6.2.2, “Privileges Provided by MySQL”
Section 6.2.14, “Proxy Users”
Section 16.1.6.3, “Replica Server Options and Variables”
Section 16.4.1.14, “Replication and FLUSH”
Section 16.4.1.8, “Replication of CURRENT_USER()”
Section 16.4.1.21, “Replication of the mysql System Database”
Section 13.7.1.6, “REVOKE Statement”

5131

Section 6.1.1, “Security Guidelines”
Section 5.1.6, “Server Command Options”
Section 5.1.10, “Server SQL Modes”
Section 5.1.7, “Server System Variables”
Section 13.7.5.21, “SHOW GRANTS Statement”
Section 6.2.4, “Specifying Account Names”
Section 13.3.3, “Statements That Cause an Implicit Commit”
Section 23.4.6, “The Event Scheduler and MySQL Privileges”
Section 6.4.3, “The Password Validation Plugin”
Section 6.4.6.3, “Using MySQL Enterprise Firewall”
Section 1.3, “What Is New in MySQL 5.7”
Section 6.2.9, “When Privilege Changes Take Effect”
Section 6.4.1.8, “Windows Pluggable Authentication”

GRANT ALL
Section 13.7.1.4, “GRANT Statement”

GRANT EVENT
Section 23.4.6, “The Event Scheduler and MySQL Privileges”

GROUP BY
Section 14.1.1, “Benefits of Using InnoDB Tables”

H

[index top]

HANDLER
Section 15.8.3, “FEDERATED Storage Engine Notes and Tips”
Section 13.7.6.3, “FLUSH Statement”
Section A.4, “MySQL 5.7 FAQ: Stored Procedures and Functions”
Section 1.6, “MySQL Standards Compliance”
Section 22.6, “Restrictions and Limitations on Partitioning”
Section 5.1.7, “Server System Variables”
Section 1.3, “What Is New in MySQL 5.7”

HANDLER ... CLOSE
Section 13.7.5.24, “SHOW OPEN TABLES Statement”

HANDLER ... OPEN
Section 13.7.5.24, “SHOW OPEN TABLES Statement”

HANDLER ... READ
Section 23.8, “Restrictions on Stored Programs”

HANDLER OPEN
Section 13.2.4, “HANDLER Statement”
Section 13.1.34, “TRUNCATE TABLE Statement”

HELP
Section 13.8.3, “HELP Statement”

5132

Section 2.9.1, “Initializing the Data Directory”
Section 13.3.5, “LOCK TABLES and UNLOCK TABLES Statements”
Section 5.1.14, “Server-Side Help Support”

I

[index top]

IF
Section 8.10.4, “Caching of Prepared Statements and Stored Programs”
Section 13.6.7.2, “DECLARE ... HANDLER Statement”
Section 12.5, “Flow Control Functions”
Section 13.6.5, “Flow Control Statements”
Section 13.6.5.2, “IF Statement”
Section 8.15.3, “Traceable Statements”

IMPORT PARTITION
Section 14.13.1, “Online DDL Operations”

IMPORT PARTITION ... TABLESPACE
Section 13.1.8.1, “ALTER TABLE Partition Operations”

INSERT
Section 6.2, “Access Control and Account Management”
Section 6.2.6, “Access Control, Stage 2: Request Verification”
Section 6.2.7, “Adding Accounts, Assigning Privileges, and Dropping Accounts”
Section 16.2.1.1, “Advantages and Disadvantages of Statement-Based and Row-Based Replication”
Section 6.4.5.7, “Audit Log Filtering”
Section 6.4.5.11, “Audit Log Reference”
Section 14.6.1.6, “AUTO_INCREMENT Handling in InnoDB”
Section 14.7.2.2, “autocommit, Commit, and Rollback”
Section 7.1, “Backup and Recovery Types”
Section 14.1.2, “Best Practices for InnoDB Tables”
Section 8.5.5, “Bulk Data Loading for InnoDB Tables”
Section 8.6.2, “Bulk Data Loading for MyISAM Tables”
Section 8.10.4, “Caching of Prepared Statements and Stored Programs”
Section 14.5.2, “Change Buffer”
Section 2.10.3, “Changes in MySQL 5.7”
Section 10.7, “Column Character Set Conversion”
Section 14.9.1.6, “Compression for OLTP Workloads”
Section 8.11.3, “Concurrent Inserts”
Section 1.6.3.3, “Constraints on Invalid Data”
Section 14.6.1.5, “Converting Tables from MyISAM to InnoDB”
Section 13.1.14, “CREATE INDEX Statement”
Section 13.1.16, “CREATE PROCEDURE and CREATE FUNCTION Statements”
Section 13.1.18.7, “CREATE TABLE and Generated Columns”
Section 13.1.18.2, “CREATE TEMPORARY TABLE Statement”
Section 13.1.20, “CREATE TRIGGER Statement”
Section 13.1.21, “CREATE VIEW Statement”
Section 15.8.2.1, “Creating a FEDERATED Table Using CONNECTION”
Section 11.6, “Data Type Default Values”
Section 11.2.1, “Date and Time Data Type Syntax”
Section 13.6.7.2, “DECLARE ... HANDLER Statement”

5133

Section 13.2.2, “DELETE Statement”
Section 16.2.1.3, “Determination of Safe and Unsafe Statements in Binary Logging”
Section 2.11.3, “Downgrade Notes”
Section 7.3.1, “Establishing a Backup Policy”
Section 8.8.2, “EXPLAIN Output Format”
Section 13.8.2, “EXPLAIN Statement”
Section 12.21.3, “Expression Handling”
Section 8.8.3, “Extended EXPLAIN Output Format”
Section 15.8.3, “FEDERATED Storage Engine Notes and Tips”
Section 14.22.2, “Forcing InnoDB Recovery”
Section 13.1.18.5, “FOREIGN KEY Constraints”
Section 12.9.5, “Full-Text Restrictions”
Section 8.14.3, “General Thread States”
Section 13.7.1.4, “GRANT Statement”
Section 6.2.3, “Grant Tables”
Section 8.10.3.1, “How the Query Cache Operates”
Section 12.15, “Information Functions”
Section 14.7.1, “InnoDB Locking”
Section 14.15, “InnoDB Startup Options and System Variables”
Section 13.2.5.2, “INSERT ... ON DUPLICATE KEY UPDATE Statement”
Section 13.2.5.1, “INSERT ... SELECT Statement”
Section 13.2.5.3, “INSERT DELAYED Statement”
Section 13.2.5, “INSERT Statement”
Section 16.2.5.3, “Interactions Between Replication Filtering Options”
Section 8.11.1, “Internal Locking Methods”
Section 24.1, “Introduction”
Section 21.2.7.3, “Limits Relating to Transaction Handling in NDB Cluster”
Section 22.2.2, “LIST Partitioning”
Section 13.2.6, “LOAD DATA Statement”
Section 3.3.3, “Loading Data into a Table”
Section 13.3.5, “LOCK TABLES and UNLOCK TABLES Statements”
Section 14.7.3, “Locks Set by Different SQL Statements in InnoDB”
Section 5.4.4.4, “Logging Format for Changes to mysql Database Tables”
Section 22.3.1, “Management of RANGE and LIST Partitions”
Section 15.7.2, “MERGE Table Problems”
Section 8.11.4, “Metadata Locking”
Section 12.20, “Miscellaneous Functions”
Section A.1, “MySQL 5.7 FAQ: General”
Section A.11, “MySQL 5.7 FAQ: MySQL Chinese, Japanese, and Korean Character Sets”
Section A.5, “MySQL 5.7 FAQ: Triggers”
Section A.6, “MySQL 5.7 FAQ: Views”
Section 4.5.1.1, “mysql Client Options”
Section 6.6.2, “MySQL Enterprise Encryption Usage and Examples”
Section 1.6.1, “MySQL Extensions to Standard SQL”
MySQL Glossary
Section B.3.2.7, “MySQL server has gone away”
Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.6, “mysqlpump — A Database Backup Program”
Section 21.6.14, “NDB API Statistics Counters and Variables”
Section 21.6.11.1, “NDB Cluster Disk Data Objects”
Section 21.3.5, “NDB Cluster Example with Tables and Data”
Section 21.7.11, “NDB Cluster Replication Conflict Resolution”
Section 8.8.4, “Obtaining Execution Plan Information for a Named Connection”

5134

Section 14.13.1, “Online DDL Operations”
Section 13.7.2.4, “OPTIMIZE TABLE Statement”
Section 8.9.3, “Optimizer Hints”
Section 8.2.4, “Optimizing Data Change Statements”
Section 8.2.4.1, “Optimizing INSERT Statements”
Section 8.6.1, “Optimizing MyISAM Queries”
Section 8.8.1, “Optimizing Queries with EXPLAIN”
Section 11.1.7, “Out-of-Range and Overflow Handling”
Section 22.1, “Overview of Partitioning in MySQL”
Section 22.4, “Partition Pruning”
Section 22.5, “Partition Selection”
Section 22.6.4, “Partitioning and Locking”
Section 6.1.2.3, “Passwords and Logging”
Section 25.12.6, “Performance Schema Statement Event Tables”
Section 21.6.5, “Performing a Rolling Restart of an NDB Cluster”
Section 11.4.6, “Populating Spatial Columns”
Section 25.4.6, “Pre-Filtering by Thread”
Section 1.6.3.1, “PRIMARY KEY and UNIQUE Index Constraints”
Section 6.2.2, “Privileges Provided by MySQL”
Section 14.8.10, “Purge Configuration”
Section 8.14.4, “Query Cache Thread States”
Section 22.2.1, “RANGE Partitioning”
Section 13.2.8, “REPLACE Statement”
Section 16.4.1.27, “Replica Errors During Replication”
Section 16.4.1.1, “Replication and AUTO_INCREMENT”
Section 16.4.1.28, “Replication and Server SQL Mode”
Section 16.4.1.15, “Replication and System Functions”
Section 16.4.1.34, “Replication and Triggers”
Section 16.4.1.37, “Replication and Variables”
Section 16.1.6.2, “Replication Source Options and Variables”
Section 22.6, “Restrictions and Limitations on Partitioning”
Row-Level Probes
Section 13.1.18.8, “Secondary Indexes and Generated Columns”
Section 5.4.1, “Selecting General Query Log and Slow Query Log Output Destinations”
Section 5.1.10, “Server SQL Modes”
Section 5.1.7, “Server System Variables”
Section 13.7.5.27, “SHOW PROCEDURE CODE Statement”
Section 13.7.5.36, “SHOW TABLE STATUS Statement”
Section 13.7.5.40, “SHOW WARNINGS Statement”
Statement Probes
Section 23.7, “Stored Program Binary Logging”
Section 13.2.10, “Subqueries”
Section 8.11.2, “Table Locking Issues”
Section 15.5, “The ARCHIVE Storage Engine”
Section 10.8.5, “The binary Collation Compared to _bin Collations”
Section 5.4.4, “The Binary Log”
Section 15.6, “The BLACKHOLE Storage Engine”
Section 24.3.25, “The INFORMATION_SCHEMA TABLES Table”
Section 24.3.31, “The INFORMATION_SCHEMA VIEWS Table”
Section 1.2.2, “The Main Features of MySQL”
Section 15.7, “The MERGE Storage Engine”
Section 15.2, “The MyISAM Storage Engine”
Section 8.10.3, “The MySQL Query Cache”
Section 5.1.16, “The Server Shutdown Process”

5135

Section 8.15.3, “Traceable Statements”
Section 14.7.2.1, “Transaction Isolation Levels”
Section 23.3.1, “Trigger Syntax and Examples”
Section 6.2.17, “Troubleshooting Problems Connecting to MySQL”
Section 14.21.8, “Troubleshooting the InnoDB memcached Plugin”
Section 14.6.7, “Undo Logs”
Section 23.5.3, “Updatable and Insertable Views”
Section 13.2.11, “UPDATE Statement”
Section 14.16.2.1, “Using InnoDB Transaction and Locking Information”
Section 5.5.4.2, “Using the Rewriter Query Rewrite Plugin”
Section 23.3, “Using Triggers”
Section 1.3, “What Is New in MySQL 5.7”
Section 6.2.9, “When Privilege Changes Take Effect”
Section 6.4.5.8, “Writing Audit Log Filter Definitions”

INSERT ... ()
Statement Probes

INSERT ... ON DUPLICATE KEY UPDATE
Section 14.6.1.6, “AUTO_INCREMENT Handling in InnoDB”
Section 16.2.1.3, “Determination of Safe and Unsafe Statements in Binary Logging”
Section 15.8.3, “FEDERATED Storage Engine Notes and Tips”
Section 12.15, “Information Functions”
Section 13.2.5.2, “INSERT ... ON DUPLICATE KEY UPDATE Statement”
Section 13.2.5, “INSERT Statement”
Section 21.7.3, “Known Issues in NDB Cluster Replication”
Section 14.7.3, “Locks Set by Different SQL Statements in InnoDB”
Section 15.7.2, “MERGE Table Problems”
Section 12.20, “Miscellaneous Functions”
MySQL Glossary
Section 22.6.4, “Partitioning and Locking”

INSERT ... SELECT
Section 16.2.1.1, “Advantages and Disadvantages of Statement-Based and Row-Based Replication”
Section 14.6.1.6, “AUTO_INCREMENT Handling in InnoDB”
Section 8.11.3, “Concurrent Inserts”
Section 13.2.5.2, “INSERT ... ON DUPLICATE KEY UPDATE Statement”
Section 13.2.5.1, “INSERT ... SELECT Statement”
Section 13.2.5, “INSERT Statement”
Section 8.4.4, “Internal Temporary Table Use in MySQL”
Section B.3.7, “Known Issues in MySQL”
Section 14.7.3, “Locks Set by Different SQL Statements in InnoDB”
NDB Cluster System Variables
Section 22.5, “Partition Selection”
Section 22.6.4, “Partitioning and Locking”
Section 16.4.1.17, “Replication and LIMIT”
Section 5.1.7, “Server System Variables”
Statement Probes
Section 5.4.4, “The Binary Log”

INSERT ... SELECT ON DUPLICATE KEY UPDATE
Section 13.2.5.2, “INSERT ... ON DUPLICATE KEY UPDATE Statement”
Section 13.2.5.1, “INSERT ... SELECT Statement”

5136

INSERT ... SET
Section 13.2.5, “INSERT Statement”

INSERT ... VALUES
Section 13.2.5, “INSERT Statement”

INSERT DELAYED
Section 13.2.5.3, “INSERT DELAYED Statement”
Section 13.2.5, “INSERT Statement”
Section 1.3, “What Is New in MySQL 5.7”

INSERT IGNORE
Section 1.6.3.3, “Constraints on Invalid Data”
Section 1.6.3.4, “ENUM and SET Constraints”
Section 12.15, “Information Functions”
Section 13.2.5, “INSERT Statement”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.6, “mysqlpump — A Database Backup Program”
Section 5.1.10, “Server SQL Modes”

INSERT IGNORE ... SELECT
Section 13.2.5.1, “INSERT ... SELECT Statement”

INSERT INTO ... SELECT
Section 6.2.6, “Access Control, Stage 2: Request Verification”
Section 14.7.2.3, “Consistent Nonlocking Reads”
Section 1.6.3.3, “Constraints on Invalid Data”
Section 13.1.12, “CREATE EVENT Statement”
Section 13.2.5, “INSERT Statement”
Section 1.6.2.1, “SELECT INTO TABLE Differences”
Section 15.3, “The MEMORY Storage Engine”
Section 6.4.5.8, “Writing Audit Log Filter Definitions”

INSERT INTO ... SELECT FROM memory_table
Section 16.4.1.20, “Replication and MEMORY Tables”

INSERT INTO...SELECT
Section 8.2.1, “Optimizing SELECT Statements”

INSTALL PLUGIN
Section 6.4.5.7, “Audit Log Filtering”
Section 6.4.5.11, “Audit Log Reference”
Section 6.4.2.1, “Connection Control Plugin Installation”
Section 13.7.6.3, “FLUSH Statement”
Section 6.4.4.8, “General-Purpose Keyring Key-Management Functions”
Section 8.12.4.1, “How MySQL Uses Memory”
Section 13.7.3.3, “INSTALL PLUGIN Statement”
Section 5.5.1, “Installing and Uninstalling Plugins”
Section 6.4.5.2, “Installing or Uninstalling MySQL Enterprise Audit”
Section 6.5.2, “Installing or Uninstalling MySQL Enterprise Data Masking and De-Identification”
Section 6.4.6.2, “Installing or Uninstalling MySQL Enterprise Firewall”

5137

Section 5.5.5.2, “Installing or Uninstalling Version Tokens”
Section 6.4.4.1, “Keyring Plugin Installation”
Section 6.4.1.9, “LDAP Pluggable Authentication”
Section 12.9.9, “MeCab Full-Text Parser Plugin”
Section 2.8.7, “MySQL Source-Configuration Options”
Section 4.4.3, “mysql_plugin — Configure MySQL Server Plugins”
Section 6.4.1.10, “No-Login Pluggable Authentication”
Section 5.5.2, “Obtaining Server Plugin Information”
Section 6.4.1.7, “PAM Pluggable Authentication”
Section 6.4.3.1, “Password Validation Plugin Installation”
Section 6.4.3.2, “Password Validation Plugin Options and Variables”
Section 15.11.1, “Pluggable Storage Engine Architecture”
Section 16.3.9.1, “Semisynchronous Replication Administrative Interface”
Section 16.3.9.2, “Semisynchronous Replication Installation and Configuration”
Section 5.1.6, “Server Command Options”
Section 5.1.7, “Server System Variables”
Section 14.21.3, “Setting Up the InnoDB memcached Plugin”
Section 13.7.5.25, “SHOW PLUGINS Statement”
Section 6.4.1.11, “Socket Peer-Credential Pluggable Authentication”
Section 13.3.3, “Statements That Cause an Implicit Commit”
Section 6.4.1.12, “Test Pluggable Authentication”
Section 24.3.17, “The INFORMATION_SCHEMA PLUGINS Table”
Section 5.3, “The mysql System Database”
Section 14.21.8, “Troubleshooting the InnoDB memcached Plugin”
Section 13.7.3.4, “UNINSTALL PLUGIN Statement”
Section 6.4.4.5, “Using the keyring_aws Amazon Web Services Keyring Plugin”
Section 1.3, “What Is New in MySQL 5.7”
Section 6.4.1.8, “Windows Pluggable Authentication”
Section 19.4.2.2, “X Plugin Options and System Variables”

ITERATE
Section 13.6.7.2, “DECLARE ... HANDLER Statement”
Section 13.6.5, “Flow Control Statements”
Section 13.6.5.3, “ITERATE Statement”
Section 13.6.2, “Statement Labels”

K

[index top]

KILL
Section 8.14, “Examining Server Thread (Process) Information”
Section 8.14.3, “General Thread States”
Section 13.7.1.4, “GRANT Statement”
Section 16.1.3.2, “GTID Life Cycle”
Section 13.7.6.4, “KILL Statement”
Section 13.3.5, “LOCK TABLES and UNLOCK TABLES Statements”
Section B.3.2.7, “MySQL server has gone away”
Section 6.2.2, “Privileges Provided by MySQL”
Section 16.4.1.32, “Replication and Transaction Inconsistencies”
Section 13.7.5.29, “SHOW PROCESSLIST Statement”
Section 13.4.2.6, “STOP SLAVE Statement”
Section 26.4.3.9, “The innodb_lock_waits and x$innodb_lock_waits Views”

5138

Section 26.4.3.28, “The schema_table_lock_waits and x$schema_table_lock_waits Views”
Section 1.3, “What Is New in MySQL 5.7”

KILL CONNECTION
Section 13.7.6.4, “KILL Statement”
Section 13.4.2.6, “STOP SLAVE Statement”
Section 5.1.16, “The Server Shutdown Process”

KILL QUERY
Section 13.7.6.4, “KILL Statement”
Section 12.20, “Miscellaneous Functions”
Section 13.4.2.6, “STOP SLAVE Statement”
Section 5.1.16, “The Server Shutdown Process”

L

[index top]

LEAVE
Section 13.6.7.2, “DECLARE ... HANDLER Statement”
Section 13.6.5, “Flow Control Statements”
Section 13.6.5.4, “LEAVE Statement”
Section 13.6.5.5, “LOOP Statement”
Section 23.8, “Restrictions on Stored Programs”
Section 13.6.5.7, “RETURN Statement”
Section 13.6.2, “Statement Labels”

LOAD DATA
Section 6.4.5.4, “Audit Log File Formats”
Section 6.4.5.12, “Audit Log Restrictions”
Section 14.6.1.6, “AUTO_INCREMENT Handling in InnoDB”
Section 16.3.1.2, “Backing Up Raw Data from a Replica”
Section 7.1, “Backup and Recovery Types”
Section 8.6.2, “Bulk Data Loading for MyISAM Tables”
Section 8.11.3, “Concurrent Inserts”
Section 13.1.20, “CREATE TRIGGER Statement”
Section 7.2, “Database Backup Methods”
Section 10.3.3, “Database Character Set and Collation”
Section 16.2.1.3, “Determination of Safe and Unsafe Statements in Binary Logging”
Section 13.1.18.5, “FOREIGN KEY Constraints”
Section B.3.3.4, “How MySQL Handles a Full Disk”
Section 12.15, “Information Functions”
Section B.3.7, “Known Issues in MySQL”
Section 21.2.7.3, “Limits Relating to Transaction Handling in NDB Cluster”
Section 13.2.6, “LOAD DATA Statement”
Section 13.2.7, “LOAD XML Statement”
Section 3.3.3, “Loading Data into a Table”
Section 5.4.4.4, “Logging Format for Changes to mysql Database Tables”
Section 6.1.3, “Making MySQL Secure Against Attackers”
Section 15.2.1, “MyISAM Startup Options”
Section 4.5.1.1, “mysql Client Options”
Section 1.6.1, “MySQL Extensions to Standard SQL”
Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”

5139

Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 21.5.14, “ndb_import — Import CSV Data Into NDB”
Section 21.5.27, “ndb_show_tables — Display List of NDB Tables”
Section 9.1.7, “NULL Values”
Section 8.2.4.1, “Optimizing INSERT Statements”
Section 11.1.7, “Out-of-Range and Overflow Handling”
Section 4.1, “Overview of MySQL Programs”
Section 22.1, “Overview of Partitioning in MySQL”
Section 22.5, “Partition Selection”
Section 22.6.4, “Partitioning and Locking”
Section 21.6.5, “Performing a Rolling Restart of an NDB Cluster”
Section 6.2.2, “Privileges Provided by MySQL”
Section B.3.4.3, “Problems with NULL Values”
Section 7.4.4, “Reloading Delimited-Text Format Backups”
Section 16.1.6.3, “Replica Server Options and Variables”
Section 16.4.1.18, “Replication and LOAD DATA”
Section 8.14.7, “Replication Replica SQL Thread States”
Section 22.6, “Restrictions and Limitations on Partitioning”
Section 10.11, “Restrictions on Character Sets”
Section 23.8, “Restrictions on Stored Programs”
Section 6.1.6, “Security Considerations for LOAD DATA LOCAL”
Section 13.2.9.1, “SELECT ... INTO Statement”
Section 3.3.4.1, “Selecting All Data”
Section 5.1.6, “Server Command Options”
Section 5.1.10, “Server SQL Modes”
Section 5.1.7, “Server System Variables”
Section 13.7.5.40, “SHOW WARNINGS Statement”
Section 13.3.3, “Statements That Cause an Implicit Commit”
Section 13.2.10, “Subqueries”
Section 11.3.5, “The ENUM Type”
Section 15.3, “The MEMORY Storage Engine”
Section 13.2.10.1, “The Subquery as Scalar Operand”
Section 6.2.17, “Troubleshooting Problems Connecting to MySQL”
Section 9.4, “User-Defined Variables”
Section 23.3, “Using Triggers”
Section 1.3, “What Is New in MySQL 5.7”
Section 21.2.4.2, “What is New in NDB Cluster 7.6”
Section B.3.3.5, “Where MySQL Stores Temporary Files”
Section 2.3.7, “Windows Platform Restrictions”

LOAD DATA ... REPLACE
Section 13.2.8, “REPLACE Statement”

LOAD DATA LOCAL
Section 13.2.6, “LOAD DATA Statement”
Section 2.8.7, “MySQL Source-Configuration Options”
Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 6.1.6, “Security Considerations for LOAD DATA LOCAL”
Section 5.1.7, “Server System Variables”

LOAD DATA LOCAL INFILE
Section 6.1.6, “Security Considerations for LOAD DATA LOCAL”

5140

LOAD INDEX INTO CACHE
Section 13.7.6.2, “CACHE INDEX Statement”
Section 16.1.6.5, “Global Transaction ID System Variables”
Section 8.10.2.4, “Index Preloading”
Section 13.7.6.5, “LOAD INDEX INTO CACHE Statement”
Section 22.6, “Restrictions and Limitations on Partitioning”
Section 13.3.3, “Statements That Cause an Implicit Commit”

LOAD INDEX INTO CACHE ... IGNORE LEAVES
Section 13.7.6.5, “LOAD INDEX INTO CACHE Statement”

LOAD XML
Section 13.2.7, “LOAD XML Statement”
Section 22.1, “Overview of Partitioning in MySQL”
Section 22.5, “Partition Selection”
Section 23.8, “Restrictions on Stored Programs”
Section 5.1.10, “Server SQL Modes”

LOAD XML LOCAL
Section 13.2.7, “LOAD XML Statement”

LOCK TABLE
Section 8.11.3, “Concurrent Inserts”
Section 8.14.3, “General Thread States”
Section B.3.6.1, “Problems with ALTER TABLE”

LOCK TABLES
Section 14.1.2, “Best Practices for InnoDB Tables”
Section 8.6.2, “Bulk Data Loading for MyISAM Tables”
Section 13.1.11, “CREATE DATABASE Statement”
Section 13.1.18.3, “CREATE TABLE ... LIKE Statement”
Section 13.1.20, “CREATE TRIGGER Statement”
Section 14.7.5.2, “Deadlock Detection”
Section 14.7.5, “Deadlocks in InnoDB”
Section 13.7.6.3, “FLUSH Statement”
Section 8.14.3, “General Thread States”
Section 13.7.1.4, “GRANT Statement”
Section 14.7.5.3, “How to Minimize and Handle Deadlocks”
Section 14.15, “InnoDB Startup Options and System Variables”
Section 8.11.1, “Internal Locking Methods”
Section 21.2.7.10, “Limitations Relating to Multiple NDB Cluster Nodes”
Section 13.3.5, “LOCK TABLES and UNLOCK TABLES Statements”
Section 14.7.3, “Locks Set by Different SQL Statements in InnoDB”
Section 15.7.2, “MERGE Table Problems”
Section 8.11.4, “Metadata Locking”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.6, “mysqlpump — A Database Backup Program”
Section 22.6.4, “Partitioning and Locking”
Section 6.2.2, “Privileges Provided by MySQL”
Section 15.2.4.2, “Problems from Tables Not Being Closed Properly”
Section 23.8, “Restrictions on Stored Programs”
Section 5.4.1, “Selecting General Query Log and Slow Query Log Output Destinations”

5141

Section 5.1.7, “Server System Variables”
Section 13.3.1, “START TRANSACTION, COMMIT, and ROLLBACK Statements”
Section 13.3.3, “Statements That Cause an Implicit Commit”
Section 8.12.1, “System Factors”
Section 8.11.2, “Table Locking Issues”

LOCK TABLES ... READ
Section 13.7.6.3, “FLUSH Statement”
Section 14.15, “InnoDB Startup Options and System Variables”
Section 14.7.3, “Locks Set by Different SQL Statements in InnoDB”
Section 8.11.4, “Metadata Locking”

LOCK TABLES ... WRITE
Section 14.7.1, “InnoDB Locking”
Section 14.15, “InnoDB Startup Options and System Variables”
Section 14.7.3, “Locks Set by Different SQL Statements in InnoDB”

LOOP
Section 13.6.5, “Flow Control Statements”
Section 13.6.5.3, “ITERATE Statement”
Section 13.6.5.4, “LEAVE Statement”
Section 13.6.5.5, “LOOP Statement”
Section 13.6.2, “Statement Labels”

O

[index top]

OPTIMIZE PARTITION
Section 14.13.1, “Online DDL Operations”

OPTIMIZE TABLE
Section 21.6.7.2, “Adding NDB Cluster Data Nodes Online: Basic procedure”
Section 21.6.7.3, “Adding NDB Cluster Data Nodes Online: Detailed Example”
Section 5.8.1, “Debugging a MySQL Server”
Section 13.2.2, “DELETE Statement”
Section 2.11.3, “Downgrade Notes”
Section 15.2.3.2, “Dynamic Table Characteristics”
Section 12.9.6, “Fine-Tuning MySQL Full-Text Search”
Section 8.14.3, “General Thread States”
Section 16.1.6.5, “Global Transaction ID System Variables”
Section B.3.3.4, “How MySQL Handles a Full Disk”
Section 14.6.1.3, “Importing InnoDB Tables”
Section 14.16.4, “InnoDB INFORMATION_SCHEMA FULLTEXT Index Tables”
Section 14.9.2, “InnoDB Page Compression”
Section 14.11, “InnoDB Row Formats”
Section 14.15, “InnoDB Startup Options and System Variables”
Section 13.7.6.4, “KILL Statement”
Section 21.2.7.2, “Limits and Differences of NDB Cluster from Standard MySQL Limits”
Section 22.3.4, “Maintenance of Partitions”
Section 15.7.2, “MERGE Table Problems”
Section 7.6, “MyISAM Table Maintenance and Crash Recovery”
Section 7.6.4, “MyISAM Table Optimization”

5142

Section 4.6.3.1, “myisamchk General Options”
Section 1.6.1, “MySQL Extensions to Standard SQL”
MySQL Server Options for NDB Cluster
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 21.6.11.3, “NDB Cluster Disk Data Storage Requirements”
Section 14.13.6, “Online DDL Limitations”
Section 21.6.12, “Online Operations with ALTER TABLE in NDB Cluster”
Section 13.7.2.4, “OPTIMIZE TABLE Statement”
Section 8.6.1, “Optimizing MyISAM Queries”
Section 8.2.4.2, “Optimizing UPDATE Statements”
Section 8.2.6, “Other Optimization Tips”
Section 6.2.2, “Privileges Provided by MySQL”
Section 16.4.1.14, “Replication and FLUSH”
Section 22.6, “Restrictions and Limitations on Partitioning”
Section 5.1.6, “Server Command Options”
Section 5.1.7, “Server System Variables”
Section 7.6.5, “Setting Up a MyISAM Table Maintenance Schedule”
Section 13.3.3, “Statements That Cause an Implicit Commit”
Section 15.2.3.1, “Static (Fixed-Length) Table Characteristics”
Section 15.5, “The ARCHIVE Storage Engine”
Section 24.4.8, “The INFORMATION_SCHEMA INNODB_FT_BEING_DELETED Table”
Section 24.4.9, “The INFORMATION_SCHEMA INNODB_FT_CONFIG Table”
Section 24.4.11, “The INFORMATION_SCHEMA INNODB_FT_DELETED Table”
Section 24.4.12, “The INFORMATION_SCHEMA INNODB_FT_INDEX_CACHE Table”
Section 24.4.13, “The INFORMATION_SCHEMA INNODB_FT_INDEX_TABLE Table”
Section 21.6.15.27, “The ndbinfo memory_per_fragment Table”
Section 5.1.16, “The Server Shutdown Process”
Section 5.4.5, “The Slow Query Log”
Section 8.12.3.2, “Using Symbolic Links for MyISAM Tables on Unix”
Section 1.3, “What Is New in MySQL 5.7”

ORDER BY
Section 14.1.1, “Benefits of Using InnoDB Tables”

P

[index top]

PARTITION BY
Section 14.13.1, “Online DDL Operations”

PREPARE
Section 8.10.4, “Caching of Prepared Statements and Stored Programs”
Section 13.2.1, “CALL Statement”
Section 13.5.3, “DEALLOCATE PREPARE Statement”
Section 13.5.2, “EXECUTE Statement”
Section 9.2.3, “Identifier Case Sensitivity”
Section 8.11.4, “Metadata Locking”
Section 13.5.1, “PREPARE Statement”
Section 13.5, “Prepared Statements”
Section 23.8, “Restrictions on Stored Programs”
Section 5.1.9, “Server Status Variables”
Section 25.12.6.4, “The prepared_statements_instances Table”

5143

PURGE BINARY LOGS
Section 16.1.6.4, “Binary Logging Options and Variables”
Section 7.3.1, “Establishing a Backup Policy”
Section 13.7.1.4, “GRANT Statement”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 6.2.2, “Privileges Provided by MySQL”
Section 13.4.1.1, “PURGE BINARY LOGS Statement”
Section 13.4.1.2, “RESET MASTER Statement”
Section 5.4.7, “Server Log Maintenance”
Section 5.4.4, “The Binary Log”
Section 16.1.3.5, “Using GTIDs for Failover and Scaleout”

R

[index top]

REBUILD PARTITION
Section 14.13.1, “Online DDL Operations”

RELEASE SAVEPOINT
Section 25.12.7, “Performance Schema Transaction Tables”
Section 13.3.4, “SAVEPOINT, ROLLBACK TO SAVEPOINT, and RELEASE SAVEPOINT Statements”
Section 25.12.7.1, “The events_transactions_current Table”

REMOVE PARTITIONING
Section 14.13.1, “Online DDL Operations”

RENAME TABLE
Section 13.1.8, “ALTER TABLE Statement”
Section 13.2.2, “DELETE Statement”
Section 8.14.3, “General Thread States”
Section 9.2.3, “Identifier Case Sensitivity”
Section 8.11.4, “Metadata Locking”
Section 14.6.1.4, “Moving or Copying InnoDB Tables”
Section 1.6.1, “MySQL Extensions to Standard SQL”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.6, “mysqlpump — A Database Backup Program”
Section 14.13.1, “Online DDL Operations”
Section 13.1.33, “RENAME TABLE Statement”
Section 5.4.1, “Selecting General Query Log and Slow Query Log Output Destinations”
Section 13.3.3, “Statements That Cause an Implicit Commit”
Section 8.12.3.2, “Using Symbolic Links for MyISAM Tables on Unix”

RENAME USER
Section 13.7.1.4, “GRANT Statement”
Section 12.15, “Information Functions”
Section 5.4.4.4, “Logging Format for Changes to mysql Database Tables”
Section 6.2.2, “Privileges Provided by MySQL”
Section 13.7.1.5, “RENAME USER Statement”
Section 16.4.1.8, “Replication of CURRENT_USER()”
Section 13.3.3, “Statements That Cause an Implicit Commit”
Section 23.6, “Stored Object Access Control”

5144

Section 23.4.6, “The Event Scheduler and MySQL Privileges”
Section 6.2.9, “When Privilege Changes Take Effect”

REORGANIZE PARTITION
Section 14.13.1, “Online DDL Operations”

REPAIR PARTITION
Section 14.13.1, “Online DDL Operations”

REPAIR TABLE
Section 11.2.5, “2-Digit YEAR(2) Limitations and Migrating to 4-Digit YEAR”
Section 13.1.8.1, “ALTER TABLE Partition Operations”
Section 13.1.8, “ALTER TABLE Statement”
Section 2.10.3, “Changes in MySQL 5.7”
Section 13.7.2.2, “CHECK TABLE Statement”
Section 15.2.4.1, “Corrupted MyISAM Tables”
Section 7.2, “Database Backup Methods”
Section 22.3.3, “Exchanging Partitions and Subpartitions with Tables”
Section 8.11.5, “External Locking”
Section 12.9.6, “Fine-Tuning MySQL Full-Text Search”
Section 8.14.3, “General Thread States”
Section 16.1.6.5, “Global Transaction ID System Variables”
Section B.3.3.4, “How MySQL Handles a Full Disk”
Section 7.6.3, “How to Repair MyISAM Tables”
Section 1.5, “How to Report Bugs or Problems”
Section 13.7.6.4, “KILL Statement”
Section 13.2.6, “LOAD DATA Statement”
Section 22.3.4, “Maintenance of Partitions”
Section 15.7.2, “MERGE Table Problems”
Section 15.2.1, “MyISAM Startup Options”
Section 7.6, “MyISAM Table Maintenance and Crash Recovery”
Section 4.6.3.1, “myisamchk General Options”
Section 4.6.3, “myisamchk — MyISAM Table-Maintenance Utility”
Section 1.6.1, “MySQL Extensions to Standard SQL”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 8.6.3, “Optimizing REPAIR TABLE Statements”
Section 6.2.2, “Privileges Provided by MySQL”
Section 15.2.4.2, “Problems from Tables Not Being Closed Properly”
Section B.3.6.1, “Problems with ALTER TABLE”
Section 2.10.12, “Rebuilding or Repairing Tables or Indexes”
Section 13.7.2.5, “REPAIR TABLE Statement”
Section 15.4.1, “Repairing and Checking CSV Tables”
Section 16.4.1.14, “Replication and FLUSH”
Section 16.4.1.24, “Replication and REPAIR TABLE”
Restoring an NDB backup to a later version of NDB Cluster
Section 22.6, “Restrictions and Limitations on Partitioning”
Section 5.1.7, “Server System Variables”
Section 7.6.5, “Setting Up a MyISAM Table Maintenance Schedule”
Section 13.3.3, “Statements That Cause an Implicit Commit”
Section 15.5, “The ARCHIVE Storage Engine”
Section 5.1.16, “The Server Shutdown Process”
Section 5.4.5, “The Slow Query Log”
Section 8.12.3.2, “Using Symbolic Links for MyISAM Tables on Unix”

5145

REPEAT
Section 13.6.7.2, “DECLARE ... HANDLER Statement”
Section 23.1, “Defining Stored Programs”
Section 13.6.5, “Flow Control Statements”
Section 13.6.5.3, “ITERATE Statement”
Section 13.6.5.4, “LEAVE Statement”
Section 13.6.5.6, “REPEAT Statement”
Section 13.6.2, “Statement Labels”

REPLACE
Section 16.2.1.1, “Advantages and Disadvantages of Statement-Based and Row-Based Replication”
Section 14.6.1.6, “AUTO_INCREMENT Handling in InnoDB”
Section 13.1.18.7, “CREATE TABLE and Generated Columns”
Section 13.1.20, “CREATE TRIGGER Statement”
Section 11.6, “Data Type Default Values”
Section 8.8.2, “EXPLAIN Output Format”
Section 13.8.2, “EXPLAIN Statement”
Section 8.8.3, “Extended EXPLAIN Output Format”
Section 12.15, “Information Functions”
Section 13.2.5, “INSERT Statement”
Section B.3.7, “Known Issues in MySQL”
Section 14.7.3, “Locks Set by Different SQL Statements in InnoDB”
Section 5.4.4.4, “Logging Format for Changes to mysql Database Tables”
Section 15.7.2, “MERGE Table Problems”
Section 1.6.1, “MySQL Extensions to Standard SQL”
Section B.3.2.7, “MySQL server has gone away”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.6, “mysqlpump — A Database Backup Program”
Section 8.8.4, “Obtaining Execution Plan Information for a Named Connection”
Section 8.9.3, “Optimizer Hints”
Section 8.8.1, “Optimizing Queries with EXPLAIN”
Section 22.1, “Overview of Partitioning in MySQL”
Section 22.5, “Partition Selection”
Section 22.6.4, “Partitioning and Locking”
Section 13.2.8, “REPLACE Statement”
Section 22.6, “Restrictions and Limitations on Partitioning”
Section 13.2.10, “Subqueries”
Section 15.5, “The ARCHIVE Storage Engine”
Section 1.2.2, “The Main Features of MySQL”
Section 21.6.15.29, “The ndbinfo operations_per_fragment Table”
Section 8.15.3, “Traceable Statements”
Section 13.2.11, “UPDATE Statement”
Section 6.4.5.8, “Writing Audit Log Filter Definitions”

REPLACE ... SELECT
Section 14.6.1.6, “AUTO_INCREMENT Handling in InnoDB”
Section B.3.7, “Known Issues in MySQL”

REPLACE DELAYED
Section 1.3, “What Is New in MySQL 5.7”

RESET
Section 13.7.6.3, “FLUSH Statement”

5146

Section 16.1.6.5, “Global Transaction ID System Variables”
Section 1.6.1, “MySQL Extensions to Standard SQL”
Section 6.2.2, “Privileges Provided by MySQL”
Section 13.7.6.6, “RESET Statement”
Section 13.3.3, “Statements That Cause an Implicit Commit”

RESET MASTER
Section 16.1.6.5, “Global Transaction ID System Variables”
Section 16.1.3.1, “GTID Format and Storage”
Section 16.1.3.2, “GTID Life Cycle”
Section 21.7.3, “Known Issues in NDB Cluster Replication”
Section 16.1.5.2, “Provisioning a Multi-Source Replica for GTID-Based Replication”
Section 13.4.1.2, “RESET MASTER Statement”
Section 13.4.2.3, “RESET SLAVE Statement”
Section 16.1.5.7, “Resetting Multi-Source Replicas”
Section 13.7.5.34, “SHOW SLAVE STATUS Statement”
Section 16.3.7, “Switching Sources During Failover”
Section 5.4.4, “The Binary Log”
Section 25.12.11.5, “The replication_applier_status_by_coordinator Table”
Section 25.12.11.6, “The replication_applier_status_by_worker Table”
Section 25.12.11.2, “The replication_connection_status Table”

RESET QUERY CACHE
Section 8.14.4, “Query Cache Thread States”
Section 13.7.6.6, “RESET Statement”
Section 1.3, “What Is New in MySQL 5.7”

RESET SLAVE
Section 13.4.2.1, “CHANGE MASTER TO Statement”
Section 16.2.2.1, “Commands for Operations on a Single Channel”
Section 16.2.2.2, “Compatibility with Previous Replication Statements”
Section 16.3.10, “Delayed Replication”
Section 16.1.3.2, “GTID Life Cycle”
Section 21.7.3, “Known Issues in NDB Cluster Replication”
NDB Cluster System Variables
Section 16.1.6, “Replication and Binary Logging Options and Variables”
Section 16.4.1.32, “Replication and Transaction Inconsistencies”
Section 16.2.4.2, “Replication Metadata Repositories”
Section 13.4.1.2, “RESET MASTER Statement”
Section 13.4.2.3, “RESET SLAVE Statement”
Section 16.1.5.7, “Resetting Multi-Source Replicas”
Section 13.7.5.34, “SHOW SLAVE STATUS Statement”
Section 13.3.3, “Statements That Cause an Implicit Commit”
Section 25.12.11.5, “The replication_applier_status_by_coordinator Table”
Section 25.12.11.6, “The replication_applier_status_by_worker Table”
Section 25.12.11.2, “The replication_connection_status Table”

RESET SLAVE ALL
Section 13.4.2.1, “CHANGE MASTER TO Statement”
Section 13.4.2.3, “RESET SLAVE Statement”

RESIGNAL
Section 13.6.7, “Condition Handling”

5147

Section 13.6.7.8, “Condition Handling and OUT or INOUT Parameters”
Section 13.6.7.1, “DECLARE ... CONDITION Statement”
Section 13.6.7.2, “DECLARE ... HANDLER Statement”
Section 13.6.7.3, “GET DIAGNOSTICS Statement”
Section 13.6.7.4, “RESIGNAL Statement”
Section 13.6.7.9, “Restrictions on Condition Handling”
Section 23.8, “Restrictions on Stored Programs”
Section 13.6.7.6, “Scope Rules for Handlers”
Section 13.6.7.5, “SIGNAL Statement”
Section 13.6.7.7, “The MySQL Diagnostics Area”

RETURN
Section 8.10.4, “Caching of Prepared Statements and Stored Programs”
Section 13.1.16, “CREATE PROCEDURE and CREATE FUNCTION Statements”
Section 13.6.5, “Flow Control Statements”
Section 13.6.5.5, “LOOP Statement”
Section 23.8, “Restrictions on Stored Programs”
Section 13.6.5.7, “RETURN Statement”
Section 13.6.7.5, “SIGNAL Statement”
Section 13.6.7.7, “The MySQL Diagnostics Area”
Section 8.15.3, “Traceable Statements”

REVOKE
Section 6.2, “Access Control and Account Management”
Section 6.2.1, “Account User Names and Passwords”
Section 6.2.7, “Adding Accounts, Assigning Privileges, and Dropping Accounts”
Section 16.2.1.1, “Advantages and Disadvantages of Statement-Based and Row-Based Replication”
Section 14.8.2, “Configuring InnoDB for Read-Only Operation”
Section 13.7.6.3, “FLUSH Statement”
Section 13.7.1.4, “GRANT Statement”
Section 6.2.3, “Grant Tables”
Section 8.12.4.1, “How MySQL Uses Memory”
Section 12.15, “Information Functions”
Section 5.1.12, “IPv6 Support”
Section 5.4.4.4, “Logging Format for Changes to mysql Database Tables”
Section A.14, “MySQL 5.7 FAQ: Replication”
Section 1.6.2, “MySQL Differences from Standard SQL”
MySQL Glossary
Section 21.6.18.2, “NDB Cluster and MySQL Privileges”
Section 6.2.2, “Privileges Provided by MySQL”
Section 6.2.14, “Proxy Users”
Section 16.4.1.8, “Replication of CURRENT_USER()”
Section 16.4.1.21, “Replication of the mysql System Database”
Section 13.7.1.6, “REVOKE Statement”
Section 6.1.1, “Security Guidelines”
Section 5.1.7, “Server System Variables”
Section 13.3.3, “Statements That Cause an Implicit Commit”
Section 23.4.6, “The Event Scheduler and MySQL Privileges”
Section 6.2.9, “When Privilege Changes Take Effect”

REVOKE ALL PRIVILEGES
Section 13.7.1.4, “GRANT Statement”
Section 6.2.2, “Privileges Provided by MySQL”

5148

ROLLBACK
Section 14.7.2.2, “autocommit, Commit, and Rollback”
Section 14.6.1.5, “Converting Tables from MyISAM to InnoDB”
Section 12.15, “Information Functions”
Section 14.2, “InnoDB and the ACID Model”
Section 14.22.4, “InnoDB Error Handling”
Section 13.3.5, “LOCK TABLES and UNLOCK TABLES Statements”
Section 25.12.7, “Performance Schema Transaction Tables”
Section 16.1.6.3, “Replica Server Options and Variables”
Section 16.4.1.33, “Replication and Transactions”
Section B.3.4.5, “Rollback Failure for Nontransactional Tables”
Section 13.3.4, “SAVEPOINT, ROLLBACK TO SAVEPOINT, and RELEASE SAVEPOINT Statements”
Section 5.1.7, “Server System Variables”
Section 13.3.1, “START TRANSACTION, COMMIT, and ROLLBACK Statements”
Section 13.3.2, “Statements That Cannot Be Rolled Back”
Section 13.3.3, “Statements That Cause an Implicit Commit”
Section 23.7, “Stored Program Binary Logging”
Section 5.4.4, “The Binary Log”
Section 25.12.7.1, “The events_transactions_current Table”
Section 13.3, “Transactional and Locking Statements”
Section 23.3.1, “Trigger Syntax and Examples”

ROLLBACK TO SAVEPOINT
Section 25.12.7, “Performance Schema Transaction Tables”
Section 13.3.4, “SAVEPOINT, ROLLBACK TO SAVEPOINT, and RELEASE SAVEPOINT Statements”
Section 25.12.7.1, “The events_transactions_current Table”

ROLLBACK to SAVEPOINT
Section 23.3.1, “Trigger Syntax and Examples”

S

[index top]

SAVEPOINT
Section 25.12.7, “Performance Schema Transaction Tables”
Section 13.3.4, “SAVEPOINT, ROLLBACK TO SAVEPOINT, and RELEASE SAVEPOINT Statements”
Section 25.12.7.1, “The events_transactions_current Table”

SELECT
Section 1.1, “About This Manual”
Section 6.2, “Access Control and Account Management”
Section 12.19.1, “Aggregate Function Descriptions”
Section 13.1.8, “ALTER TABLE Statement”
Section 13.1.10, “ALTER VIEW Statement”
Section 12.4.4, “Assignment Operators”
Section 6.4.5.4, “Audit Log File Formats”
Section 14.6.1.6, “AUTO_INCREMENT Handling in InnoDB”
Section 14.7.2.2, “autocommit, Commit, and Rollback”
Section 16.1.6.4, “Binary Logging Options and Variables”
Section 8.6.2, “Bulk Data Loading for MyISAM Tables”
Section 8.10.4, “Caching of Prepared Statements and Stored Programs”

5149

Section 2.10.3, “Changes in MySQL 5.7”
Section 6.1.7, “Client Programming Security Guidelines”
Section 12.4.2, “Comparison Functions and Operators”
Section 8.3.8, “Comparison of B-Tree and Hash Indexes”
Section 8.11.3, “Concurrent Inserts”
Section 10.4, “Connection Character Sets and Collations”
Section 14.7.2.3, “Consistent Nonlocking Reads”
Section 14.6.1.5, “Converting Tables from MyISAM to InnoDB”
Section 13.1.12, “CREATE EVENT Statement”
Section 13.1.14, “CREATE INDEX Statement”
Section 13.1.16, “CREATE PROCEDURE and CREATE FUNCTION Statements”
Section 13.1.18.4, “CREATE TABLE ... SELECT Statement”
Section 13.1.18.7, “CREATE TABLE and Generated Columns”
Section 13.1.18, “CREATE TABLE Statement”
Section 13.1.18.2, “CREATE TEMPORARY TABLE Statement”
Section 13.1.21, “CREATE VIEW Statement”
Section 15.8.2.1, “Creating a FEDERATED Table Using CONNECTION”
Section 3.3.1, “Creating and Selecting a Database”
Section 13.6.6.2, “Cursor DECLARE Statement”
Section 13.6.6.3, “Cursor FETCH Statement”
Section 13.2.2, “DELETE Statement”
Section 13.2.10.8, “Derived Tables”
Section 8.4.3.2, “Disadvantages of Creating Many Tables in the Same Database”
Section 5.1.11.2, “DNS Lookups and the Host Cache”
Section 13.2.3, “DO Statement”
Section 3.2, “Entering Queries”
Section 23.4.2, “Event Scheduler Configuration”
Section 10.8.6, “Examples of the Effect of Collation”
Section 8.8.2, “EXPLAIN Output Format”
Section 13.8.2, “EXPLAIN Statement”
Section 8.8.3, “Extended EXPLAIN Output Format”
Section 15.8.3, “FEDERATED Storage Engine Notes and Tips”
Section 14.22.2, “Forcing InnoDB Recovery”
Section 8.2.1.18, “Function Call Optimization”
Chapter 12, Functions and Operators
Section 12.17.3, “Functions That Search JSON Values”
Section 8.14.3, “General Thread States”
Section 13.7.1.4, “GRANT Statement”
Section 13.2.4, “HANDLER Statement”
Section 22.2.7, “How MySQL Partitioning Handles NULL”
Section 8.10.3.1, “How the Query Cache Operates”
Section 14.7.5.3, “How to Minimize and Handle Deadlocks”
Section 1.5, “How to Report Bugs or Problems”
Section 8.9.4, “Index Hints”
Section 12.15, “Information Functions”
Section 14.15, “InnoDB Startup Options and System Variables”
Section 13.2.5.2, “INSERT ... ON DUPLICATE KEY UPDATE Statement”
Section 13.2.5.1, “INSERT ... SELECT Statement”
Section 13.2.5, “INSERT Statement”
Section 8.11.1, “Internal Locking Methods”
Section 8.4.4, “Internal Temporary Table Use in MySQL”
Section 24.1, “Introduction”
Section 13.2.9.2, “JOIN Clause”
Section 9.3, “Keywords and Reserved Words”

5150

Section 13.7.6.4, “KILL Statement”
Section B.3.7, “Known Issues in MySQL”
Section 6.4.5.10, “Legacy Mode Audit Log Filtering”
Section 21.2.7.3, “Limits Relating to Transaction Handling in NDB Cluster”
Section 13.2.7, “LOAD XML Statement”
Section 13.6.4.2, “Local Variable Scope and Resolution”
Section 13.3.5, “LOCK TABLES and UNLOCK TABLES Statements”
Section 14.7.2.4, “Locking Reads”
Section 14.7.3, “Locks Set by Different SQL Statements in InnoDB”
Section 5.4.4.4, “Logging Format for Changes to mysql Database Tables”
Section 6.1.3, “Making MySQL Secure Against Attackers”
Section 22.3.1, “Management of RANGE and LIST Partitions”
Section 15.7.2, “MERGE Table Problems”
Section 8.3.5, “Multiple-Column Indexes”
Section 7.6.4, “MyISAM Table Optimization”
Section A.11, “MySQL 5.7 FAQ: MySQL Chinese, Japanese, and Korean Character Sets”
Section A.14, “MySQL 5.7 FAQ: Replication”
Section A.4, “MySQL 5.7 FAQ: Stored Procedures and Functions”
Section 4.5.1.1, “mysql Client Options”
Section 4.5.1.6, “mysql Client Tips”
Section 6.6.2, “MySQL Enterprise Encryption Usage and Examples”
Section 1.6.1, “MySQL Extensions to Standard SQL”
MySQL Glossary
Section 12.19.3, “MySQL Handling of GROUP BY”
Chapter 25, MySQL Performance Schema
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.6, “mysqlpump — A Database Backup Program”
Section 4.5.8, “mysqlslap — A Load Emulation Client”
Section 12.9.1, “Natural Language Full-Text Searches”
Section 21.6.11.1, “NDB Cluster Disk Data Objects”
Section 21.3.5, “NDB Cluster Example with Tables and Data”
Section 21.7.11, “NDB Cluster Replication Conflict Resolution”
Section 21.7.4, “NDB Cluster Replication Schema and Tables”
NDB Cluster Status Variables
NDB Cluster System Variables
Section 21.5.25, “ndb_select_all — Print Rows from an NDB Table”
Section 21.6.15, “ndbinfo: The NDB Cluster Information Database”
Section 8.8.4, “Obtaining Execution Plan Information for a Named Connection”
Section 22.3.5, “Obtaining Information About Partitions”
Section 14.13.2, “Online DDL Performance and Concurrency”
Section 8.3, “Optimization and Indexes”
Section 8.9.3, “Optimizer Hints”
Section B.3.5, “Optimizer-Related Issues”
Section 8.2.2.4, “Optimizing Derived Tables and View References with Merging or Materialization”
Section 8.5.3, “Optimizing InnoDB Read-Only Transactions”
Section 8.5.2, “Optimizing InnoDB Transaction Management”
Section 8.6.1, “Optimizing MyISAM Queries”
Section 8.8.1, “Optimizing Queries with EXPLAIN”
Section 8.2.1, “Optimizing SELECT Statements”
Section 8.2.2.3, “Optimizing Subqueries with the EXISTS Strategy”
Section 8.2.2.1, “Optimizing Subqueries, Derived Tables, and View References with Semijoin
Transformations”
Section 8.2.4.2, “Optimizing UPDATE Statements”
Section 4.6.3.4, “Other myisamchk Options”

5151

Section 22.4, “Partition Pruning”
Section 22.5, “Partition Selection”
Section 22.6.4, “Partitioning and Locking”
Section 25.6, “Performance Schema Instrument Naming Conventions”
Section 25.12.11, “Performance Schema Replication Tables”
Section 14.7.4, “Phantom Rows”
Section 6.2.2, “Privileges Provided by MySQL”
Section B.3.4.2, “Problems Using DATE Columns”
Section B.3.4.8, “Problems with Floating-Point Values”
Section 14.8.10, “Purge Configuration”
Section 8.10.3.2, “Query Cache SELECT Options”
Section 8.10.3.4, “Query Cache Status and Maintenance”
Section 8.14.4, “Query Cache Thread States”
Section 21.6.17, “Quick Reference: NDB Cluster SQL Statements”
Section 22.2.3.1, “RANGE COLUMNS partitioning”
Section 8.2.1.2, “Range Optimization”
Section 13.2.8, “REPLACE Statement”
Section 16.1.6.3, “Replica Server Options and Variables”
Section 16.2, “Replication Implementation”
Section 16.4.1.5, “Replication of CREATE ... IF NOT EXISTS Statements”
Section 16.4.1.16, “Replication of Invoked Features”
Section 16.1.6.2, “Replication Source Options and Variables”
Section 23.8, “Restrictions on Stored Programs”
Section 3.3.4, “Retrieving Information from a Table”
Section 3.6.7, “Searching on Two Keys”
Section 13.1.18.8, “Secondary Indexes and Generated Columns”
Section 13.2.9.1, “SELECT ... INTO Statement”
Section 13.2.9, “SELECT Statement”
Section 3.3.4.1, “Selecting All Data”
Section 3.3.4.2, “Selecting Particular Rows”
Section 5.1.10, “Server SQL Modes”
Section 5.1.9, “Server Status Variables”
Section 5.1.7, “Server System Variables”
Section 13.7.4.1, “SET Syntax for Variable Assignment”
Section 13.7.5.2, “SHOW BINLOG EVENTS Statement”
Section 13.7.5.9, “SHOW CREATE PROCEDURE Statement”
Section 13.7.5.13, “SHOW CREATE VIEW Statement”
Section 13.7.5.17, “SHOW ERRORS Statement”
Section 13.7.5.27, “SHOW PROCEDURE CODE Statement”
Section 13.7.5.28, “SHOW PROCEDURE STATUS Statement”
Section 13.7.5.29, “SHOW PROCESSLIST Statement”
Section 13.7.5.32, “SHOW RELAYLOG EVENTS Statement”
Section 13.7.5, “SHOW Statements”
Section 13.7.5.39, “SHOW VARIABLES Statement”
Section 13.7.5.40, “SHOW WARNINGS Statement”
Section B.3.4.7, “Solving Problems with No Matching Rows”
Section 13.3.1, “START TRANSACTION, COMMIT, and ROLLBACK Statements”
Statement Probes
Section 23.7, “Stored Program Binary Logging”
Section 23.2.1, “Stored Routine Syntax”
Section 9.1.1, “String Literals”
Section 13.2.10, “Subqueries”
Section 13.2.10.6, “Subqueries with EXISTS or NOT EXISTS”
Section 13.2.10.9, “Subquery Errors”

5152

Section 8.11.2, “Table Locking Issues”
Section 15.5, “The ARCHIVE Storage Engine”
Section 5.4.4, “The Binary Log”
Section 11.3.5, “The ENUM Type”
Section 25.12.16.1, “The host_cache Table”
Section 24.3.5, “The INFORMATION_SCHEMA COLUMNS Table”
Section 24.3.8, “The INFORMATION_SCHEMA EVENTS Table”
Section 24.3.11, “The INFORMATION_SCHEMA GLOBAL_VARIABLES and SESSION_VARIABLES
Tables”
Section 24.4.28, “The INFORMATION_SCHEMA INNODB_TRX Table”
Section 24.3.18, “The INFORMATION_SCHEMA PROCESSLIST Table”
Section 24.3.21, “The INFORMATION_SCHEMA ROUTINES Table”
Section 24.3.31, “The INFORMATION_SCHEMA VIEWS Table”
Section 11.5, “The JSON Data Type”
Section 1.2.2, “The Main Features of MySQL”
Section 15.7, “The MERGE Storage Engine”
Section 8.10.3, “The MySQL Query Cache”
Section 21.6.15.28, “The ndbinfo nodes Table”
Section 25.12.16.3, “The processlist Table”
Section 5.5.4, “The Rewriter Query Rewrite Plugin”
Section 13.2.10.1, “The Subquery as Scalar Operand”
Section 25.12.16.4, “The threads Table”
Section 8.15.3, “Traceable Statements”
Section 14.7.2.1, “Transaction Isolation Levels”
Section 23.3.1, “Trigger Syntax and Examples”
Section 8.15.4, “Tuning Trace Purging”
Section 12.3, “Type Conversion in Expression Evaluation”
Section 13.2.9.3, “UNION Clause”
Section 13.2.11, “UPDATE Statement”
Section 9.4, “User-Defined Variables”
Section 14.16.2.1, “Using InnoDB Transaction and Locking Information”
Section 4.2.2.1, “Using Options on the Command Line”
Section 8.4.2.4, “Using PROCEDURE ANALYSE”
Section 5.8.1.6, “Using Server Logs to Find Causes of Errors in mysqld”
Section 11.4.10, “Using Spatial Indexes”
Section 5.5.4.2, “Using the Rewriter Query Rewrite Plugin”
Section 10.2.2, “UTF-8 for Metadata”
Section 5.5.5.4, “Version Tokens Reference”
Section 23.5.1, “View Syntax”
Section 1.3, “What Is New in MySQL 5.7”
Section 8.2.1.1, “WHERE Clause Optimization”
Section B.3.3.5, “Where MySQL Stores Temporary Files”
Section 6.4.5.8, “Writing Audit Log Filter Definitions”

SELECT *
Section 11.3.4, “The BLOB and TEXT Types”

SELECT * FROM t PARTITION ()
Section 22.1, “Overview of Partitioning in MySQL”

SELECT * INTO OUTFILE 'file_name' FROM tbl_name
Section 7.2, “Database Backup Methods”

5153

SELECT ... FOR UPDATE
Section 14.1.2, “Best Practices for InnoDB Tables”
Section 14.7.5, “Deadlocks in InnoDB”
Section 14.7.5.3, “How to Minimize and Handle Deadlocks”
Section 14.7.1, “InnoDB Locking”
Section 14.7.2.4, “Locking Reads”
Section 14.7.3, “Locks Set by Different SQL Statements in InnoDB”

SELECT ... FROM
Section 14.7.3, “Locks Set by Different SQL Statements in InnoDB”

SELECT ... INTO
Section 13.1.12, “CREATE EVENT Statement”
Section 13.6.4.2, “Local Variable Scope and Resolution”
Section 16.4.1.15, “Replication and System Functions”
Section 13.2.9.1, “SELECT ... INTO Statement”
Section 1.6.2.1, “SELECT INTO TABLE Differences”
Section 13.2.9, “SELECT Statement”

SELECT ... INTO DUMPFILE
Section 6.1.3, “Making MySQL Secure Against Attackers”
Section 5.1.7, “Server System Variables”

SELECT ... INTO OUTFILE
Section 1.1, “About This Manual”
Section 7.1, “Backup and Recovery Types”
Section 7.4.3, “Dumping Data in Delimited-Text Format with mysqldump”
Section 14.22.2, “Forcing InnoDB Recovery”
Section 13.2.6, “LOAD DATA Statement”
Section 6.1.3, “Making MySQL Secure Against Attackers”
Section 9.1.7, “NULL Values”
Section 6.2.2, “Privileges Provided by MySQL”
Section 13.2.9.1, “SELECT ... INTO Statement”
Section 1.6.2.1, “SELECT INTO TABLE Differences”
Section 5.1.6, “Server Command Options”
Section 5.1.7, “Server System Variables”
Section 6.2.17, “Troubleshooting Problems Connecting to MySQL”
Section 1.3, “What Is New in MySQL 5.7”
Section 2.3.7, “Windows Platform Restrictions”

SELECT ... INTO OUTFILE 'file_name'
Section 13.2.9.1, “SELECT ... INTO Statement”

SELECT ... INTO var_list
Section 23.8, “Restrictions on Stored Programs”
Section 13.6.4, “Variables in Stored Programs”

SELECT ... LOCK IN SHARE MODE
Section 14.7.5.3, “How to Minimize and Handle Deadlocks”
Section 14.7.1, “InnoDB Locking”
Section 21.2.7.3, “Limits Relating to Transaction Handling in NDB Cluster”

5154

Section 14.7.2.4, “Locking Reads”
Section 14.7.3, “Locks Set by Different SQL Statements in InnoDB”
Section 14.7.2.1, “Transaction Isolation Levels”

SELECT DISTINCT
Configuring the Number of Sampled Pages for InnoDB Optimizer Statistics
Section 8.14.3, “General Thread States”
Section 8.2.2.1, “Optimizing Subqueries, Derived Tables, and View References with Semijoin
Transformations”

SELECT INTO ... OUTFILE
Section 21.5.14, “ndb_import — Import CSV Data Into NDB”

SELECT INTO OUTFILE
Section 21.5.14, “ndb_import — Import CSV Data Into NDB”

SELECT SLEEP()
Section 5.1.10, “Server SQL Modes”

SET
Section 12.4.4, “Assignment Operators”
Section 16.1.6.4, “Binary Logging Options and Variables”
Section 12.1, “Built-In Function and Operator Reference”
Section 14.8.3.1, “Configuring InnoDB Buffer Pool Size”
Section 14.8.8, “Configuring InnoDB I/O Capacity”
Section 14.8.11.2, “Configuring Non-Persistent Optimizer Statistics Parameters”
Section 10.4, “Connection Character Sets and Collations”
Section 14.9.1.2, “Creating Compressed Tables”
Section 23.1, “Defining Stored Programs”
Section 6.4.5.9, “Disabling Audit Logging”
Section 23.4.2, “Event Scheduler Configuration”
Chapter 12, Functions and Operators
Section 16.1.6.5, “Global Transaction ID System Variables”
Section 21.6.9, “Importing Data Into MySQL Cluster”
Section 12.15, “Information Functions”
Section 14.15, “InnoDB Startup Options and System Variables”
Section 4.5.1.6, “mysql Client Tips”
Section 6.6.2, “MySQL Enterprise Encryption Usage and Examples”
Section 1.6.1, “MySQL Extensions to Standard SQL”
Section 21.7.11, “NDB Cluster Replication Conflict Resolution”
Section 12.4, “Operators”
Section 22.6.4, “Partitioning and Locking”
Section 6.2.11, “Password Management”
Section 8.10.3.3, “Query Cache Configuration”
Section 16.1.6.3, “Replica Server Options and Variables”
Section 16.1.6.2, “Replication Source Options and Variables”
Section 13.4.2.3, “RESET SLAVE Statement”
Section 5.1.6, “Server Command Options”
Section 6.2.12, “Server Handling of Expired Passwords”
Section 5.1.10, “Server SQL Modes”
Section 5.1.7, “Server System Variables”
Section 13.7.4, “SET Statements”
Section 13.7.4.1, “SET Syntax for Variable Assignment”

5155

Section 13.3.6, “SET TRANSACTION Statement”
Section 13.7.5.39, “SHOW VARIABLES Statement”
Section 23.7, “Stored Program Binary Logging”
Section 13.2.10, “Subqueries”
Section 5.1.8.1, “System Variable Privileges”
Section 13.6.7.7, “The MySQL Diagnostics Area”
Section 5.4.5, “The Slow Query Log”
Section 8.15.3, “Traceable Statements”
Section 23.3.1, “Trigger Syntax and Examples”
Section 8.15.4, “Tuning Trace Purging”
Section 8.15.1, “Typical Usage”
Section 9.4, “User-Defined Variables”
Section 4.2.2.1, “Using Options on the Command Line”
Section 4.2.2.5, “Using Options to Set Program Variables”
Section 5.1.8, “Using System Variables”
Section 13.6.4, “Variables in Stored Programs”

SET @@GLOBAL.gtid_purged
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.6, “mysqlpump — A Database Backup Program”

SET @@GLOBAL.ndb_slave_conflict_role = 'NONE'
NDB Cluster System Variables

SET autocommit
Section 8.5.5, “Bulk Data Loading for InnoDB Tables”
Section 13.3, “Transactional and Locking Statements”

SET autocommit = 0
Section 16.3.9, “Semisynchronous Replication”

SET CHARACTER SET
Section 10.4, “Connection Character Sets and Collations”
Section 13.7.4.2, “SET CHARACTER SET Statement”
Section 13.7.4, “SET Statements”
Section 10.9, “Unicode Support”

SET CHARACTER SET 'charset_name'
Section 10.4, “Connection Character Sets and Collations”

SET CHARACTER SET charset_name
Section 10.4, “Connection Character Sets and Collations”

SET GLOBAL
Section 14.5.2, “Change Buffer”
Section 14.8.3.4, “Configuring InnoDB Buffer Pool Prefetching (Read-Ahead)”
Section 14.8.8, “Configuring InnoDB I/O Capacity”
Section 14.8.9, “Configuring Spin Lock Polling”
Section 6.4.2.1, “Connection Control Plugin Installation”
Section 14.6.3.2, “File-Per-Table Tablespaces”
Section 13.7.1.4, “GRANT Statement”

5156

Section 14.15, “InnoDB Startup Options and System Variables”
Section 14.8.3.3, “Making the Buffer Pool Scan Resistant”
Section 8.10.2.2, “Multiple Key Caches”
Section 16.3.9.2, “Semisynchronous Replication Installation and Configuration”
Section 6.4.4.5, “Using the keyring_aws Amazon Web Services Keyring Plugin”

SET GLOBAL SQL_LOG_BIN
Section 1.3, “What Is New in MySQL 5.7”

SET GLOBAL sql_slave_skip_counter
Section 13.4.2.4, “SET GLOBAL sql_slave_skip_counter Syntax”

SET GLOBAL TRANSACTION READ ONLY
Section B.3.7, “Known Issues in MySQL”

SET NAMES
Section 10.3.6, “Character String Literal Character Set and Collation”
Section 10.5, “Configuring Application Character Set and Collation”
Section 10.4, “Connection Character Sets and Collations”
Section 10.6, “Error Message Character Set”
Section 13.2.6, “LOAD DATA Statement”
Section A.11, “MySQL 5.7 FAQ: MySQL Chinese, Japanese, and Korean Character Sets”
Section 4.5.1.2, “mysql Client Commands”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.6, “mysqlpump — A Database Backup Program”
Section 5.1.7, “Server System Variables”
Section 13.7.4.3, “SET NAMES Statement”
Section 13.7.4, “SET Statements”
Section 10.10.7.2, “The gb18030 Character Set”
Section 12.3, “Type Conversion in Expression Evaluation”
Section 10.9, “Unicode Support”
Section 10.2.2, “UTF-8 for Metadata”

SET NAMES 'charset_name'
Section 10.4, “Connection Character Sets and Collations”

SET NAMES 'cp1251'
Section 10.4, “Connection Character Sets and Collations”

SET NAMES charset_name
Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”

SET NAMES default_character_set
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.6, “mysqlpump — A Database Backup Program”

SET PASSWORD
Section 16.1.6.4, “Binary Logging Options and Variables”
Section 6.2.3, “Grant Tables”
Section 12.15, “Information Functions”
Section 5.4.4.4, “Logging Format for Changes to mysql Database Tables”

5157

Section 4.4.2, “mysql_install_db — Initialize MySQL Data Directory”
Section 6.1.2.4, “Password Hashing in MySQL”
Section 6.2.11, “Password Management”
Section 6.4.3.2, “Password Validation Plugin Options and Variables”
Section 6.1.2.3, “Passwords and Logging”
Section 16.4.1.37, “Replication and Variables”
Section 16.4.1.8, “Replication of CURRENT_USER()”
Resetting the Root Password: Generic Instructions
Section 6.2.12, “Server Handling of Expired Passwords”
Section 13.7.1.7, “SET PASSWORD Statement”
Section 13.7.4, “SET Statements”
Section 6.2.4, “Specifying Account Names”
Section 13.3.3, “Statements That Cause an Implicit Commit”
Section 6.4.3, “The Password Validation Plugin”
Section 6.2.9, “When Privilege Changes Take Effect”

SET PASSWORD ... = 'auth_string'
Section 13.7.1.7, “SET PASSWORD Statement”
Section 1.3, “What Is New in MySQL 5.7”

SET PASSWORD ... = PASSWORD()
Section 13.7.1.7, “SET PASSWORD Statement”
Section 1.3, “What Is New in MySQL 5.7”

SET PERSIST
Section A.9, “MySQL 5.7 FAQ: Security”

SET SESSION
Section 5.1.8.1, “System Variable Privileges”

SET SESSION TRANSACTION ISOLATION LEVEL
Section 5.1.7, “Server System Variables”

SET SESSION TRANSACTION {READ WRITE | READ ONLY}
Section 5.1.7, “Server System Variables”

SET sql_log_bin = 0
Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”

SET sql_log_bin=OFF
Section 5.4.4, “The Binary Log”

SET sql_mode='modes'
Section A.3, “MySQL 5.7 FAQ: Server SQL Mode”

SET TIMESTAMP = value
Section 8.14.1, “Accessing the Process List”

SET TRANSACTION
Section 14.2, “InnoDB and the ACID Model”

5158

Section 5.1.6, “Server Command Options”
Section 5.1.7, “Server System Variables”
Section 5.1.15, “Server Tracking of Client Session State”
Section 13.3.6, “SET TRANSACTION Statement”
Section 13.3.1, “START TRANSACTION, COMMIT, and ROLLBACK Statements”
Section 14.7.2.1, “Transaction Isolation Levels”

SET TRANSACTION ISOLATION LEVEL
Section 5.1.7, “Server System Variables”
Section 13.7.4, “SET Statements”
Section 13.3.1, “START TRANSACTION, COMMIT, and ROLLBACK Statements”

SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED
Section 14.21.6, “The InnoDB memcached Plugin and Replication”

SET TRANSACTION {READ WRITE | READ ONLY}
Section 5.1.7, “Server System Variables”

SET var_name = value
Section 13.7.4, “SET Statements”

SHOW
Section 13.1.12, “CREATE EVENT Statement”
Section 13.1.16, “CREATE PROCEDURE and CREATE FUNCTION Statements”
Section 3.3, “Creating and Using a Database”
Section 13.6.6.2, “Cursor DECLARE Statement”
Section 24.8, “Extensions to SHOW Statements”
Section 24.1, “Introduction”
Section 9.2.4, “Mapping of Identifiers to File Names”
Section A.14, “MySQL 5.7 FAQ: Replication”
Section 1.6.1, “MySQL Extensions to Standard SQL”
Section 4.5.7, “mysqlshow — Display Database, Table, and Column Information”
Section 25.1, “Performance Schema Quick Start”
Section 23.8, “Restrictions on Stored Programs”
Section 13.7.5.5, “SHOW COLUMNS Statement”
Section 13.7.5, “SHOW Statements”
Section 13.7.5.37, “SHOW TABLES Statement”
Section 13.4.1, “SQL Statements for Controlling Replication Source Servers”
Section 5.4.4, “The Binary Log”
Section 1.2.2, “The Main Features of MySQL”
Section 26.2, “Using the sys Schema”
Section 10.2.2, “UTF-8 for Metadata”

SHOW BINARY LOGS
Section 6.2.2, “Privileges Provided by MySQL”
Section 13.4.1.1, “PURGE BINARY LOGS Statement”
Section 13.7.5.1, “SHOW BINARY LOGS Statement”
Section 13.4.1, “SQL Statements for Controlling Replication Source Servers”
Section 4.6.7.3, “Using mysqlbinlog to Back Up Binary Log Files”

SHOW BINLOG EVENTS
Section 21.7.4, “NDB Cluster Replication Schema and Tables”

5159

Section 6.2.2, “Privileges Provided by MySQL”
Section 13.6.6.5, “Restrictions on Server-Side Cursors”
Section 13.7.5.2, “SHOW BINLOG EVENTS Statement”
Section 16.1.7.3, “Skipping Transactions”
Skipping Transactions With GTIDs
Section 13.4.1, “SQL Statements for Controlling Replication Source Servers”
Section 13.4.2.5, “START SLAVE Statement”

SHOW CHARACTER SET
Section 13.1.1, “ALTER DATABASE Statement”
Section 10.3.8, “Character Set Introducers”
Section 10.2, “Character Sets and Collations in MySQL”
Section 10.3.6, “Character String Literal Character Set and Collation”
Section 10.3.5, “Column Character Set and Collation”
Section 13.1.11, “CREATE DATABASE Statement”
Section 10.3.3, “Database Character Set and Collation”
Section 24.8, “Extensions to SHOW Statements”
Section A.11, “MySQL 5.7 FAQ: MySQL Chinese, Japanese, and Korean Character Sets”
Section 13.7.5.3, “SHOW CHARACTER SET Statement”
Section 10.10, “Supported Character Sets and Collations”
Section 10.3.4, “Table Character Set and Collation”
Section 24.3.2, “The INFORMATION_SCHEMA CHARACTER_SETS Table”

SHOW COLLATION
Section 13.1.1, “ALTER DATABASE Statement”
Section 10.15, “Character Set Configuration”
Section 10.2, “Character Sets and Collations in MySQL”
Section 10.14.2, “Choosing a Collation ID”
Section 13.1.11, “CREATE DATABASE Statement”
Section 2.8.7, “MySQL Source-Configuration Options”
Section 13.7.5.4, “SHOW COLLATION Statement”
Section 24.3.4, “The INFORMATION_SCHEMA COLLATION_CHARACTER_SET_APPLICABILITY Table”
Section 24.3.3, “The INFORMATION_SCHEMA COLLATIONS Table”

SHOW COLUMNS
Section 13.8.2, “EXPLAIN Statement”
Section 24.8, “Extensions to SHOW Statements”
Section 8.4.4, “Internal Temporary Table Use in MySQL”
Section 25.1, “Performance Schema Quick Start”
Section 13.7.5.5, “SHOW COLUMNS Statement”
Section 24.3.5, “The INFORMATION_SCHEMA COLUMNS Table”
Section 24.4.2, “The INFORMATION_SCHEMA INNODB_BUFFER_PAGE Table”
Section 24.4.3, “The INFORMATION_SCHEMA INNODB_BUFFER_PAGE_LRU Table”
Section 24.4.4, “The INFORMATION_SCHEMA INNODB_BUFFER_POOL_STATS Table”
Section 24.4.5, “The INFORMATION_SCHEMA INNODB_CMP and INNODB_CMP_RESET Tables”
Section 24.4.7, “The INFORMATION_SCHEMA INNODB_CMP_PER_INDEX and
INNODB_CMP_PER_INDEX_RESET Tables”
Section 24.4.6, “The INFORMATION_SCHEMA INNODB_CMPMEM and INNODB_CMPMEM_RESET
Tables”
Section 24.4.8, “The INFORMATION_SCHEMA INNODB_FT_BEING_DELETED Table”
Section 24.4.9, “The INFORMATION_SCHEMA INNODB_FT_CONFIG Table”
Section 24.4.10, “The INFORMATION_SCHEMA INNODB_FT_DEFAULT_STOPWORD Table”
Section 24.4.11, “The INFORMATION_SCHEMA INNODB_FT_DELETED Table”

5160

Section 24.4.12, “The INFORMATION_SCHEMA INNODB_FT_INDEX_CACHE Table”
Section 24.4.13, “The INFORMATION_SCHEMA INNODB_FT_INDEX_TABLE Table”
Section 24.4.15, “The INFORMATION_SCHEMA INNODB_LOCK_WAITS Table”
Section 24.4.14, “The INFORMATION_SCHEMA INNODB_LOCKS Table”
Section 24.4.16, “The INFORMATION_SCHEMA INNODB_METRICS Table”
Section 24.4.17, “The INFORMATION_SCHEMA INNODB_SYS_COLUMNS Table”
Section 24.4.18, “The INFORMATION_SCHEMA INNODB_SYS_DATAFILES Table”
Section 24.4.19, “The INFORMATION_SCHEMA INNODB_SYS_FIELDS Table”
Section 24.4.20, “The INFORMATION_SCHEMA INNODB_SYS_FOREIGN Table”
Section 24.4.21, “The INFORMATION_SCHEMA INNODB_SYS_FOREIGN_COLS Table”
Section 24.4.22, “The INFORMATION_SCHEMA INNODB_SYS_INDEXES Table”
Section 24.4.23, “The INFORMATION_SCHEMA INNODB_SYS_TABLES Table”
Section 24.4.24, “The INFORMATION_SCHEMA INNODB_SYS_TABLESPACES Table”
Section 24.4.25, “The INFORMATION_SCHEMA INNODB_SYS_TABLESTATS View”
Section 24.4.26, “The INFORMATION_SCHEMA INNODB_SYS_VIRTUAL Table”
Section 24.4.27, “The INFORMATION_SCHEMA INNODB_TEMP_TABLE_INFO Table”
Section 24.4.28, “The INFORMATION_SCHEMA INNODB_TRX Table”
Section 1.3, “What Is New in MySQL 5.7”

SHOW COLUMNS FROM tbl_name LIKE 'enum_col'
Section 11.3.5, “The ENUM Type”

SHOW COUNT()
Section 13.7.5.17, “SHOW ERRORS Statement”
Section 13.7.5.40, “SHOW WARNINGS Statement”

SHOW CREATE DATABASE
Section 5.1.7, “Server System Variables”
Section 13.7.5.6, “SHOW CREATE DATABASE Statement”

SHOW CREATE EVENT
Section 23.4.4, “Event Metadata”
Section 13.7.5.18, “SHOW EVENTS Statement”
Section 23.4.6, “The Event Scheduler and MySQL Privileges”

SHOW CREATE FUNCTION
Section 13.1.16, “CREATE PROCEDURE and CREATE FUNCTION Statements”
Section 1.5, “How to Report Bugs or Problems”
Section A.4, “MySQL 5.7 FAQ: Stored Procedures and Functions”
Section 13.7.5.9, “SHOW CREATE PROCEDURE Statement”
Section 23.2.3, “Stored Routine Metadata”

SHOW CREATE PROCEDURE
Section 13.1.16, “CREATE PROCEDURE and CREATE FUNCTION Statements”
Section 1.5, “How to Report Bugs or Problems”
Section A.4, “MySQL 5.7 FAQ: Stored Procedures and Functions”
Section 13.7.5.8, “SHOW CREATE FUNCTION Statement”
Section 23.2.3, “Stored Routine Metadata”

SHOW CREATE SCHEMA
Section 13.7.5.6, “SHOW CREATE DATABASE Statement”

5161

SHOW CREATE TABLE
Section 13.1.8.1, “ALTER TABLE Partition Operations”
Section 13.1.8, “ALTER TABLE Statement”
Section 14.8.12, “Configuring the Merge Threshold for Index Pages”
Section 13.1.18, “CREATE TABLE Statement”
Section 14.9.1.2, “Creating Compressed Tables”
Section 11.6, “Data Type Default Values”
Section 13.8.2, “EXPLAIN Statement”
Section 1.6.2.3, “FOREIGN KEY Constraint Differences”
Section 13.1.18.5, “FOREIGN KEY Constraints”
Section 3.4, “Getting Information About Databases and Tables”
Section 15.8.2, “How to Create FEDERATED Tables”
Section 7.6.3, “How to Repair MyISAM Tables”
Section 14.6.1.3, “Importing InnoDB Tables”
Section 14.9.2, “InnoDB Page Compression”
Section 22.2.5, “KEY Partitioning”
Section 22.3.1, “Management of RANGE and LIST Partitions”
Section 21.6.11.1, “NDB Cluster Disk Data Objects”
NDB Cluster System Variables
Section 21.5.10, “ndb_desc — Describe NDB Tables”
Section 21.5.24, “ndb_restore — Restore an NDB Cluster Backup”
Section 21.2.7.1, “Noncompliance with SQL Syntax in NDB Cluster”
Section 22.3.5, “Obtaining Information About Partitions”
Section 25.1, “Performance Schema Quick Start”
Section 2.10.12, “Rebuilding or Repairing Tables or Indexes”
Section 5.1.10, “Server SQL Modes”
Section 5.1.7, “Server System Variables”
Section 13.1.18.9, “Setting NDB Comment Options”
Section 13.7.5.5, “SHOW COLUMNS Statement”
Section 13.7.5.10, “SHOW CREATE TABLE Statement”
Section 13.1.18.6, “Silent Column Specification Changes”

SHOW CREATE TRIGGER
Section 13.7.5.11, “SHOW CREATE TRIGGER Statement”
Section 23.3.2, “Trigger Metadata”

SHOW CREATE USER
Section 6.2.15, “Account Locking”
Section 6.2.7, “Adding Accounts, Assigning Privileges, and Dropping Accounts”
Section 6.2.3, “Grant Tables”
Section 13.7.5.21, “SHOW GRANTS Statement”

SHOW CREATE VIEW
Section 13.1.21, “CREATE VIEW Statement”
Section 13.7.1.4, “GRANT Statement”
Section 6.2.2, “Privileges Provided by MySQL”
Section 23.9, “Restrictions on Views”
Section 13.7.5.13, “SHOW CREATE VIEW Statement”
Section 24.3.31, “The INFORMATION_SCHEMA VIEWS Table”
Section 23.5.5, “View Metadata”

SHOW DATABASES
Section 13.1.11, “CREATE DATABASE Statement”

5162

Section 3.3, “Creating and Using a Database”
Section 24.8, “Extensions to SHOW Statements”
Section 3.4, “Getting Information About Databases and Tables”
Section 13.7.1.4, “GRANT Statement”
Section 6.2.3, “Grant Tables”
Section 9.2.3, “Identifier Case Sensitivity”
Section 24.1, “Introduction”
Section 21.6.18.2, “NDB Cluster and MySQL Privileges”
Section 21.6.15, “ndbinfo: The NDB Cluster Information Database”
Section 25.2, “Performance Schema Build Configuration”
Section 6.2.2, “Privileges Provided by MySQL”
Section 5.1.6, “Server Command Options”
Section 5.1.7, “Server System Variables”
Section 13.7.5.14, “SHOW DATABASES Statement”
Section 24.3.22, “The INFORMATION_SCHEMA SCHEMATA Table”

SHOW ENGINE
Section 6.2.2, “Privileges Provided by MySQL”
Section 13.7.5.15, “SHOW ENGINE Statement”

SHOW ENGINE INNODB MUTEX
Section 14.18.3, “InnoDB Standard Monitor and Lock Monitor Output”
Section 14.15, “InnoDB Startup Options and System Variables”
Section 13.7.5.15, “SHOW ENGINE Statement”
Section 1.3, “What Is New in MySQL 5.7”

SHOW ENGINE INNODB STATUS
Section 14.5.3, “Adaptive Hash Index”
Section 14.5.1, “Buffer Pool”
Section 14.8.2, “Configuring InnoDB for Read-Only Operation”
Section 14.6.1.5, “Converting Tables from MyISAM to InnoDB”
Section 14.7.5, “Deadlocks in InnoDB”
Section 14.18.2, “Enabling InnoDB Monitors”
Section B.2, “Error Information Interfaces”
Section 13.1.18.5, “FOREIGN KEY Constraints”
Section 14.7.5.3, “How to Minimize and Handle Deadlocks”
Section 14.16.5, “InnoDB INFORMATION_SCHEMA Buffer Pool Tables”
Section 14.16.6, “InnoDB INFORMATION_SCHEMA Metrics Table”
Section 14.16.3, “InnoDB INFORMATION_SCHEMA System Tables”
Section 14.7.1, “InnoDB Locking”
Section 14.18.3, “InnoDB Standard Monitor and Lock Monitor Output”
Section 14.15, “InnoDB Startup Options and System Variables”
Section 14.6.1.4, “Moving or Copying InnoDB Tables”
MySQL Glossary
Section 8.5.8, “Optimizing InnoDB Disk I/O”
Section 8.5.3, “Optimizing InnoDB Read-Only Transactions”
Section 14.8.10, “Purge Configuration”
Section 13.7.5.15, “SHOW ENGINE Statement”
Section 24.4.4, “The INFORMATION_SCHEMA INNODB_BUFFER_POOL_STATS Table”

SHOW ENGINE NDB STATUS
Section 21.3.2.3, “Initial Startup of NDB Cluster on Windows”
Section 21.6, “Management of NDB Cluster”

5163

Section 21.7.4, “NDB Cluster Replication Schema and Tables”
Section 21.6.17, “Quick Reference: NDB Cluster SQL Statements”

SHOW ENGINE NDBCLUSTER STATUS
MySQL Server Options for NDB Cluster
Section 21.6.17, “Quick Reference: NDB Cluster SQL Statements”

SHOW ENGINE PERFORMANCE_SCHEMA STATUS
Section 25.10, “Performance Schema Statement Digests”
Section 25.7, “Performance Schema Status Monitoring”
Section 13.7.5.15, “SHOW ENGINE Statement”

SHOW ENGINES
Chapter 15, Alternative Storage Engines
Section A.10, “MySQL 5.7 FAQ: NDB Cluster”
Section 21.6.10, “MySQL Server Usage for NDB Cluster”
Section 21.6.15, “ndbinfo: The NDB Cluster Information Database”
Section 25.2, “Performance Schema Build Configuration”
Section 25.1, “Performance Schema Quick Start”
Section 21.6.17, “Quick Reference: NDB Cluster SQL Statements”
Section 2.3.4.3, “Selecting a MySQL Server Type”
Section 5.1.7, “Server System Variables”
Section 13.7.5.16, “SHOW ENGINES Statement”
Section 15.5, “The ARCHIVE Storage Engine”
Section 15.6, “The BLACKHOLE Storage Engine”
Section 24.3.7, “The INFORMATION_SCHEMA ENGINES Table”
Section 14.1.3, “Verifying that InnoDB is the Default Storage Engine”

SHOW ERRORS
Section B.2, “Error Information Interfaces”
Section 13.6.7.3, “GET DIAGNOSTICS Statement”
Section 13.6.7.4, “RESIGNAL Statement”
Section 5.1.7, “Server System Variables”
Section 13.7.5.17, “SHOW ERRORS Statement”
Section 13.7.5.40, “SHOW WARNINGS Statement”
Section 13.6.7.5, “SIGNAL Statement”
Section 13.6.7.7, “The MySQL Diagnostics Area”

SHOW EVENTS
Section 23.4.4, “Event Metadata”
Section 16.4.1.16, “Replication of Invoked Features”
Section 13.7.5.18, “SHOW EVENTS Statement”
Section 23.4.6, “The Event Scheduler and MySQL Privileges”
Section 24.3.8, “The INFORMATION_SCHEMA EVENTS Table”

SHOW FULL COLUMNS
Section 13.1.18, “CREATE TABLE Statement”
Section 24.3.6, “The INFORMATION_SCHEMA COLUMN_PRIVILEGES Table”

SHOW FULL PROCESSLIST
Section 8.14.1, “Accessing the Process List”

5164

Section 4.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 14.13.2, “Online DDL Performance and Concurrency”

SHOW FULL TABLES
Section 4.5.7, “mysqlshow — Display Database, Table, and Column Information”

SHOW FUNCTION CODE
Section 13.7.5.27, “SHOW PROCEDURE CODE Statement”
Section 23.2.3, “Stored Routine Metadata”

SHOW FUNCTION STATUS
Section 13.7.5.28, “SHOW PROCEDURE STATUS Statement”
Section 23.2.3, “Stored Routine Metadata”

SHOW GLOBAL STATUS
NDB Cluster Status Variables
Section 5.1.7, “Server System Variables”
Section 24.3.10, “The INFORMATION_SCHEMA GLOBAL_STATUS and SESSION_STATUS Tables”

SHOW GLOBAL VARIABLES
Section 5.1.7, “Server System Variables”
Section 24.3.11, “The INFORMATION_SCHEMA GLOBAL_VARIABLES and SESSION_VARIABLES
Tables”

SHOW GRANTS
Section 6.2, “Access Control and Account Management”
Section 6.2.7, “Adding Accounts, Assigning Privileges, and Dropping Accounts”
Section 13.7.1.4, “GRANT Statement”
Section 6.2.3, “Grant Tables”
Section 6.2.2, “Privileges Provided by MySQL”
Section 13.7.1.6, “REVOKE Statement”
Section 6.1.1, “Security Guidelines”
Section 13.7.5.12, “SHOW CREATE USER Statement”
Section 13.7.5.21, “SHOW GRANTS Statement”
Section 13.7.5.26, “SHOW PRIVILEGES Statement”
Section 6.2.17, “Troubleshooting Problems Connecting to MySQL”

SHOW INDEX
Section 13.7.2.1, “ANALYZE TABLE Statement”
Section 14.8.11.2, “Configuring Non-Persistent Optimizer Statistics Parameters”
Section 14.8.12, “Configuring the Merge Threshold for Index Pages”
Section 8.8.2, “EXPLAIN Output Format”
Section 13.8.2, “EXPLAIN Statement”
Section 8.9.4, “Index Hints”
Section 8.3.7, “InnoDB and MyISAM Index Statistics Collection”
Section 21.5.15, “ndb_index_stat — NDB Index Statistics Utility”
Section 8.9.3, “Optimizer Hints”
Section 4.6.3.4, “Other myisamchk Options”
Section 13.7.5.5, “SHOW COLUMNS Statement”
Section 13.7.5.22, “SHOW INDEX Statement”
Section 24.3.24, “The INFORMATION_SCHEMA STATISTICS Table”

5165

Section 24.3.27, “The INFORMATION_SCHEMA TABLE_CONSTRAINTS Table”
Section 21.2.4.1, “What is New in NDB Cluster 7.5”

SHOW MASTER LOGS
Section 13.7.5.1, “SHOW BINARY LOGS Statement”

SHOW MASTER STATUS
Section 16.1.6.5, “Global Transaction ID System Variables”
Section 16.4.5, “How to Report Replication Bugs or Problems”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 21.7.9, “NDB Cluster Backups With NDB Cluster Replication”
Section 16.1.2.3, “Obtaining the Replication Source's Binary Log Coordinates”
Section 6.2.2, “Privileges Provided by MySQL”
Section 13.7.5.34, “SHOW SLAVE STATUS Statement”
Section 13.4.1, “SQL Statements for Controlling Replication Source Servers”
Section 14.21.6, “The InnoDB memcached Plugin and Replication”
Section 16.4.4, “Troubleshooting Replication”

SHOW OPEN TABLES
Section 13.7.5.24, “SHOW OPEN TABLES Statement”

SHOW PLUGINS
Section 6.4.2.1, “Connection Control Plugin Installation”
Section 14.14, “InnoDB Data-at-Rest Encryption”
Section 13.7.3.3, “INSTALL PLUGIN Statement”
Section 5.5.1, “Installing and Uninstalling Plugins”
Section 6.4.5.2, “Installing or Uninstalling MySQL Enterprise Audit”
Section 6.4.4.10, “Keyring Metadata”
Section 6.4.4.1, “Keyring Plugin Installation”
Section 6.4.1.9, “LDAP Pluggable Authentication”
Section 12.9.9, “MeCab Full-Text Parser Plugin”
Section A.10, “MySQL 5.7 FAQ: NDB Cluster”
MySQL Server Options for NDB Cluster
Section 21.6.15, “ndbinfo: The NDB Cluster Information Database”
Section 6.4.1.10, “No-Login Pluggable Authentication”
Section 5.5.2, “Obtaining Server Plugin Information”
Section 6.4.1.7, “PAM Pluggable Authentication”
Chapter 22, Partitioning
Section 6.4.3.1, “Password Validation Plugin Installation”
Section 21.6.17, “Quick Reference: NDB Cluster SQL Statements”
Section 16.3.9.2, “Semisynchronous Replication Installation and Configuration”
Section 5.1.6, “Server Command Options”
Section 13.7.5.25, “SHOW PLUGINS Statement”
Section 6.4.1.11, “Socket Peer-Credential Pluggable Authentication”
Section 6.4.1.12, “Test Pluggable Authentication”
Section 24.3.13, “The INFORMATION_SCHEMA ndb_transid_mysql_connection_map Table”
Section 24.3.17, “The INFORMATION_SCHEMA PLUGINS Table”
Section 5.5.3.2, “Thread Pool Installation”
Section 6.4.1.8, “Windows Pluggable Authentication”

SHOW PRIVILEGES
Section 13.7.5.26, “SHOW PRIVILEGES Statement”

5166

SHOW PROCEDURE CODE
Section 13.7.5.19, “SHOW FUNCTION CODE Statement”
Section 23.2.3, “Stored Routine Metadata”

SHOW PROCEDURE STATUS
Section 13.7.5.20, “SHOW FUNCTION STATUS Statement”
Section 23.2.3, “Stored Routine Metadata”

SHOW PROCESSLIST
Section 8.14.1, “Accessing the Process List”
Section 13.4.2.1, “CHANGE MASTER TO Statement”
Section 16.1.7.1, “Checking Replication Status”
Command Probes
Section 5.1.11.1, “Connection Interfaces”
Connection Probes
Section 16.3.10, “Delayed Replication”
Section 23.4.2, “Event Scheduler Configuration”
Section 13.7.1.4, “GRANT Statement”
Section 16.1.3.1, “GTID Format and Storage”
Section 12.15, “Information Functions”
Section 14.22.4, “InnoDB Error Handling”
Section 13.7.6.4, “KILL Statement”
Section 6.1.3, “Making MySQL Secure Against Attackers”
Section 16.2.3.1, “Monitoring Replication Main Threads”
Section A.14, “MySQL 5.7 FAQ: Replication”
Section 21.6.10, “MySQL Server Usage for NDB Cluster”
Section 4.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 8.8.4, “Obtaining Execution Plan Information for a Named Connection”
Section 25.6, “Performance Schema Instrument Naming Conventions”
Section 25.12.5, “Performance Schema Stage Event Tables”
Section 25.15, “Performance Schema System Variables”
Section 6.2.2, “Privileges Provided by MySQL”
Query Execution Probes
Query Probes
Section 16.2.3, “Replication Threads”
Section 13.7.5.29, “SHOW PROCESSLIST Statement”
Section 13.7.5.30, “SHOW PROFILE Statement”
Section 13.7.5.34, “SHOW SLAVE STATUS Statement”
Section 13.4.2.5, “START SLAVE Statement”
Section 13.3.1, “START TRANSACTION, COMMIT, and ROLLBACK Statements”
Section 16.3.7, “Switching Sources During Failover”
Section 24.3.13, “The INFORMATION_SCHEMA ndb_transid_mysql_connection_map Table”
Section 24.3.18, “The INFORMATION_SCHEMA PROCESSLIST Table”
Section 21.6.15.33, “The ndbinfo server_locks Table”
Section 21.6.15.34, “The ndbinfo server_operations Table”
Section 21.6.15.35, “The ndbinfo server_transactions Table”
Section 26.4.3.22, “The processlist and x$processlist Views”
Section 25.12.16.3, “The processlist Table”
Section 26.4.5.13, “The ps_is_thread_instrumented() Function”
Section 26.4.4.7, “The ps_setup_disable_thread() Procedure”
Section 26.4.4.11, “The ps_setup_enable_thread() Procedure”
Section 26.4.5.15, “The ps_thread_id() Function”
Section 25.12.16.4, “The threads Table”

5167

Section B.3.2.5, “Too many connections”
Section 16.4.4, “Troubleshooting Replication”
Section 1.3, “What Is New in MySQL 5.7”

SHOW PROFILE
Section 8.14.3, “General Thread States”
Section 2.8.7, “MySQL Source-Configuration Options”
Section 25.19.1, “Query Profiling Using Performance Schema”
Section 5.1.7, “Server System Variables”
Section 13.7.5.30, “SHOW PROFILE Statement”
Section 13.7.5.31, “SHOW PROFILES Statement”
Section 24.3.19, “The INFORMATION_SCHEMA PROFILING Table”

SHOW PROFILES
Section 2.8.7, “MySQL Source-Configuration Options”
Section 25.19.1, “Query Profiling Using Performance Schema”
Section 5.1.7, “Server System Variables”
Section 13.7.5.30, “SHOW PROFILE Statement”
Section 13.7.5.31, “SHOW PROFILES Statement”
Section 24.3.19, “The INFORMATION_SCHEMA PROFILING Table”

SHOW RELAYLOG EVENTS
Section 16.2.2.1, “Commands for Operations on a Single Channel”
Section 16.2.2.2, “Compatibility with Previous Replication Statements”
Section 6.2.2, “Privileges Provided by MySQL”
Section 13.7.5.2, “SHOW BINLOG EVENTS Statement”
Section 13.7.5.32, “SHOW RELAYLOG EVENTS Statement”
Section 16.1.7.3, “Skipping Transactions”
Skipping Transactions With GTIDs
Section 13.4.2, “SQL Statements for Controlling Replica Servers”

SHOW REPLICA | SLAVE STATUS
Section A.14, “MySQL 5.7 FAQ: Replication”

SHOW SCHEMAS
Section 13.7.5.14, “SHOW DATABASES Statement”

SHOW SESSION STATUS
NDB Cluster Status Variables
Section 24.3.10, “The INFORMATION_SCHEMA GLOBAL_STATUS and SESSION_STATUS Tables”

SHOW SESSION VARIABLES
Section 24.3.11, “The INFORMATION_SCHEMA GLOBAL_VARIABLES and SESSION_VARIABLES
Tables”

SHOW SLAVE HOSTS
Section 16.1.7.1, “Checking Replication Status”
Section 6.2.2, “Privileges Provided by MySQL”
Section 16.1.6.3, “Replica Server Options and Variables”
Section 16.1.6, “Replication and Binary Logging Options and Variables”
Section 16.1.6.2, “Replication Source Options and Variables”

5168

Section 13.4.1, “SQL Statements for Controlling Replication Source Servers”

SHOW SLAVE STATUS
Section 16.1.2.6, “Adding Replicas to a Replication Topology”
Section 13.4.2.1, “CHANGE MASTER TO Statement”
Section 16.1.7.1, “Checking Replication Status”
Section 16.2.2.1, “Commands for Operations on a Single Channel”
Section 16.2.2.2, “Compatibility with Previous Replication Statements”
Section 16.3.10, “Delayed Replication”
Section B.2, “Error Information Interfaces”
Section 16.1.6.5, “Global Transaction ID System Variables”
Section 16.4.5, “How to Report Replication Bugs or Problems”
Section 21.7.8, “Implementing Failover with NDB Cluster Replication”
Section 21.7.3, “Known Issues in NDB Cluster Replication”
Section 16.2.3.1, “Monitoring Replication Main Threads”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 25.12.11, “Performance Schema Replication Tables”
Section 6.2.2, “Privileges Provided by MySQL”
Section 13.4.1.1, “PURGE BINARY LOGS Statement”
Section 16.4.1.27, “Replica Errors During Replication”
Section 16.1.6.3, “Replica Server Options and Variables”
Section 16.1.6, “Replication and Binary Logging Options and Variables”
Section 16.4.1.32, “Replication and Transaction Inconsistencies”
Section 16.2.4.2, “Replication Metadata Repositories”
Section 16.1.4.1, “Replication Mode Concepts”
Section 8.14.6, “Replication Replica I/O Thread States”
Section 16.2.3, “Replication Threads”
Section 16.1.3.6, “Restrictions on Replication with GTIDs”
Section 16.3.8, “Setting Up Replication to Use Encrypted Connections”
Section 13.7.5.23, “SHOW MASTER STATUS Statement”
Section 13.7.5.34, “SHOW SLAVE STATUS Statement”
Section 13.4.2, “SQL Statements for Controlling Replica Servers”
Section 13.4.2.5, “START SLAVE Statement”
Section 16.1.5.5, “Starting Multi-Source Replicas”
Section 25.12.11.3, “The replication_applier_configuration Table”
Section 25.12.11.4, “The replication_applier_status Table”
Section 25.12.11.5, “The replication_applier_status_by_coordinator Table”
Section 25.12.11.6, “The replication_applier_status_by_worker Table”
Section 25.12.11.1, “The replication_connection_configuration Table”
Section 25.12.11.2, “The replication_connection_status Table”
Section 16.4.4, “Troubleshooting Replication”
Section 1.3, “What Is New in MySQL 5.7”

SHOW STATUS
Section 2.10.3, “Changes in MySQL 5.7”
Section 16.1.7.1, “Checking Replication Status”
Section 21.4.3.7, “Defining SQL and Other API Nodes in an NDB Cluster”
Section 21.6, “Management of NDB Cluster”
Section 25.20, “Migrating to Performance Schema System and Status Variable Tables”
MySQL Server Options for NDB Cluster
Section 21.6.14, “NDB API Statistics Counters and Variables”
Section 21.7, “NDB Cluster Replication”
Section 25.12.11, “Performance Schema Replication Tables”

5169

Section 25.15, “Performance Schema System Variables”
Section 8.10.3.4, “Query Cache Status and Maintenance”
Section 21.6.17, “Quick Reference: NDB Cluster SQL Statements”
Section 16.4.1.29, “Replication and Temporary Tables”
Section 16.4.1.30, “Replication Retries and Timeouts”
Section 23.8, “Restrictions on Stored Programs”
Section 16.3.9.3, “Semisynchronous Replication Monitoring”
Section 5.1.9, “Server Status Variables”
Section 5.1.7, “Server System Variables”
Section 13.7.5.35, “SHOW STATUS Statement”
Section 8.3.9, “Use of Index Extensions”
Section 1.3, “What Is New in MySQL 5.7”

SHOW STATUS LIKE 'perf%'
Section 25.7, “Performance Schema Status Monitoring”

SHOW TABLE STATUS
Section 12.19.1, “Aggregate Function Descriptions”
Section 14.6.1.6, “AUTO_INCREMENT Handling in InnoDB”
Section 14.8.11.2, “Configuring Non-Persistent Optimizer Statistics Parameters”
Section 13.1.18, “CREATE TABLE Statement”
Section 14.6.1.1, “Creating InnoDB Tables”
Section 13.8.2, “EXPLAIN Statement”
Section 14.12.2, “File Space Management”
Section 14.24, “InnoDB Restrictions and Limitations”
Section 14.11, “InnoDB Row Formats”
Section 14.15, “InnoDB Startup Options and System Variables”
MySQL Glossary
Section 22.3.5, “Obtaining Information About Partitions”
Section 13.7.5.5, “SHOW COLUMNS Statement”
Section 13.7.5.10, “SHOW CREATE TABLE Statement”
Section 13.7.5.36, “SHOW TABLE STATUS Statement”
Section 15.5, “The ARCHIVE Storage Engine”
Section 24.3.25, “The INFORMATION_SCHEMA TABLES Table”

SHOW TABLES
Section 3.3.2, “Creating a Table”
Section 24.8, “Extensions to SHOW Statements”
Section 9.2.3, “Identifier Case Sensitivity”
Section 14.16, “InnoDB INFORMATION_SCHEMA Tables”
Section 24.1, “Introduction”
Section 9.2.4, “Mapping of Identifiers to File Names”
MySQL Glossary
Section 21.7.10, “NDB Cluster Replication: Bidirectional and Circular Replication”
Section 21.5.24, “ndb_restore — Restore an NDB Cluster Backup”
Section 21.6.15, “ndbinfo: The NDB Cluster Information Database”
Section 5.1.6, “Server Command Options”
Section 13.7.5.36, “SHOW TABLE STATUS Statement”
Section 13.7.5.37, “SHOW TABLES Statement”
Section B.3.2.14, “Table 'tbl_name' doesn't exist”
Section B.3.6.2, “TEMPORARY Table Problems”
Section 24.3.25, “The INFORMATION_SCHEMA TABLES Table”
Section 6.4.6.3, “Using MySQL Enterprise Firewall”

5170

SHOW TABLES FROM some_ndb_database
Section 21.6.18.2, “NDB Cluster and MySQL Privileges”

SHOW TRIGGERS
Section A.5, “MySQL 5.7 FAQ: Triggers”
Section 13.7.5.38, “SHOW TRIGGERS Statement”
Section 24.3.29, “The INFORMATION_SCHEMA TRIGGERS Table”
Section 23.3.2, “Trigger Metadata”

SHOW VARIABLES
Section 2.10.3, “Changes in MySQL 5.7”
Section 23.4.2, “Event Scheduler Configuration”
Section 14.6.1.3, “Importing InnoDB Tables”
Section 6.4.4.12, “Keyring System Variables”
Section 6.4.5.10, “Legacy Mode Audit Log Filtering”
Section 25.20, “Migrating to Performance Schema System and Status Variable Tables”
Section 16.1.5.8, “Multi-Source Replication Monitoring”
Section A.11, “MySQL 5.7 FAQ: MySQL Chinese, Japanese, and Korean Character Sets”
Section 25.3, “Performance Schema Startup Configuration”
Section 25.15, “Performance Schema System Variables”
Section 21.6.17, “Quick Reference: NDB Cluster SQL Statements”
Section 16.1.6.3, “Replica Server Options and Variables”
Section 5.7, “Running Multiple MySQL Instances on One Machine”
Section 16.3.9.3, “Semisynchronous Replication Monitoring”
Section 5.1.6, “Server Command Options”
Section 5.1.7, “Server System Variables”
Section 13.7.4.1, “SET Syntax for Variable Assignment”
Section 13.7.5.39, “SHOW VARIABLES Statement”
Section 21.7.6, “Starting NDB Cluster Replication (Single Replication Channel)”
Section 5.1.8, “Using System Variables”
Section 1.3, “What Is New in MySQL 5.7”
Section 6.4.5.8, “Writing Audit Log Filter Definitions”

SHOW WARNINGS
Section 16.2.1.1, “Advantages and Disadvantages of Statement-Based and Row-Based Replication”
Section 13.1.8, “ALTER TABLE Statement”
Section 10.14.4.3, “Diagnostics During Index.xml Parsing”
Section 13.1.27, “DROP PROCEDURE and DROP FUNCTION Statements”
Section 13.1.29, “DROP TABLE Statement”
Section B.2, “Error Information Interfaces”
Section 8.8.2, “EXPLAIN Output Format”
Section 13.8.2, “EXPLAIN Statement”
Section 8.8.3, “Extended EXPLAIN Output Format”
Section 9.2.5, “Function Name Parsing and Resolution”
Section 13.6.7.3, “GET DIAGNOSTICS Statement”
Section 13.2.6, “LOAD DATA Statement”
Section 5.4.4.3, “Mixed Binary Logging Format”
Section 4.5.1.6, “mysql Client Tips”
Section 8.9.3, “Optimizer Hints”
Section 8.3.10, “Optimizer Use of Generated Column Indexes”
Section 8.8.1, “Optimizing Queries with EXPLAIN”
Section 8.2.2.2, “Optimizing Subqueries with Materialization”
Section 8.2.2.3, “Optimizing Subqueries with the EXISTS Strategy”

5171

Section 8.2.2.1, “Optimizing Subqueries, Derived Tables, and View References with Semijoin
Transformations”
Section 1.6.3.1, “PRIMARY KEY and UNIQUE Index Constraints”
Section 12.21.4, “Rounding Behavior”
Section 13.1.18.8, “Secondary Indexes and Generated Columns”
Section 5.1.7, “Server System Variables”
Section 13.7.5.17, “SHOW ERRORS Statement”
Section 13.7.5.40, “SHOW WARNINGS Statement”
Section 13.6.7.5, “SIGNAL Statement”
Section 13.6.7.7, “The MySQL Diagnostics Area”
Section 5.5.4.2, “Using the Rewriter Query Rewrite Plugin”

SHUTDOWN
Section 6.2.2, “Privileges Provided by MySQL”
Section 5.1.9, “Server Status Variables”
Section 13.7.6.7, “SHUTDOWN Statement”
Section 4.10, “Unix Signal Handling in MySQL”
Section 1.3, “What Is New in MySQL 5.7”

SIGNAL
Section 13.6.7, “Condition Handling”
Section 13.6.7.1, “DECLARE ... CONDITION Statement”
Section 13.6.7.2, “DECLARE ... HANDLER Statement”
Section 12.15, “Information Functions”
Section 13.6.7.4, “RESIGNAL Statement”
Section 13.6.7.9, “Restrictions on Condition Handling”
Section 23.8, “Restrictions on Stored Programs”
Section 13.6.7.6, “Scope Rules for Handlers”
Section 13.6.7.5, “SIGNAL Statement”
Section 13.6.7.7, “The MySQL Diagnostics Area”

SQL_AFTER_MTS_GAPS
Section 13.7.5.34, “SHOW SLAVE STATUS Statement”

START GROUP_REPLICATION
Section 17.2.1.5, “Bootstrapping the Group”
Section 17.8, “Frequently Asked Questions”
Section 17.6.1, “Group Replication IP Address Allowlisting”
Section 17.7.1, “Group Replication System Variables”
Section 17.5.3, “Network Partitioning”
Section 17.5.4, “Restarting a Group”
Section 1.3, “What Is New in MySQL 5.7”

START REPLICA
Section 16.4.3, “Upgrading a Replication Topology”

START SLAVE
Section 16.1.2.6, “Adding Replicas to a Replication Topology”
Section 16.1.6.4, “Binary Logging Options and Variables”
Section 13.4.2.1, “CHANGE MASTER TO Statement”
Section 16.2.2.1, “Commands for Operations on a Single Channel”
Section 16.2.2.2, “Compatibility with Previous Replication Statements”

5172

Section 16.3.10, “Delayed Replication”
Section 16.1.6.5, “Global Transaction ID System Variables”
Section 16.1.3.1, “GTID Format and Storage”
Section 21.7.8, “Implementing Failover with NDB Cluster Replication”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 21.7.10, “NDB Cluster Replication: Bidirectional and Circular Replication”
Section 21.5.24, “ndb_restore — Restore an NDB Cluster Backup”
Section 6.1.2.3, “Passwords and Logging”
Section 16.1.7.2, “Pausing Replication on the Replica”
Section 25.12.11, “Performance Schema Replication Tables”
Section 16.4.1.27, “Replica Errors During Replication”
Section 16.1.6.3, “Replica Server Options and Variables”
Section 16.3.5, “Replicating Different Databases to Different Replicas”
Section 16.1.6, “Replication and Binary Logging Options and Variables”
Section 16.4.1.32, “Replication and Transaction Inconsistencies”
Section 16.2.3, “Replication Threads”
Section 13.4.2.3, “RESET SLAVE Statement”
Section 16.3.9.2, “Semisynchronous Replication Installation and Configuration”
Section 13.7.5.34, “SHOW SLAVE STATUS Statement”
Section 16.1.7.3, “Skipping Transactions”
Skipping Transactions With GTIDs
Skipping Transactions With SET GLOBAL sql_slave_skip_counter
Section 16.1.5.5, “Starting Multi-Source Replicas”
Section 21.7.6, “Starting NDB Cluster Replication (Single Replication Channel)”
Section 13.3.3, “Statements That Cause an Implicit Commit”
Section 13.4.2.6, “STOP SLAVE Statement”
Section 16.3.7, “Switching Sources During Failover”
Section 16.4.4, “Troubleshooting Replication”
Section 16.4.3, “Upgrading a Replication Topology”
Section 21.7.7, “Using Two Replication Channels for NDB Cluster Replication”

START SLAVE SQL_THREAD
Section 13.4.2.2, “CHANGE REPLICATION FILTER Statement”

START SLAVE UNTIL
Section 16.1.6.3, “Replica Server Options and Variables”

START SLAVE UNTIL SQL_AFTER_MTS_GAPS
Section 13.4.2.1, “CHANGE MASTER TO Statement”
Section 16.3.2, “Handling an Unexpected Halt of a Replica”
Section 16.1.6.3, “Replica Server Options and Variables”
Section 16.4.1.32, “Replication and Transaction Inconsistencies”
Section 13.7.5.34, “SHOW SLAVE STATUS Statement”

START TRANSACTION
Section 14.7.2.2, “autocommit, Commit, and Rollback”
Section 13.6.1, “BEGIN ... END Compound Statement”
Section 13.7.6.3, “FLUSH Statement”
Section 14.7.5.3, “How to Minimize and Handle Deadlocks”
Section 13.3.5, “LOCK TABLES and UNLOCK TABLES Statements”
Section 14.7.2.4, “Locking Reads”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.6, “mysqlpump — A Database Backup Program”

5173

Section 8.5.3, “Optimizing InnoDB Read-Only Transactions”
Section 25.12.7, “Performance Schema Transaction Tables”
Section 23.8, “Restrictions on Stored Programs”
Section 16.3.9, “Semisynchronous Replication”
Section 5.1.7, “Server System Variables”
Section 5.1.15, “Server Tracking of Client Session State”
Section 13.3.6, “SET TRANSACTION Statement”
Section 13.3.1, “START TRANSACTION, COMMIT, and ROLLBACK Statements”
Section 13.3.3, “Statements That Cause an Implicit Commit”
Section 25.12.7.1, “The events_transactions_current Table”
Section 13.3, “Transactional and Locking Statements”
Section 23.3.1, “Trigger Syntax and Examples”
Section 13.3.7.2, “XA Transaction States”

START TRANSACTION READ ONLY
MySQL Glossary
Section 8.5.3, “Optimizing InnoDB Read-Only Transactions”

START TRANSACTION WITH CONSISTENT SNAPSHOT
Section 14.7.2.3, “Consistent Nonlocking Reads”

STATS_PERSISTENT=0
Section 14.8.11.2, “Configuring Non-Persistent Optimizer Statistics Parameters”

STATS_PERSISTENT=1
Section 14.8.11.1, “Configuring Persistent Optimizer Statistics Parameters”

STOP GROUP REPLICATION
Section 17.7.1, “Group Replication System Variables”
Section 13.4.2.3, “RESET SLAVE Statement”

STOP GROUP_REPLICATION
Section 17.8, “Frequently Asked Questions”
Section 17.6.1, “Group Replication IP Address Allowlisting”
Section 17.7.1, “Group Replication System Variables”
Section 17.5.4, “Restarting a Group”
Section 13.4.3.2, “STOP GROUP_REPLICATION Statement”
Section 1.3, “What Is New in MySQL 5.7”

STOP SLAVE
Section 16.1.2.6, “Adding Replicas to a Replication Topology”
Section 16.1.6.4, “Binary Logging Options and Variables”
Section 13.4.2.1, “CHANGE MASTER TO Statement”
Section 16.1.7.1, “Checking Replication Status”
Section 16.2.2.1, “Commands for Operations on a Single Channel”
Section 16.2.2.2, “Compatibility with Previous Replication Statements”
Section 16.3.10, “Delayed Replication”
Section 16.1.6.5, “Global Transaction ID System Variables”
Section 16.1.3.2, “GTID Life Cycle”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 16.1.7.2, “Pausing Replication on the Replica”
Section 25.12.11, “Performance Schema Replication Tables”

5174

Section 16.1.6.3, “Replica Server Options and Variables”
Section 16.1.6, “Replication and Binary Logging Options and Variables”
Section 16.4.1.32, “Replication and Transaction Inconsistencies”
Section 13.4.1.2, “RESET MASTER Statement”
Section 13.4.2.3, “RESET SLAVE Statement”
Section 16.3.9.2, “Semisynchronous Replication Installation and Configuration”
Section 13.3.3, “Statements That Cause an Implicit Commit”
Section 13.4.2.6, “STOP SLAVE Statement”
Section 16.1.5.6, “Stopping Multi-Source Replicas”
Section 16.3.7, “Switching Sources During Failover”
Section 25.12.11.6, “The replication_applier_status_by_worker Table”
Section 16.2.1.2, “Usage of Row-Based Logging and Replication”
Section 1.3, “What Is New in MySQL 5.7”

STOP SLAVE SQL_THREAD
Section 13.4.2.2, “CHANGE REPLICATION FILTER Statement”
Section 16.2.1.2, “Usage of Row-Based Logging and Replication”

T

[index top]

TABLE
Section 22.2.2, “LIST Partitioning”
Section 21.6.15.27, “The ndbinfo memory_per_fragment Table”

TRUNCATE PARTITION
Section 14.13.1, “Online DDL Operations”

TRUNCATE TABLE
Section 14.21.5.5, “Adapting DML Statements to memcached Operations”
Section 21.6.7.1, “Adding NDB Cluster Data Nodes Online: General Issues”
Section 21.6.1, “Commands in the NDB Cluster Management Client”
Section 15.2.3.3, “Compressed Table Characteristics”
Section 14.6.1.5, “Converting Tables from MyISAM to InnoDB”
Section 13.1.20, “CREATE TRIGGER Statement”
Section 13.2.2, “DELETE Statement”
Section 5.1.11.2, “DNS Lookups and the Host Cache”
Section 25.4.3, “Event Pre-Filtering”
Section 15.8.3, “FEDERATED Storage Engine Notes and Tips”
Section 25.12.15.6, “File I/O Summary Tables”
Section 14.6.3.2, “File-Per-Table Tablespaces”
Section 13.2.4, “HANDLER Statement”
Section 8.10.3.1, “How the Query Cache Operates”
Section 14.21.7, “InnoDB memcached Plugin Internals”
Section 21.2.7.2, “Limits and Differences of NDB Cluster from Standard MySQL Limits”
Section 21.2.7.3, “Limits Relating to Transaction Handling in NDB Cluster”
Section 13.3.5, “LOCK TABLES and UNLOCK TABLES Statements”
Section 5.4.4.4, “Logging Format for Changes to mysql Database Tables”
Section 22.3.4, “Maintenance of Partitions”
Section 22.3.1, “Management of RANGE and LIST Partitions”
Section 25.12.15.9, “Memory Summary Tables”
Section 15.7.2, “MERGE Table Problems”

5175

MySQL Glossary
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.6, “mysqlpump — A Database Backup Program”
Section 21.5.9, “ndb_delete_all — Delete All Rows from an NDB Table”
Section 25.12.15.5, “Object Wait Summary Table”
Section 8.5.7, “Optimizing InnoDB DDL Operations”
Section 25.12.8, “Performance Schema Connection Tables”
Section 25.4.1, “Performance Schema Event Timing”
Section 25.11, “Performance Schema General Table Characteristics”
Section 25.12.14, “Performance Schema Status Variable Tables”
Section 25.12.15, “Performance Schema Summary Tables”
Section 25.12.13, “Performance Schema System Variable Tables”
Section 25.12.10, “Performance Schema User-Defined Variable Tables”
Section 21.7.9.2, “Point-In-Time Recovery Using NDB Cluster Replication”
Section 6.2.2, “Privileges Provided by MySQL”
Section 16.4.1.20, “Replication and MEMORY Tables”
Section 16.4.1.35, “Replication and TRUNCATE TABLE”
Section 5.4.1, “Selecting General Query Log and Slow Query Log Output Destinations”
Section 5.1.7, “Server System Variables”
Section 25.12.15.8, “Socket Summary Tables”
Section 25.12.15.2, “Stage Summary Tables”
Section 25.12.15.3, “Statement Summary Tables”
Section 13.3.3, “Statements That Cause an Implicit Commit”
Section 25.12.15.10, “Status Variable Summary Tables”
Section 25.12.8.1, “The accounts Table”
Section 25.12.3.1, “The cond_instances Table”
Section 25.12.5.1, “The events_stages_current Table”
Section 25.12.5.2, “The events_stages_history Table”
Section 25.12.5.3, “The events_stages_history_long Table”
Section 25.12.6.1, “The events_statements_current Table”
Section 25.12.6.2, “The events_statements_history Table”
Section 25.12.6.3, “The events_statements_history_long Table”
Section 25.12.7.1, “The events_transactions_current Table”
Section 25.12.7.2, “The events_transactions_history Table”
Section 25.12.7.3, “The events_transactions_history_long Table”
Section 25.12.4.1, “The events_waits_current Table”
Section 25.12.4.2, “The events_waits_history Table”
Section 25.12.4.3, “The events_waits_history_long Table”
Section 25.12.3.2, “The file_instances Table”
Section 25.12.16.1, “The host_cache Table”
Section 25.12.8.2, “The hosts Table”
Section 24.4.22, “The INFORMATION_SCHEMA INNODB_SYS_INDEXES Table”
Section 24.4.23, “The INFORMATION_SCHEMA INNODB_SYS_TABLES Table”
Section 14.21.6, “The InnoDB memcached Plugin and Replication”
Section 15.3, “The MEMORY Storage Engine”
Section 25.12.12.1, “The metadata_locks Table”
Section 25.12.3.3, “The mutex_instances Table”
Section 25.12.16.2, “The performance_timers Table”
Section 25.12.6.4, “The prepared_statements_instances Table”
Section 25.12.16.3, “The processlist Table”
Section 26.4.4.24, “The ps_truncate_all_tables() Procedure”
Section 25.12.11.3, “The replication_applier_configuration Table”
Section 25.12.11.4, “The replication_applier_status Table”
Section 25.12.11.5, “The replication_applier_status_by_coordinator Table”

5176

Section 25.12.11.6, “The replication_applier_status_by_worker Table”
Section 25.12.11.1, “The replication_connection_configuration Table”
Section 25.12.11.2, “The replication_connection_status Table”
Section 25.12.11.7, “The replication_group_member_stats Table”
Section 25.12.11.8, “The replication_group_members Table”
Section 25.12.3.4, “The rwlock_instances Table”
Section 25.12.9.1, “The session_account_connect_attrs Table”
Section 25.12.9.2, “The session_connect_attrs Table”
Section 25.12.2.1, “The setup_actors Table”
Section 25.12.2.2, “The setup_consumers Table”
Section 25.12.2.3, “The setup_instruments Table”
Section 25.12.2.4, “The setup_objects Table”
Section 25.12.2.5, “The setup_timers Table”
Section 25.12.3.5, “The socket_instances Table”
Section 25.12.12.2, “The table_handles Table”
The table_io_waits_summary_by_index_usage Table
The table_io_waits_summary_by_table Table
The table_lock_waits_summary_by_table Table
Section 25.12.16.4, “The threads Table”
Section 25.12.8.3, “The users Table”
Section 25.12.15.4, “Transaction Summary Tables”
Section 13.1.34, “TRUNCATE TABLE Statement”
Section 25.12.15.1, “Wait Event Summary Tables”
Section 1.3, “What Is New in MySQL 5.7”
Section 6.4.5.8, “Writing Audit Log Filter Definitions”

TRUNCATE TABLE performance_schema.host_cache
Section 13.7.6.3, “FLUSH Statement”

U

[index top]

UNINSTALL PLUGIN
Section 6.4.5.7, “Audit Log Filtering”
Section 6.4.5.11, “Audit Log Reference”
Section 13.7.6.3, “FLUSH Statement”
Section 6.4.4.8, “General-Purpose Keyring Key-Management Functions”
Section 8.12.4.1, “How MySQL Uses Memory”
Section 13.7.3.3, “INSTALL PLUGIN Statement”
Section 5.5.1, “Installing and Uninstalling Plugins”
Section 6.5.2, “Installing or Uninstalling MySQL Enterprise Data Masking and De-Identification”
Section 5.5.5.2, “Installing or Uninstalling Version Tokens”
Section 6.4.1.9, “LDAP Pluggable Authentication”
Section 4.4.3, “mysql_plugin — Configure MySQL Server Plugins”
Section 6.4.1.10, “No-Login Pluggable Authentication”
Section 6.4.1.7, “PAM Pluggable Authentication”
Section 25.18, “Performance Schema and Plugins”
Section 15.11.1, “Pluggable Storage Engine Architecture”
Section 13.7.5.25, “SHOW PLUGINS Statement”
Section 6.4.1.11, “Socket Peer-Credential Pluggable Authentication”
Section 13.3.3, “Statements That Cause an Implicit Commit”
Section 6.4.1.12, “Test Pluggable Authentication”

5177

Section 24.3.17, “The INFORMATION_SCHEMA PLUGINS Table”
Section 13.7.3.4, “UNINSTALL PLUGIN Statement”
Section 6.4.4.5, “Using the keyring_aws Amazon Web Services Keyring Plugin”
Section 6.4.1.8, “Windows Pluggable Authentication”

UNION
Section 2.10.3, “Changes in MySQL 5.7”
Section 12.8.3, “Character Set and Collation of Function Results”
Section 13.1.18, “CREATE TABLE Statement”
Section 13.1.21, “CREATE VIEW Statement”
Section 8.8.2, “EXPLAIN Output Format”
Section 12.15, “Information Functions”
Section 13.2.5.2, “INSERT ... ON DUPLICATE KEY UPDATE Statement”
Section 8.4.4, “Internal Temporary Table Use in MySQL”
Section 14.7.3, “Locks Set by Different SQL Statements in InnoDB”
Section 11.1.6, “Numeric Type Attributes”
Section 8.2.2.4, “Optimizing Derived Tables and View References with Merging or Materialization”
Section 8.2.2.1, “Optimizing Subqueries, Derived Tables, and View References with Semijoin
Transformations”
Section 8.2.1.2, “Range Optimization”
Section 3.6.7, “Searching on Two Keys”
Section 13.2.9.1, “SELECT ... INTO Statement”
Section 13.2.9, “SELECT Statement”
Section 5.1.9, “Server Status Variables”
Section 13.2.10, “Subqueries”
Section 15.7, “The MERGE Storage Engine”
Section 13.2.9.3, “UNION Clause”
Section 23.5.3, “Updatable and Insertable Views”
Section 8.4.2.4, “Using PROCEDURE ANALYSE”
Section 23.5.1, “View Syntax”
Section 12.11, “XML Functions”

UNION ALL
Section 12.15, “Information Functions”
Section 8.4.4, “Internal Temporary Table Use in MySQL”
Section 8.2.2.4, “Optimizing Derived Tables and View References with Merging or Materialization”
Section 13.2.9.3, “UNION Clause”
Section 23.5.3, “Updatable and Insertable Views”

UNION DISTINCT
Section 13.2.9.3, “UNION Clause”

UNLOCK TABLES
Section 8.6.2, “Bulk Data Loading for MyISAM Tables”
Section 7.2, “Database Backup Methods”
Section 13.7.6.3, “FLUSH Statement”
Section 14.7.5.3, “How to Minimize and Handle Deadlocks”
Section 14.6.1.3, “Importing InnoDB Tables”
Section 13.3.5, “LOCK TABLES and UNLOCK TABLES Statements”
Section 14.7.3, “Locks Set by Different SQL Statements in InnoDB”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.6, “mysqlpump — A Database Backup Program”
Section 23.8, “Restrictions on Stored Programs”

5178

Section 13.3.1, “START TRANSACTION, COMMIT, and ROLLBACK Statements”
Section 13.3.3, “Statements That Cause an Implicit Commit”
Section 8.12.1, “System Factors”

UPDATE
Section 6.2, “Access Control and Account Management”
Section 6.2.6, “Access Control, Stage 2: Request Verification”
Section 6.2.7, “Adding Accounts, Assigning Privileges, and Dropping Accounts”
Section 16.2.1.1, “Advantages and Disadvantages of Statement-Based and Row-Based Replication”
Section 12.4.4, “Assignment Operators”
Section 6.4.5.7, “Audit Log Filtering”
Section 6.4.5.11, “Audit Log Reference”
Section 14.6.1.6, “AUTO_INCREMENT Handling in InnoDB”
Section 14.1.2, “Best Practices for InnoDB Tables”
Section 16.1.6.4, “Binary Logging Options and Variables”
Section 12.1, “Built-In Function and Operator Reference”
Section 8.5.5, “Bulk Data Loading for InnoDB Tables”
Section 8.6.2, “Bulk Data Loading for MyISAM Tables”
Section 8.10.4, “Caching of Prepared Statements and Stored Programs”
Section 14.5.2, “Change Buffer”
Section 2.10.3, “Changes in MySQL 5.7”
Section 13.7.2.2, “CHECK TABLE Statement”
Section 10.7, “Column Character Set Conversion”
Section 14.9.1.6, “Compression for OLTP Workloads”
Section 14.8.12, “Configuring the Merge Threshold for Index Pages”
Section 14.7.2.3, “Consistent Nonlocking Reads”
Section 1.6.3.3, “Constraints on Invalid Data”
Section 14.6.1.5, “Converting Tables from MyISAM to InnoDB”
Section 13.1.18.7, “CREATE TABLE and Generated Columns”
Section 13.1.18.2, “CREATE TEMPORARY TABLE Statement”
Section 13.1.20, “CREATE TRIGGER Statement”
Section 13.1.21, “CREATE VIEW Statement”
Section 15.8.2.1, “Creating a FEDERATED Table Using CONNECTION”
Section 11.6, “Data Type Default Values”
Section 11.2.1, “Date and Time Data Type Syntax”
Section 14.7.5, “Deadlocks in InnoDB”
Section 2.11.3, “Downgrade Notes”
Section 8.8.2, “EXPLAIN Output Format”
Section 13.8.2, “EXPLAIN Statement”
Section 8.8.3, “Extended EXPLAIN Output Format”
Section 15.8.3, “FEDERATED Storage Engine Notes and Tips”
Section 14.22.2, “Forcing InnoDB Recovery”
Section 1.6.2.3, “FOREIGN KEY Constraint Differences”
Section 13.1.18.5, “FOREIGN KEY Constraints”
Section 12.9.5, “Full-Text Restrictions”
Section 8.2.1.18, “Function Call Optimization”
Chapter 12, Functions and Operators
Section 8.14.3, “General Thread States”
Section 13.7.1.4, “GRANT Statement”
Section 6.2.3, “Grant Tables”
Section 8.10.3.1, “How the Query Cache Operates”
Section 21.6.9, “Importing Data Into MySQL Cluster”
Section 8.9.4, “Index Hints”

5179

Section 12.15, “Information Functions”
Section 14.7.1, “InnoDB Locking”
Section 14.15, “InnoDB Startup Options and System Variables”
Section 13.2.5.2, “INSERT ... ON DUPLICATE KEY UPDATE Statement”
Section 13.2.5, “INSERT Statement”
Section 16.2.5.3, “Interactions Between Replication Filtering Options”
Section 8.11.1, “Internal Locking Methods”
Section 8.4.4, “Internal Temporary Table Use in MySQL”
Section 24.1, “Introduction”
Section 13.2.9.2, “JOIN Clause”
Section 13.7.6.4, “KILL Statement”
Section B.3.7, “Known Issues in MySQL”
Section 21.7.3, “Known Issues in NDB Cluster Replication”
Section 13.2.6, “LOAD DATA Statement”
Section 13.3.5, “LOCK TABLES and UNLOCK TABLES Statements”
Section 14.7.2.4, “Locking Reads”
Section 14.7.3, “Locks Set by Different SQL Statements in InnoDB”
Section 5.4.4.4, “Logging Format for Changes to mysql Database Tables”
Section 12.20, “Miscellaneous Functions”
Section A.4, “MySQL 5.7 FAQ: Stored Procedures and Functions”
Section 4.5.1.1, “mysql Client Options”
Section 4.5.1.6, “mysql Client Tips”
Section 1.6.1, “MySQL Extensions to Standard SQL”
MySQL Glossary
Section 4.6.7.2, “mysqlbinlog Row Event Display”
Section 21.6.11.1, “NDB Cluster Disk Data Objects”
Section 21.7.11, “NDB Cluster Replication Conflict Resolution”
Section 8.8.4, “Obtaining Execution Plan Information for a Named Connection”
Section 14.13.1, “Online DDL Operations”
Section 12.4, “Operators”
Section 8.9.3, “Optimizer Hints”
Section 8.2.4, “Optimizing Data Change Statements”
Section 8.8.1, “Optimizing Queries with EXPLAIN”
Section 8.2.2, “Optimizing Subqueries, Derived Tables, and View References”
Section 11.1.7, “Out-of-Range and Overflow Handling”
Section 22.1, “Overview of Partitioning in MySQL”
Section 22.4, “Partition Pruning”
Section 22.5, “Partition Selection”
Section 22.6.4, “Partitioning and Locking”
Section 6.1.2.3, “Passwords and Logging”
Section 25.4.6, “Pre-Filtering by Thread”
Section 1.6.3.1, “PRIMARY KEY and UNIQUE Index Constraints”
Section 6.2.2, “Privileges Provided by MySQL”
Section B.3.4.2, “Problems Using DATE Columns”
Section 14.8.10, “Purge Configuration”
Section 8.2.1.2, “Range Optimization”
Section 16.4.1.27, “Replica Errors During Replication”
Section 16.1.6.3, “Replica Server Options and Variables”
Section 16.4.1.17, “Replication and LIMIT”
Section 16.4.1.22, “Replication and the Query Optimizer”
Section 16.4.1.34, “Replication and Triggers”
Section 22.6, “Restrictions and Limitations on Partitioning”
Section 13.2.10.11, “Rewriting Subqueries as Joins”
Section 13.1.18.8, “Secondary Indexes and Generated Columns”

5180

Section 3.3.4.1, “Selecting All Data”
Section 5.4.1, “Selecting General Query Log and Slow Query Log Output Destinations”
Section 5.1.10, “Server SQL Modes”
Section 5.1.9, “Server Status Variables”
Section 5.1.7, “Server System Variables”
Section 13.7.5.36, “SHOW TABLE STATUS Statement”
Section 13.7.5.40, “SHOW WARNINGS Statement”
Statement Probes
Section 13.2.10, “Subqueries”
Section 13.2.10.9, “Subquery Errors”
Section 8.11.2, “Table Locking Issues”
Section 15.5, “The ARCHIVE Storage Engine”
Section 10.8.5, “The binary Collation Compared to _bin Collations”
Section 5.4.4, “The Binary Log”
Section 15.6, “The BLACKHOLE Storage Engine”
Section 24.4.25, “The INFORMATION_SCHEMA INNODB_SYS_TABLESTATS View”
Section 24.3.25, “The INFORMATION_SCHEMA TABLES Table”
Section 24.3.31, “The INFORMATION_SCHEMA VIEWS Table”
Section 1.2.2, “The Main Features of MySQL”
Section 15.7, “The MERGE Storage Engine”
Section 15.2, “The MyISAM Storage Engine”
Section 5.1.16, “The Server Shutdown Process”
Section 26.4.2.3, “The sys_config_update_set_user Trigger”
Section 8.15.3, “Traceable Statements”
Section 14.7.2.1, “Transaction Isolation Levels”
Section 23.3.1, “Trigger Syntax and Examples”
Section 6.2.17, “Troubleshooting Problems Connecting to MySQL”
Section 14.6.7, “Undo Logs”
Section 23.5.3, “Updatable and Insertable Views”
Section 1.6.2.2, “UPDATE Differences”
Section 13.2.11, “UPDATE Statement”
Section 16.2.1.2, “Usage of Row-Based Logging and Replication”
Section 1.3, “What Is New in MySQL 5.7”
Section 6.2.9, “When Privilege Changes Take Effect”
Section 8.2.1.1, “WHERE Clause Optimization”
Section 6.4.5.8, “Writing Audit Log Filter Definitions”

UPDATE ... ()
Section 14.7.2.3, “Consistent Nonlocking Reads”

UPDATE ... WHERE
Section 14.7.5, “Deadlocks in InnoDB”

UPDATE ... WHERE ...
Section 14.7.3, “Locks Set by Different SQL Statements in InnoDB”

UPDATE IGNORE
Section 5.1.10, “Server SQL Modes”
Section 13.2.11, “UPDATE Statement”

UPDATE t1,t2 ...
Statement Probes

5181

USE
Section 16.1.6.4, “Binary Logging Options and Variables”
Section 7.4.5.2, “Copy a Database from one Server to Another”
Section 13.1.16, “CREATE PROCEDURE and CREATE FUNCTION Statements”
Section 3.3.1, “Creating and Selecting a Database”
Section 3.3, “Creating and Using a Database”
Section 7.4.1, “Dumping Data in SQL Format with mysqldump”
Section 16.2.5.1, “Evaluation of Database-Level Replication and Binary Logging Options”
Section 16.2.5.3, “Interactions Between Replication Filtering Options”
Section 24.1, “Introduction”
Section 4.5.1.1, “mysql Client Options”
Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.6, “mysqlpump — A Database Backup Program”
Section 21.6.15, “ndbinfo: The NDB Cluster Information Database”
Section 7.4.2, “Reloading SQL-Format Backups”
Section 16.1.6.3, “Replica Server Options and Variables”
Section 23.2.1, “Stored Routine Syntax”
Section 13.8.4, “USE Statement”

USE db2
Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”

USE db_name
Section 4.5.1.1, “mysql Client Options”

USE test
Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”

W

[index top]

WHERE
Section 14.1.1, “Benefits of Using InnoDB Tables”

WHILE
Section 13.6.5, “Flow Control Statements”
Section 13.6.5.3, “ITERATE Statement”
Section 13.6.5.4, “LEAVE Statement”
Section 13.6.2, “Statement Labels”
Section 13.6.5.8, “WHILE Statement”

X

[index top]

XA BEGIN
Section 25.12.7, “Performance Schema Transaction Tables”

XA COMMIT
Section 2.11.4, “Downgrading Binary and Package-based Installations on Unix/Linux”

5182

Section 25.12.7, “Performance Schema Transaction Tables”
Section 5.1.7, “Server System Variables”
Section 25.12.7.1, “The events_transactions_current Table”
Section 2.10.4, “Upgrading MySQL Binary or Package-based Installations on Unix/Linux”
Section 13.3.7.2, “XA Transaction States”

XA END
Section 13.3.7.3, “Restrictions on XA Transactions”
Section 25.12.7.1, “The events_transactions_current Table”
Section 13.3.7.1, “XA Transaction SQL Statements”
Section 13.3.7.2, “XA Transaction States”

XA PREPARE
Section 5.1.7, “Server System Variables”
Section 25.12.7.1, “The events_transactions_current Table”
Section 13.3.7.2, “XA Transaction States”

XA RECOVER
Section 2.11.4, “Downgrading Binary and Package-based Installations on Unix/Linux”
Section 13.3.7.3, “Restrictions on XA Transactions”
Section 25.12.7.1, “The events_transactions_current Table”
Section 2.10.4, “Upgrading MySQL Binary or Package-based Installations on Unix/Linux”
Section 13.3.7.1, “XA Transaction SQL Statements”
Section 13.3.7.2, “XA Transaction States”

XA ROLLBACK
Section 2.11.4, “Downgrading Binary and Package-based Installations on Unix/Linux”
Section 25.12.7, “Performance Schema Transaction Tables”
Section 5.1.7, “Server System Variables”
Section 25.12.7.1, “The events_transactions_current Table”
Section 2.10.4, “Upgrading MySQL Binary or Package-based Installations on Unix/Linux”
Section 13.3.7.2, “XA Transaction States”

XA START
Section 25.12.7, “Performance Schema Transaction Tables”
Section 13.3.7.3, “Restrictions on XA Transactions”
Section 5.1.7, “Server System Variables”
Section 25.12.7.1, “The events_transactions_current Table”
Section 13.3.7.1, “XA Transaction SQL Statements”
Section 13.3.7.2, “XA Transaction States”

XA START xid
Section 13.3.7.1, “XA Transaction SQL Statements”

Status Variable Index
A | B | C | D | F | G | H | I | K | L | M | N | O | P | Q | R | S | T | U | V

A

[index top]

5183

Aborted_clients
Section B.3.2.9, “Communication Errors and Aborted Connections”
Section 5.1.9, “Server Status Variables”

Aborted_connects
Section B.3.2.9, “Communication Errors and Aborted Connections”
Section 5.1.9, “Server Status Variables”

Audit_log_current_size
Section 6.4.5.11, “Audit Log Reference”

Audit_log_event_max_drop_size
Section 6.4.5.11, “Audit Log Reference”

Audit_log_events
Section 6.4.5.11, “Audit Log Reference”

Audit_log_events_filtered
Section 6.4.5.11, “Audit Log Reference”

Audit_log_events_lost
Section 6.4.5.11, “Audit Log Reference”

Audit_log_events_written
Section 6.4.5.11, “Audit Log Reference”

Audit_log_total_size
Section 6.4.5.11, “Audit Log Reference”

Audit_log_write_waits
Section 6.4.5.11, “Audit Log Reference”

B

[index top]

Binlog_cache_disk_use
Section 16.1.6.4, “Binary Logging Options and Variables”
Section 5.1.9, “Server Status Variables”
Section 5.4.4, “The Binary Log”

Binlog_cache_use
Section 16.1.6.4, “Binary Logging Options and Variables”
Section 5.1.9, “Server Status Variables”
Section 5.4.4, “The Binary Log”

Binlog_stmt_cache_disk_use
Section 16.1.6.4, “Binary Logging Options and Variables”

5184

Section 5.1.9, “Server Status Variables”

Binlog_stmt_cache_use
Section 16.1.6.4, “Binary Logging Options and Variables”
Section 5.1.9, “Server Status Variables”

Bytes_received
Section 5.1.9, “Server Status Variables”

Bytes_sent
Section 5.1.9, “Server Status Variables”

C

[index top]

Caching_sha2_password_rsa_public_key
Section 6.4.1.4, “Caching SHA-2 Pluggable Authentication”

Com_flush
Section 5.1.9, “Server Status Variables”

Com_shutdown
Section 13.7.6.7, “SHUTDOWN Statement”

Com_stmt_reprepare
Section 8.10.4, “Caching of Prepared Statements and Stored Programs”

Compression
Section 5.1.9, “Server Status Variables”

Connection_control_delay_generated
Section 6.4.2.1, “Connection Control Plugin Installation”
Section 6.4.2.2, “Connection Control Plugin System and Status Variables”

Connection_errors_accept
Section 5.1.9, “Server Status Variables”

Connection_errors_internal
Section 5.1.9, “Server Status Variables”

Connection_errors_max_connections
Section 5.1.11.1, “Connection Interfaces”
Section 5.1.9, “Server Status Variables”

Connection_errors_peer_address
Section 5.1.9, “Server Status Variables”

Connection_errors_select
Section 5.1.9, “Server Status Variables”

5185

Connection_errors_tcpwrap
Section 5.1.9, “Server Status Variables”

Connection_errors_xxx
Section 5.1.11.2, “DNS Lookups and the Host Cache”
Section 5.1.9, “Server Status Variables”

Connections
Section 5.1.9, “Server Status Variables”
Section 5.1.7, “Server System Variables”

Created_tmp_disk_tables
Section 8.4.4, “Internal Temporary Table Use in MySQL”
Section 5.1.9, “Server Status Variables”
Section 5.1.7, “Server System Variables”
Section 25.12.6.1, “The events_statements_current Table”

Created_tmp_files
Section 5.1.9, “Server Status Variables”

Created_tmp_tables
Section 8.4.4, “Internal Temporary Table Use in MySQL”
Section 5.1.9, “Server Status Variables”
Section 5.1.7, “Server System Variables”
Section 13.7.5.35, “SHOW STATUS Statement”
Section 25.12.6.1, “The events_statements_current Table”

D

[index top]

Delayed_errors
Section 5.1.9, “Server Status Variables”

Delayed_insert_threads
Section 5.1.9, “Server Status Variables”

Delayed_writes
Section 5.1.9, “Server Status Variables”

F

[index top]

Firewall_access_denied
Section 6.4.6.4, “MySQL Enterprise Firewall Reference”

Firewall_access_granted
Section 6.4.6.4, “MySQL Enterprise Firewall Reference”
Section 6.4.6.3, “Using MySQL Enterprise Firewall”

5186

Firewall_access_suspicious
Section 6.4.6.4, “MySQL Enterprise Firewall Reference”

Firewall_cached_entries
Section 6.4.6.4, “MySQL Enterprise Firewall Reference”

Flush_commands
Section 5.1.9, “Server Status Variables”

G

[index top]

group_replication_primary_member
Section 17.7.2, “Group Replication Status Variables”
Section 5.1.9, “Server Status Variables”

H

[index top]

Handler_commit
Section 5.1.9, “Server Status Variables”

Handler_delete
Section 5.1.9, “Server Status Variables”

Handler_discover
NDB Cluster Status Variables

Handler_external_lock
Section 5.1.9, “Server Status Variables”

Handler_mrr_init
Section 5.1.9, “Server Status Variables”

Handler_prepare
Section 5.1.9, “Server Status Variables”

Handler_read_first
Section 5.1.9, “Server Status Variables”

Handler_read_key
Section 5.1.9, “Server Status Variables”

Handler_read_last
Section 5.1.9, “Server Status Variables”

Handler_read_next
Section 5.1.9, “Server Status Variables”

5187

Section 8.3.9, “Use of Index Extensions”

Handler_read_prev
Section 5.1.9, “Server Status Variables”

Handler_read_rnd
Section 5.1.9, “Server Status Variables”

Handler_read_rnd_next
Section 5.1.9, “Server Status Variables”

Handler_rollback
Section 5.1.9, “Server Status Variables”

Handler_savepoint
Section 5.1.9, “Server Status Variables”

Handler_savepoint_rollback
Section 5.1.9, “Server Status Variables”

Handler_update
Section 5.1.9, “Server Status Variables”

Handler_write
Section 5.1.9, “Server Status Variables”

I

[index top]

Innodb_available_undo_logs
Section 5.1.9, “Server Status Variables”

Innodb_buffer_pool_bytes_data
Section 5.1.9, “Server Status Variables”

Innodb_buffer_pool_bytes_dirty
Section 5.1.9, “Server Status Variables”

Innodb_buffer_pool_dump_status
Section 14.15, “InnoDB Startup Options and System Variables”
Section 5.1.9, “Server Status Variables”

Innodb_buffer_pool_load_status
Section 14.15, “InnoDB Startup Options and System Variables”
Section 5.1.9, “Server Status Variables”

Innodb_buffer_pool_pages_data
Section 5.1.9, “Server Status Variables”

5188

Innodb_buffer_pool_pages_dirty
Section 5.1.9, “Server Status Variables”

Innodb_buffer_pool_pages_flushed
Section 5.1.9, “Server Status Variables”

Innodb_buffer_pool_pages_free
Section 5.1.9, “Server Status Variables”

Innodb_buffer_pool_pages_latched
Section 5.1.9, “Server Status Variables”

Innodb_buffer_pool_pages_misc
Section 5.1.9, “Server Status Variables”

Innodb_buffer_pool_pages_total
Section 5.1.9, “Server Status Variables”

Innodb_buffer_pool_read_ahead
Section 14.8.3.4, “Configuring InnoDB Buffer Pool Prefetching (Read-Ahead)”
Section 14.15, “InnoDB Startup Options and System Variables”
Section 5.1.9, “Server Status Variables”

Innodb_buffer_pool_read_ahead_evicted
Section 14.8.3.4, “Configuring InnoDB Buffer Pool Prefetching (Read-Ahead)”
Section 14.15, “InnoDB Startup Options and System Variables”
Section 5.1.9, “Server Status Variables”

Innodb_buffer_pool_read_ahead_rnd
Section 14.8.3.4, “Configuring InnoDB Buffer Pool Prefetching (Read-Ahead)”
Section 5.1.9, “Server Status Variables”

Innodb_buffer_pool_read_requests
Section 5.1.9, “Server Status Variables”

Innodb_buffer_pool_reads
Section 5.1.9, “Server Status Variables”

Innodb_buffer_pool_resize_status
Section 14.8.3.1, “Configuring InnoDB Buffer Pool Size”
Section 14.15, “InnoDB Startup Options and System Variables”
Section 5.1.9, “Server Status Variables”
Section 1.3, “What Is New in MySQL 5.7”

Innodb_buffer_pool_wait_free
Section 5.1.9, “Server Status Variables”

Innodb_buffer_pool_write_requests
Section 5.1.9, “Server Status Variables”

5189

Innodb_data_fsyncs
Section 14.15, “InnoDB Startup Options and System Variables”
Section 5.1.9, “Server Status Variables”

Innodb_data_pending_fsyncs
Section 5.1.9, “Server Status Variables”

Innodb_data_pending_reads
Section 5.1.9, “Server Status Variables”

Innodb_data_pending_writes
Section 5.1.9, “Server Status Variables”

Innodb_data_read
Section 5.1.9, “Server Status Variables”

Innodb_data_reads
Section 5.1.9, “Server Status Variables”

Innodb_data_writes
Section 5.1.9, “Server Status Variables”

Innodb_data_written
Section 5.1.9, “Server Status Variables”

Innodb_dblwr_pages_written
Section 5.1.9, “Server Status Variables”

Innodb_dblwr_writes
Section 5.1.9, “Server Status Variables”

Innodb_have_atomic_builtins
Section 5.1.9, “Server Status Variables”

Innodb_log_waits
Section 5.1.9, “Server Status Variables”

Innodb_log_write_requests
Section 5.1.9, “Server Status Variables”

Innodb_log_writes
Section 5.1.9, “Server Status Variables”

Innodb_num_open_files
Section 5.1.9, “Server Status Variables”

Innodb_os_log_fsyncs
Section 5.1.9, “Server Status Variables”

5190

Innodb_os_log_pending_fsyncs
Section 5.1.9, “Server Status Variables”

Innodb_os_log_pending_writes
Section 5.1.9, “Server Status Variables”

Innodb_os_log_written
Section 14.15, “InnoDB Startup Options and System Variables”
Section 5.1.9, “Server Status Variables”

Innodb_page_size
Section 5.1.9, “Server Status Variables”

Innodb_pages_created
Section 5.1.9, “Server Status Variables”

Innodb_pages_read
Section 5.1.9, “Server Status Variables”

Innodb_pages_written
Section 5.1.9, “Server Status Variables”

Innodb_row_lock_current_waits
Section 5.1.9, “Server Status Variables”

Innodb_row_lock_time
Section 5.1.9, “Server Status Variables”

Innodb_row_lock_time_avg
Section 5.1.9, “Server Status Variables”

Innodb_row_lock_time_max
Section 5.1.9, “Server Status Variables”

Innodb_row_lock_waits
Section 5.1.9, “Server Status Variables”

Innodb_rows_deleted
Section 5.1.9, “Server Status Variables”

Innodb_rows_inserted
Section 5.1.9, “Server Status Variables”

Innodb_rows_read
Section 5.1.9, “Server Status Variables”

Innodb_rows_updated
Section 5.1.9, “Server Status Variables”

5191

Innodb_truncated_status_writes
Section 5.1.9, “Server Status Variables”

K

[index top]

Key_blocks_not_flushed
Section 5.1.9, “Server Status Variables”

Key_blocks_unused
Section 5.1.9, “Server Status Variables”
Section 5.1.7, “Server System Variables”

Key_blocks_used
Section 5.1.9, “Server Status Variables”

Key_read_requests
Section 5.1.9, “Server Status Variables”
Section 5.1.7, “Server System Variables”

Key_reads
Section 5.1.9, “Server Status Variables”
Section 5.1.7, “Server System Variables”

Key_write_requests
Section 5.1.9, “Server Status Variables”
Section 5.1.7, “Server System Variables”

Key_writes
Section 5.1.9, “Server Status Variables”
Section 5.1.7, “Server System Variables”

L

[index top]

Last_query_cost
Section 5.1.9, “Server Status Variables”

Last_query_partial_plans
Section 5.1.9, “Server Status Variables”

Locked_connects
Section 6.2.15, “Account Locking”
Section 5.1.9, “Server Status Variables”

M

[index top]

5192

Max_execution_time_exceeded
Section 5.1.9, “Server Status Variables”

Max_execution_time_set
Section 5.1.9, “Server Status Variables”

Max_execution_time_set_failed
Section 5.1.9, “Server Status Variables”

Max_used_connections
Section 13.7.6.3, “FLUSH Statement”
Section 5.1.9, “Server Status Variables”
Section 5.1.7, “Server System Variables”

Max_used_connections_time
Section 5.1.9, “Server Status Variables”

mecab_charset
Section 12.9.9, “MeCab Full-Text Parser Plugin”
Section 5.1.9, “Server Status Variables”

Mysqlx_address
Section 19.4.2.3, “X Plugin Status Variables”

Mysqlx_bytes_received
Section 19.4.2.3, “X Plugin Status Variables”

Mysqlx_bytes_sent
Section 19.4.2.3, “X Plugin Status Variables”

Mysqlx_connection_accept_errors
Section 19.4.2.3, “X Plugin Status Variables”

Mysqlx_connection_errors
Section 19.4.2.3, “X Plugin Status Variables”

Mysqlx_connections_accepted
Section 19.4.2.3, “X Plugin Status Variables”

Mysqlx_connections_closed
Section 19.4.2.3, “X Plugin Status Variables”

Mysqlx_connections_rejected
Section 19.4.2.3, “X Plugin Status Variables”

Mysqlx_crud_create_view
Section 19.4.2.3, “X Plugin Status Variables”

Mysqlx_crud_delete
Section 19.4.2.3, “X Plugin Status Variables”

5193

Mysqlx_crud_drop_view
Section 19.4.2.3, “X Plugin Status Variables”

Mysqlx_crud_find
Section 19.4.2.3, “X Plugin Status Variables”

Mysqlx_crud_insert
Section 19.4.2.3, “X Plugin Status Variables”

Mysqlx_crud_modify_view
Section 19.4.2.3, “X Plugin Status Variables”

Mysqlx_crud_update
Section 19.4.2.3, “X Plugin Status Variables”

Mysqlx_errors_sent
Section 19.4.2.3, “X Plugin Status Variables”

Mysqlx_errors_unknown_message_type
Section 19.4.2.3, “X Plugin Status Variables”

Mysqlx_expect_close
Section 19.4.2.3, “X Plugin Status Variables”

Mysqlx_expect_open
Section 19.4.2.3, “X Plugin Status Variables”

Mysqlx_init_error
Section 19.4.2.3, “X Plugin Status Variables”

Mysqlx_notice_other_sent
Section 19.4.2.3, “X Plugin Status Variables”

Mysqlx_notice_warning_sent
Section 19.4.2.3, “X Plugin Status Variables”

Mysqlx_port
Section 19.4.2.3, “X Plugin Status Variables”

Mysqlx_rows_sent
Section 19.4.2.3, “X Plugin Status Variables”

Mysqlx_sessions
Section 19.4.2.3, “X Plugin Status Variables”

Mysqlx_sessions_accepted
Section 19.4.2.3, “X Plugin Status Variables”

Mysqlx_sessions_closed
Section 19.4.2.3, “X Plugin Status Variables”

5194

Mysqlx_sessions_fatal_error
Section 19.4.2.3, “X Plugin Status Variables”

Mysqlx_sessions_killed
Section 19.4.2.3, “X Plugin Status Variables”

Mysqlx_sessions_rejected
Section 19.4.2.3, “X Plugin Status Variables”

Mysqlx_socket
Section 19.4.2.3, “X Plugin Status Variables”

Mysqlx_ssl_accept_renegotiates
Section 19.4.2.3, “X Plugin Status Variables”

Mysqlx_ssl_accepts
Section 19.4.2.3, “X Plugin Status Variables”

Mysqlx_ssl_active
Section 19.4.2.3, “X Plugin Status Variables”

Mysqlx_ssl_cipher
Section 19.4.2.3, “X Plugin Status Variables”

Mysqlx_ssl_cipher_list
Section 19.4.2.3, “X Plugin Status Variables”

Mysqlx_ssl_ctx_verify_depth
Section 19.4.2.3, “X Plugin Status Variables”

Mysqlx_ssl_ctx_verify_mode
Section 19.4.2.3, “X Plugin Status Variables”

Mysqlx_ssl_finished_accepts
Section 19.4.2.3, “X Plugin Status Variables”

Mysqlx_ssl_server_not_after
Section 19.4.2.3, “X Plugin Status Variables”

Mysqlx_ssl_server_not_before
Section 19.4.2.3, “X Plugin Status Variables”

Mysqlx_ssl_verify_depth
Section 19.4.2.3, “X Plugin Status Variables”

Mysqlx_ssl_verify_mode
Section 19.4.2.3, “X Plugin Status Variables”

Mysqlx_ssl_version
Section 19.4.2.3, “X Plugin Status Variables”

5195

Mysqlx_stmt_create_collection
Section 19.4.2.3, “X Plugin Status Variables”

Mysqlx_stmt_create_collection_index
Section 19.4.2.3, “X Plugin Status Variables”

Mysqlx_stmt_disable_notices
Section 19.4.2.3, “X Plugin Status Variables”

Mysqlx_stmt_drop_collection
Section 19.4.2.3, “X Plugin Status Variables”

Mysqlx_stmt_drop_collection_index
Section 19.4.2.3, “X Plugin Status Variables”

Mysqlx_stmt_enable_notices
Section 19.4.2.3, “X Plugin Status Variables”

Mysqlx_stmt_ensure_collection
Section 19.4.2.3, “X Plugin Status Variables”

Mysqlx_stmt_execute_mysqlx
Section 19.4.2.3, “X Plugin Status Variables”

Mysqlx_stmt_execute_sql
Section 19.4.2.3, “X Plugin Status Variables”

Mysqlx_stmt_execute_xplugin
Section 19.4.2.3, “X Plugin Status Variables”

Mysqlx_stmt_kill_client
Section 19.4.2.3, “X Plugin Status Variables”

Mysqlx_stmt_list_clients
Section 19.4.2.3, “X Plugin Status Variables”

Mysqlx_stmt_list_notices
Section 19.4.2.3, “X Plugin Status Variables”

Mysqlx_stmt_list_objects
Section 19.4.2.3, “X Plugin Status Variables”

Mysqlx_stmt_ping
Section 19.4.2.3, “X Plugin Status Variables”

Mysqlx_worker_threads
Section 19.4.2.3, “X Plugin Status Variables”

Mysqlx_worker_threads_active
Section 19.4.2.3, “X Plugin Status Variables”

5196

N

[index top]

Ndb_api_adaptive_send_deferred_count
NDB Cluster Status Variables

Ndb_api_adaptive_send_deferred_count_session
NDB Cluster Status Variables

Ndb_api_adaptive_send_deferred_count_slave
NDB Cluster Status Variables

Ndb_api_adaptive_send_forced_count
NDB Cluster Status Variables

Ndb_api_adaptive_send_forced_count_session
NDB Cluster Status Variables

Ndb_api_adaptive_send_forced_count_slave
NDB Cluster Status Variables

Ndb_api_adaptive_send_unforced_count
NDB Cluster Status Variables

Ndb_api_adaptive_send_unforced_count_session
NDB Cluster Status Variables

Ndb_api_adaptive_send_unforced_count_slave
NDB Cluster Status Variables

Ndb_api_bytes_received_count
Section 21.6.14, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

Ndb_api_bytes_received_count_session
Section 21.6.14, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

Ndb_api_bytes_received_count_slave
Section 21.6.14, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

Ndb_api_bytes_sent_count
Section 21.6.14, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

Ndb_api_bytes_sent_count_session
Section 21.6.14, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

5197

Ndb_api_bytes_sent_count_slave
Section 21.6.14, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

Ndb_api_event_bytes_count
Section 21.6.14, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

Ndb_api_event_bytes_count_injector
Section 21.6.14, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

Ndb_api_event_data_count
Section 21.6.14, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

Ndb_api_event_data_count_injector
Section 21.6.14, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

Ndb_api_event_nondata_count
Section 21.6.14, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

Ndb_api_event_nondata_count_injector
Section 21.6.14, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

Ndb_api_pk_op_count
Section 21.6.14, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

Ndb_api_pk_op_count_session
Section 21.6.14, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

Ndb_api_pk_op_count_slave
Section 21.6.14, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

Ndb_api_pruned_scan_count
Section 21.6.14, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

Ndb_api_pruned_scan_count_session
Section 21.6.14, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

Ndb_api_pruned_scan_count_slave
Section 21.6.14, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

5198

Ndb_api_range_scan_count
Section 21.6.14, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

Ndb_api_range_scan_count_session
Section 21.6.14, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

Ndb_api_range_scan_count_slave
Section 21.6.14, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

Ndb_api_read_row_count
Section 21.6.14, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

Ndb_api_read_row_count_session
Section 21.6.14, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

Ndb_api_read_row_count_slave
Section 21.6.14, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

Ndb_api_scan_batch_count
Section 21.6.14, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

Ndb_api_scan_batch_count_session
Section 21.6.14, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

Ndb_api_scan_batch_count_slave
Section 21.6.14, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

Ndb_api_table_scan_count
Section 21.6.14, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

Ndb_api_table_scan_count_session
Section 21.6.14, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

Ndb_api_table_scan_count_slave
Section 21.6.14, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

Ndb_api_trans_abort_count
Section 21.6.14, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

5199

Ndb_api_trans_abort_count_session
Section 21.6.14, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

Ndb_api_trans_abort_count_slave
Section 21.6.14, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

Ndb_api_trans_close_count
Section 21.6.14, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

Ndb_api_trans_close_count_session
Section 21.6.14, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

Ndb_api_trans_close_count_slave
Section 21.6.14, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

Ndb_api_trans_commit_count
Section 21.6.14, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

Ndb_api_trans_commit_count_session
Section 21.6.14, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

Ndb_api_trans_commit_count_slave
Section 21.6.14, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

Ndb_api_trans_local_read_row_count
Section 21.6.14, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

Ndb_api_trans_local_read_row_count_session
Section 21.6.14, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

Ndb_api_trans_local_read_row_count_slave
Section 21.6.14, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

Ndb_api_trans_start_count
Section 21.6.14, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

Ndb_api_trans_start_count_session
Section 21.6.14, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

5200

Ndb_api_trans_start_count_slave
Section 21.6.14, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

Ndb_api_uk_op_count
Section 21.6.14, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

Ndb_api_uk_op_count_session
Section 21.6.14, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

Ndb_api_uk_op_count_slave
Section 21.6.14, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

Ndb_api_wait_exec_complete_count
Section 21.6.14, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

Ndb_api_wait_exec_complete_count_session
Section 21.6.14, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

Ndb_api_wait_exec_complete_count_slave
Section 21.6.14, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

Ndb_api_wait_meta_request_count
Section 21.6.14, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

Ndb_api_wait_meta_request_count_session
Section 21.6.14, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

Ndb_api_wait_meta_request_count_slave
Section 21.6.14, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

Ndb_api_wait_nanos_count
Section 21.6.14, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

Ndb_api_wait_nanos_count_session
Section 21.6.14, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

Ndb_api_wait_nanos_count_slave
Section 21.6.14, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

5201

Ndb_api_wait_scan_result_count
Section 21.6.14, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

Ndb_api_wait_scan_result_count_session
Section 21.6.14, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

Ndb_api_wait_scan_result_count_slave
Section 21.6.14, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

Ndb_cluster_node_id
NDB Cluster Status Variables

Ndb_config_from_host
NDB Cluster Status Variables

Ndb_config_from_port
NDB Cluster Status Variables

Ndb_conflict_fn_epoch
Section 21.7.11, “NDB Cluster Replication Conflict Resolution”
NDB Cluster Status Variables

Ndb_conflict_fn_epoch2
Section 21.7.11, “NDB Cluster Replication Conflict Resolution”
NDB Cluster Status Variables

Ndb_conflict_fn_epoch2_trans
Section 21.7.11, “NDB Cluster Replication Conflict Resolution”
NDB Cluster Status Variables

Ndb_conflict_fn_epoch_trans
Section 21.7.11, “NDB Cluster Replication Conflict Resolution”
NDB Cluster Status Variables

Ndb_conflict_fn_max
Section 21.7.11, “NDB Cluster Replication Conflict Resolution”
NDB Cluster Status Variables

Ndb_conflict_fn_max_del_win
Section 21.7.11, “NDB Cluster Replication Conflict Resolution”
NDB Cluster Status Variables

Ndb_conflict_fn_old
Section 21.7.11, “NDB Cluster Replication Conflict Resolution”
NDB Cluster Status Variables

Ndb_conflict_last_conflict_epoch
NDB Cluster Status Variables

5202

Ndb_conflict_last_stable_epoch
NDB Cluster Status Variables

Ndb_conflict_reflected_op_discard_count
Section 21.7.11, “NDB Cluster Replication Conflict Resolution”
NDB Cluster Status Variables

Ndb_conflict_reflected_op_prepare_count
Section 21.7.11, “NDB Cluster Replication Conflict Resolution”
NDB Cluster Status Variables

Ndb_conflict_refresh_op_count
NDB Cluster Status Variables

Ndb_conflict_trans_conflict_commit_count
NDB Cluster Status Variables

Ndb_conflict_trans_detect_iter_count
NDB Cluster Status Variables

Ndb_conflict_trans_reject_count
NDB Cluster Status Variables

Ndb_conflict_trans_row_conflict_count
NDB Cluster Status Variables

Ndb_conflict_trans_row_reject_count
Section 21.7.11, “NDB Cluster Replication Conflict Resolution”
NDB Cluster Status Variables

Ndb_epoch_delete_delete_count
NDB Cluster Status Variables

Ndb_execute_count
NDB Cluster Status Variables

Ndb_last_commit_epoch_server
NDB Cluster Status Variables

Ndb_last_commit_epoch_session
NDB Cluster Status Variables

Ndb_number_of_data_nodes
NDB Cluster Status Variables

Ndb_pruned_scan_count
NDB Cluster Status Variables

Ndb_pushed_queries_defined
NDB Cluster Status Variables

5203

NDB Cluster System Variables

Ndb_pushed_queries_dropped
NDB Cluster Status Variables
NDB Cluster System Variables

Ndb_pushed_queries_executed
NDB Cluster Status Variables
NDB Cluster System Variables

Ndb_pushed_reads
NDB Cluster Status Variables
NDB Cluster System Variables

Ndb_scan_count
NDB Cluster Status Variables

Ndb_slave_max_replicated_epoch
NDB Cluster Status Variables

Ndb_system_name
Section 21.4.3.8, “Defining the System”
NDB Cluster Status Variables
Section 21.2.4.1, “What is New in NDB Cluster 7.5”
Section 21.2.4.2, “What is New in NDB Cluster 7.6”

Not_flushed_delayed_rows
Section 5.1.9, “Server Status Variables”

O

[index top]

Ongoing_anonymous_gtid_violating_transaction_count
Section 5.1.9, “Server Status Variables”

Ongoing_anonymous_transaction_count
Section 5.1.9, “Server Status Variables”

Ongoing_automatic_gtid_violating_transaction_count
Section 5.1.9, “Server Status Variables”

Open_files
Section 5.1.9, “Server Status Variables”

Open_streams
Section 5.1.9, “Server Status Variables”

Open_table_definitions
Section 5.1.9, “Server Status Variables”

5204

Open_tables
Section 5.1.9, “Server Status Variables”

Opened_files
Section 5.1.9, “Server Status Variables”

Opened_table_definitions
Section 5.1.9, “Server Status Variables”

Opened_tables
Section 8.4.3.1, “How MySQL Opens and Closes Tables”
Section 5.1.9, “Server Status Variables”
Section 5.1.7, “Server System Variables”

P

[index top]

Performance_schema_accounts_lost
Section 25.16, “Performance Schema Status Variables”

Performance_schema_cond_classes_lost
Section 25.16, “Performance Schema Status Variables”

Performance_schema_cond_instances_lost
Section 25.16, “Performance Schema Status Variables”

Performance_schema_digest_lost
Section 25.16, “Performance Schema Status Variables”
Section 25.15, “Performance Schema System Variables”

Performance_schema_file_classes_lost
Section 25.16, “Performance Schema Status Variables”

Performance_schema_file_handles_lost
Section 25.16, “Performance Schema Status Variables”

Performance_schema_file_instances_lost
Section 25.16, “Performance Schema Status Variables”

Performance_schema_hosts_lost
Section 25.16, “Performance Schema Status Variables”

Performance_schema_index_stat_lost
Section 25.16, “Performance Schema Status Variables”
Section 25.15, “Performance Schema System Variables”

Performance_schema_locker_lost
Section 25.16, “Performance Schema Status Variables”

5205

Performance_schema_memory_classes_lost
Section 25.16, “Performance Schema Status Variables”

Performance_schema_metadata_lock_lost
Section 25.16, “Performance Schema Status Variables”
Section 25.15, “Performance Schema System Variables”

Performance_schema_mutex_classes_lost
Section 25.7, “Performance Schema Status Monitoring”
Section 25.16, “Performance Schema Status Variables”

Performance_schema_mutex_instances_lost
Section 25.7, “Performance Schema Status Monitoring”
Section 25.16, “Performance Schema Status Variables”

Performance_schema_nested_statement_lost
Section 25.16, “Performance Schema Status Variables”
Section 25.15, “Performance Schema System Variables”

Performance_schema_prepared_statements_lost
Section 25.16, “Performance Schema Status Variables”
Section 25.15, “Performance Schema System Variables”
Section 25.12.6.4, “The prepared_statements_instances Table”

Performance_schema_program_lost
Section 25.16, “Performance Schema Status Variables”
Section 25.15, “Performance Schema System Variables”

Performance_schema_rwlock_classes_lost
Section 25.16, “Performance Schema Status Variables”

Performance_schema_rwlock_instances_lost
Section 25.16, “Performance Schema Status Variables”

Performance_schema_session_connect_attrs_lost
Section 25.12.9, “Performance Schema Connection Attribute Tables”
Section 25.16, “Performance Schema Status Variables”
Section 25.15, “Performance Schema System Variables”

Performance_schema_socket_classes_lost
Section 25.16, “Performance Schema Status Variables”

Performance_schema_socket_instances_lost
Section 25.16, “Performance Schema Status Variables”

Performance_schema_stage_classes_lost
Section 25.16, “Performance Schema Status Variables”

Performance_schema_statement_classes_lost
Section 25.16, “Performance Schema Status Variables”

5206

Performance_schema_table_handles_lost
Section 25.16, “Performance Schema Status Variables”
Section 25.15, “Performance Schema System Variables”

Performance_schema_table_instances_lost
Section 25.16, “Performance Schema Status Variables”

Performance_schema_table_lock_stat_lost
Section 25.16, “Performance Schema Status Variables”
Section 25.15, “Performance Schema System Variables”

Performance_schema_thread_classes_lost
Section 25.16, “Performance Schema Status Variables”

Performance_schema_thread_instances_lost
Section 25.16, “Performance Schema Status Variables”
Section 25.12.13, “Performance Schema System Variable Tables”
Section 25.15, “Performance Schema System Variables”

Performance_schema_users_lost
Section 25.16, “Performance Schema Status Variables”

Prepared_stmt_count
Section 5.1.9, “Server Status Variables”

Q

[index top]

Qcache_free_blocks
Section 8.10.3.3, “Query Cache Configuration”
Section 8.10.3.4, “Query Cache Status and Maintenance”
Section 5.1.9, “Server Status Variables”
Section 1.3, “What Is New in MySQL 5.7”

Qcache_free_memory
Section 5.1.9, “Server Status Variables”
Section 1.3, “What Is New in MySQL 5.7”

Qcache_hits
Section 8.10.3.1, “How the Query Cache Operates”
Section 5.1.9, “Server Status Variables”
Section 1.3, “What Is New in MySQL 5.7”

Qcache_inserts
Section 5.1.9, “Server Status Variables”
Section 1.3, “What Is New in MySQL 5.7”

Qcache_lowmem_prunes
Section 8.10.3.3, “Query Cache Configuration”
Section 8.10.3.4, “Query Cache Status and Maintenance”

5207

Section 5.1.9, “Server Status Variables”
Section 1.3, “What Is New in MySQL 5.7”

Qcache_not_cached
Section 5.1.9, “Server Status Variables”
Section 1.3, “What Is New in MySQL 5.7”

Qcache_queries_in_cache
Section 8.10.3.3, “Query Cache Configuration”
Section 5.1.9, “Server Status Variables”
Section 1.3, “What Is New in MySQL 5.7”

Qcache_total_blocks
Section 8.10.3.3, “Query Cache Configuration”
Section 8.10.3.4, “Query Cache Status and Maintenance”
Section 5.1.9, “Server Status Variables”
Section 1.3, “What Is New in MySQL 5.7”

Queries
Section 5.1.9, “Server Status Variables”

Questions
Section 4.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 5.1.9, “Server Status Variables”

R

[index top]

Rewriter_number_loaded_rules
Rewriter Query Rewrite Plugin Status Variables

Rewriter_number_reloads
Rewriter Query Rewrite Plugin Status Variables

Rewriter_number_rewritten_queries
Rewriter Query Rewrite Plugin Status Variables

Rewriter_reload_error
Rewriter Query Rewrite Plugin Procedures and Functions
Rewriter Query Rewrite Plugin Rules Table
Rewriter Query Rewrite Plugin Status Variables
Section 5.5.4.2, “Using the Rewriter Query Rewrite Plugin”

Rpl_semi_sync_master_clients
Section 16.3.9.1, “Semisynchronous Replication Administrative Interface”
Section 16.3.9.3, “Semisynchronous Replication Monitoring”
Section 5.1.9, “Server Status Variables”

Rpl_semi_sync_master_net_avg_wait_time
Section 5.1.9, “Server Status Variables”

5208

Rpl_semi_sync_master_net_wait_time
Section 5.1.9, “Server Status Variables”

Rpl_semi_sync_master_net_waits
Section 5.1.9, “Server Status Variables”

Rpl_semi_sync_master_no_times
Section 5.1.9, “Server Status Variables”

Rpl_semi_sync_master_no_tx
Section 16.3.9.1, “Semisynchronous Replication Administrative Interface”
Section 16.3.9.3, “Semisynchronous Replication Monitoring”
Section 5.1.9, “Server Status Variables”

Rpl_semi_sync_master_status
Section 16.3.9.1, “Semisynchronous Replication Administrative Interface”
Section 16.3.9.3, “Semisynchronous Replication Monitoring”
Section 5.1.9, “Server Status Variables”

Rpl_semi_sync_master_timefunc_failures
Section 5.1.9, “Server Status Variables”

Rpl_semi_sync_master_tx_avg_wait_time
Section 5.1.9, “Server Status Variables”

Rpl_semi_sync_master_tx_wait_time
Section 5.1.9, “Server Status Variables”

Rpl_semi_sync_master_tx_waits
Section 5.1.9, “Server Status Variables”

Rpl_semi_sync_master_wait_pos_backtraverse
Section 5.1.9, “Server Status Variables”

Rpl_semi_sync_master_wait_sessions
Section 5.1.9, “Server Status Variables”

Rpl_semi_sync_master_yes_tx
Section 16.3.9.1, “Semisynchronous Replication Administrative Interface”
Section 16.3.9.3, “Semisynchronous Replication Monitoring”
Section 5.1.9, “Server Status Variables”

Rpl_semi_sync_slave_status
Section 16.3.9.1, “Semisynchronous Replication Administrative Interface”
Section 16.3.9.3, “Semisynchronous Replication Monitoring”
Section 5.1.9, “Server Status Variables”

Rsa_public_key
Section 5.1.9, “Server Status Variables”
Section 6.4.1.5, “SHA-256 Pluggable Authentication”

5209

Section 6.3.4, “SSL Library-Dependent Capabilities”

S

[index top]

Select_full_join
Section 5.1.9, “Server Status Variables”
Section 25.12.6.1, “The events_statements_current Table”

Select_full_range_join
Section 5.1.9, “Server Status Variables”
Section 25.12.6.1, “The events_statements_current Table”

Select_range
Section 5.1.9, “Server Status Variables”
Section 25.12.6.1, “The events_statements_current Table”

Select_range_check
Section 5.1.9, “Server Status Variables”
Section 25.12.6.1, “The events_statements_current Table”

Select_scan
Section 5.1.9, “Server Status Variables”
Section 25.12.6.1, “The events_statements_current Table”

Slave_heartbeat_period
Section 16.1.7.1, “Checking Replication Status”
Section 25.12.11, “Performance Schema Replication Tables”
Section 13.4.2.3, “RESET SLAVE Statement”
Section 5.1.9, “Server Status Variables”

Slave_last_heartbeat
Section 16.1.7.1, “Checking Replication Status”
Section 25.12.11, “Performance Schema Replication Tables”
Section 5.1.9, “Server Status Variables”

Slave_open_temp_tables
Section 13.4.2.1, “CHANGE MASTER TO Statement”
Section 16.4.1.29, “Replication and Temporary Tables”
Section 5.1.9, “Server Status Variables”
Section 13.4.2.6, “STOP SLAVE Statement”
Section 1.3, “What Is New in MySQL 5.7”

Slave_received_heartbeats
Section 13.4.2.1, “CHANGE MASTER TO Statement”
Section 16.1.7.1, “Checking Replication Status”
Section 25.12.11, “Performance Schema Replication Tables”
Section 5.1.9, “Server Status Variables”

Slave_retried_transactions
Section 16.1.7.1, “Checking Replication Status”

5210

Section 25.12.11, “Performance Schema Replication Tables”
Section 5.1.9, “Server Status Variables”

Slave_rows_last_search_algorithm_used
Section 5.1.9, “Server Status Variables”

Slave_running
Section 16.1.7.1, “Checking Replication Status”
Section 25.12.11, “Performance Schema Replication Tables”
Section 5.1.9, “Server Status Variables”
Section 13.7.5.34, “SHOW SLAVE STATUS Statement”

Slow_launch_threads
Section 5.1.9, “Server Status Variables”
Section 5.1.7, “Server System Variables”

Slow_queries
Section 5.1.9, “Server Status Variables”
Section 5.1.7, “Server System Variables”

Sort_merge_passes
Section 8.2.1.14, “ORDER BY Optimization”
Section 5.1.9, “Server Status Variables”
Section 5.1.7, “Server System Variables”
Section 25.12.6.1, “The events_statements_current Table”

Sort_range
Section 5.1.9, “Server Status Variables”
Section 25.12.6.1, “The events_statements_current Table”

Sort_rows
Section 5.1.9, “Server Status Variables”
Section 25.12.6.1, “The events_statements_current Table”

Sort_scan
Section 5.1.9, “Server Status Variables”
Section 25.12.6.1, “The events_statements_current Table”

Ssl_accept_renegotiates
Section 5.1.9, “Server Status Variables”

Ssl_accepts
Section 5.1.9, “Server Status Variables”

Ssl_callback_cache_hits
Section 5.1.9, “Server Status Variables”

Ssl_cipher
Section 6.3.1, “Configuring MySQL to Use Encrypted Connections”
Section 6.3.2, “Encrypted Connection TLS Protocols and Ciphers”

5211

Section 5.1.9, “Server Status Variables”

Ssl_cipher_list
Section 6.3.2, “Encrypted Connection TLS Protocols and Ciphers”
Section 5.1.9, “Server Status Variables”

Ssl_client_connects
Section 5.1.9, “Server Status Variables”

Ssl_connect_renegotiates
Section 5.1.9, “Server Status Variables”

Ssl_ctx_verify_depth
Section 5.1.9, “Server Status Variables”

Ssl_ctx_verify_mode
Section 5.1.9, “Server Status Variables”

Ssl_default_timeout
Section 5.1.9, “Server Status Variables”

Ssl_finished_accepts
Section 5.1.9, “Server Status Variables”

Ssl_finished_connects
Section 5.1.9, “Server Status Variables”

Ssl_server_not_after
Section 5.1.9, “Server Status Variables”

Ssl_server_not_before
Section 5.1.9, “Server Status Variables”

Ssl_session_cache_hits
Section 5.1.9, “Server Status Variables”

Ssl_session_cache_misses
Section 5.1.9, “Server Status Variables”

Ssl_session_cache_mode
Section 5.1.9, “Server Status Variables”

Ssl_session_cache_overflows
Section 5.1.9, “Server Status Variables”

Ssl_session_cache_size
Section 5.1.9, “Server Status Variables”

Ssl_session_cache_timeouts
Section 5.1.9, “Server Status Variables”

5212

Ssl_sessions_reused
Section 5.1.9, “Server Status Variables”

Ssl_used_session_cache_entries
Section 5.1.9, “Server Status Variables”

Ssl_verify_depth
Section 5.1.9, “Server Status Variables”

Ssl_verify_mode
Section 5.1.9, “Server Status Variables”

Ssl_version
Section 6.3.2, “Encrypted Connection TLS Protocols and Ciphers”
Section 5.1.9, “Server Status Variables”

T

[index top]

Table_locks_immediate
Section 8.11.1, “Internal Locking Methods”
Section 5.1.9, “Server Status Variables”

Table_locks_waited
Section 8.11.1, “Internal Locking Methods”
Section 5.1.9, “Server Status Variables”

Table_open_cache_hits
Section 5.1.9, “Server Status Variables”

Table_open_cache_misses
Section 5.1.9, “Server Status Variables”

Table_open_cache_overflows
Section 5.1.9, “Server Status Variables”

Tc_log_max_pages_used
Section 5.1.9, “Server Status Variables”

Tc_log_page_size
Section 5.1.9, “Server Status Variables”

Tc_log_page_waits
Section 5.1.9, “Server Status Variables”

Threads_cached
Section 5.1.11.1, “Connection Interfaces”
Section 5.1.9, “Server Status Variables”

5213

Threads_connected
Section 5.1.9, “Server Status Variables”

Threads_created
Section 5.1.11.1, “Connection Interfaces”
Section 5.1.9, “Server Status Variables”
Section 5.1.7, “Server System Variables”

Threads_running
Section A.15, “MySQL 5.7 FAQ: MySQL Enterprise Thread Pool”
Section 5.1.9, “Server Status Variables”

U

[index top]

Uptime
Section 4.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 5.1.9, “Server Status Variables”

Uptime_since_flush_status
Section 5.1.9, “Server Status Variables”

V

[index top]

validate_password_dictionary_file_last_parsed
Section 6.4.3.2, “Password Validation Plugin Options and Variables”

validate_password_dictionary_file_words_count
Section 6.4.3.2, “Password Validation Plugin Options and Variables”

System Variable Index
A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W

A

[index top]

audit_log_buffer_size
Section 6.4.5.11, “Audit Log Reference”
Section 6.4.5.5, “Configuring Audit Logging Characteristics”

audit_log_compression
Section 6.4.5.11, “Audit Log Reference”
Section 6.4.5.5, “Configuring Audit Logging Characteristics”

audit_log_connection_policy
Section 6.4.5.11, “Audit Log Reference”

5214

Section 6.4.5.10, “Legacy Mode Audit Log Filtering”
Section 6.4.5.8, “Writing Audit Log Filter Definitions”

audit_log_current_session
Section 6.4.5.11, “Audit Log Reference”

audit_log_disable
Section 6.4.5.11, “Audit Log Reference”
Section 6.4.5.9, “Disabling Audit Logging”

audit_log_encryption
Section 6.4.5.11, “Audit Log Reference”
Section 6.4.5.5, “Configuring Audit Logging Characteristics”

audit_log_exclude_accounts
Section 6.4.5.11, “Audit Log Reference”
Section 6.4.5.10, “Legacy Mode Audit Log Filtering”
Section 6.4.5.8, “Writing Audit Log Filter Definitions”

audit_log_file
Section 6.4.5.11, “Audit Log Reference”
Section 6.4.5.5, “Configuring Audit Logging Characteristics”
Section 2.5.7.2, “More Topics on Deploying MySQL Server with Docker”
Section 6.4.5, “MySQL Enterprise Audit”
Section 6.4.5.3, “MySQL Enterprise Audit Security Considerations”
Section 6.4.5.6, “Reading Audit Log Files”

audit_log_filter_id
Section 6.4.5.7, “Audit Log Filtering”
Section 6.4.5.11, “Audit Log Reference”
Section 6.4.5.8, “Writing Audit Log Filter Definitions”

audit_log_flush
Section 6.4.5.11, “Audit Log Reference”
Section 6.4.5.5, “Configuring Audit Logging Characteristics”

audit_log_format
Section 6.4.5.4, “Audit Log File Formats”
Section 6.4.5.11, “Audit Log Reference”
Section 6.4.5.5, “Configuring Audit Logging Characteristics”
Section 6.4.5, “MySQL Enterprise Audit”

audit_log_format_unix_timestamp
Section 6.4.5.4, “Audit Log File Formats”
Section 6.4.5.11, “Audit Log Reference”
Section 6.4.5.5, “Configuring Audit Logging Characteristics”

audit_log_include_accounts
Section 6.4.5.11, “Audit Log Reference”
Section 6.4.5.10, “Legacy Mode Audit Log Filtering”
Section 6.4.5.8, “Writing Audit Log Filter Definitions”

5215

audit_log_policy
Section 6.4.5.11, “Audit Log Reference”
Section 6.4.5.10, “Legacy Mode Audit Log Filtering”
Section 5.1.8, “Using System Variables”
Section 6.4.5.8, “Writing Audit Log Filter Definitions”

audit_log_read_buffer_size
Section 6.4.5.11, “Audit Log Reference”
Section 6.4.5.6, “Reading Audit Log Files”

audit_log_rotate_on_size
Section 6.4.5.11, “Audit Log Reference”
Section 6.4.5.5, “Configuring Audit Logging Characteristics”

audit_log_statement_policy
Section 6.4.5.11, “Audit Log Reference”
Section 6.4.5.10, “Legacy Mode Audit Log Filtering”
Section 6.4.5.8, “Writing Audit Log Filter Definitions”

audit_log_strategy
Section 6.4.5.11, “Audit Log Reference”
Section 6.4.5.5, “Configuring Audit Logging Characteristics”

authentication_ldap_sasl_auth_method_name
Section 6.4.1.9, “LDAP Pluggable Authentication”
Section 6.4.1.13, “Pluggable Authentication System Variables”

authentication_ldap_sasl_bind_base_dn
Section 6.4.1.13, “Pluggable Authentication System Variables”

authentication_ldap_sasl_bind_root_dn
Section 6.4.1.13, “Pluggable Authentication System Variables”

authentication_ldap_sasl_bind_root_pwd
Section 6.4.1.13, “Pluggable Authentication System Variables”

authentication_ldap_sasl_ca_path
Section 6.4.1.9, “LDAP Pluggable Authentication”
Section 6.4.1.13, “Pluggable Authentication System Variables”

authentication_ldap_sasl_group_search_attr
Section 6.4.1.9, “LDAP Pluggable Authentication”
Section 6.4.1.13, “Pluggable Authentication System Variables”

authentication_ldap_sasl_group_search_filter
Section 6.4.1.13, “Pluggable Authentication System Variables”

authentication_ldap_sasl_init_pool_size
Section 6.4.1.13, “Pluggable Authentication System Variables”

5216

authentication_ldap_sasl_log_status
Section 6.4.1.13, “Pluggable Authentication System Variables”

authentication_ldap_sasl_max_pool_size
Section 6.4.1.13, “Pluggable Authentication System Variables”

authentication_ldap_sasl_server_host
Section 6.4.1.13, “Pluggable Authentication System Variables”

authentication_ldap_sasl_server_port
Section 6.4.1.13, “Pluggable Authentication System Variables”

authentication_ldap_sasl_tls
Section 6.4.1.9, “LDAP Pluggable Authentication”
Section 6.4.1.13, “Pluggable Authentication System Variables”

authentication_ldap_sasl_user_search_attr
Section 6.4.1.9, “LDAP Pluggable Authentication”
Section 6.4.1.13, “Pluggable Authentication System Variables”

authentication_ldap_simple_auth_method_name
Section 6.4.1.9, “LDAP Pluggable Authentication”
Section 6.4.1.13, “Pluggable Authentication System Variables”

authentication_ldap_simple_bind_base_dn
Section 6.4.1.13, “Pluggable Authentication System Variables”

authentication_ldap_simple_bind_root_dn
Section 6.4.1.13, “Pluggable Authentication System Variables”

authentication_ldap_simple_bind_root_pwd
Section 6.4.1.13, “Pluggable Authentication System Variables”

authentication_ldap_simple_ca_path
Section 6.4.1.9, “LDAP Pluggable Authentication”
Section 6.4.1.13, “Pluggable Authentication System Variables”

authentication_ldap_simple_group_search_attr
Section 6.4.1.9, “LDAP Pluggable Authentication”
Section 6.4.1.13, “Pluggable Authentication System Variables”

authentication_ldap_simple_group_search_filter
Section 6.4.1.13, “Pluggable Authentication System Variables”

authentication_ldap_simple_init_pool_size
Section 6.4.1.13, “Pluggable Authentication System Variables”

authentication_ldap_simple_log_status
Section 6.4.1.13, “Pluggable Authentication System Variables”

5217

authentication_ldap_simple_max_pool_size
Section 6.4.1.13, “Pluggable Authentication System Variables”

authentication_ldap_simple_server_host
Section 6.4.1.13, “Pluggable Authentication System Variables”

authentication_ldap_simple_server_port
Section 6.4.1.13, “Pluggable Authentication System Variables”

authentication_ldap_simple_tls
Section 6.4.1.9, “LDAP Pluggable Authentication”
Section 6.4.1.13, “Pluggable Authentication System Variables”

authentication_ldap_simple_user_search_attr
Section 6.4.1.9, “LDAP Pluggable Authentication”
Section 6.4.1.13, “Pluggable Authentication System Variables”

authentication_windows_log_level
Section 5.1.7, “Server System Variables”
Section 6.4.1.8, “Windows Pluggable Authentication”

authentication_windows_use_principal_name
Section 5.1.7, “Server System Variables”
Section 6.4.1.8, “Windows Pluggable Authentication”

auto_generate_certs
Section 6.3.3.1, “Creating SSL and RSA Certificates and Keys using MySQL”
Section 5.1.7, “Server System Variables”
Section 6.3.4, “SSL Library-Dependent Capabilities”
Section 6.3, “Using Encrypted Connections”

auto_increment_increment
Section 14.6.1.6, “AUTO_INCREMENT Handling in InnoDB”
Section 17.8, “Frequently Asked Questions”
Section 17.7.1, “Group Replication System Variables”
Section 5.4.4.3, “Mixed Binary Logging Format”
Section A.1, “MySQL 5.7 FAQ: General”
Section 21.5.14, “ndb_import — Import CSV Data Into NDB”
Section 16.4.1.37, “Replication and Variables”
Section 16.1.6.2, “Replication Source Options and Variables”
Section 3.6.9, “Using AUTO_INCREMENT”

auto_increment_offset
Section 14.6.1.6, “AUTO_INCREMENT Handling in InnoDB”
Section 17.8, “Frequently Asked Questions”
Section 17.7.1, “Group Replication System Variables”
Section 5.4.4.3, “Mixed Binary Logging Format”
Section A.1, “MySQL 5.7 FAQ: General”
Section 21.5.14, “ndb_import — Import CSV Data Into NDB”
Section 16.4.1.37, “Replication and Variables”
Section 16.1.6.2, “Replication Source Options and Variables”
Section 3.6.9, “Using AUTO_INCREMENT”

5218

AUTOCOMMIT
Section 16.4.1.33, “Replication and Transactions”

autocommit
Section 14.7.2.2, “autocommit, Commit, and Rollback”
Section 14.6.1.5, “Converting Tables from MyISAM to InnoDB”
Section 14.7.5.2, “Deadlock Detection”
Section 13.2.2, “DELETE Statement”
Section 14.2, “InnoDB and the ACID Model”
Section 14.7, “InnoDB Locking and Transaction Model”
Section 14.15, “InnoDB Startup Options and System Variables”
Section 13.3.5, “LOCK TABLES and UNLOCK TABLES Statements”
Section 14.7.2.4, “Locking Reads”
Section 14.7.3, “Locks Set by Different SQL Statements in InnoDB”
Section 14.6.1.4, “Moving or Copying InnoDB Tables”
NDB Cluster System Variables
Section 8.5.3, “Optimizing InnoDB Read-Only Transactions”
Section 25.12.7, “Performance Schema Transaction Tables”
Section 14.8.10, “Purge Configuration”
Section 16.4.1.33, “Replication and Transactions”
Section 16.1.3.6, “Restrictions on Replication with GTIDs”
Section 5.1.7, “Server System Variables”
Section 13.3.1, “START TRANSACTION, COMMIT, and ROLLBACK Statements”
Section 24.4.28, “The INFORMATION_SCHEMA INNODB_TRX Table”
Section 5.5.3.3, “Thread Pool Operation”
Section 14.7.2.1, “Transaction Isolation Levels”

automatic_sp_privileges
Section 13.1.6, “ALTER PROCEDURE Statement”
Section 13.1.16, “CREATE PROCEDURE and CREATE FUNCTION Statements”
Section 5.1.6, “Server Command Options”
Section 5.1.7, “Server System Variables”
Section 23.2.2, “Stored Routines and MySQL Privileges”

avoid_temporal_upgrade
Section 2.10.3, “Changes in MySQL 5.7”
Section 13.7.2.2, “CHECK TABLE Statement”
Section 13.7.2.5, “REPAIR TABLE Statement”
Section 5.1.7, “Server System Variables”

B

[index top]

back_log
Section 5.1.7, “Server System Variables”

basedir
Section 13.7.3.3, “INSTALL PLUGIN Statement”
Section 2.4.3, “Installing a MySQL Launch Daemon”
Section 5.1.6, “Server Command Options”
Section 5.1.7, “Server System Variables”

5219

big_tables
Section 8.4.4, “Internal Temporary Table Use in MySQL”
Section 5.1.7, “Server System Variables”

bind_address
Section B.3.2.2, “Can't connect to [local] MySQL server”
Section 5.1.12.2, “Configuring the MySQL Server to Permit IPv6 Connections”
Section 5.1.12.4, “Connecting Using IPv6 Nonlocal Host Addresses”
Section 5.1.12.3, “Connecting Using the IPv6 Local Host Address”
Section 17.6.1, “Group Replication IP Address Allowlisting”
Section 5.1.12, “IPv6 Support”
Section 4.3.4, “mysqld_multi — Manage Multiple MySQL Servers”
Section 5.1.12.5, “Obtaining an IPv6 Address from a Broker”
Section 5.7, “Running Multiple MySQL Instances on One Machine”
Section 5.1.7, “Server System Variables”
Section 21.6.15.30, “The ndbinfo processes Table”
Section 6.2.17, “Troubleshooting Problems Connecting to MySQL”
Section 19.4.2.2, “X Plugin Options and System Variables”

binlog
Section 17.3.2, “Group Replication Limitations”
Section 17.3.1, “Group Replication Requirements”

binlog_cache_size
Section 16.1.6.4, “Binary Logging Options and Variables”
Section 5.1.9, “Server Status Variables”
Section 5.4.4, “The Binary Log”

binlog_checksum
Section 16.1.6.4, “Binary Logging Options and Variables”
MySQL Glossary
Section 16.4.1.33, “Replication and Transactions”
Section 5.4.4, “The Binary Log”

binlog_direct_non_transactional_updates
Section 16.1.6.4, “Binary Logging Options and Variables”
Section 16.4.1.33, “Replication and Transactions”

binlog_error_action
Section 16.1.6.4, “Binary Logging Options and Variables”
Section 16.1.6.5, “Global Transaction ID System Variables”
Section 16.1.3.1, “GTID Format and Storage”
Section 5.4.4, “The Binary Log”

binlog_format
Section 16.1.6.4, “Binary Logging Options and Variables”
Section 2.10.3, “Changes in MySQL 5.7”
Section 12.7, “Date and Time Functions”
Section 16.2.1.3, “Determination of Safe and Unsafe Statements in Binary Logging”
Section 16.2.5.1, “Evaluation of Database-Level Replication and Binary Logging Options”
Section 16.2.5.2, “Evaluation of Table-Level Replication Options”
Section 16.1.3.2, “GTID Life Cycle”

5220

Section 12.15, “Information Functions”
Section 16.2.5.3, “Interactions Between Replication Filtering Options”
Section 12.14, “Locking Functions”
Section 5.4.4.4, “Logging Format for Changes to mysql Database Tables”
Section 12.6.2, “Mathematical Functions”
Section 12.20, “Miscellaneous Functions”
Section 5.4.4.3, “Mixed Binary Logging Format”
Section A.14, “MySQL 5.7 FAQ: Replication”
Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 6.2.2, “Privileges Provided by MySQL”
Section 16.1.6.3, “Replica Server Options and Variables”
Section 16.4.1.2, “Replication and BLACKHOLE Tables”
Section 16.4.1.18, “Replication and LOAD DATA”
Section 16.4.1.20, “Replication and MEMORY Tables”
Section 16.4.1.29, “Replication and Temporary Tables”
Section 16.4.1.33, “Replication and Transactions”
Section 16.2.1, “Replication Formats”
Section 16.4.1.21, “Replication of the mysql System Database”
Section 16.1.3.6, “Restrictions on Replication with GTIDs”
Section 13.3.7.3, “Restrictions on XA Transactions”
Section 5.4.4.2, “Setting The Binary Log Format”
Section 23.7, “Stored Program Binary Logging”
Section 5.1.8.1, “System Variable Privileges”
Section 15.6, “The BLACKHOLE Storage Engine”
Section 5.4.3, “The General Query Log”
Section 14.21.6, “The InnoDB memcached Plugin and Replication”
Section 5.4.5, “The Slow Query Log”
Section 14.7.2.1, “Transaction Isolation Levels”
Section 16.4.3, “Upgrading a Replication Topology”
Section 16.2.1.2, “Usage of Row-Based Logging and Replication”

binlog_group_commit_sync_delay
Section 16.1.6.4, “Binary Logging Options and Variables”

binlog_group_commit_sync_no_delay_count
Section 16.1.6.4, “Binary Logging Options and Variables”

binlog_gtid_simple_recovery
Section 16.1.6.5, “Global Transaction ID System Variables”
Section 16.1.3.2, “GTID Life Cycle”

binlog_max_flush_queue_time
Section 16.1.6.4, “Binary Logging Options and Variables”
Section 1.3, “What Is New in MySQL 5.7”

binlog_order_commits
Section 16.1.6.4, “Binary Logging Options and Variables”

binlog_row_image
Section 16.2.1.1, “Advantages and Disadvantages of Statement-Based and Row-Based Replication”
Section 16.1.6.4, “Binary Logging Options and Variables”
Section 8.5.8, “Optimizing InnoDB Disk I/O”

5221

binlog_rows_query_log_events
Section 16.2.1.1, “Advantages and Disadvantages of Statement-Based and Row-Based Replication”

binlog_stmt_cache_size
Section 16.1.6.4, “Binary Logging Options and Variables”
Section 5.1.9, “Server Status Variables”

binlog_transaction_dependency_history_size
Section 16.1.6.4, “Binary Logging Options and Variables”

binlog_transaction_dependency_tracking
Section 16.1.6.4, “Binary Logging Options and Variables”
Section 16.1.6.3, “Replica Server Options and Variables”

block_encryption_mode
Section 12.13, “Encryption and Compression Functions”
Section 5.1.7, “Server System Variables”

bulk_insert_buffer_size
Section 15.2.1, “MyISAM Startup Options”
Section 8.2.4.1, “Optimizing INSERT Statements”
Section 5.1.7, “Server System Variables”

C

[index top]

caching_sha
Section 6.4.1.4, “Caching SHA-2 Pluggable Authentication”

character_set_client
Section 10.15, “Character Set Configuration”
Section 10.4, “Connection Character Sets and Collations”
Section 13.2.6, “LOAD DATA Statement”
Section 5.4.4.3, “Mixed Binary Logging Format”
Section A.11, “MySQL 5.7 FAQ: MySQL Chinese, Japanese, and Korean Character Sets”
Section 16.4.1.37, “Replication and Variables”
Section 5.1.7, “Server System Variables”
Section 13.7.4.2, “SET CHARACTER SET Statement”
Section 13.7.4.3, “SET NAMES Statement”
Section 13.7.5.7, “SHOW CREATE EVENT Statement”
Section 13.7.5.9, “SHOW CREATE PROCEDURE Statement”
Section 13.7.5.11, “SHOW CREATE TRIGGER Statement”
Section 13.7.5.13, “SHOW CREATE VIEW Statement”
Section 13.7.5.18, “SHOW EVENTS Statement”
Section 13.7.5.28, “SHOW PROCEDURE STATUS Statement”
Section 13.7.5.38, “SHOW TRIGGERS Statement”
Section 5.4.4, “The Binary Log”
Section 24.3.8, “The INFORMATION_SCHEMA EVENTS Table”
Section 24.3.21, “The INFORMATION_SCHEMA ROUTINES Table”
Section 24.3.29, “The INFORMATION_SCHEMA TRIGGERS Table”
Section 24.3.31, “The INFORMATION_SCHEMA VIEWS Table”

5222

Section 5.5.4.2, “Using the Rewriter Query Rewrite Plugin”

character_set_connection
Section 12.10, “Cast Functions and Operators”
Section 12.8.3, “Character Set and Collation of Function Results”
Section 10.3.8, “Character Set Introducers”
Section 10.2.1, “Character Set Repertoire”
Section 10.3.6, “Character String Literal Character Set and Collation”
Section 10.8.4, “Collation Coercibility in Expressions”
Section 10.4, “Connection Character Sets and Collations”
Section 12.7, “Date and Time Functions”
Section 12.13, “Encryption and Compression Functions”
Section 5.4.4.3, “Mixed Binary Logging Format”
Section A.11, “MySQL 5.7 FAQ: MySQL Chinese, Japanese, and Korean Character Sets”
Section 10.16, “MySQL Server Locale Support”
Section 16.4.1.37, “Replication and Variables”
Section 5.1.7, “Server System Variables”
Section 13.7.4.2, “SET CHARACTER SET Statement”
Section 13.7.4.3, “SET NAMES Statement”
Section 9.1.1, “String Literals”
Section 12.3, “Type Conversion in Expression Evaluation”

character_set_database
Section 13.1.8, “ALTER TABLE Statement”
Section 10.4, “Connection Character Sets and Collations”
Section 13.1.16, “CREATE PROCEDURE and CREATE FUNCTION Statements”
Section 10.3.3, “Database Character Set and Collation”
Section 13.2.6, “LOAD DATA Statement”
Section 5.4.4.3, “Mixed Binary Logging Format”
Section 16.4.1.37, “Replication and Variables”
Section 5.1.7, “Server System Variables”
Section 13.7.4.2, “SET CHARACTER SET Statement”
Section 1.3, “What Is New in MySQL 5.7”

character_set_filesystem
Section 13.2.6, “LOAD DATA Statement”
Section 13.2.9.1, “SELECT ... INTO Statement”
Section 5.1.7, “Server System Variables”
Section 12.8, “String Functions and Operators”

character_set_results
Section 10.4, “Connection Character Sets and Collations”
Section 10.6, “Error Message Character Set”
Section A.11, “MySQL 5.7 FAQ: MySQL Chinese, Japanese, and Korean Character Sets”
Section 5.1.7, “Server System Variables”
Section 13.7.4.2, “SET CHARACTER SET Statement”
Section 13.7.4.3, “SET NAMES Statement”
Section 10.2.2, “UTF-8 for Metadata”

character_set_server
Section 10.15, “Character Set Configuration”
Section 10.4, “Connection Character Sets and Collations”
Section 10.3.3, “Database Character Set and Collation”

5223

Section 12.9.4, “Full-Text Stopwords”
Section 5.4.4.3, “Mixed Binary Logging Format”
Section 16.4.1.3, “Replication and Character Sets”
Section 16.4.1.37, “Replication and Variables”
Section 10.3.2, “Server Character Set and Collation”
Section 5.1.7, “Server System Variables”

character_set_system
Section 10.15, “Character Set Configuration”
Section 5.1.7, “Server System Variables”
Section 10.2.2, “UTF-8 for Metadata”

character_sets_dir
Section 10.14.3, “Adding a Simple Collation to an 8-Bit Character Set”
Section 10.14.4.1, “Defining a UCA Collation Using LDML Syntax”
Section 5.1.7, “Server System Variables”

check_proxy_users
Section 6.2.14, “Proxy Users”
Section 5.1.7, “Server System Variables”

collation_connection
Section 12.10, “Cast Functions and Operators”
Section 12.8.3, “Character Set and Collation of Function Results”
Section 10.3.8, “Character Set Introducers”
Section 10.3.6, “Character String Literal Character Set and Collation”
Section 10.8.4, “Collation Coercibility in Expressions”
Section 10.4, “Connection Character Sets and Collations”
Section 12.7, “Date and Time Functions”
Section 12.13, “Encryption and Compression Functions”
Section 5.4.4.3, “Mixed Binary Logging Format”
Section 16.4.1.37, “Replication and Variables”
Section 5.1.7, “Server System Variables”
Section 13.7.4.3, “SET NAMES Statement”
Section 13.7.5.7, “SHOW CREATE EVENT Statement”
Section 13.7.5.9, “SHOW CREATE PROCEDURE Statement”
Section 13.7.5.11, “SHOW CREATE TRIGGER Statement”
Section 13.7.5.13, “SHOW CREATE VIEW Statement”
Section 13.7.5.18, “SHOW EVENTS Statement”
Section 13.7.5.28, “SHOW PROCEDURE STATUS Statement”
Section 13.7.5.38, “SHOW TRIGGERS Statement”
Section 5.4.4, “The Binary Log”
Section 24.3.8, “The INFORMATION_SCHEMA EVENTS Table”
Section 24.3.21, “The INFORMATION_SCHEMA ROUTINES Table”
Section 24.3.29, “The INFORMATION_SCHEMA TRIGGERS Table”
Section 24.3.31, “The INFORMATION_SCHEMA VIEWS Table”
Section 12.3, “Type Conversion in Expression Evaluation”

collation_database
Section 10.4, “Connection Character Sets and Collations”
Section 13.1.16, “CREATE PROCEDURE and CREATE FUNCTION Statements”
Section 10.3.3, “Database Character Set and Collation”
Section 5.4.4.3, “Mixed Binary Logging Format”

5224

Section 16.4.1.37, “Replication and Variables”
Section 5.1.7, “Server System Variables”
Section 5.4.4, “The Binary Log”
Section 1.3, “What Is New in MySQL 5.7”

collation_server
Section 10.4, “Connection Character Sets and Collations”
Section 10.3.3, “Database Character Set and Collation”
Section 12.9.4, “Full-Text Stopwords”
Section 5.4.4.3, “Mixed Binary Logging Format”
Section 16.4.1.37, “Replication and Variables”
Section 10.3.2, “Server Character Set and Collation”
Section 5.1.7, “Server System Variables”
Section 5.4.4, “The Binary Log”

completion_type
Section 5.1.7, “Server System Variables”
Section 13.3.1, “START TRANSACTION, COMMIT, and ROLLBACK Statements”

concurrent_insert
Section 8.11.3, “Concurrent Inserts”
Section 8.11.1, “Internal Locking Methods”
Section 8.6.1, “Optimizing MyISAM Queries”
Section 5.1.6, “Server Command Options”
Section 5.1.7, “Server System Variables”

connect_timeout
Section B.3.2.9, “Communication Errors and Aborted Connections”
Section B.3.2.3, “Lost connection to MySQL server”
Section 5.1.7, “Server System Variables”
Section 19.4.2.2, “X Plugin Options and System Variables”

connection_control_failed_connections_threshold
Section 6.4.2.1, “Connection Control Plugin Installation”
Section 6.4.2.2, “Connection Control Plugin System and Status Variables”
Section 24.6.2, “The INFORMATION_SCHEMA CONNECTION_CONTROL_FAILED_LOGIN_ATTEMPTS
Table”

connection_control_max_connection_delay
Section 6.4.2.1, “Connection Control Plugin Installation”
Section 6.4.2.2, “Connection Control Plugin System and Status Variables”

connection_control_min_connection_delay
Section 6.4.2.1, “Connection Control Plugin Installation”
Section 6.4.2.2, “Connection Control Plugin System and Status Variables”

core_file
Section 5.1.7, “Server System Variables”

D

[index top]

5225

daemon_memcached_enable_binlog
Section 14.15, “InnoDB Startup Options and System Variables”

daemon_memcached_engine_lib_name
Section 14.15, “InnoDB Startup Options and System Variables”
Section 14.21.3, “Setting Up the InnoDB memcached Plugin”

daemon_memcached_engine_lib_path
Section 14.15, “InnoDB Startup Options and System Variables”
Section 14.21.3, “Setting Up the InnoDB memcached Plugin”

daemon_memcached_option
Section 14.21.2, “InnoDB memcached Architecture”
Section 14.15, “InnoDB Startup Options and System Variables”
Section 14.21.4, “Security Considerations for the InnoDB memcached Plugin”
Section 14.21.3, “Setting Up the InnoDB memcached Plugin”
Section 14.21.8, “Troubleshooting the InnoDB memcached Plugin”

daemon_memcached_r_batch_size
Section 14.21.2, “InnoDB memcached Architecture”
Section 14.15, “InnoDB Startup Options and System Variables”
Section 14.21.5.6, “Performing DML and DDL Statements on the Underlying InnoDB Table”
Section 14.21.3, “Setting Up the InnoDB memcached Plugin”
Section 14.21.6, “The InnoDB memcached Plugin and Replication”
Section 14.21.5.3, “Tuning InnoDB memcached Plugin Performance”

daemon_memcached_w_batch_size
Section 14.21.5.4, “Controlling Transactional Behavior of the InnoDB memcached Plugin”
Section 14.21.2, “InnoDB memcached Architecture”
Section 14.15, “InnoDB Startup Options and System Variables”
Section 14.21.5.6, “Performing DML and DDL Statements on the Underlying InnoDB Table”
Section 14.21.3, “Setting Up the InnoDB memcached Plugin”
Section 14.21.6, “The InnoDB memcached Plugin and Replication”
Section 14.21.5.3, “Tuning InnoDB memcached Plugin Performance”

datadir
Section 17.2.1.2, “Configuring an Instance for Group Replication”
Section 13.1.19, “CREATE TABLESPACE Statement”
Section 14.8.1, “InnoDB Startup Configuration”
Section 14.15, “InnoDB Startup Options and System Variables”
Section 2.4.3, “Installing a MySQL Launch Daemon”
Section 2.3, “Installing MySQL on Microsoft Windows”
MySQL Glossary
Section 5.1.6, “Server Command Options”
Section 5.1.7, “Server System Variables”
Section 24.3.9, “The INFORMATION_SCHEMA FILES Table”

date_format
Section 5.1.7, “Server System Variables”

datetime_format
Section 5.1.7, “Server System Variables”

5226

debug
Section 5.1.7, “Server System Variables”
Section 5.8.3, “The DBUG Package”

debug_sync
Section 5.1.7, “Server System Variables”

default
Section 15.1, “Setting the Storage Engine”
Section 14.1.4, “Testing and Benchmarking with InnoDB”

default_authentication_plugin
Section 13.7.1.1, “ALTER USER Statement”
Section 6.4.1, “Authentication Plugins”
Section 13.7.1.2, “CREATE USER Statement”
Section 6.2.13, “Pluggable Authentication”
Section 5.1.7, “Server System Variables”
Section 6.4.1.5, “SHA-256 Pluggable Authentication”

default_password_lifetime
Section 13.7.1.1, “ALTER USER Statement”
Section 13.7.1.2, “CREATE USER Statement”
Section 6.2.3, “Grant Tables”
Section 6.2.11, “Password Management”
Section 5.1.7, “Server System Variables”

default_storage_engine
Section 13.1.15, “CREATE LOGFILE GROUP Statement”
Section 13.1.18, “CREATE TABLE Statement”
Section 13.1.19, “CREATE TABLESPACE Statement”
Section 13.1.30, “DROP TABLESPACE Statement”
Section 14.6.3.3, “General Tablespaces”
Section 5.5.1, “Installing and Uninstalling Plugins”
Section 16.4.1.37, “Replication and Variables”
Section 5.1.7, “Server System Variables”
Section 15.1, “Setting the Storage Engine”
Section 16.3.3, “Using Replication with Different Source and Replica Storage Engines”
Section 1.3, “What Is New in MySQL 5.7”

default_table_encryption
Section 17.7.1, “Group Replication System Variables”

default_tmp_storage_engine
Section 5.5.1, “Installing and Uninstalling Plugins”
Section 5.1.7, “Server System Variables”
Section 15.1, “Setting the Storage Engine”
Section 14.6.3.5, “The Temporary Tablespace”

default_week_format
Section 12.7, “Date and Time Functions”
Section 22.6.3, “Partitioning Limitations Relating to Functions”

5227

Section 5.1.7, “Server System Variables”

delay_key_write
Section 13.1.18, “CREATE TABLE Statement”
Section 8.11.5, “External Locking”
Section A.14, “MySQL 5.7 FAQ: Replication”
Section 5.1.6, “Server Command Options”
Section 5.1.7, “Server System Variables”
Section B.3.3.3, “What to Do If MySQL Keeps Crashing”

delayed_insert_limit
Section 5.1.7, “Server System Variables”

delayed_insert_timeout
Section 5.1.7, “Server System Variables”

delayed_queue_size
Section 5.1.7, “Server System Variables”

disabled_storage_engines
Section 17.2.1.2, “Configuring an Instance for Group Replication”
Section 17.3.1, “Group Replication Requirements”
Section A.2, “MySQL 5.7 FAQ: Storage Engines”
Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 5.1.6, “Server Command Options”
Section 5.1.7, “Server System Variables”

disconnect_on_expired_password
Section 6.2.12, “Server Handling of Expired Passwords”
Section 5.1.7, “Server System Variables”

div_precision_increment
Section 12.6.1, “Arithmetic Operators”
Section 5.1.7, “Server System Variables”

E

[index top]

end_markers_in_json
Section 8.15.13, “Displaying Traces in Other Applications”
Section 13.8.2, “EXPLAIN Statement”
Section 5.1.7, “Server System Variables”
Section 8.15.2, “System Variables Controlling Tracing”
Section 8.15.9, “The end_markers_in_json System Variable”

enforce_gtid_consistency
Section 16.1.4.3, “Disabling GTID Transactions Online”
Section 16.1.6.5, “Global Transaction ID System Variables”
Section 17.3.1, “Group Replication Requirements”
Section 16.1.4.1, “Replication Mode Concepts”
Section 16.1.3.6, “Restrictions on Replication with GTIDs”

5228

Section 16.1.3.4, “Setting Up Replication Using GTIDs”

eq_range_index_dive_limit
Section 8.2.1.2, “Range Optimization”
Section 5.1.7, “Server System Variables”

error_count
Section B.2, “Error Information Interfaces”
Section 13.5, “Prepared Statements”
Section 5.1.7, “Server System Variables”
Section 13.7.5.17, “SHOW ERRORS Statement”
Section 13.6.7.7, “The MySQL Diagnostics Area”

event
Section 14.8.2, “Configuring InnoDB for Read-Only Operation”

event_scheduler
Section 23.4.2, “Event Scheduler Configuration”
Section 27.6.2, “Restrictions When Using the Embedded MySQL Server”
Section 5.1.7, “Server System Variables”
Section 23.4.6, “The Event Scheduler and MySQL Privileges”

expire_logs_days
Section 16.1.6.4, “Binary Logging Options and Variables”
Section 13.4.1.1, “PURGE BINARY LOGS Statement”
Section 5.4.7, “Server Log Maintenance”

explicit_defaults_for_timestamp
Section 11.2.6, “Automatic Initialization and Updating for TIMESTAMP and DATETIME”
Section 11.6, “Data Type Default Values”
Section 11.2.1, “Date and Time Data Type Syntax”
Section B.3.4.3, “Problems with NULL Values”
Section 5.1.7, “Server System Variables”

external_user
Section 6.4.5.4, “Audit Log File Formats”
Section 6.2.14, “Proxy Users”
Section 5.1.7, “Server System Variables”

F

[index top]

flush
Section 5.1.7, “Server System Variables”

flush_time
Section 5.1.6, “Server Command Options”
Section 5.1.7, “Server System Variables”

foreign_key_checks
Section 13.1.8, “ALTER TABLE Statement”

5229

Section 13.1.18.5, “FOREIGN KEY Constraints”
Section 21.6.9, “Importing Data Into MySQL Cluster”
Section 14.6.1.3, “Importing InnoDB Tables”
Section 5.4.4.3, “Mixed Binary Logging Format”
NDB Cluster System Variables
Section 14.13.1, “Online DDL Operations”
Section 16.4.1.37, “Replication and Variables”
Section 5.1.10, “Server SQL Modes”
Section 5.1.7, “Server System Variables”
Section 5.4.4, “The Binary Log”

ft_boolean_syntax
Section 12.9.2, “Boolean Full-Text Searches”
Section 12.9.6, “Fine-Tuning MySQL Full-Text Search”
Section 5.1.7, “Server System Variables”

ft_max_word_len
Section 12.9.2, “Boolean Full-Text Searches”
Creating a Data Snapshot Using Raw Data Files
Section 12.9.6, “Fine-Tuning MySQL Full-Text Search”
Section 12.9.8, “ngram Full-Text Parser”
Section 5.1.7, “Server System Variables”

ft_min_word_len
Section 12.9.2, “Boolean Full-Text Searches”
Creating a Data Snapshot Using Raw Data Files
Section 12.9.6, “Fine-Tuning MySQL Full-Text Search”
Section 12.9.9, “MeCab Full-Text Parser Plugin”
Section 12.9.1, “Natural Language Full-Text Searches”
Section 12.9.8, “ngram Full-Text Parser”
Section 5.1.7, “Server System Variables”

ft_query_expansion_limit
Section 5.1.7, “Server System Variables”

ft_stopword_file
Section 12.9.2, “Boolean Full-Text Searches”
Creating a Data Snapshot Using Raw Data Files
Section 12.9.6, “Fine-Tuning MySQL Full-Text Search”
Section 12.9.4, “Full-Text Stopwords”
Section 12.9.1, “Natural Language Full-Text Searches”
Section 5.1.7, “Server System Variables”

G

[index top]

general_log
MySQL Glossary
Section 5.4.1, “Selecting General Query Log and Slow Query Log Output Destinations”
Section 5.1.7, “Server System Variables”
Section 5.4.3, “The General Query Log”

5230

general_log_file
Section 5.4.1, “Selecting General Query Log and Slow Query Log Output Destinations”
Section 5.1.7, “Server System Variables”
Section 5.4.3, “The General Query Log”

group_concat_max_len
Section 12.19.1, “Aggregate Function Descriptions”
Section 5.1.7, “Server System Variables”

group_replication_allow_local_disjoint_gtids_join
Section 17.7.1, “Group Replication System Variables”

group_replication_allow_local_lower_version_join
Section 17.7.1, “Group Replication System Variables”

group_replication_auto_increment_increment
Section 17.8, “Frequently Asked Questions”
Section 17.7.1, “Group Replication System Variables”
Section 16.1.6.2, “Replication Source Options and Variables”

group_replication_bootstrap_group
Adding a Second Instance
Section 17.2.1.5, “Bootstrapping the Group”
Section 17.2.1.2, “Configuring an Instance for Group Replication”
Section 17.7.1, “Group Replication System Variables”
Section 17.5.4, “Restarting a Group”

group_replication_components_stop_timeout
Section 17.7.1, “Group Replication System Variables”

group_replication_compression_threshold
Section 17.3.2, “Group Replication Limitations”
Section 17.7.1, “Group Replication System Variables”
Section 17.9.7.2, “Message Compression”

group_replication_enforce_update_everywhere_checks
Section 17.5.1, “Deploying in Multi-Primary or Single-Primary Mode”
Section 17.3.2, “Group Replication Limitations”
Section 17.7.1, “Group Replication System Variables”

group_replication_exit_state_action
Section 17.7.1, “Group Replication System Variables”

group_replication_flow_control_applier_threshold
Section 17.7.1, “Group Replication System Variables”

group_replication_flow_control_certifier_threshold
Section 17.7.1, “Group Replication System Variables”

group_replication_flow_control_hold_percent
Section 17.7.1, “Group Replication System Variables”

5231

group_replication_flow_control_max_quota
Section 17.7.1, “Group Replication System Variables”

group_replication_flow_control_member_quota_percent
Section 17.7.1, “Group Replication System Variables”

group_replication_flow_control_min_quota
Section 17.7.1, “Group Replication System Variables”

group_replication_flow_control_min_recovery_quota
Section 17.7.1, “Group Replication System Variables”

group_replication_flow_control_mode
Section 17.7.1, “Group Replication System Variables”

group_replication_flow_control_period
Section 17.4.3, “The replication_group_member_stats Table”

group_replication_force_members
Section 17.7.1, “Group Replication System Variables”
Section 17.5.3, “Network Partitioning”

group_replication_group_name
Section 17.2.1.2, “Configuring an Instance for Group Replication”
Section 17.7.1, “Group Replication System Variables”

group_replication_group_seeds
Section 17.2.1.2, “Configuring an Instance for Group Replication”
Section 17.2.2, “Deploying Group Replication Locally”
Section 17.7.1, “Group Replication System Variables”

group_replication_gtid_assignment_block_size
Section 17.7.1, “Group Replication System Variables”

group_replication_ip_whitelist
Section 17.6.1, “Group Replication IP Address Allowlisting”
Section 17.7.1, “Group Replication System Variables”

group_replication_local_address
Section 17.2.1.2, “Configuring an Instance for Group Replication”
Section 17.2.2, “Deploying Group Replication Locally”
Section 17.8, “Frequently Asked Questions”
Section 17.6.1, “Group Replication IP Address Allowlisting”
Section 17.7.1, “Group Replication System Variables”
Section 6.7.5.2, “Setting the TCP Port Context for MySQL Features”
Section 25.12.11.8, “The replication_group_members Table”

group_replication_member_weight
Section 17.7.1, “Group Replication System Variables”
Section 17.5.1.1, “Single-Primary Mode”

5232

group_replication_poll_spin_loops
Section 17.9.7.1, “Fine Tuning the Group Communication Thread”
Section 17.7.1, “Group Replication System Variables”

group_replication_recovery_complete_at
Section 17.7.1, “Group Replication System Variables”

group_replication_recovery_reconnect_interval
Section 17.7.1, “Group Replication System Variables”
Section 17.5.2, “Tuning Recovery”

group_replication_recovery_retry_count
Section 17.7.1, “Group Replication System Variables”
Section 17.5.2, “Tuning Recovery”

group_replication_recovery_ssl_ca
Section 17.7.1, “Group Replication System Variables”

group_replication_recovery_ssl_capath
Section 17.7.1, “Group Replication System Variables”

group_replication_recovery_ssl_cert
Section 17.7.1, “Group Replication System Variables”

group_replication_recovery_ssl_cipher
Section 17.7.1, “Group Replication System Variables”

group_replication_recovery_ssl_crl
Section 17.7.1, “Group Replication System Variables”

group_replication_recovery_ssl_crlpath
Section 17.7.1, “Group Replication System Variables”

group_replication_recovery_ssl_key
Section 17.7.1, “Group Replication System Variables”

group_replication_recovery_ssl_verify_server_cert
Section 17.7.1, “Group Replication System Variables”

group_replication_recovery_use_ssl
Section 17.7.1, “Group Replication System Variables”

group_replication_single_primary_mode
Section 17.3.2, “Group Replication Limitations”
Section 17.7.1, “Group Replication System Variables”

group_replication_ssl_mode
Section 17.6.2, “Group Replication Secure Socket Layer (SSL) Support”
Section 17.7.1, “Group Replication System Variables”

5233

group_replication_start_on_boot
Section 17.2.1.2, “Configuring an Instance for Group Replication”
Section 17.7.1, “Group Replication System Variables”
Section 17.5.4, “Restarting a Group”

group_replication_transaction_size_limit
Section 17.3.2, “Group Replication Limitations”
Section 17.7.1, “Group Replication System Variables”

group_replication_unreachable_majority_timeout
Section 17.7.1, “Group Replication System Variables”

gtid_executed
Section 16.1.6.5, “Global Transaction ID System Variables”
Section 16.1.3.3, “GTID Auto-Positioning”
Section 16.1.3.1, “GTID Format and Storage”
Section 16.1.3.2, “GTID Life Cycle”
Section 25.12.11, “Performance Schema Replication Tables”
Section 16.1.5.2, “Provisioning a Multi-Source Replica for GTID-Based Replication”
Section 16.1.6.3, “Replica Server Options and Variables”
Section 16.1.4.1, “Replication Mode Concepts”
Section 13.4.1.2, “RESET MASTER Statement”
Section 17.5.4, “Restarting a Group”
Section 16.1.3.6, “Restrictions on Replication with GTIDs”
Section 5.1.7, “Server System Variables”
Section 13.7.5.23, “SHOW MASTER STATUS Statement”
Section 13.7.5.34, “SHOW SLAVE STATUS Statement”
Section 16.1.3.7, “Stored Function Examples to Manipulate GTIDs”
Section 16.1.3.5, “Using GTIDs for Failover and Scaleout”
Section 17.5.5, “Using MySQL Enterprise Backup with Group Replication”

gtid_executed_compression_period
Section 16.1.6.5, “Global Transaction ID System Variables”
Section 16.1.3.1, “GTID Format and Storage”

GTID_MODE
Section 13.4.2.1, “CHANGE MASTER TO Statement”
Section 16.1.3.3, “GTID Auto-Positioning”

gtid_mode
Section 16.1.5.3, “Adding GTID-Based Sources to a Multi-Source Replica”
Section 16.1.6.4, “Binary Logging Options and Variables”
Section 16.1.4.3, “Disabling GTID Transactions Online”
Section 16.1.4.2, “Enabling GTID Transactions Online”
Section 12.18, “Functions Used with Global Transaction Identifiers (GTIDs)”
Section 16.1.6.5, “Global Transaction ID System Variables”
Section 17.3.1, “Group Replication Requirements”
Section 16.1.3.1, “GTID Format and Storage”
Section 16.3.2, “Handling an Unexpected Halt of a Replica”
Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 16.1.6.3, “Replica Server Options and Variables”

5234

Section 16.1.4.1, “Replication Mode Concepts”
Section 13.4.1.2, “RESET MASTER Statement”
Section 13.4.2.3, “RESET SLAVE Statement”
Section 16.1.3.6, “Restrictions on Replication with GTIDs”
Section 16.1.3.4, “Setting Up Replication Using GTIDs”
Section 16.1.7.3, “Skipping Transactions”
Skipping Transactions With GTIDs
Skipping Transactions With SET GLOBAL sql_slave_skip_counter
Skipping Transactions Without GTIDs
Section 25.12.7.1, “The events_transactions_current Table”
Section 25.12.11.6, “The replication_applier_status_by_worker Table”
Section 16.4.3, “Upgrading a Replication Topology”
Section 2.10.4, “Upgrading MySQL Binary or Package-based Installations on Unix/Linux”
Section 16.1.3.5, “Using GTIDs for Failover and Scaleout”

gtid_next
Section 16.1.6.5, “Global Transaction ID System Variables”
Section 16.1.3.1, “GTID Format and Storage”
Section 16.1.3.2, “GTID Life Cycle”
Section 16.1.4.1, “Replication Mode Concepts”
Section 5.1.9, “Server Status Variables”
Section 13.4.2.6, “STOP SLAVE Statement”
Section 25.12.7.1, “The events_transactions_current Table”
Section 25.12.11.6, “The replication_applier_status_by_worker Table”

gtid_owned
Section 16.1.6.5, “Global Transaction ID System Variables”
Section 16.1.3.2, “GTID Life Cycle”

gtid_purged
Section 13.4.2.1, “CHANGE MASTER TO Statement”
Section 16.1.6.5, “Global Transaction ID System Variables”
Section 17.3.1, “Group Replication Requirements”
Section 16.1.3.3, “GTID Auto-Positioning”
Section 16.1.3.1, “GTID Format and Storage”
Section 16.1.3.2, “GTID Life Cycle”
Section 16.1.5.2, “Provisioning a Multi-Source Replica for GTID-Based Replication”
Section 16.1.4.1, “Replication Mode Concepts”
Section 13.4.1.2, “RESET MASTER Statement”
Section 16.1.3.7, “Stored Function Examples to Manipulate GTIDs”
Section 16.1.3.5, “Using GTIDs for Failover and Scaleout”

H

[index top]

have_compress
Section 5.1.7, “Server System Variables”

have_crypt
Section 5.1.7, “Server System Variables”
Section 1.3, “What Is New in MySQL 5.7”

5235

have_dynamic_loading
Section 16.3.9.2, “Semisynchronous Replication Installation and Configuration”
Section 5.1.7, “Server System Variables”

have_geometry
Section 5.1.7, “Server System Variables”

have_openssl
Section 5.1.7, “Server System Variables”

have_profiling
Section 5.1.7, “Server System Variables”

have_query_cache
Section 8.10.3.3, “Query Cache Configuration”
Section 5.1.7, “Server System Variables”
Section 1.3, “What Is New in MySQL 5.7”

have_rtree_keys
Section 5.1.7, “Server System Variables”

have_ssl
Section 2.8.6, “Configuring SSL Library Support”
Section 5.1.7, “Server System Variables”

have_statement_timeout
Section 5.1.7, “Server System Variables”

have_symlink
Section 5.1.7, “Server System Variables”
Section 8.12.3.3, “Using Symbolic Links for Databases on Windows”
Section 8.12.3.2, “Using Symbolic Links for MyISAM Tables on Unix”

host_cache_size
Section 5.1.11.2, “DNS Lookups and the Host Cache”
Section 5.1.6, “Server Command Options”
Section 5.1.7, “Server System Variables”
Section 25.12.16.1, “The host_cache Table”

hostname
Section 17.2.1.2, “Configuring an Instance for Group Replication”
Section 17.8, “Frequently Asked Questions”
Section 5.1.7, “Server System Variables”
Section 25.12.11.8, “The replication_group_members Table”

I

[index top]

identity
Section 5.4.4.3, “Mixed Binary Logging Format”

5236

Section 16.4.1.37, “Replication and Variables”
Section 5.1.7, “Server System Variables”

ignore_db_dirs
Section 5.1.6, “Server Command Options”
Section 5.1.7, “Server System Variables”
Section 1.3, “What Is New in MySQL 5.7”

init_connect
Section 10.5, “Configuring Application Character Set and Collation”
Section 6.2.2, “Privileges Provided by MySQL”
Section 16.1.6.3, “Replica Server Options and Variables”
Section 5.1.7, “Server System Variables”
Section 25.12.16.1, “The host_cache Table”

init_file
Section 2.9.1, “Initializing the Data Directory”
Section 8.10.2.2, “Multiple Key Caches”
Section 25.4, “Performance Schema Runtime Configuration”
Section 16.4.1.20, “Replication and MEMORY Tables”
Resetting the Root Password: Unix and Unix-Like Systems
Resetting the Root Password: Windows Systems
Section 5.1.6, “Server Command Options”
Section 5.1.7, “Server System Variables”
Section 15.3, “The MEMORY Storage Engine”

init_slave
Section 16.1.6.3, “Replica Server Options and Variables”

innodb
Section 14.8.2, “Configuring InnoDB for Read-Only Operation”
Section A.16, “MySQL 5.7 FAQ: InnoDB Change Buffer”

innodb_adaptive_flushing
Section 14.8.3.5, “Configuring Buffer Pool Flushing”
Section 14.15, “InnoDB Startup Options and System Variables”

innodb_adaptive_flushing_lwm
Section 14.8.3.5, “Configuring Buffer Pool Flushing”
Section 14.15, “InnoDB Startup Options and System Variables”

innodb_adaptive_hash_index
Section 14.5.3, “Adaptive Hash Index”
Section 14.8.5, “Configuring Thread Concurrency for InnoDB”
Section 14.15, “InnoDB Startup Options and System Variables”
MySQL Glossary
Section 8.5.9, “Optimizing InnoDB Configuration Variables”
Section 13.1.34, “TRUNCATE TABLE Statement”

innodb_adaptive_hash_index_parts
Section 14.5.3, “Adaptive Hash Index”
Section 14.15, “InnoDB Startup Options and System Variables”

5237

Section 24.4.28, “The INFORMATION_SCHEMA INNODB_TRX Table”

innodb_adaptive_max_sleep_delay
Section 14.8.5, “Configuring Thread Concurrency for InnoDB”
Section 14.15, “InnoDB Startup Options and System Variables”

innodb_api_bk_commit_interval
Section 14.21.5.4, “Controlling Transactional Behavior of the InnoDB memcached Plugin”
Section 14.21.2, “InnoDB memcached Architecture”
Section 14.15, “InnoDB Startup Options and System Variables”

innodb_api_disable_rowlock
Section 14.21.5.4, “Controlling Transactional Behavior of the InnoDB memcached Plugin”
Section 14.15, “InnoDB Startup Options and System Variables”

innodb_api_enable_binlog
Section 14.15, “InnoDB Startup Options and System Variables”
Section 14.21.6, “The InnoDB memcached Plugin and Replication”

innodb_api_enable_mdl
Section 14.21.5.4, “Controlling Transactional Behavior of the InnoDB memcached Plugin”
Section 14.21.2, “InnoDB memcached Architecture”
Section 14.15, “InnoDB Startup Options and System Variables”

innodb_api_trx_level
Section 14.21.5.4, “Controlling Transactional Behavior of the InnoDB memcached Plugin”
Section 14.21.2, “InnoDB memcached Architecture”
Section 14.15, “InnoDB Startup Options and System Variables”

innodb_autoextend_increment
Section 14.6.3.2, “File-Per-Table Tablespaces”
Section 14.8.1, “InnoDB Startup Configuration”
Section 14.15, “InnoDB Startup Options and System Variables”
MySQL Glossary
Section 14.6.3.1, “The System Tablespace”

innodb_autoinc_lock_mode
Section 14.6.1.6, “AUTO_INCREMENT Handling in InnoDB”
Section 8.5.5, “Bulk Data Loading for InnoDB Tables”
Section 12.15, “Information Functions”
Section 14.7.1, “InnoDB Locking”
Section 14.15, “InnoDB Startup Options and System Variables”
Section 14.7.3, “Locks Set by Different SQL Statements in InnoDB”
MySQL Glossary

innodb_background_drop_list_empty
Section 14.15, “InnoDB Startup Options and System Variables”

innodb_buffer_pool_chunk_size
Section 14.8.3.1, “Configuring InnoDB Buffer Pool Size”
Section 8.12.4.3, “Enabling Large Page Support”

5238

Section 14.15, “InnoDB Startup Options and System Variables”
Section 1.3, “What Is New in MySQL 5.7”

innodb_buffer_pool_dump_at_shutdown
Section 14.15, “InnoDB Startup Options and System Variables”
MySQL Glossary
Section 14.8.3.6, “Saving and Restoring the Buffer Pool State”

innodb_buffer_pool_dump_now
Section 14.15, “InnoDB Startup Options and System Variables”
Section 14.8.3.6, “Saving and Restoring the Buffer Pool State”

innodb_buffer_pool_dump_pct
Section 14.15, “InnoDB Startup Options and System Variables”
Section 14.8.3.6, “Saving and Restoring the Buffer Pool State”
Section 1.3, “What Is New in MySQL 5.7”

innodb_buffer_pool_filename
Section 14.15, “InnoDB Startup Options and System Variables”
Section 14.8.3.6, “Saving and Restoring the Buffer Pool State”

innodb_buffer_pool_instances
Section 14.8.3.5, “Configuring Buffer Pool Flushing”
Section 14.8.3.1, “Configuring InnoDB Buffer Pool Size”
Section 14.8.3.2, “Configuring Multiple Buffer Pool Instances”
Section 8.12.4.1, “How MySQL Uses Memory”
Section 14.8.1, “InnoDB Startup Configuration”
Section 14.15, “InnoDB Startup Options and System Variables”
MySQL Glossary
Section 14.21.5.3, “Tuning InnoDB memcached Plugin Performance”

innodb_buffer_pool_load_abort
Section 14.15, “InnoDB Startup Options and System Variables”
Section 5.1.9, “Server Status Variables”

innodb_buffer_pool_load_at_startup
Section 14.15, “InnoDB Startup Options and System Variables”
MySQL Glossary
Section 14.8.3.6, “Saving and Restoring the Buffer Pool State”
Section 5.1.9, “Server Status Variables”

innodb_buffer_pool_load_now
Section 14.15, “InnoDB Startup Options and System Variables”
Section 14.8.3.6, “Saving and Restoring the Buffer Pool State”
Section 5.1.9, “Server Status Variables”

innodb_buffer_pool_size
Section 14.9.1.6, “Compression for OLTP Workloads”
Section 14.8.3.1, “Configuring InnoDB Buffer Pool Size”
Section 14.8.3.2, “Configuring Multiple Buffer Pool Instances”
Section 14.6.1.5, “Converting Tables from MyISAM to InnoDB”
Section 8.12.4.3, “Enabling Large Page Support”

5239

Section 8.12.4.1, “How MySQL Uses Memory”
Section 14.8.1, “InnoDB Startup Configuration”
Section 14.15, “InnoDB Startup Options and System Variables”
MySQL Glossary
Section 8.5.8, “Optimizing InnoDB Disk I/O”
Section 5.1.9, “Server Status Variables”
Section 14.21.5.3, “Tuning InnoDB memcached Plugin Performance”
Section 1.3, “What Is New in MySQL 5.7”

innodb_change_buffer_max_size
Section 14.5.2, “Change Buffer”
Section 14.15, “InnoDB Startup Options and System Variables”
Section A.16, “MySQL 5.7 FAQ: InnoDB Change Buffer”
MySQL Glossary

innodb_change_buffering
Section 14.5.2, “Change Buffer”
Section 14.8.2, “Configuring InnoDB for Read-Only Operation”
Section 14.15, “InnoDB Startup Options and System Variables”
MySQL Glossary
Section 8.5.2, “Optimizing InnoDB Transaction Management”

innodb_change_buffering_debug
Section 14.15, “InnoDB Startup Options and System Variables”

innodb_checksum_algorithm
Section 14.1.1, “Benefits of Using InnoDB Tables”
Section 14.15, “InnoDB Startup Options and System Variables”
MySQL Glossary
Section 8.5.8, “Optimizing InnoDB Disk I/O”

innodb_checksums
Section 14.15, “InnoDB Startup Options and System Variables”

innodb_cmp_per_index_enabled
Section 14.15, “InnoDB Startup Options and System Variables”
Section 14.9.1.4, “Monitoring InnoDB Table Compression at Runtime”
Section 24.4.7, “The INFORMATION_SCHEMA INNODB_CMP_PER_INDEX and
INNODB_CMP_PER_INDEX_RESET Tables”
Section 14.9.1.3, “Tuning Compression for InnoDB Tables”

innodb_commit_concurrency
Section 14.15, “InnoDB Startup Options and System Variables”

innodb_compress_debug
Section 14.15, “InnoDB Startup Options and System Variables”

innodb_compression_failure_threshold_pct
Section 14.9.1.6, “Compression for OLTP Workloads”
Section 14.9.1.5, “How Compression Works for InnoDB Tables”
Section 14.15, “InnoDB Startup Options and System Variables”
MySQL Glossary

5240

Section 14.9.1.3, “Tuning Compression for InnoDB Tables”

innodb_compression_level
Section 14.9.1.6, “Compression for OLTP Workloads”
Section 14.9.1.5, “How Compression Works for InnoDB Tables”
Section 14.15, “InnoDB Startup Options and System Variables”
MySQL Glossary
Section 14.9.1.3, “Tuning Compression for InnoDB Tables”

innodb_compression_pad_pct_max
Section 14.9.1.6, “Compression for OLTP Workloads”
Section 14.9.1.5, “How Compression Works for InnoDB Tables”
Section 14.15, “InnoDB Startup Options and System Variables”
MySQL Glossary
Section 14.9.1.3, “Tuning Compression for InnoDB Tables”

innodb_concurrency_tickets
Section 14.8.5, “Configuring Thread Concurrency for InnoDB”
Section 14.15, “InnoDB Startup Options and System Variables”
Section 8.5.9, “Optimizing InnoDB Configuration Variables”
Section 24.4.28, “The INFORMATION_SCHEMA INNODB_TRX Table”

innodb_data_file_path
Section 14.12.2, “File Space Management”
Section 2.9.1, “Initializing the Data Directory”
Section 4.6.1, “innochecksum — Offline InnoDB File Checksum Utility”
Section 14.8.1, “InnoDB Startup Configuration”
Section 14.15, “InnoDB Startup Options and System Variables”
Section 4.4.2, “mysql_install_db — Initialize MySQL Data Directory”
Section 24.3.9, “The INFORMATION_SCHEMA FILES Table”
Section 14.6.3.1, “The System Tablespace”
Section 14.22.1, “Troubleshooting InnoDB I/O Problems”

innodb_data_home_dir
Section 2.9.1, “Initializing the Data Directory”
Section 14.8.1, “InnoDB Startup Configuration”
Section 14.15, “InnoDB Startup Options and System Variables”
Section 4.4.2, “mysql_install_db — Initialize MySQL Data Directory”
Section 14.6.3.5, “The Temporary Tablespace”
Section 14.22.1, “Troubleshooting InnoDB I/O Problems”
Section 17.5.5, “Using MySQL Enterprise Backup with Group Replication”

innodb_deadlock_detect
Section 14.6.1.5, “Converting Tables from MyISAM to InnoDB”
Section 14.7.5.2, “Deadlock Detection”
Section 14.7.5, “Deadlocks in InnoDB”
Section 14.15, “InnoDB Startup Options and System Variables”
Section 8.11.1, “Internal Locking Methods”
MySQL Glossary

innodb_default_row_format
Section 2.10.3, “Changes in MySQL 5.7”

5241

Section 13.1.18, “CREATE TABLE Statement”
Section 14.6.1.1, “Creating InnoDB Tables”
Section 14.6.1.3, “Importing InnoDB Tables”
Section 14.11, “InnoDB Row Formats”
Section 14.15, “InnoDB Startup Options and System Variables”
MySQL Glossary
Section 8.4.1, “Optimizing Data Size”
Section 1.3, “What Is New in MySQL 5.7”

innodb_disable_resize_buffer_pool_debug
Section 14.15, “InnoDB Startup Options and System Variables”

innodb_disable_sort_file_cache
Section 14.15, “InnoDB Startup Options and System Variables”

innodb_doublewrite
Section 14.6.5, “Doublewrite Buffer”
Section 14.12.1, “InnoDB Disk I/O”
Section 14.8.1, “InnoDB Startup Configuration”
Section 14.15, “InnoDB Startup Options and System Variables”
Section 8.5.8, “Optimizing InnoDB Disk I/O”
Section 14.21.5.3, “Tuning InnoDB memcached Plugin Performance”

innodb_fast_shutdown
Section 2.10.3, “Changes in MySQL 5.7”
Section 14.10.2.1, “Compatibility Check When InnoDB Is Started”
Section 2.11.3, “Downgrade Notes”
Section 2.11.4, “Downgrading Binary and Package-based Installations on Unix/Linux”
Section 14.19.2, “InnoDB Recovery”
Section 14.15, “InnoDB Startup Options and System Variables”
MySQL Glossary
Section 5.1.16, “The Server Shutdown Process”
Section 2.10.4, “Upgrading MySQL Binary or Package-based Installations on Unix/Linux”

innodb_fil_make_page_dirty_debug
Section 14.15, “InnoDB Startup Options and System Variables”

innodb_file_format
Section 14.10.2.2, “Compatibility Check When a Table Is Opened”
Section 14.10.2.1, “Compatibility Check When InnoDB Is Started”
Section 10.9.8, “Converting Between 3-Byte and 4-Byte Unicode Character Sets”
Section 14.6.1.5, “Converting Tables from MyISAM to InnoDB”
Section 13.1.19, “CREATE TABLESPACE Statement”
Section 14.9.1.2, “Creating Compressed Tables”
Section 14.10.1, “Enabling File Formats”
Section 14.6.3.3, “General Tablespaces”
Section 14.9.1.5, “How Compression Works for InnoDB Tables”
Section 14.10.3, “Identifying the File Format in Use”
Section 14.10, “InnoDB File-Format Management”
Section 14.11, “InnoDB Row Formats”
Section 14.15, “InnoDB Startup Options and System Variables”
MySQL Glossary
Section 14.9.1.7, “SQL Compression Syntax Warnings and Errors”

5242

innodb_file_format_check
Section 14.10.2.2, “Compatibility Check When a Table Is Opened”
Section 14.10.2.1, “Compatibility Check When InnoDB Is Started”
Section 14.10, “InnoDB File-Format Management”
Section 14.15, “InnoDB Startup Options and System Variables”

innodb_file_format_max
Section 13.1.19, “CREATE TABLESPACE Statement”
Section 14.10, “InnoDB File-Format Management”
Section 14.15, “InnoDB Startup Options and System Variables”

innodb_file_per
Section 14.15, “InnoDB Startup Options and System Variables”

innodb_file_per_table
Section 14.1.2, “Best Practices for InnoDB Tables”
Section 10.9.8, “Converting Between 3-Byte and 4-Byte Unicode Character Sets”
Section 14.6.1.5, “Converting Tables from MyISAM to InnoDB”
Section 13.1.18, “CREATE TABLE Statement”
Section 13.1.19, “CREATE TABLESPACE Statement”
Section 14.9.1.2, “Creating Compressed Tables”
Section 14.6.1.1, “Creating InnoDB Tables”
Section 14.6.1.2, “Creating Tables Externally”
Section 14.12.2, “File Space Management”
Section 14.6.3.2, “File-Per-Table Tablespaces”
Section 13.1.18.1, “Files Created by CREATE TABLE”
Section 13.7.6.3, “FLUSH Statement”
Section 14.6.3.3, “General Tablespaces”
Section 14.9.1.5, “How Compression Works for InnoDB Tables”
Section 14.6.1.3, “Importing InnoDB Tables”
Section 14.2, “InnoDB and the ACID Model”
Section 14.14, “InnoDB Data-at-Rest Encryption”
Section 14.11, “InnoDB Row Formats”
Section 14.15, “InnoDB Startup Options and System Variables”
MySQL Glossary
Section 13.7.2.4, “OPTIMIZE TABLE Statement”
Section 14.12.5, “Reclaiming Disk Space with TRUNCATE TABLE”
Section 16.3.5, “Replicating Different Databases to Different Replicas”
Section 22.6, “Restrictions and Limitations on Partitioning”
Section 14.9.1.7, “SQL Compression Syntax Warnings and Errors”
Section 14.6.3.5, “The Temporary Tablespace”
Section 14.22.3, “Troubleshooting InnoDB Data Dictionary Operations”

innodb_fill_factor
Section 14.15, “InnoDB Startup Options and System Variables”
Section 14.6.2.3, “Sorted Index Builds”
Section 14.6.2.2, “The Physical Structure of an InnoDB Index”
Section 1.3, “What Is New in MySQL 5.7”

innodb_flush_log_at_timeout
Section 14.15, “InnoDB Startup Options and System Variables”
Section 14.5.4, “Log Buffer”

5243

innodb_flush_log_at_trx_commit
Section 16.1.6.4, “Binary Logging Options and Variables”
Section 16.3.2, “Handling an Unexpected Halt of a Replica”
Section 14.2, “InnoDB and the ACID Model”
Section 14.15, “InnoDB Startup Options and System Variables”
Section 14.5.4, “Log Buffer”
Section 8.5.2, “Optimizing InnoDB Transaction Management”
Section 16.4.1.26, “Replication and Source or Replica Shutdowns”
Section 14.21.5.3, “Tuning InnoDB memcached Plugin Performance”

innodb_flush_method
Section 14.6.5, “Doublewrite Buffer”
Section 14.6.3.2, “File-Per-Table Tablespaces”
Section 14.12.1, “InnoDB Disk I/O”
Section 14.8.1, “InnoDB Startup Configuration”
Section 14.15, “InnoDB Startup Options and System Variables”
Section 2.3, “Installing MySQL on Microsoft Windows”
Section 8.5.8, “Optimizing InnoDB Disk I/O”
Section 5.1.9, “Server Status Variables”
Section 14.21.5.3, “Tuning InnoDB memcached Plugin Performance”

innodb_flush_neighbors
Section 14.8.3.5, “Configuring Buffer Pool Flushing”
Section 14.15, “InnoDB Startup Options and System Variables”
MySQL Glossary
Section 8.5.8, “Optimizing InnoDB Disk I/O”

innodb_flush_sync
Section 14.8.8, “Configuring InnoDB I/O Capacity”
Section 14.15, “InnoDB Startup Options and System Variables”

innodb_flushing_avg_loops
Section 14.8.3.5, “Configuring Buffer Pool Flushing”
Section 14.15, “InnoDB Startup Options and System Variables”

innodb_force_load_corrupted
Section 14.15, “InnoDB Startup Options and System Variables”

innodb_force_recovery
Section 13.1.29, “DROP TABLE Statement”
Section 14.22.2, “Forcing InnoDB Recovery”
Section 1.5, “How to Report Bugs or Problems”
Section 14.19.2, “InnoDB Recovery”
Section 14.15, “InnoDB Startup Options and System Variables”
Section 8.5.2, “Optimizing InnoDB Transaction Management”
Section 2.10.12, “Rebuilding or Repairing Tables or Indexes”

innodb_ft_aux_table
Section 14.16.4, “InnoDB INFORMATION_SCHEMA FULLTEXT Index Tables”
Section 14.15, “InnoDB Startup Options and System Variables”
Section 24.4.8, “The INFORMATION_SCHEMA INNODB_FT_BEING_DELETED Table”

5244

Section 24.4.9, “The INFORMATION_SCHEMA INNODB_FT_CONFIG Table”
Section 24.4.11, “The INFORMATION_SCHEMA INNODB_FT_DELETED Table”
Section 24.4.12, “The INFORMATION_SCHEMA INNODB_FT_INDEX_CACHE Table”
Section 24.4.13, “The INFORMATION_SCHEMA INNODB_FT_INDEX_TABLE Table”

innodb_ft_cache_size
Section 14.6.2.4, “InnoDB Full-Text Indexes”
Section 14.16.4, “InnoDB INFORMATION_SCHEMA FULLTEXT Index Tables”
Section 14.15, “InnoDB Startup Options and System Variables”
MySQL Glossary
Section 24.4.12, “The INFORMATION_SCHEMA INNODB_FT_INDEX_CACHE Table”

innodb_ft_enable_diag_print
Section 14.15, “InnoDB Startup Options and System Variables”

innodb_ft_enable_stopword
Section 12.9.2, “Boolean Full-Text Searches”
Section 12.9.6, “Fine-Tuning MySQL Full-Text Search”
Section 14.15, “InnoDB Startup Options and System Variables”
Section 12.9.1, “Natural Language Full-Text Searches”

innodb_ft_max_token_size
Section 12.9.2, “Boolean Full-Text Searches”
Section 12.9.6, “Fine-Tuning MySQL Full-Text Search”
Section 12.9.4, “Full-Text Stopwords”
Section 14.15, “InnoDB Startup Options and System Variables”
Section 12.9.8, “ngram Full-Text Parser”

innodb_ft_min_token_size
Section 12.9.2, “Boolean Full-Text Searches”
Section 12.9.6, “Fine-Tuning MySQL Full-Text Search”
Section 12.9.4, “Full-Text Stopwords”
Section 14.15, “InnoDB Startup Options and System Variables”
Section 12.9.9, “MeCab Full-Text Parser Plugin”
Section 12.9.1, “Natural Language Full-Text Searches”
Section 12.9.8, “ngram Full-Text Parser”

innodb_ft_num_word_optimize
Section 12.9.6, “Fine-Tuning MySQL Full-Text Search”
Section 14.15, “InnoDB Startup Options and System Variables”
Section 13.7.2.4, “OPTIMIZE TABLE Statement”

innodb_ft_result_cache_limit
Section 14.15, “InnoDB Startup Options and System Variables”

innodb_ft_server_stopword_table
Section 12.9.2, “Boolean Full-Text Searches”
Section 12.9.6, “Fine-Tuning MySQL Full-Text Search”
Section 12.9.4, “Full-Text Stopwords”
Section 14.15, “InnoDB Startup Options and System Variables”
Section 12.9.1, “Natural Language Full-Text Searches”
Section 24.4.10, “The INFORMATION_SCHEMA INNODB_FT_DEFAULT_STOPWORD Table”

5245

innodb_ft_sort_pll_degree
Section 14.6.2.4, “InnoDB Full-Text Indexes”
Section 14.15, “InnoDB Startup Options and System Variables”

innodb_ft_total_cache_size
Section 14.6.2.4, “InnoDB Full-Text Indexes”
Section 14.16.4, “InnoDB INFORMATION_SCHEMA FULLTEXT Index Tables”
Section 14.15, “InnoDB Startup Options and System Variables”
Section 24.4.12, “The INFORMATION_SCHEMA INNODB_FT_INDEX_CACHE Table”

innodb_ft_user_stopword_table
Section 12.9.2, “Boolean Full-Text Searches”
Section 12.9.6, “Fine-Tuning MySQL Full-Text Search”
Section 12.9.4, “Full-Text Stopwords”
Section 14.15, “InnoDB Startup Options and System Variables”
Section 12.9.1, “Natural Language Full-Text Searches”
Section 24.4.10, “The INFORMATION_SCHEMA INNODB_FT_DEFAULT_STOPWORD Table”

innodb_io_capacity
Section 14.8.3.5, “Configuring Buffer Pool Flushing”
Section 14.8.8, “Configuring InnoDB I/O Capacity”
Section 14.15, “InnoDB Startup Options and System Variables”
Section A.16, “MySQL 5.7 FAQ: InnoDB Change Buffer”
Section 8.5.8, “Optimizing InnoDB Disk I/O”
Section 1.3, “What Is New in MySQL 5.7”

innodb_io_capacity_max
Section 14.8.3.5, “Configuring Buffer Pool Flushing”
Section 14.8.8, “Configuring InnoDB I/O Capacity”
Section 14.15, “InnoDB Startup Options and System Variables”
Section 8.5.8, “Optimizing InnoDB Disk I/O”

innodb_large_prefix
Section 8.3.4, “Column Indexes”
Section 10.9.8, “Converting Between 3-Byte and 4-Byte Unicode Character Sets”
Section 13.1.14, “CREATE INDEX Statement”
Section 13.1.18, “CREATE TABLE Statement”
Section 14.10, “InnoDB File-Format Management”
Section 14.23, “InnoDB Limits”
Section 14.11, “InnoDB Row Formats”
Section 14.15, “InnoDB Startup Options and System Variables”
MySQL Glossary

innodb_limit_optimistic_insert_debug
Section 14.15, “InnoDB Startup Options and System Variables”

innodb_lock_wait_timeout
Section 14.6.1.5, “Converting Tables from MyISAM to InnoDB”
Section 14.7.5.2, “Deadlock Detection”
Section 14.7.5, “Deadlocks in InnoDB”
Section 14.15, “InnoDB Startup Options and System Variables”
Section 8.11.1, “Internal Locking Methods”

5246

MySQL Glossary
Section 16.1.6.3, “Replica Server Options and Variables”
Section 16.4.1.30, “Replication Retries and Timeouts”

innodb_locks_unsafe_for_binlog
Section 14.7.2.3, “Consistent Nonlocking Reads”
Section 14.7.1, “InnoDB Locking”
Section 14.15, “InnoDB Startup Options and System Variables”
Section 14.7.3, “Locks Set by Different SQL Statements in InnoDB”
MySQL Glossary
Section 14.7.2.1, “Transaction Isolation Levels”

innodb_log_buffer_size
Section 14.8.1, “InnoDB Startup Configuration”
Section 14.15, “InnoDB Startup Options and System Variables”
Section 14.5.4, “Log Buffer”
MySQL Glossary
Section 8.5.4, “Optimizing InnoDB Redo Logging”

innodb_log_checkpoint_now
Section 14.15, “InnoDB Startup Options and System Variables”

innodb_log_checksums
Section 14.15, “InnoDB Startup Options and System Variables”

innodb_log_compressed_pages
Section 14.9.1.6, “Compression for OLTP Workloads”
Section 14.15, “InnoDB Startup Options and System Variables”
Section 8.5.8, “Optimizing InnoDB Disk I/O”

innodb_log_file_size
Section 14.8.3.5, “Configuring Buffer Pool Flushing”
Section 14.8.2, “Configuring InnoDB for Read-Only Operation”
Section 2.9.1, “Initializing the Data Directory”
Section 14.8.1, “InnoDB Startup Configuration”
Section 14.15, “InnoDB Startup Options and System Variables”
Section 4.4.2, “mysql_install_db — Initialize MySQL Data Directory”
Section 8.5.8, “Optimizing InnoDB Disk I/O”
Section 8.5.4, “Optimizing InnoDB Redo Logging”
Section 14.6.6, “Redo Log”
Section 5.1.8, “Using System Variables”

innodb_log_files_in_group
Section 14.8.1, “InnoDB Startup Configuration”
Section 14.15, “InnoDB Startup Options and System Variables”
Section 8.5.4, “Optimizing InnoDB Redo Logging”
Section 14.6.6, “Redo Log”

innodb_log_group_home_dir
Section 2.9.1, “Initializing the Data Directory”
Section 14.8.1, “InnoDB Startup Configuration”
Section 14.15, “InnoDB Startup Options and System Variables”

5247

Section 4.4.2, “mysql_install_db — Initialize MySQL Data Directory”
Section 14.6.3.4, “Undo Tablespaces”
Section 17.5.5, “Using MySQL Enterprise Backup with Group Replication”

innodb_log_write_ahead_size
Section 14.15, “InnoDB Startup Options and System Variables”
Section 8.5.4, “Optimizing InnoDB Redo Logging”

innodb_lru_scan_depth
Section 14.8.3.5, “Configuring Buffer Pool Flushing”
Section 14.15, “InnoDB Startup Options and System Variables”

innodb_max_dirty_pages_pct
Section 14.8.3.5, “Configuring Buffer Pool Flushing”
Section 14.15, “InnoDB Startup Options and System Variables”
Section 8.5.8, “Optimizing InnoDB Disk I/O”

innodb_max_dirty_pages_pct_lwm
Section 14.8.3.5, “Configuring Buffer Pool Flushing”
Section 14.15, “InnoDB Startup Options and System Variables”

innodb_max_purge_lag
Section 14.3, “InnoDB Multi-Versioning”
Section 14.15, “InnoDB Startup Options and System Variables”
MySQL Glossary
Section 14.8.10, “Purge Configuration”

innodb_max_purge_lag_delay
Section 14.15, “InnoDB Startup Options and System Variables”
Section 14.8.10, “Purge Configuration”

innodb_max_undo_log_size
Section 14.15, “InnoDB Startup Options and System Variables”
Section 14.6.3.4, “Undo Tablespaces”

innodb_merge_threshold_set_all_debug
Section 14.15, “InnoDB Startup Options and System Variables”

innodb_monitor_disable
Section 14.16.6, “InnoDB INFORMATION_SCHEMA Metrics Table”
Section 14.15, “InnoDB Startup Options and System Variables”
Section 13.7.5.15, “SHOW ENGINE Statement”
Section 24.4.16, “The INFORMATION_SCHEMA INNODB_METRICS Table”

innodb_monitor_enable
Section 14.16.6, “InnoDB INFORMATION_SCHEMA Metrics Table”
Section 14.15, “InnoDB Startup Options and System Variables”
Section 13.7.5.15, “SHOW ENGINE Statement”
Section 24.4.16, “The INFORMATION_SCHEMA INNODB_METRICS Table”

innodb_monitor_reset
Section 14.16.6, “InnoDB INFORMATION_SCHEMA Metrics Table”

5248

Section 14.15, “InnoDB Startup Options and System Variables”
Section 24.4.16, “The INFORMATION_SCHEMA INNODB_METRICS Table”

innodb_monitor_reset_all
Section 14.16.6, “InnoDB INFORMATION_SCHEMA Metrics Table”
Section 14.15, “InnoDB Startup Options and System Variables”
Section 24.4.16, “The INFORMATION_SCHEMA INNODB_METRICS Table”

innodb_numa_interleave
Section 14.15, “InnoDB Startup Options and System Variables”

innodb_old_blocks_pct
Section 14.15, “InnoDB Startup Options and System Variables”
Section 14.8.3.3, “Making the Buffer Pool Scan Resistant”
MySQL Glossary

innodb_old_blocks_time
Section 14.5.1, “Buffer Pool”
Section 14.15, “InnoDB Startup Options and System Variables”
Section 14.8.3.3, “Making the Buffer Pool Scan Resistant”

innodb_online_alter_log_max_size
Section 14.15, “InnoDB Startup Options and System Variables”
MySQL Glossary
Section 14.13.5, “Online DDL Failure Conditions”
Section 14.13.3, “Online DDL Space Requirements”

innodb_open_files
Section 14.15, “InnoDB Startup Options and System Variables”
Section 5.1.7, “Server System Variables”

innodb_optimize_fulltext_only
Section 12.9.6, “Fine-Tuning MySQL Full-Text Search”
Section 14.6.2.4, “InnoDB Full-Text Indexes”
Section 14.16.4, “InnoDB INFORMATION_SCHEMA FULLTEXT Index Tables”
Section 14.15, “InnoDB Startup Options and System Variables”
Section 13.7.2.4, “OPTIMIZE TABLE Statement”
Section 24.4.13, “The INFORMATION_SCHEMA INNODB_FT_INDEX_TABLE Table”

innodb_page_cleaners
Section 14.8.3.5, “Configuring Buffer Pool Flushing”
Section 14.15, “InnoDB Startup Options and System Variables”
MySQL Glossary
Section 1.3, “What Is New in MySQL 5.7”

innodb_page_size
Section 14.6.1.5, “Converting Tables from MyISAM to InnoDB”
Section 13.1.18, “CREATE TABLE Statement”
Section 13.1.19, “CREATE TABLESPACE Statement”
Section 14.9.1.2, “Creating Compressed Tables”
Section 14.8.11.3, “Estimating ANALYZE TABLE Complexity for InnoDB Tables”
Section 14.12.2, “File Space Management”

5249

Section 14.6.3.3, “General Tablespaces”
Section 14.9.1.5, “How Compression Works for InnoDB Tables”
Section 14.6.1.3, “Importing InnoDB Tables”
Section 14.23, “InnoDB Limits”
Section 14.9.2, “InnoDB Page Compression”
Section 14.24, “InnoDB Restrictions and Limitations”
Section 14.8.1, “InnoDB Startup Configuration”
Section 14.15, “InnoDB Startup Options and System Variables”
Section 8.4.7, “Limits on Table Column Count and Row Size”
MySQL Glossary
Section 8.5.8, “Optimizing InnoDB Disk I/O”
Section 8.5.4, “Optimizing InnoDB Redo Logging”
Section 14.9.1.1, “Overview of Table Compression”
Section 24.3.9, “The INFORMATION_SCHEMA FILES Table”
Section 14.6.2.2, “The Physical Structure of an InnoDB Index”
Section 14.21.8, “Troubleshooting the InnoDB memcached Plugin”
Section 14.6.7, “Undo Logs”
Section 14.6.3.4, “Undo Tablespaces”

innodb_print_all_deadlocks
Section 14.6.1.5, “Converting Tables from MyISAM to InnoDB”
Section 14.7.5, “Deadlocks in InnoDB”
Section 14.7.5.3, “How to Minimize and Handle Deadlocks”
Section 14.15, “InnoDB Startup Options and System Variables”
Section 14.22, “InnoDB Troubleshooting”

innodb_purge_batch_size
Section 14.15, “InnoDB Startup Options and System Variables”
Section 14.8.10, “Purge Configuration”

innodb_purge_rseg_truncate_frequency
Section 14.15, “InnoDB Startup Options and System Variables”
Section 14.8.10, “Purge Configuration”
Section 14.6.3.4, “Undo Tablespaces”

innodb_purge_threads
Section 14.15, “InnoDB Startup Options and System Variables”
MySQL Glossary
Section 14.8.10, “Purge Configuration”

innodb_random_read_ahead
Section 14.8.3.4, “Configuring InnoDB Buffer Pool Prefetching (Read-Ahead)”
Section 14.15, “InnoDB Startup Options and System Variables”
MySQL Glossary

innodb_read_ahead_threshold
Section 14.8.3.4, “Configuring InnoDB Buffer Pool Prefetching (Read-Ahead)”
Section 14.15, “InnoDB Startup Options and System Variables”

innodb_read_io_threads
Section 14.8.6, “Configuring the Number of Background InnoDB I/O Threads”
Section 14.18.3, “InnoDB Standard Monitor and Lock Monitor Output”

5250

Section 14.15, “InnoDB Startup Options and System Variables”
Section 14.8.7, “Using Asynchronous I/O on Linux”

innodb_read_only
Section 14.15, “InnoDB Startup Options and System Variables”

innodb_replication_delay
Section 14.15, “InnoDB Startup Options and System Variables”

innodb_rollback_on_timeout
Section 14.15, “InnoDB Startup Options and System Variables”

innodb_rollback_segments
Section 14.8.1, “InnoDB Startup Configuration”
Section 14.15, “InnoDB Startup Options and System Variables”
Section 5.1.9, “Server Status Variables”
Section 14.6.7, “Undo Logs”
Section 14.6.3.4, “Undo Tablespaces”

innodb_saved_page_number_debug
Section 14.15, “InnoDB Startup Options and System Variables”

innodb_sort_buffer_size
Section 14.15, “InnoDB Startup Options and System Variables”
MySQL Glossary
Section 14.13.3, “Online DDL Space Requirements”

innodb_spin_wait_delay
Section 14.8.9, “Configuring Spin Lock Polling”
Section 14.15, “InnoDB Startup Options and System Variables”

innodb_stats_auto_recalc
Configuring Automatic Statistics Calculation for Persistent Optimizer Statistics
Section 14.8.11, “Configuring Optimizer Statistics for InnoDB”
Configuring Optimizer Statistics Parameters for Individual Tables
Section 13.1.18, “CREATE TABLE Statement”
InnoDB Persistent Statistics Tables Example
Section 14.15, “InnoDB Startup Options and System Variables”

innodb_stats_include_delete_marked
Including Delete-marked Records in Persistent Statistics Calculations
Section 14.15, “InnoDB Startup Options and System Variables”

innodb_stats_method
Section 8.3.7, “InnoDB and MyISAM Index Statistics Collection”
Section 14.15, “InnoDB Startup Options and System Variables”
MySQL Glossary

innodb_stats_on_metadata
Section 14.8.11.2, “Configuring Non-Persistent Optimizer Statistics Parameters”
Section 14.15, “InnoDB Startup Options and System Variables”

5251

innodb_stats_persistent
Section 13.7.2.1, “ANALYZE TABLE Statement”
Section 14.8.11.2, “Configuring Non-Persistent Optimizer Statistics Parameters”
Section 14.8.11, “Configuring Optimizer Statistics for InnoDB”
Configuring Optimizer Statistics Parameters for Individual Tables
Section 14.8.11.1, “Configuring Persistent Optimizer Statistics Parameters”
Section 13.1.14, “CREATE INDEX Statement”
Section 13.1.18, “CREATE TABLE Statement”
Section 14.8.11.3, “Estimating ANALYZE TABLE Complexity for InnoDB Tables”
Section 14.15, “InnoDB Startup Options and System Variables”
Section 8.5.10, “Optimizing InnoDB for Systems with Many Tables”

innodb_stats_persistent_sample_pages
Section 13.7.2.1, “ANALYZE TABLE Statement”
Configuring Optimizer Statistics Parameters for Individual Tables
Configuring the Number of Sampled Pages for InnoDB Optimizer Statistics
Section 14.8.11.3, “Estimating ANALYZE TABLE Complexity for InnoDB Tables”
Section 14.15, “InnoDB Startup Options and System Variables”

innodb_stats_sample_pages
Section 14.15, “InnoDB Startup Options and System Variables”

innodb_stats_transient_sample_pages
Section 13.7.2.1, “ANALYZE TABLE Statement”
Section 14.8.11.2, “Configuring Non-Persistent Optimizer Statistics Parameters”
Section 14.8.11.3, “Estimating ANALYZE TABLE Complexity for InnoDB Tables”
Section 14.15, “InnoDB Startup Options and System Variables”

innodb_status_output
Section 14.18.2, “Enabling InnoDB Monitors”
Section 14.15, “InnoDB Startup Options and System Variables”
Section 1.3, “What Is New in MySQL 5.7”

innodb_status_output_locks
Section 14.18.2, “Enabling InnoDB Monitors”
Section 14.15, “InnoDB Startup Options and System Variables”
Section 1.3, “What Is New in MySQL 5.7”

innodb_strict_mode
Section 13.1.18, “CREATE TABLE Statement”
Section 13.1.19, “CREATE TABLESPACE Statement”
Section 14.9.1.5, “How Compression Works for InnoDB Tables”
Section 14.15, “InnoDB Startup Options and System Variables”
MySQL Glossary
Section 5.1.10, “Server SQL Modes”
Section 14.9.1.7, “SQL Compression Syntax Warnings and Errors”

innodb_support_xa
Section 14.15, “InnoDB Startup Options and System Variables”
MySQL Glossary
Section 8.5.2, “Optimizing InnoDB Transaction Management”
Section 5.4.4, “The Binary Log”

5252

Section 14.21.5.3, “Tuning InnoDB memcached Plugin Performance”
Section 1.3, “What Is New in MySQL 5.7”

innodb_sync_array_size
Section 14.15, “InnoDB Startup Options and System Variables”

innodb_sync_debug
Section 14.15, “InnoDB Startup Options and System Variables”
Section 2.8.7, “MySQL Source-Configuration Options”

innodb_sync_spin_loops
Section 14.15, “InnoDB Startup Options and System Variables”

innodb_table_locks
Section 14.15, “InnoDB Startup Options and System Variables”
Section 14.7.3, “Locks Set by Different SQL Statements in InnoDB”

innodb_temp_data_file_path
Section 14.8.2, “Configuring InnoDB for Read-Only Operation”
Section 14.8.1, “InnoDB Startup Configuration”
Section 14.15, “InnoDB Startup Options and System Variables”
MySQL Glossary
Section 24.3.9, “The INFORMATION_SCHEMA FILES Table”
Section 24.4.27, “The INFORMATION_SCHEMA INNODB_TEMP_TABLE_INFO Table”
Section 14.6.3.5, “The Temporary Tablespace”
Section 1.3, “What Is New in MySQL 5.7”

innodb_thread_concurrency
Section 14.8.5, “Configuring Thread Concurrency for InnoDB”
Section 14.18.3, “InnoDB Standard Monitor and Lock Monitor Output”
Section 14.15, “InnoDB Startup Options and System Variables”
Section A.15, “MySQL 5.7 FAQ: MySQL Enterprise Thread Pool”
Section 8.5.9, “Optimizing InnoDB Configuration Variables”

innodb_thread_sleep_delay
Section 14.8.5, “Configuring Thread Concurrency for InnoDB”
Section 14.15, “InnoDB Startup Options and System Variables”

innodb_tmpdir
Section 14.15, “InnoDB Startup Options and System Variables”
Section 14.13.5, “Online DDL Failure Conditions”
Section 14.13.3, “Online DDL Space Requirements”

innodb_trx_purge_view_update_only_debug
Section 14.15, “InnoDB Startup Options and System Variables”

innodb_trx_rseg_n_slots_debug
Section 14.15, “InnoDB Startup Options and System Variables”

innodb_undo_directory
Section 14.8.2, “Configuring InnoDB for Read-Only Operation”

5253

Section 14.8.1, “InnoDB Startup Configuration”
Section 14.15, “InnoDB Startup Options and System Variables”
Section 14.6.3.4, “Undo Tablespaces”
Section 17.5.5, “Using MySQL Enterprise Backup with Group Replication”

innodb_undo_log_truncate
Section 14.15, “InnoDB Startup Options and System Variables”
Section 14.6.3.4, “Undo Tablespaces”
Section 1.3, “What Is New in MySQL 5.7”

innodb_undo_logs
Section 14.15, “InnoDB Startup Options and System Variables”

innodb_undo_tablespaces
Section 14.8.2, “Configuring InnoDB for Read-Only Operation”
Section 14.8.1, “InnoDB Startup Configuration”
Section 14.15, “InnoDB Startup Options and System Variables”
MySQL Glossary
Section 14.6.3.4, “Undo Tablespaces”

innodb_use_native_aio
Section 14.15, “InnoDB Startup Options and System Variables”
MySQL Glossary
Section 8.5.8, “Optimizing InnoDB Disk I/O”
Section 14.8.7, “Using Asynchronous I/O on Linux”

innodb_version
Section 14.15, “InnoDB Startup Options and System Variables”

innodb_write_io_threads
Section 14.8.6, “Configuring the Number of Background InnoDB I/O Threads”
Section 14.18.3, “InnoDB Standard Monitor and Lock Monitor Output”
Section 14.15, “InnoDB Startup Options and System Variables”
Section 14.8.7, “Using Asynchronous I/O on Linux”

insert_id
Section 15.8.3, “FEDERATED Storage Engine Notes and Tips”
Section 5.1.7, “Server System Variables”

interactive_timeout
Section B.3.2.9, “Communication Errors and Aborted Connections”
Section 5.1.7, “Server System Variables”

internal_tmp_disk_storage_engine
Section 8.12.4.1, “How MySQL Uses Memory”
Section 8.4.4, “Internal Temporary Table Use in MySQL”
Section 5.1.7, “Server System Variables”
Section 14.6.3.5, “The Temporary Tablespace”

J

[index top]

5254

join_buffer_size
Section 8.2.1.11, “Block Nested-Loop and Batched Key Access Joins”
Section 8.2.1.6, “Nested-Loop Join Algorithms”
Section 5.1.7, “Server System Variables”

K

[index top]

keep_files_on_create
Section 5.1.7, “Server System Variables”

key_buffer_size
Section 8.6.2, “Bulk Data Loading for MyISAM Tables”
Section 5.1.1, “Configuring the Server”
Section 14.6.1.5, “Converting Tables from MyISAM to InnoDB”
Section 8.8.5, “Estimating Query Performance”
Section 8.12.4.1, “How MySQL Uses Memory”
Section 7.6.3, “How to Repair MyISAM Tables”
Section 14.8.1, “InnoDB Startup Configuration”
Section B.3.7, “Known Issues in MySQL”
Section 8.10.2.2, “Multiple Key Caches”
Section 8.2.4.3, “Optimizing DELETE Statements”
Section 8.6.3, “Optimizing REPAIR TABLE Statements”
Section 8.10.2.6, “Restructuring a Key Cache”
Section 5.1.9, “Server Status Variables”
Section 5.1.7, “Server System Variables”
Section 5.1.8.3, “Structured System Variables”
Section 8.10.2, “The MyISAM Key Cache”

key_cache_age_threshold
Section 8.10.2.3, “Midpoint Insertion Strategy”
Section 5.1.7, “Server System Variables”
Section 5.1.8.3, “Structured System Variables”

key_cache_block_size
Section 8.10.2.5, “Key Cache Block Size”
Section 8.10.2.6, “Restructuring a Key Cache”
Section 5.1.7, “Server System Variables”
Section 5.1.8.3, “Structured System Variables”

key_cache_division_limit
Section 8.10.2.3, “Midpoint Insertion Strategy”
Section 5.1.7, “Server System Variables”
Section 5.1.8.3, “Structured System Variables”

keyring_aws_cmk_id
Section 6.4.4.12, “Keyring System Variables”
Section 6.4.4.9, “Plugin-Specific Keyring Key-Management Functions”
Section 6.4.4.5, “Using the keyring_aws Amazon Web Services Keyring Plugin”

5255

keyring_aws_conf_file
Section 6.4.4.12, “Keyring System Variables”
Section 6.4.4.5, “Using the keyring_aws Amazon Web Services Keyring Plugin”

keyring_aws_data_file
Section 6.4.4.12, “Keyring System Variables”
Section 6.4.4.9, “Plugin-Specific Keyring Key-Management Functions”
Section 6.4.4.5, “Using the keyring_aws Amazon Web Services Keyring Plugin”

keyring_aws_region
Section 6.4.4.12, “Keyring System Variables”
Section 6.4.4.5, “Using the keyring_aws Amazon Web Services Keyring Plugin”

keyring_encrypted_file_data
Section 14.14, “InnoDB Data-at-Rest Encryption”
Section 6.4.4.12, “Keyring System Variables”
Section 2.8.7, “MySQL Source-Configuration Options”
Section 6.4.4.3, “Using the keyring_encrypted_file Encrypted File-Based Keyring Plugin”

keyring_encrypted_file_password
Section 6.4.4.12, “Keyring System Variables”
Section 6.4.4.3, “Using the keyring_encrypted_file Encrypted File-Based Keyring Plugin”

keyring_file_data
Section 14.14, “InnoDB Data-at-Rest Encryption”
Section 6.4.4.12, “Keyring System Variables”
Section 6.4.4.7, “Migrating Keys Between Keyring Keystores”
Section 2.8.7, “MySQL Source-Configuration Options”
Section 6.4.4.2, “Using the keyring_file File-Based Keyring Plugin”

keyring_okv_conf_dir
Section 6.4.4.12, “Keyring System Variables”
Section 6.4.4.4, “Using the keyring_okv KMIP Plugin”

keyring_operations
Section 6.4.4.12, “Keyring System Variables”
Section 6.4.4.7, “Migrating Keys Between Keyring Keystores”

L

[index top]

large_files_support
Section 22.6, “Restrictions and Limitations on Partitioning”
Section 5.1.7, “Server System Variables”

large_page_size
Section 5.1.7, “Server System Variables”

large_pages
Section 5.1.7, “Server System Variables”

5256

last_insert_id
Section 5.4.4.3, “Mixed Binary Logging Format”
Section 16.4.1.37, “Replication and Variables”
Section 5.1.7, “Server System Variables”

lc_messages
Section 5.1.7, “Server System Variables”
Section 10.12, “Setting the Error Message Language”

lc_messages_dir
Section 5.1.7, “Server System Variables”
Section 10.12, “Setting the Error Message Language”

lc_time_names
Section 12.7, “Date and Time Functions”
Section 5.4.4.3, “Mixed Binary Logging Format”
Section 10.16, “MySQL Server Locale Support”
Section 16.4.1.37, “Replication and Variables”
Section 5.1.7, “Server System Variables”
Section 12.8, “String Functions and Operators”

license
Section 5.1.7, “Server System Variables”

local
Section 13.2.7, “LOAD XML Statement”

local_infile
Section 13.2.6, “LOAD DATA Statement”
Section 2.8.7, “MySQL Source-Configuration Options”
Section 6.1.6, “Security Considerations for LOAD DATA LOCAL”
Section 5.1.7, “Server System Variables”

lock_wait_timeout
Section 5.1.7, “Server System Variables”

locked_in_memory
Section 5.1.7, “Server System Variables”

log
Section 16.1.5.4, “Adding a Binary Log Based Source to a Multi-Source Replica”
Section 17.3.1, “Group Replication Requirements”
Section 14.15, “InnoDB Startup Options and System Variables”
Section 16.4.1.32, “Replication and Transaction Inconsistencies”
Section 16.2.2.3, “Startup Options and Replication Channels”
Section 14.21.6, “The InnoDB memcached Plugin and Replication”

log_bin
Section 16.1.6.4, “Binary Logging Options and Variables”
NDB Cluster System Variables
Section 13.4.1.2, “RESET MASTER Statement”

5257

Section 5.4.4.2, “Setting The Binary Log Format”
Section 5.4.4, “The Binary Log”

log_bin_basename
Section 16.1.6.4, “Binary Logging Options and Variables”

log_bin_index
Section 16.1.6.4, “Binary Logging Options and Variables”

log_bin_trust_function_creators
Section 16.1.6.4, “Binary Logging Options and Variables”
Section A.4, “MySQL 5.7 FAQ: Stored Procedures and Functions”
Section 23.7, “Stored Program Binary Logging”

log_bin_use_v
Section 16.1.6.4, “Binary Logging Options and Variables”
MySQL Server Options for NDB Cluster
Section 21.7.11, “NDB Cluster Replication Conflict Resolution”

log_builtin_as_identified_by_password
Section 16.1.6.4, “Binary Logging Options and Variables”
Section 13.7.5.12, “SHOW CREATE USER Statement”

log_error
Section 5.4.2.2, “Error Logging on Unix and Unix-Like Systems”
Section 5.4.2.1, “Error Logging on Windows”
Section 2.4.3, “Installing a MySQL Launch Daemon”
Section 2.5.7.2, “More Topics on Deploying MySQL Server with Docker”
Section 5.1.7, “Server System Variables”

log_error_verbosity
Section B.3.2.9, “Communication Errors and Aborted Connections”
Section 5.4.2.4, “Error Log Filtering”
Section 5.4.4.3, “Mixed Binary Logging Format”
Section B.3.2.7, “MySQL server has gone away”
Section 25.12.9, “Performance Schema Connection Attribute Tables”
Section 25.15, “Performance Schema System Variables”
Section 16.1.6.3, “Replica Server Options and Variables”
Section 5.1.6, “Server Command Options”
Section 5.1.7, “Server System Variables”
Section 6.4.6.3, “Using MySQL Enterprise Firewall”
Section 1.3, “What Is New in MySQL 5.7”

log_output
Section 5.4.1, “Selecting General Query Log and Slow Query Log Output Destinations”
Section 5.1.7, “Server System Variables”
Section 5.4.3, “The General Query Log”
Section 5.4.5, “The Slow Query Log”

log_queries_not_using_indexes
Section 5.1.7, “Server System Variables”
Section 5.4.5, “The Slow Query Log”

5258

log_replica_updates
Section 16.1.3.7, “Stored Function Examples to Manipulate GTIDs”

log_slave_updates
Section 16.1.6.4, “Binary Logging Options and Variables”
Section 16.1.3.1, “GTID Format and Storage”
Section 16.3.6, “Improving Replication Performance”
Section 21.7.3, “Known Issues in NDB Cluster Replication”
MySQL Server Options for NDB Cluster
Section 21.7.10, “NDB Cluster Replication: Bidirectional and Circular Replication”
NDB Cluster System Variables
Section 16.1.6.3, “Replica Server Options and Variables”

log_slow_admin_statements
Section 5.1.7, “Server System Variables”
Section 5.4.5, “The Slow Query Log”

log_slow_slave_statements
Section 16.1.6.3, “Replica Server Options and Variables”
Section 5.4.5, “The Slow Query Log”

log_statements_unsafe_for_binlog
Section 16.1.6.4, “Binary Logging Options and Variables”

log_syslog
Section 5.4.2.1, “Error Logging on Windows”
Section 5.4.2.3, “Error Logging to the System Log”
Section 2.5.10, “Managing MySQL Server with systemd”
Section 4.3.2, “mysqld_safe — MySQL Server Startup Script”
Section 5.1.7, “Server System Variables”

log_syslog_facility
Section 5.4.2.3, “Error Logging to the System Log”
Section 4.3.2, “mysqld_safe — MySQL Server Startup Script”
Section 5.1.7, “Server System Variables”

log_syslog_include_pid
Section 5.4.2.3, “Error Logging to the System Log”
Section 5.1.7, “Server System Variables”

log_syslog_tag
Section 5.4.2.3, “Error Logging to the System Log”
Section 4.3.2, “mysqld_safe — MySQL Server Startup Script”
Section 5.1.7, “Server System Variables”

log_throttle_queries_not_using_indexes
Section 5.1.7, “Server System Variables”
Section 5.4.5, “The Slow Query Log”

log_timestamps
Section 5.4.2.5, “Error Log Output Format”
Section 5.1.7, “Server System Variables”

5259

Section 5.4.3, “The General Query Log”
Section 5.4.5, “The Slow Query Log”

log_warnings
Section 16.1.6.3, “Replica Server Options and Variables”
Section 5.1.6, “Server Command Options”
Section 5.1.7, “Server System Variables”
Section 1.3, “What Is New in MySQL 5.7”

long_query_time
Section 5.4, “MySQL Server Logs”
Section 4.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 16.1.6.3, “Replica Server Options and Variables”
Section 5.1.9, “Server Status Variables”
Section 5.1.7, “Server System Variables”
Section 5.4.5, “The Slow Query Log”

low_priority_updates
Section A.14, “MySQL 5.7 FAQ: Replication”
Section 5.1.7, “Server System Variables”
Section 8.11.2, “Table Locking Issues”

lower
Section 17.3.1, “Group Replication Requirements”

lower_case_file_system
Section 5.1.7, “Server System Variables”

lower_case_table_names
Advanced Options
Section 13.1.18.5, “FOREIGN KEY Constraints”
Section 13.7.1.4, “GRANT Statement”
Section 17.7.1, “Group Replication System Variables”
Section 16.2.5, “How Servers Evaluate Replication Filtering Rules”
Section 1.5, “How to Report Bugs or Problems”
Section 9.2.3, “Identifier Case Sensitivity”
Section 14.6.1.3, “Importing InnoDB Tables”
Section 16.4.1.37, “Replication and Variables”
Section 13.7.1.6, “REVOKE Statement”
Section 5.1.7, “Server System Variables”
Section 13.7.5.37, “SHOW TABLES Statement”
Section 24.4.17, “The INFORMATION_SCHEMA INNODB_SYS_COLUMNS Table”
Section 24.4.23, “The INFORMATION_SCHEMA INNODB_SYS_TABLES Table”
Section 10.8.7, “Using Collation in INFORMATION_SCHEMA Searches”

M

[index top]

master_info_repository
Section 13.4.2.1, “CHANGE MASTER TO Statement”
Section 16.1.5.1, “Configuring Multi-Source Replication”
Section 13.7.6.3, “FLUSH Statement”

5260

Section 17.3.1, “Group Replication Requirements”
Section 14.15, “InnoDB Startup Options and System Variables”
Section 16.1.6.3, “Replica Server Options and Variables”
Section 16.2.4.2, “Replication Metadata Repositories”
Section 13.4.2.3, “RESET SLAVE Statement”
Section 13.3.7.3, “Restrictions on XA Transactions”
Setting Up Replication with Existing Data
Section 16.2.2.3, “Startup Options and Replication Channels”

master_verify_checksum
Section 16.1.6.4, “Binary Logging Options and Variables”
MySQL Glossary
Section 5.4.4, “The Binary Log”

max_allowed_packet
Section 12.19.1, “Aggregate Function Descriptions”
Section B.3.2.9, “Communication Errors and Aborted Connections”
Section 12.4.2, “Comparison Functions and Operators”
Section 11.7, “Data Type Storage Requirements”
Section B.3.4.6, “Deleting Rows from Related Tables”
Section 8.12.4.1, “How MySQL Uses Memory”
Section B.3.2.3, “Lost connection to MySQL server”
Section B.3.2.7, “MySQL server has gone away”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 21.7.11, “NDB Cluster Replication Conflict Resolution”
Section B.3.2.8, “Packet Too Large”
Section 16.1.6.3, “Replica Server Options and Variables”
Section 16.4.1.19, “Replication and max_allowed_packet”
Section 5.1.7, “Server System Variables”
Section 12.8, “String Functions and Operators”
Section 11.3.4, “The BLOB and TEXT Types”
Section 11.5, “The JSON Data Type”
Section 5.5.5.3, “Using Version Tokens”
Section 19.4.2.2, “X Plugin Options and System Variables”

max_binlog_cache_size
Section 16.1.6.4, “Binary Logging Options and Variables”
Section 5.4.4, “The Binary Log”

max_binlog_size
Section 16.1.6.4, “Binary Logging Options and Variables”
Section 5.4, “MySQL Server Logs”
Section 16.1.6.3, “Replica Server Options and Variables”
Section 5.4.7, “Server Log Maintenance”
Section 5.4.4, “The Binary Log”
Section 16.2.4.1, “The Relay Log”

max_binlog_stmt_cache_size
Section 16.1.6.4, “Binary Logging Options and Variables”

max_connect_errors
Section 5.1.11.2, “DNS Lookups and the Host Cache”
Section 5.1.7, “Server System Variables”

5261

Section 25.12.16.1, “The host_cache Table”

max_connections
Section 16.1.6.4, “Binary Logging Options and Variables”
Section 5.1.11.1, “Connection Interfaces”
Section 5.8.1.4, “Debugging mysqld under gdb”
Section B.3.2.16, “File Not Found and Similar Errors”
Section 8.4.3.1, “How MySQL Opens and Closes Tables”
Section 25.15, “Performance Schema System Variables”
Section 6.2.2, “Privileges Provided by MySQL”
Section 5.1.9, “Server Status Variables”
Section 5.1.7, “Server System Variables”
Section 25.12.16.3, “The processlist Table”
Section 5.5.3.3, “Thread Pool Operation”
Section B.3.2.5, “Too many connections”
Section 19.4.2.2, “X Plugin Options and System Variables”

max_delayed_threads
Section 5.1.7, “Server System Variables”

max_digest_length
Section 8.12.4.1, “How MySQL Uses Memory”
Section 25.10, “Performance Schema Statement Digests”
Section 25.15, “Performance Schema System Variables”
Section 5.1.7, “Server System Variables”
Section 6.4.6.3, “Using MySQL Enterprise Firewall”

max_error_count
Section 13.2.6, “LOAD DATA Statement”
Section 13.6.7.4, “RESIGNAL Statement”
Section 5.1.7, “Server System Variables”
Section 13.7.5.17, “SHOW ERRORS Statement”
Section 13.7.5.40, “SHOW WARNINGS Statement”
Section 13.6.7.7, “The MySQL Diagnostics Area”

max_execution_time
Section 8.9.3, “Optimizer Hints”
Section 5.1.9, “Server Status Variables”
Section 5.1.7, “Server System Variables”

max_heap_table_size
Section 8.12.4.1, “How MySQL Uses Memory”
Section 8.4.4, “Internal Temporary Table Use in MySQL”
Section 8.4.6, “Limits on Table Size”
Section 16.4.1.20, “Replication and MEMORY Tables”
Section 16.4.1.37, “Replication and Variables”
Section 13.6.6.5, “Restrictions on Server-Side Cursors”
Section 5.1.7, “Server System Variables”
Section 15.3, “The MEMORY Storage Engine”

max_insert_delayed_threads
Section 5.1.7, “Server System Variables”

5262

max_join_size
Section 8.8.2, “EXPLAIN Output Format”
Section 4.5.1.6, “mysql Client Tips”
Section 5.1.7, “Server System Variables”
Section 13.7.4.1, “SET Syntax for Variable Assignment”

max_length_for_sort_data
Section 8.2.1.14, “ORDER BY Optimization”
Section 5.1.7, “Server System Variables”

max_points_in_geometry
Section 5.1.7, “Server System Variables”
Section 12.16.8, “Spatial Operator Functions”

max_prepared_stmt_count
Section 8.10.4, “Caching of Prepared Statements and Stored Programs”
Section 13.5.3, “DEALLOCATE PREPARE Statement”
Section 25.15, “Performance Schema System Variables”
Section 13.5, “Prepared Statements”
Section 5.1.9, “Server Status Variables”
Section 5.1.7, “Server System Variables”

max_relay_log_size
Section 16.1.6.4, “Binary Logging Options and Variables”
Section 16.1.6.3, “Replica Server Options and Variables”
Section 16.2.4.1, “The Relay Log”

max_seeks_for_key
Section 13.7.2.1, “ANALYZE TABLE Statement”
Section 5.1.7, “Server System Variables”

max_sort_length
Section B.3.7, “Known Issues in MySQL”
Section 8.2.1.14, “ORDER BY Optimization”
Section 13.2.9, “SELECT Statement”
Section 5.1.7, “Server System Variables”
Section 11.3.4, “The BLOB and TEXT Types”
Section 11.5, “The JSON Data Type”

max_sp_recursion_depth
Section 5.1.7, “Server System Variables”
Section 23.2.1, “Stored Routine Syntax”

max_tmp_tables
Section 5.1.7, “Server System Variables”

max_user_connections
Section 13.7.1.1, “ALTER USER Statement”
Section 13.7.1.2, “CREATE USER Statement”
Section 13.7.6.3, “FLUSH Statement”
Section 6.1.3, “Making MySQL Secure Against Attackers”

5263

Section 5.1.7, “Server System Variables”
Section 6.2.16, “Setting Account Resource Limits”

max_write_lock_count
Section 13.3.5, “LOCK TABLES and UNLOCK TABLES Statements”
Section 8.11.4, “Metadata Locking”
Section 5.1.7, “Server System Variables”
Section 8.11.2, “Table Locking Issues”

mecab_rc_file
Section 12.9.9, “MeCab Full-Text Parser Plugin”

metadata_locks_cache_size
Section 5.1.7, “Server System Variables”
Section 1.3, “What Is New in MySQL 5.7”

metadata_locks_hash_instances
Section 5.1.7, “Server System Variables”
Section 1.3, “What Is New in MySQL 5.7”

min_examined_row_limit
Section 5.1.7, “Server System Variables”
Section 5.4.5, “The Slow Query Log”

multi_range_count
Section 5.1.7, “Server System Variables”

myisam_data_pointer_size
Section 13.1.18, “CREATE TABLE Statement”
Section 8.4.6, “Limits on Table Size”
Section 5.1.7, “Server System Variables”

myisam_max_sort_file_size
Section 15.2.1, “MyISAM Startup Options”
Section 8.6.3, “Optimizing REPAIR TABLE Statements”
Section 22.6, “Restrictions and Limitations on Partitioning”
Section 5.1.7, “Server System Variables”

myisam_mmap_size
Section 5.1.7, “Server System Variables”

myisam_recover_options
Section 15.2.1, “MyISAM Startup Options”
Section 8.6.1, “Optimizing MyISAM Queries”
Section 5.1.7, “Server System Variables”
Section 7.6.5, “Setting Up a MyISAM Table Maintenance Schedule”
Section B.3.2.17, “Table-Corruption Issues”
Section 15.2, “The MyISAM Storage Engine”
Section 5.8.1.6, “Using Server Logs to Find Causes of Errors in mysqld”

myisam_repair_threads
Section 5.1.7, “Server System Variables”

5264

Section 1.3, “What Is New in MySQL 5.7”

myisam_sort_buffer_size
Section 13.1.8, “ALTER TABLE Statement”
Section 15.2.1, “MyISAM Startup Options”
Section 8.6.3, “Optimizing REPAIR TABLE Statements”
Section 5.1.7, “Server System Variables”

myisam_stats_method
Section 8.3.7, “InnoDB and MyISAM Index Statistics Collection”
Section 5.1.7, “Server System Variables”

myisam_use_mmap
Section 8.12.4.1, “How MySQL Uses Memory”
Section 5.1.7, “Server System Variables”

mysql_firewall_mode
Section 6.4.6.4, “MySQL Enterprise Firewall Reference”
Section 6.4.6.3, “Using MySQL Enterprise Firewall”

mysql_firewall_trace
Section 6.4.6.4, “MySQL Enterprise Firewall Reference”
Section 6.4.6.3, “Using MySQL Enterprise Firewall”

mysql_native_password_proxy_users
Section 6.2.14, “Proxy Users”
Section 5.1.7, “Server System Variables”

mysqlx_bind_address
Section 19.4.2.2, “X Plugin Options and System Variables”

mysqlx_connect_timeout
Section 19.4.2.2, “X Plugin Options and System Variables”

mysqlx_idle_worker_thread_timeout
Section 19.4.2.2, “X Plugin Options and System Variables”

mysqlx_max_allowed_packet
Section 19.4.2.2, “X Plugin Options and System Variables”

mysqlx_max_connections
Section 19.4.2.2, “X Plugin Options and System Variables”

mysqlx_min_worker_threads
Section 19.4.2.2, “X Plugin Options and System Variables”

mysqlx_port
Section 2.8.7, “MySQL Source-Configuration Options”
Section 6.7.5.2, “Setting the TCP Port Context for MySQL Features”

5265

Section 19.4.2.2, “X Plugin Options and System Variables”

mysqlx_port_open_timeout
Section 19.4.2.2, “X Plugin Options and System Variables”

mysqlx_socket
Section 19.4.2.2, “X Plugin Options and System Variables”

mysqlx_ssl_ca
Section 19.4.2.2, “X Plugin Options and System Variables”

mysqlx_ssl_capath
Section 19.4.2.2, “X Plugin Options and System Variables”

mysqlx_ssl_cert
Section 19.4.2.2, “X Plugin Options and System Variables”

mysqlx_ssl_cipher
Section 19.4.2.2, “X Plugin Options and System Variables”

mysqlx_ssl_crl
Section 19.4.2.2, “X Plugin Options and System Variables”

mysqlx_ssl_crlpath
Section 19.4.2.2, “X Plugin Options and System Variables”

mysqlx_ssl_key
Section 19.4.2.2, “X Plugin Options and System Variables”

N

[index top]

named_pipe
Section B.3.2.2, “Can't connect to [local] MySQL server”
Section 4.2.3, “Command Options for Connecting to the Server”
Section 4.2.4, “Connecting to the MySQL Server Using Command Options”
Section 4.5.1.1, “mysql Client Options”
Section 4.4.4, “mysql_secure_installation — Improve MySQL Installation Security”
Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 4.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.6, “mysqlpump — A Database Backup Program”
Section 4.5.7, “mysqlshow — Display Database, Table, and Column Information”
Section 4.5.8, “mysqlslap — A Load Emulation Client”
Resetting the Root Password: Generic Instructions
Section 2.3.4.3, “Selecting a MySQL Server Type”
Section 5.1.7, “Server System Variables”

5266

Section 1.2.2, “The Main Features of MySQL”
Type and Networking

named_pipe_full_access_group
Section 4.2.3, “Command Options for Connecting to the Server”
Section 4.2.4, “Connecting to the MySQL Server Using Command Options”
Section 4.2.5, “Connection Transport Protocols”
Section 4.5.1.1, “mysql Client Options”
Section 4.4.4, “mysql_secure_installation — Improve MySQL Installation Security”
Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 4.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.6, “mysqlpump — A Database Backup Program”
Section 4.5.7, “mysqlshow — Display Database, Table, and Column Information”
Section 4.5.8, “mysqlslap — A Load Emulation Client”
Section 5.1.7, “Server System Variables”
Section 1.3, “What Is New in MySQL 5.7”

ndb_autoincrement_prefetch_sz
NDB Cluster System Variables
Section 21.5.14, “ndb_import — Import CSV Data Into NDB”

ndb_cache_check_time
NDB Cluster System Variables
Section 1.3, “What Is New in MySQL 5.7”

ndb_clear_apply_status
NDB Cluster System Variables
Section 13.4.2.3, “RESET SLAVE Statement”

ndb_data_node_neighbour
NDB Cluster System Variables
Section 13.1.18.9, “Setting NDB Comment Options”
Section 21.2.4.1, “What is New in NDB Cluster 7.5”

ndb_default_column_format
NDB Cluster System Variables
Section 21.2.4.1, “What is New in NDB Cluster 7.5”

ndb_deferred_constraints
NDB Cluster System Variables

ndb_distribution
NDB Cluster System Variables

ndb_eventbuffer_free_percent
Section 21.6.2.3, “Event Buffer Reporting in the Cluster Log”
NDB Cluster System Variables

5267

ndb_eventbuffer_max_alloc
Section 21.6.2.3, “Event Buffer Reporting in the Cluster Log”
NDB Cluster System Variables

ndb_extra_logging
NDB Cluster System Variables

ndb_force_send
NDB Cluster System Variables

ndb_fully_replicated
NDB Cluster System Variables

ndb_index_stat_enable
NDB Cluster System Variables

ndb_index_stat_option
NDB Cluster System Variables

ndb_join_pushdown
Section 8.8.2, “EXPLAIN Output Format”
NDB Cluster System Variables

ndb_log_apply_status
Section 21.7.10, “NDB Cluster Replication: Bidirectional and Circular Replication”
NDB Cluster System Variables

ndb_log_bin
NDB Cluster System Variables

ndb_log_binlog_index
NDB Cluster System Variables

ndb_log_empty_epochs
NDB Cluster System Variables

ndb_log_empty_update
NDB Cluster System Variables

ndb_log_exclusive_reads
MySQL Server Options for NDB Cluster
Section 21.7.11, “NDB Cluster Replication Conflict Resolution”
NDB Cluster System Variables

ndb_log_orig
NDB Cluster System Variables

ndb_log_transaction_id
NDB Cluster System Variables

5268

ndb_optimized_node_selection
NDB Cluster System Variables
Section 21.4.3.10, “NDB Cluster TCP/IP Connections”
Section 21.6.3.3, “Using CLUSTERLOG STATISTICS in the NDB Cluster Management Client”

ndb_read_backup
NDB Cluster System Variables
Section 13.1.18.9, “Setting NDB Comment Options”
Section 21.2.4.1, “What is New in NDB Cluster 7.5”

ndb_recv_thread_activation_threshold
NDB Cluster System Variables

ndb_recv_thread_cpu_mask
NDB Cluster System Variables

ndb_report_thresh_binlog_epoch_slip
Section 21.6.2.3, “Event Buffer Reporting in the Cluster Log”
NDB Cluster System Variables

ndb_report_thresh_binlog_mem_usage
Section 21.6.2.3, “Event Buffer Reporting in the Cluster Log”
NDB Cluster System Variables

ndb_row_checksum
NDB Cluster System Variables

ndb_show_foreign_key_mock_tables
NDB Cluster System Variables

ndb_slave_conflict_role
Section 21.7.11, “NDB Cluster Replication Conflict Resolution”
NDB Cluster System Variables

ndb_table_no_logging
NDB Cluster System Variables
Section 13.1.18.9, “Setting NDB Comment Options”

ndb_table_temporary
NDB Cluster System Variables

ndb_use_copying_alter_table
NDB Cluster System Variables

ndb_use_exact_count
NDB Cluster System Variables

ndb_use_transactions
Section 21.6.9, “Importing Data Into MySQL Cluster”
NDB Cluster System Variables

5269

ndb_version
NDB Cluster System Variables

ndb_version_string
NDB Cluster System Variables

ndbinfo_database
NDB Cluster System Variables

ndbinfo_max_bytes
NDB Cluster System Variables

ndbinfo_max_rows
NDB Cluster System Variables

ndbinfo_offline
NDB Cluster System Variables

ndbinfo_show_hidden
NDB Cluster System Variables
Section 21.6.15, “ndbinfo: The NDB Cluster Information Database”
Section 21.6.15.5, “The ndbinfo cluster_operations Table”
Section 21.6.15.6, “The ndbinfo cluster_transactions Table”
Section 21.6.15.34, “The ndbinfo server_operations Table”
Section 21.6.15.35, “The ndbinfo server_transactions Table”

ndbinfo_table_prefix
NDB Cluster System Variables

ndbinfo_version
NDB Cluster System Variables

net_buffer_length
Section 8.12.4.1, “How MySQL Uses Memory”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.6, “mysqlpump — A Database Backup Program”
Section 5.1.7, “Server System Variables”

net_read_timeout
Section B.3.2.3, “Lost connection to MySQL server”
Section 5.1.7, “Server System Variables”

net_retry_count
Section 5.1.7, “Server System Variables”

net_write_timeout
Section 5.1.7, “Server System Variables”

new
Section 22.6.2, “Partitioning Limitations Relating to Storage Engines”

5270

Section 5.1.7, “Server System Variables”

ngram_token_size
Section 12.9.2, “Boolean Full-Text Searches”
Section 12.9.6, “Fine-Tuning MySQL Full-Text Search”
Section 12.9.4, “Full-Text Stopwords”
Section 12.9.1, “Natural Language Full-Text Searches”
Section 12.9.8, “ngram Full-Text Parser”

O

[index top]

offline_mode
Section 6.2.2, “Privileges Provided by MySQL”
Section 5.1.7, “Server System Variables”

old
Section 8.9.4, “Index Hints”
Section 5.1.7, “Server System Variables”

old_alter_table
Section 13.1.8, “ALTER TABLE Statement”
Section 14.13, “InnoDB and Online DDL”
Section 14.13.2, “Online DDL Performance and Concurrency”
Section 13.7.2.4, “OPTIMIZE TABLE Statement”
Section 5.1.7, “Server System Variables”
Section 14.13.4, “Simplifying DDL Statements with Online DDL”

old_passwords
Section 2.10.3, “Changes in MySQL 5.7”
Section 12.13, “Encryption and Compression Functions”
Section 6.1.2.4, “Password Hashing in MySQL”
Section 6.2.11, “Password Management”
Section 6.2.12, “Server Handling of Expired Passwords”
Section 5.1.7, “Server System Variables”
Section 13.7.1.7, “SET PASSWORD Statement”
Section 1.3, “What Is New in MySQL 5.7”

open_files_limit
Section 5.1.11.1, “Connection Interfaces”
Section B.3.2.16, “File Not Found and Similar Errors”
Section 8.4.3.1, “How MySQL Opens and Closes Tables”
Section 2.5.10, “Managing MySQL Server with systemd”
Section 25.15, “Performance Schema System Variables”
Section 22.6, “Restrictions and Limitations on Partitioning”
Section 5.4.1, “Selecting General Query Log and Slow Query Log Output Destinations”
Section 5.1.7, “Server System Variables”

optimizer_prune_level
Section 8.9.1, “Controlling Query Plan Evaluation”
Section 8.9.3, “Optimizer Hints”

5271

Section 8.2.2.1, “Optimizing Subqueries, Derived Tables, and View References with Semijoin
Transformations”
Section 5.1.7, “Server System Variables”

optimizer_search_depth
Section 8.9.1, “Controlling Query Plan Evaluation”
Section 5.1.7, “Server System Variables”

optimizer_switch
Section 8.2.1.11, “Block Nested-Loop and Batched Key Access Joins”
Section 2.10.3, “Changes in MySQL 5.7”
Section 8.2.1.12, “Condition Filtering”
Section 8.2.1.4, “Engine Condition Pushdown Optimization”
Section 8.2.1.5, “Index Condition Pushdown Optimization”
Section 8.2.1.3, “Index Merge Optimization”
Section 8.2.1.17, “LIMIT Query Optimization”
Section 8.2.1.10, “Multi-Range Read Optimization”
Section 8.9.3, “Optimizer Hints”
Section 8.2.2.4, “Optimizing Derived Tables and View References with Merging or Materialization”
Section 8.2.2.2, “Optimizing Subqueries with Materialization”
Section 8.2.2.3, “Optimizing Subqueries with the EXISTS Strategy”
Section 8.2.2.1, “Optimizing Subqueries, Derived Tables, and View References with Semijoin
Transformations”
Section 5.1.7, “Server System Variables”
Section 8.9.2, “Switchable Optimizations”
Section 26.4.5.7, “The list_add() Function”
Section 13.2.11, “UPDATE Statement”
Section 8.3.9, “Use of Index Extensions”
Section 23.5.2, “View Processing Algorithms”
Section 1.3, “What Is New in MySQL 5.7”

optimizer_trace
Section 5.1.7, “Server System Variables”
Section 8.15.2, “System Variables Controlling Tracing”
Section 24.3.14, “The INFORMATION_SCHEMA OPTIMIZER_TRACE Table”
Section 8.15.1, “Typical Usage”

optimizer_trace_features
Section 8.15.10, “Selecting Optimizer Features to Trace”
Section 5.1.7, “Server System Variables”
Section 8.15.2, “System Variables Controlling Tracing”

optimizer_trace_limit
Section 5.1.7, “Server System Variables”
Section 8.15.2, “System Variables Controlling Tracing”
Section 8.15.4, “Tuning Trace Purging”

optimizer_trace_max_mem_size
Section 5.1.7, “Server System Variables”
Section 8.15.2, “System Variables Controlling Tracing”
Section 24.3.14, “The INFORMATION_SCHEMA OPTIMIZER_TRACE Table”
Section 8.15.5, “Tracing Memory Usage”

5272

optimizer_trace_offset
Section 5.1.7, “Server System Variables”
Section 8.15.2, “System Variables Controlling Tracing”
Section 8.15.4, “Tuning Trace Purging”

P

[index top]

parser_max_mem_size
Section 5.1.7, “Server System Variables”

performance_schema
Section 25.1, “Performance Schema Quick Start”
Section 25.3, “Performance Schema Startup Configuration”
Section 25.15, “Performance Schema System Variables”
Section 25.12.16.3, “The processlist Table”

performance_schema_accounts_size
Section 25.12.14, “Performance Schema Status Variable Tables”
Section 25.15, “Performance Schema System Variables”
Section 25.12.15.10, “Status Variable Summary Tables”
Section 25.12.8.1, “The accounts Table”

performance_schema_digests_size
Section 25.10, “Performance Schema Statement Digests”
Section 25.16, “Performance Schema Status Variables”
Section 25.15, “Performance Schema System Variables”
Section 25.12.15.3, “Statement Summary Tables”

performance_schema_events_stages_history_long_size
Section 25.15, “Performance Schema System Variables”
Section 25.12.5.3, “The events_stages_history_long Table”

performance_schema_events_stages_history_size
Section 25.15, “Performance Schema System Variables”
Section 25.12.5.2, “The events_stages_history Table”

performance_schema_events_statements_history_long_size
Section 25.15, “Performance Schema System Variables”
Section 25.12.6.3, “The events_statements_history_long Table”

performance_schema_events_statements_history_size
Section 25.15, “Performance Schema System Variables”
Section 25.12.6.2, “The events_statements_history Table”

performance_schema_events_transactions_history_long_size
Section 25.15, “Performance Schema System Variables”
Section 25.12.7.3, “The events_transactions_history_long Table”

performance_schema_events_transactions_history_size
Section 25.15, “Performance Schema System Variables”

5273

Section 25.12.7.2, “The events_transactions_history Table”

performance_schema_events_waits_history_long_size
Section 25.15, “Performance Schema System Variables”
Section 25.12, “Performance Schema Table Descriptions”
Section 13.7.5.15, “SHOW ENGINE Statement”
Section 25.12.4.3, “The events_waits_history_long Table”

performance_schema_events_waits_history_size
Section 25.15, “Performance Schema System Variables”
Section 25.12, “Performance Schema Table Descriptions”
Section 13.7.5.15, “SHOW ENGINE Statement”
Section 25.12.4.2, “The events_waits_history Table”

performance_schema_hosts_size
Section 25.12.14, “Performance Schema Status Variable Tables”
Section 25.15, “Performance Schema System Variables”
Section 25.12.15.10, “Status Variable Summary Tables”
Section 25.12.8.2, “The hosts Table”

performance_schema_max_cond_classes
Section 25.15, “Performance Schema System Variables”

performance_schema_max_cond_instances
Section 25.15, “Performance Schema System Variables”

performance_schema_max_digest_length
Section 25.10, “Performance Schema Statement Digests”
Section 25.15, “Performance Schema System Variables”
Section 5.1.7, “Server System Variables”
Section 25.12.6.1, “The events_statements_current Table”

performance_schema_max_file_classes
Section 25.15, “Performance Schema System Variables”

performance_schema_max_file_handles
Section 25.15, “Performance Schema System Variables”

performance_schema_max_file_instances
Section 25.15, “Performance Schema System Variables”

performance_schema_max_index_stat
Section 25.16, “Performance Schema Status Variables”
Section 25.15, “Performance Schema System Variables”

performance_schema_max_memory_classes
Section 25.15, “Performance Schema System Variables”

performance_schema_max_metadata_locks
Section 25.16, “Performance Schema Status Variables”
Section 25.15, “Performance Schema System Variables”

5274

Section 25.12.12.1, “The metadata_locks Table”

performance_schema_max_mutex_classes
Section 25.7, “Performance Schema Status Monitoring”
Section 25.15, “Performance Schema System Variables”

performance_schema_max_mutex_instances
Section 25.15, “Performance Schema System Variables”

performance_schema_max_prepared_statements_instances
Section 25.16, “Performance Schema Status Variables”
Section 25.15, “Performance Schema System Variables”
Section 25.12.6.4, “The prepared_statements_instances Table”

performance_schema_max_program_instances
Section 25.16, “Performance Schema Status Variables”
Section 25.15, “Performance Schema System Variables”

performance_schema_max_rwlock_classes
Section 25.15, “Performance Schema System Variables”

performance_schema_max_rwlock_instances
Section 25.15, “Performance Schema System Variables”

performance_schema_max_socket_classes
Section 25.15, “Performance Schema System Variables”

performance_schema_max_socket_instances
Section 25.15, “Performance Schema System Variables”

performance_schema_max_sql_text_length
Section 25.10, “Performance Schema Statement Digests”
Section 25.15, “Performance Schema System Variables”
Section 25.12.6.1, “The events_statements_current Table”

performance_schema_max_stage_classes
Section 25.15, “Performance Schema System Variables”
Section 25.12.16.3, “The processlist Table”

performance_schema_max_statement_classes
Section 25.15, “Performance Schema System Variables”

performance_schema_max_statement_stack
Section 25.16, “Performance Schema Status Variables”
Section 25.15, “Performance Schema System Variables”

performance_schema_max_table_handles
Section 25.16, “Performance Schema Status Variables”
Section 25.15, “Performance Schema System Variables”
Section 25.12.12.2, “The table_handles Table”

5275

performance_schema_max_table_instances
Section 25.15, “Performance Schema System Variables”

performance_schema_max_table_lock_stat
Section 25.16, “Performance Schema Status Variables”
Section 25.15, “Performance Schema System Variables”

performance_schema_max_thread_classes
Section 25.15, “Performance Schema System Variables”
Section 25.12.16.3, “The processlist Table”

performance_schema_max_thread_instances
Section 25.12.14, “Performance Schema Status Variable Tables”
Section 25.16, “Performance Schema Status Variables”
Section 25.15, “Performance Schema System Variables”
Section 13.7.5.15, “SHOW ENGINE Statement”
Section 25.12.16.3, “The processlist Table”

performance_schema_session_connect_attrs_size
Section 25.12.9, “Performance Schema Connection Attribute Tables”
Section 25.16, “Performance Schema Status Variables”
Section 25.15, “Performance Schema System Variables”

performance_schema_setup_actors_size
Section 25.15, “Performance Schema System Variables”
Section 25.12.2.1, “The setup_actors Table”

performance_schema_setup_objects_size
Section 25.15, “Performance Schema System Variables”
Section 25.12.2.4, “The setup_objects Table”

performance_schema_show_processlist
Section 25.15, “Performance Schema System Variables”
Section 25.12.16.3, “The processlist Table”

performance_schema_users_size
Section 25.12.14, “Performance Schema Status Variable Tables”
Section 25.15, “Performance Schema System Variables”
Section 25.12.15.10, “Status Variable Summary Tables”
Section 25.12.8.3, “The users Table”

pid
Section 14.8.2, “Configuring InnoDB for Read-Only Operation”

pid_file
Section 2.4.3, “Installing a MySQL Launch Daemon”
Section 5.1.7, “Server System Variables”

plugin_dir
Section 6.1.2.2, “Administrator Guidelines for Password Security”

5276

Section 6.4.2.1, “Connection Control Plugin Installation”
Section 13.7.3.1, “CREATE FUNCTION Statement for Loadable Functions”
Section 6.4.4.8, “General-Purpose Keyring Key-Management Functions”
Section 13.7.3.3, “INSTALL PLUGIN Statement”
Section 2.4.3, “Installing a MySQL Launch Daemon”
Section 5.5.1, “Installing and Uninstalling Plugins”
Section 2.5.5, “Installing MySQL on Linux Using RPM Packages from Oracle”
Section 6.4.5.2, “Installing or Uninstalling MySQL Enterprise Audit”
Section 6.5.2, “Installing or Uninstalling MySQL Enterprise Data Masking and De-Identification”
Section 5.5.5.2, “Installing or Uninstalling Version Tokens”
Section 6.4.4.11, “Keyring Command Options”
Section 6.4.4.1, “Keyring Plugin Installation”
Section 6.4.1.9, “LDAP Pluggable Authentication”
Section 6.1.3, “Making MySQL Secure Against Attackers”
Section 6.6.1, “MySQL Enterprise Encryption Installation”
Section 6.4.1.10, “No-Login Pluggable Authentication”
Section 5.6.2, “Obtaining Information About Loadable Functions”
Section 6.4.1.7, “PAM Pluggable Authentication”
Section 6.4.3.1, “Password Validation Plugin Installation”
Section 6.2.13, “Pluggable Authentication”
Section 15.11.1, “Pluggable Storage Engine Architecture”
Section 16.3.9.2, “Semisynchronous Replication Installation and Configuration”
Section 5.1.6, “Server Command Options”
Section 5.1.7, “Server System Variables”
Section 14.21.3, “Setting Up the InnoDB memcached Plugin”
Section 13.7.5.25, “SHOW PLUGINS Statement”
Section 6.4.1.11, “Socket Peer-Credential Pluggable Authentication”
Section 6.4.1.12, “Test Pluggable Authentication”
Section 24.3.17, “The INFORMATION_SCHEMA PLUGINS Table”
The Locking Service Function Interface
Section 5.5.3.2, “Thread Pool Installation”
Section 6.4.1.8, “Windows Pluggable Authentication”

port
Section B.3.2.2, “Can't connect to [local] MySQL server”
Section 17.2.1.2, “Configuring an Instance for Group Replication”
Section 17.8, “Frequently Asked Questions”
Section 5.1.7, “Server System Variables”
Section 6.7.5.1, “Setting the TCP Port Context for mysqld”
Section 25.12.11.8, “The replication_group_members Table”
Section 19.4.2.2, “X Plugin Options and System Variables”

preload_buffer_size
Section 5.1.7, “Server System Variables”

profiling
Section 5.1.7, “Server System Variables”
Section 13.7.5.30, “SHOW PROFILE Statement”
Section 24.3.19, “The INFORMATION_SCHEMA PROFILING Table”

profiling_history_size
Section 5.1.7, “Server System Variables”
Section 13.7.5.30, “SHOW PROFILE Statement”

5277

protocol_version
Section 5.1.7, “Server System Variables”

proxy_user
Section 6.2.14, “Proxy Users”
Section 5.1.7, “Server System Variables”

pseudo_slave_mode
Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 5.1.7, “Server System Variables”

pseudo_thread_id
Section 12.15, “Information Functions”
Section 5.4.4.3, “Mixed Binary Logging Format”
Section 16.4.1.37, “Replication and Variables”
Section 5.1.7, “Server System Variables”

Q

[index top]

query_alloc_block_size
Section 5.1.7, “Server System Variables”

query_cache_limit
Section 8.10.3.3, “Query Cache Configuration”
Section 5.1.7, “Server System Variables”
Section 1.3, “What Is New in MySQL 5.7”

query_cache_min_res_unit
Section 8.10.3.3, “Query Cache Configuration”
Section 5.1.7, “Server System Variables”
Section 1.3, “What Is New in MySQL 5.7”

query_cache_size
Section 8.10.3.3, “Query Cache Configuration”
Section 5.1.7, “Server System Variables”
Section 8.10.3, “The MySQL Query Cache”
Section 1.3, “What Is New in MySQL 5.7”

query_cache_type
Section 8.10.3.3, “Query Cache Configuration”
Section 8.10.3.2, “Query Cache SELECT Options”
Section 13.2.9, “SELECT Statement”
Section 5.1.9, “Server Status Variables”
Section 5.1.7, “Server System Variables”
Section 1.3, “What Is New in MySQL 5.7”

query_cache_wlock_invalidate
Section 5.1.7, “Server System Variables”
Section 1.3, “What Is New in MySQL 5.7”

5278

query_prealloc_size
Section 5.1.7, “Server System Variables”

R

[index top]

rand_seed
Section 5.1.7, “Server System Variables”

range_alloc_block_size
Section 5.1.7, “Server System Variables”

range_optimizer_max_mem_size
Section 4.5.1.6, “mysql Client Tips”
Section 8.2.1.2, “Range Optimization”
Section 5.1.7, “Server System Variables”

rbr_exec_mode
Section 5.1.7, “Server System Variables”

read_buffer_size
Section 8.12.4.1, “How MySQL Uses Memory”
Section 8.6.3, “Optimizing REPAIR TABLE Statements”
Section 5.1.7, “Server System Variables”

read_only
Section 13.7.1, “Account Management Statements”
Section 13.7.1.1, “ALTER USER Statement”
Section 6.2.10, “Assigning Account Passwords”
Section 16.3.1.3, “Backing Up a Source or Replica by Making It Read Only”
Section 13.7.1.2, “CREATE USER Statement”
Section 13.7.1.3, “DROP USER Statement”
Section 13.7.6.3, “FLUSH Statement”
Section 8.14.3, “General Thread States”
Section 13.7.1.4, “GRANT Statement”
Section B.3.7, “Known Issues in MySQL”
Section 6.2.2, “Privileges Provided by MySQL”
Section 13.7.1.5, “RENAME USER Statement”
Section 16.4.1.37, “Replication and Variables”
Section 13.7.1.6, “REVOKE Statement”
Section 5.4.1, “Selecting General Query Log and Slow Query Log Output Destinations”
Section 5.1.7, “Server System Variables”
Section 13.7.1.7, “SET PASSWORD Statement”
Section 16.1.3.4, “Setting Up Replication Using GTIDs”
Section 13.3.1, “START TRANSACTION, COMMIT, and ROLLBACK Statements”

read_rnd_buffer_size
Section 5.1.1, “Configuring the Server”
Section 8.12.4.1, “How MySQL Uses Memory”
Section 8.2.1.10, “Multi-Range Read Optimization”
Section 8.2.1.14, “ORDER BY Optimization”

5279

Section 5.1.7, “Server System Variables”

relay
Section 16.2.2.3, “Startup Options and Replication Channels”

relay_log
Section 16.1.2.6, “Adding Replicas to a Replication Topology”
Section 17.8, “Frequently Asked Questions”
Section 16.3.6, “Improving Replication Performance”
Section 16.1.6.3, “Replica Server Options and Variables”
Section 16.2.2.4, “Replication Channel Naming Conventions”
Section 16.2.4.1, “The Relay Log”

relay_log_basename
Section 16.1.6.3, “Replica Server Options and Variables”

relay_log_index
Section 16.1.2.6, “Adding Replicas to a Replication Topology”
Section 16.1.6.3, “Replica Server Options and Variables”
Section 16.2.4.1, “The Relay Log”

relay_log_info_file
Section 16.1.6.3, “Replica Server Options and Variables”
Section 16.2.4.2, “Replication Metadata Repositories”

relay_log_info_repository
Section 16.1.5.1, “Configuring Multi-Source Replication”
Section 13.7.6.3, “FLUSH Statement”
Section 17.3.1, “Group Replication Requirements”
Section 16.3.2, “Handling an Unexpected Halt of a Replica”
Section 14.15, “InnoDB Startup Options and System Variables”
Section 16.1.6.3, “Replica Server Options and Variables”
Section 16.2.4.2, “Replication Metadata Repositories”
Section 13.3.7.3, “Restrictions on XA Transactions”
Section 16.2.2.3, “Startup Options and Replication Channels”

relay_log_purge
Section 13.4.2.1, “CHANGE MASTER TO Statement”
Section 16.1.6.3, “Replica Server Options and Variables”
Section 13.7.5.34, “SHOW SLAVE STATUS Statement”

relay_log_recovery
Section 16.3.2, “Handling an Unexpected Halt of a Replica”
Section 16.1.6.3, “Replica Server Options and Variables”

relay_log_space_limit
Section 16.1.6.3, “Replica Server Options and Variables”
Section 8.14.6, “Replication Replica I/O Thread States”
Section 16.2.2.3, “Startup Options and Replication Channels”

replica_sql_verify_checksum
MySQL Glossary

5280

replication_optimize_for_static_plugin_config
Section 16.1.6.3, “Replica Server Options and Variables”
Section 16.3.9.1, “Semisynchronous Replication Administrative Interface”

replication_sender_observe_commit_only
Section 16.1.6.3, “Replica Server Options and Variables”
Section 16.3.9.1, “Semisynchronous Replication Administrative Interface”

report_host
Section 17.2.2, “Deploying Group Replication Locally”
Section 16.1.6.3, “Replica Server Options and Variables”
Section 17.2.1.3, “User Credentials”

report_password
Section 16.1.6.3, “Replica Server Options and Variables”

report_port
Section 17.8, “Frequently Asked Questions”
Section 16.1.6.3, “Replica Server Options and Variables”

report_user
Section 16.1.6.3, “Replica Server Options and Variables”

require_secure_transport
Section 6.3.1, “Configuring MySQL to Use Encrypted Connections”
Section 4.2.5, “Connection Transport Protocols”
Section 5.1.7, “Server System Variables”
Section 6.3, “Using Encrypted Connections”
Section 19.4.1, “Using Encrypted Connections with X Plugin”

rewriter_enabled
Rewriter Query Rewrite Plugin System Variables
Section 5.5.4.2, “Using the Rewriter Query Rewrite Plugin”

rewriter_verbose
Rewriter Query Rewrite Plugin System Variables

rpl_semi_sync_master_enabled
Section 16.1.6.2, “Replication Source Options and Variables”
Section 16.3.9.1, “Semisynchronous Replication Administrative Interface”
Section 16.3.9.2, “Semisynchronous Replication Installation and Configuration”
Section 16.3.9.3, “Semisynchronous Replication Monitoring”

rpl_semi_sync_master_timeout
Section 16.1.6.2, “Replication Source Options and Variables”
Section 16.3.9.1, “Semisynchronous Replication Administrative Interface”
Section 16.3.9.2, “Semisynchronous Replication Installation and Configuration”

rpl_semi_sync_master_trace_level
Section 16.1.6.3, “Replica Server Options and Variables”
Section 16.1.6.2, “Replication Source Options and Variables”

5281

rpl_semi_sync_master_wait_for_slave_count
Section 16.1.6.2, “Replication Source Options and Variables”
Section 16.3.9, “Semisynchronous Replication”

rpl_semi_sync_master_wait_no_slave
Section 16.1.6.2, “Replication Source Options and Variables”

rpl_semi_sync_master_wait_point
Section 16.1.6.2, “Replication Source Options and Variables”
Section 16.3.9, “Semisynchronous Replication”

rpl_semi_sync_slave_enabled
Section 16.1.6.3, “Replica Server Options and Variables”
Section 16.3.9.1, “Semisynchronous Replication Administrative Interface”
Section 16.3.9.2, “Semisynchronous Replication Installation and Configuration”

rpl_semi_sync_slave_trace_level
Section 16.1.6.3, “Replica Server Options and Variables”

rpl_stop_slave_timeout
Section 16.1.6.3, “Replica Server Options and Variables”
Section 16.4.1.32, “Replication and Transaction Inconsistencies”
Section 13.4.2.6, “STOP SLAVE Statement”

S

[index top]

secure_auth
Section 2.10.3, “Changes in MySQL 5.7”
Section 6.4.1.3, “Migrating Away from Pre-4.1 Password Hashing and the mysql_old_password Plugin”
Section 6.1.2.4, “Password Hashing in MySQL”
Section 5.1.7, “Server System Variables”
Section 1.3, “What Is New in MySQL 5.7”

secure_file_priv
Section 2.9.1, “Initializing the Data Directory”
Section 2.5.5, “Installing MySQL on Linux Using RPM Packages from Oracle”
Section 13.2.6, “LOAD DATA Statement”
Section 6.1.3, “Making MySQL Secure Against Attackers”
Section 6.5.5, “MySQL Enterprise Data Masking and De-Identification Function Descriptions”
Section 2.8.7, “MySQL Source-Configuration Options”
Section 6.2.2, “Privileges Provided by MySQL”
Section 27.6.2, “Restrictions When Using the Embedded MySQL Server”
Section 13.2.9.1, “SELECT ... INTO Statement”
Section 6.7.4, “SELinux File Context”
Section 5.1.7, “Server System Variables”
Section 12.8, “String Functions and Operators”
Section 6.5.3, “Using MySQL Enterprise Data Masking and De-Identification”

server_id
Adding a Second Instance

5282

Section 16.1.2.6, “Adding Replicas to a Replication Topology”
Advanced Options
Section 6.4.5.4, “Audit Log File Formats”
Section 16.1.1, “Binary Log File Position Based Replication Configuration Overview”
Section 16.1.6.4, “Binary Logging Options and Variables”
Section 17.2.1.2, “Configuring an Instance for Group Replication”
Section 17.3.1, “Group Replication Requirements”
Section 12.20, “Miscellaneous Functions”
Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”
NDB Cluster System Variables
Section 25.12.11, “Performance Schema Replication Tables”
Section 16.1.6.3, “Replica Server Options and Variables”
Section 16.1.6, “Replication and Binary Logging Options and Variables”
Section 16.1.6.2, “Replication Source Options and Variables”
Setting the Replica Configuration
Section 16.1.2.1, “Setting the Replication Source Configuration”
Section 16.1.3.4, “Setting Up Replication Using GTIDs”
Setting Up Replication with Existing Data
Section 13.7.5.34, “SHOW SLAVE STATUS Statement”
Section 16.4.4, “Troubleshooting Replication”
Section 16.2.1.2, “Usage of Row-Based Logging and Replication”

server_id_bits
NDB Cluster System Variables

server_uuid
Section 16.1.3.1, “GTID Format and Storage”
Section 25.12.11, “Performance Schema Replication Tables”
Section 16.1.6, “Replication and Binary Logging Options and Variables”
Section 13.7.5.34, “SHOW SLAVE STATUS Statement”
Section 17.5.1.1, “Single-Primary Mode”
Section 16.1.3.7, “Stored Function Examples to Manipulate GTIDs”
Section 25.12.11.2, “The replication_connection_status Table”
Section 17.4.2, “The replication_group_members Table”
Section 17.5.5, “Using MySQL Enterprise Backup with Group Replication”

session_track_gtids
Section 16.1.6.5, “Global Transaction ID System Variables”
Section 16.1.4.1, “Replication Mode Concepts”
Section 5.1.7, “Server System Variables”
Section 5.1.15, “Server Tracking of Client Session State”

session_track_schema
Section 5.1.7, “Server System Variables”
Section 5.1.15, “Server Tracking of Client Session State”

session_track_state_change
Section 5.1.7, “Server System Variables”
Section 5.1.15, “Server Tracking of Client Session State”

session_track_system_variables
Section 5.1.7, “Server System Variables”
Section 5.1.15, “Server Tracking of Client Session State”

5283

session_track_transaction_info
Section 5.1.7, “Server System Variables”
Section 5.1.15, “Server Tracking of Client Session State”

sha
Section 6.3.3.1, “Creating SSL and RSA Certificates and Keys using MySQL”
Section 6.2.14, “Proxy Users”
Section 5.1.9, “Server Status Variables”
Section 5.1.7, “Server System Variables”
Section 6.4.1.5, “SHA-256 Pluggable Authentication”
Section 6.3.4, “SSL Library-Dependent Capabilities”
Section 6.3, “Using Encrypted Connections”

shared_memory
Section 4.2.3, “Command Options for Connecting to the Server”
Section 4.2.4, “Connecting to the MySQL Server Using Command Options”
Section 4.5.1.1, “mysql Client Options”
Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 4.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.7, “mysqlshow — Display Database, Table, and Column Information”
Section 4.5.8, “mysqlslap — A Load Emulation Client”
Resetting the Root Password: Generic Instructions
Section 5.1.7, “Server System Variables”
Section 5.7.2.1, “Starting Multiple MySQL Instances at the Windows Command Line”
Section 2.3.4.5, “Starting the Server for the First Time”
Section 1.2.2, “The Main Features of MySQL”
Type and Networking

shared_memory_base_name
Section 5.1.7, “Server System Variables”
Section 5.7.2.1, “Starting Multiple MySQL Instances at the Windows Command Line”

show_compatibility_
Section 2.10.3, “Changes in MySQL 5.7”
Section 13.7.6.3, “FLUSH Statement”
Section 25.20, “Migrating to Performance Schema System and Status Variable Tables”
Section 25.12.14, “Performance Schema Status Variable Tables”
Section 25.12.13, “Performance Schema System Variable Tables”
Section 21.6.17, “Quick Reference: NDB Cluster SQL Statements”
Section 5.1.9, “Server Status Variables”
Section 5.1.7, “Server System Variables”
Section 13.7.5.35, “SHOW STATUS Statement”
Section 13.7.5.39, “SHOW VARIABLES Statement”
Section 25.12.15.10, “Status Variable Summary Tables”
Section 24.3.10, “The INFORMATION_SCHEMA GLOBAL_STATUS and SESSION_STATUS Tables”
Section 24.3.11, “The INFORMATION_SCHEMA GLOBAL_VARIABLES and SESSION_VARIABLES
Tables”
Section 1.3, “What Is New in MySQL 5.7”

5284

show_create_table_verbosity
Section 5.1.7, “Server System Variables”

show_old_temporals
Section 5.1.7, “Server System Variables”

skip_external_locking
Section 8.11.5, “External Locking”
Section 5.1.7, “Server System Variables”

skip_name_resolve
Section 2.10.3, “Changes in MySQL 5.7”
Section 5.1.11.2, “DNS Lookups and the Host Cache”
Section 17.8, “Frequently Asked Questions”
Section 2.9.1, “Initializing the Data Directory”
Section 5.1.7, “Server System Variables”
Section 2.3.4.9, “Testing The MySQL Installation”
Section 6.2.17, “Troubleshooting Problems Connecting to MySQL”

skip_networking
Section B.3.2.2, “Can't connect to [local] MySQL server”
Section 5.1.11.2, “DNS Lookups and the Host Cache”
Section A.14, “MySQL 5.7 FAQ: Replication”
Section B.3.2.7, “MySQL server has gone away”
Section 6.2.13, “Pluggable Authentication”
Resetting the Root Password: Generic Instructions
Section 5.1.7, “Server System Variables”
Section 16.1.2.1, “Setting the Replication Source Configuration”
Section 21.6.15.30, “The ndbinfo processes Table”
Section 6.2.17, “Troubleshooting Problems Connecting to MySQL”
Section 16.4.4, “Troubleshooting Replication”
Section 16.4.3, “Upgrading a Replication Topology”
Section 19.4.2.3, “X Plugin Status Variables”

skip_replica_start
Section 13.4.3.1, “START GROUP_REPLICATION Statement”

skip_show_database
Section 5.1.6, “Server Command Options”
Section 5.1.7, “Server System Variables”

skip_slave_start
Section 16.4.3, “Upgrading a Replication Topology”

slave
Section 16.2.2.3, “Startup Options and Replication Channels”

slave_allow_batching
NDB Cluster System Variables
Section 21.7.5, “Preparing the NDB Cluster for Replication”
Section 21.7.6, “Starting NDB Cluster Replication (Single Replication Channel)”

5285

slave_checkpoint_group
Section 21.7.3, “Known Issues in NDB Cluster Replication”
Section 12.20, “Miscellaneous Functions”
Section 16.1.6.3, “Replica Server Options and Variables”
Section 16.2.2.3, “Startup Options and Replication Channels”

slave_checkpoint_period
Section 12.20, “Miscellaneous Functions”
Section 16.1.6.3, “Replica Server Options and Variables”

slave_compressed_protocol
Section 4.2.6, “Connection Compression Control”
Section 16.1.6.3, “Replica Server Options and Variables”

slave_exec_mode
Section 21.7.3, “Known Issues in NDB Cluster Replication”
Section 16.1.6.3, “Replica Server Options and Variables”
Section 16.4.1.20, “Replication and MEMORY Tables”
Section 16.2.1.2, “Usage of Row-Based Logging and Replication”

slave_load_tmpdir
Section 16.3.1.2, “Backing Up Raw Data from a Replica”
Section 7.2, “Database Backup Methods”
Section 16.1.6.3, “Replica Server Options and Variables”
Section 5.1.6, “Server Command Options”
Section 5.1.7, “Server System Variables”
Section B.3.3.5, “Where MySQL Stores Temporary Files”

slave_max_allowed_packet
Section 17.3.2, “Group Replication Limitations”
Section 16.1.6.3, “Replica Server Options and Variables”
Section 16.4.1.19, “Replication and max_allowed_packet”

slave_net_timeout
Section 13.4.2.1, “CHANGE MASTER TO Statement”
Section 2.10.3, “Changes in MySQL 5.7”
Section 16.1.7.1, “Checking Replication Status”
Section 16.1.6.3, “Replica Server Options and Variables”
Section 16.4.1.26, “Replication and Source or Replica Shutdowns”
Section 8.14.6, “Replication Replica I/O Thread States”
Section 5.1.7, “Server System Variables”

slave_parallel_type
Section 16.1.6.4, “Binary Logging Options and Variables”
Section 17.3.1, “Group Replication Requirements”
Section 16.2.3.2, “Monitoring Replication Applier Worker Threads”
Section 16.1.6.3, “Replica Server Options and Variables”
Section 16.4.1.32, “Replication and Transaction Inconsistencies”

slave_parallel_workers
Section 13.4.2.1, “CHANGE MASTER TO Statement”

5286

Section 17.3.1, “Group Replication Requirements”
Section 16.1.3.2, “GTID Life Cycle”
Section 21.7.3, “Known Issues in NDB Cluster Replication”
Section 16.1.5, “MySQL Multi-Source Replication”
Section 25.12.11, “Performance Schema Replication Tables”
Section 16.1.6.3, “Replica Server Options and Variables”
Section 16.4.1.19, “Replication and max_allowed_packet”
Section 16.4.1.32, “Replication and Transaction Inconsistencies”
Section 16.2.2, “Replication Channels”
Section 8.14.7, “Replication Replica SQL Thread States”
Section 16.2.3, “Replication Threads”
Section 13.4.2.5, “START SLAVE Statement”
Section 13.4.2.6, “STOP SLAVE Statement”

slave_pending_jobs_size_max
Section 16.2.3.2, “Monitoring Replication Applier Worker Threads”
Section 16.1.6.3, “Replica Server Options and Variables”
Section 16.4.1.19, “Replication and max_allowed_packet”
Section 8.14.7, “Replication Replica SQL Thread States”

slave_preserve_commit_order
Section 16.1.6.4, “Binary Logging Options and Variables”
Section 17.3.1, “Group Replication Requirements”
Section 16.1.3.2, “GTID Life Cycle”
Section 16.1.6.3, “Replica Server Options and Variables”
Section 16.4.1.32, “Replication and Transaction Inconsistencies”
Section 8.14.6, “Replication Replica I/O Thread States”

slave_rows_search_algorithms
Section 16.1.6.3, “Replica Server Options and Variables”
Section 5.1.9, “Server Status Variables”

slave_skip_errors
Section 16.1.6.3, “Replica Server Options and Variables”

slave_sql_verify_checksum
MySQL Glossary
Section 16.1.6.3, “Replica Server Options and Variables”
Section 5.4.4, “The Binary Log”

slave_transaction_retries
Section 16.1.6.3, “Replica Server Options and Variables”
Section 16.4.1.30, “Replication Retries and Timeouts”
Section 16.2.2.3, “Startup Options and Replication Channels”
Section 25.12.11.4, “The replication_applier_status Table”

slave_type_conversions
Section 21.7.3, “Known Issues in NDB Cluster Replication”
Section 16.1.6.3, “Replica Server Options and Variables”

slow_launch_time
Section 5.1.9, “Server Status Variables”

5287

Section 5.1.7, “Server System Variables”

slow_query_log
Section 5.4.1, “Selecting General Query Log and Slow Query Log Output Destinations”
Section 5.1.7, “Server System Variables”
Section 5.4.5, “The Slow Query Log”

slow_query_log_file
Section 5.4.1, “Selecting General Query Log and Slow Query Log Output Destinations”
Section 5.1.7, “Server System Variables”
Section 5.4.5, “The Slow Query Log”

socket
Section 5.1.7, “Server System Variables”
Section 19.4.2.2, “X Plugin Options and System Variables”

sort_buffer_size
Section 7.6.3, “How to Repair MyISAM Tables”
Section 8.2.1.14, “ORDER BY Optimization”
Section 5.1.6, “Server Command Options”
Section 5.1.9, “Server Status Variables”
Section 5.1.7, “Server System Variables”
Section 13.7.4.1, “SET Syntax for Variable Assignment”

source_verify_checksum
MySQL Glossary

sql_auto_is_null
Section 12.4.2, “Comparison Functions and Operators”
Section 13.1.18, “CREATE TABLE Statement”
Section 5.4.4.3, “Mixed Binary Logging Format”
Section 16.4.1.37, “Replication and Variables”
Section 5.1.7, “Server System Variables”
Section 5.4.4, “The Binary Log”

sql_big_selects
Section 5.1.7, “Server System Variables”

sql_buffer_result
Section 5.1.7, “Server System Variables”

sql_log_bin
Section 16.1.6.4, “Binary Logging Options and Variables”
Section 21.7.3, “Known Issues in NDB Cluster Replication”
Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 21.7.4, “NDB Cluster Replication Schema and Tables”
Section 6.2.2, “Privileges Provided by MySQL”
Section 13.4.1.3, “SET sql_log_bin Statement”
Section 5.1.8.1, “System Variable Privileges”
Section 26.4.4.2, “The diagnostics() Procedure”
Section 26.4.4.12, “The ps_setup_reload_saved() Procedure”

5288

Section 26.4.4.14, “The ps_setup_save() Procedure”
Section 26.4.4.22, “The ps_trace_statement_digest() Procedure”
Section 26.4.4.23, “The ps_trace_thread() Procedure”
Section 26.4.4.25, “The statement_performance_analyzer() Procedure”
Section 16.4.3, “Upgrading a Replication Topology”
Section 1.3, “What Is New in MySQL 5.7”

sql_log_off
MySQL Glossary
Section 6.2.2, “Privileges Provided by MySQL”
Section 5.4.1, “Selecting General Query Log and Slow Query Log Output Destinations”
Section 5.1.7, “Server System Variables”
Section 5.4.3, “The General Query Log”

SQL_MODE
Section 14.13.1, “Online DDL Operations”

sql_mode
Section 14.1.2, “Best Practices for InnoDB Tables”
Section 2.10.3, “Changes in MySQL 5.7”
Section 13.1.12, “CREATE EVENT Statement”
Section 13.1.16, “CREATE PROCEDURE and CREATE FUNCTION Statements”
Section 13.1.20, “CREATE TRIGGER Statement”
Section 12.21.3, “Expression Handling”
Section 11.2.7, “Fractional Seconds in Time Values”
Section 1.5, “How to Report Bugs or Problems”
Section 13.2.6, “LOAD DATA Statement”
Section 5.4.4.3, “Mixed Binary Logging Format”
Section 1.6, “MySQL Standards Compliance”
Section 4.4.2, “mysql_install_db — Initialize MySQL Data Directory”
Section B.3.4.2, “Problems Using DATE Columns”
Section 16.4.1.37, “Replication and Variables”
Section 5.1.10, “Server SQL Modes”
Section 5.1.7, “Server System Variables”
Section 13.7.5.13, “SHOW CREATE VIEW Statement”
Section 13.6.7.5, “SIGNAL Statement”
Section 5.4.4, “The Binary Log”
Section 24.3.31, “The INFORMATION_SCHEMA VIEWS Table”
Section 26.4.5.7, “The list_add() Function”
Section 4.2.2.2, “Using Option Files”
Section 5.1.8, “Using System Variables”
Section 1.3, “What Is New in MySQL 5.7”

sql_notes
Section B.2, “Error Information Interfaces”
Section 5.1.7, “Server System Variables”
Section 13.7.5.40, “SHOW WARNINGS Statement”
Section 13.6.7.7, “The MySQL Diagnostics Area”

sql_quote_show_create
Section 5.1.7, “Server System Variables”
Section 13.7.5.6, “SHOW CREATE DATABASE Statement”
Section 13.7.5.10, “SHOW CREATE TABLE Statement”

5289

sql_safe_updates
Section 4.5.1.6, “mysql Client Tips”
Section 8.2.1.2, “Range Optimization”
Section 5.1.7, “Server System Variables”

sql_select_limit
Section 4.5.1.6, “mysql Client Tips”
Section 5.1.7, “Server System Variables”

sql_slave_skip_counter
Section 16.1.6.3, “Replica Server Options and Variables”
Section 16.1.4.1, “Replication Mode Concepts”
Section 16.1.3.6, “Restrictions on Replication with GTIDs”
Section 13.7.5.34, “SHOW SLAVE STATUS Statement”
Skipping Transactions With SET GLOBAL sql_slave_skip_counter

sql_warnings
Section 5.1.7, “Server System Variables”

ssl_ca
Section 4.2.3, “Command Options for Connecting to the Server”
Section 6.3.1, “Configuring MySQL to Use Encrypted Connections”
Section 6.3.3.1, “Creating SSL and RSA Certificates and Keys using MySQL”
Section 6.3.3.2, “Creating SSL Certificates and Keys Using openssl”
Section 5.1.7, “Server System Variables”
Section 16.3.8, “Setting Up Replication to Use Encrypted Connections”
Section 6.3.4, “SSL Library-Dependent Capabilities”
Section 19.4.2.2, “X Plugin Options and System Variables”

ssl_capath
Section 4.2.3, “Command Options for Connecting to the Server”
Section 6.3.1, “Configuring MySQL to Use Encrypted Connections”
Section 5.1.7, “Server System Variables”
Section 6.3.4, “SSL Library-Dependent Capabilities”
Section 19.4.2.2, “X Plugin Options and System Variables”

ssl_cert
Section 4.2.3, “Command Options for Connecting to the Server”
Section 6.3.1, “Configuring MySQL to Use Encrypted Connections”
Section 6.3.3.1, “Creating SSL and RSA Certificates and Keys using MySQL”
Section 6.3.3.2, “Creating SSL Certificates and Keys Using openssl”
Section 6.3.2, “Encrypted Connection TLS Protocols and Ciphers”
Section 5.1.6, “Server Command Options”
Section 5.1.7, “Server System Variables”
Section 16.3.8, “Setting Up Replication to Use Encrypted Connections”
Section 19.4.2.2, “X Plugin Options and System Variables”

ssl_cipher
Section 4.2.3, “Command Options for Connecting to the Server”
Section 6.3.1, “Configuring MySQL to Use Encrypted Connections”
Section 6.3.2, “Encrypted Connection TLS Protocols and Ciphers”
Section 4.4.5, “mysql_ssl_rsa_setup — Create SSL/RSA Files”

5290

Section 5.1.7, “Server System Variables”
Section 6.3.4, “SSL Library-Dependent Capabilities”
Section 19.4.2.2, “X Plugin Options and System Variables”

ssl_crl
Section 4.2.3, “Command Options for Connecting to the Server”
Section 6.3.1, “Configuring MySQL to Use Encrypted Connections”
Section 5.1.7, “Server System Variables”
Section 6.3.4, “SSL Library-Dependent Capabilities”
Section 19.4.2.2, “X Plugin Options and System Variables”

ssl_crlpath
Section 4.2.3, “Command Options for Connecting to the Server”
Section 6.3.1, “Configuring MySQL to Use Encrypted Connections”
Section 5.1.7, “Server System Variables”
Section 6.3.4, “SSL Library-Dependent Capabilities”
Section 19.4.2.2, “X Plugin Options and System Variables”

ssl_key
Section 4.2.3, “Command Options for Connecting to the Server”
Section 6.3.1, “Configuring MySQL to Use Encrypted Connections”
Section 6.3.3.1, “Creating SSL and RSA Certificates and Keys using MySQL”
Section 6.3.3.2, “Creating SSL Certificates and Keys Using openssl”
Section 5.1.6, “Server Command Options”
Section 5.1.7, “Server System Variables”
Section 16.3.8, “Setting Up Replication to Use Encrypted Connections”
Section 19.4.2.2, “X Plugin Options and System Variables”

stored_program_cache
Section 8.10.4, “Caching of Prepared Statements and Stored Programs”
Section 5.1.7, “Server System Variables”

super
Section 17.5.1.1, “Single-Primary Mode”

super_read_only
Adding a Second Instance
Section 13.7.6.3, “FLUSH Statement”
Section 17.4.1, “Group Replication Server States”
Section 17.7.1, “Group Replication System Variables”
Section 5.1.7, “Server System Variables”
Section 13.4.3.1, “START GROUP_REPLICATION Statement”
Section 13.4.3.2, “STOP GROUP_REPLICATION Statement”

sync_binlog
Section 16.1.6.4, “Binary Logging Options and Variables”
Section 16.1.3.3, “GTID Auto-Positioning”
Section 14.2, “InnoDB and the ACID Model”
Section 14.15, “InnoDB Startup Options and System Variables”
Section 16.4.1.26, “Replication and Source or Replica Shutdowns”
Section 5.4.4, “The Binary Log”
Section 4.6.7.3, “Using mysqlbinlog to Back Up Binary Log Files”

5291

sync_frm
Section 5.1.7, “Server System Variables”
Section 1.3, “What Is New in MySQL 5.7”

sync_master_info
Section 16.1.6.3, “Replica Server Options and Variables”

sync_relay_log
Section 16.3.2, “Handling an Unexpected Halt of a Replica”
Section 16.1.6.3, “Replica Server Options and Variables”

sync_relay_log_info
Section 16.1.6.3, “Replica Server Options and Variables”
Section 16.4.1.26, “Replication and Source or Replica Shutdowns”

system_time_zone
Section 5.1.13, “MySQL Server Time Zone Support”
Section 16.4.1.31, “Replication and Time Zones”
Section 5.1.6, “Server Command Options”
Section 5.1.7, “Server System Variables”

T

[index top]

table_definition_cache
Section 8.12.4.1, “How MySQL Uses Memory”
Section 5.1.7, “Server System Variables”

table_open_cache
Section 5.1.1, “Configuring the Server”
Section B.3.2.16, “File Not Found and Similar Errors”
Section 8.14.3, “General Thread States”
Section 8.4.3.1, “How MySQL Opens and Closes Tables”
Section 8.12.4.1, “How MySQL Uses Memory”
Section 14.15, “InnoDB Startup Options and System Variables”
Section 5.1.9, “Server Status Variables”
Section 5.1.7, “Server System Variables”

table_open_cache_instances
Section 5.4.1, “Selecting General Query Log and Slow Query Log Output Destinations”
Section 5.1.9, “Server Status Variables”
Section 5.1.7, “Server System Variables”

thread_cache_size
Section 5.1.11.1, “Connection Interfaces”
Section 5.8.1.4, “Debugging mysqld under gdb”
Section 5.1.9, “Server Status Variables”
Section 5.1.7, “Server System Variables”

thread_handling
Section 5.1.7, “Server System Variables”

5292

Section 5.5.3.1, “Thread Pool Elements”

thread_pool_algorithm
Section 5.1.7, “Server System Variables”
Section 24.5.2, “The INFORMATION_SCHEMA TP_THREAD_GROUP_STATE Table”
Section 5.5.3.3, “Thread Pool Operation”

thread_pool_high_priority_connection
Section 5.1.7, “Server System Variables”
Section 5.5.3.3, “Thread Pool Operation”

thread_pool_max_unused_threads
Section 5.1.7, “Server System Variables”
Section 5.5.3.3, “Thread Pool Operation”

thread_pool_prio_kickup_timer
Section 5.1.7, “Server System Variables”
Section 24.5.2, “The INFORMATION_SCHEMA TP_THREAD_GROUP_STATE Table”
Section 24.5.3, “The INFORMATION_SCHEMA TP_THREAD_GROUP_STATS Table”
Section 5.5.3.3, “Thread Pool Operation”
Section 5.5.3.4, “Thread Pool Tuning”

thread_pool_size
Section 5.1.7, “Server System Variables”
Section 5.5.3.3, “Thread Pool Operation”
Section 5.5.3.4, “Thread Pool Tuning”

thread_pool_stall_limit
Section 5.1.7, “Server System Variables”
Section 24.5.2, “The INFORMATION_SCHEMA TP_THREAD_GROUP_STATE Table”
Section 24.5.3, “The INFORMATION_SCHEMA TP_THREAD_GROUP_STATS Table”
Section 5.5.3.3, “Thread Pool Operation”
Section 5.5.3.4, “Thread Pool Tuning”

thread_stack
Section 5.1.11.1, “Connection Interfaces”
Section 8.12.4.1, “How MySQL Uses Memory”
Section 5.1.7, “Server System Variables”
Section 23.2.1, “Stored Routine Syntax”

time_format
Section 5.1.7, “Server System Variables”

time_zone
Section 13.1.12, “CREATE EVENT Statement”
Section 12.7, “Date and Time Functions”
Section 23.4.4, “Event Metadata”
Section 5.4.4.3, “Mixed Binary Logging Format”
Section 5.1.13, “MySQL Server Time Zone Support”
Section 16.4.1.31, “Replication and Time Zones”
Section 16.4.1.37, “Replication and Variables”

5293

Section 5.1.6, “Server Command Options”
Section 5.1.7, “Server System Variables”
Section 11.2.2, “The DATE, DATETIME, and TIMESTAMP Types”
Section 5.4.3, “The General Query Log”
Section 5.4.5, “The Slow Query Log”

timestamp
Section 15.8.3, “FEDERATED Storage Engine Notes and Tips”
Section 5.4.4.3, “Mixed Binary Logging Format”
Section 16.4.1.37, “Replication and Variables”
Section 5.1.7, “Server System Variables”

tls
Section A.9, “MySQL 5.7 FAQ: Security”

tls_version
Section 4.2.3, “Command Options for Connecting to the Server”
Section 6.3.1, “Configuring MySQL to Use Encrypted Connections”
Section 6.3.2, “Encrypted Connection TLS Protocols and Ciphers”
Section 5.1.7, “Server System Variables”
Section 16.3.8, “Setting Up Replication to Use Encrypted Connections”
Section 6.3, “Using Encrypted Connections”
Section 19.4.1, “Using Encrypted Connections with X Plugin”

tmp_table_size
Section 8.12.4.1, “How MySQL Uses Memory”
Section 8.4.4, “Internal Temporary Table Use in MySQL”
Section 13.6.6.5, “Restrictions on Server-Side Cursors”
Section 5.1.7, “Server System Variables”
Type and Networking

tmpdir
Section 16.3.1.2, “Backing Up Raw Data from a Replica”
Section B.3.2.11, “Can't create/write to file”
Section 7.2, “Database Backup Methods”
Section 14.15, “InnoDB Startup Options and System Variables”
Section 2.8.7, “MySQL Source-Configuration Options”
Section 14.13.5, “Online DDL Failure Conditions”
Section 14.13.3, “Online DDL Space Requirements”
Section 8.2.1.14, “ORDER BY Optimization”
Section 16.1.6.3, “Replica Server Options and Variables”
Section 5.1.7, “Server System Variables”
Section 24.4.27, “The INFORMATION_SCHEMA INNODB_TEMP_TABLE_INFO Table”

transaction
Section 17.3.1, “Group Replication Requirements”

transaction_alloc_block_size
Section 5.1.7, “Server System Variables”

transaction_allow_batching
NDB Cluster System Variables

5294

transaction_isolation
Section 5.1.6, “Server Command Options”
Section 5.1.7, “Server System Variables”
Section 5.1.15, “Server Tracking of Client Session State”
Section 13.3.6, “SET TRANSACTION Statement”
Section 1.3, “What Is New in MySQL 5.7”

transaction_prealloc_size
Section 5.1.7, “Server System Variables”

transaction_read_only
Section 5.1.6, “Server Command Options”
Section 5.1.7, “Server System Variables”
Section 5.1.15, “Server Tracking of Client Session State”
Section 13.3.6, “SET TRANSACTION Statement”
Section 1.3, “What Is New in MySQL 5.7”

transaction_write_set_extraction
Section 16.1.6.4, “Binary Logging Options and Variables”
Section 17.7.1, “Group Replication System Variables”

tx_isolation
Section 5.1.6, “Server Command Options”
Section 5.1.7, “Server System Variables”
Section 13.3.6, “SET TRANSACTION Statement”
Section 1.3, “What Is New in MySQL 5.7”

tx_read_only
Section 5.1.6, “Server Command Options”
Section 5.1.7, “Server System Variables”
Section 13.3.6, “SET TRANSACTION Statement”
Section 1.3, “What Is New in MySQL 5.7”

U

[index top]

unique_checks
Section 14.6.1.5, “Converting Tables from MyISAM to InnoDB”
Section 5.4.4.3, “Mixed Binary Logging Format”
Section 16.4.1.37, “Replication and Variables”
Section 5.1.7, “Server System Variables”
Section 5.4.4, “The Binary Log”

updatable_views_with_limit
Section 5.1.7, “Server System Variables”
Section 23.5.3, “Updatable and Insertable Views”

V

[index top]

5295

validate_password_check_user_name
Section 12.13, “Encryption and Compression Functions”
Section 6.4.3.2, “Password Validation Plugin Options and Variables”
Section 6.4.3, “The Password Validation Plugin”

validate_password_dictionary_file
Section 6.4.3.2, “Password Validation Plugin Options and Variables”
Section 6.4.3, “The Password Validation Plugin”

validate_password_length
Section 12.13, “Encryption and Compression Functions”
Section 6.4.3.2, “Password Validation Plugin Options and Variables”
Section 6.4.3, “The Password Validation Plugin”

validate_password_mixed_case_count
Section 6.4.3.2, “Password Validation Plugin Options and Variables”
Section 6.4.3, “The Password Validation Plugin”

validate_password_number_count
Section 6.4.3.2, “Password Validation Plugin Options and Variables”
Section 6.4.3, “The Password Validation Plugin”

validate_password_policy
Section 6.4.3.2, “Password Validation Plugin Options and Variables”
Section 6.4.3, “The Password Validation Plugin”

validate_password_special_char_count
Section 6.4.3.2, “Password Validation Plugin Options and Variables”
Section 6.4.3, “The Password Validation Plugin”

version
Section 6.4.5.4, “Audit Log File Formats”
Section 12.15, “Information Functions”
Section 14.15, “InnoDB Startup Options and System Variables”
Section 5.1.7, “Server System Variables”

version_comment
Section 5.1.7, “Server System Variables”
Section 13.7.5.39, “SHOW VARIABLES Statement”

version_compile_machine
Section 5.1.7, “Server System Variables”

version_compile_os
Section 5.1.7, “Server System Variables”

version_tokens_session
Section 5.5.5.3, “Using Version Tokens”
Section 5.5.5.4, “Version Tokens Reference”

5296

version_tokens_session_number
Section 5.5.5.4, “Version Tokens Reference”

W

[index top]

wait_timeout
Section B.3.2.9, “Communication Errors and Aborted Connections”
Section B.3.2.7, “MySQL server has gone away”
Section 5.1.7, “Server System Variables”

warning_count
Section B.2, “Error Information Interfaces”
Section 13.5, “Prepared Statements”
Section 5.1.7, “Server System Variables”
Section 13.7.5.17, “SHOW ERRORS Statement”
Section 13.7.5.40, “SHOW WARNINGS Statement”
Section 13.6.7.5, “SIGNAL Statement”
Section 13.6.7.7, “The MySQL Diagnostics Area”

Transaction Isolation Level Index
R | S

R

[index top]

READ COMMITTED
Section 14.7.2.3, “Consistent Nonlocking Reads”
Section 21.2.6.1, “Differences Between the NDB and InnoDB Storage Engines”
Section 17.3.2, “Group Replication Limitations”
Section 14.7.5.3, “How to Minimize and Handle Deadlocks”
Section 14.7.1, “InnoDB Locking”
Section 14.15, “InnoDB Startup Options and System Variables”
Section 21.2.7.3, “Limits Relating to Transaction Handling in NDB Cluster”
Section 14.7.3, “Locks Set by Different SQL Statements in InnoDB”
Section A.1, “MySQL 5.7 FAQ: General”
Section A.10, “MySQL 5.7 FAQ: NDB Cluster”
Section 21.2.6.3, “NDB and InnoDB Feature Usage Summary”
Section 8.5.2, “Optimizing InnoDB Transaction Management”
Section 13.3.6, “SET TRANSACTION Statement”
Section 5.4.4.2, “Setting The Binary Log Format”
Section 25.12.7.1, “The events_transactions_current Table”
Section 14.7.2.1, “Transaction Isolation Levels”

READ UNCOMMITTED
Section 14.7.2.3, “Consistent Nonlocking Reads”
Including Delete-marked Records in Persistent Statistics Calculations
Section 14.21.2, “InnoDB memcached Architecture”
Section 14.15, “InnoDB Startup Options and System Variables”

5297

Section 21.2.7.3, “Limits Relating to Transaction Handling in NDB Cluster”
Section 14.21.5.6, “Performing DML and DDL Statements on the Underlying InnoDB Table”
Section 13.3.6, “SET TRANSACTION Statement”
Section 5.4.4.2, “Setting The Binary Log Format”
Section 25.12.7.1, “The events_transactions_current Table”
Section 14.7.2.1, “Transaction Isolation Levels”

READ-COMMITTED
Section 5.1.6, “Server Command Options”
Section 13.3.6, “SET TRANSACTION Statement”

READ-UNCOMMITTED
Section 5.1.6, “Server Command Options”
Section 13.3.6, “SET TRANSACTION Statement”

REPEATABLE READ
Section 14.7.2.3, “Consistent Nonlocking Reads”
Section 14.21.5.4, “Controlling Transactional Behavior of the InnoDB memcached Plugin”
Section 17.3.2, “Group Replication Limitations”
Section 14.7.1, “InnoDB Locking”
Section 14.15, “InnoDB Startup Options and System Variables”
Section 21.2.7.3, “Limits Relating to Transaction Handling in NDB Cluster”
Section 5.4.4.3, “Mixed Binary Logging Format”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.6, “mysqlpump — A Database Backup Program”
Section 8.5.2, “Optimizing InnoDB Transaction Management”
Section 25.12.7, “Performance Schema Transaction Tables”
Section 13.3.6, “SET TRANSACTION Statement”
Section 13.3.1, “START TRANSACTION, COMMIT, and ROLLBACK Statements”
Section 25.12.7.1, “The events_transactions_current Table”
Section 14.7.2.1, “Transaction Isolation Levels”
Section 13.3.7, “XA Transactions”

REPEATABLE-READ
Section 5.1.6, “Server Command Options”
Section 5.1.7, “Server System Variables”
Section 13.3.6, “SET TRANSACTION Statement”

S

[index top]

SERIALIZABLE
Section 17.3.2, “Group Replication Limitations”
Section 8.10.3.1, “How the Query Cache Operates”
Section 14.7.1, “InnoDB Locking”
Section 14.15, “InnoDB Startup Options and System Variables”
Section 21.2.7.3, “Limits Relating to Transaction Handling in NDB Cluster”
Section 14.7.3, “Locks Set by Different SQL Statements in InnoDB”
Section 5.4.4.3, “Mixed Binary Logging Format”
Section 25.12.7, “Performance Schema Transaction Tables”
Section 5.1.6, “Server Command Options”
Section 13.3.6, “SET TRANSACTION Statement”

5298

Section 13.3.1, “START TRANSACTION, COMMIT, and ROLLBACK Statements”
Section 25.12.7.1, “The events_transactions_current Table”
Section 14.7.2.1, “Transaction Isolation Levels”
Section 13.3.7, “XA Transactions”

5299

5300

MySQL Glossary
These terms are commonly used in information about the MySQL database server. This glossary originated as a
reference for terminology about the InnoDB storage engine, and the majority of definitions are InnoDB-related.

A
.ARM file

 Metadata for ARCHIVE tables. Contrast with .ARZ file. Files with this extension are always included in backups
produced by the mysqlbackup command of the MySQL Enterprise Backup product.
See Also .ARZ file, MySQL Enterprise Backup, mysqlbackup command.

.ARZ file
 Data for ARCHIVE tables. Contrast with .ARM file. Files with this extension are always included in backups
produced by the mysqlbackup command of the MySQL Enterprise Backup product.
See Also .ARM file, MySQL Enterprise Backup, mysqlbackup command.

ACID
 An acronym standing for atomicity, consistency, isolation, and durability. These properties are all desirable in a
database system, and are all closely tied to the notion of a transaction. The transactional features of InnoDB
adhere to the ACID principles.

Transactions are atomic units of work that can be committed or rolled back. When a transaction makes multiple
changes to the database, either all the changes succeed when the transaction is committed, or all the changes
are undone when the transaction is rolled back.

The database remains in a consistent state at all times — after each commit or rollback, and while transactions
are in progress. If related data is being updated across multiple tables, queries see either all old values or all new
values, not a mix of old and new values.

Transactions are protected (isolated) from each other while they are in progress; they cannot interfere with
each other or see each other's uncommitted data. This isolation is achieved through the locking mechanism.
Experienced users can adjust the isolation level, trading off less protection in favor of increased performance
and concurrency, when they can be sure that the transactions really do not interfere with each other.

The results of transactions are durable: once a commit operation succeeds, the changes made by that transaction
are safe from power failures, system crashes, race conditions, or other potential dangers that many non-database
applications are vulnerable to. Durability typically involves writing to disk storage, with a certain amount of
redundancy to protect against power failures or software crashes during write operations. (In InnoDB, the
doublewrite buffer assists with durability.)
See Also atomic, commit, concurrency, doublewrite buffer, isolation level, locking, rollback, transaction.

adaptive flushing
 An algorithm for InnoDB tables that smooths out the I/O overhead introduced by checkpoints. Instead of
flushing all modified pages from the buffer pool to the data files at once, MySQL periodically flushes small sets
of modified pages. The adaptive flushing algorithm extends this process by estimating the optimal rate to perform
these periodic flushes, based on the rate of flushing and how fast redo information is generated.
See Also buffer pool, checkpoint, data files, flush, InnoDB, page, redo log.

adaptive hash index
 An optimization for InnoDB tables that can speed up lookups using = and IN operators, by constructing a hash
index in memory. MySQL monitors index searches for InnoDB tables, and if queries could benefit from a hash
index, it builds one automatically for index pages that are frequently accessed. In a sense, the adaptive hash
index configures MySQL at runtime to take advantage of ample main memory, coming closer to the architecture
of main-memory databases. This feature is controlled by the innodb_adaptive_hash_index configuration

5301

option. Because this feature benefits some workloads and not others, and the memory used for the hash index is
reserved in the buffer pool, typically you should benchmark with this feature both enabled and disabled.

The hash index is always built based on an existing B-tree index on the table. MySQL can build a hash index on
a prefix of any length of the key defined for the B-tree, depending on the pattern of searches against the index. A
hash index can be partial; the whole B-tree index does not need to be cached in the buffer pool.
See Also B-tree, buffer pool, hash index, page, secondary index.

ADO.NET
 An object-relational mapping (ORM) framework for applications built using .NET technologies such as ASP.NET.
Such applications can interface with MySQL through the Connector/NET component.
See Also .NET, ASP.net, Connector/NET, Mono, Visual Studio.

AIO
 Acronym for asynchronous I/O. You might see this acronym in InnoDB messages or keywords.
See Also asynchronous I/O.

ANSI
 In ODBC, an alternative method of supporting character sets and other internationalization aspects. Contrast with
Unicode. Connector/ODBC 3.51 is an ANSI driver, while Connector/ODBC 5.1 is a Unicode driver.
See Also Connector/ODBC, ODBC, Unicode.

Antelope
 The code name for the original InnoDB file format. It supports the REDUNDANT and COMPACT row formats,
but not the newer DYNAMIC and COMPRESSED row formats available in the Barracuda file format.
See Also Barracuda, compact row format, compressed row format, dynamic row format, file format,
innodb_file_format, redundant row format.

API
 APIs provide low-level access to the MySQL protocol and MySQL resources from client programs. Contrast with
the higher-level access provided by a Connector.
See Also C API, client, connector, native C API, Perl API, PHP API, Python API, Ruby API.

application programming interface (API)
 A set of functions or procedures. An API provides a stable set of names and types for functions, procedures,
parameters, and return values.

apply
 When a backup produced by the MySQL Enterprise Backup product does not include the most recent changes
that occurred while the backup was underway, the process of updating the backup files to include those changes
is known as the apply step. It is specified by the apply-log option of the mysqlbackup command.

Before the changes are applied, we refer to the files as a raw backup. After the changes are applied, we refer to
the files as a prepared backup. The changes are recorded in the ibbackup_logfile file; once the apply step is
finished, this file is no longer necessary.
See Also hot backup, ibbackup_logfile, MySQL Enterprise Backup, prepared backup, raw backup.

ASP.net
 A framework for developing web-based applications using .NET technologies and languages. Such applications
can interface with MySQL through the Connector/NET component.

Another technology for writing server-side web pages with MySQL is PHP.
See Also .NET, ADO.NET, Connector/NET, Mono, PHP, Visual Studio.

assembly
 A library of compiled code in a .NET system, accessed through Connector/NET. Stored in the GAC to allow
versioning without naming conflicts.

5302

See Also .NET, GAC.

asynchronous I/O
 A type of I/O operation that allows other processing to proceed before the I/O is completed. Also known as
nonblocking I/O and abbreviated as AIO. InnoDB uses this type of I/O for certain operations that can run in
parallel without affecting the reliability of the database, such as reading pages into the buffer pool that have not
actually been requested, but might be needed soon.

Historically, InnoDB used asynchronous I/O on Windows systems only. Starting with the InnoDB Plugin 1.1
and MySQL 5.5, InnoDB uses asynchronous I/O on Linux systems. This change introduces a dependency on
libaio. Asynchronous I/O on Linux systems is configured using the innodb_use_native_aio option, which is
enabled by default. On other Unix-like systems, InnoDB uses synchronous I/O only.
See Also buffer pool, nonblocking I/O.

atomic
 In the SQL context, transactions are units of work that either succeed entirely (when committed) or have no
effect at all (when rolled back). The indivisible ("atomic") property of transactions is the “A” in the acronym ACID.
See Also ACID, commit, rollback, transaction.

atomic DDL
 An atomic DDL statement is one that combines the data dictionary updates, storage engine operations, and
binary log writes associated with a DDL operation into a single, atomic transaction. The transaction is either fully
committed or rolled back, even if the server halts during the operation. Atomic DDL support was added in MySQL
8.0. For more information, see Atomic Data Definition Statement Support.
See Also binary log, data dictionary, DDL, storage engine.

atomic instruction
 Special instructions provided by the CPU, to ensure that critical low-level operations cannot be interrupted.

auto-increment
 A property of a table column (specified by the AUTO_INCREMENT keyword) that automatically adds an ascending
sequence of values in the column.

It saves work for the developer, not to have to produce new unique values when inserting new rows. It provides
useful information for the query optimizer, because the column is known to be not null and with unique values.
The values from such a column can be used as lookup keys in various contexts, and because they are auto-
generated there is no reason to ever change them; for this reason, primary key columns are often specified as
auto-incrementing.

Auto-increment columns can be problematic with statement-based replication, because replaying the statements
on a replica might not produce the same set of column values as on the source, due to timing issues. When
you have an auto-incrementing primary key, you can use statement-based replication only with the setting
innodb_autoinc_lock_mode=1. If you have innodb_autoinc_lock_mode=2, which allows higher
concurrency for insert operations, use row-based replication rather than statement-based replication. The
setting innodb_autoinc_lock_mode=0 should not be used except for compatibility purposes.

Consecutive lock mode (innodb_autoinc_lock_mode=1) is the default setting prior to MySQL 8.0.3. As
of MySQL 8.0.3, interleaved lock mode (innodb_autoinc_lock_mode=2) is the default, which reflects the
change from statement-based to row-based replication as the default replication type.
See Also auto-increment locking, innodb_autoinc_lock_mode, primary key, row-based replication, statement-
based replication.

auto-increment locking
 The convenience of an auto-increment primary key involves some tradeoff with concurrency. In the simplest
case, if one transaction is inserting values into the table, any other transactions must wait to do their own
inserts into that table, so that rows inserted by the first transaction receive consecutive primary key values.

5303

https://dev.mysql.com/doc/refman/8.0/en/atomic-ddl.html

InnoDB includes optimizations and the innodb_autoinc_lock_mode option so that you can configure and
optimal balance between predictable sequences of auto-increment values and maximum concurrency for insert
operations.
See Also auto-increment, concurrency, innodb_autoinc_lock_mode.

autocommit
 A setting that causes a commit operation after each SQL statement. This mode is not recommended for working
with InnoDB tables with transactions that span several statements. It can help performance for read-only
transactions on InnoDB tables, where it minimizes overhead from locking and generation of undo data,
especially in MySQL 5.6.4 and up. It is also appropriate for working with MyISAM tables, where transactions are
not applicable.
See Also commit, locking, read-only transaction, SQL, transaction, undo.

availability
 The ability to cope with, and if necessary recover from, failures on the host, including failures of MySQL, the
operating system, or the hardware and maintenance activity that may otherwise cause downtime. Often paired
with scalability as critical aspects of a large-scale deployment.
See Also scalability.

MySQL Enterprise Backup
 A licensed product that performs hot backups of MySQL databases. It offers the most efficiency and flexibility
when backing up InnoDB tables, but can also back up MyISAM and other kinds of tables.
See Also hot backup, InnoDB.

B
B-tree

 A tree data structure that is popular for use in database indexes. The structure is kept sorted at all times,
enabling fast lookup for exact matches (equals operator) and ranges (for example, greater than, less than, and
BETWEEN operators). This type of index is available for most storage engines, such as InnoDB and MyISAM.

Because B-tree nodes can have many children, a B-tree is not the same as a binary tree, which is limited to 2
children per node.

Contrast with hash index, which is only available in the MEMORY storage engine. The MEMORY storage engine
can also use B-tree indexes, and you should choose B-tree indexes for MEMORY tables if some queries use range
operators.

The use of the term B-tree is intended as a reference to the general class of index design. B-tree structures used
by MySQL storage engines may be regarded as variants due to sophistications not present in a classic B-tree
design. For related information, refer to the InnoDB Page Structure Fil Header section of the MySQL Internals
Manual.
See Also hash index.

backticks
 Identifiers within MySQL SQL statements must be quoted using the backtick character (`) if they contain special
characters or reserved words. For example, to refer to a table named FOO#BAR or a column named SELECT, you
would specify the identifiers as `FOO#BAR` and `SELECT`. Since the backticks provide an extra level of safety,
they are used extensively in program-generated SQL statements, where the identifier names might not be known
in advance.

Many other database systems use double quotation marks (") around such special names. For portability, you
can enable ANSI_QUOTES mode in MySQL and use double quotation marks instead of backticks to qualify
identifier names.
See Also SQL.

5304

https://dev.mysql.com/doc/internals/en/innodb-fil-header.html
https://dev.mysql.com/doc/internals/en/index.html
https://dev.mysql.com/doc/internals/en/index.html

backup
 The process of copying some or all table data and metadata from a MySQL instance, for safekeeping. Can also
refer to the set of copied files. This is a crucial task for DBAs. The reverse of this process is the restore operation.

With MySQL, physical backups are performed by the MySQL Enterprise Backup product, and logical
backups are performed by the mysqldump command. These techniques have different characteristics in terms of
size and representation of the backup data, and speed (especially speed of the restore operation).

Backups are further classified as hot, warm, or cold depending on how much they interfere with normal database
operation. (Hot backups have the least interference, cold backups the most.)
See Also cold backup, hot backup, logical backup, MySQL Enterprise Backup, mysqldump, physical backup,
warm backup.

Barracuda
 The code name for an InnoDB file format that supports the COMPRESSED row format that enables InnoDB
table compression, and the DYNAMIC row format that improves the storage layout for long variable-length
columns.

The MySQL Enterprise Backup product version 3.5 and above supports backing up tablespaces that use the
Barracuda file format.
See Also Antelope, compact row format, compressed row format, dynamic row format, file format, file-per-table,
general tablespace, innodb_file_format, MySQL Enterprise Backup, row format, system tablespace.

base column
 A non-generated table column upon which a stored generated column or virtual generated column is based. In
other words, a base column is a non-generated table column that is part of a generated column definition.
See Also generated column, stored generated column, virtual generated column.

beta
 An early stage in the life of a software product, when it is available only for evaluation, typically without a definite
release number or a number less than 1. InnoDB does not use the beta designation, preferring an early adopter
phase that can extend over several point releases, leading to a GA release.
See Also early adopter, GA.

binary log
 A file containing a record of all statements or row changes that attempt to change table data. The contents of the
binary log can be replayed to bring replicas up to date in a replication scenario, or to bring a database up to date
after restoring table data from a backup. The binary logging feature can be turned on and off, although Oracle
recommends always enabling it if you use replication or perform backups.

You can examine the contents of the binary log, or replay it during replication or recovery, by using the
mysqlbinlog command. For full information about the binary log, see Section 5.4.4, “The Binary Log”. For
MySQL configuration options related to the binary log, see Section 16.1.6.4, “Binary Logging Options and
Variables”.

For the MySQL Enterprise Backup product, the file name of the binary log and the current position within the file
are important details. To record this information for the source when taking a backup in a replication context, you
can specify the --slave-info option.

Prior to MySQL 5.0, a similar capability was available, known as the update log. In MySQL 5.0 and higher, the
binary log replaces the update log.
See Also binlog, MySQL Enterprise Backup, replication.

binlog
 An informal name for the binary log file. For example, you might see this abbreviation used in e-mail messages
or forum discussions.
See Also binary log.

5305

blind query expansion
 A special mode of full-text search enabled by the WITH QUERY EXPANSION clause. It performs the search
twice, where the search phrase for the second search is the original search phrase concatenated with the
few most highly relevant documents from the first search. This technique is mainly applicable for short search
phrases, perhaps only a single word. It can uncover relevant matches where the precise search term does not
occur in the document.
See Also full-text search.

BLOB
 An SQL data type (TINYBLOB, BLOB, MEDIUMBLOB, and LONGBLOB) for objects containing any kind of binary
data, of arbitrary size. Used for storing documents, images, sound files, and other kinds of information that cannot
easily be decomposed to rows and columns within a MySQL table. The techniques for handling BLOBs within
a MySQL application vary with each Connector and API. MySQL Connector/ODBC defines BLOB values as
LONGVARBINARY. For large, free-form collections of character data, the industry term is CLOB, represented by
the MySQL TEXT data types.
See Also API, CLOB, connector, Connector/ODBC.

bottleneck
 A portion of a system that is constrained in size or capacity, that has the effect of limiting overall throughput. For
example, a memory area might be smaller than necessary; access to a single required resource might prevent
multiple CPU cores from running simultaneously; or waiting for disk I/O to complete might prevent the CPU from
running at full capacity. Removing bottlenecks tends to improve concurrency. For example, the ability to have
multiple InnoDB buffer pool instances reduces contention when multiple sessions read from and write to the
buffer pool simultaneously.
See Also buffer pool, concurrency.

bounce
 A shutdown operation immediately followed by a restart. Ideally with a relatively short warmup period so that
performance and throughput quickly return to a high level.
See Also shutdown.

buddy allocator
 A mechanism for managing different-sized pages in the InnoDB buffer pool.
See Also buffer pool, page, page size.

buffer
 A memory or disk area used for temporary storage. Data is buffered in memory so that it can be written to disk
efficiently, with a few large I/O operations rather than many small ones. Data is buffered on disk for greater
reliability, so that it can be recovered even when a crash or other failure occurs at the worst possible time. The
main types of buffers used by InnoDB are the buffer pool, the doublewrite buffer, and the change buffer.
See Also buffer pool, change buffer, crash, doublewrite buffer.

buffer pool
 The memory area that holds cached InnoDB data for both tables and indexes. For efficiency of high-volume read
operations, the buffer pool is divided into pages that can potentially hold multiple rows. For efficiency of cache
management, the buffer pool is implemented as a linked list of pages; data that is rarely used is aged out of the
cache, using a variation of the LRU algorithm. On systems with large memory, you can improve concurrency by
dividing the buffer pool into multiple buffer pool instances.

Several InnoDB status variables, INFORMATION_SCHEMA tables, and performance_schema tables help to
monitor the internal workings of the buffer pool. Starting in MySQL 5.6, you can avoid a lengthy warmup period
after restarting the server, particularly for instances with large buffer pools, by saving the buffer pool state at
server shutdown and restoring the buffer pool to the same state at server startup. See Section 14.8.3.6, “Saving
and Restoring the Buffer Pool State”.
See Also buffer pool instance, LRU, page, warm up.

5306

buffer pool instance
 Any of the multiple regions into which the buffer pool can be divided, controlled by the
innodb_buffer_pool_instances configuration option. The total memory size specified by
innodb_buffer_pool_size is divided among all buffer pool instances. Typically, having multiple buffer pool
instances is appropriate for systems that allocate multiple gigabytes to the InnoDB buffer pool, with each instance
being one gigabyte or larger. On systems loading or looking up large amounts of data in the buffer pool from
many concurrent sessions, having multiple buffer pool instances reduces contention for exclusive access to data
structures that manage the buffer pool.
See Also buffer pool.

built-in
 The built-in InnoDB storage engine within MySQL is the original form of distribution for the storage engine.
Contrast with the InnoDB Plugin. Starting with MySQL 5.5, the InnoDB Plugin is merged back into the MySQL
code base as the built-in InnoDB storage engine (known as InnoDB 1.1).

This distinction is important mainly in MySQL 5.1, where a feature or bug fix might apply to the InnoDB Plugin but
not the built-in InnoDB, or vice versa.
See Also InnoDB.

business rules
 The relationships and sequences of actions that form the basis of business software, used to run a commercial
company. Sometimes these rules are dictated by law, other times by company policy. Careful planning ensures
that the relationships encoded and enforced by the database, and the actions performed through application logic,
accurately reflect the real policies of the company and can handle real-life situations.

For example, an employee leaving a company might trigger a sequence of actions from the human resources
department. The human resources database might also need the flexibility to represent data about a person
who has been hired, but not yet started work. Closing an account at an online service might result in data being
removed from a database, or the data might be moved or flagged so that it could be recovered if the account
is re-opened. A company might establish policies regarding salary maximums, minimums, and adjustments, in
addition to basic sanity checks such as the salary not being a negative number. A retail database might not allow
a purchase with the same serial number to be returned more than once, or might not allow credit card purchases
above a certain value, while a database used to detect fraud might allow these kinds of things.
See Also relational.

C
.cfg file

 A metadata file used with the InnoDB transportable tablespace feature. It is produced by the command FLUSH
TABLES ... FOR EXPORT, puts one or more tables in a consistent state that can be copied to another server.
The .cfg file is copied along with the corresponding .ibd file, and used to adjust the internal values of the .ibd
file, such as the space ID, during the ALTER TABLE ... IMPORT TABLESPACE step.
See Also .ibd file, space ID, transportable tablespace.

C
 A programming language that combines portability with performance and access to low-level hardware features,
making it a popular choice for writing operating systems, drivers, and other kinds of system software. Many
complex applications, languages, and reusable modules feature pieces written in C, tied together with high-level
components written in other languages. Its core syntax is familiar to C++, Java, and C# developers.
See Also C API, C++, C#, Java.

C API
 The C API code is distributed with MySQL. It is included in the libmysqlclient library and enables C programs to
access a database.
See Also API, C, libmysqlclient.

5307

C#
 A programming language combining strong typing and object-oriented features, running within the Microsoft
.NET framework or its open-source counterpart Mono. Often used for creating applications with the ASP.net
framework. Its syntax is familiar to C, C++ and Java developers.
See Also .NET, ASP.net, C, Connector/NET, C++, Java, Mono.

C++
 A programming language with core syntax familiar to C developers. Provides access to low-level operations for
performance, combined with higher-level data types, object-oriented features, and garbage collection. To write C+
+ applications for MySQL, you use the Connector/C++ component.
See Also C, Connector/C++.

cache
 The general term for any memory area that stores copies of data for frequent or high-speed retrieval. In InnoDB,
the primary kind of cache structure is the buffer pool.
See Also buffer, buffer pool.

cardinality
 The number of different values in a table column. When queries refer to columns that have an associated index,
the cardinality of each column influences which access method is most efficient. For example, for a column with
a unique constraint, the number of different values is equal to the number of rows in the table. If a table has a
million rows but only 10 different values for a particular column, each value occurs (on average) 100,000 times. A
query such as SELECT c1 FROM t1 WHERE c1 = 50; thus might return 1 row or a huge number of rows, and
the database server might process the query differently depending on the cardinality of c1.

If the values in a column have a very uneven distribution, the cardinality might not be a good way to determine
the best query plan. For example, SELECT c1 FROM t1 WHERE c1 = x; might return 1 row when x=50 and
a million rows when x=30. In such a case, you might need to use index hints to pass along advice about which
lookup method is more efficient for a particular query.

Cardinality can also apply to the number of distinct values present in multiple columns, as in a composite index.
See Also column, composite index, index, index hint, persistent statistics, random dive, selectivity, unique
constraint.

change buffer
 A special data structure that records changes to pages in secondary indexes. These values could result from
SQL INSERT, UPDATE, or DELETE statements (DML). The set of features involving the change buffer is known
collectively as change buffering, consisting of insert buffering, delete buffering, and purge buffering.

Changes are only recorded in the change buffer when the relevant page from the secondary index is not in the
buffer pool. When the relevant index page is brought into the buffer pool while associated changes are still in the
change buffer, the changes for that page are applied in the buffer pool (merged) using the data from the change
buffer. Periodically, the purge operation that runs during times when the system is mostly idle, or during a slow
shutdown, writes the new index pages to disk. The purge operation can write the disk blocks for a series of index
values more efficiently than if each value were written to disk immediately.

Physically, the change buffer is part of the system tablespace, so that the index changes remain buffered across
database restarts. The changes are only applied (merged) when the pages are brought into the buffer pool due to
some other read operation.

The kinds and amount of data stored in the change buffer are governed by the innodb_change_buffering
and innodb_change_buffer_max_size configuration options. To see information about the current data in
the change buffer, issue the SHOW ENGINE INNODB STATUS command.

Formerly known as the insert buffer.

5308

See Also buffer pool, change buffering, delete buffering, DML, insert buffer, insert buffering, merge, page, purge,
purge buffering, secondary index, system tablespace.

change buffering
 The general term for the features involving the change buffer, consisting of insert buffering, delete buffering,
and purge buffering. Index changes resulting from SQL statements, which could normally involve random I/
O operations, are held back and performed periodically by a background thread. This sequence of operations
can write the disk blocks for a series of index values more efficiently than if each value were written to disk
immediately. Controlled by the innodb_change_buffering and innodb_change_buffer_max_size
configuration options.
See Also change buffer, delete buffering, insert buffering, purge buffering.

checkpoint
 As changes are made to data pages that are cached in the buffer pool, those changes are written to the data
files sometime later, a process known as flushing. The checkpoint is a record of the latest changes (represented
by an LSN value) that have been successfully written to the data files.
See Also buffer pool, data files, flush, fuzzy checkpointing, LSN.

checksum
 In InnoDB, a validation mechanism to detect corruption when a page in a tablespace is read from disk into the
InnoDB buffer pool. This feature is controlled by the innodb_checksums configuration option in MySQL 5.5.
innodb_checksums is deprecated in MySQL 5.6.3, replaced by innodb_checksum_algorithm.

The innochecksum command helps diagnose corruption problems by testing the checksum values for a
specified tablespace file while the MySQL server is shut down.

MySQL also uses checksums for replication purposes. For details, see the configuration options
binlog_checksum, source_verify_checksum or master_verify_checksum, and
replica_sql_verify_checksum or slave_sql_verify_checksum.
See Also buffer pool, page, tablespace.

child table
 In a foreign key relationship, a child table is one whose rows refer (or point) to rows in another table with an
identical value for a specific column. This is the table that contains the FOREIGN KEY ... REFERENCES
clause and optionally ON UPDATE and ON DELETE clauses. The corresponding row in the parent table must
exist before the row can be created in the child table. The values in the child table can prevent delete or update
operations on the parent table, or can cause automatic deletion or updates in the child table, based on the ON
CASCADE option used when creating the foreign key.
See Also foreign key, parent table.

clean page
 A page in the InnoDB buffer pool where all changes made in memory have also been written (flushed) to the
data files. The opposite of a dirty page.
See Also buffer pool, data files, dirty page, flush, page.

clean shutdown
 A shutdown that completes without errors and applies all changes to InnoDB tables before finishing, as
opposed to a crash or a fast shutdown. Synonym for slow shutdown.
See Also crash, fast shutdown, shutdown, slow shutdown.

client
 A program that runs outside the database server, communicating with the database by sending requests through
a Connector, or an API made available through client libraries. It can run on the same physical machine as
the database server, or on a remote machine connected over a network. It can be a special-purpose database
application, or a general-purpose program like the mysql command-line processor.
See Also API, client libraries, connector, mysql, server.

5309

https://dev.mysql.com/doc/refman/8.0/en/replication-options-binary-log.html#sysvar_source_verify_checksum
https://dev.mysql.com/doc/refman/8.0/en/replication-options-replica.html#sysvar_replica_sql_verify_checksum

client libraries
 Files containing collections of functions for working with databases. By compiling your program with these
libraries, or installing them on the same system as your application, you can run a database application (known
as a client) on a machine that does not have the MySQL server installed; the application accesses the database
over a network. With MySQL, you can use the libmysqlclient library from the MySQL server itself.
See Also client, libmysqlclient.

client-side prepared statement
 A type of prepared statement where the caching and reuse are managed locally, emulating the functionality of
server-side prepared statements. Historically, used by some Connector/J, Connector/ODBC, and Connector/
PHP developers to work around issues with server-side stored procedures. With modern MySQL server versions,
server-side prepared statements are recommended for performance, scalability, and memory efficiency.
See Also Connector/J, Connector/ODBC, Connector/PHP, prepared statement.

CLOB
 An SQL data type (TINYTEXT, TEXT, MEDIUMTEXT, or LONGTEXT) for objects containing any kind of character
data, of arbitrary size. Used for storing text-based documents, with associated character set and collation order.
The techniques for handling CLOBs within a MySQL application vary with each Connector and API. MySQL
Connector/ODBC defines TEXT values as LONGVARCHAR. For storing binary data, the equivalent is the BLOB
type.
See Also API, BLOB, connector, Connector/ODBC.

clustered index
 The InnoDB term for a primary key index. InnoDB table storage is organized based on the values of the
primary key columns, to speed up queries and sorts involving the primary key columns. For best performance,
choose the primary key columns carefully based on the most performance-critical queries. Because modifying
the columns of the clustered index is an expensive operation, choose primary columns that are rarely or never
updated.

In the Oracle Database product, this type of table is known as an index-organized table.
See Also index, primary key, secondary index.

cold backup
 A backup taken while the database is shut down. For busy applications and websites, this might not be practical,
and you might prefer a warm backup or a hot backup.
See Also backup, hot backup, warm backup.

column
 A data item within a row, whose storage and semantics are defined by a data type. Each table and index is
largely defined by the set of columns it contains.

Each column has a cardinality value. A column can be the primary key for its table, or part of the primary key.
A column can be subject to a unique constraint, a NOT NULL constraint, or both. Values in different columns,
even across different tables, can be linked by a foreign key relationship.

In discussions of MySQL internal operations, sometimes field is used as a synonym.
See Also cardinality, foreign key, index, NOT NULL constraint, primary key, row, table, unique constraint.

column index
 An index on a single column.
See Also composite index, index.

column prefix
 When an index is created with a length specification, such as CREATE INDEX idx ON t1 (c1(N)), only
the first N characters of the column value are stored in the index. Keeping the index prefix small makes the

5310

index compact, and the memory and disk I/O savings help performance. (Although making the index prefix too
small can hinder query optimization by making rows with different values appear to the query optimizer to be
duplicates.)

For columns containing binary values or long text strings, where sorting is not a major consideration and storing
the entire value in the index would waste space, the index automatically uses the first N (typically 768) characters
of the value to do lookups and sorts.
See Also index.

command interceptor
 Synonym for statement interceptor. One aspect of the interceptor design pattern available for both
Connector/NET and Connector/J. What Connector/NET calls a command, Connector/J refers to as a statement.
Contrast with exception interceptor.
See Also Connector/J, Connector/NET, exception interceptor, interceptor, statement interceptor.

commit
 A SQL statement that ends a transaction, making permanent any changes made by the transaction. It is the
opposite of rollback, which undoes any changes made in the transaction.

InnoDB uses an optimistic mechanism for commits, so that changes can be written to the data files before the
commit actually occurs. This technique makes the commit itself faster, with the tradeoff that more work is required
in case of a rollback.

By default, MySQL uses the autocommit setting, which automatically issues a commit following each SQL
statement.
See Also autocommit, optimistic, rollback, SQL, transaction.

compact row format
 The default InnoDB row format for InnoDB tables from MySQL 5.0.3 to MySQL 5.7.8. As of MySQL 5.7.9, the
default row format is defined by the innodb_default_row_format configuration option, which has a default
setting of DYNAMIC. The COMPACT row format provides a more compact representation for nulls and variable-
length columns than the prior default (REDUNDANT row format).

For additional information about InnoDB COMPACT row format, see Section 14.11, “InnoDB Row Formats”.
See Also Antelope, dynamic row format, file format, redundant row format, row format.

composite index
 An index that includes multiple columns.
See Also index.

compressed backup
 The compression feature of the MySQL Enterprise Backup product makes a compressed copy of each
tablespace, changing the extension from .ibd to .ibz. Compressing backup data allows you to keep more
backups on hand, and reduces the time to transfer backups to a different server. The data is uncompressed
during the restore operation. When a compressed backup operation processes a table that is already
compressed, it skips the compression step for that table, because compressing again would result in little or no
space savings.

A set of files produced by the MySQL Enterprise Backup product, where each tablespace is compressed. The
compressed files are renamed with a .ibz file extension.

Applying compression at the start of the backup process helps to avoid storage overhead during the
compression process, and to avoid network overhead when transferring the backup files to another server. The
process of applying the binary log takes longer, and requires uncompressing the backup files.
See Also apply, binary log, compression, hot backup, MySQL Enterprise Backup, tablespace.

5311

compressed row format
 A row format that enables data and index compression for InnoDB tables. It was introduced in the InnoDB
Plugin, available as part of the Barracuda file format. Large fields are stored away from the page that holds the
rest of the row data, as in dynamic row format. Both index pages and large fields are compressed, yielding
memory and disk savings. Depending on the structure of the data, the decrease in memory and disk usage might
or might not outweigh the performance overhead of uncompressing the data as it is used. See Section 14.9,
“InnoDB Table and Page Compression” for usage details.

For additional information about InnoDB COMPRESSED row format, see DYNAMIC Row Format.
See Also Barracuda, compression, dynamic row format, row format.

compressed table
 A table for which the data is stored in compressed form. For InnoDB, it is a table created with
ROW_FORMAT=COMPRESSED. See Section 14.9, “InnoDB Table and Page Compression” for more information.
See Also compressed row format, compression.

compression
 A feature with wide-ranging benefits from using less disk space, performing less I/O, and using less memory for
caching.

InnoDB supports both table-level and page-level compression. InnoDB page compression is also referred to as
transparent page compression. For more information about InnoDB compression, see Section 14.9, “InnoDB
Table and Page Compression”.

Another type of compression is the compressed backup feature of the MySQL Enterprise Backup product.
See Also Barracuda, buffer pool, compressed backup, compressed row format, DML, transparent page
compression.

compression failure
 Not actually an error, rather an expensive operation that can occur when using compression in combination
with DML operations. It occurs when: updates to a compressed page overflow the area on the page
reserved for recording modifications; the page is compressed again, with all changes applied to the table
data; the re-compressed data does not fit on the original page, requiring MySQL to split the data into
two new pages and compress each one separately. To check the frequency of this condition, query the
INFORMATION_SCHEMA.INNODB_CMP table and check how much the value of the COMPRESS_OPS column
exceeds the value of the COMPRESS_OPS_OK column. Ideally, compression failures do not occur often; when they
do, you can adjust the innodb_compression_level, innodb_compression_failure_threshold_pct,
and innodb_compression_pad_pct_max configuration options.
See Also compression, DML, page.

concatenated index
See composite index.

concurrency
 The ability of multiple operations (in database terminology, transactions) to run simultaneously, without
interfering with each other. Concurrency is also involved with performance, because ideally the protection for
multiple simultaneous transactions works with a minimum of performance overhead, using efficient mechanisms
for locking.
See Also ACID, locking, transaction.

configuration file
 The file that holds the option values used by MySQL at startup. Traditionally, on Linux and Unix this file is
named my.cnf, and on Windows it is named my.ini. You can set a number of options related to InnoDB under
the [mysqld] section of the file.

See Section 4.2.2.2, “Using Option Files” for information about where MySQL searches for configuration files.

5312

When you use the MySQL Enterprise Backup product, you typically use two configuration files: one that
specifies where the data comes from and how it is structured (which could be the original configuration file for
your server), and a stripped-down one containing only a small set of options that specify where the backup data
goes and how it is structured. The configuration files used with the MySQL Enterprise Backup product must
contain certain options that are typically left out of regular configuration files, so you might need to add options to
your existing configuration file for use with MySQL Enterprise Backup.
See Also my.cnf, MySQL Enterprise Backup, option, option file.

connection
 The communication channel between an application and a MySQL server. The performance and scalability
of a database applications is influenced by on how quickly a database connection can be established, how
many can be made simultaneously, and how long they persist. The parameters such as host, port, and so on
are represented as a connection string in Connector/NET, and as a DSN in Connector/ODBC. High-traffic
systems make use of an optimization known as the connection pool.
See Also connection pool, connection string, Connector/NET, Connector/ODBC, DSN, host, port.

connection pool
 A cache area that allows database connections to be reused within the same application or across different
applications, rather than setting up and tearing down a new connection for every database operation. This
technique is common with J2EE application servers. Java applications using Connector/J can use the
connection pool features of Tomcat and other application servers. The reuse is transparent to applications; the
application still opens and closes the connection as usual.
See Also connection, Connector/J, J2EE, Tomcat.

connection string
 A representation of the parameters for a database connection, encoded as a string literal so that it can be used
in program code. The parts of the string represent connection parameters such as host and port. A connection
string contains several key-value pairs, separated by semicolons. Each key-value pair is joined with an equal
sign. Frequently used with Connector/NET applications; see Creating a Connector/NET Connection String for
details.
See Also connection, Connector/NET, host, port.

connector
 MySQL Connectors provide connectivity to the MySQL server for client programs. Several programming
languages and frameworks each have their own associated Connector. Contrast with the lower-level access
provided by an API.
See Also API, client, Connector/C++, Connector/J, Connector/NET, Connector/ODBC.

Connector/C++
 Connector/C++ 8.0 can be used to access MySQL servers that implement a document store, or in a traditional
way using SQL queries. It enables development of C++ applications using X DevAPI, or plain C applications
using X DevAPI for C. It also enables development of C++ applications that use the legacy JDBC-based API from
Connector/C++ 1.1. For more information, see MySQL Connector/C++ 9.5 Developer Guide.
See Also client, connector, JDBC.

Connector/J
 A JDBC driver that provides connectivity for client applications developed in the Java programming language.
Different versions are available that are compatible with the JDBC 3.0 and JDBC 4.0 specifications. MySQL
Connector/J is a JDBC Type 4 driver: a pure-Java implementation of the MySQL protocol that does not rely on the
MySQL client libraries. For full details, see MySQL Connector/J Developer Guide.
See Also client, client libraries, connector, Java, JDBC.

Connector/NET
 A MySQL connector for developers writing applications using languages, technologies, and frameworks such as
C#, .NET, Mono, Visual Studio, ASP.net, and ADO.net.

5313

https://dev.mysql.com/doc/connector-net/en/connector-net-connections-string.html
https://dev.mysql.com/doc/connector-cpp/9.4/en/
https://dev.mysql.com/doc/connector-j/en/

See Also ADO.NET, ASP.net, connector, C#, Mono, Visual Studio.

Connector/ODBC
 The family of MySQL ODBC drivers that provide access to a MySQL database using the industry standard Open
Database Connectivity (ODBC) API. Formerly called MyODBC drivers. For full details, see MySQL Connector/
ODBC Developer Guide.
See Also connector, ODBC.

Connector/PHP
 A version of the mysql and mysqli APIs for PHP optimized for the Windows operating system.
See Also connector, PHP, PHP API.

consistent read
 A read operation that uses snapshot information to present query results based on a point in time, regardless of
changes performed by other transactions running at the same time. If queried data has been changed by another
transaction, the original data is reconstructed based on the contents of the undo log. This technique avoids some
of the locking issues that can reduce concurrency by forcing transactions to wait for other transactions to finish.

With REPEATABLE READ isolation level, the snapshot is based on the time when the first read operation is
performed. With READ COMMITTED isolation level, the snapshot is reset to the time of each consistent read
operation.

Consistent read is the default mode in which InnoDB processes SELECT statements in READ COMMITTED
and REPEATABLE READ isolation levels. Because a consistent read does not set any locks on the tables it
accesses, other sessions are free to modify those tables while a consistent read is being performed on the table.

For technical details about the applicable isolation levels, see Section 14.7.2.3, “Consistent Nonlocking Reads”.
See Also concurrency, isolation level, locking, READ COMMITTED, REPEATABLE READ, snapshot, transaction,
undo log.

constraint
 An automatic test that can block database changes to prevent data from becoming inconsistent. (In computer
science terms, a kind of assertion related to an invariant condition.) Constraints are a crucial component of
the ACID philosophy, to maintain data consistency. Constraints supported by MySQL include FOREIGN KEY
constraints and unique constraints.
See Also ACID, foreign key, unique constraint.

counter
 A value that is incremented by a particular kind of InnoDB operation. Useful for measuring how busy a
server is, troubleshooting the sources of performance issues, and testing whether changes (for example,
to configuration settings or indexes used by queries) have the desired low-level effects. Different kinds of
counters are available through Performance Schema tables and INFORMATION_SCHEMA tables, particularly
INFORMATION_SCHEMA.INNODB_METRICS.
See Also INFORMATION_SCHEMA, metrics counter, Performance Schema.

covering index
 An index that includes all the columns retrieved by a query. Instead of using the index values as pointers to
find the full table rows, the query returns values from the index structure, saving disk I/O. InnoDB can apply this
optimization technique to more indexes than MyISAM can, because InnoDB secondary indexes also include the
primary key columns. InnoDB cannot apply this technique for queries against tables modified by a transaction,
until that transaction ends.

Any column index or composite index could act as a covering index, given the right query. Design your indexes
and queries to take advantage of this optimization technique wherever possible.

5314

https://dev.mysql.com/doc/connector-odbc/en/
https://dev.mysql.com/doc/connector-odbc/en/

See Also column index, composite index, index, primary key, secondary index.

CPU-bound
 A type of workload where the primary bottleneck is CPU operations in memory. Typically involves read-
intensive operations where the results can all be cached in the buffer pool.
See Also bottleneck, buffer pool, workload.

crash
 MySQL uses the term “crash” to refer generally to any unexpected shutdown operation where the server cannot
do its normal cleanup. For example, a crash could happen due to a hardware fault on the database server
machine or storage device; a power failure; a potential data mismatch that causes the MySQL server to halt; a
fast shutdown initiated by the DBA; or many other reasons. The robust, automatic crash recovery for InnoDB
tables ensures that data is made consistent when the server is restarted, without any extra work for the DBA.
See Also crash recovery, fast shutdown, InnoDB, shutdown.

crash recovery
 The cleanup activities that occur when MySQL is started again after a crash. For InnoDB tables, changes from
incomplete transactions are replayed using data from the redo log. Changes that were committed before the
crash, but not yet written into the data files, are reconstructed from the doublewrite buffer. When the database
is shut down normally, this type of activity is performed during shutdown by the purge operation.

During normal operation, committed data can be stored in the change buffer for a period of time before being
written to the data files. There is always a tradeoff between keeping the data files up-to-date, which introduces
performance overhead during normal operation, and buffering the data, which can make shutdown and crash
recovery take longer.
See Also change buffer, commit, crash, data files, doublewrite buffer, InnoDB, purge, redo log.

CRUD
 Acronym for “create, read, update, delete”, a common sequence of operations in database applications. Often
denotes a class of applications with relatively simple database usage (basic DDL, DML and query statements in
SQL) that can be implemented quickly in any language.
See Also DDL, DML, query, SQL.

cursor
 An internal MySQL data structure that represents the result set of an SQL statement. Often used with prepared
statements and dynamic SQL. It works like an iterator in other high-level languages, producing each value from
the result set as requested.

Although SQL usually handles the processing of cursors for you, you might delve into the inner workings when
dealing with performance-critical code.
See Also dynamic SQL, prepared statement, query.

D
data definition language

See DDL.

data dictionary
 Metadata that keeps track of InnoDB-related objects such as tables, indexes, and table columns. This
metadata is physically located in the InnoDB system tablespace. For historical reasons, it overlaps to some
degree with information stored in the .frm files.

Because the MySQL Enterprise Backup product always backs up the system tablespace, all backups include
the contents of the data dictionary.
See Also column, file-per-table, .frm file, index, MySQL Enterprise Backup, system tablespace, table.

5315

data directory
 The directory under which each MySQL instance keeps the data files for InnoDB and the directories
representing individual databases. Controlled by the datadir configuration option.
See Also data files, instance.

data files
 The files that physically contain table and index data.

The InnoDB system tablespace, which holds the InnoDB data dictionary and is capable of holding data for
multiple InnoDB tables, is represented by one or more .ibdata data files.

File-per-table tablespaces, which hold data for a single InnoDB table, are represented by a .ibd data file.

General tablespaces (introduced in MySQL 5.7.6), which can hold data for multiple InnoDB tables, are also
represented by a .ibd data file.
See Also data dictionary, file-per-table, general tablespace, .ibd file, ibdata file, index, system tablespace, table,
tablespace.

data manipulation language
See DML.

data warehouse
 A database system or application that primarily runs large queries. The read-only or read-mostly data might
be organized in denormalized form for query efficiency. Can benefit from the optimizations for read-only
transactions in MySQL 5.6 and higher. Contrast with OLTP.
See Also denormalized, OLTP, query, read-only transaction.

database
 Within the MySQL data directory, each database is represented by a separate directory. The InnoDB system
tablespace, which can hold table data from multiple databases within a MySQL instance, is kept in data files
that reside outside of individual database directories. When file-per-table mode is enabled, the .ibd files
representing individual InnoDB tables are stored inside the database directories unless created elsewhere using
the DATA DIRECTORY clause. General tablespaces, introduced in MySQL 5.7.6, also hold table data in .ibd files.
Unlike file-per-table .ibd files, general tablespace .ibd files can hold table data from multiple databases within a
MySQL instance, and can be assigned to directories relative to or independent of the MySQL data directory.

For long-time MySQL users, a database is a familiar notion. Users coming from an Oracle Database background
may find that the MySQL meaning of a database is closer to what Oracle Database calls a schema.
See Also data files, file-per-table, .ibd file, instance, schema, system tablespace.

DCL
 Data control language, a set of SQL statements for managing privileges. In MySQL, consists of the GRANT and
REVOKE statements. Contrast with DDL and DML.
See Also DDL, DML, SQL.

DDEX provider
 A feature that lets you use the data design tools within Visual Studio to manipulate the schema and objects
within a MySQL database. For MySQL applications using Connector/NET, the MySQL Visual Studio Plugin acts
as a DDEX provider with MySQL 5.0 and later.
See Also Visual Studio.

DDL
 Data definition language, a set of SQL statements for manipulating the database itself rather than individual table
rows. Includes all forms of the CREATE, ALTER, and DROP statements. Also includes the TRUNCATE statement,
because it works differently than a DELETE FROM table_name statement, even though the ultimate effect is
similar.

5316

DDL statements automatically commit the current transaction; they cannot be rolled back.

The InnoDB online DDL feature enhances performance for CREATE INDEX, DROP INDEX, and many types of
ALTER TABLE operations. See Section 14.13, “InnoDB and Online DDL” for more information. Also, the InnoDB
file-per-table setting can affect the behavior of DROP TABLE and TRUNCATE TABLE operations.

Contrast with DML and DCL.
See Also commit, DCL, DML, file-per-table, rollback, SQL, transaction.

deadlock
 A situation where different transactions are unable to proceed, because each holds a lock that the other needs.
Because both transactions are waiting for a resource to become available, neither one ever releases the locks it
holds.

A deadlock can occur when the transactions lock rows in multiple tables (through statements such as UPDATE
or SELECT ... FOR UPDATE), but in the opposite order. A deadlock can also occur when such statements
lock ranges of index records and gaps, with each transaction acquiring some locks but not others due to a timing
issue.

For background information on how deadlocks are automatically detected and handled, see Section 14.7.5.2,
“Deadlock Detection”. For tips on avoiding and recovering from deadlock conditions, see Section 14.7.5.3, “How
to Minimize and Handle Deadlocks”.
See Also gap, lock, transaction.

deadlock detection
 A mechanism that automatically detects when a deadlock occurs, and automatically rolls back one of the
transactions involved (the victim). Deadlock detection can be disabled using the innodb_deadlock_detect
configuration option.
See Also deadlock, rollback, transaction, victim.

delete
 When InnoDB processes a DELETE statement, the rows are immediately marked for deletion and no longer
are returned by queries. The storage is reclaimed sometime later, during the periodic garbage collection known
as the purge operation. For removing large quantities of data, related operations with their own performance
characteristics are TRUNCATE and DROP.
See Also drop, purge, truncate.

delete buffering
 The technique of storing changes to secondary index pages, resulting from DELETE operations, in the change
buffer rather than writing the changes immediately, so that the physical writes can be performed to minimize
random I/O. (Because delete operations are a two-step process, this operation buffers the write that normally
marks an index record for deletion.) It is one of the types of change buffering; the others are insert buffering
and purge buffering.
See Also change buffer, change buffering, insert buffer, insert buffering, purge buffering.

denormalized
 A data storage strategy that duplicates data across different tables, rather than linking the tables with foreign
keys and join queries. Typically used in data warehouse applications, where the data is not updated after
loading. In such applications, query performance is more important than making it simple to maintain consistent
data during updates. Contrast with normalized.
See Also data warehouse, foreign key, join, normalized.

descending index
 A type of index available with some database systems, where index storage is optimized to process ORDER BY
column DESC clauses. Currently, although MySQL allows the DESC keyword in the CREATE TABLE statement, it
does not use any special storage layout for the resulting index.

5317

See Also index.

dirty page
 A page in the InnoDB buffer pool that has been updated in memory, where the changes are not yet written
(flushed) to the data files. The opposite of a clean page.
See Also buffer pool, clean page, data files, flush, page.

dirty read
 An operation that retrieves unreliable data, data that was updated by another transaction but not yet committed.
It is only possible with the isolation level known as read uncommitted.

This kind of operation does not adhere to the ACID principle of database design. It is considered very risky,
because the data could be rolled back, or updated further before being committed; then, the transaction doing
the dirty read would be using data that was never confirmed as accurate.

Its opposite is consistent read, where InnoDB ensures that a transaction does not read information updated by
another transaction, even if the other transaction commits in the meantime.
See Also ACID, commit, consistent read, isolation level, READ UNCOMMITTED, rollback.

disk-based
 A kind of database that primarily organizes data on disk storage (hard drives or equivalent). Data is brought back
and forth between disk and memory to be operated upon. It is the opposite of an in-memory database. Although
InnoDB is disk-based, it also contains features such as he buffer pool, multiple buffer pool instances, and the
adaptive hash index that allow certain kinds of workloads to work primarily from memory.
See Also adaptive hash index, buffer pool, in-memory database.

disk-bound
 A type of workload where the primary bottleneck is disk I/O. (Also known as I/O-bound.) Typically involves
frequent writes to disk, or random reads of more data than can fit into the buffer pool.
See Also bottleneck, buffer pool, workload.

DML
 Data manipulation language, a set of SQL statements for performing INSERT, UPDATE, and DELETE operations.
The SELECT statement is sometimes considered as a DML statement, because the SELECT ... FOR UPDATE
form is subject to the same considerations for locking as INSERT, UPDATE, and DELETE.

DML statements for an InnoDB table operate in the context of a transaction, so their effects can be committed
or rolled back as a single unit.

Contrast with DDL and DCL.
See Also commit, DCL, DDL, locking, rollback, SQL, transaction.

document id
 In the InnoDB full-text search feature, a special column in the table containing the FULLTEXT index,
to uniquely identify the document associated with each ilist value. Its name is FTS_DOC_ID (uppercase
required). The column itself must be of BIGINT UNSIGNED NOT NULL type, with a unique index named
FTS_DOC_ID_INDEX. Preferably, you define this column when creating the table. If InnoDB must add the column
to the table while creating a FULLTEXT index, the indexing operation is considerably more expensive.
See Also full-text search, FULLTEXT index, ilist.

doublewrite buffer
 InnoDB uses a file flush technique called doublewrite. Before writing pages to the data files, InnoDB first writes
them to a storage area called the doublewrite buffer. Only after the write and the flush to the doublewrite buffer
have completed, does InnoDB write the pages to their proper positions in the data file. If there is an operating
system, storage subsystem or mysqld process crash in the middle of a page write, InnoDB can find a good copy
of the page from the doublewrite buffer during crash recovery.

5318

Although data is always written twice, the doublewrite buffer does not require twice as much I/O overhead or twice
as many I/O operations. Data is written to the buffer itself as a large sequential chunk, with a single fsync() call
to the operating system.
See Also crash recovery, data files, page, purge.

drop
 A kind of DDL operation that removes a schema object, through a statement such as DROP TABLE or DROP
INDEX. It maps internally to an ALTER TABLE statement. From an InnoDB perspective, the performance
considerations of such operations involve the time that the data dictionary is locked to ensure that interrelated
objects are all updated, and the time to update memory structures such as the buffer pool. For a table, the drop
operation has somewhat different characteristics than a truncate operation (TRUNCATE TABLE statement).
See Also buffer pool, data dictionary, DDL, table, truncate.

DSN
 Acronym for “Database Source Name”. It is the encoding for connection information within Connector/ODBC.
See Configuring a Connector/ODBC DSN on Windows for full details. It is the equivalent of the connection
string used by Connector/NET.
See Also connection, connection string, Connector/NET, Connector/ODBC.

dynamic cursor
 A type of cursor supported by ODBC that can pick up new and changed results when the rows are read
again. Whether and how quickly the changes are visible to the cursor depends on the type of table involved
(transactional or non-transactional) and the isolation level for transactional tables. Support for dynamic cursors
must be explicitly enabled.
See Also cursor, ODBC.

dynamic row format
 A row format introduced in the InnoDB Plugin, available as part of the Barracuda file format. Because long
variable-length column values are stored outside of the page that holds the row data, it is very efficient for rows
that include large objects. Since the large fields are typically not accessed to evaluate query conditions, they are
not brought into the buffer pool as often, resulting in fewer I/O operations and better utilization of cache memory.

As of MySQL 5.7.9, the default row format is defined by innodb_default_row_format, which has a default
value of DYNAMIC.

For additional information about InnoDB DYNAMIC row format, see DYNAMIC Row Format.
See Also Barracuda, buffer pool, file format, row format.

dynamic SQL
 A feature that lets you create and execute prepared statements using more robust, secure, and efficient
methods to substitute parameter values than the naive technique of concatenating the parts of the statement into
a string variable.
See Also prepared statement.

dynamic statement
 A prepared statement created and executed through dynamic SQL.
See Also dynamic SQL, prepared statement.

E
early adopter

 A stage similar to beta, when a software product is typically evaluated for performance, functionality, and
compatibility in a non-mission-critical setting.
See Also beta.

5319

https://dev.mysql.com/doc/connector-odbc/en/connector-odbc-configuration-dsn-windows.html

Eiffel
 A programming language including many object-oriented features. Some of its concepts are familiar to Java and
C# developers. For the open-source Eiffel API for MySQL, see Section 27.13, “MySQL Eiffel Wrapper”.
See Also API, C#, Java.

embedded
 The embedded MySQL server library (libmysqld) makes it possible to run a full-featured MySQL server inside
a client application. The main benefits are increased speed and more simple management for embedded
applications.
See Also client, libmysqld.

error log
 A type of log showing information about MySQL startup and critical runtime errors and crash information. For
details, see Section 5.4.2, “The Error Log”.
See Also crash, log.

eviction
 The process of removing an item from a cache or other temporary storage area, such as the InnoDB buffer
pool. Often, but not always, uses the LRU algorithm to determine which item to remove. When a dirty page is
evicted, its contents are flushed to disk, and any dirty neighbor pages might be flushed also.
See Also buffer pool, dirty page, flush, LRU, neighbor page.

exception interceptor
 A type of interceptor for tracing, debugging, or augmenting SQL errors encountered by a database application.
For example, the interceptor code could issue a SHOW WARNINGS statement to retrieve additional information,
and add descriptive text or even change the type of the exception returned to the application. Because the
interceptor code is only called when SQL statements return errors, it does not impose any performance penalty
on the application during normal (error-free) operation.

In Java applications using Connector/J, setting up this type of interceptor involves implementing the
com.mysql.jdbc.ExceptionInterceptor interface, and adding a exceptionInterceptors property to
the connection string.

In Visual Studio applications using Connector/NET, setting up this type of interceptor involves defining a
class that inherits from the BaseExceptionInterceptor class and specifying that class name as part of the
connection string.
See Also Connector/J, Connector/NET, interceptor, Java, Visual Studio.

exclusive lock
 A kind of lock that prevents any other transaction from locking the same row. Depending on the transaction
isolation level, this kind of lock might block other transactions from writing to the same row, or might also block
other transactions from reading the same row. The default InnoDB isolation level, REPEATABLE READ, enables
higher concurrency by allowing transactions to read rows that have exclusive locks, a technique known as
consistent read.
See Also concurrency, consistent read, isolation level, lock, REPEATABLE READ, shared lock, transaction.

extent
 A group of pages within a tablespace. For the default page size of 16KB, an extent contains 64 pages.
In MySQL 5.6, the page size for an InnoDB instance can be 4KB, 8KB, or 16KB, controlled by the
innodb_page_size configuration option. For 4KB, 8KB, and 16KB pages sizes, the extent size is always 1MB
(or 1048576 bytes).

Support for 32KB and 64KB InnoDB page sizes was added in MySQL 5.7.6. For a 32KB page size, the extent
size is 2MB. For a 64KB page size, the extent size is 4MB.

InnoDB features such as segments, read-ahead requests and the doublewrite buffer use I/O operations that
read, write, allocate, or free data one extent at a time.

5320

See Also doublewrite buffer, page, page size, read-ahead, segment, tablespace.

F
.frm file

 A file containing the metadata, such as the table definition, of a MySQL table.

For backups, you must always keep the full set of .frm files along with the backup data to be able to restore
tables that are altered or dropped after the backup.

Although each InnoDB table has a .frm file, InnoDB maintains its own table metadata in the system
tablespace.

.frm files are backed up by the MySQL Enterprise Backup product. These files must not be modified by an
ALTER TABLE operation while the backup is taking place, which is why backups that include non-InnoDB
tables perform a FLUSH TABLES WITH READ LOCK operation to freeze such activity while backing up .frm
files. Restoring a backup can result in .frm files being created, changed, or removed to match the state of the
database at the time of the backup.
See Also data dictionary, MySQL Enterprise Backup, system tablespace.

failover
 The ability to automatically switch to a standby server in the event of a failure. In the MySQL context, failover
involves a standby database server. Often supported within J2EE environments by the application server or
framework.
See Also Connector/J, J2EE.

Fast Index Creation
 A capability first introduced in the InnoDB Plugin, now part of MySQL in 5.5 and higher, that speeds up creation
of InnoDB secondary indexes by avoiding the need to completely rewrite the associated table. The speedup
applies to dropping secondary indexes also.

Because index maintenance can add performance overhead to many data transfer operations, consider doing
operations such as ALTER TABLE ... ENGINE=INNODB or INSERT INTO ... SELECT * FROM ...
without any secondary indexes in place, and creating the indexes afterward.

In MySQL 5.6, this feature becomes more general. You can read and write to tables while an index is being
created, and many more kinds of ALTER TABLE operations can be performed without copying the table, without
blocking DML operations, or both. Thus in MySQL 5.6 and higher, this set of features is referred to as online DDL
rather than Fast Index Creation.

For related information, see Section 14.13, “InnoDB and Online DDL”.
See Also DML, index, online DDL, secondary index.

fast shutdown
 The default shutdown procedure for InnoDB, based on the configuration setting innodb_fast_shutdown=1.
To save time, certain flush operations are skipped. This type of shutdown is safe during normal usage, because
the flush operations are performed during the next startup, using the same mechanism as in crash recovery.
In cases where the database is being shut down for an upgrade or downgrade, do a slow shutdown instead to
ensure that all relevant changes are applied to the data files during the shutdown.
See Also crash recovery, data files, flush, shutdown, slow shutdown.

file format
 The file format for InnoDB tables, enabled using the innodb_file_format configuration option. Supported file
formats are Antelope and Barracuda. Antelope is the original InnoDB file format and supports the REDUNDANT

5321

and COMPACT row formats. Barracuda is the newer InnoDB file format and supports the COMPRESSED and
DYNAMIC row formats.
See Also Antelope, Barracuda, file-per-table, .ibd file, ibdata file, row format.

file-per-table
 A general name for the setting controlled by the innodb_file_per_table option, which is an important
configuration option that affects aspects of InnoDB file storage, availability of features, and I/O characteristics. As
of MySQL 5.6.7, innodb_file_per_table is enabled by default.

With the innodb_file_per_table option enabled, you can create a table in its own .ibd file rather than
in the shared ibdata files of the system tablespace. When table data is stored in an individual .ibd file, you
have more flexibility to choose row formats required for features such as data compression. The TRUNCATE
TABLE operation is also faster, and reclaimed space can be used by the operating system rather than remaining
reserved for InnoDB.

The MySQL Enterprise Backup product is more flexible for tables that are in their own files. For example, tables
can be excluded from a backup, but only if they are in separate files. Thus, this setting is suitable for tables that
are backed up less frequently or on a different schedule.
See Also compressed row format, compression, file format, .ibd file, ibdata file, innodb_file_per_table, MySQL
Enterprise Backup, row format, system tablespace.

fill factor
 In an InnoDB index, the proportion of a page that is taken up by index data before the page is split. The
unused space when index data is first divided between pages allows for rows to be updated with longer string
values without requiring expensive index maintenance operations. If the fill factor is too low, the index consumes
more space than needed, causing extra I/O overhead when reading the index. If the fill factor is too high, any
update that increases the length of column values can cause extra I/O overhead for index maintenance. See
Section 14.6.2.2, “The Physical Structure of an InnoDB Index” for more information.
See Also index, page.

fixed row format
 This row format is used by the MyISAM storage engine, not by InnoDB. If you create an InnoDB table with
the option ROW_FORMAT=FIXED in MySQL 5.7.6 or earlier, InnoDB uses the compact row format instead,
although the FIXED value might still show up in output such as SHOW TABLE STATUS reports. As of MySQL
5.7.7, InnoDB returns an error if ROW_FORMAT=FIXED is specified.
See Also compact row format, row format.

flush
 To write changes to the database files, that had been buffered in a memory area or a temporary disk storage
area. The InnoDB storage structures that are periodically flushed include the redo log, the undo log, and the
buffer pool.

Flushing can happen because a memory area becomes full and the system needs to free some space, because
a commit operation means the changes from a transaction can be finalized, or because a slow shutdown
operation means that all outstanding work should be finalized. When it is not critical to flush all the buffered data
at once, InnoDB can use a technique called fuzzy checkpointing to flush small batches of pages to spread out
the I/O overhead.
See Also buffer pool, commit, fuzzy checkpointing, redo log, slow shutdown, undo log.

flush list
 An internal InnoDB data structure that tracks dirty pages in the buffer pool: that is, pages that have been
changed and need to be written back out to disk. This data structure is updated frequently by InnoDB internal
mini-transactions, and so is protected by its own mutex to allow concurrent access to the buffer pool.
See Also buffer pool, dirty page, LRU, mini-transaction, mutex, page, page cleaner.

5322

foreign key
 A type of pointer relationship, between rows in separate InnoDB tables. The foreign key relationship is defined
on one column in both the parent table and the child table.

In addition to enabling fast lookup of related information, foreign keys help to enforce referential integrity,
by preventing any of these pointers from becoming invalid as data is inserted, updated, and deleted. This
enforcement mechanism is a type of constraint. A row that points to another table cannot be inserted if
the associated foreign key value does not exist in the other table. If a row is deleted or its foreign key value
changed, and rows in another table point to that foreign key value, the foreign key can be set up to prevent the
deletion, cause the corresponding column values in the other table to become null, or automatically delete the
corresponding rows in the other table.

One of the stages in designing a normalized database is to identify data that is duplicated, separate that data
into a new table, and set up a foreign key relationship so that the multiple tables can be queried like a single table,
using a join operation.
See Also child table, FOREIGN KEY constraint, join, normalized, NULL, parent table, referential integrity,
relational.

FOREIGN KEY constraint
 The type of constraint that maintains database consistency through a foreign key relationship. Like other kinds
of constraints, it can prevent data from being inserted or updated if data would become inconsistent; in this case,
the inconsistency being prevented is between data in multiple tables. Alternatively, when a DML operation is
performed, FOREIGN KEY constraints can cause data in child rows to be deleted, changed to different values, or
set to null, based on the ON CASCADE option specified when creating the foreign key.
See Also child table, constraint, DML, foreign key, NULL.

FTS
 In most contexts, an acronym for full-text search. Sometimes in performance discussions, an acronym for full
table scan.
See Also full table scan, full-text search.

full backup
 A backup that includes all the tables in each MySQL database, and all the databases in a MySQL instance.
Contrast with partial backup.
See Also backup, database, instance, partial backup, table.

full table scan
 An operation that requires reading the entire contents of a table, rather than just selected portions using an
index. Typically performed either with small lookup tables, or in data warehousing situations with large tables
where all available data is aggregated and analyzed. How frequently these operations occur, and the sizes of the
tables relative to available memory, have implications for the algorithms used in query optimization and managing
the buffer pool.

The purpose of indexes is to allow lookups for specific values or ranges of values within a large table, thus
avoiding full table scans when practical.
See Also buffer pool, index.

full-text search
 The MySQL feature for finding words, phrases, Boolean combinations of words, and so on within table data, in a
faster, more convenient, and more flexible way than using the SQL LIKE operator or writing your own application-
level search algorithm. It uses the SQL function MATCH() and FULLTEXT indexes.
See Also FULLTEXT index.

FULLTEXT index
 The special kind of index that holds the search index in the MySQL full-text search mechanism. Represents
the words from values of a column, omitting any that are specified as stopwords. Originally, only available for
MyISAM tables. Starting in MySQL 5.6.4, it is also available for InnoDB tables.

5323

See Also full-text search, index, InnoDB, search index, stopword.

fuzzy checkpointing
 A technique that flushes small batches of dirty pages from the buffer pool, rather than flushing all dirty pages
at once which would disrupt database processing.
See Also buffer pool, dirty page, flush.

G
GA

 “Generally available”, the stage when a software product leaves beta and is available for sale, official support,
and production use.
See Also beta.

GAC
 Acronym for “Global Assembly Cache”. A central area for storing libraries (assemblies) on a .NET system.
Physically consists of nested folders, treated as a single virtual folder by the .NET CLR.
See Also .NET, assembly.

gap
 A place in an InnoDB index data structure where new values could be inserted. When you lock a set of rows
with a statement such as SELECT ... FOR UPDATE, InnoDB can create locks that apply to the gaps as well as
the actual values in the index. For example, if you select all values greater than 10 for update, a gap lock prevents
another transaction from inserting a new value that is greater than 10. The supremum record and infimum
record represent the gaps containing all values greater than or less than all the current index values.
See Also concurrency, gap lock, index, infimum record, isolation level, supremum record.

gap lock
 A lock on a gap between index records, or a lock on the gap before the first or after the last index record. For
example, SELECT c1 FROM t WHERE c1 BETWEEN 10 and 20 FOR UPDATE; prevents other transactions
from inserting a value of 15 into the column t.c1, whether or not there was already any such value in the column,
because the gaps between all existing values in the range are locked. Contrast with record lock and next-key
lock.

Gap locks are part of the tradeoff between performance and concurrency, and are used in some transaction
isolation levels and not others.
See Also gap, infimum record, lock, next-key lock, record lock, supremum record.

general log
See general query log.

general query log
 A type of log used for diagnosis and troubleshooting of SQL statements processed by the MySQL server. Can
be stored in a file or in a database table. You must enable this feature through the general_log configuration
option to use it. You can disable it for a specific connection through the sql_log_off configuration option.

Records a broader range of queries than the slow query log. Unlike the binary log, which is used for replication,
the general query log contains SELECT statements and does not maintain strict ordering. For more information,
see Section 5.4.3, “The General Query Log”.
See Also binary log, log, slow query log.

general tablespace
 A shared InnoDB tablespace created using CREATE TABLESPACE syntax. General tablespaces can be created
outside of the MySQL data directory, are capable of holding multiple tables, and support tables of all row formats.
General tablespaces were introduced in MySQL 5.7.6.

5324

Tables are added to a general tablespace using CREATE TABLE tbl_name ... TABLESPACE [=]
tablespace_name or ALTER TABLE tbl_name TABLESPACE [=] tablespace_name syntax.

Contrast with system tablespace and file-per-table tablespace.

For more information, see Section 14.6.3.3, “General Tablespaces”.
See Also file-per-table, system tablespace, table, tablespace.

generated column
 A column whose values are computed from an expression included in the column definition. A generated column
can be virtual or stored.
See Also base column, stored generated column, virtual generated column.

generated stored column
See stored generated column.

generated virtual column
See virtual generated column.

Glassfish

See Also J2EE.

global transaction
 A type of transaction involved in XA operations. It consists of several actions that are transactional in
themselves, but that all must either complete successfully as a group, or all be rolled back as a group. In essence,
this extends ACID properties “up a level” so that multiple ACID transactions can be executed in concert as
components of a global operation that also has ACID properties.
See Also ACID, transaction, XA.

group commit
 An InnoDB optimization that performs some low-level I/O operations (log write) once for a set of commit
operations, rather than flushing and syncing separately for each commit.
See Also binary log, commit.

GUID
 Acronym for “globally unique identifier”, an ID value that can be used to associate data across different
databases, languages, operating systems, and so on. (As an alternative to using sequential integers, where the
same values could appear in different tables, databases, and so on referring to different data.) Older MySQL
versions represented it as BINARY(16). Currently, it is represented as CHAR(36). MySQL has a UUID()
function that returns GUID values in character format, and a UUID_SHORT() function that returns GUID values in
integer format. Because successive GUID values are not necessarily in ascending sort order, it is not an efficient
value to use as a primary key for large InnoDB tables.

H
hash index

 A type of index intended for queries that use equality operators, rather than range operators such as greater-
than or BETWEEN. It is available for MEMORY tables. Although hash indexes are the default for MEMORY tables for
historic reasons, that storage engine also supports B-tree indexes, which are often a better choice for general-
purpose queries.

MySQL includes a variant of this index type, the adaptive hash index, that is constructed automatically for
InnoDB tables if needed based on runtime conditions.
See Also adaptive hash index, B-tree, index, InnoDB.

5325

HDD
 Acronym for “hard disk drive”. Refers to storage media using spinning platters, usually when comparing and
contrasting with SSD. Its performance characteristics can influence the throughput of a disk-based workload.
See Also disk-based, SSD.

heartbeat
 A periodic message that is sent to indicate that a system is functioning properly. In a replication context, if the
source stops sending such messages, one of the replicas can take its place. Similar techniques can be used
between the servers in a cluster environment, to confirm that all of them are operating properly.
See Also replication, source.

high-water mark
 A value representing an upper limit, either a hard limit that should not be exceeded at runtime, or a record of the
maximum value that was actually reached. Contrast with low-water mark.
See Also low-water mark.

history list
 A list of transactions with delete-marked records scheduled to be processed by the InnoDB purge operation.
Recorded in the undo log. The length of the history list is reported by the command SHOW ENGINE INNODB
STATUS. If the history list grows longer than the value of the innodb_max_purge_lag configuration option,
each DML operation is delayed slightly to allow the purge operation to finish flushing the deleted records.

Also known as purge lag.
See Also DML, flush, purge, purge lag, rollback segment, transaction, undo log.

hole punching
 Releasing empty blocks from a page. The InnoDB transparent page compression feature relies on hole
punching support. For more information, see Section 14.9.2, “InnoDB Page Compression”.
See Also sparse file, transparent page compression.

host
 The network name of a database server, used to establish a connection. Often specified in conjunction with a
port. In some contexts, the IP address 127.0.0.1 works better than the special name localhost for accessing
a database on the same server as the application.
See Also connection, localhost, port.

hot
 A condition where a row, table, or internal data structure is accessed so frequently, requiring some form of
locking or mutual exclusion, that it results in a performance or scalability issue.

Although “hot” typically indicates an undesirable condition, a hot backup is the preferred type of backup.
See Also hot backup.

hot backup
 A backup taken while the database is running and applications are reading and writing to it. The backup involves
more than simply copying data files: it must include any data that was inserted or updated while the backup was
in process; it must exclude any data that was deleted while the backup was in process; and it must ignore any
changes that were not committed.

The Oracle product that performs hot backups, of InnoDB tables especially but also tables from MyISAM and
other storage engines, is known as MySQL Enterprise Backup.

The hot backup process consists of two stages. The initial copying of the data files produces a raw backup. The
apply step incorporates any changes to the database that happened while the backup was running. Applying the
changes produces a prepared backup; these files are ready to be restored whenever necessary.
See Also apply, MySQL Enterprise Backup, prepared backup, raw backup.

5326

I
.ibd file

 The data file for file-per-table tablespaces and general tablespaces. File-per-table tablespace .ibd files contain
a single table and associated index data. General tablespace .ibd files may contain table and index data for
multiple tables. General tablespaces were introduced in MySQL 5.7.6.

The .ibd file extension does not apply to the system tablespace, which consists of one or more ibdata files.

If a file-per-table tablespace or general tablespace is created with the DATA DIRECTORY = clause, the .ibd file
is located at the specified path, outside the normal data directory, and is pointed to by a .isl file.

When a .ibd file is included in a compressed backup by the MySQL Enterprise Backup product, the
compressed equivalent is a .ibz file.
See Also database, file-per-table, general tablespace, ibdata file, .ibz file, innodb_file_per_table, .isl file, MySQL
Enterprise Backup, system tablespace.

.ibz file
 When the MySQL Enterprise Backup product performs a compressed backup, it transforms each tablespace
file that is created using the file-per-table setting from a .ibd extension to a .ibz extension.

The compression applied during backup is distinct from the compressed row format that keeps table data
compressed during normal operation. A compressed backup operation skips the compression step for a
tablespace that is already in compressed row format, as compressing a second time would slow down the backup
but produce little or no space savings.
See Also compressed backup, compressed row format, file-per-table, .ibd file, MySQL Enterprise Backup,
tablespace.

.isl file
 A file that specifies the location of an .ibd file for an InnoDB table created with the DATA DIRECTORY = clause
in MySQL 5.6 and higher, or with the CREATE TABLESPACE ... ADD DATAFILE clause in MySQL 5.7 and
higher. It functions like a symbolic link, without the platform restrictions of the actual symbolic link mechanism.
You can store InnoDB tablespaces outside the database directory, for example, on an especially large or
fast storage device depending on the usage of the table. For details, see Section 14.6.1.2, “Creating Tables
Externally”, and Section 14.6.3.3, “General Tablespaces”.
See Also database, .ibd file, table, tablespace.

I/O-bound
See disk-bound.

ib-file set
 The set of files managed by InnoDB within a MySQL database: the system tablespace, file-per-table
tablespace files, and redo log files. Depending on MySQL version and InnoDB configuration, may also include
general tablespace, temporary tablespace, and undo tablespace files. This term is sometimes used in
detailed discussions of InnoDB file structures and formats to refer to the set of files managed by InnoDB within a
MySQL database.
See Also database, file-per-table, general tablespace, redo log, system tablespace, temporary tablespace, undo
tablespace.

ibbackup_logfile
 A supplemental backup file created by the MySQL Enterprise Backup product during a hot backup operation.
It contains information about any data changes that occurred while the backup was running. The initial backup
files, including ibbackup_logfile, are known as a raw backup, because the changes that occurred during
the backup operation are not yet incorporated. After you perform the apply step to the raw backup files, the
resulting files do include those final data changes, and are known as a prepared backup. At this stage, the
ibbackup_logfile file is no longer necessary.

5327

See Also apply, hot backup, MySQL Enterprise Backup, prepared backup, raw backup.

ibdata file
 A set of files with names such as ibdata1, ibdata2, and so on, that make up the InnoDB system
tablespace. For information about the structures and data that reside in the system tablespace ibdata files, see
Section 14.6.3.1, “The System Tablespace”.

Growth of the ibdata files is influenced by the innodb_autoextend_increment configuration option.
See Also change buffer, data dictionary, doublewrite buffer, file-per-table, .ibd file, innodb_file_per_table, system
tablespace, undo log.

ibtmp file
 The InnoDB temporary tablespace data file for non-compressed InnoDB temporary tables and related
objects. The configuration file option, innodb_temp_data_file_path, allows users to define a relative path for
the temporary tablespace data file. If innodb_temp_data_file_path is not specified, the default behavior is to
create a single auto-extending 12MB data file named ibtmp1 in the data directory, alongside ibdata1.
See Also data files, temporary table, temporary tablespace.

ib_logfile
 A set of files, typically named ib_logfile0 and ib_logfile1, that form the redo log. Also sometimes
referred to as the log group. These files record statements that attempt to change data in InnoDB tables. These
statements are replayed automatically to correct data written by incomplete transactions, on startup following a
crash.

This data cannot be used for manual recovery; for that type of operation, use the binary log.
See Also binary log, log group, redo log.

ilist
 Within an InnoDB FULLTEXT index, the data structure consisting of a document ID and positional information
for a token (that is, a particular word).
See Also FULLTEXT index.

implicit row lock
 A row lock that InnoDB acquires to ensure consistency, without you specifically requesting it.
See Also row lock.

in-memory database
 A type of database system that maintains data in memory, to avoid overhead due to disk I/O and translation
between disk blocks and memory areas. Some in-memory databases sacrifice durability (the “D” in the ACID
design philosophy) and are vulnerable to hardware, power, and other types of failures, making them more suitable
for read-only operations. Other in-memory databases do use durability mechanisms such as logging changes to
disk or using non-volatile memory.

MySQL features that address the same kinds of memory-intensive processing include the InnoDB buffer pool,
adaptive hash index, and read-only transaction optimization, the MEMORY storage engine, the MyISAM key
cache, and the MySQL query cache.
See Also ACID, adaptive hash index, buffer pool, disk-based, read-only transaction.

incremental backup
 A type of hot backup, performed by the MySQL Enterprise Backup product, that only saves data changed
since some point in time. Having a full backup and a succession of incremental backups lets you reconstruct
backup data over a long period, without the storage overhead of keeping several full backups on hand. You can
restore the full backup and then apply each of the incremental backups in succession, or you can keep the full
backup up-to-date by applying each incremental backup to it, then perform a single restore operation.

The granularity of changed data is at the page level. A page might actually cover more than one row. Each
changed page is included in the backup.

5328

See Also hot backup, MySQL Enterprise Backup, page.

index
 A data structure that provides a fast lookup capability for rows of a table, typically by forming a tree structure (B-
tree) representing all the values of a particular column or set of columns.

InnoDB tables always have a clustered index representing the primary key. They can also have one or more
secondary indexes defined on one or more columns. Depending on their structure, secondary indexes can be
classified as partial, column, or composite indexes.

Indexes are a crucial aspect of query performance. Database architects design tables, queries, and indexes to
allow fast lookups for data needed by applications. The ideal database design uses a covering index where
practical; the query results are computed entirely from the index, without reading the actual table data. Each
foreign key constraint also requires an index, to efficiently check whether values exist in both the parent and
child tables.

Although a B-tree index is the most common, a different kind of data structure is used for hash indexes, as in the
MEMORY storage engine and the InnoDB adaptive hash index. R-tree indexes are used for spatial indexing of
multi-dimensional information.
See Also adaptive hash index, B-tree, child table, clustered index, column index, composite index, covering index,
foreign key, hash index, parent table, partial index, primary key, query, R-tree, row, secondary index, table.

index cache
 A memory area that holds the token data for InnoDB full-text search. It buffers the data to minimize disk I/O
when data is inserted or updated in columns that are part of a FULLTEXT index. The token data is written to disk
when the index cache becomes full. Each InnoDB FULLTEXT index has its own separate index cache, whose
size is controlled by the configuration option innodb_ft_cache_size.
See Also full-text search, FULLTEXT index.

index condition pushdown
 Index condition pushdown (ICP) is an optimization that pushes part of a WHERE condition down to the storage
engine if parts of the condition can be evaluated using fields from the index. ICP can reduce the number of times
the storage engine must access the base table and the number of times the MySQL server must access the
storage engine. For more information, see Section 8.2.1.5, “Index Condition Pushdown Optimization”.
See Also index, storage engine.

index hint
 Extended SQL syntax for overriding the indexes recommended by the optimizer. For example, the FORCE
INDEX, USE INDEX, and IGNORE INDEX clauses. Typically used when indexed columns have unevenly
distributed values, resulting in inaccurate cardinality estimates.
See Also cardinality, index.

index prefix
 In an index that applies to multiple columns (known as a composite index), the initial or leading columns of the
index. A query that references the first 1, 2, 3, and so on columns of a composite index can use the index, even if
the query does not reference all the columns in the index.
See Also composite index, index.

index statistics
See statistics.

infimum record
 A pseudo-record in an index, representing the gap below the smallest value in that index. If a transaction has
a statement such as SELECT ... FROM ... WHERE col < 10 FOR UPDATE;, and the smallest value in the
column is 5, it is a lock on the infimum record that prevents other transactions from inserting even smaller values
such as 0, -10, and so on.

5329

See Also gap, index, pseudo-record, supremum record.

INFORMATION_SCHEMA
 The name of the database that provides a query interface to the MySQL data dictionary. (This name is defined
by the ANSI SQL standard.) To examine information (metadata) about the database, you can query tables such
as INFORMATION_SCHEMA.TABLES and INFORMATION_SCHEMA.COLUMNS, rather than using SHOW commands
that produce unstructured output.

The INFORMATION_SCHEMA database also contains tables specific to InnoDB that provide a query interface
to the InnoDB data dictionary. You use these tables not to see how the database is structured, but to get
real-time information about the workings of InnoDB tables to help with performance monitoring, tuning, and
troubleshooting.
See Also data dictionary, database, InnoDB.

InnoDB
 A MySQL component that combines high performance with transactional capability for reliability, robustness,
and concurrent access. It embodies the ACID design philosophy. Represented as a storage engine; it handles
tables created or altered with the ENGINE=INNODB clause. See Chapter 14, The InnoDB Storage Engine
for architectural details and administration procedures, and Section 8.5, “Optimizing for InnoDB Tables” for
performance advice.

In MySQL 5.5 and higher, InnoDB is the default storage engine for new tables and the ENGINE=INNODB clause
is not required.

InnoDB tables are ideally suited for hot backups. See Section 28.1, “MySQL Enterprise Backup Overview” for
information about the MySQL Enterprise Backup product for backing up MySQL servers without interrupting
normal processing.
See Also ACID, hot backup, MySQL Enterprise Backup, storage engine, transaction.

innodb_autoinc_lock_mode
 The innodb_autoinc_lock_mode option controls the algorithm used for auto-increment locking. When
you have an auto-incrementing primary key, you can use statement-based replication only with the setting
innodb_autoinc_lock_mode=1. This setting is known as consecutive lock mode, because multi-row inserts
within a transaction receive consecutive auto-increment values. If you have innodb_autoinc_lock_mode=2,
which allows higher concurrency for insert operations, use row-based replication rather than statement-
based replication. This setting is known as interleaved lock mode, because multiple multi-row insert
statements running at the same time can receive auto-increment values that are interleaved. The setting
innodb_autoinc_lock_mode=0 should not be used except for compatibility purposes.

Consecutive lock mode (innodb_autoinc_lock_mode=1) is the default setting prior to MySQL 8.0.3. As
of MySQL 8.0.3, interleaved lock mode (innodb_autoinc_lock_mode=2) is the default, which reflects the
change from statement-based to row-based replication as the default replication type.
See Also auto-increment, auto-increment locking, mixed-mode insert, primary key.

innodb_file_format
 The innodb_file_format option defines the file format to use for new InnoDB file-per-table tablespaces.
Currently, you can specify the Antelope and Barracuda file formats.
See Also Antelope, Barracuda, file format, file-per-table, general tablespace, innodb_file_per_table, system
tablespace, tablespace.

innodb_file_per_table
 An important configuration option that affects many aspects of InnoDB file storage, availability of features, and
I/O characteristics. In MySQL 5.6.7 and higher, it is enabled by default. The innodb_file_per_table option
turns on file-per-table mode. With this mode enabled, a newly created InnoDB table and associated indexes can
be stored in a file-per-table .ibd file, outside the system tablespace.

5330

This option affects the performance and storage considerations for a number of SQL statements, such as DROP
TABLE and TRUNCATE TABLE.

Enabling the innodb_file_per_table option allows you to take advantage of features such as table
compression and named-table backups in MySQL Enterprise Backup.

For more information, see innodb_file_per_table, and Section 14.6.3.2, “File-Per-Table Tablespaces”.
See Also compression, file-per-table, .ibd file, MySQL Enterprise Backup, system tablespace.

innodb_lock_wait_timeout
 The innodb_lock_wait_timeout option sets the balance between waiting for shared resources to become
available, or giving up and handling the error, retrying, or doing alternative processing in your application.
Rolls back any InnoDB transaction that waits more than a specified time to acquire a lock. Especially useful if
deadlocks are caused by updates to multiple tables controlled by different storage engines; such deadlocks are
not detected automatically.
See Also deadlock, deadlock detection, lock, wait.

innodb_strict_mode
 The innodb_strict_mode option controls whether InnoDB operates in strict mode, where conditions that are
normally treated as warnings, cause errors instead (and the underlying statements fail).
See Also strict mode.

Innovation Series
 Innovation releases with the same major version form an Innovation series. For example, MySQL 8.1 through 8.3
form the MySQL 8 Innovation series.
See Also LTS Series.

insert
 One of the primary DML operations in SQL. The performance of inserts is a key factor in data warehouse
systems that load millions of rows into tables, and OLTP systems where many concurrent connections might
insert rows into the same table, in arbitrary order. If insert performance is important to you, you should learn about
InnoDB features such as the insert buffer used in change buffering, and auto-increment columns.
See Also auto-increment, change buffering, data warehouse, DML, InnoDB, insert buffer, OLTP, SQL.

insert buffer
 The former name of the change buffer. In MySQL 5.5, support was added for buffering changes to secondary
index pages for DELETE and UPDATE operations. Previously, only changes resulting from INSERT operations
were buffered. The preferred term is now change buffer.
See Also change buffer, change buffering.

insert buffering
 The technique of storing changes to secondary index pages, resulting from INSERT operations, in the change
buffer rather than writing the changes immediately, so that the physical writes can be performed to minimize
random I/O. It is one of the types of change buffering; the others are delete buffering and purge buffering.

Insert buffering is not used if the secondary index is unique, because the uniqueness of new values cannot be
verified before the new entries are written out. Other kinds of change buffering do work for unique indexes.
See Also change buffer, change buffering, delete buffering, insert buffer, purge buffering, unique index.

insert intention lock
 A type of gap lock that is set by INSERT operations prior to row insertion. This type of lock signals the intent
to insert in such a way that multiple transactions inserting into the same index gap need not wait for each other
if they are not inserting at the same position within the gap. For more information, see Section 14.7.1, “InnoDB
Locking”.
See Also gap lock, lock, next-key lock.

5331

instance
 A single mysqld daemon managing a data directory representing one or more databases with a set of tables.
It is common in development, testing, and some replication scenarios to have multiple instances on the same
server machine, each managing its own data directory and listening on its own port or socket. With one instance
running a disk-bound workload, the server might still have extra CPU and memory capacity to run additional
instances.
See Also data directory, database, disk-bound, mysqld, replication, server, table.

instrumentation
 Modifications at the source code level to collect performance data for tuning and debugging. In MySQL, data
collected by instrumentation is exposed through an SQL interface using the INFORMATION_SCHEMA and
PERFORMANCE_SCHEMA databases.
See Also INFORMATION_SCHEMA, Performance Schema.

intention exclusive lock
See intention lock.

intention lock
 A kind of lock that applies to the table, used to indicate the kind of lock the transaction intends to acquire on
rows in the table. Different transactions can acquire different kinds of intention locks on the same table, but the
first transaction to acquire an intention exclusive (IX) lock on a table prevents other transactions from acquiring
any S or X locks on the table. Conversely, the first transaction to acquire an intention shared (IS) lock on a table
prevents other transactions from acquiring any X locks on the table. The two-phase process allows the lock
requests to be resolved in order, without blocking locks and corresponding operations that are compatible. For
more information about this locking mechanism, see Section 14.7.1, “InnoDB Locking”.
See Also lock, lock mode, locking, transaction.

intention shared lock
See intention lock.

interceptor
 Code for instrumenting or debugging some aspect of an application, which can be enabled without recompiling or
changing the source of the application itself.
See Also command interceptor, Connector/J, Connector/NET, exception interceptor.

intrinsic temporary table
 An optimized internal InnoDB temporary table used by the optimizer.
See Also optimizer.

inverted index
 A data structure optimized for document retrieval systems, used in the implementation of InnoDB full-text
search. The InnoDB FULLTEXT index, implemented as an inverted index, records the position of each word
within a document, rather than the location of a table row. A single column value (a document stored as a text
string) is represented by many entries in the inverted index.
See Also full-text search, FULLTEXT index, ilist.

IOPS
 Acronym for I/O operations per second. A common measurement for busy systems, particularly OLTP
applications. If this value is near the maximum that the storage devices can handle, the application can become
disk-bound, limiting scalability.
See Also disk-bound, OLTP, scalability.

isolation level
 One of the foundations of database processing. Isolation is the I in the acronym ACID; the isolation level is the
setting that fine-tunes the balance between performance and reliability, consistency, and reproducibility of results
when multiple transactions are making changes and performing queries at the same time.

5332

From highest amount of consistency and protection to the least, the isolation levels supported by InnoDB are:
SERIALIZABLE, REPEATABLE READ, READ COMMITTED, and READ UNCOMMITTED.

With InnoDB tables, many users can keep the default isolation level (REPEATABLE READ) for all operations.
Expert users might choose the READ COMMITTED level as they push the boundaries of scalability with OLTP
processing, or during data warehousing operations where minor inconsistencies do not affect the aggregate
results of large amounts of data. The levels on the edges (SERIALIZABLE and READ UNCOMMITTED) change
the processing behavior to such an extent that they are rarely used.
See Also ACID, OLTP, READ COMMITTED, READ UNCOMMITTED, REPEATABLE READ, SERIALIZABLE,
transaction.

J
J2EE

 Java Platform, Enterprise Edition: Oracle's enterprise Java platform. It consists of an API and a runtime
environment for enterprise-class Java applications. For full details, see http://www.oracle.com/technetwork/java/
javaee/overview/index.html. With MySQL applications, you typically use Connector/J for database access, and
an application server such as Tomcat or JBoss to handle the middle-tier work, and optionally a framework such
as Spring. Database-related features often offered within a J2EE stack include a connection pool and failover
support.
See Also connection pool, Connector/J, failover, Java, JBoss, Spring, Tomcat.

Java
 A programming language combining high performance, rich built-in features and data types, object-oriented
mechanisms, extensive standard library, and wide range of reusable third-party modules. Enterprise development
is supported by many frameworks, application servers, and other technologies. Much of its syntax is familiar to C
and C++ developers. To write Java applications with MySQL, you use the JDBC driver known as Connector/J.
See Also C, Connector/J, C++, JDBC.

JBoss

See Also J2EE.

JDBC
 Abbreviation for “Java Database Connectivity”, an API for database access from Java applications. Java
developers writing MySQL applications use the Connector/J component as their JDBC driver.
See Also API, Connector/J, J2EE, Java.

JNDI

See Also Java.

join
 A query that retrieves data from more than one table, by referencing columns in the tables that hold identical
values. Ideally, these columns are part of an InnoDB foreign key relationship, which ensures referential
integrity and that the join columns are indexed. Often used to save space and improve query performance by
replacing repeated strings with numeric IDs, in a normalized data design.
See Also foreign key, index, normalized, query, referential integrity.

K
keystore

See Also SSL.

5333

http://www.oracle.com/technetwork/java/javaee/overview/index.html
http://www.oracle.com/technetwork/java/javaee/overview/index.html

KEY_BLOCK_SIZE
 An option to specify the size of data pages within an InnoDB table that uses compressed row format. The
default is 8 kilobytes. Lower values risk hitting internal limits that depend on the combination of row size and
compression percentage.

For MyISAM tables, KEY_BLOCK_SIZE optionally specifies the size in bytes to use for index key blocks. The
value is treated as a hint; a different size could be used if necessary. A KEY_BLOCK_SIZE value specified for an
individual index definition overrides a table-level KEY_BLOCK_SIZE value.
See Also compressed row format.

L
latch

 A lightweight structure used by InnoDB to implement a lock for its own internal memory structures, typically
held for a brief time measured in milliseconds or microseconds. A general term that includes both mutexes (for
exclusive access) and rw-locks (for shared access). Certain latches are the focus of InnoDB performance tuning.
Statistics about latch use and contention are available through the Performance Schema interface.
See Also lock, locking, mutex, Performance Schema, rw-lock.

libmysql
 Informal name for the libmysqlclient library.
See Also libmysqlclient.

libmysqlclient
 The library file, named libmysqlclient.a or libmysqlclient.so, that is typically linked into client
programs written in C. Sometimes known informally as libmysql or the mysqlclient library.
See Also client, libmysql, mysqlclient.

libmysqld
 This embedded MySQL server library makes it possible to run a full-featured MySQL server inside a client
application. The main benefits are increased speed and more simple management for embedded applications.
You link with the libmysqld library rather than libmysqlclient. The API is identical between all three of these
libraries.
See Also client, embedded, libmysql, libmysqlclient.

lifecycle interceptor
 A type of interceptor supported by Connector/J. It involves implementing the interface
com.mysql.jdbc.ConnectionLifecycleInterceptor.
See Also Connector/J, interceptor.

list
 The InnoDB buffer pool is represented as a list of memory pages. The list is reordered as new pages are
accessed and enter the buffer pool, as pages within the buffer pool are accessed again and are considered
newer, and as pages that are not accessed for a long time are evicted from the buffer pool. The buffer pool is
divided into sublists, and the replacement policy is a variation of the familiar LRU technique.
See Also buffer pool, eviction, LRU, page, sublist.

load balancing
 A technique for scaling read-only connections by sending query requests to different slave servers
in a replication or Cluster configuration. With Connector/J, load balancing is enabled through the
com.mysql.jdbc.ReplicationDriver class and controlled by the configuration property
loadBalanceStrategy.
See Also Connector/J, J2EE.

localhost

5334

See Also connection.

lock
 The high-level notion of an object that controls access to a resource, such as a table, row, or internal data
structure, as part of a locking strategy. For intensive performance tuning, you might delve into the actual
structures that implement locks, such as mutexes and latches.
See Also latch, lock mode, locking, mutex.

lock escalation
 An operation used in some database systems that converts many row locks into a single table lock, saving
memory space but reducing concurrent access to the table. InnoDB uses a space-efficient representation for row
locks, so that lock escalation is not needed.
See Also locking, row lock, table lock.

lock mode
 A shared (S) lock allows a transaction to read a row. Multiple transactions can acquire an S lock on that same
row at the same time.

An exclusive (X) lock allows a transaction to update or delete a row. No other transaction can acquire any kind of
lock on that same row at the same time.

Intention locks apply to the table, and are used to indicate what kind of lock the transaction intends to acquire
on rows in the table. Different transactions can acquire different kinds of intention locks on the same table, but the
first transaction to acquire an intention exclusive (IX) lock on a table prevents other transactions from acquiring
any S or X locks on the table. Conversely, the first transaction to acquire an intention shared (IS) lock on a table
prevents other transactions from acquiring any X locks on the table. The two-phase process allows the lock
requests to be resolved in order, without blocking locks and corresponding operations that are compatible.
See Also intention lock, lock, locking, transaction.

locking
 The system of protecting a transaction from seeing or changing data that is being queried or changed by other
transactions. The locking strategy must balance reliability and consistency of database operations (the principles
of the ACID philosophy) against the performance needed for good concurrency. Fine-tuning the locking strategy
often involves choosing an isolation level and ensuring all your database operations are safe and reliable for that
isolation level.
See Also ACID, concurrency, isolation level, locking, transaction.

locking read
 A SELECT statement that also performs a locking operation on an InnoDB table. Either SELECT ... FOR
UPDATE or SELECT ... LOCK IN SHARE MODE. It has the potential to produce a deadlock, depending on the
isolation level of the transaction. The opposite of a non-locking read. Not allowed for global tables in a read-
only transaction.

SELECT ... FOR SHARE replaces SELECT ... LOCK IN SHARE MODE in MySQL 8.0.1, but LOCK IN
SHARE MODE remains available for backward compatibility.

See Section 14.7.2.4, “Locking Reads”.
See Also deadlock, isolation level, locking, non-locking read, read-only transaction.

log
 In the InnoDB context, “log” or “log files” typically refers to the redo log represented by the ib_logfileN files.
Another type of InnoDB log is the undo log, which is a storage area that holds copies of data modified by active
transactions.

Other kinds of logs that are important in MySQL are the error log (for diagnosing startup and runtime problems),
binary log (for working with replication and performing point-in-time restores), the general query log (for
diagnosing application problems), and the slow query log (for diagnosing performance problems).

5335

See Also binary log, error log, general query log, ib_logfile, redo log, slow query log, undo log.

log buffer
 The memory area that holds data to be written to the log files that make up the redo log. It is controlled by the
innodb_log_buffer_size configuration option.
See Also log file, redo log.

log file
 One of the ib_logfileN files that make up the redo log. Data is written to these files from the log buffer memory
area.
See Also ib_logfile, log buffer, redo log.

log group
 The set of files that make up the redo log, typically named ib_logfile0 and ib_logfile1. (For that reason,
sometimes referred to collectively as ib_logfile.)
See Also ib_logfile, redo log.

logical
 A type of operation that involves high-level, abstract aspects such as tables, queries, indexes, and other SQL
concepts. Typically, logical aspects are important to make database administration and application development
convenient and usable. Contrast with physical.
See Also logical backup, physical.

logical backup
 A backup that reproduces table structure and data, without copying the actual data files. For example, the
mysqldump command produces a logical backup, because its output contains statements such as CREATE
TABLE and INSERT that can re-create the data. Contrast with physical backup. A logical backup offers flexibility
(for example, you could edit table definitions or insert statements before restoring), but can take substantially
longer to restore than a physical backup.
See Also backup, mysqldump, physical backup, restore.

loose_
 A prefix added to InnoDB configuration options after server startup, so any new configuration options not
recognized by the current level of MySQL do not cause a startup failure. MySQL processes configuration options
that start with this prefix, but gives a warning rather than a failure if the part after the prefix is not a recognized
option.
See Also startup.

low-water mark
 A value representing a lower limit, typically a threshold value at which some corrective action begins or becomes
more aggressive. Contrast with high-water mark.
See Also high-water mark.

LRU
 An acronym for “least recently used”, a common method for managing storage areas. The items that have not
been used recently are evicted when space is needed to cache newer items. InnoDB uses the LRU mechanism
by default to manage the pages within the buffer pool, but makes exceptions in cases where a page might
be read only a single time, such as during a full table scan. This variation of the LRU algorithm is called the
midpoint insertion strategy. For more information, see Section 14.5.1, “Buffer Pool”.
See Also buffer pool, eviction, full table scan, midpoint insertion strategy, page.

LSN
 Acronym for “log sequence number”. This arbitrary, ever-increasing value represents a point in time
corresponding to operations recorded in the redo log. (This point in time is regardless of transaction boundaries;
it can fall in the middle of one or more transactions.) It is used internally by InnoDB during crash recovery and
for managing the buffer pool.

5336

Prior to MySQL 5.6.3, the LSN was a 4-byte unsigned integer. The LSN became an 8-byte unsigned integer in
MySQL 5.6.3 when the redo log file size limit increased from 4GB to 512GB, as additional bytes were required
to store extra size information. Applications built on MySQL 5.6.3 or later that use LSN values should use 64-bit
rather than 32-bit variables to store and compare LSN values.

In the MySQL Enterprise Backup product, you can specify an LSN to represent the point in time from which to
take an incremental backup. The relevant LSN is displayed by the output of the mysqlbackup command. Once
you have the LSN corresponding to the time of a full backup, you can specify that value to take a subsequent
incremental backup, whose output contains another LSN for the next incremental backup.
See Also buffer pool, crash recovery, incremental backup, MySQL Enterprise Backup, redo log, transaction.

LTS Series
 LTS releases with the same major version number form an LTS series. For example, all MySQL 8.4.x releases
form the MySQL 8.4 LTS series.

Note: MySQL 8.0 is a Bugfix series that preceded the LTS release model.
See Also Innovation Series.

M
.MRG file

 A file containing references to other tables, used by the MERGE storage engine. Files with this extension are
always included in backups produced by the mysqlbackup command of the MySQL Enterprise Backup
product.
See Also MySQL Enterprise Backup, mysqlbackup command.

.MYD file
 A file that MySQL uses to store data for a MyISAM table.
See Also .MYI file, MySQL Enterprise Backup, mysqlbackup command.

.MYI file
 A file that MySQL uses to store indexes for a MyISAM table.
See Also .MYD file, MySQL Enterprise Backup, mysqlbackup command.

master
See source.

master thread
 An InnoDB thread that performs various tasks in the background. Most of these tasks are I/O related, such as
writing changes from the change buffer to the appropriate secondary indexes.

To improve concurrency, sometimes actions are moved from the master thread to separate background threads.
For example, in MySQL 5.6 and higher, dirty pages are flushed from the buffer pool by the page cleaner
thread rather than the master thread.
See Also buffer pool, change buffer, concurrency, dirty page, flush, page cleaner, thread.

MDL
 Acronym for “metadata lock”.
See Also metadata lock.

medium trust
 Synonym for partial trust. Because the range of trust settings is so broad, “partial trust” is preferred, to avoid the
implication that there are only three levels (low, medium, and full).
See Also Connector/NET, partial trust.

5337

memcached
 A popular component of many MySQL and NoSQL software stacks, allowing fast reads and writes for single
values and caching the results entirely in memory. Traditionally, applications required extra logic to write the
same data to a MySQL database for permanent storage, or to read data from a MySQL database when it was not
cached yet in memory. Now, applications can use the simple memcached protocol, supported by client libraries
for many languages, to communicate directly with MySQL servers using InnoDB or NDB tables. These NoSQL
interfaces to MySQL tables allow applications to achieve higher read and write performance than by issuing SQL
statements directly, and can simplify application logic and deployment configurations for systems that already
incorporate memcached for in-memory caching.
See Also NoSQL.

merge
 To apply changes to data cached in memory, such as when a page is brought into the buffer pool, and any
applicable changes recorded in the change buffer are incorporated into the page in the buffer pool. The updated
data is eventually written to the tablespace by the flush mechanism.
See Also buffer pool, change buffer, flush, tablespace.

metadata lock
 A type of lock that prevents DDL operations on a table that is being used at the same time by another
transaction. For details, see Section 8.11.4, “Metadata Locking”.

Enhancements to online operations, particularly in MySQL 5.6 and higher, are focused on reducing the amount
of metadata locking. The objective is for DDL operations that do not change the table structure (such as CREATE
INDEX and DROP INDEX for InnoDB tables) to proceed while the table is being queried, updated, and so on by
other transactions.
See Also DDL, lock, online, transaction.

metrics counter
 A feature implemented by the INNODB_METRICS table in the INFORMATION_SCHEMA, in MySQL 5.6 and
higher. You can query counts and totals for low-level InnoDB operations, and use the results for performance
tuning in combination with data from the Performance Schema.
See Also counter, INFORMATION_SCHEMA, Performance Schema.

midpoint insertion strategy
 The technique of initially bringing pages into the InnoDB buffer pool not at the “newest” end of the list,
but instead somewhere in the middle. The exact location of this point can vary, based on the setting of the
innodb_old_blocks_pct option. The intent is that pages that are only read once, such as during a full table
scan, can be aged out of the buffer pool sooner than with a strict LRU algorithm. For more information, see
Section 14.5.1, “Buffer Pool”.
See Also buffer pool, full table scan, LRU, page.

mini-transaction
 An internal phase of InnoDB processing, when making changes at the physical level to internal data structures
during DML operations. A mini-transaction (mtr) has no notion of rollback; multiple mini-transactions can
occur within a single transaction. Mini-transactions write information to the redo log that is used during crash
recovery. A mini-transaction can also happen outside the context of a regular transaction, for example during
purge processing by background threads.
See Also commit, crash recovery, DML, physical, purge, redo log, rollback, transaction.

mixed-mode insert
 An INSERT statement where auto-increment values are specified for some but not all of the new rows. For
example, a multi-value INSERT could specify a value for the auto-increment column in some cases and NULL
in other cases. InnoDB generates auto-increment values for the rows where the column value was specified as
NULL. Another example is an INSERT ... ON DUPLICATE KEY UPDATE statement, where auto-increment
values might be generated but not used, for any duplicate rows that are processed as UPDATE rather than
INSERT statements.

5338

Can cause consistency issues between source and replica servers in a replication configuration. Can require
adjusting the value of the innodb_autoinc_lock_mode configuration option.
See Also auto-increment, innodb_autoinc_lock_mode, replica, replication, source.

MM.MySQL
 An older JDBC driver for MySQL that evolved into Connector/J when it was integrated with the MySQL product.
See Also Connector/J.

Mono
 An Open Source framework developed by Novell, that works with Connector/NET and C# applications on Linux
platforms.
See Also Connector/NET, C#.

mtr
See mini-transaction.

multi-core
 A type of processor that can take advantage of multithreaded programs, such as the MySQL server.

multiversion concurrency control
See MVCC.

mutex
 Informal abbreviation for “mutex variable”. (Mutex itself is short for “mutual exclusion”.) The low-level object
that InnoDB uses to represent and enforce exclusive-access locks to internal in-memory data structures. Once
the lock is acquired, any other process, thread, and so on is prevented from acquiring the same lock. Contrast
with rw-locks, which InnoDB uses to represent and enforce shared-access locks to internal in-memory data
structures. Mutexes and rw-locks are known collectively as latches.
See Also latch, lock, Performance Schema, Pthreads, rw-lock.

MVCC
 Acronym for “multiversion concurrency control”. This technique lets InnoDB transactions with certain isolation
levels perform consistent read operations; that is, to query rows that are being updated by other transactions,
and see the values from before those updates occurred. This is a powerful technique to increase concurrency,
by allowing queries to proceed without waiting due to locks held by the other transactions.

This technique is not universal in the database world. Some other database products, and some other MySQL
storage engines, do not support it.
See Also ACID, concurrency, consistent read, isolation level, lock, transaction.

my.cnf
 The name, on Unix or Linux systems, of the MySQL option file.
See Also my.ini, option file.

my.ini
 The name, on Windows systems, of the MySQL option file.
See Also my.cnf, option file.

MyODBC drivers
 Obsolete name for Connector/ODBC.
See Also Connector/ODBC.

mysql
 The mysql program is the command-line interpreter for the MySQL database. It processes SQL statements, and
also MySQL-specific commands such as SHOW TABLES, by passing requests to the mysqld daemon.

5339

See Also mysqld, SQL.

mysqlbackup command
 A command-line tool of the MySQL Enterprise Backup product. It performs a hot backup operation for InnoDB
tables, and a warm backup for MyISAM and other kinds of tables. See Section 28.1, “MySQL Enterprise Backup
Overview” for more information about this command.
See Also hot backup, MySQL Enterprise Backup, warm backup.

mysqlclient
 The informal name for the library that is implemented by the file libmysqlclient, with extension .a or .so.
See Also libmysqlclient.

mysqld
 mysqld, also known as MySQL Server, is a single multithreaded program that does most of the work in a
MySQL installation. It does not spawn additional processes. MySQL Server manages access to the MySQL data
directory that contains databases, tables, and other information such as log files and status files.

mysqld runs as a Unix daemon or Windows service, constantly waiting for requests and performing maintenance
work in the background.
See Also instance, mysql.

MySQLdb
 The name of the open-source Python module that forms the basis of the MySQL Python API.
See Also Python, Python API.

mysqldump
 A command that performs a logical backup of some combination of databases, tables, and table data. The
results are SQL statements that reproduce the original schema objects, data, or both. For substantial amounts
of data, a physical backup solution such as MySQL Enterprise Backup is faster, particularly for the restore
operation.
See Also logical backup, MySQL Enterprise Backup, physical backup, restore.

N
.NET

See Also ADO.NET, ASP.net, Connector/NET, Mono, Visual Studio.

native C API
 Synonym for libmysqlclient.
See Also libmysql.

natural key
 An indexed column, typically a primary key, where the values have some real-world significance. Usually
advised against because:

• If the value should ever change, there is potentially a lot of index maintenance to re-sort the clustered index
and update the copies of the primary key value that are repeated in each secondary index.

• Even seemingly stable values can change in unpredictable ways that are difficult to represent correctly in the
database. For example, one country can change into two or several, making the original country code obsolete.
Or, rules about unique values might have exceptions. For example, even if taxpayer IDs are intended to be
unique to a single person, a database might have to handle records that violate that rule, such as in cases of
identity theft. Taxpayer IDs and other sensitive ID numbers also make poor primary keys, because they may
need to be secured, encrypted, and otherwise treated differently than other columns.

5340

Thus, it is typically better to use arbitrary numeric values to form a synthetic key, for example using an auto-
increment column.
See Also auto-increment, clustered index, primary key, secondary index, synthetic key.

neighbor page
 Any page in the same extent as a particular page. When a page is selected to be flushed, any neighbor pages
that are dirty are typically flushed as well, as an I/O optimization for traditional hard disks. In MySQL 5.6 and up,
this behavior can be controlled by the configuration variable innodb_flush_neighbors; you might turn that
setting off for SSD drives, which do not have the same overhead for writing smaller batches of data at random
locations.
See Also dirty page, extent, flush, page.

next-key lock
 A combination of a record lock on the index record and a gap lock on the gap before the index record.
See Also gap lock, locking, record lock.

non-locking read
 A query that does not use the SELECT ... FOR UPDATE or SELECT ... LOCK IN SHARE MODE clauses.
The only kind of query allowed for global tables in a read-only transaction. The opposite of a locking read. See
Section 14.7.2.3, “Consistent Nonlocking Reads”.

SELECT ... FOR SHARE replaces SELECT ... LOCK IN SHARE MODE in MySQL 8.0.1, but LOCK IN
SHARE MODE remains available for backward compatibility.
See Also locking read, query, read-only transaction.

non-repeatable read
 The situation when a query retrieves data, and a later query within the same transaction retrieves what should
be the same data, but the queries return different results (changed by another transaction committing in the
meantime).

This kind of operation goes against the ACID principle of database design. Within a transaction, data should be
consistent, with predictable and stable relationships.

Among different isolation levels, non-repeatable reads are prevented by the serializable read and repeatable
read levels, and allowed by the consistent read, and read uncommitted levels.
See Also ACID, consistent read, isolation level, READ UNCOMMITTED, REPEATABLE READ, SERIALIZABLE,
transaction.

nonblocking I/O
 An industry term that means the same as asynchronous I/O.
See Also asynchronous I/O.

normalized
 A database design strategy where data is split into multiple tables, and duplicate values condensed into single
rows represented by an ID, to avoid storing, querying, and updating redundant or lengthy values. It is typically
used in OLTP applications.

For example, an address might be given a unique ID, so that a census database could represent the relationship
lives at this address by associating that ID with each member of a family, rather than storing multiple copies of a
complex value such as 123 Main Street, Anytown, USA.

For another example, although a simple address book application might store each phone number in the same
table as a person's name and address, a phone company database might give each phone number a special
ID, and store the numbers and IDs in a separate table. This normalized representation could simplify large-scale
updates when area codes split apart.

5341

Normalization is not always recommended. Data that is primarily queried, and only updated by deleting
entirely and reloading, is often kept in fewer, larger tables with redundant copies of duplicate values. This data
representation is referred to as denormalized, and is frequently found in data warehousing applications.
See Also denormalized, foreign key, OLTP, relational.

NoSQL
 A broad term for a set of data access technologies that do not use the SQL language as their primary
mechanism for reading and writing data. Some NoSQL technologies act as key-value stores, only accepting
single-value reads and writes; some relax the restrictions of the ACID methodology; still others do not require
a pre-planned schema. MySQL users can combine NoSQL-style processing for speed and simplicity with SQL
operations for flexibility and convenience, by using the memcached API to directly access some kinds of MySQL
tables.
See Also ACID, memcached, schema, SQL.

NOT NULL constraint
 A type of constraint that specifies that a column cannot contain any NULL values. It helps to preserve
referential integrity, as the database server can identify data with erroneous missing values. It also helps in the
arithmetic involved in query optimization, allowing the optimizer to predict the number of entries in an index on
that column.
See Also column, constraint, NULL, primary key, referential integrity.

NULL
 A special value in SQL, indicating the absence of data. Any arithmetic operation or equality test involving a
NULL value, in turn produces a NULL result. (Thus it is similar to the IEEE floating-point concept of NaN, “not a
number”.) Any aggregate calculation such as AVG() ignores rows with NULL values, when determining how many
rows to divide by. The only test that works with NULL values uses the SQL idioms IS NULL or IS NOT NULL.

NULL values play a part in index operations, because for performance a database must minimize the overhead
of keeping track of missing data values. Typically, NULL values are not stored in an index, because a query that
tests an indexed column using a standard comparison operator could never match a row with a NULL value for
that column. For the same reason, unique indexes do not prevent NULL values; those values simply are not
represented in the index. Declaring a NOT NULL constraint on a column provides reassurance that there are
no rows left out of the index, allowing for better query optimization (accurate counting of rows and estimation of
whether to use the index).

Because the primary key must be able to uniquely identify every row in the table, a single-column primary key
cannot contain any NULL values, and a multi-column primary key cannot contain any rows with NULL values in all
columns.

Although the Oracle database allows a NULL value to be concatenated with a string, InnoDB treats the result of
such an operation as NULL.
See Also index, primary key, SQL.

O
.OPT file

 A file containing database configuration information. Files with this extension are included in backups produced
by the mysqlbackup command of the MySQL Enterprise Backup product.
See Also MySQL Enterprise Backup, mysqlbackup command.

ODBC
 Acronym for Open Database Connectivity, an industry-standard API. Typically used with Windows-based
servers, or applications that require ODBC to communicate with MySQL. The MySQL ODBC driver is called
Connector/ODBC.
See Also Connector/ODBC.

5342

off-page column
 A column containing variable-length data (such as BLOB and VARCHAR) that is too long to fit on a B-tree page.
The data is stored in overflow pages. The DYNAMIC row format is more efficient for such storage than the older
COMPACT row format.
See Also B-tree, compact row format, dynamic row format, overflow page.

OLTP
 Acronym for “Online Transaction Processing”. A database system, or a database application, that runs a
workload with many transactions, with frequent writes as well as reads, typically affecting small amounts of data
at a time. For example, an airline reservation system or an application that processes bank deposits. The data
might be organized in normalized form for a balance between DML (insert/update/delete) efficiency and query
efficiency. Contrast with data warehouse.

With its row-level locking and transactional capability, InnoDB is the ideal storage engine for MySQL tables
used in OLTP applications.
See Also data warehouse, DML, InnoDB, query, row lock, transaction.

online
 A type of operation that involves no downtime, blocking, or restricted operation for the database. Typically
applied to DDL. Operations that shorten the periods of restricted operation, such as fast index creation, have
evolved into a wider set of online DDL operations in MySQL 5.6.

In the context of backups, a hot backup is an online operation and a warm backup is partially an online
operation.
See Also DDL, Fast Index Creation, hot backup, online DDL, warm backup.

online DDL
 A feature that improves the performance, concurrency, and availability of InnoDB tables during DDL (primarily
ALTER TABLE) operations. See Section 14.13, “InnoDB and Online DDL” for details.

The details vary according to the type of operation. In some cases, the table can be modified concurrently
while the ALTER TABLE is in progress. The operation might be able to be performed without a table copy, or
using a specially optimized type of table copy. DML log space usage for in-place operations is controlled by the
innodb_online_alter_log_max_size configuration option.

This feature is an enhancement of the Fast Index Creation feature in MySQL 5.5.
See Also DDL, Fast Index Creation, online.

optimistic
 A methodology that guides low-level implementation decisions for a relational database system. The
requirements of performance and concurrency in a relational database mean that operations must be started or
dispatched quickly. The requirements of consistency and referential integrity mean that any operation could fail:
a transaction might be rolled back, a DML operation could violate a constraint, a request for a lock could cause
a deadlock, a network error could cause a timeout. An optimistic strategy is one that assumes most requests or
attempts succeed, so that relatively little work is done to prepare for the failure case. When this assumption is
true, the database does little unnecessary work; when requests do fail, extra work must be done to clean up and
undo changes.

InnoDB uses optimistic strategies for operations such as locking and commits. For example, data changed by
a transaction can be written to the data files before the commit occurs, making the commit itself very fast, but
requiring more work to undo the changes if the transaction is rolled back.

The opposite of an optimistic strategy is a pessimistic one, where a system is optimized to deal with operations
that are unreliable and frequently unsuccessful. This methodology is rare in a database system, because so much
care goes into choosing reliable hardware, networks, and algorithms.

5343

See Also commit, concurrency, DML, locking, pessimistic, referential integrity.

optimizer
 The MySQL component that determines the best indexes and join order to use for a query, based on
characteristics and data distribution of the relevant tables.
See Also index, join, query, table.

option
 A configuration parameter for MySQL, either stored in the option file or passed on the command line.

For the options that apply to InnoDB tables, each option name starts with the prefix innodb_.
See Also InnoDB, option, option file.

option file
 The file that holds the configuration options for the MySQL instance. Traditionally, on Linux and Unix this file is
named my.cnf, and on Windows it is named my.ini.
See Also configuration file, my.cnf, my.ini, option.

overflow page
 Separately allocated disk pages that hold variable-length columns (such as BLOB and VARCHAR) that are too
long to fit on a B-tree page. The associated columns are known as off-page columns.
See Also B-tree, off-page column, page.

P
.par file

 A file containing partition definitions. Files with this extension are included in backups produced by the
mysqlbackup command of the MySQL Enterprise Backup product.

With the introduction of native partitioning support for InnoDB tables in MySQL 5.7.6, .par files are no longer
created for partitioned InnoDB tables. Partitioned MyISAM tables continue to use .par files in MySQL 5.7. In
MySQL 8.0, partitioning support is only provided by the InnoDB storage engine. As such, .par files are no longer
used as of MySQL 8.0.
See Also MySQL Enterprise Backup, mysqlbackup command.

page
 A unit representing how much data InnoDB transfers at any one time between disk (the data files) and memory
(the buffer pool). A page can contain one or more rows, depending on how much data is in each row. If a
row does not fit entirely into a single page, InnoDB sets up additional pointer-style data structures so that the
information about the row can be stored in one page.

One way to fit more data in each page is to use compressed row format. For tables that use BLOBs or large text
fields, compact row format allows those large columns to be stored separately from the rest of the row, reducing
I/O overhead and memory usage for queries that do not reference those columns.

When InnoDB reads or writes sets of pages as a batch to increase I/O throughput, it reads or writes an extent at
a time.

All the InnoDB disk data structures within a MySQL instance share the same page size.
See Also buffer pool, compact row format, compressed row format, data files, extent, page size, row.

page cleaner
 An InnoDB background thread that flushes dirty pages from the buffer pool. Prior to MySQL 5.6, this
activity was performed by the master thread. The number of page cleaner threads is controlled by the
innodb_page_cleaners configuration option, introduced in MySQL 5.7.4.

5344

See Also buffer pool, dirty page, flush, master thread, thread.

page size
 For releases up to and including MySQL 5.5, the size of each InnoDB page is fixed at 16 kilobytes. This value
represents a balance: large enough to hold the data for most rows, yet small enough to minimize the performance
overhead of transferring unneeded data to memory. Other values are not tested or supported.

Starting in MySQL 5.6, the page size for an InnoDB instance can be either 4KB, 8KB, or 16KB, controlled by
the innodb_page_size configuration option. As of MySQL 5.7.6, InnoDB also supports 32KB and 64KB page
sizes. For 32KB and 64KB page sizes, ROW_FORMAT=COMPRESSED is not supported and the maximum record
size is 16KB.

Page size is set when creating the MySQL instance, and it remains constant afterward. The same page size
applies to all InnoDB tablespaces, including the system tablespace, file-per-table tablespaces, and general
tablespaces.

Smaller page sizes can help performance with storage devices that use small block sizes, particularly for SSD
devices in disk-bound workloads, such as for OLTP applications. As individual rows are updated, less data is
copied into memory, written to disk, reorganized, locked, and so on.
See Also disk-bound, file-per-table, general tablespace, instance, OLTP, page, SSD, system tablespace,
tablespace.

parent table
 The table in a foreign key relationship that holds the initial column values pointed to from the child table. The
consequences of deleting, or updating rows in the parent table depend on the ON UPDATE and ON DELETE
clauses in the foreign key definition. Rows with corresponding values in the child table could be automatically
deleted or updated in turn, or those columns could be set to NULL, or the operation could be prevented.
See Also child table, foreign key.

partial backup
 A backup that contains some of the tables in a MySQL database, or some of the databases in a MySQL
instance. Contrast with full backup.
See Also backup, full backup, table.

partial index
 An index that represents only part of a column value, typically the first N characters (the prefix) of a long
VARCHAR value.
See Also index, index prefix.

partial trust
 An execution environment typically used by hosting providers, where applications have some permissions but not
others. For example, applications might be able to access a database server over a network, but be “sandboxed”
with regard to reading and writing local files.
See Also Connector/NET.

Performance Schema
 The performance_schema schema, in MySQL 5.5 and up, presents a set of tables that you can query to get
detailed information about the performance characteristics of many internal parts of the MySQL server. See
Chapter 25, MySQL Performance Schema.
See Also INFORMATION_SCHEMA, latch, mutex, rw-lock.

Perl
 A programming language with roots in Unix scripting and report generation. Incorporates high-performance
regular expressions and file I/O. Large collection of reusable modules available through repositories such as
CPAN.
See Also Perl API.

5345

Perl API
 An open-source API for MySQL applications written in the Perl language. Implemented through the DBI and
DBD::mysql modules. For details, see Section 27.9, “MySQL Perl API”.
See Also API, Perl.

persistent statistics
 A feature that stores index statistics for InnoDB tables on disk, providing better plan stability for queries. For
more information, see Section 14.8.11.1, “Configuring Persistent Optimizer Statistics Parameters”.
See Also index, optimizer, plan stability, query, table.

pessimistic
 A methodology that sacrifices performance or concurrency in favor of safety. It is appropriate if a high proportion
of requests or attempts might fail, or if the consequences of a failed request are severe. InnoDB uses what is
known as a pessimistic locking strategy, to minimize the chance of deadlocks. At the application level, you
might avoid deadlocks by using a pessimistic strategy of acquiring all locks needed by a transaction at the very
beginning.

Many built-in database mechanisms use the opposite optimistic methodology.
See Also deadlock, locking, optimistic.

phantom
 A row that appears in the result set of a query, but not in the result set of an earlier query. For example, if a query
is run twice within a transaction, and in the meantime, another transaction commits after inserting a new row or
updating a row so that it matches the WHERE clause of the query.

This occurrence is known as a phantom read. It is harder to guard against than a non-repeatable read, because
locking all the rows from the first query result set does not prevent the changes that cause the phantom to appear.

Among different isolation levels, phantom reads are prevented by the serializable read level, and allowed by
the repeatable read, consistent read, and read uncommitted levels.
See Also consistent read, isolation level, non-repeatable read, READ UNCOMMITTED, REPEATABLE READ,
SERIALIZABLE, transaction.

PHP
 A programming language originating with web applications. The code is typically embedded as blocks within
the source of a web page, with the output substituted into the page as it is transmitted by the web server. This
is in contrast to applications such as CGI scripts that print output in the form of an entire web page. The PHP
style of coding is used for highly interactive and dynamic web pages. Modern PHP programs can also be run as
command-line or GUI applications.

MySQL applications are written using one of the PHP APIs. Reusable modules can be written in C and called
from PHP.

Another technology for writing server-side web pages with MySQL is ASP.net.
See Also ASP.net, C, PHP API.

PHP API
 Several APIs are available for writing MySQL applications in the PHP language: the original MySQL API
(Mysql) the MySQL Improved Extension (Mysqli) the MySQL Native Driver (Mysqlnd) the MySQL functions
(PDO_MYSQL), and Connector/PHP. For details, see MySQL and PHP.
See Also API, PHP.

physical
 A type of operation that involves hardware-related aspects such as disk blocks, memory pages, files, bits, disk
reads, and so on. Typically, physical aspects are important during expert-level performance tuning and problem
diagnosis. Contrast with logical.

5346

https://dev.mysql.com/doc/apis-php/en/

See Also logical, physical backup.

physical backup
 A backup that copies the actual data files. For example, the mysqlbackup command of the MySQL Enterprise
Backup product produces a physical backup, because its output contains data files that can be used directly by
the mysqld server, resulting in a faster restore operation. Contrast with logical backup.
See Also backup, logical backup, MySQL Enterprise Backup, restore.

PITR
 Acronym for point-in-time recovery.
See Also point-in-time recovery.

plan stability
 A property of a query execution plan, where the optimizer makes the same choices each time for a given
query, so that performance is consistent and predictable.
See Also query, query execution plan.

point-in-time recovery
 The process of restoring a backup to recreate the state of the database at a specific date and time. Commonly
abbreviated “PITR”. Because it is unlikely that the specified time corresponds exactly to the time of a backup, this
technique usually requires a combination of a physical backup and a logical backup. For example, with the
MySQL Enterprise Backup product, you restore the last backup that you took before the specified point in time,
then replay changes from the binary log between the time of the backup and the PITR time.
See Also backup, binary log, logical backup, MySQL Enterprise Backup, physical backup.

port
 The number of the TCP/IP socket the database server listens on, used to establish a connection. Often
specified in conjunction with a host. Depending on your use of network encryption, there might be one port for
unencrypted traffic and another port for SSL connections.
See Also connection, host, SSL.

prefix
See index prefix.

prepared backup
 A set of backup files, produced by the MySQL Enterprise Backup product, after all the stages of applying
binary logs and incremental backups are finished. The resulting files are ready to be restored. Prior to the
apply steps, the files are known as a raw backup.
See Also binary log, hot backup, incremental backup, MySQL Enterprise Backup, raw backup, restore.

prepared statement
 An SQL statement that is analyzed in advance to determine an efficient execution plan. It can be executed
multiple times, without the overhead for parsing and analysis each time. Different values can be substituted for
literals in the WHERE clause each time, through the use of placeholders. This substitution technique improves
security, protecting against some kinds of SQL injection attacks. You can also reduce the overhead for converting
and copying return values to program variables.

Although you can use prepared statements directly through SQL syntax, the various Connectors have
programming interfaces for manipulating prepared statements, and these APIs are more efficient than going
through SQL.
See Also client-side prepared statement, connector, server-side prepared statement.

primary key
 A set of columns—and by implication, the index based on this set of columns—that can uniquely identify every
row in a table. As such, it must be a unique index that does not contain any NULL values.

5347

InnoDB requires that every table has such an index (also called the clustered index or cluster index), and
organizes the table storage based on the column values of the primary key.

When choosing primary key values, consider using arbitrary values (a synthetic key) rather than relying on
values derived from some other source (a natural key).
See Also clustered index, index, natural key, synthetic key.

process
 An instance of an executing program. The operating system switches between multiple running processes,
allowing for a certain degree of concurrency. On most operating systems, processes can contain multiple
threads of execution that share resources. Context-switching between threads is faster than the equivalent
switching between processes.
See Also concurrency, thread.

pseudo-record
 An artificial record in an index, used for locking key values or ranges that do not currently exist.
See Also infimum record, locking, supremum record.

Pthreads
 The POSIX threads standard, which defines an API for threading and locking operations on Unix and Linux
systems. On Unix and Linux systems, InnoDB uses this implementation for mutexes.
See Also mutex.

purge
 A type of garbage collection performed by one or more separate background threads (controlled by
innodb_purge_threads) that runs on a periodic schedule. Purge parses and processes undo log pages from
the history list for the purpose of removing clustered and secondary index records that were marked for deletion
(by previous DELETE statements) and are no longer required for MVCC or rollback. Purge frees undo log pages
from the history list after processing them.
See Also history list, MVCC, rollback, undo log.

purge buffering
 The technique of storing changes to secondary index pages, resulting from DELETE operations, in the change
buffer rather than writing the changes immediately, so that the physical writes can be performed to minimize
random I/O. (Because delete operations are a two-step process, this operation buffers the write that normally
purges an index record that was previously marked for deletion.) It is one of the types of change buffering; the
others are insert buffering and delete buffering.
See Also change buffer, change buffering, delete buffering, insert buffer, insert buffering.

purge lag
 Another name for the InnoDB history list. Related to the innodb_max_purge_lag configuration option.
See Also history list, purge.

purge thread
 A thread within the InnoDB process that is dedicated to performing the periodic purge operation. In MySQL 5.6
and higher, multiple purge threads are enabled by the innodb_purge_threads configuration option.
See Also purge, thread.

Python
 A programming language used in a broad range of fields, from Unix scripting to large-scale applications. Includes
runtime typing, built-in high-level data types, object-oriented features, and an extensive standard library. Often
used as a “glue” language between components written in other languages. The MySQL Python API is the open-
source MySQLdb module.
See Also MySQLdb, Python API.

Python API

5348

See Also API, Python.

Q

query
 In SQL, an operation that reads information from one or more tables. Depending on the organization of data and
the parameters of the query, the lookup might be optimized by consulting an index. If multiple tables are involved,
the query is known as a join.

For historical reasons, sometimes discussions of internal processing for statements use “query” in a broader
sense, including other types of MySQL statements such as DDL and DML statements.
See Also DDL, DML, index, join, SQL, table.

query execution plan
 The set of decisions made by the optimizer about how to perform a query most efficiently, including which index
or indexes to use, and the order in which to join tables. Plan stability involves the same choices being made
consistently for a given query.
See Also index, join, plan stability, query.

query log
See general query log.

quiesce
 To reduce the amount of database activity, often in preparation for an operation such as an ALTER TABLE, a
backup, or a shutdown. Might or might not involve doing as much flushing as possible, so that InnoDB does
not continue doing background I/O.

In MySQL 5.6 and higher, the syntax FLUSH TABLES ... FOR EXPORT writes some data to disk for InnoDB
tables that make it simpler to back up those tables by copying the data files.
See Also backup, flush, InnoDB, shutdown.

R

R-tree
 A tree data structure used for spatial indexing of multi-dimensional data such as geographical coordinates,
rectangles or polygons.
See Also B-tree.

RAID
 Acronym for “Redundant Array of Inexpensive Drives”. Spreading I/O operations across multiple drives enables
greater concurrency at the hardware level, and improves the efficiency of low-level write operations that
otherwise would be performed in sequence.
See Also concurrency.

random dive
 A technique for quickly estimating the number of different values in a column (the column's cardinality). InnoDB
samples pages at random from the index and uses that data to estimate the number of different values.
See Also cardinality.

raw backup
 The initial set of backup files produced by the MySQL Enterprise Backup product, before the changes reflected
in the binary log and any incremental backups are applied. At this stage, the files are not ready to restore.
After these changes are applied, the files are known as a prepared backup.

5349

See Also binary log, hot backup, ibbackup_logfile, incremental backup, MySQL Enterprise Backup, prepared
backup, restore.

READ COMMITTED
 An isolation level that uses a locking strategy that relaxes some of the protection between transactions, in
the interest of performance. Transactions cannot see uncommitted data from other transactions, but they can see
data that is committed by another transaction after the current transaction started. Thus, a transaction never sees
any bad data, but the data that it does see may depend to some extent on the timing of other transactions.

When a transaction with this isolation level performs UPDATE ... WHERE or DELETE ... WHERE operations,
other transactions might have to wait. The transaction can perform SELECT ... FOR UPDATE, and LOCK IN
SHARE MODE operations without making other transactions wait.

SELECT ... FOR SHARE replaces SELECT ... LOCK IN SHARE MODE in MySQL 8.0.1, but LOCK IN
SHARE MODE remains available for backward compatibility.
See Also ACID, isolation level, locking, REPEATABLE READ, SERIALIZABLE, transaction.

read phenomena
 Phenomena such as dirty reads, non-repeatable reads, and phantom reads which can occur when a
transaction reads data that another transaction has modified.
See Also dirty read, non-repeatable read, phantom.

READ UNCOMMITTED
 The isolation level that provides the least amount of protection between transactions. Queries employ a
locking strategy that allows them to proceed in situations where they would normally wait for another transaction.
However, this extra performance comes at the cost of less reliable results, including data that has been changed
by other transactions and not committed yet (known as dirty read). Use this isolation level with great caution, and
be aware that the results might not be consistent or reproducible, depending on what other transactions are doing
at the same time. Typically, transactions with this isolation level only do queries, not insert, update, or delete
operations.
See Also ACID, dirty read, isolation level, locking, transaction.

read view
 An internal snapshot used by the MVCC mechanism of InnoDB. Certain transactions, depending on their
isolation level, see the data values as they were at the time the transaction (or in some cases, the statement)
started. Isolation levels that use a read view are REPEATABLE READ, READ COMMITTED, and READ
UNCOMMITTED.
See Also isolation level, MVCC, READ COMMITTED, READ UNCOMMITTED, REPEATABLE READ,
transaction.

read-ahead
 A type of I/O request that prefetches a group of pages (an entire extent) into the buffer pool asynchronously,
in case these pages are needed soon. The linear read-ahead technique prefetches all the pages of one extent
based on access patterns for pages in the preceding extent. The random read-ahead technique prefetches
all the pages for an extent once a certain number of pages from the same extent are in the buffer pool.
Random read-ahead is not part of MySQL 5.5, but is re-introduced in MySQL 5.6 under the control of the
innodb_random_read_ahead configuration option.
See Also buffer pool, extent, page.

read-only transaction
 A type of transaction that can be optimized for InnoDB tables by eliminating some of the bookkeeping involved
with creating a read view for each transaction. Can only perform non-locking read queries. It can be started
explicitly with the syntax START TRANSACTION READ ONLY, or automatically under certain conditions. See
Section 8.5.3, “Optimizing InnoDB Read-Only Transactions” for details.

5350

See Also non-locking read, read view, transaction.

record lock
 A lock on an index record. For example, SELECT c1 FROM t WHERE c1 = 10 FOR UPDATE; prevents any
other transaction from inserting, updating, or deleting rows where the value of t.c1 is 10. Contrast with gap lock
and next-key lock.
See Also gap lock, lock, next-key lock.

redo
 The data, in units of records, recorded in the redo log when DML statements make changes to InnoDB tables.
It is used during crash recovery to correct data written by incomplete transactions. The ever-increasing LSN
value represents the cumulative amount of redo data that has passed through the redo log.
See Also crash recovery, DML, LSN, redo log, transaction.

redo log
 A disk-based data structure used during crash recovery, to correct data written by incomplete transactions.
During normal operation, it encodes requests to change InnoDB table data, which result from SQL statements or
low-level API calls. Modifications that did not finish updating the data files before an unexpected shutdown are
replayed automatically.

The redo log is physically represented on disk as a set of redo log files. Redo log data is encoded in terms
of records affected; this data is collectively referred to as redo. The passage of data through the redo log is
represented by an ever-increasing LSN value.

For more information, see Section 14.6.6, “Redo Log”
See Also crash recovery, data files, ib_logfile, log buffer, LSN, redo, shutdown, transaction.

redo log archiving
 An InnoDB feature that, when enabled, sequentially writes redo log records to an archive file to avoid potential
loss of data than can occur when a backup utility fails to keep pace with redo log generation while a backup
operation is in progress. For more information, see Redo Log Archiving.
See Also redo log.

redundant row format
 The oldest InnoDB row format. Prior to MySQL 5.0.3, it was the only row format available in InnoDB. From
MySQL 5.0.3 to MySQL 5.7.8, the default row format is COMPACT. As of MySQL 5.7.9, the default row format is
defined by the innodb_default_row_format configuration option, which has a default setting of DYNAMIC.
You can still specify the REDUNDANT row format for compatibility with older InnoDB tables.

For more information, see Section 14.11, “InnoDB Row Formats”.
See Also compact row format, dynamic row format, row format.

referential integrity
 The technique of maintaining data always in a consistent format, part of the ACID philosophy. In particular, data
in different tables is kept consistent through the use of foreign key constraints, which can prevent changes
from happening or automatically propagate those changes to all related tables. Related mechanisms include
the unique constraint, which prevents duplicate values from being inserted by mistake, and the NOT NULL
constraint, which prevents blank values from being inserted by mistake.
See Also ACID, FOREIGN KEY constraint, NOT NULL constraint, unique constraint.

relational
 An important aspect of modern database systems. The database server encodes and enforces relationships
such as one-to-one, one-to-many, many-to-one, and uniqueness. For example, a person might have zero, one,
or many phone numbers in an address database; a single phone number might be associated with several family
members. In a financial database, a person might be required to have exactly one taxpayer ID, and any taxpayer
ID could only be associated with one person.

5351

https://dev.mysql.com/doc/refman/8.0/en/innodb-redo-log.html#innodb-redo-log-archiving

The database server can use these relationships to prevent bad data from being inserted, and to find efficient
ways to look up information. For example, if a value is declared to be unique, the server can stop searching as
soon as the first match is found, and it can reject attempts to insert a second copy of the same value.

At the database level, these relationships are expressed through SQL features such as columns within a table,
unique and NOT NULL constraints, foreign keys, and different kinds of join operations. Complex relationships
typically involve data split between more than one table. Often, the data is normalized, so that duplicate values in
one-to-many relationships are stored only once.

In a mathematical context, the relations within a database are derived from set theory. For example, the OR and
AND operators of a WHERE clause represent the notions of union and intersection.
See Also ACID, column, constraint, foreign key, normalized.

relevance
 In the full-text search feature, a number signifying the similarity between the search string and the data in the
FULLTEXT index. For example, when you search for a single word, that word is typically more relevant for a row
where it occurs several times in the text than a row where it appears only once.
See Also full-text search, FULLTEXT index.

REPEATABLE READ
 The default isolation level for InnoDB. It prevents any rows that are queried from being changed by other
transactions, thus blocking non-repeatable reads but not phantom reads. It uses a moderately strict locking
strategy so that all queries within a transaction see data from the same snapshot, that is, the data as it was at the
time the transaction started.

When a transaction with this isolation level performs UPDATE ... WHERE, DELETE ... WHERE, SELECT ...
FOR UPDATE, and LOCK IN SHARE MODE operations, other transactions might have to wait.

SELECT ... FOR SHARE replaces SELECT ... LOCK IN SHARE MODE in MySQL 8.0.1, but LOCK IN
SHARE MODE remains available for backward compatibility.
See Also ACID, consistent read, isolation level, locking, phantom, transaction.

repertoire
 Repertoire is a term applied to character sets. A character set repertoire is the collection of characters in the set.
See Section 10.2.1, “Character Set Repertoire”.

replica
 A database server machine in a replication topology that receives changes from another server (the source)
and applies those same changes. Thus it maintains the same contents as the source, although it might lag
somewhat behind.

In MySQL, replicas are commonly used in disaster recovery, to take the place of a source that fails. They are also
commonly used for testing software upgrades and new settings, to ensure that database configuration changes
do not cause problems with performance or reliability.

Replicas typically have high workloads, because they process all the DML (write) operations relayed from the
source, as well as user queries. To ensure that replicas can apply changes from the source fast enough, they
frequently have fast I/O devices and sufficient CPU and memory to run multiple database instances on the same
server. For example, the source might use hard drive storage while the replicas use SSDs.
See Also DML, replication, server, source, SSD.

replication
 The practice of sending changes from a source, to one or more replicas, so that all databases have the same
data. This technique has a wide range of uses, such as load-balancing for better scalability, disaster recovery,
and testing software upgrades and configuration changes. The changes can be sent between the databases by
methods called row-based replication and statement-based replication.

5352

See Also replica, row-based replication, source, statement-based replication.

restore
 The process of putting a set of backup files from the MySQL Enterprise Backup product in place for use by
MySQL. This operation can be performed to fix a corrupted database, to return to some earlier point in time, or
(in a replication context) to set up a new replica. In the MySQL Enterprise Backup product, this operation is
performed by the copy-back option of the mysqlbackup command.
See Also hot backup, MySQL Enterprise Backup, mysqlbackup command, prepared backup, replica, replication.

rollback
 A SQL statement that ends a transaction, undoing any changes made by the transaction. It is the opposite of
commit, which makes permanent any changes made in the transaction.

By default, MySQL uses the autocommit setting, which automatically issues a commit following each SQL
statement. You must change this setting before you can use the rollback technique.
See Also ACID, autocommit, commit, SQL, transaction.

rollback segment
 The storage area containing the undo logs. Rollback segments have traditionally resided in the system
tablespace. As of MySQL 5.6, rollback segments can reside in undo tablespaces. As of MySQL 5.7, rollback
segments are also allocated to the global temporary tablespace.
See Also system tablespace, undo log, undo tablespace.

row
 The logical data structure defined by a set of columns. A set of rows makes up a table. Within InnoDB data
files, each page can contain one or more rows.

Although InnoDB uses the term row format for consistency with MySQL syntax, the row format is a property of
each table and applies to all rows in that table.
See Also column, data files, page, row format, table.

row format
 The disk storage format for rows of an InnoDB table. As InnoDB gains new capabilities such as compression,
new row formats are introduced to support the resulting improvements in storage efficiency and performance.

The row format of an InnoDB table is specified by the ROW_FORMAT option or by the
innodb_default_row_format configuration option (introduced in MySQL 5.7.9). Row formats include
REDUNDANT, COMPACT, COMPRESSED, and DYNAMIC. To view the row format of an InnoDB table, issue the SHOW
TABLE STATUS statement or query InnoDB table metadata in the INFORMATION_SCHEMA.
See Also compact row format, compressed row format, compression, dynamic row format, redundant row format,
row, table.

row lock
 A lock that prevents a row from being accessed in an incompatible way by another transaction. Other rows in
the same table can be freely written to by other transactions. This is the type of locking done by DML operations
on InnoDB tables.

Contrast with table locks used by MyISAM, or during DDL operations on InnoDB tables that cannot be done with
online DDL; those locks block concurrent access to the table.
See Also DDL, DML, InnoDB, lock, locking, online DDL, table lock, transaction.

row-based replication
 A form of replication where events are propagated from the source specifying how to change individual rows on
the replica. It is safe to use for all settings of the innodb_autoinc_lock_mode option.
See Also auto-increment locking, innodb_autoinc_lock_mode, replica, replication, source, statement-based
replication.

5353

row-level locking
 The locking mechanism used for InnoDB tables, relying on row locks rather than table locks. Multiple
transactions can modify the same table concurrently. Only if two transactions try to modify the same row does
one of the transactions wait for the other to complete (and release its row locks).
See Also InnoDB, locking, row lock, table lock, transaction.

Ruby
 A programming language that emphasizes dynamic typing and object-oriented programming. Some syntax is
familiar to Perl developers.
See Also API, Perl, Ruby API.

Ruby API
 mysql2, based based on the libmysqlclient API library, is available for Ruby programmers developing MySQL
applications. For more information, see Section 27.11, “MySQL Ruby APIs”.
See Also libmysql, Ruby.

rw-lock
 The low-level object that InnoDB uses to represent and enforce shared-access locks to internal in-memory data
structures following certain rules. Contrast with mutexes, which InnoDB uses to represent and enforce exclusive
access to internal in-memory data structures. Mutexes and rw-locks are known collectively as latches.

rw-lock types include s-locks (shared locks), x-locks (exclusive locks), and sx-locks (shared-exclusive
locks).

• An s-lock provides read access to a common resource.

• An x-lock provides write access to a common resource while not permitting inconsistent reads by other
threads.

• An sx-lock provides write access to a common resource while permitting inconsistent reads by other threads.
sx-locks were introduced in MySQL 5.7 to optimize concurrency and improve scalability for read-write
workloads.

The following matrix summarizes rw-lock type compatibility.

S SX X

S Compatible Compatible Conflict

SX Compatible Conflict Conflict

X Conflict Conflict Conflict

See Also latch, lock, mutex, Performance Schema.

S
savepoint

 Savepoints help to implement nested transactions. They can be used to provide scope to operations on tables
that are part of a larger transaction. For example, scheduling a trip in a reservation system might involve booking
several different flights; if a desired flight is unavailable, you might roll back the changes involved in booking that
one leg, without rolling back the earlier flights that were successfully booked.
See Also rollback, transaction.

scalability
 The ability to add more work and issue more simultaneous requests to a system, without a sudden drop in
performance due to exceeding the limits of system capacity. Software architecture, hardware configuration,

5354

application coding, and type of workload all play a part in scalability. When the system reaches its maximum
capacity, popular techniques for increasing scalability are scale up (increasing the capacity of existing hardware
or software) and scale out (adding new servers and more instances of MySQL). Often paired with availability as
critical aspects of a large-scale deployment.
See Also availability, scale out, scale up.

scale out
 A technique for increasing scalability by adding new servers and more instances of MySQL. For example,
setting up replication, NDB Cluster, connection pooling, or other features that spread work across a group of
servers. Contrast with scale up.
See Also scalability, scale up.

scale up
 A technique for increasing scalability by increasing the capacity of existing hardware or software.
For example, increasing the memory on a server and adjusting memory-related parameters such as
innodb_buffer_pool_size and innodb_buffer_pool_instances. Contrast with scale out.
See Also scalability, scale out.

schema
 Conceptually, a schema is a set of interrelated database objects, such as tables, table columns, data types
of the columns, indexes, foreign keys, and so on. These objects are connected through SQL syntax, because
the columns make up the tables, the foreign keys refer to tables and columns, and so on. Ideally, they are also
connected logically, working together as part of a unified application or flexible framework. For example, the
INFORMATION_SCHEMA and performance_schema databases use “schema” in their names to emphasize the
close relationships between the tables and columns they contain.

In MySQL, physically, a schema is synonymous with a database. You can substitute the keyword SCHEMA
instead of DATABASE in MySQL SQL syntax, for example using CREATE SCHEMA instead of CREATE DATABASE.

Some other database products draw a distinction. For example, in the Oracle Database product, a schema
represents only a part of a database: the tables and other objects owned by a single user.
See Also database, INFORMATION_SCHEMA, Performance Schema.

search index
 In MySQL, full-text search queries use a special kind of index, the FULLTEXT index. In MySQL 5.6.4 and up,
InnoDB and MyISAM tables both support FULLTEXT indexes; formerly, these indexes were only available for
MyISAM tables.
See Also full-text search, FULLTEXT index.

secondary index
 A type of InnoDB index that represents a subset of table columns. An InnoDB table can have zero, one, or
many secondary indexes. (Contrast with the clustered index, which is required for each InnoDB table, and
stores the data for all the table columns.)

A secondary index can be used to satisfy queries that only require values from the indexed columns. For more
complex queries, it can be used to identify the relevant rows in the table, which are then retrieved through lookups
using the clustered index.

Creating and dropping secondary indexes has traditionally involved significant overhead from copying all the data
in the InnoDB table. The fast index creation feature makes both CREATE INDEX and DROP INDEX statements
much faster for InnoDB secondary indexes.
See Also clustered index, Fast Index Creation, index.

segment
 A division within an InnoDB tablespace. If a tablespace is analogous to a directory, the segments are analogous
to files within that directory. A segment can grow. New segments can be created.

5355

For example, within a file-per-table tablespace, table data is in one segment and each associated index is in
its own segment. The system tablespace contains many different segments, because it can hold many tables
and their associated indexes. Prior to MySQL 8.0, the system tablespace also includes one or more rollback
segments used for undo logs.

Segments grow and shrink as data is inserted and deleted. When a segment needs more room, it is extended by
one extent (1 megabyte) at a time. Similarly, a segment releases one extent's worth of space when all the data in
that extent is no longer needed.
See Also extent, file-per-table, rollback segment, system tablespace, tablespace, undo log.

selectivity
 A property of data distribution, the number of distinct values in a column (its cardinality) divided by the number
of records in the table. High selectivity means that the column values are relatively unique, and can retrieved
efficiently through an index. If you (or the query optimizer) can predict that a test in a WHERE clause only matches
a small number (or proportion) of rows in a table, the overall query tends to be efficient if it evaluates that test
first, using an index.
See Also cardinality, query.

semi-consistent read
 A type of read operation used for UPDATE statements, that is a combination of READ COMMITTED and
consistent read. When an UPDATE statement examines a row that is already locked, InnoDB returns the latest
committed version to MySQL so that MySQL can determine whether the row matches the WHERE condition of
the UPDATE. If the row matches (must be updated), MySQL reads the row again, and this time InnoDB either
locks it or waits for a lock on it. This type of read operation can only happen when the transaction has the
READ COMMITTED isolation level, or when the innodb_locks_unsafe_for_binlog option is enabled.
innodb_locks_unsafe_for_binlog was removed in MySQL 8.0.
See Also consistent read, isolation level, READ COMMITTED.

SERIALIZABLE
 The isolation level that uses the most conservative locking strategy, to prevent any other transactions from
inserting or changing data that was read by this transaction, until it is finished. This way, the same query can be
run over and over within a transaction, and be certain to retrieve the same set of results each time. Any attempt
to change data that was committed by another transaction since the start of the current transaction, cause the
current transaction to wait.

This is the default isolation level specified by the SQL standard. In practice, this degree of strictness is rarely
needed, so the default isolation level for InnoDB is the next most strict, REPEATABLE READ.
See Also ACID, consistent read, isolation level, locking, REPEATABLE READ, transaction.

server
 A type of program that runs continuously, waiting to receive and act upon requests from another program (the
client). Because often an entire computer is dedicated to running one or more server programs (such as a
database server, a web server, an application server, or some combination of these), the term server can also
refer to the computer that runs the server software.
See Also client, mysqld.

server-side prepared statement
 A prepared statement managed by the MySQL server. Historically, issues with server-side prepared statements
led Connector/J and Connector/PHP developers to sometimes use client-side prepared statements instead.
With modern MySQL server versions, server-side prepared statements are recommended for performance,
scalability, and memory efficiency.
See Also client-side prepared statement, Connector/J, Connector/PHP, prepared statement.

servlet

5356

See Also Connector/J.

shared lock
 A kind of lock that allows other transactions to read the locked object, and to also acquire other shared locks on
it, but not to write to it. The opposite of exclusive lock.
See Also exclusive lock, lock, transaction.

shared tablespace
 Another way of referring to the system tablespace or a general tablespace. General tablespaces were
introduced in MySQL 5.7. More than one table can reside in a shared tablespace. Only a single table can reside
in a file-per-table tablespace.
See Also general tablespace, system tablespace.

sharp checkpoint
 The process of flushing to disk all dirty buffer pool pages whose redo entries are contained in certain portion
of the redo log. Occurs before InnoDB reuses a portion of a log file; the log files are used in a circular fashion.
Typically occurs with write-intensive workloads.
See Also dirty page, flush, redo log, workload.

shutdown
 The process of stopping the MySQL server. By default, this process cleans up operations for InnoDB tables, so
InnoDB can be slow to shut down, but fast to start up later. If you skip the cleanup operations, it is fast to shut
down but the cleanup must be performed during the next restart.

The shutdown mode for InnoDB is controlled by the innodb_fast_shutdown option.
See Also fast shutdown, InnoDB, slow shutdown, startup.

slave
See replica.

slow query log
 A type of log used for performance tuning of SQL statements processed by the MySQL server. The log
information is stored in a file. You must enable this feature to use it. You control which categories of “slow” SQL
statements are logged. For more information, see Section 5.4.5, “The Slow Query Log”.
See Also general query log, log.

slow shutdown
 A type of shutdown that does additional InnoDB flushing operations before completing. Also known as a
clean shutdown. Specified by the configuration parameter innodb_fast_shutdown=0 or the command SET
GLOBAL innodb_fast_shutdown=0;. Although the shutdown itself can take longer, that time should be saved
on the subsequent startup.
See Also clean shutdown, fast shutdown, shutdown.

snapshot
 A representation of data at a particular time, which remains the same even as changes are committed by other
transactions. Used by certain isolation levels to allow consistent reads.
See Also commit, consistent read, isolation level, transaction.

sort buffer
 The buffer used for sorting data during creation of an InnoDB index. Sort buffer size is configured using the
innodb_sort_buffer_size configuration option.

source
 A database server machine in a replication scenario that processes the initial insert, update, and delete
requests for data. These changes are propagated to, and repeated on, other servers known as replicas.
See Also replica, replication.

5357

space ID
 An identifier used to uniquely identify an InnoDB tablespace within a MySQL instance. The space ID for the
system tablespace is always zero; this same ID applies to all tables within the system tablespace or within a
general tablespace. Each file-per-table tablespace and general tablespace has its own space ID.

Prior to MySQL 5.6, this hardcoded value presented difficulties in moving InnoDB tablespace files between
MySQL instances. Starting in MySQL 5.6, you can copy tablespace files between instances by using the
transportable tablespace feature involving the statements FLUSH TABLES ... FOR EXPORT, ALTER
TABLE ... DISCARD TABLESPACE, and ALTER TABLE ... IMPORT TABLESPACE. The information
needed to adjust the space ID is conveyed in the .cfg file which you copy along with the tablespace. See
Section 14.6.1.3, “Importing InnoDB Tables” for details.
See Also .cfg file, file-per-table, general tablespace, .ibd file, system tablespace, tablespace, transportable
tablespace.

sparse file
 A type of file that uses file system space more efficiently by writing metadata representing empty blocks to disk
instead of writing the actual empty space. The InnoDB transparent page compression feature relies on sparse
file support. For more information, see Section 14.9.2, “InnoDB Page Compression”.
See Also hole punching, transparent page compression.

spin
 A type of wait operation that continuously tests whether a resource becomes available. This technique is used
for resources that are typically held only for brief periods, where it is more efficient to wait in a “busy loop” than
to put the thread to sleep and perform a context switch. If the resource does not become available within a short
time, the spin loop ceases and another wait technique is used.
See Also latch, lock, mutex, wait.

Spring
 A Java-based application framework designed for assisting in application design by providing a way to configure
components.
See Also J2EE.

SQL
 The Structured Query Language that is standard for performing database operations. Often divided into the
categories DDL, DML, and queries. MySQL includes some additional statement categories such as replication.
See Chapter 9, Language Structure for the building blocks of SQL syntax, Chapter 11, Data Types for the data
types to use for MySQL table columns, Chapter 13, SQL Statements for details about SQL statements and their
associated categories, and Chapter 12, Functions and Operators for standard and MySQL-specific functions to
use in queries.
See Also DDL, DML, query, replication.

SQLState
 An error code defined by the JDBC standard, for exception handling by applications using Connector/J.
See Also Connector/J, JDBC.

SSD
 Acronym for “solid-state drive”. A type of storage device with different performance characteristics than a
traditional hard disk drive (HDD): smaller storage capacity, faster for random reads, no moving parts, and with
a number of considerations affecting write performance. Its performance characteristics can influence the
throughput of a disk-bound workload.
See Also disk-bound, HDD.

SSL
 Acronym for “secure sockets layer”. Provides the encryption layer for network communication between an
application and a MySQL database server.

5358

See Also keystore, truststore.

startup
 The process of starting the MySQL server. Typically done by one of the programs listed in Section 4.3, “Server
and Server-Startup Programs”. The opposite of shutdown.
See Also shutdown.

statement interceptor
 A type of interceptor for tracing, debugging, or augmenting SQL statements issued by a database application.
Sometimes also known as a command interceptor.

In Java applications using Connector/J, setting up this type of interceptor involves implementing the
com.mysql.jdbc.StatementInterceptorV2 interface, and adding a statementInterceptors property
to the connection string.

In Visual Studio applications using Connector/NET, setting up this type of interceptor involves defining a class
that inherits from the BaseCommandInterceptor class and specifying that class name as part of the connection
string.
See Also command interceptor, connection string, Connector/J, Connector/NET, interceptor, Java, Visual Studio.

statement-based replication
 A form of replication where SQL statements are sent from the source and replayed on the replica. It requires
some care with the setting for the innodb_autoinc_lock_mode option, to avoid potential timing problems with
auto-increment locking.
See Also auto-increment locking, innodb_autoinc_lock_mode, replica, replication, row-based replication, source.

statistics
 Estimated values relating to each InnoDB table and index, used to construct an efficient query execution
plan. The main values are the cardinality (number of distinct values) and the total number of table rows or index
entries. The statistics for the table represent the data in its primary key index. The statistics for a secondary
index represent the rows covered by that index.

The values are estimated rather than counted precisely because at any moment, different transactions can be
inserting and deleting rows from the same table. To keep the values from being recalculated frequently, you can
enable persistent statistics, where the values are stored in InnoDB system tables, and refreshed only when you
issue an ANALYZE TABLE statement.

You can control how NULL values are treated when calculating statistics through the innodb_stats_method
configuration option.

Other types of statistics are available for database objects and database activity through the
INFORMATION_SCHEMA and PERFORMANCE_SCHEMA tables.
See Also cardinality, index, INFORMATION_SCHEMA, NULL, Performance Schema, persistent statistics, primary
key, query execution plan, secondary index, table, transaction.

stemming
 The ability to search for different variations of a word based on a common root word, such as singular and plural,
or past, present, and future verb tense. This feature is currently supported in MyISAM full-text search feature but
not in FULLTEXT indexes for InnoDB tables.
See Also full-text search, FULLTEXT index.

stopword
 In a FULLTEXT index, a word that is considered common or trivial enough that it is omitted from the search
index and ignored in search queries. Different configuration settings control stopword processing for InnoDB and
MyISAM tables. See Section 12.9.4, “Full-Text Stopwords” for details.

5359

See Also FULLTEXT index, search index.

storage engine
 A component of the MySQL database that performs the low-level work of storing, updating, and querying data.
In MySQL 5.5 and higher, InnoDB is the default storage engine for new tables, superceding MyISAM. Different
storage engines are designed with different tradeoffs between factors such as memory usage versus disk usage,
read speed versus write speed, and speed versus robustness. Each storage engine manages specific tables, so
we refer to InnoDB tables, MyISAM tables, and so on.

The MySQL Enterprise Backup product is optimized for backing up InnoDB tables. It can also back up tables
handled by MyISAM and other storage engines.
See Also InnoDB, MySQL Enterprise Backup, table type.

stored generated column
 A column whose values are computed from an expression included in the column definition. Column values are
evaluated and stored when rows are inserted or updated. A stored generated column requires storage space and
can be indexed.

Contrast with virtual generated column.
See Also base column, generated column, virtual generated column.

stored object
 A stored program or view.

stored program
 A stored routine (procedure or function), trigger, or Event Scheduler event.

stored routine
 A stored procedure or function.

strict mode
 The general name for the setting controlled by the innodb_strict_mode option. Turning on this setting causes
certain conditions that are normally treated as warnings, to be considered errors. For example, certain invalid
combinations of options related to file format and row format, that normally produce a warning and continue with
default values, now cause the CREATE TABLE operation to fail. innodb_strict_mode is enabled by default in
MySQL 5.7.

MySQL also has something called strict mode. See Section 5.1.10, “Server SQL Modes”.
See Also file format, innodb_strict_mode, row format.

sublist
 Within the list structure that represents the buffer pool, pages that are relatively old and relatively new are
represented by different portions of the list. A set of parameters control the size of these portions and the dividing
point between the new and old pages.
See Also buffer pool, eviction, list, LRU.

supremum record
 A pseudo-record in an index, representing the gap above the largest value in that index. If a transaction has
a statement such as SELECT ... FROM ... WHERE col > 10 FOR UPDATE;, and the largest value in
the column is 20, it is a lock on the supremum record that prevents other transactions from inserting even larger
values such as 50, 100, and so on.
See Also gap, infimum record, pseudo-record.

surrogate key
 Synonym name for synthetic key.
See Also synthetic key.

5360

synthetic key
 An indexed column, typically a primary key, where the values are assigned arbitrarily. Often done using an
auto-increment column. By treating the value as completely arbitrary, you can avoid overly restrictive rules and
faulty application assumptions. For example, a numeric sequence representing employee numbers might have
a gap if an employee was approved for hiring but never actually joined. Or employee number 100 might have
a later hiring date than employee number 500, if they left the company and later rejoined. Numeric values also
produce shorter values of predictable length. For example, storing numeric codes meaning “Road”, “Boulevard”,
“Expressway”, and so on is more space-efficient than repeating those strings over and over.

Also known as a surrogate key. Contrast with natural key.
See Also auto-increment, natural key, primary key, surrogate key.

system tablespace
 One or more data files (ibdata files) containing metadata for InnoDB-related objects (the InnoDB data
dictionary), and the storage areas for the change buffer, the doublewrite buffer, and possibly undo logs.
It may also contain table and index data for InnoDB tables if tables were created in the system tablespace
instead of file-per-table or general tablespaces. The data and metadata in the system tablespace apply to all
databases in a MySQL instance.

Prior to MySQL 5.6.7, the default was to keep all InnoDB tables and indexes inside the system tablespace, often
causing this file to become very large. Because the system tablespace never shrinks, storage problems could
arise if large amounts of temporary data were loaded and then deleted. In MySQL 5.7, the default is file-per-table
mode, where each table and its associated indexes are stored in a separate .ibd file. This default makes it easier
to use InnoDB features that rely on the Barracuda file format, such as table compression, efficient storage of
off-page columns, and large index key prefixes (innodb_large_prefix).

The innodb_undo_tablespaces option defines the number of undo tablespaces for undo logs.

Keeping all table data in the system tablespace or in separate .ibd files has implications for storage
management in general. The MySQL Enterprise Backup product might back up a small set of large files, or
many smaller files. On systems with thousands of tables, the file system operations to process thousands of .ibd
files can cause bottlenecks.

InnoDB introduced general tablespaces in MySQL 5.7.6, which are also represented by .ibd files. General
tablespaces are shared tablespaces created using CREATE TABLESPACE syntax. They can be created outside of
the MySQL data directory, are capable of holding multiple tables, and support tables of all row formats.
See Also Barracuda, change buffer, compression, data dictionary, database, doublewrite buffer, dynamic row
format, file-per-table, general tablespace, .ibd file, ibdata file, innodb_file_per_table, instance, MySQL Enterprise
Backup, off-page column, tablespace, undo log.

T
.TRG file

 A file containing trigger parameters. Files with this extension are always included in backups produced by the
mysqlbackup command of the MySQL Enterprise Backup product.
See Also MySQL Enterprise Backup, mysqlbackup command, .TRN file.

.TRN file
 A file containing trigger namespace information. Files with this extension are always included in backups
produced by the mysqlbackup command of the MySQL Enterprise Backup product.
See Also MySQL Enterprise Backup, mysqlbackup command, .TRG file.

table
 Each MySQL table is associated with a particular storage engine. InnoDB tables have particular physical and
logical characteristics that affect performance, scalability, backup, administration, and application development.

5361

In terms of file storage, an InnoDB table belongs to one of the following tablespace types:

• The shared InnoDB system tablespace, which is comprised of one or more ibdata files.

• A file-per-table tablespace, comprised of an individual .ibd file.

• A shared general tablespace, comprised of an individual .ibd file. General tablespaces were introduced in
MySQL 5.7.6.

.ibd data files contain both table and index data.

InnoDB tables created in file-per-table tablespaces can use the Barracuda file format, and Barracuda
tables can use DYNAMIC or COMPRESSED row format. These row formats enable InnoDB
features such as compression, efficient storage of off-page columns, and large index key prefixes
(see innodb_large_prefix). General tablespaces support all row formats regardless of the
innodb_file_format setting.

Up to MySQL 5.7.5, InnoDB tables inside the system tablespace had to use the Antelope file format for
backward compatibility with MySQL 5.1 and earlier. The Antelope file format supports COMPACT and
REDUNDANT row format. The system tablespace supports tables that use DYNAMIC row format as of MySQL
5.7.6.

The rows of an InnoDB table are organized into an index structure known as the clustered index, with entries
sorted based on the primary key columns of the table. Data access is optimized for queries that filter and sort
on the primary key columns, and each index contains a copy of the associated primary key columns for each
entry. Modifying values for any of the primary key columns is an expensive operation. Thus an important aspect
of InnoDB table design is choosing a primary key with columns that are used in the most important queries, and
keeping the primary key short, with rarely changing values.
See Also Antelope, backup, Barracuda, clustered index, compact row format, compressed row format,
compression, dynamic row format, Fast Index Creation, file-per-table, .ibd file, index, off-page column, primary
key, redundant row format, row, system tablespace, tablespace.

table lock
 A lock that prevents any other transaction from accessing a table. InnoDB makes considerable effort to
make such locks unnecessary, by using techniques such as online DDL, row locks and consistent reads for
processing DML statements and queries. You can create such a lock through SQL using the LOCK TABLE
statement; one of the steps in migrating from other database systems or MySQL storage engines is to remove
such statements wherever practical.
See Also consistent read, DML, lock, locking, online DDL, query, row lock, table, transaction.

table scan
See full table scan.

table statistics
See statistics.

table type
 Obsolete synonym for storage engine. We refer to InnoDB tables, MyISAM tables, and so on.
See Also InnoDB, storage engine.

tablespace
 A data file that can hold data for one or more InnoDB tables and associated indexes.

The system tablespace contains the InnoDB data dictionary, and prior to MySQL 5.6 holds all other InnoDB
tables by default.

5362

The innodb_file_per_table option, enabled by default in MySQL 5.6 and higher, allows tables to be created
in their own tablespaces. File-per-table tablespaces support features such as efficient storage of off-page
columns, table compression, and transportable tablespaces. See Section 14.6.3.2, “File-Per-Table Tablespaces”
for details.

InnoDB introduced general tablespaces in MySQL 5.7.6. General tablespaces are shared tablespaces created
using CREATE TABLESPACE syntax. They can be created outside of the MySQL data directory, are capable of
holding multiple tables, and support tables of all row formats.

MySQL NDB Cluster also groups its tables into tablespaces. See Section 21.6.11.1, “NDB Cluster Disk Data
Objects” for details.
See Also compressed row format, data dictionary, data files, file-per-table, general tablespace, index,
innodb_file_per_table, system tablespace, table.

Tcl
 A programming language originating in the Unix scripting world. Sometimes extended by code written in C, C++,
or Java. For the open-source Tcl API for MySQL, see Section 27.12, “MySQL Tcl API”.
See Also API.

temporary table
 A table whose data does not need to be truly permanent. For example, temporary tables might be used as
storage areas for intermediate results in complicated calculations or transformations; this intermediate data would
not need to be recovered after a crash. Database products can take various shortcuts to improve the performance
of operations on temporary tables, by being less scrupulous about writing data to disk and other measures to
protect the data across restarts.

Sometimes, the data itself is removed automatically at a set time, such as when the transaction ends or when the
session ends. With some database products, the table itself is removed automatically too.
See Also table.

temporary tablespace
 The tablespace for non-compressed InnoDB temporary tables and related objects, introduced in MySQL
5.7. The innodb_temp_data_file_path configuration file option defines the relative path, name, size, and
attributes for temporary tablespace data files. If innodb_temp_data_file_path is not specified, the default
behavior is to create a single auto-extending 12MB data file named ibtmp1 in the data directory. The temporary
tablespace is recreated on each server start and receives a dynamically generated space ID. The temporary
tablespace cannot reside on a raw device. Startup is refused if the temporary tablespace cannot be created.

The temporary tablespace is removed on normal shutdown or on an aborted initialization. The temporary
tablespace is not removed when a crash occurs. In this case, the database administrator may remove the
temporary tablespace manually or restart the server with the same configuration, which removes and recreates
the temporary tablespace.
See Also temporary table.

text collection
 The set of columns included in a FULLTEXT index.
See Also FULLTEXT index.

thread
 A unit of processing that is typically more lightweight than a process, allowing for greater concurrency.
See Also concurrency, master thread, process, Pthreads.

Tomcat
 An open source J2EE application server, implementing the Java Servlet and JavaServer Pages programming
technologies. Consists of a web server and Java servlet container. With MySQL, typically used in conjunction with
Connector/J.

5363

See Also J2EE.

torn page
 An error condition that can occur due to a combination of I/O device configuration and hardware failure. If data is
written out in chunks smaller than the InnoDB page size (by default, 16KB), a hardware failure while writing could
result in only part of a page being stored to disk. The InnoDB doublewrite buffer guards against this possibility.
See Also doublewrite buffer.

TPS
 Acronym for “transactions per second”, a unit of measurement sometimes used in benchmarks. Its value
depends on the workload represented by a particular benchmark test, combined with factors that you control
such as the hardware capacity and database configuration.
See Also transaction, workload.

transaction
 Transactions are atomic units of work that can be committed or rolled back. When a transaction makes multiple
changes to the database, either all the changes succeed when the transaction is committed, or all the changes
are undone when the transaction is rolled back.

Database transactions, as implemented by InnoDB, have properties that are collectively known by the acronym
ACID, for atomicity, consistency, isolation, and durability.
See Also ACID, commit, isolation level, lock, rollback.

transaction ID
 An internal field associated with each row. This field is physically changed by INSERT, UPDATE, and DELETE
operations to record which transaction has locked the row.
See Also implicit row lock, row, transaction.

transparent page compression
 A feature added in MySQL 5.7.8 that permits page-level compression for InnoDB tables that reside in file-per-
table tablespaces. Page compression is enabled by specifying the COMPRESSION attribute with CREATE TABLE
or ALTER TABLE. For more information, see Section 14.9.2, “InnoDB Page Compression”.
See Also file-per-table, hole punching, sparse file.

transportable tablespace
 A feature that allows a tablespace to be moved from one instance to another. Traditionally, this has not been
possible for InnoDB tablespaces because all table data was part of the system tablespace. In MySQL 5.6 and
higher, the FLUSH TABLES ... FOR EXPORT syntax prepares an InnoDB table for copying to another server;
running ALTER TABLE ... DISCARD TABLESPACE and ALTER TABLE ... IMPORT TABLESPACE on
the other server brings the copied data file into the other instance. A separate .cfg file, copied along with the
.ibd file, is used to update the table metadata (for example the space ID) as the tablespace is imported. See
Section 14.6.1.3, “Importing InnoDB Tables” for usage information.
See Also .cfg file, .ibd file, space ID, system tablespace, tablespace.

troubleshooting
 The process of determining the source of a problem. Some of the resources for troubleshooting MySQL problems
include:

• Section 2.9.2.1, “Troubleshooting Problems Starting the MySQL Server”

• Section 6.2.17, “Troubleshooting Problems Connecting to MySQL”

• Section B.3.3.2, “How to Reset the Root Password”

• Section B.3.2, “Common Errors When Using MySQL Programs”

• Section 14.22, “InnoDB Troubleshooting”.

5364

truncate
 A DDL operation that removes the entire contents of a table, while leaving the table and related indexes intact.
Contrast with drop. Although conceptually it has the same result as a DELETE statement with no WHERE clause, it
operates differently behind the scenes: InnoDB creates a new empty table, drops the old table, then renames the
new table to take the place of the old one. Because this is a DDL operation, it cannot be rolled back.

If the table being truncated contains foreign keys that reference another table, the truncation operation uses a
slower method of operation, deleting one row at a time so that corresponding rows in the referenced table can be
deleted as needed by any ON DELETE CASCADE clause. (MySQL 5.5 and higher do not allow this slower form of
truncate, and return an error instead if foreign keys are involved. In this case, use a DELETE statement instead.
See Also DDL, drop, foreign key, rollback.

truststore

See Also SSL.

tuple
 A technical term designating an ordered set of elements. It is an abstract notion, used in formal discussions of
database theory. In the database field, tuples are usually represented by the columns of a table row. They could
also be represented by the result sets of queries, for example, queries that retrieved only some columns of a
table, or columns from joined tables.
See Also cursor.

two-phase commit
 An operation that is part of a distributed transaction, under the XA specification. (Sometimes abbreviated as
2PC.) When multiple databases participate in the transaction, either all databases commit the changes, or all
databases roll back the changes.
See Also commit, rollback, transaction, XA.

U
undo

 Data that is maintained throughout the life of a transaction, recording all changes so that they can be undone
in case of a rollback operation. It is stored in undo logs either within the system tablespace (in MySQL 5.7 or
earlier) or in separate undo tablespaces. As of MySQL 8.0, undo logs reside in undo tablespaces by default.
See Also rollback, rollback segment, system tablespace, transaction, undo log, undo tablespace.

undo buffer
See undo log.

undo log
 A storage area that holds copies of data modified by active transactions. If another transaction needs to see the
original data (as part of a consistent read operation), the unmodified data is retrieved from this storage area.

In MySQL 5.6 and MySQL 5.7, you can use the innodb_undo_tablespaces variable have undo logs reside
in undo tablespaces, which can be placed on another storage device such as an SSD. In MySQL 8.0, undo
logs reside in two default undo tablespaces that are created when MySQL is initialized, and additional undo
tablespaces can be created using CREATE UNDO TABLESPACE syntax.

The undo log is split into separate portions, the insert undo buffer and the update undo buffer.
See Also consistent read, rollback segment, SSD, system tablespace, transaction, undo tablespace.

undo log segment
 A collection of undo logs. Undo log segments exists within rollback segments. An undo log segment might
contain undo logs from multiple transactions. An undo log segment can only be used by one transaction at a time

5365

but can be reused after it is released at transaction commit or rollback. May also be referred to as an “undo
segment”.
See Also commit, rollback, rollback segment, undo log.

undo tablespace
 An undo tablespace contains undo logs. Undo logs exist within undo log segments, which are contained
within rollback segments. Rollback segments have traditionally resided in the system tablespace. As of MySQL
5.6, rollback segments can reside in undo tablespaces. In MySQL 5.6 and MySQL 5.7, the number of undo
tablespaces is controlled by the innodb_undo_tablespaces configuration option. In MySQL 8.0, two default
undo tablespaces are created when the MySQL instance is initialized, and additional undo tablespaces can be
created using CREATE UNDO TABLESPACE syntax.

For more information, see Section 14.6.3.4, “Undo Tablespaces”.
See Also rollback segment, system tablespace, undo log, undo log segment.

Unicode
 A system for supporting national characters, character sets, code pages, and other internationalization aspects in
a flexible and standardized way.

Unicode support is an important aspect of the ODBC standard. Connector/ODBC 5.1 is a Unicode driver, as
opposed to Connector/ODBC 3.51, which is an ANSI driver.
See Also ANSI, Connector/ODBC, ODBC.

unique constraint
 A kind of constraint that asserts that a column cannot contain any duplicate values. In terms of relational
algebra, it is used to specify 1-to-1 relationships. For efficiency in checking whether a value can be inserted (that
is, the value does not already exist in the column), a unique constraint is supported by an underlying unique
index.
See Also constraint, relational, unique index.

unique index
 An index on a column or set of columns that have a unique constraint. Because the index is known not to
contain any duplicate values, certain kinds of lookups and count operations are more efficient than in the normal
kind of index. Most of the lookups against this type of index are simply to determine if a certain value exists or not.
The number of values in the index is the same as the number of rows in the table, or at least the number of rows
with non-null values for the associated columns.

Change buffering optimization does not apply to unique indexes. As a workaround, you can temporarily set
unique_checks=0 while doing a bulk data load into an InnoDB table.
See Also cardinality, change buffering, unique constraint, unique key.

unique key
 The set of columns (one or more) comprising a unique index. When you can define a WHERE condition that
matches exactly one row, and the query can use an associated unique index, the lookup and error handling can
be performed very efficiently.
See Also cardinality, unique constraint, unique index.

V
variable-length type

 A data type of variable length. VARCHAR, VARBINARY, and BLOB and TEXT types are variable-length types.

InnoDB treats fixed-length fields greater than or equal to 768 bytes in length as variable-length fields, which can
be stored off-page. For example, a CHAR(255) column can exceed 768 bytes if the maximum byte length of the
character set is greater than 3, as it is with utf8mb4.

5366

See Also off-page column, overflow page.

victim
 The transaction that is automatically chosen to be rolled back when a deadlock is detected. InnoDB rolls back
the transaction that has updated the fewest rows.

Deadlock detection can be disabled using the innodb_deadlock_detect configuration option.
See Also deadlock, deadlock detection, innodb_lock_wait_timeout, transaction.

view
 A stored query that when invoked produces a result set. A view acts as a virtual table.

virtual column
See virtual generated column.

virtual generated column
 A column whose values are computed from an expression included in the column definition. Column values are
not stored, but are evaluated when rows are read, immediately after any BEFORE triggers. A virtual generated
column takes no storage. InnoDB supports secondary indexes on virtual generated columns.

Contrast with stored generated column.
See Also base column, generated column, stored generated column.

virtual index
 A virtual index is a secondary index on one or more virtual generated columns or on a combination of
virtual generated columns and regular columns or stored generated columns. For more information, see
Section 13.1.18.8, “Secondary Indexes and Generated Columns”.
See Also secondary index, stored generated column, virtual generated column.

Visual Studio
 For supported versions of Visual Studio, see the following references:

• Connector/NET: Connector/NET Versions

• Connector/C++ 8.0: Platform Support and Prerequisites

See Also Connector/C++, Connector/NET.

W
wait

 When an operation, such as acquiring a lock, mutex, or latch, cannot be completed immediately, InnoDB
pauses and tries again. The mechanism for pausing is elaborate enough that this operation has its own name,
the wait. Individual threads are paused using a combination of internal InnoDB scheduling, operating system
wait() calls, and short-duration spin loops.

On systems with heavy load and many transactions, you might use the output from the SHOW INNODB STATUS
command or Performance Schema to determine whether threads are spending too much time waiting, and if so,
how you can improve concurrency.
See Also concurrency, latch, lock, mutex, Performance Schema, spin.

warm backup
 A backup taken while the database is running, but that restricts some database operations during the backup
process. For example, tables might become read-only. For busy applications and websites, you might prefer a
hot backup.
See Also backup, cold backup, hot backup.

5367

https://dev.mysql.com/doc/connector-net/en/connector-net-versions.html
https://dev.mysql.com/doc/connector-cpp/9.4/en/connector-cpp-introduction.html#connector-cpp-prerequisites

warm up
 To run a system under a typical workload for some time after startup, so that the buffer pool and other memory
regions are filled as they would be under normal conditions. This process happens naturally over time when a
MySQL server is restarted or subjected to a new workload.

Typically, you run a workload for some time to warm up the buffer pool before running performance tests, to
ensure consistent results across multiple runs; otherwise, performance might be artificially low during the first run.

In MySQL 5.6, you can speed up the warmup process by enabling the
innodb_buffer_pool_dump_at_shutdown and innodb_buffer_pool_load_at_startup configuration
options, to bring the contents of the buffer pool back into memory after a restart. These options are enabled by
default in MySQL 5.7. See Section 14.8.3.6, “Saving and Restoring the Buffer Pool State”.
See Also buffer pool, workload.

workload
 The combination and volume of SQL and other database operations, performed by a database application
during typical or peak usage. You can subject the database to a particular workload during performance testing to
identify bottlenecks, or during capacity planning.
See Also bottleneck, CPU-bound, disk-bound, SQL.

write combining
 An optimization technique that reduces write operations when dirty pages are flushed from the InnoDB buffer
pool. If a row in a page is updated multiple times, or multiple rows on the same page are updated, all of those
changes are stored to the data files in a single write operation rather than one write for each change.
See Also buffer pool, dirty page, flush.

X
XA

 A standard interface for coordinating distributed transactions, allowing multiple databases to participate in a
transaction while maintaining ACID compliance. For full details, see Section 13.3.7, “XA Transactions”.

XA Distributed Transaction support is enabled by default. If you are not using this feature, you can disable the
innodb_support_xa configuration option, avoiding the performance overhead of an extra fsync for each
transaction.

As of MySQL 5.7.10, disabling innodb_support_xa is not permitted as it makes replication unsafe and
prevents performance gains associated with binary log group commit. The innodb_support_xa configuration
option is removed in MySQL 8.0.
See Also ACID, binary log, commit, transaction, two-phase commit.

Y
young

 A characteristic of a page in the InnoDB buffer pool meaning that it has been accessed recently, and so is
moved within the buffer pool data structure, so that it is not flushed too soon by the LRU algorithm. This term is
used in some INFORMATION_SCHEMA column names of tables related to the buffer pool.
See Also buffer pool, flush, INFORMATION_SCHEMA, LRU, page.

5368

	MySQL 5.7 Reference Manual
	Table of Contents
	Preface and Legal Notices
	Chapter 1 General Information
	1.1 About This Manual
	1.2 Overview of the MySQL Database Management System
	1.2.1 What is MySQL?
	1.2.2 The Main Features of MySQL
	1.2.3 History of MySQL

	1.3 What Is New in MySQL 5.7
	1.4 Server and Status Variables and Options Added, Deprecated, or Removed in MySQL 5.7
	1.5 How to Report Bugs or Problems
	1.6 MySQL Standards Compliance
	1.6.1 MySQL Extensions to Standard SQL
	1.6.2 MySQL Differences from Standard SQL
	1.6.2.1 SELECT INTO TABLE Differences
	1.6.2.2 UPDATE Differences
	1.6.2.3 FOREIGN KEY Constraint Differences
	1.6.2.4 '--' as the Start of a Comment

	1.6.3 How MySQL Deals with Constraints
	1.6.3.1 PRIMARY KEY and UNIQUE Index Constraints
	1.6.3.2 FOREIGN KEY Constraints
	1.6.3.3 Constraints on Invalid Data
	1.6.3.4 ENUM and SET Constraints

	Chapter 2 Installing and Upgrading MySQL
	2.1 General Installation Guidance
	2.1.1 Supported Platforms
	2.1.2 Which MySQL Version and Distribution to Install
	2.1.3 How to Get MySQL
	2.1.4 Verifying Package Integrity Using MD5 Checksums or GnuPG
	2.1.4.1 Verifying the MD5 Checksum
	2.1.4.2 Signature Checking Using GnuPG
	2.1.4.3 Signature Checking Using Gpg4win for Windows
	2.1.4.4 Signature Checking Using RPM
	2.1.4.5 GPG Public Build Key for Archived Packages

	2.1.5 Installation Layouts
	2.1.6 Compiler-Specific Build Characteristics

	2.2 Installing MySQL on Unix/Linux Using Generic Binaries
	2.3 Installing MySQL on Microsoft Windows
	2.3.1 MySQL Installation Layout on Microsoft Windows
	2.3.2 Choosing an Installation Package
	2.3.3 MySQL Installer for Windows
	2.3.3.1 MySQL Installer Initial Setup
	2.3.3.2 Setting Alternative Server Paths with MySQL Installer
	2.3.3.3 Installation Workflows with MySQL Installer
	MySQL Server Configuration with MySQL Installer
	Type and Networking
	Authentication Method
	Accounts and Roles
	Windows Service
	Server File Permissions
	Logging Options
	Advanced Options
	Apply Server Configuration

	MySQL Router Configuration with MySQL Installer

	2.3.3.4 MySQL Installer Product Catalog and Dashboard
	2.3.3.5 MySQL Installer Console Reference

	2.3.4 Installing MySQL on Microsoft Windows Using a noinstall ZIP Archive
	2.3.4.1 Extracting the Install Archive
	2.3.4.2 Creating an Option File
	2.3.4.3 Selecting a MySQL Server Type
	2.3.4.4 Initializing the Data Directory
	2.3.4.5 Starting the Server for the First Time
	2.3.4.6 Starting MySQL from the Windows Command Line
	2.3.4.7 Customizing the PATH for MySQL Tools
	2.3.4.8 Starting MySQL as a Windows Service
	2.3.4.9 Testing The MySQL Installation

	2.3.5 Troubleshooting a Microsoft Windows MySQL Server Installation
	2.3.6 Windows Postinstallation Procedures
	2.3.7 Windows Platform Restrictions

	2.4 Installing MySQL on macOS
	2.4.1 General Notes on Installing MySQL on macOS
	2.4.2 Installing MySQL on macOS Using Native Packages
	2.4.3 Installing a MySQL Launch Daemon
	2.4.4 Installing and Using the MySQL Preference Pane

	2.5 Installing MySQL on Linux
	2.5.1 Installing MySQL on Linux Using the MySQL Yum Repository
	2.5.2 Replacing a Third-Party Distribution of MySQL Using the MySQL Yum Repository
	2.5.3 Installing MySQL on Linux Using the MySQL APT Repository
	2.5.4 Installing MySQL on Linux Using the MySQL SLES Repository
	2.5.5 Installing MySQL on Linux Using RPM Packages from Oracle
	2.5.6 Installing MySQL on Linux Using Debian Packages from Oracle
	2.5.7 Deploying MySQL on Linux with Docker
	2.5.7.1 Basic Steps for MySQL Server Deployment with Docker
	2.5.7.2 More Topics on Deploying MySQL Server with Docker
	2.5.7.3 Deploying MySQL on Windows and Other Non-Linux Platforms with Docker

	2.5.8 Installing MySQL on Linux from the Native Software Repositories
	2.5.9 Installing MySQL on Linux with Juju
	2.5.10 Managing MySQL Server with systemd

	2.6 Installing MySQL Using Unbreakable Linux Network (ULN)
	2.7 Installing MySQL on Solaris
	2.7.1 Installing MySQL on Solaris Using a Solaris PKG

	2.8 Installing MySQL from Source
	2.8.1 Source Installation Methods
	2.8.2 Source Installation Prerequisites
	2.8.3 MySQL Layout for Source Installation
	2.8.4 Installing MySQL Using a Standard Source Distribution
	2.8.5 Installing MySQL Using a Development Source Tree
	2.8.6 Configuring SSL Library Support
	2.8.7 MySQL Source-Configuration Options
	2.8.8 Dealing with Problems Compiling MySQL
	2.8.9 MySQL Configuration and Third-Party Tools

	2.9 Postinstallation Setup and Testing
	2.9.1 Initializing the Data Directory
	2.9.2 Starting the Server
	2.9.2.1 Troubleshooting Problems Starting the MySQL Server

	2.9.3 Testing the Server
	2.9.4 Securing the Initial MySQL Account
	2.9.5 Starting and Stopping MySQL Automatically

	2.10 Upgrading MySQL
	2.10.1 Before You Begin
	2.10.2 Upgrade Paths
	2.10.3 Changes in MySQL 5.7
	2.10.4 Upgrading MySQL Binary or Package-based Installations on Unix/Linux
	2.10.5 Upgrading MySQL with the MySQL Yum Repository
	2.10.6 Upgrading MySQL with the MySQL APT Repository
	2.10.7 Upgrading MySQL with the MySQL SLES Repository
	2.10.8 Upgrading MySQL on Windows
	2.10.9 Upgrading a Docker Installation of MySQL
	2.10.10 Upgrading MySQL with Directly-Downloaded RPM Packages
	2.10.11 Upgrade Troubleshooting
	2.10.12 Rebuilding or Repairing Tables or Indexes
	2.10.13 Copying MySQL Databases to Another Machine

	2.11 Downgrading MySQL
	2.11.1 Before You Begin
	2.11.2 Downgrade Paths
	2.11.3 Downgrade Notes
	2.11.4 Downgrading Binary and Package-based Installations on Unix/Linux
	2.11.5 Downgrade Troubleshooting

	2.12 Perl Installation Notes
	2.12.1 Installing Perl on Unix
	2.12.2 Installing ActiveState Perl on Windows
	2.12.3 Problems Using the Perl DBI/DBD Interface

	Chapter 3 Tutorial
	3.1 Connecting to and Disconnecting from the Server
	3.2 Entering Queries
	3.3 Creating and Using a Database
	3.3.1 Creating and Selecting a Database
	3.3.2 Creating a Table
	3.3.3 Loading Data into a Table
	3.3.4 Retrieving Information from a Table
	3.3.4.1 Selecting All Data
	3.3.4.2 Selecting Particular Rows
	3.3.4.3 Selecting Particular Columns
	3.3.4.4 Sorting Rows
	3.3.4.5 Date Calculations
	3.3.4.6 Working with NULL Values
	3.3.4.7 Pattern Matching
	3.3.4.8 Counting Rows
	3.3.4.9 Using More Than one Table

	3.4 Getting Information About Databases and Tables
	3.5 Using mysql in Batch Mode
	3.6 Examples of Common Queries
	3.6.1 The Maximum Value for a Column
	3.6.2 The Row Holding the Maximum of a Certain Column
	3.6.3 Maximum of Column per Group
	3.6.4 The Rows Holding the Group-wise Maximum of a Certain Column
	3.6.5 Using User-Defined Variables
	3.6.6 Using Foreign Keys
	3.6.7 Searching on Two Keys
	3.6.8 Calculating Visits Per Day
	3.6.9 Using AUTO_INCREMENT

	3.7 Using MySQL with Apache

	Chapter 4 MySQL Programs
	4.1 Overview of MySQL Programs
	4.2 Using MySQL Programs
	4.2.1 Invoking MySQL Programs
	4.2.2 Specifying Program Options
	4.2.2.1 Using Options on the Command Line
	4.2.2.2 Using Option Files
	4.2.2.3 Command-Line Options that Affect Option-File Handling
	4.2.2.4 Program Option Modifiers
	4.2.2.5 Using Options to Set Program Variables
	4.2.2.6 Option Defaults, Options Expecting Values, and the = Sign

	4.2.3 Command Options for Connecting to the Server
	4.2.4 Connecting to the MySQL Server Using Command Options
	4.2.5 Connection Transport Protocols
	4.2.6 Connection Compression Control
	4.2.7 Setting Environment Variables

	4.3 Server and Server-Startup Programs
	4.3.1 mysqld — The MySQL Server
	4.3.2 mysqld_safe — MySQL Server Startup Script
	4.3.3 mysql.server — MySQL Server Startup Script
	4.3.4 mysqld_multi — Manage Multiple MySQL Servers

	4.4 Installation-Related Programs
	4.4.1 comp_err — Compile MySQL Error Message File
	4.4.2 mysql_install_db — Initialize MySQL Data Directory
	4.4.3 mysql_plugin — Configure MySQL Server Plugins
	4.4.4 mysql_secure_installation — Improve MySQL Installation Security
	4.4.5 mysql_ssl_rsa_setup — Create SSL/RSA Files
	4.4.6 mysql_tzinfo_to_sql — Load the Time Zone Tables
	4.4.7 mysql_upgrade — Check and Upgrade MySQL Tables

	4.5 Client Programs
	4.5.1 mysql — The MySQL Command-Line Client
	4.5.1.1 mysql Client Options
	4.5.1.2 mysql Client Commands
	4.5.1.3 mysql Client Logging
	4.5.1.4 mysql Client Server-Side Help
	4.5.1.5 Executing SQL Statements from a Text File
	4.5.1.6 mysql Client Tips

	4.5.2 mysqladmin — A MySQL Server Administration Program
	4.5.3 mysqlcheck — A Table Maintenance Program
	4.5.4 mysqldump — A Database Backup Program
	4.5.5 mysqlimport — A Data Import Program
	4.5.6 mysqlpump — A Database Backup Program
	4.5.7 mysqlshow — Display Database, Table, and Column Information
	4.5.8 mysqlslap — A Load Emulation Client

	4.6 Administrative and Utility Programs
	4.6.1 innochecksum — Offline InnoDB File Checksum Utility
	4.6.2 myisam_ftdump — Display Full-Text Index information
	4.6.3 myisamchk — MyISAM Table-Maintenance Utility
	4.6.3.1 myisamchk General Options
	4.6.3.2 myisamchk Check Options
	4.6.3.3 myisamchk Repair Options
	4.6.3.4 Other myisamchk Options
	4.6.3.5 Obtaining Table Information with myisamchk
	4.6.3.6 myisamchk Memory Usage

	4.6.4 myisamlog — Display MyISAM Log File Contents
	4.6.5 myisampack — Generate Compressed, Read-Only MyISAM Tables
	4.6.6 mysql_config_editor — MySQL Configuration Utility
	4.6.7 mysqlbinlog — Utility for Processing Binary Log Files
	4.6.7.1 mysqlbinlog Hex Dump Format
	4.6.7.2 mysqlbinlog Row Event Display
	4.6.7.3 Using mysqlbinlog to Back Up Binary Log Files
	4.6.7.4 Specifying the mysqlbinlog Server ID

	4.6.8 mysqldumpslow — Summarize Slow Query Log Files

	4.7 Program Development Utilities
	4.7.1 mysql_config — Display Options for Compiling Clients
	4.7.2 my_print_defaults — Display Options from Option Files
	4.7.3 resolve_stack_dump — Resolve Numeric Stack Trace Dump to Symbols

	4.8 Miscellaneous Programs
	4.8.1 lz4_decompress — Decompress mysqlpump LZ4-Compressed Output
	4.8.2 perror — Display MySQL Error Message Information
	4.8.3 replace — A String-Replacement Utility
	4.8.4 resolveip — Resolve Host name to IP Address or Vice Versa
	4.8.5 zlib_decompress — Decompress mysqlpump ZLIB-Compressed Output

	4.9 Environment Variables
	4.10 Unix Signal Handling in MySQL

	Chapter 5 MySQL Server Administration
	5.1 The MySQL Server
	5.1.1 Configuring the Server
	5.1.2 Server Configuration Defaults
	5.1.3 Server Option, System Variable, and Status Variable Reference
	5.1.4 Server System Variable Reference
	5.1.5 Server Status Variable Reference
	5.1.6 Server Command Options
	5.1.7 Server System Variables
	5.1.8 Using System Variables
	5.1.8.1 System Variable Privileges
	5.1.8.2 Dynamic System Variables
	5.1.8.3 Structured System Variables

	5.1.9 Server Status Variables
	5.1.10 Server SQL Modes
	5.1.11 Connection Management
	5.1.11.1 Connection Interfaces
	5.1.11.2 DNS Lookups and the Host Cache

	5.1.12 IPv6 Support
	5.1.12.1 Verifying System Support for IPv6
	5.1.12.2 Configuring the MySQL Server to Permit IPv6 Connections
	5.1.12.3 Connecting Using the IPv6 Local Host Address
	5.1.12.4 Connecting Using IPv6 Nonlocal Host Addresses
	5.1.12.5 Obtaining an IPv6 Address from a Broker

	5.1.13 MySQL Server Time Zone Support
	5.1.14 Server-Side Help Support
	5.1.15 Server Tracking of Client Session State
	5.1.16 The Server Shutdown Process

	5.2 The MySQL Data Directory
	5.3 The mysql System Database
	5.4 MySQL Server Logs
	5.4.1 Selecting General Query Log and Slow Query Log Output Destinations
	5.4.2 The Error Log
	5.4.2.1 Error Logging on Windows
	5.4.2.2 Error Logging on Unix and Unix-Like Systems
	5.4.2.3 Error Logging to the System Log
	5.4.2.4 Error Log Filtering
	5.4.2.5 Error Log Output Format
	5.4.2.6 Error Log File Flushing and Renaming

	5.4.3 The General Query Log
	5.4.4 The Binary Log
	5.4.4.1 Binary Logging Formats
	5.4.4.2 Setting The Binary Log Format
	5.4.4.3 Mixed Binary Logging Format
	5.4.4.4 Logging Format for Changes to mysql Database Tables

	5.4.5 The Slow Query Log
	5.4.6 The DDL Log
	5.4.7 Server Log Maintenance

	5.5 MySQL Server Plugins
	5.5.1 Installing and Uninstalling Plugins
	5.5.2 Obtaining Server Plugin Information
	5.5.3 MySQL Enterprise Thread Pool
	5.5.3.1 Thread Pool Elements
	5.5.3.2 Thread Pool Installation
	5.5.3.3 Thread Pool Operation
	5.5.3.4 Thread Pool Tuning

	5.5.4 The Rewriter Query Rewrite Plugin
	5.5.4.1 Installing or Uninstalling the Rewriter Query Rewrite Plugin
	5.5.4.2 Using the Rewriter Query Rewrite Plugin
	5.5.4.3 Rewriter Query Rewrite Plugin Reference
	Rewriter Query Rewrite Plugin Rules Table
	Rewriter Query Rewrite Plugin Procedures and Functions
	Rewriter Query Rewrite Plugin System Variables
	Rewriter Query Rewrite Plugin Status Variables

	5.5.5 Version Tokens
	5.5.5.1 Version Tokens Elements
	5.5.5.2 Installing or Uninstalling Version Tokens
	5.5.5.3 Using Version Tokens
	5.5.5.4 Version Tokens Reference

	5.5.6 MySQL Plugin Services
	5.5.6.1 The Locking Service
	The Locking Service C Interface
	The Locking Service Function Interface

	5.5.6.2 The Keyring Service

	5.6 MySQL Server Loadable Functions
	5.6.1 Installing and Uninstalling Loadable Functions
	5.6.2 Obtaining Information About Loadable Functions

	5.7 Running Multiple MySQL Instances on One Machine
	5.7.1 Setting Up Multiple Data Directories
	5.7.2 Running Multiple MySQL Instances on Windows
	5.7.2.1 Starting Multiple MySQL Instances at the Windows Command Line
	5.7.2.2 Starting Multiple MySQL Instances as Windows Services

	5.7.3 Running Multiple MySQL Instances on Unix
	5.7.4 Using Client Programs in a Multiple-Server Environment

	5.8 Debugging MySQL
	5.8.1 Debugging a MySQL Server
	5.8.1.1 Compiling MySQL for Debugging
	5.8.1.2 Creating Trace Files
	5.8.1.3 Using WER with PDB to create a Windows crashdump
	5.8.1.4 Debugging mysqld under gdb
	5.8.1.5 Using a Stack Trace
	5.8.1.6 Using Server Logs to Find Causes of Errors in mysqld
	5.8.1.7 Making a Test Case If You Experience Table Corruption

	5.8.2 Debugging a MySQL Client
	5.8.3 The DBUG Package
	5.8.4 Tracing mysqld Using DTrace
	5.8.4.1 mysqld DTrace Probe Reference
	Connection Probes
	Command Probes
	Query Probes
	Query Parsing Probes
	Query Cache Probes
	Query Execution Probes
	Row-Level Probes
	Read Row Probes
	Index Probes
	Lock Probes
	Filesort Probes
	Statement Probes
	Network Probes
	Keycache Probes

	Chapter 6 Security
	6.1 General Security Issues
	6.1.1 Security Guidelines
	6.1.2 Keeping Passwords Secure
	6.1.2.1 End-User Guidelines for Password Security
	6.1.2.2 Administrator Guidelines for Password Security
	6.1.2.3 Passwords and Logging
	6.1.2.4 Password Hashing in MySQL

	6.1.3 Making MySQL Secure Against Attackers
	6.1.4 Security-Related mysqld Options and Variables
	6.1.5 How to Run MySQL as a Normal User
	6.1.6 Security Considerations for LOAD DATA LOCAL
	6.1.7 Client Programming Security Guidelines

	6.2 Access Control and Account Management
	6.2.1 Account User Names and Passwords
	6.2.2 Privileges Provided by MySQL
	6.2.3 Grant Tables
	6.2.4 Specifying Account Names
	6.2.5 Access Control, Stage 1: Connection Verification
	6.2.6 Access Control, Stage 2: Request Verification
	6.2.7 Adding Accounts, Assigning Privileges, and Dropping Accounts
	6.2.8 Reserved Accounts
	6.2.9 When Privilege Changes Take Effect
	6.2.10 Assigning Account Passwords
	6.2.11 Password Management
	6.2.12 Server Handling of Expired Passwords
	6.2.13 Pluggable Authentication
	6.2.14 Proxy Users
	6.2.15 Account Locking
	6.2.16 Setting Account Resource Limits
	6.2.17 Troubleshooting Problems Connecting to MySQL
	6.2.18 SQL-Based Account Activity Auditing

	6.3 Using Encrypted Connections
	6.3.1 Configuring MySQL to Use Encrypted Connections
	6.3.2 Encrypted Connection TLS Protocols and Ciphers
	6.3.3 Creating SSL and RSA Certificates and Keys
	6.3.3.1 Creating SSL and RSA Certificates and Keys using MySQL
	6.3.3.2 Creating SSL Certificates and Keys Using openssl
	6.3.3.3 Creating RSA Keys Using openssl

	6.3.4 SSL Library-Dependent Capabilities
	6.3.5 Connecting to MySQL Remotely from Windows with SSH

	6.4 Security Plugins
	6.4.1 Authentication Plugins
	6.4.1.1 Native Pluggable Authentication
	6.4.1.2 Old Native Pluggable Authentication
	6.4.1.3 Migrating Away from Pre-4.1 Password Hashing and the mysql_old_password Plugin
	6.4.1.4 Caching SHA-2 Pluggable Authentication
	6.4.1.5 SHA-256 Pluggable Authentication
	6.4.1.6 Client-Side Cleartext Pluggable Authentication
	6.4.1.7 PAM Pluggable Authentication
	6.4.1.8 Windows Pluggable Authentication
	6.4.1.9 LDAP Pluggable Authentication
	6.4.1.10 No-Login Pluggable Authentication
	6.4.1.11 Socket Peer-Credential Pluggable Authentication
	6.4.1.12 Test Pluggable Authentication
	6.4.1.13 Pluggable Authentication System Variables

	6.4.2 Connection Control Plugins
	6.4.2.1 Connection Control Plugin Installation
	6.4.2.2 Connection Control Plugin System and Status Variables

	6.4.3 The Password Validation Plugin
	6.4.3.1 Password Validation Plugin Installation
	6.4.3.2 Password Validation Plugin Options and Variables

	6.4.4 The MySQL Keyring
	6.4.4.1 Keyring Plugin Installation
	6.4.4.2 Using the keyring_file File-Based Keyring Plugin
	6.4.4.3 Using the keyring_encrypted_file Encrypted File-Based Keyring Plugin
	6.4.4.4 Using the keyring_okv KMIP Plugin
	6.4.4.5 Using the keyring_aws Amazon Web Services Keyring Plugin
	6.4.4.6 Supported Keyring Key Types and Lengths
	6.4.4.7 Migrating Keys Between Keyring Keystores
	6.4.4.8 General-Purpose Keyring Key-Management Functions
	6.4.4.9 Plugin-Specific Keyring Key-Management Functions
	6.4.4.10 Keyring Metadata
	6.4.4.11 Keyring Command Options
	6.4.4.12 Keyring System Variables

	6.4.5 MySQL Enterprise Audit
	6.4.5.1 Elements of MySQL Enterprise Audit
	6.4.5.2 Installing or Uninstalling MySQL Enterprise Audit
	6.4.5.3 MySQL Enterprise Audit Security Considerations
	6.4.5.4 Audit Log File Formats
	6.4.5.5 Configuring Audit Logging Characteristics
	6.4.5.6 Reading Audit Log Files
	6.4.5.7 Audit Log Filtering
	6.4.5.8 Writing Audit Log Filter Definitions
	6.4.5.9 Disabling Audit Logging
	6.4.5.10 Legacy Mode Audit Log Filtering
	6.4.5.11 Audit Log Reference
	6.4.5.12 Audit Log Restrictions

	6.4.6 MySQL Enterprise Firewall
	6.4.6.1 Elements of MySQL Enterprise Firewall
	6.4.6.2 Installing or Uninstalling MySQL Enterprise Firewall
	6.4.6.3 Using MySQL Enterprise Firewall
	6.4.6.4 MySQL Enterprise Firewall Reference

	6.5 MySQL Enterprise Data Masking and De-Identification
	6.5.1 MySQL Enterprise Data Masking and De-Identification Elements
	6.5.2 Installing or Uninstalling MySQL Enterprise Data Masking and De-Identification
	6.5.3 Using MySQL Enterprise Data Masking and De-Identification
	6.5.4 MySQL Enterprise Data Masking and De-Identification Function Reference
	6.5.5 MySQL Enterprise Data Masking and De-Identification Function Descriptions

	6.6 MySQL Enterprise Encryption
	6.6.1 MySQL Enterprise Encryption Installation
	6.6.2 MySQL Enterprise Encryption Usage and Examples
	6.6.3 MySQL Enterprise Encryption Function Reference
	6.6.4 MySQL Enterprise Encryption Function Descriptions

	6.7 SELinux
	6.7.1 Check if SELinux is Enabled
	6.7.2 Changing the SELinux Mode
	6.7.3 MySQL Server SELinux Policies
	6.7.4 SELinux File Context
	6.7.5 SELinux TCP Port Context
	6.7.5.1 Setting the TCP Port Context for mysqld
	6.7.5.2 Setting the TCP Port Context for MySQL Features

	6.7.6 Troubleshooting SELinux

	Chapter 7 Backup and Recovery
	7.1 Backup and Recovery Types
	7.2 Database Backup Methods
	7.3 Example Backup and Recovery Strategy
	7.3.1 Establishing a Backup Policy
	7.3.2 Using Backups for Recovery
	7.3.3 Backup Strategy Summary

	7.4 Using mysqldump for Backups
	7.4.1 Dumping Data in SQL Format with mysqldump
	7.4.2 Reloading SQL-Format Backups
	7.4.3 Dumping Data in Delimited-Text Format with mysqldump
	7.4.4 Reloading Delimited-Text Format Backups
	7.4.5 mysqldump Tips
	7.4.5.1 Making a Copy of a Database
	7.4.5.2 Copy a Database from one Server to Another
	7.4.5.3 Dumping Stored Programs
	7.4.5.4 Dumping Table Definitions and Content Separately
	7.4.5.5 Using mysqldump to Test for Upgrade Incompatibilities

	7.5 Point-in-Time (Incremental) Recovery
	7.5.1 Point-in-Time Recovery Using Binary Log
	7.5.2 Point-in-Time Recovery Using Event Positions

	7.6 MyISAM Table Maintenance and Crash Recovery
	7.6.1 Using myisamchk for Crash Recovery
	7.6.2 How to Check MyISAM Tables for Errors
	7.6.3 How to Repair MyISAM Tables
	7.6.4 MyISAM Table Optimization
	7.6.5 Setting Up a MyISAM Table Maintenance Schedule

	Chapter 8 Optimization
	8.1 Optimization Overview
	8.2 Optimizing SQL Statements
	8.2.1 Optimizing SELECT Statements
	8.2.1.1 WHERE Clause Optimization
	8.2.1.2 Range Optimization
	8.2.1.3 Index Merge Optimization
	8.2.1.4 Engine Condition Pushdown Optimization
	8.2.1.5 Index Condition Pushdown Optimization
	8.2.1.6 Nested-Loop Join Algorithms
	8.2.1.7 Nested Join Optimization
	8.2.1.8 Outer Join Optimization
	8.2.1.9 Outer Join Simplification
	8.2.1.10 Multi-Range Read Optimization
	8.2.1.11 Block Nested-Loop and Batched Key Access Joins
	8.2.1.12 Condition Filtering
	8.2.1.13 IS NULL Optimization
	8.2.1.14 ORDER BY Optimization
	8.2.1.15 GROUP BY Optimization
	8.2.1.16 DISTINCT Optimization
	8.2.1.17 LIMIT Query Optimization
	8.2.1.18 Function Call Optimization
	8.2.1.19 Row Constructor Expression Optimization
	8.2.1.20 Avoiding Full Table Scans

	8.2.2 Optimizing Subqueries, Derived Tables, and View References
	8.2.2.1 Optimizing Subqueries, Derived Tables, and View References with Semijoin Transformations
	8.2.2.2 Optimizing Subqueries with Materialization
	8.2.2.3 Optimizing Subqueries with the EXISTS Strategy
	8.2.2.4 Optimizing Derived Tables and View References with Merging or Materialization

	8.2.3 Optimizing INFORMATION_SCHEMA Queries
	8.2.4 Optimizing Data Change Statements
	8.2.4.1 Optimizing INSERT Statements
	8.2.4.2 Optimizing UPDATE Statements
	8.2.4.3 Optimizing DELETE Statements

	8.2.5 Optimizing Database Privileges
	8.2.6 Other Optimization Tips

	8.3 Optimization and Indexes
	8.3.1 How MySQL Uses Indexes
	8.3.2 Primary Key Optimization
	8.3.3 Foreign Key Optimization
	8.3.4 Column Indexes
	8.3.5 Multiple-Column Indexes
	8.3.6 Verifying Index Usage
	8.3.7 InnoDB and MyISAM Index Statistics Collection
	8.3.8 Comparison of B-Tree and Hash Indexes
	8.3.9 Use of Index Extensions
	8.3.10 Optimizer Use of Generated Column Indexes
	8.3.11 Indexed Lookups from TIMESTAMP Columns

	8.4 Optimizing Database Structure
	8.4.1 Optimizing Data Size
	8.4.2 Optimizing MySQL Data Types
	8.4.2.1 Optimizing for Numeric Data
	8.4.2.2 Optimizing for Character and String Types
	8.4.2.3 Optimizing for BLOB Types
	8.4.2.4 Using PROCEDURE ANALYSE

	8.4.3 Optimizing for Many Tables
	8.4.3.1 How MySQL Opens and Closes Tables
	8.4.3.2 Disadvantages of Creating Many Tables in the Same Database

	8.4.4 Internal Temporary Table Use in MySQL
	8.4.5 Limits on Number of Databases and Tables
	8.4.6 Limits on Table Size
	8.4.7 Limits on Table Column Count and Row Size

	8.5 Optimizing for InnoDB Tables
	8.5.1 Optimizing Storage Layout for InnoDB Tables
	8.5.2 Optimizing InnoDB Transaction Management
	8.5.3 Optimizing InnoDB Read-Only Transactions
	8.5.4 Optimizing InnoDB Redo Logging
	8.5.5 Bulk Data Loading for InnoDB Tables
	8.5.6 Optimizing InnoDB Queries
	8.5.7 Optimizing InnoDB DDL Operations
	8.5.8 Optimizing InnoDB Disk I/O
	8.5.9 Optimizing InnoDB Configuration Variables
	8.5.10 Optimizing InnoDB for Systems with Many Tables

	8.6 Optimizing for MyISAM Tables
	8.6.1 Optimizing MyISAM Queries
	8.6.2 Bulk Data Loading for MyISAM Tables
	8.6.3 Optimizing REPAIR TABLE Statements

	8.7 Optimizing for MEMORY Tables
	8.8 Understanding the Query Execution Plan
	8.8.1 Optimizing Queries with EXPLAIN
	8.8.2 EXPLAIN Output Format
	8.8.3 Extended EXPLAIN Output Format
	8.8.4 Obtaining Execution Plan Information for a Named Connection
	8.8.5 Estimating Query Performance

	8.9 Controlling the Query Optimizer
	8.9.1 Controlling Query Plan Evaluation
	8.9.2 Switchable Optimizations
	8.9.3 Optimizer Hints
	8.9.4 Index Hints
	8.9.5 The Optimizer Cost Model

	8.10 Buffering and Caching
	8.10.1 InnoDB Buffer Pool Optimization
	8.10.2 The MyISAM Key Cache
	8.10.2.1 Shared Key Cache Access
	8.10.2.2 Multiple Key Caches
	8.10.2.3 Midpoint Insertion Strategy
	8.10.2.4 Index Preloading
	8.10.2.5 Key Cache Block Size
	8.10.2.6 Restructuring a Key Cache

	8.10.3 The MySQL Query Cache
	8.10.3.1 How the Query Cache Operates
	8.10.3.2 Query Cache SELECT Options
	8.10.3.3 Query Cache Configuration
	8.10.3.4 Query Cache Status and Maintenance

	8.10.4 Caching of Prepared Statements and Stored Programs

	8.11 Optimizing Locking Operations
	8.11.1 Internal Locking Methods
	8.11.2 Table Locking Issues
	8.11.3 Concurrent Inserts
	8.11.4 Metadata Locking
	8.11.5 External Locking

	8.12 Optimizing the MySQL Server
	8.12.1 System Factors
	8.12.2 Optimizing Disk I/O
	8.12.3 Using Symbolic Links
	8.12.3.1 Using Symbolic Links for Databases on Unix
	8.12.3.2 Using Symbolic Links for MyISAM Tables on Unix
	8.12.3.3 Using Symbolic Links for Databases on Windows

	8.12.4 Optimizing Memory Use
	8.12.4.1 How MySQL Uses Memory
	8.12.4.2 Monitoring MySQL Memory Usage
	8.12.4.3 Enabling Large Page Support

	8.13 Measuring Performance (Benchmarking)
	8.13.1 Measuring the Speed of Expressions and Functions
	8.13.2 Using Your Own Benchmarks
	8.13.3 Measuring Performance with performance_schema

	8.14 Examining Server Thread (Process) Information
	8.14.1 Accessing the Process List
	8.14.2 Thread Command Values
	8.14.3 General Thread States
	8.14.4 Query Cache Thread States
	8.14.5 Replication Source Thread States
	8.14.6 Replication Replica I/O Thread States
	8.14.7 Replication Replica SQL Thread States
	8.14.8 Replication Replica Connection Thread States
	8.14.9 NDB Cluster Thread States
	8.14.10 Event Scheduler Thread States

	8.15 Tracing the Optimizer
	8.15.1 Typical Usage
	8.15.2 System Variables Controlling Tracing
	8.15.3 Traceable Statements
	8.15.4 Tuning Trace Purging
	8.15.5 Tracing Memory Usage
	8.15.6 Privilege Checking
	8.15.7 Interaction with the --debug Option
	8.15.8 The optimizer_trace System Variable
	8.15.9 The end_markers_in_json System Variable
	8.15.10 Selecting Optimizer Features to Trace
	8.15.11 Trace General Structure
	8.15.12 Example
	8.15.13 Displaying Traces in Other Applications
	8.15.14 Preventing the Use of Optimizer Trace
	8.15.15 Testing Optimizer Trace
	8.15.16 Optimizer Trace Implementation

	Chapter 9 Language Structure
	9.1 Literal Values
	9.1.1 String Literals
	9.1.2 Numeric Literals
	9.1.3 Date and Time Literals
	9.1.4 Hexadecimal Literals
	9.1.5 Bit-Value Literals
	9.1.6 Boolean Literals
	9.1.7 NULL Values

	9.2 Schema Object Names
	9.2.1 Identifier Length Limits
	9.2.2 Identifier Qualifiers
	9.2.3 Identifier Case Sensitivity
	9.2.4 Mapping of Identifiers to File Names
	9.2.5 Function Name Parsing and Resolution

	9.3 Keywords and Reserved Words
	9.4 User-Defined Variables
	9.5 Expressions
	9.6 Comments

	Chapter 10 Character Sets, Collations, Unicode
	10.1 Character Sets and Collations in General
	10.2 Character Sets and Collations in MySQL
	10.2.1 Character Set Repertoire
	10.2.2 UTF-8 for Metadata

	10.3 Specifying Character Sets and Collations
	10.3.1 Collation Naming Conventions
	10.3.2 Server Character Set and Collation
	10.3.3 Database Character Set and Collation
	10.3.4 Table Character Set and Collation
	10.3.5 Column Character Set and Collation
	10.3.6 Character String Literal Character Set and Collation
	10.3.7 The National Character Set
	10.3.8 Character Set Introducers
	10.3.9 Examples of Character Set and Collation Assignment
	10.3.10 Compatibility with Other DBMSs

	10.4 Connection Character Sets and Collations
	10.5 Configuring Application Character Set and Collation
	10.6 Error Message Character Set
	10.7 Column Character Set Conversion
	10.8 Collation Issues
	10.8.1 Using COLLATE in SQL Statements
	10.8.2 COLLATE Clause Precedence
	10.8.3 Character Set and Collation Compatibility
	10.8.4 Collation Coercibility in Expressions
	10.8.5 The binary Collation Compared to _bin Collations
	10.8.6 Examples of the Effect of Collation
	10.8.7 Using Collation in INFORMATION_SCHEMA Searches

	10.9 Unicode Support
	10.9.1 The utf8mb4 Character Set (4-Byte UTF-8 Unicode Encoding)
	10.9.2 The utf8mb3 Character Set (3-Byte UTF-8 Unicode Encoding)
	10.9.3 The utf8 Character Set (Alias for utf8mb3)
	10.9.4 The ucs2 Character Set (UCS-2 Unicode Encoding)
	10.9.5 The utf16 Character Set (UTF-16 Unicode Encoding)
	10.9.6 The utf16le Character Set (UTF-16LE Unicode Encoding)
	10.9.7 The utf32 Character Set (UTF-32 Unicode Encoding)
	10.9.8 Converting Between 3-Byte and 4-Byte Unicode Character Sets

	10.10 Supported Character Sets and Collations
	10.10.1 Unicode Character Sets
	10.10.2 West European Character Sets
	10.10.3 Central European Character Sets
	10.10.4 South European and Middle East Character Sets
	10.10.5 Baltic Character Sets
	10.10.6 Cyrillic Character Sets
	10.10.7 Asian Character Sets
	10.10.7.1 The cp932 Character Set
	10.10.7.2 The gb18030 Character Set

	10.10.8 The Binary Character Set

	10.11 Restrictions on Character Sets
	10.12 Setting the Error Message Language
	10.13 Adding a Character Set
	10.13.1 Character Definition Arrays
	10.13.2 String Collating Support for Complex Character Sets
	10.13.3 Multi-Byte Character Support for Complex Character Sets

	10.14 Adding a Collation to a Character Set
	10.14.1 Collation Implementation Types
	10.14.2 Choosing a Collation ID
	10.14.3 Adding a Simple Collation to an 8-Bit Character Set
	10.14.4 Adding a UCA Collation to a Unicode Character Set
	10.14.4.1 Defining a UCA Collation Using LDML Syntax
	10.14.4.2 LDML Syntax Supported in MySQL
	10.14.4.3 Diagnostics During Index.xml Parsing

	10.15 Character Set Configuration
	10.16 MySQL Server Locale Support

	Chapter 11 Data Types
	11.1 Numeric Data Types
	11.1.1 Numeric Data Type Syntax
	11.1.2 Integer Types (Exact Value) - INTEGER, INT, SMALLINT, TINYINT, MEDIUMINT, BIGINT
	11.1.3 Fixed-Point Types (Exact Value) - DECIMAL, NUMERIC
	11.1.4 Floating-Point Types (Approximate Value) - FLOAT, DOUBLE
	11.1.5 Bit-Value Type - BIT
	11.1.6 Numeric Type Attributes
	11.1.7 Out-of-Range and Overflow Handling

	11.2 Date and Time Data Types
	11.2.1 Date and Time Data Type Syntax
	11.2.2 The DATE, DATETIME, and TIMESTAMP Types
	11.2.3 The TIME Type
	11.2.4 The YEAR Type
	11.2.5 2-Digit YEAR(2) Limitations and Migrating to 4-Digit YEAR
	11.2.6 Automatic Initialization and Updating for TIMESTAMP and DATETIME
	11.2.7 Fractional Seconds in Time Values
	11.2.8 What Calendar Is Used By MySQL?
	11.2.9 Conversion Between Date and Time Types
	11.2.10 2-Digit Years in Dates

	11.3 String Data Types
	11.3.1 String Data Type Syntax
	11.3.2 The CHAR and VARCHAR Types
	11.3.3 The BINARY and VARBINARY Types
	11.3.4 The BLOB and TEXT Types
	11.3.5 The ENUM Type
	11.3.6 The SET Type

	11.4 Spatial Data Types
	11.4.1 Spatial Data Types
	11.4.2 The OpenGIS Geometry Model
	11.4.2.1 The Geometry Class Hierarchy
	11.4.2.2 Geometry Class
	11.4.2.3 Point Class
	11.4.2.4 Curve Class
	11.4.2.5 LineString Class
	11.4.2.6 Surface Class
	11.4.2.7 Polygon Class
	11.4.2.8 GeometryCollection Class
	11.4.2.9 MultiPoint Class
	11.4.2.10 MultiCurve Class
	11.4.2.11 MultiLineString Class
	11.4.2.12 MultiSurface Class
	11.4.2.13 MultiPolygon Class

	11.4.3 Supported Spatial Data Formats
	11.4.4 Geometry Well-Formedness and Validity
	11.4.5 Creating Spatial Columns
	11.4.6 Populating Spatial Columns
	11.4.7 Fetching Spatial Data
	11.4.8 Optimizing Spatial Analysis
	11.4.9 Creating Spatial Indexes
	11.4.10 Using Spatial Indexes

	11.5 The JSON Data Type
	11.6 Data Type Default Values
	11.7 Data Type Storage Requirements
	11.8 Choosing the Right Type for a Column
	11.9 Using Data Types from Other Database Engines

	Chapter 12 Functions and Operators
	12.1 Built-In Function and Operator Reference
	12.2 Loadable Function Reference
	12.3 Type Conversion in Expression Evaluation
	12.4 Operators
	12.4.1 Operator Precedence
	12.4.2 Comparison Functions and Operators
	12.4.3 Logical Operators
	12.4.4 Assignment Operators

	12.5 Flow Control Functions
	12.6 Numeric Functions and Operators
	12.6.1 Arithmetic Operators
	12.6.2 Mathematical Functions

	12.7 Date and Time Functions
	12.8 String Functions and Operators
	12.8.1 String Comparison Functions and Operators
	12.8.2 Regular Expressions
	12.8.3 Character Set and Collation of Function Results

	12.9 Full-Text Search Functions
	12.9.1 Natural Language Full-Text Searches
	12.9.2 Boolean Full-Text Searches
	12.9.3 Full-Text Searches with Query Expansion
	12.9.4 Full-Text Stopwords
	12.9.5 Full-Text Restrictions
	12.9.6 Fine-Tuning MySQL Full-Text Search
	12.9.7 Adding a User-Defined Collation for Full-Text Indexing
	12.9.8 ngram Full-Text Parser
	12.9.9 MeCab Full-Text Parser Plugin

	12.10 Cast Functions and Operators
	12.11 XML Functions
	12.12 Bit Functions and Operators
	12.13 Encryption and Compression Functions
	12.14 Locking Functions
	12.15 Information Functions
	12.16 Spatial Analysis Functions
	12.16.1 Spatial Function Reference
	12.16.2 Argument Handling by Spatial Functions
	12.16.3 Functions That Create Geometry Values from WKT Values
	12.16.4 Functions That Create Geometry Values from WKB Values
	12.16.5 MySQL-Specific Functions That Create Geometry Values
	12.16.6 Geometry Format Conversion Functions
	12.16.7 Geometry Property Functions
	12.16.7.1 General Geometry Property Functions
	12.16.7.2 Point Property Functions
	12.16.7.3 LineString and MultiLineString Property Functions
	12.16.7.4 Polygon and MultiPolygon Property Functions
	12.16.7.5 GeometryCollection Property Functions

	12.16.8 Spatial Operator Functions
	12.16.9 Functions That Test Spatial Relations Between Geometry Objects
	12.16.9.1 Spatial Relation Functions That Use Object Shapes
	12.16.9.2 Spatial Relation Functions That Use Minimum Bounding Rectangles

	12.16.10 Spatial Geohash Functions
	12.16.11 Spatial GeoJSON Functions
	12.16.12 Spatial Convenience Functions

	12.17 JSON Functions
	12.17.1 JSON Function Reference
	12.17.2 Functions That Create JSON Values
	12.17.3 Functions That Search JSON Values
	12.17.4 Functions That Modify JSON Values
	12.17.5 Functions That Return JSON Value Attributes
	12.17.6 JSON Utility Functions

	12.18 Functions Used with Global Transaction Identifiers (GTIDs)
	12.19 Aggregate Functions
	12.19.1 Aggregate Function Descriptions
	12.19.2 GROUP BY Modifiers
	12.19.3 MySQL Handling of GROUP BY
	12.19.4 Detection of Functional Dependence

	12.20 Miscellaneous Functions
	12.21 Precision Math
	12.21.1 Types of Numeric Values
	12.21.2 DECIMAL Data Type Characteristics
	12.21.3 Expression Handling
	12.21.4 Rounding Behavior
	12.21.5 Precision Math Examples

	Chapter 13 SQL Statements
	13.1 Data Definition Statements
	13.1.1 ALTER DATABASE Statement
	13.1.2 ALTER EVENT Statement
	13.1.3 ALTER FUNCTION Statement
	13.1.4 ALTER INSTANCE Statement
	13.1.5 ALTER LOGFILE GROUP Statement
	13.1.6 ALTER PROCEDURE Statement
	13.1.7 ALTER SERVER Statement
	13.1.8 ALTER TABLE Statement
	13.1.8.1 ALTER TABLE Partition Operations
	13.1.8.2 ALTER TABLE and Generated Columns
	13.1.8.3 ALTER TABLE Examples

	13.1.9 ALTER TABLESPACE Statement
	13.1.10 ALTER VIEW Statement
	13.1.11 CREATE DATABASE Statement
	13.1.12 CREATE EVENT Statement
	13.1.13 CREATE FUNCTION Statement
	13.1.14 CREATE INDEX Statement
	13.1.15 CREATE LOGFILE GROUP Statement
	13.1.16 CREATE PROCEDURE and CREATE FUNCTION Statements
	13.1.17 CREATE SERVER Statement
	13.1.18 CREATE TABLE Statement
	13.1.18.1 Files Created by CREATE TABLE
	13.1.18.2 CREATE TEMPORARY TABLE Statement
	13.1.18.3 CREATE TABLE ... LIKE Statement
	13.1.18.4 CREATE TABLE ... SELECT Statement
	13.1.18.5 FOREIGN KEY Constraints
	13.1.18.6 Silent Column Specification Changes
	13.1.18.7 CREATE TABLE and Generated Columns
	13.1.18.8 Secondary Indexes and Generated Columns
	13.1.18.9 Setting NDB Comment Options

	13.1.19 CREATE TABLESPACE Statement
	13.1.20 CREATE TRIGGER Statement
	13.1.21 CREATE VIEW Statement
	13.1.22 DROP DATABASE Statement
	13.1.23 DROP EVENT Statement
	13.1.24 DROP FUNCTION Statement
	13.1.25 DROP INDEX Statement
	13.1.26 DROP LOGFILE GROUP Statement
	13.1.27 DROP PROCEDURE and DROP FUNCTION Statements
	13.1.28 DROP SERVER Statement
	13.1.29 DROP TABLE Statement
	13.1.30 DROP TABLESPACE Statement
	13.1.31 DROP TRIGGER Statement
	13.1.32 DROP VIEW Statement
	13.1.33 RENAME TABLE Statement
	13.1.34 TRUNCATE TABLE Statement

	13.2 Data Manipulation Statements
	13.2.1 CALL Statement
	13.2.2 DELETE Statement
	13.2.3 DO Statement
	13.2.4 HANDLER Statement
	13.2.5 INSERT Statement
	13.2.5.1 INSERT ... SELECT Statement
	13.2.5.2 INSERT ... ON DUPLICATE KEY UPDATE Statement
	13.2.5.3 INSERT DELAYED Statement

	13.2.6 LOAD DATA Statement
	13.2.7 LOAD XML Statement
	13.2.8 REPLACE Statement
	13.2.9 SELECT Statement
	13.2.9.1 SELECT ... INTO Statement
	13.2.9.2 JOIN Clause
	13.2.9.3 UNION Clause

	13.2.10 Subqueries
	13.2.10.1 The Subquery as Scalar Operand
	13.2.10.2 Comparisons Using Subqueries
	13.2.10.3 Subqueries with ANY, IN, or SOME
	13.2.10.4 Subqueries with ALL
	13.2.10.5 Row Subqueries
	13.2.10.6 Subqueries with EXISTS or NOT EXISTS
	13.2.10.7 Correlated Subqueries
	13.2.10.8 Derived Tables
	13.2.10.9 Subquery Errors
	13.2.10.10 Optimizing Subqueries
	13.2.10.11 Rewriting Subqueries as Joins
	13.2.10.12 Restrictions on Subqueries

	13.2.11 UPDATE Statement

	13.3 Transactional and Locking Statements
	13.3.1 START TRANSACTION, COMMIT, and ROLLBACK Statements
	13.3.2 Statements That Cannot Be Rolled Back
	13.3.3 Statements That Cause an Implicit Commit
	13.3.4 SAVEPOINT, ROLLBACK TO SAVEPOINT, and RELEASE SAVEPOINT Statements
	13.3.5 LOCK TABLES and UNLOCK TABLES Statements
	13.3.6 SET TRANSACTION Statement
	13.3.7 XA Transactions
	13.3.7.1 XA Transaction SQL Statements
	13.3.7.2 XA Transaction States
	13.3.7.3 Restrictions on XA Transactions

	13.4 Replication Statements
	13.4.1 SQL Statements for Controlling Replication Source Servers
	13.4.1.1 PURGE BINARY LOGS Statement
	13.4.1.2 RESET MASTER Statement
	13.4.1.3 SET sql_log_bin Statement

	13.4.2 SQL Statements for Controlling Replica Servers
	13.4.2.1 CHANGE MASTER TO Statement
	13.4.2.2 CHANGE REPLICATION FILTER Statement
	13.4.2.3 RESET SLAVE Statement
	13.4.2.4 SET GLOBAL sql_slave_skip_counter Syntax
	13.4.2.5 START SLAVE Statement
	13.4.2.6 STOP SLAVE Statement

	13.4.3 SQL Statements for Controlling Group Replication
	13.4.3.1 START GROUP_REPLICATION Statement
	13.4.3.2 STOP GROUP_REPLICATION Statement

	13.5 Prepared Statements
	13.5.1 PREPARE Statement
	13.5.2 EXECUTE Statement
	13.5.3 DEALLOCATE PREPARE Statement

	13.6 Compound Statements
	13.6.1 BEGIN ... END Compound Statement
	13.6.2 Statement Labels
	13.6.3 DECLARE Statement
	13.6.4 Variables in Stored Programs
	13.6.4.1 Local Variable DECLARE Statement
	13.6.4.2 Local Variable Scope and Resolution

	13.6.5 Flow Control Statements
	13.6.5.1 CASE Statement
	13.6.5.2 IF Statement
	13.6.5.3 ITERATE Statement
	13.6.5.4 LEAVE Statement
	13.6.5.5 LOOP Statement
	13.6.5.6 REPEAT Statement
	13.6.5.7 RETURN Statement
	13.6.5.8 WHILE Statement

	13.6.6 Cursors
	13.6.6.1 Cursor CLOSE Statement
	13.6.6.2 Cursor DECLARE Statement
	13.6.6.3 Cursor FETCH Statement
	13.6.6.4 Cursor OPEN Statement
	13.6.6.5 Restrictions on Server-Side Cursors

	13.6.7 Condition Handling
	13.6.7.1 DECLARE ... CONDITION Statement
	13.6.7.2 DECLARE ... HANDLER Statement
	13.6.7.3 GET DIAGNOSTICS Statement
	13.6.7.4 RESIGNAL Statement
	13.6.7.5 SIGNAL Statement
	13.6.7.6 Scope Rules for Handlers
	13.6.7.7 The MySQL Diagnostics Area
	13.6.7.8 Condition Handling and OUT or INOUT Parameters
	13.6.7.9 Restrictions on Condition Handling

	13.7 Database Administration Statements
	13.7.1 Account Management Statements
	13.7.1.1 ALTER USER Statement
	13.7.1.2 CREATE USER Statement
	13.7.1.3 DROP USER Statement
	13.7.1.4 GRANT Statement
	13.7.1.5 RENAME USER Statement
	13.7.1.6 REVOKE Statement
	13.7.1.7 SET PASSWORD Statement

	13.7.2 Table Maintenance Statements
	13.7.2.1 ANALYZE TABLE Statement
	13.7.2.2 CHECK TABLE Statement
	13.7.2.3 CHECKSUM TABLE Statement
	13.7.2.4 OPTIMIZE TABLE Statement
	13.7.2.5 REPAIR TABLE Statement

	13.7.3 Plugin and Loadable Function Statements
	13.7.3.1 CREATE FUNCTION Statement for Loadable Functions
	13.7.3.2 DROP FUNCTION Statement for Loadable Functions
	13.7.3.3 INSTALL PLUGIN Statement
	13.7.3.4 UNINSTALL PLUGIN Statement

	13.7.4 SET Statements
	13.7.4.1 SET Syntax for Variable Assignment
	13.7.4.2 SET CHARACTER SET Statement
	13.7.4.3 SET NAMES Statement

	13.7.5 SHOW Statements
	13.7.5.1 SHOW BINARY LOGS Statement
	13.7.5.2 SHOW BINLOG EVENTS Statement
	13.7.5.3 SHOW CHARACTER SET Statement
	13.7.5.4 SHOW COLLATION Statement
	13.7.5.5 SHOW COLUMNS Statement
	13.7.5.6 SHOW CREATE DATABASE Statement
	13.7.5.7 SHOW CREATE EVENT Statement
	13.7.5.8 SHOW CREATE FUNCTION Statement
	13.7.5.9 SHOW CREATE PROCEDURE Statement
	13.7.5.10 SHOW CREATE TABLE Statement
	13.7.5.11 SHOW CREATE TRIGGER Statement
	13.7.5.12 SHOW CREATE USER Statement
	13.7.5.13 SHOW CREATE VIEW Statement
	13.7.5.14 SHOW DATABASES Statement
	13.7.5.15 SHOW ENGINE Statement
	13.7.5.16 SHOW ENGINES Statement
	13.7.5.17 SHOW ERRORS Statement
	13.7.5.18 SHOW EVENTS Statement
	13.7.5.19 SHOW FUNCTION CODE Statement
	13.7.5.20 SHOW FUNCTION STATUS Statement
	13.7.5.21 SHOW GRANTS Statement
	13.7.5.22 SHOW INDEX Statement
	13.7.5.23 SHOW MASTER STATUS Statement
	13.7.5.24 SHOW OPEN TABLES Statement
	13.7.5.25 SHOW PLUGINS Statement
	13.7.5.26 SHOW PRIVILEGES Statement
	13.7.5.27 SHOW PROCEDURE CODE Statement
	13.7.5.28 SHOW PROCEDURE STATUS Statement
	13.7.5.29 SHOW PROCESSLIST Statement
	13.7.5.30 SHOW PROFILE Statement
	13.7.5.31 SHOW PROFILES Statement
	13.7.5.32 SHOW RELAYLOG EVENTS Statement
	13.7.5.33 SHOW SLAVE HOSTS Statement
	13.7.5.34 SHOW SLAVE STATUS Statement
	13.7.5.35 SHOW STATUS Statement
	13.7.5.36 SHOW TABLE STATUS Statement
	13.7.5.37 SHOW TABLES Statement
	13.7.5.38 SHOW TRIGGERS Statement
	13.7.5.39 SHOW VARIABLES Statement
	13.7.5.40 SHOW WARNINGS Statement

	13.7.6 Other Administrative Statements
	13.7.6.1 BINLOG Statement
	13.7.6.2 CACHE INDEX Statement
	13.7.6.3 FLUSH Statement
	13.7.6.4 KILL Statement
	13.7.6.5 LOAD INDEX INTO CACHE Statement
	13.7.6.6 RESET Statement
	13.7.6.7 SHUTDOWN Statement

	13.8 Utility Statements
	13.8.1 DESCRIBE Statement
	13.8.2 EXPLAIN Statement
	13.8.3 HELP Statement
	13.8.4 USE Statement

	Chapter 14 The InnoDB Storage Engine
	14.1 Introduction to InnoDB
	14.1.1 Benefits of Using InnoDB Tables
	14.1.2 Best Practices for InnoDB Tables
	14.1.3 Verifying that InnoDB is the Default Storage Engine
	14.1.4 Testing and Benchmarking with InnoDB
	14.1.5 Turning Off InnoDB

	14.2 InnoDB and the ACID Model
	14.3 InnoDB Multi-Versioning
	14.4 InnoDB Architecture
	14.5 InnoDB In-Memory Structures
	14.5.1 Buffer Pool
	14.5.2 Change Buffer
	14.5.3 Adaptive Hash Index
	14.5.4 Log Buffer

	14.6 InnoDB On-Disk Structures
	14.6.1 Tables
	14.6.1.1 Creating InnoDB Tables
	14.6.1.2 Creating Tables Externally
	14.6.1.3 Importing InnoDB Tables
	14.6.1.4 Moving or Copying InnoDB Tables
	14.6.1.5 Converting Tables from MyISAM to InnoDB
	14.6.1.6 AUTO_INCREMENT Handling in InnoDB

	14.6.2 Indexes
	14.6.2.1 Clustered and Secondary Indexes
	14.6.2.2 The Physical Structure of an InnoDB Index
	14.6.2.3 Sorted Index Builds
	14.6.2.4 InnoDB Full-Text Indexes

	14.6.3 Tablespaces
	14.6.3.1 The System Tablespace
	14.6.3.2 File-Per-Table Tablespaces
	14.6.3.3 General Tablespaces
	14.6.3.4 Undo Tablespaces
	14.6.3.5 The Temporary Tablespace

	14.6.4 InnoDB Data Dictionary
	14.6.5 Doublewrite Buffer
	14.6.6 Redo Log
	14.6.7 Undo Logs

	14.7 InnoDB Locking and Transaction Model
	14.7.1 InnoDB Locking
	14.7.2 InnoDB Transaction Model
	14.7.2.1 Transaction Isolation Levels
	14.7.2.2 autocommit, Commit, and Rollback
	14.7.2.3 Consistent Nonlocking Reads
	14.7.2.4 Locking Reads

	14.7.3 Locks Set by Different SQL Statements in InnoDB
	14.7.4 Phantom Rows
	14.7.5 Deadlocks in InnoDB
	14.7.5.1 An InnoDB Deadlock Example
	14.7.5.2 Deadlock Detection
	14.7.5.3 How to Minimize and Handle Deadlocks

	14.8 InnoDB Configuration
	14.8.1 InnoDB Startup Configuration
	14.8.2 Configuring InnoDB for Read-Only Operation
	14.8.3 InnoDB Buffer Pool Configuration
	14.8.3.1 Configuring InnoDB Buffer Pool Size
	14.8.3.2 Configuring Multiple Buffer Pool Instances
	14.8.3.3 Making the Buffer Pool Scan Resistant
	14.8.3.4 Configuring InnoDB Buffer Pool Prefetching (Read-Ahead)
	14.8.3.5 Configuring Buffer Pool Flushing
	14.8.3.6 Saving and Restoring the Buffer Pool State

	14.8.4 Configuring the Memory Allocator for InnoDB
	14.8.5 Configuring Thread Concurrency for InnoDB
	14.8.6 Configuring the Number of Background InnoDB I/O Threads
	14.8.7 Using Asynchronous I/O on Linux
	14.8.8 Configuring InnoDB I/O Capacity
	14.8.9 Configuring Spin Lock Polling
	14.8.10 Purge Configuration
	14.8.11 Configuring Optimizer Statistics for InnoDB
	14.8.11.1 Configuring Persistent Optimizer Statistics Parameters
	Configuring Automatic Statistics Calculation for Persistent Optimizer Statistics
	Configuring Optimizer Statistics Parameters for Individual Tables
	Configuring the Number of Sampled Pages for InnoDB Optimizer Statistics
	Including Delete-marked Records in Persistent Statistics Calculations
	InnoDB Persistent Statistics Tables
	InnoDB Persistent Statistics Tables Example
	Retrieving Index Size Using the innodb_index_stats Table

	14.8.11.2 Configuring Non-Persistent Optimizer Statistics Parameters
	14.8.11.3 Estimating ANALYZE TABLE Complexity for InnoDB Tables

	14.8.12 Configuring the Merge Threshold for Index Pages

	14.9 InnoDB Table and Page Compression
	14.9.1 InnoDB Table Compression
	14.9.1.1 Overview of Table Compression
	14.9.1.2 Creating Compressed Tables
	14.9.1.3 Tuning Compression for InnoDB Tables
	14.9.1.4 Monitoring InnoDB Table Compression at Runtime
	14.9.1.5 How Compression Works for InnoDB Tables
	14.9.1.6 Compression for OLTP Workloads
	14.9.1.7 SQL Compression Syntax Warnings and Errors

	14.9.2 InnoDB Page Compression

	14.10 InnoDB File-Format Management
	14.10.1 Enabling File Formats
	14.10.2 Verifying File Format Compatibility
	14.10.2.1 Compatibility Check When InnoDB Is Started
	14.10.2.2 Compatibility Check When a Table Is Opened

	14.10.3 Identifying the File Format in Use
	14.10.4 Modifying the File Format

	14.11 InnoDB Row Formats
	14.12 InnoDB Disk I/O and File Space Management
	14.12.1 InnoDB Disk I/O
	14.12.2 File Space Management
	14.12.3 InnoDB Checkpoints
	14.12.4 Defragmenting a Table
	14.12.5 Reclaiming Disk Space with TRUNCATE TABLE

	14.13 InnoDB and Online DDL
	14.13.1 Online DDL Operations
	14.13.2 Online DDL Performance and Concurrency
	14.13.3 Online DDL Space Requirements
	14.13.4 Simplifying DDL Statements with Online DDL
	14.13.5 Online DDL Failure Conditions
	14.13.6 Online DDL Limitations

	14.14 InnoDB Data-at-Rest Encryption
	14.15 InnoDB Startup Options and System Variables
	14.16 InnoDB INFORMATION_SCHEMA Tables
	14.16.1 InnoDB INFORMATION_SCHEMA Tables about Compression
	14.16.1.1 INNODB_CMP and INNODB_CMP_RESET
	14.16.1.2 INNODB_CMPMEM and INNODB_CMPMEM_RESET
	14.16.1.3 Using the Compression Information Schema Tables

	14.16.2 InnoDB INFORMATION_SCHEMA Transaction and Locking Information
	14.16.2.1 Using InnoDB Transaction and Locking Information
	14.16.2.2 InnoDB Lock and Lock-Wait Information
	14.16.2.3 Persistence and Consistency of InnoDB Transaction and Locking Information

	14.16.3 InnoDB INFORMATION_SCHEMA System Tables
	14.16.4 InnoDB INFORMATION_SCHEMA FULLTEXT Index Tables
	14.16.5 InnoDB INFORMATION_SCHEMA Buffer Pool Tables
	14.16.6 InnoDB INFORMATION_SCHEMA Metrics Table
	14.16.7 InnoDB INFORMATION_SCHEMA Temporary Table Info Table
	14.16.8 Retrieving InnoDB Tablespace Metadata from INFORMATION_SCHEMA.FILES

	14.17 InnoDB Integration with MySQL Performance Schema
	14.17.1 Monitoring ALTER TABLE Progress for InnoDB Tables Using Performance Schema
	14.17.2 Monitoring InnoDB Mutex Waits Using Performance Schema

	14.18 InnoDB Monitors
	14.18.1 InnoDB Monitor Types
	14.18.2 Enabling InnoDB Monitors
	14.18.3 InnoDB Standard Monitor and Lock Monitor Output

	14.19 InnoDB Backup and Recovery
	14.19.1 InnoDB Backup
	14.19.2 InnoDB Recovery

	14.20 InnoDB and MySQL Replication
	14.21 InnoDB memcached Plugin
	14.21.1 Benefits of the InnoDB memcached Plugin
	14.21.2 InnoDB memcached Architecture
	14.21.3 Setting Up the InnoDB memcached Plugin
	14.21.4 Security Considerations for the InnoDB memcached Plugin
	14.21.5 Writing Applications for the InnoDB memcached Plugin
	14.21.5.1 Adapting an Existing MySQL Schema for the InnoDB memcached Plugin
	14.21.5.2 Adapting a memcached Application for the InnoDB memcached Plugin
	14.21.5.3 Tuning InnoDB memcached Plugin Performance
	14.21.5.4 Controlling Transactional Behavior of the InnoDB memcached Plugin
	14.21.5.5 Adapting DML Statements to memcached Operations
	14.21.5.6 Performing DML and DDL Statements on the Underlying InnoDB Table

	14.21.6 The InnoDB memcached Plugin and Replication
	14.21.7 InnoDB memcached Plugin Internals
	14.21.8 Troubleshooting the InnoDB memcached Plugin

	14.22 InnoDB Troubleshooting
	14.22.1 Troubleshooting InnoDB I/O Problems
	14.22.2 Forcing InnoDB Recovery
	14.22.3 Troubleshooting InnoDB Data Dictionary Operations
	14.22.4 InnoDB Error Handling

	14.23 InnoDB Limits
	14.24 InnoDB Restrictions and Limitations

	Chapter 15 Alternative Storage Engines
	15.1 Setting the Storage Engine
	15.2 The MyISAM Storage Engine
	15.2.1 MyISAM Startup Options
	15.2.2 Space Needed for Keys
	15.2.3 MyISAM Table Storage Formats
	15.2.3.1 Static (Fixed-Length) Table Characteristics
	15.2.3.2 Dynamic Table Characteristics
	15.2.3.3 Compressed Table Characteristics

	15.2.4 MyISAM Table Problems
	15.2.4.1 Corrupted MyISAM Tables
	15.2.4.2 Problems from Tables Not Being Closed Properly

	15.3 The MEMORY Storage Engine
	15.4 The CSV Storage Engine
	15.4.1 Repairing and Checking CSV Tables
	15.4.2 CSV Limitations

	15.5 The ARCHIVE Storage Engine
	15.6 The BLACKHOLE Storage Engine
	15.7 The MERGE Storage Engine
	15.7.1 MERGE Table Advantages and Disadvantages
	15.7.2 MERGE Table Problems

	15.8 The FEDERATED Storage Engine
	15.8.1 FEDERATED Storage Engine Overview
	15.8.2 How to Create FEDERATED Tables
	15.8.2.1 Creating a FEDERATED Table Using CONNECTION
	15.8.2.2 Creating a FEDERATED Table Using CREATE SERVER

	15.8.3 FEDERATED Storage Engine Notes and Tips
	15.8.4 FEDERATED Storage Engine Resources

	15.9 The EXAMPLE Storage Engine
	15.10 Other Storage Engines
	15.11 Overview of MySQL Storage Engine Architecture
	15.11.1 Pluggable Storage Engine Architecture
	15.11.2 The Common Database Server Layer

	Chapter 16 Replication
	16.1 Configuring Replication
	16.1.1 Binary Log File Position Based Replication Configuration Overview
	16.1.2 Setting Up Binary Log File Position Based Replication
	16.1.2.1 Setting the Replication Source Configuration
	16.1.2.2 Creating a User for Replication
	16.1.2.3 Obtaining the Replication Source's Binary Log Coordinates
	16.1.2.4 Choosing a Method for Data Snapshots
	Creating a Data Snapshot Using mysqldump
	Creating a Data Snapshot Using Raw Data Files

	16.1.2.5 Setting Up Replicas
	Setting the Replica Configuration
	Setting the Source Configuration on the Replica
	Setting Up Replication between a New Source and Replicas
	Setting Up Replication with Existing Data

	16.1.2.6 Adding Replicas to a Replication Topology

	16.1.3 Replication with Global Transaction Identifiers
	16.1.3.1 GTID Format and Storage
	16.1.3.2 GTID Life Cycle
	16.1.3.3 GTID Auto-Positioning
	16.1.3.4 Setting Up Replication Using GTIDs
	16.1.3.5 Using GTIDs for Failover and Scaleout
	16.1.3.6 Restrictions on Replication with GTIDs
	16.1.3.7 Stored Function Examples to Manipulate GTIDs

	16.1.4 Changing Replication Modes on Online Servers
	16.1.4.1 Replication Mode Concepts
	16.1.4.2 Enabling GTID Transactions Online
	16.1.4.3 Disabling GTID Transactions Online
	16.1.4.4 Verifying Replication of Anonymous Transactions

	16.1.5 MySQL Multi-Source Replication
	16.1.5.1 Configuring Multi-Source Replication
	16.1.5.2 Provisioning a Multi-Source Replica for GTID-Based Replication
	16.1.5.3 Adding GTID-Based Sources to a Multi-Source Replica
	16.1.5.4 Adding a Binary Log Based Source to a Multi-Source Replica
	16.1.5.5 Starting Multi-Source Replicas
	16.1.5.6 Stopping Multi-Source Replicas
	16.1.5.7 Resetting Multi-Source Replicas
	16.1.5.8 Multi-Source Replication Monitoring
	Monitoring Channels Using Performance Schema Tables

	16.1.6 Replication and Binary Logging Options and Variables
	16.1.6.1 Replication and Binary Logging Option and Variable Reference
	16.1.6.2 Replication Source Options and Variables
	16.1.6.3 Replica Server Options and Variables
	16.1.6.4 Binary Logging Options and Variables
	16.1.6.5 Global Transaction ID System Variables

	16.1.7 Common Replication Administration Tasks
	16.1.7.1 Checking Replication Status
	16.1.7.2 Pausing Replication on the Replica
	16.1.7.3 Skipping Transactions
	Skipping Transactions With GTIDs
	Skipping Transactions Without GTIDs
	Skipping Transactions With SET GLOBAL sql_slave_skip_counter
	Skipping Transactions With CHANGE MASTER TO

	16.2 Replication Implementation
	16.2.1 Replication Formats
	16.2.1.1 Advantages and Disadvantages of Statement-Based and Row-Based Replication
	16.2.1.2 Usage of Row-Based Logging and Replication
	16.2.1.3 Determination of Safe and Unsafe Statements in Binary Logging

	16.2.2 Replication Channels
	16.2.2.1 Commands for Operations on a Single Channel
	16.2.2.2 Compatibility with Previous Replication Statements
	16.2.2.3 Startup Options and Replication Channels
	16.2.2.4 Replication Channel Naming Conventions

	16.2.3 Replication Threads
	16.2.3.1 Monitoring Replication Main Threads
	16.2.3.2 Monitoring Replication Applier Worker Threads

	16.2.4 Relay Log and Replication Metadata Repositories
	16.2.4.1 The Relay Log
	16.2.4.2 Replication Metadata Repositories

	16.2.5 How Servers Evaluate Replication Filtering Rules
	16.2.5.1 Evaluation of Database-Level Replication and Binary Logging Options
	16.2.5.2 Evaluation of Table-Level Replication Options
	16.2.5.3 Interactions Between Replication Filtering Options

	16.3 Replication Solutions
	16.3.1 Using Replication for Backups
	16.3.1.1 Backing Up a Replica Using mysqldump
	16.3.1.2 Backing Up Raw Data from a Replica
	16.3.1.3 Backing Up a Source or Replica by Making It Read Only

	16.3.2 Handling an Unexpected Halt of a Replica
	16.3.3 Using Replication with Different Source and Replica Storage Engines
	16.3.4 Using Replication for Scale-Out
	16.3.5 Replicating Different Databases to Different Replicas
	16.3.6 Improving Replication Performance
	16.3.7 Switching Sources During Failover
	16.3.8 Setting Up Replication to Use Encrypted Connections
	16.3.9 Semisynchronous Replication
	16.3.9.1 Semisynchronous Replication Administrative Interface
	16.3.9.2 Semisynchronous Replication Installation and Configuration
	16.3.9.3 Semisynchronous Replication Monitoring

	16.3.10 Delayed Replication

	16.4 Replication Notes and Tips
	16.4.1 Replication Features and Issues
	16.4.1.1 Replication and AUTO_INCREMENT
	16.4.1.2 Replication and BLACKHOLE Tables
	16.4.1.3 Replication and Character Sets
	16.4.1.4 Replication and CHECKSUM TABLE
	16.4.1.5 Replication of CREATE ... IF NOT EXISTS Statements
	16.4.1.6 Replication of CREATE TABLE ... SELECT Statements
	16.4.1.7 Replication of CREATE SERVER, ALTER SERVER, and DROP SERVER
	16.4.1.8 Replication of CURRENT_USER()
	16.4.1.9 Replication of DROP ... IF EXISTS Statements
	16.4.1.10 Replication with Differing Table Definitions on Source and Replica
	Replication with More Columns on Source or Replica
	Replication of Columns Having Different Data Types

	16.4.1.11 Replication and DIRECTORY Table Options
	16.4.1.12 Replication and Floating-Point Values
	16.4.1.13 Replication and Fractional Seconds Support
	16.4.1.14 Replication and FLUSH
	16.4.1.15 Replication and System Functions
	16.4.1.16 Replication of Invoked Features
	16.4.1.17 Replication and LIMIT
	16.4.1.18 Replication and LOAD DATA
	16.4.1.19 Replication and max_allowed_packet
	16.4.1.20 Replication and MEMORY Tables
	16.4.1.21 Replication of the mysql System Database
	16.4.1.22 Replication and the Query Optimizer
	16.4.1.23 Replication and Partitioning
	16.4.1.24 Replication and REPAIR TABLE
	16.4.1.25 Replication and Reserved Words
	16.4.1.26 Replication and Source or Replica Shutdowns
	16.4.1.27 Replica Errors During Replication
	16.4.1.28 Replication and Server SQL Mode
	16.4.1.29 Replication and Temporary Tables
	16.4.1.30 Replication Retries and Timeouts
	16.4.1.31 Replication and Time Zones
	16.4.1.32 Replication and Transaction Inconsistencies
	16.4.1.33 Replication and Transactions
	16.4.1.34 Replication and Triggers
	16.4.1.35 Replication and TRUNCATE TABLE
	16.4.1.36 Replication and User Name Length
	16.4.1.37 Replication and Variables
	16.4.1.38 Replication and Views

	16.4.2 Replication Compatibility Between MySQL Versions
	16.4.3 Upgrading a Replication Topology
	16.4.4 Troubleshooting Replication
	16.4.5 How to Report Replication Bugs or Problems

	Chapter 17 Group Replication
	17.1 Group Replication Background
	17.1.1 Replication Technologies
	17.1.1.1 Primary-Secondary Replication
	17.1.1.2 Group Replication

	17.1.2 Group Replication Use Cases
	17.1.2.1 Examples of Use Case Scenarios

	17.1.3 Group Replication Details
	17.1.3.1 Group Membership
	17.1.3.2 Failure Detection
	17.1.3.3 Fault-tolerance

	17.2 Getting Started
	17.2.1 Deploying Group Replication in Single-Primary Mode
	17.2.1.1 Deploying Instances for Group Replication
	17.2.1.2 Configuring an Instance for Group Replication
	17.2.1.3 User Credentials
	17.2.1.4 Launching Group Replication
	17.2.1.5 Bootstrapping the Group
	17.2.1.6 Adding Instances to the Group
	Adding a Second Instance
	Adding Additional Instances

	17.2.2 Deploying Group Replication Locally

	17.3 Requirements and Limitations
	17.3.1 Group Replication Requirements
	17.3.2 Group Replication Limitations

	17.4 Monitoring Group Replication
	17.4.1 Group Replication Server States
	17.4.2 The replication_group_members Table
	17.4.3 The replication_group_member_stats Table

	17.5 Group Replication Operations
	17.5.1 Deploying in Multi-Primary or Single-Primary Mode
	17.5.1.1 Single-Primary Mode
	17.5.1.2 Multi-Primary Mode
	17.5.1.3 Finding the Primary

	17.5.2 Tuning Recovery
	17.5.3 Network Partitioning
	17.5.4 Restarting a Group
	17.5.5 Using MySQL Enterprise Backup with Group Replication

	17.6 Group Replication Security
	17.6.1 Group Replication IP Address Allowlisting
	17.6.2 Group Replication Secure Socket Layer (SSL) Support
	17.6.3 Group Replication and Virtual Private Networks (VPNs)

	17.7 Group Replication Variables
	17.7.1 Group Replication System Variables
	17.7.2 Group Replication Status Variables

	17.8 Frequently Asked Questions
	17.9 Group Replication Technical Details
	17.9.1 Group Replication Plugin Architecture
	17.9.2 The Group
	17.9.3 Data Manipulation Statements
	17.9.4 Data Definition Statements
	17.9.5 Distributed Recovery
	17.9.5.1 Distributed Recovery Basics
	17.9.5.2 Recovering From a Point-in-time
	17.9.5.3 View Changes
	17.9.5.4 Usage Advice and Limitations of Distributed Recovery

	17.9.6 Observability
	17.9.7 Group Replication Performance
	17.9.7.1 Fine Tuning the Group Communication Thread
	17.9.7.2 Message Compression
	17.9.7.3 Flow Control
	Probes and Statistics
	Group Replication Throttling

	Chapter 18 MySQL Shell
	Chapter 19 Using MySQL as a Document Store
	19.1 Key Concepts
	19.2 Setting Up MySQL as a Document Store
	19.2.1 Installing MySQL Shell
	19.2.1.1 Installing MySQL Shell on Microsoft Windows
	19.2.1.2 Installing MySQL Shell on Linux
	19.2.1.3 Installing MySQL Shell on macOS

	19.2.2 Starting MySQL Shell

	19.3 Quick-Start Guide: MySQL for Visual Studio
	19.4 X Plugin
	19.4.1 Using Encrypted Connections with X Plugin
	19.4.2 X Plugin Options and Variables
	19.4.2.1 X Plugin Option and Variable Reference
	19.4.2.2 X Plugin Options and System Variables
	19.4.2.3 X Plugin Status Variables

	19.4.3 Monitoring X Plugin

	Chapter 20 InnoDB Cluster
	Chapter 21 MySQL NDB Cluster 7.5 and NDB Cluster 7.6
	21.1 General Information
	21.2 NDB Cluster Overview
	21.2.1 NDB Cluster Core Concepts
	21.2.2 NDB Cluster Nodes, Node Groups, Fragment Replicas, and Partitions
	21.2.3 NDB Cluster Hardware, Software, and Networking Requirements
	21.2.4 What is New in MySQL NDB Cluster
	21.2.4.1 What is New in NDB Cluster 7.5
	21.2.4.2 What is New in NDB Cluster 7.6

	21.2.5 NDB: Added, Deprecated, and Removed Options, Variables, and Parameters
	21.2.5.1 Options, Variables, and Parameters Added, Deprecated or Removed in NDB 7.5
	21.2.5.2 Options, Variables, and Parameters Added, Deprecated or Removed in NDB 7.6

	21.2.6 MySQL Server Using InnoDB Compared with NDB Cluster
	21.2.6.1 Differences Between the NDB and InnoDB Storage Engines
	21.2.6.2 NDB and InnoDB Workloads
	21.2.6.3 NDB and InnoDB Feature Usage Summary

	21.2.7 Known Limitations of NDB Cluster
	21.2.7.1 Noncompliance with SQL Syntax in NDB Cluster
	21.2.7.2 Limits and Differences of NDB Cluster from Standard MySQL Limits
	21.2.7.3 Limits Relating to Transaction Handling in NDB Cluster
	21.2.7.4 NDB Cluster Error Handling
	21.2.7.5 Limits Associated with Database Objects in NDB Cluster
	21.2.7.6 Unsupported or Missing Features in NDB Cluster
	21.2.7.7 Limitations Relating to Performance in NDB Cluster
	21.2.7.8 Issues Exclusive to NDB Cluster
	21.2.7.9 Limitations Relating to NDB Cluster Disk Data Storage
	21.2.7.10 Limitations Relating to Multiple NDB Cluster Nodes

	21.3 NDB Cluster Installation
	21.3.1 Installation of NDB Cluster on Linux
	21.3.1.1 Installing an NDB Cluster Binary Release on Linux
	21.3.1.2 Installing NDB Cluster from RPM
	21.3.1.3 Installing NDB Cluster Using .deb Files
	21.3.1.4 Building NDB Cluster from Source on Linux

	21.3.2 Installing NDB Cluster on Windows
	21.3.2.1 Installing NDB Cluster on Windows from a Binary Release
	21.3.2.2 Compiling and Installing NDB Cluster from Source on Windows
	21.3.2.3 Initial Startup of NDB Cluster on Windows
	21.3.2.4 Installing NDB Cluster Processes as Windows Services

	21.3.3 Initial Configuration of NDB Cluster
	21.3.4 Initial Startup of NDB Cluster
	21.3.5 NDB Cluster Example with Tables and Data
	21.3.6 Safe Shutdown and Restart of NDB Cluster
	21.3.7 Upgrading and Downgrading NDB Cluster
	21.3.7.1 Upgrading and Downgrading NDB 7.5
	21.3.7.2 Upgrading and Downgrading NDB 7.6

	21.3.8 The NDB Cluster Auto-Installer (NDB 7.5) (NO LONGER SUPPORTED)
	21.3.9 The NDB Cluster Auto-Installer (NO LONGER SUPPORTED)

	21.4 Configuration of NDB Cluster
	21.4.1 Quick Test Setup of NDB Cluster
	21.4.2 Overview of NDB Cluster Configuration Parameters, Options, and Variables
	21.4.2.1 NDB Cluster Data Node Configuration Parameters
	21.4.2.2 NDB Cluster Management Node Configuration Parameters
	21.4.2.3 NDB Cluster SQL Node and API Node Configuration Parameters
	21.4.2.4 Other NDB Cluster Configuration Parameters
	21.4.2.5 NDB Cluster mysqld Option and Variable Reference

	21.4.3 NDB Cluster Configuration Files
	21.4.3.1 NDB Cluster Configuration: Basic Example
	21.4.3.2 Recommended Starting Configuration for NDB Cluster
	21.4.3.3 NDB Cluster Connection Strings
	21.4.3.4 Defining Computers in an NDB Cluster
	21.4.3.5 Defining an NDB Cluster Management Server
	21.4.3.6 Defining NDB Cluster Data Nodes
	21.4.3.7 Defining SQL and Other API Nodes in an NDB Cluster
	21.4.3.8 Defining the System
	21.4.3.9 MySQL Server Options and Variables for NDB Cluster
	MySQL Server Options for NDB Cluster
	NDB Cluster System Variables
	NDB Cluster Status Variables

	21.4.3.10 NDB Cluster TCP/IP Connections
	21.4.3.11 NDB Cluster TCP/IP Connections Using Direct Connections
	21.4.3.12 NDB Cluster Shared Memory Connections
	21.4.3.13 Configuring NDB Cluster Send Buffer Parameters

	21.4.4 Using High-Speed Interconnects with NDB Cluster

	21.5 NDB Cluster Programs
	21.5.1 ndbd — The NDB Cluster Data Node Daemon
	21.5.2 ndbinfo_select_all — Select From ndbinfo Tables
	21.5.3 ndbmtd — The NDB Cluster Data Node Daemon (Multi-Threaded)
	21.5.4 ndb_mgmd — The NDB Cluster Management Server Daemon
	21.5.5 ndb_mgm — The NDB Cluster Management Client
	21.5.6 ndb_blob_tool — Check and Repair BLOB and TEXT columns of NDB Cluster Tables
	21.5.7 ndb_config — Extract NDB Cluster Configuration Information
	21.5.8 ndb_cpcd — Automate Testing for NDB Development
	21.5.9 ndb_delete_all — Delete All Rows from an NDB Table
	21.5.10 ndb_desc — Describe NDB Tables
	21.5.11 ndb_drop_index — Drop Index from an NDB Table
	21.5.12 ndb_drop_table — Drop an NDB Table
	21.5.13 ndb_error_reporter — NDB Error-Reporting Utility
	21.5.14 ndb_import — Import CSV Data Into NDB
	21.5.15 ndb_index_stat — NDB Index Statistics Utility
	21.5.16 ndb_move_data — NDB Data Copy Utility
	21.5.17 ndb_perror — Obtain NDB Error Message Information
	21.5.18 ndb_print_backup_file — Print NDB Backup File Contents
	21.5.19 ndb_print_file — Print NDB Disk Data File Contents
	21.5.20 ndb_print_frag_file — Print NDB Fragment List File Contents
	21.5.21 ndb_print_schema_file — Print NDB Schema File Contents
	21.5.22 ndb_print_sys_file — Print NDB System File Contents
	21.5.23 ndb_redo_log_reader — Check and Print Content of Cluster Redo Log
	21.5.24 ndb_restore — Restore an NDB Cluster Backup
	21.5.24.1 Restoring an NDB Backup to a Different Version of NDB Cluster
	Restoring an NDB backup to a previous version of NDB Cluster
	Restoring an NDB backup to a later version of NDB Cluster

	21.5.24.2 Restoring to a different number of data nodes
	Restoring to Fewer Nodes Than the Original
	Restoring to More Nodes Than the Original

	21.5.25 ndb_select_all — Print Rows from an NDB Table
	21.5.26 ndb_select_count — Print Row Counts for NDB Tables
	21.5.27 ndb_show_tables — Display List of NDB Tables
	21.5.28 ndb_size.pl — NDBCLUSTER Size Requirement Estimator
	21.5.29 ndb_top — View CPU usage information for NDB threads
	21.5.30 ndb_waiter — Wait for NDB Cluster to Reach a Given Status

	21.6 Management of NDB Cluster
	21.6.1 Commands in the NDB Cluster Management Client
	21.6.2 NDB Cluster Log Messages
	21.6.2.1 NDB Cluster: Messages in the Cluster Log
	21.6.2.2 NDB Cluster Log Startup Messages
	21.6.2.3 Event Buffer Reporting in the Cluster Log
	21.6.2.4 NDB Cluster: NDB Transporter Errors

	21.6.3 Event Reports Generated in NDB Cluster
	21.6.3.1 NDB Cluster Logging Management Commands
	21.6.3.2 NDB Cluster Log Events
	21.6.3.3 Using CLUSTERLOG STATISTICS in the NDB Cluster Management Client

	21.6.4 Summary of NDB Cluster Start Phases
	21.6.5 Performing a Rolling Restart of an NDB Cluster
	21.6.6 NDB Cluster Single User Mode
	21.6.7 Adding NDB Cluster Data Nodes Online
	21.6.7.1 Adding NDB Cluster Data Nodes Online: General Issues
	21.6.7.2 Adding NDB Cluster Data Nodes Online: Basic procedure
	21.6.7.3 Adding NDB Cluster Data Nodes Online: Detailed Example

	21.6.8 Online Backup of NDB Cluster
	21.6.8.1 NDB Cluster Backup Concepts
	21.6.8.2 Using The NDB Cluster Management Client to Create a Backup
	21.6.8.3 Configuration for NDB Cluster Backups
	21.6.8.4 NDB Cluster Backup Troubleshooting

	21.6.9 Importing Data Into MySQL Cluster
	21.6.10 MySQL Server Usage for NDB Cluster
	21.6.11 NDB Cluster Disk Data Tables
	21.6.11.1 NDB Cluster Disk Data Objects
	21.6.11.2 Using Symbolic Links with Disk Data Objects
	21.6.11.3 NDB Cluster Disk Data Storage Requirements

	21.6.12 Online Operations with ALTER TABLE in NDB Cluster
	21.6.13 Distributed Privileges Using Shared Grant Tables
	21.6.14 NDB API Statistics Counters and Variables
	21.6.15 ndbinfo: The NDB Cluster Information Database
	21.6.15.1 The ndbinfo arbitrator_validity_detail Table
	21.6.15.2 The ndbinfo arbitrator_validity_summary Table
	21.6.15.3 The ndbinfo blocks Table
	21.6.15.4 The ndbinfo cluster_locks Table
	21.6.15.5 The ndbinfo cluster_operations Table
	21.6.15.6 The ndbinfo cluster_transactions Table
	21.6.15.7 The ndbinfo config_nodes Table
	21.6.15.8 The ndbinfo config_params Table
	21.6.15.9 The ndbinfo config_values Table
	21.6.15.10 The ndbinfo counters Table
	21.6.15.11 The ndbinfo cpustat Table
	21.6.15.12 The ndbinfo cpustat_50ms Table
	21.6.15.13 The ndbinfo cpustat_1sec Table
	21.6.15.14 The ndbinfo cpustat_20sec Table
	21.6.15.15 The ndbinfo dict_obj_info Table
	21.6.15.16 The ndbinfo dict_obj_types Table
	21.6.15.17 The ndbinfo disk_write_speed_base Table
	21.6.15.18 The ndbinfo disk_write_speed_aggregate Table
	21.6.15.19 The ndbinfo disk_write_speed_aggregate_node Table
	21.6.15.20 The ndbinfo diskpagebuffer Table
	21.6.15.21 The ndbinfo error_messages Table
	21.6.15.22 The ndbinfo locks_per_fragment Table
	21.6.15.23 The ndbinfo logbuffers Table
	21.6.15.24 The ndbinfo logspaces Table
	21.6.15.25 The ndbinfo membership Table
	21.6.15.26 The ndbinfo memoryusage Table
	21.6.15.27 The ndbinfo memory_per_fragment Table
	21.6.15.28 The ndbinfo nodes Table
	21.6.15.29 The ndbinfo operations_per_fragment Table
	21.6.15.30 The ndbinfo processes Table
	21.6.15.31 The ndbinfo resources Table
	21.6.15.32 The ndbinfo restart_info Table
	21.6.15.33 The ndbinfo server_locks Table
	21.6.15.34 The ndbinfo server_operations Table
	21.6.15.35 The ndbinfo server_transactions Table
	21.6.15.36 The ndbinfo table_distribution_status Table
	21.6.15.37 The ndbinfo table_fragments Table
	21.6.15.38 The ndbinfo table_info Table
	21.6.15.39 The ndbinfo table_replicas Table
	21.6.15.40 The ndbinfo tc_time_track_stats Table
	21.6.15.41 The ndbinfo threadblocks Table
	21.6.15.42 The ndbinfo threads Table
	21.6.15.43 The ndbinfo threadstat Table
	21.6.15.44 The ndbinfo transporters Table

	21.6.16 INFORMATION_SCHEMA Tables for NDB Cluster
	21.6.17 Quick Reference: NDB Cluster SQL Statements
	21.6.18 NDB Cluster Security Issues
	21.6.18.1 NDB Cluster Security and Networking Issues
	21.6.18.2 NDB Cluster and MySQL Privileges
	21.6.18.3 NDB Cluster and MySQL Security Procedures

	21.7 NDB Cluster Replication
	21.7.1 NDB Cluster Replication: Abbreviations and Symbols
	21.7.2 General Requirements for NDB Cluster Replication
	21.7.3 Known Issues in NDB Cluster Replication
	21.7.4 NDB Cluster Replication Schema and Tables
	21.7.5 Preparing the NDB Cluster for Replication
	21.7.6 Starting NDB Cluster Replication (Single Replication Channel)
	21.7.7 Using Two Replication Channels for NDB Cluster Replication
	21.7.8 Implementing Failover with NDB Cluster Replication
	21.7.9 NDB Cluster Backups With NDB Cluster Replication
	21.7.9.1 NDB Cluster Replication: Automating Synchronization of the Replica to the Source Binary Log
	21.7.9.2 Point-In-Time Recovery Using NDB Cluster Replication

	21.7.10 NDB Cluster Replication: Bidirectional and Circular Replication
	21.7.11 NDB Cluster Replication Conflict Resolution

	21.8 NDB Cluster Release Notes

	Chapter 22 Partitioning
	22.1 Overview of Partitioning in MySQL
	22.2 Partitioning Types
	22.2.1 RANGE Partitioning
	22.2.2 LIST Partitioning
	22.2.3 COLUMNS Partitioning
	22.2.3.1 RANGE COLUMNS partitioning
	22.2.3.2 LIST COLUMNS partitioning

	22.2.4 HASH Partitioning
	22.2.4.1 LINEAR HASH Partitioning

	22.2.5 KEY Partitioning
	22.2.6 Subpartitioning
	22.2.7 How MySQL Partitioning Handles NULL

	22.3 Partition Management
	22.3.1 Management of RANGE and LIST Partitions
	22.3.2 Management of HASH and KEY Partitions
	22.3.3 Exchanging Partitions and Subpartitions with Tables
	22.3.4 Maintenance of Partitions
	22.3.5 Obtaining Information About Partitions

	22.4 Partition Pruning
	22.5 Partition Selection
	22.6 Restrictions and Limitations on Partitioning
	22.6.1 Partitioning Keys, Primary Keys, and Unique Keys
	22.6.2 Partitioning Limitations Relating to Storage Engines
	22.6.3 Partitioning Limitations Relating to Functions
	22.6.4 Partitioning and Locking

	Chapter 23 Stored Objects
	23.1 Defining Stored Programs
	23.2 Using Stored Routines
	23.2.1 Stored Routine Syntax
	23.2.2 Stored Routines and MySQL Privileges
	23.2.3 Stored Routine Metadata
	23.2.4 Stored Procedures, Functions, Triggers, and LAST_INSERT_ID()

	23.3 Using Triggers
	23.3.1 Trigger Syntax and Examples
	23.3.2 Trigger Metadata

	23.4 Using the Event Scheduler
	23.4.1 Event Scheduler Overview
	23.4.2 Event Scheduler Configuration
	23.4.3 Event Syntax
	23.4.4 Event Metadata
	23.4.5 Event Scheduler Status
	23.4.6 The Event Scheduler and MySQL Privileges

	23.5 Using Views
	23.5.1 View Syntax
	23.5.2 View Processing Algorithms
	23.5.3 Updatable and Insertable Views
	23.5.4 The View WITH CHECK OPTION Clause
	23.5.5 View Metadata

	23.6 Stored Object Access Control
	23.7 Stored Program Binary Logging
	23.8 Restrictions on Stored Programs
	23.9 Restrictions on Views

	Chapter 24 INFORMATION_SCHEMA Tables
	24.1 Introduction
	24.2 INFORMATION_SCHEMA Table Reference
	24.3 INFORMATION_SCHEMA General Tables
	24.3.1 INFORMATION_SCHEMA General Table Reference
	24.3.2 The INFORMATION_SCHEMA CHARACTER_SETS Table
	24.3.3 The INFORMATION_SCHEMA COLLATIONS Table
	24.3.4 The INFORMATION_SCHEMA COLLATION_CHARACTER_SET_APPLICABILITY Table
	24.3.5 The INFORMATION_SCHEMA COLUMNS Table
	24.3.6 The INFORMATION_SCHEMA COLUMN_PRIVILEGES Table
	24.3.7 The INFORMATION_SCHEMA ENGINES Table
	24.3.8 The INFORMATION_SCHEMA EVENTS Table
	24.3.9 The INFORMATION_SCHEMA FILES Table
	24.3.10 The INFORMATION_SCHEMA GLOBAL_STATUS and SESSION_STATUS Tables
	24.3.11 The INFORMATION_SCHEMA GLOBAL_VARIABLES and SESSION_VARIABLES Tables
	24.3.12 The INFORMATION_SCHEMA KEY_COLUMN_USAGE Table
	24.3.13 The INFORMATION_SCHEMA ndb_transid_mysql_connection_map Table
	24.3.14 The INFORMATION_SCHEMA OPTIMIZER_TRACE Table
	24.3.15 The INFORMATION_SCHEMA PARAMETERS Table
	24.3.16 The INFORMATION_SCHEMA PARTITIONS Table
	24.3.17 The INFORMATION_SCHEMA PLUGINS Table
	24.3.18 The INFORMATION_SCHEMA PROCESSLIST Table
	24.3.19 The INFORMATION_SCHEMA PROFILING Table
	24.3.20 The INFORMATION_SCHEMA REFERENTIAL_CONSTRAINTS Table
	24.3.21 The INFORMATION_SCHEMA ROUTINES Table
	24.3.22 The INFORMATION_SCHEMA SCHEMATA Table
	24.3.23 The INFORMATION_SCHEMA SCHEMA_PRIVILEGES Table
	24.3.24 The INFORMATION_SCHEMA STATISTICS Table
	24.3.25 The INFORMATION_SCHEMA TABLES Table
	24.3.26 The INFORMATION_SCHEMA TABLESPACES Table
	24.3.27 The INFORMATION_SCHEMA TABLE_CONSTRAINTS Table
	24.3.28 The INFORMATION_SCHEMA TABLE_PRIVILEGES Table
	24.3.29 The INFORMATION_SCHEMA TRIGGERS Table
	24.3.30 The INFORMATION_SCHEMA USER_PRIVILEGES Table
	24.3.31 The INFORMATION_SCHEMA VIEWS Table

	24.4 INFORMATION_SCHEMA InnoDB Tables
	24.4.1 INFORMATION_SCHEMA InnoDB Table Reference
	24.4.2 The INFORMATION_SCHEMA INNODB_BUFFER_PAGE Table
	24.4.3 The INFORMATION_SCHEMA INNODB_BUFFER_PAGE_LRU Table
	24.4.4 The INFORMATION_SCHEMA INNODB_BUFFER_POOL_STATS Table
	24.4.5 The INFORMATION_SCHEMA INNODB_CMP and INNODB_CMP_RESET Tables
	24.4.6 The INFORMATION_SCHEMA INNODB_CMPMEM and INNODB_CMPMEM_RESET Tables
	24.4.7 The INFORMATION_SCHEMA INNODB_CMP_PER_INDEX and INNODB_CMP_PER_INDEX_RESET Tables
	24.4.8 The INFORMATION_SCHEMA INNODB_FT_BEING_DELETED Table
	24.4.9 The INFORMATION_SCHEMA INNODB_FT_CONFIG Table
	24.4.10 The INFORMATION_SCHEMA INNODB_FT_DEFAULT_STOPWORD Table
	24.4.11 The INFORMATION_SCHEMA INNODB_FT_DELETED Table
	24.4.12 The INFORMATION_SCHEMA INNODB_FT_INDEX_CACHE Table
	24.4.13 The INFORMATION_SCHEMA INNODB_FT_INDEX_TABLE Table
	24.4.14 The INFORMATION_SCHEMA INNODB_LOCKS Table
	24.4.15 The INFORMATION_SCHEMA INNODB_LOCK_WAITS Table
	24.4.16 The INFORMATION_SCHEMA INNODB_METRICS Table
	24.4.17 The INFORMATION_SCHEMA INNODB_SYS_COLUMNS Table
	24.4.18 The INFORMATION_SCHEMA INNODB_SYS_DATAFILES Table
	24.4.19 The INFORMATION_SCHEMA INNODB_SYS_FIELDS Table
	24.4.20 The INFORMATION_SCHEMA INNODB_SYS_FOREIGN Table
	24.4.21 The INFORMATION_SCHEMA INNODB_SYS_FOREIGN_COLS Table
	24.4.22 The INFORMATION_SCHEMA INNODB_SYS_INDEXES Table
	24.4.23 The INFORMATION_SCHEMA INNODB_SYS_TABLES Table
	24.4.24 The INFORMATION_SCHEMA INNODB_SYS_TABLESPACES Table
	24.4.25 The INFORMATION_SCHEMA INNODB_SYS_TABLESTATS View
	24.4.26 The INFORMATION_SCHEMA INNODB_SYS_VIRTUAL Table
	24.4.27 The INFORMATION_SCHEMA INNODB_TEMP_TABLE_INFO Table
	24.4.28 The INFORMATION_SCHEMA INNODB_TRX Table

	24.5 INFORMATION_SCHEMA Thread Pool Tables
	24.5.1 INFORMATION_SCHEMA Thread Pool Table Reference
	24.5.2 The INFORMATION_SCHEMA TP_THREAD_GROUP_STATE Table
	24.5.3 The INFORMATION_SCHEMA TP_THREAD_GROUP_STATS Table
	24.5.4 The INFORMATION_SCHEMA TP_THREAD_STATE Table

	24.6 INFORMATION_SCHEMA Connection Control Tables
	24.6.1 INFORMATION_SCHEMA Connection Control Table Reference
	24.6.2 The INFORMATION_SCHEMA CONNECTION_CONTROL_FAILED_LOGIN_ATTEMPTS Table

	24.7 INFORMATION_SCHEMA MySQL Enterprise Firewall Tables
	24.7.1 INFORMATION_SCHEMA Firewall Table Reference
	24.7.2 The INFORMATION_SCHEMA MYSQL_FIREWALL_USERS Table
	24.7.3 The INFORMATION_SCHEMA MYSQL_FIREWALL_WHITELIST Table

	24.8 Extensions to SHOW Statements

	Chapter 25 MySQL Performance Schema
	25.1 Performance Schema Quick Start
	25.2 Performance Schema Build Configuration
	25.3 Performance Schema Startup Configuration
	25.4 Performance Schema Runtime Configuration
	25.4.1 Performance Schema Event Timing
	25.4.2 Performance Schema Event Filtering
	25.4.3 Event Pre-Filtering
	25.4.4 Pre-Filtering by Instrument
	25.4.5 Pre-Filtering by Object
	25.4.6 Pre-Filtering by Thread
	25.4.7 Pre-Filtering by Consumer
	25.4.8 Example Consumer Configurations
	25.4.9 Naming Instruments or Consumers for Filtering Operations
	25.4.10 Determining What Is Instrumented

	25.5 Performance Schema Queries
	25.6 Performance Schema Instrument Naming Conventions
	25.7 Performance Schema Status Monitoring
	25.8 Performance Schema Atom and Molecule Events
	25.9 Performance Schema Tables for Current and Historical Events
	25.10 Performance Schema Statement Digests
	25.11 Performance Schema General Table Characteristics
	25.12 Performance Schema Table Descriptions
	25.12.1 Performance Schema Table Reference
	25.12.2 Performance Schema Setup Tables
	25.12.2.1 The setup_actors Table
	25.12.2.2 The setup_consumers Table
	25.12.2.3 The setup_instruments Table
	25.12.2.4 The setup_objects Table
	25.12.2.5 The setup_timers Table

	25.12.3 Performance Schema Instance Tables
	25.12.3.1 The cond_instances Table
	25.12.3.2 The file_instances Table
	25.12.3.3 The mutex_instances Table
	25.12.3.4 The rwlock_instances Table
	25.12.3.5 The socket_instances Table

	25.12.4 Performance Schema Wait Event Tables
	25.12.4.1 The events_waits_current Table
	25.12.4.2 The events_waits_history Table
	25.12.4.3 The events_waits_history_long Table

	25.12.5 Performance Schema Stage Event Tables
	25.12.5.1 The events_stages_current Table
	25.12.5.2 The events_stages_history Table
	25.12.5.3 The events_stages_history_long Table

	25.12.6 Performance Schema Statement Event Tables
	25.12.6.1 The events_statements_current Table
	25.12.6.2 The events_statements_history Table
	25.12.6.3 The events_statements_history_long Table
	25.12.6.4 The prepared_statements_instances Table

	25.12.7 Performance Schema Transaction Tables
	25.12.7.1 The events_transactions_current Table
	25.12.7.2 The events_transactions_history Table
	25.12.7.3 The events_transactions_history_long Table

	25.12.8 Performance Schema Connection Tables
	25.12.8.1 The accounts Table
	25.12.8.2 The hosts Table
	25.12.8.3 The users Table

	25.12.9 Performance Schema Connection Attribute Tables
	25.12.9.1 The session_account_connect_attrs Table
	25.12.9.2 The session_connect_attrs Table

	25.12.10 Performance Schema User-Defined Variable Tables
	25.12.11 Performance Schema Replication Tables
	25.12.11.1 The replication_connection_configuration Table
	25.12.11.2 The replication_connection_status Table
	25.12.11.3 The replication_applier_configuration Table
	25.12.11.4 The replication_applier_status Table
	25.12.11.5 The replication_applier_status_by_coordinator Table
	25.12.11.6 The replication_applier_status_by_worker Table
	25.12.11.7 The replication_group_member_stats Table
	25.12.11.8 The replication_group_members Table

	25.12.12 Performance Schema Lock Tables
	25.12.12.1 The metadata_locks Table
	25.12.12.2 The table_handles Table

	25.12.13 Performance Schema System Variable Tables
	25.12.14 Performance Schema Status Variable Tables
	25.12.15 Performance Schema Summary Tables
	25.12.15.1 Wait Event Summary Tables
	25.12.15.2 Stage Summary Tables
	25.12.15.3 Statement Summary Tables
	25.12.15.4 Transaction Summary Tables
	25.12.15.5 Object Wait Summary Table
	25.12.15.6 File I/O Summary Tables
	25.12.15.7 Table I/O and Lock Wait Summary Tables
	The table_io_waits_summary_by_table Table
	The table_io_waits_summary_by_index_usage Table
	The table_lock_waits_summary_by_table Table

	25.12.15.8 Socket Summary Tables
	25.12.15.9 Memory Summary Tables
	25.12.15.10 Status Variable Summary Tables

	25.12.16 Performance Schema Miscellaneous Tables
	25.12.16.1 The host_cache Table
	25.12.16.2 The performance_timers Table
	25.12.16.3 The processlist Table
	25.12.16.4 The threads Table

	25.13 Performance Schema Option and Variable Reference
	25.14 Performance Schema Command Options
	25.15 Performance Schema System Variables
	25.16 Performance Schema Status Variables
	25.17 The Performance Schema Memory-Allocation Model
	25.18 Performance Schema and Plugins
	25.19 Using the Performance Schema to Diagnose Problems
	25.19.1 Query Profiling Using Performance Schema

	25.20 Migrating to Performance Schema System and Status Variable Tables
	25.21 Restrictions on Performance Schema

	Chapter 26 MySQL sys Schema
	26.1 Prerequisites for Using the sys Schema
	26.2 Using the sys Schema
	26.3 sys Schema Progress Reporting
	26.4 sys Schema Object Reference
	26.4.1 sys Schema Object Index
	26.4.2 sys Schema Tables and Triggers
	26.4.2.1 The sys_config Table
	26.4.2.2 The sys_config_insert_set_user Trigger
	26.4.2.3 The sys_config_update_set_user Trigger

	26.4.3 sys Schema Views
	26.4.3.1 The host_summary and x$host_summary Views
	26.4.3.2 The host_summary_by_file_io and x$host_summary_by_file_io Views
	26.4.3.3 The host_summary_by_file_io_type and x$host_summary_by_file_io_type Views
	26.4.3.4 The host_summary_by_stages and x$host_summary_by_stages Views
	26.4.3.5 The host_summary_by_statement_latency and x$host_summary_by_statement_latency Views
	26.4.3.6 The host_summary_by_statement_type and x$host_summary_by_statement_type Views
	26.4.3.7 The innodb_buffer_stats_by_schema and x$innodb_buffer_stats_by_schema Views
	26.4.3.8 The innodb_buffer_stats_by_table and x$innodb_buffer_stats_by_table Views
	26.4.3.9 The innodb_lock_waits and x$innodb_lock_waits Views
	26.4.3.10 The io_by_thread_by_latency and x$io_by_thread_by_latency Views
	26.4.3.11 The io_global_by_file_by_bytes and x$io_global_by_file_by_bytes Views
	26.4.3.12 The io_global_by_file_by_latency and x$io_global_by_file_by_latency Views
	26.4.3.13 The io_global_by_wait_by_bytes and x$io_global_by_wait_by_bytes Views
	26.4.3.14 The io_global_by_wait_by_latency and x$io_global_by_wait_by_latency Views
	26.4.3.15 The latest_file_io and x$latest_file_io Views
	26.4.3.16 The memory_by_host_by_current_bytes and x$memory_by_host_by_current_bytes Views
	26.4.3.17 The memory_by_thread_by_current_bytes and x$memory_by_thread_by_current_bytes Views
	26.4.3.18 The memory_by_user_by_current_bytes and x$memory_by_user_by_current_bytes Views
	26.4.3.19 The memory_global_by_current_bytes and x$memory_global_by_current_bytes Views
	26.4.3.20 The memory_global_total and x$memory_global_total Views
	26.4.3.21 The metrics View
	26.4.3.22 The processlist and x$processlist Views
	26.4.3.23 The ps_check_lost_instrumentation View
	26.4.3.24 The schema_auto_increment_columns View
	26.4.3.25 The schema_index_statistics and x$schema_index_statistics Views
	26.4.3.26 The schema_object_overview View
	26.4.3.27 The schema_redundant_indexes and x$schema_flattened_keys Views
	26.4.3.28 The schema_table_lock_waits and x$schema_table_lock_waits Views
	26.4.3.29 The schema_table_statistics and x$schema_table_statistics Views
	26.4.3.30 The schema_table_statistics_with_buffer and x$schema_table_statistics_with_buffer Views
	26.4.3.31 The schema_tables_with_full_table_scans and x$schema_tables_with_full_table_scans Views
	26.4.3.32 The schema_unused_indexes View
	26.4.3.33 The session and x$session Views
	26.4.3.34 The session_ssl_status View
	26.4.3.35 The statement_analysis and x$statement_analysis Views
	26.4.3.36 The statements_with_errors_or_warnings and x$statements_with_errors_or_warnings Views
	26.4.3.37 The statements_with_full_table_scans and x$statements_with_full_table_scans Views
	26.4.3.38 The statements_with_runtimes_in_95th_percentile and x$statements_with_runtimes_in_95th_percentile Views
	26.4.3.39 The statements_with_sorting and x$statements_with_sorting Views
	26.4.3.40 The statements_with_temp_tables and x$statements_with_temp_tables Views
	26.4.3.41 The user_summary and x$user_summary Views
	26.4.3.42 The user_summary_by_file_io and x$user_summary_by_file_io Views
	26.4.3.43 The user_summary_by_file_io_type and x$user_summary_by_file_io_type Views
	26.4.3.44 The user_summary_by_stages and x$user_summary_by_stages Views
	26.4.3.45 The user_summary_by_statement_latency and x$user_summary_by_statement_latency Views
	26.4.3.46 The user_summary_by_statement_type and x$user_summary_by_statement_type Views
	26.4.3.47 The version View
	26.4.3.48 The wait_classes_global_by_avg_latency and x$wait_classes_global_by_avg_latency Views
	26.4.3.49 The wait_classes_global_by_latency and x$wait_classes_global_by_latency Views
	26.4.3.50 The waits_by_host_by_latency and x$waits_by_host_by_latency Views
	26.4.3.51 The waits_by_user_by_latency and x$waits_by_user_by_latency Views
	26.4.3.52 The waits_global_by_latency and x$waits_global_by_latency Views

	26.4.4 sys Schema Stored Procedures
	26.4.4.1 The create_synonym_db() Procedure
	26.4.4.2 The diagnostics() Procedure
	26.4.4.3 The execute_prepared_stmt() Procedure
	26.4.4.4 The ps_setup_disable_background_threads() Procedure
	26.4.4.5 The ps_setup_disable_consumer() Procedure
	26.4.4.6 The ps_setup_disable_instrument() Procedure
	26.4.4.7 The ps_setup_disable_thread() Procedure
	26.4.4.8 The ps_setup_enable_background_threads() Procedure
	26.4.4.9 The ps_setup_enable_consumer() Procedure
	26.4.4.10 The ps_setup_enable_instrument() Procedure
	26.4.4.11 The ps_setup_enable_thread() Procedure
	26.4.4.12 The ps_setup_reload_saved() Procedure
	26.4.4.13 The ps_setup_reset_to_default() Procedure
	26.4.4.14 The ps_setup_save() Procedure
	26.4.4.15 The ps_setup_show_disabled() Procedure
	26.4.4.16 The ps_setup_show_disabled_consumers() Procedure
	26.4.4.17 The ps_setup_show_disabled_instruments() Procedure
	26.4.4.18 The ps_setup_show_enabled() Procedure
	26.4.4.19 The ps_setup_show_enabled_consumers() Procedure
	26.4.4.20 The ps_setup_show_enabled_instruments() Procedure
	26.4.4.21 The ps_statement_avg_latency_histogram() Procedure
	26.4.4.22 The ps_trace_statement_digest() Procedure
	26.4.4.23 The ps_trace_thread() Procedure
	26.4.4.24 The ps_truncate_all_tables() Procedure
	26.4.4.25 The statement_performance_analyzer() Procedure
	26.4.4.26 The table_exists() Procedure

	26.4.5 sys Schema Stored Functions
	26.4.5.1 The extract_schema_from_file_name() Function
	26.4.5.2 The extract_table_from_file_name() Function
	26.4.5.3 The format_bytes() Function
	26.4.5.4 The format_path() Function
	26.4.5.5 The format_statement() Function
	26.4.5.6 The format_time() Function
	26.4.5.7 The list_add() Function
	26.4.5.8 The list_drop() Function
	26.4.5.9 The ps_is_account_enabled() Function
	26.4.5.10 The ps_is_consumer_enabled() Function
	26.4.5.11 The ps_is_instrument_default_enabled() Function
	26.4.5.12 The ps_is_instrument_default_timed() Function
	26.4.5.13 The ps_is_thread_instrumented() Function
	26.4.5.14 The ps_thread_account() Function
	26.4.5.15 The ps_thread_id() Function
	26.4.5.16 The ps_thread_stack() Function
	26.4.5.17 The ps_thread_trx_info() Function
	26.4.5.18 The quote_identifier() Function
	26.4.5.19 The sys_get_config() Function
	26.4.5.20 The version_major() Function
	26.4.5.21 The version_minor() Function
	26.4.5.22 The version_patch() Function

	Chapter 27 Connectors and APIs
	27.1 MySQL Connector/C++
	27.2 MySQL Connector/J
	27.3 MySQL Connector/NET
	27.4 MySQL Connector/ODBC
	27.5 MySQL Connector/Python
	27.6 libmysqld, the Embedded MySQL Server Library
	27.6.1 Compiling Programs with libmysqld
	27.6.2 Restrictions When Using the Embedded MySQL Server
	27.6.3 Options with the Embedded Server
	27.6.4 Embedded Server Examples

	27.7 MySQL C API
	27.8 MySQL PHP API
	27.9 MySQL Perl API
	27.10 MySQL Python API
	27.11 MySQL Ruby APIs
	27.11.1 The MySQL/Ruby API
	27.11.2 The Ruby/MySQL API

	27.12 MySQL Tcl API
	27.13 MySQL Eiffel Wrapper

	Chapter 28 MySQL Enterprise Edition
	28.1 MySQL Enterprise Backup Overview
	28.2 MySQL Enterprise Security Overview
	28.3 MySQL Enterprise Encryption Overview
	28.4 MySQL Enterprise Audit Overview
	28.5 MySQL Enterprise Firewall Overview
	28.6 MySQL Enterprise Thread Pool Overview
	28.7 MySQL Enterprise Data Masking and De-Identification Overview
	28.8 MySQL Telemetry

	Chapter 29 MySQL Workbench
	Appendix A MySQL 5.7 Frequently Asked Questions
	A.1 MySQL 5.7 FAQ: General
	A.2 MySQL 5.7 FAQ: Storage Engines
	A.3 MySQL 5.7 FAQ: Server SQL Mode
	A.4 MySQL 5.7 FAQ: Stored Procedures and Functions
	A.5 MySQL 5.7 FAQ: Triggers
	A.6 MySQL 5.7 FAQ: Views
	A.7 MySQL 5.7 FAQ: INFORMATION_SCHEMA
	A.8 MySQL 5.7 FAQ: Migration
	A.9 MySQL 5.7 FAQ: Security
	A.10 MySQL 5.7 FAQ: NDB Cluster
	A.11 MySQL 5.7 FAQ: MySQL Chinese, Japanese, and Korean Character Sets
	A.12 MySQL 5.7 FAQ: Connectors & APIs
	A.13 MySQL 5.7 FAQ: C API, libmysql
	A.14 MySQL 5.7 FAQ: Replication
	A.15 MySQL 5.7 FAQ: MySQL Enterprise Thread Pool
	A.16 MySQL 5.7 FAQ: InnoDB Change Buffer
	A.17 MySQL 5.7 FAQ: InnoDB Data-at-Rest Encryption
	A.18 MySQL 5.7 FAQ: Virtualization Support

	Appendix B Error Messages and Common Problems
	B.1 Error Message Sources and Elements
	B.2 Error Information Interfaces
	B.3 Problems and Common Errors
	B.3.1 How to Determine What Is Causing a Problem
	B.3.2 Common Errors When Using MySQL Programs
	B.3.2.1 Access denied
	B.3.2.2 Can't connect to [local] MySQL server
	Connection to MySQL Server Failing on Windows

	B.3.2.3 Lost connection to MySQL server
	B.3.2.4 Password Fails When Entered Interactively
	B.3.2.5 Too many connections
	B.3.2.6 Out of memory
	B.3.2.7 MySQL server has gone away
	B.3.2.8 Packet Too Large
	B.3.2.9 Communication Errors and Aborted Connections
	B.3.2.10 The table is full
	B.3.2.11 Can't create/write to file
	B.3.2.12 Commands out of sync
	B.3.2.13 Ignoring user
	B.3.2.14 Table 'tbl_name' doesn't exist
	B.3.2.15 Can't initialize character set
	B.3.2.16 File Not Found and Similar Errors
	B.3.2.17 Table-Corruption Issues

	B.3.3 Administration-Related Issues
	B.3.3.1 Problems with File Permissions
	B.3.3.2 How to Reset the Root Password
	Resetting the Root Password: Windows Systems
	Resetting the Root Password: Unix and Unix-Like Systems
	Resetting the Root Password: Generic Instructions

	B.3.3.3 What to Do If MySQL Keeps Crashing
	B.3.3.4 How MySQL Handles a Full Disk
	B.3.3.5 Where MySQL Stores Temporary Files
	B.3.3.6 How to Protect or Change the MySQL Unix Socket File
	B.3.3.7 Time Zone Problems

	B.3.4 Query-Related Issues
	B.3.4.1 Case Sensitivity in String Searches
	B.3.4.2 Problems Using DATE Columns
	B.3.4.3 Problems with NULL Values
	B.3.4.4 Problems with Column Aliases
	B.3.4.5 Rollback Failure for Nontransactional Tables
	B.3.4.6 Deleting Rows from Related Tables
	B.3.4.7 Solving Problems with No Matching Rows
	B.3.4.8 Problems with Floating-Point Values

	B.3.5 Optimizer-Related Issues
	B.3.6 Table Definition-Related Issues
	B.3.6.1 Problems with ALTER TABLE
	B.3.6.2 TEMPORARY Table Problems

	B.3.7 Known Issues in MySQL

	Appendix C Indexes
	General Index
	C Function Index
	Command Index
	Function Index
	INFORMATION_SCHEMA Index
	Join Types Index
	Operator Index
	Option Index
	Privileges Index
	SQL Modes Index
	Statement/Syntax Index
	Status Variable Index
	System Variable Index
	Transaction Isolation Level Index

	MySQL Glossary

